Unnamed: 0
int64 0
409
| Code
stringlengths 131
27.3k
| Unit Test
stringlengths 89
30.5k
|
---|---|---|
400 | #ifndef THIRD_PARTY_CEL_CPP_EVAL_PUBLIC_CONTAINERS_CONTAINER_BACKED_MAP_IMPL_H_
#define THIRD_PARTY_CEL_CPP_EVAL_PUBLIC_CONTAINERS_CONTAINER_BACKED_MAP_IMPL_H_
#include <memory>
#include <utility>
#include "absl/container/node_hash_map.h"
#include "absl/status/statusor.h"
#include "absl/types/span.h"
#include "eval/public/cel_value.h"
namespace google::api::expr::runtime {
class CelMapBuilder : public CelMap {
public:
CelMapBuilder() {}
absl::Status Add(CelValue key, CelValue value);
int size() const override { return values_map_.size(); }
absl::optional<CelValue> operator[](CelValue cel_key) const override;
absl::StatusOr<bool> Has(const CelValue& cel_key) const override {
return values_map_.contains(cel_key);
}
absl::StatusOr<const CelList*> ListKeys() const override {
return &key_list_;
}
private:
class KeyList : public CelList {
public:
KeyList() {}
int size() const override { return keys_.size(); }
CelValue operator[](int index) const override { return keys_[index]; }
void Add(const CelValue& key) { keys_.push_back(key); }
private:
std::vector<CelValue> keys_;
};
struct Hasher {
size_t operator()(const CelValue& key) const;
};
struct Equal {
bool operator()(const CelValue& key1, const CelValue& key2) const;
};
absl::node_hash_map<CelValue, CelValue, Hasher, Equal> values_map_;
KeyList key_list_;
};
absl::StatusOr<std::unique_ptr<CelMap>> CreateContainerBackedMap(
absl::Span<const std::pair<CelValue, CelValue>> key_values);
}
#endif
#include "eval/public/containers/container_backed_map_impl.h"
#include <memory>
#include <utility>
#include "absl/container/node_hash_map.h"
#include "absl/hash/hash.h"
#include "absl/status/status.h"
#include "absl/status/statusor.h"
#include "absl/types/optional.h"
#include "absl/types/span.h"
#include "eval/public/cel_value.h"
namespace google {
namespace api {
namespace expr {
namespace runtime {
namespace {
class HasherOp {
public:
template <class T>
size_t operator()(const T& arg) {
return std::hash<T>()(arg);
}
size_t operator()(const absl::Time arg) {
return absl::Hash<absl::Time>()(arg);
}
size_t operator()(const absl::Duration arg) {
return absl::Hash<absl::Duration>()(arg);
}
size_t operator()(const CelValue::StringHolder& arg) {
return absl::Hash<absl::string_view>()(arg.value());
}
size_t operator()(const CelValue::BytesHolder& arg) {
return absl::Hash<absl::string_view>()(arg.value());
}
size_t operator()(const CelValue::CelTypeHolder& arg) {
return absl::Hash<absl::string_view>()(arg.value());
}
size_t operator()(const std::nullptr_t&) { return 0; }
};
template <class T>
class EqualOp {
public:
explicit EqualOp(const T& arg) : arg_(arg) {}
template <class U>
bool operator()(const U&) const {
return false;
}
bool operator()(const T& other) const { return other == arg_; }
private:
const T& arg_;
};
class CelValueEq {
public:
explicit CelValueEq(const CelValue& other) : other_(other) {}
template <class Type>
bool operator()(const Type& arg) {
return other_.template Visit<bool>(EqualOp<Type>(arg));
}
private:
const CelValue& other_;
};
}
absl::optional<CelValue> CelMapBuilder::operator[](CelValue cel_key) const {
auto item = values_map_.find(cel_key);
if (item == values_map_.end()) {
return absl::nullopt;
}
return item->second;
}
absl::Status CelMapBuilder::Add(CelValue key, CelValue value) {
auto [unused, inserted] = values_map_.emplace(key, value);
if (!inserted) {
return absl::InvalidArgumentError("duplicate map keys");
}
key_list_.Add(key);
return absl::OkStatus();
}
size_t CelMapBuilder::Hasher::operator()(const CelValue& key) const {
return key.template Visit<size_t>(HasherOp());
}
bool CelMapBuilder::Equal::operator()(const CelValue& key1,
const CelValue& key2) const {
if (key1.type() != key2.type()) {
return false;
}
return key1.template Visit<bool>(CelValueEq(key2));
}
absl::StatusOr<std::unique_ptr<CelMap>> CreateContainerBackedMap(
absl::Span<const std::pair<CelValue, CelValue>> key_values) {
auto map = std::make_unique<CelMapBuilder>();
for (const auto& key_value : key_values) {
CEL_RETURN_IF_ERROR(map->Add(key_value.first, key_value.second));
}
return map;
}
}
}
}
} | #include "eval/public/containers/container_backed_map_impl.h"
#include <string>
#include <utility>
#include <vector>
#include "absl/status/status.h"
#include "eval/public/cel_value.h"
#include "internal/testing.h"
namespace google::api::expr::runtime {
namespace {
using testing::Eq;
using testing::IsNull;
using testing::Not;
using cel::internal::StatusIs;
TEST(ContainerBackedMapImplTest, TestMapInt64) {
std::vector<std::pair<CelValue, CelValue>> args = {
{CelValue::CreateInt64(1), CelValue::CreateInt64(2)},
{CelValue::CreateInt64(2), CelValue::CreateInt64(3)}};
auto cel_map =
CreateContainerBackedMap(
absl::Span<std::pair<CelValue, CelValue>>(args.data(), args.size()))
.value();
ASSERT_THAT(cel_map, Not(IsNull()));
EXPECT_THAT(cel_map->size(), Eq(2));
auto lookup1 = (*cel_map)[CelValue::CreateInt64(1)];
ASSERT_TRUE(lookup1);
CelValue cel_value = lookup1.value();
ASSERT_TRUE(cel_value.IsInt64());
EXPECT_THAT(cel_value.Int64OrDie(), 2);
auto lookup2 = (*cel_map)[CelValue::CreateUint64(1)];
ASSERT_FALSE(lookup2);
auto lookup3 = (*cel_map)[CelValue::CreateInt64(3)];
ASSERT_FALSE(lookup3);
}
TEST(ContainerBackedMapImplTest, TestMapUint64) {
std::vector<std::pair<CelValue, CelValue>> args = {
{CelValue::CreateUint64(1), CelValue::CreateInt64(2)},
{CelValue::CreateUint64(2), CelValue::CreateInt64(3)}};
auto cel_map =
CreateContainerBackedMap(
absl::Span<std::pair<CelValue, CelValue>>(args.data(), args.size()))
.value();
ASSERT_THAT(cel_map, Not(IsNull()));
EXPECT_THAT(cel_map->size(), Eq(2));
auto lookup1 = (*cel_map)[CelValue::CreateUint64(1)];
ASSERT_TRUE(lookup1);
CelValue cel_value = lookup1.value();
ASSERT_TRUE(cel_value.IsInt64());
EXPECT_THAT(cel_value.Int64OrDie(), 2);
auto lookup2 = (*cel_map)[CelValue::CreateInt64(1)];
ASSERT_FALSE(lookup2);
auto lookup3 = (*cel_map)[CelValue::CreateUint64(3)];
ASSERT_FALSE(lookup3);
}
TEST(ContainerBackedMapImplTest, TestMapString) {
const std::string kKey1 = "1";
const std::string kKey2 = "2";
const std::string kKey3 = "3";
std::vector<std::pair<CelValue, CelValue>> args = {
{CelValue::CreateString(&kKey1), CelValue::CreateInt64(2)},
{CelValue::CreateString(&kKey2), CelValue::CreateInt64(3)}};
auto cel_map =
CreateContainerBackedMap(
absl::Span<std::pair<CelValue, CelValue>>(args.data(), args.size()))
.value();
ASSERT_THAT(cel_map, Not(IsNull()));
EXPECT_THAT(cel_map->size(), Eq(2));
auto lookup1 = (*cel_map)[CelValue::CreateString(&kKey1)];
ASSERT_TRUE(lookup1);
CelValue cel_value = lookup1.value();
ASSERT_TRUE(cel_value.IsInt64());
EXPECT_THAT(cel_value.Int64OrDie(), 2);
auto lookup2 = (*cel_map)[CelValue::CreateInt64(1)];
ASSERT_FALSE(lookup2);
auto lookup3 = (*cel_map)[CelValue::CreateString(&kKey3)];
ASSERT_FALSE(lookup3);
}
TEST(CelMapBuilder, TestMapString) {
const std::string kKey1 = "1";
const std::string kKey2 = "2";
const std::string kKey3 = "3";
std::vector<std::pair<CelValue, CelValue>> args = {
{CelValue::CreateString(&kKey1), CelValue::CreateInt64(2)},
{CelValue::CreateString(&kKey2), CelValue::CreateInt64(3)}};
CelMapBuilder builder;
ASSERT_OK(
builder.Add(CelValue::CreateString(&kKey1), CelValue::CreateInt64(2)));
ASSERT_OK(
builder.Add(CelValue::CreateString(&kKey2), CelValue::CreateInt64(3)));
CelMap* cel_map = &builder;
ASSERT_THAT(cel_map, Not(IsNull()));
EXPECT_THAT(cel_map->size(), Eq(2));
auto lookup1 = (*cel_map)[CelValue::CreateString(&kKey1)];
ASSERT_TRUE(lookup1);
CelValue cel_value = lookup1.value();
ASSERT_TRUE(cel_value.IsInt64());
EXPECT_THAT(cel_value.Int64OrDie(), 2);
auto lookup2 = (*cel_map)[CelValue::CreateInt64(1)];
ASSERT_FALSE(lookup2);
auto lookup3 = (*cel_map)[CelValue::CreateString(&kKey3)];
ASSERT_FALSE(lookup3);
}
TEST(CelMapBuilder, RepeatKeysFail) {
const std::string kKey1 = "1";
const std::string kKey2 = "2";
std::vector<std::pair<CelValue, CelValue>> args = {
{CelValue::CreateString(&kKey1), CelValue::CreateInt64(2)},
{CelValue::CreateString(&kKey2), CelValue::CreateInt64(3)}};
CelMapBuilder builder;
ASSERT_OK(
builder.Add(CelValue::CreateString(&kKey1), CelValue::CreateInt64(2)));
ASSERT_OK(
builder.Add(CelValue::CreateString(&kKey2), CelValue::CreateInt64(3)));
EXPECT_THAT(
builder.Add(CelValue::CreateString(&kKey2), CelValue::CreateInt64(3)),
StatusIs(absl::StatusCode::kInvalidArgument, "duplicate map keys"));
}
}
} |
401 | #ifndef QUICHE_HTTP2_HPACK_HUFFMAN_HPACK_HUFFMAN_ENCODER_H_
#define QUICHE_HTTP2_HPACK_HUFFMAN_HPACK_HUFFMAN_ENCODER_H_
#include <cstddef>
#include <string>
#include "absl/strings/string_view.h"
#include "quiche/common/platform/api/quiche_export.h"
namespace http2 {
QUICHE_EXPORT size_t HuffmanSize(absl::string_view plain);
QUICHE_EXPORT void HuffmanEncode(absl::string_view plain, size_t encoded_size,
std::string* huffman);
QUICHE_EXPORT void HuffmanEncodeFast(absl::string_view input,
size_t encoded_size, std::string* output);
}
#endif
#include "quiche/http2/hpack/huffman/hpack_huffman_encoder.h"
#include <string>
#include "quiche/http2/hpack/huffman/huffman_spec_tables.h"
#include "quiche/common/platform/api/quiche_logging.h"
namespace http2 {
size_t HuffmanSize(absl::string_view plain) {
size_t bits = 0;
for (const uint8_t c : plain) {
bits += HuffmanSpecTables::kCodeLengths[c];
}
return (bits + 7) / 8;
}
void HuffmanEncode(absl::string_view plain, size_t encoded_size,
std::string* huffman) {
QUICHE_DCHECK(huffman != nullptr);
huffman->reserve(huffman->size() + encoded_size);
uint64_t bit_buffer = 0;
size_t bits_unused = 64;
for (uint8_t c : plain) {
size_t code_length = HuffmanSpecTables::kCodeLengths[c];
if (bits_unused < code_length) {
do {
char h = static_cast<char>(bit_buffer >> 56);
bit_buffer <<= 8;
bits_unused += 8;
huffman->push_back(h);
} while (bits_unused <= 56);
}
uint64_t code = HuffmanSpecTables::kRightCodes[c];
size_t shift_by = bits_unused - code_length;
bit_buffer |= (code << shift_by);
bits_unused -= code_length;
}
size_t bits_used = 64 - bits_unused;
while (bits_used >= 8) {
char h = static_cast<char>(bit_buffer >> 56);
bit_buffer <<= 8;
bits_used -= 8;
huffman->push_back(h);
}
if (bits_used > 0) {
constexpr uint64_t leading_eos_bits = 0b11111111;
bit_buffer |= (leading_eos_bits << (56 - bits_used));
char h = static_cast<char>(bit_buffer >> 56);
huffman->push_back(h);
}
}
void HuffmanEncodeFast(absl::string_view input, size_t encoded_size,
std::string* output) {
const size_t original_size = output->size();
const size_t final_size = original_size + encoded_size;
output->resize(final_size + 4, 0);
char* const first = &*output->begin() + original_size;
size_t bit_counter = 0;
for (uint8_t c : input) {
uint64_t code = static_cast<uint64_t>(HuffmanSpecTables::kLeftCodes[c])
<< (8 - (bit_counter % 8));
char* const current = first + (bit_counter / 8);
bit_counter += HuffmanSpecTables::kCodeLengths[c];
*current |= code >> 32;
*(current + 1) |= (code >> 24) & 0xff;
if ((code & 0xff0000) == 0) {
continue;
}
*(current + 2) |= (code >> 16) & 0xff;
if ((code & 0xff00) == 0) {
continue;
}
*(current + 3) |= (code >> 8) & 0xff;
*(current + 4) |= code & 0xff;
}
QUICHE_DCHECK_EQ(encoded_size, (bit_counter + 7) / 8);
if (bit_counter % 8 != 0) {
*(first + encoded_size - 1) |= 0xff >> (bit_counter & 7);
}
output->resize(final_size);
}
} | #include "quiche/http2/hpack/huffman/hpack_huffman_encoder.h"
#include <cstddef>
#include <string>
#include "absl/base/macros.h"
#include "absl/strings/escaping.h"
#include "quiche/common/platform/api/quiche_test.h"
namespace http2 {
namespace {
class HuffmanEncoderTest : public quiche::test::QuicheTestWithParam<bool> {
protected:
HuffmanEncoderTest() : use_fast_encoder_(GetParam()) {}
virtual ~HuffmanEncoderTest() = default;
void Encode(absl::string_view input, size_t encoded_size,
std::string* output) {
use_fast_encoder_ ? HuffmanEncodeFast(input, encoded_size, output)
: HuffmanEncode(input, encoded_size, output);
}
const bool use_fast_encoder_;
};
INSTANTIATE_TEST_SUITE_P(TwoEncoders, HuffmanEncoderTest, ::testing::Bool());
TEST_P(HuffmanEncoderTest, Empty) {
std::string empty("");
size_t encoded_size = HuffmanSize(empty);
EXPECT_EQ(0u, encoded_size);
std::string buffer;
Encode(empty, encoded_size, &buffer);
EXPECT_EQ("", buffer);
}
TEST_P(HuffmanEncoderTest, SpecRequestExamples) {
std::string test_table[] = {
"f1e3c2e5f23a6ba0ab90f4ff",
"www.example.com",
"a8eb10649cbf",
"no-cache",
"25a849e95ba97d7f",
"custom-key",
"25a849e95bb8e8b4bf",
"custom-value",
};
for (size_t i = 0; i != ABSL_ARRAYSIZE(test_table); i += 2) {
std::string huffman_encoded;
ASSERT_TRUE(absl::HexStringToBytes(test_table[i], &huffman_encoded));
const std::string& plain_string(test_table[i + 1]);
size_t encoded_size = HuffmanSize(plain_string);
EXPECT_EQ(huffman_encoded.size(), encoded_size);
std::string buffer;
buffer.reserve(huffman_encoded.size());
Encode(plain_string, encoded_size, &buffer);
EXPECT_EQ(buffer, huffman_encoded) << "Error encoding " << plain_string;
}
}
TEST_P(HuffmanEncoderTest, SpecResponseExamples) {
std::string test_table[] = {
"6402",
"302",
"aec3771a4b",
"private",
"d07abe941054d444a8200595040b8166e082a62d1bff",
"Mon, 21 Oct 2013 20:13:21 GMT",
"9d29ad171863c78f0b97c8e9ae82ae43d3",
"https:
"94e7821dd7f2e6c7b335dfdfcd5b3960d5af27087f3672c1ab270fb5291f9587316065c0"
"03ed4ee5b1063d5007",
"foo=ASDJKHQKBZXOQWEOPIUAXQWEOIU; max-age=3600; version=1",
};
for (size_t i = 0; i != ABSL_ARRAYSIZE(test_table); i += 2) {
std::string huffman_encoded;
ASSERT_TRUE(absl::HexStringToBytes(test_table[i], &huffman_encoded));
const std::string& plain_string(test_table[i + 1]);
size_t encoded_size = HuffmanSize(plain_string);
EXPECT_EQ(huffman_encoded.size(), encoded_size);
std::string buffer;
Encode(plain_string, encoded_size, &buffer);
EXPECT_EQ(buffer, huffman_encoded) << "Error encoding " << plain_string;
}
}
TEST_P(HuffmanEncoderTest, EncodedSizeAgreesWithEncodeString) {
std::string test_table[] = {
"",
"Mon, 21 Oct 2013 20:13:21 GMT",
"https:
"foo=ASDJKHQKBZXOQWEOPIUAXQWEOIU; max-age=3600; version=1",
std::string(1, '\0'),
std::string("foo\0bar", 7),
std::string(256, '\0'),
};
for (size_t i = 0; i != 256; ++i) {
test_table[ABSL_ARRAYSIZE(test_table) - 1][i] = static_cast<char>(i);
}
for (size_t i = 0; i != ABSL_ARRAYSIZE(test_table); ++i) {
const std::string& plain_string = test_table[i];
size_t encoded_size = HuffmanSize(plain_string);
std::string huffman_encoded;
Encode(plain_string, encoded_size, &huffman_encoded);
EXPECT_EQ(encoded_size, huffman_encoded.size());
}
}
TEST_P(HuffmanEncoderTest, AppendToOutput) {
size_t encoded_size = HuffmanSize("foo");
std::string buffer;
Encode("foo", encoded_size, &buffer);
std::string expected_encoding;
ASSERT_TRUE(absl::HexStringToBytes("94e7", &expected_encoding));
EXPECT_EQ(expected_encoding, buffer);
encoded_size = HuffmanSize("bar");
Encode("bar", encoded_size, &buffer);
ASSERT_TRUE(absl::HexStringToBytes("94e78c767f", &expected_encoding));
EXPECT_EQ(expected_encoding, buffer);
}
}
} |
402 | #ifndef QUICHE_QUIC_CORE_QUIC_CONNECTION_CONTEXT_H_
#define QUICHE_QUIC_CORE_QUIC_CONNECTION_CONTEXT_H_
#include <memory>
#include "absl/strings/str_format.h"
#include "absl/strings/string_view.h"
#include "quiche/quic/platform/api/quic_export.h"
#include "quiche/common/platform/api/quiche_logging.h"
namespace quic {
class QUICHE_EXPORT QuicConnectionTracer {
public:
virtual ~QuicConnectionTracer() = default;
virtual void PrintLiteral(const char* literal) = 0;
virtual void PrintString(absl::string_view s) = 0;
template <typename... Args>
void Printf(const absl::FormatSpec<Args...>& format, const Args&... args) {
std::string s = absl::StrFormat(format, args...);
PrintString(s);
}
};
class QUICHE_EXPORT QuicBugListener {
public:
virtual ~QuicBugListener() = default;
virtual void OnQuicBug(const char* bug_id, const char* file, int line,
absl::string_view bug_message) = 0;
};
class QUICHE_EXPORT QuicConnectionContextListener {
public:
virtual ~QuicConnectionContextListener() = default;
private:
friend class QuicConnectionContextSwitcher;
virtual void Activate() = 0;
virtual void Deactivate() = 0;
};
struct QUICHE_EXPORT QuicConnectionContext final {
static QuicConnectionContext* Current();
std::unique_ptr<QuicConnectionContextListener> listener;
std::unique_ptr<QuicConnectionTracer> tracer;
std::unique_ptr<QuicBugListener> bug_listener;
};
class QUICHE_EXPORT QuicConnectionContextSwitcher final {
public:
explicit QuicConnectionContextSwitcher(QuicConnectionContext* new_context);
~QuicConnectionContextSwitcher();
private:
QuicConnectionContext* old_context_;
};
inline void QUIC_TRACELITERAL(const char* literal) {
QuicConnectionContext* current = QuicConnectionContext::Current();
if (current && current->tracer) {
current->tracer->PrintLiteral(literal);
}
}
inline void QUIC_TRACESTRING(absl::string_view s) {
QuicConnectionContext* current = QuicConnectionContext::Current();
if (current && current->tracer) {
current->tracer->PrintString(s);
}
}
template <typename... Args>
void QUIC_TRACEPRINTF(const absl::FormatSpec<Args...>& format,
const Args&... args) {
QuicConnectionContext* current = QuicConnectionContext::Current();
if (current && current->tracer) {
current->tracer->Printf(format, args...);
}
}
inline QuicBugListener* CurrentBugListener() {
QuicConnectionContext* current = QuicConnectionContext::Current();
return (current != nullptr) ? current->bug_listener.get() : nullptr;
}
}
#endif
#include "quiche/quic/core/quic_connection_context.h"
#include "absl/base/attributes.h"
namespace quic {
namespace {
ABSL_CONST_INIT thread_local QuicConnectionContext* current_context = nullptr;
}
QuicConnectionContext* QuicConnectionContext::Current() {
return current_context;
}
QuicConnectionContextSwitcher::QuicConnectionContextSwitcher(
QuicConnectionContext* new_context)
: old_context_(QuicConnectionContext::Current()) {
current_context = new_context;
if (new_context && new_context->listener) {
new_context->listener->Activate();
}
}
QuicConnectionContextSwitcher::~QuicConnectionContextSwitcher() {
QuicConnectionContext* current = QuicConnectionContext::Current();
if (current && current->listener) {
current->listener->Deactivate();
}
current_context = old_context_;
}
} | #include "quiche/quic/core/quic_connection_context.h"
#include <memory>
#include <string>
#include <vector>
#include "quiche/quic/platform/api/quic_test.h"
#include "quiche/quic/platform/api/quic_thread.h"
using testing::ElementsAre;
namespace quic::test {
namespace {
class TraceCollector : public QuicConnectionTracer {
public:
~TraceCollector() override = default;
void PrintLiteral(const char* literal) override { trace_.push_back(literal); }
void PrintString(absl::string_view s) override {
trace_.push_back(std::string(s));
}
const std::vector<std::string>& trace() const { return trace_; }
private:
std::vector<std::string> trace_;
};
struct FakeConnection {
FakeConnection() { context.tracer = std::make_unique<TraceCollector>(); }
const std::vector<std::string>& trace() const {
return static_cast<const TraceCollector*>(context.tracer.get())->trace();
}
QuicConnectionContext context;
};
void SimpleSwitch() {
FakeConnection connection;
EXPECT_EQ(QuicConnectionContext::Current(), nullptr);
QUIC_TRACELITERAL("before switch: literal");
QUIC_TRACESTRING(std::string("before switch: string"));
QUIC_TRACEPRINTF("%s: %s", "before switch", "printf");
{
QuicConnectionContextSwitcher switcher(&connection.context);
QUIC_TRACELITERAL("literal");
QUIC_TRACESTRING(std::string("string"));
QUIC_TRACEPRINTF("%s", "printf");
}
EXPECT_EQ(QuicConnectionContext::Current(), nullptr);
QUIC_TRACELITERAL("after switch: literal");
QUIC_TRACESTRING(std::string("after switch: string"));
QUIC_TRACEPRINTF("%s: %s", "after switch", "printf");
EXPECT_THAT(connection.trace(), ElementsAre("literal", "string", "printf"));
}
void NestedSwitch() {
FakeConnection outer, inner;
{
QuicConnectionContextSwitcher switcher(&outer.context);
QUIC_TRACELITERAL("outer literal 0");
QUIC_TRACESTRING(std::string("outer string 0"));
QUIC_TRACEPRINTF("%s %s %d", "outer", "printf", 0);
{
QuicConnectionContextSwitcher nested_switcher(&inner.context);
QUIC_TRACELITERAL("inner literal");
QUIC_TRACESTRING(std::string("inner string"));
QUIC_TRACEPRINTF("%s %s", "inner", "printf");
}
QUIC_TRACELITERAL("outer literal 1");
QUIC_TRACESTRING(std::string("outer string 1"));
QUIC_TRACEPRINTF("%s %s %d", "outer", "printf", 1);
}
EXPECT_THAT(outer.trace(), ElementsAre("outer literal 0", "outer string 0",
"outer printf 0", "outer literal 1",
"outer string 1", "outer printf 1"));
EXPECT_THAT(inner.trace(),
ElementsAre("inner literal", "inner string", "inner printf"));
}
void AlternatingSwitch() {
FakeConnection zero, one, two;
for (int i = 0; i < 15; ++i) {
FakeConnection* connection =
((i % 3) == 0) ? &zero : (((i % 3) == 1) ? &one : &two);
QuicConnectionContextSwitcher switcher(&connection->context);
QUIC_TRACEPRINTF("%d", i);
}
EXPECT_THAT(zero.trace(), ElementsAre("0", "3", "6", "9", "12"));
EXPECT_THAT(one.trace(), ElementsAre("1", "4", "7", "10", "13"));
EXPECT_THAT(two.trace(), ElementsAre("2", "5", "8", "11", "14"));
}
typedef void (*ThreadFunction)();
template <ThreadFunction func>
class TestThread : public QuicThread {
public:
TestThread() : QuicThread("TestThread") {}
~TestThread() override = default;
protected:
void Run() override { func(); }
};
template <ThreadFunction func>
void RunInThreads(size_t n_threads) {
using ThreadType = TestThread<func>;
std::vector<ThreadType> threads(n_threads);
for (ThreadType& t : threads) {
t.Start();
}
for (ThreadType& t : threads) {
t.Join();
}
}
class QuicConnectionContextTest : public QuicTest {
protected:
};
TEST_F(QuicConnectionContextTest, NullTracerOK) {
FakeConnection connection;
std::unique_ptr<QuicConnectionTracer> tracer;
{
QuicConnectionContextSwitcher switcher(&connection.context);
QUIC_TRACELITERAL("msg 1 recorded");
}
connection.context.tracer.swap(tracer);
{
QuicConnectionContextSwitcher switcher(&connection.context);
QUIC_TRACELITERAL("msg 2 ignored");
}
EXPECT_THAT(static_cast<TraceCollector*>(tracer.get())->trace(),
ElementsAre("msg 1 recorded"));
}
TEST_F(QuicConnectionContextTest, TestSimpleSwitch) {
RunInThreads<SimpleSwitch>(10);
}
TEST_F(QuicConnectionContextTest, TestNestedSwitch) {
RunInThreads<NestedSwitch>(10);
}
TEST_F(QuicConnectionContextTest, TestAlternatingSwitch) {
RunInThreads<AlternatingSwitch>(10);
}
}
} |
403 | #ifndef THIRD_PARTY_CEL_CPP_EVAL_PUBLIC_EQUALITY_FUNCTION_REGISTRAR_H_
#define THIRD_PARTY_CEL_CPP_EVAL_PUBLIC_EQUALITY_FUNCTION_REGISTRAR_H_
#include "absl/status/status.h"
#include "eval/internal/cel_value_equal.h"
#include "eval/public/cel_function_registry.h"
#include "eval/public/cel_options.h"
namespace google::api::expr::runtime {
using cel::interop_internal::CelValueEqualImpl;
absl::Status RegisterEqualityFunctions(CelFunctionRegistry* registry,
const InterpreterOptions& options);
}
#endif
#include "eval/public/equality_function_registrar.h"
#include "absl/status/status.h"
#include "eval/public/cel_function_registry.h"
#include "eval/public/cel_options.h"
#include "runtime/runtime_options.h"
#include "runtime/standard/equality_functions.h"
namespace google::api::expr::runtime {
absl::Status RegisterEqualityFunctions(CelFunctionRegistry* registry,
const InterpreterOptions& options) {
cel::RuntimeOptions runtime_options = ConvertToRuntimeOptions(options);
return cel::RegisterEqualityFunctions(registry->InternalGetRegistry(),
runtime_options);
}
} | #include "eval/public/equality_function_registrar.h"
#include <array>
#include <cmath>
#include <cstdint>
#include <limits>
#include <memory>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
#include "google/api/expr/v1alpha1/syntax.pb.h"
#include "google/protobuf/any.pb.h"
#include "google/rpc/context/attribute_context.pb.h"
#include "google/protobuf/descriptor.pb.h"
#include "google/protobuf/arena.h"
#include "google/protobuf/descriptor.h"
#include "google/protobuf/dynamic_message.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"
#include "absl/status/status.h"
#include "absl/status/statusor.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/string_view.h"
#include "absl/time/time.h"
#include "absl/types/span.h"
#include "absl/types/variant.h"
#include "eval/public/activation.h"
#include "eval/public/cel_builtins.h"
#include "eval/public/cel_expr_builder_factory.h"
#include "eval/public/cel_expression.h"
#include "eval/public/cel_function_registry.h"
#include "eval/public/cel_options.h"
#include "eval/public/cel_value.h"
#include "eval/public/containers/container_backed_list_impl.h"
#include "eval/public/containers/container_backed_map_impl.h"
#include "eval/public/message_wrapper.h"
#include "eval/public/structs/cel_proto_wrapper.h"
#include "eval/public/structs/trivial_legacy_type_info.h"
#include "eval/public/testing/matchers.h"
#include "eval/testutil/test_message.pb.h"
#include "internal/benchmark.h"
#include "internal/status_macros.h"
#include "internal/testing.h"
#include "parser/parser.h"
namespace google::api::expr::runtime {
namespace {
using ::google::api::expr::v1alpha1::ParsedExpr;
using ::google::rpc::context::AttributeContext;
using testing::_;
using testing::Combine;
using testing::HasSubstr;
using testing::Optional;
using testing::Values;
using testing::ValuesIn;
using cel::internal::StatusIs;
MATCHER_P2(DefinesHomogenousOverload, name, argument_type,
absl::StrCat(name, " for ", CelValue::TypeName(argument_type))) {
const CelFunctionRegistry& registry = arg;
return !registry
.FindOverloads(name, false,
{argument_type, argument_type})
.empty();
return false;
}
struct EqualityTestCase {
enum class ErrorKind { kMissingOverload, kMissingIdentifier };
absl::string_view expr;
absl::variant<bool, ErrorKind> result;
CelValue lhs = CelValue::CreateNull();
CelValue rhs = CelValue::CreateNull();
};
bool IsNumeric(CelValue::Type type) {
return type == CelValue::Type::kDouble || type == CelValue::Type::kInt64 ||
type == CelValue::Type::kUint64;
}
const CelList& CelListExample1() {
static ContainerBackedListImpl* example =
new ContainerBackedListImpl({CelValue::CreateInt64(1)});
return *example;
}
const CelList& CelListExample2() {
static ContainerBackedListImpl* example =
new ContainerBackedListImpl({CelValue::CreateInt64(2)});
return *example;
}
const CelMap& CelMapExample1() {
static CelMap* example = []() {
std::vector<std::pair<CelValue, CelValue>> values{
{CelValue::CreateInt64(1), CelValue::CreateInt64(2)}};
auto map = CreateContainerBackedMap(absl::MakeSpan(values));
return map->release();
}();
return *example;
}
const CelMap& CelMapExample2() {
static CelMap* example = []() {
std::vector<std::pair<CelValue, CelValue>> values{
{CelValue::CreateInt64(2), CelValue::CreateInt64(4)}};
auto map = CreateContainerBackedMap(absl::MakeSpan(values));
return map->release();
}();
return *example;
}
const std::vector<CelValue>& ValueExamples1() {
static std::vector<CelValue>* examples = []() {
google::protobuf::Arena arena;
auto result = std::make_unique<std::vector<CelValue>>();
result->push_back(CelValue::CreateNull());
result->push_back(CelValue::CreateBool(false));
result->push_back(CelValue::CreateInt64(1));
result->push_back(CelValue::CreateUint64(1));
result->push_back(CelValue::CreateDouble(1.0));
result->push_back(CelValue::CreateStringView("string"));
result->push_back(CelValue::CreateBytesView("bytes"));
result->push_back(CelProtoWrapper::CreateMessage(
std::make_unique<TestMessage>().release(), &arena));
result->push_back(CelValue::CreateDuration(absl::Seconds(1)));
result->push_back(CelValue::CreateTimestamp(absl::FromUnixSeconds(1)));
result->push_back(CelValue::CreateList(&CelListExample1()));
result->push_back(CelValue::CreateMap(&CelMapExample1()));
result->push_back(CelValue::CreateCelTypeView("type"));
return result.release();
}();
return *examples;
}
const std::vector<CelValue>& ValueExamples2() {
static std::vector<CelValue>* examples = []() {
google::protobuf::Arena arena;
auto result = std::make_unique<std::vector<CelValue>>();
auto message2 = std::make_unique<TestMessage>();
message2->set_int64_value(2);
result->push_back(CelValue::CreateNull());
result->push_back(CelValue::CreateBool(true));
result->push_back(CelValue::CreateInt64(2));
result->push_back(CelValue::CreateUint64(2));
result->push_back(CelValue::CreateDouble(2.0));
result->push_back(CelValue::CreateStringView("string2"));
result->push_back(CelValue::CreateBytesView("bytes2"));
result->push_back(
CelProtoWrapper::CreateMessage(message2.release(), &arena));
result->push_back(CelValue::CreateDuration(absl::Seconds(2)));
result->push_back(CelValue::CreateTimestamp(absl::FromUnixSeconds(2)));
result->push_back(CelValue::CreateList(&CelListExample2()));
result->push_back(CelValue::CreateMap(&CelMapExample2()));
result->push_back(CelValue::CreateCelTypeView("type2"));
return result.release();
}();
return *examples;
}
class CelValueEqualImplTypesTest
: public testing::TestWithParam<std::tuple<CelValue, CelValue, bool>> {
public:
CelValueEqualImplTypesTest() = default;
const CelValue& lhs() { return std::get<0>(GetParam()); }
const CelValue& rhs() { return std::get<1>(GetParam()); }
bool should_be_equal() { return std::get<2>(GetParam()); }
};
std::string CelValueEqualTestName(
const testing::TestParamInfo<std::tuple<CelValue, CelValue, bool>>&
test_case) {
return absl::StrCat(CelValue::TypeName(std::get<0>(test_case.param).type()),
CelValue::TypeName(std::get<1>(test_case.param).type()),
(std::get<2>(test_case.param)) ? "Equal" : "Inequal");
}
TEST_P(CelValueEqualImplTypesTest, Basic) {
absl::optional<bool> result = CelValueEqualImpl(lhs(), rhs());
if (lhs().IsNull() || rhs().IsNull()) {
if (lhs().IsNull() && rhs().IsNull()) {
EXPECT_THAT(result, Optional(true));
} else {
EXPECT_THAT(result, Optional(false));
}
} else if (lhs().type() == rhs().type() ||
(IsNumeric(lhs().type()) && IsNumeric(rhs().type()))) {
EXPECT_THAT(result, Optional(should_be_equal()));
} else {
EXPECT_THAT(result, Optional(false));
}
}
INSTANTIATE_TEST_SUITE_P(EqualityBetweenTypes, CelValueEqualImplTypesTest,
Combine(ValuesIn(ValueExamples1()),
ValuesIn(ValueExamples1()), Values(true)),
&CelValueEqualTestName);
INSTANTIATE_TEST_SUITE_P(InequalityBetweenTypes, CelValueEqualImplTypesTest,
Combine(ValuesIn(ValueExamples1()),
ValuesIn(ValueExamples2()), Values(false)),
&CelValueEqualTestName);
struct NumericInequalityTestCase {
std::string name;
CelValue a;
CelValue b;
};
const std::vector<NumericInequalityTestCase>& NumericValuesNotEqualExample() {
static std::vector<NumericInequalityTestCase>* examples = []() {
google::protobuf::Arena arena;
auto result = std::make_unique<std::vector<NumericInequalityTestCase>>();
result->push_back({"NegativeIntAndUint", CelValue::CreateInt64(-1),
CelValue::CreateUint64(2)});
result->push_back(
{"IntAndLargeUint", CelValue::CreateInt64(1),
CelValue::CreateUint64(
static_cast<uint64_t>(std::numeric_limits<int64_t>::max()) + 1)});
result->push_back(
{"IntAndLargeDouble", CelValue::CreateInt64(2),
CelValue::CreateDouble(
static_cast<double>(std::numeric_limits<int64_t>::max()) + 1025)});
result->push_back(
{"IntAndSmallDouble", CelValue::CreateInt64(2),
CelValue::CreateDouble(
static_cast<double>(std::numeric_limits<int64_t>::lowest()) -
1025)});
result->push_back(
{"UintAndLargeDouble", CelValue::CreateUint64(2),
CelValue::CreateDouble(
static_cast<double>(std::numeric_limits<uint64_t>::max()) +
2049)});
result->push_back({"NegativeDoubleAndUint", CelValue::CreateDouble(-2.0),
CelValue::CreateUint64(123)});
result->push_back({"NanAndDouble", CelValue::CreateDouble(NAN),
CelValue::CreateDouble(1.0)});
result->push_back({"NanAndNan", CelValue::CreateDouble(NAN),
CelValue::CreateDouble(NAN)});
result->push_back({"DoubleAndNan", CelValue::CreateDouble(1.0),
CelValue::CreateDouble(NAN)});
result->push_back(
{"IntAndNan", CelValue::CreateInt64(1), CelValue::CreateDouble(NAN)});
result->push_back(
{"NanAndInt", CelValue::CreateDouble(NAN), CelValue::CreateInt64(1)});
result->push_back(
{"UintAndNan", CelValue::CreateUint64(1), CelValue::CreateDouble(NAN)});
result->push_back(
{"NanAndUint", CelValue::CreateDouble(NAN), CelValue::CreateUint64(1)});
return result.release();
}();
return *examples;
}
using NumericInequalityTest = testing::TestWithParam<NumericInequalityTestCase>;
TEST_P(NumericInequalityTest, NumericValues) {
NumericInequalityTestCase test_case = GetParam();
absl::optional<bool> result = CelValueEqualImpl(test_case.a, test_case.b);
EXPECT_TRUE(result.has_value());
EXPECT_EQ(*result, false);
}
INSTANTIATE_TEST_SUITE_P(
InequalityBetweenNumericTypesTest, NumericInequalityTest,
ValuesIn(NumericValuesNotEqualExample()),
[](const testing::TestParamInfo<NumericInequalityTest::ParamType>& info) {
return info.param.name;
});
TEST(CelValueEqualImplTest, LossyNumericEquality) {
absl::optional<bool> result = CelValueEqualImpl(
CelValue::CreateDouble(
static_cast<double>(std::numeric_limits<int64_t>::max()) - 1),
CelValue::CreateInt64(std::numeric_limits<int64_t>::max()));
EXPECT_TRUE(result.has_value());
EXPECT_TRUE(*result);
}
TEST(CelValueEqualImplTest, ListMixedTypesInequal) {
ContainerBackedListImpl lhs({CelValue::CreateInt64(1)});
ContainerBackedListImpl rhs({CelValue::CreateStringView("abc")});
EXPECT_THAT(
CelValueEqualImpl(CelValue::CreateList(&lhs), CelValue::CreateList(&rhs)),
Optional(false));
}
TEST(CelValueEqualImplTest, NestedList) {
ContainerBackedListImpl inner_lhs({CelValue::CreateInt64(1)});
ContainerBackedListImpl lhs({CelValue::CreateList(&inner_lhs)});
ContainerBackedListImpl inner_rhs({CelValue::CreateNull()});
ContainerBackedListImpl rhs({CelValue::CreateList(&inner_rhs)});
EXPECT_THAT(
CelValueEqualImpl(CelValue::CreateList(&lhs), CelValue::CreateList(&rhs)),
Optional(false));
}
TEST(CelValueEqualImplTest, MapMixedValueTypesInequal) {
std::vector<std::pair<CelValue, CelValue>> lhs_data{
{CelValue::CreateInt64(1), CelValue::CreateStringView("abc")}};
std::vector<std::pair<CelValue, CelValue>> rhs_data{
{CelValue::CreateInt64(1), CelValue::CreateInt64(2)}};
ASSERT_OK_AND_ASSIGN(std::unique_ptr<CelMap> lhs,
CreateContainerBackedMap(absl::MakeSpan(lhs_data)));
ASSERT_OK_AND_ASSIGN(std::unique_ptr<CelMap> rhs,
CreateContainerBackedMap(absl::MakeSpan(rhs_data)));
EXPECT_THAT(CelValueEqualImpl(CelValue::CreateMap(lhs.get()),
CelValue::CreateMap(rhs.get())),
Optional(false));
}
TEST(CelValueEqualImplTest, MapMixedKeyTypesEqual) {
std::vector<std::pair<CelValue, CelValue>> lhs_data{
{CelValue::CreateUint64(1), CelValue::CreateStringView("abc")}};
std::vector<std::pair<CelValue, CelValue>> rhs_data{
{CelValue::CreateInt64(1), CelValue::CreateStringView("abc")}};
ASSERT_OK_AND_ASSIGN(std::unique_ptr<CelMap> lhs,
CreateContainerBackedMap(absl::MakeSpan(lhs_data)));
ASSERT_OK_AND_ASSIGN(std::unique_ptr<CelMap> rhs,
CreateContainerBackedMap(absl::MakeSpan(rhs_data)));
EXPECT_THAT(CelValueEqualImpl(CelValue::CreateMap(lhs.get()),
CelValue::CreateMap(rhs.get())),
Optional(true));
}
TEST(CelValueEqualImplTest, MapMixedKeyTypesInequal) {
std::vector<std::pair<CelValue, CelValue>> lhs_data{
{CelValue::CreateInt64(1), CelValue::CreateStringView("abc")}};
std::vector<std::pair<CelValue, CelValue>> rhs_data{
{CelValue::CreateInt64(2), CelValue::CreateInt64(2)}};
ASSERT_OK_AND_ASSIGN(std::unique_ptr<CelMap> lhs,
CreateContainerBackedMap(absl::MakeSpan(lhs_data)));
ASSERT_OK_AND_ASSIGN(std::unique_ptr<CelMap> rhs,
CreateContainerBackedMap(absl::MakeSpan(rhs_data)));
EXPECT_THAT(CelValueEqualImpl(CelValue::CreateMap(lhs.get()),
CelValue::CreateMap(rhs.get())),
Optional(false));
}
TEST(CelValueEqualImplTest, NestedMaps) {
std::vector<std::pair<CelValue, CelValue>> inner_lhs_data{
{CelValue::CreateInt64(2), CelValue::CreateStringView("abc")}};
ASSERT_OK_AND_ASSIGN(
std::unique_ptr<CelMap> inner_lhs,
CreateContainerBackedMap(absl::MakeSpan(inner_lhs_data)));
std::vector<std::pair<CelValue, CelValue>> lhs_data{
{CelValue::CreateInt64(1), CelValue::CreateMap(inner_lhs.get())}};
std::vector<std::pair<CelValue, CelValue>> inner_rhs_data{
{CelValue::CreateInt64(2), CelValue::CreateNull()}};
ASSERT_OK_AND_ASSIGN(
std::unique_ptr<CelMap> inner_rhs,
CreateContainerBackedMap(absl::MakeSpan(inner_rhs_data)));
std::vector<std::pair<CelValue, CelValue>> rhs_data{
{CelValue::CreateInt64(1), CelValue::CreateMap(inner_rhs.get())}};
ASSERT_OK_AND_ASSIGN(std::unique_ptr<CelMap> lhs,
CreateContainerBackedMap(absl::MakeSpan(lhs_data)));
ASSERT_OK_AND_ASSIGN(std::unique_ptr<CelMap> rhs,
CreateContainerBackedMap(absl::MakeSpan(rhs_data)));
EXPECT_THAT(CelValueEqualImpl(CelValue::CreateMap(lhs.get()),
CelValue::CreateMap(rhs.get())),
Optional(false));
}
TEST(CelValueEqualImplTest, ProtoEqualityDifferingTypenameInequal) {
google::protobuf::Arena arena;
TestMessage example;
ASSERT_TRUE(google::protobuf::TextFormat::ParseFromString(R"(
int32_value: 1
uint32_value: 2
string_value: "test"
)",
&example));
CelValue lhs = CelProtoWrapper::CreateMessage(&example, &arena);
CelValue rhs = CelValue::CreateMessageWrapper(
MessageWrapper(&example, TrivialTypeInfo::GetInstance()));
EXPECT_THAT(CelValueEqualImpl(lhs, rhs), Optional(false));
}
TEST(CelValueEqualImplTest, ProtoEqualityNoAccessorInequal) {
google::protobuf::Arena arena;
TestMessage example;
ASSERT_TRUE(google::protobuf::TextFormat::ParseFromString(R"(
int32_value: 1
uint32_value: 2
string_value: "test"
)",
&example));
CelValue lhs = CelValue::CreateMessageWrapper(
MessageWrapper(&example, TrivialTypeInfo::GetInstance()));
CelValue rhs = CelValue::CreateMessageWrapper(
MessageWrapper(&example, TrivialTypeInfo::GetInstance()));
EXPECT_THAT(CelValueEqualImpl(lhs, rhs), Optional(false));
}
TEST(CelValueEqualImplTest, ProtoEqualityAny) {
google::protobuf::Arena arena;
TestMessage packed_value;
ASSERT_TRUE(google::protobuf::TextFormat::ParseFromString(R"(
int32_value: 1
uint32_value: 2
string_value: "test"
)",
&packed_value));
TestMessage lhs;
lhs.mutable_any_value()->PackFrom(packed_value);
TestMessage rhs;
rhs.mutable_any_value()->PackFrom(packed_value);
EXPECT_THAT(CelValueEqualImpl(CelProtoWrapper::CreateMessage(&lhs, &arena),
CelProtoWrapper::CreateMessage(&rhs, &arena)),
Optional(true));
lhs.mutable_any_value()->clear_type_url();
rhs.mutable_any_value()->clear_type_url();
EXPECT_THAT(CelValueEqualImpl(CelProtoWrapper::CreateMessage(&lhs, &arena),
CelProtoWrapper::CreateMessage(&rhs, &arena)),
Optional(true));
}
bool AddDepsToPool(const google::protobuf::FileDescriptor* descriptor,
google::protobuf::DescriptorPool& pool) {
for (int i = 0; i < descriptor->dependency_count(); i++) {
if (!AddDepsToPool(descriptor->dependency(i), pool)) {
return false;
}
}
google::protobuf::FileDescriptorProto descriptor_proto;
descriptor->CopyTo(&descriptor_proto);
return pool.BuildFile(descriptor_proto) != nullptr;
}
TEST(CelValueEqualImplTest, DynamicDescriptorAndGeneratedInequal) {
google::protobuf::DescriptorPool pool;
google::protobuf::DynamicMessageFactory factory;
google::protobuf::Arena arena;
factory.SetDelegateToGeneratedFactory(false);
ASSERT_TRUE(AddDepsToPool(TestMessage::descriptor()->file(), pool));
TestMessage example_message;
ASSERT_TRUE(
google::protobuf::TextFormat::ParseFromString(R"pb(
int64_value: 12345
bool_list: false
bool_list: true
message_value { float_value: 1.0 }
)pb",
&example_message));
std::unique_ptr<google::protobuf::Message> example_dynamic_message(
factory
.GetPrototype(pool.FindMessageTypeByName(
TestMessage::descriptor()->full_name()))
->New());
ASSERT_TRUE(example_dynamic_message->ParseFromString(
example_message.SerializeAsString()));
EXPECT_THAT(CelValueEqualImpl(
CelProtoWrapper::CreateMessage(&example_message, &arena),
CelProtoWrapper::CreateMessage(example_dynamic_message.get(),
&arena)),
Optional(false));
}
TEST(CelValueEqualImplTest, DynamicMessageAndMessageEqual) {
google::protobuf::DynamicMessageFactory factory;
google::protobuf::Arena arena;
factory.SetDelegateToGeneratedFactory(false);
TestMessage example_message;
ASSERT_TRUE(
google::protobuf::TextFormat::ParseFromString(R"pb(
int64_value: 12345
bool_list: false
bool_list: true
message_value { float_value: 1.0 }
)pb",
&example_message));
std::unique_ptr<google::protobuf::Message> example_dynamic_message(
factory.GetPrototype(TestMessage::descriptor())->New());
ASSERT_TRUE(example_dynamic_message->ParseFromString(
example_message.SerializeAsString()));
EXPECT_THAT(CelValueEqualImpl(
CelProtoWrapper::CreateMessage(&example_message, &arena),
CelProtoWrapper::CreateMessage(example_dynamic_message.get(),
&arena)),
Optional(true));
}
class EqualityFunctionTest
: public testing::TestWithParam<std::tuple<EqualityTestCase, bool>> {
public:
EqualityFunctionTest() {
options_.enable_heterogeneous_equality = std::get<1>(GetParam());
options_.enable_empty_wrapper_null_unboxing = true;
builder_ = CreateCelExpressionBuilder(options_);
}
CelFunctionRegistry& registry() { return *builder_->GetRegistry(); }
absl::StatusOr<CelValue> Evaluate(absl::string_view expr, const CelValue& lhs,
const CelValue& rhs) {
CEL_ASSIGN_OR_RETURN(ParsedExpr parsed_expr, parser::Parse(expr));
Activation activation;
activation.InsertValue("lhs", lhs);
activation.InsertValue("rhs", rhs);
CEL_ASSIGN_OR_RETURN(auto expression,
builder_->CreateExpression(
&parsed_expr.expr(), &parsed_expr.source_info()));
return expression->Evaluate(activation, &arena_);
}
protected:
std::unique_ptr<CelExpressionBuilder> builder_;
InterpreterOptions options_;
google::protobuf::Arena arena_;
};
constexpr std::array<CelValue::Type, 11> kEqualableTypes = {
CelValue::Type::kInt64, CelValue::Type::kUint64,
CelValue::Type::kString, CelValue::Type::kDouble,
CelValue::Type::kBytes, CelValue::Type::kDuration,
CelValue::Type::kMap, CelValue::Type::kList,
CelValue::Type::kBool, CelValue::Type::kTimestamp};
TEST(RegisterEqualityFunctionsTest, EqualDefined) {
InterpreterOptions default_options;
CelFunctionRegistry registry;
ASSERT_OK(RegisterEqualityFunctions(®istry, default_options));
for (CelValue::Type type : kEqualableTypes) {
EXPECT_THAT(registry, DefinesHomogenousOverload(builtin::kEqual, type));
}
}
TEST(RegisterEqualityFunctionsTest, InequalDefined) {
InterpreterOptions default_options;
CelFunctionRegistry registry;
ASSERT_OK(RegisterEqualityFunctions(®istry, default_options));
for (CelValue::Type type : kEqualableTypes) {
EXPECT_THAT(registry, DefinesHomogenousOverload(builtin::kInequal, type));
}
}
TEST_P(EqualityFunctionTest, SmokeTest) {
EqualityTestCase test_case = std::get<0>(GetParam());
google::protobuf::LinkMessageReflection<AttributeContext>();
ASSERT_OK(RegisterEqualityFunctions(®istry(), options_));
ASSERT_OK_AND_ASSIGN(auto result,
Evaluate(test_case.expr, test_case.lhs, test_case.rhs));
if (absl::holds_alternative<bool>(test_case.result)) {
EXPECT_THAT(result, test::IsCelBool(absl::get<bool>(test_case.result)));
} else {
switch (absl::get<EqualityTestCase::ErrorKind>(test_case.result)) {
case EqualityTestCase::ErrorKind::kMissingOverload:
EXPECT_THAT(result, test::IsCelError(
StatusIs(absl::StatusCode::kUnknown,
HasSubstr("No matching overloads"))))
<< test_case.expr;
break;
case EqualityTestCase::ErrorKind::kMissingIdentifier:
EXPECT_THAT(result, test::IsCelError(
StatusIs(absl::StatusCode::kUnknown,
HasSubstr("found in Activation"))));
break;
default:
EXPECT_THAT(result, test::IsCelError(_));
break;
}
}
}
INSTANTIATE_TEST_SUITE_P(
Equality, EqualityFunctionTest,
Combine(testing::ValuesIn<EqualityTestCase>(
{{"null == null", true},
{"true == false", false},
{"1 == 1", true},
{"-2 == -1", false},
{"1.1 == 1.2", false},
{"'a' == 'a'", true},
{"lhs == rhs", false, CelValue::CreateBytesView("a"),
CelValue::CreateBytesView("b")},
{"lhs == rhs", false,
CelValue::CreateDuration(absl::Seconds(1)),
CelValue::CreateDuration(absl::Seconds(2))},
{"lhs == rhs", true,
CelValue::CreateTimestamp(absl::FromUnixSeconds(20)),
CelValue::CreateTimestamp(absl::FromUnixSeconds(20))},
{"no_such_identifier == 1",
EqualityTestCase::ErrorKind::kMissingIdentifier},
{"{1: no_such_identifier} == {1: 1}",
EqualityTestCase::ErrorKind::kMissingIdentifier}}),
testing::Bool()));
INSTANTIATE_TEST_SUITE_P(
Inequality, EqualityFunctionTest,
Combine(testing::ValuesIn<EqualityTestCase>(
{{"null != null", false},
{"true != false", true},
{"1 != 1", false},
{"-2 != -1", true},
{"1.1 != 1.2", true},
{"'a' != 'a'", false},
{"lhs != rhs", true, CelValue::CreateBytesView("a"),
CelValue::CreateBytesView("b")},
{"lhs != rhs", true,
CelValue::CreateDuration(absl::Seconds(1)),
CelValue::CreateDuration(absl::Seconds(2))},
{"lhs != rhs", true,
CelValue::CreateTimestamp(absl::FromUnixSeconds(20)),
CelValue::CreateTimestamp(absl::FromUnixSeconds(30))},
{"no_such_identifier != 1",
EqualityTestCase::ErrorKind::kMissingIdentifier},
{"{1: no_such_identifier} != {1: 1}",
EqualityTestCase::ErrorKind::kMissingIdentifier}}),
testing::Bool()));
INSTANTIATE_TEST_SUITE_P(HeterogeneousNumericContainers, EqualityFunctionTest,
Combine(testing::ValuesIn<EqualityTestCase>({
{"{1: 2} == {1u: 2}", true},
{"{1: 2} == {2u: 2}", false},
{"{1: 2} == {true: 2}", false},
{"{1: 2} != {1u: 2}", false},
{"{1: 2} != {2u: 2}", true},
{"{1: 2} != {true: 2}", true},
{"[1u, 2u, 3.0] != [1, 2.0, 3]", false},
{"[1u, 2u, 3.0] == [1, 2.0, 3]", true},
{"[1u, 2u, 3.0] != [1, 2.1, 3]", true},
{"[1u, 2u, 3.0] == [1, 2.1, 3]", false},
}),
testing::Values(true)));
INSTANTIATE_TEST_SUITE_P(
HomogenousNumericContainers, EqualityFunctionTest,
Combine(testing::ValuesIn<EqualityTestCase>({
{"{1: 2} == {1u: 2}", false},
{"{1: 2} == {2u: 2}", false},
{"{1: 2} == {true: 2}", false},
{"{1: 2} != {1u: 2}", true},
{"{1: 2} != {2u: 2}", true},
{"{1: 2} != {true: 2}", true},
{"[1u, 2u, 3.0] != [1, 2.0, 3]",
EqualityTestCase::ErrorKind::kMissingOverload},
{"[1u, 2u, 3.0] == [1, 2.0, 3]",
EqualityTestCase::ErrorKind::kMissingOverload},
{"[1u, 2u, 3.0] != [1, 2.1, 3]",
EqualityTestCase::ErrorKind::kMissingOverload},
{"[1u, 2u, 3.0] == [1, 2.1, 3]",
EqualityTestCase::ErrorKind::kMissingOverload},
}),
testing::Values(false)));
INSTANTIATE_TEST_SUITE_P(
NullInequalityLegacy, EqualityFunctionTest,
Combine(testing::ValuesIn<EqualityTestCase>(
{{"null != null", false},
{"true != null",
EqualityTestCase::ErrorKind::kMissingOverload},
{"1 != null", EqualityTestCase::ErrorKind::kMissingOverload},
{"-2 != null", EqualityTestCase::ErrorKind::kMissingOverload},
{"1.1 != null", EqualityTestCase::ErrorKind::kMissingOverload},
{"'a' != null", EqualityTestCase::ErrorKind::kMissingOverload},
{"lhs != null", EqualityTestCase::ErrorKind::kMissingOverload,
CelValue::CreateBytesView("a")},
{"lhs != null", EqualityTestCase::ErrorKind::kMissingOverload,
CelValue::CreateDuration(absl::Seconds(1))},
{"lhs != null", EqualityTestCase::ErrorKind::kMissingOverload,
CelValue::CreateTimestamp(absl::FromUnixSeconds(20))}}),
testing::Values<bool>(false)));
INSTANTIATE_TEST_SUITE_P(
NullEqualityLegacy, EqualityFunctionTest,
Combine(testing::ValuesIn<EqualityTestCase>(
{{"null == null", true},
{"true == null",
EqualityTestCase::ErrorKind::kMissingOverload},
{"1 == null", EqualityTestCase::ErrorKind::kMissingOverload},
{"-2 == null", EqualityTestCase::ErrorKind::kMissingOverload},
{"1.1 == null", EqualityTestCase::ErrorKind::kMissingOverload},
{"'a' == null", EqualityTestCase::ErrorKind::kMissingOverload},
{"lhs == null", EqualityTestCase::ErrorKind::kMissingOverload,
CelValue::CreateBytesView("a")},
{"lhs == null", EqualityTestCase::ErrorKind::kMissingOverload,
CelValue::CreateDuration(absl::Seconds(1))},
{"lhs == null", EqualityTestCase::ErrorKind::kMissingOverload,
CelValue::CreateTimestamp(absl::FromUnixSeconds(20))}}),
testing::Values<bool>(false)));
INSTANTIATE_TEST_SUITE_P(
NullInequality, EqualityFunctionTest,
Combine(testing::ValuesIn<EqualityTestCase>(
{{"null != null", false},
{"true != null", true},
{"null != false", true},
{"1 != null", true},
{"null != 1", true},
{"-2 != null", true},
{"null != -2", true},
{"1.1 != null", true},
{"null != 1.1", true},
{"'a' != null", true},
{"lhs != null", true, CelValue::CreateBytesView("a")},
{"lhs != null", true,
CelValue::CreateDuration(absl::Seconds(1))},
{"google.api.expr.runtime.TestMessage{} != null", true},
{"google.api.expr.runtime.TestMessage{}.string_wrapper_value"
" != null",
false},
{"google.api.expr.runtime.TestMessage{string_wrapper_value: "
"google.protobuf.StringValue{}}.string_wrapper_value != null",
true},
{"{} != null", true},
{"[] != null", true}}), |
404 | #ifndef TENSORFLOW_CORE_COMMON_RUNTIME_DEVICE_RESOLVER_LOCAL_H_
#define TENSORFLOW_CORE_COMMON_RUNTIME_DEVICE_RESOLVER_LOCAL_H_
#include <string>
#include <vector>
#include "tensorflow/core/framework/collective.h"
#include "tensorflow/core/framework/device_attributes.pb.h"
#include "tensorflow/core/platform/status.h"
namespace tensorflow {
class DeviceMgr;
class DeviceResolverLocal : public DeviceResolverInterface {
public:
explicit DeviceResolverLocal(const DeviceMgr* dev_mgr) : dev_mgr_(dev_mgr) {}
Status GetDeviceAttributes(const string& device,
DeviceAttributes* attributes) override;
Status GetAllDeviceAttributes(
const string& task, std::vector<DeviceAttributes>* attributes) override;
Status UpdateDeviceAttributes(
const std::vector<DeviceAttributes>& attributes) override;
protected:
const DeviceMgr* dev_mgr_;
};
}
#endif
#include "tensorflow/core/common_runtime/device_resolver_local.h"
#include "absl/status/status.h"
#include "tensorflow/core/common_runtime/device_mgr.h"
#include "tensorflow/core/platform/errors.h"
namespace tensorflow {
Status DeviceResolverLocal::GetDeviceAttributes(const string& device,
DeviceAttributes* attributes) {
Device* dev;
Status s = dev_mgr_->LookupDevice(device, &dev);
if (absl::IsInvalidArgument(s)) {
return errors::NotFound(device, " not found");
} else if (!s.ok()) {
return s;
}
*attributes = dev->attributes();
return absl::OkStatus();
}
Status DeviceResolverLocal::GetAllDeviceAttributes(
const string& task, std::vector<DeviceAttributes>* attributes) {
return errors::Internal(
"GetTaskCached is not supposed to be called in local collectives");
}
Status DeviceResolverLocal::UpdateDeviceAttributes(
const std::vector<DeviceAttributes>& attributes) {
return errors::Internal(
"UpdateDeviceAttributes shouldn't be called with local collectives");
}
} | #include "tensorflow/core/common_runtime/device_resolver_local.h"
#include "tensorflow/core/common_runtime/device.h"
#include "tensorflow/core/common_runtime/device_factory.h"
#include "tensorflow/core/common_runtime/device_mgr.h"
#include "tensorflow/core/lib/core/status.h"
#include "tensorflow/core/lib/core/status_test_util.h"
#include "tensorflow/core/platform/test.h"
#include "tensorflow/core/public/session_options.h"
namespace tensorflow {
namespace {
#define NUM_DEVS 3
class DeviceResolverLocalTest : public ::testing::Test {
protected:
DeviceResolverLocalTest() {
SessionOptions options;
string task_name = "/job:localhost/replica:0/task:0";
auto* device_count = options.config.mutable_device_count();
device_count->insert({"CPU", NUM_DEVS});
std::vector<std::unique_ptr<Device>> devices;
TF_CHECK_OK(DeviceFactory::AddDevices(options, task_name, &devices));
device_mgr_ = std::make_unique<StaticDeviceMgr>(std::move(devices));
drl_.reset(new DeviceResolverLocal(device_mgr_.get()));
}
std::unique_ptr<DeviceMgr> device_mgr_;
std::unique_ptr<DeviceResolverLocal> drl_;
};
TEST_F(DeviceResolverLocalTest, GetDeviceAttributesKnown) {
DeviceAttributes attributes;
TF_EXPECT_OK(drl_->GetDeviceAttributes(
"/job:localhost/replica:0/task:0/device:CPU:1", &attributes));
EXPECT_EQ(attributes.name(), "/job:localhost/replica:0/task:0/device:CPU:1");
}
TEST_F(DeviceResolverLocalTest, GetDeviceAttributesUnknown) {
DeviceAttributes attributes;
EXPECT_TRUE(errors::IsNotFound(drl_->GetDeviceAttributes(
"/job:localhost/replica:0/task:0/device:CPU:9", &attributes)));
}
TEST_F(DeviceResolverLocalTest, GetAllDeviceAttributes) {
std::vector<DeviceAttributes> attributes;
EXPECT_TRUE(errors::IsInternal(
drl_->GetAllDeviceAttributes( "", &attributes)));
}
TEST_F(DeviceResolverLocalTest, UpdateDeviceAttributes) {
std::vector<DeviceAttributes> attributes;
EXPECT_TRUE(errors::IsInternal(drl_->UpdateDeviceAttributes(attributes)));
}
}
} |
405 | #ifndef TENSORFLOW_LITE_EXPERIMENTAL_ACCELERATION_MINI_BENCHMARK_VALIDATOR_RUNNER_H_
#define TENSORFLOW_LITE_EXPERIMENTAL_ACCELERATION_MINI_BENCHMARK_VALIDATOR_RUNNER_H_
#include <memory>
#include <string>
#include <vector>
#include "tensorflow/lite/acceleration/configuration/configuration_generated.h"
#include "tensorflow/lite/core/api/error_reporter.h"
#include "tensorflow/lite/experimental/acceleration/mini_benchmark/fb_storage.h"
#include "tensorflow/lite/experimental/acceleration/mini_benchmark/status_codes.h"
#include "tensorflow/lite/experimental/acceleration/mini_benchmark/validator_runner_impl.h"
#include "tensorflow/lite/experimental/acceleration/mini_benchmark/validator_runner_options.h"
namespace tflite {
namespace acceleration {
class ValidatorRunner {
public:
static constexpr int64_t kDefaultEventTimeoutUs = 30 * 1000 * 1000;
explicit ValidatorRunner(const ValidatorRunnerOptions& options);
MinibenchmarkStatus Init();
int TriggerMissingValidation(
const std::vector<const TFLiteSettings*>& for_settings);
std::vector<const BenchmarkEvent*> GetSuccessfulResults() {
return validator_runner_impl_->GetSuccessfulResultsFromStorage();
}
int GetNumCompletedResults() {
return validator_runner_impl_->GetNumCompletedResults();
}
std::vector<const BenchmarkEvent*> GetAndFlushEventsToLog(
int64_t timeout_us = kDefaultEventTimeoutUs);
private:
const std::string storage_path_;
FlatbufferStorage<BenchmarkEvent> storage_;
ErrorReporter* error_reporter_;
bool triggered_ = false;
std::unique_ptr<ValidatorRunnerImpl> validator_runner_impl_;
};
}
}
#endif
#include "tensorflow/lite/experimental/acceleration/mini_benchmark/validator_runner.h"
#include <cstdlib>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "tensorflow/lite/acceleration/configuration/configuration_generated.h"
#include "tensorflow/lite/experimental/acceleration/mini_benchmark/fb_storage.h"
#include "tensorflow/lite/experimental/acceleration/mini_benchmark/status_codes.h"
#include "tensorflow/lite/experimental/acceleration/mini_benchmark/validator.h"
#include "tensorflow/lite/experimental/acceleration/mini_benchmark/validator_runner_options.h"
#include "tensorflow/lite/minimal_logging.h"
namespace tflite {
namespace acceleration {
constexpr int kMaxAttempts = 2;
ValidatorRunner::ValidatorRunner(const ValidatorRunnerOptions& options)
: storage_path_(options.storage_path),
storage_(options.storage_path, options.error_reporter),
error_reporter_(options.error_reporter) {
validator_runner_impl_ = std::make_unique<ValidatorRunnerImpl>(
CreateModelLoaderPath(options), options.storage_path,
options.data_directory_path, options.per_test_timeout_ms,
options.custom_input_data.empty()
? nullptr
: std::make_unique<CustomValidationEmbedder>(
options.custom_input_batch_size, options.custom_input_data,
options.error_reporter),
error_reporter_, options.nnapi_sl, options.gpu_plugin_handle,
options.validation_entrypoint_name, options.benchmark_result_evaluator);
}
MinibenchmarkStatus ValidatorRunner::Init() {
MinibenchmarkStatus status = storage_.Read();
if (status != kMinibenchmarkSuccess) {
TF_LITE_REPORT_ERROR(error_reporter_, "Storage::Read failed");
return status;
}
return validator_runner_impl_->Init();
}
int ValidatorRunner::TriggerMissingValidation(
const std::vector<const TFLiteSettings*>& for_settings) {
if (triggered_) {
return 0;
}
triggered_ = true;
storage_.Read();
std::vector<flatbuffers::FlatBufferBuilder> to_be_run;
for (auto settings : for_settings) {
TFLiteSettingsT tflite_settings;
settings->UnPackTo(&tflite_settings);
int started_count = 0;
int results_count = 0;
for (int i = 0; i < storage_.Count(); i++) {
const BenchmarkEvent* event = storage_.Get(i);
if (event->event_type() == BenchmarkEventType_LOGGED) {
continue;
}
if (!event->tflite_settings()) {
TFLITE_LOG_PROD(TFLITE_LOG_WARNING,
"Got previous event %d type %d with no tflite settings",
i, static_cast<int>(event->event_type()));
continue;
}
TFLiteSettingsT event_settings;
event->tflite_settings()->UnPackTo(&event_settings);
if (event_settings != tflite_settings) {
continue;
}
if (event->event_type() == BenchmarkEventType_START) {
started_count++;
} else if (event->event_type() == BenchmarkEventType_END) {
results_count++;
}
}
if (results_count > 0 || started_count >= kMaxAttempts) {
continue;
}
flatbuffers::FlatBufferBuilder copy;
copy.Finish(CreateTFLiteSettings(copy, &tflite_settings));
to_be_run.emplace_back(std::move(copy));
}
int to_be_run_count = to_be_run.size();
validator_runner_impl_->TriggerValidationAsync(std::move(to_be_run),
storage_path_);
return to_be_run_count;
}
std::vector<const BenchmarkEvent*> ValidatorRunner::GetAndFlushEventsToLog(
int64_t timeout_us) {
std::vector<const BenchmarkEvent*> events;
storage_.Read();
if (storage_.Count() == 0) {
return events;
}
const BenchmarkEvent* last = storage_.Get(storage_.Count() - 1);
if (!last || last->event_type() == BenchmarkEventType_LOGGED) {
return events;
}
bool has_pending_event = false;
for (int i = storage_.Count() - 1; i >= 0; i--) {
const BenchmarkEvent* event = storage_.Get(i);
if (!event || event->event_type() == BenchmarkEventType_LOGGED) {
break;
} else if (event->event_type() == BenchmarkEventType_END ||
event->event_type() == BenchmarkEventType_ERROR) {
break;
} else if (event->event_type() == BenchmarkEventType_START &&
std::abs(event->boottime_us() - Validator::BootTimeMicros()) <
timeout_us) {
has_pending_event = true;
}
}
if (has_pending_event) {
return events;
}
flatbuffers::FlatBufferBuilder fbb;
int64_t boottime_us = Validator::BootTimeMicros();
storage_.Append(
&fbb, CreateBenchmarkEvent(fbb, 0, BenchmarkEventType_LOGGED,
0, 0, boottime_us,
Validator::WallTimeMicros()));
storage_.Read();
bool seen_end = false;
for (int i = storage_.Count() - 1; i >= 0; i--) {
const BenchmarkEvent* event = storage_.Get(i);
if (!event || (event->event_type() == BenchmarkEventType_LOGGED &&
event->boottime_us() != boottime_us)) {
break;
}
if (event->event_type() == BenchmarkEventType_END ||
event->event_type() == BenchmarkEventType_ERROR ||
event->event_type() == BenchmarkEventType_RECOVERED_ERROR) {
events.push_back(event);
seen_end = true;
} else if (event->event_type() == BenchmarkEventType_START) {
if (!seen_end) {
events.push_back(event);
} else {
seen_end = false;
}
}
}
return events;
}
}
} | #include "tensorflow/lite/experimental/acceleration/mini_benchmark/validator_runner.h"
#include <fcntl.h>
#include <fstream>
#include <iostream>
#include <memory>
#include <ostream>
#include <string>
#include <vector>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "tensorflow/lite/acceleration/configuration/configuration_generated.h"
#include "tensorflow/lite/experimental/acceleration/compatibility/android_info.h"
#include "tensorflow/lite/experimental/acceleration/mini_benchmark/embedded_mobilenet_validation_model.h"
#include "tensorflow/lite/experimental/acceleration/mini_benchmark/embedded_nnapi_sl_fake_impl.h"
#include "tensorflow/lite/experimental/acceleration/mini_benchmark/mini_benchmark_test_helper.h"
#include "tensorflow/lite/experimental/acceleration/mini_benchmark/nnapi_sl_fake_impl.h"
#include "tensorflow/lite/experimental/acceleration/mini_benchmark/status_codes.h"
#include "tensorflow/lite/nnapi/sl/include/SupportLibrary.h"
#ifdef __ANDROID__
#include <dlfcn.h>
#include "tensorflow/lite/experimental/acceleration/mini_benchmark/embedded_validator_runner_entrypoint.h"
#endif
namespace tflite {
namespace acceleration {
namespace {
std::vector<const TFLiteSettings*> BuildBenchmarkSettings(
const AndroidInfo& android_info, flatbuffers::FlatBufferBuilder& fbb_cpu,
flatbuffers::FlatBufferBuilder& fbb_nnapi,
flatbuffers::FlatBufferBuilder& fbb_gpu,
bool ignore_android_version = false) {
std::vector<const TFLiteSettings*> settings;
fbb_cpu.Finish(CreateTFLiteSettings(fbb_cpu, Delegate_NONE,
CreateNNAPISettings(fbb_cpu)));
settings.push_back(
flatbuffers::GetRoot<TFLiteSettings>(fbb_cpu.GetBufferPointer()));
if (ignore_android_version || android_info.android_sdk_version >= "28") {
fbb_nnapi.Finish(CreateTFLiteSettings(fbb_nnapi, Delegate_NNAPI,
CreateNNAPISettings(fbb_nnapi)));
settings.push_back(
flatbuffers::GetRoot<TFLiteSettings>(fbb_nnapi.GetBufferPointer()));
}
#ifdef __ANDROID__
fbb_gpu.Finish(CreateTFLiteSettings(fbb_gpu, Delegate_GPU));
settings.push_back(
flatbuffers::GetRoot<TFLiteSettings>(fbb_gpu.GetBufferPointer()));
#endif
return settings;
}
std::string GetTargetDeviceName(const BenchmarkEvent* event) {
if (event->tflite_settings()->delegate() == Delegate_GPU) {
return "GPU";
} else if (event->tflite_settings()->delegate() == Delegate_NNAPI) {
return "NNAPI";
}
return "CPU";
}
class ValidatorRunnerTest : public ::testing::Test {
protected:
void SetUp() override {
MiniBenchmarkTestHelper helper;
should_perform_test_ = helper.should_perform_test();
if (!should_perform_test_) {
return;
}
model_path_ = helper.DumpToTempFile(
"mobilenet_quant_with_validation.tflite",
g_tflite_acceleration_embedded_mobilenet_validation_model,
g_tflite_acceleration_embedded_mobilenet_validation_model_len);
ASSERT_TRUE(!model_path_.empty());
}
void CheckConfigurations(bool use_path = true) {
if (!should_perform_test_) {
std::cerr << "Skipping test";
return;
}
AndroidInfo android_info;
auto status = RequestAndroidInfo(&android_info);
ASSERT_TRUE(status.ok());
ValidatorRunnerOptions options;
options.data_directory_path = ::testing::TempDir();
options.storage_path = ::testing::TempDir() + "/storage_path.fb";
(void)unlink(options.storage_path.c_str());
if (use_path) {
options.model_path = model_path_;
} else {
options.model_fd = open(model_path_.c_str(), O_RDONLY);
ASSERT_GE(options.model_fd, 0);
struct stat stat_buf = {0};
ASSERT_EQ(fstat(options.model_fd, &stat_buf), 0);
options.model_size = stat_buf.st_size;
options.model_offset = 0;
}
auto validator1 = std::make_unique<ValidatorRunner>(options);
auto validator2 = std::make_unique<ValidatorRunner>(options);
ASSERT_EQ(validator1->Init(), kMinibenchmarkSuccess);
ASSERT_EQ(validator2->Init(), kMinibenchmarkSuccess);
std::vector<const BenchmarkEvent*> events =
validator1->GetAndFlushEventsToLog();
ASSERT_TRUE(events.empty());
flatbuffers::FlatBufferBuilder fbb_cpu, fbb_nnapi, fbb_gpu;
std::vector<const TFLiteSettings*> settings =
BuildBenchmarkSettings(android_info, fbb_cpu, fbb_nnapi, fbb_gpu);
ASSERT_EQ(validator1->TriggerMissingValidation(settings), settings.size());
int event_count = 0;
while (event_count < settings.size()) {
events = validator1->GetAndFlushEventsToLog();
event_count += events.size();
for (const BenchmarkEvent* event : events) {
std::string delegate_name = GetTargetDeviceName(event);
if (event->event_type() == BenchmarkEventType_END) {
if (event->result()->ok()) {
std::cout << "Validation passed on " << delegate_name << std::endl;
} else {
std::cout << "Validation did not pass on " << delegate_name
<< std::endl;
}
} else if (event->event_type() == BenchmarkEventType_ERROR) {
std::cout << "Failed to run validation on " << delegate_name
<< std::endl;
}
}
#ifndef _WIN32
sleep(1);
#endif
}
EXPECT_EQ(validator2->TriggerMissingValidation(settings), 0);
}
bool should_perform_test_ = true;
std::string model_path_;
};
TEST_F(ValidatorRunnerTest, AllConfigurationsWithFilePath) {
CheckConfigurations(true);
}
TEST_F(ValidatorRunnerTest, AllConfigurationsWithFd) {
CheckConfigurations(false);
}
using ::tflite::nnapi::NnApiSupportLibrary;
std::unique_ptr<const NnApiSupportLibrary> LoadNnApiSupportLibrary() {
MiniBenchmarkTestHelper helper;
std::string nnapi_sl_path = helper.DumpToTempFile(
"libnnapi_fake.so", g_nnapi_sl_fake_impl, g_nnapi_sl_fake_impl_len);
std::unique_ptr<const NnApiSupportLibrary> nnapi_sl =
::tflite::nnapi::loadNnApiSupportLibrary(nnapi_sl_path);
return nnapi_sl;
}
TEST_F(ValidatorRunnerTest, ShouldUseNnApiSl) {
if (!should_perform_test_) {
std::cerr << "Skipping test";
return;
}
AndroidInfo android_info;
auto status = RequestAndroidInfo(&android_info);
ASSERT_TRUE(status.ok());
InitNnApiSlInvocationStatus();
std::unique_ptr<const NnApiSupportLibrary> nnapi_sl =
LoadNnApiSupportLibrary();
ASSERT_THAT(nnapi_sl.get(), ::testing::NotNull());
ValidatorRunnerOptions options;
options.model_path = model_path_;
options.storage_path = ::testing::TempDir() + "/storage_path.fb";
(void)unlink(options.storage_path.c_str());
options.data_directory_path = ::testing::TempDir();
options.nnapi_sl = nnapi_sl->getFL5();
ValidatorRunner validator(options);
ASSERT_EQ(validator.Init(), kMinibenchmarkSuccess);
std::vector<const BenchmarkEvent*> events =
validator.GetAndFlushEventsToLog();
ASSERT_TRUE(events.empty());
flatbuffers::FlatBufferBuilder fbb_cpu, fbb_nnapi, fbb_gpu;
std::vector<const TFLiteSettings*> settings =
BuildBenchmarkSettings(android_info, fbb_cpu, fbb_nnapi, fbb_gpu,
true);
ASSERT_EQ(validator.TriggerMissingValidation(settings), settings.size());
int event_count = 0;
while (event_count < settings.size()) {
events = validator.GetAndFlushEventsToLog();
event_count += events.size();
#ifndef _WIN32
sleep(1);
#endif
}
ASSERT_EQ(validator.TriggerMissingValidation(settings), 0);
EXPECT_TRUE(WasNnApiSlInvoked());
}
TEST_F(ValidatorRunnerTest, ShouldFailIfItCannotFindNnApiSlPath) {
if (!should_perform_test_) {
std::cerr << "Skipping test";
return;
}
std::string storage_path = ::testing::TempDir() + "/storage_path.fb";
(void)unlink(storage_path.c_str());
NnApiSLDriverImplFL5 wrong_handle_nnapi_sl{};
ValidatorRunnerOptions options;
options.model_path = model_path_;
options.storage_path = ::testing::TempDir() + "/storage_path.fb";
(void)unlink(options.storage_path.c_str());
options.data_directory_path = ::testing::TempDir();
options.nnapi_sl = &wrong_handle_nnapi_sl;
ValidatorRunner validator(options);
ASSERT_EQ(validator.Init(), kMiniBenchmarkCannotLoadSupportLibrary);
}
}
}
} |
406 | #ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_RUNTIME_SHAPE_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_RUNTIME_SHAPE_H_
#include <cstdint>
#include <cstring>
#include <initializer_list>
#include <iterator>
#include <memory>
#include "tensorflow/lite/kernels/internal/compatibility.h"
namespace tflite {
template <int N>
struct Dims {
int sizes[N];
int strides[N];
};
class RuntimeShape {
public:
static constexpr int kMaxSmallSize = 6;
RuntimeShape& operator=(RuntimeShape const&) = delete;
RuntimeShape() : size_(0) {}
explicit RuntimeShape(int dimensions_count) : size_(dimensions_count) {
if (dimensions_count > kMaxSmallSize) {
dims_pointer_ = new int32_t[dimensions_count];
}
}
RuntimeShape(int shape_size, int32_t value) : size_(0) {
Resize(shape_size);
for (int i = 0; i < shape_size; ++i) {
SetDim(i, value);
}
}
RuntimeShape(int dimensions_count, const int32_t* dims_data) : size_(0) {
ReplaceWith(dimensions_count, dims_data);
}
RuntimeShape(const std::initializer_list<int> init_list) : size_(0) {
BuildFrom(init_list);
}
RuntimeShape(RuntimeShape const& other) : size_(other.DimensionsCount()) {
if (size_ > kMaxSmallSize) {
dims_pointer_ = new int32_t[size_];
}
std::memcpy(DimsData(), other.DimsData(), sizeof(int32_t) * size_);
}
bool operator==(const RuntimeShape& comp) const {
return this->size_ == comp.size_ &&
std::memcmp(DimsData(), comp.DimsData(), size_ * sizeof(int32_t)) ==
0;
}
~RuntimeShape();
inline int32_t DimensionsCount() const { return size_; }
int32_t Dims(int i) const;
inline void SetDim(int i, int32_t val) {
TFLITE_DCHECK_GE(i, 0);
TFLITE_DCHECK_LT(i, size_);
if (size_ > kMaxSmallSize) {
dims_pointer_[i] = val;
} else {
dims_[i] = val;
}
}
inline int32_t* DimsData() {
return size_ > kMaxSmallSize ? dims_pointer_ : dims_;
}
inline const int32_t* DimsData() const {
return size_ > kMaxSmallSize ? dims_pointer_ : dims_;
}
inline const int32_t* DimsDataUpTo5D() const { return dims_; }
inline void Resize(int dimensions_count) {
const int32_t old_size = size_;
size_ = dimensions_count;
if (old_size <= kMaxSmallSize) {
if (dimensions_count <= kMaxSmallSize) {
return;
} else {
int32_t* new_big_data = new int32_t[dimensions_count];
memcpy(new_big_data, dims_, sizeof(int32_t) * old_size);
dims_pointer_ = new_big_data;
}
} else {
if (dimensions_count > kMaxSmallSize && dimensions_count <= old_size) {
return;
}
std::unique_ptr<int32_t[]> old_data(dims_pointer_);
if (dimensions_count <= old_size) {
memcpy(dims_, old_data.get(), sizeof(int32_t) * dimensions_count);
} else {
dims_pointer_ = new int32_t[dimensions_count];
memcpy(dims_pointer_, old_data.get(), sizeof(int32_t) * old_size);
}
}
}
void ReplaceWith(int dimensions_count, const int32_t* dims_data);
template <typename T>
inline void BuildFrom(const T& src_iterable) {
const int dimensions_count =
std::distance(src_iterable.begin(), src_iterable.end());
Resize(dimensions_count);
int32_t* data = DimsData();
for (auto it : src_iterable) {
*data = it;
++data;
}
}
inline static RuntimeShape ExtendedShape(int new_shape_size,
const RuntimeShape& shape) {
return RuntimeShape(new_shape_size, shape, 1);
}
inline void BuildFrom(const std::initializer_list<int> init_list) {
BuildFrom<const std::initializer_list<int>>(init_list);
}
int FlatSize() const;
bool operator!=(const RuntimeShape& comp) const { return !((*this) == comp); }
private:
RuntimeShape(int new_shape_size, const RuntimeShape& shape, int pad_value)
: size_(0) {
TFLITE_CHECK_GE(new_shape_size, shape.DimensionsCount());
Resize(new_shape_size);
const int size_increase = new_shape_size - shape.DimensionsCount();
for (int i = 0; i < size_increase; ++i) {
SetDim(i, pad_value);
}
std::memcpy(DimsData() + size_increase, shape.DimsData(),
sizeof(int32_t) * shape.DimensionsCount());
}
int32_t size_;
union {
int32_t dims_[kMaxSmallSize];
int32_t* dims_pointer_;
};
};
inline tflite::Dims<4> ToRuntimeDims(const tflite::RuntimeShape& array_shape) {
tflite::Dims<4> result;
const int dimensions_count = array_shape.DimensionsCount();
TFLITE_CHECK_LE(dimensions_count, 4);
int cum_prod = 1;
for (int i = 0; i < 4; i++) {
const int new_dim =
(i < dimensions_count) ? array_shape.Dims(dimensions_count - 1 - i) : 1;
result.sizes[i] = new_dim;
result.strides[i] = cum_prod;
cum_prod *= new_dim;
}
return result;
}
inline RuntimeShape DimsToShape(const tflite::Dims<4>& dims) {
return RuntimeShape(
{dims.sizes[3], dims.sizes[2], dims.sizes[1], dims.sizes[0]});
}
inline int Offset(const RuntimeShape& shape, int i0, int i1, int i2, int i3) {
TFLITE_DCHECK_EQ(shape.DimensionsCount(), 4);
const int* dims_data = reinterpret_cast<const int*>(shape.DimsDataUpTo5D());
TFLITE_DCHECK((dims_data[0] == 0 && i0 == 0) ||
(i0 >= 0 && i0 < dims_data[0]));
TFLITE_DCHECK((dims_data[1] == 0 && i1 == 0) ||
(i1 >= 0 && i1 < dims_data[1]));
TFLITE_DCHECK((dims_data[2] == 0 && i2 == 0) ||
(i2 >= 0 && i2 < dims_data[2]));
TFLITE_DCHECK((dims_data[3] == 0 && i3 == 0) ||
(i3 >= 0 && i3 < dims_data[3]));
return ((i0 * dims_data[1] + i1) * dims_data[2] + i2) * dims_data[3] + i3;
}
inline int Offset(const RuntimeShape& shape, int i0, int i1, int i2, int i3,
int i4) {
TFLITE_DCHECK_EQ(shape.DimensionsCount(), 5);
const int* dims_data = reinterpret_cast<const int*>(shape.DimsDataUpTo5D());
TFLITE_DCHECK((dims_data[0] == 0 && i0 == 0) ||
(i0 >= 0 && i0 < dims_data[0]));
TFLITE_DCHECK((dims_data[1] == 0 && i1 == 0) ||
(i1 >= 0 && i1 < dims_data[1]));
TFLITE_DCHECK((dims_data[2] == 0 && i2 == 0) ||
(i2 >= 0 && i2 < dims_data[2]));
TFLITE_DCHECK((dims_data[3] == 0 && i3 == 0) ||
(i3 >= 0 && i3 < dims_data[3]));
TFLITE_DCHECK((dims_data[4] == 0 && i4 == 0) ||
(i4 >= 0 && i4 < dims_data[4]));
return (((i0 * dims_data[1] + i1) * dims_data[2] + i2) * dims_data[3] + i3) *
dims_data[4] +
i4;
}
inline int Offset(const RuntimeShape& shape, int* index) {
return Offset(shape, index[0], index[1], index[2], index[3]);
}
}
#endif
#include "tensorflow/lite/kernels/internal/runtime_shape.h"
#include <cstring>
namespace tflite {
RuntimeShape::~RuntimeShape() {
if (size_ > kMaxSmallSize) {
delete[] dims_pointer_;
}
}
int32_t RuntimeShape::Dims(int i) const {
TFLITE_DCHECK_GE(i, 0);
TFLITE_DCHECK_LT(i, size_);
return size_ > kMaxSmallSize ? dims_pointer_[i] : dims_[i];
}
void RuntimeShape::ReplaceWith(int dimensions_count, const int32_t* dims_data) {
Resize(dimensions_count);
int32_t* dst_dims = DimsData();
std::memcpy(dst_dims, dims_data, dimensions_count * sizeof(int32_t));
}
int RuntimeShape::FlatSize() const {
int buffer_size = 1;
const int* dims_data = reinterpret_cast<const int*>(DimsData());
for (int i = 0; i < size_; i++) {
buffer_size *= dims_data[i];
}
return buffer_size;
}
} | #include "tensorflow/lite/kernels/internal/runtime_shape.h"
#include <algorithm>
#include <cstdint>
#include <functional>
#include <initializer_list>
#include <numeric>
#include <vector>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "absl/algorithm/container.h"
#include "absl/types/span.h"
using testing::Each;
using testing::ElementsAreArray;
namespace tflite {
namespace {
constexpr int kSmallSize = RuntimeShape::kMaxSmallSize;
constexpr int kBigSize = RuntimeShape::kMaxSmallSize + 1;
std::vector<int32_t> IotaVector(int size, int start = 0) {
std::vector<int32_t> vec(size);
absl::c_iota(vec, start);
return vec;
}
absl::Span<const int32_t> AsSpan(const RuntimeShape& shape) {
return absl::Span<const int32_t>(shape.DimsData(), shape.DimensionsCount());
}
class RuntimeShapeTest : public testing::TestWithParam<int> {};
TEST(RuntimeShapeTest, TestDefaultConstructor) {
const RuntimeShape shape;
EXPECT_EQ(shape.DimensionsCount(), 0);
}
TEST_P(RuntimeShapeTest, TestConstructorWithSize) {
const int size = GetParam();
const RuntimeShape shape(size);
EXPECT_EQ(shape.DimensionsCount(), size);
}
TEST_P(RuntimeShapeTest, TestConstructorWithSizeAndDefaultValue) {
const int size = GetParam();
const RuntimeShape shape(size, 34);
EXPECT_EQ(shape.DimensionsCount(), size);
EXPECT_THAT(AsSpan(shape), Each(34));
}
TEST_P(RuntimeShapeTest, TestConstructorFromCArray) {
const int size = GetParam();
const std::vector<int32_t> src = IotaVector(size);
const RuntimeShape shape(size, src.data());
EXPECT_EQ(shape.DimensionsCount(), size);
EXPECT_THAT(AsSpan(shape), ElementsAreArray(src));
}
TEST(RuntimeShapeTest, TestConstructorFromSmallInitList) {
std::initializer_list<int> init{1, 2, 3};
ASSERT_LE(init.size(), RuntimeShape::kMaxSmallSize);
const RuntimeShape shape(init);
EXPECT_EQ(shape.DimensionsCount(), init.size());
EXPECT_THAT(AsSpan(shape), ElementsAreArray(init));
}
TEST(RuntimeShapeTest, TestConstructorFromBigInitList) {
std::initializer_list<int> init{1, 2, 3, 4, 5, 6, 7, 8, 9};
ASSERT_GT(init.size(), RuntimeShape::kMaxSmallSize);
const RuntimeShape shape(init);
EXPECT_EQ(shape.DimensionsCount(), init.size());
EXPECT_THAT(AsSpan(shape), ElementsAreArray(init));
}
TEST_P(RuntimeShapeTest, TestCopyConstructorFromShape) {
const int size = GetParam();
const RuntimeShape src(size, 34);
const RuntimeShape dst(src);
EXPECT_EQ(dst.DimensionsCount(), src.DimensionsCount());
EXPECT_THAT(AsSpan(dst), ElementsAreArray(AsSpan(src)));
}
TEST_P(RuntimeShapeTest, TestEqualityOperator) {
const int size = GetParam();
const RuntimeShape shape1(size, 34);
const RuntimeShape shape2(size, 34);
EXPECT_TRUE(shape1 == shape2);
EXPECT_FALSE(shape1 != shape2);
}
TEST_P(RuntimeShapeTest, TestEqualityOperatorDifferentSizes) {
const int size = GetParam();
const RuntimeShape shape1(size, 34);
const RuntimeShape shape2(size + 1, 34);
EXPECT_FALSE(shape1 == shape2);
EXPECT_TRUE(shape1 != shape2);
}
TEST_P(RuntimeShapeTest, TestEqualityOperatorDifferentValues) {
const int size = GetParam();
const RuntimeShape shape1(size, 34);
const RuntimeShape shape2(size, 43);
EXPECT_FALSE(shape1 == shape2);
EXPECT_TRUE(shape1 != shape2);
}
TEST_P(RuntimeShapeTest, TestSetterGetter) {
const int size = GetParam();
RuntimeShape shape(size);
for (int i = 0; i < size; ++i) {
shape.SetDim(i, i);
EXPECT_EQ(shape.Dims(i), i);
}
EXPECT_THAT(AsSpan(shape), ElementsAreArray(IotaVector(size)));
}
TEST(RuntimeShapeTest, TestResizeSmallSmall) {
ASSERT_GE(kSmallSize, 1);
RuntimeShape shape(kSmallSize - 1, 23);
shape.Resize(kSmallSize);
EXPECT_EQ(shape.DimensionsCount(), kSmallSize);
EXPECT_THAT(absl::Span<const int32_t>(shape.DimsData(), kSmallSize - 1),
Each(23));
}
TEST(RuntimeShapeTest, TestResizeSmallBig) {
RuntimeShape shape(kSmallSize, 23);
shape.Resize(kBigSize);
EXPECT_EQ(shape.DimensionsCount(), kBigSize);
EXPECT_THAT(absl::Span<const int32_t>(shape.DimsData(), kSmallSize),
Each(23));
}
TEST(RuntimeShapeTest, TestResizeBigSmall) {
RuntimeShape shape(kBigSize, 23);
shape.Resize(kSmallSize);
EXPECT_EQ(shape.DimensionsCount(), kSmallSize);
EXPECT_THAT(absl::Span<const int32_t>(shape.DimsData(), kSmallSize),
Each(23));
}
TEST(RuntimeShapeTest, TestResizeDownBigBig) {
RuntimeShape shape(kBigSize + 3, 23);
shape.Resize(kBigSize);
EXPECT_EQ(shape.DimensionsCount(), kBigSize);
EXPECT_THAT(absl::Span<const int32_t>(shape.DimsData(), kBigSize), Each(23));
}
TEST(RuntimeShapeTest, TestResizeUpBigBig) {
RuntimeShape shape(kBigSize, 23);
shape.Resize(kBigSize + 1);
EXPECT_EQ(shape.DimensionsCount(), kBigSize + 1);
EXPECT_THAT(absl::Span<const int32_t>(shape.DimsData(), kBigSize), Each(23));
}
TEST_P(RuntimeShapeTest, TestReplaceWith) {
static_assert(
RuntimeShape::kMaxSmallSize > 2,
"kMaxSmallSize should be greater than 2 for this test to work.");
const int size = GetParam();
for (const int offset : {-2, 2}) {
const std::vector<int32_t> src =
IotaVector(offset + RuntimeShape::kMaxSmallSize);
RuntimeShape shape(size);
shape.ReplaceWith(src.size(), src.data());
EXPECT_EQ(shape.DimensionsCount(), src.size());
EXPECT_THAT(AsSpan(shape), testing::ElementsAreArray(src));
}
}
TEST_P(RuntimeShapeTest, TestBuildFrom) {
const int size = GetParam();
const std::vector<int32_t> src = IotaVector(size);
RuntimeShape shape;
shape.BuildFrom(src);
EXPECT_EQ(shape.DimensionsCount(), src.size());
EXPECT_THAT(AsSpan(shape), testing::ElementsAreArray(src));
}
TEST(RuntimeShapeTest, TestExtendedShapeSmall) {
ASSERT_GE(kSmallSize, 2);
const std::vector<int32_t> dims = IotaVector(kSmallSize - 2);
const RuntimeShape src(dims.size(), dims.data());
const RuntimeShape extended = RuntimeShape::ExtendedShape(kSmallSize, src);
EXPECT_EQ(extended.DimensionsCount(), kSmallSize);
EXPECT_EQ(extended.Dims(0), 1);
EXPECT_EQ(extended.Dims(1), 1);
EXPECT_THAT(absl::Span<const int32_t>(extended.DimsData() + 2, dims.size()),
ElementsAreArray(dims));
}
TEST(RuntimeShapeTest, TestExtendedShapeBig) {
ASSERT_GE(kSmallSize, 2);
const std::vector<int32_t> dims = IotaVector(kBigSize);
const RuntimeShape src(dims.size(), dims.data());
const RuntimeShape extended = RuntimeShape::ExtendedShape(kBigSize + 2, src);
EXPECT_EQ(extended.DimensionsCount(), kBigSize + 2);
EXPECT_EQ(extended.Dims(0), 1);
EXPECT_EQ(extended.Dims(1), 1);
EXPECT_THAT(absl::Span<const int32_t>(extended.DimsData() + 2, dims.size()),
ElementsAreArray(dims));
}
TEST(RuntimeShapeTest, TestExtendedShapeSmallToBig) {
const std::vector<int32_t> dims = IotaVector(kSmallSize);
const RuntimeShape src(dims.size(), dims.data());
const RuntimeShape extended = RuntimeShape::ExtendedShape(kBigSize, src);
EXPECT_EQ(extended.DimensionsCount(), kBigSize);
EXPECT_THAT(
absl::Span<const int32_t>(extended.DimsData(), kBigSize - kSmallSize),
Each(1));
EXPECT_THAT(absl::Span<const int32_t>(
extended.DimsData() + kBigSize - kSmallSize, dims.size()),
ElementsAreArray(dims));
}
TEST_P(RuntimeShapeTest, TestFlatSize) {
const std::vector<int32_t> src = IotaVector(kSmallSize);
const RuntimeShape shape(src.size(), src.data());
EXPECT_EQ(shape.FlatSize(),
std::reduce(src.begin(), src.end(), 1, std::multiplies<int>{}));
}
INSTANTIATE_TEST_SUITE_P(BigSmall, RuntimeShapeTest,
testing::Values(kSmallSize, kBigSize),
[](const testing::TestParamInfo<int>& info) {
return info.param == kSmallSize ? "Small" : "Big";
});
}
} |
407 | #ifndef XLA_PJRT_C_PJRT_C_API_CPU_H_
#define XLA_PJRT_C_PJRT_C_API_CPU_H_
#include "xla/pjrt/c/pjrt_c_api.h"
#ifdef __cplusplus
extern "C" {
#endif
const PJRT_Api* GetPjrtApi();
#ifdef __cplusplus
}
#endif
#endif
#include "xla/pjrt/c/pjrt_c_api_cpu.h"
#include "xla/pjrt/c/pjrt_c_api.h"
#include "xla/pjrt/c/pjrt_c_api_cpu_internal.h"
const PJRT_Api* GetPjrtApi() { return pjrt::cpu_plugin::GetCpuPjrtApi(); } | #include "xla/pjrt/c/pjrt_c_api_cpu.h"
#include "xla/pjrt/c/pjrt_c_api_test.h"
#include "xla/pjrt/c/pjrt_c_api_wrapper_impl.h"
namespace pjrt {
namespace {
const bool kUnused = (RegisterPjRtCApiTestFactory([]() { return GetPjrtApi(); },
"cpu"),
true);
}
} |
408 | #ifndef TENSORFLOW_CORE_KERNELS_DATA_CONCATENATE_DATASET_OP_H_
#define TENSORFLOW_CORE_KERNELS_DATA_CONCATENATE_DATASET_OP_H_
#include "tensorflow/core/framework/dataset.h"
namespace tensorflow {
namespace data {
class ConcatenateDatasetOp : public BinaryDatasetOpKernel {
public:
static constexpr const char* const kDatasetType = "Concatenate";
static constexpr const char* const kInputDataset = "input_dataset";
static constexpr const char* const kAnotherDataset = "another_dataset";
static constexpr const char* const kOutputTypes = "output_types";
static constexpr const char* const kOutputShapes = "output_shapes";
explicit ConcatenateDatasetOp(OpKernelConstruction* ctx);
protected:
void MakeDataset(OpKernelContext* ctx, DatasetBase* input,
DatasetBase* to_concatenate, DatasetBase** output) override;
private:
class Dataset;
};
}
}
#endif
#include "tensorflow/core/kernels/data/concatenate_dataset_op.h"
#include <string>
#include <utility>
#include "tensorflow/core/data/name_utils.h"
#include "tensorflow/core/data/split_utils.h"
#include "tensorflow/core/framework/partial_tensor_shape.h"
#include "tensorflow/core/framework/tensor.h"
namespace tensorflow {
namespace data {
constexpr const char* const ConcatenateDatasetOp::kDatasetType;
constexpr const char* const ConcatenateDatasetOp::kInputDataset;
constexpr const char* const ConcatenateDatasetOp::kAnotherDataset;
constexpr const char* const ConcatenateDatasetOp::kOutputTypes;
constexpr const char* const ConcatenateDatasetOp::kOutputShapes;
constexpr char kIndex[] = "i";
constexpr char kInputImplUninitialized[] = "input_impl_uninitialized";
class ConcatenateDatasetOp::Dataset : public DatasetBase {
public:
explicit Dataset(OpKernelContext* ctx, const DatasetBase* input,
const DatasetBase* to_concatenate)
: DatasetBase(DatasetContext(ctx)),
input_(input),
to_concatenate_(to_concatenate),
input_cardinality_(input->Cardinality()),
to_concatenate_cardinality_(to_concatenate_->Cardinality()) {
input_->Ref();
to_concatenate_->Ref();
auto os_input = input->output_shapes();
auto os_concatenate = to_concatenate->output_shapes();
for (int i = 0; i < os_input.size(); i++) {
PartialTensorShape output_tensorshape({});
OP_REQUIRES_OK(ctx,
MostSpecificCompatibleShape(os_input[i], os_concatenate[i],
&output_tensorshape));
output_shapes_.push_back(output_tensorshape);
}
}
~Dataset() override {
input_->Unref();
to_concatenate_->Unref();
}
std::unique_ptr<IteratorBase> MakeIteratorInternal(
const string& prefix) const override {
return std::make_unique<Iterator>(Iterator::Params{
this, name_utils::IteratorPrefix(kDatasetType, prefix)});
}
Status MakeSplitProviders(std::vector<std::unique_ptr<SplitProvider>>*
split_providers) const override {
TF_ASSIGN_OR_RETURN(*split_providers, GetSplitProviders(this));
return absl::OkStatus();
}
const DataTypeVector& output_dtypes() const override {
return input_->output_dtypes();
}
const std::vector<PartialTensorShape>& output_shapes() const override {
return output_shapes_;
}
string DebugString() const override {
return name_utils::DatasetDebugString(kDatasetType);
}
int64_t CardinalityInternal(CardinalityOptions options) const override {
int64_t input_cardinality = input_->Cardinality(options);
int64_t to_concatenate_cardinality = to_concatenate_->Cardinality(options);
if (input_cardinality == kInfiniteCardinality ||
to_concatenate_cardinality == kInfiniteCardinality) {
return kInfiniteCardinality;
}
if (input_cardinality == kUnknownCardinality ||
to_concatenate_cardinality == kUnknownCardinality) {
return kUnknownCardinality;
}
return input_cardinality + to_concatenate_cardinality;
}
Status InputDatasets(std::vector<const DatasetBase*>* inputs) const override {
inputs->push_back(input_);
inputs->push_back(to_concatenate_);
return absl::OkStatus();
}
Status CheckExternalState() const override {
TF_RETURN_IF_ERROR(input_->CheckExternalState());
return to_concatenate_->CheckExternalState();
}
Status Get(OpKernelContext* ctx, int64 index,
std::vector<Tensor>* out_tensors) const override {
TF_RETURN_IF_ERROR(CheckRandomAccessCompatible(index));
if (index < input_cardinality_) {
TF_RETURN_IF_ERROR(input_->Get(ctx, index, out_tensors));
} else {
TF_RETURN_IF_ERROR(
to_concatenate_->Get(ctx, index - input_cardinality_, out_tensors));
}
return absl::OkStatus();
}
protected:
Status AsGraphDefInternal(SerializationContext* ctx,
DatasetGraphDefBuilder* b,
Node** output) const override {
Node* input_graph = nullptr;
TF_RETURN_IF_ERROR(b->AddInputDataset(ctx, input_, &input_graph));
Node* to_concatenate_graph = nullptr;
TF_RETURN_IF_ERROR(
b->AddInputDataset(ctx, to_concatenate_, &to_concatenate_graph));
TF_RETURN_IF_ERROR(
b->AddDataset(this, {input_graph, to_concatenate_graph}, output));
return absl::OkStatus();
}
private:
class Iterator : public DatasetIterator<Dataset> {
public:
explicit Iterator(const Params& params)
: DatasetIterator<Dataset>(params), i_(0) {}
bool SymbolicCheckpointCompatible() const override { return true; }
Status Initialize(IteratorContext* ctx) override {
TF_ASSIGN_OR_RETURN(input_contexts_,
CreateInputIteratorContexts(ctx, dataset()));
TF_RETURN_IF_ERROR(dataset()->input_->MakeIterator(
&input_contexts_[0], this, strings::StrCat(prefix(), "[0]"),
&input_impl_));
ctx->MergeCheckpoint(input_contexts_[0].checkpoint());
return absl::OkStatus();
}
Status GetNextInternal(IteratorContext* ctx,
std::vector<Tensor>* out_tensors,
bool* end_of_sequence) override {
mutex_lock l(mu_);
if (!input_impl_) {
*end_of_sequence = true;
return absl::OkStatus();
}
while (i_ < 2) {
TF_RETURN_IF_ERROR(input_impl_->GetNext(&input_contexts_[i_],
out_tensors, end_of_sequence));
ctx->MergeCheckpoint(input_contexts_[i_].checkpoint());
if (!*end_of_sequence) {
return absl::OkStatus();
}
if (++i_ < 2) {
TF_RETURN_IF_ERROR(dataset()->to_concatenate_->MakeIterator(
&input_contexts_[i_], this, strings::StrCat(prefix(), "[1]"),
&input_impl_));
}
}
*end_of_sequence = true;
input_impl_.reset();
return absl::OkStatus();
}
protected:
std::shared_ptr<model::Node> CreateNode(
IteratorContext* ctx, model::Node::Args args) const override {
return model::MakeKnownRatioNode(std::move(args),
1);
}
Status SaveInternal(SerializationContext* ctx,
IteratorStateWriter* writer) override {
mutex_lock l(mu_);
TF_RETURN_IF_ERROR(writer->WriteScalar(prefix(), kIndex, i_));
TF_RETURN_IF_ERROR(
writer->WriteScalar(prefix(), kInputImplUninitialized,
static_cast<int64_t>(!input_impl_)));
if (input_impl_) {
TF_RETURN_IF_ERROR(SaveInput(ctx, writer, input_impl_));
}
return absl::OkStatus();
}
Status RestoreInternal(IteratorContext* ctx,
IteratorStateReader* reader) override {
mutex_lock l(mu_);
TF_RETURN_IF_ERROR(reader->ReadScalar(prefix(), kIndex, &i_));
int64_t input_uninitialized;
TF_RETURN_IF_ERROR(reader->ReadScalar(prefix(), kInputImplUninitialized,
&input_uninitialized));
if (static_cast<bool>(input_uninitialized)) {
input_impl_.reset();
return absl::OkStatus();
}
if (!TF_PREDICT_TRUE(i_ >= 0 && i_ <= 2))
return errors::InvalidArgument("i_ must be in range [0, 2].");
if (i_ == 1) {
TF_RETURN_IF_ERROR(dataset()->to_concatenate_->MakeIterator(
ctx, this, strings::StrCat(prefix(), "[1]"), &input_impl_));
} else if (i_ == 2) {
input_impl_.reset();
}
if (input_impl_) {
TF_RETURN_IF_ERROR(RestoreInput(ctx, reader, input_impl_));
}
return absl::OkStatus();
}
private:
mutex mu_;
int64_t i_ TF_GUARDED_BY(mu_);
std::unique_ptr<IteratorBase> input_impl_ TF_GUARDED_BY(mu_);
std::vector<IteratorContext> input_contexts_;
};
Status MostSpecificCompatibleShape(const PartialTensorShape& ts1,
const PartialTensorShape& ts2,
PartialTensorShape* output_tensorshape) {
if (ts1.dims() != ts2.dims() || ts1.unknown_rank() || ts2.unknown_rank())
return absl::OkStatus();
auto dims1 = ts1.dim_sizes();
auto dims2 = ts2.dim_sizes();
for (int d = 0; d < ts1.dims(); d++) {
if (dims1[d] == dims2[d])
TF_RETURN_IF_ERROR(output_tensorshape->AddDimWithStatus(dims1[d]));
else
TF_RETURN_IF_ERROR(output_tensorshape->AddDimWithStatus(-1));
}
return absl::OkStatus();
}
const DatasetBase* input_;
const DatasetBase* to_concatenate_;
const int64_t input_cardinality_;
const int64_t to_concatenate_cardinality_;
std::vector<PartialTensorShape> output_shapes_;
};
ConcatenateDatasetOp::ConcatenateDatasetOp(OpKernelConstruction* ctx)
: BinaryDatasetOpKernel(ctx) {}
void ConcatenateDatasetOp::MakeDataset(OpKernelContext* ctx, DatasetBase* input,
DatasetBase* to_concatenate,
DatasetBase** output) {
OP_REQUIRES(ctx, input->output_dtypes() == to_concatenate->output_dtypes(),
errors::InvalidArgument(
"input dataset and dataset to concatenate"
" have different output_types %s and %s",
(DataTypeVectorString(input->output_dtypes()),
DataTypeVectorString(to_concatenate->output_dtypes()))));
*output = new Dataset(ctx, input, to_concatenate);
}
namespace {
REGISTER_KERNEL_BUILDER(Name("ConcatenateDataset").Device(DEVICE_CPU),
ConcatenateDatasetOp);
}
}
} | #include "tensorflow/core/kernels/data/concatenate_dataset_op.h"
#include "tensorflow/core/data/dataset_test_base.h"
namespace tensorflow {
namespace data {
namespace {
constexpr char kNodeName[] = "concatenate_dataset";
ConcatenateDatasetParams SameShapeConcatenateDatasetParams() {
auto tensor_slice_dataset_params_0 = TensorSliceDatasetParams(
CreateTensors<int64_t>(TensorShape{2, 2},
{{1, 2, 3, 4}, {5, 6, 7, 8}}),
"tensor_slice_0");
auto tensor_slice_dataset_params_1 = TensorSliceDatasetParams(
CreateTensors<int64_t>(
TensorShape{2, 2}, {{11, 12, 13, 14}, {15, 16, 17, 18}}),
"tensor_slice_1");
return ConcatenateDatasetParams(
std::move(tensor_slice_dataset_params_0),
std::move(tensor_slice_dataset_params_1),
{DT_INT64, DT_INT64},
{PartialTensorShape({2}), PartialTensorShape({2})},
kNodeName);
}
ConcatenateDatasetParams DifferentShapeConcatenateDatasetParams() {
auto tensor_slice_dataset_params_0 = TensorSliceDatasetParams(
{CreateTensor<int64_t>(TensorShape{2, 3}, {1, 2, 3, 4, 5, 6}),
CreateTensor<int64_t>(TensorShape{2, 2}, {7, 8, 9, 10})},
"tensor_slice_0");
auto tensor_slice_dataset_params_1 = TensorSliceDatasetParams(
{CreateTensor<int64_t>(TensorShape{2, 2}, {11, 12, 13, 14}),
CreateTensor<int64_t>(TensorShape{2, 1}, {15, 16})},
"tensor_slice_1");
return ConcatenateDatasetParams(
std::move(tensor_slice_dataset_params_0),
std::move(tensor_slice_dataset_params_1),
{DT_INT64, DT_INT64},
{PartialTensorShape({-1}), PartialTensorShape({-1})},
kNodeName);
}
ConcatenateDatasetParams DifferentDtypeConcatenateDatasetParams() {
auto tensor_slice_dataset_params_0 = TensorSliceDatasetParams(
CreateTensors<int64_t>(TensorShape{2, 2}, {{1, 2, 3, 4}}),
"tensor_slice_0");
auto tensor_slice_dataset_params_1 = TensorSliceDatasetParams(
CreateTensors<double>(TensorShape{2, 2}, {{1.0, 2.0, 3.0, 4.0}}),
"tensor_slice_1");
return ConcatenateDatasetParams(std::move(tensor_slice_dataset_params_0),
std::move(tensor_slice_dataset_params_1),
{DT_INT64},
{PartialTensorShape({2})},
kNodeName);
}
class ConcatenateDatasetOpTest : public DatasetOpsTestBase {};
std::vector<GetNextTestCase<ConcatenateDatasetParams>> GetNextTestCases() {
return {{SameShapeConcatenateDatasetParams(),
CreateTensors<int64_t>(TensorShape({2}), {{1, 2},
{5, 6},
{3, 4},
{7, 8},
{11, 12},
{15, 16},
{13, 14},
{17, 18}})},
{DifferentShapeConcatenateDatasetParams(),
{CreateTensor<int64_t>(TensorShape{3}, {1, 2, 3}),
CreateTensor<int64_t>(TensorShape{2}, {7, 8}),
CreateTensor<int64_t>(TensorShape{3}, {4, 5, 6}),
CreateTensor<int64_t>(TensorShape{2}, {9, 10}),
CreateTensor<int64_t>(TensorShape{2}, {11, 12}),
CreateTensor<int64_t>(TensorShape{1}, {15}),
CreateTensor<int64_t>(TensorShape{2}, {13, 14}),
CreateTensor<int64_t>(TensorShape{1}, {16})}}};
}
ITERATOR_GET_NEXT_TEST_P(ConcatenateDatasetOpTest, ConcatenateDatasetParams,
GetNextTestCases())
TEST_F(ConcatenateDatasetOpTest, DifferentDtypes) {
auto dataset_params = DifferentDtypeConcatenateDatasetParams();
EXPECT_EQ(Initialize(dataset_params).code(),
absl::StatusCode::kInvalidArgument);
}
TEST_F(ConcatenateDatasetOpTest, DatasetNodeName) {
auto dataset_params = SameShapeConcatenateDatasetParams();
TF_ASSERT_OK(Initialize(dataset_params));
TF_ASSERT_OK(CheckDatasetNodeName(dataset_params.node_name()));
}
TEST_F(ConcatenateDatasetOpTest, DatasetTypeString) {
auto dataset_params = SameShapeConcatenateDatasetParams();
TF_ASSERT_OK(Initialize(dataset_params));
TF_ASSERT_OK(CheckDatasetTypeString(
name_utils::OpName(ConcatenateDatasetOp::kDatasetType)));
}
std::vector<DatasetOutputDtypesTestCase<ConcatenateDatasetParams>>
DatasetOutputDtypesTestCases() {
return {{SameShapeConcatenateDatasetParams(),
SameShapeConcatenateDatasetParams().output_dtypes()},
{DifferentShapeConcatenateDatasetParams(),
DifferentShapeConcatenateDatasetParams().output_dtypes()}};
}
DATASET_OUTPUT_DTYPES_TEST_P(ConcatenateDatasetOpTest, ConcatenateDatasetParams,
DatasetOutputDtypesTestCases())
std::vector<DatasetOutputShapesTestCase<ConcatenateDatasetParams>>
DatasetOutputShapesTestCases() {
return {{SameShapeConcatenateDatasetParams(),
SameShapeConcatenateDatasetParams().output_shapes()},
{
DifferentShapeConcatenateDatasetParams(),
DifferentShapeConcatenateDatasetParams().output_shapes()}};
}
DATASET_OUTPUT_SHAPES_TEST_P(ConcatenateDatasetOpTest, ConcatenateDatasetParams,
DatasetOutputShapesTestCases())
std::vector<CardinalityTestCase<ConcatenateDatasetParams>>
CardinalityTestCases() {
return {{SameShapeConcatenateDatasetParams(),
4},
{DifferentShapeConcatenateDatasetParams(),
4}};
}
DATASET_CARDINALITY_TEST_P(ConcatenateDatasetOpTest, ConcatenateDatasetParams,
CardinalityTestCases())
std::vector<IteratorOutputDtypesTestCase<ConcatenateDatasetParams>>
IteratorOutputDtypesTestCases() {
return {{SameShapeConcatenateDatasetParams(),
SameShapeConcatenateDatasetParams().output_dtypes()},
{DifferentShapeConcatenateDatasetParams(),
DifferentShapeConcatenateDatasetParams().output_dtypes()}};
}
ITERATOR_OUTPUT_DTYPES_TEST_P(ConcatenateDatasetOpTest,
ConcatenateDatasetParams,
IteratorOutputDtypesTestCases())
std::vector<IteratorOutputShapesTestCase<ConcatenateDatasetParams>>
IteratorOutputShapesTestCases() {
return {{SameShapeConcatenateDatasetParams(),
SameShapeConcatenateDatasetParams().output_shapes()},
{DifferentShapeConcatenateDatasetParams(),
DifferentShapeConcatenateDatasetParams().output_shapes()}};
}
ITERATOR_OUTPUT_SHAPES_TEST_P(ConcatenateDatasetOpTest,
ConcatenateDatasetParams,
IteratorOutputShapesTestCases())
TEST_F(ConcatenateDatasetOpTest, IteratorPrefix) {
auto dataset_params = SameShapeConcatenateDatasetParams();
TF_ASSERT_OK(Initialize(dataset_params));
TF_ASSERT_OK(CheckIteratorPrefix(name_utils::IteratorPrefix(
ConcatenateDatasetOp::kDatasetType, dataset_params.iterator_prefix())));
}
std::vector<IteratorSaveAndRestoreTestCase<ConcatenateDatasetParams>>
IteratorSaveAndRestoreTestCases() {
return {{SameShapeConcatenateDatasetParams(),
{0, 2, 5},
CreateTensors<int64_t>(TensorShape({2}), {{1, 2},
{5, 6},
{3, 4},
{7, 8},
{11, 12},
{15, 16},
{13, 14},
{17, 18}})},
{DifferentShapeConcatenateDatasetParams(),
{0, 2, 5},
{CreateTensor<int64_t>(TensorShape{3}, {1, 2, 3}),
CreateTensor<int64_t>(TensorShape{2}, {7, 8}),
CreateTensor<int64_t>(TensorShape{3}, {4, 5, 6}),
CreateTensor<int64_t>(TensorShape{2}, {9, 10}),
CreateTensor<int64_t>(TensorShape{2}, {11, 12}),
CreateTensor<int64_t>(TensorShape{1}, {15}),
CreateTensor<int64_t>(TensorShape{2}, {13, 14}),
CreateTensor<int64_t>(TensorShape{1}, {16})}}};
}
ITERATOR_SAVE_AND_RESTORE_TEST_P(ConcatenateDatasetOpTest,
ConcatenateDatasetParams,
IteratorSaveAndRestoreTestCases())
}
}
} |
409 | #ifndef AROLLA_EXAMPLES_CUSTOM_QTYPE_COMPLEX_H_
#define AROLLA_EXAMPLES_CUSTOM_QTYPE_COMPLEX_H_
#include "arolla/qtype/simple_qtype.h"
#include "arolla/util/fingerprint.h"
#include "arolla/util/repr.h"
namespace my_namespace {
struct MyComplex {
double re;
double im;
};
}
namespace arolla {
AROLLA_DECLARE_FINGERPRINT_HASHER_TRAITS(my_namespace::MyComplex);
AROLLA_DECLARE_REPR(my_namespace::MyComplex);
AROLLA_DECLARE_SIMPLE_QTYPE(MY_COMPLEX, my_namespace::MyComplex);
}
#endif
#include "arolla/examples/custom_qtype/complex.h"
#include "absl/strings/str_format.h"
#include "arolla/qtype/simple_qtype.h"
#include "arolla/util/fingerprint.h"
#include "arolla/util/repr.h"
namespace arolla {
void FingerprintHasherTraits<my_namespace::MyComplex>::operator()(
FingerprintHasher* hasher, const my_namespace::MyComplex& value) const {
hasher->Combine(value.im, value.re);
}
ReprToken ReprTraits<my_namespace::MyComplex>::operator()(
const my_namespace::MyComplex& value) const {
return ReprToken{absl::StrFormat("%v + %vi", value.re, value.im)};
}
AROLLA_DEFINE_SIMPLE_QTYPE(MY_COMPLEX, my_namespace::MyComplex);
} | #include "arolla/examples/custom_qtype/complex.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "arolla/qtype/qtype_traits.h"
#include "arolla/util/fingerprint.h"
#include "arolla/util/init_arolla.h"
#include "arolla/util/repr.h"
namespace my_namespace {
namespace {
using ::testing::Eq;
using ::testing::Ne;
class ComplexTest : public ::testing::Test {
void SetUp() override { ASSERT_OK(arolla::InitArolla()); }
};
TEST_F(ComplexTest, GetQType) {
EXPECT_THAT(arolla::GetQType<MyComplex>()->name(), Eq("MY_COMPLEX"));
}
TEST_F(ComplexTest, Fingerprint) {
MyComplex c{.re = 5.7, .im = 0.7};
auto c_fingerprint = arolla::FingerprintHasher("").Combine(c).Finish();
EXPECT_THAT(arolla::FingerprintHasher("").Combine(c).Finish(),
Eq(c_fingerprint));
EXPECT_THAT(arolla::FingerprintHasher("")
.Combine(MyComplex{.re = 0.7, .im = 5.7})
.Finish(),
Ne(c_fingerprint));
}
TEST_F(ComplexTest, Repr) {
EXPECT_THAT(arolla::Repr(MyComplex{}), Eq("0 + 0i"));
EXPECT_THAT(arolla::Repr(MyComplex{.re = 5.7, .im = 0.7}), Eq("5.7 + 0.7i"));
}
}
} |