Unnamed: 0
int64
0
409
Code
stringlengths
131
27.3k
Unit Test
stringlengths
89
30.5k
300
#ifndef TENSORFLOW_CORE_KERNELS_STOCHASTIC_CAST_OP_H_ #define TENSORFLOW_CORE_KERNELS_STOCHASTIC_CAST_OP_H_ #include <limits> #include <type_traits> #include "Eigen/Core" #include "unsupported/Eigen/CXX11/Tensor" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/rng_alg.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/lib/random/random_distributions.h" #include "tensorflow/core/platform/macros.h" namespace tensorflow { namespace internal { class StochasticCastOpBase : public OpKernel { public: explicit StochasticCastOpBase(OpKernelConstruction* ctx) : OpKernel(ctx) {} void Compute(OpKernelContext* ctx) override; protected: virtual void RoundOff(OpKernelContext* ctx, Algorithm alg, const Tensor& key, const Tensor& counter, Tensor* output) = 0; }; } } namespace Eigen { namespace internal { template <typename Scalar, typename IntResultType, typename Generator> struct StochasticRoundToIntOp { static_assert(std::is_integral<IntResultType>::value, "Integer type expected"); typedef tensorflow::random::UniformDistribution<Generator, Scalar> Distribution; const Scalar max = static_cast<Scalar>(std::numeric_limits<IntResultType>::max()); const Scalar min = static_cast<Scalar>(std::numeric_limits<IntResultType>::min()); EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC explicit StochasticRoundToIntOp( Generator* g) : gen(g) {} EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Scalar operator()(const Scalar& s) const { if (TF_PREDICT_FALSE(Eigen::numext::isnan(s))) { return Scalar{0}; } if (s >= max) { return max; } if (s <= min) { return min; } if (Eigen::numext::floor(s) == s) { return s; } Distribution dist; Scalar random = dist(gen)[0]; if (s < 0) { return Eigen::numext::floor(s + random); } else { return Eigen::numext::floor(s + Scalar{1} - random); } } template <typename Packet> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Packet packetOp(const Packet& p) const { constexpr size_t kPacketSize = Eigen::internal::unpacket_traits<Packet>::size; Scalar unpacked_random[kPacketSize]; Distribution dist; auto const sample = dist(gen); for (int i = 0; i < kPacketSize; i += Distribution::kResultElementCount) { int granularity = std::min(Distribution::kResultElementCount, static_cast<int>(kPacketSize - i)); std::copy(&sample[0], &sample[0] + granularity, &unpacked_random[i]); } Packet random = pload<Packet>(unpacked_random); Packet rounded = pselect(pcmp_eq(pfloor(p), p), p, pselect(pcmp_lt(p, pzero(p)), pfloor(padd(p, random)), pfloor(padd(p, psub(pset1<Packet>(1), random))))); Packet result = pselect(pcmp_le(pset1<Packet>(max), p), pset1<Packet>(max), rounded); result = pselect(pcmp_le(p, pset1<Packet>(min)), pset1<Packet>(min), result); return pselect(pcmp_eq(p, p), result, pset1<Packet>(0)); } Generator* gen; }; template <typename Scalar, typename IntResultType, typename Generator> struct functor_traits< StochasticRoundToIntOp<Scalar, IntResultType, Generator>> { enum { Cost = 3 * NumTraits<Scalar>::AddCost, PacketAccess = packet_traits<Scalar>::HasCmp && packet_traits<Scalar>::HasRound, }; }; } } #endif #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/rng_alg.h" #include "tensorflow/core/framework/shape_inference.h" #include "tensorflow/core/lib/core/status.h" #include "tsl/platform/errors.h" namespace tensorflow { using shape_inference::DimensionHandle; using shape_inference::InferenceContext; using shape_inference::ShapeHandle; REGISTER_OP("StochasticCastToInt") .Input("input: Tin") .Input("key: uint64") .Input("counter: uint64") .Input("alg: int32") .Output("output: Tout") .Attr("Tin: {half, bfloat16, float32, float64}") .Attr("Tout: {int8, int16, int32}") .SetShapeFn([](InferenceContext* c) { ShapeHandle key; ShapeHandle shape; TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &key)); TF_RETURN_IF_ERROR(c->WithRank(c->input(2), 1, &shape)); TF_RETURN_IF_ERROR(c->WithRank(c->input(3), 0, &shape)); DimensionHandle dim; TF_RETURN_IF_ERROR( c->WithValue(c->Dim(key, 0), RNG_KEY_SIZE, &dim)); c->set_output(0, c->input(0)); return absl::OkStatus(); }); }
#include "tensorflow/core/framework/shape_inference_testutil.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { TEST(StochasticCastOpTest, StochasticCastToIntShapeInference) { ShapeInferenceTestOp op("StochasticCastToInt"); INFER_OK(op, "[4,2];[1];[1];[]", "in0"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "[4,2];[1,2];[1];[]"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "[4,2];[1];[1,2];[]"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[4,2];[1];[1];[1]"); } }
301
#ifndef STORAGE_LEVELDB_INCLUDE_ENV_H_ #define STORAGE_LEVELDB_INCLUDE_ENV_H_ #include <cstdarg> #include <cstdint> #include <string> #include <vector> #include "leveldb/export.h" #include "leveldb/status.h" #if defined(_WIN32) #if defined(DeleteFile) #undef DeleteFile #define LEVELDB_DELETEFILE_UNDEFINED #endif #endif namespace leveldb { class FileLock; class Logger; class RandomAccessFile; class SequentialFile; class Slice; class WritableFile; class LEVELDB_EXPORT Env { public: Env(); Env(const Env&) = delete; Env& operator=(const Env&) = delete; virtual ~Env(); static Env* Default(); virtual Status NewSequentialFile(const std::string& fname, SequentialFile** result) = 0; virtual Status NewRandomAccessFile(const std::string& fname, RandomAccessFile** result) = 0; virtual Status NewWritableFile(const std::string& fname, WritableFile** result) = 0; virtual Status NewAppendableFile(const std::string& fname, WritableFile** result); virtual bool FileExists(const std::string& fname) = 0; virtual Status GetChildren(const std::string& dir, std::vector<std::string>* result) = 0; virtual Status RemoveFile(const std::string& fname); virtual Status DeleteFile(const std::string& fname); virtual Status CreateDir(const std::string& dirname) = 0; virtual Status RemoveDir(const std::string& dirname); virtual Status DeleteDir(const std::string& dirname); virtual Status GetFileSize(const std::string& fname, uint64_t* file_size) = 0; virtual Status RenameFile(const std::string& src, const std::string& target) = 0; virtual Status LockFile(const std::string& fname, FileLock** lock) = 0; virtual Status UnlockFile(FileLock* lock) = 0; virtual void Schedule(void (*function)(void* arg), void* arg) = 0; virtual void StartThread(void (*function)(void* arg), void* arg) = 0; virtual Status GetTestDirectory(std::string* path) = 0; virtual Status NewLogger(const std::string& fname, Logger** result) = 0; virtual uint64_t NowMicros() = 0; virtual void SleepForMicroseconds(int micros) = 0; }; class LEVELDB_EXPORT SequentialFile { public: SequentialFile() = default; SequentialFile(const SequentialFile&) = delete; SequentialFile& operator=(const SequentialFile&) = delete; virtual ~SequentialFile(); virtual Status Read(size_t n, Slice* result, char* scratch) = 0; virtual Status Skip(uint64_t n) = 0; }; class LEVELDB_EXPORT RandomAccessFile { public: RandomAccessFile() = default; RandomAccessFile(const RandomAccessFile&) = delete; RandomAccessFile& operator=(const RandomAccessFile&) = delete; virtual ~RandomAccessFile(); virtual Status Read(uint64_t offset, size_t n, Slice* result, char* scratch) const = 0; }; class LEVELDB_EXPORT WritableFile { public: WritableFile() = default; WritableFile(const WritableFile&) = delete; WritableFile& operator=(const WritableFile&) = delete; virtual ~WritableFile(); virtual Status Append(const Slice& data) = 0; virtual Status Close() = 0; virtual Status Flush() = 0; virtual Status Sync() = 0; }; class LEVELDB_EXPORT Logger { public: Logger() = default; Logger(const Logger&) = delete; Logger& operator=(const Logger&) = delete; virtual ~Logger(); virtual void Logv(const char* format, std::va_list ap) = 0; }; class LEVELDB_EXPORT FileLock { public: FileLock() = default; FileLock(const FileLock&) = delete; FileLock& operator=(const FileLock&) = delete; virtual ~FileLock(); }; void Log(Logger* info_log, const char* format, ...) #if defined(__GNUC__) || defined(__clang__) __attribute__((__format__(__printf__, 2, 3))) #endif ; LEVELDB_EXPORT Status WriteStringToFile(Env* env, const Slice& data, const std::string& fname); LEVELDB_EXPORT Status ReadFileToString(Env* env, const std::string& fname, std::string* data); class LEVELDB_EXPORT EnvWrapper : public Env { public: explicit EnvWrapper(Env* t) : target_(t) {} virtual ~EnvWrapper(); Env* target() const { return target_; } Status NewSequentialFile(const std::string& f, SequentialFile** r) override { return target_->NewSequentialFile(f, r); } Status NewRandomAccessFile(const std::string& f, RandomAccessFile** r) override { return target_->NewRandomAccessFile(f, r); } Status NewWritableFile(const std::string& f, WritableFile** r) override { return target_->NewWritableFile(f, r); } Status NewAppendableFile(const std::string& f, WritableFile** r) override { return target_->NewAppendableFile(f, r); } bool FileExists(const std::string& f) override { return target_->FileExists(f); } Status GetChildren(const std::string& dir, std::vector<std::string>* r) override { return target_->GetChildren(dir, r); } Status RemoveFile(const std::string& f) override { return target_->RemoveFile(f); } Status CreateDir(const std::string& d) override { return target_->CreateDir(d); } Status RemoveDir(const std::string& d) override { return target_->RemoveDir(d); } Status GetFileSize(const std::string& f, uint64_t* s) override { return target_->GetFileSize(f, s); } Status RenameFile(const std::string& s, const std::string& t) override { return target_->RenameFile(s, t); } Status LockFile(const std::string& f, FileLock** l) override { return target_->LockFile(f, l); } Status UnlockFile(FileLock* l) override { return target_->UnlockFile(l); } void Schedule(void (*f)(void*), void* a) override { return target_->Schedule(f, a); } void StartThread(void (*f)(void*), void* a) override { return target_->StartThread(f, a); } Status GetTestDirectory(std::string* path) override { return target_->GetTestDirectory(path); } Status NewLogger(const std::string& fname, Logger** result) override { return target_->NewLogger(fname, result); } uint64_t NowMicros() override { return target_->NowMicros(); } void SleepForMicroseconds(int micros) override { target_->SleepForMicroseconds(micros); } private: Env* target_; }; } #if defined(_WIN32) && defined(LEVELDB_DELETEFILE_UNDEFINED) #if defined(UNICODE) #define DeleteFile DeleteFileW #else #define DeleteFile DeleteFileA #endif #endif #endif #include "leveldb/env.h" #include <cstdarg> #if defined(_WIN32) && defined(LEVELDB_DELETEFILE_UNDEFINED) #undef DeleteFile #endif namespace leveldb { Env::Env() = default; Env::~Env() = default; Status Env::NewAppendableFile(const std::string& fname, WritableFile** result) { return Status::NotSupported("NewAppendableFile", fname); } Status Env::RemoveDir(const std::string& dirname) { return DeleteDir(dirname); } Status Env::DeleteDir(const std::string& dirname) { return RemoveDir(dirname); } Status Env::RemoveFile(const std::string& fname) { return DeleteFile(fname); } Status Env::DeleteFile(const std::string& fname) { return RemoveFile(fname); } SequentialFile::~SequentialFile() = default; RandomAccessFile::~RandomAccessFile() = default; WritableFile::~WritableFile() = default; Logger::~Logger() = default; FileLock::~FileLock() = default; void Log(Logger* info_log, const char* format, ...) { if (info_log != nullptr) { std::va_list ap; va_start(ap, format); info_log->Logv(format, ap); va_end(ap); } } static Status DoWriteStringToFile(Env* env, const Slice& data, const std::string& fname, bool should_sync) { WritableFile* file; Status s = env->NewWritableFile(fname, &file); if (!s.ok()) { return s; } s = file->Append(data); if (s.ok() && should_sync) { s = file->Sync(); } if (s.ok()) { s = file->Close(); } delete file; if (!s.ok()) { env->RemoveFile(fname); } return s; } Status WriteStringToFile(Env* env, const Slice& data, const std::string& fname) { return DoWriteStringToFile(env, data, fname, false); } Status WriteStringToFileSync(Env* env, const Slice& data, const std::string& fname) { return DoWriteStringToFile(env, data, fname, true); } Status ReadFileToString(Env* env, const std::string& fname, std::string* data) { data->clear(); SequentialFile* file; Status s = env->NewSequentialFile(fname, &file); if (!s.ok()) { return s; } static const int kBufferSize = 8192; char* space = new char[kBufferSize]; while (true) { Slice fragment; s = file->Read(kBufferSize, &fragment, space); if (!s.ok()) { break; } data->append(fragment.data(), fragment.size()); if (fragment.empty()) { break; } } delete[] space; delete file; return s; } EnvWrapper::~EnvWrapper() {} }
#include "leveldb/env.h" #include <algorithm> #include "gtest/gtest.h" #include "port/port.h" #include "port/thread_annotations.h" #include "util/mutexlock.h" #include "util/testutil.h" namespace leveldb { class EnvTest : public testing::Test { public: EnvTest() : env_(Env::Default()) {} Env* env_; }; TEST_F(EnvTest, ReadWrite) { Random rnd(test::RandomSeed()); std::string test_dir; ASSERT_LEVELDB_OK(env_->GetTestDirectory(&test_dir)); std::string test_file_name = test_dir + "/open_on_read.txt"; WritableFile* writable_file; ASSERT_LEVELDB_OK(env_->NewWritableFile(test_file_name, &writable_file)); static const size_t kDataSize = 10 * 1048576; std::string data; while (data.size() < kDataSize) { int len = rnd.Skewed(18); std::string r; test::RandomString(&rnd, len, &r); ASSERT_LEVELDB_OK(writable_file->Append(r)); data += r; if (rnd.OneIn(10)) { ASSERT_LEVELDB_OK(writable_file->Flush()); } } ASSERT_LEVELDB_OK(writable_file->Sync()); ASSERT_LEVELDB_OK(writable_file->Close()); delete writable_file; SequentialFile* sequential_file; ASSERT_LEVELDB_OK(env_->NewSequentialFile(test_file_name, &sequential_file)); std::string read_result; std::string scratch; while (read_result.size() < data.size()) { int len = std::min<int>(rnd.Skewed(18), data.size() - read_result.size()); scratch.resize(std::max(len, 1)); Slice read; ASSERT_LEVELDB_OK(sequential_file->Read(len, &read, &scratch[0])); if (len > 0) { ASSERT_GT(read.size(), 0); } ASSERT_LE(read.size(), len); read_result.append(read.data(), read.size()); } ASSERT_EQ(read_result, data); delete sequential_file; } TEST_F(EnvTest, RunImmediately) { struct RunState { port::Mutex mu; port::CondVar cvar{&mu}; bool called = false; static void Run(void* arg) { RunState* state = reinterpret_cast<RunState*>(arg); MutexLock l(&state->mu); ASSERT_EQ(state->called, false); state->called = true; state->cvar.Signal(); } }; RunState state; env_->Schedule(&RunState::Run, &state); MutexLock l(&state.mu); while (!state.called) { state.cvar.Wait(); } } TEST_F(EnvTest, RunMany) { struct RunState { port::Mutex mu; port::CondVar cvar{&mu}; int run_count = 0; }; struct Callback { RunState* const state_; bool run = false; Callback(RunState* s) : state_(s) {} static void Run(void* arg) { Callback* callback = reinterpret_cast<Callback*>(arg); RunState* state = callback->state_; MutexLock l(&state->mu); state->run_count++; callback->run = true; state->cvar.Signal(); } }; RunState state; Callback callback1(&state); Callback callback2(&state); Callback callback3(&state); Callback callback4(&state); env_->Schedule(&Callback::Run, &callback1); env_->Schedule(&Callback::Run, &callback2); env_->Schedule(&Callback::Run, &callback3); env_->Schedule(&Callback::Run, &callback4); MutexLock l(&state.mu); while (state.run_count != 4) { state.cvar.Wait(); } ASSERT_TRUE(callback1.run); ASSERT_TRUE(callback2.run); ASSERT_TRUE(callback3.run); ASSERT_TRUE(callback4.run); } struct State { port::Mutex mu; port::CondVar cvar{&mu}; int val GUARDED_BY(mu); int num_running GUARDED_BY(mu); State(int val, int num_running) : val(val), num_running(num_running) {} }; static void ThreadBody(void* arg) { State* s = reinterpret_cast<State*>(arg); s->mu.Lock(); s->val += 1; s->num_running -= 1; s->cvar.Signal(); s->mu.Unlock(); } TEST_F(EnvTest, StartThread) { State state(0, 3); for (int i = 0; i < 3; i++) { env_->StartThread(&ThreadBody, &state); } MutexLock l(&state.mu); while (state.num_running != 0) { state.cvar.Wait(); } ASSERT_EQ(state.val, 3); } TEST_F(EnvTest, TestOpenNonExistentFile) { std::string test_dir; ASSERT_LEVELDB_OK(env_->GetTestDirectory(&test_dir)); std::string non_existent_file = test_dir + "/non_existent_file"; ASSERT_TRUE(!env_->FileExists(non_existent_file)); RandomAccessFile* random_access_file; Status status = env_->NewRandomAccessFile(non_existent_file, &random_access_file); #if defined(LEVELDB_PLATFORM_CHROMIUM) ASSERT_TRUE(status.IsIOError()); #else ASSERT_TRUE(status.IsNotFound()); #endif SequentialFile* sequential_file; status = env_->NewSequentialFile(non_existent_file, &sequential_file); #if defined(LEVELDB_PLATFORM_CHROMIUM) ASSERT_TRUE(status.IsIOError()); #else ASSERT_TRUE(status.IsNotFound()); #endif } TEST_F(EnvTest, ReopenWritableFile) { std::string test_dir; ASSERT_LEVELDB_OK(env_->GetTestDirectory(&test_dir)); std::string test_file_name = test_dir + "/reopen_writable_file.txt"; env_->RemoveFile(test_file_name); WritableFile* writable_file; ASSERT_LEVELDB_OK(env_->NewWritableFile(test_file_name, &writable_file)); std::string data("hello world!"); ASSERT_LEVELDB_OK(writable_file->Append(data)); ASSERT_LEVELDB_OK(writable_file->Close()); delete writable_file; ASSERT_LEVELDB_OK(env_->NewWritableFile(test_file_name, &writable_file)); data = "42"; ASSERT_LEVELDB_OK(writable_file->Append(data)); ASSERT_LEVELDB_OK(writable_file->Close()); delete writable_file; ASSERT_LEVELDB_OK(ReadFileToString(env_, test_file_name, &data)); ASSERT_EQ(std::string("42"), data); env_->RemoveFile(test_file_name); } TEST_F(EnvTest, ReopenAppendableFile) { std::string test_dir; ASSERT_LEVELDB_OK(env_->GetTestDirectory(&test_dir)); std::string test_file_name = test_dir + "/reopen_appendable_file.txt"; env_->RemoveFile(test_file_name); WritableFile* appendable_file; ASSERT_LEVELDB_OK(env_->NewAppendableFile(test_file_name, &appendable_file)); std::string data("hello world!"); ASSERT_LEVELDB_OK(appendable_file->Append(data)); ASSERT_LEVELDB_OK(appendable_file->Close()); delete appendable_file; ASSERT_LEVELDB_OK(env_->NewAppendableFile(test_file_name, &appendable_file)); data = "42"; ASSERT_LEVELDB_OK(appendable_file->Append(data)); ASSERT_LEVELDB_OK(appendable_file->Close()); delete appendable_file; ASSERT_LEVELDB_OK(ReadFileToString(env_, test_file_name, &data)); ASSERT_EQ(std::string("hello world!42"), data); env_->RemoveFile(test_file_name); } }
302
#include "phonenumbers/phonenumbermatch.h" #include <string> #include "phonenumbers/phonenumber.h" #include "phonenumbers/phonenumber.pb.h" #include "phonenumbers/stringutil.h" namespace i18n { namespace phonenumbers { PhoneNumberMatch::PhoneNumberMatch(int start, const string& raw_string, const PhoneNumber& number) : start_(start), raw_string_(raw_string), number_(number) { } PhoneNumberMatch::PhoneNumberMatch() : start_(-1), raw_string_(""), number_(PhoneNumber::default_instance()) { } const PhoneNumber& PhoneNumberMatch::number() const { return number_; } int PhoneNumberMatch::start() const { return start_; } int PhoneNumberMatch::end() const { return static_cast<int>(start_ + raw_string_.length()); } int PhoneNumberMatch::length() const { return static_cast<int>(raw_string_.length()); } const string& PhoneNumberMatch::raw_string() const { return raw_string_; } void PhoneNumberMatch::set_start(int start) { start_ = start; } void PhoneNumberMatch::set_raw_string(const string& raw_string) { raw_string_ = raw_string; } void PhoneNumberMatch::set_number(const PhoneNumber& number) { number_.CopyFrom(number); } string PhoneNumberMatch::ToString() const { return StrCat("PhoneNumberMatch [", start(), ",", end(), ") ", raw_string_.c_str()); } bool PhoneNumberMatch::Equals(const PhoneNumberMatch& match) const { return ExactlySameAs(match.number_, number_) && match.raw_string_.compare(raw_string_) == 0 && match.start_ == start_; } void PhoneNumberMatch::CopyFrom(const PhoneNumberMatch& match) { raw_string_ = match.raw_string(); start_ = match.start(); number_ = match.number(); } } }
#include "phonenumbers/phonenumber.h" #include "phonenumbers/phonenumbermatch.h" #include <gtest/gtest.h> #include "phonenumbers/phonenumber.pb.h" namespace i18n { namespace phonenumbers { TEST(PhoneNumberMatch, TestGetterMethods) { PhoneNumber number; const int start_index = 10; const string raw_phone_number("1 800 234 45 67"); PhoneNumberMatch match1(start_index, raw_phone_number, number); EXPECT_EQ(start_index, match1.start()); EXPECT_EQ(start_index + static_cast<int>(raw_phone_number.length()), match1.end()); EXPECT_EQ(static_cast<int>(raw_phone_number.length()), match1.length()); EXPECT_EQ(raw_phone_number, match1.raw_string()); EXPECT_EQ("PhoneNumberMatch [10,25) 1 800 234 45 67", match1.ToString()); } TEST(PhoneNumberMatch, TestEquals) { PhoneNumber number; PhoneNumberMatch match1(10, "1 800 234 45 67", number); PhoneNumberMatch match2(10, "1 800 234 45 67", number); match2.set_start(11); ASSERT_FALSE(match1.Equals(match2)); match2.set_start(match1.start()); EXPECT_TRUE(match1.Equals(match2)); PhoneNumber number2; number2.set_raw_input("123"); match2.set_number(number2); ASSERT_FALSE(match1.Equals(match2)); match2.set_number(match1.number()); EXPECT_TRUE(ExactlySameAs(match1.number(), match2.number())); EXPECT_TRUE(match1.Equals(match2)); match2.set_raw_string("123"); ASSERT_FALSE(match1.Equals(match2)); } TEST(PhoneNumberMatch, TestAssignmentOverload) { PhoneNumber number; PhoneNumberMatch match1(10, "1 800 234 45 67", number); PhoneNumberMatch match2; ASSERT_FALSE(match1.Equals(match2)); match2.CopyFrom(match1); ASSERT_TRUE(match1.Equals(match2)); PhoneNumberMatch match3; PhoneNumberMatch match4; match4.CopyFrom(match2); match3.CopyFrom(match2); ASSERT_TRUE(match3.Equals(match4)); ASSERT_TRUE(match4.Equals(match2)); } TEST(PhoneNumberMatch, TestCopyConstructor) { PhoneNumber number; PhoneNumberMatch match1(10, "1 800 234 45 67", number); PhoneNumberMatch match2; match2.CopyFrom(match1); ASSERT_TRUE(match1.Equals(match2)); } } }
303
#ifndef XLA_TOOLS_HLO_EXTRACTOR_H_ #define XLA_TOOLS_HLO_EXTRACTOR_H_ #include <cstdint> #include <functional> #include <memory> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" namespace xla { using ExtractSelector = std::function<bool(const HloInstruction*)>; enum class ReplaceType { kReplaceParam, kReplaceConst, kReplaceZeroBroadcast, kReplaceRandomBroadcast }; using ReplaceTypeSelector = std::function<ReplaceType(const HloInstruction*)>; std::unique_ptr<HloModule> ExtractModule( const HloInstruction* instruction, int64_t height = -1, ExtractSelector extract_selector = nullptr, ReplaceTypeSelector replace_type_selector = nullptr, bool cross_computation = false); } #endif #include "xla/tools/hlo_extractor.h" #ifndef _WIN32 #include <unistd.h> #endif #include <cstdint> #include <deque> #include <memory> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_clone_context.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/service/compilation_environments.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_verifier.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/test_utils.h" #include "tsl/platform/status.h" namespace xla { namespace { class ExtractionVisitor : public ConstDfsHloVisitorWithDefault { public: explicit ExtractionVisitor( const HloInstruction* root_instruction, absl::flat_hash_set<const HloInstruction*>* boundary, ExtractSelector extract_selector, ReplaceTypeSelector replace_type_selector) : root_instruction_(root_instruction), old_module_(root_instruction->GetModule()), module_(std::make_unique<HloModule>( "extracted", config_, std::make_unique<CompilationEnvironments>( old_module_->comp_envs()))), clone_context_(module_.get()), boundary_(boundary), extract_selector_(extract_selector), replace_type_selector_(replace_type_selector) { for (auto computation : old_module_->computations()) { old_computations_to_builders_.insert( {computation, std::make_unique<HloComputation::Builder>(computation->name())}); } for (auto computation : old_module_->computations()) { parameter_numbers_[computation] = 0; } } absl::Status HandleParameter(const HloInstruction* parameter) override { return ReplaceWithParameter(parameter); } absl::Status DefaultAction(const HloInstruction* hlo) override { if ((boundary_ != nullptr && boundary_->contains(hlo) > 0) || (extract_selector_ != nullptr && !extract_selector_(hlo))) { if (replace_type_selector_ != nullptr) { switch (replace_type_selector_(hlo)) { case ReplaceType::kReplaceConst: return ReplaceWithConstant(hlo); case ReplaceType::kReplaceParam: CHECK(hlo->parent() == root_instruction_->parent()) << "Replacing instructions at non-entry computation with " "parameters is not supported."; return ReplaceWithParameter(hlo); case ReplaceType::kReplaceZeroBroadcast: return ReplaceWithConstantBroadcast( hlo, ReplaceType::kReplaceZeroBroadcast); case ReplaceType::kReplaceRandomBroadcast: return ReplaceWithConstantBroadcast( hlo, ReplaceType::kReplaceRandomBroadcast); default: QCHECK(false) << "Unsupported replacement type"; } } return ReplaceWithParameter(hlo); } std::vector<HloInstruction*> new_operands; for (auto operand : hlo->operands()) { new_operands.push_back(clone_context_.GetInstruction(operand)); } auto instruction = hlo->CloneWithNewOperands(hlo->shape(), new_operands, &clone_context_); auto it = old_computations_to_builders_.find(hlo->parent()); CHECK(it != old_computations_to_builders_.end()); auto builder = it->second.get(); builder->AddInstruction(std::move(instruction)); if (hlo->IsRoot() && hlo != root_instruction_) { CHECK(clone_context_.FindComputation(hlo->parent()) == nullptr); auto new_computation = module_->AddEmbeddedComputation(builder->Build()); clone_context_.MapComputation(hlo->parent(), new_computation); } return absl::OkStatus(); } absl::Status FinishVisit(const HloInstruction* ) override { auto new_entry_computation = module_->AddEntryComputation( old_computations_to_builders_.at(root_instruction_->parent())->Build()); clone_context_.MapComputation(root_instruction_->parent(), new_entry_computation); for (auto computation : old_module_->MakeComputationPostOrder()) { for (auto old_instruction : computation->MakeInstructionPostOrder()) { if (auto new_instruction = clone_context_.FindInstruction(old_instruction)) { new_instruction->SetAndSanitizeName(old_instruction->name()); } } } for (HloInstruction* instruction : extra_created_instructions_) { module_->SetAndUniquifyInstrName(instruction, instruction->name()); } return absl::OkStatus(); } HloModule* module() { return module_.get(); } std::unique_ptr<HloModule> ConsumeModule() { return std::move(module_); } private: absl::Status ReplaceWithConstant(const HloInstruction* hlo) { absl::StatusOr<Literal> literal_status = MakeFakeLiteral(hlo->shape()); TF_CHECK_OK(literal_status.status()); auto new_const = HloInstruction::CreateConstant(std::move(literal_status.value())); clone_context_.MapInstruction(hlo, new_const.get()); auto it = old_computations_to_builders_.find(hlo->parent()); CHECK(it != old_computations_to_builders_.end()); auto builder = it->second.get(); builder->AddInstruction(std::move(new_const)); return absl::OkStatus(); } absl::Status ReplaceWithParameter(const HloInstruction* hlo) { CHECK(parameter_numbers_.contains(hlo->parent())); auto new_parameter = HloInstruction::CreateParameter( parameter_numbers_.at(hlo->parent())++, hlo->shape(), hlo->name()); clone_context_.MapInstruction(hlo, new_parameter.get()); CHECK(old_computations_to_builders_.contains(hlo->parent())); auto builder = old_computations_to_builders_[hlo->parent()].get(); builder->AddInstruction(std::move(new_parameter)); return absl::OkStatus(); } HloInstruction* ReplaceWithConstantBroadcastHelper( const Shape& shape, HloComputation::Builder* builder, ReplaceType replace_type) { if (shape.IsTuple()) { std::vector<HloInstruction*> tuple_operands; for (const auto& subshape : shape.tuple_shapes()) { tuple_operands.push_back(ReplaceWithConstantBroadcastHelper( subshape, builder, replace_type)); } auto zero_tuple = builder->AddInstruction(HloInstruction::CreateTuple(tuple_operands)); extra_created_instructions_.push_back(zero_tuple); return zero_tuple; } else { Shape constant_shape = ShapeUtil::MakeShape(shape.element_type(), {}); HloInstruction* constant_instruction; CHECK(replace_type == ReplaceType::kReplaceZeroBroadcast || replace_type == ReplaceType::kReplaceRandomBroadcast); if (replace_type == ReplaceType::kReplaceZeroBroadcast) { constant_instruction = builder->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::Zero(constant_shape.element_type()))); } else { absl::StatusOr<Literal> literal_status = MakeFakeLiteral(constant_shape); TF_CHECK_OK(literal_status.status()); constant_instruction = builder->AddInstruction( HloInstruction::CreateConstant(std::move(literal_status.value()))); } extra_created_instructions_.push_back(constant_instruction); auto broadcast_constant_instruction = builder->AddInstruction( HloInstruction::CreateBroadcast(shape, constant_instruction, {})); extra_created_instructions_.push_back(broadcast_constant_instruction); return broadcast_constant_instruction; } } absl::Status ReplaceWithConstantBroadcast(const HloInstruction* hlo, ReplaceType replace_type) { CHECK(replace_type == ReplaceType::kReplaceZeroBroadcast || replace_type == ReplaceType::kReplaceRandomBroadcast); CHECK(old_computations_to_builders_.contains(hlo->parent())); auto builder = old_computations_to_builders_[hlo->parent()].get(); HloInstruction* zero_broadcast = ReplaceWithConstantBroadcastHelper(hlo->shape(), builder, replace_type); clone_context_.MapInstruction(hlo, zero_broadcast); return absl::OkStatus(); } const HloInstruction* root_instruction_; HloModule* old_module_; HloModuleConfig config_; std::unique_ptr<HloModule> module_; HloCloneContext clone_context_; absl::flat_hash_map<const HloComputation*, std::unique_ptr<HloComputation::Builder>> old_computations_to_builders_; absl::flat_hash_map<const HloComputation*, int> parameter_numbers_; absl::flat_hash_set<const HloInstruction*>* boundary_; ExtractSelector extract_selector_; ReplaceTypeSelector replace_type_selector_; std::vector<HloInstruction*> extra_created_instructions_; }; void ComputeBoundary(const HloInstruction* root, int64_t limit, absl::flat_hash_set<const HloInstruction*>* boundary) { std::deque<const HloInstruction*> worklist; absl::flat_hash_map<const HloInstruction*, int64_t> visited; worklist.push_back(root); visited.emplace(root, 0); while (!worklist.empty()) { auto hlo = worklist.front(); worklist.pop_front(); int64_t hops = visited[hlo]; if (hops > limit) { boundary->insert(hlo); continue; } for (const HloInstruction* operand : hlo->operands()) { if (visited.count(operand)) { continue; } worklist.push_back(operand); visited.emplace(operand, hops + 1); } } } } std::unique_ptr<HloModule> ExtractModule( const HloInstruction* instruction, int64_t height, ExtractSelector extract_selector, ReplaceTypeSelector replace_type_selector, bool cross_computation) { QCHECK(height == -1 || !cross_computation) << "Boundary cannnot be calculated across the computations."; absl::flat_hash_set<const HloInstruction*> boundary; if (height != -1) { ComputeBoundary(instruction, height, &boundary); } ExtractionVisitor visitor(instruction, &boundary, extract_selector, replace_type_selector); TF_CHECK_OK(instruction->Accept(&visitor, true, false, cross_computation)); ExtractionVisitor cleanup_visitor( visitor.module()->entry_computation()->root_instruction(), nullptr, nullptr, nullptr); TF_CHECK_OK(visitor.module()->entry_computation()->root_instruction()->Accept( &cleanup_visitor, true, false, false)); HloVerifier verifier(false, true); TF_CHECK_OK(verifier.Run(cleanup_visitor.module()).status()); return cleanup_visitor.ConsumeModule(); } }
#include "xla/tools/hlo_extractor.h" #include <memory> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace op = testing::opcode_matchers; using HloExtractorTest = HloTestBase; TEST_F(HloExtractorTest, ExtractTopLevel) { const std::string& hlo_string = R"( HloModule test ENTRY %entry { param.0 = f32[4]{0} parameter(0) negate = f32[4]{0} negate(f32[4]{0} param.0) ROOT exp = f32[4]{0} exponential(f32[4]{0} negate) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); { auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "exp")); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Exp(op::Negate(op::Parameter(0)))); } { auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "exp"), 0); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Exp(op::Parameter(0))); } { auto extracted_module = ExtractModule( FindInstruction(hlo_module.get(), "negate"), 0); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Negate(op::Parameter(0))); } } TEST_F(HloExtractorTest, ExtractDag) { const std::string& hlo_string = R"( HloModule test ENTRY %entry { param.0 = f32[4]{0} parameter(0) tanh = f32[4]{0} tanh(f32[4]{0} param.0) negate = f32[4]{0} negate(f32[4]{0} tanh) exp = f32[4]{0} exponential(f32[4]{0} negate) ROOT add = f32[4]{0} add(f32[4]{0} negate, f32[4]{0} exp) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); { auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "exp")); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Exp(op::Negate(op::Tanh(op::Parameter(0))))); } { auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), 0); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Add(op::Parameter(0), op::Parameter(1))); } { auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), 1); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Add(op::Negate(op::Parameter(0)), op::Exp(op::Negate(op::Parameter(0))))); } { auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), 2); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Add(op::Negate(op::Tanh(op::Parameter(0))), op::Exp(op::Negate(op::Tanh(op::Parameter(0)))))); } } TEST_F(HloExtractorTest, ExtractWithConstant) { const std::string& hlo_string = R"( HloModule test ENTRY %entry { p = f32[4]{0} parameter(0) tanh = f32[4]{0} tanh(p) c = f32[4]{0} constant({1, 2, 3, 4}) ROOT add = f32[4]{0} add(tanh, c) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); { auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), 0); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Add(op::Parameter(0), op::Parameter(1))); } { auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), 1); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Add(op::Tanh(op::Parameter(0)), op::Constant())); } } TEST_F(HloExtractorTest, ExtractFromMultipleComputation) { const std::string& hlo_string = R"( HloModule axpy_module calculate_alpha { c.1 = f32[] constant(1) c.2 = f32[] constant(2) add.0 = f32[] add(c.1, c.2) c.3 = f32[] constant(4) ROOT ret = f32[] subtract(add.0, c.3) } ENTRY axpy_computation { alpha = f32[] call(), to_apply=calculate_alpha broadcast = f32[10] broadcast(alpha), dimensions={} x = f32[10] parameter(0) ax = f32[10] multiply(broadcast, x) y = f32[10] parameter(1) ROOT add.1 = f32[10] add(ax, y) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* inst = FindInstruction(hlo_module.get(), "add.0"); EXPECT_THAT(inst, op::Add()); auto extract_selector = [&inst](const HloInstruction* hlo_inst) { return hlo_inst != inst; }; { auto replace_type_selector = [](const HloInstruction* hlo_inst) { return ReplaceType::kReplaceConst; }; auto extracted_module = ExtractModule(hlo_module->entry_computation()->root_instruction(), -1, extract_selector, replace_type_selector, true); EXPECT_EQ(extracted_module->computation_count(), 2); auto calculate_alpha_root_instruction = FindComputation(extracted_module.get(), "calculate_alpha") ->root_instruction(); EXPECT_THAT(calculate_alpha_root_instruction, op::Subtract(op::Constant(), op::Constant())); } { auto replace_type_selector = [](const HloInstruction* hlo_inst) { return ReplaceType::kReplaceZeroBroadcast; }; auto extracted_module = ExtractModule(hlo_module->entry_computation()->root_instruction(), -1, extract_selector, replace_type_selector, true); EXPECT_EQ(extracted_module->computation_count(), 2); auto calculate_alpha_root_instruction = FindComputation(extracted_module.get(), "calculate_alpha") ->root_instruction(); EXPECT_THAT(calculate_alpha_root_instruction, op::Subtract(op::Broadcast(op::Constant()), op::Constant())); } } TEST_F(HloExtractorTest, HloSelector) { const std::string& hlo_string = R"( HloModule axpy_module calculate_alpha { c.1 = f32[] constant(1) c.2 = f32[] constant(2) c.3 = f32[] add(c.1, c.2) c.4 = f32[] constant(4) ROOT ret = f32[] multiply(c.4, c.3) } ENTRY axpy_computation { p.0 = f32[10] parameter(0) p.1 = f32[10] parameter(1) add.0 = f32[10] add(p.0, p.1) alpha = f32[] call(), to_apply=calculate_alpha broadcast = f32[10] broadcast(alpha), dimensions={} p.2 = f32[10] parameter(2) y = f32[10] multiply(broadcast, p.2) x = f32[10] subtract(y, add.0) p.3 = f32[10] parameter(3) ROOT add = f32[10] add(x, p.3) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* inst = FindInstruction(hlo_module.get(), HloOpcode::kSubtract); EXPECT_NE(inst, nullptr); EXPECT_THAT(inst, op::Subtract(op::Multiply(), op::Add())); { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kCall; }; auto extracted_module = ExtractModule(inst, -1, hlo_selector); EXPECT_EQ(extracted_module->computation_count(), 1); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Subtract(op::Multiply(op::Broadcast(op::Parameter()), op::Parameter()), op::Add(op::Parameter(), op::Parameter()))); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kBroadcast; }; auto extracted_module = ExtractModule(inst, 2, hlo_selector); EXPECT_EQ(extracted_module->computation_count(), 1); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Subtract(op::Multiply(op::Parameter(), op::Parameter()), op::Add(op::Parameter(), op::Parameter()))); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kBroadcast; }; auto replace_type_selector = [](const HloInstruction* hlo_inst) -> ReplaceType { return ReplaceType::kReplaceConst; }; auto extracted_module = ExtractModule(inst, 2, hlo_selector, replace_type_selector); EXPECT_EQ(extracted_module->computation_count(), 1); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Subtract(op::Multiply(op::Constant(), op::Parameter()), op::Add(op::Parameter(), op::Parameter()))); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kAdd; }; auto extracted_module = ExtractModule(inst, -1, hlo_selector); EXPECT_EQ(extracted_module->computation_count(), 2); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Subtract(op::Multiply(), op::Parameter())); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kSubtract; }; auto replace_type_selector = [](const HloInstruction* hlo_inst) -> ReplaceType { return ReplaceType::kReplaceConst; }; auto extracted_module = ExtractModule(hlo_module->entry_computation()->root_instruction(), 2, hlo_selector, replace_type_selector); EXPECT_EQ(extracted_module->computation_count(), 1); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Add(op::Constant(), op::Parameter())); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { if (hlo_inst->opcode() != HloOpcode::kBroadcast && hlo_inst->opcode() != HloOpcode::kAdd) { return true; } return false; }; auto replace_type_selector = [](const HloInstruction* hlo_inst) -> ReplaceType { if (hlo_inst->opcode() == HloOpcode::kBroadcast) { return ReplaceType::kReplaceConst; } return ReplaceType::kReplaceParam; }; auto extracted_module = ExtractModule(inst, 2, hlo_selector, replace_type_selector); EXPECT_EQ(extracted_module->computation_count(), 1); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Subtract(op::Multiply(op::Constant(), op::Parameter()), op::Parameter())); } } TEST_F(HloExtractorTest, ReplaceTupleWithConstant) { const std::string& hlo_string = R"( HloModule test ENTRY %entry { param.0 = f32[4]{0} parameter(0) tuple.0 = (f32[4]{0}, f32[4]{0}) rng-bit-generator(f32[4]{0} param.0), algorithm=rng_default negate = f32[4]{0} negate(f32[4]{0} param.0) tuple.1 = ((f32[4]{0}, f32[4]{0}), f32[4]{0}) tuple(tuple.0, negate) element = f32[4]{0} get-tuple-element(((f32[4]{0}, f32[4]{0}), f32[4]{0}) tuple.1), index=1 ROOT add = f32[4]{0} add(element, param.0) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kTuple; }; auto replace_type_selector = [](const HloInstruction* hlo_inst) -> ReplaceType { return ReplaceType::kReplaceConst; }; auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), -1, hlo_selector, replace_type_selector); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Add(op::GetTupleElement(op::Constant()), op::Parameter())); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kGetTupleElement; }; auto replace_type_selector = [](const HloInstruction* hlo_inst) -> ReplaceType { return ReplaceType::kReplaceZeroBroadcast; }; auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), -1, hlo_selector, replace_type_selector); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Add(op::Broadcast(), op::Parameter())); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kGetTupleElement; }; auto replace_type_selector = [](const HloInstruction* hlo_inst) -> ReplaceType { return ReplaceType::kReplaceRandomBroadcast; }; auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), -1, hlo_selector, replace_type_selector); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Add(op::Broadcast(), op::Parameter())); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kTuple; }; auto replace_type_selector = [](const HloInstruction* hlo_inst) -> ReplaceType { return ReplaceType::kReplaceZeroBroadcast; }; auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), -1, hlo_selector, replace_type_selector); EXPECT_THAT( extracted_module->entry_computation()->root_instruction(), op::Add(op::GetTupleElement(op::Tuple(op::Tuple(), op::Broadcast())), op::Parameter())); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kTuple; }; auto replace_type_selector = [](const HloInstruction* hlo_inst) -> ReplaceType { return ReplaceType::kReplaceRandomBroadcast; }; auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), -1, hlo_selector, replace_type_selector); EXPECT_THAT( extracted_module->entry_computation()->root_instruction(), op::Add(op::GetTupleElement(op::Tuple(op::Tuple(), op::Broadcast())), op::Parameter())); } } } }
304
#ifndef XLA_PJRT_CPU_TRACKED_TFRT_CPU_DEVICE_BUFFER_H_ #define XLA_PJRT_CPU_TRACKED_TFRT_CPU_DEVICE_BUFFER_H_ #include <cstddef> #include <cstdint> #include <cstdlib> #include <memory> #include <utility> #include "absl/container/inlined_vector.h" #include "absl/functional/any_invocable.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "xla/cpu_function_runtime.h" #include "xla/service/cpu/cpu_event.h" #include "xla/shape_util.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "xla/util.h" #include "tsl/platform/mem.h" #include "tsl/platform/statusor.h" namespace xla { class MaybeOwningCpuMemory { public: using OwnedDataPtr = std::unique_ptr<uint8_t[], void (*)(void*)>; MaybeOwningCpuMemory() = default; MaybeOwningCpuMemory(void* buf, size_t size) : buf_(buf), size_(size) {} MaybeOwningCpuMemory(OwnedDataPtr data, size_t size) : buf_(data.get()), data_(std::move(data)), size_(size) {} MaybeOwningCpuMemory(MaybeOwningCpuMemory&&) = default; MaybeOwningCpuMemory& operator=(MaybeOwningCpuMemory&&) = default; MaybeOwningCpuMemory(const MaybeOwningCpuMemory&) = delete; MaybeOwningCpuMemory& operator=(const MaybeOwningCpuMemory&) = delete; static absl::StatusOr<tsl::AsyncValueRef<MaybeOwningCpuMemory>> AllocateAvailableAvr(size_t size) { TF_ASSIGN_OR_RETURN(auto memory, Allocate(size)); return tsl::MakeAvailableAsyncValueRef<MaybeOwningCpuMemory>( std::move(memory)); } static absl::StatusOr<MaybeOwningCpuMemory> Allocate(size_t size) { uint8_t* data = static_cast<uint8_t*>( tsl::port::AlignedMalloc(size, cpu_function_runtime::MinAlign())); if (!data) { return ResourceExhausted("Out of memory allocating %d bytes.", size); } return MaybeOwningCpuMemory(OwnedDataPtr{data, tsl::port::AlignedFree}, size); } void* data() const { return buf_; } size_t size() const { return size_; } bool owns_data() const { return data_ != nullptr; } private: void* buf_ = nullptr; OwnedDataPtr data_ = {nullptr, free}; size_t size_ = 0; }; class TrackedTfrtCpuDeviceBuffer { public: TrackedTfrtCpuDeviceBuffer( bool is_tuple, bool owns_buffers, absl::InlinedVector<tsl::AsyncValueRef<MaybeOwningCpuMemory>, 4> buffers, absl::InlinedVector<tsl::AsyncValueRef<CpuEvent>, 4> definition_events, absl::AnyInvocable<void() &&> on_delete_callback = nullptr); TrackedTfrtCpuDeviceBuffer( bool is_tuple, bool owns_buffers, absl::InlinedVector<tsl::AsyncValueRef<MaybeOwningCpuMemory>, 4> buffers, tsl::AsyncValueRef<CpuEvent> definition_event, absl::AnyInvocable<void() &&> on_delete_callback = nullptr); TrackedTfrtCpuDeviceBuffer( bool is_tuple, bool owns_buffers, absl::InlinedVector<tsl::AsyncValueRef<MaybeOwningCpuMemory>, 4> buffers, absl::InlinedVector<size_t, 4> buffer_sizes, absl::InlinedVector<tsl::AsyncValueRef<CpuEvent>, 4> definition_events, absl::AnyInvocable<void() &&> on_delete_callback = nullptr); TrackedTfrtCpuDeviceBuffer( bool is_tuple, bool owns_buffers, absl::InlinedVector<tsl::AsyncValueRef<MaybeOwningCpuMemory>, 4> buffers, absl::InlinedVector<size_t, 4> buffer_sizes, tsl::AsyncValueRef<CpuEvent> definition_event, absl::AnyInvocable<void() &&> on_delete_callback = nullptr); TrackedTfrtCpuDeviceBuffer(TrackedTfrtCpuDeviceBuffer&&) = default; TrackedTfrtCpuDeviceBuffer& operator=(TrackedTfrtCpuDeviceBuffer&&) = default; TrackedTfrtCpuDeviceBuffer(const TrackedTfrtCpuDeviceBuffer&) = delete; TrackedTfrtCpuDeviceBuffer& operator=(const TrackedTfrtCpuDeviceBuffer&) = delete; ~TrackedTfrtCpuDeviceBuffer(); absl::Span<const tsl::AsyncValueRef<MaybeOwningCpuMemory>> Buffers() { return buffers_; } absl::Span<const size_t> BufferSizes() { return buffer_sizes_; } tsl::AsyncValueRef<MaybeOwningCpuMemory> Buffer( const ShapeIndex& shape_index); size_t BufferSize(const ShapeIndex& shape_index); const tsl::AsyncValueRef<CpuEvent>& definition_event() const { return definition_event_; } absl::Span<const tsl::AsyncValueRef<CpuEvent>> UsageEvents() const { return usage_events_; } void AddUsageEvents(absl::Span<tsl::AsyncValueRef<CpuEvent>> events); absl::InlinedVector<tsl::AsyncValueRef<CpuEvent>, 4> LockUseAndTransferUsageEvents(); void ReleaseDeviceMemory(); bool owns_buffers() const { return owns_buffers_; } private: bool is_tuple_; bool owns_buffers_; tsl::AsyncValueRef<MaybeOwningCpuMemory> tuple_index_table_; absl::InlinedVector<tsl::AsyncValueRef<MaybeOwningCpuMemory>, 4> buffers_; absl::InlinedVector<size_t, 4> buffer_sizes_; tsl::AsyncValueRef<CpuEvent> definition_event_; absl::InlinedVector<tsl::AsyncValueRef<CpuEvent>, 4> usage_events_; absl::AnyInvocable<void() &&> on_delete_callback_; }; } #endif #include "xla/pjrt/cpu/tracked_tfrt_cpu_device_buffer.h" #include <atomic> #include <cstddef> #include <cstdint> #include <utility> #include "absl/base/casts.h" #include "absl/container/inlined_vector.h" #include "absl/functional/any_invocable.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/service/cpu/cpu_event.h" #include "xla/shape_util.h" #include "xla/tsl/concurrency/async_value_ref.h" namespace xla { namespace { tsl::AsyncValueRef<CpuEvent> AfterAll( absl::Span<const tsl::AsyncValueRef<CpuEvent>> events) { if (events.empty()) return tsl::MakeAvailableAsyncValueRef<CpuEvent>(); struct State { State(int count, tsl::AsyncValueRef<CpuEvent> after_all) : count(count), after_all(std::move(after_all)) {} std::atomic<int> count; tsl::AsyncValueRef<CpuEvent> after_all; absl::Mutex mutex; absl::Status error; }; auto after_all = tsl::MakeConstructedAsyncValueRef<CpuEvent>(); auto* state = new State(events.size(), after_all); for (auto& event : events) { event.AndThen([state, event = event.AsPtr()]() { if (event.IsError()) { absl::MutexLock lock(&state->mutex); state->error = event.GetError(); } if (state->count.fetch_sub(1, std::memory_order_acq_rel) == 1) { if (!state->error.ok()) { state->after_all.SetError(state->error); } else { state->after_all.SetStateConcrete(); } delete state; } }); } return after_all; } } TrackedTfrtCpuDeviceBuffer::TrackedTfrtCpuDeviceBuffer( bool is_tuple, bool owns_buffers, absl::InlinedVector<tsl::AsyncValueRef<MaybeOwningCpuMemory>, 4> buffers, absl::InlinedVector<tsl::AsyncValueRef<CpuEvent>, 4> definition_events, absl::AnyInvocable<void() &&> on_delete_callback) : TrackedTfrtCpuDeviceBuffer(is_tuple, owns_buffers, std::move(buffers), AfterAll(definition_events), std::move(on_delete_callback)) {} TrackedTfrtCpuDeviceBuffer::TrackedTfrtCpuDeviceBuffer( bool is_tuple, bool owns_buffers, absl::InlinedVector<tsl::AsyncValueRef<MaybeOwningCpuMemory>, 4> buffers, absl::InlinedVector<size_t, 4> buffer_sizes, absl::InlinedVector<tsl::AsyncValueRef<CpuEvent>, 4> definition_events, absl::AnyInvocable<void() &&> on_delete_callback) : TrackedTfrtCpuDeviceBuffer( is_tuple, owns_buffers, std::move(buffers), std::move(buffer_sizes), AfterAll(definition_events), std::move(on_delete_callback)) {} TrackedTfrtCpuDeviceBuffer::TrackedTfrtCpuDeviceBuffer( bool is_tuple, bool owns_buffers, absl::InlinedVector<tsl::AsyncValueRef<MaybeOwningCpuMemory>, 4> buffers, tsl::AsyncValueRef<CpuEvent> definition_event, absl::AnyInvocable<void() &&> on_delete_callback) : is_tuple_(is_tuple), owns_buffers_(owns_buffers), buffers_(std::move(buffers)), definition_event_(std::move(definition_event)), on_delete_callback_(std::move(on_delete_callback)) { DCHECK(definition_event_); for (const auto& buffer : buffers_) { CHECK(buffer.IsConcrete()); buffer_sizes_.push_back(buffer->size()); } if (is_tuple) { size_t index_table_byte_size = buffers_.size() * sizeof(void*); tuple_index_table_ = MaybeOwningCpuMemory::AllocateAvailableAvr(index_table_byte_size) .value(); uintptr_t* index_table = reinterpret_cast<uintptr_t*>(tuple_index_table_->data()); for (int i = 0; i < buffers_.size(); ++i) { index_table[i] = absl::bit_cast<uintptr_t>(buffers_[i]->data()); } } } TrackedTfrtCpuDeviceBuffer::TrackedTfrtCpuDeviceBuffer( bool is_tuple, bool owns_buffers, absl::InlinedVector<tsl::AsyncValueRef<MaybeOwningCpuMemory>, 4> buffers, absl::InlinedVector<size_t, 4> buffer_sizes, tsl::AsyncValueRef<CpuEvent> definition_event, absl::AnyInvocable<void() &&> on_delete_callback) : is_tuple_(is_tuple), owns_buffers_(owns_buffers), buffers_(std::move(buffers)), buffer_sizes_(std::move(buffer_sizes)), definition_event_(std::move(definition_event)), on_delete_callback_(std::move(on_delete_callback)) { DCHECK(definition_event_); if (is_tuple) { tuple_index_table_ = tsl::MakeUnconstructedAsyncValueRef<MaybeOwningCpuMemory>(); tsl::RunWhenReady( absl::MakeConstSpan(buffers_), [buffers = buffers_, tuple_index_table = tuple_index_table_] { size_t index_table_byte_size = buffers.size() * sizeof(void*); tuple_index_table.emplace( MaybeOwningCpuMemory::Allocate(index_table_byte_size).value()); uintptr_t* index_table = reinterpret_cast<uintptr_t*>(tuple_index_table->data()); for (int i = 0; i < buffers.size(); ++i) { index_table[i] = absl::bit_cast<uintptr_t>(buffers[i]->data()); } }); } } TrackedTfrtCpuDeviceBuffer::~TrackedTfrtCpuDeviceBuffer() { ReleaseDeviceMemory(); if (on_delete_callback_) { std::move(on_delete_callback_)(); } } tsl::AsyncValueRef<MaybeOwningCpuMemory> TrackedTfrtCpuDeviceBuffer::Buffer( const ShapeIndex& shape_index) { if (shape_index.empty()) { if (is_tuple_) return tuple_index_table_; return buffers_[0]; } CHECK(is_tuple_); CHECK_EQ(shape_index.size(), 1) << "nested tuple not supported"; return buffers_[shape_index[0]]; } size_t TrackedTfrtCpuDeviceBuffer::BufferSize(const ShapeIndex& shape_index) { if (shape_index.empty()) { if (is_tuple_) return buffers_.size() * sizeof(void*); return buffer_sizes_[0]; } CHECK(is_tuple_); CHECK_EQ(shape_index.size(), 1) << "nested tuple not supported"; return buffer_sizes_[shape_index[0]]; } void TrackedTfrtCpuDeviceBuffer::AddUsageEvents( absl::Span<tsl::AsyncValueRef<CpuEvent>> events) { if (usage_events_.size() >= 1024) { int i = 0; while (i < usage_events_.size()) { auto& event = usage_events_[i]; if (event.IsAvailable()) { using std::swap; swap(event, usage_events_.back()); usage_events_.pop_back(); continue; } ++i; } } for (auto& ev : events) { usage_events_.push_back(std::move(ev)); } } absl::InlinedVector<tsl::AsyncValueRef<CpuEvent>, 4> TrackedTfrtCpuDeviceBuffer::LockUseAndTransferUsageEvents() { return std::move(usage_events_); } void TrackedTfrtCpuDeviceBuffer::ReleaseDeviceMemory() { tuple_index_table_.reset(); buffers_.clear(); definition_event_.reset(); usage_events_.clear(); } }
#include "xla/pjrt/cpu/tracked_tfrt_cpu_device_buffer.h" #include <cstring> #include <string> #include <gtest/gtest.h> #include "xla/service/cpu/cpu_event.h" #include "xla/tsl/concurrency/async_value.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "tsl/platform/env.h" #include "tsl/platform/statusor.h" #include "tsl/platform/threadpool.h" namespace xla { namespace { using ::tsl::BlockUntilReady; using ::tsl::MakeConstructedAsyncValueRef; using ::tsl::MakeUnconstructedAsyncValueRef; using ::tsl::thread::ThreadPool; TEST(TrackedTfrtCpuDeviceBufferTest, Basic) { std::string expected = "tracked_tfrt_cpu_device_buffer_test"; TF_ASSERT_OK_AND_ASSIGN( auto buffer, MaybeOwningCpuMemory::AllocateAvailableAvr(expected.size())); auto definition_event = MakeConstructedAsyncValueRef<CpuEvent>(); ThreadPool thread_pool(tsl::Env::Default(), "tracked_buffer_test", 4); thread_pool.Schedule([&]() { std::memcpy(buffer->data(), expected.data(), expected.size()); definition_event.SetStateConcrete(); }); TrackedTfrtCpuDeviceBuffer tracked_buffer( false, true, {buffer}, definition_event, nullptr); BlockUntilReady(tracked_buffer.definition_event().GetAsyncValue()); auto result = tracked_buffer.Buffers()[0]; ASSERT_TRUE(result.IsAvailable()); EXPECT_EQ( std::string(static_cast<const char*>(result->data()), result->size()), expected); } TEST(TrackedTfrtCpuDeviceBufferTest, Tuple) { std::string expected_0 = "tracked_tfrt_cpu_device_buffer_test"; std::string expected_1 = "tuple"; TF_ASSERT_OK_AND_ASSIGN( auto buffer_0, MaybeOwningCpuMemory::AllocateAvailableAvr(expected_0.size())); TF_ASSERT_OK_AND_ASSIGN( auto buffer_1, MaybeOwningCpuMemory::AllocateAvailableAvr(expected_1.size())); auto definition_event_0 = MakeConstructedAsyncValueRef<CpuEvent>(); auto definition_event_1 = MakeConstructedAsyncValueRef<CpuEvent>(); ThreadPool thread_pool(tsl::Env::Default(), "tracked_buffer_test", 4); thread_pool.Schedule([&]() { std::memcpy(buffer_0->data(), expected_0.data(), expected_0.size()); definition_event_0.SetStateConcrete(); }); thread_pool.Schedule([&]() { std::memcpy(buffer_1->data(), expected_1.data(), expected_1.size()); definition_event_1.SetStateConcrete(); }); TrackedTfrtCpuDeviceBuffer tracked_buffer( true, true, {buffer_0, buffer_1}, {definition_event_0, definition_event_1}, nullptr); BlockUntilReady(tracked_buffer.definition_event().GetAsyncValue()); auto result_0 = tracked_buffer.Buffers()[0]; auto result_1 = tracked_buffer.Buffers()[1]; ASSERT_TRUE(result_0.IsAvailable()); ASSERT_TRUE(result_1.IsAvailable()); EXPECT_EQ( std::string(static_cast<const char*>(result_0->data()), result_0->size()), expected_0); EXPECT_EQ( std::string(static_cast<const char*>(result_1->data()), result_1->size()), expected_1); } TEST(TrackedTfrtCpuDeviceBufferTest, BasicError) { TF_ASSERT_OK_AND_ASSIGN(auto buffer, MaybeOwningCpuMemory::AllocateAvailableAvr(64)); auto definition_event = MakeConstructedAsyncValueRef<CpuEvent>(); ThreadPool thread_pool(tsl::Env::Default(), "tracked_buffer_test", 4); thread_pool.Schedule([&]() { definition_event.SetError("tracked_tfrt_cpu_device_buffer_test error."); }); TrackedTfrtCpuDeviceBuffer tracked_buffer( false, true, {buffer}, definition_event, nullptr); BlockUntilReady(tracked_buffer.definition_event().GetAsyncValue()); ASSERT_TRUE(tracked_buffer.definition_event().IsError()); EXPECT_EQ(tracked_buffer.definition_event().GetError().message(), "tracked_tfrt_cpu_device_buffer_test error."); } TEST(TrackedTfrtCpuDeviceBufferTest, TupleError) { std::string expected = "tracked_tfrt_cpu_device_buffer_test"; TF_ASSERT_OK_AND_ASSIGN( auto buffer_0, MaybeOwningCpuMemory::AllocateAvailableAvr(expected.size())); TF_ASSERT_OK_AND_ASSIGN( auto buffer_1, MaybeOwningCpuMemory::AllocateAvailableAvr(expected.size())); auto definition_event_0 = MakeConstructedAsyncValueRef<CpuEvent>(); auto definition_event_1 = MakeConstructedAsyncValueRef<CpuEvent>(); ThreadPool thread_pool(tsl::Env::Default(), "tracked_buffer_test", 4); thread_pool.Schedule([&]() { std::memcpy(buffer_0->data(), expected.data(), expected.size()); definition_event_0.SetStateConcrete(); }); thread_pool.Schedule([&]() { definition_event_1.SetError( "tracked_tfrt_cpu_device_buffer_test tuple error."); }); TrackedTfrtCpuDeviceBuffer tracked_buffer( true, true, {buffer_0, buffer_1}, {definition_event_0, definition_event_1}, nullptr); BlockUntilReady(tracked_buffer.definition_event().GetAsyncValue()); ASSERT_TRUE(tracked_buffer.definition_event().IsError()); EXPECT_EQ(tracked_buffer.definition_event().GetError().message(), "tracked_tfrt_cpu_device_buffer_test tuple error."); } TEST(TrackedTfrtCpuDeviceBufferTest, DelayedAllocation) { std::string expected = "tracked_tfrt_cpu_device_buffer_test"; auto buffer = MakeUnconstructedAsyncValueRef<MaybeOwningCpuMemory>(); auto malloc_event = MakeConstructedAsyncValueRef<CpuEvent>(); malloc_event.AndThen([buffer_copy = buffer.CopyRef(), buffer_size = expected.size()] { buffer_copy.emplace(MaybeOwningCpuMemory::Allocate(buffer_size).value()); }); auto definition_event = MakeConstructedAsyncValueRef<CpuEvent>(); TrackedTfrtCpuDeviceBuffer tracked_buffer(false, true, {buffer}, {expected.size()}, definition_event, nullptr); auto result = tracked_buffer.Buffers()[0]; ASSERT_FALSE(result.IsAvailable()); ASSERT_EQ(tracked_buffer.BufferSizes()[0], expected.size()); ThreadPool thread_pool(tsl::Env::Default(), "tracked_buffer_test", 4); thread_pool.Schedule([&]() { malloc_event.SetStateConcrete(); std::memcpy(buffer->data(), expected.data(), expected.size()); definition_event.SetStateConcrete(); }); BlockUntilReady(tracked_buffer.definition_event().GetAsyncValue()); EXPECT_EQ( std::string(static_cast<const char*>(result->data()), result->size()), expected); } TEST(TrackedTfrtCpuDeviceBufferTest, DelayedAllocationTuple) { std::string expected_0 = "tracked_tfrt_cpu_device_buffer_test"; std::string expected_1 = "tuple"; auto buffer_0 = MakeUnconstructedAsyncValueRef<MaybeOwningCpuMemory>(); auto malloc_event_0 = MakeConstructedAsyncValueRef<CpuEvent>(); malloc_event_0.AndThen( [buffer_0_copy = buffer_0.CopyRef(), buffer_0_size = expected_0.size()] { buffer_0_copy.emplace( MaybeOwningCpuMemory::Allocate(buffer_0_size).value()); }); auto buffer_1 = MakeUnconstructedAsyncValueRef<MaybeOwningCpuMemory>(); auto malloc_event_1 = MakeConstructedAsyncValueRef<CpuEvent>(); malloc_event_1.AndThen( [buffer_1_copy = buffer_1.CopyRef(), buffer_1_size = expected_1.size()] { buffer_1_copy.emplace( MaybeOwningCpuMemory::Allocate(buffer_1_size).value()); }); auto definition_event_0 = MakeConstructedAsyncValueRef<CpuEvent>(); auto definition_event_1 = MakeConstructedAsyncValueRef<CpuEvent>(); TrackedTfrtCpuDeviceBuffer tracked_buffer( true, true, {buffer_0, buffer_1}, {expected_0.size(), expected_1.size()}, {definition_event_0, definition_event_1}, nullptr); auto result_0 = tracked_buffer.Buffers()[0]; auto result_1 = tracked_buffer.Buffers()[1]; ASSERT_FALSE(result_0.IsAvailable()); ASSERT_FALSE(result_1.IsAvailable()); ASSERT_EQ(tracked_buffer.BufferSizes()[0], expected_0.size()); ASSERT_EQ(tracked_buffer.BufferSizes()[1], expected_1.size()); ThreadPool thread_pool(tsl::Env::Default(), "tracked_buffer_test", 4); thread_pool.Schedule([&]() { malloc_event_0.SetStateConcrete(); std::memcpy(buffer_0->data(), expected_0.data(), expected_0.size()); definition_event_0.SetStateConcrete(); }); thread_pool.Schedule([&]() { malloc_event_1.SetStateConcrete(); std::memcpy(buffer_1->data(), expected_1.data(), expected_1.size()); definition_event_1.SetStateConcrete(); }); BlockUntilReady(tracked_buffer.definition_event().GetAsyncValue()); EXPECT_EQ( std::string(static_cast<const char*>(result_0->data()), result_0->size()), expected_0); EXPECT_EQ( std::string(static_cast<const char*>(result_1->data()), result_1->size()), expected_1); } } }
305
#ifndef I18N_ADDRESSINPUT_RULE_RETRIEVER_H_ #define I18N_ADDRESSINPUT_RULE_RETRIEVER_H_ #include <libaddressinput/callback.h> #include <memory> #include <string> namespace i18n { namespace addressinput { class Retriever; class Rule; class RuleRetriever { public: using Callback = i18n::addressinput::Callback<const std::string&, const Rule&>; RuleRetriever(const RuleRetriever&) = delete; RuleRetriever& operator=(const RuleRetriever&) = delete; explicit RuleRetriever(const Retriever* retriever); ~RuleRetriever(); void RetrieveRule(const std::string& key, const Callback& rule_ready) const; private: std::unique_ptr<const Retriever> data_retriever_; }; } } #endif #include "rule_retriever.h" #include <libaddressinput/callback.h> #include <cassert> #include <cstddef> #include <memory> #include <string> #include "retriever.h" #include "rule.h" namespace i18n { namespace addressinput { namespace { class Helper { public: Helper(const Helper&) = delete; Helper& operator=(const Helper&) = delete; Helper(const std::string& key, const RuleRetriever::Callback& rule_ready, const Retriever& data_retriever) : rule_ready_(rule_ready), data_retrieved_(BuildCallback(this, &Helper::OnDataRetrieved)) { data_retriever.Retrieve(key, *data_retrieved_); } private: ~Helper() = default; void OnDataRetrieved(bool success, const std::string& key, const std::string& data) { Rule rule; if (!success) { rule_ready_(false, key, rule); } else { success = rule.ParseSerializedRule(data); rule_ready_(success, key, rule); } delete this; } const RuleRetriever::Callback& rule_ready_; const std::unique_ptr<const Retriever::Callback> data_retrieved_; }; } RuleRetriever::RuleRetriever(const Retriever* retriever) : data_retriever_(retriever) { assert(data_retriever_ != nullptr); } RuleRetriever::~RuleRetriever() = default; void RuleRetriever::RetrieveRule(const std::string& key, const Callback& rule_ready) const { new Helper(key, rule_ready, *data_retriever_); } } }
#include "rule_retriever.h" #include <libaddressinput/callback.h> #include <libaddressinput/null_storage.h> #include <memory> #include <string> #include <gtest/gtest.h> #include "retriever.h" #include "rule.h" #include "testdata_source.h" namespace { using i18n::addressinput::BuildCallback; using i18n::addressinput::NullStorage; using i18n::addressinput::Retriever; using i18n::addressinput::Rule; using i18n::addressinput::RuleRetriever; using i18n::addressinput::TestdataSource; class RuleRetrieverTest : public testing::Test { public: RuleRetrieverTest(const RuleRetrieverTest&) = delete; RuleRetrieverTest& operator=(const RuleRetrieverTest&) = delete; protected: RuleRetrieverTest() : rule_retriever_( new Retriever(new TestdataSource(false), new NullStorage)), success_(false), key_(), rule_(), rule_ready_(BuildCallback(this, &RuleRetrieverTest::OnRuleReady)) {} RuleRetriever rule_retriever_; bool success_; std::string key_; Rule rule_; const std::unique_ptr<const RuleRetriever::Callback> rule_ready_; private: void OnRuleReady(bool success, const std::string& key, const Rule& rule) { success_ = success; key_ = key; rule_.CopyFrom(rule); } }; TEST_F(RuleRetrieverTest, ExistingRule) { static const char kExistingKey[] = "data/CA"; rule_retriever_.RetrieveRule(kExistingKey, *rule_ready_); EXPECT_TRUE(success_); EXPECT_EQ(kExistingKey, key_); EXPECT_FALSE(rule_.GetFormat().empty()); } TEST_F(RuleRetrieverTest, MissingRule) { static const char kMissingKey[] = "junk"; rule_retriever_.RetrieveRule(kMissingKey, *rule_ready_); EXPECT_TRUE(success_); EXPECT_EQ(kMissingKey, key_); EXPECT_TRUE(rule_.GetFormat().empty()); } }
306
#ifndef XLA_HLO_IR_BACKEND_CONFIG_H_ #define XLA_HLO_IR_BACKEND_CONFIG_H_ #include <memory> #include <string> #include <utility> #include "absl/base/thread_annotations.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/synchronization/mutex.h" #include "tsl/platform/protobuf.h" namespace xla { absl::StatusOr<std::string> BackendConfigToRawString( const tsl::protobuf::Message& proto); std::unique_ptr<tsl::protobuf::Message> CloneBackendConfigProto( const tsl::protobuf::Message* proto); class BackendConfigWrapper { public: BackendConfigWrapper() = default; explicit BackendConfigWrapper(std::string raw_string) : raw_string_(std::move(raw_string)) {} explicit BackendConfigWrapper(const tsl::protobuf::Message& proto) : proto_(CloneBackendConfigProto(&proto)) {} BackendConfigWrapper(const BackendConfigWrapper& other) { absl::MutexLock other_lock{&other.mutex_}; proto_ = CloneBackendConfigProto(other.proto_.get()); raw_string_ = other.raw_string_; } BackendConfigWrapper& operator=(BackendConfigWrapper&& other); bool operator==(const BackendConfigWrapper& other) const; bool operator!=(const BackendConfigWrapper& other) const { return !(*this == other); } const std::string& GetRawString() const { absl::WriterMutexLock lock{&mutex_}; return GetRawStringWithoutMutex(); } absl::Status GetProto(tsl::protobuf::Message* output_proto) const; bool empty() const { absl::MutexLock lock{&mutex_}; return proto_ == nullptr && raw_string_.empty(); } private: const std::string& GetRawStringWithoutMutex() const ABSL_EXCLUSIVE_LOCKS_REQUIRED(mutex_); mutable absl::Mutex mutex_; mutable std::unique_ptr<tsl::protobuf::Message> proto_ ABSL_GUARDED_BY(mutex_); mutable std::string raw_string_ ABSL_GUARDED_BY(mutex_); }; } #endif #include "xla/hlo/ir/backend_config.h" #include <memory> #include <string> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/synchronization/mutex.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/human_readable_json.h" #include "tsl/platform/protobuf.h" namespace xla { std::unique_ptr<tsl::protobuf::Message> CloneBackendConfigProto( const tsl::protobuf::Message* proto) { if (proto == nullptr) { return nullptr; } std::unique_ptr<tsl::protobuf::Message> result(proto->New()); result->CopyFrom(*proto); return result; } absl::StatusOr<std::string> BackendConfigToRawString( const tsl::protobuf::Message& proto) { return tsl::ProtoToHumanReadableJson(proto, true); } const std::string& BackendConfigWrapper::GetRawStringWithoutMutex() const { if (proto_ && raw_string_.empty()) { raw_string_ = BackendConfigToRawString(*proto_).value(); } static const std::string* kEmptyString = new std::string(); return raw_string_.empty() ? *kEmptyString : raw_string_; } absl::Status BackendConfigWrapper::GetProto( tsl::protobuf::Message* output_proto) const { output_proto->Clear(); absl::WriterMutexLock lock{&mutex_}; if (proto_ != nullptr) { if (proto_->GetDescriptor() != output_proto->GetDescriptor()) { return Internal("Mismatched backend config descriptors."); } output_proto->CopyFrom(*proto_); return absl::OkStatus(); } if (raw_string_.empty()) { return absl::OkStatus(); } TF_RETURN_IF_ERROR(tsl::HumanReadableJsonToProto(raw_string_, output_proto)); proto_ = CloneBackendConfigProto(output_proto); return absl::OkStatus(); } BackendConfigWrapper& BackendConfigWrapper::operator=( BackendConfigWrapper&& other) { std::unique_ptr<tsl::protobuf::Message> temp_proto; std::string temp_string; { absl::MutexLock other_lock{&other.mutex_}; temp_proto = std::move(other.proto_); temp_string = std::move(other.raw_string_); } absl::MutexLock this_lock{&mutex_}; proto_ = std::move(temp_proto); raw_string_ = std::move(temp_string); return *this; } bool BackendConfigWrapper::operator==(const BackendConfigWrapper& other) const { tsl::protobuf::Message* this_proto = nullptr; { absl::MutexLock this_lock{&mutex_}; this_proto = proto_.get(); } const std::string* other_raw_string = nullptr; { absl::MutexLock other_lock{&other.mutex_}; if (this_proto != nullptr && other.proto_ != nullptr) { using ::tsl::protobuf::util::MessageDifferencer; return MessageDifferencer::Equals(*this_proto, *other.proto_); } other_raw_string = &other.GetRawStringWithoutMutex(); } return GetRawString() == *other_raw_string; } }
#include "xla/hlo/ir/backend_config.h" #include <memory> #include <string> #include <thread> #include <utility> #include <vector> #include "absl/strings/string_view.h" #include "absl/synchronization/notification.h" #include "xla/service/gpu/backend_configs.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/test.h" namespace xla { namespace { const int kNumThreads = 100; const int kNumRepetitions = 100; constexpr absl::string_view kRawString = R"({"operation_queue_id":"0","wait_on_operation_queues":[],"fusion_backend_config":{"kind":"__triton_gemm","triton_gemm_config":{"block_m":"256","block_n":"256","block_k":"32","split_k":"1","num_stages":"1","num_warps":"16","num_ctas":"1"}},"force_earliest_schedule":false})"; template <typename Input, typename CheckFn> void RunThreaded(Input input, CheckFn check_fn) { for (int i = 0; i < kNumRepetitions; ++i) { BackendConfigWrapper source(input); absl::Notification all_threads_created; std::vector<std::unique_ptr<std::thread>> threads; for (int i = 0; i < kNumThreads; ++i) { threads.emplace_back(std::make_unique<std::thread>([&] { all_threads_created.WaitForNotification(); check_fn(source); })); } all_threads_created.Notify(); for (int i = 0; i < kNumThreads; ++i) { threads[i]->join(); } } } TEST(BackendConfigWrapperTest, ConcurrentGetProto) { RunThreaded(std::string{kRawString}, [](BackendConfigWrapper& source) { gpu::GpuBackendConfig proto; TF_EXPECT_OK(source.GetProto(&proto)); EXPECT_TRUE(proto.has_fusion_backend_config()); BackendConfigWrapper wrapped(proto); EXPECT_TRUE(wrapped == source); }); } TEST(BackendConfigWrapperTest, ConcurrentGetRawString) { BackendConfigWrapper source_json(std::string{kRawString}); gpu::GpuBackendConfig proto; TF_EXPECT_OK(source_json.GetProto(&proto)); RunThreaded(proto, [](BackendConfigWrapper& source) { std::string raw_string = source.GetRawString(); EXPECT_EQ(raw_string, kRawString); BackendConfigWrapper wrapped(raw_string); EXPECT_TRUE(wrapped == source); }); } TEST(BackendConfigWrapperTest, AssignmentToNonEmptyIsOK) { BackendConfigWrapper a(std::string{kRawString}); BackendConfigWrapper b(std::string{kRawString}); a = std::move(b); EXPECT_TRUE(a == BackendConfigWrapper(std::string{kRawString})); } TEST(BackendConfigWrapperTest, AssignmentDoesNotDeadlock) { BackendConfigWrapper source; BackendConfigWrapper& ref = source; source = std::move(ref); } TEST(BackendConfigWrapperTest, SelfComparisonDoesNotDeadlock) { BackendConfigWrapper source(std::string{kRawString}); EXPECT_TRUE(source == source); } TEST(BackendConfigWrapperTest, ComparisonDoesNotDeadlock) { BackendConfigWrapper source_json(std::string{kRawString}); gpu::GpuBackendConfig proto; TF_EXPECT_OK(source_json.GetProto(&proto)); RunThreaded(std::string{kRawString}, [&proto](BackendConfigWrapper& source) { BackendConfigWrapper other_first(proto); EXPECT_TRUE(other_first == source); BackendConfigWrapper other_second(proto); EXPECT_TRUE(source == other_second); }); } } }
307
#ifndef THIRD_PARTY_CEL_CPP_BASE_KIND_H_ #define THIRD_PARTY_CEL_CPP_BASE_KIND_H_ #include "common/kind.h" #include "common/type_kind.h" #include "common/value_kind.h" #endif #include "common/kind.h" #include "absl/strings/string_view.h" namespace cel { absl::string_view KindToString(Kind kind) { switch (kind) { case Kind::kNullType: return "null_type"; case Kind::kDyn: return "dyn"; case Kind::kAny: return "any"; case Kind::kType: return "type"; case Kind::kTypeParam: return "type_param"; case Kind::kFunction: return "function"; case Kind::kBool: return "bool"; case Kind::kInt: return "int"; case Kind::kUint: return "uint"; case Kind::kDouble: return "double"; case Kind::kString: return "string"; case Kind::kBytes: return "bytes"; case Kind::kDuration: return "duration"; case Kind::kTimestamp: return "timestamp"; case Kind::kList: return "list"; case Kind::kMap: return "map"; case Kind::kStruct: return "struct"; case Kind::kUnknown: return "*unknown*"; case Kind::kOpaque: return "*opaque*"; case Kind::kBoolWrapper: return "google.protobuf.BoolValue"; case Kind::kIntWrapper: return "google.protobuf.Int64Value"; case Kind::kUintWrapper: return "google.protobuf.UInt64Value"; case Kind::kDoubleWrapper: return "google.protobuf.DoubleValue"; case Kind::kStringWrapper: return "google.protobuf.StringValue"; case Kind::kBytesWrapper: return "google.protobuf.BytesValue"; default: return "*error*"; } } }
#include "common/kind.h" #include <limits> #include <type_traits> #include "common/type_kind.h" #include "common/value_kind.h" #include "internal/testing.h" namespace cel { namespace { static_assert(std::is_same_v<std::underlying_type_t<TypeKind>, std::underlying_type_t<ValueKind>>, "TypeKind and ValueKind must have the same underlying type"); TEST(Kind, ToString) { EXPECT_EQ(KindToString(Kind::kError), "*error*"); EXPECT_EQ(KindToString(Kind::kNullType), "null_type"); EXPECT_EQ(KindToString(Kind::kDyn), "dyn"); EXPECT_EQ(KindToString(Kind::kAny), "any"); EXPECT_EQ(KindToString(Kind::kType), "type"); EXPECT_EQ(KindToString(Kind::kBool), "bool"); EXPECT_EQ(KindToString(Kind::kInt), "int"); EXPECT_EQ(KindToString(Kind::kUint), "uint"); EXPECT_EQ(KindToString(Kind::kDouble), "double"); EXPECT_EQ(KindToString(Kind::kString), "string"); EXPECT_EQ(KindToString(Kind::kBytes), "bytes"); EXPECT_EQ(KindToString(Kind::kDuration), "duration"); EXPECT_EQ(KindToString(Kind::kTimestamp), "timestamp"); EXPECT_EQ(KindToString(Kind::kList), "list"); EXPECT_EQ(KindToString(Kind::kMap), "map"); EXPECT_EQ(KindToString(Kind::kStruct), "struct"); EXPECT_EQ(KindToString(Kind::kUnknown), "*unknown*"); EXPECT_EQ(KindToString(Kind::kOpaque), "*opaque*"); EXPECT_EQ(KindToString(Kind::kBoolWrapper), "google.protobuf.BoolValue"); EXPECT_EQ(KindToString(Kind::kIntWrapper), "google.protobuf.Int64Value"); EXPECT_EQ(KindToString(Kind::kUintWrapper), "google.protobuf.UInt64Value"); EXPECT_EQ(KindToString(Kind::kDoubleWrapper), "google.protobuf.DoubleValue"); EXPECT_EQ(KindToString(Kind::kStringWrapper), "google.protobuf.StringValue"); EXPECT_EQ(KindToString(Kind::kBytesWrapper), "google.protobuf.BytesValue"); EXPECT_EQ(KindToString(static_cast<Kind>(std::numeric_limits<int>::max())), "*error*"); } TEST(Kind, TypeKindRoundtrip) { EXPECT_EQ(TypeKindToKind(KindToTypeKind(Kind::kBool)), Kind::kBool); } TEST(Kind, ValueKindRoundtrip) { EXPECT_EQ(ValueKindToKind(KindToValueKind(Kind::kBool)), Kind::kBool); } TEST(Kind, IsTypeKind) { EXPECT_TRUE(KindIsTypeKind(Kind::kBool)); EXPECT_TRUE(KindIsTypeKind(Kind::kAny)); EXPECT_TRUE(KindIsTypeKind(Kind::kDyn)); } TEST(Kind, IsValueKind) { EXPECT_TRUE(KindIsValueKind(Kind::kBool)); EXPECT_FALSE(KindIsValueKind(Kind::kAny)); EXPECT_FALSE(KindIsValueKind(Kind::kDyn)); } TEST(Kind, Equality) { EXPECT_EQ(Kind::kBool, TypeKind::kBool); EXPECT_EQ(TypeKind::kBool, Kind::kBool); EXPECT_EQ(Kind::kBool, ValueKind::kBool); EXPECT_EQ(ValueKind::kBool, Kind::kBool); EXPECT_NE(Kind::kBool, TypeKind::kInt); EXPECT_NE(TypeKind::kInt, Kind::kBool); EXPECT_NE(Kind::kBool, ValueKind::kInt); EXPECT_NE(ValueKind::kInt, Kind::kBool); } TEST(TypeKind, ToString) { EXPECT_EQ(TypeKindToString(TypeKind::kBool), KindToString(Kind::kBool)); } TEST(ValueKind, ToString) { EXPECT_EQ(ValueKindToString(ValueKind::kBool), KindToString(Kind::kBool)); } } }
308
#ifndef TENSORFLOW_CORE_KERNELS_DATA_BATCH_DATASET_OP_H_ #define TENSORFLOW_CORE_KERNELS_DATA_BATCH_DATASET_OP_H_ #include "tensorflow/core/framework/dataset.h" namespace tensorflow { namespace data { class BatchDatasetOp : public UnaryDatasetOpKernel { public: static constexpr const char* const kDatasetType = "Batch"; static constexpr const char* const kInputDataset = "input_dataset"; static constexpr const char* const kBatchSize = "batch_size"; static constexpr const char* const kDropRemainder = "drop_remainder"; static constexpr const char* const kParallelCopy = "parallel_copy"; static constexpr const char* const kOutputTypes = "output_types"; static constexpr const char* const kOutputShapes = "output_shapes"; explicit BatchDatasetOp(OpKernelConstruction* ctx); protected: void MakeDataset(OpKernelContext* ctx, DatasetBase* input, DatasetBase** output) override; private: class Dataset; const int op_version_; bool parallel_copy_ = false; }; } } #endif #include "tensorflow/core/kernels/data/batch_dataset_op.h" #include <algorithm> #include <cstdlib> #include <functional> #include <optional> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/data/global_shuffle_utils.h" #include "tensorflow/core/data/name_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/partial_tensor_shape.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/lib/gtl/cleanup.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/stringprintf.h" #include "tensorflow/core/util/batch_util.h" #include "tsl/platform/mutex.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace data { constexpr const char* const BatchDatasetOp::kDatasetType; constexpr const char* const BatchDatasetOp::kInputDataset; constexpr const char* const BatchDatasetOp::kBatchSize; constexpr const char* const BatchDatasetOp::kDropRemainder; constexpr const char* const BatchDatasetOp::kParallelCopy; constexpr const char* const BatchDatasetOp::kOutputTypes; constexpr const char* const BatchDatasetOp::kOutputShapes; constexpr char kInputImplEmpty[] = "input_impl_empty"; constexpr char kBatchDataset[] = "BatchDataset"; class BatchDatasetOp::Dataset : public DatasetBase { public: Dataset(OpKernelContext* ctx, int64_t batch_size, bool drop_remainder, bool parallel_copy, const DatasetBase* input, int op_version) : DatasetBase(DatasetContext(ctx)), batch_size_(batch_size), reserve_size_(drop_remainder ? batch_size : std::min<int64_t>(batch_size, 1 << 16)), drop_remainder_(drop_remainder), parallel_copy_(parallel_copy), input_(input), op_version_(op_version), traceme_metadata_( {{"batch_size", strings::Printf("%lld", static_cast<long long>(batch_size))}, {"drop_remainder", drop_remainder ? "true" : "false"}, {"parallel_copy", parallel_copy ? "true" : "false"}}) { input_->Ref(); const auto& input_shapes = input_->output_shapes(); output_shapes_.reserve(input_shapes.size()); for (const auto& input_shape : input_shapes) { if (drop_remainder_ || input_->Cardinality() == kInfiniteCardinality) { output_shapes_.emplace_back( PartialTensorShape({batch_size_}).Concatenate(input_shape)); } else { output_shapes_.emplace_back( PartialTensorShape({-1}).Concatenate(input_shape)); } } random_indexing_compatible_ = absl::OkStatus(); if (!drop_remainder_) { random_indexing_compatible_ = absl::FailedPreconditionError(absl::StrCat( type_string(), " does not support global shuffling with `drop_remainder=False`.")); } else if (input_ != nullptr) { random_indexing_compatible_ = input_->RandomIndexingCompatible(); } } ~Dataset() override { input_->Unref(); } std::unique_ptr<IteratorBase> MakeIteratorInternal( const string& prefix) const override { name_utils::IteratorPrefixParams params; params.op_version = op_version_; return std::make_unique<Iterator>(Iterator::Params{ this, name_utils::IteratorPrefix(kDatasetType, prefix, params)}); } const DataTypeVector& output_dtypes() const override { return input_->output_dtypes(); } const std::vector<PartialTensorShape>& output_shapes() const override { return output_shapes_; } string DebugString() const override { name_utils::DatasetDebugStringParams params; params.op_version = op_version_; params.set_args(batch_size_); return name_utils::DatasetDebugString(kDatasetType, params); } int64_t CardinalityInternal(CardinalityOptions options) const override { int64_t n = input_->Cardinality(options); if (n == kInfiniteCardinality || n == kUnknownCardinality) { return n; } return n / batch_size_ + (n % batch_size_ == 0 || drop_remainder_ ? 0 : 1); } Status InputDatasets(std::vector<const DatasetBase*>* inputs) const override { inputs->push_back(input_); return absl::OkStatus(); } Status CheckExternalState() const override { return input_->CheckExternalState(); } Status Get(OpKernelContext* ctx, int64 index, std::vector<Tensor>* out_tensors) const override { const int64 cardinality = Cardinality(); if (index < 0 || index >= cardinality) { return errors::OutOfRange("Index out of range [0, ", cardinality, "):", index); } int batch_start_index = batch_size_ * index; std::vector<std::vector<Tensor>> batch_elements; int input_cardinality = input_->Cardinality(); for (int i = batch_start_index; i < batch_start_index + batch_size_ && i < input_cardinality; ++i) { std::vector<Tensor> batch_element_tuple; TF_RETURN_IF_ERROR(input_->Get(ctx, i, &batch_element_tuple)); batch_elements.emplace_back(std::move(batch_element_tuple)); } TF_RETURN_IF_ERROR(CopyBatch(AnyContext(ctx), std::move(batch_elements), parallel_copy_, out_tensors)); return absl::OkStatus(); } absl::Status RandomIndexingCompatible() const override { return random_indexing_compatible_; } protected: Status AsGraphDefInternal(SerializationContext* ctx, DatasetGraphDefBuilder* b, Node** output) const override { Node* input_graph_node = nullptr; TF_RETURN_IF_ERROR(b->AddInputDataset(ctx, input_, &input_graph_node)); Node* batch_size = nullptr; TF_RETURN_IF_ERROR(b->AddScalar(batch_size_, &batch_size)); Node* drop_remainder = nullptr; TF_RETURN_IF_ERROR(b->AddScalar(drop_remainder_, &drop_remainder)); AttrValue parallel_copy; b->BuildAttrValue(parallel_copy_, &parallel_copy); TF_RETURN_IF_ERROR( b->AddDataset(this, {input_graph_node, batch_size, drop_remainder}, {{kParallelCopy, parallel_copy}}, output)); return absl::OkStatus(); } private: class Iterator : public DatasetIterator<Dataset> { public: explicit Iterator(const Params& params) : DatasetIterator<Dataset>(params) {} bool SymbolicCheckpointCompatible() const override { return true; } Status Initialize(IteratorContext* ctx) override { tsl::mutex_lock l(mu_); return dataset()->input_->MakeIterator(ctx, this, prefix(), &input_impl_); } Status GetNextInternal(IteratorContext* ctx, std::vector<Tensor>* out_tensors, bool* end_of_sequence) override { std::vector<std::vector<Tensor>> batch_elements; { mutex_lock l(mu_); if (!input_impl_) { *end_of_sequence = true; return absl::OkStatus(); } batch_elements.reserve(dataset()->reserve_size_); *end_of_sequence = false; IteratorContextWithIndexMapper ctx_with_index_mapper(ctx, this); for (int i = 0; i < dataset()->batch_size_ && !*end_of_sequence; ++i) { std::vector<Tensor> batch_element_tuple; TF_RETURN_IF_ERROR(input_impl_->GetNext(ctx_with_index_mapper.Get(), &batch_element_tuple, end_of_sequence)); if (!*end_of_sequence) { batch_elements.emplace_back(std::move(batch_element_tuple)); } else { input_impl_.reset(); } } ctx_with_index_mapper.MergeCheckpoint(); } if (batch_elements.empty()) { DCHECK(*end_of_sequence); return absl::OkStatus(); } if (dataset()->drop_remainder_ && batch_elements.size() < dataset()->batch_size_) { *end_of_sequence = true; return absl::OkStatus(); } TF_RETURN_IF_ERROR(CopyBatch(AnyContext(ctx), std::move(batch_elements), dataset()->parallel_copy_, out_tensors)); *end_of_sequence = false; return absl::OkStatus(); } IndexMapperFn GetIndexMapper( IndexMapperFn parent_index_mapper) const override { int64_t batch_size = dataset()->batch_size_; return [parent_index_mapper, batch_size](size_t element_position) -> absl::StatusOr<size_t> { size_t batch_element_position = element_position / batch_size; size_t input_element_offset = element_position % batch_size; TF_ASSIGN_OR_RETURN(size_t shuffled_element_position, parent_index_mapper(batch_element_position)); return shuffled_element_position * batch_size + input_element_offset; }; } protected: std::shared_ptr<model::Node> CreateNode( IteratorContext* ctx, model::Node::Args args) const override { return model::MakeKnownRatioNode(std::move(args), dataset()->batch_size_); } Status SaveInternal(SerializationContext* ctx, IteratorStateWriter* writer) override { mutex_lock l(mu_); TF_RETURN_IF_ERROR(writer->WriteScalar( prefix(), kInputImplEmpty, static_cast<int64_t>(!input_impl_))); if (input_impl_) { TF_RETURN_IF_ERROR(SaveInput(ctx, writer, input_impl_)); } return absl::OkStatus(); } Status RestoreInternal(IteratorContext* ctx, IteratorStateReader* reader) override { mutex_lock l(mu_); if (ctx->restored_element_count().has_value()) { IteratorContext::Params params(ctx); params.restored_element_count = *ctx->restored_element_count() * dataset()->batch_size_; IteratorContext ctx_copy(params); return RestoreInput(&ctx_copy, reader, input_impl_); } int64_t input_empty; TF_RETURN_IF_ERROR( reader->ReadScalar(prefix(), kInputImplEmpty, &input_empty)); if (!static_cast<bool>(input_empty)) { TF_RETURN_IF_ERROR(RestoreInput(ctx, reader, input_impl_)); } else { input_impl_.reset(); } return absl::OkStatus(); } TraceMeMetadata GetTraceMeMetadata() const override { return dataset()->traceme_metadata_; } private: mutex mu_; std::unique_ptr<IteratorBase> input_impl_ TF_GUARDED_BY(mu_); }; const int64_t batch_size_; const int64_t reserve_size_; const bool drop_remainder_; const bool parallel_copy_; const DatasetBase* const input_; const int op_version_; std::vector<PartialTensorShape> output_shapes_; absl::Status random_indexing_compatible_; const TraceMeMetadata traceme_metadata_; }; BatchDatasetOp::BatchDatasetOp(OpKernelConstruction* ctx) : UnaryDatasetOpKernel(ctx), op_version_(ctx->def().op() == kBatchDataset ? 1 : 2) { if (ctx->HasAttr(kParallelCopy)) { OP_REQUIRES_OK(ctx, ctx->GetAttr(kParallelCopy, &parallel_copy_)); } } void BatchDatasetOp::MakeDataset(OpKernelContext* ctx, DatasetBase* input, DatasetBase** output) { int64_t batch_size = 0; OP_REQUIRES_OK(ctx, ParseScalarArgument<int64_t>(ctx, kBatchSize, &batch_size)); OP_REQUIRES(ctx, batch_size > 0, errors::InvalidArgument("Batch size must be greater than zero.")); bool drop_remainder = false; if (op_version_ > 1) { OP_REQUIRES_OK( ctx, ParseScalarArgument<bool>(ctx, kDropRemainder, &drop_remainder)); } *output = new Dataset(ctx, batch_size, drop_remainder, parallel_copy_, input, op_version_); } namespace { REGISTER_KERNEL_BUILDER(Name("BatchDataset").Device(DEVICE_CPU), BatchDatasetOp); REGISTER_KERNEL_BUILDER(Name("BatchDatasetV2").Device(DEVICE_CPU), BatchDatasetOp); } } }
#include "tensorflow/core/kernels/data/batch_dataset_op.h" #include <string> #include "tensorflow/core/common_runtime/type_inference.h" #include "tensorflow/core/data/dataset_test_base.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/public/session_options.h" namespace tensorflow { namespace data { namespace { constexpr char kNodeName[] = "batch_dataset"; class BatchDatasetOpTest : public DatasetOpsTestBase {}; BatchDatasetParams BatchDatasetParams1() { return BatchDatasetParams(RangeDatasetParams(0, 12, 1), 4, false, true, {DT_INT64}, {PartialTensorShape({4})}, kNodeName); } BatchDatasetParams BatchDatasetParams2() { return BatchDatasetParams(RangeDatasetParams(0, 12, 1), 4, true, false, {DT_INT64}, {PartialTensorShape({4})}, kNodeName); } BatchDatasetParams BatchDatasetParams3() { return BatchDatasetParams(RangeDatasetParams(0, 10, 1), 3, false, false, {DT_INT64}, {PartialTensorShape({-1})}, kNodeName); } BatchDatasetParams BatchDatasetParams4() { return BatchDatasetParams(RangeDatasetParams(0, 10, 1), 3, true, true, {DT_INT64}, {PartialTensorShape({3})}, kNodeName); } BatchDatasetParams BatchDatasetParams5() { return BatchDatasetParams(RangeDatasetParams(0, 10, 1), 12, true, true, {DT_INT64}, {PartialTensorShape({12})}, kNodeName); } BatchDatasetParams BatchDatasetParams6() { return BatchDatasetParams(RangeDatasetParams(0, 10, 1), 12, false, true, {DT_INT64}, {PartialTensorShape({-1})}, kNodeName); } BatchDatasetParams BatchDatasetParams7() { return BatchDatasetParams(RangeDatasetParams(0, 0, 1), 4, false, false, {DT_INT64}, {PartialTensorShape({4})}, kNodeName); } BatchDatasetParams InvalidBatchSizeBatchDatasetParams() { return BatchDatasetParams(RangeDatasetParams(0, 10, 1), -1, false, false, {DT_INT64}, {PartialTensorShape({3})}, kNodeName); } std::vector<GetNextTestCase<BatchDatasetParams>> GetNextTestCases() { return {{BatchDatasetParams1(), CreateTensors<int64_t>( TensorShape({4}), {{0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}})}, {BatchDatasetParams2(), CreateTensors<int64_t>( TensorShape({4}), {{0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}})}, {BatchDatasetParams3(), {CreateTensor<int64_t>(TensorShape({3}), {0, 1, 2}), CreateTensor<int64_t>(TensorShape({3}), {3, 4, 5}), CreateTensor<int64_t>(TensorShape({3}), {6, 7, 8}), CreateTensor<int64_t>(TensorShape({1}), {9})}}, {BatchDatasetParams4(), CreateTensors<int64_t>(TensorShape({3}), {{0, 1, 2}, {3, 4, 5}, {6, 7, 8}})}, {BatchDatasetParams5(), {}}, {BatchDatasetParams6(), CreateTensors<int64_t>(TensorShape({10}), {{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}})}, {BatchDatasetParams7(), {}}}; } ITERATOR_GET_NEXT_TEST_P(BatchDatasetOpTest, BatchDatasetParams, GetNextTestCases()) TEST_F(BatchDatasetOpTest, DatasetNodeName) { auto batch_dataset_params = BatchDatasetParams1(); TF_ASSERT_OK(Initialize(batch_dataset_params)); TF_ASSERT_OK(CheckDatasetNodeName(batch_dataset_params.node_name())); } TEST_F(BatchDatasetOpTest, DatasetTypeString) { auto batch_dataset_params = BatchDatasetParams1(); TF_ASSERT_OK(Initialize(batch_dataset_params)); name_utils::OpNameParams params; params.op_version = batch_dataset_params.op_version(); TF_ASSERT_OK(CheckDatasetTypeString( name_utils::OpName(BatchDatasetOp::kDatasetType, params))); } TEST_F(BatchDatasetOpTest, DatasetOutputDtypes) { auto batch_dataset_params = BatchDatasetParams1(); TF_ASSERT_OK(Initialize(batch_dataset_params)); TF_ASSERT_OK(CheckDatasetOutputDtypes({DT_INT64})); } std::vector<DatasetOutputShapesTestCase<BatchDatasetParams>> DatasetOutputShapesTestCases() { return {{BatchDatasetParams1(), {PartialTensorShape({4})}}, {BatchDatasetParams2(), {PartialTensorShape({4})}}, {BatchDatasetParams3(), {PartialTensorShape({-1})}}, {BatchDatasetParams4(), {PartialTensorShape({3})}}, {BatchDatasetParams5(), {PartialTensorShape({12})}}, {BatchDatasetParams6(), {PartialTensorShape({-1})}}, {BatchDatasetParams7(), {PartialTensorShape({4})}}}; } DATASET_OUTPUT_SHAPES_TEST_P(BatchDatasetOpTest, BatchDatasetParams, DatasetOutputShapesTestCases()) std::vector<CardinalityTestCase<BatchDatasetParams>> CardinalityTestCases() { return { {BatchDatasetParams1(), 3}, {BatchDatasetParams2(), 3}, {BatchDatasetParams3(), 4}, {BatchDatasetParams4(), 3}, {BatchDatasetParams5(), 0}, {BatchDatasetParams6(), 1}, {BatchDatasetParams7(), 0}}; } DATASET_CARDINALITY_TEST_P(BatchDatasetOpTest, BatchDatasetParams, CardinalityTestCases()) TEST_F(BatchDatasetOpTest, IteratorOutputDtypes) { auto batch_dataset_params = BatchDatasetParams1(); TF_ASSERT_OK(Initialize(batch_dataset_params)); TF_ASSERT_OK(CheckIteratorOutputDtypes({DT_INT64})); } std::vector<IteratorOutputShapesTestCase<BatchDatasetParams>> IteratorOutputShapesTestCases() { return {{BatchDatasetParams1(), {PartialTensorShape({4})}}, {BatchDatasetParams2(), {PartialTensorShape({4})}}, {BatchDatasetParams3(), {PartialTensorShape({-1})}}, {BatchDatasetParams4(), {PartialTensorShape({3})}}, {BatchDatasetParams5(), {PartialTensorShape({12})}}, {BatchDatasetParams6(), {PartialTensorShape({-1})}}, {BatchDatasetParams7(), {PartialTensorShape({4})}}}; } ITERATOR_OUTPUT_SHAPES_TEST_P(BatchDatasetOpTest, BatchDatasetParams, IteratorOutputShapesTestCases()) TEST_F(BatchDatasetOpTest, IteratorOutputPrefix) { auto batch_dataset_params = BatchDatasetParams1(); TF_ASSERT_OK(Initialize(batch_dataset_params)); name_utils::IteratorPrefixParams params; params.op_version = batch_dataset_params.op_version(); TF_ASSERT_OK(CheckIteratorPrefix(name_utils::IteratorPrefix( BatchDatasetOp::kDatasetType, batch_dataset_params.iterator_prefix(), params))); } std::vector<IteratorSaveAndRestoreTestCase<BatchDatasetParams>> IteratorSaveAndRestoreTestCases() { return {{BatchDatasetParams1(), {0, 1, 5}, CreateTensors<int64_t>( TensorShape({4}), {{0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}})}, {BatchDatasetParams2(), {0, 1, 5}, CreateTensors<int64_t>( TensorShape({4}), {{0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}})}, {BatchDatasetParams3(), {0, 1, 5}, {CreateTensor<int64_t>(TensorShape({3}), {0, 1, 2}), CreateTensor<int64_t>(TensorShape({3}), {3, 4, 5}), CreateTensor<int64_t>(TensorShape({3}), {6, 7, 8}), CreateTensor<int64_t>(TensorShape({1}), {9})}}, {BatchDatasetParams4(), {0, 1, 5}, {CreateTensor<int64_t>(TensorShape({3}), {0, 1, 2}), CreateTensor<int64_t>(TensorShape({3}), {3, 4, 5}), CreateTensor<int64_t>(TensorShape({3}), {6, 7, 8})}}, {BatchDatasetParams5(), {0, 1, 5}, {}}, {BatchDatasetParams6(), {0, 1, 5}, {CreateTensor<int64_t>(TensorShape({10}), {0, 1, 2, 3, 4, 5, 6, 7, 8, 9})}}, {BatchDatasetParams7(), {0, 1, 5}, {}}}; } ITERATOR_SAVE_AND_RESTORE_TEST_P(BatchDatasetOpTest, BatchDatasetParams, IteratorSaveAndRestoreTestCases()) TEST_F(BatchDatasetOpTest, InvalidBatchSize) { auto batch_dataset_params = InvalidBatchSizeBatchDatasetParams(); EXPECT_EQ(Initialize(batch_dataset_params).code(), absl::StatusCode::kInvalidArgument); } REGISTER_OP("BatchDatasetOpTest>ConstTypeCtor") .Output("output: dtype") .Attr("value: tensor") .Attr("dtype: type") .SetTypeConstructor(full_type::Unary(TFT_TENSOR, "dtype")); static void add_identity_nodes(Node* node, Graph& graph, std::vector<Node*>& identity_nodes) { for (int i = 0; i < node->num_outputs(); i++) { Node* new_node; std::string name = absl::StrCat("Identity", i); TF_EXPECT_OK(NodeBuilder(name, "Identity") .Attr("T", node->output_type(i)) .Input(node, i) .Finalize(&graph, &new_node)); identity_nodes.push_back(new_node); } } static Status type_inference(Graph& graph) { GraphOptimizationPassOptions opt_options; std::unique_ptr<Graph> graph_ptr(new Graph(OpRegistry::Global())); graph_ptr->Copy(graph); opt_options.graph = &graph_ptr; opt_options.flib_def = graph.mutable_flib_def(); TypeInferencePass pass; return pass.Run(opt_options); } TEST(BatchDatsetOpTest, TypeInference) { Graph graph(OpRegistry::Global()); Node* input_dataset; Node* batch_size; Node* drop_remainder; Node* batch_dataset_v2; FullTypeDef input_dataset_t; protobuf::TextFormat::Parser parser; CHECK(parser.ParseFromString( R"pb(type_id: TFT_PRODUCT args { type_id: TFT_DATASET args { type_id: TFT_PRODUCT args { type_id: TFT_RAGGED args { type_id: TFT_STRING } } } })pb", &input_dataset_t)); TensorProto tensor_proto; TF_EXPECT_OK(NodeBuilder("input_dataset", "Const") .Attr("value", tensor_proto) .Attr("dtype", DT_VARIANT) .Finalize(&graph, &input_dataset)); (*input_dataset->mutable_def()->mutable_experimental_type()) = input_dataset_t; TF_EXPECT_OK(NodeBuilder("batch_size", "BatchDatasetOpTest>ConstTypeCtor") .Attr("value", tensor_proto) .Attr("dtype", DT_INT64) .Finalize(&graph, &batch_size)); TF_EXPECT_OK(NodeBuilder("drop_remainder", "BatchDatasetOpTest>ConstTypeCtor") .Attr("value", tensor_proto) .Attr("dtype", DT_BOOL) .Finalize(&graph, &drop_remainder)); TF_EXPECT_OK(NodeBuilder("BatchDatasetV2", "BatchDatasetV2") .Attr("output_types", {DT_VARIANT}) .Attr("output_shapes", {TensorShape({1})}) .Input(input_dataset) .Input(batch_size) .Input(drop_remainder) .Finalize(&graph, &batch_dataset_v2)); std::vector<Node*> identity_nodes; add_identity_nodes(batch_dataset_v2, graph, identity_nodes); TF_EXPECT_OK(type_inference(graph)); EXPECT_TRUE(full_type::IsEqual(identity_nodes[0]->def().experimental_type(), input_dataset_t)) << "fulltype is\n" << identity_nodes[0]->def().experimental_type().DebugString() << "\nexpected\n" << input_dataset_t.DebugString(); } } } }
309
#ifndef TENSORFLOW_CORE_DATA_SERVICE_SNAPSHOT_SNAPSHOT_CHUNK_PROVIDER_H_ #define TENSORFLOW_CORE_DATA_SERVICE_SNAPSHOT_SNAPSHOT_CHUNK_PROVIDER_H_ #include <cstdint> #include <functional> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/btree_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/tensor.h" #include "tsl/platform/env.h" namespace tensorflow { namespace data { class SnapshotChunkProvider : public SplitProvider { public: SnapshotChunkProvider(absl::string_view snapshot_path, tsl::Env* env); ~SnapshotChunkProvider() override = default; SnapshotChunkProvider(const SnapshotChunkProvider&) = delete; SnapshotChunkProvider& operator=(const SnapshotChunkProvider&) = delete; absl::Status GetNext(Tensor* split, bool* end_of_splits) override; absl::Status Reset() override; absl::Status Save(std::function<std::string(std::string)> full_name, IteratorStateWriter* writer) override; absl::Status Restore(std::function<std::string(std::string)> full_name, IteratorStateReader* reader) override; int64_t Cardinality() const override; void Cancel() override; private: struct SnapshotState { SnapshotState() = default; explicit SnapshotState(bool snapshot_is_done) : snapshot_is_done(snapshot_is_done) {} explicit SnapshotState(absl::Status status) : status(std::move(status)) {} bool snapshot_is_done = false; absl::Status status = absl::OkStatus(); }; struct ChunkOrder { bool operator()(const std::string& chunk1, const std::string& chunk2) const; }; using OrderedChunkSet = absl::btree_set<std::string, ChunkOrder>; static std::string SetToString(const OrderedChunkSet& s); static OrderedChunkSet SetFromString(absl::string_view s); absl::Status UpdateSnapshot(); absl::StatusOr<SnapshotState> GetSnapshotState(); absl::StatusOr<std::vector<std::string>> GetAvailableChunks(); const std::string snapshot_path_; tsl::Env* const env_; mutable absl::Mutex mu_; OrderedChunkSet chunks_read_ ABSL_GUARDED_BY(mu_); OrderedChunkSet chunks_unread_ ABSL_GUARDED_BY(mu_); SnapshotState snapshot_state_ ABSL_GUARDED_BY(mu_); }; } } #endif #include "tensorflow/core/data/service/snapshot/snapshot_chunk_provider.h" #include <cstdint> #include <functional> #include <optional> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/btree_set.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" #include "tensorflow/core/data/service/snapshot/file_utils.h" #include "tensorflow/core/data/service/snapshot/path_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/path.h" #include "tsl/platform/retrying_utils.h" #include "tsl/platform/status_to_from_proto.h" #include "tsl/platform/statusor.h" #include "tsl/platform/tstring.h" #include "tsl/protobuf/status.pb.h" namespace tensorflow { namespace data { namespace { constexpr char kChunksRead[] = "chunks_read"; constexpr absl::string_view kSetElementDelimiter = ","; Tensor ConvertToTensor(absl::string_view s) { Tensor tensor(DT_STRING, TensorShape({})); tensor.scalar<tsl::tstring>()() = tsl::tstring(s); return tensor; } std::string AbsPath(absl::string_view snapshot_path, absl::string_view chunk) { return tsl::io::JoinPath(CommittedChunksDirectory(snapshot_path), chunk); } void Backoff(int num_retries, tsl::Env* env) { if (num_retries >= 1) { absl::Duration retry_backoff = tsl::ComputeRetryBackoff(num_retries - 1); env->SleepForMicroseconds(absl::ToInt64Microseconds(retry_backoff)); } } } SnapshotChunkProvider::SnapshotChunkProvider(absl::string_view snapshot_path, tsl::Env* env) : snapshot_path_(snapshot_path), env_(env) {} absl::Status SnapshotChunkProvider::GetNext(Tensor* split, bool* end_of_splits) ABSL_LOCKS_EXCLUDED(mu_) { for (int num_retries = 0;; ++num_retries) { Backoff(num_retries, env_); absl::MutexLock l(&mu_); TF_RETURN_IF_ERROR(snapshot_state_.status); if (!chunks_unread_.empty()) { std::string next_chunk = *chunks_unread_.begin(); chunks_read_.insert(next_chunk); chunks_unread_.erase(next_chunk); *split = ConvertToTensor(AbsPath(snapshot_path_, next_chunk)); *end_of_splits = false; return absl::OkStatus(); } if (snapshot_state_.snapshot_is_done) { *end_of_splits = true; return absl::OkStatus(); } TF_RETURN_IF_ERROR(UpdateSnapshot()); } } absl::Status SnapshotChunkProvider::UpdateSnapshot() ABSL_EXCLUSIVE_LOCKS_REQUIRED(mu_) { TF_ASSIGN_OR_RETURN(snapshot_state_, GetSnapshotState()); TF_RETURN_IF_ERROR(snapshot_state_.status); TF_ASSIGN_OR_RETURN(std::vector<std::string> chunks, GetAvailableChunks()); for (const std::string& chunk : chunks) { if (!chunks_read_.contains(chunk)) { chunks_unread_.insert(std::string(chunk)); } } return absl::OkStatus(); } absl::StatusOr<SnapshotChunkProvider::SnapshotState> SnapshotChunkProvider::GetSnapshotState() { std::string error_file_path = SnapshotErrorFilePath(snapshot_path_); if (env_->FileExists(error_file_path).ok()) { StatusProto status_proto; TF_RETURN_IF_ERROR(ReadTextProto(env_, error_file_path, &status_proto)); absl::Status status = tsl::StatusFromProto(status_proto); if (status.ok()) { return absl::InternalError(absl::StrCat( "Unexpected snapshot ERROR file contains an OK status at ", error_file_path, ".")); } return SnapshotState(status); } return SnapshotState( env_->FileExists(SnapshotDoneFilePath(snapshot_path_)).ok()); } absl::StatusOr<std::vector<std::string>> SnapshotChunkProvider::GetAvailableChunks() { absl::StatusOr<std::vector<std::string>> status_or_chunks = GetChildren(CommittedChunksDirectory(snapshot_path_), env_); if (status_or_chunks.ok()) { return *std::move(status_or_chunks); } else if (absl::IsNotFound(status_or_chunks.status())) { return std::vector<std::string>{}; } return status_or_chunks.status(); } absl::Status SnapshotChunkProvider::Reset() { absl::MutexLock l(&mu_); chunks_read_.clear(); chunks_unread_.clear(); return UpdateSnapshot(); } absl::Status SnapshotChunkProvider::Save( std::function<std::string(std::string)> full_name, IteratorStateWriter* writer) { absl::MutexLock l(&mu_); TF_RETURN_IF_ERROR( writer->WriteScalar(full_name(kChunksRead), SetToString(chunks_read_))); return absl::OkStatus(); } absl::Status SnapshotChunkProvider::Restore( std::function<std::string(std::string)> full_name, IteratorStateReader* reader) { absl::MutexLock l(&mu_); tsl::tstring chunks_read; TF_RETURN_IF_ERROR(reader->ReadScalar(full_name(kChunksRead), &chunks_read)); chunks_read_ = SetFromString(chunks_read); return UpdateSnapshot(); } int64_t SnapshotChunkProvider::Cardinality() const { return SnapshotChunksCardinality(snapshot_path_, env_); } void SnapshotChunkProvider::Cancel() { absl::MutexLock l(&mu_); if (snapshot_state_.snapshot_is_done || !snapshot_state_.status.ok()) { return; } snapshot_state_.status = absl::CancelledError( absl::StrCat("Cancelled loading tf.data snapshot at ", snapshot_path_)); VLOG(2) << snapshot_state_.status; } std::string SnapshotChunkProvider::SetToString( const SnapshotChunkProvider::OrderedChunkSet& s) { return absl::StrJoin(s, kSetElementDelimiter); } SnapshotChunkProvider::OrderedChunkSet SnapshotChunkProvider::SetFromString( absl::string_view s) { if (s.empty()) { return {}; } std::vector<std::string> split = absl::StrSplit(s, kSetElementDelimiter); return OrderedChunkSet(split.begin(), split.end()); } bool SnapshotChunkProvider::ChunkOrder::operator()( const std::string& chunk1, const std::string& chunk2) const { absl::StatusOr<std::tuple<int64_t, int64_t, int64_t>> tokens1 = ParseChunkFilename(chunk1); absl::StatusOr<std::tuple<int64_t, int64_t, int64_t>> tokens2 = ParseChunkFilename(chunk2); if (!tokens1.status().ok()) { LOG_EVERY_N_SEC(ERROR, 60) << "Failed to parse tf.data snapshot chunk file " << chunk1 << ": " << tokens1.status(); return chunk1 < chunk2; } if (!tokens2.status().ok()) { LOG_EVERY_N_SEC(ERROR, 60) << "Failed to parse tf.data snapshot chunk file " << chunk2 << ": " << tokens2.status(); return chunk1 < chunk2; } auto [stream_index1, chunk_index1, num_records1] = *tokens1; auto [stream_index2, chunk_index2, num_records2] = *tokens2; if (chunk_index1 != chunk_index2) { return chunk_index1 < chunk_index2; } return stream_index1 < stream_index2; } } }
#include "tensorflow/core/data/service/snapshot/snapshot_chunk_provider.h" #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/synchronization/mutex.h" #include "tensorflow/core/data/serialization_utils.h" #include "tensorflow/core/data/service/snapshot/file_utils.h" #include "tensorflow/core/data/service/snapshot/path_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/variant_tensor_data.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/path.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/status_to_from_proto.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #include "tsl/platform/tstring.h" #include "tsl/protobuf/status.pb.h" namespace tensorflow { namespace data { namespace { using ::testing::ElementsAreArray; using ::testing::HasSubstr; using ::testing::IsEmpty; using ::testing::UnorderedElementsAreArray; using ::tsl::testing::IsOkAndHolds; using ::tsl::testing::StatusIs; absl::StatusOr<std::string> CreateSnapshotDirectory() { std::string snapshot_path; if (!tsl::Env::Default()->LocalTempFilename(&snapshot_path)) { return absl::FailedPreconditionError( "Failed to create local temp file for snapshot."); } TF_RETURN_IF_ERROR(tsl::Env::Default()->RecursivelyCreateDir( CommittedChunksDirectory(snapshot_path))); return snapshot_path; } absl::Status WriteChunk(absl::string_view snapshot_path, absl::string_view chunk_file) { return AtomicallyWriteStringToFile( tsl::io::JoinPath(CommittedChunksDirectory(snapshot_path), chunk_file), "", tsl::Env::Default()); } absl::Status SetDone(absl::string_view snapshot_path) { return AtomicallyWriteStringToFile(SnapshotDoneFilePath(snapshot_path), "", tsl::Env::Default()); } absl::Status SetStatus(absl::string_view snapshot_path, const absl::Status& status) { return AtomicallyWriteTextProto(SnapshotErrorFilePath(snapshot_path), tsl::StatusToProto(status), tsl::Env::Default()); } absl::StatusOr<std::string> GetChunk( SnapshotChunkProvider& snapshot_chunk_provider) { Tensor split; bool end_of_splits = false; TF_RETURN_IF_ERROR(snapshot_chunk_provider.GetNext(&split, &end_of_splits)); if (end_of_splits) { return absl::OutOfRangeError("No more available chunks."); } return split.unaligned_flat<tsl::tstring>().data()[0]; } absl::StatusOr<std::vector<std::string>> GetAllChunks( SnapshotChunkProvider& snapshot_chunk_provider) { std::vector<std::string> chunks; while (true) { Tensor split; bool end_of_splits = false; TF_RETURN_IF_ERROR(snapshot_chunk_provider.GetNext(&split, &end_of_splits)); if (end_of_splits) { return chunks; } chunks.push_back(split.unaligned_flat<tsl::tstring>().data()[0]); } return chunks; } std::vector<std::string> JoinPaths(absl::string_view snapshot_path, const std::vector<std::string> chunks) { std::vector<std::string> joined_chunks; for (absl::string_view chunk : chunks) { joined_chunks.push_back( tsl::io::JoinPath(CommittedChunksDirectory(snapshot_path), chunk)); } return joined_chunks; } std::string full_name(const std::string& name) { return FullName("test", name); } absl::Status SaveAndRestore(SplitProvider& split_provider) { VariantTensorDataWriter writer; TF_RETURN_IF_ERROR(split_provider.Save(full_name, &writer)); std::vector<const VariantTensorData*> variants; writer.GetData(&variants); VariantTensorDataReader reader(variants); TF_RETURN_IF_ERROR(split_provider.Restore(full_name, &reader)); return absl::OkStatus(); } TEST(SnapshotChunkProviderTest, EmptySnapshot) { TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); TF_ASSERT_OK(SetDone(snapshot_path)); SnapshotChunkProvider snapshot_chunk_provider(snapshot_path, tsl::Env::Default()); EXPECT_THAT(GetAllChunks(snapshot_chunk_provider), IsOkAndHolds(IsEmpty())); EXPECT_THAT(GetAllChunks(snapshot_chunk_provider), IsOkAndHolds(IsEmpty())); } TEST(SnapshotChunkProviderTest, SingleReader) { TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); std::vector<std::string> chunks = {"chunk_4_4_4", "chunk_3_3_3", "chunk_2_2_2", "chunk_1_1_1", "chunk_0_0_0"}; for (absl::string_view chunk : chunks) { TF_ASSERT_OK(WriteChunk(snapshot_path, chunk)); } TF_ASSERT_OK(SetDone(snapshot_path)); SnapshotChunkProvider snapshot_chunk_provider(snapshot_path, tsl::Env::Default()); absl::c_reverse(chunks); EXPECT_THAT(GetAllChunks(snapshot_chunk_provider), IsOkAndHolds(ElementsAreArray(JoinPaths(snapshot_path, chunks)))); } TEST(SnapshotChunkProviderTest, Cardinality) { TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); TF_ASSERT_OK(WriteChunk(snapshot_path, "chunk_0_0_0")); SnapshotChunkProvider snapshot_chunk_provider(snapshot_path, tsl::Env::Default()); EXPECT_EQ(snapshot_chunk_provider.Cardinality(), kUnknownCardinality); std::vector<std::string> chunks = {"chunk_1_1_1", "chunk_2_2_2", "chunk_3_3_3", "chunk_4_4_4"}; for (absl::string_view chunk : chunks) { TF_ASSERT_OK(WriteChunk(snapshot_path, chunk)); } EXPECT_EQ(snapshot_chunk_provider.Cardinality(), kUnknownCardinality); TF_ASSERT_OK(SetDone(snapshot_path)); EXPECT_EQ(snapshot_chunk_provider.Cardinality(), 5); } TEST(SnapshotChunkProviderTest, WaitForSnapshot) { std::string snapshot_path; ASSERT_TRUE(tsl::Env::Default()->LocalTempFilename(&snapshot_path)); absl::Mutex mu; std::vector<std::string> result; std::unique_ptr<tsl::Thread> reader_thread = absl::WrapUnique(tsl::Env::Default()->StartThread( {}, "Reader", [&snapshot_path, &mu, &result]() { SnapshotChunkProvider snapshot_chunk_provider(snapshot_path, tsl::Env::Default()); TF_ASSERT_OK_AND_ASSIGN(std::vector<std::string> chunks, GetAllChunks(snapshot_chunk_provider)); absl::MutexLock l(&mu); result = std::move(chunks); })); { absl::MutexLock l(&mu); EXPECT_TRUE(result.empty()); } TF_ASSERT_OK(tsl::Env::Default()->RecursivelyCreateDir( CommittedChunksDirectory(snapshot_path))); TF_ASSERT_OK(WriteChunk(snapshot_path, "chunk_0_0_0")); TF_ASSERT_OK(SetDone(snapshot_path)); reader_thread.reset(); absl::MutexLock l(&mu); EXPECT_THAT(result, ElementsAreArray(JoinPaths(snapshot_path, {"chunk_0_0_0"}))); } TEST(SnapshotChunkProviderTest, ConcurrentReadWrite) { TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); const int num_readers = 10; absl::Mutex mu; SnapshotChunkProvider snapshot_chunk_provider(snapshot_path, tsl::Env::Default()); std::vector<std::string> result; std::vector<std::unique_ptr<tsl::Thread>> reader_threads; for (int i = 0; i < num_readers; ++i) { reader_threads.push_back(absl::WrapUnique(tsl::Env::Default()->StartThread( {}, absl::StrCat("Reader_", i), [&snapshot_chunk_provider, &mu, &result]() { while (true) { tsl::Env::Default()->SleepForMicroseconds(25); Tensor split; bool end_of_splits = false; TF_ASSERT_OK( snapshot_chunk_provider.GetNext(&split, &end_of_splits)); if (end_of_splits) { break; } absl::MutexLock l(&mu); result.push_back(split.unaligned_flat<tsl::tstring>().data()[0]); } }))); } int num_streams = 10, num_chunks_per_stream = 50; std::vector<std::unique_ptr<tsl::Thread>> stream_threads; for (int i = 0; i < num_streams; ++i) { stream_threads.push_back(absl::WrapUnique(tsl::Env::Default()->StartThread( {}, absl::StrCat("Writer_", i), [&snapshot_path, num_chunks_per_stream, i]() { for (int j = 0; j < num_chunks_per_stream; ++j) { std::string filename = absl::StrCat("chunk_", i, "_", j, "_1"); TF_ASSERT_OK(WriteChunk(snapshot_path, filename)); tsl::Env::Default()->SleepForMicroseconds(35); } }))); } stream_threads.clear(); TF_ASSERT_OK(SetDone(snapshot_path)); reader_threads.clear(); std::vector<std::string> expected; for (int i = 0; i < num_streams; ++i) { for (int j = 0; j < num_chunks_per_stream; ++j) { expected.push_back(absl::StrCat("chunk_", i, "_", j, "_1")); } } EXPECT_THAT(result, UnorderedElementsAreArray(JoinPaths(snapshot_path, expected))); } TEST(SnapshotChunkProviderTest, SaveRestore) { TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); std::vector<std::string> chunks = {"chunk_4_4_4", "chunk_3_3_3", "chunk_2_2_2", "chunk_1_1_1", "chunk_0_0_0"}; for (absl::string_view chunk : chunks) { TF_ASSERT_OK(WriteChunk(snapshot_path, chunk)); } TF_ASSERT_OK(SetDone(snapshot_path)); SnapshotChunkProvider snapshot_chunk_provider(snapshot_path, tsl::Env::Default()); EXPECT_THAT(GetChunk(snapshot_chunk_provider), IsOkAndHolds(tsl::io::JoinPath( CommittedChunksDirectory(snapshot_path), "chunk_0_0_0"))); TF_ASSERT_OK(SaveAndRestore(snapshot_chunk_provider)); EXPECT_THAT(GetAllChunks(snapshot_chunk_provider), IsOkAndHolds(ElementsAreArray( JoinPaths(snapshot_path, {"chunk_1_1_1", "chunk_2_2_2", "chunk_3_3_3", "chunk_4_4_4"})))); } TEST(SnapshotChunkProviderTest, SnapshotError) { TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); std::unique_ptr<tsl::Thread> reader_thread = absl::WrapUnique(tsl::Env::Default()->StartThread( {}, "Reader", [&snapshot_path]() { SnapshotChunkProvider snapshot_chunk_provider(snapshot_path, tsl::Env::Default()); EXPECT_THAT( GetAllChunks(snapshot_chunk_provider), StatusIs(absl::StatusCode::kFailedPrecondition, "Test error.")); })); TF_ASSERT_OK(WriteChunk(snapshot_path, "chunk_0_0_0")); TF_ASSERT_OK(WriteChunk(snapshot_path, "chunk_1_0_0")); TF_ASSERT_OK(WriteChunk(snapshot_path, "chunk_2_0_0")); TF_ASSERT_OK( SetStatus(snapshot_path, absl::FailedPreconditionError("Test error."))); reader_thread.reset(); } TEST(SnapshotChunkProviderTest, Cancel) { TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); SnapshotChunkProvider snapshot_chunk_provider(snapshot_path, tsl::Env::Default()); std::unique_ptr<tsl::Thread> reader_thread = absl::WrapUnique(tsl::Env::Default()->StartThread( {}, "Reader", [&snapshot_chunk_provider]() { EXPECT_THAT( GetAllChunks(snapshot_chunk_provider), StatusIs(absl::StatusCode::kCancelled, HasSubstr("Cancelled loading tf.data snapshot at"))); })); TF_ASSERT_OK(WriteChunk(snapshot_path, "chunk_0_0_0")); TF_ASSERT_OK(WriteChunk(snapshot_path, "chunk_1_0_0")); TF_ASSERT_OK(WriteChunk(snapshot_path, "chunk_2_0_0")); snapshot_chunk_provider.Cancel(); reader_thread.reset(); } } } }
310
#ifndef STORAGE_LEVELDB_INCLUDE_WRITE_BATCH_H_ #define STORAGE_LEVELDB_INCLUDE_WRITE_BATCH_H_ #include <string> #include "leveldb/export.h" #include "leveldb/status.h" namespace leveldb { class Slice; class LEVELDB_EXPORT WriteBatch { public: class LEVELDB_EXPORT Handler { public: virtual ~Handler(); virtual void Put(const Slice& key, const Slice& value) = 0; virtual void Delete(const Slice& key) = 0; }; WriteBatch(); WriteBatch(const WriteBatch&) = default; WriteBatch& operator=(const WriteBatch&) = default; ~WriteBatch(); void Put(const Slice& key, const Slice& value); void Delete(const Slice& key); void Clear(); size_t ApproximateSize() const; void Append(const WriteBatch& source); Status Iterate(Handler* handler) const; private: friend class WriteBatchInternal; std::string rep_; }; } #endif #include "leveldb/write_batch.h" #include "db/dbformat.h" #include "db/memtable.h" #include "db/write_batch_internal.h" #include "leveldb/db.h" #include "util/coding.h" namespace leveldb { static const size_t kHeader = 12; WriteBatch::WriteBatch() { Clear(); } WriteBatch::~WriteBatch() = default; WriteBatch::Handler::~Handler() = default; void WriteBatch::Clear() { rep_.clear(); rep_.resize(kHeader); } size_t WriteBatch::ApproximateSize() const { return rep_.size(); } Status WriteBatch::Iterate(Handler* handler) const { Slice input(rep_); if (input.size() < kHeader) { return Status::Corruption("malformed WriteBatch (too small)"); } input.remove_prefix(kHeader); Slice key, value; int found = 0; while (!input.empty()) { found++; char tag = input[0]; input.remove_prefix(1); switch (tag) { case kTypeValue: if (GetLengthPrefixedSlice(&input, &key) && GetLengthPrefixedSlice(&input, &value)) { handler->Put(key, value); } else { return Status::Corruption("bad WriteBatch Put"); } break; case kTypeDeletion: if (GetLengthPrefixedSlice(&input, &key)) { handler->Delete(key); } else { return Status::Corruption("bad WriteBatch Delete"); } break; default: return Status::Corruption("unknown WriteBatch tag"); } } if (found != WriteBatchInternal::Count(this)) { return Status::Corruption("WriteBatch has wrong count"); } else { return Status::OK(); } } int WriteBatchInternal::Count(const WriteBatch* b) { return DecodeFixed32(b->rep_.data() + 8); } void WriteBatchInternal::SetCount(WriteBatch* b, int n) { EncodeFixed32(&b->rep_[8], n); } SequenceNumber WriteBatchInternal::Sequence(const WriteBatch* b) { return SequenceNumber(DecodeFixed64(b->rep_.data())); } void WriteBatchInternal::SetSequence(WriteBatch* b, SequenceNumber seq) { EncodeFixed64(&b->rep_[0], seq); } void WriteBatch::Put(const Slice& key, const Slice& value) { WriteBatchInternal::SetCount(this, WriteBatchInternal::Count(this) + 1); rep_.push_back(static_cast<char>(kTypeValue)); PutLengthPrefixedSlice(&rep_, key); PutLengthPrefixedSlice(&rep_, value); } void WriteBatch::Delete(const Slice& key) { WriteBatchInternal::SetCount(this, WriteBatchInternal::Count(this) + 1); rep_.push_back(static_cast<char>(kTypeDeletion)); PutLengthPrefixedSlice(&rep_, key); } void WriteBatch::Append(const WriteBatch& source) { WriteBatchInternal::Append(this, &source); } namespace { class MemTableInserter : public WriteBatch::Handler { public: SequenceNumber sequence_; MemTable* mem_; void Put(const Slice& key, const Slice& value) override { mem_->Add(sequence_, kTypeValue, key, value); sequence_++; } void Delete(const Slice& key) override { mem_->Add(sequence_, kTypeDeletion, key, Slice()); sequence_++; } }; } Status WriteBatchInternal::InsertInto(const WriteBatch* b, MemTable* memtable) { MemTableInserter inserter; inserter.sequence_ = WriteBatchInternal::Sequence(b); inserter.mem_ = memtable; return b->Iterate(&inserter); } void WriteBatchInternal::SetContents(WriteBatch* b, const Slice& contents) { assert(contents.size() >= kHeader); b->rep_.assign(contents.data(), contents.size()); } void WriteBatchInternal::Append(WriteBatch* dst, const WriteBatch* src) { SetCount(dst, Count(dst) + Count(src)); assert(src->rep_.size() >= kHeader); dst->rep_.append(src->rep_.data() + kHeader, src->rep_.size() - kHeader); } }
#include "gtest/gtest.h" #include "db/memtable.h" #include "db/write_batch_internal.h" #include "leveldb/db.h" #include "leveldb/env.h" #include "util/logging.h" namespace leveldb { static std::string PrintContents(WriteBatch* b) { InternalKeyComparator cmp(BytewiseComparator()); MemTable* mem = new MemTable(cmp); mem->Ref(); std::string state; Status s = WriteBatchInternal::InsertInto(b, mem); int count = 0; Iterator* iter = mem->NewIterator(); for (iter->SeekToFirst(); iter->Valid(); iter->Next()) { ParsedInternalKey ikey; EXPECT_TRUE(ParseInternalKey(iter->key(), &ikey)); switch (ikey.type) { case kTypeValue: state.append("Put("); state.append(ikey.user_key.ToString()); state.append(", "); state.append(iter->value().ToString()); state.append(")"); count++; break; case kTypeDeletion: state.append("Delete("); state.append(ikey.user_key.ToString()); state.append(")"); count++; break; } state.append("@"); state.append(NumberToString(ikey.sequence)); } delete iter; if (!s.ok()) { state.append("ParseError()"); } else if (count != WriteBatchInternal::Count(b)) { state.append("CountMismatch()"); } mem->Unref(); return state; } TEST(WriteBatchTest, Empty) { WriteBatch batch; ASSERT_EQ("", PrintContents(&batch)); ASSERT_EQ(0, WriteBatchInternal::Count(&batch)); } TEST(WriteBatchTest, Multiple) { WriteBatch batch; batch.Put(Slice("foo"), Slice("bar")); batch.Delete(Slice("box")); batch.Put(Slice("baz"), Slice("boo")); WriteBatchInternal::SetSequence(&batch, 100); ASSERT_EQ(100, WriteBatchInternal::Sequence(&batch)); ASSERT_EQ(3, WriteBatchInternal::Count(&batch)); ASSERT_EQ( "Put(baz, boo)@102" "Delete(box)@101" "Put(foo, bar)@100", PrintContents(&batch)); } TEST(WriteBatchTest, Corruption) { WriteBatch batch; batch.Put(Slice("foo"), Slice("bar")); batch.Delete(Slice("box")); WriteBatchInternal::SetSequence(&batch, 200); Slice contents = WriteBatchInternal::Contents(&batch); WriteBatchInternal::SetContents(&batch, Slice(contents.data(), contents.size() - 1)); ASSERT_EQ( "Put(foo, bar)@200" "ParseError()", PrintContents(&batch)); } TEST(WriteBatchTest, Append) { WriteBatch b1, b2; WriteBatchInternal::SetSequence(&b1, 200); WriteBatchInternal::SetSequence(&b2, 300); b1.Append(b2); ASSERT_EQ("", PrintContents(&b1)); b2.Put("a", "va"); b1.Append(b2); ASSERT_EQ("Put(a, va)@200", PrintContents(&b1)); b2.Clear(); b2.Put("b", "vb"); b1.Append(b2); ASSERT_EQ( "Put(a, va)@200" "Put(b, vb)@201", PrintContents(&b1)); b2.Delete("foo"); b1.Append(b2); ASSERT_EQ( "Put(a, va)@200" "Put(b, vb)@202" "Put(b, vb)@201" "Delete(foo)@203", PrintContents(&b1)); } TEST(WriteBatchTest, ApproximateSize) { WriteBatch batch; size_t empty_size = batch.ApproximateSize(); batch.Put(Slice("foo"), Slice("bar")); size_t one_key_size = batch.ApproximateSize(); ASSERT_LT(empty_size, one_key_size); batch.Put(Slice("baz"), Slice("boo")); size_t two_keys_size = batch.ApproximateSize(); ASSERT_LT(one_key_size, two_keys_size); batch.Delete(Slice("box")); size_t post_delete_size = batch.ApproximateSize(); ASSERT_LT(two_keys_size, post_delete_size); } }
311
#ifndef TENSORFLOW_LITE_TOCO_TFLITE_IMPORT_H_ #define TENSORFLOW_LITE_TOCO_TFLITE_IMPORT_H_ #include <string> #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/toco/model.h" #include "tensorflow/lite/toco/model_flags.pb.h" namespace toco { namespace tflite { std::unique_ptr<Model> Import(const ModelFlags &model_flags, const std::string &input_file_contents); namespace details { using TensorsTable = std::vector<std::string>; using OperatorsTable = std::vector<std::string>; void LoadTensorsTable(const ::tflite::Model &input_model, TensorsTable *tensors_table); void LoadOperatorsTable(const ::tflite::Model &input_model, OperatorsTable *operators_table); } } } #endif #include "tensorflow/lite/toco/tflite/import.h" #include <memory> #include <string> #include "absl/log/check.h" #include "absl/log/log.h" #include "flatbuffers/verifier.h" #include "tensorflow/lite/core/tools/verifier.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/schema/schema_utils.h" #include "tensorflow/lite/stderr_reporter.h" #include "tensorflow/lite/toco/model.h" #include "tensorflow/lite/toco/model_flags.pb.h" #include "tensorflow/lite/toco/tflite/operator.h" #include "tensorflow/lite/toco/tflite/types.h" #include "tensorflow/lite/toco/tooling_util.h" namespace toco { namespace tflite { namespace details { void LoadTensorsTable(const ::tflite::Model& input_model, TensorsTable* tensors_table) { auto tensors = (*input_model.subgraphs())[0]->tensors(); if (!tensors) return; for (const auto* tensor : *tensors) { tensors_table->push_back(tensor->name()->c_str()); } } void LoadOperatorsTable(const ::tflite::Model& input_model, OperatorsTable* operators_table) { auto opcodes = input_model.operator_codes(); if (!opcodes) return; for (const auto* opcode : *opcodes) { auto builtin_code = GetBuiltinCode(opcode); if (builtin_code != ::tflite::BuiltinOperator_CUSTOM) { operators_table->push_back(EnumNameBuiltinOperator(builtin_code)); } else { operators_table->push_back(opcode->custom_code()->c_str()); } } } } void ImportTensors(const ::tflite::Model& input_model, Model* model) { auto tensors = (*input_model.subgraphs())[0]->tensors(); auto* buffers = input_model.buffers(); if (!tensors) return; for (const auto* input_tensor : *tensors) { Array& array = model->GetOrCreateArray(input_tensor->name()->c_str()); array.data_type = DataType::Deserialize(input_tensor->type()); int buffer_index = input_tensor->buffer(); auto* buffer = buffers->Get(buffer_index); DataBuffer::Deserialize(*input_tensor, *buffer, &array); auto shape = input_tensor->shape(); if (shape) { array.mutable_shape()->mutable_dims()->clear(); for (uint32_t i = 0; i < shape->Length(); ++i) { auto d = shape->Get(i); array.mutable_shape()->mutable_dims()->push_back(d); } } auto quantization = input_tensor->quantization(); if (quantization) { if (quantization->min() && quantization->max()) { CHECK_EQ(1, quantization->min()->Length()); CHECK_EQ(1, quantization->max()->Length()); MinMax& minmax = array.GetOrCreateMinMax(); minmax.min = quantization->min()->Get(0); minmax.max = quantization->max()->Get(0); } if (quantization->scale() && quantization->zero_point()) { CHECK_EQ(1, quantization->scale()->Length()); CHECK_EQ(1, quantization->zero_point()->Length()); QuantizationParams& q = array.GetOrCreateQuantizationParams(); q.scale = quantization->scale()->Get(0); q.zero_point = quantization->zero_point()->Get(0); } } } } void ImportOperators( const ::tflite::Model& input_model, const std::map<std::string, std::unique_ptr<BaseOperator>>& ops_by_name, const details::TensorsTable& tensors_table, const details::OperatorsTable& operators_table, Model* model) { auto ops = (*input_model.subgraphs())[0]->operators(); if (!ops) return; for (const auto* input_op : *ops) { uint32_t index = input_op->opcode_index(); if (index > operators_table.size()) { LOG(FATAL) << "Index " << index << " must be between zero and " << operators_table.size(); } std::string opname = operators_table.at(index); std::unique_ptr<Operator> new_op = nullptr; if (ops_by_name.count(opname) == 0) { std::string effective_opname = "TENSORFLOW_UNSUPPORTED"; if (ops_by_name.count(effective_opname) == 0) { LOG(FATAL) << "Internal logic error: TENSORFLOW_UNSUPPORTED not found."; } new_op = ops_by_name.at(effective_opname) ->Deserialize(input_op->builtin_options(), input_op->custom_options()); if (new_op->type == OperatorType::kUnsupported) { auto* unsupported_op = static_cast<TensorFlowUnsupportedOperator*>(new_op.get()); unsupported_op->tensorflow_op = opname; unsupported_op->quantized = true; } else { LOG(FATAL) << "Expected a TensorFlowUnsupportedOperator"; } } else { new_op = ops_by_name.at(opname)->Deserialize(input_op->builtin_options(), input_op->custom_options()); } model->operators.emplace_back(new_op.release()); auto* op = model->operators.back().get(); auto inputs = input_op->inputs(); for (uint32_t i = 0; i < inputs->Length(); i++) { auto input_index = inputs->Get(i); if (input_index != -1) { const std::string& input_name = tensors_table.at(input_index); op->inputs.push_back(input_name); } else { const std::string& tensor_name = toco::AvailableArrayName(*model, "OptionalTensor"); model->CreateOptionalArray(tensor_name); op->inputs.push_back(tensor_name); } } auto outputs = input_op->outputs(); for (int i = 0, end = outputs->Length(); i < end; i++) { auto output_index = outputs->Get(i); const std::string& output_name = tensors_table.at(output_index); op->outputs.push_back(output_name); } } } void ImportIOTensors(const ModelFlags& model_flags, const ::tflite::Model& input_model, const details::TensorsTable& tensors_table, Model* model) { if (model_flags.input_arrays().empty()) { auto inputs = (*input_model.subgraphs())[0]->inputs(); if (inputs) { for (int input : *inputs) { const std::string& input_name = tensors_table.at(input); model->flags.add_input_arrays()->set_name(input_name); } } } if (model_flags.output_arrays().empty()) { auto outputs = (*input_model.subgraphs())[0]->outputs(); if (outputs) { for (int output : *outputs) { const std::string& output_name = tensors_table.at(output); model->flags.add_output_arrays(output_name); } } } } namespace { bool Verify(const void* buf, size_t len) { ::flatbuffers::Verifier verifier(static_cast<const uint8_t*>(buf), len); return ::tflite::VerifyModelBuffer(verifier); } } std::unique_ptr<Model> Import(const ModelFlags& model_flags, const std::string& input_file_contents) { ::tflite::AlwaysTrueResolver r; if (!::tflite::Verify(input_file_contents.data(), input_file_contents.size(), r, ::tflite::DefaultErrorReporter())) { LOG(FATAL) << "Invalid flatbuffer."; } const ::tflite::Model* input_model = ::tflite::GetModel(input_file_contents.data()); const auto ops_by_name = BuildOperatorByNameMap(); if (!input_model->subgraphs() || input_model->subgraphs()->size() != 1) { LOG(FATAL) << "Number of subgraphs in tflite should be exactly 1."; } std::unique_ptr<Model> model; model = std::make_unique<Model>(); details::TensorsTable tensors_table; details::LoadTensorsTable(*input_model, &tensors_table); details::OperatorsTable operators_table; details::LoadOperatorsTable(*input_model, &operators_table); ImportTensors(*input_model, model.get()); ImportOperators(*input_model, ops_by_name, tensors_table, operators_table, model.get()); ImportIOTensors(model_flags, *input_model, tensors_table, model.get()); UndoWeightsShuffling(model.get()); return model; } } }
#include "tensorflow/lite/toco/tflite/import.h" #include <initializer_list> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "flatbuffers/flatbuffer_builder.h" #include "tensorflow/lite/schema/schema_conversion_utils.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/toco/model.h" #include "tensorflow/lite/toco/model_flags.pb.h" #include "tensorflow/lite/toco/toco_types.h" #include "tensorflow/lite/version.h" namespace toco { namespace tflite { namespace { using ::testing::ElementsAre; using flatbuffers::Offset; using flatbuffers::Vector; class ImportTest : public ::testing::Test { protected: template <typename T> Offset<Vector<unsigned char>> CreateDataVector(const std::vector<T>& data) { return builder_.CreateVector(reinterpret_cast<const uint8_t*>(data.data()), sizeof(T) * data.size()); } Offset<Vector<Offset<::tflite::Buffer>>> BuildBuffers() { auto buf0 = ::tflite::CreateBuffer(builder_, CreateDataVector<float>({})); auto buf1 = ::tflite::CreateBuffer( builder_, CreateDataVector<float>({1.0f, 2.0f, 3.0f, 4.0f})); auto buf2 = ::tflite::CreateBuffer(builder_, CreateDataVector<float>({3.0f, 4.0f})); return builder_.CreateVector( std::vector<Offset<::tflite::Buffer>>({buf0, buf1, buf2})); } Offset<Vector<Offset<::tflite::Tensor>>> BuildTensors() { auto q = ::tflite::CreateQuantizationParameters( builder_, builder_.CreateVector<float>({0.1f}), builder_.CreateVector<float>({0.2f}), builder_.CreateVector<float>({0.3f}), builder_.CreateVector<int64_t>({100LL})); auto t1 = ::tflite::CreateTensor(builder_, builder_.CreateVector<int>({1, 2, 2}), ::tflite::TensorType_FLOAT32, 1, builder_.CreateString("tensor_one"), q); auto t2 = ::tflite::CreateTensor(builder_, builder_.CreateVector<int>({2, 1}), ::tflite::TensorType_FLOAT32, 0, builder_.CreateString("tensor_two"), q); return builder_.CreateVector( std::vector<Offset<::tflite::Tensor>>({t1, t2})); } Offset<Vector<Offset<::tflite::OperatorCode>>> BuildOpCodes( std::initializer_list<::tflite::BuiltinOperator> op_codes) { std::vector<Offset<::tflite::OperatorCode>> op_codes_vector; for (auto op : op_codes) { op_codes_vector.push_back(::tflite::CreateOperatorCode(builder_, op, 0)); } return builder_.CreateVector(op_codes_vector); } Offset<Vector<Offset<::tflite::OperatorCode>>> BuildOpCodes() { return BuildOpCodes({::tflite::BuiltinOperator_MAX_POOL_2D, ::tflite::BuiltinOperator_CONV_2D}); } Offset<Vector<Offset<::tflite::Operator>>> BuildOperators( std::initializer_list<int> inputs, std::initializer_list<int> outputs) { auto is = builder_.CreateVector<int>(inputs); if (inputs.size() == 0) is = 0; auto os = builder_.CreateVector<int>(outputs); if (outputs.size() == 0) os = 0; auto op = ::tflite::CreateOperator( builder_, 0, is, os, ::tflite::BuiltinOptions_Conv2DOptions, ::tflite::CreateConv2DOptions(builder_, ::tflite::Padding_VALID, 1, 1, ::tflite::ActivationFunctionType_NONE) .Union(), 0, ::tflite::CustomOptionsFormat_FLEXBUFFERS); return builder_.CreateVector(std::vector<Offset<::tflite::Operator>>({op})); } Offset<Vector<Offset<::tflite::Operator>>> BuildOperators() { return BuildOperators({0}, {1}); } Offset<Vector<Offset<::tflite::SubGraph>>> BuildSubGraphs( Offset<Vector<Offset<::tflite::Tensor>>> tensors, Offset<Vector<Offset<::tflite::Operator>>> operators, int num_sub_graphs = 1) { std::vector<int32_t> inputs = {0}; std::vector<int32_t> outputs = {1}; std::vector<Offset<::tflite::SubGraph>> v; for (int i = 0; i < num_sub_graphs; ++i) { v.push_back(::tflite::CreateSubGraph( builder_, tensors, builder_.CreateVector(inputs), builder_.CreateVector(outputs), operators, builder_.CreateString("subgraph"))); } return builder_.CreateVector(v); } void BuildTestModel() { auto buffers = BuildBuffers(); auto tensors = BuildTensors(); auto opcodes = BuildOpCodes(); auto operators = BuildOperators(); auto subgraphs = BuildSubGraphs(tensors, operators); auto s = builder_.CreateString(""); ::tflite::FinishModelBuffer( builder_, ::tflite::CreateModel(builder_, TFLITE_SCHEMA_VERSION, opcodes, subgraphs, s, buffers)); input_model_ = ::tflite::GetModel(builder_.GetBufferPointer()); } std::string InputModelAsString() { return std::string(reinterpret_cast<char*>(builder_.GetBufferPointer()), builder_.GetSize()); } flatbuffers::FlatBufferBuilder builder_; const ::tflite::Model* input_model_ = nullptr; }; TEST_F(ImportTest, LoadTensorsTable) { BuildTestModel(); details::TensorsTable tensors; details::LoadTensorsTable(*input_model_, &tensors); EXPECT_THAT(tensors, ElementsAre("tensor_one", "tensor_two")); } TEST_F(ImportTest, LoadOperatorsTable) { BuildTestModel(); details::OperatorsTable operators; details::LoadOperatorsTable(*input_model_, &operators); EXPECT_THAT(operators, ElementsAre("MAX_POOL_2D", "CONV_2D")); } TEST_F(ImportTest, Tensors) { BuildTestModel(); auto model = Import(ModelFlags(), InputModelAsString()); ASSERT_GT(model->HasArray("tensor_one"), 0); Array& a1 = model->GetArray("tensor_one"); EXPECT_EQ(ArrayDataType::kFloat, a1.data_type); EXPECT_THAT(a1.GetBuffer<ArrayDataType::kFloat>().data, ElementsAre(1.0f, 2.0f, 3.0f, 4.0f)); ASSERT_TRUE(a1.has_shape()); EXPECT_THAT(a1.shape().dims(), ElementsAre(1, 2, 2)); const auto& mm = a1.minmax; ASSERT_TRUE(mm.get()); EXPECT_FLOAT_EQ(0.1, mm->min); EXPECT_FLOAT_EQ(0.2, mm->max); const auto& q = a1.quantization_params; ASSERT_TRUE(q.get()); EXPECT_FLOAT_EQ(0.3, q->scale); EXPECT_EQ(100, q->zero_point); } TEST_F(ImportTest, NoBuffers) { auto buffers = 0; auto tensors = BuildTensors(); auto opcodes = BuildOpCodes(); auto operators = BuildOperators(); auto subgraphs = BuildSubGraphs(tensors, operators); auto comment = builder_.CreateString(""); ::tflite::FinishModelBuffer( builder_, ::tflite::CreateModel(builder_, TFLITE_SCHEMA_VERSION, opcodes, subgraphs, comment, buffers)); EXPECT_DEATH(Import(ModelFlags(), InputModelAsString()), "Missing 'buffers' section."); } TEST_F(ImportTest, NoInputs) { auto buffers = BuildBuffers(); auto tensors = BuildTensors(); auto opcodes = BuildOpCodes(); auto operators = BuildOperators({}, {1}); auto subgraphs = BuildSubGraphs(tensors, operators); auto comment = builder_.CreateString(""); ::tflite::FinishModelBuffer( builder_, ::tflite::CreateModel(builder_, TFLITE_SCHEMA_VERSION, opcodes, subgraphs, comment, buffers)); EXPECT_DEATH(Import(ModelFlags(), InputModelAsString()), "Missing 'inputs' for operator."); } TEST_F(ImportTest, NoOutputs) { auto buffers = BuildBuffers(); auto tensors = BuildTensors(); auto opcodes = BuildOpCodes(); auto operators = BuildOperators({0}, {}); auto subgraphs = BuildSubGraphs(tensors, operators); auto comment = builder_.CreateString(""); ::tflite::FinishModelBuffer( builder_, ::tflite::CreateModel(builder_, TFLITE_SCHEMA_VERSION, opcodes, subgraphs, comment, buffers)); EXPECT_DEATH(Import(ModelFlags(), InputModelAsString()), "Missing 'outputs' for operator."); } TEST_F(ImportTest, InvalidOpCode) { auto buffers = BuildBuffers(); auto tensors = BuildTensors(); auto opcodes = BuildOpCodes({static_cast<::tflite::BuiltinOperator>(-1), ::tflite::BuiltinOperator_CONV_2D}); auto operators = BuildOperators(); auto subgraphs = BuildSubGraphs(tensors, operators); auto comment = builder_.CreateString(""); ::tflite::FinishModelBuffer( builder_, ::tflite::CreateModel(builder_, TFLITE_SCHEMA_VERSION, opcodes, subgraphs, comment, buffers)); EXPECT_DEATH(Import(ModelFlags(), InputModelAsString()), "Operator id '-1' is out of range."); } TEST_F(ImportTest, MultipleSubGraphs) { auto buffers = BuildBuffers(); auto tensors = BuildTensors(); auto opcodes = BuildOpCodes(); auto operators = BuildOperators(); auto subgraphs = BuildSubGraphs(tensors, operators, 2); auto comment = builder_.CreateString(""); ::tflite::FinishModelBuffer( builder_, ::tflite::CreateModel(builder_, TFLITE_SCHEMA_VERSION, opcodes, subgraphs, comment, buffers)); input_model_ = ::tflite::GetModel(builder_.GetBufferPointer()); EXPECT_DEATH(Import(ModelFlags(), InputModelAsString()), "Number of subgraphs in tflite should be exactly 1."); } } } }
312
#ifndef XLA_SERVICE_GPU_EXECUTION_STREAM_ASSIGNMENT_H_ #define XLA_SERVICE_GPU_EXECUTION_STREAM_ASSIGNMENT_H_ #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/gpu/runtime/thunk.h" namespace xla::gpu { class ExecutionStreamAssignment { public: explicit ExecutionStreamAssignment(const HloModule* module); absl::StatusOr<ExecutionStreamId> GetSyncExecutionStreamId( const HloInstruction* instruction) const; struct AsyncExecutionStreamIds { ExecutionStreamId source_stream_id; ExecutionStreamId destination_stream_id; }; absl::StatusOr<AsyncExecutionStreamIds> GetAsyncExecutionStreamIds( const HloAsyncInstruction* instruction) const; private: absl::flat_hash_map<HloInstruction*, ExecutionStreamId> sync_instructions_; absl::flat_hash_map<HloInstruction*, AsyncExecutionStreamIds> async_instructions_; }; inline bool operator==( const ExecutionStreamAssignment::AsyncExecutionStreamIds& first, const ExecutionStreamAssignment::AsyncExecutionStreamIds& second) { return first.source_stream_id == second.source_stream_id && first.destination_stream_id == second.destination_stream_id; } } #endif #include "xla/service/gpu/execution_stream_assignment.h" #include <deque> #include <memory> #include <utility> #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/call_graph.h" #include "xla/service/gpu/runtime/thunk.h" namespace xla::gpu { ExecutionStreamAssignment::ExecutionStreamAssignment(const HloModule* module) { std::unique_ptr<CallGraph> call_graph = CallGraph::Build(module); ExecutionStreamId next_stream_id = ExecutionStreamId(1); struct Pending { Pending(HloComputation* node, ExecutionStreamId stream_id) : node(node), stream_id(stream_id) {} HloComputation* node; ExecutionStreamId stream_id; }; std::deque<Pending> queue; queue.emplace_back(module->entry_computation(), ExecutionStreamId(0)); auto enqueue_called_computations = [&](const CallSite& callsite, ExecutionStreamId stream) { if (GetInstructionCallContext(callsite.instruction()->opcode()) == CallContext::kEmbedded) { return; } for (HloComputation* computation : callsite.called_computations()) { queue.emplace_back(computation, stream); } }; while (!queue.empty()) { Pending pending = queue.front(); queue.pop_front(); for (HloInstruction* instruction : pending.node->instructions()) { if (instruction->IsAsynchronous()) continue; CHECK(sync_instructions_.try_emplace(instruction, pending.stream_id) .second); } for (const CallSite& callsite : call_graph->GetNode(pending.node).callsites()) { if (callsite.instruction()->IsAsynchronous()) { CHECK_EQ(callsite.instruction()->opcode(), HloOpcode::kAsyncStart); const ExecutionStreamId async_stream_id = next_stream_id++; enqueue_called_computations(callsite, async_stream_id); AsyncExecutionStreamIds streams; streams.source_stream_id = pending.stream_id; streams.destination_stream_id = async_stream_id; CHECK(async_instructions_.try_emplace(callsite.instruction(), streams) .second); } else { enqueue_called_computations(callsite, pending.stream_id); } } for (HloInstruction* instruction : pending.node->instructions()) { if (!instruction->IsAsynchronous()) continue; if (instruction->opcode() == HloOpcode::kAsyncStart) { CHECK(async_instructions_.find(instruction) != async_instructions_.end()); } else { HloInstruction* async_start = Cast<HloAsyncInstruction>(instruction)->async_chain_start(); AsyncExecutionStreamIds async_start_streams = async_instructions_.at(async_start); CHECK(async_instructions_.try_emplace(instruction, async_start_streams) .second); } } } } namespace { absl::Status StreamNotFoundError(const HloInstruction* instruction) { return absl::NotFoundError(absl::StrCat( "No ExecutionStreamId found for ", instruction->ToString(), "; this may happen if the Computation is not reachable from the module's " "entrypoint, or if it's only reachable through a embedded calls.")); } } absl::StatusOr<ExecutionStreamId> ExecutionStreamAssignment::GetSyncExecutionStreamId( const HloInstruction* instruction) const { CHECK(!instruction->IsAsynchronous()); auto stream = sync_instructions_.find(instruction); if (stream == sync_instructions_.end()) { return StreamNotFoundError(instruction); } return stream->second; } absl::StatusOr<ExecutionStreamAssignment::AsyncExecutionStreamIds> ExecutionStreamAssignment::GetAsyncExecutionStreamIds( const HloAsyncInstruction* instruction) const { auto streams = async_instructions_.find(instruction); if (streams == async_instructions_.end()) { return StreamNotFoundError(instruction); } return streams->second; } }
#include "xla/service/gpu/execution_stream_assignment.h" #include <memory> #include <string_view> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" using ::tsl::testing::IsOkAndHolds; using ::tsl::testing::StatusIs; using AsyncExecutionStreamIds = ::xla::gpu::ExecutionStreamAssignment::AsyncExecutionStreamIds; namespace xla::gpu { namespace { class ExecutionStreamAssignmentTest : public HloTestBase { protected: void ExpectExecutionStreamForSyncInstructions( const ExecutionStreamAssignment& assignment, HloComputation* computation, ExecutionStreamId stream) const { for (const HloInstruction* instruction : computation->instructions()) { if (instruction->IsAsynchronous()) continue; EXPECT_THAT(assignment.GetSyncExecutionStreamId(instruction), IsOkAndHolds(stream)); } } }; TEST_F(ExecutionStreamAssignmentTest, AsyncFusion) { const char* kModuleStr = R"( HloModule m leaf1 { p0 = f32[2,2] parameter(0) ROOT add = f32[2,2] add(p0, p0) } leaf2 { p0 = f32[2,2] parameter(0) ROOT add = f32[2,2] add(p0, p0) } ENTRY entry { p0 = f32[2,2] parameter(0) start1 = ((f32[2,2]), f32[2,2], s32[]) fusion-start(p0), kind=kLoop, calls=leaf1 start2 = ((f32[2,2]), f32[2,2], s32[]) fusion-start(p0), kind=kLoop, calls=leaf2 update1 = ((f32[2,2]), f32[2,2], s32[]) fusion-update(start1) update2 = ((f32[2,2]), f32[2,2], s32[]) fusion-update(start2) done1 = f32[2,2] fusion-done(update1) done2 = f32[2,2] fusion-done(update2) ROOT done = f32[2,2] add(done1, done2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kModuleStr)); ExecutionStreamAssignment assignment(module.get()); ExpectExecutionStreamForSyncInstructions( assignment, FindComputation(module.get(), "entry"), ExecutionStreamId(0)); for (std::string_view instruction : {"start1", "update1", "done1"}) { EXPECT_THAT(assignment.GetAsyncExecutionStreamIds(Cast<HloAsyncInstruction>( FindInstruction(module.get(), instruction))), IsOkAndHolds(AsyncExecutionStreamIds( ExecutionStreamId(0), ExecutionStreamId(1)))); } for (std::string_view instruction : {"start2", "update2", "done2"}) { EXPECT_THAT(assignment.GetAsyncExecutionStreamIds(Cast<HloAsyncInstruction>( FindInstruction(module.get(), instruction))), IsOkAndHolds(AsyncExecutionStreamIds( ExecutionStreamId(0), ExecutionStreamId(2)))); } ExpectExecutionStreamForSyncInstructions( assignment, Cast<HloAsyncInstruction>(FindInstruction(module.get(), "start1")) ->async_wrapped_computation(), ExecutionStreamId(1)); ExpectExecutionStreamForSyncInstructions( assignment, Cast<HloAsyncInstruction>(FindInstruction(module.get(), "start2")) ->async_wrapped_computation(), ExecutionStreamId(2)); } TEST_F(ExecutionStreamAssignmentTest, FusionComputations) { const char* kModuleStr = R"( HloModule m reduce { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } fusion { p0 = f32[4] parameter(0) c0 = f32[] constant(0) ROOT reduce = f32[] reduce(p0, c0), dimensions={0}, to_apply=reduce } ENTRY entry { p0 = f32[4] parameter(0) ROOT done = f32[] fusion(p0), kind=kLoop, calls=fusion } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kModuleStr)); ExecutionStreamAssignment assignment(module.get()); ExpectExecutionStreamForSyncInstructions( assignment, FindComputation(module.get(), "entry"), ExecutionStreamId(0)); for (std::string_view computation : {"reduce", "fusion"}) { for (const HloInstruction* instruction : FindComputation(module.get(), computation)->instructions()) { EXPECT_THAT(assignment.GetSyncExecutionStreamId(instruction), StatusIs(absl::StatusCode::kNotFound)); } } } TEST_F(ExecutionStreamAssignmentTest, UnreachableComputation) { const char* kModuleStr = R"( HloModule m unreachable { p0 = f32[2,2] parameter(0) ROOT add = f32[2,2] add(p0, p0) } ENTRY entry { p0 = f32[2,2] parameter(0) ROOT add = f32[2,2] add(p0, p0) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kModuleStr)); ExecutionStreamAssignment assignment(module.get()); ExpectExecutionStreamForSyncInstructions( assignment, FindComputation(module.get(), "entry"), ExecutionStreamId(0)); for (const HloInstruction* instruction : FindComputation(module.get(), "unreachable")->instructions()) { EXPECT_THAT(assignment.GetSyncExecutionStreamId(instruction), StatusIs(absl::StatusCode::kNotFound)); } } } }
313
#ifndef THIRD_PARTY_CEL_CPP_COMMON_INTERNAL_REFERENCE_COUNT_H_ #define THIRD_PARTY_CEL_CPP_COMMON_INTERNAL_REFERENCE_COUNT_H_ #include <atomic> #include <cstdint> #include <new> #include <type_traits> #include <utility> #include "absl/base/attributes.h" #include "absl/base/nullability.h" #include "absl/base/optimization.h" #include "absl/log/absl_check.h" #include "common/arena.h" #include "common/data.h" #include "google/protobuf/arena.h" #include "google/protobuf/message_lite.h" namespace cel::common_internal { struct AdoptRef final { explicit AdoptRef() = default; }; inline constexpr AdoptRef kAdoptRef{}; class ReferenceCount; struct ReferenceCountFromThis; void SetReferenceCountForThat(ReferenceCountFromThis& that, absl::Nullable<ReferenceCount*> refcount); ABSL_ATTRIBUTE_PURE_FUNCTION absl::Nullable<ReferenceCount*> GetReferenceCountForThat( const ReferenceCountFromThis& that); struct ReferenceCountFromThis { private: friend void SetReferenceCountForThat( ReferenceCountFromThis& that, absl::Nullable<ReferenceCount*> refcount); friend absl::Nullable<ReferenceCount*> GetReferenceCountForThat( const ReferenceCountFromThis& that); static constexpr uintptr_t kNullPtr = uintptr_t{0}; static constexpr uintptr_t kSentinelPtr = ~kNullPtr; absl::Nullable<void*> refcount = reinterpret_cast<void*>(kSentinelPtr); }; inline void SetReferenceCountForThat(ReferenceCountFromThis& that, absl::Nullable<ReferenceCount*> refcount) { ABSL_DCHECK_EQ(that.refcount, reinterpret_cast<void*>(ReferenceCountFromThis::kSentinelPtr)); that.refcount = static_cast<void*>(refcount); } inline absl::Nullable<ReferenceCount*> GetReferenceCountForThat( const ReferenceCountFromThis& that) { ABSL_DCHECK_NE(that.refcount, reinterpret_cast<void*>(ReferenceCountFromThis::kSentinelPtr)); return static_cast<ReferenceCount*>(that.refcount); } void StrongRef(const ReferenceCount& refcount) noexcept; void StrongRef(absl::Nullable<const ReferenceCount*> refcount) noexcept; void StrongUnref(const ReferenceCount& refcount) noexcept; void StrongUnref(absl::Nullable<const ReferenceCount*> refcount) noexcept; ABSL_MUST_USE_RESULT bool StrengthenRef(const ReferenceCount& refcount) noexcept; ABSL_MUST_USE_RESULT bool StrengthenRef(absl::Nullable<const ReferenceCount*> refcount) noexcept; void WeakRef(const ReferenceCount& refcount) noexcept; void WeakRef(absl::Nullable<const ReferenceCount*> refcount) noexcept; void WeakUnref(const ReferenceCount& refcount) noexcept; void WeakUnref(absl::Nullable<const ReferenceCount*> refcount) noexcept; ABSL_MUST_USE_RESULT bool IsUniqueRef(const ReferenceCount& refcount) noexcept; ABSL_MUST_USE_RESULT bool IsUniqueRef(absl::Nullable<const ReferenceCount*> refcount) noexcept; ABSL_MUST_USE_RESULT bool IsExpiredRef(const ReferenceCount& refcount) noexcept; ABSL_MUST_USE_RESULT bool IsExpiredRef(absl::Nullable<const ReferenceCount*> refcount) noexcept; class alignas(8) ReferenceCount { public: ReferenceCount() = default; ReferenceCount(const ReferenceCount&) = delete; ReferenceCount(ReferenceCount&&) = delete; ReferenceCount& operator=(const ReferenceCount&) = delete; ReferenceCount& operator=(ReferenceCount&&) = delete; virtual ~ReferenceCount() = default; private: friend void StrongRef(const ReferenceCount& refcount) noexcept; friend void StrongUnref(const ReferenceCount& refcount) noexcept; friend bool StrengthenRef(const ReferenceCount& refcount) noexcept; friend void WeakRef(const ReferenceCount& refcount) noexcept; friend void WeakUnref(const ReferenceCount& refcount) noexcept; friend bool IsUniqueRef(const ReferenceCount& refcount) noexcept; friend bool IsExpiredRef(const ReferenceCount& refcount) noexcept; virtual void Finalize() noexcept = 0; virtual void Delete() noexcept = 0; mutable std::atomic<int32_t> strong_refcount_ = 1; mutable std::atomic<int32_t> weak_refcount_ = 1; }; static_assert(alignof(ReferenceCount) >= alignof(google::protobuf::Arena)); class ReferenceCounted : public ReferenceCount { private: void Finalize() noexcept override {} void Delete() noexcept override { delete this; } }; template <typename T> class EmplacedReferenceCount final : public ReferenceCounted { public: static_assert(std::is_destructible_v<T>, "T must be destructible"); static_assert(!std::is_reference_v<T>, "T must not be a reference"); static_assert(!std::is_volatile_v<T>, "T must not be volatile qualified"); static_assert(!std::is_const_v<T>, "T must not be const qualified"); template <typename... Args> explicit EmplacedReferenceCount(T*& value, Args&&... args) noexcept( std::is_nothrow_constructible_v<T, Args...>) { value = ::new (static_cast<void*>(&value_[0])) T(std::forward<Args>(args)...); } private: void Finalize() noexcept override { std::launder(reinterpret_cast<T*>(&value_[0]))->~T(); } alignas(T) char value_[sizeof(T)]; }; template <typename T> class DeletingReferenceCount final : public ReferenceCounted { public: explicit DeletingReferenceCount(absl::Nonnull<const T*> to_delete) noexcept : to_delete_(to_delete) {} private: void Finalize() noexcept override { delete std::exchange(to_delete_, nullptr); } const T* to_delete_; }; extern template class DeletingReferenceCount<google::protobuf::MessageLite>; extern template class DeletingReferenceCount<Data>; template <typename T> absl::Nonnull<const ReferenceCount*> MakeDeletingReferenceCount( absl::Nonnull<const T*> to_delete) { if constexpr (IsArenaConstructible<T>::value) { ABSL_DCHECK_EQ(to_delete->GetArena(), nullptr); } if constexpr (std::is_base_of_v<google::protobuf::MessageLite, T>) { return new DeletingReferenceCount<google::protobuf::MessageLite>(to_delete); } else if constexpr (std::is_base_of_v<Data, T>) { auto* refcount = new DeletingReferenceCount<Data>(to_delete); common_internal::SetDataReferenceCount(to_delete, refcount); return refcount; } else { return new DeletingReferenceCount<T>(to_delete); } } template <typename T, typename... Args> std::pair<absl::Nonnull<T*>, absl::Nonnull<const ReferenceCount*>> MakeEmplacedReferenceCount(Args&&... args) { using U = std::remove_const_t<T>; U* pointer; auto* const refcount = new EmplacedReferenceCount<U>(pointer, std::forward<Args>(args)...); if constexpr (IsArenaConstructible<U>::value) { ABSL_DCHECK_EQ(pointer->GetArena(), nullptr); } if constexpr (std::is_base_of_v<Data, T>) { common_internal::SetDataReferenceCount(pointer, refcount); } return std::pair{static_cast<absl::Nonnull<T*>>(pointer), static_cast<absl::Nonnull<const ReferenceCount*>>(refcount)}; } template <typename T> class InlinedReferenceCount final : public ReferenceCounted { public: template <typename... Args> explicit InlinedReferenceCount(std::in_place_t, Args&&... args) : ReferenceCounted() { ::new (static_cast<void*>(value())) T(std::forward<Args>(args)...); } ABSL_ATTRIBUTE_ALWAYS_INLINE absl::Nonnull<T*> value() { return reinterpret_cast<T*>(&value_[0]); } ABSL_ATTRIBUTE_ALWAYS_INLINE absl::Nonnull<const T*> value() const { return reinterpret_cast<const T*>(&value_[0]); } private: void Finalize() noexcept override { value()->~T(); } alignas(T) char value_[sizeof(T)]; }; template <typename T, typename... Args> std::pair<absl::Nonnull<T*>, absl::Nonnull<ReferenceCount*>> MakeReferenceCount( Args&&... args) { using U = std::remove_const_t<T>; auto* const refcount = new InlinedReferenceCount<U>(std::in_place, std::forward<Args>(args)...); auto* const pointer = refcount->value(); if constexpr (std::is_base_of_v<ReferenceCountFromThis, U>) { SetReferenceCountForThat(*pointer, refcount); } return std::make_pair(static_cast<T*>(pointer), static_cast<ReferenceCount*>(refcount)); } inline void StrongRef(const ReferenceCount& refcount) noexcept { const auto count = refcount.strong_refcount_.fetch_add(1, std::memory_order_relaxed); ABSL_DCHECK_GT(count, 0); } inline void StrongRef(absl::Nullable<const ReferenceCount*> refcount) noexcept { if (refcount != nullptr) { StrongRef(*refcount); } } inline void StrongUnref(const ReferenceCount& refcount) noexcept { const auto count = refcount.strong_refcount_.fetch_sub(1, std::memory_order_acq_rel); ABSL_DCHECK_GT(count, 0); ABSL_ASSUME(count > 0); if (ABSL_PREDICT_FALSE(count == 1)) { const_cast<ReferenceCount&>(refcount).Finalize(); WeakUnref(refcount); } } inline void StrongUnref( absl::Nullable<const ReferenceCount*> refcount) noexcept { if (refcount != nullptr) { StrongUnref(*refcount); } } ABSL_MUST_USE_RESULT inline bool StrengthenRef(const ReferenceCount& refcount) noexcept { auto count = refcount.strong_refcount_.load(std::memory_order_relaxed); while (true) { ABSL_DCHECK_GE(count, 0); ABSL_ASSUME(count >= 0); if (count == 0) { return false; } if (refcount.strong_refcount_.compare_exchange_weak( count, count + 1, std::memory_order_release, std::memory_order_relaxed)) { return true; } } } ABSL_MUST_USE_RESULT inline bool StrengthenRef( absl::Nullable<const ReferenceCount*> refcount) noexcept { return refcount != nullptr ? StrengthenRef(*refcount) : false; } inline void WeakRef(const ReferenceCount& refcount) noexcept { const auto count = refcount.weak_refcount_.fetch_add(1, std::memory_order_relaxed); ABSL_DCHECK_GT(count, 0); } inline void WeakRef(absl::Nullable<const ReferenceCount*> refcount) noexcept { if (refcount != nullptr) { WeakRef(*refcount); } } inline void WeakUnref(const ReferenceCount& refcount) noexcept { const auto count = refcount.weak_refcount_.fetch_sub(1, std::memory_order_acq_rel); ABSL_DCHECK_GT(count, 0); ABSL_ASSUME(count > 0); if (ABSL_PREDICT_FALSE(count == 1)) { const_cast<ReferenceCount&>(refcount).Delete(); } } inline void WeakUnref(absl::Nullable<const ReferenceCount*> refcount) noexcept { if (refcount != nullptr) { WeakUnref(*refcount); } } ABSL_MUST_USE_RESULT inline bool IsUniqueRef(const ReferenceCount& refcount) noexcept { const auto count = refcount.strong_refcount_.load(std::memory_order_acquire); ABSL_DCHECK_GT(count, 0); ABSL_ASSUME(count > 0); return count == 1; } ABSL_MUST_USE_RESULT inline bool IsUniqueRef( absl::Nullable<const ReferenceCount*> refcount) noexcept { return refcount != nullptr ? IsUniqueRef(*refcount) : false; } ABSL_MUST_USE_RESULT inline bool IsExpiredRef(const ReferenceCount& refcount) noexcept { const auto count = refcount.strong_refcount_.load(std::memory_order_acquire); ABSL_DCHECK_GE(count, 0); ABSL_ASSUME(count >= 0); return count == 0; } ABSL_MUST_USE_RESULT inline bool IsExpiredRef( absl::Nullable<const ReferenceCount*> refcount) noexcept { return refcount != nullptr ? IsExpiredRef(*refcount) : false; } } #endif #include "common/internal/reference_count.h" #include "common/data.h" #include "google/protobuf/message_lite.h" namespace cel::common_internal { template class DeletingReferenceCount<google::protobuf::MessageLite>; template class DeletingReferenceCount<Data>; }
#include "common/internal/reference_count.h" #include <tuple> #include "google/protobuf/struct.pb.h" #include "absl/base/nullability.h" #include "common/data.h" #include "internal/testing.h" #include "google/protobuf/arena.h" #include "google/protobuf/message_lite.h" namespace cel::common_internal { namespace { using testing::NotNull; using testing::WhenDynamicCastTo; class Object : public virtual ReferenceCountFromThis { public: explicit Object(bool& destructed) : destructed_(destructed) {} ~Object() { destructed_ = true; } private: bool& destructed_; }; class Subobject : public Object, public virtual ReferenceCountFromThis { public: using Object::Object; }; TEST(ReferenceCount, Strong) { bool destructed = false; Object* object; ReferenceCount* refcount; std::tie(object, refcount) = MakeReferenceCount<Subobject>(destructed); EXPECT_EQ(GetReferenceCountForThat(*object), refcount); EXPECT_EQ(GetReferenceCountForThat(*static_cast<Subobject*>(object)), refcount); StrongRef(refcount); StrongUnref(refcount); EXPECT_TRUE(IsUniqueRef(refcount)); EXPECT_FALSE(IsExpiredRef(refcount)); EXPECT_FALSE(destructed); StrongUnref(refcount); EXPECT_TRUE(destructed); } TEST(ReferenceCount, Weak) { bool destructed = false; Object* object; ReferenceCount* refcount; std::tie(object, refcount) = MakeReferenceCount<Subobject>(destructed); EXPECT_EQ(GetReferenceCountForThat(*object), refcount); EXPECT_EQ(GetReferenceCountForThat(*static_cast<Subobject*>(object)), refcount); WeakRef(refcount); ASSERT_TRUE(StrengthenRef(refcount)); StrongUnref(refcount); EXPECT_TRUE(IsUniqueRef(refcount)); EXPECT_FALSE(IsExpiredRef(refcount)); EXPECT_FALSE(destructed); StrongUnref(refcount); EXPECT_TRUE(destructed); EXPECT_TRUE(IsExpiredRef(refcount)); ASSERT_FALSE(StrengthenRef(refcount)); WeakUnref(refcount); } class DataObject final : public Data { public: DataObject() noexcept : Data() {} explicit DataObject(absl::Nullable<google::protobuf::Arena*> arena) noexcept : Data(arena) {} char member_[17]; }; struct OtherObject final { char data[17]; }; TEST(DeletingReferenceCount, Data) { auto* data = new DataObject(); const auto* refcount = MakeDeletingReferenceCount(data); EXPECT_THAT(refcount, WhenDynamicCastTo<const DeletingReferenceCount<Data>*>( NotNull())); EXPECT_EQ(common_internal::GetDataReferenceCount(data), refcount); StrongUnref(refcount); } TEST(DeletingReferenceCount, MessageLite) { auto* message_lite = new google::protobuf::Value(); const auto* refcount = MakeDeletingReferenceCount(message_lite); EXPECT_THAT( refcount, WhenDynamicCastTo<const DeletingReferenceCount<google::protobuf::MessageLite>*>( NotNull())); StrongUnref(refcount); } TEST(DeletingReferenceCount, Other) { auto* other = new OtherObject(); const auto* refcount = MakeDeletingReferenceCount(other); EXPECT_THAT( refcount, WhenDynamicCastTo<const DeletingReferenceCount<OtherObject>*>(NotNull())); StrongUnref(refcount); } TEST(EmplacedReferenceCount, Data) { Data* data; const ReferenceCount* refcount; std::tie(data, refcount) = MakeEmplacedReferenceCount<DataObject>(); EXPECT_THAT( refcount, WhenDynamicCastTo<const EmplacedReferenceCount<DataObject>*>(NotNull())); EXPECT_EQ(common_internal::GetDataReferenceCount(data), refcount); StrongUnref(refcount); } TEST(EmplacedReferenceCount, MessageLite) { google::protobuf::Value* message_lite; const ReferenceCount* refcount; std::tie(message_lite, refcount) = MakeEmplacedReferenceCount<google::protobuf::Value>(); EXPECT_THAT( refcount, WhenDynamicCastTo<const EmplacedReferenceCount<google::protobuf::Value>*>( NotNull())); StrongUnref(refcount); } TEST(EmplacedReferenceCount, Other) { OtherObject* other; const ReferenceCount* refcount; std::tie(other, refcount) = MakeEmplacedReferenceCount<OtherObject>(); EXPECT_THAT( refcount, WhenDynamicCastTo<const EmplacedReferenceCount<OtherObject>*>(NotNull())); StrongUnref(refcount); } } }
314
#ifndef XLA_SERVICE_CONVOLUTION_4D_EXPANDER_H_ #define XLA_SERVICE_CONVOLUTION_4D_EXPANDER_H_ #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/op_expander_pass.h" namespace xla { class Convolution4DExpander : public OpExpanderPass { public: absl::string_view name() const override { return "convolution_4d_expander"; } protected: bool InstructionMatchesPattern(HloInstruction* instruction) override; absl::StatusOr<HloInstruction*> ExpandInstruction( HloInstruction* instruction) override; }; } #endif #include "xla/service/convolution_4d_expander.h" #include <algorithm> #include <functional> #include <vector> #include "absl/algorithm/container.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/xla_data.pb.h" namespace xla { bool Convolution4DExpander::InstructionMatchesPattern( HloInstruction* instruction) { if (instruction->opcode() != HloOpcode::kConvolution) { return false; } const ConvolutionDimensionNumbers& dim_nums = instruction->convolution_dimension_numbers(); if (dim_nums.input_spatial_dimensions().size() != 4) { return false; } Shape input = instruction->operand(0)->shape(); for (int64_t i = 0; i < dim_nums.input_spatial_dimensions().size(); ++i) { int64_t spatial_dim = dim_nums.input_spatial_dimensions(i); if (input.dimensions(spatial_dim) == 1 && instruction->window().dimensions(i).padding_low() == 0 && instruction->window().dimensions(i).padding_high() == 0) { return true; } } return false; } absl::StatusOr<HloInstruction*> Convolution4DExpander::ExpandInstruction( HloInstruction* instruction) { HloComputation* computation = instruction->parent(); ConvolutionDimensionNumbers dim_nums = instruction->convolution_dimension_numbers(); ConvolutionDimensionNumbers new_dim_nums = dim_nums; std::vector<int64_t> removed_input_dimensions; std::vector<int64_t> removed_kernel_dimensions; std::vector<int64_t> removed_output_dimensions; new_dim_nums.clear_input_spatial_dimensions(); new_dim_nums.clear_output_spatial_dimensions(); new_dim_nums.clear_kernel_spatial_dimensions(); Window new_window; HloInstruction* input = instruction->mutable_operand(0); for (int64_t i = 0; i < dim_nums.input_spatial_dimensions().size(); ++i) { int64_t input_spatial_dim = dim_nums.input_spatial_dimensions(i); int64_t output_spatial_dim = dim_nums.output_spatial_dimensions(i); int64_t kernel_spatial_dim = dim_nums.kernel_spatial_dimensions(i); if (input->shape().dimensions(input_spatial_dim) == 1 && instruction->window().dimensions(i).padding_low() == 0 && instruction->window().dimensions(i).padding_high() == 0) { removed_input_dimensions.push_back(input_spatial_dim); removed_output_dimensions.push_back(output_spatial_dim); removed_kernel_dimensions.push_back(kernel_spatial_dim); } else { *new_window.add_dimensions() = instruction->window().dimensions(i); new_dim_nums.add_input_spatial_dimensions(input_spatial_dim); new_dim_nums.add_output_spatial_dimensions(output_spatial_dim); new_dim_nums.add_kernel_spatial_dimensions(kernel_spatial_dim); } } std::sort(removed_input_dimensions.begin(), removed_input_dimensions.end(), std::greater<>()); std::sort(removed_output_dimensions.begin(), removed_output_dimensions.end(), std::greater<>()); std::sort(removed_kernel_dimensions.begin(), removed_kernel_dimensions.end(), std::greater<>()); Shape new_input_shape = input->shape(); for (int64_t dim : removed_input_dimensions) { new_input_shape.DeleteDimension(dim); } HloInstruction* kernel = instruction->mutable_operand(1); Shape new_kernel_shape = kernel->shape(); for (int64_t dim : removed_kernel_dimensions) { new_kernel_shape.DeleteDimension(dim); } Shape new_output_shape = instruction->shape(); for (int64_t dim : removed_output_dimensions) { new_output_shape.DeleteDimension(dim); } auto compute_new_dimension = [](const std::vector<int64_t>& removed_dimensions, int64_t old_dimension) { int64_t num_smaller = absl::c_count_if( removed_dimensions, [old_dimension](int64_t removed_dimension) { return removed_dimension < old_dimension; }); return old_dimension - num_smaller; }; new_dim_nums.set_input_batch_dimension(compute_new_dimension( removed_input_dimensions, new_dim_nums.input_batch_dimension())); new_dim_nums.set_input_feature_dimension(compute_new_dimension( removed_input_dimensions, new_dim_nums.input_feature_dimension())); for (int64_t i = 0; i < new_dim_nums.input_spatial_dimensions().size(); ++i) { new_dim_nums.set_input_spatial_dimensions( i, compute_new_dimension(removed_input_dimensions, new_dim_nums.input_spatial_dimensions(i))); } new_dim_nums.set_output_batch_dimension(compute_new_dimension( removed_output_dimensions, new_dim_nums.output_batch_dimension())); new_dim_nums.set_output_feature_dimension(compute_new_dimension( removed_output_dimensions, new_dim_nums.output_feature_dimension())); for (int64_t i = 0; i < new_dim_nums.output_spatial_dimensions().size(); ++i) { new_dim_nums.set_output_spatial_dimensions( i, compute_new_dimension(removed_output_dimensions, new_dim_nums.output_spatial_dimensions(i))); } new_dim_nums.set_kernel_input_feature_dimension( compute_new_dimension(removed_kernel_dimensions, new_dim_nums.kernel_input_feature_dimension())); new_dim_nums.set_kernel_output_feature_dimension( compute_new_dimension(removed_kernel_dimensions, new_dim_nums.kernel_output_feature_dimension())); for (int64_t i = 0; i < new_dim_nums.kernel_spatial_dimensions().size(); ++i) { new_dim_nums.set_kernel_spatial_dimensions( i, compute_new_dimension(removed_kernel_dimensions, new_dim_nums.kernel_spatial_dimensions(i))); } HloInstruction* reshaped_input = computation->AddInstruction( HloInstruction::CreateReshape(new_input_shape, input)); HloInstruction* reshaped_kernel = computation->AddInstruction( HloInstruction::CreateReshape(new_kernel_shape, kernel)); instruction->set_convolution_dimension_numbers(new_dim_nums); instruction->set_window(new_window); HloInstruction* new_convolution = computation->AddInstruction(instruction->CloneWithNewOperands( new_output_shape, {reshaped_input, reshaped_kernel})); return computation->AddInstruction( HloInstruction::CreateReshape(instruction->shape(), new_convolution)); } }
#include "xla/service/convolution_4d_expander.h" #include <memory> #include <string> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/types.h" namespace xla { namespace { using Convolution4DExpanderTest = HloTestBase; TEST_F(Convolution4DExpanderTest, ConvertTo2DConvolution) { std::string hlo_string = R"(HloModule convolution_4d_fp32 ENTRY convolution_computation { input = f32[1,10,1,10,5,20]{5,4,3,2,1,0} parameter(0) kernel = f32[20,1,2,1,4,15]{5,4,3,2,1,0} parameter(1) ROOT conv = f32[15,1,9,1,7,5]{5,4,3,2,1,0} convolution(input, kernel), dim_labels=0123bf_i0123o->f0123b, window={size=1x2x1x4} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); HloInstruction* root = computation->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kConvolution); EXPECT_EQ(root->window().dimensions_size(), 4); Convolution4DExpander expander_pass; ASSERT_TRUE(expander_pass.Run(module.get()).value()); root = computation->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kReshape); const HloInstruction* new_convolution = root->operand(0); EXPECT_EQ(new_convolution->opcode(), HloOpcode::kConvolution); EXPECT_EQ(new_convolution->window().dimensions_size(), 2); } TEST_F(Convolution4DExpanderTest, ConvertTo3DConvolution) { std::string hlo_string = R"(HloModule convolution_4d_fp32 ENTRY convolution_computation { input = f32[1,10,1,10,5,20]{5,4,3,2,1,0} parameter(0) kernel = f32[20,1,2,1,4,15]{5,4,3,2,1,0} parameter(1) ROOT conv = f32[15,1,9,2,7,5]{5,4,3,2,1,0} convolution(input, kernel), dim_labels=0123bf_i0123o->f0123b, window={size=1x2x1x4 pad=0_0x0_0x1_0x0_0} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); HloInstruction* root = computation->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kConvolution); EXPECT_EQ(root->window().dimensions_size(), 4); Convolution4DExpander expander_pass; ASSERT_TRUE(expander_pass.Run(module.get()).value()); root = computation->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kReshape); const HloInstruction* new_convolution = root->operand(0); EXPECT_EQ(new_convolution->opcode(), HloOpcode::kConvolution); EXPECT_EQ(new_convolution->window().dimensions_size(), 3); } TEST_F(Convolution4DExpanderTest, ConvertTo0DConvolution) { std::string hlo_string = R"(HloModule convolution_4d_fp32 ENTRY convolution_computation { input = f32[1,1,1,1,5,20]{5,4,3,2,1,0} parameter(0) kernel = f32[20,1,1,1,1,15]{5,4,3,2,1,0} parameter(1) ROOT conv = f32[15,1,1,1,1,5]{5,4,3,2,1,0} convolution(input, kernel), dim_labels=0123bf_i0123o->f0123b, window={size=1x1x1x1} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); HloInstruction* root = computation->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kConvolution); EXPECT_EQ(root->window().dimensions_size(), 4); Convolution4DExpander expander_pass; ASSERT_TRUE(expander_pass.Run(module.get()).value()); root = computation->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kReshape); const HloInstruction* new_convolution = root->operand(0); EXPECT_EQ(new_convolution->opcode(), HloOpcode::kConvolution); EXPECT_EQ(new_convolution->window().dimensions_size(), 0); } TEST_F(Convolution4DExpanderTest, DontConvert3DConvolution) { std::string hlo_string = R"(HloModule convolution_4d_fp32 ENTRY convolution_computation { input = f32[1,1,1,5,20]{4,3,2,1,0} parameter(0) kernel = f32[20,1,1,1,15]{4,3,2,1,0} parameter(1) ROOT conv = f32[15,1,1,1,5]{4,3,2,1,0} convolution(input, kernel), dim_labels=012bf_i012o->f012b, window={size=1x1x1} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); HloInstruction* root = computation->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kConvolution); EXPECT_EQ(root->window().dimensions_size(), 3); Convolution4DExpander expander_pass; ASSERT_FALSE(expander_pass.Run(module.get()).value()); } TEST_F(Convolution4DExpanderTest, DontConvertIfNoTrivialDimensionAvailable) { std::string hlo_string = R"(HloModule convolution_4d_fp32 ENTRY convolution_computation { input = f32[2,10,2,10,5,20]{5,4,3,2,1,0} parameter(0) kernel = f32[20,2,2,2,4,15]{5,4,3,2,1,0} parameter(1) ROOT conv = f32[15,1,9,1,7,5]{5,4,3,2,1,0} convolution(input, kernel), dim_labels=0123bf_i0123o->f0123b, window={size=2x2x2x4} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); HloInstruction* root = computation->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kConvolution); EXPECT_EQ(root->window().dimensions_size(), 4); Convolution4DExpander expander_pass; ASSERT_FALSE(expander_pass.Run(module.get()).value()); } TEST_F(Convolution4DExpanderTest, DontConvertIfPaddingIsNonzero) { std::string hlo_string = R"(HloModule convolution_4d_fp32 ENTRY convolution_computation { input = f32[1,10,1,10,5,20]{5,4,3,2,1,0} parameter(0) kernel = f32[20,1,2,1,4,15]{5,4,3,2,1,0} parameter(1) ROOT conv = f32[15,1,9,1,7,5]{5,4,3,2,1,0} convolution(input, kernel), dim_labels=0123bf_i0123o->f0123b, window={size=1x2x1x4 stride=2x1x2x1 pad=1_0x0_0x0_1x0_0} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); HloInstruction* root = computation->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kConvolution); EXPECT_EQ(root->window().dimensions_size(), 4); Convolution4DExpander expander_pass; ASSERT_FALSE(expander_pass.Run(module.get()).value()); } } }
315
#ifndef QUICHE_OBLIVIOUS_HTTP_BUFFERS_OBLIVIOUS_HTTP_RESPONSE_H_ #define QUICHE_OBLIVIOUS_HTTP_BUFFERS_OBLIVIOUS_HTTP_RESPONSE_H_ #include <stddef.h> #include <string> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "quiche/common/quiche_random.h" #include "quiche/oblivious_http/buffers/oblivious_http_request.h" #include "quiche/oblivious_http/common/oblivious_http_header_key_config.h" namespace quiche { class QUICHE_EXPORT ObliviousHttpResponse { public: static absl::StatusOr<ObliviousHttpResponse> CreateClientObliviousResponse( std::string encrypted_data, ObliviousHttpRequest::Context& oblivious_http_request_context, absl::string_view resp_label = ObliviousHttpHeaderKeyConfig::kOhttpResponseLabel); static absl::StatusOr<ObliviousHttpResponse> CreateServerObliviousResponse( std::string plaintext_payload, ObliviousHttpRequest::Context& oblivious_http_request_context, absl::string_view resp_label = ObliviousHttpHeaderKeyConfig::kOhttpResponseLabel, QuicheRandom* quiche_random = nullptr); ObliviousHttpResponse(const ObliviousHttpResponse& other) = default; ObliviousHttpResponse& operator=(const ObliviousHttpResponse& other) = default; ObliviousHttpResponse(ObliviousHttpResponse&& other) = default; ObliviousHttpResponse& operator=(ObliviousHttpResponse&& other) = default; ~ObliviousHttpResponse() = default; const std::string& EncapsulateAndSerialize() const; const std::string& GetPlaintextData() const; std::string ConsumePlaintextData() && { return std::move(response_plaintext_); } private: struct CommonAeadParamsResult { const EVP_AEAD* evp_hpke_aead; const size_t aead_key_len; const size_t aead_nonce_len; const size_t secret_len; }; struct CommonOperationsResult { bssl::UniquePtr<EVP_AEAD_CTX> aead_ctx; const std::string aead_nonce; }; explicit ObliviousHttpResponse(std::string encrypted_data, std::string resp_plaintext); static absl::StatusOr<CommonAeadParamsResult> GetCommonAeadParams( ObliviousHttpRequest::Context& oblivious_http_request_context); static absl::StatusOr<CommonOperationsResult> CommonOperationsToEncapDecap( absl::string_view response_nonce, ObliviousHttpRequest::Context& oblivious_http_request_context, absl::string_view resp_label, const size_t aead_key_len, const size_t aead_nonce_len, const size_t secret_len); std::string encrypted_data_; std::string response_plaintext_; }; } #endif #include "quiche/oblivious_http/buffers/oblivious_http_response.h" #include <stddef.h> #include <stdint.h> #include <algorithm> #include <memory> #include <string> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "openssl/aead.h" #include "openssl/hkdf.h" #include "openssl/hpke.h" #include "quiche/common/platform/api/quiche_bug_tracker.h" #include "quiche/common/quiche_crypto_logging.h" #include "quiche/common/quiche_random.h" #include "quiche/oblivious_http/common/oblivious_http_header_key_config.h" namespace quiche { namespace { void random(QuicheRandom* quiche_random, char* dest, size_t len) { if (quiche_random == nullptr) { quiche_random = QuicheRandom::GetInstance(); } quiche_random->RandBytes(dest, len); } } ObliviousHttpResponse::ObliviousHttpResponse(std::string encrypted_data, std::string resp_plaintext) : encrypted_data_(std::move(encrypted_data)), response_plaintext_(std::move(resp_plaintext)) {} absl::StatusOr<ObliviousHttpResponse> ObliviousHttpResponse::CreateClientObliviousResponse( std::string encrypted_data, ObliviousHttpRequest::Context& oblivious_http_request_context, absl::string_view resp_label) { if (oblivious_http_request_context.hpke_context_ == nullptr) { return absl::FailedPreconditionError( "HPKE context wasn't initialized before proceeding with this Response " "Decapsulation on Client-side."); } size_t expected_key_len = EVP_HPKE_KEM_enc_len( EVP_HPKE_CTX_kem(oblivious_http_request_context.hpke_context_.get())); if (oblivious_http_request_context.encapsulated_key_.size() != expected_key_len) { return absl::InvalidArgumentError(absl::StrCat( "Invalid len for encapsulated_key arg. Expected:", expected_key_len, " Actual:", oblivious_http_request_context.encapsulated_key_.size())); } if (encrypted_data.empty()) { return absl::InvalidArgumentError("Empty encrypted_data input param."); } absl::StatusOr<CommonAeadParamsResult> aead_params_st = GetCommonAeadParams(oblivious_http_request_context); if (!aead_params_st.ok()) { return aead_params_st.status(); } size_t secret_len = aead_params_st.value().secret_len; if (encrypted_data.size() < secret_len) { return absl::InvalidArgumentError( absl::StrCat("Invalid input response. Failed to parse required minimum " "expected_len=", secret_len, " bytes.")); } absl::string_view response_nonce = absl::string_view(encrypted_data).substr(0, secret_len); absl::string_view encrypted_response = absl::string_view(encrypted_data).substr(secret_len); auto common_ops_st = CommonOperationsToEncapDecap( response_nonce, oblivious_http_request_context, resp_label, aead_params_st.value().aead_key_len, aead_params_st.value().aead_nonce_len, aead_params_st.value().secret_len); if (!common_ops_st.ok()) { return common_ops_st.status(); } std::string decrypted(encrypted_response.size(), '\0'); size_t decrypted_len; if (!EVP_AEAD_CTX_open( common_ops_st.value().aead_ctx.get(), reinterpret_cast<uint8_t*>(decrypted.data()), &decrypted_len, decrypted.size(), reinterpret_cast<const uint8_t*>( common_ops_st.value().aead_nonce.data()), aead_params_st.value().aead_nonce_len, reinterpret_cast<const uint8_t*>(encrypted_response.data()), encrypted_response.size(), nullptr, 0)) { return SslErrorAsStatus( "Failed to decrypt the response with derived AEAD key and nonce."); } decrypted.resize(decrypted_len); ObliviousHttpResponse oblivious_response(std::move(encrypted_data), std::move(decrypted)); return oblivious_response; } absl::StatusOr<ObliviousHttpResponse> ObliviousHttpResponse::CreateServerObliviousResponse( std::string plaintext_payload, ObliviousHttpRequest::Context& oblivious_http_request_context, absl::string_view response_label, QuicheRandom* quiche_random) { if (oblivious_http_request_context.hpke_context_ == nullptr) { return absl::FailedPreconditionError( "HPKE context wasn't initialized before proceeding with this Response " "Encapsulation on Server-side."); } size_t expected_key_len = EVP_HPKE_KEM_enc_len( EVP_HPKE_CTX_kem(oblivious_http_request_context.hpke_context_.get())); if (oblivious_http_request_context.encapsulated_key_.size() != expected_key_len) { return absl::InvalidArgumentError(absl::StrCat( "Invalid len for encapsulated_key arg. Expected:", expected_key_len, " Actual:", oblivious_http_request_context.encapsulated_key_.size())); } if (plaintext_payload.empty()) { return absl::InvalidArgumentError("Empty plaintext_payload input param."); } absl::StatusOr<CommonAeadParamsResult> aead_params_st = GetCommonAeadParams(oblivious_http_request_context); if (!aead_params_st.ok()) { return aead_params_st.status(); } const size_t nonce_size = aead_params_st->secret_len; const size_t max_encrypted_data_size = nonce_size + plaintext_payload.size() + EVP_AEAD_max_overhead(EVP_HPKE_AEAD_aead(EVP_HPKE_CTX_aead( oblivious_http_request_context.hpke_context_.get()))); std::string encrypted_data(max_encrypted_data_size, '\0'); random(quiche_random, encrypted_data.data(), nonce_size); absl::string_view response_nonce = absl::string_view(encrypted_data).substr(0, nonce_size); auto common_ops_st = CommonOperationsToEncapDecap( response_nonce, oblivious_http_request_context, response_label, aead_params_st.value().aead_key_len, aead_params_st.value().aead_nonce_len, aead_params_st.value().secret_len); if (!common_ops_st.ok()) { return common_ops_st.status(); } size_t ciphertext_len; if (!EVP_AEAD_CTX_seal( common_ops_st.value().aead_ctx.get(), reinterpret_cast<uint8_t*>(encrypted_data.data() + nonce_size), &ciphertext_len, encrypted_data.size() - nonce_size, reinterpret_cast<const uint8_t*>( common_ops_st.value().aead_nonce.data()), aead_params_st.value().aead_nonce_len, reinterpret_cast<const uint8_t*>(plaintext_payload.data()), plaintext_payload.size(), nullptr, 0)) { return SslErrorAsStatus( "Failed to encrypt the payload with derived AEAD key."); } encrypted_data.resize(nonce_size + ciphertext_len); if (nonce_size == 0 || ciphertext_len == 0) { return absl::InternalError(absl::StrCat( "ObliviousHttpResponse Object wasn't initialized with required fields.", (nonce_size == 0 ? "Generated nonce is empty." : ""), (ciphertext_len == 0 ? "Generated Encrypted payload is empty." : ""))); } ObliviousHttpResponse oblivious_response(std::move(encrypted_data), std::move(plaintext_payload)); return oblivious_response; } const std::string& ObliviousHttpResponse::EncapsulateAndSerialize() const { return encrypted_data_; } const std::string& ObliviousHttpResponse::GetPlaintextData() const { return response_plaintext_; } absl::StatusOr<ObliviousHttpResponse::CommonAeadParamsResult> ObliviousHttpResponse::GetCommonAeadParams( ObliviousHttpRequest::Context& oblivious_http_request_context) { const EVP_AEAD* evp_hpke_aead = EVP_HPKE_AEAD_aead( EVP_HPKE_CTX_aead(oblivious_http_request_context.hpke_context_.get())); if (evp_hpke_aead == nullptr) { return absl::FailedPreconditionError( "Key Configuration not supported by HPKE AEADs. Check your key " "config."); } const size_t aead_key_len = EVP_AEAD_key_length(evp_hpke_aead); const size_t aead_nonce_len = EVP_AEAD_nonce_length(evp_hpke_aead); const size_t secret_len = std::max(aead_key_len, aead_nonce_len); CommonAeadParamsResult result{evp_hpke_aead, aead_key_len, aead_nonce_len, secret_len}; return result; } absl::StatusOr<ObliviousHttpResponse::CommonOperationsResult> ObliviousHttpResponse::CommonOperationsToEncapDecap( absl::string_view response_nonce, ObliviousHttpRequest::Context& oblivious_http_request_context, absl::string_view resp_label, const size_t aead_key_len, const size_t aead_nonce_len, const size_t secret_len) { if (response_nonce.empty()) { return absl::InvalidArgumentError("Invalid input params."); } std::string secret(secret_len, '\0'); if (!EVP_HPKE_CTX_export(oblivious_http_request_context.hpke_context_.get(), reinterpret_cast<uint8_t*>(secret.data()), secret.size(), reinterpret_cast<const uint8_t*>(resp_label.data()), resp_label.size())) { return SslErrorAsStatus("Failed to export secret."); } std::string salt = absl::StrCat( oblivious_http_request_context.encapsulated_key_, response_nonce); std::string pseudorandom_key(EVP_MAX_MD_SIZE, '\0'); size_t prk_len; auto evp_md = EVP_HPKE_KDF_hkdf_md( EVP_HPKE_CTX_kdf(oblivious_http_request_context.hpke_context_.get())); if (evp_md == nullptr) { QUICHE_BUG(Invalid Key Configuration : Unsupported BoringSSL HPKE KDFs) << "Update KeyConfig to support only BoringSSL HKDFs."; return absl::FailedPreconditionError( "Key Configuration not supported by BoringSSL HPKE KDFs. Check your " "Key " "Config."); } if (!HKDF_extract( reinterpret_cast<uint8_t*>(pseudorandom_key.data()), &prk_len, evp_md, reinterpret_cast<const uint8_t*>(secret.data()), secret_len, reinterpret_cast<const uint8_t*>(salt.data()), salt.size())) { return SslErrorAsStatus( "Failed to derive pesudorandom key from salt and secret."); } pseudorandom_key.resize(prk_len); std::string aead_key(aead_key_len, '\0'); absl::string_view hkdf_info = ObliviousHttpHeaderKeyConfig::kKeyHkdfInfo; if (!HKDF_expand(reinterpret_cast<uint8_t*>(aead_key.data()), aead_key_len, evp_md, reinterpret_cast<const uint8_t*>(pseudorandom_key.data()), prk_len, reinterpret_cast<const uint8_t*>(hkdf_info.data()), hkdf_info.size())) { return SslErrorAsStatus( "Failed to expand AEAD key using pseudorandom key(prk)."); } std::string aead_nonce(aead_nonce_len, '\0'); hkdf_info = ObliviousHttpHeaderKeyConfig::kNonceHkdfInfo; if (!HKDF_expand(reinterpret_cast<uint8_t*>(aead_nonce.data()), aead_nonce_len, evp_md, reinterpret_cast<const uint8_t*>(pseudorandom_key.data()), prk_len, reinterpret_cast<const uint8_t*>(hkdf_info.data()), hkdf_info.size())) { return SslErrorAsStatus( "Failed to expand AEAD nonce using pseudorandom key(prk)."); } const EVP_AEAD* evp_hpke_aead = EVP_HPKE_AEAD_aead( EVP_HPKE_CTX_aead(oblivious_http_request_context.hpke_context_.get())); if (evp_hpke_aead == nullptr) { return absl::FailedPreconditionError( "Key Configuration not supported by HPKE AEADs. Check your key " "config."); } bssl::UniquePtr<EVP_AEAD_CTX> aead_ctx(EVP_AEAD_CTX_new( evp_hpke_aead, reinterpret_cast<const uint8_t*>(aead_key.data()), aead_key.size(), 0)); if (aead_ctx == nullptr) { return SslErrorAsStatus("Failed to initialize AEAD context."); } if (!EVP_AEAD_CTX_init(aead_ctx.get(), evp_hpke_aead, reinterpret_cast<const uint8_t*>(aead_key.data()), aead_key.size(), 0, nullptr)) { return SslErrorAsStatus( "Failed to initialize AEAD context with derived key."); } CommonOperationsResult result{std::move(aead_ctx), std::move(aead_nonce)}; return result; } }
#include "quiche/oblivious_http/buffers/oblivious_http_response.h" #include <stddef.h> #include <stdint.h> #include <string.h> #include <algorithm> #include <memory> #include <string> #include <utility> #include "absl/status/statusor.h" #include "absl/strings/escaping.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "openssl/hpke.h" #include "quiche/common/platform/api/quiche_test.h" #include "quiche/oblivious_http/buffers/oblivious_http_request.h" #include "quiche/oblivious_http/common/oblivious_http_header_key_config.h" namespace quiche { namespace { std::string GetHpkePrivateKey() { absl::string_view hpke_key_hex = "b77431ecfa8f4cfc30d6e467aafa06944dffe28cb9dd1409e33a3045f5adc8a1"; std::string hpke_key_bytes; EXPECT_TRUE(absl::HexStringToBytes(hpke_key_hex, &hpke_key_bytes)); return hpke_key_bytes; } std::string GetHpkePublicKey() { absl::string_view public_key = "6d21cfe09fbea5122f9ebc2eb2a69fcc4f06408cd54aac934f012e76fcdcef62"; std::string public_key_bytes; EXPECT_TRUE(absl::HexStringToBytes(public_key, &public_key_bytes)); return public_key_bytes; } std::string GetSeed() { absl::string_view seed = "52c4a758a802cd8b936eceea314432798d5baf2d7e9235dc084ab1b9cfa2f736"; std::string seed_bytes; EXPECT_TRUE(absl::HexStringToBytes(seed, &seed_bytes)); return seed_bytes; } std::string GetSeededEncapsulatedKey() { absl::string_view encapsulated_key = "37fda3567bdbd628e88668c3c8d7e97d1d1253b6d4ea6d44c150f741f1bf4431"; std::string encapsulated_key_bytes; EXPECT_TRUE( absl::HexStringToBytes(encapsulated_key, &encapsulated_key_bytes)); return encapsulated_key_bytes; } const ObliviousHttpHeaderKeyConfig GetOhttpKeyConfig(uint8_t key_id, uint16_t kem_id, uint16_t kdf_id, uint16_t aead_id) { auto ohttp_key_config = ObliviousHttpHeaderKeyConfig::Create(key_id, kem_id, kdf_id, aead_id); EXPECT_TRUE(ohttp_key_config.ok()); return ohttp_key_config.value(); } bssl::UniquePtr<EVP_HPKE_CTX> GetSeededClientContext(uint8_t key_id, uint16_t kem_id, uint16_t kdf_id, uint16_t aead_id) { bssl::UniquePtr<EVP_HPKE_CTX> client_ctx(EVP_HPKE_CTX_new()); std::string encapsulated_key(EVP_HPKE_MAX_ENC_LENGTH, '\0'); size_t enc_len; std::string info = GetOhttpKeyConfig(key_id, kem_id, kdf_id, aead_id) .SerializeRecipientContextInfo(); EXPECT_TRUE(EVP_HPKE_CTX_setup_sender_with_seed_for_testing( client_ctx.get(), reinterpret_cast<uint8_t *>(encapsulated_key.data()), &enc_len, encapsulated_key.size(), EVP_hpke_x25519_hkdf_sha256(), EVP_hpke_hkdf_sha256(), EVP_hpke_aes_256_gcm(), reinterpret_cast<const uint8_t *>(GetHpkePublicKey().data()), GetHpkePublicKey().size(), reinterpret_cast<const uint8_t *>(info.data()), info.size(), reinterpret_cast<const uint8_t *>(GetSeed().data()), GetSeed().size())); encapsulated_key.resize(enc_len); EXPECT_EQ(encapsulated_key, GetSeededEncapsulatedKey()); return client_ctx; } bssl::UniquePtr<EVP_HPKE_KEY> ConstructHpkeKey( absl::string_view hpke_key, const ObliviousHttpHeaderKeyConfig &ohttp_key_config) { bssl::UniquePtr<EVP_HPKE_KEY> bssl_hpke_key(EVP_HPKE_KEY_new()); EXPECT_NE(bssl_hpke_key, nullptr); EXPECT_TRUE(EVP_HPKE_KEY_init( bssl_hpke_key.get(), ohttp_key_config.GetHpkeKem(), reinterpret_cast<const uint8_t *>(hpke_key.data()), hpke_key.size())); return bssl_hpke_key; } ObliviousHttpRequest SetUpObliviousHttpContext(uint8_t key_id, uint16_t kem_id, uint16_t kdf_id, uint16_t aead_id, std::string plaintext) { auto ohttp_key_config = GetOhttpKeyConfig(key_id, kem_id, kdf_id, aead_id); auto client_request_encapsulate = ObliviousHttpRequest::CreateClientWithSeedForTesting( std::move(plaintext), GetHpkePublicKey(), ohttp_key_config, GetSeed()); EXPECT_TRUE(client_request_encapsulate.ok()); auto oblivious_request = client_request_encapsulate->EncapsulateAndSerialize(); auto server_request_decapsulate = ObliviousHttpRequest::CreateServerObliviousRequest( oblivious_request, *(ConstructHpkeKey(GetHpkePrivateKey(), ohttp_key_config)), ohttp_key_config); EXPECT_TRUE(server_request_decapsulate.ok()); return std::move(server_request_decapsulate.value()); } class TestQuicheRandom : public QuicheRandom { public: TestQuicheRandom(char seed) : seed_(seed) {} ~TestQuicheRandom() override {} void RandBytes(void *data, size_t len) override { memset(data, seed_, len); } uint64_t RandUint64() override { uint64_t random_int; memset(&random_int, seed_, sizeof(random_int)); return random_int; } void InsecureRandBytes(void *data, size_t len) override { return RandBytes(data, len); } uint64_t InsecureRandUint64() override { return RandUint64(); } private: char seed_; }; size_t GetResponseNonceLength(const EVP_HPKE_CTX &hpke_context) { EXPECT_NE(&hpke_context, nullptr); const EVP_AEAD *evp_hpke_aead = EVP_HPKE_AEAD_aead(EVP_HPKE_CTX_aead(&hpke_context)); EXPECT_NE(evp_hpke_aead, nullptr); const size_t aead_key_len = EVP_AEAD_key_length(evp_hpke_aead); const size_t aead_nonce_len = EVP_AEAD_nonce_length(evp_hpke_aead); const size_t secret_len = std::max(aead_key_len, aead_nonce_len); return secret_len; } TEST(ObliviousHttpResponse, TestDecapsulateReceivedResponse) { absl::string_view encrypted_response = "39d5b03c02c97e216df444e4681007105974d4df1585aae05e7b53f3ccdb55d51f711d48" "eeefbc1a555d6d928e35df33fd23c23846fa7b083e30692f7b"; std::string encrypted_response_bytes; ASSERT_TRUE( absl::HexStringToBytes(encrypted_response, &encrypted_response_bytes)); auto oblivious_context = SetUpObliviousHttpContext(4, EVP_HPKE_DHKEM_X25519_HKDF_SHA256, EVP_HPKE_HKDF_SHA256, EVP_HPKE_AES_256_GCM, "test") .ReleaseContext(); auto decapsulated = ObliviousHttpResponse::CreateClientObliviousResponse( std::move(encrypted_response_bytes), oblivious_context); EXPECT_TRUE(decapsulated.ok()); auto decrypted = decapsulated->GetPlaintextData(); EXPECT_EQ(decrypted, "test response"); } } TEST(ObliviousHttpResponse, EndToEndTestForResponse) { auto oblivious_ctx = ObliviousHttpRequest::Context( GetSeededClientContext(5, EVP_HPKE_DHKEM_X25519_HKDF_SHA256, EVP_HPKE_HKDF_SHA256, EVP_HPKE_AES_256_GCM), GetSeededEncapsulatedKey()); auto server_response_encapsulate = ObliviousHttpResponse::CreateServerObliviousResponse("test response", oblivious_ctx); EXPECT_TRUE(server_response_encapsulate.ok()); auto oblivious_response = server_response_encapsulate->EncapsulateAndSerialize(); auto client_response_encapsulate = ObliviousHttpResponse::CreateClientObliviousResponse(oblivious_response, oblivious_ctx); auto decrypted = client_response_encapsulate->GetPlaintextData(); EXPECT_EQ(decrypted, "test response"); } TEST(ObliviousHttpResponse, TestEncapsulateWithQuicheRandom) { auto random = TestQuicheRandom('z'); auto server_seeded_request = SetUpObliviousHttpContext( 6, EVP_HPKE_DHKEM_X25519_HKDF_SHA256, EVP_HPKE_HKDF_SHA256, EVP_HPKE_AES_256_GCM, "test"); auto server_request_context = std::move(server_seeded_request).ReleaseContext(); auto server_response_encapsulate = ObliviousHttpResponse::CreateServerObliviousResponse( "test response", server_request_context, ObliviousHttpHeaderKeyConfig::kOhttpResponseLabel, &random); EXPECT_TRUE(server_response_encapsulate.ok()); std::string response_nonce = server_response_encapsulate->EncapsulateAndSerialize().substr( 0, GetResponseNonceLength(*(server_request_context.hpke_context_))); EXPECT_EQ(response_nonce, std::string( GetResponseNonceLength(*(server_request_context.hpke_context_)), 'z')); absl::string_view expected_encrypted_response = "2a3271ac4e6a501f51d0264d3dd7d0bc8a06973b58e89c26d6dac06144"; std::string expected_encrypted_response_bytes; ASSERT_TRUE(absl::HexStringToBytes(expected_encrypted_response, &expected_encrypted_response_bytes)); EXPECT_EQ( server_response_encapsulate->EncapsulateAndSerialize().substr( GetResponseNonceLength(*(server_request_context.hpke_context_))), expected_encrypted_response_bytes); } }
316
#ifndef QUICHE_QUIC_CORE_QPACK_QPACK_RECEIVE_STREAM_H_ #define QUICHE_QUIC_CORE_QPACK_QPACK_RECEIVE_STREAM_H_ #include "quiche/quic/core/qpack/qpack_stream_receiver.h" #include "quiche/quic/core/quic_stream.h" #include "quiche/quic/platform/api/quic_export.h" namespace quic { class QuicSession; class QUICHE_EXPORT QpackReceiveStream : public QuicStream { public: QpackReceiveStream(PendingStream* pending, QuicSession* session, QpackStreamReceiver* receiver); QpackReceiveStream(const QpackReceiveStream&) = delete; QpackReceiveStream& operator=(const QpackReceiveStream&) = delete; ~QpackReceiveStream() override = default; void OnStreamReset(const QuicRstStreamFrame& frame) override; void OnDataAvailable() override; QuicStreamOffset NumBytesConsumed() const { return sequencer()->NumBytesConsumed(); } private: QpackStreamReceiver* receiver_; }; } #endif #include "quiche/quic/core/qpack/qpack_receive_stream.h" #include "absl/strings/string_view.h" #include "quiche/quic/core/quic_session.h" namespace quic { QpackReceiveStream::QpackReceiveStream(PendingStream* pending, QuicSession* session, QpackStreamReceiver* receiver) : QuicStream(pending, session, true), receiver_(receiver) {} void QpackReceiveStream::OnStreamReset(const QuicRstStreamFrame& ) { stream_delegate()->OnStreamError( QUIC_HTTP_CLOSED_CRITICAL_STREAM, "RESET_STREAM received for QPACK receive stream"); } void QpackReceiveStream::OnDataAvailable() { iovec iov; while (!reading_stopped() && sequencer()->GetReadableRegion(&iov)) { QUICHE_DCHECK(!sequencer()->IsClosed()); receiver_->Decode(absl::string_view( reinterpret_cast<const char*>(iov.iov_base), iov.iov_len)); sequencer()->MarkConsumed(iov.iov_len); } } }
#include "quiche/quic/core/qpack/qpack_receive_stream.h" #include <vector> #include "absl/strings/string_view.h" #include "quiche/quic/core/quic_utils.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/quic_spdy_session_peer.h" #include "quiche/quic/test_tools/quic_test_utils.h" namespace quic { namespace test { namespace { using ::testing::_; using ::testing::AnyNumber; using ::testing::StrictMock; struct TestParams { TestParams(const ParsedQuicVersion& version, Perspective perspective) : version(version), perspective(perspective) { QUIC_LOG(INFO) << "TestParams: version: " << ParsedQuicVersionToString(version) << ", perspective: " << perspective; } TestParams(const TestParams& other) : version(other.version), perspective(other.perspective) {} ParsedQuicVersion version; Perspective perspective; }; std::vector<TestParams> GetTestParams() { std::vector<TestParams> params; ParsedQuicVersionVector all_supported_versions = AllSupportedVersions(); for (const auto& version : AllSupportedVersions()) { if (!VersionUsesHttp3(version.transport_version)) { continue; } for (Perspective p : {Perspective::IS_SERVER, Perspective::IS_CLIENT}) { params.emplace_back(version, p); } } return params; } class QpackReceiveStreamTest : public QuicTestWithParam<TestParams> { public: QpackReceiveStreamTest() : connection_(new StrictMock<MockQuicConnection>( &helper_, &alarm_factory_, perspective(), SupportedVersions(GetParam().version))), session_(connection_) { EXPECT_CALL(session_, OnCongestionWindowChange(_)).Times(AnyNumber()); session_.Initialize(); EXPECT_CALL( static_cast<const MockQuicCryptoStream&>(*session_.GetCryptoStream()), encryption_established()) .WillRepeatedly(testing::Return(true)); QuicStreamId id = perspective() == Perspective::IS_SERVER ? GetNthClientInitiatedUnidirectionalStreamId( session_.transport_version(), 3) : GetNthServerInitiatedUnidirectionalStreamId( session_.transport_version(), 3); char type[] = {0x03}; QuicStreamFrame data1(id, false, 0, absl::string_view(type, 1)); session_.OnStreamFrame(data1); qpack_receive_stream_ = QuicSpdySessionPeer::GetQpackDecoderReceiveStream(&session_); } Perspective perspective() const { return GetParam().perspective; } MockQuicConnectionHelper helper_; MockAlarmFactory alarm_factory_; StrictMock<MockQuicConnection>* connection_; StrictMock<MockQuicSpdySession> session_; QpackReceiveStream* qpack_receive_stream_; }; INSTANTIATE_TEST_SUITE_P(Tests, QpackReceiveStreamTest, ::testing::ValuesIn(GetTestParams())); TEST_P(QpackReceiveStreamTest, ResetQpackReceiveStream) { EXPECT_TRUE(qpack_receive_stream_->is_static()); QuicRstStreamFrame rst_frame(kInvalidControlFrameId, qpack_receive_stream_->id(), QUIC_STREAM_CANCELLED, 1234); EXPECT_CALL(*connection_, CloseConnection(QUIC_HTTP_CLOSED_CRITICAL_STREAM, _, _)); qpack_receive_stream_->OnStreamReset(rst_frame); } } } }
317
#ifndef ABSL_BASE_INTERNAL_POISON_H_ #define ABSL_BASE_INTERNAL_POISON_H_ #include <atomic> #include "absl/base/config.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace base_internal { extern std::atomic<void*> poison_data; inline void* get_poisoned_pointer() { return poison_data.load(std::memory_order_relaxed); } } ABSL_NAMESPACE_END } #endif #include "absl/base/internal/poison.h" #include <atomic> #include <cstdint> #include <cstdlib> #include "absl/base/attributes.h" #include "absl/base/config.h" #if defined(ABSL_HAVE_ADDRESS_SANITIZER) #include <sanitizer/asan_interface.h> #elif defined(ABSL_HAVE_MEMORY_SANITIZER) #include <sanitizer/msan_interface.h> #elif defined(ABSL_HAVE_MMAP) && !defined(SGX_SIM) #include <sys/mman.h> #elif defined(_MSC_VER) #include <windows.h> #endif namespace absl { ABSL_NAMESPACE_BEGIN namespace base_internal { namespace { constexpr size_t kPageSize = 1 << 12; alignas(kPageSize) static char poison_page[kPageSize]; } std::atomic<void*> poison_data = {&poison_page}; namespace { #if defined(ABSL_HAVE_ADDRESS_SANITIZER) void PoisonBlock(void* data) { ASAN_POISON_MEMORY_REGION(data, kPageSize); } #elif defined(ABSL_HAVE_MEMORY_SANITIZER) void PoisonBlock(void* data) { __msan_poison(data, kPageSize); } #elif defined(ABSL_HAVE_MMAP) void PoisonBlock(void* data) { mprotect(data, kPageSize, PROT_NONE); } #elif defined(_MSC_VER) void PoisonBlock(void* data) { DWORD old_mode = 0; VirtualProtect(data, kPageSize, PAGE_NOACCESS, &old_mode); } #else void PoisonBlock(void* data) { constexpr uint64_t kBadPtr = 0xBAD0BAD0BAD0BAD0; poison_data = reinterpret_cast<void*>(static_cast<uintptr_t>(kBadPtr)); } #endif void* InitializePoisonedPointer() { PoisonBlock(&poison_page); return &poison_page; } } ABSL_ATTRIBUTE_UNUSED void* force_initialize = InitializePoisonedPointer(); } ABSL_NAMESPACE_END }
#include "absl/base/internal/poison.h" #include <iostream> #include "gtest/gtest.h" #include "absl/base/config.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace base_internal { namespace { TEST(PoisonTest, CrashesOnDereference) { #ifdef __ANDROID__ GTEST_SKIP() << "On Android, poisoned pointer dereference times out instead " "of crashing."; #endif void* poisoned_ptr = get_poisoned_pointer(); EXPECT_DEATH_IF_SUPPORTED(std::cout << *static_cast<int*>(poisoned_ptr), ""); } } } ABSL_NAMESPACE_END }
318
#ifndef I18N_ADDRESSINPUT_UTIL_MD5_H_ #define I18N_ADDRESSINPUT_UTIL_MD5_H_ #include <cstddef> #include <cstdint> #include <string> namespace i18n { namespace addressinput { struct MD5Digest { uint8_t a[16]; }; typedef char MD5Context[88]; void MD5Init(MD5Context* context); void MD5Update(MD5Context* context, const std::string& data); void MD5Final(MD5Digest* digest, MD5Context* context); void MD5IntermediateFinal(MD5Digest* digest, const MD5Context* context); std::string MD5DigestToBase16(const MD5Digest& digest); void MD5Sum(const void* data, size_t length, MD5Digest* digest); std::string MD5String(const std::string& str); } } #endif #include "md5.h" #include <cstddef> #include <string> #include <string.h> namespace { struct Context { uint32_t buf[4]; uint32_t bits[2]; uint8_t in[64]; }; void byteReverse(uint8_t* buf, unsigned longs) { do { uint32_t temp = static_cast<uint32_t>( static_cast<unsigned>(buf[3]) << 8 | buf[2]) << 16 | (static_cast<unsigned>(buf[1]) << 8 | buf[0]); *reinterpret_cast<uint32_t*>(buf) = temp; buf += 4; } while (--longs); } #define F1(x, y, z) (z ^ (x & (y ^ z))) #define F2(x, y, z) F1(z, x, y) #define F3(x, y, z) (x ^ y ^ z) #define F4(x, y, z) (y ^ (x | ~z)) #define MD5STEP(f, w, x, y, z, data, s) \ (w += f(x, y, z) + data, w = w << s | w >> (32 - s), w += x) void MD5Transform(uint32_t buf[4], const uint32_t in[16]) { uint32_t a, b, c, d; a = buf[0]; b = buf[1]; c = buf[2]; d = buf[3]; MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); buf[0] += a; buf[1] += b; buf[2] += c; buf[3] += d; } } namespace i18n { namespace addressinput { void MD5Init(MD5Context* context) { struct Context* ctx = reinterpret_cast<struct Context*>(context); ctx->buf[0] = 0x67452301; ctx->buf[1] = 0xefcdab89; ctx->buf[2] = 0x98badcfe; ctx->buf[3] = 0x10325476; ctx->bits[0] = 0; ctx->bits[1] = 0; } void MD5Update(MD5Context* context, const std::string& data) { struct Context* ctx = reinterpret_cast<struct Context*>(context); const uint8_t* buf = reinterpret_cast<const uint8_t*>(data.data()); size_t len = data.size(); uint32_t t = ctx->bits[0]; if ((ctx->bits[0] = t + (static_cast<uint32_t>(len) << 3)) < t) ctx->bits[1]++; ctx->bits[1] += static_cast<uint32_t>(len >> 29); t = (t >> 3) & 0x3f; if (t) { uint8_t* p = static_cast<uint8_t*>(ctx->in + t); t = 64 - t; if (len < t) { memcpy(p, buf, len); return; } memcpy(p, buf, t); byteReverse(ctx->in, 16); MD5Transform(ctx->buf, reinterpret_cast<uint32_t*>(ctx->in)); buf += t; len -= t; } while (len >= 64) { memcpy(ctx->in, buf, 64); byteReverse(ctx->in, 16); MD5Transform(ctx->buf, reinterpret_cast<uint32_t*>(ctx->in)); buf += 64; len -= 64; } memcpy(ctx->in, buf, len); } void MD5Final(MD5Digest* digest, MD5Context* context) { struct Context* ctx = reinterpret_cast<struct Context*>(context); unsigned count; uint8_t* p; count = (ctx->bits[0] >> 3) & 0x3F; p = ctx->in + count; *p++ = 0x80; count = 64 - 1 - count; if (count < 8) { memset(p, 0, count); byteReverse(ctx->in, 16); MD5Transform(ctx->buf, reinterpret_cast<uint32_t*>(ctx->in)); memset(ctx->in, 0, 56); } else { memset(p, 0, count - 8); } byteReverse(ctx->in, 14); memcpy(&ctx->in[14 * sizeof(ctx->bits[0])], &ctx->bits[0], sizeof(ctx->bits[0])); memcpy(&ctx->in[15 * sizeof(ctx->bits[1])], &ctx->bits[1], sizeof(ctx->bits[1])); MD5Transform(ctx->buf, reinterpret_cast<uint32_t*>(ctx->in)); byteReverse(reinterpret_cast<uint8_t*>(ctx->buf), 4); memcpy(digest->a, ctx->buf, 16); memset(ctx, 0, sizeof(*ctx)); } void MD5IntermediateFinal(MD5Digest* digest, const MD5Context* context) { MD5Context context_copy; memcpy(&context_copy, context, sizeof(context_copy)); MD5Final(digest, &context_copy); } std::string MD5DigestToBase16(const MD5Digest& digest) { static char const zEncode[] = "0123456789abcdef"; std::string ret; ret.resize(32); for (int i = 0, j = 0; i < 16; i++, j += 2) { uint8_t a = digest.a[i]; ret[j] = zEncode[(a >> 4) & 0xf]; ret[j + 1] = zEncode[a & 0xf]; } return ret; } void MD5Sum(const void* data, size_t length, MD5Digest* digest) { MD5Context ctx; MD5Init(&ctx); MD5Update(&ctx, std::string(reinterpret_cast<const char*>(data), length)); MD5Final(digest, &ctx); } std::string MD5String(const std::string& str) { MD5Digest digest; MD5Sum(str.data(), str.length(), &digest); return MD5DigestToBase16(digest); } } }
#include "util/md5.h" #include <cstring> #include <memory> #include <string> #include <gtest/gtest.h> namespace { using i18n::addressinput::MD5Context; using i18n::addressinput::MD5Digest; using i18n::addressinput::MD5Init; using i18n::addressinput::MD5String; using i18n::addressinput::MD5Update; TEST(MD5, DigestToBase16) { MD5Digest digest; int data[] = { 0xd4, 0x1d, 0x8c, 0xd9, 0x8f, 0x00, 0xb2, 0x04, 0xe9, 0x80, 0x09, 0x98, 0xec, 0xf8, 0x42, 0x7e }; for (int i = 0; i < 16; ++i) digest.a[i] = data[i] & 0xff; std::string actual = MD5DigestToBase16(digest); std::string expected = "d41d8cd98f00b204e9800998ecf8427e"; EXPECT_EQ(expected, actual); } TEST(MD5, MD5SumEmtpyData) { MD5Digest digest; const char data[] = ""; MD5Sum(data, strlen(data), &digest); int expected[] = { 0xd4, 0x1d, 0x8c, 0xd9, 0x8f, 0x00, 0xb2, 0x04, 0xe9, 0x80, 0x09, 0x98, 0xec, 0xf8, 0x42, 0x7e }; for (int i = 0; i < 16; ++i) EXPECT_EQ(expected[i], digest.a[i] & 0xFF); } TEST(MD5, MD5SumOneByteData) { MD5Digest digest; const char data[] = "a"; MD5Sum(data, strlen(data), &digest); int expected[] = { 0x0c, 0xc1, 0x75, 0xb9, 0xc0, 0xf1, 0xb6, 0xa8, 0x31, 0xc3, 0x99, 0xe2, 0x69, 0x77, 0x26, 0x61 }; for (int i = 0; i < 16; ++i) EXPECT_EQ(expected[i], digest.a[i] & 0xFF); } TEST(MD5, MD5SumLongData) { const int length = 10 * 1024 * 1024 + 1; std::unique_ptr<char[]> data(new char[length]); for (int i = 0; i < length; ++i) data[i] = i & 0xFF; MD5Digest digest; MD5Sum(data.get(), length, &digest); int expected[] = { 0x90, 0xbd, 0x6a, 0xd9, 0x0a, 0xce, 0xf5, 0xad, 0xaa, 0x92, 0x20, 0x3e, 0x21, 0xc7, 0xa1, 0x3e }; for (int i = 0; i < 16; ++i) EXPECT_EQ(expected[i], digest.a[i] & 0xFF); } TEST(MD5, ContextWithEmptyData) { MD5Context ctx; MD5Init(&ctx); MD5Digest digest; MD5Final(&digest, &ctx); int expected[] = { 0xd4, 0x1d, 0x8c, 0xd9, 0x8f, 0x00, 0xb2, 0x04, 0xe9, 0x80, 0x09, 0x98, 0xec, 0xf8, 0x42, 0x7e }; for (int i = 0; i < 16; ++i) EXPECT_EQ(expected[i], digest.a[i] & 0xFF); } TEST(MD5, ContextWithLongData) { MD5Context ctx; MD5Init(&ctx); const int length = 10 * 1024 * 1024 + 1; std::unique_ptr<char[]> data(new char[length]); for (int i = 0; i < length; ++i) data[i] = i & 0xFF; int total = 0; while (total < length) { int len = 4097; if (len > length - total) len = length - total; MD5Update(&ctx, std::string(reinterpret_cast<char*>(data.get() + total), len)); total += len; } EXPECT_EQ(length, total); MD5Digest digest; MD5Final(&digest, &ctx); int expected[] = { 0x90, 0xbd, 0x6a, 0xd9, 0x0a, 0xce, 0xf5, 0xad, 0xaa, 0x92, 0x20, 0x3e, 0x21, 0xc7, 0xa1, 0x3e }; for (int i = 0; i < 16; ++i) EXPECT_EQ(expected[i], digest.a[i] & 0xFF); } TEST(MD5, MD5StringTestSuite1) { std::string actual = MD5String(""); std::string expected = "d41d8cd98f00b204e9800998ecf8427e"; EXPECT_EQ(expected, actual); } TEST(MD5, MD5StringTestSuite2) { std::string actual = MD5String("a"); std::string expected = "0cc175b9c0f1b6a831c399e269772661"; EXPECT_EQ(expected, actual); } TEST(MD5, MD5StringTestSuite3) { std::string actual = MD5String("abc"); std::string expected = "900150983cd24fb0d6963f7d28e17f72"; EXPECT_EQ(expected, actual); } TEST(MD5, MD5StringTestSuite4) { std::string actual = MD5String("message digest"); std::string expected = "f96b697d7cb7938d525a2f31aaf161d0"; EXPECT_EQ(expected, actual); } TEST(MD5, MD5StringTestSuite5) { std::string actual = MD5String("abcdefghijklmnopqrstuvwxyz"); std::string expected = "c3fcd3d76192e4007dfb496cca67e13b"; EXPECT_EQ(expected, actual); } TEST(MD5, MD5StringTestSuite6) { std::string actual = MD5String("ABCDEFGHIJKLMNOPQRSTUVWXYZ" "abcdefghijklmnopqrstuvwxyz" "0123456789"); std::string expected = "d174ab98d277d9f5a5611c2c9f419d9f"; EXPECT_EQ(expected, actual); } TEST(MD5, MD5StringTestSuite7) { std::string actual = MD5String("12345678901234567890" "12345678901234567890" "12345678901234567890" "12345678901234567890"); std::string expected = "57edf4a22be3c955ac49da2e2107b67a"; EXPECT_EQ(expected, actual); } TEST(MD5, ContextWithStringData) { MD5Context ctx; MD5Init(&ctx); MD5Update(&ctx, "abc"); MD5Digest digest; MD5Final(&digest, &ctx); std::string actual = MD5DigestToBase16(digest); std::string expected = "900150983cd24fb0d6963f7d28e17f72"; EXPECT_EQ(expected, actual); } TEST(MD5, IntermediateFinal) { MD5Context check_header_context; MD5Init(&check_header_context); MD5Context check_full_context; MD5Init(&check_full_context); MD5Context context; MD5Init(&context); static const char kHeader[] = "header data"; static const char kBody[] = "payload data"; MD5Update(&context, kHeader); MD5Update(&check_header_context, kHeader); MD5Update(&check_full_context, kHeader); MD5Digest check_header_digest; MD5Final(&check_header_digest, &check_header_context); MD5Digest header_digest; MD5IntermediateFinal(&header_digest, &context); MD5Update(&context, kBody); MD5Update(&check_full_context, kBody); MD5Digest check_full_digest; MD5Final(&check_full_digest, &check_full_context); MD5Digest digest; MD5Final(&digest, &context); EXPECT_TRUE(!memcmp(&header_digest, &check_header_digest, sizeof(header_digest))); EXPECT_TRUE(!memcmp(&digest, &check_full_digest, sizeof(digest))); EXPECT_TRUE(memcmp(&digest, &header_digest, sizeof(digest))); } }
319
#ifndef AROLLA_EXPR_OPERATOR_LOADER_DUMMY_OPERATOR_H_ #define AROLLA_EXPR_OPERATOR_LOADER_DUMMY_OPERATOR_H_ #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "arolla/expr/basic_expr_operator.h" #include "arolla/expr/expr_attributes.h" #include "arolla/expr/expr_operator_signature.h" #include "arolla/qtype/qtype.h" namespace arolla::operator_loader { class DummyOperator final : public expr::ExprOperatorWithFixedSignature { public: DummyOperator(absl::string_view name, expr::ExprOperatorSignature signature, absl::string_view doc, QTypePtr result_qtype); QTypePtr GetOutputQType() const { return result_qtype_; } absl::string_view py_qvalue_specialization_key() const override; absl::StatusOr<expr::ExprAttributes> InferAttributes( absl::Span<const expr::ExprAttributes> inputs) const final; private: QTypePtr result_qtype_; }; } #endif #include "arolla/expr/operator_loader/dummy_operator.h" #include <utility> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "arolla/expr/basic_expr_operator.h" #include "arolla/expr/expr_attributes.h" #include "arolla/expr/expr_operator.h" #include "arolla/expr/expr_operator_signature.h" #include "arolla/qtype/qtype.h" #include "arolla/util/fingerprint.h" #include "arolla/util/status_macros_backport.h" namespace arolla::operator_loader { using ::arolla::expr::ExprAttributes; using ::arolla::expr::ExprOperatorPtr; using ::arolla::expr::ExprOperatorSignature; DummyOperator::DummyOperator(absl::string_view name, ExprOperatorSignature signature, absl::string_view doc, QTypePtr result_qtype) : ExprOperatorWithFixedSignature( name, signature, doc, FingerprintHasher("::arolla::operator_loader::DummyOperator") .Combine(name, signature, doc, result_qtype) .Finish()), result_qtype_(std::move(result_qtype)) {} absl::string_view DummyOperator::py_qvalue_specialization_key() const { return "::arolla::operator_loader::DummyOperator"; } absl::StatusOr<ExprAttributes> DummyOperator::InferAttributes( absl::Span<const ExprAttributes> inputs) const { RETURN_IF_ERROR(ValidateOpInputsCount(inputs)); return ExprAttributes(result_qtype_); } }
#include "arolla/expr/operator_loader/dummy_operator.h" #include <cstdint> #include <memory> #include <utility> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "arolla/array/qtype/types.h" #include "arolla/expr/eval/invoke.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_operator.h" #include "arolla/expr/expr_operator_signature.h" #include "arolla/memory/optional_value.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/util/init_arolla.h" #include "arolla/util/testing/status_matchers_backport.h" #include "arolla/util/unit.h" namespace arolla::operator_loader { namespace { using ::arolla::expr::CallOp; using ::arolla::expr::ExprOperatorPtr; using ::arolla::expr::ExprOperatorSignature; using ::arolla::expr::Leaf; using ::arolla::expr::Literal; using ::arolla::testing::IsOkAndHolds; using ::arolla::testing::StatusIs; using ::testing::AllOf; using ::testing::HasSubstr; class DummyOperatorTest : public ::testing::Test { protected: void SetUp() override { ASSERT_OK(InitArolla()); } }; TEST_F(DummyOperatorTest, GetName) { DummyOperator op("my_dummy_op", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", std::move(GetArrayQType<int32_t>())); ASSERT_THAT(op.display_name(), "my_dummy_op"); } TEST_F(DummyOperatorTest, GetDoc) { DummyOperator op("my_dummy_op", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", std::move(GetArrayQType<int32_t>())); ASSERT_THAT(op.doc(), "dummy op docstring"); ASSERT_THAT(op.GetDoc(), IsOkAndHolds("dummy op docstring")); } TEST_F(DummyOperatorTest, GetOutputQType) { { DummyOperator op("my_dummy_op", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", std::move(GetArrayQType<int32_t>())); EXPECT_EQ(op.GetOutputQType(), GetArrayQType<int32_t>()); } { DummyOperator op("my_dummy_op", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", std::move(GetQType<OptionalValue<float>>())); EXPECT_EQ(op.GetOutputQType(), GetQType<OptionalValue<float>>()); } } TEST_F(DummyOperatorTest, QTypeInference) { { auto op = std::make_shared<DummyOperator>( "my_dummy_op", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", std::move(GetArrayQType<int32_t>())); ASSERT_OK_AND_ASSIGN(auto expr, CallOp(op, {Literal(1.5f), Literal(kUnit)})); EXPECT_EQ(expr->qtype(), GetArrayQType<int32_t>()); } { auto op = std::make_shared<DummyOperator>( "my_dummy_op", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", std::move(GetArrayQType<int32_t>())); ASSERT_OK_AND_ASSIGN(auto expr, CallOp(op, {Leaf("x"), Leaf("y")})); EXPECT_EQ(expr->qtype(), GetArrayQType<int32_t>()); } } TEST_F(DummyOperatorTest, InferAttributesIncorrectArity) { DummyOperator op("my_dummy_op", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", std::move(GetArrayQType<int32_t>())); EXPECT_THAT(op.InferAttributes({}), StatusIs(absl::StatusCode::kInvalidArgument, AllOf(HasSubstr("incorrect number of dependencies"), HasSubstr("expected 2 but got 0")))); } TEST_F(DummyOperatorTest, Eval) { auto op = std::make_shared<DummyOperator>( "my_dummy_op", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", std::move(GetArrayQType<int32_t>())); ASSERT_OK_AND_ASSIGN( auto expr, CallOp(op, {Literal(1.5f), Literal(OptionalValue<Unit>())})); EXPECT_THAT( Invoke(expr, {}), StatusIs( absl::StatusCode::kInvalidArgument, HasSubstr("my_dummy_op is not a builtin or backend ExprOperator"))); } TEST_F(DummyOperatorTest, Fingerprint) { DummyOperator op1("my_dummy_op", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", std::move(GetQType<float>())); { DummyOperator op2("my_dummy_op", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", std::move(GetQType<float>())); EXPECT_EQ(op1.fingerprint(), op2.fingerprint()); } { DummyOperator op2("another_name", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", std::move(GetQType<float>())); EXPECT_NE(op1.fingerprint(), op2.fingerprint()); } { DummyOperator op2("my_dummy_op", ExprOperatorSignature{{"x"}}, "dummy op docstring", std::move(GetQType<float>())); EXPECT_NE(op1.fingerprint(), op2.fingerprint()); } { DummyOperator op2("my_dummy_op", ExprOperatorSignature{{"x"}, {"y"}}, "another docstring", std::move(GetQType<float>())); EXPECT_NE(op1.fingerprint(), op2.fingerprint()); } { DummyOperator op2("my_dummy_op", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", std::move(GetQType<int32_t>())); EXPECT_NE(op1.fingerprint(), op2.fingerprint()); } } } }
320
#ifndef TENSORSTORE_DRIVER_ZARR3_CODEC_BYTES_H_ #define TENSORSTORE_DRIVER_ZARR3_CODEC_BYTES_H_ #include <optional> #include "absl/status/status.h" #include "tensorstore/driver/zarr3/codec/codec.h" #include "tensorstore/driver/zarr3/codec/codec_spec.h" #include "tensorstore/index.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/util/endian.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" namespace tensorstore { namespace internal_zarr3 { class BytesCodecSpec : public ZarrArrayToBytesCodecSpec { public: struct Options { std::optional<endian> endianness; bool constraints = false; }; BytesCodecSpec() = default; explicit BytesCodecSpec(const Options& options) : options(options) {} absl::Status MergeFrom(const ZarrCodecSpec& other, bool strict) override; ZarrCodecSpec::Ptr Clone() const override; absl::Status GetDecodedChunkLayout( const ArrayDataTypeAndShapeInfo& array_info, ArrayCodecChunkLayoutInfo& decoded) const override; bool SupportsInnerOrder( const ArrayCodecResolveParameters& decoded, span<DimensionIndex> preferred_inner_order) const override; Result<ZarrArrayToBytesCodec::Ptr> Resolve( ArrayCodecResolveParameters&& decoded, BytesCodecResolveParameters& encoded, ZarrArrayToBytesCodecSpec::Ptr* resolved_spec) const override; Options options; }; internal::IntrusivePtr<const BytesCodecSpec> DefaultBytesCodec(); } } #endif #include "tensorstore/driver/zarr3/codec/bytes.h" #include <assert.h> #include <stdint.h> #include <optional> #include <string_view> #include <utility> #include "absl/status/status.h" #include "riegeli/bytes/reader.h" #include "riegeli/bytes/writer.h" #include "tensorstore/array.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/data_type.h" #include "tensorstore/driver/zarr3/codec/codec.h" #include "tensorstore/driver/zarr3/codec/codec_spec.h" #include "tensorstore/driver/zarr3/codec/registry.h" #include "tensorstore/index.h" #include "tensorstore/index_space/dimension_permutation.h" #include "tensorstore/internal/global_initializer.h" #include "tensorstore/internal/integer_overflow.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/json_binding/enum.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/json_binding/std_optional.h" #include "tensorstore/internal/riegeli/array_endian_codec.h" #include "tensorstore/internal/unaligned_data_type_functions.h" #include "tensorstore/rank.h" #include "tensorstore/util/endian.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_zarr3 { namespace { absl::Status InvalidDataTypeError(DataType dtype) { return absl::InvalidArgumentError(tensorstore::StrCat( "Data type ", dtype, " not compatible with \"bytes\" codec")); } class BytesCodec : public ZarrArrayToBytesCodec { public: explicit BytesCodec(DataType decoded_dtype, endian endianness) : dtype_(decoded_dtype), endianness_(endianness) {} Result<PreparedState::Ptr> Prepare( span<const Index> decoded_shape) const final; private: DataType dtype_; endian endianness_; }; } absl::Status BytesCodecSpec::GetDecodedChunkLayout( const ArrayDataTypeAndShapeInfo& array_info, ArrayCodecChunkLayoutInfo& decoded) const { if (array_info.dtype.valid() && !internal::IsTrivialDataType(array_info.dtype)) { return InvalidDataTypeError(array_info.dtype); } const DimensionIndex rank = array_info.rank; if (rank != dynamic_rank) { auto& inner_order = decoded.inner_order.emplace(); for (DimensionIndex i = 0; i < rank; ++i) { inner_order[i] = i; } } if (array_info.shape) { auto& shape = *array_info.shape; auto& read_chunk_shape = decoded.read_chunk_shape.emplace(); for (DimensionIndex i = 0; i < rank; ++i) { read_chunk_shape[i] = shape[i]; } } return absl::OkStatus(); } bool BytesCodecSpec::SupportsInnerOrder( const ArrayCodecResolveParameters& decoded, span<DimensionIndex> preferred_inner_order) const { if (!decoded.inner_order) return true; if (PermutationMatchesOrder(span(decoded.inner_order->data(), decoded.rank), c_order)) { return true; } SetPermutation(c_order, preferred_inner_order); return false; } Result<ZarrArrayToBytesCodec::Ptr> BytesCodecSpec::Resolve( ArrayCodecResolveParameters&& decoded, BytesCodecResolveParameters& encoded, ZarrArrayToBytesCodecSpec::Ptr* resolved_spec) const { assert(decoded.dtype.valid()); if (!internal::IsTrivialDataType(decoded.dtype)) { return InvalidDataTypeError(decoded.dtype); } const bool is_endian_invariant = internal::IsEndianInvariantDataType(decoded.dtype); if (!options.constraints && !is_endian_invariant && !options.endianness) { return absl::InvalidArgumentError( tensorstore::StrCat("\"bytes\" codec requires that \"endian\" option " "is specified for data type ", decoded.dtype)); } encoded.item_bits = decoded.dtype.size() * 8; DimensionIndex rank = decoded.rank; if (decoded.codec_chunk_shape) { return absl::InvalidArgumentError(tensorstore::StrCat( "\"bytes\" codec does not support codec_chunk_shape (", span<const Index>(decoded.codec_chunk_shape->data(), rank), " was specified")); } if (decoded.inner_order) { auto& decoded_inner_order = *decoded.inner_order; for (DimensionIndex i = 0; i < rank; ++i) { if (decoded_inner_order[i] != i) { return absl::InvalidArgumentError(tensorstore::StrCat( "\"bytes\" codec does not support inner_order of ", span<const DimensionIndex>(decoded_inner_order.data(), rank))); } } } endian resolved_endianness = options.endianness.value_or(endian::native); if (resolved_spec) { resolved_spec->reset(new BytesCodecSpec(Options{ is_endian_invariant ? std::optional<endian>() : std::optional<endian>(resolved_endianness)})); } return internal::MakeIntrusivePtr<BytesCodec>(decoded.dtype, resolved_endianness); } namespace { namespace jb = ::tensorstore::internal_json_binding; constexpr auto EndiannessBinder() { return jb::Enum<endian, std::string_view>({ {endian::little, "little"}, {endian::big, "big"}, }); } } absl::Status BytesCodecSpec::MergeFrom(const ZarrCodecSpec& other, bool strict) { using Self = BytesCodecSpec; const auto& other_options = static_cast<const Self&>(other).options; TENSORSTORE_RETURN_IF_ERROR(MergeConstraint<&Options::endianness>( "endian", options, other_options, EndiannessBinder())); return absl::OkStatus(); } ZarrCodecSpec::Ptr BytesCodecSpec::Clone() const { return internal::MakeIntrusivePtr<BytesCodecSpec>(*this); } namespace { class BytesCodecPreparedState : public ZarrArrayToBytesCodec::PreparedState { public: int64_t encoded_size() const final { return encoded_size_; } absl::Status EncodeArray(SharedArrayView<const void> decoded, riegeli::Writer& writer) const final { if (internal::EncodeArrayEndian(std::move(decoded), endianness_, c_order, writer)) { return absl::OkStatus(); } assert(!writer.ok()); return writer.status(); } Result<SharedArray<const void>> DecodeArray( span<const Index> decoded_shape, riegeli::Reader& reader) const final { return internal::DecodeArrayEndian(reader, dtype_, decoded_shape, endianness_, c_order); } DataType dtype_; endian endianness_; int64_t encoded_size_; }; } Result<ZarrArrayToBytesCodec::PreparedState::Ptr> BytesCodec::Prepare( span<const Index> decoded_shape) const { int64_t bytes = dtype_.size(); for (auto size : decoded_shape) { if (internal::MulOverflow(size, bytes, &bytes)) { return absl::OutOfRangeError(tensorstore::StrCat( "Integer overflow computing encoded size of array of shape ", decoded_shape)); } } auto state = internal::MakeIntrusivePtr<BytesCodecPreparedState>(); state->dtype_ = dtype_; state->endianness_ = endianness_; state->encoded_size_ = bytes; return state; } internal::IntrusivePtr<const BytesCodecSpec> DefaultBytesCodec() { return internal::MakeIntrusivePtr<BytesCodecSpec>( BytesCodecSpec::Options{endian::native}); } TENSORSTORE_GLOBAL_INITIALIZER { using Self = BytesCodecSpec; using Options = Self::Options; RegisterCodec<Self>( "bytes", jb::Projection<&Self::options>(jb::Sequence( [](auto is_loading, const auto& options, auto* obj, auto* j) { if constexpr (is_loading) { obj->constraints = options.constraints; } return absl::OkStatus(); }, jb::Member("endian", jb::Projection<&Options::endianness>( jb::Optional(EndiannessBinder()))) ))); } } }
#include <stdint.h> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include <nlohmann/json.hpp> #include "tensorstore/data_type.h" #include "tensorstore/driver/zarr3/codec/codec_chain_spec.h" #include "tensorstore/driver/zarr3/codec/codec_spec.h" #include "tensorstore/driver/zarr3/codec/codec_test_util.h" #include "tensorstore/internal/json_gtest.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::dtype_v; using ::tensorstore::MatchesJson; using ::tensorstore::MatchesStatus; using ::tensorstore::internal_zarr3::ArrayCodecResolveParameters; using ::tensorstore::internal_zarr3::CodecRoundTripTestParams; using ::tensorstore::internal_zarr3::CodecSpecRoundTripTestParams; using ::tensorstore::internal_zarr3::GetDefaultBytesCodecJson; using ::tensorstore::internal_zarr3::TestCodecRoundTrip; using ::tensorstore::internal_zarr3::TestCodecSpecRoundTrip; using ::tensorstore::internal_zarr3::ZarrCodecChainSpec; TEST(BytesTest, SpecRoundTrip) { CodecSpecRoundTripTestParams p; p.orig_spec = {"bytes"}; p.expected_spec = ::nlohmann::json::array_t{GetDefaultBytesCodecJson()}; TestCodecSpecRoundTrip(p); } TEST(BytesTest, DuplicateArrayToBytes) { EXPECT_THAT( ZarrCodecChainSpec::FromJson({ {{"name", "bytes"}, {"configuration", {{"endian", "little"}}}}, {{"name", "bytes"}, {"configuration", {{"endian", "little"}}}}, }), MatchesStatus(absl::StatusCode::kInvalidArgument, "Expected bytes -> bytes codec, but received: .*")); } TEST(BytesTest, RoundTrip) { CodecRoundTripTestParams p; p.spec = {"bytes"}; TestCodecRoundTrip(p); } TEST(BytesTest, AutomaticTranspose) { ArrayCodecResolveParameters p; p.dtype = dtype_v<uint16_t>; p.rank = 2; auto& inner_order = p.inner_order.emplace(); inner_order[0] = 1; inner_order[1] = 0; EXPECT_THAT( TestCodecSpecResolve( ::nlohmann::json::array_t{GetDefaultBytesCodecJson()}, p), ::testing::Optional(MatchesJson({ {{"name", "transpose"}, {"configuration", {{"order", {1, 0}}}}}, GetDefaultBytesCodecJson(), }))); } TEST(BytesTest, EndianInvariantDataType) { ArrayCodecResolveParameters p; p.dtype = dtype_v<uint8_t>; p.rank = 2; EXPECT_THAT( TestCodecSpecResolve(::nlohmann::json::array_t{{{"name", "bytes"}}}, p, false), ::testing::Optional( MatchesJson(::nlohmann::json::array_t{{{"name", "bytes"}}}))); } TEST(BytesTest, MissingEndianEndianInvariantDataType) { ArrayCodecResolveParameters p; p.dtype = dtype_v<uint16_t>; p.rank = 2; EXPECT_THAT( TestCodecSpecResolve(::nlohmann::json::array_t{{{"name", "bytes"}}}, p, false), MatchesStatus(absl::StatusCode::kInvalidArgument, ".*: \"bytes\" codec requires that \"endian\" option is " "specified for data type uint16")); } }
321
#ifndef TENSORSTORE_KVSTORE_GCS_HTTP_OBJECT_METADATA_H_ #define TENSORSTORE_KVSTORE_GCS_HTTP_OBJECT_METADATA_H_ #include <stdint.h> #include <string> #include <string_view> #include "absl/container/btree_map.h" #include "absl/time/time.h" #include <nlohmann/json.hpp> #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/json_serialization_options_base.h" #include "tensorstore/util/result.h" namespace tensorstore { namespace internal_kvstore_gcs_http { struct ObjectMetadata { std::string name; std::string md5_hash; std::string crc32c; uint64_t size = 0; int64_t generation = 0; int64_t metageneration = 0; absl::Time time_created = absl::InfinitePast(); absl::Time updated = absl::InfinitePast(); absl::Time time_deleted = absl::InfinitePast(); using ToJsonOptions = IncludeDefaults; using FromJsonOptions = internal_json_binding::NoOptions; TENSORSTORE_DECLARE_JSON_DEFAULT_BINDER( ObjectMetadata, internal_kvstore_gcs_http::ObjectMetadata::FromJsonOptions, internal_kvstore_gcs_http::ObjectMetadata::ToJsonOptions) }; Result<ObjectMetadata> ParseObjectMetadata(std::string_view source); void SetObjectMetadataFromHeaders( const absl::btree_multimap<std::string, std::string>& headers, ObjectMetadata* result); } } #endif #include "tensorstore/kvstore/gcs_http/object_metadata.h" #include <stdint.h> #include <optional> #include <string> #include <string_view> #include <utility> #include "absl/container/btree_map.h" #include "absl/status/status.h" #include "absl/strings/numbers.h" #include "absl/strings/str_split.h" #include "absl/time/time.h" #include <nlohmann/json.hpp> #include "tensorstore/internal/http/http_header.h" #include "tensorstore/internal/json/json.h" #include "tensorstore/internal/json_binding/absl_time.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/util/result.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_kvstore_gcs_http { using ::tensorstore::internal_http::TryParseIntHeader; using ::tensorstore::internal_json_binding::DefaultInitializedValue; namespace jb = tensorstore::internal_json_binding; inline constexpr auto ObjectMetadataBinder = jb::Object( jb::Member("name", jb::Projection(&ObjectMetadata::name)), jb::Member("md5Hash", jb::Projection(&ObjectMetadata::md5_hash, DefaultInitializedValue())), jb::Member("crc32c", jb::Projection(&ObjectMetadata::crc32c, DefaultInitializedValue())), jb::Member("size", jb::Projection(&ObjectMetadata::size, jb::DefaultInitializedValue( jb::LooseValueAsBinder))), jb::Member("generation", jb::Projection(&ObjectMetadata::generation, jb::DefaultInitializedValue( jb::LooseValueAsBinder))), jb::Member("metageneration", jb::Projection(&ObjectMetadata::metageneration, jb::DefaultInitializedValue( jb::LooseValueAsBinder))), jb::Member("timeCreated", jb::Projection(&ObjectMetadata::time_created, jb::DefaultValue([](auto* x) { *x = absl::InfinitePast(); }))), jb::Member("updated", jb::Projection(&ObjectMetadata::updated, jb::DefaultValue([](auto* x) { *x = absl::InfinitePast(); }))), jb::Member("timeDeleted", jb::Projection(&ObjectMetadata::time_deleted, jb::DefaultValue([](auto* x) { *x = absl::InfinitePast(); }))), jb::DiscardExtraMembers); TENSORSTORE_DEFINE_JSON_DEFAULT_BINDER(ObjectMetadata, [](auto is_loading, const auto& options, auto* obj, ::nlohmann::json* j) { return ObjectMetadataBinder( is_loading, options, obj, j); }) void SetObjectMetadataFromHeaders( const absl::btree_multimap<std::string, std::string>& headers, ObjectMetadata* result) { result->size = TryParseIntHeader<uint64_t>(headers, "content-length").value_or(0); result->generation = TryParseIntHeader<int64_t>(headers, "x-goog-generation").value_or(0); result->metageneration = TryParseIntHeader<uint64_t>(headers, "x-goog-metageneration").value_or(0); auto it = headers.find("x-goog-hash"); if (it != headers.end()) { for (std::string_view kv : absl::StrSplit(it->second, absl::ByChar(','))) { std::pair<std::string_view, std::string_view> split = absl::StrSplit(kv, absl::MaxSplits('=', 1)); if (split.first == "crc32c") { result->crc32c = std::string(split.second); } else if (split.first == "md5") { result->md5_hash = std::string(split.second); } } } } Result<ObjectMetadata> ParseObjectMetadata(std::string_view source) { auto json = internal::ParseJson(source); if (json.is_discarded()) { return absl::InvalidArgumentError( tensorstore::StrCat("Failed to parse object metadata: ", source)); } return jb::FromJson<ObjectMetadata>(std::move(json)); } } }
#include "tensorstore/kvstore/gcs_http/object_metadata.h" #include <string> #include <gtest/gtest.h> #include "absl/time/time.h" #include "tensorstore/util/result.h" namespace { using ::tensorstore::internal_kvstore_gcs_http::ParseObjectMetadata; const char kObjectMetadata[] = R"""({ "acl": [{ "kind": "storage#objectAccessControl", "id": "acl-id-0", "selfLink": "https: "bucket": "foo-bar", "object": "foo", "generation": 12345, "entity": "user-qux", "role": "OWNER", "email": "qux@example.com", "entityId": "user-qux-id-123", "domain": "example.com", "projectTeam": { "projectNumber": "4567", "team": "owners" }, "etag": "AYX=" }, { "kind": "storage#objectAccessControl", "id": "acl-id-1", "selfLink": "https: "bucket": "foo-bar", "object": "foo", "generation": 12345, "entity": "user-quux", "role": "READER", "email": "qux@example.com", "entityId": "user-quux-id-123", "domain": "example.com", "projectTeam": { "projectNumber": "4567", "team": "viewers" }, "etag": "AYX=" } ], "bucket": "foo-bar", "cacheControl": "no-cache", "componentCount": 7, "contentDisposition": "a-disposition", "contentEncoding": "an-encoding", "contentLanguage": "a-language", "contentType": "application/octet-stream", "crc32c": "deadbeef", "customerEncryption": { "encryptionAlgorithm": "some-algo", "keySha256": "abc123" }, "etag": "XYZ=", "eventBasedHold": true, "generation": "12345", "id": "foo-bar/baz/12345", "kind": "storage#object", "kmsKeyName": "/foo/bar/baz/key", "md5Hash": "deaderBeef=", "mediaLink": "https: "metadata": { "foo": "bar", "baz": "qux" }, "metageneration": "4", "name": "baz", "owner": { "entity": "user-qux", "entityId": "user-qux-id-123" }, "retentionExpirationTime": "2019-01-01T00:00:00Z", "selfLink": "https: "size": 102400, "storageClass": "STANDARD", "temporaryHold": true, "timeCreated": "2018-05-19T19:31:14Z", "timeDeleted": "2018-05-19T19:32:24Z", "timeStorageClassUpdated": "2018-05-19T19:31:34Z", "updated": "2018-05-19T19:31:24Z" })"""; absl::Time AsTime(const std::string& time) { absl::Time result; if (absl::ParseTime(absl::RFC3339_full, time, &result, nullptr)) { return result; } return absl::InfinitePast(); } TEST(ParseObjectMetadata, Basic) { EXPECT_FALSE(ParseObjectMetadata("").ok()); auto result = ParseObjectMetadata(kObjectMetadata); ASSERT_TRUE(result.ok()) << result.status(); EXPECT_EQ("baz", result->name); EXPECT_EQ("deaderBeef=", result->md5_hash); EXPECT_EQ(102400u, result->size); EXPECT_EQ(12345, result->generation); EXPECT_EQ(4, result->metageneration); EXPECT_EQ(AsTime("2018-05-19T12:31:14-07:00"), result->time_created); EXPECT_EQ(AsTime("2018-05-19T12:31:24-07:00"), result->updated); EXPECT_EQ(AsTime("2018-05-19T12:32:24-07:00"), result->time_deleted); } const char kObjectMetadata2[] = R"""({ "name": "fafb_v14/fafb_v14_clahe/128_128_160/0-64_1408-1472_896-960", "kind": "storage#object", "id": "neuroglancer-fafb-data/fafb_v14/fafb_v14_clahe/128_128_160/0-64_1408-1472_896-960/1540426531840872", "bucket": "neuroglancer-fafb-data", "generation": "1540426531840872", "contentType": "image/jpeg", "timeCreated": "2018-10-25T00:15:31.840Z", "updated": "2018-10-25T00:15:31.840Z", "timeStorageClassUpdated": "2018-10-25T00:15:31.840Z", "size": "3404" })"""; TEST(ParseObjectMetadata, Example2) { EXPECT_FALSE(ParseObjectMetadata("").ok()); auto result = ParseObjectMetadata(kObjectMetadata2); ASSERT_TRUE(result.ok()) << result.status(); EXPECT_EQ("fafb_v14/fafb_v14_clahe/128_128_160/0-64_1408-1472_896-960", result->name); EXPECT_EQ(3404u, result->size); EXPECT_EQ(1540426531840872, result->generation); EXPECT_EQ(AsTime("2018-10-24T17:15:31.84-07:00"), result->time_created); EXPECT_EQ(AsTime("2018-10-24T17:15:31.84-07:00"), result->updated); EXPECT_EQ(0, result->metageneration); } }
322
#ifndef TENSORSTORE_INTERNAL_THREAD_H_ #define TENSORSTORE_INTERNAL_THREAD_H_ #include <climits> #include <cstring> #include <functional> #include <thread> #include <utility> #include "absl/log/absl_check.h" namespace tensorstore { namespace internal { void TrySetCurrentThreadName(const char* name); class Thread { public: using Id = std::thread::id; struct Options { const char* name = nullptr; }; Thread() = default; template <class Function, class... Args> explicit Thread(Options options, Function&& f, Args&&... args) : Thread(private_t{}, options, std::forward<Function>(f), std::forward<Args>(args)...) {} Thread(Thread&& other) noexcept = default; Thread& operator=(Thread&& other) = default; Thread(const Thread& other) = delete; Thread& operator=(const Thread& other) = delete; ~Thread() { ABSL_CHECK(!thread_.joinable()); } template <class Function, class... Args> static void StartDetached(Options options, Function&& f, Args&&... args) { Thread(private_t{}, options, std::forward<Function>(f), std::forward<Args>(args)...) .thread_.detach(); } void Join() { ABSL_CHECK_NE(this_thread_id(), get_id()); thread_.join(); } Id get_id() const { return thread_.get_id(); } static Id this_thread_id() { return std::this_thread::get_id(); } private: struct private_t {}; template <class Function, class... Args> Thread(private_t, Options options, Function&& f, Args&&... args) : thread_( [name = options.name, fn = std::bind(std::forward<Function>(f), std::forward<Args>(args)...)] { TrySetCurrentThreadName(name); std::move(fn)(); }) {} std::thread thread_; }; } } #endif #if defined(__linux__) || defined(__APPLE__) #include <pthread.h> #endif #include <thread> #include <type_traits> namespace tensorstore { namespace internal { void TrySetCurrentThreadName(const char* name) { if (name == nullptr) return; #if defined(__linux__) pthread_setname_np(pthread_self(), name); #endif #if defined(__APPLE__) pthread_setname_np(name); #endif } } }
#include "tensorstore/internal/thread/thread.h" #include <gtest/gtest.h> namespace { TEST(ThreadTest, Basic) { tensorstore::internal::Thread my_thread; int x = 0; tensorstore::internal::Thread::Id id[2]; my_thread = tensorstore::internal::Thread({}, [&x, &id]() { x = 1; id[1] = tensorstore::internal::Thread::this_thread_id(); }); id[0] = my_thread.get_id(); my_thread.Join(); EXPECT_EQ(id[0], id[1]); EXPECT_EQ(1, x); } }
323
#ifndef QUICHE_QUIC_LOAD_BALANCER_LOAD_BALANCER_SERVER_ID_H_ #define QUICHE_QUIC_LOAD_BALANCER_LOAD_BALANCER_SERVER_ID_H_ #include <array> #include <cstdint> #include <string> #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "quiche/quic/platform/api/quic_export.h" namespace quic { inline constexpr uint8_t kLoadBalancerMaxServerIdLen = 15; inline constexpr uint8_t kLoadBalancerBlockSize = 16; static_assert(kLoadBalancerMaxServerIdLen <= kLoadBalancerBlockSize, "LoadBalancerServerId array not large enough to hold Server ID"); class QUIC_EXPORT_PRIVATE LoadBalancerServerId { public: LoadBalancerServerId() : length_(0) {} explicit LoadBalancerServerId(absl::Span<const uint8_t> data); explicit LoadBalancerServerId(absl::string_view data); bool operator<(const LoadBalancerServerId& other) const { return data() < other.data(); } bool operator==(const LoadBalancerServerId& other) const { return data() == other.data(); } template <typename H> friend H AbslHashValue(H h, const LoadBalancerServerId& server_id) { return H::combine_contiguous(std::move(h), server_id.data().data(), server_id.length()); } absl::Span<const uint8_t> data() const { return absl::MakeConstSpan(data_.data(), length_); } uint8_t* mutable_data() { return data_.data(); } uint8_t length() const { return length_; } void set_length(uint8_t length); std::string ToString() const; bool IsValid() { return length_ != 0; } private: std::array<uint8_t, kLoadBalancerBlockSize> data_; uint8_t length_; }; } #endif #include "quiche/quic/load_balancer/load_balancer_server_id.h" #include <array> #include <cstdint> #include <cstring> #include <string> #include "absl/strings/escaping.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "quiche/quic/platform/api/quic_bug_tracker.h" namespace quic { LoadBalancerServerId::LoadBalancerServerId(absl::string_view data) : LoadBalancerServerId(absl::MakeSpan( reinterpret_cast<const uint8_t*>(data.data()), data.length())) {} LoadBalancerServerId::LoadBalancerServerId(absl::Span<const uint8_t> data) : length_(data.length()) { if (length_ == 0 || length_ > kLoadBalancerMaxServerIdLen) { QUIC_BUG(quic_bug_433312504_02) << "Attempted to create LoadBalancerServerId with length " << static_cast<int>(length_); length_ = 0; return; } memcpy(data_.data(), data.data(), data.length()); } void LoadBalancerServerId::set_length(uint8_t length) { QUIC_BUG_IF(quic_bug_599862571_01, length == 0 || length > kLoadBalancerMaxServerIdLen) << "Attempted to set LoadBalancerServerId length to " << static_cast<int>(length); length_ = length; } std::string LoadBalancerServerId::ToString() const { return absl::BytesToHexString( absl::string_view(reinterpret_cast<const char*>(data_.data()), length_)); } }
#include "quiche/quic/load_balancer/load_balancer_server_id.h" #include <cstdint> #include <cstring> #include "absl/hash/hash_testing.h" #include "absl/types/span.h" #include "quiche/quic/platform/api/quic_expect_bug.h" #include "quiche/quic/platform/api/quic_test.h" namespace quic { namespace test { namespace { class LoadBalancerServerIdTest : public QuicTest {}; constexpr uint8_t kRawServerId[] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f}; TEST_F(LoadBalancerServerIdTest, CreateReturnsNullIfTooLong) { EXPECT_QUIC_BUG(EXPECT_FALSE(LoadBalancerServerId( absl::Span<const uint8_t>(kRawServerId, 16)) .IsValid()), "Attempted to create LoadBalancerServerId with length 16"); EXPECT_QUIC_BUG( EXPECT_FALSE(LoadBalancerServerId(absl::Span<const uint8_t>()).IsValid()), "Attempted to create LoadBalancerServerId with length 0"); } TEST_F(LoadBalancerServerIdTest, CompareIdenticalExceptLength) { LoadBalancerServerId server_id(absl::Span<const uint8_t>(kRawServerId, 15)); ASSERT_TRUE(server_id.IsValid()); EXPECT_EQ(server_id.length(), 15); LoadBalancerServerId shorter_server_id( absl::Span<const uint8_t>(kRawServerId, 5)); ASSERT_TRUE(shorter_server_id.IsValid()); EXPECT_EQ(shorter_server_id.length(), 5); EXPECT_TRUE(shorter_server_id < server_id); EXPECT_FALSE(server_id < shorter_server_id); EXPECT_FALSE(shorter_server_id == server_id); } TEST_F(LoadBalancerServerIdTest, AccessorFunctions) { LoadBalancerServerId server_id(absl::Span<const uint8_t>(kRawServerId, 5)); EXPECT_TRUE(server_id.IsValid()); EXPECT_EQ(server_id.length(), 5); EXPECT_EQ(memcmp(server_id.data().data(), kRawServerId, 5), 0); EXPECT_EQ(server_id.ToString(), "0001020304"); } TEST_F(LoadBalancerServerIdTest, CompareDifferentServerIds) { LoadBalancerServerId server_id(absl::Span<const uint8_t>(kRawServerId, 5)); ASSERT_TRUE(server_id.IsValid()); LoadBalancerServerId reverse({0x0f, 0x0e, 0x0d, 0x0c, 0x0b}); ASSERT_TRUE(reverse.IsValid()); EXPECT_TRUE(server_id < reverse); LoadBalancerServerId long_server_id( absl::Span<const uint8_t>(kRawServerId, 15)); EXPECT_TRUE(long_server_id < reverse); } TEST_F(LoadBalancerServerIdTest, EqualityOperators) { LoadBalancerServerId server_id(absl::Span<const uint8_t>(kRawServerId, 15)); ASSERT_TRUE(server_id.IsValid()); LoadBalancerServerId shorter_server_id( absl::Span<const uint8_t>(kRawServerId, 5)); ASSERT_TRUE(shorter_server_id.IsValid()); EXPECT_FALSE(server_id == shorter_server_id); LoadBalancerServerId server_id2 = server_id; EXPECT_TRUE(server_id == server_id2); } TEST_F(LoadBalancerServerIdTest, SupportsHash) { LoadBalancerServerId server_id(absl::Span<const uint8_t>(kRawServerId, 15)); ASSERT_TRUE(server_id.IsValid()); LoadBalancerServerId shorter_server_id( absl::Span<const uint8_t>(kRawServerId, 5)); ASSERT_TRUE(shorter_server_id.IsValid()); LoadBalancerServerId different_server_id({0x0f, 0x0e, 0x0d, 0x0c, 0x0b}); ASSERT_TRUE(different_server_id.IsValid()); EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({ server_id, shorter_server_id, different_server_id, })); } TEST_F(LoadBalancerServerIdTest, SetLengthInvalid) { LoadBalancerServerId server_id; EXPECT_QUIC_BUG(server_id.set_length(16), "Attempted to set LoadBalancerServerId length to 16"); EXPECT_QUIC_BUG(server_id.set_length(0), "Attempted to set LoadBalancerServerId length to 0"); server_id.set_length(1); EXPECT_EQ(server_id.length(), 1); server_id.set_length(15); EXPECT_EQ(server_id.length(), 15); } } } }
324
#ifndef TENSORFLOW_LITE_SIMPLE_PLANNER_H_ #define TENSORFLOW_LITE_SIMPLE_PLANNER_H_ #include <cassert> #include <cstdint> #include <memory> #include <vector> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/graph_info.h" #include "tensorflow/lite/memory_planner.h" #include "tensorflow/lite/util.h" namespace tflite { struct SimpleAlloc { SimpleAlloc() { reset(); } size_t size; int32_t node; char* ptr; inline void reset() { size = 0; node = 0; ptr = nullptr; } inline bool alloc(size_t new_size, int32_t new_first_node) { if (new_size == 0) { return false; } size = new_size; node = new_first_node; assert(ptr == nullptr); ptr = static_cast<char*>(malloc(new_size)); return true; } inline void free() { if (ptr) { ::free(ptr); } reset(); } }; class SimplePlanner : public MemoryPlanner { public: SimplePlanner(TfLiteContext* context, std::unique_ptr<GraphInfo> graph_info); ~SimplePlanner() override; SimplePlanner(const SimplePlanner&) = delete; SimplePlanner& operator=(const SimplePlanner&) = delete; TfLiteStatus ResetAllocations() override; TfLiteStatus ResetAllocationsAfter(int node) override; TfLiteStatus PlanAllocations() override; TfLiteStatus ExecuteAllocations(int first_node, int last_node) override; TfLiteStatus ReleaseNonPersistentMemory() override; TfLiteStatus AcquireNonPersistentMemory() override; bool HasNonPersistentMemory() override { return true; }; void DumpDebugInfo(const std::vector<int>& execution_plan) const override{}; void GetAllocInfo(size_t* arena_size, size_t* arena_persist_size) const override{}; private: void FreeAllAllocations(); TfLiteStatus ResolveTensorAllocation(int tensor_index); TfLiteContext* context_; std::unique_ptr<GraphInfo> graph_info_; std::vector<SimpleAlloc> allocs_; std::vector<int32_t> alloc_node_; std::vector<int32_t> dealloc_node_; }; } #endif #include "tensorflow/lite/simple_planner.h" #include <cstdint> #include <limits> #include <memory> #include <utility> #include <vector> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/graph_info.h" namespace tflite { namespace { constexpr int32_t kNodeNotAssigned = std::numeric_limits<int32_t>::max(); } SimplePlanner::SimplePlanner(TfLiteContext* context, std::unique_ptr<GraphInfo> graph_info) : context_(context), graph_info_(std::move(graph_info)) {} SimplePlanner::~SimplePlanner() { FreeAllAllocations(); } void SimplePlanner::FreeAllAllocations() { for (int i = 0; i < static_cast<int>(allocs_.size()); ++i) { allocs_[i].free(); } } TfLiteStatus SimplePlanner::ResetAllocations() { FreeAllAllocations(); allocs_.clear(); allocs_.resize(graph_info_->num_tensors()); return kTfLiteOk; } TfLiteStatus SimplePlanner::ResetAllocationsAfter(int node) { TfLiteTensor* tensors = graph_info_->tensors(); for (int i = 0; i < static_cast<int>(allocs_.size()); ++i) { if (allocs_[i].node > node && allocs_[i].size > 0) { TfLiteTensor& tensor = tensors[i]; if (tensor.allocation_type == kTfLiteArenaRw) { allocs_[i].free(); tensor.data.raw = nullptr; } } } return kTfLiteOk; } TfLiteStatus SimplePlanner::PlanAllocations() { TF_LITE_ENSURE_STATUS(ResetAllocations()); alloc_node_.assign(graph_info_->num_tensors(), kNodeNotAssigned); dealloc_node_.assign(graph_info_->num_tensors(), kNodeNotAssigned); std::vector<int> refcounts(graph_info_->num_tensors(), 0); auto allocate = [this](int node, int tensor) -> TfLiteStatus { if (alloc_node_[tensor] != kNodeNotAssigned) { return kTfLiteOk; } TF_LITE_ENSURE(context_, dealloc_node_[tensor] == kNodeNotAssigned); alloc_node_[tensor] = node; return kTfLiteOk; }; auto deallocate = [this](int node, int tensor) -> TfLiteStatus { if (alloc_node_[tensor] == kNodeNotAssigned) { return kTfLiteOk; } TF_LITE_ENSURE(context_, dealloc_node_[tensor] == kNodeNotAssigned); dealloc_node_[tensor] = node; return kTfLiteOk; }; for (int tensor_index : graph_info_->outputs()) { if (tensor_index != kTfLiteOptionalTensor) { refcounts[tensor_index]++; } } for (int tensor_index : graph_info_->variables()) { refcounts[tensor_index]++; TF_LITE_ENSURE(context_, tensor_index != kTfLiteOptionalTensor); TF_LITE_ENSURE_STATUS(allocate(0, tensor_index)); } for (int tensor_index : graph_info_->inputs()) { if (tensor_index != kTfLiteOptionalTensor) { refcounts[tensor_index]++; TF_LITE_ENSURE_STATUS(allocate(0, tensor_index)); } } const size_t num_execution_nodes = graph_info_->num_execution_nodes(); for (size_t i = 0; i < num_execution_nodes; ++i) { const TfLiteNode& node = graph_info_->node(i); TfLiteIntArray* node_inputs = node.inputs; for (int j = 0; j < node_inputs->size; ++j) { int tensor_index = node_inputs->data[j]; if (tensor_index != kTfLiteOptionalTensor) { refcounts[tensor_index]++; } } } for (size_t i = 0; i < num_execution_nodes; ++i) { const TfLiteNode& node = graph_info_->node(i); TfLiteIntArray* node_outputs = node.outputs; for (int j = 0; j < node_outputs->size; ++j) { int tensor_index = node_outputs->data[j]; TF_LITE_ENSURE_STATUS(allocate(i, tensor_index)); } TfLiteIntArray* node_inputs = node.inputs; for (int j = 0; j < node_inputs->size; ++j) { int tensor_index = node_inputs->data[j]; if (tensor_index != kTfLiteOptionalTensor) { refcounts[tensor_index]--; if (refcounts[tensor_index] == 0) { TF_LITE_ENSURE_STATUS(deallocate(i, tensor_index)); } } } } return kTfLiteOk; } TfLiteStatus SimplePlanner::ExecuteAllocations(int first_node, int last_node) { alloc_node_.resize(graph_info_->num_tensors(), kNodeNotAssigned); dealloc_node_.resize(graph_info_->num_tensors(), kNodeNotAssigned); allocs_.resize(graph_info_->num_tensors()); const size_t num_execution_nodes = graph_info_->num_execution_nodes(); for (size_t i = first_node; i <= static_cast<size_t>(last_node) && i < num_execution_nodes; ++i) { const TfLiteNode& node = graph_info_->node(i); TfLiteIntArray* node_temporaries = node.temporaries; for (int j = 0; j < node_temporaries->size; ++j) { int tensor_index = node_temporaries->data[j]; alloc_node_[tensor_index] = i; dealloc_node_[tensor_index] = i; } } const int num_tensors = static_cast<int>(graph_info_->num_tensors()); TfLiteTensor* tensors = graph_info_->tensors(); for (int i = 0; i < num_tensors; ++i) { bool allocated = false; if (alloc_node_[i] >= first_node && alloc_node_[i] <= last_node) { TfLiteTensor& tensor = tensors[i]; if (tensor.allocation_type == kTfLiteArenaRw) { if (allocs_[i].size != 0) { allocs_[i].free(); } allocated = allocs_[i].alloc(tensor.bytes, alloc_node_[i]); } else if (tensor.allocation_type == kTfLiteArenaRwPersistent && allocs_[i].size == 0) { allocated = allocs_[i].alloc(tensor.bytes, alloc_node_[i]); } } if (allocated) { TF_LITE_ENSURE_STATUS(ResolveTensorAllocation(i)); } } return kTfLiteOk; } TfLiteStatus SimplePlanner::ReleaseNonPersistentMemory() { const int num_tensors = static_cast<int>(graph_info_->num_tensors()); TfLiteTensor* tensors = graph_info_->tensors(); for (int i = 0; i < num_tensors; ++i) { TfLiteTensor& tensor = tensors[i]; if (tensor.allocation_type == kTfLiteArenaRw) { allocs_[i].free(); tensor.data.raw = nullptr; } } return kTfLiteOk; } TfLiteStatus SimplePlanner::AcquireNonPersistentMemory() { const int num_tensors = static_cast<int>(graph_info_->num_tensors()); TfLiteTensor* tensors = graph_info_->tensors(); for (int i = 0; i < num_tensors; ++i) { TfLiteTensor& tensor = tensors[i]; if (tensor.allocation_type == kTfLiteArenaRw) { TF_LITE_ENSURE_STATUS(ResolveTensorAllocation(i)); } } return kTfLiteOk; } TfLiteStatus SimplePlanner::ResolveTensorAllocation(int tensor_index) { TfLiteTensor& tensor = *graph_info_->tensor(tensor_index); if (tensor.allocation_type == kTfLiteArenaRw) { if (allocs_[tensor_index].size != 0) { tensor.data.raw = allocs_[tensor_index].ptr; } } if (tensor.allocation_type == kTfLiteArenaRwPersistent) { tensor.data.raw = allocs_[tensor_index].ptr; } return kTfLiteOk; } }
#include "tensorflow/lite/simple_planner.h" #include <algorithm> #include <cstdarg> #include <initializer_list> #include <memory> #include <utility> #include <vector> #include <gtest/gtest.h> #include "tensorflow/core/platform/logging.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/graph_info.h" namespace tflite { namespace { class TestOp { public: TestOp(std::initializer_list<int> inputs, std::initializer_list<int> outputs, std::initializer_list<int> temporaries) : inputs_(inputs), outputs_(outputs), temporaries_(temporaries) {} const std::vector<int>& inputs() const { return inputs_; } const std::vector<int>& outputs() const { return outputs_; } const std::vector<int>& temporaries() const { return temporaries_; } const TfLiteRegistration& registration() const { return registration_; } private: std::vector<int> inputs_; std::vector<int> outputs_; std::vector<int> temporaries_; TfLiteRegistration registration_{}; }; class TestGraph { public: TestGraph(std::initializer_list<int> inputs, std::initializer_list<TestOp> nodes, std::initializer_list<int> outputs) : inputs_(inputs), outputs_(outputs) { int max_tensor_index = 0; for (int t : inputs) { max_tensor_index = std::max(max_tensor_index, t); } for (int t : outputs) { max_tensor_index = std::max(max_tensor_index, t); } for (const auto& node : nodes) { auto int_array = [](const std::vector<int>& x) { TfLiteIntArray* lite = TfLiteIntArrayCreate(x.size()); for (size_t i = 0; i < x.size(); i++) lite->data[i] = x[i]; return lite; }; registrations_.push_back(node.registration()); nodes_.push_back(TfLiteNode()); nodes_.back().inputs = int_array(node.inputs()); for (int t : node.inputs()) { max_tensor_index = std::max(max_tensor_index, t); } nodes_.back().outputs = int_array(node.outputs()); for (int t : node.outputs()) { max_tensor_index = std::max(max_tensor_index, t); } nodes_.back().temporaries = int_array(node.temporaries()); for (int t : node.temporaries()) { max_tensor_index = std::max(max_tensor_index, t); } } for (int i = 0; i <= max_tensor_index; ++i) { tensors_.push_back(TfLiteTensor()); tensors_.back().allocation_type = kTfLiteArenaRw; tensors_.back().bytes = (i + 1) * 3; } } ~TestGraph() { for (auto node : nodes_) { TfLiteIntArrayFree(node.inputs); TfLiteIntArrayFree(node.outputs); TfLiteIntArrayFree(node.temporaries); } } const std::vector<TfLiteNode>& nodes() { return nodes_; } std::vector<TfLiteTensor>* tensors() { return &tensors_; } const std::vector<int>& inputs() { return inputs_; } const std::vector<int>& outputs() { return outputs_; } const std::vector<int>& variables() { return variables_; } const std::vector<TfLiteRegistration>& registrations() { return registrations_; } void SetVariables(const std::vector<int>& variables) { variables_ = variables; } void Swap(TestGraph* other) { std::swap(nodes_, other->nodes_); std::swap(tensors_, other->tensors_); std::swap(inputs_, other->inputs_); std::swap(outputs_, other->outputs_); std::swap(variables_, other->variables_); } private: std::vector<TfLiteNode> nodes_; std::vector<TfLiteTensor> tensors_; std::vector<TfLiteRegistration> registrations_; std::vector<int> inputs_; std::vector<int> outputs_; std::vector<int> variables_; }; class TestGraphInfo : public GraphInfo { public: explicit TestGraphInfo(TestGraph* graph) : graph_(graph) {} size_t num_tensors() const override { return graph_->tensors()->size(); } const TfLiteRegistration& registration(size_t index) const override { return graph_->registrations()[index]; } TfLiteTensor* tensor(size_t index) override { return &graph_->tensors()->at(index); } TfLiteTensor* tensors() override { return graph_->tensors()->data(); } size_t num_execution_nodes() const override { return graph_->nodes().size(); } size_t num_total_nodes() const override { return graph_->nodes().size(); } const TfLiteNode& node(size_t index) const override { return graph_->nodes()[index]; } size_t node_index(size_t index) const override { return index; } const std::vector<int>& inputs() const override { return graph_->inputs(); } const std::vector<int>& outputs() const override { return graph_->outputs(); } const std::vector<int>& variables() const override { return graph_->variables(); } private: TestGraph* graph_; }; void ReportError(TfLiteContext* context, const char* format, ...) { const size_t kBufferSize = 1024; char temp_buffer[kBufferSize]; va_list args; va_start(args, format); vsnprintf(temp_buffer, kBufferSize, format, args); va_end(args); LOG(INFO) << temp_buffer; } class SimplePlannerTest : public ::testing::Test { protected: void SetGraph(TestGraph* graph, bool preserve_all_tensors = false) { graph_ = graph; context_.ReportError = ReportError; planner_ = std::make_unique<SimplePlanner>( &context_, std::unique_ptr<GraphInfo>(new TestGraphInfo(graph))); CHECK(planner_->ResetAllocations() == kTfLiteOk); CHECK(planner_->PlanAllocations() == kTfLiteOk); } void SwapGraph(TestGraph* graph) { graph_->Swap(graph); CHECK(planner_->PlanAllocations() == kTfLiteOk); } void Execute(int start, int end) { CHECK(planner_->ExecuteAllocations(start, end) == kTfLiteOk); } void ReleaseNonPersistentMemory() { CHECK(planner_->ReleaseNonPersistentMemory() == kTfLiteOk); } void AcquireNonPersistentMemory() { CHECK(planner_->AcquireNonPersistentMemory() == kTfLiteOk); } void ResetAllocationsAfter(int node) { CHECK(planner_->ResetAllocationsAfter(node) == kTfLiteOk); } bool HasNonPersistentMemory() { return planner_ && planner_->HasNonPersistentMemory(); } bool IsAllocated(int tensor_index) { return (*graph_->tensors())[tensor_index].data.raw != nullptr; } TfLiteContext context_; TestGraph* graph_; std::unique_ptr<SimplePlanner> planner_; }; TEST_F(SimplePlannerTest, EmptyGraph) { TestGraph graph({}, {}, {}); SetGraph(&graph); Execute(0, 10); } TEST_F(SimplePlannerTest, GraphWithNoOps) { TestGraph graph({0, 10}, {}, {5, 11}); SetGraph(&graph); Execute(0, 10); EXPECT_FALSE(IsAllocated(5)); EXPECT_FALSE(IsAllocated(11)); } TEST_F(SimplePlannerTest, ZeroSizedTensors) { TestGraph graph({1}, {{{1}, {2}, {}}}, {2}); (*graph.tensors())[1].bytes = 0; SetGraph(&graph); ASSERT_EQ(planner_->ExecuteAllocations(0, 10), kTfLiteOk); EXPECT_FALSE(IsAllocated(1)); EXPECT_TRUE(IsAllocated(2)); } TEST_F(SimplePlannerTest, SimpleGraph) { TestGraph graph({0, 1}, { {{0, 1}, {2}, {}}, {{2, 0}, {4, 5}, {}}, {{4, 5}, {3}, {}} }, {3}); SetGraph(&graph); Execute(0, 10); EXPECT_TRUE(IsAllocated(1)); EXPECT_TRUE(IsAllocated(2)); EXPECT_TRUE(IsAllocated(3)); EXPECT_TRUE(IsAllocated(4)); EXPECT_TRUE(IsAllocated(5)); } TEST_F(SimplePlannerTest, SimpleGraphInputsPreserved) { TestGraph graph({0, 1}, { {{0, 1}, {2}, {}}, {{2, 0}, {4, 5}, {}}, {{4, 5}, {3}, {}} }, {3}); SetGraph(&graph); Execute(0, 10); EXPECT_TRUE(IsAllocated(1)); EXPECT_TRUE(IsAllocated(2)); EXPECT_TRUE(IsAllocated(3)); EXPECT_TRUE(IsAllocated(4)); EXPECT_TRUE(IsAllocated(5)); } TEST_F(SimplePlannerTest, SimpleGraphWithTemporary) { TestGraph graph({0, 1}, { {{0, 1}, {2}, {}}, {{2, 0}, {4}, {5}}, {{4}, {3}, {}} }, {3}); SetGraph(&graph); Execute(0, 10); EXPECT_TRUE(IsAllocated(1)); EXPECT_TRUE(IsAllocated(2)); EXPECT_TRUE(IsAllocated(3)); EXPECT_TRUE(IsAllocated(4)); EXPECT_TRUE(IsAllocated(5)); } TEST_F(SimplePlannerTest, SimpleGraphWithResetAllocationsAfter) { TestGraph graph({0, 1}, { {{0, 1}, {2}, {}}, {{2, 0}, {4}, {5}}, {{4}, {3}, {}} }, {3}); SetGraph(&graph); Execute(0, 10); EXPECT_TRUE(IsAllocated(2)); EXPECT_TRUE(IsAllocated(3)); EXPECT_TRUE(IsAllocated(4)); EXPECT_TRUE(IsAllocated(5)); ResetAllocationsAfter(0); EXPECT_TRUE(IsAllocated(0)); EXPECT_TRUE(IsAllocated(1)); EXPECT_TRUE(IsAllocated(2)); EXPECT_FALSE(IsAllocated(3)); EXPECT_FALSE(IsAllocated(4)); EXPECT_FALSE(IsAllocated(5)); } TEST_F(SimplePlannerTest, SimpleGraphWithPersistentResetAllocationsAfter) { TestGraph graph({0, 1}, { {{0, 1}, {2}, {}}, {{2, 0}, {4}, {5}}, {{4}, {3}, {}} }, {3}); (*graph.tensors())[5].allocation_type = kTfLiteArenaRwPersistent; SetGraph(&graph); Execute(0, 10); void* tensor5_ptr = (*graph.tensors())[5].data.raw; ResetAllocationsAfter(0); EXPECT_TRUE(IsAllocated(0)); EXPECT_TRUE(IsAllocated(1)); EXPECT_TRUE(IsAllocated(2)); EXPECT_FALSE(IsAllocated(3)); EXPECT_FALSE(IsAllocated(4)); EXPECT_TRUE(IsAllocated(5)); Execute(0, 10); EXPECT_TRUE(tensor5_ptr == (*graph.tensors())[5].data.raw); } TEST_F(SimplePlannerTest, SimpleGraphOptionalOutput) { TestGraph graph({0, 1}, { {{0, 1}, {2}, {}}, {{2, 0}, {4, 5}, {}}, {{4, 5}, {3}, {}} }, {-1, 3}); SetGraph(&graph); Execute(0, 10); EXPECT_TRUE(IsAllocated(1)); EXPECT_TRUE(IsAllocated(2)); EXPECT_TRUE(IsAllocated(3)); EXPECT_TRUE(IsAllocated(4)); EXPECT_TRUE(IsAllocated(5)); } } }
325
#ifndef XLA_SERVICE_DOT_DIMENSION_MERGER_H_ #define XLA_SERVICE_DOT_DIMENSION_MERGER_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class DotDimensionMerger : public HloModulePass { public: absl::string_view name() const override { return "dot_dimension_merger"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; } #endif #include "xla/service/dot_dimension_merger.h" #include <cstdint> #include <memory> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/layout_util.h" #include "xla/service/hlo_creation_utils.h" #include "xla/shape.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace { std::vector<int64_t> ShiftDimensions(absl::Span<const int64_t> dimensions, const int64_t start, const int64_t shift) { std::vector<int64_t> new_dimensions; new_dimensions.reserve(dimensions.size()); for (const int64_t i : dimensions) { if (i < start) { new_dimensions.push_back(i); } else { new_dimensions.push_back(i - shift); } } return new_dimensions; } class BatchDimensionMerger : public DfsHloRewriteVisitor { public: absl::Status HandleDot(HloInstruction* dot) override { const DotDimensionNumbers& dnums = dot->dot_dimension_numbers(); const Shape& lhs_shape = dot->operand(0)->shape(); const Shape& rhs_shape = dot->operand(1)->shape(); CHECK_EQ(dnums.lhs_batch_dimensions_size(), dnums.rhs_batch_dimensions_size()); const int64_t batch_dimension_count = dnums.lhs_batch_dimensions_size(); if (batch_dimension_count < 2 || !DistinctNumbersAreConsecutiveIfSorted(dnums.lhs_batch_dimensions()) || !DistinctNumbersAreConsecutiveIfSorted(dnums.rhs_batch_dimensions()) || !absl::c_is_sorted(dnums.lhs_batch_dimensions()) || !absl::c_is_sorted(dnums.rhs_batch_dimensions()) || !LayoutUtil::AreDimensionsConsecutive(lhs_shape.layout(), dnums.lhs_batch_dimensions()) || !LayoutUtil::AreDimensionsConsecutive(rhs_shape.layout(), dnums.rhs_batch_dimensions())) { return absl::OkStatus(); } const int64_t lhs_batch_dimension = *absl::c_min_element(dnums.lhs_batch_dimensions()); const int64_t rhs_batch_dimension = *absl::c_min_element(dnums.rhs_batch_dimensions()); int64_t batch_size = 1; for (const int64_t dimension_number : dnums.lhs_batch_dimensions()) { batch_size *= lhs_shape.dimensions(dimension_number); } auto merge_batch_dims = [&](Shape old_shape, int64_t batch_dim) { Shape new_shape = old_shape; for (int64_t i = 1; i < batch_dimension_count; ++i) { new_shape.DeleteDimension(batch_dim + 1); } new_shape.set_dimensions(batch_dim, batch_size); return new_shape; }; Shape new_lhs_shape = merge_batch_dims(lhs_shape, lhs_batch_dimension); Shape new_rhs_shape = merge_batch_dims(rhs_shape, rhs_batch_dimension); DotDimensionNumbers new_dot_dimension_numbers; new_dot_dimension_numbers.add_lhs_batch_dimensions(lhs_batch_dimension); new_dot_dimension_numbers.add_rhs_batch_dimensions(rhs_batch_dimension); { const std::vector<int64_t> shifted_contracting_dimensions = ShiftDimensions(dnums.lhs_contracting_dimensions(), lhs_batch_dimension, batch_dimension_count - 1); new_dot_dimension_numbers.mutable_lhs_contracting_dimensions()->Assign( shifted_contracting_dimensions.begin(), shifted_contracting_dimensions.end()); } { const std::vector<int64_t> shifted_contracting_dimensions = ShiftDimensions(dnums.rhs_contracting_dimensions(), rhs_batch_dimension, batch_dimension_count - 1); new_dot_dimension_numbers.mutable_rhs_contracting_dimensions()->Assign( shifted_contracting_dimensions.begin(), shifted_contracting_dimensions.end()); } auto sparsity = Cast<HloDotInstruction>(dot)->sparsity(); std::vector<SparsityDescriptor> new_sparsity(sparsity.begin(), sparsity.end()); std::vector<HloInstruction*> sparse_meta(sparsity.size()); for (int i = 0; i < sparsity.size(); ++i) { SparsityDescriptor& descriptor = new_sparsity[i]; int64_t sparse_batch_dim = descriptor.index() == 0 ? lhs_batch_dimension : rhs_batch_dimension; if (descriptor.dimension() > sparse_batch_dim) descriptor.set_dimension(descriptor.dimension() - (batch_dimension_count - 1)); HloInstruction* meta = dot->mutable_operand(HloDotInstruction::kOperands + i); Shape new_meta_shape = merge_batch_dims(meta->shape(), sparse_batch_dim); TF_ASSIGN_OR_RETURN(sparse_meta[i], MakeReshapeHlo(new_meta_shape, meta)); } TF_ASSIGN_OR_RETURN(HloInstruction * reshaped_lhs, MakeReshapeHlo(new_lhs_shape, dot->mutable_operand(0))); TF_ASSIGN_OR_RETURN(HloInstruction * reshaped_rhs, MakeReshapeHlo(new_rhs_shape, dot->mutable_operand(1))); Shape new_dot_shape = merge_batch_dims(dot->shape(), 0); HloInstruction* new_dot = dot->parent()->AddInstruction( HloInstruction::CreateDot(new_dot_shape, reshaped_lhs, reshaped_rhs, new_dot_dimension_numbers, dot->precision_config(), new_sparsity, sparse_meta), &dot->metadata()); dot->SetupDerivedInstruction(new_dot); std::unique_ptr<HloInstruction> out_reshape = HloInstruction::CreateReshape(dot->shape(), new_dot); return ReplaceWithNewInstruction(dot, std::move(out_reshape)); } }; } absl::StatusOr<bool> DotDimensionMerger::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { return BatchDimensionMerger().RunOnModule(module, execution_threads); } }
#include "xla/service/dot_dimension_merger.h" #include <memory> #include <string> #include <gtest/gtest.h> #include "xla/service/hlo_parser.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using DotDimensionMergerTest = HloTestBase; TEST_F(DotDimensionMergerTest, MergeConsecutiveBatchDimensions) { const std::string kHloText = R"( HloModule m ENTRY e { p0 = bf16[79,2,4,12,11] parameter(0) p1 = bf16[79,2,4,11,44] parameter(1) ROOT d = bf16[2,4,12,44] dot(p0, p1), lhs_batch_dims={1,2}, lhs_contracting_dims={0,4}, rhs_batch_dims={1,2}, rhs_contracting_dims={0,3}, metadata={op_name="testname"} })"; RunAndFilecheckHloRewrite(kHloText, DotDimensionMerger(), R"( ; CHECK: %[[R0:.*]] = bf16[79,8,12,11]{3,2,1,0} reshape(%p0) ; CHECK: %[[R1:.*]] = bf16[79,8,11,44]{3,2,1,0} reshape(%p1) ; CHECK: %[[DOT:.*]] = bf16[8,12,44]{2,1,0} dot(%[[R0]], %[[R1]]) ; CHECK-SAME: lhs_batch_dims={1} ; CHECK-SAME: lhs_contracting_dims={0,3} ; CHECK-SAME: rhs_batch_dims={1} ; CHECK-SAME: rhs_contracting_dims={0,2} ; CHECK-NEXT: ROOT {{[^ ]+}} = bf16[2,4,12,44]{3,2,1,0} reshape(%[[DOT]]) ; CHECK-SAME: metadata={op_name="testname"} )"); } TEST_F(DotDimensionMergerTest, MergeConsecutiveBatchDimensionsNonDefaultLayouts) { const std::string kHloText = R"( HloModule m ENTRY e { p0 = bf16[79,2,4,12,11]{4,0,3,2,1} parameter(0) p1 = bf16[79,2,4,11,44]{3,0,4,2,1} parameter(1) ROOT d = bf16[2,4,12,44]{3,1,0,2} dot(p0, p1), lhs_batch_dims={1,2}, lhs_contracting_dims={0,4}, rhs_batch_dims={1,2}, rhs_contracting_dims={0,3}, metadata={op_name="testname"} })"; RunAndFilecheckHloRewrite(kHloText, DotDimensionMerger(), R"( ; CHECK: %[[R0:.*]] = bf16[79,8,12,11]{3,0,2,1} reshape(%p0) ; CHECK: %[[R1:.*]] = bf16[79,8,11,44]{2,0,3,1} reshape(%p1) ; CHECK: %[[DOT:.*]] = bf16[8,12,44]{2,0,1} dot(%[[R0]], %[[R1]]) ; CHECK-SAME: lhs_batch_dims={1} ; CHECK-SAME: lhs_contracting_dims={0,3} ; CHECK-SAME: rhs_batch_dims={1} ; CHECK-SAME: rhs_contracting_dims={0,2} ; CHECK-NEXT: ROOT {{[^ ]+}} = bf16[2,4,12,44]{3,1,0,2} reshape(%[[DOT]]) ; CHECK-SAME: metadata={op_name="testname"} )"); } TEST_F(DotDimensionMergerTest, SkipPhysicallyNonConsecutiveBatchDimensions) { const std::string kHloText = R"( HloModule m ENTRY e { p0 = bf16[2,4,12,13]{3,1,2,0} parameter(0) p1 = bf16[2,4,13,55]{3,2,1,0} parameter(1) ROOT d = bf16[2,4,12,55]{3,2,1,0} dot(p0, p1), lhs_batch_dims={0,1}, lhs_contracting_dims={3}, rhs_batch_dims={0,1}, rhs_contracting_dims={2} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloText)); TF_ASSERT_OK_AND_ASSIGN(bool modified, DotDimensionMerger().Run(module.get())); EXPECT_FALSE(modified); } TEST_F(DotDimensionMergerTest, SkipUnsortedBatchDimensions) { const std::string kHloText = R"( HloModule m ENTRY e { p0 = bf16[4,2,12,13] parameter(0) p1 = bf16[2,4,13,55] parameter(1) ROOT d = bf16[2,4,12,55] dot(p0, p1), lhs_batch_dims={1,0}, lhs_contracting_dims={3}, rhs_batch_dims={0,1}, rhs_contracting_dims={2} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloText)); TF_ASSERT_OK_AND_ASSIGN(bool modified, DotDimensionMerger().Run(module.get())); EXPECT_FALSE(modified); } TEST_F(DotDimensionMergerTest, SkipLogicallyNonConsecutiveBatchDimensions) { const std::string kHloText = R"( HloModule m ENTRY e { p0 = bf16[2,12,4,13] parameter(0) p1 = bf16[2,4,13,55] parameter(1) ROOT d = bf16[2,4,12,55] dot(p0, p1), lhs_batch_dims={0,2}, lhs_contracting_dims={3}, rhs_batch_dims={0,1}, rhs_contracting_dims={2} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloText)); TF_ASSERT_OK_AND_ASSIGN(bool modified, DotDimensionMerger().Run(module.get())); EXPECT_FALSE(modified); } TEST_F(DotDimensionMergerTest, SparseDotUpdatesDescriptor) { const std::string kHloText = R"( HloModule m ENTRY e { p0 = bf16[3,4,5,6,16] parameter(0) p1 = bf16[3,4,5,32,6] parameter(1) meta = u16[3,4,5,6,2] parameter(2) ROOT d = bf16[4,5,6,6] dot(p0, p1, meta), sparsity=L.4@2:4, lhs_batch_dims={1,2}, lhs_contracting_dims={0,4}, rhs_batch_dims={1,2}, rhs_contracting_dims={0,3} })"; RunAndFilecheckHloRewrite(kHloText, DotDimensionMerger(), R"( ; CHECK: %[[R0:.*]] = bf16[3,20,6,16]{3,2,1,0} reshape(%p0) ; CHECK: %[[R1:.*]] = bf16[3,20,32,6]{3,2,1,0} reshape(%p1) ; CHECK: %[[R2:.*]] = u16[3,20,6,2]{3,2,1,0} reshape(%meta) ; CHECK: %[[DOT:.*]] = bf16[20,6,6]{2,1,0} dot(%[[R0]], %[[R1]], %[[R2]]) ; CHECK-SAME: lhs_batch_dims={1} ; CHECK-SAME: lhs_contracting_dims={0,3} ; CHECK-SAME: rhs_batch_dims={1} ; CHECK-SAME: rhs_contracting_dims={0,2} ; CHECK-SAME: sparsity=L.3@2:4 ; CHECK-NEXT: ROOT {{.+}} = bf16[4,5,6,6]{3,2,1,0} reshape(%[[DOT]]) )"); } } }
326
#ifndef QUICHE_QUIC_CORE_CRYPTO_CLIENT_PROOF_SOURCE_H_ #define QUICHE_QUIC_CORE_CRYPTO_CLIENT_PROOF_SOURCE_H_ #include <memory> #include "absl/container/flat_hash_map.h" #include "quiche/quic/core/crypto/certificate_view.h" #include "quiche/quic/core/crypto/proof_source.h" namespace quic { class QUICHE_EXPORT ClientProofSource { public: using Chain = ProofSource::Chain; virtual ~ClientProofSource() {} struct QUICHE_EXPORT CertAndKey { CertAndKey(quiche::QuicheReferenceCountedPointer<Chain> chain, CertificatePrivateKey private_key) : chain(std::move(chain)), private_key(std::move(private_key)) {} quiche::QuicheReferenceCountedPointer<Chain> chain; CertificatePrivateKey private_key; }; virtual std::shared_ptr<const CertAndKey> GetCertAndKey( absl::string_view server_hostname) const = 0; }; class QUICHE_EXPORT DefaultClientProofSource : public ClientProofSource { public: ~DefaultClientProofSource() override {} bool AddCertAndKey(std::vector<std::string> server_hostnames, quiche::QuicheReferenceCountedPointer<Chain> chain, CertificatePrivateKey private_key); std::shared_ptr<const CertAndKey> GetCertAndKey( absl::string_view hostname) const override; private: std::shared_ptr<const CertAndKey> LookupExact( absl::string_view map_key) const; absl::flat_hash_map<std::string, std::shared_ptr<CertAndKey>> cert_and_keys_; }; } #endif #include "quiche/quic/core/crypto/client_proof_source.h" #include <memory> #include <string> #include <utility> #include <vector> #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" namespace quic { bool DefaultClientProofSource::AddCertAndKey( std::vector<std::string> server_hostnames, quiche::QuicheReferenceCountedPointer<Chain> chain, CertificatePrivateKey private_key) { if (!ValidateCertAndKey(chain, private_key)) { return false; } auto cert_and_key = std::make_shared<CertAndKey>(std::move(chain), std::move(private_key)); for (const std::string& domain : server_hostnames) { cert_and_keys_[domain] = cert_and_key; } return true; } std::shared_ptr<const ClientProofSource::CertAndKey> DefaultClientProofSource::GetCertAndKey(absl::string_view hostname) const { if (std::shared_ptr<const CertAndKey> result = LookupExact(hostname); result || hostname == "*") { return result; } if (hostname.size() > 1 && !absl::StartsWith(hostname, "*.")) { auto dot_pos = hostname.find('.'); if (dot_pos != std::string::npos) { std::string wildcard = absl::StrCat("*", hostname.substr(dot_pos)); std::shared_ptr<const CertAndKey> result = LookupExact(wildcard); if (result != nullptr) { return result; } } } return LookupExact("*"); } std::shared_ptr<const ClientProofSource::CertAndKey> DefaultClientProofSource::LookupExact(absl::string_view map_key) const { const auto it = cert_and_keys_.find(map_key); QUIC_DVLOG(1) << "LookupExact(" << map_key << ") found:" << (it != cert_and_keys_.end()); if (it != cert_and_keys_.end()) { return it->second; } return nullptr; } }
#include "quiche/quic/core/crypto/client_proof_source.h" #include <string> #include "quiche/quic/platform/api/quic_expect_bug.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/test_certificates.h" namespace quic { namespace test { quiche::QuicheReferenceCountedPointer<ClientProofSource::Chain> TestCertChain() { return quiche::QuicheReferenceCountedPointer<ClientProofSource::Chain>( new ClientProofSource::Chain({std::string(kTestCertificate)})); } CertificatePrivateKey TestPrivateKey() { CBS private_key_cbs; CBS_init(&private_key_cbs, reinterpret_cast<const uint8_t*>(kTestCertificatePrivateKey.data()), kTestCertificatePrivateKey.size()); return CertificatePrivateKey( bssl::UniquePtr<EVP_PKEY>(EVP_parse_private_key(&private_key_cbs))); } const ClientProofSource::CertAndKey* TestCertAndKey() { static const ClientProofSource::CertAndKey cert_and_key(TestCertChain(), TestPrivateKey()); return &cert_and_key; } quiche::QuicheReferenceCountedPointer<ClientProofSource::Chain> NullCertChain() { return quiche::QuicheReferenceCountedPointer<ClientProofSource::Chain>(); } quiche::QuicheReferenceCountedPointer<ClientProofSource::Chain> EmptyCertChain() { return quiche::QuicheReferenceCountedPointer<ClientProofSource::Chain>( new ClientProofSource::Chain(std::vector<std::string>())); } quiche::QuicheReferenceCountedPointer<ClientProofSource::Chain> BadCertChain() { return quiche::QuicheReferenceCountedPointer<ClientProofSource::Chain>( new ClientProofSource::Chain({"This is the content of a bad cert."})); } CertificatePrivateKey EmptyPrivateKey() { return CertificatePrivateKey(bssl::UniquePtr<EVP_PKEY>(EVP_PKEY_new())); } #define VERIFY_CERT_AND_KEY_MATCHES(lhs, rhs) \ do { \ SCOPED_TRACE(testing::Message()); \ VerifyCertAndKeyMatches(lhs.get(), rhs); \ } while (0) void VerifyCertAndKeyMatches(const ClientProofSource::CertAndKey* lhs, const ClientProofSource::CertAndKey* rhs) { if (lhs == rhs) { return; } if (lhs == nullptr) { ADD_FAILURE() << "lhs is nullptr, but rhs is not"; return; } if (rhs == nullptr) { ADD_FAILURE() << "rhs is nullptr, but lhs is not"; return; } if (1 != EVP_PKEY_cmp(lhs->private_key.private_key(), rhs->private_key.private_key())) { ADD_FAILURE() << "Private keys mismatch"; return; } const ClientProofSource::Chain* lhs_chain = lhs->chain.get(); const ClientProofSource::Chain* rhs_chain = rhs->chain.get(); if (lhs_chain == rhs_chain) { return; } if (lhs_chain == nullptr) { ADD_FAILURE() << "lhs->chain is nullptr, but rhs->chain is not"; return; } if (rhs_chain == nullptr) { ADD_FAILURE() << "rhs->chain is nullptr, but lhs->chain is not"; return; } if (lhs_chain->certs.size() != rhs_chain->certs.size()) { ADD_FAILURE() << "Cert chain length differ. lhs:" << lhs_chain->certs.size() << ", rhs:" << rhs_chain->certs.size(); return; } for (size_t i = 0; i < lhs_chain->certs.size(); ++i) { if (lhs_chain->certs[i] != rhs_chain->certs[i]) { ADD_FAILURE() << "The " << i << "-th certs differ."; return; } } } TEST(DefaultClientProofSource, FullDomain) { DefaultClientProofSource proof_source; ASSERT_TRUE(proof_source.AddCertAndKey({"www.google.com"}, TestCertChain(), TestPrivateKey())); VERIFY_CERT_AND_KEY_MATCHES(proof_source.GetCertAndKey("www.google.com"), TestCertAndKey()); EXPECT_EQ(proof_source.GetCertAndKey("*.google.com"), nullptr); EXPECT_EQ(proof_source.GetCertAndKey("*"), nullptr); } TEST(DefaultClientProofSource, WildcardDomain) { DefaultClientProofSource proof_source; ASSERT_TRUE(proof_source.AddCertAndKey({"*.google.com"}, TestCertChain(), TestPrivateKey())); VERIFY_CERT_AND_KEY_MATCHES(proof_source.GetCertAndKey("www.google.com"), TestCertAndKey()); VERIFY_CERT_AND_KEY_MATCHES(proof_source.GetCertAndKey("*.google.com"), TestCertAndKey()); EXPECT_EQ(proof_source.GetCertAndKey("*"), nullptr); } TEST(DefaultClientProofSource, DefaultDomain) { DefaultClientProofSource proof_source; ASSERT_TRUE( proof_source.AddCertAndKey({"*"}, TestCertChain(), TestPrivateKey())); VERIFY_CERT_AND_KEY_MATCHES(proof_source.GetCertAndKey("www.google.com"), TestCertAndKey()); VERIFY_CERT_AND_KEY_MATCHES(proof_source.GetCertAndKey("*.google.com"), TestCertAndKey()); VERIFY_CERT_AND_KEY_MATCHES(proof_source.GetCertAndKey("*"), TestCertAndKey()); } TEST(DefaultClientProofSource, FullAndWildcard) { DefaultClientProofSource proof_source; ASSERT_TRUE(proof_source.AddCertAndKey({"www.google.com", "*.google.com"}, TestCertChain(), TestPrivateKey())); VERIFY_CERT_AND_KEY_MATCHES(proof_source.GetCertAndKey("www.google.com"), TestCertAndKey()); VERIFY_CERT_AND_KEY_MATCHES(proof_source.GetCertAndKey("foo.google.com"), TestCertAndKey()); EXPECT_EQ(proof_source.GetCertAndKey("www.example.com"), nullptr); EXPECT_EQ(proof_source.GetCertAndKey("*"), nullptr); } TEST(DefaultClientProofSource, FullWildcardAndDefault) { DefaultClientProofSource proof_source; ASSERT_TRUE( proof_source.AddCertAndKey({"www.google.com", "*.google.com", "*"}, TestCertChain(), TestPrivateKey())); VERIFY_CERT_AND_KEY_MATCHES(proof_source.GetCertAndKey("www.google.com"), TestCertAndKey()); VERIFY_CERT_AND_KEY_MATCHES(proof_source.GetCertAndKey("foo.google.com"), TestCertAndKey()); VERIFY_CERT_AND_KEY_MATCHES(proof_source.GetCertAndKey("www.example.com"), TestCertAndKey()); VERIFY_CERT_AND_KEY_MATCHES(proof_source.GetCertAndKey("*.google.com"), TestCertAndKey()); VERIFY_CERT_AND_KEY_MATCHES(proof_source.GetCertAndKey("*"), TestCertAndKey()); } TEST(DefaultClientProofSource, EmptyCerts) { DefaultClientProofSource proof_source; EXPECT_QUIC_BUG(ASSERT_FALSE(proof_source.AddCertAndKey( {"*"}, NullCertChain(), TestPrivateKey())), "Certificate chain is empty"); EXPECT_QUIC_BUG(ASSERT_FALSE(proof_source.AddCertAndKey( {"*"}, EmptyCertChain(), TestPrivateKey())), "Certificate chain is empty"); EXPECT_EQ(proof_source.GetCertAndKey("*"), nullptr); } TEST(DefaultClientProofSource, BadCerts) { DefaultClientProofSource proof_source; EXPECT_QUIC_BUG(ASSERT_FALSE(proof_source.AddCertAndKey({"*"}, BadCertChain(), TestPrivateKey())), "Unabled to parse leaf certificate"); EXPECT_EQ(proof_source.GetCertAndKey("*"), nullptr); } TEST(DefaultClientProofSource, KeyMismatch) { DefaultClientProofSource proof_source; EXPECT_QUIC_BUG(ASSERT_FALSE(proof_source.AddCertAndKey( {"www.google.com"}, TestCertChain(), EmptyPrivateKey())), "Private key does not match the leaf certificate"); EXPECT_EQ(proof_source.GetCertAndKey("*"), nullptr); } } }
327
#ifndef TENSORFLOW_CORE_KERNELS_DATA_FILTER_DATASET_OP_H_ #define TENSORFLOW_CORE_KERNELS_DATA_FILTER_DATASET_OP_H_ #include "tensorflow/core/data/captured_function.h" #include "tensorflow/core/framework/dataset.h" namespace tensorflow { namespace data { class FilterDatasetOp : public UnaryDatasetOpKernel { public: static constexpr const char* const kDatasetType = "Filter"; static constexpr const char* const kInputDataset = "input_dataset"; static constexpr const char* const kOtherArguments = "other_arguments"; static constexpr const char* const kPredicate = "predicate"; static constexpr const char* const kTarguments = "Targuments"; static constexpr const char* const kOutputTypes = "output_types"; static constexpr const char* const kOutputShapes = "output_shapes"; explicit FilterDatasetOp(OpKernelConstruction* ctx); protected: void MakeDataset(OpKernelContext* ctx, DatasetBase* input, DatasetBase** output) override; private: class Dataset; std::shared_ptr<FunctionMetadata> func_metadata_ = nullptr; }; } } #endif #include "tensorflow/core/kernels/data/filter_dataset_op.h" #include <memory> #include <utility> #include <vector> #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/common_runtime/input_colocation_exemption_registry.h" #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/data/name_utils.h" #include "tensorflow/core/data/stats_utils.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/partial_tensor_shape.h" #include "tensorflow/core/framework/stats_aggregator.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/lib/gtl/cleanup.h" #include "tensorflow/core/lib/random/random.h" #include "tensorflow/core/lib/strings/str_util.h" namespace tensorflow { namespace data { constexpr const char* const FilterDatasetOp::kDatasetType; constexpr const char* const FilterDatasetOp::kInputDataset; constexpr const char* const FilterDatasetOp::kOtherArguments; constexpr const char* const FilterDatasetOp::kPredicate; constexpr const char* const FilterDatasetOp::kTarguments; constexpr const char* const FilterDatasetOp::kOutputTypes; constexpr const char* const FilterDatasetOp::kOutputShapes; constexpr char kInputImplEmpty[] = "input_impl_empty"; constexpr char kFilteredElements[] = "filtered_elements"; constexpr char kDroppedElements[] = "dropped_elements"; class FilterDatasetOp::Dataset : public DatasetBase { public: Dataset(OpKernelContext* ctx, const DatasetBase* input, std::unique_ptr<CapturedFunction> captured_func) : DatasetBase(DatasetContext(ctx)), input_(input), captured_func_(std::move(captured_func)) { input_->Ref(); } ~Dataset() override { input_->Unref(); } std::unique_ptr<IteratorBase> MakeIteratorInternal( const string& prefix) const override { return std::make_unique<Iterator>(Iterator::Params{ this, name_utils::IteratorPrefix(kDatasetType, prefix)}); } const DataTypeVector& output_dtypes() const override { return input_->output_dtypes(); } const std::vector<PartialTensorShape>& output_shapes() const override { return input_->output_shapes(); } string DebugString() const override { return name_utils::DatasetDebugString(kDatasetType); } Status InputDatasets(std::vector<const DatasetBase*>* inputs) const override { inputs->push_back(input_); return absl::OkStatus(); } Status CheckExternalState() const override { TF_RETURN_IF_ERROR(captured_func_->CheckExternalState()); return input_->CheckExternalState(); } protected: Status AsGraphDefInternal(SerializationContext* ctx, DatasetGraphDefBuilder* b, Node** output) const override { Node* input_graph_node; TF_RETURN_IF_ERROR(b->AddInputDataset(ctx, input_, &input_graph_node)); std::vector<Node*> other_arguments; DataTypeVector other_arguments_types; TF_RETURN_IF_ERROR(captured_func_->AddToGraph(ctx, b, &other_arguments, &other_arguments_types)); AttrValue f; b->BuildAttrValue(captured_func_->func(), &f); AttrValue other_arguments_types_attr; b->BuildAttrValue(other_arguments_types, &other_arguments_types_attr); TF_RETURN_IF_ERROR(b->AddDataset( this, {{0, input_graph_node}}, {{1, other_arguments}}, {{kPredicate, f}, {kTarguments, other_arguments_types_attr}}, output)); return absl::OkStatus(); } private: class Iterator : public DatasetIterator<Dataset> { public: explicit Iterator(const Params& params) : DatasetIterator<Dataset>(params), filtered_elements_(0), dropped_elements_(0) {} bool SymbolicCheckpointCompatible() const override { return true; } Status Initialize(IteratorContext* ctx) override { TF_RETURN_IF_ERROR( dataset()->input_->MakeIterator(ctx, this, prefix(), &input_impl_)); return dataset()->captured_func_->Instantiate( ctx, &instantiated_captured_func_); } Status GetNextInternal(IteratorContext* ctx, std::vector<Tensor>* out_tensors, bool* end_of_sequence) override { auto stats_aggregator = ctx->stats_aggregator(); bool matched; do { { tf_shared_lock l(mu_); if (!input_impl_) { *end_of_sequence = true; return absl::OkStatus(); } TF_RETURN_IF_ERROR( input_impl_->GetNext(ctx, out_tensors, end_of_sequence)); } if (*end_of_sequence) { mutex_lock l(mu_); input_impl_.reset(); return absl::OkStatus(); } std::vector<Tensor> result; auto status = instantiated_captured_func_->RunWithBorrowedArgs( ctx, *out_tensors, &result, model_node()); if (!status.ok()) { return AddErrorContext(status); } if (result.size() != 1 || result[0].dtype() != DT_BOOL || result[0].NumElements() != 1) { out_tensors->clear(); return errors::InvalidArgument( "Filter predicate `f` must return a scalar bool."); } matched = result[0].scalar<bool>()(); if (!matched) { out_tensors->clear(); { mutex_lock l(mu_); dropped_elements_++; } if (stats_aggregator) { mutex_lock l(mu_); stats_aggregator->AddScalar( stats_utils::DroppedElementsScalarName(dataset()->node_name()), static_cast<float>(dropped_elements_), num_elements()); stats_aggregator->IncrementCounter(dataset()->node_name(), stats_utils::kDroppedElements, static_cast<float>(1)); } } } while (!matched); { mutex_lock l(mu_); filtered_elements_++; } if (stats_aggregator) { mutex_lock l(mu_); stats_aggregator->AddScalar( stats_utils::FilterdElementsScalarName(dataset()->node_name()), static_cast<float>(filtered_elements_), num_elements()); stats_aggregator->IncrementCounter(dataset()->node_name(), stats_utils::kFilteredElements, static_cast<float>(1)); } *end_of_sequence = false; return absl::OkStatus(); } protected: std::shared_ptr<model::Node> CreateNode( IteratorContext* ctx, model::Node::Args args) const override { return model::MakeUnknownRatioNode(std::move(args)); } Status SaveInternal(SerializationContext* ctx, IteratorStateWriter* writer) override { TF_RETURN_IF_ERROR(ctx->HandleCheckExternalStateStatus( dataset()->captured_func_->CheckExternalState())); mutex_lock l(mu_); TF_RETURN_IF_ERROR(writer->WriteScalar( prefix(), kInputImplEmpty, static_cast<int64_t>(!input_impl_))); if (input_impl_) { TF_RETURN_IF_ERROR(SaveInput(ctx, writer, input_impl_)); } TF_RETURN_IF_ERROR( writer->WriteScalar(prefix(), kFilteredElements, filtered_elements_)); TF_RETURN_IF_ERROR( writer->WriteScalar(prefix(), kDroppedElements, dropped_elements_)); return absl::OkStatus(); } Status RestoreInternal(IteratorContext* ctx, IteratorStateReader* reader) override { mutex_lock l(mu_); int64_t input_empty; TF_RETURN_IF_ERROR( reader->ReadScalar(prefix(), kInputImplEmpty, &input_empty)); if (static_cast<bool>(input_empty)) { input_impl_.reset(); } else { TF_RETURN_IF_ERROR(RestoreInput(ctx, reader, input_impl_)); } TF_RETURN_IF_ERROR( reader->ReadScalar(prefix(), kFilteredElements, &filtered_elements_)); TF_RETURN_IF_ERROR( reader->ReadScalar(prefix(), kDroppedElements, &dropped_elements_)); return absl::OkStatus(); } data::TraceMeMetadata GetTraceMeMetadata() const override { tf_shared_lock l(mu_); data::TraceMeMetadata result; result.push_back(std::make_pair( "passed", strings::Printf("%lld", static_cast<long long>(filtered_elements_)))); result.push_back(std::make_pair( "filtered", strings::Printf("%lld", static_cast<long long>(dropped_elements_)))); return result; } private: mutable mutex mu_; std::unique_ptr<IteratorBase> input_impl_ TF_GUARDED_BY(mu_); int64_t filtered_elements_ TF_GUARDED_BY(mu_); int64_t dropped_elements_ TF_GUARDED_BY(mu_); std::unique_ptr<InstantiatedCapturedFunction> instantiated_captured_func_; }; const DatasetBase* const input_; const std::unique_ptr<CapturedFunction> captured_func_; }; FilterDatasetOp::FilterDatasetOp(OpKernelConstruction* ctx) : UnaryDatasetOpKernel(ctx) { OP_REQUIRES_OK(ctx, FunctionMetadata::Create(ctx, kPredicate, {}, &func_metadata_)); OP_REQUIRES(ctx, func_metadata_->short_circuit_info().indices.size() <= 1, errors::InvalidArgument( "predicate function has more than one return value.")); } void FilterDatasetOp::MakeDataset(OpKernelContext* ctx, DatasetBase* input, DatasetBase** output) { std::unique_ptr<CapturedFunction> captured_func; OP_REQUIRES_OK(ctx, CapturedFunction::Create(ctx, func_metadata_, kOtherArguments, &captured_func)); *output = new Dataset(ctx, input, std::move(captured_func)); } namespace { REGISTER_KERNEL_BUILDER(Name("FilterDataset").Device(DEVICE_CPU), FilterDatasetOp); REGISTER_INPUT_COLOCATION_EXEMPTION("FilterDataset"); } } }
#include "tensorflow/core/kernels/data/filter_dataset_op.h" #include "tensorflow/core/data/dataset_test_base.h" namespace tensorflow { namespace data { namespace { constexpr char kNodeName[] = "filter_dataset"; class FilterDatasetParams : public DatasetParams { public: template <typename T> FilterDatasetParams(T input_dataset_params, std::vector<Tensor> other_arguments, FunctionDefHelper::AttrValueWrapper pred_func, std::vector<FunctionDef> func_lib, DataTypeVector type_arguments, DataTypeVector output_dtypes, std::vector<PartialTensorShape> output_shapes, string node_name) : DatasetParams(std::move(output_dtypes), std::move(output_shapes), std::move(node_name)), other_arguments_(std::move(other_arguments)), pred_func_(std::move(pred_func)), func_lib_(std::move(func_lib)), type_arguments_(std::move(type_arguments)) { input_dataset_params_.push_back(std::make_unique<T>(input_dataset_params)); iterator_prefix_ = name_utils::IteratorPrefix(input_dataset_params.dataset_type(), input_dataset_params.iterator_prefix()); } std::vector<Tensor> GetInputTensors() const override { return other_arguments_; } Status GetInputNames(std::vector<string>* input_names) const override { input_names->clear(); input_names->reserve(input_dataset_params_.size() + other_arguments_.size()); input_names->emplace_back(FilterDatasetOp::kInputDataset); for (int i = 0; i < other_arguments_.size(); ++i) { input_names->emplace_back( absl::StrCat(FilterDatasetOp::kOtherArguments, "_", i)); } return absl::OkStatus(); } Status GetAttributes(AttributeVector* attr_vector) const override { *attr_vector = {{"predicate", pred_func_}, {"Targuments", type_arguments_}, {"output_shapes", output_shapes_}, {"output_types", output_dtypes_}, {"metadata", ""}}; return absl::OkStatus(); } std::vector<FunctionDef> func_lib() const override { return func_lib_; } string dataset_type() const override { return FilterDatasetOp::kDatasetType; } private: std::vector<Tensor> other_arguments_; FunctionDefHelper::AttrValueWrapper pred_func_; std::vector<FunctionDef> func_lib_; DataTypeVector type_arguments_; }; class FilterDatasetOpTest : public DatasetOpsTestBase {}; FilterDatasetParams FilterDatasetParams1() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{9, 1}, {0, 0, 0, 3, 4, 5, 6, 7, 8})}, "tensor_slice_dataset"); return FilterDatasetParams( std::move(tensor_slice_dataset_params), {}, FunctionDefHelper::FunctionRef("IsZero", {{"T", DT_INT64}}), {test::function::IsZero()}, {}, {DT_INT64}, {PartialTensorShape({1})}, kNodeName); } FilterDatasetParams FilterDatasetParams2() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{0}, {})}, "tensor_slice_dataset"); return FilterDatasetParams( std::move(tensor_slice_dataset_params), {}, FunctionDefHelper::FunctionRef("IsZero", {{"T", DT_INT64}}), {test::function::IsZero()}, {}, {DT_INT64}, {PartialTensorShape({})}, kNodeName); } FilterDatasetParams InvalidPredFuncFilterDatasetParams1() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{3, 3}, {0, 0, 0, 3, 4, 5, 6, 7, 8})}, "tensor_slice_dataset"); return FilterDatasetParams( std::move(tensor_slice_dataset_params), {}, FunctionDefHelper::FunctionRef("GetUnique", {{"T", DT_INT64}, {"out_idx", DT_INT32}}), {test::function::Unique()}, {}, {DT_INT64}, {PartialTensorShape({3, 1})}, kNodeName); } FilterDatasetParams InvalidPredFuncFilterDatasetParams2() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{3, 3, 1}, {0, 0, 0, 3, 4, 5, 6, 7, 8})}, "tensor_slice_dataset"); return FilterDatasetParams( std::move(tensor_slice_dataset_params), {}, FunctionDefHelper::FunctionRef("IsZero", {{"T", DT_INT64}}), {test::function::IsZero()}, {}, {DT_INT64}, {PartialTensorShape({3, 1})}, kNodeName); } FilterDatasetParams InvalidPredFuncFilterDatasetParams3() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{9}, {0, 0, 0, 3, 4, 5, 6, 7, 8})}, "tensor_slice_dataset"); return FilterDatasetParams( std::move(tensor_slice_dataset_params), {}, FunctionDefHelper::FunctionRef("NonZero", {{"T", DT_INT64}}), {test::function::NonZero()}, {}, {DT_INT64}, {PartialTensorShape({})}, kNodeName); } std::vector<GetNextTestCase<FilterDatasetParams>> GetNextTestCases() { return {{FilterDatasetParams1(), CreateTensors<int64_t>(TensorShape({1}), {{0}, {0}, {0}})}, {FilterDatasetParams2(), {}}}; } ITERATOR_GET_NEXT_TEST_P(FilterDatasetOpTest, FilterDatasetParams, GetNextTestCases()) TEST_F(FilterDatasetOpTest, DatasetNodeName) { auto dataset_params = FilterDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetNodeName(dataset_params.node_name())); } TEST_F(FilterDatasetOpTest, DatasetTypeString) { auto dataset_params = FilterDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetTypeString( name_utils::OpName(FilterDatasetOp::kDatasetType))); } TEST_F(FilterDatasetOpTest, DatasetOutputDtypes) { auto dataset_params = FilterDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetOutputDtypes({DT_INT64})); } std::vector<DatasetOutputShapesTestCase<FilterDatasetParams>> DatasetOutputShapesTestCases() { return {{FilterDatasetParams1(), {PartialTensorShape({1})}}, {FilterDatasetParams2(), {PartialTensorShape({})}}}; } DATASET_OUTPUT_SHAPES_TEST_P(FilterDatasetOpTest, FilterDatasetParams, DatasetOutputShapesTestCases()) std::vector<CardinalityTestCase<FilterDatasetParams>> CardinalityTestCases() { return {{FilterDatasetParams1(), kUnknownCardinality}, {FilterDatasetParams2(), kUnknownCardinality}}; } DATASET_CARDINALITY_TEST_P(FilterDatasetOpTest, FilterDatasetParams, CardinalityTestCases()) TEST_F(FilterDatasetOpTest, IteratorOutputDtypes) { auto dataset_params = FilterDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckIteratorOutputDtypes({DT_INT64})); } std::vector<IteratorOutputShapesTestCase<FilterDatasetParams>> IteratorOutputShapesTestCases() { return {{FilterDatasetParams1(), {PartialTensorShape({1})}}, {FilterDatasetParams2(), {PartialTensorShape({})}}}; } ITERATOR_OUTPUT_SHAPES_TEST_P(FilterDatasetOpTest, FilterDatasetParams, IteratorOutputShapesTestCases()) TEST_F(FilterDatasetOpTest, IteratorPrefix) { auto dataset_params = FilterDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckIteratorPrefix(name_utils::IteratorPrefix( FilterDatasetOp::kDatasetType, dataset_params.iterator_prefix()))); } std::vector<IteratorSaveAndRestoreTestCase<FilterDatasetParams>> IteratorSaveAndRestoreTestCases() { return {{FilterDatasetParams1(), {0, 2, 6}, CreateTensors<int64_t>(TensorShape({1}), {{0}, {0}, {0}})}, {FilterDatasetParams2(), {0, 2, 6}, {}}}; } ITERATOR_SAVE_AND_RESTORE_TEST_P(FilterDatasetOpTest, FilterDatasetParams, IteratorSaveAndRestoreTestCases()) class ParameterizedInvalidPredicateFuncTest : public FilterDatasetOpTest, public ::testing::WithParamInterface<FilterDatasetParams> {}; TEST_P(ParameterizedInvalidPredicateFuncTest, InvalidPredicateFunc) { auto dataset_params = GetParam(); TF_ASSERT_OK(Initialize(dataset_params)); bool end_of_sequence = false; std::vector<Tensor> out_tensors; EXPECT_EQ( iterator_->GetNext(iterator_ctx_.get(), &out_tensors, &end_of_sequence) .code(), absl::StatusCode::kInvalidArgument); EXPECT_TRUE(out_tensors.empty()); } INSTANTIATE_TEST_SUITE_P( FilterDatasetOpTest, ParameterizedInvalidPredicateFuncTest, ::testing::ValuesIn({InvalidPredFuncFilterDatasetParams1(), InvalidPredFuncFilterDatasetParams2(), InvalidPredFuncFilterDatasetParams3()})); } } }
328
#ifndef TENSORFLOW_CORE_KERNELS_RANGE_SAMPLER_H_ #define TENSORFLOW_CORE_KERNELS_RANGE_SAMPLER_H_ #include <vector> #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/gtl/array_slice.h" #include "tensorflow/core/lib/random/distribution_sampler.h" #include "tensorflow/core/lib/random/random_distributions.h" #include "tensorflow/core/lib/random/weighted_picker.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/thread_annotations.h" #include "tensorflow/core/platform/types.h" namespace tsl { class Env; } namespace tensorflow { using Env = tsl::Env; class RangeSampler { public: explicit RangeSampler(int64_t range) : range_(range) { CHECK_GT(range_, 0); } virtual ~RangeSampler(); virtual int64_t Sample(random::SimplePhilox* rnd) const = 0; virtual float Probability(int64_t value) const = 0; void SampleBatch(random::SimplePhilox* rnd, bool unique, absl::Span<int64_t> batch) const; void SampleBatchGetExpectedCount( random::SimplePhilox* rnd, bool unique, absl::Span<int64_t> batch, absl::Span<float> batch_expected_count, absl::Span<const int64_t> extras, absl::Span<float> extras_expected_count) const; virtual void SampleBatchGetExpectedCountAvoid( random::SimplePhilox* rnd, bool unique, absl::Span<int64_t> batch, absl::Span<float> batch_expected_count, absl::Span<const int64_t> extras, absl::Span<float> extras_expected_count, absl::Span<const int64_t> avoided_values) const; virtual bool NeedsUpdates() const { return false; } virtual void Update(absl::Span<const int64_t> values) { LOG(FATAL) << "Update not supported for this sampler type."; } int64_t range() { return range_; } protected: const int64_t range_; }; class AllSampler : public RangeSampler { public: explicit AllSampler(int64_t range); ~AllSampler() override {} int64_t Sample(random::SimplePhilox* rnd) const override { LOG(FATAL) << "Should not be called"; return 0; } float Probability(int64_t value) const override { LOG(FATAL) << "Should not be called"; return 0; } void SampleBatchGetExpectedCountAvoid( random::SimplePhilox* rnd, bool unique, absl::Span<int64_t> batch, absl::Span<float> batch_expected_count, absl::Span<const int64_t> extras, absl::Span<float> extras_expected_count, absl::Span<const int64_t> avoided_values) const override; }; class UniformSampler : public RangeSampler { public: explicit UniformSampler(int64_t range); ~UniformSampler() override {} int64_t Sample(random::SimplePhilox* rnd) const override; float Probability(int64_t value) const override; private: const float inv_range_; }; class LogUniformSampler : public RangeSampler { public: explicit LogUniformSampler(int64_t range); ~LogUniformSampler() override {} int64_t Sample(random::SimplePhilox* rnd) const override; float Probability(int64_t value) const override; private: const double log_range_; }; class ThreadUnsafeUnigramSampler : public RangeSampler { public: explicit ThreadUnsafeUnigramSampler(int64_t range); ~ThreadUnsafeUnigramSampler() override {} int64_t Sample(random::SimplePhilox* rnd) const override; float Probability(int64_t value) const override; bool NeedsUpdates() const override { return true; } void Update(absl::Span<const int64_t> values) override; private: random::WeightedPicker picker_; }; class UnigramSampler : public RangeSampler { public: explicit UnigramSampler(int64_t range); ~UnigramSampler() override {} int64_t Sample(random::SimplePhilox* rnd) const override; float Probability(int64_t value) const override; void SampleBatchGetExpectedCountAvoid( random::SimplePhilox* rnd, bool unique, absl::Span<int64_t> batch, absl::Span<float> batch_expected_count, absl::Span<const int64_t> extras, absl::Span<float> extras_expected_count, absl::Span<const int64_t> avoided_values) const override; bool NeedsUpdates() const override { return true; } void Update(absl::Span<const int64_t> values) override; private: ThreadUnsafeUnigramSampler unsafe_sampler_ TF_GUARDED_BY(mu_); mutable mutex mu_; }; class FixedUnigramSampler : public RangeSampler { public: FixedUnigramSampler(int64_t range, float distortion, int32_t num_reserved_ids, int32_t num_shards, int32_t shard); Status SetDistributionSampler(Env* env, const string& vocab_file); Status SetDistributionSampler(const std::vector<float>& unigrams); float Probability(int64_t value) const override; int64_t Sample(random::SimplePhilox* rnd) const override; private: std::unique_ptr<random::DistributionSampler> dist_sampler_; std::vector<float> weights_; float total_weight_; int32 num_shards_; int32 shard_; float distortion_; void FillReservedIds(int32_t num_reserved_ids); Status LoadFromFile(Env* env, const string& vocab_file, float distortion); void LoadFromUnigrams(const std::vector<float>& unigrams, float distortion); }; } #endif #include "tensorflow/core/kernels/range_sampler.h" #include <cmath> #include <unordered_set> #include <vector> #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/lib/io/inputbuffer.h" #include "tensorflow/core/lib/strings/numbers.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { using gtl::ArraySlice; using gtl::MutableArraySlice; RangeSampler::~RangeSampler() {} void RangeSampler::SampleBatch(random::SimplePhilox* rnd, bool unique, absl::Span<int64_t> batch) const { SampleBatchGetExpectedCount(rnd, unique, batch, absl::Span<float>(), absl::Span<const int64_t>(), absl::Span<float>()); } void RangeSampler::SampleBatchGetExpectedCount( random::SimplePhilox* rnd, bool unique, absl::Span<int64_t> batch, absl::Span<float> batch_expected_count, absl::Span<const int64_t> extras, absl::Span<float> extras_expected_count) const { SampleBatchGetExpectedCountAvoid(rnd, unique, batch, batch_expected_count, extras, extras_expected_count, absl::Span<const int64_t>()); } namespace { static float ExpectedCountHelper(float p, int batch_size, int num_tries) { if (num_tries == batch_size) { return p * batch_size; } return -std::expm1(num_tries * std::log1p(-p)); } } void RangeSampler::SampleBatchGetExpectedCountAvoid( random::SimplePhilox* rnd, bool unique, absl::Span<int64_t> batch, absl::Span<float> batch_expected_count, absl::Span<const int64_t> extras, absl::Span<float> extras_expected_count, absl::Span<const int64_t> avoided_values) const { const int batch_size = batch.size(); int num_tries; if (unique) { CHECK_LE(static_cast<int64_t>(batch_size + avoided_values.size()), range_); std::unordered_set<int64_t> used(batch_size); used.insert(avoided_values.begin(), avoided_values.end()); int num_picked = 0; num_tries = 0; while (num_picked < batch_size) { num_tries++; CHECK_LT(num_tries, kint32max); int64_t value = Sample(rnd); if (gtl::InsertIfNotPresent(&used, value)) { batch[num_picked++] = value; } } } else { CHECK_EQ(avoided_values.size(), size_t{0}) << "avoided_values only supported with unique=true"; for (int i = 0; i < batch_size; i++) { batch[i] = Sample(rnd); } num_tries = batch_size; } if (!batch_expected_count.empty()) { CHECK_EQ(batch_size, batch_expected_count.size()); for (int i = 0; i < batch_size; i++) { batch_expected_count[i] = ExpectedCountHelper(Probability(batch[i]), batch_size, num_tries); } } CHECK_EQ(extras.size(), extras_expected_count.size()); for (size_t i = 0; i < extras.size(); i++) { extras_expected_count[i] = ExpectedCountHelper(Probability(extras[i]), batch_size, num_tries); } } AllSampler::AllSampler(int64_t range) : RangeSampler(range) {} void AllSampler::SampleBatchGetExpectedCountAvoid( random::SimplePhilox* rnd, bool unique, absl::Span<int64_t> batch, absl::Span<float> batch_expected_count, absl::Span<const int64_t> extras, absl::Span<float> extras_expected_count, absl::Span<const int64_t> avoided_values) const { const int batch_size = batch.size(); CHECK_EQ(range_, batch_size); for (int i = 0; i < batch_size; i++) { batch[i] = i; } if (!batch_expected_count.empty()) { CHECK_EQ(batch_size, batch_expected_count.size()); for (int i = 0; i < batch_size; i++) { batch_expected_count[i] = 1; } } CHECK_EQ(size_t{0}, avoided_values.size()); CHECK_EQ(extras.size(), extras_expected_count.size()); for (size_t i = 0; i < extras.size(); i++) { extras_expected_count[i] = 1; } } UniformSampler::UniformSampler(int64_t range) : RangeSampler(range), inv_range_(1.0 / range) {} int64_t UniformSampler::Sample(random::SimplePhilox* rnd) const { return rnd->Uniform64(range_); } float UniformSampler::Probability(int64_t value) const { return inv_range_; } LogUniformSampler::LogUniformSampler(int64_t range) : RangeSampler(range), log_range_(log1p(range)) {} int64_t LogUniformSampler::Sample(random::SimplePhilox* rnd) const { const int64_t value = static_cast<int64_t>(exp(rnd->RandDouble() * log_range_)) - 1; DCHECK_GE(value, 0); return value % range_; } float LogUniformSampler::Probability(int64_t value) const { return (log((value + 2.0) / (value + 1.0))) / log_range_; } ThreadUnsafeUnigramSampler::ThreadUnsafeUnigramSampler(int64_t range) : RangeSampler(range), picker_(range) { CHECK_LT(range, kint32max); } int64_t ThreadUnsafeUnigramSampler::Sample(random::SimplePhilox* rnd) const { return picker_.Pick(rnd); } float ThreadUnsafeUnigramSampler::Probability(int64_t value) const { return static_cast<float>(picker_.get_weight(value)) / picker_.total_weight(); } void ThreadUnsafeUnigramSampler::Update(absl::Span<const int64_t> values) { int num_updates = std::min(static_cast<int>(values.size()), kint32max - picker_.total_weight()); for (int i = 0; i < num_updates; i++) { const int64_t value = values[i]; picker_.set_weight(value, picker_.get_weight(value) + 1); } } UnigramSampler::UnigramSampler(int64_t range) : RangeSampler(range), unsafe_sampler_(range) { CHECK_LT(range, kint32max); } int64_t UnigramSampler::Sample(random::SimplePhilox* rnd) const { tf_shared_lock lock(mu_); return unsafe_sampler_.Sample(rnd); } float UnigramSampler::Probability(int64_t value) const { tf_shared_lock lock(mu_); return unsafe_sampler_.Probability(value); } void UnigramSampler::SampleBatchGetExpectedCountAvoid( random::SimplePhilox* rnd, bool unique, absl::Span<int64_t> batch, absl::Span<float> batch_expected_count, absl::Span<const int64_t> extras, absl::Span<float> extras_expected_count, absl::Span<const int64_t> avoided_values) const { tf_shared_lock lock(mu_); unsafe_sampler_.SampleBatchGetExpectedCountAvoid( rnd, unique, batch, batch_expected_count, extras, extras_expected_count, avoided_values); } void UnigramSampler::Update(absl::Span<const int64_t> values) { mutex_lock lock(mu_); unsafe_sampler_.Update(values); } FixedUnigramSampler::FixedUnigramSampler(int64_t range, float distortion, int32_t num_reserved_ids, int32_t num_shards, int32_t shard) : RangeSampler(range), total_weight_(0.0), num_shards_(num_shards), shard_(shard), distortion_(distortion) { FillReservedIds(num_reserved_ids); } Status FixedUnigramSampler::SetDistributionSampler(Env* env, const string& vocab_file) { TF_RETURN_IF_ERROR(LoadFromFile(env, vocab_file, distortion_)); if (!TF_PREDICT_TRUE(FixedUnigramSampler::range() == weights_.size())) return (errors::InvalidArgument("range is ", FixedUnigramSampler::range(), " must be equal to weights size ", weights_.size())); dist_sampler_.reset(new random::DistributionSampler(weights_)); return absl::OkStatus(); } Status FixedUnigramSampler::SetDistributionSampler( const std::vector<float>& unigrams) { LoadFromUnigrams(unigrams, distortion_); if (!TF_PREDICT_TRUE(FixedUnigramSampler::range() == weights_.size())) return (errors::InvalidArgument("range is ", FixedUnigramSampler::range(), " must be equal to weights size ", weights_.size())); dist_sampler_.reset(new random::DistributionSampler(weights_)); return absl::OkStatus(); } float FixedUnigramSampler::Probability(int64_t value) const { if (value < 0 || static_cast<size_t>(value) >= weights_.size()) { return 0.0; } return weights_.at(value) / total_weight_; } int64_t FixedUnigramSampler::Sample(random::SimplePhilox* rnd) const { return dist_sampler_->Sample(rnd); } void FixedUnigramSampler::FillReservedIds(int32_t num_reserved_ids) { for (int32_t word_id = 0; word_id < num_reserved_ids; ++word_id) { if (word_id % num_shards_ == shard_) weights_.push_back(0.0); } } Status FixedUnigramSampler::LoadFromFile(Env* env, const string& vocab_file, float distortion) { std::unique_ptr<RandomAccessFile> file; TF_RETURN_IF_ERROR(env->NewRandomAccessFile(vocab_file, &file)); io::InputBuffer in(file.get(), 262144 ); string line; int32_t word_id = weights_.size(); while (in.ReadLine(&line).ok()) { std::vector<string> cols = str_util::Split(line, ','); if (cols.empty()) continue; if (word_id % num_shards_ == shard_) { float w = 0.0; if (!strings::safe_strtof(cols.at(cols.size() - 1), &w)) { return errors::InvalidArgument("Wrong vocabulary format at line: ", line); } w = std::pow(w, distortion); total_weight_ += w; weights_.push_back(w); } ++word_id; } return absl::OkStatus(); } void FixedUnigramSampler::LoadFromUnigrams(const std::vector<float>& unigrams, float distortion) { int32_t word_id = weights_.size(); for (float w : unigrams) { if (word_id % num_shards_ == shard_) { w = std::pow(w, distortion); total_weight_ += w; weights_.push_back(w); } ++word_id; } } }
#include "tensorflow/core/kernels/range_sampler.h" #include <vector> #include "absl/status/status.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/lib/random/simple_philox.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { using gtl::ArraySlice; using gtl::MutableArraySlice; class RangeSamplerTest : public ::testing::Test { protected: void CheckProbabilitiesSumToOne() { double sum = 0; for (int i = 0; i < sampler_->range(); i++) { sum += sampler_->Probability(i); } EXPECT_NEAR(sum, 1.0, 1e-4); } void CheckHistogram(int num_samples, float tolerance) { const int range = sampler_->range(); std::vector<int> h(range); std::vector<int64_t> a(num_samples); random::PhiloxRandom philox(123, 17); random::SimplePhilox rnd(&philox); sampler_->SampleBatch(&rnd, false, absl::MakeSpan(a)); for (int i = 0; i < num_samples; i++) { int64_t val = a[i]; ASSERT_GE(val, 0); ASSERT_LT(val, range); h[val]++; } for (int val = 0; val < range; val++) { EXPECT_NEAR((h[val] + 0.0) / num_samples, sampler_->Probability(val), tolerance); } } void Update1() { std::vector<int64_t> a(10); for (int i = 0; i < 10; i++) { a[i] = 3; } sampler_->Update(a); } void Update2() { int64_t a[10]; for (int i = 0; i < 10; i++) { a[i] = i; } for (int64_t i = 1; i < 10; i++) { sampler_->Update(absl::Span<const int64_t>(a + i, 10 - i)); } } std::unique_ptr<RangeSampler> sampler_; }; TEST_F(RangeSamplerTest, UniformProbabilities) { sampler_.reset(new UniformSampler(10)); for (int i = 0; i < 10; i++) { CHECK_EQ(sampler_->Probability(i), sampler_->Probability(0)); } } TEST_F(RangeSamplerTest, UniformChecksum) { sampler_.reset(new UniformSampler(10)); CheckProbabilitiesSumToOne(); } TEST_F(RangeSamplerTest, UniformHistogram) { sampler_.reset(new UniformSampler(10)); CheckHistogram(1000, 0.05); } TEST_F(RangeSamplerTest, LogUniformProbabilities) { int range = 1000000; sampler_.reset(new LogUniformSampler(range)); for (int i = 100; i < range; i *= 2) { float ratio = sampler_->Probability(i) / sampler_->Probability(i / 2); EXPECT_NEAR(ratio, 0.5, 0.1); } } TEST_F(RangeSamplerTest, LogUniformChecksum) { sampler_.reset(new LogUniformSampler(10)); CheckProbabilitiesSumToOne(); } TEST_F(RangeSamplerTest, LogUniformHistogram) { sampler_.reset(new LogUniformSampler(10)); CheckHistogram(1000, 0.05); } TEST_F(RangeSamplerTest, UnigramProbabilities1) { sampler_.reset(new UnigramSampler(10)); Update1(); EXPECT_NEAR(sampler_->Probability(3), 0.55, 1e-4); for (int i = 0; i < 10; i++) { if (i != 3) { ASSERT_NEAR(sampler_->Probability(i), 0.05, 1e-4); } } } TEST_F(RangeSamplerTest, UnigramProbabilities2) { sampler_.reset(new UnigramSampler(10)); Update2(); for (int i = 0; i < 10; i++) { ASSERT_NEAR(sampler_->Probability(i), (i + 1) / 55.0, 1e-4); } } TEST_F(RangeSamplerTest, UnigramChecksum) { sampler_.reset(new UnigramSampler(10)); Update1(); CheckProbabilitiesSumToOne(); } TEST_F(RangeSamplerTest, UnigramHistogram) { sampler_.reset(new UnigramSampler(10)); Update1(); CheckHistogram(1000, 0.05); } static const char kVocabContent[] = "w1,1\n" "w2,2\n" "w3,4\n" "w4,8\n" "w5,16\n" "w6,32\n" "w7,64\n" "w8,128\n" "w9,256"; TEST_F(RangeSamplerTest, FixedUnigramProbabilities) { Env* env = Env::Default(); string fname = io::JoinPath(testing::TmpDir(), "vocab_file"); TF_CHECK_OK(WriteStringToFile(env, fname, kVocabContent)); FixedUnigramSampler* test_sampler = new FixedUnigramSampler(9, 0.8, 0, 1, 0); TF_CHECK_OK(test_sampler->SetDistributionSampler(env, fname)); sampler_.reset(test_sampler); for (int i = 0; i < 9; i++) { ASSERT_NEAR(sampler_->Probability(i), pow(2, i * 0.8) / 197.05, 1e-4); } } TEST_F(RangeSamplerTest, FixedUnigramNoExistingFilename) { Env* env = Env::Default(); string fname = "NoExistingFile"; FixedUnigramSampler* test_sampler = new FixedUnigramSampler(9, 0.8, 0, 1, 0); Status s = test_sampler->SetDistributionSampler(env, fname); sampler_.reset(test_sampler); EXPECT_TRUE(absl::IsNotFound(s)) << s; } TEST_F(RangeSamplerTest, FixedUnigramNoMatchingRangeWeights) { Env* env = Env::Default(); string fname = io::JoinPath(testing::TmpDir(), "vocab_file"); TF_CHECK_OK(WriteStringToFile(env, fname, kVocabContent)); FixedUnigramSampler* test_sampler = new FixedUnigramSampler(8, 0.8, 0, 1, 0); Status s = test_sampler->SetDistributionSampler(env, fname); sampler_.reset(test_sampler); EXPECT_TRUE(absl::IsInvalidArgument(s)) << s; } TEST_F(RangeSamplerTest, FixedUnigramChecksum) { Env* env = Env::Default(); string fname = io::JoinPath(testing::TmpDir(), "vocab_file"); TF_CHECK_OK(WriteStringToFile(env, fname, kVocabContent)); FixedUnigramSampler* test_sampler = new FixedUnigramSampler(9, 0.8, 0, 1, 0); TF_CHECK_OK(test_sampler->SetDistributionSampler(env, fname)); sampler_.reset(test_sampler); CheckProbabilitiesSumToOne(); } TEST_F(RangeSamplerTest, FixedUnigramHistogram) { Env* env = Env::Default(); string fname = io::JoinPath(testing::TmpDir(), "vocab_file"); TF_CHECK_OK(WriteStringToFile(env, fname, kVocabContent)); FixedUnigramSampler* test_sampler = new FixedUnigramSampler(9, 0.8, 0, 1, 0); TF_CHECK_OK(test_sampler->SetDistributionSampler(env, fname)); sampler_.reset(test_sampler); CheckHistogram(1000, 0.05); } TEST_F(RangeSamplerTest, FixedUnigramProbabilitiesReserve1) { Env* env = Env::Default(); string fname = io::JoinPath(testing::TmpDir(), "vocab_file"); TF_CHECK_OK(WriteStringToFile(env, fname, kVocabContent)); FixedUnigramSampler* test_sampler = new FixedUnigramSampler(10, 0.8, 1, 1, 0); TF_CHECK_OK(test_sampler->SetDistributionSampler(env, fname)); sampler_.reset(test_sampler); ASSERT_NEAR(sampler_->Probability(0), 0, 1e-4); for (int i = 1; i < 10; i++) { ASSERT_NEAR(sampler_->Probability(i), pow(2, (i - 1) * 0.8) / 197.05, 1e-4); } } TEST_F(RangeSamplerTest, FixedUnigramProbabilitiesReserve2) { Env* env = Env::Default(); string fname = io::JoinPath(testing::TmpDir(), "vocab_file"); TF_CHECK_OK(WriteStringToFile(env, fname, kVocabContent)); FixedUnigramSampler* test_sampler = new FixedUnigramSampler(11, 0.8, 2, 1, 0); TF_CHECK_OK(test_sampler->SetDistributionSampler(env, fname)); sampler_.reset(test_sampler); ASSERT_NEAR(sampler_->Probability(0), 0, 1e-4); ASSERT_NEAR(sampler_->Probability(1), 0, 1e-4); for (int i = 2; i < 11; i++) { ASSERT_NEAR(sampler_->Probability(i), pow(2, (i - 2) * 0.8) / 197.05, 1e-4); } } TEST_F(RangeSamplerTest, FixedUnigramProbabilitiesFromVector) { std::vector<float> weights = {1, 2, 4, 8, 16, 32, 64, 128, 256}; FixedUnigramSampler* test_sampler = new FixedUnigramSampler(9, 0.8, 0, 1, 0); TF_CHECK_OK(test_sampler->SetDistributionSampler(weights)); sampler_.reset(test_sampler); for (int i = 0; i < 9; i++) { ASSERT_NEAR(sampler_->Probability(i), pow(2, i * 0.8) / 197.05, 1e-4); } } TEST_F(RangeSamplerTest, FixedUnigramChecksumFromVector) { std::vector<float> weights = {1, 2, 4, 8, 16, 32, 64, 128, 256}; FixedUnigramSampler* test_sampler = new FixedUnigramSampler(9, 0.8, 0, 1, 0); TF_CHECK_OK(test_sampler->SetDistributionSampler(weights)); sampler_.reset(test_sampler); CheckProbabilitiesSumToOne(); } TEST_F(RangeSamplerTest, FixedUnigramHistogramFromVector) { std::vector<float> weights = {1, 2, 4, 8, 16, 32, 64, 128, 256}; FixedUnigramSampler* test_sampler = new FixedUnigramSampler(9, 0.8, 0, 1, 0); TF_CHECK_OK(test_sampler->SetDistributionSampler(weights)); sampler_.reset(test_sampler); CheckHistogram(1000, 0.05); } TEST_F(RangeSamplerTest, FixedUnigramProbabilitiesReserve1FromVector) { std::vector<float> weights = {1, 2, 4, 8, 16, 32, 64, 128, 256}; FixedUnigramSampler* test_sampler = new FixedUnigramSampler(10, 0.8, 1, 1, 0); TF_CHECK_OK(test_sampler->SetDistributionSampler(weights)); sampler_.reset(test_sampler); ASSERT_NEAR(sampler_->Probability(0), 0, 1e-4); for (int i = 1; i < 10; i++) { ASSERT_NEAR(sampler_->Probability(i), pow(2, (i - 1) * 0.8) / 197.05, 1e-4); } } TEST_F(RangeSamplerTest, FixedUnigramProbabilitiesReserve2FromVector) { std::vector<float> weights = {1, 2, 4, 8, 16, 32, 64, 128, 256}; FixedUnigramSampler* test_sampler = new FixedUnigramSampler(11, 0.8, 2, 1, 0); TF_CHECK_OK(test_sampler->SetDistributionSampler(weights)); sampler_.reset(test_sampler); ASSERT_NEAR(sampler_->Probability(0), 0, 1e-4); ASSERT_NEAR(sampler_->Probability(1), 0, 1e-4); for (int i = 2; i < 11; i++) { ASSERT_NEAR(sampler_->Probability(i), pow(2, (i - 2) * 0.8) / 197.05, 1e-4); } } TEST_F(RangeSamplerTest, All) { int batch_size = 10; sampler_.reset(new AllSampler(10)); std::vector<int64_t> batch(batch_size); std::vector<float> batch_expected(batch_size); std::vector<int64_t> extras(2); std::vector<float> extras_expected(2); extras[0] = 0; extras[1] = batch_size - 1; sampler_->SampleBatchGetExpectedCount(nullptr, false, absl::MakeSpan(batch), absl::MakeSpan(batch_expected), extras, absl::MakeSpan(extras_expected)); for (int i = 0; i < batch_size; i++) { EXPECT_EQ(i, batch[i]); EXPECT_EQ(1, batch_expected[i]); } EXPECT_EQ(1, extras_expected[0]); EXPECT_EQ(1, extras_expected[1]); } TEST_F(RangeSamplerTest, Unique) { random::PhiloxRandom philox(123, 17); random::SimplePhilox rnd(&philox); const int range = 100; const int batch_size = 50; const int num_batches = 100; sampler_.reset(new LogUniformSampler(range)); std::vector<int> histogram(range); std::vector<int64_t> batch(batch_size); std::vector<int64_t> all_values(range); for (int i = 0; i < range; i++) { all_values[i] = i; } std::vector<float> expected(range); sampler_->SampleBatchGetExpectedCount(&rnd, true, absl::MakeSpan(batch), absl::Span<float>(), all_values, absl::MakeSpan(expected)); std::set<int64_t> s(batch.begin(), batch.end()); CHECK_EQ(batch_size, s.size()); for (int trial = 0; trial < num_batches; trial++) { std::vector<float> trial_expected(range); sampler_->SampleBatchGetExpectedCount(&rnd, true, absl::MakeSpan(batch), absl::Span<float>(), all_values, absl::MakeSpan(trial_expected)); for (int i = 0; i < range; i++) { EXPECT_NEAR(expected[i], trial_expected[i], expected[i] * 0.5); } for (int i = 0; i < batch_size; i++) { histogram[batch[i]]++; } } for (int i = 0; i < range; i++) { const float average_count = static_cast<float>(histogram[i]) / num_batches; EXPECT_NEAR(expected[i], average_count, 0.2); } } TEST_F(RangeSamplerTest, Avoid) { random::PhiloxRandom philox(123, 17); random::SimplePhilox rnd(&philox); sampler_.reset(new LogUniformSampler(100)); std::vector<int64_t> avoided(2); avoided[0] = 17; avoided[1] = 23; std::vector<int64_t> batch(98); sampler_->SampleBatchGetExpectedCountAvoid( &rnd, true, absl::MakeSpan(batch), absl::Span<float>(), absl::Span<const int64_t>(), absl::Span<float>(), avoided); int sum = 0; for (auto val : batch) { sum += val; } const int expected_sum = 100 * 99 / 2 - avoided[0] - avoided[1]; EXPECT_EQ(expected_sum, sum); } } }
329
#ifndef QUICHE_QUIC_CORE_QUIC_CRYPTO_CLIENT_STREAM_H_ #define QUICHE_QUIC_CORE_QUIC_CRYPTO_CLIENT_STREAM_H_ #include <cstdint> #include <memory> #include <string> #include "quiche/quic/core/crypto/proof_verifier.h" #include "quiche/quic/core/crypto/quic_crypto_client_config.h" #include "quiche/quic/core/proto/cached_network_parameters_proto.h" #include "quiche/quic/core/quic_config.h" #include "quiche/quic/core/quic_crypto_handshaker.h" #include "quiche/quic/core/quic_crypto_stream.h" #include "quiche/quic/core/quic_server_id.h" #include "quiche/quic/core/quic_session.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/core/quic_versions.h" #include "quiche/quic/platform/api/quic_export.h" namespace quic { namespace test { class QuicCryptoClientStreamPeer; } class TlsClientHandshaker; class QUICHE_EXPORT QuicCryptoClientStreamBase : public QuicCryptoStream { public: explicit QuicCryptoClientStreamBase(QuicSession* session); ~QuicCryptoClientStreamBase() override {} virtual bool CryptoConnect() = 0; virtual int num_sent_client_hellos() const = 0; virtual bool ResumptionAttempted() const = 0; virtual bool IsResumption() const = 0; virtual bool EarlyDataAccepted() const = 0; virtual bool ReceivedInchoateReject() const = 0; virtual int num_scup_messages_received() const = 0; bool ExportKeyingMaterial(absl::string_view , absl::string_view , size_t , std::string* ) override { QUICHE_NOTREACHED(); return false; } std::string GetAddressToken( const CachedNetworkParameters* ) const override { QUICHE_DCHECK(false); return ""; } bool ValidateAddressToken(absl::string_view ) const override { QUICHE_DCHECK(false); return false; } const CachedNetworkParameters* PreviousCachedNetworkParams() const override { QUICHE_DCHECK(false); return nullptr; } void SetPreviousCachedNetworkParams( CachedNetworkParameters ) override { QUICHE_DCHECK(false); } }; class QUICHE_EXPORT QuicCryptoClientStream : public QuicCryptoClientStreamBase { public: static const int kMaxClientHellos = 4; class QUICHE_EXPORT HandshakerInterface { public: virtual ~HandshakerInterface() {} virtual bool CryptoConnect() = 0; virtual int num_sent_client_hellos() const = 0; virtual bool ResumptionAttempted() const = 0; virtual bool IsResumption() const = 0; virtual bool EarlyDataAccepted() const = 0; virtual ssl_early_data_reason_t EarlyDataReason() const = 0; virtual bool ReceivedInchoateReject() const = 0; virtual int num_scup_messages_received() const = 0; virtual std::string chlo_hash() const = 0; virtual bool encryption_established() const = 0; virtual bool IsCryptoFrameExpectedForEncryptionLevel( EncryptionLevel level) const = 0; virtual EncryptionLevel GetEncryptionLevelToSendCryptoDataOfSpace( PacketNumberSpace space) const = 0; virtual bool one_rtt_keys_available() const = 0; virtual const QuicCryptoNegotiatedParameters& crypto_negotiated_params() const = 0; virtual CryptoMessageParser* crypto_message_parser() = 0; virtual size_t BufferSizeLimitForLevel(EncryptionLevel level) const = 0; virtual std::unique_ptr<QuicDecrypter> AdvanceKeysAndCreateCurrentOneRttDecrypter() = 0; virtual std::unique_ptr<QuicEncrypter> CreateCurrentOneRttEncrypter() = 0; virtual HandshakeState GetHandshakeState() const = 0; virtual void OnOneRttPacketAcknowledged() = 0; virtual void OnHandshakePacketSent() = 0; virtual void OnConnectionClosed(QuicErrorCode error, ConnectionCloseSource source) = 0; virtual void OnHandshakeDoneReceived() = 0; virtual void OnNewTokenReceived(absl::string_view token) = 0; virtual void SetServerApplicationStateForResumption( std::unique_ptr<ApplicationState> application_state) = 0; virtual bool ExportKeyingMaterial(absl::string_view label, absl::string_view context, size_t result_len, std::string* result) = 0; }; class QUICHE_EXPORT ProofHandler { public: virtual ~ProofHandler() {} virtual void OnProofValid( const QuicCryptoClientConfig::CachedState& cached) = 0; virtual void OnProofVerifyDetailsAvailable( const ProofVerifyDetails& verify_details) = 0; }; QuicCryptoClientStream(const QuicServerId& server_id, QuicSession* session, std::unique_ptr<ProofVerifyContext> verify_context, QuicCryptoClientConfig* crypto_config, ProofHandler* proof_handler, bool has_application_state); QuicCryptoClientStream(const QuicCryptoClientStream&) = delete; QuicCryptoClientStream& operator=(const QuicCryptoClientStream&) = delete; ~QuicCryptoClientStream() override; bool CryptoConnect() override; int num_sent_client_hellos() const override; bool ResumptionAttempted() const override; bool IsResumption() const override; bool EarlyDataAccepted() const override; ssl_early_data_reason_t EarlyDataReason() const override; bool ReceivedInchoateReject() const override; int num_scup_messages_received() const override; bool encryption_established() const override; bool one_rtt_keys_available() const override; const QuicCryptoNegotiatedParameters& crypto_negotiated_params() const override; CryptoMessageParser* crypto_message_parser() override; void OnPacketDecrypted(EncryptionLevel ) override {} void OnOneRttPacketAcknowledged() override; void OnHandshakePacketSent() override; void OnConnectionClosed(const QuicConnectionCloseFrame& frame, ConnectionCloseSource source) override; void OnHandshakeDoneReceived() override; void OnNewTokenReceived(absl::string_view token) override; HandshakeState GetHandshakeState() const override; void SetServerApplicationStateForResumption( std::unique_ptr<ApplicationState> application_state) override; size_t BufferSizeLimitForLevel(EncryptionLevel level) const override; std::unique_ptr<QuicDecrypter> AdvanceKeysAndCreateCurrentOneRttDecrypter() override; std::unique_ptr<QuicEncrypter> CreateCurrentOneRttEncrypter() override; SSL* GetSsl() const override; bool IsCryptoFrameExpectedForEncryptionLevel( EncryptionLevel level) const override; EncryptionLevel GetEncryptionLevelToSendCryptoDataOfSpace( PacketNumberSpace space) const override; bool ExportKeyingMaterial(absl::string_view label, absl::string_view context, size_t result_len, std::string* result) override; std::string chlo_hash() const; protected: void set_handshaker(std::unique_ptr<HandshakerInterface> handshaker) { handshaker_ = std::move(handshaker); } private: friend class test::QuicCryptoClientStreamPeer; std::unique_ptr<HandshakerInterface> handshaker_; TlsClientHandshaker* tls_handshaker_{nullptr}; }; } #endif #include "quiche/quic/core/quic_crypto_client_stream.h" #include <memory> #include <string> #include <utility> #include "quiche/quic/core/crypto/crypto_protocol.h" #include "quiche/quic/core/crypto/crypto_utils.h" #include "quiche/quic/core/crypto/null_encrypter.h" #include "quiche/quic/core/crypto/quic_crypto_client_config.h" #include "quiche/quic/core/quic_crypto_client_handshaker.h" #include "quiche/quic/core/quic_packets.h" #include "quiche/quic/core/quic_session.h" #include "quiche/quic/core/quic_utils.h" #include "quiche/quic/core/tls_client_handshaker.h" #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/quic/platform/api/quic_logging.h" namespace quic { const int QuicCryptoClientStream::kMaxClientHellos; QuicCryptoClientStreamBase::QuicCryptoClientStreamBase(QuicSession* session) : QuicCryptoStream(session) {} QuicCryptoClientStream::QuicCryptoClientStream( const QuicServerId& server_id, QuicSession* session, std::unique_ptr<ProofVerifyContext> verify_context, QuicCryptoClientConfig* crypto_config, ProofHandler* proof_handler, bool has_application_state) : QuicCryptoClientStreamBase(session) { QUICHE_DCHECK_EQ(Perspective::IS_CLIENT, session->connection()->perspective()); switch (session->connection()->version().handshake_protocol) { case PROTOCOL_QUIC_CRYPTO: handshaker_ = std::make_unique<QuicCryptoClientHandshaker>( server_id, this, session, std::move(verify_context), crypto_config, proof_handler); break; case PROTOCOL_TLS1_3: { auto handshaker = std::make_unique<TlsClientHandshaker>( server_id, this, session, std::move(verify_context), crypto_config, proof_handler, has_application_state); tls_handshaker_ = handshaker.get(); handshaker_ = std::move(handshaker); break; } case PROTOCOL_UNSUPPORTED: QUIC_BUG(quic_bug_10296_1) << "Attempting to create QuicCryptoClientStream for unknown " "handshake protocol"; } } QuicCryptoClientStream::~QuicCryptoClientStream() {} bool QuicCryptoClientStream::CryptoConnect() { return handshaker_->CryptoConnect(); } int QuicCryptoClientStream::num_sent_client_hellos() const { return handshaker_->num_sent_client_hellos(); } bool QuicCryptoClientStream::ResumptionAttempted() const { return handshaker_->ResumptionAttempted(); } bool QuicCryptoClientStream::IsResumption() const { return handshaker_->IsResumption(); } bool QuicCryptoClientStream::EarlyDataAccepted() const { return handshaker_->EarlyDataAccepted(); } ssl_early_data_reason_t QuicCryptoClientStream::EarlyDataReason() const { return handshaker_->EarlyDataReason(); } bool QuicCryptoClientStream::ReceivedInchoateReject() const { return handshaker_->ReceivedInchoateReject(); } int QuicCryptoClientStream::num_scup_messages_received() const { return handshaker_->num_scup_messages_received(); } bool QuicCryptoClientStream::encryption_established() const { return handshaker_->encryption_established(); } bool QuicCryptoClientStream::one_rtt_keys_available() const { return handshaker_->one_rtt_keys_available(); } const QuicCryptoNegotiatedParameters& QuicCryptoClientStream::crypto_negotiated_params() const { return handshaker_->crypto_negotiated_params(); } CryptoMessageParser* QuicCryptoClientStream::crypto_message_parser() { return handshaker_->crypto_message_parser(); } HandshakeState QuicCryptoClientStream::GetHandshakeState() const { return handshaker_->GetHandshakeState(); } size_t QuicCryptoClientStream::BufferSizeLimitForLevel( EncryptionLevel level) const { return handshaker_->BufferSizeLimitForLevel(level); } std::unique_ptr<QuicDecrypter> QuicCryptoClientStream::AdvanceKeysAndCreateCurrentOneRttDecrypter() { return handshaker_->AdvanceKeysAndCreateCurrentOneRttDecrypter(); } std::unique_ptr<QuicEncrypter> QuicCryptoClientStream::CreateCurrentOneRttEncrypter() { return handshaker_->CreateCurrentOneRttEncrypter(); } bool QuicCryptoClientStream::ExportKeyingMaterial(absl::string_view label, absl::string_view context, size_t result_len, std::string* result) { return handshaker_->ExportKeyingMaterial(label, context, result_len, result); } std::string QuicCryptoClientStream::chlo_hash() const { return handshaker_->chlo_hash(); } void QuicCryptoClientStream::OnOneRttPacketAcknowledged() { handshaker_->OnOneRttPacketAcknowledged(); } void QuicCryptoClientStream::OnHandshakePacketSent() { handshaker_->OnHandshakePacketSent(); } void QuicCryptoClientStream::OnConnectionClosed( const QuicConnectionCloseFrame& frame, ConnectionCloseSource source) { handshaker_->OnConnectionClosed(frame.quic_error_code, source); } void QuicCryptoClientStream::OnHandshakeDoneReceived() { handshaker_->OnHandshakeDoneReceived(); } void QuicCryptoClientStream::OnNewTokenReceived(absl::string_view token) { handshaker_->OnNewTokenReceived(token); } void QuicCryptoClientStream::SetServerApplicationStateForResumption( std::unique_ptr<ApplicationState> application_state) { handshaker_->SetServerApplicationStateForResumption( std::move(application_state)); } SSL* QuicCryptoClientStream::GetSsl() const { return tls_handshaker_ == nullptr ? nullptr : tls_handshaker_->ssl(); } bool QuicCryptoClientStream::IsCryptoFrameExpectedForEncryptionLevel( EncryptionLevel level) const { return handshaker_->IsCryptoFrameExpectedForEncryptionLevel(level); } EncryptionLevel QuicCryptoClientStream::GetEncryptionLevelToSendCryptoDataOfSpace( PacketNumberSpace space) const { return handshaker_->GetEncryptionLevelToSendCryptoDataOfSpace(space); } }
#include "quiche/quic/core/quic_crypto_client_stream.h" #include <memory> #include <string> #include <utility> #include <vector> #include "absl/base/macros.h" #include "quiche/quic/core/crypto/aes_128_gcm_12_encrypter.h" #include "quiche/quic/core/crypto/quic_decrypter.h" #include "quiche/quic/core/crypto/quic_encrypter.h" #include "quiche/quic/core/quic_packets.h" #include "quiche/quic/core/quic_server_id.h" #include "quiche/quic/core/quic_utils.h" #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/crypto_test_utils.h" #include "quiche/quic/test_tools/quic_stream_peer.h" #include "quiche/quic/test_tools/quic_stream_sequencer_peer.h" #include "quiche/quic/test_tools/quic_test_utils.h" #include "quiche/quic/test_tools/simple_quic_framer.h" #include "quiche/quic/test_tools/simple_session_cache.h" #include "quiche/common/test_tools/quiche_test_utils.h" using testing::_; namespace quic { namespace test { namespace { const char kServerHostname[] = "test.example.com"; const uint16_t kServerPort = 443; class QuicCryptoClientStreamTest : public QuicTest { public: QuicCryptoClientStreamTest() : supported_versions_(AllSupportedVersionsWithQuicCrypto()), server_id_(kServerHostname, kServerPort, false), crypto_config_(crypto_test_utils::ProofVerifierForTesting(), std::make_unique<test::SimpleSessionCache>()), server_crypto_config_( crypto_test_utils::CryptoServerConfigForTesting()) { CreateConnection(); } void CreateSession() { session_ = std::make_unique<TestQuicSpdyClientSession>( connection_, DefaultQuicConfig(), supported_versions_, server_id_, &crypto_config_); EXPECT_CALL(*session_, GetAlpnsToOffer()) .WillRepeatedly(testing::Return(std::vector<std::string>( {AlpnForVersion(connection_->version())}))); } void CreateConnection() { connection_ = new PacketSavingConnection(&client_helper_, &alarm_factory_, Perspective::IS_CLIENT, supported_versions_); connection_->AdvanceTime(QuicTime::Delta::FromSeconds(1)); CreateSession(); } void CompleteCryptoHandshake() { int proof_verify_details_calls = 1; if (stream()->handshake_protocol() != PROTOCOL_TLS1_3) { EXPECT_CALL(*session_, OnProofValid(testing::_)) .Times(testing::AtLeast(1)); proof_verify_details_calls = 0; } EXPECT_CALL(*session_, OnProofVerifyDetailsAvailable(testing::_)) .Times(testing::AtLeast(proof_verify_details_calls)); stream()->CryptoConnect(); QuicConfig config; crypto_test_utils::HandshakeWithFakeServer( &config, server_crypto_config_.get(), &server_helper_, &alarm_factory_, connection_, stream(), AlpnForVersion(connection_->version())); } QuicCryptoClientStream* stream() { return session_->GetMutableCryptoStream(); } MockQuicConnectionHelper server_helper_; MockQuicConnectionHelper client_helper_; MockAlarmFactory alarm_factory_; PacketSavingConnection* connection_; ParsedQuicVersionVector supported_versions_; std::unique_ptr<TestQuicSpdyClientSession> session_; QuicServerId server_id_; CryptoHandshakeMessage message_; QuicCryptoClientConfig crypto_config_; std::unique_ptr<QuicCryptoServerConfig> server_crypto_config_; }; TEST_F(QuicCryptoClientStreamTest, NotInitiallyConected) { EXPECT_FALSE(stream()->encryption_established()); EXPECT_FALSE(stream()->one_rtt_keys_available()); } TEST_F(QuicCryptoClientStreamTest, ConnectedAfterSHLO) { CompleteCryptoHandshake(); EXPECT_TRUE(stream()->encryption_established()); EXPECT_TRUE(stream()->one_rtt_keys_available()); EXPECT_FALSE(stream()->IsResumption()); EXPECT_EQ(stream()->EarlyDataReason(), ssl_early_data_no_session_offered); } TEST_F(QuicCryptoClientStreamTest, MessageAfterHandshake) { CompleteCryptoHandshake(); EXPECT_CALL( *connection_, CloseConnection(QUIC_CRYPTO_MESSAGE_AFTER_HANDSHAKE_COMPLETE, _, _)); message_.set_tag(kCHLO); crypto_test_utils::SendHandshakeMessageToStream(stream(), message_, Perspective::IS_CLIENT); } TEST_F(QuicCryptoClientStreamTest, BadMessageType) { stream()->CryptoConnect(); message_.set_tag(kCHLO); EXPECT_CALL(*connection_, CloseConnection(QUIC_INVALID_CRYPTO_MESSAGE_TYPE, "Expected REJ", _)); crypto_test_utils::SendHandshakeMessageToStream(stream(), message_, Perspective::IS_CLIENT); } TEST_F(QuicCryptoClientStreamTest, NegotiatedParameters) { CompleteCryptoHandshake(); const QuicConfig* config = session_->config(); EXPECT_EQ(kMaximumIdleTimeoutSecs, config->IdleNetworkTimeout().ToSeconds()); const QuicCryptoNegotiatedParameters& crypto_params( stream()->crypto_negotiated_params()); EXPECT_EQ(crypto_config_.aead[0], crypto_params.aead); EXPECT_EQ(crypto_config_.kexs[0], crypto_params.key_exchange); } TEST_F(QuicCryptoClientStreamTest, ExpiredServerConfig) { CompleteCryptoHandshake(); CreateConnection(); connection_->AdvanceTime( QuicTime::Delta::FromSeconds(60 * 60 * 24 * 365 * 5)); EXPECT_CALL(*session_, OnProofValid(testing::_)); stream()->CryptoConnect(); ASSERT_EQ(1u, connection_->encrypted_packets_.size()); EXPECT_EQ(ENCRYPTION_INITIAL, connection_->encryption_level()); } TEST_F(QuicCryptoClientStreamTest, ClientTurnedOffZeroRtt) { CompleteCryptoHandshake(); CreateConnection(); QuicTagVector options; options.push_back(kQNZ2); session_->config()->SetClientConnectionOptions(options); CompleteCryptoHandshake(); EXPECT_EQ(2, stream()->num_sent_client_hellos()); EXPECT_FALSE(stream()->EarlyDataAccepted()); EXPECT_EQ(stream()->EarlyDataReason(), ssl_early_data_disabled); } TEST_F(QuicCryptoClientStreamTest, ClockSkew) { connection_->AdvanceTime( QuicTime::Delta::FromSeconds(60 * 60 * 24 * 365 * 5)); CompleteCryptoHandshake(); } TEST_F(QuicCryptoClientStreamTest, InvalidCachedServerConfig) { CompleteCryptoHandshake(); CreateConnection(); QuicCryptoClientConfig::CachedState* state = crypto_config_.LookupOrCreate(server_id_); std::vector<std::string> certs = state->certs(); std::string cert_sct = state->cert_sct(); std::string signature = state->signature(); std::string chlo_hash = state->chlo_hash(); state->SetProof(certs, cert_sct, chlo_hash, signature + signature); EXPECT_CALL(*session_, OnProofVerifyDetailsAvailable(testing::_)) .Times(testing::AnyNumber()); stream()->CryptoConnect(); ASSERT_EQ(1u, connection_->encrypted_packets_.size()); } TEST_F(QuicCryptoClientStreamTest, ServerConfigUpdate) { CompleteCryptoHandshake(); QuicCryptoClientConfig::CachedState* state = crypto_config_.LookupOrCreate(server_id_); EXPECT_NE("xstk", state->source_address_token()); unsigned char stk[] = {'x', 's', 't', 'k'}; unsigned char scfg[] = { 0x53, 0x43, 0x46, 0x47, 0x01, 0x00, 0x00, 0x00, 0x45, 0x58, 0x50, 0x59, 0x08, 0x00, 0x00, 0x00, '1', '2', '3', '4', '5', '6', '7', '8'}; CryptoHandshakeMessage server_config_update; server_config_update.set_tag(kSCUP); server_config_update.SetValue(kSourceAddressTokenTag, stk); server_config_update.SetValue(kSCFG, scfg); const uint64_t expiry_seconds = 60 * 60 * 24 * 2; server_config_update.SetValue(kSTTL, expiry_seconds); crypto_test_utils::SendHandshakeMessageToStream( stream(), server_config_update, Perspective::IS_SERVER); EXPECT_EQ("xstk", state->source_address_token()); const std::string& cached_scfg = state->server_config(); quiche::test::CompareCharArraysWithHexError( "scfg", cached_scfg.data(), cached_scfg.length(), reinterpret_cast<char*>(scfg), ABSL_ARRAYSIZE(scfg)); QuicStreamSequencer* sequencer = QuicStreamPeer::sequencer(stream()); EXPECT_FALSE(QuicStreamSequencerPeer::IsUnderlyingBufferAllocated(sequencer)); } TEST_F(QuicCryptoClientStreamTest, ServerConfigUpdateWithCert) { CompleteCryptoHandshake(); QuicCryptoServerConfig crypto_config( QuicCryptoServerConfig::TESTING, QuicRandom::GetInstance(), crypto_test_utils::ProofSourceForTesting(), KeyExchangeSource::Default()); crypto_test_utils::SetupCryptoServerConfigForTest( connection_->clock(), QuicRandom::GetInstance(), &crypto_config); SourceAddressTokens tokens; QuicCompressedCertsCache cache(1); CachedNetworkParameters network_params; CryptoHandshakeMessage server_config_update; class Callback : public BuildServerConfigUpdateMessageResultCallback { public: Callback(bool* ok, CryptoHandshakeMessage* message) : ok_(ok), message_(message) {} void Run(bool ok, const CryptoHandshakeMessage& message) override { *ok_ = ok; *message_ = message; } private: bool* ok_; CryptoHandshakeMessage* message_; }; bool ok = false; crypto_config.BuildServerConfigUpdateMessage( session_->transport_version(), stream()->chlo_hash(), tokens, QuicSocketAddress(QuicIpAddress::Loopback6(), 1234), QuicSocketAddress(QuicIpAddress::Loopback6(), 4321), connection_->clock(), QuicRandom::GetInstance(), &cache, stream()->crypto_negotiated_params(), &network_params, std::unique_ptr<BuildServerConfigUpdateMessageResultCallback>( new Callback(&ok, &server_config_update))); EXPECT_TRUE(ok); EXPECT_CALL(*session_, OnProofValid(testing::_)); crypto_test_utils::SendHandshakeMessageToStream( stream(), server_config_update, Perspective::IS_SERVER); CreateConnection(); EXPECT_CALL(*session_, OnProofValid(testing::_)); EXPECT_CALL(*session_, OnProofVerifyDetailsAvailable(testing::_)) .Times(testing::AnyNumber()); stream()->CryptoConnect(); EXPECT_TRUE(session_->IsEncryptionEstablished()); } TEST_F(QuicCryptoClientStreamTest, ServerConfigUpdateBeforeHandshake) { EXPECT_CALL( *connection_, CloseConnection(QUIC_CRYPTO_UPDATE_BEFORE_HANDSHAKE_COMPLETE, _, _)); CryptoHandshakeMessage server_config_update; server_config_update.set_tag(kSCUP); crypto_test_utils::SendHandshakeMessageToStream( stream(), server_config_update, Perspective::IS_SERVER); } } } }
330
#ifndef TENSORSTORE_INTERNAL_COMPRESSION_ZLIB_H_ #define TENSORSTORE_INTERNAL_COMPRESSION_ZLIB_H_ #include <cstddef> #include <string> #include "absl/status/status.h" #include "absl/strings/cord.h" #include "tensorstore/util/status.h" namespace tensorstore { namespace zlib { struct Options { int level = -1; bool use_gzip_header = false; }; void Encode(const absl::Cord& input, absl::Cord* output, const Options& options); absl::Status Decode(const absl::Cord& input, absl::Cord* output, bool use_gzip_header); } } #endif #include "tensorstore/internal/compression/zlib.h" #include "absl/base/optimization.h" #include "absl/log/absl_check.h" #include "absl/status/status.h" #include "tensorstore/internal/compression/cord_stream_manager.h" #include <zlib.h> namespace tensorstore { namespace zlib { namespace { struct InflateOp { static int Init(z_stream* s, [[maybe_unused]] int level, int header_option) { return inflateInit2(s, 15 + header_option); } static int Process(z_stream* s, int flags) { return inflate(s, flags); } static int Destroy(z_stream* s) { return inflateEnd(s); } static constexpr bool kDataErrorPossible = true; }; struct DeflateOp { static int Init(z_stream* s, int level, int header_option) { return deflateInit2(s, level, Z_DEFLATED, 15 + header_option, 8 , Z_DEFAULT_STRATEGY); } static int Process(z_stream* s, int flags) { return deflate(s, flags); } static int Destroy(z_stream* s) { return deflateEnd(s); } static constexpr bool kDataErrorPossible = false; }; template <typename Op> absl::Status ProcessZlib(const absl::Cord& input, absl::Cord* output, int level, bool use_gzip_header) { z_stream s = {}; internal::CordStreamManager<z_stream, 16 * 1024> stream_manager(s, input, output); const int header_option = use_gzip_header ? 16 : 0; int err = Op::Init(&s, level, header_option); if (err != Z_OK) { ABSL_CHECK(false); } struct StreamDestroyer { z_stream* s; ~StreamDestroyer() { Op::Destroy(s); } } stream_destroyer{&s}; while (true) { const bool input_complete = stream_manager.FeedInputAndOutputBuffers(); err = Op::Process(&s, input_complete ? Z_FINISH : Z_NO_FLUSH); const bool made_progress = stream_manager.HandleOutput(); if (err == Z_OK) continue; if (err == Z_BUF_ERROR && made_progress) continue; break; } switch (err) { case Z_STREAM_END: if (!stream_manager.has_input_remaining()) { return absl::OkStatus(); } [[fallthrough]]; case Z_NEED_DICT: case Z_DATA_ERROR: case Z_BUF_ERROR: if (!Op::kDataErrorPossible) { ABSL_CHECK(false); } return absl::InvalidArgumentError("Error decoding zlib-compressed data"); default: ABSL_CHECK(false); } ABSL_UNREACHABLE(); } } void Encode(const absl::Cord& input, absl::Cord* output, const Options& options) { ProcessZlib<DeflateOp>(input, output, options.level, options.use_gzip_header) .IgnoreError(); } absl::Status Decode(const absl::Cord& input, absl::Cord* output, bool use_gzip_header) { return ProcessZlib<InflateOp>(input, output, 0, use_gzip_header); } } }
#include "tensorstore/internal/compression/zlib.h" #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/cord.h" #include "absl/strings/cord_test_helpers.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::MatchesStatus; namespace zlib = tensorstore::zlib; class ZlibCompressorTest : public ::testing::TestWithParam<bool> {}; INSTANTIATE_TEST_SUITE_P(ZlibCompressorTestCases, ZlibCompressorTest, ::testing::Values(false, true)); TEST_P(ZlibCompressorTest, SmallRoundtrip) { const bool use_gzip_header = GetParam(); zlib::Options options{6, use_gzip_header}; const absl::Cord input("The quick brown fox jumped over the lazy dog."); absl::Cord encode_result("abc"), decode_result("def"); zlib::Encode(input, &encode_result, options); ASSERT_GE(encode_result.size(), 3); EXPECT_EQ("abc", encode_result.Subcord(0, 3)); TENSORSTORE_ASSERT_OK( zlib::Decode(encode_result.Subcord(3, encode_result.size() - 3), &decode_result, options.use_gzip_header)); EXPECT_EQ("def" + std::string(input), decode_result); } TEST_P(ZlibCompressorTest, SmallRoundtripFragmented) { const bool use_gzip_header = GetParam(); zlib::Options options{6, use_gzip_header}; const absl::Cord input = absl::MakeFragmentedCord( {"The quick", " brown fox", " jumped over", " ", "the lazy dog."}); absl::Cord encode_result("abc"), decode_result("def"); zlib::Encode(input, &encode_result, options); ASSERT_GE(encode_result.size(), 3); EXPECT_EQ("abc", encode_result.Subcord(0, 3)); std::vector<std::string> encode_result_fragments; for (size_t i = 3; i < encode_result.size(); ++i) { encode_result_fragments.push_back(std::string(encode_result.Subcord(i, 1))); } TENSORSTORE_ASSERT_OK( zlib::Decode(absl::MakeFragmentedCord(encode_result_fragments), &decode_result, options.use_gzip_header)); EXPECT_EQ("def" + std::string(input), decode_result); } TEST_P(ZlibCompressorTest, LargeRoundtrip) { const bool use_gzip_header = GetParam(); std::string input(100000, '\0'); unsigned char x = 0; for (auto& v : input) { v = x; x += 7; } zlib::Options options{6, use_gzip_header}; absl::Cord encode_result, decode_result; zlib::Encode(absl::Cord(input), &encode_result, options); ASSERT_EQ(absl::OkStatus(), zlib::Decode(encode_result, &decode_result, options.use_gzip_header)); EXPECT_EQ(input, decode_result); } TEST_P(ZlibCompressorTest, NonDefaultLevel) { const bool use_gzip_header = GetParam(); zlib::Options options1{ 0, use_gzip_header}; zlib::Options options2{9, use_gzip_header}; const absl::Cord input("The quick brown fox jumped over the lazy dog."); absl::Cord encode_result1, encode_result2; zlib::Encode(input, &encode_result1, options1); zlib::Encode(input, &encode_result2, options2); EXPECT_NE(encode_result1, encode_result2); absl::Cord decode_result; TENSORSTORE_ASSERT_OK( zlib::Decode(encode_result2, &decode_result, options2.use_gzip_header)); EXPECT_EQ(input, decode_result); } TEST_P(ZlibCompressorTest, DecodeCorruptData) { const bool use_gzip_header = GetParam(); zlib::Options options{6, use_gzip_header}; const absl::Cord input("The quick brown fox jumped over the lazy dog."); { absl::Cord encode_result, decode_result; zlib::Encode(input, &encode_result, options); ASSERT_GE(encode_result.size(), 1); std::string corrupted(encode_result); corrupted[0] = 0; EXPECT_THAT(zlib::Decode(absl::Cord(corrupted), &decode_result, options.use_gzip_header), MatchesStatus(absl::StatusCode::kInvalidArgument)); } { absl::Cord encode_result, decode_result; zlib::Encode(input, &encode_result, options); ASSERT_GE(encode_result.size(), 1); std::string corrupted(encode_result); corrupted.resize(corrupted.size() - 1); EXPECT_THAT(zlib::Decode(absl::Cord(corrupted), &decode_result, options.use_gzip_header), MatchesStatus(absl::StatusCode::kInvalidArgument)); } } }
331
#ifndef TENSORFLOW_COMPILER_JIT_NODE_MATCHERS_H_ #define TENSORFLOW_COMPILER_JIT_NODE_MATCHERS_H_ #include <array> #include <string> #include <vector> #include "absl/algorithm/container.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "absl/types/span.h" #include "tensorflow/cc/framework/ops.h" #include "xla/test.h" #include "tensorflow/core/graph/graph.h" namespace tensorflow { namespace testing { namespace matchers { namespace impl { using OutEdge = std::pair<const Node*, int>; class NodeMatcherProperties { public: using NodeSeqMatcher = std::vector<::testing::Matcher<const Node*>>; using InputSeqMatcher = std::vector<::testing::Matcher<OutEdge>>; using AttrKeyValuePair = std::pair<string, std::optional<AttrValue>>; const std::optional<string>& name() const { return name_; } const std::optional<string>& op() const { return op_; } const std::optional<string>& assigned_device() const { return assigned_device_; } const std::optional<Tensor>& constant_value() const { return constant_value_; } const std::optional<InputSeqMatcher>& inputs() const { return input_matchers_; } const std::optional<NodeSeqMatcher>& control_deps() const { return control_deps_; } const std::optional<AttrKeyValuePair>& attr() const { return attr_; } void set_name(string name) { DCHECK(IsEmpty()); name_ = std::move(name); } void set_op(string op) { DCHECK(IsEmpty()); op_ = std::move(op); } void set_assigned_device(string assigned_device) { DCHECK(IsEmpty()); assigned_device_ = std::move(assigned_device); } void set_constant_value(Tensor constant_value) { DCHECK(IsEmpty()); constant_value_ = std::move(constant_value); op_ = "Const"; } void set_inputs(InputSeqMatcher inputs) { DCHECK(IsEmpty()); input_matchers_ = std::move(inputs); } void set_control_deps(NodeSeqMatcher control_deps) { DCHECK(IsEmpty()); control_deps_ = std::move(control_deps); } void set_attr(AttrKeyValuePair attr) { DCHECK(IsEmpty()); attr_ = std::move(attr); } bool IsEmpty() const { return !name().has_value() && !op().has_value() && !inputs().has_value() && !control_deps().has_value() && !attr().has_value(); } private: std::optional<string> name_; std::optional<string> op_; std::optional<string> assigned_device_; std::optional<Tensor> constant_value_; std::optional<InputSeqMatcher> input_matchers_; std::optional<NodeSeqMatcher> control_deps_; std::optional<AttrKeyValuePair> attr_; }; ::testing::Matcher<const Node*> NodeWith( absl::Span<const NodeMatcherProperties> props); impl::NodeMatcherProperties Inputs( absl::Span<const ::testing::Matcher<OutEdge>> inputs); impl::NodeMatcherProperties CtrlDeps( absl::Span<const ::testing::Matcher<const Node*>> control_deps); impl::NodeMatcherProperties Attr(std::pair<string, AttrValue> attrs); impl::NodeMatcherProperties Attr(string name); std::pair<string, AttrValue> AttrLiteralHelper( const std::pair<string, bool>& bool_attr); std::pair<string, AttrValue> AttrLiteralHelper( const std::pair<string, absl::Span<const int>>& int_list_attr); std::pair<string, AttrValue> AttrLiteralHelper( const std::pair<string, absl::Span<const string>>& string_list_attr); } impl::NodeMatcherProperties Name(string name); impl::NodeMatcherProperties Op(string op); impl::NodeMatcherProperties AssignedDevice(string assigned_device); template <typename ValueTy> impl::NodeMatcherProperties Attr(const string& name, ValueTy value) { return impl::Attr({impl::AttrLiteralHelper({name, value})}); } inline impl::NodeMatcherProperties Attr(const string& name) { return impl::Attr(name); } template <typename... Ts> impl::NodeMatcherProperties Inputs(Ts... inputs) { return impl::Inputs({inputs...}); } ::testing::Matcher<impl::OutEdge> Out(int oidx, ::testing::Matcher<const Node*> node); inline ::testing::Matcher<impl::OutEdge> Out( ::testing::Matcher<const Node*> node) { return Out(0, node); } template <typename... Ts> impl::NodeMatcherProperties CtrlDeps(Ts... control_deps) { return impl::CtrlDeps({control_deps...}); } impl::NodeMatcherProperties ConstantValue( const ::tensorflow::Input::Initializer& val); template <typename... Ts> ::testing::Matcher<const Node*> NodeWith(Ts... args) { std::array<impl::NodeMatcherProperties, sizeof...(Ts)> array = {args...}; return impl::NodeWith(array); } ::testing::Matcher<impl::OutEdge> Const( const ::tensorflow::Input::Initializer& val); } Node* FindNodeByName(Graph* g, absl::string_view name); } void PrintTo(const Node* n, ::std::ostream* os); void PrintTo(Node* n, ::std::ostream* os); } #endif #include "tensorflow/compiler/jit/node_matchers.h" #include <utility> #include "absl/algorithm/container.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/str_replace.h" #include "absl/strings/str_split.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/graph/graph_node_util.h" namespace tensorflow { namespace testing { namespace matchers { namespace { using impl::NodeMatcherProperties; using impl::OutEdge; string IndentAllButFirstLine(absl::string_view text) { std::vector<std::string> lines = absl::StrSplit(text, '\n'); for (int i = 1; i < lines.size(); i++) { lines[i].insert(0, " "); } return absl::StrJoin(lines, "\n"); } template <typename T> bool CompareTensor(const Tensor& actual, const Tensor& expected, ::testing::MatchResultListener* listener) { if (actual.NumElements() != expected.NumElements()) { if (listener->IsInterested()) { *listener << "\nwas looking for tensor with " << expected.NumElements() << " elements, found tensor with " << actual.NumElements() << " elements"; return false; } } for (int64_t i = 0, e = actual.NumElements(); i < e; i++) { if (actual.flat<T>()(i) != expected.flat<T>()(i)) { *listener << "\nmismatch in constant tensor at index " << i << " expected = " << expected.flat<T>()(i) << " actual = " << actual.flat<T>()(i); return false; } } return true; } bool MatchAndExplainTensor(const Tensor& tensor, const Tensor& expected_tensor, ::testing::MatchResultListener* listener) { if (tensor.dtype() != expected_tensor.dtype()) { if (listener->IsInterested()) { *listener << "\nexpected tensor of type " << DataType_Name(expected_tensor.dtype()) << " but found one of type " << DataType_Name(tensor.dtype()); return false; } } switch (tensor.dtype()) { case DT_HALF: return CompareTensor<Eigen::half>(tensor, expected_tensor, listener); case DT_FLOAT: return CompareTensor<float>(tensor, expected_tensor, listener); case DT_DOUBLE: return CompareTensor<double>(tensor, expected_tensor, listener); case DT_INT8: return CompareTensor<int8>(tensor, expected_tensor, listener); case DT_INT16: return CompareTensor<int16>(tensor, expected_tensor, listener); case DT_INT32: return CompareTensor<int32>(tensor, expected_tensor, listener); case DT_INT64: return CompareTensor<int64_t>(tensor, expected_tensor, listener); case DT_UINT8: return CompareTensor<uint8>(tensor, expected_tensor, listener); case DT_UINT16: return CompareTensor<uint16>(tensor, expected_tensor, listener); case DT_UINT32: return CompareTensor<uint32>(tensor, expected_tensor, listener); case DT_UINT64: return CompareTensor<uint64>(tensor, expected_tensor, listener); default: LOG(FATAL) << "Unsupported dtype " << DataType_Name(tensor.dtype()); } } struct NodeMatcher : public ::testing::MatcherInterface<const Node*> { bool MatchAndExplain( const Node* node, ::testing::MatchResultListener* listener) const override { if (op && node->type_string() != *op) { if (listener->IsInterested()) { *listener << "\nexpected op " << *op << " but found " << node->type_string(); } return false; } if (assigned_device && node->assigned_device_name() != *assigned_device) { if (listener->IsInterested()) { *listener << "\nexpected assigned_device " << *assigned_device << " but found \"" << node->assigned_device_name() << "\""; } return false; } if (name && node->name() != *name) { if (listener->IsInterested()) { *listener << "\nexpected name " << *name << " but found " << node->name(); } return false; } if (constant_value) { const TensorProto* proto = nullptr; if (!TryGetNodeAttr(node->def(), "value", &proto)) { if (listener->IsInterested()) { *listener << "\ncould not find \"value\" attribute in node"; } return false; } Tensor tensor(proto->dtype()); if (!tensor.FromProto(*proto)) { if (listener->IsInterested()) { *listener << "\ncould not convert TensorProto in \"value\" attribute " "to Tensor"; } return false; } if (!MatchAndExplainTensor(tensor, *constant_value, listener)) { return false; } } if (input_matchers) { if (input_matchers->size() != node->num_inputs()) { if (listener->IsInterested()) { *listener << "\nexpected " << input_matchers->size() << " inputs but node has " << node->num_inputs(); } return false; } for (int input_idx = 0, e = input_matchers->size(); input_idx < e; input_idx++) { if (!MatchAndExplainInput(node, input_idx, listener)) { return false; } } } std::vector<const Node*> control_deps; for (const Edge* e : node->in_edges()) { if (e->IsControlEdge()) { control_deps.push_back(e->src()); } } ::testing::StringMatchResultListener inner_listener; if (control_dep_set && !control_dep_set->MatchAndExplain(control_deps, &inner_listener)) { if (listener->IsInterested()) { string explanation = inner_listener.str(); if (!explanation.empty()) { explanation = absl::StrCat(", ", explanation, ","); } *listener << "ctrl_deps" << explanation << " does not match expected: "; control_dep_set->DescribeTo(listener->stream()); } return false; } const AttrValueMap attr_value_map = node->def().attr(); for (const auto& attr_kv_pair : attrs) { auto it = attr_value_map.find(attr_kv_pair.first); if (it == attr_value_map.end()) { if (listener->IsInterested()) { *listener << "did not find attribute named \"" << attr_kv_pair.first << "\" in node"; } return false; } if (attr_kv_pair.second && !AreAttrValuesEqual(it->second, *attr_kv_pair.second)) { if (listener->IsInterested()) { *listener << "attribute named " << attr_kv_pair.first << " does not match value; expected: \"" << SummarizeAttrValue(*attr_kv_pair.second) << "\", found: \"" << SummarizeAttrValue(it->second) << "\""; } return false; } } return true; } void DescribeTo(::std::ostream* os) const override { std::vector<string> predicates; if (name) { predicates.push_back(absl::StrCat("name: ", *name)); } if (op) { predicates.push_back(absl::StrCat("op: ", *op)); } if (assigned_device) { predicates.push_back(absl::StrCat("assigned device: ", *assigned_device)); } bool printed_something = !predicates.empty(); *os << absl::StrJoin(predicates, ", "); if (constant_value) { printed_something = true; *os << "constant value: " << constant_value->DebugString(); } if (input_matchers) { if (!input_matchers->empty()) { printed_something = true; *os << " with " << (input_matchers->size() == 1 ? "only " : "") << "input" << (input_matchers->size() == 1 ? "" : "s") << " "; } if (input_matchers->size() == 1) { ::std::stringstream ss; input_matchers->front().DescribeTo(&ss); printed_something = true; *os << "matching " << ss.str(); } else { int edge_idx = 0; for (const ::testing::Matcher<OutEdge>& matcher : (*input_matchers)) { *os << "\n [" << edge_idx << "] matching ("; ::std::stringstream ss; matcher.DescribeTo(&ss); printed_something = true; *os << IndentAllButFirstLine(ss.str()); *os << ")"; edge_idx++; } } } if (control_dep_set) { printed_something = true; *os << " and control deps "; control_dep_set->DescribeTo(os); } if (!attrs.empty()) { printed_something = true; std::vector<string> attrs_str; absl::c_transform( attrs, std::back_inserter(attrs_str), [](const std::pair<string, std::optional<AttrValue>>& attr_kv_pair) { return absl::StrCat(attr_kv_pair.first, "->", attr_kv_pair.second ? SummarizeAttrValue(*attr_kv_pair.second) : "*"); }); *os << " and attr values matching [" << absl::StrJoin(attrs_str, ", ") << "]"; } if (!printed_something) { *os << "is any node"; } } bool MatchAndExplainInput(const Node* node, int input_idx, ::testing::MatchResultListener* listener) const { const Edge* edge; if (!node->input_edge(input_idx, &edge).ok()) { if (listener->IsInterested()) { *listener << "\ncould not find incoming edge for input " << input_idx; } return false; } ::testing::StringMatchResultListener inner_listener; OutEdge input = {edge->src(), edge->src_output()}; if ((*input_matchers)[input_idx].MatchAndExplain(input, &inner_listener)) { return true; } if (listener->IsInterested()) { *listener << "\ninput " << input_idx << " does not match expected:\n"; (*input_matchers)[input_idx].DescribeTo(listener->stream()); string explanation = inner_listener.str(); if (!explanation.empty()) { *listener << ", " << explanation; } } return false; } std::optional<string> op; std::optional<string> name; std::optional<string> assigned_device; std::optional<Tensor> constant_value; std::optional<std::vector<::testing::Matcher<OutEdge>>> input_matchers; std::optional<::testing::Matcher<absl::Span<const Node* const>>> control_dep_set; std::map<string, std::optional<AttrValue>> attrs; }; class OutEdgeMatcher : public ::testing::MatcherInterface<OutEdge> { public: OutEdgeMatcher(::testing::Matcher<const Node*> src_matcher, int src_oidx) : src_matcher_(std::move(src_matcher)), src_oidx_(src_oidx) {} bool MatchAndExplain( OutEdge out_edge, ::testing::MatchResultListener* listener) const override { ::testing::StringMatchResultListener inner_listener; if (!src_matcher_.MatchAndExplain(out_edge.first, &inner_listener)) { if (listener->IsInterested()) { *listener << "\nsource does not match expected "; src_matcher_.DescribeTo(listener->stream()); string explanation = inner_listener.str(); if (!explanation.empty()) { *listener << "\n\t" << explanation; } } return false; } if (out_edge.second != src_oidx_) { if (listener->IsInterested()) { *listener << "\nexpected output slot to be " << src_oidx_ << " but found " << out_edge.second; } return false; } return true; } void DescribeTo(::std::ostream* os) const override { if (src_oidx_) { *os << "output slot: " << src_oidx_ << ", source: ("; } src_matcher_.DescribeTo(os); if (src_oidx_) { *os << ")"; } } private: ::testing::Matcher<const Node*> src_matcher_; int src_oidx_; }; } ::testing::Matcher<const Node*> impl::NodeWith( absl::Span<const NodeMatcherProperties> props) { NodeMatcher* matcher = new NodeMatcher(); for (const NodeMatcherProperties& prop : props) { if (prop.name()) { DCHECK(!matcher->name); matcher->name = prop.name(); } if (prop.op()) { DCHECK(!matcher->op); matcher->op = prop.op(); } if (prop.constant_value()) { DCHECK(!matcher->constant_value); matcher->constant_value = prop.constant_value(); } if (prop.assigned_device()) { DCHECK(!matcher->assigned_device); matcher->assigned_device = prop.assigned_device(); } if (prop.inputs()) { DCHECK(!matcher->input_matchers); matcher->input_matchers = *prop.inputs(); } if (prop.control_deps()) { DCHECK(!matcher->control_dep_set); matcher->control_dep_set = ::testing::UnorderedElementsAreArray(*prop.control_deps()); } if (prop.attr()) { auto insert_result = matcher->attrs.insert(*prop.attr()); DCHECK(insert_result.second); } } return ::testing::MakeMatcher(matcher); } impl::NodeMatcherProperties Name(string name) { impl::NodeMatcherProperties props; props.set_name(std::move(name)); return props; } impl::NodeMatcherProperties Op(string op) { impl::NodeMatcherProperties props; props.set_op(std::move(op)); return props; } impl::NodeMatcherProperties AssignedDevice(string assigned_device) { impl::NodeMatcherProperties props; props.set_assigned_device(std::move(assigned_device)); return props; } impl::NodeMatcherProperties impl::Inputs( absl::Span<const ::testing::Matcher<OutEdge>> inputs) { std::vector<::testing::Matcher<OutEdge>> inputs_vector; absl::c_copy(inputs, std::back_inserter(inputs_vector)); impl::NodeMatcherProperties props; props.set_inputs(std::move(inputs_vector)); return props; } impl::NodeMatcherProperties impl::CtrlDeps( absl::Span<const ::testing::Matcher<const Node*>> control_deps) { std::vector<::testing::Matcher<const Node*>> control_deps_vector; absl::c_copy(control_deps, std::back_inserter(control_deps_vector)); impl::NodeMatcherProperties props; props.set_control_deps(std::move(control_deps_vector)); return props; } std::pair<string, AttrValue> impl::AttrLiteralHelper( const std::pair<string, bool>& bool_attr) { AttrValue attr_value; attr_value.set_b(bool_attr.second); return {bool_attr.first, attr_value}; } std::pair<string, AttrValue> impl::AttrLiteralHelper( const std::pair<string, absl::Span<const int>>& int_list_attr) { AttrValue attr_value; AttrValue::ListValue* list = attr_value.mutable_list(); for (int i : int_list_attr.second) { list->add_i(i); } return {int_list_attr.first, attr_value}; } std::pair<string, AttrValue> impl::AttrLiteralHelper( const std::pair<string, absl::Span<const string>>& string_list_attr) { AttrValue attr_value; AttrValue::ListValue* list = attr_value.mutable_list(); for (const string& s : string_list_attr.second) { list->add_s(s); } return {string_list_attr.first, attr_value}; } impl::NodeMatcherProperties impl::Attr(std::pair<string, AttrValue> attr) { impl::NodeMatcherProperties props; props.set_attr(std::move(attr)); return props; } impl::NodeMatcherProperties impl::Attr(string name) { impl::NodeMatcherProperties props; props.set_attr({std::move(name), std::nullopt}); return props; } NodeMatcherProperties ConstantValue( const ::tensorflow::Input::Initializer& val) { TF_CHECK_OK(val.status); NodeMatcherProperties props; props.set_constant_value(val.tensor); return props; } ::testing::Matcher<impl::OutEdge> Const( const ::tensorflow::Input::Initializer& val) { return Out(NodeWith(ConstantValue(val))); } ::testing::Matcher<impl::OutEdge> Out( int oidx, ::testing::Matcher<const Node*> node_matcher) { return ::testing::MakeMatcher(new OutEdgeMatcher(node_matcher, oidx)); } } Node* FindNodeByName(Graph* g, absl::string_view name) { for (Node* n : g->nodes()) { if (n->name() == name) { return n; } } return nullptr; } } void PrintTo(const Node* n, ::std::ostream* os) { *os << SummarizeNode(*n); } void PrintTo(Node* n, ::std::ostream* os) { *os << SummarizeNode(*n); } }
#include "tensorflow/compiler/jit/node_matchers.h" #include <string> #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/control_flow_ops.h" #include "tensorflow/cc/ops/control_flow_ops_internal.h" #include "tensorflow/cc/ops/math_ops.h" namespace tensorflow { namespace testing { namespace { using ::testing::_; using testing::matchers::AssignedDevice; using testing::matchers::Attr; using testing::matchers::ConstantValue; using testing::matchers::CtrlDeps; using testing::matchers::Inputs; using testing::matchers::Name; using testing::matchers::NodeWith; using testing::matchers::Op; using testing::matchers::Out; template <typename M, typename T> string Explain(const T& t, const M& m) { ::testing::StringMatchResultListener listener; EXPECT_THAT(t, ::testing::Not(m)); EXPECT_FALSE(m.MatchAndExplain(t, &listener)); return listener.str(); } TEST(NodeMatchers, CheckAgainstConstant) { Scope root = Scope::NewRootScope().ExitOnError(); Output placeholder = ops::Placeholder(root.WithOpName("placeholder"), DT_FLOAT); EXPECT_THAT(placeholder.node(), NodeWith(Op("Placeholder"))); EXPECT_THAT(placeholder.node(), NodeWith(Name("placeholder"))); EXPECT_THAT(placeholder.node(), NodeWith(Op("Placeholder"), Name("placeholder"))); EXPECT_THAT(placeholder.node(), NodeWith(Name("placeholder"), Op("Placeholder"))); EXPECT_THAT(placeholder.node(), NodeWith(Inputs())); EXPECT_THAT(placeholder.node(), NodeWith(Op("Placeholder"), Name("placeholder"), Inputs())); EXPECT_EQ(Explain(placeholder.node(), NodeWith(Op("Add"))), "\nexpected op Add but found Placeholder"); EXPECT_EQ(Explain(placeholder.node(), NodeWith(Name("add"))), "\nexpected name add but found placeholder"); EXPECT_EQ(Explain(placeholder.node(), NodeWith(Inputs(Out(NodeWith())))), "\nexpected 1 inputs but node has 0"); } TEST(NodeMatchers, CheckAgainstBinary) { Scope root = Scope::NewRootScope().ExitOnError(); Output placeholder_a = ops::Placeholder(root.WithOpName("placeholder_a"), DT_FLOAT); Output placeholder_b = ops::Placeholder(root.WithOpName("placeholder_b"), DT_FLOAT); Output add = ops::Add(root.WithOpName("add"), placeholder_a, placeholder_b); EXPECT_THAT(add.node(), NodeWith(Op("Add"), Name("add"), Inputs(Out(NodeWith(Name("placeholder_a"))), Out(NodeWith(Name("placeholder_b")))))); EXPECT_EQ(Explain(add.node(), NodeWith(Inputs())), "\nexpected 0 inputs but node has 2"); EXPECT_EQ( Explain(add.node(), NodeWith(Inputs(Out(NodeWith(Name("blah"))), _))), "\ninput 0 does not match expected:\nname: blah, \nsource does not match " "expected name: blah\n\t\nexpected name blah but found placeholder_a"); EXPECT_EQ( Explain(add.node(), NodeWith(Inputs(_, Out(NodeWith(Name("blah")))))), "\ninput 1 does not match expected:\nname: blah, \nsource does not match " "expected name: blah\n\t\nexpected name blah but found placeholder_b"); } TEST(NodeMatchers, CheckControlDependence) { Scope root = Scope::NewRootScope().ExitOnError(); Output placeholder_a = ops::Placeholder(root.WithOpName("placeholder_a"), DT_FLOAT); Output placeholder_b = ops::Placeholder(root.WithOpName("placeholder_b"), DT_FLOAT); Output placeholder_c = ops::Placeholder(root.WithOpName("placeholder_c"), DT_FLOAT); Output placeholder_d = ops::Placeholder(root.WithOpName("placeholder_d"), DT_FLOAT); root.graph()->AddControlEdge(placeholder_a.node(), placeholder_c.node()); root.graph()->AddControlEdge(placeholder_b.node(), placeholder_c.node()); EXPECT_THAT(placeholder_c.node(), NodeWith(Name("placeholder_c"), CtrlDeps(NodeWith(Name("placeholder_a")), NodeWith(Name("placeholder_b"))))); EXPECT_THAT(placeholder_d.node(), NodeWith(Name("placeholder_d"), CtrlDeps())); { const std::string explanation = Explain(placeholder_c.node(), NodeWith(CtrlDeps())); EXPECT_NE(explanation.find("ctrl_deps, which has 2 elements"), std::string::npos); EXPECT_NE(explanation.find("does not match expected: is empty"), std::string::npos); } { const std::string explanation = Explain(placeholder_d.node(), NodeWith(CtrlDeps(NodeWith()))); EXPECT_NE(explanation.find("ctrl_deps"), std::string::npos); EXPECT_NE(explanation.find("does not match expected: has 1 element and " "that element is any node"), std::string::npos); } } TEST(NodeMatchers, ConstValue) { Scope root = Scope::NewRootScope().ExitOnError(); Output placeholder = ops::Placeholder(root.WithOpName("placeholder"), DT_FLOAT); Output const_0d = ops::Const(root.WithOpName("const_0d"), 42); Output const_2d = ops::Const(root.WithOpName("const_2d"), {{1, 2}, {4, 3}}); EXPECT_THAT(const_0d.node(), NodeWith(ConstantValue(42))); EXPECT_THAT(const_0d.node(), NodeWith(ConstantValue(42), Name("const_0d"))); EXPECT_THAT(const_2d.node(), NodeWith(ConstantValue({{1, 2}, {4, 3}}))); EXPECT_EQ(Explain(placeholder.node(), NodeWith(ConstantValue(42))), "\nexpected op Const but found Placeholder"); EXPECT_EQ( Explain(const_0d.node(), NodeWith(ConstantValue(43))), "\nmismatch in constant tensor at index 0 expected = 43 actual = 42"); EXPECT_EQ( Explain(const_0d.node(), NodeWith(ConstantValue({{1, 2}, {4, 3}}))), "\nwas looking for tensor with 4 elements, found tensor with 1 elements"); EXPECT_EQ( Explain(const_2d.node(), NodeWith(ConstantValue(42))), "\nwas looking for tensor with 1 elements, found tensor with 4 elements"); } TEST(NodeMatchers, AssignedDevice) { Scope root = Scope::NewRootScope().ExitOnError(); Output placeholder_a = ops::Placeholder(root.WithOpName("placeholder_a"), DT_FLOAT); Output placeholder_b = ops::Placeholder(root.WithOpName("placeholder_b"), DT_FLOAT); Output assigned_add = ops::Add(root.WithOpName("assigned_add"), placeholder_a, placeholder_b); assigned_add.node()->set_assigned_device_name( "/job:localhost/replica:0/task:0/device:CPU:0"); Output unassigned_add = ops::Add(root.WithOpName("unassigned_add"), placeholder_a, placeholder_b); EXPECT_THAT( assigned_add.node(), NodeWith(AssignedDevice("/job:localhost/replica:0/task:0/device:CPU:0"))); EXPECT_THAT(unassigned_add.node(), NodeWith(AssignedDevice(""))); EXPECT_EQ(Explain(unassigned_add.node(), NodeWith(AssignedDevice( "/job:localhost/replica:0/task:0/device:CPU:0"))), "\nexpected assigned_device " "/job:localhost/replica:0/task:0/device:CPU:0 but found \"\""); } TEST(NodeMatchers, OutputIndices) { Scope root = Scope::NewRootScope().ExitOnError(); Output pred = ops::Placeholder(root.WithOpName("pred"), DT_BOOL); Output data = ops::Placeholder(root.WithOpName("data"), DT_FLOAT); ops::Switch sw(root.WithOpName("switch"), data, pred); Output add = ops::Add(root.WithOpName("add"), sw.output_true, ops::Placeholder(root.WithOpName("addend"), DT_FLOAT)); EXPECT_THAT(add.node(), NodeWith(Inputs(Out(1, NodeWith(Op("Switch"))), _))); EXPECT_EQ( Explain(add.node(), NodeWith(Inputs(Out(0, NodeWith(Op("Switch"))), _))), "\ninput 0 does not match expected:\nop: Switch, \nexpected output slot " "to be 0 but found 1"); } TEST(NodeMatchers, Attrs) { Scope root = Scope::NewRootScope().ExitOnError(); Output enter = ops::internal::Enter( root.WithOpName("enter"), ops::Placeholder(root.WithOpName("data"), DT_FLOAT), "frame_name", ops::internal::Enter::Attrs{}.IsConstant(true)); EXPECT_THAT(enter.node(), NodeWith(Attr("is_constant", true))); EXPECT_EQ(Explain(enter.node(), NodeWith(Attr("is_constant", false))), "attribute named is_constant does not match value; expected: " "\"false\", found: \"true\""); EXPECT_EQ(Explain(enter.node(), NodeWith(Attr("missing_attr", false))), "did not find attribute named \"missing_attr\" in node"); } } } }
332
#ifndef TENSORFLOW_TSL_PLATFORM_CLOUD_TIME_UTIL_H_ #define TENSORFLOW_TSL_PLATFORM_CLOUD_TIME_UTIL_H_ #include "tsl/platform/status.h" namespace tsl { Status ParseRfc3339Time(const string& time, int64_t* mtime_nsec); } #endif #include "tsl/platform/cloud/time_util.h" #include <time.h> #include <cmath> #include <cstdio> #include <ctime> #ifdef _WIN32 #define timegm _mkgmtime #endif #include "tsl/platform/errors.h" namespace tsl { namespace { constexpr int64_t kNanosecondsPerSecond = 1000 * 1000 * 1000; } Status ParseRfc3339Time(const string& time, int64_t* mtime_nsec) { tm parsed{0}; float seconds; if (sscanf(time.c_str(), "%4d-%2d-%2dT%2d:%2d:%fZ", &(parsed.tm_year), &(parsed.tm_mon), &(parsed.tm_mday), &(parsed.tm_hour), &(parsed.tm_min), &seconds) != 6) { return errors::Internal( strings::StrCat("Unrecognized RFC 3339 time format: ", time)); } const int int_seconds = std::floor(seconds); parsed.tm_year -= 1900; parsed.tm_mon -= 1; parsed.tm_sec = int_seconds; *mtime_nsec = timegm(&parsed) * kNanosecondsPerSecond + static_cast<int64_t>(std::floor((seconds - int_seconds) * kNanosecondsPerSecond)); return OkStatus(); } }
#include "tsl/platform/cloud/time_util.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/test.h" namespace tsl { TEST(TimeUtil, ParseRfc3339Time) { int64_t mtime_nsec; TF_EXPECT_OK(ParseRfc3339Time("2016-04-29T23:15:24.896Z", &mtime_nsec)); EXPECT_NEAR(1461971724896, mtime_nsec / 1000 / 1000, 1); } TEST(TimeUtil, ParseRfc3339Time_ParseError) { int64_t mtime_nsec; EXPECT_EQ("Unrecognized RFC 3339 time format: 2016-04-29", ParseRfc3339Time("2016-04-29", &mtime_nsec).message()); } }
333
#ifndef XLA_SERVICE_GPU_FUSIONS_LOOP_MLIR_H_ #define XLA_SERVICE_GPU_FUSIONS_LOOP_MLIR_H_ #include <cstdint> #include <optional> #include "absl/status/status.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/MLIRContext.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/gpu/fusions/loop.h" #include "xla/service/gpu/fusions/mlir/computation_partitioner.h" #include "xla/service/gpu/fusions/mlir/mlir_fusion_emitter.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/model/indexing_map.h" namespace xla { namespace gpu { class MlirLoopFusion : public MlirFusionEmitterBase { public: explicit MlirLoopFusion(const HloFusionAnalysis& analysis) : analysis_(analysis), config_(ComputeLoopFusionConfig(analysis)) {} LaunchDimensions launch_dimensions() const override; std::optional<IndexingMap> ComputeThreadIdToOutputIndexing( int64_t root_index, mlir::MLIRContext* ctx) const override; std::optional<IndexingMap> ComputeThreadIdToInputIndexing( int64_t root_index, int64_t hero_operand_index, mlir::MLIRContext* ctx) const override; protected: absl::Status EmitEntryFunction( const mlir_converter::PartitionedComputations& computations, const mlir_converter::CallTargetProvider& call_targets, mlir::func::FuncOp entry_function, const HloFusionInstruction& fusion) const override; private: const HloFusionAnalysis& analysis_; LaunchDimensionsConfig config_; }; } } #endif #include "xla/service/gpu/fusions/loop_mlir.h" #include <iterator> #include <optional> #include <vector> #include "absl/algorithm/container.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/ImplicitLocOpBuilder.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/Value.h" #include "mlir/IR/ValueRange.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/gpu/fusions/mlir/computation_partitioner.h" #include "xla/service/gpu/fusions/mlir/elemental_hlo_to_mlir.h" #include "xla/service/gpu/fusions/mlir/ir/xla_gpu_ops.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/model/indexing_analysis.h" #include "xla/service/gpu/model/indexing_map.h" #include "xla/shape.h" #include "xla/status_macros.h" #include "xla/xla_data.pb.h" namespace xla { namespace gpu { namespace { using llvm::SmallVector; using mlir::Value; using mlir::ValueRange; const Shape& GetIndexShape(const Shape& shape) { return shape.IsTuple() ? shape.tuple_shapes(0) : shape; } } std::optional<IndexingMap> MlirLoopFusion::ComputeThreadIdToOutputIndexing( int64_t root_index, mlir::MLIRContext* ctx) const { auto launch_dims = launch_dimensions(); return GetDefaultThreadIdIndexingMap( launch_dims, config_.unroll_factor, GetIndexShape(analysis_.fusion_root(root_index).shape()), ctx); } std::optional<IndexingMap> MlirLoopFusion::ComputeThreadIdToInputIndexing( int64_t root_index, int64_t hero_operand_index, mlir::MLIRContext* ctx) const { std::optional<IndexingMap> thread_id_to_output_indexing = ComputeThreadIdToOutputIndexing(root_index, ctx); if (!thread_id_to_output_indexing.has_value()) { return std::nullopt; } const HloInstruction* fusion_root = &analysis_.fusion_root(root_index).instruction(); auto output_to_input_indexing = ComputeOutputToInputIndexing(fusion_root, 0, ctx); IndexingMapSet output_to_input_indexing_set = output_to_input_indexing.indexing_maps[hero_operand_index]; CHECK_EQ(output_to_input_indexing_set.size(), 1); IndexingMap thread_id_to_input_indexing_map = ComposeIndexingMaps( *thread_id_to_output_indexing, *output_to_input_indexing_set.begin()); thread_id_to_input_indexing_map.Simplify(); return thread_id_to_input_indexing_map; } LaunchDimensions MlirLoopFusion::launch_dimensions() const { return CalculateLaunchDimensions( GetIndexShape(analysis_.fusion_root(0).shape()), analysis_.device_info(), config_); } absl::Status MlirLoopFusion::EmitEntryFunction( const mlir_converter::PartitionedComputations& computations, const mlir_converter::CallTargetProvider& call_targets, mlir::func::FuncOp entry_function, const HloFusionInstruction& fusion) const { mlir::ImplicitLocOpBuilder builder(entry_function.getLoc(), entry_function); builder.setInsertionPointToStart(entry_function.addEntryBlock()); auto indexing = ComputeThreadIdToOutputIndexing(0, entry_function.getContext()); TF_RET_CHECK(indexing) << "Indexing is never nullopt"; int num_inputs = fusion.fused_instructions_computation()->num_parameters(); auto output_tensor_args = entry_function.getArguments().drop_front(num_inputs); llvm::SmallVector<const Shape*> result_shapes; for (const HloInstructionAdaptor& root : analysis_.fusion_roots()) { if (root.shape().IsTuple()) { for (const auto& shape : root.shape().tuple_shapes()) { result_shapes.push_back(&shape); } } else { result_shapes.push_back(&root.shape()); } } auto body_builder = [&](ValueRange output_tensors, ValueRange dim_values, ValueRange symbol_values) -> SmallVector<Value> { llvm::SmallVector<Value> first_output_indices = mlir_converter::ApplyIndexing(*indexing, dim_values, symbol_values, builder); auto root_fn = call_targets( fusion.fused_instructions_computation()->root_instruction()); SmallVector<Value> operands( entry_function.getArguments().take_front(num_inputs)); absl::c_copy(first_output_indices, std::back_inserter(operands)); auto result_scalars = builder.create<PureCallOp>(root_fn, operands).getResults(); SmallVector<Value> result_tensors; result_tensors.reserve(output_tensor_args.size()); for (auto [root_shape, tensor, value] : llvm::zip(result_shapes, output_tensors, result_scalars)) { llvm::SmallVector<Value> output_indices = mlir_converter::ApplyIndexing( GetBitcastMap(*result_shapes.front(), *root_shape, builder.getContext()), first_output_indices, {}, builder); result_tensors.push_back(builder.create<mlir::tensor::InsertOp>( value, tensor, output_indices)); } return result_tensors; }; builder.create<mlir::func::ReturnOp>( EmitThreadLoopNest(builder, output_tensor_args, *indexing, body_builder)); return absl::OkStatus(); } } }
#include "xla/service/gpu/fusions/loop_mlir.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/error_spec.h" #include "xla/service/gpu/fusions/mlir_emitter_test_base.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/model/indexing_test_utils.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using MlirLoopFusionTest = MlirEmitterTestBase<MlirLoopFusion>; TEST_F(MlirLoopFusionTest, ThreadId_IndexingUnrolled) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule module neg { %input = f32[100,200,300] parameter(0) ROOT neg = f32[100,200,300] negate(%input) } ENTRY entry { %input = f32[100,200,300] parameter(0) ROOT %fusion = f32[100,200,300] fusion(%input), kind=kLoop, calls=neg } )")); thread_id_printer_.SetSymbolName(0, "chunk_id"); thread_id_printer_.SetSymbolName(1, "unroll_id"); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); MlirLoopFusion fusion(analysis); auto thread_id_to_output_indexing = fusion.ComputeThreadIdToOutputIndexing(0, &mlir_context_); EXPECT_THAT(thread_id_to_output_indexing->ToString(thread_id_printer_), MatchIndexingString(R"( (th_x, th_y, th_z, bl_x, bl_y, bl_z)[chunk_id, unroll_id] -> ( ((bl_x * 128 + chunk_id * 129024 + th_x) floordiv 15000) mod 100, ((bl_x * 128 + chunk_id * 129024 + th_x) floordiv 75) mod 200, (th_x * 4 + bl_x * 512 + chunk_id * 516096) mod 300 + unroll_id ) domain: th_x in [0, 128) th_y in [0, 1) th_z in [0, 1) bl_x in [0, 1008) bl_y in [0, 1) bl_z in [0, 1) chunk_id in [0, 12) unroll_id in [0, 4) (th_x + bl_x * 128) * 4 + chunk_id * 516096 in [0, 5999997) )")); } TEST_F(MlirLoopFusionTest, ThreadId_IndexingNotUnrolled) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule module neg { %input = f32[20] parameter(0) ROOT neg = f32[20] negate(%input) } ENTRY entry { %input = f32[20] parameter(0) ROOT %fusion = f32[20] fusion(%input), kind=kLoop, calls=neg } )")); thread_id_printer_.SetSymbolName(0, "chunk_id"); thread_id_printer_.SetSymbolName(1, "unroll_id"); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); MlirLoopFusion fusion(analysis); auto thread_id_to_output_indexing = fusion.ComputeThreadIdToOutputIndexing(0, &mlir_context_); EXPECT_THAT(thread_id_to_output_indexing->ToString(thread_id_printer_), MatchIndexingString(R"( (th_x, th_y, th_z, bl_x, bl_y, bl_z)[chunk_id, unroll_id] -> (th_x) domain: th_x in [0, 20) th_y in [0, 1) th_z in [0, 1) bl_x in [0, 1) bl_y in [0, 1) bl_z in [0, 1) chunk_id in [0, 1) unroll_id in [0, 1) )")); auto thread_id_to_input_indexing = fusion.ComputeThreadIdToInputIndexing( 0, 0, &mlir_context_); EXPECT_THAT(thread_id_to_input_indexing->ToString(thread_id_printer_), MatchIndexingString(R"( (th_x, th_y, th_z, bl_x, bl_y, bl_z)[chunk_id, unroll_id] -> (th_x) domain: th_x in [0, 20) th_y in [0, 1) th_z in [0, 1) bl_x in [0, 1) bl_y in [0, 1) bl_z in [0, 1) chunk_id in [0, 1) unroll_id in [0, 1) )")); } TEST_F(MlirLoopFusionTest, ThreadId_Broadcast) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule module bcast { %input = f32[20] parameter(0) ROOT bcast = f32[10, 20, 30] broadcast(%input), dimensions={1} } ENTRY entry { %input = f32[20] parameter(0) ROOT %fusion = f32[10, 20, 30] fusion(%input), kind=kLoop, calls=bcast } )")); thread_id_printer_.SetSymbolName(0, "chunk_id"); thread_id_printer_.SetSymbolName(1, "unroll_id"); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); MlirLoopFusion fusion(analysis); auto thread_id_to_output_indexing = fusion.ComputeThreadIdToOutputIndexing(0, &mlir_context_); EXPECT_THAT(thread_id_to_output_indexing->ToString(thread_id_printer_), MatchIndexingString(R"( (th_x, th_y, th_z, bl_x, bl_y, bl_z)[chunk_id, unroll_id] -> ( ((bl_x * 128 + th_x) floordiv 600) mod 10, ((bl_x * 128 + th_x) floordiv 30) mod 20, (bl_x * 128 + th_x) mod 30 ) domain: th_x in [0, 128) th_y in [0, 1) th_z in [0, 1) bl_x in [0, 47) bl_y in [0, 1) bl_z in [0, 1) chunk_id in [0, 1) unroll_id in [0, 1) th_x + bl_x * 128 in [0, 6000) )")); auto thread_id_to_input_indexing = fusion.ComputeThreadIdToInputIndexing( 0, 0, &mlir_context_); EXPECT_THAT(thread_id_to_input_indexing->ToString(thread_id_printer_), MatchIndexingString(R"( (th_x, th_y, th_z, bl_x, bl_y, bl_z)[chunk_id, unroll_id] -> (((bl_x * 128 + th_x) floordiv 30) mod 20) domain: th_x in [0, 128) th_y in [0, 1) th_z in [0, 1) bl_x in [0, 47) bl_y in [0, 1) bl_z in [0, 1) chunk_id in [0, 1) unroll_id in [0, 1) th_x + bl_x * 128 in [0, 6000) )")); } TEST_F(MlirLoopFusionTest, Constant_Broadcast) { auto kHloString = R"( HloModule module bcast { zero = bf16[] constant(0) ROOT broadcast = bf16[2,16,48]{2,1,0} broadcast(zero), dimensions={} } ENTRY entry { ROOT %fusion = bf16[2,16,48]{2,1,0} fusion(), kind=kLoop, calls=bcast } )"; TF_ASSERT_OK(EmitAndCheckIR(kHloString, R"( )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{0})); } TEST_F(MlirLoopFusionTest, NoCodeDuplication) { auto kHloString = R"( HloModule test_module %fused_computation (param: f32[6]) -> f32[2] { %param = f32[6]{0} parameter(0) %slice0.1 = f32[5]{0} slice(f32[6]{0} %param), slice={[0:5]} %slice0.2 = f32[5]{0} slice(f32[6]{0} %param), slice={[1:6]} %add0 = f32[5]{0} add(f32[5]{0} %slice0.1, f32[5]{0} %slice0.2) %slice1.1 = f32[4]{0} slice(f32[5]{0} %add0), slice={[0:4]} %slice1.2 = f32[4]{0} slice(f32[5]{0} %add0), slice={[1:5]} %add1 = f32[4]{0} add(f32[4]{0} %slice1.1, f32[4]{0} %slice1.2) %slice2.1 = f32[3]{0} slice(f32[4]{0} %add1), slice={[0:3]} %slice2.2 = f32[3]{0} slice(f32[4]{0} %add1), slice={[1:4]} %add2 = f32[3]{0} add(f32[3]{0} %slice2.1, f32[3]{0} %slice2.2) %slice3.1 = f32[2]{0} slice(f32[3]{0} %add2), slice={[0:2]} %slice3.2 = f32[2]{0} slice(f32[3]{0} %add2), slice={[1:3]} ROOT %add3 = f32[2]{0} add(f32[2]{0} %slice3.1, f32[2]{0} %slice3.2) } ENTRY entry_computation { p0 = f32[] parameter(0) add = f32[] add(p0, p0) broadcast = f32[6]{0} broadcast(add), dimensions={} ROOT %fusion = f32[2]{0} fusion(broadcast), kind=kLoop, calls=%fused_computation } )"; TF_ASSERT_OK(EmitAndCheckIR(kHloString, R"( )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirLoopFusionTest, TwoUsersConsistentIndexing) { auto kHloString = R"( HloModule test_module %fused_computation (param: f32[6]) -> f32[2] { %p0 = f32[2]{0} parameter(0) %p1 = f32[2]{0} parameter(1) %add = f32[2] add(%p0, %p1) %sub = f32[2] subtract(%p0, %p1) %mul = f32[2] multiply(%add, %sub) %div = f32[2] divide(%add, %sub) ROOT %atan2 = f32[2] atan2(%mul, %div) } ENTRY entry_computation { p0 = f32[2] parameter(0) p1 = f32[2] parameter(1) ROOT %fusion = f32[2] fusion(p0, p1), kind=kLoop, calls=%fused_computation } )"; TF_ASSERT_OK(EmitAndCheckIR(kHloString, R"( )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirLoopFusionTest, ComplexOps) { auto kHloString = R"( HloModule test_module %fused_computation { %p0 = f32[2]{0} parameter(0) %p1 = f32[2]{0} parameter(1) %p2 = c64[2]{0} parameter(2) %complex = c64[2] complex(%p0, %p1) %add = c64[2] add(%complex, %p2) %cst = c64[2]{0} constant({(2.0, 0.0), (0.0, 2.0)}) ROOT %mul = c64[2] multiply(%add, %cst) } ENTRY entry_computation { p0 = f32[2] parameter(0) p1 = f32[2] parameter(1) p2 = c64[2] parameter(2) ROOT %fusion = c64[2] fusion(p0, p1, p2), kind=kLoop, calls=%fused_computation } )"; TF_ASSERT_OK(EmitAndCheckIR(kHloString, R"( )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirLoopFusionTest, IotaCopyBitcastBroadcastReshapeReverseTranspose) { auto kHloString = R"( HloModule test_module %fused_computation { %iota = f32[10,20,30] iota(), iota_dimension=2 %copy = f32[10,20,30] copy(%iota) %bitcast = s32[10,20,30] bitcast-convert(%copy) %broadcast = s32[2,10,3,20,5,30,7] broadcast(%bitcast), dimensions={1,3,5} %reshape = s32[20,60,150,7] reshape(%broadcast) %reverse = s32[20,60,150,7] reverse(%reshape), dimensions={2,3} ROOT %transpose = s32[60,20,7,150] transpose(%reverse), dimensions={1,0,3,2} } ENTRY entry_computation { ROOT %fusion = s32[60,20,7,150] fusion(), kind=kLoop, calls=%fused_computation } )"; TF_ASSERT_OK(EmitAndCheckIR(kHloString, R"( )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirLoopFusionTest, VariadicReduce) { auto kHloString = R"( HloModule Test, is_scheduled=true Add { scalar_lhs.0 = f32[] parameter(0) scalar_lhs.1 = f32[] parameter(1) scalar_rhs.0 = f32[] parameter(2) scalar_rhs.1 = f32[] parameter(3) add = f32[] add(scalar_lhs.0, scalar_rhs.0) mul = f32[] multiply(scalar_lhs.1, scalar_rhs.1) ROOT t = (f32[], f32[]) tuple(add, mul) } fused_computation { param_0 = f32[3,4,5]{2,1,0} parameter(0) param_1 = f32[3,4,5]{2,1,0} parameter(1) param_2 = f32[] parameter(2) ROOT d.1 = (f32[4], f32[4]) reduce(f32[3,4,5]{2,1,0} param_0, f32[3,4,5]{2,1,0} %param_1, f32[] param_2, f32[] param_2), dimensions={0,2}, to_apply=Add } ENTRY main { a = f32[3,4,5]{2,1,0} parameter(0) b = f32[3,4,5]{2,1,0} parameter(1) c = f32[] constant(0) ROOT fusion = (f32[4]{0}, f32[4]{0}) fusion(a, b, c), kind=kLoop, calls=fused_computation } )"; TF_ASSERT_OK(EmitAndCheckIR(kHloString, R"( )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirLoopFusionTest, MinimumMaximum) { auto kHloString = R"( HloModule Test fused_computation { param0 = f64[] parameter(0) param1 = f64[] parameter(1) minimum = f64[] minimum(f64[] param0, f64[] param1) maximum = f64[] maximum(f64[] param0, f64[] param1) ROOT tuple = (f64[], f64[]) tuple(minimum, maximum) } ENTRY main { param0 = f64[] parameter(0) param1 = f64[] parameter(1) ROOT fusion = (f64[], f64[]) fusion(f64[] param0, f64[] param1), kind=kLoop, calls=fused_computation } )"; TF_ASSERT_OK(EmitAndCheckIR(kHloString, R"( )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirLoopFusionTest, TupleBitcast) { auto kHloString = R"( HloModule Test fused_computation { param0 = f64[8] parameter(0) param1 = f64[8] parameter(1) minimum = f64[8] minimum(param0, param1) maximum = f64[8] maximum(param0, param1) bc = f64[2, 4] bitcast(maximum) ROOT tuple = (f64[8], f64[2,4]) tuple(minimum, bc) } ENTRY main { param0 = f64[8] parameter(0) param1 = f64[8] parameter(1) ROOT fusion = (f64[8], f64[2,4]) fusion(param0, param1), kind=kLoop, calls=fused_computation } )"; EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirLoopFusionTest, NestedTuple) { auto kHloString = R"( add { scalar_lhs.0 = f32[] parameter(0) scalar_lhs.1 = f32[] parameter(1) scalar_rhs.0 = f32[] parameter(2) scalar_rhs.1 = f32[] parameter(3) add = f32[] add(scalar_lhs.0, scalar_rhs.0) mul = f32[] multiply(scalar_lhs.1, scalar_rhs.1) ROOT t = (f32[], f32[]) tuple(add, mul) } fused_computation { param_0 = f32[3,4,5]{2,1,0} parameter(0) param_1 = f32[3,4,5]{2,1,0} parameter(1) param_2 = f32[] parameter(2) param_3 = f32[4] parameter(3) reduce = (f32[4], f32[4]) reduce(f32[3,4,5]{2,1,0} param_0, f32[3,4,5]{2,1,0} %param_1, f32[] param_2, f32[] param_2), dimensions={0,2}, to_apply=add log = f32[4] log(param_3) ROOT tuple = ((f32[4], f32[4]), f32[4]) tuple(reduce, log) } ENTRY main { a = f32[3,4,5]{2,1,0} parameter(0) b = f32[3,4,5]{2,1,0} parameter(1) c = f32[] constant(0) d = f32[4] parameter(2) ROOT fusion = ((f32[4], f32[4]), f32[4]) fusion(a, b, c, d), kind=kLoop, calls=fused_computation } )"; EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirLoopFusionTest, DynamicSliceWith64BitInput) { constexpr auto kHloString = R"( %fused_computation { %p0 = s64[] parameter(0) %p1 = f64[5] parameter(1) ROOT slice = f64[4] dynamic-slice(%p1, %p0), dynamic_slice_sizes={4} } ENTRY main { %c = s64[] constant(-1000000000000) %p0 = f64[5] parameter(0) ROOT %fusion = f64[4]{0} fusion(%c, %p0), kind=kInput, calls=%fused_computation })"; TF_ASSERT_OK(EmitAndCheckIR(kHloString, R"( )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } } } }
334
#ifndef QUICHE_QUIC_QBONE_QBONE_PACKET_EXCHANGER_H_ #define QUICHE_QUIC_QBONE_QBONE_PACKET_EXCHANGER_H_ #include "quiche/quic/core/quic_packets.h" #include "quiche/quic/qbone/qbone_client_interface.h" #include "quiche/quic/qbone/qbone_packet_writer.h" namespace quic { class QbonePacketExchanger : public QbonePacketWriter { public: class Visitor { public: virtual ~Visitor() {} virtual void OnReadError(const std::string& error) {} virtual void OnWriteError(const std::string& error) {} }; QbonePacketExchanger(Visitor* visitor, size_t max_pending_packets) : visitor_(visitor), max_pending_packets_(max_pending_packets) {} QbonePacketExchanger(const QbonePacketExchanger&) = delete; QbonePacketExchanger& operator=(const QbonePacketExchanger&) = delete; QbonePacketExchanger(QbonePacketExchanger&&) = delete; QbonePacketExchanger& operator=(QbonePacketExchanger&&) = delete; ~QbonePacketExchanger() = default; bool ReadAndDeliverPacket(QboneClientInterface* qbone_client); void WritePacketToNetwork(const char* packet, size_t size) override; void SetWritable(); private: virtual std::unique_ptr<QuicData> ReadPacket(bool* blocked, std::string* error) = 0; virtual bool WritePacket(const char* packet, size_t size, bool* blocked, std::string* error) = 0; std::list<std::unique_ptr<QuicData>> packet_queue_; Visitor* visitor_; size_t max_pending_packets_; bool write_blocked_ = false; }; } #endif #include "quiche/quic/qbone/qbone_packet_exchanger.h" #include <memory> #include <string> #include <utility> namespace quic { bool QbonePacketExchanger::ReadAndDeliverPacket( QboneClientInterface* qbone_client) { bool blocked = false; std::string error; std::unique_ptr<QuicData> packet = ReadPacket(&blocked, &error); if (packet == nullptr) { if (!blocked && visitor_) { visitor_->OnReadError(error); } return false; } qbone_client->ProcessPacketFromNetwork(packet->AsStringPiece()); return true; } void QbonePacketExchanger::WritePacketToNetwork(const char* packet, size_t size) { bool blocked = false; std::string error; if (packet_queue_.empty() && !write_blocked_) { if (WritePacket(packet, size, &blocked, &error)) { return; } if (blocked) { write_blocked_ = true; } else { QUIC_LOG_EVERY_N_SEC(ERROR, 60) << "Packet write failed: " << error; if (visitor_) { visitor_->OnWriteError(error); } } } if (packet_queue_.size() >= max_pending_packets_) { return; } auto data_copy = new char[size]; memcpy(data_copy, packet, size); packet_queue_.push_back( std::make_unique<QuicData>(data_copy, size, true)); } void QbonePacketExchanger::SetWritable() { write_blocked_ = false; while (!packet_queue_.empty()) { bool blocked = false; std::string error; if (WritePacket(packet_queue_.front()->data(), packet_queue_.front()->length(), &blocked, &error)) { packet_queue_.pop_front(); } else { if (!blocked && visitor_) { visitor_->OnWriteError(error); } write_blocked_ = blocked; return; } } } }
#include "quiche/quic/qbone/qbone_packet_exchanger.h" #include <list> #include <memory> #include <string> #include <utility> #include <vector> #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/qbone/mock_qbone_client.h" namespace quic { namespace { using ::testing::StrEq; using ::testing::StrictMock; const size_t kMaxPendingPackets = 2; class MockVisitor : public QbonePacketExchanger::Visitor { public: MOCK_METHOD(void, OnReadError, (const std::string&), (override)); MOCK_METHOD(void, OnWriteError, (const std::string&), (override)); }; class FakeQbonePacketExchanger : public QbonePacketExchanger { public: using QbonePacketExchanger::QbonePacketExchanger; void AddPacketToBeRead(std::unique_ptr<QuicData> packet) { packets_to_be_read_.push_back(std::move(packet)); } void SetReadError(const std::string& error) { read_error_ = error; } void ForceWriteFailure(bool blocked, const std::string& error) { write_blocked_ = blocked; write_error_ = error; } const std::vector<std::string>& packets_written() const { return packets_written_; } private: std::unique_ptr<QuicData> ReadPacket(bool* blocked, std::string* error) override { *blocked = false; if (packets_to_be_read_.empty()) { *blocked = read_error_.empty(); *error = read_error_; return nullptr; } std::unique_ptr<QuicData> packet = std::move(packets_to_be_read_.front()); packets_to_be_read_.pop_front(); return packet; } bool WritePacket(const char* packet, size_t size, bool* blocked, std::string* error) override { *blocked = false; if (write_blocked_ || !write_error_.empty()) { *blocked = write_blocked_; *error = write_error_; return false; } packets_written_.push_back(std::string(packet, size)); return true; } std::string read_error_; std::list<std::unique_ptr<QuicData>> packets_to_be_read_; std::string write_error_; bool write_blocked_ = false; std::vector<std::string> packets_written_; }; TEST(QbonePacketExchangerTest, ReadAndDeliverPacketDeliversPacketToQboneClient) { StrictMock<MockVisitor> visitor; FakeQbonePacketExchanger exchanger(&visitor, kMaxPendingPackets); StrictMock<MockQboneClient> client; std::string packet = "data"; exchanger.AddPacketToBeRead( std::make_unique<QuicData>(packet.data(), packet.length())); EXPECT_CALL(client, ProcessPacketFromNetwork(StrEq("data"))); EXPECT_TRUE(exchanger.ReadAndDeliverPacket(&client)); } TEST(QbonePacketExchangerTest, ReadAndDeliverPacketNotifiesVisitorOnReadFailure) { MockVisitor visitor; FakeQbonePacketExchanger exchanger(&visitor, kMaxPendingPackets); MockQboneClient client; std::string io_error = "I/O error"; exchanger.SetReadError(io_error); EXPECT_CALL(visitor, OnReadError(StrEq(io_error))).Times(1); EXPECT_FALSE(exchanger.ReadAndDeliverPacket(&client)); } TEST(QbonePacketExchangerTest, ReadAndDeliverPacketDoesNotNotifyVisitorOnBlockedIO) { MockVisitor visitor; FakeQbonePacketExchanger exchanger(&visitor, kMaxPendingPackets); MockQboneClient client; EXPECT_FALSE(exchanger.ReadAndDeliverPacket(&client)); } TEST(QbonePacketExchangerTest, WritePacketToNetworkWritesDirectlyToNetworkWhenNotBlocked) { MockVisitor visitor; FakeQbonePacketExchanger exchanger(&visitor, kMaxPendingPackets); MockQboneClient client; std::string packet = "data"; exchanger.WritePacketToNetwork(packet.data(), packet.length()); ASSERT_EQ(exchanger.packets_written().size(), 1); EXPECT_THAT(exchanger.packets_written()[0], StrEq(packet)); } TEST(QbonePacketExchangerTest, WritePacketToNetworkQueuesPacketsAndProcessThemLater) { MockVisitor visitor; FakeQbonePacketExchanger exchanger(&visitor, kMaxPendingPackets); MockQboneClient client; exchanger.ForceWriteFailure(true, ""); std::vector<std::string> packets = {"packet0", "packet1"}; for (int i = 0; i < packets.size(); i++) { exchanger.WritePacketToNetwork(packets[i].data(), packets[i].length()); } ASSERT_TRUE(exchanger.packets_written().empty()); exchanger.ForceWriteFailure(false, ""); exchanger.SetWritable(); ASSERT_EQ(exchanger.packets_written().size(), 2); for (int i = 0; i < packets.size(); i++) { EXPECT_THAT(exchanger.packets_written()[i], StrEq(packets[i])); } } TEST(QbonePacketExchangerTest, SetWritableContinuesProcessingPacketIfPreviousCallBlocked) { MockVisitor visitor; FakeQbonePacketExchanger exchanger(&visitor, kMaxPendingPackets); MockQboneClient client; exchanger.ForceWriteFailure(true, ""); std::vector<std::string> packets = {"packet0", "packet1"}; for (int i = 0; i < packets.size(); i++) { exchanger.WritePacketToNetwork(packets[i].data(), packets[i].length()); } ASSERT_TRUE(exchanger.packets_written().empty()); exchanger.SetWritable(); ASSERT_TRUE(exchanger.packets_written().empty()); exchanger.ForceWriteFailure(false, ""); exchanger.SetWritable(); ASSERT_EQ(exchanger.packets_written().size(), 2); for (int i = 0; i < packets.size(); i++) { EXPECT_THAT(exchanger.packets_written()[i], StrEq(packets[i])); } } TEST(QbonePacketExchangerTest, WritePacketToNetworkDropsPacketIfQueueIfFull) { std::vector<std::string> packets = {"packet0", "packet1", "packet2"}; size_t queue_size = packets.size() - 1; MockVisitor visitor; FakeQbonePacketExchanger exchanger(&visitor, queue_size); MockQboneClient client; exchanger.ForceWriteFailure(true, ""); for (int i = 0; i < packets.size(); i++) { exchanger.WritePacketToNetwork(packets[i].data(), packets[i].length()); } ASSERT_TRUE(exchanger.packets_written().empty()); exchanger.ForceWriteFailure(false, ""); exchanger.SetWritable(); ASSERT_EQ(exchanger.packets_written().size(), queue_size); for (int i = 0; i < queue_size; i++) { EXPECT_THAT(exchanger.packets_written()[i], StrEq(packets[i])); } } TEST(QbonePacketExchangerTest, WriteErrorsGetNotified) { MockVisitor visitor; FakeQbonePacketExchanger exchanger(&visitor, kMaxPendingPackets); MockQboneClient client; std::string packet = "data"; std::string io_error = "I/O error"; exchanger.ForceWriteFailure(false, io_error); EXPECT_CALL(visitor, OnWriteError(StrEq(io_error))).Times(1); exchanger.WritePacketToNetwork(packet.data(), packet.length()); ASSERT_TRUE(exchanger.packets_written().empty()); exchanger.ForceWriteFailure(true, ""); exchanger.WritePacketToNetwork(packet.data(), packet.length()); std::string sys_error = "sys error"; exchanger.ForceWriteFailure(false, sys_error); EXPECT_CALL(visitor, OnWriteError(StrEq(sys_error))).Times(1); exchanger.SetWritable(); ASSERT_TRUE(exchanger.packets_written().empty()); } TEST(QbonePacketExchangerTest, NullVisitorDoesntCrash) { FakeQbonePacketExchanger exchanger(nullptr, kMaxPendingPackets); MockQboneClient client; std::string packet = "data"; std::string io_error = "I/O error"; exchanger.SetReadError(io_error); EXPECT_FALSE(exchanger.ReadAndDeliverPacket(&client)); exchanger.ForceWriteFailure(false, io_error); exchanger.WritePacketToNetwork(packet.data(), packet.length()); EXPECT_TRUE(exchanger.packets_written().empty()); } } }
335
#ifndef TENSORFLOW_TSL_LIB_HASH_CRC32C_H_ #define TENSORFLOW_TSL_LIB_HASH_CRC32C_H_ #include <stddef.h> #include "absl/crc/crc32c.h" #include "absl/strings/string_view.h" #include "tsl/platform/cord.h" #include "tsl/platform/platform.h" #include "tsl/platform/types.h" namespace tsl { namespace crc32c { inline uint32 Extend(uint32 init_crc, const char* buf, size_t size) { return static_cast<uint32>(absl::ExtendCrc32c( static_cast<absl::crc32c_t>(init_crc), absl::string_view(buf, size))); } #if defined(TF_CORD_SUPPORT) extern uint32 Extend(uint32 init_crc, const absl::Cord& cord); #endif inline uint32 Value(const char* data, size_t n) { return Extend(0, data, n); } #if defined(TF_CORD_SUPPORT) inline uint32 Value(const absl::Cord& cord) { return Extend(0, cord); } #endif static const uint32 kMaskDelta = 0xa282ead8ul; inline uint32 Mask(uint32 crc) { return ((crc >> 15) | (crc << 17)) + kMaskDelta; } inline uint32 Unmask(uint32 masked_crc) { uint32 rot = masked_crc - kMaskDelta; return ((rot >> 17) | (rot << 15)); } } } #endif #include "tsl/lib/hash/crc32c.h" #include <stdint.h> #include "absl/strings/cord.h" #include "absl/strings/string_view.h" #include "tsl/platform/types.h" namespace tsl { namespace crc32c { #if defined(TF_CORD_SUPPORT) uint32 Extend(uint32 crc, const absl::Cord &cord) { for (absl::string_view fragment : cord.Chunks()) { crc = Extend(crc, fragment.data(), fragment.size()); } return crc; } #endif } }
#include "tsl/lib/hash/crc32c.h" #include <string> #include "absl/strings/cord.h" #include "tsl/platform/logging.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" #include "tsl/platform/types.h" namespace tsl { namespace crc32c { TEST(CRC, StandardResults) { char buf[32]; memset(buf, 0, sizeof(buf)); ASSERT_EQ(0x8a9136aa, Value(buf, sizeof(buf))); memset(buf, 0xff, sizeof(buf)); ASSERT_EQ(0x62a8ab43, Value(buf, sizeof(buf))); for (int i = 0; i < 32; i++) { buf[i] = i; } ASSERT_EQ(0x46dd794e, Value(buf, sizeof(buf))); for (int i = 0; i < 32; i++) { buf[i] = 31 - i; } ASSERT_EQ(0x113fdb5c, Value(buf, sizeof(buf))); unsigned char data[48] = { 0x01, 0xc0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, 0x18, 0x28, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, }; ASSERT_EQ(0xd9963a56, Value(reinterpret_cast<char*>(data), sizeof(data))); ASSERT_EQ(0xdd1b19be, Value(reinterpret_cast<char*>(data), sizeof(data) - 7)); ASSERT_EQ(0x4930c4b1, Value(reinterpret_cast<char*>(data) + 1, sizeof(data) - 4)); } TEST(CRC, Values) { ASSERT_NE(Value("a", 1), Value("foo", 3)); } TEST(CRC, Extend) { ASSERT_EQ(Value("hello world", 11), Extend(Value("hello ", 6), "world", 5)); } TEST(CRC, Mask) { uint32 crc = Value("foo", 3); ASSERT_NE(crc, Mask(crc)); ASSERT_NE(crc, Mask(Mask(crc))); ASSERT_EQ(crc, Unmask(Mask(crc))); ASSERT_EQ(crc, Unmask(Unmask(Mask(Mask(crc))))); } #if defined(PLATFORM_GOOGLE) TEST(CRC, ValuesWithCord) { ASSERT_NE(Value(absl::Cord("a")), Value(absl::Cord("foo"))); } TEST(CRC, ExtendWithCord) { ASSERT_EQ(Value(absl::Cord("hello world")), Extend(Value(absl::Cord("hello ")), absl::Cord("world"))); } #endif static void BM_CRC(::testing::benchmark::State& state) { int len = state.range(0); std::string input(len, 'x'); uint32 h = 0; for (auto s : state) { h = Extend(h, input.data() + 1, len - 1); } state.SetBytesProcessed(state.iterations() * len); VLOG(1) << h; } BENCHMARK(BM_CRC)->Range(1, 256 * 1024); } }
336
#ifndef TENSORFLOW_LITE_TOCO_TOCO_CONVERT_H_ #define TENSORFLOW_LITE_TOCO_TOCO_CONVERT_H_ #include <string> #include "tensorflow/core/lib/core/status.h" #include "tensorflow/lite/toco/args.h" #include "tensorflow/lite/toco/model_flags.pb.h" #include "tensorflow/lite/toco/toco_flags.pb.h" namespace toco { tensorflow::Status Convert(const std::string& graph_def_contents, const TocoFlags& toco_flags, const ModelFlags& model_flags, std::string* output_file_contents, int64_t* arithmetic_ops_count = nullptr); tensorflow::Status Convert(const ParsedTocoFlags& parsed_toco_flags, const ParsedModelFlags& parsed_model_flags); } #endif #include <cstdio> #include <memory> #include <string> #include "absl/strings/string_view.h" #include "tensorflow/lite/toco/model.h" #include "tensorflow/lite/toco/model_cmdline_flags.h" #include "tensorflow/lite/toco/model_flags.pb.h" #include "tensorflow/lite/toco/toco_cmdline_flags.h" #include "tensorflow/lite/toco/toco_flags.pb.h" #include "tensorflow/lite/toco/toco_port.h" #include "tensorflow/lite/toco/toco_tooling.h" #include "tensorflow/lite/toco/toco_types.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/platform/logging.h" namespace toco { namespace { void CheckOutputFilePermissions(const Arg<std::string>& output_file) { QCHECK(output_file.specified()) << "Missing required flag --output_file.\n"; QCHECK(port::file::Writable(output_file.value()).ok()) << "Specified output_file is not writable: " << output_file.value() << ".\n"; } void CheckFrozenModelPermissions(const Arg<std::string>& input_file) { QCHECK(input_file.specified()) << "Missing required flag --input_file.\n"; QCHECK(port::file::Exists(input_file.value(), port::file::Defaults()).ok()) << "Specified input_file does not exist: " << input_file.value() << ".\n"; QCHECK(port::file::Readable(input_file.value(), port::file::Defaults()).ok()) << "Specified input_file exists, but is not readable: " << input_file.value() << ".\n"; } void ReadInputData(const ParsedTocoFlags& parsed_toco_flags, const ParsedModelFlags& parsed_model_flags, std::string* graph_def_contents) { port::CheckInitGoogleIsDone("InitGoogle is not done yet.\n"); QCHECK(!parsed_toco_flags.savedmodel_directory.specified()) << "Use `tensorflow/lite/python/tflite_convert` script with " << "SavedModel directories.\n"; CheckFrozenModelPermissions(parsed_toco_flags.input_file); CHECK(port::file::GetContents(parsed_toco_flags.input_file.value(), graph_def_contents, port::file::Defaults()) .ok()); } } tensorflow::Status Convert(const std::string& graph_def_contents, const TocoFlags& toco_flags, const ModelFlags& model_flags, std::string* output_file_contents, int64_t* arithmetic_ops_count = nullptr) { std::unique_ptr<Model> model = Import(toco_flags, model_flags, graph_def_contents); TF_RETURN_IF_ERROR(TransformWithStatus(toco_flags, model.get())); TF_RETURN_IF_ERROR(Export(toco_flags, *model, toco_flags.allow_custom_ops(), output_file_contents)); if (arithmetic_ops_count != nullptr) { *arithmetic_ops_count = model->ArithmeticOpsCount(); } return absl::OkStatus(); } tensorflow::Status Convert(const ParsedTocoFlags& parsed_toco_flags, const ParsedModelFlags& parsed_model_flags) { ModelFlags model_flags; ReadModelFlagsFromCommandLineFlags(parsed_model_flags, &model_flags); TocoFlags toco_flags; ReadTocoFlagsFromCommandLineFlags(parsed_toco_flags, &toco_flags); std::string graph_def_contents; ReadInputData(parsed_toco_flags, parsed_model_flags, &graph_def_contents); CheckOutputFilePermissions(parsed_toco_flags.output_file); std::string output_file_contents; TF_RETURN_IF_ERROR(Convert(graph_def_contents, toco_flags, model_flags, &output_file_contents)); TF_RETURN_IF_ERROR( port::file::SetContents(parsed_toco_flags.output_file.value(), output_file_contents, port::file::Defaults())); return tensorflow::Status(); } }
#include "tensorflow/lite/toco/toco_convert.h" #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/testing/util.h" #include "tensorflow/lite/toco/toco_port.h" namespace toco { namespace { TEST(TocoTest, MissingInputFile) { ParsedTocoFlags toco_flags; ParsedModelFlags model_flags; EXPECT_DEATH(EXPECT_TRUE(Convert(toco_flags, model_flags).ok()), "Missing required flag --input_file"); } TEST(TocoTest, BadInputFormat) { TocoFlags toco_flags; ModelFlags model_flags; std::string input; std::string output; EXPECT_DEATH( EXPECT_TRUE(Convert(input, toco_flags, model_flags, &output).ok()), "Unhandled input_format='FILE_FORMAT_UNKNOWN'"); } TEST(TocoTest, MissingOutputArrays) { TocoFlags toco_flags; ModelFlags model_flags; toco_flags.set_input_format(TENSORFLOW_GRAPHDEF); std::string input; std::string output; EXPECT_DEATH( EXPECT_TRUE(Convert(input, toco_flags, model_flags, &output).ok()), "This model does not define output arrays, so a --output_arrays " "flag must be given on the command-line"); } TEST(TocoTest, BadOutputArray) { TocoFlags toco_flags; ModelFlags model_flags; toco_flags.set_input_format(TENSORFLOW_GRAPHDEF); model_flags.add_output_arrays("output1"); std::string input; std::string output; EXPECT_DEATH( EXPECT_TRUE(Convert(input, toco_flags, model_flags, &output).ok()), "Specified output array .output1. is not produced by any op " "in this graph. Is it a typo"); } TEST(TocoTest, BadOutputFormat) { TocoFlags toco_flags; ModelFlags model_flags; toco_flags.set_input_format(TENSORFLOW_GRAPHDEF); model_flags.add_output_arrays("output1"); std::string input = R"GraphDef( node { name: "output1" input: "input1" input: "input2" op: "Sub" attr { key: "T" value { type: DT_FLOAT } } } )GraphDef"; std::string output; EXPECT_DEATH( EXPECT_TRUE(Convert(input, toco_flags, model_flags, &output).ok()), "Unhandled output_format='FILE_FORMAT_UNKNOWN'"); } TEST(TocoTest, SimpleFloatModel) { TocoFlags toco_flags; ModelFlags model_flags; toco_flags.set_input_format(TENSORFLOW_GRAPHDEF); toco_flags.set_output_format(TENSORFLOW_GRAPHDEF); model_flags.add_output_arrays("output1"); std::string input = R"GraphDef( node { name: "input1" op: "Placeholder" attr { key: "dtype" value { type: DT_INT64 } } } node { name: "input2" op: "Placeholder" attr { key: "dtype" value { type: DT_INT64 } } } node { name: "output1" input: "input1" input: "input2" op: "Sub" attr { key: "T" value { type: DT_FLOAT } } } )GraphDef"; std::string output; EXPECT_TRUE(Convert(input, toco_flags, model_flags, &output).ok()); EXPECT_TRUE(!output.empty()); } TEST(TocoTest, TransientStringTensors) { TocoFlags toco_flags; ModelFlags model_flags; toco_flags.set_input_format(TENSORFLOW_GRAPHDEF); toco_flags.set_output_format(TFLITE); toco::InputArray* input_1 = model_flags.add_input_arrays(); input_1->set_name("input1"); toco::InputArray* indices_1 = model_flags.add_input_arrays(); indices_1->set_name("indices1"); model_flags.add_output_arrays("output1"); std::string input = R"GraphDef( node { name: "input1" op: "Placeholder" attr { key: "dtype" value { type: DT_STRING } } attr { key: "shape" value { shape { dim { size:1 }}}} } node { name: "indices1" op: "Placeholder" attr { key: "dtype" value { type: DT_INT64 } } } node { name: "intermediate1" op: "Gather" input: "input1" input: "indices1" attr { key: "Tparams" value { type: DT_STRING } } attr { key: "Tindices" value { type: DT_INT64 } } } node { name: "output1" op: "Gather" input: "intermediate1" input: "indices2" attr { key: "Tparams" value { type: DT_STRING } } attr { key: "Tindices" value { type: DT_INT64 } } } )GraphDef"; std::string output; EXPECT_TRUE(Convert(input, toco_flags, model_flags, &output).ok()); EXPECT_TRUE(!output.empty()); } } } int main(int argc, char** argv) { ::tflite::LogToStderr(); ::testing::InitGoogleTest(&argc, argv); ::toco::port::InitGoogleWasDoneElsewhere(); return RUN_ALL_TESTS(); }
337
#ifndef THIRD_PARTY_CEL_CPP_COMMON_VALUES_STRING_VALUE_H_ #define THIRD_PARTY_CEL_CPP_COMMON_VALUES_STRING_VALUE_H_ #include <cstddef> #include <ostream> #include <string> #include <type_traits> #include <utility> #include "absl/base/attributes.h" #include "absl/meta/type_traits.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/cord.h" #include "absl/strings/string_view.h" #include "common/any.h" #include "common/internal/arena_string.h" #include "common/internal/shared_byte_string.h" #include "common/json.h" #include "common/type.h" #include "common/type_manager.h" #include "common/value_kind.h" #include "common/values/values.h" namespace cel { class Value; class ValueView; class ValueManager; class StringValue; class StringValueView; class TypeManager; class StringValue final { public: using view_alternative_type = StringValueView; static constexpr ValueKind kKind = ValueKind::kString; static StringValue Concat(ValueManager&, StringValueView lhs, StringValueView rhs); explicit StringValue(absl::Cord value) noexcept : value_(std::move(value)) {} explicit StringValue(absl::string_view value) noexcept : value_(absl::Cord(value)) {} explicit StringValue(common_internal::ArenaString value) noexcept : value_(value) {} explicit StringValue(common_internal::SharedByteString value) noexcept : value_(std::move(value)) {} template <typename T, typename = std::enable_if_t<std::is_same_v< absl::remove_cvref_t<T>, std::string>>> explicit StringValue(T&& data) : value_(absl::Cord(std::forward<T>(data))) {} #if ABSL_HAVE_ATTRIBUTE(enable_if) template <size_t N> explicit StringValue(const char (&data)[N]) __attribute__((enable_if(::cel::common_internal::IsStringLiteral(data), "chosen when 'data' is a string literal"))) : value_(absl::string_view(data)) {} #endif explicit StringValue(StringValueView value) noexcept; StringValue() = default; StringValue(const StringValue&) = default; StringValue(StringValue&&) = default; StringValue& operator=(const StringValue&) = default; StringValue& operator=(StringValue&&) = default; constexpr ValueKind kind() const { return kKind; } StringType GetType(TypeManager&) const { return StringType(); } absl::string_view GetTypeName() const { return StringType::kName; } std::string DebugString() const; absl::StatusOr<size_t> GetSerializedSize(AnyToJsonConverter&) const; absl::Status SerializeTo(AnyToJsonConverter&, absl::Cord& value) const; absl::StatusOr<absl::Cord> Serialize(AnyToJsonConverter&) const; absl::StatusOr<std::string> GetTypeUrl( absl::string_view prefix = kTypeGoogleApisComPrefix) const; absl::StatusOr<Any> ConvertToAny( AnyToJsonConverter&, absl::string_view prefix = kTypeGoogleApisComPrefix) const; absl::StatusOr<Json> ConvertToJson(AnyToJsonConverter&) const; absl::Status Equal(ValueManager& value_manager, ValueView other, Value& result) const; absl::StatusOr<Value> Equal(ValueManager& value_manager, ValueView other) const; bool IsZeroValue() const { return NativeValue([](const auto& value) -> bool { return value.empty(); }); } std::string NativeString() const { return value_.ToString(); } absl::string_view NativeString( std::string& scratch ABSL_ATTRIBUTE_LIFETIME_BOUND) const ABSL_ATTRIBUTE_LIFETIME_BOUND { return value_.ToString(scratch); } absl::Cord NativeCord() const { return value_.ToCord(); } template <typename Visitor> std::common_type_t<std::invoke_result_t<Visitor, absl::string_view>, std::invoke_result_t<Visitor, const absl::Cord&>> NativeValue(Visitor&& visitor) const { return value_.Visit(std::forward<Visitor>(visitor)); } void swap(StringValue& other) noexcept { using std::swap; swap(value_, other.value_); } size_t Size() const; bool IsEmpty() const; bool Equals(absl::string_view string) const; bool Equals(const absl::Cord& string) const; bool Equals(StringValueView string) const; int Compare(absl::string_view string) const; int Compare(const absl::Cord& string) const; int Compare(StringValueView string) const; std::string ToString() const { return NativeString(); } absl::Cord ToCord() const { return NativeCord(); } template <typename H> friend H AbslHashValue(H state, const StringValue& string) { return H::combine(std::move(state), string.value_); } friend bool operator==(const StringValue& lhs, const StringValue& rhs) { return lhs.value_ == rhs.value_; } friend bool operator<(const StringValue& lhs, const StringValue& rhs) { return lhs.value_ < rhs.value_; } private: friend class StringValueView; friend const common_internal::SharedByteString& common_internal::AsSharedByteString(const StringValue& value); common_internal::SharedByteString value_; }; inline void swap(StringValue& lhs, StringValue& rhs) noexcept { lhs.swap(rhs); } inline bool operator==(const StringValue& lhs, absl::string_view rhs) { return lhs.Equals(rhs); } inline bool operator==(absl::string_view lhs, const StringValue& rhs) { return rhs == lhs; } inline bool operator!=(const StringValue& lhs, absl::string_view rhs) { return !operator==(lhs, rhs); } inline bool operator!=(absl::string_view lhs, const StringValue& rhs) { return !operator==(lhs, rhs); } inline bool operator!=(const StringValue& lhs, const StringValue& rhs) { return !operator==(lhs, rhs); } inline std::ostream& operator<<(std::ostream& out, const StringValue& value) { return out << value.DebugString(); } class StringValueView final { public: using alternative_type = StringValue; static constexpr ValueKind kKind = StringValue::kKind; explicit StringValueView( const absl::Cord& value ABSL_ATTRIBUTE_LIFETIME_BOUND) noexcept : value_(value) {} explicit StringValueView(absl::string_view value) noexcept : value_(value) {} explicit StringValueView(common_internal::ArenaString value) noexcept : value_(value) {} explicit StringValueView(common_internal::SharedByteStringView value) noexcept : value_(value) {} StringValueView( const StringValue& value ABSL_ATTRIBUTE_LIFETIME_BOUND) noexcept : value_(value.value_) {} StringValueView& operator=( const StringValue& value ABSL_ATTRIBUTE_LIFETIME_BOUND) { value_ = value.value_; return *this; } StringValueView& operator=(StringValue&&) = delete; StringValueView() = default; StringValueView(const StringValueView&) = default; StringValueView(StringValueView&&) = default; StringValueView& operator=(const StringValueView&) = default; StringValueView& operator=(StringValueView&&) = default; constexpr ValueKind kind() const { return kKind; } StringType GetType(TypeManager&) const { return StringType(); } absl::string_view GetTypeName() const { return StringType::kName; } std::string DebugString() const; absl::StatusOr<size_t> GetSerializedSize(AnyToJsonConverter&) const; absl::Status SerializeTo(AnyToJsonConverter&, absl::Cord& value) const; absl::StatusOr<absl::Cord> Serialize(AnyToJsonConverter&) const; absl::StatusOr<std::string> GetTypeUrl( absl::string_view prefix = kTypeGoogleApisComPrefix) const; absl::StatusOr<Any> ConvertToAny( AnyToJsonConverter&, absl::string_view prefix = kTypeGoogleApisComPrefix) const; absl::StatusOr<Json> ConvertToJson(AnyToJsonConverter&) const; absl::Status Equal(ValueManager& value_manager, ValueView other, Value& result) const; absl::StatusOr<Value> Equal(ValueManager& value_manager, ValueView other) const; bool IsZeroValue() const { return NativeValue([](const auto& value) -> bool { return value.empty(); }); } std::string NativeString() const { return value_.ToString(); } absl::string_view NativeString( std::string& scratch ABSL_ATTRIBUTE_LIFETIME_BOUND) const ABSL_ATTRIBUTE_LIFETIME_BOUND { return value_.ToString(scratch); } absl::Cord NativeCord() const { return value_.ToCord(); } template <typename Visitor> std::common_type_t<std::invoke_result_t<Visitor, absl::string_view>, std::invoke_result_t<Visitor, const absl::Cord&>> NativeValue(Visitor&& visitor) const { return value_.Visit(std::forward<Visitor>(visitor)); } void swap(StringValueView& other) noexcept { using std::swap; swap(value_, other.value_); } size_t Size() const; bool IsEmpty() const; bool Equals(absl::string_view string) const; bool Equals(const absl::Cord& string) const; bool Equals(StringValueView string) const; int Compare(absl::string_view string) const; int Compare(const absl::Cord& string) const; int Compare(StringValueView string) const; std::string ToString() const { return NativeString(); } absl::Cord ToCord() const { return NativeCord(); } template <typename H> friend H AbslHashValue(H state, StringValueView string) { return H::combine(std::move(state), string.value_); } friend bool operator==(StringValueView lhs, StringValueView rhs) { return lhs.value_ == rhs.value_; } friend bool operator<(StringValueView lhs, StringValueView rhs) { return lhs.value_ < rhs.value_; } private: friend class StringValue; friend common_internal::SharedByteStringView common_internal::AsSharedByteStringView(StringValueView value); common_internal::SharedByteStringView value_; }; inline void swap(StringValueView& lhs, StringValueView& rhs) noexcept { lhs.swap(rhs); } inline bool operator==(StringValueView lhs, absl::string_view rhs) { return lhs == StringValueView(rhs); } inline bool operator==(absl::string_view lhs, StringValueView rhs) { return StringValueView(lhs) == rhs; } inline bool operator==(StringValueView lhs, const absl::Cord& rhs) { return lhs == StringValueView(rhs); } inline bool operator==(const absl::Cord& lhs, StringValueView rhs) { return StringValueView(lhs) == rhs; } inline bool operator!=(StringValueView lhs, StringValueView rhs) { return !operator==(lhs, rhs); } inline bool operator!=(StringValueView lhs, absl::string_view rhs) { return !operator==(lhs, rhs); } inline bool operator!=(absl::string_view lhs, StringValueView rhs) { return !operator==(lhs, rhs); } inline bool operator!=(StringValueView lhs, const absl::Cord& rhs) { return !operator==(lhs, rhs); } inline bool operator!=(const absl::Cord& lhs, StringValueView rhs) { return !operator==(lhs, rhs); } inline bool operator<(StringValueView lhs, absl::string_view rhs) { return lhs < StringValueView(rhs); } inline bool operator<(absl::string_view lhs, StringValueView rhs) { return StringValueView(lhs) < rhs; } inline bool operator<(StringValueView lhs, const absl::Cord& rhs) { return lhs < StringValueView(rhs); } inline bool operator<(const absl::Cord& lhs, StringValueView rhs) { return StringValueView(lhs) < rhs; } inline std::ostream& operator<<(std::ostream& out, StringValueView value) { return out << value.DebugString(); } inline StringValue::StringValue(StringValueView value) noexcept : value_(value.value_) {} inline StringValue StringValue::Concat(ValueManager&, StringValueView lhs, StringValueView rhs) { absl::Cord result; result.Append(lhs.ToCord()); result.Append(rhs.ToCord()); return StringValue(std::move(result)); } namespace common_internal { inline const SharedByteString& AsSharedByteString(const StringValue& value) { return value.value_; } inline SharedByteStringView AsSharedByteStringView(StringValueView value) { return value.value_; } } } #endif #include <cstddef> #include <string> #include <utility> #include "absl/functional/overload.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/cord.h" #include "absl/strings/string_view.h" #include "common/any.h" #include "common/casting.h" #include "common/json.h" #include "common/value.h" #include "internal/serialize.h" #include "internal/status_macros.h" #include "internal/strings.h" #include "internal/utf8.h" namespace cel { namespace { template <typename Bytes> std::string StringDebugString(const Bytes& value) { return value.NativeValue(absl::Overload( [](absl::string_view string) -> std::string { return internal::FormatStringLiteral(string); }, [](const absl::Cord& cord) -> std::string { if (auto flat = cord.TryFlat(); flat.has_value()) { return internal::FormatStringLiteral(*flat); } return internal::FormatStringLiteral(static_cast<std::string>(cord)); })); } } std::string StringValue::DebugString() const { return StringDebugString(*this); } absl::StatusOr<size_t> StringValue::GetSerializedSize( AnyToJsonConverter&) const { return NativeValue([](const auto& bytes) -> size_t { return internal::SerializedStringValueSize(bytes); }); } absl::Status StringValue::SerializeTo(AnyToJsonConverter&, absl::Cord& value) const { return NativeValue([&value](const auto& bytes) -> absl::Status { return internal::SerializeStringValue(bytes, value); }); } absl::StatusOr<absl::Cord> StringValue::Serialize( AnyToJsonConverter& value_manager) const { absl::Cord value; CEL_RETURN_IF_ERROR(SerializeTo(value_manager, value)); return value; } absl::StatusOr<std::string> StringValue::GetTypeUrl( absl::string_view prefix) const { return MakeTypeUrlWithPrefix(prefix, "google.protobuf.StringValue"); } absl::StatusOr<Any> StringValue::ConvertToAny(AnyToJsonConverter& value_manager, absl::string_view prefix) const { CEL_ASSIGN_OR_RETURN(auto value, Serialize(value_manager)); CEL_ASSIGN_OR_RETURN(auto type_url, GetTypeUrl(prefix)); return MakeAny(std::move(type_url), std::move(value)); } absl::StatusOr<Json> StringValue::ConvertToJson(AnyToJsonConverter&) const { return NativeCord(); } absl::Status StringValue::Equal(ValueManager&, ValueView other, Value& result) const { if (auto other_value = As<StringValueView>(other); other_value.has_value()) { result = NativeValue([other_value](const auto& value) -> BoolValue { return other_value->NativeValue( [&value](const auto& other_value) -> BoolValue { return BoolValue{value == other_value}; }); }); return absl::OkStatus(); } result = BoolValueView{false}; return absl::OkStatus(); } size_t StringValue::Size() const { return NativeValue([](const auto& alternative) -> size_t { return internal::Utf8CodePointCount(alternative); }); } bool StringValue::IsEmpty() const { return NativeValue( [](const auto& alternative) -> bool { return alternative.empty(); }); } bool StringValue::Equals(absl::string_view string) const { return NativeValue([string](const auto& alternative) -> bool { return alternative == string; }); } bool StringValue::Equals(const absl::Cord& string) const { return NativeValue([&string](const auto& alternative) -> bool { return alternative == string; }); } bool StringValue::Equals(StringValueView string) const { return string.NativeValue( [this](const auto& alternative) -> bool { return Equals(alternative); }); } namespace { int CompareImpl(absl::string_view lhs, absl::string_view rhs) { return lhs.compare(rhs); } int CompareImpl(absl::string_view lhs, const absl::Cord& rhs) { return -rhs.Compare(lhs); } int CompareImpl(const absl::Cord& lhs, absl::string_view rhs) { return lhs.Compare(rhs); } int CompareImpl(const absl::Cord& lhs, const absl::Cord& rhs) { return lhs.Compare(rhs); } } int StringValue::Compare(absl::string_view string) const { return NativeValue([string](const auto& alternative) -> int { return CompareImpl(alternative, string); }); } int StringValue::Compare(const absl::Cord& string) const { return NativeValue([&string](const auto& alternative) -> int { return CompareImpl(alternative, string); }); } int StringValue::Compare(StringValueView string) const { return string.NativeValue( [this](const auto& alternative) -> int { return Compare(alternative); }); } std::string StringValueView::DebugString() const { return StringDebugString(*this); } absl::StatusOr<size_t> StringValueView::GetSerializedSize( AnyToJsonConverter&) const { return NativeValue([](const auto& bytes) -> size_t { return internal::SerializedStringValueSize(bytes); }); } absl::Status StringValueView::SerializeTo(AnyToJsonConverter&, absl::Cord& value) const { return NativeValue([&value](const auto& bytes) -> absl::Status { return internal::SerializeStringValue(bytes, value); }); } absl::StatusOr<absl::Cord> StringValueView::Serialize( AnyToJsonConverter& value_manager) const { absl::Cord value; CEL_RETURN_IF_ERROR(SerializeTo(value_manager, value)); return value; } absl::StatusOr<std::string> StringValueView::GetTypeUrl( absl::string_view prefix) const { return MakeTypeUrlWithPrefix(prefix, "google.protobuf.StringValue"); } absl::StatusOr<Any> StringValueView::ConvertToAny( AnyToJsonConverter& value_manager, absl::string_view prefix) const { CEL_ASSIGN_OR_RETURN(auto value, Serialize(value_manager)); CEL_ASSIGN_OR_RETURN(auto type_url, GetTypeUrl(prefix)); return MakeAny(std::move(type_url), std::move(value)); } absl::StatusOr<Json> StringValueView::ConvertToJson(AnyToJsonConverter&) const { return NativeCord(); } absl::Status StringValueView::Equal(ValueManager&, ValueView other, Value& result) const { if (auto other_value = As<StringValueView>(other); other_value.has_value()) { result = NativeValue([other_value](const auto& value) -> BoolValue { return other_value->NativeValue( [&value](const auto& other_value) -> BoolValue { return BoolValue{value == other_value}; }); }); return absl::OkStatus(); } result = BoolValueView{false}; return absl::OkStatus(); } size_t StringValueView::Size() const { return NativeValue([](const auto& alternative) -> size_t { return internal::Utf8CodePointCount(alternative); }); } bool StringValueView::IsEmpty() const { return NativeValue( [](const auto& alternative) -> bool { return alternative.empty(); }); } bool StringValueView::Equals(absl::string_view string) const { return NativeValue([string](const auto& alternative) -> bool { return alternative == string; }); } bool StringValueView::Equals(const absl::Cord& string) const { return NativeValue([&string](const auto& alternative) -> bool { return alternative == string; }); } bool StringValueView::Equals(StringValueView string) const { return string.NativeValue( [this](const auto& alternative) -> bool { return Equals(alternative); }); } int StringValueView::Compare(absl::string_view string) const { return NativeValue([string](const auto& alternative) -> int { return CompareImpl(alternative, string); }); } int StringValueView::Compare(const absl::Cord& string) const { return NativeValue([&string](const auto& alternative) -> int { return CompareImpl(alternative, string); }); } int StringValueView::Compare(StringValueView string) const { return string.NativeValue( [this](const auto& alternative) -> int { return Compare(alternative); }); } }
#include <sstream> #include <string> #include "absl/hash/hash.h" #include "absl/strings/cord.h" #include "absl/strings/cord_test_helpers.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "common/any.h" #include "common/casting.h" #include "common/json.h" #include "common/native_type.h" #include "common/type.h" #include "common/value.h" #include "common/value_testing.h" #include "internal/testing.h" namespace cel { namespace { using testing::An; using testing::Ne; using cel::internal::IsOkAndHolds; using StringValueTest = common_internal::ThreadCompatibleValueTest<>; TEST_P(StringValueTest, Kind) { EXPECT_EQ(StringValue("foo").kind(), StringValue::kKind); EXPECT_EQ(Value(StringValue(absl::Cord("foo"))).kind(), StringValue::kKind); } TEST_P(StringValueTest, DebugString) { { std::ostringstream out; out << StringValue("foo"); EXPECT_EQ(out.str(), "\"foo\""); } { std::ostringstream out; out << StringValue(absl::MakeFragmentedCord({"f", "o", "o"})); EXPECT_EQ(out.str(), "\"foo\""); } { std::ostringstream out; out << Value(StringValue(absl::Cord("foo"))); EXPECT_EQ(out.str(), "\"foo\""); } } TEST_P(StringValueTest, GetSerializedSize) { EXPECT_THAT(StringValue().GetSerializedSize(value_manager()), IsOkAndHolds(0)); } TEST_P(StringValueTest, ConvertToAny) { EXPECT_THAT(StringValue().ConvertToAny(value_manager()), IsOkAndHolds(MakeAny(MakeTypeUrl("google.protobuf.StringValue"), absl::Cord()))); } TEST_P(StringValueTest, ConvertToJson) { EXPECT_THAT(StringValue("foo").ConvertToJson(value_manager()), IsOkAndHolds(Json(JsonString("foo")))); } TEST_P(StringValueTest, NativeValue) { std::string scratch; EXPECT_EQ(StringValue("foo").NativeString(), "foo"); EXPECT_EQ(StringValue("foo").NativeString(scratch), "foo"); EXPECT_EQ(StringValue("foo").NativeCord(), "foo"); } TEST_P(StringValueTest, NativeTypeId) { EXPECT_EQ(NativeTypeId::Of(StringValue("foo")), NativeTypeId::For<StringValue>()); EXPECT_EQ(NativeTypeId::Of(Value(StringValue(absl::Cord("foo")))), NativeTypeId::For<StringValue>()); } TEST_P(StringValueTest, InstanceOf) { EXPECT_TRUE(InstanceOf<StringValue>(StringValue("foo"))); EXPECT_TRUE(InstanceOf<StringValue>(Value(StringValue(absl::Cord("foo"))))); } TEST_P(StringValueTest, Cast) { EXPECT_THAT(Cast<StringValue>(StringValue("foo")), An<StringValue>()); EXPECT_THAT(Cast<StringValue>(Value(StringValue(absl::Cord("foo")))), An<StringValue>()); } TEST_P(StringValueTest, As) { EXPECT_THAT(As<StringValue>(StringValue("foo")), Ne(absl::nullopt)); EXPECT_THAT(As<StringValue>(Value(StringValue(absl::Cord("foo")))), Ne(absl::nullopt)); } TEST_P(StringValueTest, HashValue) { EXPECT_EQ(absl::HashOf(StringValue("foo")), absl::HashOf(absl::string_view("foo"))); EXPECT_EQ(absl::HashOf(StringValue(absl::string_view("foo"))), absl::HashOf(absl::string_view("foo"))); EXPECT_EQ(absl::HashOf(StringValue(absl::Cord("foo"))), absl::HashOf(absl::string_view("foo"))); } TEST_P(StringValueTest, Equality) { EXPECT_NE(StringValue("foo"), "bar"); EXPECT_NE("bar", StringValue("foo")); EXPECT_NE(StringValue("foo"), StringValue("bar")); EXPECT_NE(StringValue("foo"), absl::Cord("bar")); EXPECT_NE(absl::Cord("bar"), StringValue("foo")); } TEST_P(StringValueTest, LessThan) { EXPECT_LT(StringValue("bar"), "foo"); EXPECT_LT("bar", StringValue("foo")); EXPECT_LT(StringValue("bar"), StringValue("foo")); EXPECT_LT(StringValue("bar"), absl::Cord("foo")); EXPECT_LT(absl::Cord("bar"), StringValue("foo")); } INSTANTIATE_TEST_SUITE_P( StringValueTest, StringValueTest, ::testing::Combine(::testing::Values(MemoryManagement::kPooling, MemoryManagement::kReferenceCounting)), StringValueTest::ToString); using StringValueViewTest = common_internal::ThreadCompatibleValueTest<>; TEST_P(StringValueViewTest, Kind) { EXPECT_EQ(StringValueView("foo").kind(), StringValueView::kKind); EXPECT_EQ(ValueView(StringValueView("foo")).kind(), StringValueView::kKind); } TEST_P(StringValueViewTest, DebugString) { { std::ostringstream out; out << StringValueView("foo"); EXPECT_EQ(out.str(), "\"foo\""); } { std::ostringstream out; out << ValueView(StringValueView("foo")); EXPECT_EQ(out.str(), "\"foo\""); } } TEST_P(StringValueViewTest, GetSerializedSize) { EXPECT_THAT(StringValueView().GetSerializedSize(value_manager()), IsOkAndHolds(0)); } TEST_P(StringValueViewTest, ConvertToAny) { EXPECT_THAT(StringValueView().ConvertToAny(value_manager()), IsOkAndHolds(MakeAny(MakeTypeUrl("google.protobuf.StringValue"), absl::Cord()))); } TEST_P(StringValueViewTest, ConvertToJson) { EXPECT_THAT(StringValueView("foo").ConvertToJson(value_manager()), IsOkAndHolds(Json(JsonString("foo")))); } TEST_P(StringValueViewTest, NativeValue) { std::string scratch; EXPECT_EQ(StringValueView(StringValue("foo")).NativeString(), "foo"); EXPECT_EQ(StringValueView(StringValue("foo")).NativeString(scratch), "foo"); EXPECT_EQ(StringValueView(StringValue("foo")).NativeCord(), "foo"); } TEST_P(StringValueViewTest, NativeTypeId) { EXPECT_EQ(NativeTypeId::Of(StringValueView("foo")), NativeTypeId::For<StringValueView>()); EXPECT_EQ(NativeTypeId::Of(ValueView(StringValueView("foo"))), NativeTypeId::For<StringValueView>()); } TEST_P(StringValueViewTest, InstanceOf) { EXPECT_TRUE(InstanceOf<StringValueView>(StringValueView("foo"))); EXPECT_TRUE(InstanceOf<StringValueView>(ValueView(StringValueView("foo")))); } TEST_P(StringValueViewTest, Cast) { EXPECT_THAT(Cast<StringValueView>(StringValueView("foo")), An<StringValueView>()); EXPECT_THAT(Cast<StringValueView>(ValueView(StringValueView("foo"))), An<StringValueView>()); } TEST_P(StringValueViewTest, As) { EXPECT_THAT(As<StringValueView>(StringValueView("foo")), Ne(absl::nullopt)); EXPECT_THAT(As<StringValueView>(ValueView(StringValueView("foo"))), Ne(absl::nullopt)); } TEST_P(StringValueViewTest, HashValue) { EXPECT_EQ(absl::HashOf(StringValueView("foo")), absl::HashOf(absl::string_view("foo"))); EXPECT_EQ(absl::HashOf(StringValueView(absl::string_view("foo"))), absl::HashOf(absl::string_view("foo"))); EXPECT_EQ(absl::HashOf(StringValueView(absl::Cord("foo"))), absl::HashOf(absl::string_view("foo"))); } TEST_P(StringValueViewTest, Equality) { EXPECT_NE(StringValueView("foo"), "bar"); EXPECT_NE("bar", StringValueView("foo")); EXPECT_NE(StringValueView("foo"), StringValueView("bar")); EXPECT_NE(StringValueView("foo"), absl::Cord("bar")); EXPECT_NE(absl::Cord("bar"), StringValueView("foo")); EXPECT_NE(StringValueView("foo"), StringValue("bar")); EXPECT_NE(StringValue("bar"), StringValueView("foo")); } TEST_P(StringValueViewTest, LessThan) { EXPECT_LT(StringValueView("bar"), "foo"); EXPECT_LT("bar", StringValueView("foo")); EXPECT_LT(StringValueView("bar"), StringValueView("foo")); EXPECT_LT(StringValueView("bar"), absl::Cord("foo")); EXPECT_LT(absl::Cord("bar"), StringValueView("foo")); EXPECT_LT(StringValueView("bar"), StringValue("foo")); EXPECT_LT(StringValue("bar"), StringValueView("foo")); } INSTANTIATE_TEST_SUITE_P( StringValueViewTest, StringValueViewTest, ::testing::Combine(::testing::Values(MemoryManagement::kPooling, MemoryManagement::kReferenceCounting)), StringValueViewTest::ToString); } }
338
#ifndef THIRD_PARTY_CEL_CPP_RUNTIME_STANDARD_REGEX_FUNCTIONS_H_ #define THIRD_PARTY_CEL_CPP_RUNTIME_STANDARD_REGEX_FUNCTIONS_H_ #include "absl/status/status.h" #include "runtime/function_registry.h" #include "runtime/runtime_options.h" namespace cel { absl::Status RegisterRegexFunctions(FunctionRegistry& registry, const RuntimeOptions& options); } #endif #include "runtime/standard/regex_functions.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "base/builtins.h" #include "base/function_adapter.h" #include "common/value.h" #include "common/value_manager.h" #include "internal/status_macros.h" #include "re2/re2.h" namespace cel { namespace {} absl::Status RegisterRegexFunctions(FunctionRegistry& registry, const RuntimeOptions& options) { if (options.enable_regex) { auto regex_matches = [max_size = options.regex_max_program_size]( ValueManager& value_factory, const StringValue& target, const StringValue& regex) -> Value { RE2 re2(regex.ToString()); if (max_size > 0 && re2.ProgramSize() > max_size) { return value_factory.CreateErrorValue( absl::InvalidArgumentError("exceeded RE2 max program size")); } if (!re2.ok()) { return value_factory.CreateErrorValue( absl::InvalidArgumentError("invalid regex for match")); } return value_factory.CreateBoolValue( RE2::PartialMatch(target.ToString(), re2)); }; for (bool receiver_style : {true, false}) { using MatchFnAdapter = BinaryFunctionAdapter<Value, const StringValue&, const StringValue&>; CEL_RETURN_IF_ERROR( registry.Register(MatchFnAdapter::CreateDescriptor( cel::builtin::kRegexMatch, receiver_style), MatchFnAdapter::WrapFunction(regex_matches))); } } return absl::OkStatus(); } }
#include "runtime/standard/regex_functions.h" #include <vector> #include "base/builtins.h" #include "base/function_descriptor.h" #include "internal/testing.h" namespace cel { namespace { using testing::IsEmpty; using testing::UnorderedElementsAre; enum class CallStyle { kFree, kReceiver }; MATCHER_P2(MatchesDescriptor, name, call_style, "") { bool receiver_style; switch (call_style) { case CallStyle::kReceiver: receiver_style = true; break; case CallStyle::kFree: receiver_style = false; break; } const FunctionDescriptor& descriptor = *arg; std::vector<Kind> types{Kind::kString, Kind::kString}; return descriptor.name() == name && descriptor.receiver_style() == receiver_style && descriptor.types() == types; } TEST(RegisterRegexFunctions, Registered) { FunctionRegistry registry; RuntimeOptions options; ASSERT_OK(RegisterRegexFunctions(registry, options)); auto overloads = registry.ListFunctions(); EXPECT_THAT(overloads[builtin::kRegexMatch], UnorderedElementsAre( MatchesDescriptor(builtin::kRegexMatch, CallStyle::kReceiver), MatchesDescriptor(builtin::kRegexMatch, CallStyle::kFree))); } TEST(RegisterRegexFunctions, NotRegisteredIfDisabled) { FunctionRegistry registry; RuntimeOptions options; options.enable_regex = false; ASSERT_OK(RegisterRegexFunctions(registry, options)); auto overloads = registry.ListFunctions(); EXPECT_THAT(overloads[builtin::kRegexMatch], IsEmpty()); } } }
339
#ifndef QUICHE_QUIC_CORE_QUIC_TIME_H_ #define QUICHE_QUIC_CORE_QUIC_TIME_H_ #include <cmath> #include <cstdint> #include <limits> #include <ostream> #include <string> #include "absl/time/time.h" #include "quiche/quic/platform/api/quic_export.h" namespace quic { class QuicClock; class QuicTime; class QUICHE_EXPORT QuicTimeDelta { public: explicit QuicTimeDelta(absl::Duration duration) : time_offset_((duration == absl::InfiniteDuration()) ? kInfiniteTimeUs : absl::ToInt64Microseconds(duration)) {} static constexpr QuicTimeDelta Zero() { return QuicTimeDelta(0); } static constexpr QuicTimeDelta Infinite() { return QuicTimeDelta(kInfiniteTimeUs); } static constexpr QuicTimeDelta FromSeconds(int64_t secs) { return QuicTimeDelta(secs * 1000 * 1000); } static constexpr QuicTimeDelta FromMilliseconds(int64_t ms) { return QuicTimeDelta(ms * 1000); } static constexpr QuicTimeDelta FromMicroseconds(int64_t us) { return QuicTimeDelta(us); } constexpr int64_t ToSeconds() const { return time_offset_ / 1000 / 1000; } constexpr int64_t ToMilliseconds() const { return time_offset_ / 1000; } constexpr int64_t ToMicroseconds() const { return time_offset_; } constexpr absl::Duration ToAbsl() { if (ABSL_PREDICT_FALSE(IsInfinite())) { return absl::InfiniteDuration(); } return absl::Microseconds(time_offset_); } constexpr bool IsZero() const { return time_offset_ == 0; } constexpr bool IsInfinite() const { return time_offset_ == kInfiniteTimeUs; } std::string ToDebuggingValue() const; private: friend inline bool operator==(QuicTimeDelta lhs, QuicTimeDelta rhs); friend inline bool operator<(QuicTimeDelta lhs, QuicTimeDelta rhs); friend inline QuicTimeDelta operator<<(QuicTimeDelta lhs, size_t rhs); friend inline QuicTimeDelta operator>>(QuicTimeDelta lhs, size_t rhs); friend inline constexpr QuicTimeDelta operator+(QuicTimeDelta lhs, QuicTimeDelta rhs); friend inline constexpr QuicTimeDelta operator-(QuicTimeDelta lhs, QuicTimeDelta rhs); friend inline constexpr QuicTimeDelta operator*(QuicTimeDelta lhs, int rhs); friend inline QuicTimeDelta operator*(QuicTimeDelta lhs, double rhs); friend inline QuicTime operator+(QuicTime lhs, QuicTimeDelta rhs); friend inline QuicTime operator-(QuicTime lhs, QuicTimeDelta rhs); friend inline QuicTimeDelta operator-(QuicTime lhs, QuicTime rhs); static constexpr int64_t kInfiniteTimeUs = std::numeric_limits<int64_t>::max(); explicit constexpr QuicTimeDelta(int64_t time_offset) : time_offset_(time_offset) {} int64_t time_offset_; friend class QuicTime; }; class QUICHE_EXPORT QuicTime { public: using Delta = QuicTimeDelta; static constexpr QuicTime Zero() { return QuicTime(0); } static constexpr QuicTime Infinite() { return QuicTime(Delta::kInfiniteTimeUs); } QuicTime(const QuicTime& other) = default; QuicTime& operator=(const QuicTime& other) { time_ = other.time_; return *this; } int64_t ToDebuggingValue() const { return time_; } bool IsInitialized() const { return 0 != time_; } private: friend class QuicClock; friend inline bool operator==(QuicTime lhs, QuicTime rhs); friend inline bool operator<(QuicTime lhs, QuicTime rhs); friend inline QuicTime operator+(QuicTime lhs, QuicTimeDelta rhs); friend inline QuicTime operator-(QuicTime lhs, QuicTimeDelta rhs); friend inline QuicTimeDelta operator-(QuicTime lhs, QuicTime rhs); explicit constexpr QuicTime(int64_t time) : time_(time) {} int64_t time_; }; class QUICHE_EXPORT QuicWallTime { public: static constexpr QuicWallTime FromUNIXSeconds(uint64_t seconds) { return QuicWallTime(seconds * 1000000); } static constexpr QuicWallTime FromUNIXMicroseconds(uint64_t microseconds) { return QuicWallTime(microseconds); } static constexpr QuicWallTime Zero() { return QuicWallTime(0); } uint64_t ToUNIXSeconds() const; uint64_t ToUNIXMicroseconds() const; bool IsAfter(QuicWallTime other) const; bool IsBefore(QuicWallTime other) const; bool IsZero() const; QuicTimeDelta AbsoluteDifference(QuicWallTime other) const; [[nodiscard]] QuicWallTime Add(QuicTimeDelta delta) const; [[nodiscard]] QuicWallTime Subtract(QuicTimeDelta delta) const; bool operator==(const QuicWallTime& other) const { return microseconds_ == other.microseconds_; } QuicTimeDelta operator-(const QuicWallTime& rhs) const { return QuicTimeDelta::FromMicroseconds(microseconds_ - rhs.microseconds_); } private: explicit constexpr QuicWallTime(uint64_t microseconds) : microseconds_(microseconds) {} uint64_t microseconds_; }; inline bool operator==(QuicTimeDelta lhs, QuicTimeDelta rhs) { return lhs.time_offset_ == rhs.time_offset_; } inline bool operator!=(QuicTimeDelta lhs, QuicTimeDelta rhs) { return !(lhs == rhs); } inline bool operator<(QuicTimeDelta lhs, QuicTimeDelta rhs) { return lhs.time_offset_ < rhs.time_offset_; } inline bool operator>(QuicTimeDelta lhs, QuicTimeDelta rhs) { return rhs < lhs; } inline bool operator<=(QuicTimeDelta lhs, QuicTimeDelta rhs) { return !(rhs < lhs); } inline bool operator>=(QuicTimeDelta lhs, QuicTimeDelta rhs) { return !(lhs < rhs); } inline QuicTimeDelta operator<<(QuicTimeDelta lhs, size_t rhs) { return QuicTimeDelta(lhs.time_offset_ << rhs); } inline QuicTimeDelta operator>>(QuicTimeDelta lhs, size_t rhs) { return QuicTimeDelta(lhs.time_offset_ >> rhs); } inline bool operator==(QuicTime lhs, QuicTime rhs) { return lhs.time_ == rhs.time_; } inline bool operator!=(QuicTime lhs, QuicTime rhs) { return !(lhs == rhs); } inline bool operator<(QuicTime lhs, QuicTime rhs) { return lhs.time_ < rhs.time_; } inline bool operator>(QuicTime lhs, QuicTime rhs) { return rhs < lhs; } inline bool operator<=(QuicTime lhs, QuicTime rhs) { return !(rhs < lhs); } inline bool operator>=(QuicTime lhs, QuicTime rhs) { return !(lhs < rhs); } inline std::ostream& operator<<(std::ostream& output, const QuicTime t) { output << t.ToDebuggingValue(); return output; } inline constexpr QuicTimeDelta operator+(QuicTimeDelta lhs, QuicTimeDelta rhs) { return QuicTimeDelta(lhs.time_offset_ + rhs.time_offset_); } inline constexpr QuicTimeDelta operator-(QuicTimeDelta lhs, QuicTimeDelta rhs) { return QuicTimeDelta(lhs.time_offset_ - rhs.time_offset_); } inline constexpr QuicTimeDelta operator*(QuicTimeDelta lhs, int rhs) { return QuicTimeDelta(lhs.time_offset_ * rhs); } inline QuicTimeDelta operator*(QuicTimeDelta lhs, double rhs) { return QuicTimeDelta(static_cast<int64_t>( std::llround(static_cast<double>(lhs.time_offset_) * rhs))); } inline QuicTimeDelta operator*(int lhs, QuicTimeDelta rhs) { return rhs * lhs; } inline QuicTimeDelta operator*(double lhs, QuicTimeDelta rhs) { return rhs * lhs; } inline QuicTime operator+(QuicTime lhs, QuicTimeDelta rhs) { return QuicTime(lhs.time_ + rhs.time_offset_); } inline QuicTime operator-(QuicTime lhs, QuicTimeDelta rhs) { return QuicTime(lhs.time_ - rhs.time_offset_); } inline QuicTimeDelta operator-(QuicTime lhs, QuicTime rhs) { return QuicTimeDelta(lhs.time_ - rhs.time_); } inline std::ostream& operator<<(std::ostream& output, const QuicTimeDelta delta) { output << delta.ToDebuggingValue(); return output; } } #endif #include "quiche/quic/core/quic_time.h" #include <cinttypes> #include <cstdlib> #include <limits> #include <string> #include "absl/strings/str_cat.h" namespace quic { std::string QuicTime::Delta::ToDebuggingValue() const { constexpr int64_t kMillisecondInMicroseconds = 1000; constexpr int64_t kSecondInMicroseconds = 1000 * kMillisecondInMicroseconds; int64_t absolute_value = std::abs(time_offset_); if (absolute_value >= kSecondInMicroseconds && absolute_value % kSecondInMicroseconds == 0) { return absl::StrCat(time_offset_ / kSecondInMicroseconds, "s"); } if (absolute_value >= kMillisecondInMicroseconds && absolute_value % kMillisecondInMicroseconds == 0) { return absl::StrCat(time_offset_ / kMillisecondInMicroseconds, "ms"); } return absl::StrCat(time_offset_, "us"); } uint64_t QuicWallTime::ToUNIXSeconds() const { return microseconds_ / 1000000; } uint64_t QuicWallTime::ToUNIXMicroseconds() const { return microseconds_; } bool QuicWallTime::IsAfter(QuicWallTime other) const { return microseconds_ > other.microseconds_; } bool QuicWallTime::IsBefore(QuicWallTime other) const { return microseconds_ < other.microseconds_; } bool QuicWallTime::IsZero() const { return microseconds_ == 0; } QuicTime::Delta QuicWallTime::AbsoluteDifference(QuicWallTime other) const { uint64_t d; if (microseconds_ > other.microseconds_) { d = microseconds_ - other.microseconds_; } else { d = other.microseconds_ - microseconds_; } if (d > static_cast<uint64_t>(std::numeric_limits<int64_t>::max())) { d = std::numeric_limits<int64_t>::max(); } return QuicTime::Delta::FromMicroseconds(d); } QuicWallTime QuicWallTime::Add(QuicTime::Delta delta) const { uint64_t microseconds = microseconds_ + delta.ToMicroseconds(); if (microseconds < microseconds_) { microseconds = std::numeric_limits<uint64_t>::max(); } return QuicWallTime(microseconds); } QuicWallTime QuicWallTime::Subtract(QuicTime::Delta delta) const { uint64_t microseconds = microseconds_ - delta.ToMicroseconds(); if (microseconds > microseconds_) { microseconds = 0; } return QuicWallTime(microseconds); } }
#include "quiche/quic/core/quic_time.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/mock_clock.h" namespace quic { namespace test { class QuicTimeDeltaTest : public QuicTest {}; TEST_F(QuicTimeDeltaTest, Zero) { EXPECT_TRUE(QuicTime::Delta::Zero().IsZero()); EXPECT_FALSE(QuicTime::Delta::Zero().IsInfinite()); EXPECT_FALSE(QuicTime::Delta::FromMilliseconds(1).IsZero()); } TEST_F(QuicTimeDeltaTest, Infinite) { EXPECT_TRUE(QuicTime::Delta::Infinite().IsInfinite()); EXPECT_FALSE(QuicTime::Delta::Zero().IsInfinite()); EXPECT_FALSE(QuicTime::Delta::FromMilliseconds(1).IsInfinite()); } TEST_F(QuicTimeDeltaTest, FromTo) { EXPECT_EQ(QuicTime::Delta::FromMilliseconds(1), QuicTime::Delta::FromMicroseconds(1000)); EXPECT_EQ(QuicTime::Delta::FromSeconds(1), QuicTime::Delta::FromMilliseconds(1000)); EXPECT_EQ(QuicTime::Delta::FromSeconds(1), QuicTime::Delta::FromMicroseconds(1000000)); EXPECT_EQ(1, QuicTime::Delta::FromMicroseconds(1000).ToMilliseconds()); EXPECT_EQ(2, QuicTime::Delta::FromMilliseconds(2000).ToSeconds()); EXPECT_EQ(1000, QuicTime::Delta::FromMilliseconds(1).ToMicroseconds()); EXPECT_EQ(1, QuicTime::Delta::FromMicroseconds(1000).ToMilliseconds()); EXPECT_EQ(QuicTime::Delta::FromMilliseconds(2000).ToMicroseconds(), QuicTime::Delta::FromSeconds(2).ToMicroseconds()); } TEST_F(QuicTimeDeltaTest, Add) { EXPECT_EQ(QuicTime::Delta::FromMicroseconds(2000), QuicTime::Delta::Zero() + QuicTime::Delta::FromMilliseconds(2)); } TEST_F(QuicTimeDeltaTest, Subtract) { EXPECT_EQ(QuicTime::Delta::FromMicroseconds(1000), QuicTime::Delta::FromMilliseconds(2) - QuicTime::Delta::FromMilliseconds(1)); } TEST_F(QuicTimeDeltaTest, Multiply) { int i = 2; EXPECT_EQ(QuicTime::Delta::FromMicroseconds(4000), QuicTime::Delta::FromMilliseconds(2) * i); EXPECT_EQ(QuicTime::Delta::FromMicroseconds(4000), i * QuicTime::Delta::FromMilliseconds(2)); double d = 2; EXPECT_EQ(QuicTime::Delta::FromMicroseconds(4000), QuicTime::Delta::FromMilliseconds(2) * d); EXPECT_EQ(QuicTime::Delta::FromMicroseconds(4000), d * QuicTime::Delta::FromMilliseconds(2)); EXPECT_EQ(QuicTime::Delta::FromMicroseconds(5), QuicTime::Delta::FromMicroseconds(9) * 0.5); EXPECT_EQ(QuicTime::Delta::FromMicroseconds(2), QuicTime::Delta::FromMicroseconds(12) * 0.2); } TEST_F(QuicTimeDeltaTest, Max) { EXPECT_EQ(QuicTime::Delta::FromMicroseconds(2000), std::max(QuicTime::Delta::FromMicroseconds(1000), QuicTime::Delta::FromMicroseconds(2000))); } TEST_F(QuicTimeDeltaTest, NotEqual) { EXPECT_TRUE(QuicTime::Delta::FromSeconds(0) != QuicTime::Delta::FromSeconds(1)); EXPECT_FALSE(QuicTime::Delta::FromSeconds(0) != QuicTime::Delta::FromSeconds(0)); } TEST_F(QuicTimeDeltaTest, DebuggingValue) { const QuicTime::Delta one_us = QuicTime::Delta::FromMicroseconds(1); const QuicTime::Delta one_ms = QuicTime::Delta::FromMilliseconds(1); const QuicTime::Delta one_s = QuicTime::Delta::FromSeconds(1); EXPECT_EQ("1s", one_s.ToDebuggingValue()); EXPECT_EQ("3s", (3 * one_s).ToDebuggingValue()); EXPECT_EQ("1ms", one_ms.ToDebuggingValue()); EXPECT_EQ("3ms", (3 * one_ms).ToDebuggingValue()); EXPECT_EQ("1us", one_us.ToDebuggingValue()); EXPECT_EQ("3us", (3 * one_us).ToDebuggingValue()); EXPECT_EQ("3001us", (3 * one_ms + one_us).ToDebuggingValue()); EXPECT_EQ("3001ms", (3 * one_s + one_ms).ToDebuggingValue()); EXPECT_EQ("3000001us", (3 * one_s + one_us).ToDebuggingValue()); } class QuicTimeTest : public QuicTest { protected: MockClock clock_; }; TEST_F(QuicTimeTest, Initialized) { EXPECT_FALSE(QuicTime::Zero().IsInitialized()); EXPECT_TRUE((QuicTime::Zero() + QuicTime::Delta::FromMicroseconds(1)) .IsInitialized()); } TEST_F(QuicTimeTest, CopyConstruct) { QuicTime time_1 = QuicTime::Zero() + QuicTime::Delta::FromMilliseconds(1234); EXPECT_NE(time_1, QuicTime(QuicTime::Zero())); EXPECT_EQ(time_1, QuicTime(time_1)); } TEST_F(QuicTimeTest, CopyAssignment) { QuicTime time_1 = QuicTime::Zero() + QuicTime::Delta::FromMilliseconds(1234); QuicTime time_2 = QuicTime::Zero(); EXPECT_NE(time_1, time_2); time_2 = time_1; EXPECT_EQ(time_1, time_2); } TEST_F(QuicTimeTest, Add) { QuicTime time_1 = QuicTime::Zero() + QuicTime::Delta::FromMilliseconds(1); QuicTime time_2 = QuicTime::Zero() + QuicTime::Delta::FromMilliseconds(2); QuicTime::Delta diff = time_2 - time_1; EXPECT_EQ(QuicTime::Delta::FromMilliseconds(1), diff); EXPECT_EQ(1000, diff.ToMicroseconds()); EXPECT_EQ(1, diff.ToMilliseconds()); } TEST_F(QuicTimeTest, Subtract) { QuicTime time_1 = QuicTime::Zero() + QuicTime::Delta::FromMilliseconds(1); QuicTime time_2 = QuicTime::Zero() + QuicTime::Delta::FromMilliseconds(2); EXPECT_EQ(QuicTime::Delta::FromMilliseconds(1), time_2 - time_1); } TEST_F(QuicTimeTest, SubtractDelta) { QuicTime time = QuicTime::Zero() + QuicTime::Delta::FromMilliseconds(2); EXPECT_EQ(QuicTime::Zero() + QuicTime::Delta::FromMilliseconds(1), time - QuicTime::Delta::FromMilliseconds(1)); } TEST_F(QuicTimeTest, Max) { QuicTime time_1 = QuicTime::Zero() + QuicTime::Delta::FromMilliseconds(1); QuicTime time_2 = QuicTime::Zero() + QuicTime::Delta::FromMilliseconds(2); EXPECT_EQ(time_2, std::max(time_1, time_2)); } TEST_F(QuicTimeTest, MockClock) { clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(1)); QuicTime now = clock_.ApproximateNow(); QuicTime time = QuicTime::Zero() + QuicTime::Delta::FromMicroseconds(1000); EXPECT_EQ(now, time); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(1)); now = clock_.ApproximateNow(); EXPECT_NE(now, time); time = time + QuicTime::Delta::FromMilliseconds(1); EXPECT_EQ(now, time); } TEST_F(QuicTimeTest, LE) { const QuicTime zero = QuicTime::Zero(); const QuicTime one = zero + QuicTime::Delta::FromSeconds(1); EXPECT_TRUE(zero <= zero); EXPECT_TRUE(zero <= one); EXPECT_TRUE(one <= one); EXPECT_FALSE(one <= zero); } } }
340
#ifndef QUICHE_BLIND_SIGN_AUTH_BLIND_SIGN_AUTH_H_ #define QUICHE_BLIND_SIGN_AUTH_BLIND_SIGN_AUTH_H_ #include <memory> #include <optional> #include <string> #include "absl/status/statusor.h" #include "absl/time/time.h" #include "anonymous_tokens/cpp/privacy_pass/rsa_bssa_public_metadata_client.h" #include "anonymous_tokens/cpp/privacy_pass/token_encodings.h" #include "quiche/blind_sign_auth/blind_sign_auth_interface.h" #include "quiche/blind_sign_auth/blind_sign_auth_protos.h" #include "quiche/blind_sign_auth/blind_sign_message_interface.h" #include "quiche/blind_sign_auth/blind_sign_message_response.h" #include "quiche/common/platform/api/quiche_export.h" namespace quiche { class QUICHE_EXPORT BlindSignAuth : public BlindSignAuthInterface { public: explicit BlindSignAuth(BlindSignMessageInterface* fetcher, privacy::ppn::BlindSignAuthOptions auth_options) : fetcher_(fetcher), auth_options_(std::move(auth_options)) {} void GetTokens(std::optional<std::string> oauth_token, int num_tokens, ProxyLayer proxy_layer, BlindSignAuthServiceType service_type, SignedTokenCallback callback) override; private: void GetInitialDataCallback( std::optional<std::string> oauth_token, int num_tokens, ProxyLayer proxy_layer, BlindSignAuthServiceType service_type, SignedTokenCallback callback, absl::StatusOr<BlindSignMessageResponse> response); void GeneratePrivacyPassTokens( privacy::ppn::GetInitialDataResponse initial_data_response, std::optional<std::string> oauth_token, int num_tokens, ProxyLayer proxy_layer, BlindSignAuthServiceType service_type, SignedTokenCallback callback); void PrivacyPassAuthAndSignCallback( std::string encoded_extensions, absl::Time public_key_expiry_time, anonymous_tokens::GeoHint geo_hint, anonymous_tokens::AnonymousTokensUseCase use_case, std::vector<std::unique_ptr<anonymous_tokens:: PrivacyPassRsaBssaPublicMetadataClient>> privacy_pass_clients, SignedTokenCallback callback, absl::StatusOr<BlindSignMessageResponse> response); privacy::ppn::ProxyLayer QuicheProxyLayerToPpnProxyLayer( quiche::ProxyLayer proxy_layer); BlindSignMessageInterface* fetcher_ = nullptr; privacy::ppn::BlindSignAuthOptions auth_options_; }; std::string BlindSignAuthServiceTypeToString( quiche::BlindSignAuthServiceType service_type); } #endif #include "quiche/blind_sign_auth/blind_sign_auth.h" #include <cstddef> #include <cstdint> #include <cstring> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/functional/bind_front.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/escaping.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "anonymous_tokens/cpp/crypto/crypto_utils.h" #include "anonymous_tokens/cpp/privacy_pass/rsa_bssa_public_metadata_client.h" #include "anonymous_tokens/cpp/privacy_pass/token_encodings.h" #include "anonymous_tokens/cpp/shared/proto_utils.h" #include "quiche/blind_sign_auth/blind_sign_auth_interface.h" #include "quiche/blind_sign_auth/blind_sign_auth_protos.h" #include "quiche/blind_sign_auth/blind_sign_message_interface.h" #include "quiche/blind_sign_auth/blind_sign_message_response.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/common/quiche_random.h" namespace quiche { namespace { template <typename T> std::string OmitDefault(T value) { return value == 0 ? "" : absl::StrCat(value); } constexpr absl::string_view kIssuerHostname = "https: } void BlindSignAuth::GetTokens(std::optional<std::string> oauth_token, int num_tokens, ProxyLayer proxy_layer, BlindSignAuthServiceType service_type, SignedTokenCallback callback) { privacy::ppn::GetInitialDataRequest request; request.set_use_attestation(false); request.set_service_type(BlindSignAuthServiceTypeToString(service_type)); request.set_location_granularity( privacy::ppn::GetInitialDataRequest_LocationGranularity_CITY_GEOS); request.set_validation_version(2); request.set_proxy_layer(QuicheProxyLayerToPpnProxyLayer(proxy_layer)); std::string body = request.SerializeAsString(); BlindSignMessageCallback initial_data_callback = absl::bind_front( &BlindSignAuth::GetInitialDataCallback, this, oauth_token, num_tokens, proxy_layer, service_type, std::move(callback)); fetcher_->DoRequest(BlindSignMessageRequestType::kGetInitialData, oauth_token, body, std::move(initial_data_callback)); } void BlindSignAuth::GetInitialDataCallback( std::optional<std::string> oauth_token, int num_tokens, ProxyLayer proxy_layer, BlindSignAuthServiceType service_type, SignedTokenCallback callback, absl::StatusOr<BlindSignMessageResponse> response) { if (!response.ok()) { QUICHE_LOG(WARNING) << "GetInitialDataRequest failed: " << response.status(); std::move(callback)(response.status()); return; } absl::StatusCode code = response->status_code(); if (code != absl::StatusCode::kOk) { std::string message = absl::StrCat("GetInitialDataRequest failed with code: ", code); QUICHE_LOG(WARNING) << message; std::move(callback)(absl::Status(code, message)); return; } privacy::ppn::GetInitialDataResponse initial_data_response; if (!initial_data_response.ParseFromString(response->body())) { QUICHE_LOG(WARNING) << "Failed to parse GetInitialDataResponse"; std::move(callback)( absl::InternalError("Failed to parse GetInitialDataResponse")); return; } bool use_privacy_pass_client = initial_data_response.has_privacy_pass_data() && auth_options_.enable_privacy_pass(); if (use_privacy_pass_client) { QUICHE_DVLOG(1) << "Using Privacy Pass client"; GeneratePrivacyPassTokens(initial_data_response, std::move(oauth_token), num_tokens, proxy_layer, service_type, std::move(callback)); } else { QUICHE_LOG(ERROR) << "Non-Privacy Pass tokens are no longer supported"; std::move(callback)(absl::UnimplementedError( "Non-Privacy Pass tokens are no longer supported")); } } void BlindSignAuth::GeneratePrivacyPassTokens( privacy::ppn::GetInitialDataResponse initial_data_response, std::optional<std::string> oauth_token, int num_tokens, ProxyLayer proxy_layer, BlindSignAuthServiceType service_type, SignedTokenCallback callback) { anonymous_tokens::RSAPublicKey public_key_proto; if (!public_key_proto.ParseFromString( initial_data_response.at_public_metadata_public_key() .serialized_public_key())) { std::move(callback)( absl::InvalidArgumentError("Failed to parse Privacy Pass public key")); return; } absl::StatusOr<bssl::UniquePtr<RSA>> bssl_rsa_key = anonymous_tokens::CreatePublicKeyRSA( public_key_proto.n(), public_key_proto.e()); if (!bssl_rsa_key.ok()) { std::move(callback)(bssl_rsa_key.status()); return; } absl::StatusOr<anonymous_tokens::Extensions> extensions = anonymous_tokens::DecodeExtensions( initial_data_response.privacy_pass_data() .public_metadata_extensions()); if (!extensions.ok()) { QUICHE_LOG(WARNING) << "Failed to decode extensions: " << extensions.status(); std::move(callback)(extensions.status()); return; } std::vector<uint16_t> kExpectedExtensionTypes = { 0x0001, 0x0002, 0xF001, 0xF002, 0xF003}; absl::Status result = anonymous_tokens::ValidateExtensionsOrderAndValues( *extensions, absl::MakeSpan(kExpectedExtensionTypes), absl::Now()); if (!result.ok()) { QUICHE_LOG(WARNING) << "Failed to validate extensions: " << result; std::move(callback)(result); return; } absl::StatusOr<anonymous_tokens::ExpirationTimestamp> expiration_timestamp = anonymous_tokens:: ExpirationTimestamp::FromExtension(extensions->extensions.at(0)); if (!expiration_timestamp.ok()) { QUICHE_LOG(WARNING) << "Failed to parse expiration timestamp: " << expiration_timestamp.status(); std::move(callback)(expiration_timestamp.status()); return; } absl::Time public_metadata_expiry_time = absl::FromUnixSeconds(expiration_timestamp->timestamp); absl::StatusOr<anonymous_tokens::GeoHint> geo_hint = anonymous_tokens::GeoHint::FromExtension( extensions->extensions.at(1)); QUICHE_CHECK(geo_hint.ok()); anonymous_tokens::TokenChallenge challenge; challenge.issuer_name = kIssuerHostname; absl::StatusOr<std::string> token_challenge = anonymous_tokens::MarshalTokenChallenge(challenge); if (!token_challenge.ok()) { QUICHE_LOG(WARNING) << "Failed to marshal token challenge: " << token_challenge.status(); std::move(callback)(token_challenge.status()); return; } QuicheRandom* random = QuicheRandom::GetInstance(); std::vector<anonymous_tokens::ExtendedTokenRequest> extended_token_requests; std::vector<std::unique_ptr<anonymous_tokens:: PrivacyPassRsaBssaPublicMetadataClient>> privacy_pass_clients; std::vector<std::string> privacy_pass_blinded_tokens; for (int i = 0; i < num_tokens; i++) { auto client = anonymous_tokens:: PrivacyPassRsaBssaPublicMetadataClient::Create(*bssl_rsa_key.value()); if (!client.ok()) { QUICHE_LOG(WARNING) << "Failed to create Privacy Pass client: " << client.status(); std::move(callback)(client.status()); return; } std::string nonce_rand(32, '\0'); random->RandBytes(nonce_rand.data(), nonce_rand.size()); absl::StatusOr<anonymous_tokens::ExtendedTokenRequest> extended_token_request = client.value()->CreateTokenRequest( *token_challenge, nonce_rand, initial_data_response.privacy_pass_data().token_key_id(), *extensions); if (!extended_token_request.ok()) { QUICHE_LOG(WARNING) << "Failed to create ExtendedTokenRequest: " << extended_token_request.status(); std::move(callback)(extended_token_request.status()); return; } privacy_pass_clients.push_back(*std::move(client)); extended_token_requests.push_back(*extended_token_request); privacy_pass_blinded_tokens.push_back(absl::Base64Escape( extended_token_request->request.blinded_token_request)); } privacy::ppn::AuthAndSignRequest sign_request; sign_request.set_service_type(BlindSignAuthServiceTypeToString(service_type)); sign_request.set_key_type(privacy::ppn::AT_PUBLIC_METADATA_KEY_TYPE); sign_request.set_key_version( initial_data_response.at_public_metadata_public_key().key_version()); sign_request.mutable_blinded_token()->Assign( privacy_pass_blinded_tokens.begin(), privacy_pass_blinded_tokens.end()); sign_request.mutable_public_metadata_extensions()->assign( initial_data_response.privacy_pass_data().public_metadata_extensions()); sign_request.set_do_not_use_rsa_public_exponent(true); sign_request.set_proxy_layer(QuicheProxyLayerToPpnProxyLayer(proxy_layer)); absl::StatusOr<anonymous_tokens::AnonymousTokensUseCase> use_case = anonymous_tokens::ParseUseCase( initial_data_response.at_public_metadata_public_key().use_case()); if (!use_case.ok()) { QUICHE_LOG(WARNING) << "Failed to parse use case: " << use_case.status(); std::move(callback)(use_case.status()); return; } BlindSignMessageCallback auth_and_sign_callback = absl::bind_front(&BlindSignAuth::PrivacyPassAuthAndSignCallback, this, std::move(initial_data_response.privacy_pass_data() .public_metadata_extensions()), public_metadata_expiry_time, *geo_hint, *use_case, std::move(privacy_pass_clients), std::move(callback)); fetcher_->DoRequest(BlindSignMessageRequestType::kAuthAndSign, oauth_token, sign_request.SerializeAsString(), std::move(auth_and_sign_callback)); } void BlindSignAuth::PrivacyPassAuthAndSignCallback( std::string encoded_extensions, absl::Time public_key_expiry_time, anonymous_tokens::GeoHint geo_hint, anonymous_tokens::AnonymousTokensUseCase use_case, std::vector<std::unique_ptr<anonymous_tokens:: PrivacyPassRsaBssaPublicMetadataClient>> privacy_pass_clients, SignedTokenCallback callback, absl::StatusOr<BlindSignMessageResponse> response) { if (!response.ok()) { QUICHE_LOG(WARNING) << "AuthAndSign failed: " << response.status(); std::move(callback)(response.status()); return; } absl::StatusCode code = response->status_code(); if (code != absl::StatusCode::kOk) { std::string message = absl::StrCat("AuthAndSign failed with code: ", code); QUICHE_LOG(WARNING) << message; std::move(callback)(absl::Status(code, message)); return; } privacy::ppn::AuthAndSignResponse sign_response; if (!sign_response.ParseFromString(response->body())) { QUICHE_LOG(WARNING) << "Failed to parse AuthAndSignResponse"; std::move(callback)( absl::InternalError("Failed to parse AuthAndSignResponse")); return; } if (static_cast<size_t>(sign_response.blinded_token_signature_size()) != privacy_pass_clients.size()) { QUICHE_LOG(WARNING) << "Number of signatures does not equal number of " "Privacy Pass tokens sent"; std::move(callback)( absl::InternalError("Number of signatures does not equal number of " "Privacy Pass tokens sent")); return; } std::vector<BlindSignToken> tokens_vec; for (int i = 0; i < sign_response.blinded_token_signature_size(); i++) { std::string unescaped_blinded_sig; if (!absl::Base64Unescape(sign_response.blinded_token_signature()[i], &unescaped_blinded_sig)) { QUICHE_LOG(WARNING) << "Failed to unescape blinded signature"; std::move(callback)( absl::InternalError("Failed to unescape blinded signature")); return; } absl::StatusOr<anonymous_tokens::Token> token = privacy_pass_clients[i]->FinalizeToken(unescaped_blinded_sig); if (!token.ok()) { QUICHE_LOG(WARNING) << "Failed to finalize token: " << token.status(); std::move(callback)(token.status()); return; } absl::StatusOr<std::string> marshaled_token = anonymous_tokens::MarshalToken(*token); if (!marshaled_token.ok()) { QUICHE_LOG(WARNING) << "Failed to marshal token: " << marshaled_token.status(); std::move(callback)(marshaled_token.status()); return; } privacy::ppn::PrivacyPassTokenData privacy_pass_token_data; privacy_pass_token_data.mutable_token()->assign( absl::WebSafeBase64Escape(*marshaled_token)); privacy_pass_token_data.mutable_encoded_extensions()->assign( absl::WebSafeBase64Escape(encoded_extensions)); privacy_pass_token_data.set_use_case_override(use_case); tokens_vec.push_back( BlindSignToken{privacy_pass_token_data.SerializeAsString(), public_key_expiry_time, geo_hint}); } std::move(callback)(absl::Span<BlindSignToken>(tokens_vec)); } privacy::ppn::ProxyLayer BlindSignAuth::QuicheProxyLayerToPpnProxyLayer( quiche::ProxyLayer proxy_layer) { switch (proxy_layer) { case ProxyLayer::kProxyA: { return privacy::ppn::ProxyLayer::PROXY_A; } case ProxyLayer::kProxyB: { return privacy::ppn::ProxyLayer::PROXY_B; } } } std::string BlindSignAuthServiceTypeToString( quiche::BlindSignAuthServiceType service_type) { switch (service_type) { case BlindSignAuthServiceType::kChromeIpBlinding: { return "chromeipblinding"; } case BlindSignAuthServiceType::kCronetIpBlinding: { return "cronetipblinding"; } case BlindSignAuthServiceType::kWebviewIpBlinding: { return "chromeipblinding"; } } } }
#include "quiche/blind_sign_auth/blind_sign_auth.h" #include <cstdint> #include <memory> #include <string> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/escaping.h" #include "absl/strings/string_view.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "anonymous_tokens/cpp/crypto/crypto_utils.h" #include "anonymous_tokens/cpp/privacy_pass/token_encodings.h" #include "anonymous_tokens/cpp/testing/utils.h" #include "openssl/base.h" #include "openssl/digest.h" #include "quiche/blind_sign_auth/blind_sign_auth_interface.h" #include "quiche/blind_sign_auth/blind_sign_auth_protos.h" #include "quiche/blind_sign_auth/blind_sign_message_interface.h" #include "quiche/blind_sign_auth/blind_sign_message_response.h" #include "quiche/blind_sign_auth/test_tools/mock_blind_sign_message_interface.h" #include "quiche/common/platform/api/quiche_mutex.h" #include "quiche/common/platform/api/quiche_test.h" #include "quiche/common/test_tools/quiche_test_utils.h" namespace quiche { namespace test { namespace { using ::testing::_; using ::testing::Eq; using ::testing::InSequence; using ::testing::Invoke; using ::testing::StartsWith; using ::testing::Unused; class BlindSignAuthTest : public QuicheTest { protected: void SetUp() override { auto [test_rsa_public_key, test_rsa_private_key] = anonymous_tokens::GetStrongTestRsaKeyPair2048(); ANON_TOKENS_ASSERT_OK_AND_ASSIGN( rsa_public_key_, anonymous_tokens::CreatePublicKeyRSA( test_rsa_public_key.n, test_rsa_public_key.e)); ANON_TOKENS_ASSERT_OK_AND_ASSIGN( rsa_private_key_, anonymous_tokens::CreatePrivateKeyRSA( test_rsa_private_key.n, test_rsa_private_key.e, test_rsa_private_key.d, test_rsa_private_key.p, test_rsa_private_key.q, test_rsa_private_key.dp, test_rsa_private_key.dq, test_rsa_private_key.crt)); anonymous_tokens::RSAPublicKey public_key; public_key.set_n(test_rsa_public_key.n); public_key.set_e(test_rsa_public_key.e); public_key_proto_.set_key_version(1); public_key_proto_.set_use_case("TEST_USE_CASE"); public_key_proto_.set_serialized_public_key(public_key.SerializeAsString()); public_key_proto_.set_sig_hash_type( anonymous_tokens::AT_HASH_TYPE_SHA384); public_key_proto_.set_mask_gen_function( anonymous_tokens::AT_MGF_SHA384); public_key_proto_.set_salt_length(48); public_key_proto_.set_key_size(256); public_key_proto_.set_message_mask_type( anonymous_tokens::AT_MESSAGE_MASK_NO_MASK); public_key_proto_.set_message_mask_size(0); expected_get_initial_data_request_.set_use_attestation(false); expected_get_initial_data_request_.set_service_type("chromeipblinding"); expected_get_initial_data_request_.set_location_granularity( privacy::ppn::GetInitialDataRequest_LocationGranularity_CITY_GEOS); expected_get_initial_data_request_.set_validation_version(2); expected_get_initial_data_request_.set_proxy_layer(privacy::ppn::PROXY_A); privacy::ppn::GetInitialDataResponse fake_get_initial_data_response; *fake_get_initial_data_response.mutable_at_public_metadata_public_key() = public_key_proto_; fake_get_initial_data_response_ = fake_get_initial_data_response; privacy::ppn::GetInitialDataResponse::PrivacyPassData privacy_pass_data; ANON_TOKENS_ASSERT_OK_AND_ASSIGN( std::string public_key_der, anonymous_tokens::RsaSsaPssPublicKeyToDerEncoding( rsa_public_key_.get())); const EVP_MD* sha256 = EVP_sha256(); ANON_TOKENS_ASSERT_OK_AND_ASSIGN( token_key_id_, anonymous_tokens::ComputeHash( public_key_der, *sha256)); anonymous_tokens::ExpirationTimestamp expiration_timestamp; int64_t one_hour_away = absl::ToUnixSeconds(absl::Now() + absl::Hours(1)); expiration_timestamp.timestamp = one_hour_away - (one_hour_away % 900); expiration_timestamp.timestamp_precision = 900; absl::StatusOr<anonymous_tokens::Extension> expiration_extension = expiration_timestamp.AsExtension(); QUICHE_EXPECT_OK(expiration_extension); extensions_.extensions.push_back(*expiration_extension); anonymous_tokens::GeoHint geo_hint; geo_hint.geo_hint = "US,US-AL,ALABASTER"; absl::StatusOr<anonymous_tokens::Extension> geo_hint_extension = geo_hint.AsExtension(); QUICHE_EXPECT_OK(geo_hint_extension); extensions_.extensions.push_back(*geo_hint_extension); anonymous_tokens::ServiceType service_type; service_type.service_type_id = anonymous_tokens::ServiceType::kChromeIpBlinding; absl::StatusOr<anonymous_tokens::Extension> service_type_extension = service_type.AsExtension(); QUICHE_EXPECT_OK(service_type_extension); extensions_.extensions.push_back(*service_type_extension); anonymous_tokens::DebugMode debug_mode; debug_mode.mode = anonymous_tokens::DebugMode::kDebug; absl::StatusOr<anonymous_tokens::Extension> debug_mode_extension = debug_mode.AsExtension(); QUICHE_EXPECT_OK(debug_mode_extension); extensions_.extensions.push_back(*debug_mode_extension); anonymous_tokens::ProxyLayer proxy_layer; proxy_layer.layer = anonymous_tokens::ProxyLayer::kProxyA; absl::StatusOr<anonymous_tokens::Extension> proxy_layer_extension = proxy_layer.AsExtension(); QUICHE_EXPECT_OK(proxy_layer_extension); extensions_.extensions.push_back(*proxy_layer_extension); absl::StatusOr<std::string> serialized_extensions = anonymous_tokens::EncodeExtensions(extensions_); QUICHE_EXPECT_OK(serialized_extensions); privacy_pass_data.set_token_key_id(token_key_id_); privacy_pass_data.set_public_metadata_extensions(*serialized_extensions); *fake_get_initial_data_response.mutable_public_metadata_info() = public_metadata_info_; *fake_get_initial_data_response.mutable_privacy_pass_data() = privacy_pass_data; fake_get_initial_data_response_ = fake_get_initial_data_response; privacy::ppn::BlindSignAuthOptions options; options.set_enable_privacy_pass(true); blind_sign_auth_ = std::make_unique<BlindSignAuth>(&mock_message_interface_, options); } void TearDown() override { blind_sign_auth_.reset(nullptr); } public: void CreateSignResponse(const std::string& body, bool use_privacy_pass) { privacy::ppn::AuthAndSignRequest request; ASSERT_TRUE(request.ParseFromString(body)); EXPECT_EQ(request.service_type(), "chromeipblinding"); EXPECT_EQ(request.key_type(), privacy::ppn::AT_PUBLIC_METADATA_KEY_TYPE); EXPECT_EQ(request.public_key_hash(), ""); EXPECT_EQ(request.key_version(), public_key_proto_.key_version()); EXPECT_EQ(request.do_not_use_rsa_public_exponent(), true); EXPECT_NE(request.blinded_token().size(), 0); if (use_privacy_pass) { EXPECT_EQ(request.public_metadata_extensions(), fake_get_initial_data_response_.privacy_pass_data() .public_metadata_extensions()); } else { EXPECT_EQ(request.public_metadata_info().SerializeAsString(), public_metadata_info_.SerializeAsString()); } privacy::ppn::AuthAndSignResponse response; for (const auto& request_token : request.blinded_token()) { std::string decoded_blinded_token; ASSERT_TRUE(absl::Base64Unescape(request_token, &decoded_blinded_token)); if (use_privacy_pass) { absl::StatusOr<std::string> signature = anonymous_tokens::TestSignWithPublicMetadata( decoded_blinded_token, request.public_metadata_extensions(), *rsa_private_key_, false); QUICHE_EXPECT_OK(signature); response.add_blinded_token_signature(absl::Base64Escape(*signature)); } else { absl::StatusOr<std::string> serialized_token = anonymous_tokens::TestSign( decoded_blinded_token, rsa_private_key_.get()); QUICHE_EXPECT_OK(serialized_token); response.add_blinded_token_signature( absl::Base64Escape(*serialized_token)); } } sign_response_ = response; } void ValidateGetTokensOutput(absl::Span<BlindSignToken> tokens) { for (const auto& token : tokens) { privacy::ppn::SpendTokenData spend_token_data; ASSERT_TRUE(spend_token_data.ParseFromString(token.token)); EXPECT_EQ(spend_token_data.public_metadata().SerializeAsString(), public_metadata_info_.public_metadata().SerializeAsString()); EXPECT_THAT(spend_token_data.unblinded_token(), StartsWith("blind:")); EXPECT_GE(spend_token_data.unblinded_token_signature().size(), spend_token_data.unblinded_token().size()); EXPECT_EQ(spend_token_data.signing_key_version(), public_key_proto_.key_version()); EXPECT_NE(spend_token_data.use_case(), anonymous_tokens::AnonymousTokensUseCase:: ANONYMOUS_TOKENS_USE_CASE_UNDEFINED); EXPECT_NE(spend_token_data.message_mask(), ""); } } void ValidatePrivacyPassTokensOutput(absl::Span<BlindSignToken> tokens) { for (const auto& token : tokens) { privacy::ppn::PrivacyPassTokenData privacy_pass_token_data; ASSERT_TRUE(privacy_pass_token_data.ParseFromString(token.token)); std::string decoded_token; ASSERT_TRUE(absl::WebSafeBase64Unescape(privacy_pass_token_data.token(), &decoded_token)); std::string decoded_extensions; ASSERT_TRUE(absl::WebSafeBase64Unescape( privacy_pass_token_data.encoded_extensions(), &decoded_extensions)); EXPECT_EQ(token.geo_hint.geo_hint, "US,US-AL,ALABASTER"); EXPECT_EQ(token.geo_hint.country_code, "US"); EXPECT_EQ(token.geo_hint.region, "US-AL"); EXPECT_EQ(token.geo_hint.city, "ALABASTER"); } } MockBlindSignMessageInterface mock_message_interface_; std::unique_ptr<BlindSignAuth> blind_sign_auth_; anonymous_tokens::RSABlindSignaturePublicKey public_key_proto_; bssl::UniquePtr<RSA> rsa_public_key_; bssl::UniquePtr<RSA> rsa_private_key_; std::string token_key_id_; anonymous_tokens::Extensions extensions_; privacy::ppn::PublicMetadataInfo public_metadata_info_; privacy::ppn::AuthAndSignResponse sign_response_; privacy::ppn::GetInitialDataResponse fake_get_initial_data_response_; std::string oauth_token_ = "oauth_token"; privacy::ppn::GetInitialDataRequest expected_get_initial_data_request_; }; TEST_F(BlindSignAuthTest, TestGetTokensFailedNetworkError) { EXPECT_CALL(mock_message_interface_, DoRequest(Eq(BlindSignMessageRequestType::kGetInitialData), Eq(oauth_token_), _, _)) .Times(1) .WillOnce([=](auto&&, auto&&, auto&&, auto get_initial_data_cb) { std::move(get_initial_data_cb)( absl::InternalError("Failed to create socket")); }); EXPECT_CALL(mock_message_interface_, DoRequest(Eq(BlindSignMessageRequestType::kAuthAndSign), _, _, _)) .Times(0); int num_tokens = 1; QuicheNotification done; SignedTokenCallback callback = [&done](absl::StatusOr<absl::Span<BlindSignToken>> tokens) { EXPECT_THAT(tokens.status().code(), absl::StatusCode::kInternal); done.Notify(); }; blind_sign_auth_->GetTokens(oauth_token_, num_tokens, ProxyLayer::kProxyA, BlindSignAuthServiceType::kChromeIpBlinding, std::move(callback)); done.WaitForNotification(); } TEST_F(BlindSignAuthTest, TestGetTokensFailedBadGetInitialDataResponse) { *fake_get_initial_data_response_.mutable_at_public_metadata_public_key() ->mutable_use_case() = "SPAM"; BlindSignMessageResponse fake_public_key_response( absl::StatusCode::kOk, fake_get_initial_data_response_.SerializeAsString()); EXPECT_CALL( mock_message_interface_, DoRequest(Eq(BlindSignMessageRequestType::kGetInitialData), Eq(oauth_token_), Eq(expected_get_initial_data_request_.SerializeAsString()), _)) .Times(1) .WillOnce([=](auto&&, auto&&, auto&&, auto get_initial_data_cb) { std::move(get_initial_data_cb)(fake_public_key_response); }); EXPECT_CALL(mock_message_interface_, DoRequest(Eq(BlindSignMessageRequestType::kAuthAndSign), _, _, _)) .Times(0); int num_tokens = 1; QuicheNotification done; SignedTokenCallback callback = [&done](absl::StatusOr<absl::Span<BlindSignToken>> tokens) { EXPECT_THAT(tokens.status().code(), absl::StatusCode::kInvalidArgument); done.Notify(); }; blind_sign_auth_->GetTokens(oauth_token_, num_tokens, ProxyLayer::kProxyA, BlindSignAuthServiceType::kChromeIpBlinding, std::move(callback)); done.WaitForNotification(); } TEST_F(BlindSignAuthTest, TestGetTokensFailedBadAuthAndSignResponse) { BlindSignMessageResponse fake_public_key_response( absl::StatusCode::kOk, fake_get_initial_data_response_.SerializeAsString()); { InSequence seq; EXPECT_CALL( mock_message_interface_, DoRequest( Eq(BlindSignMessageRequestType::kGetInitialData), Eq(oauth_token_), Eq(expected_get_initial_data_request_.SerializeAsString()), _)) .Times(1) .WillOnce([=](auto&&, auto&&, auto&&, auto get_initial_data_cb) { std::move(get_initial_data_cb)(fake_public_key_response); }); EXPECT_CALL(mock_message_interface_, DoRequest(Eq(BlindSignMessageRequestType::kAuthAndSign), Eq(oauth_token_), _, _)) .Times(1) .WillOnce(Invoke([this](Unused, Unused, const std::string& body, BlindSignMessageCallback callback) { CreateSignResponse(body, false); sign_response_.add_blinded_token_signature("invalid_signature%"); BlindSignMessageResponse response(absl::StatusCode::kOk, sign_response_.SerializeAsString()); std::move(callback)(response); })); } int num_tokens = 1; QuicheNotification done; SignedTokenCallback callback = [&done](absl::StatusOr<absl::Span<BlindSignToken>> tokens) { EXPECT_THAT(tokens.status().code(), absl::StatusCode::kInternal); done.Notify(); }; blind_sign_auth_->GetTokens(oauth_token_, num_tokens, ProxyLayer::kProxyA, BlindSignAuthServiceType::kChromeIpBlinding, std::move(callback)); done.WaitForNotification(); } TEST_F(BlindSignAuthTest, TestPrivacyPassGetTokensSucceeds) { BlindSignMessageResponse fake_public_key_response( absl::StatusCode::kOk, fake_get_initial_data_response_.SerializeAsString()); { InSequence seq; EXPECT_CALL( mock_message_interface_, DoRequest( Eq(BlindSignMessageRequestType::kGetInitialData), Eq(oauth_token_), Eq(expected_get_initial_data_request_.SerializeAsString()), _)) .Times(1) .WillOnce([=](auto&&, auto&&, auto&&, auto get_initial_data_cb) { std::move(get_initial_data_cb)(fake_public_key_response); }); EXPECT_CALL(mock_message_interface_, DoRequest(Eq(BlindSignMessageRequestType::kAuthAndSign), Eq(oauth_token_), _, _)) .Times(1) .WillOnce(Invoke([this](Unused, Unused, const std::string& body, BlindSignMessageCallback callback) { CreateSignResponse(body, true); BlindSignMessageResponse response(absl::StatusCode::kOk, sign_response_.SerializeAsString()); std::move(callback)(response); })); } int num_tokens = 1; QuicheNotification done; SignedTokenCallback callback = [this, &done](absl::StatusOr<absl::Span<BlindSignToken>> tokens) { QUICHE_EXPECT_OK(tokens); ValidatePrivacyPassTokensOutput(*tokens); done.Notify(); }; blind_sign_auth_->GetTokens(oauth_token_, num_tokens, ProxyLayer::kProxyA, BlindSignAuthServiceType::kChromeIpBlinding, std::move(callback)); done.WaitForNotification(); } TEST_F(BlindSignAuthTest, TestPrivacyPassGetTokensFailsWithBadExtensions) { privacy::ppn::BlindSignAuthOptions options; options.set_enable_privacy_pass(true); blind_sign_auth_ = std::make_unique<BlindSignAuth>(&mock_message_interface_, options); public_key_proto_.set_message_mask_type( anonymous_tokens::AT_MESSAGE_MASK_NO_MASK); public_key_proto_.set_message_mask_size(0); *fake_get_initial_data_response_.mutable_at_public_metadata_public_key() = public_key_proto_; fake_get_initial_data_response_.mutable_privacy_pass_data() ->set_public_metadata_extensions("spam"); BlindSignMessageResponse fake_public_key_response( absl::StatusCode::kOk, fake_get_initial_data_response_.SerializeAsString()); EXPECT_CALL( mock_message_interface_, DoRequest(Eq(BlindSignMessageRequestType::kGetInitialData), Eq(oauth_token_), Eq(expected_get_initial_data_request_.SerializeAsString()), _)) .Times(1) .WillOnce([=](auto&&, auto&&, auto&&, auto get_initial_data_cb) { std::move(get_initial_data_cb)(fake_public_key_response); }); int num_tokens = 1; QuicheNotification done; SignedTokenCallback callback = [&done](absl::StatusOr<absl::Span<BlindSignToken>> tokens) { EXPECT_THAT(tokens.status().code(), absl::StatusCode::kInvalidArgument); done.Notify(); }; blind_sign_auth_->GetTokens(oauth_token_, num_tokens, ProxyLayer::kProxyA, BlindSignAuthServiceType::kChromeIpBlinding, std::move(callback)); done.WaitForNotification(); } } } }
341
#ifndef QUICHE_COMMON_QUICHE_SIMPLE_ARENA_H_ #define QUICHE_COMMON_QUICHE_SIMPLE_ARENA_H_ #include <memory> #include <vector> #include "quiche/common/platform/api/quiche_export.h" namespace quiche { class QUICHE_EXPORT QuicheSimpleArena { public: class QUICHE_EXPORT Status { private: friend class QuicheSimpleArena; size_t bytes_allocated_; public: Status() : bytes_allocated_(0) {} size_t bytes_allocated() const { return bytes_allocated_; } }; explicit QuicheSimpleArena(size_t block_size); ~QuicheSimpleArena(); QuicheSimpleArena() = delete; QuicheSimpleArena(const QuicheSimpleArena&) = delete; QuicheSimpleArena& operator=(const QuicheSimpleArena&) = delete; QuicheSimpleArena(QuicheSimpleArena&& other); QuicheSimpleArena& operator=(QuicheSimpleArena&& other); char* Alloc(size_t size); char* Realloc(char* original, size_t oldsize, size_t newsize); char* Memdup(const char* data, size_t size); void Free(char* data, size_t size); void Reset(); Status status() const { return status_; } private: struct QUICHE_EXPORT Block { std::unique_ptr<char[]> data; size_t size = 0; size_t used = 0; explicit Block(size_t s); ~Block(); Block(Block&& other); Block& operator=(Block&& other); }; void Reserve(size_t additional_space); void AllocBlock(size_t size); size_t block_size_; std::vector<Block> blocks_; Status status_; }; } #endif #include "quiche/common/quiche_simple_arena.h" #include <algorithm> #include <cstring> #include <utility> #include "quiche/common/platform/api/quiche_logging.h" namespace quiche { QuicheSimpleArena::QuicheSimpleArena(size_t block_size) : block_size_(block_size) {} QuicheSimpleArena::~QuicheSimpleArena() = default; QuicheSimpleArena::QuicheSimpleArena(QuicheSimpleArena&& other) = default; QuicheSimpleArena& QuicheSimpleArena::operator=(QuicheSimpleArena&& other) = default; char* QuicheSimpleArena::Alloc(size_t size) { Reserve(size); Block& b = blocks_.back(); QUICHE_DCHECK_GE(b.size, b.used + size); char* out = b.data.get() + b.used; b.used += size; return out; } char* QuicheSimpleArena::Realloc(char* original, size_t oldsize, size_t newsize) { QUICHE_DCHECK(!blocks_.empty()); Block& last = blocks_.back(); if (last.data.get() <= original && original < last.data.get() + last.size) { QUICHE_DCHECK_GE(last.data.get() + last.used, original + oldsize); if (original + oldsize == last.data.get() + last.used) { if (original + newsize < last.data.get() + last.size) { last.used += newsize - oldsize; return original; } } } char* out = Alloc(newsize); memcpy(out, original, oldsize); return out; } char* QuicheSimpleArena::Memdup(const char* data, size_t size) { char* out = Alloc(size); memcpy(out, data, size); return out; } void QuicheSimpleArena::Free(char* data, size_t size) { if (blocks_.empty()) { return; } Block& b = blocks_.back(); if (size <= b.used && data + size == b.data.get() + b.used) { b.used -= size; } } void QuicheSimpleArena::Reset() { blocks_.clear(); status_.bytes_allocated_ = 0; } void QuicheSimpleArena::Reserve(size_t additional_space) { if (blocks_.empty()) { AllocBlock(std::max(additional_space, block_size_)); } else { const Block& last = blocks_.back(); if (last.size < last.used + additional_space) { AllocBlock(std::max(additional_space, block_size_)); } } } void QuicheSimpleArena::AllocBlock(size_t size) { blocks_.push_back(Block(size)); status_.bytes_allocated_ += size; } QuicheSimpleArena::Block::Block(size_t s) : data(new char[s]), size(s), used(0) {} QuicheSimpleArena::Block::~Block() = default; QuicheSimpleArena::Block::Block(QuicheSimpleArena::Block&& other) : size(other.size), used(other.used) { data = std::move(other.data); } QuicheSimpleArena::Block& QuicheSimpleArena::Block::operator=( QuicheSimpleArena::Block&& other) { size = other.size; used = other.used; data = std::move(other.data); return *this; } }
#include "quiche/common/quiche_simple_arena.h" #include <string> #include <vector> #include "absl/strings/string_view.h" #include "quiche/common/platform/api/quiche_test.h" namespace quiche { namespace { size_t kDefaultBlockSize = 2048; const char kTestString[] = "This is a decently long test string."; TEST(QuicheSimpleArenaTest, NoAllocationOnConstruction) { QuicheSimpleArena arena(kDefaultBlockSize); EXPECT_EQ(0u, arena.status().bytes_allocated()); } TEST(QuicheSimpleArenaTest, Memdup) { QuicheSimpleArena arena(kDefaultBlockSize); const size_t length = strlen(kTestString); char* c = arena.Memdup(kTestString, length); EXPECT_NE(nullptr, c); EXPECT_NE(c, kTestString); EXPECT_EQ(absl::string_view(c, length), kTestString); } TEST(QuicheSimpleArenaTest, MemdupLargeString) { QuicheSimpleArena arena(10 ); const size_t length = strlen(kTestString); char* c = arena.Memdup(kTestString, length); EXPECT_NE(nullptr, c); EXPECT_NE(c, kTestString); EXPECT_EQ(absl::string_view(c, length), kTestString); } TEST(QuicheSimpleArenaTest, MultipleBlocks) { QuicheSimpleArena arena(40 ); std::vector<std::string> strings = { "One decently long string.", "Another string.", "A third string that will surely go in a different block."}; std::vector<absl::string_view> copies; for (const std::string& s : strings) { absl::string_view sp(arena.Memdup(s.data(), s.size()), s.size()); copies.push_back(sp); } EXPECT_EQ(strings.size(), copies.size()); for (size_t i = 0; i < strings.size(); ++i) { EXPECT_EQ(copies[i], strings[i]); } } TEST(QuicheSimpleArenaTest, UseAfterReset) { QuicheSimpleArena arena(kDefaultBlockSize); const size_t length = strlen(kTestString); char* c = arena.Memdup(kTestString, length); arena.Reset(); c = arena.Memdup(kTestString, length); EXPECT_NE(nullptr, c); EXPECT_NE(c, kTestString); EXPECT_EQ(absl::string_view(c, length), kTestString); } TEST(QuicheSimpleArenaTest, Free) { QuicheSimpleArena arena(kDefaultBlockSize); const size_t length = strlen(kTestString); arena.Free(const_cast<char*>(kTestString), length); char* c1 = arena.Memdup("Foo", 3); char* c2 = arena.Memdup(kTestString, length); arena.Free(const_cast<char*>(kTestString), length); char* c3 = arena.Memdup("Bar", 3); char* c4 = arena.Memdup(kTestString, length); EXPECT_NE(c1, c2); EXPECT_NE(c1, c3); EXPECT_NE(c1, c4); EXPECT_NE(c2, c3); EXPECT_NE(c2, c4); EXPECT_NE(c3, c4); arena.Free(c4, length); arena.Free(c2, length); char* c5 = arena.Memdup("Baz", 3); EXPECT_EQ(c4, c5); } TEST(QuicheSimpleArenaTest, Alloc) { QuicheSimpleArena arena(kDefaultBlockSize); const size_t length = strlen(kTestString); char* c1 = arena.Alloc(length); char* c2 = arena.Alloc(2 * length); char* c3 = arena.Alloc(3 * length); char* c4 = arena.Memdup(kTestString, length); EXPECT_EQ(c1 + length, c2); EXPECT_EQ(c2 + 2 * length, c3); EXPECT_EQ(c3 + 3 * length, c4); EXPECT_EQ(absl::string_view(c4, length), kTestString); } TEST(QuicheSimpleArenaTest, Realloc) { QuicheSimpleArena arena(kDefaultBlockSize); const size_t length = strlen(kTestString); char* c1 = arena.Memdup(kTestString, length); char* c2 = arena.Realloc(c1, length, 2 * length); EXPECT_TRUE(c1); EXPECT_EQ(c1, c2); EXPECT_EQ(absl::string_view(c1, length), kTestString); char* c3 = arena.Memdup(kTestString, length); EXPECT_EQ(c2 + 2 * length, c3); EXPECT_EQ(absl::string_view(c3, length), kTestString); char* c4 = arena.Realloc(c3, length, 2 * length); EXPECT_EQ(c3, c4); EXPECT_EQ(absl::string_view(c4, length), kTestString); char* c5 = arena.Realloc(c4, 2 * length, 3 * length); EXPECT_EQ(c4, c5); EXPECT_EQ(absl::string_view(c5, length), kTestString); char* c6 = arena.Memdup(kTestString, length); EXPECT_EQ(c5 + 3 * length, c6); EXPECT_EQ(absl::string_view(c6, length), kTestString); char* c7 = arena.Realloc(c6, length, kDefaultBlockSize); EXPECT_EQ(absl::string_view(c7, length), kTestString); arena.Free(c7, kDefaultBlockSize); char* c8 = arena.Memdup(kTestString, length); EXPECT_NE(c6, c7); EXPECT_EQ(c7, c8); EXPECT_EQ(absl::string_view(c8, length), kTestString); } } }
342
#ifndef TENSORFLOW_COMPILER_MLIR_QUANTIZATION_TENSORFLOW_DEBUGGING_MLIR_DUMP_H_ #define TENSORFLOW_COMPILER_MLIR_QUANTIZATION_TENSORFLOW_DEBUGGING_MLIR_DUMP_H_ #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "mlir/Pass/PassManager.h" namespace tensorflow { namespace quantization { void EnableIrPrinting(mlir::PassManager &pm, absl::string_view file_name_prefix); absl::Status MaybeEnableIrPrinting(mlir::PassManager &pm, absl::string_view file_name_prefix); } } #endif #include "tensorflow/compiler/mlir/quantization/tensorflow/debugging/mlir_dump.h" #include <cstdint> #include <cstdlib> #include <memory> #include <string> #include <utility> #include "absl/log/log.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/match.h" #include "absl/strings/string_view.h" #include "llvm/ADT/DenseMap.h" #include "llvm/Support/Casting.h" #include "llvm/Support/FormatVariadic.h" #include "llvm/Support/raw_ostream.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/Operation.h" #include "mlir/IR/OperationSupport.h" #include "mlir/Pass/Pass.h" #include "mlir/Pass/PassManager.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/file_system.h" #include "tsl/platform/path.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" #include "tsl/platform/stringpiece.h" namespace tensorflow { namespace quantization { namespace { absl::StatusOr<std::string> GetMlirDumpDir() { auto dump_dir = std::string( absl::NullSafeStringView(std::getenv("TF_QUANT_MLIR_DUMP_PREFIX"))); if (dump_dir.empty()) { return absl::FailedPreconditionError( "Environment variable not set: TF_QUANT_MLIR_DUMP_PREFIX, " "IR dump file for TF quantization is not created."); } if (absl::EqualsIgnoreCase(dump_dir, "sponge")) { if (!tsl::io::GetTestUndeclaredOutputsDir(&dump_dir)) { return absl::FailedPreconditionError( "Environment variable TF_QUANT_MLIR_DUMP_PREFIX=sponge but " "TEST_UNDECLARED_OUTPUT_DIRS not set."); } } return dump_dir; } class WritableFileWrapper : public llvm::raw_ostream { public: ~WritableFileWrapper() override { flush(); } static absl::StatusOr<std::unique_ptr<WritableFileWrapper>> Create( const std::string& filepath) { std::unique_ptr<tsl::WritableFile> file; TF_RETURN_IF_ERROR(tsl::Env::Default()->NewWritableFile(filepath, &file)); return absl::WrapUnique(new WritableFileWrapper(std::move(file))); } private: explicit WritableFileWrapper(std::unique_ptr<tsl::WritableFile> file) : file_(std::move(file)) { SetBuffered(); } uint64_t current_pos() const override { int64_t position; if (file_->Tell(&position).ok()) { return position; } else { return -1; } } void write_impl(const char* ptr, size_t size) override { if (file_ && !file_->Append(tsl::StringPiece(ptr, size)).ok()) { file_ = nullptr; } } std::unique_ptr<tsl::WritableFile> file_; }; absl::StatusOr<std::unique_ptr<llvm::raw_ostream>> CreateMlirDumpFile( const absl::string_view dump_file_name) { const absl::StatusOr<std::string> dump_dir = GetMlirDumpDir(); if (!dump_dir.ok()) { return dump_dir.status(); } auto* env = tsl::Env::Default(); TF_RETURN_IF_ERROR(env->RecursivelyCreateDir(*dump_dir)); const std::string dump_file_path = tsl::io::JoinPath(*dump_dir, dump_file_name); TF_ASSIGN_OR_RETURN(std::unique_ptr<llvm::raw_ostream> file, WritableFileWrapper::Create(dump_file_path)); LOG(INFO) << "IR dump file created: " << dump_file_path; return file; } class PrinterConfig : public mlir::PassManager::IRPrinterConfig { public: explicit PrinterConfig( absl::string_view dump_file_prefix, bool print_module_scope = false, bool print_after_only_on_change = true, mlir::OpPrintingFlags op_printing_flags = mlir::OpPrintingFlags()) : mlir::PassManager::IRPrinterConfig( print_module_scope, print_after_only_on_change, false, op_printing_flags), mlir_pass_count_(1), dump_file_prefix_(dump_file_prefix) {} void printBeforeIfEnabled(mlir::Pass* pass, mlir::Operation* op, PrintCallbackFn print_callback) override { Dump(pass, print_callback, true); } void printAfterIfEnabled(mlir::Pass* pass, mlir::Operation* op, PrintCallbackFn print_callback) override { Dump(pass, print_callback, false); } private: int64_t mlir_pass_count_; absl::string_view dump_file_prefix_; llvm::DenseMap<mlir::Pass*, std::unique_ptr<llvm::raw_ostream>> pass_to_dump_file_before_map_; llvm::DenseMap<mlir::Pass*, std::unique_ptr<llvm::raw_ostream>> pass_to_dump_file_after_map_; llvm::DenseMap<mlir::Pass*, int64_t> pass_to_number_map_; int64_t GetPassNumber(mlir::Pass* pass) { if (!pass_to_number_map_.contains(pass)) { pass_to_number_map_[pass] = mlir_pass_count_++; } return pass_to_number_map_[pass]; } void Dump(mlir::Pass* pass, PrintCallbackFn print_callback, bool is_before) { auto& pass_to_dump_file_map = is_before ? pass_to_dump_file_before_map_ : pass_to_dump_file_after_map_; if (!pass_to_dump_file_map.contains(pass)) { std::string filename = llvm::formatv( "{0}_{1,0+4}_{2}_{3}.mlir", dump_file_prefix_, GetPassNumber(pass), pass->getName().str(), is_before ? "before" : "after"); absl::StatusOr<std::unique_ptr<llvm::raw_ostream>> dump_file = CreateMlirDumpFile(filename); if (!dump_file.ok()) { LOG(WARNING) << "Failed to dump MLIR module to " << filename; return; } pass_to_dump_file_map[pass] = std::move(*dump_file); } return print_callback(*(pass_to_dump_file_map[pass])); } }; } void EnableIrPrinting(mlir::PassManager& pm, absl::string_view file_name_prefix) { mlir::OpPrintingFlags flag{}; flag.useLocalScope().elideLargeElementsAttrs().enableDebugInfo(); if (pm.getContext()->isMultithreadingEnabled()) { pm.getContext()->disableMultithreading(); } pm.enableIRPrinting(std::make_unique<PrinterConfig>( file_name_prefix, false, true, flag)); } absl::Status MaybeEnableIrPrinting(mlir::PassManager& pm, absl::string_view file_name_prefix) { if (!VLOG_IS_ON(1)) { LOG(INFO) << "Verbosity level too low to enable IR printing."; return absl::OkStatus(); } EnableIrPrinting(pm, file_name_prefix); LOG(INFO) << "IR dump for TensorFlow quantization pipeline enabled."; return absl::OkStatus(); } } }
#include "tensorflow/compiler/mlir/quantization/tensorflow/debugging/mlir_dump.h" #include <memory> #include <string> #include <vector> #include "absl/cleanup/cleanup.h" #include "llvm/ADT/StringRef.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinDialect.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/MLIRContext.h" #include "mlir/Parser/Parser.h" #include "mlir/Pass/Pass.h" #include "mlir/Pass/PassManager.h" #include "mlir/Support/LogicalResult.h" #include "mlir/Support/TypeID.h" #include "mlir/Transforms/Passes.h" #include "stablehlo/dialect/StablehloOps.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/env.h" #include "tsl/platform/path.h" #include "tsl/platform/test.h" namespace tensorflow { namespace quantization { namespace mlir_dump_test { class NoOpPass : public mlir::PassWrapper<NoOpPass, mlir::OperationPass<mlir::ModuleOp>> { public: MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(NoOpPass) NoOpPass() = default; llvm::StringRef getArgument() const final { return "no-op-pass"; } void runOnOperation() override { } }; std::unique_ptr<mlir::OperationPass<mlir::ModuleOp>> CreateNoOpPass() { return std::make_unique<NoOpPass>(); } class ParentPass : public mlir::PassWrapper<ParentPass, mlir::OperationPass<mlir::ModuleOp>> { public: MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(ParentPass) ParentPass() = default; llvm::StringRef getArgument() const final { return "parent-pass"; } void runOnOperation() override { mlir::MLIRContext* ctx = &getContext(); mlir::ModuleOp module_op = getOperation(); mlir::PassManager pm(ctx); pm.addPass(CreateNoOpPass()); EnableIrPrinting(pm, "dump2"); if (failed(pm.run(module_op))) { signalPassFailure(); } } }; std::unique_ptr<mlir::OperationPass<mlir::ModuleOp>> CreateParentPass() { return std::make_unique<ParentPass>(); } } namespace { using namespace tensorflow::quantization::mlir_dump_test; class EnableIrPrintingTest : public ::testing::Test { protected: EnableIrPrintingTest() : env_(tsl::Env::Default()) { if (!tsl::io::GetTestUndeclaredOutputsDir(&test_dir_)) { test_dir_ = tsl::testing::TmpDir(); } } void SetUp() override { tsl::setenv("TF_QUANT_MLIR_DUMP_PREFIX", test_dir_.c_str(), 1); mlir::DialectRegistry dialects; dialects.insert<mlir::BuiltinDialect, mlir::func::FuncDialect, mlir::stablehlo::StablehloDialect>(); ctx_ = std::make_unique<mlir::MLIRContext>(dialects); ctx_->loadAllAvailableDialects(); } void TearDown() override { std::vector<std::string> files; TF_ASSERT_OK( env_->GetMatchingPaths(tsl::io::JoinPath(test_dir_, "*"), &files)); for (const std::string& file : files) { TF_ASSERT_OK(env_->DeleteFile(file)); } } tsl::Env* env_; std::string test_dir_; std::unique_ptr<mlir::MLIRContext> ctx_; }; TEST_F(EnableIrPrintingTest, PassSuccessfullyRuns) { mlir::PassManager pm = {ctx_.get()}; pm.addPass(CreateNoOpPass()); pm.addNestedPass<mlir::func::FuncOp>(mlir::createCanonicalizerPass()); pm.addNestedPass<mlir::func::FuncOp>(mlir::createCanonicalizerPass()); EnableIrPrinting(pm, "dump"); constexpr absl::string_view program = R"mlir( module{ func.func @main(%arg0: tensor<10xf32>) -> tensor<10xf32> { return %arg0 : tensor<10xf32> } func.func @func1(%arg0: tensor<10xf32>, %arg1: tensor<10xf32>) -> tensor<10xf32> { %0 = stablehlo.add %arg0, %arg1 : tensor<10xf32> %1 = stablehlo.add %arg0, %arg1 : tensor<10xf32> return %0 : tensor<10xf32> } })mlir"; auto module_op = mlir::parseSourceString<mlir::ModuleOp>(program, ctx_.get()); const mlir::LogicalResult result = pm.run(module_op.get()); EXPECT_FALSE(failed(result)); TF_EXPECT_OK(tsl::Env::Default()->FileExists( tsl::io::JoinPath(test_dir_, "dump_0001_tensorflow::quantization::mlir_dump_test" "::NoOpPass_before.mlir"))); TF_EXPECT_OK(tsl::Env::Default()->FileExists( tsl::io::JoinPath(test_dir_, "dump_0002_Canonicalizer_before.mlir"))); TF_EXPECT_OK(tsl::Env::Default()->FileExists( tsl::io::JoinPath(test_dir_, "dump_0002_Canonicalizer_after.mlir"))); TF_EXPECT_OK(tsl::Env::Default()->FileExists( tsl::io::JoinPath(test_dir_, "dump_0003_Canonicalizer_before.mlir"))); } TEST_F(EnableIrPrintingTest, NestedPassSuccessfullyRuns) { mlir::MLIRContext ctx{}; mlir::PassManager pm = {&ctx}; pm.addPass(CreateParentPass()); EnableIrPrinting(pm, "dump"); mlir::OpBuilder builder(&ctx); auto module_op = builder.create<mlir::ModuleOp>(builder.getUnknownLoc()); const absl::Cleanup module_op_cleanup = [module_op] { module_op->destroy(); }; const mlir::LogicalResult result = pm.run(module_op); EXPECT_FALSE(failed(result)); TF_EXPECT_OK(tsl::Env::Default()->FileExists( tsl::io::JoinPath(test_dir_, "dump_0001_tensorflow::quantization::mlir_dump_test" "::ParentPass_before.mlir"))); TF_EXPECT_OK(tsl::Env::Default()->FileExists( tsl::io::JoinPath(test_dir_, "dump2_0001_tensorflow::quantization::mlir_dump_test" "::NoOpPass_before.mlir"))); } } } }
343
#ifndef XLA_SERVICE_COLLECTIVE_TRANSFORMATION_REORDERER_H_ #define XLA_SERVICE_COLLECTIVE_TRANSFORMATION_REORDERER_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class CollectiveTransformationReorder : public HloModulePass { public: CollectiveTransformationReorder() = default; ~CollectiveTransformationReorder() override = default; absl::string_view name() const override { return "collective-transformation-reorderer"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: absl::StatusOr<bool> ReorderAllGatherTransformations( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads); absl::StatusOr<bool> ReorderAllReduceTransformations( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads); }; } #endif #include "xla/service/collective_transformation_reorderer.h" #include <cstdint> #include <optional> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_dce.h" #include "tsl/platform/statusor.h" namespace xla { namespace { struct CollectiveTransformation { HloInstruction* hlo; int64_t transformed_collective_dimension; }; std::optional<std::vector<CollectiveTransformation>> GetAllGatherTransformations(HloInstruction* all_gather) { std::vector<HloInstruction*> transformation_hlos; { HloInstruction* transformation_hlo = all_gather; bool found_unsupported_transformation = false; while (transformation_hlo->user_count() == 1 && !found_unsupported_transformation) { transformation_hlo = transformation_hlo->users()[0]; switch (transformation_hlo->opcode()) { case HloOpcode::kReshape: { transformation_hlos.push_back(transformation_hlo); break; } default: found_unsupported_transformation = true; } } } if (transformation_hlos.empty()) { return std::nullopt; } auto get_reshaped_all_gather_dimension = [](const Shape& all_gather_shape, int64_t all_gather_dimension, HloInstruction* transformation_hlo) -> std::optional<int64_t> { int64_t all_gather_num_strides = absl::c_accumulate( all_gather_shape.dimensions().subspan(0, all_gather_dimension), 1, [](int64_t product, int64_t dimension_size) { return product * dimension_size; }); int64_t reshaped_all_gather_dimension = 0; int64_t reshaped_num_strides = 1; while (reshaped_all_gather_dimension < transformation_hlo->shape().dimensions_size() && reshaped_num_strides < all_gather_num_strides) { reshaped_num_strides *= transformation_hlo->shape().dimensions(reshaped_all_gather_dimension); ++reshaped_all_gather_dimension; } if (reshaped_num_strides != all_gather_num_strides) { return std::nullopt; } if (transformation_hlo->shape().dimensions(reshaped_all_gather_dimension) != all_gather_shape.dimensions(all_gather_dimension)) { return std::nullopt; } return reshaped_all_gather_dimension; }; std::vector<CollectiveTransformation> transformations; HloAllGatherInstruction* all_gather_instruction = DynCast<HloAllGatherInstruction>(all_gather); Shape all_gather_shape = all_gather_instruction->shape(); int64_t all_gather_dimension = all_gather_instruction->all_gather_dimension(); CHECK(all_gather_instruction != nullptr); for (HloInstruction* transformation_hlo : transformation_hlos) { bool found_unsupported_transformation = false; switch (transformation_hlo->opcode()) { case HloOpcode::kReshape: { std::optional<int64_t> reshaped_all_gather_dimension = get_reshaped_all_gather_dimension( all_gather_shape, all_gather_dimension, transformation_hlo); if (reshaped_all_gather_dimension.has_value()) { transformations.push_back( {transformation_hlo, *reshaped_all_gather_dimension}); all_gather_shape = transformation_hlo->shape(); all_gather_dimension = *reshaped_all_gather_dimension; } else { found_unsupported_transformation = true; } break; } default: return std::nullopt; } if (found_unsupported_transformation) { break; } } if (transformations.empty()) { return std::nullopt; } return transformations; } std::vector<HloInstruction*> GetAllReduceTransformations( HloInstruction* all_reduce) { HloAllReduceInstruction* all_reduce_instruction = DynCast<HloAllReduceInstruction>(all_reduce); CHECK_NE(all_reduce_instruction, nullptr); if (all_reduce_instruction->constrain_layout()) { return {}; } std::vector<HloInstruction*> transformation_hlos; HloInstruction* transformation_hlo = all_reduce->mutable_operand(0); while (transformation_hlo->opcode() == HloOpcode::kReshape && transformation_hlo->user_count() == 1) { transformation_hlos.push_back(transformation_hlo); transformation_hlo = transformation_hlo->mutable_operand(0); } return transformation_hlos; } } absl::StatusOr<bool> CollectiveTransformationReorder::ReorderAllGatherTransformations( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { HloInstructionMap<std::vector<CollectiveTransformation>> all_gather_to_transformations; for (HloComputation* computation : module->MakeComputationPostOrder(execution_threads)) { for (HloInstruction* instruction : computation->MakeInstructionPostOrder()) { if (instruction->opcode() == HloOpcode::kAllGather) { if (instruction->operand_count() != 1) { continue; } std::optional<std::vector<CollectiveTransformation>> all_gather_transformations = GetAllGatherTransformations(instruction); if (all_gather_transformations.has_value()) { all_gather_to_transformations[instruction] = *std::move(all_gather_transformations); } } } } if (all_gather_to_transformations.empty()) { return false; } auto reshape_all_gather_operand = [](HloInstruction* all_gather_operand, int64_t original_all_gather_dimension, const CollectiveTransformation& transformation) { Shape reshaped_all_gather_operand_shape = transformation.hlo->shape(); int64_t operand_all_gather_dimension_size = all_gather_operand->shape().dimensions( original_all_gather_dimension); reshaped_all_gather_operand_shape.set_dimensions( transformation.transformed_collective_dimension, operand_all_gather_dimension_size); HloComputation* computation = all_gather_operand->parent(); return computation->AddInstruction(HloInstruction::CreateReshape( reshaped_all_gather_operand_shape, all_gather_operand)); }; for (auto& [instruction, transformations] : all_gather_to_transformations) { HloAllGatherInstruction* all_gather = DynCast<HloAllGatherInstruction>(instruction); int64_t all_gather_dimension = all_gather->all_gather_dimension(); int64_t original_all_gather_dimension_size = all_gather->shape().dimensions(all_gather_dimension); HloInstruction* all_gather_operand = instruction->mutable_operand(0); for (const CollectiveTransformation& transformation : transformations) { all_gather_operand = reshape_all_gather_operand( all_gather_operand, all_gather_dimension, transformation); all_gather_dimension = transformation.transformed_collective_dimension; } Shape new_all_gather_shape = all_gather_operand->shape(); new_all_gather_shape.set_dimensions(all_gather_dimension, original_all_gather_dimension_size); HloComputation* computation = all_gather_operand->parent(); HloInstruction* new_all_gather = computation->AddInstruction(HloInstruction::CreateAllGather( new_all_gather_shape, {all_gather_operand}, all_gather_dimension, all_gather->device_list(), all_gather->constrain_layout(), all_gather->channel_id(), all_gather->use_global_device_ids())); TF_RETURN_IF_ERROR( transformations.back().hlo->ReplaceAllUsesWith(new_all_gather)); if (computation->root_instruction() == transformations.back().hlo) { computation->set_root_instruction(new_all_gather); } } return true; } absl::StatusOr<bool> CollectiveTransformationReorder::ReorderAllReduceTransformations( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { HloInstructionMap<std::vector<HloInstruction*>> all_reduce_to_transformations; for (HloComputation* computation : module->MakeComputationPostOrder(execution_threads)) { for (HloInstruction* instruction : computation->MakeInstructionPostOrder()) { if (instruction->opcode() == HloOpcode::kAllReduce) { if (instruction->user_count() != 1 || computation->root_instruction() == instruction) { continue; } std::vector<HloInstruction*> reshapes = GetAllReduceTransformations(instruction); if (reshapes.empty()) { continue; } all_reduce_to_transformations[instruction] = std::move(reshapes); } } } if (all_reduce_to_transformations.empty()) { return false; } for (auto& [inst, reshapes] : all_reduce_to_transformations) { HloComputation* computation = inst->parent(); HloAllReduceInstruction* all_reduce = DynCast<HloAllReduceInstruction>(inst); CHECK(!reshapes.empty()); HloInstruction* cur_operand = reshapes.back()->mutable_operand(0); HloInstruction* new_all_reduce = computation->AddInstruction(HloInstruction::CreateAllReduce( cur_operand->shape(), {cur_operand}, all_reduce->to_apply(), all_reduce->device_list(), all_reduce->constrain_layout(), all_reduce->channel_id(), all_reduce->use_global_device_ids())); cur_operand = new_all_reduce; for (int64_t i = reshapes.size() - 1; i >= 0; --i) { cur_operand = computation->AddInstruction( HloInstruction::CreateReshape(reshapes[i]->shape(), cur_operand)); } TF_RETURN_IF_ERROR( computation->ReplaceInstruction(all_reduce, cur_operand)); } return true; } absl::StatusOr<bool> CollectiveTransformationReorder::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { TF_ASSIGN_OR_RETURN(bool ag_changed, ReorderAllGatherTransformations( module, execution_threads)); TF_ASSIGN_OR_RETURN(bool ar_changed, ReorderAllReduceTransformations( module, execution_threads)); if (ag_changed || ar_changed) { HloDCE dce; TF_RETURN_IF_ERROR(dce.Run(module, execution_threads).status()); } return ag_changed || ar_changed; } }
#include "xla/service/collective_transformation_reorderer.h" #include <memory> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/service/hlo_verifier.h" #include "xla/tests/hlo_test_base.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace op = xla::testing::opcode_matchers; class CollectiveTransformationReordererTest : public HloTestBase { public: absl::StatusOr<bool> RunCollectiveTransformationReorderer(HloModule* module) { CollectiveTransformationReorder reorderer; return reorderer.Run(module, {}); } }; TEST_F(CollectiveTransformationReordererTest, ReshapeWithinShardAfterAllGatherDim) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param = bf16[8,4,1024] parameter(0) all-gather = bf16[8,32,1024] all-gather(param), dimensions={1}, replica_groups={{0,1,2,3,4,5,6,7}}, channel_id=1 ROOT reshape = bf16[8,32,8,128] reshape(all-gather) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunCollectiveTransformationReorderer(module.get())); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), op::AllGather(op::Reshape(op::Parameter()))); HloInstruction* all_gather = module->entry_computation()->root_instruction(); EXPECT_THAT(all_gather->dimensions(), ::testing::ElementsAre(1)); } TEST_F(CollectiveTransformationReordererTest, ReshapeWithinShardBeforeAllGatherDim) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param = bf16[8,32,8,4,1024] parameter(0) all-gather = bf16[8,32,8,32,1024] all-gather(param), dimensions={3}, replica_groups={{0,1,2,3,4,5,6,7}}, channel_id=1 ROOT reshape = bf16[2048,32,1024] reshape(all-gather) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunCollectiveTransformationReorderer(module.get())); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), op::AllGather(op::Reshape(op::Parameter()))); HloInstruction* all_gather = module->entry_computation()->root_instruction(); EXPECT_THAT(all_gather->dimensions(), ::testing::ElementsAre(1)); } TEST_F(CollectiveTransformationReordererTest, ReshapeWithinShardBeforeAndAfterAllGatherDim) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param = bf16[8,32,8,4,1024] parameter(0) all-gather = bf16[8,32,8,32,1024] all-gather(param), dimensions={3}, replica_groups={{0,1,2,3,4,5,6,7}}, channel_id=1 ROOT reshape = bf16[2048,32,8,128] reshape(all-gather) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunCollectiveTransformationReorderer(module.get())); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), op::AllGather(op::Reshape(op::Parameter()))); HloInstruction* all_gather = module->entry_computation()->root_instruction(); EXPECT_THAT(all_gather->dimensions(), ::testing::ElementsAre(1)); } TEST_F(CollectiveTransformationReordererTest, ReshapeAcrossShards) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param = bf16[8,1,8,128] parameter(0) all-gather = bf16[8,8,8,128] all-gather(param), dimensions={1}, replica_groups={{0,1,2,3,4,5,6,7}}, channel_id=1 ROOT reshape = bf16[64,8,128] reshape(all-gather) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunCollectiveTransformationReorderer(module.get())); EXPECT_FALSE(changed); } TEST_F(CollectiveTransformationReordererTest, MergeAllGatherDimensionWithNext) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param = bf16[8,8,16,16] parameter(0) all-gather = bf16[64,8,16,16] all-gather(param), dimensions={0}, replica_groups={{0,1,2,3,4,5,6,7}}, channel_id=1 ROOT reshape = bf16[512,16,16] reshape(all-gather) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunCollectiveTransformationReorderer(module.get())); EXPECT_FALSE(changed); } TEST_F(CollectiveTransformationReordererTest, MergeAllGatherDimensionWithPrevious) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param = bf16[8,8,16,16] parameter(0) all-gather = bf16[8,64,16,16] all-gather(param), dimensions={1}, replica_groups={{0,1,2,3,4,5,6,7}}, channel_id=1 ROOT reshape = bf16[512,16,16] reshape(all-gather) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunCollectiveTransformationReorderer(module.get())); EXPECT_FALSE(changed); } TEST_F(CollectiveTransformationReordererTest, AllReduceSingleReshape) { absl::string_view hlo_string = R"( HloModule module add { a = bf16[] parameter(0) b = bf16[] parameter(1) ROOT s = bf16[] add(a, b) } ENTRY entry { param = bf16[16384,6144] parameter(0) reshape = bf16[1,16384,6144] reshape(param) all-reduce = bf16[1,16384,6144] all-reduce(reshape), channel_id=1, replica_groups={{0,1,2,3,4,5,6,7}}, to_apply=add constant = s32[] constant(0) ROOT dynamic-slice = bf16[1,16384,384] dynamic-slice(all-reduce, constant, constant, constant), dynamic_slice_sizes={1,16384,384} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunCollectiveTransformationReorderer(module.get())); EXPECT_TRUE(changed); TF_ASSERT_OK(HloVerifier(false, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::DynamicSlice(op::Reshape(op::AllReduce(op::Parameter())), op::Constant(), op::Constant(), op::Constant())); } TEST_F(CollectiveTransformationReordererTest, AllReduceTwoReshapes) { absl::string_view hlo_string = R"( HloModule module add { a = bf16[] parameter(0) b = bf16[] parameter(1) ROOT s = bf16[] add(a, b) } ENTRY entry { param = bf16[16384,3072,2] parameter(0) reshape.1 = bf16[16384,6144] reshape(param) reshape.2 = bf16[1,16384,6144] reshape(reshape.1) all-reduce = bf16[1,16384,6144] all-reduce(reshape.2), channel_id=1, replica_groups={{0,1,2,3,4,5,6,7}}, to_apply=add constant = s32[] constant(0) ROOT dynamic-slice = bf16[1,16384,384] dynamic-slice(all-reduce, constant, constant, constant), dynamic_slice_sizes={1,16384,384} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunCollectiveTransformationReorderer(module.get())); EXPECT_TRUE(changed); TF_ASSERT_OK(HloVerifier(false, true) .Run(module.get()) .status()); EXPECT_THAT( module->entry_computation()->root_instruction(), op::DynamicSlice(op::Reshape(op::Reshape(op::AllReduce(op::Parameter()))), op::Constant(), op::Constant(), op::Constant())); } TEST_F(CollectiveTransformationReordererTest, AllReduceReshapeWithTwoUsers) { absl::string_view hlo_string = R"( HloModule module add { a = bf16[] parameter(0) b = bf16[] parameter(1) ROOT s = bf16[] add(a, b) } ENTRY entry { param = bf16[16384,6144] parameter(0) reshape = bf16[1,16384,6144] reshape(param) all-reduce = bf16[1,16384,6144] all-reduce(reshape), channel_id=1, replica_groups={{0,1,2,3,4,5,6,7}}, to_apply=add constant = s32[] constant(0) dynamic-slice = bf16[1,16384,384] dynamic-slice(all-reduce, constant, constant, constant), dynamic_slice_sizes={1,16384,384} copy = bf16[1,16384,6144] copy(reshape) ROOT tuple = (bf16[1,16384,6144], bf16[1,16384,384]) tuple(copy, dynamic-slice) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunCollectiveTransformationReorderer(module.get())); EXPECT_FALSE(changed); } TEST_F(CollectiveTransformationReordererTest, AllReduceWithTwoUsersReshape) { absl::string_view hlo_string = R"( HloModule module add { a = bf16[] parameter(0) b = bf16[] parameter(1) ROOT s = bf16[] add(a, b) } ENTRY entry { param = bf16[16384,6144] parameter(0) reshape = bf16[1,16384,6144] reshape(param) all-reduce = bf16[1,16384,6144] all-reduce(reshape), channel_id=1, replica_groups={{0,1,2,3,4,5,6,7}}, to_apply=add constant = s32[] constant(0) dynamic-slice = bf16[1,16384,384] dynamic-slice(all-reduce, constant, constant, constant), dynamic_slice_sizes={1,16384,384} copy = bf16[1,16384,6144] copy(all-reduce) ROOT tuple = (bf16[1,16384,6144], bf16[1,16384,384]) tuple(copy, dynamic-slice) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunCollectiveTransformationReorderer(module.get())); EXPECT_FALSE(changed); } TEST_F(CollectiveTransformationReordererTest, AllReduceConstrainLayout) { absl::string_view hlo_string = R"( HloModule module add { a = bf16[] parameter(0) b = bf16[] parameter(1) ROOT s = bf16[] add(a, b) } ENTRY entry { param = bf16[16384,6144] parameter(0) reshape = bf16[1,16384,6144] reshape(param) all-reduce = bf16[1,16384,6144] all-reduce(reshape), channel_id=1, replica_groups={{0,1,2,3,4,5,6,7}}, constrain_layout=true, to_apply=add constant = s32[] constant(0) ROOT dynamic-slice = bf16[1,16384,384] dynamic-slice(all-reduce, constant, constant, constant), dynamic_slice_sizes={1,16384,384} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunCollectiveTransformationReorderer(module.get())); EXPECT_FALSE(changed); } } }
344
#ifndef XLA_SERVICE_MEMORY_SPACE_ASSIGNMENT_ALGORITHM_H_ #define XLA_SERVICE_MEMORY_SPACE_ASSIGNMENT_ALGORITHM_H_ #include <algorithm> #include <cstdint> #include <list> #include <map> #include <memory> #include <optional> #include <set> #include <string> #include <tuple> #include <type_traits> #include <utility> #include <variant> #include <vector> #if defined(__GNUC__) || defined(__clang__) #include "absl/container/btree_map.h" #endif #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/functional/any_invocable.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/utils/hlo_live_range.h" #include "xla/service/buffer_value.h" #include "xla/service/call_graph.h" #include "xla/service/heap_simulator/allocation_block.h" #include "xla/service/heap_simulator/heap_simulator.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_alias_analysis.h" #include "xla/service/hlo_value.h" #include "xla/service/memory_space_assignment/allocation.h" #include "xla/service/memory_space_assignment/buffer_interval_comparator.h" #include "xla/service/memory_space_assignment/memory_space_assignment.pb.h" #include "xla/service/memory_space_assignment/options.h" #include "xla/service/memory_space_assignment/slice.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" namespace xla { namespace memory_space_assignment { class AllocationValue { public: struct Use { HloUse hlo_use; int64_t time; std::vector<HloPosition> aliases; bool operator==(const Use& other) const { return hlo_use == other.hlo_use && time == other.time && aliases == other.aliases; } template <typename H> friend H AbslHashValue(H h, const Use& s) { return H::combine(std::move(h), s.hlo_use, s.time, s.aliases); } }; AllocationValue(const HloValue* value, const HloPosition& position, int64_t size) : value_(value), defining_position_(position), size_(size), requires_contiguous_allocation_(false) {} const HloPosition& defining_position() const { return defining_position_; } const HloInstruction* defining_instruction() const { return defining_position().instruction; } int64_t size() const { return size_; } const std::vector<Use>& uses() const { return uses_; } std::vector<Use>& uses() { return uses_; } const HloValue* value() const { return value_; } const HloComputation* computation() const { return defining_instruction()->parent(); } AllocationSequence* mutable_allocation_sequence() { return &allocation_sequence_; } const AllocationSequence* allocation_sequence() const { return &allocation_sequence_; } bool requires_contiguous_allocation() const { return requires_contiguous_allocation_; } void set_requires_contiguous_allocation(bool requires_contiguous_allocation) { requires_contiguous_allocation_ = requires_contiguous_allocation; } void AddUse(const HloUse& use, int64_t use_time) { uses_.push_back({use, use_time, {}}); } std::string ToString() const; std::string ToShortString() const; private: const HloValue* value_; HloPosition defining_position_; int64_t size_; bool requires_contiguous_allocation_; std::vector<Use> uses_; AllocationSequence allocation_sequence_; }; struct AsynchronousCopy { int64_t exclusive_start_time; int64_t end_time; float resource; MemorySpace destination; int64_t id; std::tuple<int64_t, int64_t, float, MemorySpace, int64_t> AsTuple() const { return std::make_tuple(exclusive_start_time, end_time, resource, destination, id); } }; bool operator<(const AsynchronousCopy& a, const AsynchronousCopy& b); bool operator==(const AsynchronousCopy& a, const AsynchronousCopy& b); bool operator!=(const AsynchronousCopy& a, const AsynchronousCopy& b); class AsynchronousCopyOrdering { public: AsynchronousCopyOrdering() = default; void AddCopy(const AsynchronousCopy& copy); void RemoveCopy(const AsynchronousCopy& copy); bool ViolatesOrdering(int64_t exclusive_start_time, int64_t end_time) const; private: struct Interval { int64_t exclusive_start_time; int64_t end_time; bool operator<(const Interval& other) const { return (exclusive_start_time < other.exclusive_start_time && end_time <= other.end_time) || (exclusive_start_time <= other.exclusive_start_time && end_time < other.end_time); } }; std::map<Interval, std::set<AsynchronousCopy>> ranges_; }; class AsynchronousCopyResource { public: struct ResourceSpec { int64_t exclusive_start_time; int64_t end_time; float resource; }; AsynchronousCopyResource() = default; explicit AsynchronousCopyResource(absl::Span<const float> initial_resources) : initial_resources_(initial_resources.begin(), initial_resources.end()), delay_(initial_resources.size(), 0) {} void AddCopy(const AsynchronousCopy& copy); void RemoveCopy(const AsynchronousCopy& copy); bool HasEnoughResource(int64_t exclusive_start_time, int64_t end_time, float resource); bool HasEnoughResourceMultiCheck(const std::vector<ResourceSpec>& specs); std::vector<float> GetCurrentResources() const { std::vector<float> current_resources(initial_resources_.begin(), initial_resources_.end()); for (int i = 0; i < current_resources.size(); ++i) { current_resources[i] -= std::min(current_resources[i], delay_[i]); } return current_resources; } std::string Dump(int64_t start_time, int64_t end_time, MemorySpace memory_space_filter) const; private: bool ConsumeResource( int64_t exclusive_start_time, int64_t end_time, float resource, absl::flat_hash_map<int64_t, float>* delay_change_map = nullptr, float resource_to_free = 0.0); void RemoveCopy(std::list<AsynchronousCopy>::iterator& copy_it); std::list<AsynchronousCopy> async_copies_; #if defined(__GNUC__) || defined(__clang__) absl::btree_map<int64_t, std::list<AsynchronousCopy>::iterator> async_copy_time_map_; #else std::map<int64_t, std::list<AsynchronousCopy>::iterator> async_copy_time_map_; #endif std::vector<float> initial_resources_; std::vector<float> delay_; }; class MsaAlgorithm : public GlobalDecreasingSizeBestFitHeap<HloValue> { public: using HloPositionOrUse = std::variant<HloPosition, HloUse>; MsaAlgorithm(AllocationSequence* allocations, const Options& options, const HloAliasAnalysis& alias_analysis, const HloLiveRange& hlo_live_range); void AllocateCrossProgramPrefetchBuffer( HloModule* module, const MsaBufferInterval& prefetch_candidate); absl::StatusOr<HeapSimulator::Result<HloValue>> Finish() override; protected: std::vector<const MsaBufferInterval*> GetSortedColocatedIntervals( const MsaBufferInterval& interval) const; void CreateAllocationValues( const MsaBufferInterval& buffer_interval, std::vector<AllocationValue>& allocation_values) const; virtual void CreateAllocationValuesFromColocatedIntervals( absl::Span<const MsaBufferInterval* const> colocated_intervals, std::vector<AllocationValue>& allocation_values); void FindAliases(std::vector<AllocationValue>* allocation_values) const; AllocationSequence* allocations() { return allocations_; } const Options& options() const { return options_; } const HloAliasAnalysis& alias_analysis() { return alias_analysis_; } const HloLiveRange& hlo_live_range() { return hlo_live_range_; } private: struct RepackAllocationBlock : AllocationBlock { Allocation* allocation; }; struct AliasedOffset { int64_t offset; absl::flat_hash_set<const Allocation*> allocations; }; struct AllocationRequest { int64_t inclusive_start_time; int64_t end_time; int64_t latest_prefetch_time; int64_t size; bool prefer_no_copy_alternate_mem_allocation; bool allow_no_copy_alternate_mem_allocation; bool require_no_copy_alternate_mem_allocation; bool allow_prefetch; std::optional<int64_t> earliest_prefetch_time; std::optional<int64_t> preferred_prefetch_time; AliasedOffset* preferred_offset; const AllocationValue::Use* use; AllocationValue* allocation_value; absl::Span<const int64_t> all_use_times; }; struct RequiredMemoryAssignment { MemorySpace memory_space; int64_t time; AliasedOffset* offset; bool equals_ignoring_time(const RequiredMemoryAssignment& other) const { return memory_space == other.memory_space && offset == other.offset; } bool operator==(const RequiredMemoryAssignment& other) const { return memory_space == other.memory_space && time == other.time && offset == other.offset; } bool operator!=(const RequiredMemoryAssignment& other) const { return !(*this == other); } }; struct LoopOptimizedAllocationInfo { int64_t use_index; int64_t loop_size; const Allocation* loop_optimized_allocation; }; struct PrefetchContext { struct WorkingIntervals { MsaBufferInterval full; std::unique_ptr<SlicedBufferInterval> sliced; }; struct SlicedSolution { std::vector<SliceDecision> slice_decisions_sorted_by_start_time; std::vector<std::pair<MsaBufferInterval, Chunk>> slices_for_pending_chunks; std::string prefetch_picker_debug_string; }; struct UnslicedSolution { Chunk chunk_candidate; float prefetch_resource; std::string prefetch_picker_debug_string; }; WorkingIntervals& GetMutableWorkingIntervals(bool for_sliced_solution) { if (for_sliced_solution) { return sliced_solution_intervals; } return unsliced_solution_intervals; } const WorkingIntervals& GetWorkingIntervals( bool for_sliced_solution) const { if (for_sliced_solution) { return sliced_solution_intervals; } return unsliced_solution_intervals; } const AllocationRequest* request; Allocation* prev_allocation_in_default_mem; int64_t exclusive_prefetch_start_time = -1; int64_t prefetch_end_time = -1; const Shape* full_shape; int64_t extra_async_copy_limit = 0; std::optional<int64_t> exclusive_out_of_mem_start = std::nullopt; std::optional<SliceProposalCollection> slice_proposal_collection = std::nullopt; WorkingIntervals sliced_solution_intervals; std::optional<SlicedSolution> sliced_solution; WorkingIntervals unsliced_solution_intervals; std::optional<UnslicedSolution> unsliced_solution; }; enum class Result { kSuccess = 0, kFailOutOfMemory = 1, kFailPrevAllocationNotInAlternateMem = 2, kFailLiveRangeTooLong = 4, kFailLiveRangeTooShort = 8, kFailOutOfAsyncCopies = 16, kFailViolatesAsyncCopyResource = 32, kFailRequiresUncommit = 64, kAllSlicesHaveTheSameStartTime = 128, kFailConflictingPreferredOffsets = 256 }; static bool result_is(Result result, Result failure) { return static_cast<int>(result) & static_cast<int>(failure); } static Result result_mark(Result failure, Result& result) { result = static_cast<Result>(static_cast<int>(result) | static_cast<int>(failure)); return result; } static bool result_requires_uncommit(Result result) { return result_is(result, Result::kFailRequiresUncommit); } static bool result_failed_because_of_async_copy(Result result) { return result_is(result, Result::kFailOutOfAsyncCopies) || result_is(result, Result::kFailViolatesAsyncCopyResource); } absl::Status OptimizeMemoryBoundLoop(int loop_start_idx, int loop_end_idx, int loop_size); void IdentifyAndOptimizeMemoryBoundLoops(); void AllocateReservedScopedAllocations(); AliasedOffset* GetAliasedOffset(const Allocation& allocation); void CreateOrAddToAliasedOffset(const Allocation& allocation, AliasedOffset* aliased_offset); static Allocation* GetLiveAllocationAt(const AllocationSequence& allocations, int64_t time); bool IsUseAllowedInAlternateMemory(const AllocationValue& value, const HloUse& use) const; AliasedOffset* UpdatePreferredOffsetForUse( const AllocationValue::Use& use, AliasedOffset* preferred_offset) const; void UpdateAllocationRequirementForUseAliases( const AllocationValue& allocation_value, const AllocationValue::Use& use, int64_t use_time); void MaybeCreateMirroredParentAllocationForWhileUse( const AllocationValue& allocation_value, const AllocationValue::Use& use, int64_t use_time, absl::Span<AllocationValue> allocation_values, absl::flat_hash_map<const HloComputation*, AliasedOffset*>& preferred_offset_for_computation); AllocationRequest CreateAllocationRequest( AllocationValue& allocation_value, const AllocationValue::Use& use, const AllocationValue::Use* previous_use, AliasedOffset* preferred_offset, int64_t definition_time, bool require_no_copy_alternate_mem_allocation, const std::vector<int64_t>& all_use_times); absl::StatusOr<Result> AllocateAllocationValues( absl::Span<AllocationValue> allocation_values);
#include "tensorflow/core/graph/algorithm.h" #include <string> #include <vector> #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/graph_def_builder_util.h" #include "tensorflow/core/graph/benchmark_testlib.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/graph/subgraph.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { namespace { REGISTER_OP("TestParams").Output("o: float"); REGISTER_OP("TestInput").Output("a: float").Output("b: float"); REGISTER_OP("TestMul").Input("a: float").Input("b: float").Output("o: float"); REGISTER_OP("TestUnary").Input("a: float").Output("o: float"); REGISTER_OP("TestBinary") .Input("a: float") .Input("b: float") .Output("o: float"); bool ExpectBefore(const std::vector<std::pair<string, string>>& ordered_pairs, const std::vector<Node*>& inputs, string* error) { for (const std::pair<string, string>& pair : ordered_pairs) { const string& before_node = pair.first; const string& after_node = pair.second; bool seen_before = false; bool seen_both = false; for (const Node* node : inputs) { if (!seen_before && after_node == node->name()) { *error = strings::StrCat("Saw ", after_node, " before ", before_node); return false; } if (before_node == node->name()) { seen_before = true; } else if (after_node == node->name()) { seen_both = seen_before; break; } } if (!seen_both) { *error = strings::StrCat("didn't see either ", before_node, " or ", after_node); return false; } } return true; } TEST(AlgorithmTest, ReversePostOrder) { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); using namespace ::tensorflow::ops; Node* w1 = SourceOp("TestParams", b.opts().WithName("W1")); Node* w2 = SourceOp("TestParams", b.opts().WithName("W2")); Node* input = SourceOp("TestInput", b.opts().WithName("input").WithControlInput(w1)); Node* t1 = BinaryOp("TestMul", w1, {input, 1}, b.opts().WithName("t1")); BinaryOp("TestMul", w1, {input, 1}, b.opts().WithName("t2").WithControlInput(t1)); BinaryOp("TestMul", w2, {input, 1}, b.opts().WithName("t3")); Graph g(OpRegistry::Global()); TF_ASSERT_OK(GraphDefBuilderToGraph(b, &g)); std::vector<Node*> order; GetReversePostOrder(g, &order); std::vector<std::pair<string, string>> reverse_orders = { {"W1", "input"}, {"W1", "t1"}, {"W1", "t2"}, {"W1", "t3"}, {"input", "t1"}, {"input", "t3"}, {"t1", "t2"}, {"W2", "t3"}}; string error; EXPECT_TRUE(ExpectBefore(reverse_orders, order, &error)) << error; reverse_orders = {{"input", "W1"}}; EXPECT_FALSE(ExpectBefore(reverse_orders, order, &error)); GetPostOrder(g, &order); std::vector<std::pair<string, string>> orders = { {"input", "W1"}, {"t1", "W1"}, {"t2", "W1"}, {"t3", "W1"}, {"t1", "input"}, {"t3", "input"}, {"t2", "t1"}, {"t3", "W2"}}; EXPECT_TRUE(ExpectBefore(orders, order, &error)) << error; orders = {{"W1", "t3"}}; EXPECT_FALSE(ExpectBefore(orders, order, &error)); } TEST(AlgorithmTest, ReversePostOrderStable) { int64_t run_count = 100; using namespace ::tensorflow::ops; for (int64_t i = 0; i < run_count; ++i) { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); string error; Node* w1 = SourceOp("TestParams", b.opts().WithName("W1")); Node* input = SourceOp("TestInput", b.opts().WithName("input").WithControlInput(w1)); BinaryOp("TestMul", w1, {input, 1}, b.opts().WithName("t2")); for (int64_t j = 0; j < i; ++j) { BinaryOp("TestMul", w1, {input, 1}, b.opts().WithName(strings::StrCat("internal", j))); } BinaryOp("TestMul", w1, {input, 1}, b.opts().WithName("t3")); Graph g(OpRegistry::Global()); TF_ASSERT_OK(GraphDefBuilderToGraph(b, &g)); std::vector<Node*> order; GetReversePostOrder(g, &order, NodeComparatorName()); EXPECT_TRUE(ExpectBefore({{"t2", "t3"}}, order, &error)); } } TEST(AlgorithmTest, PostOrderWithEdgeFilter) { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* n0 = ops::SourceOp("TestParams", b.opts().WithName("n0")); Node* n1 = ops::UnaryOp("TestUnary", n0, b.opts().WithName("n1")); Node* n2 = ops::UnaryOp("TestUnary", n1, b.opts().WithName("n2")); Node* n3 = ops::BinaryOp("TestBinary", n2, n0, b.opts().WithName("n3")); Graph g(OpRegistry::Global()); TF_ASSERT_OK(GraphDefBuilderToGraph(b, &g)); g.AddEdge(g.FindNodeId(n3->id()), 0, g.FindNodeId(n1->id()), 1); std::vector<Node*> post_order; auto edge_filter = [&](const Edge& e) { return !(e.src()->id() == n3->id() && e.dst()->id() == n1->id()); }; std::vector<Node*> expected_post_order = { g.sink_node(), g.FindNodeId(n3->id()), g.FindNodeId(n2->id()), g.FindNodeId(n1->id()), g.FindNodeId(n0->id()), g.source_node()}; std::vector<Node*> expected_reverse_post_order = expected_post_order; std::reverse(expected_reverse_post_order.begin(), expected_reverse_post_order.end()); GetPostOrder(g, &post_order, {}, edge_filter); ASSERT_EQ(expected_post_order.size(), post_order.size()); for (int i = 0; i < post_order.size(); i++) { CHECK_EQ(post_order[i], expected_post_order[i]) << post_order[i]->name() << " vs. " << expected_post_order[i]->name(); } std::vector<Node*> reverse_post_order; GetReversePostOrder(g, &reverse_post_order, {}, edge_filter); ASSERT_EQ(expected_reverse_post_order.size(), reverse_post_order.size()); for (int i = 0; i < reverse_post_order.size(); i++) { CHECK_EQ(reverse_post_order[i], expected_reverse_post_order[i]) << reverse_post_order[i]->name() << " vs. " << expected_reverse_post_order[i]->name(); } } void BM_PruneForReverseReachability(::testing::benchmark::State& state) { const int num_nodes = state.range(0); const int num_edges_per_node = state.range(1); const GraphDef graph_def = test::CreateGraphDef(num_nodes, num_edges_per_node); const auto registry = OpRegistry::Global(); GraphConstructorOptions opts; for (auto s : state) { state.PauseTiming(); Graph graph(registry); TF_CHECK_OK(ConvertGraphDefToGraph(opts, graph_def, &graph)); std::unordered_set<const Node*> visited; visited.insert(graph.FindNodeId(graph.num_nodes() - 1)); state.ResumeTiming(); PruneForReverseReachability(&graph, std::move(visited)); } } BENCHMARK(BM_PruneForReverseReachability)->ArgPair(10, 2); BENCHMARK(BM_PruneForReverseReachability)->ArgPair(1 << 6, 2); BENCHMARK(BM_PruneForReverseReachability)->ArgPair(1 << 9, 2); BENCHMARK(BM_PruneForReverseReachability)->ArgPair(1 << 12, 2); BENCHMARK(BM_PruneForReverseReachability)->ArgPair(1 << 15, 2); BENCHMARK(BM_PruneForReverseReachability)->ArgPair(10, 4); BENCHMARK(BM_PruneForReverseReachability)->ArgPair(1 << 6, 4); BENCHMARK(BM_PruneForReverseReachability)->ArgPair(1 << 9, 4); BENCHMARK(BM_PruneForReverseReachability)->ArgPair(1 << 12, 4); BENCHMARK(BM_PruneForReverseReachability)->ArgPair(1 << 15, 4); BENCHMARK(BM_PruneForReverseReachability)->ArgPair(10, 8); BENCHMARK(BM_PruneForReverseReachability)->ArgPair(1 << 6, 8); BENCHMARK(BM_PruneForReverseReachability)->ArgPair(1 << 9, 8); BENCHMARK(BM_PruneForReverseReachability)->ArgPair(1 << 12, 8); BENCHMARK(BM_PruneForReverseReachability)->ArgPair(1 << 15, 8); BENCHMARK(BM_PruneForReverseReachability)->ArgPair(10, 16); BENCHMARK(BM_PruneForReverseReachability)->ArgPair(1 << 6, 16); BENCHMARK(BM_PruneForReverseReachability)->ArgPair(1 << 9, 16); BENCHMARK(BM_PruneForReverseReachability)->ArgPair(1 << 12, 16); BENCHMARK(BM_PruneForReverseReachability)->ArgPair(1 << 15, 16); } }
345
#ifndef TENSORFLOW_LITE_TOOLS_VERSIONING_OP_SIGNATURE_H_ #define TENSORFLOW_LITE_TOOLS_VERSIONING_OP_SIGNATURE_H_ #include <string> #include <vector> #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { typedef struct { TfLiteType type; std::vector<int32_t> dims; bool is_const; bool is_shape_dynamic; } OpSignatureTensorSpec; typedef struct { BuiltinOperator op; std::vector<OpSignatureTensorSpec> inputs; std::vector<OpSignatureTensorSpec> outputs; void* builtin_data; int version; const void* custom_initial_data; std::string custom_name; union { struct { bool is_per_channel_quantized; bool is_grouped_convolution; } conv_2d; struct { bool is_per_channel_quantized; } depthwise_conv_2d; struct { bool sparse_weight; bool is_per_channel_quantized; } fully_connected; struct { float input1_scale; float input2_scale; float output_scale; bool input_quantized; } mul; struct { int32_t num_dims; } strided_slice; struct { bool input_quantized; } abs; struct { bool is_per_channel_quantized; } dequantize; struct { bool is_per_channel_quantized; } quantize; struct { bool input_quantized; } add; } ext_options; } OpSignature; OpSignature GetOpSignature(const OperatorCode* op_code, const Operator* op, const SubGraph* subgraph, const Model* model); OpSignature GetOpSignature(const TfLiteContext* context, const TfLiteNode* node, const TfLiteRegistration* registration); } #endif #include "tensorflow/lite/tools/versioning/op_signature.h" #include <cstdlib> #include "tensorflow/lite/core/api/flatbuffer_conversions.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/kernels/kernel_util.h" #include "tensorflow/lite/schema/schema_utils.h" #include "tensorflow/lite/stderr_reporter.h" namespace tflite { namespace { class MallocDataAllocator : public BuiltinDataAllocator { public: void* Allocate(size_t size, size_t alignment_hint) override { return malloc(size); } void Deallocate(void* data) override { free(data); } }; inline int GetNumDims(const SubGraph* subgraph, const Operator* op, int idx) { const flatbuffers::Vector<int32_t>* ret = subgraph->tensors()->Get(op->inputs()->Get(idx))->shape(); if (ret) { return ret->size(); } else { return 0; } } std::vector<OpSignatureTensorSpec> GetOpSignatureTensorSpecs( const flatbuffers::Vector<int32_t>* tensors, const SubGraph* subgraph, const Model* model) { std::vector<OpSignatureTensorSpec> tensor_specs; if (!tensors) { return tensor_specs; } StderrReporter error_reporter; for (int32_t i = 0; i < tensors->Length(); ++i) { int32_t tensor_no = tensors->Get(i); OpSignatureTensorSpec tensor_spec = {kTfLiteNoType}; if (tensor_no >= 0) { if (subgraph->tensors() && tensor_no < subgraph->tensors()->Length()) { auto* fb_tensor = subgraph->tensors()->Get(tensor_no); ConvertTensorType(fb_tensor->type(), &tensor_spec.type, &error_reporter); auto buffer_idx = fb_tensor->buffer(); if (buffer_idx != 0 && buffer_idx < model->buffers()->Length()) { auto* buffer = model->buffers()->Get(buffer_idx); if (buffer->data() && buffer->data()->size() != 0) { tensor_spec.is_const = true; } } const flatbuffers::Vector<int32_t>* shape_vec = fb_tensor->shape(); if (shape_vec) { for (int32_t j = 0; j < shape_vec->Length(); ++j) { tensor_spec.dims.push_back(shape_vec->Get(j)); } } const flatbuffers::Vector<int32_t>* shape_signature_vec = fb_tensor->shape_signature(); tensor_spec.is_shape_dynamic = false; if (shape_signature_vec) { for (int32_t j = 0; j < shape_signature_vec->Length(); ++j) { if (shape_signature_vec->Get(j) == -1) { tensor_spec.is_shape_dynamic = true; break; } } } } } tensor_specs.push_back(tensor_spec); } return tensor_specs; } std::vector<OpSignatureTensorSpec> GetOpSignatureTensorSpecs( TfLiteIntArray* tensors, const TfLiteContext* context, const TfLiteNode* tflite_node) { std::vector<OpSignatureTensorSpec> tensor_specs; for (int32_t i = 0; i < tensors->size; ++i) { int32_t tensor_no = tensors->data[i]; OpSignatureTensorSpec tensor_spec = {kTfLiteNoType}; if (tensor_no >= 0) { const TfLiteTensor* tfl_tensor; if (context->tensors != nullptr) { tfl_tensor = &context->tensors[tensor_no]; } else { tfl_tensor = context->GetTensor(context, tensor_no); } if (tfl_tensor != nullptr) { tensor_spec.type = tfl_tensor->type; tensor_spec.is_const = (tfl_tensor->allocation_type == kTfLiteMmapRo); if (tfl_tensor->dims) { for (int32_t j = 0; j < tfl_tensor->dims->size; ++j) { tensor_spec.dims.push_back(tfl_tensor->dims->data[j]); } } tensor_spec.is_shape_dynamic = HasUnspecifiedDimension(tfl_tensor); } } tensor_specs.push_back(tensor_spec); } return tensor_specs; } } OpSignature GetOpSignature(const OperatorCode* op_code, const Operator* op, const SubGraph* subgraph, const Model* model) { auto builtin_code = GetBuiltinCode(op_code); OpSignature op_sig = {builtin_code}; std::memset(&op_sig.ext_options, 0, sizeof(op_sig.ext_options)); if (builtin_code != BuiltinOperator_CUSTOM) { StderrReporter error_reporter; MallocDataAllocator allocator; ParseOpData(op, builtin_code, &error_reporter, &allocator, &op_sig.builtin_data); } else { op_sig.custom_name = op_code->custom_code()->str(); } switch (builtin_code) { case BuiltinOperator_DEPTHWISE_CONV_2D: { const Tensor* filter_tensor = subgraph->tensors()->Get(op->inputs()->Get(1)); const QuantizationParameters* filter_quant = filter_tensor->quantization(); int num_channels = filter_tensor->shape()->Get(3); if (filter_quant && filter_quant->scale() && filter_quant->scale()->Length() && filter_quant->scale()->Length() == num_channels) { op_sig.ext_options.depthwise_conv_2d.is_per_channel_quantized = true; } } break; case BuiltinOperator_FULLY_CONNECTED: { const Tensor* weight_tensor = subgraph->tensors()->Get(op->inputs()->Get(1)); op_sig.ext_options.fully_connected.sparse_weight = (weight_tensor->sparsity() != nullptr); const QuantizationParameters* weight_quant = weight_tensor->quantization(); if (weight_quant && weight_quant->scale() && weight_quant->scale()->size() && weight_tensor->shape() && weight_tensor->shape()->size()) { op_sig.ext_options.fully_connected.is_per_channel_quantized = weight_quant->scale()->size() > 1 && weight_quant->scale()->size() == weight_tensor->shape()->Get(0); } } break; case BuiltinOperator_MUL: { if (op->inputs()->Length() < 2 || op->outputs()->Length() < 1) { break; } const Tensor* input1_tensor = subgraph->tensors()->Get(op->inputs()->Get(0)); const Tensor* input2_tensor = subgraph->tensors()->Get(op->inputs()->Get(1)); const Tensor* output_tensor = subgraph->tensors()->Get(op->outputs()->Get(0)); const QuantizationParameters* input1_quant = input1_tensor->quantization(); const QuantizationParameters* input2_qunt = input2_tensor->quantization(); const QuantizationParameters* output_quant = output_tensor->quantization(); if (input1_quant && input1_quant->scale() && input1_quant->scale()->Length() && input2_qunt && input2_qunt->scale() && input2_qunt->scale()->Length() && output_quant && output_quant->scale() && output_quant->scale()->Length()) { op_sig.ext_options.mul.input1_scale = input1_quant->scale()->Get(0); op_sig.ext_options.mul.input2_scale = input2_qunt->scale()->Get(0); op_sig.ext_options.mul.output_scale = output_quant->scale()->Get(0); } if (input1_quant || input2_qunt) { op_sig.ext_options.mul.input_quantized = true; } } break; case BuiltinOperator_CONV_2D: { const Tensor* input_tensor = subgraph->tensors()->Get(op->inputs()->Get(0)); const Tensor* filter_tensor = subgraph->tensors()->Get(op->inputs()->Get(1)); const QuantizationParameters* filter_quant = filter_tensor->quantization(); int num_filters = filter_tensor->shape()->Get(0); if (filter_quant && filter_quant->scale() && filter_quant->scale()->Length() && filter_quant->scale()->Length() == num_filters) { op_sig.ext_options.conv_2d.is_per_channel_quantized = true; } if (input_tensor->shape() && input_tensor->shape()->size()) { int num_input_channels = input_tensor->shape()->Get(3); int num_filter_input_channels = filter_tensor->shape()->Get(3); op_sig.ext_options.conv_2d.is_grouped_convolution = num_input_channels != num_filter_input_channels; } else { op_sig.ext_options.conv_2d.is_grouped_convolution = false; } } break; case BuiltinOperator_STRIDED_SLICE: { op_sig.ext_options.strided_slice.num_dims = GetNumDims(subgraph, op, 0); } break; case BuiltinOperator_ABS: { if (subgraph->tensors()->Get(op->inputs()->Get(0))->quantization()) { op_sig.ext_options.abs.input_quantized = true; } } break; case BuiltinOperator_DEQUANTIZE: { const Tensor* input_tensor = subgraph->tensors()->Get(op->inputs()->Get(0)); const QuantizationParameters* input_quant = input_tensor->quantization(); if (input_quant && input_quant->scale() && input_quant->scale()->Length() > 1 && input_quant->scale()->Length() == input_tensor->shape()->Get(input_quant->quantized_dimension())) { op_sig.ext_options.dequantize.is_per_channel_quantized = true; } } break; case BuiltinOperator_QUANTIZE: { const Tensor* output_tensor = subgraph->tensors()->Get(op->outputs()->Get(0)); const QuantizationParameters* output_quant = output_tensor->quantization(); if (output_quant && output_quant->scale() && output_quant->scale()->Length() > 1 && output_quant->scale()->Length() == output_tensor->shape()->Get( output_quant->quantized_dimension())) { op_sig.ext_options.quantize.is_per_channel_quantized = true; } } break; case BuiltinOperator_ADD: { if (subgraph->tensors()->Get(op->inputs()->Get(0))->quantization()) { op_sig.ext_options.add.input_quantized = true; } } break; default: break; } op_sig.inputs = GetOpSignatureTensorSpecs(op->inputs(), subgraph, model); op_sig.outputs = GetOpSignatureTensorSpecs(op->outputs(), subgraph, model); op_sig.version = op_code->version(); return op_sig; } OpSignature GetOpSignature(const TfLiteContext* context, const TfLiteNode* node, const TfLiteRegistration* registration) { OpSignature op_sig = { static_cast<BuiltinOperator>(registration->builtin_code)}; op_sig.builtin_data = node->builtin_data; if (op_sig.op == BuiltinOperator_CUSTOM) { op_sig.custom_name = registration->custom_name; op_sig.custom_initial_data = node->custom_initial_data; } std::memset(&op_sig.ext_options, 0, sizeof(op_sig.ext_options)); op_sig.inputs = GetOpSignatureTensorSpecs(node->inputs, context, node); op_sig.outputs = GetOpSignatureTensorSpecs(node->outputs, context, node); op_sig.version = registration->version; return op_sig; } }
#include "tensorflow/lite/tools/versioning/op_signature.h" #include <cstring> #include <memory> #include <string> #include <vector> #include <gtest/gtest.h> #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/lite/builtin_ops.h" #include "tensorflow/lite/core/model_builder.h" namespace tflite { class StubTfLiteContext : public TfLiteContext { public: StubTfLiteContext(const int builtin_code, const int op_version, const int num_inputs) : TfLiteContext({0}) { exec_plan_ = TfLiteIntArrayCreate(3); for (int i = 0; i < 3; ++i) exec_plan_->data[i] = i; int tensor_no = 0; std::memset(nodes_, 0, sizeof(nodes_)); std::memset(registrations_, 0, sizeof(registrations_)); nodes_[0].inputs = TfLiteIntArrayCreate(1); nodes_[0].inputs->data[0] = tensor_no++; nodes_[0].outputs = TfLiteIntArrayCreate(1); nodes_[0].outputs->data[0] = tensor_no; nodes_[0].builtin_data = nullptr; nodes_[1].inputs = TfLiteIntArrayCreate(num_inputs); for (int i = 0; i < num_inputs; i++) { nodes_[1].inputs->data[i] = tensor_no++; } nodes_[1].outputs = TfLiteIntArrayCreate(1); nodes_[1].outputs->data[0] = tensor_no; nodes_[1].builtin_data = malloc(1024); std::memset(nodes_[1].builtin_data, 0, 1024); nodes_[2].inputs = TfLiteIntArrayCreate(1); nodes_[2].inputs->data[0] = tensor_no++; nodes_[2].outputs = TfLiteIntArrayCreate(1); nodes_[2].outputs->data[0] = tensor_no++; nodes_[2].builtin_data = nullptr; tensors_.resize(tensor_no); for (size_t i = 0; i < tensors_.size(); i++) { std::memset(&tensors_[i], 0, sizeof(tensors_[i])); tensors_[i].buffer_handle = kTfLiteNullBufferHandle; tensors_[i].type = kTfLiteFloat32; tensors_[i].dims = TfLiteIntArrayCreate(4); for (int d = 0; d < 4; d++) { tensors_[i].dims->data[d] = 1; } } tensors = tensors_.data(); tensors_size = tensors_.size(); registrations_[0].builtin_code = kTfLiteBuiltinAdd; registrations_[1].builtin_code = builtin_code; registrations_[1].version = op_version; registrations_[2].builtin_code = kTfLiteBuiltinAdd; this->GetExecutionPlan = StubGetExecutionPlan; this->GetNodeAndRegistration = StubGetNodeAndRegistration; } ~StubTfLiteContext() { for (auto& node : nodes_) { TfLiteIntArrayFree(node.inputs); TfLiteIntArrayFree(node.outputs); if (node.builtin_data) { free(node.builtin_data); } } for (auto& tensor : tensors_) { TfLiteIntArrayFree(tensor.dims); } TfLiteIntArrayFree(exec_plan_); } TfLiteIntArray* exec_plan() const { return exec_plan_; } TfLiteNode* node() { return &nodes_[1]; } TfLiteRegistration* registration() { return &registrations_[1]; } TfLiteNode* node(int node_index) { return &nodes_[node_index]; } TfLiteRegistration* registration(int reg_index) { return &registrations_[reg_index]; } TfLiteTensor* tensor(int tensor_index) { return &tensors_[tensor_index]; } private: static TfLiteStatus StubGetExecutionPlan(TfLiteContext* context, TfLiteIntArray** execution_plan) { StubTfLiteContext* stub = reinterpret_cast<StubTfLiteContext*>(context); *execution_plan = stub->exec_plan(); return kTfLiteOk; } static TfLiteStatus StubGetNodeAndRegistration( TfLiteContext* context, int node_index, TfLiteNode** node, TfLiteRegistration** registration) { StubTfLiteContext* stub = reinterpret_cast<StubTfLiteContext*>(context); *node = stub->node(node_index); *registration = stub->registration(node_index); return kTfLiteOk; } TfLiteIntArray* exec_plan_; TfLiteNode nodes_[3]; TfLiteRegistration registrations_[3]; std::vector<TfLiteTensor> tensors_; }; TEST(GetOpSignature, FlatBufferModel) { const std::string& full_path = tensorflow::GetDataDependencyFilepath("tensorflow/lite/testdata/add.bin"); auto fb_model = FlatBufferModel::BuildFromFile(full_path.data()); ASSERT_TRUE(fb_model); auto model = fb_model->GetModel(); auto subgraphs = model->subgraphs(); const SubGraph* subgraph = subgraphs->Get(0); const Operator* op1 = subgraph->operators()->Get(0); const OperatorCode* op_code1 = model->operator_codes()->Get(op1->opcode_index()); OpSignature op_sig = GetOpSignature(op_code1, op1, subgraph, model); EXPECT_EQ(op_sig.op, BuiltinOperator_ADD); EXPECT_EQ(op_sig.inputs[0].type, kTfLiteFloat32); EXPECT_EQ(op_sig.inputs[0].dims.size(), 4); EXPECT_FALSE(op_sig.inputs[0].is_const); EXPECT_FALSE(op_sig.inputs[0].is_shape_dynamic); EXPECT_EQ(op_sig.outputs[0].type, kTfLiteFloat32); EXPECT_FALSE(op_sig.outputs[0].is_const); EXPECT_EQ(op_sig.outputs[0].dims.size(), 4); EXPECT_FALSE(op_sig.outputs[0].is_shape_dynamic); EXPECT_NE(op_sig.builtin_data, nullptr); EXPECT_EQ(op_sig.version, 1); free(op_sig.builtin_data); const Operator* op2 = subgraph->operators()->Get(1); const OperatorCode* op_code2 = model->operator_codes()->Get(op2->opcode_index()); op_sig = GetOpSignature(op_code2, op2, subgraph, model); EXPECT_EQ(op_sig.op, BuiltinOperator_ADD); EXPECT_EQ(op_sig.inputs[0].type, kTfLiteFloat32); EXPECT_EQ(op_sig.inputs[0].dims.size(), 4); EXPECT_FALSE(op_sig.inputs[0].is_const); EXPECT_FALSE(op_sig.inputs[0].is_shape_dynamic); EXPECT_EQ(op_sig.outputs[0].type, kTfLiteFloat32); EXPECT_FALSE(op_sig.outputs[0].is_const); EXPECT_EQ(op_sig.outputs[0].dims.size(), 4); EXPECT_FALSE(op_sig.outputs[0].is_shape_dynamic); EXPECT_NE(op_sig.builtin_data, nullptr); EXPECT_EQ(op_sig.version, 1); free(op_sig.builtin_data); const std::string& full_path3 = tensorflow::GetDataDependencyFilepath( "tensorflow/lite/testdata/multi_signatures.bin"); auto fb_model3 = FlatBufferModel::BuildFromFile(full_path3.data()); ASSERT_TRUE(fb_model3); auto model3 = fb_model3->GetModel(); auto subgraphs3 = model3->subgraphs(); const SubGraph* subgraph3 = subgraphs3->Get(0); const Operator* op3 = subgraph3->operators()->Get(0); const OperatorCode* op_code3 = model3->operator_codes()->Get(op3->opcode_index()); op_sig = GetOpSignature(op_code3, op3, subgraph3, model3); EXPECT_EQ(op_sig.op, BuiltinOperator_ADD); EXPECT_EQ(op_sig.inputs[0].type, kTfLiteFloat32); EXPECT_EQ(op_sig.inputs[0].dims.size(), 1); EXPECT_FALSE(op_sig.inputs[0].is_const); EXPECT_TRUE(op_sig.inputs[0].is_shape_dynamic); EXPECT_EQ(op_sig.outputs[0].type, kTfLiteFloat32); EXPECT_FALSE(op_sig.outputs[0].is_const); EXPECT_EQ(op_sig.outputs[0].dims.size(), 1); EXPECT_TRUE(op_sig.outputs[0].is_shape_dynamic); EXPECT_NE(op_sig.builtin_data, nullptr); EXPECT_EQ(op_sig.version, 1); free(op_sig.builtin_data); } TEST(GetOpSignature, TfLiteContext) { auto context = std::make_unique<StubTfLiteContext>(kTfLiteBuiltinAdd, 1, 4); OpSignature op_sig = GetOpSignature(context.get(), context->node(), context->registration()); EXPECT_EQ(op_sig.op, BuiltinOperator_ADD); EXPECT_EQ(op_sig.inputs[0].type, kTfLiteFloat32); EXPECT_EQ(op_sig.inputs[0].dims.size(), 4); EXPECT_FALSE(op_sig.inputs[0].is_const); EXPECT_FALSE(op_sig.inputs[0].is_shape_dynamic); EXPECT_EQ(op_sig.outputs[0].type, kTfLiteFloat32); EXPECT_FALSE(op_sig.outputs[0].is_const); EXPECT_EQ(op_sig.outputs[0].dims.size(), 4); EXPECT_FALSE(op_sig.outputs[0].is_shape_dynamic); EXPECT_NE(op_sig.builtin_data, nullptr); EXPECT_EQ(op_sig.version, 1); } }
346
#ifndef AROLLA_CODEGEN_OPERATOR_PACKAGE_LOAD_OPERATOR_PACKAGE_H_ #define AROLLA_CODEGEN_OPERATOR_PACKAGE_LOAD_OPERATOR_PACKAGE_H_ #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "arolla/codegen/operator_package/operator_package.pb.h" namespace arolla::operator_package { absl::Status ParseEmbeddedOperatorPackage( absl::string_view embedded_zlib_data, OperatorPackageProto* operator_package_proto); absl::Status LoadOperatorPackage( const OperatorPackageProto& operator_package_proto); } #endif #include "arolla/codegen/operator_package/load_operator_package.h" #include <set> #include "absl/status/status.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "google/protobuf/io/gzip_stream.h" #include "google/protobuf/io/zero_copy_stream_impl_lite.h" #include "arolla/codegen/operator_package/operator_package.pb.h" #include "arolla/expr/expr_operator.h" #include "arolla/expr/registered_expr_operator.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/serialization/decode.h" #include "arolla/util/status_macros_backport.h" namespace arolla::operator_package { using ::arolla::expr::ExprOperatorPtr; using ::arolla::expr::ExprOperatorRegistry; absl::Status ParseEmbeddedOperatorPackage( absl::string_view embedded_zlib_data, OperatorPackageProto* operator_package_proto) { ::google::protobuf::io::ArrayInputStream input_stream(embedded_zlib_data.data(), embedded_zlib_data.size()); ::google::protobuf::io::GzipInputStream gzip_input_stream(&input_stream); if (!operator_package_proto->ParseFromZeroCopyStream(&gzip_input_stream) || gzip_input_stream.ZlibErrorMessage() != nullptr) { return absl::InternalError("unable to parse an embedded operator package"); } return absl::OkStatus(); } absl::Status LoadOperatorPackage( const OperatorPackageProto& operator_package_proto) { if (operator_package_proto.version() != 1) { return absl::InvalidArgumentError( absl::StrFormat("expected operator_package_proto.version=1, got %d", operator_package_proto.version())); } auto* const operator_registry = ExprOperatorRegistry::GetInstance(); auto check_registered_operator_presence = [&](absl::string_view name) { return operator_registry->LookupOperatorOrNull(name) != nullptr; }; std::set<absl::string_view> missing_operators; for (absl::string_view operator_name : operator_package_proto.required_registered_operators()) { if (!check_registered_operator_presence(operator_name)) { missing_operators.insert(operator_name); } } if (!missing_operators.empty()) { return absl::FailedPreconditionError( "missing dependencies: M." + absl::StrJoin(missing_operators, ", M.")); } std::set<absl::string_view> already_registered_operators; for (const auto& operator_proto : operator_package_proto.operators()) { if (check_registered_operator_presence( operator_proto.registration_name())) { already_registered_operators.insert(operator_proto.registration_name()); } } if (!already_registered_operators.empty()) { return absl::FailedPreconditionError( "already present in the registry: M." + absl::StrJoin(already_registered_operators, ", M.")); } for (int i = 0; i < operator_package_proto.operators_size(); ++i) { const auto& operator_proto = operator_package_proto.operators(i); ASSIGN_OR_RETURN(auto decode_result, serialization::Decode(operator_proto.implementation()), _ << "operators[" << i << "].registration_name=" << operator_proto.registration_name()); if (decode_result.values.size() != 1 || !decode_result.exprs.empty()) { return absl::InvalidArgumentError(absl::StrFormat( "expected to get a value, got %d values and %d exprs; " "operators[%d].registration_name=%s", decode_result.values.size(), decode_result.exprs.size(), i, operator_proto.registration_name())); } const auto& qvalue = decode_result.values[0]; if (qvalue.GetType() != GetQType<ExprOperatorPtr>()) { return absl::InvalidArgumentError(absl::StrFormat( "expected to get %s, got %s; operators[%d].registration_name=%s", GetQType<ExprOperatorPtr>()->name(), qvalue.GetType()->name(), i, operator_proto.registration_name())); } RETURN_IF_ERROR(operator_registry ->Register(operator_proto.registration_name(), qvalue.UnsafeAs<ExprOperatorPtr>()) .status()); } return absl::OkStatus(); } }
#include "arolla/codegen/operator_package/load_operator_package.h" #include <cstdint> #include <string> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "arolla/codegen/operator_package/operator_package.pb.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_operator.h" #include "arolla/expr/lambda_expr_operator.h" #include "arolla/expr/registered_expr_operator.h" #include "arolla/qtype/base_types.h" #include "arolla/qtype/typed_value.h" #include "arolla/serialization/encode.h" #include "arolla/util/init_arolla.h" #include "arolla/util/testing/status_matchers_backport.h" namespace arolla::operator_package { namespace { using ::arolla::expr::ExprOperatorPtr; using ::arolla::expr::LookupOperator; using ::arolla::expr::Placeholder; using ::arolla::testing::StatusIs; using ::testing::HasSubstr; class ParseEmbeddedOperatorPackageTest : public ::testing::Test { protected: void SetUp() override { ASSERT_OK(InitArolla()); } }; TEST_F(ParseEmbeddedOperatorPackageTest, TrivialOperatorPackage) { OperatorPackageProto operator_package_proto; ASSERT_OK(ParseEmbeddedOperatorPackage("x\x9c\xe3`\x04\x00\x00\x13\x00\n", &operator_package_proto)); EXPECT_THAT(operator_package_proto.version(), 1); } TEST_F(ParseEmbeddedOperatorPackageTest, ZLibError) { OperatorPackageProto operator_package_proto; EXPECT_THAT(ParseEmbeddedOperatorPackage("abc", &operator_package_proto), StatusIs(absl::StatusCode::kInternal, "unable to parse an embedded operator package")); } TEST_F(ParseEmbeddedOperatorPackageTest, ProtoError) { OperatorPackageProto operator_package_proto; EXPECT_THAT( ParseEmbeddedOperatorPackage("x\xda\xe3\x98\x06\x00\x00\xa8\x00\x9f", &operator_package_proto), StatusIs(absl::StatusCode::kInternal, "unable to parse an embedded operator package")); } class LoadOperatorPackageTest : public ::testing::Test { protected: void SetUp() override { ASSERT_OK(InitArolla()); } template <typename Proto> static absl::StatusOr<std::string> SerializeToString(const Proto& proto) { if (std::string result; proto.SerializeToString(&result)) { return result; } return absl::InvalidArgumentError("unable to serialize a proto message"); } }; TEST_F(LoadOperatorPackageTest, Registration) { ASSERT_OK_AND_ASSIGN(ExprOperatorPtr op, MakeLambdaOperator(Placeholder("x"))); OperatorPackageProto operator_package_proto; operator_package_proto.set_version(1); auto* operator_proto = operator_package_proto.add_operators(); operator_proto->set_registration_name("foo.bar.registration"); ASSERT_OK_AND_ASSIGN(*operator_proto->mutable_implementation(), serialization::Encode({TypedValue::FromValue(op)}, {})); EXPECT_OK(LoadOperatorPackage(operator_package_proto)); ASSERT_OK_AND_ASSIGN(auto reg_op, LookupOperator("foo.bar.registration")); ASSERT_OK_AND_ASSIGN(auto op_impl, reg_op->GetImplementation()); ASSERT_NE(op_impl, nullptr); EXPECT_EQ(op_impl->fingerprint(), op->fingerprint()); } TEST_F(LoadOperatorPackageTest, ErrorAlreadyRegistered) { ASSERT_OK_AND_ASSIGN(ExprOperatorPtr op, MakeLambdaOperator(Placeholder("x"))); OperatorPackageProto operator_package_proto; operator_package_proto.set_version(1); auto* operator_proto = operator_package_proto.add_operators(); operator_proto->set_registration_name("foo.bar.already_registered"); ASSERT_OK_AND_ASSIGN(*operator_proto->mutable_implementation(), serialization::Encode({TypedValue::FromValue(op)}, {})); EXPECT_OK(LoadOperatorPackage(operator_package_proto)); EXPECT_THAT(LoadOperatorPackage(operator_package_proto), StatusIs(absl::StatusCode::kFailedPrecondition, "already present in the registry: " "M.foo.bar.already_registered")); } TEST_F(LoadOperatorPackageTest, ErrorUnexpectedFormatVersion) { OperatorPackageProto operator_package_proto; EXPECT_THAT(LoadOperatorPackage(operator_package_proto), StatusIs(absl::StatusCode::kInvalidArgument, "expected operator_package_proto.version=1, got 0")); } TEST_F(LoadOperatorPackageTest, ErrorMissingDependency) { OperatorPackageProto operator_package_proto; operator_package_proto.set_version(1); operator_package_proto.add_required_registered_operators("foo.bar"); operator_package_proto.add_required_registered_operators("far.boo"); EXPECT_THAT(LoadOperatorPackage(operator_package_proto), StatusIs(absl::StatusCode::kFailedPrecondition, "missing dependencies: M.far.boo, M.foo.bar")); } TEST_F(LoadOperatorPackageTest, ErrorBrokenOperatorImplementation) { OperatorPackageProto operator_package_proto; operator_package_proto.set_version(1); operator_package_proto.add_operators()->set_registration_name("foo.bar"); EXPECT_THAT(LoadOperatorPackage(operator_package_proto), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("; operators[0].registration_name=foo.bar"))); } TEST_F(LoadOperatorPackageTest, ErrorNoValueInOperatorImplementation) { OperatorPackageProto operator_package_proto; operator_package_proto.set_version(1); auto* operator_proto = operator_package_proto.add_operators(); operator_proto->set_registration_name("foo.bar"); ASSERT_OK_AND_ASSIGN(*operator_proto->mutable_implementation(), serialization::Encode({}, {})); EXPECT_THAT( LoadOperatorPackage(operator_package_proto), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("expected to get a value, got 0 values and 0 exprs; " "operators[0].registration_name=foo.bar"))); } TEST_F(LoadOperatorPackageTest, ErrorUnexpectedValueInOperatorImplementation) { OperatorPackageProto operator_package_proto; operator_package_proto.set_version(1); auto* operator_proto = operator_package_proto.add_operators(); operator_proto->set_registration_name("foo.bar"); ASSERT_OK_AND_ASSIGN( *operator_proto->mutable_implementation(), serialization::Encode({TypedValue::FromValue<int64_t>(0)}, {})); EXPECT_THAT(LoadOperatorPackage(operator_package_proto), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("expected to get EXPR_OPERATOR, got INT64; " "operators[0].registration_name=foo.bar"))); } } }
347
#ifndef ABSL_LOG_LOG_SINK_H_ #define ABSL_LOG_LOG_SINK_H_ #include "absl/base/config.h" #include "absl/log/log_entry.h" namespace absl { ABSL_NAMESPACE_BEGIN class LogSink { public: virtual ~LogSink() = default; virtual void Send(const absl::LogEntry& entry) = 0; virtual void Flush() {} protected: LogSink() = default; LogSink(const LogSink&) = default; LogSink& operator=(const LogSink&) = default; private: virtual void KeyFunction() const final; }; ABSL_NAMESPACE_END } #endif #include "absl/log/log_sink.h" #include "absl/base/config.h" namespace absl { ABSL_NAMESPACE_BEGIN void LogSink::KeyFunction() const {} ABSL_NAMESPACE_END }
#include "absl/log/log_sink.h" #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/base/attributes.h" #include "absl/log/internal/test_actions.h" #include "absl/log/internal/test_helpers.h" #include "absl/log/internal/test_matchers.h" #include "absl/log/log.h" #include "absl/log/log_sink_registry.h" #include "absl/log/scoped_mock_log.h" #include "absl/strings/string_view.h" namespace { using ::absl::log_internal::DeathTestExpectedLogging; using ::absl::log_internal::DeathTestUnexpectedLogging; using ::absl::log_internal::DeathTestValidateExpectations; using ::absl::log_internal::DiedOfFatal; using ::testing::_; using ::testing::AnyNumber; using ::testing::HasSubstr; using ::testing::InSequence; auto* test_env ABSL_ATTRIBUTE_UNUSED = ::testing::AddGlobalTestEnvironment( new absl::log_internal::LogTestEnvironment); TEST(LogSinkRegistryTest, AddLogSink) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); InSequence s; EXPECT_CALL(test_sink, Log(_, _, "hello world")).Times(0); EXPECT_CALL(test_sink, Log(absl::LogSeverity::kInfo, __FILE__, "Test : 42")); EXPECT_CALL(test_sink, Log(absl::LogSeverity::kWarning, __FILE__, "Danger ahead")); EXPECT_CALL(test_sink, Log(absl::LogSeverity::kError, __FILE__, "This is an error")); LOG(INFO) << "hello world"; test_sink.StartCapturingLogs(); LOG(INFO) << "Test : " << 42; LOG(WARNING) << "Danger" << ' ' << "ahead"; LOG(ERROR) << "This is an error"; test_sink.StopCapturingLogs(); LOG(INFO) << "Goodby world"; } TEST(LogSinkRegistryTest, MultipleLogSinks) { absl::ScopedMockLog test_sink1(absl::MockLogDefault::kDisallowUnexpected); absl::ScopedMockLog test_sink2(absl::MockLogDefault::kDisallowUnexpected); ::testing::InSequence seq; EXPECT_CALL(test_sink1, Log(absl::LogSeverity::kInfo, _, "First")).Times(1); EXPECT_CALL(test_sink2, Log(absl::LogSeverity::kInfo, _, "First")).Times(0); EXPECT_CALL(test_sink1, Log(absl::LogSeverity::kInfo, _, "Second")).Times(1); EXPECT_CALL(test_sink2, Log(absl::LogSeverity::kInfo, _, "Second")).Times(1); EXPECT_CALL(test_sink1, Log(absl::LogSeverity::kInfo, _, "Third")).Times(0); EXPECT_CALL(test_sink2, Log(absl::LogSeverity::kInfo, _, "Third")).Times(1); LOG(INFO) << "Before first"; test_sink1.StartCapturingLogs(); LOG(INFO) << "First"; test_sink2.StartCapturingLogs(); LOG(INFO) << "Second"; test_sink1.StopCapturingLogs(); LOG(INFO) << "Third"; test_sink2.StopCapturingLogs(); LOG(INFO) << "Fourth"; } TEST(LogSinkRegistrationDeathTest, DuplicateSinkRegistration) { ASSERT_DEATH_IF_SUPPORTED( { absl::ScopedMockLog sink; sink.StartCapturingLogs(); absl::AddLogSink(&sink.UseAsLocalSink()); }, HasSubstr("Duplicate log sinks")); } TEST(LogSinkRegistrationDeathTest, MismatchSinkRemoval) { ASSERT_DEATH_IF_SUPPORTED( { absl::ScopedMockLog sink; absl::RemoveLogSink(&sink.UseAsLocalSink()); }, HasSubstr("Mismatched log sink")); } TEST(LogSinkTest, FlushSinks) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); EXPECT_CALL(test_sink, Flush()).Times(2); test_sink.StartCapturingLogs(); absl::FlushLogSinks(); absl::FlushLogSinks(); } TEST(LogSinkDeathTest, DeathInSend) { class FatalSendSink : public absl::LogSink { public: void Send(const absl::LogEntry&) override { LOG(FATAL) << "goodbye world"; } }; FatalSendSink sink; EXPECT_EXIT({ LOG(INFO).ToSinkAlso(&sink) << "hello world"; }, DiedOfFatal, _); } TEST(LogSinkTest, ToSinkAlso) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); absl::ScopedMockLog another_sink(absl::MockLogDefault::kDisallowUnexpected); EXPECT_CALL(test_sink, Log(_, _, "hello world")); EXPECT_CALL(another_sink, Log(_, _, "hello world")); test_sink.StartCapturingLogs(); LOG(INFO).ToSinkAlso(&another_sink.UseAsLocalSink()) << "hello world"; } TEST(LogSinkTest, ToSinkOnly) { absl::ScopedMockLog another_sink(absl::MockLogDefault::kDisallowUnexpected); EXPECT_CALL(another_sink, Log(_, _, "hello world")); LOG(INFO).ToSinkOnly(&another_sink.UseAsLocalSink()) << "hello world"; } TEST(LogSinkTest, ToManySinks) { absl::ScopedMockLog sink1(absl::MockLogDefault::kDisallowUnexpected); absl::ScopedMockLog sink2(absl::MockLogDefault::kDisallowUnexpected); absl::ScopedMockLog sink3(absl::MockLogDefault::kDisallowUnexpected); absl::ScopedMockLog sink4(absl::MockLogDefault::kDisallowUnexpected); absl::ScopedMockLog sink5(absl::MockLogDefault::kDisallowUnexpected); EXPECT_CALL(sink3, Log(_, _, "hello world")); EXPECT_CALL(sink4, Log(_, _, "hello world")); EXPECT_CALL(sink5, Log(_, _, "hello world")); LOG(INFO) .ToSinkAlso(&sink1.UseAsLocalSink()) .ToSinkAlso(&sink2.UseAsLocalSink()) .ToSinkOnly(&sink3.UseAsLocalSink()) .ToSinkAlso(&sink4.UseAsLocalSink()) .ToSinkAlso(&sink5.UseAsLocalSink()) << "hello world"; } class ReentrancyTest : public ::testing::Test { protected: ReentrancyTest() = default; enum class LogMode : int { kNormal, kToSinkAlso, kToSinkOnly }; class ReentrantSendLogSink : public absl::LogSink { public: explicit ReentrantSendLogSink(absl::LogSeverity severity, absl::LogSink* sink, LogMode mode) : severity_(severity), sink_(sink), mode_(mode) {} explicit ReentrantSendLogSink(absl::LogSeverity severity) : ReentrantSendLogSink(severity, nullptr, LogMode::kNormal) {} void Send(const absl::LogEntry&) override { switch (mode_) { case LogMode::kNormal: LOG(LEVEL(severity_)) << "The log is coming from *inside the sink*."; break; case LogMode::kToSinkAlso: LOG(LEVEL(severity_)).ToSinkAlso(sink_) << "The log is coming from *inside the sink*."; break; case LogMode::kToSinkOnly: LOG(LEVEL(severity_)).ToSinkOnly(sink_) << "The log is coming from *inside the sink*."; break; default: LOG(FATAL) << "Invalid mode " << static_cast<int>(mode_); } } private: absl::LogSeverity severity_; absl::LogSink* sink_; LogMode mode_; }; static absl::string_view LogAndReturn(absl::LogSeverity severity, absl::string_view to_log, absl::string_view to_return) { LOG(LEVEL(severity)) << to_log; return to_return; } }; TEST_F(ReentrancyTest, LogFunctionThatLogs) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); InSequence seq; EXPECT_CALL(test_sink, Log(absl::LogSeverity::kInfo, _, "hello")); EXPECT_CALL(test_sink, Log(absl::LogSeverity::kInfo, _, "world")); EXPECT_CALL(test_sink, Log(absl::LogSeverity::kWarning, _, "danger")); EXPECT_CALL(test_sink, Log(absl::LogSeverity::kInfo, _, "here")); test_sink.StartCapturingLogs(); LOG(INFO) << LogAndReturn(absl::LogSeverity::kInfo, "hello", "world"); LOG(INFO) << LogAndReturn(absl::LogSeverity::kWarning, "danger", "here"); } TEST_F(ReentrancyTest, RegisteredLogSinkThatLogsInSend) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); ReentrantSendLogSink renentrant_sink(absl::LogSeverity::kInfo); EXPECT_CALL(test_sink, Log(_, _, "hello world")); test_sink.StartCapturingLogs(); absl::AddLogSink(&renentrant_sink); LOG(INFO) << "hello world"; absl::RemoveLogSink(&renentrant_sink); } TEST_F(ReentrancyTest, AlsoLogSinkThatLogsInSend) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); ReentrantSendLogSink reentrant_sink(absl::LogSeverity::kInfo); EXPECT_CALL(test_sink, Log(_, _, "hello world")); EXPECT_CALL(test_sink, Log(_, _, "The log is coming from *inside the sink*.")); test_sink.StartCapturingLogs(); LOG(INFO).ToSinkAlso(&reentrant_sink) << "hello world"; } TEST_F(ReentrancyTest, RegisteredAlsoLogSinkThatLogsInSend) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); ReentrantSendLogSink reentrant_sink(absl::LogSeverity::kInfo); EXPECT_CALL(test_sink, Log(_, _, "hello world")); EXPECT_CALL(test_sink, Log(_, _, "The log is coming from *inside the sink*.")); test_sink.StartCapturingLogs(); absl::AddLogSink(&reentrant_sink); LOG(INFO).ToSinkAlso(&reentrant_sink) << "hello world"; absl::RemoveLogSink(&reentrant_sink); } TEST_F(ReentrancyTest, OnlyLogSinkThatLogsInSend) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); ReentrantSendLogSink reentrant_sink(absl::LogSeverity::kInfo); EXPECT_CALL(test_sink, Log(_, _, "The log is coming from *inside the sink*.")); test_sink.StartCapturingLogs(); LOG(INFO).ToSinkOnly(&reentrant_sink) << "hello world"; } TEST_F(ReentrancyTest, RegisteredOnlyLogSinkThatLogsInSend) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); ReentrantSendLogSink reentrant_sink(absl::LogSeverity::kInfo); EXPECT_CALL(test_sink, Log(_, _, "The log is coming from *inside the sink*.")); test_sink.StartCapturingLogs(); absl::AddLogSink(&reentrant_sink); LOG(INFO).ToSinkOnly(&reentrant_sink) << "hello world"; absl::RemoveLogSink(&reentrant_sink); } using ReentrancyDeathTest = ReentrancyTest; TEST_F(ReentrancyDeathTest, LogFunctionThatLogsFatal) { EXPECT_EXIT( { absl::ScopedMockLog test_sink; EXPECT_CALL(test_sink, Log) .Times(AnyNumber()) .WillRepeatedly(DeathTestUnexpectedLogging()); EXPECT_CALL(test_sink, Log(_, _, "hello")) .WillOnce(DeathTestExpectedLogging()); test_sink.StartCapturingLogs(); LOG(INFO) << LogAndReturn(absl::LogSeverity::kFatal, "hello", "world"); }, DiedOfFatal, DeathTestValidateExpectations()); } TEST_F(ReentrancyDeathTest, RegisteredLogSinkThatLogsFatalInSend) { EXPECT_EXIT( { absl::ScopedMockLog test_sink; ReentrantSendLogSink reentrant_sink(absl::LogSeverity::kFatal); EXPECT_CALL(test_sink, Log) .Times(AnyNumber()) .WillRepeatedly(DeathTestUnexpectedLogging()); EXPECT_CALL(test_sink, Log(_, _, "hello world")) .WillOnce(DeathTestExpectedLogging()); test_sink.StartCapturingLogs(); absl::AddLogSink(&reentrant_sink); LOG(INFO) << "hello world"; }, DiedOfFatal, DeathTestValidateExpectations()); } TEST_F(ReentrancyDeathTest, AlsoLogSinkThatLogsFatalInSend) { EXPECT_EXIT( { absl::ScopedMockLog test_sink; ReentrantSendLogSink reentrant_sink(absl::LogSeverity::kFatal); EXPECT_CALL(test_sink, Log) .Times(AnyNumber()) .WillRepeatedly(DeathTestUnexpectedLogging()); EXPECT_CALL(test_sink, Log(_, _, "hello world")) .WillOnce(DeathTestExpectedLogging()); EXPECT_CALL(test_sink, Log(_, _, "The log is coming from *inside the sink*.")) .WillOnce(DeathTestExpectedLogging()); test_sink.StartCapturingLogs(); LOG(INFO).ToSinkAlso(&reentrant_sink) << "hello world"; }, DiedOfFatal, DeathTestValidateExpectations()); } TEST_F(ReentrancyDeathTest, RegisteredAlsoLogSinkThatLogsFatalInSend) { EXPECT_EXIT( { absl::ScopedMockLog test_sink; ReentrantSendLogSink reentrant_sink(absl::LogSeverity::kFatal); EXPECT_CALL(test_sink, Log) .Times(AnyNumber()) .WillRepeatedly(DeathTestUnexpectedLogging()); EXPECT_CALL(test_sink, Log(_, _, "hello world")) .WillOnce(DeathTestExpectedLogging()); EXPECT_CALL(test_sink, Log(_, _, "The log is coming from *inside the sink*.")) .WillOnce(DeathTestExpectedLogging()); test_sink.StartCapturingLogs(); absl::AddLogSink(&reentrant_sink); LOG(INFO).ToSinkAlso(&reentrant_sink) << "hello world"; }, DiedOfFatal, DeathTestValidateExpectations()); } TEST_F(ReentrancyDeathTest, OnlyLogSinkThatLogsFatalInSend) { EXPECT_EXIT( { absl::ScopedMockLog test_sink; ReentrantSendLogSink reentrant_sink(absl::LogSeverity::kFatal); EXPECT_CALL(test_sink, Log) .Times(AnyNumber()) .WillRepeatedly(DeathTestUnexpectedLogging()); EXPECT_CALL(test_sink, Log(_, _, "The log is coming from *inside the sink*.")) .WillOnce(DeathTestExpectedLogging()); test_sink.StartCapturingLogs(); LOG(INFO).ToSinkOnly(&reentrant_sink) << "hello world"; }, DiedOfFatal, DeathTestValidateExpectations()); } TEST_F(ReentrancyDeathTest, RegisteredOnlyLogSinkThatLogsFatalInSend) { EXPECT_EXIT( { absl::ScopedMockLog test_sink; ReentrantSendLogSink reentrant_sink(absl::LogSeverity::kFatal); EXPECT_CALL(test_sink, Log) .Times(AnyNumber()) .WillRepeatedly(DeathTestUnexpectedLogging()); EXPECT_CALL(test_sink, Log(_, _, "The log is coming from *inside the sink*.")) .WillOnce(DeathTestExpectedLogging()); test_sink.StartCapturingLogs(); absl::AddLogSink(&reentrant_sink); LOG(INFO).ToSinkOnly(&reentrant_sink) << "hello world"; }, DiedOfFatal, DeathTestValidateExpectations()); } }
348
#ifndef THIRD_PARTY_CEL_CPP_EVAL_COMPILER_RESOLVER_H_ #define THIRD_PARTY_CEL_CPP_EVAL_COMPILER_RESOLVER_H_ #include <cstdint> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "base/kind.h" #include "common/value.h" #include "common/value_manager.h" #include "runtime/function_overload_reference.h" #include "runtime/function_registry.h" #include "runtime/type_registry.h" namespace google::api::expr::runtime { class Resolver { public: Resolver( absl::string_view container, const cel::FunctionRegistry& function_registry, const cel::TypeRegistry& type_registry, cel::ValueManager& value_factory, const absl::flat_hash_map<std::string, cel::TypeRegistry::Enumeration>& resolveable_enums, bool resolve_qualified_type_identifiers = true); ~Resolver() = default; absl::optional<cel::Value> FindConstant(absl::string_view name, int64_t expr_id) const; absl::StatusOr<absl::optional<std::pair<std::string, cel::Type>>> FindType( absl::string_view name, int64_t expr_id) const; std::vector<cel::FunctionRegistry::LazyOverload> FindLazyOverloads( absl::string_view name, bool receiver_style, const std::vector<cel::Kind>& types, int64_t expr_id = -1) const; std::vector<cel::FunctionOverloadReference> FindOverloads( absl::string_view name, bool receiver_style, const std::vector<cel::Kind>& types, int64_t expr_id = -1) const; std::vector<std::string> FullyQualifiedNames(absl::string_view base_name, int64_t expr_id = -1) const; private: std::vector<std::string> namespace_prefixes_; absl::flat_hash_map<std::string, cel::Value> enum_value_map_; const cel::FunctionRegistry& function_registry_; cel::ValueManager& value_factory_; const absl::flat_hash_map<std::string, cel::TypeRegistry::Enumeration>& resolveable_enums_; bool resolve_qualified_type_identifiers_; }; inline std::vector<cel::Kind> ArgumentsMatcher(int argument_count) { std::vector<cel::Kind> argument_matcher(argument_count); for (int i = 0; i < argument_count; i++) { argument_matcher[i] = cel::Kind::kAny; } return argument_matcher; } } #endif #include "eval/compiler/resolver.h" #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/base/nullability.h" #include "absl/container/flat_hash_map.h" #include "absl/status/statusor.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "absl/strings/strip.h" #include "absl/types/optional.h" #include "base/kind.h" #include "common/memory.h" #include "common/type.h" #include "common/value.h" #include "common/value_manager.h" #include "internal/status_macros.h" #include "runtime/function_overload_reference.h" #include "runtime/function_registry.h" #include "runtime/type_registry.h" namespace google::api::expr::runtime { using ::cel::Value; Resolver::Resolver( absl::string_view container, const cel::FunctionRegistry& function_registry, const cel::TypeRegistry&, cel::ValueManager& value_factory, const absl::flat_hash_map<std::string, cel::TypeRegistry::Enumeration>& resolveable_enums, bool resolve_qualified_type_identifiers) : namespace_prefixes_(), enum_value_map_(), function_registry_(function_registry), value_factory_(value_factory), resolveable_enums_(resolveable_enums), resolve_qualified_type_identifiers_(resolve_qualified_type_identifiers) { auto container_elements = absl::StrSplit(container, '.'); std::string prefix = ""; namespace_prefixes_.push_back(prefix); for (const auto& elem : container_elements) { if (elem.empty()) { continue; } absl::StrAppend(&prefix, elem, "."); namespace_prefixes_.insert(namespace_prefixes_.begin(), prefix); } for (const auto& prefix : namespace_prefixes_) { for (auto iter = resolveable_enums_.begin(); iter != resolveable_enums_.end(); ++iter) { absl::string_view enum_name = iter->first; if (!absl::StartsWith(enum_name, prefix)) { continue; } auto remainder = absl::StripPrefix(enum_name, prefix); const auto& enum_type = iter->second; for (const auto& enumerator : enum_type.enumerators) { auto key = absl::StrCat(remainder, !remainder.empty() ? "." : "", enumerator.name); enum_value_map_[key] = value_factory.CreateIntValue(enumerator.number); } } } } std::vector<std::string> Resolver::FullyQualifiedNames(absl::string_view name, int64_t expr_id) const { std::vector<std::string> names; if (absl::StartsWith(name, ".")) { std::string fully_qualified_name = std::string(name.substr(1)); names.push_back(fully_qualified_name); return names; } for (const auto& prefix : namespace_prefixes_) { std::string fully_qualified_name = absl::StrCat(prefix, name); names.push_back(fully_qualified_name); } return names; } absl::optional<cel::Value> Resolver::FindConstant(absl::string_view name, int64_t expr_id) const { auto names = FullyQualifiedNames(name, expr_id); for (const auto& name : names) { auto enum_entry = enum_value_map_.find(name); if (enum_entry != enum_value_map_.end()) { return enum_entry->second; } if (resolve_qualified_type_identifiers_ || !absl::StrContains(name, ".")) { auto type_value = value_factory_.FindType(name); if (type_value.ok() && type_value->has_value()) { return value_factory_.CreateTypeValue(**type_value); } } } return absl::nullopt; } std::vector<cel::FunctionOverloadReference> Resolver::FindOverloads( absl::string_view name, bool receiver_style, const std::vector<cel::Kind>& types, int64_t expr_id) const { std::vector<cel::FunctionOverloadReference> funcs; auto names = FullyQualifiedNames(name, expr_id); for (auto it = names.begin(); it != names.end(); it++) { funcs = function_registry_.FindStaticOverloads(*it, receiver_style, types); if (!funcs.empty()) { return funcs; } } return funcs; } std::vector<cel::FunctionRegistry::LazyOverload> Resolver::FindLazyOverloads( absl::string_view name, bool receiver_style, const std::vector<cel::Kind>& types, int64_t expr_id) const { std::vector<cel::FunctionRegistry::LazyOverload> funcs; auto names = FullyQualifiedNames(name, expr_id); for (const auto& name : names) { funcs = function_registry_.FindLazyOverloads(name, receiver_style, types); if (!funcs.empty()) { return funcs; } } return funcs; } absl::StatusOr<absl::optional<std::pair<std::string, cel::Type>>> Resolver::FindType(absl::string_view name, int64_t expr_id) const { auto qualified_names = FullyQualifiedNames(name, expr_id); for (auto& qualified_name : qualified_names) { CEL_ASSIGN_OR_RETURN(auto maybe_type, value_factory_.FindType(qualified_name)); if (maybe_type.has_value()) { return std::make_pair(std::move(qualified_name), std::move(*maybe_type)); } } return absl::nullopt; } }
#include "eval/compiler/resolver.h" #include <memory> #include <string> #include <vector> #include "absl/status/status.h" #include "absl/types/optional.h" #include "base/type_provider.h" #include "common/memory.h" #include "common/type_factory.h" #include "common/type_manager.h" #include "common/value.h" #include "common/value_manager.h" #include "common/values/legacy_value_manager.h" #include "eval/public/cel_function.h" #include "eval/public/cel_function_registry.h" #include "eval/public/cel_type_registry.h" #include "eval/public/cel_value.h" #include "eval/public/structs/protobuf_descriptor_type_provider.h" #include "eval/testutil/test_message.pb.h" #include "internal/testing.h" namespace google::api::expr::runtime { namespace { using ::cel::IntValue; using ::cel::TypeFactory; using ::cel::TypeManager; using ::cel::TypeValue; using ::cel::ValueManager; using testing::Eq; class FakeFunction : public CelFunction { public: explicit FakeFunction(const std::string& name) : CelFunction(CelFunctionDescriptor{name, false, {}}) {} absl::Status Evaluate(absl::Span<const CelValue> args, CelValue* result, google::protobuf::Arena* arena) const override { return absl::OkStatus(); } }; class ResolverTest : public testing::Test { public: ResolverTest() : value_factory_(cel::MemoryManagerRef::ReferenceCounting(), type_registry_.GetTypeProvider()) {} protected: CelTypeRegistry type_registry_; cel::common_internal::LegacyValueManager value_factory_; }; TEST_F(ResolverTest, TestFullyQualifiedNames) { CelFunctionRegistry func_registry; Resolver resolver("google.api.expr", func_registry.InternalGetRegistry(), type_registry_.InternalGetModernRegistry(), value_factory_, type_registry_.resolveable_enums()); auto names = resolver.FullyQualifiedNames("simple_name"); std::vector<std::string> expected_names( {"google.api.expr.simple_name", "google.api.simple_name", "google.simple_name", "simple_name"}); EXPECT_THAT(names, Eq(expected_names)); } TEST_F(ResolverTest, TestFullyQualifiedNamesPartiallyQualifiedName) { CelFunctionRegistry func_registry; Resolver resolver("google.api.expr", func_registry.InternalGetRegistry(), type_registry_.InternalGetModernRegistry(), value_factory_, type_registry_.resolveable_enums()); auto names = resolver.FullyQualifiedNames("expr.simple_name"); std::vector<std::string> expected_names( {"google.api.expr.expr.simple_name", "google.api.expr.simple_name", "google.expr.simple_name", "expr.simple_name"}); EXPECT_THAT(names, Eq(expected_names)); } TEST_F(ResolverTest, TestFullyQualifiedNamesAbsoluteName) { CelFunctionRegistry func_registry; Resolver resolver("google.api.expr", func_registry.InternalGetRegistry(), type_registry_.InternalGetModernRegistry(), value_factory_, type_registry_.resolveable_enums()); auto names = resolver.FullyQualifiedNames(".google.api.expr.absolute_name"); EXPECT_THAT(names.size(), Eq(1)); EXPECT_THAT(names[0], Eq("google.api.expr.absolute_name")); } TEST_F(ResolverTest, TestFindConstantEnum) { CelFunctionRegistry func_registry; type_registry_.Register(TestMessage::TestEnum_descriptor()); Resolver resolver("google.api.expr.runtime.TestMessage", func_registry.InternalGetRegistry(), type_registry_.InternalGetModernRegistry(), value_factory_, type_registry_.resolveable_enums()); auto enum_value = resolver.FindConstant("TestEnum.TEST_ENUM_1", -1); ASSERT_TRUE(enum_value); ASSERT_TRUE(enum_value->Is<IntValue>()); EXPECT_THAT((*enum_value).As<IntValue>().NativeValue(), Eq(1L)); enum_value = resolver.FindConstant( ".google.api.expr.runtime.TestMessage.TestEnum.TEST_ENUM_2", -1); ASSERT_TRUE(enum_value); ASSERT_TRUE(enum_value->Is<IntValue>()); EXPECT_THAT((*enum_value).As<IntValue>().NativeValue(), Eq(2L)); } TEST_F(ResolverTest, TestFindConstantUnqualifiedType) { CelFunctionRegistry func_registry; Resolver resolver("cel", func_registry.InternalGetRegistry(), type_registry_.InternalGetModernRegistry(), value_factory_, type_registry_.resolveable_enums()); auto type_value = resolver.FindConstant("int", -1); EXPECT_TRUE(type_value); EXPECT_TRUE(type_value->Is<TypeValue>()); EXPECT_THAT((*type_value).As<TypeValue>().name(), Eq("int")); } TEST_F(ResolverTest, TestFindConstantFullyQualifiedType) { google::protobuf::LinkMessageReflection<TestMessage>(); CelFunctionRegistry func_registry; type_registry_.RegisterTypeProvider( std::make_unique<ProtobufDescriptorProvider>( google::protobuf::DescriptorPool::generated_pool(), google::protobuf::MessageFactory::generated_factory())); Resolver resolver("cel", func_registry.InternalGetRegistry(), type_registry_.InternalGetModernRegistry(), value_factory_, type_registry_.resolveable_enums()); auto type_value = resolver.FindConstant(".google.api.expr.runtime.TestMessage", -1); ASSERT_TRUE(type_value); ASSERT_TRUE(type_value->Is<TypeValue>()); EXPECT_THAT((*type_value).As<TypeValue>().name(), Eq("google.api.expr.runtime.TestMessage")); } TEST_F(ResolverTest, TestFindConstantQualifiedTypeDisabled) { CelFunctionRegistry func_registry; type_registry_.RegisterTypeProvider( std::make_unique<ProtobufDescriptorProvider>( google::protobuf::DescriptorPool::generated_pool(), google::protobuf::MessageFactory::generated_factory())); Resolver resolver("", func_registry.InternalGetRegistry(), type_registry_.InternalGetModernRegistry(), value_factory_, type_registry_.resolveable_enums(), false); auto type_value = resolver.FindConstant(".google.api.expr.runtime.TestMessage", -1); EXPECT_FALSE(type_value); } TEST_F(ResolverTest, FindTypeBySimpleName) { CelFunctionRegistry func_registry; Resolver resolver("google.api.expr.runtime", func_registry.InternalGetRegistry(), type_registry_.InternalGetModernRegistry(), value_factory_, type_registry_.resolveable_enums()); type_registry_.RegisterTypeProvider( std::make_unique<ProtobufDescriptorProvider>( google::protobuf::DescriptorPool::generated_pool(), google::protobuf::MessageFactory::generated_factory())); ASSERT_OK_AND_ASSIGN(auto type, resolver.FindType("TestMessage", -1)); EXPECT_TRUE(type.has_value()); EXPECT_EQ(type->second->name(), "google.api.expr.runtime.TestMessage"); } TEST_F(ResolverTest, FindTypeByQualifiedName) { CelFunctionRegistry func_registry; type_registry_.RegisterTypeProvider( std::make_unique<ProtobufDescriptorProvider>( google::protobuf::DescriptorPool::generated_pool(), google::protobuf::MessageFactory::generated_factory())); Resolver resolver("google.api.expr.runtime", func_registry.InternalGetRegistry(), type_registry_.InternalGetModernRegistry(), value_factory_, type_registry_.resolveable_enums()); ASSERT_OK_AND_ASSIGN( auto type, resolver.FindType(".google.api.expr.runtime.TestMessage", -1)); ASSERT_TRUE(type.has_value()); EXPECT_EQ(type->second->name(), "google.api.expr.runtime.TestMessage"); } TEST_F(ResolverTest, TestFindDescriptorNotFound) { CelFunctionRegistry func_registry; type_registry_.RegisterTypeProvider( std::make_unique<ProtobufDescriptorProvider>( google::protobuf::DescriptorPool::generated_pool(), google::protobuf::MessageFactory::generated_factory())); Resolver resolver("google.api.expr.runtime", func_registry.InternalGetRegistry(), type_registry_.InternalGetModernRegistry(), value_factory_, type_registry_.resolveable_enums()); ASSERT_OK_AND_ASSIGN(auto type, resolver.FindType("UndefinedMessage", -1)); EXPECT_FALSE(type.has_value()) << type->second; } TEST_F(ResolverTest, TestFindOverloads) { CelFunctionRegistry func_registry; auto status = func_registry.Register(std::make_unique<FakeFunction>("fake_func")); ASSERT_OK(status); status = func_registry.Register( std::make_unique<FakeFunction>("cel.fake_ns_func")); ASSERT_OK(status); Resolver resolver("cel", func_registry.InternalGetRegistry(), type_registry_.InternalGetModernRegistry(), value_factory_, type_registry_.resolveable_enums()); auto overloads = resolver.FindOverloads("fake_func", false, ArgumentsMatcher(0)); EXPECT_THAT(overloads.size(), Eq(1)); EXPECT_THAT(overloads[0].descriptor.name(), Eq("fake_func")); overloads = resolver.FindOverloads("fake_ns_func", false, ArgumentsMatcher(0)); EXPECT_THAT(overloads.size(), Eq(1)); EXPECT_THAT(overloads[0].descriptor.name(), Eq("cel.fake_ns_func")); } TEST_F(ResolverTest, TestFindLazyOverloads) { CelFunctionRegistry func_registry; auto status = func_registry.RegisterLazyFunction( CelFunctionDescriptor{"fake_lazy_func", false, {}}); ASSERT_OK(status); status = func_registry.RegisterLazyFunction( CelFunctionDescriptor{"cel.fake_lazy_ns_func", false, {}}); ASSERT_OK(status); Resolver resolver("cel", func_registry.InternalGetRegistry(), type_registry_.InternalGetModernRegistry(), value_factory_, type_registry_.resolveable_enums()); auto overloads = resolver.FindLazyOverloads("fake_lazy_func", false, ArgumentsMatcher(0)); EXPECT_THAT(overloads.size(), Eq(1)); overloads = resolver.FindLazyOverloads("fake_lazy_ns_func", false, ArgumentsMatcher(0)); EXPECT_THAT(overloads.size(), Eq(1)); } } }
349
#ifndef TENSORFLOW_CORE_KERNELS_DATA_REDUCE_DATASET_OP_H_ #define TENSORFLOW_CORE_KERNELS_DATA_REDUCE_DATASET_OP_H_ #include "tensorflow/core/data/captured_function.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/kernels/data/iterator_ops.h" namespace tensorflow { namespace data { class ReduceDatasetOp : public HybridAsyncOpKernel { public: explicit ReduceDatasetOp(OpKernelConstruction* ctx); protected: Status DoCompute(OpKernelContext* ctx) override; std::shared_ptr<FunctionMetadata> func_metadata_ = nullptr; DataTypeVector output_types_; std::vector<PartialTensorShape> output_shapes_; }; } } #endif #include "tensorflow/core/kernels/data/reduce_dataset_op.h" #include "tensorflow/core/common_runtime/input_colocation_exemption_registry.h" #include "tensorflow/core/data/root_dataset.h" #include "tensorflow/core/platform/resource.h" #include "tensorflow/core/profiler/lib/traceme.h" namespace tensorflow { namespace data { namespace { const char kOutputShapes[] = "output_shapes"; const char kOutputTypes[] = "output_types"; } ReduceDatasetOp::ReduceDatasetOp(OpKernelConstruction* ctx) : HybridAsyncOpKernel(ctx, "tf_data_reduce_dataset") { FunctionMetadata::Params params; OP_REQUIRES_OK(ctx, ctx->GetAttr("use_inter_op_parallelism", &params.use_inter_op_parallelism)); params.use_default_device = false; OP_REQUIRES_OK(ctx, FunctionMetadata::Create(ctx, "f", params, &func_metadata_)); OP_REQUIRES_OK(ctx, ctx->GetAttr(kOutputTypes, &output_types_)); OP_REQUIRES_OK(ctx, ctx->GetAttr(kOutputShapes, &output_shapes_)); } Status ReduceDatasetOp::DoCompute(OpKernelContext* ctx) { tsl::profiler::TraceMe traceme( [&] { return tsl::profiler::TraceMeEncode("ReduceDatasetOp::DoCompute", {{"id", ctx->step_id()}}); }, profiler::kInfo); tensorflow::ResourceTagger tag(kTFDataResourceTag, ctx->op_kernel().type_string()); metrics::RecordTFDataFetchOp("ReduceDatasetOp"); DatasetBase* dataset; TF_RETURN_IF_ERROR(GetDatasetFromVariantTensor(ctx->input(0), &dataset)); OpInputList inputs; TF_RETURN_IF_ERROR(ctx->input_list("initial_state", &inputs)); std::vector<Tensor> state(inputs.begin(), inputs.end()); std::unique_ptr<CapturedFunction> captured_func; TF_RETURN_IF_ERROR(CapturedFunction::Create( ctx, func_metadata_, "other_arguments", &captured_func)); IteratorContext::Params params(ctx); auto function_handle_cache = std::make_unique<FunctionHandleCache>(params.flr); params.function_handle_cache = function_handle_cache.get(); ResourceMgr resource_mgr; params.resource_mgr = &resource_mgr; CancellationManager cancellation_manager(ctx->cancellation_manager()); params.cancellation_manager = &cancellation_manager; IteratorContext iter_ctx(std::move(params)); std::unique_ptr<InstantiatedCapturedFunction> instantiated_captured_func; TF_RETURN_IF_ERROR( captured_func->Instantiate(&iter_ctx, &instantiated_captured_func)); std::unique_ptr<IteratorBase> iterator; if (ctx->function_library()->device()->device_type() == DEVICE_CPU) { DatasetBase* finalized_dataset = nullptr; TF_RETURN_IF_ERROR(FinalizeDataset(ctx, dataset, &finalized_dataset)); core::ScopedUnref unref(finalized_dataset); TF_RETURN_IF_ERROR(finalized_dataset->MakeIterator( &iter_ctx, nullptr, "ReduceIterator", &iterator)); } else { TF_RETURN_IF_ERROR(dataset->MakeIterator(&iter_ctx, nullptr, "ReduceIterator", &iterator)); } while (true) { if (ctx->cancellation_manager()->IsCancelled()) { return errors::Cancelled("Operation was cancelled"); } std::vector<Tensor> next_input_element; bool end_of_input; TF_RETURN_IF_ERROR( iterator->GetNext(&iter_ctx, &next_input_element, &end_of_input)); if (end_of_input) { break; } std::vector<Tensor> args; args.reserve(state.size() + next_input_element.size()); std::copy(state.begin(), state.end(), std::back_inserter(args)); std::copy(next_input_element.begin(), next_input_element.end(), std::back_inserter(args)); std::vector<Tensor> reduce_func_output; TF_RETURN_IF_ERROR(instantiated_captured_func->Run( &iter_ctx, std::move(args), &reduce_func_output, nullptr)); if (reduce_func_output.size() != state.size()) { return errors::InvalidArgument( "The number of components of the initial state and the " "reduce " "function output does not match. (initial_state=", state.size(), ", output=", reduce_func_output.size(), ")."); } std::swap(reduce_func_output, state); } TF_RETURN_IF_ERROR(VerifyTypesMatch(output_types_, state)); TF_RETURN_IF_ERROR(VerifyShapesCompatible(output_shapes_, state)); for (size_t i = 0; i < state.size(); ++i) { ctx->set_output(i, state[i]); } return absl::OkStatus(); } namespace { REGISTER_KERNEL_BUILDER(Name("ReduceDataset").Device(DEVICE_CPU), ReduceDatasetOp); REGISTER_INPUT_COLOCATION_EXEMPTION("ReduceDataset"); } } }
#include "tensorflow/core/data/dataset_test_base.h" namespace tensorflow { namespace data { namespace { constexpr char kNodeName[] = "reduce_dataset"; class ReduceDatasetParams : public DatasetParams { public: template <typename T> ReduceDatasetParams(T input_dataset_params, std::vector<Tensor> initial_state, std::vector<Tensor> other_arguments, FunctionDefHelper::AttrValueWrapper func, std::vector<FunctionDef> func_lib, DataTypeVector type_state, DataTypeVector type_arguments, DataTypeVector output_dtypes, std::vector<PartialTensorShape> output_shapes, bool use_inter_op_parallelism, string node_name) : DatasetParams(std::move(output_dtypes), std::move(output_shapes), std::move(node_name)), initial_state_(std::move(initial_state)), other_arguments_(std::move(other_arguments)), func_(std::move(func)), func_lib_(std::move(func_lib)), type_state_(std::move(type_state)), type_arguments_(std::move(type_arguments)), use_inter_op_parallelism_(use_inter_op_parallelism) { input_dataset_params_.push_back(std::make_unique<T>(input_dataset_params)); iterator_prefix_ = name_utils::IteratorPrefix(input_dataset_params.dataset_type(), input_dataset_params.iterator_prefix()); } std::vector<Tensor> GetInputTensors() const override { std::vector<Tensor> input_tensors = initial_state_; input_tensors.insert(input_tensors.end(), other_arguments_.begin(), other_arguments_.end()); return input_tensors; } Status GetInputNames(std::vector<string>* input_names) const override { input_names->clear(); input_names->emplace_back("input_dataset"); for (int i = 0; i < initial_state_.size(); ++i) { input_names->emplace_back(strings::StrCat("initial_state_", i)); } for (int i = 0; i < other_arguments_.size(); ++i) { input_names->emplace_back(strings::StrCat("other_arguments_", i)); } return absl::OkStatus(); } Status GetAttributes(AttributeVector* attr_vector) const override { attr_vector->clear(); *attr_vector = {{"f", func_}, {"Tstate", type_state_}, {"Targuments", type_arguments_}, {"output_types", output_dtypes_}, {"output_shapes", output_shapes_}, {"use_inter_op_parallelism", use_inter_op_parallelism_}, {"metadata", ""}}; return absl::OkStatus(); } string dataset_type() const override { return "Reduce"; } std::vector<FunctionDef> func_lib() const override { return func_lib_; } private: std::vector<Tensor> initial_state_; std::vector<Tensor> other_arguments_; FunctionDefHelper::AttrValueWrapper func_; std::vector<FunctionDef> func_lib_; DataTypeVector type_state_; DataTypeVector type_arguments_; bool use_inter_op_parallelism_; }; class ReduceDatasetOpTest : public DatasetOpsTestBase {}; ReduceDatasetParams ReduceDatasetParams1() { return ReduceDatasetParams( RangeDatasetParams(0, 10, 1), CreateTensors<int64_t>(TensorShape({}), {{1}}), {}, FunctionDefHelper::FunctionRef("XAddY", {{"T", DT_INT64}}), {test::function::XAddY()}, {DT_INT64}, {}, {DT_INT64}, {PartialTensorShape({})}, true, kNodeName); } ReduceDatasetParams ReduceDatasetParams2() { return ReduceDatasetParams( RangeDatasetParams(1, 10, 1), CreateTensors<int64_t>(TensorShape({}), {{1}, {1}}), {}, FunctionDefHelper::FunctionRef("XPlusOneXTimesY", {{"T", DT_INT64}}), {test::function::XPlusOneXTimesY()}, {DT_INT64, DT_INT64}, {}, {DT_INT64, DT_INT64}, {PartialTensorShape({}), PartialTensorShape({})}, true, kNodeName); } ReduceDatasetParams ReduceDatasetParams3() { return ReduceDatasetParams( RangeDatasetParams(0, 0, 1), CreateTensors<int64_t>(TensorShape({}), {{1}, {3}}), {}, FunctionDefHelper::FunctionRef("XAddY", {{"T", DT_INT64}}), {test::function::XAddY()}, {DT_INT64, DT_INT64}, {}, {DT_INT64, DT_INT64}, {PartialTensorShape({}), PartialTensorShape({})}, true, kNodeName); } std::vector<GetNextTestCase<ReduceDatasetParams>> GetNextTestCases() { return {{ ReduceDatasetParams1(), CreateTensors<int64_t>(TensorShape({}), {{46}})}, {ReduceDatasetParams2(), CreateTensors<int64_t>(TensorShape({}), {{10}, {1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9}})}, { ReduceDatasetParams3(), CreateTensors<int64_t>(TensorShape{}, {{1}, {3}})}}; } class ParameterizedReduceDatasetOpTest : public ReduceDatasetOpTest, public ::testing::WithParamInterface< GetNextTestCase<ReduceDatasetParams>> {}; TEST_P(ParameterizedReduceDatasetOpTest, Compute) { auto test_case = GetParam(); TF_ASSERT_OK(InitializeRuntime(test_case.dataset_params)); std::vector<Tensor> output; TF_ASSERT_OK(RunDatasetOp(test_case.dataset_params, &output)); TF_EXPECT_OK( ExpectEqual(test_case.expected_outputs, output, true)); } INSTANTIATE_TEST_SUITE_P(ReduceDatasetOpTest, ParameterizedReduceDatasetOpTest, ::testing::ValuesIn(GetNextTestCases())); } } }
350
#ifndef AROLLA_EXPR_EXPR_VISITOR_H_ #define AROLLA_EXPR_EXPR_VISITOR_H_ #include <cstddef> #include <optional> #include <type_traits> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/base/attributes.h" #include "absl/functional/function_ref.h" #include "absl/log/check.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_debug_string.h" #include "arolla/expr/expr_node.h" #include "arolla/util/meta.h" #include "arolla/util/status_macros_backport.h" namespace arolla::expr { class PostOrder { public: PostOrder() = default; explicit PostOrder(const ExprNodePtr& root); absl::Span<const ExprNodePtr> nodes() const { return nodes_; } size_t nodes_size() const { return nodes_.size(); } const ExprNodePtr& node(size_t node_index) const ABSL_ATTRIBUTE_LIFETIME_BOUND { return nodes_[node_index]; } absl::Span<const size_t> dep_indices(size_t node_index) const { DCHECK(node_index < nodes_.size()); return absl::Span<const size_t>( adjacency_array_.data() + adjacency_array_[node_index], adjacency_array_[node_index + 1] - adjacency_array_[node_index]); } private: std::vector<ExprNodePtr> nodes_; std::vector<size_t> adjacency_array_; }; std::vector<ExprNodePtr> VisitorOrder(ExprNodePtr root); std::vector<std::pair<bool, ExprNodePtr>> PreAndPostVisitorOrder( ExprNodePtr root); template <typename VisitorResultType> struct ExprVisitorResultTraits; template <typename Visitor> auto PostOrderTraverse(const PostOrder& post_order, Visitor visitor) { using Traits = ExprVisitorResultTraits< typename meta::function_traits<Visitor>::return_type>; using T = typename Traits::ResultType; static_assert(std::is_invocable_r_v<absl::StatusOr<T>, Visitor, ExprNodePtr, absl::Span<const T* const>>, "Visitor has an unexpected signature."); struct WrappedT { T value; WrappedT(T&& value) : value(std::move(value)) {} WrappedT(WrappedT&&) = default; WrappedT& operator=(WrappedT&&) = default; }; std::vector<WrappedT> results; results.reserve(post_order.nodes_size()); std::vector<const T*> args; const auto invoke_visitor = [&](size_t node_index) { const auto dep_indices = post_order.dep_indices(node_index); args.resize(dep_indices.size()); for (size_t j = 0; j < dep_indices.size(); ++j) { args[j] = &results[dep_indices[j]].value; } return visitor(post_order.node(node_index), absl::MakeConstSpan(args)); }; for (size_t i = 0; i + 1 < post_order.nodes_size(); ++i) { auto visit_result = invoke_visitor(i); if (!Traits::ok(visit_result)) { return visit_result; } results.emplace_back(Traits::value(std::move(visit_result))); } return invoke_visitor(post_order.nodes_size() - 1); } template <typename Visitor> auto PostOrderTraverse(const ExprNodePtr& root, Visitor visitor) { return PostOrderTraverse(PostOrder(root), visitor); } template <typename TransformFn> absl::StatusOr<ExprNodePtr> Transform(const ExprNodePtr& root, TransformFn transform_fn) { return TransformOnPostOrder(PostOrder(root), std::move(transform_fn)); } template <typename TransformFn> absl::StatusOr<ExprNodePtr> TransformOnPostOrder(const PostOrder& post_order, TransformFn transform_fn) { using Traits = ExprVisitorResultTraits< typename meta::function_traits<TransformFn>::return_type>; static_assert(std::is_invocable_r_v<absl::StatusOr<ExprNodePtr>, TransformFn, ExprNodePtr>, "TransformFn has an unexpected signature."); std::vector<ExprNodePtr> results(post_order.nodes_size()); for (size_t i = 0; i < post_order.nodes_size(); ++i) { const auto& node = post_order.node(i); const auto& dep_indices = post_order.dep_indices(i); bool has_modified_dep = node->is_op() && absl::c_any_of(dep_indices, [&](size_t k) { return results[k] != nullptr; }); ExprNodePtr transform_fn_input_node; if (has_modified_dep) { const auto& deps = node->node_deps(); std::vector<ExprNodePtr> new_deps(dep_indices.size()); for (size_t j = 0; j < dep_indices.size(); ++j) { const size_t k = dep_indices[j]; if (results[k] != nullptr) { new_deps[j] = results[k]; } else { new_deps[j] = deps[j]; } } ASSIGN_OR_RETURN(transform_fn_input_node, MakeOpNode(node->op(), std::move(new_deps)), _ << "while processing " << GetDebugSnippet(node)); } else { transform_fn_input_node = node; } auto transform_fn_result = transform_fn(std::move(transform_fn_input_node)); if (!Traits::ok(transform_fn_result)) { return transform_fn_result; } auto new_node = Traits::value(std::move(transform_fn_result)); if (new_node->fingerprint() != node->fingerprint()) { results[i] = Traits::value(std::move(new_node)); } } if (results.back() != nullptr) { return std::move(results.back()); } else { return post_order.nodes().back(); } } enum class DeepTransformStage { kWithNewDeps, kNewChildAfterTransformation }; using LogTransformationFn = absl::FunctionRef<void( ExprNodePtr new_node, ExprNodePtr old_node, DeepTransformStage stage)>; absl::StatusOr<ExprNodePtr> DeepTransform( const ExprNodePtr& root, absl::FunctionRef<absl::StatusOr<ExprNodePtr>(ExprNodePtr)> transform_fn, std::optional<LogTransformationFn> log_transformation_fn = std::nullopt, size_t processed_node_limit = 10'000'000); template <typename VisitorResultType> struct ExprVisitorResultTraits { using ResultType = VisitorResultType; static constexpr bool ok(const VisitorResultType&) { return true; } static constexpr ResultType value(VisitorResultType&& input) { return input; } }; template <typename T> struct ExprVisitorResultTraits<absl::StatusOr<T>> { using ResultType = T; static bool ok(const absl::StatusOr<T>& input) { return input.ok(); } static ResultType value(absl::StatusOr<T>&& input) { return *std::move(input); } }; template <typename T> std::vector<T> DereferenceVisitPointers(absl::Span<const T* const> visits) { std::vector<T> res; res.reserve(visits.size()); for (const T* ptr : visits) { res.push_back(*ptr); } return res; } } #endif #include "arolla/expr/expr_visitor.h" #include <cstddef> #include <limits> #include <optional> #include <stack> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/functional/function_ref.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_debug_string.h" #include "arolla/expr/expr_node.h" #include "arolla/util/fingerprint.h" #include "arolla/util/status_macros_backport.h" namespace arolla::expr { namespace { template <class PrevisitFn, class PostVisitFn> void VisitorOrderImpl(const ExprNodePtr& root, PrevisitFn previsit_fn, PostVisitFn postvisit_fn) { struct Frame { const ExprNodePtr& node; size_t processed_deps_count = 0; }; absl::flat_hash_set<Fingerprint> visited = {root->fingerprint()}; std::vector<Frame> stack = {Frame{root}}; while (!stack.empty()) { auto& frame = stack.back(); if (frame.processed_deps_count == 0) { previsit_fn(frame.node); } const auto& node_deps = frame.node->node_deps(); if (frame.processed_deps_count == node_deps.size()) { postvisit_fn(frame.node); stack.pop_back(); continue; } const auto& dep = node_deps[frame.processed_deps_count++]; if (visited.insert(dep->fingerprint()).second) { stack.push_back(Frame{dep}); } } } } std::vector<ExprNodePtr> VisitorOrder(ExprNodePtr root) { std::vector<ExprNodePtr> res_visits; VisitorOrderImpl( root, [](auto) {}, [&res_visits](const auto& node) { res_visits.push_back(node); }); return res_visits; } std::vector<std::pair<bool, ExprNodePtr>> PreAndPostVisitorOrder( ExprNodePtr root) { std::vector<std::pair<bool, ExprNodePtr>> res_visits; VisitorOrderImpl( root, [&res_visits](const auto& node) { res_visits.emplace_back(true, node); }, [&res_visits](const auto& node) { res_visits.emplace_back(false, node); }); return res_visits; } PostOrder::PostOrder(const ExprNodePtr& root) { struct Frame { const ExprNodePtr& node; size_t dep_idx = 0; }; absl::flat_hash_map<Fingerprint, size_t> node_indices; { std::vector<Frame> stack; stack.push_back(Frame{root}); while (!stack.empty()) { auto& frame = stack.back(); const auto& deps = frame.node->node_deps(); while (frame.dep_idx < deps.size() && node_indices.contains(deps[frame.dep_idx]->fingerprint())) { ++frame.dep_idx; } if (frame.dep_idx < deps.size()) { stack.push_back(Frame{deps[frame.dep_idx++]}); } else { node_indices.emplace(frame.node->fingerprint(), nodes_.size()); nodes_.push_back(frame.node); stack.pop_back(); } } } { size_t total_arc_count = 0; for (const auto& node : nodes_) { total_arc_count += node->node_deps().size(); } adjacency_array_.resize(nodes_.size() + 1 + total_arc_count); size_t i = 0; size_t j = nodes_.size() + 1; while (i < nodes_.size()) { adjacency_array_[i] = j; for (const auto& dep : nodes_[i++]->node_deps()) { adjacency_array_[j++] = node_indices.at(dep->fingerprint()); } } adjacency_array_[nodes_.size()] = j; } } absl::StatusOr<ExprNodePtr> DeepTransform( const ExprNodePtr& root, absl::FunctionRef<absl::StatusOr<ExprNodePtr>(ExprNodePtr)> transform_fn, std::optional<LogTransformationFn> log_transformation_fn, size_t processed_node_limit) { constexpr size_t kSkipFirstStage = std::numeric_limits<size_t>::max(); constexpr auto infinite_loop_error = [](const ExprNodePtr& node) { return absl::FailedPreconditionError(absl::StrFormat( "infinite loop of node transformations containing node %s", GetDebugSnippet(node))); }; struct Frame { ExprNodePtr node; size_t dep_idx = 0; Fingerprint new_node_fingerprint; Fingerprint transformed_new_node_fingerprint; std::optional<ExprNodePtr> original_node = std::nullopt; }; absl::flat_hash_map<Fingerprint, ExprNodePtr> cache; std::stack<Frame> stack; cache.emplace(root->fingerprint(), nullptr); stack.emplace(Frame{.node = root}); while (!stack.empty()) { auto& frame = stack.top(); if (cache.size() > processed_node_limit) { return absl::FailedPreconditionError(absl::StrFormat( "too many processed nodes (%i), this probably means an infinite " "transformation. Possibly caused by node %s", cache.size(), GetDebugSnippet(frame.node))); } if (frame.dep_idx != kSkipFirstStage) { const auto& deps = frame.node->node_deps(); while ( frame.dep_idx < deps.size() && !cache.emplace(deps[frame.dep_idx]->fingerprint(), nullptr).second) { ++frame.dep_idx; } if (frame.dep_idx < deps.size()) { if (log_transformation_fn.has_value() && frame.original_node != std::nullopt) { (*log_transformation_fn)( deps[frame.dep_idx], frame.node, DeepTransformStage::kNewChildAfterTransformation); } stack.emplace(Frame{.node = deps[frame.dep_idx++], .original_node = frame.original_node}); continue; } std::vector<ExprNodePtr> new_deps(deps.size()); for (size_t i = 0; i < deps.size(); ++i) { new_deps[i] = cache[deps[i]->fingerprint()]; if (new_deps[i] == nullptr) { return infinite_loop_error(frame.node); } } ASSIGN_OR_RETURN(auto new_node, WithNewDependencies(frame.node, std::move(new_deps))); if (log_transformation_fn.has_value()) { (*log_transformation_fn)(new_node, frame.node, DeepTransformStage::kWithNewDeps); } if (new_node->fingerprint() != frame.node->fingerprint()) { if (auto [it, miss] = cache.emplace(new_node->fingerprint(), nullptr); !miss) { if (it->second == nullptr) { return infinite_loop_error(frame.node); } cache[frame.node->fingerprint()] = it->second; stack.pop(); continue; } } ASSIGN_OR_RETURN( auto transformed_new_node, transform_fn(new_node), _ << "while transforming " << GetDebugSnippet(frame.node)); DCHECK_NE(transformed_new_node, nullptr); if (transformed_new_node->fingerprint() == new_node->fingerprint()) { cache[frame.node->fingerprint()] = std::move(transformed_new_node); if (new_node->fingerprint() != frame.node->fingerprint()) { cache[new_node->fingerprint()] = std::move(new_node); } stack.pop(); continue; } if (auto [it, miss] = cache.emplace(transformed_new_node->fingerprint(), nullptr); !miss) { if (it->second == nullptr) { return infinite_loop_error(frame.node); } cache[frame.node->fingerprint()] = it->second; if (new_node->fingerprint() != frame.node->fingerprint()) { cache[new_node->fingerprint()] = it->second; } stack.pop(); continue; } frame.dep_idx = kSkipFirstStage; frame.new_node_fingerprint = new_node->fingerprint(); frame.transformed_new_node_fingerprint = transformed_new_node->fingerprint(); stack.emplace(Frame{.node = transformed_new_node, .original_node = transformed_new_node}); continue; } const auto& node_result = cache.at(frame.transformed_new_node_fingerprint); DCHECK_NE(node_result, nullptr); cache[frame.node->fingerprint()] = node_result; if (frame.new_node_fingerprint != frame.node->fingerprint()) { cache[frame.new_node_fingerprint] = node_result; } stack.pop(); } auto& root_result = cache.at(root->fingerprint()); DCHECK_NE(root_result, nullptr); return std::move(root_result); } }
#include "arolla/expr/expr_visitor.h" #include <cstddef> #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_debug_string.h" #include "arolla/expr/expr_node.h" #include "arolla/expr/expr_operator.h" #include "arolla/expr/expr_operator_signature.h" #include "arolla/expr/testing/test_operators.h" #include "arolla/expr/testing/testing.h" #include "arolla/util/fingerprint.h" #include "arolla/util/init_arolla.h" #include "arolla/util/testing/status_matchers_backport.h" namespace arolla::expr { namespace { using ::arolla::expr::testing::DummyOp; using ::arolla::testing::EqualsExpr; using ::arolla::testing::IsOkAndHolds; using ::arolla::testing::StatusIs; using ::testing::ElementsAre; using ::testing::Eq; using ::testing::HasSubstr; using ::testing::Pair; using ::testing::Pointer; size_t CountNodes(const ExprNodePtr& expr) { size_t result = 0; return PostOrderTraverse( expr, [&](const ExprNodePtr& , absl::Span<const size_t* const> ) { return ++result; }); } class ExprVisitorTest : public ::testing::Test { public: template <typename... Args> ExprNodePtr Bar(Args&&... args) { return CallOp(bar_, {std::forward<Args>(args)...}).value(); } template <typename... Args> ExprNodePtr Baz(Args&&... args) { return CallOp(baz_, {std::forward<Args>(args)...}).value(); } template <typename... Args> ExprNodePtr Qux(Args&&... args) { return CallOp(qux_, {std::forward<Args>(args)...}).value(); } protected: void SetUp() override { ASSERT_OK(InitArolla()); } ExprOperatorPtr bar_ = std::make_shared<DummyOp>( "bar", ExprOperatorSignature::MakeVariadicArgs()); ExprOperatorPtr baz_ = std::make_shared<DummyOp>( "baz", ExprOperatorSignature::MakeVariadicArgs()); ExprOperatorPtr qux_ = std::make_shared<DummyOp>( "qux", ExprOperatorSignature::MakeVariadicArgs()); }; TEST_F(ExprVisitorTest, PostOrder_Trivial) { auto x0 = Leaf("x0"); PostOrder post_order(x0); ASSERT_THAT(post_order.nodes(), ElementsAre(Pointer(x0.get()))); ASSERT_THAT(post_order.dep_indices(0), ElementsAre()); } TEST_F(ExprVisitorTest, PostOrder) { auto x0 = Leaf("x0"); auto x1 = Leaf("x1"); auto x2 = Leaf("x2"); auto add01 = Bar(x0, x1); auto add012 = Bar(add01, x0, x1, x2); PostOrder post_order(add012); ASSERT_THAT( post_order.nodes(), ElementsAre(Pointer(x0.get()), Pointer(x1.get()), Pointer(add01.get()), Pointer(x2.get()), Pointer(add012.get()))); ASSERT_THAT(post_order.dep_indices(0), ElementsAre()); ASSERT_THAT(post_order.dep_indices(1), ElementsAre()); ASSERT_THAT(post_order.dep_indices(2), ElementsAre(0, 1)); ASSERT_THAT(post_order.dep_indices(3), ElementsAre()); ASSERT_THAT(post_order.dep_indices(4), ElementsAre(2, 0, 1, 3)); } TEST_F(ExprVisitorTest, VisitOrder) { auto x0 = Leaf("x0"); auto x1 = Leaf("x1"); auto x2 = Leaf("x2"); auto add01 = Bar(x0, x1); auto add012 = Bar(add01, x2); std::vector<ExprNodePtr> actual_order = VisitorOrder(add012); ASSERT_THAT(actual_order, ElementsAre(Pointer(x0.get()), Pointer(x1.get()), Pointer(add01.get()), Pointer(x2.get()), Pointer(add012.get()))); } TEST_F(ExprVisitorTest, PreAndPostVisitorOrder) { auto x0 = Leaf("x0"); auto x1 = Leaf("x1"); auto x2 = Leaf("x2"); auto add01 = Bar(x0, x1); auto add012 = Bar(add01, x2); std::vector<std::pair<bool, ExprNodePtr>> actual_order = PreAndPostVisitorOrder(add012); ASSERT_THAT( actual_order, ElementsAre( Pair(true, Pointer(add012.get())), Pair(true, Pointer(add01.get())), Pair(true, Pointer(x0.get())), Pair(false, Pointer(x0.get())), Pair(true, Pointer(x1.get())), Pair(false, Pointer(x1.get())), Pair(false, Pointer(add01.get())), Pair(true, Pointer(x2.get())), Pair(false, Pointer(x2.get())), Pair(false, Pointer(add012.get())))); } TEST_F(ExprVisitorTest, PostOrderTraverseBool) { ASSERT_TRUE(PostOrderTraverse( Leaf("x"), [](ExprNodePtr, absl::Span<bool const* const>) -> bool { return true; })); } TEST_F(ExprVisitorTest, PostOrderTraverseStatusOrBool) { ASSERT_THAT(PostOrderTraverse(Leaf("x"), [](ExprNodePtr, absl::Span<bool const* const>) { return absl::StatusOr<bool>(true); }), IsOkAndHolds(true)); } TEST_F(ExprVisitorTest, VisitLeaf) { ASSERT_EQ(CountNodes(Leaf("x")), 1); } TEST_F(ExprVisitorTest, VisitOperator) { ASSERT_EQ(CountNodes(Bar(Leaf("x"), Leaf("y"))), 3); } TEST_F(ExprVisitorTest, LargeAst) { ASSERT_EQ(CountNodes(Bar(Bar(Leaf("x"), Leaf("y")), Leaf("x"))), 4); } TEST_F(ExprVisitorTest, Transform_WithStatusOrFn) { auto expr = Bar(Bar(Baz(Leaf("a"), Leaf("b")), Leaf("c")), Leaf("d")); ASSERT_OK_AND_ASSIGN( ExprNodePtr expr_with_qux, Transform(expr, [&](ExprNodePtr node) -> absl::StatusOr<ExprNodePtr> { if (node->op() == bar_) { return WithNewOperator(node, qux_); } return node; })); ASSERT_THAT( expr_with_qux, EqualsExpr(Qux(Qux(Baz(Leaf("a"), Leaf("b")), Leaf("c")), Leaf("d")))); EXPECT_THAT(expr_with_qux->node_deps()[0]->node_deps()[0].get(), Eq(expr->node_deps()[0]->node_deps()[0].get())); } TEST_F(ExprVisitorTest, Transform_WithNoStatusFn) { auto expr = Bar(Bar(Baz(Leaf("a"), Leaf("b")), Leaf("c")), Leaf("d")); EXPECT_THAT(Transform(expr, [&](ExprNodePtr node) -> ExprNodePtr { if (node->op() == bar_) { return node->node_deps()[0]; } else { return node; } }), IsOkAndHolds(EqualsExpr(expr->node_deps()[0]->node_deps()[0]))); } TEST_F(ExprVisitorTest, Transform_NoChangeRequired) { auto expr = Baz(Bar(Baz(Leaf("a"), Leaf("b")), Leaf("c")), Leaf("d")); EXPECT_THAT(Transform(expr, [](ExprNodePtr node) { return node; }), IsOkAndHolds(EqualsExpr(expr))); } class DeepTransformTest : public ::testing::Test { public: template <typename... Args> ExprNodePtr A(Args&&... args) { return CallOp(a_, {std::forward<Args>(args)...}).value(); } template <typename... Args> ExprNodePtr B(Args&&... args) { return CallOp(b_, {std::forward<Args>(args)...}).value(); } template <typename... Args> ExprNodePtr S(Args&&... args) { return CallOp(s_, {std::forward<Args>(args)...}).value(); } template <typename... Args> ExprNodePtr C(Args&&... args) { return CallOp(c_, {std::forward<Args>(args)...}).value(); } auto SabTransform() -> std::function<absl::StatusOr<ExprNodePtr>(ExprNodePtr)> { return [this, visited = absl::flat_hash_set<Fingerprint>()]( ExprNodePtr node) mutable -> absl::StatusOr<ExprNodePtr> { EXPECT_TRUE(visited.emplace(node->fingerprint()).second) << "duplicate call to transform_fn"; if (node->op() == s_) { std::vector<absl::StatusOr<ExprNodePtr>> new_deps; for (auto& dep : node->node_deps()) { new_deps.push_back(WithNewOperator(dep, s_)); } return CallOp(a_, new_deps); } if (node->op() == a_) { std::vector<absl::StatusOr<ExprNodePtr>> new_deps; for (auto& dep : node->node_deps()) { new_deps.push_back(WithNewOperator(dep, s_)); } return CallOp(b_, new_deps); } if (node->op() == c_) { std::vector<absl::StatusOr<ExprNodePtr>> new_deps; for (auto& dep : node->node_deps()) { new_deps.push_back(CallOp(b_, {dep})); } return CallOp(b_, new_deps); } return node; }; } private: void SetUp() override { ASSERT_OK(InitArolla()); } ExprOperatorPtr a_ = std::make_shared<DummyOp>("a", ExprOperatorSignature::MakeVariadicArgs()); ExprOperatorPtr b_ = std::make_shared<DummyOp>("b", ExprOperatorSignature::MakeVariadicArgs()); ExprOperatorPtr c_ = std::make_shared<DummyOp>("c", ExprOperatorSignature::MakeVariadicArgs()); ExprOperatorPtr s_ = std::make_shared<DummyOp>("s", ExprOperatorSignature::MakeVariadicArgs()); }; TEST_F(DeepTransformTest, Trivial) { ASSERT_THAT(DeepTransform(A(), SabTransform()), IsOkAndHolds(EqualsExpr(B()))); ASSERT_THAT(DeepTransform(B(), SabTransform()), IsOkAndHolds(EqualsExpr(B()))); ASSERT_THAT(DeepTransform(S(), SabTransform()), IsOkAndHolds(EqualsExpr(B()))); } TEST_F(DeepTransformTest, CacheHitCoverage) { { auto expr = B(A(A()), A(S())); auto expected = B(B(B()), B(B())); ASSERT_THAT(DeepTransform(expr, SabTransform()), IsOkAndHolds(EqualsExpr(expected))); } { auto expr = B(B(S()), A(S())); auto expected = B(B(B()), B(B())); ASSERT_THAT(DeepTransform(expr, SabTransform()), IsOkAndHolds(EqualsExpr(expected))); } } TEST_F(DeepTransformTest, TooManyProcessedNodes) { ASSERT_THAT(DeepTransform( Literal<int>(0), [](ExprNodePtr node) { return Literal<int>(node->qvalue()->UnsafeAs<int>() + 1); }, std::nullopt, 1000), StatusIs(absl::StatusCode::kFailedPrecondition, HasSubstr("too many processed nodes"))); } TEST_F(DeepTransformTest, LogTransformationFn) { std::string trace; auto transformations_logger = [&trace](ExprNodePtr a, ExprNodePtr b, DeepTransformStage stage) { if (stage == DeepTransformStage::kWithNewDeps) { if (a->fingerprint() != b->fingerprint()) { trace += GetDebugSnippet(b) + " got new dependencies: " + GetDebugSnippet(a) + "\n"; } } else if (stage == DeepTransformStage::kNewChildAfterTransformation) { trace += GetDebugSnippet(b) + " contains " + GetDebugSnippet(a) + "\n"; } }; ASSERT_OK(DeepTransform(C(A()), SabTransform(), transformations_logger)); EXPECT_EQ( "c(a():INT32):INT32 got new dependencies: c(b():INT32):INT32\n" "b(b(...):INT32):INT32 contains b(b():INT32):INT32\n", trace); } TEST_F(DeepTransformTest, InfiniteLoop) { ASSERT_THAT(DeepTransform(S(), [&](ExprNodePtr) { return S(S()); }), StatusIs(absl::StatusCode::kFailedPrecondition, HasSubstr("infinite loop of node transformations " "containing node s(s():INT32):INT32"))); } TEST_F(DeepTransformTest, UnaryRecursion) { auto expr = S(); auto expected = B(); for (int i = 0; i < 10; ++i) { expr = S(expr); expected = B(expected); } ASSERT_THAT(DeepTransform(expr, SabTransform()), IsOkAndHolds(EqualsExpr(expected))); } TEST_F(DeepTransformTest, UnaryRecursionStress) { auto expr = S(); auto expected = B(); for (int i = 0; i < 1000; ++i) { expr = S(expr); expected = B(expected); } ASSERT_THAT(DeepTransform(expr, SabTransform()), IsOkAndHolds(EqualsExpr(expected))); } TEST_F(DeepTransformTest, BinaryRecursion) { auto expr = S(); auto expected = B(); for (int i = 0; i < 10; ++i) { expr = S(expr, expr); expected = B(expected, expected); } ASSERT_THAT(DeepTransform(expr, SabTransform()), IsOkAndHolds(EqualsExpr(expected))); } TEST_F(DeepTransformTest, BinaryRecursionStress) { auto expr = S(); auto expected = B(); for (int i = 0; i < 1000; ++i) { expr = S(expr, expr); expected = B(expected, expected); } ASSERT_THAT(DeepTransform(expr, SabTransform()), IsOkAndHolds(EqualsExpr(expected))); } TEST_F(DeepTransformTest, TernaryRecursionStress) { auto expr = S(); auto expected = B(); for (int i = 0; i < 1000; ++i) { expr = S(expr, expr, expr); expected = B(expected, expected, expected); } ASSERT_THAT(DeepTransform(expr, SabTransform()), IsOkAndHolds(EqualsExpr(expected))); } TEST_F(DeepTransformTest, ComplexRecursionStress) { auto expr = S(); auto expected = B(); for (int i = 0; i < 1000; ++i) { expr = S(A(expr), B(expr, expected), expr); expected = B(B(expected), B(expected, expected), expected); } ASSERT_THAT(DeepTransform(expr, SabTransform()), IsOkAndHolds(EqualsExpr(expected))); } } }
351
#ifndef TENSORFLOW_TSL_PLATFORM_DEFAULT_SUBPROCESS_H_ #define TENSORFLOW_TSL_PLATFORM_DEFAULT_SUBPROCESS_H_ #include <errno.h> #include <unistd.h> #include <string> #include <vector> #include "tsl/platform/macros.h" #include "tsl/platform/mutex.h" #include "tsl/platform/types.h" namespace tsl { class SubProcess { public: explicit SubProcess(int nfds = 3); virtual ~SubProcess(); virtual void SetChannelAction(Channel chan, ChannelAction action); virtual void SetProgram(const string& file, const std::vector<string>& argv); virtual bool Start(); virtual bool Kill(int signal); virtual bool Wait(); virtual int Communicate(const string* stdin_input, string* stdout_output, string* stderr_output); private: static constexpr int kNFds = 3; static bool chan_valid(int chan) { return ((chan >= 0) && (chan < kNFds)); } static bool retry(int e) { return ((e == EINTR) || (e == EAGAIN) || (e == EWOULDBLOCK)); } void FreeArgs() TF_EXCLUSIVE_LOCKS_REQUIRED(data_mu_); void ClosePipes() TF_EXCLUSIVE_LOCKS_REQUIRED(data_mu_); bool WaitInternal(int* status); mutable mutex proc_mu_; bool running_ TF_GUARDED_BY(proc_mu_); pid_t pid_ TF_GUARDED_BY(proc_mu_); mutable mutex data_mu_ TF_ACQUIRED_AFTER(proc_mu_); char* exec_path_ TF_GUARDED_BY(data_mu_); char** exec_argv_ TF_GUARDED_BY(data_mu_); ChannelAction action_[kNFds] TF_GUARDED_BY(data_mu_); int parent_pipe_[kNFds] TF_GUARDED_BY(data_mu_); int child_pipe_[kNFds] TF_GUARDED_BY(data_mu_); SubProcess(const SubProcess&) = delete; void operator=(const SubProcess&) = delete; }; } #endif #include "tsl/platform/subprocess.h" #include <fcntl.h> #include <poll.h> #include <signal.h> #include <spawn.h> #include <stdlib.h> #include <string.h> #include <sys/types.h> #include <sys/wait.h> #include <memory> #include <vector> #include "tsl/platform/logging.h" #if !defined(__ANDROID_API__) || __ANDROID_API__ >= 28 #define USE_POSIX_SPAWN 1 #else #define USE_POSIX_SPAWN 0 #endif extern "C" { extern char** environ; } namespace tsl { SubProcess::SubProcess(int nfds) : running_(false), pid_(-1), exec_path_(nullptr), exec_argv_(nullptr) { for (int i = 0; i < kNFds; i++) { action_[i] = ACTION_CLOSE; parent_pipe_[i] = -1; child_pipe_[i] = -1; } } SubProcess::~SubProcess() { mutex_lock procLock(proc_mu_); mutex_lock dataLock(data_mu_); pid_ = -1; running_ = false; FreeArgs(); ClosePipes(); } void SubProcess::FreeArgs() { free(exec_path_); exec_path_ = nullptr; if (exec_argv_) { for (char** p = exec_argv_; *p != nullptr; p++) { free(*p); } delete[] exec_argv_; exec_argv_ = nullptr; } } void SubProcess::ClosePipes() { for (int i = 0; i < kNFds; i++) { if (parent_pipe_[i] >= 0) { if (close(parent_pipe_[i]) < 0) { LOG(ERROR) << "close() failed: " << strerror(errno); } parent_pipe_[i] = -1; } if (child_pipe_[i] >= 0) { if (close(child_pipe_[i]) < 0) { LOG(ERROR) << "close() failed: " << strerror(errno); } child_pipe_[i] = -1; } } } void SubProcess::SetProgram(const string& file, const std::vector<string>& argv) { mutex_lock procLock(proc_mu_); mutex_lock dataLock(data_mu_); if (running_) { LOG(FATAL) << "SetProgram called after the process was started."; return; } FreeArgs(); exec_path_ = strdup(file.c_str()); if (exec_path_ == nullptr) { LOG(FATAL) << "SetProgram failed to allocate file string."; return; } int argc = argv.size(); exec_argv_ = new char*[argc + 1]; for (int i = 0; i < argc; i++) { exec_argv_[i] = strdup(argv[i].c_str()); if (exec_argv_[i] == nullptr) { LOG(FATAL) << "SetProgram failed to allocate command argument."; return; } } exec_argv_[argc] = nullptr; } void SubProcess::SetChannelAction(Channel chan, ChannelAction action) { mutex_lock procLock(proc_mu_); mutex_lock dataLock(data_mu_); if (running_) { LOG(FATAL) << "SetChannelAction called after the process was started."; } else if (!chan_valid(chan)) { LOG(FATAL) << "SetChannelAction called with invalid channel: " << chan; } else if ((action != ACTION_CLOSE) && (action != ACTION_PIPE) && (action != ACTION_DUPPARENT)) { LOG(FATAL) << "SetChannelAction called with invalid action: " << action; } else { action_[chan] = action; } } #if USE_POSIX_SPAWN bool SubProcess::Start() { mutex_lock procLock(proc_mu_); mutex_lock dataLock(data_mu_); if (running_) { LOG(ERROR) << "Start called after the process was started."; return false; } if ((exec_path_ == nullptr) || (exec_argv_ == nullptr)) { LOG(ERROR) << "Start called without setting a program."; return false; } for (int i = 0; i < kNFds; i++) { if (action_[i] == ACTION_PIPE) { int pipe_fds[2]; if (pipe(pipe_fds) < 0) { LOG(ERROR) << "Start cannot create pipe: " << strerror(errno); ClosePipes(); return false; } if (i == 0) { parent_pipe_[i] = pipe_fds[1]; child_pipe_[i] = pipe_fds[0]; } else { parent_pipe_[i] = pipe_fds[0]; child_pipe_[i] = pipe_fds[1]; } if (fcntl(parent_pipe_[i], F_SETFL, O_NONBLOCK) < 0) { LOG(ERROR) << "Start cannot make pipe non-blocking: " << strerror(errno); ClosePipes(); return false; } if (fcntl(parent_pipe_[i], F_SETFD, FD_CLOEXEC) < 0) { LOG(ERROR) << "Start cannot make pipe close-on-exec: " << strerror(errno); ClosePipes(); return false; } } } posix_spawn_file_actions_t file_actions; int ret; ret = posix_spawn_file_actions_init(&file_actions); if (ret != 0) { LOG(ERROR) << "Start cannot initialize POSIX file actions: " << strerror(ret); ClosePipes(); return false; } int devnull_fd = -1; for (int i = 0; i < kNFds; i++) { if (parent_pipe_[i] >= 0) { ret = posix_spawn_file_actions_addclose(&file_actions, parent_pipe_[i]); if (ret != 0) { LOG(ERROR) << "posix_spawn_file_actions_addclose() failed: " << strerror(ret); } } switch (action_[i]) { case ACTION_DUPPARENT: break; case ACTION_PIPE: ret = posix_spawn_file_actions_adddup2(&file_actions, child_pipe_[i], i); if (ret != 0) { LOG(ERROR) << "posix_spawn_file_actions_adddup2() failed: " << strerror(ret); } ret = posix_spawn_file_actions_addclose(&file_actions, child_pipe_[i]); if (ret != 0) { LOG(ERROR) << "posix_spawn_file_actions_addclose() failed: " << strerror(ret); } break; case ACTION_CLOSE: default: if (i <= CHAN_STDERR) { if (devnull_fd < 0) { ret = posix_spawn_file_actions_addopen(&file_actions, i, "/dev/null", O_RDWR, 0); if (ret != 0) { LOG(ERROR) << "posix_spawn_file_actions_addopen() failed: " << strerror(ret); } devnull_fd = i; } else { ret = posix_spawn_file_actions_adddup2(&file_actions, devnull_fd, i); if (ret != 0) { LOG(ERROR) << "posix_spawn_file_actions_adddup2() failed: " << strerror(ret); } } } else { ret = posix_spawn_file_actions_addclose(&file_actions, i); if (ret != 0) { LOG(ERROR) << "posix_spawn_file_actions_addclose() failed: " << strerror(ret); } } break; } } ret = posix_spawnp(&pid_, exec_path_, &file_actions, nullptr, exec_argv_, environ); if (ret != 0) { LOG(INFO) << "Start cannot spawn child process: " << strerror(ret); ClosePipes(); return false; } ret = posix_spawn_file_actions_destroy(&file_actions); if (ret != 0) { LOG(WARNING) << "Start cannot destroy POSIX file actions: " << strerror(ret); } running_ = true; for (int i = 0; i < kNFds; i++) { if (child_pipe_[i] >= 0) { if (close(child_pipe_[i]) < 0) { LOG(ERROR) << "close() failed: " << strerror(errno); } child_pipe_[i] = -1; } } return true; } #else bool SubProcess::Start() { mutex_lock procLock(proc_mu_); mutex_lock dataLock(data_mu_); if (running_) { LOG(ERROR) << "Start called after the process was started."; return false; } if ((exec_path_ == nullptr) || (exec_argv_ == nullptr)) { LOG(ERROR) << "Start called without setting a program."; return false; } for (int i = 0; i < kNFds; i++) { if (action_[i] == ACTION_PIPE) { int pipe_fds[2]; if (pipe(pipe_fds) < 0) { LOG(ERROR) << "Start cannot create pipe: " << strerror(errno); ClosePipes(); return false; } if (i == 0) { parent_pipe_[i] = pipe_fds[1]; child_pipe_[i] = pipe_fds[0]; } else { parent_pipe_[i] = pipe_fds[0]; child_pipe_[i] = pipe_fds[1]; } if (fcntl(parent_pipe_[i], F_SETFL, O_NONBLOCK) < 0) { LOG(ERROR) << "Start cannot make pipe non-blocking: " << strerror(errno); ClosePipes(); return false; } if (fcntl(parent_pipe_[i], F_SETFD, FD_CLOEXEC) < 0) { LOG(ERROR) << "Start cannot make pipe close-on-exec: " << strerror(errno); ClosePipes(); return false; } } } pid_ = fork(); if (pid_ < 0) { LOG(ERROR) << "Start cannot fork() child process: " << strerror(errno); ClosePipes(); return false; } if (pid_ > 0) { running_ = true; for (int i = 0; i < kNFds; i++) { if (child_pipe_[i] >= 0) { if (close(child_pipe_[i]) < 0) { LOG(ERROR) << "close() failed: " << strerror(errno); } child_pipe_[i] = -1; } } return true; } int devnull_fd = -1; for (int i = 0; i < kNFds; i++) { if (parent_pipe_[i] >= 0) { if (close(parent_pipe_[i]) < 0) { LOG(ERROR) << "close() failed: " << strerror(errno); } parent_pipe_[i] = -1; } switch (action_[i]) { case ACTION_DUPPARENT: break; case ACTION_PIPE: while (dup2(child_pipe_[i], i) < 0) { if (!retry(errno)) { _exit(1); } } if (close(child_pipe_[i]) < 0) { LOG(ERROR) << "close() failed: " << strerror(errno); } child_pipe_[i] = -1; break; case ACTION_CLOSE: default: if (i <= CHAN_STDERR) { if (devnull_fd < 0) { while ((devnull_fd = open("/dev/null", O_RDWR, 0)) < 0) { if (!retry(errno)) { _exit(1); } } } while (dup2(devnull_fd, i) < 0) { if (!retry(errno)) { _exit(1); } } } else { if (close(i) < 0) { LOG(ERROR) << "close() failed: " << strerror(errno); } } break; } } if (devnull_fd >= 0) { if (close(devnull_fd) < 0) { LOG(ERROR) << "close() failed: " << strerror(errno); } } execvp(exec_path_, exec_argv_); _exit(1); } #endif bool SubProcess::Wait() { int status; return WaitInternal(&status); } bool SubProcess::WaitInternal(int* status) { proc_mu_.lock(); bool running = running_; pid_t pid = pid_; proc_mu_.unlock(); bool ret = false; if (running && (pid > 1)) { pid_t cpid; int cstat; bool done = false; while (!done) { cpid = waitpid(pid, &cstat, 0); if ((cpid < 0) && !retry(errno)) { done = true; } else if ((cpid == pid) && (WIFEXITED(cstat) || WIFSIGNALED(cstat))) { *status = cstat; ret = true; done = true; } } } proc_mu_.lock(); if ((running_ == running) && (pid_ == pid)) { running_ = false; pid_ = -1; } proc_mu_.unlock(); return ret; } bool SubProcess::Kill(int signal) { proc_mu_.lock(); bool running = running_; pid_t pid = pid_; proc_mu_.unlock(); bool ret = false; if (running && (pid > 1)) { ret = (kill(pid, signal) == 0); } return ret; } int SubProcess::Communicate(const string* stdin_input, string* stdout_output, string* stderr_output) { struct pollfd fds[kNFds]; size_t nbytes[kNFds]; string* iobufs[kNFds]; int fd_count = 0; proc_mu_.lock(); bool running = running_; proc_mu_.unlock(); if (!running) { LOG(ERROR) << "Communicate called without a running process."; return 1; } struct sigaction act; if (sigaction(SIGPIPE, nullptr, &act) < 0) { LOG(ERROR) << "Communicate cannot get SIGPIPE handler: " << strerror(errno); return 1; } if (act.sa_handler == SIG_DFL) { memset(&act, 0, sizeof(act)); act.sa_handler = SIG_IGN; sigemptyset(&act.sa_mask); if (sigaction(SIGPIPE, &act, nullptr) < 0) { LOG(ERROR) << "Communicate cannot ignore SIGPIPE: " << strerror(errno); return 1; } } data_mu_.lock(); for (int i = 0; i < kNFds; i++) { if (action_[i] == ACTION_PIPE) { switch (i) { case CHAN_STDIN: if (stdin_input == nullptr) { if (close(parent_pipe_[i]) < 0) { LOG(ERROR) << "close() failed: " << strerror(errno); } parent_pipe_[i] = -1; continue; } iobufs[fd_count] = const_cast<string*>(stdin_input); break; case CHAN_STDOUT: iobufs[fd_count] = stdout_output; break; case CHAN_STDERR: iobufs[fd_count] = stderr_output; break; default: iobufs[fd_count] = nullptr; break; } nbytes[fd_count] = 0; fds[fd_count].fd = parent_pipe_[i]; fds[fd_count].events = (i > 0) ? POLLIN : POLLOUT; fds[fd_count].revents = 0; fd_count++; } } int fd_remain = fd_count; char buf[4096]; while (fd_remain > 0) { int n = poll(fds, fd_count, -1); if ((n < 0) && !retry(errno)) { LOG(ERROR) << "Communicate cannot poll(): " << strerror(errno); fd_remain = 0; } else if (n == 0) { LOG(ERROR) << "Communicate cannot poll(): timeout not possible"; fd_remain = 0; } else if (n > 0) { for (int i = 0; i < fd_count; i++) { if ((fds[i].revents & (POLLIN | POLLHUP)) != 0) { ssize_t n = read(fds[i].fd, buf, sizeof(buf)); if (n > 0) { if (iobufs[i] != nullptr) { iobufs[i]->append(buf, n); nbytes[i] += n; } } else if ((n == 0) || !retry(errno)) { fds[i].fd = -1; fd_remain--; } } else if ((fds[i].revents & POLLOUT) != 0) { ssize_t n = iobufs[i]->size() - nbytes[i]; if (n > 0) { n = write(fds[i].fd, iobufs[i]->c_str() + nbytes[i], n); } if (n >= 0) { nbytes[i] += n; if (nbytes[i] >= iobufs[i]->size()) { fds[i].fd = -1; fd_remain--; if (close(parent_pipe_[CHAN_STDIN]) < 0) { LOG(ERROR) << "close() failed: " << strerror(errno); } parent_pipe_[CHAN_STDIN] = -1; } } else if (!retry(errno)) { fds[i].fd = -1; fd_remain--; } } else if ((fds[i].revents & (POLLERR | POLLNVAL)) != 0) { fds[i].fd = -1; fd_remain--; } } } } data_mu_.unlock(); int status; return WaitInternal(&status) ? status : -1; } std::unique_ptr<SubProcess> CreateSubProcess(const std::vector<string>& argv) { std::unique_ptr<SubProcess> proc(new SubProcess()); proc->SetProgram(argv[0], argv); proc->SetChannelAction(CHAN_STDERR, ACTION_DUPPARENT); proc->SetChannelAction(CHAN_STDOUT, ACTION_DUPPARENT); return proc; } }
#include "tsl/platform/subprocess.h" #include <stdlib.h> #include <algorithm> #include <string> #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/path.h" #include "tsl/platform/strcat.h" #include "tsl/platform/test.h" #ifdef PLATFORM_WINDOWS #define WIFEXITED(code) ((code) != 3) #define WEXITSTATUS(code) (code) #define SIGKILL 9 #else #include <sys/wait.h> #endif namespace tsl { namespace { string EchoProgram() { std::string path = io::JoinPath(testing::TslSrcRoot(), "platform", "testdata", "test_echo"); return tsl::io::AppendDotExeIfWindows(path); } string EchoArgv1Program() { std::string path = io::JoinPath(testing::TslSrcRoot(), "platform", "testdata", "test_echo_argv_1"); return tsl::io::AppendDotExeIfWindows(path); } string NoopProgram() { std::string path = io::JoinPath(testing::TslSrcRoot(), "platform", "testdata", "test_noop"); return tsl::io::AppendDotExeIfWindows(path); } string StdErrProgram() { std::string path = io::JoinPath(testing::TslSrcRoot(), "platform", "testdata", "test_stderr"); return tsl::io::AppendDotExeIfWindows(path); } class SubProcessTest : public ::testing::Test {}; TEST_F(SubProcessTest, NoOutputNoComm) { tsl::SubProcess proc; proc.SetProgram(NoopProgram().c_str(), {NoopProgram()}); EXPECT_TRUE(proc.Start()); EXPECT_TRUE(proc.Wait()); } TEST_F(SubProcessTest, NoOutput) { tsl::SubProcess proc; proc.SetProgram(NoopProgram().c_str(), {NoopProgram()}); proc.SetChannelAction(CHAN_STDOUT, ACTION_PIPE); proc.SetChannelAction(CHAN_STDERR, ACTION_PIPE); EXPECT_TRUE(proc.Start()); string out, err; int status = proc.Communicate(nullptr, &out, &err); EXPECT_TRUE(WIFEXITED(status)); EXPECT_EQ(0, WEXITSTATUS(status)); EXPECT_EQ("", out); EXPECT_EQ("", err); } TEST_F(SubProcessTest, Stdout) { tsl::SubProcess proc; const char test_string[] = "hello_world"; proc.SetProgram(EchoArgv1Program().c_str(), {EchoArgv1Program(), test_string}); proc.SetChannelAction(CHAN_STDOUT, ACTION_PIPE); proc.SetChannelAction(CHAN_STDERR, ACTION_PIPE); EXPECT_TRUE(proc.Start()); string out, err; int status = proc.Communicate(nullptr, &out, &err); EXPECT_TRUE(WIFEXITED(status)); EXPECT_EQ(0, WEXITSTATUS(status)); EXPECT_EQ(test_string, out); EXPECT_EQ("", err); } TEST_F(SubProcessTest, StdoutIgnored) { tsl::SubProcess proc; const char test_string[] = "hello_world"; proc.SetProgram(EchoArgv1Program().c_str(), {EchoArgv1Program(), test_string}); proc.SetChannelAction(CHAN_STDOUT, ACTION_PIPE); proc.SetChannelAction(CHAN_STDERR, ACTION_PIPE); EXPECT_TRUE(proc.Start()); int status = proc.Communicate(nullptr, nullptr, nullptr); EXPECT_TRUE(WIFEXITED(status)); EXPECT_EQ(0, WEXITSTATUS(status)); } TEST_F(SubProcessTest, Stderr) { tsl::SubProcess proc; const char test_string[] = "muh_failure!"; proc.SetProgram(StdErrProgram().c_str(), {StdErrProgram(), test_string}); proc.SetChannelAction(CHAN_STDOUT, ACTION_PIPE); proc.SetChannelAction(CHAN_STDERR, ACTION_PIPE); EXPECT_TRUE(proc.Start()); string out, err; int status = proc.Communicate(nullptr, &out, &err); EXPECT_TRUE(WIFEXITED(status)); EXPECT_NE(0, WEXITSTATUS(status)); EXPECT_EQ("", out); EXPECT_EQ(test_string, err); } TEST_F(SubProcessTest, StderrIgnored) { tsl::SubProcess proc; const char test_string[] = "muh_failure!"; proc.SetProgram(StdErrProgram().c_str(), {StdErrProgram(), test_string}); proc.SetChannelAction(CHAN_STDOUT, ACTION_PIPE); proc.SetChannelAction(CHAN_STDERR, ACTION_PIPE); EXPECT_TRUE(proc.Start()); int status = proc.Communicate(nullptr, nullptr, nullptr); EXPECT_TRUE(WIFEXITED(status)); EXPECT_NE(0, WEXITSTATUS(status)); } TEST_F(SubProcessTest, Stdin) { tsl::SubProcess proc; proc.SetProgram(EchoProgram().c_str(), {EchoProgram()}); proc.SetChannelAction(CHAN_STDIN, ACTION_PIPE); EXPECT_TRUE(proc.Start()); string in = "foobar\nbarfoo\nhaha\n"; int status = proc.Communicate(&in, nullptr, nullptr); EXPECT_TRUE(WIFEXITED(status)); EXPECT_EQ(0, WEXITSTATUS(status)); } TEST_F(SubProcessTest, StdinStdout) { tsl::SubProcess proc; proc.SetProgram(EchoProgram().c_str(), {EchoProgram()}); proc.SetChannelAction(CHAN_STDIN, ACTION_PIPE); proc.SetChannelAction(CHAN_STDOUT, ACTION_PIPE); EXPECT_TRUE(proc.Start()); string in = "foobar\nbarfoo\nhaha\n"; string out; int status = proc.Communicate(&in, &out, nullptr); EXPECT_TRUE(WIFEXITED(status)); EXPECT_EQ(0, WEXITSTATUS(status)); out.erase(std::remove(out.begin(), out.end(), '\r'), out.end()); EXPECT_EQ(in, out); } TEST_F(SubProcessTest, StdinChildExit) { tsl::SubProcess proc; proc.SetProgram(NoopProgram().c_str(), {NoopProgram()}); proc.SetChannelAction(CHAN_STDIN, ACTION_PIPE); EXPECT_TRUE(proc.Start()); string in; in.reserve(1000000); for (int i = 0; i < 100000; i++) { in += "hello xyz\n"; } int status = proc.Communicate(&in, nullptr, nullptr); EXPECT_TRUE(WIFEXITED(status)); EXPECT_EQ(0, WEXITSTATUS(status)); } TEST_F(SubProcessTest, StdinStdoutOverlap) { tsl::SubProcess proc; proc.SetProgram(EchoProgram().c_str(), {EchoProgram()}); proc.SetChannelAction(CHAN_STDIN, ACTION_PIPE); proc.SetChannelAction(CHAN_STDOUT, ACTION_PIPE); EXPECT_TRUE(proc.Start()); string in; in.reserve(1000000); for (int i = 0; i < 100000; i++) { in += "hello xyz\n"; } string out; int status = proc.Communicate(&in, &out, nullptr); EXPECT_TRUE(WIFEXITED(status)); EXPECT_EQ(0, WEXITSTATUS(status)); out.erase(std::remove(out.begin(), out.end(), '\r'), out.end()); EXPECT_EQ(in, out); } TEST_F(SubProcessTest, KillProc) { tsl::SubProcess proc; proc.SetProgram(EchoProgram().c_str(), {EchoProgram()}); proc.SetChannelAction(CHAN_STDIN, ACTION_PIPE); proc.SetChannelAction(CHAN_STDOUT, ACTION_PIPE); EXPECT_TRUE(proc.Start()); EXPECT_TRUE(proc.Kill(SIGKILL)); EXPECT_TRUE(proc.Wait()); EXPECT_FALSE(proc.Kill(SIGKILL)); } } }
352
#ifndef TENSORFLOW_C_EXPERIMENTAL_OPS_GEN_CPP_RENDERERS_RENDERER_H_ #define TENSORFLOW_C_EXPERIMENTAL_OPS_GEN_CPP_RENDERERS_RENDERER_H_ #include "absl/strings/string_view.h" #include "absl/strings/substitute.h" #include "tensorflow/c/experimental/ops/gen/cpp/renderers/renderer_context.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace generator { namespace cpp { class Renderer { public: explicit Renderer(RendererContext context); protected: Renderer &BlankLine(); Renderer &CodeLine(const string &text); template <typename... Args> Renderer CodeLine(absl::string_view text, const Args &...args) { return CodeLine(absl::Substitute(text, args...)); } Renderer &CodeLines(const string &text); template <typename... Args> Renderer CodeLines(absl::string_view text, const Args &...args) { return CodeLines(absl::Substitute(text, args...)); } Renderer &Statement(const string &text); template <typename... Args> Renderer Statement(absl::string_view text, const Args &...args) { return Statement(absl::Substitute(text, args...)); } Renderer &TFStatement(const string &text); template <typename... Args> Renderer TFStatement(absl::string_view text, const Args &...args) { return TFStatement(absl::Substitute(text, args...)); } Renderer &CommentLine(const string &text = ""); template <typename... Args> Renderer CommentLine(absl::string_view text, const Args &...args) { return CommentLine(absl::Substitute(text, args...)); } Renderer &BlockOpen(const string &text); template <typename... Args> Renderer BlockOpen(absl::string_view text, const Args &...args) { return BlockOpen(absl::Substitute(text, args...)); } Renderer &BlockClose(const string &text = ""); template <typename... Args> Renderer BlockClose(absl::string_view text, const Args &...args) { return BlockClose(absl::Substitute(text, args...)); } protected: RendererContext context_; }; } } } #endif #include "tensorflow/c/experimental/ops/gen/cpp/renderers/renderer.h" #include "absl/strings/str_cat.h" #include "absl/strings/substitute.h" #include "tensorflow/c/experimental/ops/gen/cpp/renderers/renderer_context.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/stringpiece.h" namespace tensorflow { namespace generator { namespace cpp { Renderer::Renderer(RendererContext context) : context_(context) {} Renderer& Renderer::BlankLine() { context_.code.AddLineWithoutIndent(""); return *this; } Renderer& Renderer::CodeLine(const string& text) { context_.code.AddLineWithoutIndent(text); return *this; } Renderer& Renderer::CodeLines(const string& text) { StringPiece trimmed_text(text); str_util::RemoveWhitespaceContext(&trimmed_text); for (const string& line : str_util::Split(trimmed_text, '\n')) { context_.code.AddLineWithoutIndent(line); } return *this; } Renderer& Renderer::Statement(const string& text) { if (str_util::EndsWith(text, ";")) { LOG(WARNING) << "Superfluous terminating ';' in '" << text << "'"; context_.code.AddLineWithIndent(text); } else { context_.code.AddLineWithIndent(absl::StrCat(text, ";")); } return *this; } Renderer& Renderer::TFStatement(const string& text) { return Statement(absl::Substitute("TF_RETURN_IF_ERROR($0)", text)); } Renderer& Renderer::CommentLine(const string& text) { context_.code.AddLineWithIndent(absl::StrCat(" return *this; } Renderer& Renderer::BlockOpen(const string& text) { context_.code.AddLineWithIndent(absl::StrCat(text, " {")); context_.code.IncreaseIndent(); return *this; } Renderer& Renderer::BlockClose(const string& text) { context_.code.DecreaseIndent(); context_.code.AddLineWithIndent(absl::StrCat("}", text)); return *this; } } } }
#include "tensorflow/c/experimental/ops/gen/cpp/renderers/renderer.h" #include "tensorflow/c/experimental/ops/gen/common/path_config.h" #include "tensorflow/c/experimental/ops/gen/common/source_code.h" #include "tensorflow/c/experimental/ops/gen/cpp/renderers/cpp_config.h" #include "tensorflow/c/experimental/ops/gen/cpp/renderers/renderer_context.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace generator { namespace cpp { namespace { TEST(Renderer, typical_usage) { class TestRenderer : Renderer { public: explicit TestRenderer(SourceCode& code) : Renderer( {RendererContext::kSource, code, CppConfig(), PathConfig()}) {} void Render() { CommentLine("File level comment."); CodeLine("#include \"header.h\""); BlankLine(); BlockOpen("void TestFunction()"); { Statement("int i = 1"); BlankLine(); BlockOpen("while (i == 1)"); { CommentLine("Do nothing, really...."); CodeLine("#if 0"); Statement("call()"); CodeLine("#endif"); BlockClose(); } BlockClose(" } } }; SourceCode code; TestRenderer(code).Render(); string expected = R"( #include "header.h" void TestFunction() { int i = 1; while (i == 1) { #if 0 call(); #endif } } )"; code.SetSpacesPerIndent(3); EXPECT_EQ(expected, code.Render()); } } } } }
353
#ifndef XLA_TEXT_LITERAL_WRITER_H_ #define XLA_TEXT_LITERAL_WRITER_H_ #include "absl/strings/string_view.h" #include "xla/literal.h" #include "xla/types.h" #include "xla/xla_data.pb.h" #include "tsl/platform/status.h" namespace xla { class TextLiteralWriter { public: static absl::Status WriteToPath(const Literal& literal, absl::string_view path); private: TextLiteralWriter(const TextLiteralWriter&) = delete; TextLiteralWriter& operator=(const TextLiteralWriter&) = delete; }; } #endif #include "xla/text_literal_writer.h" #include <memory> #include <string> #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/types/span.h" #include "xla/literal.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/types.h" #include "tsl/platform/env.h" namespace xla { absl::Status TextLiteralWriter::WriteToPath( const Literal& literal, absl::string_view path) { std::unique_ptr<tsl::WritableFile> f; auto s = tsl::Env::Default()->NewWritableFile(std::string(path), &f); if (!s.ok()) { return s; } s = f->Append(ShapeUtil::HumanString(literal.shape()) + "\n"); if (!s.ok()) { return s; } absl::Status status; tsl::WritableFile* f_ptr = f.get(); literal.EachCellAsString([f_ptr, &status](absl::Span<const int64_t> indices, const std::string& value) { if (!status.ok()) { return; } std::string coordinates = absl::StrCat("(", absl::StrJoin(indices, ", "), ")"); status = f_ptr->Append(absl::StrCat(coordinates, ": ", value, "\n")); }); auto ignored = f->Close(); return status; } }
#include "xla/text_literal_writer.h" #include <memory> #include <string> #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/types.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/env.h" namespace xla { namespace { TEST(TextLiteralWriterTest, WritesFloatLiteral) { auto literal = LiteralUtil::CreateR2<float>({ {3.14, 2.17}, {1.23, 4.56}, }); std::string path; ASSERT_TRUE(tsl::Env::Default()->LocalTempFilename(&path)); ASSERT_IS_OK(TextLiteralWriter::WriteToPath(literal, path)); std::string contents; TF_ASSERT_OK(tsl::ReadFileToString(tsl::Env::Default(), path, &contents)); const std::string expected = R"(f32[2,2] (0, 0): 3.14 (0, 1): 2.17 (1, 0): 1.23 (1, 1): 4.56 )"; EXPECT_EQ(expected, contents); } } }
354
#ifndef QUICHE_QUIC_CORE_CRYPTO_QUIC_HKDF_H_ #define QUICHE_QUIC_CORE_CRYPTO_QUIC_HKDF_H_ #include <cstdint> #include <vector> #include "absl/strings/string_view.h" #include "quiche/quic/platform/api/quic_export.h" namespace quic { class QUICHE_EXPORT QuicHKDF { public: QuicHKDF(absl::string_view secret, absl::string_view salt, absl::string_view info, size_t key_bytes_to_generate, size_t iv_bytes_to_generate, size_t subkey_secret_bytes_to_generate); QuicHKDF(absl::string_view secret, absl::string_view salt, absl::string_view info, size_t client_key_bytes_to_generate, size_t server_key_bytes_to_generate, size_t client_iv_bytes_to_generate, size_t server_iv_bytes_to_generate, size_t subkey_secret_bytes_to_generate); ~QuicHKDF(); absl::string_view client_write_key() const { return client_write_key_; } absl::string_view client_write_iv() const { return client_write_iv_; } absl::string_view server_write_key() const { return server_write_key_; } absl::string_view server_write_iv() const { return server_write_iv_; } absl::string_view subkey_secret() const { return subkey_secret_; } absl::string_view client_hp_key() const { return client_hp_key_; } absl::string_view server_hp_key() const { return server_hp_key_; } private: std::vector<uint8_t> output_; absl::string_view client_write_key_; absl::string_view server_write_key_; absl::string_view client_write_iv_; absl::string_view server_write_iv_; absl::string_view subkey_secret_; absl::string_view client_hp_key_; absl::string_view server_hp_key_; }; } #endif #include "quiche/quic/core/crypto/quic_hkdf.h" #include <memory> #include "absl/strings/string_view.h" #include "openssl/digest.h" #include "openssl/hkdf.h" #include "quiche/quic/platform/api/quic_logging.h" namespace quic { const size_t kSHA256HashLength = 32; const size_t kMaxKeyMaterialSize = kSHA256HashLength * 256; QuicHKDF::QuicHKDF(absl::string_view secret, absl::string_view salt, absl::string_view info, size_t key_bytes_to_generate, size_t iv_bytes_to_generate, size_t subkey_secret_bytes_to_generate) : QuicHKDF(secret, salt, info, key_bytes_to_generate, key_bytes_to_generate, iv_bytes_to_generate, iv_bytes_to_generate, subkey_secret_bytes_to_generate) {} QuicHKDF::QuicHKDF(absl::string_view secret, absl::string_view salt, absl::string_view info, size_t client_key_bytes_to_generate, size_t server_key_bytes_to_generate, size_t client_iv_bytes_to_generate, size_t server_iv_bytes_to_generate, size_t subkey_secret_bytes_to_generate) { const size_t material_length = 2 * client_key_bytes_to_generate + client_iv_bytes_to_generate + 2 * server_key_bytes_to_generate + server_iv_bytes_to_generate + subkey_secret_bytes_to_generate; QUICHE_DCHECK_LT(material_length, kMaxKeyMaterialSize); output_.resize(material_length); if (output_.empty()) { return; } ::HKDF(&output_[0], output_.size(), ::EVP_sha256(), reinterpret_cast<const uint8_t*>(secret.data()), secret.size(), reinterpret_cast<const uint8_t*>(salt.data()), salt.size(), reinterpret_cast<const uint8_t*>(info.data()), info.size()); size_t j = 0; if (client_key_bytes_to_generate) { client_write_key_ = absl::string_view(reinterpret_cast<char*>(&output_[j]), client_key_bytes_to_generate); j += client_key_bytes_to_generate; } if (server_key_bytes_to_generate) { server_write_key_ = absl::string_view(reinterpret_cast<char*>(&output_[j]), server_key_bytes_to_generate); j += server_key_bytes_to_generate; } if (client_iv_bytes_to_generate) { client_write_iv_ = absl::string_view(reinterpret_cast<char*>(&output_[j]), client_iv_bytes_to_generate); j += client_iv_bytes_to_generate; } if (server_iv_bytes_to_generate) { server_write_iv_ = absl::string_view(reinterpret_cast<char*>(&output_[j]), server_iv_bytes_to_generate); j += server_iv_bytes_to_generate; } if (subkey_secret_bytes_to_generate) { subkey_secret_ = absl::string_view(reinterpret_cast<char*>(&output_[j]), subkey_secret_bytes_to_generate); j += subkey_secret_bytes_to_generate; } if (client_key_bytes_to_generate) { client_hp_key_ = absl::string_view(reinterpret_cast<char*>(&output_[j]), client_key_bytes_to_generate); j += client_key_bytes_to_generate; } if (server_key_bytes_to_generate) { server_hp_key_ = absl::string_view(reinterpret_cast<char*>(&output_[j]), server_key_bytes_to_generate); j += server_key_bytes_to_generate; } } QuicHKDF::~QuicHKDF() {} }
#include "quiche/quic/core/crypto/quic_hkdf.h" #include <string> #include "absl/base/macros.h" #include "absl/strings/escaping.h" #include "quiche/quic/platform/api/quic_test.h" namespace quic { namespace test { namespace { struct HKDFInput { const char* key_hex; const char* salt_hex; const char* info_hex; const char* output_hex; }; static const HKDFInput kHKDFInputs[] = { { "0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b", "000102030405060708090a0b0c", "f0f1f2f3f4f5f6f7f8f9", "3cb25f25faacd57a90434f64d0362f2a2d2d0a90cf1a5a4c5db02d56ecc4c5bf340072" "08d5" "b887185865", }, { "000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f202122" "2324" "25262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f4041424344454647" "4849" "4a4b4c4d4e4f", "606162636465666768696a6b6c6d6e6f707172737475767778797a7b7c7d7e7f808182" "8384" "85868788898a8b8c8d8e8f909192939495969798999a9b9c9d9e9fa0a1a2a3a4a5a6a7" "a8a9" "aaabacadaeaf", "b0b1b2b3b4b5b6b7b8b9babbbcbdbebfc0c1c2c3c4c5c6c7c8c9cacbcccdcecfd0d1d2" "d3d4" "d5d6d7d8d9dadbdcdddedfe0e1e2e3e4e5e6e7e8e9eaebecedeeeff0f1f2f3f4f5f6f7" "f8f9" "fafbfcfdfeff", "b11e398dc80327a1c8e7f78c596a49344f012eda2d4efad8a050cc4c19afa97c59045a" "99ca" "c7827271cb41c65e590e09da3275600c2f09b8367793a9aca3db71cc30c58179ec3e87" "c14c" "01d5c1f3434f1d87", }, { "0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b", "", "", "8da4e775a563c18f715f802a063c5a31b8a11f5c5ee1879ec3454e5f3c738d2d9d2013" "95fa" "a4b61a96c8", }, }; class QuicHKDFTest : public QuicTest {}; TEST_F(QuicHKDFTest, HKDF) { for (size_t i = 0; i < ABSL_ARRAYSIZE(kHKDFInputs); i++) { const HKDFInput& test(kHKDFInputs[i]); SCOPED_TRACE(i); std::string key; std::string salt; std::string info; std::string expected; ASSERT_TRUE(absl::HexStringToBytes(test.key_hex, &key)); ASSERT_TRUE(absl::HexStringToBytes(test.salt_hex, &salt)); ASSERT_TRUE(absl::HexStringToBytes(test.info_hex, &info)); ASSERT_TRUE(absl::HexStringToBytes(test.output_hex, &expected)); QuicHKDF hkdf(key, salt, info, expected.size(), 0, 0); ASSERT_EQ(expected.size(), hkdf.client_write_key().size()); EXPECT_EQ(0, memcmp(expected.data(), hkdf.client_write_key().data(), expected.size())); } } } } }
355
#ifndef QUICHE_OBLIVIOUS_HTTP_BUFFERS_OBLIVIOUS_HTTP_REQUEST_H_ #define QUICHE_OBLIVIOUS_HTTP_BUFFERS_OBLIVIOUS_HTTP_REQUEST_H_ #include <memory> #include <optional> #include <string> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "openssl/hpke.h" #include "quiche/oblivious_http/common/oblivious_http_header_key_config.h" namespace quiche { class QUICHE_EXPORT ObliviousHttpRequest { public: class QUICHE_EXPORT Context { public: ~Context() = default; Context(Context&& other) = default; Context& operator=(Context&& other) = default; private: explicit Context(bssl::UniquePtr<EVP_HPKE_CTX> hpke_context, std::string encapsulated_key); friend class ObliviousHttpRequest; friend class ObliviousHttpResponse; friend class ObliviousHttpRequest_TestDecapsulateWithSpecAppendixAExample_Test; friend class ObliviousHttpRequest_TestEncapsulatedRequestStructure_Test; friend class ObliviousHttpRequest_TestEncapsulatedOhttpEncryptedPayload_Test; friend class ObliviousHttpRequest_TestDeterministicSeededOhttpRequest_Test; friend class ObliviousHttpResponse_EndToEndTestForResponse_Test; friend class ObliviousHttpResponse_TestEncapsulateWithQuicheRandom_Test; bssl::UniquePtr<EVP_HPKE_CTX> hpke_context_; std::string encapsulated_key_; }; static absl::StatusOr<ObliviousHttpRequest> CreateServerObliviousRequest( absl::string_view encrypted_data, const EVP_HPKE_KEY& gateway_key, const ObliviousHttpHeaderKeyConfig& ohttp_key_config, absl::string_view request_label = ObliviousHttpHeaderKeyConfig::kOhttpRequestLabel); static absl::StatusOr<ObliviousHttpRequest> CreateClientObliviousRequest( std::string plaintext_payload, absl::string_view hpke_public_key, const ObliviousHttpHeaderKeyConfig& ohttp_key_config, absl::string_view request_label = ObliviousHttpHeaderKeyConfig::kOhttpRequestLabel); static absl::StatusOr<ObliviousHttpRequest> CreateClientWithSeedForTesting( std::string plaintext_payload, absl::string_view hpke_public_key, const ObliviousHttpHeaderKeyConfig& ohttp_key_config, absl::string_view seed, absl::string_view request_label = ObliviousHttpHeaderKeyConfig::kOhttpRequestLabel); ObliviousHttpRequest(ObliviousHttpRequest&& other) = default; ObliviousHttpRequest& operator=(ObliviousHttpRequest&& other) = default; ~ObliviousHttpRequest() = default; std::string EncapsulateAndSerialize() const; absl::string_view GetPlaintextData() const; Context ReleaseContext() && { return std::move(oblivious_http_request_context_.value()); } private: explicit ObliviousHttpRequest( bssl::UniquePtr<EVP_HPKE_CTX> hpke_context, std::string encapsulated_key, const ObliviousHttpHeaderKeyConfig& ohttp_key_config, std::string req_ciphertext, std::string req_plaintext); static absl::StatusOr<ObliviousHttpRequest> EncapsulateWithSeed( std::string plaintext_payload, absl::string_view hpke_public_key, const ObliviousHttpHeaderKeyConfig& ohttp_key_config, absl::string_view seed, absl::string_view request_label); std::optional<Context> oblivious_http_request_context_; ObliviousHttpHeaderKeyConfig key_config_; std::string request_ciphertext_; std::string request_plaintext_; }; } #endif #include "quiche/oblivious_http/buffers/oblivious_http_request.h" #include <stddef.h> #include <stdint.h> #include <memory> #include <optional> #include <string> #include <utility> #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "openssl/hpke.h" #include "quiche/common/platform/api/quiche_bug_tracker.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/common/quiche_crypto_logging.h" namespace quiche { ObliviousHttpRequest::Context::Context( bssl::UniquePtr<EVP_HPKE_CTX> hpke_context, std::string encapsulated_key) : hpke_context_(std::move(hpke_context)), encapsulated_key_(std::move(encapsulated_key)) {} ObliviousHttpRequest::ObliviousHttpRequest( bssl::UniquePtr<EVP_HPKE_CTX> hpke_context, std::string encapsulated_key, const ObliviousHttpHeaderKeyConfig& ohttp_key_config, std::string req_ciphertext, std::string req_plaintext) : oblivious_http_request_context_(absl::make_optional( Context(std::move(hpke_context), std::move(encapsulated_key)))), key_config_(ohttp_key_config), request_ciphertext_(std::move(req_ciphertext)), request_plaintext_(std::move(req_plaintext)) {} absl::StatusOr<ObliviousHttpRequest> ObliviousHttpRequest::CreateServerObliviousRequest( absl::string_view encrypted_data, const EVP_HPKE_KEY& gateway_key, const ObliviousHttpHeaderKeyConfig& ohttp_key_config, absl::string_view request_label) { if (EVP_HPKE_KEY_kem(&gateway_key) == nullptr) { return absl::InvalidArgumentError( "Invalid input param. Failed to import gateway_key."); } bssl::UniquePtr<EVP_HPKE_CTX> gateway_ctx(EVP_HPKE_CTX_new()); if (gateway_ctx == nullptr) { return SslErrorAsStatus("Failed to initialize Gateway/Server's Context."); } QuicheDataReader reader(encrypted_data); auto is_hdr_ok = ohttp_key_config.ParseOhttpPayloadHeader(reader); if (!is_hdr_ok.ok()) { return is_hdr_ok; } size_t enc_key_len = EVP_HPKE_KEM_enc_len(EVP_HPKE_KEY_kem(&gateway_key)); absl::string_view enc_key_received; if (!reader.ReadStringPiece(&enc_key_received, enc_key_len)) { return absl::FailedPreconditionError(absl::StrCat( "Failed to extract encapsulation key of expected len=", enc_key_len, "from payload.")); } std::string info = ohttp_key_config.SerializeRecipientContextInfo(request_label); if (!EVP_HPKE_CTX_setup_recipient( gateway_ctx.get(), &gateway_key, ohttp_key_config.GetHpkeKdf(), ohttp_key_config.GetHpkeAead(), reinterpret_cast<const uint8_t*>(enc_key_received.data()), enc_key_received.size(), reinterpret_cast<const uint8_t*>(info.data()), info.size())) { return SslErrorAsStatus("Failed to setup recipient context"); } absl::string_view ciphertext_received = reader.ReadRemainingPayload(); std::string decrypted(ciphertext_received.size(), '\0'); size_t decrypted_len; if (!EVP_HPKE_CTX_open( gateway_ctx.get(), reinterpret_cast<uint8_t*>(decrypted.data()), &decrypted_len, decrypted.size(), reinterpret_cast<const uint8_t*>(ciphertext_received.data()), ciphertext_received.size(), nullptr, 0)) { return SslErrorAsStatus("Failed to decrypt.", absl::StatusCode::kInvalidArgument); } decrypted.resize(decrypted_len); return ObliviousHttpRequest( std::move(gateway_ctx), std::string(enc_key_received), ohttp_key_config, std::string(ciphertext_received), std::move(decrypted)); } absl::StatusOr<ObliviousHttpRequest> ObliviousHttpRequest::CreateClientObliviousRequest( std::string plaintext_payload, absl::string_view hpke_public_key, const ObliviousHttpHeaderKeyConfig& ohttp_key_config, absl::string_view request_label) { return EncapsulateWithSeed(std::move(plaintext_payload), hpke_public_key, ohttp_key_config, "", request_label); } absl::StatusOr<ObliviousHttpRequest> ObliviousHttpRequest::CreateClientWithSeedForTesting( std::string plaintext_payload, absl::string_view hpke_public_key, const ObliviousHttpHeaderKeyConfig& ohttp_key_config, absl::string_view seed, absl::string_view request_label) { return ObliviousHttpRequest::EncapsulateWithSeed( std::move(plaintext_payload), hpke_public_key, ohttp_key_config, seed, request_label); } absl::StatusOr<ObliviousHttpRequest> ObliviousHttpRequest::EncapsulateWithSeed( std::string plaintext_payload, absl::string_view hpke_public_key, const ObliviousHttpHeaderKeyConfig& ohttp_key_config, absl::string_view seed, absl::string_view request_label) { if (plaintext_payload.empty() || hpke_public_key.empty()) { return absl::InvalidArgumentError("Invalid input."); } bssl::UniquePtr<EVP_HPKE_KEY> client_key(EVP_HPKE_KEY_new()); if (client_key == nullptr) { return SslErrorAsStatus("Failed to initialize HPKE Client Key."); } bssl::UniquePtr<EVP_HPKE_CTX> client_ctx(EVP_HPKE_CTX_new()); if (client_ctx == nullptr) { return SslErrorAsStatus("Failed to initialize HPKE Client Context."); } std::string encapsulated_key(EVP_HPKE_MAX_ENC_LENGTH, '\0'); size_t enc_len; std::string info = ohttp_key_config.SerializeRecipientContextInfo(request_label); if (seed.empty()) { if (!EVP_HPKE_CTX_setup_sender( client_ctx.get(), reinterpret_cast<uint8_t*>(encapsulated_key.data()), &enc_len, encapsulated_key.size(), ohttp_key_config.GetHpkeKem(), ohttp_key_config.GetHpkeKdf(), ohttp_key_config.GetHpkeAead(), reinterpret_cast<const uint8_t*>(hpke_public_key.data()), hpke_public_key.size(), reinterpret_cast<const uint8_t*>(info.data()), info.size())) { return SslErrorAsStatus( "Failed to setup HPKE context with given public key param " "hpke_public_key."); } } else { if (!EVP_HPKE_CTX_setup_sender_with_seed_for_testing( client_ctx.get(), reinterpret_cast<uint8_t*>(encapsulated_key.data()), &enc_len, encapsulated_key.size(), ohttp_key_config.GetHpkeKem(), ohttp_key_config.GetHpkeKdf(), ohttp_key_config.GetHpkeAead(), reinterpret_cast<const uint8_t*>(hpke_public_key.data()), hpke_public_key.size(), reinterpret_cast<const uint8_t*>(info.data()), info.size(), reinterpret_cast<const uint8_t*>(seed.data()), seed.size())) { return SslErrorAsStatus( "Failed to setup HPKE context with given public key param " "hpke_public_key and seed."); } } encapsulated_key.resize(enc_len); std::string ciphertext( plaintext_payload.size() + EVP_HPKE_CTX_max_overhead(client_ctx.get()), '\0'); size_t ciphertext_len; if (!EVP_HPKE_CTX_seal( client_ctx.get(), reinterpret_cast<uint8_t*>(ciphertext.data()), &ciphertext_len, ciphertext.size(), reinterpret_cast<const uint8_t*>(plaintext_payload.data()), plaintext_payload.size(), nullptr, 0)) { return SslErrorAsStatus( "Failed to encrypt plaintext_payload with given public key param " "hpke_public_key."); } ciphertext.resize(ciphertext_len); if (encapsulated_key.empty() || ciphertext.empty()) { return absl::InternalError(absl::StrCat( "Failed to generate required data: ", (encapsulated_key.empty() ? "encapsulated key is empty" : ""), (ciphertext.empty() ? "encrypted data is empty" : ""), ".")); } return ObliviousHttpRequest( std::move(client_ctx), std::move(encapsulated_key), ohttp_key_config, std::move(ciphertext), std::move(plaintext_payload)); } std::string ObliviousHttpRequest::EncapsulateAndSerialize() const { if (!oblivious_http_request_context_.has_value()) { QUICHE_BUG(ohttp_encapsulate_after_context_extract) << "EncapsulateAndSerialize cannot be called after ReleaseContext()"; return ""; } return absl::StrCat(key_config_.SerializeOhttpPayloadHeader(), oblivious_http_request_context_->encapsulated_key_, request_ciphertext_); } absl::string_view ObliviousHttpRequest::GetPlaintextData() const { return request_plaintext_; } }
#include "quiche/oblivious_http/buffers/oblivious_http_request.h" #include <stddef.h> #include <cstdint> #include <memory> #include <string> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/escaping.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "openssl/hkdf.h" #include "openssl/hpke.h" #include "quiche/common/platform/api/quiche_test.h" #include "quiche/common/quiche_data_reader.h" #include "quiche/oblivious_http/common/oblivious_http_header_key_config.h" namespace quiche { namespace { const uint32_t kHeaderLength = ObliviousHttpHeaderKeyConfig::kHeaderLength; std::string GetHpkePrivateKey() { absl::string_view hpke_key_hex = "b77431ecfa8f4cfc30d6e467aafa06944dffe28cb9dd1409e33a3045f5adc8a1"; std::string hpke_key_bytes; EXPECT_TRUE(absl::HexStringToBytes(hpke_key_hex, &hpke_key_bytes)); return hpke_key_bytes; } std::string GetHpkePublicKey() { absl::string_view public_key = "6d21cfe09fbea5122f9ebc2eb2a69fcc4f06408cd54aac934f012e76fcdcef62"; std::string public_key_bytes; EXPECT_TRUE(absl::HexStringToBytes(public_key, &public_key_bytes)); return public_key_bytes; } std::string GetAlternativeHpkePublicKey() { absl::string_view public_key = "6d21cfe09fbea5122f9ebc2eb2a69fcc4f06408cd54aac934f012e76fcdcef63"; std::string public_key_bytes; EXPECT_TRUE(absl::HexStringToBytes(public_key, &public_key_bytes)); return public_key_bytes; } std::string GetSeed() { absl::string_view seed = "52c4a758a802cd8b936eceea314432798d5baf2d7e9235dc084ab1b9cfa2f736"; std::string seed_bytes; EXPECT_TRUE(absl::HexStringToBytes(seed, &seed_bytes)); return seed_bytes; } std::string GetSeededEncapsulatedKey() { absl::string_view encapsulated_key = "37fda3567bdbd628e88668c3c8d7e97d1d1253b6d4ea6d44c150f741f1bf4431"; std::string encapsulated_key_bytes; EXPECT_TRUE( absl::HexStringToBytes(encapsulated_key, &encapsulated_key_bytes)); return encapsulated_key_bytes; } bssl::UniquePtr<EVP_HPKE_KEY> ConstructHpkeKey( absl::string_view hpke_key, const ObliviousHttpHeaderKeyConfig &ohttp_key_config) { bssl::UniquePtr<EVP_HPKE_KEY> bssl_hpke_key(EVP_HPKE_KEY_new()); EXPECT_NE(bssl_hpke_key, nullptr); EXPECT_TRUE(EVP_HPKE_KEY_init( bssl_hpke_key.get(), ohttp_key_config.GetHpkeKem(), reinterpret_cast<const uint8_t *>(hpke_key.data()), hpke_key.size())); return bssl_hpke_key; } const ObliviousHttpHeaderKeyConfig GetOhttpKeyConfig(uint8_t key_id, uint16_t kem_id, uint16_t kdf_id, uint16_t aead_id) { auto ohttp_key_config = ObliviousHttpHeaderKeyConfig::Create(key_id, kem_id, kdf_id, aead_id); EXPECT_TRUE(ohttp_key_config.ok()); return std::move(ohttp_key_config.value()); } } TEST(ObliviousHttpRequest, TestDecapsulateWithSpecAppendixAExample) { auto ohttp_key_config = GetOhttpKeyConfig(1, EVP_HPKE_DHKEM_X25519_HKDF_SHA256, EVP_HPKE_HKDF_SHA256, EVP_HPKE_AES_128_GCM); constexpr absl::string_view kX25519SecretKey = "3c168975674b2fa8e465970b79c8dcf09f1c741626480bd4c6162fc5b6a98e1a"; constexpr absl::string_view kEncapsulatedRequest = "010020000100014b28f881333e7c164ffc499ad9796f877f4e1051ee6d31bad19dec96c2" "08b4726374e469135906992e1268c594d2a10c695d858c40a026e7965e7d86b83dd440b2" "c0185204b4d63525"; std::string encapsulated_request_bytes; ASSERT_TRUE(absl::HexStringToBytes(kEncapsulatedRequest, &encapsulated_request_bytes)); std::string x25519_secret_key_bytes; ASSERT_TRUE( absl::HexStringToBytes(kX25519SecretKey, &x25519_secret_key_bytes)); auto instance = ObliviousHttpRequest::CreateServerObliviousRequest( encapsulated_request_bytes, *(ConstructHpkeKey(x25519_secret_key_bytes, ohttp_key_config)), ohttp_key_config); ASSERT_TRUE(instance.ok()); auto decrypted = instance->GetPlaintextData(); constexpr absl::string_view kExpectedEphemeralPublicKey = "4b28f881333e7c164ffc499ad9796f877f4e1051ee6d31bad19dec96c208b472"; std::string expected_ephemeral_public_key_bytes; ASSERT_TRUE(absl::HexStringToBytes(kExpectedEphemeralPublicKey, &expected_ephemeral_public_key_bytes)); auto oblivious_request_context = std::move(instance.value()).ReleaseContext(); EXPECT_EQ(oblivious_request_context.encapsulated_key_, expected_ephemeral_public_key_bytes); constexpr absl::string_view kExpectedBinaryHTTPMessage = "00034745540568747470730b6578616d706c652e636f6d012f"; std::string expected_binary_http_message_bytes; ASSERT_TRUE(absl::HexStringToBytes(kExpectedBinaryHTTPMessage, &expected_binary_http_message_bytes)); EXPECT_EQ(decrypted, expected_binary_http_message_bytes); } TEST(ObliviousHttpRequest, TestEncapsulatedRequestStructure) { uint8_t test_key_id = 7; uint16_t test_kem_id = EVP_HPKE_DHKEM_X25519_HKDF_SHA256; uint16_t test_kdf_id = EVP_HPKE_HKDF_SHA256; uint16_t test_aead_id = EVP_HPKE_AES_256_GCM; std::string plaintext = "test"; auto instance = ObliviousHttpRequest::CreateClientObliviousRequest( plaintext, GetHpkePublicKey(), GetOhttpKeyConfig(test_key_id, test_kem_id, test_kdf_id, test_aead_id)); ASSERT_TRUE(instance.ok()); auto payload_bytes = instance->EncapsulateAndSerialize(); EXPECT_GE(payload_bytes.size(), kHeaderLength); QuicheDataReader reader(payload_bytes); uint8_t key_id; EXPECT_TRUE(reader.ReadUInt8(&key_id)); EXPECT_EQ(key_id, test_key_id); uint16_t kem_id; EXPECT_TRUE(reader.ReadUInt16(&kem_id)); EXPECT_EQ(kem_id, test_kem_id); uint16_t kdf_id; EXPECT_TRUE(reader.ReadUInt16(&kdf_id)); EXPECT_EQ(kdf_id, test_kdf_id); uint16_t aead_id; EXPECT_TRUE(reader.ReadUInt16(&aead_id)); EXPECT_EQ(aead_id, test_aead_id); auto client_request_context = std::move(instance.value()).ReleaseContext(); auto client_encapsulated_key = client_request_context.encapsulated_key_; EXPECT_EQ(client_encapsulated_key.size(), X25519_PUBLIC_VALUE_LEN); auto enc_key_plus_ciphertext = payload_bytes.substr(kHeaderLength); auto packed_encapsulated_key = enc_key_plus_ciphertext.substr(0, X25519_PUBLIC_VALUE_LEN); EXPECT_EQ(packed_encapsulated_key, client_encapsulated_key); auto ciphertext = enc_key_plus_ciphertext.substr(X25519_PUBLIC_VALUE_LEN); EXPECT_GE(ciphertext.size(), plaintext.size()); } TEST(ObliviousHttpRequest, TestDeterministicSeededOhttpRequest) { auto ohttp_key_config = GetOhttpKeyConfig(4, EVP_HPKE_DHKEM_X25519_HKDF_SHA256, EVP_HPKE_HKDF_SHA256, EVP_HPKE_AES_256_GCM); auto encapsulated = ObliviousHttpRequest::CreateClientWithSeedForTesting( "test", GetHpkePublicKey(), ohttp_key_config, GetSeed()); ASSERT_TRUE(encapsulated.ok()); auto encapsulated_request = encapsulated->EncapsulateAndSerialize(); auto ohttp_request_context = std::move(encapsulated.value()).ReleaseContext(); EXPECT_EQ(ohttp_request_context.encapsulated_key_, GetSeededEncapsulatedKey()); absl::string_view expected_encrypted_request = "9f37cfed07d0111ecd2c34f794671759bcbd922a"; std::string expected_encrypted_request_bytes; ASSERT_TRUE(absl::HexStringToBytes(expected_encrypted_request, &expected_encrypted_request_bytes)); EXPECT_NE(ohttp_request_context.hpke_context_, nullptr); size_t encapsulated_key_len = EVP_HPKE_KEM_enc_len( EVP_HPKE_CTX_kem(ohttp_request_context.hpke_context_.get())); int encrypted_payload_offset = kHeaderLength + encapsulated_key_len; EXPECT_EQ(encapsulated_request.substr(encrypted_payload_offset), expected_encrypted_request_bytes); } TEST(ObliviousHttpRequest, TestSeededEncapsulatedKeySamePlaintextsSameCiphertexts) { auto ohttp_key_config = GetOhttpKeyConfig(8, EVP_HPKE_DHKEM_X25519_HKDF_SHA256, EVP_HPKE_HKDF_SHA256, EVP_HPKE_AES_256_GCM); auto req_with_same_plaintext_1 = ObliviousHttpRequest::CreateClientWithSeedForTesting( "same plaintext", GetHpkePublicKey(), ohttp_key_config, GetSeed()); ASSERT_TRUE(req_with_same_plaintext_1.ok()); auto ciphertext_1 = req_with_same_plaintext_1->EncapsulateAndSerialize(); auto req_with_same_plaintext_2 = ObliviousHttpRequest::CreateClientWithSeedForTesting( "same plaintext", GetHpkePublicKey(), ohttp_key_config, GetSeed()); ASSERT_TRUE(req_with_same_plaintext_2.ok()); auto ciphertext_2 = req_with_same_plaintext_2->EncapsulateAndSerialize(); EXPECT_EQ(ciphertext_1, ciphertext_2); } TEST(ObliviousHttpRequest, TestSeededEncapsulatedKeyDifferentPlaintextsDifferentCiphertexts) { auto ohttp_key_config = GetOhttpKeyConfig(8, EVP_HPKE_DHKEM_X25519_HKDF_SHA256, EVP_HPKE_HKDF_SHA256, EVP_HPKE_AES_256_GCM); auto req_with_different_plaintext_1 = ObliviousHttpRequest::CreateClientWithSeedForTesting( "different 1", GetHpkePublicKey(), ohttp_key_config, GetSeed()); ASSERT_TRUE(req_with_different_plaintext_1.ok()); auto ciphertext_1 = req_with_different_plaintext_1->EncapsulateAndSerialize(); auto req_with_different_plaintext_2 = ObliviousHttpRequest::CreateClientWithSeedForTesting( "different 2", GetHpkePublicKey(), ohttp_key_config, GetSeed()); ASSERT_TRUE(req_with_different_plaintext_2.ok()); auto ciphertext_2 = req_with_different_plaintext_2->EncapsulateAndSerialize(); EXPECT_NE(ciphertext_1, ciphertext_2); } TEST(ObliviousHttpRequest, TestInvalidInputsOnClientSide) { auto ohttp_key_config = GetOhttpKeyConfig(30, EVP_HPKE_DHKEM_X25519_HKDF_SHA256, EVP_HPKE_HKDF_SHA256, EVP_HPKE_AES_256_GCM); EXPECT_EQ(ObliviousHttpRequest::CreateClientObliviousRequest( "", GetHpkePublicKey(), ohttp_key_config) .status() .code(), absl::StatusCode::kInvalidArgument); EXPECT_EQ(ObliviousHttpRequest::CreateClientObliviousRequest( "some plaintext", "", ohttp_key_config) .status() .code(), absl::StatusCode::kInvalidArgument); } TEST(ObliviousHttpRequest, TestInvalidInputsOnServerSide) { auto ohttp_key_config = GetOhttpKeyConfig(4, EVP_HPKE_DHKEM_X25519_HKDF_SHA256, EVP_HPKE_HKDF_SHA256, EVP_HPKE_AES_256_GCM); EXPECT_EQ(ObliviousHttpRequest::CreateServerObliviousRequest( "", *(ConstructHpkeKey(GetHpkePrivateKey(), ohttp_key_config)), ohttp_key_config) .status() .code(), absl::StatusCode::kInvalidArgument); EXPECT_EQ(ObliviousHttpRequest::CreateServerObliviousRequest( absl::StrCat(ohttp_key_config.SerializeOhttpPayloadHeader(), GetSeededEncapsulatedKey(), "9f37cfed07d0111ecd2c34f794671759bcbd922a"), {}, ohttp_key_config) .status() .code(), absl::StatusCode::kInvalidArgument); } TEST(ObliviousHttpRequest, EndToEndTestForRequest) { auto ohttp_key_config = GetOhttpKeyConfig(5, EVP_HPKE_DHKEM_X25519_HKDF_SHA256, EVP_HPKE_HKDF_SHA256, EVP_HPKE_AES_256_GCM); auto encapsulate = ObliviousHttpRequest::CreateClientObliviousRequest( "test", GetHpkePublicKey(), ohttp_key_config); ASSERT_TRUE(encapsulate.ok()); auto oblivious_request = encapsulate->EncapsulateAndSerialize(); auto decapsulate = ObliviousHttpRequest::CreateServerObliviousRequest( oblivious_request, *(ConstructHpkeKey(GetHpkePrivateKey(), ohttp_key_config)), ohttp_key_config); ASSERT_TRUE(decapsulate.ok()); auto decrypted = decapsulate->GetPlaintextData(); EXPECT_EQ(decrypted, "test"); } TEST(ObliviousHttpRequest, EndToEndTestForRequestWithWrongKey) { auto ohttp_key_config = GetOhttpKeyConfig(5, EVP_HPKE_DHKEM_X25519_HKDF_SHA256, EVP_HPKE_HKDF_SHA256, EVP_HPKE_AES_256_GCM); auto encapsulate = ObliviousHttpRequest::CreateClientObliviousRequest( "test", GetAlternativeHpkePublicKey(), ohttp_key_config); ASSERT_TRUE(encapsulate.ok()); auto oblivious_request = encapsulate->EncapsulateAndSerialize(); auto decapsulate = ObliviousHttpRequest::CreateServerObliviousRequest( oblivious_request, *(ConstructHpkeKey(GetHpkePrivateKey(), ohttp_key_config)), ohttp_key_config); EXPECT_EQ(decapsulate.status().code(), absl::StatusCode::kInvalidArgument); } }
356
#ifndef THIRD_PARTY_CEL_CPP_EVAL_PUBLIC_STRUCTS_CEL_PROTO_DESCRIPTOR_POOL_BUILDER_H_ #define THIRD_PARTY_CEL_CPP_EVAL_PUBLIC_STRUCTS_CEL_PROTO_DESCRIPTOR_POOL_BUILDER_H_ #include "google/protobuf/descriptor.pb.h" #include "google/protobuf/descriptor.h" #include "absl/status/status.h" namespace google::api::expr::runtime { absl::Status AddStandardMessageTypesToDescriptorPool( google::protobuf::DescriptorPool& descriptor_pool); google::protobuf::FileDescriptorSet GetStandardMessageTypesFileDescriptorSet(); } #endif #include "eval/public/structs/cel_proto_descriptor_pool_builder.h" #include <string> #include "google/protobuf/any.pb.h" #include "google/protobuf/duration.pb.h" #include "google/protobuf/empty.pb.h" #include "google/protobuf/field_mask.pb.h" #include "google/protobuf/struct.pb.h" #include "google/protobuf/timestamp.pb.h" #include "google/protobuf/wrappers.pb.h" #include "absl/container/flat_hash_map.h" #include "internal/proto_util.h" #include "internal/status_macros.h" namespace google::api::expr::runtime { namespace { template <class MessageType> absl::Status AddOrValidateMessageType(google::protobuf::DescriptorPool& descriptor_pool) { const google::protobuf::Descriptor* descriptor = MessageType::descriptor(); if (descriptor_pool.FindMessageTypeByName(descriptor->full_name()) != nullptr) { return internal::ValidateStandardMessageType<MessageType>(descriptor_pool); } google::protobuf::FileDescriptorProto file_descriptor_proto; descriptor->file()->CopyTo(&file_descriptor_proto); if (descriptor_pool.BuildFile(file_descriptor_proto) == nullptr) { return absl::InternalError( absl::StrFormat("Failed to add descriptor '%s' to descriptor pool", descriptor->full_name())); } return absl::OkStatus(); } template <class MessageType> void AddStandardMessageTypeToMap( absl::flat_hash_map<std::string, google::protobuf::FileDescriptorProto>& fdmap) { const google::protobuf::Descriptor* descriptor = MessageType::descriptor(); if (fdmap.contains(descriptor->file()->name())) return; descriptor->file()->CopyTo(&fdmap[descriptor->file()->name()]); } } absl::Status AddStandardMessageTypesToDescriptorPool( google::protobuf::DescriptorPool& descriptor_pool) { CEL_RETURN_IF_ERROR( AddOrValidateMessageType<google::protobuf::Any>(descriptor_pool)); CEL_RETURN_IF_ERROR( AddOrValidateMessageType<google::protobuf::BoolValue>(descriptor_pool)); CEL_RETURN_IF_ERROR( AddOrValidateMessageType<google::protobuf::BytesValue>(descriptor_pool)); CEL_RETURN_IF_ERROR( AddOrValidateMessageType<google::protobuf::DoubleValue>(descriptor_pool)); CEL_RETURN_IF_ERROR( AddOrValidateMessageType<google::protobuf::Duration>(descriptor_pool)); CEL_RETURN_IF_ERROR( AddOrValidateMessageType<google::protobuf::FloatValue>(descriptor_pool)); CEL_RETURN_IF_ERROR( AddOrValidateMessageType<google::protobuf::Int32Value>(descriptor_pool)); CEL_RETURN_IF_ERROR( AddOrValidateMessageType<google::protobuf::Int64Value>(descriptor_pool)); CEL_RETURN_IF_ERROR( AddOrValidateMessageType<google::protobuf::ListValue>(descriptor_pool)); CEL_RETURN_IF_ERROR( AddOrValidateMessageType<google::protobuf::StringValue>(descriptor_pool)); CEL_RETURN_IF_ERROR( AddOrValidateMessageType<google::protobuf::Struct>(descriptor_pool)); CEL_RETURN_IF_ERROR( AddOrValidateMessageType<google::protobuf::Timestamp>(descriptor_pool)); CEL_RETURN_IF_ERROR( AddOrValidateMessageType<google::protobuf::UInt32Value>(descriptor_pool)); CEL_RETURN_IF_ERROR( AddOrValidateMessageType<google::protobuf::UInt64Value>(descriptor_pool)); CEL_RETURN_IF_ERROR( AddOrValidateMessageType<google::protobuf::Value>(descriptor_pool)); CEL_RETURN_IF_ERROR( AddOrValidateMessageType<google::protobuf::FieldMask>(descriptor_pool)); CEL_RETURN_IF_ERROR( AddOrValidateMessageType<google::protobuf::Empty>(descriptor_pool)); return absl::OkStatus(); } google::protobuf::FileDescriptorSet GetStandardMessageTypesFileDescriptorSet() { absl::flat_hash_map<std::string, google::protobuf::FileDescriptorProto> files; AddStandardMessageTypeToMap<google::protobuf::Any>(files); AddStandardMessageTypeToMap<google::protobuf::BoolValue>(files); AddStandardMessageTypeToMap<google::protobuf::BytesValue>(files); AddStandardMessageTypeToMap<google::protobuf::DoubleValue>(files); AddStandardMessageTypeToMap<google::protobuf::Duration>(files); AddStandardMessageTypeToMap<google::protobuf::FloatValue>(files); AddStandardMessageTypeToMap<google::protobuf::Int32Value>(files); AddStandardMessageTypeToMap<google::protobuf::Int64Value>(files); AddStandardMessageTypeToMap<google::protobuf::ListValue>(files); AddStandardMessageTypeToMap<google::protobuf::StringValue>(files); AddStandardMessageTypeToMap<google::protobuf::Struct>(files); AddStandardMessageTypeToMap<google::protobuf::Timestamp>(files); AddStandardMessageTypeToMap<google::protobuf::UInt32Value>(files); AddStandardMessageTypeToMap<google::protobuf::UInt64Value>(files); AddStandardMessageTypeToMap<google::protobuf::Value>(files); AddStandardMessageTypeToMap<google::protobuf::FieldMask>(files); AddStandardMessageTypeToMap<google::protobuf::Empty>(files); google::protobuf::FileDescriptorSet fdset; for (const auto& [name, fdproto] : files) { *fdset.add_file() = fdproto; } return fdset; } }
#include "eval/public/structs/cel_proto_descriptor_pool_builder.h" #include <string> #include <vector> #include "google/protobuf/any.pb.h" #include "absl/container/flat_hash_map.h" #include "eval/testutil/test_message.pb.h" #include "internal/testing.h" namespace google::api::expr::runtime { namespace { using testing::HasSubstr; using testing::UnorderedElementsAre; using cel::internal::StatusIs; TEST(DescriptorPoolUtilsTest, PopulatesEmptyDescriptorPool) { google::protobuf::DescriptorPool descriptor_pool; ASSERT_EQ(descriptor_pool.FindMessageTypeByName("google.protobuf.Any"), nullptr); ASSERT_EQ(descriptor_pool.FindMessageTypeByName("google.protobuf.BoolValue"), nullptr); ASSERT_EQ(descriptor_pool.FindMessageTypeByName("google.protobuf.BytesValue"), nullptr); ASSERT_EQ( descriptor_pool.FindMessageTypeByName("google.protobuf.DoubleValue"), nullptr); ASSERT_EQ(descriptor_pool.FindMessageTypeByName("google.protobuf.Duration"), nullptr); ASSERT_EQ(descriptor_pool.FindMessageTypeByName("google.protobuf.FloatValue"), nullptr); ASSERT_EQ(descriptor_pool.FindMessageTypeByName("google.protobuf.Int32Value"), nullptr); ASSERT_EQ(descriptor_pool.FindMessageTypeByName("google.protobuf.Int64Value"), nullptr); ASSERT_EQ(descriptor_pool.FindMessageTypeByName("google.protobuf.ListValue"), nullptr); ASSERT_EQ( descriptor_pool.FindMessageTypeByName("google.protobuf.StringValue"), nullptr); ASSERT_EQ(descriptor_pool.FindMessageTypeByName("google.protobuf.Struct"), nullptr); ASSERT_EQ(descriptor_pool.FindMessageTypeByName("google.protobuf.Timestamp"), nullptr); ASSERT_EQ( descriptor_pool.FindMessageTypeByName("google.protobuf.UInt32Value"), nullptr); ASSERT_EQ( descriptor_pool.FindMessageTypeByName("google.protobuf.UInt64Value"), nullptr); ASSERT_EQ(descriptor_pool.FindMessageTypeByName("google.protobuf.Value"), nullptr); ASSERT_EQ(descriptor_pool.FindMessageTypeByName("google.protobuf.FieldMask"), nullptr); ASSERT_OK(AddStandardMessageTypesToDescriptorPool(descriptor_pool)); EXPECT_NE(descriptor_pool.FindMessageTypeByName("google.protobuf.Any"), nullptr); EXPECT_NE(descriptor_pool.FindMessageTypeByName("google.protobuf.BoolValue"), nullptr); EXPECT_NE(descriptor_pool.FindMessageTypeByName("google.protobuf.BytesValue"), nullptr); EXPECT_NE( descriptor_pool.FindMessageTypeByName("google.protobuf.DoubleValue"), nullptr); EXPECT_NE(descriptor_pool.FindMessageTypeByName("google.protobuf.Duration"), nullptr); EXPECT_NE(descriptor_pool.FindMessageTypeByName("google.protobuf.FloatValue"), nullptr); EXPECT_NE(descriptor_pool.FindMessageTypeByName("google.protobuf.Int32Value"), nullptr); EXPECT_NE(descriptor_pool.FindMessageTypeByName("google.protobuf.Int64Value"), nullptr); EXPECT_NE(descriptor_pool.FindMessageTypeByName("google.protobuf.ListValue"), nullptr); EXPECT_NE( descriptor_pool.FindMessageTypeByName("google.protobuf.StringValue"), nullptr); EXPECT_NE(descriptor_pool.FindMessageTypeByName("google.protobuf.Struct"), nullptr); EXPECT_NE(descriptor_pool.FindMessageTypeByName("google.protobuf.Timestamp"), nullptr); EXPECT_NE( descriptor_pool.FindMessageTypeByName("google.protobuf.UInt32Value"), nullptr); EXPECT_NE( descriptor_pool.FindMessageTypeByName("google.protobuf.UInt64Value"), nullptr); EXPECT_NE(descriptor_pool.FindMessageTypeByName("google.protobuf.Value"), nullptr); EXPECT_NE(descriptor_pool.FindMessageTypeByName("google.protobuf.FieldMask"), nullptr); EXPECT_NE(descriptor_pool.FindMessageTypeByName("google.protobuf.Empty"), nullptr); } TEST(DescriptorPoolUtilsTest, AcceptsPreAddedStandardTypes) { google::protobuf::DescriptorPool descriptor_pool; for (auto proto_name : std::vector<std::string>{ "google.protobuf.Any", "google.protobuf.BoolValue", "google.protobuf.BytesValue", "google.protobuf.DoubleValue", "google.protobuf.Duration", "google.protobuf.FloatValue", "google.protobuf.Int32Value", "google.protobuf.Int64Value", "google.protobuf.ListValue", "google.protobuf.StringValue", "google.protobuf.Struct", "google.protobuf.Timestamp", "google.protobuf.UInt32Value", "google.protobuf.UInt64Value", "google.protobuf.Value", "google.protobuf.FieldMask", "google.protobuf.Empty"}) { const google::protobuf::Descriptor* descriptor = google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( proto_name); ASSERT_NE(descriptor, nullptr); google::protobuf::FileDescriptorProto file_descriptor_proto; descriptor->file()->CopyTo(&file_descriptor_proto); ASSERT_NE(descriptor_pool.BuildFile(file_descriptor_proto), nullptr); } EXPECT_OK(AddStandardMessageTypesToDescriptorPool(descriptor_pool)); } TEST(DescriptorPoolUtilsTest, RejectsModifiedStandardType) { google::protobuf::DescriptorPool descriptor_pool; const google::protobuf::Descriptor* descriptor = google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.protobuf.Duration"); ASSERT_NE(descriptor, nullptr); google::protobuf::FileDescriptorProto file_descriptor_proto; descriptor->file()->CopyTo(&file_descriptor_proto); google::protobuf::FieldDescriptorProto seconds_desc_proto; google::protobuf::FieldDescriptorProto nanos_desc_proto; descriptor->FindFieldByName("seconds")->CopyTo(&seconds_desc_proto); descriptor->FindFieldByName("nanos")->CopyTo(&nanos_desc_proto); nanos_desc_proto.set_name("millis"); file_descriptor_proto.mutable_message_type(0)->clear_field(); *file_descriptor_proto.mutable_message_type(0)->add_field() = seconds_desc_proto; *file_descriptor_proto.mutable_message_type(0)->add_field() = nanos_desc_proto; descriptor_pool.BuildFile(file_descriptor_proto); EXPECT_THAT( AddStandardMessageTypesToDescriptorPool(descriptor_pool), StatusIs(absl::StatusCode::kFailedPrecondition, HasSubstr("differs"))); } TEST(DescriptorPoolUtilsTest, GetStandardMessageTypesFileDescriptorSet) { google::protobuf::FileDescriptorSet fdset = GetStandardMessageTypesFileDescriptorSet(); std::vector<std::string> file_names; for (int i = 0; i < fdset.file_size(); ++i) { file_names.push_back(fdset.file(i).name()); } EXPECT_THAT( file_names, UnorderedElementsAre( "google/protobuf/any.proto", "google/protobuf/struct.proto", "google/protobuf/wrappers.proto", "google/protobuf/timestamp.proto", "google/protobuf/duration.proto", "google/protobuf/field_mask.proto", "google/protobuf/empty.proto")); } } }
357
#ifndef THIRD_PARTY_CEL_CPP_COMMON_TYPES_LIST_TYPE_H_ #define THIRD_PARTY_CEL_CPP_COMMON_TYPES_LIST_TYPE_H_ #include <ostream> #include <string> #include <utility> #include "absl/base/attributes.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "common/memory.h" #include "common/native_type.h" #include "common/type_kind.h" namespace cel { class Type; class TypeView; class ListType; class ListTypeView; namespace common_internal { struct ListTypeData; } class ListType final { public: using view_alternative_type = ListTypeView; static constexpr TypeKind kKind = TypeKind::kList; static constexpr absl::string_view kName = "list"; explicit ListType(ListTypeView other); ListType(MemoryManagerRef memory_manager, Type element); ListType(); ListType(const ListType&) = default; ListType(ListType&&) = default; ListType& operator=(const ListType&) = default; ListType& operator=(ListType&&) = default; constexpr TypeKind kind() const { return kKind; } constexpr absl::string_view name() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return kName; } std::string DebugString() const; absl::Span<const Type> parameters() const ABSL_ATTRIBUTE_LIFETIME_BOUND; void swap(ListType& other) noexcept { using std::swap; swap(data_, other.data_); } const Type& element() const ABSL_ATTRIBUTE_LIFETIME_BOUND; private: friend class ListTypeView; friend struct NativeTypeTraits<ListType>; Shared<const common_internal::ListTypeData> data_; }; inline void swap(ListType& lhs, ListType& rhs) noexcept { lhs.swap(rhs); } bool operator==(const ListType& lhs, const ListType& rhs); inline bool operator!=(const ListType& lhs, const ListType& rhs) { return !operator==(lhs, rhs); } template <typename H> H AbslHashValue(H state, const ListType& type); inline std::ostream& operator<<(std::ostream& out, const ListType& type) { return out << type.DebugString(); } template <> struct NativeTypeTraits<ListType> final { static bool SkipDestructor(const ListType& type) { return NativeType::SkipDestructor(type.data_); } }; class ListTypeView final { public: using alternative_type = ListType; static constexpr TypeKind kKind = ListType::kKind; static constexpr absl::string_view kName = ListType::kName; ListTypeView(const ListType& type ABSL_ATTRIBUTE_LIFETIME_BOUND) noexcept; ListTypeView& operator=(const ListType& type ABSL_ATTRIBUTE_LIFETIME_BOUND) { data_ = type.data_; return *this; } ListTypeView& operator=(ListType&&) = delete; ListTypeView(); ListTypeView(const ListTypeView&) = default; ListTypeView(ListTypeView&&) = default; ListTypeView& operator=(const ListTypeView&) = default; ListTypeView& operator=(ListTypeView&&) = default; constexpr TypeKind kind() const { return kKind; } constexpr absl::string_view name() const { return kName; } std::string DebugString() const; absl::Span<const Type> parameters() const; void swap(ListTypeView& other) noexcept { using std::swap; swap(data_, other.data_); } const Type& element() const; private: friend class ListType; SharedView<const common_internal::ListTypeData> data_; }; inline void swap(ListTypeView& lhs, ListTypeView& rhs) noexcept { lhs.swap(rhs); } bool operator==(ListTypeView lhs, ListTypeView rhs); inline bool operator!=(ListTypeView lhs, ListTypeView rhs) { return !operator==(lhs, rhs); } template <typename H> H AbslHashValue(H state, ListTypeView type); inline std::ostream& operator<<(std::ostream& out, ListTypeView type) { return out << type.DebugString(); } } #endif #include <string> #include "absl/strings/str_cat.h" #include "common/type.h" namespace cel { std::string ListType::DebugString() const { return absl::StrCat("list<", element().DebugString(), ">"); } std::string ListTypeView::DebugString() const { return absl::StrCat("list<", element().DebugString(), ">"); } }
#include <sstream> #include <string> #include "absl/hash/hash.h" #include "absl/types/optional.h" #include "common/casting.h" #include "common/memory.h" #include "common/memory_testing.h" #include "common/native_type.h" #include "common/type.h" #include "internal/testing.h" namespace cel { namespace { using testing::An; using testing::Ne; using testing::TestParamInfo; using testing::TestWithParam; TEST(ListType, Default) { ListType list_type; EXPECT_EQ(list_type.element(), DynType()); } TEST(ListTypeView, Default) { ListTypeView list_type; EXPECT_EQ(list_type.element(), DynType()); } class ListTypeTest : public common_internal::ThreadCompatibleMemoryTest<> {}; TEST_P(ListTypeTest, Kind) { EXPECT_EQ(ListType(memory_manager(), BoolType()).kind(), ListType::kKind); EXPECT_EQ(Type(ListType(memory_manager(), BoolType())).kind(), ListType::kKind); } TEST_P(ListTypeTest, Name) { EXPECT_EQ(ListType(memory_manager(), BoolType()).name(), ListType::kName); EXPECT_EQ(Type(ListType(memory_manager(), BoolType())).name(), ListType::kName); } TEST_P(ListTypeTest, DebugString) { { std::ostringstream out; out << ListType(memory_manager(), BoolType()); EXPECT_EQ(out.str(), "list<bool>"); } { std::ostringstream out; out << Type(ListType(memory_manager(), BoolType())); EXPECT_EQ(out.str(), "list<bool>"); } } TEST_P(ListTypeTest, Hash) { EXPECT_EQ(absl::HashOf(ListType(memory_manager(), BoolType())), absl::HashOf(ListType(memory_manager(), BoolType()))); } TEST_P(ListTypeTest, Equal) { EXPECT_EQ(ListType(memory_manager(), BoolType()), ListType(memory_manager(), BoolType())); EXPECT_EQ(Type(ListType(memory_manager(), BoolType())), ListType(memory_manager(), BoolType())); EXPECT_EQ(ListType(memory_manager(), BoolType()), Type(ListType(memory_manager(), BoolType()))); EXPECT_EQ(Type(ListType(memory_manager(), BoolType())), Type(ListType(memory_manager(), BoolType()))); } TEST_P(ListTypeTest, NativeTypeId) { EXPECT_EQ(NativeTypeId::Of(ListType(memory_manager(), BoolType())), NativeTypeId::For<ListType>()); EXPECT_EQ(NativeTypeId::Of(Type(ListType(memory_manager(), BoolType()))), NativeTypeId::For<ListType>()); } TEST_P(ListTypeTest, InstanceOf) { EXPECT_TRUE(InstanceOf<ListType>(ListType(memory_manager(), BoolType()))); EXPECT_TRUE( InstanceOf<ListType>(Type(ListType(memory_manager(), BoolType())))); } TEST_P(ListTypeTest, Cast) { EXPECT_THAT(Cast<ListType>(ListType(memory_manager(), BoolType())), An<ListType>()); EXPECT_THAT(Cast<ListType>(Type(ListType(memory_manager(), BoolType()))), An<ListType>()); } TEST_P(ListTypeTest, As) { EXPECT_THAT(As<ListType>(ListType(memory_manager(), BoolType())), Ne(absl::nullopt)); EXPECT_THAT(As<ListType>(Type(ListType(memory_manager(), BoolType()))), Ne(absl::nullopt)); } INSTANTIATE_TEST_SUITE_P( ListTypeTest, ListTypeTest, ::testing::Values(MemoryManagement::kPooling, MemoryManagement::kReferenceCounting), ListTypeTest::ToString); class ListTypeViewTest : public common_internal::ThreadCompatibleMemoryTest<> { }; TEST_P(ListTypeViewTest, Kind) { auto type = ListType(memory_manager(), BoolType()); EXPECT_EQ(ListTypeView(type).kind(), ListTypeView::kKind); EXPECT_EQ(TypeView(ListTypeView(type)).kind(), ListTypeView::kKind); } TEST_P(ListTypeViewTest, Name) { auto type = ListType(memory_manager(), BoolType()); EXPECT_EQ(ListTypeView(type).name(), ListTypeView::kName); EXPECT_EQ(TypeView(ListTypeView(type)).name(), ListTypeView::kName); } TEST_P(ListTypeViewTest, DebugString) { auto type = ListType(memory_manager(), BoolType()); { std::ostringstream out; out << ListTypeView(type); EXPECT_EQ(out.str(), "list<bool>"); } { std::ostringstream out; out << TypeView(ListTypeView(type)); EXPECT_EQ(out.str(), "list<bool>"); } } TEST_P(ListTypeViewTest, Hash) { auto type = ListType(memory_manager(), BoolType()); EXPECT_EQ(absl::HashOf(ListTypeView(type)), absl::HashOf(ListTypeView(type))); EXPECT_EQ(absl::HashOf(ListTypeView(type)), absl::HashOf(ListType(type))); } TEST_P(ListTypeViewTest, Equal) { auto type = ListType(memory_manager(), BoolType()); EXPECT_EQ(ListTypeView(type), ListTypeView(type)); EXPECT_EQ(TypeView(ListTypeView(type)), ListTypeView(type)); EXPECT_EQ(ListTypeView(type), TypeView(ListTypeView(type))); EXPECT_EQ(TypeView(ListTypeView(type)), TypeView(ListTypeView(type))); EXPECT_EQ(ListTypeView(type), ListType(type)); EXPECT_EQ(TypeView(ListTypeView(type)), ListType(type)); EXPECT_EQ(TypeView(ListTypeView(type)), Type(ListType(type))); EXPECT_EQ(ListType(type), ListTypeView(type)); EXPECT_EQ(ListType(type), ListTypeView(type)); EXPECT_EQ(ListType(type), TypeView(ListTypeView(type))); EXPECT_EQ(Type(ListType(type)), TypeView(ListTypeView(type))); EXPECT_EQ(ListTypeView(type), ListType(type)); } TEST_P(ListTypeViewTest, NativeTypeId) { auto type = ListType(memory_manager(), BoolType()); EXPECT_EQ(NativeTypeId::Of(ListTypeView(type)), NativeTypeId::For<ListTypeView>()); EXPECT_EQ(NativeTypeId::Of(TypeView(ListTypeView(type))), NativeTypeId::For<ListTypeView>()); } TEST_P(ListTypeViewTest, InstanceOf) { auto type = ListType(memory_manager(), BoolType()); EXPECT_TRUE(InstanceOf<ListTypeView>(ListTypeView(type))); EXPECT_TRUE(InstanceOf<ListTypeView>(TypeView(ListTypeView(type)))); } TEST_P(ListTypeViewTest, Cast) { auto type = ListType(memory_manager(), BoolType()); EXPECT_THAT(Cast<ListTypeView>(ListTypeView(type)), An<ListTypeView>()); EXPECT_THAT(Cast<ListTypeView>(TypeView(ListTypeView(type))), An<ListTypeView>()); } TEST_P(ListTypeViewTest, As) { auto type = ListType(memory_manager(), BoolType()); EXPECT_THAT(As<ListTypeView>(ListTypeView(type)), Ne(absl::nullopt)); EXPECT_THAT(As<ListTypeView>(TypeView(ListTypeView(type))), Ne(absl::nullopt)); } INSTANTIATE_TEST_SUITE_P( ListTypeViewTest, ListTypeViewTest, ::testing::Values(MemoryManagement::kPooling, MemoryManagement::kReferenceCounting), ListTypeViewTest::ToString); } }
358
#ifndef TENSORFLOW_CC_EXPERIMENTAL_LIBTF_MODULE_H_ #define TENSORFLOW_CC_EXPERIMENTAL_LIBTF_MODULE_H_ #include "tensorflow/cc/experimental/libexport/load.h" #include "tensorflow/cc/experimental/libtf/runtime/runtime.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/protobuf/saved_object_graph.pb.h" namespace tf { namespace libtf { namespace impl { tensorflow::StatusOr<Handle> BuildSavedUserObject( tensorflow::SavedObject saved_object_proto); tensorflow::StatusOr<std::vector<Handle>> BuildObjects( tensorflow::libexport::TFPackage& tf_package); tensorflow::StatusOr<Handle> BuildProgram( runtime::Runtime runtime, tensorflow::libexport::TFPackage& tf_package); } } } #endif #include "tensorflow/cc/experimental/libtf/module.h" #include <string> #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/protobuf/saved_object_graph.pb.h" namespace tf { namespace libtf { namespace impl { using tensorflow::libexport::TFPackage; using tf::libtf::runtime::Runtime; tensorflow::StatusOr<std::vector<Handle>> BuildObjects(TFPackage& tf_package) { std::vector<Handle> objects; const tensorflow::SavedObjectGraph object_graph = tf_package.GetObjectGraph(); for (auto& node : object_graph.nodes()) { if (node.kind_case() == tensorflow::SavedObject::kUserObject) { tensorflow::StatusOr<Handle> result = BuildSavedUserObject(node); if (result.ok()) { objects.push_back(*result); } else { return result.status(); } } } return objects; } tensorflow::StatusOr<Handle> BuildSavedUserObject( tensorflow::SavedObject saved_object_proto) { if (saved_object_proto.kind_case() != tensorflow::SavedObject::kUserObject) { return tensorflow::errors::InvalidArgument("Not a UserObject."); } std::string identifier = saved_object_proto.user_object().identifier(); if (identifier == "trackable_list_wrapper") { tf::libtf::List user_list; return user_list; } if (identifier == "trackable_dict_wrapper") { tf::libtf::Dictionary user_dict; return user_dict; } if (identifier == "signature_map") { tf::libtf::Dictionary signature_map; return signature_map; } if (identifier == "_generic_user_object") { tf::libtf::Dictionary user_object; return user_object; } return tensorflow::errors::Unimplemented(absl::StrCat( "UserObject with identifier '", identifier, "' not implemented.")); } tensorflow::Status RegisterConcreteFunctions(Runtime runtime, TFPackage tf_package) { return tensorflow::errors::Unimplemented("Not implemented."); } tensorflow::Status InitializeVariables(Runtime runtime, TFPackage tf_package, std::vector<Handle> objects) { return tensorflow::errors::Unimplemented("Not implemented."); } tensorflow::Status SetupPolymorphicFunctions(Runtime runtime, TFPackage tf_package, std::vector<Handle> objects) { return tensorflow::errors::Unimplemented("Not implemented."); } tensorflow::Status SetupFunctionCaptures(Runtime runtime, TFPackage tf_package, std::vector<Handle> objects) { return tensorflow::errors::Unimplemented("Not implemented."); } tensorflow::StatusOr<Handle> BuildObjectHierarchy(TFPackage tf_package, std::vector<Handle> objects) { return tensorflow::errors::Unimplemented("Not implemented."); } tensorflow::StatusOr<Handle> BuildProgram(Runtime runtime, TFPackage& tf_package) { return tensorflow::errors::Unimplemented("Not implemented."); } } } }
#include "tensorflow/cc/experimental/libtf/module.h" #include <string> #include "tensorflow/cc/experimental/libtf/runtime/core/core.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tensorflow/core/protobuf/saved_object_graph.pb.h" namespace tf { namespace libtf { namespace impl { using ::tensorflow::libexport::TFPackage; using ::tensorflow::testing::StatusIs; using ::tf::libtf::runtime::Runtime; TEST(ModuleTest, TestStubbedFunctions) { Runtime runtime = runtime::core::Runtime(); TFPackage tf_package; tensorflow::StatusOr<Handle> result = BuildProgram(runtime, tf_package); ASSERT_FALSE(result.status().ok()); } TEST(ModuleTest, TestBuildObjectsDataStructures) { const std::string path = tensorflow::GetDataDependencyFilepath( "tensorflow/cc/experimental/libtf/tests/testdata/data-structure-model"); TF_ASSERT_OK_AND_ASSIGN(TFPackage tf_package, TFPackage::Load(path)); TF_ASSERT_OK_AND_ASSIGN(std::vector<Handle> objects, BuildObjects(tf_package)); EXPECT_EQ(objects.size(), 7); TF_ASSERT_OK_AND_ASSIGN(tf::libtf::Dictionary node, Cast<tf::libtf::Dictionary>(objects.front())); for (unsigned int i = 1; i < 4; i++) { TF_ASSERT_OK_AND_ASSIGN(tf::libtf::List node, Cast<tf::libtf::List>(objects.at(i))); } for (unsigned int i = 4; i < 7; i++) { TF_ASSERT_OK_AND_ASSIGN(tf::libtf::Dictionary node, Cast<tf::libtf::Dictionary>(objects.at(i))); } } TEST(ModuleTest, TestBuildEmptyList) { tensorflow::SavedObject saved_object_proto; const std::string pb_txt = R"pb( user_object { identifier: "trackable_list_wrapper" version { producer: 1 min_consumer: 1 } } )pb"; ASSERT_TRUE(::tensorflow::protobuf::TextFormat::ParseFromString( pb_txt, &saved_object_proto)); TF_ASSERT_OK_AND_ASSIGN(Handle result, BuildSavedUserObject(saved_object_proto)); EXPECT_EQ(Cast<tf::libtf::List>(result)->size(), 0); } TEST(ModuleTest, TestBuildEmptyDict) { tensorflow::SavedObject saved_object_proto; const std::string pb_txt = R"pb( user_object { identifier: "trackable_dict_wrapper" version { producer: 1 min_consumer: 1 } } )pb"; ASSERT_TRUE(::tensorflow::protobuf::TextFormat::ParseFromString( pb_txt, &saved_object_proto)); TF_ASSERT_OK_AND_ASSIGN(Handle result, BuildSavedUserObject(saved_object_proto)); EXPECT_EQ(Cast<tf::libtf::Dictionary>(result)->size(), 0); } TEST(ModuleTest, TestBuildSignatureMap) { tensorflow::SavedObject saved_object_proto; const std::string pb_txt = R"pb( user_object { identifier: "signature_map" version { producer: 1 min_consumer: 1 } } )pb"; ASSERT_TRUE(::tensorflow::protobuf::TextFormat::ParseFromString( pb_txt, &saved_object_proto)); TF_ASSERT_OK_AND_ASSIGN(Handle result, BuildSavedUserObject(saved_object_proto)); EXPECT_EQ(Cast<tf::libtf::Dictionary>(result)->size(), 0); } TEST(ModuleTest, TestUnimplementedUserObject) { tensorflow::SavedObject saved_object_proto; const std::string pb_txt = R"pb( user_object { identifier: "foo" version { producer: 1 min_consumer: 1 } } )pb"; ASSERT_TRUE(::tensorflow::protobuf::TextFormat::ParseFromString( pb_txt, &saved_object_proto)); EXPECT_THAT( BuildSavedUserObject(saved_object_proto), StatusIs(tensorflow::error::UNIMPLEMENTED, ::testing::HasSubstr("foo"))); } } } }
359
#ifndef TENSORFLOW_CORE_PLATFORM_TENSOR_CODING_H_ #define TENSORFLOW_CORE_PLATFORM_TENSOR_CODING_H_ #include <string> #include "tensorflow/core/platform/platform.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/refcount.h" #include "tensorflow/core/platform/stringpiece.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace port { void AssignRefCounted(StringPiece src, core::RefCounted* obj, std::string* out); inline void CopyToArray(const std::string& src, char* dst) { memcpy(dst, src.data(), src.size()); } inline void CopySubrangeToArray(const std::string& src, size_t pos, size_t n, char* dst) { if (pos >= src.size()) return; memcpy(dst, src.data() + pos, std::min(n, src.size() - pos)); } void EncodeStringList(const tstring* strings, int64_t n, std::string* out); bool DecodeStringList(const std::string& src, tstring* strings, int64_t n); void CopyFromArray(std::string* s, const char* base, size_t bytes); class StringListEncoder { public: virtual ~StringListEncoder() = default; virtual void Append(const protobuf::MessageLite& m) = 0; virtual void Append(const std::string& s) = 0; virtual void Finalize() = 0; }; class StringListDecoder { public: virtual ~StringListDecoder() = default; virtual bool ReadSizes(std::vector<uint32>* sizes) = 0; virtual const char* Data(uint32 size) = 0; }; std::unique_ptr<StringListEncoder> NewStringListEncoder(string* out); std::unique_ptr<StringListDecoder> NewStringListDecoder(const string& in); #if defined(TENSORFLOW_PROTOBUF_USES_CORD) void AssignRefCounted(StringPiece src, core::RefCounted* obj, absl::Cord* out); inline void CopyToArray(const absl::Cord& src, char* dst) { src.CopyToArray(dst); } inline void CopySubrangeToArray(const absl::Cord& src, int64_t pos, int64_t n, char* dst) { src.Subcord(pos, n).CopyToArray(dst); } void EncodeStringList(const tstring* strings, int64_t n, absl::Cord* out); bool DecodeStringList(const absl::Cord& src, std::string* strings, int64_t n); bool DecodeStringList(const absl::Cord& src, tstring* strings, int64_t n); void CopyFromArray(absl::Cord* c, const char* base, size_t bytes); std::unique_ptr<StringListEncoder> NewStringListEncoder(absl::Cord* out); std::unique_ptr<StringListDecoder> NewStringListDecoder(const absl::Cord& in); #endif } } #endif #include "tensorflow/core/platform/tensor_coding.h" #include <vector> #include "tensorflow/core/platform/coding.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/strcat.h" #include "tensorflow/core/platform/stringpiece.h" #if defined(TENSORFLOW_PROTOBUF_USES_CORD) #include "strings/cord_varint.h" #endif namespace tensorflow { namespace port { void AssignRefCounted(StringPiece src, core::RefCounted* obj, string* out) { out->assign(src.data(), src.size()); } void EncodeStringList(const tstring* strings, int64_t n, string* out) { out->clear(); for (int i = 0; i < n; ++i) { core::PutVarint32(out, strings[i].size()); } for (int i = 0; i < n; ++i) { out->append(strings[i]); } } bool DecodeStringList(const string& src, tstring* strings, int64_t n) { std::vector<uint32> sizes(n); StringPiece reader(src); int64_t tot = 0; for (auto& v : sizes) { if (!core::GetVarint32(&reader, &v)) return false; tot += v; } if (tot != static_cast<int64_t>(reader.size())) { return false; } tstring* data = strings; for (int64_t i = 0; i < n; ++i, ++data) { auto size = sizes[i]; if (size > reader.size()) { return false; } data->assign(reader.data(), size); reader.remove_prefix(size); } return true; } void CopyFromArray(string* s, const char* base, size_t bytes) { s->assign(base, bytes); } class StringListEncoderImpl : public StringListEncoder { public: explicit StringListEncoderImpl(string* out) : out_(out) {} ~StringListEncoderImpl() override = default; void Append(const protobuf::MessageLite& m) override { core::PutVarint32(out_, m.ByteSizeLong()); tensorflow::string serialized_message; m.AppendToString(&serialized_message); strings::StrAppend(&rest_, serialized_message); } void Append(const string& s) override { core::PutVarint32(out_, s.length()); strings::StrAppend(&rest_, s); } void Finalize() override { strings::StrAppend(out_, rest_); } private: string* out_; string rest_; }; class StringListDecoderImpl : public StringListDecoder { public: explicit StringListDecoderImpl(const string& in) : reader_(in) {} ~StringListDecoderImpl() override = default; bool ReadSizes(std::vector<uint32>* sizes) override { int64_t total = 0; for (auto& size : *sizes) { if (!core::GetVarint32(&reader_, &size)) return false; total += size; } if (total != static_cast<int64_t>(reader_.size())) { return false; } return true; } const char* Data(uint32 size) override { const char* data = reader_.data(); reader_.remove_prefix(size); return data; } private: StringPiece reader_; }; std::unique_ptr<StringListEncoder> NewStringListEncoder(string* out) { return std::unique_ptr<StringListEncoder>(new StringListEncoderImpl(out)); } std::unique_ptr<StringListDecoder> NewStringListDecoder(const string& in) { return std::unique_ptr<StringListDecoder>(new StringListDecoderImpl(in)); } #if defined(TENSORFLOW_PROTOBUF_USES_CORD) void AssignRefCounted(StringPiece src, core::RefCounted* obj, absl::Cord* out) { obj->Ref(); *out = absl::MakeCordFromExternal(src, [obj] { obj->Unref(); }); } void EncodeStringList(const tstring* strings, int64_t n, absl::Cord* out) { out->Clear(); for (int i = 0; i < n; ++i) { ::strings::CordAppendVarint(strings[i].size(), out); } for (int i = 0; i < n; ++i) { out->Append(strings[i]); } } bool DecodeStringList(const absl::Cord& src, string* strings, int64_t n) { std::vector<uint32> sizes(n); CordReader reader(src); int64_t tot = 0; for (auto& v : sizes) { if (!::strings::CordReaderReadVarint(&reader, &v)) return false; tot += v; } if (tot != reader.Available()) { return false; } string* data = strings; for (int i = 0; i < n; ++i, ++data) { auto size = sizes[i]; if (size > reader.Available()) { return false; } gtl::STLStringResizeUninitialized(data, size); reader.ReadN(size, gtl::string_as_array(data)); } return true; } bool DecodeStringList(const absl::Cord& src, tstring* strings, int64_t n) { std::vector<uint32> sizes(n); CordReader reader(src); int64_t tot = 0; for (auto& v : sizes) { if (!::strings::CordReaderReadVarint(&reader, &v)) return false; tot += v; } if (tot != reader.Available()) { return false; } tstring* data = strings; for (int i = 0; i < n; ++i, ++data) { auto size = sizes[i]; if (size > reader.Available()) { return false; } data->resize_uninitialized(size); reader.ReadN(size, data->data()); } return true; } void CopyFromArray(absl::Cord* c, const char* base, size_t bytes) { *c = absl::string_view(base, bytes); } class CordStringListEncoderImpl : public StringListEncoder { public: explicit CordStringListEncoderImpl(absl::Cord* out) : out_(out) {} ~CordStringListEncoderImpl() override = default; void Append(const protobuf::MessageLite& m) override { ::strings::CordAppendVarint(m.ByteSizeLong(), out_); m.AppendToString(&rest_); } void Append(const string& s) override { ::strings::CordAppendVarint(s.length(), out_); rest_.append(s.data(), s.size()); } void Finalize() override { out_->Append(rest_); } private: absl::Cord* out_; string rest_; }; class CordStringListDecoderImpl : public StringListDecoder { public: explicit CordStringListDecoderImpl(const absl::Cord& in) : reader_(in) {} ~CordStringListDecoderImpl() override = default; bool ReadSizes(std::vector<uint32>* sizes) override { int64_t total = 0; for (auto& size : *sizes) { if (!::strings::CordReaderReadVarint(&reader_, &size)) return false; total += size; } if (total != static_cast<int64_t>(reader_.Available())) { return false; } return true; } const char* Data(uint32 size) override { tmp_.resize(size); reader_.ReadN(size, tmp_.data()); return tmp_.data(); } private: CordReader reader_; std::vector<char> tmp_; }; std::unique_ptr<StringListEncoder> NewStringListEncoder(absl::Cord* out) { return std::unique_ptr<StringListEncoder>(new CordStringListEncoderImpl(out)); } std::unique_ptr<StringListDecoder> NewStringListDecoder(const absl::Cord& in) { return std::unique_ptr<StringListDecoder>(new CordStringListDecoderImpl(in)); } #endif } }
#include "tensorflow/core/distributed_runtime/tensor_coding.h" #include "tensorflow/core/framework/device_attributes.pb.h" #include "tensorflow/core/framework/device_base.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/gtl/inlined_vector.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/protobuf/worker.pb.h" #include "tensorflow/core/public/session_options.h" namespace tensorflow { class DummyDevice : public DeviceBase { public: explicit DummyDevice(Env* env) : DeviceBase(env) { attr_.set_device_type("CPU"); } const DeviceAttributes& attributes() const override { return attr_; } Allocator* GetAllocator(AllocatorAttributes attr) override { return cpu_allocator(); } private: DeviceAttributes attr_; }; class StringSource : public TensorResponse::Source { public: explicit StringSource(const string* s, int block_size) : s_(s), stream_(nullptr), block_size_(block_size) {} ~StringSource() override { DeleteStream(); } protobuf::io::ZeroCopyInputStream* contents() override { DeleteStream(); stream_ = new (&space_) protobuf::io::ArrayInputStream(s_->data(), s_->size(), block_size_); return stream_; } void DeleteStream() { if (stream_) { stream_->~ArrayInputStream(); } } private: const string* s_; protobuf::io::ArrayInputStream* stream_; char space_[sizeof(protobuf::io::ArrayInputStream)]; int block_size_; }; class TensorResponseTest : public ::testing::Test { public: void Validate(const Tensor& src, bool is_dead, bool use_tensor_content) { RecvTensorResponse proto; proto.set_is_dead(is_dead); proto.set_send_start_micros(123456); if (use_tensor_content) { src.AsProtoTensorContent(proto.mutable_tensor()); } else { src.AsProtoField(proto.mutable_tensor()); } string encoded; proto.AppendToString(&encoded); StringSource source(&encoded, 1024); TensorResponse response; DummyDevice cpu_device(Env::Default()); response.InitAlloc(&cpu_device, AllocatorAttributes()); for (int i = 0; i < 2; i++) { Status s = response.ParseFrom(&source); EXPECT_TRUE(s.ok()); const RecvTensorResponse& meta = response.metadata(); EXPECT_EQ(meta.is_dead(), is_dead); EXPECT_EQ(meta.send_start_micros(), 123456); const Tensor& result = response.tensor(); EXPECT_EQ(result.dtype(), src.dtype()); EXPECT_EQ(result.shape().DebugString(), src.shape().DebugString()); EXPECT_EQ(result.DebugString(), src.DebugString()); } } template <typename T> void DoTest(DataType dt) { gtl::InlinedVector<T, 4> v; LOG(ERROR) << "DT: " << static_cast<int>(dt); for (int elems = 0; elems <= 10000; elems++) { if (elems < 100 || (elems % 1000 == 0)) { Tensor a(dt, TensorShape({1, static_cast<int64_t>(v.size())})); test::FillValues<T>(&a, v); Validate(a, (elems == 0), true); } v.push_back(static_cast<T>(elems)); } } void DoTestForStrings(DataType dt) { gtl::InlinedVector<tstring, 4> v; LOG(ERROR) << "DT: string"; for (int elems = 0; elems <= 10000; elems++) { if (elems < 100 || (elems % 1000 == 0)) { Tensor a(dt, TensorShape({1, static_cast<int64_t>(v.size())})); test::FillValues<tstring>(&a, v); Validate(a, (elems == 0), true); } v.push_back(strings::StrCat("This is string ", elems)); } } }; TEST_F(TensorResponseTest, Simple) { DoTest<float>(DT_FLOAT); DoTest<double>(DT_DOUBLE); DoTest<int32>(DT_INT32); DoTest<uint16>(DT_UINT16); DoTest<uint8>(DT_UINT8); DoTest<int16>(DT_INT16); DoTest<int8>(DT_INT8); DoTest<complex64>(DT_COMPLEX64); DoTest<complex128>(DT_COMPLEX128); DoTest<int64_t>(DT_INT64); DoTest<bool>(DT_BOOL); DoTest<qint8>(DT_QINT8); DoTest<quint8>(DT_QUINT8); DoTest<qint16>(DT_QINT16); DoTest<quint16>(DT_QUINT16); DoTest<qint32>(DT_QINT32); DoTest<bfloat16>(DT_BFLOAT16); DoTest<Eigen::half>(DT_HALF); } TEST_F(TensorResponseTest, StringTensor) { DoTestForStrings(DT_STRING); } string MakeFloatTensorTestCase(int num_elems) { std::vector<int8> v(num_elems); for (int i = 0; i < num_elems; i++) { v[i] = i % 10; } Tensor src(DT_INT8, TensorShape({1, static_cast<int64_t>(v.size())})); test::FillValues<int8>(&src, v); RecvTensorResponse proto; proto.set_is_dead(false); proto.set_send_start_micros(123456); src.AsProtoTensorContent(proto.mutable_tensor()); string encoded; proto.AppendToString(&encoded); return encoded; } static void BM_TensorResponse(::testing::benchmark::State& state) { const int arg = state.range(0); string encoded = MakeFloatTensorTestCase(arg); DummyDevice cpu_device(Env::Default()); size_t bytes = 0; for (auto i : state) { TensorResponse response; response.InitAlloc(&cpu_device, AllocatorAttributes()); StringSource source(&encoded, -1); Status s = response.ParseFrom(&source); bytes = response.tensor().TotalBytes(); } state.SetLabel(strings::StrCat("Bytes: ", bytes)); } BENCHMARK(BM_TensorResponse)->Arg(0)->Arg(1000)->Arg(100000); static void BM_TensorViaTensorProto(::testing::benchmark::State& state) { const int arg = state.range(0); std::string encoded = MakeFloatTensorTestCase(arg); size_t bytes = 0; for (auto s : state) { RecvTensorResponse r; r.ParseFromString(encoded); Tensor t; CHECK(t.FromProto(r.tensor())); bytes = t.TotalBytes(); } state.SetLabel(strings::StrCat("Bytes: ", bytes)); } BENCHMARK(BM_TensorViaTensorProto)->Arg(0)->Arg(1000)->Arg(100000); }
360
#ifndef TENSORFLOW_CORE_GRAPPLER_OPTIMIZERS_DATA_SHUFFLE_AND_REPEAT_FUSION_H_ #define TENSORFLOW_CORE_GRAPPLER_OPTIMIZERS_DATA_SHUFFLE_AND_REPEAT_FUSION_H_ #include "tensorflow/core/grappler/optimizers/data/optimizer_base.h" namespace tensorflow { namespace grappler { class ShuffleAndRepeatFusion : public TFDataOptimizerBase { public: ShuffleAndRepeatFusion() = default; ~ShuffleAndRepeatFusion() override = default; string name() const override { return "shuffle_and_repeat_fusion"; }; bool UsesFunctionLibrary() const override { return false; } Status Init( const tensorflow::RewriterConfig_CustomGraphOptimizer* config) override { return absl::OkStatus(); } Status OptimizeAndCollectStats(Cluster* cluster, const GrapplerItem& item, GraphDef* output, OptimizationStats* stats) override; }; } } #endif #include "tensorflow/core/grappler/optimizers/data/shuffle_and_repeat_fusion.h" #include "absl/container/flat_hash_set.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/strcat.h" namespace tensorflow { namespace grappler { namespace { constexpr char kShuffleDataset[] = "ShuffleDataset"; constexpr char kShuffleDatasetV2[] = "ShuffleDatasetV2"; constexpr char kShuffleDatasetV3[] = "ShuffleDatasetV3"; constexpr char kRepeatDataset[] = "RepeatDataset"; constexpr char kShuffleAndRepeatDataset[] = "ShuffleAndRepeatDataset"; constexpr char kShuffleAndRepeatDatasetV2[] = "ShuffleAndRepeatDatasetV2"; constexpr char kReshuffleEachIteration[] = "reshuffle_each_iteration"; Status FuseShuffleV1AndRepeat(const NodeDef& shuffle_node, const NodeDef& repeat_node, MutableGraphView* graph, GraphDef* output, NodeDef* fused_node) { fused_node->set_op(kShuffleAndRepeatDataset); graph_utils::SetUniqueGraphNodeName(kShuffleAndRepeatDataset, output, fused_node); fused_node->add_input(shuffle_node.input(0)); fused_node->add_input(shuffle_node.input(1)); fused_node->add_input(shuffle_node.input(2)); fused_node->add_input(shuffle_node.input(3)); fused_node->add_input(repeat_node.input(1)); graph_utils::CopyShapesAndTypesAttrs(shuffle_node, fused_node); graph_utils::CopyAttribute(kReshuffleEachIteration, shuffle_node, fused_node); graph_utils::MaybeSetFusedMetadata(shuffle_node, repeat_node, fused_node); return absl::OkStatus(); } Status FuseShuffleV2AndRepeat(const NodeDef& shuffle_node, const NodeDef& repeat_node, MutableGraphView* graph, GraphDef* output, NodeDef* fused_node) { fused_node->set_op(kShuffleAndRepeatDatasetV2); graph_utils::SetUniqueGraphNodeName(kShuffleAndRepeatDatasetV2, output, fused_node); NodeDef zero_node = *graph_utils::AddScalarConstNode<int64_t>(0, graph); fused_node->add_input(shuffle_node.input(0)); fused_node->add_input(shuffle_node.input(1)); fused_node->add_input(zero_node.name()); fused_node->add_input(zero_node.name()); fused_node->add_input(repeat_node.input(1)); fused_node->add_input(shuffle_node.input(2)); graph_utils::CopyShapesAndTypesAttrs(shuffle_node, fused_node); (*fused_node->mutable_attr())[kReshuffleEachIteration].set_b(true); graph_utils::MaybeSetFusedMetadata(shuffle_node, repeat_node, fused_node); return absl::OkStatus(); } Status FuseShuffleV3AndRepeat(const NodeDef& shuffle_node, const NodeDef& repeat_node, MutableGraphView* graph, GraphDef* output, NodeDef* fused_node) { fused_node->set_op(kShuffleAndRepeatDatasetV2); graph_utils::SetUniqueGraphNodeName(kShuffleAndRepeatDataset, output, fused_node); fused_node->add_input(shuffle_node.input(0)); fused_node->add_input(shuffle_node.input(1)); fused_node->add_input(shuffle_node.input(2)); fused_node->add_input(shuffle_node.input(3)); fused_node->add_input(repeat_node.input(1)); fused_node->add_input(shuffle_node.input(4)); graph_utils::CopyShapesAndTypesAttrs(shuffle_node, fused_node); graph_utils::CopyAttribute(kReshuffleEachIteration, shuffle_node, fused_node); graph_utils::MaybeSetFusedMetadata(shuffle_node, repeat_node, fused_node); return absl::OkStatus(); } } Status ShuffleAndRepeatFusion::OptimizeAndCollectStats( Cluster* cluster, const GrapplerItem& item, GraphDef* output, OptimizationStats* stats) { *output = item.graph; MutableGraphView graph(output); absl::flat_hash_set<string> nodes_to_delete; for (const NodeDef& repeat_node : item.graph.node()) { if (repeat_node.op() != kRepeatDataset) { continue; } const NodeDef& shuffle_node = *graph_utils::GetInputNode(repeat_node, graph); NodeDef fused_node; if (shuffle_node.op() == kShuffleDataset) { TF_RETURN_IF_ERROR(FuseShuffleV1AndRepeat(shuffle_node, repeat_node, &graph, output, &fused_node)); } else if (shuffle_node.op() == kShuffleDatasetV2) { TF_RETURN_IF_ERROR(FuseShuffleV2AndRepeat(shuffle_node, repeat_node, &graph, output, &fused_node)); } else if (shuffle_node.op() == kShuffleDatasetV3) { TF_RETURN_IF_ERROR(FuseShuffleV3AndRepeat(shuffle_node, repeat_node, &graph, output, &fused_node)); } else { continue; } NodeDef& shuffle_and_repeat_node = *graph.AddNode(std::move(fused_node)); TF_RETURN_IF_ERROR(graph.UpdateFanouts(repeat_node.name(), shuffle_and_repeat_node.name())); TF_RETURN_IF_ERROR(graph.UpdateFanouts(shuffle_node.name(), shuffle_and_repeat_node.name())); const auto nodes_to_preserve = item.NodesToPreserve(); if (nodes_to_preserve.find(shuffle_node.name()) == nodes_to_preserve.end() && nodes_to_preserve.find(repeat_node.name()) == nodes_to_preserve.end()) { nodes_to_delete.insert(shuffle_node.name()); nodes_to_delete.insert(repeat_node.name()); } stats->num_changes++; } TF_RETURN_IF_ERROR(graph.DeleteNodes(nodes_to_delete)); return absl::OkStatus(); } REGISTER_GRAPH_OPTIMIZER_AS(ShuffleAndRepeatFusion, "shuffle_and_repeat_fusion"); } }
#include "tensorflow/core/grappler/optimizers/data/shuffle_and_repeat_fusion.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { constexpr char kOutputShapes[] = "output_shapes"; constexpr char kOutputTypes[] = "output_types"; constexpr char kReshuffleEachIteration[] = "reshuffle_each_iteration"; TEST(ShuffleAndRepeatFusionTest, FuseShuffleV1AndRepeat) { GrapplerItem item; MutableGraphView graph(&item.graph); std::vector<std::pair<string, AttrValue>> common_attrs(2); AttrValue shapes_attr; SetAttrValue(kOutputShapes, &shapes_attr); common_attrs[0] = std::make_pair(kOutputShapes, shapes_attr); AttrValue types_attr; SetAttrValue(kOutputTypes, &types_attr); common_attrs[1] = std::make_pair(kOutputTypes, types_attr); NodeDef *start_node = graph_utils::AddScalarConstNode<int64_t>(0, &graph); NodeDef *stop_node = graph_utils::AddScalarConstNode<int64_t>(10, &graph); NodeDef *step_node = graph_utils::AddScalarConstNode<int64_t>(1, &graph); std::vector<string> range_inputs(3); range_inputs[0] = start_node->name(); range_inputs[1] = stop_node->name(); range_inputs[2] = step_node->name(); NodeDef *range_node = graph_utils::AddNode("", "RangeDataset", range_inputs, common_attrs, &graph); NodeDef *buffer_size_node = graph_utils::AddScalarConstNode<int64_t>(128, &graph); NodeDef *seed_node = graph_utils::AddScalarConstNode<int64_t>(-1, &graph); NodeDef *seed2_node = graph_utils::AddScalarConstNode<int64_t>(-1, &graph); std::vector<string> shuffle_inputs(4); shuffle_inputs[0] = range_node->name(); shuffle_inputs[1] = buffer_size_node->name(); shuffle_inputs[2] = seed_node->name(); shuffle_inputs[3] = seed2_node->name(); NodeDef *shuffle_node = graph_utils::AddNode( "", "ShuffleDataset", shuffle_inputs, common_attrs, &graph); (*shuffle_node->mutable_attr())[kReshuffleEachIteration].set_b(true); NodeDef *count_node = graph_utils::AddScalarConstNode<int64_t>(-1, &graph); std::vector<string> repeat_inputs(2); repeat_inputs[0] = shuffle_node->name(); repeat_inputs[1] = count_node->name(); NodeDef *repeat_node = graph_utils::AddNode( "", "RepeatDataset", repeat_inputs, common_attrs, &graph); ShuffleAndRepeatFusion optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_FALSE( graph_utils::ContainsGraphNodeWithName(shuffle_node->name(), output)); EXPECT_FALSE( graph_utils::ContainsGraphNodeWithName(repeat_node->name(), output)); EXPECT_TRUE( graph_utils::ContainsNodeWithOp("ShuffleAndRepeatDataset", output)); NodeDef shuffle_and_repeat_node = output.node( graph_utils::FindGraphNodeWithOp("ShuffleAndRepeatDataset", output)); EXPECT_EQ(shuffle_and_repeat_node.input_size(), 5); EXPECT_EQ(shuffle_and_repeat_node.input(0), shuffle_node->input(0)); EXPECT_EQ(shuffle_and_repeat_node.input(1), shuffle_node->input(1)); EXPECT_EQ(shuffle_and_repeat_node.input(2), shuffle_node->input(2)); EXPECT_EQ(shuffle_and_repeat_node.input(3), shuffle_node->input(3)); EXPECT_EQ(shuffle_and_repeat_node.input(4), repeat_node->input(1)); for (const auto &attr : {kOutputShapes, kOutputTypes, kReshuffleEachIteration}) { EXPECT_TRUE(AreAttrValuesEqual(shuffle_and_repeat_node.attr().at(attr), shuffle_node->attr().at(attr))); } } TEST(ShuffleAndRepeatFusionTest, FuseShuffleV2AndRepeat) { GrapplerItem item; MutableGraphView graph(&item.graph); std::vector<std::pair<string, AttrValue>> common_attrs(2); AttrValue shapes_attr; SetAttrValue(kOutputShapes, &shapes_attr); common_attrs[0] = std::make_pair(kOutputShapes, shapes_attr); AttrValue types_attr; SetAttrValue(kOutputTypes, &types_attr); common_attrs[1] = std::make_pair(kOutputTypes, types_attr); NodeDef *start_node = graph_utils::AddScalarConstNode<int64_t>(0, &graph); NodeDef *stop_node = graph_utils::AddScalarConstNode<int64_t>(10, &graph); NodeDef *step_node = graph_utils::AddScalarConstNode<int64_t>(1, &graph); std::vector<string> range_inputs(3); range_inputs[0] = start_node->name(); range_inputs[1] = stop_node->name(); range_inputs[2] = step_node->name(); NodeDef *range_node = graph_utils::AddNode("", "RangeDataset", range_inputs, common_attrs, &graph); NodeDef *buffer_size_node = graph_utils::AddScalarConstNode<int64_t>(128, &graph); NodeDef *seed_generator_node = graph_utils::AddScalarConstNode<StringPiece>("dummy_resource", &graph); std::vector<string> shuffle_inputs(3); shuffle_inputs[0] = range_node->name(); shuffle_inputs[1] = buffer_size_node->name(); shuffle_inputs[2] = seed_generator_node->name(); NodeDef *shuffle_node = graph_utils::AddNode( "", "ShuffleDatasetV2", shuffle_inputs, common_attrs, &graph); NodeDef *count_node = graph_utils::AddScalarConstNode<int64_t>(-1, &graph); std::vector<string> repeat_inputs(2); repeat_inputs[0] = shuffle_node->name(); repeat_inputs[1] = count_node->name(); NodeDef *repeat_node = graph_utils::AddNode( "", "RepeatDataset", repeat_inputs, common_attrs, &graph); ShuffleAndRepeatFusion optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_FALSE( graph_utils::ContainsGraphNodeWithName(shuffle_node->name(), output)); EXPECT_FALSE( graph_utils::ContainsGraphNodeWithName(repeat_node->name(), output)); EXPECT_TRUE( graph_utils::ContainsNodeWithOp("ShuffleAndRepeatDatasetV2", output)); NodeDef shuffle_and_repeat_node = output.node( graph_utils::FindGraphNodeWithOp("ShuffleAndRepeatDatasetV2", output)); EXPECT_EQ(shuffle_and_repeat_node.input_size(), 6); EXPECT_EQ(shuffle_and_repeat_node.input(0), shuffle_node->input(0)); EXPECT_EQ(shuffle_and_repeat_node.input(1), shuffle_node->input(1)); EXPECT_EQ(shuffle_and_repeat_node.input(4), repeat_node->input(1)); EXPECT_EQ(shuffle_and_repeat_node.input(5), shuffle_node->input(2)); for (const auto &attr : {kOutputShapes, kOutputTypes}) { EXPECT_TRUE(AreAttrValuesEqual(shuffle_and_repeat_node.attr().at(attr), shuffle_node->attr().at(attr))); } EXPECT_TRUE(shuffle_and_repeat_node.attr().at(kReshuffleEachIteration).b()); } TEST(ShuffleAndRepeatFusionTest, FuseShuffleV3AndRepeat) { GrapplerItem item; MutableGraphView graph(&item.graph); std::vector<std::pair<string, AttrValue>> common_attrs(2); AttrValue shapes_attr; SetAttrValue(kOutputShapes, &shapes_attr); common_attrs[0] = std::make_pair(kOutputShapes, shapes_attr); AttrValue types_attr; SetAttrValue(kOutputTypes, &types_attr); common_attrs[1] = std::make_pair(kOutputTypes, types_attr); NodeDef *start_node = graph_utils::AddScalarConstNode<int64_t>(0, &graph); NodeDef *stop_node = graph_utils::AddScalarConstNode<int64_t>(10, &graph); NodeDef *step_node = graph_utils::AddScalarConstNode<int64_t>(1, &graph); std::vector<string> range_inputs(3); range_inputs[0] = start_node->name(); range_inputs[1] = stop_node->name(); range_inputs[2] = step_node->name(); NodeDef *range_node = graph_utils::AddNode("", "RangeDataset", range_inputs, common_attrs, &graph); NodeDef *buffer_size_node = graph_utils::AddScalarConstNode<int64_t>(128, &graph); NodeDef *seed_node = graph_utils::AddScalarConstNode<int64_t>(-1, &graph); NodeDef *seed2_node = graph_utils::AddScalarConstNode<int64_t>(-1, &graph); NodeDef *seed_generator_node = graph_utils::AddScalarConstNode<StringPiece>("dummy_resource", &graph); std::vector<string> shuffle_inputs(5); shuffle_inputs[0] = range_node->name(); shuffle_inputs[1] = buffer_size_node->name(); shuffle_inputs[2] = seed_node->name(); shuffle_inputs[3] = seed2_node->name(); shuffle_inputs[4] = seed_generator_node->name(); NodeDef *shuffle_node = graph_utils::AddNode( "", "ShuffleDatasetV3", shuffle_inputs, common_attrs, &graph); (*shuffle_node->mutable_attr())[kReshuffleEachIteration].set_b(true); NodeDef *count_node = graph_utils::AddScalarConstNode<int64_t>(-1, &graph); std::vector<string> repeat_inputs(2); repeat_inputs[0] = shuffle_node->name(); repeat_inputs[1] = count_node->name(); NodeDef *repeat_node = graph_utils::AddNode( "", "RepeatDataset", repeat_inputs, common_attrs, &graph); ShuffleAndRepeatFusion optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_FALSE( graph_utils::ContainsGraphNodeWithName(shuffle_node->name(), output)); EXPECT_FALSE( graph_utils::ContainsGraphNodeWithName(repeat_node->name(), output)); EXPECT_TRUE( graph_utils::ContainsNodeWithOp("ShuffleAndRepeatDatasetV2", output)); NodeDef shuffle_and_repeat_node = output.node( graph_utils::FindGraphNodeWithOp("ShuffleAndRepeatDatasetV2", output)); EXPECT_EQ(shuffle_and_repeat_node.input_size(), 6); EXPECT_EQ(shuffle_and_repeat_node.input(0), shuffle_node->input(0)); EXPECT_EQ(shuffle_and_repeat_node.input(1), shuffle_node->input(1)); EXPECT_EQ(shuffle_and_repeat_node.input(2), shuffle_node->input(2)); EXPECT_EQ(shuffle_and_repeat_node.input(3), shuffle_node->input(3)); EXPECT_EQ(shuffle_and_repeat_node.input(4), repeat_node->input(1)); EXPECT_EQ(shuffle_and_repeat_node.input(5), shuffle_node->input(4)); for (const auto &attr : {kOutputShapes, kOutputTypes, kReshuffleEachIteration}) { EXPECT_TRUE(AreAttrValuesEqual(shuffle_and_repeat_node.attr().at(attr), shuffle_node->attr().at(attr))); } } TEST(ShuffleAndRepeatFusionTest, NoChange) { GrapplerItem item; MutableGraphView graph(&item.graph); std::vector<std::pair<string, AttrValue>> common_attrs(2); AttrValue shapes_attr; SetAttrValue(kOutputShapes, &shapes_attr); common_attrs[0] = std::make_pair(kOutputShapes, shapes_attr); AttrValue types_attr; SetAttrValue(kOutputTypes, &types_attr); common_attrs[1] = std::make_pair(kOutputTypes, types_attr); NodeDef *start_node = graph_utils::AddScalarConstNode<int64_t>(0, &graph); NodeDef *stop_node = graph_utils::AddScalarConstNode<int64_t>(10, &graph); NodeDef *step_node = graph_utils::AddScalarConstNode<int64_t>(1, &graph); std::vector<string> range_inputs(3); range_inputs[0] = start_node->name(); range_inputs[1] = stop_node->name(); range_inputs[2] = step_node->name(); NodeDef *range_node = graph_utils::AddNode("", "RangeDataset", range_inputs, common_attrs, &graph); NodeDef *count_node = graph_utils::AddScalarConstNode<int64_t>(-1, &graph); std::vector<string> repeat_inputs(2); repeat_inputs[0] = range_node->name(); repeat_inputs[1] = count_node->name(); graph_utils::AddNode("", "RepeatDataset", repeat_inputs, common_attrs, &graph); ShuffleAndRepeatFusion optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_TRUE(graph_utils::Compare(*graph.graph(), output)); } } } }
361
#ifndef TENSORFLOW_COMPILER_JIT_XLA_PLATFORM_INFO_H_ #define TENSORFLOW_COMPILER_JIT_XLA_PLATFORM_INFO_H_ #include <memory> #include <optional> #include <string> #include "tensorflow/compiler/jit/device_compiler.h" #include "tensorflow/compiler/jit/pjrt_base_device.h" #include "tensorflow/compiler/jit/xla_device.h" #include "xla/stream_executor/integrations/tf_allocator_adapter.h" #include "tensorflow/core/framework/op_kernel.h" namespace tensorflow { class XlaPlatformInfo { public: XlaPlatformInfo() : device_type_("") {} XlaPlatformInfo(XlaPlatformInfo&&) = default; explicit XlaPlatformInfo( const DeviceType device_type, se::Platform::Id platform_id, const XlaDevice::Metadata* xla_device_metadata, const PjRtBaseDevice::Metadata* pjrt_device_metadata, std::shared_ptr<se::DeviceMemoryAllocator> device_allocator) : device_type_(device_type), platform_id_(platform_id), xla_device_metadata_(xla_device_metadata), pjrt_device_metadata_(pjrt_device_metadata), device_allocator_(device_allocator) {} XlaPlatformInfo& operator=(XlaPlatformInfo&& other) = default; bool UseMultipleStreams() const { return xla_device_metadata_ && xla_device_metadata_->UseMultipleStreams(); } std::shared_ptr<se::DeviceMemoryAllocator> custom_allocator() const { return device_allocator_; } DeviceType device_type() const { return device_type_; } se::Platform::Id platform_id() const { return platform_id_; } const XlaDevice::Metadata* xla_device_metadata() const { return xla_device_metadata_; } bool is_on_xla_device() const { return xla_device_metadata() != nullptr; } const PjRtBaseDevice::Metadata* pjrt_device_metadata() const { return pjrt_device_metadata_; } private: DeviceType device_type_; se::Platform::Id platform_id_; const XlaDevice::Metadata* xla_device_metadata_; const PjRtBaseDevice::Metadata* pjrt_device_metadata_; std::shared_ptr<se::DeviceMemoryAllocator> device_allocator_; XlaPlatformInfo(const XlaPlatformInfo&) = delete; void operator=(const XlaPlatformInfo&) = delete; }; absl::StatusOr<std::optional<std::set<int>>> ParseVisibleDeviceList( absl::string_view visible_device_list); absl::StatusOr<DeviceType> GetCompilationDeviceType( const DeviceType& platform_device_type); Status BuildXlaDeviceCompiler( DeviceBase* dev, FunctionLibraryRuntime* flr, const XlaPlatformInfo& platform_info, DeviceType compilation_device_type, DeviceCompiler<xla::LocalExecutable, xla::LocalClient>** xla_device_compiler); Status GetOrCreatePjRtDeviceCompilerAndProfiler( const OpKernelContext& ctx, const XlaPlatformInfo& platform_info, FunctionLibraryRuntime* flr, DeviceCompiler<xla::PjRtLoadedExecutable, xla::PjRtClient>** pjrt_device_compiler, DeviceCompilationProfiler** profiler); Status GetOrCreatePjRtDeviceCompilerAndProfiler( const XlaPlatformInfo& platform_info, ResourceMgr* rm, FunctionLibraryRuntime* flr, DeviceCompiler<xla::PjRtLoadedExecutable, xla::PjRtClient>** pjrt_device_compiler, DeviceCompilationProfiler** profiler); XlaPlatformInfo XlaPlatformInfoFromDevice(DeviceBase* device); std::string GetPersistentCacheDirectory( const DeviceType& compilation_device_type); std::shared_ptr<se::DeviceMemoryAllocator> GetAllocator( DeviceBase* device, se::Stream* stream, const XlaPlatformInfo& platform_info); } #endif #include "tensorflow/compiler/jit/xla_platform_info.h" #include <memory> #include <optional> #include <set> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/status/status.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "tensorflow/compiler/jit/device_executable_persistor.h" #include "tensorflow/compiler/jit/flags.h" #include "tensorflow/compiler/jit/pjrt_device_compiler_client.h" #include "tensorflow/compiler/jit/xla_compile_util.h" #include "tensorflow/compiler/jit/xla_device_compiler_client.h" #include "xla/client/client_library.h" #include "xla/client/local_client.h" #include "xla/pjrt/pjrt_client.h" #include "xla/service/compiler.h" #include "xla/stream_executor/platform_manager.h" #include "xla/tsl/framework/device_type.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/resource_mgr.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/tfrt/common/create_pjrt_client_util.h" #include "tensorflow/core/tfrt/common/global_state.h" #include "tensorflow/core/tfrt/common/pjrt_util.h" #include "tensorflow/core/tpu/tpu_defs.h" namespace tensorflow { namespace { using XlaDeviceCompiler = DeviceCompiler<xla::LocalExecutable, xla::LocalClient>; using PjRtDeviceCompiler = DeviceCompiler<xla::PjRtLoadedExecutable, xla::PjRtClient>; using XlaDeviceExecutablePersistor = DeviceExecutablePersistor<xla::LocalExecutable, xla::LocalClient>; using PjRtDeviceExecutablePersistor = DeviceExecutablePersistor<xla::PjRtLoadedExecutable, xla::PjRtClient>; XlaDeviceCompiler* CreateXlaDeviceCompiler( const XlaDeviceExecutablePersistor::Config& persistor_config, DeviceType compilation_device_type, xla::LocalClient* local_client) { return new XlaDeviceCompiler( std::make_unique<XlaDeviceExecutablePersistor>( std::move(persistor_config), compilation_device_type), std::make_unique<XlaDeviceCompilerClient>(local_client)); } PjRtDeviceCompiler* CreatePjRtDeviceCompiler(DeviceType compilation_device_type, xla::PjRtClient* pjrt_client) { std::string persistent_cache_directory = GetPersistentCacheDirectory(compilation_device_type); PjRtDeviceExecutablePersistor::Config persistor_config( persistent_cache_directory, GetMarkForCompilationPassFlags()->tf_xla_disable_strict_signature_checks, GetMarkForCompilationPassFlags()->tf_xla_persistent_cache_prefix, GetMarkForCompilationPassFlags()->tf_xla_persistent_cache_read_only); return new PjRtDeviceCompiler( std::make_unique<PjRtDeviceExecutablePersistor>( std::move(persistor_config), compilation_device_type), std::make_unique<PjRtDeviceCompilerClient>(pjrt_client)); } absl::StatusOr<std::optional<std::set<int>>> GetAllowedGpus( FunctionLibraryRuntime* flr) { std::optional<std::set<int>> gpu_ids = std::nullopt; if (flr->config_proto()) { string allowed_gpus = flr->config_proto()->gpu_options().visible_device_list(); TF_ASSIGN_OR_RETURN(gpu_ids, ParseVisibleDeviceList(allowed_gpus)); } return gpu_ids; } Status GetCompilationDeviceTypeAndPjRtClient( const XlaPlatformInfo& platform_info, FunctionLibraryRuntime* flr, DeviceType* compilation_device_type, xla::PjRtClient** pjrt_client) { DeviceType device_type = platform_info.device_type(); if (platform_info.xla_device_metadata()) { VLOG(2) << "Building PjRtDeviceCompiler using " "platform_info.xla_device_metadata()."; *compilation_device_type = platform_info.xla_device_metadata()->jit_device_type(); TF_ASSIGN_OR_RETURN(*pjrt_client, GetOrCreatePjRtClient(device_type)); return absl::OkStatus(); } if (platform_info.pjrt_device_metadata()) { VLOG(2) << "Building PjRtDeviceCompiler using " "platform_info.pjrt_device_metadata()."; *compilation_device_type = platform_info.pjrt_device_metadata()->jit_device_type(); TF_ASSIGN_OR_RETURN(*pjrt_client, GetOrCreatePjRtClient(device_type)); return absl::OkStatus(); } if (device_type == DEVICE_TPU) { *compilation_device_type = DeviceType(DEVICE_TPU_XLA_JIT); TF_ASSIGN_OR_RETURN(*pjrt_client, GetOrCreatePjRtClient(device_type)); return absl::OkStatus(); } VLOG(2) << "platform_info.xla_device_metadata not found and " "platform_info.device_type() != DEVICE_TPU. Building " "PjRtDeviceCompiler for non-XLA device."; const XlaOpRegistry::DeviceRegistration* registration; if (!XlaOpRegistry::GetCompilationDevice(device_type.type(), &registration)) { return errors::InvalidArgument("No JIT device registered for ", device_type.type()); } *compilation_device_type = DeviceType(registration->compilation_device_name); TF_ASSIGN_OR_RETURN(auto allowed_gpus, GetAllowedGpus(flr)); TF_ASSIGN_OR_RETURN(*pjrt_client, GetOrCreatePjRtClient(device_type, allowed_gpus)); return absl::OkStatus(); } } std::string GetPersistentCacheDirectory( const DeviceType& compilation_device_type) { if (!GetMarkForCompilationPassFlags() ->tf_xla_persistent_cache_device_types.empty() && !absl::c_any_of(absl::StrSplit(GetMarkForCompilationPassFlags() ->tf_xla_persistent_cache_device_types, ','), [&](absl::string_view device) { return compilation_device_type == DeviceType(device); })) { return ""; } return GetMarkForCompilationPassFlags()->tf_xla_persistent_cache_directory; } absl::StatusOr<std::optional<std::set<int>>> ParseVisibleDeviceList( absl::string_view visible_device_list) { std::set<int> gpu_ids; if (visible_device_list.empty()) { return {{std::nullopt}}; } const std::vector<string> visible_devices = absl::StrSplit(visible_device_list, ','); for (const string& platform_device_id_str : visible_devices) { int32_t platform_device_id; if (!absl::SimpleAtoi(platform_device_id_str, &platform_device_id)) { return errors::InvalidArgument( "Could not parse entry in 'visible_device_list': '", platform_device_id_str, "'. visible_device_list = ", visible_device_list); } gpu_ids.insert(platform_device_id); } return {{gpu_ids}}; } absl::StatusOr<DeviceType> GetCompilationDeviceType( const DeviceType& platform_device_type) { DeviceType compilation_device_type = platform_device_type; const XlaOpRegistry::DeviceRegistration* registration = nullptr; if (!XlaOpRegistry::GetCompilationDevice(platform_device_type.type(), &registration)) { return errors::InvalidArgument("No JIT device registered for ", platform_device_type.type()); } compilation_device_type = DeviceType(registration->compilation_device_name); return compilation_device_type; } Status BuildXlaDeviceCompiler(DeviceBase* device, FunctionLibraryRuntime* flr, const XlaPlatformInfo& platform_info, DeviceType compilation_device_type, XlaDeviceCompiler** xla_device_compiler) { if (platform_info.platform_id() == nullptr && platform_info.device_type() == DEVICE_GPU) { *xla_device_compiler = new XlaDeviceCompiler(nullptr, nullptr); return absl::OkStatus(); } std::string persistent_cache_directory = GetPersistentCacheDirectory(platform_info.device_type()); XlaDeviceExecutablePersistor::Config persistor_config( persistent_cache_directory, GetMarkForCompilationPassFlags()->tf_xla_disable_strict_signature_checks, GetMarkForCompilationPassFlags()->tf_xla_persistent_cache_prefix, GetMarkForCompilationPassFlags()->tf_xla_persistent_cache_read_only); if (platform_info.xla_device_metadata()) { *xla_device_compiler = CreateXlaDeviceCompiler( persistor_config, platform_info.xla_device_metadata()->jit_device_type(), platform_info.xla_device_metadata()->client()); return absl::OkStatus(); } if (platform_info.device_type() == DEVICE_TPU) { *xla_device_compiler = CreateXlaDeviceCompiler( persistor_config, DeviceType(DEVICE_TPU_XLA_JIT), nullptr); return absl::OkStatus(); } if (platform_info.platform_id() == nullptr) { return errors::InvalidArgument("platform_id is null."); } auto platform = se::PlatformManager::PlatformWithId(platform_info.platform_id()); if (!platform.ok()) { return platform.status(); } absl::StatusOr<xla::Compiler*> compiler_for_platform = xla::Compiler::GetForPlatform(platform.value()); if (!compiler_for_platform.ok()) { const Status& status = compiler_for_platform.status(); if (status.code() == error::NOT_FOUND) { return errors::Unimplemented("Could not find compiler for platform ", platform.value()->Name(), ": ", status.ToString()); } } xla::LocalClientOptions client_options; client_options.set_platform(platform.value()); if (device != nullptr) { client_options.set_intra_op_parallelism_threads( device->tensorflow_cpu_worker_threads()->num_threads); } if (flr != nullptr) { TF_ASSIGN_OR_RETURN(auto allowed_gpus, GetAllowedGpus(flr)); client_options.set_allowed_devices(allowed_gpus); } TF_ASSIGN_OR_RETURN( auto client, xla::ClientLibrary::GetOrCreateLocalClient(client_options)); *xla_device_compiler = CreateXlaDeviceCompiler( persistor_config, compilation_device_type, client); return absl::OkStatus(); } Status GetOrCreatePjRtDeviceCompilerAndProfiler( const XlaPlatformInfo& platform_info, ResourceMgr* rm, FunctionLibraryRuntime* flr, PjRtDeviceCompiler** pjrt_device_compiler, DeviceCompilationProfiler** profiler) { const auto& device_type = platform_info.device_type(); const std::string& compiler_name = GetPjRtDeviceCompilerResourceName(device_type); const std::string& profiler_name = GetPjRtDeviceCompilationProfilerResourceName(device_type); bool deleted_old_device_compiler = false; Status s = rm->Lookup<PjRtDeviceCompiler>( rm->default_container(), compiler_name, pjrt_device_compiler); if (s.ok() && device_type == DEVICE_TPU) { auto* existing_pjrt_client = (*pjrt_device_compiler)->client(); TF_ASSIGN_OR_RETURN(auto* latest_pjrt_client, GetPjRtClient(device_type)); if (existing_pjrt_client != latest_pjrt_client) { TF_RETURN_IF_ERROR(rm->Delete<PjRtDeviceCompiler>(rm->default_container(), compiler_name)); TF_RETURN_IF_ERROR(rm->Delete<DeviceCompilationProfiler>( rm->default_container(), profiler_name)); deleted_old_device_compiler = true; } } if (!s.ok() || deleted_old_device_compiler) { DeviceType compilation_device_type(""); xla::PjRtClient* pjrt_client = nullptr; TF_RETURN_IF_ERROR(GetCompilationDeviceTypeAndPjRtClient( platform_info, flr, &compilation_device_type, &pjrt_client)); TF_RETURN_IF_ERROR(rm->LookupOrCreate<PjRtDeviceCompiler>( rm->default_container(), compiler_name, pjrt_device_compiler, [&](PjRtDeviceCompiler** pjrt_device_compiler) { *pjrt_device_compiler = CreatePjRtDeviceCompiler(compilation_device_type, pjrt_client); return absl::OkStatus(); })); } TF_RETURN_IF_ERROR(rm->LookupOrCreate<DeviceCompilationProfiler>( rm->default_container(), profiler_name, profiler, [](DeviceCompilationProfiler** profiler) { *profiler = new DeviceCompilationProfiler(); return absl::OkStatus(); })); return absl::OkStatus(); } Status GetOrCreatePjRtDeviceCompilerAndProfiler( const OpKernelContext& ctx, const XlaPlatformInfo& platform_info, FunctionLibraryRuntime* flr, DeviceCompiler<xla::PjRtLoadedExecutable, xla::PjRtClient>** pjrt_device_compiler, DeviceCompilationProfiler** profiler) { TF_ASSIGN_OR_RETURN(ResourceMgr * rm, GetResourceMgrForDeviceCompiler( ctx, platform_info.device_type())); return GetOrCreatePjRtDeviceCompilerAndProfiler( platform_info, rm, flr, pjrt_device_compiler, profiler); } XlaPlatformInfo XlaPlatformInfoFromDevice(DeviceBase* device_base) { se::Platform::Id platform_id = nullptr; const XlaDevice::Metadata* xla_device_metadata = nullptr; const PjRtBaseDevice::Metadata* pjrt_device_metadata = nullptr; std::shared_ptr<se::DeviceMemoryAllocator> custom_allocator; const std::string& device_type = device_base->device_type(); if (device_type == DEVICE_CPU) { platform_id = se::host::kHostPlatformId; } else if (device_type == DEVICE_GPU) { auto device = static_cast<Device*>(device_base); platform_id = device->tensorflow_accelerator_device_info() ->stream->parent() ->GetPlatform() ->id(); } else if (XlaDevice::GetMetadataFromDevice(device_base, &xla_device_metadata) .ok()) { platform_id = xla_device_metadata->platform()->id(); custom_allocator = xla_device_metadata->client()->backend().shared_memory_allocator(); } else if (auto metadata = PjRtBaseDevice::GetMetadataFromDevice(device_base); metadata.ok()) { pjrt_device_metadata = *metadata; } return XlaPlatformInfo(DeviceType(device_type), platform_id, xla_device_metadata, pjrt_device_metadata, custom_allocator); } std::shared_ptr<se::DeviceMemoryAllocator> GetAllocator( DeviceBase* device, se::Stream* stream, const XlaPlatformInfo& platform_info) { if (platform_info.custom_allocator()) { return platform_info.custom_allocator(); } auto* alloc = device->GetAllocator({}); if (!stream) { se::Platform* platform = se::PlatformManager::PlatformWithId(platform_info.platform_id()) .value(); return std::make_shared<se::TfAllocatorAdapter>(alloc, platform); } return std::make_shared<se::TfAllocatorAdapter>(alloc, stream); } }
#include "tensorflow/compiler/jit/xla_platform_info.h" #include <memory> #include <vector> #include <gtest/gtest.h> #include "tensorflow/compiler/jit/flags.h" #include "tensorflow/compiler/jit/test_util.h" #include "xla/pjrt/tfrt_cpu_pjrt_client.h" #include "tensorflow/core/framework/device_base.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/refcount.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tensorflow/core/tfrt/common/create_pjrt_client_util.h" #include "tensorflow/core/tfrt/common/pjrt_util.h" #include "tensorflow/core/tpu/tpu_defs.h" namespace tensorflow { namespace { using XlaDeviceCompiler = DeviceCompiler<xla::LocalExecutable, xla::LocalClient>; using PjRtDeviceCompiler = DeviceCompiler<xla::PjRtLoadedExecutable, xla::PjRtClient>; class XlaPlatformInfoTest : public ::testing::Test { protected: void SetUp() override { tensorflow::GetXlaDeviceFlags()->tf_xla_enable_xla_devices = true; tensorflow::GetMarkForCompilationPassFlags() ->tf_xla_persistent_cache_directory = ""; tensorflow::GetMarkForCompilationPassFlags() ->tf_xla_persistent_cache_device_types = ""; } DeviceSetup device_setup_; }; class StubDevice : public DeviceBase { public: StubDevice() : DeviceBase(nullptr) {} }; #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM TEST_F(XlaPlatformInfoTest, BuildXlaDeviceCompilerXlaDeviceMetadata) { device_setup_.AddDevicesAndSetUp({DEVICE_XLA_GPU}); Device* device = device_setup_.GetDevice(DEVICE_XLA_GPU); const XlaDevice::Metadata* metadata = nullptr; TF_CHECK_OK(XlaDevice::GetMetadataFromDevice(device, &metadata)); XlaPlatformInfo platform_info = XlaPlatformInfoFromDevice(device); TF_ASSERT_OK_AND_ASSIGN( DeviceType compilation_device_type, GetCompilationDeviceType(platform_info.device_type())); XlaDeviceCompiler* xla_device_compiler = nullptr; TF_EXPECT_OK(BuildXlaDeviceCompiler(device, device_setup_.flr(), platform_info, compilation_device_type, &xla_device_compiler)); core::ScopedUnref xla_device_compiler_ref(xla_device_compiler); EXPECT_EQ(xla_device_compiler->device_type(), metadata->jit_device_type()); EXPECT_EQ(xla_device_compiler->client(), metadata->client()); } TEST_F(XlaPlatformInfoTest, BuildXlaDeviceCompilerXlaDeviceCacheEnabled) { tensorflow::GetMarkForCompilationPassFlags() ->tf_xla_persistent_cache_directory = "/tmp/xla_cache"; tensorflow::GetMarkForCompilationPassFlags() ->tf_xla_persistent_cache_device_types = DEVICE_XLA_GPU; device_setup_.AddDevicesAndSetUp({DEVICE_XLA_GPU}); Device* device = device_setup_.GetDevice(DEVICE_XLA_GPU); const XlaDevice::Metadata* metadata = nullptr; TF_CHECK_OK(XlaDevice::GetMetadataFromDevice(device, &metadata)); XlaPlatformInfo platform_info = XlaPlatformInfoFromDevice(device); TF_ASSERT_OK_AND_ASSIGN( DeviceType compilation_device_type, GetCompilationDeviceType(platform_info.device_type())); XlaDeviceCompiler* xla_device_compiler = nullptr; TF_EXPECT_OK(BuildXlaDeviceCompiler(device, device_setup_.flr(), platform_info, compilation_device_type, &xla_device_compiler)); core::ScopedUnref xla_device_compiler_ref(xla_device_compiler); EXPECT_EQ(xla_device_compiler->device_type(), metadata->jit_device_type()); EXPECT_EQ(xla_device_compiler->client(), metadata->client()); EXPECT_EQ(xla_device_compiler->persistor()->persistent_cache_directory(), "/tmp/xla_cache"); } TEST_F(XlaPlatformInfoTest, BuildXlaDeviceCompilerNonXlaDevice) { device_setup_.AddDevicesAndSetUp({DEVICE_GPU}); Device* device = device_setup_.GetDevice(DEVICE_GPU); XlaPlatformInfo platform_info = XlaPlatformInfoFromDevice(device); TF_ASSERT_OK_AND_ASSIGN( DeviceType compilation_device_type, GetCompilationDeviceType(platform_info.device_type())); XlaDeviceCompiler* xla_device_compiler = nullptr; TF_EXPECT_OK(BuildXlaDeviceCompiler(device, device_setup_.flr(), platform_info, compilation_device_type, &xla_device_compiler)); core::ScopedUnref xla_device_compiler_ref(xla_device_compiler); EXPECT_EQ(xla_device_compiler->device_type(), DeviceType(DEVICE_GPU_XLA_JIT)); EXPECT_TRUE(xla_device_compiler->client() != nullptr); } TEST_F(XlaPlatformInfoTest, GetOrCreatePjRtDeviceCompilerAndProfilerXlaDevice) { DeviceType device_type = DeviceType(DEVICE_XLA_GPU); device_setup_.AddDevicesAndSetUp({device_type.type()}); Device* device = device_setup_.GetDevice(device_type.type()); const XlaDevice::Metadata* metadata = nullptr; TF_CHECK_OK(XlaDevice::GetMetadataFromDevice(device, &metadata)); XlaPlatformInfo platform_info = XlaPlatformInfoFromDevice(device); ResourceMgr resource_mgr(""); OpKernelContext::Params params; params.resource_manager = &resource_mgr; params.device = device; OpKernelContext ctx(&params, 0); PjRtDeviceCompiler* pjrt_device_compiler = nullptr; DeviceCompilationProfiler* profiler = nullptr; TF_EXPECT_OK(GetOrCreatePjRtDeviceCompilerAndProfiler( ctx, platform_info, device_setup_.flr(), &pjrt_device_compiler, &profiler)); core::ScopedUnref pjrt_device_compiler_ref(pjrt_device_compiler); core::ScopedUnref profiler_ref(profiler); TF_ASSERT_OK_AND_ASSIGN(auto pjrt_client, GetOrCreatePjRtClient(device_type)); EXPECT_EQ(pjrt_device_compiler->device_type(), metadata->jit_device_type()); EXPECT_EQ(pjrt_device_compiler->client(), pjrt_client); } TEST_F(XlaPlatformInfoTest, GetOrCreatePjRtDeviceCompilerAndProfilerGpuDeviceCacheEnabled) { tensorflow::GetMarkForCompilationPassFlags() ->tf_xla_persistent_cache_directory = "/tmp/xla_cache"; tensorflow::GetMarkForCompilationPassFlags() ->tf_xla_persistent_cache_device_types = DEVICE_GPU_XLA_JIT; device_setup_.AddDevicesAndSetUp({DEVICE_GPU}); Device* device = device_setup_.GetDevice(DEVICE_GPU); XlaPlatformInfo platform_info = XlaPlatformInfoFromDevice(device); ResourceMgr resource_mgr(""); OpKernelContext::Params params; params.resource_manager = &resource_mgr; params.device = device; OpKernelContext ctx(&params, 0); PjRtDeviceCompiler* pjrt_device_compiler = nullptr; DeviceCompilationProfiler* profiler = nullptr; TF_EXPECT_OK(GetOrCreatePjRtDeviceCompilerAndProfiler( ctx, platform_info, device_setup_.flr(), &pjrt_device_compiler, &profiler)); EXPECT_EQ(pjrt_device_compiler->persistor()->persistent_cache_directory(), "/tmp/xla_cache"); core::ScopedUnref pjrt_device_compiler_ref(pjrt_device_compiler); core::ScopedUnref profiler_ref(profiler); } #endif TEST_F(XlaPlatformInfoTest, BuildXlaDeviceCompilerTpuDevice) { DeviceType compilation_device_type = DeviceType(DEVICE_TPU_XLA_JIT); Device* device = nullptr; XlaPlatformInfo platform_info(DeviceType(DEVICE_TPU), nullptr, nullptr, nullptr, nullptr); XlaDeviceCompiler* xla_device_compiler = nullptr; TF_EXPECT_OK(BuildXlaDeviceCompiler(device, nullptr, platform_info, compilation_device_type, &xla_device_compiler)); core::ScopedUnref xla_device_compiler_ref(xla_device_compiler); EXPECT_EQ(xla_device_compiler->device_type(), compilation_device_type); EXPECT_EQ(xla_device_compiler->client(), nullptr); } TEST_F(XlaPlatformInfoTest, BuildXlaDeviceCompilerNoCompilationCache) { DeviceType compilation_device_type = DeviceType(DEVICE_TPU_XLA_JIT); tensorflow::GetMarkForCompilationPassFlags() ->tf_xla_persistent_cache_directory = "/tmp/xla_cache"; tensorflow::GetMarkForCompilationPassFlags() ->tf_xla_persistent_cache_device_types = DEVICE_XLA_GPU; Device* device = nullptr; XlaPlatformInfo platform_info(DeviceType(DEVICE_TPU), nullptr, nullptr, nullptr, nullptr); XlaDeviceCompiler* xla_device_compiler = nullptr; TF_EXPECT_OK(BuildXlaDeviceCompiler(device, nullptr, platform_info, compilation_device_type, &xla_device_compiler)); core::ScopedUnref xla_device_compiler_ref(xla_device_compiler); EXPECT_EQ(xla_device_compiler->device_type(), compilation_device_type); EXPECT_TRUE( xla_device_compiler->persistor()->persistent_cache_directory().empty()); } TEST_F(XlaPlatformInfoTest, GetOrCreatePjRtDeviceCompilerAndProfilerTpuDeviceNoCompilationCache) { tensorflow::GetMarkForCompilationPassFlags() ->tf_xla_persistent_cache_directory = "/tmp/xla_cache"; tensorflow::GetMarkForCompilationPassFlags() ->tf_xla_persistent_cache_device_types = DEVICE_GPU_XLA_JIT; DeviceType device_type = DeviceType(DEVICE_TPU); DeviceType compilation_device_type = DeviceType(DEVICE_TPU_XLA_JIT); TF_CHECK_OK(SetPjRtClientInTFGlobalResourceManager( device_type, xla::GetTfrtCpuClient(true, 1) .value())); TF_ASSERT_OK_AND_ASSIGN(auto pjrt_client, GetOrCreatePjRtClient(device_type)); XlaPlatformInfo platform_info(device_type, nullptr, nullptr, nullptr, nullptr); OpKernelContext::Params params; StubDevice stub_device; params.device = &stub_device; OpKernelContext ctx(&params, 0); PjRtDeviceCompiler* pjrt_device_compiler = nullptr; DeviceCompilationProfiler* profiler = nullptr; TF_EXPECT_OK(GetOrCreatePjRtDeviceCompilerAndProfiler( ctx, platform_info, nullptr, &pjrt_device_compiler, &profiler)); core::ScopedUnref pjrt_device_compiler_ref(pjrt_device_compiler); core::ScopedUnref profiler_ref(profiler); EXPECT_EQ(pjrt_device_compiler->device_type(), compilation_device_type); EXPECT_EQ(pjrt_device_compiler->client(), pjrt_client); EXPECT_TRUE( pjrt_device_compiler->persistor()->persistent_cache_directory().empty()); } TEST_F(XlaPlatformInfoTest, GetPersistentCacheDirectoryMultiple) { tensorflow::GetMarkForCompilationPassFlags() ->tf_xla_persistent_cache_directory = "/tmp/xla_cache"; tensorflow::GetMarkForCompilationPassFlags() ->tf_xla_persistent_cache_device_types = "GPU,CPU"; DeviceType device_gpu = DeviceType(DEVICE_GPU); EXPECT_EQ(GetPersistentCacheDirectory(device_gpu), "/tmp/xla_cache"); DeviceType device_cpu = DeviceType(DEVICE_CPU); EXPECT_EQ(GetPersistentCacheDirectory(device_cpu), "/tmp/xla_cache"); DeviceType device_tpu = DeviceType(DEVICE_TPU); EXPECT_TRUE(GetPersistentCacheDirectory(device_tpu).empty()); } TEST_F(XlaPlatformInfoTest, GetPersistentCacheDirectoryNoDeviceTypes) { tensorflow::GetMarkForCompilationPassFlags() ->tf_xla_persistent_cache_directory = "/tmp/xla_cache"; tensorflow::GetMarkForCompilationPassFlags() ->tf_xla_persistent_cache_device_types = ""; DeviceType device_gpu = DeviceType(DEVICE_GPU); EXPECT_EQ(GetPersistentCacheDirectory(device_gpu), "/tmp/xla_cache"); DeviceType device_cpu = DeviceType(DEVICE_CPU); EXPECT_EQ(GetPersistentCacheDirectory(device_cpu), "/tmp/xla_cache"); DeviceType device_tpu = DeviceType(DEVICE_TPU); EXPECT_EQ(GetPersistentCacheDirectory(device_tpu), "/tmp/xla_cache"); } } }
362
#ifndef TENSORSTORE_KVSTORE_S3_CREDENTIALS_DEFAULT_CREDENTIAL_PROVIDER_H_ #define TENSORSTORE_KVSTORE_S3_CREDENTIALS_DEFAULT_CREDENTIAL_PROVIDER_H_ #include <functional> #include <memory> #include <string> #include <string_view> #include "absl/base/thread_annotations.h" #include "absl/functional/function_ref.h" #include "absl/synchronization/mutex.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "tensorstore/internal/http/curl_transport.h" #include "tensorstore/internal/http/http_transport.h" #include "tensorstore/kvstore/s3/credentials/aws_credentials.h" #include "tensorstore/util/result.h" namespace tensorstore { namespace internal_kvstore_s3 { class DefaultAwsCredentialsProvider : public AwsCredentialProvider { public: struct Options { std::string filename; std::string profile; std::string endpoint; std::shared_ptr<internal_http::HttpTransport> transport; }; DefaultAwsCredentialsProvider( Options options = {{}, {}, {}, internal_http::GetDefaultHttpTransport()}, absl::FunctionRef<absl::Time()> clock = absl::Now); Result<AwsCredentials> GetCredentials() override; private: Options options_; absl::FunctionRef<absl::Time()> clock_; absl::Mutex mutex_; std::unique_ptr<AwsCredentialProvider> provider_ ABSL_GUARDED_BY(mutex_); AwsCredentials credentials_ ABSL_GUARDED_BY(mutex_); }; using AwsCredentialProviderFn = std::function<Result<std::unique_ptr<AwsCredentialProvider>>()>; void RegisterAwsCredentialProviderProvider(AwsCredentialProviderFn provider, int priority); Result<std::unique_ptr<AwsCredentialProvider>> GetAwsCredentialProvider( std::string_view filename, std::string_view profile, std::string_view metadata_endpoint, std::shared_ptr<internal_http::HttpTransport> transport); } } #endif #include "tensorstore/kvstore/s3/credentials/default_credential_provider.h" #include <algorithm> #include <memory> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/base/attributes.h" #include "absl/base/no_destructor.h" #include "absl/functional/function_ref.h" #include "absl/log/absl_log.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" #include "tensorstore/internal/http/http_transport.h" #include "tensorstore/internal/log/verbose_flag.h" #include "tensorstore/kvstore/s3/credentials/aws_credentials.h" #include "tensorstore/kvstore/s3/credentials/ec2_credential_provider.h" #include "tensorstore/kvstore/s3/credentials/environment_credential_provider.h" #include "tensorstore/kvstore/s3/credentials/file_credential_provider.h" #include "tensorstore/util/result.h" namespace tensorstore { namespace internal_kvstore_s3 { namespace { ABSL_CONST_INIT internal_log::VerboseFlag s3_logging("s3"); struct AwsCredentialProviderRegistry { std::vector<std::pair<int, AwsCredentialProviderFn>> providers; absl::Mutex mutex; }; AwsCredentialProviderRegistry& GetAwsProviderRegistry() { static absl::NoDestructor<AwsCredentialProviderRegistry> registry; return *registry; } } void RegisterAwsCredentialProviderProvider(AwsCredentialProviderFn provider, int priority) { auto& registry = GetAwsProviderRegistry(); absl::WriterMutexLock lock(&registry.mutex); registry.providers.emplace_back(priority, std::move(provider)); std::sort(registry.providers.begin(), registry.providers.end(), [](const auto& a, const auto& b) { return a.first < b.first; }); } Result<std::unique_ptr<AwsCredentialProvider>> GetAwsCredentialProvider( std::string_view filename, std::string_view profile, std::string_view metadata_endpoint, std::shared_ptr<internal_http::HttpTransport> transport) { auto& registry = GetAwsProviderRegistry(); absl::WriterMutexLock lock(&registry.mutex); for (const auto& provider : registry.providers) { auto credentials = provider.second(); if (credentials.ok()) return credentials; } return std::make_unique<DefaultAwsCredentialsProvider>( DefaultAwsCredentialsProvider::Options{ std::string{filename}, std::string{profile}, std::string{metadata_endpoint}, transport}); } DefaultAwsCredentialsProvider::DefaultAwsCredentialsProvider( Options options, absl::FunctionRef<absl::Time()> clock) : options_(std::move(options)), clock_(clock), credentials_{{}, {}, {}, absl::InfinitePast()} {} Result<AwsCredentials> DefaultAwsCredentialsProvider::GetCredentials() { { absl::ReaderMutexLock lock(&mutex_); if (credentials_.expires_at > clock_()) { return credentials_; } } absl::WriterMutexLock lock(&mutex_); if (provider_) { auto credentials_result = provider_->GetCredentials(); if (credentials_result.ok()) { credentials_ = credentials_result.value(); return credentials_; } } bool only_default_options = options_.filename.empty() && options_.profile.empty() && options_.endpoint.empty(); if (only_default_options) { provider_ = std::make_unique<EnvironmentCredentialProvider>(); if (auto credentials_result = provider_->GetCredentials(); credentials_result.ok()) { credentials_ = std::move(credentials_result).value(); return credentials_; } else if (s3_logging) { ABSL_LOG_FIRST_N(INFO, 1) << "Could not acquire credentials from environment: " << credentials_result.status(); } } if (only_default_options || !options_.filename.empty() || !options_.profile.empty()) { provider_ = std::make_unique<FileCredentialProvider>(options_.filename, options_.profile); if (auto credentials_result = provider_->GetCredentials(); credentials_result.ok()) { credentials_ = std::move(credentials_result).value(); return credentials_; } else if (s3_logging) { ABSL_LOG_FIRST_N(INFO, 1) << "Could not acquire credentials from file/profile: " << credentials_result.status(); } } if (only_default_options || !options_.endpoint.empty()) { provider_ = std::make_unique<EC2MetadataCredentialProvider>( options_.endpoint, options_.transport); if (auto credentials_result = provider_->GetCredentials(); credentials_result.ok()) { credentials_ = std::move(credentials_result).value(); return credentials_; } else if (s3_logging) { ABSL_LOG(INFO) << "Could not acquire credentials from EC2 Metadata Server " << options_.endpoint << ": " << credentials_result.status(); } } provider_ = nullptr; credentials_ = AwsCredentials::Anonymous(); return credentials_; } } }
#include "tensorstore/kvstore/s3/credentials/default_credential_provider.h" #include <fstream> #include <memory> #include <string> #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "absl/strings/cord.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "tensorstore/internal/env.h" #include "tensorstore/internal/http/http_response.h" #include "tensorstore/internal/http/mock_http_transport.h" #include "tensorstore/internal/path.h" #include "tensorstore/internal/testing/scoped_directory.h" #include "tensorstore/kvstore/s3/credentials/test_utils.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::internal::JoinPath; using ::tensorstore::internal::SetEnv; using ::tensorstore::internal::UnsetEnv; using ::tensorstore::internal_http::DefaultMockHttpTransport; using ::tensorstore::internal_http::HttpResponse; using ::tensorstore::internal_kvstore_s3::DefaultAwsCredentialsProvider; using ::tensorstore::internal_kvstore_s3::DefaultEC2MetadataFlow; using Options = ::tensorstore::internal_kvstore_s3::DefaultAwsCredentialsProvider::Options; static constexpr char kEndpoint[] = "http: class CredentialFileFactory : public tensorstore::internal_testing::ScopedTemporaryDirectory { public: std::string WriteCredentialsFile() { auto p = JoinPath(path(), "aws_config"); std::ofstream ofs(p); ofs << "[alice]\n" "aws_access_key_id = AKIAIOSFODNN6EXAMPLE\n" "aws_secret_access_key = " "wJalrXUtnFEMI/K7MDENG/bPxRfiCZEXAMPLEKEY\n" "aws_session_token = abcdef1234567890\n" "\n"; ofs.close(); return p; } }; class DefaultCredentialProviderTest : public ::testing::Test { protected: void SetUp() override { UnsetEnv("AWS_ACCESS_KEY_ID"); UnsetEnv("AWS_SECRET_ACCESS_KEY"); UnsetEnv("AWS_SESSION_TOKEN"); } }; TEST_F(DefaultCredentialProviderTest, AnonymousCredentials) { auto mock_transport = std::make_shared<DefaultMockHttpTransport>( absl::flat_hash_map<std::string, HttpResponse>()); auto provider = std::make_unique<DefaultAwsCredentialsProvider>( Options{{}, {}, {}, mock_transport}); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto credentials, provider->GetCredentials()); EXPECT_TRUE(credentials.IsAnonymous()); EXPECT_EQ(credentials.expires_at, absl::InfiniteFuture()); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto credentials2, provider->GetCredentials()); EXPECT_TRUE(credentials2.IsAnonymous()); EXPECT_EQ(credentials2.expires_at, absl::InfiniteFuture()); } TEST_F(DefaultCredentialProviderTest, EnvironmentCredentialIdempotency) { SetEnv("AWS_ACCESS_KEY_ID", "access"); SetEnv("AWS_SECRET_ACCESS_KEY", "secret"); SetEnv("AWS_SESSION_TOKEN", "token"); auto provider = std::make_unique<DefaultAwsCredentialsProvider>(); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto credentials, provider->GetCredentials()); EXPECT_EQ(credentials.access_key, "access"); EXPECT_EQ(credentials.secret_key, "secret"); EXPECT_EQ(credentials.session_token, "token"); EXPECT_EQ(credentials.expires_at, absl::InfiniteFuture()); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto credentials2, provider->GetCredentials()); EXPECT_EQ(credentials.access_key, credentials2.access_key); EXPECT_EQ(credentials.secret_key, credentials2.secret_key); EXPECT_EQ(credentials.session_token, credentials2.session_token); EXPECT_EQ(credentials.expires_at, credentials2.expires_at); } TEST_F(DefaultCredentialProviderTest, ConfigureFileProviderFromOptions) { auto factory = CredentialFileFactory{}; auto credentials_file = factory.WriteCredentialsFile(); auto provider = std::make_unique<DefaultAwsCredentialsProvider>( Options{credentials_file, "alice"}); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto credentials, provider->GetCredentials()); EXPECT_EQ(credentials.access_key, "AKIAIOSFODNN6EXAMPLE"); EXPECT_EQ(credentials.secret_key, "wJalrXUtnFEMI/K7MDENG/bPxRfiCZEXAMPLEKEY"); EXPECT_EQ(credentials.session_token, "abcdef1234567890"); EXPECT_EQ(credentials.expires_at, absl::InfiniteFuture()); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto credentials2, provider->GetCredentials()); EXPECT_EQ(credentials.access_key, credentials2.access_key); EXPECT_EQ(credentials.secret_key, credentials2.secret_key); EXPECT_EQ(credentials.session_token, credentials2.session_token); EXPECT_EQ(credentials.expires_at, credentials2.expires_at); } TEST_F(DefaultCredentialProviderTest, ConfigureEC2ProviderFromOptions) { auto now = absl::Now(); auto stuck_clock = [&]() -> absl::Time { return now; }; auto expiry = now + absl::Seconds(200); auto mock_transport = std::make_shared<DefaultMockHttpTransport>( DefaultEC2MetadataFlow(kEndpoint, "1234", "ASIA1234567890", "1234567890abcdef", "token", expiry)); auto provider = std::make_unique<DefaultAwsCredentialsProvider>( Options{{}, {}, kEndpoint, mock_transport}, stuck_clock); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto credentials, provider->GetCredentials()); EXPECT_EQ(credentials.access_key, "ASIA1234567890"); EXPECT_EQ(credentials.secret_key, "1234567890abcdef"); EXPECT_EQ(credentials.session_token, "token"); EXPECT_EQ(credentials.expires_at, expiry - absl::Seconds(60)); mock_transport->Reset(absl::flat_hash_map<std::string, HttpResponse>{ {"POST http: HttpResponse{404, absl::Cord{""}}}, }); TENSORSTORE_ASSERT_OK_AND_ASSIGN(credentials, provider->GetCredentials()); EXPECT_EQ(credentials.access_key, "ASIA1234567890"); EXPECT_EQ(credentials.secret_key, "1234567890abcdef"); EXPECT_EQ(credentials.session_token, "token"); EXPECT_EQ(credentials.expires_at, expiry - absl::Seconds(60)); now += absl::Seconds(300); mock_transport->Reset( DefaultEC2MetadataFlow(kEndpoint, "1234", "ASIA1234567890", "1234567890abcdef", "TOKEN", expiry)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(credentials, provider->GetCredentials()); EXPECT_EQ(credentials.access_key, "ASIA1234567890"); EXPECT_EQ(credentials.secret_key, "1234567890abcdef"); EXPECT_EQ(credentials.session_token, "TOKEN"); EXPECT_EQ(credentials.expires_at, expiry - absl::Seconds(60)); mock_transport->Reset(absl::flat_hash_map<std::string, HttpResponse>{ {"POST http: HttpResponse{404, absl::Cord{""}}}, }); TENSORSTORE_ASSERT_OK_AND_ASSIGN(credentials, provider->GetCredentials()); EXPECT_EQ(credentials.access_key, ""); EXPECT_EQ(credentials.secret_key, ""); EXPECT_EQ(credentials.session_token, ""); EXPECT_EQ(credentials.expires_at, absl::InfiniteFuture()); } }
363
#ifndef TENSORSTORE_INTERNAL_OAUTH2_GOOGLE_SERVICE_ACCOUNT_AUTH_PROVIDER_H_ #define TENSORSTORE_INTERNAL_OAUTH2_GOOGLE_SERVICE_ACCOUNT_AUTH_PROVIDER_H_ #include <functional> #include <memory> #include <string> #include <string_view> #include "absl/strings/cord.h" #include "absl/time/time.h" #include "tensorstore/internal/http/http_response.h" #include "tensorstore/internal/http/http_transport.h" #include "tensorstore/internal/oauth2/bearer_token.h" #include "tensorstore/internal/oauth2/oauth_utils.h" #include "tensorstore/internal/oauth2/refreshable_auth_provider.h" #include "tensorstore/util/result.h" namespace tensorstore { namespace internal_oauth2 { class GoogleServiceAccountAuthProvider : public RefreshableAuthProvider { public: using AccountCredentials = internal_oauth2::GoogleServiceAccountCredentials; ~GoogleServiceAccountAuthProvider() override = default; GoogleServiceAccountAuthProvider( const AccountCredentials& creds, std::shared_ptr<internal_http::HttpTransport> transport, std::function<absl::Time()> clock = {}); protected: virtual Result<internal_http::HttpResponse> IssueRequest( std::string_view method, std::string_view uri, absl::Cord payload); private: Result<BearerTokenWithExpiration> Refresh() override; const AccountCredentials creds_; std::string uri_; std::string scope_; std::shared_ptr<internal_http::HttpTransport> transport_; }; } } #endif #include "tensorstore/internal/oauth2/google_service_account_auth_provider.h" #include <functional> #include <memory> #include <string> #include <string_view> #include <utility> #include "absl/strings/cord.h" #include "absl/time/time.h" #include "tensorstore/internal/http/http_request.h" #include "tensorstore/internal/http/http_response.h" #include "tensorstore/internal/http/http_transport.h" #include "tensorstore/internal/oauth2/bearer_token.h" #include "tensorstore/internal/oauth2/oauth_utils.h" #include "tensorstore/internal/oauth2/refreshable_auth_provider.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" namespace tensorstore { namespace internal_oauth2 { using ::tensorstore::Result; using ::tensorstore::internal_http::HttpRequestBuilder; using ::tensorstore::internal_http::HttpResponse; constexpr char kOAuthV4Url[] = "https: constexpr char kOAuthScope[] = "https: GoogleServiceAccountAuthProvider::GoogleServiceAccountAuthProvider( const AccountCredentials& creds, std::shared_ptr<internal_http::HttpTransport> transport, std::function<absl::Time()> clock) : RefreshableAuthProvider(std::move(clock)), creds_(creds), uri_(kOAuthV4Url), scope_(kOAuthScope), transport_(std::move(transport)) {} Result<HttpResponse> GoogleServiceAccountAuthProvider::IssueRequest( std::string_view method, std::string_view uri, absl::Cord payload) { return transport_ ->IssueRequest( HttpRequestBuilder(method, std::string{uri}) .AddHeader("Content-Type: application/x-www-form-urlencoded") .BuildRequest(), internal_http::IssueRequestOptions(std::move(payload))) .result(); } Result<BearerTokenWithExpiration> GoogleServiceAccountAuthProvider::Refresh() { const auto now = GetCurrentTime(); TENSORSTORE_ASSIGN_OR_RETURN( auto body, internal_oauth2::BuildSignedJWTRequest( creds_.private_key, internal_oauth2::BuildJWTHeader(creds_.private_key_id), internal_oauth2::BuildJWTClaimBody(creds_.client_email, scope_, uri_, now, 3600 ))); TENSORSTORE_ASSIGN_OR_RETURN( auto response, IssueRequest("POST", uri_, absl::Cord(std::move(body)))); TENSORSTORE_RETURN_IF_ERROR(HttpResponseCodeToStatus(response)); TENSORSTORE_ASSIGN_OR_RETURN(auto result, internal_oauth2::ParseOAuthResponse( response.payload.Flatten())); return BearerTokenWithExpiration{std::move(result.access_token), now + absl::Seconds(result.expires_in)}; } } }
#include "tensorstore/internal/oauth2/google_service_account_auth_provider.h" #include <memory> #include <utility> #include <vector> #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "tensorstore/internal/oauth2/fake_private_key.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" namespace { using ::tensorstore::Result; using ::tensorstore::internal_http::HttpResponse; using ::tensorstore::internal_oauth2::GetFakePrivateKey; using ::tensorstore::internal_oauth2::GoogleServiceAccountAuthProvider; using ::tensorstore::internal_oauth2::GoogleServiceAccountCredentials; const char kServiceAccountInfo[] = R"({ "token_type" : "123", "access_token": "abc", "expires_in": 456 })"; const GoogleServiceAccountCredentials kCreds{ "a1a111aa1111a11a11a11aa111a111a1a1111111", GetFakePrivateKey(), "https: "foo-email@foo-project.iam.gserviceaccount.com", }; constexpr char kBody[] = "grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Ajwt-bearer&" "assertion=" "eyJhbGciOiJSUzI1NiIsImtpZCI6ImExYTExMWFhMTExMWExMWExMWExMWFhMTExYTExMWExYT" "ExMTExMTEiLCJ0eXAiOiJKV1QifQ." "eyJhdWQiOiJodHRwczovL3d3dy5nb29nbGVhcGlzLmNvbS9vYXV0aDIvdjQvdG9rZW4iLCJleH" "AiOjE1NDc2Njk3MDMsImlhdCI6MTU0NzY2NjEwMywiaXNzIjoiZm9vLWVtYWlsQGZvby1wcm9q" "ZWN0LmlhbS5nc2VydmljZWFjY291bnQuY29tIiwic2NvcGUiOiJodHRwczovL3d3dy5nb29nbG" "VhcGlzLmNvbS9hdXRoL2Nsb3VkLXBsYXRmb3JtIn0.gvM1sjnFXwQkBTTqobnTJqE8ZCrAR-" "SEevEZB4Quqxd836v7iHjnWBiOkUCZl_o5wQouz5pFuhkQ1BlhhAZNih_Ko2yxBi0W_NuhI-" "18We8gSMhi8pwfNu6WqNqXkHlQAJebhJQH23yP_A2dxU3Z50maUJaAl9G0e60CIynsaeW-" "o7QneaPxPEWjOi--XMvkOu-z8eD0CXx1dUrlzINDxWzJFoXzCk2_NZ9-" "UPzHWai68qKo2FjbtTT3fEPA-L1IN908OWhuN2UHdvPrg_" "h13GO7kY3K7TsWotsgsLon2KxWYaDpasaY_ZqCIXCeS4jW89gVtsOB3E6B-xdR1Gq-9g"; class TestAuthProvider : public GoogleServiceAccountAuthProvider { public: TestAuthProvider(const GoogleServiceAccountCredentials& creds) : GoogleServiceAccountAuthProvider(creds, nullptr, [this] { return this->time; }), time(absl::FromUnixSeconds(1547666103)), idx(0) {} virtual Result<HttpResponse> IssueRequest(std::string_view method, std::string_view uri, absl::Cord body) { request.push_back(std::make_pair(std::string(uri), std::string(body))); if (responses.count(idx) != 0) { return responses[idx++]; } return HttpResponse{}; } absl::Time time; int idx; absl::flat_hash_map<int, HttpResponse> responses; std::vector<std::pair<std::string, std::string>> request; }; TEST(GoogleServiceAccountAuthProviderTest, InitialState) { TestAuthProvider auth({"a", "b", "c", "d"}); EXPECT_FALSE(auth.IsValid()); EXPECT_TRUE(auth.IsExpired()); } TEST(GoogleServiceAccountAuthProviderTest, BadKeys) { TestAuthProvider auth({"a", "b", "c", "d"}); auto result = auth.GetToken(); EXPECT_FALSE(result.ok()) << result.status(); EXPECT_EQ(0, auth.request.size()); } TEST(OAuth2AuthProviderTest, NoResponse) { TestAuthProvider auth(kCreds); auto result = auth.GetToken(); EXPECT_FALSE(result.ok()) << result.status(); ASSERT_EQ(1, auth.request.size()); EXPECT_EQ("https: auth.request[0].first); EXPECT_EQ(kBody, auth.request[0].second); } TEST(GoogleServiceAccountAuthProviderTest, Status200) { TestAuthProvider auth(kCreds); auth.responses = { {0, {200, absl::Cord(kServiceAccountInfo), {}}}, {1, {200, absl::Cord(kServiceAccountInfo), {}}}, }; { auto result = auth.GetToken(); EXPECT_EQ(1, auth.idx); EXPECT_TRUE(result.ok()) << result.status(); EXPECT_EQ(1, auth.request.size()); EXPECT_EQ(auth.time + absl::Seconds(456), result->expiration); EXPECT_EQ("abc", result->token); } EXPECT_FALSE(auth.IsExpired()); EXPECT_TRUE(auth.IsValid()); auth.time += absl::Seconds(600); { auto result = auth.GetToken(); EXPECT_EQ(2, auth.idx); EXPECT_TRUE(result.ok()) << result.status(); EXPECT_EQ(2, auth.request.size()); EXPECT_EQ(auth.time + absl::Seconds(456), result->expiration); EXPECT_EQ("abc", result->token); } } }
364
#ifndef TENSORFLOW_COMPILER_MLIR_QUANTIZATION_STABLEHLO_CC_SAVED_MODEL_IMPORT_H_ #define TENSORFLOW_COMPILER_MLIR_QUANTIZATION_STABLEHLO_CC_SAVED_MODEL_IMPORT_H_ #include <string> #include <unordered_set> #include <vector> #include "absl/base/attributes.h" #include "absl/container/flat_hash_map.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OwningOpRef.h" #include "tensorflow/cc/saved_model/loader.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/cc/types.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/quantization_config.pb.h" namespace mlir::quant::stablehlo { using ImportedMlirModuleOp = std::pair<OwningOpRef<ModuleOp>, std::unique_ptr<::tensorflow::SavedModelBundle>>; absl::StatusOr<ImportedMlirModuleOp> SavedModelToMlirModuleOp( absl::string_view saved_model_path, const std::unordered_set<std::string>& tags, const std::vector<std::string>& signature_keys, MLIRContext& ctx ABSL_ATTRIBUTE_LIFETIME_BOUND); absl::StatusOr<absl::flat_hash_map<FunctionName, FunctionAlias>> GetFunctionAliases(absl::string_view saved_model_path, const std::unordered_set<std::string>& tags); void UpdateFunctionAliases( absl::flat_hash_map<FunctionName, FunctionAlias>& function_aliases, ModuleOp module_op); absl::StatusOr<OwningOpRef<ModuleOp>> ImportSavedModel( absl::string_view saved_model_path, const std::vector<std::string>& signature_keys, const std::unordered_set<std::string>& tags, const ::stablehlo::quantization::QuantizationConfig& quantization_config, absl::string_view mlir_dump_file_prefix, absl::flat_hash_map<FunctionName, FunctionAlias>& function_aliases, MLIRContext& ctx ABSL_ATTRIBUTE_LIFETIME_BOUND); } #endif #include "tensorflow/compiler/mlir/quantization/stablehlo/cc/saved_model_import.h" #include <memory> #include <string> #include <unordered_set> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/base/attributes.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OwningOpRef.h" #include "tensorflow/cc/saved_model/loader.h" #include "tensorflow/cc/saved_model/reader.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/cc/types.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/quantization_config.pb.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/quantize_preprocess.h" #include "tensorflow/compiler/mlir/tensorflow/translate/mlir_import_options.h" #include "tensorflow/compiler/mlir/tensorflow/translate/tf_mlir_translate.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace mlir::quant::stablehlo { using ::stablehlo::quantization::QuantizationConfig; using ::tensorflow::MLIRImportOptions; using ::tensorflow::SavedModelBundle; using ::tensorflow::SavedModelSignatureDefsToMlirImport; using ::tensorflow::quantization::PreprocessAndFreezeGraph; absl::StatusOr<ImportedMlirModuleOp> SavedModelToMlirModuleOp( const absl::string_view saved_model_path, const std::unordered_set<std::string>& tags, const std::vector<std::string>& signature_keys, MLIRContext& ctx ABSL_ATTRIBUTE_LIFETIME_BOUND) { MLIRImportOptions import_options; import_options.upgrade_legacy = true; import_options.lift_variables = false; import_options.include_variables_in_initializers = true; auto bundle = std::make_unique<SavedModelBundle>(); std::vector<std::string> exported_names = signature_keys; absl::StatusOr<OwningOpRef<ModuleOp>> module_op = SavedModelSignatureDefsToMlirImport(saved_model_path, tags, absl::MakeSpan(exported_names), &ctx, import_options, &bundle); if (!module_op.status().ok()) { return absl::InternalError(absl::StrCat("Failed to import SavedModel: ", module_op.status().ToString())); } return std::make_pair(std::move(*module_op), std::move(bundle)); } absl::StatusOr<absl::flat_hash_map<FunctionName, FunctionAlias>> GetFunctionAliases(absl::string_view saved_model_path, const std::unordered_set<std::string>& tags) { tensorflow::MetaGraphDef meta_graph; TF_RETURN_IF_ERROR(tensorflow::ReadMetaGraphDefFromSavedModel( saved_model_path, tags, &meta_graph)); absl::flat_hash_map<FunctionName, FunctionAlias> function_aliases( meta_graph.meta_info_def().function_aliases().begin(), meta_graph.meta_info_def().function_aliases().end()); return function_aliases; } void UpdateFunctionAliases( absl::flat_hash_map<FunctionName, FunctionAlias>& function_aliases, ModuleOp module_op) { absl::flat_hash_set<FunctionName> existing_func_names; module_op->walk([&](func::FuncOp func_op) { FunctionName func_name = func_op.getSymName().str(); existing_func_names.insert(func_name); auto original_func_name = func_op->getAttrOfType<StringAttr>("tf._original_func_name"); if (original_func_name) { if (auto alias_itr = function_aliases.find(original_func_name.str()); alias_itr != function_aliases.end()) { const FunctionAlias alias = alias_itr->second; function_aliases[func_name] = alias; } } }); absl::erase_if(function_aliases, [&existing_func_names](const auto& item) { return !existing_func_names.contains(item.first); }); } absl::StatusOr<OwningOpRef<ModuleOp>> ImportSavedModel( const absl::string_view saved_model_path, const std::vector<std::string>& signature_keys, const std::unordered_set<std::string>& tags, const QuantizationConfig& quantization_config, const absl::string_view mlir_dump_file_prefix, absl::flat_hash_map<FunctionName, FunctionAlias>& function_aliases, MLIRContext& ctx ABSL_ATTRIBUTE_LIFETIME_BOUND) { TF_ASSIGN_OR_RETURN( ImportedMlirModuleOp imported_module, SavedModelToMlirModuleOp(saved_model_path, tags, signature_keys, ctx)); auto [module_op, saved_model_bundle] = std::move(imported_module); UpdateFunctionAliases(function_aliases, *module_op); absl::flat_hash_set<std::string> aliased_function_names; absl::c_for_each(function_aliases, [&](const auto& aliases) { return aliased_function_names.insert(aliases.first); }); TF_RETURN_IF_ERROR(PreprocessAndFreezeGraph( mlir_dump_file_prefix, true, aliased_function_names, *module_op, &ctx, saved_model_bundle == nullptr ? nullptr : saved_model_bundle->GetSession(), true, false)); return std::move(module_op); } }
#include "tensorflow/compiler/mlir/quantization/stablehlo/cc/saved_model_import.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/OwningOpRef.h" #include "tensorflow/compiler/mlir/quantization/common/test_base.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/cc/types.h" namespace mlir::quant::stablehlo { namespace { using ::testing::IsEmpty; using ::testing::Pair; using ::testing::UnorderedElementsAre; using UpdateFunctionAliasesTest = ::mlir::quant::QuantizationTestBase; TEST_F(UpdateFunctionAliasesTest, NoAliasesReturnsEmptyMap) { OwningOpRef<ModuleOp> module_op = ParseModuleOpString(R"mlir( func.func private @main(%arg: tensor<1x2xf32>) -> (tensor<1x2xf32>) attributes {tf._original_func_name = "main_original"} { return %arg : tensor<1x2xf32> } )mlir"); ASSERT_TRUE(module_op); absl::flat_hash_map<FunctionName, FunctionAlias> function_aliases; UpdateFunctionAliases(function_aliases, *module_op); EXPECT_THAT(function_aliases, IsEmpty()); } TEST_F(UpdateFunctionAliasesTest, AliasUpdatedByMlirFunctionName) { OwningOpRef<ModuleOp> module_op = ParseModuleOpString(R"mlir( func.func private @main(%arg: tensor<1x2xf32>) -> (tensor<1x2xf32>) attributes {tf._original_func_name = "main_original"} { return %arg : tensor<1x2xf32> } )mlir"); ASSERT_TRUE(module_op); absl::flat_hash_map<FunctionName, FunctionAlias> function_aliases{ {"main_original", "main_alias"}}; UpdateFunctionAliases(function_aliases, *module_op); EXPECT_THAT(function_aliases, UnorderedElementsAre(Pair("main", "main_alias"))); } TEST_F(UpdateFunctionAliasesTest, IgnoresUnmatchedFunctions) { OwningOpRef<ModuleOp> module_op = ParseModuleOpString(R"mlir( func.func private @main(%arg: tensor<1x2xf32>) -> (tensor<1x2xf32>) attributes {tf._original_func_name = "main_original"} { return %arg : tensor<1x2xf32> } )mlir"); ASSERT_TRUE(module_op); absl::flat_hash_map<FunctionName, FunctionAlias> function_aliases{ {"not_main", "not_main_alias"}}; UpdateFunctionAliases(function_aliases, *module_op); EXPECT_THAT(function_aliases, IsEmpty()); } TEST_F(UpdateFunctionAliasesTest, SkipsFunctionsWithNoOriginalFuncNameAttribute) { OwningOpRef<ModuleOp> module_op = ParseModuleOpString(R"mlir( func.func private @main(%arg: tensor<1x2xf32>) -> (tensor<1x2xf32>) { return %arg : tensor<1x2xf32> } )mlir"); ASSERT_TRUE(module_op); absl::flat_hash_map<FunctionName, FunctionAlias> function_aliases{ {"main_original", "main_alias"}}; UpdateFunctionAliases(function_aliases, *module_op); EXPECT_THAT(function_aliases, IsEmpty()); } TEST_F(UpdateFunctionAliasesTest, FunctionNameNotChanged) { OwningOpRef<ModuleOp> module_op = ParseModuleOpString(R"mlir( func.func private @main_original(%arg: tensor<1x2xf32>) -> (tensor<1x2xf32>) { return %arg : tensor<1x2xf32> } )mlir"); ASSERT_TRUE(module_op); absl::flat_hash_map<FunctionName, FunctionAlias> function_aliases{ {"main_original", "main_alias"}}; UpdateFunctionAliases(function_aliases, *module_op); EXPECT_THAT(function_aliases, UnorderedElementsAre(Pair("main_original", "main_alias"))); } } }
365
#ifndef XLA_SERVICE_GPU_MODEL_GPU_PERFORMANCE_MODEL_BASE_H_ #define XLA_SERVICE_GPU_MODEL_GPU_PERFORMANCE_MODEL_BASE_H_ #include <cstdint> #include <optional> #include <string> #include "absl/container/flat_hash_map.h" #include "absl/strings/str_format.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/model/fusion_analysis_cache.h" #include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include "xla/stream_executor/device_description.h" namespace xla { namespace gpu { struct EstimateRunTimeData { int64_t flops; int64_t bytes_read; int64_t bytes_written; absl::Duration read_time; absl::Duration write_time; absl::Duration compute_time; absl::Duration exec_time; std::string ToString() const { return absl::StrFormat( "EstimateRunTimeData{\n" " flops: %d\n" " bytes_read: %d\n" " bytes_written: %d\n" " read_time: %s\n" " write_time: %s\n" " compute_time: %s\n" " exec_time: %s\n" "}", flops, bytes_read, bytes_written, absl::FormatDuration(read_time), absl::FormatDuration(write_time), absl::FormatDuration(compute_time), absl::FormatDuration(exec_time)); } }; class GpuPerformanceModelCache { public: std::optional<EstimateRunTimeData> Get(const HloInstruction& instruction); std::optional<absl::Duration> Get(const HloInstruction& producer, const HloInstruction& consumer); void Set(const HloInstruction& instruction, const EstimateRunTimeData& runtime_data); void Set(const HloInstruction& producer, const HloInstruction& consumer, absl::Duration runtime); void Invalidate(const HloInstruction& instruction); private: absl::Mutex mutex_; absl::flat_hash_map<const HloInstruction*, EstimateRunTimeData> instruction_runtime_data_; absl::flat_hash_map< const HloInstruction*, absl::flat_hash_map<const HloInstruction*, absl::Duration>> fusion_runtime_data_; }; struct GpuPerformanceModelOptions { double memory_compute_parallelism = 1.0; HloFusionAnalysisCache* fusion_analysis_cache = nullptr; GpuPerformanceModelCache* gpu_performance_model_cache = nullptr; static GpuPerformanceModelOptions Default() { return GpuPerformanceModelOptions(); } static GpuPerformanceModelOptions PriorityFusion( HloFusionAnalysisCache* fusion_analysis_cache = nullptr, GpuPerformanceModelCache* gpu_performance_model_cache = nullptr) { GpuPerformanceModelOptions config; config.fusion_analysis_cache = fusion_analysis_cache; config.gpu_performance_model_cache = gpu_performance_model_cache; config.memory_compute_parallelism = 0.95; return config; } static GpuPerformanceModelOptions ForModule(const HloModule* module) { return module->config().debug_options().xla_gpu_enable_priority_fusion() ? PriorityFusion() : Default(); } }; class GpuPerformanceModelBase { public: struct RunTimes { absl::Duration time_unfused; absl::Duration time_fused; }; static constexpr absl::Duration kKernelLaunchOverhead = absl::Microseconds(1); static constexpr absl::Duration kNcclKernelLaunchOverhead = absl::Microseconds(5); static constexpr float kL2CacheSpeedup = 2.5; static constexpr float kL1CacheSpeedup = 8; static LaunchDimensions EstimateFusionLaunchDimensions( const HloFusionAnalysis& fusion_analysis); static int64_t GetOperandBytesAccessed( const GpuHloCostAnalysis* cost_analysis, const HloInstruction* instr, const HloInstruction* operand); static float GetOperandUtilization(const GpuHloCostAnalysis* cost_analysis, const HloInstruction* instr, const HloInstruction* operand); static float GetCommonUtilization(const GpuHloCostAnalysis* cost_analysis, const HloInstruction* producer, int64_t producer_idx_of_operand, const HloInstruction* consumer); static int64_t GetSharedOperandBytesAccessed( const GpuHloCostAnalysis* cost_analysis, const HloInstruction* producer, const HloInstruction* consumer, const HloInstruction* operand); static absl::Duration ReadTime(const se::DeviceDescription& gpu_device_info, int64_t num_blocks, int64_t n_bytes_net, int64_t n_bytes_total); static absl::Duration ReadTimeWithDRAMHeuristic( const se::DeviceDescription& gpu_device_info, int64_t num_blocks, int64_t n_bytes_net, int64_t n_bytes_total, PrimitiveType element_type, bool coalesced); static absl::Duration ProducerInputAccessTime( const GpuHloCostAnalysis* cost_analysis, const se::DeviceDescription& gpu_device_info, int64_t num_blocks, const HloInstruction* producer, const HloFusionAnalysis& fusion_analysis, const GpuPerformanceModelOptions& config, const HloInstruction* fused_consumer = nullptr); static absl::Duration WriteTime(const se::DeviceDescription& gpu_device_info, int64_t bytes_written); static absl::Duration ComputeTime( const se::DeviceDescription& gpu_device_info, int64_t flops, int64_t num_blocks, int64_t num_threads_per_block); static absl::Duration CombineComputeAndMemoryAccessTime( absl::Duration compute_time, absl::Duration memory_access_time, const GpuPerformanceModelOptions& config); static void VLogOperandRead(const HloInstruction* operand, int64_t n_bytes_total, int64_t n_bytes_net, bool coalesced); }; } } #endif #include "xla/service/gpu/model/gpu_performance_model_base.h" #include <algorithm> #include <cmath> #include <cstdint> #include <optional> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/fusions/fusion_emitter.h" #include "xla/service/gpu/fusions/fusions.h" #include "xla/service/gpu/fusions/triton.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/util.h" namespace xla { namespace gpu { namespace { bool FusionUsesParameterElementwiseFromRoot( const HloInstruction* fusion, int parameter_index, const GpuHloCostAnalysis* cost_analysis) { return cost_analysis->CommonElementwiseUtilization( fusion->fused_parameter(parameter_index), fusion->fused_expression_root()) == 1.f; } int GetCoalescingWasteFactor(PrimitiveType element_type, const se::DeviceDescription& gpu_device_info) { int64_t element_size_bytes = element_type == PrimitiveType::TUPLE || element_type == PrimitiveType::TOKEN ? 4 : ShapeUtil::ByteSizeOfPrimitiveType(element_type); return gpu_device_info.dram_to_l2_transaction_size_bytes() / element_size_bytes; } float AdjustBandwidth(const se::DeviceDescription& gpu_device_info, float bandwidth, int64_t num_blocks) { float per_block_bandwidth = gpu_device_info.clock_rate_ghz() * 1.0e9f * gpu_device_info.memory_transactions_per_clock(); float max_bandwidth = num_blocks * per_block_bandwidth; return std::min(bandwidth, max_bandwidth); } } std::optional<EstimateRunTimeData> GpuPerformanceModelCache::Get( const HloInstruction& instruction) { absl::MutexLock lock(&mutex_); auto it = instruction_runtime_data_.find(&instruction); if (it != instruction_runtime_data_.end()) { return it->second; } return std::nullopt; } std::optional<absl::Duration> GpuPerformanceModelCache::Get( const HloInstruction& producer, const HloInstruction& consumer) { absl::MutexLock lock(&mutex_); auto it = fusion_runtime_data_.find(&producer); if (it != fusion_runtime_data_.end()) { auto jt = it->second.find(&consumer); if (jt != it->second.end()) { return jt->second; } } return std::nullopt; } void GpuPerformanceModelCache::Set(const HloInstruction& instruction, const EstimateRunTimeData& runtime_data) { absl::MutexLock lock(&mutex_); instruction_runtime_data_[&instruction] = runtime_data; } void GpuPerformanceModelCache::Set(const HloInstruction& producer, const HloInstruction& consumer, absl::Duration runtime) { absl::MutexLock lock(&mutex_); fusion_runtime_data_[&producer][&consumer] = runtime; } void GpuPerformanceModelCache::Invalidate(const HloInstruction& instruction) { absl::MutexLock lock(&mutex_); instruction_runtime_data_.erase(&instruction); fusion_runtime_data_.erase(&instruction); for (auto* operand : instruction.operands()) { if (operand->opcode() == HloOpcode::kGetTupleElement) { operand = operand->mutable_operand(0); } auto it = fusion_runtime_data_.find(operand); if (it != fusion_runtime_data_.end()) { it->second.erase(&instruction); } } } LaunchDimensions GpuPerformanceModelBase::EstimateFusionLaunchDimensions( const HloFusionAnalysis& fusion_analysis) { auto emitter = GetFusionEmitter(PreBufferAssignmentFusionInfo{fusion_analysis}); if (const auto* kernel_emitter = dynamic_cast<const KernelFusionInterface*>(emitter.get())) { return kernel_emitter->launch_dimensions(); } if (const auto* triton_emitter = dynamic_cast<const TritonFusion*>(emitter.get())) { if (auto launch_config = triton_emitter->launch_config()) { return launch_config->launch_dimensions; } } VLOG(5) << "Using fallback launch dimensions estimate for " << fusion_analysis.fusion().ToString(); int64_t num_threads_per_block = 128; int64_t estimated_num_threads = ShapeUtil::ElementsInRecursive(fusion_analysis.fusion_root(0).shape()); int64_t num_blocks = CeilOfRatio(estimated_num_threads, num_threads_per_block); return LaunchDimensions(num_blocks, num_threads_per_block); } int64_t GpuPerformanceModelBase::GetOperandBytesAccessed( const GpuHloCostAnalysis* cost_analysis, const HloInstruction* instr, const HloInstruction* operand) { if (!instr->IsUserOf(operand)) { return 0; } return cost_analysis->operand_bytes_accessed(*instr, instr->operand_index(operand)); } float GpuPerformanceModelBase::GetOperandUtilization( const GpuHloCostAnalysis* cost_analysis, const HloInstruction* instr, const HloInstruction* operand) { if (operand->IsMultiOutputFusion()) { float res = 0.f; for (int64_t i = 0; i < instr->operand_count(); ++i) { if (instr->operand(i)->opcode() == HloOpcode::kGetTupleElement && instr->operand(i)->operand(0) == operand) { res += cost_analysis->operand_utilization(*instr, i); } } return res; } if (!instr->IsUserOf(operand)) { return 0.f; } return cost_analysis->operand_utilization(*instr, instr->operand_index(operand)); } float GpuPerformanceModelBase::GetCommonUtilization( const GpuHloCostAnalysis* cost_analysis, const HloInstruction* producer, int64_t producer_idx_of_operand, const HloInstruction* consumer) { const auto* operand = producer->operand(producer_idx_of_operand); if (!consumer || !consumer->IsUserOf(operand)) { return 0.f; } if (producer->IsElementwise() || (producer->opcode() == HloOpcode::kFusion && FusionUsesParameterElementwiseFromRoot(producer, producer_idx_of_operand, cost_analysis))) { if (consumer->opcode() == HloOpcode::kFusion) { int64_t consumer_idx_of_common_operand = consumer->operand_index(operand); float res = 0.f; std::vector<int64_t> consumer_indices_of_producer; if (producer->IsMultiOutputFusion()) { for (int64_t i = 0; i < consumer->operand_count(); ++i) { if (consumer->operand(i)->opcode() == HloOpcode::kGetTupleElement && consumer->operand(i)->operand(0) == producer) { consumer_indices_of_producer.push_back(i); } } } else { consumer_indices_of_producer.push_back( consumer->operand_index(producer)); } for (int64_t consumer_idx_of_producer : consumer_indices_of_producer) { res += cost_analysis->CommonElementwiseUtilization( consumer->fused_parameter(consumer_idx_of_common_operand), consumer->fused_parameter(consumer_idx_of_producer)); } return res; } else if (consumer->IsElementwise()) { return 1.f; } } return 0.f; } int64_t GpuPerformanceModelBase::GetSharedOperandBytesAccessed( const GpuHloCostAnalysis* cost_analysis, const HloInstruction* producer, const HloInstruction* consumer, const HloInstruction* operand) { float producer_utilization_by_consumer = GetOperandUtilization(cost_analysis, consumer, producer); int64_t bytes_accessed_by_producer = GetOperandBytesAccessed(cost_analysis, producer, operand); int64_t bytes_accessed_by_consumer = GetOperandBytesAccessed(cost_analysis, consumer, operand); float common_utilization = producer->IsUserOf(operand) ? GetCommonUtilization(cost_analysis, producer, producer->operand_index(operand), consumer) : 0.f; int64_t operand_size = cost_analysis->GetShapeSize(operand->shape()); int64_t common_bytes_accessed = std::llround(operand_size * common_utilization); return std::llround(bytes_accessed_by_producer * producer_utilization_by_consumer) + bytes_accessed_by_consumer - common_bytes_accessed; } absl::Duration GpuPerformanceModelBase::ReadTime( const se::DeviceDescription& gpu_device_info, int64_t num_blocks, int64_t n_bytes_net, int64_t n_bytes_total) { float bandwidth = gpu_device_info.memory_bandwidth(); if (n_bytes_net < gpu_device_info.l2_cache_size()) { bandwidth *= kL2CacheSpeedup; if (n_bytes_net < gpu_device_info.l1_cache_size_per_SM() * gpu_device_info.core_count()) { bandwidth *= kL1CacheSpeedup; } } bandwidth = AdjustBandwidth(gpu_device_info, bandwidth, num_blocks); return absl::Seconds(n_bytes_total / bandwidth); } absl::Duration GpuPerformanceModelBase::ReadTimeWithDRAMHeuristic( const se::DeviceDescription& gpu_device_info, int64_t num_blocks, int64_t n_bytes_net, int64_t n_bytes_total, PrimitiveType element_type, bool coalesced) { int waste_factor = coalesced ? 1 : GetCoalescingWasteFactor(element_type, gpu_device_info); float dram_bandwidth = gpu_device_info.memory_bandwidth() / waste_factor; float rest_bandwidth = gpu_device_info.memory_bandwidth(); if (n_bytes_net < gpu_device_info.l2_cache_size()) { rest_bandwidth *= kL2CacheSpeedup; if (n_bytes_net < gpu_device_info.l1_cache_size_per_SM() * gpu_device_info.core_count()) { rest_bandwidth *= kL1CacheSpeedup; } } else { rest_bandwidth /= waste_factor; } dram_bandwidth = AdjustBandwidth(gpu_device_info, dram_bandwidth, num_blocks); rest_bandwidth = AdjustBandwidth(gpu_device_info, rest_bandwidth, num_blocks); int64_t n_bytes_read_dram = std::min(n_bytes_net, n_bytes_total); int64_t n_bytes_read_cache = n_bytes_total - n_bytes_read_dram; return absl::Seconds(n_bytes_read_dram / dram_bandwidth) + absl::Seconds(n_bytes_read_cache / rest_bandwidth); } absl::Duration GpuPerformanceModelBase::ProducerInputAccessTime( const GpuHloCostAnalysis* cost_analysis, const se::DeviceDescription& gpu_device_info, int64_t num_blocks, const HloInstruction* producer, const HloFusionAnalysis& fusion_analysis, const GpuPerformanceModelOptions& config, const HloInstruction* fused_consumer) { absl::Duration ret = absl::ZeroDuration(); float producer_output_utilization = fused_consumer ? GetOperandUtilization(cost_analysis, fused_consumer, producer) : 1.f; for (int i = 0; i < producer->operand_count(); ++i) { int64_t operand_bytes_accessed = cost_analysis->operand_bytes_accessed(*producer, i); float operand_utilization = cost_analysis->operand_utilization(*producer, i); int64_t n_bytes_net = std::llround(operand_bytes_accessed / std::max(operand_utilization, 1.0f)); float common_utilization = GetCommonUtilization( cost_analysis, producer, i, fused_consumer); CHECK_LE(common_utilization, producer_output_utilization); float n_bytes_total = operand_bytes_accessed * (producer_output_utilization - common_utilization); ret += ReadTime(gpu_device_info, num_blocks, n_bytes_net, n_bytes_total); } return ret; } absl::Duration GpuPerformanceModelBase::WriteTime( const se::DeviceDescription& gpu_device_info, int64_t bytes_written) { return absl::Seconds(1.0f * bytes_written / gpu_device_info.memory_bandwidth()); } absl::Duration GpuPerformanceModelBase::ComputeTime( const se::DeviceDescription& gpu_device_info, int64_t flops, int64_t num_blocks, int64_t num_threads_per_block) { int64_t n_active_fpus_per_core = std::min<int64_t>(num_threads_per_block, gpu_device_info.fpus_per_core()); int64_t n_active_core = std::min<int64_t>(num_blocks, gpu_device_info.core_count()); int64_t fpu_count = n_active_core * n_active_fpus_per_core; int64_t flop_per_ns_per_fpu = gpu_device_info.clock_rate_ghz() * 2; int64_t flop_per_ns_effective = flop_per_ns_per_fpu * fpu_count; return absl::Nanoseconds(1.0f * flops / flop_per_ns_effective); } absl::Duration GpuPerformanceModelBase::CombineComputeAndMemoryAccessTime( absl::Duration compute_time, absl::Duration memory_access_time, const GpuPerformanceModelOptions& config) { return compute_time + memory_access_time - std::min(compute_time, memory_access_time) * config.memory_compute_parallelism; } void GpuPerformanceModelBase::VLogOperandRead(const HloInstruction* operand, int64_t n_bytes_total, int64_t n_bytes_net, bool coalesced) { VLOG(8) << "operand " << operand->name() << ", n_bytes_total: " << n_bytes_total << ", n_bytes_net: " << n_bytes_net << ", coalesced: " << coalesced; } } }
#include "xla/service/gpu/model/gpu_performance_model_base.h" #include <cstdint> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { class GpuPerformanceModelBaseTest : public HloTestBase { public: GpuHloCostAnalysis::ShapeSizeFunction ShapeSizeBytesFunction() const { return [&](const Shape& shape) { constexpr int64_t kPointerSize = 8; return ShapeUtil::ByteSizeOf(shape, kPointerSize); }; } GpuHloCostAnalysis::Options options_{ShapeSizeBytesFunction(), {}, true}; se::DeviceDescription device_info_{TestGpuDeviceInfo::RTXA6000DeviceInfo()}; GpuHloCostAnalysis analysis_{options_, &device_info_}; GpuPerformanceModelBaseTest() : HloTestBase() {} }; TEST_F(GpuPerformanceModelBaseTest, SharedOperandBytesAccessed_InPlaceDUS) { absl::string_view hlo_string = R"( HloModule m ENTRY entry_computation { param_0 = f32[8,16] parameter(0) param_1 = f32[4,4] parameter(1) c_0 = s32[] constant(0) log = f32[4,4] log(param_1) ROOT dynamic-update-slice = f32[8,16] dynamic-update-slice(param_0, log, c_0, c_0) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); ASSERT_IS_OK(computation->Accept(&analysis_)); auto dus_consumer = computation->root_instruction(); auto log_producer = dus_consumer->mutable_operand(1); auto get_shared_operand_bytes_accessed = [&](const HloInstruction* operand) { return GpuPerformanceModelBase::GetSharedOperandBytesAccessed( &analysis_, log_producer, dus_consumer, operand); }; EXPECT_EQ(get_shared_operand_bytes_accessed(dus_consumer->operand(0)), 0); EXPECT_EQ(get_shared_operand_bytes_accessed(log_producer->operand(0)), 64); } TEST_F(GpuPerformanceModelBaseTest, SharedOperandBytesAccessed_DUS) { absl::string_view hlo_string = R"( HloModule m ENTRY entry_computation { param_0 = f32[8,16] parameter(0) param_1 = f32[4,4] parameter(1) c_0 = s32[] constant(0) log = f32[8,16] log(param_0) ROOT dynamic-update-slice = f32[8,16] dynamic-update-slice(log, param_1, c_0, c_0) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); ASSERT_IS_OK(computation->Accept(&analysis_)); auto dus_consumer = computation->root_instruction(); auto log_producer = dus_consumer->mutable_operand(0); auto get_shared_operand_bytes_accessed = [&](const HloInstruction* operand) { return GpuPerformanceModelBase::GetSharedOperandBytesAccessed( &analysis_, log_producer, dus_consumer, operand); }; EXPECT_EQ(get_shared_operand_bytes_accessed(dus_consumer->operand(1)), 64); EXPECT_EQ(get_shared_operand_bytes_accessed(log_producer->operand(0)), 448); } TEST_F(GpuPerformanceModelBaseTest, ReduceBroadcastedDim_IncorrectBytesAccessed) { absl::string_view hlo_string = R"( HloModule m add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } f1 { p0 = f32[128] parameter(0) c0 = f32[] constant(0) broadcast = f32[128,256] broadcast(p0), dimensions={0} ROOT reduce = f32[128] reduce(broadcast, c0), dimensions={1}, to_apply=add } ENTRY entry_computation { param_0 = f32[128] parameter(0) param_1 = f32[4,4] parameter(1) ROOT fusion = f32[128] fusion(param_0), kind=kLoop, calls=f1 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); ASSERT_IS_OK(computation->Accept(&analysis_)); auto root = computation->root_instruction(); EXPECT_EQ(GpuPerformanceModelBase::GetOperandBytesAccessed(&analysis_, root, root->operand(0)), 131072); } TEST_F(GpuPerformanceModelBaseTest, ElementwiseBitcast_IncorrectBytesAccessed) { absl::string_view hlo_string = R"( HloModule m f1 { p0 = f32[128] parameter(0) bitcast.1 = f32[8,16] bitcast(p0) log = f32[128] log(p0) bitcast.2 = f32[8,16] bitcast(log) ROOT add = f32[8,16] add(bitcast.1, bitcast.2) } ENTRY entry_computation { param_0 = f32[128] parameter(0) ROOT fusion = f32[8,16] fusion(param_0), kind=kLoop, calls=f1 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); ASSERT_IS_OK(computation->Accept(&analysis_)); auto root = computation->root_instruction(); EXPECT_EQ(GpuPerformanceModelBase::GetOperandBytesAccessed(&analysis_, root, root->operand(0)), 1024); } TEST_F(GpuPerformanceModelBaseTest, EstimateFusionLaunchDimensions_LoopFusion) { absl::string_view hlo_string = R"( HloModule m f1 { p0 = f32[8,16,128] parameter(0) log = f32[8,16,128] log(p0) ROOT add = f32[8,16,128] add(p0, log) } ENTRY entry_computation { param_0 = f32[8,16,128] parameter(0) ROOT fusion = f32[8,16,128] fusion(param_0), kind=kLoop, calls=f1 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); auto fusion_analysis = AnalyzeFusion( *module->entry_computation()->root_instruction(), device_info_); auto launch_dimensions = GpuPerformanceModelBase::EstimateFusionLaunchDimensions(fusion_analysis); EXPECT_EQ(launch_dimensions.num_blocks(), 16); EXPECT_EQ(launch_dimensions.num_threads_per_block(), 1024); } TEST_F(GpuPerformanceModelBaseTest, EstimateFusionLaunchDimensions_TritonSoftMaxFusion) { absl::string_view hlo_string = R"( max { p1 = f32[] parameter(1) p0 = f32[] parameter(0) ROOT m = f32[] maximum(p0, p1) } triton_softmax_computation { p0 = f32[16,970] parameter(0) constant = f32[] constant(-inf) reduce = f32[16] reduce(p0, constant), dimensions={1}, to_apply=max broadcast = f32[16,970] broadcast(reduce), dimensions={0} ROOT subtract = f32[16,970] subtract(p0, broadcast) } ENTRY e { p0 = f32[16,970]{1,0} parameter(0) ROOT r = f32[16,970]{1,0} fusion(p0), kind=kCustom, calls=triton_softmax_computation, backend_config={"fusion_backend_config": {kind: "__triton","block_level_fusion_config":{"output_tile_sizes":["1","970"],"num_warps":"2"}}} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); auto fusion_analysis = AnalyzeFusion( *module->entry_computation()->root_instruction(), device_info_); auto launch_dimensions = GpuPerformanceModelBase::EstimateFusionLaunchDimensions(fusion_analysis); EXPECT_EQ(launch_dimensions.num_blocks(), 16); EXPECT_EQ(launch_dimensions.num_threads_per_block(), 64); } TEST_F(GpuPerformanceModelBaseTest, EstimateFusionLaunchDimensions_CudnnFusion) { absl::string_view hlo_string = R"( fusion1 { p0 = f32[32,96] parameter(0) p1 = f32[96,256] parameter(1) ROOT r = f32[32,256] dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { p0 = f32[32,96] parameter(0) p1 = f32[96,256] parameter(1) ROOT _ = f32[32,256] fusion(p0, p1), kind=kCustom, calls=fusion1, backend_config={"fusion_backend_config": {kind: "__cudnn$fusion"}} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); auto fusion_analysis = AnalyzeFusion( *module->entry_computation()->root_instruction(), device_info_); auto launch_dimensions = GpuPerformanceModelBase::EstimateFusionLaunchDimensions(fusion_analysis); EXPECT_EQ(launch_dimensions.num_blocks(), 64); EXPECT_EQ(launch_dimensions.num_threads_per_block(), 128); } } } }
366
#ifndef TENSORFLOW_CORE_UTIL_BAD_INDICES_POLICY_H_ #define TENSORFLOW_CORE_UTIL_BAD_INDICES_POLICY_H_ #include "absl/status/statusor.h" #include "absl/strings/string_view.h" namespace tensorflow { enum class BadIndicesPolicy { kDefault, kError, kIgnore, }; absl::StatusOr<BadIndicesPolicy> BadIndicesPolicyFromString( absl::string_view str); } #endif #include "tensorflow/core/util/bad_indices_policy.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" namespace tensorflow { constexpr char kDefault[] = "DEFAULT"; constexpr char kErrorStr[] = "ERROR"; constexpr char kIgnoreStr[] = "IGNORE"; absl::StatusOr<BadIndicesPolicy> BadIndicesPolicyFromString( absl::string_view str) { if (str.empty()) return BadIndicesPolicy::kDefault; if (str == kDefault) return BadIndicesPolicy::kDefault; if (str == kErrorStr) return BadIndicesPolicy::kError; if (str == kIgnoreStr) return BadIndicesPolicy::kIgnore; return absl::InvalidArgumentError( absl::StrCat("Unknown bad indices handling attribute: ", str)); } }
#include "tensorflow/core/util/bad_indices_policy.h" #include <gmock/gmock.h> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { constexpr absl::string_view kDefault = "DEFAULT"; constexpr absl::string_view kErrorStr = "ERROR"; constexpr absl::string_view kIgnoreStr = "IGNORE"; class BadIndicesPolicyFromStringTest : public ::testing::Test { protected: void TestValidInput(absl::string_view input, BadIndicesPolicy expected) { absl::StatusOr<BadIndicesPolicy> result = BadIndicesPolicyFromString(input); ASSERT_TRUE(result.ok()); EXPECT_EQ(result.value(), expected); } }; TEST_F(BadIndicesPolicyFromStringTest, EmptyString) { TestValidInput("", BadIndicesPolicy::kDefault); } TEST_F(BadIndicesPolicyFromStringTest, DefaultKeyword) { TestValidInput(kDefault, BadIndicesPolicy::kDefault); } TEST_F(BadIndicesPolicyFromStringTest, ErrorKeyword) { TestValidInput(kErrorStr, BadIndicesPolicy::kError); } TEST_F(BadIndicesPolicyFromStringTest, IgnoreKeyword) { TestValidInput(kIgnoreStr, BadIndicesPolicy::kIgnore); } TEST_F(BadIndicesPolicyFromStringTest, InvalidInput) { absl::StatusOr<BadIndicesPolicy> result = BadIndicesPolicyFromString("unknown"); ASSERT_FALSE(result.ok()); EXPECT_THAT(result.status().message(), ::testing::HasSubstr("Unknown bad indices handling attribute")); } } }
367
#ifndef QUICHE_HTTP2_HPACK_DECODER_HPACK_DECODER_STRING_BUFFER_H_ #define QUICHE_HTTP2_HPACK_DECODER_HPACK_DECODER_STRING_BUFFER_H_ #include <stddef.h> #include <ostream> #include <string> #include "absl/strings/string_view.h" #include "quiche/http2/hpack/huffman/hpack_huffman_decoder.h" #include "quiche/common/platform/api/quiche_export.h" namespace http2 { class QUICHE_EXPORT HpackDecoderStringBuffer { public: enum class State : uint8_t { RESET, COLLECTING, COMPLETE }; enum class Backing : uint8_t { RESET, UNBUFFERED, BUFFERED }; HpackDecoderStringBuffer(); ~HpackDecoderStringBuffer(); HpackDecoderStringBuffer(const HpackDecoderStringBuffer&) = delete; HpackDecoderStringBuffer& operator=(const HpackDecoderStringBuffer&) = delete; void Reset(); void OnStart(bool huffman_encoded, size_t len); bool OnData(const char* data, size_t len); bool OnEnd(); void BufferStringIfUnbuffered(); bool IsBuffered() const; size_t BufferedLength() const; absl::string_view str() const; absl::string_view GetStringIfComplete() const; std::string ReleaseString(); State state_for_testing() const { return state_; } Backing backing_for_testing() const { return backing_; } void OutputDebugStringTo(std::ostream& out) const; private: std::string buffer_; absl::string_view value_; HpackHuffmanDecoder decoder_; size_t remaining_len_; bool is_huffman_encoded_; State state_; Backing backing_; }; QUICHE_EXPORT std::ostream& operator<<(std::ostream& out, const HpackDecoderStringBuffer& v); } #endif #include "quiche/http2/hpack/decoder/hpack_decoder_string_buffer.h" #include <ostream> #include <string> #include <utility> #include "quiche/common/platform/api/quiche_bug_tracker.h" #include "quiche/common/platform/api/quiche_logging.h" namespace http2 { std::ostream& operator<<(std::ostream& out, const HpackDecoderStringBuffer::State v) { switch (v) { case HpackDecoderStringBuffer::State::RESET: return out << "RESET"; case HpackDecoderStringBuffer::State::COLLECTING: return out << "COLLECTING"; case HpackDecoderStringBuffer::State::COMPLETE: return out << "COMPLETE"; } int unknown = static_cast<int>(v); QUICHE_BUG(http2_bug_50_1) << "Invalid HpackDecoderStringBuffer::State: " << unknown; return out << "HpackDecoderStringBuffer::State(" << unknown << ")"; } std::ostream& operator<<(std::ostream& out, const HpackDecoderStringBuffer::Backing v) { switch (v) { case HpackDecoderStringBuffer::Backing::RESET: return out << "RESET"; case HpackDecoderStringBuffer::Backing::UNBUFFERED: return out << "UNBUFFERED"; case HpackDecoderStringBuffer::Backing::BUFFERED: return out << "BUFFERED"; } auto v2 = static_cast<int>(v); QUICHE_BUG(http2_bug_50_2) << "Invalid HpackDecoderStringBuffer::Backing: " << v2; return out << "HpackDecoderStringBuffer::Backing(" << v2 << ")"; } HpackDecoderStringBuffer::HpackDecoderStringBuffer() : remaining_len_(0), is_huffman_encoded_(false), state_(State::RESET), backing_(Backing::RESET) {} HpackDecoderStringBuffer::~HpackDecoderStringBuffer() = default; void HpackDecoderStringBuffer::Reset() { QUICHE_DVLOG(3) << "HpackDecoderStringBuffer::Reset"; state_ = State::RESET; } void HpackDecoderStringBuffer::OnStart(bool huffman_encoded, size_t len) { QUICHE_DVLOG(2) << "HpackDecoderStringBuffer::OnStart"; QUICHE_DCHECK_EQ(state_, State::RESET); remaining_len_ = len; is_huffman_encoded_ = huffman_encoded; state_ = State::COLLECTING; if (huffman_encoded) { decoder_.Reset(); buffer_.clear(); backing_ = Backing::BUFFERED; len = len * 8 / 5; if (buffer_.capacity() < len) { buffer_.reserve(len); } } else { backing_ = Backing::RESET; value_ = absl::string_view(); } } bool HpackDecoderStringBuffer::OnData(const char* data, size_t len) { QUICHE_DVLOG(2) << "HpackDecoderStringBuffer::OnData state=" << state_ << ", backing=" << backing_; QUICHE_DCHECK_EQ(state_, State::COLLECTING); QUICHE_DCHECK_LE(len, remaining_len_); remaining_len_ -= len; if (is_huffman_encoded_) { QUICHE_DCHECK_EQ(backing_, Backing::BUFFERED); return decoder_.Decode(absl::string_view(data, len), &buffer_); } if (backing_ == Backing::RESET) { if (remaining_len_ == 0) { value_ = absl::string_view(data, len); backing_ = Backing::UNBUFFERED; return true; } backing_ = Backing::BUFFERED; buffer_.reserve(remaining_len_ + len); buffer_.assign(data, len); return true; } QUICHE_DCHECK_EQ(backing_, Backing::BUFFERED); buffer_.append(data, len); return true; } bool HpackDecoderStringBuffer::OnEnd() { QUICHE_DVLOG(2) << "HpackDecoderStringBuffer::OnEnd"; QUICHE_DCHECK_EQ(state_, State::COLLECTING); QUICHE_DCHECK_EQ(0u, remaining_len_); if (is_huffman_encoded_) { QUICHE_DCHECK_EQ(backing_, Backing::BUFFERED); if (!decoder_.InputProperlyTerminated()) { return false; } value_ = buffer_; } else if (backing_ == Backing::BUFFERED) { value_ = buffer_; } state_ = State::COMPLETE; return true; } void HpackDecoderStringBuffer::BufferStringIfUnbuffered() { QUICHE_DVLOG(3) << "HpackDecoderStringBuffer::BufferStringIfUnbuffered state=" << state_ << ", backing=" << backing_; if (state_ != State::RESET && backing_ == Backing::UNBUFFERED) { QUICHE_DVLOG(2) << "HpackDecoderStringBuffer buffering std::string of length " << value_.size(); buffer_.assign(value_.data(), value_.size()); if (state_ == State::COMPLETE) { value_ = buffer_; } backing_ = Backing::BUFFERED; } } bool HpackDecoderStringBuffer::IsBuffered() const { QUICHE_DVLOG(3) << "HpackDecoderStringBuffer::IsBuffered"; return state_ != State::RESET && backing_ == Backing::BUFFERED; } size_t HpackDecoderStringBuffer::BufferedLength() const { QUICHE_DVLOG(3) << "HpackDecoderStringBuffer::BufferedLength"; return IsBuffered() ? buffer_.size() : 0; } absl::string_view HpackDecoderStringBuffer::str() const { QUICHE_DVLOG(3) << "HpackDecoderStringBuffer::str"; QUICHE_DCHECK_EQ(state_, State::COMPLETE); return value_; } absl::string_view HpackDecoderStringBuffer::GetStringIfComplete() const { if (state_ != State::COMPLETE) { return {}; } return str(); } std::string HpackDecoderStringBuffer::ReleaseString() { QUICHE_DVLOG(3) << "HpackDecoderStringBuffer::ReleaseString"; QUICHE_DCHECK_EQ(state_, State::COMPLETE); QUICHE_DCHECK_EQ(backing_, Backing::BUFFERED); if (state_ == State::COMPLETE) { state_ = State::RESET; if (backing_ == Backing::BUFFERED) { return std::move(buffer_); } else { return std::string(value_); } } return ""; } void HpackDecoderStringBuffer::OutputDebugStringTo(std::ostream& out) const { out << "{state=" << state_; if (state_ != State::RESET) { out << ", backing=" << backing_; out << ", remaining_len=" << remaining_len_; out << ", is_huffman_encoded=" << is_huffman_encoded_; if (backing_ == Backing::BUFFERED) { out << ", buffer: " << buffer_; } else { out << ", value: " << value_; } } out << "}"; } std::ostream& operator<<(std::ostream& out, const HpackDecoderStringBuffer& v) { v.OutputDebugStringTo(out); return out; } }
#include "quiche/http2/hpack/decoder/hpack_decoder_string_buffer.h" #include <initializer_list> #include <sstream> #include <string> #include "absl/strings/escaping.h" #include "absl/strings/match.h" #include "quiche/http2/test_tools/verify_macros.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/common/platform/api/quiche_test.h" using ::testing::AssertionResult; using ::testing::AssertionSuccess; using ::testing::HasSubstr; namespace http2 { namespace test { namespace { class HpackDecoderStringBufferTest : public quiche::test::QuicheTest { protected: typedef HpackDecoderStringBuffer::State State; typedef HpackDecoderStringBuffer::Backing Backing; State state() const { return buf_.state_for_testing(); } Backing backing() const { return buf_.backing_for_testing(); } AssertionResult VerifyLogHasSubstrs(std::initializer_list<std::string> strs) { QUICHE_VLOG(1) << buf_; std::ostringstream ss; buf_.OutputDebugStringTo(ss); std::string dbg_str(ss.str()); for (const auto& expected : strs) { HTTP2_VERIFY_TRUE(absl::StrContains(dbg_str, expected)); } return AssertionSuccess(); } HpackDecoderStringBuffer buf_; }; TEST_F(HpackDecoderStringBufferTest, PlainWhole) { absl::string_view data("some text."); QUICHE_LOG(INFO) << buf_; EXPECT_EQ(state(), State::RESET); buf_.OnStart( false, data.size()); EXPECT_EQ(state(), State::COLLECTING); EXPECT_EQ(backing(), Backing::RESET); QUICHE_LOG(INFO) << buf_; EXPECT_TRUE(buf_.OnData(data.data(), data.size())); EXPECT_EQ(state(), State::COLLECTING); EXPECT_EQ(backing(), Backing::UNBUFFERED); EXPECT_TRUE(buf_.OnEnd()); EXPECT_EQ(state(), State::COMPLETE); EXPECT_EQ(backing(), Backing::UNBUFFERED); EXPECT_EQ(0u, buf_.BufferedLength()); EXPECT_TRUE(VerifyLogHasSubstrs( {"state=COMPLETE", "backing=UNBUFFERED", "value: some text."})); EXPECT_EQ(data.data(), buf_.str().data()); buf_.BufferStringIfUnbuffered(); QUICHE_LOG(INFO) << buf_; EXPECT_EQ(backing(), Backing::BUFFERED); EXPECT_EQ(buf_.BufferedLength(), data.size()); EXPECT_EQ(data, buf_.str()); EXPECT_NE(data.data(), buf_.str().data()); EXPECT_TRUE(VerifyLogHasSubstrs( {"state=COMPLETE", "backing=BUFFERED", "buffer: some text."})); } TEST_F(HpackDecoderStringBufferTest, PlainSplit) { absl::string_view data("some text."); absl::string_view part1 = data.substr(0, 1); absl::string_view part2 = data.substr(1); EXPECT_EQ(state(), State::RESET); buf_.OnStart( false, data.size()); EXPECT_EQ(state(), State::COLLECTING); EXPECT_EQ(backing(), Backing::RESET); EXPECT_TRUE(buf_.OnData(part1.data(), part1.size())); EXPECT_EQ(state(), State::COLLECTING); EXPECT_EQ(backing(), Backing::BUFFERED); EXPECT_EQ(buf_.BufferedLength(), part1.size()); QUICHE_LOG(INFO) << buf_; EXPECT_TRUE(buf_.OnData(part2.data(), part2.size())); EXPECT_EQ(state(), State::COLLECTING); EXPECT_EQ(backing(), Backing::BUFFERED); EXPECT_EQ(buf_.BufferedLength(), data.size()); EXPECT_TRUE(buf_.OnEnd()); EXPECT_EQ(state(), State::COMPLETE); EXPECT_EQ(backing(), Backing::BUFFERED); EXPECT_EQ(buf_.BufferedLength(), data.size()); QUICHE_LOG(INFO) << buf_; absl::string_view buffered = buf_.str(); EXPECT_EQ(data, buffered); EXPECT_NE(data.data(), buffered.data()); buf_.BufferStringIfUnbuffered(); EXPECT_EQ(backing(), Backing::BUFFERED); EXPECT_EQ(buf_.BufferedLength(), data.size()); EXPECT_EQ(buffered, buf_.str()); EXPECT_EQ(buffered.data(), buf_.str().data()); } TEST_F(HpackDecoderStringBufferTest, HuffmanWhole) { std::string encoded; ASSERT_TRUE(absl::HexStringToBytes("f1e3c2e5f23a6ba0ab90f4ff", &encoded)); absl::string_view decoded("www.example.com"); EXPECT_EQ(state(), State::RESET); buf_.OnStart( true, encoded.size()); EXPECT_EQ(state(), State::COLLECTING); EXPECT_TRUE(buf_.OnData(encoded.data(), encoded.size())); EXPECT_EQ(state(), State::COLLECTING); EXPECT_EQ(backing(), Backing::BUFFERED); EXPECT_TRUE(buf_.OnEnd()); EXPECT_EQ(state(), State::COMPLETE); EXPECT_EQ(backing(), Backing::BUFFERED); EXPECT_EQ(buf_.BufferedLength(), decoded.size()); EXPECT_EQ(decoded, buf_.str()); EXPECT_TRUE(VerifyLogHasSubstrs( {"{state=COMPLETE", "backing=BUFFERED", "buffer: www.example.com}"})); std::string s = buf_.ReleaseString(); EXPECT_EQ(s, decoded); EXPECT_EQ(state(), State::RESET); } TEST_F(HpackDecoderStringBufferTest, HuffmanSplit) { std::string encoded; ASSERT_TRUE(absl::HexStringToBytes("f1e3c2e5f23a6ba0ab90f4ff", &encoded)); std::string part1 = encoded.substr(0, 5); std::string part2 = encoded.substr(5); absl::string_view decoded("www.example.com"); EXPECT_EQ(state(), State::RESET); buf_.OnStart( true, encoded.size()); EXPECT_EQ(state(), State::COLLECTING); EXPECT_EQ(backing(), Backing::BUFFERED); EXPECT_EQ(0u, buf_.BufferedLength()); QUICHE_LOG(INFO) << buf_; EXPECT_TRUE(buf_.OnData(part1.data(), part1.size())); EXPECT_EQ(state(), State::COLLECTING); EXPECT_EQ(backing(), Backing::BUFFERED); EXPECT_GT(buf_.BufferedLength(), 0u); EXPECT_LT(buf_.BufferedLength(), decoded.size()); QUICHE_LOG(INFO) << buf_; EXPECT_TRUE(buf_.OnData(part2.data(), part2.size())); EXPECT_EQ(state(), State::COLLECTING); EXPECT_EQ(backing(), Backing::BUFFERED); EXPECT_EQ(buf_.BufferedLength(), decoded.size()); QUICHE_LOG(INFO) << buf_; EXPECT_TRUE(buf_.OnEnd()); EXPECT_EQ(state(), State::COMPLETE); EXPECT_EQ(backing(), Backing::BUFFERED); EXPECT_EQ(buf_.BufferedLength(), decoded.size()); EXPECT_EQ(decoded, buf_.str()); QUICHE_LOG(INFO) << buf_; buf_.Reset(); EXPECT_EQ(state(), State::RESET); QUICHE_LOG(INFO) << buf_; } TEST_F(HpackDecoderStringBufferTest, InvalidHuffmanOnData) { std::string encoded; ASSERT_TRUE(absl::HexStringToBytes("ffffffff", &encoded)); buf_.OnStart( true, encoded.size()); EXPECT_EQ(state(), State::COLLECTING); EXPECT_FALSE(buf_.OnData(encoded.data(), encoded.size())); EXPECT_EQ(state(), State::COLLECTING); EXPECT_EQ(backing(), Backing::BUFFERED); QUICHE_LOG(INFO) << buf_; } TEST_F(HpackDecoderStringBufferTest, InvalidHuffmanOnEnd) { std::string encoded; ASSERT_TRUE(absl::HexStringToBytes("00", &encoded)); buf_.OnStart( true, encoded.size()); EXPECT_EQ(state(), State::COLLECTING); EXPECT_TRUE(buf_.OnData(encoded.data(), encoded.size())); EXPECT_EQ(state(), State::COLLECTING); EXPECT_EQ(backing(), Backing::BUFFERED); EXPECT_FALSE(buf_.OnEnd()); QUICHE_LOG(INFO) << buf_; } } } }
368
#ifndef TENSORFLOW_LITE_KERNELS_ACCELERATION_TEST_UTIL_INTERNAL_H_ #define TENSORFLOW_LITE_KERNELS_ACCELERATION_TEST_UTIL_INTERNAL_H_ #include <algorithm> #include <atomic> #include <functional> #include <iterator> #include <optional> #include <string> #include <vector> #include "absl/types/optional.h" #include "re2/re2.h" namespace tflite { void ReadAccelerationConfig( const char* config, const std::function<void(std::string, std::string, bool)>& consumer); template <typename T> class ConfigurationEntry { public: ConfigurationEntry(const std::string& test_id_rex, T test_config, bool is_denylist) : test_id_rex_(test_id_rex), test_config_(test_config), is_denylist_(is_denylist) {} bool Matches(const std::string& test_id) { return RE2::FullMatch(test_id, test_id_rex_); } bool IsDenylistEntry() const { return is_denylist_; } const T& TestConfig() const { return test_config_; } const std::string& TestIdRex() const { return test_id_rex_; } private: std::string test_id_rex_; T test_config_; bool is_denylist_; }; template <typename T> std::optional<T> GetAccelerationTestParam(std::string test_id) { static std::atomic<std::vector<ConfigurationEntry<T>>*> test_config_ptr; if (test_config_ptr.load() == nullptr) { auto config = new std::vector<ConfigurationEntry<T>>(); auto consumer = [&config](std::string key, std::string value_str, bool is_denylist) mutable { T value = T::ParseConfigurationLine(value_str); config->push_back(ConfigurationEntry<T>(key, value, is_denylist)); }; ReadAccelerationConfig(T::AccelerationTestConfig(), consumer); auto* prev_val = test_config_ptr.exchange(config); delete prev_val; } const std::vector<ConfigurationEntry<T>>* test_config = test_config_ptr.load(); const auto test_config_iter = std::find_if( test_config->begin(), test_config->end(), [&test_id](ConfigurationEntry<T> elem) { return elem.Matches(test_id); }); if (test_config_iter != test_config->end() && !test_config_iter->IsDenylistEntry()) { return std::optional<T>(test_config_iter->TestConfig()); } else { return std::optional<T>(); } } } #endif #include "tensorflow/lite/kernels/acceleration_test_util_internal.h" #include <ctype.h> #include <algorithm> #include <functional> #include <iterator> #include <sstream> #include <string> namespace tflite { void ReadAccelerationConfig( const char* config, const std::function<void(std::string, std::string, bool)>& consumer) { if (config) { std::istringstream istream{config}; std::string curr_config_line; while (std::getline(istream, curr_config_line)) { curr_config_line.erase( curr_config_line.begin(), std::find_if_not(curr_config_line.begin(), curr_config_line.end(), [](int ch) { return std::isspace(ch); })); if (curr_config_line.empty() || curr_config_line.at(0) == '#') { continue; } auto first_sep_pos = std::find(curr_config_line.begin(), curr_config_line.end(), ','); bool is_denylist = false; std::string key = curr_config_line; std::string value{}; if (first_sep_pos != curr_config_line.end()) { key = std::string(curr_config_line.begin(), first_sep_pos); value = std::string(first_sep_pos + 1, curr_config_line.end()); } if (key[0] == '-') { key = key.substr(1); is_denylist = true; } consumer(key, value, is_denylist); } } } }
#include "tensorflow/lite/kernels/acceleration_test_util_internal.h" #include <functional> #include <optional> #include <string> #include <unordered_map> #include <gmock/gmock.h> #include <gtest/gtest.h> namespace tflite { using ::testing::Eq; using ::testing::Not; using ::testing::Test; struct SimpleConfig { public: static constexpr char kAccelerationTestConfig[] = R"( #test-id,some-other-data test-1,data-1 test-2, test-3,data-3 test-4.*,data-4 -test-5 test-6 test-7,data-7 )"; static const char* AccelerationTestConfig() { return kAccelerationTestConfig; } static SimpleConfig ParseConfigurationLine(const std::string& conf_line) { return {conf_line}; } std::string value; }; class ReadAccelerationConfigTest : public ::testing::Test { public: std::unordered_map<std::string, SimpleConfig> allowlist_; std::unordered_map<std::string, SimpleConfig> denylist_; std::function<void(std::string, std::string, bool)> consumer_ = [this](std::string key, std::string value, bool is_denylist) { if (is_denylist) { denylist_[key] = {value}; } else { allowlist_[key] = {value}; } }; }; TEST_F(ReadAccelerationConfigTest, ReadsAKeyOnlyLine) { ReadAccelerationConfig("key", consumer_); EXPECT_THAT(allowlist_.find("key"), Not(Eq(allowlist_.end()))); EXPECT_TRUE(denylist_.empty()); } TEST_F(ReadAccelerationConfigTest, ReadsADenylistKeyOnlyLine) { ReadAccelerationConfig("-key", consumer_); EXPECT_THAT(denylist_.find("key"), Not(Eq(allowlist_.end()))); EXPECT_TRUE(allowlist_.empty()); } TEST_F(ReadAccelerationConfigTest, ReadsAKeyValueLine) { ReadAccelerationConfig("key,value", consumer_); EXPECT_THAT(allowlist_["key"].value, Eq("value")); EXPECT_TRUE(denylist_.empty()); } TEST_F(ReadAccelerationConfigTest, ReadsADenyListKeyValueLine) { ReadAccelerationConfig("-key,value", consumer_); EXPECT_THAT(denylist_["key"].value, Eq("value")); EXPECT_TRUE(allowlist_.empty()); } TEST_F(ReadAccelerationConfigTest, KeysAreLeftTrimmed) { ReadAccelerationConfig(" key,value", consumer_); EXPECT_THAT(allowlist_["key"].value, Eq("value")); EXPECT_TRUE(denylist_.empty()); } TEST_F(ReadAccelerationConfigTest, BlKeysAreLeftTrimmed) { ReadAccelerationConfig(" -key,value", consumer_); EXPECT_THAT(denylist_["key"].value, Eq("value")); EXPECT_TRUE(allowlist_.empty()); } TEST_F(ReadAccelerationConfigTest, IgnoresCommentedLines) { ReadAccelerationConfig("#key,value", consumer_); EXPECT_TRUE(allowlist_.empty()); EXPECT_TRUE(denylist_.empty()); } TEST_F(ReadAccelerationConfigTest, CommentCanHaveTrailingBlanks) { ReadAccelerationConfig(" #key,value", consumer_); EXPECT_TRUE(allowlist_.empty()); EXPECT_TRUE(denylist_.empty()); } TEST_F(ReadAccelerationConfigTest, CommentsAreOnlyForTheFullLine) { ReadAccelerationConfig("key,value #comment", consumer_); EXPECT_THAT(allowlist_["key"].value, Eq("value #comment")); } TEST_F(ReadAccelerationConfigTest, IgnoresEmptyLines) { ReadAccelerationConfig("", consumer_); EXPECT_TRUE(allowlist_.empty()); EXPECT_TRUE(denylist_.empty()); } TEST_F(ReadAccelerationConfigTest, ParsesMultipleLines) { ReadAccelerationConfig("key1,value1\nkey2,value2\n-key3,value3", consumer_); EXPECT_THAT(allowlist_["key1"].value, Eq("value1")); EXPECT_THAT(allowlist_["key2"].value, Eq("value2")); EXPECT_THAT(denylist_["key3"].value, Eq("value3")); } TEST_F(ReadAccelerationConfigTest, ParsesMultipleLinesWithCommentsAndSpaces) { ReadAccelerationConfig("key1,value1\n#comment\n\nkey2,value2", consumer_); EXPECT_THAT(allowlist_["key1"].value, Eq("value1")); EXPECT_THAT(allowlist_["key2"].value, Eq("value2")); } TEST_F(ReadAccelerationConfigTest, ParsesMultipleLinesWithMissingConfigValues) { ReadAccelerationConfig("key1\nkey2,value2\nkey3\nkey4,value4", consumer_); EXPECT_THAT(allowlist_["key1"].value, Eq("")); EXPECT_THAT(allowlist_["key2"].value, Eq("value2")); EXPECT_THAT(allowlist_["key3"].value, Eq("")); EXPECT_THAT(allowlist_["key4"].value, Eq("value4")); } TEST(GetAccelerationTestParam, LoadsTestConfig) { const auto config_value_maybe = GetAccelerationTestParam<SimpleConfig>("test-3"); ASSERT_TRUE(config_value_maybe.has_value()); ASSERT_THAT(config_value_maybe.value().value, Eq("data-3")); } TEST(GetAccelerationTestParam, LoadsTestConfigWithEmptyValue) { const auto config_value_maybe = GetAccelerationTestParam<SimpleConfig>("test-2"); ASSERT_TRUE(config_value_maybe.has_value()); ASSERT_THAT(config_value_maybe.value().value, Eq("")); } TEST(GetAccelerationTestParam, SupportsWildcards) { const auto config_value_maybe = GetAccelerationTestParam<SimpleConfig>("test-41"); ASSERT_TRUE(config_value_maybe.has_value()); ASSERT_THAT(config_value_maybe.value().value, Eq("data-4")); } TEST(GetAccelerationTestParam, SupportDenylist) { const auto config_value_maybe = GetAccelerationTestParam<SimpleConfig>("test-5"); ASSERT_FALSE(config_value_maybe.has_value()); } struct UnmatchedSimpleConfig { public: static constexpr const char* kAccelerationTestConfig = nullptr; static const char* AccelerationTestConfig() { return kAccelerationTestConfig; } static UnmatchedSimpleConfig ParseConfigurationLine( const std::string& conf_line) { return {conf_line}; } std::string value; }; TEST(GetAccelerationTestParam, ReturnEmptyOptionalForNullConfig) { ASSERT_FALSE( GetAccelerationTestParam<UnmatchedSimpleConfig>("test-3").has_value()); } }
369
#ifndef ABSL_CONTAINER_INTERNAL_TEST_INSTANCE_TRACKER_H_ #define ABSL_CONTAINER_INTERNAL_TEST_INSTANCE_TRACKER_H_ #include <cstdlib> #include <ostream> #include "absl/types/compare.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace test_internal { class BaseCountedInstance { public: explicit BaseCountedInstance(int x) : value_(x) { ++num_instances_; ++num_live_instances_; } BaseCountedInstance(const BaseCountedInstance& x) : value_(x.value_), is_live_(x.is_live_) { ++num_instances_; if (is_live_) ++num_live_instances_; ++num_copies_; } BaseCountedInstance(BaseCountedInstance&& x) : value_(x.value_), is_live_(x.is_live_) { x.is_live_ = false; ++num_instances_; ++num_moves_; } ~BaseCountedInstance() { --num_instances_; if (is_live_) --num_live_instances_; } BaseCountedInstance& operator=(const BaseCountedInstance& x) { value_ = x.value_; if (is_live_) --num_live_instances_; is_live_ = x.is_live_; if (is_live_) ++num_live_instances_; ++num_copies_; return *this; } BaseCountedInstance& operator=(BaseCountedInstance&& x) { value_ = x.value_; if (is_live_) --num_live_instances_; is_live_ = x.is_live_; x.is_live_ = false; ++num_moves_; return *this; } bool operator==(const BaseCountedInstance& x) const { ++num_comparisons_; return value_ == x.value_; } bool operator!=(const BaseCountedInstance& x) const { ++num_comparisons_; return value_ != x.value_; } bool operator<(const BaseCountedInstance& x) const { ++num_comparisons_; return value_ < x.value_; } bool operator>(const BaseCountedInstance& x) const { ++num_comparisons_; return value_ > x.value_; } bool operator<=(const BaseCountedInstance& x) const { ++num_comparisons_; return value_ <= x.value_; } bool operator>=(const BaseCountedInstance& x) const { ++num_comparisons_; return value_ >= x.value_; } absl::weak_ordering compare(const BaseCountedInstance& x) const { ++num_comparisons_; return value_ < x.value_ ? absl::weak_ordering::less : value_ == x.value_ ? absl::weak_ordering::equivalent : absl::weak_ordering::greater; } int value() const { if (!is_live_) std::abort(); return value_; } friend std::ostream& operator<<(std::ostream& o, const BaseCountedInstance& v) { return o << "[value:" << v.value() << "]"; } static void SwapImpl( BaseCountedInstance& lhs, BaseCountedInstance& rhs) { using std::swap; swap(lhs.value_, rhs.value_); swap(lhs.is_live_, rhs.is_live_); ++BaseCountedInstance::num_swaps_; } private: friend class InstanceTracker; int value_; bool is_live_ = true; static int num_instances_; static int num_live_instances_; static int num_moves_; static int num_copies_; static int num_swaps_; static int num_comparisons_; }; class InstanceTracker { public: InstanceTracker() : start_instances_(BaseCountedInstance::num_instances_), start_live_instances_(BaseCountedInstance::num_live_instances_) { ResetCopiesMovesSwaps(); } ~InstanceTracker() { if (instances() != 0) std::abort(); if (live_instances() != 0) std::abort(); } int instances() const { return BaseCountedInstance::num_instances_ - start_instances_; } int live_instances() const { return BaseCountedInstance::num_live_instances_ - start_live_instances_; } int moves() const { return BaseCountedInstance::num_moves_ - start_moves_; } int copies() const { return BaseCountedInstance::num_copies_ - start_copies_; } int swaps() const { return BaseCountedInstance::num_swaps_ - start_swaps_; } int comparisons() const { return BaseCountedInstance::num_comparisons_ - start_comparisons_; } void ResetCopiesMovesSwaps() { start_moves_ = BaseCountedInstance::num_moves_; start_copies_ = BaseCountedInstance::num_copies_; start_swaps_ = BaseCountedInstance::num_swaps_; start_comparisons_ = BaseCountedInstance::num_comparisons_; } private: int start_instances_; int start_live_instances_; int start_moves_; int start_copies_; int start_swaps_; int start_comparisons_; }; class CopyableOnlyInstance : public BaseCountedInstance { public: explicit CopyableOnlyInstance(int x) : BaseCountedInstance(x) {} CopyableOnlyInstance(const CopyableOnlyInstance& rhs) = default; CopyableOnlyInstance& operator=(const CopyableOnlyInstance& rhs) = default; friend void swap(CopyableOnlyInstance& lhs, CopyableOnlyInstance& rhs) { BaseCountedInstance::SwapImpl(lhs, rhs); } static bool supports_move() { return false; } }; class CopyableMovableInstance : public BaseCountedInstance { public: explicit CopyableMovableInstance(int x) : BaseCountedInstance(x) {} CopyableMovableInstance(const CopyableMovableInstance& rhs) = default; CopyableMovableInstance(CopyableMovableInstance&& rhs) = default; CopyableMovableInstance& operator=(const CopyableMovableInstance& rhs) = default; CopyableMovableInstance& operator=(CopyableMovableInstance&& rhs) = default; friend void swap(CopyableMovableInstance& lhs, CopyableMovableInstance& rhs) { BaseCountedInstance::SwapImpl(lhs, rhs); } static bool supports_move() { return true; } }; class MovableOnlyInstance : public BaseCountedInstance { public: explicit MovableOnlyInstance(int x) : BaseCountedInstance(x) {} MovableOnlyInstance(MovableOnlyInstance&& other) = default; MovableOnlyInstance& operator=(MovableOnlyInstance&& other) = default; friend void swap(MovableOnlyInstance& lhs, MovableOnlyInstance& rhs) { BaseCountedInstance::SwapImpl(lhs, rhs); } static bool supports_move() { return true; } }; } ABSL_NAMESPACE_END } #endif #include "absl/container/internal/test_instance_tracker.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace test_internal { int BaseCountedInstance::num_instances_ = 0; int BaseCountedInstance::num_live_instances_ = 0; int BaseCountedInstance::num_moves_ = 0; int BaseCountedInstance::num_copies_ = 0; int BaseCountedInstance::num_swaps_ = 0; int BaseCountedInstance::num_comparisons_ = 0; } ABSL_NAMESPACE_END }
#include "absl/container/internal/test_instance_tracker.h" #include "gtest/gtest.h" namespace { using absl::test_internal::CopyableMovableInstance; using absl::test_internal::CopyableOnlyInstance; using absl::test_internal::InstanceTracker; using absl::test_internal::MovableOnlyInstance; TEST(TestInstanceTracker, CopyableMovable) { InstanceTracker tracker; CopyableMovableInstance src(1); EXPECT_EQ(1, src.value()) << src; CopyableMovableInstance copy(src); CopyableMovableInstance move(std::move(src)); EXPECT_EQ(1, tracker.copies()); EXPECT_EQ(1, tracker.moves()); EXPECT_EQ(0, tracker.swaps()); EXPECT_EQ(3, tracker.instances()); EXPECT_EQ(2, tracker.live_instances()); tracker.ResetCopiesMovesSwaps(); CopyableMovableInstance copy_assign(1); copy_assign = copy; CopyableMovableInstance move_assign(1); move_assign = std::move(move); EXPECT_EQ(1, tracker.copies()); EXPECT_EQ(1, tracker.moves()); EXPECT_EQ(0, tracker.swaps()); EXPECT_EQ(5, tracker.instances()); EXPECT_EQ(3, tracker.live_instances()); tracker.ResetCopiesMovesSwaps(); { using std::swap; swap(move_assign, copy); swap(copy, move_assign); EXPECT_EQ(2, tracker.swaps()); EXPECT_EQ(0, tracker.copies()); EXPECT_EQ(0, tracker.moves()); EXPECT_EQ(5, tracker.instances()); EXPECT_EQ(3, tracker.live_instances()); } } TEST(TestInstanceTracker, CopyableOnly) { InstanceTracker tracker; CopyableOnlyInstance src(1); EXPECT_EQ(1, src.value()) << src; CopyableOnlyInstance copy(src); CopyableOnlyInstance copy2(std::move(src)); EXPECT_EQ(2, tracker.copies()); EXPECT_EQ(0, tracker.moves()); EXPECT_EQ(3, tracker.instances()); EXPECT_EQ(3, tracker.live_instances()); tracker.ResetCopiesMovesSwaps(); CopyableOnlyInstance copy_assign(1); copy_assign = copy; CopyableOnlyInstance copy_assign2(1); copy_assign2 = std::move(copy2); EXPECT_EQ(2, tracker.copies()); EXPECT_EQ(0, tracker.moves()); EXPECT_EQ(5, tracker.instances()); EXPECT_EQ(5, tracker.live_instances()); tracker.ResetCopiesMovesSwaps(); { using std::swap; swap(src, copy); swap(copy, src); EXPECT_EQ(2, tracker.swaps()); EXPECT_EQ(0, tracker.copies()); EXPECT_EQ(0, tracker.moves()); EXPECT_EQ(5, tracker.instances()); EXPECT_EQ(5, tracker.live_instances()); } } TEST(TestInstanceTracker, MovableOnly) { InstanceTracker tracker; MovableOnlyInstance src(1); EXPECT_EQ(1, src.value()) << src; MovableOnlyInstance move(std::move(src)); MovableOnlyInstance move_assign(2); move_assign = std::move(move); EXPECT_EQ(3, tracker.instances()); EXPECT_EQ(1, tracker.live_instances()); EXPECT_EQ(2, tracker.moves()); EXPECT_EQ(0, tracker.copies()); tracker.ResetCopiesMovesSwaps(); { using std::swap; MovableOnlyInstance other(2); swap(move_assign, other); swap(other, move_assign); EXPECT_EQ(2, tracker.swaps()); EXPECT_EQ(0, tracker.copies()); EXPECT_EQ(0, tracker.moves()); EXPECT_EQ(4, tracker.instances()); EXPECT_EQ(2, tracker.live_instances()); } } TEST(TestInstanceTracker, ExistingInstances) { CopyableMovableInstance uncounted_instance(1); CopyableMovableInstance uncounted_live_instance( std::move(uncounted_instance)); InstanceTracker tracker; EXPECT_EQ(0, tracker.instances()); EXPECT_EQ(0, tracker.live_instances()); EXPECT_EQ(0, tracker.copies()); { CopyableMovableInstance instance1(1); EXPECT_EQ(1, tracker.instances()); EXPECT_EQ(1, tracker.live_instances()); EXPECT_EQ(0, tracker.copies()); EXPECT_EQ(0, tracker.moves()); { InstanceTracker tracker2; CopyableMovableInstance instance2(instance1); CopyableMovableInstance instance3(std::move(instance2)); EXPECT_EQ(3, tracker.instances()); EXPECT_EQ(2, tracker.live_instances()); EXPECT_EQ(1, tracker.copies()); EXPECT_EQ(1, tracker.moves()); EXPECT_EQ(2, tracker2.instances()); EXPECT_EQ(1, tracker2.live_instances()); EXPECT_EQ(1, tracker2.copies()); EXPECT_EQ(1, tracker2.moves()); } EXPECT_EQ(1, tracker.instances()); EXPECT_EQ(1, tracker.live_instances()); EXPECT_EQ(1, tracker.copies()); EXPECT_EQ(1, tracker.moves()); } EXPECT_EQ(0, tracker.instances()); EXPECT_EQ(0, tracker.live_instances()); EXPECT_EQ(1, tracker.copies()); EXPECT_EQ(1, tracker.moves()); } TEST(TestInstanceTracker, Comparisons) { InstanceTracker tracker; MovableOnlyInstance one(1), two(2); EXPECT_EQ(0, tracker.comparisons()); EXPECT_FALSE(one == two); EXPECT_EQ(1, tracker.comparisons()); EXPECT_TRUE(one != two); EXPECT_EQ(2, tracker.comparisons()); EXPECT_TRUE(one < two); EXPECT_EQ(3, tracker.comparisons()); EXPECT_FALSE(one > two); EXPECT_EQ(4, tracker.comparisons()); EXPECT_TRUE(one <= two); EXPECT_EQ(5, tracker.comparisons()); EXPECT_FALSE(one >= two); EXPECT_EQ(6, tracker.comparisons()); EXPECT_TRUE(one.compare(two) < 0); EXPECT_EQ(7, tracker.comparisons()); tracker.ResetCopiesMovesSwaps(); EXPECT_EQ(0, tracker.comparisons()); } }
370
#ifndef XLA_SERVICE_CPU_CONV_CANONICALIZATION_H_ #define XLA_SERVICE_CPU_CONV_CANONICALIZATION_H_ #include "xla/hlo/ir/hlo_module.h" #include "xla/service/cpu/target_machine_features.h" #include "xla/service/hlo_pass_interface.h" namespace xla { namespace cpu { class ConvCanonicalization : public HloModulePass { public: explicit ConvCanonicalization( const TargetMachineFeatures* target_machine_features) : target_machine_features_(*target_machine_features) {} ~ConvCanonicalization() override {} absl::string_view name() const override { return "convolution-canonicalization"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: const TargetMachineFeatures& target_machine_features_; }; } } #endif #include "xla/service/cpu/conv_canonicalization.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/permutation_util.h" #include "xla/service/cpu/cpu_runtime.h" #include "xla/service/cpu/ir_emission_utils.h" #include "xla/shape_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" namespace xla { namespace cpu { absl::StatusOr<bool> ConvCanonicalization::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (HloInstruction* hlo : module->entry_computation()->MakeInstructionPostOrder()) { if (hlo->opcode() == HloOpcode::kConvolution && !PotentiallyImplementedAsEigenConvolution(*hlo, target_machine_features_)) { const ConvolutionDimensionNumbers& dnums = hlo->convolution_dimension_numbers(); auto input_batch_dim = dnums.input_batch_dimension(); auto input_feature_dim = dnums.input_feature_dimension(); auto kernel_input_feature_dim = dnums.kernel_input_feature_dimension(); auto kernel_output_feature_dim = dnums.kernel_output_feature_dimension(); const int64_t num_spatial_dims = dnums.output_spatial_dimensions_size(); const int64_t num_dims = num_spatial_dims + 2; HloInstruction* input = hlo->mutable_operand(0); std::vector<int64_t> new_input_dim_order(num_dims); std::vector<int64_t> new_input_dims(num_dims); new_input_dim_order[0] = input_batch_dim; new_input_dims[0] = input->shape().dimensions(input_batch_dim); for (int64_t i = 0; i < num_spatial_dims; ++i) { new_input_dim_order[i + 1] = dnums.input_spatial_dimensions(i); new_input_dims[i + 1] = input->shape().dimensions(dnums.input_spatial_dimensions(i)); } new_input_dim_order[num_dims - 1] = input_feature_dim; new_input_dims[num_dims - 1] = input->shape().dimensions(input_feature_dim); Shape new_input_shape = ShapeUtil::MakeShape(input->shape().element_type(), new_input_dims); HloInstruction* new_input = module->entry_computation()->AddInstruction( HloInstruction::CreateTranspose(new_input_shape, input, new_input_dim_order)); HloInstruction* kernel = hlo->mutable_operand(1); std::vector<int64_t> new_kernel_dim_order(num_dims); std::vector<int64_t> new_kernel_dims(num_dims); for (int64_t i = 0; i < num_spatial_dims; ++i) { new_kernel_dim_order[i] = dnums.kernel_spatial_dimensions(i); new_kernel_dims[i] = kernel->shape().dimensions(dnums.kernel_spatial_dimensions(i)); } new_kernel_dim_order[num_dims - 2] = kernel_input_feature_dim; new_kernel_dims[num_dims - 2] = kernel->shape().dimensions(kernel_input_feature_dim); new_kernel_dim_order[num_dims - 1] = kernel_output_feature_dim; new_kernel_dims[num_dims - 1] = kernel->shape().dimensions(kernel_output_feature_dim); Shape new_kernel_shape = ShapeUtil::MakeShape(kernel->shape().element_type(), new_kernel_dims); HloInstruction* new_kernel = module->entry_computation()->AddInstruction( HloInstruction::CreateTranspose(new_kernel_shape, kernel, new_kernel_dim_order)); std::vector<int64_t> new_output_dim_order(num_dims); std::vector<int64_t> new_conv_dims(num_dims); auto output_batch_dim = dnums.output_batch_dimension(); auto output_feature_dim = dnums.output_feature_dimension(); new_output_dim_order[0] = output_batch_dim; new_conv_dims[0] = hlo->shape().dimensions(output_batch_dim); for (int64_t i = 0; i < num_spatial_dims; ++i) { new_output_dim_order[i + 1] = dnums.output_spatial_dimensions(i); new_conv_dims[i + 1] = hlo->shape().dimensions(dnums.output_spatial_dimensions(i)); } new_output_dim_order[num_dims - 1] = output_feature_dim; new_conv_dims[num_dims - 1] = hlo->shape().dimensions(output_feature_dim); Shape new_conv_shape = ShapeUtil::MakeShape(hlo->shape().element_type(), new_conv_dims); ConvolutionDimensionNumbers new_dnums; new_dnums.set_input_batch_dimension(0); new_dnums.set_output_batch_dimension(0); for (int64_t i = 0; i < num_spatial_dims; ++i) { new_dnums.add_input_spatial_dimensions(i + 1); new_dnums.add_kernel_spatial_dimensions(i); new_dnums.add_output_spatial_dimensions(i + 1); } new_dnums.set_input_feature_dimension(num_dims - 1); new_dnums.set_output_feature_dimension(num_dims - 1); new_dnums.set_kernel_input_feature_dimension(num_dims - 2); new_dnums.set_kernel_output_feature_dimension(num_dims - 1); HloInstruction* new_conv = module->entry_computation()->AddInstruction( HloInstruction::CreateConvolve( new_conv_shape, new_input, new_kernel, hlo->feature_group_count(), hlo->batch_group_count(), hlo->window(), new_dnums, hlo->precision_config())); TF_RETURN_IF_ERROR(module->entry_computation()->ReplaceWithNewInstruction( hlo, HloInstruction::CreateTranspose( hlo->shape(), new_conv, InversePermutation(new_output_dim_order)))); changed = true; } } return changed; } } }
#include "xla/service/cpu/conv_canonicalization.h" #include <vector> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/cpu/target_machine_features_fake.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/util.h" namespace xla { namespace cpu { using ::testing::ElementsAre; class ConvCanonicalizationTest : public HloTestBase { public: ConvCanonicalizationTest() { for (int i = 0; i < 2; ++i) { auto dim = conv_window_.add_dimensions(); dim->set_size(kWindowSize); dim->set_stride(1); dim->set_padding_low(0); dim->set_padding_high(0); dim->set_window_dilation(1); dim->set_base_dilation(1); } } protected: Window conv_window_; static constexpr int kBatchSize = 50; static constexpr int kInputSize = 28; static constexpr int kWindowSize = 5; static constexpr int kInputFeatureCount = 32; static constexpr int kOutputFeatureCount = 64; }; TEST_F(ConvCanonicalizationTest, NonCanonicalToCanonical) { auto builder = HloComputation::Builder(TestName()); auto input = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR4FromArray4D(Array4D<float>( kInputFeatureCount, kBatchSize, kInputSize, kInputSize)))); auto kernel = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR4FromArray4D(Array4D<float>( kOutputFeatureCount, kInputFeatureCount, kWindowSize, kWindowSize)))); ConvolutionDimensionNumbers dnums; dnums.set_input_batch_dimension(1); dnums.set_output_batch_dimension(1); dnums.add_input_spatial_dimensions(2); dnums.add_output_spatial_dimensions(2); dnums.add_input_spatial_dimensions(3); dnums.add_output_spatial_dimensions(3); dnums.set_input_feature_dimension(0); dnums.set_output_feature_dimension(0); dnums.add_kernel_spatial_dimensions(2); dnums.add_kernel_spatial_dimensions(3); dnums.set_kernel_input_feature_dimension(1); dnums.set_kernel_output_feature_dimension(0); auto output_size = kInputSize - kWindowSize + 1; builder.AddInstruction(HloInstruction::CreateConvolve( ShapeUtil::MakeShape( F32, {kOutputFeatureCount, kBatchSize, output_size, output_size}), input, kernel, 1, 1, conv_window_, dnums, DefaultPrecisionConfig(2))); auto module = CreateNewVerifiedModule(); HloComputation* entry_computation = module->AddEntryComputation(builder.Build()); cpu::TargetMachineFeaturesWithFakeAlignmentLogic target_machine_features( [](int64_t shape_size) { return cpu::TargetMachineFeatures::kEigenExpectedTensorAlignment; }); ConvCanonicalization conv_canonicalization(&target_machine_features); EXPECT_TRUE(conv_canonicalization.Run(module.get()).value()); const HloInstruction* output_reshape = entry_computation->root_instruction(); EXPECT_EQ(HloOpcode::kTranspose, output_reshape->opcode()); const HloInstruction* canonical_conv = output_reshape->operand(0); EXPECT_EQ(HloOpcode::kConvolution, canonical_conv->opcode()); const HloInstruction* input_reshape = canonical_conv->operand(0); EXPECT_EQ(HloOpcode::kTranspose, input_reshape->opcode()); const HloInstruction* kernel_reshape = canonical_conv->operand(1); EXPECT_EQ(HloOpcode::kTranspose, kernel_reshape->opcode()); EXPECT_THAT(input_reshape->dimensions(), ElementsAre(1, 2, 3, 0)); EXPECT_THAT(kernel_reshape->dimensions(), ElementsAre(2, 3, 1, 0)); EXPECT_THAT(output_reshape->dimensions(), ElementsAre(3, 0, 1, 2)); } TEST_F(ConvCanonicalizationTest, CanonicalStaysTheSame) { auto builder = HloComputation::Builder(TestName()); auto input = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR4FromArray4D(Array4D<float>( kBatchSize, kInputSize, kInputSize, kInputFeatureCount)))); auto kernel = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR4FromArray4D(Array4D<float>( kWindowSize, kWindowSize, kInputFeatureCount, kOutputFeatureCount)))); ConvolutionDimensionNumbers dnums; dnums.set_input_batch_dimension(0); dnums.set_output_batch_dimension(0); dnums.add_input_spatial_dimensions(1); dnums.add_output_spatial_dimensions(1); dnums.add_input_spatial_dimensions(2); dnums.add_output_spatial_dimensions(2); dnums.set_input_feature_dimension(3); dnums.set_output_feature_dimension(3); dnums.add_kernel_spatial_dimensions(0); dnums.add_kernel_spatial_dimensions(1); dnums.set_kernel_input_feature_dimension(2); dnums.set_kernel_output_feature_dimension(3); auto output_size = kInputSize - kWindowSize + 1; builder.AddInstruction(HloInstruction::CreateConvolve( ShapeUtil::MakeShape( F32, {kBatchSize, output_size, output_size, kOutputFeatureCount}), input, kernel, 1, 1, conv_window_, dnums, DefaultPrecisionConfig(2))); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); cpu::TargetMachineFeaturesWithFakeAlignmentLogic target_machine_features( [](int64_t shape_size) { return cpu::TargetMachineFeatures::kEigenExpectedTensorAlignment; }); ConvCanonicalization conv_canonicalization(&target_machine_features); EXPECT_FALSE(conv_canonicalization.Run(module.get()).value()); } } }
371
#ifndef XLA_PYTHON_IFRT_PROXY_CLIENT_GRPC_CLIENT_SESSION_H_ #define XLA_PYTHON_IFRT_PROXY_CLIENT_GRPC_CLIENT_SESSION_H_ #include <functional> #include <memory> #include "absl/base/call_once.h" #include "absl/base/thread_annotations.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/synchronization/notification.h" #include "grpcpp/client_context.h" #include "grpcpp/support/client_callback.h" #include "grpcpp/support/sync_stream.h" #include "xla/python/ifrt/future.h" #include "xla/python/ifrt_proxy/client/client_session.h" #include "xla/python/ifrt_proxy/common/grpc_ifrt_service.grpc.pb.h" #include "xla/python/ifrt_proxy/common/ifrt_service.pb.h" #include "tsl/platform/threadpool.h" #include "tsl/platform/unbounded_work_queue.h" namespace xla { namespace ifrt { namespace proxy { class GrpcClientSession : public ClientSession { public: using StreamTerminatedCallback = std::function<void(absl::Status)>; static std::shared_ptr<GrpcClientSession> Create( std::shared_ptr<grpc::GrpcIfrtService::StubInterface> stub, GrpcIfrtSessionMetadata metadata, StreamTerminatedCallback stream_terminated_cb); Future<std::shared_ptr<IfrtResponse>> Enqueue( std::unique_ptr<IfrtRequest> request) override; using ResponseCallback = std::function<void(absl::StatusOr<std::shared_ptr<IfrtResponse>>)>; absl::Status Enqueue(std::unique_ptr<IfrtRequest> req, ResponseCallback callback); void Finish(const absl::Status& client_status) override; GrpcClientSession(const GrpcClientSession&) = delete; GrpcClientSession& operator=(const GrpcClientSession&) = delete; ~GrpcClientSession() override; private: class ResponseCallbackTable; GrpcClientSession(std::shared_ptr<grpc::GrpcIfrtService::StubInterface> stub, std::unique_ptr<::grpc::ClientContext> context, StreamTerminatedCallback stream_terminated_cb); void ReadLoop(); const std::unique_ptr<ResponseCallbackTable> response_callbacks_; std::unique_ptr<tsl::thread::ThreadPool> reader_thread_; absl::Notification reader_thread_stopped_; bool writes_stopped_ ABSL_GUARDED_BY(writer_mu_) = false; absl::Mutex writer_mu_; absl::once_flag finish_once_; const std::shared_ptr<grpc::GrpcIfrtService::StubInterface> stub_; const std::unique_ptr<::grpc::ClientContext> context_; const std::unique_ptr< ::grpc::ClientReaderWriterInterface<IfrtRequest, IfrtResponse>> stream_; const StreamTerminatedCallback stream_terminated_cb_; std::unique_ptr<tsl::UnboundedWorkQueue> user_futures_work_queue_; }; std::shared_ptr<grpc::GrpcIfrtService::StubInterface> CreateGrpcStub( absl::string_view server_address); } } } #endif #include "xla/python/ifrt_proxy/client/grpc_client_session.h" #include <cstdint> #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include "absl/base/call_once.h" #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/functional/bind_front.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/synchronization/notification.h" #include "grpc/grpc.h" #include "grpcpp/channel.h" #include "grpcpp/client_context.h" #include "grpcpp/create_channel.h" #include "grpcpp/security/credentials.h" #include "grpcpp/support/channel_arguments.h" #include "xla/pjrt/distributed/util.h" #include "xla/python/ifrt/future.h" #include "xla/python/ifrt_proxy/client/client_session.h" #include "xla/python/ifrt_proxy/common/grpc_credentials.h" #include "xla/python/ifrt_proxy/common/grpc_ifrt_service.grpc.pb.h" #include "xla/python/ifrt_proxy/common/ifrt_service.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/threadpool.h" #include "tsl/platform/unbounded_work_queue.h" namespace xla { namespace ifrt { namespace proxy { using OpId = int64_t; class GrpcClientSession::ResponseCallbackTable { public: absl::Status Add(OpId op_id, ResponseCallback callback) { absl::MutexLock l(&mu_); const bool inserted = table_.insert({op_id, std::move(callback)}).second; if (!inserted) { return absl::AlreadyExistsError( absl::StrCat("Op id ", op_id, " already exists")); } return absl::OkStatus(); } std::optional<ResponseCallback> Pop(OpId op_id) { absl::MutexLock l(&mu_); auto it = table_.find(op_id); if (it == table_.end()) { return std::nullopt; } auto cb = std::move(it->second); table_.erase(it); return std::move(cb); } absl::flat_hash_map<OpId, ResponseCallback> PopAll() { absl::flat_hash_map<OpId, ResponseCallback> result; absl::MutexLock l(&mu_); result = std::move(table_); table_ = absl::flat_hash_map<OpId, ResponseCallback>(); return result; } private: absl::Mutex mu_; absl::flat_hash_map<OpId, ResponseCallback> table_ ABSL_GUARDED_BY(mu_); }; std::shared_ptr<GrpcClientSession> GrpcClientSession::Create( std::shared_ptr<grpc::GrpcIfrtService::StubInterface> stub, GrpcIfrtSessionMetadata metadata, StreamTerminatedCallback stream_terminated_cb) { auto context = std::make_unique<::grpc::ClientContext>(); context->AddMetadata("ifrt-proxy-grpc-ifrt-session-metadata-bin", metadata.SerializeAsString()); std::shared_ptr<GrpcClientSession> result(new GrpcClientSession( std::move(stub), std::move(context), std::move(stream_terminated_cb))); return result; } GrpcClientSession::GrpcClientSession( std::shared_ptr<grpc::GrpcIfrtService::StubInterface> stub, std::unique_ptr<::grpc::ClientContext> context, StreamTerminatedCallback stream_terminated_cb) : response_callbacks_(std::make_unique<ResponseCallbackTable>()), reader_thread_(std::make_unique<tsl::thread::ThreadPool>( tsl::Env::Default(), "ifrt_proxy_client_grpc_reader", 1)), stub_(std::move(stub)), context_(std::move(context)), stream_(stub_->IfrtSession(context_.get())), stream_terminated_cb_(std::move(stream_terminated_cb)), user_futures_work_queue_(std::make_unique<tsl::UnboundedWorkQueue>( tsl::Env::Default(), "GrpcClientSessionUserFuturesWorkQueue")) { reader_thread_->Schedule( absl::bind_front(&GrpcClientSession::ReadLoop, this)); } Future<std::shared_ptr<IfrtResponse>> GrpcClientSession::Enqueue( std::unique_ptr<IfrtRequest> request) { auto promise = Future<std::shared_ptr<IfrtResponse>>::CreatePromise(); absl::Status status = Enqueue( std::move(request), [promise, queue = user_futures_work_queue_.get()]( absl::StatusOr<std::shared_ptr<IfrtResponse>> response) mutable { queue->Schedule([promise = std::move(promise), response = std::move(response)]() mutable -> void { promise.Set(std::move(response)); }); }); if (!status.ok()) { user_futures_work_queue_->Schedule([promise, status]() mutable -> void { promise.Set(std::move(status)); }); } return Future<std::shared_ptr<IfrtResponse>>(std::move(promise)); } absl::Status GrpcClientSession::Enqueue(std::unique_ptr<IfrtRequest> req, ResponseCallback callback) { const OpId op_id = req->request_metadata().op_id(); absl::MutexLock l(&writer_mu_); if (writes_stopped_) { return absl::FailedPreconditionError( "GrpcClientSession: writes no longer allowed."); } TF_RETURN_IF_ERROR(response_callbacks_->Add(op_id, std::move(callback))); if (!stream_->Write(*req)) { CHECK(response_callbacks_->Pop(op_id).has_value()); return absl::UnknownError("GrpcClientSession: writing to stream failed."); } return absl::OkStatus(); } void GrpcClientSession::ReadLoop() { while (true) { auto read_buffer = std::make_unique<IfrtResponse>(); if (!stream_->Read(read_buffer.get())) { LOG(INFO) << "GrpcClientSession: reader loop is exiting."; break; } const OpId op_id = read_buffer->response_metadata().op_id(); std::optional<ResponseCallback> callback = response_callbacks_->Pop(op_id); if (callback.has_value()) { VLOG(1) << "GrpcClientSession: Issuing callback for " << op_id; (*callback)(std::move(read_buffer)); VLOG(1) << "GrpcClientSession: Done with callback for " << op_id; } else { LOG(ERROR) << "Received response with no remaining registered callback: " << read_buffer->DebugString(); } } reader_thread_stopped_.Notify(); Finish(absl::OkStatus()); } void GrpcClientSession::Finish(const absl::Status& client_status) { LOG(INFO) << "GrpcClientSession: Finish() called with client status " << client_status; absl::call_once(finish_once_, [&] { context_->TryCancel(); LOG(INFO) << "GrpcClientSession: Waiting for reader thread to stop."; reader_thread_stopped_.WaitForNotification(); auto finish_stream_and_get_server_status = [&]() -> absl::Status { LOG(INFO) << "GrpClientSession: Attempting to call stream->Finish()"; absl::MutexLock l(&writer_mu_); LOG(INFO) << "GrpClientSession: Attempting to call stream->Finish(), " "mutex acquired"; absl::Status server_status = xla::FromGrpcStatus(stream_->Finish()); LOG(INFO) << "GrpClientSession: stream->Finish() returned server status " << server_status; CHECK(!writes_stopped_); writes_stopped_ = true; return server_status; }; absl::Status combined_status = finish_stream_and_get_server_status(); combined_status.Update(client_status); auto all_callbacks = response_callbacks_->PopAll(); for (auto& [_, cb] : all_callbacks) { if (combined_status.ok()) { cb(absl::AbortedError("Finish(OK) called.")); } else { cb(combined_status); } } LOG(INFO) << "GrpClientSession::Finish(): calling terminated cb with " << combined_status; stream_terminated_cb_(combined_status); }); } GrpcClientSession::~GrpcClientSession() { GrpcClientSession::Finish(absl::CancelledError("~GrpcClientSession called.")); reader_thread_.reset(); LOG(INFO) << "Deleting GrpcClientSession.user_futures_work_queue_ ..."; user_futures_work_queue_.reset(); LOG(INFO) << "Deleted GrpcClientSession.user_futures_work_queue_."; } std::shared_ptr<grpc::GrpcIfrtService::StubInterface> CreateGrpcStub( absl::string_view server_address) { ::grpc::ChannelArguments args; args.SetInt(GRPC_ARG_MAX_SEND_MESSAGE_LENGTH, -1); args.SetInt(GRPC_ARG_MAX_RECEIVE_MESSAGE_LENGTH, -1); std::shared_ptr<::grpc::Channel> channel = ::grpc::CreateCustomChannel( std::string(server_address), GetClientCredentials(), args); VLOG(0) << " Established channel."; CHECK(channel != nullptr); std::shared_ptr<grpc::GrpcIfrtService::StubInterface> stub = grpc::GrpcIfrtService::NewStub(channel); VLOG(0) << " Created stub."; CHECK(stub != nullptr); return stub; } } } }
#include "xla/python/ifrt_proxy/client/grpc_client_session.h" #include <atomic> #include <deque> #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include <variant> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/log/log_sink_registry.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/synchronization/mutex.h" #include "absl/synchronization/notification.h" #include "absl/time/time.h" #include "grpc/support/time.h" #include "grpcpp/channel.h" #include "grpcpp/create_channel.h" #include "grpcpp/server_builder.h" #include "grpcpp/server_context.h" #include "grpcpp/support/status.h" #include "grpcpp/support/sync_stream.h" #include "xla/python/ifrt_proxy/client/version.h" #include "xla/python/ifrt_proxy/common/grpc_credentials.h" #include "xla/python/ifrt_proxy/common/grpc_ifrt_service.grpc.pb.h" #include "xla/python/ifrt_proxy/common/grpc_ifrt_service.pb.h" #include "xla/python/ifrt_proxy/common/ifrt_service.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace ifrt { namespace proxy { namespace { using ::testing::Not; using ::tsl::testing::IsOk; constexpr int kOp1 = 1; constexpr int kOp2 = 2; constexpr absl::Duration kSufficientTime = absl::Seconds(5); GrpcIfrtSessionMetadata Metadata() { GrpcIfrtSessionMetadata metadata; metadata.mutable_version()->set_protocol_version(kClientMaxVersion); return metadata; } absl::Status TestError() { return absl::UnknownError("test error"); } class Queue { public: void Push(absl::Status t) { absl::MutexLock l(&mu_); queue_.push_back(std::move(t)); } std::optional<absl::Status> PopOrTimeout( absl::Duration timeout = kSufficientTime) { absl::MutexLock l(&mu_); auto cond = [this]() ABSL_SHARED_LOCKS_REQUIRED(mu_) -> bool { return !queue_.empty(); }; mu_.AwaitWithTimeout(absl::Condition(&cond), timeout); if (queue_.empty()) { return std::nullopt; } absl::Status result = std::move(queue_.front()); queue_.pop_front(); return result; } absl::Status Pop(absl::Duration timeout = kSufficientTime) { auto result = PopOrTimeout(timeout); CHECK(result.has_value()) << "Timeout!"; return *result; } void PopAllDuringDestruction() { absl::MutexLock l(&mu_); allow_non_empty_destruction_ = true; } ~Queue() { absl::MutexLock l(&mu_); if (!allow_non_empty_destruction_) CHECK(queue_.empty()) << " " << this; } private: absl::Mutex mu_; std::deque<absl::Status> queue_ ABSL_GUARDED_BY(mu_); bool allow_non_empty_destruction_ ABSL_GUARDED_BY(mu_) = false; }; void ExpectHeadAndTail( std::vector<std::variant<absl::StatusOr<Queue*>, absl::Status>> var_list) { std::vector<absl::Status> status_list; for (const auto& v : var_list) { if (std::holds_alternative<absl::StatusOr<Queue*>>(v)) { status_list.push_back(std::get<absl::StatusOr<Queue*>>(v).status()); } else { status_list.push_back(std::get<absl::Status>(v)); } } bool seen_not_ok = false; std::string str; for (const auto& s : status_list) { absl::StrAppend(&str, "\n", s.ToString(), "\n-----\n"); } for (const auto& s : status_list) { if (!s.ok()) seen_not_ok = true; if (seen_not_ok) { EXPECT_THAT(s, Not(IsOk())) << str; } } } using ServerStream = ::grpc::ServerReaderWriter<IfrtResponse, IfrtRequest>; using SessionAction = bool; constexpr SessionAction kContinueSession = true; constexpr SessionAction kStopSession = false; using OnSessionStart = std::function<SessionAction()>; using OnReqReceived = std::function<SessionAction(const IfrtRequest&, ServerStream*)>; class SimpleIfrtService : public grpc::GrpcIfrtService::Service { public: SimpleIfrtService(OnReqReceived on_req_received, OnSessionStart on_session_start) : on_req_received_(std::move(on_req_received)), on_session_start_(std::move(on_session_start)) {} ::grpc::Status IfrtSession(::grpc::ServerContext* context, ServerStream* stream) override { if (on_session_start_ && on_session_start_() == kStopSession) { return ::grpc::Status::OK; } { absl::MutexLock l(&mu_); CHECK(contexts_.insert(context).second); } while (true) { IfrtRequest request; LOG(INFO) << "Server: waiting on Read()."; if (!stream->Read(&request)) { LOG(INFO) << "Server: Read() returned false."; break; } LOG(INFO) << "Server: Read() returned true."; if (!on_req_received_) { IfrtResponse response; response.mutable_response_metadata()->set_op_id( request.request_metadata().op_id()); stream->Write(response); } else if (on_req_received_(request, stream) == kStopSession) { break; } } { absl::MutexLock l(&mu_); CHECK_EQ(contexts_.erase(context), 1); } LOG(INFO) << "Finishing IFRT session"; return ::grpc::Status::OK; } void CancelAllServerSessions() { absl::MutexLock l(&mu_); for (const auto& context : contexts_) { context->TryCancel(); } } private: const OnReqReceived on_req_received_; const OnSessionStart on_session_start_; absl::Mutex mu_; absl::flat_hash_set<::grpc::ServerContext*> contexts_ ABSL_GUARDED_BY(mu_); }; class ClientAndServer { public: explicit ClientAndServer(OnReqReceived on_req_received = nullptr, OnSessionStart on_session_start = nullptr) { std::string address = absl::StrCat("localhost:", tsl::testing::PickUnusedPortOrDie()); ::grpc::ServerBuilder builder; builder.AddListeningPort(address, GetServerCredentials()); ifrt_service_ = std::make_unique<SimpleIfrtService>(on_req_received, on_session_start); builder.RegisterService(ifrt_service_.get()); server_ = builder.BuildAndStart(); LOG(INFO) << "Server started and listening on " << address; absl::FlushLogSinks(); std::shared_ptr<::grpc::Channel> channel = ::grpc::CreateChannel(address, GetClientCredentials()); channel->WaitForConnected(gpr_time_add( gpr_now(GPR_CLOCK_REALTIME), gpr_time_from_seconds(10, GPR_TIMESPAN))); LOG(INFO) << "conn_state = " << channel->GetState(false); auto stub = grpc::GrpcIfrtService::NewStub(channel); CHECK(stub != nullptr); client_session_ = GrpcClientSession::Create( std::move(stub), Metadata(), [this](absl::Status s) { client_finished_q_.Push(s); client_finished_notification_.Notify(); }); client_finished_q_.PopAllDuringDestruction(); } void StopServer() { ifrt_service_->CancelAllServerSessions(); server_->Shutdown(); server_->Wait(); } ~ClientAndServer() { StopServer(); client_session_->Finish(absl::CancelledError("~ClientAndServer")); client_finished_notification_.WaitForNotificationWithTimeout( kSufficientTime); CHECK(client_finished_notification_.HasBeenNotified()); } GrpcClientSession* client_session() { return client_session_.get(); } Queue* client_finished_q() { return &client_finished_q_; } absl::StatusOr<Queue*> SendSimpleRequest(int op_id) { owned_queues_.push_back(std::make_unique<Queue>()); Queue* q = owned_queues_.back().get(); auto req = std::make_unique<IfrtRequest>(); req->mutable_request_metadata()->set_op_id(op_id); TF_RETURN_IF_ERROR(client_session_->Enqueue( std::move(req), [q](absl::StatusOr<GrpcClientSession::Response> resp) { q->Push(resp.status()); })); return q; } private: std::vector<std::unique_ptr<Queue>> owned_queues_; Queue client_finished_q_; absl::Notification client_finished_notification_; std::shared_ptr<GrpcClientSession> client_session_; std::unique_ptr<::grpc::Server> server_; std::unique_ptr<SimpleIfrtService> ifrt_service_; }; TEST(GrpcClientSessionTest, HappyCaseOneRequestWithServerTermination) { ClientAndServer cs; TF_ASSERT_OK_AND_ASSIGN(Queue * response_q, cs.SendSimpleRequest(kOp1)); EXPECT_THAT(response_q->Pop(), IsOk()); EXPECT_EQ(cs.client_finished_q()->PopOrTimeout(), std::nullopt); cs.StopServer(); EXPECT_THAT(cs.client_finished_q()->Pop(), Not(IsOk())); } TEST(GrpcClientSessionTest, HappyCaseTwoRequestsWithClientFinish) { ClientAndServer cs; TF_ASSERT_OK_AND_ASSIGN(Queue * response_q_1, cs.SendSimpleRequest(kOp1)); TF_ASSERT_OK_AND_ASSIGN(Queue * response_q_2, cs.SendSimpleRequest(kOp2)); EXPECT_THAT(response_q_1->Pop(), IsOk()); EXPECT_THAT(response_q_2->Pop(), IsOk()); EXPECT_EQ(cs.client_finished_q()->PopOrTimeout(), std::nullopt); cs.client_session()->Finish(TestError()); EXPECT_THAT(cs.client_finished_q()->Pop(), Not(IsOk())); } TEST(GrpcClientSessionTest, ServerFinishesDuringFirstRead) { ClientAndServer cs( [](auto, auto) { return kStopSession; }); TF_ASSERT_OK_AND_ASSIGN(Queue * response_q_1, cs.SendSimpleRequest(kOp1)); EXPECT_THAT(response_q_1->Pop(), Not(IsOk())); absl::StatusOr<Queue*> response_q_2 = cs.SendSimpleRequest(kOp2); EXPECT_THAT(response_q_2.status(), Not(IsOk())); EXPECT_THAT(cs.client_finished_q()->Pop(), Not(IsOk())); } TEST(GrpcClientSessionTest, ServerFinishesDuringConstruction) { ClientAndServer cs(nullptr, []() { return kStopSession; }); absl::StatusOr<Queue*> response_q_1 = cs.SendSimpleRequest(kOp1); absl::StatusOr<Queue*> response_q_2 = cs.SendSimpleRequest(kOp2); ExpectHeadAndTail({response_q_1, response_q_2}); if (response_q_1.ok()) EXPECT_THAT(response_q_1.value()->Pop(), Not(IsOk())); if (response_q_2.ok()) EXPECT_THAT(response_q_2.value()->Pop(), Not(IsOk())); EXPECT_THAT(cs.client_finished_q()->Pop(), Not(IsOk())); } TEST(GrpcClientSessionTest, ClientFinishesAfterServerConsumesFirstRequest) { std::atomic<GrpcClientSession*> session_ptr; ClientAndServer cs( [session_ptr = &session_ptr](auto, auto) { session_ptr->load()->Finish(TestError()); return kContinueSession; }); session_ptr.store(cs.client_session()); TF_ASSERT_OK_AND_ASSIGN(Queue * response_q_1, cs.SendSimpleRequest(kOp1)); EXPECT_THAT(response_q_1->Pop(), Not(IsOk())); absl::StatusOr<Queue*> response_q_2 = cs.SendSimpleRequest(kOp2); EXPECT_THAT(response_q_2.status(), Not(IsOk())); EXPECT_THAT(cs.client_finished_q()->Pop(), Not(IsOk())); } TEST(GrpcClientSessionTest, ClientFinishesAfterServerWritesFirstResponse) { std::atomic<GrpcClientSession*> session_ptr; ClientAndServer cs( [session_ptr = &session_ptr](const IfrtRequest& r, ServerStream* s) { IfrtResponse response; response.mutable_response_metadata()->set_op_id( r.request_metadata().op_id()); s->Write(response); session_ptr->load()->Finish(TestError()); return kContinueSession; }); session_ptr.store(cs.client_session()); TF_ASSERT_OK_AND_ASSIGN(Queue * response_q_1, cs.SendSimpleRequest(kOp1)); absl::StatusOr<Queue*> response_q_2 = cs.SendSimpleRequest(kOp2); response_q_1->Pop().IgnoreError(); if (response_q_2.ok()) { EXPECT_THAT(response_q_2.value()->Pop(), Not(IsOk())); } EXPECT_THAT(cs.client_finished_q()->Pop(), Not(IsOk())); } TEST(GrpcClientSessionTest, ClientFinishesDuringServerConstruction) { std::atomic<GrpcClientSession*> session_ptr; absl::Notification init_done; ClientAndServer cs(nullptr, [session_ptr = &session_ptr, init_done = &init_done]() { init_done->WaitForNotification(); session_ptr->load()->Finish(TestError()); return kContinueSession; }); session_ptr.store(cs.client_session()); init_done.Notify(); absl::StatusOr<Queue*> response_q_1 = cs.SendSimpleRequest(kOp1); absl::StatusOr<Queue*> response_q_2 = cs.SendSimpleRequest(kOp2); if (response_q_1.ok()) { EXPECT_THAT(response_q_1.value()->Pop(), Not(IsOk())); } if (response_q_2.ok()) { EXPECT_THAT(response_q_2.value()->Pop(), Not(IsOk())); } ExpectHeadAndTail({response_q_1, response_q_2}); EXPECT_THAT(cs.client_finished_q()->Pop(), Not(IsOk())); } TEST(GrpcClientSessionTest, MethodsAfterFinishReturnError) { ClientAndServer cs; TF_ASSERT_OK_AND_ASSIGN(Queue * response_q_1, cs.SendSimpleRequest(kOp1)); cs.client_session()->Finish(TestError()); EXPECT_THAT(cs.SendSimpleRequest(kOp2), Not(IsOk())); response_q_1->PopAllDuringDestruction(); } TEST(GrpcClientSessionTest, ReceivingBadIfrtResponseDoesNotCrash) { ClientAndServer cs( [](const IfrtRequest& r, ServerStream* s) mutable { IfrtResponse resp; resp.mutable_response_metadata()->set_op_id(kOp2); s->Write(resp); resp.mutable_response_metadata()->set_op_id( r.request_metadata().op_id()); s->Write(resp); return kContinueSession; }); TF_ASSERT_OK_AND_ASSIGN(Queue * response_q, cs.SendSimpleRequest(kOp1)); EXPECT_THAT(response_q->Pop(), IsOk()); } TEST(GrpcClientSessionTest, BadInitialChannelFailsPromptly) { std::string address = absl::StrCat("localhost:", tsl::testing::PickUnusedPortOrDie()); std::shared_ptr<::grpc::Channel> channel = ::grpc::CreateChannel(address, GetClientCredentials()); std::unique_ptr<grpc::GrpcIfrtService::StubInterface> stub = grpc::GrpcIfrtService::NewStub(channel); EXPECT_TRUE(stub != nullptr); auto session_finished = std::make_shared<Queue>(); auto session = GrpcClientSession::Create( std::move(stub), Metadata(), [session_finished](absl::Status s) { session_finished->Push(s); }); EXPECT_THAT(session_finished->Pop(), Not(IsOk())); } } } } }
372
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_EXP_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_EXP_H_ #include <cmath> #include "ruy/profiler/instrumentation.h" #include "tensorflow/lite/kernels/internal/types.h" namespace tflite { namespace reference_ops { template <typename T> inline void Exp(const T* input_data, const size_t num_elements, T* output_data) { ruy::profiler::ScopeLabel label("Exp"); for (size_t idx = 0; idx < num_elements; ++idx) { output_data[idx] = std::exp(input_data[idx]); } } } } #endif #include <cmath> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/common.h" #include "tensorflow/lite/kernels/internal/reference/integer_ops/lut.h" #include "tensorflow/lite/kernels/internal/reference/reference_ops.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace builtin { namespace exp { enum KernelType { kReference, }; struct ExpContext { ExpContext(TfLiteContext* context, TfLiteNode* node) { input = GetInput(context, node, 0); output = GetOutput(context, node, 0); } const TfLiteTensor* input; TfLiteTensor* output; }; struct OpData { union { int8_t lut_int8[LUTSize<int8_t>()]; int16_t lut_int16[LUTSize<int16_t>()]; }; }; void* Init(TfLiteContext* context, const char* buffer, size_t length) { return new OpData; } void Free(TfLiteContext* context, void* buffer) { delete reinterpret_cast<OpData*>(buffer); } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { OpData* data = static_cast<OpData*>(node->user_data); TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); ExpContext op_context(context, node); const TfLiteTensor* input = op_context.input; TfLiteTensor* output = op_context.output; TfLiteIntArray* output_dims = TfLiteIntArrayCopy(input->dims); output->type = input->type; if (input->type == kTfLiteInt8) { LUTPopulate<int8_t>( input->params.scale, input->params.zero_point, output->params.scale, output->params.zero_point, [](float value) { return std::exp(value); }, data->lut_int8); } else if (input->type == kTfLiteInt16) { TF_LITE_ENSURE_EQ(context, input->params.zero_point, 0); TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0); LUTPopulate<int16_t>( input->params.scale, input->params.zero_point, output->params.scale, output->params.zero_point, [](float value) { return std::exp(value); }, data->lut_int16); } return context->ResizeTensor(context, op_context.output, output_dims); } template <KernelType kernel_type> TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { OpData* data = reinterpret_cast<OpData*>(node->user_data); ExpContext op_context(context, node); if (kernel_type == kReference) { switch (op_context.input->type) { case kTfLiteFloat32: reference_ops::Exp(GetTensorData<float>(op_context.input), NumElements(op_context.input), GetTensorData<float>(op_context.output)); break; case kTfLiteInt8: reference_integer_ops::LookupTable( GetTensorData<int8_t>(op_context.input), NumElements(op_context.input), data->lut_int8, GetTensorData<int8_t>(op_context.output)); break; case kTfLiteInt16: reference_integer_ops::LookupTable( GetTensorData<int16_t>(op_context.input), NumElements(op_context.input), data->lut_int16, GetTensorData<int16_t>(op_context.output)); break; default: TF_LITE_KERNEL_LOG(context, "Type %d is currently not supported by Exp.", op_context.input->type); return kTfLiteError; } } return kTfLiteOk; } } TfLiteRegistration* Register_EXP_REF() { static TfLiteRegistration r = {exp::Init, exp::Free, exp::Prepare, exp::Eval<exp::kReference>}; return &r; } TfLiteRegistration* Register_EXP() { return Register_EXP_REF(); } } } }
#include <math.h> #include <initializer_list> #include <limits> #include <type_traits> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "flatbuffers/flatbuffers.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { using ::testing::ElementsAreArray; class BaseExpOpModel : public SingleOpModel { public: BaseExpOpModel(const TensorData& input, const TensorData& output) { input_ = AddInput(input); output_ = AddOutput(output); SetBuiltinOp(BuiltinOperator_EXP, BuiltinOptions_ExpOptions, CreateExpOptions(builder_).Union()); BuildInterpreter({GetShape(input_)}); } std::vector<int> GetOutputShape() { return GetTensorShape(output_); } protected: int input_; int output_; }; class FloatExpOpModel : public BaseExpOpModel { public: using BaseExpOpModel::BaseExpOpModel; void SetInput(std::initializer_list<float> data) { PopulateTensor(input_, data); } std::vector<float> GetOutput() { return ExtractVector<float>(output_); } }; class QuantizedExpOpModel : public BaseExpOpModel { public: using BaseExpOpModel::BaseExpOpModel; template <class T> void SetInput(std::initializer_list<float> data) { QuantizeAndPopulate<T>(input_, data); } template <typename integer_dtype> std::vector<float> GetDequantizedOutput() { return Dequantize<integer_dtype>(ExtractVector<integer_dtype>(output_), GetScale(output_), GetZeroPoint(output_)); } }; template <typename T> inline float GetTolerance(float min, float max) { float kQuantizedTolerance = (max - min) / (std::numeric_limits<T>::max() - std::numeric_limits<T>::min()); if (std::is_same<T, int8_t>::value) { kQuantizedTolerance += (max - min) / 256.0f; } else if (std::is_same<T, int16_t>::value) { kQuantizedTolerance += (max - min) / 512.0f; } return kQuantizedTolerance; } TEST(ExpOpTest, ExpFloat) { std::initializer_list<float> data = {0.0f, 1.0f, -1.0f, 100.0f, -100.0f, 0.01f, -0.01f}; FloatExpOpModel m({TensorType_FLOAT32, {1, 1, 7}}, {TensorType_FLOAT32, {}}); m.SetInput(data); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({1, 1, 7})); EXPECT_THAT( m.GetOutput(), ElementsAreArray(ArrayFloatNear( {std::exp(0.0f), std::exp(1.0f), std::exp(-1.0f), std::exp(100.0f), std::exp(-100.0f), std::exp(0.01f), std::exp(-0.01f)}))); } template <TensorType tensor_type, typename integer_dtype> void QuantizedExpSymmetricTest() { const float kMin = -1; const float kMax = std::numeric_limits<integer_dtype>::max() / static_cast<float>(std::numeric_limits<integer_dtype>::max() + 1); const float kQuantizedTolerance = GetTolerance<integer_dtype>(-3.1, 3.1); QuantizedExpOpModel m({tensor_type, {1, 2, 2, 2}, 1.3f * kMin, 1.3f * kMax}, {tensor_type, {}, 3.01f * kMin, 3.01f * kMax}); m.SetInput<integer_dtype>({-1.3, -1.0, -0.3, 0, 0.1, 0.5, 1.0, 1.1}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({1, 2, 2, 2})); EXPECT_THAT(m.GetDequantizedOutput<integer_dtype>(), ElementsAreArray(ArrayFloatNear( {0.2725, 0.3679, 0.7408, 1.0, 1.1052, 1.6487, 2.7183, 3.0042}, kQuantizedTolerance))); } TEST(ExpOpTest, ExpSymmetricInt8) { QuantizedExpSymmetricTest<TensorType_INT8, int8_t>(); } TEST(ExpOpTest, ExpSymmetricInt16) { QuantizedExpSymmetricTest<TensorType_INT16, int16_t>(); } template <TensorType tensor_type, typename integer_dtype> void QuantizedExpAsymmetricTest() { const float kQuantizedTolerance = GetTolerance<integer_dtype>(-1.3, 3.01); QuantizedExpOpModel m({tensor_type, {1, 2, 2, 2}, -1.3, 1.1}, {tensor_type, {}, 0.0, 3.01}); m.SetInput<integer_dtype>({-1.3, -1.0, -0.3, 0, 0.1, 0.5, 1.0, 1.1}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({1, 2, 2, 2})); EXPECT_THAT(m.GetDequantizedOutput<integer_dtype>(), ElementsAreArray(ArrayFloatNear( {0.2725, 0.3679, 0.7408, 1.0, 1.1052, 1.6487, 2.7183, 3.0042}, kQuantizedTolerance))); } TEST(ExpOpTest, ExpAsymmetricInt8) { QuantizedExpAsymmetricTest<TensorType_INT8, int8_t>(); } } }
373
#ifndef TENSORSTORE_DRIVER_DOWNSAMPLE_GRID_OCCUPANCY_MAP_H_ #define TENSORSTORE_DRIVER_DOWNSAMPLE_GRID_OCCUPANCY_MAP_H_ #include <vector> #include "tensorstore/array.h" #include "tensorstore/box.h" #include "tensorstore/index.h" #include "tensorstore/util/span.h" namespace tensorstore { namespace internal_downsample { class GridOccupancyTracker { public: std::vector<Index> occupied_chunks; void MarkOccupied(BoxView<> box) { occupied_chunks.insert(occupied_chunks.end(), box.origin().begin(), box.origin().end()); occupied_chunks.insert(occupied_chunks.end(), box.shape().begin(), box.shape().end()); } }; class GridOccupancyMap { public: explicit GridOccupancyMap(GridOccupancyTracker&& tracker, BoxView<> domain); DimensionIndex rank() const { return occupied_chunk_mask.rank(); } bool GetGridCellDomain(span<const Index> grid_cell, MutableBoxView<> grid_cell_domain) const; void InitializeCellIterator(span<Index> grid_cell) const; bool AdvanceCellIterator(span<Index> grid_cell) const; std::vector<std::vector<Index>> partition_points; SharedArray<bool> occupied_chunk_mask; }; } } #endif #include "tensorstore/driver/downsample/grid_occupancy_map.h" #include <vector> #include "absl/container/flat_hash_map.h" #include "tensorstore/array.h" #include "tensorstore/box.h" #include "tensorstore/index.h" #include "tensorstore/util/iterate.h" #include "tensorstore/util/span.h" namespace tensorstore { namespace internal_downsample { GridOccupancyMap::GridOccupancyMap(GridOccupancyTracker&& tracker, BoxView<> domain) : partition_points(domain.rank()) { const DimensionIndex rank = domain.rank(); span<Index> occupied_chunks = tracker.occupied_chunks; { absl::flat_hash_map<Index, Index> partition_map; for (DimensionIndex dim = 0; dim < rank; ++dim) { partition_map.clear(); IndexInterval bounds = domain[dim]; partition_map.emplace(bounds.inclusive_min(), 0); partition_map.emplace(bounds.exclusive_max(), 0); for (ptrdiff_t i = dim; i < occupied_chunks.size(); i += 2 * rank) { Index begin = occupied_chunks[i]; Index end = begin + occupied_chunks[i + rank]; partition_map.emplace(begin, 0); partition_map.emplace(end, 0); } auto& dim_partition_points = partition_points[dim]; dim_partition_points.reserve(partition_map.size()); for (const auto& p : partition_map) { dim_partition_points.push_back(p.first); } std::sort(dim_partition_points.begin(), dim_partition_points.end()); for (size_t i = 0, size = dim_partition_points.size(); i < size; ++i) { partition_map.at(dim_partition_points[i]) = i; } for (ptrdiff_t i = dim; i < occupied_chunks.size(); i += 2 * rank) { Index& begin = occupied_chunks[i]; Index& end = occupied_chunks[i + rank]; end = partition_map.at(begin + end); begin = partition_map.at(begin); } } } Index grid_cell[kMaxRank]; span<Index> grid_cell_span(&grid_cell[0], rank); { for (DimensionIndex dim = 0; dim < rank; ++dim) { grid_cell[dim] = partition_points[dim].size() - 1; } occupied_chunk_mask = AllocateArray<bool>(grid_cell_span, c_order, value_init); } for (ptrdiff_t i = 0; i < occupied_chunks.size(); i += 2 * rank) { std::copy_n(&occupied_chunks[i], rank, &grid_cell[0]); do { occupied_chunk_mask(grid_cell_span) = true; } while (internal::AdvanceIndices(rank, &grid_cell[0], &occupied_chunks[i], &occupied_chunks[i + rank])); } } bool GridOccupancyMap::GetGridCellDomain( span<const Index> grid_cell, MutableBoxView<> grid_cell_domain) const { assert(grid_cell.size() == grid_cell_domain.rank()); assert(grid_cell.size() == rank()); if (occupied_chunk_mask(grid_cell)) return false; for (DimensionIndex dim = 0; dim < grid_cell.size(); ++dim) { const Index partition_index = grid_cell[dim]; grid_cell_domain[dim] = IndexInterval::UncheckedHalfOpen( partition_points[dim][partition_index], partition_points[dim][partition_index + 1]); } return true; } void GridOccupancyMap::InitializeCellIterator(span<Index> grid_cell) const { std::fill(grid_cell.begin(), grid_cell.end(), 0); } bool GridOccupancyMap::AdvanceCellIterator(span<Index> grid_cell) const { assert(grid_cell.size() == occupied_chunk_mask.rank()); return internal::AdvanceIndices(grid_cell.size(), grid_cell.data(), occupied_chunk_mask.shape().data()); } } }
#include "tensorstore/driver/downsample/grid_occupancy_map.h" #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/box.h" #include "tensorstore/index.h" namespace { using ::tensorstore::Box; using ::tensorstore::BoxView; using ::tensorstore::Index; using ::tensorstore::MakeArray; using ::tensorstore::internal_downsample::GridOccupancyMap; using ::tensorstore::internal_downsample::GridOccupancyTracker; std::vector<Box<>> GetUnoccupiedBoxes(const GridOccupancyMap& map) { std::vector<Box<>> boxes; std::vector<Index> grid_cell(map.rank()); map.InitializeCellIterator(grid_cell); Box<> box(map.rank()); do { if (map.GetGridCellDomain(grid_cell, box)) { boxes.push_back(box); } } while (map.AdvanceCellIterator(grid_cell)); return boxes; } TEST(GridOccupancyMapTest, Rank1) { GridOccupancyTracker tracker; tracker.MarkOccupied(BoxView<1>({1}, {3})); tracker.MarkOccupied(BoxView<1>({5}, {4})); GridOccupancyMap map(std::move(tracker), BoxView<1>({-1}, {11})); EXPECT_THAT( map.partition_points, ::testing::ElementsAre(::testing::ElementsAre(-1, 1, 4, 5, 9, 10))); EXPECT_EQ(map.occupied_chunk_mask, MakeArray<bool>({0, 1, 0, 1, 0})); EXPECT_THAT(GetUnoccupiedBoxes(map), ::testing::ElementsAre(Box<>({-1}, {2}), Box<>({4}, {1}), Box<>({9}, {1}))); } TEST(GridOccupancyMapTest, Rank2) { GridOccupancyTracker tracker; tracker.MarkOccupied(BoxView<2>({0, 0}, {3, 2})); tracker.MarkOccupied(BoxView<2>({3, 3}, {1, 3})); tracker.MarkOccupied(BoxView<2>({0, 5}, {2, 3})); GridOccupancyMap map(std::move(tracker), BoxView<2>({4, 10})); EXPECT_THAT( map.partition_points, ::testing::ElementsAre(::testing::ElementsAre(0, 2, 3, 4), ::testing::ElementsAre(0, 2, 3, 5, 6, 8, 10))); EXPECT_EQ(map.occupied_chunk_mask, MakeArray<bool>({ {1, 0, 0, 1, 1, 0}, {1, 0, 0, 0, 0, 0}, {0, 0, 1, 1, 0, 0}, })); EXPECT_THAT( GetUnoccupiedBoxes(map), ::testing::ElementsAre( Box<>({0, 2}, {2, 1}), Box<>({0, 3}, {2, 2}), Box<>({0, 8}, {2, 2}), Box<>({2, 2}, {1, 1}), Box<>({2, 3}, {1, 2}), Box<>({2, 5}, {1, 1}), Box<>({2, 6}, {1, 2}), Box<>({2, 8}, {1, 2}), Box<>({3, 0}, {1, 2}), Box<>({3, 2}, {1, 1}), Box<>({3, 6}, {1, 2}), Box<>({3, 8}, {1, 2}))); } }
374
#ifndef XLA_TOOLS_HLO_BISECT_HLO_BISECT_STATE_H_ #define XLA_TOOLS_HLO_BISECT_HLO_BISECT_STATE_H_ #include <memory> #include <string> #include <utility> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/literal.h" namespace xla { namespace bisect { class BugCheckerInterface { public: virtual ~BugCheckerInterface() {} virtual absl::StatusOr<bool> Run(const HloModule& module) = 0; virtual absl::flat_hash_map<std::string, Literal> GetResults() = 0; }; class HloBisectState { public: explicit HloBisectState(std::unique_ptr<HloModule> module, BugCheckerInterface* bug_checker) : module_(std::move(module)), bug_checker_(bug_checker) {} absl::StatusOr<bool> ShouldProcess(); absl::StatusOr<bool> TrimEntryComputation(); std::unique_ptr<xla::HloModule>&& GetResult(); private: absl::StatusOr<bool> RunModule(const HloModule& module); absl::StatusOr<bool> TrimByOutputs(); absl::StatusOr<bool> TrimByInstructions(); absl::StatusOr<bool> TrimByUsingConstants(); absl::Status ExpectModuleIsBuggy(); std::unique_ptr<xla::HloModule> module_; BugCheckerInterface* bug_checker_; absl::flat_hash_set<std::string> foldable_instructions_; absl::flat_hash_map<std::string, Literal> foldable_instructions_values_; }; } } #endif #include "xla/tools/hlo_bisect/hlo_bisect_state.h" #include <iterator> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_dce.h" #include "xla/tests/test_utils.h" #include "xla/util.h" namespace xla { namespace bisect { namespace { std::vector<HloInstruction*> GetModifiedInstructionPostOrder( HloComputation* computation) { std::vector<HloInstruction*> instructions( computation->parameter_instructions().begin(), computation->parameter_instructions().end()); absl::c_copy_if(computation->MakeInstructionPostOrder(), std::back_inserter(instructions), [&](const HloInstruction* instr) { return instr->opcode() != HloOpcode::kParameter; }); return instructions; } absl::Status MorphModuleWithOutputs(HloModule* module, absl::Span<HloInstruction* const> outputs) { HloComputation* entry_computation = module->entry_computation(); HloInstruction* new_root = outputs.size() == 1 ? outputs[0] : entry_computation->AddInstruction( HloInstruction::CreateTuple(outputs)); entry_computation->set_root_instruction(new_root, true); *module->mutable_entry_computation_layout() = module->compute_computation_layout(); HloDCE dce; absl::StatusOr<bool> dce_result = dce.Run(module); return dce_result.status(); } absl::Status MorphModuleWithInstructions( HloModule* module, absl::Span<HloInstruction* const> instructions) { ConstHloInstructionSet in_range_instructions(instructions.begin(), instructions.end()); auto keep_result = [&](const HloInstruction* instruction) { return instruction->opcode() != HloOpcode::kParameter && !absl::c_any_of(instruction->users(), [&](const HloInstruction* user) { return in_range_instructions.count(user) != 0; }); }; std::vector<HloInstruction*> outputs; absl::c_copy_if(instructions, std::back_inserter(outputs), keep_result); return MorphModuleWithOutputs(module, outputs); } absl::Status MorphModuleWithInstructions(HloModule* module, size_t num_instructions) { std::vector<HloInstruction*> ordered_instructions = GetModifiedInstructionPostOrder(module->entry_computation()); HloInstruction* const* instructions_begin = &ordered_instructions.front(); return MorphModuleWithInstructions( module, absl::MakeSpan(instructions_begin, num_instructions)); } absl::Status MorphModuleWithLiterals( HloModule* module, absl::flat_hash_map<std::string, Literal> literal_map) { HloComputation* entry_computation = module->entry_computation(); absl::flat_hash_map<HloInstruction*, Literal> replace_map; for (HloInstruction* instruction : entry_computation->instructions()) { auto it = literal_map.find(instruction->name()); if (it != literal_map.end()) { replace_map.emplace(instruction, std::move(it->second)); } } for (auto& [instruction, literal] : replace_map) { if (!instruction->IsDead()) { HloInstruction* new_instruction = entry_computation->AddInstruction( HloInstruction::CreateConstant(std::move(literal))); absl::Status replace_status = entry_computation->ReplaceInstruction(instruction, new_instruction); TF_RETURN_IF_ERROR(replace_status); } } xla::HloDCE dce; absl::StatusOr<bool> dce_status = dce.Run(module); return dce_status.status(); } bool InstructionNotReplaceableWithConstant(HloInstruction* instruction) { return instruction->shape().is_dynamic() || instruction->opcode() == HloOpcode::kConstant || instruction->opcode() == HloOpcode::kTuple || instruction->opcode() == HloOpcode::kParameter; } } absl::StatusOr<bool> HloBisectState::ShouldProcess() { return RunModule(*module_); } absl::StatusOr<bool> HloBisectState::TrimEntryComputation() { bool changed_in_loop = false; bool changed = false; for (int iter = 0; changed || iter < 2; iter++) { if (iter % 2 == 0) { VLOG(2) << "Trimming by outputs, iteration " << iter; TF_ASSIGN_OR_RETURN(changed, TrimByOutputs()); } else { VLOG(2) << "Trimming by instructions, iteration " << iter; TF_ASSIGN_OR_RETURN(changed, TrimByInstructions()); } changed_in_loop |= changed; } VLOG(2) << "Trimming by replacing instructions with literals"; TF_ASSIGN_OR_RETURN(changed, TrimByUsingConstants()); VLOG(2) << "Final module: " << module_->ToString(); return changed || changed_in_loop; } std::unique_ptr<xla::HloModule>&& HloBisectState::GetResult() { return std::move(module_); } absl::StatusOr<bool> HloBisectState::RunModule(const HloModule& module) { VLOG(3) << "Modified module: " << module.ToString(); absl::StatusOr<bool> bug_result = bug_checker_->Run(module); TF_RETURN_IF_ERROR(bug_result.status()); VLOG(3) << "Bug checker result: " << bug_result.value(); if (!bug_result.value()) { for (HloInstruction* instr : module.entry_computation()->instructions()) { foldable_instructions_.emplace(instr->name()); } for (auto& [key, value] : bug_checker_->GetResults()) { foldable_instructions_values_[key] = std::move(value); } } return bug_result; } absl::StatusOr<bool> HloBisectState::TrimByOutputs() { HloInstruction* root_instruction = module_->entry_computation()->root_instruction(); if (root_instruction->opcode() != HloOpcode::kTuple || root_instruction->operand_count() < 2) { return false; } auto run_modified = [&](int64_t start, int64_t end) -> absl::StatusOr<bool> { std::unique_ptr<HloModule> new_module = module_->Clone(""); HloInstruction* const* new_operands = new_module->entry_computation()->root_instruction()->operands().begin(); TF_RETURN_IF_ERROR(MorphModuleWithOutputs( new_module.get(), absl::MakeSpan(new_operands + start, end - start + 1))); return RunModule(*new_module); }; int64_t bisect_low = 0; int64_t bisect_high = root_instruction->operand_count() - 1; while (bisect_low < bisect_high) { int64_t cur = bisect_low + (bisect_high - bisect_low) / 2; VLOG(2) << "Number of outputs: " << (cur - bisect_low + 1) << " [" << bisect_low << ".." << cur << "]"; TF_ASSIGN_OR_RETURN(bool has_bug, run_modified(bisect_low, cur)); if (has_bug) { bisect_high = cur; } else { TF_ASSIGN_OR_RETURN(has_bug, run_modified(cur + 1, bisect_high)); if (has_bug) { bisect_low = cur + 1; } else { break; } } } bool changed = (bisect_high - bisect_low) < (root_instruction->operand_count() - 1); if (changed) { TF_RETURN_IF_ERROR(MorphModuleWithOutputs( module_.get(), absl::MakeSpan(root_instruction->operands().begin() + bisect_low, bisect_high - bisect_low + 1))); TF_RETURN_IF_ERROR(ExpectModuleIsBuggy()); } return changed; } absl::StatusOr<bool> HloBisectState::TrimByInstructions() { HloComputation* computation = module_->entry_computation(); int64_t upper_bound = computation->instruction_count() - computation->root_instruction()->shape().IsTuple(); int64_t bisect_low = computation->num_parameters() - 1; int64_t bisect_high = upper_bound; while (bisect_low + 1 < bisect_high) { int64_t cur = bisect_low + (bisect_high - bisect_low) / 2; VLOG(2) << "Number of instructions: " << cur << " (of " << computation->instruction_count() << ")"; std::unique_ptr<HloModule> new_module = module_->Clone(""); TF_RETURN_IF_ERROR(MorphModuleWithInstructions(new_module.get(), cur)); TF_ASSIGN_OR_RETURN(bool has_bug, RunModule(*new_module)); if (has_bug) { bisect_high = cur; } else { bisect_low = cur; } } if (bisect_high == computation->num_parameters()) { return Internal( "The checker fails on an empty computation! Something is not right. " "Can't bisect."); } bool changed = bisect_high < upper_bound; if (changed) { TF_RETURN_IF_ERROR(MorphModuleWithInstructions(module_.get(), bisect_high)); TF_RETURN_IF_ERROR(ExpectModuleIsBuggy()); } return changed; } absl::StatusOr<bool> HloBisectState::TrimByUsingConstants() { absl::flat_hash_map<std::string, Literal> literal_map; int64_t random_literals_count = 0; for (HloInstruction* instr : module_->entry_computation()->instructions()) { if (InstructionNotReplaceableWithConstant(instr)) { continue; } if (foldable_instructions_values_.contains(instr->name())) { auto it = foldable_instructions_values_.extract(instr->name()); literal_map.insert(std::move(it)); } else if (foldable_instructions_.contains(instr->name())) { absl::StatusOr<Literal> literal_status = MakeFakeLiteral(instr->shape()); TF_RETURN_IF_ERROR(literal_status.status()); literal_map[instr->name()] = std::move(literal_status).value(); ++random_literals_count; } } VLOG(2) << "Number of literals: " << literal_map.size() << " (random: " << random_literals_count << ")"; std::unique_ptr<HloModule> new_module = module_->Clone(""); TF_RETURN_IF_ERROR( MorphModuleWithLiterals(new_module.get(), std::move(literal_map))); TF_ASSIGN_OR_RETURN(bool has_bug, RunModule(*new_module)); if (has_bug) { std::swap(module_, new_module); } return has_bug; } absl::Status HloBisectState::ExpectModuleIsBuggy() { TF_ASSIGN_OR_RETURN(bool has_bug, RunModule(*module_)); if (has_bug) { return absl::OkStatus(); } const int retry_count = 5; int bug_count = 0; for (int i = 0; i < retry_count; i++) { TF_ASSIGN_OR_RETURN(has_bug, bug_checker_->Run(*module_)); if (has_bug) { bug_count++; } } if (bug_count != 0) { return InternalStrCat("The checker is non deterministic! (only ", bug_count, " failures seen in ", (retry_count + 1), " runs)"); } return Internal("We \"lost\" the bug while bisecting!"); } } }
#include "xla/tools/hlo_bisect/hlo_bisect_state.h" #include <initializer_list> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace bisect { namespace { namespace m = match; using HloBisectStateTest = HloTestBase; class TestBugSearch : public BugCheckerInterface { public: TestBugSearch(std::initializer_list<HloOpcode> opcodes) : opcodes_(opcodes) {} absl::StatusOr<bool> Run(const HloModule& module) override { auto has_opcode = [&](HloOpcode opcode) { return absl::c_any_of(module.entry_computation()->instructions(), [opcode](const HloInstruction* instr) { return instr->opcode() == opcode; }); }; return absl::c_all_of(opcodes_, has_opcode); } absl::flat_hash_map<std::string, Literal> GetResults() override { return {}; } private: std::vector<HloOpcode> opcodes_; }; Literal CreateLiteral(float value) { Literal result = Literal::CreateFromShape(ShapeUtil::MakeShape(F32, {})); result.PopulateWithValue(value); return result; } TEST_F(HloBisectStateTest, TrimByOutputs) { const char* kModuleStr = R"( HloModule test_module ENTRY test_computation { p1 = s32[8] parameter(0) p2 = s32[8] parameter(1) a = s32[8] add(p1, p2) b = s32[8] multiply(p1, p2) c = s32[8] subtract(p1, p2) ROOT sum = tuple(a, b, c) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); TestBugSearch bug_checker({HloOpcode::kMultiply}); HloBisectState bisect(std::move(module), &bug_checker); TF_ASSERT_OK_AND_ASSIGN(bool changed, bisect.TrimEntryComputation()); EXPECT_TRUE(changed); auto reduced_module = std::move(bisect).GetResult(); EXPECT_THAT(reduced_module->entry_computation()->root_instruction(), GmockMatch(m::Multiply(m::Parameter(0), m::Parameter(1)))); } TEST_F(HloBisectStateTest, TrimByInstructions) { const char* kModuleStr = R"( HloModule axpy_module ENTRY axpy_computation { alpha = f32[] parameter(0) broadcast = f32[10] broadcast(alpha), dimensions={} x = f32[10] parameter(1) ax = f32[10] multiply(broadcast, x) y = f32[10] parameter(2) ROOT add = f32[10] add(ax, y) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); TestBugSearch bug_checker({HloOpcode::kMultiply, HloOpcode::kBroadcast}); HloBisectState bisect(std::move(module), &bug_checker); TF_ASSERT_OK_AND_ASSIGN(bool changed, bisect.TrimEntryComputation()); EXPECT_TRUE(changed); auto reduced_module = std::move(bisect).GetResult(); EXPECT_THAT( reduced_module->entry_computation()->root_instruction(), GmockMatch(m::Multiply(m::Broadcast(m::Parameter(0)), m::Parameter(1)))); } TEST_F(HloBisectStateTest, TrimByUsingRandomConstants) { const char* kModuleStr = R"( HloModule test_module ENTRY test_computation { p1 = f32[4] parameter(0) p2 = f32[4] parameter(1) a = f32[4] multiply(p1, p2) b = f32[4] add(p1, p2) ROOT result = f32[4] power(a, b) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); TestBugSearch bug_checker({HloOpcode::kPower}); HloBisectState bisect(std::move(module), &bug_checker); TF_ASSERT_OK_AND_ASSIGN(bool changed, bisect.TrimEntryComputation()); EXPECT_TRUE(changed); auto reduced_module = std::move(bisect).GetResult(); EXPECT_THAT(reduced_module->entry_computation()->root_instruction(), GmockMatch(m::Power(m::Constant(), m::Constant()))); } TEST_F(HloBisectStateTest, TrimByUsingReferenceConstants) { class TestBugSearchWithReferenceConstants : public TestBugSearch { public: TestBugSearchWithReferenceConstants() : TestBugSearch({HloOpcode::kPower}) {} absl::flat_hash_map<std::string, Literal> GetResults() override { absl::flat_hash_map<std::string, Literal> results; results["a"] = CreateLiteral(2.0f); results["b"] = CreateLiteral(3.0f); return results; } }; const char* kModuleStr = R"( HloModule test_module ENTRY test_computation { p1 = f32[] parameter(0) p2 = f32[] parameter(1) a = f32[] multiply(p1, p2) b = f32[] add(p1, p2) ROOT result = f32[] power(a, b) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); TestBugSearchWithReferenceConstants bug_checker; HloBisectState bisect(std::move(module), &bug_checker); TF_ASSERT_OK_AND_ASSIGN(bool changed, bisect.TrimEntryComputation()); EXPECT_TRUE(changed); auto reduced_module = std::move(bisect).GetResult(); EXPECT_THAT(reduced_module->entry_computation()->root_instruction(), GmockMatch(m::Power(m::Constant(), m::Constant()))); } TEST_F(HloBisectStateTest, TrimByOutputsLostBug) { class CustomBugSearch : public TestBugSearch { public: CustomBugSearch() : TestBugSearch({HloOpcode::kConstant}) {} absl::StatusOr<bool> Run(const HloModule& module) override { TF_ASSIGN_OR_RETURN(bool has_constants, TestBugSearch::Run(module)); int program_size = module.entry_computation()->instruction_count(); return program_size == 5 && !has_constants; } }; const char* kModuleStr = R"( HloModule test_module ENTRY test_computation { p1 = s32[8] parameter(0) p2 = s32[8] parameter(1) a = s32[8] add(p1, p2) b = s32[8] multiply(p1, p2) ROOT sum = tuple(a, b) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); CustomBugSearch bug_checker; HloBisectState bisect(std::move(module), &bug_checker); TF_ASSERT_OK_AND_ASSIGN(bool changed, bisect.TrimEntryComputation()); EXPECT_FALSE(changed); } } } }
375
#ifndef TENSORFLOW_TSL_PLATFORM_ROCM_ROCDL_PATH_H_ #define TENSORFLOW_TSL_PLATFORM_ROCM_ROCDL_PATH_H_ #include "tsl/platform/types.h" namespace tsl { string RocmRoot(); string RocdlRoot(); } #endif #include "tsl/platform/rocm_rocdl_path.h" #include <stdlib.h> #include "tsl/platform/path.h" #if !defined(PLATFORM_GOOGLE) && TENSORFLOW_USE_ROCM #include "rocm/rocm_config.h" #endif #include "tsl/platform/logging.h" namespace tsl { string RocmRoot() { #if TENSORFLOW_USE_ROCM if (const char* rocm_path_env = std::getenv("ROCM_PATH")) { VLOG(3) << "ROCM root = " << rocm_path_env; return rocm_path_env; } else { VLOG(3) << "ROCM root = " << TF_ROCM_TOOLKIT_PATH; return TF_ROCM_TOOLKIT_PATH; } #else return ""; #endif } string RocdlRoot() { return io::JoinPath(RocmRoot(), "amdgcn/bitcode"); } }
#include "tensorflow/core/platform/rocm_rocdl_path.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/test.h" #if !defined(PLATFORM_GOOGLE) && TENSORFLOW_USE_ROCM #include "rocm/rocm_config.h" #endif namespace tensorflow { #if TENSORFLOW_USE_ROCM TEST(RocmRocdlPathTest, ROCDLPath) { VLOG(2) << "ROCm-Device-Libs root = " << RocdlRoot(); std::vector<string> rocdl_files; TF_EXPECT_OK(Env::Default()->GetMatchingPaths( io::JoinPath(RocdlRoot(), "*.bc"), &rocdl_files)); EXPECT_LT(0, rocdl_files.size()); } #endif }
376
#ifndef TENSORFLOW_CORE_KERNELS_DATA_RANGE_DATASET_OP_H_ #define TENSORFLOW_CORE_KERNELS_DATA_RANGE_DATASET_OP_H_ #include "tensorflow/core/framework/dataset.h" namespace tensorflow { namespace data { class RangeDatasetOp : public DatasetOpKernel { public: static constexpr const char* const kDatasetType = "Range"; static constexpr const char* const kStart = "start"; static constexpr const char* const kStop = "stop"; static constexpr const char* const kStep = "step"; static constexpr const char* const kOutputTypes = "output_types"; static constexpr const char* const kOutputShapes = "output_shapes"; static constexpr const char* const kReplicateOnSplit = "replicate_on_split"; explicit RangeDatasetOp(OpKernelConstruction* ctx); protected: void MakeDataset(OpKernelContext* ctx, DatasetBase** output) override; private: class Dataset; class RangeSplitProvider; DataTypeVector output_types_; bool replicate_on_split_ = false; }; } } #endif #include "tensorflow/core/kernels/data/range_dataset_op.h" #include <cstdlib> #include <functional> #include <optional> #include <string> #include <utility> #include "absl/memory/memory.h" #include "absl/status/status.h" #include "tensorflow/core/data/global_shuffle_utils.h" #include "tensorflow/core/data/name_utils.h" #include "tensorflow/core/data/split_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/partial_tensor_shape.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/platform/errors.h" #include "tsl/platform/mutex.h" #include "tsl/platform/types.h" namespace tensorflow { namespace data { constexpr const char* const RangeDatasetOp::kDatasetType; constexpr const char* const RangeDatasetOp::kStart; constexpr const char* const RangeDatasetOp::kStop; constexpr const char* const RangeDatasetOp::kStep; constexpr const char* const RangeDatasetOp::kOutputTypes; constexpr const char* const RangeDatasetOp::kOutputShapes; constexpr const char* const RangeDatasetOp::kReplicateOnSplit; namespace { constexpr char kNext[] = "next"; constexpr char kHasSplitProvider[] = "has_split_provider"; constexpr char kSlash[] = "/"; constexpr char kSplitProvider[] = "split_provider"; Status ConvertOutputTypes(const tensorflow::DataTypeVector& output_dtypes, std::vector<Tensor>* out_tensors, int64 value) { switch (output_dtypes[0]) { #define HANDLE_TYPE(type) \ case DataTypeToEnum<type>::value: { \ out_tensors->emplace_back(static_cast<type>(value)); \ break; \ } TF_CALL_NUMBER_TYPES(HANDLE_TYPE); #undef HANDLE_TYPE default: return errors::InvalidArgument("Unsupported data type: ", DataTypeString(output_dtypes[0])); } return absl::OkStatus(); } int64_t sgn(int64_t val) { return (0 < val) - (val < 0); } int64_t RangeCardinality(int64_t start, int64_t stop, int64_t step) { if (stop >= tsl::kint64max) { return kInfiniteCardinality; } if (sgn(stop - start) * sgn(step) <= 0) { return 0; } else if (step > 0) { return (stop - start - 1) / step + 1; } else { return (start - stop - 1) / -step + 1; } } class RangeCounter { public: RangeCounter(int64_t start, int64_t stop, int64_t step) : start_(start), stop_(stop), step_(step), next_(start) {} int64_t GetNext(bool* end_of_counter) { mutex_lock l(mu_); if ((step_ > 0 && next_ >= stop_) || (step_ < 0 && next_ <= stop_)) { *end_of_counter = true; return -1; } *end_of_counter = false; int64_t result = next_; next_ += step_; return result; } int64_t Peek() const { mutex_lock l(mu_); return next_; } void Reset() { mutex_lock l(mu_); next_ = start_; } void SetNext(int64_t value) { mutex_lock l(mu_); next_ = value; } int64_t Cardinality() const { return RangeCardinality(start_, stop_, step_); } private: const int64_t start_; const int64_t stop_; const int64_t step_; mutable mutex mu_; int64_t next_ TF_GUARDED_BY(mu_); }; } class RangeDatasetOp::RangeSplitProvider : public SplitProvider { public: RangeSplitProvider(int64_t start, int64_t stop, int64_t step) : counter_(start, stop, step) {} Status GetNext(Tensor* split, bool* end_of_splits) override { int64_t next = counter_.GetNext(end_of_splits); if (*end_of_splits) { return absl::OkStatus(); } *split = Tensor(DT_INT64, TensorShape{}); split->scalar<int64_t>()() = next; return absl::OkStatus(); } Status Reset() override { counter_.Reset(); return absl::OkStatus(); } Status Save(std::function<std::string(std::string)> key_name_fn, IteratorStateWriter* writer) override { TF_RETURN_IF_ERROR( writer->WriteScalar(key_name_fn(kNext), counter_.Peek())); return absl::OkStatus(); } Status Restore(std::function<std::string(std::string)> key_name_fn, IteratorStateReader* reader) override { int64_t next; TF_RETURN_IF_ERROR(reader->ReadScalar(key_name_fn(kNext), &next)); counter_.SetNext(next); return absl::OkStatus(); } int64_t Cardinality() const override { return counter_.Cardinality(); } private: RangeCounter counter_; }; class RangeDatasetOp::Dataset : public DatasetBase { public: Dataset(OpKernelContext* ctx, int64_t start, int64_t stop, int64_t step, DataTypeVector output_dtypes, bool replicate_on_split) : DatasetBase(DatasetContext(ctx)), start_(start), stop_(stop), step_(step), output_dtypes_(output_dtypes), replicate_on_split_(replicate_on_split) {} absl::Status RandomIndexingCompatible() const override { return absl::OkStatus(); } std::unique_ptr<IteratorBase> MakeIteratorInternal( const string& prefix) const override { return std::make_unique<Iterator>(Iterator::Params{ this, name_utils::IteratorPrefix(kDatasetType, prefix)}); } const DataTypeVector& output_dtypes() const override { return output_dtypes_; } const std::vector<PartialTensorShape>& output_shapes() const override { static std::vector<PartialTensorShape>* shapes = new std::vector<PartialTensorShape>({PartialTensorShape({})}); return *shapes; } string DebugString() const override { name_utils::DatasetDebugStringParams params; params.set_args(start_, stop_, step_); return name_utils::DatasetDebugString(kDatasetType, params); } int64_t CardinalityInternal(CardinalityOptions options) const override { return RangeCardinality(start_, stop_, step_); } Status MakeSplitProviders(std::vector<std::unique_ptr<SplitProvider>>* split_providers) const override { split_providers->push_back( std::make_unique<RangeSplitProvider>(start_, stop_, step_)); return absl::OkStatus(); } Status InputDatasets(std::vector<const DatasetBase*>* inputs) const override { inputs->clear(); return absl::OkStatus(); } Status CheckExternalState() const override { return absl::OkStatus(); } Status Get(OpKernelContext* ctx, int64 index, std::vector<Tensor>* out_tensors) const override { return Get(AnyContext(ctx), index, out_tensors); } Status Get(AnyContext ctx, int64 index, std::vector<Tensor>* out_tensors) const override { TF_RETURN_IF_ERROR(CheckRandomAccessCompatible(index)); return ConvertOutputTypes(output_dtypes(), out_tensors, start_ + (index * step_)); } protected: Status AsGraphDefInternal(SerializationContext* ctx, DatasetGraphDefBuilder* b, Node** output) const override { Node* start = nullptr; Node* stop = nullptr; Node* step = nullptr; TF_RETURN_IF_ERROR(b->AddScalar(start_, &start)); TF_RETURN_IF_ERROR(b->AddScalar(stop_, &stop)); TF_RETURN_IF_ERROR(b->AddScalar(step_, &step)); AttrValue replicate_on_split; b->BuildAttrValue(replicate_on_split_, &replicate_on_split); TF_RETURN_IF_ERROR(b->AddDataset( this, {start, stop, step}, {std::make_pair(kReplicateOnSplit, replicate_on_split)}, output)); return absl::OkStatus(); } private: class Iterator : public DatasetIterator<Dataset> { public: explicit Iterator(const Params& params) : DatasetIterator<Dataset>(params), global_shuffle_iterator_(dataset()) {} bool SymbolicCheckpointCompatible() const override { return true; } Status Initialize(IteratorContext* ctx) override { if (ctx->split_providers().empty() || dataset()->replicate_on_split_) { counter_ = std::make_unique<RangeCounter>( dataset()->start_, dataset()->stop_, dataset()->step_); } else { TF_ASSIGN_OR_RETURN(split_provider_, GetSingleSplitProvider(ctx, dataset())); } return absl::OkStatus(); } Status GetNextInternal(IteratorContext* ctx, std::vector<Tensor>* out_tensors, bool* end_of_sequence) override { if (ctx->index_mapper() != nullptr) { return global_shuffle_iterator_.GetNext(ctx, out_tensors, end_of_sequence); } int64_t value; if (split_provider_ != nullptr) { Tensor split; TF_RETURN_IF_ERROR(split_provider_->GetNext(&split, end_of_sequence)); if (*end_of_sequence) { return absl::OkStatus(); } value = split.scalar<int64_t>()(); } else { value = counter_->GetNext(end_of_sequence); if (*end_of_sequence) { return absl::OkStatus(); } } out_tensors->reserve(1); return ConvertOutputTypes(output_dtypes(), out_tensors, value); } protected: std::shared_ptr<model::Node> CreateNode( IteratorContext* ctx, model::Node::Args args) const override { return model::MakeSourceNode(std::move(args)); } Status SaveInternal(SerializationContext* ctx, IteratorStateWriter* writer) override { if (split_provider_) { TF_RETURN_IF_ERROR( writer->WriteScalar(prefix(), kHasSplitProvider, true)); TF_RETURN_IF_ERROR(split_provider_->Save( [this](const std::string& key) { return SplitProviderKeyNameFn(key); }, writer)); } else { TF_RETURN_IF_ERROR( writer->WriteScalar(prefix(), kNext, counter_->Peek())); } return absl::OkStatus(); } Status RestoreInternal(IteratorContext* ctx, IteratorStateReader* reader) override { if (ctx->restored_element_count().has_value()) { return global_shuffle_iterator_.Restore(ctx); } if (reader->Contains(prefix(), kHasSplitProvider)) { TF_RETURN_IF_ERROR(split_provider_->Restore( [this](const std::string& key) { return SplitProviderKeyNameFn(key); }, reader)); } else { int64_t next; TF_RETURN_IF_ERROR(reader->ReadScalar(prefix(), kNext, &next)); counter_->SetNext(next); } return absl::OkStatus(); } std::string SplitProviderKeyNameFn(const std::string& key) { return full_name(absl::StrCat(kSplitProvider, kSlash, key)); } private: std::unique_ptr<RangeCounter> counter_; std::shared_ptr<SplitProvider> split_provider_; GlobalShuffleIterator global_shuffle_iterator_; }; const int64_t start_; const int64_t stop_; const int64_t step_; const DataTypeVector output_dtypes_; const bool replicate_on_split_; }; RangeDatasetOp::RangeDatasetOp(OpKernelConstruction* ctx) : DatasetOpKernel(ctx) { OP_REQUIRES_OK(ctx, ctx->GetAttr(kOutputTypes, &output_types_)); if (ctx->HasAttr(kReplicateOnSplit)) { OP_REQUIRES_OK(ctx, ctx->GetAttr(kReplicateOnSplit, &replicate_on_split_)); } } void RangeDatasetOp::MakeDataset(OpKernelContext* ctx, DatasetBase** output) { int64_t start; OP_REQUIRES_OK(ctx, ParseScalarArgument<int64_t>(ctx, kStart, &start)); int64_t stop; OP_REQUIRES_OK(ctx, ParseScalarArgument<int64_t>(ctx, kStop, &stop)); int64_t step; OP_REQUIRES_OK(ctx, ParseScalarArgument<int64_t>(ctx, kStep, &step)); OP_REQUIRES(ctx, step != 0, errors::InvalidArgument("step must be a non-zero integer.")); *output = new Dataset(ctx, start, stop, step, output_types_, replicate_on_split_); } namespace { REGISTER_KERNEL_BUILDER(Name("RangeDataset").Device(DEVICE_CPU), RangeDatasetOp); } } }
#include "tensorflow/core/kernels/data/range_dataset_op.h" #include "tensorflow/core/data/dataset_test_base.h" namespace tensorflow { namespace data { namespace { class RangeDatasetOpTest : public DatasetOpsTestBase {}; RangeDatasetParams PositiveStepRangeDatasetParams() { return RangeDatasetParams(0, 10, 3); } RangeDatasetParams NegativeStepRangeDatasetParams() { return RangeDatasetParams(10, 0, -3); } RangeDatasetParams Int32OverflowRangeDatasetParames() { return RangeDatasetParams(2'147'483'647LL, 2'147'483'649LL, 1); } RangeDatasetParams UnsignedInt32OverflowRangeDatasetParames() { return RangeDatasetParams(4'294'967'295LL, 4'294'967'297LL, 1); } RangeDatasetParams ZeroStepRangeDatasetParams() { return RangeDatasetParams(10, 0, 0); } RangeDatasetParams RangeDatasetParams1() { return RangeDatasetParams(0, 10, 3, {DT_INT32}); } RangeDatasetParams RangeDatasetParams2() { return RangeDatasetParams(0, 10, 3, {DT_INT64}); } std::vector<GetNextTestCase<RangeDatasetParams>> GetNextTestCases() { return {{PositiveStepRangeDatasetParams(), CreateTensors<int64_t>(TensorShape({}), {{0}, {3}, {6}, {9}})}, {NegativeStepRangeDatasetParams(), CreateTensors<int64_t>(TensorShape({}), {{10}, {7}, {4}, {1}})}, {Int32OverflowRangeDatasetParames(), CreateTensors<int64_t>(TensorShape({}), {{2'147'483'647LL}, {2'147'483'648LL}})}, {UnsignedInt32OverflowRangeDatasetParames(), CreateTensors<int64_t>(TensorShape({}), {{4'294'967'295LL}, {4'294'967'296LL}})}}; } ITERATOR_GET_NEXT_TEST_P(RangeDatasetOpTest, RangeDatasetParams, GetNextTestCases()) TEST_F(RangeDatasetOpTest, DatasetNodeName) { auto range_dataset_params = PositiveStepRangeDatasetParams(); TF_ASSERT_OK(Initialize(range_dataset_params)); TF_ASSERT_OK(CheckDatasetNodeName(range_dataset_params.node_name())); } TEST_F(RangeDatasetOpTest, DatasetTypeString) { auto range_dataset_params = PositiveStepRangeDatasetParams(); TF_ASSERT_OK(Initialize(range_dataset_params)); TF_ASSERT_OK( CheckDatasetTypeString(name_utils::OpName(RangeDatasetOp::kDatasetType))); } std::vector<DatasetOutputDtypesTestCase<RangeDatasetParams>> DatasetOutputDtypesTestCases() { return {{RangeDatasetParams1(), {DT_INT32}}, {RangeDatasetParams2(), {DT_INT64}}}; } DATASET_OUTPUT_DTYPES_TEST_P(RangeDatasetOpTest, RangeDatasetParams, DatasetOutputDtypesTestCases()) TEST_F(RangeDatasetOpTest, DatasetOutputShapes) { auto range_dataset_params = PositiveStepRangeDatasetParams(); TF_ASSERT_OK(Initialize(range_dataset_params)); TF_ASSERT_OK(CheckDatasetOutputShapes({PartialTensorShape({})})); } std::vector<CardinalityTestCase<RangeDatasetParams>> CardinalityTestCases() { return {{PositiveStepRangeDatasetParams(), 4}, {NegativeStepRangeDatasetParams(), 4}}; } DATASET_CARDINALITY_TEST_P(RangeDatasetOpTest, RangeDatasetParams, CardinalityTestCases()) std::vector<IteratorOutputDtypesTestCase<RangeDatasetParams>> IteratorOutputDtypesTestCases() { return {{RangeDatasetParams1(), {DT_INT32}}, {RangeDatasetParams2(), {DT_INT64}}}; } ITERATOR_OUTPUT_DTYPES_TEST_P(RangeDatasetOpTest, RangeDatasetParams, IteratorOutputDtypesTestCases()) TEST_F(RangeDatasetOpTest, IteratorOutputShapes) { auto range_dataset_params = PositiveStepRangeDatasetParams(); TF_ASSERT_OK(Initialize(range_dataset_params)); TF_ASSERT_OK(CheckIteratorOutputShapes({PartialTensorShape({})})); } TEST_F(RangeDatasetOpTest, IteratorPrefix) { auto range_dataset_params = PositiveStepRangeDatasetParams(); TF_ASSERT_OK(Initialize(range_dataset_params)); TF_ASSERT_OK(CheckIteratorPrefix(name_utils::IteratorPrefix( RangeDatasetOp::kDatasetType, range_dataset_params.iterator_prefix()))); } std::vector<IteratorSaveAndRestoreTestCase<RangeDatasetParams>> IteratorSaveAndRestoreTestCases() { return {{PositiveStepRangeDatasetParams(), {0, 1, 4}, CreateTensors<int64_t>(TensorShape({}), {{0}, {3}, {6}, {9}})}, {NegativeStepRangeDatasetParams(), {0, 1, 4}, CreateTensors<int64_t>(TensorShape({}), {{10}, {7}, {4}, {1}})}}; } ITERATOR_SAVE_AND_RESTORE_TEST_P(RangeDatasetOpTest, RangeDatasetParams, IteratorSaveAndRestoreTestCases()) TEST_F(RangeDatasetOpTest, ZeroStep) { auto range_dataset_params = ZeroStepRangeDatasetParams(); EXPECT_EQ(Initialize(range_dataset_params).code(), absl::StatusCode::kInvalidArgument); } TEST_F(RangeDatasetOpTest, SplitProviderPositiveStep) { auto params = RangeDatasetParams(0, 10, 3, {DT_INT64}); TF_ASSERT_OK(InitializeRuntime(params)); TF_EXPECT_OK(CheckSplitProviderFullIteration( params, CreateTensors<int64_t>(TensorShape({}), {{0}, {3}, {6}, {9}}))); TF_EXPECT_OK(CheckSplitProviderShardedIteration( params, 2, 1, CreateTensors<int64_t>(TensorShape({}), {{3}, {9}}))); } TEST_F(RangeDatasetOpTest, SplitProviderNegativeStep) { auto params = RangeDatasetParams(10, 0, -3, {DT_INT64}); TF_ASSERT_OK(InitializeRuntime(params)); TF_EXPECT_OK(CheckSplitProviderFullIteration( params, CreateTensors<int64_t>(TensorShape({}), {{10}, {7}, {4}, {1}}))); TF_EXPECT_OK(CheckSplitProviderShardedIteration( params, 2, 0, CreateTensors<int64_t>(TensorShape({}), {{10}, {4}}))); } TEST_F(RangeDatasetOpTest, SplitProviderEmpty) { auto params = RangeDatasetParams(0, 0, 1, {DT_INT64}); TF_ASSERT_OK(InitializeRuntime(params)); TF_EXPECT_OK(CheckSplitProviderFullIteration( params, CreateTensors<int64_t>(TensorShape({}), {}))); TF_EXPECT_OK(CheckSplitProviderShardedIteration( params, 3, 2, CreateTensors<int64_t>(TensorShape({}), {}))); } } } }
377
#ifndef TENSORSTORE_UTIL_UTF8_STRING_H_ #define TENSORSTORE_UTIL_UTF8_STRING_H_ #include <ostream> #include <string> #include "tensorstore/serialization/fwd.h" namespace tensorstore { struct Utf8String { std::string utf8; friend bool operator<(const Utf8String& a, const Utf8String& b) { return a.utf8 < b.utf8; } friend bool operator<=(const Utf8String& a, const Utf8String& b) { return a.utf8 <= b.utf8; } friend bool operator>(const Utf8String& a, const Utf8String& b) { return a.utf8 > b.utf8; } friend bool operator>=(const Utf8String& a, const Utf8String& b) { return a.utf8 >= b.utf8; } friend bool operator==(const Utf8String& a, const Utf8String& b) { return a.utf8 == b.utf8; } friend bool operator!=(const Utf8String& a, const Utf8String& b) { return a.utf8 != b.utf8; } friend std::ostream& operator<<(std::ostream& os, const Utf8String& s) { return os << s.utf8; } static constexpr auto ApplyMembers = [](auto&& x, auto f) { return f(x.utf8); }; }; static_assert(sizeof(Utf8String) == sizeof(std::string), ""); } TENSORSTORE_DECLARE_SERIALIZER_SPECIALIZATION(tensorstore::Utf8String) #endif #include "tensorstore/util/utf8_string.h" #include "tensorstore/internal/riegeli/delimited.h" #include "tensorstore/internal/utf8.h" #include "tensorstore/serialization/serialization.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace serialization { bool Serializer<Utf8String>::Encode(EncodeSink& sink, const Utf8String& value) { return serialization::WriteDelimited(sink.writer(), value.utf8); } bool Serializer<Utf8String>::Decode(DecodeSource& source, Utf8String& value) { return serialization::ReadDelimitedUtf8(source.reader(), value.utf8); } } }
#include "tensorstore/util/utf8_string.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/serialization/serialization.h" #include "tensorstore/serialization/test_util.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::MatchesStatus; using ::tensorstore::Utf8String; using ::tensorstore::serialization::SerializationRoundTrip; using ::tensorstore::serialization::TestSerializationRoundTrip; TEST(SerializationTest, Valid) { TestSerializationRoundTrip(Utf8String{""}); TestSerializationRoundTrip(Utf8String{"abc"}); TestSerializationRoundTrip(Utf8String{"\xc2\x80hello\xc2\xbf"}); } TEST(SerializationTest, Invalid) { EXPECT_THAT(SerializationRoundTrip(Utf8String{"\xC1"}), MatchesStatus(absl::StatusCode::kDataLoss, "String is not valid utf-8: .*")); } }
378
#ifndef TENSORFLOW_CORE_COMMON_RUNTIME_COMPOSITE_DEVICE_H_ #define TENSORFLOW_CORE_COMMON_RUNTIME_COMPOSITE_DEVICE_H_ #include "absl/strings/string_view.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/device_attributes.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status.h" namespace tensorflow { extern const char* const kCompositeDeviceType; class CompositeDevice : public Device { public: Status Sync() override { return errors::Internal( "Sync() should never been invoked on CompositeDevice."); } Allocator* GetAllocator(AllocatorAttributes) override { return nullptr; } const std::vector<string>* underlying_devices() const { return &underlying_devices_; } static std::unique_ptr<CompositeDevice> MakeDevice( const std::vector<string>& underlying_devices, const int unique_device_id, const DeviceNameUtils::ParsedName& host_name, Status* status); static std::unique_ptr<CompositeDevice> MakeDevice( const std::vector<string>& underlying_devices, const string& device_name, Status* status); bool IsRemoteCallAllowed() const override { return false; } private: CompositeDevice(const DeviceAttributes& device_attributes, const std::vector<string>& underlying_devices) : Device(nullptr, device_attributes), underlying_devices_(underlying_devices) {} const std::vector<string> underlying_devices_; CompositeDevice(const CompositeDevice&) = delete; void operator=(const CompositeDevice&) = delete; }; } #endif #include "tensorflow/core/common_runtime/composite_device.h" #include "absl/strings/str_join.h" #include "tensorflow/core/util/device_name_utils.h" namespace tensorflow { const char* const kCompositeDeviceType = "COMPOSITE"; std::unique_ptr<CompositeDevice> CompositeDevice::MakeDevice( const std::vector<string>& underlying_devices, const int unique_device_id, const DeviceNameUtils::ParsedName& host_name, Status* status) { DeviceNameUtils::ParsedName parsed_name = host_name; parsed_name.type = kCompositeDeviceType; parsed_name.id = unique_device_id; const string device_name = DeviceNameUtils::ParsedNameToString(parsed_name); return CompositeDevice::MakeDevice(underlying_devices, device_name, status); } std::unique_ptr<CompositeDevice> CompositeDevice::MakeDevice( const std::vector<string>& underlying_devices, const string& device_name, Status* status) { if (underlying_devices.empty()) { status->Update( errors::InvalidArgument("underlying_devices should not be empty.")); return nullptr; } DeviceNameUtils::ParsedName parsed_name; if (!DeviceNameUtils::ParseFullName(underlying_devices.at(0), &parsed_name)) { status->Update(tensorflow::errors::InvalidArgument( "Cannot parse device name ", underlying_devices.at(0), " when creating CompositeDevice.")); return nullptr; } const string& underlying_type = parsed_name.type; for (int i = 1; i < underlying_devices.size(); ++i) { DeviceNameUtils::ParsedName name; if (!DeviceNameUtils::ParseFullName(underlying_devices.at(i), &name)) { status->Update(tensorflow::errors::InvalidArgument( "Cannot parse device name ", underlying_devices.at(i), " when creating CompositeDevice.")); return nullptr; } if (name.type != underlying_type) { status->Update(tensorflow::errors::InvalidArgument( "Expect device type ", parsed_name.type, "; but got type ", name.type, " from device: ", underlying_devices.at(i), " when creating CompositeDevice.")); return nullptr; } } DeviceAttributes device_attributes; device_attributes.set_name(device_name); device_attributes.set_device_type(kCompositeDeviceType); return absl::WrapUnique( new CompositeDevice(device_attributes, underlying_devices)); } }
#include "tensorflow/core/common_runtime/composite_device.h" #include "tensorflow/core/lib/core/status_test_util.h" namespace tensorflow { TEST(CompositeDeviceTest, Basic) { const string host_name = "/job:localhost/replica:0/task:0/device:CPU:0"; DeviceNameUtils::ParsedName parsed_host_name; EXPECT_TRUE(DeviceNameUtils::ParseFullName(host_name, &parsed_host_name)); std::vector<string> underlying_devices; { Status status; std::unique_ptr<CompositeDevice> composite_device = CompositeDevice::MakeDevice(underlying_devices, 0, parsed_host_name, &status); EXPECT_EQ(composite_device, nullptr); EXPECT_EQ(error::INVALID_ARGUMENT, status.code()); EXPECT_TRUE(absl::StrContains(status.message(), "underlying_devices should not be empty")) << status.ToString(); } { Status status; underlying_devices.push_back( "/job:localhost/replica:0/task:0/device:CPU:0"); underlying_devices.push_back( "/job:localhost/replica:0/task:0/device:CPU:1"); std::unique_ptr<CompositeDevice> composite_device = CompositeDevice::MakeDevice(underlying_devices, 0, parsed_host_name, &status); TF_ASSERT_OK(status); EXPECT_EQ(composite_device->device_type(), kCompositeDeviceType); EXPECT_EQ(underlying_devices, *composite_device->underlying_devices()); } { Status status; underlying_devices.push_back( "/job:localhost/replica:0/task:0/device:GPU:0"); std::unique_ptr<CompositeDevice> composite_device = CompositeDevice::MakeDevice(underlying_devices, 1, parsed_host_name, &status); EXPECT_EQ(composite_device, nullptr); EXPECT_EQ(error::INVALID_ARGUMENT, status.code()); EXPECT_TRUE(absl::StrContains(status.message(), "Expect device type CPU; but got type GPU")) << status.ToString(); } } TEST(CompositeDeviceTest, DeviceName) { const string composite_device_name = "/job:localhost/replica:0/task:0/device:CPU:10"; std::vector<string> underlying_devices; underlying_devices.push_back("/job:worker/replica:0/task:0/device:CPU:0"); underlying_devices.push_back("/job:worker/replica:0/task:0/device:CPU:1"); Status status; std::unique_ptr<CompositeDevice> composite_device = CompositeDevice::MakeDevice(underlying_devices, composite_device_name, &status); TF_ASSERT_OK(status); EXPECT_EQ(composite_device->name(), composite_device_name); EXPECT_EQ(composite_device->device_type(), kCompositeDeviceType); EXPECT_EQ(underlying_devices, *composite_device->underlying_devices()); } }
379
#ifndef I18N_ADDRESSINPUT_POST_BOX_MATCHERS_H_ #define I18N_ADDRESSINPUT_POST_BOX_MATCHERS_H_ #include <vector> namespace i18n { namespace addressinput { class Rule; struct RE2PlainPtr; class PostBoxMatchers { public: static std::vector<const RE2PlainPtr*> GetMatchers(const Rule& country_rule); PostBoxMatchers(const PostBoxMatchers&) = delete; PostBoxMatchers& operator=(const PostBoxMatchers&) = delete; }; } } #endif #include "post_box_matchers.h" #include <algorithm> #include <cassert> #include <cstddef> #include <cstring> #include <string> #include <vector> #include <re2/re2.h> #include "language.h" #include "rule.h" #include "util/re2ptr.h" #include "util/size.h" namespace i18n { namespace addressinput { namespace { struct LanguageInfo { const char* language; const char* regexp; static bool less(const LanguageInfo& a, const LanguageInfo& b) { return strcmp(a.language, b.language) < 0; } }; constexpr const LanguageInfo kLanguageInfoMap[] = { {"ar", R"(صندوق بريد|ص[-. ]ب)"}, {"cs", R"((?i)p\.? ?p\.? \d)"}, {"da", R"((?i)Postboks)"}, {"de", R"((?i)Postfach)"}, {"el", R"((?i)T\.? ?Θ\.? \d{2})"}, {"en", R"(Private Bag|Post(?:al)? Box)"}, {"es", R"((?i)(?:Apartado|Casillas) de correos?)"}, {"fi", R"((?i)Postilokero|P\.?L\.? \d)"}, {"fr", R"((?i)Bo(?:[iî]|î)te Postale|BP \d|CEDEX \d)"}, {"hr", R"((?i)p\.? ?p\.? \d)"}, {"hu", R"((?i)Postafi(?:[oó]|ó)k|Pf\.? \d)"}, {"ja", R"(私書箱\d{1,5}号)"}, {"nl", R"((?i)Postbus)"}, {"no", R"((?i)Postboks)"}, {"pl", R"((?i)Skr(?:\.?|ytka) poczt(?:\.?|owa))"}, {"pt", R"((?i)Apartado)"}, {"ru", R"((?i)абонентский ящик|[аa]"я (?:(?:№|#|N) ?)?\d)"}, {"sv", R"((?i)Box \d)"}, {"und", R"(P\.? ?O\.? Box)"}, {"zh", R"(郵政信箱.{1,5}號|郵局第.{1,10}號信箱)"}, }; constexpr size_t kLanguageInfoMapSize = size(kLanguageInfoMap); constexpr bool StrLessOrEqualConstexpr(const char* a, const char* b) { return (*a == '\0') ? true : ( (*a == *b) ? StrLessOrEqualConstexpr(a + 1, b + 1) : (*a < *b)); } static_assert(StrLessOrEqualConstexpr("", ""), ""); static_assert(StrLessOrEqualConstexpr("", "foo"), ""); static_assert(!StrLessOrEqualConstexpr("foo", ""), ""); static_assert(StrLessOrEqualConstexpr("foo", "foo"), ""); static_assert(!StrLessOrEqualConstexpr("foo", "bar"), ""); static_assert(StrLessOrEqualConstexpr("bar", "foo"), ""); static_assert(StrLessOrEqualConstexpr("foo", "foobar"), ""); static_assert(!StrLessOrEqualConstexpr("foobar", "foo"), ""); constexpr bool CheckLanguageInfoMapOrderConstexpr(size_t n = 0) { return !StrLessOrEqualConstexpr(kLanguageInfoMap[n].language, kLanguageInfoMap[n + 1].language) ? false : ( (n + 2 < kLanguageInfoMapSize) ? CheckLanguageInfoMapOrderConstexpr(n + 1) : true); } static_assert(CheckLanguageInfoMapOrderConstexpr(), "kLanguageInfoMap is not correctly sorted!"); const LanguageInfo* FindLanguageInfoFor(const std::string& language) { const LanguageInfo* begin = kLanguageInfoMap; const LanguageInfo* end = begin + kLanguageInfoMapSize; LanguageInfo key = { language.c_str(), }; const LanguageInfo* probe = std::lower_bound(begin, end, key, LanguageInfo::less); if (probe != end && language == probe->language) { return probe; } return nullptr; } class StaticRE2Array { public: StaticRE2Array() { for (size_t n = 0; n < kLanguageInfoMapSize; ++n) { re2s_[n].ptr = new RE2(kLanguageInfoMap[n].regexp); } } ~StaticRE2Array() { for (auto& entry : re2s_) { delete entry.ptr; } } const RE2PlainPtr* FindMatcherFor(const std::string& language) const { const LanguageInfo* info = FindLanguageInfoFor(language); if (!info) { return nullptr; } size_t idx = info - kLanguageInfoMap; assert(idx < kLanguageInfoMapSize); return &re2s_[idx]; } private: RE2PlainPtr re2s_[kLanguageInfoMapSize]; }; } std::vector<const RE2PlainPtr*> PostBoxMatchers::GetMatchers( const Rule& country_rule) { static const StaticRE2Array kMatchers; std::vector<std::string> languages{"und"}; for (const auto& language_tag : country_rule.GetLanguages()) { Language language(language_tag); languages.push_back(language.base); } std::vector<const RE2PlainPtr*> result; for (const auto& language_tag : languages) { const RE2PlainPtr* matcher = kMatchers.FindMatcherFor(language_tag); if (matcher != nullptr) { result.push_back(matcher); } } return result; } } }
#include "post_box_matchers.h" #include <gtest/gtest.h> #include "rule.h" namespace { using i18n::addressinput::PostBoxMatchers; using i18n::addressinput::Rule; TEST(PostBoxMatchersTest, AlwaysGetMatcherForLanguageUnd) { Rule rule; const auto& matchers = PostBoxMatchers::GetMatchers(rule); EXPECT_EQ(1, matchers.size()); EXPECT_TRUE(matchers[0] != nullptr); } TEST(PostBoxMatchersTest, NoMatcherForInvalidLanguage) { Rule rule; ASSERT_TRUE(rule.ParseSerializedRule("{\"languages\":\"xx\"}")); const auto& matchers = PostBoxMatchers::GetMatchers(rule); EXPECT_EQ(1, matchers.size()); EXPECT_TRUE(matchers[0] != nullptr); } TEST(PostBoxMatchersTest, HasMatcherForValidLanguage) { Rule rule; ASSERT_TRUE(rule.ParseSerializedRule("{\"languages\":\"sv\"}")); const auto& matchers = PostBoxMatchers::GetMatchers(rule); EXPECT_EQ(2, matchers.size()); EXPECT_TRUE(matchers[0] != nullptr); EXPECT_TRUE(matchers[1] != nullptr); } TEST(PostBoxMatchersTest, MixValidAndInvalidLanguage) { Rule rule; ASSERT_TRUE(rule.ParseSerializedRule("{\"languages\":\"xx~sv\"}")); const auto& matchers = PostBoxMatchers::GetMatchers(rule); EXPECT_EQ(2, matchers.size()); EXPECT_TRUE(matchers[0] != nullptr); EXPECT_TRUE(matchers[1] != nullptr); } TEST(PostBoxMatchersTest, UseBaseLanguageForMatching) { Rule rule; ASSERT_TRUE(rule.ParseSerializedRule("{\"languages\":\"sv-SE\"}")); const auto& matchers = PostBoxMatchers::GetMatchers(rule); EXPECT_EQ(2, matchers.size()); EXPECT_TRUE(matchers[0] != nullptr); EXPECT_TRUE(matchers[1] != nullptr); } TEST(PostBoxMatchersTest, LenientLanguageTagParsing) { Rule rule; ASSERT_TRUE(rule.ParseSerializedRule("{\"languages\":\"SV_SE\"}")); const auto& matchers = PostBoxMatchers::GetMatchers(rule); EXPECT_EQ(2, matchers.size()); EXPECT_TRUE(matchers[0] != nullptr); EXPECT_TRUE(matchers[1] != nullptr); } }
380
#ifndef QUICHE_HTTP2_DECODER_DECODE_HTTP2_STRUCTURES_H_ #define QUICHE_HTTP2_DECODER_DECODE_HTTP2_STRUCTURES_H_ #include "quiche/http2/decoder/decode_buffer.h" #include "quiche/http2/http2_structures.h" #include "quiche/common/platform/api/quiche_export.h" namespace http2 { QUICHE_EXPORT void DoDecode(Http2FrameHeader* out, DecodeBuffer* b); QUICHE_EXPORT void DoDecode(Http2PriorityFields* out, DecodeBuffer* b); QUICHE_EXPORT void DoDecode(Http2RstStreamFields* out, DecodeBuffer* b); QUICHE_EXPORT void DoDecode(Http2SettingFields* out, DecodeBuffer* b); QUICHE_EXPORT void DoDecode(Http2PushPromiseFields* out, DecodeBuffer* b); QUICHE_EXPORT void DoDecode(Http2PingFields* out, DecodeBuffer* b); QUICHE_EXPORT void DoDecode(Http2GoAwayFields* out, DecodeBuffer* b); QUICHE_EXPORT void DoDecode(Http2WindowUpdateFields* out, DecodeBuffer* b); QUICHE_EXPORT void DoDecode(Http2AltSvcFields* out, DecodeBuffer* b); QUICHE_EXPORT void DoDecode(Http2PriorityUpdateFields* out, DecodeBuffer* b); } #endif #include "quiche/http2/decoder/decode_http2_structures.h" #include <cstdint> #include <cstring> #include "quiche/http2/decoder/decode_buffer.h" #include "quiche/http2/http2_constants.h" #include "quiche/common/platform/api/quiche_logging.h" namespace http2 { void DoDecode(Http2FrameHeader* out, DecodeBuffer* b) { QUICHE_DCHECK_NE(nullptr, out); QUICHE_DCHECK_NE(nullptr, b); QUICHE_DCHECK_LE(Http2FrameHeader::EncodedSize(), b->Remaining()); out->payload_length = b->DecodeUInt24(); out->type = static_cast<Http2FrameType>(b->DecodeUInt8()); out->flags = static_cast<Http2FrameFlag>(b->DecodeUInt8()); out->stream_id = b->DecodeUInt31(); } void DoDecode(Http2PriorityFields* out, DecodeBuffer* b) { QUICHE_DCHECK_NE(nullptr, out); QUICHE_DCHECK_NE(nullptr, b); QUICHE_DCHECK_LE(Http2PriorityFields::EncodedSize(), b->Remaining()); uint32_t stream_id_and_flag = b->DecodeUInt32(); out->stream_dependency = stream_id_and_flag & StreamIdMask(); if (out->stream_dependency == stream_id_and_flag) { out->is_exclusive = false; } else { out->is_exclusive = true; } out->weight = b->DecodeUInt8() + 1; } void DoDecode(Http2RstStreamFields* out, DecodeBuffer* b) { QUICHE_DCHECK_NE(nullptr, out); QUICHE_DCHECK_NE(nullptr, b); QUICHE_DCHECK_LE(Http2RstStreamFields::EncodedSize(), b->Remaining()); out->error_code = static_cast<Http2ErrorCode>(b->DecodeUInt32()); } void DoDecode(Http2SettingFields* out, DecodeBuffer* b) { QUICHE_DCHECK_NE(nullptr, out); QUICHE_DCHECK_NE(nullptr, b); QUICHE_DCHECK_LE(Http2SettingFields::EncodedSize(), b->Remaining()); out->parameter = static_cast<Http2SettingsParameter>(b->DecodeUInt16()); out->value = b->DecodeUInt32(); } void DoDecode(Http2PushPromiseFields* out, DecodeBuffer* b) { QUICHE_DCHECK_NE(nullptr, out); QUICHE_DCHECK_NE(nullptr, b); QUICHE_DCHECK_LE(Http2PushPromiseFields::EncodedSize(), b->Remaining()); out->promised_stream_id = b->DecodeUInt31(); } void DoDecode(Http2PingFields* out, DecodeBuffer* b) { QUICHE_DCHECK_NE(nullptr, out); QUICHE_DCHECK_NE(nullptr, b); QUICHE_DCHECK_LE(Http2PingFields::EncodedSize(), b->Remaining()); memcpy(out->opaque_bytes, b->cursor(), Http2PingFields::EncodedSize()); b->AdvanceCursor(Http2PingFields::EncodedSize()); } void DoDecode(Http2GoAwayFields* out, DecodeBuffer* b) { QUICHE_DCHECK_NE(nullptr, out); QUICHE_DCHECK_NE(nullptr, b); QUICHE_DCHECK_LE(Http2GoAwayFields::EncodedSize(), b->Remaining()); out->last_stream_id = b->DecodeUInt31(); out->error_code = static_cast<Http2ErrorCode>(b->DecodeUInt32()); } void DoDecode(Http2WindowUpdateFields* out, DecodeBuffer* b) { QUICHE_DCHECK_NE(nullptr, out); QUICHE_DCHECK_NE(nullptr, b); QUICHE_DCHECK_LE(Http2WindowUpdateFields::EncodedSize(), b->Remaining()); out->window_size_increment = b->DecodeUInt31(); } void DoDecode(Http2PriorityUpdateFields* out, DecodeBuffer* b) { QUICHE_DCHECK_NE(nullptr, out); QUICHE_DCHECK_NE(nullptr, b); QUICHE_DCHECK_LE(Http2PriorityUpdateFields::EncodedSize(), b->Remaining()); out->prioritized_stream_id = b->DecodeUInt31(); } void DoDecode(Http2AltSvcFields* out, DecodeBuffer* b) { QUICHE_DCHECK_NE(nullptr, out); QUICHE_DCHECK_NE(nullptr, b); QUICHE_DCHECK_LE(Http2AltSvcFields::EncodedSize(), b->Remaining()); out->origin_length = b->DecodeUInt16(); } }
#include "quiche/http2/decoder/decode_http2_structures.h" #include <stddef.h> #include <string> #include "absl/strings/string_view.h" #include "quiche/http2/decoder/decode_buffer.h" #include "quiche/http2/decoder/decode_status.h" #include "quiche/http2/http2_constants.h" #include "quiche/http2/test_tools/http2_frame_builder.h" #include "quiche/http2/test_tools/http2_random.h" #include "quiche/http2/test_tools/http2_structures_test_util.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/common/platform/api/quiche_test.h" namespace http2 { namespace test { namespace { template <typename T, size_t N> absl::string_view ToStringPiece(T (&data)[N]) { return absl::string_view(reinterpret_cast<const char*>(data), N * sizeof(T)); } template <class S> std::string SerializeStructure(const S& s) { Http2FrameBuilder fb; fb.Append(s); EXPECT_EQ(S::EncodedSize(), fb.size()); return fb.buffer(); } template <class S> class StructureDecoderTest : public quiche::test::QuicheTest { protected: typedef S Structure; StructureDecoderTest() : random_(), random_decode_count_(100) {} void Randomize(S* p) { ::http2::test::Randomize(p, &random_); } void DecodeLeadingStructure(const S* expected, absl::string_view data) { ASSERT_LE(S::EncodedSize(), data.size()); DecodeBuffer db(data); Randomize(&structure_); DoDecode(&structure_, &db); EXPECT_EQ(db.Offset(), S::EncodedSize()); if (expected != nullptr) { EXPECT_EQ(structure_, *expected); } } template <size_t N> void DecodeLeadingStructure(const char (&data)[N]) { DecodeLeadingStructure(nullptr, absl::string_view(data, N)); } void EncodeThenDecode(const S& in_s) { std::string bytes = SerializeStructure(in_s); EXPECT_EQ(S::EncodedSize(), bytes.size()); DecodeLeadingStructure(&in_s, bytes); } void TestDecodingRandomizedStructures(size_t count) { for (size_t i = 0; i < count && !HasFailure(); ++i) { Structure input; Randomize(&input); EncodeThenDecode(input); } } void TestDecodingRandomizedStructures() { TestDecodingRandomizedStructures(random_decode_count_); } Http2Random random_; const size_t random_decode_count_; uint32_t decode_offset_ = 0; S structure_; size_t fast_decode_count_ = 0; size_t slow_decode_count_ = 0; }; class FrameHeaderDecoderTest : public StructureDecoderTest<Http2FrameHeader> {}; TEST_F(FrameHeaderDecoderTest, DecodesLiteral) { { const char kData[] = { '\x00', '\x00', '\x05', '\x01', '\x08', '\x00', '\x00', '\x00', '\x01', '\x04', '\x00', '\x00', '\x00', '\x00', }; DecodeLeadingStructure(kData); if (!HasFailure()) { EXPECT_EQ(5u, structure_.payload_length); EXPECT_EQ(Http2FrameType::HEADERS, structure_.type); EXPECT_EQ(Http2FrameFlag::PADDED, structure_.flags); EXPECT_EQ(1u, structure_.stream_id); } } { const char kData[] = { '\xff', '\xff', '\xff', '\xff', '\xff', '\xff', '\xff', '\xff', '\xff', }; DecodeLeadingStructure(kData); if (!HasFailure()) { EXPECT_EQ((1u << 24) - 1, structure_.payload_length); EXPECT_EQ(static_cast<Http2FrameType>(255), structure_.type); EXPECT_EQ(255, structure_.flags); EXPECT_EQ(0x7FFFFFFFu, structure_.stream_id); } } } TEST_F(FrameHeaderDecoderTest, DecodesRandomized) { TestDecodingRandomizedStructures(); } class PriorityFieldsDecoderTest : public StructureDecoderTest<Http2PriorityFields> {}; TEST_F(PriorityFieldsDecoderTest, DecodesLiteral) { { const char kData[] = { '\x80', '\x00', '\x00', '\x05', '\xff', }; DecodeLeadingStructure(kData); if (!HasFailure()) { EXPECT_EQ(5u, structure_.stream_dependency); EXPECT_EQ(256u, structure_.weight); EXPECT_EQ(true, structure_.is_exclusive); } } { const char kData[] = { '\x7f', '\xff', '\xff', '\xff', '\x00', }; DecodeLeadingStructure(kData); if (!HasFailure()) { EXPECT_EQ(StreamIdMask(), structure_.stream_dependency); EXPECT_EQ(1u, structure_.weight); EXPECT_FALSE(structure_.is_exclusive); } } } TEST_F(PriorityFieldsDecoderTest, DecodesRandomized) { TestDecodingRandomizedStructures(); } class RstStreamFieldsDecoderTest : public StructureDecoderTest<Http2RstStreamFields> {}; TEST_F(RstStreamFieldsDecoderTest, DecodesLiteral) { { const char kData[] = { '\x00', '\x00', '\x00', '\x01', }; DecodeLeadingStructure(kData); if (!HasFailure()) { EXPECT_TRUE(structure_.IsSupportedErrorCode()); EXPECT_EQ(Http2ErrorCode::PROTOCOL_ERROR, structure_.error_code); } } { const char kData[] = { '\xff', '\xff', '\xff', '\xff', }; DecodeLeadingStructure(kData); if (!HasFailure()) { EXPECT_FALSE(structure_.IsSupportedErrorCode()); EXPECT_EQ(static_cast<Http2ErrorCode>(0xffffffff), structure_.error_code); } } } TEST_F(RstStreamFieldsDecoderTest, DecodesRandomized) { TestDecodingRandomizedStructures(); } class SettingFieldsDecoderTest : public StructureDecoderTest<Http2SettingFields> {}; TEST_F(SettingFieldsDecoderTest, DecodesLiteral) { { const char kData[] = { '\x00', '\x01', '\x00', '\x00', '\x40', '\x00', }; DecodeLeadingStructure(kData); if (!HasFailure()) { EXPECT_TRUE(structure_.IsSupportedParameter()); EXPECT_EQ(Http2SettingsParameter::HEADER_TABLE_SIZE, structure_.parameter); EXPECT_EQ(1u << 14, structure_.value); } } { const char kData[] = { '\x00', '\x00', '\xff', '\xff', '\xff', '\xff', }; DecodeLeadingStructure(kData); if (!HasFailure()) { EXPECT_FALSE(structure_.IsSupportedParameter()); EXPECT_EQ(static_cast<Http2SettingsParameter>(0), structure_.parameter); } } } TEST_F(SettingFieldsDecoderTest, DecodesRandomized) { TestDecodingRandomizedStructures(); } class PushPromiseFieldsDecoderTest : public StructureDecoderTest<Http2PushPromiseFields> {}; TEST_F(PushPromiseFieldsDecoderTest, DecodesLiteral) { { const char kData[] = { '\x00', '\x01', '\x8a', '\x92', }; DecodeLeadingStructure(kData); if (!HasFailure()) { EXPECT_EQ(101010u, structure_.promised_stream_id); } } { const char kData[] = { '\xff', '\xff', '\xff', '\xff', }; DecodeLeadingStructure(kData); if (!HasFailure()) { EXPECT_EQ(StreamIdMask(), structure_.promised_stream_id); } } } TEST_F(PushPromiseFieldsDecoderTest, DecodesRandomized) { TestDecodingRandomizedStructures(); } class PingFieldsDecoderTest : public StructureDecoderTest<Http2PingFields> {}; TEST_F(PingFieldsDecoderTest, DecodesLiteral) { { const char kData[] = { '\x00', '\x01', '\x02', '\x03', '\x04', '\x05', '\x06', '\x07', }; DecodeLeadingStructure(kData); if (!HasFailure()) { EXPECT_EQ(absl::string_view(kData, 8), ToStringPiece(structure_.opaque_bytes)); } } { const char kData[] = { '\x00', '\x00', '\x00', '\x00', '\x00', '\x00', '\x00', '\x00', }; DecodeLeadingStructure(kData); if (!HasFailure()) { EXPECT_EQ(absl::string_view(kData, 8), ToStringPiece(structure_.opaque_bytes)); } } { const char kData[] = { '\xff', '\xff', '\xff', '\xff', '\xff', '\xff', '\xff', '\xff', }; DecodeLeadingStructure(kData); if (!HasFailure()) { EXPECT_EQ(absl::string_view(kData, 8), ToStringPiece(structure_.opaque_bytes)); } } } TEST_F(PingFieldsDecoderTest, DecodesRandomized) { TestDecodingRandomizedStructures(); } class GoAwayFieldsDecoderTest : public StructureDecoderTest<Http2GoAwayFields> { }; TEST_F(GoAwayFieldsDecoderTest, DecodesLiteral) { { const char kData[] = { '\x00', '\x00', '\x00', '\x00', '\x00', '\x00', '\x00', '\x00', }; DecodeLeadingStructure(kData); if (!HasFailure()) { EXPECT_EQ(0u, structure_.last_stream_id); EXPECT_TRUE(structure_.IsSupportedErrorCode()); EXPECT_EQ(Http2ErrorCode::HTTP2_NO_ERROR, structure_.error_code); } } { const char kData[] = { '\x00', '\x00', '\x00', '\x01', '\x00', '\x00', '\x00', '\x0d', }; DecodeLeadingStructure(kData); if (!HasFailure()) { EXPECT_EQ(1u, structure_.last_stream_id); EXPECT_TRUE(structure_.IsSupportedErrorCode()); EXPECT_EQ(Http2ErrorCode::HTTP_1_1_REQUIRED, structure_.error_code); } } { const char kData[] = { '\xff', '\xff', '\xff', '\xff', '\xff', '\xff', '\xff', '\xff', }; DecodeLeadingStructure(kData); if (!HasFailure()) { EXPECT_EQ(StreamIdMask(), structure_.last_stream_id); EXPECT_FALSE(structure_.IsSupportedErrorCode()); EXPECT_EQ(static_cast<Http2ErrorCode>(0xffffffff), structure_.error_code); } } } TEST_F(GoAwayFieldsDecoderTest, DecodesRandomized) { TestDecodingRandomizedStructures(); } class WindowUpdateFieldsDecoderTest : public StructureDecoderTest<Http2WindowUpdateFields> {}; TEST_F(WindowUpdateFieldsDecoderTest, DecodesLiteral) { { const char kData[] = { '\x00', '\x01', '\x00', '\x00', }; DecodeLeadingStructure(kData); if (!HasFailure()) { EXPECT_EQ(1u << 16, structure_.window_size_increment); } } { const char kData[] = { '\x00', '\x00', '\x00', '\x00', }; DecodeLeadingStructure(kData); if (!HasFailure()) { EXPECT_EQ(0u, structure_.window_size_increment); } } { const char kData[] = { '\xff', '\xff', '\xff', '\xff', }; DecodeLeadingStructure(kData); if (!HasFailure()) { EXPECT_EQ(StreamIdMask(), structure_.window_size_increment); } } } TEST_F(WindowUpdateFieldsDecoderTest, DecodesRandomized) { TestDecodingRandomizedStructures(); } class AltSvcFieldsDecoderTest : public StructureDecoderTest<Http2AltSvcFields> { }; TEST_F(AltSvcFieldsDecoderTest, DecodesLiteral) { { const char kData[] = { '\x00', '\x00', }; DecodeLeadingStructure(kData); if (!HasFailure()) { EXPECT_EQ(0, structure_.origin_length); } } { const char kData[] = { '\x00', '\x14', }; DecodeLeadingStructure(kData); if (!HasFailure()) { EXPECT_EQ(20, structure_.origin_length); } } { const char kData[] = { '\xff', '\xff', }; DecodeLeadingStructure(kData); if (!HasFailure()) { EXPECT_EQ(65535, structure_.origin_length); } } } TEST_F(AltSvcFieldsDecoderTest, DecodesRandomized) { TestDecodingRandomizedStructures(); } } } }
381
#ifndef TENSORFLOW_CORE_SUMMARY_SUMMARY_FILE_WRITER_H_ #define TENSORFLOW_CORE_SUMMARY_SUMMARY_FILE_WRITER_H_ #include "tensorflow/core/kernels/summary_interface.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { Status CreateSummaryFileWriter(int max_queue, int flush_millis, const string& logdir, const string& filename_suffix, Env* env, SummaryWriterInterface** result); } #endif #include "tensorflow/core/summary/summary_file_writer.h" #include <memory> #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/resource_mgr.h" #include "tensorflow/core/framework/summary.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/summary/summary_converter.h" #include "tensorflow/core/util/events_writer.h" namespace tensorflow { namespace { class SummaryFileWriter : public SummaryWriterInterface { public: SummaryFileWriter(int max_queue, int flush_millis, Env* env) : SummaryWriterInterface(), is_initialized_(false), max_queue_(max_queue), flush_millis_(flush_millis), env_(env) {} Status Initialize(const string& logdir, const string& filename_suffix) { const Status is_dir = env_->IsDirectory(logdir); if (!is_dir.ok()) { if (is_dir.code() != tensorflow::error::NOT_FOUND) { return is_dir; } TF_RETURN_IF_ERROR(env_->RecursivelyCreateDir(logdir)); } int32_t pid = env_->GetProcessId(); static std::atomic<int64_t> file_id_counter(0); string sep = absl::StartsWith(filename_suffix, ".") ? "" : "."; const string uniquified_filename_suffix = absl::StrCat( ".", pid, ".", file_id_counter.fetch_add(1), sep, filename_suffix); mutex_lock ml(mu_); events_writer_ = std::make_unique<EventsWriter>(io::JoinPath(logdir, "events")); TF_RETURN_WITH_CONTEXT_IF_ERROR( events_writer_->InitWithSuffix(uniquified_filename_suffix), "Could not initialize events writer."); last_flush_ = env_->NowMicros(); is_initialized_ = true; return absl::OkStatus(); } Status Flush() override { mutex_lock ml(mu_); if (!is_initialized_) { return errors::FailedPrecondition("Class was not properly initialized."); } return InternalFlush(); } ~SummaryFileWriter() override { (void)Flush(); } Status WriteTensor(int64_t global_step, Tensor t, const string& tag, const string& serialized_metadata) override { std::unique_ptr<Event> e{new Event}; e->set_step(global_step); e->set_wall_time(GetWallTime()); Summary::Value* v = e->mutable_summary()->add_value(); if (t.dtype() == DT_STRING) { t.AsProtoField(v->mutable_tensor()); } else { t.AsProtoTensorContent(v->mutable_tensor()); } v->set_tag(tag); if (!serialized_metadata.empty()) { v->mutable_metadata()->ParseFromString(serialized_metadata); } return WriteEvent(std::move(e)); } Status WriteScalar(int64_t global_step, Tensor t, const string& tag) override { std::unique_ptr<Event> e{new Event}; e->set_step(global_step); e->set_wall_time(GetWallTime()); TF_RETURN_IF_ERROR( AddTensorAsScalarToSummary(t, tag, e->mutable_summary())); return WriteEvent(std::move(e)); } Status WriteHistogram(int64_t global_step, Tensor t, const string& tag) override { std::unique_ptr<Event> e{new Event}; e->set_step(global_step); e->set_wall_time(GetWallTime()); TF_RETURN_IF_ERROR( AddTensorAsHistogramToSummary(t, tag, e->mutable_summary())); return WriteEvent(std::move(e)); } Status WriteImage(int64_t global_step, Tensor t, const string& tag, int max_images, Tensor bad_color) override { std::unique_ptr<Event> e{new Event}; e->set_step(global_step); e->set_wall_time(GetWallTime()); TF_RETURN_IF_ERROR(AddTensorAsImageToSummary(t, tag, max_images, bad_color, e->mutable_summary())); return WriteEvent(std::move(e)); } Status WriteAudio(int64_t global_step, Tensor t, const string& tag, int max_outputs, float sample_rate) override { std::unique_ptr<Event> e{new Event}; e->set_step(global_step); e->set_wall_time(GetWallTime()); TF_RETURN_IF_ERROR(AddTensorAsAudioToSummary( t, tag, max_outputs, sample_rate, e->mutable_summary())); return WriteEvent(std::move(e)); } Status WriteGraph(int64_t global_step, std::unique_ptr<GraphDef> graph) override { std::unique_ptr<Event> e{new Event}; e->set_step(global_step); e->set_wall_time(GetWallTime()); graph->SerializeToString(e->mutable_graph_def()); return WriteEvent(std::move(e)); } Status WriteEvent(std::unique_ptr<Event> event) override { mutex_lock ml(mu_); queue_.emplace_back(std::move(event)); if (queue_.size() > max_queue_ || env_->NowMicros() - last_flush_ > 1000 * flush_millis_) { return InternalFlush(); } return absl::OkStatus(); } string DebugString() const override { return "SummaryFileWriter"; } private: double GetWallTime() { return static_cast<double>(env_->NowMicros()) / 1.0e6; } Status InternalFlush() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { for (const std::unique_ptr<Event>& e : queue_) { events_writer_->WriteEvent(*e); } queue_.clear(); TF_RETURN_WITH_CONTEXT_IF_ERROR(events_writer_->Flush(), "Could not flush events file."); last_flush_ = env_->NowMicros(); return absl::OkStatus(); } bool is_initialized_; const int max_queue_; const int flush_millis_; uint64 last_flush_; Env* env_; mutex mu_; std::vector<std::unique_ptr<Event>> queue_ TF_GUARDED_BY(mu_); std::unique_ptr<EventsWriter> events_writer_ TF_GUARDED_BY(mu_); std::vector<std::pair<string, SummaryMetadata>> registered_summaries_ TF_GUARDED_BY(mu_); }; } Status CreateSummaryFileWriter(int max_queue, int flush_millis, const string& logdir, const string& filename_suffix, Env* env, SummaryWriterInterface** result) { SummaryFileWriter* w = new SummaryFileWriter(max_queue, flush_millis, env); const Status s = w->Initialize(logdir, filename_suffix); if (!s.ok()) { w->Unref(); *result = nullptr; return s; } *result = w; return absl::OkStatus(); } }
#include "tensorflow/core/summary/summary_file_writer.h" #include "tensorflow/core/framework/summary.pb.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/refcount.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/lib/io/record_reader.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/util/event.pb.h" namespace tensorflow { namespace { class FakeClockEnv : public EnvWrapper { public: FakeClockEnv() : EnvWrapper(Env::Default()), current_millis_(0) {} void AdvanceByMillis(const uint64 millis) { current_millis_ += millis; } uint64 NowMicros() const override { return current_millis_ * 1000; } uint64 NowSeconds() const override { return current_millis_ * 1000; } private: uint64 current_millis_; }; class SummaryFileWriterTest : public ::testing::Test { protected: Status SummaryTestHelper( const string& test_name, const std::function<Status(SummaryWriterInterface*)>& writer_fn, const std::function<void(const Event&)>& test_fn) { static std::set<string>* tests = new std::set<string>(); CHECK(tests->insert(test_name).second) << ": " << test_name; SummaryWriterInterface* writer; TF_CHECK_OK(CreateSummaryFileWriter(1, 1, testing::TmpDir(), test_name, &env_, &writer)); core::ScopedUnref deleter(writer); TF_CHECK_OK(writer_fn(writer)); TF_CHECK_OK(writer->Flush()); std::vector<string> files; TF_CHECK_OK(env_.GetChildren(testing::TmpDir(), &files)); bool found = false; for (const string& f : files) { if (absl::StrContains(f, test_name)) { if (found) { return errors::Unknown("Found more than one file for ", test_name); } found = true; std::unique_ptr<RandomAccessFile> read_file; TF_CHECK_OK(env_.NewRandomAccessFile(io::JoinPath(testing::TmpDir(), f), &read_file)); io::RecordReader reader(read_file.get(), io::RecordReaderOptions()); tstring record; uint64 offset = 0; TF_CHECK_OK( reader.ReadRecord(&offset, &record)); TF_CHECK_OK(reader.ReadRecord(&offset, &record)); Event e; e.ParseFromString(record); test_fn(e); } } if (!found) { return errors::Unknown("Found no file for ", test_name); } return absl::OkStatus(); } FakeClockEnv env_; }; TEST_F(SummaryFileWriterTest, WriteTensor) { TF_CHECK_OK(SummaryTestHelper("tensor_test", [](SummaryWriterInterface* writer) { Tensor one(DT_FLOAT, TensorShape({})); one.scalar<float>()() = 1.0; TF_RETURN_IF_ERROR(writer->WriteTensor( 2, one, "name", SummaryMetadata().SerializeAsString())); TF_RETURN_IF_ERROR(writer->Flush()); return absl::OkStatus(); }, [](const Event& e) { EXPECT_EQ(e.step(), 2); CHECK_EQ(e.summary().value_size(), 1); EXPECT_EQ(e.summary().value(0).tag(), "name"); })); TF_CHECK_OK(SummaryTestHelper( "string_tensor_test", [](SummaryWriterInterface* writer) { Tensor hello(DT_STRING, TensorShape({})); hello.scalar<tstring>()() = "hello"; TF_RETURN_IF_ERROR(writer->WriteTensor( 2, hello, "name", SummaryMetadata().SerializeAsString())); TF_RETURN_IF_ERROR(writer->Flush()); return absl::OkStatus(); }, [](const Event& e) { EXPECT_EQ(e.step(), 2); CHECK_EQ(e.summary().value_size(), 1); EXPECT_EQ(e.summary().value(0).tag(), "name"); EXPECT_EQ(e.summary().value(0).tensor().dtype(), DT_STRING); EXPECT_EQ(e.summary().value(0).tensor().string_val()[0], "hello"); })); } TEST_F(SummaryFileWriterTest, WriteScalar) { TF_CHECK_OK(SummaryTestHelper( "scalar_test", [](SummaryWriterInterface* writer) { Tensor one(DT_FLOAT, TensorShape({})); one.scalar<float>()() = 1.0; TF_RETURN_IF_ERROR(writer->WriteScalar(2, one, "name")); TF_RETURN_IF_ERROR(writer->Flush()); return absl::OkStatus(); }, [](const Event& e) { EXPECT_EQ(e.step(), 2); CHECK_EQ(e.summary().value_size(), 1); EXPECT_EQ(e.summary().value(0).tag(), "name"); EXPECT_EQ(e.summary().value(0).simple_value(), 1.0); })); } TEST_F(SummaryFileWriterTest, WriteHistogram) { TF_CHECK_OK(SummaryTestHelper("hist_test", [](SummaryWriterInterface* writer) { Tensor one(DT_FLOAT, TensorShape({})); one.scalar<float>()() = 1.0; TF_RETURN_IF_ERROR( writer->WriteHistogram(2, one, "name")); TF_RETURN_IF_ERROR(writer->Flush()); return absl::OkStatus(); }, [](const Event& e) { EXPECT_EQ(e.step(), 2); CHECK_EQ(e.summary().value_size(), 1); EXPECT_EQ(e.summary().value(0).tag(), "name"); EXPECT_TRUE(e.summary().value(0).has_histo()); })); } namespace { template <typename T> static Status CreateImage(SummaryWriterInterface* writer) { Tensor bad_color(DT_UINT8, TensorShape({1})); bad_color.scalar<uint8>()() = 0; Tensor one(DataTypeToEnum<T>::v(), TensorShape({1, 1, 1, 1})); one.scalar<T>()() = T(1); TF_RETURN_IF_ERROR(writer->WriteImage(2, one, "name", 1, bad_color)); TF_RETURN_IF_ERROR(writer->Flush()); return absl::OkStatus(); } static void CheckImage(const Event& e) { EXPECT_EQ(e.step(), 2); CHECK_EQ(e.summary().value_size(), 1); EXPECT_EQ(e.summary().value(0).tag(), "name/image"); CHECK(e.summary().value(0).has_image()); EXPECT_EQ(e.summary().value(0).image().height(), 1); EXPECT_EQ(e.summary().value(0).image().width(), 1); EXPECT_EQ(e.summary().value(0).image().colorspace(), 1); } } TEST_F(SummaryFileWriterTest, WriteImageUInt8) { TF_CHECK_OK( SummaryTestHelper("image_test_uint8", CreateImage<uint8>, CheckImage)); } TEST_F(SummaryFileWriterTest, WriteImageFloat) { TF_CHECK_OK( SummaryTestHelper("image_test_float", CreateImage<float>, CheckImage)); } TEST_F(SummaryFileWriterTest, WriteImageHalf) { TF_CHECK_OK(SummaryTestHelper("image_test_half", CreateImage<Eigen::half>, CheckImage)); } TEST_F(SummaryFileWriterTest, WriteImageDouble) { TF_CHECK_OK( SummaryTestHelper("image_test_double", CreateImage<double>, CheckImage)); } TEST_F(SummaryFileWriterTest, WriteAudio) { TF_CHECK_OK(SummaryTestHelper( "audio_test", [](SummaryWriterInterface* writer) { Tensor one(DT_FLOAT, TensorShape({1, 1})); one.scalar<float>()() = 1.0; TF_RETURN_IF_ERROR(writer->WriteAudio(2, one, "name", 1, 1)); TF_RETURN_IF_ERROR(writer->Flush()); return absl::OkStatus(); }, [](const Event& e) { EXPECT_EQ(e.step(), 2); CHECK_EQ(e.summary().value_size(), 1); EXPECT_EQ(e.summary().value(0).tag(), "name/audio"); CHECK(e.summary().value(0).has_audio()); })); } TEST_F(SummaryFileWriterTest, WriteEvent) { TF_CHECK_OK( SummaryTestHelper("event_test", [](SummaryWriterInterface* writer) { std::unique_ptr<Event> e{new Event}; e->set_step(7); e->mutable_summary()->add_value()->set_tag("hi"); TF_RETURN_IF_ERROR(writer->WriteEvent(std::move(e))); TF_RETURN_IF_ERROR(writer->Flush()); return absl::OkStatus(); }, [](const Event& e) { EXPECT_EQ(e.step(), 7); CHECK_EQ(e.summary().value_size(), 1); EXPECT_EQ(e.summary().value(0).tag(), "hi"); })); } TEST_F(SummaryFileWriterTest, WallTime) { env_.AdvanceByMillis(7023); TF_CHECK_OK(SummaryTestHelper( "wall_time_test", [](SummaryWriterInterface* writer) { Tensor one(DT_FLOAT, TensorShape({})); one.scalar<float>()() = 1.0; TF_RETURN_IF_ERROR(writer->WriteScalar(2, one, "name")); TF_RETURN_IF_ERROR(writer->Flush()); return absl::OkStatus(); }, [](const Event& e) { EXPECT_EQ(e.wall_time(), 7.023); })); } TEST_F(SummaryFileWriterTest, AvoidFilenameCollision) { string test_name = "avoid_filename_collision_test"; int num_files = 10; for (int i = 0; i < num_files; i++) { SummaryWriterInterface* writer; TF_CHECK_OK(CreateSummaryFileWriter(1, 1, testing::TmpDir(), test_name, &env_, &writer)); core::ScopedUnref deleter(writer); } std::vector<string> files; TF_CHECK_OK(env_.GetChildren(testing::TmpDir(), &files)); files.erase(std::remove_if(files.begin(), files.end(), [test_name](string f) { return !absl::StrContains(f, test_name); }), files.end()); EXPECT_EQ(num_files, files.size()) << "files = [" << absl::StrJoin(files, ", ") << "]"; } } }
382
#ifndef STORAGE_LEVELDB_TABLE_FILTER_BLOCK_H_ #define STORAGE_LEVELDB_TABLE_FILTER_BLOCK_H_ #include <cstddef> #include <cstdint> #include <string> #include <vector> #include "leveldb/slice.h" #include "util/hash.h" namespace leveldb { class FilterPolicy; class FilterBlockBuilder { public: explicit FilterBlockBuilder(const FilterPolicy*); FilterBlockBuilder(const FilterBlockBuilder&) = delete; FilterBlockBuilder& operator=(const FilterBlockBuilder&) = delete; void StartBlock(uint64_t block_offset); void AddKey(const Slice& key); Slice Finish(); private: void GenerateFilter(); const FilterPolicy* policy_; std::string keys_; std::vector<size_t> start_; std::string result_; std::vector<Slice> tmp_keys_; std::vector<uint32_t> filter_offsets_; }; class FilterBlockReader { public: FilterBlockReader(const FilterPolicy* policy, const Slice& contents); bool KeyMayMatch(uint64_t block_offset, const Slice& key); private: const FilterPolicy* policy_; const char* data_; const char* offset_; size_t num_; size_t base_lg_; }; } #endif #include "table/filter_block.h" #include "leveldb/filter_policy.h" #include "util/coding.h" namespace leveldb { static const size_t kFilterBaseLg = 11; static const size_t kFilterBase = 1 << kFilterBaseLg; FilterBlockBuilder::FilterBlockBuilder(const FilterPolicy* policy) : policy_(policy) {} void FilterBlockBuilder::StartBlock(uint64_t block_offset) { uint64_t filter_index = (block_offset / kFilterBase); assert(filter_index >= filter_offsets_.size()); while (filter_index > filter_offsets_.size()) { GenerateFilter(); } } void FilterBlockBuilder::AddKey(const Slice& key) { Slice k = key; start_.push_back(keys_.size()); keys_.append(k.data(), k.size()); } Slice FilterBlockBuilder::Finish() { if (!start_.empty()) { GenerateFilter(); } const uint32_t array_offset = result_.size(); for (size_t i = 0; i < filter_offsets_.size(); i++) { PutFixed32(&result_, filter_offsets_[i]); } PutFixed32(&result_, array_offset); result_.push_back(kFilterBaseLg); return Slice(result_); } void FilterBlockBuilder::GenerateFilter() { const size_t num_keys = start_.size(); if (num_keys == 0) { filter_offsets_.push_back(result_.size()); return; } start_.push_back(keys_.size()); tmp_keys_.resize(num_keys); for (size_t i = 0; i < num_keys; i++) { const char* base = keys_.data() + start_[i]; size_t length = start_[i + 1] - start_[i]; tmp_keys_[i] = Slice(base, length); } filter_offsets_.push_back(result_.size()); policy_->CreateFilter(&tmp_keys_[0], static_cast<int>(num_keys), &result_); tmp_keys_.clear(); keys_.clear(); start_.clear(); } FilterBlockReader::FilterBlockReader(const FilterPolicy* policy, const Slice& contents) : policy_(policy), data_(nullptr), offset_(nullptr), num_(0), base_lg_(0) { size_t n = contents.size(); if (n < 5) return; base_lg_ = contents[n - 1]; uint32_t last_word = DecodeFixed32(contents.data() + n - 5); if (last_word > n - 5) return; data_ = contents.data(); offset_ = data_ + last_word; num_ = (n - 5 - last_word) / 4; } bool FilterBlockReader::KeyMayMatch(uint64_t block_offset, const Slice& key) { uint64_t index = block_offset >> base_lg_; if (index < num_) { uint32_t start = DecodeFixed32(offset_ + index * 4); uint32_t limit = DecodeFixed32(offset_ + index * 4 + 4); if (start <= limit && limit <= static_cast<size_t>(offset_ - data_)) { Slice filter = Slice(data_ + start, limit - start); return policy_->KeyMayMatch(key, filter); } else if (start == limit) { return false; } } return true; } }
#include "table/filter_block.h" #include "gtest/gtest.h" #include "leveldb/filter_policy.h" #include "util/coding.h" #include "util/hash.h" #include "util/logging.h" #include "util/testutil.h" namespace leveldb { class TestHashFilter : public FilterPolicy { public: const char* Name() const override { return "TestHashFilter"; } void CreateFilter(const Slice* keys, int n, std::string* dst) const override { for (int i = 0; i < n; i++) { uint32_t h = Hash(keys[i].data(), keys[i].size(), 1); PutFixed32(dst, h); } } bool KeyMayMatch(const Slice& key, const Slice& filter) const override { uint32_t h = Hash(key.data(), key.size(), 1); for (size_t i = 0; i + 4 <= filter.size(); i += 4) { if (h == DecodeFixed32(filter.data() + i)) { return true; } } return false; } }; class FilterBlockTest : public testing::Test { public: TestHashFilter policy_; }; TEST_F(FilterBlockTest, EmptyBuilder) { FilterBlockBuilder builder(&policy_); Slice block = builder.Finish(); ASSERT_EQ("\\x00\\x00\\x00\\x00\\x0b", EscapeString(block)); FilterBlockReader reader(&policy_, block); ASSERT_TRUE(reader.KeyMayMatch(0, "foo")); ASSERT_TRUE(reader.KeyMayMatch(100000, "foo")); } TEST_F(FilterBlockTest, SingleChunk) { FilterBlockBuilder builder(&policy_); builder.StartBlock(100); builder.AddKey("foo"); builder.AddKey("bar"); builder.AddKey("box"); builder.StartBlock(200); builder.AddKey("box"); builder.StartBlock(300); builder.AddKey("hello"); Slice block = builder.Finish(); FilterBlockReader reader(&policy_, block); ASSERT_TRUE(reader.KeyMayMatch(100, "foo")); ASSERT_TRUE(reader.KeyMayMatch(100, "bar")); ASSERT_TRUE(reader.KeyMayMatch(100, "box")); ASSERT_TRUE(reader.KeyMayMatch(100, "hello")); ASSERT_TRUE(reader.KeyMayMatch(100, "foo")); ASSERT_TRUE(!reader.KeyMayMatch(100, "missing")); ASSERT_TRUE(!reader.KeyMayMatch(100, "other")); } TEST_F(FilterBlockTest, MultiChunk) { FilterBlockBuilder builder(&policy_); builder.StartBlock(0); builder.AddKey("foo"); builder.StartBlock(2000); builder.AddKey("bar"); builder.StartBlock(3100); builder.AddKey("box"); builder.StartBlock(9000); builder.AddKey("box"); builder.AddKey("hello"); Slice block = builder.Finish(); FilterBlockReader reader(&policy_, block); ASSERT_TRUE(reader.KeyMayMatch(0, "foo")); ASSERT_TRUE(reader.KeyMayMatch(2000, "bar")); ASSERT_TRUE(!reader.KeyMayMatch(0, "box")); ASSERT_TRUE(!reader.KeyMayMatch(0, "hello")); ASSERT_TRUE(reader.KeyMayMatch(3100, "box")); ASSERT_TRUE(!reader.KeyMayMatch(3100, "foo")); ASSERT_TRUE(!reader.KeyMayMatch(3100, "bar")); ASSERT_TRUE(!reader.KeyMayMatch(3100, "hello")); ASSERT_TRUE(!reader.KeyMayMatch(4100, "foo")); ASSERT_TRUE(!reader.KeyMayMatch(4100, "bar")); ASSERT_TRUE(!reader.KeyMayMatch(4100, "box")); ASSERT_TRUE(!reader.KeyMayMatch(4100, "hello")); ASSERT_TRUE(reader.KeyMayMatch(9000, "box")); ASSERT_TRUE(reader.KeyMayMatch(9000, "hello")); ASSERT_TRUE(!reader.KeyMayMatch(9000, "foo")); ASSERT_TRUE(!reader.KeyMayMatch(9000, "bar")); } }
383
#ifndef TENSORFLOW_CORE_TFRT_SAVED_MODEL_SAVED_MODEL_H_ #define TENSORFLOW_CORE_TFRT_SAVED_MODEL_SAVED_MODEL_H_ #include <cstdint> #include <functional> #include <limits> #include <memory> #include <optional> #include <string> #include <unordered_set> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/platform/thread_annotations.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" #include "tensorflow/core/tfrt/fallback/fallback_state.h" #include "tensorflow/core/tfrt/graph_executor/graph_execution_options.h" #include "tensorflow/core/tfrt/graph_executor/graph_executor.h" #include "tensorflow/core/tfrt/runtime/runtime.h" #include "tensorflow/core/tfrt/saved_model/saved_model_util.h" #include "tsl/platform/protobuf.h" #include "tfrt/host_context/function.h" #include "tfrt/host_context/request_deadline_tracker.h" #include "tfrt/host_context/resource_context.h" namespace tfrt { class BEFFile; class HostContext; } namespace tensorflow { namespace tfrt_stub { class FunctionMetadata { public: explicit FunctionMetadata(const internal::Signature* signature) : signature_(signature) { assert(signature); } const std::vector<std::string>& GetInputNames() const { return signature_->input_names; } const std::vector<TensorSpec>& GetInputSpecs() const { return signature_->input_specs; } const std::vector<std::string>& GetOutputNames() const { return signature_->output_names; } const std::vector<TensorSpec>& GetOutputSpecs() const { return signature_->output_specs; } const protobuf::Map<std::string, TensorProto>& GetDefaultInputs() const { return signature_->default_inputs; } private: friend class SavedModelImpl; const internal::Signature* signature_ = nullptr; }; class SavedModel { public: struct Options { explicit Options(const Runtime* rt) : graph_execution_options(rt) {} bool enable_lazy_loading = false; bool maybe_load_from_mla = false; bool lazy_loading_use_graph_executor = false; bool aot_generation = false; GraphExecutionOptions graph_execution_options; }; using RunOptions = GraphExecutionRunOptions; explicit SavedModel(const Runtime* runtime) : options_(runtime) { DCHECK(runtime); } explicit SavedModel(Options options, std::unique_ptr<GraphExecutor> graph_executor) : options_(std::move(options)), graph_executor_(std::move(graph_executor)) {} virtual ~SavedModel(); const SessionMetadata& model_metadata() const { return options_.graph_execution_options.model_metadata; } const Runtime& runtime() const { DCHECK(options_.graph_execution_options.runtime); return *options_.graph_execution_options.runtime; } tfrt::HostContext* GetHostContext() const; GraphExecutor& graph_executor() const { return *graph_executor_; } virtual const tensorflow::MetaGraphDef& GetMetaGraphDef() const = 0; virtual std::vector<std::string> GetFunctionNames() const = 0; virtual std::optional<FunctionMetadata> GetFunctionMetadata( absl::string_view func_name) const = 0; virtual tensorflow::Status Run(const RunOptions& run_options, absl::string_view name, absl::Span<const tensorflow::Tensor> inputs, std::vector<tensorflow::Tensor>* outputs) = 0; virtual tensorflow::Status RunMultipleSignatures( const RunOptions& run_options, absl::Span<const std::string> names, absl::Span<const std::vector<tensorflow::Tensor>> multi_inputs, std::vector<std::vector<tensorflow::Tensor>>* multi_outputs) = 0; virtual tensorflow::Status RunByTensorNames( const RunOptions& run_options, absl::Span<const std::pair<std::string, tensorflow::Tensor>> inputs, absl::Span<const std::string> output_tensor_names, absl::Span<const std::string> target_node_names, std::vector<tensorflow::Tensor>* outputs) = 0; protected: const FallbackState& fallback_state() const { return graph_executor_->fallback_state(); } FallbackState& fallback_state() { return graph_executor_->fallback_state(); } const Options options_; std::unique_ptr<GraphExecutor> graph_executor_; }; using SignatureMap = absl::flat_hash_map<std::string, internal::Signature>; using ::tensorflow::StatusOr; class SavedModelImpl final : public SavedModel { public: struct JoinedSignature; static absl::StatusOr<std::unique_ptr<SavedModel>> LoadSavedModel( Options options, absl::string_view saved_model_dir, const std::unordered_set<std::string>& tags); static absl::StatusOr<std::unique_ptr<SavedModel>> LoadSavedModel( Options options, tensorflow::MetaGraphDef meta_graph_def, absl::string_view saved_model_dir); SavedModelImpl( Options options, SymbolUids symbol_uids, tensorflow::MetaGraphDef meta_graph_def, tfrt::BefBuffer bef, tfrt::RCReference<tfrt::BEFFile> bef_file, mlrt::bc::Buffer bytecode, std::optional<mlrt::LoadedExecutable> loaded_executable, absl::flat_hash_map<std::string, internal::Signature> signatures, std::unique_ptr<OpKernelRunnerTable> runner_table, std::unique_ptr<tfd::FallbackResourceArray> resource_array, std::unique_ptr<GraphExecutor> graph_executor); ~SavedModelImpl() override = default; SavedModelImpl(const SavedModelImpl&) = delete; SavedModelImpl& operator=(const SavedModelImpl&) = delete; const tensorflow::MetaGraphDef& GetMetaGraphDef() const override; std::vector<std::string> GetFunctionNames() const override; std::optional<FunctionMetadata> GetFunctionMetadata( absl::string_view func_name) const override; tensorflow::Status Run(const RunOptions& run_options, absl::string_view name, absl::Span<const tensorflow::Tensor> inputs, std::vector<tensorflow::Tensor>* outputs) override; tensorflow::Status RunMultipleSignatures( const RunOptions& run_options, absl::Span<const std::string> names, absl::Span<const std::vector<tensorflow::Tensor>> multi_inputs, std::vector<std::vector<tensorflow::Tensor>>* multi_outputs) override; tensorflow::Status RunByTensorNames( const RunOptions& run_options, absl::Span<const std::pair<std::string, tensorflow::Tensor>> inputs, absl::Span<const std::string> output_tensor_names, absl::Span<const std::string> target_node_names, std::vector<tensorflow::Tensor>* outputs) override; private: struct LoadingResult { std::string name; SymbolUids symbol_uids; mlrt::bc::Buffer bytecode_buffer; std::unique_ptr<mlrt::LoadedExecutable> bytecode_executable; tfrt::BefBuffer bef; tfrt::RCReference<tfrt::BEFFile> bef_file; std::unique_ptr<OpKernelRunnerTable> runner_table; std::unique_ptr<tfd::FallbackResourceArray> resource_array; std::unique_ptr<tfrt::ResourceContext> resource_context; }; absl::StatusOr<mlir::OwningOpRef<mlir::ModuleOp>> ImportSubgraph( mlir::MLIRContext* context, absl::string_view name, const tensorflow::GraphImportConfig::InputArrays& input_nodes, const std::vector<std::string>& output_nodes, const std::vector<std::string>& target_nodes); absl::StatusOr<std::reference_wrapper<const SavedModelImpl::LoadingResult>> LoadJoinedSignature(const JoinedSignature& joined_signature) TF_EXCLUSIVE_LOCKS_REQUIRED(loading_result_cache_mu_); absl::StatusOr<std::reference_wrapper<const SavedModelImpl::LoadingResult>> GetOrCreateLoadingResult(const RunOptions& run_options, absl::Span<const std::string> names) TF_LOCKS_EXCLUDED(loading_result_cache_mu_); SymbolUids symbol_uids_; tensorflow::MetaGraphDef meta_graph_def_; tfrt::BefBuffer bef_; tfrt::RCReference<tfrt::BEFFile> bef_file_; mlrt::bc::Buffer bytecode_; std::optional<mlrt::LoadedExecutable> loaded_executable_; tfrt::RequestDeadlineTracker req_deadline_tracker_; absl::flat_hash_map<std::string, internal::Signature> signatures_; std::unique_ptr<OpKernelRunnerTable> runner_table_; std::unique_ptr<tfd::FallbackResourceArray> resource_array_; tensorflow::mutex loading_result_cache_mu_; absl::flat_hash_map<std::string , std::unique_ptr<LoadingResult>> loading_result_cache_ TF_GUARDED_BY(loading_result_cache_mu_); }; class SavedModelMiraImpl; } } namespace tfrt { using SavedModel = ::tensorflow::tfrt_stub::SavedModel; using SavedModelImpl = ::tensorflow::tfrt_stub::SavedModelImpl; using SavedModelMiraImpl = ::tensorflow::tfrt_stub::SavedModelMiraImpl; using TensorSpec = ::tensorflow::tfrt_stub::TensorSpec; using FunctionMetadata = ::tensorflow::tfrt_stub::FunctionMetadata; namespace internal { using Signature = ::tensorflow::tfrt_stub::internal::Signature; } } #endif #include "tensorflow/core/tfrt/saved_model/saved_model.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <functional> #include <iterator> #include <memory> #include <optional> #include <string> #include <unordered_set> #include <utility> #include <vector> #include "absl/cleanup/cleanup.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "mlir/Dialect/Func/Extensions/AllExtensions.h" #include "mlir/IR/DialectRegistry.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OwningOpRef.h" #include "tensorflow/compiler/jit/flags.h" #include "tensorflow/compiler/mlir/tensorflow/translate/import_model.h" #include "tensorflow/compiler/mlir/tensorflow/translate/mlir_roundtrip_flags.h" #include "tensorflow/compiler/mlir/tensorflow/translate/tf_mlir_translate.h" #include "tensorflow/compiler/mlir/tfrt/saved_model/saved_model.h" #include "tensorflow/compiler/mlir/tfrt/transforms/mlrt/import_model.h" #include "tensorflow/compiler/mlir/tfrt/translate/import_model.h" #include "tensorflow/compiler/mlir/tfrt/translate/tfrt_compile_options.h" #include "xla/status_macros.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/lib/monitoring/counter.h" #include "tensorflow/core/lib/monitoring/gauge.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" #include "tensorflow/core/protobuf/rewriter_config.pb.h" #include "tensorflow/core/runtime_fallback/kernel/kernel_fallback_compat_request_state.h" #include "tensorflow/core/tfrt/fallback/fallback_state.h" #include "tensorflow/core/tfrt/fallback/op_kernel_runner.h" #include "tensorflow/core/tfrt/graph_executor/export_mlir.h" #include "tensorflow/core/tfrt/graph_executor/graph_execution_options.h" #include "tensorflow/core/tfrt/graph_executor/graph_executor.h" #include "tensorflow/core/tfrt/mlrt/bytecode/bytecode.h" #include "tensorflow/core/tfrt/mlrt/bytecode/executable.h" #include "tensorflow/core/tfrt/mlrt/interpreter/context.h" #include "tensorflow/core/tfrt/mlrt/kernel/batch_kernel.h" #include "tensorflow/core/tfrt/mlrt/kernel/kernel.h" #include "tensorflow/core/tfrt/runtime/runtime.h" #include "tensorflow/core/tfrt/saved_model/saved_model_util.h" #include "tensorflow/core/tfrt/saved_model/utils/serialize_utils.h" #include "tensorflow/core/tfrt/stubs/model_config_stub.h" #include "tensorflow/core/tfrt/utils/utils.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" #include "tfrt/bef/bef_buffer.h" #include "tfrt/bef_executor/bef_file.h" #include "tfrt/core_runtime/core_runtime.h" #include "tfrt/host_context/execution_context.h" #include "tfrt/host_context/function.h" #include "tfrt/host_context/host_context.h" #include "tfrt/host_context/kernel_registry.h" #include "tfrt/host_context/request_deadline_tracker.h" #include "tfrt/host_context/resource_context.h" #include "tfrt/metrics/common_metrics.h" #include "tfrt/support/ref_count.h" namespace tensorflow { namespace tfrt_stub { namespace { constexpr absl::string_view kSignatureJoiningDelimiter = "+"; auto* lazy_loading_count = monitoring::Counter<3>::New( "/tensorflow/tfrt/lazy_loading_count", "The total number of lazy loadings.", "model_name", "model_version", "use_graph_executor"); auto* saved_model_import_time_seconds = tensorflow::monitoring::Gauge<int64_t, 1>::New( "/tensorflow/tfrt/saved_model/import_time", "Record the MLIR import time for the savedmodel.", "model_name"); auto* saved_model_compile_time_seconds = tensorflow::monitoring::Gauge<int64_t, 1>::New( "/tensorflow/tfrt/saved_model/compile_time", "Record the compilation time for the savedmodel.", "model_name"); auto* saved_model_init_time_seconds = tensorflow::monitoring::Gauge<int64_t, 1>::New( "/tensorflow/tfrt/saved_model/init_time", "Record the initialization time for the savedmodel.", "model_name"); auto* saved_model_input_spec_validation_failure = tensorflow::monitoring::Gauge<bool, 1>::New( "/tensorflow/tfrt/saved_model/input_spec_validation_failure", "Record the models that failed input spec validation.", "model_name"); tensorflow::Status RunBytecodeInitializers( const GraphExecutionOptions& options, const InitializersAndSignatures& initializers_and_signatures, const mlrt::LoadedExecutable& loaded_executable, tfrt::ResourceContext* resource_context, OpKernelRunnerTable* runner_table, tfd::FallbackResourceArray* resource_array, FallbackState& fallback_state, const bool provide_inputs) { TF_ASSIGN_OR_RETURN( auto request_info, CreateRequestInfo(options, {}, options.runtime->work_queue(), resource_context, nullptr, runner_table, resource_array, fallback_state, fallback_state.process_function_library_runtime())); std::vector<tensorflow::Tensor> outputs; if (auto function = loaded_executable.GetFunction("_tfrt_fallback_init")) { TF_RETURN_IF_ERROR(RunMlrtFunction( function, loaded_executable, request_info->tfrt_request_context, *request_info->request_queue, {}, &outputs, nullptr)); } for (const auto& p : initializers_and_signatures.initializers) { const auto& initializer_name = p.name; std::vector<tensorflow::Tensor> outputs; const std::vector<tensorflow::Tensor> empty_inputs; const std::vector<tensorflow::Tensor>& initializer_inputs = provide_inputs ? p.inputs : empty_inputs; TF_RETURN_IF_ERROR(GraphExecutionRunOnFunction( options, {}, initializer_name, {}, nullptr, &loaded_executable, initializer_inputs, &outputs, resource_context, nullptr, runner_table, resource_array, *options.runtime, fallback_state, fallback_state.process_function_library_runtime(), nullptr, std::nullopt)); DCHECK(outputs.empty()); } if (auto function = loaded_executable.GetFunction("_tfrt_resource_init")) { TF_RETURN_IF_ERROR(RunMlrtFunction( function, loaded_executable, request_info->tfrt_request_context, *request_info->request_queue, {}, &outputs, nullptr)); } return absl::OkStatus(); } tensorflow::Status RunBefInitializers( const GraphExecutionOptions& options, const InitializersAndSignatures& initializers_and_signatures, tfrt::BEFFile* bef_file, tfrt::ResourceContext* resource_context, OpKernelRunnerTable* runner_table, tfd::FallbackResourceArray* resource_array, FallbackState& fallback_state, const bool provide_inputs) { DCHECK(options.runtime); TF_ASSIGN_OR_RETURN( auto request_info, CreateRequestInfo(options, {}, options.runtime->work_queue(), resource_context, nullptr, runner_table, resource_array, fallback_state, fallback_state.process_function_library_runtime())); tfrt::ExecutionContext exec_ctx(request_info->tfrt_request_context); TF_RETURN_IF_ERROR( RunRuntimeInitializer(exec_ctx, bef_file, "_tfrt_fallback_init")); for (const auto& p : initializers_and_signatures.initializers) { const auto& initializer_name = p.name; auto* func = bef_file->GetFunction(initializer_name); DCHECK(func); std::vector<tensorflow::Tensor> outputs; const std::vector<tensorflow::Tensor> empty_inputs; const std::vector<tensorflow::Tensor>& initializer_inputs = provide_inputs ? p.inputs : empty_inputs; TF_RETURN_IF_ERROR(GraphExecutionRunOnFunction( options, {}, initializer_name, {}, func, nullptr, initializer_inputs, &outputs, resource_context, nullptr, runner_table, resource_array, *options.runtime, fallback_state, fallback_state.process_function_library_runtime(), nullptr, std::nullopt)); DCHECK(outputs.empty()); } TF_RETURN_IF_ERROR( RunRuntimeInitializer(exec_ctx, bef_file, "_tfrt_resource_init")); return absl::OkStatus(); } tensorflow::Status IsInputSpecsCorrect( absl::string_view name, const internal::Signature& signature, absl::Span<const tensorflow::Tensor> inputs) { TF_RET_CHECK(signature.input_specs.size() == inputs.size()) << "signature " << name << " input size is wrong, expected: " << signature.input_specs.size() << ", actual: " << inputs.size(); for (size_t i = 0; i < inputs.size(); ++i) { const auto& expected_input_spec = signature.input_specs[i]; TF_RET_CHECK(expected_input_spec.dtype == inputs[i].dtype()) << "signature " << name << " input dtype is wrong, expected: " << expected_input_spec.dtype << ", actual: " << inputs[i].dtype(); TF_RET_CHECK(expected_input_spec.shape.IsCompatibleWith(inputs[i].shape())) << "signature " << name << " input shape is wrong, expected : " << expected_input_spec.shape << ", actual: " << inputs[i].shape(); } return absl::OkStatus(); } tensorflow::Status CheckInputSpecs( const tensorflow::SessionMetadata& model_metadata, const SavedModel::RunOptions& run_options, absl::string_view signature_name, const internal::Signature& signature, absl::Span<const tensorflow::Tensor> input_tensors) { if (!run_options.validate_input_specs && !run_options.validate_input_specs_dry_run) { return absl::OkStatus(); } auto status = IsInputSpecsCorrect(signature_name, signature, input_tensors); if (!status.ok()) { saved_model_input_spec_validation_failure ->GetCell( absl::StrCat(model_metadata.name(), ":", model_metadata.version())) ->Set(true); const auto error_string = absl::StrCat( "model: ", model_metadata.name(), ", version: ", model_metadata.version(), ", error: ", status.message()); if (!run_options.validate_input_specs_dry_run) { return tensorflow::errors::InvalidArgument(error_string); } LOG_EVERY_N_SEC(WARNING, 5) << "TFRT input specs validation failed, " << error_string; } return absl::OkStatus(); } tensorflow::Status PreprocessSignature( const tensorflow::SessionMetadata& model_metadata, const SavedModel::RunOptions& run_options, absl::string_view signature_name, const tensorflow::SignatureDef& signature_def, const internal::Signature& signature, absl::Span<const tensorflow::Tensor> input_tensors, absl::flat_hash_set<std::string>* visited_feed_tensor_names, std::vector<std::pair<std::string, tensorflow::Tensor>>& inputs, std::vector<std::string>& output_tensor_names) { const auto& input_names = signature.input_names; TF_RETURN_IF_ERROR(CheckInputSpecs(model_metadata, run_options, signature_name, signature, input_tensors)); TF_RET_CHECK(input_tensors.size() == signature_def.inputs().size()) << "Incorrect input size for signature: " << signature_name << ": expected " << signature_def.inputs().size() << ", but got " << input_tensors.size(); DCHECK_EQ(input_names.size(), signature_def.inputs().size()); for (int i = 0; i < input_tensors.size(); ++i) { const auto& tensor_info = signature_def.inputs().at(input_names[i]); TF_RET_CHECK(tensor_info.encoding_case() == tensorflow::TensorInfo::kName) << "Only dense tensor is supported, but got encoding case " << tensor_info.encoding_case(); const auto& tensor_name = tensor_info.name(); if (visited_feed_tensor_names && !visited_feed_tensor_names->insert(tensor_name).second) continue; inputs.push_back(std::make_pair(tensor_name, input_tensors[i])); } for (const auto& output_key : signature.output_names) { const auto& tensor_info = signature_def.outputs().at(output_key); VLOG(1) << "Importing Signature Output: output_key = " << output_key << ", tensor_info = " << tensor_info.DebugString(); TF_RET_CHECK(tensor_info.encoding_case() == tensorflow::TensorInfo::kName) << "Only dense tensor is supported, but got encoding case " << tensor_info.encoding_case(); output_tensor_names.push_back(tensor_info.name()); } return absl::OkStatus(); } bool AotPackageExists(absl::string_view saved_model_dir) { Env* env = Env::Default(); const std::string aot_package_path = GetAotPackagePath(saved_model_dir); const std::string aot_mlir_path = GetMlirFilePath(aot_package_path); const std::string aot_bef_path = GetBefFilePath(aot_package_path); return env->FileExists(aot_package_path).ok() && env->FileExists(aot_mlir_path).ok() && env->FileExists(aot_bef_path).ok(); } } SavedModel::~SavedModel() = default; tfrt::HostContext* SavedModel::GetHostContext() const { return runtime().core_runtime()->GetHostContext(); } namespace { void GetSignaturesFromSignatureDef( SignatureMap& signatures, const google::protobuf::Map<std::string, tensorflow::SignatureDef>& signature_defs, const SavedModel::Options& options) { for (const auto& p : signature_defs) { const std::string& signature_name = p.first; const tensorflow::SignatureDef& signature_def = p.second; DCHECK(signatures.find(signature_name) == signatures.end()); auto& signature = signatures[signature_name]; signature.input_names.reserve(signature_def.inputs().size()); signature.input_specs.reserve(signature_def.inputs().size()); for (const auto& p : signature_def.inputs()) { const std::string& input_tensor_name = p.first; const tensorflow::TensorInfo& tensor_info = p.second; signature.input_names.push_back(input_tensor_name); signature.input_specs.push_back( TensorSpec(tensor_info.dtype(), tensor_info.tensor_shape())); } signature.input_devices = std::vector<std::string>( signature_def.inputs().size(), options.graph_execution_options.compile_options.default_device); signature.output_names.reserve(signature_def.outputs().size()); signature.output_specs.reserve(signature_def.outputs().size()); for (const auto& p : signature_def.outputs()) { const std::string& output_tensor_name = p.first; const tensorflow::TensorInfo& tensor_info = p.second; signature.output_names.push_back(output_tensor_name); signature.output_specs.push_back( TensorSpec(tensor_info.dtype(), tensor_info.tensor_shape())); } } } void GetDefaultInputValue( const google::protobuf::Map<std::string, tensorflow::SignatureDef>& signature_defs, ModelRuntimeContext& context, SignatureMap& signatures) { bool load_from_signature_def = false; for (const auto& [name, signature_def] : signature_defs) { auto itr = signatures.find(name); if (itr == signatures.end()) { continue; } LOG(INFO) << "Model signature identified for default inputs"; if (signature_def.defaults().empty()) continue; LOG(INFO) << "Loading default inputs for signature: " << name << " from Signature def"; load_from_signature_def = true; signatures[name].default_inputs = signature_def.defaults(); } if (load_from_signature_def) return; GetDefaultInputsFromModelConfig(context, signatures); } void UpdateCompileOptions(SavedModel::Options& options) { if (options.graph_execution_options.enable_tfrt_gpu) { options.graph_execution_options.compile_options.decompose_resource_ops = false; } options.graph_execution_options.compile_options .fuse_get_resource_ops_in_hoist
#include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/cc/saved_model/loader.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/core/tfrt/saved_model/saved_model_testutil.h" namespace tensorflow { namespace tfrt_stub { namespace { TEST(SavedModelTest, BasicError) { std::string saved_model_dir = tensorflow::GetDataDependencyFilepath( "tensorflow/core/runtime_fallback/test/saved_model/basic_v1"); TFRTSavedModelTest test(saved_model_dir); std::vector<tensorflow::Tensor> inputs; inputs.push_back( CreateTfTensor<int32_t>({1, 3}, {1, 1, 1})); std::vector<tensorflow::Tensor> outputs; EXPECT_FALSE( test.GetSavedModel()->Run({}, "serving_default", inputs, &outputs).ok()); } } } }
384
#ifndef TENSORSTORE_PROTO_ARRAY_H_ #define TENSORSTORE_PROTO_ARRAY_H_ #include "absl/status/status.h" #include "tensorstore/array.h" #include "tensorstore/index.h" #include "tensorstore/proto/array.pb.h" #include "tensorstore/strided_layout.h" #include "tensorstore/util/result.h" namespace tensorstore { void EncodeToProtoImpl(::tensorstore::proto::Array& proto, OffsetArrayView<const void> array); Result<SharedArray<void, dynamic_rank, offset_origin>> ParseArrayFromProto( const ::tensorstore::proto::Array& proto, ArrayOriginKind origin_kind = offset_origin, DimensionIndex rank_constraint = dynamic_rank); template <typename Element, DimensionIndex Rank, ArrayOriginKind OriginKind, ContainerKind LayoutCKind> void EncodeToProto( ::tensorstore::proto::Array& proto, const Array<Shared<Element>, Rank, OriginKind, LayoutCKind>& value) { EncodeToProtoImpl(proto, value); } } #endif #include "tensorstore/proto/array.h" #include <algorithm> #include <array> #include <cstddef> #include <cstdint> #include <limits> #include <string> #include <type_traits> #include "absl/status/status.h" #include "riegeli/bytes/string_reader.h" #include "riegeli/bytes/string_writer.h" #include "tensorstore/array.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/data_type.h" #include "tensorstore/index.h" #include "tensorstore/index_interval.h" #include "tensorstore/internal/elementwise_function.h" #include "tensorstore/internal/integer_overflow.h" #include "tensorstore/internal/unaligned_data_type_functions.h" #include "tensorstore/proto/array.pb.h" #include "tensorstore/rank.h" #include "tensorstore/strided_layout.h" #include "tensorstore/util/dimension_set.h" #include "tensorstore/util/iterate.h" #include "tensorstore/util/result.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace { struct WriteProtoImpl { tensorstore::proto::Array& proto; void operator()(const double* item, void*) { proto.add_double_data(*item); } void operator()(const float* item, void*) { proto.add_float_data(*item); } void operator()(const int16_t* item, void*) { proto.add_int_data(*item); } void operator()(const int32_t* item, void*) { proto.add_int_data(*item); } void operator()(const int64_t* item, void*) { proto.add_int_data(*item); } void operator()(const uint16_t* item, void*) { proto.add_uint_data(*item); } void operator()(const uint32_t* item, void*) { proto.add_uint_data(*item); } void operator()(const uint64_t* item, void*) { proto.add_uint_data(*item); } }; struct ReadProtoImpl { const tensorstore::proto::Array& proto; size_t index = 0; size_t error_count = 0; void operator()(double* item, void*) { *item = proto.double_data(index++); } void operator()(float* item, void*) { *item = proto.float_data(index++); } void operator()(int16_t* item, void*) { auto i = proto.int_data(index++); *item = static_cast<int16_t>(i); if (i > std::numeric_limits<int16_t>::max() || i < std::numeric_limits<int16_t>::min()) { error_count++; } } void operator()(int32_t* item, void*) { auto i = proto.int_data(index++); *item = static_cast<int32_t>(i); if (i > std::numeric_limits<int32_t>::max() || i < std::numeric_limits<int32_t>::min()) { error_count++; } } void operator()(int64_t* item, void*) { *item = proto.int_data(index++); } void operator()(uint16_t* item, void*) { auto i = proto.uint_data(index++); *item = static_cast<uint16_t>(i); if (i > std::numeric_limits<uint16_t>::max()) { error_count++; } } void operator()(uint32_t* item, void*) { auto i = proto.uint_data(index++); *item = static_cast<uint32_t>(i); if (i > std::numeric_limits<uint32_t>::max()) { error_count++; } } void operator()(uint64_t* item, void*) { *item = proto.uint_data(index++); } }; struct ProtoArrayDataTypeFunctions { const internal::ElementwiseFunction<1, void*>* write_fn = nullptr; const internal::ElementwiseFunction<1, void*>* read_fn = nullptr; }; const std::array<ProtoArrayDataTypeFunctions, kNumDataTypeIds> kProtoFunctions = MapCanonicalDataTypes([](auto dtype) { using T = typename decltype(dtype)::Element; ProtoArrayDataTypeFunctions functions; if constexpr (std::is_invocable_v<ReadProtoImpl, T*, void*>) { functions.write_fn = internal::SimpleElementwiseFunction<WriteProtoImpl(const T), void*>(); functions.read_fn = internal::SimpleElementwiseFunction<ReadProtoImpl(T), void*>(); } return functions; }); } void EncodeToProtoImpl(::tensorstore::proto::Array& proto, OffsetArrayView<const void> array) { const auto dtype = array.dtype(); proto.set_dtype(std::string(dtype.name())); { bool all_zero = true; for (Index x : array.origin()) { proto.add_origin(x); all_zero &= (x == 0); } if (all_zero) proto.clear_origin(); } for (Index x : array.shape()) { proto.add_shape(x); } { DimensionSet zero_byte_strides(false); for (DimensionIndex i = 0; i < array.rank(); i++) { zero_byte_strides[i] = (array.byte_strides()[i] == 0 && array.shape()[i] != 1); } if (zero_byte_strides) { proto.set_zero_byte_strides_bitset(zero_byte_strides.to_uint()); } } const size_t index = static_cast<size_t>(dtype.id()); if (kProtoFunctions[index].write_fn) { if (dtype.id() == DataTypeIdOf<int16_t> || dtype.id() == DataTypeIdOf<int32_t> || dtype.id() == DataTypeIdOf<int64_t>) { proto.mutable_int_data()->Reserve(array.num_elements()); } else if (dtype.id() == DataTypeIdOf<uint16_t> || dtype.id() == DataTypeIdOf<uint32_t> || dtype.id() == DataTypeIdOf<uint64_t>) { proto.mutable_uint_data()->Reserve(array.num_elements()); } else if (dtype.id() == DataTypeIdOf<double>) { proto.mutable_double_data()->Reserve(array.num_elements()); } else if (dtype.id() == DataTypeIdOf<float>) { proto.mutable_float_data()->Reserve(array.num_elements()); } WriteProtoImpl impl{proto}; internal::IterateOverArrays({kProtoFunctions[index].write_fn, &impl}, nullptr, {c_order, skip_repeated_elements}, array); } else { proto.mutable_void_data()->reserve(dtype.size() * array.num_elements()); riegeli::StringWriter writer(proto.mutable_void_data()); internal::IterateOverArrays( {&internal::kUnalignedDataTypeFunctions[index].write_native_endian, &writer}, nullptr, {c_order, skip_repeated_elements}, array); writer.Close(); } } Result<SharedArray<void, dynamic_rank, offset_origin>> ParseArrayFromProto( const ::tensorstore::proto::Array& proto, ArrayOriginKind origin_kind, DimensionIndex rank_constraint) { SharedArray<void, dynamic_rank, offset_origin> array; DataType dtype = GetDataType(proto.dtype()); if (!dtype.valid()) { return absl::DataLossError( "Cannot deserialize array with unspecified data type"); } const size_t rank = proto.shape_size(); if (rank_constraint != dynamic_rank && rank != rank_constraint) { return absl::InvalidArgumentError("Proto array rank mismatch"); } if (rank > kMaxRank) { return absl::InvalidArgumentError("Proto rank exceeds maximum rank"); } array.layout().set_rank(rank); std::copy(proto.shape().begin(), proto.shape().end(), array.layout().shape().begin()); std::fill(array.layout().origin().begin(), array.layout().origin().end(), Index(0)); if (proto.origin_size() > 0 && std::any_of(proto.origin().begin(), proto.origin().end(), [](auto x) { return x != 0; })) { if (origin_kind == zero_origin) { return absl::InvalidArgumentError( "Proto zero_origin array has non-zero origin"); } if (proto.origin_size() != rank) { return absl::InvalidArgumentError("Proto origin/rank mismatch"); } std::copy(proto.origin().begin(), proto.origin().end(), array.layout().origin().begin()); } Index num_elements = 1; { DimensionSet zero_byte_strides = (proto.has_zero_byte_strides_bitset()) ? DimensionSet::FromUint(proto.zero_byte_strides_bitset()) : DimensionSet(false); for (DimensionIndex i = rank - 1; i >= 0; --i) { if (!IndexInterval::ValidSized(array.origin()[i], array.shape()[i])) { return absl::InvalidArgumentError(tensorstore::StrCat( "Proto origin and shape of {", array.origin()[i], ", ", array.shape()[i], "} do not specify a valid IndexInterval for rank ", i)); } if (zero_byte_strides[i]) { array.layout().byte_strides()[i] = 0; } else { array.layout().byte_strides()[i] = 1; if (internal::MulOverflow(num_elements, array.shape()[i], &num_elements)) { return absl::DataLossError( tensorstore::StrCat("Invalid array shape ", array.shape())); } } } } array.element_pointer() = tensorstore::AllocateArrayElementsLike<void>( array.layout(), array.byte_strides().data(), {c_order, skip_repeated_elements}, default_init, dtype); const size_t index = static_cast<size_t>(dtype.id()); if (kProtoFunctions[index].read_fn && proto.void_data().empty()) { if ((dtype.id() == DataTypeIdOf<int16_t> || dtype.id() == DataTypeIdOf<int32_t> || dtype.id() == DataTypeIdOf<int64_t>)&&proto.int_data_size() != num_elements) { return absl::DataLossError("proto int_data incomplete"); } if ((dtype.id() == DataTypeIdOf<uint16_t> || dtype.id() == DataTypeIdOf<uint32_t> || dtype.id() == DataTypeIdOf<uint64_t>)&&proto.uint_data_size() != num_elements) { return absl::DataLossError("proto uint_data incomplete"); } if (dtype.id() == DataTypeIdOf<double> && proto.double_data_size() != num_elements) { return absl::DataLossError("proto double_data incomplete"); } if (dtype.id() == DataTypeIdOf<float> && proto.float_data_size() != num_elements) { return absl::DataLossError("proto float_data incomplete"); } ReadProtoImpl impl{proto}; internal::IterateOverArrays({kProtoFunctions[index].read_fn, &impl}, nullptr, {c_order, skip_repeated_elements}, array); if (impl.error_count > 0) { return absl::DataLossError("Array element truncated"); } } else { riegeli::StringReader reader(proto.void_data()); internal::IterateOverArrays( {&internal::kUnalignedDataTypeFunctions[index].read_native_endian, &reader}, nullptr, {c_order, skip_repeated_elements}, array); if (!reader.VerifyEndAndClose()) return reader.status(); } return array; } }
#include "tensorstore/proto/array.h" #include <memory> #include <random> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorstore/array.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/data_type.h" #include "tensorstore/index.h" #include "tensorstore/index_space/index_transform_testutil.h" #include "tensorstore/internal/data_type_random_generator.h" #include "tensorstore/internal/testing/random_seed.h" #include "tensorstore/proto/array.pb.h" #include "tensorstore/proto/protobuf_matchers.h" #include "tensorstore/strided_layout.h" #include "tensorstore/util/status_testutil.h" namespace { using ::protobuf_matchers::EqualsProto; using ::tensorstore::Index; using ::tensorstore::kInfIndex; using ::tensorstore::MatchesStatus; using ::tensorstore::ParseArrayFromProto; using ::tensorstore::StridedLayout; template <typename Proto> Proto ParseProtoOrDie(const std::string& asciipb) { return protobuf_matchers::internal::MakePartialProtoFromAscii<Proto>(asciipb); } template <typename T> auto DoEncode(const T& array) { ::tensorstore::proto::Array proto; ::tensorstore::EncodeToProto(proto, array); return proto; } TEST(ArrayProtoTest, Basic) { auto array = tensorstore::MakeArray<Index>({{{1, 0, 2, 2}, {4, 5, 6, 7}}}); auto proto = ParseProtoOrDie<::tensorstore::proto::Array>(R"pb( dtype: "int64" shape: [ 1, 2, 4 ] int_data: [ 1, 0, 2, 2, 4, 5, 6, 7 ] )pb"); EXPECT_THAT(DoEncode(array), EqualsProto(proto)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto copy, ParseArrayFromProto(proto)); ASSERT_TRUE(copy.valid()); EXPECT_EQ(copy.layout(), array.layout()); EXPECT_THAT(copy, testing::Eq(array)); } TEST(ArrayProtoTest, BasicVoidData) { auto array = tensorstore::MakeOffsetArray<bool>({3, 1, -2}, {{{true}}, {{false}}}); auto proto = ParseProtoOrDie<::tensorstore::proto::Array>(R"pb( dtype: "bool" shape: [ 2, 1, 1 ] origin: [ 3, 1, -2 ] void_data: "\x01\x00" )pb"); EXPECT_THAT(DoEncode(array), EqualsProto(proto)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto copy, ParseArrayFromProto(proto)); ASSERT_TRUE(copy.valid()); EXPECT_EQ(copy.layout(), array.layout()); EXPECT_THAT(copy, testing::Eq(array)); } TEST(ArrayProtoTest, DecodeRank0) { auto proto = ParseProtoOrDie<::tensorstore::proto::Array>(R"pb( dtype: "int64" int_data: [ 3 ] )pb"); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto copy, ParseArrayFromProto(proto)); EXPECT_TRUE(copy.valid()); EXPECT_THAT(copy.rank(), testing::Eq(0)); } TEST(ArrayProtoTest, ZeroStrides) { int data[] = {1, 2, 3, 4, 5, 6}; tensorstore::SharedArray<int> array( std::shared_ptr<int>(std::shared_ptr<void>(), &data[0]), tensorstore::StridedLayout<>({kInfIndex + 1, 2, 3, kInfIndex + 1}, {0, 3 * sizeof(int), sizeof(int), 0})); auto proto = ParseProtoOrDie<::tensorstore::proto::Array>(R"pb( dtype: "int32" shape: [ 4611686018427387904, 2, 3, 4611686018427387904 ] zero_byte_strides_bitset: 9 int_data: [ 1, 2, 3, 4, 5, 6 ] )pb"); EXPECT_THAT(DoEncode(array), EqualsProto(proto)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto copy, ParseArrayFromProto(proto)); ASSERT_TRUE(copy.valid()); ASSERT_EQ(copy.layout(), array.layout()); EXPECT_EQ(array, copy); } TEST(ArrayProtoTest, Errors) { EXPECT_THAT( ParseArrayFromProto(ParseProtoOrDie<::tensorstore::proto::Array>(R"pb( dtype: "foo" int_data: [ 3 ] )pb")), MatchesStatus(absl::StatusCode::kDataLoss)); EXPECT_THAT( ParseArrayFromProto(ParseProtoOrDie<::tensorstore::proto::Array>(R"pb( dtype: "int32" int_data: [ 3 ] )pb"), tensorstore::offset_origin, 2), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT( ParseArrayFromProto(ParseProtoOrDie<::tensorstore::proto::Array>(R"pb( dtype: "int32" shape: [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] )pb")), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT( ParseArrayFromProto(ParseProtoOrDie<::tensorstore::proto::Array>(R"pb( dtype: "int32" shape: [ 1, 2, 3 ] origin: [ 1, 2, 3 ] )pb"), tensorstore::zero_origin), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT( ParseArrayFromProto(ParseProtoOrDie<::tensorstore::proto::Array>(R"pb( dtype: "int32" shape: [ 1, 2, 3 ] origin: [ 1, 2 ] )pb")), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT( ParseArrayFromProto(ParseProtoOrDie<::tensorstore::proto::Array>(R"pb( dtype: "int32" shape: [ 1, -2, 3 ] )pb")), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT( ParseArrayFromProto(ParseProtoOrDie<::tensorstore::proto::Array>(R"pb( dtype: "int32" shape: [ 2147483647, 2147483647, 2147483647 ] )pb")), MatchesStatus(absl::StatusCode::kDataLoss)); EXPECT_THAT( ParseArrayFromProto(ParseProtoOrDie<::tensorstore::proto::Array>(R"pb( dtype: "int64" int_data: [ 3, 4 ] )pb")), MatchesStatus(absl::StatusCode::kDataLoss)); EXPECT_THAT( ParseArrayFromProto(ParseProtoOrDie<::tensorstore::proto::Array>(R"pb( dtype: "int64" shape: 2 int_data: [ 3 ] )pb")), MatchesStatus(absl::StatusCode::kDataLoss)); EXPECT_THAT( ParseArrayFromProto(ParseProtoOrDie<::tensorstore::proto::Array>(R"pb( dtype: "uint64" shape: 2 )pb")), MatchesStatus(absl::StatusCode::kDataLoss)); EXPECT_THAT( ParseArrayFromProto(ParseProtoOrDie<::tensorstore::proto::Array>(R"pb( dtype: "double" shape: 2 )pb")), MatchesStatus(absl::StatusCode::kDataLoss)); EXPECT_THAT( ParseArrayFromProto(ParseProtoOrDie<::tensorstore::proto::Array>(R"pb( dtype: "float" shape: 2 )pb")), MatchesStatus(absl::StatusCode::kDataLoss)); } class RandomArrayProtoTest : public ::testing::TestWithParam<tensorstore::DataType> {}; INSTANTIATE_TEST_SUITE_P(DataTypes, RandomArrayProtoTest, ::testing::ValuesIn(tensorstore::kDataTypes)); TEST_P(RandomArrayProtoTest, COrder) { auto dtype = GetParam(); for (int iteration = 0; iteration < 100; ++iteration) { std::minstd_rand gen{tensorstore::internal_testing::GetRandomSeedForTest( "TENSORSTORE_PROTO_ARRAY_TEST_SEED")}; auto box = tensorstore::internal::MakeRandomBox(gen); auto array = tensorstore::internal::MakeRandomArray(gen, box, dtype, tensorstore::c_order); auto proto = DoEncode(array); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto copy, ParseArrayFromProto(proto)); EXPECT_THAT(copy, testing::Eq(array)); } } TEST_P(RandomArrayProtoTest, FOrder) { auto dtype = GetParam(); for (int iteration = 0; iteration < 100; ++iteration) { std::minstd_rand gen{tensorstore::internal_testing::GetRandomSeedForTest( "TENSORSTORE_PROTO_ARRAY_TEST_SEED")}; auto box = tensorstore::internal::MakeRandomBox(gen); auto array = tensorstore::internal::MakeRandomArray( gen, box, dtype, tensorstore::fortran_order); auto proto = DoEncode(array); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto copy, ParseArrayFromProto(proto)); EXPECT_THAT(copy, testing::Eq(array)); } } }
385
#ifndef TENSORSTORE_PROTO_PROTO_BINDER_H_ #define TENSORSTORE_PROTO_PROTO_BINDER_H_ #include <type_traits> #include "absl/status/status.h" #include "google/protobuf/message.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/json_serialization_options_base.h" namespace tensorstore { namespace internal_json_binding { struct JsonProtoBinderBase { absl::Status operator()(std::true_type , const NoOptions& options, google::protobuf::Message* obj, ::nlohmann::json* j) const; absl::Status operator()(std::false_type , const NoOptions& options, const google::protobuf::Message* obj, ::nlohmann::json* j) const; }; struct AsciiProtoBinderBase { absl::Status operator()(std::true_type , const NoOptions& options, google::protobuf::Message* obj, ::nlohmann::json* j) const; absl::Status operator()(std::false_type , const NoOptions& options, const google::protobuf::Message* obj, ::nlohmann::json* j) const; }; template <typename MessageType> struct JsonProtoBinder : private JsonProtoBinderBase { inline absl::Status operator()(std::true_type , const NoOptions& options, MessageType* obj, ::nlohmann::json* j) const { return JsonProtoBinderBase::operator()(std::true_type{}, options, obj, j); } inline absl::Status operator()(std::false_type , const NoOptions& options, const MessageType* obj, ::nlohmann::json* j) const { return JsonProtoBinderBase::operator()(std::false_type{}, options, obj, j); } }; template <typename MessageType> struct AsciiProtoBinder : private AsciiProtoBinderBase { inline absl::Status operator()(std::true_type , const NoOptions& options, MessageType* obj, ::nlohmann::json* j) const { return AsciiProtoBinderBase::operator()(std::true_type{}, options, obj, j); } inline absl::Status operator()(std::false_type , const NoOptions& options, const MessageType* obj, ::nlohmann::json* j) const { return AsciiProtoBinderBase::operator()(std::false_type{}, options, obj, j); } }; } } #endif #include "tensorstore/proto/proto_binder.h" #include <string> #include <type_traits> #include <utility> #include "absl/status/status.h" #include <nlohmann/json.hpp> #include "google/protobuf/descriptor.h" #include "google/protobuf/message.h" #include "google/protobuf/text_format.h" #include "google/protobuf/util/json_util.h" #include "tensorstore/internal/json/value_as.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/json_serialization_options_base.h" #include "tensorstore/proto/proto_util.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_json_binding { absl::Status JsonProtoBinderBase::operator()(std::true_type , const NoOptions& options, google::protobuf::Message* obj, ::nlohmann::json* j) const { if (!j->template get_ptr<::nlohmann::json::object_t*>()) { return internal_json::ExpectedError(*j, "object"); } std::string json_ascii = j->dump(); auto status = google::protobuf::util::JsonStringToMessage(json_ascii, obj); if (status.ok()) { return absl::OkStatus(); } return absl::InvalidArgumentError(tensorstore::StrCat( "Expected JSON protocol buffer ", obj->GetDescriptor()->name(), " object, but received ", j->dump(), " with error ", std::string_view(status.message().data(), status.message().size()))); } absl::Status JsonProtoBinderBase::operator()(std::false_type , const NoOptions& options, const google::protobuf::Message* obj, ::nlohmann::json* j) const { std::string json_ascii; auto status = google::protobuf::util::MessageToJsonString(*obj, &json_ascii); if (!status.ok()) { return absl::InternalError( std::string_view(status.message().data(), status.message().size())); } auto j_parse = ::nlohmann::json::parse(json_ascii, nullptr, false); if (j_parse.template get_ptr<::nlohmann::json::object_t*>()) { *j = std::move(j_parse); return absl::OkStatus(); } return absl::InternalError("Failed to serialize field as JSON proto"); } absl::Status AsciiProtoBinderBase::operator()(std::true_type, const NoOptions& options, google::protobuf::Message* obj, ::nlohmann::json* j) const { auto* str = j->template get_ptr<const std::string*>(); if (!str) { return internal_json::ExpectedError(*j, "string"); } if (TryParseTextProto(*str, obj)) { return absl::OkStatus(); } return absl::InvalidArgumentError(tensorstore::StrCat( "Expected ASCII protocol buffer ", obj->GetDescriptor()->name(), " object, but received ", *str)); } absl::Status AsciiProtoBinderBase::operator()(std::false_type, const NoOptions& options, const google::protobuf::Message* obj, ::nlohmann::json* j) const { std::string obj_text; google::protobuf::TextFormat::PrintToString(*obj, &obj_text); *j = obj_text; return absl::OkStatus(); } } }
#include "tensorstore/proto/proto_binder.h" #include <string> #include <type_traits> #include <gtest/gtest.h> #include "absl/status/status.h" #include <nlohmann/json_fwd.hpp> #include "tensorstore/json_serialization_options.h" #include "tensorstore/proto/array.pb.h" #include "tensorstore/proto/protobuf_matchers.h" namespace { using ::protobuf_matchers::EqualsProto; using ::tensorstore::JsonSerializationOptions; using ::tensorstore::internal_json_binding::AsciiProtoBinder; using ::tensorstore::internal_json_binding::JsonProtoBinder; static inline constexpr JsonProtoBinder<::tensorstore::proto::Array> ArrayJsonBinder = {}; static inline constexpr AsciiProtoBinder<::tensorstore::proto::Array> ArrayAsciiBinder = {}; constexpr const char kProto[] = R"(dtype: "int64" shape: 1 shape: 2 shape: 4 int_data: 1 int_data: 0 int_data: 2 int_data: 2 int_data: 4 int_data: 5 int_data: 6 int_data: 7 )"; TEST(ProtoBinderTest, Ascii) { JsonSerializationOptions options; ::tensorstore::proto::Array proto; ::nlohmann::json j = std::string(kProto); EXPECT_TRUE(ArrayAsciiBinder(std::true_type{}, options, &proto, &j).ok()); EXPECT_THAT(proto, EqualsProto(kProto)); ::nlohmann::json out; EXPECT_TRUE(ArrayAsciiBinder(std::false_type{}, options, &proto, &out).ok()); ASSERT_TRUE(out.get_ptr<const std::string*>()); EXPECT_EQ(*out.get_ptr<const std::string*>(), kProto); } TEST(ProtoBinderTest, Json) { JsonSerializationOptions options; ::tensorstore::proto::Array proto; ::nlohmann::json j = ::nlohmann::json{{"dtype", "int64"}, {"shape", {1, 2, 4}}, {"int_data", {1, 0, 2, 2, 4, 5, 6, 7}}}; EXPECT_TRUE(ArrayJsonBinder(std::true_type{}, options, &proto, &j).ok()); EXPECT_THAT(proto, EqualsProto(kProto)); ::nlohmann::json out; EXPECT_TRUE(ArrayJsonBinder(std::false_type{}, options, &proto, &out).ok()); ::nlohmann::json expected{ {"dtype", "int64"}, {"shape", {"1", "2", "4"}}, {"intData", {"1", "0", "2", "2", "4", "5", "6", "7"}}}; EXPECT_EQ(out, expected); } }
386
#ifndef QUICHE_QUIC_TEST_TOOLS_SIMULATOR_QUIC_ENDPOINT_H_ #define QUICHE_QUIC_TEST_TOOLS_SIMULATOR_QUIC_ENDPOINT_H_ #include "absl/strings/string_view.h" #include "quiche/quic/core/crypto/null_decrypter.h" #include "quiche/quic/core/crypto/null_encrypter.h" #include "quiche/quic/core/quic_connection.h" #include "quiche/quic/core/quic_packet_writer.h" #include "quiche/quic/core/quic_packets.h" #include "quiche/quic/core/quic_stream_frame_data_producer.h" #include "quiche/quic/core/quic_trace_visitor.h" #include "quiche/quic/test_tools/simple_session_notifier.h" #include "quiche/quic/test_tools/simulator/link.h" #include "quiche/quic/test_tools/simulator/queue.h" #include "quiche/quic/test_tools/simulator/quic_endpoint_base.h" namespace quic { namespace simulator { class QuicEndpoint : public QuicEndpointBase, public QuicConnectionVisitorInterface, public SessionNotifierInterface { public: QuicEndpoint(Simulator* simulator, std::string name, std::string peer_name, Perspective perspective, QuicConnectionId connection_id); QuicByteCount bytes_to_transfer() const; QuicByteCount bytes_transferred() const; QuicByteCount bytes_received() const; bool wrong_data_received() const { return wrong_data_received_; } void AddBytesToTransfer(QuicByteCount bytes); void OnStreamFrame(const QuicStreamFrame& frame) override; void OnCryptoFrame(const QuicCryptoFrame& frame) override; void OnCanWrite() override; bool WillingAndAbleToWrite() const override; bool ShouldKeepConnectionAlive() const override; std::string GetStreamsInfoForLogging() const override { return ""; } void OnWindowUpdateFrame(const QuicWindowUpdateFrame& ) override {} void OnBlockedFrame(const QuicBlockedFrame& ) override {} void OnRstStream(const QuicRstStreamFrame& ) override {} void OnGoAway(const QuicGoAwayFrame& ) override {} void OnMessageReceived(absl::string_view ) override {} void OnHandshakeDoneReceived() override {} void OnNewTokenReceived(absl::string_view ) override {} void OnConnectionClosed(const QuicConnectionCloseFrame& , ConnectionCloseSource ) override {} void OnWriteBlocked() override {} void OnSuccessfulVersionNegotiation( const ParsedQuicVersion& ) override {} void OnPacketReceived(const QuicSocketAddress& , const QuicSocketAddress& , bool ) override {} void OnCongestionWindowChange(QuicTime ) override {} void OnConnectionMigration(AddressChangeType ) override {} void OnPathDegrading() override {} void OnForwardProgressMadeAfterPathDegrading() override {} void OnAckNeedsRetransmittableFrame() override {} void SendAckFrequency(const QuicAckFrequencyFrame& ) override {} void SendNewConnectionId(const QuicNewConnectionIdFrame& ) override { } void SendRetireConnectionId(uint64_t ) override {} bool MaybeReserveConnectionId( const QuicConnectionId& ) override { return true; } void OnServerConnectionIdRetired( const QuicConnectionId& ) override {} bool AllowSelfAddressChange() const override; HandshakeState GetHandshakeState() const override; bool OnMaxStreamsFrame(const QuicMaxStreamsFrame& ) override { return true; } bool OnStreamsBlockedFrame( const QuicStreamsBlockedFrame& ) override { return true; } void OnStopSendingFrame(const QuicStopSendingFrame& ) override {} void OnPacketDecrypted(EncryptionLevel ) override {} void OnOneRttPacketAcknowledged() override {} void OnHandshakePacketSent() override {} void OnKeyUpdate(KeyUpdateReason ) override {} std::unique_ptr<QuicDecrypter> AdvanceKeysAndCreateCurrentOneRttDecrypter() override { return nullptr; } std::unique_ptr<QuicEncrypter> CreateCurrentOneRttEncrypter() override { return nullptr; } void BeforeConnectionCloseSent() override {} bool ValidateToken(absl::string_view ) override { return true; } bool MaybeSendAddressToken() override { return false; } void CreateContextForMultiPortPath( std::unique_ptr<MultiPortPathContextObserver> ) override {} void MigrateToMultiPortPath( std::unique_ptr<QuicPathValidationContext> ) override {} void OnServerPreferredAddressAvailable( const QuicSocketAddress& ) override {} void MaybeBundleOpportunistically() override {} QuicByteCount GetFlowControlSendWindowSize(QuicStreamId ) override { return std::numeric_limits<QuicByteCount>::max(); } bool OnFrameAcked(const QuicFrame& frame, QuicTime::Delta ack_delay_time, QuicTime receive_timestamp) override; void OnStreamFrameRetransmitted(const QuicStreamFrame& ) override {} void OnFrameLost(const QuicFrame& frame) override; bool RetransmitFrames(const QuicFrames& frames, TransmissionType type) override; bool IsFrameOutstanding(const QuicFrame& frame) const override; bool HasUnackedCryptoData() const override; bool HasUnackedStreamData() const override; private: class DataProducer : public QuicStreamFrameDataProducer { public: WriteStreamDataResult WriteStreamData(QuicStreamId id, QuicStreamOffset offset, QuicByteCount data_length, QuicDataWriter* writer) override; bool WriteCryptoData(EncryptionLevel level, QuicStreamOffset offset, QuicByteCount data_length, QuicDataWriter* writer) override; }; std::unique_ptr<QuicConnection> CreateConnection( Simulator* simulator, std::string name, std::string peer_name, Perspective perspective, QuicConnectionId connection_id); void WriteStreamData(); DataProducer producer_; QuicByteCount bytes_to_transfer_; QuicByteCount bytes_transferred_; bool wrong_data_received_; QuicIntervalSet<QuicStreamOffset> offsets_received_; std::unique_ptr<test::SimpleSessionNotifier> notifier_; }; } } #endif #include "quiche/quic/test_tools/simulator/quic_endpoint.h" #include <algorithm> #include <memory> #include <string> #include <utility> #include "quiche/quic/core/crypto/crypto_handshake_message.h" #include "quiche/quic/core/crypto/crypto_protocol.h" #include "quiche/quic/core/quic_data_writer.h" #include "quiche/quic/platform/api/quic_test_output.h" #include "quiche/quic/test_tools/quic_config_peer.h" #include "quiche/quic/test_tools/quic_connection_peer.h" #include "quiche/quic/test_tools/quic_test_utils.h" #include "quiche/quic/test_tools/simulator/simulator.h" namespace quic { namespace simulator { const QuicStreamId kDataStream = 3; const QuicByteCount kWriteChunkSize = 128 * 1024; const char kStreamDataContents = 'Q'; QuicEndpoint::QuicEndpoint(Simulator* simulator, std::string name, std::string peer_name, Perspective perspective, QuicConnectionId connection_id) : QuicEndpointBase(simulator, name, peer_name), bytes_to_transfer_(0), bytes_transferred_(0), wrong_data_received_(false), notifier_(nullptr) { connection_ = std::make_unique<QuicConnection>( connection_id, GetAddressFromName(name), GetAddressFromName(peer_name), simulator, simulator->GetAlarmFactory(), &writer_, false, perspective, ParsedVersionOfIndex(CurrentSupportedVersions(), 0), connection_id_generator_); connection_->set_visitor(this); connection_->SetEncrypter(ENCRYPTION_FORWARD_SECURE, std::make_unique<quic::test::TaggingEncrypter>( ENCRYPTION_FORWARD_SECURE)); connection_->SetEncrypter(ENCRYPTION_INITIAL, nullptr); if (connection_->version().KnowsWhichDecrypterToUse()) { connection_->InstallDecrypter( ENCRYPTION_FORWARD_SECURE, std::make_unique<quic::test::StrictTaggingDecrypter>( ENCRYPTION_FORWARD_SECURE)); connection_->RemoveDecrypter(ENCRYPTION_INITIAL); } else { connection_->SetDecrypter( ENCRYPTION_FORWARD_SECURE, std::make_unique<quic::test::StrictTaggingDecrypter>( ENCRYPTION_FORWARD_SECURE)); } connection_->SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); connection_->OnHandshakeComplete(); if (perspective == Perspective::IS_SERVER) { test::QuicConnectionPeer::SetNegotiatedVersion(connection_.get()); } test::QuicConnectionPeer::SetAddressValidated(connection_.get()); connection_->SetDataProducer(&producer_); connection_->SetSessionNotifier(this); notifier_ = std::make_unique<test::SimpleSessionNotifier>(connection_.get()); std::string error; CryptoHandshakeMessage peer_hello; peer_hello.SetValue(kICSL, static_cast<uint32_t>(kMaximumIdleTimeoutSecs - 1)); peer_hello.SetValue(kMIBS, static_cast<uint32_t>(kDefaultMaxStreamsPerConnection)); QuicConfig config; QuicErrorCode error_code = config.ProcessPeerHello( peer_hello, perspective == Perspective::IS_CLIENT ? SERVER : CLIENT, &error); QUICHE_DCHECK_EQ(error_code, QUIC_NO_ERROR) << "Configuration failed: " << error; if (connection_->version().UsesTls()) { if (connection_->perspective() == Perspective::IS_CLIENT) { test::QuicConfigPeer::SetReceivedOriginalConnectionId( &config, connection_->connection_id()); test::QuicConfigPeer::SetReceivedInitialSourceConnectionId( &config, connection_->connection_id()); } else { test::QuicConfigPeer::SetReceivedInitialSourceConnectionId( &config, connection_->client_connection_id()); } } connection_->SetFromConfig(config); connection_->DisableMtuDiscovery(); } QuicByteCount QuicEndpoint::bytes_received() const { QuicByteCount total = 0; for (auto& interval : offsets_received_) { total += interval.max() - interval.min(); } return total; } QuicByteCount QuicEndpoint::bytes_to_transfer() const { if (notifier_ != nullptr) { return notifier_->StreamBytesToSend(); } return bytes_to_transfer_; } QuicByteCount QuicEndpoint::bytes_transferred() const { if (notifier_ != nullptr) { return notifier_->StreamBytesSent(); } return bytes_transferred_; } void QuicEndpoint::AddBytesToTransfer(QuicByteCount bytes) { if (notifier_ != nullptr) { if (notifier_->HasBufferedStreamData()) { Schedule(clock_->Now()); } notifier_->WriteOrBufferData(kDataStream, bytes, NO_FIN); return; } if (bytes_to_transfer_ > 0) { Schedule(clock_->Now()); } bytes_to_transfer_ += bytes; WriteStreamData(); } void QuicEndpoint::OnStreamFrame(const QuicStreamFrame& frame) { QUICHE_DCHECK(frame.stream_id == kDataStream); for (size_t i = 0; i < frame.data_length; i++) { if (frame.data_buffer[i] != kStreamDataContents) { wrong_data_received_ = true; } } offsets_received_.Add(frame.offset, frame.offset + frame.data_length); QUICHE_DCHECK_LE(offsets_received_.Size(), 1000u); } void QuicEndpoint::OnCryptoFrame(const QuicCryptoFrame& ) {} void QuicEndpoint::OnCanWrite() { if (notifier_ != nullptr) { notifier_->OnCanWrite(); return; } WriteStreamData(); } bool QuicEndpoint::WillingAndAbleToWrite() const { if (notifier_ != nullptr) { return notifier_->WillingToWrite(); } return bytes_to_transfer_ != 0; } bool QuicEndpoint::ShouldKeepConnectionAlive() const { return true; } bool QuicEndpoint::AllowSelfAddressChange() const { return false; } bool QuicEndpoint::OnFrameAcked(const QuicFrame& frame, QuicTime::Delta ack_delay_time, QuicTime receive_timestamp) { if (notifier_ != nullptr) { return notifier_->OnFrameAcked(frame, ack_delay_time, receive_timestamp); } return false; } void QuicEndpoint::OnFrameLost(const QuicFrame& frame) { QUICHE_DCHECK(notifier_); notifier_->OnFrameLost(frame); } bool QuicEndpoint::RetransmitFrames(const QuicFrames& frames, TransmissionType type) { QUICHE_DCHECK(notifier_); return notifier_->RetransmitFrames(frames, type); } bool QuicEndpoint::IsFrameOutstanding(const QuicFrame& frame) const { QUICHE_DCHECK(notifier_); return notifier_->IsFrameOutstanding(frame); } bool QuicEndpoint::HasUnackedCryptoData() const { return false; } bool QuicEndpoint::HasUnackedStreamData() const { if (notifier_ != nullptr) { return notifier_->HasUnackedStreamData(); } return false; } HandshakeState QuicEndpoint::GetHandshakeState() const { return HANDSHAKE_COMPLETE; } WriteStreamDataResult QuicEndpoint::DataProducer::WriteStreamData( QuicStreamId , QuicStreamOffset , QuicByteCount data_length, QuicDataWriter* writer) { writer->WriteRepeatedByte(kStreamDataContents, data_length); return WRITE_SUCCESS; } bool QuicEndpoint::DataProducer::WriteCryptoData(EncryptionLevel , QuicStreamOffset , QuicByteCount , QuicDataWriter* ) { QUIC_BUG(quic_bug_10157_1) << "QuicEndpoint::DataProducer::WriteCryptoData is unimplemented"; return false; } void QuicEndpoint::WriteStreamData() { QuicConnection::ScopedPacketFlusher flusher(connection_.get()); while (bytes_to_transfer_ > 0) { const size_t transmission_size = std::min(kWriteChunkSize, bytes_to_transfer_); QuicConsumedData consumed_data = connection_->SendStreamData( kDataStream, transmission_size, bytes_transferred_, NO_FIN); QUICHE_DCHECK(consumed_data.bytes_consumed <= transmission_size); bytes_transferred_ += consumed_data.bytes_consumed; bytes_to_transfer_ -= consumed_data.bytes_consumed; if (consumed_data.bytes_consumed != transmission_size) { return; } } } } }
#include "quiche/quic/test_tools/simulator/quic_endpoint.h" #include <memory> #include <utility> #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/quic_connection_peer.h" #include "quiche/quic/test_tools/quic_test_utils.h" #include "quiche/quic/test_tools/simulator/simulator.h" #include "quiche/quic/test_tools/simulator/switch.h" using ::testing::_; using ::testing::NiceMock; using ::testing::Return; namespace quic { namespace simulator { const QuicBandwidth kDefaultBandwidth = QuicBandwidth::FromKBitsPerSecond(10 * 1000); const QuicTime::Delta kDefaultPropagationDelay = QuicTime::Delta::FromMilliseconds(20); const QuicByteCount kDefaultBdp = kDefaultBandwidth * kDefaultPropagationDelay; class QuicEndpointTest : public quic::test::QuicTest { public: QuicEndpointTest() : simulator_(), switch_(&simulator_, "Switch", 8, kDefaultBdp * 2) {} protected: Simulator simulator_; Switch switch_; std::unique_ptr<SymmetricLink> Link(Endpoint* a, Endpoint* b) { return std::make_unique<SymmetricLink>(a, b, kDefaultBandwidth, kDefaultPropagationDelay); } std::unique_ptr<SymmetricLink> CustomLink(Endpoint* a, Endpoint* b, uint64_t extra_rtt_ms) { return std::make_unique<SymmetricLink>( a, b, kDefaultBandwidth, kDefaultPropagationDelay + QuicTime::Delta::FromMilliseconds(extra_rtt_ms)); } }; TEST_F(QuicEndpointTest, OneWayTransmission) { QuicEndpoint endpoint_a(&simulator_, "Endpoint A", "Endpoint B", Perspective::IS_CLIENT, test::TestConnectionId(42)); QuicEndpoint endpoint_b(&simulator_, "Endpoint B", "Endpoint A", Perspective::IS_SERVER, test::TestConnectionId(42)); auto link_a = Link(&endpoint_a, switch_.port(1)); auto link_b = Link(&endpoint_b, switch_.port(2)); endpoint_a.AddBytesToTransfer(600); QuicTime end_time = simulator_.GetClock()->Now() + QuicTime::Delta::FromMilliseconds(1000); simulator_.RunUntil( [this, end_time]() { return simulator_.GetClock()->Now() >= end_time; }); EXPECT_EQ(600u, endpoint_a.bytes_transferred()); ASSERT_EQ(600u, endpoint_b.bytes_received()); EXPECT_FALSE(endpoint_a.wrong_data_received()); EXPECT_FALSE(endpoint_b.wrong_data_received()); endpoint_a.AddBytesToTransfer(2 * 1024 * 1024); end_time = simulator_.GetClock()->Now() + QuicTime::Delta::FromSeconds(5); simulator_.RunUntil( [this, end_time]() { return simulator_.GetClock()->Now() >= end_time; }); const QuicByteCount total_bytes_transferred = 600 + 2 * 1024 * 1024; EXPECT_EQ(total_bytes_transferred, endpoint_a.bytes_transferred()); EXPECT_EQ(total_bytes_transferred, endpoint_b.bytes_received()); EXPECT_EQ(0u, endpoint_a.write_blocked_count()); EXPECT_FALSE(endpoint_a.wrong_data_received()); EXPECT_FALSE(endpoint_b.wrong_data_received()); } TEST_F(QuicEndpointTest, WriteBlocked) { QuicEndpoint endpoint_a(&simulator_, "Endpoint A", "Endpoint B", Perspective::IS_CLIENT, test::TestConnectionId(42)); QuicEndpoint endpoint_b(&simulator_, "Endpoint B", "Endpoint A", Perspective::IS_SERVER, test::TestConnectionId(42)); auto link_a = Link(&endpoint_a, switch_.port(1)); auto link_b = Link(&endpoint_b, switch_.port(2)); auto* sender = new NiceMock<test::MockSendAlgorithm>(); EXPECT_CALL(*sender, CanSend(_)).WillRepeatedly(Return(true)); EXPECT_CALL(*sender, PacingRate(_)) .WillRepeatedly(Return(10 * kDefaultBandwidth)); EXPECT_CALL(*sender, BandwidthEstimate()) .WillRepeatedly(Return(10 * kDefaultBandwidth)); EXPECT_CALL(*sender, GetCongestionWindow()) .WillRepeatedly(Return(kMaxOutgoingPacketSize * GetQuicFlag(quic_max_congestion_window))); test::QuicConnectionPeer::SetSendAlgorithm(endpoint_a.connection(), sender); QuicByteCount bytes_to_transfer = 3 * 1024 * 1024; endpoint_a.AddBytesToTransfer(bytes_to_transfer); QuicTime end_time = simulator_.GetClock()->Now() + QuicTime::Delta::FromSeconds(30); simulator_.RunUntil([this, &endpoint_b, bytes_to_transfer, end_time]() { return endpoint_b.bytes_received() == bytes_to_transfer || simulator_.GetClock()->Now() >= end_time; }); EXPECT_EQ(bytes_to_transfer, endpoint_a.bytes_transferred()); EXPECT_EQ(bytes_to_transfer, endpoint_b.bytes_received()); EXPECT_GT(endpoint_a.write_blocked_count(), 0u); EXPECT_FALSE(endpoint_a.wrong_data_received()); EXPECT_FALSE(endpoint_b.wrong_data_received()); } TEST_F(QuicEndpointTest, TwoWayTransmission) { QuicEndpoint endpoint_a(&simulator_, "Endpoint A", "Endpoint B", Perspective::IS_CLIENT, test::TestConnectionId(42)); QuicEndpoint endpoint_b(&simulator_, "Endpoint B", "Endpoint A", Perspective::IS_SERVER, test::TestConnectionId(42)); auto link_a = Link(&endpoint_a, switch_.port(1)); auto link_b = Link(&endpoint_b, switch_.port(2)); endpoint_a.RecordTrace(); endpoint_b.RecordTrace(); endpoint_a.AddBytesToTransfer(1024 * 1024); endpoint_b.AddBytesToTransfer(1024 * 1024); QuicTime end_time = simulator_.GetClock()->Now() + QuicTime::Delta::FromSeconds(5); simulator_.RunUntil( [this, end_time]() { return simulator_.GetClock()->Now() >= end_time; }); EXPECT_EQ(1024u * 1024u, endpoint_a.bytes_transferred()); EXPECT_EQ(1024u * 1024u, endpoint_b.bytes_transferred()); EXPECT_EQ(1024u * 1024u, endpoint_a.bytes_received()); EXPECT_EQ(1024u * 1024u, endpoint_b.bytes_received()); EXPECT_FALSE(endpoint_a.wrong_data_received()); EXPECT_FALSE(endpoint_b.wrong_data_received()); } TEST_F(QuicEndpointTest, Competition) { auto endpoint_a = std::make_unique<QuicEndpoint>( &simulator_, "Endpoint A", "Endpoint D (A)", Perspective::IS_CLIENT, test::TestConnectionId(42)); auto endpoint_b = std::make_unique<QuicEndpoint>( &simulator_, "Endpoint B", "Endpoint D (B)", Perspective::IS_CLIENT, test::TestConnectionId(43)); auto endpoint_c = std::make_unique<QuicEndpoint>( &simulator_, "Endpoint C", "Endpoint D (C)", Perspective::IS_CLIENT, test::TestConnectionId(44)); auto endpoint_d_a = std::make_unique<QuicEndpoint>( &simulator_, "Endpoint D (A)", "Endpoint A", Perspective::IS_SERVER, test::TestConnectionId(42)); auto endpoint_d_b = std::make_unique<QuicEndpoint>( &simulator_, "Endpoint D (B)", "Endpoint B", Perspective::IS_SERVER, test::TestConnectionId(43)); auto endpoint_d_c = std::make_unique<QuicEndpoint>( &simulator_, "Endpoint D (C)", "Endpoint C", Perspective::IS_SERVER, test::TestConnectionId(44)); QuicEndpointMultiplexer endpoint_d( "Endpoint D", {endpoint_d_a.get(), endpoint_d_b.get(), endpoint_d_c.get()}); auto link_a = CustomLink(endpoint_a.get(), switch_.port(1), 0); auto link_b = CustomLink(endpoint_b.get(), switch_.port(2), 1); auto link_c = CustomLink(endpoint_c.get(), switch_.port(3), 2); auto link_d = Link(&endpoint_d, switch_.port(4)); endpoint_a->AddBytesToTransfer(2 * 1024 * 1024); endpoint_b->AddBytesToTransfer(2 * 1024 * 1024); endpoint_c->AddBytesToTransfer(2 * 1024 * 1024); QuicTime end_time = simulator_.GetClock()->Now() + QuicTime::Delta::FromSeconds(12); simulator_.RunUntil( [this, end_time]() { return simulator_.GetClock()->Now() >= end_time; }); for (QuicEndpoint* endpoint : {endpoint_a.get(), endpoint_b.get(), endpoint_c.get()}) { EXPECT_EQ(2u * 1024u * 1024u, endpoint->bytes_transferred()); EXPECT_GE(endpoint->connection()->GetStats().packets_lost, 0u); } for (QuicEndpoint* endpoint : {endpoint_d_a.get(), endpoint_d_b.get(), endpoint_d_c.get()}) { EXPECT_EQ(2u * 1024u * 1024u, endpoint->bytes_received()); EXPECT_FALSE(endpoint->wrong_data_received()); } } } }
387
#ifndef TENSORFLOW_CORE_GRAPPLER_UTILS_TRANSITIVE_FANIN_H_ #define TENSORFLOW_CORE_GRAPPLER_UTILS_TRANSITIVE_FANIN_H_ #include <unordered_map> #include <vector> #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/lib/core/status.h" namespace tensorflow { namespace grappler { Status ComputeTransitiveFanin( const GraphDef& graph, const std::vector<string>& terminal_nodes, std::unordered_map<string, const NodeDef*>* name_to_fanin_node, std::vector<const NodeDef*>* fanin_nodes); Status ComputeTransitiveFanin(const GraphDef& graph, const std::vector<string>& terminal_nodes, std::vector<const NodeDef*>* fanin_nodes); Status SetTransitiveFaninGraph(const GraphDef& input_graph, GraphDef* output_graph, const std::vector<string>& terminal_nodes); } } #endif #include "tensorflow/core/grappler/utils/transitive_fanin.h" #include <queue> #include <vector> #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/platform/errors.h" namespace tensorflow { namespace grappler { Status ComputeTransitiveFanin( const GraphDef& graph, const std::vector<string>& terminal_nodes, std::unordered_map<string, const NodeDef*>* name_to_fanin_node, std::vector<const NodeDef*>* fanin_nodes) { std::unordered_map<string, const NodeDef*> name_to_node; std::unordered_map<string, const NodeDef*> name_to_send; for (const auto& node : graph.node()) { name_to_node[node.name()] = &node; if (node.op() == "_Send") { const auto& attr = node.attr(); name_to_send[attr.at("tensor_name").s()] = &node; } } std::vector<const NodeDef*> queue; for (const string& root : terminal_nodes) { const NodeDef* node = name_to_node[NodeName(root)]; if (!node) { return errors::InvalidArgument("Graph does not contain terminal node ", root, "."); } queue.push_back(node); } std::unordered_set<const NodeDef*> visited; while (!queue.empty()) { const NodeDef* node = queue.back(); queue.pop_back(); if (!visited.insert(node).second) { continue; } fanin_nodes->push_back(node); if (name_to_fanin_node) { name_to_fanin_node->insert( std::pair<string, const NodeDef*>(node->name(), node)); } for (const string& input : node->input()) { const NodeDef* in = name_to_node[NodeName(input)]; if (!in) { return errors::InvalidArgument("Graph does not contain input ", NodeName(input), " of node ", node->name(), "."); } queue.push_back(in); } if (node->op() == "_Recv") { const auto& attr = node->attr(); const NodeDef* send = name_to_send[attr.at("tensor_name").s()]; if (send) { queue.push_back(send); } } } return absl::OkStatus(); } Status ComputeTransitiveFanin(const GraphDef& graph, const std::vector<string>& terminal_nodes, std::vector<const NodeDef*>* fanin_nodes) { return ComputeTransitiveFanin(graph, terminal_nodes, nullptr, fanin_nodes); } Status SetTransitiveFaninGraph(const GraphDef& input_graph, GraphDef* output_graph, const std::vector<string>& terminal_nodes) { std::vector<const NodeDef*> keep; TF_RETURN_IF_ERROR( ComputeTransitiveFanin(input_graph, terminal_nodes, &keep)); output_graph->mutable_node()->Reserve(keep.size()); for (int i = keep.size() - 1; i >= 0; --i) { *output_graph->add_node() = *keep[i]; } return absl::OkStatus(); } } }
#include "tensorflow/core/grappler/utils/transitive_fanin.h" #include <vector> #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { class TransitiveFaninTest : public ::testing::Test { protected: struct NodeConfig { NodeConfig(string name, std::vector<string> inputs) : name(std::move(name)), inputs(std::move(inputs)) {} NodeConfig(string name, string op, std::vector<string> inputs) : name(std::move(name)), op(std::move(op)), inputs(std::move(inputs)) {} string name; string op; std::vector<string> inputs; }; static GraphDef CreateGraph(const std::vector<NodeConfig>& nodes) { GraphDef graph; for (const NodeConfig& node : nodes) { NodeDef node_def; node_def.set_name(node.name); node_def.set_op(node.op); for (const string& input : node.inputs) { node_def.add_input(input); } *graph.add_node() = std::move(node_def); } return graph; } }; TEST_F(TransitiveFaninTest, NoPruning) { GraphDef graph = CreateGraph({ {"1", {"2"}}, {"2", {"3"}}, {"3", {"4"}}, {"4", {}} }); GraphDef output_graph; const std::vector<string> terminal_nodes = {"1"}; TF_EXPECT_OK(SetTransitiveFaninGraph(graph, &output_graph, terminal_nodes)); NodeMap node_map(&output_graph); ASSERT_TRUE(node_map.NodeExists("1")); ASSERT_TRUE(node_map.NodeExists("2")); ASSERT_TRUE(node_map.NodeExists("3")); ASSERT_TRUE(node_map.NodeExists("4")); } TEST_F(TransitiveFaninTest, PruneNodesUnreachableFromSingleTerminalNode) { GraphDef graph = CreateGraph({ {"1", {"2"}}, {"2", {"3"}}, {"3", {"4"}}, {"4", {}}, {"5", {"1"}} }); GraphDef output_graph; const std::vector<string> terminal_nodes = {"1"}; TF_EXPECT_OK(SetTransitiveFaninGraph(graph, &output_graph, terminal_nodes)); NodeMap node_map(&output_graph); ASSERT_TRUE(node_map.NodeExists("1")); ASSERT_TRUE(node_map.NodeExists("2")); ASSERT_TRUE(node_map.NodeExists("3")); ASSERT_TRUE(node_map.NodeExists("4")); ASSERT_FALSE(node_map.NodeExists("5")); } TEST_F(TransitiveFaninTest, PruneNodesUnreachableFromMultipleTerminalNodes) { GraphDef graph = CreateGraph({ {"1", {"2"}}, {"2", {"3"}}, {"3", {"4"}}, {"4", {}}, {"5", {"2"}}, {"6", {"1"}} }); GraphDef output_graph; const std::vector<string> terminal_nodes = {"1", "5"}; TF_EXPECT_OK(SetTransitiveFaninGraph(graph, &output_graph, terminal_nodes)); NodeMap node_map(&output_graph); ASSERT_TRUE(node_map.NodeExists("1")); ASSERT_TRUE(node_map.NodeExists("2")); ASSERT_TRUE(node_map.NodeExists("3")); ASSERT_TRUE(node_map.NodeExists("4")); ASSERT_TRUE(node_map.NodeExists("5")); ASSERT_FALSE(node_map.NodeExists("6")); } TEST_F(TransitiveFaninTest, InvalidGraphOrTerminalNodes) { GraphDef graph = CreateGraph({ {"1", {"2"}}, {"2", {"3"}}, {"3", {"4"}}, {"4", {}}, {"5", {"6"}}, {"7", {"8"}} }); GraphDef output_graph; const std::vector<string> terminal_nodes = {"1", "5"}; auto s = SetTransitiveFaninGraph(graph, &output_graph, terminal_nodes); EXPECT_FALSE(s.ok()); EXPECT_EQ(s.message(), "Graph does not contain input 6 of node 5."); const std::vector<string> invalid_terminal_nodes = {"0", "1", "5"}; s = SetTransitiveFaninGraph(graph, &output_graph, invalid_terminal_nodes); EXPECT_FALSE(s.ok()); EXPECT_EQ(s.message(), "Graph does not contain terminal node 0."); } } } }
388
#ifndef TENSORFLOW_CORE_KERNELS_DATA_EXPERIMENTAL_DIRECTED_INTERLEAVE_DATASET_OP_H_ #define TENSORFLOW_CORE_KERNELS_DATA_EXPERIMENTAL_DIRECTED_INTERLEAVE_DATASET_OP_H_ #include "tensorflow/core/framework/dataset.h" namespace tensorflow { namespace data { namespace experimental { class DirectedInterleaveDatasetOp : public DatasetOpKernel { public: static constexpr const char* const kDatasetType = "DirectedInterleave"; static constexpr const char* const kSelectorInputDataset = "selector_input_dataset"; static constexpr const char* const kDataInputDatasets = "data_input_datasets"; static constexpr const char* const kOutputTypes = "output_types"; static constexpr const char* const kOutputShapes = "output_shapes"; static constexpr const char* const kNumInputDatasets = "N"; static constexpr const char* const kStopOnEmptyDataset = "stop_on_empty_dataset"; explicit DirectedInterleaveDatasetOp(OpKernelConstruction* ctx); protected: void MakeDataset(OpKernelContext* ctx, DatasetBase** output) override; private: class Dataset; bool stop_on_empty_dataset_ = false; }; } } } #endif #include "tensorflow/core/kernels/data/experimental/directed_interleave_dataset_op.h" #include <string> #include <utility> #include "tensorflow/core/data/name_utils.h" #include "tensorflow/core/data/split_utils.h" #include "tensorflow/core/framework/partial_tensor_shape.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/lib/hash/hash.h" #include "tensorflow/core/platform/errors.h" namespace tensorflow { namespace data { namespace experimental { constexpr const char* const DirectedInterleaveDatasetOp::kDatasetType; constexpr const char* const DirectedInterleaveDatasetOp::kSelectorInputDataset; constexpr const char* const DirectedInterleaveDatasetOp::kDataInputDatasets; constexpr const char* const DirectedInterleaveDatasetOp::kStopOnEmptyDataset; constexpr const char* const DirectedInterleaveDatasetOp::kOutputTypes; constexpr const char* const DirectedInterleaveDatasetOp::kOutputShapes; constexpr const char* const DirectedInterleaveDatasetOp::kNumInputDatasets; constexpr char kCycleLength[] = "cycle_length"; constexpr char kDataInputImplEmpty[] = "data_input_impl_empty"; constexpr char kSelectorInputImplEmpty[] = "selector_input_impl_empty"; class DirectedInterleaveDatasetOp::Dataset : public DatasetBase { public: Dataset(OpKernelContext* ctx, const DatasetBase* selector_input, std::vector<DatasetBase*> data_inputs, bool stop_on_empty_dataset) : DatasetBase(DatasetContext(ctx)), selector_input_(selector_input), data_inputs_(std::move(data_inputs)), stop_on_empty_dataset_(stop_on_empty_dataset) { selector_input_->Ref(); output_shapes_ = data_inputs_[0]->output_shapes(); data_inputs_[0]->Ref(); for (size_t i = 1; i < data_inputs_.size(); ++i) { const DatasetBase* data_input = data_inputs_[i]; data_input->Ref(); for (size_t j = 0; j < output_shapes_.size(); ++j) { output_shapes_[j] = MostSpecificCompatibleShape( output_shapes_[j], data_input->output_shapes()[j]); } } } ~Dataset() override { selector_input_->Unref(); for (DatasetBase* data_input : data_inputs_) { data_input->Unref(); } } std::unique_ptr<IteratorBase> MakeIteratorInternal( const string& prefix) const override { return std::make_unique<Iterator>(Iterator::Params{ this, name_utils::IteratorPrefix(kDatasetType, prefix)}); } Status MakeSplitProviders(std::vector<std::unique_ptr<SplitProvider>>* split_providers) const override { TF_ASSIGN_OR_RETURN(*split_providers, GetSplitProviders(this)); return absl::OkStatus(); } const DataTypeVector& output_dtypes() const override { return data_inputs_[0]->output_dtypes(); } const std::vector<PartialTensorShape>& output_shapes() const override { return output_shapes_; } string DebugString() const override { return name_utils::DatasetDebugString(kDatasetType); } int64_t CardinalityInternal(CardinalityOptions options) const override { for (const auto& input : data_inputs_) { int64_t n = input->Cardinality(options); if (n == kInfiniteCardinality) { return n; } } return kUnknownCardinality; } Status InputDatasets(std::vector<const DatasetBase*>* inputs) const override { inputs->push_back(selector_input_); for (const auto& data_input : data_inputs_) { inputs->push_back(data_input); } return absl::OkStatus(); } Status CheckExternalState() const override { for (const auto& input : data_inputs_) { TF_RETURN_IF_ERROR(input->CheckExternalState()); } return selector_input_->CheckExternalState(); } protected: Status AsGraphDefInternal(SerializationContext* ctx, DatasetGraphDefBuilder* b, Node** output) const override { Node* selector_input_node; TF_RETURN_IF_ERROR( b->AddInputDataset(ctx, selector_input_, &selector_input_node)); std::vector<Node*> data_input_nodes(data_inputs_.size()); for (size_t i = 0; i < data_inputs_.size(); ++i) { TF_RETURN_IF_ERROR( b->AddInputDataset(ctx, data_inputs_[i], &data_input_nodes[i])); } AttrValue stop_on_empty_dataset_attr; b->BuildAttrValue(stop_on_empty_dataset_, &stop_on_empty_dataset_attr); TF_RETURN_IF_ERROR(b->AddDataset( this, {{0, selector_input_node}}, {{1, data_input_nodes}}, {std::make_pair(kStopOnEmptyDataset, stop_on_empty_dataset_attr)}, output)); return absl::OkStatus(); } private: class Iterator : public DatasetIterator<Dataset> { public: explicit Iterator(const Params& params) : DatasetIterator<Dataset>(params), num_active_inputs_(params.dataset->data_inputs_.size()) {} bool SymbolicCheckpointCompatible() const override { return true; } Status Initialize(IteratorContext* ctx) override { mutex_lock l(mu_); TF_ASSIGN_OR_RETURN(input_contexts_, CreateInputIteratorContexts(ctx, dataset())); TF_RETURN_IF_ERROR(dataset()->selector_input_->MakeIterator( &input_contexts_[0], this, prefix(), &selector_input_impl_)); ctx->MergeCheckpoint(input_contexts_[0].checkpoint()); data_input_impls_.resize(dataset()->data_inputs_.size()); for (size_t i = 0; i < data_input_impls_.size(); ++i) { const DatasetBase* data_input = dataset()->data_inputs_[i]; TF_RETURN_IF_ERROR(data_input->MakeIterator( &input_contexts_[i + 1], this, strings::StrCat(prefix(), "[", i, "]"), &data_input_impls_[i])); ctx->MergeCheckpoint(input_contexts_[i + 1].checkpoint()); } return absl::OkStatus(); } Status GetNextInternal(IteratorContext* ctx, std::vector<Tensor>* out_tensors, bool* end_of_sequence) override { mutex_lock l(mu_); if (!selector_input_impl_) { *end_of_sequence = true; return absl::OkStatus(); } while (true) { std::vector<Tensor> selector_result; *end_of_sequence = false; TF_RETURN_IF_ERROR(selector_input_impl_->GetNext( &input_contexts_[0], &selector_result, end_of_sequence)); ctx->MergeCheckpoint(input_contexts_[0].checkpoint()); if (*end_of_sequence) { ResetInputs(); return absl::OkStatus(); } int64_t selected_input = selector_result[0].scalar<int64_t>()(); if (selected_input < 0 || selected_input >= data_input_impls_.size()) { return errors::InvalidArgument( "Selector index out of range: ", selected_input, " >= ", data_input_impls_.size()); } if (data_input_impls_[selected_input]) { bool end_of_selected_input = false; TF_RETURN_IF_ERROR(data_input_impls_[selected_input]->GetNext( &input_contexts_[selected_input + 1], out_tensors, &end_of_selected_input)); ctx->MergeCheckpoint( input_contexts_[selected_input + 1].checkpoint()); if (!end_of_selected_input) { return absl::OkStatus(); } ctx->PurgeCheckpoint(data_input_impls_[selected_input]->prefix()); if (dataset()->stop_on_empty_dataset_) { *end_of_sequence = true; ResetInputs(); return absl::OkStatus(); } data_input_impls_[selected_input].reset(); --num_active_inputs_; if (num_active_inputs_ == 0) { selector_input_impl_.reset(); *end_of_sequence = true; return absl::OkStatus(); } } VLOG(2) << "DirectedInterleave selected an exhausted input: " << selected_input; } } protected: std::shared_ptr<model::Node> CreateNode( IteratorContext* ctx, model::Node::Args args) const override { return model::MakeInterleaveManyNode( std::move(args), {model::MakeNonTunableParameter(kCycleLength, 1)}); } Status SaveInternal(SerializationContext* ctx, IteratorStateWriter* writer) override { mutex_lock l(mu_); TF_RETURN_IF_ERROR( writer->WriteScalar(full_name(kSelectorInputImplEmpty), static_cast<int64_t>(!selector_input_impl_))); if (selector_input_impl_) { TF_RETURN_IF_ERROR(SaveInput(ctx, writer, selector_input_impl_)); } for (size_t i = 0; i < data_input_impls_.size(); ++i) { const auto& data_input_impl = data_input_impls_[i]; TF_RETURN_IF_ERROR(writer->WriteScalar( full_name(strings::StrCat(kDataInputImplEmpty, "[", i, "]")), static_cast<int64_t>(!data_input_impl))); if (data_input_impl) { TF_RETURN_IF_ERROR(SaveInput(ctx, writer, data_input_impl)); } } return absl::OkStatus(); } Status RestoreInternal(IteratorContext* ctx, IteratorStateReader* reader) override { mutex_lock l(mu_); int64_t input_empty; TF_RETURN_IF_ERROR( reader->ReadScalar(full_name(kSelectorInputImplEmpty), &input_empty)); if (!static_cast<bool>(input_empty)) { TF_RETURN_IF_ERROR(RestoreInput(ctx, reader, selector_input_impl_)); } else { selector_input_impl_.reset(); } for (size_t i = 0; i < data_input_impls_.size(); ++i) { TF_RETURN_IF_ERROR(reader->ReadScalar( full_name(strings::StrCat(kDataInputImplEmpty, "[", i, "]")), &input_empty)); if (!static_cast<bool>(input_empty)) { TF_RETURN_IF_ERROR(RestoreInput(ctx, reader, data_input_impls_[i])); } else { data_input_impls_[i].reset(); } } return absl::OkStatus(); } private: void ResetInputs() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { selector_input_impl_.reset(); for (auto& data_input_impl : data_input_impls_) { data_input_impl.reset(); } num_active_inputs_ = 0; } mutex mu_; std::vector<IteratorContext> input_contexts_; std::unique_ptr<IteratorBase> selector_input_impl_ TF_GUARDED_BY(mu_); std::vector<std::unique_ptr<IteratorBase>> data_input_impls_ TF_GUARDED_BY(mu_); int64_t num_active_inputs_ TF_GUARDED_BY(mu_); }; static PartialTensorShape MostSpecificCompatibleShape( const PartialTensorShape& ts1, const PartialTensorShape& ts2) { PartialTensorShape output_tensorshape; if (ts1.dims() != ts2.dims() || ts1.unknown_rank() || ts2.unknown_rank()) return output_tensorshape; auto dims1 = ts1.dim_sizes(); auto dims2 = ts2.dim_sizes(); for (int d = 0; d < ts1.dims(); ++d) { if (dims1[d] == dims2[d]) output_tensorshape.Concatenate(dims1[d]); else output_tensorshape.Concatenate(-1); } return output_tensorshape; } const DatasetBase* const selector_input_; const std::vector<DatasetBase*> data_inputs_; std::vector<PartialTensorShape> output_shapes_; const bool stop_on_empty_dataset_; }; DirectedInterleaveDatasetOp::DirectedInterleaveDatasetOp( OpKernelConstruction* ctx) : DatasetOpKernel(ctx) { if (ctx->HasAttr(kStopOnEmptyDataset)) { OP_REQUIRES_OK(ctx, ctx->GetAttr(kStopOnEmptyDataset, &stop_on_empty_dataset_)); } } void DirectedInterleaveDatasetOp::MakeDataset(OpKernelContext* ctx, DatasetBase** output) { DatasetBase* selector_input; OP_REQUIRES_OK(ctx, GetDatasetFromVariantTensor(ctx->input(0), &selector_input)); OP_REQUIRES( ctx, selector_input->output_dtypes().size() == 1 && selector_input->output_dtypes()[0] == DT_INT64 && selector_input->output_shapes().size() == 1 && selector_input->output_shapes()[0].IsCompatibleWith( PartialTensorShape({})), errors::InvalidArgument( "The selector input must be a dataset of scalar int64 elements.")); std::vector<DatasetBase*> data_inputs; for (size_t i = 1; i < ctx->num_inputs(); ++i) { DatasetBase* input; OP_REQUIRES_OK(ctx, GetDatasetFromVariantTensor(ctx->input(i), &input)); data_inputs.push_back(input); OP_REQUIRES(ctx, data_inputs[0]->output_dtypes() == input->output_dtypes(), errors::InvalidArgument( "All inputs must have the same output_dtypes. First input " "has types ", DataTypeVectorString(data_inputs[0]->output_dtypes()), ", and input ", i - 1, " has types ", DataTypeVectorString(input->output_dtypes()))); } *output = new Dataset(ctx, selector_input, std::move(data_inputs), stop_on_empty_dataset_); } namespace { REGISTER_KERNEL_BUILDER(Name("DirectedInterleaveDataset").Device(DEVICE_CPU), DirectedInterleaveDatasetOp); REGISTER_KERNEL_BUILDER( Name("ExperimentalDirectedInterleaveDataset").Device(DEVICE_CPU), DirectedInterleaveDatasetOp); } } } }
#include "tensorflow/core/kernels/data/experimental/directed_interleave_dataset_op.h" #include "tensorflow/core/data/dataset_test_base.h" namespace tensorflow { namespace data { namespace experimental { namespace { constexpr char kNodeName[] = "directed_interleave_dataset"; class DirectedInterleaveDatasetParams : public DatasetParams { public: template <typename S, typename T> DirectedInterleaveDatasetParams(S selector_input_dataset_params, std::vector<T> input_dataset_params_vec, bool stop_on_empty_dataset, DataTypeVector output_dtypes, std::vector<PartialTensorShape> output_shapes, int num_input_datasets, string node_name) : DatasetParams(std::move(output_dtypes), std::move(output_shapes), std::move(node_name)), stop_on_empty_dataset_(stop_on_empty_dataset), num_input_datasets_(input_dataset_params_vec.size()) { input_dataset_params_.push_back( std::make_unique<S>(selector_input_dataset_params)); for (auto input_dataset_params : input_dataset_params_vec) { input_dataset_params_.push_back( std::make_unique<T>(input_dataset_params)); } if (!input_dataset_params_vec.empty()) { iterator_prefix_ = name_utils::IteratorPrefix( input_dataset_params_vec[0].dataset_type(), input_dataset_params_vec[0].iterator_prefix()); } } std::vector<Tensor> GetInputTensors() const override { return {}; } Status GetInputNames(std::vector<string>* input_names) const override { input_names->clear(); input_names->emplace_back( DirectedInterleaveDatasetOp::kSelectorInputDataset); for (int i = 0; i < num_input_datasets_; ++i) { input_names->emplace_back(absl::StrCat( DirectedInterleaveDatasetOp::kDataInputDatasets, "_", i)); } return absl::OkStatus(); } Status GetAttributes(AttributeVector* attr_vector) const override { attr_vector->clear(); attr_vector->emplace_back(DirectedInterleaveDatasetOp::kOutputTypes, output_dtypes_); attr_vector->emplace_back(DirectedInterleaveDatasetOp::kOutputShapes, output_shapes_); attr_vector->emplace_back(DirectedInterleaveDatasetOp::kNumInputDatasets, num_input_datasets_); attr_vector->emplace_back(DirectedInterleaveDatasetOp::kStopOnEmptyDataset, stop_on_empty_dataset_); return absl::OkStatus(); } string dataset_type() const override { return DirectedInterleaveDatasetOp::kDatasetType; } private: bool stop_on_empty_dataset_; int32 num_input_datasets_; }; class DirectedInterleaveDatasetOpTest : public DatasetOpsTestBase {}; DirectedInterleaveDatasetParams AlternateInputsParams() { auto selector_input_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{6}, {0, 1, 0, 1, 0, 1})}, "tensor_slice"); return DirectedInterleaveDatasetParams( selector_input_dataset_params, std::vector<RangeDatasetParams>{RangeDatasetParams(0, 3, 1), RangeDatasetParams(10, 13, 1)}, false, {DT_INT64, DT_INT64}, {PartialTensorShape({}), PartialTensorShape({})}, 2, kNodeName); } DirectedInterleaveDatasetParams SelectExhaustedInputParams() { auto selector_input_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{6}, {0, 1, 0, 1, 0, 1})}, "tensor_slice"); return DirectedInterleaveDatasetParams( selector_input_dataset_params, std::vector<RangeDatasetParams>{RangeDatasetParams(0, 2, 1), RangeDatasetParams(10, 13, 1)}, false, {DT_INT64, DT_INT64}, {PartialTensorShape({}), PartialTensorShape({})}, 2, kNodeName); } DirectedInterleaveDatasetParams OneInputDatasetParams() { auto selector_input_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{6}, {0, 0, 0, 0, 0, 0})}, "tensor_slice"); return DirectedInterleaveDatasetParams( selector_input_dataset_params, std::vector<RangeDatasetParams>{RangeDatasetParams(0, 6, 1)}, false, {DT_INT64}, {PartialTensorShape({})}, 1, kNodeName); } DirectedInterleaveDatasetParams ZeroInputDatasetParams() { auto selector_input_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{6}, {0, 0, 0, 0, 0, 0})}, "tensor_slice"); return DirectedInterleaveDatasetParams( selector_input_dataset_params, std::vector<RangeDatasetParams>{}, false, {DT_INT64}, {PartialTensorShape({})}, 0, kNodeName); } DirectedInterleaveDatasetParams StopOnEmptyDatasetParams() { auto selector_input_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{6}, {0, 0, 0, 0, 0, 1})}, "tensor_slice"); return DirectedInterleaveDatasetParams( selector_input_dataset_params, std::vector<RangeDatasetParams>{RangeDatasetParams(0, 3, 1), RangeDatasetParams(10, 50, 1)}, true, {DT_INT64, DT_INT64}, {PartialTensorShape({}), PartialTensorShape({})}, 2, kNodeName); } DirectedInterleaveDatasetParams SkipEmptyDatasetParams() { auto selector_input_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{6}, {0, 0, 0, 0, 0, 1})}, "tensor_slice"); return DirectedInterleaveDatasetParams( selector_input_dataset_params, std::vector<RangeDatasetParams>{RangeDatasetParams(0, 3, 1), RangeDatasetParams(10, 50, 1)}, false, {DT_INT64, DT_INT64}, {PartialTensorShape({}), PartialTensorShape({})}, 2, kNodeName); } DirectedInterleaveDatasetParams EmptyInputDatasetParams() { auto selector_input_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{6}, {0, 0, 0, 0, 0, 0})}, "tensor_slice"); return DirectedInterleaveDatasetParams( selector_input_dataset_params, std::vector<RangeDatasetParams>{RangeDatasetParams(0, 0, 1), RangeDatasetParams(10, 50, 1)}, true, {DT_INT64}, {PartialTensorShape({})}, 0, kNodeName); } DirectedInterleaveDatasetParams LargeNumInputDatasetsParams() { auto selector_input_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{6}, {0, 1, 0, 1, 0, 1})}, "tensor_slice"); return DirectedInterleaveDatasetParams( selector_input_dataset_params, std::vector<RangeDatasetParams>{RangeDatasetParams(0, 3, 1), RangeDatasetParams(10, 13, 1)}, false, {DT_INT64, DT_INT64}, {PartialTensorShape({}), PartialTensorShape({})}, 5, kNodeName); } DirectedInterleaveDatasetParams SmallNumInputDatasetsParams() { auto selector_input_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{6}, {0, 1, 0, 1, 0, 1})}, "tensor_slice"); return DirectedInterleaveDatasetParams( selector_input_dataset_params, std::vector<RangeDatasetParams>{RangeDatasetParams(0, 3, 1), RangeDatasetParams(10, 13, 1)}, false, {DT_INT64, DT_INT64}, {PartialTensorShape({}), PartialTensorShape({})}, 1, kNodeName); } DirectedInterleaveDatasetParams InvalidSelectorOuputDataType() { auto selector_input_dataset_params = TensorSliceDatasetParams( {CreateTensor<int32>(TensorShape{6}, {0, 1, 0, 1, 0, 1})}, "tensor_slice"); return DirectedInterleaveDatasetParams( selector_input_dataset_params, std::vector<RangeDatasetParams>{RangeDatasetParams(0, 3, 1), RangeDatasetParams(10, 13, 1)}, false, {DT_INT64, DT_INT64}, {PartialTensorShape({}), PartialTensorShape({})}, 2, kNodeName); } DirectedInterleaveDatasetParams InvalidSelectorOuputShape() { auto selector_input_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{6, 1}, {0, 1, 0, 1, 0, 1})}, "tensor_slice"); return DirectedInterleaveDatasetParams( selector_input_dataset_params, std::vector<RangeDatasetParams>{RangeDatasetParams(0, 3, 1), RangeDatasetParams(10, 13, 1)}, false, {DT_INT64, DT_INT64}, {PartialTensorShape({}), PartialTensorShape({})}, 2, kNodeName); } DirectedInterleaveDatasetParams InvalidSelectorValues() { auto selector_input_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{6}, {2, 1, 0, 1, 0, 1})}, "tensor_slice"); return DirectedInterleaveDatasetParams( selector_input_dataset_params, std::vector<RangeDatasetParams>{RangeDatasetParams(0, 3, 1), RangeDatasetParams(10, 13, 1)}, false, {DT_INT64, DT_INT64}, {PartialTensorShape({}), PartialTensorShape({})}, 2, kNodeName); } DirectedInterleaveDatasetParams InvalidInputDatasetsDataType() { auto selector_input_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{6}, {0, 1, 0, 1, 0, 1})}, "tensor_slice"); return DirectedInterleaveDatasetParams( selector_input_dataset_params, std::vector<RangeDatasetParams>{ RangeDatasetParams(0, 3, 1, {DT_INT32}), RangeDatasetParams(10, 13, 1, {DT_INT64})}, false, {DT_INT64, DT_INT64}, {PartialTensorShape({}), PartialTensorShape({})}, 2, kNodeName); } std::vector<GetNextTestCase<DirectedInterleaveDatasetParams>> GetNextTestCases() { return {{AlternateInputsParams(), {CreateTensors<int64_t>( TensorShape({}), {{0}, {10}, {1}, {11}, {2}, {12}})}}, {SelectExhaustedInputParams(), {CreateTensors<int64_t>( TensorShape({}), {{0}, {10}, {1}, {11}, {12}})}}, {OneInputDatasetParams(), {CreateTensors<int64_t>( TensorShape({}), {{0}, {1}, {2}, {3}, {4}, {5}})}}, {StopOnEmptyDatasetParams(), {CreateTensors<int64_t>(TensorShape({}), {{0}, {1}, {2}})}}, {SkipEmptyDatasetParams(), {CreateTensors<int64_t>( TensorShape({}), {{0}, {1}, {2}, {10}})}}, {EmptyInputDatasetParams(), {CreateTensors<int64_t>(TensorShape({}), {})}}, {LargeNumInputDatasetsParams(), {CreateTensors<int64_t>( TensorShape({}), {{0}, {10}, {1}, {11}, {2}, {12}})}}, {SmallNumInputDatasetsParams(), {CreateTensors<int64_t>( TensorShape({}), {{0}, {10}, {1}, {11}, {2}, {12}})}}}; } ITERATOR_GET_NEXT_TEST_P(DirectedInterleaveDatasetOpTest, DirectedInterleaveDatasetParams, GetNextTestCases()) TEST_F(DirectedInterleaveDatasetOpTest, DatasetNodeName) { auto dataset_params = AlternateInputsParams(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetNodeName(dataset_params.node_name())); } TEST_F(DirectedInterleaveDatasetOpTest, DatasetTypeString) { auto dataset_params = AlternateInputsParams(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetTypeString( name_utils::OpName(DirectedInterleaveDatasetOp::kDatasetType))); } TEST_F(DirectedInterleaveDatasetOpTest, DatasetOutputDtypes) { auto dataset_params = AlternateInputsParams(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetOutputDtypes({DT_INT64})); } TEST_F(DirectedInterleaveDatasetOpTest, DatasetOutputShapes) { auto dataset_params = AlternateInputsParams(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetOutputShapes({PartialTensorShape({})})); } TEST_F(DirectedInterleaveDatasetOpTest, Cardinality) { auto dataset_params = AlternateInputsParams(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetCardinality(kUnknownCardinality)); } TEST_F(DirectedInterleaveDatasetOpTest, IteratorOutputDtypes) { auto dataset_params = AlternateInputsParams(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckIteratorOutputDtypes({DT_INT64})); } TEST_F(DirectedInterleaveDatasetOpTest, IteratorOutputShapes) { auto dataset_params = AlternateInputsParams(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckIteratorOutputShapes({PartialTensorShape({})})); } TEST_F(DirectedInterleaveDatasetOpTest, IteratorPrefix) { auto dataset_params = AlternateInputsParams(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckIteratorPrefix( name_utils::IteratorPrefix(DirectedInterleaveDatasetOp::kDatasetType, dataset_params.iterator_prefix()))); } std::vector<IteratorSaveAndRestoreTestCase<DirectedInterleaveDatasetParams>> IteratorSaveAndRestoreTestCases() { return { {AlternateInputsParams(), {0, 5, 8}, CreateTensors<int64_t>(TensorShape{}, {{0}, {10}, {1}, {11}, {2}, {12}}), true}, {SelectExhaustedInputParams(), {0, 4, 8}, CreateTensors<int64_t>(TensorShape{}, {{0}, {10}, {1}, {11}, {12}}), true}, {OneInputDatasetParams(), {0, 5, 8}, {CreateTensors<int64_t>(TensorShape({}), {{0}, {1}, {2}, {3}, {4}, {5}})}}, {StopOnEmptyDatasetParams(), {0, 2, 4}, {CreateTensors<int64_t>(TensorShape({}), {{0}, {1}, {2}})}}, {SkipEmptyDatasetParams(), {0, 2, 4}, {CreateTensors<int64_t>(TensorShape({}), {{0}, {1}, {2}, {10}})}}, {EmptyInputDatasetParams(), {0, 2, 4}, {CreateTensors<int64_t>(TensorShape({}), {})}}, {LargeNumInputDatasetsParams(), {0, 5, 8}, {CreateTensors<int64_t>(TensorShape({}), {{0}, {10}, {1}, {11}, {2}, {12}})}}, {SmallNumInputDatasetsParams(), {0, 5, 8}, {CreateTensors<int64_t>(TensorShape({}), {{0}, {10}, {1}, {11}, {2}, {12}})}}}; } ITERATOR_SAVE_AND_RESTORE_TEST_P(DirectedInterleaveDatasetOpTest, DirectedInterleaveDatasetParams, IteratorSaveAndRestoreTestCases()) TEST_F(DirectedInterleaveDatasetOpTest, InvalidArguments) { std::vector<DirectedInterleaveDatasetParams> invalid_params_vec = { InvalidSelectorOuputDataType(), InvalidSelectorOuputShape(), InvalidInputDatasetsDataType(), ZeroInputDatasetParams()}; for (auto& dataset_params : invalid_params_vec) { EXPECT_EQ(Initialize(dataset_params).code(), absl::StatusCode::kInvalidArgument); } } TEST_F(DirectedInterleaveDatasetOpTest, InvalidSelectorValues) { auto dataset_params = InvalidSelectorValues(); TF_ASSERT_OK(Initialize(dataset_params)); bool end_of_sequence = false; std::vector<Tensor> next; EXPECT_EQ( iterator_->GetNext(iterator_ctx_.get(), &next, &end_of_sequence).code(), absl::StatusCode::kInvalidArgument); } } } } }
389
#ifndef LANGSVR_SESSION_H_ #define LANGSVR_SESSION_H_ #include <functional> #include <future> #include <string> #include <string_view> #include <type_traits> #include <unordered_map> #include <utility> #include "langsvr/json/builder.h" #include "langsvr/json/value.h" #include "langsvr/lsp/lsp.h" #include "langsvr/lsp/message_kind.h" #include "langsvr/one_of.h" #include "langsvr/result.h" namespace langsvr { class Session { struct RequestHandler { std::function<Result<json::Builder::Member>(const json::Value&, json::Builder&)> function; std::function<void()> post_send; }; struct NotificationHandler { std::function<Result<SuccessType>(const json::Value&)> function; }; public: using Sender = std::function<Result<SuccessType>(std::string_view)>; void SetSender(Sender&& sender) { sender_ = std::move(sender); } Result<SuccessType> Receive(std::string_view json); template <typename T> auto Send(T&& message) { using Message = std::decay_t<T>; static constexpr bool kIsRequest = Message::kMessageKind == lsp::MessageKind::kRequest; static constexpr bool kIsNotification = Message::kMessageKind == lsp::MessageKind::kNotification; static_assert(kIsRequest || kIsNotification); if constexpr (kIsRequest) { return SendRequest(std::forward<T>(message)); } else { return SendNotification(std::forward<T>(message)); } } template <typename T> Result<std::future<typename std::decay_t<T>::ResultType>> SendRequest(T&& request) { using Request = std::decay_t<T>; auto b = json::Builder::Create(); auto id = next_request_id_++; std::vector<json::Builder::Member> members{ json::Builder::Member{"id", b->I64(id)}, json::Builder::Member{"method", b->String(Request::kMethod)}, }; if constexpr (Request::kHasParams) { auto params = Encode(request, *b.get()); if (params != Success) { return params.Failure(); } members.push_back(json::Builder::Member{"params", params.Get()}); } using ResponseResultType = typename Request::ResultType; using ResponseSuccessType = typename Request::SuccessType; using ResponseFailureType = typename Request::FailureType; auto promise = std::make_shared<std::promise<ResponseResultType>>(); response_handlers_.emplace( id, [promise](const json::Value& response) -> Result<SuccessType> { if (auto result_json = response.Get(kResponseResult); result_json == Success) { ResponseSuccessType result; if (auto res = lsp::Decode(*result_json.Get(), result); res != Success) { return res.Failure(); } promise->set_value(ResponseResultType{std::move(result)}); return Success; } if constexpr (std::is_same_v<ResponseFailureType, void>) { return Failure{"response missing 'result'"}; } else { ResponseFailureType error; auto error_json = response.Get(kResponseError); if (error_json != Success) { return error_json.Failure(); } if (auto res = lsp::Decode(*error_json.Get(), error); res != Success) { return res.Failure(); } promise->set_value(ResponseResultType{std::move(error)}); } return Success; }); auto send = SendJson(b->Object(members)->Json()); if (send != Success) { return send.Failure(); } return promise->get_future(); } template <typename T> Result<SuccessType> SendNotification(T&& notification) { using Notification = std::decay_t<T>; auto b = json::Builder::Create(); std::vector<json::Builder::Member> members{ json::Builder::Member{"method", b->String(Notification::kMethod)}, }; if constexpr (Notification::kHasParams) { auto params = Encode(notification, *b.get()); if (params != Success) { return params.Failure(); } members.push_back(json::Builder::Member{"params", params.Get()}); } return SendJson(b->Object(members)->Json()); } class RegisteredRequestHandler { public: void OnPostSend(std::function<void()>&& callback) { handler.post_send = std::move(callback); } private: friend class Session; RegisteredRequestHandler(RequestHandler& h) : handler{h} {} RegisteredRequestHandler(const RegisteredRequestHandler&) = delete; RegisteredRequestHandler& operator=(const RegisteredRequestHandler&) = delete; RequestHandler& handler; }; template <typename F> auto Register(F&& callback) { using Sig = SignatureOf<F>; static_assert(Sig::parameter_count == 1); using Message = typename Sig::template parameter<0>; static constexpr bool kIsRequest = Message::kMessageKind == lsp::MessageKind::kRequest; static constexpr bool kIsNotification = Message::kMessageKind == lsp::MessageKind::kNotification; static_assert(kIsRequest || kIsNotification); auto method = std::string(Message::kMethod); if constexpr (kIsRequest) { auto& handler = request_handlers_[method]; handler.function = [f = std::forward<F>(callback)]( const json::Value& object, json::Builder& json_builder) -> Result<json::Builder::Member> { Message request; if constexpr (Message::kHasParams) { auto params = object.Get("params"); if (params != Success) { return params.Failure(); } if (auto res = Decode(*params.Get(), request); res != Success) { return res.Failure(); } } auto res = f(request); using RES_TYPE = std::decay_t<decltype(res)>; using RequestSuccessType = typename Message::SuccessType; using RequestFailureType = typename Message::FailureType; if constexpr (IsResult<RES_TYPE>) { using ResultSuccessType = typename RES_TYPE::ResultSuccess; using ResultFailureType = typename RES_TYPE::ResultFailure; static_assert( std::is_same_v<ResultSuccessType, RequestSuccessType>, "request handler Result<> success return type does not match Request's " "Result type"); static_assert(std::is_same_v<ResultFailureType, RequestFailureType>, "request handler Result<> failure return type does not match " "Request's Failure type"); if (res == Success) { auto enc = Encode(res.Get(), json_builder); if (enc != Success) { return enc.Failure(); } return json::Builder::Member{std::string(kResponseResult), enc.Get()}; } else { auto enc = Encode(res.Failure(), json_builder); if (enc != Success) { return enc.Failure(); } return json::Builder::Member{std::string(kResponseError), enc.Get()}; } } else { static_assert((std::is_same_v<RES_TYPE, RequestSuccessType> || std::is_same_v<RES_TYPE, RequestFailureType>), "request handler return type is not supported"); auto enc = Encode(res, json_builder); if (enc != Success) { return enc.Failure(); } return json::Builder::Member{ std::string(std::is_same_v<RES_TYPE, RequestSuccessType> ? kResponseResult : kResponseError), enc.Get()}; } }; return RegisteredRequestHandler{handler}; } else if constexpr (kIsNotification) { auto& handler = notification_handlers_[method]; handler.function = [f = std::forward<F>(callback)](const json::Value& object) -> Result<SuccessType> { Message notification; if constexpr (Message::kHasParams) { auto params = object.Get("params"); if (params != Success) { return params.Failure(); } if (auto res = Decode(*params.Get(), notification); res != Success) { return res.Failure(); } } return f(notification); }; return; } } private: static constexpr std::string_view kResponseResult = "result"; static constexpr std::string_view kResponseError = "error"; Result<SuccessType> SendJson(std::string_view msg); Sender sender_; std::unordered_map<std::string, RequestHandler> request_handlers_; std::unordered_map<std::string, NotificationHandler> notification_handlers_; std::unordered_map<json::I64, std::function<Result<SuccessType>(const json::Value&)>> response_handlers_; json::I64 next_request_id_ = 1; }; } #endif #include "langsvr/session.h" #include <string> #include "langsvr/json/builder.h" namespace langsvr { Result<SuccessType> Session::Receive(std::string_view json) { auto json_builder = json::Builder::Create(); auto object = json_builder->Parse(json); if (object != Success) { return object.Failure(); } auto method = object.Get()->Get<json::String>("method"); if (method != Success) { auto id = object.Get()->Get<json::I64>("id"); if (id != Success) { return id.Failure(); } auto handler_it = response_handlers_.find(id.Get()); if (handler_it == response_handlers_.end()) { return Failure{"received response for unknown request with ID " + std::to_string(id.Get())}; } auto handler = std::move(handler_it->second); response_handlers_.erase(handler_it); return handler(*object.Get()); } if (object.Get()->Has("id")) { auto id = object.Get()->Get<json::I64>("id"); if (id != Success) { return id.Failure(); } auto it = request_handlers_.find(method.Get()); if (it == request_handlers_.end()) { return Failure{"no handler registered for request method '" + method.Get() + "'"}; } auto& request_handler = it->second; auto result = request_handler.function(*object.Get(), *json_builder.get()); if (result != Success) { return result.Failure(); } std::array response_members{ json::Builder::Member{"id", json_builder->I64(id.Get())}, result.Get(), }; auto* response = json_builder->Object(response_members); if (auto res = SendJson(response->Json()); res != Success) { return res.Failure(); } if (request_handler.post_send) { request_handler.post_send(); } } else { auto it = notification_handlers_.find(method.Get()); if (it == notification_handlers_.end()) { return Failure{"no handler registered for request method '" + method.Get() + "'"}; } auto& notification_handler = it->second; return notification_handler.function(*object.Get()); } return Success; } Result<SuccessType> Session::SendJson(std::string_view msg) { if (!sender_) [[unlikely]] { return Failure{"no sender set"}; } return sender_(msg); } }
#include "langsvr/lsp/lsp.h" #include "langsvr/session.h" #include <gtest/gtest.h> #include "langsvr/json/builder.h" #include "langsvr/lsp/decode.h" #include "gmock/gmock.h" #include "langsvr/result.h" namespace langsvr { namespace { Result<lsp::InitializeRequest> GetInitializeRequest() { static constexpr std::string_view kJSON = R"({"processId":71875,"clientInfo":{"name":"My Awesome Editor","version":"1.2.3"},"locale":"en-gb","rootPath":"/home/bob/src/langsvr","rootUri":"file: auto b = json::Builder::Create(); auto msg = b->Parse(kJSON); if (msg != Success) { return msg.Failure(); } lsp::InitializeRequest request; if (auto res = lsp::Decode(*msg.Get(), request); res != Success) { return res.Failure(); } return request; } TEST(Session, InitializeRequest_ResultOrFailure) { auto request = GetInitializeRequest(); ASSERT_EQ(request, Success); Session server_session; Session client_session; client_session.SetSender([&](std::string_view msg) { return server_session.Receive(msg); }); server_session.SetSender([&](std::string_view msg) { return client_session.Receive(msg); }); bool handler_called = false; server_session.Register([&](const lsp::InitializeRequest& init) -> Result<lsp::InitializeResult, lsp::InitializeError> { handler_called = true; EXPECT_EQ(request, init); lsp::InitializeResult res; res.capabilities.hover_provider = true; return res; }); auto response_future = client_session.Send(request.Get()); ASSERT_EQ(response_future, Success); EXPECT_TRUE(handler_called); auto response = response_future.Get().get(); ASSERT_EQ(response, Success); lsp::InitializeResult expected; expected.capabilities.hover_provider = true; EXPECT_EQ(response.Get(), expected); } TEST(Session, InitializeRequest_ResultOnly) { auto request = GetInitializeRequest(); ASSERT_EQ(request, Success); Session server_session; Session client_session; client_session.SetSender([&](std::string_view msg) { return server_session.Receive(msg); }); server_session.SetSender([&](std::string_view msg) { return client_session.Receive(msg); }); bool handler_called = false; server_session.Register([&](const lsp::InitializeRequest& init) { handler_called = true; EXPECT_EQ(request, init); lsp::InitializeResult res; res.capabilities.hover_provider = true; return res; }); auto response_future = client_session.Send(request.Get()); ASSERT_EQ(response_future, Success); EXPECT_TRUE(handler_called); auto response = response_future.Get().get(); ASSERT_EQ(response, Success); lsp::InitializeResult expected; expected.capabilities.hover_provider = true; EXPECT_EQ(response.Get(), expected); } TEST(Session, InitializeRequest_FailureOnly) { auto request = GetInitializeRequest(); ASSERT_EQ(request, Success); Session server_session; Session client_session; client_session.SetSender([&](std::string_view msg) { return server_session.Receive(msg); }); server_session.SetSender([&](std::string_view msg) { return client_session.Receive(msg); }); bool handler_called = false; server_session.Register([&](const lsp::InitializeRequest& init) { handler_called = true; EXPECT_EQ(request, init); lsp::InitializeError err; err.retry = true; return err; }); auto response_future = client_session.Send(request.Get()); ASSERT_EQ(response_future, Success); EXPECT_TRUE(handler_called); auto response = response_future.Get().get(); ASSERT_NE(response, Success); lsp::InitializeError expected; expected.retry = true; EXPECT_EQ(response.Failure(), expected); } } }
390
#ifndef TENSORFLOW_LITE_EXPERIMENTAL_SHLO_OPS_SIGN_H_ #define TENSORFLOW_LITE_EXPERIMENTAL_SHLO_OPS_SIGN_H_ #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { struct SignOp { struct Attributes {}; }; SignOp Create(SignOp::Attributes); absl::Status Prepare(SignOp& op, const Tensor& input, Tensor& output); absl::Status Evaluate(SignOp& op, const Tensor& input, Tensor& output); } #endif #include <cmath> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace builtin { namespace sign { TfLiteStatus PointwiseUnaryOpPrepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, tflite::NumInputs(node), 1); const TfLiteTensor* input = tflite::GetInput(context, node, 0); TfLiteTensor* output = tflite::GetOutput(context, node, 0); TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type); TfLiteIntArray* output_shape = TfLiteIntArrayCopy(input->dims); return context->ResizeTensor(context, output, output_shape); } template <typename Op, typename T> TfLiteStatus PointwiseUnaryOpDoEval( TfLiteContext* context, const TfLiteTensor* input, TfLiteTensor* output) { const T* data = tflite::GetTensorData<T>(input); T* data_output = tflite::GetTensorData<T>(output); const int64_t num_elements = NumElements(input); for (int64_t i = 0; i < num_elements; ++i) { data_output[i] = Op::template Eval<T>(data[i]); } return TfLiteStatus::kTfLiteOk; } template <typename Op> TfLiteStatus PointwiseUnaryOpEval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input = tflite::GetInput(context, node, 0); TfLiteTensor* output = tflite::GetOutput(context, node, 0); switch (output->type) { case kTfLiteFloat32: TF_LITE_ENSURE_OK( context, (PointwiseUnaryOpDoEval<Op, float>(context, input, output))); break; case kTfLiteFloat64: TF_LITE_ENSURE_OK( context, (PointwiseUnaryOpDoEval<Op, double>(context, input, output))); break; case kTfLiteInt32: TF_LITE_ENSURE_OK(context, (PointwiseUnaryOpDoEval<Op, int32_t>( context, input, output))); break; default: { TF_LITE_KERNEL_LOG(context, "Unsupported datatype for sign output: %s", TfLiteTypeGetName(output->type)); return TfLiteStatus::kTfLiteError; } } return TfLiteStatus::kTfLiteOk; } struct Sign { template <typename T> static T Eval(T x) { if (x > 0) { return 1; } if (x < 0) { return -1; } return 0; } }; } TfLiteRegistration* Register_SIGN() { static TfLiteRegistration r = {nullptr, nullptr, sign::PointwiseUnaryOpPrepare, sign::PointwiseUnaryOpEval<sign::Sign>}; return &r; } } } }
#include <cmath> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { template <typename T> tflite::TensorType GetTTEnum(); template <> tflite::TensorType GetTTEnum<float>() { return tflite::TensorType_FLOAT32; } template <> tflite::TensorType GetTTEnum<double>() { return tflite::TensorType_FLOAT64; } template <> tflite::TensorType GetTTEnum<int32_t>() { return tflite::TensorType_INT32; } class SignModel : public tflite::SingleOpModel { public: SignModel(tflite::TensorData x, tflite::TensorData output) { x_ = AddInput(x); output_ = AddOutput(output); SetBuiltinOp(BuiltinOperator_SIGN, BuiltinOptions_NONE, 0); BuildInterpreter({GetShape(x_)}); } int x_; int output_; template <typename T> std::vector<T> GetOutput(const std::vector<T>& x) { PopulateTensor<T>(x_, x); Invoke(); return ExtractVector<T>(output_); } }; template <typename Float> class SignTestFloat : public ::testing::Test { public: using FloatType = Float; }; using TestTypes = ::testing::Types<float, double>; TYPED_TEST_SUITE(SignTestFloat, TestTypes); TYPED_TEST(SignTestFloat, TestScalarFloat) { using Float = typename TestFixture::FloatType; tflite::TensorData x = {GetTTEnum<Float>(), {}}; tflite::TensorData output = {GetTTEnum<Float>(), {}}; SignModel m(x, output); auto got = m.GetOutput<Float>({0.0}); ASSERT_EQ(got.size(), 1); EXPECT_FLOAT_EQ(got[0], 0.0); ASSERT_FLOAT_EQ(m.GetOutput<Float>({5.0})[0], 1.0); ASSERT_FLOAT_EQ(m.GetOutput<Float>({-3.0})[0], -1.0); } TYPED_TEST(SignTestFloat, TestBatchFloat) { using Float = typename TestFixture::FloatType; tflite::TensorData x = {GetTTEnum<Float>(), {4, 2, 1}}; tflite::TensorData output = {GetTTEnum<Float>(), {4, 2, 1}}; SignModel m(x, output); std::vector<Float> x_data = {0.8, -0.7, 0.6, -0.5, 0.4, -0.3, 0.2, 0.0}; auto got = m.GetOutput<Float>(x_data); EXPECT_EQ(got, std::vector<Float>( {1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, 0.0})); } template <typename Int> class SignTestInt : public ::testing::Test { public: using IntType = Int; }; using TestTypesInt = ::testing::Types<int32_t>; TYPED_TEST_SUITE(SignTestInt, TestTypesInt); TYPED_TEST(SignTestInt, TestScalarInt) { using Int = typename TestFixture::IntType; tflite::TensorData x = {GetTTEnum<Int>(), {}}; tflite::TensorData output = {GetTTEnum<Int>(), {}}; SignModel m(x, output); auto got = m.GetOutput<Int>({0}); ASSERT_EQ(got.size(), 1); EXPECT_EQ(got[0], 0); ASSERT_EQ(m.GetOutput<Int>({5})[0], 1); ASSERT_EQ(m.GetOutput<Int>({-3})[0], -1); } TYPED_TEST(SignTestInt, TestBatchInt) { using Int = typename TestFixture::IntType; tflite::TensorData x = {GetTTEnum<Int>(), {4, 2, 1}}; tflite::TensorData output = {GetTTEnum<Int>(), {4, 2, 1}}; SignModel m(x, output); EXPECT_EQ(m.GetOutput<Int>({0, -7, 6, -5, 4, -3, 2, 1}), std::vector<Int>({0, -1, 1, -1, 1, -1, 1, 1})); } } }
391
#ifndef QUICHE_QUIC_MOQT_MOQT_SUBSCRIPTION_H_ #define QUICHE_QUIC_MOQT_MOQT_SUBSCRIPTION_H_ #include <cstdint> #include <optional> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "quiche/quic/moqt/moqt_messages.h" #include "quiche/quic/moqt/moqt_subscribe_windows.h" #include "quiche/quic/platform/api/quic_bug_tracker.h" #include "quiche/common/quiche_callbacks.h" namespace moqt { class LocalTrack { public: class Visitor { public: virtual ~Visitor() = default; using PublishPastObjectsCallback = quiche::SingleUseCallback<void()>; virtual absl::StatusOr<PublishPastObjectsCallback> OnSubscribeForPast( const SubscribeWindow& window) = 0; }; LocalTrack(const FullTrackName& full_track_name, MoqtForwardingPreference forwarding_preference, Visitor* visitor) : full_track_name_(full_track_name), forwarding_preference_(forwarding_preference), windows_(forwarding_preference), visitor_(visitor) {} LocalTrack(const FullTrackName& full_track_name, MoqtForwardingPreference forwarding_preference, Visitor* visitor, FullSequence next_sequence) : full_track_name_(full_track_name), forwarding_preference_(forwarding_preference), windows_(forwarding_preference), next_sequence_(next_sequence), visitor_(visitor) {} const FullTrackName& full_track_name() const { return full_track_name_; } std::optional<uint64_t> track_alias() const { return track_alias_; } void set_track_alias(uint64_t track_alias) { track_alias_ = track_alias; } Visitor* visitor() { return visitor_; } std::vector<SubscribeWindow*> ShouldSend(FullSequence sequence) { return windows_.SequenceIsSubscribed(sequence); } void AddWindow(uint64_t subscribe_id, uint64_t start_group, uint64_t start_object); void AddWindow(uint64_t subscribe_id, uint64_t start_group, uint64_t start_object, uint64_t end_group); void AddWindow(uint64_t subscribe_id, uint64_t start_group, uint64_t start_object, uint64_t end_group, uint64_t end_object); void DeleteWindow(uint64_t subscribe_id) { windows_.RemoveWindow(subscribe_id); } const FullSequence& next_sequence() const { return next_sequence_; } void SentSequence(FullSequence sequence, MoqtObjectStatus status); bool HasSubscriber() const { return !windows_.IsEmpty(); } SubscribeWindow* GetWindow(uint64_t subscribe_id) { return windows_.GetWindow(subscribe_id); } MoqtForwardingPreference forwarding_preference() const { return forwarding_preference_; } void set_announce_cancel() { announce_canceled_ = true; } bool canceled() const { return announce_canceled_; } private: const FullTrackName full_track_name_; MoqtForwardingPreference forwarding_preference_; std::optional<uint64_t> track_alias_; MoqtSubscribeWindows windows_; FullSequence next_sequence_ = {0, 0}; absl::flat_hash_map<uint64_t, uint64_t> max_object_ids_; Visitor* visitor_; bool announce_canceled_ = false; }; class RemoteTrack { public: class Visitor { public: virtual ~Visitor() = default; virtual void OnReply( const FullTrackName& full_track_name, std::optional<absl::string_view> error_reason_phrase) = 0; virtual void OnObjectFragment( const FullTrackName& full_track_name, uint64_t group_sequence, uint64_t object_sequence, uint64_t object_send_order, MoqtObjectStatus object_status, MoqtForwardingPreference forwarding_preference, absl::string_view object, bool end_of_message) = 0; }; RemoteTrack(const FullTrackName& full_track_name, uint64_t track_alias, Visitor* visitor) : full_track_name_(full_track_name), track_alias_(track_alias), visitor_(visitor) {} const FullTrackName& full_track_name() { return full_track_name_; } uint64_t track_alias() const { return track_alias_; } Visitor* visitor() { return visitor_; } bool CheckForwardingPreference(MoqtForwardingPreference preference); private: const FullTrackName full_track_name_; const uint64_t track_alias_; Visitor* visitor_; std::optional<MoqtForwardingPreference> forwarding_preference_; }; } #endif #include "quiche/quic/moqt/moqt_track.h" #include <cstdint> #include "quiche/quic/moqt/moqt_messages.h" namespace moqt { void LocalTrack::AddWindow(uint64_t subscribe_id, uint64_t start_group, uint64_t start_object) { QUIC_BUG_IF(quic_bug_subscribe_to_canceled_track, announce_canceled_) << "Canceled track got subscription"; windows_.AddWindow(subscribe_id, next_sequence_, start_group, start_object); } void LocalTrack::AddWindow(uint64_t subscribe_id, uint64_t start_group, uint64_t start_object, uint64_t end_group) { QUIC_BUG_IF(quic_bug_subscribe_to_canceled_track, announce_canceled_) << "Canceled track got subscription"; auto it = max_object_ids_.find(end_group); if (end_group >= next_sequence_.group) { windows_.AddWindow(subscribe_id, next_sequence_, start_group, start_object, end_group, UINT64_MAX); return; } windows_.AddWindow(subscribe_id, next_sequence_, start_group, start_object, end_group, it->second); } void LocalTrack::AddWindow(uint64_t subscribe_id, uint64_t start_group, uint64_t start_object, uint64_t end_group, uint64_t end_object) { QUIC_BUG_IF(quic_bug_subscribe_to_canceled_track, announce_canceled_) << "Canceled track got subscription"; windows_.AddWindow(subscribe_id, next_sequence_, start_group, start_object, end_group, end_object); } void LocalTrack::SentSequence(FullSequence sequence, MoqtObjectStatus status) { QUICHE_DCHECK(max_object_ids_.find(sequence.group) == max_object_ids_.end() || max_object_ids_[sequence.group] < sequence.object); switch (status) { case MoqtObjectStatus::kNormal: case MoqtObjectStatus::kObjectDoesNotExist: if (next_sequence_ <= sequence) { next_sequence_ = sequence.next(); } break; case MoqtObjectStatus::kGroupDoesNotExist: max_object_ids_[sequence.group] = 0; break; case MoqtObjectStatus::kEndOfGroup: max_object_ids_[sequence.group] = sequence.object; if (next_sequence_ <= sequence) { next_sequence_ = FullSequence(sequence.group + 1, 0); } break; case MoqtObjectStatus::kEndOfTrack: max_object_ids_[sequence.group] = sequence.object; break; default: QUICHE_DCHECK(false); return; } } bool RemoteTrack::CheckForwardingPreference( MoqtForwardingPreference preference) { if (forwarding_preference_.has_value()) { return forwarding_preference_.value() == preference; } forwarding_preference_ = preference; return true; } }
#include "quiche/quic/moqt/moqt_track.h" #include <optional> #include "absl/strings/string_view.h" #include "quiche/quic/moqt/moqt_messages.h" #include "quiche/quic/moqt/moqt_subscribe_windows.h" #include "quiche/quic/moqt/tools/moqt_mock_visitor.h" #include "quiche/quic/platform/api/quic_test.h" namespace moqt { namespace test { class LocalTrackTest : public quic::test::QuicTest { public: LocalTrackTest() : track_(FullTrackName("foo", "bar"), MoqtForwardingPreference::kTrack, &visitor_, FullSequence(4, 1)) {} LocalTrack track_; MockLocalTrackVisitor visitor_; }; TEST_F(LocalTrackTest, Queries) { EXPECT_EQ(track_.full_track_name(), FullTrackName("foo", "bar")); EXPECT_EQ(track_.track_alias(), std::nullopt); EXPECT_EQ(track_.visitor(), &visitor_); EXPECT_EQ(track_.next_sequence(), FullSequence(4, 1)); track_.SentSequence(FullSequence(4, 0), MoqtObjectStatus::kNormal); EXPECT_EQ(track_.next_sequence(), FullSequence(4, 1)); track_.SentSequence(FullSequence(4, 1), MoqtObjectStatus::kNormal); EXPECT_EQ(track_.next_sequence(), FullSequence(4, 2)); track_.SentSequence(FullSequence(4, 2), MoqtObjectStatus::kEndOfGroup); EXPECT_EQ(track_.next_sequence(), FullSequence(5, 0)); EXPECT_FALSE(track_.HasSubscriber()); EXPECT_EQ(track_.forwarding_preference(), MoqtForwardingPreference::kTrack); } TEST_F(LocalTrackTest, SetTrackAlias) { EXPECT_EQ(track_.track_alias(), std::nullopt); track_.set_track_alias(6); EXPECT_EQ(track_.track_alias(), 6); } TEST_F(LocalTrackTest, AddGetDeleteWindow) { track_.AddWindow(0, 4, 1); EXPECT_EQ(track_.GetWindow(0)->subscribe_id(), 0); EXPECT_EQ(track_.GetWindow(1), nullptr); track_.DeleteWindow(0); EXPECT_EQ(track_.GetWindow(0), nullptr); } TEST_F(LocalTrackTest, GroupSubscriptionUsesMaxObjectId) { track_.SentSequence(FullSequence(0, 0), MoqtObjectStatus::kEndOfGroup); track_.SentSequence(FullSequence(1, 0), MoqtObjectStatus::kNormal); track_.SentSequence(FullSequence(1, 1), MoqtObjectStatus::kEndOfGroup); track_.SentSequence(FullSequence(2, 0), MoqtObjectStatus::kGroupDoesNotExist); track_.SentSequence(FullSequence(3, 0), MoqtObjectStatus::kNormal); track_.SentSequence(FullSequence(3, 1), MoqtObjectStatus::kNormal); track_.SentSequence(FullSequence(3, 2), MoqtObjectStatus::kNormal); track_.SentSequence(FullSequence(3, 3), MoqtObjectStatus::kEndOfGroup); track_.SentSequence(FullSequence(4, 0), MoqtObjectStatus::kNormal); track_.SentSequence(FullSequence(4, 1), MoqtObjectStatus::kNormal); track_.SentSequence(FullSequence(4, 2), MoqtObjectStatus::kNormal); track_.SentSequence(FullSequence(4, 3), MoqtObjectStatus::kNormal); track_.SentSequence(FullSequence(4, 4), MoqtObjectStatus::kNormal); EXPECT_EQ(track_.next_sequence(), FullSequence(4, 5)); track_.AddWindow(0, 1, 1, 3); SubscribeWindow* window = track_.GetWindow(0); EXPECT_TRUE(window->InWindow(FullSequence(3, 3))); EXPECT_FALSE(window->InWindow(FullSequence(3, 4))); track_.AddWindow(1, 1, 1, 2); window = track_.GetWindow(1); EXPECT_TRUE(window->InWindow(FullSequence(1, 1))); track_.AddWindow(2, 1, 1, 4); window = track_.GetWindow(2); EXPECT_TRUE(window->InWindow(FullSequence(4, 9))); EXPECT_FALSE(window->InWindow(FullSequence(5, 0))); } TEST_F(LocalTrackTest, ShouldSend) { track_.AddWindow(0, 4, 1); EXPECT_TRUE(track_.HasSubscriber()); EXPECT_TRUE(track_.ShouldSend(FullSequence(3, 12)).empty()); EXPECT_TRUE(track_.ShouldSend(FullSequence(4, 0)).empty()); EXPECT_EQ(track_.ShouldSend(FullSequence(4, 1)).size(), 1); EXPECT_EQ(track_.ShouldSend(FullSequence(12, 0)).size(), 1); } class RemoteTrackTest : public quic::test::QuicTest { public: RemoteTrackTest() : track_(FullTrackName("foo", "bar"), 5, &visitor_) {} RemoteTrack track_; MockRemoteTrackVisitor visitor_; }; TEST_F(RemoteTrackTest, Queries) { EXPECT_EQ(track_.full_track_name(), FullTrackName("foo", "bar")); EXPECT_EQ(track_.track_alias(), 5); EXPECT_EQ(track_.visitor(), &visitor_); } TEST_F(RemoteTrackTest, UpdateForwardingPreference) { EXPECT_TRUE( track_.CheckForwardingPreference(MoqtForwardingPreference::kObject)); EXPECT_TRUE( track_.CheckForwardingPreference(MoqtForwardingPreference::kObject)); EXPECT_FALSE( track_.CheckForwardingPreference(MoqtForwardingPreference::kDatagram)); } } }
392
#ifndef TENSORSTORE_INTERNAL_OAUTH2_FIXED_TOKEN_AUTH_PROVIDER_H_ #define TENSORSTORE_INTERNAL_OAUTH2_FIXED_TOKEN_AUTH_PROVIDER_H_ #include <string> #include "tensorstore/internal/oauth2/auth_provider.h" #include "tensorstore/internal/oauth2/bearer_token.h" #include "tensorstore/util/result.h" namespace tensorstore { namespace internal_oauth2 { class FixedTokenAuthProvider : public AuthProvider { public: ~FixedTokenAuthProvider() override = default; FixedTokenAuthProvider(std::string token); Result<BearerTokenWithExpiration> GetToken() override; private: std::string token_; }; } } #endif #include "tensorstore/internal/oauth2/fixed_token_auth_provider.h" #include "absl/time/time.h" #include "tensorstore/internal/oauth2/bearer_token.h" #include "tensorstore/util/result.h" namespace tensorstore { namespace internal_oauth2 { FixedTokenAuthProvider::FixedTokenAuthProvider(std::string token) : token_(token) {} Result<BearerTokenWithExpiration> FixedTokenAuthProvider::GetToken() { return BearerTokenWithExpiration{token_, absl::InfiniteFuture()}; } } }
#include "tensorstore/internal/oauth2/fixed_token_auth_provider.h" #include <gtest/gtest.h> #include "absl/time/clock.h" #include "tensorstore/util/result.h" namespace { using ::tensorstore::internal_oauth2::FixedTokenAuthProvider; TEST(FixedTokenAuthProvider, Minimal) { FixedTokenAuthProvider auth("token"); auto result = auth.GetToken(); EXPECT_TRUE(result.ok()); EXPECT_EQ("token", result->token); EXPECT_LT(absl::Now(), result->expiration); } }
393
#ifndef AROLLA_EXPR_ANNOTATION_UTILS_H_ #define AROLLA_EXPR_ANNOTATION_UTILS_H_ #include <string_view> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "arolla/expr/expr_node.h" #include "arolla/qtype/qtype.h" namespace arolla::expr { absl::StatusOr<bool> IsAnnotation(const ExprNodePtr& node); absl::StatusOr<bool> IsDetachedAnnotation(const ExprNodePtr& node); absl::StatusOr<ExprNodePtr> GetDetachedAnnotation(ExprNodePtr node); absl::StatusOr<ExprNodePtr> AttachAnnotation(const ExprNodePtr& node, const ExprNodePtr& annotation); absl::StatusOr<ExprNodePtr> AttachAnnotations( const ExprNodePtr& node, absl::Span<const ExprNodePtr> annotations); absl::StatusOr<ExprNodePtr> StripTopmostAnnotations(const ExprNodePtr& expr); absl::StatusOr<ExprNodePtr> StripAnnotations(const ExprNodePtr& expr); bool IsQTypeAnnotation(const ExprNodePtr& node); bool IsNameAnnotation(const ExprNodePtr& node); bool IsExportAnnotation(const ExprNodePtr& node); const QType* ReadQTypeAnnotation(const ExprNodePtr& node); absl::string_view ReadNameAnnotation(const ExprNodePtr& node); absl::string_view ReadExportAnnotationTag(const ExprNodePtr& node); ExprNodePtr ReadExportAnnotationValue(const ExprNodePtr& node); } #endif #include "arolla/expr/annotation_utils.h" #include <utility> #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "arolla/expr/annotation_expr_operators.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_debug_string.h" #include "arolla/expr/expr_node.h" #include "arolla/expr/expr_operator.h" #include "arolla/expr/expr_visitor.h" #include "arolla/expr/registered_expr_operator.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/util/text.h" #include "arolla/util/status_macros_backport.h" namespace arolla::expr { absl::StatusOr<bool> IsAnnotation(const ExprNodePtr& node) { ASSIGN_OR_RETURN(auto op, DecayRegisteredOperator(node->op())); return !node->node_deps().empty() && dynamic_cast<const AnnotationExprOperatorTag*>(op.get()) != nullptr; } absl::StatusOr<bool> IsDetachedAnnotation(const ExprNodePtr& node) { ASSIGN_OR_RETURN(bool is_annotation, IsAnnotation(node)); DCHECK(!is_annotation || !node->node_deps().empty()); return is_annotation && node->node_deps()[0]->is_placeholder(); } absl::StatusOr<ExprNodePtr> GetDetachedAnnotation(ExprNodePtr node) { ASSIGN_OR_RETURN(bool is_annotation, IsAnnotation(node)); if (!is_annotation) { return absl::InvalidArgumentError( absl::StrCat("can not detach annotation from ", GetDebugSnippet(node), " that is not a valid annotation node")); } auto new_deps = node->node_deps(); DCHECK(!new_deps.empty()); new_deps[0] = Placeholder("_"); return WithNewDependencies(node, std::move(new_deps)); } absl::StatusOr<ExprNodePtr> AttachAnnotation(const ExprNodePtr& node, const ExprNodePtr& annotation) { ASSIGN_OR_RETURN(bool is_detached_annotation, IsDetachedAnnotation(annotation)); if (!is_detached_annotation) { return absl::InvalidArgumentError(absl::StrCat( "can not attach a node that is not a detached annotation: %s", GetDebugSnippet(node))); } auto new_deps = annotation->node_deps(); DCHECK(!new_deps.empty()); new_deps[0] = node; return WithNewDependencies(annotation, std::move(new_deps)); } absl::StatusOr<ExprNodePtr> AttachAnnotations( const ExprNodePtr& node, absl::Span<const ExprNodePtr> annotations) { ExprNodePtr annotated_node = node; for (const auto& anno : annotations) { ASSIGN_OR_RETURN(annotated_node, AttachAnnotation(annotated_node, anno)); } return annotated_node; } absl::StatusOr<ExprNodePtr> StripTopmostAnnotations(const ExprNodePtr& expr) { ExprNodePtr annotationless_expr = expr; ASSIGN_OR_RETURN(bool is_annotation, IsAnnotation(annotationless_expr)); while (is_annotation) { if (annotationless_expr->node_deps().empty()) { return absl::FailedPreconditionError( absl::StrFormat("incorrect annotation node %s", GetDebugSnippet(annotationless_expr))); } annotationless_expr = annotationless_expr->node_deps()[0]; ASSIGN_OR_RETURN(is_annotation, IsAnnotation(annotationless_expr)); } return annotationless_expr; } absl::StatusOr<ExprNodePtr> StripAnnotations(const ExprNodePtr& expr) { return Transform( expr, [](const ExprNodePtr& node) -> absl::StatusOr<ExprNodePtr> { ASSIGN_OR_RETURN(bool is_annotation, IsAnnotation(node)); DCHECK(!is_annotation || !node->node_deps().empty()); return is_annotation ? node->node_deps()[0] : node; }); } bool IsQTypeAnnotation(const ExprNodePtr& node) { auto op = DecayRegisteredOperator(node->op()).value_or(nullptr); return op != nullptr && typeid(*op) == typeid(QTypeAnnotation) && node->node_deps().size() == 2; } bool IsNameAnnotation(const ExprNodePtr& node) { auto op = DecayRegisteredOperator(node->op()).value_or(nullptr); return op != nullptr && typeid(*op) == typeid(NameAnnotation) && node->node_deps().size() == 2; } bool IsExportAnnotation(const ExprNodePtr& node) { auto op = DecayRegisteredOperator(node->op()).value_or(nullptr); return op != nullptr && ((typeid(*op) == typeid(ExportAnnotation) && node->node_deps().size() == 2) || (typeid(*op) == typeid(ExportValueAnnotation) && node->node_deps().size() == 3)); } const QType* ReadQTypeAnnotation(const ExprNodePtr& node) { if (IsQTypeAnnotation(node)) { DCHECK_EQ(node->node_deps().size(), 2); if (const auto& qvalue = node->node_deps()[1]->qvalue()) { if (qvalue->GetType() == GetQTypeQType()) { return qvalue->UnsafeAs<QTypePtr>(); } } } return nullptr; } absl::string_view ReadNameAnnotation(const ExprNodePtr& node) { if (IsNameAnnotation(node)) { DCHECK_EQ(node->node_deps().size(), 2); if (const auto& qvalue = node->node_deps()[1]->qvalue()) { if (qvalue->GetType() == GetQType<Text>()) { return qvalue->UnsafeAs<Text>().view(); } } } return ""; } absl::string_view ReadExportAnnotationTag(const ExprNodePtr& node) { if (IsExportAnnotation(node)) { DCHECK_GE(node->node_deps().size(), 2); if (node->node_deps()[1]->qvalue().has_value() && node->node_deps()[1]->qvalue()->GetType() == GetQType<Text>()) { return node->node_deps()[1]->qvalue()->UnsafeAs<Text>().view(); } } return {}; } ExprNodePtr ReadExportAnnotationValue(const ExprNodePtr& node) { if (IsExportAnnotation(node)) { if (node->node_deps().size() == 2) { return node->node_deps()[0]; } else if (node->node_deps().size() == 3) { return node->node_deps()[2]; } } return nullptr; } }
#include "arolla/expr/annotation_utils.h" #include <memory> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "arolla/expr/annotation_expr_operators.h" #include "arolla/expr/basic_expr_operator.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_node.h" #include "arolla/expr/expr_operator.h" #include "arolla/expr/expr_operator_signature.h" #include "arolla/expr/testing/testing.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/util/fingerprint.h" #include "arolla/util/init_arolla.h" #include "arolla/util/testing/status_matchers_backport.h" #include "arolla/util/text.h" namespace arolla::expr { namespace { using ::arolla::testing::EqualsExpr; using ::arolla::testing::IsOkAndHolds; using ::arolla::testing::StatusIs; using ::testing::Eq; using ::testing::HasSubstr; class AnnotationOperatorTest : public ::testing::Test { void SetUp() override { ASSERT_OK(InitArolla()); } }; class IdentityAnnotation : public AnnotationExprOperatorTag, public BasicExprOperator { public: IdentityAnnotation() : BasicExprOperator( "id", ExprOperatorSignature::MakeArgsN(1), "", FingerprintHasher("arolla::expr::IdentityAnnotation").Finish()) {} absl::StatusOr<QTypePtr> GetOutputQType( absl::Span<const QTypePtr> input_qtypes) const override { return input_qtypes[0]; } }; TEST_F(AnnotationOperatorTest, SmokeTest) { const auto with_annotation = std::make_shared<IdentityAnnotation>(); ASSERT_OK_AND_ASSIGN(auto expr, CallOp(with_annotation, {Leaf("x")})); ASSERT_OK_AND_ASSIGN(auto lower_expr, ToLowerNode(expr)); EXPECT_THAT(lower_expr, EqualsExpr(expr)); ASSERT_OK_AND_ASSIGN(auto typed_expr, CallOp(with_annotation, {Literal<float>(1.0)})); EXPECT_EQ(typed_expr->qtype(), GetQType<float>()); } TEST_F(AnnotationOperatorTest, StripAnnotations) { const auto id_anno = std::make_shared<IdentityAnnotation>(); { ASSERT_OK_AND_ASSIGN( ExprNodePtr expr, CallOp(id_anno, {CallOp("math.add", {CallOp(id_anno, {Leaf("x")}), Leaf("y")})})); ASSERT_OK_AND_ASSIGN(ExprNodePtr actual, StripAnnotations(expr)); ASSERT_OK_AND_ASSIGN(ExprNodePtr expected, CallOp("math.add", {Leaf("x"), Leaf("y")})); EXPECT_THAT(actual, EqualsExpr(expected)); } { ASSERT_OK_AND_ASSIGN(ExprNodePtr expr, CallOp(id_anno, {CallOp(id_anno, {Leaf("x")})})); ASSERT_OK_AND_ASSIGN(ExprNodePtr actual, StripAnnotations(expr)); ExprNodePtr expected = Leaf("x"); EXPECT_THAT(actual, EqualsExpr(expected)); } } TEST_F(AnnotationOperatorTest, StripTopmostAnnotations) { const auto id_anno = std::make_shared<IdentityAnnotation>(); { ASSERT_OK_AND_ASSIGN( ExprNodePtr expr, CallOp(id_anno, {CallOp("math.add", {CallOp(id_anno, {Leaf("x")}), Leaf("y")})})); EXPECT_THAT(StripTopmostAnnotations(expr), IsOkAndHolds(EqualsExpr(CallOp( "math.add", {CallOp(id_anno, {Leaf("x")}), Leaf("y")})))); } { ASSERT_OK_AND_ASSIGN(ExprNodePtr expr, CallOp(id_anno, {CallOp(id_anno, {Leaf("x")})})); EXPECT_THAT(StripTopmostAnnotations(expr), IsOkAndHolds(EqualsExpr(Leaf("x")))); } } class IdentityAnnotation2 : public AnnotationExprOperatorTag, public BasicExprOperator { public: IdentityAnnotation2() : BasicExprOperator( "id2", ExprOperatorSignature::MakeArgsN(1), "", FingerprintHasher("arolla::expr::IdentityAnnotation2").Finish()) {} absl::StatusOr<QTypePtr> GetOutputQType( absl::Span<const QTypePtr> input_qtypes) const override { return input_qtypes[0]; } }; TEST_F(AnnotationOperatorTest, AttachAnnotations) { ExprNodePtr expr = Leaf("x"); EXPECT_THAT(AttachAnnotation(expr, expr), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("not a detached annotation"))); const auto id_anno = std::make_shared<IdentityAnnotation>(); const auto id_anno2 = std::make_shared<IdentityAnnotation2>(); ASSERT_OK_AND_ASSIGN(auto anno1, CallOp(id_anno, {Placeholder("_")})); ASSERT_OK_AND_ASSIGN(auto anno2, CallOp(id_anno2, {Placeholder("_")})); std::vector<ExprNodePtr> annotations = {anno1, anno2}; ASSERT_OK_AND_ASSIGN(auto anno_expr, AttachAnnotations(expr, annotations)); ASSERT_OK_AND_ASSIGN(ExprNodePtr expected_anno_expr, CallOp(id_anno2, {CallOp(id_anno, {Leaf("x")})})); EXPECT_THAT(anno_expr, EqualsExpr(expected_anno_expr)); ASSERT_OK_AND_ASSIGN(auto detached, StripAnnotations(anno_expr)); EXPECT_THAT(detached, EqualsExpr(expr)); } TEST_F(AnnotationOperatorTest, AnnotationExport) { ASSERT_OK_AND_ASSIGN( ExprNodePtr expr, CallOp(ExportAnnotation::Make(), {Leaf("a"), Literal(Text{"b"})})); ASSERT_TRUE(IsExportAnnotation(expr)); auto expected_value = Leaf("a"); EXPECT_THAT(ReadExportAnnotationTag(expr), Eq("b")); EXPECT_THAT(ReadExportAnnotationValue(expr), EqualsExpr(expected_value)); } TEST_F(AnnotationOperatorTest, AnnotationExportValue) { ASSERT_OK_AND_ASSIGN(ExprNodePtr expr, CallOp(ExportValueAnnotation::Make(), {Leaf("a"), Literal(Text{"b"}), Leaf("c")})); ASSERT_TRUE(IsExportAnnotation(expr)); auto expected_value = Leaf("c"); EXPECT_THAT(ReadExportAnnotationTag(expr), Eq("b")); EXPECT_THAT(ReadExportAnnotationValue(expr), EqualsExpr(expected_value)); } TEST_F(AnnotationOperatorTest, AnnotationExportArbitraryNode) { ExprNodePtr expr = Leaf("a"); ASSERT_FALSE(IsExportAnnotation(expr)); EXPECT_EQ(ReadExportAnnotationTag(expr), ""); EXPECT_EQ(ReadExportAnnotationValue(expr), nullptr); } } }
394
#ifndef TENSORFLOW_CORE_DATA_SERVICE_WORKER_CLIENT_H_ #define TENSORFLOW_CORE_DATA_SERVICE_WORKER_CLIENT_H_ #include <memory> #include <string> #include "tensorflow/core/data/service/common.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/data_transfer.h" #include "tensorflow/core/data/service/worker.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace data { constexpr const char kLocalTransferProtocol[] = "local"; constexpr const char kGrpcTransferProtocol[] = "grpc"; class DataServiceWorkerClient : public DataServiceClientBase { public: DataServiceWorkerClient( const std::string& address, const std::string& protocol, const std::string& transfer_protocol, const DeviceBase::AcceleratorDeviceInfo* accelerator_device_info, Allocator* allocator) : DataServiceClientBase(address, protocol), transfer_protocol_(transfer_protocol), accelerator_device_info_(accelerator_device_info), allocator_(allocator) {} Status GetElement(const GetElementRequest& req, GetElementResult& result); void TryCancel(); Status CheckCompatibility( const std::string& server_compatibility_info) const { return client_->CheckCompatibility(server_compatibility_info); } std::string GetDataTransferProtocol() const; protected: Status EnsureInitialized() override; private: std::string transfer_protocol_; const DeviceBase::AcceleratorDeviceInfo* accelerator_device_info_; Allocator* allocator_; mutex mu_; std::unique_ptr<DataTransferClient> client_; }; absl::StatusOr<std::unique_ptr<DataServiceWorkerClient>> CreateDataServiceWorkerClient( const std::string& dispatcher_protocol, const DataTransferServerInfo& info, const DeviceBase::AcceleratorDeviceInfo* accelerator_device_info, Allocator* allocator); } } #endif #include "tensorflow/core/data/service/worker_client.h" #include <cstdint> #include <functional> #include <memory> #include <string> #include <utility> #include <vector> #include "grpcpp/client_context.h" #include "grpcpp/create_channel.h" #include "grpcpp/security/credentials.h" #include "grpcpp/support/channel_arguments.h" #include "grpcpp/support/status.h" #include "absl/container/flat_hash_set.h" #include "absl/memory/memory.h" #include "absl/strings/string_view.h" #include "absl/strings/substitute.h" #include "tensorflow/core/data/service/credentials_factory.h" #include "tensorflow/core/data/service/data_transfer.h" #include "tensorflow/core/data/service/grpc_util.h" #include "tensorflow/core/data/service/worker.grpc.pb.h" #include "tensorflow/core/data/service/worker.pb.h" #include "tensorflow/core/data/service/worker_impl.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/dataset.pb.h" #include "tensorflow/core/framework/device_base.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/framework/variant.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/thread_annotations.h" #include "tensorflow/core/platform/types.h" #include "tsl/platform/errors.h" namespace tensorflow { namespace data { absl::StatusOr<std::unique_ptr<DataServiceWorkerClient>> CreateDataServiceWorkerClient( const std::string& dispatcher_protocol, const DataTransferServerInfo& info, const DeviceBase::AcceleratorDeviceInfo* accelerator_device_info, Allocator* allocator) { auto client = std::make_unique<DataServiceWorkerClient>( info.address(), dispatcher_protocol, info.protocol(), accelerator_device_info, allocator); TF_RETURN_IF_ERROR(client->Initialize()); TF_RETURN_WITH_CONTEXT_IF_ERROR( client->CheckCompatibility(info.compatibility_info()), "for data transfer protocol '", client->GetDataTransferProtocol(), "', the compatibility check between the trainer worker and the ", "tf.data service worker at ", info.address(), "failed"); return client; } Status DataServiceWorkerClient::GetElement(const GetElementRequest& req, GetElementResult& result) { TF_RETURN_IF_ERROR(EnsureInitialized()); return client_->GetElement(req, result); } Status DataServiceWorkerClient::EnsureInitialized() { mutex_lock l(mu_); if (client_) { return absl::OkStatus(); } TF_RETURN_IF_ERROR(DataTransferClient::Build( GetDataTransferProtocol(), {protocol_, address_, accelerator_device_info_, allocator_}, &client_)); return absl::OkStatus(); } std::string DataServiceWorkerClient::GetDataTransferProtocol() const { if (LocalWorkers::Get(address_) != nullptr) { return kLocalTransferProtocol; } return transfer_protocol_; } void DataServiceWorkerClient::TryCancel() { client_->TryCancel(); } class GrpcDataTransferClient : public DataTransferClient { public: GrpcDataTransferClient(std::shared_ptr<grpc::ChannelCredentials> credentials, std::string address) { VLOG(2) << "Create GrpcDataTransferClient for worker " << address << "."; grpc::ChannelArguments args; args.SetMaxReceiveMessageSize(-1); auto channel = grpc::CreateCustomChannel(address, credentials, args); stub_ = WorkerService::NewStub(channel); } Status GetElement(const GetElementRequest& req, GetElementResult& result) override { VLOG(3) << "GetElement for task " << req.task_id() << " from gRPC worker " << "server."; { mutex_lock l(mu_); if (cancelled_) { return errors::Cancelled("Client was cancelled."); } } grpc::ClientContext ctx; gtl::Cleanup<std::function<void()>> cleanup; { mutex_lock l(mu_); active_contexts_.insert(&ctx); cleanup = gtl::MakeCleanup([this, &ctx] { mutex_lock l(mu_); active_contexts_.erase(&ctx); }); } GetElementResponse resp; int64_t start_time_us = env_->NowMicros(); grpc::Status s = stub_->GetElement(&ctx, req, &resp); int64_t end_time_us = env_->NowMicros(); if (!s.ok()) { return grpc_util::WrapError("Failed to get element", s); } metrics::RecordTFDataServiceGetElementDuration(kGrpcTransferProtocol, end_time_us - start_time_us); result.end_of_sequence = resp.end_of_sequence(); result.skip = resp.skip_task(); switch (resp.element_case()) { case GetElementResponse::kCompressed: { Tensor tensor(DT_VARIANT, TensorShape{}); tensor.scalar<Variant>()() = std::move(resp.compressed()); result.components.push_back(tensor); break; } case GetElementResponse::kUncompressed: for (const auto& component : resp.uncompressed().components()) { result.components.emplace_back(); if (!result.components.back().FromProto(component)) { return errors::Internal("Failed to parse tensor."); } } break; case GetElementResponse::ELEMENT_NOT_SET: break; } return absl::OkStatus(); } void TryCancel() override { VLOG(2) << "Cancel GrpcDataTransferClient."; mutex_lock l(mu_); cancelled_ = true; for (const auto& ctx : active_contexts_) { ctx->TryCancel(); } } private: mutex mu_; std::unique_ptr<WorkerService::Stub> stub_; absl::flat_hash_set<::grpc::ClientContext*> active_contexts_ TF_GUARDED_BY(mu_); bool cancelled_ TF_GUARDED_BY(mu_) = false; }; class GrpcTransferClientRegistrar { public: GrpcTransferClientRegistrar() { DataTransferClient::Register( kGrpcTransferProtocol, [](DataTransferClient::Config config, std::unique_ptr<DataTransferClient>* out) { std::shared_ptr<grpc::ChannelCredentials> credentials; TF_RETURN_IF_ERROR(CredentialsFactory::CreateClientCredentials( config.protocol, &credentials)); *out = std::make_unique<GrpcDataTransferClient>(credentials, config.address); return absl::OkStatus(); }); } }; static GrpcTransferClientRegistrar gprc_client_registrar; class LocalDataTransferClient : public DataTransferClient { public: explicit LocalDataTransferClient(absl::string_view worker_address) : worker_address_(worker_address) { VLOG(2) << "Create LocalDataTransferClient for worker " << worker_address_ << "."; } Status GetElement(const GetElementRequest& req, GetElementResult& result) override { VLOG(3) << "GetElement for task " << req.task_id() << " from local worker."; TF_RETURN_IF_ERROR(VerifyClientIsNotCancelled()); TF_ASSIGN_OR_RETURN(std::shared_ptr<DataServiceWorkerImpl> worker, GetWorker(req)); int64_t start_time_us = env_->NowMicros(); Status s = worker->GetElementResult(&req, &result); int64_t end_time_us = env_->NowMicros(); TF_RETURN_IF_ERROR(s); metrics::RecordTFDataServiceGetElementDuration(kLocalTransferProtocol, end_time_us - start_time_us); return s; } void TryCancel() override { VLOG(2) << "Cancel LocalDataTransferClient for worker " << worker_address_ << "."; mutex_lock l(mu_); cancelled_ = true; } private: Status VerifyClientIsNotCancelled() TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); if (cancelled_) { return errors::Cancelled(absl::Substitute( "Client for worker $0 has been cancelled.", worker_address_)); } return absl::OkStatus(); } absl::StatusOr<std::shared_ptr<DataServiceWorkerImpl>> GetWorker( const GetElementRequest& req) const { std::shared_ptr<DataServiceWorkerImpl> worker = LocalWorkers::Get(worker_address_); if (!worker) { return errors::Cancelled(absl::Substitute( "Local worker at address $0 is no longer available; cancel request " "for task $1.", worker_address_, req.task_id())); } return worker; } const std::string worker_address_; mutex mu_; bool cancelled_ TF_GUARDED_BY(mu_) = false; }; class LocalTransferClientRegistrar { public: LocalTransferClientRegistrar() { DataTransferClient::Register( kLocalTransferProtocol, [](DataTransferClient::Config config, std::unique_ptr<DataTransferClient>* out) { *out = std::make_unique<LocalDataTransferClient>(config.address); return absl::OkStatus(); }); } }; static LocalTransferClientRegistrar local_client_registrar; } }
#include "tensorflow/core/data/service/worker_client.h" #include <memory> #include <optional> #include <string> #include <utility> #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/strings/substitute.h" #include "absl/types/optional.h" #include "tensorflow/core/data/service/common.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/data_transfer.h" #include "tensorflow/core/data/service/dispatcher.pb.h" #include "tensorflow/core/data/service/dispatcher_client.h" #include "tensorflow/core/data/service/test_cluster.h" #include "tensorflow/core/data/service/test_util.h" #include "tensorflow/core/data/service/worker.pb.h" #include "tensorflow/core/data/service/worker_impl.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/data_service.pb.h" #include "tensorflow/core/protobuf/error_codes.pb.h" namespace tensorflow { namespace data { namespace { using ::tensorflow::data::testing::RangeSquareDataset; using ::tensorflow::testing::StatusIs; using ::testing::MatchesRegex; constexpr const char kProtocol[] = "grpc"; constexpr const char kAltTransferProtocol[] = "alt"; class WorkerClientTest : public ::testing::TestWithParam<std::string> { protected: void SetUp() override { InitializeTestCluster(); } void InitializeTestCluster( std::optional<std::string> data_transfer_protocol = std::nullopt) { test_cluster_ = std::make_unique<TestCluster>(1, data_transfer_protocol); TF_ASSERT_OK(test_cluster_->Initialize()); dispatcher_client_ = std::make_unique<DataServiceDispatcherClient>( test_cluster_->DispatcherAddress(), kProtocol); } absl::StatusOr<std::string> RegisterDataset(const int64_t range) { const auto dataset_def = RangeSquareDataset(range); std::string dataset_id; TF_RETURN_IF_ERROR(dispatcher_client_->RegisterDataset( dataset_def, DataServiceMetadata(), std::nullopt, dataset_id)); return dataset_id; } absl::StatusOr<int64_t> CreateIteration(const std::string& dataset_id) { ProcessingModeDef processing_mode; processing_mode.set_sharding_policy(ProcessingModeDef::OFF); int64_t job_id = 0; TF_RETURN_IF_ERROR(dispatcher_client_->GetOrCreateJob( dataset_id, processing_mode, std::nullopt, std::nullopt, false, TARGET_WORKERS_AUTO, job_id)); int64_t iteration_client_id = 0; TF_RETURN_IF_ERROR(dispatcher_client_->GetOrCreateIteration( job_id, 0, iteration_client_id)); return iteration_client_id; } absl::StatusOr<int64_t> GetTaskToRead(const int64_t iteration_client_id) { ClientHeartbeatRequest request; ClientHeartbeatResponse response; request.set_iteration_client_id(iteration_client_id); TF_RETURN_IF_ERROR(dispatcher_client_->ClientHeartbeat(request, response)); if (response.task_info().empty()) { return errors::NotFound(absl::Substitute( "No task found for iteration $0.", iteration_client_id)); } return response.task_info(0).task_id(); } absl::StatusOr<std::unique_ptr<DataServiceWorkerClient>> GetWorkerClient( const std::string& data_transfer_protocol) { DataTransferServerInfo info; info.set_address(GetWorkerAddress()); info.set_protocol(data_transfer_protocol); return CreateDataServiceWorkerClient(kProtocol, info, nullptr, nullptr); } absl::StatusOr<GetElementResult> GetElement(DataServiceWorkerClient& client, const int64_t task_id) { GetElementRequest request; GetElementResult result; request.set_task_id(task_id); TF_RETURN_IF_ERROR(client.GetElement(request, result)); return result; } std::string GetDispatcherAddress() const { return test_cluster_->DispatcherAddress(); } std::string GetWorkerAddress() const { return test_cluster_->WorkerAddress(0); } std::unique_ptr<TestCluster> test_cluster_; std::unique_ptr<DataServiceDispatcherClient> dispatcher_client_; }; class AltDataTransferServer : public DataTransferServer { public: explicit AltDataTransferServer(DataTransferServer::GetElementT get_element) : get_element_(get_element) {} absl::Status GetElement(const GetElementRequest& req, GetElementResult& result) { return get_element_(&req, &result); } absl::Status Start(const experimental::WorkerConfig& config) override { return absl::OkStatus(); } int Port() const override { return -1; } private: DataTransferServer::GetElementT get_element_; }; class AltDataTransferClient : public DataTransferClient { public: explicit AltDataTransferClient(std::shared_ptr<AltDataTransferServer> server) : server_(server) {} absl::Status GetElement(const GetElementRequest& req, GetElementResult& result) override { return server_->GetElement(req, result); } void TryCancel() override {} private: std::shared_ptr<AltDataTransferServer> server_; }; class AltDataTransferRegistrar { public: AltDataTransferRegistrar() { DataTransferServer::Register( kAltTransferProtocol, [this](DataTransferServer::GetElementT get_element, std::shared_ptr<DataTransferServer>* server) { server_ = std::make_shared<AltDataTransferServer>(get_element); *server = server_; return absl::OkStatus(); }); DataTransferClient::Register( kAltTransferProtocol, [this](DataTransferClient::Config config, std::unique_ptr<DataTransferClient>* client) { *client = std::make_unique<AltDataTransferClient>(server_); return absl::OkStatus(); }); } private: std::shared_ptr<AltDataTransferServer> server_ = nullptr; }; static AltDataTransferRegistrar alt_data_transfer_registrar; class DataTransferProtocolWorkerClientTest : public WorkerClientTest { protected: void SetUp() override { std::string data_transfer_protocol = GetParam(); InitializeTestCluster(data_transfer_protocol); } }; TEST_F(WorkerClientTest, LocalRead) { const int64_t range = 5; TF_ASSERT_OK_AND_ASSIGN(const std::string dataset_id, RegisterDataset(range)); TF_ASSERT_OK_AND_ASSIGN(const int64_t iteration_client_id, CreateIteration(dataset_id)); TF_ASSERT_OK_AND_ASSIGN(const int64_t task_id, GetTaskToRead(iteration_client_id)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<DataServiceWorkerClient> client, GetWorkerClient(kLocalTransferProtocol)); for (int64_t i = 0; i < range; ++i) { TF_ASSERT_OK_AND_ASSIGN(GetElementResult result, GetElement(*client, task_id)); test::ExpectEqual(result.components[0], Tensor(int64_t{i * i})); EXPECT_FALSE(result.end_of_sequence); } LocalWorkers::Remove(GetWorkerAddress()); EXPECT_THAT(GetElement(*client, task_id), StatusIs(error::CANCELLED, MatchesRegex("Local worker.*is no longer available.*"))); } TEST_F(WorkerClientTest, LocalReadEmptyDataset) { TF_ASSERT_OK_AND_ASSIGN(const std::string dataset_id, RegisterDataset(0)); TF_ASSERT_OK_AND_ASSIGN(const int64_t iteration_client_id, CreateIteration(dataset_id)); TF_ASSERT_OK_AND_ASSIGN(const int64_t task_id, GetTaskToRead(iteration_client_id)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<DataServiceWorkerClient> client, GetWorkerClient(kLocalTransferProtocol)); TF_ASSERT_OK_AND_ASSIGN(GetElementResult result, GetElement(*client, task_id)); EXPECT_TRUE(result.end_of_sequence); LocalWorkers::Remove(GetWorkerAddress()); EXPECT_THAT(GetElement(*client, task_id), StatusIs(error::CANCELLED, MatchesRegex("Local worker.*is no longer available.*"))); } TEST_P(DataTransferProtocolWorkerClientTest, NetworkRead) { std::string data_transfer_protocol = GetParam(); LocalWorkers::Remove(GetWorkerAddress()); const int64_t range = 5; TF_ASSERT_OK_AND_ASSIGN(const std::string dataset_id, RegisterDataset(range)); TF_ASSERT_OK_AND_ASSIGN(const int64_t iteration_client_id, CreateIteration(dataset_id)); TF_ASSERT_OK_AND_ASSIGN(const int64_t task_id, GetTaskToRead(iteration_client_id)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<DataServiceWorkerClient> client, GetWorkerClient(data_transfer_protocol)); for (int64_t i = 0; i < range; ++i) { TF_ASSERT_OK_AND_ASSIGN(GetElementResult result, GetElement(*client, task_id)); test::ExpectEqual(result.components[0], Tensor(int64_t{i * i})); EXPECT_FALSE(result.end_of_sequence); } } INSTANTIATE_TEST_SUITE_P( NetworkProtocols, DataTransferProtocolWorkerClientTest, ::testing::Values(kGrpcTransferProtocol, kAltTransferProtocol), [](const ::testing::TestParamInfo< DataTransferProtocolWorkerClientTest::ParamType>& info) { return info.param; }); TEST_F(WorkerClientTest, LocalServerShutsDown) { TF_ASSERT_OK_AND_ASSIGN(const std::string dataset_id, RegisterDataset(5)); TF_ASSERT_OK_AND_ASSIGN(const int64_t iteration_client_id, CreateIteration(dataset_id)); TF_ASSERT_OK_AND_ASSIGN(const int64_t task_id, GetTaskToRead(iteration_client_id)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<DataServiceWorkerClient> client, GetWorkerClient(kLocalTransferProtocol)); test_cluster_->StopWorkers(); EXPECT_THAT(GetElement(*client, task_id), StatusIs(error::CANCELLED, MatchesRegex("Local worker.*is no longer available.*"))); } TEST_F(WorkerClientTest, CancelClient) { TF_ASSERT_OK_AND_ASSIGN(const std::string dataset_id, RegisterDataset(5)); TF_ASSERT_OK_AND_ASSIGN(const int64_t iteration_client_id, CreateIteration(dataset_id)); TF_ASSERT_OK_AND_ASSIGN(const int64_t task_id, GetTaskToRead(iteration_client_id)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<DataServiceWorkerClient> client, GetWorkerClient(kLocalTransferProtocol)); client->TryCancel(); EXPECT_THAT(GetElement(*client, task_id), StatusIs(error::CANCELLED, MatchesRegex("Client for worker.*has been cancelled."))); } } } }
395
#ifndef TENSORFLOW_CORE_COMMON_RUNTIME_DEVICE_MGR_H_ #define TENSORFLOW_CORE_COMMON_RUNTIME_DEVICE_MGR_H_ #include <map> #include <memory> #include <string> #include <unordered_map> #include <unordered_set> #include <vector> #include "absl/container/flat_hash_set.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/lib/core/arena.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/core/stringpiece.h" #include "tensorflow/core/lib/gtl/inlined_vector.h" #include "tensorflow/core/platform/macros.h" namespace tensorflow { class DeviceAttributes; class DeviceMgr { public: DeviceMgr() = default; virtual ~DeviceMgr(); virtual void ListDeviceAttributes( std::vector<DeviceAttributes>* devices) const = 0; virtual std::vector<Device*> ListDevices() const = 0; virtual string DebugString() const = 0; virtual string DeviceMappingString() const = 0; virtual Status LookupDevice(StringPiece name, Device** device) const = 0; virtual bool ContainsDevice(int64_t device_incarnation) const = 0; virtual void ClearContainers(absl::Span<const string> containers) const = 0; virtual int NumDeviceType(const string& type) const = 0; virtual int NumDevices() const = 0; virtual Device* HostCPU() const = 0; DeviceMgr(const DeviceMgr&) = delete; void operator=(const DeviceMgr&) = delete; }; static const size_t kStaleDeviceBufferSize = 8192; class DynamicDeviceMgr : public DeviceMgr { public: DynamicDeviceMgr(); explicit DynamicDeviceMgr(std::vector<std::unique_ptr<Device>>&& devices); explicit DynamicDeviceMgr(std::unique_ptr<Device>&& device); ~DynamicDeviceMgr() override; void ListDeviceAttributes( std::vector<DeviceAttributes>* devices) const override; std::vector<Device*> ListDevices() const override; string DebugString() const override; string DeviceMappingString() const override; Status LookupDevice(StringPiece name, Device** device) const override; bool ContainsDevice(int64_t device_incarnation) const override; void ClearContainers(absl::Span<const string> containers) const override; int NumDeviceType(const string& type) const override; int NumDevices() const override; Device* HostCPU() const override; Status AddDevices(std::vector<std::unique_ptr<Device>> devices); Status RemoveDevices(const std::vector<Device*>& devices); Status RemoveDevicesByName(const std::vector<string>& device_names); private: mutable mutex devices_mu_; struct DereferenceDevicePtrLess { bool operator()(const Device* a, const Device* b) const { return Device::LessByParsedName(*a, *b); } }; std::map<Device*, std::unique_ptr<Device>, DereferenceDevicePtrLess> dynamic_devices_ TF_GUARDED_BY(devices_mu_); absl::flat_hash_set<int64_t> device_incarnation_set_ TF_GUARDED_BY(devices_mu_); std::unordered_map<string, Device*> device_map_ TF_GUARDED_BY(devices_mu_); std::unordered_map<string, int> device_type_counts_ TF_GUARDED_BY(devices_mu_); mutable std::atomic<Device*> cpu_device_; class DeviceCircularBuffer { public: DeviceCircularBuffer() : index_(0) { devices_.resize(kStaleDeviceBufferSize); } void add(std::unique_ptr<Device> device) { devices_[index_] = std::move(device); index_ = (index_ + 1) % kStaleDeviceBufferSize; } private: int index_; std::vector<std::unique_ptr<Device>> devices_; }; DeviceCircularBuffer stale_devices_ TF_GUARDED_BY(devices_mu_); DynamicDeviceMgr(const DynamicDeviceMgr&) = delete; void operator=(const DynamicDeviceMgr&) = delete; }; using StaticDeviceMgr = DynamicDeviceMgr; } #endif #include "tensorflow/core/common_runtime/device_mgr.h" #include <memory> #include <vector> #include "tensorflow/core/common_runtime/local_device.h" #include "tensorflow/core/framework/device_attributes.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/util/device_name_utils.h" namespace tensorflow { DeviceMgr::~DeviceMgr() {} }
#include "tensorflow/core/common_runtime/device_mgr.h" #include <memory> #include <vector> #include "absl/memory/memory.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { static Device* CreateDevice(const char* type, const char* name) { class FakeDevice : public Device { public: explicit FakeDevice(const DeviceAttributes& attr) : Device(nullptr, attr) {} Status Sync() override { return absl::OkStatus(); } Allocator* GetAllocator(AllocatorAttributes) override { return nullptr; } }; DeviceAttributes attr; attr.set_name(name); attr.set_device_type(type); return new FakeDevice(attr); } TEST(StaticDeviceMgr, NoCPUDevice) { std::unique_ptr<Device> d0(CreateDevice("GPU", "/device:GPU:0")); std::unique_ptr<Device> d1(CreateDevice("GPU", "/device:GPU:1")); std::vector<std::unique_ptr<Device>> devices; devices.emplace_back(std::move(d0)); devices.emplace_back(std::move(d1)); StaticDeviceMgr lm(std::move(devices)); EXPECT_EQ(lm.HostCPU(), nullptr); } TEST(StaticDeviceMgr, SomeCPUDevice) { std::unique_ptr<Device> d0(CreateDevice("GPU", "/device:GPU:0")); std::unique_ptr<Device> d1(CreateDevice("GPU", "/device:GPU:1")); std::unique_ptr<Device> d2(CreateDevice("CPU", "/device:CPU:0")); Device* d2_ptr = d2.get(); std::vector<std::unique_ptr<Device>> devices; devices.emplace_back(std::move(d0)); devices.emplace_back(std::move(d1)); devices.emplace_back(std::move(d2)); StaticDeviceMgr lm(std::move(devices)); EXPECT_EQ(lm.HostCPU(), d2_ptr); } } }
396
#ifndef XLA_SERVICE_GPU_ALL_REDUCE_BLUECONNECT_H_ #define XLA_SERVICE_GPU_ALL_REDUCE_BLUECONNECT_H_ #include <cstddef> #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class AllReduceBlueConnect : public HloModulePass { public: explicit AllReduceBlueConnect(size_t num_devices_per_host) : num_devices_per_host_(num_devices_per_host) {} absl::string_view name() const override { return "all-reduce-blueconnect"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: size_t num_devices_per_host_; }; } #endif #include "xla/service/gpu/all_reduce_blueconnect.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <iterator> #include <optional> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/btree_map.h" #include "absl/container/flat_hash_set.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/service/computation_placer.h" #include "xla/service/hlo_creation_utils.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla { namespace { std::vector<HloInstruction*> GetOutputs(HloInstruction& instruction) { if (!instruction.shape().IsTuple()) { return {&instruction}; } std::vector<HloInstruction*> outputs; outputs.reserve(instruction.shape().tuple_shapes_size()); HloComputation& computation = *instruction.parent(); for (int i = 0; i < instruction.shape().tuple_shapes_size(); ++i) { outputs.push_back(computation.AddInstruction( HloInstruction::CreateGetTupleElement(&instruction, i))); } return outputs; } struct DecomposedReplicaGroups { std::vector<ReplicaGroup> scatter_gather_groups; std::vector<ReplicaGroup> new_all_reduce_groups; }; absl::StatusOr<std::optional<DecomposedReplicaGroups>> TryDecomposeReplicaGroup( const ReplicaGroup& replica_group, const DeviceAssignment& device_assignment, size_t num_devices_per_host) { int group_size = replica_group.replica_ids_size(); TF_RET_CHECK(group_size > 0); absl::btree_map<int, std::vector<int64_t>> replica_ids_by_host; for (int64_t replica_id : replica_group.replica_ids()) { int device_id = device_assignment(replica_id, 0); TF_RET_CHECK(device_id >= 0); int host_id = device_id / num_devices_per_host; replica_ids_by_host[host_id].push_back(replica_id); } size_t num_local_devices = replica_ids_by_host.begin()->second.size(); bool same_num_devices_on_each_host = absl::c_all_of(replica_ids_by_host, [&](const auto& entry) { return entry.second.size() == num_local_devices; }); if (!same_num_devices_on_each_host) { return {std::nullopt}; } std::vector<int64_t> sorted_replica_group; sorted_replica_group.reserve(group_size); for (const auto& entry : replica_ids_by_host) { absl::c_copy(entry.second, std::back_inserter(sorted_replica_group)); } size_t scatter_group_size = std::max(num_local_devices, size_t(2)); size_t num_scatter_groups = group_size / scatter_group_size; if ((group_size % scatter_group_size != 0) || (num_scatter_groups < 2)) { return {std::nullopt}; } std::vector<ReplicaGroup> scatter_gather_groups(num_scatter_groups); std::vector<ReplicaGroup> new_all_reduce_groups(scatter_group_size); for (size_t i = 0; i < group_size; ++i) { int64_t replica_id = sorted_replica_group[i]; scatter_gather_groups[i / scatter_group_size].add_replica_ids(replica_id); new_all_reduce_groups[i % scatter_group_size].add_replica_ids(replica_id); } return {DecomposedReplicaGroups{std::move(scatter_gather_groups), std::move(new_all_reduce_groups)}}; } absl::StatusOr<std::optional<DecomposedReplicaGroups>> TryDecomposeReplicaGroups(const HloAllReduceInstruction& all_reduce, size_t num_devices_per_host) { const DeviceAssignment& device_assignment = all_reduce.GetModule()->config().static_device_assignment(); absl::Span<const ReplicaGroup> replica_groups = all_reduce.replica_groups(); ReplicaGroup all_replicas; if (replica_groups.empty()) { for (int i = 0; i < device_assignment.replica_count(); ++i) { all_replicas.add_replica_ids(i); } replica_groups = absl::MakeSpan(&all_replicas, 1); } std::vector<ReplicaGroup> scatter_gather_groups; std::vector<ReplicaGroup> new_all_reduce_groups; for (const ReplicaGroup& replica_group : replica_groups) { TF_ASSIGN_OR_RETURN( std::optional<DecomposedReplicaGroups> decomposed_groups, TryDecomposeReplicaGroup(replica_group, device_assignment, num_devices_per_host)); if (!decomposed_groups) return {std::nullopt}; int scatter_group_size = decomposed_groups->scatter_gather_groups[0].replica_ids_size(); if (scatter_gather_groups.empty()) { for (const HloInstruction* operand : all_reduce.operands()) { TF_RET_CHECK(operand->shape().IsArray()); int64_t num_elements = ShapeUtil::ElementsIn(operand->shape()); if (num_elements % scatter_group_size != 0) { return {std::nullopt}; } } scatter_gather_groups.reserve( replica_groups.size() * decomposed_groups->scatter_gather_groups.size()); new_all_reduce_groups.reserve( replica_groups.size() * decomposed_groups->new_all_reduce_groups.size()); } else if (scatter_group_size != scatter_gather_groups[0].replica_ids_size()) { return {std::nullopt}; } absl::c_move(decomposed_groups->scatter_gather_groups, std::back_inserter(scatter_gather_groups)); absl::c_move(decomposed_groups->new_all_reduce_groups, std::back_inserter(new_all_reduce_groups)); } return {DecomposedReplicaGroups{std::move(scatter_gather_groups), std::move(new_all_reduce_groups)}}; } absl::StatusOr<bool> TryDecomposeAllReduce(HloAllReduceInstruction* all_reduce, size_t num_devices_per_host) { TF_RET_CHECK(all_reduce); TF_RET_CHECK(!all_reduce->has_sharding()); HloComputation& computation = *all_reduce->parent(); PrimitiveType element_type = all_reduce->operand(0)->shape().element_type(); TF_ASSIGN_OR_RETURN( std::optional<DecomposedReplicaGroups> decomposed_groups, TryDecomposeReplicaGroups(*all_reduce, num_devices_per_host)); if (!decomposed_groups) return false; std::vector<HloInstruction*> flat_operands; flat_operands.reserve(all_reduce->operand_count()); std::vector<Shape> flat_shapes; flat_shapes.reserve(all_reduce->operand_count()); std::vector<Shape> scattered_shapes; scattered_shapes.reserve(all_reduce->operand_count()); int scatter_group_size = decomposed_groups->scatter_gather_groups[0].replica_ids_size(); for (HloInstruction* operand : all_reduce->operands()) { TF_RET_CHECK(operand->shape().IsArray()); int64_t num_elements = ShapeUtil::ElementsIn(operand->shape()); Shape flat_shape = ShapeUtil::MakeShape(element_type, {num_elements}); flat_operands.push_back(computation.AddInstruction( HloInstruction::CreateBitcast(flat_shape, operand))); flat_shapes.push_back(std::move(flat_shape)); scattered_shapes.push_back(ShapeUtil::MakeShape( element_type, {num_elements / scatter_group_size})); } Shape reduce_scatter_shape = ShapeUtil::MakeMaybeTupleShape(scattered_shapes); HloInstruction* reduce_scatter = computation.AddInstruction(HloInstruction::CreateReduceScatter( reduce_scatter_shape, flat_operands, all_reduce->to_apply(), CollectiveDeviceList(decomposed_groups->scatter_gather_groups), false, all_reduce->channel_id(), all_reduce->use_global_device_ids(), 0)); HloInstruction* new_all_reduce = computation.AddInstruction(HloInstruction::CreateAllReduce( reduce_scatter_shape, GetOutputs(*reduce_scatter), all_reduce->to_apply(), CollectiveDeviceList(decomposed_groups->new_all_reduce_groups), false, all_reduce->channel_id(), all_reduce->use_global_device_ids())); HloInstruction* all_gather = computation.AddInstruction(HloInstruction::CreateAllGather( ShapeUtil::MakeMaybeTupleShape(flat_shapes), GetOutputs(*new_all_reduce), 0, CollectiveDeviceList(decomposed_groups->scatter_gather_groups), false, all_reduce->channel_id(), all_reduce->use_global_device_ids())); std::vector<HloInstruction*> outputs = GetOutputs(*all_gather); for (int64_t i = 0; i < outputs.size(); ++i) { outputs[i] = computation.AddInstruction(HloInstruction::CreateBitcast( all_reduce->operand(i)->shape(), outputs[i])); } HloInstruction* replacement = MaybeMakeTuple(outputs); TF_RETURN_IF_ERROR( all_reduce->CopyAllControlDepsTo(reduce_scatter, replacement)); TF_RETURN_IF_ERROR(all_reduce->DropAllControlDeps()); TF_RETURN_IF_ERROR(computation.ReplaceInstruction(all_reduce, replacement)); TF_RETURN_IF_ERROR( TryDecomposeAllReduce(Cast<HloAllReduceInstruction>(new_all_reduce), num_devices_per_host) .status()); return true; } } absl::StatusOr<bool> AllReduceBlueConnect::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { VLOG(1) << "Running AllReduceBlueConnect"; if (hlo_query::ContainsLayoutConstrainedAllReduce(*module)) { VLOG(1) << "Skip AllReduceBlueConnect because the module contains all-reduce " "with constrained layouts"; return false; } if (!module->config().has_static_device_assignment()) { VLOG(1) << "Skip AllReduceBlueConnect because the module doesn't have static " "device assignment"; return false; } std::vector<HloAllReduceInstruction*> all_reduces; for (HloComputation* computation : module->MakeNonfusionComputations(execution_threads)) { for (HloInstruction* instruction : computation->instructions()) { if (instruction->opcode() == HloOpcode::kAllReduce) { all_reduces.push_back(Cast<HloAllReduceInstruction>(instruction)); } } } bool changed = false; for (HloAllReduceInstruction* all_reduce : all_reduces) { TF_ASSIGN_OR_RETURN( bool all_reduce_changed, TryDecomposeAllReduce(all_reduce, num_devices_per_host_)); changed |= all_reduce_changed; } return changed; } }
#include "xla/service/gpu/all_reduce_blueconnect.h" #include <cstddef> #include <cstdint> #include <memory> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/computation_placer.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using ::tsl::testing::IsOkAndHolds; namespace m = ::xla::match; using AllReduceBlueConnectTest = HloTestBase; void SetModuleConfig(HloModule& module, size_t replica_count) { DeviceAssignment device_assignment(replica_count, 1); device_assignment.FillIota(0); auto& module_config = module.mutable_config(); module_config.set_replica_count(replica_count); module_config.set_static_device_assignment(device_assignment); } TEST_F(AllReduceBlueConnectTest, OneStage) { constexpr absl::string_view hlo_string = R"( HloModule module %add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY %comp { p0 = f32[4,4] parameter(0) ROOT crs = f32[4,4] all-reduce(p0), to_apply=add })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); SetModuleConfig(*module, 8); AllReduceBlueConnect pass(4); EXPECT_THAT(pass.Run(module.get()), IsOkAndHolds(true)); std::vector<std::vector<int64_t>> scatter_gather_groups = { {0, 1, 2, 3}, {4, 5, 6, 7}}; std::vector<std::vector<int64_t>> new_all_reduce_groups = { {0, 4}, {1, 5}, {2, 6}, {3, 7}}; auto bitcast = m::Bitcast(m::Parameter(0)).WithShape(F32, {16}); auto reduce_scatter = m::ReduceScatter(bitcast).WithShape(F32, {4}).WithReplicaGroups( scatter_gather_groups); auto all_reduce = m::AllReduce(reduce_scatter) .WithShape(F32, {4}) .WithReplicaGroups(new_all_reduce_groups); auto all_gather = m::AllGather(all_reduce) .WithShape(F32, {16}) .WithReplicaGroups(scatter_gather_groups); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Bitcast(all_gather).WithShape(F32, {4, 4}))); } TEST_F(AllReduceBlueConnectTest, TwoStage) { constexpr absl::string_view hlo_string = R"( HloModule module %add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY %comp { p0 = f32[4,4] parameter(0) ROOT crs = f32[4,4] all-reduce(p0), to_apply=add })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); SetModuleConfig(*module, 16); AllReduceBlueConnect pass(4); EXPECT_THAT(pass.Run(module.get()), IsOkAndHolds(true)); std::vector<std::vector<int64_t>> outer_scatter_gather_groups = { {0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}, {12, 13, 14, 15}}; std::vector<std::vector<int64_t>> inner_scatter_gather_groups = { {0, 4}, {8, 12}, {1, 5}, {9, 13}, {2, 6}, {10, 14}, {3, 7}, {11, 15}}; std::vector<std::vector<int64_t>> new_all_reduce_groups = { {0, 8}, {4, 12}, {1, 9}, {5, 13}, {2, 10}, {6, 14}, {3, 11}, {7, 15}}; auto bitcast0 = m::Bitcast(m::Parameter(0)).WithShape(F32, {16}); auto reduce_scatter0 = m::ReduceScatter(bitcast0).WithShape(F32, {4}).WithReplicaGroups( outer_scatter_gather_groups); auto bitcast1 = m::Bitcast(reduce_scatter0).WithShape(F32, {4}); auto reduce_scatter1 = m::ReduceScatter(bitcast1).WithShape(F32, {2}).WithReplicaGroups( inner_scatter_gather_groups); auto all_reduce = m::AllReduce(reduce_scatter1) .WithShape(F32, {2}) .WithReplicaGroups(new_all_reduce_groups); auto all_gather0 = m::AllGather(all_reduce) .WithShape(F32, {4}) .WithReplicaGroups(inner_scatter_gather_groups); auto bitcast2 = m::Bitcast(all_gather0).WithShape(F32, {4}); auto all_gather1 = m::AllGather(bitcast2).WithShape(F32, {16}).WithReplicaGroups( outer_scatter_gather_groups); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Bitcast(all_gather1).WithShape(F32, {4, 4}))); } TEST_F(AllReduceBlueConnectTest, TwoOperands) { constexpr absl::string_view hlo_string = R"( HloModule module %add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY %comp { p0 = f32[4,4] parameter(0) p1 = f32[4,4,2] parameter(1) ROOT crs = (f32[4,4], f32[4,4,2]) all-reduce(p0, p1), to_apply=add })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); SetModuleConfig(*module, 8); AllReduceBlueConnect pass(4); EXPECT_THAT(pass.Run(module.get()), IsOkAndHolds(true)); std::vector<std::vector<int64_t>> scatter_gather_groups = { {0, 1, 2, 3}, {4, 5, 6, 7}}; std::vector<std::vector<int64_t>> new_all_reduce_groups = { {0, 4}, {1, 5}, {2, 6}, {3, 7}}; auto bitcast0 = m::Bitcast(m::Parameter(0)).WithShape(F32, {16}); auto bitcast1 = m::Bitcast(m::Parameter(1)).WithShape(F32, {32}); Shape expected0 = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {4}), ShapeUtil::MakeShape(F32, {8})}); Shape expected1 = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {16}), ShapeUtil::MakeShape(F32, {32})}); auto reduce_scatter = m::ReduceScatter(bitcast0, bitcast1) .WithShapeEqualTo(&expected0) .WithReplicaGroups(scatter_gather_groups); auto all_reduce = m::AllReduce(m::GetTupleElement(reduce_scatter, 0), m::GetTupleElement(reduce_scatter, 1)) .WithShapeEqualTo(&expected0) .WithReplicaGroups(new_all_reduce_groups); auto all_gather = m::AllGather(m::GetTupleElement(all_reduce, 0), m::GetTupleElement(all_reduce, 1)) .WithShapeEqualTo(&expected1) .WithReplicaGroups(scatter_gather_groups); auto bitcast2 = m::Bitcast(m::GetTupleElement(all_gather, 0)).WithShape(F32, {4, 4}); auto bitcast3 = m::Bitcast(m::GetTupleElement(all_gather, 1)).WithShape(F32, {4, 4, 2}); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Tuple(bitcast2, bitcast3))); } TEST_F(AllReduceBlueConnectTest, DifferentNumLocalDevicesWithinReplicaGroup) { constexpr absl::string_view hlo_string = R"( HloModule module %add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY %comp { p0 = f32[4,4] parameter(0) ROOT crs = f32[4,4] all-reduce(p0), replica_groups={{0,1,2,7},{3,4,5,6}}, to_apply=add })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); SetModuleConfig(*module, 8); AllReduceBlueConnect pass(4); EXPECT_THAT(pass.Run(module.get()), IsOkAndHolds(false)); } TEST_F(AllReduceBlueConnectTest, DifferentNumLocalDevicesAcrossReplicaGroups) { constexpr absl::string_view hlo_string = R"( HloModule module %add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY %comp { p0 = f32[4,4] parameter(0) ROOT crs = f32[4,4] all-reduce(p0), replica_groups={{0,1,4,5},{2,3,6,7},{8,9,10,11},{12,13,14,15}}, to_apply=add })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); SetModuleConfig(*module, 16); AllReduceBlueConnect pass(4); EXPECT_THAT(pass.Run(module.get()), IsOkAndHolds(false)); } TEST_F(AllReduceBlueConnectTest, OperandIndivisible) { constexpr absl::string_view hlo_string = R"( HloModule module %add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY %comp { p0 = f32[4,4] parameter(0) p1 = f32[9] parameter(1) ROOT crs = (f32[4,4], f32[9]) all-reduce(p0, p1), to_apply=add })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); SetModuleConfig(*module, 8); AllReduceBlueConnect pass(4); EXPECT_THAT(pass.Run(module.get()), IsOkAndHolds(false)); } TEST_F(AllReduceBlueConnectTest, ControlDeps) { constexpr absl::string_view hlo_string = R"( HloModule module %add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY %comp { p0 = f32[4,4] parameter(0) p1 = f32[4,4] parameter(1) add = f32[4,4] add(p0, p1) crs = f32[4,4] all-reduce(p0), to_apply=add, control-predecessors={add} ROOT add1 = f32[4,4] add(crs, add), control-predecessors={crs} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); SetModuleConfig(*module, 8); const HloInstruction* ar = module->entry_computation()->root_instruction()->operand(0); auto expected_preds = ar->control_predecessors(); auto expected_succs = ar->control_successors(); AllReduceBlueConnect pass(4); EXPECT_THAT(pass.Run(module.get()), IsOkAndHolds(true)); std::vector<std::vector<int64_t>> scatter_gather_groups = { {0, 1, 2, 3}, {4, 5, 6, 7}}; std::vector<std::vector<int64_t>> new_all_reduce_groups = { {0, 4}, {1, 5}, {2, 6}, {3, 7}}; const HloInstruction *matched_rs, *matched_bitcast; auto bitcast = m::Bitcast(m::Parameter(0)).WithShape(F32, {16}); auto reduce_scatter = m::ReduceScatter(&matched_rs, bitcast) .WithShape(F32, {4}) .WithReplicaGroups(scatter_gather_groups); auto all_reduce = m::AllReduce(reduce_scatter) .WithShape(F32, {4}) .WithReplicaGroups(new_all_reduce_groups); auto all_gather = m::AllGather(all_reduce) .WithShape(F32, {16}) .WithReplicaGroups(scatter_gather_groups); HloInstruction* root = module->entry_computation()->root_instruction(); ASSERT_THAT(root, GmockMatch(m::Add())); EXPECT_THAT( root->operand(0), GmockMatch( m::Bitcast(&matched_bitcast, all_gather).WithShape(F32, {4, 4}))); EXPECT_THAT(matched_rs, GmockMatch(m::Op().WithControlDeps( absl::MakeSpan(expected_preds), {}))); EXPECT_THAT(matched_bitcast, GmockMatch(m::Op().WithControlDeps( {}, absl::MakeSpan(expected_succs)))); } } }
397
#ifndef TENSORFLOW_COMPILER_MLIR_QUANTIZATION_STABLEHLO_CC_CALIBRATION_REPRESENTATIVE_DATASET_H_ #define TENSORFLOW_COMPILER_MLIR_QUANTIZATION_STABLEHLO_CC_CALIBRATION_REPRESENTATIVE_DATASET_H_ #include <string> #include "absl/container/flat_hash_map.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/quantization_config.pb.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/quantization_options.pb.h" namespace stablehlo::quantization { absl::StatusOr<absl::flat_hash_map< std::string, tensorflow::quantization::RepresentativeDatasetFile>> CreateRepresentativeDatasetFileMap(absl::Span<const RepresentativeDatasetConfig> representative_dataset_configs); } #endif #include "tensorflow/compiler/mlir/quantization/stablehlo/cc/calibration/representative_dataset.h" #include <string> #include <utility> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/types/span.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/quantization_config.pb.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/quantization_options.pb.h" namespace stablehlo::quantization { using ::tensorflow::quantization::RepresentativeDatasetFile; absl::StatusOr<absl::flat_hash_map<std::string, RepresentativeDatasetFile>> CreateRepresentativeDatasetFileMap(absl::Span<const RepresentativeDatasetConfig> representative_dataset_configs) { absl::flat_hash_map<std::string, RepresentativeDatasetFile> repr_dataset_file_map{}; for (const RepresentativeDatasetConfig& dataset_config : representative_dataset_configs) { RepresentativeDatasetFile repr_dataset_file; repr_dataset_file.set_tfrecord_file_path(dataset_config.tf_record().path()); const std::string signature_key = dataset_config.has_signature_key() ? dataset_config.signature_key() : "serving_default"; if (repr_dataset_file_map.contains(signature_key)) { return absl::InvalidArgumentError( absl::StrCat("RepresentativeDatasetConfig should not contain " "duplicate signature key: ", signature_key)); } repr_dataset_file_map[signature_key] = std::move(repr_dataset_file); } return repr_dataset_file_map; } }
#include "tensorflow/compiler/mlir/quantization/stablehlo/cc/calibration/representative_dataset.h" #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/quantization_config.pb.h" #include "tsl/platform/status_matchers.h" namespace mlir::quant::stablehlo { namespace { using ::stablehlo::quantization::RepresentativeDatasetConfig; using ::tensorflow::quantization::RepresentativeDatasetFile; using ::testing::Contains; using ::testing::HasSubstr; using ::testing::Key; using ::testing::SizeIs; using ::testing::StrEq; using ::tsl::testing::IsOk; using ::tsl::testing::StatusIs; TEST(CreateRepresentativeDatasetFileMapTest, ConfigWithoutExplicitSignatureKeyMappedToServingDefault) { std::vector<RepresentativeDatasetConfig> representative_dataset_configs; RepresentativeDatasetConfig config{}; *(config.mutable_tf_record()->mutable_path()) = "test_path"; representative_dataset_configs.push_back(config); const absl::StatusOr< absl::flat_hash_map<std::string, RepresentativeDatasetFile>> representative_dataset_file_map = CreateRepresentativeDatasetFileMap(representative_dataset_configs); ASSERT_THAT(representative_dataset_file_map, IsOk()); ASSERT_THAT(*representative_dataset_file_map, SizeIs(1)); EXPECT_THAT(*representative_dataset_file_map, Contains(Key("serving_default"))); EXPECT_THAT(representative_dataset_file_map->at("serving_default") .tfrecord_file_path(), StrEq("test_path")); } TEST(CreateRepresentativeDatasetFileMapTest, ConfigWithExplicitSignatureKey) { std::vector<RepresentativeDatasetConfig> representative_dataset_configs; RepresentativeDatasetConfig config{}; config.set_signature_key("test_signature_key"); *(config.mutable_tf_record()->mutable_path()) = "test_path"; representative_dataset_configs.push_back(config); const absl::StatusOr< absl::flat_hash_map<std::string, RepresentativeDatasetFile>> representative_dataset_file_map = CreateRepresentativeDatasetFileMap(representative_dataset_configs); ASSERT_THAT(representative_dataset_file_map, IsOk()); ASSERT_THAT(*representative_dataset_file_map, SizeIs(1)); EXPECT_THAT(*representative_dataset_file_map, Contains(Key(StrEq("test_signature_key")))); EXPECT_THAT(representative_dataset_file_map->at("test_signature_key") .tfrecord_file_path(), StrEq("test_path")); } TEST(CreateRepresentativeDatasetFileMapTest, ConfigWithDuplicateSignatureKeyReturnsInvalidArgumentError) { std::vector<RepresentativeDatasetConfig> representative_dataset_configs; RepresentativeDatasetConfig config_1{}; config_1.set_signature_key("serving_default"); *(config_1.mutable_tf_record()->mutable_path()) = "test_path_1"; representative_dataset_configs.push_back(config_1); RepresentativeDatasetConfig config_2{}; *(config_2.mutable_tf_record()->mutable_path()) = "test_path_2"; representative_dataset_configs.push_back(config_2); const absl::StatusOr< absl::flat_hash_map<std::string, RepresentativeDatasetFile>> representative_dataset_file_map = CreateRepresentativeDatasetFileMap(representative_dataset_configs); EXPECT_THAT(representative_dataset_file_map, StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("duplicate signature key: serving_default"))); } } }
398
#ifndef XLA_SERVICE_GPU_RUNTIME_COPY_THUNK_H_ #define XLA_SERVICE_GPU_RUNTIME_COPY_THUNK_H_ #include <cstdint> #include <memory> #include <utility> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/synchronization/mutex.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/buffer_assignment.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/stream_executor/event.h" #include "xla/stream_executor/stream_executor.h" namespace xla { namespace gpu { class DeviceToDeviceCopyThunk : public Thunk { public: DeviceToDeviceCopyThunk(ThunkInfo thunk_info, const BufferAllocation::Slice& source_buffer, const BufferAllocation::Slice& destination_buffer, uint64_t mem_size); DeviceToDeviceCopyThunk(const DeviceToDeviceCopyThunk&) = delete; DeviceToDeviceCopyThunk& operator=(const DeviceToDeviceCopyThunk&) = delete; absl::Status ExecuteOnStream(const ExecuteParams& params) override; const BufferAllocation::Slice& source() const { return source_buffer_; } const BufferAllocation::Slice& destination() const { return destination_buffer_; } uint64_t size_bytes() const { return mem_size_; } private: const BufferAllocation::Slice source_buffer_; const BufferAllocation::Slice destination_buffer_; const uint64_t mem_size_; }; class CopyThunk : public Thunk { public: class AsyncEvents { public: absl::Status Emplace(se::StreamExecutor* executor, const HloInstruction* instr, std::unique_ptr<se::Event> event); absl::StatusOr<std::unique_ptr<se::Event>> Extract( se::StreamExecutor* executor, const HloInstruction* instr); private: using Key = std::pair<se::StreamExecutor*, const HloInstruction*>; absl::Mutex mutex_; absl::flat_hash_map<Key, std::unique_ptr<se::Event>> events_ ABSL_GUARDED_BY(mutex_); }; CopyThunk(ThunkInfo thunk_info, const BufferAllocation::Slice& source_buffer, const BufferAllocation::Slice& destination_buffer, uint64_t mem_size); absl::Status ExecuteOnStream(const ExecuteParams& params) override; const BufferAllocation::Slice& source() const { return source_buffer_; } const BufferAllocation::Slice& destination() const { return destination_buffer_; } uint64_t size_bytes() const { return mem_size_; } private: const BufferAllocation::Slice source_buffer_; const BufferAllocation::Slice destination_buffer_; const uint64_t mem_size_; }; class DeviceToHostCopyThunk : public CopyThunk { public: DeviceToHostCopyThunk(ThunkInfo thunk_info, const BufferAllocation::Slice& source_buffer, const BufferAllocation::Slice& destination_buffer, uint64_t mem_size, std::shared_ptr<CopyThunk::AsyncEvents> events, const HloInstruction* instr); absl::Status ExecuteOnStream(const ExecuteParams& params) override; private: std::shared_ptr<CopyThunk::AsyncEvents> async_events_; const HloInstruction* instr_; }; class HostToDeviceCopyThunk : public CopyThunk { public: HostToDeviceCopyThunk(ThunkInfo thunk_info, const BufferAllocation::Slice& source_buffer, const BufferAllocation::Slice& destination_buffer, uint64_t mem_size, std::shared_ptr<CopyThunk::AsyncEvents> events, const HloInstruction* instr); absl::Status ExecuteOnStream(const ExecuteParams& params) override; private: std::shared_ptr<CopyThunk::AsyncEvents> async_events_; const HloInstruction* instr_; }; class CopyDoneThunk : public Thunk { public: CopyDoneThunk(Thunk::Kind kind, ThunkInfo thunk_info, std::shared_ptr<CopyThunk::AsyncEvents> events, const HloInstruction* copy_start_instr); absl::Status ExecuteOnStream(const ExecuteParams& params) override; private: std::shared_ptr<CopyThunk::AsyncEvents> async_events_; const HloInstruction* copy_start_instr_; }; } } #endif #include "xla/service/gpu/runtime/copy_thunk.h" #include <cstdint> #include <memory> #include <utility> #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/buffer_assignment.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/event.h" #include "xla/stream_executor/stream_executor.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { DeviceToDeviceCopyThunk::DeviceToDeviceCopyThunk( ThunkInfo thunk_info, const BufferAllocation::Slice& source_buffer, const BufferAllocation::Slice& destination_buffer, uint64_t mem_size) : Thunk(Kind::kCopy, std::move(thunk_info)), source_buffer_(source_buffer), destination_buffer_(destination_buffer), mem_size_(mem_size) {} absl::Status DeviceToDeviceCopyThunk::ExecuteOnStream( const ExecuteParams& params) { se::DeviceMemoryBase destination_data = params.buffer_allocations->GetDeviceAddress(destination_buffer_); se::DeviceMemoryBase source_data = params.buffer_allocations->GetDeviceAddress(source_buffer_); VLOG(3) << "Memcpy D2D of size " << mem_size_ << " from " << source_data.opaque() << " to " << destination_data.opaque(); return params.stream->Memcpy(&destination_data, source_data, mem_size_); } CopyThunk::CopyThunk(ThunkInfo thunk_info, const BufferAllocation::Slice& source_buffer, const BufferAllocation::Slice& destination_buffer, uint64_t mem_size) : Thunk(Kind::kCopy, std::move(thunk_info)), source_buffer_(source_buffer), destination_buffer_(destination_buffer), mem_size_(mem_size) {} absl::Status CopyThunk::ExecuteOnStream(const ExecuteParams& params) { return absl::OkStatus(); } absl::Status CopyThunk::AsyncEvents::Emplace(se::StreamExecutor* executor, const HloInstruction* instr, std::unique_ptr<se::Event> event) { Key key = {executor, instr}; absl::MutexLock lock(&mutex_); VLOG(3) << "Emplace event " << event.get(); if (auto [it, inserted] = events_.try_emplace(key, std::move(event)); inserted) { return absl::OkStatus(); } return absl::InternalError("Async copy event already exists!"); } absl::StatusOr<std::unique_ptr<se::Event>> CopyThunk::AsyncEvents::Extract( se::StreamExecutor* executor, const HloInstruction* instr) { Key key = {executor, instr}; absl::MutexLock lock(&mutex_); if (auto event = events_.extract(key)) { VLOG(3) << "Extract event " << event.mapped().get(); return std::move(event.mapped()); } return absl::InternalError("Async copy event was not found!"); } DeviceToHostCopyThunk::DeviceToHostCopyThunk( ThunkInfo thunk_info, const BufferAllocation::Slice& source_buffer, const BufferAllocation::Slice& destination_buffer, uint64_t mem_size, std::shared_ptr<CopyThunk::AsyncEvents> async_events, const HloInstruction* instr) : CopyThunk(std::move(thunk_info), source_buffer, destination_buffer, mem_size), async_events_(std::move(async_events)), instr_(instr) {} absl::Status DeviceToHostCopyThunk::ExecuteOnStream( const ExecuteParams& params) { se::DeviceMemoryBase destination_data = params.buffer_allocations->GetDeviceAddress(destination()); se::DeviceMemoryBase source_data = params.buffer_allocations->GetDeviceAddress(source()); void* cpu_dst = destination_data.opaque(); TF_ASSIGN_OR_RETURN( se::Stream * stream, GetStreamForExecution(Thunk::execution_stream_id(), params)); TF_RETURN_IF_ERROR(stream->Memcpy(cpu_dst, source_data, size_bytes())); if (stream == params.stream) { VLOG(2) << "Memcpy D2H from the main stream"; return absl::OkStatus(); } VLOG(2) << "Memcpy D2H from the other stream"; se::StreamExecutor* executor = params.stream->parent(); TF_ASSIGN_OR_RETURN(auto event, executor->CreateEvent()); TF_RETURN_IF_ERROR(stream->RecordEvent(event.get())); VLOG(3) << "Emplace events: " << event.get() << " for instr: " << instr_->ToString(); return async_events_->Emplace(executor, instr_, std::move(event)); } HostToDeviceCopyThunk::HostToDeviceCopyThunk( ThunkInfo thunk_info, const BufferAllocation::Slice& source_buffer, const BufferAllocation::Slice& destination_buffer, uint64_t mem_size, std::shared_ptr<CopyThunk::AsyncEvents> async_events, const HloInstruction* instr) : CopyThunk(std::move(thunk_info), source_buffer, destination_buffer, mem_size), async_events_(std::move(async_events)), instr_(instr) {} absl::Status HostToDeviceCopyThunk::ExecuteOnStream( const ExecuteParams& params) { se::DeviceMemoryBase destination_data = params.buffer_allocations->GetDeviceAddress(destination()); se::DeviceMemoryBase source_data = params.buffer_allocations->GetDeviceAddress(source()); void* cpu_src = source_data.opaque(); TF_ASSIGN_OR_RETURN( se::Stream * stream, GetStreamForExecution(Thunk::execution_stream_id(), params)); TF_RETURN_IF_ERROR(stream->Memcpy(&destination_data, cpu_src, size_bytes())); if (stream == params.stream) { VLOG(2) << "Memcpy H2D from the main stream"; return absl::OkStatus(); } VLOG(2) << "Memcpy H2D from the other stream"; se::StreamExecutor* executor = params.stream->parent(); TF_ASSIGN_OR_RETURN(auto event, executor->CreateEvent()); TF_RETURN_IF_ERROR(stream->RecordEvent(event.get())); VLOG(3) << "Emplace events: " << event.get() << " for instr: " << instr_->ToString(); return async_events_->Emplace(executor, instr_, std::move(event)); } CopyDoneThunk::CopyDoneThunk( Thunk::Kind kind, ThunkInfo thunk_info, std::shared_ptr<CopyThunk::AsyncEvents> async_events, const HloInstruction* copy_start_instr) : Thunk(kind, std::move(thunk_info)), async_events_(std::move(async_events)), copy_start_instr_(copy_start_instr) {} absl::Status CopyDoneThunk::ExecuteOnStream(const ExecuteParams& params) { VLOG(3) << "CopyDone thunk between a host and a device for: " << copy_start_instr_->ToString(); se::StreamExecutor* executor = params.stream->parent(); TF_ASSIGN_OR_RETURN(std::unique_ptr<se::Event> event, async_events_->Extract(executor, copy_start_instr_)); return params.stream->WaitFor(event.get()); } } }
#include "xla/service/cpu/runtime/copy_thunk.h" #include <cstddef> #include <vector> #include "xla/layout_util.h" #include "xla/service/buffer_assignment.h" #include "xla/service/cpu/runtime/buffer_allocations.h" #include "xla/service/cpu/runtime/thunk.h" #include "xla/service/maybe_owning_device_memory.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_memory.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::cpu { namespace { TEST(CopyThunkTest, CopySameShape) { std::vector<MaybeOwningDeviceMemory> buffers; std::vector<float> src = {1.0, 2.0, 3.0, 4.0}; std::vector<float> dst(4, 0.0); size_t size_in_bytes = src.size() * sizeof(float); buffers.emplace_back(se::DeviceMemoryBase(src.data(), size_in_bytes)); buffers.emplace_back(se::DeviceMemoryBase(dst.data(), size_in_bytes)); BufferAllocations allocations(buffers); BufferAllocation src_alloc(0, size_in_bytes, 0); BufferAllocation dst_alloc(1, size_in_bytes, 0); BufferAllocation::Slice src_slice(&src_alloc, 0, size_in_bytes); BufferAllocation::Slice dst_slice(&dst_alloc, 0, size_in_bytes); Shape shape = ShapeUtil::MakeShape(F32, {2, 2}); TF_ASSERT_OK_AND_ASSIGN( auto thunk, CopyThunk::Create({"copy"}, src_slice, shape, dst_slice, shape)); Thunk::ExecuteParams params = {nullptr, &allocations}; auto execute_event = thunk->Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_FALSE(execute_event.IsError()); EXPECT_EQ(src, dst); } TEST(CopyThunkTest, CopyTransposed) { std::vector<MaybeOwningDeviceMemory> buffers; std::vector<float> src = {1.0, 2.0, 3.0, 4.0}; std::vector<float> dst(4, 0.0); size_t size_in_bytes = src.size() * sizeof(float); buffers.emplace_back(se::DeviceMemoryBase(src.data(), size_in_bytes)); buffers.emplace_back(se::DeviceMemoryBase(dst.data(), size_in_bytes)); BufferAllocations allocations(buffers); BufferAllocation src_alloc(0, size_in_bytes, 0); BufferAllocation dst_alloc(1, size_in_bytes, 0); BufferAllocation::Slice src_slice(&src_alloc, 0, size_in_bytes); BufferAllocation::Slice dst_slice(&dst_alloc, 0, size_in_bytes); Shape src_shape = ShapeUtil::MakeShape(F32, {2, 2}); *src_shape.mutable_layout() = LayoutUtil::MakeLayout({0, 1}); Shape dst_shape = ShapeUtil::MakeShape(F32, {2, 2}); TF_ASSERT_OK_AND_ASSIGN( auto thunk, CopyThunk::Create({"copy"}, src_slice, src_shape, dst_slice, dst_shape)); Thunk::ExecuteParams params = {nullptr, &allocations}; auto execute_event = thunk->Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_FALSE(execute_event.IsError()); std::vector<float> expected = {1.0, 3.0, 2.0, 4.0}; EXPECT_EQ(expected, dst); } } }
399
#include "gmock/internal/gmock-internal-utils.h" #include <ctype.h> #include <array> #include <cctype> #include <cstdint> #include <cstring> #include <iostream> #include <ostream> #include <string> #include <utility> #include <vector> #include "gmock/gmock.h" #include "gmock/internal/gmock-port.h" #include "gtest/gtest.h" namespace testing { namespace internal { GTEST_API_ std::string JoinAsKeyValueTuple( const std::vector<const char*>& names, const Strings& values) { GTEST_CHECK_(names.size() == values.size()); if (values.empty()) { return ""; } const auto build_one = [&](const size_t i) { return std::string(names[i]) + ": " + values[i]; }; std::string result = "(" + build_one(0); for (size_t i = 1; i < values.size(); i++) { result += ", "; result += build_one(i); } result += ")"; return result; } GTEST_API_ std::string ConvertIdentifierNameToWords(const char* id_name) { std::string result; char prev_char = '\0'; for (const char* p = id_name; *p != '\0'; prev_char = *(p++)) { const bool starts_new_word = IsUpper(*p) || (!IsAlpha(prev_char) && IsLower(*p)) || (!IsDigit(prev_char) && IsDigit(*p)); if (IsAlNum(*p)) { if (starts_new_word && !result.empty()) result += ' '; result += ToLower(*p); } } return result; } class GoogleTestFailureReporter : public FailureReporterInterface { public: void ReportFailure(FailureType type, const char* file, int line, const std::string& message) override { AssertHelper(type == kFatal ? TestPartResult::kFatalFailure : TestPartResult::kNonFatalFailure, file, line, message.c_str()) = Message(); if (type == kFatal) { posix::Abort(); } } }; GTEST_API_ FailureReporterInterface* GetFailureReporter() { static FailureReporterInterface* const failure_reporter = new GoogleTestFailureReporter(); return failure_reporter; } static GTEST_DEFINE_STATIC_MUTEX_(g_log_mutex); GTEST_API_ bool LogIsVisible(LogSeverity severity) { if (GMOCK_FLAG_GET(verbose) == kInfoVerbosity) { return true; } else if (GMOCK_FLAG_GET(verbose) == kErrorVerbosity) { return false; } else { return severity == kWarning; } } GTEST_API_ void Log(LogSeverity severity, const std::string& message, int stack_frames_to_skip) { if (!LogIsVisible(severity)) return; MutexLock l(&g_log_mutex); if (severity == kWarning) { std::cout << "\nGMOCK WARNING:"; } if (message.empty() || message[0] != '\n') { std::cout << "\n"; } std::cout << message; if (stack_frames_to_skip >= 0) { #ifdef NDEBUG const int actual_to_skip = 0; #else const int actual_to_skip = stack_frames_to_skip + 1; #endif if (!message.empty() && *message.rbegin() != '\n') { std::cout << "\n"; } std::cout << "Stack trace:\n" << ::testing::internal::GetCurrentOsStackTraceExceptTop( actual_to_skip); } std::cout << ::std::flush; } GTEST_API_ WithoutMatchers GetWithoutMatchers() { return WithoutMatchers(); } GTEST_API_ void IllegalDoDefault(const char* file, int line) { internal::Assert( false, file, line, "You are using DoDefault() inside a composite action like " "DoAll() or WithArgs(). This is not supported for technical " "reasons. Please instead spell out the default action, or " "assign the default action to an Action variable and use " "the variable in various places."); } constexpr char UndoWebSafeEncoding(char c) { return c == '-' ? '+' : c == '_' ? '/' : c; } constexpr char UnBase64Impl(char c, const char* const base64, char carry) { return *base64 == 0 ? static_cast<char>(65) : *base64 == c ? carry : UnBase64Impl(c, base64 + 1, static_cast<char>(carry + 1)); } template <size_t... I> constexpr std::array<char, 256> UnBase64Impl(std::index_sequence<I...>, const char* const base64) { return { {UnBase64Impl(UndoWebSafeEncoding(static_cast<char>(I)), base64, 0)...}}; } constexpr std::array<char, 256> UnBase64(const char* const base64) { return UnBase64Impl(std::make_index_sequence<256>{}, base64); } static constexpr char kBase64[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; static constexpr std::array<char, 256> kUnBase64 = UnBase64(kBase64); bool Base64Unescape(const std::string& encoded, std::string* decoded) { decoded->clear(); size_t encoded_len = encoded.size(); decoded->reserve(3 * (encoded_len / 4) + (encoded_len % 4)); int bit_pos = 0; char dst = 0; for (int src : encoded) { if (std::isspace(src) || src == '=') { continue; } char src_bin = kUnBase64[static_cast<size_t>(src)]; if (src_bin >= 64) { decoded->clear(); return false; } if (bit_pos == 0) { dst |= static_cast<char>(src_bin << 2); bit_pos = 6; } else { dst |= static_cast<char>(src_bin >> (bit_pos - 2)); decoded->push_back(dst); dst = static_cast<char>(src_bin << (10 - bit_pos)); bit_pos = (bit_pos + 6) % 8; } } return true; } } }
#include "gmock/internal/gmock-internal-utils.h" #include <stdlib.h> #include <cstdint> #include <map> #include <memory> #include <sstream> #include <string> #include <tuple> #include <vector> #include "gmock/gmock.h" #include "gmock/internal/gmock-port.h" #include "gtest/gtest-spi.h" #include "gtest/gtest.h" #define GTEST_IMPLEMENTATION_ 1 #include "src/gtest-internal-inl.h" #undef GTEST_IMPLEMENTATION_ #ifdef GTEST_OS_CYGWIN #include <sys/types.h> #endif namespace proto2 { class Message; } namespace testing { namespace internal { namespace { TEST(JoinAsKeyValueTupleTest, JoinsEmptyTuple) { EXPECT_EQ("", JoinAsKeyValueTuple({}, Strings())); } TEST(JoinAsKeyValueTupleTest, JoinsOneTuple) { EXPECT_EQ("(a: 1)", JoinAsKeyValueTuple({"a"}, {"1"})); } TEST(JoinAsKeyValueTupleTest, JoinsTwoTuple) { EXPECT_EQ("(a: 1, b: 2)", JoinAsKeyValueTuple({"a", "b"}, {"1", "2"})); } TEST(JoinAsKeyValueTupleTest, JoinsTenTuple) { EXPECT_EQ( "(a: 1, b: 2, c: 3, d: 4, e: 5, f: 6, g: 7, h: 8, i: 9, j: 10)", JoinAsKeyValueTuple({"a", "b", "c", "d", "e", "f", "g", "h", "i", "j"}, {"1", "2", "3", "4", "5", "6", "7", "8", "9", "10"})); } TEST(ConvertIdentifierNameToWordsTest, WorksWhenNameContainsNoWord) { EXPECT_EQ("", ConvertIdentifierNameToWords("")); EXPECT_EQ("", ConvertIdentifierNameToWords("_")); EXPECT_EQ("", ConvertIdentifierNameToWords("__")); } TEST(ConvertIdentifierNameToWordsTest, WorksWhenNameContainsDigits) { EXPECT_EQ("1", ConvertIdentifierNameToWords("_1")); EXPECT_EQ("2", ConvertIdentifierNameToWords("2_")); EXPECT_EQ("34", ConvertIdentifierNameToWords("_34_")); EXPECT_EQ("34 56", ConvertIdentifierNameToWords("_34_56")); } TEST(ConvertIdentifierNameToWordsTest, WorksWhenNameContainsCamelCaseWords) { EXPECT_EQ("a big word", ConvertIdentifierNameToWords("ABigWord")); EXPECT_EQ("foo bar", ConvertIdentifierNameToWords("FooBar")); EXPECT_EQ("foo", ConvertIdentifierNameToWords("Foo_")); EXPECT_EQ("foo bar", ConvertIdentifierNameToWords("_Foo_Bar_")); EXPECT_EQ("foo and bar", ConvertIdentifierNameToWords("_Foo__And_Bar")); } TEST(ConvertIdentifierNameToWordsTest, WorksWhenNameContains_SeparatedWords) { EXPECT_EQ("foo bar", ConvertIdentifierNameToWords("foo_bar")); EXPECT_EQ("foo", ConvertIdentifierNameToWords("_foo_")); EXPECT_EQ("foo bar", ConvertIdentifierNameToWords("_foo_bar_")); EXPECT_EQ("foo and bar", ConvertIdentifierNameToWords("_foo__and_bar")); } TEST(ConvertIdentifierNameToWordsTest, WorksWhenNameIsMixture) { EXPECT_EQ("foo bar 123", ConvertIdentifierNameToWords("Foo_bar123")); EXPECT_EQ("chapter 11 section 1", ConvertIdentifierNameToWords("_Chapter11Section_1_")); } TEST(GetRawPointerTest, WorksForSmartPointers) { const char* const raw_p1 = new const char('a'); const std::unique_ptr<const char> p1(raw_p1); EXPECT_EQ(raw_p1, GetRawPointer(p1)); double* const raw_p2 = new double(2.5); const std::shared_ptr<double> p2(raw_p2); EXPECT_EQ(raw_p2, GetRawPointer(p2)); } TEST(GetRawPointerTest, WorksForRawPointers) { int* p = nullptr; EXPECT_TRUE(nullptr == GetRawPointer(p)); int n = 1; EXPECT_EQ(&n, GetRawPointer(&n)); } TEST(GetRawPointerTest, WorksForStdReferenceWrapper) { int n = 1; EXPECT_EQ(&n, GetRawPointer(std::ref(n))); EXPECT_EQ(&n, GetRawPointer(std::cref(n))); } class Base {}; class Derived : public Base {}; TEST(KindOfTest, Bool) { EXPECT_EQ(kBool, GMOCK_KIND_OF_(bool)); } TEST(KindOfTest, Integer) { EXPECT_EQ(kInteger, GMOCK_KIND_OF_(char)); EXPECT_EQ(kInteger, GMOCK_KIND_OF_(signed char)); EXPECT_EQ(kInteger, GMOCK_KIND_OF_(unsigned char)); EXPECT_EQ(kInteger, GMOCK_KIND_OF_(short)); EXPECT_EQ(kInteger, GMOCK_KIND_OF_(unsigned short)); EXPECT_EQ(kInteger, GMOCK_KIND_OF_(int)); EXPECT_EQ(kInteger, GMOCK_KIND_OF_(unsigned int)); EXPECT_EQ(kInteger, GMOCK_KIND_OF_(long)); EXPECT_EQ(kInteger, GMOCK_KIND_OF_(unsigned long)); EXPECT_EQ(kInteger, GMOCK_KIND_OF_(long long)); EXPECT_EQ(kInteger, GMOCK_KIND_OF_(unsigned long long)); EXPECT_EQ(kInteger, GMOCK_KIND_OF_(wchar_t)); EXPECT_EQ(kInteger, GMOCK_KIND_OF_(size_t)); #if defined(GTEST_OS_LINUX) || defined(GTEST_OS_MAC) || defined(GTEST_OS_CYGWIN) EXPECT_EQ(kInteger, GMOCK_KIND_OF_(ssize_t)); #endif } TEST(KindOfTest, FloatingPoint) { EXPECT_EQ(kFloatingPoint, GMOCK_KIND_OF_(float)); EXPECT_EQ(kFloatingPoint, GMOCK_KIND_OF_(double)); EXPECT_EQ(kFloatingPoint, GMOCK_KIND_OF_(long double)); } TEST(KindOfTest, Other) { EXPECT_EQ(kOther, GMOCK_KIND_OF_(void*)); EXPECT_EQ(kOther, GMOCK_KIND_OF_(char**)); EXPECT_EQ(kOther, GMOCK_KIND_OF_(Base)); } TEST(LosslessArithmeticConvertibleTest, BoolToBool) { EXPECT_TRUE((LosslessArithmeticConvertible<bool, bool>::value)); } TEST(LosslessArithmeticConvertibleTest, BoolToInteger) { EXPECT_TRUE((LosslessArithmeticConvertible<bool, char>::value)); EXPECT_TRUE((LosslessArithmeticConvertible<bool, int>::value)); EXPECT_TRUE( (LosslessArithmeticConvertible<bool, unsigned long>::value)); } TEST(LosslessArithmeticConvertibleTest, BoolToFloatingPoint) { EXPECT_TRUE((LosslessArithmeticConvertible<bool, float>::value)); EXPECT_TRUE((LosslessArithmeticConvertible<bool, double>::value)); } TEST(LosslessArithmeticConvertibleTest, IntegerToBool) { EXPECT_FALSE((LosslessArithmeticConvertible<unsigned char, bool>::value)); EXPECT_FALSE((LosslessArithmeticConvertible<int, bool>::value)); } TEST(LosslessArithmeticConvertibleTest, IntegerToInteger) { EXPECT_TRUE((LosslessArithmeticConvertible<unsigned char, int>::value)); EXPECT_TRUE((LosslessArithmeticConvertible<unsigned short, uint64_t>::value)); EXPECT_FALSE( (LosslessArithmeticConvertible<short, uint64_t>::value)); EXPECT_FALSE((LosslessArithmeticConvertible<signed char, unsigned int>::value)); EXPECT_TRUE( (LosslessArithmeticConvertible<unsigned char, unsigned char>::value)); EXPECT_TRUE((LosslessArithmeticConvertible<int, int>::value)); EXPECT_TRUE((LosslessArithmeticConvertible<wchar_t, wchar_t>::value)); EXPECT_TRUE((LosslessArithmeticConvertible<unsigned long, unsigned long>::value)); EXPECT_FALSE( (LosslessArithmeticConvertible<unsigned char, signed char>::value)); EXPECT_FALSE((LosslessArithmeticConvertible<int, unsigned int>::value)); EXPECT_FALSE((LosslessArithmeticConvertible<uint64_t, int64_t>::value)); EXPECT_FALSE((LosslessArithmeticConvertible<long, char>::value)); EXPECT_FALSE((LosslessArithmeticConvertible<int, signed char>::value)); EXPECT_FALSE((LosslessArithmeticConvertible<int64_t, unsigned int>::value)); } TEST(LosslessArithmeticConvertibleTest, IntegerToFloatingPoint) { EXPECT_FALSE((LosslessArithmeticConvertible<char, float>::value)); EXPECT_FALSE((LosslessArithmeticConvertible<int, double>::value)); EXPECT_FALSE( (LosslessArithmeticConvertible<short, long double>::value)); } TEST(LosslessArithmeticConvertibleTest, FloatingPointToBool) { EXPECT_FALSE((LosslessArithmeticConvertible<float, bool>::value)); EXPECT_FALSE((LosslessArithmeticConvertible<double, bool>::value)); } TEST(LosslessArithmeticConvertibleTest, FloatingPointToInteger) { EXPECT_FALSE((LosslessArithmeticConvertible<float, long>::value)); EXPECT_FALSE((LosslessArithmeticConvertible<double, int64_t>::value)); EXPECT_FALSE((LosslessArithmeticConvertible<long double, int>::value)); } TEST(LosslessArithmeticConvertibleTest, FloatingPointToFloatingPoint) { EXPECT_TRUE((LosslessArithmeticConvertible<float, double>::value)); EXPECT_TRUE((LosslessArithmeticConvertible<float, long double>::value)); EXPECT_TRUE((LosslessArithmeticConvertible<double, long double>::value)); EXPECT_TRUE((LosslessArithmeticConvertible<float, float>::value)); EXPECT_TRUE((LosslessArithmeticConvertible<double, double>::value)); EXPECT_FALSE((LosslessArithmeticConvertible<double, float>::value)); GTEST_INTENTIONAL_CONST_COND_PUSH_() if (sizeof(double) == sizeof(long double)) { GTEST_INTENTIONAL_CONST_COND_POP_() EXPECT_TRUE((LosslessArithmeticConvertible<long double, double>::value)); } else { EXPECT_FALSE((LosslessArithmeticConvertible<long double, double>::value)); } } TEST(TupleMatchesTest, WorksForSize0) { std::tuple<> matchers; std::tuple<> values; EXPECT_TRUE(TupleMatches(matchers, values)); } TEST(TupleMatchesTest, WorksForSize1) { std::tuple<Matcher<int>> matchers(Eq(1)); std::tuple<int> values1(1), values2(2); EXPECT_TRUE(TupleMatches(matchers, values1)); EXPECT_FALSE(TupleMatches(matchers, values2)); } TEST(TupleMatchesTest, WorksForSize2) { std::tuple<Matcher<int>, Matcher<char>> matchers(Eq(1), Eq('a')); std::tuple<int, char> values1(1, 'a'), values2(1, 'b'), values3(2, 'a'), values4(2, 'b'); EXPECT_TRUE(TupleMatches(matchers, values1)); EXPECT_FALSE(TupleMatches(matchers, values2)); EXPECT_FALSE(TupleMatches(matchers, values3)); EXPECT_FALSE(TupleMatches(matchers, values4)); } TEST(TupleMatchesTest, WorksForSize5) { std::tuple<Matcher<int>, Matcher<char>, Matcher<bool>, Matcher<long>, Matcher<std::string>> matchers(Eq(1), Eq('a'), Eq(true), Eq(2L), Eq("hi")); std::tuple<int, char, bool, long, std::string> values1(1, 'a', true, 2L, "hi"), values2(1, 'a', true, 2L, "hello"), values3(2, 'a', true, 2L, "hi"); EXPECT_TRUE(TupleMatches(matchers, values1)); EXPECT_FALSE(TupleMatches(matchers, values2)); EXPECT_FALSE(TupleMatches(matchers, values3)); } TEST(AssertTest, SucceedsOnTrue) { Assert(true, __FILE__, __LINE__, "This should succeed."); Assert(true, __FILE__, __LINE__); } TEST(AssertTest, FailsFatallyOnFalse) { EXPECT_DEATH_IF_SUPPORTED( { Assert(false, __FILE__, __LINE__, "This should fail."); }, ""); EXPECT_DEATH_IF_SUPPORTED({ Assert(false, __FILE__, __LINE__); }, ""); } TEST(ExpectTest, SucceedsOnTrue) { Expect(true, __FILE__, __LINE__, "This should succeed."); Expect(true, __FILE__, __LINE__); } TEST(ExpectTest, FailsNonfatallyOnFalse) { EXPECT_NONFATAL_FAILURE( { Expect(false, __FILE__, __LINE__, "This should fail."); }, "This should fail"); EXPECT_NONFATAL_FAILURE( { Expect(false, __FILE__, __LINE__); }, "Expectation failed"); } class LogIsVisibleTest : public ::testing::Test { protected: void SetUp() override { original_verbose_ = GMOCK_FLAG_GET(verbose); } void TearDown() override { GMOCK_FLAG_SET(verbose, original_verbose_); } std::string original_verbose_; }; TEST_F(LogIsVisibleTest, AlwaysReturnsTrueIfVerbosityIsInfo) { GMOCK_FLAG_SET(verbose, kInfoVerbosity); EXPECT_TRUE(LogIsVisible(kInfo)); EXPECT_TRUE(LogIsVisible(kWarning)); } TEST_F(LogIsVisibleTest, AlwaysReturnsFalseIfVerbosityIsError) { GMOCK_FLAG_SET(verbose, kErrorVerbosity); EXPECT_FALSE(LogIsVisible(kInfo)); EXPECT_FALSE(LogIsVisible(kWarning)); } TEST_F(LogIsVisibleTest, WorksWhenVerbosityIsWarning) { GMOCK_FLAG_SET(verbose, kWarningVerbosity); EXPECT_FALSE(LogIsVisible(kInfo)); EXPECT_TRUE(LogIsVisible(kWarning)); } #if GTEST_HAS_STREAM_REDIRECTION void TestLogWithSeverity(const std::string& verbosity, LogSeverity severity, bool should_print) { const std::string old_flag = GMOCK_FLAG_GET(verbose); GMOCK_FLAG_SET(verbose, verbosity); CaptureStdout(); Log(severity, "Test log.\n", 0); if (should_print) { EXPECT_THAT( GetCapturedStdout().c_str(), ContainsRegex(severity == kWarning ? "^\nGMOCK WARNING:\nTest log\\.\nStack trace:\n" : "^\nTest log\\.\nStack trace:\n")); } else { EXPECT_STREQ("", GetCapturedStdout().c_str()); } GMOCK_FLAG_SET(verbose, old_flag); } TEST(LogTest, NoStackTraceWhenStackFramesToSkipIsNegative) { const std::string saved_flag = GMOCK_FLAG_GET(verbose); GMOCK_FLAG_SET(verbose, kInfoVerbosity); CaptureStdout(); Log(kInfo, "Test log.\n", -1); EXPECT_STREQ("\nTest log.\n", GetCapturedStdout().c_str()); GMOCK_FLAG_SET(verbose, saved_flag); } struct MockStackTraceGetter : testing::internal::OsStackTraceGetterInterface { std::string CurrentStackTrace(int max_depth, int skip_count) override { return (testing::Message() << max_depth << "::" << skip_count << "\n") .GetString(); } void UponLeavingGTest() override {} }; TEST(LogTest, NoSkippingStackFrameInOptMode) { MockStackTraceGetter* mock_os_stack_trace_getter = new MockStackTraceGetter; GetUnitTestImpl()->set_os_stack_trace_getter(mock_os_stack_trace_getter); CaptureStdout(); Log(kWarning, "Test log.\n", 100); const std::string log = GetCapturedStdout(); std::string expected_trace = (testing::Message() << GTEST_FLAG_GET(stack_trace_depth) << "::") .GetString(); std::string expected_message = "\nGMOCK WARNING:\n" "Test log.\n" "Stack trace:\n" + expected_trace; EXPECT_THAT(log, HasSubstr(expected_message)); int skip_count = atoi(log.substr(expected_message.size()).c_str()); #if defined(NDEBUG) const int expected_skip_count = 0; #else const int expected_skip_count = 100; #endif EXPECT_THAT(skip_count, AllOf(Ge(expected_skip_count), Le(expected_skip_count + 10))); GetUnitTestImpl()->set_os_stack_trace_getter(nullptr); } TEST(LogTest, AllLogsArePrintedWhenVerbosityIsInfo) { TestLogWithSeverity(kInfoVerbosity, kInfo, true); TestLogWithSeverity(kInfoVerbosity, kWarning, true); } TEST(LogTest, OnlyWarningsArePrintedWhenVerbosityIsWarning) { TestLogWithSeverity(kWarningVerbosity, kInfo, false); TestLogWithSeverity(kWarningVerbosity, kWarning, true); } TEST(LogTest, NoLogsArePrintedWhenVerbosityIsError) { TestLogWithSeverity(kErrorVerbosity, kInfo, false); TestLogWithSeverity(kErrorVerbosity, kWarning, false); } TEST(LogTest, OnlyWarningsArePrintedWhenVerbosityIsInvalid) { TestLogWithSeverity("invalid", kInfo, false); TestLogWithSeverity("invalid", kWarning, true); } std::string GrabOutput(void (*logger)(), const char* verbosity) { const std::string saved_flag = GMOCK_FLAG_GET(verbose); GMOCK_FLAG_SET(verbose, verbosity); CaptureStdout(); logger(); GMOCK_FLAG_SET(verbose, saved_flag); return GetCapturedStdout(); } class DummyMock { public: MOCK_METHOD0(TestMethod, void()); MOCK_METHOD1(TestMethodArg, void(int dummy)); }; void ExpectCallLogger() { DummyMock mock; EXPECT_CALL(mock, TestMethod()); mock.TestMethod(); } TEST(ExpectCallTest, LogsWhenVerbosityIsInfo) { EXPECT_THAT(std::string(GrabOutput(ExpectCallLogger, kInfoVerbosity)), HasSubstr("EXPECT_CALL(mock, TestMethod())")); } TEST(ExpectCallTest, DoesNotLogWhenVerbosityIsWarning) { EXPECT_STREQ("", GrabOutput(ExpectCallLogger, kWarningVerbosity).c_str()); } TEST(ExpectCallTest, DoesNotLogWhenVerbosityIsError) { EXPECT_STREQ("", GrabOutput(ExpectCallLogger, kErrorVerbosity).c_str()); } void OnCallLogger() { DummyMock mock; ON_CALL(mock, TestMethod()); } TEST(OnCallTest, LogsWhenVerbosityIsInfo) { EXPECT_THAT(std::string(GrabOutput(OnCallLogger, kInfoVerbosity)), HasSubstr("ON_CALL(mock, TestMethod())")); } TEST(OnCallTest, DoesNotLogWhenVerbosityIsWarning) { EXPECT_STREQ("", GrabOutput(OnCallLogger, kWarningVerbosity).c_str()); } TEST(OnCallTest, DoesNotLogWhenVerbosityIsError) { EXPECT_STREQ("", GrabOutput(OnCallLogger, kErrorVerbosity).c_str()); } void OnCallAnyArgumentLogger() { DummyMock mock; ON_CALL(mock, TestMethodArg(_)); } TEST(OnCallTest, LogsAnythingArgument) { EXPECT_THAT(std::string(GrabOutput(OnCallAnyArgumentLogger, kInfoVerbosity)), HasSubstr("ON_CALL(mock, TestMethodArg(_)")); } #endif TEST(StlContainerViewTest, WorksForStlContainer) { StaticAssertTypeEq<std::vector<int>, StlContainerView<std::vector<int>>::type>(); StaticAssertTypeEq<const std::vector<double>&, StlContainerView<std::vector<double>>::const_reference>(); typedef std::vector<char> Chars; Chars v1; const Chars& v2(StlContainerView<Chars>::ConstReference(v1)); EXPECT_EQ(&v1, &v2); v1.push_back('a'); Chars v3 = StlContainerView<Chars>::Copy(v1); EXPECT_THAT(v3, Eq(v3)); } TEST(StlContainerViewTest, WorksForStaticNativeArray) { StaticAssertTypeEq<NativeArray<int>, StlContainerView<int[3]>::type>(); StaticAssertTypeEq<NativeArray<double>, StlContainerView<const double[4]>::type>(); StaticAssertTypeEq<NativeArray<char[3]>, StlContainerView<const char[2][3]>::type>(); StaticAssertTypeEq<const NativeArray<int>, StlContainerView<int[2]>::const_reference>(); int a1[3] = {0, 1, 2}; NativeArray<int> a2 = StlContainerView<int[3]>::ConstReference(a1); EXPECT_EQ(3U, a2.size()); EXPECT_EQ(a1, a2.begin()); const NativeArray<int> a3 = StlContainerView<int[3]>::Copy(a1); ASSERT_EQ(3U, a3.size()); EXPECT_EQ(0, a3.begin()[0]); EXPECT_EQ(1, a3.begin()[1]); EXPECT_EQ(2, a3.begin()[2]); a1[0] = 3; EXPECT_EQ(0, a3.begin()[0]); } TEST(StlContainerViewTest, WorksForDynamicNativeArray) { StaticAssertTypeEq<NativeArray<int>, StlContainerView<std::tuple<const int*, size_t>>::type>(); StaticAssertTypeEq< NativeArray<double>, StlContainerView<std::tuple<std::shared_ptr<double>, int>>::type>(); StaticAssertTypeEq< const NativeArray<int>, StlContainerView<std::tuple<const int*, int>>::const_reference>(); int a1[3] = {0, 1, 2}; const int* const p1 = a1; NativeArray<int> a2 = StlContainerView<std::tuple<const int*, int>>::ConstReference( std::make_tuple(p1, 3)); EXPECT_EQ(3U, a2.size()); EXPECT_EQ(a1, a2.begin()); const NativeArray<int> a3 = StlContainerView<std::tuple<int*, size_t>>::Copy( std::make_tuple(static_cast<int*>(a1), 3)); ASSERT_EQ(3U, a3.size()); EXPECT_EQ(0, a3.begin()[0]); EXPECT_EQ(1, a3.begin()[1]); EXPECT_EQ(2, a3.begin()[2]); a1[0] = 3; EXPECT_EQ(0, a3.begin()[0]); } TEST(FunctionTest, Nullary) { typedef Function<int()> F; EXPECT_EQ(0u, F::ArgumentCount); EXPECT_TRUE((std::is_same<int, F::Result>::value)); EXPECT_TRUE((std::is_same<std::tuple<>, F::ArgumentTuple>::value)); EXPECT_TRUE((std::is_same<std::tuple<>, F::ArgumentMatcherTuple>::value)); EXPECT_TRUE((std::is_same<void(), F::MakeResultVoid>::value)); EXPECT_TRUE((std::is_same<IgnoredValue(), F::MakeResultIgnoredValue>::value)); } TEST(FunctionTest, Unary) { typedef Function<int(bool)> F; EXPECT_EQ(1u, F::ArgumentCount); EXPECT_TRUE((std::is_same<int, F::Result>::value)); EXPECT_TRUE((std::is_same<bool, F::Arg<0>::type>::value)); EXPECT_TRUE((std::is_same<std::tuple<bool>, F::ArgumentTuple>::value)); EXPECT_TRUE(( std::is_same<std::tuple<Matcher<bool>>, F::ArgumentMatcherTuple>::value)); EXPECT_TRUE((std::is_same<void(bool), F::MakeResultVoid>::value)); EXPECT_TRUE((std::is_same<IgnoredValue(bool), F::MakeResultIgnoredValue>::value)); } TEST(FunctionTest, Binary) { typedef Function<int(bool, const long&)> F; EXPECT_EQ(2u, F::ArgumentCount); EXPECT_TRUE((std::is_same<int, F::Result>::value)); EXPECT_TRUE((std::is_same<bool, F::Arg<0>::type>::value)); EXPECT_TRUE((std::is_same<const long&, F::Arg<1>::type>::value)); EXPECT_TRUE((std::is_same<std::tuple<bool, const long&>, F::ArgumentTuple>::value)); EXPECT_TRUE( (std::is_same<std::tuple<Matcher<bool>, Matcher<const long&>>, F::ArgumentMatcherTuple>::value)); EXPECT_TRUE((std::is_same<void(bool, const long&), F::MakeResultVoid>::value)); EXPECT_TRUE((std::is_same<IgnoredValue(bool, const long&), F::MakeResultIgnoredValue>::value)); } TEST(FunctionTest, LongArgumentList) { typedef Function<char(bool, int, char*, int&, const long&)> F; EXPECT_EQ(5u, F::ArgumentCount); EXPECT_TRUE((std::is_same<char, F::Result>::value)); EXPECT_TRUE((std::is_same<bool, F::Arg<0>::type>::value)); EXPECT_TRUE((std::is_same<int, F::Arg<1>::type>::value)); EXPECT_TRUE((std::is_same<char*, F::Arg<2>::type>::value)); EXPECT_TRUE((std::is_same<int&, F::Arg<3>::type>::value)); EXPECT_TRUE((std::is_same<const long&, F::Arg<4>::type>::value)); EXPECT_TRUE( (std::is_same<std::tuple<bool, int, char*, int&, const long&>, F::ArgumentTuple>::value)); EXPECT_TRUE( (std::is_same< std::tuple<Matcher<bool>, Matcher<int>, Matcher<char*>, Matcher<int&>, Matcher<const long&>>, F::ArgumentMatcherTuple>::value)); EXPECT_TRUE( (std::is_same<void(bool, int, char*, int&, const long&), F::MakeResultVoid>::value)); EXPECT_TRUE(( std::is_same<IgnoredValue(bool, int, char*, int&, const long&), F::MakeResultIgnoredValue>::value)); } TEST(Base64Unescape, InvalidString) { std::string unescaped; EXPECT_FALSE(Base64Unescape("(invalid)", &unescaped)); } TEST(Base64Unescape, ShortString) { std::string unescaped; EXPECT_TRUE(Base64Unescape("SGVsbG8gd29ybGQh", &unescaped)); EXPECT_EQ("Hello world!", unescaped); } TEST(Base64Unescape, ShortStringWithPadding) { std::string unescaped; EXPECT_TRUE(Base64Unescape("SGVsbG8gd29ybGQ=", &unescaped)); EXPECT_EQ("Hello world", unescaped); } TEST(Base64Unescape, ShortStringWithoutPadding) { std::string unescaped; EXPECT_TRUE(Base64Unescape("SGVsbG8gd29ybGQ", &unescaped)); EXPECT_EQ("Hello world", unescaped); } TEST(Base64Unescape, LongStringWithWhiteSpaces) { std::string escaped = R"(TWFuIGlzIGRpc3Rpbmd1aXNoZWQsIG5vdCBvbmx5IGJ5IGhpcyByZWFzb24sIGJ1dCBieSB0aGlz IHNpbmd1bGFyIHBhc3Npb24gZnJvbSBvdGhlciBhbmltYWxzLCB3aGljaCBpcyBhIGx1c3Qgb2Yg dGhlIG1pbmQsIHRoYXQgYnkgYSBwZXJzZXZlcmFuY2Ugb2YgZGVsaWdodCBpbiB0aGUgY29udGlu dWVkIGFuZCBpbmRlZmF0aWdhYmxlIGdlbmVyYXRpb24gb2Yga25vd2xlZGdlLCBleGNlZWRzIHRo ZSBzaG9ydCB2ZWhlbWVuY2Ugb2YgYW55IGNhcm5hbCBwbGVhc3VyZS4=)"; std::string expected = "Man is distinguished, not only by his reason, but by this singular " "passion from other animals, which is a lust of the mind, that by a " "perseverance of delight in the continued and indefatigable generation " "of knowledge, exceeds the short vehemence of any carnal pleasure."; std::string unescaped; EXPECT_TRUE(Base64Unescape(escaped, &unescaped)); EXPECT_EQ(expected, unescaped); } } } }