status
stringclasses
1 value
repo_name
stringclasses
31 values
repo_url
stringclasses
31 values
issue_id
int64
1
104k
title
stringlengths
4
369
body
stringlengths
0
254k
issue_url
stringlengths
37
56
pull_url
stringlengths
37
54
before_fix_sha
stringlengths
40
40
after_fix_sha
stringlengths
40
40
report_datetime
unknown
language
stringclasses
5 values
commit_datetime
unknown
updated_file
stringlengths
4
188
file_content
stringlengths
0
5.12M
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,361
Validation Error importing OpenAPI planner when OpenAI credentials not in environment
### System Info Name: langchain, Version: 0.0.180 Name: openai, Version: 0.27.7 macOS Mojave 10.14.6 ### Who can help? @vowelparrot ### Information - [X] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Steps: 1. Do _not_ load open ai key into env with the intention of wanting to pass it as a parameter when instantiating the llm ``` from dotenv import dotenv_values openai_api_key = dotenv_values('.env')['OPENAI_API_KEY'] ``` 2. Load the planner: ``` from langchain.llms.openai import OpenAI from langchain.agents.agent_toolkits.openapi import planner ``` ### Expected behavior A validation error should not be raised during the importing of the module. We should be able to pass the open api key as an argument. That is, the following should work: ``` from langchain.llms.openai import OpenAI from langchain.agents.agent_toolkits.openapi import planner llm = OpenAI(model_name="gpt-4", temperature=0.0, open_api_key=open_api_key) ```
https://github.com/langchain-ai/langchain/issues/5361
https://github.com/langchain-ai/langchain/pull/5380
6df90ad9fd1ee6d64e112d8d58f9524ca11b0757
14099f1b93401a68f531fc1a55c50c5872e720fa
"2023-05-28T08:18:12Z"
python
"2023-05-29T13:22:35Z"
langchain/agents/agent_toolkits/openapi/planner.py
"""Agent that interacts with OpenAPI APIs via a hierarchical planning approach.""" import json import re from functools import partial from typing import Any, Callable, Dict, List, Optional import yaml from pydantic import Field from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.openapi.planner_prompt import ( API_CONTROLLER_PROMPT, API_CONTROLLER_TOOL_DESCRIPTION, API_CONTROLLER_TOOL_NAME, API_ORCHESTRATOR_PROMPT, API_PLANNER_PROMPT, API_PLANNER_TOOL_DESCRIPTION, API_PLANNER_TOOL_NAME, PARSING_DELETE_PROMPT, PARSING_GET_PROMPT, PARSING_PATCH_PROMPT, PARSING_POST_PROMPT, REQUESTS_DELETE_TOOL_DESCRIPTION, REQUESTS_GET_TOOL_DESCRIPTION, REQUESTS_PATCH_TOOL_DESCRIPTION, REQUESTS_POST_TOOL_DESCRIPTION, ) from langchain.agents.agent_toolkits.openapi.spec import ReducedOpenAPISpec from langchain.agents.mrkl.base import ZeroShotAgent from langchain.agents.tools import Tool from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain from langchain.llms.openai import OpenAI from langchain.memory import ReadOnlySharedMemory from langchain.prompts import PromptTemplate from langchain.prompts.base import BasePromptTemplate from langchain.requests import RequestsWrapper from langchain.tools.base import BaseTool from langchain.tools.requests.tool import BaseRequestsTool # # Requests tools with LLM-instructed extraction of truncated responses. # # Of course, truncating so bluntly may lose a lot of valuable # information in the response. # However, the goal for now is to have only a single inference step. MAX_RESPONSE_LENGTH = 5000 def _get_default_llm_chain(prompt: BasePromptTemplate) -> LLMChain: return LLMChain( llm=OpenAI(), prompt=prompt, ) def _get_default_llm_chain_factory( prompt: BasePromptTemplate, ) -> Callable[[], LLMChain]: """Returns a default LLMChain factory.""" return partial(_get_default_llm_chain, prompt) class RequestsGetToolWithParsing(BaseRequestsTool, BaseTool): name = "requests_get" description = REQUESTS_GET_TOOL_DESCRIPTION response_length: Optional[int] = MAX_RESPONSE_LENGTH llm_chain: LLMChain = Field( default_factory=_get_default_llm_chain_factory(PARSING_GET_PROMPT) ) def _run(self, text: str) -> str: try: data = json.loads(text) except json.JSONDecodeError as e: raise e data_params = data.get("params") response = self.requests_wrapper.get(data["url"], params=data_params) response = response[: self.response_length] return self.llm_chain.predict( response=response, instructions=data["output_instructions"] ).strip() async def _arun(self, text: str) -> str: raise NotImplementedError() class RequestsPostToolWithParsing(BaseRequestsTool, BaseTool): name = "requests_post" description = REQUESTS_POST_TOOL_DESCRIPTION response_length: Optional[int] = MAX_RESPONSE_LENGTH llm_chain: LLMChain = Field( default_factory=_get_default_llm_chain_factory(PARSING_POST_PROMPT) ) def _run(self, text: str) -> str: try: data = json.loads(text) except json.JSONDecodeError as e: raise e response = self.requests_wrapper.post(data["url"], data["data"]) response = response[: self.response_length] return self.llm_chain.predict( response=response, instructions=data["output_instructions"] ).strip() async def _arun(self, text: str) -> str: raise NotImplementedError() class RequestsPatchToolWithParsing(BaseRequestsTool, BaseTool): name = "requests_patch" description = REQUESTS_PATCH_TOOL_DESCRIPTION response_length: Optional[int] = MAX_RESPONSE_LENGTH llm_chain = LLMChain( llm=OpenAI(), prompt=PARSING_PATCH_PROMPT, ) def _run(self, text: str) -> str: try: data = json.loads(text) except json.JSONDecodeError as e: raise e response = self.requests_wrapper.patch(data["url"], data["data"]) response = response[: self.response_length] return self.llm_chain.predict( response=response, instructions=data["output_instructions"] ).strip() async def _arun(self, text: str) -> str: raise NotImplementedError() class RequestsDeleteToolWithParsing(BaseRequestsTool, BaseTool): name = "requests_delete" description = REQUESTS_DELETE_TOOL_DESCRIPTION response_length: Optional[int] = MAX_RESPONSE_LENGTH llm_chain = LLMChain( llm=OpenAI(), prompt=PARSING_DELETE_PROMPT, ) def _run(self, text: str) -> str: try: data = json.loads(text) except json.JSONDecodeError as e: raise e response = self.requests_wrapper.delete(data["url"]) response = response[: self.response_length] return self.llm_chain.predict( response=response, instructions=data["output_instructions"] ).strip() async def _arun(self, text: str) -> str: raise NotImplementedError() # # Orchestrator, planner, controller. # def _create_api_planner_tool( api_spec: ReducedOpenAPISpec, llm: BaseLanguageModel ) -> Tool: endpoint_descriptions = [ f"{name} {description}" for name, description, _ in api_spec.endpoints ] prompt = PromptTemplate( template=API_PLANNER_PROMPT, input_variables=["query"], partial_variables={"endpoints": "- " + "- ".join(endpoint_descriptions)}, ) chain = LLMChain(llm=llm, prompt=prompt) tool = Tool( name=API_PLANNER_TOOL_NAME, description=API_PLANNER_TOOL_DESCRIPTION, func=chain.run, ) return tool def _create_api_controller_agent( api_url: str, api_docs: str, requests_wrapper: RequestsWrapper, llm: BaseLanguageModel, ) -> AgentExecutor: get_llm_chain = LLMChain(llm=llm, prompt=PARSING_GET_PROMPT) post_llm_chain = LLMChain(llm=llm, prompt=PARSING_POST_PROMPT) tools: List[BaseTool] = [ RequestsGetToolWithParsing( requests_wrapper=requests_wrapper, llm_chain=get_llm_chain ), RequestsPostToolWithParsing( requests_wrapper=requests_wrapper, llm_chain=post_llm_chain ), ] prompt = PromptTemplate( template=API_CONTROLLER_PROMPT, input_variables=["input", "agent_scratchpad"], partial_variables={ "api_url": api_url, "api_docs": api_docs, "tool_names": ", ".join([tool.name for tool in tools]), "tool_descriptions": "\n".join( [f"{tool.name}: {tool.description}" for tool in tools] ), }, ) agent = ZeroShotAgent( llm_chain=LLMChain(llm=llm, prompt=prompt), allowed_tools=[tool.name for tool in tools], ) return AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True) def _create_api_controller_tool( api_spec: ReducedOpenAPISpec, requests_wrapper: RequestsWrapper, llm: BaseLanguageModel, ) -> Tool: """Expose controller as a tool. The tool is invoked with a plan from the planner, and dynamically creates a controller agent with relevant documentation only to constrain the context. """ base_url = api_spec.servers[0]["url"] # TODO: do better. def _create_and_run_api_controller_agent(plan_str: str) -> str: pattern = r"\b(GET|POST|PATCH|DELETE)\s+(/\S+)*" matches = re.findall(pattern, plan_str) endpoint_names = [ "{method} {route}".format(method=method, route=route.split("?")[0]) for method, route in matches ] endpoint_docs_by_name = {name: docs for name, _, docs in api_spec.endpoints} docs_str = "" for endpoint_name in endpoint_names: docs = endpoint_docs_by_name.get(endpoint_name) if not docs: raise ValueError(f"{endpoint_name} endpoint does not exist.") docs_str += f"== Docs for {endpoint_name} == \n{yaml.dump(docs)}\n" agent = _create_api_controller_agent(base_url, docs_str, requests_wrapper, llm) return agent.run(plan_str) return Tool( name=API_CONTROLLER_TOOL_NAME, func=_create_and_run_api_controller_agent, description=API_CONTROLLER_TOOL_DESCRIPTION, ) def create_openapi_agent( api_spec: ReducedOpenAPISpec, requests_wrapper: RequestsWrapper, llm: BaseLanguageModel, shared_memory: Optional[ReadOnlySharedMemory] = None, callback_manager: Optional[BaseCallbackManager] = None, verbose: bool = True, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Instantiate API planner and controller for a given spec. Inject credentials via requests_wrapper. We use a top-level "orchestrator" agent to invoke the planner and controller, rather than a top-level planner that invokes a controller with its plan. This is to keep the planner simple. """ tools = [ _create_api_planner_tool(api_spec, llm), _create_api_controller_tool(api_spec, requests_wrapper, llm), ] prompt = PromptTemplate( template=API_ORCHESTRATOR_PROMPT, input_variables=["input", "agent_scratchpad"], partial_variables={ "tool_names": ", ".join([tool.name for tool in tools]), "tool_descriptions": "\n".join( [f"{tool.name}: {tool.description}" for tool in tools] ), }, ) agent = ZeroShotAgent( llm_chain=LLMChain(llm=llm, prompt=prompt, memory=shared_memory), allowed_tools=[tool.name for tool in tools], **kwargs, ) return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, **(agent_executor_kwargs or {}), )
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,071
Issue: LLamacpp wrapper slows down the model
### Issue you'd like to raise. Looks like the inference time of the LLamacpp model is a lot slower when using LlamaCpp wrapper (compared to the llama-cpp original wrapper). Here are the results for the same prompt on the RTX 4090 GPU. When using llamacpp-python Llama wrapper directly: ![llamacpp_runtime](https://github.com/hwchase17/langchain/assets/48142538/3cc4dd4b-3fab-4d9b-8887-d18451d56a4b) When using langchain LlamaCpp wrapper: ![runtime_langchain](https://github.com/hwchase17/langchain/assets/48142538/51551596-430c-44ed-8d79-8ed770647522) As you can see, it takes nearly 12x more time for the prompt_eval stage (2.67 ms per token vs 35 ms per token) Am i missing something? In both cases, the model is fully loaded to the GPU. In the case of the Langchain wrapper, no chain was used, just direct querying of the model using the wrapper's interface. Same parameters. Link to the example notebook (values are a lil different, but the problem is the same): https://github.com/mmagnesium/personal-assistant/blob/main/notebooks/langchain_vs_llamacpp.ipynb Appreciate any help. ### Suggestion: Unfortunately, no suggestion, since i don't understand whats the problem.
https://github.com/langchain-ai/langchain/issues/5071
https://github.com/langchain-ai/langchain/pull/5344
44b48d95183067bc71942512a97b846f5b1fb4c3
f6615cac41453a9bb3a061a3ffb29327f5e04fb2
"2023-05-21T21:49:24Z"
python
"2023-05-29T13:43:26Z"
docs/modules/models/llms/integrations/llamacpp.ipynb
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Llama-cpp\n", "\n", "[llama-cpp](https://github.com/abetlen/llama-cpp-python) is a Python binding for [llama.cpp](https://github.com/ggerganov/llama.cpp). \n", "It supports [several LLMs](https://github.com/ggerganov/llama.cpp).\n", "\n", "This notebook goes over how to run `llama-cpp` within LangChain." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [] }, "outputs": [], "source": [ "!pip install llama-cpp-python" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Make sure you are following all instructions to [install all necessary model files](https://github.com/ggerganov/llama.cpp).\n", "\n", "You don't need an `API_TOKEN`!" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "tags": [] }, "outputs": [], "source": [ "from langchain.llms import LlamaCpp\n", "from langchain import PromptTemplate, LLMChain\n", "from langchain.callbacks.manager import CallbackManager\n", "from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "tags": [] }, "outputs": [], "source": [ "template = \"\"\"Question: {question}\n", "\n", "Answer: Let's think step by step.\"\"\"\n", "\n", "prompt = PromptTemplate(template=template, input_variables=[\"question\"])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [] }, "outputs": [], "source": [ "# Callbacks support token-wise streaming\n", "callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])\n", "# Verbose is required to pass to the callback manager\n", "\n", "# Make sure the model path is correct for your system!\n", "llm = LlamaCpp(\n", " model_path=\"./ggml-model-q4_0.bin\", callback_manager=callback_manager, verbose=True\n", ")" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "llm_chain = LLMChain(prompt=prompt, llm=llm)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " First we need to identify what year Justin Beiber was born in. A quick google search reveals that he was born on March 1st, 1994. Now we know when the Super Bowl was played in, so we can look up which NFL team won it. The NFL Superbowl of the year 1994 was won by the San Francisco 49ers against the San Diego Chargers." ] }, { "data": { "text/plain": [ "' First we need to identify what year Justin Beiber was born in. A quick google search reveals that he was born on March 1st, 1994. Now we know when the Super Bowl was played in, so we can look up which NFL team won it. The NFL Superbowl of the year 1994 was won by the San Francisco 49ers against the San Diego Chargers.'" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "question = \"What NFL team won the Super Bowl in the year Justin Bieber was born?\"\n", "\n", "llm_chain.run(question)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.3" } }, "nbformat": 4, "nbformat_minor": 4 }
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,224
PALChain loading fails
### System Info langchain==0.0.176 ### Who can help? @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.chains import PALChain from langchain import OpenAI llm = OpenAI(temperature=0, max_tokens=512) pal_chain = PALChain.from_math_prompt(llm, verbose=True) question = "Jan has three times the number of pets as Marcia. Marcia has two more pets than Cindy. If Cindy has four pets, how many total pets do the three have?" pal_chain.save("/Users/liang.zhang/pal_chain.yaml") loaded_chain = load_chain("/Users/liang.zhang/pal_chain.yaml") ``` Error: ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) Input In [17], in <cell line: 1>() ----> 1 loaded_chain = load_chain("/Users/liang.zhang/pal_chain.yaml") File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:449, in load_chain(path, **kwargs) 447 return hub_result 448 else: --> 449 return _load_chain_from_file(path, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:476, in _load_chain_from_file(file, **kwargs) 473 config["memory"] = kwargs.pop("memory") 475 # Load the chain from the config now. --> 476 return load_chain_from_config(config, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:439, in load_chain_from_config(config, **kwargs) 436 raise ValueError(f"Loading {config_type} chain not supported") 438 chain_loader = type_to_loader_dict[config_type] --> 439 return chain_loader(config, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:234, in _load_pal_chain(config, **kwargs) 232 if "llm" in config: 233 llm_config = config.pop("llm") --> 234 llm = load_llm_from_config(llm_config) 235 elif "llm_path" in config: 236 llm = load_llm(config.pop("llm_path")) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/llms/loading.py:14, in load_llm_from_config(config) 12 def load_llm_from_config(config: dict) -> BaseLLM: 13 """Load LLM from Config Dict.""" ---> 14 if "_type" not in config: 15 raise ValueError("Must specify an LLM Type in config") 16 config_type = config.pop("_type") TypeError: argument of type 'NoneType' is not iterable ``` ### Expected behavior No errors should occur.
https://github.com/langchain-ai/langchain/issues/5224
https://github.com/langchain-ai/langchain/pull/5343
f6615cac41453a9bb3a061a3ffb29327f5e04fb2
642ae83d86b28b37605c9a20ca25c667ed461595
"2023-05-25T00:58:09Z"
python
"2023-05-29T13:44:47Z"
langchain/chains/loading.py
"""Functionality for loading chains.""" import json from pathlib import Path from typing import Any, Union import yaml from langchain.chains.api.base import APIChain from langchain.chains.base import Chain from langchain.chains.combine_documents.map_reduce import MapReduceDocumentsChain from langchain.chains.combine_documents.map_rerank import MapRerankDocumentsChain from langchain.chains.combine_documents.refine import RefineDocumentsChain from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.hyde.base import HypotheticalDocumentEmbedder from langchain.chains.llm import LLMChain from langchain.chains.llm_bash.base import LLMBashChain from langchain.chains.llm_checker.base import LLMCheckerChain from langchain.chains.llm_math.base import LLMMathChain from langchain.chains.llm_requests import LLMRequestsChain from langchain.chains.pal.base import PALChain from langchain.chains.qa_with_sources.base import QAWithSourcesChain from langchain.chains.qa_with_sources.vector_db import VectorDBQAWithSourcesChain from langchain.chains.retrieval_qa.base import VectorDBQA from langchain.chains.sql_database.base import SQLDatabaseChain from langchain.llms.loading import load_llm, load_llm_from_config from langchain.prompts.loading import load_prompt, load_prompt_from_config from langchain.utilities.loading import try_load_from_hub URL_BASE = "https://raw.githubusercontent.com/hwchase17/langchain-hub/master/chains/" def _load_llm_chain(config: dict, **kwargs: Any) -> LLMChain: """Load LLM chain from config dict.""" if "llm" in config: llm_config = config.pop("llm") llm = load_llm_from_config(llm_config) elif "llm_path" in config: llm = load_llm(config.pop("llm_path")) else: raise ValueError("One of `llm` or `llm_path` must be present.") if "prompt" in config: prompt_config = config.pop("prompt") prompt = load_prompt_from_config(prompt_config) elif "prompt_path" in config: prompt = load_prompt(config.pop("prompt_path")) else: raise ValueError("One of `prompt` or `prompt_path` must be present.") return LLMChain(llm=llm, prompt=prompt, **config) def _load_hyde_chain(config: dict, **kwargs: Any) -> HypotheticalDocumentEmbedder: """Load hypothetical document embedder chain from config dict.""" if "llm_chain" in config: llm_chain_config = config.pop("llm_chain") llm_chain = load_chain_from_config(llm_chain_config) elif "llm_chain_path" in config: llm_chain = load_chain(config.pop("llm_chain_path")) else: raise ValueError("One of `llm_chain` or `llm_chain_path` must be present.") if "embeddings" in kwargs: embeddings = kwargs.pop("embeddings") else: raise ValueError("`embeddings` must be present.") return HypotheticalDocumentEmbedder( llm_chain=llm_chain, base_embeddings=embeddings, **config ) def _load_stuff_documents_chain(config: dict, **kwargs: Any) -> StuffDocumentsChain: if "llm_chain" in config: llm_chain_config = config.pop("llm_chain") llm_chain = load_chain_from_config(llm_chain_config) elif "llm_chain_path" in config: llm_chain = load_chain(config.pop("llm_chain_path")) else: raise ValueError("One of `llm_chain` or `llm_chain_config` must be present.") if not isinstance(llm_chain, LLMChain): raise ValueError(f"Expected LLMChain, got {llm_chain}") if "document_prompt" in config: prompt_config = config.pop("document_prompt") document_prompt = load_prompt_from_config(prompt_config) elif "document_prompt_path" in config: document_prompt = load_prompt(config.pop("document_prompt_path")) else: raise ValueError( "One of `document_prompt` or `document_prompt_path` must be present." ) return StuffDocumentsChain( llm_chain=llm_chain, document_prompt=document_prompt, **config ) def _load_map_reduce_documents_chain( config: dict, **kwargs: Any ) -> MapReduceDocumentsChain: if "llm_chain" in config: llm_chain_config = config.pop("llm_chain") llm_chain = load_chain_from_config(llm_chain_config) elif "llm_chain_path" in config: llm_chain = load_chain(config.pop("llm_chain_path")) else: raise ValueError("One of `llm_chain` or `llm_chain_config` must be present.") if not isinstance(llm_chain, LLMChain): raise ValueError(f"Expected LLMChain, got {llm_chain}") if "combine_document_chain" in config: combine_document_chain_config = config.pop("combine_document_chain") combine_document_chain = load_chain_from_config(combine_document_chain_config) elif "combine_document_chain_path" in config: combine_document_chain = load_chain(config.pop("combine_document_chain_path")) else: raise ValueError( "One of `combine_document_chain` or " "`combine_document_chain_path` must be present." ) if "collapse_document_chain" in config: collapse_document_chain_config = config.pop("collapse_document_chain") if collapse_document_chain_config is None: collapse_document_chain = None else: collapse_document_chain = load_chain_from_config( collapse_document_chain_config ) elif "collapse_document_chain_path" in config: collapse_document_chain = load_chain(config.pop("collapse_document_chain_path")) return MapReduceDocumentsChain( llm_chain=llm_chain, combine_document_chain=combine_document_chain, collapse_document_chain=collapse_document_chain, **config, ) def _load_llm_bash_chain(config: dict, **kwargs: Any) -> LLMBashChain: if "llm" in config: llm_config = config.pop("llm") llm = load_llm_from_config(llm_config) elif "llm_path" in config: llm = load_llm(config.pop("llm_path")) else: raise ValueError("One of `llm` or `llm_path` must be present.") if "prompt" in config: prompt_config = config.pop("prompt") prompt = load_prompt_from_config(prompt_config) elif "prompt_path" in config: prompt = load_prompt(config.pop("prompt_path")) return LLMBashChain(llm=llm, prompt=prompt, **config) def _load_llm_checker_chain(config: dict, **kwargs: Any) -> LLMCheckerChain: if "llm" in config: llm_config = config.pop("llm") llm = load_llm_from_config(llm_config) elif "llm_path" in config: llm = load_llm(config.pop("llm_path")) else: raise ValueError("One of `llm` or `llm_path` must be present.") if "create_draft_answer_prompt" in config: create_draft_answer_prompt_config = config.pop("create_draft_answer_prompt") create_draft_answer_prompt = load_prompt_from_config( create_draft_answer_prompt_config ) elif "create_draft_answer_prompt_path" in config: create_draft_answer_prompt = load_prompt( config.pop("create_draft_answer_prompt_path") ) if "list_assertions_prompt" in config: list_assertions_prompt_config = config.pop("list_assertions_prompt") list_assertions_prompt = load_prompt_from_config(list_assertions_prompt_config) elif "list_assertions_prompt_path" in config: list_assertions_prompt = load_prompt(config.pop("list_assertions_prompt_path")) if "check_assertions_prompt" in config: check_assertions_prompt_config = config.pop("check_assertions_prompt") check_assertions_prompt = load_prompt_from_config( check_assertions_prompt_config ) elif "check_assertions_prompt_path" in config: check_assertions_prompt = load_prompt( config.pop("check_assertions_prompt_path") ) if "revised_answer_prompt" in config: revised_answer_prompt_config = config.pop("revised_answer_prompt") revised_answer_prompt = load_prompt_from_config(revised_answer_prompt_config) elif "revised_answer_prompt_path" in config: revised_answer_prompt = load_prompt(config.pop("revised_answer_prompt_path")) return LLMCheckerChain( llm=llm, create_draft_answer_prompt=create_draft_answer_prompt, list_assertions_prompt=list_assertions_prompt, check_assertions_prompt=check_assertions_prompt, revised_answer_prompt=revised_answer_prompt, **config, ) def _load_llm_math_chain(config: dict, **kwargs: Any) -> LLMMathChain: if "llm" in config: llm_config = config.pop("llm") llm = load_llm_from_config(llm_config) elif "llm_path" in config: llm = load_llm(config.pop("llm_path")) else: raise ValueError("One of `llm` or `llm_path` must be present.") if "prompt" in config: prompt_config = config.pop("prompt") prompt = load_prompt_from_config(prompt_config) elif "prompt_path" in config: prompt = load_prompt(config.pop("prompt_path")) return LLMMathChain(llm=llm, prompt=prompt, **config) def _load_map_rerank_documents_chain( config: dict, **kwargs: Any ) -> MapRerankDocumentsChain: if "llm_chain" in config: llm_chain_config = config.pop("llm_chain") llm_chain = load_chain_from_config(llm_chain_config) elif "llm_chain_path" in config: llm_chain = load_chain(config.pop("llm_chain_path")) else: raise ValueError("One of `llm_chain` or `llm_chain_config` must be present.") return MapRerankDocumentsChain(llm_chain=llm_chain, **config) def _load_pal_chain(config: dict, **kwargs: Any) -> PALChain: if "llm" in config: llm_config = config.pop("llm") llm = load_llm_from_config(llm_config) elif "llm_path" in config: llm = load_llm(config.pop("llm_path")) else: raise ValueError("One of `llm` or `llm_path` must be present.") if "prompt" in config: prompt_config = config.pop("prompt") prompt = load_prompt_from_config(prompt_config) elif "prompt_path" in config: prompt = load_prompt(config.pop("prompt_path")) else: raise ValueError("One of `prompt` or `prompt_path` must be present.") return PALChain(llm=llm, prompt=prompt, **config) def _load_refine_documents_chain(config: dict, **kwargs: Any) -> RefineDocumentsChain: if "initial_llm_chain" in config: initial_llm_chain_config = config.pop("initial_llm_chain") initial_llm_chain = load_chain_from_config(initial_llm_chain_config) elif "initial_llm_chain_path" in config: initial_llm_chain = load_chain(config.pop("initial_llm_chain_path")) else: raise ValueError( "One of `initial_llm_chain` or `initial_llm_chain_config` must be present." ) if "refine_llm_chain" in config: refine_llm_chain_config = config.pop("refine_llm_chain") refine_llm_chain = load_chain_from_config(refine_llm_chain_config) elif "refine_llm_chain_path" in config: refine_llm_chain = load_chain(config.pop("refine_llm_chain_path")) else: raise ValueError( "One of `refine_llm_chain` or `refine_llm_chain_config` must be present." ) if "document_prompt" in config: prompt_config = config.pop("document_prompt") document_prompt = load_prompt_from_config(prompt_config) elif "document_prompt_path" in config: document_prompt = load_prompt(config.pop("document_prompt_path")) return RefineDocumentsChain( initial_llm_chain=initial_llm_chain, refine_llm_chain=refine_llm_chain, document_prompt=document_prompt, **config, ) def _load_qa_with_sources_chain(config: dict, **kwargs: Any) -> QAWithSourcesChain: if "combine_documents_chain" in config: combine_documents_chain_config = config.pop("combine_documents_chain") combine_documents_chain = load_chain_from_config(combine_documents_chain_config) elif "combine_documents_chain_path" in config: combine_documents_chain = load_chain(config.pop("combine_documents_chain_path")) else: raise ValueError( "One of `combine_documents_chain` or " "`combine_documents_chain_path` must be present." ) return QAWithSourcesChain(combine_documents_chain=combine_documents_chain, **config) def _load_sql_database_chain(config: dict, **kwargs: Any) -> SQLDatabaseChain: if "database" in kwargs: database = kwargs.pop("database") else: raise ValueError("`database` must be present.") if "llm" in config: llm_config = config.pop("llm") llm = load_llm_from_config(llm_config) elif "llm_path" in config: llm = load_llm(config.pop("llm_path")) else: raise ValueError("One of `llm` or `llm_path` must be present.") if "prompt" in config: prompt_config = config.pop("prompt") prompt = load_prompt_from_config(prompt_config) else: prompt = None return SQLDatabaseChain.from_llm(llm, database, prompt=prompt, **config) def _load_vector_db_qa_with_sources_chain( config: dict, **kwargs: Any ) -> VectorDBQAWithSourcesChain: if "vectorstore" in kwargs: vectorstore = kwargs.pop("vectorstore") else: raise ValueError("`vectorstore` must be present.") if "combine_documents_chain" in config: combine_documents_chain_config = config.pop("combine_documents_chain") combine_documents_chain = load_chain_from_config(combine_documents_chain_config) elif "combine_documents_chain_path" in config: combine_documents_chain = load_chain(config.pop("combine_documents_chain_path")) else: raise ValueError( "One of `combine_documents_chain` or " "`combine_documents_chain_path` must be present." ) return VectorDBQAWithSourcesChain( combine_documents_chain=combine_documents_chain, vectorstore=vectorstore, **config, ) def _load_vector_db_qa(config: dict, **kwargs: Any) -> VectorDBQA: if "vectorstore" in kwargs: vectorstore = kwargs.pop("vectorstore") else: raise ValueError("`vectorstore` must be present.") if "combine_documents_chain" in config: combine_documents_chain_config = config.pop("combine_documents_chain") combine_documents_chain = load_chain_from_config(combine_documents_chain_config) elif "combine_documents_chain_path" in config: combine_documents_chain = load_chain(config.pop("combine_documents_chain_path")) else: raise ValueError( "One of `combine_documents_chain` or " "`combine_documents_chain_path` must be present." ) return VectorDBQA( combine_documents_chain=combine_documents_chain, vectorstore=vectorstore, **config, ) def _load_api_chain(config: dict, **kwargs: Any) -> APIChain: if "api_request_chain" in config: api_request_chain_config = config.pop("api_request_chain") api_request_chain = load_chain_from_config(api_request_chain_config) elif "api_request_chain_path" in config: api_request_chain = load_chain(config.pop("api_request_chain_path")) else: raise ValueError( "One of `api_request_chain` or `api_request_chain_path` must be present." ) if "api_answer_chain" in config: api_answer_chain_config = config.pop("api_answer_chain") api_answer_chain = load_chain_from_config(api_answer_chain_config) elif "api_answer_chain_path" in config: api_answer_chain = load_chain(config.pop("api_answer_chain_path")) else: raise ValueError( "One of `api_answer_chain` or `api_answer_chain_path` must be present." ) if "requests_wrapper" in kwargs: requests_wrapper = kwargs.pop("requests_wrapper") else: raise ValueError("`requests_wrapper` must be present.") return APIChain( api_request_chain=api_request_chain, api_answer_chain=api_answer_chain, requests_wrapper=requests_wrapper, **config, ) def _load_llm_requests_chain(config: dict, **kwargs: Any) -> LLMRequestsChain: if "llm_chain" in config: llm_chain_config = config.pop("llm_chain") llm_chain = load_chain_from_config(llm_chain_config) elif "llm_chain_path" in config: llm_chain = load_chain(config.pop("llm_chain_path")) else: raise ValueError("One of `llm_chain` or `llm_chain_path` must be present.") if "requests_wrapper" in kwargs: requests_wrapper = kwargs.pop("requests_wrapper") return LLMRequestsChain( llm_chain=llm_chain, requests_wrapper=requests_wrapper, **config ) else: return LLMRequestsChain(llm_chain=llm_chain, **config) type_to_loader_dict = { "api_chain": _load_api_chain, "hyde_chain": _load_hyde_chain, "llm_chain": _load_llm_chain, "llm_bash_chain": _load_llm_bash_chain, "llm_checker_chain": _load_llm_checker_chain, "llm_math_chain": _load_llm_math_chain, "llm_requests_chain": _load_llm_requests_chain, "pal_chain": _load_pal_chain, "qa_with_sources_chain": _load_qa_with_sources_chain, "stuff_documents_chain": _load_stuff_documents_chain, "map_reduce_documents_chain": _load_map_reduce_documents_chain, "map_rerank_documents_chain": _load_map_rerank_documents_chain, "refine_documents_chain": _load_refine_documents_chain, "sql_database_chain": _load_sql_database_chain, "vector_db_qa_with_sources_chain": _load_vector_db_qa_with_sources_chain, "vector_db_qa": _load_vector_db_qa, } def load_chain_from_config(config: dict, **kwargs: Any) -> Chain: """Load chain from Config Dict.""" if "_type" not in config: raise ValueError("Must specify a chain Type in config") config_type = config.pop("_type") if config_type not in type_to_loader_dict: raise ValueError(f"Loading {config_type} chain not supported") chain_loader = type_to_loader_dict[config_type] return chain_loader(config, **kwargs) def load_chain(path: Union[str, Path], **kwargs: Any) -> Chain: """Unified method for loading a chain from LangChainHub or local fs.""" if hub_result := try_load_from_hub( path, _load_chain_from_file, "chains", {"json", "yaml"}, **kwargs ): return hub_result else: return _load_chain_from_file(path, **kwargs) def _load_chain_from_file(file: Union[str, Path], **kwargs: Any) -> Chain: """Load chain from file.""" # Convert file to Path object. if isinstance(file, str): file_path = Path(file) else: file_path = file # Load from either json or yaml. if file_path.suffix == ".json": with open(file_path) as f: config = json.load(f) elif file_path.suffix == ".yaml": with open(file_path, "r") as f: config = yaml.safe_load(f) else: raise ValueError("File type must be json or yaml") # Override default 'verbose' and 'memory' for the chain if "verbose" in kwargs: config["verbose"] = kwargs.pop("verbose") if "memory" in kwargs: config["memory"] = kwargs.pop("memory") # Load the chain from the config now. return load_chain_from_config(config, **kwargs)
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,316
VertexAIEmbeddings error when passing a list with of length greater than 5.
### System Info google-cloud-aiplatform==1.25.0 langchain==0.0.181 python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [X] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Any list with len > 5 will cause an error. ```python from langchain.vectorstores import FAISS from langchain.embeddings import VertexAIEmbeddings text = ['text_1', 'text_2', 'text_3', 'text_4', 'text_5', 'text_6'] embeddings = VertexAIEmbeddings() vectorstore = FAISS.from_texts(text, embeddings) ``` ```python InvalidArgument Traceback (most recent call last) [/usr/local/lib/python3.10/dist-packages/google/api_core/grpc_helpers.py](https://localhost:8080/#) in error_remapped_callable(*args, **kwargs) 72 return callable_(*args, **kwargs) 73 except grpc.RpcError as exc: ---> 74 raise exceptions.from_grpc_error(exc) from exc 75 76 return error_remapped_callable InvalidArgument: 400 5 instance(s) is allowed per prediction. Actual: 6 ``` ### Expected behavior Excepted to successfully be able to vectorize a larger list of items. Maybe implement a step to
https://github.com/langchain-ai/langchain/issues/5316
https://github.com/langchain-ai/langchain/pull/5325
3e164684234d3a51032b737dce2c25ba6cd3ec2d
c09f8e4ddc3be791bd0e8c8385ed1871bdd5d681
"2023-05-26T20:31:56Z"
python
"2023-05-29T13:57:41Z"
langchain/embeddings/vertexai.py
"""Wrapper around Google VertexAI embedding models.""" from typing import Dict, List from pydantic import root_validator from langchain.embeddings.base import Embeddings from langchain.llms.vertexai import _VertexAICommon from langchain.utilities.vertexai import raise_vertex_import_error class VertexAIEmbeddings(_VertexAICommon, Embeddings): model_name: str = "textembedding-gecko" @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validates that the python package exists in environment.""" cls._try_init_vertexai(values) try: from vertexai.preview.language_models import TextEmbeddingModel except ImportError: raise_vertex_import_error() values["client"] = TextEmbeddingModel.from_pretrained(values["model_name"]) return values def embed_documents(self, texts: List[str]) -> List[List[float]]: """Embed a list of strings. Args: texts: List[str] The list of strings to embed. Returns: List of embeddings, one for each text. """ embeddings = self.client.get_embeddings(texts) return [el.values for el in embeddings] def embed_query(self, text: str) -> List[float]: """Embed a text. Args: text: The text to embed. Returns: Embedding for the text. """ embeddings = self.client.get_embeddings([text]) return embeddings[0].values
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,316
VertexAIEmbeddings error when passing a list with of length greater than 5.
### System Info google-cloud-aiplatform==1.25.0 langchain==0.0.181 python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [X] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Any list with len > 5 will cause an error. ```python from langchain.vectorstores import FAISS from langchain.embeddings import VertexAIEmbeddings text = ['text_1', 'text_2', 'text_3', 'text_4', 'text_5', 'text_6'] embeddings = VertexAIEmbeddings() vectorstore = FAISS.from_texts(text, embeddings) ``` ```python InvalidArgument Traceback (most recent call last) [/usr/local/lib/python3.10/dist-packages/google/api_core/grpc_helpers.py](https://localhost:8080/#) in error_remapped_callable(*args, **kwargs) 72 return callable_(*args, **kwargs) 73 except grpc.RpcError as exc: ---> 74 raise exceptions.from_grpc_error(exc) from exc 75 76 return error_remapped_callable InvalidArgument: 400 5 instance(s) is allowed per prediction. Actual: 6 ``` ### Expected behavior Excepted to successfully be able to vectorize a larger list of items. Maybe implement a step to
https://github.com/langchain-ai/langchain/issues/5316
https://github.com/langchain-ai/langchain/pull/5325
3e164684234d3a51032b737dce2c25ba6cd3ec2d
c09f8e4ddc3be791bd0e8c8385ed1871bdd5d681
"2023-05-26T20:31:56Z"
python
"2023-05-29T13:57:41Z"
tests/integration_tests/embeddings/test_vertexai.py
"""Test Vertex AI API wrapper. In order to run this test, you need to install VertexAI SDK pip install google-cloud-aiplatform>=1.25.0 Your end-user credentials would be used to make the calls (make sure you've run `gcloud auth login` first). """ from langchain.embeddings import VertexAIEmbeddings def test_embedding_documents() -> None: documents = ["foo bar"] model = VertexAIEmbeddings() output = model.embed_documents(documents) assert len(output) == 1 assert len(output[0]) == 768 assert model._llm_type == "vertexai" assert model.model_name == model.client._model_id def test_embedding_query() -> None: document = "foo bar" model = VertexAIEmbeddings() output = model.embed_query(document) assert len(output) == 768
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,257
Github integration
### Feature request Would be amazing to scan and get all the contents from the Github API, such as PRs, Issues and Discussions. ### Motivation this would allows to ask questions on the history of the project, issues that other users might have found, and much more! ### Your contribution Not really a python developer here, would take me a while to figure out all the changes required.
https://github.com/langchain-ai/langchain/issues/5257
https://github.com/langchain-ai/langchain/pull/5408
0b3e0dd1d2fb81eeca76b960bb2376bd666608cd
8259f9b7facae95236dd5156e2a14d87a0e1f90c
"2023-05-25T16:27:21Z"
python
"2023-05-30T03:11:21Z"
docs/modules/indexes/document_loaders/examples/github.ipynb
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,257
Github integration
### Feature request Would be amazing to scan and get all the contents from the Github API, such as PRs, Issues and Discussions. ### Motivation this would allows to ask questions on the history of the project, issues that other users might have found, and much more! ### Your contribution Not really a python developer here, would take me a while to figure out all the changes required.
https://github.com/langchain-ai/langchain/issues/5257
https://github.com/langchain-ai/langchain/pull/5408
0b3e0dd1d2fb81eeca76b960bb2376bd666608cd
8259f9b7facae95236dd5156e2a14d87a0e1f90c
"2023-05-25T16:27:21Z"
python
"2023-05-30T03:11:21Z"
langchain/document_loaders/__init__.py
"""All different types of document loaders.""" from langchain.document_loaders.airbyte_json import AirbyteJSONLoader from langchain.document_loaders.apify_dataset import ApifyDatasetLoader from langchain.document_loaders.arxiv import ArxivLoader from langchain.document_loaders.azlyrics import AZLyricsLoader from langchain.document_loaders.azure_blob_storage_container import ( AzureBlobStorageContainerLoader, ) from langchain.document_loaders.azure_blob_storage_file import ( AzureBlobStorageFileLoader, ) from langchain.document_loaders.bibtex import BibtexLoader from langchain.document_loaders.bigquery import BigQueryLoader from langchain.document_loaders.bilibili import BiliBiliLoader from langchain.document_loaders.blackboard import BlackboardLoader from langchain.document_loaders.blockchain import BlockchainDocumentLoader from langchain.document_loaders.chatgpt import ChatGPTLoader from langchain.document_loaders.college_confidential import CollegeConfidentialLoader from langchain.document_loaders.confluence import ConfluenceLoader from langchain.document_loaders.conllu import CoNLLULoader from langchain.document_loaders.csv_loader import CSVLoader from langchain.document_loaders.dataframe import DataFrameLoader from langchain.document_loaders.diffbot import DiffbotLoader from langchain.document_loaders.directory import DirectoryLoader from langchain.document_loaders.discord import DiscordChatLoader from langchain.document_loaders.docugami import DocugamiLoader from langchain.document_loaders.duckdb_loader import DuckDBLoader from langchain.document_loaders.email import ( OutlookMessageLoader, UnstructuredEmailLoader, ) from langchain.document_loaders.epub import UnstructuredEPubLoader from langchain.document_loaders.evernote import EverNoteLoader from langchain.document_loaders.facebook_chat import FacebookChatLoader from langchain.document_loaders.gcs_directory import GCSDirectoryLoader from langchain.document_loaders.gcs_file import GCSFileLoader from langchain.document_loaders.git import GitLoader from langchain.document_loaders.gitbook import GitbookLoader from langchain.document_loaders.googledrive import GoogleDriveLoader from langchain.document_loaders.gutenberg import GutenbergLoader from langchain.document_loaders.hn import HNLoader from langchain.document_loaders.html import UnstructuredHTMLLoader from langchain.document_loaders.html_bs import BSHTMLLoader from langchain.document_loaders.hugging_face_dataset import HuggingFaceDatasetLoader from langchain.document_loaders.ifixit import IFixitLoader from langchain.document_loaders.image import UnstructuredImageLoader from langchain.document_loaders.image_captions import ImageCaptionLoader from langchain.document_loaders.imsdb import IMSDbLoader from langchain.document_loaders.joplin import JoplinLoader from langchain.document_loaders.json_loader import JSONLoader from langchain.document_loaders.markdown import UnstructuredMarkdownLoader from langchain.document_loaders.mastodon import MastodonTootsLoader from langchain.document_loaders.mediawikidump import MWDumpLoader from langchain.document_loaders.modern_treasury import ModernTreasuryLoader from langchain.document_loaders.notebook import NotebookLoader from langchain.document_loaders.notion import NotionDirectoryLoader from langchain.document_loaders.notiondb import NotionDBLoader from langchain.document_loaders.obsidian import ObsidianLoader from langchain.document_loaders.odt import UnstructuredODTLoader from langchain.document_loaders.onedrive import OneDriveLoader from langchain.document_loaders.pdf import ( MathpixPDFLoader, OnlinePDFLoader, PDFMinerLoader, PDFMinerPDFasHTMLLoader, PDFPlumberLoader, PyMuPDFLoader, PyPDFDirectoryLoader, PyPDFium2Loader, PyPDFLoader, UnstructuredPDFLoader, ) from langchain.document_loaders.powerpoint import UnstructuredPowerPointLoader from langchain.document_loaders.psychic import PsychicLoader from langchain.document_loaders.python import PythonLoader from langchain.document_loaders.readthedocs import ReadTheDocsLoader from langchain.document_loaders.reddit import RedditPostsLoader from langchain.document_loaders.roam import RoamLoader from langchain.document_loaders.rtf import UnstructuredRTFLoader from langchain.document_loaders.s3_directory import S3DirectoryLoader from langchain.document_loaders.s3_file import S3FileLoader from langchain.document_loaders.sitemap import SitemapLoader from langchain.document_loaders.slack_directory import SlackDirectoryLoader from langchain.document_loaders.spreedly import SpreedlyLoader from langchain.document_loaders.srt import SRTLoader from langchain.document_loaders.stripe import StripeLoader from langchain.document_loaders.telegram import ( TelegramChatApiLoader, TelegramChatFileLoader, ) from langchain.document_loaders.text import TextLoader from langchain.document_loaders.tomarkdown import ToMarkdownLoader from langchain.document_loaders.toml import TomlLoader from langchain.document_loaders.trello import TrelloLoader from langchain.document_loaders.twitter import TwitterTweetLoader from langchain.document_loaders.unstructured import ( UnstructuredAPIFileIOLoader, UnstructuredAPIFileLoader, UnstructuredFileIOLoader, UnstructuredFileLoader, ) from langchain.document_loaders.url import UnstructuredURLLoader from langchain.document_loaders.url_playwright import PlaywrightURLLoader from langchain.document_loaders.url_selenium import SeleniumURLLoader from langchain.document_loaders.weather import WeatherDataLoader from langchain.document_loaders.web_base import WebBaseLoader from langchain.document_loaders.whatsapp_chat import WhatsAppChatLoader from langchain.document_loaders.wikipedia import WikipediaLoader from langchain.document_loaders.word_document import ( Docx2txtLoader, UnstructuredWordDocumentLoader, ) from langchain.document_loaders.youtube import ( GoogleApiClient, GoogleApiYoutubeLoader, YoutubeLoader, ) # Legacy: only for backwards compat. Use PyPDFLoader instead PagedPDFSplitter = PyPDFLoader # For backwards compatability TelegramChatLoader = TelegramChatFileLoader __all__ = [ "AZLyricsLoader", "AirbyteJSONLoader", "ApifyDatasetLoader", "ArxivLoader", "AzureBlobStorageContainerLoader", "AzureBlobStorageFileLoader", "BSHTMLLoader", "BibtexLoader", "BigQueryLoader", "BiliBiliLoader", "BlackboardLoader", "BlockchainDocumentLoader", "CSVLoader", "ChatGPTLoader", "CoNLLULoader", "CollegeConfidentialLoader", "ConfluenceLoader", "DataFrameLoader", "DiffbotLoader", "DirectoryLoader", "DiscordChatLoader", "DocugamiLoader", "Docx2txtLoader", "DuckDBLoader", "EverNoteLoader", "FacebookChatLoader", "GCSDirectoryLoader", "GCSFileLoader", "GitLoader", "GitbookLoader", "GoogleApiClient", "GoogleApiYoutubeLoader", "GoogleDriveLoader", "GutenbergLoader", "HNLoader", "HuggingFaceDatasetLoader", "HuggingFaceDatasetLoader", "IFixitLoader", "IMSDbLoader", "ImageCaptionLoader", "JoplinLoader", "JSONLoader", "MWDumpLoader", "MastodonTootsLoader", "MathpixPDFLoader", "ModernTreasuryLoader", "NotebookLoader", "NotionDBLoader", "NotionDirectoryLoader", "ObsidianLoader", "OneDriveLoader", "OnlinePDFLoader", "OutlookMessageLoader", "PDFMinerLoader", "PDFMinerPDFasHTMLLoader", "PDFPlumberLoader", "PagedPDFSplitter", "PlaywrightURLLoader", "PyMuPDFLoader", "PyPDFDirectoryLoader", "PyPDFLoader", "PyPDFium2Loader", "PythonLoader", "ReadTheDocsLoader", "RedditPostsLoader", "RoamLoader", "S3DirectoryLoader", "S3FileLoader", "SRTLoader", "SeleniumURLLoader", "SitemapLoader", "SlackDirectoryLoader", "TelegramChatFileLoader", "TelegramChatApiLoader", "SpreedlyLoader", "StripeLoader", "TextLoader", "TomlLoader", "TrelloLoader", "TwitterTweetLoader", "UnstructuredAPIFileIOLoader", "UnstructuredAPIFileLoader", "UnstructuredEPubLoader", "UnstructuredEmailLoader", "UnstructuredFileIOLoader", "UnstructuredFileLoader", "UnstructuredHTMLLoader", "UnstructuredImageLoader", "UnstructuredMarkdownLoader", "UnstructuredODTLoader", "UnstructuredPDFLoader", "UnstructuredPowerPointLoader", "UnstructuredRTFLoader", "UnstructuredURLLoader", "UnstructuredWordDocumentLoader", "WeatherDataLoader", "WebBaseLoader", "WhatsAppChatLoader", "WikipediaLoader", "YoutubeLoader", "TelegramChatLoader", "ToMarkdownLoader", "PsychicLoader", ]
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,257
Github integration
### Feature request Would be amazing to scan and get all the contents from the Github API, such as PRs, Issues and Discussions. ### Motivation this would allows to ask questions on the history of the project, issues that other users might have found, and much more! ### Your contribution Not really a python developer here, would take me a while to figure out all the changes required.
https://github.com/langchain-ai/langchain/issues/5257
https://github.com/langchain-ai/langchain/pull/5408
0b3e0dd1d2fb81eeca76b960bb2376bd666608cd
8259f9b7facae95236dd5156e2a14d87a0e1f90c
"2023-05-25T16:27:21Z"
python
"2023-05-30T03:11:21Z"
langchain/document_loaders/github.py
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,257
Github integration
### Feature request Would be amazing to scan and get all the contents from the Github API, such as PRs, Issues and Discussions. ### Motivation this would allows to ask questions on the history of the project, issues that other users might have found, and much more! ### Your contribution Not really a python developer here, would take me a while to figure out all the changes required.
https://github.com/langchain-ai/langchain/issues/5257
https://github.com/langchain-ai/langchain/pull/5408
0b3e0dd1d2fb81eeca76b960bb2376bd666608cd
8259f9b7facae95236dd5156e2a14d87a0e1f90c
"2023-05-25T16:27:21Z"
python
"2023-05-30T03:11:21Z"
tests/integration_tests/document_loaders/test_github.py
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,257
Github integration
### Feature request Would be amazing to scan and get all the contents from the Github API, such as PRs, Issues and Discussions. ### Motivation this would allows to ask questions on the history of the project, issues that other users might have found, and much more! ### Your contribution Not really a python developer here, would take me a while to figure out all the changes required.
https://github.com/langchain-ai/langchain/issues/5257
https://github.com/langchain-ai/langchain/pull/5408
0b3e0dd1d2fb81eeca76b960bb2376bd666608cd
8259f9b7facae95236dd5156e2a14d87a0e1f90c
"2023-05-25T16:27:21Z"
python
"2023-05-30T03:11:21Z"
tests/unit_tests/document_loaders/test_github.py
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,337
Add MongoDBAtlasVectorSearch vectorstore
### Feature request MongoDB Atlas is a fully managed DBaaS, powered by the MongoDB database. It also enables Lucene (collocated with the mongod process) for full-text search - this is know as Atlas Search. The PR has to allow Langchain users from using the functionality related to the MongoDB Atlas Vector Search feature where you can store your embeddings in MongoDB documents and create a Lucene vector index to perform a KNN search. ### Motivation There is currently no way in Langchain to connect to MongoDB Atlas and perform a KNN search. ### Your contribution I am submitting a PR for this issue soon.
https://github.com/langchain-ai/langchain/issues/5337
https://github.com/langchain-ai/langchain/pull/5338
c4b502a47051f50c6e24b824d3db622748458d13
a61b7f7e7c76ae8667e40cd29cfe30a3868d7dd8
"2023-05-27T11:41:39Z"
python
"2023-05-30T14:59:01Z"
docs/modules/indexes/vectorstores/examples/mongodb_atlas_vector_search.ipynb
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,337
Add MongoDBAtlasVectorSearch vectorstore
### Feature request MongoDB Atlas is a fully managed DBaaS, powered by the MongoDB database. It also enables Lucene (collocated with the mongod process) for full-text search - this is know as Atlas Search. The PR has to allow Langchain users from using the functionality related to the MongoDB Atlas Vector Search feature where you can store your embeddings in MongoDB documents and create a Lucene vector index to perform a KNN search. ### Motivation There is currently no way in Langchain to connect to MongoDB Atlas and perform a KNN search. ### Your contribution I am submitting a PR for this issue soon.
https://github.com/langchain-ai/langchain/issues/5337
https://github.com/langchain-ai/langchain/pull/5338
c4b502a47051f50c6e24b824d3db622748458d13
a61b7f7e7c76ae8667e40cd29cfe30a3868d7dd8
"2023-05-27T11:41:39Z"
python
"2023-05-30T14:59:01Z"
langchain/vectorstores/__init__.py
"""Wrappers on top of vector stores.""" from langchain.vectorstores.analyticdb import AnalyticDB from langchain.vectorstores.annoy import Annoy from langchain.vectorstores.atlas import AtlasDB from langchain.vectorstores.base import VectorStore from langchain.vectorstores.chroma import Chroma from langchain.vectorstores.deeplake import DeepLake from langchain.vectorstores.docarray import DocArrayHnswSearch, DocArrayInMemorySearch from langchain.vectorstores.elastic_vector_search import ElasticVectorSearch from langchain.vectorstores.faiss import FAISS from langchain.vectorstores.lancedb import LanceDB from langchain.vectorstores.milvus import Milvus from langchain.vectorstores.myscale import MyScale, MyScaleSettings from langchain.vectorstores.opensearch_vector_search import OpenSearchVectorSearch from langchain.vectorstores.pinecone import Pinecone from langchain.vectorstores.qdrant import Qdrant from langchain.vectorstores.redis import Redis from langchain.vectorstores.sklearn import SKLearnVectorStore from langchain.vectorstores.supabase import SupabaseVectorStore from langchain.vectorstores.tair import Tair from langchain.vectorstores.typesense import Typesense from langchain.vectorstores.vectara import Vectara from langchain.vectorstores.weaviate import Weaviate from langchain.vectorstores.zilliz import Zilliz __all__ = [ "Redis", "ElasticVectorSearch", "FAISS", "VectorStore", "Pinecone", "Weaviate", "Qdrant", "Milvus", "Zilliz", "Chroma", "OpenSearchVectorSearch", "AtlasDB", "DeepLake", "Annoy", "MyScale", "MyScaleSettings", "SKLearnVectorStore", "SupabaseVectorStore", "AnalyticDB", "Vectara", "Tair", "LanceDB", "DocArrayHnswSearch", "DocArrayInMemorySearch", "Typesense", ]
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,337
Add MongoDBAtlasVectorSearch vectorstore
### Feature request MongoDB Atlas is a fully managed DBaaS, powered by the MongoDB database. It also enables Lucene (collocated with the mongod process) for full-text search - this is know as Atlas Search. The PR has to allow Langchain users from using the functionality related to the MongoDB Atlas Vector Search feature where you can store your embeddings in MongoDB documents and create a Lucene vector index to perform a KNN search. ### Motivation There is currently no way in Langchain to connect to MongoDB Atlas and perform a KNN search. ### Your contribution I am submitting a PR for this issue soon.
https://github.com/langchain-ai/langchain/issues/5337
https://github.com/langchain-ai/langchain/pull/5338
c4b502a47051f50c6e24b824d3db622748458d13
a61b7f7e7c76ae8667e40cd29cfe30a3868d7dd8
"2023-05-27T11:41:39Z"
python
"2023-05-30T14:59:01Z"
langchain/vectorstores/mongodb_atlas.py
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,337
Add MongoDBAtlasVectorSearch vectorstore
### Feature request MongoDB Atlas is a fully managed DBaaS, powered by the MongoDB database. It also enables Lucene (collocated with the mongod process) for full-text search - this is know as Atlas Search. The PR has to allow Langchain users from using the functionality related to the MongoDB Atlas Vector Search feature where you can store your embeddings in MongoDB documents and create a Lucene vector index to perform a KNN search. ### Motivation There is currently no way in Langchain to connect to MongoDB Atlas and perform a KNN search. ### Your contribution I am submitting a PR for this issue soon.
https://github.com/langchain-ai/langchain/issues/5337
https://github.com/langchain-ai/langchain/pull/5338
c4b502a47051f50c6e24b824d3db622748458d13
a61b7f7e7c76ae8667e40cd29cfe30a3868d7dd8
"2023-05-27T11:41:39Z"
python
"2023-05-30T14:59:01Z"
poetry.lock
# This file is automatically @generated by Poetry 1.4.2 and should not be changed by hand. [[package]] name = "absl-py" version = "1.4.0" description = "Abseil Python Common Libraries, see https://github.com/abseil/abseil-py." category = "main" optional = true python-versions = ">=3.6" files = [ {file = "absl-py-1.4.0.tar.gz", hash = "sha256:d2c244d01048ba476e7c080bd2c6df5e141d211de80223460d5b3b8a2a58433d"}, {file = "absl_py-1.4.0-py3-none-any.whl", hash = "sha256:0d3fe606adfa4f7db64792dd4c7aee4ee0c38ab75dfd353b7a83ed3e957fcb47"}, ] [[package]] name = "aioboto3" version = "11.2.0" description = "Async boto3 wrapper" category = "main" optional = false python-versions = ">=3.7,<4.0" files = [ {file = "aioboto3-11.2.0-py3-none-any.whl", hash = "sha256:df4b83c3943b009a4dcd9f397f9f0491a374511b1ef37545082a771ca1e549fb"}, {file = "aioboto3-11.2.0.tar.gz", hash = "sha256:c7f6234fd73efcb60ab6fca383fec33bb6352ca1832f252eac810cd6674f1748"}, ] [package.dependencies] aiobotocore = {version = "2.5.0", extras = ["boto3"]} [package.extras] chalice = ["chalice (>=1.24.0)"] s3cse = ["cryptography (>=2.3.1)"] [[package]] name = "aiobotocore" version = "2.5.0" description = "Async client for aws services using botocore and aiohttp" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "aiobotocore-2.5.0-py3-none-any.whl", hash = "sha256:9a2a022d7b78ec9a2af0de589916d2721cddbf96264401b78d7a73c1a1435f3b"}, {file = "aiobotocore-2.5.0.tar.gz", hash = "sha256:6a5b397cddd4f81026aa91a14c7dd2650727425740a5af8ba75127ff663faf67"}, ] [package.dependencies] aiohttp = ">=3.3.1" aioitertools = ">=0.5.1" boto3 = {version = ">=1.26.76,<1.26.77", optional = true, markers = "extra == \"boto3\""} botocore = ">=1.29.76,<1.29.77" wrapt = ">=1.10.10" [package.extras] awscli = ["awscli (>=1.27.76,<1.27.77)"] boto3 = ["boto3 (>=1.26.76,<1.26.77)"] [[package]] name = "aiodns" version = "3.0.0" description = "Simple DNS resolver for asyncio" category = "main" optional = true python-versions = "*" files = [ {file = "aiodns-3.0.0-py3-none-any.whl", hash = "sha256:2b19bc5f97e5c936638d28e665923c093d8af2bf3aa88d35c43417fa25d136a2"}, {file = "aiodns-3.0.0.tar.gz", hash = "sha256:946bdfabe743fceeeb093c8a010f5d1645f708a241be849e17edfb0e49e08cd6"}, ] [package.dependencies] pycares = ">=4.0.0" [[package]] name = "aiofiles" version = "23.1.0" description = "File support for asyncio." category = "main" optional = true python-versions = ">=3.7,<4.0" files = [ {file = "aiofiles-23.1.0-py3-none-any.whl", hash = "sha256:9312414ae06472eb6f1d163f555e466a23aed1c8f60c30cccf7121dba2e53eb2"}, {file = "aiofiles-23.1.0.tar.gz", hash = "sha256:edd247df9a19e0db16534d4baaf536d6609a43e1de5401d7a4c1c148753a1635"}, ] [[package]] name = "aiohttp" version = "3.8.4" description = "Async http client/server framework (asyncio)" category = "main" optional = false python-versions = ">=3.6" files = [ {file = "aiohttp-3.8.4-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:5ce45967538fb747370308d3145aa68a074bdecb4f3a300869590f725ced69c1"}, {file = "aiohttp-3.8.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:b744c33b6f14ca26b7544e8d8aadff6b765a80ad6164fb1a430bbadd593dfb1a"}, {file = "aiohttp-3.8.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:1a45865451439eb320784918617ba54b7a377e3501fb70402ab84d38c2cd891b"}, {file = "aiohttp-3.8.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a86d42d7cba1cec432d47ab13b6637bee393a10f664c425ea7b305d1301ca1a3"}, {file = "aiohttp-3.8.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ee3c36df21b5714d49fc4580247947aa64bcbe2939d1b77b4c8dcb8f6c9faecc"}, {file = "aiohttp-3.8.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:176a64b24c0935869d5bbc4c96e82f89f643bcdf08ec947701b9dbb3c956b7dd"}, {file = "aiohttp-3.8.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c844fd628851c0bc309f3c801b3a3d58ce430b2ce5b359cd918a5a76d0b20cb5"}, {file = "aiohttp-3.8.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5393fb786a9e23e4799fec788e7e735de18052f83682ce2dfcabaf1c00c2c08e"}, {file = "aiohttp-3.8.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e4b09863aae0dc965c3ef36500d891a3ff495a2ea9ae9171e4519963c12ceefd"}, {file = "aiohttp-3.8.4-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:adfbc22e87365a6e564c804c58fc44ff7727deea782d175c33602737b7feadb6"}, {file = "aiohttp-3.8.4-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:147ae376f14b55f4f3c2b118b95be50a369b89b38a971e80a17c3fd623f280c9"}, {file = "aiohttp-3.8.4-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:eafb3e874816ebe2a92f5e155f17260034c8c341dad1df25672fb710627c6949"}, {file = "aiohttp-3.8.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c6cc15d58053c76eacac5fa9152d7d84b8d67b3fde92709195cb984cfb3475ea"}, {file = "aiohttp-3.8.4-cp310-cp310-win32.whl", hash = "sha256:59f029a5f6e2d679296db7bee982bb3d20c088e52a2977e3175faf31d6fb75d1"}, {file = "aiohttp-3.8.4-cp310-cp310-win_amd64.whl", hash = "sha256:fe7ba4a51f33ab275515f66b0a236bcde4fb5561498fe8f898d4e549b2e4509f"}, {file = "aiohttp-3.8.4-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:3d8ef1a630519a26d6760bc695842579cb09e373c5f227a21b67dc3eb16cfea4"}, {file = "aiohttp-3.8.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5b3f2e06a512e94722886c0827bee9807c86a9f698fac6b3aee841fab49bbfb4"}, {file = "aiohttp-3.8.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:3a80464982d41b1fbfe3154e440ba4904b71c1a53e9cd584098cd41efdb188ef"}, {file = "aiohttp-3.8.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8b631e26df63e52f7cce0cce6507b7a7f1bc9b0c501fcde69742130b32e8782f"}, {file = "aiohttp-3.8.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3f43255086fe25e36fd5ed8f2ee47477408a73ef00e804cb2b5cba4bf2ac7f5e"}, {file = "aiohttp-3.8.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4d347a172f866cd1d93126d9b239fcbe682acb39b48ee0873c73c933dd23bd0f"}, {file = "aiohttp-3.8.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a3fec6a4cb5551721cdd70473eb009d90935b4063acc5f40905d40ecfea23e05"}, {file = "aiohttp-3.8.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:80a37fe8f7c1e6ce8f2d9c411676e4bc633a8462844e38f46156d07a7d401654"}, {file = "aiohttp-3.8.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d1e6a862b76f34395a985b3cd39a0d949ca80a70b6ebdea37d3ab39ceea6698a"}, {file = "aiohttp-3.8.4-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:cd468460eefef601ece4428d3cf4562459157c0f6523db89365202c31b6daebb"}, {file = "aiohttp-3.8.4-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:618c901dd3aad4ace71dfa0f5e82e88b46ef57e3239fc7027773cb6d4ed53531"}, {file = "aiohttp-3.8.4-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:652b1bff4f15f6287550b4670546a2947f2a4575b6c6dff7760eafb22eacbf0b"}, {file = "aiohttp-3.8.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:80575ba9377c5171407a06d0196b2310b679dc752d02a1fcaa2bc20b235dbf24"}, {file = "aiohttp-3.8.4-cp311-cp311-win32.whl", hash = "sha256:bbcf1a76cf6f6dacf2c7f4d2ebd411438c275faa1dc0c68e46eb84eebd05dd7d"}, {file = "aiohttp-3.8.4-cp311-cp311-win_amd64.whl", hash = "sha256:6e74dd54f7239fcffe07913ff8b964e28b712f09846e20de78676ce2a3dc0bfc"}, {file = "aiohttp-3.8.4-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:880e15bb6dad90549b43f796b391cfffd7af373f4646784795e20d92606b7a51"}, {file = "aiohttp-3.8.4-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bb96fa6b56bb536c42d6a4a87dfca570ff8e52de2d63cabebfd6fb67049c34b6"}, {file = "aiohttp-3.8.4-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4a6cadebe132e90cefa77e45f2d2f1a4b2ce5c6b1bfc1656c1ddafcfe4ba8131"}, {file = "aiohttp-3.8.4-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f352b62b45dff37b55ddd7b9c0c8672c4dd2eb9c0f9c11d395075a84e2c40f75"}, {file = "aiohttp-3.8.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ab43061a0c81198d88f39aaf90dae9a7744620978f7ef3e3708339b8ed2ef01"}, {file = "aiohttp-3.8.4-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c9cb1565a7ad52e096a6988e2ee0397f72fe056dadf75d17fa6b5aebaea05622"}, {file = "aiohttp-3.8.4-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:1b3ea7edd2d24538959c1c1abf97c744d879d4e541d38305f9bd7d9b10c9ec41"}, {file = "aiohttp-3.8.4-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:7c7837fe8037e96b6dd5cfcf47263c1620a9d332a87ec06a6ca4564e56bd0f36"}, {file = "aiohttp-3.8.4-cp36-cp36m-musllinux_1_1_ppc64le.whl", hash = "sha256:3b90467ebc3d9fa5b0f9b6489dfb2c304a1db7b9946fa92aa76a831b9d587e99"}, {file = "aiohttp-3.8.4-cp36-cp36m-musllinux_1_1_s390x.whl", hash = "sha256:cab9401de3ea52b4b4c6971db5fb5c999bd4260898af972bf23de1c6b5dd9d71"}, {file = "aiohttp-3.8.4-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:d1f9282c5f2b5e241034a009779e7b2a1aa045f667ff521e7948ea9b56e0c5ff"}, {file = "aiohttp-3.8.4-cp36-cp36m-win32.whl", hash = "sha256:5e14f25765a578a0a634d5f0cd1e2c3f53964553a00347998dfdf96b8137f777"}, {file = "aiohttp-3.8.4-cp36-cp36m-win_amd64.whl", hash = "sha256:4c745b109057e7e5f1848c689ee4fb3a016c8d4d92da52b312f8a509f83aa05e"}, {file = "aiohttp-3.8.4-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:aede4df4eeb926c8fa70de46c340a1bc2c6079e1c40ccf7b0eae1313ffd33519"}, {file = "aiohttp-3.8.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ddaae3f3d32fc2cb4c53fab020b69a05c8ab1f02e0e59665c6f7a0d3a5be54f"}, {file = "aiohttp-3.8.4-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c4eb3b82ca349cf6fadcdc7abcc8b3a50ab74a62e9113ab7a8ebc268aad35bb9"}, {file = "aiohttp-3.8.4-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9bcb89336efa095ea21b30f9e686763f2be4478f1b0a616969551982c4ee4c3b"}, {file = "aiohttp-3.8.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c08e8ed6fa3d477e501ec9db169bfac8140e830aa372d77e4a43084d8dd91ab"}, {file = "aiohttp-3.8.4-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c6cd05ea06daca6ad6a4ca3ba7fe7dc5b5de063ff4daec6170ec0f9979f6c332"}, {file = "aiohttp-3.8.4-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:b7a00a9ed8d6e725b55ef98b1b35c88013245f35f68b1b12c5cd4100dddac333"}, {file = "aiohttp-3.8.4-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:de04b491d0e5007ee1b63a309956eaed959a49f5bb4e84b26c8f5d49de140fa9"}, {file = "aiohttp-3.8.4-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:40653609b3bf50611356e6b6554e3a331f6879fa7116f3959b20e3528783e699"}, {file = "aiohttp-3.8.4-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:dbf3a08a06b3f433013c143ebd72c15cac33d2914b8ea4bea7ac2c23578815d6"}, {file = "aiohttp-3.8.4-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:854f422ac44af92bfe172d8e73229c270dc09b96535e8a548f99c84f82dde241"}, {file = "aiohttp-3.8.4-cp37-cp37m-win32.whl", hash = "sha256:aeb29c84bb53a84b1a81c6c09d24cf33bb8432cc5c39979021cc0f98c1292a1a"}, {file = "aiohttp-3.8.4-cp37-cp37m-win_amd64.whl", hash = "sha256:db3fc6120bce9f446d13b1b834ea5b15341ca9ff3f335e4a951a6ead31105480"}, {file = "aiohttp-3.8.4-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:fabb87dd8850ef0f7fe2b366d44b77d7e6fa2ea87861ab3844da99291e81e60f"}, {file = "aiohttp-3.8.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:91f6d540163f90bbaef9387e65f18f73ffd7c79f5225ac3d3f61df7b0d01ad15"}, {file = "aiohttp-3.8.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:d265f09a75a79a788237d7f9054f929ced2e69eb0bb79de3798c468d8a90f945"}, {file = "aiohttp-3.8.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3d89efa095ca7d442a6d0cbc755f9e08190ba40069b235c9886a8763b03785da"}, {file = "aiohttp-3.8.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4dac314662f4e2aa5009977b652d9b8db7121b46c38f2073bfeed9f4049732cd"}, {file = "aiohttp-3.8.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fe11310ae1e4cd560035598c3f29d86cef39a83d244c7466f95c27ae04850f10"}, {file = "aiohttp-3.8.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6ddb2a2026c3f6a68c3998a6c47ab6795e4127315d2e35a09997da21865757f8"}, {file = "aiohttp-3.8.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e75b89ac3bd27d2d043b234aa7b734c38ba1b0e43f07787130a0ecac1e12228a"}, {file = "aiohttp-3.8.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:6e601588f2b502c93c30cd5a45bfc665faaf37bbe835b7cfd461753068232074"}, {file = "aiohttp-3.8.4-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:a5d794d1ae64e7753e405ba58e08fcfa73e3fad93ef9b7e31112ef3c9a0efb52"}, {file = "aiohttp-3.8.4-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:a1f4689c9a1462f3df0a1f7e797791cd6b124ddbee2b570d34e7f38ade0e2c71"}, {file = "aiohttp-3.8.4-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:3032dcb1c35bc330134a5b8a5d4f68c1a87252dfc6e1262c65a7e30e62298275"}, {file = "aiohttp-3.8.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8189c56eb0ddbb95bfadb8f60ea1b22fcfa659396ea36f6adcc521213cd7b44d"}, {file = "aiohttp-3.8.4-cp38-cp38-win32.whl", hash = "sha256:33587f26dcee66efb2fff3c177547bd0449ab7edf1b73a7f5dea1e38609a0c54"}, {file = "aiohttp-3.8.4-cp38-cp38-win_amd64.whl", hash = "sha256:e595432ac259af2d4630008bf638873d69346372d38255774c0e286951e8b79f"}, {file = "aiohttp-3.8.4-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:5a7bdf9e57126dc345b683c3632e8ba317c31d2a41acd5800c10640387d193ed"}, {file = "aiohttp-3.8.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:22f6eab15b6db242499a16de87939a342f5a950ad0abaf1532038e2ce7d31567"}, {file = "aiohttp-3.8.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:7235604476a76ef249bd64cb8274ed24ccf6995c4a8b51a237005ee7a57e8643"}, {file = "aiohttp-3.8.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ea9eb976ffdd79d0e893869cfe179a8f60f152d42cb64622fca418cd9b18dc2a"}, {file = "aiohttp-3.8.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:92c0cea74a2a81c4c76b62ea1cac163ecb20fb3ba3a75c909b9fa71b4ad493cf"}, {file = "aiohttp-3.8.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:493f5bc2f8307286b7799c6d899d388bbaa7dfa6c4caf4f97ef7521b9cb13719"}, {file = "aiohttp-3.8.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0a63f03189a6fa7c900226e3ef5ba4d3bd047e18f445e69adbd65af433add5a2"}, {file = "aiohttp-3.8.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10c8cefcff98fd9168cdd86c4da8b84baaa90bf2da2269c6161984e6737bf23e"}, {file = "aiohttp-3.8.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:bca5f24726e2919de94f047739d0a4fc01372801a3672708260546aa2601bf57"}, {file = "aiohttp-3.8.4-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:03baa76b730e4e15a45f81dfe29a8d910314143414e528737f8589ec60cf7391"}, {file = "aiohttp-3.8.4-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:8c29c77cc57e40f84acef9bfb904373a4e89a4e8b74e71aa8075c021ec9078c2"}, {file = "aiohttp-3.8.4-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:03543dcf98a6619254b409be2d22b51f21ec66272be4ebda7b04e6412e4b2e14"}, {file = "aiohttp-3.8.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:17b79c2963db82086229012cff93ea55196ed31f6493bb1ccd2c62f1724324e4"}, {file = "aiohttp-3.8.4-cp39-cp39-win32.whl", hash = "sha256:34ce9f93a4a68d1272d26030655dd1b58ff727b3ed2a33d80ec433561b03d67a"}, {file = "aiohttp-3.8.4-cp39-cp39-win_amd64.whl", hash = "sha256:41a86a69bb63bb2fc3dc9ad5ea9f10f1c9c8e282b471931be0268ddd09430b04"}, {file = "aiohttp-3.8.4.tar.gz", hash = "sha256:bf2e1a9162c1e441bf805a1fd166e249d574ca04e03b34f97e2928769e91ab5c"}, ] [package.dependencies] aiosignal = ">=1.1.2" async-timeout = ">=4.0.0a3,<5.0" attrs = ">=17.3.0" charset-normalizer = ">=2.0,<4.0" frozenlist = ">=1.1.1" multidict = ">=4.5,<7.0" yarl = ">=1.0,<2.0" [package.extras] speedups = ["Brotli", "aiodns", "cchardet"] [[package]] name = "aiohttp-retry" version = "2.8.3" description = "Simple retry client for aiohttp" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "aiohttp_retry-2.8.3-py3-none-any.whl", hash = "sha256:3aeeead8f6afe48272db93ced9440cf4eda8b6fd7ee2abb25357b7eb28525b45"}, {file = "aiohttp_retry-2.8.3.tar.gz", hash = "sha256:9a8e637e31682ad36e1ff9f8bcba912fcfc7d7041722bc901a4b948da4d71ea9"}, ] [package.dependencies] aiohttp = "*" [[package]] name = "aioitertools" version = "0.11.0" description = "itertools and builtins for AsyncIO and mixed iterables" category = "main" optional = false python-versions = ">=3.6" files = [ {file = "aioitertools-0.11.0-py3-none-any.whl", hash = "sha256:04b95e3dab25b449def24d7df809411c10e62aab0cbe31a50ca4e68748c43394"}, {file = "aioitertools-0.11.0.tar.gz", hash = "sha256:42c68b8dd3a69c2bf7f2233bf7df4bb58b557bca5252ac02ed5187bbc67d6831"}, ] [package.dependencies] typing_extensions = {version = ">=4.0", markers = "python_version < \"3.10\""} [[package]] name = "aiosignal" version = "1.3.1" description = "aiosignal: a list of registered asynchronous callbacks" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "aiosignal-1.3.1-py3-none-any.whl", hash = "sha256:f8376fb07dd1e86a584e4fcdec80b36b7f81aac666ebc724e2c090300dd83b17"}, {file = "aiosignal-1.3.1.tar.gz", hash = "sha256:54cd96e15e1649b75d6c87526a6ff0b6c1b0dd3459f43d9ca11d48c339b68cfc"}, ] [package.dependencies] frozenlist = ">=1.1.0" [[package]] name = "aiostream" version = "0.4.5" description = "Generator-based operators for asynchronous iteration" category = "main" optional = true python-versions = "*" files = [ {file = "aiostream-0.4.5-py3-none-any.whl", hash = "sha256:25b7c2d9c83570d78c0ef5a20e949b7d0b8ea3b0b0a4f22c49d3f721105a6057"}, {file = "aiostream-0.4.5.tar.gz", hash = "sha256:3ecbf87085230fbcd9605c32ca20c4fb41af02c71d076eab246ea22e35947d88"}, ] [[package]] name = "alabaster" version = "0.7.13" description = "A configurable sidebar-enabled Sphinx theme" category = "dev" optional = false python-versions = ">=3.6" files = [ {file = "alabaster-0.7.13-py3-none-any.whl", hash = "sha256:1ee19aca801bbabb5ba3f5f258e4422dfa86f82f3e9cefb0859b283cdd7f62a3"}, {file = "alabaster-0.7.13.tar.gz", hash = "sha256:a27a4a084d5e690e16e01e03ad2b2e552c61a65469419b907243193de1a84ae2"}, ] [[package]] name = "aleph-alpha-client" version = "2.17.0" description = "python client to interact with Aleph Alpha api endpoints" category = "main" optional = true python-versions = "*" files = [ {file = "aleph-alpha-client-2.17.0.tar.gz", hash = "sha256:c2d664c7b829f4932306153bec45e11c08e03252f1dbfd9f48584c402d7050a3"}, {file = "aleph_alpha_client-2.17.0-py3-none-any.whl", hash = "sha256:9106a36a5e08dba6aea2b0b2a0de6ff0c3bb77926edc98226debae121b0925e2"}, ] [package.dependencies] aiodns = ">=3.0.0" aiohttp = ">=3.8.3" aiohttp-retry = ">=2.8.3" Pillow = ">=9.2.0" requests = ">=2.28" tokenizers = ">=0.13.2" typing-extensions = ">=4.5.0" urllib3 = ">=1.26" [package.extras] dev = ["black", "ipykernel", "mypy", "nbconvert", "pytest", "pytest-aiohttp", "pytest-cov", "pytest-dotenv", "pytest-httpserver", "types-Pillow", "types-requests"] docs = ["sphinx", "sphinx-rtd-theme"] test = ["pytest", "pytest-aiohttp", "pytest-cov", "pytest-dotenv", "pytest-httpserver"] types = ["mypy", "types-Pillow", "types-requests"] [[package]] name = "anthropic" version = "0.2.9" description = "Library for accessing the anthropic API" category = "main" optional = true python-versions = ">=3.8" files = [ {file = "anthropic-0.2.9-py3-none-any.whl", hash = "sha256:e7cce215cf6c446de29280deb31b07b5587993d48e84850eaad3fc69bd1fec0a"}, {file = "anthropic-0.2.9.tar.gz", hash = "sha256:2d44564d362cced6e8e662366e4de7f94dcdc6cb61346a5e528359b0afc1f2f3"}, ] [package.dependencies] aiohttp = "*" httpx = "*" requests = "*" tokenizers = "*" [package.extras] dev = ["black (>=22.3.0)", "pytest"] [[package]] name = "anyio" version = "3.6.2" description = "High level compatibility layer for multiple asynchronous event loop implementations" category = "main" optional = false python-versions = ">=3.6.2" files = [ {file = "anyio-3.6.2-py3-none-any.whl", hash = "sha256:fbbe32bd270d2a2ef3ed1c5d45041250284e31fc0a4df4a5a6071842051a51e3"}, {file = "anyio-3.6.2.tar.gz", hash = "sha256:25ea0d673ae30af41a0c442f81cf3b38c7e79fdc7b60335a4c14e05eb0947421"}, ] [package.dependencies] idna = ">=2.8" sniffio = ">=1.1" [package.extras] doc = ["packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"] test = ["contextlib2", "coverage[toml] (>=4.5)", "hypothesis (>=4.0)", "mock (>=4)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (<0.15)", "uvloop (>=0.15)"] trio = ["trio (>=0.16,<0.22)"] [[package]] name = "appnope" version = "0.1.3" description = "Disable App Nap on macOS >= 10.9" category = "dev" optional = false python-versions = "*" files = [ {file = "appnope-0.1.3-py2.py3-none-any.whl", hash = "sha256:265a455292d0bd8a72453494fa24df5a11eb18373a60c7c0430889f22548605e"}, {file = "appnope-0.1.3.tar.gz", hash = "sha256:02bd91c4de869fbb1e1c50aafc4098827a7a54ab2f39d9dcba6c9547ed920e24"}, ] [[package]] name = "argon2-cffi" version = "21.3.0" description = "The secure Argon2 password hashing algorithm." category = "dev" optional = false python-versions = ">=3.6" files = [ {file = "argon2-cffi-21.3.0.tar.gz", hash = "sha256:d384164d944190a7dd7ef22c6aa3ff197da12962bd04b17f64d4e93d934dba5b"}, {file = "argon2_cffi-21.3.0-py3-none-any.whl", hash = "sha256:8c976986f2c5c0e5000919e6de187906cfd81fb1c72bf9d88c01177e77da7f80"}, ] [package.dependencies] argon2-cffi-bindings = "*" [package.extras] dev = ["cogapp", "coverage[toml] (>=5.0.2)", "furo", "hypothesis", "pre-commit", "pytest", "sphinx", "sphinx-notfound-page", "tomli"] docs = ["furo", "sphinx", "sphinx-notfound-page"] tests = ["coverage[toml] (>=5.0.2)", "hypothesis", "pytest"] [[package]] name = "argon2-cffi-bindings" version = "21.2.0" description = "Low-level CFFI bindings for Argon2" category = "dev" optional = false python-versions = ">=3.6" files = [ {file = "argon2-cffi-bindings-21.2.0.tar.gz", hash = "sha256:bb89ceffa6c791807d1305ceb77dbfacc5aa499891d2c55661c6459651fc39e3"}, {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:ccb949252cb2ab3a08c02024acb77cfb179492d5701c7cbdbfd776124d4d2367"}, {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9524464572e12979364b7d600abf96181d3541da11e23ddf565a32e70bd4dc0d"}, {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b746dba803a79238e925d9046a63aa26bf86ab2a2fe74ce6b009a1c3f5c8f2ae"}, {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:58ed19212051f49a523abb1dbe954337dc82d947fb6e5a0da60f7c8471a8476c"}, {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:bd46088725ef7f58b5a1ef7ca06647ebaf0eb4baff7d1d0d177c6cc8744abd86"}, {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_i686.whl", hash = "sha256:8cd69c07dd875537a824deec19f978e0f2078fdda07fd5c42ac29668dda5f40f"}, {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:f1152ac548bd5b8bcecfb0b0371f082037e47128653df2e8ba6e914d384f3c3e"}, {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-win32.whl", hash = "sha256:603ca0aba86b1349b147cab91ae970c63118a0f30444d4bc80355937c950c082"}, {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-win_amd64.whl", hash = "sha256:b2ef1c30440dbbcba7a5dc3e319408b59676e2e039e2ae11a8775ecf482b192f"}, {file = "argon2_cffi_bindings-21.2.0-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:e415e3f62c8d124ee16018e491a009937f8cf7ebf5eb430ffc5de21b900dad93"}, {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:3e385d1c39c520c08b53d63300c3ecc28622f076f4c2b0e6d7e796e9f6502194"}, {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2c3e3cc67fdb7d82c4718f19b4e7a87123caf8a93fde7e23cf66ac0337d3cb3f"}, {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6a22ad9800121b71099d0fb0a65323810a15f2e292f2ba450810a7316e128ee5"}, {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f9f8b450ed0547e3d473fdc8612083fd08dd2120d6ac8f73828df9b7d45bb351"}, {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:93f9bf70084f97245ba10ee36575f0c3f1e7d7724d67d8e5b08e61787c320ed7"}, {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:3b9ef65804859d335dc6b31582cad2c5166f0c3e7975f324d9ffaa34ee7e6583"}, {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d4966ef5848d820776f5f562a7d45fdd70c2f330c961d0d745b784034bd9f48d"}, {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:20ef543a89dee4db46a1a6e206cd015360e5a75822f76df533845c3cbaf72670"}, {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ed2937d286e2ad0cc79a7087d3c272832865f779430e0cc2b4f3718d3159b0cb"}, {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5e00316dabdaea0b2dd82d141cc66889ced0cdcbfa599e8b471cf22c620c329a"}, ] [package.dependencies] cffi = ">=1.0.1" [package.extras] dev = ["cogapp", "pre-commit", "pytest", "wheel"] tests = ["pytest"] [[package]] name = "arrow" version = "1.2.3" description = "Better dates & times for Python" category = "dev" optional = false python-versions = ">=3.6" files = [ {file = "arrow-1.2.3-py3-none-any.whl", hash = "sha256:5a49ab92e3b7b71d96cd6bfcc4df14efefc9dfa96ea19045815914a6ab6b1fe2"}, {file = "arrow-1.2.3.tar.gz", hash = "sha256:3934b30ca1b9f292376d9db15b19446088d12ec58629bc3f0da28fd55fb633a1"}, ] [package.dependencies] python-dateutil = ">=2.7.0" [[package]] name = "arxiv" version = "1.4.7" description = "Python wrapper for the arXiv API: http://arxiv.org/help/api/" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "arxiv-1.4.7-py3-none-any.whl", hash = "sha256:22b8f610957bb6859a25fac9dc205ab6ba76d521791119a5762ea52625e398a0"}, {file = "arxiv-1.4.7.tar.gz", hash = "sha256:100c8d6b9cd04c7f55f11b34616beb7a1623ab0564b66161b4aeeeb8912c5806"}, ] [package.dependencies] feedparser = "*" [[package]] name = "asgiref" version = "3.6.0" description = "ASGI specs, helper code, and adapters" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "asgiref-3.6.0-py3-none-any.whl", hash = "sha256:71e68008da809b957b7ee4b43dbccff33d1b23519fb8344e33f049897077afac"}, {file = "asgiref-3.6.0.tar.gz", hash = "sha256:9567dfe7bd8d3c8c892227827c41cce860b368104c3431da67a0c5a65a949506"}, ] [package.extras] tests = ["mypy (>=0.800)", "pytest", "pytest-asyncio"] [[package]] name = "asttokens" version = "2.2.1" description = "Annotate AST trees with source code positions" category = "dev" optional = false python-versions = "*" files = [ {file = "asttokens-2.2.1-py2.py3-none-any.whl", hash = "sha256:6b0ac9e93fb0335014d382b8fa9b3afa7df546984258005da0b9e7095b3deb1c"}, {file = "asttokens-2.2.1.tar.gz", hash = "sha256:4622110b2a6f30b77e1473affaa97e711bc2f07d3f10848420ff1898edbe94f3"}, ] [package.dependencies] six = "*" [package.extras] test = ["astroid", "pytest"] [[package]] name = "astunparse" version = "1.6.3" description = "An AST unparser for Python" category = "main" optional = true python-versions = "*" files = [ {file = "astunparse-1.6.3-py2.py3-none-any.whl", hash = "sha256:c2652417f2c8b5bb325c885ae329bdf3f86424075c4fd1a128674bc6fba4b8e8"}, {file = "astunparse-1.6.3.tar.gz", hash = "sha256:5ad93a8456f0d084c3456d059fd9a92cce667963232cbf763eac3bc5b7940872"}, ] [package.dependencies] six = ">=1.6.1,<2.0" wheel = ">=0.23.0,<1.0" [[package]] name = "async-timeout" version = "4.0.2" description = "Timeout context manager for asyncio programs" category = "main" optional = false python-versions = ">=3.6" files = [ {file = "async-timeout-4.0.2.tar.gz", hash = "sha256:2163e1640ddb52b7a8c80d0a67a08587e5d245cc9c553a74a847056bc2976b15"}, {file = "async_timeout-4.0.2-py3-none-any.whl", hash = "sha256:8ca1e4fcf50d07413d66d1a5e416e42cfdf5851c981d679a09851a6853383b3c"}, ] [[package]] name = "atlassian-python-api" version = "3.37.0" description = "Python Atlassian REST API Wrapper" category = "main" optional = true python-versions = "*" files = [ {file = "atlassian-python-api-3.37.0.tar.gz", hash = "sha256:25f91627cea3f223ba9a0fe7439ce2e35601da84a3085402dac105e28aa397de"}, ] [package.dependencies] deprecated = "*" oauthlib = "*" requests = "*" requests_oauthlib = "*" six = "*" [package.extras] kerberos = ["requests-kerberos"] [[package]] name = "attrs" version = "23.1.0" description = "Classes Without Boilerplate" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "attrs-23.1.0-py3-none-any.whl", hash = "sha256:1f28b4522cdc2fb4256ac1a020c78acf9cba2c6b461ccd2c126f3aa8e8335d04"}, {file = "attrs-23.1.0.tar.gz", hash = "sha256:6279836d581513a26f1bf235f9acd333bc9115683f14f7e8fae46c98fc50e015"}, ] [package.extras] cov = ["attrs[tests]", "coverage[toml] (>=5.3)"] dev = ["attrs[docs,tests]", "pre-commit"] docs = ["furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier", "zope-interface"] tests = ["attrs[tests-no-zope]", "zope-interface"] tests-no-zope = ["cloudpickle", "hypothesis", "mypy (>=1.1.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] [[package]] name = "authlib" version = "1.2.0" description = "The ultimate Python library in building OAuth and OpenID Connect servers and clients." category = "main" optional = false python-versions = "*" files = [ {file = "Authlib-1.2.0-py2.py3-none-any.whl", hash = "sha256:4ddf4fd6cfa75c9a460b361d4bd9dac71ffda0be879dbe4292a02e92349ad55a"}, {file = "Authlib-1.2.0.tar.gz", hash = "sha256:4fa3e80883a5915ef9f5bc28630564bc4ed5b5af39812a3ff130ec76bd631e9d"}, ] [package.dependencies] cryptography = ">=3.2" [[package]] name = "autodoc-pydantic" version = "1.8.0" description = "Seamlessly integrate pydantic models in your Sphinx documentation." category = "dev" optional = false python-versions = ">=3.6,<4.0.0" files = [ {file = "autodoc_pydantic-1.8.0-py3-none-any.whl", hash = "sha256:f1bf9318f37369fec906ab523ebe65c1894395a6fc859dbc6fd02ffd90d3242f"}, {file = "autodoc_pydantic-1.8.0.tar.gz", hash = "sha256:77da1cbbe4434fa9963f85a1555c63afff9a4acec06b318dc4f54c4f28a04f2c"}, ] [package.dependencies] pydantic = ">=1.5" Sphinx = ">=3.4" [package.extras] dev = ["coverage (>=5,<6)", "flake8 (>=3,<4)", "pytest (>=6,<7)", "sphinx-copybutton (>=0.4,<0.5)", "sphinx-rtd-theme (>=1.0,<2.0)", "sphinx-tabs (>=3,<4)", "sphinxcontrib-mermaid (>=0.7,<0.8)", "tox (>=3,<4)"] docs = ["sphinx-copybutton (>=0.4,<0.5)", "sphinx-rtd-theme (>=1.0,<2.0)", "sphinx-tabs (>=3,<4)", "sphinxcontrib-mermaid (>=0.7,<0.8)"] test = ["coverage (>=5,<6)", "pytest (>=6,<7)"] [[package]] name = "azure-ai-formrecognizer" version = "3.2.1" description = "Microsoft Azure Form Recognizer Client Library for Python" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "azure-ai-formrecognizer-3.2.1.zip", hash = "sha256:5768765f9720ce87038f56afe0c0b5259192cfb29c840a39595b1e26e4ddfa32"}, {file = "azure_ai_formrecognizer-3.2.1-py3-none-any.whl", hash = "sha256:4db43b9dd0a2bc5296b752c04dbacb838ae2b8726adfe7cf277c2ea34e99419a"}, ] [package.dependencies] azure-common = ">=1.1,<2.0" azure-core = ">=1.23.0,<2.0.0" msrest = ">=0.6.21" typing-extensions = ">=4.0.1" [[package]] name = "azure-ai-vision" version = "0.11.1b1" description = "Microsoft Azure AI Vision SDK for Python" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "azure_ai_vision-0.11.1b1-py3-none-manylinux1_x86_64.whl", hash = "sha256:6f8563ae26689da6cdee9b2de009a53546ae2fd86c6c180236ce5da5b45f41d3"}, {file = "azure_ai_vision-0.11.1b1-py3-none-win_amd64.whl", hash = "sha256:f5df03b9156feaa1d8c776631967b1455028d30dfd4cd1c732aa0f9c03d01517"}, ] [[package]] name = "azure-cognitiveservices-speech" version = "1.28.0" description = "Microsoft Cognitive Services Speech SDK for Python" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "azure_cognitiveservices_speech-1.28.0-py3-none-macosx_10_14_x86_64.whl", hash = "sha256:a6c277ec9c93f586dcc74d3a56a6aa0259f4cf371f5e03afcf169c691e2c4d0c"}, {file = "azure_cognitiveservices_speech-1.28.0-py3-none-macosx_11_0_arm64.whl", hash = "sha256:a412c6c5bc528548e0ee5fc5fe89fb8351307d0c5ef7ac4d506fab3d58efcb4a"}, {file = "azure_cognitiveservices_speech-1.28.0-py3-none-manylinux1_x86_64.whl", hash = "sha256:ceb5a8862da4ab861bd06653074a4e5dc2d66a54f03dd4dd9356da7672febbce"}, {file = "azure_cognitiveservices_speech-1.28.0-py3-none-manylinux2014_aarch64.whl", hash = "sha256:d5cba32e9d8eaffc9d8f482c00950bc471f9dc4d7659c741c083e5e9d831b802"}, {file = "azure_cognitiveservices_speech-1.28.0-py3-none-win32.whl", hash = "sha256:ac52c4549062771db5694346c1547334cf1bb0d08573a193c8dcec8386aa491d"}, {file = "azure_cognitiveservices_speech-1.28.0-py3-none-win_amd64.whl", hash = "sha256:5ff042d81d7ff4e50be196419fcd2042e41a97cebb229e0940026e1314ff7751"}, ] [[package]] name = "azure-common" version = "1.1.28" description = "Microsoft Azure Client Library for Python (Common)" category = "main" optional = true python-versions = "*" files = [ {file = "azure-common-1.1.28.zip", hash = "sha256:4ac0cd3214e36b6a1b6a442686722a5d8cc449603aa833f3f0f40bda836704a3"}, {file = "azure_common-1.1.28-py2.py3-none-any.whl", hash = "sha256:5c12d3dcf4ec20599ca6b0d3e09e86e146353d443e7fcc050c9a19c1f9df20ad"}, ] [[package]] name = "azure-core" version = "1.26.4" description = "Microsoft Azure Core Library for Python" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "azure-core-1.26.4.zip", hash = "sha256:075fe06b74c3007950dd93d49440c2f3430fd9b4a5a2756ec8c79454afc989c6"}, {file = "azure_core-1.26.4-py3-none-any.whl", hash = "sha256:d9664b4bc2675d72fba461a285ac43ae33abb2967014a955bf136d9703a2ab3c"}, ] [package.dependencies] requests = ">=2.18.4" six = ">=1.11.0" typing-extensions = ">=4.3.0" [package.extras] aio = ["aiohttp (>=3.0)"] [[package]] name = "azure-cosmos" version = "4.4.0b1" description = "Microsoft Azure Cosmos Client Library for Python" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "azure-cosmos-4.4.0b1.zip", hash = "sha256:42e7c9c749784f664d9468b10ea4031f86552df99f4e12b77d9f75da048efa5d"}, {file = "azure_cosmos-4.4.0b1-py3-none-any.whl", hash = "sha256:4dc2c438e5e27bd9e4e70539babdea9dd6c09fb4ac73936680609668f2282264"}, ] [package.dependencies] azure-core = ">=1.23.0,<2.0.0" [[package]] name = "azure-identity" version = "1.13.0" description = "Microsoft Azure Identity Library for Python" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "azure-identity-1.13.0.zip", hash = "sha256:c931c27301ffa86b07b4dcf574e29da73e3deba9ab5d1fe4f445bb6a3117e260"}, {file = "azure_identity-1.13.0-py3-none-any.whl", hash = "sha256:bd700cebb80cd9862098587c29d8677e819beca33c62568ced6d5a8e5e332b82"}, ] [package.dependencies] azure-core = ">=1.11.0,<2.0.0" cryptography = ">=2.5" msal = ">=1.20.0,<2.0.0" msal-extensions = ">=0.3.0,<2.0.0" six = ">=1.12.0" [[package]] name = "babel" version = "2.12.1" description = "Internationalization utilities" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "Babel-2.12.1-py3-none-any.whl", hash = "sha256:b4246fb7677d3b98f501a39d43396d3cafdc8eadb045f4a31be01863f655c610"}, {file = "Babel-2.12.1.tar.gz", hash = "sha256:cc2d99999cd01d44420ae725a21c9e3711b3aadc7976d6147f622d8581963455"}, ] [package.dependencies] pytz = {version = ">=2015.7", markers = "python_version < \"3.9\""} [[package]] name = "backcall" version = "0.2.0" description = "Specifications for callback functions passed in to an API" category = "dev" optional = false python-versions = "*" files = [ {file = "backcall-0.2.0-py2.py3-none-any.whl", hash = "sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255"}, {file = "backcall-0.2.0.tar.gz", hash = "sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e"}, ] [[package]] name = "backoff" version = "2.2.1" description = "Function decoration for backoff and retry" category = "main" optional = false python-versions = ">=3.7,<4.0" files = [ {file = "backoff-2.2.1-py3-none-any.whl", hash = "sha256:63579f9a0628e06278f7e47b7d7d5b6ce20dc65c5e96a6f3ca99a6adca0396e8"}, {file = "backoff-2.2.1.tar.gz", hash = "sha256:03f829f5bb1923180821643f8753b0502c3b682293992485b0eef2807afa5cba"}, ] [[package]] name = "backports-zoneinfo" version = "0.2.1" description = "Backport of the standard library zoneinfo module" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "backports.zoneinfo-0.2.1-cp36-cp36m-macosx_10_14_x86_64.whl", hash = "sha256:da6013fd84a690242c310d77ddb8441a559e9cb3d3d59ebac9aca1a57b2e18bc"}, {file = "backports.zoneinfo-0.2.1-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:89a48c0d158a3cc3f654da4c2de1ceba85263fafb861b98b59040a5086259722"}, {file = "backports.zoneinfo-0.2.1-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:1c5742112073a563c81f786e77514969acb58649bcdf6cdf0b4ed31a348d4546"}, {file = "backports.zoneinfo-0.2.1-cp36-cp36m-win32.whl", hash = "sha256:e8236383a20872c0cdf5a62b554b27538db7fa1bbec52429d8d106effbaeca08"}, {file = "backports.zoneinfo-0.2.1-cp36-cp36m-win_amd64.whl", hash = "sha256:8439c030a11780786a2002261569bdf362264f605dfa4d65090b64b05c9f79a7"}, {file = "backports.zoneinfo-0.2.1-cp37-cp37m-macosx_10_14_x86_64.whl", hash = "sha256:f04e857b59d9d1ccc39ce2da1021d196e47234873820cbeaad210724b1ee28ac"}, {file = "backports.zoneinfo-0.2.1-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:17746bd546106fa389c51dbea67c8b7c8f0d14b5526a579ca6ccf5ed72c526cf"}, {file = "backports.zoneinfo-0.2.1-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:5c144945a7752ca544b4b78c8c41544cdfaf9786f25fe5ffb10e838e19a27570"}, {file = "backports.zoneinfo-0.2.1-cp37-cp37m-win32.whl", hash = "sha256:e55b384612d93be96506932a786bbcde5a2db7a9e6a4bb4bffe8b733f5b9036b"}, {file = "backports.zoneinfo-0.2.1-cp37-cp37m-win_amd64.whl", hash = "sha256:a76b38c52400b762e48131494ba26be363491ac4f9a04c1b7e92483d169f6582"}, {file = "backports.zoneinfo-0.2.1-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:8961c0f32cd0336fb8e8ead11a1f8cd99ec07145ec2931122faaac1c8f7fd987"}, {file = "backports.zoneinfo-0.2.1-cp38-cp38-manylinux1_i686.whl", hash = "sha256:e81b76cace8eda1fca50e345242ba977f9be6ae3945af8d46326d776b4cf78d1"}, {file = "backports.zoneinfo-0.2.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:7b0a64cda4145548fed9efc10322770f929b944ce5cee6c0dfe0c87bf4c0c8c9"}, {file = "backports.zoneinfo-0.2.1-cp38-cp38-win32.whl", hash = "sha256:1b13e654a55cd45672cb54ed12148cd33628f672548f373963b0bff67b217328"}, {file = "backports.zoneinfo-0.2.1-cp38-cp38-win_amd64.whl", hash = "sha256:4a0f800587060bf8880f954dbef70de6c11bbe59c673c3d818921f042f9954a6"}, {file = "backports.zoneinfo-0.2.1.tar.gz", hash = "sha256:fadbfe37f74051d024037f223b8e001611eac868b5c5b06144ef4d8b799862f2"}, ] [package.extras] tzdata = ["tzdata"] [[package]] name = "beautifulsoup4" version = "4.12.2" description = "Screen-scraping library" category = "main" optional = false python-versions = ">=3.6.0" files = [ {file = "beautifulsoup4-4.12.2-py3-none-any.whl", hash = "sha256:bd2520ca0d9d7d12694a53d44ac482d181b4ec1888909b035a3dbf40d0f57d4a"}, {file = "beautifulsoup4-4.12.2.tar.gz", hash = "sha256:492bbc69dca35d12daac71c4db1bfff0c876c00ef4a2ffacce226d4638eb72da"}, ] [package.dependencies] soupsieve = ">1.2" [package.extras] html5lib = ["html5lib"] lxml = ["lxml"] [[package]] name = "bibtexparser" version = "1.4.0" description = "Bibtex parser for python 3" category = "main" optional = true python-versions = "*" files = [ {file = "bibtexparser-1.4.0.tar.gz", hash = "sha256:ca7ce2bc34e7c48a678dd49416429bb567441f26dbb13b3609082d8cd109ace6"}, ] [package.dependencies] pyparsing = ">=2.0.3" [[package]] name = "black" version = "23.3.0" description = "The uncompromising code formatter." category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "black-23.3.0-cp310-cp310-macosx_10_16_arm64.whl", hash = "sha256:0945e13506be58bf7db93ee5853243eb368ace1c08a24c65ce108986eac65915"}, {file = "black-23.3.0-cp310-cp310-macosx_10_16_universal2.whl", hash = "sha256:67de8d0c209eb5b330cce2469503de11bca4085880d62f1628bd9972cc3366b9"}, {file = "black-23.3.0-cp310-cp310-macosx_10_16_x86_64.whl", hash = "sha256:7c3eb7cea23904399866c55826b31c1f55bbcd3890ce22ff70466b907b6775c2"}, {file = "black-23.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:32daa9783106c28815d05b724238e30718f34155653d4d6e125dc7daec8e260c"}, {file = "black-23.3.0-cp310-cp310-win_amd64.whl", hash = "sha256:35d1381d7a22cc5b2be2f72c7dfdae4072a3336060635718cc7e1ede24221d6c"}, {file = "black-23.3.0-cp311-cp311-macosx_10_16_arm64.whl", hash = "sha256:a8a968125d0a6a404842fa1bf0b349a568634f856aa08ffaff40ae0dfa52e7c6"}, {file = "black-23.3.0-cp311-cp311-macosx_10_16_universal2.whl", hash = "sha256:c7ab5790333c448903c4b721b59c0d80b11fe5e9803d8703e84dcb8da56fec1b"}, {file = "black-23.3.0-cp311-cp311-macosx_10_16_x86_64.whl", hash = "sha256:a6f6886c9869d4daae2d1715ce34a19bbc4b95006d20ed785ca00fa03cba312d"}, {file = "black-23.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6f3c333ea1dd6771b2d3777482429864f8e258899f6ff05826c3a4fcc5ce3f70"}, {file = "black-23.3.0-cp311-cp311-win_amd64.whl", hash = "sha256:11c410f71b876f961d1de77b9699ad19f939094c3a677323f43d7a29855fe326"}, {file = "black-23.3.0-cp37-cp37m-macosx_10_16_x86_64.whl", hash = "sha256:1d06691f1eb8de91cd1b322f21e3bfc9efe0c7ca1f0e1eb1db44ea367dff656b"}, {file = "black-23.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:50cb33cac881766a5cd9913e10ff75b1e8eb71babf4c7104f2e9c52da1fb7de2"}, {file = "black-23.3.0-cp37-cp37m-win_amd64.whl", hash = "sha256:e114420bf26b90d4b9daa597351337762b63039752bdf72bf361364c1aa05925"}, {file = "black-23.3.0-cp38-cp38-macosx_10_16_arm64.whl", hash = "sha256:48f9d345675bb7fbc3dd85821b12487e1b9a75242028adad0333ce36ed2a6d27"}, {file = "black-23.3.0-cp38-cp38-macosx_10_16_universal2.whl", hash = "sha256:714290490c18fb0126baa0fca0a54ee795f7502b44177e1ce7624ba1c00f2331"}, {file = "black-23.3.0-cp38-cp38-macosx_10_16_x86_64.whl", hash = "sha256:064101748afa12ad2291c2b91c960be28b817c0c7eaa35bec09cc63aa56493c5"}, {file = "black-23.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:562bd3a70495facf56814293149e51aa1be9931567474993c7942ff7d3533961"}, {file = "black-23.3.0-cp38-cp38-win_amd64.whl", hash = "sha256:e198cf27888ad6f4ff331ca1c48ffc038848ea9f031a3b40ba36aced7e22f2c8"}, {file = "black-23.3.0-cp39-cp39-macosx_10_16_arm64.whl", hash = "sha256:3238f2aacf827d18d26db07524e44741233ae09a584273aa059066d644ca7b30"}, {file = "black-23.3.0-cp39-cp39-macosx_10_16_universal2.whl", hash = "sha256:f0bd2f4a58d6666500542b26354978218a9babcdc972722f4bf90779524515f3"}, {file = "black-23.3.0-cp39-cp39-macosx_10_16_x86_64.whl", hash = "sha256:92c543f6854c28a3c7f39f4d9b7694f9a6eb9d3c5e2ece488c327b6e7ea9b266"}, {file = "black-23.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a150542a204124ed00683f0db1f5cf1c2aaaa9cc3495b7a3b5976fb136090ab"}, {file = "black-23.3.0-cp39-cp39-win_amd64.whl", hash = "sha256:6b39abdfb402002b8a7d030ccc85cf5afff64ee90fa4c5aebc531e3ad0175ddb"}, {file = "black-23.3.0-py3-none-any.whl", hash = "sha256:ec751418022185b0c1bb7d7736e6933d40bbb14c14a0abcf9123d1b159f98dd4"}, {file = "black-23.3.0.tar.gz", hash = "sha256:1c7b8d606e728a41ea1ccbd7264677e494e87cf630e399262ced92d4a8dac940"}, ] [package.dependencies] click = ">=8.0.0" mypy-extensions = ">=0.4.3" packaging = ">=22.0" pathspec = ">=0.9.0" platformdirs = ">=2" tomli = {version = ">=1.1.0", markers = "python_version < \"3.11\""} typing-extensions = {version = ">=3.10.0.0", markers = "python_version < \"3.10\""} [package.extras] colorama = ["colorama (>=0.4.3)"] d = ["aiohttp (>=3.7.4)"] jupyter = ["ipython (>=7.8.0)", "tokenize-rt (>=3.2.0)"] uvloop = ["uvloop (>=0.15.2)"] [[package]] name = "bleach" version = "6.0.0" description = "An easy safelist-based HTML-sanitizing tool." category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "bleach-6.0.0-py3-none-any.whl", hash = "sha256:33c16e3353dbd13028ab4799a0f89a83f113405c766e9c122df8a06f5b85b3f4"}, {file = "bleach-6.0.0.tar.gz", hash = "sha256:1a1a85c1595e07d8db14c5f09f09e6433502c51c595970edc090551f0db99414"}, ] [package.dependencies] six = ">=1.9.0" webencodings = "*" [package.extras] css = ["tinycss2 (>=1.1.0,<1.2)"] [[package]] name = "blis" version = "0.7.9" description = "The Blis BLAS-like linear algebra library, as a self-contained C-extension." category = "main" optional = true python-versions = "*" files = [ {file = "blis-0.7.9-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:b3ea73707a7938304c08363a0b990600e579bfb52dece7c674eafac4bf2df9f7"}, {file = "blis-0.7.9-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e85993364cae82707bfe7e637bee64ec96e232af31301e5c81a351778cb394b9"}, {file = "blis-0.7.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d205a7e69523e2bacdd67ea906b82b84034067e0de83b33bd83eb96b9e844ae3"}, {file = "blis-0.7.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b9737035636452fb6d08e7ab79e5a9904be18a0736868a129179cd9f9ab59825"}, {file = "blis-0.7.9-cp310-cp310-win_amd64.whl", hash = "sha256:d3882b4f44a33367812b5e287c0690027092830ffb1cce124b02f64e761819a4"}, {file = "blis-0.7.9-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3dbb44311029263a6f65ed55a35f970aeb1d20b18bfac4c025de5aadf7889a8c"}, {file = "blis-0.7.9-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:6fd5941bd5a21082b19d1dd0f6d62cd35609c25eb769aa3457d9877ef2ce37a9"}, {file = "blis-0.7.9-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:97ad55e9ef36e4ff06b35802d0cf7bfc56f9697c6bc9427f59c90956bb98377d"}, {file = "blis-0.7.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f7b6315d7b1ac5546bc0350f5f8d7cc064438d23db19a5c21aaa6ae7d93c1ab5"}, {file = "blis-0.7.9-cp311-cp311-win_amd64.whl", hash = "sha256:5fd46c649acd1920482b4f5556d1c88693cba9bf6a494a020b00f14b42e1132f"}, {file = "blis-0.7.9-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:db2959560dcb34e912dad0e0d091f19b05b61363bac15d78307c01334a4e5d9d"}, {file = "blis-0.7.9-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0521231bc95ab522f280da3bbb096299c910a62cac2376d48d4a1d403c54393"}, {file = "blis-0.7.9-cp36-cp36m-win_amd64.whl", hash = "sha256:d811e88480203d75e6e959f313fdbf3326393b4e2b317067d952347f5c56216e"}, {file = "blis-0.7.9-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:5cb1db88ab629ccb39eac110b742b98e3511d48ce9caa82ca32609d9169a9c9c"}, {file = "blis-0.7.9-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c399a03de4059bf8e700b921f9ff5d72b2a86673616c40db40cd0592051bdd07"}, {file = "blis-0.7.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d4eb70a79562a211bd2e6b6db63f1e2eed32c0ab3e9ef921d86f657ae8375845"}, {file = "blis-0.7.9-cp37-cp37m-win_amd64.whl", hash = "sha256:3e3f95e035c7456a1f5f3b5a3cfe708483a00335a3a8ad2211d57ba4d5f749a5"}, {file = "blis-0.7.9-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:179037cb5e6744c2e93b6b5facc6e4a0073776d514933c3db1e1f064a3253425"}, {file = "blis-0.7.9-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:d0e82a6e0337d5231129a4e8b36978fa7b973ad3bb0257fd8e3714a9b35ceffd"}, {file = "blis-0.7.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6d12475e588a322e66a18346a3faa9eb92523504042e665c193d1b9b0b3f0482"}, {file = "blis-0.7.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4d5755ef37a573647be62684ca1545698879d07321f1e5b89a4fd669ce355eb0"}, {file = "blis-0.7.9-cp38-cp38-win_amd64.whl", hash = "sha256:b8a1fcd2eb267301ab13e1e4209c165d172cdf9c0c9e08186a9e234bf91daa16"}, {file = "blis-0.7.9-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8275f6b6eee714b85f00bf882720f508ed6a60974bcde489715d37fd35529da8"}, {file = "blis-0.7.9-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:7417667c221e29fe8662c3b2ff9bc201c6a5214bbb5eb6cc290484868802258d"}, {file = "blis-0.7.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b5f4691bf62013eccc167c38a85c09a0bf0c6e3e80d4c2229cdf2668c1124eb0"}, {file = "blis-0.7.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5cec812ee47b29107eb36af9b457be7191163eab65d61775ed63538232c59d5"}, {file = "blis-0.7.9-cp39-cp39-win_amd64.whl", hash = "sha256:d81c3f627d33545fc25c9dcb5fee66c476d89288a27d63ac16ea63453401ffd5"}, {file = "blis-0.7.9.tar.gz", hash = "sha256:29ef4c25007785a90ffc2f0ab3d3bd3b75cd2d7856a9a482b7d0dac8d511a09d"}, ] [package.dependencies] numpy = ">=1.15.0" [[package]] name = "blurhash" version = "1.1.4" description = "Pure-Python implementation of the blurhash algorithm." category = "dev" optional = false python-versions = "*" files = [ {file = "blurhash-1.1.4-py2.py3-none-any.whl", hash = "sha256:7611c1bc41383d2349b6129208587b5d61e8792ce953893cb49c38beeb400d1d"}, {file = "blurhash-1.1.4.tar.gz", hash = "sha256:da56b163e5a816e4ad07172f5639287698e09d7f3dc38d18d9726d9c1dbc4cee"}, ] [package.extras] test = ["Pillow", "numpy", "pytest"] [[package]] name = "boto3" version = "1.26.76" description = "The AWS SDK for Python" category = "main" optional = false python-versions = ">= 3.7" files = [ {file = "boto3-1.26.76-py3-none-any.whl", hash = "sha256:b4c2969b7677762914394b8273cc1905dfe5b71f250741c1a575487ae357e729"}, {file = "boto3-1.26.76.tar.gz", hash = "sha256:30c7d967ed1c6b5a05643e42cae9d4d36c3f1cb6782637ddc7007a104cfd9027"}, ] [package.dependencies] botocore = ">=1.29.76,<1.30.0" jmespath = ">=0.7.1,<2.0.0" s3transfer = ">=0.6.0,<0.7.0" [package.extras] crt = ["botocore[crt] (>=1.21.0,<2.0a0)"] [[package]] name = "botocore" version = "1.29.76" description = "Low-level, data-driven core of boto 3." category = "main" optional = false python-versions = ">= 3.7" files = [ {file = "botocore-1.29.76-py3-none-any.whl", hash = "sha256:70735b00cd529f152992231ca6757e458e5ec25db43767b3526e9a35b2f143b7"}, {file = "botocore-1.29.76.tar.gz", hash = "sha256:c2f67b6b3f8acf2968eafca06526f07b9fb0d27bac4c68a635d51abb675134a7"}, ] [package.dependencies] jmespath = ">=0.7.1,<2.0.0" python-dateutil = ">=2.1,<3.0.0" urllib3 = ">=1.25.4,<1.27" [package.extras] crt = ["awscrt (==0.16.9)"] [[package]] name = "cachetools" version = "5.3.0" description = "Extensible memoizing collections and decorators" category = "main" optional = false python-versions = "~=3.7" files = [ {file = "cachetools-5.3.0-py3-none-any.whl", hash = "sha256:429e1a1e845c008ea6c85aa35d4b98b65d6a9763eeef3e37e92728a12d1de9d4"}, {file = "cachetools-5.3.0.tar.gz", hash = "sha256:13dfddc7b8df938c21a940dfa6557ce6e94a2f1cdfa58eb90c805721d58f2c14"}, ] [[package]] name = "cassandra-driver" version = "3.27.0" description = "DataStax Driver for Apache Cassandra" category = "dev" optional = false python-versions = "*" files = [ {file = "cassandra-driver-3.27.0.tar.gz", hash = "sha256:3f43b6023d3d2b34ceaea0a33abf9d9602c41cf316f283f651d835d0c4924124"}, {file = "cassandra_driver-3.27.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:1f96d3b187e212b35937e6bd76fd2f1029d2278e50654eedbf85781222439695"}, {file = "cassandra_driver-3.27.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d879cf61395b4682a4a14c73bb4b24cd6e697175197d658c40d1ec863354fcb1"}, {file = "cassandra_driver-3.27.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d68d2eaa70df65497a38227ff977f1a43bba74dee7830b87798f2f4723feb602"}, {file = "cassandra_driver-3.27.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e7d2f6e04a87a511e7278b0c90eaccb40ec110374ab7dbfa0c6b62ca3f49e0ee"}, {file = "cassandra_driver-3.27.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d6ba6c857d163a8b4c1a56632c71de88801a4e5775650a83e05e63707c28da98"}, {file = "cassandra_driver-3.27.0-cp310-cp310-win32.whl", hash = "sha256:73566188aadc975618a3eb26dc11d44228039a5b140ad172d550459c4a1456ed"}, {file = "cassandra_driver-3.27.0-cp310-cp310-win_amd64.whl", hash = "sha256:11655738056ad40a0f62ff10bc80af20216021f7dc7b74184555b2789e8c54e8"}, {file = "cassandra_driver-3.27.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:4ceb8d45502b5e49e294040c0615e588fa1940edb9cf0c778fb200d02e6de6f4"}, {file = "cassandra_driver-3.27.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4b6a6e59ac30da449851384601d1c8425b2ed83d99108aadc44eefbc4ea8f5b7"}, {file = "cassandra_driver-3.27.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:30e308134f925604f7cd7b623d6e431a43c64637f806b62032755a731a21b6ce"}, {file = "cassandra_driver-3.27.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:099b190fb1edf1b9dbb277aedb2ec7eb8e914c95fdba64705a41f680668d4e13"}, {file = "cassandra_driver-3.27.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7d6ffde813e2493408e05145172957e4eb34b3034bc04e6b2dc0806d222986d9"}, {file = "cassandra_driver-3.27.0-cp311-cp311-win32.whl", hash = "sha256:2ffa0ec39dd524668d0b8cd40e9d0da1088a463ef8e93ee58d66ae36f59e7439"}, {file = "cassandra_driver-3.27.0-cp311-cp311-win_amd64.whl", hash = "sha256:15023d9dd803ac9fd4b139b4fcec845711e9cf30bdeb64b07c6f887c461f1421"}, {file = "cassandra_driver-3.27.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:71ca75df8ba135663018137c1e526d53801eb7c5f8027894627cd60f6c0e66cd"}, {file = "cassandra_driver-3.27.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:15993cb71da6e5c03c2bf78289381492e938aab6501adc1fde663956abcf18c0"}, {file = "cassandra_driver-3.27.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6eb1cf024b8cea6ada586b9372032f67143aba2e1b96e7a204e269ffb18e2722"}, {file = "cassandra_driver-3.27.0-cp37-cp37m-win32.whl", hash = "sha256:6a2145b46a0da3fc2bb5f699b8de5a0915b7e61c8ada4bfa1ed5cd4f25642f39"}, {file = "cassandra_driver-3.27.0-cp37-cp37m-win_amd64.whl", hash = "sha256:1e10f3b037dff16af9447aa1fbe41be12c5eabfb9a11220c19f060728ce36264"}, {file = "cassandra_driver-3.27.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:6a4896b2171bedd596ed6e4bb7eec094eba271e65207427651611c2ee70218c4"}, {file = "cassandra_driver-3.27.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9e025bbe5b8f8dafbeef4f5d77d179242bc64d3dc746e53163e93016453d84e9"}, {file = "cassandra_driver-3.27.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:05028c38b1e6aaf5d88182ed77a3ce4b0d251d11e125869f50934c6accac927f"}, {file = "cassandra_driver-3.27.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0eb547fa02cc00cc8f63584a45809709d3ff8a90bfa09700b84d0eaed54c78d9"}, {file = "cassandra_driver-3.27.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a4b2cab7c4d4e0224202cda927a923488ecebb19e5abbe87f1f46cc92add16e3"}, {file = "cassandra_driver-3.27.0-cp38-cp38-win32.whl", hash = "sha256:2d70eb16b74b63c73852943e2a3293b8ac24a1f433988aa7debf687d40d75547"}, {file = "cassandra_driver-3.27.0-cp38-cp38-win_amd64.whl", hash = "sha256:032d5a2636a633df92a8f9977420c088567d2379d0267ad97f0c5ad8245c36e7"}, {file = "cassandra_driver-3.27.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:522bad089c05344824fdc7495d4a66b821757d40cbd5c3f43c482124586deed2"}, {file = "cassandra_driver-3.27.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:addf792e95b41c46c1a06df2ca33c52d4fdc43ab1bf3df3a8a8f34eff0d83a32"}, {file = "cassandra_driver-3.27.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9d8e2acc3d21bb387e4d369b711f02ac4014ef5aa23756757e17f478b314010c"}, {file = "cassandra_driver-3.27.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:62c2ecb0772ad602dbaf73482e1a142ad999b06af061e6a68137e00cab0ee4c1"}, {file = "cassandra_driver-3.27.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:66f7011679d9a1c691f1321a4758477a72d5913d13beb42c226e69be37b2127e"}, {file = "cassandra_driver-3.27.0-cp39-cp39-win32.whl", hash = "sha256:9d59b037c6dc5065f80d3733c204b3cdc9b153744a699d4473f6e2d22a04f7f9"}, {file = "cassandra_driver-3.27.0-cp39-cp39-win_amd64.whl", hash = "sha256:cb37501e693450f00d2409c7e0a47c439ce09608d0055ad8f979446f1c11692d"}, ] [package.dependencies] cryptography = ">=35.0" geomet = ">=0.1,<0.3" six = ">=1.9" [package.extras] graph = ["gremlinpython (==3.4.6)"] [[package]] name = "catalogue" version = "2.0.8" description = "Super lightweight function registries for your library" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "catalogue-2.0.8-py3-none-any.whl", hash = "sha256:2d786e229d8d202b4f8a2a059858e45a2331201d831e39746732daa704b99f69"}, {file = "catalogue-2.0.8.tar.gz", hash = "sha256:b325c77659208bfb6af1b0d93b1a1aa4112e1bb29a4c5ced816758a722f0e388"}, ] [[package]] name = "certifi" version = "2023.5.7" description = "Python package for providing Mozilla's CA Bundle." category = "main" optional = false python-versions = ">=3.6" files = [ {file = "certifi-2023.5.7-py3-none-any.whl", hash = "sha256:c6c2e98f5c7869efca1f8916fed228dd91539f9f1b444c314c06eef02980c716"}, {file = "certifi-2023.5.7.tar.gz", hash = "sha256:0f0d56dc5a6ad56fd4ba36484d6cc34451e1c6548c61daad8c320169f91eddc7"}, ] [[package]] name = "cffi" version = "1.15.1" description = "Foreign Function Interface for Python calling C code." category = "main" optional = false python-versions = "*" files = [ {file = "cffi-1.15.1-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:a66d3508133af6e8548451b25058d5812812ec3798c886bf38ed24a98216fab2"}, {file = "cffi-1.15.1-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:470c103ae716238bbe698d67ad020e1db9d9dba34fa5a899b5e21577e6d52ed2"}, {file = "cffi-1.15.1-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:9ad5db27f9cabae298d151c85cf2bad1d359a1b9c686a275df03385758e2f914"}, {file = "cffi-1.15.1-cp27-cp27m-win32.whl", hash = "sha256:b3bbeb01c2b273cca1e1e0c5df57f12dce9a4dd331b4fa1635b8bec26350bde3"}, {file = "cffi-1.15.1-cp27-cp27m-win_amd64.whl", hash = "sha256:e00b098126fd45523dd056d2efba6c5a63b71ffe9f2bbe1a4fe1716e1d0c331e"}, {file = "cffi-1.15.1-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:d61f4695e6c866a23a21acab0509af1cdfd2c013cf256bbf5b6b5e2695827162"}, {file = "cffi-1.15.1-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:ed9cb427ba5504c1dc15ede7d516b84757c3e3d7868ccc85121d9310d27eed0b"}, {file = "cffi-1.15.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:39d39875251ca8f612b6f33e6b1195af86d1b3e60086068be9cc053aa4376e21"}, {file = "cffi-1.15.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:285d29981935eb726a4399badae8f0ffdff4f5050eaa6d0cfc3f64b857b77185"}, {file = "cffi-1.15.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3eb6971dcff08619f8d91607cfc726518b6fa2a9eba42856be181c6d0d9515fd"}, {file = "cffi-1.15.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:21157295583fe8943475029ed5abdcf71eb3911894724e360acff1d61c1d54bc"}, {file = "cffi-1.15.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5635bd9cb9731e6d4a1132a498dd34f764034a8ce60cef4f5319c0541159392f"}, {file = "cffi-1.15.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2012c72d854c2d03e45d06ae57f40d78e5770d252f195b93f581acf3ba44496e"}, {file = "cffi-1.15.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd86c085fae2efd48ac91dd7ccffcfc0571387fe1193d33b6394db7ef31fe2a4"}, {file = "cffi-1.15.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:fa6693661a4c91757f4412306191b6dc88c1703f780c8234035eac011922bc01"}, {file = "cffi-1.15.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:59c0b02d0a6c384d453fece7566d1c7e6b7bae4fc5874ef2ef46d56776d61c9e"}, {file = "cffi-1.15.1-cp310-cp310-win32.whl", hash = "sha256:cba9d6b9a7d64d4bd46167096fc9d2f835e25d7e4c121fb2ddfc6528fb0413b2"}, {file = "cffi-1.15.1-cp310-cp310-win_amd64.whl", hash = "sha256:ce4bcc037df4fc5e3d184794f27bdaab018943698f4ca31630bc7f84a7b69c6d"}, {file = "cffi-1.15.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3d08afd128ddaa624a48cf2b859afef385b720bb4b43df214f85616922e6a5ac"}, {file = "cffi-1.15.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:3799aecf2e17cf585d977b780ce79ff0dc9b78d799fc694221ce814c2c19db83"}, {file = "cffi-1.15.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a591fe9e525846e4d154205572a029f653ada1a78b93697f3b5a8f1f2bc055b9"}, {file = "cffi-1.15.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3548db281cd7d2561c9ad9984681c95f7b0e38881201e157833a2342c30d5e8c"}, {file = "cffi-1.15.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:91fc98adde3d7881af9b59ed0294046f3806221863722ba7d8d120c575314325"}, {file = "cffi-1.15.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:94411f22c3985acaec6f83c6df553f2dbe17b698cc7f8ae751ff2237d96b9e3c"}, {file = "cffi-1.15.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:03425bdae262c76aad70202debd780501fabeaca237cdfddc008987c0e0f59ef"}, {file = "cffi-1.15.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:cc4d65aeeaa04136a12677d3dd0b1c0c94dc43abac5860ab33cceb42b801c1e8"}, {file = "cffi-1.15.1-cp311-cp311-win32.whl", hash = "sha256:a0f100c8912c114ff53e1202d0078b425bee3649ae34d7b070e9697f93c5d52d"}, {file = "cffi-1.15.1-cp311-cp311-win_amd64.whl", hash = "sha256:04ed324bda3cda42b9b695d51bb7d54b680b9719cfab04227cdd1e04e5de3104"}, {file = "cffi-1.15.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:50a74364d85fd319352182ef59c5c790484a336f6db772c1a9231f1c3ed0cbd7"}, {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e263d77ee3dd201c3a142934a086a4450861778baaeeb45db4591ef65550b0a6"}, {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cec7d9412a9102bdc577382c3929b337320c4c4c4849f2c5cdd14d7368c5562d"}, {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4289fc34b2f5316fbb762d75362931e351941fa95fa18789191b33fc4cf9504a"}, {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:173379135477dc8cac4bc58f45db08ab45d228b3363adb7af79436135d028405"}, {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:6975a3fac6bc83c4a65c9f9fcab9e47019a11d3d2cf7f3c0d03431bf145a941e"}, {file = "cffi-1.15.1-cp36-cp36m-win32.whl", hash = "sha256:2470043b93ff09bf8fb1d46d1cb756ce6132c54826661a32d4e4d132e1977adf"}, {file = "cffi-1.15.1-cp36-cp36m-win_amd64.whl", hash = "sha256:30d78fbc8ebf9c92c9b7823ee18eb92f2e6ef79b45ac84db507f52fbe3ec4497"}, {file = "cffi-1.15.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:198caafb44239b60e252492445da556afafc7d1e3ab7a1fb3f0584ef6d742375"}, {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5ef34d190326c3b1f822a5b7a45f6c4535e2f47ed06fec77d3d799c450b2651e"}, {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8102eaf27e1e448db915d08afa8b41d6c7ca7a04b7d73af6514df10a3e74bd82"}, {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5df2768244d19ab7f60546d0c7c63ce1581f7af8b5de3eb3004b9b6fc8a9f84b"}, {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a8c4917bd7ad33e8eb21e9a5bbba979b49d9a97acb3a803092cbc1133e20343c"}, {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e2642fe3142e4cc4af0799748233ad6da94c62a8bec3a6648bf8ee68b1c7426"}, {file = "cffi-1.15.1-cp37-cp37m-win32.whl", hash = "sha256:e229a521186c75c8ad9490854fd8bbdd9a0c9aa3a524326b55be83b54d4e0ad9"}, {file = "cffi-1.15.1-cp37-cp37m-win_amd64.whl", hash = "sha256:a0b71b1b8fbf2b96e41c4d990244165e2c9be83d54962a9a1d118fd8657d2045"}, {file = "cffi-1.15.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:320dab6e7cb2eacdf0e658569d2575c4dad258c0fcc794f46215e1e39f90f2c3"}, {file = "cffi-1.15.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1e74c6b51a9ed6589199c787bf5f9875612ca4a8a0785fb2d4a84429badaf22a"}, {file = "cffi-1.15.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5c84c68147988265e60416b57fc83425a78058853509c1b0629c180094904a5"}, {file = "cffi-1.15.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3b926aa83d1edb5aa5b427b4053dc420ec295a08e40911296b9eb1b6170f6cca"}, {file = "cffi-1.15.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:87c450779d0914f2861b8526e035c5e6da0a3199d8f1add1a665e1cbc6fc6d02"}, {file = "cffi-1.15.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4f2c9f67e9821cad2e5f480bc8d83b8742896f1242dba247911072d4fa94c192"}, {file = "cffi-1.15.1-cp38-cp38-win32.whl", hash = "sha256:8b7ee99e510d7b66cdb6c593f21c043c248537a32e0bedf02e01e9553a172314"}, {file = "cffi-1.15.1-cp38-cp38-win_amd64.whl", hash = "sha256:00a9ed42e88df81ffae7a8ab6d9356b371399b91dbdf0c3cb1e84c03a13aceb5"}, {file = "cffi-1.15.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:54a2db7b78338edd780e7ef7f9f6c442500fb0d41a5a4ea24fff1c929d5af585"}, {file = "cffi-1.15.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:fcd131dd944808b5bdb38e6f5b53013c5aa4f334c5cad0c72742f6eba4b73db0"}, {file = "cffi-1.15.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7473e861101c9e72452f9bf8acb984947aa1661a7704553a9f6e4baa5ba64415"}, {file = "cffi-1.15.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6c9a799e985904922a4d207a94eae35c78ebae90e128f0c4e521ce339396be9d"}, {file = "cffi-1.15.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3bcde07039e586f91b45c88f8583ea7cf7a0770df3a1649627bf598332cb6984"}, {file = "cffi-1.15.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:33ab79603146aace82c2427da5ca6e58f2b3f2fb5da893ceac0c42218a40be35"}, {file = "cffi-1.15.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d598b938678ebf3c67377cdd45e09d431369c3b1a5b331058c338e201f12b27"}, {file = "cffi-1.15.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:db0fbb9c62743ce59a9ff687eb5f4afbe77e5e8403d6697f7446e5f609976f76"}, {file = "cffi-1.15.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:98d85c6a2bef81588d9227dde12db8a7f47f639f4a17c9ae08e773aa9c697bf3"}, {file = "cffi-1.15.1-cp39-cp39-win32.whl", hash = "sha256:40f4774f5a9d4f5e344f31a32b5096977b5d48560c5592e2f3d2c4374bd543ee"}, {file = "cffi-1.15.1-cp39-cp39-win_amd64.whl", hash = "sha256:70df4e3b545a17496c9b3f41f5115e69a4f2e77e94e1d2a8e1070bc0c38c8a3c"}, {file = "cffi-1.15.1.tar.gz", hash = "sha256:d400bfb9a37b1351253cb402671cea7e89bdecc294e8016a707f6d1d8ac934f9"}, ] [package.dependencies] pycparser = "*" [[package]] name = "chardet" version = "5.1.0" description = "Universal encoding detector for Python 3" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "chardet-5.1.0-py3-none-any.whl", hash = "sha256:362777fb014af596ad31334fde1e8c327dfdb076e1960d1694662d46a6917ab9"}, {file = "chardet-5.1.0.tar.gz", hash = "sha256:0d62712b956bc154f85fb0a266e2a3c5913c2967e00348701b32411d6def31e5"}, ] [[package]] name = "charset-normalizer" version = "3.1.0" description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." category = "main" optional = false python-versions = ">=3.7.0" files = [ {file = "charset-normalizer-3.1.0.tar.gz", hash = "sha256:34e0a2f9c370eb95597aae63bf85eb5e96826d81e3dcf88b8886012906f509b5"}, {file = "charset_normalizer-3.1.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:e0ac8959c929593fee38da1c2b64ee9778733cdf03c482c9ff1d508b6b593b2b"}, {file = "charset_normalizer-3.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d7fc3fca01da18fbabe4625d64bb612b533533ed10045a2ac3dd194bfa656b60"}, {file = "charset_normalizer-3.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:04eefcee095f58eaabe6dc3cc2262f3bcd776d2c67005880894f447b3f2cb9c1"}, {file = "charset_normalizer-3.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:20064ead0717cf9a73a6d1e779b23d149b53daf971169289ed2ed43a71e8d3b0"}, {file = "charset_normalizer-3.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1435ae15108b1cb6fffbcea2af3d468683b7afed0169ad718451f8db5d1aff6f"}, {file = "charset_normalizer-3.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c84132a54c750fda57729d1e2599bb598f5fa0344085dbde5003ba429a4798c0"}, {file = "charset_normalizer-3.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:75f2568b4189dda1c567339b48cba4ac7384accb9c2a7ed655cd86b04055c795"}, {file = "charset_normalizer-3.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:11d3bcb7be35e7b1bba2c23beedac81ee893ac9871d0ba79effc7fc01167db6c"}, {file = "charset_normalizer-3.1.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:891cf9b48776b5c61c700b55a598621fdb7b1e301a550365571e9624f270c203"}, {file = "charset_normalizer-3.1.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:5f008525e02908b20e04707a4f704cd286d94718f48bb33edddc7d7b584dddc1"}, {file = "charset_normalizer-3.1.0-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:b06f0d3bf045158d2fb8837c5785fe9ff9b8c93358be64461a1089f5da983137"}, {file = "charset_normalizer-3.1.0-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:49919f8400b5e49e961f320c735388ee686a62327e773fa5b3ce6721f7e785ce"}, {file = "charset_normalizer-3.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:22908891a380d50738e1f978667536f6c6b526a2064156203d418f4856d6e86a"}, {file = "charset_normalizer-3.1.0-cp310-cp310-win32.whl", hash = "sha256:12d1a39aa6b8c6f6248bb54550efcc1c38ce0d8096a146638fd4738e42284448"}, {file = "charset_normalizer-3.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:65ed923f84a6844de5fd29726b888e58c62820e0769b76565480e1fdc3d062f8"}, {file = "charset_normalizer-3.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:9a3267620866c9d17b959a84dd0bd2d45719b817245e49371ead79ed4f710d19"}, {file = "charset_normalizer-3.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6734e606355834f13445b6adc38b53c0fd45f1a56a9ba06c2058f86893ae8017"}, {file = "charset_normalizer-3.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f8303414c7b03f794347ad062c0516cee0e15f7a612abd0ce1e25caf6ceb47df"}, {file = "charset_normalizer-3.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaf53a6cebad0eae578f062c7d462155eada9c172bd8c4d250b8c1d8eb7f916a"}, {file = "charset_normalizer-3.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3dc5b6a8ecfdc5748a7e429782598e4f17ef378e3e272eeb1340ea57c9109f41"}, {file = "charset_normalizer-3.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e1b25e3ad6c909f398df8921780d6a3d120d8c09466720226fc621605b6f92b1"}, {file = "charset_normalizer-3.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ca564606d2caafb0abe6d1b5311c2649e8071eb241b2d64e75a0d0065107e62"}, {file = "charset_normalizer-3.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b82fab78e0b1329e183a65260581de4375f619167478dddab510c6c6fb04d9b6"}, {file = "charset_normalizer-3.1.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:bd7163182133c0c7701b25e604cf1611c0d87712e56e88e7ee5d72deab3e76b5"}, {file = "charset_normalizer-3.1.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:11d117e6c63e8f495412d37e7dc2e2fff09c34b2d09dbe2bee3c6229577818be"}, {file = "charset_normalizer-3.1.0-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:cf6511efa4801b9b38dc5546d7547d5b5c6ef4b081c60b23e4d941d0eba9cbeb"}, {file = "charset_normalizer-3.1.0-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:abc1185d79f47c0a7aaf7e2412a0eb2c03b724581139193d2d82b3ad8cbb00ac"}, {file = "charset_normalizer-3.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:cb7b2ab0188829593b9de646545175547a70d9a6e2b63bf2cd87a0a391599324"}, {file = "charset_normalizer-3.1.0-cp311-cp311-win32.whl", hash = "sha256:c36bcbc0d5174a80d6cccf43a0ecaca44e81d25be4b7f90f0ed7bcfbb5a00909"}, {file = "charset_normalizer-3.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:cca4def576f47a09a943666b8f829606bcb17e2bc2d5911a46c8f8da45f56755"}, {file = "charset_normalizer-3.1.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:0c95f12b74681e9ae127728f7e5409cbbef9cd914d5896ef238cc779b8152373"}, {file = "charset_normalizer-3.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fca62a8301b605b954ad2e9c3666f9d97f63872aa4efcae5492baca2056b74ab"}, {file = "charset_normalizer-3.1.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ac0aa6cd53ab9a31d397f8303f92c42f534693528fafbdb997c82bae6e477ad9"}, {file = "charset_normalizer-3.1.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c3af8e0f07399d3176b179f2e2634c3ce9c1301379a6b8c9c9aeecd481da494f"}, {file = "charset_normalizer-3.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a5fc78f9e3f501a1614a98f7c54d3969f3ad9bba8ba3d9b438c3bc5d047dd28"}, {file = "charset_normalizer-3.1.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:628c985afb2c7d27a4800bfb609e03985aaecb42f955049957814e0491d4006d"}, {file = "charset_normalizer-3.1.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:74db0052d985cf37fa111828d0dd230776ac99c740e1a758ad99094be4f1803d"}, {file = "charset_normalizer-3.1.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:1e8fcdd8f672a1c4fc8d0bd3a2b576b152d2a349782d1eb0f6b8e52e9954731d"}, {file = "charset_normalizer-3.1.0-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:04afa6387e2b282cf78ff3dbce20f0cc071c12dc8f685bd40960cc68644cfea6"}, {file = "charset_normalizer-3.1.0-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:dd5653e67b149503c68c4018bf07e42eeed6b4e956b24c00ccdf93ac79cdff84"}, {file = "charset_normalizer-3.1.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:d2686f91611f9e17f4548dbf050e75b079bbc2a82be565832bc8ea9047b61c8c"}, {file = "charset_normalizer-3.1.0-cp37-cp37m-win32.whl", hash = "sha256:4155b51ae05ed47199dc5b2a4e62abccb274cee6b01da5b895099b61b1982974"}, {file = "charset_normalizer-3.1.0-cp37-cp37m-win_amd64.whl", hash = "sha256:322102cdf1ab682ecc7d9b1c5eed4ec59657a65e1c146a0da342b78f4112db23"}, {file = "charset_normalizer-3.1.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:e633940f28c1e913615fd624fcdd72fdba807bf53ea6925d6a588e84e1151531"}, {file = "charset_normalizer-3.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:3a06f32c9634a8705f4ca9946d667609f52cf130d5548881401f1eb2c39b1e2c"}, {file = "charset_normalizer-3.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7381c66e0561c5757ffe616af869b916c8b4e42b367ab29fedc98481d1e74e14"}, {file = "charset_normalizer-3.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3573d376454d956553c356df45bb824262c397c6e26ce43e8203c4c540ee0acb"}, {file = "charset_normalizer-3.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e89df2958e5159b811af9ff0f92614dabf4ff617c03a4c1c6ff53bf1c399e0e1"}, {file = "charset_normalizer-3.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:78cacd03e79d009d95635e7d6ff12c21eb89b894c354bd2b2ed0b4763373693b"}, {file = "charset_normalizer-3.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:de5695a6f1d8340b12a5d6d4484290ee74d61e467c39ff03b39e30df62cf83a0"}, {file = "charset_normalizer-3.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1c60b9c202d00052183c9be85e5eaf18a4ada0a47d188a83c8f5c5b23252f649"}, {file = "charset_normalizer-3.1.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:f645caaf0008bacf349875a974220f1f1da349c5dbe7c4ec93048cdc785a3326"}, {file = "charset_normalizer-3.1.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:ea9f9c6034ea2d93d9147818f17c2a0860d41b71c38b9ce4d55f21b6f9165a11"}, {file = "charset_normalizer-3.1.0-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:80d1543d58bd3d6c271b66abf454d437a438dff01c3e62fdbcd68f2a11310d4b"}, {file = "charset_normalizer-3.1.0-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:73dc03a6a7e30b7edc5b01b601e53e7fc924b04e1835e8e407c12c037e81adbd"}, {file = "charset_normalizer-3.1.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:6f5c2e7bc8a4bf7c426599765b1bd33217ec84023033672c1e9a8b35eaeaaaf8"}, {file = "charset_normalizer-3.1.0-cp38-cp38-win32.whl", hash = "sha256:12a2b561af122e3d94cdb97fe6fb2bb2b82cef0cdca131646fdb940a1eda04f0"}, {file = "charset_normalizer-3.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:3160a0fd9754aab7d47f95a6b63ab355388d890163eb03b2d2b87ab0a30cfa59"}, {file = "charset_normalizer-3.1.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:38e812a197bf8e71a59fe55b757a84c1f946d0ac114acafaafaf21667a7e169e"}, {file = "charset_normalizer-3.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6baf0baf0d5d265fa7944feb9f7451cc316bfe30e8df1a61b1bb08577c554f31"}, {file = "charset_normalizer-3.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:8f25e17ab3039b05f762b0a55ae0b3632b2e073d9c8fc88e89aca31a6198e88f"}, {file = "charset_normalizer-3.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3747443b6a904001473370d7810aa19c3a180ccd52a7157aacc264a5ac79265e"}, {file = "charset_normalizer-3.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b116502087ce8a6b7a5f1814568ccbd0e9f6cfd99948aa59b0e241dc57cf739f"}, {file = "charset_normalizer-3.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d16fd5252f883eb074ca55cb622bc0bee49b979ae4e8639fff6ca3ff44f9f854"}, {file = "charset_normalizer-3.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:21fa558996782fc226b529fdd2ed7866c2c6ec91cee82735c98a197fae39f706"}, {file = "charset_normalizer-3.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6f6c7a8a57e9405cad7485f4c9d3172ae486cfef1344b5ddd8e5239582d7355e"}, {file = "charset_normalizer-3.1.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:ac3775e3311661d4adace3697a52ac0bab17edd166087d493b52d4f4f553f9f0"}, {file = "charset_normalizer-3.1.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:10c93628d7497c81686e8e5e557aafa78f230cd9e77dd0c40032ef90c18f2230"}, {file = "charset_normalizer-3.1.0-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:6f4f4668e1831850ebcc2fd0b1cd11721947b6dc7c00bf1c6bd3c929ae14f2c7"}, {file = "charset_normalizer-3.1.0-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:0be65ccf618c1e7ac9b849c315cc2e8a8751d9cfdaa43027d4f6624bd587ab7e"}, {file = "charset_normalizer-3.1.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:53d0a3fa5f8af98a1e261de6a3943ca631c526635eb5817a87a59d9a57ebf48f"}, {file = "charset_normalizer-3.1.0-cp39-cp39-win32.whl", hash = "sha256:a04f86f41a8916fe45ac5024ec477f41f886b3c435da2d4e3d2709b22ab02af1"}, {file = "charset_normalizer-3.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:830d2948a5ec37c386d3170c483063798d7879037492540f10a475e3fd6f244b"}, {file = "charset_normalizer-3.1.0-py3-none-any.whl", hash = "sha256:3d9098b479e78c85080c98e1e35ff40b4a31d8953102bb0fd7d1b6f8a2111a3d"}, ] [[package]] name = "chromadb" version = "0.3.23" description = "Chroma." category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "chromadb-0.3.23-py3-none-any.whl", hash = "sha256:c1e04fddff0916243895bedeffc1977745328f62404d70981eb1a0cb9dcdfaf3"}, {file = "chromadb-0.3.23.tar.gz", hash = "sha256:87fa922c92e2e90fb48234b435e9d4f0c61646fbd1526062f53f63326fc21228"}, ] [package.dependencies] clickhouse-connect = ">=0.5.7" duckdb = ">=0.7.1" fastapi = ">=0.85.1" hnswlib = ">=0.7" numpy = ">=1.21.6" pandas = ">=1.3" posthog = ">=2.4.0" pydantic = ">=1.9" requests = ">=2.28" sentence-transformers = ">=2.2.2" typing-extensions = ">=4.5.0" uvicorn = {version = ">=0.18.3", extras = ["standard"]} [[package]] name = "click" version = "8.1.3" description = "Composable command line interface toolkit" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "click-8.1.3-py3-none-any.whl", hash = "sha256:bb4d8133cb15a609f44e8213d9b391b0809795062913b383c62be0ee95b1db48"}, {file = "click-8.1.3.tar.gz", hash = "sha256:7682dc8afb30297001674575ea00d1814d808d6a36af415a82bd481d37ba7b8e"}, ] [package.dependencies] colorama = {version = "*", markers = "platform_system == \"Windows\""} [[package]] name = "clickhouse-connect" version = "0.5.24" description = "ClickHouse core driver, SqlAlchemy, and Superset libraries" category = "main" optional = false python-versions = "~=3.7" files = [ {file = "clickhouse-connect-0.5.24.tar.gz", hash = "sha256:f1c6a4a20c19612eedaf1cea82e532010942cb08a29326db74cce0ea48bbe56d"}, {file = "clickhouse_connect-0.5.24-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:5b91584305b6133eff83e8a0436b3c48681dd44dcf8b2f5b54d558bafd30afa6"}, {file = "clickhouse_connect-0.5.24-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:17f3ca231aeff7c9f316dc03cba49ea8cd1e91e0f129519f8857f0e1d9aa7f49"}, {file = "clickhouse_connect-0.5.24-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b126b324ca9e34662bc07335f55ff51f9a5a5c5e4df97778f0a427b4bde8cfa"}, {file = "clickhouse_connect-0.5.24-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c756b8f290fc68af83129d378b749e74c40560107b926ef047c098b7c95a2ad"}, {file = "clickhouse_connect-0.5.24-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:486f538781d765993cc2b6f30ef8c274674b1be2c36dc03767d14feea24df566"}, {file = "clickhouse_connect-0.5.24-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:67cfb63b155c36413ff301c321de09e2476a936dc784c7954a63d612ec66f1ec"}, {file = "clickhouse_connect-0.5.24-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:56b004a0e001e49a2b6a022a98832b5558642299de9c808cf7b9333180f28e1b"}, {file = "clickhouse_connect-0.5.24-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:68bae08ef93aa21e02c961c79f2932cc88d0682a91099ec2f007c032ab4b68e1"}, {file = "clickhouse_connect-0.5.24-cp310-cp310-win32.whl", hash = "sha256:b7f73598f118c7466230f7149de0b4e1af992b2ac086a9200ac0011ab03ee468"}, {file = "clickhouse_connect-0.5.24-cp310-cp310-win_amd64.whl", hash = "sha256:5b83b4c6994e43ce3192c11ac4eb84f8ac8b6317d860fc2c4ff8f8f3609b20c1"}, {file = "clickhouse_connect-0.5.24-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ed329a93171ca867df9b903b95992d9dec2e256a657e16a88d27452dfe8f064e"}, {file = "clickhouse_connect-0.5.24-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:9bc64de89be44c30bf036aab551da196e11ebf14502533b6e2a0e8ca60c27599"}, {file = "clickhouse_connect-0.5.24-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:84adbe15ad0dd745aa1b2a183cf4d1573d39cdb81e9d0a2d37571805dfda4cd7"}, {file = "clickhouse_connect-0.5.24-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a50f7f3756c64791fa8a4ec73f87954a6c3aa44523394ad22e13e31ba1cd9c25"}, {file = "clickhouse_connect-0.5.24-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:08499995addd7d0e758086622d32aa8f8fdf6dde61bedb106f453191b16af15f"}, {file = "clickhouse_connect-0.5.24-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d8607c4b388a46b312fd34cdd26fe958002e414c0320aad0e24ac93854191325"}, {file = "clickhouse_connect-0.5.24-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:f0adcfbda306a1aa9f3cdc2f638b36c748c68104be97d9dc935c130ad632be82"}, {file = "clickhouse_connect-0.5.24-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:2abee0170d60d0621f7feec6b1e9c7434e3bb23a7b025d32a513f2df969b9a2d"}, {file = "clickhouse_connect-0.5.24-cp311-cp311-win32.whl", hash = "sha256:d6f7ea32b46a5fafa49a85b94b18902af38b0910f34ac588ec95b5b66faf7855"}, {file = "clickhouse_connect-0.5.24-cp311-cp311-win_amd64.whl", hash = "sha256:f0ae6e14f526c5fe504103d00992bf8e0ab3359266664b327c273e16f957545d"}, {file = "clickhouse_connect-0.5.24-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:dc0b18678b66160ca4ca6ce7fe074188975546c5d196092ef06510eb16067964"}, {file = "clickhouse_connect-0.5.24-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:91a6d666c4c3f4dea7bca84098a4624102cb3efa7f882352e8b914238b0ab3b0"}, {file = "clickhouse_connect-0.5.24-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1732ea5fddf201425baf53d1434516c1242184139d61202f885575cb8742167c"}, {file = "clickhouse_connect-0.5.24-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:be9c23721caacc52e9f75ba2239a5ca5bbdbafa913d36bcddf9eaf33578ba937"}, {file = "clickhouse_connect-0.5.24-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:b9aee9588b863ab3d33c11e9d2f350cee1f17753db74cedd3eb2bb4fc5ed31d1"}, {file = "clickhouse_connect-0.5.24-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:f7158f70e5ba787f64f01098fa729942d1d4dfd1a46c4519aab10ed3a4b32ead"}, {file = "clickhouse_connect-0.5.24-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:6684d253580c2e9cbcab8322189ca66fafc27ccabf67da58f178b31a09ecb60f"}, {file = "clickhouse_connect-0.5.24-cp37-cp37m-win32.whl", hash = "sha256:ba015b5337ecab0e9064eed3966acd2fe2c10f0391fc5f28d8c0fd73802d0810"}, {file = "clickhouse_connect-0.5.24-cp37-cp37m-win_amd64.whl", hash = "sha256:34feb3cb81298beff8e2be233719cf1271fd0f1aca2a0ae5dfff9716f9ab94c1"}, {file = "clickhouse_connect-0.5.24-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5ae2551daec4731373bffc6bc9d3e30a5dfbc0bdceb66cbc93c56dd0797c0740"}, {file = "clickhouse_connect-0.5.24-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:2cf26c82f3bd03e3088251f249776285a01da3268936d88d98b7cbecb2783497"}, {file = "clickhouse_connect-0.5.24-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0437c44d342edada639fed6f5064226cc9ad9f37406ea1cf550a50cb3f66db5a"}, {file = "clickhouse_connect-0.5.24-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8e7b5f68b7bae44ec5dfc80510bb81f9f2af88662681c103d5a58da170f4eb78"}, {file = "clickhouse_connect-0.5.24-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bc0ccf9ef68377291aba32dc7754b8aab658c2b4cfe06488140114f8abbef819"}, {file = "clickhouse_connect-0.5.24-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:1e9c3f146bdb1929223ebba04610ebf7bbbed313ee452754268c546966eff9db"}, {file = "clickhouse_connect-0.5.24-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:f7e31461ce8e13e2b9f67b21e2ac7bd1121420d85bf6dc888082dfd2f6ca9bc4"}, {file = "clickhouse_connect-0.5.24-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:e7b9b5a24cad361845f1d138ba9fb45f690c84583ca584adac76379a65fd8c00"}, {file = "clickhouse_connect-0.5.24-cp38-cp38-win32.whl", hash = "sha256:7d223477041ae31b62917b5f9abeaa468fe2a1efa8391070da4258a41fdc7643"}, {file = "clickhouse_connect-0.5.24-cp38-cp38-win_amd64.whl", hash = "sha256:c82fcf42d9a2318cf53086147376c31246e3842b73a09b4bac16a6f0c299a294"}, {file = "clickhouse_connect-0.5.24-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:586d7193ece84ddc2608fdc29cd10cc80eff26f283b2ad9d738bbd522f1f84cd"}, {file = "clickhouse_connect-0.5.24-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:71b452bed17aee315b93944174053cd84dc5efb245d4a556a2e49b78022f7ed6"}, {file = "clickhouse_connect-0.5.24-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:788722210e636bec7a870b0625999f97c3285bc19fd46763b58472ee445b67e9"}, {file = "clickhouse_connect-0.5.24-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:268e3375d9a3985ea961cb1be338c1d13154b617f5eb027ace0e8670de9501ce"}, {file = "clickhouse_connect-0.5.24-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:28ea9abd595d7400e3ef2842f5e9db5307133dfa24d97a8c45f71713048bad97"}, {file = "clickhouse_connect-0.5.24-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:00b0ac033dc47e0409a19ff974d938006a198445980028d911a47ba05facf6cd"}, {file = "clickhouse_connect-0.5.24-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:601a26ddb18e266e79b76d1672ac15ef5b6043ea17ba4c9dc3dc80130a0775d9"}, {file = "clickhouse_connect-0.5.24-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:eb502ccb7c5dcb907cf4c8316f9b787e4bd3a7b65cd8cbc37b24c5e9c890a801"}, {file = "clickhouse_connect-0.5.24-cp39-cp39-win32.whl", hash = "sha256:e6acedfd795cd1db7d89f21597389805e583f2b4ae9495cb0b89b8eda13ff6ad"}, {file = "clickhouse_connect-0.5.24-cp39-cp39-win_amd64.whl", hash = "sha256:921d3a8a287844c031c470547c07dd5b7454c883c44f13e1d4f5b9d0896444d2"}, {file = "clickhouse_connect-0.5.24-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:ec051a1f6f3912f2f3b659d3e3c344a67f676d2d42583885b3ed8365c51753b2"}, {file = "clickhouse_connect-0.5.24-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b116538fd7d75df991b211a3db311c158a2664301b2f5d1ffc18feb5b5da89d"}, {file = "clickhouse_connect-0.5.24-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b116747e4b187d3aac49a51e865a4fe0c11b39775724f0d7f719b4222810a5a4"}, {file = "clickhouse_connect-0.5.24-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4fa54e11e651979d9a4e355564d2128c6a8394d4cffda295a8188c9869ab93cc"}, {file = "clickhouse_connect-0.5.24-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:7c17e691e27d3b2e950cb2f597f0a895eb6b9d6717e886fafae861d34ac5bbb0"}, {file = "clickhouse_connect-0.5.24-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:34e2ae809ac1244da6fa67c4021431f9a1865d14c6df2d7fe57d22841f361497"}, {file = "clickhouse_connect-0.5.24-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4e7b2ef89e9c1c92a09988a812626f7d529acfda93f420b75e59fe2981960886"}, {file = "clickhouse_connect-0.5.24-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6200bdf94a52847d3f10ab8675c58db9ff3e90ce6ee98bc0c49f01c74d934798"}, {file = "clickhouse_connect-0.5.24-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4def3ee218f6fbb320fbb1c5c1bb3b23753b9e56e50759fc396ea70631dff846"}, {file = "clickhouse_connect-0.5.24-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:378f6a6289080f0c103f17eda9f8edcabc4878eb783e6b4e596d8bf8f543244e"}, {file = "clickhouse_connect-0.5.24-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e29389baa14a3f1db4e52b32090e1e32533496e35833514c689b190f26dfb039"}, {file = "clickhouse_connect-0.5.24-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7418e2c6533eebf0de9f3e85f1e3b6095d1a0bf42e4fed479f92f538725ff666"}, {file = "clickhouse_connect-0.5.24-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c3f23f819f20d130daed64ba058e01336e2f5f6d4b9f576038c0b800473af1ac"}, {file = "clickhouse_connect-0.5.24-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a846fc412475d55d7727c8a82ba1247b1b7ff0c6341a1818f99fd348ee9b1580"}, {file = "clickhouse_connect-0.5.24-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:34afc74ea27dcb85c1929f6105c4701566f51a1216bd6648b63ccb4871906729"}, ] [package.dependencies] certifi = "*" lz4 = "*" pytz = "*" urllib3 = ">=1.26" zstandard = "*" [package.extras] arrow = ["pyarrow"] numpy = ["numpy"] orjson = ["orjson"] pandas = ["pandas"] sqlalchemy = ["sqlalchemy (>1.3.21,<1.4)"] superset = ["apache-superset (>=1.4.1)"] [[package]] name = "cohere" version = "3.10.0" description = "A Python library for the Cohere API" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "cohere-3.10.0.tar.gz", hash = "sha256:8c06a87a47aa9521051eeba130ce391d84ab578148c4ea5b62f6dcc41bd3a274"}, ] [package.dependencies] requests = "*" urllib3 = ">=1.26,<2.0" [[package]] name = "colorama" version = "0.4.6" description = "Cross-platform colored terminal text." category = "main" optional = false python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7" files = [ {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"}, {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, ] [[package]] name = "comm" version = "0.1.3" description = "Jupyter Python Comm implementation, for usage in ipykernel, xeus-python etc." category = "dev" optional = false python-versions = ">=3.6" files = [ {file = "comm-0.1.3-py3-none-any.whl", hash = "sha256:16613c6211e20223f215fc6d3b266a247b6e2641bf4e0a3ad34cb1aff2aa3f37"}, {file = "comm-0.1.3.tar.gz", hash = "sha256:a61efa9daffcfbe66fd643ba966f846a624e4e6d6767eda9cf6e993aadaab93e"}, ] [package.dependencies] traitlets = ">=5.3" [package.extras] lint = ["black (>=22.6.0)", "mdformat (>0.7)", "mdformat-gfm (>=0.3.5)", "ruff (>=0.0.156)"] test = ["pytest"] typing = ["mypy (>=0.990)"] [[package]] name = "confection" version = "0.0.4" description = "The sweetest config system for Python" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "confection-0.0.4-py3-none-any.whl", hash = "sha256:aeac5919ba770c7b281aa5863bb6b0efed42568a7ad8ea26b6cb632154503fb2"}, {file = "confection-0.0.4.tar.gz", hash = "sha256:b1ddf5885da635f0e260a40b339730806dfb1bd17d30e08764f35af841b04ecf"}, ] [package.dependencies] pydantic = ">=1.7.4,<1.8 || >1.8,<1.8.1 || >1.8.1,<1.11.0" srsly = ">=2.4.0,<3.0.0" [[package]] name = "coverage" version = "7.2.5" description = "Code coverage measurement for Python" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "coverage-7.2.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:883123d0bbe1c136f76b56276074b0c79b5817dd4238097ffa64ac67257f4b6c"}, {file = "coverage-7.2.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d2fbc2a127e857d2f8898aaabcc34c37771bf78a4d5e17d3e1f5c30cd0cbc62a"}, {file = "coverage-7.2.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f3671662dc4b422b15776cdca89c041a6349b4864a43aa2350b6b0b03bbcc7f"}, {file = "coverage-7.2.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:780551e47d62095e088f251f5db428473c26db7829884323e56d9c0c3118791a"}, {file = "coverage-7.2.5-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:066b44897c493e0dcbc9e6a6d9f8bbb6607ef82367cf6810d387c09f0cd4fe9a"}, {file = "coverage-7.2.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:b9a4ee55174b04f6af539218f9f8083140f61a46eabcaa4234f3c2a452c4ed11"}, {file = "coverage-7.2.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:706ec567267c96717ab9363904d846ec009a48d5f832140b6ad08aad3791b1f5"}, {file = "coverage-7.2.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:ae453f655640157d76209f42c62c64c4d4f2c7f97256d3567e3b439bd5c9b06c"}, {file = "coverage-7.2.5-cp310-cp310-win32.whl", hash = "sha256:f81c9b4bd8aa747d417407a7f6f0b1469a43b36a85748145e144ac4e8d303cb5"}, {file = "coverage-7.2.5-cp310-cp310-win_amd64.whl", hash = "sha256:dc945064a8783b86fcce9a0a705abd7db2117d95e340df8a4333f00be5efb64c"}, {file = "coverage-7.2.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:40cc0f91c6cde033da493227797be2826cbf8f388eaa36a0271a97a332bfd7ce"}, {file = "coverage-7.2.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a66e055254a26c82aead7ff420d9fa8dc2da10c82679ea850d8feebf11074d88"}, {file = "coverage-7.2.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c10fbc8a64aa0f3ed136b0b086b6b577bc64d67d5581acd7cc129af52654384e"}, {file = "coverage-7.2.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9a22cbb5ede6fade0482111fa7f01115ff04039795d7092ed0db43522431b4f2"}, {file = "coverage-7.2.5-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:292300f76440651529b8ceec283a9370532f4ecba9ad67d120617021bb5ef139"}, {file = "coverage-7.2.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:7ff8f3fb38233035028dbc93715551d81eadc110199e14bbbfa01c5c4a43f8d8"}, {file = "coverage-7.2.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:a08c7401d0b24e8c2982f4e307124b671c6736d40d1c39e09d7a8687bddf83ed"}, {file = "coverage-7.2.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:ef9659d1cda9ce9ac9585c045aaa1e59223b143f2407db0eaee0b61a4f266fb6"}, {file = "coverage-7.2.5-cp311-cp311-win32.whl", hash = "sha256:30dcaf05adfa69c2a7b9f7dfd9f60bc8e36b282d7ed25c308ef9e114de7fc23b"}, {file = "coverage-7.2.5-cp311-cp311-win_amd64.whl", hash = "sha256:97072cc90f1009386c8a5b7de9d4fc1a9f91ba5ef2146c55c1f005e7b5c5e068"}, {file = "coverage-7.2.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:bebea5f5ed41f618797ce3ffb4606c64a5de92e9c3f26d26c2e0aae292f015c1"}, {file = "coverage-7.2.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:828189fcdda99aae0d6bf718ea766b2e715eabc1868670a0a07bf8404bf58c33"}, {file = "coverage-7.2.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6e8a95f243d01ba572341c52f89f3acb98a3b6d1d5d830efba86033dd3687ade"}, {file = "coverage-7.2.5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e8834e5f17d89e05697c3c043d3e58a8b19682bf365048837383abfe39adaed5"}, {file = "coverage-7.2.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:d1f25ee9de21a39b3a8516f2c5feb8de248f17da7eead089c2e04aa097936b47"}, {file = "coverage-7.2.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:1637253b11a18f453e34013c665d8bf15904c9e3c44fbda34c643fbdc9d452cd"}, {file = "coverage-7.2.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:8e575a59315a91ccd00c7757127f6b2488c2f914096077c745c2f1ba5b8c0969"}, {file = "coverage-7.2.5-cp37-cp37m-win32.whl", hash = "sha256:509ecd8334c380000d259dc66feb191dd0a93b21f2453faa75f7f9cdcefc0718"}, {file = "coverage-7.2.5-cp37-cp37m-win_amd64.whl", hash = "sha256:12580845917b1e59f8a1c2ffa6af6d0908cb39220f3019e36c110c943dc875b0"}, {file = "coverage-7.2.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:b5016e331b75310610c2cf955d9f58a9749943ed5f7b8cfc0bb89c6134ab0a84"}, {file = "coverage-7.2.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:373ea34dca98f2fdb3e5cb33d83b6d801007a8074f992b80311fc589d3e6b790"}, {file = "coverage-7.2.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a063aad9f7b4c9f9da7b2550eae0a582ffc7623dca1c925e50c3fbde7a579771"}, {file = "coverage-7.2.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:38c0a497a000d50491055805313ed83ddba069353d102ece8aef5d11b5faf045"}, {file = "coverage-7.2.5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a2b3b05e22a77bb0ae1a3125126a4e08535961c946b62f30985535ed40e26614"}, {file = "coverage-7.2.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:0342a28617e63ad15d96dca0f7ae9479a37b7d8a295f749c14f3436ea59fdcb3"}, {file = "coverage-7.2.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:cf97ed82ca986e5c637ea286ba2793c85325b30f869bf64d3009ccc1a31ae3fd"}, {file = "coverage-7.2.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:c2c41c1b1866b670573657d584de413df701f482574bad7e28214a2362cb1fd1"}, {file = "coverage-7.2.5-cp38-cp38-win32.whl", hash = "sha256:10b15394c13544fce02382360cab54e51a9e0fd1bd61ae9ce012c0d1e103c813"}, {file = "coverage-7.2.5-cp38-cp38-win_amd64.whl", hash = "sha256:a0b273fe6dc655b110e8dc89b8ec7f1a778d78c9fd9b4bda7c384c8906072212"}, {file = "coverage-7.2.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5c587f52c81211d4530fa6857884d37f514bcf9453bdeee0ff93eaaf906a5c1b"}, {file = "coverage-7.2.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4436cc9ba5414c2c998eaedee5343f49c02ca93b21769c5fdfa4f9d799e84200"}, {file = "coverage-7.2.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6599bf92f33ab041e36e06d25890afbdf12078aacfe1f1d08c713906e49a3fe5"}, {file = "coverage-7.2.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:857abe2fa6a4973f8663e039ead8d22215d31db613ace76e4a98f52ec919068e"}, {file = "coverage-7.2.5-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6f5cab2d7f0c12f8187a376cc6582c477d2df91d63f75341307fcdcb5d60303"}, {file = "coverage-7.2.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:aa387bd7489f3e1787ff82068b295bcaafbf6f79c3dad3cbc82ef88ce3f48ad3"}, {file = "coverage-7.2.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:156192e5fd3dbbcb11cd777cc469cf010a294f4c736a2b2c891c77618cb1379a"}, {file = "coverage-7.2.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:bd3b4b8175c1db502adf209d06136c000df4d245105c8839e9d0be71c94aefe1"}, {file = "coverage-7.2.5-cp39-cp39-win32.whl", hash = "sha256:ddc5a54edb653e9e215f75de377354e2455376f416c4378e1d43b08ec50acc31"}, {file = "coverage-7.2.5-cp39-cp39-win_amd64.whl", hash = "sha256:338aa9d9883aaaad53695cb14ccdeb36d4060485bb9388446330bef9c361c252"}, {file = "coverage-7.2.5-pp37.pp38.pp39-none-any.whl", hash = "sha256:8877d9b437b35a85c18e3c6499b23674684bf690f5d96c1006a1ef61f9fdf0f3"}, {file = "coverage-7.2.5.tar.gz", hash = "sha256:f99ef080288f09ffc687423b8d60978cf3a465d3f404a18d1a05474bd8575a47"}, ] [package.dependencies] tomli = {version = "*", optional = true, markers = "python_full_version <= \"3.11.0a6\" and extra == \"toml\""} [package.extras] toml = ["tomli"] [[package]] name = "cryptography" version = "40.0.2" description = "cryptography is a package which provides cryptographic recipes and primitives to Python developers." category = "main" optional = false python-versions = ">=3.6" files = [ {file = "cryptography-40.0.2-cp36-abi3-macosx_10_12_universal2.whl", hash = "sha256:8f79b5ff5ad9d3218afb1e7e20ea74da5f76943ee5edb7f76e56ec5161ec782b"}, {file = "cryptography-40.0.2-cp36-abi3-macosx_10_12_x86_64.whl", hash = "sha256:05dc219433b14046c476f6f09d7636b92a1c3e5808b9a6536adf4932b3b2c440"}, {file = "cryptography-40.0.2-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4df2af28d7bedc84fe45bd49bc35d710aede676e2a4cb7fc6d103a2adc8afe4d"}, {file = "cryptography-40.0.2-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0dcca15d3a19a66e63662dc8d30f8036b07be851a8680eda92d079868f106288"}, {file = "cryptography-40.0.2-cp36-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:a04386fb7bc85fab9cd51b6308633a3c271e3d0d3eae917eebab2fac6219b6d2"}, {file = "cryptography-40.0.2-cp36-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:adc0d980fd2760c9e5de537c28935cc32b9353baaf28e0814df417619c6c8c3b"}, {file = "cryptography-40.0.2-cp36-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:d5a1bd0e9e2031465761dfa920c16b0065ad77321d8a8c1f5ee331021fda65e9"}, {file = "cryptography-40.0.2-cp36-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:a95f4802d49faa6a674242e25bfeea6fc2acd915b5e5e29ac90a32b1139cae1c"}, {file = "cryptography-40.0.2-cp36-abi3-win32.whl", hash = "sha256:aecbb1592b0188e030cb01f82d12556cf72e218280f621deed7d806afd2113f9"}, {file = "cryptography-40.0.2-cp36-abi3-win_amd64.whl", hash = "sha256:b12794f01d4cacfbd3177b9042198f3af1c856eedd0a98f10f141385c809a14b"}, {file = "cryptography-40.0.2-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:142bae539ef28a1c76794cca7f49729e7c54423f615cfd9b0b1fa90ebe53244b"}, {file = "cryptography-40.0.2-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:956ba8701b4ffe91ba59665ed170a2ebbdc6fc0e40de5f6059195d9f2b33ca0e"}, {file = "cryptography-40.0.2-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:4f01c9863da784558165f5d4d916093737a75203a5c5286fde60e503e4276c7a"}, {file = "cryptography-40.0.2-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:3daf9b114213f8ba460b829a02896789751626a2a4e7a43a28ee77c04b5e4958"}, {file = "cryptography-40.0.2-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:48f388d0d153350f378c7f7b41497a54ff1513c816bcbbcafe5b829e59b9ce5b"}, {file = "cryptography-40.0.2-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:c0764e72b36a3dc065c155e5b22f93df465da9c39af65516fe04ed3c68c92636"}, {file = "cryptography-40.0.2-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:cbaba590180cba88cb99a5f76f90808a624f18b169b90a4abb40c1fd8c19420e"}, {file = "cryptography-40.0.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:7a38250f433cd41df7fcb763caa3ee9362777fdb4dc642b9a349721d2bf47404"}, {file = "cryptography-40.0.2.tar.gz", hash = "sha256:c33c0d32b8594fa647d2e01dbccc303478e16fdd7cf98652d5b3ed11aa5e5c99"}, ] [package.dependencies] cffi = ">=1.12" [package.extras] docs = ["sphinx (>=5.3.0)", "sphinx-rtd-theme (>=1.1.1)"] docstest = ["pyenchant (>=1.6.11)", "sphinxcontrib-spelling (>=4.0.1)", "twine (>=1.12.0)"] pep8test = ["black", "check-manifest", "mypy", "ruff"] sdist = ["setuptools-rust (>=0.11.4)"] ssh = ["bcrypt (>=3.1.5)"] test = ["iso8601", "pretend", "pytest (>=6.2.0)", "pytest-benchmark", "pytest-cov", "pytest-shard (>=0.1.2)", "pytest-subtests", "pytest-xdist"] test-randomorder = ["pytest-randomly"] tox = ["tox"] [[package]] name = "cymem" version = "2.0.7" description = "Manage calls to calloc/free through Cython" category = "main" optional = true python-versions = "*" files = [ {file = "cymem-2.0.7-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:4981fc9182cc1fe54bfedf5f73bfec3ce0c27582d9be71e130c46e35958beef0"}, {file = "cymem-2.0.7-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:42aedfd2e77aa0518a24a2a60a2147308903abc8b13c84504af58539c39e52a3"}, {file = "cymem-2.0.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c183257dc5ab237b664f64156c743e788f562417c74ea58c5a3939fe2d48d6f6"}, {file = "cymem-2.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d18250f97eeb13af2e8b19d3cefe4bf743b963d93320b0a2e729771410fd8cf4"}, {file = "cymem-2.0.7-cp310-cp310-win_amd64.whl", hash = "sha256:864701e626b65eb2256060564ed8eb034ebb0a8f14ce3fbef337e88352cdee9f"}, {file = "cymem-2.0.7-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:314273be1f143da674388e0a125d409e2721fbf669c380ae27c5cbae4011e26d"}, {file = "cymem-2.0.7-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:df543a36e7000808fe0a03d92fd6cd8bf23fa8737c3f7ae791a5386de797bf79"}, {file = "cymem-2.0.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9e5e1b7de7952d89508d07601b9e95b2244e70d7ef60fbc161b3ad68f22815f8"}, {file = "cymem-2.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2aa33f1dbd7ceda37970e174c38fd1cf106817a261aa58521ba9918156868231"}, {file = "cymem-2.0.7-cp311-cp311-win_amd64.whl", hash = "sha256:10178e402bb512b2686b8c2f41f930111e597237ca8f85cb583ea93822ef798d"}, {file = "cymem-2.0.7-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a2971b7da5aa2e65d8fbbe9f2acfc19ff8e73f1896e3d6e1223cc9bf275a0207"}, {file = "cymem-2.0.7-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85359ab7b490e6c897c04863704481600bd45188a0e2ca7375eb5db193e13cb7"}, {file = "cymem-2.0.7-cp36-cp36m-win_amd64.whl", hash = "sha256:0ac45088abffbae9b7db2c597f098de51b7e3c1023cb314e55c0f7f08440cf66"}, {file = "cymem-2.0.7-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:26e5d5c6958855d2fe3d5629afe85a6aae5531abaa76f4bc21b9abf9caaccdfe"}, {file = "cymem-2.0.7-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:011039e12d3144ac1bf3a6b38f5722b817f0d6487c8184e88c891b360b69f533"}, {file = "cymem-2.0.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6f9e63e5ad4ed6ffa21fd8db1c03b05be3fea2f32e32fdace67a840ea2702c3d"}, {file = "cymem-2.0.7-cp37-cp37m-win_amd64.whl", hash = "sha256:5ea6b027fdad0c3e9a4f1b94d28d213be08c466a60c72c633eb9db76cf30e53a"}, {file = "cymem-2.0.7-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:4302df5793a320c4f4a263c7785d2fa7f29928d72cb83ebeb34d64a610f8d819"}, {file = "cymem-2.0.7-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:24b779046484674c054af1e779c68cb224dc9694200ac13b22129d7fb7e99e6d"}, {file = "cymem-2.0.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6c50794c612801ed8b599cd4af1ed810a0d39011711c8224f93e1153c00e08d1"}, {file = "cymem-2.0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a9525ad563b36dc1e30889d0087a0daa67dd7bb7d3e1530c4b61cd65cc756a5b"}, {file = "cymem-2.0.7-cp38-cp38-win_amd64.whl", hash = "sha256:48b98da6b906fe976865263e27734ebc64f972a978a999d447ad6c83334e3f90"}, {file = "cymem-2.0.7-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:e156788d32ad8f7141330913c5d5d2aa67182fca8f15ae22645e9f379abe8a4c"}, {file = "cymem-2.0.7-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3da89464021fe669932fce1578343fcaf701e47e3206f50d320f4f21e6683ca5"}, {file = "cymem-2.0.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4f359cab9f16e25b3098f816c40acbf1697a3b614a8d02c56e6ebcb9c89a06b3"}, {file = "cymem-2.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f165d7bce55d6730930e29d8294569788aa127f1be8d1642d9550ed96223cb37"}, {file = "cymem-2.0.7-cp39-cp39-win_amd64.whl", hash = "sha256:59a09cf0e71b1b88bfa0de544b801585d81d06ea123c1725e7c5da05b7ca0d20"}, {file = "cymem-2.0.7.tar.gz", hash = "sha256:e6034badb5dd4e10344211c81f16505a55553a7164adc314c75bd80cf07e57a8"}, ] [[package]] name = "dataclasses-json" version = "0.5.7" description = "Easily serialize dataclasses to and from JSON" category = "main" optional = false python-versions = ">=3.6" files = [ {file = "dataclasses-json-0.5.7.tar.gz", hash = "sha256:c2c11bc8214fbf709ffc369d11446ff6945254a7f09128154a7620613d8fda90"}, {file = "dataclasses_json-0.5.7-py3-none-any.whl", hash = "sha256:bc285b5f892094c3a53d558858a88553dd6a61a11ab1a8128a0e554385dcc5dd"}, ] [package.dependencies] marshmallow = ">=3.3.0,<4.0.0" marshmallow-enum = ">=1.5.1,<2.0.0" typing-inspect = ">=0.4.0" [package.extras] dev = ["flake8", "hypothesis", "ipython", "mypy (>=0.710)", "portray", "pytest (>=6.2.3)", "simplejson", "types-dataclasses"] [[package]] name = "datasets" version = "1.18.3" description = "HuggingFace community-driven open-source library of datasets" category = "main" optional = true python-versions = "*" files = [ {file = "datasets-1.18.3-py3-none-any.whl", hash = "sha256:5862670a3e213af1aa68995a32ff0ce761b9d71d2677c3fa59e7088eb5e2a841"}, {file = "datasets-1.18.3.tar.gz", hash = "sha256:dfdf75c255069f4ed25ccdd0d3f0730c1ff1e2b27f8d4bd1af395b10fe8ebc63"}, ] [package.dependencies] aiohttp = "*" dill = "*" fsspec = {version = ">=2021.05.0", extras = ["http"]} huggingface-hub = ">=0.1.0,<1.0.0" multiprocess = "*" numpy = ">=1.17" packaging = "*" pandas = "*" pyarrow = ">=3.0.0,<4.0.0 || >4.0.0" requests = ">=2.19.0" tqdm = ">=4.62.1" xxhash = "*" [package.extras] apache-beam = ["apache-beam (>=2.26.0)"] audio = ["librosa"] benchmarks = ["numpy (==1.18.5)", "tensorflow (==2.3.0)", "torch (==1.6.0)", "transformers (==3.0.2)"] dev = ["Pillow (>=6.2.1)", "Werkzeug (>=1.0.1)", "absl-py", "aiobotocore", "apache-beam (>=2.26.0)", "bert-score (>=0.3.6)", "black (==21.4b0)", "boto3", "botocore", "bs4", "conllu", "elasticsearch", "fairseq", "faiss-cpu (>=1.6.4)", "fastBPE (==0.1.0)", "flake8 (>=3.8.3)", "fsspec[s3]", "h5py", "importlib-resources", "isort (>=5.0.0)", "jiwer", "langdetect", "librosa", "lxml", "mauve-text", "moto[s3,server] (==2.0.4)", "mwparserfromhell", "nltk", "openpyxl", "py7zr", "pytest", "pytest-datadir", "pytest-xdist", "pytorch-lightning", "pytorch-nlp (==0.5.0)", "pyyaml (>=5.3.1)", "rarfile (>=4.0)", "requests-file (>=1.5.1)", "rouge-score", "s3fs (==2021.08.1)", "sacrebleu", "scikit-learn", "scipy", "sentencepiece", "seqeval", "six (>=1.15.0,<1.16.0)", "soundfile", "tensorflow (>=2.3,!=2.6.0,!=2.6.1)", "texttable (>=1.6.3)", "tldextract", "tldextract (>=3.1.0)", "toml (>=0.10.1)", "torch", "torchaudio", "torchmetrics (==0.6.0)", "transformers", "wget (>=3.2)", "zstandard"] docs = ["Markdown (!=3.3.5)", "docutils (==0.16.0)", "fsspec (<2021.9.0)", "myst-parser", "recommonmark", "s3fs", "sphinx (==3.1.2)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-markdown-tables", "sphinx-panels", "sphinx-rtd-theme (==0.4.3)", "sphinxext-opengraph (==0.4.1)"] quality = ["black (==21.4b0)", "flake8 (>=3.8.3)", "isort (>=5.0.0)", "pyyaml (>=5.3.1)"] s3 = ["boto3", "botocore", "fsspec", "s3fs"] tensorflow = ["tensorflow (>=2.2.0,!=2.6.0,!=2.6.1)"] tensorflow-gpu = ["tensorflow-gpu (>=2.2.0,!=2.6.0,!=2.6.1)"] tests = ["Pillow (>=6.2.1)", "Werkzeug (>=1.0.1)", "absl-py", "aiobotocore", "apache-beam (>=2.26.0)", "bert-score (>=0.3.6)", "boto3", "botocore", "bs4", "conllu", "elasticsearch", "fairseq", "faiss-cpu (>=1.6.4)", "fastBPE (==0.1.0)", "fsspec[s3]", "h5py", "importlib-resources", "jiwer", "langdetect", "librosa", "lxml", "mauve-text", "moto[s3,server] (==2.0.4)", "mwparserfromhell", "nltk", "openpyxl", "py7zr", "pytest", "pytest-datadir", "pytest-xdist", "pytorch-lightning", "pytorch-nlp (==0.5.0)", "rarfile (>=4.0)", "requests-file (>=1.5.1)", "rouge-score", "s3fs (==2021.08.1)", "sacrebleu", "scikit-learn", "scipy", "sentencepiece", "seqeval", "six (>=1.15.0,<1.16.0)", "soundfile", "tensorflow (>=2.3,!=2.6.0,!=2.6.1)", "texttable (>=1.6.3)", "tldextract", "tldextract (>=3.1.0)", "toml (>=0.10.1)", "torch", "torchaudio", "torchmetrics (==0.6.0)", "transformers", "wget (>=3.2)", "zstandard"] torch = ["torch"] vision = ["Pillow (>=6.2.1)"] [[package]] name = "debugpy" version = "1.6.7" description = "An implementation of the Debug Adapter Protocol for Python" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "debugpy-1.6.7-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:b3e7ac809b991006ad7f857f016fa92014445085711ef111fdc3f74f66144096"}, {file = "debugpy-1.6.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e3876611d114a18aafef6383695dfc3f1217c98a9168c1aaf1a02b01ec7d8d1e"}, {file = "debugpy-1.6.7-cp310-cp310-win32.whl", hash = "sha256:33edb4afa85c098c24cc361d72ba7c21bb92f501104514d4ffec1fb36e09c01a"}, {file = "debugpy-1.6.7-cp310-cp310-win_amd64.whl", hash = "sha256:ed6d5413474e209ba50b1a75b2d9eecf64d41e6e4501977991cdc755dc83ab0f"}, {file = "debugpy-1.6.7-cp37-cp37m-macosx_10_15_x86_64.whl", hash = "sha256:38ed626353e7c63f4b11efad659be04c23de2b0d15efff77b60e4740ea685d07"}, {file = "debugpy-1.6.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:279d64c408c60431c8ee832dfd9ace7c396984fd7341fa3116aee414e7dcd88d"}, {file = "debugpy-1.6.7-cp37-cp37m-win32.whl", hash = "sha256:dbe04e7568aa69361a5b4c47b4493d5680bfa3a911d1e105fbea1b1f23f3eb45"}, {file = "debugpy-1.6.7-cp37-cp37m-win_amd64.whl", hash = "sha256:f90a2d4ad9a035cee7331c06a4cf2245e38bd7c89554fe3b616d90ab8aab89cc"}, {file = "debugpy-1.6.7-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:5224eabbbeddcf1943d4e2821876f3e5d7d383f27390b82da5d9558fd4eb30a9"}, {file = "debugpy-1.6.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bae1123dff5bfe548ba1683eb972329ba6d646c3a80e6b4c06cd1b1dd0205e9b"}, {file = "debugpy-1.6.7-cp38-cp38-win32.whl", hash = "sha256:9cd10cf338e0907fdcf9eac9087faa30f150ef5445af5a545d307055141dd7a4"}, {file = "debugpy-1.6.7-cp38-cp38-win_amd64.whl", hash = "sha256:aaf6da50377ff4056c8ed470da24632b42e4087bc826845daad7af211e00faad"}, {file = "debugpy-1.6.7-cp39-cp39-macosx_11_0_x86_64.whl", hash = "sha256:0679b7e1e3523bd7d7869447ec67b59728675aadfc038550a63a362b63029d2c"}, {file = "debugpy-1.6.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:de86029696e1b3b4d0d49076b9eba606c226e33ae312a57a46dca14ff370894d"}, {file = "debugpy-1.6.7-cp39-cp39-win32.whl", hash = "sha256:d71b31117779d9a90b745720c0eab54ae1da76d5b38c8026c654f4a066b0130a"}, {file = "debugpy-1.6.7-cp39-cp39-win_amd64.whl", hash = "sha256:c0ff93ae90a03b06d85b2c529eca51ab15457868a377c4cc40a23ab0e4e552a3"}, {file = "debugpy-1.6.7-py2.py3-none-any.whl", hash = "sha256:53f7a456bc50706a0eaabecf2d3ce44c4d5010e46dfc65b6b81a518b42866267"}, {file = "debugpy-1.6.7.zip", hash = "sha256:c4c2f0810fa25323abfdfa36cbbbb24e5c3b1a42cb762782de64439c575d67f2"}, ] [[package]] name = "decorator" version = "5.1.1" description = "Decorators for Humans" category = "main" optional = false python-versions = ">=3.5" files = [ {file = "decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186"}, {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"}, ] [[package]] name = "deeplake" version = "3.5.0" description = "Activeloop Deep Lake" category = "main" optional = false python-versions = "*" files = [ {file = "deeplake-3.5.0.tar.gz", hash = "sha256:ae640f75b1fec4eed9598a4e8d6b80e7243af87d9f39f0d34f01ce2c6f7c194f"}, ] [package.dependencies] aioboto3 = {version = ">=10.4.0", markers = "python_version >= \"3.7\" and sys_platform != \"win32\""} boto3 = "*" click = "*" humbug = ">=0.3.1" nest_asyncio = {version = "*", markers = "python_version >= \"3.7\" and sys_platform != \"win32\""} numcodecs = "*" numpy = "*" pathos = "*" pillow = "*" pyjwt = "*" tqdm = "*" [package.extras] all = ["IPython", "av (>=8.1.0)", "flask", "google-api-python-client (>=2.31.0,<2.32.0)", "google-auth (>=2.0.1,<2.1.0)", "google-auth-oauthlib (>=0.4.5,<0.5.0)", "google-cloud-storage (>=1.42.0,<1.43.0)", "laspy", "libdeeplake (==0.0.53)", "nibabel", "oauth2client (>=4.1.3,<4.2.0)", "pydicom"] audio = ["av (>=8.1.0)"] av = ["av (>=8.1.0)"] dicom = ["nibabel", "pydicom"] enterprise = ["libdeeplake (==0.0.53)", "pyjwt"] gcp = ["google-auth (>=2.0.1,<2.1.0)", "google-auth-oauthlib (>=0.4.5,<0.5.0)", "google-cloud-storage (>=1.42.0,<1.43.0)"] gdrive = ["google-api-python-client (>=2.31.0,<2.32.0)", "google-auth (>=2.0.1,<2.1.0)", "google-auth-oauthlib (>=0.4.5,<0.5.0)", "oauth2client (>=4.1.3,<4.2.0)"] medical = ["nibabel", "pydicom"] point-cloud = ["laspy"] video = ["av (>=8.1.0)"] visualizer = ["IPython", "flask"] [[package]] name = "defusedxml" version = "0.7.1" description = "XML bomb protection for Python stdlib modules" category = "dev" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" files = [ {file = "defusedxml-0.7.1-py2.py3-none-any.whl", hash = "sha256:a352e7e428770286cc899e2542b6cdaedb2b4953ff269a210103ec58f6198a61"}, {file = "defusedxml-0.7.1.tar.gz", hash = "sha256:1bb3032db185915b62d7c6209c5a8792be6a32ab2fedacc84e01b52c51aa3e69"}, ] [[package]] name = "deprecated" version = "1.2.13" description = "Python @deprecated decorator to deprecate old python classes, functions or methods." category = "main" optional = true python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ {file = "Deprecated-1.2.13-py2.py3-none-any.whl", hash = "sha256:64756e3e14c8c5eea9795d93c524551432a0be75629f8f29e67ab8caf076c76d"}, {file = "Deprecated-1.2.13.tar.gz", hash = "sha256:43ac5335da90c31c24ba028af536a91d41d53f9e6901ddb021bcc572ce44e38d"}, ] [package.dependencies] wrapt = ">=1.10,<2" [package.extras] dev = ["PyTest", "PyTest (<5)", "PyTest-Cov", "PyTest-Cov (<2.6)", "bump2version (<1)", "configparser (<5)", "importlib-metadata (<3)", "importlib-resources (<4)", "sphinx (<2)", "sphinxcontrib-websupport (<2)", "tox", "zipp (<2)"] [[package]] name = "dill" version = "0.3.6" description = "serialize all of python" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "dill-0.3.6-py3-none-any.whl", hash = "sha256:a07ffd2351b8c678dfc4a856a3005f8067aea51d6ba6c700796a4d9e280f39f0"}, {file = "dill-0.3.6.tar.gz", hash = "sha256:e5db55f3687856d8fbdab002ed78544e1c4559a130302693d839dfe8f93f2373"}, ] [package.extras] graph = ["objgraph (>=1.7.2)"] [[package]] name = "dnspython" version = "2.3.0" description = "DNS toolkit" category = "main" optional = false python-versions = ">=3.7,<4.0" files = [ {file = "dnspython-2.3.0-py3-none-any.whl", hash = "sha256:89141536394f909066cabd112e3e1a37e4e654db00a25308b0f130bc3152eb46"}, {file = "dnspython-2.3.0.tar.gz", hash = "sha256:224e32b03eb46be70e12ef6d64e0be123a64e621ab4c0822ff6d450d52a540b9"}, ] [package.extras] curio = ["curio (>=1.2,<2.0)", "sniffio (>=1.1,<2.0)"] dnssec = ["cryptography (>=2.6,<40.0)"] doh = ["h2 (>=4.1.0)", "httpx (>=0.21.1)", "requests (>=2.23.0,<3.0.0)", "requests-toolbelt (>=0.9.1,<0.11.0)"] doq = ["aioquic (>=0.9.20)"] idna = ["idna (>=2.1,<4.0)"] trio = ["trio (>=0.14,<0.23)"] wmi = ["wmi (>=1.5.1,<2.0.0)"] [[package]] name = "docarray" version = "0.32.0" description = "The data structure for multimodal data" category = "main" optional = true python-versions = ">=3.7,<4.0" files = [ {file = "docarray-0.32.0-py3-none-any.whl", hash = "sha256:5216858966ea42133614be421ef7ae670d020bfdfcd2ab3e0118a4a8ecc77034"}, {file = "docarray-0.32.0.tar.gz", hash = "sha256:7a3156cb0d13dec7d6b85f193b339b823748446fc9fff1e0ca4c2ef50b4183d2"}, ] [package.dependencies] hnswlib = {version = ">=0.6.2", optional = true, markers = "extra == \"hnswlib\""} numpy = ">=1.17.3" orjson = ">=3.8.2" protobuf = {version = ">=3.19.0", optional = true, markers = "extra == \"proto\" or extra == \"hnswlib\" or extra == \"full\""} pydantic = ">=1.10.2" rich = ">=13.1.0" types-requests = ">=2.28.11.6" typing-inspect = ">=0.8.0" [package.extras] audio = ["pydub (>=0.25.1,<0.26.0)"] aws = ["smart-open[s3] (>=6.3.0)"] elasticsearch = ["elastic-transport (>=8.4.0,<9.0.0)", "elasticsearch (>=7.10.1)"] full = ["av (>=10.0.0)", "lz4 (>=1.0.0)", "pandas (>=1.1.0)", "pillow (>=9.3.0)", "protobuf (>=3.19.0)", "pydub (>=0.25.1,<0.26.0)", "trimesh[easy] (>=3.17.1)", "types-pillow (>=9.3.0.1)"] hnswlib = ["hnswlib (>=0.6.2)", "protobuf (>=3.19.0)"] image = ["pillow (>=9.3.0)", "types-pillow (>=9.3.0.1)"] jac = ["jina-hubble-sdk (>=0.34.0)"] mesh = ["trimesh[easy] (>=3.17.1)"] pandas = ["pandas (>=1.1.0)"] proto = ["lz4 (>=1.0.0)", "protobuf (>=3.19.0)"] qdrant = ["qdrant-client (>=1.1.4)"] torch = ["torch (>=1.0.0)"] video = ["av (>=10.0.0)"] weaviate = ["weaviate-client (>=3.15)"] web = ["fastapi (>=0.87.0)"] [[package]] name = "docker" version = "6.1.2" description = "A Python library for the Docker Engine API." category = "main" optional = true python-versions = ">=3.7" files = [ {file = "docker-6.1.2-py3-none-any.whl", hash = "sha256:134cd828f84543cbf8e594ff81ca90c38288df3c0a559794c12f2e4b634ea19e"}, {file = "docker-6.1.2.tar.gz", hash = "sha256:dcc088adc2ec4e7cfc594e275d8bd2c9738c56c808de97476939ef67db5af8c2"}, ] [package.dependencies] packaging = ">=14.0" pywin32 = {version = ">=304", markers = "sys_platform == \"win32\""} requests = ">=2.26.0" urllib3 = ">=1.26.0" websocket-client = ">=0.32.0" [package.extras] ssh = ["paramiko (>=2.4.3)"] [[package]] name = "docutils" version = "0.17.1" description = "Docutils -- Python Documentation Utilities" category = "dev" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" files = [ {file = "docutils-0.17.1-py2.py3-none-any.whl", hash = "sha256:cf316c8370a737a022b72b56874f6602acf974a37a9fba42ec2876387549fc61"}, {file = "docutils-0.17.1.tar.gz", hash = "sha256:686577d2e4c32380bb50cbb22f575ed742d58168cee37e99117a854bcd88f125"}, ] [[package]] name = "duckdb" version = "0.8.0" description = "DuckDB embedded database" category = "main" optional = false python-versions = "*" files = [ {file = "duckdb-0.8.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:6455aee00af30770c20f4a8c5e4347918cf59b578f49ee996a13807b12911871"}, {file = "duckdb-0.8.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:b8cf0622ae7f86d4ce72791f8928af4357a46824aadf1b6879c7936b3db65344"}, {file = "duckdb-0.8.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6132e8183ca3ae08a593e43c97cb189794077dedd48546e27ce43bd6a51a9c33"}, {file = "duckdb-0.8.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fe29e5343fa2a95f2cde4519a4f4533f4fd551a48d2d9a8ab5220d40ebf53610"}, {file = "duckdb-0.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:945165987ca87c097dc0e578dcf47a100cad77e1c29f5dd8443d53ce159dc22e"}, {file = "duckdb-0.8.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:673c60daf7ada1d9a8518286a6893ec45efabb64602954af5f3d98f42912fda6"}, {file = "duckdb-0.8.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:d5075fe1ff97ae62331ca5c61e3597e6e9f7682a6fdd418c23ba5c4873ed5cd1"}, {file = "duckdb-0.8.0-cp310-cp310-win32.whl", hash = "sha256:001f5102f45d3d67f389fa8520046c8f55a99e2c6d43b8e68b38ea93261c5395"}, {file = "duckdb-0.8.0-cp310-cp310-win_amd64.whl", hash = "sha256:cb00800f2e1e865584b13221e0121fce9341bb3a39a93e569d563eaed281f528"}, {file = "duckdb-0.8.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:b2707096d6df4321044fcde2c9f04da632d11a8be60957fd09d49a42fae71a29"}, {file = "duckdb-0.8.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b27df1b70ae74d2c88efb5ffca8490954fdc678099509a9c4404ca30acc53426"}, {file = "duckdb-0.8.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:75a97c800271b52dd0f37696d074c50576dcb4b2750b6115932a98696a268070"}, {file = "duckdb-0.8.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:804cac261a5e016506a6d67838a65d19b06a237f7949f1704f0e800eb708286a"}, {file = "duckdb-0.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c6b9abca7fa6713e1d031c18485343b4de99742c7e1b85c10718aa2f31a4e2c6"}, {file = "duckdb-0.8.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:51aa6d606d49072abcfeb3be209eb559ac94c1b5e70f58ac3adbb94aca9cd69f"}, {file = "duckdb-0.8.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:7c8dc769aaf2be0a1c57995ca657e5b92c1c56fc8437edb720ca6cab571adf14"}, {file = "duckdb-0.8.0-cp311-cp311-win32.whl", hash = "sha256:c4207d18b42387c4a035846d8878eb967070198be8ac26fd77797ce320d1a400"}, {file = "duckdb-0.8.0-cp311-cp311-win_amd64.whl", hash = "sha256:0c392257547c20794c3072fcbca99a49ef0a49974005d755e93893e2b4875267"}, {file = "duckdb-0.8.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:2832379e122020814dbe869af7b9ddf3c9f21474cf345531145b099c63ffe17e"}, {file = "duckdb-0.8.0-cp36-cp36m-win32.whl", hash = "sha256:914896526f7caba86b170f2c4f17f11fd06540325deeb0000cb4fb24ec732966"}, {file = "duckdb-0.8.0-cp36-cp36m-win_amd64.whl", hash = "sha256:022ebda86d0e3204cdc206e4af45aa9f0ae0668b34c2c68cf88e08355af4a372"}, {file = "duckdb-0.8.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:96a31c0f3f4ccbf0f5b18f94319f37691205d82f80aae48c6fe04860d743eb2c"}, {file = "duckdb-0.8.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a07c73c6e6a8cf4ce1a634625e0d1b17e5b817242a8a530d26ed84508dfbdc26"}, {file = "duckdb-0.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:424acbd6e857531b06448d757d7c2557938dbddbff0632092090efbf413b4699"}, {file = "duckdb-0.8.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:c83cfd2a868f1acb0692b9c3fd5ef1d7da8faa1348c6eabf421fbf5d8c2f3eb8"}, {file = "duckdb-0.8.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:5c6f6b2d8db56936f662c649539df81856b5a8cb769a31f9544edf18af2a11ff"}, {file = "duckdb-0.8.0-cp37-cp37m-win32.whl", hash = "sha256:0bd6376b40a512172eaf4aa816813b1b9d68994292ca436ce626ccd5f77f8184"}, {file = "duckdb-0.8.0-cp37-cp37m-win_amd64.whl", hash = "sha256:931221885bcf1e7dfce2400f11fd048a7beef566b775f1453bb1db89b828e810"}, {file = "duckdb-0.8.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:42e7853d963d68e72403ea208bcf806b0f28c7b44db0aa85ce49bb124d56c133"}, {file = "duckdb-0.8.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:fcc338399175be3d43366576600aef7d72e82114d415992a7a95aded98a0f3fd"}, {file = "duckdb-0.8.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:03dd08a4624d6b581a59f9f9dbfd34902416398d16795ad19f92361cf21fd9b5"}, {file = "duckdb-0.8.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0c7c24ea0c9d8563dbd5ad49ccb54b7a9a3c7b8c2833d35e5d32a08549cacea5"}, {file = "duckdb-0.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cb58f6505cc0f34b4e976154302d26563d2e5d16b206758daaa04b65e55d9dd8"}, {file = "duckdb-0.8.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:ef37ac7880100c4b3f913c8483a29a13f8289313b9a07df019fadfa8e7427544"}, {file = "duckdb-0.8.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:c2a4f5ee913ca8a6a069c78f8944b9934ffdbc71fd935f9576fdcea2a6f476f1"}, {file = "duckdb-0.8.0-cp38-cp38-win32.whl", hash = "sha256:73831c6d7aefcb5f4072cd677b9efebecbf6c578946d21710791e10a1fc41b9a"}, {file = "duckdb-0.8.0-cp38-cp38-win_amd64.whl", hash = "sha256:faa36d2854734364d234f37d7ef4f3d763b73cd6b0f799cbc2a0e3b7e2575450"}, {file = "duckdb-0.8.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:50a31ec237ed619e50f9ab79eb0ec5111eb9697d4475da6e0ab22c08495ce26b"}, {file = "duckdb-0.8.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:351abb4cc2d229d043920c4bc2a4c29ca31a79fef7d7ef8f6011cf4331f297bf"}, {file = "duckdb-0.8.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:568550a163aca6a787bef8313e358590254de3f4019025a8d68c3a61253fedc1"}, {file = "duckdb-0.8.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2b82617f0e7f9fc080eda217090d82b42d4fad083bc9f6d58dfda9cecb7e3b29"}, {file = "duckdb-0.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d01c9be34d272532b75e8faedda0ff77fa76d1034cde60b8f5768ae85680d6d3"}, {file = "duckdb-0.8.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:8549d6a6bf5f00c012b6916f605416226507e733a3ffc57451682afd6e674d1b"}, {file = "duckdb-0.8.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8d145c6d51e55743c3ed1a74cffa109d9e72f82b07e203b436cfa453c925313a"}, {file = "duckdb-0.8.0-cp39-cp39-win32.whl", hash = "sha256:f8610dfd21e90d7b04e8598b244bf3ad68599fd6ba0daad3428c03cbfd74dced"}, {file = "duckdb-0.8.0-cp39-cp39-win_amd64.whl", hash = "sha256:d0f0f104d30418808bafbe9bccdcd238588a07bd246b3cff13842d60bfd8e8ba"}, {file = "duckdb-0.8.0.tar.gz", hash = "sha256:c68da35bab5072a64ada2646a5b343da620ddc75a7a6e84aa4a1e0628a7ec18f"}, ] [[package]] name = "duckdb-engine" version = "0.7.2" description = "SQLAlchemy driver for duckdb" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "duckdb_engine-0.7.2-py3-none-any.whl", hash = "sha256:4de6bd4d3b94d2a42f296e72bc3b3442bee612e0e71697218c62f4d2f5afa5b6"}, {file = "duckdb_engine-0.7.2.tar.gz", hash = "sha256:1378ad0f02db55d4498075ff3b65331a2684996974139ab9c78da33bda650b17"}, ] [package.dependencies] duckdb = ">=0.4.0" numpy = "*" sqlalchemy = ">=1.3.22" [[package]] name = "duckduckgo-search" version = "2.8.6" description = "Search for words, documents, images, news, maps and text translation using the DuckDuckGo.com search engine." category = "main" optional = true python-versions = ">=3.7" files = [ {file = "duckduckgo_search-2.8.6-py3-none-any.whl", hash = "sha256:c9312ad278d03d059ba7ced978dd1bc7806bb735aa239948322936d0570d8d7f"}, {file = "duckduckgo_search-2.8.6.tar.gz", hash = "sha256:ffd620febb8c471bdb4aed520b26e645cd05ae79acdd78db6c0c927cb7b0237c"}, ] [package.dependencies] click = ">=8.1.3" requests = ">=2.28.2" [[package]] name = "ecdsa" version = "0.18.0" description = "ECDSA cryptographic signature library (pure python)" category = "main" optional = true python-versions = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*" files = [ {file = "ecdsa-0.18.0-py2.py3-none-any.whl", hash = "sha256:80600258e7ed2f16b9aa1d7c295bd70194109ad5a30fdee0eaeefef1d4c559dd"}, {file = "ecdsa-0.18.0.tar.gz", hash = "sha256:190348041559e21b22a1d65cee485282ca11a6f81d503fddb84d5017e9ed1e49"}, ] [package.dependencies] six = ">=1.9.0" [package.extras] gmpy = ["gmpy"] gmpy2 = ["gmpy2"] [[package]] name = "elastic-transport" version = "8.4.0" description = "Transport classes and utilities shared among Python Elastic client libraries" category = "main" optional = false python-versions = ">=3.6" files = [ {file = "elastic-transport-8.4.0.tar.gz", hash = "sha256:b9ad708ceb7fcdbc6b30a96f886609a109f042c0b9d9f2e44403b3133ba7ff10"}, {file = "elastic_transport-8.4.0-py3-none-any.whl", hash = "sha256:19db271ab79c9f70f8c43f8f5b5111408781a6176b54ab2e54d713b6d9ceb815"}, ] [package.dependencies] certifi = "*" urllib3 = ">=1.26.2,<2" [package.extras] develop = ["aiohttp", "mock", "pytest", "pytest-asyncio", "pytest-cov", "pytest-httpserver", "pytest-mock", "requests", "trustme"] [[package]] name = "elasticsearch" version = "8.7.0" description = "Python client for Elasticsearch" category = "main" optional = false python-versions = ">=3.6, <4" files = [ {file = "elasticsearch-8.7.0-py3-none-any.whl", hash = "sha256:a06482f4c338ab6ace5cf89ee351cf3ee1854083f29a3b875433e608424fb48c"}, {file = "elasticsearch-8.7.0.tar.gz", hash = "sha256:1849356db4192fbb75b2b8f3d55edb0fb07f8d855f386b318a7889222b49591f"}, ] [package.dependencies] aiohttp = {version = ">=3,<4", optional = true, markers = "extra == \"async\""} elastic-transport = ">=8,<9" [package.extras] async = ["aiohttp (>=3,<4)"] requests = ["requests (>=2.4.0,<3.0.0)"] [[package]] name = "entrypoints" version = "0.4" description = "Discover and load entry points from installed packages." category = "main" optional = false python-versions = ">=3.6" files = [ {file = "entrypoints-0.4-py3-none-any.whl", hash = "sha256:f174b5ff827504fd3cd97cc3f8649f3693f51538c7e4bdf3ef002c8429d42f9f"}, {file = "entrypoints-0.4.tar.gz", hash = "sha256:b706eddaa9218a19ebcd67b56818f05bb27589b1ca9e8d797b74affad4ccacd4"}, ] [[package]] name = "exceptiongroup" version = "1.1.1" description = "Backport of PEP 654 (exception groups)" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "exceptiongroup-1.1.1-py3-none-any.whl", hash = "sha256:232c37c63e4f682982c8b6459f33a8981039e5fb8756b2074364e5055c498c9e"}, {file = "exceptiongroup-1.1.1.tar.gz", hash = "sha256:d484c3090ba2889ae2928419117447a14daf3c1231d5e30d0aae34f354f01785"}, ] [package.extras] test = ["pytest (>=6)"] [[package]] name = "executing" version = "1.2.0" description = "Get the currently executing AST node of a frame, and other information" category = "dev" optional = false python-versions = "*" files = [ {file = "executing-1.2.0-py2.py3-none-any.whl", hash = "sha256:0314a69e37426e3608aada02473b4161d4caf5a4b244d1d0c48072b8fee7bacc"}, {file = "executing-1.2.0.tar.gz", hash = "sha256:19da64c18d2d851112f09c287f8d3dbbdf725ab0e569077efb6cdcbd3497c107"}, ] [package.extras] tests = ["asttokens", "littleutils", "pytest", "rich"] [[package]] name = "faiss-cpu" version = "1.7.4" description = "A library for efficient similarity search and clustering of dense vectors." category = "main" optional = true python-versions = "*" files = [ {file = "faiss-cpu-1.7.4.tar.gz", hash = "sha256:265dc31b0c079bf4433303bf6010f73922490adff9188b915e2d3f5e9c82dd0a"}, {file = "faiss_cpu-1.7.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:50d4ebe7f1869483751c558558504f818980292a9b55be36f9a1ee1009d9a686"}, {file = "faiss_cpu-1.7.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:7b1db7fae7bd8312aeedd0c41536bcd19a6e297229e1dce526bde3a73ab8c0b5"}, {file = "faiss_cpu-1.7.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:17b7fa7194a228a84929d9e6619d0e7dbf00cc0f717e3462253766f5e3d07de8"}, {file = "faiss_cpu-1.7.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dca531952a2e3eac56f479ff22951af4715ee44788a3fe991d208d766d3f95f3"}, {file = "faiss_cpu-1.7.4-cp310-cp310-win_amd64.whl", hash = "sha256:7173081d605e74766f950f2e3d6568a6f00c53f32fd9318063e96728c6c62821"}, {file = "faiss_cpu-1.7.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:d0bbd6f55d7940cc0692f79e32a58c66106c3c950cee2341b05722de9da23ea3"}, {file = "faiss_cpu-1.7.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e13c14280376100f143767d0efe47dcb32618f69e62bbd3ea5cd38c2e1755926"}, {file = "faiss_cpu-1.7.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c521cb8462f3b00c0c7dfb11caff492bb67816528b947be28a3b76373952c41d"}, {file = "faiss_cpu-1.7.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:afdd9fe1141117fed85961fd36ee627c83fc3b9fd47bafb52d3c849cc2f088b7"}, {file = "faiss_cpu-1.7.4-cp311-cp311-win_amd64.whl", hash = "sha256:2ff7f57889ea31d945e3b87275be3cad5d55b6261a4e3f51c7aba304d76b81fb"}, {file = "faiss_cpu-1.7.4-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:eeaf92f27d76249fb53c1adafe617b0f217ab65837acf7b4ec818511caf6e3d8"}, {file = "faiss_cpu-1.7.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:102b1bd763e9b0c281ac312590af3eaf1c8b663ccbc1145821fe6a9f92b8eaaf"}, {file = "faiss_cpu-1.7.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5512da6707c967310c46ff712b00418b7ae28e93cb609726136e826e9f2f14fa"}, {file = "faiss_cpu-1.7.4-cp37-cp37m-win_amd64.whl", hash = "sha256:0c2e5b9d8c28c99f990e87379d5bbcc6c914da91ebb4250166864fd12db5755b"}, {file = "faiss_cpu-1.7.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:43f67f325393145d360171cd98786fcea6120ce50397319afd3bb78be409fb8a"}, {file = "faiss_cpu-1.7.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6a4e4af194b8fce74c4b770cad67ad1dd1b4673677fc169723e4c50ba5bd97a8"}, {file = "faiss_cpu-1.7.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:31bfb7b9cffc36897ae02a983e04c09fe3b8c053110a287134751a115334a1df"}, {file = "faiss_cpu-1.7.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:52d7de96abef2340c0d373c1f5cbc78026a3cebb0f8f3a5920920a00210ead1f"}, {file = "faiss_cpu-1.7.4-cp38-cp38-win_amd64.whl", hash = "sha256:699feef85b23c2c729d794e26ca69bebc0bee920d676028c06fd0e0becc15c7e"}, {file = "faiss_cpu-1.7.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:559a0133f5ed44422acb09ee1ac0acffd90c6666d1bc0d671c18f6e93ad603e2"}, {file = "faiss_cpu-1.7.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ea1d71539fe3dc0f1bed41ef954ca701678776f231046bf0ca22ccea5cf5bef6"}, {file = "faiss_cpu-1.7.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:12d45e0157024eb3249842163162983a1ac8b458f1a8b17bbf86f01be4585a99"}, {file = "faiss_cpu-1.7.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2f0eab359e066d32c874f51a7d4bf6440edeec068b7fe47e6d803c73605a8b4c"}, {file = "faiss_cpu-1.7.4-cp39-cp39-win_amd64.whl", hash = "sha256:98459ceeeb735b9df1a5b94572106ffe0a6ce740eb7e4626715dd218657bb4dc"}, ] [[package]] name = "fastapi" version = "0.95.2" description = "FastAPI framework, high performance, easy to learn, fast to code, ready for production" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "fastapi-0.95.2-py3-none-any.whl", hash = "sha256:d374dbc4ef2ad9b803899bd3360d34c534adc574546e25314ab72c0c4411749f"}, {file = "fastapi-0.95.2.tar.gz", hash = "sha256:4d9d3e8c71c73f11874bcf5e33626258d143252e329a01002f767306c64fb982"}, ] [package.dependencies] pydantic = ">=1.6.2,<1.7 || >1.7,<1.7.1 || >1.7.1,<1.7.2 || >1.7.2,<1.7.3 || >1.7.3,<1.8 || >1.8,<1.8.1 || >1.8.1,<2.0.0" starlette = ">=0.27.0,<0.28.0" [package.extras] all = ["email-validator (>=1.1.1)", "httpx (>=0.23.0)", "itsdangerous (>=1.1.0)", "jinja2 (>=2.11.2)", "orjson (>=3.2.1)", "python-multipart (>=0.0.5)", "pyyaml (>=5.3.1)", "ujson (>=4.0.1,!=4.0.2,!=4.1.0,!=4.2.0,!=4.3.0,!=5.0.0,!=5.1.0)", "uvicorn[standard] (>=0.12.0)"] dev = ["pre-commit (>=2.17.0,<3.0.0)", "ruff (==0.0.138)", "uvicorn[standard] (>=0.12.0,<0.21.0)"] doc = ["mdx-include (>=1.4.1,<2.0.0)", "mkdocs (>=1.1.2,<2.0.0)", "mkdocs-markdownextradata-plugin (>=0.1.7,<0.3.0)", "mkdocs-material (>=8.1.4,<9.0.0)", "pyyaml (>=5.3.1,<7.0.0)", "typer-cli (>=0.0.13,<0.0.14)", "typer[all] (>=0.6.1,<0.8.0)"] test = ["anyio[trio] (>=3.2.1,<4.0.0)", "black (==23.1.0)", "coverage[toml] (>=6.5.0,<8.0)", "databases[sqlite] (>=0.3.2,<0.7.0)", "email-validator (>=1.1.1,<2.0.0)", "flask (>=1.1.2,<3.0.0)", "httpx (>=0.23.0,<0.24.0)", "isort (>=5.0.6,<6.0.0)", "mypy (==0.982)", "orjson (>=3.2.1,<4.0.0)", "passlib[bcrypt] (>=1.7.2,<2.0.0)", "peewee (>=3.13.3,<4.0.0)", "pytest (>=7.1.3,<8.0.0)", "python-jose[cryptography] (>=3.3.0,<4.0.0)", "python-multipart (>=0.0.5,<0.0.7)", "pyyaml (>=5.3.1,<7.0.0)", "ruff (==0.0.138)", "sqlalchemy (>=1.3.18,<1.4.43)", "types-orjson (==3.6.2)", "types-ujson (==5.7.0.1)", "ujson (>=4.0.1,!=4.0.2,!=4.1.0,!=4.2.0,!=4.3.0,!=5.0.0,!=5.1.0,<6.0.0)"] [[package]] name = "fastjsonschema" version = "2.16.3" description = "Fastest Python implementation of JSON schema" category = "dev" optional = false python-versions = "*" files = [ {file = "fastjsonschema-2.16.3-py3-none-any.whl", hash = "sha256:04fbecc94300436f628517b05741b7ea009506ce8f946d40996567c669318490"}, {file = "fastjsonschema-2.16.3.tar.gz", hash = "sha256:4a30d6315a68c253cfa8f963b9697246315aa3db89f98b97235e345dedfb0b8e"}, ] [package.extras] devel = ["colorama", "json-spec", "jsonschema", "pylint", "pytest", "pytest-benchmark", "pytest-cache", "validictory"] [[package]] name = "feedparser" version = "6.0.10" description = "Universal feed parser, handles RSS 0.9x, RSS 1.0, RSS 2.0, CDF, Atom 0.3, and Atom 1.0 feeds" category = "main" optional = false python-versions = ">=3.6" files = [ {file = "feedparser-6.0.10-py3-none-any.whl", hash = "sha256:79c257d526d13b944e965f6095700587f27388e50ea16fd245babe4dfae7024f"}, {file = "feedparser-6.0.10.tar.gz", hash = "sha256:27da485f4637ce7163cdeab13a80312b93b7d0c1b775bef4a47629a3110bca51"}, ] [package.dependencies] sgmllib3k = "*" [[package]] name = "filelock" version = "3.12.0" description = "A platform independent file lock." category = "main" optional = false python-versions = ">=3.7" files = [ {file = "filelock-3.12.0-py3-none-any.whl", hash = "sha256:ad98852315c2ab702aeb628412cbf7e95b7ce8c3bf9565670b4eaecf1db370a9"}, {file = "filelock-3.12.0.tar.gz", hash = "sha256:fc03ae43288c013d2ea83c8597001b1129db351aad9c57fe2409327916b8e718"}, ] [package.extras] docs = ["furo (>=2023.3.27)", "sphinx (>=6.1.3)", "sphinx-autodoc-typehints (>=1.23,!=1.23.4)"] testing = ["covdefaults (>=2.3)", "coverage (>=7.2.3)", "diff-cover (>=7.5)", "pytest (>=7.3.1)", "pytest-cov (>=4)", "pytest-mock (>=3.10)", "pytest-timeout (>=2.1)"] [[package]] name = "flatbuffers" version = "23.5.9" description = "The FlatBuffers serialization format for Python" category = "main" optional = true python-versions = "*" files = [ {file = "flatbuffers-23.5.9-py2.py3-none-any.whl", hash = "sha256:a02eb8c2d61cba153cd211937de8f8f7764b6a7510971b2c4684ed8b02e6e571"}, {file = "flatbuffers-23.5.9.tar.gz", hash = "sha256:93a506b6ab771c79ce816e7b35a93ed08ec5b4c9edb811101a22c44a4152f018"}, ] [[package]] name = "fluent-logger" version = "0.10.0" description = "A Python logging handler for Fluentd event collector" category = "main" optional = true python-versions = ">=3.5" files = [ {file = "fluent-logger-0.10.0.tar.gz", hash = "sha256:678bda90c513ff0393964b64544ce41ef25669d2089ce6c3b63d9a18554b9bfa"}, {file = "fluent_logger-0.10.0-py2.py3-none-any.whl", hash = "sha256:543637e5e62ec3fc3c92b44e5a4e148a3cea88a0f8ca4fae26c7e60fda7564c1"}, ] [package.dependencies] msgpack = ">1.0" [[package]] name = "fqdn" version = "1.5.1" description = "Validates fully-qualified domain names against RFC 1123, so that they are acceptable to modern bowsers" category = "dev" optional = false python-versions = ">=2.7, !=3.0, !=3.1, !=3.2, !=3.3, !=3.4, <4" files = [ {file = "fqdn-1.5.1-py3-none-any.whl", hash = "sha256:3a179af3761e4df6eb2e026ff9e1a3033d3587bf980a0b1b2e1e5d08d7358014"}, {file = "fqdn-1.5.1.tar.gz", hash = "sha256:105ed3677e767fb5ca086a0c1f4bb66ebc3c100be518f0e0d755d9eae164d89f"}, ] [[package]] name = "freezegun" version = "1.2.2" description = "Let your Python tests travel through time" category = "dev" optional = false python-versions = ">=3.6" files = [ {file = "freezegun-1.2.2-py3-none-any.whl", hash = "sha256:ea1b963b993cb9ea195adbd893a48d573fda951b0da64f60883d7e988b606c9f"}, {file = "freezegun-1.2.2.tar.gz", hash = "sha256:cd22d1ba06941384410cd967d8a99d5ae2442f57dfafeff2fda5de8dc5c05446"}, ] [package.dependencies] python-dateutil = ">=2.7" [[package]] name = "frozenlist" version = "1.3.3" description = "A list-like structure which implements collections.abc.MutableSequence" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "frozenlist-1.3.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:ff8bf625fe85e119553b5383ba0fb6aa3d0ec2ae980295aaefa552374926b3f4"}, {file = "frozenlist-1.3.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:dfbac4c2dfcc082fcf8d942d1e49b6aa0766c19d3358bd86e2000bf0fa4a9cf0"}, {file = "frozenlist-1.3.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b1c63e8d377d039ac769cd0926558bb7068a1f7abb0f003e3717ee003ad85530"}, {file = "frozenlist-1.3.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7fdfc24dcfce5b48109867c13b4cb15e4660e7bd7661741a391f821f23dfdca7"}, {file = "frozenlist-1.3.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2c926450857408e42f0bbc295e84395722ce74bae69a3b2aa2a65fe22cb14b99"}, {file = "frozenlist-1.3.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1841e200fdafc3d51f974d9d377c079a0694a8f06de2e67b48150328d66d5483"}, {file = "frozenlist-1.3.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f470c92737afa7d4c3aacc001e335062d582053d4dbe73cda126f2d7031068dd"}, {file = "frozenlist-1.3.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:783263a4eaad7c49983fe4b2e7b53fa9770c136c270d2d4bbb6d2192bf4d9caf"}, {file = "frozenlist-1.3.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:924620eef691990dfb56dc4709f280f40baee568c794b5c1885800c3ecc69816"}, {file = "frozenlist-1.3.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:ae4dc05c465a08a866b7a1baf360747078b362e6a6dbeb0c57f234db0ef88ae0"}, {file = "frozenlist-1.3.3-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:bed331fe18f58d844d39ceb398b77d6ac0b010d571cba8267c2e7165806b00ce"}, {file = "frozenlist-1.3.3-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:02c9ac843e3390826a265e331105efeab489ffaf4dd86384595ee8ce6d35ae7f"}, {file = "frozenlist-1.3.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:9545a33965d0d377b0bc823dcabf26980e77f1b6a7caa368a365a9497fb09420"}, {file = "frozenlist-1.3.3-cp310-cp310-win32.whl", hash = "sha256:d5cd3ab21acbdb414bb6c31958d7b06b85eeb40f66463c264a9b343a4e238642"}, {file = "frozenlist-1.3.3-cp310-cp310-win_amd64.whl", hash = "sha256:b756072364347cb6aa5b60f9bc18e94b2f79632de3b0190253ad770c5df17db1"}, {file = "frozenlist-1.3.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:b4395e2f8d83fbe0c627b2b696acce67868793d7d9750e90e39592b3626691b7"}, {file = "frozenlist-1.3.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:14143ae966a6229350021384870458e4777d1eae4c28d1a7aa47f24d030e6678"}, {file = "frozenlist-1.3.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5d8860749e813a6f65bad8285a0520607c9500caa23fea6ee407e63debcdbef6"}, {file = "frozenlist-1.3.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:23d16d9f477bb55b6154654e0e74557040575d9d19fe78a161bd33d7d76808e8"}, {file = "frozenlist-1.3.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eb82dbba47a8318e75f679690190c10a5e1f447fbf9df41cbc4c3afd726d88cb"}, {file = "frozenlist-1.3.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9309869032abb23d196cb4e4db574232abe8b8be1339026f489eeb34a4acfd91"}, {file = "frozenlist-1.3.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a97b4fe50b5890d36300820abd305694cb865ddb7885049587a5678215782a6b"}, {file = "frozenlist-1.3.3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c188512b43542b1e91cadc3c6c915a82a5eb95929134faf7fd109f14f9892ce4"}, {file = "frozenlist-1.3.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:303e04d422e9b911a09ad499b0368dc551e8c3cd15293c99160c7f1f07b59a48"}, {file = "frozenlist-1.3.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:0771aed7f596c7d73444c847a1c16288937ef988dc04fb9f7be4b2aa91db609d"}, {file = "frozenlist-1.3.3-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:66080ec69883597e4d026f2f71a231a1ee9887835902dbe6b6467d5a89216cf6"}, {file = "frozenlist-1.3.3-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:41fe21dc74ad3a779c3d73a2786bdf622ea81234bdd4faf90b8b03cad0c2c0b4"}, {file = "frozenlist-1.3.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:f20380df709d91525e4bee04746ba612a4df0972c1b8f8e1e8af997e678c7b81"}, {file = "frozenlist-1.3.3-cp311-cp311-win32.whl", hash = "sha256:f30f1928162e189091cf4d9da2eac617bfe78ef907a761614ff577ef4edfb3c8"}, {file = "frozenlist-1.3.3-cp311-cp311-win_amd64.whl", hash = "sha256:a6394d7dadd3cfe3f4b3b186e54d5d8504d44f2d58dcc89d693698e8b7132b32"}, {file = "frozenlist-1.3.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:8df3de3a9ab8325f94f646609a66cbeeede263910c5c0de0101079ad541af332"}, {file = "frozenlist-1.3.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0693c609e9742c66ba4870bcee1ad5ff35462d5ffec18710b4ac89337ff16e27"}, {file = "frozenlist-1.3.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cd4210baef299717db0a600d7a3cac81d46ef0e007f88c9335db79f8979c0d3d"}, {file = "frozenlist-1.3.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:394c9c242113bfb4b9aa36e2b80a05ffa163a30691c7b5a29eba82e937895d5e"}, {file = "frozenlist-1.3.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6327eb8e419f7d9c38f333cde41b9ae348bec26d840927332f17e887a8dcb70d"}, {file = "frozenlist-1.3.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2e24900aa13212e75e5b366cb9065e78bbf3893d4baab6052d1aca10d46d944c"}, {file = "frozenlist-1.3.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:3843f84a6c465a36559161e6c59dce2f2ac10943040c2fd021cfb70d58c4ad56"}, {file = "frozenlist-1.3.3-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:84610c1502b2461255b4c9b7d5e9c48052601a8957cd0aea6ec7a7a1e1fb9420"}, {file = "frozenlist-1.3.3-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:c21b9aa40e08e4f63a2f92ff3748e6b6c84d717d033c7b3438dd3123ee18f70e"}, {file = "frozenlist-1.3.3-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:efce6ae830831ab6a22b9b4091d411698145cb9b8fc869e1397ccf4b4b6455cb"}, {file = "frozenlist-1.3.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:40de71985e9042ca00b7953c4f41eabc3dc514a2d1ff534027f091bc74416401"}, {file = "frozenlist-1.3.3-cp37-cp37m-win32.whl", hash = "sha256:180c00c66bde6146a860cbb81b54ee0df350d2daf13ca85b275123bbf85de18a"}, {file = "frozenlist-1.3.3-cp37-cp37m-win_amd64.whl", hash = "sha256:9bbbcedd75acdfecf2159663b87f1bb5cfc80e7cd99f7ddd9d66eb98b14a8411"}, {file = "frozenlist-1.3.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:034a5c08d36649591be1cbb10e09da9f531034acfe29275fc5454a3b101ce41a"}, {file = "frozenlist-1.3.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:ba64dc2b3b7b158c6660d49cdb1d872d1d0bf4e42043ad8d5006099479a194e5"}, {file = "frozenlist-1.3.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:47df36a9fe24054b950bbc2db630d508cca3aa27ed0566c0baf661225e52c18e"}, {file = "frozenlist-1.3.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:008a054b75d77c995ea26629ab3a0c0d7281341f2fa7e1e85fa6153ae29ae99c"}, {file = "frozenlist-1.3.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:841ea19b43d438a80b4de62ac6ab21cfe6827bb8a9dc62b896acc88eaf9cecba"}, {file = "frozenlist-1.3.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e235688f42b36be2b6b06fc37ac2126a73b75fb8d6bc66dd632aa35286238703"}, {file = "frozenlist-1.3.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ca713d4af15bae6e5d79b15c10c8522859a9a89d3b361a50b817c98c2fb402a2"}, {file = "frozenlist-1.3.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ac5995f2b408017b0be26d4a1d7c61bce106ff3d9e3324374d66b5964325448"}, {file = "frozenlist-1.3.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:a4ae8135b11652b08a8baf07631d3ebfe65a4c87909dbef5fa0cdde440444ee4"}, {file = "frozenlist-1.3.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:4ea42116ceb6bb16dbb7d526e242cb6747b08b7710d9782aa3d6732bd8d27649"}, {file = "frozenlist-1.3.3-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:810860bb4bdce7557bc0febb84bbd88198b9dbc2022d8eebe5b3590b2ad6c842"}, {file = "frozenlist-1.3.3-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:ee78feb9d293c323b59a6f2dd441b63339a30edf35abcb51187d2fc26e696d13"}, {file = "frozenlist-1.3.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:0af2e7c87d35b38732e810befb9d797a99279cbb85374d42ea61c1e9d23094b3"}, {file = "frozenlist-1.3.3-cp38-cp38-win32.whl", hash = "sha256:899c5e1928eec13fd6f6d8dc51be23f0d09c5281e40d9cf4273d188d9feeaf9b"}, {file = "frozenlist-1.3.3-cp38-cp38-win_amd64.whl", hash = "sha256:7f44e24fa70f6fbc74aeec3e971f60a14dde85da364aa87f15d1be94ae75aeef"}, {file = "frozenlist-1.3.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:2b07ae0c1edaa0a36339ec6cce700f51b14a3fc6545fdd32930d2c83917332cf"}, {file = "frozenlist-1.3.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:ebb86518203e12e96af765ee89034a1dbb0c3c65052d1b0c19bbbd6af8a145e1"}, {file = "frozenlist-1.3.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:5cf820485f1b4c91e0417ea0afd41ce5cf5965011b3c22c400f6d144296ccbc0"}, {file = "frozenlist-1.3.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5c11e43016b9024240212d2a65043b70ed8dfd3b52678a1271972702d990ac6d"}, {file = "frozenlist-1.3.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8fa3c6e3305aa1146b59a09b32b2e04074945ffcfb2f0931836d103a2c38f936"}, {file = "frozenlist-1.3.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:352bd4c8c72d508778cf05ab491f6ef36149f4d0cb3c56b1b4302852255d05d5"}, {file = "frozenlist-1.3.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:65a5e4d3aa679610ac6e3569e865425b23b372277f89b5ef06cf2cdaf1ebf22b"}, {file = "frozenlist-1.3.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b1e2c1185858d7e10ff045c496bbf90ae752c28b365fef2c09cf0fa309291669"}, {file = "frozenlist-1.3.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:f163d2fd041c630fed01bc48d28c3ed4a3b003c00acd396900e11ee5316b56bb"}, {file = "frozenlist-1.3.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:05cdb16d09a0832eedf770cb7bd1fe57d8cf4eaf5aced29c4e41e3f20b30a784"}, {file = "frozenlist-1.3.3-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:8bae29d60768bfa8fb92244b74502b18fae55a80eac13c88eb0b496d4268fd2d"}, {file = "frozenlist-1.3.3-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:eedab4c310c0299961ac285591acd53dc6723a1ebd90a57207c71f6e0c2153ab"}, {file = "frozenlist-1.3.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:3bbdf44855ed8f0fbcd102ef05ec3012d6a4fd7c7562403f76ce6a52aeffb2b1"}, {file = "frozenlist-1.3.3-cp39-cp39-win32.whl", hash = "sha256:efa568b885bca461f7c7b9e032655c0c143d305bf01c30caf6db2854a4532b38"}, {file = "frozenlist-1.3.3-cp39-cp39-win_amd64.whl", hash = "sha256:cfe33efc9cb900a4c46f91a5ceba26d6df370ffddd9ca386eb1d4f0ad97b9ea9"}, {file = "frozenlist-1.3.3.tar.gz", hash = "sha256:58bcc55721e8a90b88332d6cd441261ebb22342e238296bb330968952fbb3a6a"}, ] [[package]] name = "fsspec" version = "2023.5.0" description = "File-system specification" category = "main" optional = false python-versions = ">=3.8" files = [ {file = "fsspec-2023.5.0-py3-none-any.whl", hash = "sha256:51a4ad01a5bb66fcc58036e288c0d53d3975a0df2a5dc59a93b59bade0391f2a"}, {file = "fsspec-2023.5.0.tar.gz", hash = "sha256:b3b56e00fb93ea321bc9e5d9cf6f8522a0198b20eb24e02774d329e9c6fb84ce"}, ] [package.dependencies] aiohttp = {version = "<4.0.0a0 || >4.0.0a0,<4.0.0a1 || >4.0.0a1", optional = true, markers = "extra == \"http\""} requests = {version = "*", optional = true, markers = "extra == \"http\""} [package.extras] abfs = ["adlfs"] adl = ["adlfs"] arrow = ["pyarrow (>=1)"] dask = ["dask", "distributed"] devel = ["pytest", "pytest-cov"] dropbox = ["dropbox", "dropboxdrivefs", "requests"] full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "dask", "distributed", "dropbox", "dropboxdrivefs", "fusepy", "gcsfs", "libarchive-c", "ocifs", "panel", "paramiko", "pyarrow (>=1)", "pygit2", "requests", "s3fs", "smbprotocol", "tqdm"] fuse = ["fusepy"] gcs = ["gcsfs"] git = ["pygit2"] github = ["requests"] gs = ["gcsfs"] gui = ["panel"] hdfs = ["pyarrow (>=1)"] http = ["aiohttp (!=4.0.0a0,!=4.0.0a1)", "requests"] libarchive = ["libarchive-c"] oci = ["ocifs"] s3 = ["s3fs"] sftp = ["paramiko"] smb = ["smbprotocol"] ssh = ["paramiko"] tqdm = ["tqdm"] [[package]] name = "gast" version = "0.4.0" description = "Python AST that abstracts the underlying Python version" category = "main" optional = true python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ {file = "gast-0.4.0-py3-none-any.whl", hash = "sha256:b7adcdd5adbebf1adf17378da5ba3f543684dbec47b1cda1f3997e573cd542c4"}, {file = "gast-0.4.0.tar.gz", hash = "sha256:40feb7b8b8434785585ab224d1568b857edb18297e5a3047f1ba012bc83b42c1"}, ] [[package]] name = "geojson" version = "2.5.0" description = "Python bindings and utilities for GeoJSON" category = "main" optional = true python-versions = "*" files = [ {file = "geojson-2.5.0-py2.py3-none-any.whl", hash = "sha256:ccbd13368dd728f4e4f13ffe6aaf725b6e802c692ba0dde628be475040c534ba"}, {file = "geojson-2.5.0.tar.gz", hash = "sha256:6e4bb7ace4226a45d9c8c8b1348b3fc43540658359f93c3f7e03efa9f15f658a"}, ] [[package]] name = "geomet" version = "0.2.1.post1" description = "GeoJSON <-> WKT/WKB conversion utilities" category = "dev" optional = false python-versions = ">2.6, !=3.3.*, <4" files = [ {file = "geomet-0.2.1.post1-py3-none-any.whl", hash = "sha256:a41a1e336b381416d6cbed7f1745c848e91defaa4d4c1bdc1312732e46ffad2b"}, {file = "geomet-0.2.1.post1.tar.gz", hash = "sha256:91d754f7c298cbfcabd3befdb69c641c27fe75e808b27aa55028605761d17e95"}, ] [package.dependencies] click = "*" six = "*" [[package]] name = "google-api-core" version = "2.11.0" description = "Google API client core library" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "google-api-core-2.11.0.tar.gz", hash = "sha256:4b9bb5d5a380a0befa0573b302651b8a9a89262c1730e37bf423cec511804c22"}, {file = "google_api_core-2.11.0-py3-none-any.whl", hash = "sha256:ce222e27b0de0d7bc63eb043b956996d6dccab14cc3b690aaea91c9cc99dc16e"}, ] [package.dependencies] google-auth = ">=2.14.1,<3.0dev" googleapis-common-protos = ">=1.56.2,<2.0dev" protobuf = ">=3.19.5,<3.20.0 || >3.20.0,<3.20.1 || >3.20.1,<4.21.0 || >4.21.0,<4.21.1 || >4.21.1,<4.21.2 || >4.21.2,<4.21.3 || >4.21.3,<4.21.4 || >4.21.4,<4.21.5 || >4.21.5,<5.0.0dev" requests = ">=2.18.0,<3.0.0dev" [package.extras] grpc = ["grpcio (>=1.33.2,<2.0dev)", "grpcio (>=1.49.1,<2.0dev)", "grpcio-status (>=1.33.2,<2.0dev)", "grpcio-status (>=1.49.1,<2.0dev)"] grpcgcp = ["grpcio-gcp (>=0.2.2,<1.0dev)"] grpcio-gcp = ["grpcio-gcp (>=0.2.2,<1.0dev)"] [[package]] name = "google-api-python-client" version = "2.70.0" description = "Google API Client Library for Python" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "google-api-python-client-2.70.0.tar.gz", hash = "sha256:262de094d5a30d337f59e66581019fed45b698c078397ac48dd323c0968236e7"}, {file = "google_api_python_client-2.70.0-py2.py3-none-any.whl", hash = "sha256:67da78956f2bf4b763305cd791aeab250878c1f88f1422aaba4682a608b8e5a4"}, ] [package.dependencies] google-api-core = ">=1.31.5,<2.0.0 || >2.3.0,<3.0.0dev" google-auth = ">=1.19.0,<3.0.0dev" google-auth-httplib2 = ">=0.1.0" httplib2 = ">=0.15.0,<1dev" uritemplate = ">=3.0.1,<5" [[package]] name = "google-auth" version = "2.18.1" description = "Google Authentication Library" category = "main" optional = true python-versions = ">=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*" files = [ {file = "google-auth-2.18.1.tar.gz", hash = "sha256:d7a3249027e7f464fbbfd7ee8319a08ad09d2eea51578575c4bd360ffa049ccb"}, {file = "google_auth-2.18.1-py2.py3-none-any.whl", hash = "sha256:55a395cdfd3f3dd3f649131d41f97c17b4ed8a2aac1be3502090c716314e8a37"}, ] [package.dependencies] cachetools = ">=2.0.0,<6.0" pyasn1-modules = ">=0.2.1" rsa = {version = ">=3.1.4,<5", markers = "python_version >= \"3.6\""} six = ">=1.9.0" urllib3 = "<2.0" [package.extras] aiohttp = ["aiohttp (>=3.6.2,<4.0.0dev)", "requests (>=2.20.0,<3.0.0dev)"] enterprise-cert = ["cryptography (==36.0.2)", "pyopenssl (==22.0.0)"] pyopenssl = ["cryptography (>=38.0.3)", "pyopenssl (>=20.0.0)"] reauth = ["pyu2f (>=0.1.5)"] requests = ["requests (>=2.20.0,<3.0.0dev)"] [[package]] name = "google-auth-httplib2" version = "0.1.0" description = "Google Authentication Library: httplib2 transport" category = "main" optional = true python-versions = "*" files = [ {file = "google-auth-httplib2-0.1.0.tar.gz", hash = "sha256:a07c39fd632becacd3f07718dfd6021bf396978f03ad3ce4321d060015cc30ac"}, {file = "google_auth_httplib2-0.1.0-py2.py3-none-any.whl", hash = "sha256:31e49c36c6b5643b57e82617cb3e021e3e1d2df9da63af67252c02fa9c1f4a10"}, ] [package.dependencies] google-auth = "*" httplib2 = ">=0.15.0" six = "*" [[package]] name = "google-auth-oauthlib" version = "0.4.6" description = "Google Authentication Library" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "google-auth-oauthlib-0.4.6.tar.gz", hash = "sha256:a90a072f6993f2c327067bf65270046384cda5a8ecb20b94ea9a687f1f233a7a"}, {file = "google_auth_oauthlib-0.4.6-py2.py3-none-any.whl", hash = "sha256:3f2a6e802eebbb6fb736a370fbf3b055edcb6b52878bf2f26330b5e041316c73"}, ] [package.dependencies] google-auth = ">=1.0.0" requests-oauthlib = ">=0.7.0" [package.extras] tool = ["click (>=6.0.0)"] [[package]] name = "google-pasta" version = "0.2.0" description = "pasta is an AST-based Python refactoring library" category = "main" optional = true python-versions = "*" files = [ {file = "google-pasta-0.2.0.tar.gz", hash = "sha256:c9f2c8dfc8f96d0d5808299920721be30c9eec37f2389f28904f454565c8a16e"}, {file = "google_pasta-0.2.0-py2-none-any.whl", hash = "sha256:4612951da876b1a10fe3960d7226f0c7682cf901e16ac06e473b267a5afa8954"}, {file = "google_pasta-0.2.0-py3-none-any.whl", hash = "sha256:b32482794a366b5366a32c92a9a9201b107821889935a02b3e51f6b432ea84ed"}, ] [package.dependencies] six = "*" [[package]] name = "google-search-results" version = "2.4.2" description = "Scrape and search localized results from Google, Bing, Baidu, Yahoo, Yandex, Ebay, Homedepot, youtube at scale using SerpApi.com" category = "main" optional = true python-versions = ">=3.5" files = [ {file = "google_search_results-2.4.2.tar.gz", hash = "sha256:603a30ecae2af8e600b22635757a6df275dad4b934f975e67878ccd640b78245"}, ] [package.dependencies] requests = "*" [[package]] name = "googleapis-common-protos" version = "1.59.0" description = "Common protobufs used in Google APIs" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "googleapis-common-protos-1.59.0.tar.gz", hash = "sha256:4168fcb568a826a52f23510412da405abd93f4d23ba544bb68d943b14ba3cb44"}, {file = "googleapis_common_protos-1.59.0-py2.py3-none-any.whl", hash = "sha256:b287dc48449d1d41af0c69f4ea26242b5ae4c3d7249a38b0984c86a4caffff1f"}, ] [package.dependencies] protobuf = ">=3.19.5,<3.20.0 || >3.20.0,<3.20.1 || >3.20.1,<4.21.1 || >4.21.1,<4.21.2 || >4.21.2,<4.21.3 || >4.21.3,<4.21.4 || >4.21.4,<4.21.5 || >4.21.5,<5.0.0dev" [package.extras] grpc = ["grpcio (>=1.44.0,<2.0.0dev)"] [[package]] name = "gptcache" version = "0.1.24" description = "GPTCache, a powerful caching library that can be used to speed up and lower the cost of chat applications that rely on the LLM service. GPTCache works as a memcache for AIGC applications, similar to how Redis works for traditional applications." category = "main" optional = false python-versions = ">=3.8.1" files = [ {file = "gptcache-0.1.24-py3-none-any.whl", hash = "sha256:070aad4867ab915a7b5db3a886e9f0289e52d1cb92a407c984b0241298079750"}, {file = "gptcache-0.1.24.tar.gz", hash = "sha256:aa591cb00898d457a50a5e0cd137d0119e86819c110ce6c7bce2adafeae0a467"}, ] [package.dependencies] cachetools = "*" numpy = "*" requests = "*" [[package]] name = "gql" version = "3.4.1" description = "GraphQL client for Python" category = "main" optional = true python-versions = "*" files = [ {file = "gql-3.4.1-py2.py3-none-any.whl", hash = "sha256:315624ca0f4d571ef149d455033ebd35e45c1a13f18a059596aeddcea99135cf"}, {file = "gql-3.4.1.tar.gz", hash = "sha256:11dc5d8715a827f2c2899593439a4f36449db4f0eafa5b1ea63948f8a2f8c545"}, ] [package.dependencies] backoff = ">=1.11.1,<3.0" graphql-core = ">=3.2,<3.3" yarl = ">=1.6,<2.0" [package.extras] aiohttp = ["aiohttp (>=3.7.1,<3.9.0)"] all = ["aiohttp (>=3.7.1,<3.9.0)", "botocore (>=1.21,<2)", "requests (>=2.26,<3)", "requests-toolbelt (>=0.9.1,<1)", "urllib3 (>=1.26,<2)", "websockets (>=10,<11)", "websockets (>=9,<10)"] botocore = ["botocore (>=1.21,<2)"] dev = ["aiofiles", "aiohttp (>=3.7.1,<3.9.0)", "black (==22.3.0)", "botocore (>=1.21,<2)", "check-manifest (>=0.42,<1)", "flake8 (==3.8.1)", "isort (==4.3.21)", "mock (==4.0.2)", "mypy (==0.910)", "parse (==1.15.0)", "pytest (==6.2.5)", "pytest-asyncio (==0.16.0)", "pytest-console-scripts (==1.3.1)", "pytest-cov (==3.0.0)", "requests (>=2.26,<3)", "requests-toolbelt (>=0.9.1,<1)", "sphinx (>=3.0.0,<4)", "sphinx-argparse (==0.2.5)", "sphinx-rtd-theme (>=0.4,<1)", "types-aiofiles", "types-mock", "types-requests", "urllib3 (>=1.26,<2)", "vcrpy (==4.0.2)", "websockets (>=10,<11)", "websockets (>=9,<10)"] requests = ["requests (>=2.26,<3)", "requests-toolbelt (>=0.9.1,<1)", "urllib3 (>=1.26,<2)"] test = ["aiofiles", "aiohttp (>=3.7.1,<3.9.0)", "botocore (>=1.21,<2)", "mock (==4.0.2)", "parse (==1.15.0)", "pytest (==6.2.5)", "pytest-asyncio (==0.16.0)", "pytest-console-scripts (==1.3.1)", "pytest-cov (==3.0.0)", "requests (>=2.26,<3)", "requests-toolbelt (>=0.9.1,<1)", "urllib3 (>=1.26,<2)", "vcrpy (==4.0.2)", "websockets (>=10,<11)", "websockets (>=9,<10)"] test-no-transport = ["aiofiles", "mock (==4.0.2)", "parse (==1.15.0)", "pytest (==6.2.5)", "pytest-asyncio (==0.16.0)", "pytest-console-scripts (==1.3.1)", "pytest-cov (==3.0.0)", "vcrpy (==4.0.2)"] websockets = ["websockets (>=10,<11)", "websockets (>=9,<10)"] [[package]] name = "graphql-core" version = "3.2.3" description = "GraphQL implementation for Python, a port of GraphQL.js, the JavaScript reference implementation for GraphQL." category = "main" optional = true python-versions = ">=3.6,<4" files = [ {file = "graphql-core-3.2.3.tar.gz", hash = "sha256:06d2aad0ac723e35b1cb47885d3e5c45e956a53bc1b209a9fc5369007fe46676"}, {file = "graphql_core-3.2.3-py3-none-any.whl", hash = "sha256:5766780452bd5ec8ba133f8bf287dc92713e3868ddd83aee4faab9fc3e303dc3"}, ] [[package]] name = "greenlet" version = "2.0.1" description = "Lightweight in-process concurrent programming" category = "main" optional = false python-versions = ">=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*" files = [ {file = "greenlet-2.0.1-cp27-cp27m-macosx_10_14_x86_64.whl", hash = "sha256:9ed358312e63bf683b9ef22c8e442ef6c5c02973f0c2a939ec1d7b50c974015c"}, {file = "greenlet-2.0.1-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:4f09b0010e55bec3239278f642a8a506b91034f03a4fb28289a7d448a67f1515"}, {file = "greenlet-2.0.1-cp27-cp27m-win32.whl", hash = "sha256:1407fe45246632d0ffb7a3f4a520ba4e6051fc2cbd61ba1f806900c27f47706a"}, {file = "greenlet-2.0.1-cp27-cp27m-win_amd64.whl", hash = "sha256:3001d00eba6bbf084ae60ec7f4bb8ed375748f53aeaefaf2a37d9f0370558524"}, {file = "greenlet-2.0.1-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:d566b82e92ff2e09dd6342df7e0eb4ff6275a3f08db284888dcd98134dbd4243"}, {file = "greenlet-2.0.1-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:0722c9be0797f544a3ed212569ca3fe3d9d1a1b13942d10dd6f0e8601e484d26"}, {file = "greenlet-2.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d37990425b4687ade27810e3b1a1c37825d242ebc275066cfee8cb6b8829ccd"}, {file = "greenlet-2.0.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:be35822f35f99dcc48152c9839d0171a06186f2d71ef76dc57fa556cc9bf6b45"}, {file = "greenlet-2.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c140e7eb5ce47249668056edf3b7e9900c6a2e22fb0eaf0513f18a1b2c14e1da"}, {file = "greenlet-2.0.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d21681f09e297a5adaa73060737e3aa1279a13ecdcfcc6ef66c292cb25125b2d"}, {file = "greenlet-2.0.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fb412b7db83fe56847df9c47b6fe3f13911b06339c2aa02dcc09dce8bbf582cd"}, {file = "greenlet-2.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:c6a08799e9e88052221adca55741bf106ec7ea0710bca635c208b751f0d5b617"}, {file = "greenlet-2.0.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:9e112e03d37987d7b90c1e98ba5e1b59e1645226d78d73282f45b326f7bddcb9"}, {file = "greenlet-2.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:56961cfca7da2fdd178f95ca407fa330c64f33289e1804b592a77d5593d9bd94"}, {file = "greenlet-2.0.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:13ba6e8e326e2116c954074c994da14954982ba2795aebb881c07ac5d093a58a"}, {file = "greenlet-2.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1bf633a50cc93ed17e494015897361010fc08700d92676c87931d3ea464123ce"}, {file = "greenlet-2.0.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:9f2c221eecb7ead00b8e3ddb913c67f75cba078fd1d326053225a3f59d850d72"}, {file = "greenlet-2.0.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:13ebf93c343dd8bd010cd98e617cb4c1c1f352a0cf2524c82d3814154116aa82"}, {file = "greenlet-2.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:6f61d71bbc9b4a3de768371b210d906726535d6ca43506737682caa754b956cd"}, {file = "greenlet-2.0.1-cp35-cp35m-macosx_10_14_x86_64.whl", hash = "sha256:2d0bac0385d2b43a7bd1d651621a4e0f1380abc63d6fb1012213a401cbd5bf8f"}, {file = "greenlet-2.0.1-cp35-cp35m-manylinux2010_x86_64.whl", hash = "sha256:f6327b6907b4cb72f650a5b7b1be23a2aab395017aa6f1adb13069d66360eb3f"}, {file = "greenlet-2.0.1-cp35-cp35m-win32.whl", hash = "sha256:81b0ea3715bf6a848d6f7149d25bf018fd24554a4be01fcbbe3fdc78e890b955"}, {file = "greenlet-2.0.1-cp35-cp35m-win_amd64.whl", hash = "sha256:38255a3f1e8942573b067510f9611fc9e38196077b0c8eb7a8c795e105f9ce77"}, {file = "greenlet-2.0.1-cp36-cp36m-macosx_10_14_x86_64.whl", hash = "sha256:04957dc96669be041e0c260964cfef4c77287f07c40452e61abe19d647505581"}, {file = "greenlet-2.0.1-cp36-cp36m-manylinux2010_x86_64.whl", hash = "sha256:4aeaebcd91d9fee9aa768c1b39cb12214b30bf36d2b7370505a9f2165fedd8d9"}, {file = "greenlet-2.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:974a39bdb8c90a85982cdb78a103a32e0b1be986d411303064b28a80611f6e51"}, {file = "greenlet-2.0.1-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8dca09dedf1bd8684767bc736cc20c97c29bc0c04c413e3276e0962cd7aeb148"}, {file = "greenlet-2.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a4c0757db9bd08470ff8277791795e70d0bf035a011a528ee9a5ce9454b6cba2"}, {file = "greenlet-2.0.1-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:5067920de254f1a2dee8d3d9d7e4e03718e8fd2d2d9db962c8c9fa781ae82a39"}, {file = "greenlet-2.0.1-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:5a8e05057fab2a365c81abc696cb753da7549d20266e8511eb6c9d9f72fe3e92"}, {file = "greenlet-2.0.1-cp36-cp36m-win32.whl", hash = "sha256:3d75b8d013086b08e801fbbb896f7d5c9e6ccd44f13a9241d2bf7c0df9eda928"}, {file = "greenlet-2.0.1-cp36-cp36m-win_amd64.whl", hash = "sha256:097e3dae69321e9100202fc62977f687454cd0ea147d0fd5a766e57450c569fd"}, {file = "greenlet-2.0.1-cp37-cp37m-macosx_10_15_x86_64.whl", hash = "sha256:cb242fc2cda5a307a7698c93173d3627a2a90d00507bccf5bc228851e8304963"}, {file = "greenlet-2.0.1-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:72b00a8e7c25dcea5946692a2485b1a0c0661ed93ecfedfa9b6687bd89a24ef5"}, {file = "greenlet-2.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d5b0ff9878333823226d270417f24f4d06f235cb3e54d1103b71ea537a6a86ce"}, {file = "greenlet-2.0.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:be9e0fb2ada7e5124f5282d6381903183ecc73ea019568d6d63d33f25b2a9000"}, {file = "greenlet-2.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b493db84d124805865adc587532ebad30efa68f79ad68f11b336e0a51ec86c2"}, {file = "greenlet-2.0.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:0459d94f73265744fee4c2d5ec44c6f34aa8a31017e6e9de770f7bcf29710be9"}, {file = "greenlet-2.0.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:a20d33124935d27b80e6fdacbd34205732660e0a1d35d8b10b3328179a2b51a1"}, {file = "greenlet-2.0.1-cp37-cp37m-win32.whl", hash = "sha256:ea688d11707d30e212e0110a1aac7f7f3f542a259235d396f88be68b649e47d1"}, {file = "greenlet-2.0.1-cp37-cp37m-win_amd64.whl", hash = "sha256:afe07421c969e259e9403c3bb658968702bc3b78ec0b6fde3ae1e73440529c23"}, {file = "greenlet-2.0.1-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:cd4ccc364cf75d1422e66e247e52a93da6a9b73cefa8cad696f3cbbb75af179d"}, {file = "greenlet-2.0.1-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:4c8b1c43e75c42a6cafcc71defa9e01ead39ae80bd733a2608b297412beede68"}, {file = "greenlet-2.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:659f167f419a4609bc0516fb18ea69ed39dbb25594934bd2dd4d0401660e8a1e"}, {file = "greenlet-2.0.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:356e4519d4dfa766d50ecc498544b44c0249b6de66426041d7f8b751de4d6b48"}, {file = "greenlet-2.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:811e1d37d60b47cb8126e0a929b58c046251f28117cb16fcd371eed61f66b764"}, {file = "greenlet-2.0.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:d38ffd0e81ba8ef347d2be0772e899c289b59ff150ebbbbe05dc61b1246eb4e0"}, {file = "greenlet-2.0.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:0109af1138afbfb8ae647e31a2b1ab030f58b21dd8528c27beaeb0093b7938a9"}, {file = "greenlet-2.0.1-cp38-cp38-win32.whl", hash = "sha256:88c8d517e78acdf7df8a2134a3c4b964415b575d2840a2746ddb1cc6175f8608"}, {file = "greenlet-2.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:d6ee1aa7ab36475035eb48c01efae87d37936a8173fc4d7b10bb02c2d75dd8f6"}, {file = "greenlet-2.0.1-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:b1992ba9d4780d9af9726bbcef6a1db12d9ab1ccc35e5773685a24b7fb2758eb"}, {file = "greenlet-2.0.1-cp39-cp39-manylinux2010_x86_64.whl", hash = "sha256:b5e83e4de81dcc9425598d9469a624826a0b1211380ac444c7c791d4a2137c19"}, {file = "greenlet-2.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:505138d4fa69462447a562a7c2ef723c6025ba12ac04478bc1ce2fcc279a2db5"}, {file = "greenlet-2.0.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cce1e90dd302f45716a7715517c6aa0468af0bf38e814ad4eab58e88fc09f7f7"}, {file = "greenlet-2.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e9744c657d896c7b580455e739899e492a4a452e2dd4d2b3e459f6b244a638d"}, {file = "greenlet-2.0.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:662e8f7cad915ba75d8017b3e601afc01ef20deeeabf281bd00369de196d7726"}, {file = "greenlet-2.0.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:41b825d65f31e394b523c84db84f9383a2f7eefc13d987f308f4663794d2687e"}, {file = "greenlet-2.0.1-cp39-cp39-win32.whl", hash = "sha256:db38f80540083ea33bdab614a9d28bcec4b54daa5aff1668d7827a9fc769ae0a"}, {file = "greenlet-2.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:b23d2a46d53210b498e5b701a1913697671988f4bf8e10f935433f6e7c332fb6"}, {file = "greenlet-2.0.1.tar.gz", hash = "sha256:42e602564460da0e8ee67cb6d7236363ee5e131aa15943b6670e44e5c2ed0f67"}, ] [package.extras] docs = ["Sphinx", "docutils (<0.18)"] test = ["faulthandler", "objgraph", "psutil"] [[package]] name = "grpcio" version = "1.47.5" description = "HTTP/2-based RPC framework" category = "main" optional = false python-versions = ">=3.6" files = [ {file = "grpcio-1.47.5-cp310-cp310-linux_armv7l.whl", hash = "sha256:acc73289d0c44650aa1f21eccfa967f5623b01c3b5e2b4596fe5f9c5bf10956d"}, {file = "grpcio-1.47.5-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:f3174c798959998876d546944523a558f78a9b9feb22a2cbaaa3822f2e158653"}, {file = "grpcio-1.47.5-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:64401ee6d54b4d5869bcba4be3cae9f2e335c44a39ba1e29991ad22cfe2abacb"}, {file = "grpcio-1.47.5-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:39a07eb5e7ec9277e5d124fb0e2d4f51ddbaadc2abdd27e8bbf1716dcf45e581"}, {file = "grpcio-1.47.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:874b138ca95a6375ae6f6a12c10a348827c9aa8fbd05d025b87b5e050ab55b46"}, {file = "grpcio-1.47.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:90539369afba42fc921cdda9d5f697a421f05a2e82ba58342ffbe88aa586019e"}, {file = "grpcio-1.47.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:2b18f970514bbc76547928e26d0cec06996ce3f947a3634b3adbe79d0e48e980"}, {file = "grpcio-1.47.5-cp310-cp310-win32.whl", hash = "sha256:44c52923be0c4a0f662de43644679c6356960c38c4edf44864c23b998693c7cc"}, {file = "grpcio-1.47.5-cp310-cp310-win_amd64.whl", hash = "sha256:07761f427551fced386db8c78701d6a167b2a682aa8df808303dd0a0d44bf6c9"}, {file = "grpcio-1.47.5-cp36-cp36m-linux_armv7l.whl", hash = "sha256:10eb026bf75568de06933366f0340d2b4b207425c74a5640aa1812b8b69e7d9d"}, {file = "grpcio-1.47.5-cp36-cp36m-macosx_10_10_universal2.whl", hash = "sha256:4f8e7fba6b1150a63aebd04d03be779de4ea4c4a8b28869e7a3c8f0b3ec59edc"}, {file = "grpcio-1.47.5-cp36-cp36m-manylinux_2_17_aarch64.whl", hash = "sha256:36d93b19c214bc654fc50ae65cce84b8f7698159191b9d3f21f9ad92ae7bc325"}, {file = "grpcio-1.47.5-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4e59f916bf58528e55893743151c6bd9f0a393fddfe411a6fffd29a300e6acf2"}, {file = "grpcio-1.47.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18f8b2d316a3be464eb2a20afa7026a235a07a0094be879876611206d8026679"}, {file = "grpcio-1.47.5-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:0c3076957cd2aea34fe69384453315fd765948eb6cb73a12f332277308d04b76"}, {file = "grpcio-1.47.5-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:007f5ad07d2f3a4a422c1df589a0d25e918b96d8f6069cb6f0254386a5f09262"}, {file = "grpcio-1.47.5-cp36-cp36m-win32.whl", hash = "sha256:01ac149a5ca9512277b1d2fe85687099f3e442c6f9f924eae003a6700735e23e"}, {file = "grpcio-1.47.5-cp36-cp36m-win_amd64.whl", hash = "sha256:a32ccc88950f2be619157201161e70a5e5ed9e2427662bb2e60f1a8cea7d0db6"}, {file = "grpcio-1.47.5-cp37-cp37m-linux_armv7l.whl", hash = "sha256:ec71f15258e086acadb13ec06e4e4c54eb0f5455cd4c618997f847874d5ff9ea"}, {file = "grpcio-1.47.5-cp37-cp37m-macosx_10_10_universal2.whl", hash = "sha256:4bbf5a63497dbd5e44c4335cab153796a4274be17ca40ec971a7749c3f4fef6a"}, {file = "grpcio-1.47.5-cp37-cp37m-manylinux_2_17_aarch64.whl", hash = "sha256:11e1bc97e88232201256b718c63a8a1fd86ec6fca3a501293be5c5e423de9d56"}, {file = "grpcio-1.47.5-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e568d84fed80713d2fa3221552beee27ed8034f7eff52bb7871bf5ffe4d4ca78"}, {file = "grpcio-1.47.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cb4c838de8e1e7194d3f9a679fd76cc44a1dbe81f18bd39ee233c72347d772bf"}, {file = "grpcio-1.47.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:a74c19baf2f8127b44b3f58e2a5801a17992dae9a20197b4a8fa26e2ea79742b"}, {file = "grpcio-1.47.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:e369ed5ecff11ef85666cabbb5736495604e052c8dc2c03a2104f99dfd0a59e3"}, {file = "grpcio-1.47.5-cp37-cp37m-win32.whl", hash = "sha256:ccb741fab5117aea981d4ac341d2ce1e588f515f83091807d4e2bb388ed59edd"}, {file = "grpcio-1.47.5-cp37-cp37m-win_amd64.whl", hash = "sha256:af9d3b075dfcbc343d44b0e98725ba6d56dc0669e61905a4e71e8f4409cfefbd"}, {file = "grpcio-1.47.5-cp38-cp38-linux_armv7l.whl", hash = "sha256:cac6847a4b9a7e7a1f270a71fef1c17c2e8a6b411c0ca48080ce1e08d284aded"}, {file = "grpcio-1.47.5-cp38-cp38-macosx_10_10_universal2.whl", hash = "sha256:54a3e17d155b6fb141e1fbb7c47d30556bec4c940b66ff4d9513536e2e214d4a"}, {file = "grpcio-1.47.5-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:d1873c0b84a0ffb129f75e7c8be45d2cae427baf0b090d15b9ff46c1841c3f53"}, {file = "grpcio-1.47.5-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e209df91cf8dfb335c2e26784702b0e12c20dc4de7b9b6d2cccd968146155f06"}, {file = "grpcio-1.47.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:350e2627684f93f8b59af9c76a03eeb4aa145ecc589569137d4518486f4f1727"}, {file = "grpcio-1.47.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:23754807314c5aa4c26eb1c50aaf506801a2f7825951100280d2c013b127436f"}, {file = "grpcio-1.47.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:503c3fa0045f3ef80aa1ad082eac6a888081da2e1cd793f281ed499831e4c498"}, {file = "grpcio-1.47.5-cp38-cp38-win32.whl", hash = "sha256:a4eecfbe994c88996461bd1459e43ea460952d4147f53e8c18e089764e6808f5"}, {file = "grpcio-1.47.5-cp38-cp38-win_amd64.whl", hash = "sha256:941927ae4d589a2fef5c22b9c47df9e5e613c737bd750bafc3a9547cc506017c"}, {file = "grpcio-1.47.5-cp39-cp39-linux_armv7l.whl", hash = "sha256:9891c77e69bd4109c25c1bea51d78fbc5ba2fcd9445bf99225bb8fb03d849913"}, {file = "grpcio-1.47.5-cp39-cp39-macosx_10_10_universal2.whl", hash = "sha256:61e83778d85dbbbd7446451ec28b7261e9ebba489cc8c262dfe8fedc119f769b"}, {file = "grpcio-1.47.5-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:21ccfc0e989531cbdc93c54a7581ea5f7c46bf585016d9320b4be042f1e02374"}, {file = "grpcio-1.47.5-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bea35a0114a39827ffe59f73950d242f95d59a9ac2009ae8da7b065c06f0a57f"}, {file = "grpcio-1.47.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:97e75b9e52eeb9d1335aaeecf581cb3cea7fc4bafd7bd675c83f208a386a42a8"}, {file = "grpcio-1.47.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:1fb86f95228827b55e860278d142326af4489c0f4220975780daff325fc87172"}, {file = "grpcio-1.47.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c9b83183525afe58dd9e7bb249f9e55df326e3c3834d09ea476c7a6bb12f73ee"}, {file = "grpcio-1.47.5-cp39-cp39-win32.whl", hash = "sha256:00bff7492875ab04ec5ed3d92550d8f8aa423151e187b79684c8a22c7a6f1670"}, {file = "grpcio-1.47.5-cp39-cp39-win_amd64.whl", hash = "sha256:2b32adae820cc0347e5e44efe91b661b436dbca73f25c5763cadb1cafd1dca10"}, {file = "grpcio-1.47.5.tar.gz", hash = "sha256:b62b8bea0c94b4603bb4c8332d8a814375120bea3c2dbeb71397213bde5ea832"}, ] [package.dependencies] six = ">=1.5.2" [package.extras] protobuf = ["grpcio-tools (>=1.47.5)"] [[package]] name = "grpcio-health-checking" version = "1.47.5" description = "Standard Health Checking Service for gRPC" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "grpcio-health-checking-1.47.5.tar.gz", hash = "sha256:74f36ef2ff704c46965bd74cdea51afc0bbcde641134c9d09ecb5063391db516"}, {file = "grpcio_health_checking-1.47.5-py3-none-any.whl", hash = "sha256:659b83138cb2b7db71777044d0caf58bab4f958fce972900f8577ebb4edca29d"}, ] [package.dependencies] grpcio = ">=1.47.5" protobuf = ">=3.12.0" [[package]] name = "grpcio-reflection" version = "1.47.5" description = "Standard Protobuf Reflection Service for gRPC" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "grpcio-reflection-1.47.5.tar.gz", hash = "sha256:ac391ec327861f16bc870638101fee80799eccf39c5b09e9ddd776d6854b9873"}, {file = "grpcio_reflection-1.47.5-py3-none-any.whl", hash = "sha256:8cfd222f2116b7e1bcd55bd2a1fcb168c5a9cd20310151d6278563f516e8ae1e"}, ] [package.dependencies] grpcio = ">=1.47.5" protobuf = ">=3.12.0" [[package]] name = "grpcio-tools" version = "1.47.5" description = "Protobuf code generator for gRPC" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "grpcio-tools-1.47.5.tar.gz", hash = "sha256:62ced60566a4cbcf35c57e887e2e68b4f108b3474ef3ec0022d38cd579345f92"}, {file = "grpcio_tools-1.47.5-cp310-cp310-linux_armv7l.whl", hash = "sha256:9f92c561b245a562110bd84d3b64b016c8af5afde39febf1f71553ae56f6e8e4"}, {file = "grpcio_tools-1.47.5-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:a0a991844a024705ad177cb858d36e3e6b329ea4a78b7f4c597b2817fc2692e7"}, {file = "grpcio_tools-1.47.5-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:935976d5436d4306de052d1e00848fa25abc667e185aaaffcd367915f33a67c7"}, {file = "grpcio_tools-1.47.5-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2481dba6a30d415a4756cd88cc380780e3f00bb41d56b8f6547bc3c09c6f4e7f"}, {file = "grpcio_tools-1.47.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e62176978faa96b21e4e821e7070b0feed919726ff730c0b3b7e8d106ddb45bf"}, {file = "grpcio_tools-1.47.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:728eb1f4ef6d380366a2de9940d1f910ece8bf4e44de5ca935cd16d4394e82ff"}, {file = "grpcio_tools-1.47.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:d58982c747e107f65c7307ec1646cce105b0785088287bf209f545377aeedaf4"}, {file = "grpcio_tools-1.47.5-cp310-cp310-win32.whl", hash = "sha256:ea6d8f07b087bc2d579b7727daee2abf38fe5dc475c9e7c4f16b4a2c31895319"}, {file = "grpcio_tools-1.47.5-cp310-cp310-win_amd64.whl", hash = "sha256:5e7a4e68072639fa767bde1011f5d83f4461a8e60651ea202af597777ee1ffd7"}, {file = "grpcio_tools-1.47.5-cp36-cp36m-linux_armv7l.whl", hash = "sha256:bb1e066fc50ef7503b024924858658692d3e98582a9727b156f2f845da70e11e"}, {file = "grpcio_tools-1.47.5-cp36-cp36m-macosx_10_10_universal2.whl", hash = "sha256:7d3e397a27e652ae6579f1f7dc3fc0c771db977ccaaded1fe113e882df425c15"}, {file = "grpcio_tools-1.47.5-cp36-cp36m-manylinux_2_17_aarch64.whl", hash = "sha256:b19d8f1e8422826d49fc428acc66b69aa450c70f7090681df32d535188edf524"}, {file = "grpcio_tools-1.47.5-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a0e017bd1022bc981fa1629e757e0d3d4a1991f999fb90ec714c2683fe05b8fa"}, {file = "grpcio_tools-1.47.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:abb56ea33c4a33ee3b707f62339fd579e1a8dbbfeb7665d7ff85ee837cf64794"}, {file = "grpcio_tools-1.47.5-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:02882ff2f703b75d343991608b39104f1621508cf407e427a75c1794ed0fac95"}, {file = "grpcio_tools-1.47.5-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:84395aacae4f8a3358ad648a8bacf6b15bbb8946d8cf73f47dc77cfe1a154d48"}, {file = "grpcio_tools-1.47.5-cp36-cp36m-win32.whl", hash = "sha256:de8901c64a1091cc474318e7a013af8c30feba34c7954c29ca8f477baf07db28"}, {file = "grpcio_tools-1.47.5-cp36-cp36m-win_amd64.whl", hash = "sha256:37cb5c3d94ba1efef0d17a66e5e69b177fc934389eda8b76b161a6623e45e714"}, {file = "grpcio_tools-1.47.5-cp37-cp37m-linux_armv7l.whl", hash = "sha256:5c2d3a35e9341ea9c68afe289054bd8604eda4214e6d916f97b19a316537a296"}, {file = "grpcio_tools-1.47.5-cp37-cp37m-macosx_10_10_universal2.whl", hash = "sha256:89733edb89ec28e52dd9cc25e90b78248b6edd265f564726be2a9c4b4ee78479"}, {file = "grpcio_tools-1.47.5-cp37-cp37m-manylinux_2_17_aarch64.whl", hash = "sha256:489f41535d779287759942c6cced93c4219ea53dad46ebdc4faca6220e1dba88"}, {file = "grpcio_tools-1.47.5-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:072c84f561912400363b81af6bf5424c38fab80f0c9436c0fe19b2e7c2bcf15c"}, {file = "grpcio_tools-1.47.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c650233420279f943bd1dcf286742aaeb4db7cc5f6554a5e8c16c2e4fa19a28f"}, {file = "grpcio_tools-1.47.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:dab220aba6b5777b16df5c5b3a30f831cdbc4f493eabdaf9f6585691bad5496a"}, {file = "grpcio_tools-1.47.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:309ca8508f361895ef2d4f533611272228d2412c8cae754b695673c7c65a2f8b"}, {file = "grpcio_tools-1.47.5-cp37-cp37m-win32.whl", hash = "sha256:f8ce5fb65e97866257943cbf6d504195ab55e01ef467988d86322a36041b6de8"}, {file = "grpcio_tools-1.47.5-cp37-cp37m-win_amd64.whl", hash = "sha256:b9154a18b0ad2bc4b9ceadedd7b67bb65b500b3427495b4d224a1a835aa55ce6"}, {file = "grpcio_tools-1.47.5-cp38-cp38-linux_armv7l.whl", hash = "sha256:aaa4063bc05a18f32ae98e414e2472477468b966b9a1425c41eec160250beff2"}, {file = "grpcio_tools-1.47.5-cp38-cp38-macosx_10_10_universal2.whl", hash = "sha256:093da28f8ce3a0eedd5370b9f09f815fb6c01fd663d60734eab5b300b9a305ec"}, {file = "grpcio_tools-1.47.5-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:0771f57585b9070086dec509b02fa2804a9d4c395e95cd7a6cb42d8f4b5683f7"}, {file = "grpcio_tools-1.47.5-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:68d4cdc674c8596da8e25cf37741aab3f07bdf38731510a92019e5ec57f5fcea"}, {file = "grpcio_tools-1.47.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:08fdce5549acca9fd7a45084c62e8ab0a1ca1c530bcbfa089625e9523f224023"}, {file = "grpcio_tools-1.47.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:8431b9ee083bec444ca6d48705b89774f97ba0a75e8c33ef3b9a2dc6ed2aa584"}, {file = "grpcio_tools-1.47.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:baf37376da0062155d728fb9a1d522ea8f5039ebf774885d269f7772cbc3a2e6"}, {file = "grpcio_tools-1.47.5-cp38-cp38-win32.whl", hash = "sha256:b65a59698f938fa59fd756799cd641c3755fb09cb95de008e4d67a9e5b1af6d5"}, {file = "grpcio_tools-1.47.5-cp38-cp38-win_amd64.whl", hash = "sha256:17c2b5ce8b3100c8da4ae5070d8d2c2466f174e66d8127fb85ef8a7937a03853"}, {file = "grpcio_tools-1.47.5-cp39-cp39-linux_armv7l.whl", hash = "sha256:9070301f079fef76fb0d51b84f393c6738587f3a16a2f0ced303362b0cc0ecf6"}, {file = "grpcio_tools-1.47.5-cp39-cp39-macosx_10_10_universal2.whl", hash = "sha256:5bcf01116a4d3bed2faf832f8c5618d1c69473576f3925240e3c5042dfbc115e"}, {file = "grpcio_tools-1.47.5-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:b555b954aa213eac8efe7df507a178c3ab7323df9f501846a1bbccdf81354831"}, {file = "grpcio_tools-1.47.5-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7604e08530b3edc688e41aa8af46051478d417b08afdf6fc2eafb5eb90528a26"}, {file = "grpcio_tools-1.47.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1d3f80818a560abee8189c4f0b074f45c16309b4596e013cb6ce105a022c5965"}, {file = "grpcio_tools-1.47.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:c801ebd7fa2304ff85aa15147f134aefe33132d85308c43e46f6a5be78b5a8a8"}, {file = "grpcio_tools-1.47.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:235adfc22e9c703533573344de1d2394ddd92b27c82eb259bb5fb46f885159b8"}, {file = "grpcio_tools-1.47.5-cp39-cp39-win32.whl", hash = "sha256:d659c257cbb48c843931b584d3c3da5473fa17275e0d04af79c9e9fdd6077179"}, {file = "grpcio_tools-1.47.5-cp39-cp39-win_amd64.whl", hash = "sha256:9d121c63ff2fddeae2c65f6675eb944f47808a242b647d80b4661b2c5e1e6732"}, ] [package.dependencies] grpcio = ">=1.47.5" protobuf = ">=3.12.0,<4.0dev" setuptools = "*" [[package]] name = "h11" version = "0.14.0" description = "A pure-Python, bring-your-own-I/O implementation of HTTP/1.1" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "h11-0.14.0-py3-none-any.whl", hash = "sha256:e3fe4ac4b851c468cc8363d500db52c2ead036020723024a109d37346efaa761"}, {file = "h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d"}, ] [[package]] name = "h2" version = "4.1.0" description = "HTTP/2 State-Machine based protocol implementation" category = "main" optional = true python-versions = ">=3.6.1" files = [ {file = "h2-4.1.0-py3-none-any.whl", hash = "sha256:03a46bcf682256c95b5fd9e9a99c1323584c3eec6440d379b9903d709476bc6d"}, {file = "h2-4.1.0.tar.gz", hash = "sha256:a83aca08fbe7aacb79fec788c9c0bac936343560ed9ec18b82a13a12c28d2abb"}, ] [package.dependencies] hpack = ">=4.0,<5" hyperframe = ">=6.0,<7" [[package]] name = "h5py" version = "3.8.0" description = "Read and write HDF5 files from Python" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "h5py-3.8.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:533d7dad466ddb7e3b30af274b630eb7c1a6e4ddf01d1c373a0334dc2152110a"}, {file = "h5py-3.8.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c873ba9fd4fa875ad62ce0e4891725e257a8fe7f5abdbc17e51a5d54819be55c"}, {file = "h5py-3.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:98a240cd4c1bfd568aaa52ec42d263131a2582dab82d74d3d42a0d954cac12be"}, {file = "h5py-3.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c3389b63222b1c7a158bb7fe69d11ca00066740ec5574596d47a2fe5317f563a"}, {file = "h5py-3.8.0-cp310-cp310-win_amd64.whl", hash = "sha256:7f3350fc0a8407d668b13247861c2acd23f7f5fe7d060a3ad9b0820f5fcbcae0"}, {file = "h5py-3.8.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:db03e3f2c716205fbdabb34d0848459840585225eb97b4f08998c743821ca323"}, {file = "h5py-3.8.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:36761693efbe53df179627a775476dcbc37727d6e920958277a7efbc18f1fb73"}, {file = "h5py-3.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4a506fc223def428f4329e7e1f9fe1c8c593eab226e7c0942c8d75308ad49950"}, {file = "h5py-3.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:33b15aae79e9147aebe1d0e54099cbcde8d65e3e227cd5b59e49b1272aa0e09d"}, {file = "h5py-3.8.0-cp311-cp311-win_amd64.whl", hash = "sha256:9f6f6ffadd6bfa9b2c5b334805eb4b19ca0a5620433659d8f7fb86692c40a359"}, {file = "h5py-3.8.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:8f55d9c6c84d7d09c79fb85979e97b81ec6071cc776a97eb6b96f8f6ec767323"}, {file = "h5py-3.8.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b685453e538b2b5934c58a644ac3f3b3d0cec1a01b6fb26d57388e9f9b674ad0"}, {file = "h5py-3.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:377865821fe80ad984d003723d6f8890bd54ceeb5981b43c0313b9df95411b30"}, {file = "h5py-3.8.0-cp37-cp37m-win_amd64.whl", hash = "sha256:0fef76e10b9216657fa37e7edff6d8be0709b25bd5066474c229b56cf0098df9"}, {file = "h5py-3.8.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:26ffc344ec9984d2cd3ca0265007299a8bac8d85c1ad48f4639d8d3aed2af171"}, {file = "h5py-3.8.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:bacaa1c16810dd2b3e4417f8e730971b7c4d53d234de61fe4a918db78e80e1e4"}, {file = "h5py-3.8.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bae730580ae928de409d63cbe4fdca4c82c3ad2bed30511d19d34e995d63c77e"}, {file = "h5py-3.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f47f757d1b76f0ecb8aa0508ec8d1b390df67a8b67ee2515dc1b046f3a1596ea"}, {file = "h5py-3.8.0-cp38-cp38-win_amd64.whl", hash = "sha256:f891b17e3a3e974e93f9e34e7cca9f530806543571ce078998676a555837d91d"}, {file = "h5py-3.8.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:290e00fa2de74a10688d1bac98d5a9cdd43f14f58e562c580b5b3dfbd358ecae"}, {file = "h5py-3.8.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:03890b1c123d024fb0239a3279737d5432498c1901c354f8b10d8221d1d16235"}, {file = "h5py-3.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b7865de06779b14d98068da387333ad9bf2756b5b579cc887fac169bc08f87c3"}, {file = "h5py-3.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:49bc857635f935fa30e92e61ac1e87496df8f260a6945a3235e43a9890426866"}, {file = "h5py-3.8.0-cp39-cp39-win_amd64.whl", hash = "sha256:5fd2252d1fc364ba0e93dd0b7089f4906b66805cb4e6aca7fa8874ac08649647"}, {file = "h5py-3.8.0.tar.gz", hash = "sha256:6fead82f0c4000cf38d53f9c030780d81bfa0220218aee13b90b7701c937d95f"}, ] [package.dependencies] numpy = ">=1.14.5" [[package]] name = "hnswlib" version = "0.7.0" description = "hnswlib" category = "main" optional = false python-versions = "*" files = [ {file = "hnswlib-0.7.0.tar.gz", hash = "sha256:bc459668e7e44bb7454b256b90c98c5af750653919d9a91698dafcf416cf64c4"}, ] [package.dependencies] numpy = "*" [[package]] name = "hpack" version = "4.0.0" description = "Pure-Python HPACK header compression" category = "main" optional = true python-versions = ">=3.6.1" files = [ {file = "hpack-4.0.0-py3-none-any.whl", hash = "sha256:84a076fad3dc9a9f8063ccb8041ef100867b1878b25ef0ee63847a5d53818a6c"}, {file = "hpack-4.0.0.tar.gz", hash = "sha256:fc41de0c63e687ebffde81187a948221294896f6bdc0ae2312708df339430095"}, ] [[package]] name = "html2text" version = "2020.1.16" description = "Turn HTML into equivalent Markdown-structured text." category = "main" optional = true python-versions = ">=3.5" files = [ {file = "html2text-2020.1.16-py3-none-any.whl", hash = "sha256:c7c629882da0cf377d66f073329ccf34a12ed2adf0169b9285ae4e63ef54c82b"}, {file = "html2text-2020.1.16.tar.gz", hash = "sha256:e296318e16b059ddb97f7a8a1d6a5c1d7af4544049a01e261731d2d5cc277bbb"}, ] [[package]] name = "httpcore" version = "0.17.1" description = "A minimal low-level HTTP client." category = "main" optional = true python-versions = ">=3.7" files = [ {file = "httpcore-0.17.1-py3-none-any.whl", hash = "sha256:628e768aaeec1f7effdc6408ba1c3cdbd7487c1fc570f7d66844ec4f003e1ca4"}, {file = "httpcore-0.17.1.tar.gz", hash = "sha256:caf508597c525f9b8bfff187e270666309f63115af30f7d68b16143a403c8356"}, ] [package.dependencies] anyio = ">=3.0,<5.0" certifi = "*" h11 = ">=0.13,<0.15" sniffio = ">=1.0.0,<2.0.0" [package.extras] http2 = ["h2 (>=3,<5)"] socks = ["socksio (>=1.0.0,<2.0.0)"] [[package]] name = "httplib2" version = "0.22.0" description = "A comprehensive HTTP client library." category = "main" optional = true python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ {file = "httplib2-0.22.0-py3-none-any.whl", hash = "sha256:14ae0a53c1ba8f3d37e9e27cf37eabb0fb9980f435ba405d546948b009dd64dc"}, {file = "httplib2-0.22.0.tar.gz", hash = "sha256:d7a10bc5ef5ab08322488bde8c726eeee5c8618723fdb399597ec58f3d82df81"}, ] [package.dependencies] pyparsing = {version = ">=2.4.2,<3.0.0 || >3.0.0,<3.0.1 || >3.0.1,<3.0.2 || >3.0.2,<3.0.3 || >3.0.3,<4", markers = "python_version > \"3.0\""} [[package]] name = "httptools" version = "0.5.0" description = "A collection of framework independent HTTP protocol utils." category = "main" optional = false python-versions = ">=3.5.0" files = [ {file = "httptools-0.5.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:8f470c79061599a126d74385623ff4744c4e0f4a0997a353a44923c0b561ee51"}, {file = "httptools-0.5.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e90491a4d77d0cb82e0e7a9cb35d86284c677402e4ce7ba6b448ccc7325c5421"}, {file = "httptools-0.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c1d2357f791b12d86faced7b5736dea9ef4f5ecdc6c3f253e445ee82da579449"}, {file = "httptools-0.5.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1f90cd6fd97c9a1b7fe9215e60c3bd97336742a0857f00a4cb31547bc22560c2"}, {file = "httptools-0.5.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:5230a99e724a1bdbbf236a1b58d6e8504b912b0552721c7c6b8570925ee0ccde"}, {file = "httptools-0.5.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:3a47a34f6015dd52c9eb629c0f5a8a5193e47bf2a12d9a3194d231eaf1bc451a"}, {file = "httptools-0.5.0-cp310-cp310-win_amd64.whl", hash = "sha256:24bb4bb8ac3882f90aa95403a1cb48465de877e2d5298ad6ddcfdebec060787d"}, {file = "httptools-0.5.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:e67d4f8734f8054d2c4858570cc4b233bf753f56e85217de4dfb2495904cf02e"}, {file = "httptools-0.5.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7e5eefc58d20e4c2da82c78d91b2906f1a947ef42bd668db05f4ab4201a99f49"}, {file = "httptools-0.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0297822cea9f90a38df29f48e40b42ac3d48a28637368f3ec6d15eebefd182f9"}, {file = "httptools-0.5.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:557be7fbf2bfa4a2ec65192c254e151684545ebab45eca5d50477d562c40f986"}, {file = "httptools-0.5.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:54465401dbbec9a6a42cf737627fb0f014d50dc7365a6b6cd57753f151a86ff0"}, {file = "httptools-0.5.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:4d9ebac23d2de960726ce45f49d70eb5466725c0087a078866043dad115f850f"}, {file = "httptools-0.5.0-cp311-cp311-win_amd64.whl", hash = "sha256:e8a34e4c0ab7b1ca17b8763613783e2458e77938092c18ac919420ab8655c8c1"}, {file = "httptools-0.5.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:f659d7a48401158c59933904040085c200b4be631cb5f23a7d561fbae593ec1f"}, {file = "httptools-0.5.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ef1616b3ba965cd68e6f759eeb5d34fbf596a79e84215eeceebf34ba3f61fdc7"}, {file = "httptools-0.5.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3625a55886257755cb15194efbf209584754e31d336e09e2ffe0685a76cb4b60"}, {file = "httptools-0.5.0-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:72ad589ba5e4a87e1d404cc1cb1b5780bfcb16e2aec957b88ce15fe879cc08ca"}, {file = "httptools-0.5.0-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:850fec36c48df5a790aa735417dca8ce7d4b48d59b3ebd6f83e88a8125cde324"}, {file = "httptools-0.5.0-cp36-cp36m-win_amd64.whl", hash = "sha256:f222e1e9d3f13b68ff8a835574eda02e67277d51631d69d7cf7f8e07df678c86"}, {file = "httptools-0.5.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3cb8acf8f951363b617a8420768a9f249099b92e703c052f9a51b66342eea89b"}, {file = "httptools-0.5.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:550059885dc9c19a072ca6d6735739d879be3b5959ec218ba3e013fd2255a11b"}, {file = "httptools-0.5.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a04fe458a4597aa559b79c7f48fe3dceabef0f69f562daf5c5e926b153817281"}, {file = "httptools-0.5.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:7d0c1044bce274ec6711f0770fd2d5544fe392591d204c68328e60a46f88843b"}, {file = "httptools-0.5.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:c6eeefd4435055a8ebb6c5cc36111b8591c192c56a95b45fe2af22d9881eee25"}, {file = "httptools-0.5.0-cp37-cp37m-win_amd64.whl", hash = "sha256:5b65be160adcd9de7a7e6413a4966665756e263f0d5ddeffde277ffeee0576a5"}, {file = "httptools-0.5.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:fe9c766a0c35b7e3d6b6939393c8dfdd5da3ac5dec7f971ec9134f284c6c36d6"}, {file = "httptools-0.5.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:85b392aba273566c3d5596a0a490978c085b79700814fb22bfd537d381dd230c"}, {file = "httptools-0.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f5e3088f4ed33947e16fd865b8200f9cfae1144f41b64a8cf19b599508e096bc"}, {file = "httptools-0.5.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8c2a56b6aad7cc8f5551d8e04ff5a319d203f9d870398b94702300de50190f63"}, {file = "httptools-0.5.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:9b571b281a19762adb3f48a7731f6842f920fa71108aff9be49888320ac3e24d"}, {file = "httptools-0.5.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:aa47ffcf70ba6f7848349b8a6f9b481ee0f7637931d91a9860a1838bfc586901"}, {file = "httptools-0.5.0-cp38-cp38-win_amd64.whl", hash = "sha256:bede7ee075e54b9a5bde695b4fc8f569f30185891796b2e4e09e2226801d09bd"}, {file = "httptools-0.5.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:64eba6f168803a7469866a9c9b5263a7463fa8b7a25b35e547492aa7322036b6"}, {file = "httptools-0.5.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4b098e4bb1174096a93f48f6193e7d9aa7071506a5877da09a783509ca5fff42"}, {file = "httptools-0.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9423a2de923820c7e82e18980b937893f4aa8251c43684fa1772e341f6e06887"}, {file = "httptools-0.5.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ca1b7becf7d9d3ccdbb2f038f665c0f4857e08e1d8481cbcc1a86a0afcfb62b2"}, {file = "httptools-0.5.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:50d4613025f15f4b11f1c54bbed4761c0020f7f921b95143ad6d58c151198142"}, {file = "httptools-0.5.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8ffce9d81c825ac1deaa13bc9694c0562e2840a48ba21cfc9f3b4c922c16f372"}, {file = "httptools-0.5.0-cp39-cp39-win_amd64.whl", hash = "sha256:1af91b3650ce518d226466f30bbba5b6376dbd3ddb1b2be8b0658c6799dd450b"}, {file = "httptools-0.5.0.tar.gz", hash = "sha256:295874861c173f9101960bba332429bb77ed4dcd8cdf5cee9922eb00e4f6bc09"}, ] [package.extras] test = ["Cython (>=0.29.24,<0.30.0)"] [[package]] name = "httpx" version = "0.24.0" description = "The next generation HTTP client." category = "main" optional = true python-versions = ">=3.7" files = [ {file = "httpx-0.24.0-py3-none-any.whl", hash = "sha256:447556b50c1921c351ea54b4fe79d91b724ed2b027462ab9a329465d147d5a4e"}, {file = "httpx-0.24.0.tar.gz", hash = "sha256:507d676fc3e26110d41df7d35ebd8b3b8585052450f4097401c9be59d928c63e"}, ] [package.dependencies] certifi = "*" h2 = {version = ">=3,<5", optional = true, markers = "extra == \"http2\""} httpcore = ">=0.15.0,<0.18.0" idna = "*" sniffio = "*" [package.extras] brotli = ["brotli", "brotlicffi"] cli = ["click (>=8.0.0,<9.0.0)", "pygments (>=2.0.0,<3.0.0)", "rich (>=10,<14)"] http2 = ["h2 (>=3,<5)"] socks = ["socksio (>=1.0.0,<2.0.0)"] [[package]] name = "huggingface-hub" version = "0.14.1" description = "Client library to download and publish models, datasets and other repos on the huggingface.co hub" category = "main" optional = false python-versions = ">=3.7.0" files = [ {file = "huggingface_hub-0.14.1-py3-none-any.whl", hash = "sha256:9fc619170d800ff3793ad37c9757c255c8783051e1b5b00501205eb43ccc4f27"}, {file = "huggingface_hub-0.14.1.tar.gz", hash = "sha256:9ab899af8e10922eac65e290d60ab956882ab0bf643e3d990b1394b6b47b7fbc"}, ] [package.dependencies] filelock = "*" fsspec = "*" packaging = ">=20.9" pyyaml = ">=5.1" requests = "*" tqdm = ">=4.42.1" typing-extensions = ">=3.7.4.3" [package.extras] all = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "black (>=23.1,<24.0)", "gradio", "jedi", "mypy (==0.982)", "pytest", "pytest-cov", "pytest-env", "pytest-xdist", "ruff (>=0.0.241)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3"] cli = ["InquirerPy (==0.3.4)"] dev = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "black (>=23.1,<24.0)", "gradio", "jedi", "mypy (==0.982)", "pytest", "pytest-cov", "pytest-env", "pytest-xdist", "ruff (>=0.0.241)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3"] fastai = ["fastai (>=2.4)", "fastcore (>=1.3.27)", "toml"] quality = ["black (>=23.1,<24.0)", "mypy (==0.982)", "ruff (>=0.0.241)"] tensorflow = ["graphviz", "pydot", "tensorflow"] testing = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "gradio", "jedi", "pytest", "pytest-cov", "pytest-env", "pytest-xdist", "soundfile"] torch = ["torch"] typing = ["types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3"] [[package]] name = "humbug" version = "0.3.1" description = "Humbug: Do you build developer tools? Humbug helps you know your users." category = "main" optional = false python-versions = "*" files = [ {file = "humbug-0.3.1-py3-none-any.whl", hash = "sha256:f9e3c8dd60a8ba943194f7ed45caa66e5db43d99f3745c60030ec40e6313a927"}, {file = "humbug-0.3.1.tar.gz", hash = "sha256:a123ee31551f5465ca7c1ee3da0862a4e0a0e5c8a7b762a863d833da624db215"}, ] [package.dependencies] requests = "*" [package.extras] dev = ["black", "mypy", "types-dataclasses", "types-pkg-resources", "types-psutil", "types-requests", "wheel"] distribute = ["setuptools", "twine", "wheel"] profile = ["GPUtil", "psutil", "types-psutil"] [[package]] name = "hyperframe" version = "6.0.1" description = "HTTP/2 framing layer for Python" category = "main" optional = true python-versions = ">=3.6.1" files = [ {file = "hyperframe-6.0.1-py3-none-any.whl", hash = "sha256:0ec6bafd80d8ad2195c4f03aacba3a8265e57bc4cff261e802bf39970ed02a15"}, {file = "hyperframe-6.0.1.tar.gz", hash = "sha256:ae510046231dc8e9ecb1a6586f63d2347bf4c8905914aa84ba585ae85f28a914"}, ] [[package]] name = "idna" version = "3.4" description = "Internationalized Domain Names in Applications (IDNA)" category = "main" optional = false python-versions = ">=3.5" files = [ {file = "idna-3.4-py3-none-any.whl", hash = "sha256:90b77e79eaa3eba6de819a0c442c0b4ceefc341a7a2ab77d7562bf49f425c5c2"}, {file = "idna-3.4.tar.gz", hash = "sha256:814f528e8dead7d329833b91c5faa87d60bf71824cd12a7530b5526063d02cb4"}, ] [[package]] name = "imagesize" version = "1.4.1" description = "Getting image size from png/jpeg/jpeg2000/gif file" category = "dev" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ {file = "imagesize-1.4.1-py2.py3-none-any.whl", hash = "sha256:0d8d18d08f840c19d0ee7ca1fd82490fdc3729b7ac93f49870406ddde8ef8d8b"}, {file = "imagesize-1.4.1.tar.gz", hash = "sha256:69150444affb9cb0d5cc5a92b3676f0b2fb7cd9ae39e947a5e11a36b4497cd4a"}, ] [[package]] name = "importlib-metadata" version = "6.0.1" description = "Read metadata from Python packages" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "importlib_metadata-6.0.1-py3-none-any.whl", hash = "sha256:1543daade821c89b1c4a55986c326f36e54f2e6ca3bad96be4563d0acb74dcd4"}, {file = "importlib_metadata-6.0.1.tar.gz", hash = "sha256:950127d57e35a806d520817d3e92eec3f19fdae9f0cd99da77a407c5aabefba3"}, ] [package.dependencies] zipp = ">=0.5" [package.extras] docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] perf = ["ipython"] testing = ["flake8 (<5)", "flufl.flake8", "importlib-resources (>=1.3)", "packaging", "pyfakefs", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)", "pytest-perf (>=0.9.2)"] [[package]] name = "importlib-resources" version = "5.12.0" description = "Read resources from Python packages" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "importlib_resources-5.12.0-py3-none-any.whl", hash = "sha256:7b1deeebbf351c7578e09bf2f63fa2ce8b5ffec296e0d349139d43cca061a81a"}, {file = "importlib_resources-5.12.0.tar.gz", hash = "sha256:4be82589bf5c1d7999aedf2a45159d10cb3ca4f19b2271f8792bc8e6da7b22f6"}, ] [package.dependencies] zipp = {version = ">=3.1.0", markers = "python_version < \"3.10\""} [package.extras] docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] testing = ["flake8 (<5)", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)"] [[package]] name = "inflection" version = "0.5.1" description = "A port of Ruby on Rails inflector to Python" category = "main" optional = true python-versions = ">=3.5" files = [ {file = "inflection-0.5.1-py2.py3-none-any.whl", hash = "sha256:f38b2b640938a4f35ade69ac3d053042959b62a0f1076a5bbaa1b9526605a8a2"}, {file = "inflection-0.5.1.tar.gz", hash = "sha256:1a29730d366e996aaacffb2f1f1cb9593dc38e2ddd30c91250c6dde09ea9b417"}, ] [[package]] name = "iniconfig" version = "2.0.0" description = "brain-dead simple config-ini parsing" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "iniconfig-2.0.0-py3-none-any.whl", hash = "sha256:b6a85871a79d2e3b22d2d1b94ac2824226a63c6b741c88f7ae975f18b6778374"}, {file = "iniconfig-2.0.0.tar.gz", hash = "sha256:2d91e135bf72d31a410b17c16da610a82cb55f6b0477d1a902134b24a455b8b3"}, ] [[package]] name = "ipykernel" version = "6.23.1" description = "IPython Kernel for Jupyter" category = "dev" optional = false python-versions = ">=3.8" files = [ {file = "ipykernel-6.23.1-py3-none-any.whl", hash = "sha256:77aeffab056c21d16f1edccdc9e5ccbf7d96eb401bd6703610a21be8b068aadc"}, {file = "ipykernel-6.23.1.tar.gz", hash = "sha256:1aba0ae8453e15e9bc6b24e497ef6840114afcdb832ae597f32137fa19d42a6f"}, ] [package.dependencies] appnope = {version = "*", markers = "platform_system == \"Darwin\""} comm = ">=0.1.1" debugpy = ">=1.6.5" ipython = ">=7.23.1" jupyter-client = ">=6.1.12" jupyter-core = ">=4.12,<5.0.0 || >=5.1.0" matplotlib-inline = ">=0.1" nest-asyncio = "*" packaging = "*" psutil = "*" pyzmq = ">=20" tornado = ">=6.1" traitlets = ">=5.4.0" [package.extras] cov = ["coverage[toml]", "curio", "matplotlib", "pytest-cov", "trio"] docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "trio"] pyqt5 = ["pyqt5"] pyside6 = ["pyside6"] test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio", "pytest-cov", "pytest-timeout"] [[package]] name = "ipython" version = "8.12.2" description = "IPython: Productive Interactive Computing" category = "dev" optional = false python-versions = ">=3.8" files = [ {file = "ipython-8.12.2-py3-none-any.whl", hash = "sha256:ea8801f15dfe4ffb76dea1b09b847430ffd70d827b41735c64a0638a04103bfc"}, {file = "ipython-8.12.2.tar.gz", hash = "sha256:c7b80eb7f5a855a88efc971fda506ff7a91c280b42cdae26643e0f601ea281ea"}, ] [package.dependencies] appnope = {version = "*", markers = "sys_platform == \"darwin\""} backcall = "*" colorama = {version = "*", markers = "sys_platform == \"win32\""} decorator = "*" jedi = ">=0.16" matplotlib-inline = "*" pexpect = {version = ">4.3", markers = "sys_platform != \"win32\""} pickleshare = "*" prompt-toolkit = ">=3.0.30,<3.0.37 || >3.0.37,<3.1.0" pygments = ">=2.4.0" stack-data = "*" traitlets = ">=5" typing-extensions = {version = "*", markers = "python_version < \"3.10\""} [package.extras] all = ["black", "curio", "docrepr", "ipykernel", "ipyparallel", "ipywidgets", "matplotlib", "matplotlib (!=3.2.0)", "nbconvert", "nbformat", "notebook", "numpy (>=1.21)", "pandas", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "qtconsole", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "trio", "typing-extensions"] black = ["black"] doc = ["docrepr", "ipykernel", "matplotlib", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "typing-extensions"] kernel = ["ipykernel"] nbconvert = ["nbconvert"] nbformat = ["nbformat"] notebook = ["ipywidgets", "notebook"] parallel = ["ipyparallel"] qtconsole = ["qtconsole"] test = ["pytest (<7.1)", "pytest-asyncio", "testpath"] test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.21)", "pandas", "pytest (<7.1)", "pytest-asyncio", "testpath", "trio"] [[package]] name = "ipython-genutils" version = "0.2.0" description = "Vestigial utilities from IPython" category = "dev" optional = false python-versions = "*" files = [ {file = "ipython_genutils-0.2.0-py2.py3-none-any.whl", hash = "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8"}, {file = "ipython_genutils-0.2.0.tar.gz", hash = "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8"}, ] [[package]] name = "ipywidgets" version = "8.0.6" description = "Jupyter interactive widgets" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "ipywidgets-8.0.6-py3-none-any.whl", hash = "sha256:a60bf8d2528997e05ac83fd19ea2fbe65f2e79fbe1b2b35779bdfc46c2941dcc"}, {file = "ipywidgets-8.0.6.tar.gz", hash = "sha256:de7d779f2045d60de9f6c25f653fdae2dba57898e6a1284494b3ba20b6893bb8"}, ] [package.dependencies] ipykernel = ">=4.5.1" ipython = ">=6.1.0" jupyterlab-widgets = ">=3.0.7,<3.1.0" traitlets = ">=4.3.1" widgetsnbextension = ">=4.0.7,<4.1.0" [package.extras] test = ["ipykernel", "jsonschema", "pytest (>=3.6.0)", "pytest-cov", "pytz"] [[package]] name = "isodate" version = "0.6.1" description = "An ISO 8601 date/time/duration parser and formatter" category = "main" optional = true python-versions = "*" files = [ {file = "isodate-0.6.1-py2.py3-none-any.whl", hash = "sha256:0751eece944162659049d35f4f549ed815792b38793f07cf73381c1c87cbed96"}, {file = "isodate-0.6.1.tar.gz", hash = "sha256:48c5881de7e8b0a0d648cb024c8062dc84e7b840ed81e864c7614fd3c127bde9"}, ] [package.dependencies] six = "*" [[package]] name = "isoduration" version = "20.11.0" description = "Operations with ISO 8601 durations" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "isoduration-20.11.0-py3-none-any.whl", hash = "sha256:b2904c2a4228c3d44f409c8ae8e2370eb21a26f7ac2ec5446df141dde3452042"}, {file = "isoduration-20.11.0.tar.gz", hash = "sha256:ac2f9015137935279eac671f94f89eb00584f940f5dc49462a0c4ee692ba1bd9"}, ] [package.dependencies] arrow = ">=0.15.0" [[package]] name = "jaraco-context" version = "4.3.0" description = "Context managers by jaraco" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "jaraco.context-4.3.0-py3-none-any.whl", hash = "sha256:5d9e95ca0faa78943ed66f6bc658dd637430f16125d86988e77844c741ff2f11"}, {file = "jaraco.context-4.3.0.tar.gz", hash = "sha256:4dad2404540b936a20acedec53355bdaea223acb88fd329fa6de9261c941566e"}, ] [package.extras] docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] testing = ["flake8 (<5)", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)"] [[package]] name = "jcloud" version = "0.2.9" description = "Simplify deploying and managing Jina projects on Jina Cloud" category = "main" optional = true python-versions = "*" files = [ {file = "jcloud-0.2.9.tar.gz", hash = "sha256:eaf8da685f8907e153ff752e6a4b945aeff548b8d94dfd650a035d8450ed547e"}, ] [package.dependencies] aiohttp = ">=3.8.0" jina-hubble-sdk = ">=0.26.10" packaging = "*" python-dateutil = "*" python-dotenv = "*" pyyaml = "*" rich = ">=12.0.0" [package.extras] test = ["black (==22.3.0)", "jina (>=3.7.0)", "mock", "pytest", "pytest-asyncio", "pytest-cov", "pytest-custom_exit_code", "pytest-env", "pytest-mock", "pytest-repeat", "pytest-reraise", "pytest-timeout"] [[package]] name = "jedi" version = "0.18.2" description = "An autocompletion tool for Python that can be used for text editors." category = "dev" optional = false python-versions = ">=3.6" files = [ {file = "jedi-0.18.2-py2.py3-none-any.whl", hash = "sha256:203c1fd9d969ab8f2119ec0a3342e0b49910045abe6af0a3ae83a5764d54639e"}, {file = "jedi-0.18.2.tar.gz", hash = "sha256:bae794c30d07f6d910d32a7048af09b5a39ed740918da923c6b780790ebac612"}, ] [package.dependencies] parso = ">=0.8.0,<0.9.0" [package.extras] docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alabaster (==0.7.12)", "babel (==2.9.1)", "chardet (==4.0.0)", "commonmark (==0.8.1)", "docutils (==0.17.1)", "future (==0.18.2)", "idna (==2.10)", "imagesize (==1.2.0)", "mock (==1.0.1)", "packaging (==20.9)", "pyparsing (==2.4.7)", "pytz (==2021.1)", "readthedocs-sphinx-ext (==2.1.4)", "recommonmark (==0.5.0)", "requests (==2.25.1)", "six (==1.15.0)", "snowballstemmer (==2.1.0)", "sphinx (==1.8.5)", "sphinx-rtd-theme (==0.4.3)", "sphinxcontrib-serializinghtml (==1.1.4)", "sphinxcontrib-websupport (==1.2.4)", "urllib3 (==1.26.4)"] qa = ["flake8 (==3.8.3)", "mypy (==0.782)"] testing = ["Django (<3.1)", "attrs", "colorama", "docopt", "pytest (<7.0.0)"] [[package]] name = "jina" version = "3.14.1" description = "Build multimodal AI services via cloud native technologies · Neural Search · Generative AI · MLOps" category = "main" optional = true python-versions = "*" files = [ {file = "jina-3.14.1.tar.gz", hash = "sha256:00b1f5995b13c9a49a2287bd534bd32eb8c05706064752035d569e616a15b411"}, ] [package.dependencies] aiofiles = "*" aiohttp = "*" aiostream = "*" docarray = ">=0.16.4" docker = "*" fastapi = ">=0.76.0" filelock = "*" grpcio = ">=1.46.0,<1.48.1" grpcio-health-checking = ">=1.46.0,<1.48.1" grpcio-reflection = ">=1.46.0,<1.48.1" jcloud = ">=0.0.35" jina-hubble-sdk = ">=0.30.4" numpy = "*" opentelemetry-api = ">=1.12.0" opentelemetry-exporter-otlp = ">=1.12.0" opentelemetry-exporter-otlp-proto-grpc = ">=1.13.0" opentelemetry-exporter-prometheus = ">=1.12.0rc1" opentelemetry-instrumentation-aiohttp-client = ">=0.33b0" opentelemetry-instrumentation-fastapi = ">=0.33b0" opentelemetry-instrumentation-grpc = ">=0.35b0" opentelemetry-sdk = ">=1.14.0" packaging = ">=20.0" pathspec = "*" prometheus_client = ">=0.12.0" protobuf = ">=3.19.0" pydantic = "*" python-multipart = "*" pyyaml = ">=5.3.1" requests = "*" uvicorn = {version = "*", extras = ["standard"]} uvloop = "*" websockets = "*" [package.extras] aiofiles = ["aiofiles"] aiohttp = ["aiohttp"] aiostream = ["aiostream"] all = ["Pillow", "aiofiles", "aiohttp", "aiostream", "black (==22.3.0)", "bs4", "coverage (==6.2)", "docarray (>=0.16.4)", "docker", "fastapi (>=0.76.0)", "filelock", "flaky", "grpcio (>=1.46.0,<1.48.1)", "grpcio-health-checking (>=1.46.0,<1.48.1)", "grpcio-reflection (>=1.46.0,<1.48.1)", "jcloud (>=0.0.35)", "jina-hubble-sdk (>=0.30.4)", "jsonschema", "kubernetes (>=18.20.0)", "mock", "numpy", "opentelemetry-api (>=1.12.0)", "opentelemetry-exporter-otlp (>=1.12.0)", "opentelemetry-exporter-otlp-proto-grpc (>=1.13.0)", "opentelemetry-exporter-prometheus (>=1.12.0rc1)", "opentelemetry-instrumentation-aiohttp-client (>=0.33b0)", "opentelemetry-instrumentation-fastapi (>=0.33b0)", "opentelemetry-instrumentation-grpc (>=0.35b0)", "opentelemetry-sdk (>=1.14.0)", "opentelemetry-test-utils (>=0.33b0)", "packaging (>=20.0)", "pathspec", "portforward (>=0.2.4)", "prometheus-api-client (>=0.5.1)", "prometheus_client (>=0.12.0)", "protobuf (>=3.19.0)", "psutil", "pydantic", "pytest", "pytest-asyncio", "pytest-cov (==3.0.0)", "pytest-custom_exit_code", "pytest-kind (==22.11.1)", "pytest-lazy-fixture", "pytest-mock", "pytest-repeat", "pytest-reraise", "pytest-timeout", "python-multipart", "pyyaml (>=5.3.1)", "requests", "requests-mock", "scipy (>=1.6.1)", "sgqlc", "strawberry-graphql (>=0.96.0)", "tensorflow (>=2.0)", "torch", "uvicorn[standard]", "uvloop", "watchfiles (>=0.18.0)", "websockets"] black = ["black (==22.3.0)"] bs4 = ["bs4"] cicd = ["bs4", "jsonschema", "portforward (>=0.2.4)", "sgqlc", "strawberry-graphql (>=0.96.0)", "tensorflow (>=2.0)", "torch"] core = ["docarray (>=0.16.4)", "grpcio (>=1.46.0,<1.48.1)", "grpcio-health-checking (>=1.46.0,<1.48.1)", "grpcio-reflection (>=1.46.0,<1.48.1)", "jcloud (>=0.0.35)", "jina-hubble-sdk (>=0.30.4)", "numpy", "opentelemetry-api (>=1.12.0)", "opentelemetry-instrumentation-grpc (>=0.35b0)", "packaging (>=20.0)", "protobuf (>=3.19.0)", "pyyaml (>=5.3.1)"] coverage = ["coverage (==6.2)"] devel = ["aiofiles", "aiohttp", "aiostream", "docker", "fastapi (>=0.76.0)", "filelock", "opentelemetry-exporter-otlp (>=1.12.0)", "opentelemetry-exporter-otlp-proto-grpc (>=1.13.0)", "opentelemetry-exporter-prometheus (>=1.12.0rc1)", "opentelemetry-instrumentation-aiohttp-client (>=0.33b0)", "opentelemetry-instrumentation-fastapi (>=0.33b0)", "opentelemetry-sdk (>=1.14.0)", "pathspec", "prometheus_client (>=0.12.0)", "pydantic", "python-multipart", "requests", "sgqlc", "strawberry-graphql (>=0.96.0)", "uvicorn[standard]", "uvloop", "watchfiles (>=0.18.0)", "websockets"] docarray = ["docarray (>=0.16.4)"] docker = ["docker"] fastapi = ["fastapi (>=0.76.0)"] filelock = ["filelock"] flaky = ["flaky"] grpcio = ["grpcio (>=1.46.0,<1.48.1)"] grpcio-health-checking = ["grpcio-health-checking (>=1.46.0,<1.48.1)"] grpcio-reflection = ["grpcio-reflection (>=1.46.0,<1.48.1)"] jcloud = ["jcloud (>=0.0.35)"] jina-hubble-sdk = ["jina-hubble-sdk (>=0.30.4)"] jsonschema = ["jsonschema"] kubernetes = ["kubernetes (>=18.20.0)"] mock = ["mock"] numpy = ["numpy"] opentelemetry-api = ["opentelemetry-api (>=1.12.0)"] opentelemetry-exporter-otlp = ["opentelemetry-exporter-otlp (>=1.12.0)"] opentelemetry-exporter-otlp-proto-grpc = ["opentelemetry-exporter-otlp-proto-grpc (>=1.13.0)"] opentelemetry-exporter-prometheus = ["opentelemetry-exporter-prometheus (>=1.12.0rc1)"] opentelemetry-instrumentation-aiohttp-client = ["opentelemetry-instrumentation-aiohttp-client (>=0.33b0)"] opentelemetry-instrumentation-fastapi = ["opentelemetry-instrumentation-fastapi (>=0.33b0)"] opentelemetry-instrumentation-grpc = ["opentelemetry-instrumentation-grpc (>=0.35b0)"] opentelemetry-sdk = ["opentelemetry-sdk (>=1.14.0)"] opentelemetry-test-utils = ["opentelemetry-test-utils (>=0.33b0)"] packaging = ["packaging (>=20.0)"] pathspec = ["pathspec"] perf = ["opentelemetry-exporter-otlp (>=1.12.0)", "opentelemetry-exporter-otlp-proto-grpc (>=1.13.0)", "opentelemetry-exporter-prometheus (>=1.12.0rc1)", "opentelemetry-instrumentation-aiohttp-client (>=0.33b0)", "opentelemetry-instrumentation-fastapi (>=0.33b0)", "opentelemetry-sdk (>=1.14.0)", "prometheus_client (>=0.12.0)", "uvloop"] pillow = ["Pillow"] portforward = ["portforward (>=0.2.4)"] prometheus-api-client = ["prometheus-api-client (>=0.5.1)"] prometheus-client = ["prometheus_client (>=0.12.0)"] protobuf = ["protobuf (>=3.19.0)"] psutil = ["psutil"] pydantic = ["pydantic"] pytest = ["pytest"] pytest-asyncio = ["pytest-asyncio"] pytest-cov = ["pytest-cov (==3.0.0)"] pytest-custom-exit-code = ["pytest-custom_exit_code"] pytest-kind = ["pytest-kind (==22.11.1)"] pytest-lazy-fixture = ["pytest-lazy-fixture"] pytest-mock = ["pytest-mock"] pytest-repeat = ["pytest-repeat"] pytest-reraise = ["pytest-reraise"] pytest-timeout = ["pytest-timeout"] python-multipart = ["python-multipart"] pyyaml = ["pyyaml (>=5.3.1)"] requests = ["requests"] requests-mock = ["requests-mock"] scipy = ["scipy (>=1.6.1)"] sgqlc = ["sgqlc"] standard = ["aiofiles", "aiohttp", "aiostream", "docker", "fastapi (>=0.76.0)", "filelock", "opentelemetry-exporter-otlp (>=1.12.0)", "opentelemetry-exporter-prometheus (>=1.12.0rc1)", "opentelemetry-instrumentation-aiohttp-client (>=0.33b0)", "opentelemetry-instrumentation-fastapi (>=0.33b0)", "opentelemetry-sdk (>=1.14.0)", "pathspec", "prometheus_client (>=0.12.0)", "pydantic", "python-multipart", "requests", "uvicorn[standard]", "uvloop", "websockets"] standrad = ["opentelemetry-exporter-otlp-proto-grpc (>=1.13.0)"] strawberry-graphql = ["strawberry-graphql (>=0.96.0)"] tensorflow = ["tensorflow (>=2.0)"] test = ["Pillow", "black (==22.3.0)", "coverage (==6.2)", "flaky", "kubernetes (>=18.20.0)", "mock", "opentelemetry-test-utils (>=0.33b0)", "prometheus-api-client (>=0.5.1)", "psutil", "pytest", "pytest-asyncio", "pytest-cov (==3.0.0)", "pytest-custom_exit_code", "pytest-kind (==22.11.1)", "pytest-lazy-fixture", "pytest-mock", "pytest-repeat", "pytest-reraise", "pytest-timeout", "requests-mock", "scipy (>=1.6.1)"] torch = ["torch"] "uvicorn[standard" = ["uvicorn[standard]"] uvloop = ["uvloop"] watchfiles = ["watchfiles (>=0.18.0)"] websockets = ["websockets"] [[package]] name = "jina-hubble-sdk" version = "0.37.1" description = "SDK for Hubble API at Jina AI." category = "main" optional = true python-versions = ">=3.7.0" files = [ {file = "jina-hubble-sdk-0.37.1.tar.gz", hash = "sha256:5b6bd9e13f97c8c77be822e9ae49f87a0f16ef8195011f25db2552006a5ca2a0"}, {file = "jina_hubble_sdk-0.37.1-py3-none-any.whl", hash = "sha256:bc54a60ed120508e231fbed28b0fff394c288312d2ffa865c7865c03dbbbb502"}, ] [package.dependencies] aiohttp = "*" docker = "*" filelock = "*" importlib-metadata = "*" pathspec = "*" python-jose = "*" pyyaml = "*" requests = "*" rich = "*" [package.extras] full = ["aiohttp", "black (==22.3.0)", "docker", "filelock", "flake8 (==4.0.1)", "importlib-metadata", "isort (==5.10.1)", "mock (==4.0.3)", "pathspec", "pytest (==7.0.0)", "pytest-asyncio (==0.19.0)", "pytest-cov (==3.0.0)", "pytest-mock (==3.7.0)", "python-jose", "pyyaml", "requests", "rich"] [[package]] name = "jinja2" version = "3.1.2" description = "A very fast and expressive template engine." category = "main" optional = false python-versions = ">=3.7" files = [ {file = "Jinja2-3.1.2-py3-none-any.whl", hash = "sha256:6088930bfe239f0e6710546ab9c19c9ef35e29792895fed6e6e31a023a182a61"}, {file = "Jinja2-3.1.2.tar.gz", hash = "sha256:31351a702a408a9e7595a8fc6150fc3f43bb6bf7e319770cbc0db9df9437e852"}, ] [package.dependencies] MarkupSafe = ">=2.0" [package.extras] i18n = ["Babel (>=2.7)"] [[package]] name = "jmespath" version = "1.0.1" description = "JSON Matching Expressions" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "jmespath-1.0.1-py3-none-any.whl", hash = "sha256:02e2e4cc71b5bcab88332eebf907519190dd9e6e82107fa7f83b1003a6252980"}, {file = "jmespath-1.0.1.tar.gz", hash = "sha256:90261b206d6defd58fdd5e85f478bf633a2901798906be2ad389150c5c60edbe"}, ] [[package]] name = "joblib" version = "1.2.0" description = "Lightweight pipelining with Python functions" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "joblib-1.2.0-py3-none-any.whl", hash = "sha256:091138ed78f800342968c523bdde947e7a305b8594b910a0fea2ab83c3c6d385"}, {file = "joblib-1.2.0.tar.gz", hash = "sha256:e1cee4a79e4af22881164f218d4311f60074197fb707e082e803b61f6d137018"}, ] [[package]] name = "jq" version = "1.4.1" description = "jq is a lightweight and flexible JSON processor." category = "main" optional = true python-versions = ">=3.5" files = [ {file = "jq-1.4.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1708cad6ee0f173ce38c6ebfc81b98a545b35387ae6471c8d7f9f3a02ffb723e"}, {file = "jq-1.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c94e70e5f0798d87018cd4a58175f4eed2afa08727389a0f3f246bf7e7b98d1e"}, {file = "jq-1.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ddc2c6b55c5461c6f155c4b717927bdd29a83a6356250c4e6016297bcea80498"}, {file = "jq-1.4.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e2e71f5a921542efbea12386ca9d91ea1aeb6bd393681073e4a47a720613715f"}, {file = "jq-1.4.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:b2bf666002d23ee8cf9e619d2d1e46d86a089e028367665386b9d67d22b31ceb"}, {file = "jq-1.4.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e33954fe47e61a533556d38e045ddd7b3fa8a8186a70981462a207ed22594d83"}, {file = "jq-1.4.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:07905774df7706588014ca49789548328e8f66738b004089b3f0c42f7f389405"}, {file = "jq-1.4.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:959b2e677e56dc31c8572c0852ad26d3b351a8a458ca72c96f8cedfcde49419f"}, {file = "jq-1.4.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e74ab69d39b171f1625fa666baa8f9a1ff49e7295047082bcb537fcc2d359dfe"}, {file = "jq-1.4.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:103412f7f35175eb9a1005e4e2067b363dfcdb413d02fa962ddf288b2b16cc54"}, {file = "jq-1.4.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1f70d5e0c6445cc58f720de2ab44c156c69ce6d898c4d4ad04f07815868e31ed"}, {file = "jq-1.4.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:db980118c02321c56b6e0ddf817ad1cbbd8b6c90f4637bdebb695e84ee41a296"}, {file = "jq-1.4.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:9b295a51a9ea7e324aa7ad2ce2cca3d51d7492a525cd7a59773666a07b1cc0f7"}, {file = "jq-1.4.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:82b44474641dcdb07b43267d17f77914595768e9464b31de114e6c229a16ac6e"}, {file = "jq-1.4.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:582c40d7e212e310cf1ed0fddc4590853b64a5e09aed1f740613765c83cff072"}, {file = "jq-1.4.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:75f4269f709f746bf3d52df2c4ebc316d4985e0db97b7c1a293f02202befcdcb"}, {file = "jq-1.4.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1a060fd3172f8833828cb26151ea2f6c0f99f0191109ad580baee7befbdd6e65"}, {file = "jq-1.4.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2bfd61be72ad1e35622a7525e55615954ccfbe6ccadabd7f964e879bb4a53ad6"}, {file = "jq-1.4.1-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:4364c45113407f1316a99bd7a8661aa9304eb3578c80b201917aa8568fa40ee1"}, {file = "jq-1.4.1-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:0a8c37073a335596c645f0260fd3ea7b6141c2fb0115a0b8082252b0169f70c8"}, {file = "jq-1.4.1-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:96e5160f77498389e388e7ba3cd1771abc386b52788c82dee897c95bc87efe6f"}, {file = "jq-1.4.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:fac91eb91bec60dee28e2325f863c43d12ffc904ee72248522c6d0157ae98a54"}, {file = "jq-1.4.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:581e771e7c4aad728f9696ce6faee0f3d535cb0c845a49ac20188d8c7918e19d"}, {file = "jq-1.4.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:31b6526533cbc298ae0c0084d22452fbd3b4600ace488dc961ecf9a1dcb51a83"}, {file = "jq-1.4.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1830a9fd394673758010e41e8d0e00be7126b0ea9f3ede017a555c0c805435bc"}, {file = "jq-1.4.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:6b11e71b4d00928898f494d8e2945b80aab0447a4f2e7fb4603ac32cccc4e28e"}, {file = "jq-1.4.1-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:3e4dd3ba62e284479528a5a00084c2923a08de7cb7fe154036a345190ed5bc24"}, {file = "jq-1.4.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:7dfa6ff7424339ed361d911a13635e7c2f888e18e42920a8603e8806d85fdfdc"}, {file = "jq-1.4.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:419f8d28e737b96476ac9ba66e000e4d93e54dd8003f1374269315086b98d822"}, {file = "jq-1.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:de27a580663825b493b061682b59704f29a748011f2e5bc4701b34f8f17ed405"}, {file = "jq-1.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ebfec7c54b3252ec59663a21885e97d49b1dd455d8db0223bb77073b9b248fc3"}, {file = "jq-1.4.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:56a21666412dd1a6b8306475d0ec6e1eba7965100b3dfd6ecf1eb537aabec513"}, {file = "jq-1.4.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:f97b1e2582d64b65069f2d8b5e08f94f1d0998233c98c0d6edcf0a610262cd3a"}, {file = "jq-1.4.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:33b5fcbf32c24557dd638e59b919f2ecfa98e65cf4b96f63c327ed10ea24495d"}, {file = "jq-1.4.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:a16fb7e2e0942b4661a8d210e9ac3292b5f021abbcddbbcb6b783f9eb5d7a6cb"}, {file = "jq-1.4.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4c4d6b9f30556d5f17552ac2ef8563872a2c0271cc7c8789c87546270135ae15"}, {file = "jq-1.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3f82346544116503cbdfd56ac5e90f837c2b96d69b64a3444df2770156dc8d64"}, {file = "jq-1.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1799792f34ca8441fb1c4b3cf05c644ef2a4b28ad07bae65b1c7cde8f26721b4"}, {file = "jq-1.4.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2403bfcaedbe860ffaa3258b65ad3dcf72d2d97c59acf6f8fd5f663a1b0a183a"}, {file = "jq-1.4.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:c59ebcd4f0bb99d5d69085905c80d8ebf95df522750d95e33985121daa4e1de4"}, {file = "jq-1.4.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:aa7fadeca796eb385b93217fb65ac2c54150ac3fcea2722c0c76390f0d6b2681"}, {file = "jq-1.4.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:11fb7e41c4931127cfe5c53b1eb812d797ed7d47a8ab22f6cb294cf470d5038b"}, {file = "jq-1.4.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:fc8f67f7b8140e51bd291686055d63f62b60fa3bea861265309f54fd74f5517d"}, {file = "jq-1.4.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:30ce02d9c01ffea7c92b4ec006b114c4047816f15016173dced3fc046760b854"}, {file = "jq-1.4.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bbbfdfbb0bc2d615edfa8213720423885c022a827ea3c8e8593bce98b6086c99"}, {file = "jq-1.4.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9053a8e9f3636d367e8bb0841a62d839f2116e6965096d95c38a8f9da57eed66"}, {file = "jq-1.4.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:3ecdffb3abc9f1611465b761eebcdb3008ae57946a86a99e76bc6b09fe611f29"}, {file = "jq-1.4.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e5f0688f98dedb49a5c680b961a4f453fe84b34795aa3203eec77f306fa823d5"}, {file = "jq-1.4.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:342f901a9330d12d2c2baf17684b77ae198fade920d061bb844d1b3733097792"}, {file = "jq-1.4.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:761713740c19dd0e0da8b6eaea7f588df2af64d8e32d1157a3a05028b0fec2b3"}, {file = "jq-1.4.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:6343d929e48ba4d75febcd987752931dc7a70e1b2f6f17b74baf3d5179dfb6a5"}, {file = "jq-1.4.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ec82f8925f7a88547cd302f2b479c81af17468dbd3473d688c3714a264f90c0"}, {file = "jq-1.4.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95edc023b97d1a44fd1e8243119a3532bc0e7d121dfdf2722471ec36763b85aa"}, {file = "jq-1.4.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cc4dd73782c039c66b25fc103b07fd46bac5d2f5a62dba29b45ae97ca88ba988"}, {file = "jq-1.4.1.tar.gz", hash = "sha256:52284ee3cb51670e6f537b0ec813654c064c1c0705bd910097ea0fe17313516d"}, ] [[package]] name = "jsonlines" version = "3.1.0" description = "Library with helpers for the jsonlines file format" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "jsonlines-3.1.0-py3-none-any.whl", hash = "sha256:632f5e38f93dfcb1ac8c4e09780b92af3a55f38f26e7c47ae85109d420b6ad39"}, {file = "jsonlines-3.1.0.tar.gz", hash = "sha256:2579cb488d96f815b0eb81629e3e6b0332da0962a18fa3532958f7ba14a5c37f"}, ] [package.dependencies] attrs = ">=19.2.0" [[package]] name = "jsonpointer" version = "2.3" description = "Identify specific nodes in a JSON document (RFC 6901)" category = "dev" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ {file = "jsonpointer-2.3-py2.py3-none-any.whl", hash = "sha256:51801e558539b4e9cd268638c078c6c5746c9ac96bc38152d443400e4f3793e9"}, {file = "jsonpointer-2.3.tar.gz", hash = "sha256:97cba51526c829282218feb99dab1b1e6bdf8efd1c43dc9d57be093c0d69c99a"}, ] [[package]] name = "jsonschema" version = "4.17.3" description = "An implementation of JSON Schema validation for Python" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "jsonschema-4.17.3-py3-none-any.whl", hash = "sha256:a870ad254da1a8ca84b6a2905cac29d265f805acc57af304784962a2aa6508f6"}, {file = "jsonschema-4.17.3.tar.gz", hash = "sha256:0f864437ab8b6076ba6707453ef8f98a6a0d512a80e93f8abdb676f737ecb60d"}, ] [package.dependencies] attrs = ">=17.4.0" fqdn = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} idna = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} importlib-resources = {version = ">=1.4.0", markers = "python_version < \"3.9\""} isoduration = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} jsonpointer = {version = ">1.13", optional = true, markers = "extra == \"format-nongpl\""} pkgutil-resolve-name = {version = ">=1.3.10", markers = "python_version < \"3.9\""} pyrsistent = ">=0.14.0,<0.17.0 || >0.17.0,<0.17.1 || >0.17.1,<0.17.2 || >0.17.2" rfc3339-validator = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} rfc3986-validator = {version = ">0.1.0", optional = true, markers = "extra == \"format-nongpl\""} uri-template = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} webcolors = {version = ">=1.11", optional = true, markers = "extra == \"format-nongpl\""} [package.extras] format = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3987", "uri-template", "webcolors (>=1.11)"] format-nongpl = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3986-validator (>0.1.0)", "uri-template", "webcolors (>=1.11)"] [[package]] name = "jupyter" version = "1.0.0" description = "Jupyter metapackage. Install all the Jupyter components in one go." category = "dev" optional = false python-versions = "*" files = [ {file = "jupyter-1.0.0-py2.py3-none-any.whl", hash = "sha256:5b290f93b98ffbc21c0c7e749f054b3267782166d72fa5e3ed1ed4eaf34a2b78"}, {file = "jupyter-1.0.0.tar.gz", hash = "sha256:d9dc4b3318f310e34c82951ea5d6683f67bed7def4b259fafbfe4f1beb1d8e5f"}, {file = "jupyter-1.0.0.zip", hash = "sha256:3e1f86076bbb7c8c207829390305a2b1fe836d471ed54be66a3b8c41e7f46cc7"}, ] [package.dependencies] ipykernel = "*" ipywidgets = "*" jupyter-console = "*" nbconvert = "*" notebook = "*" qtconsole = "*" [[package]] name = "jupyter-cache" version = "0.6.1" description = "A defined interface for working with a cache of jupyter notebooks." category = "dev" optional = false python-versions = "~=3.8" files = [ {file = "jupyter-cache-0.6.1.tar.gz", hash = "sha256:26f83901143edf4af2f3ff5a91e2d2ad298e46e2cee03c8071d37a23a63ccbfc"}, {file = "jupyter_cache-0.6.1-py3-none-any.whl", hash = "sha256:2fce7d4975805c77f75bdfc1bc2e82bc538b8e5b1af27f2f5e06d55b9f996a82"}, ] [package.dependencies] attrs = "*" click = "*" importlib-metadata = "*" nbclient = ">=0.2,<0.8" nbformat = "*" pyyaml = "*" sqlalchemy = ">=1.3.12,<3" tabulate = "*" [package.extras] cli = ["click-log"] code-style = ["pre-commit (>=2.12,<4.0)"] rtd = ["ipykernel", "jupytext", "myst-nb", "nbdime", "sphinx-book-theme", "sphinx-copybutton"] testing = ["coverage", "ipykernel", "jupytext", "matplotlib", "nbdime", "nbformat (>=5.1)", "numpy", "pandas", "pytest (>=6,<8)", "pytest-cov", "pytest-regressions", "sympy"] [[package]] name = "jupyter-client" version = "8.2.0" description = "Jupyter protocol implementation and client libraries" category = "dev" optional = false python-versions = ">=3.8" files = [ {file = "jupyter_client-8.2.0-py3-none-any.whl", hash = "sha256:b18219aa695d39e2ad570533e0d71fb7881d35a873051054a84ee2a17c4b7389"}, {file = "jupyter_client-8.2.0.tar.gz", hash = "sha256:9fe233834edd0e6c0aa5f05ca2ab4bdea1842bfd2d8a932878212fc5301ddaf0"}, ] [package.dependencies] importlib-metadata = {version = ">=4.8.3", markers = "python_version < \"3.10\""} jupyter-core = ">=4.12,<5.0.0 || >=5.1.0" python-dateutil = ">=2.8.2" pyzmq = ">=23.0" tornado = ">=6.2" traitlets = ">=5.3" [package.extras] docs = ["ipykernel", "myst-parser", "pydata-sphinx-theme", "sphinx (>=4)", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pytest", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] [[package]] name = "jupyter-console" version = "6.6.3" description = "Jupyter terminal console" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "jupyter_console-6.6.3-py3-none-any.whl", hash = "sha256:309d33409fcc92ffdad25f0bcdf9a4a9daa61b6f341177570fdac03de5352485"}, {file = "jupyter_console-6.6.3.tar.gz", hash = "sha256:566a4bf31c87adbfadf22cdf846e3069b59a71ed5da71d6ba4d8aaad14a53539"}, ] [package.dependencies] ipykernel = ">=6.14" ipython = "*" jupyter-client = ">=7.0.0" jupyter-core = ">=4.12,<5.0.0 || >=5.1.0" prompt-toolkit = ">=3.0.30" pygments = "*" pyzmq = ">=17" traitlets = ">=5.4" [package.extras] test = ["flaky", "pexpect", "pytest"] [[package]] name = "jupyter-core" version = "5.3.0" description = "Jupyter core package. A base package on which Jupyter projects rely." category = "dev" optional = false python-versions = ">=3.8" files = [ {file = "jupyter_core-5.3.0-py3-none-any.whl", hash = "sha256:d4201af84559bc8c70cead287e1ab94aeef3c512848dde077b7684b54d67730d"}, {file = "jupyter_core-5.3.0.tar.gz", hash = "sha256:6db75be0c83edbf1b7c9f91ec266a9a24ef945da630f3120e1a0046dc13713fc"}, ] [package.dependencies] platformdirs = ">=2.5" pywin32 = {version = ">=300", markers = "sys_platform == \"win32\" and platform_python_implementation != \"PyPy\""} traitlets = ">=5.3" [package.extras] docs = ["myst-parser", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "traitlets"] test = ["ipykernel", "pre-commit", "pytest", "pytest-cov", "pytest-timeout"] [[package]] name = "jupyter-events" version = "0.6.3" description = "Jupyter Event System library" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "jupyter_events-0.6.3-py3-none-any.whl", hash = "sha256:57a2749f87ba387cd1bfd9b22a0875b889237dbf2edc2121ebb22bde47036c17"}, {file = "jupyter_events-0.6.3.tar.gz", hash = "sha256:9a6e9995f75d1b7146b436ea24d696ce3a35bfa8bfe45e0c33c334c79464d0b3"}, ] [package.dependencies] jsonschema = {version = ">=3.2.0", extras = ["format-nongpl"]} python-json-logger = ">=2.0.4" pyyaml = ">=5.3" rfc3339-validator = "*" rfc3986-validator = ">=0.1.1" traitlets = ">=5.3" [package.extras] cli = ["click", "rich"] docs = ["jupyterlite-sphinx", "myst-parser", "pydata-sphinx-theme", "sphinxcontrib-spelling"] test = ["click", "coverage", "pre-commit", "pytest (>=7.0)", "pytest-asyncio (>=0.19.0)", "pytest-console-scripts", "pytest-cov", "rich"] [[package]] name = "jupyter-server" version = "2.5.0" description = "The backend—i.e. core services, APIs, and REST endpoints—to Jupyter web applications." category = "dev" optional = false python-versions = ">=3.8" files = [ {file = "jupyter_server-2.5.0-py3-none-any.whl", hash = "sha256:e6bc1e9e96d7c55b9ce9699ff6cb9a910581fe7349e27c40389acb67632e24c0"}, {file = "jupyter_server-2.5.0.tar.gz", hash = "sha256:9fde612791f716fd34d610cd939704a9639643744751ba66e7ee8fdc9cead07e"}, ] [package.dependencies] anyio = ">=3.1.0" argon2-cffi = "*" jinja2 = "*" jupyter-client = ">=7.4.4" jupyter-core = ">=4.12,<5.0.0 || >=5.1.0" jupyter-events = ">=0.4.0" jupyter-server-terminals = "*" nbconvert = ">=6.4.4" nbformat = ">=5.3.0" packaging = "*" prometheus-client = "*" pywinpty = {version = "*", markers = "os_name == \"nt\""} pyzmq = ">=24" send2trash = "*" terminado = ">=0.8.3" tornado = ">=6.2.0" traitlets = ">=5.6.0" websocket-client = "*" [package.extras] docs = ["docutils (<0.20)", "ipykernel", "jinja2", "jupyter-client", "jupyter-server", "mistune (<1.0.0)", "myst-parser", "nbformat", "prometheus-client", "pydata-sphinx-theme", "send2trash", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-openapi", "sphinxcontrib-spelling", "sphinxemoji", "tornado", "typing-extensions"] test = ["ipykernel", "pre-commit", "pytest (>=7.0)", "pytest-console-scripts", "pytest-jupyter[server] (>=0.4)", "pytest-timeout", "requests"] [[package]] name = "jupyter-server-terminals" version = "0.4.4" description = "A Jupyter Server Extension Providing Terminals." category = "dev" optional = false python-versions = ">=3.8" files = [ {file = "jupyter_server_terminals-0.4.4-py3-none-any.whl", hash = "sha256:75779164661cec02a8758a5311e18bb8eb70c4e86c6b699403100f1585a12a36"}, {file = "jupyter_server_terminals-0.4.4.tar.gz", hash = "sha256:57ab779797c25a7ba68e97bcfb5d7740f2b5e8a83b5e8102b10438041a7eac5d"}, ] [package.dependencies] pywinpty = {version = ">=2.0.3", markers = "os_name == \"nt\""} terminado = ">=0.8.3" [package.extras] docs = ["jinja2", "jupyter-server", "mistune (<3.0)", "myst-parser", "nbformat", "packaging", "pydata-sphinx-theme", "sphinxcontrib-github-alt", "sphinxcontrib-openapi", "sphinxcontrib-spelling", "sphinxemoji", "tornado"] test = ["coverage", "jupyter-server (>=2.0.0)", "pytest (>=7.0)", "pytest-cov", "pytest-jupyter[server] (>=0.5.3)", "pytest-timeout"] [[package]] name = "jupyterlab-pygments" version = "0.2.2" description = "Pygments theme using JupyterLab CSS variables" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "jupyterlab_pygments-0.2.2-py2.py3-none-any.whl", hash = "sha256:2405800db07c9f770863bcf8049a529c3dd4d3e28536638bd7c1c01d2748309f"}, {file = "jupyterlab_pygments-0.2.2.tar.gz", hash = "sha256:7405d7fde60819d905a9fa8ce89e4cd830e318cdad22a0030f7a901da705585d"}, ] [[package]] name = "jupyterlab-widgets" version = "3.0.7" description = "Jupyter interactive widgets for JupyterLab" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "jupyterlab_widgets-3.0.7-py3-none-any.whl", hash = "sha256:c73f8370338ec19f1bec47254752d6505b03601cbd5a67e6a0b184532f73a459"}, {file = "jupyterlab_widgets-3.0.7.tar.gz", hash = "sha256:c3a50ed5bf528a0c7a869096503af54702f86dda1db469aee1c92dc0c01b43ca"}, ] [[package]] name = "keras" version = "2.11.0" description = "Deep learning for humans." category = "main" optional = true python-versions = ">=3.7" files = [ {file = "keras-2.11.0-py2.py3-none-any.whl", hash = "sha256:38c6fff0ea9a8b06a2717736565c92a73c8cd9b1c239e7125ccb188b7848f65e"}, ] [[package]] name = "lancedb" version = "0.1.2" description = "lancedb" category = "main" optional = true python-versions = ">=3.8" files = [ {file = "lancedb-0.1.2-py3-none-any.whl", hash = "sha256:aa2baea7d16caeaa4c720c25ab46b5c5d88d8833486724e5a132e5b6cf392663"}, {file = "lancedb-0.1.2.tar.gz", hash = "sha256:d561568dacaa4fcdf5aac262bdb807004bb0dde550a44d43f7cdb4f95956b2bf"}, ] [package.dependencies] pylance = ">=0.4.6" ratelimiter = "*" retry = "*" tqdm = "*" [package.extras] dev = ["black", "pre-commit", "ruff"] docs = ["mkdocs", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]"] tests = ["pytest"] [[package]] name = "langcodes" version = "3.3.0" description = "Tools for labeling human languages with IETF language tags" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "langcodes-3.3.0-py3-none-any.whl", hash = "sha256:4d89fc9acb6e9c8fdef70bcdf376113a3db09b67285d9e1d534de6d8818e7e69"}, {file = "langcodes-3.3.0.tar.gz", hash = "sha256:794d07d5a28781231ac335a1561b8442f8648ca07cd518310aeb45d6f0807ef6"}, ] [package.extras] data = ["language-data (>=1.1,<2.0)"] [[package]] name = "langkit" version = "0.0.1b2" description = "A collection of text metric udfs for whylogs profiling and monitoring in WhyLabs" category = "main" optional = true python-versions = ">=3.8,<4.0" files = [ {file = "langkit-0.0.1b2-py3-none-any.whl", hash = "sha256:8059d48bb1bbf90da5f5103585dece57fa09d156b0490f8a6c88277789a19021"}, {file = "langkit-0.0.1b2.tar.gz", hash = "sha256:c2dd7cf93921dc77d6c7516746351fa503684f3be35392c187f4418a0748ef50"}, ] [package.dependencies] datasets = "*" nltk = ">=3.8.1,<4.0.0" openai = "*" pandas = "*" sentence-transformers = ">=2.2.2,<3.0.0" textstat = ">=0.7.3,<0.8.0" whylogs = ">=1.1.42.dev3,<2.0.0" [package.extras] io = ["torch"] [[package]] name = "lark" version = "1.1.5" description = "a modern parsing library" category = "main" optional = false python-versions = "*" files = [ {file = "lark-1.1.5-py3-none-any.whl", hash = "sha256:8476f9903e93fbde4f6c327f74d79e9b4bd0ed9294c5dfa3164ab8c581b5de2a"}, {file = "lark-1.1.5.tar.gz", hash = "sha256:4b534eae1f9af5b4ea000bea95776350befe1981658eea3820a01c37e504bb4d"}, ] [package.extras] atomic-cache = ["atomicwrites"] nearley = ["js2py"] regex = ["regex"] [[package]] name = "libclang" version = "16.0.0" description = "Clang Python Bindings, mirrored from the official LLVM repo: https://github.com/llvm/llvm-project/tree/main/clang/bindings/python, to make the installation process easier." category = "main" optional = true python-versions = "*" files = [ {file = "libclang-16.0.0-py2.py3-none-macosx_10_9_x86_64.whl", hash = "sha256:65258a6bb3e7dc31dc9b26f8d42f53c9d3b959643ade291fcd1aef4855303ca6"}, {file = "libclang-16.0.0-py2.py3-none-macosx_11_0_arm64.whl", hash = "sha256:af55a4aa86fdfe6b2ec68bc8cfe5fdac6c448d591ca7648be86ca17099b41ca8"}, {file = "libclang-16.0.0-py2.py3-none-manylinux2010_x86_64.whl", hash = "sha256:a043138caaf2cb076ebb060c6281ec95612926645d425c691991fc9df00e8a24"}, {file = "libclang-16.0.0-py2.py3-none-manylinux2014_aarch64.whl", hash = "sha256:eb59652cb0559c0e71784ff4c8ba24c14644becc907b1446563ecfaa622d523b"}, {file = "libclang-16.0.0-py2.py3-none-manylinux2014_armv7l.whl", hash = "sha256:7b6686b67a0daa84b4c614bcc119578329fc4fbb52b919565b7376b507c4793b"}, {file = "libclang-16.0.0-py2.py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:2adce42ae652f312245b8f4eda6f30b4076fb61f7619f2dfd0a0c31dee4c32b9"}, {file = "libclang-16.0.0-py2.py3-none-win_amd64.whl", hash = "sha256:ee20bf93e3dd330f71fc50cdbf13b92ced0aec8e540be64251db53502a9b33f7"}, {file = "libclang-16.0.0-py2.py3-none-win_arm64.whl", hash = "sha256:bf4628fc4da7a1dd06a244f9b8e121c5ec68076a763c59d6b13cbb103acc935b"}, ] [[package]] name = "linkchecker" version = "10.2.1" description = "check links in web documents or full websites" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "LinkChecker-10.2.1-py3-none-any.whl", hash = "sha256:5438496290826f5e2f4a2041f11482608378150b6c2d05ca8f94f460b7cb7c9e"}, {file = "LinkChecker-10.2.1.tar.gz", hash = "sha256:97eae069ccfe892a18e380c7f4762dfe3f352e87c442ef6124e8c60b887cddcd"}, ] [package.dependencies] beautifulsoup4 = ">=4.8.1" dnspython = ">=2.0" requests = ">=2.20" [[package]] name = "livereload" version = "2.6.3" description = "Python LiveReload is an awesome tool for web developers" category = "dev" optional = false python-versions = "*" files = [ {file = "livereload-2.6.3-py2.py3-none-any.whl", hash = "sha256:ad4ac6f53b2d62bb6ce1a5e6e96f1f00976a32348afedcb4b6d68df2a1d346e4"}, {file = "livereload-2.6.3.tar.gz", hash = "sha256:776f2f865e59fde56490a56bcc6773b6917366bce0c267c60ee8aaf1a0959869"}, ] [package.dependencies] six = "*" tornado = {version = "*", markers = "python_version > \"2.7\""} [[package]] name = "loguru" version = "0.7.0" description = "Python logging made (stupidly) simple" category = "main" optional = false python-versions = ">=3.5" files = [ {file = "loguru-0.7.0-py3-none-any.whl", hash = "sha256:b93aa30099fa6860d4727f1b81f8718e965bb96253fa190fab2077aaad6d15d3"}, {file = "loguru-0.7.0.tar.gz", hash = "sha256:1612053ced6ae84d7959dd7d5e431a0532642237ec21f7fd83ac73fe539e03e1"}, ] [package.dependencies] colorama = {version = ">=0.3.4", markers = "sys_platform == \"win32\""} win32-setctime = {version = ">=1.0.0", markers = "sys_platform == \"win32\""} [package.extras] dev = ["Sphinx (==5.3.0)", "colorama (==0.4.5)", "colorama (==0.4.6)", "freezegun (==1.1.0)", "freezegun (==1.2.2)", "mypy (==v0.910)", "mypy (==v0.971)", "mypy (==v0.990)", "pre-commit (==3.2.1)", "pytest (==6.1.2)", "pytest (==7.2.1)", "pytest-cov (==2.12.1)", "pytest-cov (==4.0.0)", "pytest-mypy-plugins (==1.10.1)", "pytest-mypy-plugins (==1.9.3)", "sphinx-autobuild (==2021.3.14)", "sphinx-rtd-theme (==1.2.0)", "tox (==3.27.1)", "tox (==4.4.6)"] [[package]] name = "lxml" version = "4.9.2" description = "Powerful and Pythonic XML processing library combining libxml2/libxslt with the ElementTree API." category = "main" optional = true python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, != 3.4.*" files = [ {file = "lxml-4.9.2-cp27-cp27m-macosx_10_15_x86_64.whl", hash = "sha256:76cf573e5a365e790396a5cc2b909812633409306c6531a6877c59061e42c4f2"}, {file = "lxml-4.9.2-cp27-cp27m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b1f42b6921d0e81b1bcb5e395bc091a70f41c4d4e55ba99c6da2b31626c44892"}, {file = "lxml-4.9.2-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:9f102706d0ca011de571de32c3247c6476b55bb6bc65a20f682f000b07a4852a"}, {file = "lxml-4.9.2-cp27-cp27m-win32.whl", hash = "sha256:8d0b4612b66ff5d62d03bcaa043bb018f74dfea51184e53f067e6fdcba4bd8de"}, {file = "lxml-4.9.2-cp27-cp27m-win_amd64.whl", hash = "sha256:4c8f293f14abc8fd3e8e01c5bd86e6ed0b6ef71936ded5bf10fe7a5efefbaca3"}, {file = "lxml-4.9.2-cp27-cp27mu-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2899456259589aa38bfb018c364d6ae7b53c5c22d8e27d0ec7609c2a1ff78b50"}, {file = "lxml-4.9.2-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:6749649eecd6a9871cae297bffa4ee76f90b4504a2a2ab528d9ebe912b101975"}, {file = "lxml-4.9.2-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:a08cff61517ee26cb56f1e949cca38caabe9ea9fbb4b1e10a805dc39844b7d5c"}, {file = "lxml-4.9.2-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl", hash = "sha256:85cabf64adec449132e55616e7ca3e1000ab449d1d0f9d7f83146ed5bdcb6d8a"}, {file = "lxml-4.9.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl", hash = "sha256:8340225bd5e7a701c0fa98284c849c9b9fc9238abf53a0ebd90900f25d39a4e4"}, {file = "lxml-4.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:1ab8f1f932e8f82355e75dda5413a57612c6ea448069d4fb2e217e9a4bed13d4"}, {file = "lxml-4.9.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:699a9af7dffaf67deeae27b2112aa06b41c370d5e7633e0ee0aea2e0b6c211f7"}, {file = "lxml-4.9.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b9cc34af337a97d470040f99ba4282f6e6bac88407d021688a5d585e44a23184"}, {file = "lxml-4.9.2-cp310-cp310-win32.whl", hash = "sha256:d02a5399126a53492415d4906ab0ad0375a5456cc05c3fc0fc4ca11771745cda"}, {file = "lxml-4.9.2-cp310-cp310-win_amd64.whl", hash = "sha256:a38486985ca49cfa574a507e7a2215c0c780fd1778bb6290c21193b7211702ab"}, {file = "lxml-4.9.2-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl", hash = "sha256:c83203addf554215463b59f6399835201999b5e48019dc17f182ed5ad87205c9"}, {file = "lxml-4.9.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl", hash = "sha256:2a87fa548561d2f4643c99cd13131acb607ddabb70682dcf1dff5f71f781a4bf"}, {file = "lxml-4.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:d6b430a9938a5a5d85fc107d852262ddcd48602c120e3dbb02137c83d212b380"}, {file = "lxml-4.9.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:3efea981d956a6f7173b4659849f55081867cf897e719f57383698af6f618a92"}, {file = "lxml-4.9.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:df0623dcf9668ad0445e0558a21211d4e9a149ea8f5666917c8eeec515f0a6d1"}, {file = "lxml-4.9.2-cp311-cp311-win32.whl", hash = "sha256:da248f93f0418a9e9d94b0080d7ebc407a9a5e6d0b57bb30db9b5cc28de1ad33"}, {file = "lxml-4.9.2-cp311-cp311-win_amd64.whl", hash = "sha256:3818b8e2c4b5148567e1b09ce739006acfaa44ce3156f8cbbc11062994b8e8dd"}, {file = "lxml-4.9.2-cp35-cp35m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ca989b91cf3a3ba28930a9fc1e9aeafc2a395448641df1f387a2d394638943b0"}, {file = "lxml-4.9.2-cp35-cp35m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:822068f85e12a6e292803e112ab876bc03ed1f03dddb80154c395f891ca6b31e"}, {file = "lxml-4.9.2-cp35-cp35m-win32.whl", hash = "sha256:be7292c55101e22f2a3d4d8913944cbea71eea90792bf914add27454a13905df"}, {file = "lxml-4.9.2-cp35-cp35m-win_amd64.whl", hash = "sha256:998c7c41910666d2976928c38ea96a70d1aa43be6fe502f21a651e17483a43c5"}, {file = "lxml-4.9.2-cp36-cp36m-macosx_10_15_x86_64.whl", hash = "sha256:b26a29f0b7fc6f0897f043ca366142d2b609dc60756ee6e4e90b5f762c6adc53"}, {file = "lxml-4.9.2-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl", hash = "sha256:ab323679b8b3030000f2be63e22cdeea5b47ee0abd2d6a1dc0c8103ddaa56cd7"}, {file = "lxml-4.9.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:689bb688a1db722485e4610a503e3e9210dcc20c520b45ac8f7533c837be76fe"}, {file = "lxml-4.9.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:f49e52d174375a7def9915c9f06ec4e569d235ad428f70751765f48d5926678c"}, {file = "lxml-4.9.2-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:36c3c175d34652a35475a73762b545f4527aec044910a651d2bf50de9c3352b1"}, {file = "lxml-4.9.2-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:a35f8b7fa99f90dd2f5dc5a9fa12332642f087a7641289ca6c40d6e1a2637d8e"}, {file = "lxml-4.9.2-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:58bfa3aa19ca4c0f28c5dde0ff56c520fbac6f0daf4fac66ed4c8d2fb7f22e74"}, {file = "lxml-4.9.2-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:bc718cd47b765e790eecb74d044cc8d37d58562f6c314ee9484df26276d36a38"}, {file = "lxml-4.9.2-cp36-cp36m-win32.whl", hash = "sha256:d5bf6545cd27aaa8a13033ce56354ed9e25ab0e4ac3b5392b763d8d04b08e0c5"}, {file = "lxml-4.9.2-cp36-cp36m-win_amd64.whl", hash = "sha256:3ab9fa9d6dc2a7f29d7affdf3edebf6ece6fb28a6d80b14c3b2fb9d39b9322c3"}, {file = "lxml-4.9.2-cp37-cp37m-macosx_10_15_x86_64.whl", hash = "sha256:05ca3f6abf5cf78fe053da9b1166e062ade3fa5d4f92b4ed688127ea7d7b1d03"}, {file = "lxml-4.9.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl", hash = "sha256:a5da296eb617d18e497bcf0a5c528f5d3b18dadb3619fbdadf4ed2356ef8d941"}, {file = "lxml-4.9.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl", hash = "sha256:04876580c050a8c5341d706dd464ff04fd597095cc8c023252566a8826505726"}, {file = "lxml-4.9.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:c9ec3eaf616d67db0764b3bb983962b4f385a1f08304fd30c7283954e6a7869b"}, {file = "lxml-4.9.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2a29ba94d065945944016b6b74e538bdb1751a1db6ffb80c9d3c2e40d6fa9894"}, {file = "lxml-4.9.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:a82d05da00a58b8e4c0008edbc8a4b6ec5a4bc1e2ee0fb6ed157cf634ed7fa45"}, {file = "lxml-4.9.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:223f4232855ade399bd409331e6ca70fb5578efef22cf4069a6090acc0f53c0e"}, {file = "lxml-4.9.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:d17bc7c2ccf49c478c5bdd447594e82692c74222698cfc9b5daae7ae7e90743b"}, {file = "lxml-4.9.2-cp37-cp37m-win32.whl", hash = "sha256:b64d891da92e232c36976c80ed7ebb383e3f148489796d8d31a5b6a677825efe"}, {file = "lxml-4.9.2-cp37-cp37m-win_amd64.whl", hash = "sha256:a0a336d6d3e8b234a3aae3c674873d8f0e720b76bc1d9416866c41cd9500ffb9"}, {file = "lxml-4.9.2-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:da4dd7c9c50c059aba52b3524f84d7de956f7fef88f0bafcf4ad7dde94a064e8"}, {file = "lxml-4.9.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl", hash = "sha256:821b7f59b99551c69c85a6039c65b75f5683bdc63270fec660f75da67469ca24"}, {file = "lxml-4.9.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl", hash = "sha256:e5168986b90a8d1f2f9dc1b841467c74221bd752537b99761a93d2d981e04889"}, {file = "lxml-4.9.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:8e20cb5a47247e383cf4ff523205060991021233ebd6f924bca927fcf25cf86f"}, {file = "lxml-4.9.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:13598ecfbd2e86ea7ae45ec28a2a54fb87ee9b9fdb0f6d343297d8e548392c03"}, {file = "lxml-4.9.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:880bbbcbe2fca64e2f4d8e04db47bcdf504936fa2b33933efd945e1b429bea8c"}, {file = "lxml-4.9.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:7d2278d59425777cfcb19735018d897ca8303abe67cc735f9f97177ceff8027f"}, {file = "lxml-4.9.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:5344a43228767f53a9df6e5b253f8cdca7dfc7b7aeae52551958192f56d98457"}, {file = "lxml-4.9.2-cp38-cp38-win32.whl", hash = "sha256:925073b2fe14ab9b87e73f9a5fde6ce6392da430f3004d8b72cc86f746f5163b"}, {file = "lxml-4.9.2-cp38-cp38-win_amd64.whl", hash = "sha256:9b22c5c66f67ae00c0199f6055705bc3eb3fcb08d03d2ec4059a2b1b25ed48d7"}, {file = "lxml-4.9.2-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:5f50a1c177e2fa3ee0667a5ab79fdc6b23086bc8b589d90b93b4bd17eb0e64d1"}, {file = "lxml-4.9.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl", hash = "sha256:090c6543d3696cbe15b4ac6e175e576bcc3f1ccfbba970061b7300b0c15a2140"}, {file = "lxml-4.9.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl", hash = "sha256:63da2ccc0857c311d764e7d3d90f429c252e83b52d1f8f1d1fe55be26827d1f4"}, {file = "lxml-4.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:5b4545b8a40478183ac06c073e81a5ce4cf01bf1734962577cf2bb569a5b3bbf"}, {file = "lxml-4.9.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2e430cd2824f05f2d4f687701144556646bae8f249fd60aa1e4c768ba7018947"}, {file = "lxml-4.9.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:6804daeb7ef69e7b36f76caddb85cccd63d0c56dedb47555d2fc969e2af6a1a5"}, {file = "lxml-4.9.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a6e441a86553c310258aca15d1c05903aaf4965b23f3bc2d55f200804e005ee5"}, {file = "lxml-4.9.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ca34efc80a29351897e18888c71c6aca4a359247c87e0b1c7ada14f0ab0c0fb2"}, {file = "lxml-4.9.2-cp39-cp39-win32.whl", hash = "sha256:6b418afe5df18233fc6b6093deb82a32895b6bb0b1155c2cdb05203f583053f1"}, {file = "lxml-4.9.2-cp39-cp39-win_amd64.whl", hash = "sha256:f1496ea22ca2c830cbcbd473de8f114a320da308438ae65abad6bab7867fe38f"}, {file = "lxml-4.9.2-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl", hash = "sha256:b264171e3143d842ded311b7dccd46ff9ef34247129ff5bf5066123c55c2431c"}, {file = "lxml-4.9.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:0dc313ef231edf866912e9d8f5a042ddab56c752619e92dfd3a2c277e6a7299a"}, {file = "lxml-4.9.2-pp38-pypy38_pp73-macosx_10_15_x86_64.whl", hash = "sha256:16efd54337136e8cd72fb9485c368d91d77a47ee2d42b057564aae201257d419"}, {file = "lxml-4.9.2-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl", hash = "sha256:0f2b1e0d79180f344ff9f321327b005ca043a50ece8713de61d1cb383fb8ac05"}, {file = "lxml-4.9.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:7b770ed79542ed52c519119473898198761d78beb24b107acf3ad65deae61f1f"}, {file = "lxml-4.9.2-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:efa29c2fe6b4fdd32e8ef81c1528506895eca86e1d8c4657fda04c9b3786ddf9"}, {file = "lxml-4.9.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:7e91ee82f4199af8c43d8158024cbdff3d931df350252288f0d4ce656df7f3b5"}, {file = "lxml-4.9.2-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl", hash = "sha256:b23e19989c355ca854276178a0463951a653309fb8e57ce674497f2d9f208746"}, {file = "lxml-4.9.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:01d36c05f4afb8f7c20fd9ed5badca32a2029b93b1750f571ccc0b142531caf7"}, {file = "lxml-4.9.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:7b515674acfdcadb0eb5d00d8a709868173acece5cb0be3dd165950cbfdf5409"}, {file = "lxml-4.9.2.tar.gz", hash = "sha256:2455cfaeb7ac70338b3257f41e21f0724f4b5b0c0e7702da67ee6c3640835b67"}, ] [package.extras] cssselect = ["cssselect (>=0.7)"] html5 = ["html5lib"] htmlsoup = ["BeautifulSoup4"] source = ["Cython (>=0.29.7)"] [[package]] name = "lz4" version = "4.3.2" description = "LZ4 Bindings for Python" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "lz4-4.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1c4c100d99eed7c08d4e8852dd11e7d1ec47a3340f49e3a96f8dfbba17ffb300"}, {file = "lz4-4.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:edd8987d8415b5dad25e797043936d91535017237f72fa456601be1479386c92"}, {file = "lz4-4.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f7c50542b4ddceb74ab4f8b3435327a0861f06257ca501d59067a6a482535a77"}, {file = "lz4-4.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0f5614d8229b33d4a97cb527db2a1ac81308c6e796e7bdb5d1309127289f69d5"}, {file = "lz4-4.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8f00a9ba98f6364cadda366ae6469b7b3568c0cced27e16a47ddf6b774169270"}, {file = "lz4-4.3.2-cp310-cp310-win32.whl", hash = "sha256:b10b77dc2e6b1daa2f11e241141ab8285c42b4ed13a8642495620416279cc5b2"}, {file = "lz4-4.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:86480f14a188c37cb1416cdabacfb4e42f7a5eab20a737dac9c4b1c227f3b822"}, {file = "lz4-4.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7c2df117def1589fba1327dceee51c5c2176a2b5a7040b45e84185ce0c08b6a3"}, {file = "lz4-4.3.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1f25eb322eeb24068bb7647cae2b0732b71e5c639e4e4026db57618dcd8279f0"}, {file = "lz4-4.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8df16c9a2377bdc01e01e6de5a6e4bbc66ddf007a6b045688e285d7d9d61d1c9"}, {file = "lz4-4.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f571eab7fec554d3b1db0d666bdc2ad85c81f4b8cb08906c4c59a8cad75e6e22"}, {file = "lz4-4.3.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7211dc8f636ca625abc3d4fb9ab74e5444b92df4f8d58ec83c8868a2b0ff643d"}, {file = "lz4-4.3.2-cp311-cp311-win32.whl", hash = "sha256:867664d9ca9bdfce840ac96d46cd8838c9ae891e859eb98ce82fcdf0e103a947"}, {file = "lz4-4.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:a6a46889325fd60b8a6b62ffc61588ec500a1883db32cddee9903edfba0b7584"}, {file = "lz4-4.3.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3a85b430138882f82f354135b98c320dafb96fc8fe4656573d95ab05de9eb092"}, {file = "lz4-4.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:65d5c93f8badacfa0456b660285e394e65023ef8071142e0dcbd4762166e1be0"}, {file = "lz4-4.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6b50f096a6a25f3b2edca05aa626ce39979d63c3b160687c8c6d50ac3943d0ba"}, {file = "lz4-4.3.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:200d05777d61ba1ff8d29cb51c534a162ea0b4fe6d3c28be3571a0a48ff36080"}, {file = "lz4-4.3.2-cp37-cp37m-win32.whl", hash = "sha256:edc2fb3463d5d9338ccf13eb512aab61937be50aa70734bcf873f2f493801d3b"}, {file = "lz4-4.3.2-cp37-cp37m-win_amd64.whl", hash = "sha256:83acfacab3a1a7ab9694333bcb7950fbeb0be21660d236fd09c8337a50817897"}, {file = "lz4-4.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:7a9eec24ec7d8c99aab54de91b4a5a149559ed5b3097cf30249b665689b3d402"}, {file = "lz4-4.3.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:31d72731c4ac6ebdce57cd9a5cabe0aecba229c4f31ba3e2c64ae52eee3fdb1c"}, {file = "lz4-4.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:83903fe6db92db0be101acedc677aa41a490b561567fe1b3fe68695b2110326c"}, {file = "lz4-4.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:926b26db87ec8822cf1870efc3d04d06062730ec3279bbbd33ba47a6c0a5c673"}, {file = "lz4-4.3.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e05afefc4529e97c08e65ef92432e5f5225c0bb21ad89dee1e06a882f91d7f5e"}, {file = "lz4-4.3.2-cp38-cp38-win32.whl", hash = "sha256:ad38dc6a7eea6f6b8b642aaa0683253288b0460b70cab3216838747163fb774d"}, {file = "lz4-4.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:7e2dc1bd88b60fa09b9b37f08553f45dc2b770c52a5996ea52b2b40f25445676"}, {file = "lz4-4.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:edda4fb109439b7f3f58ed6bede59694bc631c4b69c041112b1b7dc727fffb23"}, {file = "lz4-4.3.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0ca83a623c449295bafad745dcd399cea4c55b16b13ed8cfea30963b004016c9"}, {file = "lz4-4.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d5ea0e788dc7e2311989b78cae7accf75a580827b4d96bbaf06c7e5a03989bd5"}, {file = "lz4-4.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a98b61e504fb69f99117b188e60b71e3c94469295571492a6468c1acd63c37ba"}, {file = "lz4-4.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4931ab28a0d1c133104613e74eec1b8bb1f52403faabe4f47f93008785c0b929"}, {file = "lz4-4.3.2-cp39-cp39-win32.whl", hash = "sha256:ec6755cacf83f0c5588d28abb40a1ac1643f2ff2115481089264c7630236618a"}, {file = "lz4-4.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:4caedeb19e3ede6c7a178968b800f910db6503cb4cb1e9cc9221157572139b49"}, {file = "lz4-4.3.2.tar.gz", hash = "sha256:e1431d84a9cfb23e6773e72078ce8e65cad6745816d4cbf9ae67da5ea419acda"}, ] [package.extras] docs = ["sphinx (>=1.6.0)", "sphinx-bootstrap-theme"] flake8 = ["flake8"] tests = ["psutil", "pytest (!=3.3.0)", "pytest-cov"] [[package]] name = "manifest-ml" version = "0.0.1" description = "Manifest for Prompt Programming Foundation Models." category = "main" optional = true python-versions = ">=3.8.0" files = [ {file = "manifest-ml-0.0.1.tar.gz", hash = "sha256:f828faf7de41fad5318254beec08acdf5142196e0e22203a4047412c2d3127a0"}, {file = "manifest_ml-0.0.1-py2.py3-none-any.whl", hash = "sha256:fc4e62e706fd767fd8851d91051fdb71bc79b2df9c66f5879736c46d8163a316"}, ] [package.dependencies] dill = ">=0.3.5" redis = ">=4.3.1" requests = ">=2.27.1" sqlitedict = ">=2.0.0" tqdm = ">=4.64.0" [package.extras] all = ["Flask (>=2.1.2)", "accelerate (>=0.10.0)", "autopep8 (>=1.6.0)", "black (>=22.3.0)", "docformatter (>=1.4)", "flake8 (>=4.0.0)", "flake8-docstrings (>=1.6.0)", "isort (>=5.9.3)", "mypy (>=0.950)", "nbsphinx (>=0.8.0)", "pep8-naming (>=0.12.1)", "pre-commit (>=2.14.0)", "pytest (>=7.0.0)", "pytest-cov (>=3.0.0)", "python-dotenv (>=0.20.0)", "recommonmark (>=0.7.1)", "sphinx-autobuild", "sphinx-rtd-theme (>=0.5.1)", "torch (>=1.8.0)", "transformers (>=4.20.0)", "twine", "types-PyYAML (>=6.0.7)", "types-protobuf (>=3.19.21)", "types-python-dateutil (>=2.8.16)", "types-redis (>=4.2.6)", "types-requests (>=2.27.29)", "types-setuptools (>=57.4.17)"] api = ["Flask (>=2.1.2)", "accelerate (>=0.10.0)", "torch (>=1.8.0)", "transformers (>=4.20.0)"] dev = ["autopep8 (>=1.6.0)", "black (>=22.3.0)", "docformatter (>=1.4)", "flake8 (>=4.0.0)", "flake8-docstrings (>=1.6.0)", "isort (>=5.9.3)", "mypy (>=0.950)", "nbsphinx (>=0.8.0)", "pep8-naming (>=0.12.1)", "pre-commit (>=2.14.0)", "pytest (>=7.0.0)", "pytest-cov (>=3.0.0)", "python-dotenv (>=0.20.0)", "recommonmark (>=0.7.1)", "sphinx-autobuild", "sphinx-rtd-theme (>=0.5.1)", "twine", "types-PyYAML (>=6.0.7)", "types-protobuf (>=3.19.21)", "types-python-dateutil (>=2.8.16)", "types-redis (>=4.2.6)", "types-requests (>=2.27.29)", "types-setuptools (>=57.4.17)"] [[package]] name = "markdown" version = "3.4.3" description = "Python implementation of John Gruber's Markdown." category = "main" optional = true python-versions = ">=3.7" files = [ {file = "Markdown-3.4.3-py3-none-any.whl", hash = "sha256:065fd4df22da73a625f14890dd77eb8040edcbd68794bcd35943be14490608b2"}, {file = "Markdown-3.4.3.tar.gz", hash = "sha256:8bf101198e004dc93e84a12a7395e31aac6a9c9942848ae1d99b9d72cf9b3520"}, ] [package.extras] testing = ["coverage", "pyyaml"] [[package]] name = "markdown-it-py" version = "2.2.0" description = "Python port of markdown-it. Markdown parsing, done right!" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "markdown-it-py-2.2.0.tar.gz", hash = "sha256:7c9a5e412688bc771c67432cbfebcdd686c93ce6484913dccf06cb5a0bea35a1"}, {file = "markdown_it_py-2.2.0-py3-none-any.whl", hash = "sha256:5a35f8d1870171d9acc47b99612dc146129b631baf04970128b568f190d0cc30"}, ] [package.dependencies] mdurl = ">=0.1,<1.0" [package.extras] benchmarking = ["psutil", "pytest", "pytest-benchmark"] code-style = ["pre-commit (>=3.0,<4.0)"] compare = ["commonmark (>=0.9,<1.0)", "markdown (>=3.4,<4.0)", "mistletoe (>=1.0,<2.0)", "mistune (>=2.0,<3.0)", "panflute (>=2.3,<3.0)"] linkify = ["linkify-it-py (>=1,<3)"] plugins = ["mdit-py-plugins"] profiling = ["gprof2dot"] rtd = ["attrs", "myst-parser", "pyyaml", "sphinx", "sphinx-copybutton", "sphinx-design", "sphinx_book_theme"] testing = ["coverage", "pytest", "pytest-cov", "pytest-regressions"] [[package]] name = "markupsafe" version = "2.1.2" description = "Safely add untrusted strings to HTML/XML markup." category = "main" optional = false python-versions = ">=3.7" files = [ {file = "MarkupSafe-2.1.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:665a36ae6f8f20a4676b53224e33d456a6f5a72657d9c83c2aa00765072f31f7"}, {file = "MarkupSafe-2.1.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:340bea174e9761308703ae988e982005aedf427de816d1afe98147668cc03036"}, {file = "MarkupSafe-2.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22152d00bf4a9c7c83960521fc558f55a1adbc0631fbb00a9471e097b19d72e1"}, {file = "MarkupSafe-2.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:28057e985dace2f478e042eaa15606c7efccb700797660629da387eb289b9323"}, {file = "MarkupSafe-2.1.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ca244fa73f50a800cf8c3ebf7fd93149ec37f5cb9596aa8873ae2c1d23498601"}, {file = "MarkupSafe-2.1.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d9d971ec1e79906046aa3ca266de79eac42f1dbf3612a05dc9368125952bd1a1"}, {file = "MarkupSafe-2.1.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:7e007132af78ea9df29495dbf7b5824cb71648d7133cf7848a2a5dd00d36f9ff"}, {file = "MarkupSafe-2.1.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:7313ce6a199651c4ed9d7e4cfb4aa56fe923b1adf9af3b420ee14e6d9a73df65"}, {file = "MarkupSafe-2.1.2-cp310-cp310-win32.whl", hash = "sha256:c4a549890a45f57f1ebf99c067a4ad0cb423a05544accaf2b065246827ed9603"}, {file = "MarkupSafe-2.1.2-cp310-cp310-win_amd64.whl", hash = "sha256:835fb5e38fd89328e9c81067fd642b3593c33e1e17e2fdbf77f5676abb14a156"}, {file = "MarkupSafe-2.1.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:2ec4f2d48ae59bbb9d1f9d7efb9236ab81429a764dedca114f5fdabbc3788013"}, {file = "MarkupSafe-2.1.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:608e7073dfa9e38a85d38474c082d4281f4ce276ac0010224eaba11e929dd53a"}, {file = "MarkupSafe-2.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:65608c35bfb8a76763f37036547f7adfd09270fbdbf96608be2bead319728fcd"}, {file = "MarkupSafe-2.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f2bfb563d0211ce16b63c7cb9395d2c682a23187f54c3d79bfec33e6705473c6"}, {file = "MarkupSafe-2.1.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:da25303d91526aac3672ee6d49a2f3db2d9502a4a60b55519feb1a4c7714e07d"}, {file = "MarkupSafe-2.1.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:9cad97ab29dfc3f0249b483412c85c8ef4766d96cdf9dcf5a1e3caa3f3661cf1"}, {file = "MarkupSafe-2.1.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:085fd3201e7b12809f9e6e9bc1e5c96a368c8523fad5afb02afe3c051ae4afcc"}, {file = "MarkupSafe-2.1.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:1bea30e9bf331f3fef67e0a3877b2288593c98a21ccb2cf29b74c581a4eb3af0"}, {file = "MarkupSafe-2.1.2-cp311-cp311-win32.whl", hash = "sha256:7df70907e00c970c60b9ef2938d894a9381f38e6b9db73c5be35e59d92e06625"}, {file = "MarkupSafe-2.1.2-cp311-cp311-win_amd64.whl", hash = "sha256:e55e40ff0cc8cc5c07996915ad367fa47da6b3fc091fdadca7f5403239c5fec3"}, {file = "MarkupSafe-2.1.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:a6e40afa7f45939ca356f348c8e23048e02cb109ced1eb8420961b2f40fb373a"}, {file = "MarkupSafe-2.1.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf877ab4ed6e302ec1d04952ca358b381a882fbd9d1b07cccbfd61783561f98a"}, {file = "MarkupSafe-2.1.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:63ba06c9941e46fa389d389644e2d8225e0e3e5ebcc4ff1ea8506dce646f8c8a"}, {file = "MarkupSafe-2.1.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f1cd098434e83e656abf198f103a8207a8187c0fc110306691a2e94a78d0abb2"}, {file = "MarkupSafe-2.1.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:55f44b440d491028addb3b88f72207d71eeebfb7b5dbf0643f7c023ae1fba619"}, {file = "MarkupSafe-2.1.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:a6f2fcca746e8d5910e18782f976489939d54a91f9411c32051b4aab2bd7c513"}, {file = "MarkupSafe-2.1.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:0b462104ba25f1ac006fdab8b6a01ebbfbce9ed37fd37fd4acd70c67c973e460"}, {file = "MarkupSafe-2.1.2-cp37-cp37m-win32.whl", hash = "sha256:7668b52e102d0ed87cb082380a7e2e1e78737ddecdde129acadb0eccc5423859"}, {file = "MarkupSafe-2.1.2-cp37-cp37m-win_amd64.whl", hash = "sha256:6d6607f98fcf17e534162f0709aaad3ab7a96032723d8ac8750ffe17ae5a0666"}, {file = "MarkupSafe-2.1.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:a806db027852538d2ad7555b203300173dd1b77ba116de92da9afbc3a3be3eed"}, {file = "MarkupSafe-2.1.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a4abaec6ca3ad8660690236d11bfe28dfd707778e2442b45addd2f086d6ef094"}, {file = "MarkupSafe-2.1.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f03a532d7dee1bed20bc4884194a16160a2de9ffc6354b3878ec9682bb623c54"}, {file = "MarkupSafe-2.1.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4cf06cdc1dda95223e9d2d3c58d3b178aa5dacb35ee7e3bbac10e4e1faacb419"}, {file = "MarkupSafe-2.1.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:22731d79ed2eb25059ae3df1dfc9cb1546691cc41f4e3130fe6bfbc3ecbbecfa"}, {file = "MarkupSafe-2.1.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:f8ffb705ffcf5ddd0e80b65ddf7bed7ee4f5a441ea7d3419e861a12eaf41af58"}, {file = "MarkupSafe-2.1.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:8db032bf0ce9022a8e41a22598eefc802314e81b879ae093f36ce9ddf39ab1ba"}, {file = "MarkupSafe-2.1.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:2298c859cfc5463f1b64bd55cb3e602528db6fa0f3cfd568d3605c50678f8f03"}, {file = "MarkupSafe-2.1.2-cp38-cp38-win32.whl", hash = "sha256:50c42830a633fa0cf9e7d27664637532791bfc31c731a87b202d2d8ac40c3ea2"}, {file = "MarkupSafe-2.1.2-cp38-cp38-win_amd64.whl", hash = "sha256:bb06feb762bade6bf3c8b844462274db0c76acc95c52abe8dbed28ae3d44a147"}, {file = "MarkupSafe-2.1.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:99625a92da8229df6d44335e6fcc558a5037dd0a760e11d84be2260e6f37002f"}, {file = "MarkupSafe-2.1.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8bca7e26c1dd751236cfb0c6c72d4ad61d986e9a41bbf76cb445f69488b2a2bd"}, {file = "MarkupSafe-2.1.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:40627dcf047dadb22cd25ea7ecfe9cbf3bbbad0482ee5920b582f3809c97654f"}, {file = "MarkupSafe-2.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:40dfd3fefbef579ee058f139733ac336312663c6706d1163b82b3003fb1925c4"}, {file = "MarkupSafe-2.1.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:090376d812fb6ac5f171e5938e82e7f2d7adc2b629101cec0db8b267815c85e2"}, {file = "MarkupSafe-2.1.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:2e7821bffe00aa6bd07a23913b7f4e01328c3d5cc0b40b36c0bd81d362faeb65"}, {file = "MarkupSafe-2.1.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:c0a33bc9f02c2b17c3ea382f91b4db0e6cde90b63b296422a939886a7a80de1c"}, {file = "MarkupSafe-2.1.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:b8526c6d437855442cdd3d87eede9c425c4445ea011ca38d937db299382e6fa3"}, {file = "MarkupSafe-2.1.2-cp39-cp39-win32.whl", hash = "sha256:137678c63c977754abe9086a3ec011e8fd985ab90631145dfb9294ad09c102a7"}, {file = "MarkupSafe-2.1.2-cp39-cp39-win_amd64.whl", hash = "sha256:0576fe974b40a400449768941d5d0858cc624e3249dfd1e0c33674e5c7ca7aed"}, {file = "MarkupSafe-2.1.2.tar.gz", hash = "sha256:abcabc8c2b26036d62d4c746381a6f7cf60aafcc653198ad678306986b09450d"}, ] [[package]] name = "marshmallow" version = "3.19.0" description = "A lightweight library for converting complex datatypes to and from native Python datatypes." category = "main" optional = false python-versions = ">=3.7" files = [ {file = "marshmallow-3.19.0-py3-none-any.whl", hash = "sha256:93f0958568da045b0021ec6aeb7ac37c81bfcccbb9a0e7ed8559885070b3a19b"}, {file = "marshmallow-3.19.0.tar.gz", hash = "sha256:90032c0fd650ce94b6ec6dc8dfeb0e3ff50c144586462c389b81a07205bedb78"}, ] [package.dependencies] packaging = ">=17.0" [package.extras] dev = ["flake8 (==5.0.4)", "flake8-bugbear (==22.10.25)", "mypy (==0.990)", "pre-commit (>=2.4,<3.0)", "pytest", "pytz", "simplejson", "tox"] docs = ["alabaster (==0.7.12)", "autodocsumm (==0.2.9)", "sphinx (==5.3.0)", "sphinx-issues (==3.0.1)", "sphinx-version-warning (==1.1.2)"] lint = ["flake8 (==5.0.4)", "flake8-bugbear (==22.10.25)", "mypy (==0.990)", "pre-commit (>=2.4,<3.0)"] tests = ["pytest", "pytz", "simplejson"] [[package]] name = "marshmallow-enum" version = "1.5.1" description = "Enum field for Marshmallow" category = "main" optional = false python-versions = "*" files = [ {file = "marshmallow-enum-1.5.1.tar.gz", hash = "sha256:38e697e11f45a8e64b4a1e664000897c659b60aa57bfa18d44e226a9920b6e58"}, {file = "marshmallow_enum-1.5.1-py2.py3-none-any.whl", hash = "sha256:57161ab3dbfde4f57adeb12090f39592e992b9c86d206d02f6bd03ebec60f072"}, ] [package.dependencies] marshmallow = ">=2.0.0" [[package]] name = "mastodon-py" version = "1.8.1" description = "Python wrapper for the Mastodon API" category = "dev" optional = false python-versions = "*" files = [ {file = "Mastodon.py-1.8.1-py2.py3-none-any.whl", hash = "sha256:22bc7e060518ef2eaa69d911cde6e4baf56bed5ea0dd407392c49051a7ac526a"}, {file = "Mastodon.py-1.8.1.tar.gz", hash = "sha256:4a64cb94abadd6add73e4b8eafdb5c466048fa5f638284fd2189034104d4687e"}, ] [package.dependencies] blurhash = ">=1.1.4" decorator = ">=4.0.0" python-dateutil = "*" python-magic = {version = "*", markers = "platform_system != \"Windows\""} python-magic-bin = {version = "*", markers = "platform_system == \"Windows\""} requests = ">=2.4.2" six = "*" [package.extras] blurhash = ["blurhash (>=1.1.4)"] test = ["blurhash (>=1.1.4)", "cryptography (>=1.6.0)", "http-ece (>=1.0.5)", "pytest", "pytest-cov", "pytest-mock", "pytest-runner", "pytest-vcr", "pytz", "requests-mock", "vcrpy"] webpush = ["cryptography (>=1.6.0)", "http-ece (>=1.0.5)"] [[package]] name = "matplotlib-inline" version = "0.1.6" description = "Inline Matplotlib backend for Jupyter" category = "dev" optional = false python-versions = ">=3.5" files = [ {file = "matplotlib-inline-0.1.6.tar.gz", hash = "sha256:f887e5f10ba98e8d2b150ddcf4702c1e5f8b3a20005eb0f74bfdbd360ee6f304"}, {file = "matplotlib_inline-0.1.6-py3-none-any.whl", hash = "sha256:f1f41aab5328aa5aaea9b16d083b128102f8712542f819fe7e6a420ff581b311"}, ] [package.dependencies] traitlets = "*" [[package]] name = "mdit-py-plugins" version = "0.3.5" description = "Collection of plugins for markdown-it-py" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "mdit-py-plugins-0.3.5.tar.gz", hash = "sha256:eee0adc7195e5827e17e02d2a258a2ba159944a0748f59c5099a4a27f78fcf6a"}, {file = "mdit_py_plugins-0.3.5-py3-none-any.whl", hash = "sha256:ca9a0714ea59a24b2b044a1831f48d817dd0c817e84339f20e7889f392d77c4e"}, ] [package.dependencies] markdown-it-py = ">=1.0.0,<3.0.0" [package.extras] code-style = ["pre-commit"] rtd = ["attrs", "myst-parser (>=0.16.1,<0.17.0)", "sphinx-book-theme (>=0.1.0,<0.2.0)"] testing = ["coverage", "pytest", "pytest-cov", "pytest-regressions"] [[package]] name = "mdurl" version = "0.1.2" description = "Markdown URL utilities" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "mdurl-0.1.2-py3-none-any.whl", hash = "sha256:84008a41e51615a49fc9966191ff91509e3c40b939176e643fd50a5c2196b8f8"}, {file = "mdurl-0.1.2.tar.gz", hash = "sha256:bb413d29f5eea38f31dd4754dd7377d4465116fb207585f97bf925588687c1ba"}, ] [[package]] name = "mistune" version = "2.0.5" description = "A sane Markdown parser with useful plugins and renderers" category = "dev" optional = false python-versions = "*" files = [ {file = "mistune-2.0.5-py2.py3-none-any.whl", hash = "sha256:bad7f5d431886fcbaf5f758118ecff70d31f75231b34024a1341120340a65ce8"}, {file = "mistune-2.0.5.tar.gz", hash = "sha256:0246113cb2492db875c6be56974a7c893333bf26cd92891c85f63151cee09d34"}, ] [[package]] name = "mmh3" version = "3.1.0" description = "Python wrapper for MurmurHash (MurmurHash3), a set of fast and robust hash functions." category = "main" optional = false python-versions = "*" files = [ {file = "mmh3-3.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:16ee043b1bac040b4324b8baee39df9fdca480a560a6d74f2eef66a5009a234e"}, {file = "mmh3-3.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:04ac865319e5b36148a4b6cdf27f8bda091c47c4ab7b355d7f353dfc2b8a3cce"}, {file = "mmh3-3.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9e751f5433417a21c2060b0efa1afc67cfbe29977c867336148c8edb086fae70"}, {file = "mmh3-3.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bdb863b89c1b34e3681d4a3b15d424734940eb8036f3457cb35ef34fb87a503c"}, {file = "mmh3-3.1.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1230930fbf2faec4ddf5b76d0768ae73c102de173c301962bdd468177275adf9"}, {file = "mmh3-3.1.0-cp310-cp310-win32.whl", hash = "sha256:b8ed7a2361718795a1b519a08d05f44947a20b27e202b53946561a00dde669c1"}, {file = "mmh3-3.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:29e878e7467a000f34ab68c218ad7ad81312c0a94bc10df3c50a48bcad39dd83"}, {file = "mmh3-3.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c271472325b70d64a4fbb1f2e964ca5b093ac10258e1390f8408890b065868fe"}, {file = "mmh3-3.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:0109320f7e0e262123ff4f1acd06acfbc8b3bf19cc13d98c0bc369264430aaeb"}, {file = "mmh3-3.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:524e29dfe66499695f9496edcfc96782d130aabd6ba12c50c72372163cc6f3ea"}, {file = "mmh3-3.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:66bdb06a03074e65e614da1aa199b1d16c90608bec9d8fc3faa81d887ffe93cc"}, {file = "mmh3-3.1.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2a4d471eb75df8320061ab3b8cbe11c970be9f116b01bc2222ebda9c0a777520"}, {file = "mmh3-3.1.0-cp311-cp311-win32.whl", hash = "sha256:a886d9ce995a4bdfd7a600ddf61b9015cccbc73c50b898f8ff3c78af24384710"}, {file = "mmh3-3.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:5edb5ac882c04aff8a2a18ae8b74a0c339ac9b83db9820d8456f518bb558e0d8"}, {file = "mmh3-3.1.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:190fd10981fbd6c67e10ce3b56bcc021562c0df0fee2e2864347d64e65b1783a"}, {file = "mmh3-3.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cd781b115cf649811cfde76368c33d2e553b6f88bb41131c314f30d8e65e9d24"}, {file = "mmh3-3.1.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f48bb0a867077acc1f548591ad49506389f36d18f36dccd10becf071e5cbdda4"}, {file = "mmh3-3.1.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7d0936a82438e340636a11b9a938378870fc1c7a139632dac09a9a9277351704"}, {file = "mmh3-3.1.0-cp37-cp37m-win32.whl", hash = "sha256:d196cc035c2238493248522ae4e54c3cb790549b1564f6dea4d88dfe4b326313"}, {file = "mmh3-3.1.0-cp37-cp37m-win_amd64.whl", hash = "sha256:731d37f089b6c212fab1beea24e673161146eb6c76baf9ac074a3424d1172d41"}, {file = "mmh3-3.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9977fb81f8c66f4eee8439734a18dba7826fe78723d15ab53f42db977005be0f"}, {file = "mmh3-3.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:bf4f3f20a8b8405c08b13bc9e4ac33bf55129b50b535cd07ce1891b7f96326ac"}, {file = "mmh3-3.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:87cdbc6e70099ad92f17a28b4054ffb1938657e8fb7c1e4e03b194a1b4683fd6"}, {file = "mmh3-3.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6dd81321d14f62aa3711f30533c85a74dc7596e0fee63c8eddd375bc92ab846c"}, {file = "mmh3-3.1.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2e6eba88e5c1a2778f3de00a9502e3c214ebb757337ece2a7d71e060d188ddfa"}, {file = "mmh3-3.1.0-cp38-cp38-win32.whl", hash = "sha256:d91e696925f208d28f3bb7bdf29815524ce955248276af256519bd3538c411ce"}, {file = "mmh3-3.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:cbc2917df568aeb86ec5aa863bfb20fa14e01039cbdce7650efbabc30960df49"}, {file = "mmh3-3.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3b22832d565128be83d69f5d49243bb567840a954df377c9f5b26646a6eec39b"}, {file = "mmh3-3.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ced92a0e285a9111413541c197b0c17d280cee96f7c564b258caf5de5ab8ee01"}, {file = "mmh3-3.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f906833753b4ddcb690c2c1b74e77725868bc3a8b762b7a77737d08be89ae41d"}, {file = "mmh3-3.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:72b5685832a7a87a55ebff481794bc410484d7bd4c5e80dae4d8ac50739138ef"}, {file = "mmh3-3.1.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8d2aa4d422c7c088bbc5d367b45431268ebe6742a0a64eade93fab708e25757c"}, {file = "mmh3-3.1.0-cp39-cp39-win32.whl", hash = "sha256:4459bec818f534dc8378568ad89ab310ff47cda3e00ab322edce48dd899bba32"}, {file = "mmh3-3.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:03e04b3480e71828f48d17653451a3286555f0534942cb6ba93065b10ad5f9dc"}, {file = "mmh3-3.1.0.tar.gz", hash = "sha256:9b0f2b2ab4a915333c9d1089572e290a021ebb5b900bb7f7114dccc03995d732"}, ] [[package]] name = "momento" version = "1.5.0" description = "SDK for Momento" category = "main" optional = false python-versions = ">=3.7,<4.0" files = [ {file = "momento-1.5.0-py3-none-any.whl", hash = "sha256:7f633fb26ddf1bfcaf99a7add37b085f0e23c96f85972b655eaaf2de1c61d7f1"}, {file = "momento-1.5.0.tar.gz", hash = "sha256:68ca5d24b4cb08c5c0bd22d4edd3b8b0fcf087a85d30673cb2c55b11971c76ec"}, ] [package.dependencies] grpcio = ">=1.46.0,<2.0.0" momento-wire-types = ">=0.64,<0.65" pyjwt = ">=2.4.0,<3.0.0" [[package]] name = "momento-wire-types" version = "0.64.0" description = "Momento Client Proto Generated Files" category = "main" optional = false python-versions = ">=3.7,<4.0" files = [ {file = "momento_wire_types-0.64.0-py3-none-any.whl", hash = "sha256:30a5d523cef9209c0863db25e6344044b0c7240fea183a41c1433ca83cefea5b"}, {file = "momento_wire_types-0.64.0.tar.gz", hash = "sha256:5d3647210d49d0c3032a74ae5f5cc012a9faf826786272e1436a3d84d70a8bd5"}, ] [package.dependencies] grpcio = "*" protobuf = ">=3,<5" [[package]] name = "monotonic" version = "1.6" description = "An implementation of time.monotonic() for Python 2 & < 3.3" category = "dev" optional = false python-versions = "*" files = [ {file = "monotonic-1.6-py2.py3-none-any.whl", hash = "sha256:68687e19a14f11f26d140dd5c86f3dba4bf5df58003000ed467e0e2a69bca96c"}, {file = "monotonic-1.6.tar.gz", hash = "sha256:3a55207bcfed53ddd5c5bae174524062935efed17792e9de2ad0205ce9ad63f7"}, ] [[package]] name = "more-itertools" version = "9.1.0" description = "More routines for operating on iterables, beyond itertools" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "more-itertools-9.1.0.tar.gz", hash = "sha256:cabaa341ad0389ea83c17a94566a53ae4c9d07349861ecb14dc6d0345cf9ac5d"}, {file = "more_itertools-9.1.0-py3-none-any.whl", hash = "sha256:d2bc7f02446e86a68911e58ded76d6561eea00cddfb2a91e7019bbb586c799f3"}, ] [[package]] name = "msal" version = "1.22.0" description = "The Microsoft Authentication Library (MSAL) for Python library enables your app to access the Microsoft Cloud by supporting authentication of users with Microsoft Azure Active Directory accounts (AAD) and Microsoft Accounts (MSA) using industry standard OAuth2 and OpenID Connect." category = "main" optional = true python-versions = "*" files = [ {file = "msal-1.22.0-py2.py3-none-any.whl", hash = "sha256:9120b7eafdf061c92f7b3d744e5f325fca35873445fa8ffebb40b1086a13dd58"}, {file = "msal-1.22.0.tar.gz", hash = "sha256:8a82f5375642c1625c89058018430294c109440dce42ea667d466c2cab520acd"}, ] [package.dependencies] cryptography = ">=0.6,<43" PyJWT = {version = ">=1.0.0,<3", extras = ["crypto"]} requests = ">=2.0.0,<3" [package.extras] broker = ["pymsalruntime (>=0.13.2,<0.14)"] [[package]] name = "msal-extensions" version = "1.0.0" description = "Microsoft Authentication Library extensions (MSAL EX) provides a persistence API that can save your data on disk, encrypted on Windows, macOS and Linux. Concurrent data access will be coordinated by a file lock mechanism." category = "main" optional = true python-versions = "*" files = [ {file = "msal-extensions-1.0.0.tar.gz", hash = "sha256:c676aba56b0cce3783de1b5c5ecfe828db998167875126ca4b47dc6436451354"}, {file = "msal_extensions-1.0.0-py2.py3-none-any.whl", hash = "sha256:91e3db9620b822d0ed2b4d1850056a0f133cba04455e62f11612e40f5502f2ee"}, ] [package.dependencies] msal = ">=0.4.1,<2.0.0" portalocker = [ {version = ">=1.0,<3", markers = "python_version >= \"3.5\" and platform_system != \"Windows\""}, {version = ">=1.6,<3", markers = "python_version >= \"3.5\" and platform_system == \"Windows\""}, ] [[package]] name = "msgpack" version = "1.0.5" description = "MessagePack serializer" category = "main" optional = true python-versions = "*" files = [ {file = "msgpack-1.0.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:525228efd79bb831cf6830a732e2e80bc1b05436b086d4264814b4b2955b2fa9"}, {file = "msgpack-1.0.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:4f8d8b3bf1ff2672567d6b5c725a1b347fe838b912772aa8ae2bf70338d5a198"}, {file = "msgpack-1.0.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:cdc793c50be3f01106245a61b739328f7dccc2c648b501e237f0699fe1395b81"}, {file = "msgpack-1.0.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5cb47c21a8a65b165ce29f2bec852790cbc04936f502966768e4aae9fa763cb7"}, {file = "msgpack-1.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e42b9594cc3bf4d838d67d6ed62b9e59e201862a25e9a157019e171fbe672dd3"}, {file = "msgpack-1.0.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:55b56a24893105dc52c1253649b60f475f36b3aa0fc66115bffafb624d7cb30b"}, {file = "msgpack-1.0.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:1967f6129fc50a43bfe0951c35acbb729be89a55d849fab7686004da85103f1c"}, {file = "msgpack-1.0.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:20a97bf595a232c3ee6d57ddaadd5453d174a52594bf9c21d10407e2a2d9b3bd"}, {file = "msgpack-1.0.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:d25dd59bbbbb996eacf7be6b4ad082ed7eacc4e8f3d2df1ba43822da9bfa122a"}, {file = "msgpack-1.0.5-cp310-cp310-win32.whl", hash = "sha256:382b2c77589331f2cb80b67cc058c00f225e19827dbc818d700f61513ab47bea"}, {file = "msgpack-1.0.5-cp310-cp310-win_amd64.whl", hash = "sha256:4867aa2df9e2a5fa5f76d7d5565d25ec76e84c106b55509e78c1ede0f152659a"}, {file = "msgpack-1.0.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:9f5ae84c5c8a857ec44dc180a8b0cc08238e021f57abdf51a8182e915e6299f0"}, {file = "msgpack-1.0.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:9e6ca5d5699bcd89ae605c150aee83b5321f2115695e741b99618f4856c50898"}, {file = "msgpack-1.0.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5494ea30d517a3576749cad32fa27f7585c65f5f38309c88c6d137877fa28a5a"}, {file = "msgpack-1.0.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1ab2f3331cb1b54165976a9d976cb251a83183631c88076613c6c780f0d6e45a"}, {file = "msgpack-1.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:28592e20bbb1620848256ebc105fc420436af59515793ed27d5c77a217477705"}, {file = "msgpack-1.0.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fe5c63197c55bce6385d9aee16c4d0641684628f63ace85f73571e65ad1c1e8d"}, {file = "msgpack-1.0.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ed40e926fa2f297e8a653c954b732f125ef97bdd4c889f243182299de27e2aa9"}, {file = "msgpack-1.0.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:b2de4c1c0538dcb7010902a2b97f4e00fc4ddf2c8cda9749af0e594d3b7fa3d7"}, {file = "msgpack-1.0.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:bf22a83f973b50f9d38e55c6aade04c41ddda19b00c4ebc558930d78eecc64ed"}, {file = "msgpack-1.0.5-cp311-cp311-win32.whl", hash = "sha256:c396e2cc213d12ce017b686e0f53497f94f8ba2b24799c25d913d46c08ec422c"}, {file = "msgpack-1.0.5-cp311-cp311-win_amd64.whl", hash = "sha256:6c4c68d87497f66f96d50142a2b73b97972130d93677ce930718f68828b382e2"}, {file = "msgpack-1.0.5-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:a2b031c2e9b9af485d5e3c4520f4220d74f4d222a5b8dc8c1a3ab9448ca79c57"}, {file = "msgpack-1.0.5-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4f837b93669ce4336e24d08286c38761132bc7ab29782727f8557e1eb21b2080"}, {file = "msgpack-1.0.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b1d46dfe3832660f53b13b925d4e0fa1432b00f5f7210eb3ad3bb9a13c6204a6"}, {file = "msgpack-1.0.5-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:366c9a7b9057e1547f4ad51d8facad8b406bab69c7d72c0eb6f529cf76d4b85f"}, {file = "msgpack-1.0.5-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:4c075728a1095efd0634a7dccb06204919a2f67d1893b6aa8e00497258bf926c"}, {file = "msgpack-1.0.5-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:f933bbda5a3ee63b8834179096923b094b76f0c7a73c1cfe8f07ad608c58844b"}, {file = "msgpack-1.0.5-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:36961b0568c36027c76e2ae3ca1132e35123dcec0706c4b7992683cc26c1320c"}, {file = "msgpack-1.0.5-cp36-cp36m-win32.whl", hash = "sha256:b5ef2f015b95f912c2fcab19c36814963b5463f1fb9049846994b007962743e9"}, {file = "msgpack-1.0.5-cp36-cp36m-win_amd64.whl", hash = "sha256:288e32b47e67f7b171f86b030e527e302c91bd3f40fd9033483f2cacc37f327a"}, {file = "msgpack-1.0.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:137850656634abddfb88236008339fdaba3178f4751b28f270d2ebe77a563b6c"}, {file = "msgpack-1.0.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0c05a4a96585525916b109bb85f8cb6511db1c6f5b9d9cbcbc940dc6b4be944b"}, {file = "msgpack-1.0.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:56a62ec00b636583e5cb6ad313bbed36bb7ead5fa3a3e38938503142c72cba4f"}, {file = "msgpack-1.0.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ef8108f8dedf204bb7b42994abf93882da1159728a2d4c5e82012edd92c9da9f"}, {file = "msgpack-1.0.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:1835c84d65f46900920b3708f5ba829fb19b1096c1800ad60bae8418652a951d"}, {file = "msgpack-1.0.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:e57916ef1bd0fee4f21c4600e9d1da352d8816b52a599c46460e93a6e9f17086"}, {file = "msgpack-1.0.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:17358523b85973e5f242ad74aa4712b7ee560715562554aa2134d96e7aa4cbbf"}, {file = "msgpack-1.0.5-cp37-cp37m-win32.whl", hash = "sha256:cb5aaa8c17760909ec6cb15e744c3ebc2ca8918e727216e79607b7bbce9c8f77"}, {file = "msgpack-1.0.5-cp37-cp37m-win_amd64.whl", hash = "sha256:ab31e908d8424d55601ad7075e471b7d0140d4d3dd3272daf39c5c19d936bd82"}, {file = "msgpack-1.0.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:b72d0698f86e8d9ddf9442bdedec15b71df3598199ba33322d9711a19f08145c"}, {file = "msgpack-1.0.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:379026812e49258016dd84ad79ac8446922234d498058ae1d415f04b522d5b2d"}, {file = "msgpack-1.0.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:332360ff25469c346a1c5e47cbe2a725517919892eda5cfaffe6046656f0b7bb"}, {file = "msgpack-1.0.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:476a8fe8fae289fdf273d6d2a6cb6e35b5a58541693e8f9f019bfe990a51e4ba"}, {file = "msgpack-1.0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a9985b214f33311df47e274eb788a5893a761d025e2b92c723ba4c63936b69b1"}, {file = "msgpack-1.0.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:48296af57cdb1d885843afd73c4656be5c76c0c6328db3440c9601a98f303d87"}, {file = "msgpack-1.0.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:addab7e2e1fcc04bd08e4eb631c2a90960c340e40dfc4a5e24d2ff0d5a3b3edb"}, {file = "msgpack-1.0.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:916723458c25dfb77ff07f4c66aed34e47503b2eb3188b3adbec8d8aa6e00f48"}, {file = "msgpack-1.0.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:821c7e677cc6acf0fd3f7ac664c98803827ae6de594a9f99563e48c5a2f27eb0"}, {file = "msgpack-1.0.5-cp38-cp38-win32.whl", hash = "sha256:1c0f7c47f0087ffda62961d425e4407961a7ffd2aa004c81b9c07d9269512f6e"}, {file = "msgpack-1.0.5-cp38-cp38-win_amd64.whl", hash = "sha256:bae7de2026cbfe3782c8b78b0db9cbfc5455e079f1937cb0ab8d133496ac55e1"}, {file = "msgpack-1.0.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:20c784e66b613c7f16f632e7b5e8a1651aa5702463d61394671ba07b2fc9e025"}, {file = "msgpack-1.0.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:266fa4202c0eb94d26822d9bfd7af25d1e2c088927fe8de9033d929dd5ba24c5"}, {file = "msgpack-1.0.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:18334484eafc2b1aa47a6d42427da7fa8f2ab3d60b674120bce7a895a0a85bdd"}, {file = "msgpack-1.0.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:57e1f3528bd95cc44684beda696f74d3aaa8a5e58c816214b9046512240ef437"}, {file = "msgpack-1.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:586d0d636f9a628ddc6a17bfd45aa5b5efaf1606d2b60fa5d87b8986326e933f"}, {file = "msgpack-1.0.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a740fa0e4087a734455f0fc3abf5e746004c9da72fbd541e9b113013c8dc3282"}, {file = "msgpack-1.0.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:3055b0455e45810820db1f29d900bf39466df96ddca11dfa6d074fa47054376d"}, {file = "msgpack-1.0.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:a61215eac016f391129a013c9e46f3ab308db5f5ec9f25811e811f96962599a8"}, {file = "msgpack-1.0.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:362d9655cd369b08fda06b6657a303eb7172d5279997abe094512e919cf74b11"}, {file = "msgpack-1.0.5-cp39-cp39-win32.whl", hash = "sha256:ac9dd47af78cae935901a9a500104e2dea2e253207c924cc95de149606dc43cc"}, {file = "msgpack-1.0.5-cp39-cp39-win_amd64.whl", hash = "sha256:06f5174b5f8ed0ed919da0e62cbd4ffde676a374aba4020034da05fab67b9164"}, {file = "msgpack-1.0.5.tar.gz", hash = "sha256:c075544284eadc5cddc70f4757331d99dcbc16b2bbd4849d15f8aae4cf36d31c"}, ] [[package]] name = "msrest" version = "0.7.1" description = "AutoRest swagger generator Python client runtime." category = "main" optional = true python-versions = ">=3.6" files = [ {file = "msrest-0.7.1-py3-none-any.whl", hash = "sha256:21120a810e1233e5e6cc7fe40b474eeb4ec6f757a15d7cf86702c369f9567c32"}, {file = "msrest-0.7.1.zip", hash = "sha256:6e7661f46f3afd88b75667b7187a92829924446c7ea1d169be8c4bb7eeb788b9"}, ] [package.dependencies] azure-core = ">=1.24.0" certifi = ">=2017.4.17" isodate = ">=0.6.0" requests = ">=2.16,<3.0" requests-oauthlib = ">=0.5.0" [package.extras] async = ["aiodns", "aiohttp (>=3.0)"] [[package]] name = "multidict" version = "6.0.4" description = "multidict implementation" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "multidict-6.0.4-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:0b1a97283e0c85772d613878028fec909f003993e1007eafa715b24b377cb9b8"}, {file = "multidict-6.0.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:eeb6dcc05e911516ae3d1f207d4b0520d07f54484c49dfc294d6e7d63b734171"}, {file = "multidict-6.0.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d6d635d5209b82a3492508cf5b365f3446afb65ae7ebd755e70e18f287b0adf7"}, {file = "multidict-6.0.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c048099e4c9e9d615545e2001d3d8a4380bd403e1a0578734e0d31703d1b0c0b"}, {file = "multidict-6.0.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ea20853c6dbbb53ed34cb4d080382169b6f4554d394015f1bef35e881bf83547"}, {file = "multidict-6.0.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:16d232d4e5396c2efbbf4f6d4df89bfa905eb0d4dc5b3549d872ab898451f569"}, {file = "multidict-6.0.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:36c63aaa167f6c6b04ef2c85704e93af16c11d20de1d133e39de6a0e84582a93"}, {file = "multidict-6.0.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:64bdf1086b6043bf519869678f5f2757f473dee970d7abf6da91ec00acb9cb98"}, {file = "multidict-6.0.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:43644e38f42e3af682690876cff722d301ac585c5b9e1eacc013b7a3f7b696a0"}, {file = "multidict-6.0.4-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:7582a1d1030e15422262de9f58711774e02fa80df0d1578995c76214f6954988"}, {file = "multidict-6.0.4-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:ddff9c4e225a63a5afab9dd15590432c22e8057e1a9a13d28ed128ecf047bbdc"}, {file = "multidict-6.0.4-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:ee2a1ece51b9b9e7752e742cfb661d2a29e7bcdba2d27e66e28a99f1890e4fa0"}, {file = "multidict-6.0.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:a2e4369eb3d47d2034032a26c7a80fcb21a2cb22e1173d761a162f11e562caa5"}, {file = "multidict-6.0.4-cp310-cp310-win32.whl", hash = "sha256:574b7eae1ab267e5f8285f0fe881f17efe4b98c39a40858247720935b893bba8"}, {file = "multidict-6.0.4-cp310-cp310-win_amd64.whl", hash = "sha256:4dcbb0906e38440fa3e325df2359ac6cb043df8e58c965bb45f4e406ecb162cc"}, {file = "multidict-6.0.4-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:0dfad7a5a1e39c53ed00d2dd0c2e36aed4650936dc18fd9a1826a5ae1cad6f03"}, {file = "multidict-6.0.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:64da238a09d6039e3bd39bb3aee9c21a5e34f28bfa5aa22518581f910ff94af3"}, {file = "multidict-6.0.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ff959bee35038c4624250473988b24f846cbeb2c6639de3602c073f10410ceba"}, {file = "multidict-6.0.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:01a3a55bd90018c9c080fbb0b9f4891db37d148a0a18722b42f94694f8b6d4c9"}, {file = "multidict-6.0.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c5cb09abb18c1ea940fb99360ea0396f34d46566f157122c92dfa069d3e0e982"}, {file = "multidict-6.0.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:666daae833559deb2d609afa4490b85830ab0dfca811a98b70a205621a6109fe"}, {file = "multidict-6.0.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:11bdf3f5e1518b24530b8241529d2050014c884cf18b6fc69c0c2b30ca248710"}, {file = "multidict-6.0.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7d18748f2d30f94f498e852c67d61261c643b349b9d2a581131725595c45ec6c"}, {file = "multidict-6.0.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:458f37be2d9e4c95e2d8866a851663cbc76e865b78395090786f6cd9b3bbf4f4"}, {file = "multidict-6.0.4-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:b1a2eeedcead3a41694130495593a559a668f382eee0727352b9a41e1c45759a"}, {file = "multidict-6.0.4-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:7d6ae9d593ef8641544d6263c7fa6408cc90370c8cb2bbb65f8d43e5b0351d9c"}, {file = "multidict-6.0.4-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:5979b5632c3e3534e42ca6ff856bb24b2e3071b37861c2c727ce220d80eee9ed"}, {file = "multidict-6.0.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:dcfe792765fab89c365123c81046ad4103fcabbc4f56d1c1997e6715e8015461"}, {file = "multidict-6.0.4-cp311-cp311-win32.whl", hash = "sha256:3601a3cece3819534b11d4efc1eb76047488fddd0c85a3948099d5da4d504636"}, {file = "multidict-6.0.4-cp311-cp311-win_amd64.whl", hash = "sha256:81a4f0b34bd92df3da93315c6a59034df95866014ac08535fc819f043bfd51f0"}, {file = "multidict-6.0.4-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:67040058f37a2a51ed8ea8f6b0e6ee5bd78ca67f169ce6122f3e2ec80dfe9b78"}, {file = "multidict-6.0.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:853888594621e6604c978ce2a0444a1e6e70c8d253ab65ba11657659dcc9100f"}, {file = "multidict-6.0.4-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:39ff62e7d0f26c248b15e364517a72932a611a9b75f35b45be078d81bdb86603"}, {file = "multidict-6.0.4-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:af048912e045a2dc732847d33821a9d84ba553f5c5f028adbd364dd4765092ac"}, {file = "multidict-6.0.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b1e8b901e607795ec06c9e42530788c45ac21ef3aaa11dbd0c69de543bfb79a9"}, {file = "multidict-6.0.4-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:62501642008a8b9871ddfccbf83e4222cf8ac0d5aeedf73da36153ef2ec222d2"}, {file = "multidict-6.0.4-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:99b76c052e9f1bc0721f7541e5e8c05db3941eb9ebe7b8553c625ef88d6eefde"}, {file = "multidict-6.0.4-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:509eac6cf09c794aa27bcacfd4d62c885cce62bef7b2c3e8b2e49d365b5003fe"}, {file = "multidict-6.0.4-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:21a12c4eb6ddc9952c415f24eef97e3e55ba3af61f67c7bc388dcdec1404a067"}, {file = "multidict-6.0.4-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:5cad9430ab3e2e4fa4a2ef4450f548768400a2ac635841bc2a56a2052cdbeb87"}, {file = "multidict-6.0.4-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:ab55edc2e84460694295f401215f4a58597f8f7c9466faec545093045476327d"}, {file = "multidict-6.0.4-cp37-cp37m-win32.whl", hash = "sha256:5a4dcf02b908c3b8b17a45fb0f15b695bf117a67b76b7ad18b73cf8e92608775"}, {file = "multidict-6.0.4-cp37-cp37m-win_amd64.whl", hash = "sha256:6ed5f161328b7df384d71b07317f4d8656434e34591f20552c7bcef27b0ab88e"}, {file = "multidict-6.0.4-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:5fc1b16f586f049820c5c5b17bb4ee7583092fa0d1c4e28b5239181ff9532e0c"}, {file = "multidict-6.0.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1502e24330eb681bdaa3eb70d6358e818e8e8f908a22a1851dfd4e15bc2f8161"}, {file = "multidict-6.0.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b692f419760c0e65d060959df05f2a531945af31fda0c8a3b3195d4efd06de11"}, {file = "multidict-6.0.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45e1ecb0379bfaab5eef059f50115b54571acfbe422a14f668fc8c27ba410e7e"}, {file = "multidict-6.0.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ddd3915998d93fbcd2566ddf9cf62cdb35c9e093075f862935573d265cf8f65d"}, {file = "multidict-6.0.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:59d43b61c59d82f2effb39a93c48b845efe23a3852d201ed2d24ba830d0b4cf2"}, {file = "multidict-6.0.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cc8e1d0c705233c5dd0c5e6460fbad7827d5d36f310a0fadfd45cc3029762258"}, {file = "multidict-6.0.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d6aa0418fcc838522256761b3415822626f866758ee0bc6632c9486b179d0b52"}, {file = "multidict-6.0.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:6748717bb10339c4760c1e63da040f5f29f5ed6e59d76daee30305894069a660"}, {file = "multidict-6.0.4-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:4d1a3d7ef5e96b1c9e92f973e43aa5e5b96c659c9bc3124acbbd81b0b9c8a951"}, {file = "multidict-6.0.4-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:4372381634485bec7e46718edc71528024fcdc6f835baefe517b34a33c731d60"}, {file = "multidict-6.0.4-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:fc35cb4676846ef752816d5be2193a1e8367b4c1397b74a565a9d0389c433a1d"}, {file = "multidict-6.0.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:4b9d9e4e2b37daddb5c23ea33a3417901fa7c7b3dee2d855f63ee67a0b21e5b1"}, {file = "multidict-6.0.4-cp38-cp38-win32.whl", hash = "sha256:e41b7e2b59679edfa309e8db64fdf22399eec4b0b24694e1b2104fb789207779"}, {file = "multidict-6.0.4-cp38-cp38-win_amd64.whl", hash = "sha256:d6c254ba6e45d8e72739281ebc46ea5eb5f101234f3ce171f0e9f5cc86991480"}, {file = "multidict-6.0.4-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:16ab77bbeb596e14212e7bab8429f24c1579234a3a462105cda4a66904998664"}, {file = "multidict-6.0.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bc779e9e6f7fda81b3f9aa58e3a6091d49ad528b11ed19f6621408806204ad35"}, {file = "multidict-6.0.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4ceef517eca3e03c1cceb22030a3e39cb399ac86bff4e426d4fc6ae49052cc60"}, {file = "multidict-6.0.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:281af09f488903fde97923c7744bb001a9b23b039a909460d0f14edc7bf59706"}, {file = "multidict-6.0.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:52f2dffc8acaba9a2f27174c41c9e57f60b907bb9f096b36b1a1f3be71c6284d"}, {file = "multidict-6.0.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b41156839806aecb3641f3208c0dafd3ac7775b9c4c422d82ee2a45c34ba81ca"}, {file = "multidict-6.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d5e3fc56f88cc98ef8139255cf8cd63eb2c586531e43310ff859d6bb3a6b51f1"}, {file = "multidict-6.0.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8316a77808c501004802f9beebde51c9f857054a0c871bd6da8280e718444449"}, {file = "multidict-6.0.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:f70b98cd94886b49d91170ef23ec5c0e8ebb6f242d734ed7ed677b24d50c82cf"}, {file = "multidict-6.0.4-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bf6774e60d67a9efe02b3616fee22441d86fab4c6d335f9d2051d19d90a40063"}, {file = "multidict-6.0.4-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:e69924bfcdda39b722ef4d9aa762b2dd38e4632b3641b1d9a57ca9cd18f2f83a"}, {file = "multidict-6.0.4-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:6b181d8c23da913d4ff585afd1155a0e1194c0b50c54fcfe286f70cdaf2b7176"}, {file = "multidict-6.0.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:52509b5be062d9eafc8170e53026fbc54cf3b32759a23d07fd935fb04fc22d95"}, {file = "multidict-6.0.4-cp39-cp39-win32.whl", hash = "sha256:27c523fbfbdfd19c6867af7346332b62b586eed663887392cff78d614f9ec313"}, {file = "multidict-6.0.4-cp39-cp39-win_amd64.whl", hash = "sha256:33029f5734336aa0d4c0384525da0387ef89148dc7191aae00ca5fb23d7aafc2"}, {file = "multidict-6.0.4.tar.gz", hash = "sha256:3666906492efb76453c0e7b97f2cf459b0682e7402c0489a95484965dbc1da49"}, ] [[package]] name = "multiprocess" version = "0.70.14" description = "better multiprocessing and multithreading in python" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "multiprocess-0.70.14-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:560a27540daef4ce8b24ed3cc2496a3c670df66c96d02461a4da67473685adf3"}, {file = "multiprocess-0.70.14-pp37-pypy37_pp73-manylinux_2_24_i686.whl", hash = "sha256:bfbbfa36f400b81d1978c940616bc77776424e5e34cb0c94974b178d727cfcd5"}, {file = "multiprocess-0.70.14-pp37-pypy37_pp73-manylinux_2_24_x86_64.whl", hash = "sha256:89fed99553a04ec4f9067031f83a886d7fdec5952005551a896a4b6a59575bb9"}, {file = "multiprocess-0.70.14-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:40a5e3685462079e5fdee7c6789e3ef270595e1755199f0d50685e72523e1d2a"}, {file = "multiprocess-0.70.14-pp38-pypy38_pp73-manylinux_2_24_i686.whl", hash = "sha256:44936b2978d3f2648727b3eaeab6d7fa0bedf072dc5207bf35a96d5ee7c004cf"}, {file = "multiprocess-0.70.14-pp38-pypy38_pp73-manylinux_2_24_x86_64.whl", hash = "sha256:e628503187b5d494bf29ffc52d3e1e57bb770ce7ce05d67c4bbdb3a0c7d3b05f"}, {file = "multiprocess-0.70.14-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:0d5da0fc84aacb0e4bd69c41b31edbf71b39fe2fb32a54eaedcaea241050855c"}, {file = "multiprocess-0.70.14-pp39-pypy39_pp73-manylinux_2_24_i686.whl", hash = "sha256:6a7b03a5b98e911a7785b9116805bd782815c5e2bd6c91c6a320f26fd3e7b7ad"}, {file = "multiprocess-0.70.14-pp39-pypy39_pp73-manylinux_2_24_x86_64.whl", hash = "sha256:cea5bdedd10aace3c660fedeac8b087136b4366d4ee49a30f1ebf7409bce00ae"}, {file = "multiprocess-0.70.14-py310-none-any.whl", hash = "sha256:7dc1f2f6a1d34894c8a9a013fbc807971e336e7cc3f3ff233e61b9dc679b3b5c"}, {file = "multiprocess-0.70.14-py37-none-any.whl", hash = "sha256:93a8208ca0926d05cdbb5b9250a604c401bed677579e96c14da3090beb798193"}, {file = "multiprocess-0.70.14-py38-none-any.whl", hash = "sha256:6725bc79666bbd29a73ca148a0fb5f4ea22eed4a8f22fce58296492a02d18a7b"}, {file = "multiprocess-0.70.14-py39-none-any.whl", hash = "sha256:63cee628b74a2c0631ef15da5534c8aedbc10c38910b9c8b18dcd327528d1ec7"}, {file = "multiprocess-0.70.14.tar.gz", hash = "sha256:3eddafc12f2260d27ae03fe6069b12570ab4764ab59a75e81624fac453fbf46a"}, ] [package.dependencies] dill = ">=0.3.6" [[package]] name = "murmurhash" version = "1.0.9" description = "Cython bindings for MurmurHash" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "murmurhash-1.0.9-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:697ed01454d92681c7ae26eb1adcdc654b54062bcc59db38ed03cad71b23d449"}, {file = "murmurhash-1.0.9-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:5ef31b5c11be2c064dbbdd0e22ab3effa9ceb5b11ae735295c717c120087dd94"}, {file = "murmurhash-1.0.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7a2bd203377a31bbb2d83fe3f968756d6c9bbfa36c64c6ebfc3c6494fc680bc"}, {file = "murmurhash-1.0.9-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0eb0f8e652431ea238c11bcb671fef5c03aff0544bf7e098df81ea4b6d495405"}, {file = "murmurhash-1.0.9-cp310-cp310-win_amd64.whl", hash = "sha256:cf0b3fe54dca598f5b18c9951e70812e070ecb4c0672ad2cc32efde8a33b3df6"}, {file = "murmurhash-1.0.9-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5dc41be79ba4d09aab7e9110a8a4d4b37b184b63767b1b247411667cdb1057a3"}, {file = "murmurhash-1.0.9-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c0f84ecdf37c06eda0222f2f9e81c0974e1a7659c35b755ab2fdc642ebd366db"}, {file = "murmurhash-1.0.9-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:241693c1c819148eac29d7882739b1099c891f1f7431127b2652c23f81722cec"}, {file = "murmurhash-1.0.9-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:47f5ca56c430230d3b581dfdbc54eb3ad8b0406dcc9afdd978da2e662c71d370"}, {file = "murmurhash-1.0.9-cp311-cp311-win_amd64.whl", hash = "sha256:660ae41fc6609abc05130543011a45b33ca5d8318ae5c70e66bbd351ca936063"}, {file = "murmurhash-1.0.9-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:01137d688a6b259bde642513506b062364ea4e1609f886d9bd095c3ae6da0b94"}, {file = "murmurhash-1.0.9-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1b70bbf55d89713873a35bd4002bc231d38e530e1051d57ca5d15f96c01fd778"}, {file = "murmurhash-1.0.9-cp36-cp36m-win_amd64.whl", hash = "sha256:3e802fa5b0e618ee99e8c114ce99fc91677f14e9de6e18b945d91323a93c84e8"}, {file = "murmurhash-1.0.9-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:213d0248e586082e1cab6157d9945b846fd2b6be34357ad5ea0d03a1931d82ba"}, {file = "murmurhash-1.0.9-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:94b89d02aeab5e6bad5056f9d08df03ac7cfe06e61ff4b6340feb227fda80ce8"}, {file = "murmurhash-1.0.9-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0c2e2ee2d91a87952fe0f80212e86119aa1fd7681f03e6c99b279e50790dc2b3"}, {file = "murmurhash-1.0.9-cp37-cp37m-win_amd64.whl", hash = "sha256:8c3d69fb649c77c74a55624ebf7a0df3c81629e6ea6e80048134f015da57b2ea"}, {file = "murmurhash-1.0.9-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:ab78675510f83e7a3c6bd0abdc448a9a2b0b385b0d7ee766cbbfc5cc278a3042"}, {file = "murmurhash-1.0.9-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:0ac5530c250d2b0073ed058555847c8d88d2d00229e483d45658c13b32398523"}, {file = "murmurhash-1.0.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:69157e8fa6b25c4383645227069f6a1f8738d32ed2a83558961019ca3ebef56a"}, {file = "murmurhash-1.0.9-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2aebe2ae016525a662ff772b72a2c9244a673e3215fcd49897f494258b96f3e7"}, {file = "murmurhash-1.0.9-cp38-cp38-win_amd64.whl", hash = "sha256:a5952f9c18a717fa17579e27f57bfa619299546011a8378a8f73e14eece332f6"}, {file = "murmurhash-1.0.9-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:ef79202feeac68e83971239169a05fa6514ecc2815ce04c8302076d267870f6e"}, {file = "murmurhash-1.0.9-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:799fcbca5693ad6a40f565ae6b8e9718e5875a63deddf343825c0f31c32348fa"}, {file = "murmurhash-1.0.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f9b995bc82eaf9223e045210207b8878fdfe099a788dd8abd708d9ee58459a9d"}, {file = "murmurhash-1.0.9-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b129e1c5ebd772e6ff5ef925bcce695df13169bd885337e6074b923ab6edcfc8"}, {file = "murmurhash-1.0.9-cp39-cp39-win_amd64.whl", hash = "sha256:379bf6b414bd27dd36772dd1570565a7d69918e980457370838bd514df0d91e9"}, {file = "murmurhash-1.0.9.tar.gz", hash = "sha256:fe7a38cb0d3d87c14ec9dddc4932ffe2dbc77d75469ab80fd5014689b0e07b58"}, ] [[package]] name = "mypy" version = "0.991" description = "Optional static typing for Python" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "mypy-0.991-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:7d17e0a9707d0772f4a7b878f04b4fd11f6f5bcb9b3813975a9b13c9332153ab"}, {file = "mypy-0.991-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0714258640194d75677e86c786e80ccf294972cc76885d3ebbb560f11db0003d"}, {file = "mypy-0.991-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:0c8f3be99e8a8bd403caa8c03be619544bc2c77a7093685dcf308c6b109426c6"}, {file = "mypy-0.991-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc9ec663ed6c8f15f4ae9d3c04c989b744436c16d26580eaa760ae9dd5d662eb"}, {file = "mypy-0.991-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4307270436fd7694b41f913eb09210faff27ea4979ecbcd849e57d2da2f65305"}, {file = "mypy-0.991-cp310-cp310-win_amd64.whl", hash = "sha256:901c2c269c616e6cb0998b33d4adbb4a6af0ac4ce5cd078afd7bc95830e62c1c"}, {file = "mypy-0.991-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:d13674f3fb73805ba0c45eb6c0c3053d218aa1f7abead6e446d474529aafc372"}, {file = "mypy-0.991-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:1c8cd4fb70e8584ca1ed5805cbc7c017a3d1a29fb450621089ffed3e99d1857f"}, {file = "mypy-0.991-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:209ee89fbb0deed518605edddd234af80506aec932ad28d73c08f1400ef80a33"}, {file = "mypy-0.991-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:37bd02ebf9d10e05b00d71302d2c2e6ca333e6c2a8584a98c00e038db8121f05"}, {file = "mypy-0.991-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:26efb2fcc6b67e4d5a55561f39176821d2adf88f2745ddc72751b7890f3194ad"}, {file = "mypy-0.991-cp311-cp311-win_amd64.whl", hash = "sha256:3a700330b567114b673cf8ee7388e949f843b356a73b5ab22dd7cff4742a5297"}, {file = "mypy-0.991-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:1f7d1a520373e2272b10796c3ff721ea1a0712288cafaa95931e66aa15798813"}, {file = "mypy-0.991-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:641411733b127c3e0dab94c45af15fea99e4468f99ac88b39efb1ad677da5711"}, {file = "mypy-0.991-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:3d80e36b7d7a9259b740be6d8d906221789b0d836201af4234093cae89ced0cd"}, {file = "mypy-0.991-cp37-cp37m-win_amd64.whl", hash = "sha256:e62ebaad93be3ad1a828a11e90f0e76f15449371ffeecca4a0a0b9adc99abcef"}, {file = "mypy-0.991-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:b86ce2c1866a748c0f6faca5232059f881cda6dda2a893b9a8373353cfe3715a"}, {file = "mypy-0.991-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:ac6e503823143464538efda0e8e356d871557ef60ccd38f8824a4257acc18d93"}, {file = "mypy-0.991-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:0cca5adf694af539aeaa6ac633a7afe9bbd760df9d31be55ab780b77ab5ae8bf"}, {file = "mypy-0.991-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a12c56bf73cdab116df96e4ff39610b92a348cc99a1307e1da3c3768bbb5b135"}, {file = "mypy-0.991-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:652b651d42f155033a1967739788c436491b577b6a44e4c39fb340d0ee7f0d70"}, {file = "mypy-0.991-cp38-cp38-win_amd64.whl", hash = "sha256:4175593dc25d9da12f7de8de873a33f9b2b8bdb4e827a7cae952e5b1a342e243"}, {file = "mypy-0.991-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:98e781cd35c0acf33eb0295e8b9c55cdbef64fcb35f6d3aa2186f289bed6e80d"}, {file = "mypy-0.991-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6d7464bac72a85cb3491c7e92b5b62f3dcccb8af26826257760a552a5e244aa5"}, {file = "mypy-0.991-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c9166b3f81a10cdf9b49f2d594b21b31adadb3d5e9db9b834866c3258b695be3"}, {file = "mypy-0.991-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b8472f736a5bfb159a5e36740847808f6f5b659960115ff29c7cecec1741c648"}, {file = "mypy-0.991-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5e80e758243b97b618cdf22004beb09e8a2de1af481382e4d84bc52152d1c476"}, {file = "mypy-0.991-cp39-cp39-win_amd64.whl", hash = "sha256:74e259b5c19f70d35fcc1ad3d56499065c601dfe94ff67ae48b85596b9ec1461"}, {file = "mypy-0.991-py3-none-any.whl", hash = "sha256:de32edc9b0a7e67c2775e574cb061a537660e51210fbf6006b0b36ea695ae9bb"}, {file = "mypy-0.991.tar.gz", hash = "sha256:3c0165ba8f354a6d9881809ef29f1a9318a236a6d81c690094c5df32107bde06"}, ] [package.dependencies] mypy-extensions = ">=0.4.3" tomli = {version = ">=1.1.0", markers = "python_version < \"3.11\""} typing-extensions = ">=3.10" [package.extras] dmypy = ["psutil (>=4.0)"] install-types = ["pip"] python2 = ["typed-ast (>=1.4.0,<2)"] reports = ["lxml"] [[package]] name = "mypy-extensions" version = "1.0.0" description = "Type system extensions for programs checked with the mypy type checker." category = "main" optional = false python-versions = ">=3.5" files = [ {file = "mypy_extensions-1.0.0-py3-none-any.whl", hash = "sha256:4392f6c0eb8a5668a69e23d168ffa70f0be9ccfd32b5cc2d26a34ae5b844552d"}, {file = "mypy_extensions-1.0.0.tar.gz", hash = "sha256:75dbf8955dc00442a438fc4d0666508a9a97b6bd41aa2f0ffe9d2f2725af0782"}, ] [[package]] name = "myst-nb" version = "0.17.2" description = "A Jupyter Notebook Sphinx reader built on top of the MyST markdown parser." category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "myst-nb-0.17.2.tar.gz", hash = "sha256:0f61386515fab07c73646adca97fff2f69f41e90d313a260217c5bbe419d858b"}, {file = "myst_nb-0.17.2-py3-none-any.whl", hash = "sha256:132ca4d0f5c308fdd4b6fdaba077712e28e119ccdafd04d6e41b51aac5483494"}, ] [package.dependencies] importlib_metadata = "*" ipykernel = "*" ipython = "*" jupyter-cache = ">=0.5,<0.7" myst-parser = ">=0.18.0,<0.19.0" nbclient = "*" nbformat = ">=5.0,<6.0" pyyaml = "*" sphinx = ">=4,<6" typing-extensions = "*" [package.extras] code-style = ["pre-commit"] rtd = ["alabaster", "altair", "bokeh", "coconut (>=1.4.3,<2.3.0)", "ipykernel (>=5.5,<6.0)", "ipywidgets", "jupytext (>=1.11.2,<1.12.0)", "matplotlib", "numpy", "pandas", "plotly", "sphinx-book-theme (>=0.3.0,<0.4.0)", "sphinx-copybutton", "sphinx-design (>=0.4.0,<0.5.0)", "sphinxcontrib-bibtex", "sympy"] testing = ["beautifulsoup4", "coverage (>=6.4,<8.0)", "ipykernel (>=5.5,<6.0)", "ipython (!=8.1.0,<8.5)", "ipywidgets (>=8)", "jupytext (>=1.11.2,<1.12.0)", "matplotlib (>=3.5.3,<3.6)", "nbdime", "numpy", "pandas", "pytest (>=7.1,<8.0)", "pytest-cov (>=3,<5)", "pytest-param-files (>=0.3.3,<0.4.0)", "pytest-regressions", "sympy (>=1.10.1)"] [[package]] name = "myst-parser" version = "0.18.1" description = "An extended commonmark compliant parser, with bridges to docutils & sphinx." category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "myst-parser-0.18.1.tar.gz", hash = "sha256:79317f4bb2c13053dd6e64f9da1ba1da6cd9c40c8a430c447a7b146a594c246d"}, {file = "myst_parser-0.18.1-py3-none-any.whl", hash = "sha256:61b275b85d9f58aa327f370913ae1bec26ebad372cc99f3ab85c8ec3ee8d9fb8"}, ] [package.dependencies] docutils = ">=0.15,<0.20" jinja2 = "*" markdown-it-py = ">=1.0.0,<3.0.0" mdit-py-plugins = ">=0.3.1,<0.4.0" pyyaml = "*" sphinx = ">=4,<6" typing-extensions = "*" [package.extras] code-style = ["pre-commit (>=2.12,<3.0)"] linkify = ["linkify-it-py (>=1.0,<2.0)"] rtd = ["ipython", "sphinx-book-theme", "sphinx-design", "sphinxcontrib.mermaid (>=0.7.1,<0.8.0)", "sphinxext-opengraph (>=0.6.3,<0.7.0)", "sphinxext-rediraffe (>=0.2.7,<0.3.0)"] testing = ["beautifulsoup4", "coverage[toml]", "pytest (>=6,<7)", "pytest-cov", "pytest-param-files (>=0.3.4,<0.4.0)", "pytest-regressions", "sphinx (<5.2)", "sphinx-pytest"] [[package]] name = "nbclassic" version = "1.0.0" description = "Jupyter Notebook as a Jupyter Server extension." category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "nbclassic-1.0.0-py3-none-any.whl", hash = "sha256:f99e4769b4750076cd4235c044b61232110733322384a94a63791d2e7beacc66"}, {file = "nbclassic-1.0.0.tar.gz", hash = "sha256:0ae11eb2319455d805596bf320336cda9554b41d99ab9a3c31bf8180bffa30e3"}, ] [package.dependencies] argon2-cffi = "*" ipykernel = "*" ipython-genutils = "*" jinja2 = "*" jupyter-client = ">=6.1.1" jupyter-core = ">=4.6.1" jupyter-server = ">=1.8" nbconvert = ">=5" nbformat = "*" nest-asyncio = ">=1.5" notebook-shim = ">=0.2.3" prometheus-client = "*" pyzmq = ">=17" Send2Trash = ">=1.8.0" terminado = ">=0.8.3" tornado = ">=6.1" traitlets = ">=4.2.1" [package.extras] docs = ["myst-parser", "nbsphinx", "sphinx", "sphinx-rtd-theme", "sphinxcontrib-github-alt"] json-logging = ["json-logging"] test = ["coverage", "nbval", "pytest", "pytest-cov", "pytest-jupyter", "pytest-playwright", "pytest-tornasync", "requests", "requests-unixsocket", "testpath"] [[package]] name = "nbclient" version = "0.7.4" description = "A client library for executing notebooks. Formerly nbconvert's ExecutePreprocessor." category = "dev" optional = false python-versions = ">=3.7.0" files = [ {file = "nbclient-0.7.4-py3-none-any.whl", hash = "sha256:c817c0768c5ff0d60e468e017613e6eae27b6fa31e43f905addd2d24df60c125"}, {file = "nbclient-0.7.4.tar.gz", hash = "sha256:d447f0e5a4cfe79d462459aec1b3dc5c2e9152597262be8ee27f7d4c02566a0d"}, ] [package.dependencies] jupyter-client = ">=6.1.12" jupyter-core = ">=4.12,<5.0.0 || >=5.1.0" nbformat = ">=5.1" traitlets = ">=5.3" [package.extras] dev = ["pre-commit"] docs = ["autodoc-traits", "mock", "moto", "myst-parser", "nbclient[test]", "sphinx (>=1.7)", "sphinx-book-theme", "sphinxcontrib-spelling"] test = ["flaky", "ipykernel", "ipython", "ipywidgets", "nbconvert (>=7.0.0)", "pytest (>=7.0)", "pytest-asyncio", "pytest-cov (>=4.0)", "testpath", "xmltodict"] [[package]] name = "nbconvert" version = "7.4.0" description = "Converting Jupyter Notebooks" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "nbconvert-7.4.0-py3-none-any.whl", hash = "sha256:af5064a9db524f9f12f4e8be7f0799524bd5b14c1adea37e34e83c95127cc818"}, {file = "nbconvert-7.4.0.tar.gz", hash = "sha256:51b6c77b507b177b73f6729dba15676e42c4e92bcb00edc8cc982ee72e7d89d7"}, ] [package.dependencies] beautifulsoup4 = "*" bleach = "*" defusedxml = "*" importlib-metadata = {version = ">=3.6", markers = "python_version < \"3.10\""} jinja2 = ">=3.0" jupyter-core = ">=4.7" jupyterlab-pygments = "*" markupsafe = ">=2.0" mistune = ">=2.0.3,<3" nbclient = ">=0.5.0" nbformat = ">=5.1" packaging = "*" pandocfilters = ">=1.4.1" pygments = ">=2.4.1" tinycss2 = "*" traitlets = ">=5.0" [package.extras] all = ["nbconvert[docs,qtpdf,serve,test,webpdf]"] docs = ["ipykernel", "ipython", "myst-parser", "nbsphinx (>=0.2.12)", "pydata-sphinx-theme", "sphinx (==5.0.2)", "sphinxcontrib-spelling"] qtpdf = ["nbconvert[qtpng]"] qtpng = ["pyqtwebengine (>=5.15)"] serve = ["tornado (>=6.1)"] test = ["ipykernel", "ipywidgets (>=7)", "pre-commit", "pytest", "pytest-dependency"] webpdf = ["pyppeteer (>=1,<1.1)"] [[package]] name = "nbformat" version = "5.8.0" description = "The Jupyter Notebook format" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "nbformat-5.8.0-py3-none-any.whl", hash = "sha256:d910082bd3e0bffcf07eabf3683ed7dda0727a326c446eeb2922abe102e65162"}, {file = "nbformat-5.8.0.tar.gz", hash = "sha256:46dac64c781f1c34dfd8acba16547024110348f9fc7eab0f31981c2a3dc48d1f"}, ] [package.dependencies] fastjsonschema = "*" jsonschema = ">=2.6" jupyter-core = "*" traitlets = ">=5.1" [package.extras] docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] test = ["pep440", "pre-commit", "pytest", "testpath"] [[package]] name = "nbsphinx" version = "0.8.12" description = "Jupyter Notebook Tools for Sphinx" category = "dev" optional = false python-versions = ">=3.6" files = [ {file = "nbsphinx-0.8.12-py3-none-any.whl", hash = "sha256:c15b681c7fce287000856f91fe1edac50d29f7b0c15bbc746fbe55c8eb84750b"}, {file = "nbsphinx-0.8.12.tar.gz", hash = "sha256:76570416cdecbeb21dbf5c3d6aa204ced6c1dd7ebef4077b5c21b8c6ece9533f"}, ] [package.dependencies] docutils = "*" jinja2 = "*" nbconvert = "!=5.4" nbformat = "*" sphinx = ">=1.8" traitlets = ">=5" [[package]] name = "neo4j" version = "5.8.1" description = "Neo4j Bolt driver for Python" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "neo4j-5.8.1.tar.gz", hash = "sha256:79c947f402e9f8624587add7b8af742b38cbcdf364d48021c5bff9220457965b"}, ] [package.dependencies] pytz = "*" [package.extras] numpy = ["numpy (>=1.7.0,<2.0.0)"] pandas = ["numpy (>=1.7.0,<2.0.0)", "pandas (>=1.1.0,<3.0.0)"] [[package]] name = "nest-asyncio" version = "1.5.6" description = "Patch asyncio to allow nested event loops" category = "main" optional = false python-versions = ">=3.5" files = [ {file = "nest_asyncio-1.5.6-py3-none-any.whl", hash = "sha256:b9a953fb40dceaa587d109609098db21900182b16440652454a146cffb06e8b8"}, {file = "nest_asyncio-1.5.6.tar.gz", hash = "sha256:d267cc1ff794403f7df692964d1d2a3fa9418ffea2a3f6859a439ff482fef290"}, ] [[package]] name = "networkx" version = "2.8.8" description = "Python package for creating and manipulating graphs and networks" category = "main" optional = true python-versions = ">=3.8" files = [ {file = "networkx-2.8.8-py3-none-any.whl", hash = "sha256:e435dfa75b1d7195c7b8378c3859f0445cd88c6b0375c181ed66823a9ceb7524"}, {file = "networkx-2.8.8.tar.gz", hash = "sha256:230d388117af870fce5647a3c52401fcf753e94720e6ea6b4197a5355648885e"}, ] [package.extras] default = ["matplotlib (>=3.4)", "numpy (>=1.19)", "pandas (>=1.3)", "scipy (>=1.8)"] developer = ["mypy (>=0.982)", "pre-commit (>=2.20)"] doc = ["nb2plots (>=0.6)", "numpydoc (>=1.5)", "pillow (>=9.2)", "pydata-sphinx-theme (>=0.11)", "sphinx (>=5.2)", "sphinx-gallery (>=0.11)", "texext (>=0.6.6)"] extra = ["lxml (>=4.6)", "pydot (>=1.4.2)", "pygraphviz (>=1.9)", "sympy (>=1.10)"] test = ["codecov (>=2.1)", "pytest (>=7.2)", "pytest-cov (>=4.0)"] [[package]] name = "nlpcloud" version = "1.0.41" description = "Python client for the NLP Cloud API" category = "main" optional = true python-versions = "*" files = [ {file = "nlpcloud-1.0.41-py3-none-any.whl", hash = "sha256:7a42de3ac84fa3d66eae7166c1f3131c9214cfe8d72474681c25941fcd184ae4"}, {file = "nlpcloud-1.0.41.tar.gz", hash = "sha256:2edc0dd5f17f95fbd7ac1df43f456fb951a7b06f29d5901a9430982ff6bdb861"}, ] [package.dependencies] requests = "*" [[package]] name = "nltk" version = "3.8.1" description = "Natural Language Toolkit" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "nltk-3.8.1-py3-none-any.whl", hash = "sha256:fd5c9109f976fa86bcadba8f91e47f5e9293bd034474752e92a520f81c93dda5"}, {file = "nltk-3.8.1.zip", hash = "sha256:1834da3d0682cba4f2cede2f9aad6b0fafb6461ba451db0efb6f9c39798d64d3"}, ] [package.dependencies] click = "*" joblib = "*" regex = ">=2021.8.3" tqdm = "*" [package.extras] all = ["matplotlib", "numpy", "pyparsing", "python-crfsuite", "requests", "scikit-learn", "scipy", "twython"] corenlp = ["requests"] machine-learning = ["numpy", "python-crfsuite", "scikit-learn", "scipy"] plot = ["matplotlib"] tgrep = ["pyparsing"] twitter = ["twython"] [[package]] name = "nomic" version = "1.1.6" description = "The offical Nomic python client." category = "main" optional = true python-versions = "*" files = [ {file = "nomic-1.1.6.tar.gz", hash = "sha256:8be61aeeb9d5f4f591bfb5655c9ae54a12de97498e6d2e24cf22faf9c118cf81"}, ] [package.dependencies] click = "*" cohere = "*" jsonlines = "*" loguru = "*" numpy = "*" pyarrow = "*" pydantic = "*" requests = "*" rich = "*" tqdm = "*" wonderwords = "*" [package.extras] dev = ["black", "cairosvg", "coverage", "mkautodoc", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]", "myst-parser", "pillow", "pylint", "pytest", "twine"] gpt4all = ["peft (==0.3.0.dev0)", "sentencepiece", "torch", "transformers (==4.28.0.dev0)"] [[package]] name = "notebook" version = "6.5.4" description = "A web-based notebook environment for interactive computing" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "notebook-6.5.4-py3-none-any.whl", hash = "sha256:dd17e78aefe64c768737b32bf171c1c766666a21cc79a44d37a1700771cab56f"}, {file = "notebook-6.5.4.tar.gz", hash = "sha256:517209568bd47261e2def27a140e97d49070602eea0d226a696f42a7f16c9a4e"}, ] [package.dependencies] argon2-cffi = "*" ipykernel = "*" ipython-genutils = "*" jinja2 = "*" jupyter-client = ">=5.3.4" jupyter-core = ">=4.6.1" nbclassic = ">=0.4.7" nbconvert = ">=5" nbformat = "*" nest-asyncio = ">=1.5" prometheus-client = "*" pyzmq = ">=17" Send2Trash = ">=1.8.0" terminado = ">=0.8.3" tornado = ">=6.1" traitlets = ">=4.2.1" [package.extras] docs = ["myst-parser", "nbsphinx", "sphinx", "sphinx-rtd-theme", "sphinxcontrib-github-alt"] json-logging = ["json-logging"] test = ["coverage", "nbval", "pytest", "pytest-cov", "requests", "requests-unixsocket", "selenium (==4.1.5)", "testpath"] [[package]] name = "notebook-shim" version = "0.2.3" description = "A shim layer for notebook traits and config" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "notebook_shim-0.2.3-py3-none-any.whl", hash = "sha256:a83496a43341c1674b093bfcebf0fe8e74cbe7eda5fd2bbc56f8e39e1486c0c7"}, {file = "notebook_shim-0.2.3.tar.gz", hash = "sha256:f69388ac283ae008cd506dda10d0288b09a017d822d5e8c7129a152cbd3ce7e9"}, ] [package.dependencies] jupyter-server = ">=1.8,<3" [package.extras] test = ["pytest", "pytest-console-scripts", "pytest-jupyter", "pytest-tornasync"] [[package]] name = "numcodecs" version = "0.11.0" description = "A Python package providing buffer compression and transformation codecs for use" category = "main" optional = false python-versions = ">=3.8" files = [ {file = "numcodecs-0.11.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c0bc116752be45b4f9dca4315e5a2b4185e3b46f68c997dbb84aef334ceb5a1d"}, {file = "numcodecs-0.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c27dfca402f69fbfa01c46fb572086e77f38121192160cc8ed1177dc30702c52"}, {file = "numcodecs-0.11.0-cp310-cp310-win_amd64.whl", hash = "sha256:0fabc7dfdf64a9555bf8a34911e05b415793c67a1377207dc79cd96342291fa1"}, {file = "numcodecs-0.11.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7dae3f5678f247336c84e7315a0c59a4fec7c33eb7db72d78ff5c776479a812e"}, {file = "numcodecs-0.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:32697785b786bb0039d3feeaabdc10f25eda6c149700cde954653aaa47637832"}, {file = "numcodecs-0.11.0-cp311-cp311-win_amd64.whl", hash = "sha256:8c2f36b21162c6ebccc05d3fe896f86b91dcf8709946809f730cc23a37f8234d"}, {file = "numcodecs-0.11.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0c240858bf29e0ff254b1db60430e8b2658b8c8328b684f80033289d94807a7c"}, {file = "numcodecs-0.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ee5bda16e9d26a7a39fc20b6c1cec23b4debc314df5cfae3ed505149c2eeafc4"}, {file = "numcodecs-0.11.0-cp38-cp38-win_amd64.whl", hash = "sha256:bd05cdb853c7bcfde2efc809a9df2c5e205b96f70405b810e5788b45d0d81f73"}, {file = "numcodecs-0.11.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:694dc2e80b1f169b7deb14bdd0a04b20e5f17ef32cb0f81b71ab690406ec6bd9"}, {file = "numcodecs-0.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf3925eeb37aed0e6c04d7fb9614133a3c8426dc77f8bda54c99c601a44b3bd3"}, {file = "numcodecs-0.11.0-cp39-cp39-win_amd64.whl", hash = "sha256:11596b71267417425ea8afb407477a67d684f434c8b07b1dd59c25a97d5c3ccb"}, {file = "numcodecs-0.11.0.tar.gz", hash = "sha256:6c058b321de84a1729299b0eae4d652b2e48ea1ca7f9df0da65cb13470e635eb"}, ] [package.dependencies] entrypoints = "*" numpy = ">=1.7" [package.extras] docs = ["mock", "numpydoc", "sphinx", "sphinx-issues"] msgpack = ["msgpack"] test = ["coverage", "flake8", "pytest", "pytest-cov"] zfpy = ["zfpy (>=1.0.0)"] [[package]] name = "numexpr" version = "2.8.4" description = "Fast numerical expression evaluator for NumPy" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "numexpr-2.8.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a75967d46b6bd56455dd32da6285e5ffabe155d0ee61eef685bbfb8dafb2e484"}, {file = "numexpr-2.8.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:db93cf1842f068247de631bfc8af20118bf1f9447cd929b531595a5e0efc9346"}, {file = "numexpr-2.8.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7bca95f4473b444428061d4cda8e59ac564dc7dc6a1dea3015af9805c6bc2946"}, {file = "numexpr-2.8.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e34931089a6bafc77aaae21f37ad6594b98aa1085bb8b45d5b3cd038c3c17d9"}, {file = "numexpr-2.8.4-cp310-cp310-win32.whl", hash = "sha256:f3a920bfac2645017110b87ddbe364c9c7a742870a4d2f6120b8786c25dc6db3"}, {file = "numexpr-2.8.4-cp310-cp310-win_amd64.whl", hash = "sha256:6931b1e9d4f629f43c14b21d44f3f77997298bea43790cfcdb4dd98804f90783"}, {file = "numexpr-2.8.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:9400781553541f414f82eac056f2b4c965373650df9694286b9bd7e8d413f8d8"}, {file = "numexpr-2.8.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:6ee9db7598dd4001138b482342b96d78110dd77cefc051ec75af3295604dde6a"}, {file = "numexpr-2.8.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ff5835e8af9a212e8480003d731aad1727aaea909926fd009e8ae6a1cba7f141"}, {file = "numexpr-2.8.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:655d84eb09adfee3c09ecf4a89a512225da153fdb7de13c447404b7d0523a9a7"}, {file = "numexpr-2.8.4-cp311-cp311-win32.whl", hash = "sha256:5538b30199bfc68886d2be18fcef3abd11d9271767a7a69ff3688defe782800a"}, {file = "numexpr-2.8.4-cp311-cp311-win_amd64.whl", hash = "sha256:3f039321d1c17962c33079987b675fb251b273dbec0f51aac0934e932446ccc3"}, {file = "numexpr-2.8.4-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c867cc36cf815a3ec9122029874e00d8fbcef65035c4a5901e9b120dd5d626a2"}, {file = "numexpr-2.8.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:059546e8f6283ccdb47c683101a890844f667fa6d56258d48ae2ecf1b3875957"}, {file = "numexpr-2.8.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:845a6aa0ed3e2a53239b89c1ebfa8cf052d3cc6e053c72805e8153300078c0b1"}, {file = "numexpr-2.8.4-cp37-cp37m-win32.whl", hash = "sha256:a38664e699526cb1687aefd9069e2b5b9387da7feac4545de446141f1ef86f46"}, {file = "numexpr-2.8.4-cp37-cp37m-win_amd64.whl", hash = "sha256:eaec59e9bf70ff05615c34a8b8d6c7bd042bd9f55465d7b495ea5436f45319d0"}, {file = "numexpr-2.8.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:b318541bf3d8326682ebada087ba0050549a16d8b3fa260dd2585d73a83d20a7"}, {file = "numexpr-2.8.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b076db98ca65eeaf9bd224576e3ac84c05e451c0bd85b13664b7e5f7b62e2c70"}, {file = "numexpr-2.8.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:90f12cc851240f7911a47c91aaf223dba753e98e46dff3017282e633602e76a7"}, {file = "numexpr-2.8.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c368aa35ae9b18840e78b05f929d3a7b3abccdba9630a878c7db74ca2368339"}, {file = "numexpr-2.8.4-cp38-cp38-win32.whl", hash = "sha256:b96334fc1748e9ec4f93d5fadb1044089d73fb08208fdb8382ed77c893f0be01"}, {file = "numexpr-2.8.4-cp38-cp38-win_amd64.whl", hash = "sha256:a6d2d7740ae83ba5f3531e83afc4b626daa71df1ef903970947903345c37bd03"}, {file = "numexpr-2.8.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:77898fdf3da6bb96aa8a4759a8231d763a75d848b2f2e5c5279dad0b243c8dfe"}, {file = "numexpr-2.8.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:df35324666b693f13a016bc7957de7cc4d8801b746b81060b671bf78a52b9037"}, {file = "numexpr-2.8.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:17ac9cfe6d0078c5fc06ba1c1bbd20b8783f28c6f475bbabd3cad53683075cab"}, {file = "numexpr-2.8.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:df3a1f6b24214a1ab826e9c1c99edf1686c8e307547a9aef33910d586f626d01"}, {file = "numexpr-2.8.4-cp39-cp39-win32.whl", hash = "sha256:7d71add384adc9119568d7e9ffa8a35b195decae81e0abf54a2b7779852f0637"}, {file = "numexpr-2.8.4-cp39-cp39-win_amd64.whl", hash = "sha256:9f096d707290a6a00b6ffdaf581ee37331109fb7b6c8744e9ded7c779a48e517"}, {file = "numexpr-2.8.4.tar.gz", hash = "sha256:d5432537418d18691b9115d615d6daa17ee8275baef3edf1afbbf8bc69806147"}, ] [package.dependencies] numpy = ">=1.13.3" [[package]] name = "numpy" version = "1.24.3" description = "Fundamental package for array computing in Python" category = "main" optional = false python-versions = ">=3.8" files = [ {file = "numpy-1.24.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:3c1104d3c036fb81ab923f507536daedc718d0ad5a8707c6061cdfd6d184e570"}, {file = "numpy-1.24.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:202de8f38fc4a45a3eea4b63e2f376e5f2dc64ef0fa692838e31a808520efaf7"}, {file = "numpy-1.24.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8535303847b89aa6b0f00aa1dc62867b5a32923e4d1681a35b5eef2d9591a463"}, {file = "numpy-1.24.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2d926b52ba1367f9acb76b0df6ed21f0b16a1ad87c6720a1121674e5cf63e2b6"}, {file = "numpy-1.24.3-cp310-cp310-win32.whl", hash = "sha256:f21c442fdd2805e91799fbe044a7b999b8571bb0ab0f7850d0cb9641a687092b"}, {file = "numpy-1.24.3-cp310-cp310-win_amd64.whl", hash = "sha256:ab5f23af8c16022663a652d3b25dcdc272ac3f83c3af4c02eb8b824e6b3ab9d7"}, {file = "numpy-1.24.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:9a7721ec204d3a237225db3e194c25268faf92e19338a35f3a224469cb6039a3"}, {file = "numpy-1.24.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d6cc757de514c00b24ae8cf5c876af2a7c3df189028d68c0cb4eaa9cd5afc2bf"}, {file = "numpy-1.24.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76e3f4e85fc5d4fd311f6e9b794d0c00e7002ec122be271f2019d63376f1d385"}, {file = "numpy-1.24.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a1d3c026f57ceaad42f8231305d4653d5f05dc6332a730ae5c0bea3513de0950"}, {file = "numpy-1.24.3-cp311-cp311-win32.whl", hash = "sha256:c91c4afd8abc3908e00a44b2672718905b8611503f7ff87390cc0ac3423fb096"}, {file = "numpy-1.24.3-cp311-cp311-win_amd64.whl", hash = "sha256:5342cf6aad47943286afa6f1609cad9b4266a05e7f2ec408e2cf7aea7ff69d80"}, {file = "numpy-1.24.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:7776ea65423ca6a15255ba1872d82d207bd1e09f6d0894ee4a64678dd2204078"}, {file = "numpy-1.24.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:ae8d0be48d1b6ed82588934aaaa179875e7dc4f3d84da18d7eae6eb3f06c242c"}, {file = "numpy-1.24.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ecde0f8adef7dfdec993fd54b0f78183051b6580f606111a6d789cd14c61ea0c"}, {file = "numpy-1.24.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4749e053a29364d3452c034827102ee100986903263e89884922ef01a0a6fd2f"}, {file = "numpy-1.24.3-cp38-cp38-win32.whl", hash = "sha256:d933fabd8f6a319e8530d0de4fcc2e6a61917e0b0c271fded460032db42a0fe4"}, {file = "numpy-1.24.3-cp38-cp38-win_amd64.whl", hash = "sha256:56e48aec79ae238f6e4395886b5eaed058abb7231fb3361ddd7bfdf4eed54289"}, {file = "numpy-1.24.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4719d5aefb5189f50887773699eaf94e7d1e02bf36c1a9d353d9f46703758ca4"}, {file = "numpy-1.24.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0ec87a7084caa559c36e0a2309e4ecb1baa03b687201d0a847c8b0ed476a7187"}, {file = "numpy-1.24.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ea8282b9bcfe2b5e7d491d0bf7f3e2da29700cec05b49e64d6246923329f2b02"}, {file = "numpy-1.24.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:210461d87fb02a84ef243cac5e814aad2b7f4be953b32cb53327bb49fd77fbb4"}, {file = "numpy-1.24.3-cp39-cp39-win32.whl", hash = "sha256:784c6da1a07818491b0ffd63c6bbe5a33deaa0e25a20e1b3ea20cf0e43f8046c"}, {file = "numpy-1.24.3-cp39-cp39-win_amd64.whl", hash = "sha256:d5036197ecae68d7f491fcdb4df90082b0d4960ca6599ba2659957aafced7c17"}, {file = "numpy-1.24.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:352ee00c7f8387b44d19f4cada524586f07379c0d49270f87233983bc5087ca0"}, {file = "numpy-1.24.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1a7d6acc2e7524c9955e5c903160aa4ea083736fde7e91276b0e5d98e6332812"}, {file = "numpy-1.24.3-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:35400e6a8d102fd07c71ed7dcadd9eb62ee9a6e84ec159bd48c28235bbb0f8e4"}, {file = "numpy-1.24.3.tar.gz", hash = "sha256:ab344f1bf21f140adab8e47fdbc7c35a477dc01408791f8ba00d018dd0bc5155"}, ] [[package]] name = "nvidia-cublas-cu11" version = "11.10.3.66" description = "CUBLAS native runtime libraries" category = "main" optional = false python-versions = ">=3" files = [ {file = "nvidia_cublas_cu11-11.10.3.66-py3-none-manylinux1_x86_64.whl", hash = "sha256:d32e4d75f94ddfb93ea0a5dda08389bcc65d8916a25cb9f37ac89edaeed3bded"}, {file = "nvidia_cublas_cu11-11.10.3.66-py3-none-win_amd64.whl", hash = "sha256:8ac17ba6ade3ed56ab898a036f9ae0756f1e81052a317bf98f8c6d18dc3ae49e"}, ] [package.dependencies] setuptools = "*" wheel = "*" [[package]] name = "nvidia-cuda-nvrtc-cu11" version = "11.7.99" description = "NVRTC native runtime libraries" category = "main" optional = false python-versions = ">=3" files = [ {file = "nvidia_cuda_nvrtc_cu11-11.7.99-2-py3-none-manylinux1_x86_64.whl", hash = "sha256:9f1562822ea264b7e34ed5930567e89242d266448e936b85bc97a3370feabb03"}, {file = "nvidia_cuda_nvrtc_cu11-11.7.99-py3-none-manylinux1_x86_64.whl", hash = "sha256:f7d9610d9b7c331fa0da2d1b2858a4a8315e6d49765091d28711c8946e7425e7"}, {file = "nvidia_cuda_nvrtc_cu11-11.7.99-py3-none-win_amd64.whl", hash = "sha256:f2effeb1309bdd1b3854fc9b17eaf997808f8b25968ce0c7070945c4265d64a3"}, ] [package.dependencies] setuptools = "*" wheel = "*" [[package]] name = "nvidia-cuda-runtime-cu11" version = "11.7.99" description = "CUDA Runtime native Libraries" category = "main" optional = false python-versions = ">=3" files = [ {file = "nvidia_cuda_runtime_cu11-11.7.99-py3-none-manylinux1_x86_64.whl", hash = "sha256:cc768314ae58d2641f07eac350f40f99dcb35719c4faff4bc458a7cd2b119e31"}, {file = "nvidia_cuda_runtime_cu11-11.7.99-py3-none-win_amd64.whl", hash = "sha256:bc77fa59a7679310df9d5c70ab13c4e34c64ae2124dd1efd7e5474b71be125c7"}, ] [package.dependencies] setuptools = "*" wheel = "*" [[package]] name = "nvidia-cudnn-cu11" version = "8.5.0.96" description = "cuDNN runtime libraries" category = "main" optional = false python-versions = ">=3" files = [ {file = "nvidia_cudnn_cu11-8.5.0.96-2-py3-none-manylinux1_x86_64.whl", hash = "sha256:402f40adfc6f418f9dae9ab402e773cfed9beae52333f6d86ae3107a1b9527e7"}, {file = "nvidia_cudnn_cu11-8.5.0.96-py3-none-manylinux1_x86_64.whl", hash = "sha256:71f8111eb830879ff2836db3cccf03bbd735df9b0d17cd93761732ac50a8a108"}, ] [package.dependencies] setuptools = "*" wheel = "*" [[package]] name = "o365" version = "2.0.26" description = "Microsoft Graph and Office 365 API made easy" category = "main" optional = true python-versions = ">=3.4" files = [ {file = "O365-2.0.26-py3-none-any.whl", hash = "sha256:220899f2135e5f2de1db808df9858f5f7bd38910e2c870bb08b04d94bd450b3f"}, {file = "O365-2.0.26.tar.gz", hash = "sha256:b478522a652df112c298446aabefccaa446b14bf257b6694fed524c08b76de38"}, ] [package.dependencies] beautifulsoup4 = ">=4.0.0" python-dateutil = ">=2.7" pytz = ">=2018.5" requests = ">=2.18.0" requests-oauthlib = ">=1.2.0" stringcase = ">=1.2.0" tzlocal = ">=4.0" [[package]] name = "oauthlib" version = "3.2.2" description = "A generic, spec-compliant, thorough implementation of the OAuth request-signing logic" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "oauthlib-3.2.2-py3-none-any.whl", hash = "sha256:8139f29aac13e25d502680e9e19963e83f16838d48a0d71c287fe40e7067fbca"}, {file = "oauthlib-3.2.2.tar.gz", hash = "sha256:9859c40929662bec5d64f34d01c99e093149682a3f38915dc0655d5a633dd918"}, ] [package.extras] rsa = ["cryptography (>=3.0.0)"] signals = ["blinker (>=1.4.0)"] signedtoken = ["cryptography (>=3.0.0)", "pyjwt (>=2.0.0,<3)"] [[package]] name = "openai" version = "0.27.6" description = "Python client library for the OpenAI API" category = "main" optional = false python-versions = ">=3.7.1" files = [ {file = "openai-0.27.6-py3-none-any.whl", hash = "sha256:1f07ed06f1cfc6c25126107193726fe4cf476edcc4e1485cd9eb708f068f2606"}, {file = "openai-0.27.6.tar.gz", hash = "sha256:63ca9f6ac619daef8c1ddec6d987fe6aa1c87a9bfdce31ff253204d077222375"}, ] [package.dependencies] aiohttp = "*" requests = ">=2.20" tqdm = "*" [package.extras] datalib = ["numpy", "openpyxl (>=3.0.7)", "pandas (>=1.2.3)", "pandas-stubs (>=1.1.0.11)"] dev = ["black (>=21.6b0,<22.0)", "pytest (>=6.0.0,<7.0.0)", "pytest-asyncio", "pytest-mock"] embeddings = ["matplotlib", "numpy", "openpyxl (>=3.0.7)", "pandas (>=1.2.3)", "pandas-stubs (>=1.1.0.11)", "plotly", "scikit-learn (>=1.0.2)", "scipy", "tenacity (>=8.0.1)"] wandb = ["numpy", "openpyxl (>=3.0.7)", "pandas (>=1.2.3)", "pandas-stubs (>=1.1.0.11)", "wandb"] [[package]] name = "openapi-schema-pydantic" version = "1.2.4" description = "OpenAPI (v3) specification schema as pydantic class" category = "main" optional = false python-versions = ">=3.6.1" files = [ {file = "openapi-schema-pydantic-1.2.4.tar.gz", hash = "sha256:3e22cf58b74a69f752cc7e5f1537f6e44164282db2700cbbcd3bb99ddd065196"}, {file = "openapi_schema_pydantic-1.2.4-py3-none-any.whl", hash = "sha256:a932ecc5dcbb308950282088956e94dea069c9823c84e507d64f6b622222098c"}, ] [package.dependencies] pydantic = ">=1.8.2" [[package]] name = "openlm" version = "0.0.5" description = "Drop-in OpenAI-compatible that can call LLMs from other providers" category = "main" optional = true python-versions = ">=3.8.1,<4.0" files = [ {file = "openlm-0.0.5-py3-none-any.whl", hash = "sha256:9fcbbc575d2869e2a6c0b00827f9be2189c067c2de4bf03ef3cbdf488367ae93"}, {file = "openlm-0.0.5.tar.gz", hash = "sha256:0eb3fd7a9e4f7b4248931ff2f0dc91c525d990b99956886861a1b3f9868bc451"}, ] [package.dependencies] requests = ">=2,<3" [[package]] name = "opensearch-py" version = "2.2.0" description = "Python client for OpenSearch" category = "main" optional = true python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, <4" files = [ {file = "opensearch-py-2.2.0.tar.gz", hash = "sha256:109fe8d2e1e8f419a22358eb901025f51e6ad2f50014c8962e23796b2a23cb67"}, {file = "opensearch_py-2.2.0-py2.py3-none-any.whl", hash = "sha256:595dcebe42e21cdf945add0b5dbaecccace1a8a5ba65d60314813767b564263c"}, ] [package.dependencies] certifi = ">=2022.12.07" python-dateutil = "*" requests = ">=2.4.0,<3.0.0" six = "*" urllib3 = ">=1.21.1,<2" [package.extras] async = ["aiohttp (>=3,<4)"] develop = ["black", "botocore", "coverage (<7.0.0)", "jinja2", "mock", "myst-parser", "pytest (>=3.0.0)", "pytest-cov", "pytest-mock (<4.0.0)", "pytz", "pyyaml", "requests (>=2.0.0,<3.0.0)", "sphinx", "sphinx-copybutton", "sphinx-rtd-theme"] docs = ["myst-parser", "sphinx", "sphinx-copybutton", "sphinx-rtd-theme"] kerberos = ["requests-kerberos"] [[package]] name = "opentelemetry-api" version = "1.17.0" description = "OpenTelemetry Python API" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "opentelemetry_api-1.17.0-py3-none-any.whl", hash = "sha256:b41d9b2a979607b75d2683b9bbf97062a683d190bc696969fb2122fa60aeaabc"}, {file = "opentelemetry_api-1.17.0.tar.gz", hash = "sha256:3480fcf6b783be5d440a226a51db979ccd7c49a2e98d1c747c991031348dcf04"}, ] [package.dependencies] deprecated = ">=1.2.6" importlib-metadata = ">=6.0.0,<6.1.0" setuptools = ">=16.0" [[package]] name = "opentelemetry-exporter-otlp" version = "1.17.0" description = "OpenTelemetry Collector Exporters" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "opentelemetry_exporter_otlp-1.17.0-py3-none-any.whl", hash = "sha256:9708d2b74c9205a7bd9b46e24acec0e3b362465d9a77b62347ea0459d4358044"}, {file = "opentelemetry_exporter_otlp-1.17.0.tar.gz", hash = "sha256:d0fa02b512127b44493c75d12a2dc2557bf251b7f76b354cfaa58b0f820d04ae"}, ] [package.dependencies] opentelemetry-exporter-otlp-proto-grpc = "1.17.0" opentelemetry-exporter-otlp-proto-http = "1.17.0" [[package]] name = "opentelemetry-exporter-otlp-proto-grpc" version = "1.17.0" description = "OpenTelemetry Collector Protobuf over gRPC Exporter" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "opentelemetry_exporter_otlp_proto_grpc-1.17.0-py3-none-any.whl", hash = "sha256:192d781b668a74edb49152b8b5f4f7e25bcb4307a9cf4b2dfcf87e68feac98bd"}, {file = "opentelemetry_exporter_otlp_proto_grpc-1.17.0.tar.gz", hash = "sha256:f01476ae89484bc6210e50d7a4d93c293b3a12aff562253b94f588a85af13f70"}, ] [package.dependencies] backoff = {version = ">=1.10.0,<3.0.0", markers = "python_version >= \"3.7\""} googleapis-common-protos = ">=1.52,<2.0" grpcio = ">=1.0.0,<2.0.0" opentelemetry-api = ">=1.15,<2.0" opentelemetry-proto = "1.17.0" opentelemetry-sdk = ">=1.17.0,<1.18.0" [package.extras] test = ["pytest-grpc"] [[package]] name = "opentelemetry-exporter-otlp-proto-http" version = "1.17.0" description = "OpenTelemetry Collector Protobuf over HTTP Exporter" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "opentelemetry_exporter_otlp_proto_http-1.17.0-py3-none-any.whl", hash = "sha256:81959249b75bd36c3b73c885a9ce36aa21e8022618e8e95fa41ae69609f0c799"}, {file = "opentelemetry_exporter_otlp_proto_http-1.17.0.tar.gz", hash = "sha256:329984da861ee2cc42c4bc5ae1b80092fb76a0ea5a24b3519bc3b52572197fec"}, ] [package.dependencies] backoff = {version = ">=1.10.0,<3.0.0", markers = "python_version >= \"3.7\""} googleapis-common-protos = ">=1.52,<2.0" opentelemetry-api = ">=1.15,<2.0" opentelemetry-proto = "1.17.0" opentelemetry-sdk = ">=1.17.0,<1.18.0" requests = ">=2.7,<3.0" [package.extras] test = ["responses (==0.22.0)"] [[package]] name = "opentelemetry-exporter-prometheus" version = "1.12.0rc1" description = "Prometheus Metric Exporter for OpenTelemetry" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "opentelemetry-exporter-prometheus-1.12.0rc1.tar.gz", hash = "sha256:f10c6c243d69d5b63f755885b36a4ce8ef2cdf3e737c4e6bf00f32e87668f0a9"}, {file = "opentelemetry_exporter_prometheus-1.12.0rc1-py3-none-any.whl", hash = "sha256:1f0c8f93d62e1575313966ceb8abf11e9a46e1839fda9ee4269b06d40494280f"}, ] [package.dependencies] opentelemetry-api = ">=1.10.0" opentelemetry-sdk = ">=1.10.0" prometheus-client = ">=0.5.0,<1.0.0" [[package]] name = "opentelemetry-instrumentation" version = "0.38b0" description = "Instrumentation Tools & Auto Instrumentation for OpenTelemetry Python" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "opentelemetry_instrumentation-0.38b0-py3-none-any.whl", hash = "sha256:48eed87e5db9d2cddd57a8ea359bd15318560c0ffdd80d90a5fc65816e15b7f4"}, {file = "opentelemetry_instrumentation-0.38b0.tar.gz", hash = "sha256:3dbe93248eec7652d5725d3c6d2f9dd048bb8fda6b0505aadbc99e51638d833c"}, ] [package.dependencies] opentelemetry-api = ">=1.4,<2.0" setuptools = ">=16.0" wrapt = ">=1.0.0,<2.0.0" [[package]] name = "opentelemetry-instrumentation-aiohttp-client" version = "0.38b0" description = "OpenTelemetry aiohttp client instrumentation" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "opentelemetry_instrumentation_aiohttp_client-0.38b0-py3-none-any.whl", hash = "sha256:093987f5c96518ac6999eb7480af168655bc3538752ae67d4d9a5807eaad1ee0"}, {file = "opentelemetry_instrumentation_aiohttp_client-0.38b0.tar.gz", hash = "sha256:9c3e637e742b5d8e5c8a76fae4f3812dde5e58f85598d119abd0149cb1c82ec0"}, ] [package.dependencies] opentelemetry-api = ">=1.12,<2.0" opentelemetry-instrumentation = "0.38b0" opentelemetry-semantic-conventions = "0.38b0" opentelemetry-util-http = "0.38b0" wrapt = ">=1.0.0,<2.0.0" [package.extras] instruments = ["aiohttp (>=3.0,<4.0)"] test = ["opentelemetry-instrumentation-aiohttp-client[instruments]"] [[package]] name = "opentelemetry-instrumentation-asgi" version = "0.38b0" description = "ASGI instrumentation for OpenTelemetry" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "opentelemetry_instrumentation_asgi-0.38b0-py3-none-any.whl", hash = "sha256:c5bba11505008a3cd1b2c42b72f85f3f4f5af50ab931eddd0b01bde376dc5971"}, {file = "opentelemetry_instrumentation_asgi-0.38b0.tar.gz", hash = "sha256:32d1034c253de6048d0d0166b304f9125267ca9329e374202ebe011a206eba53"}, ] [package.dependencies] asgiref = ">=3.0,<4.0" opentelemetry-api = ">=1.12,<2.0" opentelemetry-instrumentation = "0.38b0" opentelemetry-semantic-conventions = "0.38b0" opentelemetry-util-http = "0.38b0" [package.extras] instruments = ["asgiref (>=3.0,<4.0)"] test = ["opentelemetry-instrumentation-asgi[instruments]", "opentelemetry-test-utils (==0.38b0)"] [[package]] name = "opentelemetry-instrumentation-fastapi" version = "0.38b0" description = "OpenTelemetry FastAPI Instrumentation" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "opentelemetry_instrumentation_fastapi-0.38b0-py3-none-any.whl", hash = "sha256:91139586732e437b1c3d5cf838dc5be910bce27b4b679612112be03fcc4fa2aa"}, {file = "opentelemetry_instrumentation_fastapi-0.38b0.tar.gz", hash = "sha256:8946fd414084b305ad67556a1907e2d4a497924d023effc5ea3b4b1b0c55b256"}, ] [package.dependencies] opentelemetry-api = ">=1.12,<2.0" opentelemetry-instrumentation = "0.38b0" opentelemetry-instrumentation-asgi = "0.38b0" opentelemetry-semantic-conventions = "0.38b0" opentelemetry-util-http = "0.38b0" [package.extras] instruments = ["fastapi (>=0.58,<1.0)"] test = ["httpx (>=0.22,<1.0)", "opentelemetry-instrumentation-fastapi[instruments]", "opentelemetry-test-utils (==0.38b0)", "requests (>=2.23,<3.0)"] [[package]] name = "opentelemetry-instrumentation-grpc" version = "0.38b0" description = "OpenTelemetry gRPC instrumentation" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "opentelemetry_instrumentation_grpc-0.38b0-py3-none-any.whl", hash = "sha256:64978d158f233c45df809d927f62a79e0bbb1c433d63ae5f7b38133a515397d8"}, {file = "opentelemetry_instrumentation_grpc-0.38b0.tar.gz", hash = "sha256:d6a45e4c64aa4a2f3c29b6ca673b04d88e8ef4c2d0273e9b23209f9248f30325"}, ] [package.dependencies] opentelemetry-api = ">=1.12,<2.0" opentelemetry-instrumentation = "0.38b0" opentelemetry-sdk = ">=1.12,<2.0" opentelemetry-semantic-conventions = "0.38b0" wrapt = ">=1.0.0,<2.0.0" [package.extras] instruments = ["grpcio (>=1.27,<2.0)"] test = ["opentelemetry-instrumentation-grpc[instruments]", "opentelemetry-sdk (>=1.12,<2.0)", "opentelemetry-test-utils (==0.38b0)", "protobuf (>=3.13,<4.0)"] [[package]] name = "opentelemetry-proto" version = "1.17.0" description = "OpenTelemetry Python Proto" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "opentelemetry_proto-1.17.0-py3-none-any.whl", hash = "sha256:c7c0f748668102598e84ca4d51975f87ebf66865aa7469fc2c5e8bdaab813e93"}, {file = "opentelemetry_proto-1.17.0.tar.gz", hash = "sha256:8501fdc3bc76c03a2ed11603a4d9fce6e5a97eeaebd7a20ad84bba7bd79cc9f8"}, ] [package.dependencies] protobuf = ">=3.19,<5.0" [[package]] name = "opentelemetry-sdk" version = "1.17.0" description = "OpenTelemetry Python SDK" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "opentelemetry_sdk-1.17.0-py3-none-any.whl", hash = "sha256:07424cbcc8c012bc120ed573d5443e7322f3fb393512e72866c30111070a8c37"}, {file = "opentelemetry_sdk-1.17.0.tar.gz", hash = "sha256:99bb9a787006774f865a4b24f8179900347d03a214c362a6cb70191f77dd6132"}, ] [package.dependencies] opentelemetry-api = "1.17.0" opentelemetry-semantic-conventions = "0.38b0" setuptools = ">=16.0" typing-extensions = ">=3.7.4" [[package]] name = "opentelemetry-semantic-conventions" version = "0.38b0" description = "OpenTelemetry Semantic Conventions" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "opentelemetry_semantic_conventions-0.38b0-py3-none-any.whl", hash = "sha256:b0ba36e8b70bfaab16ee5a553d809309cc11ff58aec3d2550d451e79d45243a7"}, {file = "opentelemetry_semantic_conventions-0.38b0.tar.gz", hash = "sha256:37f09e47dd5fc316658bf9ee9f37f9389b21e708faffa4a65d6a3de484d22309"}, ] [[package]] name = "opentelemetry-util-http" version = "0.38b0" description = "Web util for OpenTelemetry" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "opentelemetry_util_http-0.38b0-py3-none-any.whl", hash = "sha256:8e5f0451eeb5307b2c628dd799886adc5e113fb13a7207c29c672e8d168eabd8"}, {file = "opentelemetry_util_http-0.38b0.tar.gz", hash = "sha256:85eb032b6129c4d7620583acf574e99fe2e73c33d60e256b54af436f76ceb5ae"}, ] [[package]] name = "opt-einsum" version = "3.3.0" description = "Optimizing numpys einsum function" category = "main" optional = true python-versions = ">=3.5" files = [ {file = "opt_einsum-3.3.0-py3-none-any.whl", hash = "sha256:2455e59e3947d3c275477df7f5205b30635e266fe6dc300e3d9f9646bfcea147"}, {file = "opt_einsum-3.3.0.tar.gz", hash = "sha256:59f6475f77bbc37dcf7cd748519c0ec60722e91e63ca114e68821c0c54a46549"}, ] [package.dependencies] numpy = ">=1.7" [package.extras] docs = ["numpydoc", "sphinx (==1.2.3)", "sphinx-rtd-theme", "sphinxcontrib-napoleon"] tests = ["pytest", "pytest-cov", "pytest-pep8"] [[package]] name = "orjson" version = "3.8.12" description = "Fast, correct Python JSON library supporting dataclasses, datetimes, and numpy" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "orjson-3.8.12-cp310-cp310-macosx_11_0_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl", hash = "sha256:c84046e890e13a119404a83f2e09e622509ed4692846ff94c4ca03654fbc7fb5"}, {file = "orjson-3.8.12-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:29706dd8189835bcf1781faed286e99ae54fd6165437d364dfdbf0276bf39b19"}, {file = "orjson-3.8.12-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f4e22b0aa70c963ac01fcd620de15be21a5027711b0e5d4b96debcdeea43e3ae"}, {file = "orjson-3.8.12-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6d1acf52d3a4b9384af09a5c2658c3a7a472a4d62a0ad1fe2c8fab8ef460c9b4"}, {file = "orjson-3.8.12-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a72b50719bdd6bb0acfca3d4d1c841aa4b191f3ff37268e7aba04e5d6be44ccd"}, {file = "orjson-3.8.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:83e8c740a718fa6d511a82e463adc7ab17631c6eea81a716b723e127a9c51d57"}, {file = "orjson-3.8.12-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:ebb03e4c7648f7bb299872002a6120082da018f41ba7a9ebf4ceae8d765443d2"}, {file = "orjson-3.8.12-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:44f7bb4c995652106276442de1147c9993716d1e2d79b7fd435afa154ff236b9"}, {file = "orjson-3.8.12-cp310-none-win_amd64.whl", hash = "sha256:06e528f9a84fbb4000fd0eee573b5db543ee70ae586fdbc53e740b0ac981701c"}, {file = "orjson-3.8.12-cp311-cp311-macosx_11_0_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl", hash = "sha256:9a6c1594d5a9ff56e5babc4a87ac372af38d37adef9e06744e9f158431e33f43"}, {file = "orjson-3.8.12-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c6390ce0bce24c107fc275736aa8a4f768ef7eb5df935d7dca0cc99815eb5d99"}, {file = "orjson-3.8.12-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:efb3a10030462a22c731682434df5c137a67632a8339f821cd501920b169007e"}, {file = "orjson-3.8.12-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7e405d54c84c30d9b1c918c290bcf4ef484a45c69d5583a95db81ffffba40b44"}, {file = "orjson-3.8.12-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cd6fbd1413559572e81b5ac64c45388147c3ba85cc3df2eaa11002945e0dbd1f"}, {file = "orjson-3.8.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f480ae7b84369b1860d8867f0baf8d885fede400fda390ce088bfa8edf97ffdc"}, {file = "orjson-3.8.12-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:355055e0977c43b0e5325b9312b7208c696fe20cd54eed1d6fc80b0a4d6721f5"}, {file = "orjson-3.8.12-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d937503e4dfba5edc8d5e0426d3cc97ed55716e93212b2e12a198664487b9965"}, {file = "orjson-3.8.12-cp311-none-win_amd64.whl", hash = "sha256:eb16e0195febd24b44f4db1ab3be85ecf6038f92fd511370cebc004b3d422294"}, {file = "orjson-3.8.12-cp37-cp37m-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl", hash = "sha256:dc27a8ec13f28e92dc1ea89bf1232d77e7d3ebfd5c1ccf4f3729a70561cb63bd"}, {file = "orjson-3.8.12-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77710774faed337ac4ad919dadc5f3b655b0cd40518e5386e6f1f116de9c6c25"}, {file = "orjson-3.8.12-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:7e549468867991f6f9cfbd9c5bbc977330173bd8f6ceb79973bbd4634e13e1b9"}, {file = "orjson-3.8.12-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:96fb1eb82b578eb6c0e53e3cf950839fe98ea210626f87c8204bd4fc2cc6ba02"}, {file = "orjson-3.8.12-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8d153b228b6e24f8bccf732a51e01e8e938eef59efed9030c5c257778fbe0804"}, {file = "orjson-3.8.12-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:becbd5af6d035a7ec2ee3239d4700929d52d8517806b97dd04efcc37289403f7"}, {file = "orjson-3.8.12-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:7d63f524048825e05950db3b6998c756d5377a5e8c469b2e3bdb9f3217523d74"}, {file = "orjson-3.8.12-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:ec4f0130d9a27cb400423e09e0f9e46480e9e977f05fdcf663a7a2c68735513e"}, {file = "orjson-3.8.12-cp37-none-win_amd64.whl", hash = "sha256:6f1b01f641f5e87168b819ac1cbd81aa6278e7572c326f3d27e92dea442a2c0d"}, {file = "orjson-3.8.12-cp38-cp38-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl", hash = "sha256:062e67108c218fdb9475edd5272b1629c05b56c66416fa915de5656adde30e73"}, {file = "orjson-3.8.12-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ba645c92801417933fa74448622ba614a275ea82df05e888095c7742d913bb4"}, {file = "orjson-3.8.12-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:7d50d9b1ae409ea15534365fec0ce8a5a5f7dc94aa790aacfb8cfec87ab51aa4"}, {file = "orjson-3.8.12-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8f00038bf5d07439d13c0c2c5cd6ad48eb86df7dbd7a484013ce6a113c421b14"}, {file = "orjson-3.8.12-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:397670665f94cf5cff779054781d80395084ba97191d82f7b3a86f0a20e6102b"}, {file = "orjson-3.8.12-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6f568205519bb0197ca91915c5da6058cfbb59993e557b02dfc3b2718b34770a"}, {file = "orjson-3.8.12-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:4fd240e736ce52cd757d74142d9933fd35a3184396be887c435f0574e0388654"}, {file = "orjson-3.8.12-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:6cae2ff288a80e81ce30313e735c5436495ab58cf8d4fbe84900e616d0ee7a78"}, {file = "orjson-3.8.12-cp38-none-win_amd64.whl", hash = "sha256:710c40c214b753392e46f9275fd795e9630dd737a5ab4ac6e4ee1a02fe83cc0d"}, {file = "orjson-3.8.12-cp39-cp39-macosx_11_0_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl", hash = "sha256:aff761de5ed5543a0a51e9f703668624749aa2239de5d7d37d9c9693daeaf5dc"}, {file = "orjson-3.8.12-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:135f29cf936283a0cd1b8bce86540ca181108f2a4d4483eedad6b8026865d2a9"}, {file = "orjson-3.8.12-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:62f999798f2fa55e567d483864ebfc30120fb055c2696a255979439323a5b15c"}, {file = "orjson-3.8.12-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3fa58ca064c640fa9d823f98fbbc8e71940ecb78cea3ac2507da1cbf49d60b51"}, {file = "orjson-3.8.12-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8682f752c19f6a7d9fc727fd98588b4c8b0dce791b5794bb814c7379ccd64a79"}, {file = "orjson-3.8.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:de3d096dde3e46d01841abc1982b906694ab3c92f338d37a2e6184739dc8a958"}, {file = "orjson-3.8.12-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:834b50df79f1fe89bbaced3a1c1d8c8c92cc99e84cdcd374d8da4974b3560d2a"}, {file = "orjson-3.8.12-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:2ad149ed76dce2bbdfbadd61c35959305e77141badf364a158beb4ef3d88ec37"}, {file = "orjson-3.8.12-cp39-none-win_amd64.whl", hash = "sha256:82d65e478a21f98107b4eb8390104746bb3024c27084b57edab7d427385f1f70"}, {file = "orjson-3.8.12.tar.gz", hash = "sha256:9f0f042cf002a474a6aea006dd9f8d7a5497e35e5fb190ec78eb4d232ec19955"}, ] [[package]] name = "packaging" version = "23.1" description = "Core utilities for Python packages" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "packaging-23.1-py3-none-any.whl", hash = "sha256:994793af429502c4ea2ebf6bf664629d07c1a9fe974af92966e4b8d2df7edc61"}, {file = "packaging-23.1.tar.gz", hash = "sha256:a392980d2b6cffa644431898be54b0045151319d1e7ec34f0cfed48767dd334f"}, ] [[package]] name = "pandas" version = "2.0.1" description = "Powerful data structures for data analysis, time series, and statistics" category = "main" optional = false python-versions = ">=3.8" files = [ {file = "pandas-2.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:70a996a1d2432dadedbb638fe7d921c88b0cc4dd90374eab51bb33dc6c0c2a12"}, {file = "pandas-2.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:909a72b52175590debbf1d0c9e3e6bce2f1833c80c76d80bd1aa09188be768e5"}, {file = "pandas-2.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fe7914d8ddb2d54b900cec264c090b88d141a1eed605c9539a187dbc2547f022"}, {file = "pandas-2.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0a514ae436b23a92366fbad8365807fc0eed15ca219690b3445dcfa33597a5cc"}, {file = "pandas-2.0.1-cp310-cp310-win32.whl", hash = "sha256:12bd6618e3cc737c5200ecabbbb5eaba8ab645a4b0db508ceeb4004bb10b060e"}, {file = "pandas-2.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:2b6fe5f7ce1cba0e74188c8473c9091ead9b293ef0a6794939f8cc7947057abd"}, {file = "pandas-2.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:00959a04a1d7bbc63d75a768540fb20ecc9e65fd80744c930e23768345a362a7"}, {file = "pandas-2.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:af2449e9e984dfad39276b885271ba31c5e0204ffd9f21f287a245980b0e4091"}, {file = "pandas-2.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:910df06feaf9935d05247db6de452f6d59820e432c18a2919a92ffcd98f8f79b"}, {file = "pandas-2.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6fa0067f2419f933101bdc6001bcea1d50812afbd367b30943417d67fbb99678"}, {file = "pandas-2.0.1-cp311-cp311-win32.whl", hash = "sha256:7b8395d335b08bc8b050590da264f94a439b4770ff16bb51798527f1dd840388"}, {file = "pandas-2.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:8db5a644d184a38e6ed40feeb12d410d7fcc36648443defe4707022da127fc35"}, {file = "pandas-2.0.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:7bbf173d364130334e0159a9a034f573e8b44a05320995127cf676b85fd8ce86"}, {file = "pandas-2.0.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6c0853d487b6c868bf107a4b270a823746175b1932093b537b9b76c639fc6f7e"}, {file = "pandas-2.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f25e23a03f7ad7211ffa30cb181c3e5f6d96a8e4cb22898af462a7333f8a74eb"}, {file = "pandas-2.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e09a53a4fe8d6ae2149959a2d02e1ef2f4d2ceb285ac48f74b79798507e468b4"}, {file = "pandas-2.0.1-cp38-cp38-win32.whl", hash = "sha256:a2564629b3a47b6aa303e024e3d84e850d36746f7e804347f64229f8c87416ea"}, {file = "pandas-2.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:03e677c6bc9cfb7f93a8b617d44f6091613a5671ef2944818469be7b42114a00"}, {file = "pandas-2.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3d099ecaa5b9e977b55cd43cf842ec13b14afa1cfa51b7e1179d90b38c53ce6a"}, {file = "pandas-2.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a37ee35a3eb6ce523b2c064af6286c45ea1c7ff882d46e10d0945dbda7572753"}, {file = "pandas-2.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:320b180d125c3842c5da5889183b9a43da4ebba375ab2ef938f57bf267a3c684"}, {file = "pandas-2.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18d22cb9043b6c6804529810f492ab09d638ddf625c5dea8529239607295cb59"}, {file = "pandas-2.0.1-cp39-cp39-win32.whl", hash = "sha256:90d1d365d77d287063c5e339f49b27bd99ef06d10a8843cf00b1a49326d492c1"}, {file = "pandas-2.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:99f7192d8b0e6daf8e0d0fd93baa40056684e4b4aaaef9ea78dff34168e1f2f0"}, {file = "pandas-2.0.1.tar.gz", hash = "sha256:19b8e5270da32b41ebf12f0e7165efa7024492e9513fb46fb631c5022ae5709d"}, ] [package.dependencies] numpy = [ {version = ">=1.20.3", markers = "python_version < \"3.10\""}, {version = ">=1.21.0", markers = "python_version >= \"3.10\""}, {version = ">=1.23.2", markers = "python_version >= \"3.11\""}, ] python-dateutil = ">=2.8.2" pytz = ">=2020.1" tzdata = ">=2022.1" [package.extras] all = ["PyQt5 (>=5.15.1)", "SQLAlchemy (>=1.4.16)", "beautifulsoup4 (>=4.9.3)", "bottleneck (>=1.3.2)", "brotlipy (>=0.7.0)", "fastparquet (>=0.6.3)", "fsspec (>=2021.07.0)", "gcsfs (>=2021.07.0)", "html5lib (>=1.1)", "hypothesis (>=6.34.2)", "jinja2 (>=3.0.0)", "lxml (>=4.6.3)", "matplotlib (>=3.6.1)", "numba (>=0.53.1)", "numexpr (>=2.7.3)", "odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pandas-gbq (>=0.15.0)", "psycopg2 (>=2.8.6)", "pyarrow (>=7.0.0)", "pymysql (>=1.0.2)", "pyreadstat (>=1.1.2)", "pytest (>=7.0.0)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)", "python-snappy (>=0.6.0)", "pyxlsb (>=1.0.8)", "qtpy (>=2.2.0)", "s3fs (>=2021.08.0)", "scipy (>=1.7.1)", "tables (>=3.6.1)", "tabulate (>=0.8.9)", "xarray (>=0.21.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)", "zstandard (>=0.15.2)"] aws = ["s3fs (>=2021.08.0)"] clipboard = ["PyQt5 (>=5.15.1)", "qtpy (>=2.2.0)"] compression = ["brotlipy (>=0.7.0)", "python-snappy (>=0.6.0)", "zstandard (>=0.15.2)"] computation = ["scipy (>=1.7.1)", "xarray (>=0.21.0)"] excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pyxlsb (>=1.0.8)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)"] feather = ["pyarrow (>=7.0.0)"] fss = ["fsspec (>=2021.07.0)"] gcp = ["gcsfs (>=2021.07.0)", "pandas-gbq (>=0.15.0)"] hdf5 = ["tables (>=3.6.1)"] html = ["beautifulsoup4 (>=4.9.3)", "html5lib (>=1.1)", "lxml (>=4.6.3)"] mysql = ["SQLAlchemy (>=1.4.16)", "pymysql (>=1.0.2)"] output-formatting = ["jinja2 (>=3.0.0)", "tabulate (>=0.8.9)"] parquet = ["pyarrow (>=7.0.0)"] performance = ["bottleneck (>=1.3.2)", "numba (>=0.53.1)", "numexpr (>=2.7.1)"] plot = ["matplotlib (>=3.6.1)"] postgresql = ["SQLAlchemy (>=1.4.16)", "psycopg2 (>=2.8.6)"] spss = ["pyreadstat (>=1.1.2)"] sql-other = ["SQLAlchemy (>=1.4.16)"] test = ["hypothesis (>=6.34.2)", "pytest (>=7.0.0)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)"] xml = ["lxml (>=4.6.3)"] [[package]] name = "pandocfilters" version = "1.5.0" description = "Utilities for writing pandoc filters in python" category = "dev" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ {file = "pandocfilters-1.5.0-py2.py3-none-any.whl", hash = "sha256:33aae3f25fd1a026079f5d27bdd52496f0e0803b3469282162bafdcbdf6ef14f"}, {file = "pandocfilters-1.5.0.tar.gz", hash = "sha256:0b679503337d233b4339a817bfc8c50064e2eff681314376a47cb582305a7a38"}, ] [[package]] name = "parso" version = "0.8.3" description = "A Python Parser" category = "dev" optional = false python-versions = ">=3.6" files = [ {file = "parso-0.8.3-py2.py3-none-any.whl", hash = "sha256:c001d4636cd3aecdaf33cbb40aebb59b094be2a74c556778ef5576c175e19e75"}, {file = "parso-0.8.3.tar.gz", hash = "sha256:8c07be290bb59f03588915921e29e8a50002acaf2cdc5fa0e0114f91709fafa0"}, ] [package.extras] qa = ["flake8 (==3.8.3)", "mypy (==0.782)"] testing = ["docopt", "pytest (<6.0.0)"] [[package]] name = "pathos" version = "0.3.0" description = "parallel graph management and execution in heterogeneous computing" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "pathos-0.3.0-py3-none-any.whl", hash = "sha256:b1f5a79b1c79a594330d451832642ee5bb61dd77dc75ba9e5c72087c77e8994c"}, {file = "pathos-0.3.0.tar.gz", hash = "sha256:24fa8db51fbd9284da8e191794097c4bb2aa3fce411090e57af6385e61b97e09"}, ] [package.dependencies] dill = ">=0.3.6" multiprocess = ">=0.70.14" pox = ">=0.3.2" ppft = ">=1.7.6.6" [[package]] name = "pathspec" version = "0.11.1" description = "Utility library for gitignore style pattern matching of file paths." category = "main" optional = false python-versions = ">=3.7" files = [ {file = "pathspec-0.11.1-py3-none-any.whl", hash = "sha256:d8af70af76652554bd134c22b3e8a1cc46ed7d91edcdd721ef1a0c51a84a5293"}, {file = "pathspec-0.11.1.tar.gz", hash = "sha256:2798de800fa92780e33acca925945e9a19a133b715067cf165b8866c15a31687"}, ] [[package]] name = "pathy" version = "0.10.1" description = "pathlib.Path subclasses for local and cloud bucket storage" category = "main" optional = true python-versions = ">= 3.6" files = [ {file = "pathy-0.10.1-py3-none-any.whl", hash = "sha256:a7613ee2d99a0a3300e1d836322e2d947c85449fde59f52906f995dbff67dad4"}, {file = "pathy-0.10.1.tar.gz", hash = "sha256:4cd6e71b4cd5ff875cfbb949ad9fa5519d8d1dbe69d5fc1d1b23aa3cb049618b"}, ] [package.dependencies] smart-open = ">=5.2.1,<7.0.0" typer = ">=0.3.0,<1.0.0" [package.extras] all = ["azure-storage-blob", "boto3", "google-cloud-storage (>=1.26.0,<2.0.0)", "mock", "pytest", "pytest-coverage", "typer-cli"] azure = ["azure-storage-blob"] gcs = ["google-cloud-storage (>=1.26.0,<2.0.0)"] s3 = ["boto3"] test = ["mock", "pytest", "pytest-coverage", "typer-cli"] [[package]] name = "pdfminer-six" version = "20221105" description = "PDF parser and analyzer" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "pdfminer.six-20221105-py3-none-any.whl", hash = "sha256:1eaddd712d5b2732f8ac8486824533514f8ba12a0787b3d5fe1e686cd826532d"}, {file = "pdfminer.six-20221105.tar.gz", hash = "sha256:8448ab7b939d18b64820478ecac5394f482d7a79f5f7eaa7703c6c959c175e1d"}, ] [package.dependencies] charset-normalizer = ">=2.0.0" cryptography = ">=36.0.0" [package.extras] dev = ["black", "mypy (==0.931)", "nox", "pytest"] docs = ["sphinx", "sphinx-argparse"] image = ["Pillow"] [[package]] name = "pexpect" version = "4.8.0" description = "Pexpect allows easy control of interactive console applications." category = "main" optional = false python-versions = "*" files = [ {file = "pexpect-4.8.0-py2.py3-none-any.whl", hash = "sha256:0b48a55dcb3c05f3329815901ea4fc1537514d6ba867a152b581d69ae3710937"}, {file = "pexpect-4.8.0.tar.gz", hash = "sha256:fc65a43959d153d0114afe13997d439c22823a27cefceb5ff35c2178c6784c0c"}, ] [package.dependencies] ptyprocess = ">=0.5" [[package]] name = "pgvector" version = "0.1.7" description = "pgvector support for Python" category = "main" optional = false python-versions = ">=3.6" files = [ {file = "pgvector-0.1.7-py2.py3-none-any.whl", hash = "sha256:b0da0289959372f916b96c1da7c57437725c7aa33fa0c75b4a53c3677369bdd5"}, ] [package.dependencies] numpy = "*" [[package]] name = "pickleshare" version = "0.7.5" description = "Tiny 'shelve'-like database with concurrency support" category = "dev" optional = false python-versions = "*" files = [ {file = "pickleshare-0.7.5-py2.py3-none-any.whl", hash = "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56"}, {file = "pickleshare-0.7.5.tar.gz", hash = "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca"}, ] [[package]] name = "pillow" version = "9.5.0" description = "Python Imaging Library (Fork)" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "Pillow-9.5.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:ace6ca218308447b9077c14ea4ef381ba0b67ee78d64046b3f19cf4e1139ad16"}, {file = "Pillow-9.5.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d3d403753c9d5adc04d4694d35cf0391f0f3d57c8e0030aac09d7678fa8030aa"}, {file = "Pillow-9.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5ba1b81ee69573fe7124881762bb4cd2e4b6ed9dd28c9c60a632902fe8db8b38"}, {file = "Pillow-9.5.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fe7e1c262d3392afcf5071df9afa574544f28eac825284596ac6db56e6d11062"}, {file = "Pillow-9.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f36397bf3f7d7c6a3abdea815ecf6fd14e7fcd4418ab24bae01008d8d8ca15e"}, {file = "Pillow-9.5.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:252a03f1bdddce077eff2354c3861bf437c892fb1832f75ce813ee94347aa9b5"}, {file = "Pillow-9.5.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:85ec677246533e27770b0de5cf0f9d6e4ec0c212a1f89dfc941b64b21226009d"}, {file = "Pillow-9.5.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:b416f03d37d27290cb93597335a2f85ed446731200705b22bb927405320de903"}, {file = "Pillow-9.5.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:1781a624c229cb35a2ac31cc4a77e28cafc8900733a864870c49bfeedacd106a"}, {file = "Pillow-9.5.0-cp310-cp310-win32.whl", hash = "sha256:8507eda3cd0608a1f94f58c64817e83ec12fa93a9436938b191b80d9e4c0fc44"}, {file = "Pillow-9.5.0-cp310-cp310-win_amd64.whl", hash = "sha256:d3c6b54e304c60c4181da1c9dadf83e4a54fd266a99c70ba646a9baa626819eb"}, {file = "Pillow-9.5.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:7ec6f6ce99dab90b52da21cf0dc519e21095e332ff3b399a357c187b1a5eee32"}, {file = "Pillow-9.5.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:560737e70cb9c6255d6dcba3de6578a9e2ec4b573659943a5e7e4af13f298f5c"}, {file = "Pillow-9.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:96e88745a55b88a7c64fa49bceff363a1a27d9a64e04019c2281049444a571e3"}, {file = "Pillow-9.5.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d9c206c29b46cfd343ea7cdfe1232443072bbb270d6a46f59c259460db76779a"}, {file = "Pillow-9.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cfcc2c53c06f2ccb8976fb5c71d448bdd0a07d26d8e07e321c103416444c7ad1"}, {file = "Pillow-9.5.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:a0f9bb6c80e6efcde93ffc51256d5cfb2155ff8f78292f074f60f9e70b942d99"}, {file = "Pillow-9.5.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:8d935f924bbab8f0a9a28404422da8af4904e36d5c33fc6f677e4c4485515625"}, {file = "Pillow-9.5.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:fed1e1cf6a42577953abbe8e6cf2fe2f566daebde7c34724ec8803c4c0cda579"}, {file = "Pillow-9.5.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:c1170d6b195555644f0616fd6ed929dfcf6333b8675fcca044ae5ab110ded296"}, {file = "Pillow-9.5.0-cp311-cp311-win32.whl", hash = "sha256:54f7102ad31a3de5666827526e248c3530b3a33539dbda27c6843d19d72644ec"}, {file = "Pillow-9.5.0-cp311-cp311-win_amd64.whl", hash = "sha256:cfa4561277f677ecf651e2b22dc43e8f5368b74a25a8f7d1d4a3a243e573f2d4"}, {file = "Pillow-9.5.0-cp311-cp311-win_arm64.whl", hash = "sha256:965e4a05ef364e7b973dd17fc765f42233415974d773e82144c9bbaaaea5d089"}, {file = "Pillow-9.5.0-cp312-cp312-win32.whl", hash = "sha256:22baf0c3cf0c7f26e82d6e1adf118027afb325e703922c8dfc1d5d0156bb2eeb"}, {file = "Pillow-9.5.0-cp312-cp312-win_amd64.whl", hash = "sha256:432b975c009cf649420615388561c0ce7cc31ce9b2e374db659ee4f7d57a1f8b"}, {file = "Pillow-9.5.0-cp37-cp37m-macosx_10_10_x86_64.whl", hash = "sha256:5d4ebf8e1db4441a55c509c4baa7a0587a0210f7cd25fcfe74dbbce7a4bd1906"}, {file = "Pillow-9.5.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:375f6e5ee9620a271acb6820b3d1e94ffa8e741c0601db4c0c4d3cb0a9c224bf"}, {file = "Pillow-9.5.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:99eb6cafb6ba90e436684e08dad8be1637efb71c4f2180ee6b8f940739406e78"}, {file = "Pillow-9.5.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2dfaaf10b6172697b9bceb9a3bd7b951819d1ca339a5ef294d1f1ac6d7f63270"}, {file = "Pillow-9.5.0-cp37-cp37m-manylinux_2_28_aarch64.whl", hash = "sha256:763782b2e03e45e2c77d7779875f4432e25121ef002a41829d8868700d119392"}, {file = "Pillow-9.5.0-cp37-cp37m-manylinux_2_28_x86_64.whl", hash = "sha256:35f6e77122a0c0762268216315bf239cf52b88865bba522999dc38f1c52b9b47"}, {file = "Pillow-9.5.0-cp37-cp37m-win32.whl", hash = "sha256:aca1c196f407ec7cf04dcbb15d19a43c507a81f7ffc45b690899d6a76ac9fda7"}, {file = "Pillow-9.5.0-cp37-cp37m-win_amd64.whl", hash = "sha256:322724c0032af6692456cd6ed554bb85f8149214d97398bb80613b04e33769f6"}, {file = "Pillow-9.5.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:a0aa9417994d91301056f3d0038af1199eb7adc86e646a36b9e050b06f526597"}, {file = "Pillow-9.5.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:f8286396b351785801a976b1e85ea88e937712ee2c3ac653710a4a57a8da5d9c"}, {file = "Pillow-9.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c830a02caeb789633863b466b9de10c015bded434deb3ec87c768e53752ad22a"}, {file = "Pillow-9.5.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fbd359831c1657d69bb81f0db962905ee05e5e9451913b18b831febfe0519082"}, {file = "Pillow-9.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8fc330c3370a81bbf3f88557097d1ea26cd8b019d6433aa59f71195f5ddebbf"}, {file = "Pillow-9.5.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:7002d0797a3e4193c7cdee3198d7c14f92c0836d6b4a3f3046a64bd1ce8df2bf"}, {file = "Pillow-9.5.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:229e2c79c00e85989a34b5981a2b67aa079fd08c903f0aaead522a1d68d79e51"}, {file = "Pillow-9.5.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:9adf58f5d64e474bed00d69bcd86ec4bcaa4123bfa70a65ce72e424bfb88ed96"}, {file = "Pillow-9.5.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:662da1f3f89a302cc22faa9f14a262c2e3951f9dbc9617609a47521c69dd9f8f"}, {file = "Pillow-9.5.0-cp38-cp38-win32.whl", hash = "sha256:6608ff3bf781eee0cd14d0901a2b9cc3d3834516532e3bd673a0a204dc8615fc"}, {file = "Pillow-9.5.0-cp38-cp38-win_amd64.whl", hash = "sha256:e49eb4e95ff6fd7c0c402508894b1ef0e01b99a44320ba7d8ecbabefddcc5569"}, {file = "Pillow-9.5.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:482877592e927fd263028c105b36272398e3e1be3269efda09f6ba21fd83ec66"}, {file = "Pillow-9.5.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3ded42b9ad70e5f1754fb7c2e2d6465a9c842e41d178f262e08b8c85ed8a1d8e"}, {file = "Pillow-9.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c446d2245ba29820d405315083d55299a796695d747efceb5717a8b450324115"}, {file = "Pillow-9.5.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8aca1152d93dcc27dc55395604dcfc55bed5f25ef4c98716a928bacba90d33a3"}, {file = "Pillow-9.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:608488bdcbdb4ba7837461442b90ea6f3079397ddc968c31265c1e056964f1ef"}, {file = "Pillow-9.5.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:60037a8db8750e474af7ffc9faa9b5859e6c6d0a50e55c45576bf28be7419705"}, {file = "Pillow-9.5.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:07999f5834bdc404c442146942a2ecadd1cb6292f5229f4ed3b31e0a108746b1"}, {file = "Pillow-9.5.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a127ae76092974abfbfa38ca2d12cbeddcdeac0fb71f9627cc1135bedaf9d51a"}, {file = "Pillow-9.5.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:489f8389261e5ed43ac8ff7b453162af39c3e8abd730af8363587ba64bb2e865"}, {file = "Pillow-9.5.0-cp39-cp39-win32.whl", hash = "sha256:9b1af95c3a967bf1da94f253e56b6286b50af23392a886720f563c547e48e964"}, {file = "Pillow-9.5.0-cp39-cp39-win_amd64.whl", hash = "sha256:77165c4a5e7d5a284f10a6efaa39a0ae8ba839da344f20b111d62cc932fa4e5d"}, {file = "Pillow-9.5.0-pp38-pypy38_pp73-macosx_10_10_x86_64.whl", hash = "sha256:833b86a98e0ede388fa29363159c9b1a294b0905b5128baf01db683672f230f5"}, {file = "Pillow-9.5.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aaf305d6d40bd9632198c766fb64f0c1a83ca5b667f16c1e79e1661ab5060140"}, {file = "Pillow-9.5.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0852ddb76d85f127c135b6dd1f0bb88dbb9ee990d2cd9aa9e28526c93e794fba"}, {file = "Pillow-9.5.0-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:91ec6fe47b5eb5a9968c79ad9ed78c342b1f97a091677ba0e012701add857829"}, {file = "Pillow-9.5.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:cb841572862f629b99725ebaec3287fc6d275be9b14443ea746c1dd325053cbd"}, {file = "Pillow-9.5.0-pp39-pypy39_pp73-macosx_10_10_x86_64.whl", hash = "sha256:c380b27d041209b849ed246b111b7c166ba36d7933ec6e41175fd15ab9eb1572"}, {file = "Pillow-9.5.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7c9af5a3b406a50e313467e3565fc99929717f780164fe6fbb7704edba0cebbe"}, {file = "Pillow-9.5.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5671583eab84af046a397d6d0ba25343c00cd50bce03787948e0fff01d4fd9b1"}, {file = "Pillow-9.5.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:84a6f19ce086c1bf894644b43cd129702f781ba5751ca8572f08aa40ef0ab7b7"}, {file = "Pillow-9.5.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:1e7723bd90ef94eda669a3c2c19d549874dd5badaeefabefd26053304abe5799"}, {file = "Pillow-9.5.0.tar.gz", hash = "sha256:bf548479d336726d7a0eceb6e767e179fbde37833ae42794602631a070d630f1"}, ] [package.extras] docs = ["furo", "olefile", "sphinx (>=2.4)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-removed-in", "sphinxext-opengraph"] tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"] [[package]] name = "pinecone-client" version = "2.2.1" description = "Pinecone client and SDK" category = "main" optional = false python-versions = ">=3.6" files = [ {file = "pinecone-client-2.2.1.tar.gz", hash = "sha256:0878dcaee447c46c8d1b3d71c854689daa7e548e5009a171780907c7d4e74789"}, {file = "pinecone_client-2.2.1-py3-none-any.whl", hash = "sha256:6976a22aee57a9813378607506c8c36b0317dfa36a08a5397aaaeab2eef66c1b"}, ] [package.dependencies] dnspython = ">=2.0.0" loguru = ">=0.5.0" numpy = "*" python-dateutil = ">=2.5.3" pyyaml = ">=5.4" requests = ">=2.19.0" tqdm = ">=4.64.1" typing-extensions = ">=3.7.4" urllib3 = ">=1.21.1" [package.extras] grpc = ["googleapis-common-protos (>=1.53.0)", "grpc-gateway-protoc-gen-openapiv2 (==0.1.0)", "grpcio (>=1.44.0)", "lz4 (>=3.1.3)", "protobuf (==3.19.3)"] [[package]] name = "pinecone-text" version = "0.4.2" description = "Text utilities library by Pinecone.io" category = "main" optional = false python-versions = ">=3.8,<4.0" files = [ {file = "pinecone_text-0.4.2-py3-none-any.whl", hash = "sha256:79468c197b2fc7738c1511a6b5b8e7697fad613604ad935661a438f621ad2004"}, {file = "pinecone_text-0.4.2.tar.gz", hash = "sha256:131d9d1cc5654bdff8c4e497bb00e54fcab07a3b501e38aa16a6f19c2f00d4c6"}, ] [package.dependencies] mmh3 = ">=3.1.0,<4.0.0" nltk = ">=3.6.5,<4.0.0" sentence-transformers = ">=2.0.0,<3.0.0" torch = ">=1.13.1,<2.0.0" transformers = ">=4.26.1,<5.0.0" wget = ">=3.2,<4.0" [[package]] name = "pkgutil-resolve-name" version = "1.3.10" description = "Resolve a name to an object." category = "dev" optional = false python-versions = ">=3.6" files = [ {file = "pkgutil_resolve_name-1.3.10-py3-none-any.whl", hash = "sha256:ca27cc078d25c5ad71a9de0a7a330146c4e014c2462d9af19c6b828280649c5e"}, {file = "pkgutil_resolve_name-1.3.10.tar.gz", hash = "sha256:357d6c9e6a755653cfd78893817c0853af365dd51ec97f3d358a819373bbd174"}, ] [[package]] name = "platformdirs" version = "3.5.1" description = "A small Python package for determining appropriate platform-specific dirs, e.g. a \"user data dir\"." category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "platformdirs-3.5.1-py3-none-any.whl", hash = "sha256:e2378146f1964972c03c085bb5662ae80b2b8c06226c54b2ff4aa9483e8a13a5"}, {file = "platformdirs-3.5.1.tar.gz", hash = "sha256:412dae91f52a6f84830f39a8078cecd0e866cb72294a5c66808e74d5e88d251f"}, ] [package.extras] docs = ["furo (>=2023.3.27)", "proselint (>=0.13)", "sphinx (>=6.2.1)", "sphinx-autodoc-typehints (>=1.23,!=1.23.4)"] test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.3.1)", "pytest-cov (>=4)", "pytest-mock (>=3.10)"] [[package]] name = "playwright" version = "1.33.0" description = "A high-level API to automate web browsers" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "playwright-1.33.0-py3-none-macosx_10_13_x86_64.whl", hash = "sha256:b3f6f27f67ec4ef32216a6fab3ffd8a4e1100383be0e863ff86707e617bec1b6"}, {file = "playwright-1.33.0-py3-none-macosx_11_0_arm64.whl", hash = "sha256:69f90c23c3906837bbbce4cb80774df72adc2e35c43b9744e13638d37049d970"}, {file = "playwright-1.33.0-py3-none-macosx_11_0_universal2.whl", hash = "sha256:08a9cd792a65c7e5f2bb68580f669a706d867fecabc8686098a2fabe3e34f5f8"}, {file = "playwright-1.33.0-py3-none-manylinux1_x86_64.whl", hash = "sha256:84dc9ac79ac828d823161fd6903ffbaf9d3843f4ced2fc2e3414b91b15624d0c"}, {file = "playwright-1.33.0-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9a749f5f2fafc85c5b2a849226cbfdbca4fa047dec3ae20900494e84a390dd0c"}, {file = "playwright-1.33.0-py3-none-win32.whl", hash = "sha256:0671dbb767422621b980b4545eeb2910c73f4e2aabe376a58e4a1ac03990bcec"}, {file = "playwright-1.33.0-py3-none-win_amd64.whl", hash = "sha256:030b273370bcfdec22317ca9fbdd8b66f7493462fb3bf2fce144e3cc82899ae4"}, ] [package.dependencies] greenlet = "2.0.1" pyee = "9.0.4" typing-extensions = {version = "*", markers = "python_version <= \"3.8\""} [[package]] name = "pluggy" version = "1.0.0" description = "plugin and hook calling mechanisms for python" category = "dev" optional = false python-versions = ">=3.6" files = [ {file = "pluggy-1.0.0-py2.py3-none-any.whl", hash = "sha256:74134bbf457f031a36d68416e1509f34bd5ccc019f0bcc952c7b909d06b37bd3"}, {file = "pluggy-1.0.0.tar.gz", hash = "sha256:4224373bacce55f955a878bf9cfa763c1e360858e330072059e10bad68531159"}, ] [package.extras] dev = ["pre-commit", "tox"] testing = ["pytest", "pytest-benchmark"] [[package]] name = "portalocker" version = "2.7.0" description = "Wraps the portalocker recipe for easy usage" category = "main" optional = true python-versions = ">=3.5" files = [ {file = "portalocker-2.7.0-py2.py3-none-any.whl", hash = "sha256:a07c5b4f3985c3cf4798369631fb7011adb498e2a46d8440efc75a8f29a0f983"}, {file = "portalocker-2.7.0.tar.gz", hash = "sha256:032e81d534a88ec1736d03f780ba073f047a06c478b06e2937486f334e955c51"}, ] [package.dependencies] pywin32 = {version = ">=226", markers = "platform_system == \"Windows\""} [package.extras] docs = ["sphinx (>=1.7.1)"] redis = ["redis"] tests = ["pytest (>=5.4.1)", "pytest-cov (>=2.8.1)", "pytest-mypy (>=0.8.0)", "pytest-timeout (>=2.1.0)", "redis", "sphinx (>=6.0.0)"] [[package]] name = "posthog" version = "3.0.1" description = "Integrate PostHog into any python application." category = "dev" optional = false python-versions = "*" files = [ {file = "posthog-3.0.1-py2.py3-none-any.whl", hash = "sha256:9c7f92fecc713257d4b2710d05b456569c9156fbdd3e85655ba7ba5ba6c7b3ae"}, {file = "posthog-3.0.1.tar.gz", hash = "sha256:57d2791ff5752ce56ba0f9bb8876faf3ca9208f1c2c6ceaeb5a2504c34493767"}, ] [package.dependencies] backoff = ">=1.10.0" monotonic = ">=1.5" python-dateutil = ">2.1" requests = ">=2.7,<3.0" six = ">=1.5" [package.extras] dev = ["black", "flake8", "flake8-print", "isort", "pre-commit"] sentry = ["django", "sentry-sdk"] test = ["coverage", "flake8", "freezegun (==0.3.15)", "mock (>=2.0.0)", "pylint", "pytest"] [[package]] name = "pox" version = "0.3.2" description = "utilities for filesystem exploration and automated builds" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "pox-0.3.2-py3-none-any.whl", hash = "sha256:56fe2f099ecd8a557b8948082504492de90e8598c34733c9b1fdeca8f7b6de61"}, {file = "pox-0.3.2.tar.gz", hash = "sha256:e825225297638d6e3d49415f8cfb65407a5d15e56f2fb7fe9d9b9e3050c65ee1"}, ] [[package]] name = "ppft" version = "1.7.6.6" description = "distributed and parallel python" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "ppft-1.7.6.6-py3-none-any.whl", hash = "sha256:f355d2caeed8bd7c9e4a860c471f31f7e66d1ada2791ab5458ea7dca15a51e41"}, {file = "ppft-1.7.6.6.tar.gz", hash = "sha256:f933f0404f3e808bc860745acb3b79cd4fe31ea19a20889a645f900415be60f1"}, ] [package.extras] dill = ["dill (>=0.3.6)"] [[package]] name = "preshed" version = "3.0.8" description = "Cython hash table that trusts the keys are pre-hashed" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "preshed-3.0.8-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:ea4b6df8ef7af38e864235256793bc3056e9699d991afcf6256fa298858582fc"}, {file = "preshed-3.0.8-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8e945fc814bdc29564a2ce137c237b3a9848aa1e76a1160369b6e0d328151fdd"}, {file = "preshed-3.0.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f9a4833530fe53001c351974e0c8bb660211b8d0358e592af185fec1ae12b2d0"}, {file = "preshed-3.0.8-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e1472ee231f323b4f4368b1b5f8f08481ed43af89697d45450c6ae4af46ac08a"}, {file = "preshed-3.0.8-cp310-cp310-win_amd64.whl", hash = "sha256:c8a2e2931eea7e500fbf8e014b69022f3fab2e35a70da882e2fc753e5e487ae3"}, {file = "preshed-3.0.8-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0e1bb8701df7861af26a312225bdf7c4822ac06fcf75aeb60fe2b0a20e64c222"}, {file = "preshed-3.0.8-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e9aef2b0b7687aecef48b1c6ff657d407ff24e75462877dcb888fa904c4a9c6d"}, {file = "preshed-3.0.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:854d58a8913ebf3b193b0dc8064155b034e8987de25f26838dfeca09151fda8a"}, {file = "preshed-3.0.8-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:135e2ac0db1a3948d6ec295598c7e182b52c394663f2fcfe36a97ae51186be21"}, {file = "preshed-3.0.8-cp311-cp311-win_amd64.whl", hash = "sha256:019d8fa4161035811fb2804d03214143298739e162d0ad24e087bd46c50970f5"}, {file = "preshed-3.0.8-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6a49ce52856fbb3ef4f1cc744c53f5d7e1ca370b1939620ac2509a6d25e02a50"}, {file = "preshed-3.0.8-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fdbc2957b36115a576c515ffe963919f19d2683f3c76c9304ae88ef59f6b5ca6"}, {file = "preshed-3.0.8-cp36-cp36m-win_amd64.whl", hash = "sha256:09cc9da2ac1b23010ce7d88a5e20f1033595e6dd80be14318e43b9409f4c7697"}, {file = "preshed-3.0.8-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:e19c8069f1a1450f835f23d47724530cf716d581fcafb398f534d044f806b8c2"}, {file = "preshed-3.0.8-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:25b5ef5e387a0e17ff41202a8c1816184ab6fb3c0d0b847bf8add0ed5941eb8d"}, {file = "preshed-3.0.8-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:53d3e2456a085425c66af7baba62d7eaa24aa5e460e1a9e02c401a2ed59abd7b"}, {file = "preshed-3.0.8-cp37-cp37m-win_amd64.whl", hash = "sha256:85e98a618fb36cdcc37501d8b9b8c1246651cc2f2db3a70702832523e0ae12f4"}, {file = "preshed-3.0.8-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:7f8837bf616335464f3713cbf562a3dcaad22c3ca9193f957018964ef871a68b"}, {file = "preshed-3.0.8-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:720593baf2c2e295f855192974799e486da5f50d4548db93c44f5726a43cefb9"}, {file = "preshed-3.0.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e0ad3d860b9ce88a74cf7414bb4b1c6fd833813e7b818e76f49272c4974b19ce"}, {file = "preshed-3.0.8-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fd19d48440b152657966a52e627780c0ddbe9d907b8d7ee4598505e80a3c55c7"}, {file = "preshed-3.0.8-cp38-cp38-win_amd64.whl", hash = "sha256:246e7c6890dc7fe9b10f0e31de3346b906e3862b6ef42fcbede37968f46a73bf"}, {file = "preshed-3.0.8-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:67643e66691770dc3434b01671648f481e3455209ce953727ef2330b16790aaa"}, {file = "preshed-3.0.8-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0ae25a010c9f551aa2247ee621457f679e07c57fc99d3fd44f84cb40b925f12c"}, {file = "preshed-3.0.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5a6a7fcf7dd2e7711051b3f0432da9ec9c748954c989f49d2cd8eabf8c2d953e"}, {file = "preshed-3.0.8-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5942858170c4f53d9afc6352a86bbc72fc96cc4d8964b6415492114a5920d3ed"}, {file = "preshed-3.0.8-cp39-cp39-win_amd64.whl", hash = "sha256:06793022a56782ef51d74f1399925a2ba958e50c5cfbc6fa5b25c4945e158a07"}, {file = "preshed-3.0.8.tar.gz", hash = "sha256:6c74c70078809bfddda17be96483c41d06d717934b07cab7921011d81758b357"}, ] [package.dependencies] cymem = ">=2.0.2,<2.1.0" murmurhash = ">=0.28.0,<1.1.0" [[package]] name = "prometheus-client" version = "0.16.0" description = "Python client for the Prometheus monitoring system." category = "main" optional = false python-versions = ">=3.6" files = [ {file = "prometheus_client-0.16.0-py3-none-any.whl", hash = "sha256:0836af6eb2c8f4fed712b2f279f6c0a8bbab29f9f4aa15276b91c7cb0d1616ab"}, {file = "prometheus_client-0.16.0.tar.gz", hash = "sha256:a03e35b359f14dd1630898543e2120addfdeacd1a6069c1367ae90fd93ad3f48"}, ] [package.extras] twisted = ["twisted"] [[package]] name = "prompt-toolkit" version = "3.0.38" description = "Library for building powerful interactive command lines in Python" category = "dev" optional = false python-versions = ">=3.7.0" files = [ {file = "prompt_toolkit-3.0.38-py3-none-any.whl", hash = "sha256:45ea77a2f7c60418850331366c81cf6b5b9cf4c7fd34616f733c5427e6abbb1f"}, {file = "prompt_toolkit-3.0.38.tar.gz", hash = "sha256:23ac5d50538a9a38c8bde05fecb47d0b403ecd0662857a86f886f798563d5b9b"}, ] [package.dependencies] wcwidth = "*" [[package]] name = "promptlayer" version = "0.1.81" description = "PromptLayer is a package to keep track of your GPT models training" category = "dev" optional = false python-versions = "*" files = [ {file = "promptlayer-0.1.81.tar.gz", hash = "sha256:75b743977dbe646d9e7365ac7b6dc033886253515f9f88c748481e7a0e9090c2"}, ] [package.dependencies] langchain = "*" openai = "*" requests = "*" [[package]] name = "protobuf" version = "3.19.6" description = "Protocol Buffers" category = "main" optional = false python-versions = ">=3.5" files = [ {file = "protobuf-3.19.6-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:010be24d5a44be7b0613750ab40bc8b8cedc796db468eae6c779b395f50d1fa1"}, {file = "protobuf-3.19.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:11478547958c2dfea921920617eb457bc26867b0d1aa065ab05f35080c5d9eb6"}, {file = "protobuf-3.19.6-cp310-cp310-win32.whl", hash = "sha256:559670e006e3173308c9254d63facb2c03865818f22204037ab76f7a0ff70b5f"}, {file = "protobuf-3.19.6-cp310-cp310-win_amd64.whl", hash = "sha256:347b393d4dd06fb93a77620781e11c058b3b0a5289262f094379ada2920a3730"}, {file = "protobuf-3.19.6-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:a8ce5ae0de28b51dff886fb922012dad885e66176663950cb2344c0439ecb473"}, {file = "protobuf-3.19.6-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90b0d02163c4e67279ddb6dc25e063db0130fc299aefabb5d481053509fae5c8"}, {file = "protobuf-3.19.6-cp36-cp36m-win32.whl", hash = "sha256:30f5370d50295b246eaa0296533403961f7e64b03ea12265d6dfce3a391d8992"}, {file = "protobuf-3.19.6-cp36-cp36m-win_amd64.whl", hash = "sha256:0c0714b025ec057b5a7600cb66ce7c693815f897cfda6d6efb58201c472e3437"}, {file = "protobuf-3.19.6-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:5057c64052a1f1dd7d4450e9aac25af6bf36cfbfb3a1cd89d16393a036c49157"}, {file = "protobuf-3.19.6-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:bb6776bd18f01ffe9920e78e03a8676530a5d6c5911934c6a1ac6eb78973ecb6"}, {file = "protobuf-3.19.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:84a04134866861b11556a82dd91ea6daf1f4925746b992f277b84013a7cc1229"}, {file = "protobuf-3.19.6-cp37-cp37m-win32.whl", hash = "sha256:4bc98de3cdccfb5cd769620d5785b92c662b6bfad03a202b83799b6ed3fa1fa7"}, {file = "protobuf-3.19.6-cp37-cp37m-win_amd64.whl", hash = "sha256:aa3b82ca1f24ab5326dcf4ea00fcbda703e986b22f3d27541654f749564d778b"}, {file = "protobuf-3.19.6-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:2b2d2913bcda0e0ec9a784d194bc490f5dc3d9d71d322d070b11a0ade32ff6ba"}, {file = "protobuf-3.19.6-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:d0b635cefebd7a8a0f92020562dead912f81f401af7e71f16bf9506ff3bdbb38"}, {file = "protobuf-3.19.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a552af4dc34793803f4e735aabe97ffc45962dfd3a237bdde242bff5a3de684"}, {file = "protobuf-3.19.6-cp38-cp38-win32.whl", hash = "sha256:0469bc66160180165e4e29de7f445e57a34ab68f49357392c5b2f54c656ab25e"}, {file = "protobuf-3.19.6-cp38-cp38-win_amd64.whl", hash = "sha256:91d5f1e139ff92c37e0ff07f391101df77e55ebb97f46bbc1535298d72019462"}, {file = "protobuf-3.19.6-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c0ccd3f940fe7f3b35a261b1dd1b4fc850c8fde9f74207015431f174be5976b3"}, {file = "protobuf-3.19.6-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:30a15015d86b9c3b8d6bf78d5b8c7749f2512c29f168ca259c9d7727604d0e39"}, {file = "protobuf-3.19.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:878b4cd080a21ddda6ac6d1e163403ec6eea2e206cf225982ae04567d39be7b0"}, {file = "protobuf-3.19.6-cp39-cp39-win32.whl", hash = "sha256:5a0d7539a1b1fb7e76bf5faa0b44b30f812758e989e59c40f77a7dab320e79b9"}, {file = "protobuf-3.19.6-cp39-cp39-win_amd64.whl", hash = "sha256:bbf5cea5048272e1c60d235c7bd12ce1b14b8a16e76917f371c718bd3005f045"}, {file = "protobuf-3.19.6-py2.py3-none-any.whl", hash = "sha256:14082457dc02be946f60b15aad35e9f5c69e738f80ebbc0900a19bc83734a5a4"}, {file = "protobuf-3.19.6.tar.gz", hash = "sha256:5f5540d57a43042389e87661c6eaa50f47c19c6176e8cf1c4f287aeefeccb5c4"}, ] [[package]] name = "psutil" version = "5.9.5" description = "Cross-platform lib for process and system monitoring in Python." category = "dev" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ {file = "psutil-5.9.5-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:be8929ce4313f9f8146caad4272f6abb8bf99fc6cf59344a3167ecd74f4f203f"}, {file = "psutil-5.9.5-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:ab8ed1a1d77c95453db1ae00a3f9c50227ebd955437bcf2a574ba8adbf6a74d5"}, {file = "psutil-5.9.5-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:4aef137f3345082a3d3232187aeb4ac4ef959ba3d7c10c33dd73763fbc063da4"}, {file = "psutil-5.9.5-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:ea8518d152174e1249c4f2a1c89e3e6065941df2fa13a1ab45327716a23c2b48"}, {file = "psutil-5.9.5-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:acf2aef9391710afded549ff602b5887d7a2349831ae4c26be7c807c0a39fac4"}, {file = "psutil-5.9.5-cp27-none-win32.whl", hash = "sha256:5b9b8cb93f507e8dbaf22af6a2fd0ccbe8244bf30b1baad6b3954e935157ae3f"}, {file = "psutil-5.9.5-cp27-none-win_amd64.whl", hash = "sha256:8c5f7c5a052d1d567db4ddd231a9d27a74e8e4a9c3f44b1032762bd7b9fdcd42"}, {file = "psutil-5.9.5-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:3c6f686f4225553615612f6d9bc21f1c0e305f75d7d8454f9b46e901778e7217"}, {file = "psutil-5.9.5-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7a7dd9997128a0d928ed4fb2c2d57e5102bb6089027939f3b722f3a210f9a8da"}, {file = "psutil-5.9.5-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:89518112647f1276b03ca97b65cc7f64ca587b1eb0278383017c2a0dcc26cbe4"}, {file = "psutil-5.9.5-cp36-abi3-win32.whl", hash = "sha256:104a5cc0e31baa2bcf67900be36acde157756b9c44017b86b2c049f11957887d"}, {file = "psutil-5.9.5-cp36-abi3-win_amd64.whl", hash = "sha256:b258c0c1c9d145a1d5ceffab1134441c4c5113b2417fafff7315a917a026c3c9"}, {file = "psutil-5.9.5-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:c607bb3b57dc779d55e1554846352b4e358c10fff3abf3514a7a6601beebdb30"}, {file = "psutil-5.9.5.tar.gz", hash = "sha256:5410638e4df39c54d957fc51ce03048acd8e6d60abc0f5107af51e5fb566eb3c"}, ] [package.extras] test = ["enum34", "ipaddress", "mock", "pywin32", "wmi"] [[package]] name = "psychicapi" version = "0.2" description = "Psychic.dev is an open-source universal data connector for knowledgebases." category = "main" optional = true python-versions = "*" files = [ {file = "psychicapi-0.2-py3-none-any.whl", hash = "sha256:712c6a1615dfad11d65241c179e96a5058ed1ada47463d1208e5a55a2bfdb4ff"}, {file = "psychicapi-0.2.tar.gz", hash = "sha256:3db62c2665c1485d0f68f3c1c57590691f20ee868d1f40fdeb59a6eeb15ed26a"}, ] [package.dependencies] requests = "*" [[package]] name = "psycopg2-binary" version = "2.9.6" description = "psycopg2 - Python-PostgreSQL Database Adapter" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "psycopg2-binary-2.9.6.tar.gz", hash = "sha256:1f64dcfb8f6e0c014c7f55e51c9759f024f70ea572fbdef123f85318c297947c"}, {file = "psycopg2_binary-2.9.6-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d26e0342183c762de3276cca7a530d574d4e25121ca7d6e4a98e4f05cb8e4df7"}, {file = "psycopg2_binary-2.9.6-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c48d8f2db17f27d41fb0e2ecd703ea41984ee19362cbce52c097963b3a1b4365"}, {file = "psycopg2_binary-2.9.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ffe9dc0a884a8848075e576c1de0290d85a533a9f6e9c4e564f19adf8f6e54a7"}, {file = "psycopg2_binary-2.9.6-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8a76e027f87753f9bd1ab5f7c9cb8c7628d1077ef927f5e2446477153a602f2c"}, {file = "psycopg2_binary-2.9.6-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6460c7a99fc939b849431f1e73e013d54aa54293f30f1109019c56a0b2b2ec2f"}, {file = "psycopg2_binary-2.9.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ae102a98c547ee2288637af07393dd33f440c25e5cd79556b04e3fca13325e5f"}, {file = "psycopg2_binary-2.9.6-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:9972aad21f965599ed0106f65334230ce826e5ae69fda7cbd688d24fa922415e"}, {file = "psycopg2_binary-2.9.6-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:7a40c00dbe17c0af5bdd55aafd6ff6679f94a9be9513a4c7e071baf3d7d22a70"}, {file = "psycopg2_binary-2.9.6-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:cacbdc5839bdff804dfebc058fe25684cae322987f7a38b0168bc1b2df703fb1"}, {file = "psycopg2_binary-2.9.6-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:7f0438fa20fb6c7e202863e0d5ab02c246d35efb1d164e052f2f3bfe2b152bd0"}, {file = "psycopg2_binary-2.9.6-cp310-cp310-win32.whl", hash = "sha256:b6c8288bb8a84b47e07013bb4850f50538aa913d487579e1921724631d02ea1b"}, {file = "psycopg2_binary-2.9.6-cp310-cp310-win_amd64.whl", hash = "sha256:61b047a0537bbc3afae10f134dc6393823882eb263088c271331602b672e52e9"}, {file = "psycopg2_binary-2.9.6-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:964b4dfb7c1c1965ac4c1978b0f755cc4bd698e8aa2b7667c575fb5f04ebe06b"}, {file = "psycopg2_binary-2.9.6-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:afe64e9b8ea66866a771996f6ff14447e8082ea26e675a295ad3bdbffdd72afb"}, {file = "psycopg2_binary-2.9.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:15e2ee79e7cf29582ef770de7dab3d286431b01c3bb598f8e05e09601b890081"}, {file = "psycopg2_binary-2.9.6-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dfa74c903a3c1f0d9b1c7e7b53ed2d929a4910e272add6700c38f365a6002820"}, {file = "psycopg2_binary-2.9.6-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b83456c2d4979e08ff56180a76429263ea254c3f6552cd14ada95cff1dec9bb8"}, {file = "psycopg2_binary-2.9.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0645376d399bfd64da57148694d78e1f431b1e1ee1054872a5713125681cf1be"}, {file = "psycopg2_binary-2.9.6-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e99e34c82309dd78959ba3c1590975b5d3c862d6f279f843d47d26ff89d7d7e1"}, {file = "psycopg2_binary-2.9.6-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:4ea29fc3ad9d91162c52b578f211ff1c931d8a38e1f58e684c45aa470adf19e2"}, {file = "psycopg2_binary-2.9.6-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:4ac30da8b4f57187dbf449294d23b808f8f53cad6b1fc3623fa8a6c11d176dd0"}, {file = "psycopg2_binary-2.9.6-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e78e6e2a00c223e164c417628572a90093c031ed724492c763721c2e0bc2a8df"}, {file = "psycopg2_binary-2.9.6-cp311-cp311-win32.whl", hash = "sha256:1876843d8e31c89c399e31b97d4b9725a3575bb9c2af92038464231ec40f9edb"}, {file = "psycopg2_binary-2.9.6-cp311-cp311-win_amd64.whl", hash = "sha256:b4b24f75d16a89cc6b4cdff0eb6a910a966ecd476d1e73f7ce5985ff1328e9a6"}, {file = "psycopg2_binary-2.9.6-cp36-cp36m-win32.whl", hash = "sha256:498807b927ca2510baea1b05cc91d7da4718a0f53cb766c154c417a39f1820a0"}, {file = "psycopg2_binary-2.9.6-cp36-cp36m-win_amd64.whl", hash = "sha256:0d236c2825fa656a2d98bbb0e52370a2e852e5a0ec45fc4f402977313329174d"}, {file = "psycopg2_binary-2.9.6-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:34b9ccdf210cbbb1303c7c4db2905fa0319391bd5904d32689e6dd5c963d2ea8"}, {file = "psycopg2_binary-2.9.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:84d2222e61f313c4848ff05353653bf5f5cf6ce34df540e4274516880d9c3763"}, {file = "psycopg2_binary-2.9.6-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:30637a20623e2a2eacc420059be11527f4458ef54352d870b8181a4c3020ae6b"}, {file = "psycopg2_binary-2.9.6-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8122cfc7cae0da9a3077216528b8bb3629c43b25053284cc868744bfe71eb141"}, {file = "psycopg2_binary-2.9.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:38601cbbfe600362c43714482f43b7c110b20cb0f8172422c616b09b85a750c5"}, {file = "psycopg2_binary-2.9.6-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:c7e62ab8b332147a7593a385d4f368874d5fe4ad4e341770d4983442d89603e3"}, {file = "psycopg2_binary-2.9.6-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:2ab652e729ff4ad76d400df2624d223d6e265ef81bb8aa17fbd63607878ecbee"}, {file = "psycopg2_binary-2.9.6-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:c83a74b68270028dc8ee74d38ecfaf9c90eed23c8959fca95bd703d25b82c88e"}, {file = "psycopg2_binary-2.9.6-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:d4e6036decf4b72d6425d5b29bbd3e8f0ff1059cda7ac7b96d6ac5ed34ffbacd"}, {file = "psycopg2_binary-2.9.6-cp37-cp37m-win32.whl", hash = "sha256:a8c28fd40a4226b4a84bdf2d2b5b37d2c7bd49486b5adcc200e8c7ec991dfa7e"}, {file = "psycopg2_binary-2.9.6-cp37-cp37m-win_amd64.whl", hash = "sha256:51537e3d299be0db9137b321dfb6a5022caaab275775680e0c3d281feefaca6b"}, {file = "psycopg2_binary-2.9.6-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:cf4499e0a83b7b7edcb8dabecbd8501d0d3a5ef66457200f77bde3d210d5debb"}, {file = "psycopg2_binary-2.9.6-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7e13a5a2c01151f1208d5207e42f33ba86d561b7a89fca67c700b9486a06d0e2"}, {file = "psycopg2_binary-2.9.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e0f754d27fddcfd74006455b6e04e6705d6c31a612ec69ddc040a5468e44b4e"}, {file = "psycopg2_binary-2.9.6-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d57c3fd55d9058645d26ae37d76e61156a27722097229d32a9e73ed54819982a"}, {file = "psycopg2_binary-2.9.6-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:71f14375d6f73b62800530b581aed3ada394039877818b2d5f7fc77e3bb6894d"}, {file = "psycopg2_binary-2.9.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:441cc2f8869a4f0f4bb408475e5ae0ee1f3b55b33f350406150277f7f35384fc"}, {file = "psycopg2_binary-2.9.6-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:65bee1e49fa6f9cf327ce0e01c4c10f39165ee76d35c846ade7cb0ec6683e303"}, {file = "psycopg2_binary-2.9.6-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:af335bac6b666cc6aea16f11d486c3b794029d9df029967f9938a4bed59b6a19"}, {file = "psycopg2_binary-2.9.6-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:cfec476887aa231b8548ece2e06d28edc87c1397ebd83922299af2e051cf2827"}, {file = "psycopg2_binary-2.9.6-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:65c07febd1936d63bfde78948b76cd4c2a411572a44ac50719ead41947d0f26b"}, {file = "psycopg2_binary-2.9.6-cp38-cp38-win32.whl", hash = "sha256:4dfb4be774c4436a4526d0c554af0cc2e02082c38303852a36f6456ece7b3503"}, {file = "psycopg2_binary-2.9.6-cp38-cp38-win_amd64.whl", hash = "sha256:02c6e3cf3439e213e4ee930308dc122d6fb4d4bea9aef4a12535fbd605d1a2fe"}, {file = "psycopg2_binary-2.9.6-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:e9182eb20f41417ea1dd8e8f7888c4d7c6e805f8a7c98c1081778a3da2bee3e4"}, {file = "psycopg2_binary-2.9.6-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:8a6979cf527e2603d349a91060f428bcb135aea2be3201dff794813256c274f1"}, {file = "psycopg2_binary-2.9.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8338a271cb71d8da40b023a35d9c1e919eba6cbd8fa20a54b748a332c355d896"}, {file = "psycopg2_binary-2.9.6-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e3ed340d2b858d6e6fb5083f87c09996506af483227735de6964a6100b4e6a54"}, {file = "psycopg2_binary-2.9.6-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f81e65376e52f03422e1fb475c9514185669943798ed019ac50410fb4c4df232"}, {file = "psycopg2_binary-2.9.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bfb13af3c5dd3a9588000910178de17010ebcccd37b4f9794b00595e3a8ddad3"}, {file = "psycopg2_binary-2.9.6-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:4c727b597c6444a16e9119386b59388f8a424223302d0c06c676ec8b4bc1f963"}, {file = "psycopg2_binary-2.9.6-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:4d67fbdaf177da06374473ef6f7ed8cc0a9dc640b01abfe9e8a2ccb1b1402c1f"}, {file = "psycopg2_binary-2.9.6-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:0892ef645c2fabb0c75ec32d79f4252542d0caec1d5d949630e7d242ca4681a3"}, {file = "psycopg2_binary-2.9.6-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:02c0f3757a4300cf379eb49f543fb7ac527fb00144d39246ee40e1df684ab514"}, {file = "psycopg2_binary-2.9.6-cp39-cp39-win32.whl", hash = "sha256:c3dba7dab16709a33a847e5cd756767271697041fbe3fe97c215b1fc1f5c9848"}, {file = "psycopg2_binary-2.9.6-cp39-cp39-win_amd64.whl", hash = "sha256:f6a88f384335bb27812293fdb11ac6aee2ca3f51d3c7820fe03de0a304ab6249"}, ] [[package]] name = "ptyprocess" version = "0.7.0" description = "Run a subprocess in a pseudo terminal" category = "main" optional = false python-versions = "*" files = [ {file = "ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35"}, {file = "ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220"}, ] [[package]] name = "pure-eval" version = "0.2.2" description = "Safely evaluate AST nodes without side effects" category = "dev" optional = false python-versions = "*" files = [ {file = "pure_eval-0.2.2-py3-none-any.whl", hash = "sha256:01eaab343580944bc56080ebe0a674b39ec44a945e6d09ba7db3cb8cec289350"}, {file = "pure_eval-0.2.2.tar.gz", hash = "sha256:2b45320af6dfaa1750f543d714b6d1c520a1688dec6fd24d339063ce0aaa9ac3"}, ] [package.extras] tests = ["pytest"] [[package]] name = "py" version = "1.11.0" description = "library with cross-python path, ini-parsing, io, code, log facilities" category = "main" optional = true python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" files = [ {file = "py-1.11.0-py2.py3-none-any.whl", hash = "sha256:607c53218732647dff4acdfcd50cb62615cedf612e72d1724fb1a0cc6405b378"}, {file = "py-1.11.0.tar.gz", hash = "sha256:51c75c4126074b472f746a24399ad32f6053d1b34b68d2fa41e558e6f4a98719"}, ] [[package]] name = "py-trello" version = "0.19.0" description = "Python wrapper around the Trello API" category = "main" optional = true python-versions = "*" files = [ {file = "py-trello-0.19.0.tar.gz", hash = "sha256:f4a8c05db61fad0ef5fa35d62c29806c75d9d2b797358d9cf77275e2cbf23020"}, ] [package.dependencies] python-dateutil = "*" pytz = "*" requests = "*" requests-oauthlib = ">=0.4.1" [[package]] name = "py4j" version = "0.10.9.7" description = "Enables Python programs to dynamically access arbitrary Java objects" category = "main" optional = true python-versions = "*" files = [ {file = "py4j-0.10.9.7-py2.py3-none-any.whl", hash = "sha256:85defdfd2b2376eb3abf5ca6474b51ab7e0de341c75a02f46dc9b5976f5a5c1b"}, {file = "py4j-0.10.9.7.tar.gz", hash = "sha256:0b6e5315bb3ada5cf62ac651d107bb2ebc02def3dee9d9548e3baac644ea8dbb"}, ] [[package]] name = "pyaes" version = "1.6.1" description = "Pure-Python Implementation of the AES block-cipher and common modes of operation" category = "main" optional = true python-versions = "*" files = [ {file = "pyaes-1.6.1.tar.gz", hash = "sha256:02c1b1405c38d3c370b085fb952dd8bea3fadcee6411ad99f312cc129c536d8f"}, ] [[package]] name = "pyarrow" version = "12.0.0" description = "Python library for Apache Arrow" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "pyarrow-12.0.0-cp310-cp310-macosx_10_14_x86_64.whl", hash = "sha256:3b97649c8a9a09e1d8dc76513054f1331bd9ece78ee39365e6bf6bc7503c1e94"}, {file = "pyarrow-12.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:bc4ea634dacb03936f50fcf59574a8e727f90c17c24527e488d8ceb52ae284de"}, {file = "pyarrow-12.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d568acfca3faa565d663e53ee34173be8e23a95f78f2abfdad198010ec8f745"}, {file = "pyarrow-12.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1b50bb9a82dca38a002d7cbd802a16b1af0f8c50ed2ec94a319f5f2afc047ee9"}, {file = "pyarrow-12.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:3d1733b1ea086b3c101427d0e57e2be3eb964686e83c2363862a887bb5c41fa8"}, {file = "pyarrow-12.0.0-cp311-cp311-macosx_10_14_x86_64.whl", hash = "sha256:a7cd32fe77f967fe08228bc100433273020e58dd6caced12627bcc0a7675a513"}, {file = "pyarrow-12.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:92fb031e6777847f5c9b01eaa5aa0c9033e853ee80117dce895f116d8b0c3ca3"}, {file = "pyarrow-12.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:280289ebfd4ac3570f6b776515baa01e4dcbf17122c401e4b7170a27c4be63fd"}, {file = "pyarrow-12.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:272f147d4f8387bec95f17bb58dcfc7bc7278bb93e01cb7b08a0e93a8921e18e"}, {file = "pyarrow-12.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:0846ace49998825eda4722f8d7f83fa05601c832549c9087ea49d6d5397d8cec"}, {file = "pyarrow-12.0.0-cp37-cp37m-macosx_10_14_x86_64.whl", hash = "sha256:993287136369aca60005ee7d64130f9466489c4f7425f5c284315b0a5401ccd9"}, {file = "pyarrow-12.0.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7a7b6a765ee4f88efd7d8348d9a1f804487d60799d0428b6ddf3344eaef37282"}, {file = "pyarrow-12.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a1c4fce253d5bdc8d62f11cfa3da5b0b34b562c04ce84abb8bd7447e63c2b327"}, {file = "pyarrow-12.0.0-cp37-cp37m-win_amd64.whl", hash = "sha256:e6be4d85707fc8e7a221c8ab86a40449ce62559ce25c94321df7c8500245888f"}, {file = "pyarrow-12.0.0-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:ea830d9f66bfb82d30b5794642f83dd0e4a718846462d22328981e9eb149cba8"}, {file = "pyarrow-12.0.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7b5b9f60d9ef756db59bec8d90e4576b7df57861e6a3d6a8bf99538f68ca15b3"}, {file = "pyarrow-12.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b99e559d27db36ad3a33868a475f03e3129430fc065accc839ef4daa12c6dab6"}, {file = "pyarrow-12.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5b0810864a593b89877120972d1f7af1d1c9389876dbed92b962ed81492d3ffc"}, {file = "pyarrow-12.0.0-cp38-cp38-win_amd64.whl", hash = "sha256:23a77d97f4d101ddfe81b9c2ee03a177f0e590a7e68af15eafa06e8f3cf05976"}, {file = "pyarrow-12.0.0-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:2cc63e746221cddb9001f7281dee95fd658085dd5b717b076950e1ccc607059c"}, {file = "pyarrow-12.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:d8c26912607e26c2991826bbaf3cf2b9c8c3e17566598c193b492f058b40d3a4"}, {file = "pyarrow-12.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0d8b90efc290e99a81d06015f3a46601c259ecc81ffb6d8ce288c91bd1b868c9"}, {file = "pyarrow-12.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2466be046b81863be24db370dffd30a2e7894b4f9823fb60ef0a733c31ac6256"}, {file = "pyarrow-12.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:0e36425b1c1cbf5447718b3f1751bf86c58f2b3ad299f996cd9b1aa040967656"}, {file = "pyarrow-12.0.0.tar.gz", hash = "sha256:19c812d303610ab5d664b7b1de4051ae23565f9f94d04cbea9e50569746ae1ee"}, ] [package.dependencies] numpy = ">=1.16.6" [[package]] name = "pyasn1" version = "0.5.0" description = "Pure-Python implementation of ASN.1 types and DER/BER/CER codecs (X.208)" category = "main" optional = true python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" files = [ {file = "pyasn1-0.5.0-py2.py3-none-any.whl", hash = "sha256:87a2121042a1ac9358cabcaf1d07680ff97ee6404333bacca15f76aa8ad01a57"}, {file = "pyasn1-0.5.0.tar.gz", hash = "sha256:97b7290ca68e62a832558ec3976f15cbf911bf5d7c7039d8b861c2a0ece69fde"}, ] [[package]] name = "pyasn1-modules" version = "0.3.0" description = "A collection of ASN.1-based protocols modules" category = "main" optional = true python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" files = [ {file = "pyasn1_modules-0.3.0-py2.py3-none-any.whl", hash = "sha256:d3ccd6ed470d9ffbc716be08bd90efbd44d0734bc9303818f7336070984a162d"}, {file = "pyasn1_modules-0.3.0.tar.gz", hash = "sha256:5bd01446b736eb9d31512a30d46c1ac3395d676c6f3cafa4c03eb54b9925631c"}, ] [package.dependencies] pyasn1 = ">=0.4.6,<0.6.0" [[package]] name = "pycares" version = "4.3.0" description = "Python interface for c-ares" category = "main" optional = true python-versions = "*" files = [ {file = "pycares-4.3.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:19c9cdd3322d422931982939773e453e491dfc5c0b2e23d7266959315c7a0824"}, {file = "pycares-4.3.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:9e56e9cdf46a092970dc4b75bbabddea9f480be5eeadc3fcae3eb5c6807c4136"}, {file = "pycares-4.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1c75a6241c79b935048272cb77df498da64b8defc8c4b29fdf9870e43ba4cbb4"}, {file = "pycares-4.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:24d8654fac3742791b8bef59d1fbb3e19ae6a5c48876a6d98659f7c66ee546c4"}, {file = "pycares-4.3.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ebf50b049a245880f1aa16a6f72c4408e0a65b49ea1d3bf13383a44a2cabd2bf"}, {file = "pycares-4.3.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:84daf560962763c0359fd79c750ef480f0fda40c08b57765088dbe362e8dc452"}, {file = "pycares-4.3.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:978d10da7ee74b9979c494afa8b646411119ad0186a29c7f13c72bb4295630c6"}, {file = "pycares-4.3.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:326c5b9d7fe52eb3d243f5ead58d5c0011884226d961df8360a34618c38c7515"}, {file = "pycares-4.3.0-cp310-cp310-win32.whl", hash = "sha256:da7c7089ae617317d2cbe38baefd3821387b3bfef7b3ee5b797b871cb1257974"}, {file = "pycares-4.3.0-cp310-cp310-win_amd64.whl", hash = "sha256:7106dc683db30e1d851283b7b9df7a5ea4964d6bdd000d918d91d4b1f9bed329"}, {file = "pycares-4.3.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:4e7a24ecef0b1933f2a3fdbf328d1b529a76cda113f8364fa0742e5b3bd76566"}, {file = "pycares-4.3.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:e7abccc2aa4771c06994e4d9ed596453061e2b8846f887d9c98a64ccdaf4790a"}, {file = "pycares-4.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:531fed46c5ed798a914c3207be4ae7b297c4d09e4183d3cf8fd9ee59a55d5080"}, {file = "pycares-4.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c9335175af0c64a1e0ba67bdd349eb62d4eea0ad02c235ccdf0d535fd20f323"}, {file = "pycares-4.3.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c5f0e95535027d2dcd51e780410632b0d3ed7e9e5ceb25dc0fe937f2c2960079"}, {file = "pycares-4.3.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:3692179ce5fb96908ba342e1e5303608d0c976f0d5d4619fa9d3d6d9d5a9a1b4"}, {file = "pycares-4.3.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:5c4cb6cc7fe8e0606d30b60367f59fe26d1472e88555d61e202db70dea5c8edb"}, {file = "pycares-4.3.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:3215445396c74103e2054e6b349d9e85883ceda2006d0039fc2d58c9b11818a2"}, {file = "pycares-4.3.0-cp311-cp311-win32.whl", hash = "sha256:6a0c0c3a0adf490bba9dbb37dbd07ec81e4a6584f095036ac34f06a633710ffe"}, {file = "pycares-4.3.0-cp311-cp311-win_amd64.whl", hash = "sha256:995cb37cc39bd40ca87bb16555a0f7724f3be30d9f9059a4caab2fde45b1b903"}, {file = "pycares-4.3.0-cp36-cp36m-win32.whl", hash = "sha256:4c9187be72449c975c11daa1d94d7ddcc494f8a4c37a6c18f977cd7024a531d9"}, {file = "pycares-4.3.0-cp36-cp36m-win_amd64.whl", hash = "sha256:d7405ba10a2903a58b8b0faedcb54994c9ee002ad01963587fabf93e7e479783"}, {file = "pycares-4.3.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:40aaa12081495f879f11f4cfc95edfec1ea14711188563102f9e33fe98728fac"}, {file = "pycares-4.3.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4972cac24b66c5997f3a3e2cb608e408066d80103d443e36d626a88a287b9ae7"}, {file = "pycares-4.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:35886dba7aa5b73affca8729aeb5a1f5e94d3d9a764adb1b7e75bafca44eeca5"}, {file = "pycares-4.3.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5cea6e1f3be016f155d60f27f16c1074d58b4d6e123228fdbc3326d076016af8"}, {file = "pycares-4.3.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:3a9fd2665b053afb39226ac6f8137a60910ca7729358456df2fb94866f4297de"}, {file = "pycares-4.3.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:e8e9195f869120e44e0aa0a6098bb5c19947f4753054365891f592e6f9eab3ef"}, {file = "pycares-4.3.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:674486ecf2afb25ee219171b07cdaba481a1aaa2dabb155779c7be9ded03eaa9"}, {file = "pycares-4.3.0-cp37-cp37m-win32.whl", hash = "sha256:1b6cd3161851499b6894d1e23bfd633e7b775472f5af35ae35409c4a47a2d45e"}, {file = "pycares-4.3.0-cp37-cp37m-win_amd64.whl", hash = "sha256:710120c97b9afdba443564350c3f5f72fd9aae74d95b73dc062ca8ac3d7f36d7"}, {file = "pycares-4.3.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:9103649bd29d84bc6bcfaf09def9c0592bbc766018fad19d76d09989608b915d"}, {file = "pycares-4.3.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:c072dbaf73cb5434279578dc35322867d8d5df053e14fdcdcc589994ba4804ae"}, {file = "pycares-4.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:008531733f9c7a976b59c7760a3672b191159fd69ae76c01ca051f20b5e44164"}, {file = "pycares-4.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2aae02d97d77dcff840ab55f86cb8b99bf644acbca17e1edb7048408b9782088"}, {file = "pycares-4.3.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:257953ae6d400a934fd9193aeb20990ac84a78648bdf5978e998bd007a4045cd"}, {file = "pycares-4.3.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:c28d481efae26936ec08cb6beea305f4b145503b152cf2c4dc68cc4ad9644f0e"}, {file = "pycares-4.3.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:976249b39037dbfb709ccf7e1c40d2785905a0065536385d501b94570cfed96d"}, {file = "pycares-4.3.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:98568c30cfab6b327d94ae1acdf85bbba4cffd415980804985d34ca07e6f4791"}, {file = "pycares-4.3.0-cp38-cp38-win32.whl", hash = "sha256:a2f3c4f49f43162f7e684419d9834c2c8ec165e54cb8dc47aa9dc0c2132701c0"}, {file = "pycares-4.3.0-cp38-cp38-win_amd64.whl", hash = "sha256:1730ef93e33e4682fbbf0e7fb19df2ed9822779d17de8ea6e20d5b0d71c1d2be"}, {file = "pycares-4.3.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:5a26b3f1684557025da26ce65d076619890c82b95e38cc7284ce51c3539a1ce8"}, {file = "pycares-4.3.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:86112cce01655b9f63c5e53b74722084e88e784a7a8ad138d373440337c591c9"}, {file = "pycares-4.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c01465a191dc78e923884bb45cd63c7e012623e520cf7ed67e542413ee334804"}, {file = "pycares-4.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c9fd5d6012f3ee8c8038cbfe16e988bbd17b2f21eea86650874bf63757ee6161"}, {file = "pycares-4.3.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aa36b8ea91eae20b5c7205f3e6654423f066af24a1df02b274770a96cbcafaa7"}, {file = "pycares-4.3.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:61019151130557c1788cae52e4f2f388a7520c9d92574f3a0d61c974c6740db0"}, {file = "pycares-4.3.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:231962bb46274c52632469a1e686fab065dbd106dbef586de4f7fb101e297587"}, {file = "pycares-4.3.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6c979512fa51c7ccef5204fe10ed4e5c44c2bce5f335fe98a3e423f1672bd7d4"}, {file = "pycares-4.3.0-cp39-cp39-win32.whl", hash = "sha256:655cf0df862ce3847a60e1a106dafa2ba2c14e6636bac49e874347acdc7312dc"}, {file = "pycares-4.3.0-cp39-cp39-win_amd64.whl", hash = "sha256:36f2251ad0f99a5ce13df45c94c3161d9734c9e9fa2b9b4cc163b853ca170dc5"}, {file = "pycares-4.3.0.tar.gz", hash = "sha256:c542696f6dac978e9d99192384745a65f80a7d9450501151e4a7563e06010d45"}, ] [package.dependencies] cffi = ">=1.5.0" [package.extras] idna = ["idna (>=2.1)"] [[package]] name = "pycparser" version = "2.21" description = "C parser in Python" category = "main" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ {file = "pycparser-2.21-py2.py3-none-any.whl", hash = "sha256:8ee45429555515e1f6b185e78100aea234072576aa43ab53aefcae078162fca9"}, {file = "pycparser-2.21.tar.gz", hash = "sha256:e644fdec12f7872f86c58ff790da456218b10f863970249516d60a5eaca77206"}, ] [[package]] name = "pydantic" version = "1.10.7" description = "Data validation and settings management using python type hints" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "pydantic-1.10.7-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e79e999e539872e903767c417c897e729e015872040e56b96e67968c3b918b2d"}, {file = "pydantic-1.10.7-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:01aea3a42c13f2602b7ecbbea484a98169fb568ebd9e247593ea05f01b884b2e"}, {file = "pydantic-1.10.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:516f1ed9bc2406a0467dd777afc636c7091d71f214d5e413d64fef45174cfc7a"}, {file = "pydantic-1.10.7-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ae150a63564929c675d7f2303008d88426a0add46efd76c3fc797cd71cb1b46f"}, {file = "pydantic-1.10.7-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:ecbbc51391248116c0a055899e6c3e7ffbb11fb5e2a4cd6f2d0b93272118a209"}, {file = "pydantic-1.10.7-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:f4a2b50e2b03d5776e7f21af73e2070e1b5c0d0df255a827e7c632962f8315af"}, {file = "pydantic-1.10.7-cp310-cp310-win_amd64.whl", hash = "sha256:a7cd2251439988b413cb0a985c4ed82b6c6aac382dbaff53ae03c4b23a70e80a"}, {file = "pydantic-1.10.7-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:68792151e174a4aa9e9fc1b4e653e65a354a2fa0fed169f7b3d09902ad2cb6f1"}, {file = "pydantic-1.10.7-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:dfe2507b8ef209da71b6fb5f4e597b50c5a34b78d7e857c4f8f3115effaef5fe"}, {file = "pydantic-1.10.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10a86d8c8db68086f1e30a530f7d5f83eb0685e632e411dbbcf2d5c0150e8dcd"}, {file = "pydantic-1.10.7-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d75ae19d2a3dbb146b6f324031c24f8a3f52ff5d6a9f22f0683694b3afcb16fb"}, {file = "pydantic-1.10.7-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:464855a7ff7f2cc2cf537ecc421291b9132aa9c79aef44e917ad711b4a93163b"}, {file = "pydantic-1.10.7-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:193924c563fae6ddcb71d3f06fa153866423ac1b793a47936656e806b64e24ca"}, {file = "pydantic-1.10.7-cp311-cp311-win_amd64.whl", hash = "sha256:b4a849d10f211389502059c33332e91327bc154acc1845f375a99eca3afa802d"}, {file = "pydantic-1.10.7-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:cc1dde4e50a5fc1336ee0581c1612215bc64ed6d28d2c7c6f25d2fe3e7c3e918"}, {file = "pydantic-1.10.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e0cfe895a504c060e5d36b287ee696e2fdad02d89e0d895f83037245218a87fe"}, {file = "pydantic-1.10.7-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:670bb4683ad1e48b0ecb06f0cfe2178dcf74ff27921cdf1606e527d2617a81ee"}, {file = "pydantic-1.10.7-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:950ce33857841f9a337ce07ddf46bc84e1c4946d2a3bba18f8280297157a3fd1"}, {file = "pydantic-1.10.7-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:c15582f9055fbc1bfe50266a19771bbbef33dd28c45e78afbe1996fd70966c2a"}, {file = "pydantic-1.10.7-cp37-cp37m-win_amd64.whl", hash = "sha256:82dffb306dd20bd5268fd6379bc4bfe75242a9c2b79fec58e1041fbbdb1f7914"}, {file = "pydantic-1.10.7-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:8c7f51861d73e8b9ddcb9916ae7ac39fb52761d9ea0df41128e81e2ba42886cd"}, {file = "pydantic-1.10.7-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6434b49c0b03a51021ade5c4daa7d70c98f7a79e95b551201fff682fc1661245"}, {file = "pydantic-1.10.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:64d34ab766fa056df49013bb6e79921a0265204c071984e75a09cbceacbbdd5d"}, {file = "pydantic-1.10.7-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:701daea9ffe9d26f97b52f1d157e0d4121644f0fcf80b443248434958fd03dc3"}, {file = "pydantic-1.10.7-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:cf135c46099ff3f919d2150a948ce94b9ce545598ef2c6c7bf55dca98a304b52"}, {file = "pydantic-1.10.7-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:b0f85904f73161817b80781cc150f8b906d521fa11e3cdabae19a581c3606209"}, {file = "pydantic-1.10.7-cp38-cp38-win_amd64.whl", hash = "sha256:9f6f0fd68d73257ad6685419478c5aece46432f4bdd8d32c7345f1986496171e"}, {file = "pydantic-1.10.7-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c230c0d8a322276d6e7b88c3f7ce885f9ed16e0910354510e0bae84d54991143"}, {file = "pydantic-1.10.7-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:976cae77ba6a49d80f461fd8bba183ff7ba79f44aa5cfa82f1346b5626542f8e"}, {file = "pydantic-1.10.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7d45fc99d64af9aaf7e308054a0067fdcd87ffe974f2442312372dfa66e1001d"}, {file = "pydantic-1.10.7-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d2a5ebb48958754d386195fe9e9c5106f11275867051bf017a8059410e9abf1f"}, {file = "pydantic-1.10.7-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:abfb7d4a7cd5cc4e1d1887c43503a7c5dd608eadf8bc615413fc498d3e4645cd"}, {file = "pydantic-1.10.7-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:80b1fab4deb08a8292d15e43a6edccdffa5377a36a4597bb545b93e79c5ff0a5"}, {file = "pydantic-1.10.7-cp39-cp39-win_amd64.whl", hash = "sha256:d71e69699498b020ea198468e2480a2f1e7433e32a3a99760058c6520e2bea7e"}, {file = "pydantic-1.10.7-py3-none-any.whl", hash = "sha256:0cd181f1d0b1d00e2b705f1bf1ac7799a2d938cce3376b8007df62b29be3c2c6"}, {file = "pydantic-1.10.7.tar.gz", hash = "sha256:cfc83c0678b6ba51b0532bea66860617c4cd4251ecf76e9846fa5a9f3454e97e"}, ] [package.dependencies] typing-extensions = ">=4.2.0" [package.extras] dotenv = ["python-dotenv (>=0.10.4)"] email = ["email-validator (>=1.0.3)"] [[package]] name = "pydata-sphinx-theme" version = "0.8.1" description = "Bootstrap-based Sphinx theme from the PyData community" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "pydata_sphinx_theme-0.8.1-py3-none-any.whl", hash = "sha256:af2c99cb0b43d95247b1563860942ba75d7f1596360594fce510caaf8c4fcc16"}, {file = "pydata_sphinx_theme-0.8.1.tar.gz", hash = "sha256:96165702253917ece13dd895e23b96ee6dce422dcc144d560806067852fe1fed"}, ] [package.dependencies] beautifulsoup4 = "*" docutils = "!=0.17.0" packaging = "*" sphinx = ">=3.5.4,<5" [package.extras] coverage = ["codecov", "pydata-sphinx-theme[test]", "pytest-cov"] dev = ["nox", "pre-commit", "pydata-sphinx-theme[coverage]", "pyyaml"] doc = ["jupyter_sphinx", "myst-parser", "numpy", "numpydoc", "pandas", "plotly", "pytest", "pytest-regressions", "sphinx-sitemap", "sphinxext-rediraffe", "xarray"] test = ["pydata-sphinx-theme[doc]", "pytest"] [[package]] name = "pyee" version = "9.0.4" description = "A port of node.js's EventEmitter to python." category = "dev" optional = false python-versions = "*" files = [ {file = "pyee-9.0.4-py2.py3-none-any.whl", hash = "sha256:9f066570130c554e9cc12de5a9d86f57c7ee47fece163bbdaa3e9c933cfbdfa5"}, {file = "pyee-9.0.4.tar.gz", hash = "sha256:2770c4928abc721f46b705e6a72b0c59480c4a69c9a83ca0b00bb994f1ea4b32"}, ] [package.dependencies] typing-extensions = "*" [[package]] name = "pygments" version = "2.15.1" description = "Pygments is a syntax highlighting package written in Python." category = "main" optional = false python-versions = ">=3.7" files = [ {file = "Pygments-2.15.1-py3-none-any.whl", hash = "sha256:db2db3deb4b4179f399a09054b023b6a586b76499d36965813c71aa8ed7b5fd1"}, {file = "Pygments-2.15.1.tar.gz", hash = "sha256:8ace4d3c1dd481894b2005f560ead0f9f19ee64fe983366be1a21e171d12775c"}, ] [package.extras] plugins = ["importlib-metadata"] [[package]] name = "pyjwt" version = "2.7.0" description = "JSON Web Token implementation in Python" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "PyJWT-2.7.0-py3-none-any.whl", hash = "sha256:ba2b425b15ad5ef12f200dc67dd56af4e26de2331f965c5439994dad075876e1"}, {file = "PyJWT-2.7.0.tar.gz", hash = "sha256:bd6ca4a3c4285c1a2d4349e5a035fdf8fb94e04ccd0fcbe6ba289dae9cc3e074"}, ] [package.dependencies] cryptography = {version = ">=3.4.0", optional = true, markers = "extra == \"crypto\""} [package.extras] crypto = ["cryptography (>=3.4.0)"] dev = ["coverage[toml] (==5.0.4)", "cryptography (>=3.4.0)", "pre-commit", "pytest (>=6.0.0,<7.0.0)", "sphinx (>=4.5.0,<5.0.0)", "sphinx-rtd-theme", "zope.interface"] docs = ["sphinx (>=4.5.0,<5.0.0)", "sphinx-rtd-theme", "zope.interface"] tests = ["coverage[toml] (==5.0.4)", "pytest (>=6.0.0,<7.0.0)"] [[package]] name = "pylance" version = "0.4.12" description = "python wrapper for lance-rs" category = "main" optional = true python-versions = ">=3.8" files = [ {file = "pylance-0.4.12-cp38-abi3-macosx_10_15_x86_64.whl", hash = "sha256:2b86fb8dccc03094c0db37bef0d91bda60e8eb0d1eddf245c6971450c8d8a53f"}, {file = "pylance-0.4.12-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:0bc82914b13204187d673b5f3d45f93219c38a0e9d0542ba251074f639669789"}, {file = "pylance-0.4.12-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5a4bcce77f99ecd4cbebbadb01e58d5d8138d40eb56bdcdbc3b20b0475e7a472"}, ] [package.dependencies] duckdb = ">=0.7" numpy = "*" pandas = ">=1.5" pyarrow = ">=10" [package.extras] tests = ["duckdb", "polars[pandas,pyarrow]", "pytest"] [[package]] name = "pymongo" version = "4.3.3" description = "Python driver for MongoDB <http://www.mongodb.org>" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "pymongo-4.3.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:74731c9e423c93cbe791f60c27030b6af6a948cef67deca079da6cd1bb583a8e"}, {file = "pymongo-4.3.3-cp310-cp310-manylinux1_i686.whl", hash = "sha256:66413c50d510e5bcb0afc79880d1693a2185bcea003600ed898ada31338c004e"}, {file = "pymongo-4.3.3-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:9b87b23570565a6ddaa9244d87811c2ee9cffb02a753c8a2da9c077283d85845"}, {file = "pymongo-4.3.3-cp310-cp310-manylinux2014_i686.whl", hash = "sha256:695939036a320f4329ccf1627edefbbb67cc7892b8222d297b0dd2313742bfee"}, {file = "pymongo-4.3.3-cp310-cp310-manylinux2014_ppc64le.whl", hash = "sha256:ffcc8394123ea8d43fff8e5d000095fe7741ce3f8988366c5c919c4f5eb179d3"}, {file = "pymongo-4.3.3-cp310-cp310-manylinux2014_s390x.whl", hash = "sha256:943f208840777f34312c103a2d1caab02d780c4e9be26b3714acf6c4715ba7e1"}, {file = "pymongo-4.3.3-cp310-cp310-manylinux2014_x86_64.whl", hash = "sha256:01f7cbe88d22440b6594c955e37312d932fd632ffed1a86d0c361503ca82cc9d"}, {file = "pymongo-4.3.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cdb87309de97c63cb9a69132e1cb16be470e58cffdfbad68fdd1dc292b22a840"}, {file = "pymongo-4.3.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d86c35d94b5499689354ccbc48438a79f449481ee6300f3e905748edceed78e7"}, {file = "pymongo-4.3.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a966d5304b7d90c45c404914e06bbf02c5bf7e99685c6c12f0047ef2aa837142"}, {file = "pymongo-4.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:be1d2ce7e269215c3ee9a215e296b7a744aff4f39233486d2c4d77f5f0c561a6"}, {file = "pymongo-4.3.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:55b6163dac53ef1e5d834297810c178050bd0548a4136cd4e0f56402185916ca"}, {file = "pymongo-4.3.3-cp310-cp310-win32.whl", hash = "sha256:dc0cff74cd36d7e1edba91baa09622c35a8a57025f2f2b7a41e3f83b1db73186"}, {file = "pymongo-4.3.3-cp310-cp310-win_amd64.whl", hash = "sha256:cafa52873ae12baa512a8721afc20de67a36886baae6a5f394ddef0ce9391f91"}, {file = "pymongo-4.3.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:599d3f6fbef31933b96e2d906b0f169b3371ff79ea6aaf6ecd76c947a3508a3d"}, {file = "pymongo-4.3.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c0640b4e9d008e13956b004d1971a23377b3d45491f87082161c92efb1e6c0d6"}, {file = "pymongo-4.3.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:341221e2f2866a5960e6f8610f4cbac0bb13097f3b1a289aa55aba984fc0d969"}, {file = "pymongo-4.3.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e7fac06a539daef4fcf5d8288d0d21b412f9b750454cd5a3cf90484665db442a"}, {file = "pymongo-4.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3a51901066696c4af38c6c63a1f0aeffd5e282367ff475de8c191ec9609b56d"}, {file = "pymongo-4.3.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f3055510fdfdb1775bc8baa359783022f70bb553f2d46e153c094dfcb08578ff"}, {file = "pymongo-4.3.3-cp311-cp311-win32.whl", hash = "sha256:524d78673518dcd352a91541ecd2839c65af92dc883321c2109ef6e5cd22ef23"}, {file = "pymongo-4.3.3-cp311-cp311-win_amd64.whl", hash = "sha256:b8a03af1ce79b902a43f5f694c4ca8d92c2a4195db0966f08f266549e2fc49bc"}, {file = "pymongo-4.3.3-cp37-cp37m-macosx_10_6_intel.whl", hash = "sha256:39b03045c71f761aee96a12ebfbc2f4be89e724ff6f5e31c2574c1a0e2add8bd"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:6fcfbf435eebf8a1765c6d1f46821740ebe9f54f815a05c8fc30d789ef43cb12"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:7d43ac9c7eeda5100fb0a7152fab7099c9cf9e5abd3bb36928eb98c7d7a339c6"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:3b93043b14ba7eb08c57afca19751658ece1cfa2f0b7b1fb5c7a41452fbb8482"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux2014_i686.whl", hash = "sha256:c09956606c08c4a7c6178a04ba2dd9388fcc5db32002ade9c9bc865ab156ab6d"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux2014_ppc64le.whl", hash = "sha256:b0cfe925610f2fd59555bb7fc37bd739e4b197d33f2a8b2fae7b9c0c6640318c"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux2014_s390x.whl", hash = "sha256:4d00b91c77ceb064c9b0459f0d6ea5bfdbc53ea9e17cf75731e151ef25a830c7"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux2014_x86_64.whl", hash = "sha256:c6258a3663780ae47ba73d43eb63c79c40ffddfb764e09b56df33be2f9479837"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c29e758f0e734e1e90357ae01ec9c6daf19ff60a051192fe110d8fb25c62600e"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:12f3621a46cdc7a9ba8080422262398a91762a581d27e0647746588d3f995c88"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:47f7aa217b25833cd6f0e72b0d224be55393c2692b4f5e0561cb3beeb10296e9"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c2fdc855149efe7cdcc2a01ca02bfa24761c640203ea94df467f3baf19078be"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5effd87c7d363890259eac16c56a4e8da307286012c076223997f8cc4a8c435b"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6dd1cf2995fdbd64fc0802313e8323f5fa18994d51af059b5b8862b73b5e53f0"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:bb869707d8e30645ed6766e44098600ca6cdf7989c22a3ea2b7966bb1d98d4b2"}, {file = "pymongo-4.3.3-cp37-cp37m-win32.whl", hash = "sha256:49210feb0be8051a64d71691f0acbfbedc33e149f0a5d6e271fddf6a12493fed"}, {file = "pymongo-4.3.3-cp37-cp37m-win_amd64.whl", hash = "sha256:54c377893f2cbbffe39abcff5ff2e917b082c364521fa079305f6f064e1a24a9"}, {file = "pymongo-4.3.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:c184ec5be465c0319440734491e1aa4709b5f3ba75fdfc9dbbc2ae715a7f6829"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux1_i686.whl", hash = "sha256:dca34367a4e77fcab0693e603a959878eaf2351585e7d752cac544bc6b2dee46"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:cd6a4afb20fb3c26a7bfd4611a0bbb24d93cbd746f5eb881f114b5e38fd55501"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:0c466710871d0026c190fc4141e810cf9d9affbf4935e1d273fbdc7d7cda6143"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux2014_i686.whl", hash = "sha256:d07d06dba5b5f7d80f9cc45501456e440f759fe79f9895922ed486237ac378a8"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux2014_ppc64le.whl", hash = "sha256:711bc52cb98e7892c03e9b669bebd89c0a890a90dbc6d5bb2c47f30239bac6e9"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux2014_s390x.whl", hash = "sha256:34b040e095e1671df0c095ec0b04fc4ebb19c4c160f87c2b55c079b16b1a6b00"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux2014_x86_64.whl", hash = "sha256:4ed00f96e147f40b565fe7530d1da0b0f3ab803d5dd5b683834500fa5d195ec4"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ef888f48eb9203ee1e04b9fb27429017b290fb916f1e7826c2f7808c88798394"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:316498b642c00401370b2156b5233b256f9b33799e0a8d9d0b8a7da217a20fca"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fa7e202feb683dad74f00dea066690448d0cfa310f8a277db06ec8eb466601b5"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:52896e22115c97f1c829db32aa2760b0d61839cfe08b168c2b1d82f31dbc5f55"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7c051fe37c96b9878f37fa58906cb53ecd13dcb7341d3a85f1e2e2f6b10782d9"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5134d33286c045393c7beb51be29754647cec5ebc051cf82799c5ce9820a2ca2"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:a9c2885b4a8e6e39db5662d8b02ca6dcec796a45e48c2de12552841f061692ba"}, {file = "pymongo-4.3.3-cp38-cp38-win32.whl", hash = "sha256:a6cd6f1db75eb07332bd3710f58f5fce4967eadbf751bad653842750a61bda62"}, {file = "pymongo-4.3.3-cp38-cp38-win_amd64.whl", hash = "sha256:d5571b6978750601f783cea07fb6b666837010ca57e5cefa389c1d456f6222e2"}, {file = "pymongo-4.3.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:81d1a7303bd02ca1c5be4aacd4db73593f573ba8e0c543c04c6da6275fd7a47e"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux1_i686.whl", hash = "sha256:016c412118e1c23fef3a1eada4f83ae6e8844fd91986b2e066fc1b0013cdd9ae"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:8fd6e191b92a10310f5a6cfe10d6f839d79d192fb02480bda325286bd1c7b385"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:e2961b05f9c04a53da8bfc72f1910b6aec7205fcf3ac9c036d24619979bbee4b"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux2014_i686.whl", hash = "sha256:b38a96b3eed8edc515b38257f03216f382c4389d022a8834667e2bc63c0c0c31"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux2014_ppc64le.whl", hash = "sha256:c1a70c51da9fa95bd75c167edb2eb3f3c4d27bc4ddd29e588f21649d014ec0b7"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux2014_s390x.whl", hash = "sha256:8a06a0c02f5606330e8f2e2f3b7949877ca7e4024fa2bff5a4506bec66c49ec7"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux2014_x86_64.whl", hash = "sha256:6c2216d8b6a6d019c6f4b1ad55f890e5e77eb089309ffc05b6911c09349e7474"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eac0a143ef4f28f49670bf89cb15847eb80b375d55eba401ca2f777cd425f338"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:08fc250b5552ee97ceeae0f52d8b04f360291285fc7437f13daa516ce38fdbc6"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:704d939656e21b073bfcddd7228b29e0e8a93dd27b54240eaafc0b9a631629a6"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1074f1a6f23e28b983c96142f2d45be03ec55d93035b471c26889a7ad2365db3"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7b16250238de8dafca225647608dddc7bbb5dce3dd53b4d8e63c1cc287394c2f"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7761cacb8745093062695b11574effea69db636c2fd0a9269a1f0183712927b4"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:fd7bb378d82b88387dc10227cfd964f6273eb083e05299e9b97cbe075da12d11"}, {file = "pymongo-4.3.3-cp39-cp39-win32.whl", hash = "sha256:dc24d245026a72d9b4953729d31813edd4bd4e5c13622d96e27c284942d33f24"}, {file = "pymongo-4.3.3-cp39-cp39-win_amd64.whl", hash = "sha256:fc28e8d85d392a06434e9a934908d97e2cf453d69488d2bcd0bfb881497fd975"}, {file = "pymongo-4.3.3.tar.gz", hash = "sha256:34e95ffb0a68bffbc3b437f2d1f25fc916fef3df5cdeed0992da5f42fae9b807"}, ] [package.dependencies] dnspython = ">=1.16.0,<3.0.0" [package.extras] aws = ["pymongo-auth-aws (<2.0.0)"] encryption = ["pymongo-auth-aws (<2.0.0)", "pymongocrypt (>=1.3.0,<2.0.0)"] gssapi = ["pykerberos"] ocsp = ["certifi", "pyopenssl (>=17.2.0)", "requests (<3.0.0)", "service-identity (>=18.1.0)"] snappy = ["python-snappy"] zstd = ["zstandard"] [[package]] name = "pymupdf" version = "1.22.3" description = "Python bindings for the PDF toolkit and renderer MuPDF" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "PyMuPDF-1.22.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0aff7ba35eb2cc285efea87500dd5ee0aaf94f4bb23a79187f0a74101aba7964"}, {file = "PyMuPDF-1.22.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:13e90a5301990dafc5bba6bfa32aafca1f35809497c274c9d4af4f4bac2d8870"}, {file = "PyMuPDF-1.22.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:201c7aecf9530c3a5aa33cd3d6b68e36492ff9ac48cb270d8f18e66654744419"}, {file = "PyMuPDF-1.22.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dbffc6cabb0cb20033870bde954bbed1436cf9fce33a14682e283bc893767250"}, {file = "PyMuPDF-1.22.3-cp310-cp310-win32.whl", hash = "sha256:e344632215882b49fd2e28ffb848f55b1b34db6b5389917e4865b4d779cbdb4a"}, {file = "PyMuPDF-1.22.3-cp310-cp310-win_amd64.whl", hash = "sha256:9d9bccfb29cbe3962a858c200376d54e7ba64d6f64c0b972ed5b68ff20157b06"}, {file = "PyMuPDF-1.22.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:01daa4e3c2c1b93d357ba0d747d713ad40e0123b9bdca2395bf166f62dd8f703"}, {file = "PyMuPDF-1.22.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:46c7fab408ae4d55c4181f95a76bc4f365f5ead3291f67274d6fe90f1b90c479"}, {file = "PyMuPDF-1.22.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a58af441ce454f33f75a4c93a5f76e4659f2c7c849036180f24ab4b84d9e512f"}, {file = "PyMuPDF-1.22.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6eddb0975ddd0bcf39812616b5675c26d740f83b12a39c3b5c4425f02c3da754"}, {file = "PyMuPDF-1.22.3-cp311-cp311-win32.whl", hash = "sha256:ed4a624ffc9bebe5c67fc80e16798300d404089585bcdac14448034bd38c5072"}, {file = "PyMuPDF-1.22.3-cp311-cp311-win_amd64.whl", hash = "sha256:4d2422dffdb4f1c2c8128e6d151f4de5e722388df276ac165572ad5290ad228a"}, {file = "PyMuPDF-1.22.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:48ece127e202470209dc63ad8fa85f3e19ce302f5af02d38c7fc0b5798b9bfa6"}, {file = "PyMuPDF-1.22.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f00097e8d2bc46dacdb776aeb810b1c760949f6353abdf6d12e8aefdc95dd35"}, {file = "PyMuPDF-1.22.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5932564a713bd7d576418070c3dd926cb5800edb4411f48813f7694af7386d3e"}, {file = "PyMuPDF-1.22.3-cp37-cp37m-win32.whl", hash = "sha256:d4f38ecb9518ba2dc12f5f35f33c64ec5466faf20b833f4ac21a2a4190ffef93"}, {file = "PyMuPDF-1.22.3-cp37-cp37m-win_amd64.whl", hash = "sha256:90950b328603a83b26c2eb2af0cf5498582fbbab84e86074bbb0ae44d745e2a3"}, {file = "PyMuPDF-1.22.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0a2040351a1279fafa1db82e5af50a785eb01dc4e1adb3c98e0abfd6e0a4995f"}, {file = "PyMuPDF-1.22.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a67f2b12120ce9fe5c3f7cb192643134af2c4e28773a2cd5d56cbe1cae66d1b9"}, {file = "PyMuPDF-1.22.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4e0904c9bffdfbb527f4fe293986d74477780f0c98f59fa5b42a95e3e441e1f4"}, {file = "PyMuPDF-1.22.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9aaf3352d9c443ad7622e70b0ff9124079b09c16a1a1aa3f3dde9ba0e19f32a2"}, {file = "PyMuPDF-1.22.3-cp38-cp38-win32.whl", hash = "sha256:4c037d5752efd562ac72e74295dfcc8d8dd406c0f6849054b29d2cbc32237ae0"}, {file = "PyMuPDF-1.22.3-cp38-cp38-win_amd64.whl", hash = "sha256:be0803be2709285f17c932ee11d4b7f6d11d3e74e1888094e6310c55e9543673"}, {file = "PyMuPDF-1.22.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:fa934c1a02f1f3bb04e447b95ef5b19d03cb2575fee76d23cb7a6d0c526444e2"}, {file = "PyMuPDF-1.22.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:932747941ed4973410244376ba77693253e4387e8e09cf2458bc9133348fc16e"}, {file = "PyMuPDF-1.22.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d4ea7b016c4561004b48143b8879e1d888e5ba3a1440e6558ea9a47f0d2e6f65"}, {file = "PyMuPDF-1.22.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf275e5dbf332554f98b469899e5a0928b91cb574a5319aeecf1b7e8075cf4b7"}, {file = "PyMuPDF-1.22.3-cp39-cp39-win32.whl", hash = "sha256:07d171255964f5a382e280a95a3148c08fc4ec20bf7907e040cf423cf29afe30"}, {file = "PyMuPDF-1.22.3-cp39-cp39-win_amd64.whl", hash = "sha256:60db199553fc9c88cb9f2afba35f9cd54c042e7a6ea2b151ddcc542e6e75ac61"}, {file = "PyMuPDF-1.22.3.tar.gz", hash = "sha256:5ecd928e96e63092571020973aa145b57b75707f3a3df97c742e563112615891"}, ] [[package]] name = "pyowm" version = "3.3.0" description = "A Python wrapper around OpenWeatherMap web APIs" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "pyowm-3.3.0-py3-none-any.whl", hash = "sha256:86463108e7613171531ba306040b43c972b3fc0b0acf73b12c50910cdd2107ab"}, {file = "pyowm-3.3.0.tar.gz", hash = "sha256:8196f77c91eac680676ed5ee484aae8a165408055e3e2b28025cbf60b8681e03"}, ] [package.dependencies] geojson = ">=2.3.0,<3" PySocks = ">=1.7.1,<2" requests = [ {version = ">=2.20.0,<3"}, {version = "*", extras = ["socks"]}, ] [[package]] name = "pyparsing" version = "3.0.9" description = "pyparsing module - Classes and methods to define and execute parsing grammars" category = "main" optional = true python-versions = ">=3.6.8" files = [ {file = "pyparsing-3.0.9-py3-none-any.whl", hash = "sha256:5026bae9a10eeaefb61dab2f09052b9f4307d44aee4eda64b309723d8d206bbc"}, {file = "pyparsing-3.0.9.tar.gz", hash = "sha256:2b020ecf7d21b687f219b71ecad3631f644a47f01403fa1d1036b0c6416d70fb"}, ] [package.extras] diagrams = ["jinja2", "railroad-diagrams"] [[package]] name = "pypdf" version = "3.8.1" description = "A pure-python PDF library capable of splitting, merging, cropping, and transforming PDF files" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "pypdf-3.8.1-py3-none-any.whl", hash = "sha256:0c34620e4bbceaf9632b6b7a8ec6d4a4d5b0cdee6e39bdb86dc91a8c44cb0f19"}, {file = "pypdf-3.8.1.tar.gz", hash = "sha256:761ad6dc33abb78d358b4ae42206c5f185798f8b537be9b8fdecd9ee834a894d"}, ] [package.dependencies] typing_extensions = {version = ">=3.10.0.0", markers = "python_version < \"3.10\""} [package.extras] crypto = ["PyCryptodome"] dev = ["black", "flit", "pip-tools", "pre-commit (<2.18.0)", "pytest-cov", "wheel"] docs = ["myst_parser", "sphinx", "sphinx_rtd_theme"] full = ["Pillow", "PyCryptodome"] image = ["Pillow"] [[package]] name = "pypdfium2" version = "4.11.0" description = "Python bindings to PDFium" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "pypdfium2-4.11.0-py3-none-macosx_10_13_x86_64.whl", hash = "sha256:00ef3de857d805b88ae2bca2476b009851da6bd983ea570abb143f05acc34d31"}, {file = "pypdfium2-4.11.0-py3-none-macosx_11_0_arm64.whl", hash = "sha256:3997e7fa2d06ed44569ca8e7b53da8324cd9c667e3d74e9bbb789816b4e4ea38"}, {file = "pypdfium2-4.11.0-py3-none-manylinux_2_26_aarch64.whl", hash = "sha256:35a024794a37e424de83dfb11f346223fdd3ff0fb57a51a4aa3c5cba633bc251"}, {file = "pypdfium2-4.11.0-py3-none-manylinux_2_26_armv7l.whl", hash = "sha256:4d5b4465ddf6cf90454ece306969045c4c3de197089b8d42fbfed9e5d090e00e"}, {file = "pypdfium2-4.11.0-py3-none-manylinux_2_26_i686.whl", hash = "sha256:57e877858ba0b3c823128f1edb7c14a6e1acdb0b2337d9f074a42f654e96cd4f"}, {file = "pypdfium2-4.11.0-py3-none-manylinux_2_26_x86_64.whl", hash = "sha256:067afde1c3e2cc244f566183eb1c9b0a84f7b628ab457ca5c84135fdfc6ff15c"}, {file = "pypdfium2-4.11.0-py3-none-musllinux_1_2_i686.whl", hash = "sha256:40faac6dcece1c0f7e83246eacd4d2a33c15fd48f1ec9e6c2c3802ec38e887d7"}, {file = "pypdfium2-4.11.0-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:9ee58064ba1d287dba8cae91f24078b4ac133fbab99dfc1caeab0c4d80d02014"}, {file = "pypdfium2-4.11.0-py3-none-win32.whl", hash = "sha256:32796faad63dbba82011788a92f1037d6d31caa53a0123671e1bae42f9351455"}, {file = "pypdfium2-4.11.0-py3-none-win_amd64.whl", hash = "sha256:e8e584504ce8e620bee7b762857792f6265002c2e763ce9dc0d5bf1d6682274d"}, {file = "pypdfium2-4.11.0-py3-none-win_arm64.whl", hash = "sha256:0b41e0e198c605a2c5fea266be70b95ca4905734d3eefc0928a05e6cb3f98722"}, {file = "pypdfium2-4.11.0.tar.gz", hash = "sha256:f1d3bd0841f0c2e9db417075896dafc5906bbd7c0ccdc2b6e2b3f44d61d49f46"}, ] [[package]] name = "pyphen" version = "0.14.0" description = "Pure Python module to hyphenate text" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "pyphen-0.14.0-py3-none-any.whl", hash = "sha256:414c9355958ca3c6a3ff233f65678c245b8ecb56418fb291e2b93499d61cd510"}, {file = "pyphen-0.14.0.tar.gz", hash = "sha256:596c8b3be1c1a70411ba5f6517d9ccfe3083c758ae2b94a45f2707346d8e66fa"}, ] [package.extras] doc = ["sphinx", "sphinx_rtd_theme"] test = ["flake8", "isort", "pytest"] [[package]] name = "pyrsistent" version = "0.19.3" description = "Persistent/Functional/Immutable data structures" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "pyrsistent-0.19.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:20460ac0ea439a3e79caa1dbd560344b64ed75e85d8703943e0b66c2a6150e4a"}, {file = "pyrsistent-0.19.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4c18264cb84b5e68e7085a43723f9e4c1fd1d935ab240ce02c0324a8e01ccb64"}, {file = "pyrsistent-0.19.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4b774f9288dda8d425adb6544e5903f1fb6c273ab3128a355c6b972b7df39dcf"}, {file = "pyrsistent-0.19.3-cp310-cp310-win32.whl", hash = "sha256:5a474fb80f5e0d6c9394d8db0fc19e90fa540b82ee52dba7d246a7791712f74a"}, {file = "pyrsistent-0.19.3-cp310-cp310-win_amd64.whl", hash = "sha256:49c32f216c17148695ca0e02a5c521e28a4ee6c5089f97e34fe24163113722da"}, {file = "pyrsistent-0.19.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f0774bf48631f3a20471dd7c5989657b639fd2d285b861237ea9e82c36a415a9"}, {file = "pyrsistent-0.19.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ab2204234c0ecd8b9368dbd6a53e83c3d4f3cab10ecaf6d0e772f456c442393"}, {file = "pyrsistent-0.19.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e42296a09e83028b3476f7073fcb69ffebac0e66dbbfd1bd847d61f74db30f19"}, {file = "pyrsistent-0.19.3-cp311-cp311-win32.whl", hash = "sha256:64220c429e42a7150f4bfd280f6f4bb2850f95956bde93c6fda1b70507af6ef3"}, {file = "pyrsistent-0.19.3-cp311-cp311-win_amd64.whl", hash = "sha256:016ad1afadf318eb7911baa24b049909f7f3bb2c5b1ed7b6a8f21db21ea3faa8"}, {file = "pyrsistent-0.19.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c4db1bd596fefd66b296a3d5d943c94f4fac5bcd13e99bffe2ba6a759d959a28"}, {file = "pyrsistent-0.19.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aeda827381f5e5d65cced3024126529ddc4289d944f75e090572c77ceb19adbf"}, {file = "pyrsistent-0.19.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:42ac0b2f44607eb92ae88609eda931a4f0dfa03038c44c772e07f43e738bcac9"}, {file = "pyrsistent-0.19.3-cp37-cp37m-win32.whl", hash = "sha256:e8f2b814a3dc6225964fa03d8582c6e0b6650d68a232df41e3cc1b66a5d2f8d1"}, {file = "pyrsistent-0.19.3-cp37-cp37m-win_amd64.whl", hash = "sha256:c9bb60a40a0ab9aba40a59f68214eed5a29c6274c83b2cc206a359c4a89fa41b"}, {file = "pyrsistent-0.19.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:a2471f3f8693101975b1ff85ffd19bb7ca7dd7c38f8a81701f67d6b4f97b87d8"}, {file = "pyrsistent-0.19.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cc5d149f31706762c1f8bda2e8c4f8fead6e80312e3692619a75301d3dbb819a"}, {file = "pyrsistent-0.19.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3311cb4237a341aa52ab8448c27e3a9931e2ee09561ad150ba94e4cfd3fc888c"}, {file = "pyrsistent-0.19.3-cp38-cp38-win32.whl", hash = "sha256:f0e7c4b2f77593871e918be000b96c8107da48444d57005b6a6bc61fb4331b2c"}, {file = "pyrsistent-0.19.3-cp38-cp38-win_amd64.whl", hash = "sha256:c147257a92374fde8498491f53ffa8f4822cd70c0d85037e09028e478cababb7"}, {file = "pyrsistent-0.19.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:b735e538f74ec31378f5a1e3886a26d2ca6351106b4dfde376a26fc32a044edc"}, {file = "pyrsistent-0.19.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:99abb85579e2165bd8522f0c0138864da97847875ecbd45f3e7e2af569bfc6f2"}, {file = "pyrsistent-0.19.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3a8cb235fa6d3fd7aae6a4f1429bbb1fec1577d978098da1252f0489937786f3"}, {file = "pyrsistent-0.19.3-cp39-cp39-win32.whl", hash = "sha256:c74bed51f9b41c48366a286395c67f4e894374306b197e62810e0fdaf2364da2"}, {file = "pyrsistent-0.19.3-cp39-cp39-win_amd64.whl", hash = "sha256:878433581fc23e906d947a6814336eee031a00e6defba224234169ae3d3d6a98"}, {file = "pyrsistent-0.19.3-py3-none-any.whl", hash = "sha256:ccf0d6bd208f8111179f0c26fdf84ed7c3891982f2edaeae7422575f47e66b64"}, {file = "pyrsistent-0.19.3.tar.gz", hash = "sha256:1a2994773706bbb4995c31a97bc94f1418314923bd1048c6d964837040376440"}, ] [[package]] name = "pysocks" version = "1.7.1" description = "A Python SOCKS client module. See https://github.com/Anorov/PySocks for more information." category = "main" optional = true python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ {file = "PySocks-1.7.1-py27-none-any.whl", hash = "sha256:08e69f092cc6dbe92a0fdd16eeb9b9ffbc13cadfe5ca4c7bd92ffb078b293299"}, {file = "PySocks-1.7.1-py3-none-any.whl", hash = "sha256:2725bd0a9925919b9b51739eea5f9e2bae91e83288108a9ad338b2e3a4435ee5"}, {file = "PySocks-1.7.1.tar.gz", hash = "sha256:3f8804571ebe159c380ac6de37643bb4685970655d3bba243530d6558b799aa0"}, ] [[package]] name = "pyspark" version = "3.4.0" description = "Apache Spark Python API" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "pyspark-3.4.0.tar.gz", hash = "sha256:167a23e11854adb37f8602de6fcc3a4f96fd5f1e323b9bb83325f38408c5aafd"}, ] [package.dependencies] py4j = "0.10.9.7" [package.extras] connect = ["googleapis-common-protos (>=1.56.4)", "grpcio (>=1.48.1)", "grpcio-status (>=1.48.1)", "numpy (>=1.15)", "pandas (>=1.0.5)", "pyarrow (>=1.0.0)"] ml = ["numpy (>=1.15)"] mllib = ["numpy (>=1.15)"] pandas-on-spark = ["numpy (>=1.15)", "pandas (>=1.0.5)", "pyarrow (>=1.0.0)"] sql = ["numpy (>=1.15)", "pandas (>=1.0.5)", "pyarrow (>=1.0.0)"] [[package]] name = "pytesseract" version = "0.3.10" description = "Python-tesseract is a python wrapper for Google's Tesseract-OCR" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "pytesseract-0.3.10-py3-none-any.whl", hash = "sha256:8f22cc98f765bf13517ead0c70effedb46c153540d25783e04014f28b55a5fc6"}, {file = "pytesseract-0.3.10.tar.gz", hash = "sha256:f1c3a8b0f07fd01a1085d451f5b8315be6eec1d5577a6796d46dc7a62bd4120f"}, ] [package.dependencies] packaging = ">=21.3" Pillow = ">=8.0.0" [[package]] name = "pytest" version = "7.3.1" description = "pytest: simple powerful testing with Python" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "pytest-7.3.1-py3-none-any.whl", hash = "sha256:3799fa815351fea3a5e96ac7e503a96fa51cc9942c3753cda7651b93c1cfa362"}, {file = "pytest-7.3.1.tar.gz", hash = "sha256:434afafd78b1d78ed0addf160ad2b77a30d35d4bdf8af234fe621919d9ed15e3"}, ] [package.dependencies] colorama = {version = "*", markers = "sys_platform == \"win32\""} exceptiongroup = {version = ">=1.0.0rc8", markers = "python_version < \"3.11\""} iniconfig = "*" packaging = "*" pluggy = ">=0.12,<2.0" tomli = {version = ">=1.0.0", markers = "python_version < \"3.11\""} [package.extras] testing = ["argcomplete", "attrs (>=19.2.0)", "hypothesis (>=3.56)", "mock", "nose", "pygments (>=2.7.2)", "requests", "xmlschema"] [[package]] name = "pytest-asyncio" version = "0.20.3" description = "Pytest support for asyncio" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "pytest-asyncio-0.20.3.tar.gz", hash = "sha256:83cbf01169ce3e8eb71c6c278ccb0574d1a7a3bb8eaaf5e50e0ad342afb33b36"}, {file = "pytest_asyncio-0.20.3-py3-none-any.whl", hash = "sha256:f129998b209d04fcc65c96fc85c11e5316738358909a8399e93be553d7656442"}, ] [package.dependencies] pytest = ">=6.1.0" [package.extras] docs = ["sphinx (>=5.3)", "sphinx-rtd-theme (>=1.0)"] testing = ["coverage (>=6.2)", "flaky (>=3.5.0)", "hypothesis (>=5.7.1)", "mypy (>=0.931)", "pytest-trio (>=0.7.0)"] [[package]] name = "pytest-cov" version = "4.0.0" description = "Pytest plugin for measuring coverage." category = "dev" optional = false python-versions = ">=3.6" files = [ {file = "pytest-cov-4.0.0.tar.gz", hash = "sha256:996b79efde6433cdbd0088872dbc5fb3ed7fe1578b68cdbba634f14bb8dd0470"}, {file = "pytest_cov-4.0.0-py3-none-any.whl", hash = "sha256:2feb1b751d66a8bd934e5edfa2e961d11309dc37b73b0eabe73b5945fee20f6b"}, ] [package.dependencies] coverage = {version = ">=5.2.1", extras = ["toml"]} pytest = ">=4.6" [package.extras] testing = ["fields", "hunter", "process-tests", "pytest-xdist", "six", "virtualenv"] [[package]] name = "pytest-dotenv" version = "0.5.2" description = "A py.test plugin that parses environment files before running tests" category = "dev" optional = false python-versions = "*" files = [ {file = "pytest-dotenv-0.5.2.tar.gz", hash = "sha256:2dc6c3ac6d8764c71c6d2804e902d0ff810fa19692e95fe138aefc9b1aa73732"}, {file = "pytest_dotenv-0.5.2-py3-none-any.whl", hash = "sha256:40a2cece120a213898afaa5407673f6bd924b1fa7eafce6bda0e8abffe2f710f"}, ] [package.dependencies] pytest = ">=5.0.0" python-dotenv = ">=0.9.1" [[package]] name = "pytest-mock" version = "3.10.0" description = "Thin-wrapper around the mock package for easier use with pytest" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "pytest-mock-3.10.0.tar.gz", hash = "sha256:fbbdb085ef7c252a326fd8cdcac0aa3b1333d8811f131bdcc701002e1be7ed4f"}, {file = "pytest_mock-3.10.0-py3-none-any.whl", hash = "sha256:f4c973eeae0282963eb293eb173ce91b091a79c1334455acfac9ddee8a1c784b"}, ] [package.dependencies] pytest = ">=5.0" [package.extras] dev = ["pre-commit", "pytest-asyncio", "tox"] [[package]] name = "pytest-socket" version = "0.6.0" description = "Pytest Plugin to disable socket calls during tests" category = "dev" optional = false python-versions = ">=3.7,<4.0" files = [ {file = "pytest_socket-0.6.0-py3-none-any.whl", hash = "sha256:cca72f134ff01e0023c402e78d31b32e68da3efdf3493bf7788f8eba86a6824c"}, {file = "pytest_socket-0.6.0.tar.gz", hash = "sha256:363c1d67228315d4fc7912f1aabfd570de29d0e3db6217d61db5728adacd7138"}, ] [package.dependencies] pytest = ">=3.6.3" [[package]] name = "pytest-vcr" version = "1.0.2" description = "Plugin for managing VCR.py cassettes" category = "dev" optional = false python-versions = "*" files = [ {file = "pytest-vcr-1.0.2.tar.gz", hash = "sha256:23ee51b75abbcc43d926272773aae4f39f93aceb75ed56852d0bf618f92e1896"}, {file = "pytest_vcr-1.0.2-py2.py3-none-any.whl", hash = "sha256:2f316e0539399bea0296e8b8401145c62b6f85e9066af7e57b6151481b0d6d9c"}, ] [package.dependencies] pytest = ">=3.6.0" vcrpy = "*" [[package]] name = "pytest-watcher" version = "0.2.6" description = "Continiously runs pytest on changes in *.py files" category = "dev" optional = false python-versions = ">=3.7.0,<4.0.0" files = [ {file = "pytest-watcher-0.2.6.tar.gz", hash = "sha256:351dfb3477366030ff275bfbfc9f29bee35cd07f16a3355b38bf92766886bae4"}, {file = "pytest_watcher-0.2.6-py3-none-any.whl", hash = "sha256:0a507159d051c9461790363e0f9b2827c1d82ad2ae8966319598695e485b1dd5"}, ] [package.dependencies] watchdog = ">=2.0.0" [[package]] name = "python-dateutil" version = "2.8.2" description = "Extensions to the standard Python datetime module" category = "main" optional = false python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" files = [ {file = "python-dateutil-2.8.2.tar.gz", hash = "sha256:0123cacc1627ae19ddf3c27a5de5bd67ee4586fbdd6440d9748f8abb483d3e86"}, {file = "python_dateutil-2.8.2-py2.py3-none-any.whl", hash = "sha256:961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9"}, ] [package.dependencies] six = ">=1.5" [[package]] name = "python-dotenv" version = "1.0.0" description = "Read key-value pairs from a .env file and set them as environment variables" category = "main" optional = false python-versions = ">=3.8" files = [ {file = "python-dotenv-1.0.0.tar.gz", hash = "sha256:a8df96034aae6d2d50a4ebe8216326c61c3eb64836776504fcca410e5937a3ba"}, {file = "python_dotenv-1.0.0-py3-none-any.whl", hash = "sha256:f5971a9226b701070a4bf2c38c89e5a3f0d64de8debda981d1db98583009122a"}, ] [package.extras] cli = ["click (>=5.0)"] [[package]] name = "python-jose" version = "3.3.0" description = "JOSE implementation in Python" category = "main" optional = true python-versions = "*" files = [ {file = "python-jose-3.3.0.tar.gz", hash = "sha256:55779b5e6ad599c6336191246e95eb2293a9ddebd555f796a65f838f07e5d78a"}, {file = "python_jose-3.3.0-py2.py3-none-any.whl", hash = "sha256:9b1376b023f8b298536eedd47ae1089bcdb848f1535ab30555cd92002d78923a"}, ] [package.dependencies] ecdsa = "!=0.15" pyasn1 = "*" rsa = "*" [package.extras] cryptography = ["cryptography (>=3.4.0)"] pycrypto = ["pyasn1", "pycrypto (>=2.6.0,<2.7.0)"] pycryptodome = ["pyasn1", "pycryptodome (>=3.3.1,<4.0.0)"] [[package]] name = "python-json-logger" version = "2.0.7" description = "A python library adding a json log formatter" category = "dev" optional = false python-versions = ">=3.6" files = [ {file = "python-json-logger-2.0.7.tar.gz", hash = "sha256:23e7ec02d34237c5aa1e29a070193a4ea87583bb4e7f8fd06d3de8264c4b2e1c"}, {file = "python_json_logger-2.0.7-py3-none-any.whl", hash = "sha256:f380b826a991ebbe3de4d897aeec42760035ac760345e57b812938dc8b35e2bd"}, ] [[package]] name = "python-magic" version = "0.4.27" description = "File type identification using libmagic" category = "dev" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" files = [ {file = "python-magic-0.4.27.tar.gz", hash = "sha256:c1ba14b08e4a5f5c31a302b7721239695b2f0f058d125bd5ce1ee36b9d9d3c3b"}, {file = "python_magic-0.4.27-py2.py3-none-any.whl", hash = "sha256:c212960ad306f700aa0d01e5d7a325d20548ff97eb9920dcd29513174f0294d3"}, ] [[package]] name = "python-magic-bin" version = "0.4.14" description = "File type identification using libmagic binary package" category = "dev" optional = false python-versions = "*" files = [ {file = "python_magic_bin-0.4.14-py2.py3-none-macosx_10_6_intel.whl", hash = "sha256:7b1743b3dbf16601d6eedf4e7c2c9a637901b0faaf24ad4df4d4527e7d8f66a4"}, {file = "python_magic_bin-0.4.14-py2.py3-none-win32.whl", hash = "sha256:34a788c03adde7608028203e2dbb208f1f62225ad91518787ae26d603ae68892"}, {file = "python_magic_bin-0.4.14-py2.py3-none-win_amd64.whl", hash = "sha256:90be6206ad31071a36065a2fc169c5afb5e0355cbe6030e87641c6c62edc2b69"}, ] [[package]] name = "python-multipart" version = "0.0.6" description = "A streaming multipart parser for Python" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "python_multipart-0.0.6-py3-none-any.whl", hash = "sha256:ee698bab5ef148b0a760751c261902cd096e57e10558e11aca17646b74ee1c18"}, {file = "python_multipart-0.0.6.tar.gz", hash = "sha256:e9925a80bb668529f1b67c7fdb0a5dacdd7cbfc6fb0bff3ea443fe22bdd62132"}, ] [package.extras] dev = ["atomicwrites (==1.2.1)", "attrs (==19.2.0)", "coverage (==6.5.0)", "hatch", "invoke (==1.7.3)", "more-itertools (==4.3.0)", "pbr (==4.3.0)", "pluggy (==1.0.0)", "py (==1.11.0)", "pytest (==7.2.0)", "pytest-cov (==4.0.0)", "pytest-timeout (==2.1.0)", "pyyaml (==5.1)"] [[package]] name = "pytz" version = "2023.3" description = "World timezone definitions, modern and historical" category = "main" optional = false python-versions = "*" files = [ {file = "pytz-2023.3-py2.py3-none-any.whl", hash = "sha256:a151b3abb88eda1d4e34a9814df37de2a80e301e68ba0fd856fb9b46bfbbbffb"}, {file = "pytz-2023.3.tar.gz", hash = "sha256:1d8ce29db189191fb55338ee6d0387d82ab59f3d00eac103412d64e0ebd0c588"}, ] [[package]] name = "pyvespa" version = "0.33.0" description = "Python API for vespa.ai" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "pyvespa-0.33.0-py3-none-any.whl", hash = "sha256:2681910b3ac5f0259a9e41e6e2649caba2801e836b4c295cc2e48ab25b09672c"}, {file = "pyvespa-0.33.0.tar.gz", hash = "sha256:be3da9022276555b6b25c40b6e846db6e9dbf617486001ba92235ccfab6c9353"}, ] [package.dependencies] aiohttp = "*" cryptography = "*" docker = "*" jinja2 = "*" pandas = "*" requests = "*" tenacity = "*" [package.extras] full = ["keras-tuner", "onnxruntime", "tensorflow", "tensorflow-ranking", "torch (<1.13)", "transformers"] ml = ["keras-tuner", "tensorflow", "tensorflow-ranking", "torch (<1.13)", "transformers"] [[package]] name = "pywin32" version = "306" description = "Python for Window Extensions" category = "main" optional = false python-versions = "*" files = [ {file = "pywin32-306-cp310-cp310-win32.whl", hash = "sha256:06d3420a5155ba65f0b72f2699b5bacf3109f36acbe8923765c22938a69dfc8d"}, {file = "pywin32-306-cp310-cp310-win_amd64.whl", hash = "sha256:84f4471dbca1887ea3803d8848a1616429ac94a4a8d05f4bc9c5dcfd42ca99c8"}, {file = "pywin32-306-cp311-cp311-win32.whl", hash = "sha256:e65028133d15b64d2ed8f06dd9fbc268352478d4f9289e69c190ecd6818b6407"}, {file = "pywin32-306-cp311-cp311-win_amd64.whl", hash = "sha256:a7639f51c184c0272e93f244eb24dafca9b1855707d94c192d4a0b4c01e1100e"}, {file = "pywin32-306-cp311-cp311-win_arm64.whl", hash = "sha256:70dba0c913d19f942a2db25217d9a1b726c278f483a919f1abfed79c9cf64d3a"}, {file = "pywin32-306-cp312-cp312-win32.whl", hash = "sha256:383229d515657f4e3ed1343da8be101000562bf514591ff383ae940cad65458b"}, {file = "pywin32-306-cp312-cp312-win_amd64.whl", hash = "sha256:37257794c1ad39ee9be652da0462dc2e394c8159dfd913a8a4e8eb6fd346da0e"}, {file = "pywin32-306-cp312-cp312-win_arm64.whl", hash = "sha256:5821ec52f6d321aa59e2db7e0a35b997de60c201943557d108af9d4ae1ec7040"}, {file = "pywin32-306-cp37-cp37m-win32.whl", hash = "sha256:1c73ea9a0d2283d889001998059f5eaaba3b6238f767c9cf2833b13e6a685f65"}, {file = "pywin32-306-cp37-cp37m-win_amd64.whl", hash = "sha256:72c5f621542d7bdd4fdb716227be0dd3f8565c11b280be6315b06ace35487d36"}, {file = "pywin32-306-cp38-cp38-win32.whl", hash = "sha256:e4c092e2589b5cf0d365849e73e02c391c1349958c5ac3e9d5ccb9a28e017b3a"}, {file = "pywin32-306-cp38-cp38-win_amd64.whl", hash = "sha256:e8ac1ae3601bee6ca9f7cb4b5363bf1c0badb935ef243c4733ff9a393b1690c0"}, {file = "pywin32-306-cp39-cp39-win32.whl", hash = "sha256:e25fd5b485b55ac9c057f67d94bc203f3f6595078d1fb3b458c9c28b7153a802"}, {file = "pywin32-306-cp39-cp39-win_amd64.whl", hash = "sha256:39b61c15272833b5c329a2989999dcae836b1eed650252ab1b7bfbe1d59f30f4"}, ] [[package]] name = "pywinpty" version = "2.0.10" description = "Pseudo terminal support for Windows from Python." category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "pywinpty-2.0.10-cp310-none-win_amd64.whl", hash = "sha256:4c7d06ad10f6e92bc850a467f26d98f4f30e73d2fe5926536308c6ae0566bc16"}, {file = "pywinpty-2.0.10-cp311-none-win_amd64.whl", hash = "sha256:7ffbd66310b83e42028fc9df7746118978d94fba8c1ebf15a7c1275fdd80b28a"}, {file = "pywinpty-2.0.10-cp37-none-win_amd64.whl", hash = "sha256:38cb924f2778b5751ef91a75febd114776b3af0ae411bc667be45dd84fc881d3"}, {file = "pywinpty-2.0.10-cp38-none-win_amd64.whl", hash = "sha256:902d79444b29ad1833b8d5c3c9aabdfd428f4f068504430df18074007c8c0de8"}, {file = "pywinpty-2.0.10-cp39-none-win_amd64.whl", hash = "sha256:3c46aef80dd50979aff93de199e4a00a8ee033ba7a03cadf0a91fed45f0c39d7"}, {file = "pywinpty-2.0.10.tar.gz", hash = "sha256:cdbb5694cf8c7242c2ecfaca35c545d31fa5d5814c3d67a4e628f803f680ebea"}, ] [[package]] name = "pyyaml" version = "6.0" description = "YAML parser and emitter for Python" category = "main" optional = false python-versions = ">=3.6" files = [ {file = "PyYAML-6.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d4db7c7aef085872ef65a8fd7d6d09a14ae91f691dec3e87ee5ee0539d516f53"}, {file = "PyYAML-6.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9df7ed3b3d2e0ecfe09e14741b857df43adb5a3ddadc919a2d94fbdf78fea53c"}, {file = "PyYAML-6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77f396e6ef4c73fdc33a9157446466f1cff553d979bd00ecb64385760c6babdc"}, {file = "PyYAML-6.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a80a78046a72361de73f8f395f1f1e49f956c6be882eed58505a15f3e430962b"}, {file = "PyYAML-6.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:f84fbc98b019fef2ee9a1cb3ce93e3187a6df0b2538a651bfb890254ba9f90b5"}, {file = "PyYAML-6.0-cp310-cp310-win32.whl", hash = "sha256:2cd5df3de48857ed0544b34e2d40e9fac445930039f3cfe4bcc592a1f836d513"}, {file = "PyYAML-6.0-cp310-cp310-win_amd64.whl", hash = "sha256:daf496c58a8c52083df09b80c860005194014c3698698d1a57cbcfa182142a3a"}, {file = "PyYAML-6.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:d4b0ba9512519522b118090257be113b9468d804b19d63c71dbcf4a48fa32358"}, {file = "PyYAML-6.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:81957921f441d50af23654aa6c5e5eaf9b06aba7f0a19c18a538dc7ef291c5a1"}, {file = "PyYAML-6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:afa17f5bc4d1b10afd4466fd3a44dc0e245382deca5b3c353d8b757f9e3ecb8d"}, {file = "PyYAML-6.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dbad0e9d368bb989f4515da330b88a057617d16b6a8245084f1b05400f24609f"}, {file = "PyYAML-6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:432557aa2c09802be39460360ddffd48156e30721f5e8d917f01d31694216782"}, {file = "PyYAML-6.0-cp311-cp311-win32.whl", hash = "sha256:bfaef573a63ba8923503d27530362590ff4f576c626d86a9fed95822a8255fd7"}, {file = "PyYAML-6.0-cp311-cp311-win_amd64.whl", hash = "sha256:01b45c0191e6d66c470b6cf1b9531a771a83c1c4208272ead47a3ae4f2f603bf"}, {file = "PyYAML-6.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:897b80890765f037df3403d22bab41627ca8811ae55e9a722fd0392850ec4d86"}, {file = "PyYAML-6.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50602afada6d6cbfad699b0c7bb50d5ccffa7e46a3d738092afddc1f9758427f"}, {file = "PyYAML-6.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:48c346915c114f5fdb3ead70312bd042a953a8ce5c7106d5bfb1a5254e47da92"}, {file = "PyYAML-6.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:98c4d36e99714e55cfbaaee6dd5badbc9a1ec339ebfc3b1f52e293aee6bb71a4"}, {file = "PyYAML-6.0-cp36-cp36m-win32.whl", hash = "sha256:0283c35a6a9fbf047493e3a0ce8d79ef5030852c51e9d911a27badfde0605293"}, {file = "PyYAML-6.0-cp36-cp36m-win_amd64.whl", hash = "sha256:07751360502caac1c067a8132d150cf3d61339af5691fe9e87803040dbc5db57"}, {file = "PyYAML-6.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:819b3830a1543db06c4d4b865e70ded25be52a2e0631ccd2f6a47a2822f2fd7c"}, {file = "PyYAML-6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:473f9edb243cb1935ab5a084eb238d842fb8f404ed2193a915d1784b5a6b5fc0"}, {file = "PyYAML-6.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0ce82d761c532fe4ec3f87fc45688bdd3a4c1dc5e0b4a19814b9009a29baefd4"}, {file = "PyYAML-6.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:231710d57adfd809ef5d34183b8ed1eeae3f76459c18fb4a0b373ad56bedcdd9"}, {file = "PyYAML-6.0-cp37-cp37m-win32.whl", hash = "sha256:c5687b8d43cf58545ade1fe3e055f70eac7a5a1a0bf42824308d868289a95737"}, {file = "PyYAML-6.0-cp37-cp37m-win_amd64.whl", hash = "sha256:d15a181d1ecd0d4270dc32edb46f7cb7733c7c508857278d3d378d14d606db2d"}, {file = "PyYAML-6.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0b4624f379dab24d3725ffde76559cff63d9ec94e1736b556dacdfebe5ab6d4b"}, {file = "PyYAML-6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:213c60cd50106436cc818accf5baa1aba61c0189ff610f64f4a3e8c6726218ba"}, {file = "PyYAML-6.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9fa600030013c4de8165339db93d182b9431076eb98eb40ee068700c9c813e34"}, {file = "PyYAML-6.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:277a0ef2981ca40581a47093e9e2d13b3f1fbbeffae064c1d21bfceba2030287"}, {file = "PyYAML-6.0-cp38-cp38-win32.whl", hash = "sha256:d4eccecf9adf6fbcc6861a38015c2a64f38b9d94838ac1810a9023a0609e1b78"}, {file = "PyYAML-6.0-cp38-cp38-win_amd64.whl", hash = "sha256:1e4747bc279b4f613a09eb64bba2ba602d8a6664c6ce6396a4d0cd413a50ce07"}, {file = "PyYAML-6.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:055d937d65826939cb044fc8c9b08889e8c743fdc6a32b33e2390f66013e449b"}, {file = "PyYAML-6.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e61ceaab6f49fb8bdfaa0f92c4b57bcfbea54c09277b1b4f7ac376bfb7a7c174"}, {file = "PyYAML-6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d67d839ede4ed1b28a4e8909735fc992a923cdb84e618544973d7dfc71540803"}, {file = "PyYAML-6.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cba8c411ef271aa037d7357a2bc8f9ee8b58b9965831d9e51baf703280dc73d3"}, {file = "PyYAML-6.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:40527857252b61eacd1d9af500c3337ba8deb8fc298940291486c465c8b46ec0"}, {file = "PyYAML-6.0-cp39-cp39-win32.whl", hash = "sha256:b5b9eccad747aabaaffbc6064800670f0c297e52c12754eb1d976c57e4f74dcb"}, {file = "PyYAML-6.0-cp39-cp39-win_amd64.whl", hash = "sha256:b3d267842bf12586ba6c734f89d1f5b871df0273157918b0ccefa29deb05c21c"}, {file = "PyYAML-6.0.tar.gz", hash = "sha256:68fb519c14306fec9720a2a5b45bc9f0c8d1b9c72adf45c37baedfcd949c35a2"}, ] [[package]] name = "pyzmq" version = "25.0.2" description = "Python bindings for 0MQ" category = "dev" optional = false python-versions = ">=3.6" files = [ {file = "pyzmq-25.0.2-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:ac178e666c097c8d3deb5097b58cd1316092fc43e8ef5b5fdb259b51da7e7315"}, {file = "pyzmq-25.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:659e62e1cbb063151c52f5b01a38e1df6b54feccfa3e2509d44c35ca6d7962ee"}, {file = "pyzmq-25.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8280ada89010735a12b968ec3ea9a468ac2e04fddcc1cede59cb7f5178783b9c"}, {file = "pyzmq-25.0.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a9b5eeb5278a8a636bb0abdd9ff5076bcbb836cd2302565df53ff1fa7d106d54"}, {file = "pyzmq-25.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a2e5fe42dfe6b73ca120b97ac9f34bfa8414feb15e00e37415dbd51cf227ef6"}, {file = "pyzmq-25.0.2-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:827bf60e749e78acb408a6c5af6688efbc9993e44ecc792b036ec2f4b4acf485"}, {file = "pyzmq-25.0.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:7b504ae43d37e282301da586529e2ded8b36d4ee2cd5e6db4386724ddeaa6bbc"}, {file = "pyzmq-25.0.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:cb1f69a0a2a2b1aae8412979dd6293cc6bcddd4439bf07e4758d864ddb112354"}, {file = "pyzmq-25.0.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:2b9c9cc965cdf28381e36da525dcb89fc1571d9c54800fdcd73e3f73a2fc29bd"}, {file = "pyzmq-25.0.2-cp310-cp310-win32.whl", hash = "sha256:24abbfdbb75ac5039205e72d6c75f10fc39d925f2df8ff21ebc74179488ebfca"}, {file = "pyzmq-25.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:6a821a506822fac55d2df2085a52530f68ab15ceed12d63539adc32bd4410f6e"}, {file = "pyzmq-25.0.2-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:9af0bb0277e92f41af35e991c242c9c71920169d6aa53ade7e444f338f4c8128"}, {file = "pyzmq-25.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:54a96cf77684a3a537b76acfa7237b1e79a8f8d14e7f00e0171a94b346c5293e"}, {file = "pyzmq-25.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88649b19ede1cab03b96b66c364cbbf17c953615cdbc844f7f6e5f14c5e5261c"}, {file = "pyzmq-25.0.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:715cff7644a80a7795953c11b067a75f16eb9fc695a5a53316891ebee7f3c9d5"}, {file = "pyzmq-25.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:312b3f0f066b4f1d17383aae509bacf833ccaf591184a1f3c7a1661c085063ae"}, {file = "pyzmq-25.0.2-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:d488c5c8630f7e782e800869f82744c3aca4aca62c63232e5d8c490d3d66956a"}, {file = "pyzmq-25.0.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:38d9f78d69bcdeec0c11e0feb3bc70f36f9b8c44fc06e5d06d91dc0a21b453c7"}, {file = "pyzmq-25.0.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:3059a6a534c910e1d5d068df42f60d434f79e6cc6285aa469b384fa921f78cf8"}, {file = "pyzmq-25.0.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:6526d097b75192f228c09d48420854d53dfbc7abbb41b0e26f363ccb26fbc177"}, {file = "pyzmq-25.0.2-cp311-cp311-win32.whl", hash = "sha256:5c5fbb229e40a89a2fe73d0c1181916f31e30f253cb2d6d91bea7927c2e18413"}, {file = "pyzmq-25.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:ed15e3a2c3c2398e6ae5ce86d6a31b452dfd6ad4cd5d312596b30929c4b6e182"}, {file = "pyzmq-25.0.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:032f5c8483c85bf9c9ca0593a11c7c749d734ce68d435e38c3f72e759b98b3c9"}, {file = "pyzmq-25.0.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:374b55516393bfd4d7a7daa6c3b36d6dd6a31ff9d2adad0838cd6a203125e714"}, {file = "pyzmq-25.0.2-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:08bfcc21b5997a9be4fefa405341320d8e7f19b4d684fb9c0580255c5bd6d695"}, {file = "pyzmq-25.0.2-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:1a843d26a8da1b752c74bc019c7b20e6791ee813cd6877449e6a1415589d22ff"}, {file = "pyzmq-25.0.2-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:b48616a09d7df9dbae2f45a0256eee7b794b903ddc6d8657a9948669b345f220"}, {file = "pyzmq-25.0.2-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:d4427b4a136e3b7f85516c76dd2e0756c22eec4026afb76ca1397152b0ca8145"}, {file = "pyzmq-25.0.2-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:26b0358e8933990502f4513c991c9935b6c06af01787a36d133b7c39b1df37fa"}, {file = "pyzmq-25.0.2-cp36-cp36m-win32.whl", hash = "sha256:c8fedc3ccd62c6b77dfe6f43802057a803a411ee96f14e946f4a76ec4ed0e117"}, {file = "pyzmq-25.0.2-cp36-cp36m-win_amd64.whl", hash = "sha256:2da6813b7995b6b1d1307329c73d3e3be2fd2d78e19acfc4eff2e27262732388"}, {file = "pyzmq-25.0.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:a35960c8b2f63e4ef67fd6731851030df68e4b617a6715dd11b4b10312d19fef"}, {file = "pyzmq-25.0.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eef2a0b880ab40aca5a878933376cb6c1ec483fba72f7f34e015c0f675c90b20"}, {file = "pyzmq-25.0.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:85762712b74c7bd18e340c3639d1bf2f23735a998d63f46bb6584d904b5e401d"}, {file = "pyzmq-25.0.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:64812f29d6eee565e129ca14b0c785744bfff679a4727137484101b34602d1a7"}, {file = "pyzmq-25.0.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:510d8e55b3a7cd13f8d3e9121edf0a8730b87d925d25298bace29a7e7bc82810"}, {file = "pyzmq-25.0.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:b164cc3c8acb3d102e311f2eb6f3c305865ecb377e56adc015cb51f721f1dda6"}, {file = "pyzmq-25.0.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:28fdb9224a258134784a9cf009b59265a9dde79582fb750d4e88a6bcbc6fa3dc"}, {file = "pyzmq-25.0.2-cp37-cp37m-win32.whl", hash = "sha256:dd771a440effa1c36d3523bc6ba4e54ff5d2e54b4adcc1e060d8f3ca3721d228"}, {file = "pyzmq-25.0.2-cp37-cp37m-win_amd64.whl", hash = "sha256:9bdc40efb679b9dcc39c06d25629e55581e4c4f7870a5e88db4f1c51ce25e20d"}, {file = "pyzmq-25.0.2-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:1f82906a2d8e4ee310f30487b165e7cc8ed09c009e4502da67178b03083c4ce0"}, {file = "pyzmq-25.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:21ec0bf4831988af43c8d66ba3ccd81af2c5e793e1bf6790eb2d50e27b3c570a"}, {file = "pyzmq-25.0.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:abbce982a17c88d2312ec2cf7673985d444f1beaac6e8189424e0a0e0448dbb3"}, {file = "pyzmq-25.0.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:9e1d2f2d86fc75ed7f8845a992c5f6f1ab5db99747fb0d78b5e4046d041164d2"}, {file = "pyzmq-25.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a2e92ff20ad5d13266bc999a29ed29a3b5b101c21fdf4b2cf420c09db9fb690e"}, {file = "pyzmq-25.0.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:edbbf06cc2719889470a8d2bf5072bb00f423e12de0eb9ffec946c2c9748e149"}, {file = "pyzmq-25.0.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:77942243ff4d14d90c11b2afd8ee6c039b45a0be4e53fb6fa7f5e4fd0b59da39"}, {file = "pyzmq-25.0.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:ab046e9cb902d1f62c9cc0eca055b1d11108bdc271caf7c2171487298f229b56"}, {file = "pyzmq-25.0.2-cp38-cp38-win32.whl", hash = "sha256:ad761cfbe477236802a7ab2c080d268c95e784fe30cafa7e055aacd1ca877eb0"}, {file = "pyzmq-25.0.2-cp38-cp38-win_amd64.whl", hash = "sha256:8560756318ec7c4c49d2c341012167e704b5a46d9034905853c3d1ade4f55bee"}, {file = "pyzmq-25.0.2-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:ab2c056ac503f25a63f6c8c6771373e2a711b98b304614151dfb552d3d6c81f6"}, {file = "pyzmq-25.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:cca8524b61c0eaaa3505382dc9b9a3bc8165f1d6c010fdd1452c224225a26689"}, {file = "pyzmq-25.0.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:cfb9f7eae02d3ac42fbedad30006b7407c984a0eb4189a1322241a20944d61e5"}, {file = "pyzmq-25.0.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:5eaeae038c68748082137d6896d5c4db7927e9349237ded08ee1bbd94f7361c9"}, {file = "pyzmq-25.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4a31992a8f8d51663ebf79df0df6a04ffb905063083d682d4380ab8d2c67257c"}, {file = "pyzmq-25.0.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:6a979e59d2184a0c8f2ede4b0810cbdd86b64d99d9cc8a023929e40dce7c86cc"}, {file = "pyzmq-25.0.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:1f124cb73f1aa6654d31b183810febc8505fd0c597afa127c4f40076be4574e0"}, {file = "pyzmq-25.0.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:65c19a63b4a83ae45d62178b70223adeee5f12f3032726b897431b6553aa25af"}, {file = "pyzmq-25.0.2-cp39-cp39-win32.whl", hash = "sha256:83d822e8687621bed87404afc1c03d83fa2ce39733d54c2fd52d8829edb8a7ff"}, {file = "pyzmq-25.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:24683285cc6b7bf18ad37d75b9db0e0fefe58404e7001f1d82bf9e721806daa7"}, {file = "pyzmq-25.0.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:4a4b4261eb8f9ed71f63b9eb0198dd7c934aa3b3972dac586d0ef502ba9ab08b"}, {file = "pyzmq-25.0.2-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:62ec8d979f56c0053a92b2b6a10ff54b9ec8a4f187db2b6ec31ee3dd6d3ca6e2"}, {file = "pyzmq-25.0.2-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:affec1470351178e892121b3414c8ef7803269f207bf9bef85f9a6dd11cde264"}, {file = "pyzmq-25.0.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ffc71111433bd6ec8607a37b9211f4ef42e3d3b271c6d76c813669834764b248"}, {file = "pyzmq-25.0.2-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:6fadc60970714d86eff27821f8fb01f8328dd36bebd496b0564a500fe4a9e354"}, {file = "pyzmq-25.0.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:269968f2a76c0513490aeb3ba0dc3c77b7c7a11daa894f9d1da88d4a0db09835"}, {file = "pyzmq-25.0.2-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:f7c8b8368e84381ae7c57f1f5283b029c888504aaf4949c32e6e6fb256ec9bf0"}, {file = "pyzmq-25.0.2-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:25e6873a70ad5aa31e4a7c41e5e8c709296edef4a92313e1cd5fc87bbd1874e2"}, {file = "pyzmq-25.0.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b733076ff46e7db5504c5e7284f04a9852c63214c74688bdb6135808531755a3"}, {file = "pyzmq-25.0.2-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:a6f6ae12478fdc26a6d5fdb21f806b08fa5403cd02fd312e4cb5f72df078f96f"}, {file = "pyzmq-25.0.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:67da1c213fbd208906ab3470cfff1ee0048838365135a9bddc7b40b11e6d6c89"}, {file = "pyzmq-25.0.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:531e36d9fcd66f18de27434a25b51d137eb546931033f392e85674c7a7cea853"}, {file = "pyzmq-25.0.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:34a6fddd159ff38aa9497b2e342a559f142ab365576284bc8f77cb3ead1f79c5"}, {file = "pyzmq-25.0.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b491998ef886662c1f3d49ea2198055a9a536ddf7430b051b21054f2a5831800"}, {file = "pyzmq-25.0.2-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:5d496815074e3e3d183fe2c7fcea2109ad67b74084c254481f87b64e04e9a471"}, {file = "pyzmq-25.0.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:56a94ab1d12af982b55ca96c6853db6ac85505e820d9458ac76364c1998972f4"}, {file = "pyzmq-25.0.2.tar.gz", hash = "sha256:6b8c1bbb70e868dc88801aa532cae6bd4e3b5233784692b786f17ad2962e5149"}, ] [package.dependencies] cffi = {version = "*", markers = "implementation_name == \"pypy\""} [[package]] name = "qdrant-client" version = "1.1.7" description = "Client library for the Qdrant vector search engine" category = "main" optional = true python-versions = ">=3.7,<3.12" files = [ {file = "qdrant_client-1.1.7-py3-none-any.whl", hash = "sha256:4f5d883660b8193840d8982919ab813a0470ace9a7ff46ee730f909841be5319"}, {file = "qdrant_client-1.1.7.tar.gz", hash = "sha256:686d86934bec2ebb70676fc0650c9a44a9e552e0149124ca5a22ee8533879deb"}, ] [package.dependencies] grpcio = ">=1.41.0" grpcio-tools = ">=1.41.0" httpx = {version = ">=0.14.0", extras = ["http2"]} numpy = {version = ">=1.21", markers = "python_version >= \"3.8\""} portalocker = ">=2.7.0,<3.0.0" pydantic = ">=1.8,<2.0" typing-extensions = ">=4.0.0,<5.0.0" urllib3 = ">=1.26.14,<2.0.0" [[package]] name = "qtconsole" version = "5.4.3" description = "Jupyter Qt console" category = "dev" optional = false python-versions = ">= 3.7" files = [ {file = "qtconsole-5.4.3-py3-none-any.whl", hash = "sha256:35fd6e87b1f6d1fd41801b07e69339f8982e76afd4fa8ef35595bc6036717189"}, {file = "qtconsole-5.4.3.tar.gz", hash = "sha256:5e4082a86a201796b2a5cfd4298352d22b158b51b57736531824715fc2a979dd"}, ] [package.dependencies] ipykernel = ">=4.1" ipython-genutils = "*" jupyter-client = ">=4.1" jupyter-core = "*" packaging = "*" pygments = "*" pyzmq = ">=17.1" qtpy = ">=2.0.1" traitlets = "<5.2.1 || >5.2.1,<5.2.2 || >5.2.2" [package.extras] doc = ["Sphinx (>=1.3)"] test = ["flaky", "pytest", "pytest-qt"] [[package]] name = "qtpy" version = "2.3.1" description = "Provides an abstraction layer on top of the various Qt bindings (PyQt5/6 and PySide2/6)." category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "QtPy-2.3.1-py3-none-any.whl", hash = "sha256:5193d20e0b16e4d9d3bc2c642d04d9f4e2c892590bd1b9c92bfe38a95d5a2e12"}, {file = "QtPy-2.3.1.tar.gz", hash = "sha256:a8c74982d6d172ce124d80cafd39653df78989683f760f2281ba91a6e7b9de8b"}, ] [package.dependencies] packaging = "*" [package.extras] test = ["pytest (>=6,!=7.0.0,!=7.0.1)", "pytest-cov (>=3.0.0)", "pytest-qt"] [[package]] name = "ratelimiter" version = "1.2.0.post0" description = "Simple python rate limiting object" category = "main" optional = true python-versions = "*" files = [ {file = "ratelimiter-1.2.0.post0-py3-none-any.whl", hash = "sha256:a52be07bc0bb0b3674b4b304550f10c769bbb00fead3072e035904474259809f"}, {file = "ratelimiter-1.2.0.post0.tar.gz", hash = "sha256:5c395dcabdbbde2e5178ef3f89b568a3066454a6ddc223b76473dac22f89b4f7"}, ] [package.extras] test = ["pytest (>=3.0)", "pytest-asyncio"] [[package]] name = "redis" version = "4.5.5" description = "Python client for Redis database and key-value store" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "redis-4.5.5-py3-none-any.whl", hash = "sha256:77929bc7f5dab9adf3acba2d3bb7d7658f1e0c2f1cafe7eb36434e751c471119"}, {file = "redis-4.5.5.tar.gz", hash = "sha256:dc87a0bdef6c8bfe1ef1e1c40be7034390c2ae02d92dcd0c7ca1729443899880"}, ] [package.dependencies] async-timeout = {version = ">=4.0.2", markers = "python_full_version <= \"3.11.2\""} [package.extras] hiredis = ["hiredis (>=1.0.0)"] ocsp = ["cryptography (>=36.0.1)", "pyopenssl (==20.0.1)", "requests (>=2.26.0)"] [[package]] name = "regex" version = "2023.5.5" description = "Alternative regular expression module, to replace re." category = "main" optional = false python-versions = ">=3.6" files = [ {file = "regex-2023.5.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:48c9ec56579d4ba1c88f42302194b8ae2350265cb60c64b7b9a88dcb7fbde309"}, {file = "regex-2023.5.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:02f4541550459c08fdd6f97aa4e24c6f1932eec780d58a2faa2068253df7d6ff"}, {file = "regex-2023.5.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:53e22e4460f0245b468ee645156a4f84d0fc35a12d9ba79bd7d79bdcd2f9629d"}, {file = "regex-2023.5.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4b870b6f632fc74941cadc2a0f3064ed8409e6f8ee226cdfd2a85ae50473aa94"}, {file = "regex-2023.5.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:171c52e320fe29260da550d81c6b99f6f8402450dc7777ef5ced2e848f3b6f8f"}, {file = "regex-2023.5.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aad5524c2aedaf9aa14ef1bc9327f8abd915699dea457d339bebbe2f0d218f86"}, {file = "regex-2023.5.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5a0f874ee8c0bc820e649c900243c6d1e6dc435b81da1492046716f14f1a2a96"}, {file = "regex-2023.5.5-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:e645c757183ee0e13f0bbe56508598e2d9cd42b8abc6c0599d53b0d0b8dd1479"}, {file = "regex-2023.5.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:a4c5da39bca4f7979eefcbb36efea04471cd68db2d38fcbb4ee2c6d440699833"}, {file = "regex-2023.5.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:5e3f4468b8c6fd2fd33c218bbd0a1559e6a6fcf185af8bb0cc43f3b5bfb7d636"}, {file = "regex-2023.5.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:59e4b729eae1a0919f9e4c0fc635fbcc9db59c74ad98d684f4877be3d2607dd6"}, {file = "regex-2023.5.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:ba73a14e9c8f9ac409863543cde3290dba39098fc261f717dc337ea72d3ebad2"}, {file = "regex-2023.5.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0bbd5dcb19603ab8d2781fac60114fb89aee8494f4505ae7ad141a3314abb1f9"}, {file = "regex-2023.5.5-cp310-cp310-win32.whl", hash = "sha256:40005cbd383438aecf715a7b47fe1e3dcbc889a36461ed416bdec07e0ef1db66"}, {file = "regex-2023.5.5-cp310-cp310-win_amd64.whl", hash = "sha256:59597cd6315d3439ed4b074febe84a439c33928dd34396941b4d377692eca810"}, {file = "regex-2023.5.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8f08276466fedb9e36e5193a96cb944928301152879ec20c2d723d1031cd4ddd"}, {file = "regex-2023.5.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:cd46f30e758629c3ee91713529cfbe107ac50d27110fdcc326a42ce2acf4dafc"}, {file = "regex-2023.5.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f2910502f718828cecc8beff004917dcf577fc5f8f5dd40ffb1ea7612124547b"}, {file = "regex-2023.5.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:445d6f4fc3bd9fc2bf0416164454f90acab8858cd5a041403d7a11e3356980e8"}, {file = "regex-2023.5.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:18196c16a584619c7c1d843497c069955d7629ad4a3fdee240eb347f4a2c9dbe"}, {file = "regex-2023.5.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:33d430a23b661629661f1fe8395be2004006bc792bb9fc7c53911d661b69dd7e"}, {file = "regex-2023.5.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:72a28979cc667e5f82ef433db009184e7ac277844eea0f7f4d254b789517941d"}, {file = "regex-2023.5.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f764e4dfafa288e2eba21231f455d209f4709436baeebb05bdecfb5d8ddc3d35"}, {file = "regex-2023.5.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:23d86ad2121b3c4fc78c58f95e19173790e22ac05996df69b84e12da5816cb17"}, {file = "regex-2023.5.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:690a17db524ee6ac4a27efc5406530dd90e7a7a69d8360235323d0e5dafb8f5b"}, {file = "regex-2023.5.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:1ecf3dcff71f0c0fe3e555201cbe749fa66aae8d18f80d2cc4de8e66df37390a"}, {file = "regex-2023.5.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:811040d7f3dd9c55eb0d8b00b5dcb7fd9ae1761c454f444fd9f37fe5ec57143a"}, {file = "regex-2023.5.5-cp311-cp311-win32.whl", hash = "sha256:c8c143a65ce3ca42e54d8e6fcaf465b6b672ed1c6c90022794a802fb93105d22"}, {file = "regex-2023.5.5-cp311-cp311-win_amd64.whl", hash = "sha256:586a011f77f8a2da4b888774174cd266e69e917a67ba072c7fc0e91878178a80"}, {file = "regex-2023.5.5-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:b6365703e8cf1644b82104cdd05270d1a9f043119a168d66c55684b1b557d008"}, {file = "regex-2023.5.5-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a56c18f21ac98209da9c54ae3ebb3b6f6e772038681d6cb43b8d53da3b09ee81"}, {file = "regex-2023.5.5-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b8b942d8b3ce765dbc3b1dad0a944712a89b5de290ce8f72681e22b3c55f3cc8"}, {file = "regex-2023.5.5-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:844671c9c1150fcdac46d43198364034b961bd520f2c4fdaabfc7c7d7138a2dd"}, {file = "regex-2023.5.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c2ce65bdeaf0a386bb3b533a28de3994e8e13b464ac15e1e67e4603dd88787fa"}, {file = "regex-2023.5.5-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fee0016cc35a8a91e8cc9312ab26a6fe638d484131a7afa79e1ce6165328a135"}, {file = "regex-2023.5.5-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:18f05d14f14a812fe9723f13afafefe6b74ca042d99f8884e62dbd34dcccf3e2"}, {file = "regex-2023.5.5-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:941b3f1b2392f0bcd6abf1bc7a322787d6db4e7457be6d1ffd3a693426a755f2"}, {file = "regex-2023.5.5-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:921473a93bcea4d00295799ab929522fc650e85c6b9f27ae1e6bb32a790ea7d3"}, {file = "regex-2023.5.5-cp36-cp36m-musllinux_1_1_ppc64le.whl", hash = "sha256:e2205a81f815b5bb17e46e74cc946c575b484e5f0acfcb805fb252d67e22938d"}, {file = "regex-2023.5.5-cp36-cp36m-musllinux_1_1_s390x.whl", hash = "sha256:385992d5ecf1a93cb85adff2f73e0402dd9ac29b71b7006d342cc920816e6f32"}, {file = "regex-2023.5.5-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:890a09cb0a62198bff92eda98b2b507305dd3abf974778bae3287f98b48907d3"}, {file = "regex-2023.5.5-cp36-cp36m-win32.whl", hash = "sha256:821a88b878b6589c5068f4cc2cfeb2c64e343a196bc9d7ac68ea8c2a776acd46"}, {file = "regex-2023.5.5-cp36-cp36m-win_amd64.whl", hash = "sha256:7918a1b83dd70dc04ab5ed24c78ae833ae8ea228cef84e08597c408286edc926"}, {file = "regex-2023.5.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:338994d3d4ca4cf12f09822e025731a5bdd3a37aaa571fa52659e85ca793fb67"}, {file = "regex-2023.5.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0a69cf0c00c4d4a929c6c7717fd918414cab0d6132a49a6d8fc3ded1988ed2ea"}, {file = "regex-2023.5.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8f5e06df94fff8c4c85f98c6487f6636848e1dc85ce17ab7d1931df4a081f657"}, {file = "regex-2023.5.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a8906669b03c63266b6a7693d1f487b02647beb12adea20f8840c1a087e2dfb5"}, {file = "regex-2023.5.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9fda3e50abad8d0f48df621cf75adc73c63f7243cbe0e3b2171392b445401550"}, {file = "regex-2023.5.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5ac2b7d341dc1bd102be849d6dd33b09701223a851105b2754339e390be0627a"}, {file = "regex-2023.5.5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:fb2b495dd94b02de8215625948132cc2ea360ae84fe6634cd19b6567709c8ae2"}, {file = "regex-2023.5.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:aa7d032c1d84726aa9edeb6accf079b4caa87151ca9fabacef31fa028186c66d"}, {file = "regex-2023.5.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:3d45864693351c15531f7e76f545ec35000d50848daa833cead96edae1665559"}, {file = "regex-2023.5.5-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:21e90a288e6ba4bf44c25c6a946cb9b0f00b73044d74308b5e0afd190338297c"}, {file = "regex-2023.5.5-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:10250a093741ec7bf74bcd2039e697f519b028518f605ff2aa7ac1e9c9f97423"}, {file = "regex-2023.5.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:6b8d0c153f07a953636b9cdb3011b733cadd4178123ef728ccc4d5969e67f3c2"}, {file = "regex-2023.5.5-cp37-cp37m-win32.whl", hash = "sha256:10374c84ee58c44575b667310d5bbfa89fb2e64e52349720a0182c0017512f6c"}, {file = "regex-2023.5.5-cp37-cp37m-win_amd64.whl", hash = "sha256:9b320677521aabf666cdd6e99baee4fb5ac3996349c3b7f8e7c4eee1c00dfe3a"}, {file = "regex-2023.5.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:afb1c70ec1e594a547f38ad6bf5e3d60304ce7539e677c1429eebab115bce56e"}, {file = "regex-2023.5.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:cf123225945aa58b3057d0fba67e8061c62d14cc8a4202630f8057df70189051"}, {file = "regex-2023.5.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a99757ad7fe5c8a2bb44829fc57ced11253e10f462233c1255fe03888e06bc19"}, {file = "regex-2023.5.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a623564d810e7a953ff1357f7799c14bc9beeab699aacc8b7ab7822da1e952b8"}, {file = "regex-2023.5.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ced02e3bd55e16e89c08bbc8128cff0884d96e7f7a5633d3dc366b6d95fcd1d6"}, {file = "regex-2023.5.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d1cbe6b5be3b9b698d8cc4ee4dee7e017ad655e83361cd0ea8e653d65e469468"}, {file = "regex-2023.5.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4a6e4b0e0531223f53bad07ddf733af490ba2b8367f62342b92b39b29f72735a"}, {file = "regex-2023.5.5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:2e9c4f778514a560a9c9aa8e5538bee759b55f6c1dcd35613ad72523fd9175b8"}, {file = "regex-2023.5.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:256f7f4c6ba145f62f7a441a003c94b8b1af78cee2cccacfc1e835f93bc09426"}, {file = "regex-2023.5.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:bd7b68fd2e79d59d86dcbc1ccd6e2ca09c505343445daaa4e07f43c8a9cc34da"}, {file = "regex-2023.5.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:4a5059bd585e9e9504ef9c07e4bc15b0a621ba20504388875d66b8b30a5c4d18"}, {file = "regex-2023.5.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:6893544e06bae009916a5658ce7207e26ed17385149f35a3125f5259951f1bbe"}, {file = "regex-2023.5.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:c64d5abe91a3dfe5ff250c6bb267ef00dbc01501518225b45a5f9def458f31fb"}, {file = "regex-2023.5.5-cp38-cp38-win32.whl", hash = "sha256:7923470d6056a9590247ff729c05e8e0f06bbd4efa6569c916943cb2d9b68b91"}, {file = "regex-2023.5.5-cp38-cp38-win_amd64.whl", hash = "sha256:4035d6945cb961c90c3e1c1ca2feb526175bcfed44dfb1cc77db4fdced060d3e"}, {file = "regex-2023.5.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:50fd2d9b36938d4dcecbd684777dd12a407add4f9f934f235c66372e630772b0"}, {file = "regex-2023.5.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:d19e57f888b00cd04fc38f5e18d0efbd91ccba2d45039453ab2236e6eec48d4d"}, {file = "regex-2023.5.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bd966475e963122ee0a7118ec9024388c602d12ac72860f6eea119a3928be053"}, {file = "regex-2023.5.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:db09e6c18977a33fea26fe67b7a842f706c67cf8bda1450974d0ae0dd63570df"}, {file = "regex-2023.5.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6164d4e2a82f9ebd7752a06bd6c504791bedc6418c0196cd0a23afb7f3e12b2d"}, {file = "regex-2023.5.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:84397d3f750d153ebd7f958efaa92b45fea170200e2df5e0e1fd4d85b7e3f58a"}, {file = "regex-2023.5.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9c3efee9bb53cbe7b285760c81f28ac80dc15fa48b5fe7e58b52752e642553f1"}, {file = "regex-2023.5.5-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:144b5b017646b5a9392a5554a1e5db0000ae637be4971c9747566775fc96e1b2"}, {file = "regex-2023.5.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:1189fbbb21e2c117fda5303653b61905aeeeea23de4a94d400b0487eb16d2d60"}, {file = "regex-2023.5.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f83fe9e10f9d0b6cf580564d4d23845b9d692e4c91bd8be57733958e4c602956"}, {file = "regex-2023.5.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:72aa4746993a28c841e05889f3f1b1e5d14df8d3daa157d6001a34c98102b393"}, {file = "regex-2023.5.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:de2f780c3242ea114dd01f84848655356af4dd561501896c751d7b885ea6d3a1"}, {file = "regex-2023.5.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:290fd35219486dfbc00b0de72f455ecdd63e59b528991a6aec9fdfc0ce85672e"}, {file = "regex-2023.5.5-cp39-cp39-win32.whl", hash = "sha256:732176f5427e72fa2325b05c58ad0b45af341c459910d766f814b0584ac1f9ac"}, {file = "regex-2023.5.5-cp39-cp39-win_amd64.whl", hash = "sha256:1307aa4daa1cbb23823d8238e1f61292fd07e4e5d8d38a6efff00b67a7cdb764"}, {file = "regex-2023.5.5.tar.gz", hash = "sha256:7d76a8a1fc9da08296462a18f16620ba73bcbf5909e42383b253ef34d9d5141e"}, ] [[package]] name = "requests" version = "2.28.2" description = "Python HTTP for Humans." category = "main" optional = false python-versions = ">=3.7, <4" files = [ {file = "requests-2.28.2-py3-none-any.whl", hash = "sha256:64299f4909223da747622c030b781c0d7811e359c37124b4bd368fb8c6518baa"}, {file = "requests-2.28.2.tar.gz", hash = "sha256:98b1b2782e3c6c4904938b84c0eb932721069dfdb9134313beff7c83c2df24bf"}, ] [package.dependencies] certifi = ">=2017.4.17" charset-normalizer = ">=2,<4" idna = ">=2.5,<4" PySocks = {version = ">=1.5.6,<1.5.7 || >1.5.7", optional = true, markers = "extra == \"socks\""} urllib3 = ">=1.21.1,<1.27" [package.extras] socks = ["PySocks (>=1.5.6,!=1.5.7)"] use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] [[package]] name = "requests-oauthlib" version = "1.3.1" description = "OAuthlib authentication support for Requests." category = "main" optional = true python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ {file = "requests-oauthlib-1.3.1.tar.gz", hash = "sha256:75beac4a47881eeb94d5ea5d6ad31ef88856affe2332b9aafb52c6452ccf0d7a"}, {file = "requests_oauthlib-1.3.1-py2.py3-none-any.whl", hash = "sha256:2577c501a2fb8d05a304c09d090d6e47c306fef15809d102b327cf8364bddab5"}, ] [package.dependencies] oauthlib = ">=3.0.0" requests = ">=2.0.0" [package.extras] rsa = ["oauthlib[signedtoken] (>=3.0.0)"] [[package]] name = "requests-toolbelt" version = "1.0.0" description = "A utility belt for advanced users of python-requests" category = "main" optional = true python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ {file = "requests-toolbelt-1.0.0.tar.gz", hash = "sha256:7681a0a3d047012b5bdc0ee37d7f8f07ebe76ab08caeccfc3921ce23c88d5bc6"}, {file = "requests_toolbelt-1.0.0-py2.py3-none-any.whl", hash = "sha256:cccfdd665f0a24fcf4726e690f65639d272bb0637b9b92dfd91a5568ccf6bd06"}, ] [package.dependencies] requests = ">=2.0.1,<3.0.0" [[package]] name = "responses" version = "0.22.0" description = "A utility library for mocking out the `requests` Python library." category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "responses-0.22.0-py3-none-any.whl", hash = "sha256:dcf294d204d14c436fddcc74caefdbc5764795a40ff4e6a7740ed8ddbf3294be"}, {file = "responses-0.22.0.tar.gz", hash = "sha256:396acb2a13d25297789a5866b4881cf4e46ffd49cc26c43ab1117f40b973102e"}, ] [package.dependencies] requests = ">=2.22.0,<3.0" toml = "*" types-toml = "*" urllib3 = ">=1.25.10" [package.extras] tests = ["coverage (>=6.0.0)", "flake8", "mypy", "pytest (>=7.0.0)", "pytest-asyncio", "pytest-cov", "pytest-httpserver", "types-requests"] [[package]] name = "retry" version = "0.9.2" description = "Easy to use retry decorator." category = "main" optional = true python-versions = "*" files = [ {file = "retry-0.9.2-py2.py3-none-any.whl", hash = "sha256:ccddf89761fa2c726ab29391837d4327f819ea14d244c232a1d24c67a2f98606"}, {file = "retry-0.9.2.tar.gz", hash = "sha256:f8bfa8b99b69c4506d6f5bd3b0aabf77f98cdb17f3c9fc3f5ca820033336fba4"}, ] [package.dependencies] decorator = ">=3.4.2" py = ">=1.4.26,<2.0.0" [[package]] name = "rfc3339-validator" version = "0.1.4" description = "A pure python RFC3339 validator" category = "dev" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" files = [ {file = "rfc3339_validator-0.1.4-py2.py3-none-any.whl", hash = "sha256:24f6ec1eda14ef823da9e36ec7113124b39c04d50a4d3d3a3c2859577e7791fa"}, {file = "rfc3339_validator-0.1.4.tar.gz", hash = "sha256:138a2abdf93304ad60530167e51d2dfb9549521a836871b88d7f4695d0022f6b"}, ] [package.dependencies] six = "*" [[package]] name = "rfc3986-validator" version = "0.1.1" description = "Pure python rfc3986 validator" category = "dev" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" files = [ {file = "rfc3986_validator-0.1.1-py2.py3-none-any.whl", hash = "sha256:2f235c432ef459970b4306369336b9d5dbdda31b510ca1e327636e01f528bfa9"}, {file = "rfc3986_validator-0.1.1.tar.gz", hash = "sha256:3d44bde7921b3b9ec3ae4e3adca370438eccebc676456449b145d533b240d055"}, ] [[package]] name = "rich" version = "13.3.5" description = "Render rich text, tables, progress bars, syntax highlighting, markdown and more to the terminal" category = "main" optional = true python-versions = ">=3.7.0" files = [ {file = "rich-13.3.5-py3-none-any.whl", hash = "sha256:69cdf53799e63f38b95b9bf9c875f8c90e78dd62b2f00c13a911c7a3b9fa4704"}, {file = "rich-13.3.5.tar.gz", hash = "sha256:2d11b9b8dd03868f09b4fffadc84a6a8cda574e40dc90821bd845720ebb8e89c"}, ] [package.dependencies] markdown-it-py = ">=2.2.0,<3.0.0" pygments = ">=2.13.0,<3.0.0" typing-extensions = {version = ">=4.0.0,<5.0", markers = "python_version < \"3.9\""} [package.extras] jupyter = ["ipywidgets (>=7.5.1,<9)"] [[package]] name = "rsa" version = "4.9" description = "Pure-Python RSA implementation" category = "main" optional = true python-versions = ">=3.6,<4" files = [ {file = "rsa-4.9-py3-none-any.whl", hash = "sha256:90260d9058e514786967344d0ef75fa8727eed8a7d2e43ce9f4bcf1b536174f7"}, {file = "rsa-4.9.tar.gz", hash = "sha256:e38464a49c6c85d7f1351b0126661487a7e0a14a50f1675ec50eb34d4f20ef21"}, ] [package.dependencies] pyasn1 = ">=0.1.3" [[package]] name = "ruff" version = "0.0.249" description = "An extremely fast Python linter, written in Rust." category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "ruff-0.0.249-py3-none-macosx_10_7_x86_64.whl", hash = "sha256:03a26f1cb5605508de49d921d0970895b9e3ad4021f776a53be18fa95a4fc25b"}, {file = "ruff-0.0.249-py3-none-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl", hash = "sha256:46537d960221e97adc6a3556159ab3ae4b722b9985de13c50b436732d4659af0"}, {file = "ruff-0.0.249-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6c2dcc1f3053092aeedef8e47704e301b74687fa480fe5e7ebef2b0eb2e4a0bd"}, {file = "ruff-0.0.249-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:855cfe47d146a1eb68347025c7b5ad651c083343de6cb7ccf90585bda3e381db"}, {file = "ruff-0.0.249-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bf3af16748c8539a48451edbcb687994eccc6a764c95f42de22195007ae13a24"}, {file = "ruff-0.0.249-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:2815e05ba168dee6708dbbdab8d0c145bb3b0085c91ee552839c1c18a52f6cb1"}, {file = "ruff-0.0.249-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6ab43389216cc8403db84992977e6f5e8fee83bd10aca05e1f2f262754cd8384"}, {file = "ruff-0.0.249-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7b67c44ab260d3a838ec237c7234be1098bf2ef1421036fbbb229698513d1fc3"}, {file = "ruff-0.0.249-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e3d859744e1cc95ad5e52c4642509b3abb5ea0833f0529c380c2731b8cab5726"}, {file = "ruff-0.0.249-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:a6f494276ee281eb09c7026cc17df1bfc2fe59ab39a87196014ce093ff27f1a0"}, {file = "ruff-0.0.249-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:be23c57b9551d8fcf559755e5bc56ac5bcbc3215fc8a3190ea6ed1bb9133d8dd"}, {file = "ruff-0.0.249-py3-none-musllinux_1_2_i686.whl", hash = "sha256:980a3bce8ba38c9b47bc000915e80a672add9f7e9c5b128375486ec8cd8f860d"}, {file = "ruff-0.0.249-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:f1e988e9365b11c6d7796c0d4a0556f6a26f0627fe57e9e7411ff91f421fb502"}, {file = "ruff-0.0.249-py3-none-win32.whl", hash = "sha256:f4837a7e6d1ff81cb027695deb28793e0945cca8d88e87b46ff845ef38d52c82"}, {file = "ruff-0.0.249-py3-none-win_amd64.whl", hash = "sha256:4cc437ab55a35088008dbe9db598cd8e240b5f70fb88eb8ab6fa1de529007f30"}, {file = "ruff-0.0.249-py3-none-win_arm64.whl", hash = "sha256:3d2d11a7b750433f3acec30641faab673d101aa86a2ddfe4af8bcfa773b178e2"}, {file = "ruff-0.0.249.tar.gz", hash = "sha256:b590689f08ecef971c45555cbda6854cdf48f3828fc326802828e851b1a14b3d"}, ] [[package]] name = "s3transfer" version = "0.6.1" description = "An Amazon S3 Transfer Manager" category = "main" optional = false python-versions = ">= 3.7" files = [ {file = "s3transfer-0.6.1-py3-none-any.whl", hash = "sha256:3c0da2d074bf35d6870ef157158641178a4204a6e689e82546083e31e0311346"}, {file = "s3transfer-0.6.1.tar.gz", hash = "sha256:640bb492711f4c0c0905e1f62b6aaeb771881935ad27884852411f8e9cacbca9"}, ] [package.dependencies] botocore = ">=1.12.36,<2.0a.0" [package.extras] crt = ["botocore[crt] (>=1.20.29,<2.0a.0)"] [[package]] name = "scikit-learn" version = "1.2.2" description = "A set of python modules for machine learning and data mining" category = "main" optional = false python-versions = ">=3.8" files = [ {file = "scikit-learn-1.2.2.tar.gz", hash = "sha256:8429aea30ec24e7a8c7ed8a3fa6213adf3814a6efbea09e16e0a0c71e1a1a3d7"}, {file = "scikit_learn-1.2.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:99cc01184e347de485bf253d19fcb3b1a3fb0ee4cea5ee3c43ec0cc429b6d29f"}, {file = "scikit_learn-1.2.2-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:e6e574db9914afcb4e11ade84fab084536a895ca60aadea3041e85b8ac963edb"}, {file = "scikit_learn-1.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6fe83b676f407f00afa388dd1fdd49e5c6612e551ed84f3b1b182858f09e987d"}, {file = "scikit_learn-1.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2e2642baa0ad1e8f8188917423dd73994bf25429f8893ddbe115be3ca3183584"}, {file = "scikit_learn-1.2.2-cp310-cp310-win_amd64.whl", hash = "sha256:ad66c3848c0a1ec13464b2a95d0a484fd5b02ce74268eaa7e0c697b904f31d6c"}, {file = "scikit_learn-1.2.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:dfeaf8be72117eb61a164ea6fc8afb6dfe08c6f90365bde2dc16456e4bc8e45f"}, {file = "scikit_learn-1.2.2-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:fe0aa1a7029ed3e1dcbf4a5bc675aa3b1bc468d9012ecf6c6f081251ca47f590"}, {file = "scikit_learn-1.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:065e9673e24e0dc5113e2dd2b4ca30c9d8aa2fa90f4c0597241c93b63130d233"}, {file = "scikit_learn-1.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf036ea7ef66115e0d49655f16febfa547886deba20149555a41d28f56fd6d3c"}, {file = "scikit_learn-1.2.2-cp311-cp311-win_amd64.whl", hash = "sha256:8b0670d4224a3c2d596fd572fb4fa673b2a0ccfb07152688ebd2ea0b8c61025c"}, {file = "scikit_learn-1.2.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9c710ff9f9936ba8a3b74a455ccf0dcf59b230caa1e9ba0223773c490cab1e51"}, {file = "scikit_learn-1.2.2-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:2dd3ffd3950e3d6c0c0ef9033a9b9b32d910c61bd06cb8206303fb4514b88a49"}, {file = "scikit_learn-1.2.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:44b47a305190c28dd8dd73fc9445f802b6ea716669cfc22ab1eb97b335d238b1"}, {file = "scikit_learn-1.2.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:953236889928d104c2ef14027539f5f2609a47ebf716b8cbe4437e85dce42744"}, {file = "scikit_learn-1.2.2-cp38-cp38-win_amd64.whl", hash = "sha256:7f69313884e8eb311460cc2f28676d5e400bd929841a2c8eb8742ae78ebf7c20"}, {file = "scikit_learn-1.2.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8156db41e1c39c69aa2d8599ab7577af53e9e5e7a57b0504e116cc73c39138dd"}, {file = "scikit_learn-1.2.2-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:fe175ee1dab589d2e1033657c5b6bec92a8a3b69103e3dd361b58014729975c3"}, {file = "scikit_learn-1.2.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7d5312d9674bed14f73773d2acf15a3272639b981e60b72c9b190a0cffed5bad"}, {file = "scikit_learn-1.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ea061bf0283bf9a9f36ea3c5d3231ba2176221bbd430abd2603b1c3b2ed85c89"}, {file = "scikit_learn-1.2.2-cp39-cp39-win_amd64.whl", hash = "sha256:6477eed40dbce190f9f9e9d0d37e020815825b300121307942ec2110302b66a3"}, ] [package.dependencies] joblib = ">=1.1.1" numpy = ">=1.17.3" scipy = ">=1.3.2" threadpoolctl = ">=2.0.0" [package.extras] benchmark = ["matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "pandas (>=1.0.5)"] docs = ["Pillow (>=7.1.2)", "matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "plotly (>=5.10.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)", "sphinx (>=4.0.1)", "sphinx-gallery (>=0.7.0)", "sphinx-prompt (>=1.3.0)", "sphinxext-opengraph (>=0.4.2)"] examples = ["matplotlib (>=3.1.3)", "pandas (>=1.0.5)", "plotly (>=5.10.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)"] tests = ["black (>=22.3.0)", "flake8 (>=3.8.2)", "matplotlib (>=3.1.3)", "mypy (>=0.961)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "pooch (>=1.6.0)", "pyamg (>=4.0.0)", "pytest (>=5.3.1)", "pytest-cov (>=2.9.0)", "scikit-image (>=0.16.2)"] [[package]] name = "scipy" version = "1.9.3" description = "Fundamental algorithms for scientific computing in Python" category = "main" optional = false python-versions = ">=3.8" files = [ {file = "scipy-1.9.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1884b66a54887e21addf9c16fb588720a8309a57b2e258ae1c7986d4444d3bc0"}, {file = "scipy-1.9.3-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:83b89e9586c62e787f5012e8475fbb12185bafb996a03257e9675cd73d3736dd"}, {file = "scipy-1.9.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1a72d885fa44247f92743fc20732ae55564ff2a519e8302fb7e18717c5355a8b"}, {file = "scipy-1.9.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d01e1dd7b15bd2449c8bfc6b7cc67d630700ed655654f0dfcf121600bad205c9"}, {file = "scipy-1.9.3-cp310-cp310-win_amd64.whl", hash = "sha256:68239b6aa6f9c593da8be1509a05cb7f9efe98b80f43a5861cd24c7557e98523"}, {file = "scipy-1.9.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b41bc822679ad1c9a5f023bc93f6d0543129ca0f37c1ce294dd9d386f0a21096"}, {file = "scipy-1.9.3-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:90453d2b93ea82a9f434e4e1cba043e779ff67b92f7a0e85d05d286a3625df3c"}, {file = "scipy-1.9.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:83c06e62a390a9167da60bedd4575a14c1f58ca9dfde59830fc42e5197283dab"}, {file = "scipy-1.9.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:abaf921531b5aeaafced90157db505e10345e45038c39e5d9b6c7922d68085cb"}, {file = "scipy-1.9.3-cp311-cp311-win_amd64.whl", hash = "sha256:06d2e1b4c491dc7d8eacea139a1b0b295f74e1a1a0f704c375028f8320d16e31"}, {file = "scipy-1.9.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5a04cd7d0d3eff6ea4719371cbc44df31411862b9646db617c99718ff68d4840"}, {file = "scipy-1.9.3-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:545c83ffb518094d8c9d83cce216c0c32f8c04aaf28b92cc8283eda0685162d5"}, {file = "scipy-1.9.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0d54222d7a3ba6022fdf5773931b5d7c56efe41ede7f7128c7b1637700409108"}, {file = "scipy-1.9.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cff3a5295234037e39500d35316a4c5794739433528310e117b8a9a0c76d20fc"}, {file = "scipy-1.9.3-cp38-cp38-win_amd64.whl", hash = "sha256:2318bef588acc7a574f5bfdff9c172d0b1bf2c8143d9582e05f878e580a3781e"}, {file = "scipy-1.9.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d644a64e174c16cb4b2e41dfea6af722053e83d066da7343f333a54dae9bc31c"}, {file = "scipy-1.9.3-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:da8245491d73ed0a994ed9c2e380fd058ce2fa8a18da204681f2fe1f57f98f95"}, {file = "scipy-1.9.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4db5b30849606a95dcf519763dd3ab6fe9bd91df49eba517359e450a7d80ce2e"}, {file = "scipy-1.9.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c68db6b290cbd4049012990d7fe71a2abd9ffbe82c0056ebe0f01df8be5436b0"}, {file = "scipy-1.9.3-cp39-cp39-win_amd64.whl", hash = "sha256:5b88e6d91ad9d59478fafe92a7c757d00c59e3bdc3331be8ada76a4f8d683f58"}, {file = "scipy-1.9.3.tar.gz", hash = "sha256:fbc5c05c85c1a02be77b1ff591087c83bc44579c6d2bd9fb798bb64ea5e1a027"}, ] [package.dependencies] numpy = ">=1.18.5,<1.26.0" [package.extras] dev = ["flake8", "mypy", "pycodestyle", "typing_extensions"] doc = ["matplotlib (>2)", "numpydoc", "pydata-sphinx-theme (==0.9.0)", "sphinx (!=4.1.0)", "sphinx-panels (>=0.5.2)", "sphinx-tabs"] test = ["asv", "gmpy2", "mpmath", "pytest", "pytest-cov", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] [[package]] name = "semver" version = "3.0.0" description = "Python helper for Semantic Versioning (https://semver.org)" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "semver-3.0.0-py3-none-any.whl", hash = "sha256:ab4f69fb1d1ecfb5d81f96411403d7a611fa788c45d252cf5b408025df3ab6ce"}, {file = "semver-3.0.0.tar.gz", hash = "sha256:94df43924c4521ec7d307fc86da1531db6c2c33d9d5cdc3e64cca0eb68569269"}, ] [[package]] name = "send2trash" version = "1.8.2" description = "Send file to trash natively under Mac OS X, Windows and Linux" category = "dev" optional = false python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,>=2.7" files = [ {file = "Send2Trash-1.8.2-py3-none-any.whl", hash = "sha256:a384719d99c07ce1eefd6905d2decb6f8b7ed054025bb0e618919f945de4f679"}, {file = "Send2Trash-1.8.2.tar.gz", hash = "sha256:c132d59fa44b9ca2b1699af5c86f57ce9f4c5eb56629d5d55fbb7a35f84e2312"}, ] [package.extras] nativelib = ["pyobjc-framework-Cocoa", "pywin32"] objc = ["pyobjc-framework-Cocoa"] win32 = ["pywin32"] [[package]] name = "sentence-transformers" version = "2.2.2" description = "Multilingual text embeddings" category = "main" optional = false python-versions = ">=3.6.0" files = [ {file = "sentence-transformers-2.2.2.tar.gz", hash = "sha256:dbc60163b27de21076c9a30d24b5b7b6fa05141d68cf2553fa9a77bf79a29136"}, ] [package.dependencies] huggingface-hub = ">=0.4.0" nltk = "*" numpy = "*" scikit-learn = "*" scipy = "*" sentencepiece = "*" torch = ">=1.6.0" torchvision = "*" tqdm = "*" transformers = ">=4.6.0,<5.0.0" [[package]] name = "sentencepiece" version = "0.1.99" description = "SentencePiece python wrapper" category = "main" optional = false python-versions = "*" files = [ {file = "sentencepiece-0.1.99-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:0eb528e70571b7c02723e5804322469b82fe7ea418c96051d0286c0fa028db73"}, {file = "sentencepiece-0.1.99-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:77d7fafb2c4e4659cbdf303929503f37a26eabc4ff31d3a79bf1c5a1b338caa7"}, {file = "sentencepiece-0.1.99-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:be9cf5b9e404c245aeb3d3723c737ba7a8f5d4ba262ef233a431fa6c45f732a0"}, {file = "sentencepiece-0.1.99-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:baed1a26464998f9710d20e52607c29ffd4293e7c71c6a1f83f51ad0911ec12c"}, {file = "sentencepiece-0.1.99-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9832f08bb372d4c8b567612f8eab9e36e268dff645f1c28f9f8e851be705f6d1"}, {file = "sentencepiece-0.1.99-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:019e7535108e309dae2b253a75834fc3128240aa87c00eb80732078cdc182588"}, {file = "sentencepiece-0.1.99-cp310-cp310-win32.whl", hash = "sha256:fa16a830416bb823fa2a52cbdd474d1f7f3bba527fd2304fb4b140dad31bb9bc"}, {file = "sentencepiece-0.1.99-cp310-cp310-win_amd64.whl", hash = "sha256:14b0eccb7b641d4591c3e12ae44cab537d68352e4d3b6424944f0c447d2348d5"}, {file = "sentencepiece-0.1.99-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:6d3c56f24183a1e8bd61043ff2c58dfecdc68a5dd8955dc13bab83afd5f76b81"}, {file = "sentencepiece-0.1.99-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ed6ea1819fd612c989999e44a51bf556d0ef6abfb553080b9be3d347e18bcfb7"}, {file = "sentencepiece-0.1.99-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a2a0260cd1fb7bd8b4d4f39dc2444a8d5fd4e0a0c4d5c899810ef1abf99b2d45"}, {file = "sentencepiece-0.1.99-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8a1abff4d1ff81c77cac3cc6fefa34fa4b8b371e5ee51cb7e8d1ebc996d05983"}, {file = "sentencepiece-0.1.99-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:004e6a621d4bc88978eecb6ea7959264239a17b70f2cbc348033d8195c9808ec"}, {file = "sentencepiece-0.1.99-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db361e03342c41680afae5807590bc88aa0e17cfd1a42696a160e4005fcda03b"}, {file = "sentencepiece-0.1.99-cp311-cp311-win32.whl", hash = "sha256:2d95e19168875b70df62916eb55428a0cbcb834ac51d5a7e664eda74def9e1e0"}, {file = "sentencepiece-0.1.99-cp311-cp311-win_amd64.whl", hash = "sha256:f90d73a6f81248a909f55d8e6ef56fec32d559e1e9af045f0b0322637cb8e5c7"}, {file = "sentencepiece-0.1.99-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:62e24c81e74bd87a6e0d63c51beb6527e4c0add67e1a17bac18bcd2076afcfeb"}, {file = "sentencepiece-0.1.99-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:57efcc2d51caff20d9573567d9fd3f854d9efe613ed58a439c78c9f93101384a"}, {file = "sentencepiece-0.1.99-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6a904c46197993bd1e95b93a6e373dca2f170379d64441041e2e628ad4afb16f"}, {file = "sentencepiece-0.1.99-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d89adf59854741c0d465f0e1525b388c0d174f611cc04af54153c5c4f36088c4"}, {file = "sentencepiece-0.1.99-cp36-cp36m-win32.whl", hash = "sha256:47c378146928690d1bc106fdf0da768cebd03b65dd8405aa3dd88f9c81e35dba"}, {file = "sentencepiece-0.1.99-cp36-cp36m-win_amd64.whl", hash = "sha256:9ba142e7a90dd6d823c44f9870abdad45e6c63958eb60fe44cca6828d3b69da2"}, {file = "sentencepiece-0.1.99-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b7b1a9ae4d7c6f1f867e63370cca25cc17b6f4886729595b885ee07a58d3cec3"}, {file = "sentencepiece-0.1.99-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d0f644c9d4d35c096a538507b2163e6191512460035bf51358794a78515b74f7"}, {file = "sentencepiece-0.1.99-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c8843d23a0f686d85e569bd6dcd0dd0e0cbc03731e63497ca6d5bacd18df8b85"}, {file = "sentencepiece-0.1.99-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:33e6f690a1caebb4867a2e367afa1918ad35be257ecdb3455d2bbd787936f155"}, {file = "sentencepiece-0.1.99-cp37-cp37m-win32.whl", hash = "sha256:8a321866c2f85da7beac74a824b4ad6ddc2a4c9bccd9382529506d48f744a12c"}, {file = "sentencepiece-0.1.99-cp37-cp37m-win_amd64.whl", hash = "sha256:c42f753bcfb7661c122a15b20be7f684b61fc8592c89c870adf52382ea72262d"}, {file = "sentencepiece-0.1.99-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:85b476406da69c70586f0bb682fcca4c9b40e5059814f2db92303ea4585c650c"}, {file = "sentencepiece-0.1.99-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:cfbcfe13c69d3f87b7fcd5da168df7290a6d006329be71f90ba4f56bc77f8561"}, {file = "sentencepiece-0.1.99-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:445b0ec381af1cd4eef95243e7180c63d9c384443c16c4c47a28196bd1cda937"}, {file = "sentencepiece-0.1.99-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c6890ea0f2b4703f62d0bf27932e35808b1f679bdb05c7eeb3812b935ba02001"}, {file = "sentencepiece-0.1.99-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fb71af492b0eefbf9f2501bec97bcd043b6812ab000d119eaf4bd33f9e283d03"}, {file = "sentencepiece-0.1.99-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:27b866b5bd3ddd54166bbcbf5c8d7dd2e0b397fac8537991c7f544220b1f67bc"}, {file = "sentencepiece-0.1.99-cp38-cp38-win32.whl", hash = "sha256:b133e8a499eac49c581c3c76e9bdd08c338cc1939e441fee6f92c0ccb5f1f8be"}, {file = "sentencepiece-0.1.99-cp38-cp38-win_amd64.whl", hash = "sha256:0eaf3591dd0690a87f44f4df129cf8d05d8a4029b5b6709b489b8e27f9a9bcff"}, {file = "sentencepiece-0.1.99-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:38efeda9bbfb55052d482a009c6a37e52f42ebffcea9d3a98a61de7aee356a28"}, {file = "sentencepiece-0.1.99-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6c030b081dc1e1bcc9fadc314b19b740715d3d566ad73a482da20d7d46fd444c"}, {file = "sentencepiece-0.1.99-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:84dbe53e02e4f8a2e45d2ac3e430d5c83182142658e25edd76539b7648928727"}, {file = "sentencepiece-0.1.99-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0b0f55d0a0ee1719b4b04221fe0c9f0c3461dc3dabd77a035fa2f4788eb3ef9a"}, {file = "sentencepiece-0.1.99-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:18e800f206cd235dc27dc749299e05853a4e4332e8d3dfd81bf13d0e5b9007d9"}, {file = "sentencepiece-0.1.99-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2ae1c40cda8f9d5b0423cfa98542735c0235e7597d79caf318855cdf971b2280"}, {file = "sentencepiece-0.1.99-cp39-cp39-win32.whl", hash = "sha256:c84ce33af12ca222d14a1cdd37bd76a69401e32bc68fe61c67ef6b59402f4ab8"}, {file = "sentencepiece-0.1.99-cp39-cp39-win_amd64.whl", hash = "sha256:350e5c74d739973f1c9643edb80f7cc904dc948578bcb1d43c6f2b173e5d18dd"}, {file = "sentencepiece-0.1.99.tar.gz", hash = "sha256:189c48f5cb2949288f97ccdb97f0473098d9c3dcf5a3d99d4eabe719ec27297f"}, ] [[package]] name = "setuptools" version = "67.7.2" description = "Easily download, build, install, upgrade, and uninstall Python packages" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "setuptools-67.7.2-py3-none-any.whl", hash = "sha256:23aaf86b85ca52ceb801d32703f12d77517b2556af839621c641fca11287952b"}, {file = "setuptools-67.7.2.tar.gz", hash = "sha256:f104fa03692a2602fa0fec6c6a9e63b6c8a968de13e17c026957dd1f53d80990"}, ] [package.extras] docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-hoverxref (<2)", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (==0.8.3)", "sphinx-reredirects", "sphinxcontrib-towncrier"] testing = ["build[virtualenv]", "filelock (>=3.4.0)", "flake8 (<5)", "flake8-2020", "ini2toml[lite] (>=0.9)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "pip (>=19.1)", "pip-run (>=8.8)", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)", "pytest-perf", "pytest-timeout", "pytest-xdist", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"] testing-integration = ["build[virtualenv]", "filelock (>=3.4.0)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "pytest", "pytest-enabler", "pytest-xdist", "tomli", "virtualenv (>=13.0.0)", "wheel"] [[package]] name = "sgmllib3k" version = "1.0.0" description = "Py3k port of sgmllib." category = "main" optional = false python-versions = "*" files = [ {file = "sgmllib3k-1.0.0.tar.gz", hash = "sha256:7868fb1c8bfa764c1ac563d3cf369c381d1325d36124933a726f29fcdaa812e9"}, ] [[package]] name = "six" version = "1.16.0" description = "Python 2 and 3 compatibility utilities" category = "main" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" files = [ {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"}, {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, ] [[package]] name = "smart-open" version = "6.3.0" description = "Utils for streaming large files (S3, HDFS, GCS, Azure Blob Storage, gzip, bz2...)" category = "main" optional = true python-versions = ">=3.6,<4.0" files = [ {file = "smart_open-6.3.0-py3-none-any.whl", hash = "sha256:b4c9ae193ad6d3e7add50944b86afa0d150bd821ab8ec21edb26d9a06b66f6a8"}, {file = "smart_open-6.3.0.tar.gz", hash = "sha256:d5238825fe9a9340645fac3d75b287c08fbb99fb2b422477de781c9f5f09e019"}, ] [package.extras] all = ["azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage (>=2.6.0)", "paramiko", "requests"] azure = ["azure-common", "azure-core", "azure-storage-blob"] gcs = ["google-cloud-storage (>=2.6.0)"] http = ["requests"] s3 = ["boto3"] ssh = ["paramiko"] test = ["azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage (>=2.6.0)", "moto[server]", "paramiko", "pytest", "pytest-rerunfailures", "requests", "responses"] webhdfs = ["requests"] [[package]] name = "sniffio" version = "1.3.0" description = "Sniff out which async library your code is running under" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "sniffio-1.3.0-py3-none-any.whl", hash = "sha256:eecefdce1e5bbfb7ad2eeaabf7c1eeb404d7757c379bd1f7e5cce9d8bf425384"}, {file = "sniffio-1.3.0.tar.gz", hash = "sha256:e60305c5e5d314f5389259b7f22aaa33d8f7dee49763119234af3755c55b9101"}, ] [[package]] name = "snowballstemmer" version = "2.2.0" description = "This package provides 29 stemmers for 28 languages generated from Snowball algorithms." category = "dev" optional = false python-versions = "*" files = [ {file = "snowballstemmer-2.2.0-py2.py3-none-any.whl", hash = "sha256:c8e1716e83cc398ae16824e5572ae04e0d9fc2c6b985fb0f900f5f0c96ecba1a"}, {file = "snowballstemmer-2.2.0.tar.gz", hash = "sha256:09b16deb8547d3412ad7b590689584cd0fe25ec8db3be37788be3810cbf19cb1"}, ] [[package]] name = "soupsieve" version = "2.4.1" description = "A modern CSS selector implementation for Beautiful Soup." category = "main" optional = false python-versions = ">=3.7" files = [ {file = "soupsieve-2.4.1-py3-none-any.whl", hash = "sha256:1c1bfee6819544a3447586c889157365a27e10d88cde3ad3da0cf0ddf646feb8"}, {file = "soupsieve-2.4.1.tar.gz", hash = "sha256:89d12b2d5dfcd2c9e8c22326da9d9aa9cb3dfab0a83a024f05704076ee8d35ea"}, ] [[package]] name = "spacy" version = "3.5.3" description = "Industrial-strength Natural Language Processing (NLP) in Python" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "spacy-3.5.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:4eaa68b677b1292381bade13d5b20342e31791d3ffdaa261eca3c3c0687bf53f"}, {file = "spacy-3.5.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:0b628bdeb6484eb4bfb1141d43013420d0356fc111033430292aea29b34b79e3"}, {file = "spacy-3.5.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:860702748e654489e37464a5fca1444ee1b2534572084d416534a88646639c48"}, {file = "spacy-3.5.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6ff8e6408d7672cdfd1b2035d2b5ca36b6c107c9b46debd9e5ba634700f761f5"}, {file = "spacy-3.5.3-cp310-cp310-win_amd64.whl", hash = "sha256:2474f1a78557c5697529c48c5c9190f590ead21fbddf47cde757b399b807746c"}, {file = "spacy-3.5.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:59a473b8fbd79a22fdc98c017b14135b5c60c1813de01490a1eaa232a95a538b"}, {file = "spacy-3.5.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:902f511ea8f8d9336d62b252f61d9068d93824ae70c5cb048954a3017cc38f1b"}, {file = "spacy-3.5.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c555e20187d7db210e3823eedff0f6fb029d23bc8e138342791f305510bf0c66"}, {file = "spacy-3.5.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a59cea275f5724494c77aec66b1758e42268504c34d055a6db2e95f652bd87a5"}, {file = "spacy-3.5.3-cp311-cp311-win_amd64.whl", hash = "sha256:3549364d4b2bf01736667e3fba3ce599e73ba281f003225de1033a648d5563f9"}, {file = "spacy-3.5.3-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0c83c11310f9dd3872659e7907ee44b128b850775f9765557f890d817362e1df"}, {file = "spacy-3.5.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9248ed4f4daa1e969dda69fe725b2085edbda10c562642d37212f2703971b4ca"}, {file = "spacy-3.5.3-cp36-cp36m-win_amd64.whl", hash = "sha256:98dc4240dd2e27ce33a63f796ed3baf1c1b474e85ade5083b6cb604021423bf1"}, {file = "spacy-3.5.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:0ef98c2f5e36682a88b55ed841548e27bf8a400746c6bba406933f299ea873fc"}, {file = "spacy-3.5.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f01ee5285a40d09c45c71bf756eb360de6ca4bb7d00aab4ca20e5379bb69bce"}, {file = "spacy-3.5.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fa543a185aabf8b33b7e280849fa4f1ae552a34e95a4b6a910d322527def7064"}, {file = "spacy-3.5.3-cp37-cp37m-win_amd64.whl", hash = "sha256:13e54e45b447b6f52c7a050c69898fb7cab5dfc769dc073cc325b4ee8b278893"}, {file = "spacy-3.5.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:acc3ec415ba804515ff1449b13fefc07b393ea6a1ac3461b66b32f62b852467b"}, {file = "spacy-3.5.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:87caac0b18404a3cd43da1823914f7f54b60d640e36cc7240a8d05dff548be9e"}, {file = "spacy-3.5.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d82d1aeae9e8ee04ccf863a42690493b0b0b912be81783bf737c5963e6e5a8c4"}, {file = "spacy-3.5.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:77032fb9f1434ead183e5755e8b4edb58383577c9a14cdb784106aa9771126fc"}, {file = "spacy-3.5.3-cp38-cp38-win_amd64.whl", hash = "sha256:f58297c982823b19476a8efab302d269202af997c0b6500590ee55cd363428e8"}, {file = "spacy-3.5.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d584ff7e6f0c044a5b17ceb6276ea65f054b157f31ce924318bf9b2c75fb8729"}, {file = "spacy-3.5.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:87a5d0d87bc00b0b2c620bea3e8b226cd6913130a723dcaaa07b03e5d933ff59"}, {file = "spacy-3.5.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a06285f19aaf1b4ea8d0c60285cd8712f9577a4cc64984e0841fa213a465e364"}, {file = "spacy-3.5.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9f5c4ca98f12e14f13dba08139c62671a623e6ff2d0d96783f8d09b33a8cd973"}, {file = "spacy-3.5.3-cp39-cp39-win_amd64.whl", hash = "sha256:c28b1bfda0d5b0abba961c8679e21767493d48572c94d54acb4018d27f89f4e1"}, {file = "spacy-3.5.3.tar.gz", hash = "sha256:35971d6721576538d6c423c66a09ce00bf66e10e40726a57b7a81993180c248c"}, ] [package.dependencies] catalogue = ">=2.0.6,<2.1.0" cymem = ">=2.0.2,<2.1.0" jinja2 = "*" langcodes = ">=3.2.0,<4.0.0" murmurhash = ">=0.28.0,<1.1.0" numpy = ">=1.15.0" packaging = ">=20.0" pathy = ">=0.10.0" preshed = ">=3.0.2,<3.1.0" pydantic = ">=1.7.4,<1.8 || >1.8,<1.8.1 || >1.8.1,<1.11.0" requests = ">=2.13.0,<3.0.0" setuptools = "*" smart-open = ">=5.2.1,<7.0.0" spacy-legacy = ">=3.0.11,<3.1.0" spacy-loggers = ">=1.0.0,<2.0.0" srsly = ">=2.4.3,<3.0.0" thinc = ">=8.1.8,<8.2.0" tqdm = ">=4.38.0,<5.0.0" typer = ">=0.3.0,<0.8.0" wasabi = ">=0.9.1,<1.2.0" [package.extras] apple = ["thinc-apple-ops (>=0.1.0.dev0,<1.0.0)"] cuda = ["cupy (>=5.0.0b4,<13.0.0)"] cuda-autodetect = ["cupy-wheel (>=11.0.0,<13.0.0)"] cuda100 = ["cupy-cuda100 (>=5.0.0b4,<13.0.0)"] cuda101 = ["cupy-cuda101 (>=5.0.0b4,<13.0.0)"] cuda102 = ["cupy-cuda102 (>=5.0.0b4,<13.0.0)"] cuda110 = ["cupy-cuda110 (>=5.0.0b4,<13.0.0)"] cuda111 = ["cupy-cuda111 (>=5.0.0b4,<13.0.0)"] cuda112 = ["cupy-cuda112 (>=5.0.0b4,<13.0.0)"] cuda113 = ["cupy-cuda113 (>=5.0.0b4,<13.0.0)"] cuda114 = ["cupy-cuda114 (>=5.0.0b4,<13.0.0)"] cuda115 = ["cupy-cuda115 (>=5.0.0b4,<13.0.0)"] cuda116 = ["cupy-cuda116 (>=5.0.0b4,<13.0.0)"] cuda117 = ["cupy-cuda117 (>=5.0.0b4,<13.0.0)"] cuda11x = ["cupy-cuda11x (>=11.0.0,<13.0.0)"] cuda80 = ["cupy-cuda80 (>=5.0.0b4,<13.0.0)"] cuda90 = ["cupy-cuda90 (>=5.0.0b4,<13.0.0)"] cuda91 = ["cupy-cuda91 (>=5.0.0b4,<13.0.0)"] cuda92 = ["cupy-cuda92 (>=5.0.0b4,<13.0.0)"] ja = ["sudachidict-core (>=20211220)", "sudachipy (>=0.5.2,!=0.6.1)"] ko = ["natto-py (>=0.9.0)"] lookups = ["spacy-lookups-data (>=1.0.3,<1.1.0)"] ray = ["spacy-ray (>=0.1.0,<1.0.0)"] th = ["pythainlp (>=2.0)"] transformers = ["spacy-transformers (>=1.1.2,<1.3.0)"] [[package]] name = "spacy-legacy" version = "3.0.12" description = "Legacy registered functions for spaCy backwards compatibility" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "spacy-legacy-3.0.12.tar.gz", hash = "sha256:b37d6e0c9b6e1d7ca1cf5bc7152ab64a4c4671f59c85adaf7a3fcb870357a774"}, {file = "spacy_legacy-3.0.12-py2.py3-none-any.whl", hash = "sha256:476e3bd0d05f8c339ed60f40986c07387c0a71479245d6d0f4298dbd52cda55f"}, ] [[package]] name = "spacy-loggers" version = "1.0.4" description = "Logging utilities for SpaCy" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "spacy-loggers-1.0.4.tar.gz", hash = "sha256:e6f983bf71230091d5bb7b11bf64bd54415eca839108d5f83d9155d0ba93bf28"}, {file = "spacy_loggers-1.0.4-py3-none-any.whl", hash = "sha256:e050bf2e63208b2f096b777e494971c962ad7c1dc997641c8f95c622550044ae"}, ] [[package]] name = "sphinx" version = "4.5.0" description = "Python documentation generator" category = "dev" optional = false python-versions = ">=3.6" files = [ {file = "Sphinx-4.5.0-py3-none-any.whl", hash = "sha256:ebf612653238bcc8f4359627a9b7ce44ede6fdd75d9d30f68255c7383d3a6226"}, {file = "Sphinx-4.5.0.tar.gz", hash = "sha256:7bf8ca9637a4ee15af412d1a1d9689fec70523a68ca9bb9127c2f3eeb344e2e6"}, ] [package.dependencies] alabaster = ">=0.7,<0.8" babel = ">=1.3" colorama = {version = ">=0.3.5", markers = "sys_platform == \"win32\""} docutils = ">=0.14,<0.18" imagesize = "*" importlib-metadata = {version = ">=4.4", markers = "python_version < \"3.10\""} Jinja2 = ">=2.3" packaging = "*" Pygments = ">=2.0" requests = ">=2.5.0" snowballstemmer = ">=1.1" sphinxcontrib-applehelp = "*" sphinxcontrib-devhelp = "*" sphinxcontrib-htmlhelp = ">=2.0.0" sphinxcontrib-jsmath = "*" sphinxcontrib-qthelp = "*" sphinxcontrib-serializinghtml = ">=1.1.5" [package.extras] docs = ["sphinxcontrib-websupport"] lint = ["docutils-stubs", "flake8 (>=3.5.0)", "isort", "mypy (>=0.931)", "types-requests", "types-typed-ast"] test = ["cython", "html5lib", "pytest", "pytest-cov", "typed-ast"] [[package]] name = "sphinx-autobuild" version = "2021.3.14" description = "Rebuild Sphinx documentation on changes, with live-reload in the browser." category = "dev" optional = false python-versions = ">=3.6" files = [ {file = "sphinx-autobuild-2021.3.14.tar.gz", hash = "sha256:de1ca3b66e271d2b5b5140c35034c89e47f263f2cd5db302c9217065f7443f05"}, {file = "sphinx_autobuild-2021.3.14-py3-none-any.whl", hash = "sha256:8fe8cbfdb75db04475232f05187c776f46f6e9e04cacf1e49ce81bdac649ccac"}, ] [package.dependencies] colorama = "*" livereload = "*" sphinx = "*" [package.extras] test = ["pytest", "pytest-cov"] [[package]] name = "sphinx-book-theme" version = "0.3.3" description = "A clean book theme for scientific explanations and documentation with Sphinx" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "sphinx_book_theme-0.3.3-py3-none-any.whl", hash = "sha256:9685959dbbb492af005165ef1b9229fdd5d5431580ac181578beae3b4d012d91"}, {file = "sphinx_book_theme-0.3.3.tar.gz", hash = "sha256:0ec36208ff14c6d6bf8aee1f1f8268e0c6e2bfa3cef6e41143312b25275a6217"}, ] [package.dependencies] pydata-sphinx-theme = ">=0.8.0,<0.9.0" pyyaml = "*" sphinx = ">=3,<5" [package.extras] code-style = ["pre-commit (>=2.7.0,<2.8.0)"] doc = ["ablog (>=0.10.13,<0.11.0)", "folium", "ipywidgets", "matplotlib", "myst-nb (>=0.13.2,<0.14.0)", "nbclient", "numpy", "numpydoc", "pandas", "plotly", "sphinx (>=4.0,<5.0)", "sphinx-copybutton", "sphinx-design", "sphinx-examples", "sphinx-tabs", "sphinx-thebe (>=0.1.1)", "sphinx-togglebutton (>=0.2.1)", "sphinxcontrib-bibtex (>=2.2,<3.0)", "sphinxcontrib-youtube", "sphinxext-opengraph"] test = ["beautifulsoup4 (>=4.6.1,<5)", "coverage", "myst-nb (>=0.13.2,<0.14.0)", "pytest (>=6.0.1,<6.1.0)", "pytest-cov", "pytest-regressions (>=2.0.1,<2.1.0)", "sphinx_thebe"] [[package]] name = "sphinx-copybutton" version = "0.5.2" description = "Add a copy button to each of your code cells." category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "sphinx-copybutton-0.5.2.tar.gz", hash = "sha256:4cf17c82fb9646d1bc9ca92ac280813a3b605d8c421225fd9913154103ee1fbd"}, {file = "sphinx_copybutton-0.5.2-py3-none-any.whl", hash = "sha256:fb543fd386d917746c9a2c50360c7905b605726b9355cd26e9974857afeae06e"}, ] [package.dependencies] sphinx = ">=1.8" [package.extras] code-style = ["pre-commit (==2.12.1)"] rtd = ["ipython", "myst-nb", "sphinx", "sphinx-book-theme", "sphinx-examples"] [[package]] name = "sphinx-panels" version = "0.6.0" description = "A sphinx extension for creating panels in a grid layout." category = "dev" optional = false python-versions = "*" files = [ {file = "sphinx-panels-0.6.0.tar.gz", hash = "sha256:d36dcd26358117e11888f7143db4ac2301ebe90873ac00627bf1fe526bf0f058"}, {file = "sphinx_panels-0.6.0-py3-none-any.whl", hash = "sha256:bd64afaf85c07f8096d21c8247fc6fd757e339d1be97832c8832d6ae5ed2e61d"}, ] [package.dependencies] docutils = "*" sphinx = ">=2,<5" [package.extras] code-style = ["pre-commit (>=2.7.0,<2.8.0)"] live-dev = ["sphinx-autobuild", "web-compile (>=0.2.0,<0.3.0)"] testing = ["pytest (>=6.0.1,<6.1.0)", "pytest-regressions (>=2.0.1,<2.1.0)"] themes = ["myst-parser (>=0.12.9,<0.13.0)", "pydata-sphinx-theme (>=0.4.0,<0.5.0)", "sphinx-book-theme (>=0.0.36,<0.1.0)", "sphinx-rtd-theme"] [[package]] name = "sphinx-rtd-theme" version = "1.2.0" description = "Read the Docs theme for Sphinx" category = "dev" optional = false python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" files = [ {file = "sphinx_rtd_theme-1.2.0-py2.py3-none-any.whl", hash = "sha256:f823f7e71890abe0ac6aaa6013361ea2696fc8d3e1fa798f463e82bdb77eeff2"}, {file = "sphinx_rtd_theme-1.2.0.tar.gz", hash = "sha256:a0d8bd1a2ed52e0b338cbe19c4b2eef3c5e7a048769753dac6a9f059c7b641b8"}, ] [package.dependencies] docutils = "<0.19" sphinx = ">=1.6,<7" sphinxcontrib-jquery = {version = ">=2.0.0,<3.0.0 || >3.0.0", markers = "python_version > \"3\""} [package.extras] dev = ["bump2version", "sphinxcontrib-httpdomain", "transifex-client", "wheel"] [[package]] name = "sphinx-typlog-theme" version = "0.8.0" description = "A typlog Sphinx theme" category = "dev" optional = false python-versions = "*" files = [ {file = "sphinx_typlog_theme-0.8.0-py2.py3-none-any.whl", hash = "sha256:b0ab728ab31d071523af0229bcb6427a13493958b3fc2bb7db381520fab77de4"}, {file = "sphinx_typlog_theme-0.8.0.tar.gz", hash = "sha256:61dbf97b1fde441bd03a5409874571e229898b67fb3080400837b8f4cee46659"}, ] [package.extras] dev = ["livereload", "sphinx"] [[package]] name = "sphinxcontrib-applehelp" version = "1.0.4" description = "sphinxcontrib-applehelp is a Sphinx extension which outputs Apple help books" category = "dev" optional = false python-versions = ">=3.8" files = [ {file = "sphinxcontrib-applehelp-1.0.4.tar.gz", hash = "sha256:828f867945bbe39817c210a1abfd1bc4895c8b73fcaade56d45357a348a07d7e"}, {file = "sphinxcontrib_applehelp-1.0.4-py3-none-any.whl", hash = "sha256:29d341f67fb0f6f586b23ad80e072c8e6ad0b48417db2bde114a4c9746feb228"}, ] [package.extras] lint = ["docutils-stubs", "flake8", "mypy"] test = ["pytest"] [[package]] name = "sphinxcontrib-devhelp" version = "1.0.2" description = "sphinxcontrib-devhelp is a sphinx extension which outputs Devhelp document." category = "dev" optional = false python-versions = ">=3.5" files = [ {file = "sphinxcontrib-devhelp-1.0.2.tar.gz", hash = "sha256:ff7f1afa7b9642e7060379360a67e9c41e8f3121f2ce9164266f61b9f4b338e4"}, {file = "sphinxcontrib_devhelp-1.0.2-py2.py3-none-any.whl", hash = "sha256:8165223f9a335cc1af7ffe1ed31d2871f325254c0423bc0c4c7cd1c1e4734a2e"}, ] [package.extras] lint = ["docutils-stubs", "flake8", "mypy"] test = ["pytest"] [[package]] name = "sphinxcontrib-htmlhelp" version = "2.0.1" description = "sphinxcontrib-htmlhelp is a sphinx extension which renders HTML help files" category = "dev" optional = false python-versions = ">=3.8" files = [ {file = "sphinxcontrib-htmlhelp-2.0.1.tar.gz", hash = "sha256:0cbdd302815330058422b98a113195c9249825d681e18f11e8b1f78a2f11efff"}, {file = "sphinxcontrib_htmlhelp-2.0.1-py3-none-any.whl", hash = "sha256:c38cb46dccf316c79de6e5515e1770414b797162b23cd3d06e67020e1d2a6903"}, ] [package.extras] lint = ["docutils-stubs", "flake8", "mypy"] test = ["html5lib", "pytest"] [[package]] name = "sphinxcontrib-jquery" version = "4.1" description = "Extension to include jQuery on newer Sphinx releases" category = "dev" optional = false python-versions = ">=2.7" files = [ {file = "sphinxcontrib-jquery-4.1.tar.gz", hash = "sha256:1620739f04e36a2c779f1a131a2dfd49b2fd07351bf1968ced074365933abc7a"}, {file = "sphinxcontrib_jquery-4.1-py2.py3-none-any.whl", hash = "sha256:f936030d7d0147dd026a4f2b5a57343d233f1fc7b363f68b3d4f1cb0993878ae"}, ] [package.dependencies] Sphinx = ">=1.8" [[package]] name = "sphinxcontrib-jsmath" version = "1.0.1" description = "A sphinx extension which renders display math in HTML via JavaScript" category = "dev" optional = false python-versions = ">=3.5" files = [ {file = "sphinxcontrib-jsmath-1.0.1.tar.gz", hash = "sha256:a9925e4a4587247ed2191a22df5f6970656cb8ca2bd6284309578f2153e0c4b8"}, {file = "sphinxcontrib_jsmath-1.0.1-py2.py3-none-any.whl", hash = "sha256:2ec2eaebfb78f3f2078e73666b1415417a116cc848b72e5172e596c871103178"}, ] [package.extras] test = ["flake8", "mypy", "pytest"] [[package]] name = "sphinxcontrib-qthelp" version = "1.0.3" description = "sphinxcontrib-qthelp is a sphinx extension which outputs QtHelp document." category = "dev" optional = false python-versions = ">=3.5" files = [ {file = "sphinxcontrib-qthelp-1.0.3.tar.gz", hash = "sha256:4c33767ee058b70dba89a6fc5c1892c0d57a54be67ddd3e7875a18d14cba5a72"}, {file = "sphinxcontrib_qthelp-1.0.3-py2.py3-none-any.whl", hash = "sha256:bd9fc24bcb748a8d51fd4ecaade681350aa63009a347a8c14e637895444dfab6"}, ] [package.extras] lint = ["docutils-stubs", "flake8", "mypy"] test = ["pytest"] [[package]] name = "sphinxcontrib-serializinghtml" version = "1.1.5" description = "sphinxcontrib-serializinghtml is a sphinx extension which outputs \"serialized\" HTML files (json and pickle)." category = "dev" optional = false python-versions = ">=3.5" files = [ {file = "sphinxcontrib-serializinghtml-1.1.5.tar.gz", hash = "sha256:aa5f6de5dfdf809ef505c4895e51ef5c9eac17d0f287933eb49ec495280b6952"}, {file = "sphinxcontrib_serializinghtml-1.1.5-py2.py3-none-any.whl", hash = "sha256:352a9a00ae864471d3a7ead8d7d79f5fc0b57e8b3f95e9867eb9eb28999b92fd"}, ] [package.extras] lint = ["docutils-stubs", "flake8", "mypy"] test = ["pytest"] [[package]] name = "sqlalchemy" version = "2.0.13" description = "Database Abstraction Library" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "SQLAlchemy-2.0.13-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:7ad24c85f2a1caf0cd1ae8c2fdb668777a51a02246d9039420f94bd7dbfd37ed"}, {file = "SQLAlchemy-2.0.13-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:db24d2738add6db19d66ca820479d2f8f96d3f5a13c223f27fa28dd2f268a4bd"}, {file = "SQLAlchemy-2.0.13-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:72746ec17a7d9c5acf2c57a6e6190ceba3dad7127cd85bb17f24e90acc0e8e3f"}, {file = "SQLAlchemy-2.0.13-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:755f653d693f9b8f4286d987aec0d4279821bf8d179a9de8e8a5c685e77e57d6"}, {file = "SQLAlchemy-2.0.13-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e0d20f27edfd6f35b388da2bdcd7769e4ffa374fef8994980ced26eb287e033a"}, {file = "SQLAlchemy-2.0.13-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:37de4010f53f452e94e5ed6684480432cfe6a7a8914307ef819cd028b05b98d5"}, {file = "SQLAlchemy-2.0.13-cp310-cp310-win32.whl", hash = "sha256:31f72bb300eed7bfdb373c7c046121d84fa0ae6f383089db9505ff553ac27cef"}, {file = "SQLAlchemy-2.0.13-cp310-cp310-win_amd64.whl", hash = "sha256:ec2f525273528425ed2f51861b7b88955160cb95dddb17af0914077040aff4a5"}, {file = "SQLAlchemy-2.0.13-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2424a84f131901fbb20a99844d47b38b517174c6e964c8efb15ea6bb9ced8c2b"}, {file = "SQLAlchemy-2.0.13-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4f9832815257969b3ca9bf0501351e4c02c8d60cbd3ec9f9070d5b0f8852900e"}, {file = "SQLAlchemy-2.0.13-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a30e4db983faa5145e00ef6eaf894a2d503b3221dbf40a595f3011930d3d0bac"}, {file = "SQLAlchemy-2.0.13-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f717944aee40e9f48776cf85b523bb376aa2d9255a268d6d643c57ab387e7264"}, {file = "SQLAlchemy-2.0.13-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:9119795d2405eb23bf7e6707e228fe38124df029494c1b3576459aa3202ea432"}, {file = "SQLAlchemy-2.0.13-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:2ad9688debf1f0ae9c6e0706a4e2d33b1a01281317cee9bd1d7eef8020c5baac"}, {file = "SQLAlchemy-2.0.13-cp311-cp311-win32.whl", hash = "sha256:c61b89803a87a3b2a394089a7dadb79a6c64c89f2e8930cc187fec43b319f8d2"}, {file = "SQLAlchemy-2.0.13-cp311-cp311-win_amd64.whl", hash = "sha256:0aa2cbde85a6eab9263ab480f19e8882d022d30ebcdc14d69e6a8d7c07b0a871"}, {file = "SQLAlchemy-2.0.13-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:9ad883ac4f5225999747f0849643c4d0ec809d9ffe0ddc81a81dd3e68d0af463"}, {file = "SQLAlchemy-2.0.13-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e481e54db8cec1457ee7c05f6d2329e3298a304a70d3b5e2e82e77170850b385"}, {file = "SQLAlchemy-2.0.13-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b4e08e3831671008888bad5d160d757ef35ce34dbb73b78c3998d16aa1334c97"}, {file = "SQLAlchemy-2.0.13-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:f234ba3bb339ad17803009c8251f5ee65dcf283a380817fe486823b08b26383d"}, {file = "SQLAlchemy-2.0.13-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:375b7ba88f261dbd79d044f20cbcd919d88befb63f26af9d084614f10cdf97a6"}, {file = "SQLAlchemy-2.0.13-cp37-cp37m-win32.whl", hash = "sha256:9136d596111c742d061c0f99bab95c5370016c4101a32e72c2b634ad5e0757e6"}, {file = "SQLAlchemy-2.0.13-cp37-cp37m-win_amd64.whl", hash = "sha256:7612a7366a0855a04430363fb4ab392dc6818aaece0b2e325ff30ee77af9b21f"}, {file = "SQLAlchemy-2.0.13-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:49c138856035cb97f0053e5e57ba90ec936b28a0b8b0020d44965c7b0c0bf03a"}, {file = "SQLAlchemy-2.0.13-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a5e9e78332a5d841422b88b8c490dfd7f761e64b3430249b66c05d02f72ceab0"}, {file = "SQLAlchemy-2.0.13-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fd0febae872a4042da44e972c070f0fd49a85a0a7727ab6b85425f74348be14e"}, {file = "SQLAlchemy-2.0.13-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:566a0ac347cf4632f551e7b28bbd0d215af82e6ffaa2556f565a3b6b51dc3f81"}, {file = "SQLAlchemy-2.0.13-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:e5e5dc300a0ca8755ada1569f5caccfcdca28607dfb98b86a54996b288a8ebd3"}, {file = "SQLAlchemy-2.0.13-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:a25b4c4fdd633501233924f873e6f6cd8970732859ecfe4ecfb60635881f70be"}, {file = "SQLAlchemy-2.0.13-cp38-cp38-win32.whl", hash = "sha256:6777673d346071451bf7cccf8d0499024f1bd6a835fc90b4fe7af50373d92ce6"}, {file = "SQLAlchemy-2.0.13-cp38-cp38-win_amd64.whl", hash = "sha256:2f0a355264af0952570f18457102984e1f79510f856e5e0ae652e63316d1ca23"}, {file = "SQLAlchemy-2.0.13-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d93ebbff3dcf05274843ad8cf650b48ee634626e752c5d73614e5ec9df45f0ce"}, {file = "SQLAlchemy-2.0.13-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:fec56c7d1b6a22c8f01557de3975d962ee40270b81b60d1cfdadf2a105d10e84"}, {file = "SQLAlchemy-2.0.13-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0eb14a386a5b610305bec6639b35540b47f408b0a59f75999199aed5b3d40079"}, {file = "SQLAlchemy-2.0.13-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e2f3b5236079bc3e318a92bab2cc3f669cc32127075ab03ff61cacbae1c392b8"}, {file = "SQLAlchemy-2.0.13-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:bf1aae95e80acea02a0a622e1c12d3fefc52ffd0fe7bda70a30d070373fbb6c3"}, {file = "SQLAlchemy-2.0.13-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:cdf80359b641185ae7e580afb9f88cf560298f309a38182972091165bfe1225d"}, {file = "SQLAlchemy-2.0.13-cp39-cp39-win32.whl", hash = "sha256:f463598f9e51ccc04f0fe08500f9a0c3251a7086765350be418598b753b5561d"}, {file = "SQLAlchemy-2.0.13-cp39-cp39-win_amd64.whl", hash = "sha256:881cc388dded44ae6e17a1666364b98bd76bcdc71b869014ae725f06ba298e0e"}, {file = "SQLAlchemy-2.0.13-py3-none-any.whl", hash = "sha256:0d6979c9707f8b82366ba34b38b5a6fe32f75766b2e901f9820e271e95384070"}, {file = "SQLAlchemy-2.0.13.tar.gz", hash = "sha256:8d97b37b4e60073c38bcf94e289e3be09ef9be870de88d163f16e08f2b9ded1a"}, ] [package.dependencies] greenlet = {version = "!=0.4.17", markers = "platform_machine == \"aarch64\" or platform_machine == \"ppc64le\" or platform_machine == \"x86_64\" or platform_machine == \"amd64\" or platform_machine == \"AMD64\" or platform_machine == \"win32\" or platform_machine == \"WIN32\""} typing-extensions = ">=4.2.0" [package.extras] aiomysql = ["aiomysql", "greenlet (!=0.4.17)"] aiosqlite = ["aiosqlite", "greenlet (!=0.4.17)", "typing-extensions (!=3.10.0.1)"] asyncio = ["greenlet (!=0.4.17)"] asyncmy = ["asyncmy (>=0.2.3,!=0.2.4,!=0.2.6)", "greenlet (!=0.4.17)"] mariadb-connector = ["mariadb (>=1.0.1,!=1.1.2,!=1.1.5)"] mssql = ["pyodbc"] mssql-pymssql = ["pymssql"] mssql-pyodbc = ["pyodbc"] mypy = ["mypy (>=0.910)"] mysql = ["mysqlclient (>=1.4.0)"] mysql-connector = ["mysql-connector-python"] oracle = ["cx-oracle (>=7)"] oracle-oracledb = ["oracledb (>=1.0.1)"] postgresql = ["psycopg2 (>=2.7)"] postgresql-asyncpg = ["asyncpg", "greenlet (!=0.4.17)"] postgresql-pg8000 = ["pg8000 (>=1.29.1)"] postgresql-psycopg = ["psycopg (>=3.0.7)"] postgresql-psycopg2binary = ["psycopg2-binary"] postgresql-psycopg2cffi = ["psycopg2cffi"] pymysql = ["pymysql"] sqlcipher = ["sqlcipher3-binary"] [[package]] name = "sqlitedict" version = "2.1.0" description = "Persistent dict in Python, backed up by sqlite3 and pickle, multithread-safe." category = "main" optional = true python-versions = "*" files = [ {file = "sqlitedict-2.1.0.tar.gz", hash = "sha256:03d9cfb96d602996f1d4c2db2856f1224b96a9c431bdd16e78032a72940f9e8c"}, ] [[package]] name = "srsly" version = "2.4.6" description = "Modern high-performance serialization utilities for Python" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "srsly-2.4.6-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:9b96569976420be2ac3716db9ac05b06bf4cd7a358953879ba34f03c9533c123"}, {file = "srsly-2.4.6-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:5a9833c0a870e17c67a9452ed107b3ec033fa5b7addead51af5977fdafd32452"}, {file = "srsly-2.4.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0355d57e89382bc0852d30b000f1d04f0bf1da2a739f60f0427a00b6ea1cd146"}, {file = "srsly-2.4.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2261ef76f6b8d4029b9d2fc4a65ac505a760d2ea1de0132fc4b423883f7df52e"}, {file = "srsly-2.4.6-cp310-cp310-win_amd64.whl", hash = "sha256:02ab79c59e4b0eba4ba44d64b4aeccb5df1379270f3970dc7e30f1eef6cd3851"}, {file = "srsly-2.4.6-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:73acd407c66fa943bbaa8d473c30ea548b31ba4079b51483eda65df94910b61f"}, {file = "srsly-2.4.6-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:99131465fea74aa5e80dbba6effad10ae661bee2c3fbc1fd6da8a1e954e031d0"}, {file = "srsly-2.4.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e4a0152f766930aa41f45bf571b7f6e99206a02810d964cc7bcbd81685e3b624"}, {file = "srsly-2.4.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9742e5f4205c5484cea925ff24b1bd850f1e9291bd0ada6dfe1ec2b715e732b5"}, {file = "srsly-2.4.6-cp311-cp311-win_amd64.whl", hash = "sha256:73ce7c532fecbd8d7ab946fd2b5fa1d767d554526e330e55d7704bcf522c9f66"}, {file = "srsly-2.4.6-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e5c5074628249385640f4fe4ac237fd93631a023938476ea258139d12abb17f9"}, {file = "srsly-2.4.6-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:12b9e6d5a87c64e1d4a4a43fd6c94f98b5c48076c569804072e5fe45f1703c32"}, {file = "srsly-2.4.6-cp36-cp36m-win_amd64.whl", hash = "sha256:bac2b2fa1f315c8a50e7807002a064e892be21c95735334f39d2ec104c00a8f0"}, {file = "srsly-2.4.6-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3a6811eb797101b549fece201c03ba794ed731e9e2d58b81ea56eb3219ed2c8e"}, {file = "srsly-2.4.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:03477c648b76571a5ab0723423fc03ada74e747c4354357feef92c098853246f"}, {file = "srsly-2.4.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9fb1426313af7c560c728fbe8c3cc8e7cc443f5aa489b04a26adc73645214b91"}, {file = "srsly-2.4.6-cp37-cp37m-win_amd64.whl", hash = "sha256:f1fb1ca8e2415bfd9ce1e3d8612dbbd85dd06c574a0a96a0223265c382950b5a"}, {file = "srsly-2.4.6-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:02b0708878f6a1e344284ae7c65b36a9ad8178eeff71583cd212d2d379f0e2ce"}, {file = "srsly-2.4.6-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:720715be0efb9646ab64850185ecd22fe6ace93027d02f6367bdc8842450b369"}, {file = "srsly-2.4.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1da8ac70f994644069451b4ab5fe5d2649218871409ab89f8421e79b0eace76b"}, {file = "srsly-2.4.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7dc1c3877618d67a44ec74830510cd72d54fcfb32339388f2c6cbd559d27d20e"}, {file = "srsly-2.4.6-cp38-cp38-win_amd64.whl", hash = "sha256:0ca1b1065edeca0cbc4a75ef15e915189bfd4b87c8256d542ec662168dd17627"}, {file = "srsly-2.4.6-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:0522d9aeaf58c6d58ee0cec247653a460545422d3266b2d970df7af1530f3dcc"}, {file = "srsly-2.4.6-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:52e3a0a760fb7723c74e566d0c064da78e5707d65d8f69b1d3c2e05b72e3efb2"}, {file = "srsly-2.4.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da8d393ac59cba12b92c27c53550417200601d0f2a9aa50c1559cf5ce9cb9473"}, {file = "srsly-2.4.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e5725f18a76971fc00e788a254bc2da6e119d69d491a811a6d387de77b72ca2"}, {file = "srsly-2.4.6-cp39-cp39-win_amd64.whl", hash = "sha256:52a3b4d2949d9b7623b459054526bc3df04cbd9a8243c4786f13e3c956faf251"}, {file = "srsly-2.4.6.tar.gz", hash = "sha256:47b41f323aba4c9c3311abf60e443c03a9efe9c69f65dc402d173c32f7744a6f"}, ] [package.dependencies] catalogue = ">=2.0.3,<2.1.0" [[package]] name = "stack-data" version = "0.6.2" description = "Extract data from python stack frames and tracebacks for informative displays" category = "dev" optional = false python-versions = "*" files = [ {file = "stack_data-0.6.2-py3-none-any.whl", hash = "sha256:cbb2a53eb64e5785878201a97ed7c7b94883f48b87bfb0bbe8b623c74679e4a8"}, {file = "stack_data-0.6.2.tar.gz", hash = "sha256:32d2dd0376772d01b6cb9fc996f3c8b57a357089dec328ed4b6553d037eaf815"}, ] [package.dependencies] asttokens = ">=2.1.0" executing = ">=1.2.0" pure-eval = "*" [package.extras] tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] [[package]] name = "starlette" version = "0.27.0" description = "The little ASGI library that shines." category = "main" optional = false python-versions = ">=3.7" files = [ {file = "starlette-0.27.0-py3-none-any.whl", hash = "sha256:918416370e846586541235ccd38a474c08b80443ed31c578a418e2209b3eef91"}, {file = "starlette-0.27.0.tar.gz", hash = "sha256:6a6b0d042acb8d469a01eba54e9cda6cbd24ac602c4cd016723117d6a7e73b75"}, ] [package.dependencies] anyio = ">=3.4.0,<5" typing-extensions = {version = ">=3.10.0", markers = "python_version < \"3.10\""} [package.extras] full = ["httpx (>=0.22.0)", "itsdangerous", "jinja2", "python-multipart", "pyyaml"] [[package]] name = "steamship" version = "2.16.9" description = "The fastest way to add language AI to your product." category = "main" optional = true python-versions = "*" files = [ {file = "steamship-2.16.9-py3-none-any.whl", hash = "sha256:02ed613363d912e1deb2811f86753cf398b3035f6afa5b1eb6e5884da61a7c3c"}, {file = "steamship-2.16.9.tar.gz", hash = "sha256:34732b45e470f31ecdeefcbc06a98ac7d7c37d062394e598ec285d2f3faa1b14"}, ] [package.dependencies] aiohttp = ">=3.8.4,<3.9.0" click = ">=8.1.3,<8.2.0" fluent-logger = ">=0.10.0,<0.11.0" inflection = ">=0.5.1,<0.6.0" pydantic = ">=1.10.2,<1.11.0" requests = ">=2.28.1,<2.29.0" semver = ">=3.0.0,<3.1.0" tiktoken = ">=0.3.3,<0.4.0" toml = ">=0.10.2,<0.11.0" [[package]] name = "stringcase" version = "1.2.0" description = "String case converter." category = "main" optional = true python-versions = "*" files = [ {file = "stringcase-1.2.0.tar.gz", hash = "sha256:48a06980661908efe8d9d34eab2b6c13aefa2163b3ced26972902e3bdfd87008"}, ] [[package]] name = "tabulate" version = "0.9.0" description = "Pretty-print tabular data" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "tabulate-0.9.0-py3-none-any.whl", hash = "sha256:024ca478df22e9340661486f85298cff5f6dcdba14f3813e8830015b9ed1948f"}, {file = "tabulate-0.9.0.tar.gz", hash = "sha256:0095b12bf5966de529c0feb1fa08671671b3368eec77d7ef7ab114be2c068b3c"}, ] [package.extras] widechars = ["wcwidth"] [[package]] name = "tair" version = "1.3.3" description = "Python client for Tair" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "tair-1.3.3-py3-none-any.whl", hash = "sha256:28ece5646b795662e4de07f2b982497988e2225df80bd25689704dd29893dfb7"}, {file = "tair-1.3.3.tar.gz", hash = "sha256:fc8a71872afb5fc0aeadb817440bc3690f6f621cc0c4b1548d729de49f1e9e57"}, ] [package.dependencies] redis = ">=4.4.4" [[package]] name = "telethon" version = "1.28.5" description = "Full-featured Telegram client library for Python 3" category = "main" optional = true python-versions = ">=3.5" files = [ {file = "Telethon-1.28.5-py3-none-any.whl", hash = "sha256:edc42fd58b8e1569830d3ead564cafa60fd51d684f03ee2a1fdd5f77a5a10438"}, {file = "Telethon-1.28.5.tar.gz", hash = "sha256:b3990ec22351a3f3e1af376729c985025bbdd3bdabdde8c156112c3d3dfe1941"}, ] [package.dependencies] pyaes = "*" rsa = "*" [package.extras] cryptg = ["cryptg"] [[package]] name = "tenacity" version = "8.2.2" description = "Retry code until it succeeds" category = "main" optional = false python-versions = ">=3.6" files = [ {file = "tenacity-8.2.2-py3-none-any.whl", hash = "sha256:2f277afb21b851637e8f52e6a613ff08734c347dc19ade928e519d7d2d8569b0"}, {file = "tenacity-8.2.2.tar.gz", hash = "sha256:43af037822bd0029025877f3b2d97cc4d7bb0c2991000a3d59d71517c5c969e0"}, ] [package.extras] doc = ["reno", "sphinx", "tornado (>=4.5)"] [[package]] name = "tensorboard" version = "2.11.2" description = "TensorBoard lets you watch Tensors Flow" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "tensorboard-2.11.2-py3-none-any.whl", hash = "sha256:cbaa2210c375f3af1509f8571360a19ccc3ded1d9641533414874b5deca47e89"}, ] [package.dependencies] absl-py = ">=0.4" google-auth = ">=1.6.3,<3" google-auth-oauthlib = ">=0.4.1,<0.5" grpcio = ">=1.24.3" markdown = ">=2.6.8" numpy = ">=1.12.0" protobuf = ">=3.9.2,<4" requests = ">=2.21.0,<3" setuptools = ">=41.0.0" tensorboard-data-server = ">=0.6.0,<0.7.0" tensorboard-plugin-wit = ">=1.6.0" werkzeug = ">=1.0.1" wheel = ">=0.26" [[package]] name = "tensorboard-data-server" version = "0.6.1" description = "Fast data loading for TensorBoard" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "tensorboard_data_server-0.6.1-py3-none-any.whl", hash = "sha256:809fe9887682d35c1f7d1f54f0f40f98bb1f771b14265b453ca051e2ce58fca7"}, {file = "tensorboard_data_server-0.6.1-py3-none-macosx_10_9_x86_64.whl", hash = "sha256:fa8cef9be4fcae2f2363c88176638baf2da19c5ec90addb49b1cde05c95c88ee"}, {file = "tensorboard_data_server-0.6.1-py3-none-manylinux2010_x86_64.whl", hash = "sha256:d8237580755e58eff68d1f3abefb5b1e39ae5c8b127cc40920f9c4fb33f4b98a"}, ] [[package]] name = "tensorboard-plugin-wit" version = "1.8.1" description = "What-If Tool TensorBoard plugin." category = "main" optional = true python-versions = "*" files = [ {file = "tensorboard_plugin_wit-1.8.1-py3-none-any.whl", hash = "sha256:ff26bdd583d155aa951ee3b152b3d0cffae8005dc697f72b44a8e8c2a77a8cbe"}, ] [[package]] name = "tensorflow" version = "2.11.1" description = "TensorFlow is an open source machine learning framework for everyone." category = "main" optional = true python-versions = ">=3.7" files = [ {file = "tensorflow-2.11.1-cp310-cp310-macosx_10_14_x86_64.whl", hash = "sha256:ac0e46c5de7985def49e4f688a0ca4180949a4d5dc62b89e9c6640db3c3982ba"}, {file = "tensorflow-2.11.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45b1669c523fa6dc240688bffe79f08dfbb76bf5e23a7fe10e722ba658637a44"}, {file = "tensorflow-2.11.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a96595e0c068d54717405fa12f36b4a5bb0a9fc53fb9065155a92cff944b35b"}, {file = "tensorflow-2.11.1-cp310-cp310-win_amd64.whl", hash = "sha256:13197f18f31a52d3f2eac28743d1b06abb8efd86017f184110a1b16841b745b1"}, {file = "tensorflow-2.11.1-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:9f030f1bc9e7763fa03ec5738323c42021ababcd562fe861b3a3f41e9ff10e43"}, {file = "tensorflow-2.11.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f12855c1e8373c1327650061fd6a9a3d3772e1bac8241202ea8ccb56213d005"}, {file = "tensorflow-2.11.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:76cd4279cb500074a8ab28af116af7f060f0b015651bef552769d51e55d6fd5c"}, {file = "tensorflow-2.11.1-cp38-cp38-win_amd64.whl", hash = "sha256:f5a2f75f28cd5fb615a5306f2091eac7da3a8fff949ab8804ec06b8e3682f837"}, {file = "tensorflow-2.11.1-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:ea93246ad6c90ff0422f06a82164836fe8098989a8a65c3b02c720eadbe15dde"}, {file = "tensorflow-2.11.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:30ba6b3c2f68037e965a19427a1f2a5f0351b7ceae6c686938a8485b08e1e1f3"}, {file = "tensorflow-2.11.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ddd5c61f68d8125c985370de96a24a80aee5e3f1604efacec7e1c34ca72de24"}, {file = "tensorflow-2.11.1-cp39-cp39-win_amd64.whl", hash = "sha256:b7d8834df3f72d7eab56bc2f34f2e52b82d705776b80b36bf5470b7538c9865c"}, ] [package.dependencies] absl-py = ">=1.0.0" astunparse = ">=1.6.0" flatbuffers = ">=2.0" gast = ">=0.2.1,<=0.4.0" google-pasta = ">=0.1.1" grpcio = ">=1.24.3,<2.0" h5py = ">=2.9.0" keras = ">=2.11.0,<2.12" libclang = ">=13.0.0" numpy = ">=1.20" opt-einsum = ">=2.3.2" packaging = "*" protobuf = ">=3.9.2,<3.20" setuptools = "*" six = ">=1.12.0" tensorboard = ">=2.11,<2.12" tensorflow-estimator = ">=2.11.0,<2.12" tensorflow-io-gcs-filesystem = {version = ">=0.23.1", markers = "platform_machine != \"arm64\" or platform_system != \"Darwin\""} termcolor = ">=1.1.0" typing-extensions = ">=3.6.6" wrapt = ">=1.11.0" [[package]] name = "tensorflow-estimator" version = "2.11.0" description = "TensorFlow Estimator." category = "main" optional = true python-versions = ">=3.7" files = [ {file = "tensorflow_estimator-2.11.0-py2.py3-none-any.whl", hash = "sha256:ea3b64acfff3d9a244f06178c9bdedcbdd3f125b67d0888dba8229498d06468b"}, ] [[package]] name = "tensorflow-hub" version = "0.13.0" description = "TensorFlow Hub is a library to foster the publication, discovery, and consumption of reusable parts of machine learning models." category = "main" optional = true python-versions = "*" files = [ {file = "tensorflow_hub-0.13.0-py2.py3-none-any.whl", hash = "sha256:3544f4fd9fd99e4eeb6da1b5b5320e4a2dbdef7f9bb778f66f76d6790f32dd65"}, ] [package.dependencies] numpy = ">=1.12.0" protobuf = ">=3.19.6" [package.extras] make-image-classifier = ["keras-preprocessing[image]"] make-nearest-neighbour-index = ["annoy", "apache-beam"] [[package]] name = "tensorflow-io-gcs-filesystem" version = "0.32.0" description = "TensorFlow IO" category = "main" optional = true python-versions = ">=3.7, <3.12" files = [ {file = "tensorflow_io_gcs_filesystem-0.32.0-cp310-cp310-macosx_10_14_x86_64.whl", hash = "sha256:74a7e25e83d4117a7ebb09a3f247553a5497393ab48c3ee0cf0d17b405026817"}, {file = "tensorflow_io_gcs_filesystem-0.32.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:045d51bba586390d0545fcd8a18727d62b175eb142f6f4c6d719d39de40774cd"}, {file = "tensorflow_io_gcs_filesystem-0.32.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:db682e9a510c27dd35710ba5a2c62c371e25b727741b2fe3a920355fa501e947"}, {file = "tensorflow_io_gcs_filesystem-0.32.0-cp311-cp311-macosx_10_14_x86_64.whl", hash = "sha256:7f15fd22e592661b10de317be2f42a0f84be7bfc5e6a565fcfcb04b60d625b78"}, {file = "tensorflow_io_gcs_filesystem-0.32.0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:336d9b3fe6b55aea149c4f6aa1fd6ffaf27d4e5c37e55a182340b47caba38846"}, {file = "tensorflow_io_gcs_filesystem-0.32.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:842f5f09cd756bdb3b4d0b5571b3a6f72fd534d42da938b9acf0ef462995eada"}, {file = "tensorflow_io_gcs_filesystem-0.32.0-cp37-cp37m-macosx_10_14_x86_64.whl", hash = "sha256:1ce80e1555d6ee88dda67feddf366cc8b30252b5837a7a17303df7b06a71fc2e"}, {file = "tensorflow_io_gcs_filesystem-0.32.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:05e65d3cb6c93a7929b384d86c6369c63cbbab8a770440a3d95e094878403f9f"}, {file = "tensorflow_io_gcs_filesystem-0.32.0-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:21de7dcc06eb1e7de3c022b0072d90ba35ef886578149663437aa7a6fb5bf6b3"}, {file = "tensorflow_io_gcs_filesystem-0.32.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:79fdd02103b8ae9f8b89af41f744c013fa1caaea709de19833917795e3063857"}, {file = "tensorflow_io_gcs_filesystem-0.32.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5635df0bbe40f971dc1b946e3372744b0bdfda45c38ffcd28ef53a32bb8da4da"}, {file = "tensorflow_io_gcs_filesystem-0.32.0-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:122be149e5f6a030f5c2901be0cc3cb07619232f7b03889e2cdf3da1c0d4f92f"}, {file = "tensorflow_io_gcs_filesystem-0.32.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8214cdf85bea694160f9035ff395221c1e25e119784ccb4c104919b1f5dec84e"}, {file = "tensorflow_io_gcs_filesystem-0.32.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:28202492d904a6e280cf27560791e87ac1c7566000db82065d63a70c27008af2"}, ] [package.extras] tensorflow = ["tensorflow (>=2.12.0,<2.13.0)"] tensorflow-aarch64 = ["tensorflow-aarch64 (>=2.12.0,<2.13.0)"] tensorflow-cpu = ["tensorflow-cpu (>=2.12.0,<2.13.0)"] tensorflow-gpu = ["tensorflow-gpu (>=2.12.0,<2.13.0)"] tensorflow-rocm = ["tensorflow-rocm (>=2.12.0,<2.13.0)"] [[package]] name = "tensorflow-macos" version = "2.11.0" description = "TensorFlow is an open source machine learning framework for everyone." category = "main" optional = true python-versions = ">=3.7" files = [ {file = "tensorflow_macos-2.11.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:0bdbd1bb564d01bd735d6d11451f0658c3dd8187369ee9dd3ed6de6bbdd6df53"}, {file = "tensorflow_macos-2.11.0-cp310-cp310-macosx_12_0_x86_64.whl", hash = "sha256:66eb67915cf418eddd3b4c158132609efd50895fa09fd55e4b2f14a3ab85bd34"}, {file = "tensorflow_macos-2.11.0-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:6810731e2c8353123f6c9c944d2765b58a2226e7eb9fec1e360f73977c6c6aa4"}, {file = "tensorflow_macos-2.11.0-cp38-cp38-macosx_12_0_x86_64.whl", hash = "sha256:881b36d97b67d24197250a091c52c31db14aecfdbf1ac20418a148ec37321978"}, {file = "tensorflow_macos-2.11.0-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:8d56b0d0bd140008b0cc4877804c9c310e1e2735444fa99bc7c88ffb2909153d"}, {file = "tensorflow_macos-2.11.0-cp39-cp39-macosx_12_0_x86_64.whl", hash = "sha256:db97cd91b905bd01069069f07325a2a291705222eb4914148b9574090a5815ae"}, ] [package.dependencies] absl-py = ">=1.0.0" astunparse = ">=1.6.0" flatbuffers = ">=2.0" gast = ">=0.2.1,<=0.4.0" google-pasta = ">=0.1.1" grpcio = ">=1.24.3,<2.0" h5py = ">=2.9.0" keras = ">=2.11.0,<2.12" libclang = ">=13.0.0" numpy = ">=1.20" opt-einsum = ">=2.3.2" packaging = "*" protobuf = ">=3.9.2,<3.20" setuptools = "*" six = ">=1.12.0" tensorboard = ">=2.11,<2.12" tensorflow-estimator = ">=2.11.0,<2.12" termcolor = ">=1.1.0" typing-extensions = ">=3.6.6" wrapt = ">=1.11.0" [[package]] name = "tensorflow-text" version = "2.11.0" description = "TF.Text is a TensorFlow library of text related ops, modules, and subgraphs." category = "main" optional = true python-versions = "*" files = [ {file = "tensorflow_text-2.11.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c9d4797e331da37419f2b19159fbc0f125ed60467340e9a209ab8f8d65856704"}, {file = "tensorflow_text-2.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b4abede4191820ae6d5a7c74f02c335a5f2e2df174eaa38b481b2b82a3330152"}, {file = "tensorflow_text-2.11.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:49194f85e03a2e3f017ac8e0e3d3927104fa20e6e883b43087cff032fe2cbe14"}, {file = "tensorflow_text-2.11.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a3ea14efeb1d627ed5098e791e95bb98ee6f9f928f9eda785205e184cc20b428"}, {file = "tensorflow_text-2.11.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a207ceea4c71a932c35e4d208d7b8c3edc65a5ba0eebfdc9233fc8da546625c9"}, {file = "tensorflow_text-2.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:506fbea82a1ec566d7d0f771adad589c44727d904311103169466d88236ec2c8"}, {file = "tensorflow_text-2.11.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:cf0033bf47872b57d46f78d7058db5676f396a9327fa4d063a2c73cce43586ae"}, {file = "tensorflow_text-2.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:56693df33461ab0e7f32549010ca38a8d01291fd67142e0396d0aeb9fcad2e09"}, ] [package.dependencies] tensorflow = {version = ">=2.11.0,<2.12", markers = "platform_machine != \"arm64\" or platform_system != \"Darwin\""} tensorflow-hub = ">=0.8.0" tensorflow-macos = {version = ">=2.11.0,<2.12", markers = "platform_machine == \"arm64\" and platform_system == \"Darwin\""} [package.extras] tensorflow-cpu = ["tensorflow-cpu (>=2.11.0,<2.12)"] tests = ["absl-py", "pytest", "tensorflow-datasets (>=3.2.0)"] [[package]] name = "termcolor" version = "2.3.0" description = "ANSI color formatting for output in terminal" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "termcolor-2.3.0-py3-none-any.whl", hash = "sha256:3afb05607b89aed0ffe25202399ee0867ad4d3cb4180d98aaf8eefa6a5f7d475"}, {file = "termcolor-2.3.0.tar.gz", hash = "sha256:b5b08f68937f138fe92f6c089b99f1e2da0ae56c52b78bf7075fd95420fd9a5a"}, ] [package.extras] tests = ["pytest", "pytest-cov"] [[package]] name = "terminado" version = "0.17.1" description = "Tornado websocket backend for the Xterm.js Javascript terminal emulator library." category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "terminado-0.17.1-py3-none-any.whl", hash = "sha256:8650d44334eba354dd591129ca3124a6ba42c3d5b70df5051b6921d506fdaeae"}, {file = "terminado-0.17.1.tar.gz", hash = "sha256:6ccbbcd3a4f8a25a5ec04991f39a0b8db52dfcd487ea0e578d977e6752380333"}, ] [package.dependencies] ptyprocess = {version = "*", markers = "os_name != \"nt\""} pywinpty = {version = ">=1.1.0", markers = "os_name == \"nt\""} tornado = ">=6.1.0" [package.extras] docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] test = ["pre-commit", "pytest (>=7.0)", "pytest-timeout"] [[package]] name = "textstat" version = "0.7.3" description = "Calculate statistical features from text" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "textstat-0.7.3-py3-none-any.whl", hash = "sha256:cbd9d641aa5abff0852638f0489913f31ea52fe597ccbaa337b4fc2a44efd15e"}, {file = "textstat-0.7.3.tar.gz", hash = "sha256:60b63cf8949f45bbb3b4205e4411bbc1cd66df4c08aef12545811c7e6e24f011"}, ] [package.dependencies] pyphen = "*" [[package]] name = "thinc" version = "8.1.10" description = "A refreshing functional take on deep learning, compatible with your favorite libraries" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "thinc-8.1.10-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:dbd1dc4394352d80af22131e1a238238eded59de19b55f77e6237436f4865b2c"}, {file = "thinc-8.1.10-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:524e6eb2436084968db1a713cfb5ea99b1b2e3363330d4aac8a403487a16d7c2"}, {file = "thinc-8.1.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ea3da2c0fb9012b6bff8b43d86dc34fd2db463f5b5e5fa725e2f5c49d29620b5"}, {file = "thinc-8.1.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d9bee276fb1f820b9a5f80c08655eb78dc2f368f3c22fd33e958e0fedeaac09b"}, {file = "thinc-8.1.10-cp310-cp310-win_amd64.whl", hash = "sha256:e5b2232e737c25fef3116597d1458fef38ddb7237649747686ce4d4531bb84a3"}, {file = "thinc-8.1.10-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:575b7dbe3a5d773c12f5dd6e366d942ad3c3ef7a5381332ba842bdbaf4d3e820"}, {file = "thinc-8.1.10-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:0bdf3f4e4a2fc0a4c5887e9114340ddb60ccc7b85f2cf92affdc68da82430575"}, {file = "thinc-8.1.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5c9cf2c9d8e44e1edeffe878cb137cbfe5ae1540621b5878be8e5e8d4924d757"}, {file = "thinc-8.1.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5fd1aa467f445860ae8f0943ab80e41be9b64243522c165bea452ad39d4ff46f"}, {file = "thinc-8.1.10-cp311-cp311-win_amd64.whl", hash = "sha256:108dcfef6ad1bef46d00ad31edc5fd3ab4d36c0cadb92cfbdb2f92d060acd8a0"}, {file = "thinc-8.1.10-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5af0392bdc63c621ba1def80ec98d753be9a27ebe1cf812bed2760371f20456"}, {file = "thinc-8.1.10-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:83da33e05fda126e85e385aaeb2eb8d1ae19368c5bc67f23b88bc2927738b5cf"}, {file = "thinc-8.1.10-cp36-cp36m-win_amd64.whl", hash = "sha256:bc321d0fbb8e146de4c152d36ea6000de0669fe081fd9777c8768ad9b4478839"}, {file = "thinc-8.1.10-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:bd9b678bcbf3f3a21260b2f55a65742aeeb7f5442c3ceb475378d95e0e99dc44"}, {file = "thinc-8.1.10-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:042be0f014d896b826d8c0891b7bc8772464a91661938c61cdd7296cef19280d"}, {file = "thinc-8.1.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a65a1e824711b30e0c35ebfb833681b64c6cb2762364548a210c3740838b9d91"}, {file = "thinc-8.1.10-cp37-cp37m-win_amd64.whl", hash = "sha256:d63fa0bd3e60931c76617e993042deef875f57b1679354ac2f0072e621e106d1"}, {file = "thinc-8.1.10-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:ee75162bfb8aab24bd59604c01935abe1602bbd478064a4a6199d3506cb57679"}, {file = "thinc-8.1.10-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:715ed60ddf1ddf5f98b454b2495fddbbfdb947d77bd47a241d1981d3f58ac9a0"}, {file = "thinc-8.1.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b432bf27e4724e2f470e5f36455530906d86a81505a3b406f2f4f5b4644f77d8"}, {file = "thinc-8.1.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d31f6834f1b1c428718a9668b7a06b74854a9217ba1d8186b41e48146d487fa3"}, {file = "thinc-8.1.10-cp38-cp38-win_amd64.whl", hash = "sha256:21a41c90122e9b8a6b33d5ba05913fd8a763757a2b49e0243eed0bce7722d661"}, {file = "thinc-8.1.10-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:0bf181b47d88c60a961e0cd05eec1143d949dd8e7e3523e13f4e8f1ea32f0004"}, {file = "thinc-8.1.10-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:18380a440d617fa704daa5018ed5e7d5a50efd9c237ad536a84047be3bcb767c"}, {file = "thinc-8.1.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50271826c3737168cd9409620c9fcd3f6315136d2fff08279c213a21a5c438e8"}, {file = "thinc-8.1.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2d08eb7c15592d4212cd729d782b8be1daa2ed5248a8169991c4f63659bc6266"}, {file = "thinc-8.1.10-cp39-cp39-win_amd64.whl", hash = "sha256:c245e6a5fcb71fcf23cb329f296349a4925b176fad5713571bb4f0fc8787ad7c"}, {file = "thinc-8.1.10.tar.gz", hash = "sha256:6c4a48d7da07e044e84a68cbb9b22f32f8490995a2bab0bfc60e412d14afb991"}, ] [package.dependencies] blis = ">=0.7.8,<0.8.0" catalogue = ">=2.0.4,<2.1.0" confection = ">=0.0.1,<1.0.0" cymem = ">=2.0.2,<2.1.0" murmurhash = ">=1.0.2,<1.1.0" numpy = ">=1.15.0" packaging = ">=20.0" preshed = ">=3.0.2,<3.1.0" pydantic = ">=1.7.4,<1.8 || >1.8,<1.8.1 || >1.8.1,<1.11.0" setuptools = "*" srsly = ">=2.4.0,<3.0.0" wasabi = ">=0.8.1,<1.2.0" [package.extras] cuda = ["cupy (>=5.0.0b4)"] cuda-autodetect = ["cupy-wheel (>=11.0.0)"] cuda100 = ["cupy-cuda100 (>=5.0.0b4)"] cuda101 = ["cupy-cuda101 (>=5.0.0b4)"] cuda102 = ["cupy-cuda102 (>=5.0.0b4)"] cuda110 = ["cupy-cuda110 (>=5.0.0b4)"] cuda111 = ["cupy-cuda111 (>=5.0.0b4)"] cuda112 = ["cupy-cuda112 (>=5.0.0b4)"] cuda113 = ["cupy-cuda113 (>=5.0.0b4)"] cuda114 = ["cupy-cuda114 (>=5.0.0b4)"] cuda115 = ["cupy-cuda115 (>=5.0.0b4)"] cuda116 = ["cupy-cuda116 (>=5.0.0b4)"] cuda117 = ["cupy-cuda117 (>=5.0.0b4)"] cuda11x = ["cupy-cuda11x (>=11.0.0)"] cuda80 = ["cupy-cuda80 (>=5.0.0b4)"] cuda90 = ["cupy-cuda90 (>=5.0.0b4)"] cuda91 = ["cupy-cuda91 (>=5.0.0b4)"] cuda92 = ["cupy-cuda92 (>=5.0.0b4)"] datasets = ["ml-datasets (>=0.2.0,<0.3.0)"] mxnet = ["mxnet (>=1.5.1,<1.6.0)"] tensorflow = ["tensorflow (>=2.0.0,<2.6.0)"] torch = ["torch (>=1.6.0)"] [[package]] name = "threadpoolctl" version = "3.1.0" description = "threadpoolctl" category = "main" optional = false python-versions = ">=3.6" files = [ {file = "threadpoolctl-3.1.0-py3-none-any.whl", hash = "sha256:8b99adda265feb6773280df41eece7b2e6561b772d21ffd52e372f999024907b"}, {file = "threadpoolctl-3.1.0.tar.gz", hash = "sha256:a335baacfaa4400ae1f0d8e3a58d6674d2f8828e3716bb2802c44955ad391380"}, ] [[package]] name = "tiktoken" version = "0.3.3" description = "tiktoken is a fast BPE tokeniser for use with OpenAI's models" category = "main" optional = false python-versions = ">=3.8" files = [ {file = "tiktoken-0.3.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d1f37fa75ba70c1bc7806641e8ccea1fba667d23e6341a1591ea333914c226a9"}, {file = "tiktoken-0.3.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3d7296c38392a943c2ccc0b61323086b8550cef08dcf6855de9949890dbc1fd3"}, {file = "tiktoken-0.3.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3c84491965e139a905280ac28b74baaa13445b3678e07f96767089ad1ef5ee7b"}, {file = "tiktoken-0.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:65970d77ea85ce6c7fce45131da9258cd58a802ffb29ead8f5552e331c025b2b"}, {file = "tiktoken-0.3.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:bd3f72d0ba7312c25c1652292121a24c8f1711207b63c6d8dab21afe4be0bf04"}, {file = "tiktoken-0.3.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:719c9e13432602dc496b24f13e3c3ad3ec0d2fbdb9aace84abfb95e9c3a425a4"}, {file = "tiktoken-0.3.3-cp310-cp310-win_amd64.whl", hash = "sha256:dc00772284c94e65045b984ed7e9f95d000034f6b2411df252011b069bd36217"}, {file = "tiktoken-0.3.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4db2c40f79f8f7a21a9fdbf1c6dee32dea77b0d7402355dc584a3083251d2e15"}, {file = "tiktoken-0.3.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e3c0f2231aa3829a1a431a882201dc27858634fd9989898e0f7d991dbc6bcc9d"}, {file = "tiktoken-0.3.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:48c13186a479de16cfa2c72bb0631fa9c518350a5b7569e4d77590f7fee96be9"}, {file = "tiktoken-0.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6674e4e37ab225020135cd66a392589623d5164c6456ba28cc27505abed10d9e"}, {file = "tiktoken-0.3.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:4a0c1357f6191211c544f935d5aa3cb9d7abd118c8f3c7124196d5ecd029b4af"}, {file = "tiktoken-0.3.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:2e948d167fc3b04483cbc33426766fd742e7cefe5346cd62b0cbd7279ef59539"}, {file = "tiktoken-0.3.3-cp311-cp311-win_amd64.whl", hash = "sha256:5dca434c8680b987eacde2dbc449e9ea4526574dbf9f3d8938665f638095be82"}, {file = "tiktoken-0.3.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:984758ebc07cd8c557345697c234f1f221bd730b388f4340dd08dffa50213a01"}, {file = "tiktoken-0.3.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:891012f29e159a989541ae47259234fb29ff88c22e1097567316e27ad33a3734"}, {file = "tiktoken-0.3.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:210f8602228e4c5d706deeb389da5a152b214966a5aa558eec87b57a1969ced5"}, {file = "tiktoken-0.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd783564f80d4dc44ff0a64b13756ded8390ed2548549aefadbe156af9188307"}, {file = "tiktoken-0.3.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:03f64bde9b4eb8338bf49c8532bfb4c3578f6a9a6979fc176d939f9e6f68b408"}, {file = "tiktoken-0.3.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:1ac369367b6f5e5bd80e8f9a7766ac2a9c65eda2aa856d5f3c556d924ff82986"}, {file = "tiktoken-0.3.3-cp38-cp38-win_amd64.whl", hash = "sha256:94600798891f78db780e5aa9321456cf355e54a4719fbd554147a628de1f163f"}, {file = "tiktoken-0.3.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:e59db6fca8d5ccea302fe2888917364446d6f4201a25272a1a1c44975c65406a"}, {file = "tiktoken-0.3.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:19340d8ba4d6fd729b2e3a096a547ded85f71012843008f97475f9db484869ee"}, {file = "tiktoken-0.3.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:542686cbc9225540e3a10f472f82fa2e1bebafce2233a211dee8459e95821cfd"}, {file = "tiktoken-0.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a43612b2a09f4787c050163a216bf51123851859e9ab128ad03d2729826cde9"}, {file = "tiktoken-0.3.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a11674f0275fa75fb59941b703650998bd4acb295adbd16fc8af17051aaed19d"}, {file = "tiktoken-0.3.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:65fc0a449630bab28c30b4adec257442a4706d79cffc2337c1d9df3e91825cdd"}, {file = "tiktoken-0.3.3-cp39-cp39-win_amd64.whl", hash = "sha256:0b9a7a9a8b781a50ee9289e85e28771d7e113cc0c656eadfb6fc6d3a106ff9bb"}, {file = "tiktoken-0.3.3.tar.gz", hash = "sha256:97b58b7bfda945791ec855e53d166e8ec20c6378942b93851a6c919ddf9d0496"}, ] [package.dependencies] regex = ">=2022.1.18" requests = ">=2.26.0" [package.extras] blobfile = ["blobfile (>=2)"] [[package]] name = "tinycss2" version = "1.2.1" description = "A tiny CSS parser" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "tinycss2-1.2.1-py3-none-any.whl", hash = "sha256:2b80a96d41e7c3914b8cda8bc7f705a4d9c49275616e886103dd839dfc847847"}, {file = "tinycss2-1.2.1.tar.gz", hash = "sha256:8cff3a8f066c2ec677c06dbc7b45619804a6938478d9d73c284b29d14ecb0627"}, ] [package.dependencies] webencodings = ">=0.4" [package.extras] doc = ["sphinx", "sphinx_rtd_theme"] test = ["flake8", "isort", "pytest"] [[package]] name = "tokenizers" version = "0.13.3" description = "Fast and Customizable Tokenizers" category = "main" optional = false python-versions = "*" files = [ {file = "tokenizers-0.13.3-cp310-cp310-macosx_10_11_x86_64.whl", hash = "sha256:f3835c5be51de8c0a092058a4d4380cb9244fb34681fd0a295fbf0a52a5fdf33"}, {file = "tokenizers-0.13.3-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:4ef4c3e821730f2692489e926b184321e887f34fb8a6b80b8096b966ba663d07"}, {file = "tokenizers-0.13.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c5fd1a6a25353e9aa762e2aae5a1e63883cad9f4e997c447ec39d071020459bc"}, {file = "tokenizers-0.13.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ee0b1b311d65beab83d7a41c56a1e46ab732a9eed4460648e8eb0bd69fc2d059"}, {file = "tokenizers-0.13.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5ef4215284df1277dadbcc5e17d4882bda19f770d02348e73523f7e7d8b8d396"}, {file = "tokenizers-0.13.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a4d53976079cff8a033f778fb9adca2d9d69d009c02fa2d71a878b5f3963ed30"}, {file = "tokenizers-0.13.3-cp310-cp310-win32.whl", hash = "sha256:1f0e3b4c2ea2cd13238ce43548959c118069db7579e5d40ec270ad77da5833ce"}, {file = "tokenizers-0.13.3-cp310-cp310-win_amd64.whl", hash = "sha256:89649c00d0d7211e8186f7a75dfa1db6996f65edce4b84821817eadcc2d3c79e"}, {file = "tokenizers-0.13.3-cp311-cp311-macosx_10_11_universal2.whl", hash = "sha256:56b726e0d2bbc9243872b0144515ba684af5b8d8cd112fb83ee1365e26ec74c8"}, {file = "tokenizers-0.13.3-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:cc5c022ce692e1f499d745af293ab9ee6f5d92538ed2faf73f9708c89ee59ce6"}, {file = "tokenizers-0.13.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f55c981ac44ba87c93e847c333e58c12abcbb377a0c2f2ef96e1a266e4184ff2"}, {file = "tokenizers-0.13.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f247eae99800ef821a91f47c5280e9e9afaeed9980fc444208d5aa6ba69ff148"}, {file = "tokenizers-0.13.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4b3e3215d048e94f40f1c95802e45dcc37c5b05eb46280fc2ccc8cd351bff839"}, {file = "tokenizers-0.13.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ba2b0bf01777c9b9bc94b53764d6684554ce98551fec496f71bc5be3a03e98b"}, {file = "tokenizers-0.13.3-cp311-cp311-win32.whl", hash = "sha256:cc78d77f597d1c458bf0ea7c2a64b6aa06941c7a99cb135b5969b0278824d808"}, {file = "tokenizers-0.13.3-cp311-cp311-win_amd64.whl", hash = "sha256:ecf182bf59bd541a8876deccf0360f5ae60496fd50b58510048020751cf1724c"}, {file = "tokenizers-0.13.3-cp37-cp37m-macosx_10_11_x86_64.whl", hash = "sha256:0527dc5436a1f6bf2c0327da3145687d3bcfbeab91fed8458920093de3901b44"}, {file = "tokenizers-0.13.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:07cbb2c307627dc99b44b22ef05ff4473aa7c7cc1fec8f0a8b37d8a64b1a16d2"}, {file = "tokenizers-0.13.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4560dbdeaae5b7ee0d4e493027e3de6d53c991b5002d7ff95083c99e11dd5ac0"}, {file = "tokenizers-0.13.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:64064bd0322405c9374305ab9b4c07152a1474370327499911937fd4a76d004b"}, {file = "tokenizers-0.13.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b8c6e2ab0f2e3d939ca66aa1d596602105fe33b505cd2854a4c1717f704c51de"}, {file = "tokenizers-0.13.3-cp37-cp37m-win32.whl", hash = "sha256:6cc29d410768f960db8677221e497226e545eaaea01aa3613fa0fdf2cc96cff4"}, {file = "tokenizers-0.13.3-cp37-cp37m-win_amd64.whl", hash = "sha256:fc2a7fdf864554a0dacf09d32e17c0caa9afe72baf9dd7ddedc61973bae352d8"}, {file = "tokenizers-0.13.3-cp38-cp38-macosx_10_11_x86_64.whl", hash = "sha256:8791dedba834c1fc55e5f1521be325ea3dafb381964be20684b92fdac95d79b7"}, {file = "tokenizers-0.13.3-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:d607a6a13718aeb20507bdf2b96162ead5145bbbfa26788d6b833f98b31b26e1"}, {file = "tokenizers-0.13.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3791338f809cd1bf8e4fee6b540b36822434d0c6c6bc47162448deee3f77d425"}, {file = "tokenizers-0.13.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c2f35f30e39e6aab8716f07790f646bdc6e4a853816cc49a95ef2a9016bf9ce6"}, {file = "tokenizers-0.13.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:310204dfed5aa797128b65d63538a9837cbdd15da2a29a77d67eefa489edda26"}, {file = "tokenizers-0.13.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0f9b92ea052305166559f38498b3b0cae159caea712646648aaa272f7160963"}, {file = "tokenizers-0.13.3-cp38-cp38-win32.whl", hash = "sha256:9a3fa134896c3c1f0da6e762d15141fbff30d094067c8f1157b9fdca593b5806"}, {file = "tokenizers-0.13.3-cp38-cp38-win_amd64.whl", hash = "sha256:8e7b0cdeace87fa9e760e6a605e0ae8fc14b7d72e9fc19c578116f7287bb873d"}, {file = "tokenizers-0.13.3-cp39-cp39-macosx_10_11_x86_64.whl", hash = "sha256:00cee1e0859d55507e693a48fa4aef07060c4bb6bd93d80120e18fea9371c66d"}, {file = "tokenizers-0.13.3-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:a23ff602d0797cea1d0506ce69b27523b07e70f6dda982ab8cf82402de839088"}, {file = "tokenizers-0.13.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:70ce07445050b537d2696022dafb115307abdffd2a5c106f029490f84501ef97"}, {file = "tokenizers-0.13.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:280ffe95f50eaaf655b3a1dc7ff1d9cf4777029dbbc3e63a74e65a056594abc3"}, {file = "tokenizers-0.13.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:97acfcec592f7e9de8cadcdcda50a7134423ac8455c0166b28c9ff04d227b371"}, {file = "tokenizers-0.13.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd7730c98a3010cd4f523465867ff95cd9d6430db46676ce79358f65ae39797b"}, {file = "tokenizers-0.13.3-cp39-cp39-win32.whl", hash = "sha256:48625a108029cb1ddf42e17a81b5a3230ba6888a70c9dc14e81bc319e812652d"}, {file = "tokenizers-0.13.3-cp39-cp39-win_amd64.whl", hash = "sha256:bc0a6f1ba036e482db6453571c9e3e60ecd5489980ffd95d11dc9f960483d783"}, {file = "tokenizers-0.13.3.tar.gz", hash = "sha256:2e546dbb68b623008a5442353137fbb0123d311a6d7ba52f2667c8862a75af2e"}, ] [package.extras] dev = ["black (==22.3)", "datasets", "numpy", "pytest", "requests"] docs = ["setuptools-rust", "sphinx", "sphinx-rtd-theme"] testing = ["black (==22.3)", "datasets", "numpy", "pytest", "requests"] [[package]] name = "toml" version = "0.10.2" description = "Python Library for Tom's Obvious, Minimal Language" category = "main" optional = false python-versions = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*" files = [ {file = "toml-0.10.2-py2.py3-none-any.whl", hash = "sha256:806143ae5bfb6a3c6e736a764057db0e6a0e05e338b5630894a5f779cabb4f9b"}, {file = "toml-0.10.2.tar.gz", hash = "sha256:b3bda1d108d5dd99f4a20d24d9c348e91c4db7ab1b749200bded2f839ccbe68f"}, ] [[package]] name = "tomli" version = "2.0.1" description = "A lil' TOML parser" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"}, {file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"}, ] [[package]] name = "torch" version = "1.13.1" description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration" category = "main" optional = false python-versions = ">=3.7.0" files = [ {file = "torch-1.13.1-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:fd12043868a34a8da7d490bf6db66991108b00ffbeecb034228bfcbbd4197143"}, {file = "torch-1.13.1-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:d9fe785d375f2e26a5d5eba5de91f89e6a3be5d11efb497e76705fdf93fa3c2e"}, {file = "torch-1.13.1-cp310-cp310-win_amd64.whl", hash = "sha256:98124598cdff4c287dbf50f53fb455f0c1e3a88022b39648102957f3445e9b76"}, {file = "torch-1.13.1-cp310-none-macosx_10_9_x86_64.whl", hash = "sha256:393a6273c832e047581063fb74335ff50b4c566217019cc6ace318cd79eb0566"}, {file = "torch-1.13.1-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:0122806b111b949d21fa1a5f9764d1fd2fcc4a47cb7f8ff914204fd4fc752ed5"}, {file = "torch-1.13.1-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:22128502fd8f5b25ac1cd849ecb64a418382ae81dd4ce2b5cebaa09ab15b0d9b"}, {file = "torch-1.13.1-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:76024be052b659ac1304ab8475ab03ea0a12124c3e7626282c9c86798ac7bc11"}, {file = "torch-1.13.1-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:ea8dda84d796094eb8709df0fcd6b56dc20b58fdd6bc4e8d7109930dafc8e419"}, {file = "torch-1.13.1-cp37-cp37m-win_amd64.whl", hash = "sha256:2ee7b81e9c457252bddd7d3da66fb1f619a5d12c24d7074de91c4ddafb832c93"}, {file = "torch-1.13.1-cp37-none-macosx_10_9_x86_64.whl", hash = "sha256:0d9b8061048cfb78e675b9d2ea8503bfe30db43d583599ae8626b1263a0c1380"}, {file = "torch-1.13.1-cp37-none-macosx_11_0_arm64.whl", hash = "sha256:f402ca80b66e9fbd661ed4287d7553f7f3899d9ab54bf5c67faada1555abde28"}, {file = "torch-1.13.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:727dbf00e2cf858052364c0e2a496684b9cb5aa01dc8a8bc8bbb7c54502bdcdd"}, {file = "torch-1.13.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:df8434b0695e9ceb8cc70650afc1310d8ba949e6db2a0525ddd9c3b2b181e5fe"}, {file = "torch-1.13.1-cp38-cp38-win_amd64.whl", hash = "sha256:5e1e722a41f52a3f26f0c4fcec227e02c6c42f7c094f32e49d4beef7d1e213ea"}, {file = "torch-1.13.1-cp38-none-macosx_10_9_x86_64.whl", hash = "sha256:33e67eea526e0bbb9151263e65417a9ef2d8fa53cbe628e87310060c9dcfa312"}, {file = "torch-1.13.1-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:eeeb204d30fd40af6a2d80879b46a7efbe3cf43cdbeb8838dd4f3d126cc90b2b"}, {file = "torch-1.13.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:50ff5e76d70074f6653d191fe4f6a42fdbe0cf942fbe2a3af0b75eaa414ac038"}, {file = "torch-1.13.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:2c3581a3fd81eb1f0f22997cddffea569fea53bafa372b2c0471db373b26aafc"}, {file = "torch-1.13.1-cp39-cp39-win_amd64.whl", hash = "sha256:0aa46f0ac95050c604bcf9ef71da9f1172e5037fdf2ebe051962d47b123848e7"}, {file = "torch-1.13.1-cp39-none-macosx_10_9_x86_64.whl", hash = "sha256:6930791efa8757cb6974af73d4996b6b50c592882a324b8fb0589c6a9ba2ddaf"}, {file = "torch-1.13.1-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:e0df902a7c7dd6c795698532ee5970ce898672625635d885eade9976e5a04949"}, ] [package.dependencies] nvidia-cublas-cu11 = {version = "11.10.3.66", markers = "platform_system == \"Linux\""} nvidia-cuda-nvrtc-cu11 = {version = "11.7.99", markers = "platform_system == \"Linux\""} nvidia-cuda-runtime-cu11 = {version = "11.7.99", markers = "platform_system == \"Linux\""} nvidia-cudnn-cu11 = {version = "8.5.0.96", markers = "platform_system == \"Linux\""} typing-extensions = "*" [package.extras] opt-einsum = ["opt-einsum (>=3.3)"] [[package]] name = "torchvision" version = "0.14.1" description = "image and video datasets and models for torch deep learning" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "torchvision-0.14.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:eeb05dd9dd3af5428fee525400759daf8da8e4caec45ddd6908cfb36571f6433"}, {file = "torchvision-0.14.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8d0766ea92affa7af248e327dd85f7c9cfdf51a57530b43212d4e1858548e9d7"}, {file = "torchvision-0.14.1-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:6d7b35653113664ea3fdcb71f515cfbf29d2fe393000fd8aaff27a1284de6908"}, {file = "torchvision-0.14.1-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:8a9eb773a2fa8f516e404ac09c059fb14e6882c48fdbb9c946327d2ce5dba6cd"}, {file = "torchvision-0.14.1-cp310-cp310-win_amd64.whl", hash = "sha256:13986f0c15377ff23039e1401012ccb6ecf71024ce53def27139e4eac5a57592"}, {file = "torchvision-0.14.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:fb7a793fd33ce1abec24b42778419a3fb1e3159d7dfcb274a3ca8fb8cbc408dc"}, {file = "torchvision-0.14.1-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:89fb0419780ec9a9eb9f7856a0149f6ac9f956b28f44b0c0080c6b5b48044db7"}, {file = "torchvision-0.14.1-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:a2d4237d3c9705d7729eb4534e4eb06f1d6be7ff1df391204dfb51586d9b0ecb"}, {file = "torchvision-0.14.1-cp37-cp37m-win_amd64.whl", hash = "sha256:92a324712a87957443cc34223274298ae9496853f115c252f8fc02b931f2340e"}, {file = "torchvision-0.14.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:68ed03359dcd3da9cd21b8ab94da21158df8a6a0c5bad0bf4a42f0e448d28cb3"}, {file = "torchvision-0.14.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:30fcf0e9fe57d4ac4ce6426659a57dce199637ccb6c70be1128670f177692624"}, {file = "torchvision-0.14.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:0ed02aefd09bf1114d35f1aa7dce55aa61c2c7e57f9aa02dce362860be654e85"}, {file = "torchvision-0.14.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:a541e49fc3c4e90e49e6988428ab047415ed52ea97d0c0bfd147d8bacb8f4df8"}, {file = "torchvision-0.14.1-cp38-cp38-win_amd64.whl", hash = "sha256:6099b3191dc2516099a32ae38a5fb349b42e863872a13545ab1a524b6567be60"}, {file = "torchvision-0.14.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c5e744f56e5f5b452deb5fc0f3f2ba4d2f00612d14d8da0dbefea8f09ac7690b"}, {file = "torchvision-0.14.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:758b20d079e810b4740bd60d1eb16e49da830e3360f9be379eb177ee221fa5d4"}, {file = "torchvision-0.14.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:83045507ef8d3c015d4df6be79491375b2f901352cfca6e72b4723e9c4f9a55d"}, {file = "torchvision-0.14.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:eaed58cf454323ed9222d4e0dd5fb897064f454b400696e03a5200e65d3a1e76"}, {file = "torchvision-0.14.1-cp39-cp39-win_amd64.whl", hash = "sha256:b337e1245ca4353623dd563c03cd8f020c2496a7c5d12bba4d2e381999c766e0"}, ] [package.dependencies] numpy = "*" pillow = ">=5.3.0,<8.3.0 || >=8.4.0" requests = "*" torch = "1.13.1" typing-extensions = "*" [package.extras] scipy = ["scipy"] [[package]] name = "tornado" version = "6.3.2" description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." category = "dev" optional = false python-versions = ">= 3.8" files = [ {file = "tornado-6.3.2-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:c367ab6c0393d71171123ca5515c61ff62fe09024fa6bf299cd1339dc9456829"}, {file = "tornado-6.3.2-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:b46a6ab20f5c7c1cb949c72c1994a4585d2eaa0be4853f50a03b5031e964fc7c"}, {file = "tornado-6.3.2-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c2de14066c4a38b4ecbbcd55c5cc4b5340eb04f1c5e81da7451ef555859c833f"}, {file = "tornado-6.3.2-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:05615096845cf50a895026f749195bf0b10b8909f9be672f50b0fe69cba368e4"}, {file = "tornado-6.3.2-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5b17b1cf5f8354efa3d37c6e28fdfd9c1c1e5122f2cb56dac121ac61baa47cbe"}, {file = "tornado-6.3.2-cp38-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:29e71c847a35f6e10ca3b5c2990a52ce38b233019d8e858b755ea6ce4dcdd19d"}, {file = "tornado-6.3.2-cp38-abi3-musllinux_1_1_i686.whl", hash = "sha256:834ae7540ad3a83199a8da8f9f2d383e3c3d5130a328889e4cc991acc81e87a0"}, {file = "tornado-6.3.2-cp38-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:6a0848f1aea0d196a7c4f6772197cbe2abc4266f836b0aac76947872cd29b411"}, {file = "tornado-6.3.2-cp38-abi3-win32.whl", hash = "sha256:7efcbcc30b7c654eb6a8c9c9da787a851c18f8ccd4a5a3a95b05c7accfa068d2"}, {file = "tornado-6.3.2-cp38-abi3-win_amd64.whl", hash = "sha256:0c325e66c8123c606eea33084976c832aa4e766b7dff8aedd7587ea44a604cdf"}, {file = "tornado-6.3.2.tar.gz", hash = "sha256:4b927c4f19b71e627b13f3db2324e4ae660527143f9e1f2e2fb404f3a187e2ba"}, ] [[package]] name = "tqdm" version = "4.65.0" description = "Fast, Extensible Progress Meter" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "tqdm-4.65.0-py3-none-any.whl", hash = "sha256:c4f53a17fe37e132815abceec022631be8ffe1b9381c2e6e30aa70edc99e9671"}, {file = "tqdm-4.65.0.tar.gz", hash = "sha256:1871fb68a86b8fb3b59ca4cdd3dcccbc7e6d613eeed31f4c332531977b89beb5"}, ] [package.dependencies] colorama = {version = "*", markers = "platform_system == \"Windows\""} [package.extras] dev = ["py-make (>=0.1.0)", "twine", "wheel"] notebook = ["ipywidgets (>=6)"] slack = ["slack-sdk"] telegram = ["requests"] [[package]] name = "traitlets" version = "5.9.0" description = "Traitlets Python configuration system" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "traitlets-5.9.0-py3-none-any.whl", hash = "sha256:9e6ec080259b9a5940c797d58b613b5e31441c2257b87c2e795c5228ae80d2d8"}, {file = "traitlets-5.9.0.tar.gz", hash = "sha256:f6cde21a9c68cf756af02035f72d5a723bf607e862e7be33ece505abf4a3bad9"}, ] [package.extras] docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] test = ["argcomplete (>=2.0)", "pre-commit", "pytest", "pytest-mock"] [[package]] name = "transformers" version = "4.29.2" description = "State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow" category = "main" optional = false python-versions = ">=3.7.0" files = [ {file = "transformers-4.29.2-py3-none-any.whl", hash = "sha256:0ef158b99bad6f4e6652a0d8655fbbe58b4cb788ce7040f320b5d29c7c810a75"}, {file = "transformers-4.29.2.tar.gz", hash = "sha256:ed9467661f459f1ce49461d83f18f3b36b6a37f306182dc2ba272935f3b93ebb"}, ] [package.dependencies] filelock = "*" huggingface-hub = ">=0.14.1,<1.0" numpy = ">=1.17" packaging = ">=20.0" pyyaml = ">=5.1" regex = "!=2019.12.17" requests = "*" tokenizers = ">=0.11.1,<0.11.3 || >0.11.3,<0.14" tqdm = ">=4.27" [package.extras] accelerate = ["accelerate (>=0.19.0)"] agents = ["Pillow", "accelerate (>=0.19.0)", "datasets (!=2.5.0)", "diffusers", "opencv-python", "sentencepiece (>=0.1.91,!=0.1.92)", "torch (>=1.9,!=1.12.0)"] all = ["Pillow", "accelerate (>=0.19.0)", "av (==9.2.0)", "codecarbon (==1.2.0)", "decord (==0.6.0)", "flax (>=0.4.1,<=0.6.9)", "jax (>=0.2.8,!=0.3.2,<=0.3.6)", "jaxlib (>=0.1.65,<=0.3.6)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "numba (<0.57.0)", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "phonemizer", "protobuf (<=3.20.2)", "pyctcdecode (>=0.4.0)", "ray[tune]", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>=2.4,<2.13)", "tensorflow-text (<2.13)", "tf2onnx", "timm", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "torch (>=1.9,!=1.12.0)", "torchaudio", "torchvision"] audio = ["kenlm", "librosa", "numba (<0.57.0)", "phonemizer", "pyctcdecode (>=0.4.0)"] codecarbon = ["codecarbon (==1.2.0)"] deepspeed = ["accelerate (>=0.19.0)", "deepspeed (>=0.8.3)"] deepspeed-testing = ["GitPython (<3.1.19)", "accelerate (>=0.19.0)", "beautifulsoup4", "black (>=23.1,<24.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "deepspeed (>=0.8.3)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "hf-doc-builder (>=0.3.0)", "nltk", "optuna", "parameterized", "protobuf (<=3.20.2)", "psutil", "pytest", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "safetensors (>=0.2.1)", "sentencepiece (>=0.1.91,!=0.1.92)", "timeout-decorator"] dev = ["GitPython (<3.1.19)", "Pillow", "accelerate (>=0.19.0)", "av (==9.2.0)", "beautifulsoup4", "black (>=23.1,<24.0)", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "decord (==0.6.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "flax (>=0.4.1,<=0.6.9)", "fugashi (>=1.0)", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "jax (>=0.2.8,!=0.3.2,<=0.3.6)", "jaxlib (>=0.1.65,<=0.3.6)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "nltk", "numba (<0.57.0)", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "parameterized", "phonemizer", "protobuf (<=3.20.2)", "psutil", "pyctcdecode (>=0.4.0)", "pytest", "pytest-timeout", "pytest-xdist", "ray[tune]", "rhoknp (>=1.1.0)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (>=0.0.241,<=0.0.259)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "safetensors (>=0.2.1)", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorflow (>=2.4,<2.13)", "tensorflow-text (<2.13)", "tf2onnx", "timeout-decorator", "timm", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "torch (>=1.9,!=1.12.0)", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"] dev-tensorflow = ["GitPython (<3.1.19)", "Pillow", "beautifulsoup4", "black (>=23.1,<24.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "isort (>=5.5.4)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "nltk", "numba (<0.57.0)", "onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "parameterized", "phonemizer", "protobuf (<=3.20.2)", "psutil", "pyctcdecode (>=0.4.0)", "pytest", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (>=0.0.241,<=0.0.259)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "safetensors (>=0.2.1)", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorflow (>=2.4,<2.13)", "tensorflow-text (<2.13)", "tf2onnx", "timeout-decorator", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "urllib3 (<2.0.0)"] dev-torch = ["GitPython (<3.1.19)", "Pillow", "accelerate (>=0.19.0)", "beautifulsoup4", "black (>=23.1,<24.0)", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "fugashi (>=1.0)", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "kenlm", "librosa", "nltk", "numba (<0.57.0)", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "optuna", "parameterized", "phonemizer", "protobuf (<=3.20.2)", "psutil", "pyctcdecode (>=0.4.0)", "pytest", "pytest-timeout", "pytest-xdist", "ray[tune]", "rhoknp (>=1.1.0)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (>=0.0.241,<=0.0.259)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "safetensors (>=0.2.1)", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "timeout-decorator", "timm", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "torch (>=1.9,!=1.12.0)", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"] docs = ["Pillow", "accelerate (>=0.19.0)", "av (==9.2.0)", "codecarbon (==1.2.0)", "decord (==0.6.0)", "flax (>=0.4.1,<=0.6.9)", "hf-doc-builder", "jax (>=0.2.8,!=0.3.2,<=0.3.6)", "jaxlib (>=0.1.65,<=0.3.6)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "numba (<0.57.0)", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "phonemizer", "protobuf (<=3.20.2)", "pyctcdecode (>=0.4.0)", "ray[tune]", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>=2.4,<2.13)", "tensorflow-text (<2.13)", "tf2onnx", "timm", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "torch (>=1.9,!=1.12.0)", "torchaudio", "torchvision"] docs-specific = ["hf-doc-builder"] fairscale = ["fairscale (>0.3)"] flax = ["flax (>=0.4.1,<=0.6.9)", "jax (>=0.2.8,!=0.3.2,<=0.3.6)", "jaxlib (>=0.1.65,<=0.3.6)", "optax (>=0.0.8,<=0.1.4)"] flax-speech = ["kenlm", "librosa", "numba (<0.57.0)", "phonemizer", "pyctcdecode (>=0.4.0)"] ftfy = ["ftfy"] integrations = ["optuna", "ray[tune]", "sigopt"] ja = ["fugashi (>=1.0)", "ipadic (>=1.0.0,<2.0)", "rhoknp (>=1.1.0)", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)"] modelcreation = ["cookiecutter (==1.7.3)"] natten = ["natten (>=0.14.6)"] onnx = ["onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "tf2onnx"] onnxruntime = ["onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)"] optuna = ["optuna"] quality = ["GitPython (<3.1.19)", "black (>=23.1,<24.0)", "datasets (!=2.5.0)", "hf-doc-builder (>=0.3.0)", "isort (>=5.5.4)", "ruff (>=0.0.241,<=0.0.259)", "urllib3 (<2.0.0)"] ray = ["ray[tune]"] retrieval = ["datasets (!=2.5.0)", "faiss-cpu"] sagemaker = ["sagemaker (>=2.31.0)"] sentencepiece = ["protobuf (<=3.20.2)", "sentencepiece (>=0.1.91,!=0.1.92)"] serving = ["fastapi", "pydantic", "starlette", "uvicorn"] sigopt = ["sigopt"] sklearn = ["scikit-learn"] speech = ["kenlm", "librosa", "numba (<0.57.0)", "phonemizer", "pyctcdecode (>=0.4.0)", "torchaudio"] testing = ["GitPython (<3.1.19)", "beautifulsoup4", "black (>=23.1,<24.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "hf-doc-builder (>=0.3.0)", "nltk", "parameterized", "protobuf (<=3.20.2)", "psutil", "pytest", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "safetensors (>=0.2.1)", "timeout-decorator"] tf = ["keras-nlp (>=0.3.1)", "onnxconverter-common", "tensorflow (>=2.4,<2.13)", "tensorflow-text (<2.13)", "tf2onnx"] tf-cpu = ["keras-nlp (>=0.3.1)", "onnxconverter-common", "tensorflow-cpu (>=2.4,<2.13)", "tensorflow-text (<2.13)", "tf2onnx"] tf-speech = ["kenlm", "librosa", "numba (<0.57.0)", "phonemizer", "pyctcdecode (>=0.4.0)"] timm = ["timm"] tokenizers = ["tokenizers (>=0.11.1,!=0.11.3,<0.14)"] torch = ["accelerate (>=0.19.0)", "torch (>=1.9,!=1.12.0)"] torch-speech = ["kenlm", "librosa", "numba (<0.57.0)", "phonemizer", "pyctcdecode (>=0.4.0)", "torchaudio"] torch-vision = ["Pillow", "torchvision"] torchhub = ["filelock", "huggingface-hub (>=0.14.1,<1.0)", "importlib-metadata", "numpy (>=1.17)", "packaging (>=20.0)", "protobuf (<=3.20.2)", "regex (!=2019.12.17)", "requests", "sentencepiece (>=0.1.91,!=0.1.92)", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "torch (>=1.9,!=1.12.0)", "tqdm (>=4.27)"] video = ["av (==9.2.0)", "decord (==0.6.0)"] vision = ["Pillow"] [[package]] name = "typer" version = "0.7.0" description = "Typer, build great CLIs. Easy to code. Based on Python type hints." category = "main" optional = true python-versions = ">=3.6" files = [ {file = "typer-0.7.0-py3-none-any.whl", hash = "sha256:b5e704f4e48ec263de1c0b3a2387cd405a13767d2f907f44c1a08cbad96f606d"}, {file = "typer-0.7.0.tar.gz", hash = "sha256:ff797846578a9f2a201b53442aedeb543319466870fbe1c701eab66dd7681165"}, ] [package.dependencies] click = ">=7.1.1,<9.0.0" [package.extras] all = ["colorama (>=0.4.3,<0.5.0)", "rich (>=10.11.0,<13.0.0)", "shellingham (>=1.3.0,<2.0.0)"] dev = ["autoflake (>=1.3.1,<2.0.0)", "flake8 (>=3.8.3,<4.0.0)", "pre-commit (>=2.17.0,<3.0.0)"] doc = ["cairosvg (>=2.5.2,<3.0.0)", "mdx-include (>=1.4.1,<2.0.0)", "mkdocs (>=1.1.2,<2.0.0)", "mkdocs-material (>=8.1.4,<9.0.0)", "pillow (>=9.3.0,<10.0.0)"] test = ["black (>=22.3.0,<23.0.0)", "coverage (>=6.2,<7.0)", "isort (>=5.0.6,<6.0.0)", "mypy (==0.910)", "pytest (>=4.4.0,<8.0.0)", "pytest-cov (>=2.10.0,<5.0.0)", "pytest-sugar (>=0.9.4,<0.10.0)", "pytest-xdist (>=1.32.0,<4.0.0)", "rich (>=10.11.0,<13.0.0)", "shellingham (>=1.3.0,<2.0.0)"] [[package]] name = "types-chardet" version = "5.0.4.6" description = "Typing stubs for chardet" category = "dev" optional = false python-versions = "*" files = [ {file = "types-chardet-5.0.4.6.tar.gz", hash = "sha256:caf4c74cd13ccfd8b3313c314aba943b159de562a2573ed03137402b2bb37818"}, {file = "types_chardet-5.0.4.6-py3-none-any.whl", hash = "sha256:ea832d87e798abf1e4dfc73767807c2b7fee35d0003ae90348aea4ae00fb004d"}, ] [[package]] name = "types-pyopenssl" version = "23.1.0.3" description = "Typing stubs for pyOpenSSL" category = "dev" optional = false python-versions = "*" files = [ {file = "types-pyOpenSSL-23.1.0.3.tar.gz", hash = "sha256:e7211088eff3e20d359888dedecb0994f7181d5cce0f26354dd47ca0484dc8a6"}, {file = "types_pyOpenSSL-23.1.0.3-py3-none-any.whl", hash = "sha256:ad024b07a1f4bffbca44699543c71efd04733a6c22781fa9673a971e410a3086"}, ] [package.dependencies] cryptography = ">=35.0.0" [[package]] name = "types-pyyaml" version = "6.0.12.9" description = "Typing stubs for PyYAML" category = "dev" optional = false python-versions = "*" files = [ {file = "types-PyYAML-6.0.12.9.tar.gz", hash = "sha256:c51b1bd6d99ddf0aa2884a7a328810ebf70a4262c292195d3f4f9a0005f9eeb6"}, {file = "types_PyYAML-6.0.12.9-py3-none-any.whl", hash = "sha256:5aed5aa66bd2d2e158f75dda22b059570ede988559f030cf294871d3b647e3e8"}, ] [[package]] name = "types-redis" version = "4.5.5.2" description = "Typing stubs for redis" category = "dev" optional = false python-versions = "*" files = [ {file = "types-redis-4.5.5.2.tar.gz", hash = "sha256:2fe82f374d9dddf007deaf23d81fddcfd9523d9522bf11523c5c43bc5b27099e"}, {file = "types_redis-4.5.5.2-py3-none-any.whl", hash = "sha256:bf8692252038dbe03b007ca4fde87d3ae8e10610854a6858e3bf5d01721a7c4b"}, ] [package.dependencies] cryptography = ">=35.0.0" types-pyOpenSSL = "*" [[package]] name = "types-requests" version = "2.30.0.0" description = "Typing stubs for requests" category = "main" optional = false python-versions = "*" files = [ {file = "types-requests-2.30.0.0.tar.gz", hash = "sha256:dec781054324a70ba64430ae9e62e7e9c8e4618c185a5cb3f87a6738251b5a31"}, {file = "types_requests-2.30.0.0-py3-none-any.whl", hash = "sha256:c6cf08e120ca9f0dc4fa4e32c3f953c3fba222bcc1db6b97695bce8da1ba9864"}, ] [package.dependencies] types-urllib3 = "*" [[package]] name = "types-toml" version = "0.10.8.6" description = "Typing stubs for toml" category = "dev" optional = false python-versions = "*" files = [ {file = "types-toml-0.10.8.6.tar.gz", hash = "sha256:6d3ac79e36c9ee593c5d4fb33a50cca0e3adceb6ef5cff8b8e5aef67b4c4aaf2"}, {file = "types_toml-0.10.8.6-py3-none-any.whl", hash = "sha256:de7b2bb1831d6f7a4b554671ffe5875e729753496961b3e9b202745e4955dafa"}, ] [[package]] name = "types-urllib3" version = "1.26.25.13" description = "Typing stubs for urllib3" category = "main" optional = false python-versions = "*" files = [ {file = "types-urllib3-1.26.25.13.tar.gz", hash = "sha256:3300538c9dc11dad32eae4827ac313f5d986b8b21494801f1bf97a1ac6c03ae5"}, {file = "types_urllib3-1.26.25.13-py3-none-any.whl", hash = "sha256:5dbd1d2bef14efee43f5318b5d36d805a489f6600252bb53626d4bfafd95e27c"}, ] [[package]] name = "typing-extensions" version = "4.5.0" description = "Backported and Experimental Type Hints for Python 3.7+" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "typing_extensions-4.5.0-py3-none-any.whl", hash = "sha256:fb33085c39dd998ac16d1431ebc293a8b3eedd00fd4a32de0ff79002c19511b4"}, {file = "typing_extensions-4.5.0.tar.gz", hash = "sha256:5cb5f4a79139d699607b3ef622a1dedafa84e115ab0024e0d9c044a9479ca7cb"}, ] [[package]] name = "typing-inspect" version = "0.8.0" description = "Runtime inspection utilities for typing module." category = "main" optional = false python-versions = "*" files = [ {file = "typing_inspect-0.8.0-py3-none-any.whl", hash = "sha256:5fbf9c1e65d4fa01e701fe12a5bca6c6e08a4ffd5bc60bfac028253a447c5188"}, {file = "typing_inspect-0.8.0.tar.gz", hash = "sha256:8b1ff0c400943b6145df8119c41c244ca8207f1f10c9c057aeed1560e4806e3d"}, ] [package.dependencies] mypy-extensions = ">=0.3.0" typing-extensions = ">=3.7.4" [[package]] name = "tzdata" version = "2023.3" description = "Provider of IANA time zone data" category = "main" optional = false python-versions = ">=2" files = [ {file = "tzdata-2023.3-py2.py3-none-any.whl", hash = "sha256:7e65763eef3120314099b6939b5546db7adce1e7d6f2e179e3df563c70511eda"}, {file = "tzdata-2023.3.tar.gz", hash = "sha256:11ef1e08e54acb0d4f95bdb1be05da659673de4acbd21bf9c69e94cc5e907a3a"}, ] [[package]] name = "tzlocal" version = "5.0.1" description = "tzinfo object for the local timezone" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "tzlocal-5.0.1-py3-none-any.whl", hash = "sha256:f3596e180296aaf2dbd97d124fe76ae3a0e3d32b258447de7b939b3fd4be992f"}, {file = "tzlocal-5.0.1.tar.gz", hash = "sha256:46eb99ad4bdb71f3f72b7d24f4267753e240944ecfc16f25d2719ba89827a803"}, ] [package.dependencies] "backports.zoneinfo" = {version = "*", markers = "python_version < \"3.9\""} tzdata = {version = "*", markers = "platform_system == \"Windows\""} [package.extras] devenv = ["black", "check-manifest", "flake8", "pyroma", "pytest (>=4.3)", "pytest-cov", "pytest-mock (>=3.3)", "zest.releaser"] [[package]] name = "uri-template" version = "1.2.0" description = "RFC 6570 URI Template Processor" category = "dev" optional = false python-versions = ">=3.6" files = [ {file = "uri_template-1.2.0-py3-none-any.whl", hash = "sha256:f1699c77b73b925cf4937eae31ab282a86dc885c333f2e942513f08f691fc7db"}, {file = "uri_template-1.2.0.tar.gz", hash = "sha256:934e4d09d108b70eb8a24410af8615294d09d279ce0e7cbcdaef1bd21f932b06"}, ] [package.extras] dev = ["flake8 (<4.0.0)", "flake8-annotations", "flake8-bugbear", "flake8-commas", "flake8-comprehensions", "flake8-continuation", "flake8-datetimez", "flake8-docstrings", "flake8-import-order", "flake8-literal", "flake8-noqa", "flake8-requirements", "flake8-type-annotations", "flake8-use-fstring", "mypy", "pep8-naming"] [[package]] name = "uritemplate" version = "4.1.1" description = "Implementation of RFC 6570 URI Templates" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "uritemplate-4.1.1-py2.py3-none-any.whl", hash = "sha256:830c08b8d99bdd312ea4ead05994a38e8936266f84b9a7878232db50b044e02e"}, {file = "uritemplate-4.1.1.tar.gz", hash = "sha256:4346edfc5c3b79f694bccd6d6099a322bbeb628dbf2cd86eea55a456ce5124f0"}, ] [[package]] name = "urllib3" version = "1.26.15" description = "HTTP library with thread-safe connection pooling, file post, and more." category = "main" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*" files = [ {file = "urllib3-1.26.15-py2.py3-none-any.whl", hash = "sha256:aa751d169e23c7479ce47a0cb0da579e3ede798f994f5816a74e4f4500dcea42"}, {file = "urllib3-1.26.15.tar.gz", hash = "sha256:8a388717b9476f934a21484e8c8e61875ab60644d29b9b39e11e4b9dc1c6b305"}, ] [package.extras] brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)", "brotlipy (>=0.6.0)"] secure = ["certifi", "cryptography (>=1.3.4)", "idna (>=2.0.0)", "ipaddress", "pyOpenSSL (>=0.14)", "urllib3-secure-extra"] socks = ["PySocks (>=1.5.6,!=1.5.7,<2.0)"] [[package]] name = "uvicorn" version = "0.22.0" description = "The lightning-fast ASGI server." category = "main" optional = false python-versions = ">=3.7" files = [ {file = "uvicorn-0.22.0-py3-none-any.whl", hash = "sha256:e9434d3bbf05f310e762147f769c9f21235ee118ba2d2bf1155a7196448bd996"}, {file = "uvicorn-0.22.0.tar.gz", hash = "sha256:79277ae03db57ce7d9aa0567830bbb51d7a612f54d6e1e3e92da3ef24c2c8ed8"}, ] [package.dependencies] click = ">=7.0" colorama = {version = ">=0.4", optional = true, markers = "sys_platform == \"win32\" and extra == \"standard\""} h11 = ">=0.8" httptools = {version = ">=0.5.0", optional = true, markers = "extra == \"standard\""} python-dotenv = {version = ">=0.13", optional = true, markers = "extra == \"standard\""} pyyaml = {version = ">=5.1", optional = true, markers = "extra == \"standard\""} uvloop = {version = ">=0.14.0,<0.15.0 || >0.15.0,<0.15.1 || >0.15.1", optional = true, markers = "sys_platform != \"win32\" and sys_platform != \"cygwin\" and platform_python_implementation != \"PyPy\" and extra == \"standard\""} watchfiles = {version = ">=0.13", optional = true, markers = "extra == \"standard\""} websockets = {version = ">=10.4", optional = true, markers = "extra == \"standard\""} [package.extras] standard = ["colorama (>=0.4)", "httptools (>=0.5.0)", "python-dotenv (>=0.13)", "pyyaml (>=5.1)", "uvloop (>=0.14.0,!=0.15.0,!=0.15.1)", "watchfiles (>=0.13)", "websockets (>=10.4)"] [[package]] name = "uvloop" version = "0.17.0" description = "Fast implementation of asyncio event loop on top of libuv" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "uvloop-0.17.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:ce9f61938d7155f79d3cb2ffa663147d4a76d16e08f65e2c66b77bd41b356718"}, {file = "uvloop-0.17.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:68532f4349fd3900b839f588972b3392ee56042e440dd5873dfbbcd2cc67617c"}, {file = "uvloop-0.17.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0949caf774b9fcefc7c5756bacbbbd3fc4c05a6b7eebc7c7ad6f825b23998d6d"}, {file = "uvloop-0.17.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ff3d00b70ce95adce264462c930fbaecb29718ba6563db354608f37e49e09024"}, {file = "uvloop-0.17.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:a5abddb3558d3f0a78949c750644a67be31e47936042d4f6c888dd6f3c95f4aa"}, {file = "uvloop-0.17.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8efcadc5a0003d3a6e887ccc1fb44dec25594f117a94e3127954c05cf144d811"}, {file = "uvloop-0.17.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:3378eb62c63bf336ae2070599e49089005771cc651c8769aaad72d1bd9385a7c"}, {file = "uvloop-0.17.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6aafa5a78b9e62493539456f8b646f85abc7093dd997f4976bb105537cf2635e"}, {file = "uvloop-0.17.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c686a47d57ca910a2572fddfe9912819880b8765e2f01dc0dd12a9bf8573e539"}, {file = "uvloop-0.17.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:864e1197139d651a76c81757db5eb199db8866e13acb0dfe96e6fc5d1cf45fc4"}, {file = "uvloop-0.17.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:2a6149e1defac0faf505406259561bc14b034cdf1d4711a3ddcdfbaa8d825a05"}, {file = "uvloop-0.17.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:6708f30db9117f115eadc4f125c2a10c1a50d711461699a0cbfaa45b9a78e376"}, {file = "uvloop-0.17.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:23609ca361a7fc587031429fa25ad2ed7242941adec948f9d10c045bfecab06b"}, {file = "uvloop-0.17.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2deae0b0fb00a6af41fe60a675cec079615b01d68beb4cc7b722424406b126a8"}, {file = "uvloop-0.17.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:45cea33b208971e87a31c17622e4b440cac231766ec11e5d22c76fab3bf9df62"}, {file = "uvloop-0.17.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:9b09e0f0ac29eee0451d71798878eae5a4e6a91aa275e114037b27f7db72702d"}, {file = "uvloop-0.17.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:dbbaf9da2ee98ee2531e0c780455f2841e4675ff580ecf93fe5c48fe733b5667"}, {file = "uvloop-0.17.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:a4aee22ece20958888eedbad20e4dbb03c37533e010fb824161b4f05e641f738"}, {file = "uvloop-0.17.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:307958f9fc5c8bb01fad752d1345168c0abc5d62c1b72a4a8c6c06f042b45b20"}, {file = "uvloop-0.17.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ebeeec6a6641d0adb2ea71dcfb76017602ee2bfd8213e3fcc18d8f699c5104f"}, {file = "uvloop-0.17.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1436c8673c1563422213ac6907789ecb2b070f5939b9cbff9ef7113f2b531595"}, {file = "uvloop-0.17.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:8887d675a64cfc59f4ecd34382e5b4f0ef4ae1da37ed665adba0c2badf0d6578"}, {file = "uvloop-0.17.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:3db8de10ed684995a7f34a001f15b374c230f7655ae840964d51496e2f8a8474"}, {file = "uvloop-0.17.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7d37dccc7ae63e61f7b96ee2e19c40f153ba6ce730d8ba4d3b4e9738c1dccc1b"}, {file = "uvloop-0.17.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:cbbe908fda687e39afd6ea2a2f14c2c3e43f2ca88e3a11964b297822358d0e6c"}, {file = "uvloop-0.17.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3d97672dc709fa4447ab83276f344a165075fd9f366a97b712bdd3fee05efae8"}, {file = "uvloop-0.17.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f1e507c9ee39c61bfddd79714e4f85900656db1aec4d40c6de55648e85c2799c"}, {file = "uvloop-0.17.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:c092a2c1e736086d59ac8e41f9c98f26bbf9b9222a76f21af9dfe949b99b2eb9"}, {file = "uvloop-0.17.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:30babd84706115626ea78ea5dbc7dd8d0d01a2e9f9b306d24ca4ed5796c66ded"}, {file = "uvloop-0.17.0.tar.gz", hash = "sha256:0ddf6baf9cf11a1a22c71487f39f15b2cf78eb5bde7e5b45fbb99e8a9d91b9e1"}, ] [package.extras] dev = ["Cython (>=0.29.32,<0.30.0)", "Sphinx (>=4.1.2,<4.2.0)", "aiohttp", "flake8 (>=3.9.2,<3.10.0)", "mypy (>=0.800)", "psutil", "pyOpenSSL (>=22.0.0,<22.1.0)", "pycodestyle (>=2.7.0,<2.8.0)", "pytest (>=3.6.0)", "sphinx-rtd-theme (>=0.5.2,<0.6.0)", "sphinxcontrib-asyncio (>=0.3.0,<0.4.0)"] docs = ["Sphinx (>=4.1.2,<4.2.0)", "sphinx-rtd-theme (>=0.5.2,<0.6.0)", "sphinxcontrib-asyncio (>=0.3.0,<0.4.0)"] test = ["Cython (>=0.29.32,<0.30.0)", "aiohttp", "flake8 (>=3.9.2,<3.10.0)", "mypy (>=0.800)", "psutil", "pyOpenSSL (>=22.0.0,<22.1.0)", "pycodestyle (>=2.7.0,<2.8.0)"] [[package]] name = "validators" version = "0.20.0" description = "Python Data Validation for Humans™." category = "main" optional = false python-versions = ">=3.4" files = [ {file = "validators-0.20.0.tar.gz", hash = "sha256:24148ce4e64100a2d5e267233e23e7afeb55316b47d30faae7eb6e7292bc226a"}, ] [package.dependencies] decorator = ">=3.4.0" [package.extras] test = ["flake8 (>=2.4.0)", "isort (>=4.2.2)", "pytest (>=2.2.3)"] [[package]] name = "vcrpy" version = "4.2.1" description = "Automatically mock your HTTP interactions to simplify and speed up testing" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "vcrpy-4.2.1-py2.py3-none-any.whl", hash = "sha256:efac3e2e0b2af7686f83a266518180af7a048619b2f696e7bad9520f5e2eac09"}, {file = "vcrpy-4.2.1.tar.gz", hash = "sha256:7cd3e81a2c492e01c281f180bcc2a86b520b173d2b656cb5d89d99475423e013"}, ] [package.dependencies] PyYAML = "*" six = ">=1.5" wrapt = "*" yarl = "*" [[package]] name = "wasabi" version = "1.1.1" description = "A lightweight console printing and formatting toolkit" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "wasabi-1.1.1-py3-none-any.whl", hash = "sha256:32e44649d99a64e08e40c1c96cddb69fad460bd0cc33802a53cab6714dfb73f8"}, {file = "wasabi-1.1.1.tar.gz", hash = "sha256:f5ee7c609027811bd16e620f2fd7a7319466005848e41b051a62053ab8fd70d6"}, ] [package.dependencies] colorama = {version = ">=0.4.6", markers = "sys_platform == \"win32\" and python_version >= \"3.7\""} [[package]] name = "watchdog" version = "3.0.0" description = "Filesystem events monitoring" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "watchdog-3.0.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:336adfc6f5cc4e037d52db31194f7581ff744b67382eb6021c868322e32eef41"}, {file = "watchdog-3.0.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a70a8dcde91be523c35b2bf96196edc5730edb347e374c7de7cd20c43ed95397"}, {file = "watchdog-3.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:adfdeab2da79ea2f76f87eb42a3ab1966a5313e5a69a0213a3cc06ef692b0e96"}, {file = "watchdog-3.0.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:2b57a1e730af3156d13b7fdddfc23dea6487fceca29fc75c5a868beed29177ae"}, {file = "watchdog-3.0.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7ade88d0d778b1b222adebcc0927428f883db07017618a5e684fd03b83342bd9"}, {file = "watchdog-3.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7e447d172af52ad204d19982739aa2346245cc5ba6f579d16dac4bfec226d2e7"}, {file = "watchdog-3.0.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:9fac43a7466eb73e64a9940ac9ed6369baa39b3bf221ae23493a9ec4d0022674"}, {file = "watchdog-3.0.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:8ae9cda41fa114e28faf86cb137d751a17ffd0316d1c34ccf2235e8a84365c7f"}, {file = "watchdog-3.0.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:25f70b4aa53bd743729c7475d7ec41093a580528b100e9a8c5b5efe8899592fc"}, {file = "watchdog-3.0.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4f94069eb16657d2c6faada4624c39464f65c05606af50bb7902e036e3219be3"}, {file = "watchdog-3.0.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7c5f84b5194c24dd573fa6472685b2a27cc5a17fe5f7b6fd40345378ca6812e3"}, {file = "watchdog-3.0.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3aa7f6a12e831ddfe78cdd4f8996af9cf334fd6346531b16cec61c3b3c0d8da0"}, {file = "watchdog-3.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:233b5817932685d39a7896b1090353fc8efc1ef99c9c054e46c8002561252fb8"}, {file = "watchdog-3.0.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:13bbbb462ee42ec3c5723e1205be8ced776f05b100e4737518c67c8325cf6100"}, {file = "watchdog-3.0.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:8f3ceecd20d71067c7fd4c9e832d4e22584318983cabc013dbf3f70ea95de346"}, {file = "watchdog-3.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:c9d8c8ec7efb887333cf71e328e39cffbf771d8f8f95d308ea4125bf5f90ba64"}, {file = "watchdog-3.0.0-py3-none-manylinux2014_aarch64.whl", hash = "sha256:0e06ab8858a76e1219e68c7573dfeba9dd1c0219476c5a44d5333b01d7e1743a"}, {file = "watchdog-3.0.0-py3-none-manylinux2014_armv7l.whl", hash = "sha256:d00e6be486affb5781468457b21a6cbe848c33ef43f9ea4a73b4882e5f188a44"}, {file = "watchdog-3.0.0-py3-none-manylinux2014_i686.whl", hash = "sha256:c07253088265c363d1ddf4b3cdb808d59a0468ecd017770ed716991620b8f77a"}, {file = "watchdog-3.0.0-py3-none-manylinux2014_ppc64.whl", hash = "sha256:5113334cf8cf0ac8cd45e1f8309a603291b614191c9add34d33075727a967709"}, {file = "watchdog-3.0.0-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:51f90f73b4697bac9c9a78394c3acbbd331ccd3655c11be1a15ae6fe289a8c83"}, {file = "watchdog-3.0.0-py3-none-manylinux2014_s390x.whl", hash = "sha256:ba07e92756c97e3aca0912b5cbc4e5ad802f4557212788e72a72a47ff376950d"}, {file = "watchdog-3.0.0-py3-none-manylinux2014_x86_64.whl", hash = "sha256:d429c2430c93b7903914e4db9a966c7f2b068dd2ebdd2fa9b9ce094c7d459f33"}, {file = "watchdog-3.0.0-py3-none-win32.whl", hash = "sha256:3ed7c71a9dccfe838c2f0b6314ed0d9b22e77d268c67e015450a29036a81f60f"}, {file = "watchdog-3.0.0-py3-none-win_amd64.whl", hash = "sha256:4c9956d27be0bb08fc5f30d9d0179a855436e655f046d288e2bcc11adfae893c"}, {file = "watchdog-3.0.0-py3-none-win_ia64.whl", hash = "sha256:5d9f3a10e02d7371cd929b5d8f11e87d4bad890212ed3901f9b4d68767bee759"}, {file = "watchdog-3.0.0.tar.gz", hash = "sha256:4d98a320595da7a7c5a18fc48cb633c2e73cda78f93cac2ef42d42bf609a33f9"}, ] [package.extras] watchmedo = ["PyYAML (>=3.10)"] [[package]] name = "watchfiles" version = "0.19.0" description = "Simple, modern and high performance file watching and code reload in python." category = "main" optional = false python-versions = ">=3.7" files = [ {file = "watchfiles-0.19.0-cp37-abi3-macosx_10_7_x86_64.whl", hash = "sha256:91633e64712df3051ca454ca7d1b976baf842d7a3640b87622b323c55f3345e7"}, {file = "watchfiles-0.19.0-cp37-abi3-macosx_11_0_arm64.whl", hash = "sha256:b6577b8c6c8701ba8642ea9335a129836347894b666dd1ec2226830e263909d3"}, {file = "watchfiles-0.19.0-cp37-abi3-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:18b28f6ad871b82df9542ff958d0c86bb0d8310bb09eb8e87d97318a3b5273af"}, {file = "watchfiles-0.19.0-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fac19dc9cbc34052394dbe81e149411a62e71999c0a19e1e09ce537867f95ae0"}, {file = "watchfiles-0.19.0-cp37-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:09ea3397aecbc81c19ed7f025e051a7387feefdb789cf768ff994c1228182fda"}, {file = "watchfiles-0.19.0-cp37-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c0376deac92377817e4fb8f347bf559b7d44ff556d9bc6f6208dd3f79f104aaf"}, {file = "watchfiles-0.19.0-cp37-abi3-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9c75eff897786ee262c9f17a48886f4e98e6cfd335e011c591c305e5d083c056"}, {file = "watchfiles-0.19.0-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cb5d45c4143c1dd60f98a16187fd123eda7248f84ef22244818c18d531a249d1"}, {file = "watchfiles-0.19.0-cp37-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:79c533ff593db861ae23436541f481ec896ee3da4e5db8962429b441bbaae16e"}, {file = "watchfiles-0.19.0-cp37-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:3d7d267d27aceeeaa3de0dd161a0d64f0a282264d592e335fff7958cc0cbae7c"}, {file = "watchfiles-0.19.0-cp37-abi3-win32.whl", hash = "sha256:176a9a7641ec2c97b24455135d58012a5be5c6217fc4d5fef0b2b9f75dbf5154"}, {file = "watchfiles-0.19.0-cp37-abi3-win_amd64.whl", hash = "sha256:945be0baa3e2440151eb3718fd8846751e8b51d8de7b884c90b17d271d34cae8"}, {file = "watchfiles-0.19.0-cp37-abi3-win_arm64.whl", hash = "sha256:0089c6dc24d436b373c3c57657bf4f9a453b13767150d17284fc6162b2791911"}, {file = "watchfiles-0.19.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl", hash = "sha256:cae3dde0b4b2078f31527acff6f486e23abed307ba4d3932466ba7cdd5ecec79"}, {file = "watchfiles-0.19.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:7f3920b1285a7d3ce898e303d84791b7bf40d57b7695ad549dc04e6a44c9f120"}, {file = "watchfiles-0.19.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9afd0d69429172c796164fd7fe8e821ade9be983f51c659a38da3faaaaac44dc"}, {file = "watchfiles-0.19.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:68dce92b29575dda0f8d30c11742a8e2b9b8ec768ae414b54f7453f27bdf9545"}, {file = "watchfiles-0.19.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl", hash = "sha256:5569fc7f967429d4bc87e355cdfdcee6aabe4b620801e2cf5805ea245c06097c"}, {file = "watchfiles-0.19.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:5471582658ea56fca122c0f0d0116a36807c63fefd6fdc92c71ca9a4491b6b48"}, {file = "watchfiles-0.19.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b538014a87f94d92f98f34d3e6d2635478e6be6423a9ea53e4dd96210065e193"}, {file = "watchfiles-0.19.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:20b44221764955b1e703f012c74015306fb7e79a00c15370785f309b1ed9aa8d"}, {file = "watchfiles-0.19.0.tar.gz", hash = "sha256:d9b073073e048081e502b6c6b0b88714c026a1a4c890569238d04aca5f9ca74b"}, ] [package.dependencies] anyio = ">=3.0.0" [[package]] name = "wcwidth" version = "0.2.6" description = "Measures the displayed width of unicode strings in a terminal" category = "dev" optional = false python-versions = "*" files = [ {file = "wcwidth-0.2.6-py2.py3-none-any.whl", hash = "sha256:795b138f6875577cd91bba52baf9e445cd5118fd32723b460e30a0af30ea230e"}, {file = "wcwidth-0.2.6.tar.gz", hash = "sha256:a5220780a404dbe3353789870978e472cfe477761f06ee55077256e509b156d0"}, ] [[package]] name = "weaviate-client" version = "3.19.1" description = "A python native weaviate client" category = "main" optional = false python-versions = ">=3.8" files = [ {file = "weaviate-client-3.19.1.tar.gz", hash = "sha256:8528926b0b545225ab75583481d67cccf9494d2dc01cb62f1165a8f187b41ebb"}, {file = "weaviate_client-3.19.1-py3-none-any.whl", hash = "sha256:6b4aae86cd955543fcc6328bc1462fbbae053dc50f7b6822287b05b98fec0d27"}, ] [package.dependencies] authlib = ">=1.1.0" requests = ">=2.28.0,<2.29.0" tqdm = ">=4.59.0,<5.0.0" validators = ">=0.18.2,<=0.21.0" [package.extras] grpc = ["grpcio", "grpcio-tools"] [[package]] name = "webcolors" version = "1.13" description = "A library for working with the color formats defined by HTML and CSS." category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "webcolors-1.13-py3-none-any.whl", hash = "sha256:29bc7e8752c0a1bd4a1f03c14d6e6a72e93d82193738fa860cbff59d0fcc11bf"}, {file = "webcolors-1.13.tar.gz", hash = "sha256:c225b674c83fa923be93d235330ce0300373d02885cef23238813b0d5668304a"}, ] [package.extras] docs = ["furo", "sphinx", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-notfound-page", "sphinxext-opengraph"] tests = ["pytest", "pytest-cov"] [[package]] name = "webencodings" version = "0.5.1" description = "Character encoding aliases for legacy web content" category = "dev" optional = false python-versions = "*" files = [ {file = "webencodings-0.5.1-py2.py3-none-any.whl", hash = "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78"}, {file = "webencodings-0.5.1.tar.gz", hash = "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923"}, ] [[package]] name = "websocket-client" version = "1.5.1" description = "WebSocket client for Python with low level API options" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "websocket-client-1.5.1.tar.gz", hash = "sha256:3f09e6d8230892547132177f575a4e3e73cfdf06526e20cc02aa1c3b47184d40"}, {file = "websocket_client-1.5.1-py3-none-any.whl", hash = "sha256:cdf5877568b7e83aa7cf2244ab56a3213de587bbe0ce9d8b9600fc77b455d89e"}, ] [package.extras] docs = ["Sphinx (>=3.4)", "sphinx-rtd-theme (>=0.5)"] optional = ["python-socks", "wsaccel"] test = ["websockets"] [[package]] name = "websockets" version = "11.0.3" description = "An implementation of the WebSocket Protocol (RFC 6455 & 7692)" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "websockets-11.0.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3ccc8a0c387629aec40f2fc9fdcb4b9d5431954f934da3eaf16cdc94f67dbfac"}, {file = "websockets-11.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d67ac60a307f760c6e65dad586f556dde58e683fab03323221a4e530ead6f74d"}, {file = "websockets-11.0.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:84d27a4832cc1a0ee07cdcf2b0629a8a72db73f4cf6de6f0904f6661227f256f"}, {file = "websockets-11.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ffd7dcaf744f25f82190856bc26ed81721508fc5cbf2a330751e135ff1283564"}, {file = "websockets-11.0.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7622a89d696fc87af8e8d280d9b421db5133ef5b29d3f7a1ce9f1a7bf7fcfa11"}, {file = "websockets-11.0.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bceab846bac555aff6427d060f2fcfff71042dba6f5fca7dc4f75cac815e57ca"}, {file = "websockets-11.0.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:54c6e5b3d3a8936a4ab6870d46bdd6ec500ad62bde9e44462c32d18f1e9a8e54"}, {file = "websockets-11.0.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:41f696ba95cd92dc047e46b41b26dd24518384749ed0d99bea0a941ca87404c4"}, {file = "websockets-11.0.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:86d2a77fd490ae3ff6fae1c6ceaecad063d3cc2320b44377efdde79880e11526"}, {file = "websockets-11.0.3-cp310-cp310-win32.whl", hash = "sha256:2d903ad4419f5b472de90cd2d40384573b25da71e33519a67797de17ef849b69"}, {file = "websockets-11.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:1d2256283fa4b7f4c7d7d3e84dc2ece74d341bce57d5b9bf385df109c2a1a82f"}, {file = "websockets-11.0.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:e848f46a58b9fcf3d06061d17be388caf70ea5b8cc3466251963c8345e13f7eb"}, {file = "websockets-11.0.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:aa5003845cdd21ac0dc6c9bf661c5beddd01116f6eb9eb3c8e272353d45b3288"}, {file = "websockets-11.0.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:b58cbf0697721120866820b89f93659abc31c1e876bf20d0b3d03cef14faf84d"}, {file = "websockets-11.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:660e2d9068d2bedc0912af508f30bbeb505bbbf9774d98def45f68278cea20d3"}, {file = "websockets-11.0.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c1f0524f203e3bd35149f12157438f406eff2e4fb30f71221c8a5eceb3617b6b"}, {file = "websockets-11.0.3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:def07915168ac8f7853812cc593c71185a16216e9e4fa886358a17ed0fd9fcf6"}, {file = "websockets-11.0.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:b30c6590146e53149f04e85a6e4fcae068df4289e31e4aee1fdf56a0dead8f97"}, {file = "websockets-11.0.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:619d9f06372b3a42bc29d0cd0354c9bb9fb39c2cbc1a9c5025b4538738dbffaf"}, {file = "websockets-11.0.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:01f5567d9cf6f502d655151645d4e8b72b453413d3819d2b6f1185abc23e82dd"}, {file = "websockets-11.0.3-cp311-cp311-win32.whl", hash = "sha256:e1459677e5d12be8bbc7584c35b992eea142911a6236a3278b9b5ce3326f282c"}, {file = "websockets-11.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:e7837cb169eca3b3ae94cc5787c4fed99eef74c0ab9506756eea335e0d6f3ed8"}, {file = "websockets-11.0.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:9f59a3c656fef341a99e3d63189852be7084c0e54b75734cde571182c087b152"}, {file = "websockets-11.0.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2529338a6ff0eb0b50c7be33dc3d0e456381157a31eefc561771ee431134a97f"}, {file = "websockets-11.0.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:34fd59a4ac42dff6d4681d8843217137f6bc85ed29722f2f7222bd619d15e95b"}, {file = "websockets-11.0.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:332d126167ddddec94597c2365537baf9ff62dfcc9db4266f263d455f2f031cb"}, {file = "websockets-11.0.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:6505c1b31274723ccaf5f515c1824a4ad2f0d191cec942666b3d0f3aa4cb4007"}, {file = "websockets-11.0.3-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:f467ba0050b7de85016b43f5a22b46383ef004c4f672148a8abf32bc999a87f0"}, {file = "websockets-11.0.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:9d9acd80072abcc98bd2c86c3c9cd4ac2347b5a5a0cae7ed5c0ee5675f86d9af"}, {file = "websockets-11.0.3-cp37-cp37m-win32.whl", hash = "sha256:e590228200fcfc7e9109509e4d9125eace2042fd52b595dd22bbc34bb282307f"}, {file = "websockets-11.0.3-cp37-cp37m-win_amd64.whl", hash = "sha256:b16fff62b45eccb9c7abb18e60e7e446998093cdcb50fed33134b9b6878836de"}, {file = "websockets-11.0.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:fb06eea71a00a7af0ae6aefbb932fb8a7df3cb390cc217d51a9ad7343de1b8d0"}, {file = "websockets-11.0.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:8a34e13a62a59c871064dfd8ffb150867e54291e46d4a7cf11d02c94a5275bae"}, {file = "websockets-11.0.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4841ed00f1026dfbced6fca7d963c4e7043aa832648671b5138008dc5a8f6d99"}, {file = "websockets-11.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1a073fc9ab1c8aff37c99f11f1641e16da517770e31a37265d2755282a5d28aa"}, {file = "websockets-11.0.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:68b977f21ce443d6d378dbd5ca38621755f2063d6fdb3335bda981d552cfff86"}, {file = "websockets-11.0.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e1a99a7a71631f0efe727c10edfba09ea6bee4166a6f9c19aafb6c0b5917d09c"}, {file = "websockets-11.0.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:bee9fcb41db2a23bed96c6b6ead6489702c12334ea20a297aa095ce6d31370d0"}, {file = "websockets-11.0.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:4b253869ea05a5a073ebfdcb5cb3b0266a57c3764cf6fe114e4cd90f4bfa5f5e"}, {file = "websockets-11.0.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:1553cb82942b2a74dd9b15a018dce645d4e68674de2ca31ff13ebc2d9f283788"}, {file = "websockets-11.0.3-cp38-cp38-win32.whl", hash = "sha256:f61bdb1df43dc9c131791fbc2355535f9024b9a04398d3bd0684fc16ab07df74"}, {file = "websockets-11.0.3-cp38-cp38-win_amd64.whl", hash = "sha256:03aae4edc0b1c68498f41a6772d80ac7c1e33c06c6ffa2ac1c27a07653e79d6f"}, {file = "websockets-11.0.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:777354ee16f02f643a4c7f2b3eff8027a33c9861edc691a2003531f5da4f6bc8"}, {file = "websockets-11.0.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8c82f11964f010053e13daafdc7154ce7385ecc538989a354ccc7067fd7028fd"}, {file = "websockets-11.0.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3580dd9c1ad0701169e4d6fc41e878ffe05e6bdcaf3c412f9d559389d0c9e016"}, {file = "websockets-11.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6f1a3f10f836fab6ca6efa97bb952300b20ae56b409414ca85bff2ad241d2a61"}, {file = "websockets-11.0.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:df41b9bc27c2c25b486bae7cf42fccdc52ff181c8c387bfd026624a491c2671b"}, {file = "websockets-11.0.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:279e5de4671e79a9ac877427f4ac4ce93751b8823f276b681d04b2156713b9dd"}, {file = "websockets-11.0.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:1fdf26fa8a6a592f8f9235285b8affa72748dc12e964a5518c6c5e8f916716f7"}, {file = "websockets-11.0.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:69269f3a0b472e91125b503d3c0b3566bda26da0a3261c49f0027eb6075086d1"}, {file = "websockets-11.0.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:97b52894d948d2f6ea480171a27122d77af14ced35f62e5c892ca2fae9344311"}, {file = "websockets-11.0.3-cp39-cp39-win32.whl", hash = "sha256:c7f3cb904cce8e1be667c7e6fef4516b98d1a6a0635a58a57528d577ac18a128"}, {file = "websockets-11.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:c792ea4eabc0159535608fc5658a74d1a81020eb35195dd63214dcf07556f67e"}, {file = "websockets-11.0.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:f2e58f2c36cc52d41f2659e4c0cbf7353e28c8c9e63e30d8c6d3494dc9fdedcf"}, {file = "websockets-11.0.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:de36fe9c02995c7e6ae6efe2e205816f5f00c22fd1fbf343d4d18c3d5ceac2f5"}, {file = "websockets-11.0.3-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0ac56b661e60edd453585f4bd68eb6a29ae25b5184fd5ba51e97652580458998"}, {file = "websockets-11.0.3-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e052b8467dd07d4943936009f46ae5ce7b908ddcac3fda581656b1b19c083d9b"}, {file = "websockets-11.0.3-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:42cc5452a54a8e46a032521d7365da775823e21bfba2895fb7b77633cce031bb"}, {file = "websockets-11.0.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e6316827e3e79b7b8e7d8e3b08f4e331af91a48e794d5d8b099928b6f0b85f20"}, {file = "websockets-11.0.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8531fdcad636d82c517b26a448dcfe62f720e1922b33c81ce695d0edb91eb931"}, {file = "websockets-11.0.3-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c114e8da9b475739dde229fd3bc6b05a6537a88a578358bc8eb29b4030fac9c9"}, {file = "websockets-11.0.3-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e063b1865974611313a3849d43f2c3f5368093691349cf3c7c8f8f75ad7cb280"}, {file = "websockets-11.0.3-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:92b2065d642bf8c0a82d59e59053dd2fdde64d4ed44efe4870fa816c1232647b"}, {file = "websockets-11.0.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:0ee68fe502f9031f19d495dae2c268830df2760c0524cbac5d759921ba8c8e82"}, {file = "websockets-11.0.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dcacf2c7a6c3a84e720d1bb2b543c675bf6c40e460300b628bab1b1efc7c034c"}, {file = "websockets-11.0.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b67c6f5e5a401fc56394f191f00f9b3811fe843ee93f4a70df3c389d1adf857d"}, {file = "websockets-11.0.3-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1d5023a4b6a5b183dc838808087033ec5df77580485fc533e7dab2567851b0a4"}, {file = "websockets-11.0.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:ed058398f55163a79bb9f06a90ef9ccc063b204bb346c4de78efc5d15abfe602"}, {file = "websockets-11.0.3-py3-none-any.whl", hash = "sha256:6681ba9e7f8f3b19440921e99efbb40fc89f26cd71bf539e45d8c8a25c976dc6"}, {file = "websockets-11.0.3.tar.gz", hash = "sha256:88fc51d9a26b10fc331be344f1781224a375b78488fc343620184e95a4b27016"}, ] [[package]] name = "werkzeug" version = "2.3.4" description = "The comprehensive WSGI web application library." category = "main" optional = true python-versions = ">=3.8" files = [ {file = "Werkzeug-2.3.4-py3-none-any.whl", hash = "sha256:48e5e61472fee0ddee27ebad085614ebedb7af41e88f687aaf881afb723a162f"}, {file = "Werkzeug-2.3.4.tar.gz", hash = "sha256:1d5a58e0377d1fe39d061a5de4469e414e78ccb1e1e59c0f5ad6fa1c36c52b76"}, ] [package.dependencies] MarkupSafe = ">=2.1.1" [package.extras] watchdog = ["watchdog (>=2.3)"] [[package]] name = "wget" version = "3.2" description = "pure python download utility" category = "main" optional = false python-versions = "*" files = [ {file = "wget-3.2.zip", hash = "sha256:35e630eca2aa50ce998b9b1a127bb26b30dfee573702782aa982f875e3f16061"}, ] [[package]] name = "wheel" version = "0.40.0" description = "A built-package format for Python" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "wheel-0.40.0-py3-none-any.whl", hash = "sha256:d236b20e7cb522daf2390fa84c55eea81c5c30190f90f29ae2ca1ad8355bf247"}, {file = "wheel-0.40.0.tar.gz", hash = "sha256:cd1196f3faee2b31968d626e1731c94f99cbdb67cf5a46e4f5656cbee7738873"}, ] [package.extras] test = ["pytest (>=6.0.0)"] [[package]] name = "whylabs-client" version = "0.5.1" description = "WhyLabs API client" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "whylabs-client-0.5.1.tar.gz", hash = "sha256:f7aacfab7d176812c2eb4cdeb8c52521eed0d30bc2a0836399798197a513cf04"}, {file = "whylabs_client-0.5.1-py3-none-any.whl", hash = "sha256:dc6958d5bb390f1057fe6f513cbce55c4e71d5f8a1461a7c93eb73814089de33"}, ] [package.dependencies] python-dateutil = "*" urllib3 = ">=1.25.3" [[package]] name = "whylogs" version = "1.1.42.dev3" description = "Profile and monitor your ML data pipeline end-to-end" category = "main" optional = true python-versions = ">=3.7.1,<4" files = [ {file = "whylogs-1.1.42.dev3-py3-none-any.whl", hash = "sha256:99aadb05b68c6c2dc5d00ba1fb45bdd5ac2c3da3fe812f3fd1573a0f06674121"}, {file = "whylogs-1.1.42.dev3.tar.gz", hash = "sha256:c82badf821f56935fd274e696e4d5ed151934e486f23ea5f5c60af31e6cdb632"}, ] [package.dependencies] protobuf = ">=3.19.4" typing-extensions = {version = ">=3.10", markers = "python_version < \"4\""} whylabs-client = ">=0.4.4,<1" whylogs-sketching = ">=3.4.1.dev3" [package.extras] all = ["Pillow (>=9.2.0,<10.0.0)", "boto3 (>=1.22.13,<2.0.0)", "fugue (>=0.8.1,<0.9.0)", "google-cloud-storage (>=2.5.0,<3.0.0)", "ipython", "mlflow-skinny (>=1.26.1,<2.0.0)", "numpy", "numpy (>=1.23.2)", "pandas", "pyarrow (>=8.0.0,<13)", "pybars3 (>=0.9,<0.10)", "pyspark (>=3.0.0,<4.0.0)", "requests (>=2.27,<3.0)", "scikit-learn (>=1.0.2,<2.0.0)", "scikit-learn (>=1.1.2,<2)", "scipy (>=1.5)", "scipy (>=1.9.2)"] datasets = ["pandas"] docs = ["furo (>=2022.3.4,<2023.0.0)", "ipython_genutils (>=0.2.0,<0.3.0)", "myst-parser[sphinx] (>=0.17.2,<0.18.0)", "nbconvert (>=7.0.0,<8.0.0)", "nbsphinx (>=0.8.9,<0.9.0)", "sphinx", "sphinx-autoapi", "sphinx-autobuild (>=2021.3.14,<2022.0.0)", "sphinx-copybutton (>=0.5.0,<0.6.0)", "sphinx-inline-tabs", "sphinxext-opengraph (>=0.6.3,<0.7.0)"] embeddings = ["numpy", "numpy (>=1.23.2)", "scikit-learn (>=1.0.2,<2.0.0)", "scikit-learn (>=1.1.2,<2)"] fugue = ["fugue (>=0.8.1,<0.9.0)"] gcs = ["google-cloud-storage (>=2.5.0,<3.0.0)"] image = ["Pillow (>=9.2.0,<10.0.0)"] mlflow = ["mlflow-skinny (>=1.26.1,<2.0.0)"] s3 = ["boto3 (>=1.22.13,<2.0.0)"] spark = ["pyarrow (>=8.0.0,<13)", "pyspark (>=3.0.0,<4.0.0)"] viz = ["Pillow (>=9.2.0,<10.0.0)", "ipython", "numpy", "numpy (>=1.23.2)", "pybars3 (>=0.9,<0.10)", "requests (>=2.27,<3.0)", "scipy (>=1.5)", "scipy (>=1.9.2)"] whylabs = ["requests (>=2.27,<3.0)"] [[package]] name = "whylogs-sketching" version = "3.4.1.dev3" description = "sketching library of whylogs" category = "main" optional = true python-versions = "*" files = [ {file = "whylogs-sketching-3.4.1.dev3.tar.gz", hash = "sha256:40b90eb9d5e4cbbfa63f6a1f3a3332b72258d270044b79030dc5d720fddd9499"}, {file = "whylogs_sketching-3.4.1.dev3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:9c20134eda881064099264f795d60321777b5e6c2357125a7a2787c9f15db684"}, {file = "whylogs_sketching-3.4.1.dev3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e76ac4c2d0214b8de8598867e721f774cca8877267bc2a9b2d0d06950fe76bd5"}, {file = "whylogs_sketching-3.4.1.dev3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:edc2b463d926ccacb7ee2147d206850bb0cbfea8766f091e8c575ada48db1cfd"}, {file = "whylogs_sketching-3.4.1.dev3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fdc2a3bd73895d1ffac1b3028ff55aaa6b60a9ec42d7b6b5785fa140f303dec0"}, {file = "whylogs_sketching-3.4.1.dev3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:46460eefcf22bcf20b0e6208de32e358478c17b1239221eb038d434f14ec427c"}, {file = "whylogs_sketching-3.4.1.dev3-cp310-cp310-win_amd64.whl", hash = "sha256:58b99a070429a7119a5727ac61c4e9ebcd6e92eed3d2646931a487fff3d6630e"}, {file = "whylogs_sketching-3.4.1.dev3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:531a4af8f707c1e8138a4ae41a117ba53241372bf191666a9e6b44ab6cd9e634"}, {file = "whylogs_sketching-3.4.1.dev3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ba536fca5f9578fa34d106c243fdccfef7d75b9d1fffb9d93df0debfe8e3ebc"}, {file = "whylogs_sketching-3.4.1.dev3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:afa843c68cafa08e82624e6a33d13ab7f00ad0301101960872fe152d5af5ab53"}, {file = "whylogs_sketching-3.4.1.dev3-cp311-cp311-win_amd64.whl", hash = "sha256:303d55c37565340c2d21c268c64a712fad612504cc4b98b1d1df848cac6d934f"}, {file = "whylogs_sketching-3.4.1.dev3-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:9d65fcf8dade1affe50181582b8894929993e37d7daa922d973a811790cd0208"}, {file = "whylogs_sketching-3.4.1.dev3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c4845e77c208ae64ada9170e1b92ed0abe28fe311c0fc35f9d8efa6926211ca2"}, {file = "whylogs_sketching-3.4.1.dev3-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:02cac1c87ac42d7fc7e6597862ac50bc035825988d21e8a2d763b416e83e845f"}, {file = "whylogs_sketching-3.4.1.dev3-cp36-cp36m-win_amd64.whl", hash = "sha256:52a174784e69870543fb87910e5549759f01a7f4cb6cac1773b2cc194ec0b72f"}, {file = "whylogs_sketching-3.4.1.dev3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:0931fc7500b78baf8f44222f1e3b58cfb707b0120328bc16cc50beaab5a954ec"}, {file = "whylogs_sketching-3.4.1.dev3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:803c104338a5c4e1c6eb077d35ca3a4443e455aa4e7f2769c93560bf135cdeb3"}, {file = "whylogs_sketching-3.4.1.dev3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:49e8f20351077497880b088dff9342f4b54d2d3c650c0b43daf121d97fb42468"}, {file = "whylogs_sketching-3.4.1.dev3-cp37-cp37m-win_amd64.whl", hash = "sha256:f9f3507b5df34de7a95b75f80009644371dd6406f9d8795e820edf8a594aeacc"}, {file = "whylogs_sketching-3.4.1.dev3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:2986dd5b35a93267e6d89e7aa256f714105bbe61bdb0381aeab588c2688e46b6"}, {file = "whylogs_sketching-3.4.1.dev3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:14f1bf4903e9cd2a196fe5a7268cca1434d423233e073917130d5b845f539c2a"}, {file = "whylogs_sketching-3.4.1.dev3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2ecfe0e4a629a4cefec9d7c7fac234119688085ba5f62feabed710cb5a322f8b"}, {file = "whylogs_sketching-3.4.1.dev3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:000e2c11b7bbbdefb3a343c15955868a682c02d607557fef7bad5a6ffd09a0cf"}, {file = "whylogs_sketching-3.4.1.dev3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:1e70ed1ed2f9c174a80673ae2ca24c1ec0e2a01c0bd6b0728640492fd5a50178"}, {file = "whylogs_sketching-3.4.1.dev3-cp38-cp38-win_amd64.whl", hash = "sha256:9efd56d5a21566fc49126ef54d37116078763bb9f8955b9c77421b4ca3fd8fc6"}, {file = "whylogs_sketching-3.4.1.dev3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:832247fd9d3ecf13791418a75c359db6c3aeffd51d7372d026e95f307ef286cc"}, {file = "whylogs_sketching-3.4.1.dev3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:cc81b547e331d96f6f4227280b9b5968ca4bd48dd7cb0c8b68c022037800009f"}, {file = "whylogs_sketching-3.4.1.dev3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3abf13da4347393a302843c2f06ce4e5fc56fd9c8564f64da13ceafb81eef90b"}, {file = "whylogs_sketching-3.4.1.dev3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d1d6e7d0ddb66ab725d7af63518ef6a24cd45b075b81e1d2081709df4c989853"}, {file = "whylogs_sketching-3.4.1.dev3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:0b05112e3f70cfccddd2f72e464fa113307d97188891433133d4219b9f8f5456"}, {file = "whylogs_sketching-3.4.1.dev3-cp39-cp39-win_amd64.whl", hash = "sha256:23759a00dd0e7019fbac06d9e9ab005ad6c14f80ec7935ccebccb7127296bc06"}, ] [[package]] name = "widgetsnbextension" version = "4.0.7" description = "Jupyter interactive widgets for Jupyter Notebook" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "widgetsnbextension-4.0.7-py3-none-any.whl", hash = "sha256:be3228a73bbab189a16be2d4a3cd89ecbd4e31948bfdc64edac17dcdee3cd99c"}, {file = "widgetsnbextension-4.0.7.tar.gz", hash = "sha256:ea67c17a7cd4ae358f8f46c3b304c40698bc0423732e3f273321ee141232c8be"}, ] [[package]] name = "wikipedia" version = "1.4.0" description = "Wikipedia API for Python" category = "main" optional = false python-versions = "*" files = [ {file = "wikipedia-1.4.0.tar.gz", hash = "sha256:db0fad1829fdd441b1852306e9856398204dc0786d2996dd2e0c8bb8e26133b2"}, ] [package.dependencies] beautifulsoup4 = "*" requests = ">=2.0.0,<3.0.0" [[package]] name = "win32-setctime" version = "1.1.0" description = "A small Python utility to set file creation time on Windows" category = "main" optional = false python-versions = ">=3.5" files = [ {file = "win32_setctime-1.1.0-py3-none-any.whl", hash = "sha256:231db239e959c2fe7eb1d7dc129f11172354f98361c4fa2d6d2d7e278baa8aad"}, {file = "win32_setctime-1.1.0.tar.gz", hash = "sha256:15cf5750465118d6929ae4de4eb46e8edae9a5634350c01ba582df868e932cb2"}, ] [package.extras] dev = ["black (>=19.3b0)", "pytest (>=4.6.2)"] [[package]] name = "wolframalpha" version = "5.0.0" description = "Wolfram|Alpha 2.0 API client" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "wolframalpha-5.0.0-py3-none-any.whl", hash = "sha256:159f5d8fd31e4a734a34a9f3ae8aec4e9b2ef392607f82069b4a324b6b1831d5"}, {file = "wolframalpha-5.0.0.tar.gz", hash = "sha256:38bf27654039ec85cc62c199dd319b6a4d6a7badfed7af1cd161f081afdb57c0"}, ] [package.dependencies] "jaraco.context" = "*" more-itertools = "*" xmltodict = "*" [package.extras] docs = ["jaraco.packaging (>=8.2)", "rst.linker (>=1.9)", "sphinx"] testing = ["keyring", "pmxbot", "pytest (>=3.5,!=3.7.3)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=1.2.3)", "pytest-cov", "pytest-enabler", "pytest-flake8", "pytest-mypy"] [[package]] name = "wonderwords" version = "2.2.0" description = "A python package for random words and sentences in the english language" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "wonderwords-2.2.0-py3-none-any.whl", hash = "sha256:65fc665f1f5590e98f6d9259414ea036bf1b6dd83e51aa6ba44473c99ca92da1"}, {file = "wonderwords-2.2.0.tar.gz", hash = "sha256:0b7ec6f591062afc55603bfea71463afbab06794b3064d9f7b04d0ce251a13d0"}, ] [package.extras] cli = ["rich (==9.10.0)"] [[package]] name = "wrapt" version = "1.15.0" description = "Module for decorators, wrappers and monkey patching." category = "main" optional = false python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,>=2.7" files = [ {file = "wrapt-1.15.0-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:ca1cccf838cd28d5a0883b342474c630ac48cac5df0ee6eacc9c7290f76b11c1"}, {file = "wrapt-1.15.0-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:e826aadda3cae59295b95343db8f3d965fb31059da7de01ee8d1c40a60398b29"}, {file = "wrapt-1.15.0-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:5fc8e02f5984a55d2c653f5fea93531e9836abbd84342c1d1e17abc4a15084c2"}, {file = "wrapt-1.15.0-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:96e25c8603a155559231c19c0349245eeb4ac0096fe3c1d0be5c47e075bd4f46"}, {file = "wrapt-1.15.0-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:40737a081d7497efea35ab9304b829b857f21558acfc7b3272f908d33b0d9d4c"}, {file = "wrapt-1.15.0-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:f87ec75864c37c4c6cb908d282e1969e79763e0d9becdfe9fe5473b7bb1e5f09"}, {file = "wrapt-1.15.0-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:1286eb30261894e4c70d124d44b7fd07825340869945c79d05bda53a40caa079"}, {file = "wrapt-1.15.0-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:493d389a2b63c88ad56cdc35d0fa5752daac56ca755805b1b0c530f785767d5e"}, {file = "wrapt-1.15.0-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:58d7a75d731e8c63614222bcb21dd992b4ab01a399f1f09dd82af17bbfc2368a"}, {file = "wrapt-1.15.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:21f6d9a0d5b3a207cdf7acf8e58d7d13d463e639f0c7e01d82cdb671e6cb7923"}, {file = "wrapt-1.15.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ce42618f67741d4697684e501ef02f29e758a123aa2d669e2d964ff734ee00ee"}, {file = "wrapt-1.15.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41d07d029dd4157ae27beab04d22b8e261eddfc6ecd64ff7000b10dc8b3a5727"}, {file = "wrapt-1.15.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:54accd4b8bc202966bafafd16e69da9d5640ff92389d33d28555c5fd4f25ccb7"}, {file = "wrapt-1.15.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2fbfbca668dd15b744418265a9607baa970c347eefd0db6a518aaf0cfbd153c0"}, {file = "wrapt-1.15.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:76e9c727a874b4856d11a32fb0b389afc61ce8aaf281ada613713ddeadd1cfec"}, {file = "wrapt-1.15.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e20076a211cd6f9b44a6be58f7eeafa7ab5720eb796975d0c03f05b47d89eb90"}, {file = "wrapt-1.15.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:a74d56552ddbde46c246b5b89199cb3fd182f9c346c784e1a93e4dc3f5ec9975"}, {file = "wrapt-1.15.0-cp310-cp310-win32.whl", hash = "sha256:26458da5653aa5b3d8dc8b24192f574a58984c749401f98fff994d41d3f08da1"}, {file = "wrapt-1.15.0-cp310-cp310-win_amd64.whl", hash = "sha256:75760a47c06b5974aa5e01949bf7e66d2af4d08cb8c1d6516af5e39595397f5e"}, {file = "wrapt-1.15.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ba1711cda2d30634a7e452fc79eabcadaffedf241ff206db2ee93dd2c89a60e7"}, {file = "wrapt-1.15.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:56374914b132c702aa9aa9959c550004b8847148f95e1b824772d453ac204a72"}, {file = "wrapt-1.15.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a89ce3fd220ff144bd9d54da333ec0de0399b52c9ac3d2ce34b569cf1a5748fb"}, {file = "wrapt-1.15.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3bbe623731d03b186b3d6b0d6f51865bf598587c38d6f7b0be2e27414f7f214e"}, {file = "wrapt-1.15.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3abbe948c3cbde2689370a262a8d04e32ec2dd4f27103669a45c6929bcdbfe7c"}, {file = "wrapt-1.15.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:b67b819628e3b748fd3c2192c15fb951f549d0f47c0449af0764d7647302fda3"}, {file = "wrapt-1.15.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:7eebcdbe3677e58dd4c0e03b4f2cfa346ed4049687d839adad68cc38bb559c92"}, {file = "wrapt-1.15.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:74934ebd71950e3db69960a7da29204f89624dde411afbfb3b4858c1409b1e98"}, {file = "wrapt-1.15.0-cp311-cp311-win32.whl", hash = "sha256:bd84395aab8e4d36263cd1b9308cd504f6cf713b7d6d3ce25ea55670baec5416"}, {file = "wrapt-1.15.0-cp311-cp311-win_amd64.whl", hash = "sha256:a487f72a25904e2b4bbc0817ce7a8de94363bd7e79890510174da9d901c38705"}, {file = "wrapt-1.15.0-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:4ff0d20f2e670800d3ed2b220d40984162089a6e2c9646fdb09b85e6f9a8fc29"}, {file = "wrapt-1.15.0-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:9ed6aa0726b9b60911f4aed8ec5b8dd7bf3491476015819f56473ffaef8959bd"}, {file = "wrapt-1.15.0-cp35-cp35m-manylinux2010_i686.whl", hash = "sha256:896689fddba4f23ef7c718279e42f8834041a21342d95e56922e1c10c0cc7afb"}, {file = "wrapt-1.15.0-cp35-cp35m-manylinux2010_x86_64.whl", hash = "sha256:75669d77bb2c071333417617a235324a1618dba66f82a750362eccbe5b61d248"}, {file = "wrapt-1.15.0-cp35-cp35m-win32.whl", hash = "sha256:fbec11614dba0424ca72f4e8ba3c420dba07b4a7c206c8c8e4e73f2e98f4c559"}, {file = "wrapt-1.15.0-cp35-cp35m-win_amd64.whl", hash = "sha256:fd69666217b62fa5d7c6aa88e507493a34dec4fa20c5bd925e4bc12fce586639"}, {file = "wrapt-1.15.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:b0724f05c396b0a4c36a3226c31648385deb6a65d8992644c12a4963c70326ba"}, {file = "wrapt-1.15.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bbeccb1aa40ab88cd29e6c7d8585582c99548f55f9b2581dfc5ba68c59a85752"}, {file = "wrapt-1.15.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:38adf7198f8f154502883242f9fe7333ab05a5b02de7d83aa2d88ea621f13364"}, {file = "wrapt-1.15.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:578383d740457fa790fdf85e6d346fda1416a40549fe8db08e5e9bd281c6a475"}, {file = "wrapt-1.15.0-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:a4cbb9ff5795cd66f0066bdf5947f170f5d63a9274f99bdbca02fd973adcf2a8"}, {file = "wrapt-1.15.0-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:af5bd9ccb188f6a5fdda9f1f09d9f4c86cc8a539bd48a0bfdc97723970348418"}, {file = "wrapt-1.15.0-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:b56d5519e470d3f2fe4aa7585f0632b060d532d0696c5bdfb5e8319e1d0f69a2"}, {file = "wrapt-1.15.0-cp36-cp36m-win32.whl", hash = "sha256:77d4c1b881076c3ba173484dfa53d3582c1c8ff1f914c6461ab70c8428b796c1"}, {file = "wrapt-1.15.0-cp36-cp36m-win_amd64.whl", hash = "sha256:077ff0d1f9d9e4ce6476c1a924a3332452c1406e59d90a2cf24aeb29eeac9420"}, {file = "wrapt-1.15.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:5c5aa28df055697d7c37d2099a7bc09f559d5053c3349b1ad0c39000e611d317"}, {file = "wrapt-1.15.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3a8564f283394634a7a7054b7983e47dbf39c07712d7b177b37e03f2467a024e"}, {file = "wrapt-1.15.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:780c82a41dc493b62fc5884fb1d3a3b81106642c5c5c78d6a0d4cbe96d62ba7e"}, {file = "wrapt-1.15.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e169e957c33576f47e21864cf3fc9ff47c223a4ebca8960079b8bd36cb014fd0"}, {file = "wrapt-1.15.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:b02f21c1e2074943312d03d243ac4388319f2456576b2c6023041c4d57cd7019"}, {file = "wrapt-1.15.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:f2e69b3ed24544b0d3dbe2c5c0ba5153ce50dcebb576fdc4696d52aa22db6034"}, {file = "wrapt-1.15.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:d787272ed958a05b2c86311d3a4135d3c2aeea4fc655705f074130aa57d71653"}, {file = "wrapt-1.15.0-cp37-cp37m-win32.whl", hash = "sha256:02fce1852f755f44f95af51f69d22e45080102e9d00258053b79367d07af39c0"}, {file = "wrapt-1.15.0-cp37-cp37m-win_amd64.whl", hash = "sha256:abd52a09d03adf9c763d706df707c343293d5d106aea53483e0ec8d9e310ad5e"}, {file = "wrapt-1.15.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:cdb4f085756c96a3af04e6eca7f08b1345e94b53af8921b25c72f096e704e145"}, {file = "wrapt-1.15.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:230ae493696a371f1dbffaad3dafbb742a4d27a0afd2b1aecebe52b740167e7f"}, {file = "wrapt-1.15.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:63424c681923b9f3bfbc5e3205aafe790904053d42ddcc08542181a30a7a51bd"}, {file = "wrapt-1.15.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d6bcbfc99f55655c3d93feb7ef3800bd5bbe963a755687cbf1f490a71fb7794b"}, {file = "wrapt-1.15.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c99f4309f5145b93eca6e35ac1a988f0dc0a7ccf9ccdcd78d3c0adf57224e62f"}, {file = "wrapt-1.15.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:b130fe77361d6771ecf5a219d8e0817d61b236b7d8b37cc045172e574ed219e6"}, {file = "wrapt-1.15.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:96177eb5645b1c6985f5c11d03fc2dbda9ad24ec0f3a46dcce91445747e15094"}, {file = "wrapt-1.15.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:d5fe3e099cf07d0fb5a1e23d399e5d4d1ca3e6dfcbe5c8570ccff3e9208274f7"}, {file = "wrapt-1.15.0-cp38-cp38-win32.whl", hash = "sha256:abd8f36c99512755b8456047b7be10372fca271bf1467a1caa88db991e7c421b"}, {file = "wrapt-1.15.0-cp38-cp38-win_amd64.whl", hash = "sha256:b06fa97478a5f478fb05e1980980a7cdf2712015493b44d0c87606c1513ed5b1"}, {file = "wrapt-1.15.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2e51de54d4fb8fb50d6ee8327f9828306a959ae394d3e01a1ba8b2f937747d86"}, {file = "wrapt-1.15.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0970ddb69bba00670e58955f8019bec4a42d1785db3faa043c33d81de2bf843c"}, {file = "wrapt-1.15.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76407ab327158c510f44ded207e2f76b657303e17cb7a572ffe2f5a8a48aa04d"}, {file = "wrapt-1.15.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cd525e0e52a5ff16653a3fc9e3dd827981917d34996600bbc34c05d048ca35cc"}, {file = "wrapt-1.15.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d37ac69edc5614b90516807de32d08cb8e7b12260a285ee330955604ed9dd29"}, {file = "wrapt-1.15.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:078e2a1a86544e644a68422f881c48b84fef6d18f8c7a957ffd3f2e0a74a0d4a"}, {file = "wrapt-1.15.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:2cf56d0e237280baed46f0b5316661da892565ff58309d4d2ed7dba763d984b8"}, {file = "wrapt-1.15.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:7dc0713bf81287a00516ef43137273b23ee414fe41a3c14be10dd95ed98a2df9"}, {file = "wrapt-1.15.0-cp39-cp39-win32.whl", hash = "sha256:46ed616d5fb42f98630ed70c3529541408166c22cdfd4540b88d5f21006b0eff"}, {file = "wrapt-1.15.0-cp39-cp39-win_amd64.whl", hash = "sha256:eef4d64c650f33347c1f9266fa5ae001440b232ad9b98f1f43dfe7a79435c0a6"}, {file = "wrapt-1.15.0-py3-none-any.whl", hash = "sha256:64b1df0f83706b4ef4cfb4fb0e4c2669100fd7ecacfb59e091fad300d4e04640"}, {file = "wrapt-1.15.0.tar.gz", hash = "sha256:d06730c6aed78cee4126234cf2d071e01b44b915e725a6cb439a879ec9754a3a"}, ] [[package]] name = "xmltodict" version = "0.13.0" description = "Makes working with XML feel like you are working with JSON" category = "main" optional = true python-versions = ">=3.4" files = [ {file = "xmltodict-0.13.0-py2.py3-none-any.whl", hash = "sha256:aa89e8fd76320154a40d19a0df04a4695fb9dc5ba977cbb68ab3e4eb225e7852"}, {file = "xmltodict-0.13.0.tar.gz", hash = "sha256:341595a488e3e01a85a9d8911d8912fd922ede5fecc4dce437eb4b6c8d037e56"}, ] [[package]] name = "xxhash" version = "3.2.0" description = "Python binding for xxHash" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "xxhash-3.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:af44b9e59c4b2926a4e3c7f9d29949ff42fcea28637ff6b8182e654461932be8"}, {file = "xxhash-3.2.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:1bdd57973e2b802ef32553d7bebf9402dac1557874dbe5c908b499ea917662cd"}, {file = "xxhash-3.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b7c9aa77bbce61a5e681bd39cb6a804338474dcc90abe3c543592aa5d6c9a9b"}, {file = "xxhash-3.2.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:11bf87dc7bb8c3b0b5e24b7b941a9a19d8c1f88120b6a03a17264086bc8bb023"}, {file = "xxhash-3.2.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2783d41487ce6d379fdfaa7332fca5187bf7010b9bddcf20cafba923bc1dc665"}, {file = "xxhash-3.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:561076ca0dcef2fbc20b2bc2765bff099e002e96041ae9dbe910a863ca6ee3ea"}, {file = "xxhash-3.2.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3a26eeb4625a6e61cedc8c1b39b89327c9c7e1a8c2c4d786fe3f178eb839ede6"}, {file = "xxhash-3.2.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d93a44d0104d1b9b10de4e7aadf747f6efc1d7ec5ed0aa3f233a720725dd31bd"}, {file = "xxhash-3.2.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:89585adc73395a10306d2e2036e50d6c4ac0cf8dd47edf914c25488871b64f6d"}, {file = "xxhash-3.2.0-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:a892b4b139126a86bfdcb97cd912a2f8c4e8623869c3ef7b50871451dd7afeb0"}, {file = "xxhash-3.2.0-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:e998efb190653f70e0f30d92b39fc645145369a4823bee46af8ddfc244aa969d"}, {file = "xxhash-3.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:e8ed3bd2b8bb3277710843ca63e4f5c3ee6f8f80b083be5b19a7a9905420d11e"}, {file = "xxhash-3.2.0-cp310-cp310-win32.whl", hash = "sha256:20181cbaed033c72cb881b2a1d13c629cd1228f113046133469c9a48cfcbcd36"}, {file = "xxhash-3.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:a0f7a16138279d707db778a63264d1d6016ac13ffd3f1e99f54b2855d6c0d8e1"}, {file = "xxhash-3.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5daff3fb5bfef30bc5a2cb143810d376d43461445aa17aece7210de52adbe151"}, {file = "xxhash-3.2.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:75bb5be3c5de702a547715f320ecf5c8014aeca750ed5147ca75389bd22e7343"}, {file = "xxhash-3.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:01f36b671ff55cb1d5c2f6058b799b697fd0ae4b4582bba6ed0999678068172a"}, {file = "xxhash-3.2.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d4d4519123aac73c93159eb8f61db9682393862dd669e7eae034ecd0a35eadac"}, {file = "xxhash-3.2.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:994e4741d5ed70fc2a335a91ef79343c6b1089d7dfe6e955dd06f8ffe82bede6"}, {file = "xxhash-3.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:919bc1b010aa6ff0eb918838ff73a435aed9e9a19c3202b91acecd296bf75607"}, {file = "xxhash-3.2.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:17b65454c5accbb079c45eca546c27c4782f5175aa320758fafac896b1549d27"}, {file = "xxhash-3.2.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:b0c094d5e65a46dbf3fe0928ff20873a747e6abfd2ed4b675beeb2750624bc2e"}, {file = "xxhash-3.2.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:f94163ebe2d5546e6a5977e96d83621f4689c1054053428cf8d4c28b10f92f69"}, {file = "xxhash-3.2.0-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:cead7c0307977a00b3f784cff676e72c147adbcada19a2e6fc2ddf54f37cf387"}, {file = "xxhash-3.2.0-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:a0e1bd0260c1da35c1883321ce2707ceea07127816ab625e1226ec95177b561a"}, {file = "xxhash-3.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:cc8878935671490efe9275fb4190a6062b73277bd273237179b9b5a2aa436153"}, {file = "xxhash-3.2.0-cp311-cp311-win32.whl", hash = "sha256:a433f6162b18d52f7068175d00bd5b1563b7405f926a48d888a97b90a160c40d"}, {file = "xxhash-3.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:a32d546a1752e4ee7805d6db57944f7224afa7428d22867006b6486e4195c1f3"}, {file = "xxhash-3.2.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:82daaab720866bf690b20b49de5640b0c27e3b8eea2d08aa75bdca2b0f0cfb63"}, {file = "xxhash-3.2.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3126df6520cbdbaddd87ce74794b2b6c45dd2cf6ac2b600a374b8cdb76a2548c"}, {file = "xxhash-3.2.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e172c1ee40507ae3b8d220f4048aaca204f203e1e4197e8e652f5c814f61d1aa"}, {file = "xxhash-3.2.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5384f1d9f30876f5d5b618464fb19ff7ce6c0fe4c690fbaafd1c52adc3aae807"}, {file = "xxhash-3.2.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:26cb52174a7e96a17acad27a3ca65b24713610ac479c99ac9640843822d3bebf"}, {file = "xxhash-3.2.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fbcd613a5e76b1495fc24db9c37a6b7ee5f214fd85979187ec4e032abfc12ded"}, {file = "xxhash-3.2.0-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:f988daf25f31726d5b9d0be6af636ca9000898f9ea43a57eac594daea25b0948"}, {file = "xxhash-3.2.0-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:bbc30c98ab006ab9fc47e5ed439c00f706bc9d4441ff52693b8b6fea335163e0"}, {file = "xxhash-3.2.0-cp36-cp36m-musllinux_1_1_ppc64le.whl", hash = "sha256:2408d49260b0a4a7cc6ba445aebf38e073aeaf482f8e32767ca477e32ccbbf9e"}, {file = "xxhash-3.2.0-cp36-cp36m-musllinux_1_1_s390x.whl", hash = "sha256:3f4152fd0bf8b03b79f2f900fd6087a66866537e94b5a11fd0fd99ef7efe5c42"}, {file = "xxhash-3.2.0-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:0eea848758e4823a01abdbcccb021a03c1ee4100411cbeeb7a5c36a202a0c13c"}, {file = "xxhash-3.2.0-cp36-cp36m-win32.whl", hash = "sha256:77709139af5123c578ab06cf999429cdb9ab211047acd0c787e098dcb3f1cb4d"}, {file = "xxhash-3.2.0-cp36-cp36m-win_amd64.whl", hash = "sha256:91687671fd9d484a4e201ad266d366b695a45a1f2b41be93d116ba60f1b8f3b3"}, {file = "xxhash-3.2.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:e4af8bc5c3fcc2192c266421c6aa2daab1a18e002cb8e66ef672030e46ae25cf"}, {file = "xxhash-3.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e8be562e2ce3e481d9209b6f254c3d7c5ff920eb256aba2380d2fb5ba75d4f87"}, {file = "xxhash-3.2.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9eba0c7c12126b12f7fcbea5513f28c950d28f33d2a227f74b50b77789e478e8"}, {file = "xxhash-3.2.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2198c4901a0223c48f6ec0a978b60bca4f4f7229a11ca4dc96ca325dd6a29115"}, {file = "xxhash-3.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:50ce82a71b22a3069c02e914bf842118a53065e2ec1c6fb54786e03608ab89cc"}, {file = "xxhash-3.2.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b5019fb33711c30e54e4e57ae0ca70af9d35b589d385ac04acd6954452fa73bb"}, {file = "xxhash-3.2.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:0d54ac023eef7e3ac9f0b8841ae8a376b933043bc2ad428121346c6fa61c491c"}, {file = "xxhash-3.2.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:c55fa832fc3fe64e0d29da5dc9b50ba66ca93312107cec2709300ea3d3bab5c7"}, {file = "xxhash-3.2.0-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:f4ce006215497993ae77c612c1883ca4f3973899573ce0c52fee91f0d39c4561"}, {file = "xxhash-3.2.0-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:1afb9b9d27fd675b436cb110c15979976d92d761ad6e66799b83756402f3a974"}, {file = "xxhash-3.2.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:baa99cebf95c1885db21e119395f222a706a2bb75a545f0672880a442137725e"}, {file = "xxhash-3.2.0-cp37-cp37m-win32.whl", hash = "sha256:75aa692936942ccb2e8fd6a386c81c61630ac1b6d6e921698122db8a930579c3"}, {file = "xxhash-3.2.0-cp37-cp37m-win_amd64.whl", hash = "sha256:0a2cdfb5cae9fafb9f7b65fd52ecd60cf7d72c13bb2591ea59aaefa03d5a8827"}, {file = "xxhash-3.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:3a68d1e8a390b660d94b9360ae5baa8c21a101bd9c4790a8b30781bada9f1fc6"}, {file = "xxhash-3.2.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:ce7c3ce28f94302df95eaea7c9c1e2c974b6d15d78a0c82142a97939d7b6c082"}, {file = "xxhash-3.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0dcb419bf7b0bc77d366e5005c25682249c5521a63fd36c51f584bd91bb13bd5"}, {file = "xxhash-3.2.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ae521ed9287f86aac979eeac43af762f03d9d9797b2272185fb9ddd810391216"}, {file = "xxhash-3.2.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b0d16775094423088ffa357d09fbbb9ab48d2fb721d42c0856b801c86f616eec"}, {file = "xxhash-3.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fe454aeab348c42f56d6f7434ff758a3ef90787ac81b9ad5a363cd61b90a1b0b"}, {file = "xxhash-3.2.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:052fd0efdd5525c2dbc61bebb423d92aa619c4905bba605afbf1e985a562a231"}, {file = "xxhash-3.2.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:02badf3754e2133de254a4688798c4d80f0060635087abcb461415cb3eb82115"}, {file = "xxhash-3.2.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:66b8a90b28c13c2aae7a71b32638ceb14cefc2a1c8cf23d8d50dfb64dfac7aaf"}, {file = "xxhash-3.2.0-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:649cdf19df175925ad87289ead6f760cd840730ee85abc5eb43be326a0a24d97"}, {file = "xxhash-3.2.0-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:4b948a03f89f5c72d69d40975af8af241111f0643228796558dc1cae8f5560b0"}, {file = "xxhash-3.2.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:49f51fab7b762da7c2cee0a3d575184d3b9be5e2f64f26cae2dd286258ac9b3c"}, {file = "xxhash-3.2.0-cp38-cp38-win32.whl", hash = "sha256:1a42994f0d42b55514785356722d9031f064fd34e495b3a589e96db68ee0179d"}, {file = "xxhash-3.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:0a6d58ba5865475e53d6c2c4fa6a62e2721e7875e146e2681e5337a6948f12e7"}, {file = "xxhash-3.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:aabdbc082030f8df613e2d2ea1f974e7ad36a539bdfc40d36f34e55c7e4b8e94"}, {file = "xxhash-3.2.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:498843b66b9ca416e9d03037e5875c8d0c0ab9037527e22df3b39aa5163214cd"}, {file = "xxhash-3.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a910b1193cd90af17228f5d6069816646df0148f14f53eefa6b2b11a1dedfcd0"}, {file = "xxhash-3.2.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bb6d8ce31dc25faf4da92991320e211fa7f42de010ef51937b1dc565a4926501"}, {file = "xxhash-3.2.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:883dc3d3942620f4c7dbc3fd6162f50a67f050b714e47da77444e3bcea7d91cc"}, {file = "xxhash-3.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:59dc8bfacf89b8f5be54d55bc3b4bd6d74d0c5320c8a63d2538ac7df5b96f1d5"}, {file = "xxhash-3.2.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:61e6aa1d30c2af692aa88c4dd48709426e8b37bff6a574ee2de677579c34a3d6"}, {file = "xxhash-3.2.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:314ec0bd21f0ee8d30f2bd82ed3759314bd317ddbbd8555668f3d20ab7a8899a"}, {file = "xxhash-3.2.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:dad638cde3a5357ad3163b80b3127df61fb5b5e34e9e05a87697144400ba03c7"}, {file = "xxhash-3.2.0-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:eaa3ea15025b56076d806b248948612289b093e8dcda8d013776b3848dffff15"}, {file = "xxhash-3.2.0-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:7deae3a312feb5c17c97cbf18129f83cbd3f1f9ec25b0f50e2bd9697befb22e7"}, {file = "xxhash-3.2.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:add774341c09853b1612c64a526032d95ab1683053325403e1afbe3ad2f374c5"}, {file = "xxhash-3.2.0-cp39-cp39-win32.whl", hash = "sha256:9b94749130ef3119375c599bfce82142c2500ef9ed3280089157ee37662a7137"}, {file = "xxhash-3.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:e57d94a1552af67f67b27db5dba0b03783ea69d5ca2af2f40e098f0ba3ce3f5f"}, {file = "xxhash-3.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:92fd765591c83e5c5f409b33eac1d3266c03d3d11c71a7dbade36d5cdee4fbc0"}, {file = "xxhash-3.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8970f6a411a9839a02b23b7e90bbbba4a6de52ace009274998566dc43f36ca18"}, {file = "xxhash-3.2.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c5f3e33fe6cbab481727f9aeb136a213aed7e33cd1ca27bd75e916ffacc18411"}, {file = "xxhash-3.2.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:368265392cb696dd53907e2328b5a8c1bee81cf2142d0cc743caf1c1047abb36"}, {file = "xxhash-3.2.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:3b1f3c6d67fa9f49c4ff6b25ce0e7143bab88a5bc0f4116dd290c92337d0ecc7"}, {file = "xxhash-3.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:c5e8db6e1ee7267b7c412ad0afd5863bf7a95286b8333a5958c8097c69f94cf5"}, {file = "xxhash-3.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:761df3c7e2c5270088b691c5a8121004f84318177da1ca1db64222ec83c44871"}, {file = "xxhash-3.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d2d15a707e7f689531eb4134eccb0f8bf3844bb8255ad50823aa39708d9e6755"}, {file = "xxhash-3.2.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e6b2ba4ff53dd5f57d728095e3def7375eb19c90621ce3b41b256de84ec61cfd"}, {file = "xxhash-3.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:61b0bcf946fdfd8ab5f09179dc2b5c74d1ef47cedfc6ed0ec01fdf0ee8682dd3"}, {file = "xxhash-3.2.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:f7b79f0f302396d8e0d444826ceb3d07b61977793886ebae04e82796c02e42dc"}, {file = "xxhash-3.2.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e0773cd5c438ffcd5dbff91cdd503574f88a4b960e70cedeb67736583a17a918"}, {file = "xxhash-3.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4ec1f57127879b419a2c8d2db9d9978eb26c61ae17e5972197830430ae78d25b"}, {file = "xxhash-3.2.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3d4b15c00e807b1d3d0b612338c814739dec310b80fb069bd732b98ddc709ad7"}, {file = "xxhash-3.2.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:9d3f686e3d1c8900c5459eee02b60c7399e20ec5c6402364068a343c83a61d90"}, {file = "xxhash-3.2.0.tar.gz", hash = "sha256:1afd47af8955c5db730f630ad53ae798cf7fae0acb64cebb3cf94d35c47dd088"}, ] [[package]] name = "yarl" version = "1.9.2" description = "Yet another URL library" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "yarl-1.9.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:8c2ad583743d16ddbdf6bb14b5cd76bf43b0d0006e918809d5d4ddf7bde8dd82"}, {file = "yarl-1.9.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:82aa6264b36c50acfb2424ad5ca537a2060ab6de158a5bd2a72a032cc75b9eb8"}, {file = "yarl-1.9.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c0c77533b5ed4bcc38e943178ccae29b9bcf48ffd1063f5821192f23a1bd27b9"}, {file = "yarl-1.9.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ee4afac41415d52d53a9833ebae7e32b344be72835bbb589018c9e938045a560"}, {file = "yarl-1.9.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9bf345c3a4f5ba7f766430f97f9cc1320786f19584acc7086491f45524a551ac"}, {file = "yarl-1.9.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2a96c19c52ff442a808c105901d0bdfd2e28575b3d5f82e2f5fd67e20dc5f4ea"}, {file = "yarl-1.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:891c0e3ec5ec881541f6c5113d8df0315ce5440e244a716b95f2525b7b9f3608"}, {file = "yarl-1.9.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c3a53ba34a636a256d767c086ceb111358876e1fb6b50dfc4d3f4951d40133d5"}, {file = "yarl-1.9.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:566185e8ebc0898b11f8026447eacd02e46226716229cea8db37496c8cdd26e0"}, {file = "yarl-1.9.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:2b0738fb871812722a0ac2154be1f049c6223b9f6f22eec352996b69775b36d4"}, {file = "yarl-1.9.2-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:32f1d071b3f362c80f1a7d322bfd7b2d11e33d2adf395cc1dd4df36c9c243095"}, {file = "yarl-1.9.2-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:e9fdc7ac0d42bc3ea78818557fab03af6181e076a2944f43c38684b4b6bed8e3"}, {file = "yarl-1.9.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:56ff08ab5df8429901ebdc5d15941b59f6253393cb5da07b4170beefcf1b2528"}, {file = "yarl-1.9.2-cp310-cp310-win32.whl", hash = "sha256:8ea48e0a2f931064469bdabca50c2f578b565fc446f302a79ba6cc0ee7f384d3"}, {file = "yarl-1.9.2-cp310-cp310-win_amd64.whl", hash = "sha256:50f33040f3836e912ed16d212f6cc1efb3231a8a60526a407aeb66c1c1956dde"}, {file = "yarl-1.9.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:646d663eb2232d7909e6601f1a9107e66f9791f290a1b3dc7057818fe44fc2b6"}, {file = "yarl-1.9.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:aff634b15beff8902d1f918012fc2a42e0dbae6f469fce134c8a0dc51ca423bb"}, {file = "yarl-1.9.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a83503934c6273806aed765035716216cc9ab4e0364f7f066227e1aaea90b8d0"}, {file = "yarl-1.9.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b25322201585c69abc7b0e89e72790469f7dad90d26754717f3310bfe30331c2"}, {file = "yarl-1.9.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:22a94666751778629f1ec4280b08eb11815783c63f52092a5953faf73be24191"}, {file = "yarl-1.9.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ec53a0ea2a80c5cd1ab397925f94bff59222aa3cf9c6da938ce05c9ec20428d"}, {file = "yarl-1.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:159d81f22d7a43e6eabc36d7194cb53f2f15f498dbbfa8edc8a3239350f59fe7"}, {file = "yarl-1.9.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:832b7e711027c114d79dffb92576acd1bd2decc467dec60e1cac96912602d0e6"}, {file = "yarl-1.9.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:95d2ecefbcf4e744ea952d073c6922e72ee650ffc79028eb1e320e732898d7e8"}, {file = "yarl-1.9.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:d4e2c6d555e77b37288eaf45b8f60f0737c9efa3452c6c44626a5455aeb250b9"}, {file = "yarl-1.9.2-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:783185c75c12a017cc345015ea359cc801c3b29a2966c2655cd12b233bf5a2be"}, {file = "yarl-1.9.2-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:b8cc1863402472f16c600e3e93d542b7e7542a540f95c30afd472e8e549fc3f7"}, {file = "yarl-1.9.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:822b30a0f22e588b32d3120f6d41e4ed021806418b4c9f0bc3048b8c8cb3f92a"}, {file = "yarl-1.9.2-cp311-cp311-win32.whl", hash = "sha256:a60347f234c2212a9f0361955007fcf4033a75bf600a33c88a0a8e91af77c0e8"}, {file = "yarl-1.9.2-cp311-cp311-win_amd64.whl", hash = "sha256:be6b3fdec5c62f2a67cb3f8c6dbf56bbf3f61c0f046f84645cd1ca73532ea051"}, {file = "yarl-1.9.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:38a3928ae37558bc1b559f67410df446d1fbfa87318b124bf5032c31e3447b74"}, {file = "yarl-1.9.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ac9bb4c5ce3975aeac288cfcb5061ce60e0d14d92209e780c93954076c7c4367"}, {file = "yarl-1.9.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3da8a678ca8b96c8606bbb8bfacd99a12ad5dd288bc6f7979baddd62f71c63ef"}, {file = "yarl-1.9.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:13414591ff516e04fcdee8dc051c13fd3db13b673c7a4cb1350e6b2ad9639ad3"}, {file = "yarl-1.9.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf74d08542c3a9ea97bb8f343d4fcbd4d8f91bba5ec9d5d7f792dbe727f88938"}, {file = "yarl-1.9.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6e7221580dc1db478464cfeef9b03b95c5852cc22894e418562997df0d074ccc"}, {file = "yarl-1.9.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:494053246b119b041960ddcd20fd76224149cfea8ed8777b687358727911dd33"}, {file = "yarl-1.9.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:52a25809fcbecfc63ac9ba0c0fb586f90837f5425edfd1ec9f3372b119585e45"}, {file = "yarl-1.9.2-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:e65610c5792870d45d7b68c677681376fcf9cc1c289f23e8e8b39c1485384185"}, {file = "yarl-1.9.2-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:1b1bba902cba32cdec51fca038fd53f8beee88b77efc373968d1ed021024cc04"}, {file = "yarl-1.9.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:662e6016409828ee910f5d9602a2729a8a57d74b163c89a837de3fea050c7582"}, {file = "yarl-1.9.2-cp37-cp37m-win32.whl", hash = "sha256:f364d3480bffd3aa566e886587eaca7c8c04d74f6e8933f3f2c996b7f09bee1b"}, {file = "yarl-1.9.2-cp37-cp37m-win_amd64.whl", hash = "sha256:6a5883464143ab3ae9ba68daae8e7c5c95b969462bbe42e2464d60e7e2698368"}, {file = "yarl-1.9.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:5610f80cf43b6202e2c33ba3ec2ee0a2884f8f423c8f4f62906731d876ef4fac"}, {file = "yarl-1.9.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:b9a4e67ad7b646cd6f0938c7ebfd60e481b7410f574c560e455e938d2da8e0f4"}, {file = "yarl-1.9.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:83fcc480d7549ccebe9415d96d9263e2d4226798c37ebd18c930fce43dfb9574"}, {file = "yarl-1.9.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5fcd436ea16fee7d4207c045b1e340020e58a2597301cfbcfdbe5abd2356c2fb"}, {file = "yarl-1.9.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:84e0b1599334b1e1478db01b756e55937d4614f8654311eb26012091be109d59"}, {file = "yarl-1.9.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3458a24e4ea3fd8930e934c129b676c27452e4ebda80fbe47b56d8c6c7a63a9e"}, {file = "yarl-1.9.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:838162460b3a08987546e881a2bfa573960bb559dfa739e7800ceeec92e64417"}, {file = "yarl-1.9.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f4e2d08f07a3d7d3e12549052eb5ad3eab1c349c53ac51c209a0e5991bbada78"}, {file = "yarl-1.9.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:de119f56f3c5f0e2fb4dee508531a32b069a5f2c6e827b272d1e0ff5ac040333"}, {file = "yarl-1.9.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:149ddea5abf329752ea5051b61bd6c1d979e13fbf122d3a1f9f0c8be6cb6f63c"}, {file = "yarl-1.9.2-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:674ca19cbee4a82c9f54e0d1eee28116e63bc6fd1e96c43031d11cbab8b2afd5"}, {file = "yarl-1.9.2-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:9b3152f2f5677b997ae6c804b73da05a39daa6a9e85a512e0e6823d81cdad7cc"}, {file = "yarl-1.9.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:5415d5a4b080dc9612b1b63cba008db84e908b95848369aa1da3686ae27b6d2b"}, {file = "yarl-1.9.2-cp38-cp38-win32.whl", hash = "sha256:f7a3d8146575e08c29ed1cd287068e6d02f1c7bdff8970db96683b9591b86ee7"}, {file = "yarl-1.9.2-cp38-cp38-win_amd64.whl", hash = "sha256:63c48f6cef34e6319a74c727376e95626f84ea091f92c0250a98e53e62c77c72"}, {file = "yarl-1.9.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:75df5ef94c3fdc393c6b19d80e6ef1ecc9ae2f4263c09cacb178d871c02a5ba9"}, {file = "yarl-1.9.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c027a6e96ef77d401d8d5a5c8d6bc478e8042f1e448272e8d9752cb0aff8b5c8"}, {file = "yarl-1.9.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f3b078dbe227f79be488ffcfc7a9edb3409d018e0952cf13f15fd6512847f3f7"}, {file = "yarl-1.9.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:59723a029760079b7d991a401386390c4be5bfec1e7dd83e25a6a0881859e716"}, {file = "yarl-1.9.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b03917871bf859a81ccb180c9a2e6c1e04d2f6a51d953e6a5cdd70c93d4e5a2a"}, {file = "yarl-1.9.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c1012fa63eb6c032f3ce5d2171c267992ae0c00b9e164efe4d73db818465fac3"}, {file = "yarl-1.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a74dcbfe780e62f4b5a062714576f16c2f3493a0394e555ab141bf0d746bb955"}, {file = "yarl-1.9.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8c56986609b057b4839968ba901944af91b8e92f1725d1a2d77cbac6972b9ed1"}, {file = "yarl-1.9.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:2c315df3293cd521033533d242d15eab26583360b58f7ee5d9565f15fee1bef4"}, {file = "yarl-1.9.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:b7232f8dfbd225d57340e441d8caf8652a6acd06b389ea2d3222b8bc89cbfca6"}, {file = "yarl-1.9.2-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:53338749febd28935d55b41bf0bcc79d634881195a39f6b2f767870b72514caf"}, {file = "yarl-1.9.2-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:066c163aec9d3d073dc9ffe5dd3ad05069bcb03fcaab8d221290ba99f9f69ee3"}, {file = "yarl-1.9.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8288d7cd28f8119b07dd49b7230d6b4562f9b61ee9a4ab02221060d21136be80"}, {file = "yarl-1.9.2-cp39-cp39-win32.whl", hash = "sha256:b124e2a6d223b65ba8768d5706d103280914d61f5cae3afbc50fc3dfcc016623"}, {file = "yarl-1.9.2-cp39-cp39-win_amd64.whl", hash = "sha256:61016e7d582bc46a5378ffdd02cd0314fb8ba52f40f9cf4d9a5e7dbef88dee18"}, {file = "yarl-1.9.2.tar.gz", hash = "sha256:04ab9d4b9f587c06d801c2abfe9317b77cdf996c65a90d5e84ecc45010823571"}, ] [package.dependencies] idna = ">=2.0" multidict = ">=4.0" [[package]] name = "zep-python" version = "0.30" description = "Zep stores, manages, enriches, indexes, and searches long-term memory for conversational AI applications. This is the Python client for the Zep service." category = "main" optional = true python-versions = ">=3.8,<4.0" files = [ {file = "zep_python-0.30-py3-none-any.whl", hash = "sha256:6020d2f3c6dc3c3bfb8de62db88d97a8c0cf4029b5def0c8a682c3ddc2c480d2"}, {file = "zep_python-0.30.tar.gz", hash = "sha256:902720af8ffdda861ae1ee1d88e374a095195f1dc3ef79a78ecc699062ace203"}, ] [package.dependencies] httpx = ">=0.24.0,<0.25.0" pydantic = ">=1.10.7,<2.0.0" [[package]] name = "zipp" version = "3.15.0" description = "Backport of pathlib-compatible object wrapper for zip files" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "zipp-3.15.0-py3-none-any.whl", hash = "sha256:48904fc76a60e542af151aded95726c1a5c34ed43ab4134b597665c86d7ad556"}, {file = "zipp-3.15.0.tar.gz", hash = "sha256:112929ad649da941c23de50f356a2b5570c954b65150642bccdd66bf194d224b"}, ] [package.extras] docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] testing = ["big-O", "flake8 (<5)", "jaraco.functools", "jaraco.itertools", "more-itertools", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)"] [[package]] name = "zstandard" version = "0.21.0" description = "Zstandard bindings for Python" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "zstandard-0.21.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:649a67643257e3b2cff1c0a73130609679a5673bf389564bc6d4b164d822a7ce"}, {file = "zstandard-0.21.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:144a4fe4be2e747bf9c646deab212666e39048faa4372abb6a250dab0f347a29"}, {file = "zstandard-0.21.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b72060402524ab91e075881f6b6b3f37ab715663313030d0ce983da44960a86f"}, {file = "zstandard-0.21.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8257752b97134477fb4e413529edaa04fc0457361d304c1319573de00ba796b1"}, {file = "zstandard-0.21.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:c053b7c4cbf71cc26808ed67ae955836232f7638444d709bfc302d3e499364fa"}, {file = "zstandard-0.21.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2769730c13638e08b7a983b32cb67775650024632cd0476bf1ba0e6360f5ac7d"}, {file = "zstandard-0.21.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:7d3bc4de588b987f3934ca79140e226785d7b5e47e31756761e48644a45a6766"}, {file = "zstandard-0.21.0-cp310-cp310-win32.whl", hash = "sha256:67829fdb82e7393ca68e543894cd0581a79243cc4ec74a836c305c70a5943f07"}, {file = "zstandard-0.21.0-cp310-cp310-win_amd64.whl", hash = "sha256:e6048a287f8d2d6e8bc67f6b42a766c61923641dd4022b7fd3f7439e17ba5a4d"}, {file = "zstandard-0.21.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7f2afab2c727b6a3d466faee6974a7dad0d9991241c498e7317e5ccf53dbc766"}, {file = "zstandard-0.21.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ff0852da2abe86326b20abae912d0367878dd0854b8931897d44cfeb18985472"}, {file = "zstandard-0.21.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d12fa383e315b62630bd407477d750ec96a0f438447d0e6e496ab67b8b451d39"}, {file = "zstandard-0.21.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f1b9703fe2e6b6811886c44052647df7c37478af1b4a1a9078585806f42e5b15"}, {file = "zstandard-0.21.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:df28aa5c241f59a7ab524f8ad8bb75d9a23f7ed9d501b0fed6d40ec3064784e8"}, {file = "zstandard-0.21.0-cp311-cp311-win32.whl", hash = "sha256:0aad6090ac164a9d237d096c8af241b8dcd015524ac6dbec1330092dba151657"}, {file = "zstandard-0.21.0-cp311-cp311-win_amd64.whl", hash = "sha256:48b6233b5c4cacb7afb0ee6b4f91820afbb6c0e3ae0fa10abbc20000acdf4f11"}, {file = "zstandard-0.21.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:e7d560ce14fd209db6adacce8908244503a009c6c39eee0c10f138996cd66d3e"}, {file = "zstandard-0.21.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1e6e131a4df2eb6f64961cea6f979cdff22d6e0d5516feb0d09492c8fd36f3bc"}, {file = "zstandard-0.21.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e1e0c62a67ff425927898cf43da2cf6b852289ebcc2054514ea9bf121bec10a5"}, {file = "zstandard-0.21.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:1545fb9cb93e043351d0cb2ee73fa0ab32e61298968667bb924aac166278c3fc"}, {file = "zstandard-0.21.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fe6c821eb6870f81d73bf10e5deed80edcac1e63fbc40610e61f340723fd5f7c"}, {file = "zstandard-0.21.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ddb086ea3b915e50f6604be93f4f64f168d3fc3cef3585bb9a375d5834392d4f"}, {file = "zstandard-0.21.0-cp37-cp37m-win32.whl", hash = "sha256:57ac078ad7333c9db7a74804684099c4c77f98971c151cee18d17a12649bc25c"}, {file = "zstandard-0.21.0-cp37-cp37m-win_amd64.whl", hash = "sha256:1243b01fb7926a5a0417120c57d4c28b25a0200284af0525fddba812d575f605"}, {file = "zstandard-0.21.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:ea68b1ba4f9678ac3d3e370d96442a6332d431e5050223626bdce748692226ea"}, {file = "zstandard-0.21.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:8070c1cdb4587a8aa038638acda3bd97c43c59e1e31705f2766d5576b329e97c"}, {file = "zstandard-0.21.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4af612c96599b17e4930fe58bffd6514e6c25509d120f4eae6031b7595912f85"}, {file = "zstandard-0.21.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cff891e37b167bc477f35562cda1248acc115dbafbea4f3af54ec70821090965"}, {file = "zstandard-0.21.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:a9fec02ce2b38e8b2e86079ff0b912445495e8ab0b137f9c0505f88ad0d61296"}, {file = "zstandard-0.21.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0bdbe350691dec3078b187b8304e6a9c4d9db3eb2d50ab5b1d748533e746d099"}, {file = "zstandard-0.21.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b69cccd06a4a0a1d9fb3ec9a97600055cf03030ed7048d4bcb88c574f7895773"}, {file = "zstandard-0.21.0-cp38-cp38-win32.whl", hash = "sha256:9980489f066a391c5572bc7dc471e903fb134e0b0001ea9b1d3eff85af0a6f1b"}, {file = "zstandard-0.21.0-cp38-cp38-win_amd64.whl", hash = "sha256:0e1e94a9d9e35dc04bf90055e914077c80b1e0c15454cc5419e82529d3e70728"}, {file = "zstandard-0.21.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d2d61675b2a73edcef5e327e38eb62bdfc89009960f0e3991eae5cc3d54718de"}, {file = "zstandard-0.21.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:25fbfef672ad798afab12e8fd204d122fca3bc8e2dcb0a2ba73bf0a0ac0f5f07"}, {file = "zstandard-0.21.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:62957069a7c2626ae80023998757e27bd28d933b165c487ab6f83ad3337f773d"}, {file = "zstandard-0.21.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:14e10ed461e4807471075d4b7a2af51f5234c8f1e2a0c1d37d5ca49aaaad49e8"}, {file = "zstandard-0.21.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9cff89a036c639a6a9299bf19e16bfb9ac7def9a7634c52c257166db09d950e7"}, {file = "zstandard-0.21.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:52b2b5e3e7670bd25835e0e0730a236f2b0df87672d99d3bf4bf87248aa659fb"}, {file = "zstandard-0.21.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b1367da0dde8ae5040ef0413fb57b5baeac39d8931c70536d5f013b11d3fc3a5"}, {file = "zstandard-0.21.0-cp39-cp39-win32.whl", hash = "sha256:db62cbe7a965e68ad2217a056107cc43d41764c66c895be05cf9c8b19578ce9c"}, {file = "zstandard-0.21.0-cp39-cp39-win_amd64.whl", hash = "sha256:a8d200617d5c876221304b0e3fe43307adde291b4a897e7b0617a61611dfff6a"}, {file = "zstandard-0.21.0.tar.gz", hash = "sha256:f08e3a10d01a247877e4cb61a82a319ea746c356a3786558bed2481e6c405546"}, ] [package.dependencies] cffi = {version = ">=1.11", markers = "platform_python_implementation == \"PyPy\""} [package.extras] cffi = ["cffi (>=1.11)"] [extras] all = ["O365", "aleph-alpha-client", "anthropic", "arxiv", "atlassian-python-api", "azure-ai-formrecognizer", "azure-ai-vision", "azure-cognitiveservices-speech", "azure-cosmos", "azure-identity", "beautifulsoup4", "clickhouse-connect", "cohere", "deeplake", "docarray", "duckduckgo-search", "elasticsearch", "faiss-cpu", "google-api-python-client", "google-search-results", "gptcache", "html2text", "huggingface_hub", "jina", "jinja2", "jq", "lancedb", "langkit", "lark", "lxml", "manifest-ml", "momento", "neo4j", "networkx", "nlpcloud", "nltk", "nomic", "openai", "openlm", "opensearch-py", "pdfminer-six", "pexpect", "pgvector", "pinecone-client", "pinecone-text", "psycopg2-binary", "pyowm", "pypdf", "pytesseract", "pyvespa", "qdrant-client", "redis", "requests-toolbelt", "sentence-transformers", "spacy", "steamship", "tensorflow-text", "tiktoken", "torch", "transformers", "weaviate-client", "wikipedia", "wolframalpha"] azure = ["azure-ai-formrecognizer", "azure-ai-vision", "azure-cognitiveservices-speech", "azure-core", "azure-cosmos", "azure-identity", "openai"] cohere = ["cohere"] docarray = ["docarray"] embeddings = ["sentence-transformers"] extended-testing = ["atlassian-python-api", "beautifulsoup4", "beautifulsoup4", "bibtexparser", "chardet", "gql", "html2text", "jq", "lxml", "pandas", "pdfminer-six", "psychicapi", "py-trello", "pymupdf", "pypdf", "pypdfium2", "pyspark", "requests-toolbelt", "scikit-learn", "telethon", "tqdm", "zep-python"] llms = ["anthropic", "cohere", "huggingface_hub", "manifest-ml", "nlpcloud", "openai", "openlm", "torch", "transformers"] openai = ["openai", "tiktoken"] qdrant = ["qdrant-client"] text-helpers = ["chardet"] [metadata] lock-version = "2.0" python-versions = ">=3.8.1,<4.0" content-hash = "b3dc23f376de141d22b729d038144a1e6d66983a910160c3500fe0d79f8e5917"
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,337
Add MongoDBAtlasVectorSearch vectorstore
### Feature request MongoDB Atlas is a fully managed DBaaS, powered by the MongoDB database. It also enables Lucene (collocated with the mongod process) for full-text search - this is know as Atlas Search. The PR has to allow Langchain users from using the functionality related to the MongoDB Atlas Vector Search feature where you can store your embeddings in MongoDB documents and create a Lucene vector index to perform a KNN search. ### Motivation There is currently no way in Langchain to connect to MongoDB Atlas and perform a KNN search. ### Your contribution I am submitting a PR for this issue soon.
https://github.com/langchain-ai/langchain/issues/5337
https://github.com/langchain-ai/langchain/pull/5338
c4b502a47051f50c6e24b824d3db622748458d13
a61b7f7e7c76ae8667e40cd29cfe30a3868d7dd8
"2023-05-27T11:41:39Z"
python
"2023-05-30T14:59:01Z"
pyproject.toml
[tool.poetry] name = "langchain" version = "0.0.184" description = "Building applications with LLMs through composability" authors = [] license = "MIT" readme = "README.md" repository = "https://www.github.com/hwchase17/langchain" [tool.poetry.scripts] langchain-server = "langchain.server:main" langchain = "langchain.cli.main:main" [tool.poetry.dependencies] python = ">=3.8.1,<4.0" pydantic = "^1" SQLAlchemy = ">=1.4,<3" requests = "^2" PyYAML = ">=5.4.1" numpy = "^1" azure-core = {version = "^1.26.4", optional=true} tqdm = {version = ">=4.48.0", optional = true} openapi-schema-pydantic = "^1.2" faiss-cpu = {version = "^1", optional = true} wikipedia = {version = "^1", optional = true} elasticsearch = {version = "^8", optional = true} opensearch-py = {version = "^2.0.0", optional = true} redis = {version = "^4", optional = true} manifest-ml = {version = "^0.0.1", optional = true} spacy = {version = "^3", optional = true} nltk = {version = "^3", optional = true} transformers = {version = "^4", optional = true} beautifulsoup4 = {version = "^4", optional = true} torch = {version = ">=1,<3", optional = true} jinja2 = {version = "^3", optional = true} tiktoken = {version = "^0.3.2", optional = true, python="^3.9"} pinecone-client = {version = "^2", optional = true} pinecone-text = {version = "^0.4.2", optional = true} clickhouse-connect = {version="^0.5.14", optional=true} weaviate-client = {version = "^3", optional = true} google-api-python-client = {version = "2.70.0", optional = true} wolframalpha = {version = "5.0.0", optional = true} anthropic = {version = "^0.2.6", optional = true} qdrant-client = {version = "^1.1.2", optional = true, python = ">=3.8.1,<3.12"} dataclasses-json = "^0.5.7" tensorflow-text = {version = "^2.11.0", optional = true, python = "^3.10, <3.12"} tenacity = "^8.1.0" cohere = {version = "^3", optional = true} openai = {version = "^0", optional = true} nlpcloud = {version = "^1", optional = true} nomic = {version = "^1.0.43", optional = true} huggingface_hub = {version = "^0", optional = true} jina = {version = "^3.14", optional = true} google-search-results = {version = "^2", optional = true} sentence-transformers = {version = "^2", optional = true} aiohttp = "^3.8.3" arxiv = {version = "^1.4", optional = true} pypdf = {version = "^3.4.0", optional = true} networkx = {version="^2.6.3", optional = true} aleph-alpha-client = {version="^2.15.0", optional = true} deeplake = {version = "^3.3.0", optional = true} pgvector = {version = "^0.1.6", optional = true} psycopg2-binary = {version = "^2.9.5", optional = true} pyowm = {version = "^3.3.0", optional = true} async-timeout = {version = "^4.0.0", python = "<3.11"} azure-identity = {version = "^1.12.0", optional=true} gptcache = {version = ">=0.1.7", optional = true} atlassian-python-api = {version = "^3.36.0", optional=true} pytesseract = {version = "^0.3.10", optional=true} html2text = {version="^2020.1.16", optional=true} numexpr = "^2.8.4" duckduckgo-search = {version="^2.8.6", optional=true} azure-cosmos = {version="^4.4.0b1", optional=true} lark = {version="^1.1.5", optional=true} lancedb = {version = "^0.1", optional = true} pexpect = {version = "^4.8.0", optional = true} pyvespa = {version = "^0.33.0", optional = true} O365 = {version = "^2.0.26", optional = true} jq = {version = "^1.4.1", optional = true} steamship = {version = "^2.16.9", optional = true} pdfminer-six = {version = "^20221105", optional = true} docarray = {version="^0.32.0", extras=["hnswlib"], optional=true} lxml = {version = "^4.9.2", optional = true} pymupdf = {version = "^1.22.3", optional = true} pypdfium2 = {version = "^4.10.0", optional = true} gql = {version = "^3.4.1", optional = true} pandas = {version = "^2.0.1", optional = true} telethon = {version = "^1.28.5", optional = true} neo4j = {version = "^5.8.1", optional = true} psychicapi = {version = "^0.2", optional = true} zep-python = {version="^0.30", optional=true} langkit = {version = ">=0.0.1.dev3, <0.1.0", optional = true} chardet = {version="^5.1.0", optional=true} requests-toolbelt = {version = "^1.0.0", optional = true} openlm = {version = "^0.0.5", optional = true} scikit-learn = {version = "^1.2.2", optional = true} azure-ai-formrecognizer = {version = "^3.2.1", optional = true} azure-ai-vision = {version = "^0.11.1b1", optional = true} azure-cognitiveservices-speech = {version = "^1.28.0", optional = true} py-trello = {version = "^0.19.0", optional = true} momento = {version = "^1.5.0", optional = true} bibtexparser = {version = "^1.4.0", optional = true} pyspark = {version = "^3.4.0", optional = true} [tool.poetry.group.docs.dependencies] autodoc_pydantic = "^1.8.0" myst_parser = "^0.18.1" nbsphinx = "^0.8.9" sphinx = "^4.5.0" sphinx-autobuild = "^2021.3.14" sphinx_book_theme = "^0.3.3" sphinx_rtd_theme = "^1.0.0" sphinx-typlog-theme = "^0.8.0" sphinx-panels = "^0.6.0" toml = "^0.10.2" myst-nb = "^0.17.1" linkchecker = "^10.2.1" sphinx-copybutton = "^0.5.1" [tool.poetry.group.test.dependencies] # The only dependencies that should be added are # dependencies used for running tests (e.g., pytest, freezegun, response). # Any dependencies that do not meet that criteria will be removed. pytest = "^7.3.0" pytest-cov = "^4.0.0" pytest-dotenv = "^0.5.2" duckdb-engine = "^0.7.0" pytest-watcher = "^0.2.6" freezegun = "^1.2.2" responses = "^0.22.0" pytest-asyncio = "^0.20.3" lark = "^1.1.5" pytest-mock = "^3.10.0" pytest-socket = "^0.6.0" [tool.poetry.group.test_integration] optional = true [tool.poetry.group.test_integration.dependencies] # Do not add dependencies in the test_integration group # Instead: # 1. Add an optional dependency to the main group # poetry add --optional [package name] # 2. Add the package name to the extended_testing extra (find it below) # 3. Relock the poetry file # poetry lock --no-update # 4. Favor unit tests not integration tests. # Use the @pytest.mark.requires(pkg_name) decorator in unit_tests. # Your tests should not rely on network access, as it prevents other # developers from being able to easily run them. # Instead write unit tests that use the `responses` library or mock.patch with # fixtures. Keep the fixtures minimal. # See CONTRIBUTING.md for more instructions on working with optional dependencies. # https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md#working-with-optional-dependencies pytest-vcr = "^1.0.2" wrapt = "^1.15.0" openai = "^0.27.4" elasticsearch = {extras = ["async"], version = "^8.6.2"} redis = "^4.5.4" pinecone-client = "^2.2.1" pinecone-text = "^0.4.2" clickhouse-connect = "^0.5.14" pgvector = "^0.1.6" transformers = "^4.27.4" pandas = "^2.0.0" deeplake = "^3.2.21" weaviate-client = "^3.15.5" torch = "^1.0.0" chromadb = "^0.3.21" tiktoken = "^0.3.3" python-dotenv = "^1.0.0" sentence-transformers = "^2" gptcache = "^0.1.9" promptlayer = "^0.1.80" tair = "^1.3.3" wikipedia = "^1" pymongo = "^4.3.3" cassandra-driver = "^3.27.0" arxiv = "^1.4" mastodon-py = "^1.8.1" momento = "^1.5.0" # Please do not add any dependencies in the test_integration group # See instructions above ^^ [tool.poetry.group.lint.dependencies] ruff = "^0.0.249" types-toml = "^0.10.8.1" types-redis = "^4.3.21.6" black = "^23.1.0" types-chardet = "^5.0.4.6" [tool.poetry.group.typing.dependencies] mypy = "^0.991" types-pyyaml = "^6.0.12.2" types-requests = "^2.28.11.5" [tool.poetry.group.dev] optional = true [tool.poetry.group.dev.dependencies] jupyter = "^1.0.0" playwright = "^1.28.0" setuptools = "^67.6.1" [tool.poetry.extras] llms = ["anthropic", "cohere", "openai", "openlm", "nlpcloud", "huggingface_hub", "manifest-ml", "torch", "transformers"] qdrant = ["qdrant-client"] openai = ["openai", "tiktoken"] text_helpers = ["chardet"] cohere = ["cohere"] docarray = ["docarray"] embeddings = ["sentence-transformers"] azure = ["azure-identity", "azure-cosmos", "openai", "azure-core", "azure-ai-formrecognizer", "azure-ai-vision", "azure-cognitiveservices-speech"] all = [ "anthropic", "cohere", "openai", "nlpcloud", "huggingface_hub", "jina", "manifest-ml", "elasticsearch", "opensearch-py", "google-search-results", "faiss-cpu", "sentence-transformers", "transformers", "spacy", "nltk", "wikipedia", "beautifulsoup4", "tiktoken", "torch", "jinja2", "pinecone-client", "pinecone-text", "weaviate-client", "redis", "google-api-python-client", "wolframalpha", "qdrant-client", "tensorflow-text", "pypdf", "networkx", "nomic", "aleph-alpha-client", "deeplake", "pgvector", "psycopg2-binary", "pyowm", "pytesseract", "html2text", "atlassian-python-api", "gptcache", "duckduckgo-search", "arxiv", "azure-identity", "clickhouse-connect", "azure-cosmos", "lancedb", "langkit", "lark", "pexpect", "pyvespa", "O365", "jq", "docarray", "steamship", "pdfminer-six", "lxml", "requests-toolbelt", "neo4j", "openlm", "azure-ai-formrecognizer", "azure-ai-vision", "azure-cognitiveservices-speech", "momento" ] # An extra used to be able to add extended testing. # Please use new-line on formatting to make it easier to add new packages without # merge-conflicts extended_testing = [ "beautifulsoup4", "bibtexparser", "chardet", "jq", "pdfminer.six", "pypdf", "pymupdf", "pypdfium2", "tqdm", "lxml", "atlassian-python-api", "beautifulsoup4", "pandas", "telethon", "psychicapi", "zep-python", "gql", "requests_toolbelt", "html2text", "py-trello", "scikit-learn", "pyspark", ] [tool.ruff] select = [ "E", # pycodestyle "F", # pyflakes "I", # isort ] exclude = [ "tests/integration_tests/examples/non-utf8-encoding.py", ] [tool.mypy] ignore_missing_imports = "True" disallow_untyped_defs = "True" exclude = ["notebooks"] [tool.coverage.run] omit = [ "tests/*", ] [build-system] requires = ["poetry-core>=1.0.0"] build-backend = "poetry.core.masonry.api" [tool.pytest.ini_options] # --strict-markers will raise errors on unknown marks. # https://docs.pytest.org/en/7.1.x/how-to/mark.html#raising-errors-on-unknown-marks # # https://docs.pytest.org/en/7.1.x/reference/reference.html # --strict-config any warnings encountered while parsing the `pytest` # section of the configuration file raise errors. addopts = "--strict-markers --strict-config --durations=5" # Registering custom markers. # https://docs.pytest.org/en/7.1.x/example/markers.html#registering-markers markers = [ "requires: mark tests as requiring a specific library" ]
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,337
Add MongoDBAtlasVectorSearch vectorstore
### Feature request MongoDB Atlas is a fully managed DBaaS, powered by the MongoDB database. It also enables Lucene (collocated with the mongod process) for full-text search - this is know as Atlas Search. The PR has to allow Langchain users from using the functionality related to the MongoDB Atlas Vector Search feature where you can store your embeddings in MongoDB documents and create a Lucene vector index to perform a KNN search. ### Motivation There is currently no way in Langchain to connect to MongoDB Atlas and perform a KNN search. ### Your contribution I am submitting a PR for this issue soon.
https://github.com/langchain-ai/langchain/issues/5337
https://github.com/langchain-ai/langchain/pull/5338
c4b502a47051f50c6e24b824d3db622748458d13
a61b7f7e7c76ae8667e40cd29cfe30a3868d7dd8
"2023-05-27T11:41:39Z"
python
"2023-05-30T14:59:01Z"
tests/integration_tests/.env.example
# openai # your api key from https://platform.openai.com/account/api-keys OPENAI_API_KEY= # pinecone # your api key from left menu "API Keys" in https://app.pinecone.io PINECONE_API_KEY=your_pinecone_api_key_here # your pinecone environment from left menu "API Keys" in https://app.pinecone.io PINECONE_ENVIRONMENT=us-west4-gcp # jira # your api token from https://id.atlassian.com/manage-profile/security/api-tokens # more details here: https://confluence.atlassian.com/enterprise/using-personal-access-tokens-1026032365.html # JIRA_API_TOKEN=your_jira_api_token_here # JIRA_USERNAME=your_jira_username_here # JIRA_INSTANCE_URL=your_jira_instance_url_here # power bi # sign in to azure in order to authenticate with DefaultAzureCredentials # details here https://learn.microsoft.com/en-us/dotnet/api/azure.identity.defaultazurecredential?view=azure-dotnet POWERBI_DATASET_ID=_powerbi_dataset_id_here POWERBI_TABLE_NAME=_test_table_name_here POWERBI_NUMROWS=_num_rows_in_your_test_table
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,337
Add MongoDBAtlasVectorSearch vectorstore
### Feature request MongoDB Atlas is a fully managed DBaaS, powered by the MongoDB database. It also enables Lucene (collocated with the mongod process) for full-text search - this is know as Atlas Search. The PR has to allow Langchain users from using the functionality related to the MongoDB Atlas Vector Search feature where you can store your embeddings in MongoDB documents and create a Lucene vector index to perform a KNN search. ### Motivation There is currently no way in Langchain to connect to MongoDB Atlas and perform a KNN search. ### Your contribution I am submitting a PR for this issue soon.
https://github.com/langchain-ai/langchain/issues/5337
https://github.com/langchain-ai/langchain/pull/5338
c4b502a47051f50c6e24b824d3db622748458d13
a61b7f7e7c76ae8667e40cd29cfe30a3868d7dd8
"2023-05-27T11:41:39Z"
python
"2023-05-30T14:59:01Z"
tests/integration_tests/vectorstores/test_mongodb_atlas.py
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,605
Embeddings normalization and similarity metric
I am new to using Langchain and attempting to make it work with a locally running LLM (Alpaca) and Embeddings model (Sentence Transformer). When configuring the sentence transformer model with `HuggingFaceEmbeddings` no arguments can be passed to the encode method of the model, specifically `normalize_embeddings=True`. Neither can I specify the distance metric that I want to use in the `similarity_search` method irrespective of what vector store I am using. So it seems to me I can only create unnormalized embeddings with huggingface models and only use L2 distance as the similarity metric by default. Whereas I want to use the cosine similarity metric or have normalized embeddings and then use the dot product/L2 distance. If I am wrong here can someone point me in the right direction. If not are there any plans to implement this?
https://github.com/langchain-ai/langchain/issues/3605
https://github.com/langchain-ai/langchain/pull/5450
e09afb4b4445c99bebabca4b2beb150ba3a37c5c
c1807d84086c92d1aea2eb7be181204e72ae10d0
"2023-04-26T18:02:20Z"
python
"2023-05-30T18:57:04Z"
langchain/embeddings/huggingface.py
"""Wrapper around HuggingFace embedding models.""" from typing import Any, Dict, List, Optional from pydantic import BaseModel, Extra, Field from langchain.embeddings.base import Embeddings DEFAULT_MODEL_NAME = "sentence-transformers/all-mpnet-base-v2" DEFAULT_INSTRUCT_MODEL = "hkunlp/instructor-large" DEFAULT_EMBED_INSTRUCTION = "Represent the document for retrieval: " DEFAULT_QUERY_INSTRUCTION = ( "Represent the question for retrieving supporting documents: " ) class HuggingFaceEmbeddings(BaseModel, Embeddings): """Wrapper around sentence_transformers embedding models. To use, you should have the ``sentence_transformers`` python package installed. Example: .. code-block:: python from langchain.embeddings import HuggingFaceEmbeddings model_name = "sentence-transformers/all-mpnet-base-v2" model_kwargs = {'device': 'cpu'} hf = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs) """ client: Any #: :meta private: model_name: str = DEFAULT_MODEL_NAME """Model name to use.""" cache_folder: Optional[str] = None """Path to store models. Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Key word arguments to pass to the model.""" encode_kwargs: Dict[str, Any] = Field(default_factory=dict) """Key word arguments to pass when calling the `encode` method of the model.""" def __init__(self, **kwargs: Any): """Initialize the sentence_transformer.""" super().__init__(**kwargs) try: import sentence_transformers except ImportError as exc: raise ImportError( "Could not import sentence_transformers python package. " "Please install it with `pip install sentence_transformers`." ) from exc self.client = sentence_transformers.SentenceTransformer( self.model_name, cache_folder=self.cache_folder, **self.model_kwargs ) class Config: """Configuration for this pydantic object.""" extra = Extra.forbid def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute doc embeddings using a HuggingFace transformer model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ texts = list(map(lambda x: x.replace("\n", " "), texts)) embeddings = self.client.encode(texts, **self.encode_kwargs) return embeddings.tolist() def embed_query(self, text: str) -> List[float]: """Compute query embeddings using a HuggingFace transformer model. Args: text: The text to embed. Returns: Embeddings for the text. """ text = text.replace("\n", " ") embedding = self.client.encode(text, **self.encode_kwargs) return embedding.tolist() class HuggingFaceInstructEmbeddings(BaseModel, Embeddings): """Wrapper around sentence_transformers embedding models. To use, you should have the ``sentence_transformers`` and ``InstructorEmbedding`` python packages installed. Example: .. code-block:: python from langchain.embeddings import HuggingFaceInstructEmbeddings model_name = "hkunlp/instructor-large" model_kwargs = {'device': 'cpu'} hf = HuggingFaceInstructEmbeddings( model_name=model_name, model_kwargs=model_kwargs ) """ client: Any #: :meta private: model_name: str = DEFAULT_INSTRUCT_MODEL """Model name to use.""" cache_folder: Optional[str] = None """Path to store models. Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Key word arguments to pass to the model.""" embed_instruction: str = DEFAULT_EMBED_INSTRUCTION """Instruction to use for embedding documents.""" query_instruction: str = DEFAULT_QUERY_INSTRUCTION """Instruction to use for embedding query.""" def __init__(self, **kwargs: Any): """Initialize the sentence_transformer.""" super().__init__(**kwargs) try: from InstructorEmbedding import INSTRUCTOR self.client = INSTRUCTOR( self.model_name, cache_folder=self.cache_folder, **self.model_kwargs ) except ImportError as e: raise ValueError("Dependencies for InstructorEmbedding not found.") from e class Config: """Configuration for this pydantic object.""" extra = Extra.forbid def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute doc embeddings using a HuggingFace instruct model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ instruction_pairs = [[self.embed_instruction, text] for text in texts] embeddings = self.client.encode(instruction_pairs) return embeddings.tolist() def embed_query(self, text: str) -> List[float]: """Compute query embeddings using a HuggingFace instruct model. Args: text: The text to embed. Returns: Embeddings for the text. """ instruction_pair = [self.query_instruction, text] embedding = self.client.encode([instruction_pair])[0] return embedding.tolist()
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,605
Embeddings normalization and similarity metric
I am new to using Langchain and attempting to make it work with a locally running LLM (Alpaca) and Embeddings model (Sentence Transformer). When configuring the sentence transformer model with `HuggingFaceEmbeddings` no arguments can be passed to the encode method of the model, specifically `normalize_embeddings=True`. Neither can I specify the distance metric that I want to use in the `similarity_search` method irrespective of what vector store I am using. So it seems to me I can only create unnormalized embeddings with huggingface models and only use L2 distance as the similarity metric by default. Whereas I want to use the cosine similarity metric or have normalized embeddings and then use the dot product/L2 distance. If I am wrong here can someone point me in the right direction. If not are there any plans to implement this?
https://github.com/langchain-ai/langchain/issues/3605
https://github.com/langchain-ai/langchain/pull/5450
e09afb4b4445c99bebabca4b2beb150ba3a37c5c
c1807d84086c92d1aea2eb7be181204e72ae10d0
"2023-04-26T18:02:20Z"
python
"2023-05-30T18:57:04Z"
tests/integration_tests/embeddings/test_huggingface.py
"""Test huggingface embeddings.""" from langchain.embeddings.huggingface import ( HuggingFaceEmbeddings, HuggingFaceInstructEmbeddings, ) def test_huggingface_embedding_documents() -> None: """Test huggingface embeddings.""" documents = ["foo bar"] embedding = HuggingFaceEmbeddings() output = embedding.embed_documents(documents) assert len(output) == 1 assert len(output[0]) == 768 def test_huggingface_embedding_query() -> None: """Test huggingface embeddings.""" document = "foo bar" embedding = HuggingFaceEmbeddings(encode_kwargs={"batch_size": 16}) output = embedding.embed_query(document) assert len(output) == 768 def test_huggingface_instructor_embedding_documents() -> None: """Test huggingface embeddings.""" documents = ["foo bar"] embedding = HuggingFaceInstructEmbeddings() output = embedding.embed_documents(documents) assert len(output) == 1 assert len(output[0]) == 768 def test_huggingface_instructor_embedding_query() -> None: """Test huggingface embeddings.""" query = "foo bar" embedding = HuggingFaceInstructEmbeddings() output = embedding.embed_query(query) assert len(output) == 768
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,423
SQLDatabaseToolkit doesn't work well with Postgresql, it will truncate the last double quotation marks in the SQL
### System Info Langchain: 0.0.184 Python: 3.10.9 Platform: Windows 10 with Jupyter lab ### Who can help? @vowelparrot ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction SQLDatabaseToolkit works well if the SQL doesn't include the double quotation marks at the end, if there is, it will truncate the last double quotation marks, resulting in an endless loop. Below is the initial code snapshot. ![image](https://github.com/hwchase17/langchain/assets/38554198/6a444508-4774-4962-8ae2-e5513c756535) And when I executed it. ![image](https://github.com/hwchase17/langchain/assets/38554198/5d3c76fe-8151-4caf-9970-03c84473f925) The LLM generates the correct SQL, but the toolkit truncats the last double quotation marks. ### Expected behavior Won't truncate the last double quotation marks for PostgreSql.
https://github.com/langchain-ai/langchain/issues/5423
https://github.com/langchain-ai/langchain/pull/5432
c1807d84086c92d1aea2eb7be181204e72ae10d0
1d861dc37a63a41ae2e0983f2ee418efde968ce3
"2023-05-30T04:02:36Z"
python
"2023-05-30T19:58:47Z"
langchain/agents/mrkl/output_parser.py
import re from typing import Union from langchain.agents.agent import AgentOutputParser from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS from langchain.schema import AgentAction, AgentFinish, OutputParserException FINAL_ANSWER_ACTION = "Final Answer:" class MRKLOutputParser(AgentOutputParser): def get_format_instructions(self) -> str: return FORMAT_INSTRUCTIONS def parse(self, text: str) -> Union[AgentAction, AgentFinish]: if FINAL_ANSWER_ACTION in text: return AgentFinish( {"output": text.split(FINAL_ANSWER_ACTION)[-1].strip()}, text ) # \s matches against tab/newline/whitespace regex = ( r"Action\s*\d*\s*:[\s]*(.*?)[\s]*Action\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)" ) match = re.search(regex, text, re.DOTALL) if not match: if not re.search(r"Action\s*\d*\s*:[\s]*(.*?)", text, re.DOTALL): raise OutputParserException( f"Could not parse LLM output: `{text}`", observation="Invalid Format: Missing 'Action:' after 'Thought:'", llm_output=text, send_to_llm=True, ) elif not re.search( r"[\s]*Action\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)", text, re.DOTALL ): raise OutputParserException( f"Could not parse LLM output: `{text}`", observation="Invalid Format:" " Missing 'Action Input:' after 'Action:'", llm_output=text, send_to_llm=True, ) else: raise OutputParserException(f"Could not parse LLM output: `{text}`") action = match.group(1).strip() action_input = match.group(2) return AgentAction(action, action_input.strip(" ").strip('"'), text) @property def _type(self) -> str: return "mrkl"
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,423
SQLDatabaseToolkit doesn't work well with Postgresql, it will truncate the last double quotation marks in the SQL
### System Info Langchain: 0.0.184 Python: 3.10.9 Platform: Windows 10 with Jupyter lab ### Who can help? @vowelparrot ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction SQLDatabaseToolkit works well if the SQL doesn't include the double quotation marks at the end, if there is, it will truncate the last double quotation marks, resulting in an endless loop. Below is the initial code snapshot. ![image](https://github.com/hwchase17/langchain/assets/38554198/6a444508-4774-4962-8ae2-e5513c756535) And when I executed it. ![image](https://github.com/hwchase17/langchain/assets/38554198/5d3c76fe-8151-4caf-9970-03c84473f925) The LLM generates the correct SQL, but the toolkit truncats the last double quotation marks. ### Expected behavior Won't truncate the last double quotation marks for PostgreSql.
https://github.com/langchain-ai/langchain/issues/5423
https://github.com/langchain-ai/langchain/pull/5432
c1807d84086c92d1aea2eb7be181204e72ae10d0
1d861dc37a63a41ae2e0983f2ee418efde968ce3
"2023-05-30T04:02:36Z"
python
"2023-05-30T19:58:47Z"
tests/unit_tests/agents/test_mrkl.py
"""Test MRKL functionality.""" from typing import Tuple import pytest from langchain.agents.mrkl.base import ZeroShotAgent from langchain.agents.mrkl.output_parser import MRKLOutputParser from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS, PREFIX, SUFFIX from langchain.agents.tools import Tool from langchain.prompts import PromptTemplate from langchain.schema import AgentAction, OutputParserException from tests.unit_tests.llms.fake_llm import FakeLLM def get_action_and_input(text: str) -> Tuple[str, str]: output = MRKLOutputParser().parse(text) if isinstance(output, AgentAction): return output.tool, str(output.tool_input) else: return "Final Answer", output.return_values["output"] def test_get_action_and_input() -> None: """Test getting an action from text.""" llm_output = ( "Thought: I need to search for NBA\n" "Action: Search\n" "Action Input: NBA" ) action, action_input = get_action_and_input(llm_output) assert action == "Search" assert action_input == "NBA" def test_get_action_and_input_whitespace() -> None: """Test getting an action from text.""" llm_output = "Thought: I need to search for NBA\nAction: Search \nAction Input: NBA" action, action_input = get_action_and_input(llm_output) assert action == "Search" assert action_input == "NBA" def test_get_action_and_input_newline() -> None: """Test getting an action from text where Action Input is a code snippet.""" llm_output = ( "Now I need to write a unittest for the function.\n\n" "Action: Python\nAction Input:\n```\nimport unittest\n\nunittest.main()\n```" ) action, action_input = get_action_and_input(llm_output) assert action == "Python" assert action_input == "```\nimport unittest\n\nunittest.main()\n```" def test_get_action_and_input_newline_after_keyword() -> None: """Test getting an action and action input from the text when there is a new line before the action (after the keywords "Action:" and "Action Input:") """ llm_output = """ I can use the `ls` command to list the contents of the directory \ and `grep` to search for the specific file. Action: Terminal Action Input: ls -l ~/.bashrc.d/ """ action, action_input = get_action_and_input(llm_output) assert action == "Terminal" assert action_input == "ls -l ~/.bashrc.d/\n" def test_get_final_answer() -> None: """Test getting final answer.""" llm_output = ( "Thought: I need to search for NBA\n" "Action: Search\n" "Action Input: NBA\n" "Observation: founded in 1994\n" "Thought: I can now answer the question\n" "Final Answer: 1994" ) action, action_input = get_action_and_input(llm_output) assert action == "Final Answer" assert action_input == "1994" def test_get_final_answer_new_line() -> None: """Test getting final answer.""" llm_output = ( "Thought: I need to search for NBA\n" "Action: Search\n" "Action Input: NBA\n" "Observation: founded in 1994\n" "Thought: I can now answer the question\n" "Final Answer:\n1994" ) action, action_input = get_action_and_input(llm_output) assert action == "Final Answer" assert action_input == "1994" def test_get_final_answer_multiline() -> None: """Test getting final answer that is multiline.""" llm_output = ( "Thought: I need to search for NBA\n" "Action: Search\n" "Action Input: NBA\n" "Observation: founded in 1994 and 1993\n" "Thought: I can now answer the question\n" "Final Answer: 1994\n1993" ) action, action_input = get_action_and_input(llm_output) assert action == "Final Answer" assert action_input == "1994\n1993" def test_bad_action_input_line() -> None: """Test handling when no action input found.""" llm_output = "Thought: I need to search for NBA\n" "Action: Search\n" "Thought: NBA" with pytest.raises(OutputParserException) as e_info: get_action_and_input(llm_output) assert e_info.value.observation is not None def test_bad_action_line() -> None: """Test handling when no action found.""" llm_output = ( "Thought: I need to search for NBA\n" "Thought: Search\n" "Action Input: NBA" ) with pytest.raises(OutputParserException) as e_info: get_action_and_input(llm_output) assert e_info.value.observation is not None def test_from_chains() -> None: """Test initializing from chains.""" chain_configs = [ Tool(name="foo", func=lambda x: "foo", description="foobar1"), Tool(name="bar", func=lambda x: "bar", description="foobar2"), ] agent = ZeroShotAgent.from_llm_and_tools(FakeLLM(), chain_configs) expected_tools_prompt = "foo: foobar1\nbar: foobar2" expected_tool_names = "foo, bar" expected_template = "\n\n".join( [ PREFIX, expected_tools_prompt, FORMAT_INSTRUCTIONS.format(tool_names=expected_tool_names), SUFFIX, ] ) prompt = agent.llm_chain.prompt assert isinstance(prompt, PromptTemplate) assert prompt.template == expected_template
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,465
Google BigQuery Loader doesn't take credentials
### Feature request I would like to be able to provide credentials to the bigquery.client object ### Motivation I cannot access protected datasets without use of a service account or other credentials ### Your contribution I will submit a PR.
https://github.com/langchain-ai/langchain/issues/5465
https://github.com/langchain-ai/langchain/pull/5466
eab4b4ccd7e1ca4dcfdf4c400250494e4503fcb1
199cc700a344a2b15dff3a8924746a5ceb1aad7e
"2023-05-30T21:18:13Z"
python
"2023-05-30T23:25:22Z"
langchain/document_loaders/bigquery.py
from typing import List, Optional from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader class BigQueryLoader(BaseLoader): """Loads a query result from BigQuery into a list of documents. Each document represents one row of the result. The `page_content_columns` are written into the `page_content` of the document. The `metadata_columns` are written into the `metadata` of the document. By default, all columns are written into the `page_content` and none into the `metadata`. """ def __init__( self, query: str, project: Optional[str] = None, page_content_columns: Optional[List[str]] = None, metadata_columns: Optional[List[str]] = None, ): self.query = query self.project = project self.page_content_columns = page_content_columns self.metadata_columns = metadata_columns def load(self) -> List[Document]: try: from google.cloud import bigquery except ImportError as ex: raise ValueError( "Could not import google-cloud-bigquery python package. " "Please install it with `pip install google-cloud-bigquery`." ) from ex bq_client = bigquery.Client(self.project) query_result = bq_client.query(self.query).result() docs: List[Document] = [] page_content_columns = self.page_content_columns metadata_columns = self.metadata_columns if page_content_columns is None: page_content_columns = [column.name for column in query_result.schema] if metadata_columns is None: metadata_columns = [] for row in query_result: page_content = "\n".join( f"{k}: {v}" for k, v in row.items() if k in page_content_columns ) metadata = {k: v for k, v in row.items() if k in metadata_columns} doc = Document(page_content=page_content, metadata=metadata) docs.append(doc) return docs
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,465
Google BigQuery Loader doesn't take credentials
### Feature request I would like to be able to provide credentials to the bigquery.client object ### Motivation I cannot access protected datasets without use of a service account or other credentials ### Your contribution I will submit a PR.
https://github.com/langchain-ai/langchain/issues/5465
https://github.com/langchain-ai/langchain/pull/5466
eab4b4ccd7e1ca4dcfdf4c400250494e4503fcb1
199cc700a344a2b15dff3a8924746a5ceb1aad7e
"2023-05-30T21:18:13Z"
python
"2023-05-30T23:25:22Z"
poetry.lock
# This file is automatically @generated by Poetry 1.4.1 and should not be changed by hand. [[package]] name = "absl-py" version = "1.4.0" description = "Abseil Python Common Libraries, see https://github.com/abseil/abseil-py." category = "main" optional = true python-versions = ">=3.6" files = [ {file = "absl-py-1.4.0.tar.gz", hash = "sha256:d2c244d01048ba476e7c080bd2c6df5e141d211de80223460d5b3b8a2a58433d"}, {file = "absl_py-1.4.0-py3-none-any.whl", hash = "sha256:0d3fe606adfa4f7db64792dd4c7aee4ee0c38ab75dfd353b7a83ed3e957fcb47"}, ] [[package]] name = "aioboto3" version = "11.2.0" description = "Async boto3 wrapper" category = "main" optional = false python-versions = ">=3.7,<4.0" files = [ {file = "aioboto3-11.2.0-py3-none-any.whl", hash = "sha256:df4b83c3943b009a4dcd9f397f9f0491a374511b1ef37545082a771ca1e549fb"}, {file = "aioboto3-11.2.0.tar.gz", hash = "sha256:c7f6234fd73efcb60ab6fca383fec33bb6352ca1832f252eac810cd6674f1748"}, ] [package.dependencies] aiobotocore = {version = "2.5.0", extras = ["boto3"]} [package.extras] chalice = ["chalice (>=1.24.0)"] s3cse = ["cryptography (>=2.3.1)"] [[package]] name = "aiobotocore" version = "2.5.0" description = "Async client for aws services using botocore and aiohttp" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "aiobotocore-2.5.0-py3-none-any.whl", hash = "sha256:9a2a022d7b78ec9a2af0de589916d2721cddbf96264401b78d7a73c1a1435f3b"}, {file = "aiobotocore-2.5.0.tar.gz", hash = "sha256:6a5b397cddd4f81026aa91a14c7dd2650727425740a5af8ba75127ff663faf67"}, ] [package.dependencies] aiohttp = ">=3.3.1" aioitertools = ">=0.5.1" boto3 = {version = ">=1.26.76,<1.26.77", optional = true, markers = "extra == \"boto3\""} botocore = ">=1.29.76,<1.29.77" wrapt = ">=1.10.10" [package.extras] awscli = ["awscli (>=1.27.76,<1.27.77)"] boto3 = ["boto3 (>=1.26.76,<1.26.77)"] [[package]] name = "aiodns" version = "3.0.0" description = "Simple DNS resolver for asyncio" category = "main" optional = true python-versions = "*" files = [ {file = "aiodns-3.0.0-py3-none-any.whl", hash = "sha256:2b19bc5f97e5c936638d28e665923c093d8af2bf3aa88d35c43417fa25d136a2"}, {file = "aiodns-3.0.0.tar.gz", hash = "sha256:946bdfabe743fceeeb093c8a010f5d1645f708a241be849e17edfb0e49e08cd6"}, ] [package.dependencies] pycares = ">=4.0.0" [[package]] name = "aiofiles" version = "23.1.0" description = "File support for asyncio." category = "main" optional = true python-versions = ">=3.7,<4.0" files = [ {file = "aiofiles-23.1.0-py3-none-any.whl", hash = "sha256:9312414ae06472eb6f1d163f555e466a23aed1c8f60c30cccf7121dba2e53eb2"}, {file = "aiofiles-23.1.0.tar.gz", hash = "sha256:edd247df9a19e0db16534d4baaf536d6609a43e1de5401d7a4c1c148753a1635"}, ] [[package]] name = "aiohttp" version = "3.8.4" description = "Async http client/server framework (asyncio)" category = "main" optional = false python-versions = ">=3.6" files = [ {file = "aiohttp-3.8.4-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:5ce45967538fb747370308d3145aa68a074bdecb4f3a300869590f725ced69c1"}, {file = "aiohttp-3.8.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:b744c33b6f14ca26b7544e8d8aadff6b765a80ad6164fb1a430bbadd593dfb1a"}, {file = "aiohttp-3.8.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:1a45865451439eb320784918617ba54b7a377e3501fb70402ab84d38c2cd891b"}, {file = "aiohttp-3.8.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a86d42d7cba1cec432d47ab13b6637bee393a10f664c425ea7b305d1301ca1a3"}, {file = "aiohttp-3.8.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ee3c36df21b5714d49fc4580247947aa64bcbe2939d1b77b4c8dcb8f6c9faecc"}, {file = "aiohttp-3.8.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:176a64b24c0935869d5bbc4c96e82f89f643bcdf08ec947701b9dbb3c956b7dd"}, {file = "aiohttp-3.8.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c844fd628851c0bc309f3c801b3a3d58ce430b2ce5b359cd918a5a76d0b20cb5"}, {file = "aiohttp-3.8.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5393fb786a9e23e4799fec788e7e735de18052f83682ce2dfcabaf1c00c2c08e"}, {file = "aiohttp-3.8.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e4b09863aae0dc965c3ef36500d891a3ff495a2ea9ae9171e4519963c12ceefd"}, {file = "aiohttp-3.8.4-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:adfbc22e87365a6e564c804c58fc44ff7727deea782d175c33602737b7feadb6"}, {file = "aiohttp-3.8.4-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:147ae376f14b55f4f3c2b118b95be50a369b89b38a971e80a17c3fd623f280c9"}, {file = "aiohttp-3.8.4-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:eafb3e874816ebe2a92f5e155f17260034c8c341dad1df25672fb710627c6949"}, {file = "aiohttp-3.8.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c6cc15d58053c76eacac5fa9152d7d84b8d67b3fde92709195cb984cfb3475ea"}, {file = "aiohttp-3.8.4-cp310-cp310-win32.whl", hash = "sha256:59f029a5f6e2d679296db7bee982bb3d20c088e52a2977e3175faf31d6fb75d1"}, {file = "aiohttp-3.8.4-cp310-cp310-win_amd64.whl", hash = "sha256:fe7ba4a51f33ab275515f66b0a236bcde4fb5561498fe8f898d4e549b2e4509f"}, {file = "aiohttp-3.8.4-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:3d8ef1a630519a26d6760bc695842579cb09e373c5f227a21b67dc3eb16cfea4"}, {file = "aiohttp-3.8.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5b3f2e06a512e94722886c0827bee9807c86a9f698fac6b3aee841fab49bbfb4"}, {file = "aiohttp-3.8.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:3a80464982d41b1fbfe3154e440ba4904b71c1a53e9cd584098cd41efdb188ef"}, {file = "aiohttp-3.8.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8b631e26df63e52f7cce0cce6507b7a7f1bc9b0c501fcde69742130b32e8782f"}, {file = "aiohttp-3.8.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3f43255086fe25e36fd5ed8f2ee47477408a73ef00e804cb2b5cba4bf2ac7f5e"}, {file = "aiohttp-3.8.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4d347a172f866cd1d93126d9b239fcbe682acb39b48ee0873c73c933dd23bd0f"}, {file = "aiohttp-3.8.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a3fec6a4cb5551721cdd70473eb009d90935b4063acc5f40905d40ecfea23e05"}, {file = "aiohttp-3.8.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:80a37fe8f7c1e6ce8f2d9c411676e4bc633a8462844e38f46156d07a7d401654"}, {file = "aiohttp-3.8.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d1e6a862b76f34395a985b3cd39a0d949ca80a70b6ebdea37d3ab39ceea6698a"}, {file = "aiohttp-3.8.4-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:cd468460eefef601ece4428d3cf4562459157c0f6523db89365202c31b6daebb"}, {file = "aiohttp-3.8.4-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:618c901dd3aad4ace71dfa0f5e82e88b46ef57e3239fc7027773cb6d4ed53531"}, {file = "aiohttp-3.8.4-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:652b1bff4f15f6287550b4670546a2947f2a4575b6c6dff7760eafb22eacbf0b"}, {file = "aiohttp-3.8.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:80575ba9377c5171407a06d0196b2310b679dc752d02a1fcaa2bc20b235dbf24"}, {file = "aiohttp-3.8.4-cp311-cp311-win32.whl", hash = "sha256:bbcf1a76cf6f6dacf2c7f4d2ebd411438c275faa1dc0c68e46eb84eebd05dd7d"}, {file = "aiohttp-3.8.4-cp311-cp311-win_amd64.whl", hash = "sha256:6e74dd54f7239fcffe07913ff8b964e28b712f09846e20de78676ce2a3dc0bfc"}, {file = "aiohttp-3.8.4-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:880e15bb6dad90549b43f796b391cfffd7af373f4646784795e20d92606b7a51"}, {file = "aiohttp-3.8.4-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bb96fa6b56bb536c42d6a4a87dfca570ff8e52de2d63cabebfd6fb67049c34b6"}, {file = "aiohttp-3.8.4-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4a6cadebe132e90cefa77e45f2d2f1a4b2ce5c6b1bfc1656c1ddafcfe4ba8131"}, {file = "aiohttp-3.8.4-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f352b62b45dff37b55ddd7b9c0c8672c4dd2eb9c0f9c11d395075a84e2c40f75"}, {file = "aiohttp-3.8.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ab43061a0c81198d88f39aaf90dae9a7744620978f7ef3e3708339b8ed2ef01"}, {file = "aiohttp-3.8.4-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c9cb1565a7ad52e096a6988e2ee0397f72fe056dadf75d17fa6b5aebaea05622"}, {file = "aiohttp-3.8.4-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:1b3ea7edd2d24538959c1c1abf97c744d879d4e541d38305f9bd7d9b10c9ec41"}, {file = "aiohttp-3.8.4-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:7c7837fe8037e96b6dd5cfcf47263c1620a9d332a87ec06a6ca4564e56bd0f36"}, {file = "aiohttp-3.8.4-cp36-cp36m-musllinux_1_1_ppc64le.whl", hash = "sha256:3b90467ebc3d9fa5b0f9b6489dfb2c304a1db7b9946fa92aa76a831b9d587e99"}, {file = "aiohttp-3.8.4-cp36-cp36m-musllinux_1_1_s390x.whl", hash = "sha256:cab9401de3ea52b4b4c6971db5fb5c999bd4260898af972bf23de1c6b5dd9d71"}, {file = "aiohttp-3.8.4-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:d1f9282c5f2b5e241034a009779e7b2a1aa045f667ff521e7948ea9b56e0c5ff"}, {file = "aiohttp-3.8.4-cp36-cp36m-win32.whl", hash = "sha256:5e14f25765a578a0a634d5f0cd1e2c3f53964553a00347998dfdf96b8137f777"}, {file = "aiohttp-3.8.4-cp36-cp36m-win_amd64.whl", hash = "sha256:4c745b109057e7e5f1848c689ee4fb3a016c8d4d92da52b312f8a509f83aa05e"}, {file = "aiohttp-3.8.4-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:aede4df4eeb926c8fa70de46c340a1bc2c6079e1c40ccf7b0eae1313ffd33519"}, {file = "aiohttp-3.8.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ddaae3f3d32fc2cb4c53fab020b69a05c8ab1f02e0e59665c6f7a0d3a5be54f"}, {file = "aiohttp-3.8.4-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c4eb3b82ca349cf6fadcdc7abcc8b3a50ab74a62e9113ab7a8ebc268aad35bb9"}, {file = "aiohttp-3.8.4-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9bcb89336efa095ea21b30f9e686763f2be4478f1b0a616969551982c4ee4c3b"}, {file = "aiohttp-3.8.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c08e8ed6fa3d477e501ec9db169bfac8140e830aa372d77e4a43084d8dd91ab"}, {file = "aiohttp-3.8.4-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c6cd05ea06daca6ad6a4ca3ba7fe7dc5b5de063ff4daec6170ec0f9979f6c332"}, {file = "aiohttp-3.8.4-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:b7a00a9ed8d6e725b55ef98b1b35c88013245f35f68b1b12c5cd4100dddac333"}, {file = "aiohttp-3.8.4-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:de04b491d0e5007ee1b63a309956eaed959a49f5bb4e84b26c8f5d49de140fa9"}, {file = "aiohttp-3.8.4-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:40653609b3bf50611356e6b6554e3a331f6879fa7116f3959b20e3528783e699"}, {file = "aiohttp-3.8.4-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:dbf3a08a06b3f433013c143ebd72c15cac33d2914b8ea4bea7ac2c23578815d6"}, {file = "aiohttp-3.8.4-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:854f422ac44af92bfe172d8e73229c270dc09b96535e8a548f99c84f82dde241"}, {file = "aiohttp-3.8.4-cp37-cp37m-win32.whl", hash = "sha256:aeb29c84bb53a84b1a81c6c09d24cf33bb8432cc5c39979021cc0f98c1292a1a"}, {file = "aiohttp-3.8.4-cp37-cp37m-win_amd64.whl", hash = "sha256:db3fc6120bce9f446d13b1b834ea5b15341ca9ff3f335e4a951a6ead31105480"}, {file = "aiohttp-3.8.4-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:fabb87dd8850ef0f7fe2b366d44b77d7e6fa2ea87861ab3844da99291e81e60f"}, {file = "aiohttp-3.8.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:91f6d540163f90bbaef9387e65f18f73ffd7c79f5225ac3d3f61df7b0d01ad15"}, {file = "aiohttp-3.8.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:d265f09a75a79a788237d7f9054f929ced2e69eb0bb79de3798c468d8a90f945"}, {file = "aiohttp-3.8.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3d89efa095ca7d442a6d0cbc755f9e08190ba40069b235c9886a8763b03785da"}, {file = "aiohttp-3.8.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4dac314662f4e2aa5009977b652d9b8db7121b46c38f2073bfeed9f4049732cd"}, {file = "aiohttp-3.8.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fe11310ae1e4cd560035598c3f29d86cef39a83d244c7466f95c27ae04850f10"}, {file = "aiohttp-3.8.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6ddb2a2026c3f6a68c3998a6c47ab6795e4127315d2e35a09997da21865757f8"}, {file = "aiohttp-3.8.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e75b89ac3bd27d2d043b234aa7b734c38ba1b0e43f07787130a0ecac1e12228a"}, {file = "aiohttp-3.8.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:6e601588f2b502c93c30cd5a45bfc665faaf37bbe835b7cfd461753068232074"}, {file = "aiohttp-3.8.4-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:a5d794d1ae64e7753e405ba58e08fcfa73e3fad93ef9b7e31112ef3c9a0efb52"}, {file = "aiohttp-3.8.4-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:a1f4689c9a1462f3df0a1f7e797791cd6b124ddbee2b570d34e7f38ade0e2c71"}, {file = "aiohttp-3.8.4-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:3032dcb1c35bc330134a5b8a5d4f68c1a87252dfc6e1262c65a7e30e62298275"}, {file = "aiohttp-3.8.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8189c56eb0ddbb95bfadb8f60ea1b22fcfa659396ea36f6adcc521213cd7b44d"}, {file = "aiohttp-3.8.4-cp38-cp38-win32.whl", hash = "sha256:33587f26dcee66efb2fff3c177547bd0449ab7edf1b73a7f5dea1e38609a0c54"}, {file = "aiohttp-3.8.4-cp38-cp38-win_amd64.whl", hash = "sha256:e595432ac259af2d4630008bf638873d69346372d38255774c0e286951e8b79f"}, {file = "aiohttp-3.8.4-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:5a7bdf9e57126dc345b683c3632e8ba317c31d2a41acd5800c10640387d193ed"}, {file = "aiohttp-3.8.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:22f6eab15b6db242499a16de87939a342f5a950ad0abaf1532038e2ce7d31567"}, {file = "aiohttp-3.8.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:7235604476a76ef249bd64cb8274ed24ccf6995c4a8b51a237005ee7a57e8643"}, {file = "aiohttp-3.8.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ea9eb976ffdd79d0e893869cfe179a8f60f152d42cb64622fca418cd9b18dc2a"}, {file = "aiohttp-3.8.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:92c0cea74a2a81c4c76b62ea1cac163ecb20fb3ba3a75c909b9fa71b4ad493cf"}, {file = "aiohttp-3.8.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:493f5bc2f8307286b7799c6d899d388bbaa7dfa6c4caf4f97ef7521b9cb13719"}, {file = "aiohttp-3.8.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0a63f03189a6fa7c900226e3ef5ba4d3bd047e18f445e69adbd65af433add5a2"}, {file = "aiohttp-3.8.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10c8cefcff98fd9168cdd86c4da8b84baaa90bf2da2269c6161984e6737bf23e"}, {file = "aiohttp-3.8.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:bca5f24726e2919de94f047739d0a4fc01372801a3672708260546aa2601bf57"}, {file = "aiohttp-3.8.4-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:03baa76b730e4e15a45f81dfe29a8d910314143414e528737f8589ec60cf7391"}, {file = "aiohttp-3.8.4-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:8c29c77cc57e40f84acef9bfb904373a4e89a4e8b74e71aa8075c021ec9078c2"}, {file = "aiohttp-3.8.4-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:03543dcf98a6619254b409be2d22b51f21ec66272be4ebda7b04e6412e4b2e14"}, {file = "aiohttp-3.8.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:17b79c2963db82086229012cff93ea55196ed31f6493bb1ccd2c62f1724324e4"}, {file = "aiohttp-3.8.4-cp39-cp39-win32.whl", hash = "sha256:34ce9f93a4a68d1272d26030655dd1b58ff727b3ed2a33d80ec433561b03d67a"}, {file = "aiohttp-3.8.4-cp39-cp39-win_amd64.whl", hash = "sha256:41a86a69bb63bb2fc3dc9ad5ea9f10f1c9c8e282b471931be0268ddd09430b04"}, {file = "aiohttp-3.8.4.tar.gz", hash = "sha256:bf2e1a9162c1e441bf805a1fd166e249d574ca04e03b34f97e2928769e91ab5c"}, ] [package.dependencies] aiosignal = ">=1.1.2" async-timeout = ">=4.0.0a3,<5.0" attrs = ">=17.3.0" charset-normalizer = ">=2.0,<4.0" frozenlist = ">=1.1.1" multidict = ">=4.5,<7.0" yarl = ">=1.0,<2.0" [package.extras] speedups = ["Brotli", "aiodns", "cchardet"] [[package]] name = "aiohttp-retry" version = "2.8.3" description = "Simple retry client for aiohttp" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "aiohttp_retry-2.8.3-py3-none-any.whl", hash = "sha256:3aeeead8f6afe48272db93ced9440cf4eda8b6fd7ee2abb25357b7eb28525b45"}, {file = "aiohttp_retry-2.8.3.tar.gz", hash = "sha256:9a8e637e31682ad36e1ff9f8bcba912fcfc7d7041722bc901a4b948da4d71ea9"}, ] [package.dependencies] aiohttp = "*" [[package]] name = "aioitertools" version = "0.11.0" description = "itertools and builtins for AsyncIO and mixed iterables" category = "main" optional = false python-versions = ">=3.6" files = [ {file = "aioitertools-0.11.0-py3-none-any.whl", hash = "sha256:04b95e3dab25b449def24d7df809411c10e62aab0cbe31a50ca4e68748c43394"}, {file = "aioitertools-0.11.0.tar.gz", hash = "sha256:42c68b8dd3a69c2bf7f2233bf7df4bb58b557bca5252ac02ed5187bbc67d6831"}, ] [package.dependencies] typing_extensions = {version = ">=4.0", markers = "python_version < \"3.10\""} [[package]] name = "aiosignal" version = "1.3.1" description = "aiosignal: a list of registered asynchronous callbacks" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "aiosignal-1.3.1-py3-none-any.whl", hash = "sha256:f8376fb07dd1e86a584e4fcdec80b36b7f81aac666ebc724e2c090300dd83b17"}, {file = "aiosignal-1.3.1.tar.gz", hash = "sha256:54cd96e15e1649b75d6c87526a6ff0b6c1b0dd3459f43d9ca11d48c339b68cfc"}, ] [package.dependencies] frozenlist = ">=1.1.0" [[package]] name = "aiostream" version = "0.4.5" description = "Generator-based operators for asynchronous iteration" category = "main" optional = true python-versions = "*" files = [ {file = "aiostream-0.4.5-py3-none-any.whl", hash = "sha256:25b7c2d9c83570d78c0ef5a20e949b7d0b8ea3b0b0a4f22c49d3f721105a6057"}, {file = "aiostream-0.4.5.tar.gz", hash = "sha256:3ecbf87085230fbcd9605c32ca20c4fb41af02c71d076eab246ea22e35947d88"}, ] [[package]] name = "alabaster" version = "0.7.13" description = "A configurable sidebar-enabled Sphinx theme" category = "dev" optional = false python-versions = ">=3.6" files = [ {file = "alabaster-0.7.13-py3-none-any.whl", hash = "sha256:1ee19aca801bbabb5ba3f5f258e4422dfa86f82f3e9cefb0859b283cdd7f62a3"}, {file = "alabaster-0.7.13.tar.gz", hash = "sha256:a27a4a084d5e690e16e01e03ad2b2e552c61a65469419b907243193de1a84ae2"}, ] [[package]] name = "aleph-alpha-client" version = "2.17.0" description = "python client to interact with Aleph Alpha api endpoints" category = "main" optional = true python-versions = "*" files = [ {file = "aleph-alpha-client-2.17.0.tar.gz", hash = "sha256:c2d664c7b829f4932306153bec45e11c08e03252f1dbfd9f48584c402d7050a3"}, {file = "aleph_alpha_client-2.17.0-py3-none-any.whl", hash = "sha256:9106a36a5e08dba6aea2b0b2a0de6ff0c3bb77926edc98226debae121b0925e2"}, ] [package.dependencies] aiodns = ">=3.0.0" aiohttp = ">=3.8.3" aiohttp-retry = ">=2.8.3" Pillow = ">=9.2.0" requests = ">=2.28" tokenizers = ">=0.13.2" typing-extensions = ">=4.5.0" urllib3 = ">=1.26" [package.extras] dev = ["black", "ipykernel", "mypy", "nbconvert", "pytest", "pytest-aiohttp", "pytest-cov", "pytest-dotenv", "pytest-httpserver", "types-Pillow", "types-requests"] docs = ["sphinx", "sphinx-rtd-theme"] test = ["pytest", "pytest-aiohttp", "pytest-cov", "pytest-dotenv", "pytest-httpserver"] types = ["mypy", "types-Pillow", "types-requests"] [[package]] name = "anthropic" version = "0.2.9" description = "Library for accessing the anthropic API" category = "main" optional = true python-versions = ">=3.8" files = [ {file = "anthropic-0.2.9-py3-none-any.whl", hash = "sha256:e7cce215cf6c446de29280deb31b07b5587993d48e84850eaad3fc69bd1fec0a"}, {file = "anthropic-0.2.9.tar.gz", hash = "sha256:2d44564d362cced6e8e662366e4de7f94dcdc6cb61346a5e528359b0afc1f2f3"}, ] [package.dependencies] aiohttp = "*" httpx = "*" requests = "*" tokenizers = "*" [package.extras] dev = ["black (>=22.3.0)", "pytest"] [[package]] name = "anyio" version = "3.6.2" description = "High level compatibility layer for multiple asynchronous event loop implementations" category = "main" optional = false python-versions = ">=3.6.2" files = [ {file = "anyio-3.6.2-py3-none-any.whl", hash = "sha256:fbbe32bd270d2a2ef3ed1c5d45041250284e31fc0a4df4a5a6071842051a51e3"}, {file = "anyio-3.6.2.tar.gz", hash = "sha256:25ea0d673ae30af41a0c442f81cf3b38c7e79fdc7b60335a4c14e05eb0947421"}, ] [package.dependencies] idna = ">=2.8" sniffio = ">=1.1" [package.extras] doc = ["packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"] test = ["contextlib2", "coverage[toml] (>=4.5)", "hypothesis (>=4.0)", "mock (>=4)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (<0.15)", "uvloop (>=0.15)"] trio = ["trio (>=0.16,<0.22)"] [[package]] name = "appnope" version = "0.1.3" description = "Disable App Nap on macOS >= 10.9" category = "dev" optional = false python-versions = "*" files = [ {file = "appnope-0.1.3-py2.py3-none-any.whl", hash = "sha256:265a455292d0bd8a72453494fa24df5a11eb18373a60c7c0430889f22548605e"}, {file = "appnope-0.1.3.tar.gz", hash = "sha256:02bd91c4de869fbb1e1c50aafc4098827a7a54ab2f39d9dcba6c9547ed920e24"}, ] [[package]] name = "argon2-cffi" version = "21.3.0" description = "The secure Argon2 password hashing algorithm." category = "dev" optional = false python-versions = ">=3.6" files = [ {file = "argon2-cffi-21.3.0.tar.gz", hash = "sha256:d384164d944190a7dd7ef22c6aa3ff197da12962bd04b17f64d4e93d934dba5b"}, {file = "argon2_cffi-21.3.0-py3-none-any.whl", hash = "sha256:8c976986f2c5c0e5000919e6de187906cfd81fb1c72bf9d88c01177e77da7f80"}, ] [package.dependencies] argon2-cffi-bindings = "*" [package.extras] dev = ["cogapp", "coverage[toml] (>=5.0.2)", "furo", "hypothesis", "pre-commit", "pytest", "sphinx", "sphinx-notfound-page", "tomli"] docs = ["furo", "sphinx", "sphinx-notfound-page"] tests = ["coverage[toml] (>=5.0.2)", "hypothesis", "pytest"] [[package]] name = "argon2-cffi-bindings" version = "21.2.0" description = "Low-level CFFI bindings for Argon2" category = "dev" optional = false python-versions = ">=3.6" files = [ {file = "argon2-cffi-bindings-21.2.0.tar.gz", hash = "sha256:bb89ceffa6c791807d1305ceb77dbfacc5aa499891d2c55661c6459651fc39e3"}, {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:ccb949252cb2ab3a08c02024acb77cfb179492d5701c7cbdbfd776124d4d2367"}, {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9524464572e12979364b7d600abf96181d3541da11e23ddf565a32e70bd4dc0d"}, {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b746dba803a79238e925d9046a63aa26bf86ab2a2fe74ce6b009a1c3f5c8f2ae"}, {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:58ed19212051f49a523abb1dbe954337dc82d947fb6e5a0da60f7c8471a8476c"}, {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:bd46088725ef7f58b5a1ef7ca06647ebaf0eb4baff7d1d0d177c6cc8744abd86"}, {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_i686.whl", hash = "sha256:8cd69c07dd875537a824deec19f978e0f2078fdda07fd5c42ac29668dda5f40f"}, {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:f1152ac548bd5b8bcecfb0b0371f082037e47128653df2e8ba6e914d384f3c3e"}, {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-win32.whl", hash = "sha256:603ca0aba86b1349b147cab91ae970c63118a0f30444d4bc80355937c950c082"}, {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-win_amd64.whl", hash = "sha256:b2ef1c30440dbbcba7a5dc3e319408b59676e2e039e2ae11a8775ecf482b192f"}, {file = "argon2_cffi_bindings-21.2.0-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:e415e3f62c8d124ee16018e491a009937f8cf7ebf5eb430ffc5de21b900dad93"}, {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:3e385d1c39c520c08b53d63300c3ecc28622f076f4c2b0e6d7e796e9f6502194"}, {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2c3e3cc67fdb7d82c4718f19b4e7a87123caf8a93fde7e23cf66ac0337d3cb3f"}, {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6a22ad9800121b71099d0fb0a65323810a15f2e292f2ba450810a7316e128ee5"}, {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f9f8b450ed0547e3d473fdc8612083fd08dd2120d6ac8f73828df9b7d45bb351"}, {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:93f9bf70084f97245ba10ee36575f0c3f1e7d7724d67d8e5b08e61787c320ed7"}, {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:3b9ef65804859d335dc6b31582cad2c5166f0c3e7975f324d9ffaa34ee7e6583"}, {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d4966ef5848d820776f5f562a7d45fdd70c2f330c961d0d745b784034bd9f48d"}, {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:20ef543a89dee4db46a1a6e206cd015360e5a75822f76df533845c3cbaf72670"}, {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ed2937d286e2ad0cc79a7087d3c272832865f779430e0cc2b4f3718d3159b0cb"}, {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5e00316dabdaea0b2dd82d141cc66889ced0cdcbfa599e8b471cf22c620c329a"}, ] [package.dependencies] cffi = ">=1.0.1" [package.extras] dev = ["cogapp", "pre-commit", "pytest", "wheel"] tests = ["pytest"] [[package]] name = "arrow" version = "1.2.3" description = "Better dates & times for Python" category = "dev" optional = false python-versions = ">=3.6" files = [ {file = "arrow-1.2.3-py3-none-any.whl", hash = "sha256:5a49ab92e3b7b71d96cd6bfcc4df14efefc9dfa96ea19045815914a6ab6b1fe2"}, {file = "arrow-1.2.3.tar.gz", hash = "sha256:3934b30ca1b9f292376d9db15b19446088d12ec58629bc3f0da28fd55fb633a1"}, ] [package.dependencies] python-dateutil = ">=2.7.0" [[package]] name = "arxiv" version = "1.4.7" description = "Python wrapper for the arXiv API: http://arxiv.org/help/api/" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "arxiv-1.4.7-py3-none-any.whl", hash = "sha256:22b8f610957bb6859a25fac9dc205ab6ba76d521791119a5762ea52625e398a0"}, {file = "arxiv-1.4.7.tar.gz", hash = "sha256:100c8d6b9cd04c7f55f11b34616beb7a1623ab0564b66161b4aeeeb8912c5806"}, ] [package.dependencies] feedparser = "*" [[package]] name = "asgiref" version = "3.6.0" description = "ASGI specs, helper code, and adapters" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "asgiref-3.6.0-py3-none-any.whl", hash = "sha256:71e68008da809b957b7ee4b43dbccff33d1b23519fb8344e33f049897077afac"}, {file = "asgiref-3.6.0.tar.gz", hash = "sha256:9567dfe7bd8d3c8c892227827c41cce860b368104c3431da67a0c5a65a949506"}, ] [package.extras] tests = ["mypy (>=0.800)", "pytest", "pytest-asyncio"] [[package]] name = "asttokens" version = "2.2.1" description = "Annotate AST trees with source code positions" category = "dev" optional = false python-versions = "*" files = [ {file = "asttokens-2.2.1-py2.py3-none-any.whl", hash = "sha256:6b0ac9e93fb0335014d382b8fa9b3afa7df546984258005da0b9e7095b3deb1c"}, {file = "asttokens-2.2.1.tar.gz", hash = "sha256:4622110b2a6f30b77e1473affaa97e711bc2f07d3f10848420ff1898edbe94f3"}, ] [package.dependencies] six = "*" [package.extras] test = ["astroid", "pytest"] [[package]] name = "astunparse" version = "1.6.3" description = "An AST unparser for Python" category = "main" optional = true python-versions = "*" files = [ {file = "astunparse-1.6.3-py2.py3-none-any.whl", hash = "sha256:c2652417f2c8b5bb325c885ae329bdf3f86424075c4fd1a128674bc6fba4b8e8"}, {file = "astunparse-1.6.3.tar.gz", hash = "sha256:5ad93a8456f0d084c3456d059fd9a92cce667963232cbf763eac3bc5b7940872"}, ] [package.dependencies] six = ">=1.6.1,<2.0" wheel = ">=0.23.0,<1.0" [[package]] name = "async-timeout" version = "4.0.2" description = "Timeout context manager for asyncio programs" category = "main" optional = false python-versions = ">=3.6" files = [ {file = "async-timeout-4.0.2.tar.gz", hash = "sha256:2163e1640ddb52b7a8c80d0a67a08587e5d245cc9c553a74a847056bc2976b15"}, {file = "async_timeout-4.0.2-py3-none-any.whl", hash = "sha256:8ca1e4fcf50d07413d66d1a5e416e42cfdf5851c981d679a09851a6853383b3c"}, ] [[package]] name = "atlassian-python-api" version = "3.37.0" description = "Python Atlassian REST API Wrapper" category = "main" optional = true python-versions = "*" files = [ {file = "atlassian-python-api-3.37.0.tar.gz", hash = "sha256:25f91627cea3f223ba9a0fe7439ce2e35601da84a3085402dac105e28aa397de"}, ] [package.dependencies] deprecated = "*" oauthlib = "*" requests = "*" requests_oauthlib = "*" six = "*" [package.extras] kerberos = ["requests-kerberos"] [[package]] name = "attrs" version = "23.1.0" description = "Classes Without Boilerplate" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "attrs-23.1.0-py3-none-any.whl", hash = "sha256:1f28b4522cdc2fb4256ac1a020c78acf9cba2c6b461ccd2c126f3aa8e8335d04"}, {file = "attrs-23.1.0.tar.gz", hash = "sha256:6279836d581513a26f1bf235f9acd333bc9115683f14f7e8fae46c98fc50e015"}, ] [package.extras] cov = ["attrs[tests]", "coverage[toml] (>=5.3)"] dev = ["attrs[docs,tests]", "pre-commit"] docs = ["furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier", "zope-interface"] tests = ["attrs[tests-no-zope]", "zope-interface"] tests-no-zope = ["cloudpickle", "hypothesis", "mypy (>=1.1.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] [[package]] name = "authlib" version = "1.2.0" description = "The ultimate Python library in building OAuth and OpenID Connect servers and clients." category = "main" optional = false python-versions = "*" files = [ {file = "Authlib-1.2.0-py2.py3-none-any.whl", hash = "sha256:4ddf4fd6cfa75c9a460b361d4bd9dac71ffda0be879dbe4292a02e92349ad55a"}, {file = "Authlib-1.2.0.tar.gz", hash = "sha256:4fa3e80883a5915ef9f5bc28630564bc4ed5b5af39812a3ff130ec76bd631e9d"}, ] [package.dependencies] cryptography = ">=3.2" [[package]] name = "autodoc-pydantic" version = "1.8.0" description = "Seamlessly integrate pydantic models in your Sphinx documentation." category = "dev" optional = false python-versions = ">=3.6,<4.0.0" files = [ {file = "autodoc_pydantic-1.8.0-py3-none-any.whl", hash = "sha256:f1bf9318f37369fec906ab523ebe65c1894395a6fc859dbc6fd02ffd90d3242f"}, {file = "autodoc_pydantic-1.8.0.tar.gz", hash = "sha256:77da1cbbe4434fa9963f85a1555c63afff9a4acec06b318dc4f54c4f28a04f2c"}, ] [package.dependencies] pydantic = ">=1.5" Sphinx = ">=3.4" [package.extras] dev = ["coverage (>=5,<6)", "flake8 (>=3,<4)", "pytest (>=6,<7)", "sphinx-copybutton (>=0.4,<0.5)", "sphinx-rtd-theme (>=1.0,<2.0)", "sphinx-tabs (>=3,<4)", "sphinxcontrib-mermaid (>=0.7,<0.8)", "tox (>=3,<4)"] docs = ["sphinx-copybutton (>=0.4,<0.5)", "sphinx-rtd-theme (>=1.0,<2.0)", "sphinx-tabs (>=3,<4)", "sphinxcontrib-mermaid (>=0.7,<0.8)"] test = ["coverage (>=5,<6)", "pytest (>=6,<7)"] [[package]] name = "azure-ai-formrecognizer" version = "3.2.1" description = "Microsoft Azure Form Recognizer Client Library for Python" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "azure-ai-formrecognizer-3.2.1.zip", hash = "sha256:5768765f9720ce87038f56afe0c0b5259192cfb29c840a39595b1e26e4ddfa32"}, {file = "azure_ai_formrecognizer-3.2.1-py3-none-any.whl", hash = "sha256:4db43b9dd0a2bc5296b752c04dbacb838ae2b8726adfe7cf277c2ea34e99419a"}, ] [package.dependencies] azure-common = ">=1.1,<2.0" azure-core = ">=1.23.0,<2.0.0" msrest = ">=0.6.21" typing-extensions = ">=4.0.1" [[package]] name = "azure-ai-vision" version = "0.11.1b1" description = "Microsoft Azure AI Vision SDK for Python" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "azure_ai_vision-0.11.1b1-py3-none-manylinux1_x86_64.whl", hash = "sha256:6f8563ae26689da6cdee9b2de009a53546ae2fd86c6c180236ce5da5b45f41d3"}, {file = "azure_ai_vision-0.11.1b1-py3-none-win_amd64.whl", hash = "sha256:f5df03b9156feaa1d8c776631967b1455028d30dfd4cd1c732aa0f9c03d01517"}, ] [[package]] name = "azure-cognitiveservices-speech" version = "1.28.0" description = "Microsoft Cognitive Services Speech SDK for Python" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "azure_cognitiveservices_speech-1.28.0-py3-none-macosx_10_14_x86_64.whl", hash = "sha256:a6c277ec9c93f586dcc74d3a56a6aa0259f4cf371f5e03afcf169c691e2c4d0c"}, {file = "azure_cognitiveservices_speech-1.28.0-py3-none-macosx_11_0_arm64.whl", hash = "sha256:a412c6c5bc528548e0ee5fc5fe89fb8351307d0c5ef7ac4d506fab3d58efcb4a"}, {file = "azure_cognitiveservices_speech-1.28.0-py3-none-manylinux1_x86_64.whl", hash = "sha256:ceb5a8862da4ab861bd06653074a4e5dc2d66a54f03dd4dd9356da7672febbce"}, {file = "azure_cognitiveservices_speech-1.28.0-py3-none-manylinux2014_aarch64.whl", hash = "sha256:d5cba32e9d8eaffc9d8f482c00950bc471f9dc4d7659c741c083e5e9d831b802"}, {file = "azure_cognitiveservices_speech-1.28.0-py3-none-win32.whl", hash = "sha256:ac52c4549062771db5694346c1547334cf1bb0d08573a193c8dcec8386aa491d"}, {file = "azure_cognitiveservices_speech-1.28.0-py3-none-win_amd64.whl", hash = "sha256:5ff042d81d7ff4e50be196419fcd2042e41a97cebb229e0940026e1314ff7751"}, ] [[package]] name = "azure-common" version = "1.1.28" description = "Microsoft Azure Client Library for Python (Common)" category = "main" optional = true python-versions = "*" files = [ {file = "azure-common-1.1.28.zip", hash = "sha256:4ac0cd3214e36b6a1b6a442686722a5d8cc449603aa833f3f0f40bda836704a3"}, {file = "azure_common-1.1.28-py2.py3-none-any.whl", hash = "sha256:5c12d3dcf4ec20599ca6b0d3e09e86e146353d443e7fcc050c9a19c1f9df20ad"}, ] [[package]] name = "azure-core" version = "1.26.4" description = "Microsoft Azure Core Library for Python" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "azure-core-1.26.4.zip", hash = "sha256:075fe06b74c3007950dd93d49440c2f3430fd9b4a5a2756ec8c79454afc989c6"}, {file = "azure_core-1.26.4-py3-none-any.whl", hash = "sha256:d9664b4bc2675d72fba461a285ac43ae33abb2967014a955bf136d9703a2ab3c"}, ] [package.dependencies] requests = ">=2.18.4" six = ">=1.11.0" typing-extensions = ">=4.3.0" [package.extras] aio = ["aiohttp (>=3.0)"] [[package]] name = "azure-cosmos" version = "4.4.0b1" description = "Microsoft Azure Cosmos Client Library for Python" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "azure-cosmos-4.4.0b1.zip", hash = "sha256:42e7c9c749784f664d9468b10ea4031f86552df99f4e12b77d9f75da048efa5d"}, {file = "azure_cosmos-4.4.0b1-py3-none-any.whl", hash = "sha256:4dc2c438e5e27bd9e4e70539babdea9dd6c09fb4ac73936680609668f2282264"}, ] [package.dependencies] azure-core = ">=1.23.0,<2.0.0" [[package]] name = "azure-identity" version = "1.13.0" description = "Microsoft Azure Identity Library for Python" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "azure-identity-1.13.0.zip", hash = "sha256:c931c27301ffa86b07b4dcf574e29da73e3deba9ab5d1fe4f445bb6a3117e260"}, {file = "azure_identity-1.13.0-py3-none-any.whl", hash = "sha256:bd700cebb80cd9862098587c29d8677e819beca33c62568ced6d5a8e5e332b82"}, ] [package.dependencies] azure-core = ">=1.11.0,<2.0.0" cryptography = ">=2.5" msal = ">=1.20.0,<2.0.0" msal-extensions = ">=0.3.0,<2.0.0" six = ">=1.12.0" [[package]] name = "babel" version = "2.12.1" description = "Internationalization utilities" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "Babel-2.12.1-py3-none-any.whl", hash = "sha256:b4246fb7677d3b98f501a39d43396d3cafdc8eadb045f4a31be01863f655c610"}, {file = "Babel-2.12.1.tar.gz", hash = "sha256:cc2d99999cd01d44420ae725a21c9e3711b3aadc7976d6147f622d8581963455"}, ] [package.dependencies] pytz = {version = ">=2015.7", markers = "python_version < \"3.9\""} [[package]] name = "backcall" version = "0.2.0" description = "Specifications for callback functions passed in to an API" category = "dev" optional = false python-versions = "*" files = [ {file = "backcall-0.2.0-py2.py3-none-any.whl", hash = "sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255"}, {file = "backcall-0.2.0.tar.gz", hash = "sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e"}, ] [[package]] name = "backoff" version = "2.2.1" description = "Function decoration for backoff and retry" category = "main" optional = false python-versions = ">=3.7,<4.0" files = [ {file = "backoff-2.2.1-py3-none-any.whl", hash = "sha256:63579f9a0628e06278f7e47b7d7d5b6ce20dc65c5e96a6f3ca99a6adca0396e8"}, {file = "backoff-2.2.1.tar.gz", hash = "sha256:03f829f5bb1923180821643f8753b0502c3b682293992485b0eef2807afa5cba"}, ] [[package]] name = "backports-zoneinfo" version = "0.2.1" description = "Backport of the standard library zoneinfo module" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "backports.zoneinfo-0.2.1-cp36-cp36m-macosx_10_14_x86_64.whl", hash = "sha256:da6013fd84a690242c310d77ddb8441a559e9cb3d3d59ebac9aca1a57b2e18bc"}, {file = "backports.zoneinfo-0.2.1-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:89a48c0d158a3cc3f654da4c2de1ceba85263fafb861b98b59040a5086259722"}, {file = "backports.zoneinfo-0.2.1-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:1c5742112073a563c81f786e77514969acb58649bcdf6cdf0b4ed31a348d4546"}, {file = "backports.zoneinfo-0.2.1-cp36-cp36m-win32.whl", hash = "sha256:e8236383a20872c0cdf5a62b554b27538db7fa1bbec52429d8d106effbaeca08"}, {file = "backports.zoneinfo-0.2.1-cp36-cp36m-win_amd64.whl", hash = "sha256:8439c030a11780786a2002261569bdf362264f605dfa4d65090b64b05c9f79a7"}, {file = "backports.zoneinfo-0.2.1-cp37-cp37m-macosx_10_14_x86_64.whl", hash = "sha256:f04e857b59d9d1ccc39ce2da1021d196e47234873820cbeaad210724b1ee28ac"}, {file = "backports.zoneinfo-0.2.1-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:17746bd546106fa389c51dbea67c8b7c8f0d14b5526a579ca6ccf5ed72c526cf"}, {file = "backports.zoneinfo-0.2.1-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:5c144945a7752ca544b4b78c8c41544cdfaf9786f25fe5ffb10e838e19a27570"}, {file = "backports.zoneinfo-0.2.1-cp37-cp37m-win32.whl", hash = "sha256:e55b384612d93be96506932a786bbcde5a2db7a9e6a4bb4bffe8b733f5b9036b"}, {file = "backports.zoneinfo-0.2.1-cp37-cp37m-win_amd64.whl", hash = "sha256:a76b38c52400b762e48131494ba26be363491ac4f9a04c1b7e92483d169f6582"}, {file = "backports.zoneinfo-0.2.1-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:8961c0f32cd0336fb8e8ead11a1f8cd99ec07145ec2931122faaac1c8f7fd987"}, {file = "backports.zoneinfo-0.2.1-cp38-cp38-manylinux1_i686.whl", hash = "sha256:e81b76cace8eda1fca50e345242ba977f9be6ae3945af8d46326d776b4cf78d1"}, {file = "backports.zoneinfo-0.2.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:7b0a64cda4145548fed9efc10322770f929b944ce5cee6c0dfe0c87bf4c0c8c9"}, {file = "backports.zoneinfo-0.2.1-cp38-cp38-win32.whl", hash = "sha256:1b13e654a55cd45672cb54ed12148cd33628f672548f373963b0bff67b217328"}, {file = "backports.zoneinfo-0.2.1-cp38-cp38-win_amd64.whl", hash = "sha256:4a0f800587060bf8880f954dbef70de6c11bbe59c673c3d818921f042f9954a6"}, {file = "backports.zoneinfo-0.2.1.tar.gz", hash = "sha256:fadbfe37f74051d024037f223b8e001611eac868b5c5b06144ef4d8b799862f2"}, ] [package.extras] tzdata = ["tzdata"] [[package]] name = "beautifulsoup4" version = "4.12.2" description = "Screen-scraping library" category = "main" optional = false python-versions = ">=3.6.0" files = [ {file = "beautifulsoup4-4.12.2-py3-none-any.whl", hash = "sha256:bd2520ca0d9d7d12694a53d44ac482d181b4ec1888909b035a3dbf40d0f57d4a"}, {file = "beautifulsoup4-4.12.2.tar.gz", hash = "sha256:492bbc69dca35d12daac71c4db1bfff0c876c00ef4a2ffacce226d4638eb72da"}, ] [package.dependencies] soupsieve = ">1.2" [package.extras] html5lib = ["html5lib"] lxml = ["lxml"] [[package]] name = "bibtexparser" version = "1.4.0" description = "Bibtex parser for python 3" category = "main" optional = true python-versions = "*" files = [ {file = "bibtexparser-1.4.0.tar.gz", hash = "sha256:ca7ce2bc34e7c48a678dd49416429bb567441f26dbb13b3609082d8cd109ace6"}, ] [package.dependencies] pyparsing = ">=2.0.3" [[package]] name = "black" version = "23.3.0" description = "The uncompromising code formatter." category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "black-23.3.0-cp310-cp310-macosx_10_16_arm64.whl", hash = "sha256:0945e13506be58bf7db93ee5853243eb368ace1c08a24c65ce108986eac65915"}, {file = "black-23.3.0-cp310-cp310-macosx_10_16_universal2.whl", hash = "sha256:67de8d0c209eb5b330cce2469503de11bca4085880d62f1628bd9972cc3366b9"}, {file = "black-23.3.0-cp310-cp310-macosx_10_16_x86_64.whl", hash = "sha256:7c3eb7cea23904399866c55826b31c1f55bbcd3890ce22ff70466b907b6775c2"}, {file = "black-23.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:32daa9783106c28815d05b724238e30718f34155653d4d6e125dc7daec8e260c"}, {file = "black-23.3.0-cp310-cp310-win_amd64.whl", hash = "sha256:35d1381d7a22cc5b2be2f72c7dfdae4072a3336060635718cc7e1ede24221d6c"}, {file = "black-23.3.0-cp311-cp311-macosx_10_16_arm64.whl", hash = "sha256:a8a968125d0a6a404842fa1bf0b349a568634f856aa08ffaff40ae0dfa52e7c6"}, {file = "black-23.3.0-cp311-cp311-macosx_10_16_universal2.whl", hash = "sha256:c7ab5790333c448903c4b721b59c0d80b11fe5e9803d8703e84dcb8da56fec1b"}, {file = "black-23.3.0-cp311-cp311-macosx_10_16_x86_64.whl", hash = "sha256:a6f6886c9869d4daae2d1715ce34a19bbc4b95006d20ed785ca00fa03cba312d"}, {file = "black-23.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6f3c333ea1dd6771b2d3777482429864f8e258899f6ff05826c3a4fcc5ce3f70"}, {file = "black-23.3.0-cp311-cp311-win_amd64.whl", hash = "sha256:11c410f71b876f961d1de77b9699ad19f939094c3a677323f43d7a29855fe326"}, {file = "black-23.3.0-cp37-cp37m-macosx_10_16_x86_64.whl", hash = "sha256:1d06691f1eb8de91cd1b322f21e3bfc9efe0c7ca1f0e1eb1db44ea367dff656b"}, {file = "black-23.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:50cb33cac881766a5cd9913e10ff75b1e8eb71babf4c7104f2e9c52da1fb7de2"}, {file = "black-23.3.0-cp37-cp37m-win_amd64.whl", hash = "sha256:e114420bf26b90d4b9daa597351337762b63039752bdf72bf361364c1aa05925"}, {file = "black-23.3.0-cp38-cp38-macosx_10_16_arm64.whl", hash = "sha256:48f9d345675bb7fbc3dd85821b12487e1b9a75242028adad0333ce36ed2a6d27"}, {file = "black-23.3.0-cp38-cp38-macosx_10_16_universal2.whl", hash = "sha256:714290490c18fb0126baa0fca0a54ee795f7502b44177e1ce7624ba1c00f2331"}, {file = "black-23.3.0-cp38-cp38-macosx_10_16_x86_64.whl", hash = "sha256:064101748afa12ad2291c2b91c960be28b817c0c7eaa35bec09cc63aa56493c5"}, {file = "black-23.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:562bd3a70495facf56814293149e51aa1be9931567474993c7942ff7d3533961"}, {file = "black-23.3.0-cp38-cp38-win_amd64.whl", hash = "sha256:e198cf27888ad6f4ff331ca1c48ffc038848ea9f031a3b40ba36aced7e22f2c8"}, {file = "black-23.3.0-cp39-cp39-macosx_10_16_arm64.whl", hash = "sha256:3238f2aacf827d18d26db07524e44741233ae09a584273aa059066d644ca7b30"}, {file = "black-23.3.0-cp39-cp39-macosx_10_16_universal2.whl", hash = "sha256:f0bd2f4a58d6666500542b26354978218a9babcdc972722f4bf90779524515f3"}, {file = "black-23.3.0-cp39-cp39-macosx_10_16_x86_64.whl", hash = "sha256:92c543f6854c28a3c7f39f4d9b7694f9a6eb9d3c5e2ece488c327b6e7ea9b266"}, {file = "black-23.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a150542a204124ed00683f0db1f5cf1c2aaaa9cc3495b7a3b5976fb136090ab"}, {file = "black-23.3.0-cp39-cp39-win_amd64.whl", hash = "sha256:6b39abdfb402002b8a7d030ccc85cf5afff64ee90fa4c5aebc531e3ad0175ddb"}, {file = "black-23.3.0-py3-none-any.whl", hash = "sha256:ec751418022185b0c1bb7d7736e6933d40bbb14c14a0abcf9123d1b159f98dd4"}, {file = "black-23.3.0.tar.gz", hash = "sha256:1c7b8d606e728a41ea1ccbd7264677e494e87cf630e399262ced92d4a8dac940"}, ] [package.dependencies] click = ">=8.0.0" mypy-extensions = ">=0.4.3" packaging = ">=22.0" pathspec = ">=0.9.0" platformdirs = ">=2" tomli = {version = ">=1.1.0", markers = "python_version < \"3.11\""} typing-extensions = {version = ">=3.10.0.0", markers = "python_version < \"3.10\""} [package.extras] colorama = ["colorama (>=0.4.3)"] d = ["aiohttp (>=3.7.4)"] jupyter = ["ipython (>=7.8.0)", "tokenize-rt (>=3.2.0)"] uvloop = ["uvloop (>=0.15.2)"] [[package]] name = "bleach" version = "6.0.0" description = "An easy safelist-based HTML-sanitizing tool." category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "bleach-6.0.0-py3-none-any.whl", hash = "sha256:33c16e3353dbd13028ab4799a0f89a83f113405c766e9c122df8a06f5b85b3f4"}, {file = "bleach-6.0.0.tar.gz", hash = "sha256:1a1a85c1595e07d8db14c5f09f09e6433502c51c595970edc090551f0db99414"}, ] [package.dependencies] six = ">=1.9.0" webencodings = "*" [package.extras] css = ["tinycss2 (>=1.1.0,<1.2)"] [[package]] name = "blis" version = "0.7.9" description = "The Blis BLAS-like linear algebra library, as a self-contained C-extension." category = "main" optional = true python-versions = "*" files = [ {file = "blis-0.7.9-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:b3ea73707a7938304c08363a0b990600e579bfb52dece7c674eafac4bf2df9f7"}, {file = "blis-0.7.9-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e85993364cae82707bfe7e637bee64ec96e232af31301e5c81a351778cb394b9"}, {file = "blis-0.7.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d205a7e69523e2bacdd67ea906b82b84034067e0de83b33bd83eb96b9e844ae3"}, {file = "blis-0.7.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b9737035636452fb6d08e7ab79e5a9904be18a0736868a129179cd9f9ab59825"}, {file = "blis-0.7.9-cp310-cp310-win_amd64.whl", hash = "sha256:d3882b4f44a33367812b5e287c0690027092830ffb1cce124b02f64e761819a4"}, {file = "blis-0.7.9-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3dbb44311029263a6f65ed55a35f970aeb1d20b18bfac4c025de5aadf7889a8c"}, {file = "blis-0.7.9-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:6fd5941bd5a21082b19d1dd0f6d62cd35609c25eb769aa3457d9877ef2ce37a9"}, {file = "blis-0.7.9-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:97ad55e9ef36e4ff06b35802d0cf7bfc56f9697c6bc9427f59c90956bb98377d"}, {file = "blis-0.7.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f7b6315d7b1ac5546bc0350f5f8d7cc064438d23db19a5c21aaa6ae7d93c1ab5"}, {file = "blis-0.7.9-cp311-cp311-win_amd64.whl", hash = "sha256:5fd46c649acd1920482b4f5556d1c88693cba9bf6a494a020b00f14b42e1132f"}, {file = "blis-0.7.9-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:db2959560dcb34e912dad0e0d091f19b05b61363bac15d78307c01334a4e5d9d"}, {file = "blis-0.7.9-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0521231bc95ab522f280da3bbb096299c910a62cac2376d48d4a1d403c54393"}, {file = "blis-0.7.9-cp36-cp36m-win_amd64.whl", hash = "sha256:d811e88480203d75e6e959f313fdbf3326393b4e2b317067d952347f5c56216e"}, {file = "blis-0.7.9-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:5cb1db88ab629ccb39eac110b742b98e3511d48ce9caa82ca32609d9169a9c9c"}, {file = "blis-0.7.9-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c399a03de4059bf8e700b921f9ff5d72b2a86673616c40db40cd0592051bdd07"}, {file = "blis-0.7.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d4eb70a79562a211bd2e6b6db63f1e2eed32c0ab3e9ef921d86f657ae8375845"}, {file = "blis-0.7.9-cp37-cp37m-win_amd64.whl", hash = "sha256:3e3f95e035c7456a1f5f3b5a3cfe708483a00335a3a8ad2211d57ba4d5f749a5"}, {file = "blis-0.7.9-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:179037cb5e6744c2e93b6b5facc6e4a0073776d514933c3db1e1f064a3253425"}, {file = "blis-0.7.9-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:d0e82a6e0337d5231129a4e8b36978fa7b973ad3bb0257fd8e3714a9b35ceffd"}, {file = "blis-0.7.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6d12475e588a322e66a18346a3faa9eb92523504042e665c193d1b9b0b3f0482"}, {file = "blis-0.7.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4d5755ef37a573647be62684ca1545698879d07321f1e5b89a4fd669ce355eb0"}, {file = "blis-0.7.9-cp38-cp38-win_amd64.whl", hash = "sha256:b8a1fcd2eb267301ab13e1e4209c165d172cdf9c0c9e08186a9e234bf91daa16"}, {file = "blis-0.7.9-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8275f6b6eee714b85f00bf882720f508ed6a60974bcde489715d37fd35529da8"}, {file = "blis-0.7.9-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:7417667c221e29fe8662c3b2ff9bc201c6a5214bbb5eb6cc290484868802258d"}, {file = "blis-0.7.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b5f4691bf62013eccc167c38a85c09a0bf0c6e3e80d4c2229cdf2668c1124eb0"}, {file = "blis-0.7.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5cec812ee47b29107eb36af9b457be7191163eab65d61775ed63538232c59d5"}, {file = "blis-0.7.9-cp39-cp39-win_amd64.whl", hash = "sha256:d81c3f627d33545fc25c9dcb5fee66c476d89288a27d63ac16ea63453401ffd5"}, {file = "blis-0.7.9.tar.gz", hash = "sha256:29ef4c25007785a90ffc2f0ab3d3bd3b75cd2d7856a9a482b7d0dac8d511a09d"}, ] [package.dependencies] numpy = ">=1.15.0" [[package]] name = "blurhash" version = "1.1.4" description = "Pure-Python implementation of the blurhash algorithm." category = "dev" optional = false python-versions = "*" files = [ {file = "blurhash-1.1.4-py2.py3-none-any.whl", hash = "sha256:7611c1bc41383d2349b6129208587b5d61e8792ce953893cb49c38beeb400d1d"}, {file = "blurhash-1.1.4.tar.gz", hash = "sha256:da56b163e5a816e4ad07172f5639287698e09d7f3dc38d18d9726d9c1dbc4cee"}, ] [package.extras] test = ["Pillow", "numpy", "pytest"] [[package]] name = "boto3" version = "1.26.76" description = "The AWS SDK for Python" category = "main" optional = false python-versions = ">= 3.7" files = [ {file = "boto3-1.26.76-py3-none-any.whl", hash = "sha256:b4c2969b7677762914394b8273cc1905dfe5b71f250741c1a575487ae357e729"}, {file = "boto3-1.26.76.tar.gz", hash = "sha256:30c7d967ed1c6b5a05643e42cae9d4d36c3f1cb6782637ddc7007a104cfd9027"}, ] [package.dependencies] botocore = ">=1.29.76,<1.30.0" jmespath = ">=0.7.1,<2.0.0" s3transfer = ">=0.6.0,<0.7.0" [package.extras] crt = ["botocore[crt] (>=1.21.0,<2.0a0)"] [[package]] name = "botocore" version = "1.29.76" description = "Low-level, data-driven core of boto 3." category = "main" optional = false python-versions = ">= 3.7" files = [ {file = "botocore-1.29.76-py3-none-any.whl", hash = "sha256:70735b00cd529f152992231ca6757e458e5ec25db43767b3526e9a35b2f143b7"}, {file = "botocore-1.29.76.tar.gz", hash = "sha256:c2f67b6b3f8acf2968eafca06526f07b9fb0d27bac4c68a635d51abb675134a7"}, ] [package.dependencies] jmespath = ">=0.7.1,<2.0.0" python-dateutil = ">=2.1,<3.0.0" urllib3 = ">=1.25.4,<1.27" [package.extras] crt = ["awscrt (==0.16.9)"] [[package]] name = "cachetools" version = "5.3.0" description = "Extensible memoizing collections and decorators" category = "main" optional = false python-versions = "~=3.7" files = [ {file = "cachetools-5.3.0-py3-none-any.whl", hash = "sha256:429e1a1e845c008ea6c85aa35d4b98b65d6a9763eeef3e37e92728a12d1de9d4"}, {file = "cachetools-5.3.0.tar.gz", hash = "sha256:13dfddc7b8df938c21a940dfa6557ce6e94a2f1cdfa58eb90c805721d58f2c14"}, ] [[package]] name = "cassandra-driver" version = "3.27.0" description = "DataStax Driver for Apache Cassandra" category = "dev" optional = false python-versions = "*" files = [ {file = "cassandra-driver-3.27.0.tar.gz", hash = "sha256:3f43b6023d3d2b34ceaea0a33abf9d9602c41cf316f283f651d835d0c4924124"}, {file = "cassandra_driver-3.27.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:1f96d3b187e212b35937e6bd76fd2f1029d2278e50654eedbf85781222439695"}, {file = "cassandra_driver-3.27.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d879cf61395b4682a4a14c73bb4b24cd6e697175197d658c40d1ec863354fcb1"}, {file = "cassandra_driver-3.27.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d68d2eaa70df65497a38227ff977f1a43bba74dee7830b87798f2f4723feb602"}, {file = "cassandra_driver-3.27.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e7d2f6e04a87a511e7278b0c90eaccb40ec110374ab7dbfa0c6b62ca3f49e0ee"}, {file = "cassandra_driver-3.27.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d6ba6c857d163a8b4c1a56632c71de88801a4e5775650a83e05e63707c28da98"}, {file = "cassandra_driver-3.27.0-cp310-cp310-win32.whl", hash = "sha256:73566188aadc975618a3eb26dc11d44228039a5b140ad172d550459c4a1456ed"}, {file = "cassandra_driver-3.27.0-cp310-cp310-win_amd64.whl", hash = "sha256:11655738056ad40a0f62ff10bc80af20216021f7dc7b74184555b2789e8c54e8"}, {file = "cassandra_driver-3.27.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:4ceb8d45502b5e49e294040c0615e588fa1940edb9cf0c778fb200d02e6de6f4"}, {file = "cassandra_driver-3.27.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4b6a6e59ac30da449851384601d1c8425b2ed83d99108aadc44eefbc4ea8f5b7"}, {file = "cassandra_driver-3.27.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:30e308134f925604f7cd7b623d6e431a43c64637f806b62032755a731a21b6ce"}, {file = "cassandra_driver-3.27.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:099b190fb1edf1b9dbb277aedb2ec7eb8e914c95fdba64705a41f680668d4e13"}, {file = "cassandra_driver-3.27.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7d6ffde813e2493408e05145172957e4eb34b3034bc04e6b2dc0806d222986d9"}, {file = "cassandra_driver-3.27.0-cp311-cp311-win32.whl", hash = "sha256:2ffa0ec39dd524668d0b8cd40e9d0da1088a463ef8e93ee58d66ae36f59e7439"}, {file = "cassandra_driver-3.27.0-cp311-cp311-win_amd64.whl", hash = "sha256:15023d9dd803ac9fd4b139b4fcec845711e9cf30bdeb64b07c6f887c461f1421"}, {file = "cassandra_driver-3.27.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:71ca75df8ba135663018137c1e526d53801eb7c5f8027894627cd60f6c0e66cd"}, {file = "cassandra_driver-3.27.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:15993cb71da6e5c03c2bf78289381492e938aab6501adc1fde663956abcf18c0"}, {file = "cassandra_driver-3.27.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6eb1cf024b8cea6ada586b9372032f67143aba2e1b96e7a204e269ffb18e2722"}, {file = "cassandra_driver-3.27.0-cp37-cp37m-win32.whl", hash = "sha256:6a2145b46a0da3fc2bb5f699b8de5a0915b7e61c8ada4bfa1ed5cd4f25642f39"}, {file = "cassandra_driver-3.27.0-cp37-cp37m-win_amd64.whl", hash = "sha256:1e10f3b037dff16af9447aa1fbe41be12c5eabfb9a11220c19f060728ce36264"}, {file = "cassandra_driver-3.27.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:6a4896b2171bedd596ed6e4bb7eec094eba271e65207427651611c2ee70218c4"}, {file = "cassandra_driver-3.27.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9e025bbe5b8f8dafbeef4f5d77d179242bc64d3dc746e53163e93016453d84e9"}, {file = "cassandra_driver-3.27.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:05028c38b1e6aaf5d88182ed77a3ce4b0d251d11e125869f50934c6accac927f"}, {file = "cassandra_driver-3.27.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0eb547fa02cc00cc8f63584a45809709d3ff8a90bfa09700b84d0eaed54c78d9"}, {file = "cassandra_driver-3.27.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a4b2cab7c4d4e0224202cda927a923488ecebb19e5abbe87f1f46cc92add16e3"}, {file = "cassandra_driver-3.27.0-cp38-cp38-win32.whl", hash = "sha256:2d70eb16b74b63c73852943e2a3293b8ac24a1f433988aa7debf687d40d75547"}, {file = "cassandra_driver-3.27.0-cp38-cp38-win_amd64.whl", hash = "sha256:032d5a2636a633df92a8f9977420c088567d2379d0267ad97f0c5ad8245c36e7"}, {file = "cassandra_driver-3.27.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:522bad089c05344824fdc7495d4a66b821757d40cbd5c3f43c482124586deed2"}, {file = "cassandra_driver-3.27.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:addf792e95b41c46c1a06df2ca33c52d4fdc43ab1bf3df3a8a8f34eff0d83a32"}, {file = "cassandra_driver-3.27.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9d8e2acc3d21bb387e4d369b711f02ac4014ef5aa23756757e17f478b314010c"}, {file = "cassandra_driver-3.27.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:62c2ecb0772ad602dbaf73482e1a142ad999b06af061e6a68137e00cab0ee4c1"}, {file = "cassandra_driver-3.27.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:66f7011679d9a1c691f1321a4758477a72d5913d13beb42c226e69be37b2127e"}, {file = "cassandra_driver-3.27.0-cp39-cp39-win32.whl", hash = "sha256:9d59b037c6dc5065f80d3733c204b3cdc9b153744a699d4473f6e2d22a04f7f9"}, {file = "cassandra_driver-3.27.0-cp39-cp39-win_amd64.whl", hash = "sha256:cb37501e693450f00d2409c7e0a47c439ce09608d0055ad8f979446f1c11692d"}, ] [package.dependencies] cryptography = ">=35.0" geomet = ">=0.1,<0.3" six = ">=1.9" [package.extras] graph = ["gremlinpython (==3.4.6)"] [[package]] name = "catalogue" version = "2.0.8" description = "Super lightweight function registries for your library" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "catalogue-2.0.8-py3-none-any.whl", hash = "sha256:2d786e229d8d202b4f8a2a059858e45a2331201d831e39746732daa704b99f69"}, {file = "catalogue-2.0.8.tar.gz", hash = "sha256:b325c77659208bfb6af1b0d93b1a1aa4112e1bb29a4c5ced816758a722f0e388"}, ] [[package]] name = "certifi" version = "2023.5.7" description = "Python package for providing Mozilla's CA Bundle." category = "main" optional = false python-versions = ">=3.6" files = [ {file = "certifi-2023.5.7-py3-none-any.whl", hash = "sha256:c6c2e98f5c7869efca1f8916fed228dd91539f9f1b444c314c06eef02980c716"}, {file = "certifi-2023.5.7.tar.gz", hash = "sha256:0f0d56dc5a6ad56fd4ba36484d6cc34451e1c6548c61daad8c320169f91eddc7"}, ] [[package]] name = "cffi" version = "1.15.1" description = "Foreign Function Interface for Python calling C code." category = "main" optional = false python-versions = "*" files = [ {file = "cffi-1.15.1-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:a66d3508133af6e8548451b25058d5812812ec3798c886bf38ed24a98216fab2"}, {file = "cffi-1.15.1-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:470c103ae716238bbe698d67ad020e1db9d9dba34fa5a899b5e21577e6d52ed2"}, {file = "cffi-1.15.1-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:9ad5db27f9cabae298d151c85cf2bad1d359a1b9c686a275df03385758e2f914"}, {file = "cffi-1.15.1-cp27-cp27m-win32.whl", hash = "sha256:b3bbeb01c2b273cca1e1e0c5df57f12dce9a4dd331b4fa1635b8bec26350bde3"}, {file = "cffi-1.15.1-cp27-cp27m-win_amd64.whl", hash = "sha256:e00b098126fd45523dd056d2efba6c5a63b71ffe9f2bbe1a4fe1716e1d0c331e"}, {file = "cffi-1.15.1-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:d61f4695e6c866a23a21acab0509af1cdfd2c013cf256bbf5b6b5e2695827162"}, {file = "cffi-1.15.1-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:ed9cb427ba5504c1dc15ede7d516b84757c3e3d7868ccc85121d9310d27eed0b"}, {file = "cffi-1.15.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:39d39875251ca8f612b6f33e6b1195af86d1b3e60086068be9cc053aa4376e21"}, {file = "cffi-1.15.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:285d29981935eb726a4399badae8f0ffdff4f5050eaa6d0cfc3f64b857b77185"}, {file = "cffi-1.15.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3eb6971dcff08619f8d91607cfc726518b6fa2a9eba42856be181c6d0d9515fd"}, {file = "cffi-1.15.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:21157295583fe8943475029ed5abdcf71eb3911894724e360acff1d61c1d54bc"}, {file = "cffi-1.15.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5635bd9cb9731e6d4a1132a498dd34f764034a8ce60cef4f5319c0541159392f"}, {file = "cffi-1.15.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2012c72d854c2d03e45d06ae57f40d78e5770d252f195b93f581acf3ba44496e"}, {file = "cffi-1.15.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd86c085fae2efd48ac91dd7ccffcfc0571387fe1193d33b6394db7ef31fe2a4"}, {file = "cffi-1.15.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:fa6693661a4c91757f4412306191b6dc88c1703f780c8234035eac011922bc01"}, {file = "cffi-1.15.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:59c0b02d0a6c384d453fece7566d1c7e6b7bae4fc5874ef2ef46d56776d61c9e"}, {file = "cffi-1.15.1-cp310-cp310-win32.whl", hash = "sha256:cba9d6b9a7d64d4bd46167096fc9d2f835e25d7e4c121fb2ddfc6528fb0413b2"}, {file = "cffi-1.15.1-cp310-cp310-win_amd64.whl", hash = "sha256:ce4bcc037df4fc5e3d184794f27bdaab018943698f4ca31630bc7f84a7b69c6d"}, {file = "cffi-1.15.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3d08afd128ddaa624a48cf2b859afef385b720bb4b43df214f85616922e6a5ac"}, {file = "cffi-1.15.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:3799aecf2e17cf585d977b780ce79ff0dc9b78d799fc694221ce814c2c19db83"}, {file = "cffi-1.15.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a591fe9e525846e4d154205572a029f653ada1a78b93697f3b5a8f1f2bc055b9"}, {file = "cffi-1.15.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3548db281cd7d2561c9ad9984681c95f7b0e38881201e157833a2342c30d5e8c"}, {file = "cffi-1.15.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:91fc98adde3d7881af9b59ed0294046f3806221863722ba7d8d120c575314325"}, {file = "cffi-1.15.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:94411f22c3985acaec6f83c6df553f2dbe17b698cc7f8ae751ff2237d96b9e3c"}, {file = "cffi-1.15.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:03425bdae262c76aad70202debd780501fabeaca237cdfddc008987c0e0f59ef"}, {file = "cffi-1.15.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:cc4d65aeeaa04136a12677d3dd0b1c0c94dc43abac5860ab33cceb42b801c1e8"}, {file = "cffi-1.15.1-cp311-cp311-win32.whl", hash = "sha256:a0f100c8912c114ff53e1202d0078b425bee3649ae34d7b070e9697f93c5d52d"}, {file = "cffi-1.15.1-cp311-cp311-win_amd64.whl", hash = "sha256:04ed324bda3cda42b9b695d51bb7d54b680b9719cfab04227cdd1e04e5de3104"}, {file = "cffi-1.15.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:50a74364d85fd319352182ef59c5c790484a336f6db772c1a9231f1c3ed0cbd7"}, {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e263d77ee3dd201c3a142934a086a4450861778baaeeb45db4591ef65550b0a6"}, {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cec7d9412a9102bdc577382c3929b337320c4c4c4849f2c5cdd14d7368c5562d"}, {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4289fc34b2f5316fbb762d75362931e351941fa95fa18789191b33fc4cf9504a"}, {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:173379135477dc8cac4bc58f45db08ab45d228b3363adb7af79436135d028405"}, {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:6975a3fac6bc83c4a65c9f9fcab9e47019a11d3d2cf7f3c0d03431bf145a941e"}, {file = "cffi-1.15.1-cp36-cp36m-win32.whl", hash = "sha256:2470043b93ff09bf8fb1d46d1cb756ce6132c54826661a32d4e4d132e1977adf"}, {file = "cffi-1.15.1-cp36-cp36m-win_amd64.whl", hash = "sha256:30d78fbc8ebf9c92c9b7823ee18eb92f2e6ef79b45ac84db507f52fbe3ec4497"}, {file = "cffi-1.15.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:198caafb44239b60e252492445da556afafc7d1e3ab7a1fb3f0584ef6d742375"}, {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5ef34d190326c3b1f822a5b7a45f6c4535e2f47ed06fec77d3d799c450b2651e"}, {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8102eaf27e1e448db915d08afa8b41d6c7ca7a04b7d73af6514df10a3e74bd82"}, {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5df2768244d19ab7f60546d0c7c63ce1581f7af8b5de3eb3004b9b6fc8a9f84b"}, {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a8c4917bd7ad33e8eb21e9a5bbba979b49d9a97acb3a803092cbc1133e20343c"}, {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e2642fe3142e4cc4af0799748233ad6da94c62a8bec3a6648bf8ee68b1c7426"}, {file = "cffi-1.15.1-cp37-cp37m-win32.whl", hash = "sha256:e229a521186c75c8ad9490854fd8bbdd9a0c9aa3a524326b55be83b54d4e0ad9"}, {file = "cffi-1.15.1-cp37-cp37m-win_amd64.whl", hash = "sha256:a0b71b1b8fbf2b96e41c4d990244165e2c9be83d54962a9a1d118fd8657d2045"}, {file = "cffi-1.15.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:320dab6e7cb2eacdf0e658569d2575c4dad258c0fcc794f46215e1e39f90f2c3"}, {file = "cffi-1.15.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1e74c6b51a9ed6589199c787bf5f9875612ca4a8a0785fb2d4a84429badaf22a"}, {file = "cffi-1.15.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5c84c68147988265e60416b57fc83425a78058853509c1b0629c180094904a5"}, {file = "cffi-1.15.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3b926aa83d1edb5aa5b427b4053dc420ec295a08e40911296b9eb1b6170f6cca"}, {file = "cffi-1.15.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:87c450779d0914f2861b8526e035c5e6da0a3199d8f1add1a665e1cbc6fc6d02"}, {file = "cffi-1.15.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4f2c9f67e9821cad2e5f480bc8d83b8742896f1242dba247911072d4fa94c192"}, {file = "cffi-1.15.1-cp38-cp38-win32.whl", hash = "sha256:8b7ee99e510d7b66cdb6c593f21c043c248537a32e0bedf02e01e9553a172314"}, {file = "cffi-1.15.1-cp38-cp38-win_amd64.whl", hash = "sha256:00a9ed42e88df81ffae7a8ab6d9356b371399b91dbdf0c3cb1e84c03a13aceb5"}, {file = "cffi-1.15.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:54a2db7b78338edd780e7ef7f9f6c442500fb0d41a5a4ea24fff1c929d5af585"}, {file = "cffi-1.15.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:fcd131dd944808b5bdb38e6f5b53013c5aa4f334c5cad0c72742f6eba4b73db0"}, {file = "cffi-1.15.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7473e861101c9e72452f9bf8acb984947aa1661a7704553a9f6e4baa5ba64415"}, {file = "cffi-1.15.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6c9a799e985904922a4d207a94eae35c78ebae90e128f0c4e521ce339396be9d"}, {file = "cffi-1.15.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3bcde07039e586f91b45c88f8583ea7cf7a0770df3a1649627bf598332cb6984"}, {file = "cffi-1.15.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:33ab79603146aace82c2427da5ca6e58f2b3f2fb5da893ceac0c42218a40be35"}, {file = "cffi-1.15.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d598b938678ebf3c67377cdd45e09d431369c3b1a5b331058c338e201f12b27"}, {file = "cffi-1.15.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:db0fbb9c62743ce59a9ff687eb5f4afbe77e5e8403d6697f7446e5f609976f76"}, {file = "cffi-1.15.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:98d85c6a2bef81588d9227dde12db8a7f47f639f4a17c9ae08e773aa9c697bf3"}, {file = "cffi-1.15.1-cp39-cp39-win32.whl", hash = "sha256:40f4774f5a9d4f5e344f31a32b5096977b5d48560c5592e2f3d2c4374bd543ee"}, {file = "cffi-1.15.1-cp39-cp39-win_amd64.whl", hash = "sha256:70df4e3b545a17496c9b3f41f5115e69a4f2e77e94e1d2a8e1070bc0c38c8a3c"}, {file = "cffi-1.15.1.tar.gz", hash = "sha256:d400bfb9a37b1351253cb402671cea7e89bdecc294e8016a707f6d1d8ac934f9"}, ] [package.dependencies] pycparser = "*" [[package]] name = "chardet" version = "5.1.0" description = "Universal encoding detector for Python 3" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "chardet-5.1.0-py3-none-any.whl", hash = "sha256:362777fb014af596ad31334fde1e8c327dfdb076e1960d1694662d46a6917ab9"}, {file = "chardet-5.1.0.tar.gz", hash = "sha256:0d62712b956bc154f85fb0a266e2a3c5913c2967e00348701b32411d6def31e5"}, ] [[package]] name = "charset-normalizer" version = "3.1.0" description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." category = "main" optional = false python-versions = ">=3.7.0" files = [ {file = "charset-normalizer-3.1.0.tar.gz", hash = "sha256:34e0a2f9c370eb95597aae63bf85eb5e96826d81e3dcf88b8886012906f509b5"}, {file = "charset_normalizer-3.1.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:e0ac8959c929593fee38da1c2b64ee9778733cdf03c482c9ff1d508b6b593b2b"}, {file = "charset_normalizer-3.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d7fc3fca01da18fbabe4625d64bb612b533533ed10045a2ac3dd194bfa656b60"}, {file = "charset_normalizer-3.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:04eefcee095f58eaabe6dc3cc2262f3bcd776d2c67005880894f447b3f2cb9c1"}, {file = "charset_normalizer-3.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:20064ead0717cf9a73a6d1e779b23d149b53daf971169289ed2ed43a71e8d3b0"}, {file = "charset_normalizer-3.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1435ae15108b1cb6fffbcea2af3d468683b7afed0169ad718451f8db5d1aff6f"}, {file = "charset_normalizer-3.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c84132a54c750fda57729d1e2599bb598f5fa0344085dbde5003ba429a4798c0"}, {file = "charset_normalizer-3.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:75f2568b4189dda1c567339b48cba4ac7384accb9c2a7ed655cd86b04055c795"}, {file = "charset_normalizer-3.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:11d3bcb7be35e7b1bba2c23beedac81ee893ac9871d0ba79effc7fc01167db6c"}, {file = "charset_normalizer-3.1.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:891cf9b48776b5c61c700b55a598621fdb7b1e301a550365571e9624f270c203"}, {file = "charset_normalizer-3.1.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:5f008525e02908b20e04707a4f704cd286d94718f48bb33edddc7d7b584dddc1"}, {file = "charset_normalizer-3.1.0-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:b06f0d3bf045158d2fb8837c5785fe9ff9b8c93358be64461a1089f5da983137"}, {file = "charset_normalizer-3.1.0-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:49919f8400b5e49e961f320c735388ee686a62327e773fa5b3ce6721f7e785ce"}, {file = "charset_normalizer-3.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:22908891a380d50738e1f978667536f6c6b526a2064156203d418f4856d6e86a"}, {file = "charset_normalizer-3.1.0-cp310-cp310-win32.whl", hash = "sha256:12d1a39aa6b8c6f6248bb54550efcc1c38ce0d8096a146638fd4738e42284448"}, {file = "charset_normalizer-3.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:65ed923f84a6844de5fd29726b888e58c62820e0769b76565480e1fdc3d062f8"}, {file = "charset_normalizer-3.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:9a3267620866c9d17b959a84dd0bd2d45719b817245e49371ead79ed4f710d19"}, {file = "charset_normalizer-3.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6734e606355834f13445b6adc38b53c0fd45f1a56a9ba06c2058f86893ae8017"}, {file = "charset_normalizer-3.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f8303414c7b03f794347ad062c0516cee0e15f7a612abd0ce1e25caf6ceb47df"}, {file = "charset_normalizer-3.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaf53a6cebad0eae578f062c7d462155eada9c172bd8c4d250b8c1d8eb7f916a"}, {file = "charset_normalizer-3.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3dc5b6a8ecfdc5748a7e429782598e4f17ef378e3e272eeb1340ea57c9109f41"}, {file = "charset_normalizer-3.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e1b25e3ad6c909f398df8921780d6a3d120d8c09466720226fc621605b6f92b1"}, {file = "charset_normalizer-3.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ca564606d2caafb0abe6d1b5311c2649e8071eb241b2d64e75a0d0065107e62"}, {file = "charset_normalizer-3.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b82fab78e0b1329e183a65260581de4375f619167478dddab510c6c6fb04d9b6"}, {file = "charset_normalizer-3.1.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:bd7163182133c0c7701b25e604cf1611c0d87712e56e88e7ee5d72deab3e76b5"}, {file = "charset_normalizer-3.1.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:11d117e6c63e8f495412d37e7dc2e2fff09c34b2d09dbe2bee3c6229577818be"}, {file = "charset_normalizer-3.1.0-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:cf6511efa4801b9b38dc5546d7547d5b5c6ef4b081c60b23e4d941d0eba9cbeb"}, {file = "charset_normalizer-3.1.0-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:abc1185d79f47c0a7aaf7e2412a0eb2c03b724581139193d2d82b3ad8cbb00ac"}, {file = "charset_normalizer-3.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:cb7b2ab0188829593b9de646545175547a70d9a6e2b63bf2cd87a0a391599324"}, {file = "charset_normalizer-3.1.0-cp311-cp311-win32.whl", hash = "sha256:c36bcbc0d5174a80d6cccf43a0ecaca44e81d25be4b7f90f0ed7bcfbb5a00909"}, {file = "charset_normalizer-3.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:cca4def576f47a09a943666b8f829606bcb17e2bc2d5911a46c8f8da45f56755"}, {file = "charset_normalizer-3.1.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:0c95f12b74681e9ae127728f7e5409cbbef9cd914d5896ef238cc779b8152373"}, {file = "charset_normalizer-3.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fca62a8301b605b954ad2e9c3666f9d97f63872aa4efcae5492baca2056b74ab"}, {file = "charset_normalizer-3.1.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ac0aa6cd53ab9a31d397f8303f92c42f534693528fafbdb997c82bae6e477ad9"}, {file = "charset_normalizer-3.1.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c3af8e0f07399d3176b179f2e2634c3ce9c1301379a6b8c9c9aeecd481da494f"}, {file = "charset_normalizer-3.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a5fc78f9e3f501a1614a98f7c54d3969f3ad9bba8ba3d9b438c3bc5d047dd28"}, {file = "charset_normalizer-3.1.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:628c985afb2c7d27a4800bfb609e03985aaecb42f955049957814e0491d4006d"}, {file = "charset_normalizer-3.1.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:74db0052d985cf37fa111828d0dd230776ac99c740e1a758ad99094be4f1803d"}, {file = "charset_normalizer-3.1.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:1e8fcdd8f672a1c4fc8d0bd3a2b576b152d2a349782d1eb0f6b8e52e9954731d"}, {file = "charset_normalizer-3.1.0-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:04afa6387e2b282cf78ff3dbce20f0cc071c12dc8f685bd40960cc68644cfea6"}, {file = "charset_normalizer-3.1.0-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:dd5653e67b149503c68c4018bf07e42eeed6b4e956b24c00ccdf93ac79cdff84"}, {file = "charset_normalizer-3.1.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:d2686f91611f9e17f4548dbf050e75b079bbc2a82be565832bc8ea9047b61c8c"}, {file = "charset_normalizer-3.1.0-cp37-cp37m-win32.whl", hash = "sha256:4155b51ae05ed47199dc5b2a4e62abccb274cee6b01da5b895099b61b1982974"}, {file = "charset_normalizer-3.1.0-cp37-cp37m-win_amd64.whl", hash = "sha256:322102cdf1ab682ecc7d9b1c5eed4ec59657a65e1c146a0da342b78f4112db23"}, {file = "charset_normalizer-3.1.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:e633940f28c1e913615fd624fcdd72fdba807bf53ea6925d6a588e84e1151531"}, {file = "charset_normalizer-3.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:3a06f32c9634a8705f4ca9946d667609f52cf130d5548881401f1eb2c39b1e2c"}, {file = "charset_normalizer-3.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7381c66e0561c5757ffe616af869b916c8b4e42b367ab29fedc98481d1e74e14"}, {file = "charset_normalizer-3.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3573d376454d956553c356df45bb824262c397c6e26ce43e8203c4c540ee0acb"}, {file = "charset_normalizer-3.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e89df2958e5159b811af9ff0f92614dabf4ff617c03a4c1c6ff53bf1c399e0e1"}, {file = "charset_normalizer-3.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:78cacd03e79d009d95635e7d6ff12c21eb89b894c354bd2b2ed0b4763373693b"}, {file = "charset_normalizer-3.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:de5695a6f1d8340b12a5d6d4484290ee74d61e467c39ff03b39e30df62cf83a0"}, {file = "charset_normalizer-3.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1c60b9c202d00052183c9be85e5eaf18a4ada0a47d188a83c8f5c5b23252f649"}, {file = "charset_normalizer-3.1.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:f645caaf0008bacf349875a974220f1f1da349c5dbe7c4ec93048cdc785a3326"}, {file = "charset_normalizer-3.1.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:ea9f9c6034ea2d93d9147818f17c2a0860d41b71c38b9ce4d55f21b6f9165a11"}, {file = "charset_normalizer-3.1.0-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:80d1543d58bd3d6c271b66abf454d437a438dff01c3e62fdbcd68f2a11310d4b"}, {file = "charset_normalizer-3.1.0-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:73dc03a6a7e30b7edc5b01b601e53e7fc924b04e1835e8e407c12c037e81adbd"}, {file = "charset_normalizer-3.1.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:6f5c2e7bc8a4bf7c426599765b1bd33217ec84023033672c1e9a8b35eaeaaaf8"}, {file = "charset_normalizer-3.1.0-cp38-cp38-win32.whl", hash = "sha256:12a2b561af122e3d94cdb97fe6fb2bb2b82cef0cdca131646fdb940a1eda04f0"}, {file = "charset_normalizer-3.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:3160a0fd9754aab7d47f95a6b63ab355388d890163eb03b2d2b87ab0a30cfa59"}, {file = "charset_normalizer-3.1.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:38e812a197bf8e71a59fe55b757a84c1f946d0ac114acafaafaf21667a7e169e"}, {file = "charset_normalizer-3.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6baf0baf0d5d265fa7944feb9f7451cc316bfe30e8df1a61b1bb08577c554f31"}, {file = "charset_normalizer-3.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:8f25e17ab3039b05f762b0a55ae0b3632b2e073d9c8fc88e89aca31a6198e88f"}, {file = "charset_normalizer-3.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3747443b6a904001473370d7810aa19c3a180ccd52a7157aacc264a5ac79265e"}, {file = "charset_normalizer-3.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b116502087ce8a6b7a5f1814568ccbd0e9f6cfd99948aa59b0e241dc57cf739f"}, {file = "charset_normalizer-3.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d16fd5252f883eb074ca55cb622bc0bee49b979ae4e8639fff6ca3ff44f9f854"}, {file = "charset_normalizer-3.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:21fa558996782fc226b529fdd2ed7866c2c6ec91cee82735c98a197fae39f706"}, {file = "charset_normalizer-3.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6f6c7a8a57e9405cad7485f4c9d3172ae486cfef1344b5ddd8e5239582d7355e"}, {file = "charset_normalizer-3.1.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:ac3775e3311661d4adace3697a52ac0bab17edd166087d493b52d4f4f553f9f0"}, {file = "charset_normalizer-3.1.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:10c93628d7497c81686e8e5e557aafa78f230cd9e77dd0c40032ef90c18f2230"}, {file = "charset_normalizer-3.1.0-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:6f4f4668e1831850ebcc2fd0b1cd11721947b6dc7c00bf1c6bd3c929ae14f2c7"}, {file = "charset_normalizer-3.1.0-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:0be65ccf618c1e7ac9b849c315cc2e8a8751d9cfdaa43027d4f6624bd587ab7e"}, {file = "charset_normalizer-3.1.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:53d0a3fa5f8af98a1e261de6a3943ca631c526635eb5817a87a59d9a57ebf48f"}, {file = "charset_normalizer-3.1.0-cp39-cp39-win32.whl", hash = "sha256:a04f86f41a8916fe45ac5024ec477f41f886b3c435da2d4e3d2709b22ab02af1"}, {file = "charset_normalizer-3.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:830d2948a5ec37c386d3170c483063798d7879037492540f10a475e3fd6f244b"}, {file = "charset_normalizer-3.1.0-py3-none-any.whl", hash = "sha256:3d9098b479e78c85080c98e1e35ff40b4a31d8953102bb0fd7d1b6f8a2111a3d"}, ] [[package]] name = "chromadb" version = "0.3.23" description = "Chroma." category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "chromadb-0.3.23-py3-none-any.whl", hash = "sha256:c1e04fddff0916243895bedeffc1977745328f62404d70981eb1a0cb9dcdfaf3"}, {file = "chromadb-0.3.23.tar.gz", hash = "sha256:87fa922c92e2e90fb48234b435e9d4f0c61646fbd1526062f53f63326fc21228"}, ] [package.dependencies] clickhouse-connect = ">=0.5.7" duckdb = ">=0.7.1" fastapi = ">=0.85.1" hnswlib = ">=0.7" numpy = ">=1.21.6" pandas = ">=1.3" posthog = ">=2.4.0" pydantic = ">=1.9" requests = ">=2.28" sentence-transformers = ">=2.2.2" typing-extensions = ">=4.5.0" uvicorn = {version = ">=0.18.3", extras = ["standard"]} [[package]] name = "click" version = "8.1.3" description = "Composable command line interface toolkit" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "click-8.1.3-py3-none-any.whl", hash = "sha256:bb4d8133cb15a609f44e8213d9b391b0809795062913b383c62be0ee95b1db48"}, {file = "click-8.1.3.tar.gz", hash = "sha256:7682dc8afb30297001674575ea00d1814d808d6a36af415a82bd481d37ba7b8e"}, ] [package.dependencies] colorama = {version = "*", markers = "platform_system == \"Windows\""} [[package]] name = "clickhouse-connect" version = "0.5.24" description = "ClickHouse core driver, SqlAlchemy, and Superset libraries" category = "main" optional = false python-versions = "~=3.7" files = [ {file = "clickhouse-connect-0.5.24.tar.gz", hash = "sha256:f1c6a4a20c19612eedaf1cea82e532010942cb08a29326db74cce0ea48bbe56d"}, {file = "clickhouse_connect-0.5.24-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:5b91584305b6133eff83e8a0436b3c48681dd44dcf8b2f5b54d558bafd30afa6"}, {file = "clickhouse_connect-0.5.24-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:17f3ca231aeff7c9f316dc03cba49ea8cd1e91e0f129519f8857f0e1d9aa7f49"}, {file = "clickhouse_connect-0.5.24-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b126b324ca9e34662bc07335f55ff51f9a5a5c5e4df97778f0a427b4bde8cfa"}, {file = "clickhouse_connect-0.5.24-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c756b8f290fc68af83129d378b749e74c40560107b926ef047c098b7c95a2ad"}, {file = "clickhouse_connect-0.5.24-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:486f538781d765993cc2b6f30ef8c274674b1be2c36dc03767d14feea24df566"}, {file = "clickhouse_connect-0.5.24-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:67cfb63b155c36413ff301c321de09e2476a936dc784c7954a63d612ec66f1ec"}, {file = "clickhouse_connect-0.5.24-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:56b004a0e001e49a2b6a022a98832b5558642299de9c808cf7b9333180f28e1b"}, {file = "clickhouse_connect-0.5.24-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:68bae08ef93aa21e02c961c79f2932cc88d0682a91099ec2f007c032ab4b68e1"}, {file = "clickhouse_connect-0.5.24-cp310-cp310-win32.whl", hash = "sha256:b7f73598f118c7466230f7149de0b4e1af992b2ac086a9200ac0011ab03ee468"}, {file = "clickhouse_connect-0.5.24-cp310-cp310-win_amd64.whl", hash = "sha256:5b83b4c6994e43ce3192c11ac4eb84f8ac8b6317d860fc2c4ff8f8f3609b20c1"}, {file = "clickhouse_connect-0.5.24-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ed329a93171ca867df9b903b95992d9dec2e256a657e16a88d27452dfe8f064e"}, {file = "clickhouse_connect-0.5.24-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:9bc64de89be44c30bf036aab551da196e11ebf14502533b6e2a0e8ca60c27599"}, {file = "clickhouse_connect-0.5.24-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:84adbe15ad0dd745aa1b2a183cf4d1573d39cdb81e9d0a2d37571805dfda4cd7"}, {file = "clickhouse_connect-0.5.24-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a50f7f3756c64791fa8a4ec73f87954a6c3aa44523394ad22e13e31ba1cd9c25"}, {file = "clickhouse_connect-0.5.24-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:08499995addd7d0e758086622d32aa8f8fdf6dde61bedb106f453191b16af15f"}, {file = "clickhouse_connect-0.5.24-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d8607c4b388a46b312fd34cdd26fe958002e414c0320aad0e24ac93854191325"}, {file = "clickhouse_connect-0.5.24-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:f0adcfbda306a1aa9f3cdc2f638b36c748c68104be97d9dc935c130ad632be82"}, {file = "clickhouse_connect-0.5.24-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:2abee0170d60d0621f7feec6b1e9c7434e3bb23a7b025d32a513f2df969b9a2d"}, {file = "clickhouse_connect-0.5.24-cp311-cp311-win32.whl", hash = "sha256:d6f7ea32b46a5fafa49a85b94b18902af38b0910f34ac588ec95b5b66faf7855"}, {file = "clickhouse_connect-0.5.24-cp311-cp311-win_amd64.whl", hash = "sha256:f0ae6e14f526c5fe504103d00992bf8e0ab3359266664b327c273e16f957545d"}, {file = "clickhouse_connect-0.5.24-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:dc0b18678b66160ca4ca6ce7fe074188975546c5d196092ef06510eb16067964"}, {file = "clickhouse_connect-0.5.24-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:91a6d666c4c3f4dea7bca84098a4624102cb3efa7f882352e8b914238b0ab3b0"}, {file = "clickhouse_connect-0.5.24-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1732ea5fddf201425baf53d1434516c1242184139d61202f885575cb8742167c"}, {file = "clickhouse_connect-0.5.24-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:be9c23721caacc52e9f75ba2239a5ca5bbdbafa913d36bcddf9eaf33578ba937"}, {file = "clickhouse_connect-0.5.24-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:b9aee9588b863ab3d33c11e9d2f350cee1f17753db74cedd3eb2bb4fc5ed31d1"}, {file = "clickhouse_connect-0.5.24-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:f7158f70e5ba787f64f01098fa729942d1d4dfd1a46c4519aab10ed3a4b32ead"}, {file = "clickhouse_connect-0.5.24-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:6684d253580c2e9cbcab8322189ca66fafc27ccabf67da58f178b31a09ecb60f"}, {file = "clickhouse_connect-0.5.24-cp37-cp37m-win32.whl", hash = "sha256:ba015b5337ecab0e9064eed3966acd2fe2c10f0391fc5f28d8c0fd73802d0810"}, {file = "clickhouse_connect-0.5.24-cp37-cp37m-win_amd64.whl", hash = "sha256:34feb3cb81298beff8e2be233719cf1271fd0f1aca2a0ae5dfff9716f9ab94c1"}, {file = "clickhouse_connect-0.5.24-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5ae2551daec4731373bffc6bc9d3e30a5dfbc0bdceb66cbc93c56dd0797c0740"}, {file = "clickhouse_connect-0.5.24-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:2cf26c82f3bd03e3088251f249776285a01da3268936d88d98b7cbecb2783497"}, {file = "clickhouse_connect-0.5.24-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0437c44d342edada639fed6f5064226cc9ad9f37406ea1cf550a50cb3f66db5a"}, {file = "clickhouse_connect-0.5.24-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8e7b5f68b7bae44ec5dfc80510bb81f9f2af88662681c103d5a58da170f4eb78"}, {file = "clickhouse_connect-0.5.24-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bc0ccf9ef68377291aba32dc7754b8aab658c2b4cfe06488140114f8abbef819"}, {file = "clickhouse_connect-0.5.24-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:1e9c3f146bdb1929223ebba04610ebf7bbbed313ee452754268c546966eff9db"}, {file = "clickhouse_connect-0.5.24-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:f7e31461ce8e13e2b9f67b21e2ac7bd1121420d85bf6dc888082dfd2f6ca9bc4"}, {file = "clickhouse_connect-0.5.24-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:e7b9b5a24cad361845f1d138ba9fb45f690c84583ca584adac76379a65fd8c00"}, {file = "clickhouse_connect-0.5.24-cp38-cp38-win32.whl", hash = "sha256:7d223477041ae31b62917b5f9abeaa468fe2a1efa8391070da4258a41fdc7643"}, {file = "clickhouse_connect-0.5.24-cp38-cp38-win_amd64.whl", hash = "sha256:c82fcf42d9a2318cf53086147376c31246e3842b73a09b4bac16a6f0c299a294"}, {file = "clickhouse_connect-0.5.24-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:586d7193ece84ddc2608fdc29cd10cc80eff26f283b2ad9d738bbd522f1f84cd"}, {file = "clickhouse_connect-0.5.24-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:71b452bed17aee315b93944174053cd84dc5efb245d4a556a2e49b78022f7ed6"}, {file = "clickhouse_connect-0.5.24-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:788722210e636bec7a870b0625999f97c3285bc19fd46763b58472ee445b67e9"}, {file = "clickhouse_connect-0.5.24-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:268e3375d9a3985ea961cb1be338c1d13154b617f5eb027ace0e8670de9501ce"}, {file = "clickhouse_connect-0.5.24-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:28ea9abd595d7400e3ef2842f5e9db5307133dfa24d97a8c45f71713048bad97"}, {file = "clickhouse_connect-0.5.24-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:00b0ac033dc47e0409a19ff974d938006a198445980028d911a47ba05facf6cd"}, {file = "clickhouse_connect-0.5.24-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:601a26ddb18e266e79b76d1672ac15ef5b6043ea17ba4c9dc3dc80130a0775d9"}, {file = "clickhouse_connect-0.5.24-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:eb502ccb7c5dcb907cf4c8316f9b787e4bd3a7b65cd8cbc37b24c5e9c890a801"}, {file = "clickhouse_connect-0.5.24-cp39-cp39-win32.whl", hash = "sha256:e6acedfd795cd1db7d89f21597389805e583f2b4ae9495cb0b89b8eda13ff6ad"}, {file = "clickhouse_connect-0.5.24-cp39-cp39-win_amd64.whl", hash = "sha256:921d3a8a287844c031c470547c07dd5b7454c883c44f13e1d4f5b9d0896444d2"}, {file = "clickhouse_connect-0.5.24-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:ec051a1f6f3912f2f3b659d3e3c344a67f676d2d42583885b3ed8365c51753b2"}, {file = "clickhouse_connect-0.5.24-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b116538fd7d75df991b211a3db311c158a2664301b2f5d1ffc18feb5b5da89d"}, {file = "clickhouse_connect-0.5.24-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b116747e4b187d3aac49a51e865a4fe0c11b39775724f0d7f719b4222810a5a4"}, {file = "clickhouse_connect-0.5.24-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4fa54e11e651979d9a4e355564d2128c6a8394d4cffda295a8188c9869ab93cc"}, {file = "clickhouse_connect-0.5.24-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:7c17e691e27d3b2e950cb2f597f0a895eb6b9d6717e886fafae861d34ac5bbb0"}, {file = "clickhouse_connect-0.5.24-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:34e2ae809ac1244da6fa67c4021431f9a1865d14c6df2d7fe57d22841f361497"}, {file = "clickhouse_connect-0.5.24-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4e7b2ef89e9c1c92a09988a812626f7d529acfda93f420b75e59fe2981960886"}, {file = "clickhouse_connect-0.5.24-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6200bdf94a52847d3f10ab8675c58db9ff3e90ce6ee98bc0c49f01c74d934798"}, {file = "clickhouse_connect-0.5.24-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4def3ee218f6fbb320fbb1c5c1bb3b23753b9e56e50759fc396ea70631dff846"}, {file = "clickhouse_connect-0.5.24-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:378f6a6289080f0c103f17eda9f8edcabc4878eb783e6b4e596d8bf8f543244e"}, {file = "clickhouse_connect-0.5.24-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e29389baa14a3f1db4e52b32090e1e32533496e35833514c689b190f26dfb039"}, {file = "clickhouse_connect-0.5.24-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7418e2c6533eebf0de9f3e85f1e3b6095d1a0bf42e4fed479f92f538725ff666"}, {file = "clickhouse_connect-0.5.24-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c3f23f819f20d130daed64ba058e01336e2f5f6d4b9f576038c0b800473af1ac"}, {file = "clickhouse_connect-0.5.24-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a846fc412475d55d7727c8a82ba1247b1b7ff0c6341a1818f99fd348ee9b1580"}, {file = "clickhouse_connect-0.5.24-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:34afc74ea27dcb85c1929f6105c4701566f51a1216bd6648b63ccb4871906729"}, ] [package.dependencies] certifi = "*" lz4 = "*" pytz = "*" urllib3 = ">=1.26" zstandard = "*" [package.extras] arrow = ["pyarrow"] numpy = ["numpy"] orjson = ["orjson"] pandas = ["pandas"] sqlalchemy = ["sqlalchemy (>1.3.21,<1.4)"] superset = ["apache-superset (>=1.4.1)"] [[package]] name = "cohere" version = "3.10.0" description = "A Python library for the Cohere API" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "cohere-3.10.0.tar.gz", hash = "sha256:8c06a87a47aa9521051eeba130ce391d84ab578148c4ea5b62f6dcc41bd3a274"}, ] [package.dependencies] requests = "*" urllib3 = ">=1.26,<2.0" [[package]] name = "colorama" version = "0.4.6" description = "Cross-platform colored terminal text." category = "main" optional = false python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7" files = [ {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"}, {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, ] [[package]] name = "comm" version = "0.1.3" description = "Jupyter Python Comm implementation, for usage in ipykernel, xeus-python etc." category = "dev" optional = false python-versions = ">=3.6" files = [ {file = "comm-0.1.3-py3-none-any.whl", hash = "sha256:16613c6211e20223f215fc6d3b266a247b6e2641bf4e0a3ad34cb1aff2aa3f37"}, {file = "comm-0.1.3.tar.gz", hash = "sha256:a61efa9daffcfbe66fd643ba966f846a624e4e6d6767eda9cf6e993aadaab93e"}, ] [package.dependencies] traitlets = ">=5.3" [package.extras] lint = ["black (>=22.6.0)", "mdformat (>0.7)", "mdformat-gfm (>=0.3.5)", "ruff (>=0.0.156)"] test = ["pytest"] typing = ["mypy (>=0.990)"] [[package]] name = "confection" version = "0.0.4" description = "The sweetest config system for Python" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "confection-0.0.4-py3-none-any.whl", hash = "sha256:aeac5919ba770c7b281aa5863bb6b0efed42568a7ad8ea26b6cb632154503fb2"}, {file = "confection-0.0.4.tar.gz", hash = "sha256:b1ddf5885da635f0e260a40b339730806dfb1bd17d30e08764f35af841b04ecf"}, ] [package.dependencies] pydantic = ">=1.7.4,<1.8 || >1.8,<1.8.1 || >1.8.1,<1.11.0" srsly = ">=2.4.0,<3.0.0" [[package]] name = "coverage" version = "7.2.5" description = "Code coverage measurement for Python" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "coverage-7.2.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:883123d0bbe1c136f76b56276074b0c79b5817dd4238097ffa64ac67257f4b6c"}, {file = "coverage-7.2.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d2fbc2a127e857d2f8898aaabcc34c37771bf78a4d5e17d3e1f5c30cd0cbc62a"}, {file = "coverage-7.2.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f3671662dc4b422b15776cdca89c041a6349b4864a43aa2350b6b0b03bbcc7f"}, {file = "coverage-7.2.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:780551e47d62095e088f251f5db428473c26db7829884323e56d9c0c3118791a"}, {file = "coverage-7.2.5-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:066b44897c493e0dcbc9e6a6d9f8bbb6607ef82367cf6810d387c09f0cd4fe9a"}, {file = "coverage-7.2.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:b9a4ee55174b04f6af539218f9f8083140f61a46eabcaa4234f3c2a452c4ed11"}, {file = "coverage-7.2.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:706ec567267c96717ab9363904d846ec009a48d5f832140b6ad08aad3791b1f5"}, {file = "coverage-7.2.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:ae453f655640157d76209f42c62c64c4d4f2c7f97256d3567e3b439bd5c9b06c"}, {file = "coverage-7.2.5-cp310-cp310-win32.whl", hash = "sha256:f81c9b4bd8aa747d417407a7f6f0b1469a43b36a85748145e144ac4e8d303cb5"}, {file = "coverage-7.2.5-cp310-cp310-win_amd64.whl", hash = "sha256:dc945064a8783b86fcce9a0a705abd7db2117d95e340df8a4333f00be5efb64c"}, {file = "coverage-7.2.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:40cc0f91c6cde033da493227797be2826cbf8f388eaa36a0271a97a332bfd7ce"}, {file = "coverage-7.2.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a66e055254a26c82aead7ff420d9fa8dc2da10c82679ea850d8feebf11074d88"}, {file = "coverage-7.2.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c10fbc8a64aa0f3ed136b0b086b6b577bc64d67d5581acd7cc129af52654384e"}, {file = "coverage-7.2.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9a22cbb5ede6fade0482111fa7f01115ff04039795d7092ed0db43522431b4f2"}, {file = "coverage-7.2.5-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:292300f76440651529b8ceec283a9370532f4ecba9ad67d120617021bb5ef139"}, {file = "coverage-7.2.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:7ff8f3fb38233035028dbc93715551d81eadc110199e14bbbfa01c5c4a43f8d8"}, {file = "coverage-7.2.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:a08c7401d0b24e8c2982f4e307124b671c6736d40d1c39e09d7a8687bddf83ed"}, {file = "coverage-7.2.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:ef9659d1cda9ce9ac9585c045aaa1e59223b143f2407db0eaee0b61a4f266fb6"}, {file = "coverage-7.2.5-cp311-cp311-win32.whl", hash = "sha256:30dcaf05adfa69c2a7b9f7dfd9f60bc8e36b282d7ed25c308ef9e114de7fc23b"}, {file = "coverage-7.2.5-cp311-cp311-win_amd64.whl", hash = "sha256:97072cc90f1009386c8a5b7de9d4fc1a9f91ba5ef2146c55c1f005e7b5c5e068"}, {file = "coverage-7.2.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:bebea5f5ed41f618797ce3ffb4606c64a5de92e9c3f26d26c2e0aae292f015c1"}, {file = "coverage-7.2.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:828189fcdda99aae0d6bf718ea766b2e715eabc1868670a0a07bf8404bf58c33"}, {file = "coverage-7.2.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6e8a95f243d01ba572341c52f89f3acb98a3b6d1d5d830efba86033dd3687ade"}, {file = "coverage-7.2.5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e8834e5f17d89e05697c3c043d3e58a8b19682bf365048837383abfe39adaed5"}, {file = "coverage-7.2.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:d1f25ee9de21a39b3a8516f2c5feb8de248f17da7eead089c2e04aa097936b47"}, {file = "coverage-7.2.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:1637253b11a18f453e34013c665d8bf15904c9e3c44fbda34c643fbdc9d452cd"}, {file = "coverage-7.2.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:8e575a59315a91ccd00c7757127f6b2488c2f914096077c745c2f1ba5b8c0969"}, {file = "coverage-7.2.5-cp37-cp37m-win32.whl", hash = "sha256:509ecd8334c380000d259dc66feb191dd0a93b21f2453faa75f7f9cdcefc0718"}, {file = "coverage-7.2.5-cp37-cp37m-win_amd64.whl", hash = "sha256:12580845917b1e59f8a1c2ffa6af6d0908cb39220f3019e36c110c943dc875b0"}, {file = "coverage-7.2.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:b5016e331b75310610c2cf955d9f58a9749943ed5f7b8cfc0bb89c6134ab0a84"}, {file = "coverage-7.2.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:373ea34dca98f2fdb3e5cb33d83b6d801007a8074f992b80311fc589d3e6b790"}, {file = "coverage-7.2.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a063aad9f7b4c9f9da7b2550eae0a582ffc7623dca1c925e50c3fbde7a579771"}, {file = "coverage-7.2.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:38c0a497a000d50491055805313ed83ddba069353d102ece8aef5d11b5faf045"}, {file = "coverage-7.2.5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a2b3b05e22a77bb0ae1a3125126a4e08535961c946b62f30985535ed40e26614"}, {file = "coverage-7.2.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:0342a28617e63ad15d96dca0f7ae9479a37b7d8a295f749c14f3436ea59fdcb3"}, {file = "coverage-7.2.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:cf97ed82ca986e5c637ea286ba2793c85325b30f869bf64d3009ccc1a31ae3fd"}, {file = "coverage-7.2.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:c2c41c1b1866b670573657d584de413df701f482574bad7e28214a2362cb1fd1"}, {file = "coverage-7.2.5-cp38-cp38-win32.whl", hash = "sha256:10b15394c13544fce02382360cab54e51a9e0fd1bd61ae9ce012c0d1e103c813"}, {file = "coverage-7.2.5-cp38-cp38-win_amd64.whl", hash = "sha256:a0b273fe6dc655b110e8dc89b8ec7f1a778d78c9fd9b4bda7c384c8906072212"}, {file = "coverage-7.2.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5c587f52c81211d4530fa6857884d37f514bcf9453bdeee0ff93eaaf906a5c1b"}, {file = "coverage-7.2.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4436cc9ba5414c2c998eaedee5343f49c02ca93b21769c5fdfa4f9d799e84200"}, {file = "coverage-7.2.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6599bf92f33ab041e36e06d25890afbdf12078aacfe1f1d08c713906e49a3fe5"}, {file = "coverage-7.2.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:857abe2fa6a4973f8663e039ead8d22215d31db613ace76e4a98f52ec919068e"}, {file = "coverage-7.2.5-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6f5cab2d7f0c12f8187a376cc6582c477d2df91d63f75341307fcdcb5d60303"}, {file = "coverage-7.2.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:aa387bd7489f3e1787ff82068b295bcaafbf6f79c3dad3cbc82ef88ce3f48ad3"}, {file = "coverage-7.2.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:156192e5fd3dbbcb11cd777cc469cf010a294f4c736a2b2c891c77618cb1379a"}, {file = "coverage-7.2.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:bd3b4b8175c1db502adf209d06136c000df4d245105c8839e9d0be71c94aefe1"}, {file = "coverage-7.2.5-cp39-cp39-win32.whl", hash = "sha256:ddc5a54edb653e9e215f75de377354e2455376f416c4378e1d43b08ec50acc31"}, {file = "coverage-7.2.5-cp39-cp39-win_amd64.whl", hash = "sha256:338aa9d9883aaaad53695cb14ccdeb36d4060485bb9388446330bef9c361c252"}, {file = "coverage-7.2.5-pp37.pp38.pp39-none-any.whl", hash = "sha256:8877d9b437b35a85c18e3c6499b23674684bf690f5d96c1006a1ef61f9fdf0f3"}, {file = "coverage-7.2.5.tar.gz", hash = "sha256:f99ef080288f09ffc687423b8d60978cf3a465d3f404a18d1a05474bd8575a47"}, ] [package.dependencies] tomli = {version = "*", optional = true, markers = "python_full_version <= \"3.11.0a6\" and extra == \"toml\""} [package.extras] toml = ["tomli"] [[package]] name = "cryptography" version = "40.0.2" description = "cryptography is a package which provides cryptographic recipes and primitives to Python developers." category = "main" optional = false python-versions = ">=3.6" files = [ {file = "cryptography-40.0.2-cp36-abi3-macosx_10_12_universal2.whl", hash = "sha256:8f79b5ff5ad9d3218afb1e7e20ea74da5f76943ee5edb7f76e56ec5161ec782b"}, {file = "cryptography-40.0.2-cp36-abi3-macosx_10_12_x86_64.whl", hash = "sha256:05dc219433b14046c476f6f09d7636b92a1c3e5808b9a6536adf4932b3b2c440"}, {file = "cryptography-40.0.2-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4df2af28d7bedc84fe45bd49bc35d710aede676e2a4cb7fc6d103a2adc8afe4d"}, {file = "cryptography-40.0.2-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0dcca15d3a19a66e63662dc8d30f8036b07be851a8680eda92d079868f106288"}, {file = "cryptography-40.0.2-cp36-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:a04386fb7bc85fab9cd51b6308633a3c271e3d0d3eae917eebab2fac6219b6d2"}, {file = "cryptography-40.0.2-cp36-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:adc0d980fd2760c9e5de537c28935cc32b9353baaf28e0814df417619c6c8c3b"}, {file = "cryptography-40.0.2-cp36-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:d5a1bd0e9e2031465761dfa920c16b0065ad77321d8a8c1f5ee331021fda65e9"}, {file = "cryptography-40.0.2-cp36-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:a95f4802d49faa6a674242e25bfeea6fc2acd915b5e5e29ac90a32b1139cae1c"}, {file = "cryptography-40.0.2-cp36-abi3-win32.whl", hash = "sha256:aecbb1592b0188e030cb01f82d12556cf72e218280f621deed7d806afd2113f9"}, {file = "cryptography-40.0.2-cp36-abi3-win_amd64.whl", hash = "sha256:b12794f01d4cacfbd3177b9042198f3af1c856eedd0a98f10f141385c809a14b"}, {file = "cryptography-40.0.2-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:142bae539ef28a1c76794cca7f49729e7c54423f615cfd9b0b1fa90ebe53244b"}, {file = "cryptography-40.0.2-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:956ba8701b4ffe91ba59665ed170a2ebbdc6fc0e40de5f6059195d9f2b33ca0e"}, {file = "cryptography-40.0.2-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:4f01c9863da784558165f5d4d916093737a75203a5c5286fde60e503e4276c7a"}, {file = "cryptography-40.0.2-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:3daf9b114213f8ba460b829a02896789751626a2a4e7a43a28ee77c04b5e4958"}, {file = "cryptography-40.0.2-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:48f388d0d153350f378c7f7b41497a54ff1513c816bcbbcafe5b829e59b9ce5b"}, {file = "cryptography-40.0.2-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:c0764e72b36a3dc065c155e5b22f93df465da9c39af65516fe04ed3c68c92636"}, {file = "cryptography-40.0.2-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:cbaba590180cba88cb99a5f76f90808a624f18b169b90a4abb40c1fd8c19420e"}, {file = "cryptography-40.0.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:7a38250f433cd41df7fcb763caa3ee9362777fdb4dc642b9a349721d2bf47404"}, {file = "cryptography-40.0.2.tar.gz", hash = "sha256:c33c0d32b8594fa647d2e01dbccc303478e16fdd7cf98652d5b3ed11aa5e5c99"}, ] [package.dependencies] cffi = ">=1.12" [package.extras] docs = ["sphinx (>=5.3.0)", "sphinx-rtd-theme (>=1.1.1)"] docstest = ["pyenchant (>=1.6.11)", "sphinxcontrib-spelling (>=4.0.1)", "twine (>=1.12.0)"] pep8test = ["black", "check-manifest", "mypy", "ruff"] sdist = ["setuptools-rust (>=0.11.4)"] ssh = ["bcrypt (>=3.1.5)"] test = ["iso8601", "pretend", "pytest (>=6.2.0)", "pytest-benchmark", "pytest-cov", "pytest-shard (>=0.1.2)", "pytest-subtests", "pytest-xdist"] test-randomorder = ["pytest-randomly"] tox = ["tox"] [[package]] name = "cymem" version = "2.0.7" description = "Manage calls to calloc/free through Cython" category = "main" optional = true python-versions = "*" files = [ {file = "cymem-2.0.7-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:4981fc9182cc1fe54bfedf5f73bfec3ce0c27582d9be71e130c46e35958beef0"}, {file = "cymem-2.0.7-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:42aedfd2e77aa0518a24a2a60a2147308903abc8b13c84504af58539c39e52a3"}, {file = "cymem-2.0.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c183257dc5ab237b664f64156c743e788f562417c74ea58c5a3939fe2d48d6f6"}, {file = "cymem-2.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d18250f97eeb13af2e8b19d3cefe4bf743b963d93320b0a2e729771410fd8cf4"}, {file = "cymem-2.0.7-cp310-cp310-win_amd64.whl", hash = "sha256:864701e626b65eb2256060564ed8eb034ebb0a8f14ce3fbef337e88352cdee9f"}, {file = "cymem-2.0.7-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:314273be1f143da674388e0a125d409e2721fbf669c380ae27c5cbae4011e26d"}, {file = "cymem-2.0.7-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:df543a36e7000808fe0a03d92fd6cd8bf23fa8737c3f7ae791a5386de797bf79"}, {file = "cymem-2.0.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9e5e1b7de7952d89508d07601b9e95b2244e70d7ef60fbc161b3ad68f22815f8"}, {file = "cymem-2.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2aa33f1dbd7ceda37970e174c38fd1cf106817a261aa58521ba9918156868231"}, {file = "cymem-2.0.7-cp311-cp311-win_amd64.whl", hash = "sha256:10178e402bb512b2686b8c2f41f930111e597237ca8f85cb583ea93822ef798d"}, {file = "cymem-2.0.7-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a2971b7da5aa2e65d8fbbe9f2acfc19ff8e73f1896e3d6e1223cc9bf275a0207"}, {file = "cymem-2.0.7-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85359ab7b490e6c897c04863704481600bd45188a0e2ca7375eb5db193e13cb7"}, {file = "cymem-2.0.7-cp36-cp36m-win_amd64.whl", hash = "sha256:0ac45088abffbae9b7db2c597f098de51b7e3c1023cb314e55c0f7f08440cf66"}, {file = "cymem-2.0.7-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:26e5d5c6958855d2fe3d5629afe85a6aae5531abaa76f4bc21b9abf9caaccdfe"}, {file = "cymem-2.0.7-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:011039e12d3144ac1bf3a6b38f5722b817f0d6487c8184e88c891b360b69f533"}, {file = "cymem-2.0.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6f9e63e5ad4ed6ffa21fd8db1c03b05be3fea2f32e32fdace67a840ea2702c3d"}, {file = "cymem-2.0.7-cp37-cp37m-win_amd64.whl", hash = "sha256:5ea6b027fdad0c3e9a4f1b94d28d213be08c466a60c72c633eb9db76cf30e53a"}, {file = "cymem-2.0.7-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:4302df5793a320c4f4a263c7785d2fa7f29928d72cb83ebeb34d64a610f8d819"}, {file = "cymem-2.0.7-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:24b779046484674c054af1e779c68cb224dc9694200ac13b22129d7fb7e99e6d"}, {file = "cymem-2.0.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6c50794c612801ed8b599cd4af1ed810a0d39011711c8224f93e1153c00e08d1"}, {file = "cymem-2.0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a9525ad563b36dc1e30889d0087a0daa67dd7bb7d3e1530c4b61cd65cc756a5b"}, {file = "cymem-2.0.7-cp38-cp38-win_amd64.whl", hash = "sha256:48b98da6b906fe976865263e27734ebc64f972a978a999d447ad6c83334e3f90"}, {file = "cymem-2.0.7-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:e156788d32ad8f7141330913c5d5d2aa67182fca8f15ae22645e9f379abe8a4c"}, {file = "cymem-2.0.7-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3da89464021fe669932fce1578343fcaf701e47e3206f50d320f4f21e6683ca5"}, {file = "cymem-2.0.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4f359cab9f16e25b3098f816c40acbf1697a3b614a8d02c56e6ebcb9c89a06b3"}, {file = "cymem-2.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f165d7bce55d6730930e29d8294569788aa127f1be8d1642d9550ed96223cb37"}, {file = "cymem-2.0.7-cp39-cp39-win_amd64.whl", hash = "sha256:59a09cf0e71b1b88bfa0de544b801585d81d06ea123c1725e7c5da05b7ca0d20"}, {file = "cymem-2.0.7.tar.gz", hash = "sha256:e6034badb5dd4e10344211c81f16505a55553a7164adc314c75bd80cf07e57a8"}, ] [[package]] name = "dataclasses-json" version = "0.5.7" description = "Easily serialize dataclasses to and from JSON" category = "main" optional = false python-versions = ">=3.6" files = [ {file = "dataclasses-json-0.5.7.tar.gz", hash = "sha256:c2c11bc8214fbf709ffc369d11446ff6945254a7f09128154a7620613d8fda90"}, {file = "dataclasses_json-0.5.7-py3-none-any.whl", hash = "sha256:bc285b5f892094c3a53d558858a88553dd6a61a11ab1a8128a0e554385dcc5dd"}, ] [package.dependencies] marshmallow = ">=3.3.0,<4.0.0" marshmallow-enum = ">=1.5.1,<2.0.0" typing-inspect = ">=0.4.0" [package.extras] dev = ["flake8", "hypothesis", "ipython", "mypy (>=0.710)", "portray", "pytest (>=6.2.3)", "simplejson", "types-dataclasses"] [[package]] name = "datasets" version = "1.18.3" description = "HuggingFace community-driven open-source library of datasets" category = "main" optional = true python-versions = "*" files = [ {file = "datasets-1.18.3-py3-none-any.whl", hash = "sha256:5862670a3e213af1aa68995a32ff0ce761b9d71d2677c3fa59e7088eb5e2a841"}, {file = "datasets-1.18.3.tar.gz", hash = "sha256:dfdf75c255069f4ed25ccdd0d3f0730c1ff1e2b27f8d4bd1af395b10fe8ebc63"}, ] [package.dependencies] aiohttp = "*" dill = "*" fsspec = {version = ">=2021.05.0", extras = ["http"]} huggingface-hub = ">=0.1.0,<1.0.0" multiprocess = "*" numpy = ">=1.17" packaging = "*" pandas = "*" pyarrow = ">=3.0.0,<4.0.0 || >4.0.0" requests = ">=2.19.0" tqdm = ">=4.62.1" xxhash = "*" [package.extras] apache-beam = ["apache-beam (>=2.26.0)"] audio = ["librosa"] benchmarks = ["numpy (==1.18.5)", "tensorflow (==2.3.0)", "torch (==1.6.0)", "transformers (==3.0.2)"] dev = ["Pillow (>=6.2.1)", "Werkzeug (>=1.0.1)", "absl-py", "aiobotocore", "apache-beam (>=2.26.0)", "bert-score (>=0.3.6)", "black (==21.4b0)", "boto3", "botocore", "bs4", "conllu", "elasticsearch", "fairseq", "faiss-cpu (>=1.6.4)", "fastBPE (==0.1.0)", "flake8 (>=3.8.3)", "fsspec[s3]", "h5py", "importlib-resources", "isort (>=5.0.0)", "jiwer", "langdetect", "librosa", "lxml", "mauve-text", "moto[s3,server] (==2.0.4)", "mwparserfromhell", "nltk", "openpyxl", "py7zr", "pytest", "pytest-datadir", "pytest-xdist", "pytorch-lightning", "pytorch-nlp (==0.5.0)", "pyyaml (>=5.3.1)", "rarfile (>=4.0)", "requests-file (>=1.5.1)", "rouge-score", "s3fs (==2021.08.1)", "sacrebleu", "scikit-learn", "scipy", "sentencepiece", "seqeval", "six (>=1.15.0,<1.16.0)", "soundfile", "tensorflow (>=2.3,!=2.6.0,!=2.6.1)", "texttable (>=1.6.3)", "tldextract", "tldextract (>=3.1.0)", "toml (>=0.10.1)", "torch", "torchaudio", "torchmetrics (==0.6.0)", "transformers", "wget (>=3.2)", "zstandard"] docs = ["Markdown (!=3.3.5)", "docutils (==0.16.0)", "fsspec (<2021.9.0)", "myst-parser", "recommonmark", "s3fs", "sphinx (==3.1.2)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-markdown-tables", "sphinx-panels", "sphinx-rtd-theme (==0.4.3)", "sphinxext-opengraph (==0.4.1)"] quality = ["black (==21.4b0)", "flake8 (>=3.8.3)", "isort (>=5.0.0)", "pyyaml (>=5.3.1)"] s3 = ["boto3", "botocore", "fsspec", "s3fs"] tensorflow = ["tensorflow (>=2.2.0,!=2.6.0,!=2.6.1)"] tensorflow-gpu = ["tensorflow-gpu (>=2.2.0,!=2.6.0,!=2.6.1)"] tests = ["Pillow (>=6.2.1)", "Werkzeug (>=1.0.1)", "absl-py", "aiobotocore", "apache-beam (>=2.26.0)", "bert-score (>=0.3.6)", "boto3", "botocore", "bs4", "conllu", "elasticsearch", "fairseq", "faiss-cpu (>=1.6.4)", "fastBPE (==0.1.0)", "fsspec[s3]", "h5py", "importlib-resources", "jiwer", "langdetect", "librosa", "lxml", "mauve-text", "moto[s3,server] (==2.0.4)", "mwparserfromhell", "nltk", "openpyxl", "py7zr", "pytest", "pytest-datadir", "pytest-xdist", "pytorch-lightning", "pytorch-nlp (==0.5.0)", "rarfile (>=4.0)", "requests-file (>=1.5.1)", "rouge-score", "s3fs (==2021.08.1)", "sacrebleu", "scikit-learn", "scipy", "sentencepiece", "seqeval", "six (>=1.15.0,<1.16.0)", "soundfile", "tensorflow (>=2.3,!=2.6.0,!=2.6.1)", "texttable (>=1.6.3)", "tldextract", "tldextract (>=3.1.0)", "toml (>=0.10.1)", "torch", "torchaudio", "torchmetrics (==0.6.0)", "transformers", "wget (>=3.2)", "zstandard"] torch = ["torch"] vision = ["Pillow (>=6.2.1)"] [[package]] name = "debugpy" version = "1.6.7" description = "An implementation of the Debug Adapter Protocol for Python" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "debugpy-1.6.7-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:b3e7ac809b991006ad7f857f016fa92014445085711ef111fdc3f74f66144096"}, {file = "debugpy-1.6.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e3876611d114a18aafef6383695dfc3f1217c98a9168c1aaf1a02b01ec7d8d1e"}, {file = "debugpy-1.6.7-cp310-cp310-win32.whl", hash = "sha256:33edb4afa85c098c24cc361d72ba7c21bb92f501104514d4ffec1fb36e09c01a"}, {file = "debugpy-1.6.7-cp310-cp310-win_amd64.whl", hash = "sha256:ed6d5413474e209ba50b1a75b2d9eecf64d41e6e4501977991cdc755dc83ab0f"}, {file = "debugpy-1.6.7-cp37-cp37m-macosx_10_15_x86_64.whl", hash = "sha256:38ed626353e7c63f4b11efad659be04c23de2b0d15efff77b60e4740ea685d07"}, {file = "debugpy-1.6.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:279d64c408c60431c8ee832dfd9ace7c396984fd7341fa3116aee414e7dcd88d"}, {file = "debugpy-1.6.7-cp37-cp37m-win32.whl", hash = "sha256:dbe04e7568aa69361a5b4c47b4493d5680bfa3a911d1e105fbea1b1f23f3eb45"}, {file = "debugpy-1.6.7-cp37-cp37m-win_amd64.whl", hash = "sha256:f90a2d4ad9a035cee7331c06a4cf2245e38bd7c89554fe3b616d90ab8aab89cc"}, {file = "debugpy-1.6.7-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:5224eabbbeddcf1943d4e2821876f3e5d7d383f27390b82da5d9558fd4eb30a9"}, {file = "debugpy-1.6.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bae1123dff5bfe548ba1683eb972329ba6d646c3a80e6b4c06cd1b1dd0205e9b"}, {file = "debugpy-1.6.7-cp38-cp38-win32.whl", hash = "sha256:9cd10cf338e0907fdcf9eac9087faa30f150ef5445af5a545d307055141dd7a4"}, {file = "debugpy-1.6.7-cp38-cp38-win_amd64.whl", hash = "sha256:aaf6da50377ff4056c8ed470da24632b42e4087bc826845daad7af211e00faad"}, {file = "debugpy-1.6.7-cp39-cp39-macosx_11_0_x86_64.whl", hash = "sha256:0679b7e1e3523bd7d7869447ec67b59728675aadfc038550a63a362b63029d2c"}, {file = "debugpy-1.6.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:de86029696e1b3b4d0d49076b9eba606c226e33ae312a57a46dca14ff370894d"}, {file = "debugpy-1.6.7-cp39-cp39-win32.whl", hash = "sha256:d71b31117779d9a90b745720c0eab54ae1da76d5b38c8026c654f4a066b0130a"}, {file = "debugpy-1.6.7-cp39-cp39-win_amd64.whl", hash = "sha256:c0ff93ae90a03b06d85b2c529eca51ab15457868a377c4cc40a23ab0e4e552a3"}, {file = "debugpy-1.6.7-py2.py3-none-any.whl", hash = "sha256:53f7a456bc50706a0eaabecf2d3ce44c4d5010e46dfc65b6b81a518b42866267"}, {file = "debugpy-1.6.7.zip", hash = "sha256:c4c2f0810fa25323abfdfa36cbbbb24e5c3b1a42cb762782de64439c575d67f2"}, ] [[package]] name = "decorator" version = "5.1.1" description = "Decorators for Humans" category = "main" optional = false python-versions = ">=3.5" files = [ {file = "decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186"}, {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"}, ] [[package]] name = "deeplake" version = "3.5.0" description = "Activeloop Deep Lake" category = "main" optional = false python-versions = "*" files = [ {file = "deeplake-3.5.0.tar.gz", hash = "sha256:ae640f75b1fec4eed9598a4e8d6b80e7243af87d9f39f0d34f01ce2c6f7c194f"}, ] [package.dependencies] aioboto3 = {version = ">=10.4.0", markers = "python_version >= \"3.7\" and sys_platform != \"win32\""} boto3 = "*" click = "*" humbug = ">=0.3.1" nest_asyncio = {version = "*", markers = "python_version >= \"3.7\" and sys_platform != \"win32\""} numcodecs = "*" numpy = "*" pathos = "*" pillow = "*" pyjwt = "*" tqdm = "*" [package.extras] all = ["IPython", "av (>=8.1.0)", "flask", "google-api-python-client (>=2.31.0,<2.32.0)", "google-auth (>=2.0.1,<2.1.0)", "google-auth-oauthlib (>=0.4.5,<0.5.0)", "google-cloud-storage (>=1.42.0,<1.43.0)", "laspy", "libdeeplake (==0.0.53)", "nibabel", "oauth2client (>=4.1.3,<4.2.0)", "pydicom"] audio = ["av (>=8.1.0)"] av = ["av (>=8.1.0)"] dicom = ["nibabel", "pydicom"] enterprise = ["libdeeplake (==0.0.53)", "pyjwt"] gcp = ["google-auth (>=2.0.1,<2.1.0)", "google-auth-oauthlib (>=0.4.5,<0.5.0)", "google-cloud-storage (>=1.42.0,<1.43.0)"] gdrive = ["google-api-python-client (>=2.31.0,<2.32.0)", "google-auth (>=2.0.1,<2.1.0)", "google-auth-oauthlib (>=0.4.5,<0.5.0)", "oauth2client (>=4.1.3,<4.2.0)"] medical = ["nibabel", "pydicom"] point-cloud = ["laspy"] video = ["av (>=8.1.0)"] visualizer = ["IPython", "flask"] [[package]] name = "defusedxml" version = "0.7.1" description = "XML bomb protection for Python stdlib modules" category = "dev" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" files = [ {file = "defusedxml-0.7.1-py2.py3-none-any.whl", hash = "sha256:a352e7e428770286cc899e2542b6cdaedb2b4953ff269a210103ec58f6198a61"}, {file = "defusedxml-0.7.1.tar.gz", hash = "sha256:1bb3032db185915b62d7c6209c5a8792be6a32ab2fedacc84e01b52c51aa3e69"}, ] [[package]] name = "deprecated" version = "1.2.13" description = "Python @deprecated decorator to deprecate old python classes, functions or methods." category = "main" optional = true python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ {file = "Deprecated-1.2.13-py2.py3-none-any.whl", hash = "sha256:64756e3e14c8c5eea9795d93c524551432a0be75629f8f29e67ab8caf076c76d"}, {file = "Deprecated-1.2.13.tar.gz", hash = "sha256:43ac5335da90c31c24ba028af536a91d41d53f9e6901ddb021bcc572ce44e38d"}, ] [package.dependencies] wrapt = ">=1.10,<2" [package.extras] dev = ["PyTest", "PyTest (<5)", "PyTest-Cov", "PyTest-Cov (<2.6)", "bump2version (<1)", "configparser (<5)", "importlib-metadata (<3)", "importlib-resources (<4)", "sphinx (<2)", "sphinxcontrib-websupport (<2)", "tox", "zipp (<2)"] [[package]] name = "dill" version = "0.3.6" description = "serialize all of python" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "dill-0.3.6-py3-none-any.whl", hash = "sha256:a07ffd2351b8c678dfc4a856a3005f8067aea51d6ba6c700796a4d9e280f39f0"}, {file = "dill-0.3.6.tar.gz", hash = "sha256:e5db55f3687856d8fbdab002ed78544e1c4559a130302693d839dfe8f93f2373"}, ] [package.extras] graph = ["objgraph (>=1.7.2)"] [[package]] name = "dnspython" version = "2.3.0" description = "DNS toolkit" category = "main" optional = false python-versions = ">=3.7,<4.0" files = [ {file = "dnspython-2.3.0-py3-none-any.whl", hash = "sha256:89141536394f909066cabd112e3e1a37e4e654db00a25308b0f130bc3152eb46"}, {file = "dnspython-2.3.0.tar.gz", hash = "sha256:224e32b03eb46be70e12ef6d64e0be123a64e621ab4c0822ff6d450d52a540b9"}, ] [package.extras] curio = ["curio (>=1.2,<2.0)", "sniffio (>=1.1,<2.0)"] dnssec = ["cryptography (>=2.6,<40.0)"] doh = ["h2 (>=4.1.0)", "httpx (>=0.21.1)", "requests (>=2.23.0,<3.0.0)", "requests-toolbelt (>=0.9.1,<0.11.0)"] doq = ["aioquic (>=0.9.20)"] idna = ["idna (>=2.1,<4.0)"] trio = ["trio (>=0.14,<0.23)"] wmi = ["wmi (>=1.5.1,<2.0.0)"] [[package]] name = "docarray" version = "0.32.0" description = "The data structure for multimodal data" category = "main" optional = true python-versions = ">=3.7,<4.0" files = [ {file = "docarray-0.32.0-py3-none-any.whl", hash = "sha256:5216858966ea42133614be421ef7ae670d020bfdfcd2ab3e0118a4a8ecc77034"}, {file = "docarray-0.32.0.tar.gz", hash = "sha256:7a3156cb0d13dec7d6b85f193b339b823748446fc9fff1e0ca4c2ef50b4183d2"}, ] [package.dependencies] hnswlib = {version = ">=0.6.2", optional = true, markers = "extra == \"hnswlib\""} numpy = ">=1.17.3" orjson = ">=3.8.2" protobuf = {version = ">=3.19.0", optional = true, markers = "extra == \"proto\" or extra == \"hnswlib\" or extra == \"full\""} pydantic = ">=1.10.2" rich = ">=13.1.0" types-requests = ">=2.28.11.6" typing-inspect = ">=0.8.0" [package.extras] audio = ["pydub (>=0.25.1,<0.26.0)"] aws = ["smart-open[s3] (>=6.3.0)"] elasticsearch = ["elastic-transport (>=8.4.0,<9.0.0)", "elasticsearch (>=7.10.1)"] full = ["av (>=10.0.0)", "lz4 (>=1.0.0)", "pandas (>=1.1.0)", "pillow (>=9.3.0)", "protobuf (>=3.19.0)", "pydub (>=0.25.1,<0.26.0)", "trimesh[easy] (>=3.17.1)", "types-pillow (>=9.3.0.1)"] hnswlib = ["hnswlib (>=0.6.2)", "protobuf (>=3.19.0)"] image = ["pillow (>=9.3.0)", "types-pillow (>=9.3.0.1)"] jac = ["jina-hubble-sdk (>=0.34.0)"] mesh = ["trimesh[easy] (>=3.17.1)"] pandas = ["pandas (>=1.1.0)"] proto = ["lz4 (>=1.0.0)", "protobuf (>=3.19.0)"] qdrant = ["qdrant-client (>=1.1.4)"] torch = ["torch (>=1.0.0)"] video = ["av (>=10.0.0)"] weaviate = ["weaviate-client (>=3.15)"] web = ["fastapi (>=0.87.0)"] [[package]] name = "docker" version = "6.1.2" description = "A Python library for the Docker Engine API." category = "main" optional = true python-versions = ">=3.7" files = [ {file = "docker-6.1.2-py3-none-any.whl", hash = "sha256:134cd828f84543cbf8e594ff81ca90c38288df3c0a559794c12f2e4b634ea19e"}, {file = "docker-6.1.2.tar.gz", hash = "sha256:dcc088adc2ec4e7cfc594e275d8bd2c9738c56c808de97476939ef67db5af8c2"}, ] [package.dependencies] packaging = ">=14.0" pywin32 = {version = ">=304", markers = "sys_platform == \"win32\""} requests = ">=2.26.0" urllib3 = ">=1.26.0" websocket-client = ">=0.32.0" [package.extras] ssh = ["paramiko (>=2.4.3)"] [[package]] name = "docutils" version = "0.17.1" description = "Docutils -- Python Documentation Utilities" category = "dev" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" files = [ {file = "docutils-0.17.1-py2.py3-none-any.whl", hash = "sha256:cf316c8370a737a022b72b56874f6602acf974a37a9fba42ec2876387549fc61"}, {file = "docutils-0.17.1.tar.gz", hash = "sha256:686577d2e4c32380bb50cbb22f575ed742d58168cee37e99117a854bcd88f125"}, ] [[package]] name = "duckdb" version = "0.8.0" description = "DuckDB embedded database" category = "main" optional = false python-versions = "*" files = [ {file = "duckdb-0.8.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:6455aee00af30770c20f4a8c5e4347918cf59b578f49ee996a13807b12911871"}, {file = "duckdb-0.8.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:b8cf0622ae7f86d4ce72791f8928af4357a46824aadf1b6879c7936b3db65344"}, {file = "duckdb-0.8.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6132e8183ca3ae08a593e43c97cb189794077dedd48546e27ce43bd6a51a9c33"}, {file = "duckdb-0.8.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fe29e5343fa2a95f2cde4519a4f4533f4fd551a48d2d9a8ab5220d40ebf53610"}, {file = "duckdb-0.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:945165987ca87c097dc0e578dcf47a100cad77e1c29f5dd8443d53ce159dc22e"}, {file = "duckdb-0.8.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:673c60daf7ada1d9a8518286a6893ec45efabb64602954af5f3d98f42912fda6"}, {file = "duckdb-0.8.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:d5075fe1ff97ae62331ca5c61e3597e6e9f7682a6fdd418c23ba5c4873ed5cd1"}, {file = "duckdb-0.8.0-cp310-cp310-win32.whl", hash = "sha256:001f5102f45d3d67f389fa8520046c8f55a99e2c6d43b8e68b38ea93261c5395"}, {file = "duckdb-0.8.0-cp310-cp310-win_amd64.whl", hash = "sha256:cb00800f2e1e865584b13221e0121fce9341bb3a39a93e569d563eaed281f528"}, {file = "duckdb-0.8.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:b2707096d6df4321044fcde2c9f04da632d11a8be60957fd09d49a42fae71a29"}, {file = "duckdb-0.8.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b27df1b70ae74d2c88efb5ffca8490954fdc678099509a9c4404ca30acc53426"}, {file = "duckdb-0.8.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:75a97c800271b52dd0f37696d074c50576dcb4b2750b6115932a98696a268070"}, {file = "duckdb-0.8.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:804cac261a5e016506a6d67838a65d19b06a237f7949f1704f0e800eb708286a"}, {file = "duckdb-0.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c6b9abca7fa6713e1d031c18485343b4de99742c7e1b85c10718aa2f31a4e2c6"}, {file = "duckdb-0.8.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:51aa6d606d49072abcfeb3be209eb559ac94c1b5e70f58ac3adbb94aca9cd69f"}, {file = "duckdb-0.8.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:7c8dc769aaf2be0a1c57995ca657e5b92c1c56fc8437edb720ca6cab571adf14"}, {file = "duckdb-0.8.0-cp311-cp311-win32.whl", hash = "sha256:c4207d18b42387c4a035846d8878eb967070198be8ac26fd77797ce320d1a400"}, {file = "duckdb-0.8.0-cp311-cp311-win_amd64.whl", hash = "sha256:0c392257547c20794c3072fcbca99a49ef0a49974005d755e93893e2b4875267"}, {file = "duckdb-0.8.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:2832379e122020814dbe869af7b9ddf3c9f21474cf345531145b099c63ffe17e"}, {file = "duckdb-0.8.0-cp36-cp36m-win32.whl", hash = "sha256:914896526f7caba86b170f2c4f17f11fd06540325deeb0000cb4fb24ec732966"}, {file = "duckdb-0.8.0-cp36-cp36m-win_amd64.whl", hash = "sha256:022ebda86d0e3204cdc206e4af45aa9f0ae0668b34c2c68cf88e08355af4a372"}, {file = "duckdb-0.8.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:96a31c0f3f4ccbf0f5b18f94319f37691205d82f80aae48c6fe04860d743eb2c"}, {file = "duckdb-0.8.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a07c73c6e6a8cf4ce1a634625e0d1b17e5b817242a8a530d26ed84508dfbdc26"}, {file = "duckdb-0.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:424acbd6e857531b06448d757d7c2557938dbddbff0632092090efbf413b4699"}, {file = "duckdb-0.8.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:c83cfd2a868f1acb0692b9c3fd5ef1d7da8faa1348c6eabf421fbf5d8c2f3eb8"}, {file = "duckdb-0.8.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:5c6f6b2d8db56936f662c649539df81856b5a8cb769a31f9544edf18af2a11ff"}, {file = "duckdb-0.8.0-cp37-cp37m-win32.whl", hash = "sha256:0bd6376b40a512172eaf4aa816813b1b9d68994292ca436ce626ccd5f77f8184"}, {file = "duckdb-0.8.0-cp37-cp37m-win_amd64.whl", hash = "sha256:931221885bcf1e7dfce2400f11fd048a7beef566b775f1453bb1db89b828e810"}, {file = "duckdb-0.8.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:42e7853d963d68e72403ea208bcf806b0f28c7b44db0aa85ce49bb124d56c133"}, {file = "duckdb-0.8.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:fcc338399175be3d43366576600aef7d72e82114d415992a7a95aded98a0f3fd"}, {file = "duckdb-0.8.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:03dd08a4624d6b581a59f9f9dbfd34902416398d16795ad19f92361cf21fd9b5"}, {file = "duckdb-0.8.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0c7c24ea0c9d8563dbd5ad49ccb54b7a9a3c7b8c2833d35e5d32a08549cacea5"}, {file = "duckdb-0.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cb58f6505cc0f34b4e976154302d26563d2e5d16b206758daaa04b65e55d9dd8"}, {file = "duckdb-0.8.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:ef37ac7880100c4b3f913c8483a29a13f8289313b9a07df019fadfa8e7427544"}, {file = "duckdb-0.8.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:c2a4f5ee913ca8a6a069c78f8944b9934ffdbc71fd935f9576fdcea2a6f476f1"}, {file = "duckdb-0.8.0-cp38-cp38-win32.whl", hash = "sha256:73831c6d7aefcb5f4072cd677b9efebecbf6c578946d21710791e10a1fc41b9a"}, {file = "duckdb-0.8.0-cp38-cp38-win_amd64.whl", hash = "sha256:faa36d2854734364d234f37d7ef4f3d763b73cd6b0f799cbc2a0e3b7e2575450"}, {file = "duckdb-0.8.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:50a31ec237ed619e50f9ab79eb0ec5111eb9697d4475da6e0ab22c08495ce26b"}, {file = "duckdb-0.8.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:351abb4cc2d229d043920c4bc2a4c29ca31a79fef7d7ef8f6011cf4331f297bf"}, {file = "duckdb-0.8.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:568550a163aca6a787bef8313e358590254de3f4019025a8d68c3a61253fedc1"}, {file = "duckdb-0.8.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2b82617f0e7f9fc080eda217090d82b42d4fad083bc9f6d58dfda9cecb7e3b29"}, {file = "duckdb-0.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d01c9be34d272532b75e8faedda0ff77fa76d1034cde60b8f5768ae85680d6d3"}, {file = "duckdb-0.8.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:8549d6a6bf5f00c012b6916f605416226507e733a3ffc57451682afd6e674d1b"}, {file = "duckdb-0.8.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8d145c6d51e55743c3ed1a74cffa109d9e72f82b07e203b436cfa453c925313a"}, {file = "duckdb-0.8.0-cp39-cp39-win32.whl", hash = "sha256:f8610dfd21e90d7b04e8598b244bf3ad68599fd6ba0daad3428c03cbfd74dced"}, {file = "duckdb-0.8.0-cp39-cp39-win_amd64.whl", hash = "sha256:d0f0f104d30418808bafbe9bccdcd238588a07bd246b3cff13842d60bfd8e8ba"}, {file = "duckdb-0.8.0.tar.gz", hash = "sha256:c68da35bab5072a64ada2646a5b343da620ddc75a7a6e84aa4a1e0628a7ec18f"}, ] [[package]] name = "duckdb-engine" version = "0.7.2" description = "SQLAlchemy driver for duckdb" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "duckdb_engine-0.7.2-py3-none-any.whl", hash = "sha256:4de6bd4d3b94d2a42f296e72bc3b3442bee612e0e71697218c62f4d2f5afa5b6"}, {file = "duckdb_engine-0.7.2.tar.gz", hash = "sha256:1378ad0f02db55d4498075ff3b65331a2684996974139ab9c78da33bda650b17"}, ] [package.dependencies] duckdb = ">=0.4.0" numpy = "*" sqlalchemy = ">=1.3.22" [[package]] name = "duckduckgo-search" version = "2.8.6" description = "Search for words, documents, images, news, maps and text translation using the DuckDuckGo.com search engine." category = "main" optional = true python-versions = ">=3.7" files = [ {file = "duckduckgo_search-2.8.6-py3-none-any.whl", hash = "sha256:c9312ad278d03d059ba7ced978dd1bc7806bb735aa239948322936d0570d8d7f"}, {file = "duckduckgo_search-2.8.6.tar.gz", hash = "sha256:ffd620febb8c471bdb4aed520b26e645cd05ae79acdd78db6c0c927cb7b0237c"}, ] [package.dependencies] click = ">=8.1.3" requests = ">=2.28.2" [[package]] name = "ecdsa" version = "0.18.0" description = "ECDSA cryptographic signature library (pure python)" category = "main" optional = true python-versions = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*" files = [ {file = "ecdsa-0.18.0-py2.py3-none-any.whl", hash = "sha256:80600258e7ed2f16b9aa1d7c295bd70194109ad5a30fdee0eaeefef1d4c559dd"}, {file = "ecdsa-0.18.0.tar.gz", hash = "sha256:190348041559e21b22a1d65cee485282ca11a6f81d503fddb84d5017e9ed1e49"}, ] [package.dependencies] six = ">=1.9.0" [package.extras] gmpy = ["gmpy"] gmpy2 = ["gmpy2"] [[package]] name = "elastic-transport" version = "8.4.0" description = "Transport classes and utilities shared among Python Elastic client libraries" category = "main" optional = false python-versions = ">=3.6" files = [ {file = "elastic-transport-8.4.0.tar.gz", hash = "sha256:b9ad708ceb7fcdbc6b30a96f886609a109f042c0b9d9f2e44403b3133ba7ff10"}, {file = "elastic_transport-8.4.0-py3-none-any.whl", hash = "sha256:19db271ab79c9f70f8c43f8f5b5111408781a6176b54ab2e54d713b6d9ceb815"}, ] [package.dependencies] certifi = "*" urllib3 = ">=1.26.2,<2" [package.extras] develop = ["aiohttp", "mock", "pytest", "pytest-asyncio", "pytest-cov", "pytest-httpserver", "pytest-mock", "requests", "trustme"] [[package]] name = "elasticsearch" version = "8.7.0" description = "Python client for Elasticsearch" category = "main" optional = false python-versions = ">=3.6, <4" files = [ {file = "elasticsearch-8.7.0-py3-none-any.whl", hash = "sha256:a06482f4c338ab6ace5cf89ee351cf3ee1854083f29a3b875433e608424fb48c"}, {file = "elasticsearch-8.7.0.tar.gz", hash = "sha256:1849356db4192fbb75b2b8f3d55edb0fb07f8d855f386b318a7889222b49591f"}, ] [package.dependencies] aiohttp = {version = ">=3,<4", optional = true, markers = "extra == \"async\""} elastic-transport = ">=8,<9" [package.extras] async = ["aiohttp (>=3,<4)"] requests = ["requests (>=2.4.0,<3.0.0)"] [[package]] name = "entrypoints" version = "0.4" description = "Discover and load entry points from installed packages." category = "main" optional = false python-versions = ">=3.6" files = [ {file = "entrypoints-0.4-py3-none-any.whl", hash = "sha256:f174b5ff827504fd3cd97cc3f8649f3693f51538c7e4bdf3ef002c8429d42f9f"}, {file = "entrypoints-0.4.tar.gz", hash = "sha256:b706eddaa9218a19ebcd67b56818f05bb27589b1ca9e8d797b74affad4ccacd4"}, ] [[package]] name = "exceptiongroup" version = "1.1.1" description = "Backport of PEP 654 (exception groups)" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "exceptiongroup-1.1.1-py3-none-any.whl", hash = "sha256:232c37c63e4f682982c8b6459f33a8981039e5fb8756b2074364e5055c498c9e"}, {file = "exceptiongroup-1.1.1.tar.gz", hash = "sha256:d484c3090ba2889ae2928419117447a14daf3c1231d5e30d0aae34f354f01785"}, ] [package.extras] test = ["pytest (>=6)"] [[package]] name = "executing" version = "1.2.0" description = "Get the currently executing AST node of a frame, and other information" category = "dev" optional = false python-versions = "*" files = [ {file = "executing-1.2.0-py2.py3-none-any.whl", hash = "sha256:0314a69e37426e3608aada02473b4161d4caf5a4b244d1d0c48072b8fee7bacc"}, {file = "executing-1.2.0.tar.gz", hash = "sha256:19da64c18d2d851112f09c287f8d3dbbdf725ab0e569077efb6cdcbd3497c107"}, ] [package.extras] tests = ["asttokens", "littleutils", "pytest", "rich"] [[package]] name = "faiss-cpu" version = "1.7.4" description = "A library for efficient similarity search and clustering of dense vectors." category = "main" optional = true python-versions = "*" files = [ {file = "faiss-cpu-1.7.4.tar.gz", hash = "sha256:265dc31b0c079bf4433303bf6010f73922490adff9188b915e2d3f5e9c82dd0a"}, {file = "faiss_cpu-1.7.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:50d4ebe7f1869483751c558558504f818980292a9b55be36f9a1ee1009d9a686"}, {file = "faiss_cpu-1.7.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:7b1db7fae7bd8312aeedd0c41536bcd19a6e297229e1dce526bde3a73ab8c0b5"}, {file = "faiss_cpu-1.7.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:17b7fa7194a228a84929d9e6619d0e7dbf00cc0f717e3462253766f5e3d07de8"}, {file = "faiss_cpu-1.7.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dca531952a2e3eac56f479ff22951af4715ee44788a3fe991d208d766d3f95f3"}, {file = "faiss_cpu-1.7.4-cp310-cp310-win_amd64.whl", hash = "sha256:7173081d605e74766f950f2e3d6568a6f00c53f32fd9318063e96728c6c62821"}, {file = "faiss_cpu-1.7.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:d0bbd6f55d7940cc0692f79e32a58c66106c3c950cee2341b05722de9da23ea3"}, {file = "faiss_cpu-1.7.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e13c14280376100f143767d0efe47dcb32618f69e62bbd3ea5cd38c2e1755926"}, {file = "faiss_cpu-1.7.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c521cb8462f3b00c0c7dfb11caff492bb67816528b947be28a3b76373952c41d"}, {file = "faiss_cpu-1.7.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:afdd9fe1141117fed85961fd36ee627c83fc3b9fd47bafb52d3c849cc2f088b7"}, {file = "faiss_cpu-1.7.4-cp311-cp311-win_amd64.whl", hash = "sha256:2ff7f57889ea31d945e3b87275be3cad5d55b6261a4e3f51c7aba304d76b81fb"}, {file = "faiss_cpu-1.7.4-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:eeaf92f27d76249fb53c1adafe617b0f217ab65837acf7b4ec818511caf6e3d8"}, {file = "faiss_cpu-1.7.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:102b1bd763e9b0c281ac312590af3eaf1c8b663ccbc1145821fe6a9f92b8eaaf"}, {file = "faiss_cpu-1.7.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5512da6707c967310c46ff712b00418b7ae28e93cb609726136e826e9f2f14fa"}, {file = "faiss_cpu-1.7.4-cp37-cp37m-win_amd64.whl", hash = "sha256:0c2e5b9d8c28c99f990e87379d5bbcc6c914da91ebb4250166864fd12db5755b"}, {file = "faiss_cpu-1.7.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:43f67f325393145d360171cd98786fcea6120ce50397319afd3bb78be409fb8a"}, {file = "faiss_cpu-1.7.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6a4e4af194b8fce74c4b770cad67ad1dd1b4673677fc169723e4c50ba5bd97a8"}, {file = "faiss_cpu-1.7.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:31bfb7b9cffc36897ae02a983e04c09fe3b8c053110a287134751a115334a1df"}, {file = "faiss_cpu-1.7.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:52d7de96abef2340c0d373c1f5cbc78026a3cebb0f8f3a5920920a00210ead1f"}, {file = "faiss_cpu-1.7.4-cp38-cp38-win_amd64.whl", hash = "sha256:699feef85b23c2c729d794e26ca69bebc0bee920d676028c06fd0e0becc15c7e"}, {file = "faiss_cpu-1.7.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:559a0133f5ed44422acb09ee1ac0acffd90c6666d1bc0d671c18f6e93ad603e2"}, {file = "faiss_cpu-1.7.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ea1d71539fe3dc0f1bed41ef954ca701678776f231046bf0ca22ccea5cf5bef6"}, {file = "faiss_cpu-1.7.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:12d45e0157024eb3249842163162983a1ac8b458f1a8b17bbf86f01be4585a99"}, {file = "faiss_cpu-1.7.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2f0eab359e066d32c874f51a7d4bf6440edeec068b7fe47e6d803c73605a8b4c"}, {file = "faiss_cpu-1.7.4-cp39-cp39-win_amd64.whl", hash = "sha256:98459ceeeb735b9df1a5b94572106ffe0a6ce740eb7e4626715dd218657bb4dc"}, ] [[package]] name = "fastapi" version = "0.95.2" description = "FastAPI framework, high performance, easy to learn, fast to code, ready for production" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "fastapi-0.95.2-py3-none-any.whl", hash = "sha256:d374dbc4ef2ad9b803899bd3360d34c534adc574546e25314ab72c0c4411749f"}, {file = "fastapi-0.95.2.tar.gz", hash = "sha256:4d9d3e8c71c73f11874bcf5e33626258d143252e329a01002f767306c64fb982"}, ] [package.dependencies] pydantic = ">=1.6.2,<1.7 || >1.7,<1.7.1 || >1.7.1,<1.7.2 || >1.7.2,<1.7.3 || >1.7.3,<1.8 || >1.8,<1.8.1 || >1.8.1,<2.0.0" starlette = ">=0.27.0,<0.28.0" [package.extras] all = ["email-validator (>=1.1.1)", "httpx (>=0.23.0)", "itsdangerous (>=1.1.0)", "jinja2 (>=2.11.2)", "orjson (>=3.2.1)", "python-multipart (>=0.0.5)", "pyyaml (>=5.3.1)", "ujson (>=4.0.1,!=4.0.2,!=4.1.0,!=4.2.0,!=4.3.0,!=5.0.0,!=5.1.0)", "uvicorn[standard] (>=0.12.0)"] dev = ["pre-commit (>=2.17.0,<3.0.0)", "ruff (==0.0.138)", "uvicorn[standard] (>=0.12.0,<0.21.0)"] doc = ["mdx-include (>=1.4.1,<2.0.0)", "mkdocs (>=1.1.2,<2.0.0)", "mkdocs-markdownextradata-plugin (>=0.1.7,<0.3.0)", "mkdocs-material (>=8.1.4,<9.0.0)", "pyyaml (>=5.3.1,<7.0.0)", "typer-cli (>=0.0.13,<0.0.14)", "typer[all] (>=0.6.1,<0.8.0)"] test = ["anyio[trio] (>=3.2.1,<4.0.0)", "black (==23.1.0)", "coverage[toml] (>=6.5.0,<8.0)", "databases[sqlite] (>=0.3.2,<0.7.0)", "email-validator (>=1.1.1,<2.0.0)", "flask (>=1.1.2,<3.0.0)", "httpx (>=0.23.0,<0.24.0)", "isort (>=5.0.6,<6.0.0)", "mypy (==0.982)", "orjson (>=3.2.1,<4.0.0)", "passlib[bcrypt] (>=1.7.2,<2.0.0)", "peewee (>=3.13.3,<4.0.0)", "pytest (>=7.1.3,<8.0.0)", "python-jose[cryptography] (>=3.3.0,<4.0.0)", "python-multipart (>=0.0.5,<0.0.7)", "pyyaml (>=5.3.1,<7.0.0)", "ruff (==0.0.138)", "sqlalchemy (>=1.3.18,<1.4.43)", "types-orjson (==3.6.2)", "types-ujson (==5.7.0.1)", "ujson (>=4.0.1,!=4.0.2,!=4.1.0,!=4.2.0,!=4.3.0,!=5.0.0,!=5.1.0,<6.0.0)"] [[package]] name = "fastjsonschema" version = "2.16.3" description = "Fastest Python implementation of JSON schema" category = "dev" optional = false python-versions = "*" files = [ {file = "fastjsonschema-2.16.3-py3-none-any.whl", hash = "sha256:04fbecc94300436f628517b05741b7ea009506ce8f946d40996567c669318490"}, {file = "fastjsonschema-2.16.3.tar.gz", hash = "sha256:4a30d6315a68c253cfa8f963b9697246315aa3db89f98b97235e345dedfb0b8e"}, ] [package.extras] devel = ["colorama", "json-spec", "jsonschema", "pylint", "pytest", "pytest-benchmark", "pytest-cache", "validictory"] [[package]] name = "feedparser" version = "6.0.10" description = "Universal feed parser, handles RSS 0.9x, RSS 1.0, RSS 2.0, CDF, Atom 0.3, and Atom 1.0 feeds" category = "main" optional = false python-versions = ">=3.6" files = [ {file = "feedparser-6.0.10-py3-none-any.whl", hash = "sha256:79c257d526d13b944e965f6095700587f27388e50ea16fd245babe4dfae7024f"}, {file = "feedparser-6.0.10.tar.gz", hash = "sha256:27da485f4637ce7163cdeab13a80312b93b7d0c1b775bef4a47629a3110bca51"}, ] [package.dependencies] sgmllib3k = "*" [[package]] name = "filelock" version = "3.12.0" description = "A platform independent file lock." category = "main" optional = false python-versions = ">=3.7" files = [ {file = "filelock-3.12.0-py3-none-any.whl", hash = "sha256:ad98852315c2ab702aeb628412cbf7e95b7ce8c3bf9565670b4eaecf1db370a9"}, {file = "filelock-3.12.0.tar.gz", hash = "sha256:fc03ae43288c013d2ea83c8597001b1129db351aad9c57fe2409327916b8e718"}, ] [package.extras] docs = ["furo (>=2023.3.27)", "sphinx (>=6.1.3)", "sphinx-autodoc-typehints (>=1.23,!=1.23.4)"] testing = ["covdefaults (>=2.3)", "coverage (>=7.2.3)", "diff-cover (>=7.5)", "pytest (>=7.3.1)", "pytest-cov (>=4)", "pytest-mock (>=3.10)", "pytest-timeout (>=2.1)"] [[package]] name = "flatbuffers" version = "23.5.9" description = "The FlatBuffers serialization format for Python" category = "main" optional = true python-versions = "*" files = [ {file = "flatbuffers-23.5.9-py2.py3-none-any.whl", hash = "sha256:a02eb8c2d61cba153cd211937de8f8f7764b6a7510971b2c4684ed8b02e6e571"}, {file = "flatbuffers-23.5.9.tar.gz", hash = "sha256:93a506b6ab771c79ce816e7b35a93ed08ec5b4c9edb811101a22c44a4152f018"}, ] [[package]] name = "fluent-logger" version = "0.10.0" description = "A Python logging handler for Fluentd event collector" category = "main" optional = true python-versions = ">=3.5" files = [ {file = "fluent-logger-0.10.0.tar.gz", hash = "sha256:678bda90c513ff0393964b64544ce41ef25669d2089ce6c3b63d9a18554b9bfa"}, {file = "fluent_logger-0.10.0-py2.py3-none-any.whl", hash = "sha256:543637e5e62ec3fc3c92b44e5a4e148a3cea88a0f8ca4fae26c7e60fda7564c1"}, ] [package.dependencies] msgpack = ">1.0" [[package]] name = "fqdn" version = "1.5.1" description = "Validates fully-qualified domain names against RFC 1123, so that they are acceptable to modern bowsers" category = "dev" optional = false python-versions = ">=2.7, !=3.0, !=3.1, !=3.2, !=3.3, !=3.4, <4" files = [ {file = "fqdn-1.5.1-py3-none-any.whl", hash = "sha256:3a179af3761e4df6eb2e026ff9e1a3033d3587bf980a0b1b2e1e5d08d7358014"}, {file = "fqdn-1.5.1.tar.gz", hash = "sha256:105ed3677e767fb5ca086a0c1f4bb66ebc3c100be518f0e0d755d9eae164d89f"}, ] [[package]] name = "freezegun" version = "1.2.2" description = "Let your Python tests travel through time" category = "dev" optional = false python-versions = ">=3.6" files = [ {file = "freezegun-1.2.2-py3-none-any.whl", hash = "sha256:ea1b963b993cb9ea195adbd893a48d573fda951b0da64f60883d7e988b606c9f"}, {file = "freezegun-1.2.2.tar.gz", hash = "sha256:cd22d1ba06941384410cd967d8a99d5ae2442f57dfafeff2fda5de8dc5c05446"}, ] [package.dependencies] python-dateutil = ">=2.7" [[package]] name = "frozenlist" version = "1.3.3" description = "A list-like structure which implements collections.abc.MutableSequence" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "frozenlist-1.3.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:ff8bf625fe85e119553b5383ba0fb6aa3d0ec2ae980295aaefa552374926b3f4"}, {file = "frozenlist-1.3.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:dfbac4c2dfcc082fcf8d942d1e49b6aa0766c19d3358bd86e2000bf0fa4a9cf0"}, {file = "frozenlist-1.3.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b1c63e8d377d039ac769cd0926558bb7068a1f7abb0f003e3717ee003ad85530"}, {file = "frozenlist-1.3.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7fdfc24dcfce5b48109867c13b4cb15e4660e7bd7661741a391f821f23dfdca7"}, {file = "frozenlist-1.3.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2c926450857408e42f0bbc295e84395722ce74bae69a3b2aa2a65fe22cb14b99"}, {file = "frozenlist-1.3.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1841e200fdafc3d51f974d9d377c079a0694a8f06de2e67b48150328d66d5483"}, {file = "frozenlist-1.3.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f470c92737afa7d4c3aacc001e335062d582053d4dbe73cda126f2d7031068dd"}, {file = "frozenlist-1.3.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:783263a4eaad7c49983fe4b2e7b53fa9770c136c270d2d4bbb6d2192bf4d9caf"}, {file = "frozenlist-1.3.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:924620eef691990dfb56dc4709f280f40baee568c794b5c1885800c3ecc69816"}, {file = "frozenlist-1.3.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:ae4dc05c465a08a866b7a1baf360747078b362e6a6dbeb0c57f234db0ef88ae0"}, {file = "frozenlist-1.3.3-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:bed331fe18f58d844d39ceb398b77d6ac0b010d571cba8267c2e7165806b00ce"}, {file = "frozenlist-1.3.3-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:02c9ac843e3390826a265e331105efeab489ffaf4dd86384595ee8ce6d35ae7f"}, {file = "frozenlist-1.3.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:9545a33965d0d377b0bc823dcabf26980e77f1b6a7caa368a365a9497fb09420"}, {file = "frozenlist-1.3.3-cp310-cp310-win32.whl", hash = "sha256:d5cd3ab21acbdb414bb6c31958d7b06b85eeb40f66463c264a9b343a4e238642"}, {file = "frozenlist-1.3.3-cp310-cp310-win_amd64.whl", hash = "sha256:b756072364347cb6aa5b60f9bc18e94b2f79632de3b0190253ad770c5df17db1"}, {file = "frozenlist-1.3.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:b4395e2f8d83fbe0c627b2b696acce67868793d7d9750e90e39592b3626691b7"}, {file = "frozenlist-1.3.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:14143ae966a6229350021384870458e4777d1eae4c28d1a7aa47f24d030e6678"}, {file = "frozenlist-1.3.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5d8860749e813a6f65bad8285a0520607c9500caa23fea6ee407e63debcdbef6"}, {file = "frozenlist-1.3.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:23d16d9f477bb55b6154654e0e74557040575d9d19fe78a161bd33d7d76808e8"}, {file = "frozenlist-1.3.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eb82dbba47a8318e75f679690190c10a5e1f447fbf9df41cbc4c3afd726d88cb"}, {file = "frozenlist-1.3.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9309869032abb23d196cb4e4db574232abe8b8be1339026f489eeb34a4acfd91"}, {file = "frozenlist-1.3.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a97b4fe50b5890d36300820abd305694cb865ddb7885049587a5678215782a6b"}, {file = "frozenlist-1.3.3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c188512b43542b1e91cadc3c6c915a82a5eb95929134faf7fd109f14f9892ce4"}, {file = "frozenlist-1.3.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:303e04d422e9b911a09ad499b0368dc551e8c3cd15293c99160c7f1f07b59a48"}, {file = "frozenlist-1.3.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:0771aed7f596c7d73444c847a1c16288937ef988dc04fb9f7be4b2aa91db609d"}, {file = "frozenlist-1.3.3-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:66080ec69883597e4d026f2f71a231a1ee9887835902dbe6b6467d5a89216cf6"}, {file = "frozenlist-1.3.3-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:41fe21dc74ad3a779c3d73a2786bdf622ea81234bdd4faf90b8b03cad0c2c0b4"}, {file = "frozenlist-1.3.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:f20380df709d91525e4bee04746ba612a4df0972c1b8f8e1e8af997e678c7b81"}, {file = "frozenlist-1.3.3-cp311-cp311-win32.whl", hash = "sha256:f30f1928162e189091cf4d9da2eac617bfe78ef907a761614ff577ef4edfb3c8"}, {file = "frozenlist-1.3.3-cp311-cp311-win_amd64.whl", hash = "sha256:a6394d7dadd3cfe3f4b3b186e54d5d8504d44f2d58dcc89d693698e8b7132b32"}, {file = "frozenlist-1.3.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:8df3de3a9ab8325f94f646609a66cbeeede263910c5c0de0101079ad541af332"}, {file = "frozenlist-1.3.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0693c609e9742c66ba4870bcee1ad5ff35462d5ffec18710b4ac89337ff16e27"}, {file = "frozenlist-1.3.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cd4210baef299717db0a600d7a3cac81d46ef0e007f88c9335db79f8979c0d3d"}, {file = "frozenlist-1.3.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:394c9c242113bfb4b9aa36e2b80a05ffa163a30691c7b5a29eba82e937895d5e"}, {file = "frozenlist-1.3.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6327eb8e419f7d9c38f333cde41b9ae348bec26d840927332f17e887a8dcb70d"}, {file = "frozenlist-1.3.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2e24900aa13212e75e5b366cb9065e78bbf3893d4baab6052d1aca10d46d944c"}, {file = "frozenlist-1.3.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:3843f84a6c465a36559161e6c59dce2f2ac10943040c2fd021cfb70d58c4ad56"}, {file = "frozenlist-1.3.3-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:84610c1502b2461255b4c9b7d5e9c48052601a8957cd0aea6ec7a7a1e1fb9420"}, {file = "frozenlist-1.3.3-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:c21b9aa40e08e4f63a2f92ff3748e6b6c84d717d033c7b3438dd3123ee18f70e"}, {file = "frozenlist-1.3.3-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:efce6ae830831ab6a22b9b4091d411698145cb9b8fc869e1397ccf4b4b6455cb"}, {file = "frozenlist-1.3.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:40de71985e9042ca00b7953c4f41eabc3dc514a2d1ff534027f091bc74416401"}, {file = "frozenlist-1.3.3-cp37-cp37m-win32.whl", hash = "sha256:180c00c66bde6146a860cbb81b54ee0df350d2daf13ca85b275123bbf85de18a"}, {file = "frozenlist-1.3.3-cp37-cp37m-win_amd64.whl", hash = "sha256:9bbbcedd75acdfecf2159663b87f1bb5cfc80e7cd99f7ddd9d66eb98b14a8411"}, {file = "frozenlist-1.3.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:034a5c08d36649591be1cbb10e09da9f531034acfe29275fc5454a3b101ce41a"}, {file = "frozenlist-1.3.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:ba64dc2b3b7b158c6660d49cdb1d872d1d0bf4e42043ad8d5006099479a194e5"}, {file = "frozenlist-1.3.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:47df36a9fe24054b950bbc2db630d508cca3aa27ed0566c0baf661225e52c18e"}, {file = "frozenlist-1.3.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:008a054b75d77c995ea26629ab3a0c0d7281341f2fa7e1e85fa6153ae29ae99c"}, {file = "frozenlist-1.3.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:841ea19b43d438a80b4de62ac6ab21cfe6827bb8a9dc62b896acc88eaf9cecba"}, {file = "frozenlist-1.3.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e235688f42b36be2b6b06fc37ac2126a73b75fb8d6bc66dd632aa35286238703"}, {file = "frozenlist-1.3.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ca713d4af15bae6e5d79b15c10c8522859a9a89d3b361a50b817c98c2fb402a2"}, {file = "frozenlist-1.3.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ac5995f2b408017b0be26d4a1d7c61bce106ff3d9e3324374d66b5964325448"}, {file = "frozenlist-1.3.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:a4ae8135b11652b08a8baf07631d3ebfe65a4c87909dbef5fa0cdde440444ee4"}, {file = "frozenlist-1.3.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:4ea42116ceb6bb16dbb7d526e242cb6747b08b7710d9782aa3d6732bd8d27649"}, {file = "frozenlist-1.3.3-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:810860bb4bdce7557bc0febb84bbd88198b9dbc2022d8eebe5b3590b2ad6c842"}, {file = "frozenlist-1.3.3-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:ee78feb9d293c323b59a6f2dd441b63339a30edf35abcb51187d2fc26e696d13"}, {file = "frozenlist-1.3.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:0af2e7c87d35b38732e810befb9d797a99279cbb85374d42ea61c1e9d23094b3"}, {file = "frozenlist-1.3.3-cp38-cp38-win32.whl", hash = "sha256:899c5e1928eec13fd6f6d8dc51be23f0d09c5281e40d9cf4273d188d9feeaf9b"}, {file = "frozenlist-1.3.3-cp38-cp38-win_amd64.whl", hash = "sha256:7f44e24fa70f6fbc74aeec3e971f60a14dde85da364aa87f15d1be94ae75aeef"}, {file = "frozenlist-1.3.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:2b07ae0c1edaa0a36339ec6cce700f51b14a3fc6545fdd32930d2c83917332cf"}, {file = "frozenlist-1.3.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:ebb86518203e12e96af765ee89034a1dbb0c3c65052d1b0c19bbbd6af8a145e1"}, {file = "frozenlist-1.3.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:5cf820485f1b4c91e0417ea0afd41ce5cf5965011b3c22c400f6d144296ccbc0"}, {file = "frozenlist-1.3.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5c11e43016b9024240212d2a65043b70ed8dfd3b52678a1271972702d990ac6d"}, {file = "frozenlist-1.3.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8fa3c6e3305aa1146b59a09b32b2e04074945ffcfb2f0931836d103a2c38f936"}, {file = "frozenlist-1.3.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:352bd4c8c72d508778cf05ab491f6ef36149f4d0cb3c56b1b4302852255d05d5"}, {file = "frozenlist-1.3.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:65a5e4d3aa679610ac6e3569e865425b23b372277f89b5ef06cf2cdaf1ebf22b"}, {file = "frozenlist-1.3.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b1e2c1185858d7e10ff045c496bbf90ae752c28b365fef2c09cf0fa309291669"}, {file = "frozenlist-1.3.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:f163d2fd041c630fed01bc48d28c3ed4a3b003c00acd396900e11ee5316b56bb"}, {file = "frozenlist-1.3.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:05cdb16d09a0832eedf770cb7bd1fe57d8cf4eaf5aced29c4e41e3f20b30a784"}, {file = "frozenlist-1.3.3-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:8bae29d60768bfa8fb92244b74502b18fae55a80eac13c88eb0b496d4268fd2d"}, {file = "frozenlist-1.3.3-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:eedab4c310c0299961ac285591acd53dc6723a1ebd90a57207c71f6e0c2153ab"}, {file = "frozenlist-1.3.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:3bbdf44855ed8f0fbcd102ef05ec3012d6a4fd7c7562403f76ce6a52aeffb2b1"}, {file = "frozenlist-1.3.3-cp39-cp39-win32.whl", hash = "sha256:efa568b885bca461f7c7b9e032655c0c143d305bf01c30caf6db2854a4532b38"}, {file = "frozenlist-1.3.3-cp39-cp39-win_amd64.whl", hash = "sha256:cfe33efc9cb900a4c46f91a5ceba26d6df370ffddd9ca386eb1d4f0ad97b9ea9"}, {file = "frozenlist-1.3.3.tar.gz", hash = "sha256:58bcc55721e8a90b88332d6cd441261ebb22342e238296bb330968952fbb3a6a"}, ] [[package]] name = "fsspec" version = "2023.5.0" description = "File-system specification" category = "main" optional = false python-versions = ">=3.8" files = [ {file = "fsspec-2023.5.0-py3-none-any.whl", hash = "sha256:51a4ad01a5bb66fcc58036e288c0d53d3975a0df2a5dc59a93b59bade0391f2a"}, {file = "fsspec-2023.5.0.tar.gz", hash = "sha256:b3b56e00fb93ea321bc9e5d9cf6f8522a0198b20eb24e02774d329e9c6fb84ce"}, ] [package.dependencies] aiohttp = {version = "<4.0.0a0 || >4.0.0a0,<4.0.0a1 || >4.0.0a1", optional = true, markers = "extra == \"http\""} requests = {version = "*", optional = true, markers = "extra == \"http\""} [package.extras] abfs = ["adlfs"] adl = ["adlfs"] arrow = ["pyarrow (>=1)"] dask = ["dask", "distributed"] devel = ["pytest", "pytest-cov"] dropbox = ["dropbox", "dropboxdrivefs", "requests"] full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "dask", "distributed", "dropbox", "dropboxdrivefs", "fusepy", "gcsfs", "libarchive-c", "ocifs", "panel", "paramiko", "pyarrow (>=1)", "pygit2", "requests", "s3fs", "smbprotocol", "tqdm"] fuse = ["fusepy"] gcs = ["gcsfs"] git = ["pygit2"] github = ["requests"] gs = ["gcsfs"] gui = ["panel"] hdfs = ["pyarrow (>=1)"] http = ["aiohttp (!=4.0.0a0,!=4.0.0a1)", "requests"] libarchive = ["libarchive-c"] oci = ["ocifs"] s3 = ["s3fs"] sftp = ["paramiko"] smb = ["smbprotocol"] ssh = ["paramiko"] tqdm = ["tqdm"] [[package]] name = "gast" version = "0.4.0" description = "Python AST that abstracts the underlying Python version" category = "main" optional = true python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ {file = "gast-0.4.0-py3-none-any.whl", hash = "sha256:b7adcdd5adbebf1adf17378da5ba3f543684dbec47b1cda1f3997e573cd542c4"}, {file = "gast-0.4.0.tar.gz", hash = "sha256:40feb7b8b8434785585ab224d1568b857edb18297e5a3047f1ba012bc83b42c1"}, ] [[package]] name = "geojson" version = "2.5.0" description = "Python bindings and utilities for GeoJSON" category = "main" optional = true python-versions = "*" files = [ {file = "geojson-2.5.0-py2.py3-none-any.whl", hash = "sha256:ccbd13368dd728f4e4f13ffe6aaf725b6e802c692ba0dde628be475040c534ba"}, {file = "geojson-2.5.0.tar.gz", hash = "sha256:6e4bb7ace4226a45d9c8c8b1348b3fc43540658359f93c3f7e03efa9f15f658a"}, ] [[package]] name = "geomet" version = "0.2.1.post1" description = "GeoJSON <-> WKT/WKB conversion utilities" category = "dev" optional = false python-versions = ">2.6, !=3.3.*, <4" files = [ {file = "geomet-0.2.1.post1-py3-none-any.whl", hash = "sha256:a41a1e336b381416d6cbed7f1745c848e91defaa4d4c1bdc1312732e46ffad2b"}, {file = "geomet-0.2.1.post1.tar.gz", hash = "sha256:91d754f7c298cbfcabd3befdb69c641c27fe75e808b27aa55028605761d17e95"}, ] [package.dependencies] click = "*" six = "*" [[package]] name = "google-api-core" version = "2.11.0" description = "Google API client core library" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "google-api-core-2.11.0.tar.gz", hash = "sha256:4b9bb5d5a380a0befa0573b302651b8a9a89262c1730e37bf423cec511804c22"}, {file = "google_api_core-2.11.0-py3-none-any.whl", hash = "sha256:ce222e27b0de0d7bc63eb043b956996d6dccab14cc3b690aaea91c9cc99dc16e"}, ] [package.dependencies] google-auth = ">=2.14.1,<3.0dev" googleapis-common-protos = ">=1.56.2,<2.0dev" protobuf = ">=3.19.5,<3.20.0 || >3.20.0,<3.20.1 || >3.20.1,<4.21.0 || >4.21.0,<4.21.1 || >4.21.1,<4.21.2 || >4.21.2,<4.21.3 || >4.21.3,<4.21.4 || >4.21.4,<4.21.5 || >4.21.5,<5.0.0dev" requests = ">=2.18.0,<3.0.0dev" [package.extras] grpc = ["grpcio (>=1.33.2,<2.0dev)", "grpcio (>=1.49.1,<2.0dev)", "grpcio-status (>=1.33.2,<2.0dev)", "grpcio-status (>=1.49.1,<2.0dev)"] grpcgcp = ["grpcio-gcp (>=0.2.2,<1.0dev)"] grpcio-gcp = ["grpcio-gcp (>=0.2.2,<1.0dev)"] [[package]] name = "google-api-python-client" version = "2.70.0" description = "Google API Client Library for Python" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "google-api-python-client-2.70.0.tar.gz", hash = "sha256:262de094d5a30d337f59e66581019fed45b698c078397ac48dd323c0968236e7"}, {file = "google_api_python_client-2.70.0-py2.py3-none-any.whl", hash = "sha256:67da78956f2bf4b763305cd791aeab250878c1f88f1422aaba4682a608b8e5a4"}, ] [package.dependencies] google-api-core = ">=1.31.5,<2.0.0 || >2.3.0,<3.0.0dev" google-auth = ">=1.19.0,<3.0.0dev" google-auth-httplib2 = ">=0.1.0" httplib2 = ">=0.15.0,<1dev" uritemplate = ">=3.0.1,<5" [[package]] name = "google-auth" version = "2.18.1" description = "Google Authentication Library" category = "main" optional = true python-versions = ">=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*" files = [ {file = "google-auth-2.18.1.tar.gz", hash = "sha256:d7a3249027e7f464fbbfd7ee8319a08ad09d2eea51578575c4bd360ffa049ccb"}, {file = "google_auth-2.18.1-py2.py3-none-any.whl", hash = "sha256:55a395cdfd3f3dd3f649131d41f97c17b4ed8a2aac1be3502090c716314e8a37"}, ] [package.dependencies] cachetools = ">=2.0.0,<6.0" pyasn1-modules = ">=0.2.1" rsa = {version = ">=3.1.4,<5", markers = "python_version >= \"3.6\""} six = ">=1.9.0" urllib3 = "<2.0" [package.extras] aiohttp = ["aiohttp (>=3.6.2,<4.0.0dev)", "requests (>=2.20.0,<3.0.0dev)"] enterprise-cert = ["cryptography (==36.0.2)", "pyopenssl (==22.0.0)"] pyopenssl = ["cryptography (>=38.0.3)", "pyopenssl (>=20.0.0)"] reauth = ["pyu2f (>=0.1.5)"] requests = ["requests (>=2.20.0,<3.0.0dev)"] [[package]] name = "google-auth-httplib2" version = "0.1.0" description = "Google Authentication Library: httplib2 transport" category = "main" optional = true python-versions = "*" files = [ {file = "google-auth-httplib2-0.1.0.tar.gz", hash = "sha256:a07c39fd632becacd3f07718dfd6021bf396978f03ad3ce4321d060015cc30ac"}, {file = "google_auth_httplib2-0.1.0-py2.py3-none-any.whl", hash = "sha256:31e49c36c6b5643b57e82617cb3e021e3e1d2df9da63af67252c02fa9c1f4a10"}, ] [package.dependencies] google-auth = "*" httplib2 = ">=0.15.0" six = "*" [[package]] name = "google-auth-oauthlib" version = "0.4.6" description = "Google Authentication Library" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "google-auth-oauthlib-0.4.6.tar.gz", hash = "sha256:a90a072f6993f2c327067bf65270046384cda5a8ecb20b94ea9a687f1f233a7a"}, {file = "google_auth_oauthlib-0.4.6-py2.py3-none-any.whl", hash = "sha256:3f2a6e802eebbb6fb736a370fbf3b055edcb6b52878bf2f26330b5e041316c73"}, ] [package.dependencies] google-auth = ">=1.0.0" requests-oauthlib = ">=0.7.0" [package.extras] tool = ["click (>=6.0.0)"] [[package]] name = "google-pasta" version = "0.2.0" description = "pasta is an AST-based Python refactoring library" category = "main" optional = true python-versions = "*" files = [ {file = "google-pasta-0.2.0.tar.gz", hash = "sha256:c9f2c8dfc8f96d0d5808299920721be30c9eec37f2389f28904f454565c8a16e"}, {file = "google_pasta-0.2.0-py2-none-any.whl", hash = "sha256:4612951da876b1a10fe3960d7226f0c7682cf901e16ac06e473b267a5afa8954"}, {file = "google_pasta-0.2.0-py3-none-any.whl", hash = "sha256:b32482794a366b5366a32c92a9a9201b107821889935a02b3e51f6b432ea84ed"}, ] [package.dependencies] six = "*" [[package]] name = "google-search-results" version = "2.4.2" description = "Scrape and search localized results from Google, Bing, Baidu, Yahoo, Yandex, Ebay, Homedepot, youtube at scale using SerpApi.com" category = "main" optional = true python-versions = ">=3.5" files = [ {file = "google_search_results-2.4.2.tar.gz", hash = "sha256:603a30ecae2af8e600b22635757a6df275dad4b934f975e67878ccd640b78245"}, ] [package.dependencies] requests = "*" [[package]] name = "googleapis-common-protos" version = "1.59.0" description = "Common protobufs used in Google APIs" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "googleapis-common-protos-1.59.0.tar.gz", hash = "sha256:4168fcb568a826a52f23510412da405abd93f4d23ba544bb68d943b14ba3cb44"}, {file = "googleapis_common_protos-1.59.0-py2.py3-none-any.whl", hash = "sha256:b287dc48449d1d41af0c69f4ea26242b5ae4c3d7249a38b0984c86a4caffff1f"}, ] [package.dependencies] protobuf = ">=3.19.5,<3.20.0 || >3.20.0,<3.20.1 || >3.20.1,<4.21.1 || >4.21.1,<4.21.2 || >4.21.2,<4.21.3 || >4.21.3,<4.21.4 || >4.21.4,<4.21.5 || >4.21.5,<5.0.0dev" [package.extras] grpc = ["grpcio (>=1.44.0,<2.0.0dev)"] [[package]] name = "gptcache" version = "0.1.24" description = "GPTCache, a powerful caching library that can be used to speed up and lower the cost of chat applications that rely on the LLM service. GPTCache works as a memcache for AIGC applications, similar to how Redis works for traditional applications." category = "main" optional = false python-versions = ">=3.8.1" files = [ {file = "gptcache-0.1.24-py3-none-any.whl", hash = "sha256:070aad4867ab915a7b5db3a886e9f0289e52d1cb92a407c984b0241298079750"}, {file = "gptcache-0.1.24.tar.gz", hash = "sha256:aa591cb00898d457a50a5e0cd137d0119e86819c110ce6c7bce2adafeae0a467"}, ] [package.dependencies] cachetools = "*" numpy = "*" requests = "*" [[package]] name = "gql" version = "3.4.1" description = "GraphQL client for Python" category = "main" optional = true python-versions = "*" files = [ {file = "gql-3.4.1-py2.py3-none-any.whl", hash = "sha256:315624ca0f4d571ef149d455033ebd35e45c1a13f18a059596aeddcea99135cf"}, {file = "gql-3.4.1.tar.gz", hash = "sha256:11dc5d8715a827f2c2899593439a4f36449db4f0eafa5b1ea63948f8a2f8c545"}, ] [package.dependencies] backoff = ">=1.11.1,<3.0" graphql-core = ">=3.2,<3.3" yarl = ">=1.6,<2.0" [package.extras] aiohttp = ["aiohttp (>=3.7.1,<3.9.0)"] all = ["aiohttp (>=3.7.1,<3.9.0)", "botocore (>=1.21,<2)", "requests (>=2.26,<3)", "requests-toolbelt (>=0.9.1,<1)", "urllib3 (>=1.26,<2)", "websockets (>=10,<11)", "websockets (>=9,<10)"] botocore = ["botocore (>=1.21,<2)"] dev = ["aiofiles", "aiohttp (>=3.7.1,<3.9.0)", "black (==22.3.0)", "botocore (>=1.21,<2)", "check-manifest (>=0.42,<1)", "flake8 (==3.8.1)", "isort (==4.3.21)", "mock (==4.0.2)", "mypy (==0.910)", "parse (==1.15.0)", "pytest (==6.2.5)", "pytest-asyncio (==0.16.0)", "pytest-console-scripts (==1.3.1)", "pytest-cov (==3.0.0)", "requests (>=2.26,<3)", "requests-toolbelt (>=0.9.1,<1)", "sphinx (>=3.0.0,<4)", "sphinx-argparse (==0.2.5)", "sphinx-rtd-theme (>=0.4,<1)", "types-aiofiles", "types-mock", "types-requests", "urllib3 (>=1.26,<2)", "vcrpy (==4.0.2)", "websockets (>=10,<11)", "websockets (>=9,<10)"] requests = ["requests (>=2.26,<3)", "requests-toolbelt (>=0.9.1,<1)", "urllib3 (>=1.26,<2)"] test = ["aiofiles", "aiohttp (>=3.7.1,<3.9.0)", "botocore (>=1.21,<2)", "mock (==4.0.2)", "parse (==1.15.0)", "pytest (==6.2.5)", "pytest-asyncio (==0.16.0)", "pytest-console-scripts (==1.3.1)", "pytest-cov (==3.0.0)", "requests (>=2.26,<3)", "requests-toolbelt (>=0.9.1,<1)", "urllib3 (>=1.26,<2)", "vcrpy (==4.0.2)", "websockets (>=10,<11)", "websockets (>=9,<10)"] test-no-transport = ["aiofiles", "mock (==4.0.2)", "parse (==1.15.0)", "pytest (==6.2.5)", "pytest-asyncio (==0.16.0)", "pytest-console-scripts (==1.3.1)", "pytest-cov (==3.0.0)", "vcrpy (==4.0.2)"] websockets = ["websockets (>=10,<11)", "websockets (>=9,<10)"] [[package]] name = "graphql-core" version = "3.2.3" description = "GraphQL implementation for Python, a port of GraphQL.js, the JavaScript reference implementation for GraphQL." category = "main" optional = true python-versions = ">=3.6,<4" files = [ {file = "graphql-core-3.2.3.tar.gz", hash = "sha256:06d2aad0ac723e35b1cb47885d3e5c45e956a53bc1b209a9fc5369007fe46676"}, {file = "graphql_core-3.2.3-py3-none-any.whl", hash = "sha256:5766780452bd5ec8ba133f8bf287dc92713e3868ddd83aee4faab9fc3e303dc3"}, ] [[package]] name = "greenlet" version = "2.0.1" description = "Lightweight in-process concurrent programming" category = "main" optional = false python-versions = ">=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*" files = [ {file = "greenlet-2.0.1-cp27-cp27m-macosx_10_14_x86_64.whl", hash = "sha256:9ed358312e63bf683b9ef22c8e442ef6c5c02973f0c2a939ec1d7b50c974015c"}, {file = "greenlet-2.0.1-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:4f09b0010e55bec3239278f642a8a506b91034f03a4fb28289a7d448a67f1515"}, {file = "greenlet-2.0.1-cp27-cp27m-win32.whl", hash = "sha256:1407fe45246632d0ffb7a3f4a520ba4e6051fc2cbd61ba1f806900c27f47706a"}, {file = "greenlet-2.0.1-cp27-cp27m-win_amd64.whl", hash = "sha256:3001d00eba6bbf084ae60ec7f4bb8ed375748f53aeaefaf2a37d9f0370558524"}, {file = "greenlet-2.0.1-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:d566b82e92ff2e09dd6342df7e0eb4ff6275a3f08db284888dcd98134dbd4243"}, {file = "greenlet-2.0.1-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:0722c9be0797f544a3ed212569ca3fe3d9d1a1b13942d10dd6f0e8601e484d26"}, {file = "greenlet-2.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d37990425b4687ade27810e3b1a1c37825d242ebc275066cfee8cb6b8829ccd"}, {file = "greenlet-2.0.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:be35822f35f99dcc48152c9839d0171a06186f2d71ef76dc57fa556cc9bf6b45"}, {file = "greenlet-2.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c140e7eb5ce47249668056edf3b7e9900c6a2e22fb0eaf0513f18a1b2c14e1da"}, {file = "greenlet-2.0.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d21681f09e297a5adaa73060737e3aa1279a13ecdcfcc6ef66c292cb25125b2d"}, {file = "greenlet-2.0.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fb412b7db83fe56847df9c47b6fe3f13911b06339c2aa02dcc09dce8bbf582cd"}, {file = "greenlet-2.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:c6a08799e9e88052221adca55741bf106ec7ea0710bca635c208b751f0d5b617"}, {file = "greenlet-2.0.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:9e112e03d37987d7b90c1e98ba5e1b59e1645226d78d73282f45b326f7bddcb9"}, {file = "greenlet-2.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:56961cfca7da2fdd178f95ca407fa330c64f33289e1804b592a77d5593d9bd94"}, {file = "greenlet-2.0.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:13ba6e8e326e2116c954074c994da14954982ba2795aebb881c07ac5d093a58a"}, {file = "greenlet-2.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1bf633a50cc93ed17e494015897361010fc08700d92676c87931d3ea464123ce"}, {file = "greenlet-2.0.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:9f2c221eecb7ead00b8e3ddb913c67f75cba078fd1d326053225a3f59d850d72"}, {file = "greenlet-2.0.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:13ebf93c343dd8bd010cd98e617cb4c1c1f352a0cf2524c82d3814154116aa82"}, {file = "greenlet-2.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:6f61d71bbc9b4a3de768371b210d906726535d6ca43506737682caa754b956cd"}, {file = "greenlet-2.0.1-cp35-cp35m-macosx_10_14_x86_64.whl", hash = "sha256:2d0bac0385d2b43a7bd1d651621a4e0f1380abc63d6fb1012213a401cbd5bf8f"}, {file = "greenlet-2.0.1-cp35-cp35m-manylinux2010_x86_64.whl", hash = "sha256:f6327b6907b4cb72f650a5b7b1be23a2aab395017aa6f1adb13069d66360eb3f"}, {file = "greenlet-2.0.1-cp35-cp35m-win32.whl", hash = "sha256:81b0ea3715bf6a848d6f7149d25bf018fd24554a4be01fcbbe3fdc78e890b955"}, {file = "greenlet-2.0.1-cp35-cp35m-win_amd64.whl", hash = "sha256:38255a3f1e8942573b067510f9611fc9e38196077b0c8eb7a8c795e105f9ce77"}, {file = "greenlet-2.0.1-cp36-cp36m-macosx_10_14_x86_64.whl", hash = "sha256:04957dc96669be041e0c260964cfef4c77287f07c40452e61abe19d647505581"}, {file = "greenlet-2.0.1-cp36-cp36m-manylinux2010_x86_64.whl", hash = "sha256:4aeaebcd91d9fee9aa768c1b39cb12214b30bf36d2b7370505a9f2165fedd8d9"}, {file = "greenlet-2.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:974a39bdb8c90a85982cdb78a103a32e0b1be986d411303064b28a80611f6e51"}, {file = "greenlet-2.0.1-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8dca09dedf1bd8684767bc736cc20c97c29bc0c04c413e3276e0962cd7aeb148"}, {file = "greenlet-2.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a4c0757db9bd08470ff8277791795e70d0bf035a011a528ee9a5ce9454b6cba2"}, {file = "greenlet-2.0.1-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:5067920de254f1a2dee8d3d9d7e4e03718e8fd2d2d9db962c8c9fa781ae82a39"}, {file = "greenlet-2.0.1-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:5a8e05057fab2a365c81abc696cb753da7549d20266e8511eb6c9d9f72fe3e92"}, {file = "greenlet-2.0.1-cp36-cp36m-win32.whl", hash = "sha256:3d75b8d013086b08e801fbbb896f7d5c9e6ccd44f13a9241d2bf7c0df9eda928"}, {file = "greenlet-2.0.1-cp36-cp36m-win_amd64.whl", hash = "sha256:097e3dae69321e9100202fc62977f687454cd0ea147d0fd5a766e57450c569fd"}, {file = "greenlet-2.0.1-cp37-cp37m-macosx_10_15_x86_64.whl", hash = "sha256:cb242fc2cda5a307a7698c93173d3627a2a90d00507bccf5bc228851e8304963"}, {file = "greenlet-2.0.1-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:72b00a8e7c25dcea5946692a2485b1a0c0661ed93ecfedfa9b6687bd89a24ef5"}, {file = "greenlet-2.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d5b0ff9878333823226d270417f24f4d06f235cb3e54d1103b71ea537a6a86ce"}, {file = "greenlet-2.0.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:be9e0fb2ada7e5124f5282d6381903183ecc73ea019568d6d63d33f25b2a9000"}, {file = "greenlet-2.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b493db84d124805865adc587532ebad30efa68f79ad68f11b336e0a51ec86c2"}, {file = "greenlet-2.0.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:0459d94f73265744fee4c2d5ec44c6f34aa8a31017e6e9de770f7bcf29710be9"}, {file = "greenlet-2.0.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:a20d33124935d27b80e6fdacbd34205732660e0a1d35d8b10b3328179a2b51a1"}, {file = "greenlet-2.0.1-cp37-cp37m-win32.whl", hash = "sha256:ea688d11707d30e212e0110a1aac7f7f3f542a259235d396f88be68b649e47d1"}, {file = "greenlet-2.0.1-cp37-cp37m-win_amd64.whl", hash = "sha256:afe07421c969e259e9403c3bb658968702bc3b78ec0b6fde3ae1e73440529c23"}, {file = "greenlet-2.0.1-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:cd4ccc364cf75d1422e66e247e52a93da6a9b73cefa8cad696f3cbbb75af179d"}, {file = "greenlet-2.0.1-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:4c8b1c43e75c42a6cafcc71defa9e01ead39ae80bd733a2608b297412beede68"}, {file = "greenlet-2.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:659f167f419a4609bc0516fb18ea69ed39dbb25594934bd2dd4d0401660e8a1e"}, {file = "greenlet-2.0.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:356e4519d4dfa766d50ecc498544b44c0249b6de66426041d7f8b751de4d6b48"}, {file = "greenlet-2.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:811e1d37d60b47cb8126e0a929b58c046251f28117cb16fcd371eed61f66b764"}, {file = "greenlet-2.0.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:d38ffd0e81ba8ef347d2be0772e899c289b59ff150ebbbbe05dc61b1246eb4e0"}, {file = "greenlet-2.0.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:0109af1138afbfb8ae647e31a2b1ab030f58b21dd8528c27beaeb0093b7938a9"}, {file = "greenlet-2.0.1-cp38-cp38-win32.whl", hash = "sha256:88c8d517e78acdf7df8a2134a3c4b964415b575d2840a2746ddb1cc6175f8608"}, {file = "greenlet-2.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:d6ee1aa7ab36475035eb48c01efae87d37936a8173fc4d7b10bb02c2d75dd8f6"}, {file = "greenlet-2.0.1-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:b1992ba9d4780d9af9726bbcef6a1db12d9ab1ccc35e5773685a24b7fb2758eb"}, {file = "greenlet-2.0.1-cp39-cp39-manylinux2010_x86_64.whl", hash = "sha256:b5e83e4de81dcc9425598d9469a624826a0b1211380ac444c7c791d4a2137c19"}, {file = "greenlet-2.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:505138d4fa69462447a562a7c2ef723c6025ba12ac04478bc1ce2fcc279a2db5"}, {file = "greenlet-2.0.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cce1e90dd302f45716a7715517c6aa0468af0bf38e814ad4eab58e88fc09f7f7"}, {file = "greenlet-2.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e9744c657d896c7b580455e739899e492a4a452e2dd4d2b3e459f6b244a638d"}, {file = "greenlet-2.0.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:662e8f7cad915ba75d8017b3e601afc01ef20deeeabf281bd00369de196d7726"}, {file = "greenlet-2.0.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:41b825d65f31e394b523c84db84f9383a2f7eefc13d987f308f4663794d2687e"}, {file = "greenlet-2.0.1-cp39-cp39-win32.whl", hash = "sha256:db38f80540083ea33bdab614a9d28bcec4b54daa5aff1668d7827a9fc769ae0a"}, {file = "greenlet-2.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:b23d2a46d53210b498e5b701a1913697671988f4bf8e10f935433f6e7c332fb6"}, {file = "greenlet-2.0.1.tar.gz", hash = "sha256:42e602564460da0e8ee67cb6d7236363ee5e131aa15943b6670e44e5c2ed0f67"}, ] [package.extras] docs = ["Sphinx", "docutils (<0.18)"] test = ["faulthandler", "objgraph", "psutil"] [[package]] name = "grpcio" version = "1.47.5" description = "HTTP/2-based RPC framework" category = "main" optional = false python-versions = ">=3.6" files = [ {file = "grpcio-1.47.5-cp310-cp310-linux_armv7l.whl", hash = "sha256:acc73289d0c44650aa1f21eccfa967f5623b01c3b5e2b4596fe5f9c5bf10956d"}, {file = "grpcio-1.47.5-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:f3174c798959998876d546944523a558f78a9b9feb22a2cbaaa3822f2e158653"}, {file = "grpcio-1.47.5-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:64401ee6d54b4d5869bcba4be3cae9f2e335c44a39ba1e29991ad22cfe2abacb"}, {file = "grpcio-1.47.5-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:39a07eb5e7ec9277e5d124fb0e2d4f51ddbaadc2abdd27e8bbf1716dcf45e581"}, {file = "grpcio-1.47.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:874b138ca95a6375ae6f6a12c10a348827c9aa8fbd05d025b87b5e050ab55b46"}, {file = "grpcio-1.47.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:90539369afba42fc921cdda9d5f697a421f05a2e82ba58342ffbe88aa586019e"}, {file = "grpcio-1.47.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:2b18f970514bbc76547928e26d0cec06996ce3f947a3634b3adbe79d0e48e980"}, {file = "grpcio-1.47.5-cp310-cp310-win32.whl", hash = "sha256:44c52923be0c4a0f662de43644679c6356960c38c4edf44864c23b998693c7cc"}, {file = "grpcio-1.47.5-cp310-cp310-win_amd64.whl", hash = "sha256:07761f427551fced386db8c78701d6a167b2a682aa8df808303dd0a0d44bf6c9"}, {file = "grpcio-1.47.5-cp36-cp36m-linux_armv7l.whl", hash = "sha256:10eb026bf75568de06933366f0340d2b4b207425c74a5640aa1812b8b69e7d9d"}, {file = "grpcio-1.47.5-cp36-cp36m-macosx_10_10_universal2.whl", hash = "sha256:4f8e7fba6b1150a63aebd04d03be779de4ea4c4a8b28869e7a3c8f0b3ec59edc"}, {file = "grpcio-1.47.5-cp36-cp36m-manylinux_2_17_aarch64.whl", hash = "sha256:36d93b19c214bc654fc50ae65cce84b8f7698159191b9d3f21f9ad92ae7bc325"}, {file = "grpcio-1.47.5-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4e59f916bf58528e55893743151c6bd9f0a393fddfe411a6fffd29a300e6acf2"}, {file = "grpcio-1.47.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18f8b2d316a3be464eb2a20afa7026a235a07a0094be879876611206d8026679"}, {file = "grpcio-1.47.5-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:0c3076957cd2aea34fe69384453315fd765948eb6cb73a12f332277308d04b76"}, {file = "grpcio-1.47.5-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:007f5ad07d2f3a4a422c1df589a0d25e918b96d8f6069cb6f0254386a5f09262"}, {file = "grpcio-1.47.5-cp36-cp36m-win32.whl", hash = "sha256:01ac149a5ca9512277b1d2fe85687099f3e442c6f9f924eae003a6700735e23e"}, {file = "grpcio-1.47.5-cp36-cp36m-win_amd64.whl", hash = "sha256:a32ccc88950f2be619157201161e70a5e5ed9e2427662bb2e60f1a8cea7d0db6"}, {file = "grpcio-1.47.5-cp37-cp37m-linux_armv7l.whl", hash = "sha256:ec71f15258e086acadb13ec06e4e4c54eb0f5455cd4c618997f847874d5ff9ea"}, {file = "grpcio-1.47.5-cp37-cp37m-macosx_10_10_universal2.whl", hash = "sha256:4bbf5a63497dbd5e44c4335cab153796a4274be17ca40ec971a7749c3f4fef6a"}, {file = "grpcio-1.47.5-cp37-cp37m-manylinux_2_17_aarch64.whl", hash = "sha256:11e1bc97e88232201256b718c63a8a1fd86ec6fca3a501293be5c5e423de9d56"}, {file = "grpcio-1.47.5-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e568d84fed80713d2fa3221552beee27ed8034f7eff52bb7871bf5ffe4d4ca78"}, {file = "grpcio-1.47.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cb4c838de8e1e7194d3f9a679fd76cc44a1dbe81f18bd39ee233c72347d772bf"}, {file = "grpcio-1.47.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:a74c19baf2f8127b44b3f58e2a5801a17992dae9a20197b4a8fa26e2ea79742b"}, {file = "grpcio-1.47.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:e369ed5ecff11ef85666cabbb5736495604e052c8dc2c03a2104f99dfd0a59e3"}, {file = "grpcio-1.47.5-cp37-cp37m-win32.whl", hash = "sha256:ccb741fab5117aea981d4ac341d2ce1e588f515f83091807d4e2bb388ed59edd"}, {file = "grpcio-1.47.5-cp37-cp37m-win_amd64.whl", hash = "sha256:af9d3b075dfcbc343d44b0e98725ba6d56dc0669e61905a4e71e8f4409cfefbd"}, {file = "grpcio-1.47.5-cp38-cp38-linux_armv7l.whl", hash = "sha256:cac6847a4b9a7e7a1f270a71fef1c17c2e8a6b411c0ca48080ce1e08d284aded"}, {file = "grpcio-1.47.5-cp38-cp38-macosx_10_10_universal2.whl", hash = "sha256:54a3e17d155b6fb141e1fbb7c47d30556bec4c940b66ff4d9513536e2e214d4a"}, {file = "grpcio-1.47.5-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:d1873c0b84a0ffb129f75e7c8be45d2cae427baf0b090d15b9ff46c1841c3f53"}, {file = "grpcio-1.47.5-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e209df91cf8dfb335c2e26784702b0e12c20dc4de7b9b6d2cccd968146155f06"}, {file = "grpcio-1.47.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:350e2627684f93f8b59af9c76a03eeb4aa145ecc589569137d4518486f4f1727"}, {file = "grpcio-1.47.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:23754807314c5aa4c26eb1c50aaf506801a2f7825951100280d2c013b127436f"}, {file = "grpcio-1.47.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:503c3fa0045f3ef80aa1ad082eac6a888081da2e1cd793f281ed499831e4c498"}, {file = "grpcio-1.47.5-cp38-cp38-win32.whl", hash = "sha256:a4eecfbe994c88996461bd1459e43ea460952d4147f53e8c18e089764e6808f5"}, {file = "grpcio-1.47.5-cp38-cp38-win_amd64.whl", hash = "sha256:941927ae4d589a2fef5c22b9c47df9e5e613c737bd750bafc3a9547cc506017c"}, {file = "grpcio-1.47.5-cp39-cp39-linux_armv7l.whl", hash = "sha256:9891c77e69bd4109c25c1bea51d78fbc5ba2fcd9445bf99225bb8fb03d849913"}, {file = "grpcio-1.47.5-cp39-cp39-macosx_10_10_universal2.whl", hash = "sha256:61e83778d85dbbbd7446451ec28b7261e9ebba489cc8c262dfe8fedc119f769b"}, {file = "grpcio-1.47.5-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:21ccfc0e989531cbdc93c54a7581ea5f7c46bf585016d9320b4be042f1e02374"}, {file = "grpcio-1.47.5-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bea35a0114a39827ffe59f73950d242f95d59a9ac2009ae8da7b065c06f0a57f"}, {file = "grpcio-1.47.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:97e75b9e52eeb9d1335aaeecf581cb3cea7fc4bafd7bd675c83f208a386a42a8"}, {file = "grpcio-1.47.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:1fb86f95228827b55e860278d142326af4489c0f4220975780daff325fc87172"}, {file = "grpcio-1.47.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c9b83183525afe58dd9e7bb249f9e55df326e3c3834d09ea476c7a6bb12f73ee"}, {file = "grpcio-1.47.5-cp39-cp39-win32.whl", hash = "sha256:00bff7492875ab04ec5ed3d92550d8f8aa423151e187b79684c8a22c7a6f1670"}, {file = "grpcio-1.47.5-cp39-cp39-win_amd64.whl", hash = "sha256:2b32adae820cc0347e5e44efe91b661b436dbca73f25c5763cadb1cafd1dca10"}, {file = "grpcio-1.47.5.tar.gz", hash = "sha256:b62b8bea0c94b4603bb4c8332d8a814375120bea3c2dbeb71397213bde5ea832"}, ] [package.dependencies] six = ">=1.5.2" [package.extras] protobuf = ["grpcio-tools (>=1.47.5)"] [[package]] name = "grpcio-health-checking" version = "1.47.5" description = "Standard Health Checking Service for gRPC" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "grpcio-health-checking-1.47.5.tar.gz", hash = "sha256:74f36ef2ff704c46965bd74cdea51afc0bbcde641134c9d09ecb5063391db516"}, {file = "grpcio_health_checking-1.47.5-py3-none-any.whl", hash = "sha256:659b83138cb2b7db71777044d0caf58bab4f958fce972900f8577ebb4edca29d"}, ] [package.dependencies] grpcio = ">=1.47.5" protobuf = ">=3.12.0" [[package]] name = "grpcio-reflection" version = "1.47.5" description = "Standard Protobuf Reflection Service for gRPC" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "grpcio-reflection-1.47.5.tar.gz", hash = "sha256:ac391ec327861f16bc870638101fee80799eccf39c5b09e9ddd776d6854b9873"}, {file = "grpcio_reflection-1.47.5-py3-none-any.whl", hash = "sha256:8cfd222f2116b7e1bcd55bd2a1fcb168c5a9cd20310151d6278563f516e8ae1e"}, ] [package.dependencies] grpcio = ">=1.47.5" protobuf = ">=3.12.0" [[package]] name = "grpcio-tools" version = "1.47.5" description = "Protobuf code generator for gRPC" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "grpcio-tools-1.47.5.tar.gz", hash = "sha256:62ced60566a4cbcf35c57e887e2e68b4f108b3474ef3ec0022d38cd579345f92"}, {file = "grpcio_tools-1.47.5-cp310-cp310-linux_armv7l.whl", hash = "sha256:9f92c561b245a562110bd84d3b64b016c8af5afde39febf1f71553ae56f6e8e4"}, {file = "grpcio_tools-1.47.5-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:a0a991844a024705ad177cb858d36e3e6b329ea4a78b7f4c597b2817fc2692e7"}, {file = "grpcio_tools-1.47.5-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:935976d5436d4306de052d1e00848fa25abc667e185aaaffcd367915f33a67c7"}, {file = "grpcio_tools-1.47.5-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2481dba6a30d415a4756cd88cc380780e3f00bb41d56b8f6547bc3c09c6f4e7f"}, {file = "grpcio_tools-1.47.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e62176978faa96b21e4e821e7070b0feed919726ff730c0b3b7e8d106ddb45bf"}, {file = "grpcio_tools-1.47.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:728eb1f4ef6d380366a2de9940d1f910ece8bf4e44de5ca935cd16d4394e82ff"}, {file = "grpcio_tools-1.47.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:d58982c747e107f65c7307ec1646cce105b0785088287bf209f545377aeedaf4"}, {file = "grpcio_tools-1.47.5-cp310-cp310-win32.whl", hash = "sha256:ea6d8f07b087bc2d579b7727daee2abf38fe5dc475c9e7c4f16b4a2c31895319"}, {file = "grpcio_tools-1.47.5-cp310-cp310-win_amd64.whl", hash = "sha256:5e7a4e68072639fa767bde1011f5d83f4461a8e60651ea202af597777ee1ffd7"}, {file = "grpcio_tools-1.47.5-cp36-cp36m-linux_armv7l.whl", hash = "sha256:bb1e066fc50ef7503b024924858658692d3e98582a9727b156f2f845da70e11e"}, {file = "grpcio_tools-1.47.5-cp36-cp36m-macosx_10_10_universal2.whl", hash = "sha256:7d3e397a27e652ae6579f1f7dc3fc0c771db977ccaaded1fe113e882df425c15"}, {file = "grpcio_tools-1.47.5-cp36-cp36m-manylinux_2_17_aarch64.whl", hash = "sha256:b19d8f1e8422826d49fc428acc66b69aa450c70f7090681df32d535188edf524"}, {file = "grpcio_tools-1.47.5-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a0e017bd1022bc981fa1629e757e0d3d4a1991f999fb90ec714c2683fe05b8fa"}, {file = "grpcio_tools-1.47.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:abb56ea33c4a33ee3b707f62339fd579e1a8dbbfeb7665d7ff85ee837cf64794"}, {file = "grpcio_tools-1.47.5-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:02882ff2f703b75d343991608b39104f1621508cf407e427a75c1794ed0fac95"}, {file = "grpcio_tools-1.47.5-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:84395aacae4f8a3358ad648a8bacf6b15bbb8946d8cf73f47dc77cfe1a154d48"}, {file = "grpcio_tools-1.47.5-cp36-cp36m-win32.whl", hash = "sha256:de8901c64a1091cc474318e7a013af8c30feba34c7954c29ca8f477baf07db28"}, {file = "grpcio_tools-1.47.5-cp36-cp36m-win_amd64.whl", hash = "sha256:37cb5c3d94ba1efef0d17a66e5e69b177fc934389eda8b76b161a6623e45e714"}, {file = "grpcio_tools-1.47.5-cp37-cp37m-linux_armv7l.whl", hash = "sha256:5c2d3a35e9341ea9c68afe289054bd8604eda4214e6d916f97b19a316537a296"}, {file = "grpcio_tools-1.47.5-cp37-cp37m-macosx_10_10_universal2.whl", hash = "sha256:89733edb89ec28e52dd9cc25e90b78248b6edd265f564726be2a9c4b4ee78479"}, {file = "grpcio_tools-1.47.5-cp37-cp37m-manylinux_2_17_aarch64.whl", hash = "sha256:489f41535d779287759942c6cced93c4219ea53dad46ebdc4faca6220e1dba88"}, {file = "grpcio_tools-1.47.5-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:072c84f561912400363b81af6bf5424c38fab80f0c9436c0fe19b2e7c2bcf15c"}, {file = "grpcio_tools-1.47.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c650233420279f943bd1dcf286742aaeb4db7cc5f6554a5e8c16c2e4fa19a28f"}, {file = "grpcio_tools-1.47.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:dab220aba6b5777b16df5c5b3a30f831cdbc4f493eabdaf9f6585691bad5496a"}, {file = "grpcio_tools-1.47.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:309ca8508f361895ef2d4f533611272228d2412c8cae754b695673c7c65a2f8b"}, {file = "grpcio_tools-1.47.5-cp37-cp37m-win32.whl", hash = "sha256:f8ce5fb65e97866257943cbf6d504195ab55e01ef467988d86322a36041b6de8"}, {file = "grpcio_tools-1.47.5-cp37-cp37m-win_amd64.whl", hash = "sha256:b9154a18b0ad2bc4b9ceadedd7b67bb65b500b3427495b4d224a1a835aa55ce6"}, {file = "grpcio_tools-1.47.5-cp38-cp38-linux_armv7l.whl", hash = "sha256:aaa4063bc05a18f32ae98e414e2472477468b966b9a1425c41eec160250beff2"}, {file = "grpcio_tools-1.47.5-cp38-cp38-macosx_10_10_universal2.whl", hash = "sha256:093da28f8ce3a0eedd5370b9f09f815fb6c01fd663d60734eab5b300b9a305ec"}, {file = "grpcio_tools-1.47.5-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:0771f57585b9070086dec509b02fa2804a9d4c395e95cd7a6cb42d8f4b5683f7"}, {file = "grpcio_tools-1.47.5-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:68d4cdc674c8596da8e25cf37741aab3f07bdf38731510a92019e5ec57f5fcea"}, {file = "grpcio_tools-1.47.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:08fdce5549acca9fd7a45084c62e8ab0a1ca1c530bcbfa089625e9523f224023"}, {file = "grpcio_tools-1.47.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:8431b9ee083bec444ca6d48705b89774f97ba0a75e8c33ef3b9a2dc6ed2aa584"}, {file = "grpcio_tools-1.47.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:baf37376da0062155d728fb9a1d522ea8f5039ebf774885d269f7772cbc3a2e6"}, {file = "grpcio_tools-1.47.5-cp38-cp38-win32.whl", hash = "sha256:b65a59698f938fa59fd756799cd641c3755fb09cb95de008e4d67a9e5b1af6d5"}, {file = "grpcio_tools-1.47.5-cp38-cp38-win_amd64.whl", hash = "sha256:17c2b5ce8b3100c8da4ae5070d8d2c2466f174e66d8127fb85ef8a7937a03853"}, {file = "grpcio_tools-1.47.5-cp39-cp39-linux_armv7l.whl", hash = "sha256:9070301f079fef76fb0d51b84f393c6738587f3a16a2f0ced303362b0cc0ecf6"}, {file = "grpcio_tools-1.47.5-cp39-cp39-macosx_10_10_universal2.whl", hash = "sha256:5bcf01116a4d3bed2faf832f8c5618d1c69473576f3925240e3c5042dfbc115e"}, {file = "grpcio_tools-1.47.5-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:b555b954aa213eac8efe7df507a178c3ab7323df9f501846a1bbccdf81354831"}, {file = "grpcio_tools-1.47.5-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7604e08530b3edc688e41aa8af46051478d417b08afdf6fc2eafb5eb90528a26"}, {file = "grpcio_tools-1.47.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1d3f80818a560abee8189c4f0b074f45c16309b4596e013cb6ce105a022c5965"}, {file = "grpcio_tools-1.47.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:c801ebd7fa2304ff85aa15147f134aefe33132d85308c43e46f6a5be78b5a8a8"}, {file = "grpcio_tools-1.47.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:235adfc22e9c703533573344de1d2394ddd92b27c82eb259bb5fb46f885159b8"}, {file = "grpcio_tools-1.47.5-cp39-cp39-win32.whl", hash = "sha256:d659c257cbb48c843931b584d3c3da5473fa17275e0d04af79c9e9fdd6077179"}, {file = "grpcio_tools-1.47.5-cp39-cp39-win_amd64.whl", hash = "sha256:9d121c63ff2fddeae2c65f6675eb944f47808a242b647d80b4661b2c5e1e6732"}, ] [package.dependencies] grpcio = ">=1.47.5" protobuf = ">=3.12.0,<4.0dev" setuptools = "*" [[package]] name = "h11" version = "0.14.0" description = "A pure-Python, bring-your-own-I/O implementation of HTTP/1.1" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "h11-0.14.0-py3-none-any.whl", hash = "sha256:e3fe4ac4b851c468cc8363d500db52c2ead036020723024a109d37346efaa761"}, {file = "h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d"}, ] [[package]] name = "h2" version = "4.1.0" description = "HTTP/2 State-Machine based protocol implementation" category = "main" optional = true python-versions = ">=3.6.1" files = [ {file = "h2-4.1.0-py3-none-any.whl", hash = "sha256:03a46bcf682256c95b5fd9e9a99c1323584c3eec6440d379b9903d709476bc6d"}, {file = "h2-4.1.0.tar.gz", hash = "sha256:a83aca08fbe7aacb79fec788c9c0bac936343560ed9ec18b82a13a12c28d2abb"}, ] [package.dependencies] hpack = ">=4.0,<5" hyperframe = ">=6.0,<7" [[package]] name = "h5py" version = "3.8.0" description = "Read and write HDF5 files from Python" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "h5py-3.8.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:533d7dad466ddb7e3b30af274b630eb7c1a6e4ddf01d1c373a0334dc2152110a"}, {file = "h5py-3.8.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c873ba9fd4fa875ad62ce0e4891725e257a8fe7f5abdbc17e51a5d54819be55c"}, {file = "h5py-3.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:98a240cd4c1bfd568aaa52ec42d263131a2582dab82d74d3d42a0d954cac12be"}, {file = "h5py-3.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c3389b63222b1c7a158bb7fe69d11ca00066740ec5574596d47a2fe5317f563a"}, {file = "h5py-3.8.0-cp310-cp310-win_amd64.whl", hash = "sha256:7f3350fc0a8407d668b13247861c2acd23f7f5fe7d060a3ad9b0820f5fcbcae0"}, {file = "h5py-3.8.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:db03e3f2c716205fbdabb34d0848459840585225eb97b4f08998c743821ca323"}, {file = "h5py-3.8.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:36761693efbe53df179627a775476dcbc37727d6e920958277a7efbc18f1fb73"}, {file = "h5py-3.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4a506fc223def428f4329e7e1f9fe1c8c593eab226e7c0942c8d75308ad49950"}, {file = "h5py-3.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:33b15aae79e9147aebe1d0e54099cbcde8d65e3e227cd5b59e49b1272aa0e09d"}, {file = "h5py-3.8.0-cp311-cp311-win_amd64.whl", hash = "sha256:9f6f6ffadd6bfa9b2c5b334805eb4b19ca0a5620433659d8f7fb86692c40a359"}, {file = "h5py-3.8.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:8f55d9c6c84d7d09c79fb85979e97b81ec6071cc776a97eb6b96f8f6ec767323"}, {file = "h5py-3.8.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b685453e538b2b5934c58a644ac3f3b3d0cec1a01b6fb26d57388e9f9b674ad0"}, {file = "h5py-3.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:377865821fe80ad984d003723d6f8890bd54ceeb5981b43c0313b9df95411b30"}, {file = "h5py-3.8.0-cp37-cp37m-win_amd64.whl", hash = "sha256:0fef76e10b9216657fa37e7edff6d8be0709b25bd5066474c229b56cf0098df9"}, {file = "h5py-3.8.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:26ffc344ec9984d2cd3ca0265007299a8bac8d85c1ad48f4639d8d3aed2af171"}, {file = "h5py-3.8.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:bacaa1c16810dd2b3e4417f8e730971b7c4d53d234de61fe4a918db78e80e1e4"}, {file = "h5py-3.8.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bae730580ae928de409d63cbe4fdca4c82c3ad2bed30511d19d34e995d63c77e"}, {file = "h5py-3.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f47f757d1b76f0ecb8aa0508ec8d1b390df67a8b67ee2515dc1b046f3a1596ea"}, {file = "h5py-3.8.0-cp38-cp38-win_amd64.whl", hash = "sha256:f891b17e3a3e974e93f9e34e7cca9f530806543571ce078998676a555837d91d"}, {file = "h5py-3.8.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:290e00fa2de74a10688d1bac98d5a9cdd43f14f58e562c580b5b3dfbd358ecae"}, {file = "h5py-3.8.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:03890b1c123d024fb0239a3279737d5432498c1901c354f8b10d8221d1d16235"}, {file = "h5py-3.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b7865de06779b14d98068da387333ad9bf2756b5b579cc887fac169bc08f87c3"}, {file = "h5py-3.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:49bc857635f935fa30e92e61ac1e87496df8f260a6945a3235e43a9890426866"}, {file = "h5py-3.8.0-cp39-cp39-win_amd64.whl", hash = "sha256:5fd2252d1fc364ba0e93dd0b7089f4906b66805cb4e6aca7fa8874ac08649647"}, {file = "h5py-3.8.0.tar.gz", hash = "sha256:6fead82f0c4000cf38d53f9c030780d81bfa0220218aee13b90b7701c937d95f"}, ] [package.dependencies] numpy = ">=1.14.5" [[package]] name = "hnswlib" version = "0.7.0" description = "hnswlib" category = "main" optional = false python-versions = "*" files = [ {file = "hnswlib-0.7.0.tar.gz", hash = "sha256:bc459668e7e44bb7454b256b90c98c5af750653919d9a91698dafcf416cf64c4"}, ] [package.dependencies] numpy = "*" [[package]] name = "hpack" version = "4.0.0" description = "Pure-Python HPACK header compression" category = "main" optional = true python-versions = ">=3.6.1" files = [ {file = "hpack-4.0.0-py3-none-any.whl", hash = "sha256:84a076fad3dc9a9f8063ccb8041ef100867b1878b25ef0ee63847a5d53818a6c"}, {file = "hpack-4.0.0.tar.gz", hash = "sha256:fc41de0c63e687ebffde81187a948221294896f6bdc0ae2312708df339430095"}, ] [[package]] name = "html2text" version = "2020.1.16" description = "Turn HTML into equivalent Markdown-structured text." category = "main" optional = true python-versions = ">=3.5" files = [ {file = "html2text-2020.1.16-py3-none-any.whl", hash = "sha256:c7c629882da0cf377d66f073329ccf34a12ed2adf0169b9285ae4e63ef54c82b"}, {file = "html2text-2020.1.16.tar.gz", hash = "sha256:e296318e16b059ddb97f7a8a1d6a5c1d7af4544049a01e261731d2d5cc277bbb"}, ] [[package]] name = "httpcore" version = "0.17.1" description = "A minimal low-level HTTP client." category = "main" optional = true python-versions = ">=3.7" files = [ {file = "httpcore-0.17.1-py3-none-any.whl", hash = "sha256:628e768aaeec1f7effdc6408ba1c3cdbd7487c1fc570f7d66844ec4f003e1ca4"}, {file = "httpcore-0.17.1.tar.gz", hash = "sha256:caf508597c525f9b8bfff187e270666309f63115af30f7d68b16143a403c8356"}, ] [package.dependencies] anyio = ">=3.0,<5.0" certifi = "*" h11 = ">=0.13,<0.15" sniffio = ">=1.0.0,<2.0.0" [package.extras] http2 = ["h2 (>=3,<5)"] socks = ["socksio (>=1.0.0,<2.0.0)"] [[package]] name = "httplib2" version = "0.22.0" description = "A comprehensive HTTP client library." category = "main" optional = true python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ {file = "httplib2-0.22.0-py3-none-any.whl", hash = "sha256:14ae0a53c1ba8f3d37e9e27cf37eabb0fb9980f435ba405d546948b009dd64dc"}, {file = "httplib2-0.22.0.tar.gz", hash = "sha256:d7a10bc5ef5ab08322488bde8c726eeee5c8618723fdb399597ec58f3d82df81"}, ] [package.dependencies] pyparsing = {version = ">=2.4.2,<3.0.0 || >3.0.0,<3.0.1 || >3.0.1,<3.0.2 || >3.0.2,<3.0.3 || >3.0.3,<4", markers = "python_version > \"3.0\""} [[package]] name = "httptools" version = "0.5.0" description = "A collection of framework independent HTTP protocol utils." category = "main" optional = false python-versions = ">=3.5.0" files = [ {file = "httptools-0.5.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:8f470c79061599a126d74385623ff4744c4e0f4a0997a353a44923c0b561ee51"}, {file = "httptools-0.5.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e90491a4d77d0cb82e0e7a9cb35d86284c677402e4ce7ba6b448ccc7325c5421"}, {file = "httptools-0.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c1d2357f791b12d86faced7b5736dea9ef4f5ecdc6c3f253e445ee82da579449"}, {file = "httptools-0.5.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1f90cd6fd97c9a1b7fe9215e60c3bd97336742a0857f00a4cb31547bc22560c2"}, {file = "httptools-0.5.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:5230a99e724a1bdbbf236a1b58d6e8504b912b0552721c7c6b8570925ee0ccde"}, {file = "httptools-0.5.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:3a47a34f6015dd52c9eb629c0f5a8a5193e47bf2a12d9a3194d231eaf1bc451a"}, {file = "httptools-0.5.0-cp310-cp310-win_amd64.whl", hash = "sha256:24bb4bb8ac3882f90aa95403a1cb48465de877e2d5298ad6ddcfdebec060787d"}, {file = "httptools-0.5.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:e67d4f8734f8054d2c4858570cc4b233bf753f56e85217de4dfb2495904cf02e"}, {file = "httptools-0.5.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7e5eefc58d20e4c2da82c78d91b2906f1a947ef42bd668db05f4ab4201a99f49"}, {file = "httptools-0.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0297822cea9f90a38df29f48e40b42ac3d48a28637368f3ec6d15eebefd182f9"}, {file = "httptools-0.5.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:557be7fbf2bfa4a2ec65192c254e151684545ebab45eca5d50477d562c40f986"}, {file = "httptools-0.5.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:54465401dbbec9a6a42cf737627fb0f014d50dc7365a6b6cd57753f151a86ff0"}, {file = "httptools-0.5.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:4d9ebac23d2de960726ce45f49d70eb5466725c0087a078866043dad115f850f"}, {file = "httptools-0.5.0-cp311-cp311-win_amd64.whl", hash = "sha256:e8a34e4c0ab7b1ca17b8763613783e2458e77938092c18ac919420ab8655c8c1"}, {file = "httptools-0.5.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:f659d7a48401158c59933904040085c200b4be631cb5f23a7d561fbae593ec1f"}, {file = "httptools-0.5.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ef1616b3ba965cd68e6f759eeb5d34fbf596a79e84215eeceebf34ba3f61fdc7"}, {file = "httptools-0.5.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3625a55886257755cb15194efbf209584754e31d336e09e2ffe0685a76cb4b60"}, {file = "httptools-0.5.0-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:72ad589ba5e4a87e1d404cc1cb1b5780bfcb16e2aec957b88ce15fe879cc08ca"}, {file = "httptools-0.5.0-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:850fec36c48df5a790aa735417dca8ce7d4b48d59b3ebd6f83e88a8125cde324"}, {file = "httptools-0.5.0-cp36-cp36m-win_amd64.whl", hash = "sha256:f222e1e9d3f13b68ff8a835574eda02e67277d51631d69d7cf7f8e07df678c86"}, {file = "httptools-0.5.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3cb8acf8f951363b617a8420768a9f249099b92e703c052f9a51b66342eea89b"}, {file = "httptools-0.5.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:550059885dc9c19a072ca6d6735739d879be3b5959ec218ba3e013fd2255a11b"}, {file = "httptools-0.5.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a04fe458a4597aa559b79c7f48fe3dceabef0f69f562daf5c5e926b153817281"}, {file = "httptools-0.5.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:7d0c1044bce274ec6711f0770fd2d5544fe392591d204c68328e60a46f88843b"}, {file = "httptools-0.5.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:c6eeefd4435055a8ebb6c5cc36111b8591c192c56a95b45fe2af22d9881eee25"}, {file = "httptools-0.5.0-cp37-cp37m-win_amd64.whl", hash = "sha256:5b65be160adcd9de7a7e6413a4966665756e263f0d5ddeffde277ffeee0576a5"}, {file = "httptools-0.5.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:fe9c766a0c35b7e3d6b6939393c8dfdd5da3ac5dec7f971ec9134f284c6c36d6"}, {file = "httptools-0.5.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:85b392aba273566c3d5596a0a490978c085b79700814fb22bfd537d381dd230c"}, {file = "httptools-0.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f5e3088f4ed33947e16fd865b8200f9cfae1144f41b64a8cf19b599508e096bc"}, {file = "httptools-0.5.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8c2a56b6aad7cc8f5551d8e04ff5a319d203f9d870398b94702300de50190f63"}, {file = "httptools-0.5.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:9b571b281a19762adb3f48a7731f6842f920fa71108aff9be49888320ac3e24d"}, {file = "httptools-0.5.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:aa47ffcf70ba6f7848349b8a6f9b481ee0f7637931d91a9860a1838bfc586901"}, {file = "httptools-0.5.0-cp38-cp38-win_amd64.whl", hash = "sha256:bede7ee075e54b9a5bde695b4fc8f569f30185891796b2e4e09e2226801d09bd"}, {file = "httptools-0.5.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:64eba6f168803a7469866a9c9b5263a7463fa8b7a25b35e547492aa7322036b6"}, {file = "httptools-0.5.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4b098e4bb1174096a93f48f6193e7d9aa7071506a5877da09a783509ca5fff42"}, {file = "httptools-0.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9423a2de923820c7e82e18980b937893f4aa8251c43684fa1772e341f6e06887"}, {file = "httptools-0.5.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ca1b7becf7d9d3ccdbb2f038f665c0f4857e08e1d8481cbcc1a86a0afcfb62b2"}, {file = "httptools-0.5.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:50d4613025f15f4b11f1c54bbed4761c0020f7f921b95143ad6d58c151198142"}, {file = "httptools-0.5.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8ffce9d81c825ac1deaa13bc9694c0562e2840a48ba21cfc9f3b4c922c16f372"}, {file = "httptools-0.5.0-cp39-cp39-win_amd64.whl", hash = "sha256:1af91b3650ce518d226466f30bbba5b6376dbd3ddb1b2be8b0658c6799dd450b"}, {file = "httptools-0.5.0.tar.gz", hash = "sha256:295874861c173f9101960bba332429bb77ed4dcd8cdf5cee9922eb00e4f6bc09"}, ] [package.extras] test = ["Cython (>=0.29.24,<0.30.0)"] [[package]] name = "httpx" version = "0.24.0" description = "The next generation HTTP client." category = "main" optional = true python-versions = ">=3.7" files = [ {file = "httpx-0.24.0-py3-none-any.whl", hash = "sha256:447556b50c1921c351ea54b4fe79d91b724ed2b027462ab9a329465d147d5a4e"}, {file = "httpx-0.24.0.tar.gz", hash = "sha256:507d676fc3e26110d41df7d35ebd8b3b8585052450f4097401c9be59d928c63e"}, ] [package.dependencies] certifi = "*" h2 = {version = ">=3,<5", optional = true, markers = "extra == \"http2\""} httpcore = ">=0.15.0,<0.18.0" idna = "*" sniffio = "*" [package.extras] brotli = ["brotli", "brotlicffi"] cli = ["click (>=8.0.0,<9.0.0)", "pygments (>=2.0.0,<3.0.0)", "rich (>=10,<14)"] http2 = ["h2 (>=3,<5)"] socks = ["socksio (>=1.0.0,<2.0.0)"] [[package]] name = "huggingface-hub" version = "0.14.1" description = "Client library to download and publish models, datasets and other repos on the huggingface.co hub" category = "main" optional = false python-versions = ">=3.7.0" files = [ {file = "huggingface_hub-0.14.1-py3-none-any.whl", hash = "sha256:9fc619170d800ff3793ad37c9757c255c8783051e1b5b00501205eb43ccc4f27"}, {file = "huggingface_hub-0.14.1.tar.gz", hash = "sha256:9ab899af8e10922eac65e290d60ab956882ab0bf643e3d990b1394b6b47b7fbc"}, ] [package.dependencies] filelock = "*" fsspec = "*" packaging = ">=20.9" pyyaml = ">=5.1" requests = "*" tqdm = ">=4.42.1" typing-extensions = ">=3.7.4.3" [package.extras] all = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "black (>=23.1,<24.0)", "gradio", "jedi", "mypy (==0.982)", "pytest", "pytest-cov", "pytest-env", "pytest-xdist", "ruff (>=0.0.241)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3"] cli = ["InquirerPy (==0.3.4)"] dev = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "black (>=23.1,<24.0)", "gradio", "jedi", "mypy (==0.982)", "pytest", "pytest-cov", "pytest-env", "pytest-xdist", "ruff (>=0.0.241)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3"] fastai = ["fastai (>=2.4)", "fastcore (>=1.3.27)", "toml"] quality = ["black (>=23.1,<24.0)", "mypy (==0.982)", "ruff (>=0.0.241)"] tensorflow = ["graphviz", "pydot", "tensorflow"] testing = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "gradio", "jedi", "pytest", "pytest-cov", "pytest-env", "pytest-xdist", "soundfile"] torch = ["torch"] typing = ["types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3"] [[package]] name = "humbug" version = "0.3.1" description = "Humbug: Do you build developer tools? Humbug helps you know your users." category = "main" optional = false python-versions = "*" files = [ {file = "humbug-0.3.1-py3-none-any.whl", hash = "sha256:f9e3c8dd60a8ba943194f7ed45caa66e5db43d99f3745c60030ec40e6313a927"}, {file = "humbug-0.3.1.tar.gz", hash = "sha256:a123ee31551f5465ca7c1ee3da0862a4e0a0e5c8a7b762a863d833da624db215"}, ] [package.dependencies] requests = "*" [package.extras] dev = ["black", "mypy", "types-dataclasses", "types-pkg-resources", "types-psutil", "types-requests", "wheel"] distribute = ["setuptools", "twine", "wheel"] profile = ["GPUtil", "psutil", "types-psutil"] [[package]] name = "hyperframe" version = "6.0.1" description = "HTTP/2 framing layer for Python" category = "main" optional = true python-versions = ">=3.6.1" files = [ {file = "hyperframe-6.0.1-py3-none-any.whl", hash = "sha256:0ec6bafd80d8ad2195c4f03aacba3a8265e57bc4cff261e802bf39970ed02a15"}, {file = "hyperframe-6.0.1.tar.gz", hash = "sha256:ae510046231dc8e9ecb1a6586f63d2347bf4c8905914aa84ba585ae85f28a914"}, ] [[package]] name = "idna" version = "3.4" description = "Internationalized Domain Names in Applications (IDNA)" category = "main" optional = false python-versions = ">=3.5" files = [ {file = "idna-3.4-py3-none-any.whl", hash = "sha256:90b77e79eaa3eba6de819a0c442c0b4ceefc341a7a2ab77d7562bf49f425c5c2"}, {file = "idna-3.4.tar.gz", hash = "sha256:814f528e8dead7d329833b91c5faa87d60bf71824cd12a7530b5526063d02cb4"}, ] [[package]] name = "imagesize" version = "1.4.1" description = "Getting image size from png/jpeg/jpeg2000/gif file" category = "dev" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ {file = "imagesize-1.4.1-py2.py3-none-any.whl", hash = "sha256:0d8d18d08f840c19d0ee7ca1fd82490fdc3729b7ac93f49870406ddde8ef8d8b"}, {file = "imagesize-1.4.1.tar.gz", hash = "sha256:69150444affb9cb0d5cc5a92b3676f0b2fb7cd9ae39e947a5e11a36b4497cd4a"}, ] [[package]] name = "importlib-metadata" version = "6.0.1" description = "Read metadata from Python packages" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "importlib_metadata-6.0.1-py3-none-any.whl", hash = "sha256:1543daade821c89b1c4a55986c326f36e54f2e6ca3bad96be4563d0acb74dcd4"}, {file = "importlib_metadata-6.0.1.tar.gz", hash = "sha256:950127d57e35a806d520817d3e92eec3f19fdae9f0cd99da77a407c5aabefba3"}, ] [package.dependencies] zipp = ">=0.5" [package.extras] docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] perf = ["ipython"] testing = ["flake8 (<5)", "flufl.flake8", "importlib-resources (>=1.3)", "packaging", "pyfakefs", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)", "pytest-perf (>=0.9.2)"] [[package]] name = "importlib-resources" version = "5.12.0" description = "Read resources from Python packages" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "importlib_resources-5.12.0-py3-none-any.whl", hash = "sha256:7b1deeebbf351c7578e09bf2f63fa2ce8b5ffec296e0d349139d43cca061a81a"}, {file = "importlib_resources-5.12.0.tar.gz", hash = "sha256:4be82589bf5c1d7999aedf2a45159d10cb3ca4f19b2271f8792bc8e6da7b22f6"}, ] [package.dependencies] zipp = {version = ">=3.1.0", markers = "python_version < \"3.10\""} [package.extras] docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] testing = ["flake8 (<5)", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)"] [[package]] name = "inflection" version = "0.5.1" description = "A port of Ruby on Rails inflector to Python" category = "main" optional = true python-versions = ">=3.5" files = [ {file = "inflection-0.5.1-py2.py3-none-any.whl", hash = "sha256:f38b2b640938a4f35ade69ac3d053042959b62a0f1076a5bbaa1b9526605a8a2"}, {file = "inflection-0.5.1.tar.gz", hash = "sha256:1a29730d366e996aaacffb2f1f1cb9593dc38e2ddd30c91250c6dde09ea9b417"}, ] [[package]] name = "iniconfig" version = "2.0.0" description = "brain-dead simple config-ini parsing" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "iniconfig-2.0.0-py3-none-any.whl", hash = "sha256:b6a85871a79d2e3b22d2d1b94ac2824226a63c6b741c88f7ae975f18b6778374"}, {file = "iniconfig-2.0.0.tar.gz", hash = "sha256:2d91e135bf72d31a410b17c16da610a82cb55f6b0477d1a902134b24a455b8b3"}, ] [[package]] name = "ipykernel" version = "6.23.1" description = "IPython Kernel for Jupyter" category = "dev" optional = false python-versions = ">=3.8" files = [ {file = "ipykernel-6.23.1-py3-none-any.whl", hash = "sha256:77aeffab056c21d16f1edccdc9e5ccbf7d96eb401bd6703610a21be8b068aadc"}, {file = "ipykernel-6.23.1.tar.gz", hash = "sha256:1aba0ae8453e15e9bc6b24e497ef6840114afcdb832ae597f32137fa19d42a6f"}, ] [package.dependencies] appnope = {version = "*", markers = "platform_system == \"Darwin\""} comm = ">=0.1.1" debugpy = ">=1.6.5" ipython = ">=7.23.1" jupyter-client = ">=6.1.12" jupyter-core = ">=4.12,<5.0.0 || >=5.1.0" matplotlib-inline = ">=0.1" nest-asyncio = "*" packaging = "*" psutil = "*" pyzmq = ">=20" tornado = ">=6.1" traitlets = ">=5.4.0" [package.extras] cov = ["coverage[toml]", "curio", "matplotlib", "pytest-cov", "trio"] docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "trio"] pyqt5 = ["pyqt5"] pyside6 = ["pyside6"] test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio", "pytest-cov", "pytest-timeout"] [[package]] name = "ipython" version = "8.12.2" description = "IPython: Productive Interactive Computing" category = "dev" optional = false python-versions = ">=3.8" files = [ {file = "ipython-8.12.2-py3-none-any.whl", hash = "sha256:ea8801f15dfe4ffb76dea1b09b847430ffd70d827b41735c64a0638a04103bfc"}, {file = "ipython-8.12.2.tar.gz", hash = "sha256:c7b80eb7f5a855a88efc971fda506ff7a91c280b42cdae26643e0f601ea281ea"}, ] [package.dependencies] appnope = {version = "*", markers = "sys_platform == \"darwin\""} backcall = "*" colorama = {version = "*", markers = "sys_platform == \"win32\""} decorator = "*" jedi = ">=0.16" matplotlib-inline = "*" pexpect = {version = ">4.3", markers = "sys_platform != \"win32\""} pickleshare = "*" prompt-toolkit = ">=3.0.30,<3.0.37 || >3.0.37,<3.1.0" pygments = ">=2.4.0" stack-data = "*" traitlets = ">=5" typing-extensions = {version = "*", markers = "python_version < \"3.10\""} [package.extras] all = ["black", "curio", "docrepr", "ipykernel", "ipyparallel", "ipywidgets", "matplotlib", "matplotlib (!=3.2.0)", "nbconvert", "nbformat", "notebook", "numpy (>=1.21)", "pandas", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "qtconsole", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "trio", "typing-extensions"] black = ["black"] doc = ["docrepr", "ipykernel", "matplotlib", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "typing-extensions"] kernel = ["ipykernel"] nbconvert = ["nbconvert"] nbformat = ["nbformat"] notebook = ["ipywidgets", "notebook"] parallel = ["ipyparallel"] qtconsole = ["qtconsole"] test = ["pytest (<7.1)", "pytest-asyncio", "testpath"] test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.21)", "pandas", "pytest (<7.1)", "pytest-asyncio", "testpath", "trio"] [[package]] name = "ipython-genutils" version = "0.2.0" description = "Vestigial utilities from IPython" category = "dev" optional = false python-versions = "*" files = [ {file = "ipython_genutils-0.2.0-py2.py3-none-any.whl", hash = "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8"}, {file = "ipython_genutils-0.2.0.tar.gz", hash = "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8"}, ] [[package]] name = "ipywidgets" version = "8.0.6" description = "Jupyter interactive widgets" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "ipywidgets-8.0.6-py3-none-any.whl", hash = "sha256:a60bf8d2528997e05ac83fd19ea2fbe65f2e79fbe1b2b35779bdfc46c2941dcc"}, {file = "ipywidgets-8.0.6.tar.gz", hash = "sha256:de7d779f2045d60de9f6c25f653fdae2dba57898e6a1284494b3ba20b6893bb8"}, ] [package.dependencies] ipykernel = ">=4.5.1" ipython = ">=6.1.0" jupyterlab-widgets = ">=3.0.7,<3.1.0" traitlets = ">=4.3.1" widgetsnbextension = ">=4.0.7,<4.1.0" [package.extras] test = ["ipykernel", "jsonschema", "pytest (>=3.6.0)", "pytest-cov", "pytz"] [[package]] name = "isodate" version = "0.6.1" description = "An ISO 8601 date/time/duration parser and formatter" category = "main" optional = true python-versions = "*" files = [ {file = "isodate-0.6.1-py2.py3-none-any.whl", hash = "sha256:0751eece944162659049d35f4f549ed815792b38793f07cf73381c1c87cbed96"}, {file = "isodate-0.6.1.tar.gz", hash = "sha256:48c5881de7e8b0a0d648cb024c8062dc84e7b840ed81e864c7614fd3c127bde9"}, ] [package.dependencies] six = "*" [[package]] name = "isoduration" version = "20.11.0" description = "Operations with ISO 8601 durations" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "isoduration-20.11.0-py3-none-any.whl", hash = "sha256:b2904c2a4228c3d44f409c8ae8e2370eb21a26f7ac2ec5446df141dde3452042"}, {file = "isoduration-20.11.0.tar.gz", hash = "sha256:ac2f9015137935279eac671f94f89eb00584f940f5dc49462a0c4ee692ba1bd9"}, ] [package.dependencies] arrow = ">=0.15.0" [[package]] name = "jaraco-context" version = "4.3.0" description = "Context managers by jaraco" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "jaraco.context-4.3.0-py3-none-any.whl", hash = "sha256:5d9e95ca0faa78943ed66f6bc658dd637430f16125d86988e77844c741ff2f11"}, {file = "jaraco.context-4.3.0.tar.gz", hash = "sha256:4dad2404540b936a20acedec53355bdaea223acb88fd329fa6de9261c941566e"}, ] [package.extras] docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] testing = ["flake8 (<5)", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)"] [[package]] name = "jcloud" version = "0.2.9" description = "Simplify deploying and managing Jina projects on Jina Cloud" category = "main" optional = true python-versions = "*" files = [ {file = "jcloud-0.2.9.tar.gz", hash = "sha256:eaf8da685f8907e153ff752e6a4b945aeff548b8d94dfd650a035d8450ed547e"}, ] [package.dependencies] aiohttp = ">=3.8.0" jina-hubble-sdk = ">=0.26.10" packaging = "*" python-dateutil = "*" python-dotenv = "*" pyyaml = "*" rich = ">=12.0.0" [package.extras] test = ["black (==22.3.0)", "jina (>=3.7.0)", "mock", "pytest", "pytest-asyncio", "pytest-cov", "pytest-custom_exit_code", "pytest-env", "pytest-mock", "pytest-repeat", "pytest-reraise", "pytest-timeout"] [[package]] name = "jedi" version = "0.18.2" description = "An autocompletion tool for Python that can be used for text editors." category = "dev" optional = false python-versions = ">=3.6" files = [ {file = "jedi-0.18.2-py2.py3-none-any.whl", hash = "sha256:203c1fd9d969ab8f2119ec0a3342e0b49910045abe6af0a3ae83a5764d54639e"}, {file = "jedi-0.18.2.tar.gz", hash = "sha256:bae794c30d07f6d910d32a7048af09b5a39ed740918da923c6b780790ebac612"}, ] [package.dependencies] parso = ">=0.8.0,<0.9.0" [package.extras] docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alabaster (==0.7.12)", "babel (==2.9.1)", "chardet (==4.0.0)", "commonmark (==0.8.1)", "docutils (==0.17.1)", "future (==0.18.2)", "idna (==2.10)", "imagesize (==1.2.0)", "mock (==1.0.1)", "packaging (==20.9)", "pyparsing (==2.4.7)", "pytz (==2021.1)", "readthedocs-sphinx-ext (==2.1.4)", "recommonmark (==0.5.0)", "requests (==2.25.1)", "six (==1.15.0)", "snowballstemmer (==2.1.0)", "sphinx (==1.8.5)", "sphinx-rtd-theme (==0.4.3)", "sphinxcontrib-serializinghtml (==1.1.4)", "sphinxcontrib-websupport (==1.2.4)", "urllib3 (==1.26.4)"] qa = ["flake8 (==3.8.3)", "mypy (==0.782)"] testing = ["Django (<3.1)", "attrs", "colorama", "docopt", "pytest (<7.0.0)"] [[package]] name = "jina" version = "3.14.1" description = "Build multimodal AI services via cloud native technologies · Neural Search · Generative AI · MLOps" category = "main" optional = true python-versions = "*" files = [ {file = "jina-3.14.1.tar.gz", hash = "sha256:00b1f5995b13c9a49a2287bd534bd32eb8c05706064752035d569e616a15b411"}, ] [package.dependencies] aiofiles = "*" aiohttp = "*" aiostream = "*" docarray = ">=0.16.4" docker = "*" fastapi = ">=0.76.0" filelock = "*" grpcio = ">=1.46.0,<1.48.1" grpcio-health-checking = ">=1.46.0,<1.48.1" grpcio-reflection = ">=1.46.0,<1.48.1" jcloud = ">=0.0.35" jina-hubble-sdk = ">=0.30.4" numpy = "*" opentelemetry-api = ">=1.12.0" opentelemetry-exporter-otlp = ">=1.12.0" opentelemetry-exporter-otlp-proto-grpc = ">=1.13.0" opentelemetry-exporter-prometheus = ">=1.12.0rc1" opentelemetry-instrumentation-aiohttp-client = ">=0.33b0" opentelemetry-instrumentation-fastapi = ">=0.33b0" opentelemetry-instrumentation-grpc = ">=0.35b0" opentelemetry-sdk = ">=1.14.0" packaging = ">=20.0" pathspec = "*" prometheus_client = ">=0.12.0" protobuf = ">=3.19.0" pydantic = "*" python-multipart = "*" pyyaml = ">=5.3.1" requests = "*" uvicorn = {version = "*", extras = ["standard"]} uvloop = "*" websockets = "*" [package.extras] aiofiles = ["aiofiles"] aiohttp = ["aiohttp"] aiostream = ["aiostream"] all = ["Pillow", "aiofiles", "aiohttp", "aiostream", "black (==22.3.0)", "bs4", "coverage (==6.2)", "docarray (>=0.16.4)", "docker", "fastapi (>=0.76.0)", "filelock", "flaky", "grpcio (>=1.46.0,<1.48.1)", "grpcio-health-checking (>=1.46.0,<1.48.1)", "grpcio-reflection (>=1.46.0,<1.48.1)", "jcloud (>=0.0.35)", "jina-hubble-sdk (>=0.30.4)", "jsonschema", "kubernetes (>=18.20.0)", "mock", "numpy", "opentelemetry-api (>=1.12.0)", "opentelemetry-exporter-otlp (>=1.12.0)", "opentelemetry-exporter-otlp-proto-grpc (>=1.13.0)", "opentelemetry-exporter-prometheus (>=1.12.0rc1)", "opentelemetry-instrumentation-aiohttp-client (>=0.33b0)", "opentelemetry-instrumentation-fastapi (>=0.33b0)", "opentelemetry-instrumentation-grpc (>=0.35b0)", "opentelemetry-sdk (>=1.14.0)", "opentelemetry-test-utils (>=0.33b0)", "packaging (>=20.0)", "pathspec", "portforward (>=0.2.4)", "prometheus-api-client (>=0.5.1)", "prometheus_client (>=0.12.0)", "protobuf (>=3.19.0)", "psutil", "pydantic", "pytest", "pytest-asyncio", "pytest-cov (==3.0.0)", "pytest-custom_exit_code", "pytest-kind (==22.11.1)", "pytest-lazy-fixture", "pytest-mock", "pytest-repeat", "pytest-reraise", "pytest-timeout", "python-multipart", "pyyaml (>=5.3.1)", "requests", "requests-mock", "scipy (>=1.6.1)", "sgqlc", "strawberry-graphql (>=0.96.0)", "tensorflow (>=2.0)", "torch", "uvicorn[standard]", "uvloop", "watchfiles (>=0.18.0)", "websockets"] black = ["black (==22.3.0)"] bs4 = ["bs4"] cicd = ["bs4", "jsonschema", "portforward (>=0.2.4)", "sgqlc", "strawberry-graphql (>=0.96.0)", "tensorflow (>=2.0)", "torch"] core = ["docarray (>=0.16.4)", "grpcio (>=1.46.0,<1.48.1)", "grpcio-health-checking (>=1.46.0,<1.48.1)", "grpcio-reflection (>=1.46.0,<1.48.1)", "jcloud (>=0.0.35)", "jina-hubble-sdk (>=0.30.4)", "numpy", "opentelemetry-api (>=1.12.0)", "opentelemetry-instrumentation-grpc (>=0.35b0)", "packaging (>=20.0)", "protobuf (>=3.19.0)", "pyyaml (>=5.3.1)"] coverage = ["coverage (==6.2)"] devel = ["aiofiles", "aiohttp", "aiostream", "docker", "fastapi (>=0.76.0)", "filelock", "opentelemetry-exporter-otlp (>=1.12.0)", "opentelemetry-exporter-otlp-proto-grpc (>=1.13.0)", "opentelemetry-exporter-prometheus (>=1.12.0rc1)", "opentelemetry-instrumentation-aiohttp-client (>=0.33b0)", "opentelemetry-instrumentation-fastapi (>=0.33b0)", "opentelemetry-sdk (>=1.14.0)", "pathspec", "prometheus_client (>=0.12.0)", "pydantic", "python-multipart", "requests", "sgqlc", "strawberry-graphql (>=0.96.0)", "uvicorn[standard]", "uvloop", "watchfiles (>=0.18.0)", "websockets"] docarray = ["docarray (>=0.16.4)"] docker = ["docker"] fastapi = ["fastapi (>=0.76.0)"] filelock = ["filelock"] flaky = ["flaky"] grpcio = ["grpcio (>=1.46.0,<1.48.1)"] grpcio-health-checking = ["grpcio-health-checking (>=1.46.0,<1.48.1)"] grpcio-reflection = ["grpcio-reflection (>=1.46.0,<1.48.1)"] jcloud = ["jcloud (>=0.0.35)"] jina-hubble-sdk = ["jina-hubble-sdk (>=0.30.4)"] jsonschema = ["jsonschema"] kubernetes = ["kubernetes (>=18.20.0)"] mock = ["mock"] numpy = ["numpy"] opentelemetry-api = ["opentelemetry-api (>=1.12.0)"] opentelemetry-exporter-otlp = ["opentelemetry-exporter-otlp (>=1.12.0)"] opentelemetry-exporter-otlp-proto-grpc = ["opentelemetry-exporter-otlp-proto-grpc (>=1.13.0)"] opentelemetry-exporter-prometheus = ["opentelemetry-exporter-prometheus (>=1.12.0rc1)"] opentelemetry-instrumentation-aiohttp-client = ["opentelemetry-instrumentation-aiohttp-client (>=0.33b0)"] opentelemetry-instrumentation-fastapi = ["opentelemetry-instrumentation-fastapi (>=0.33b0)"] opentelemetry-instrumentation-grpc = ["opentelemetry-instrumentation-grpc (>=0.35b0)"] opentelemetry-sdk = ["opentelemetry-sdk (>=1.14.0)"] opentelemetry-test-utils = ["opentelemetry-test-utils (>=0.33b0)"] packaging = ["packaging (>=20.0)"] pathspec = ["pathspec"] perf = ["opentelemetry-exporter-otlp (>=1.12.0)", "opentelemetry-exporter-otlp-proto-grpc (>=1.13.0)", "opentelemetry-exporter-prometheus (>=1.12.0rc1)", "opentelemetry-instrumentation-aiohttp-client (>=0.33b0)", "opentelemetry-instrumentation-fastapi (>=0.33b0)", "opentelemetry-sdk (>=1.14.0)", "prometheus_client (>=0.12.0)", "uvloop"] pillow = ["Pillow"] portforward = ["portforward (>=0.2.4)"] prometheus-api-client = ["prometheus-api-client (>=0.5.1)"] prometheus-client = ["prometheus_client (>=0.12.0)"] protobuf = ["protobuf (>=3.19.0)"] psutil = ["psutil"] pydantic = ["pydantic"] pytest = ["pytest"] pytest-asyncio = ["pytest-asyncio"] pytest-cov = ["pytest-cov (==3.0.0)"] pytest-custom-exit-code = ["pytest-custom_exit_code"] pytest-kind = ["pytest-kind (==22.11.1)"] pytest-lazy-fixture = ["pytest-lazy-fixture"] pytest-mock = ["pytest-mock"] pytest-repeat = ["pytest-repeat"] pytest-reraise = ["pytest-reraise"] pytest-timeout = ["pytest-timeout"] python-multipart = ["python-multipart"] pyyaml = ["pyyaml (>=5.3.1)"] requests = ["requests"] requests-mock = ["requests-mock"] scipy = ["scipy (>=1.6.1)"] sgqlc = ["sgqlc"] standard = ["aiofiles", "aiohttp", "aiostream", "docker", "fastapi (>=0.76.0)", "filelock", "opentelemetry-exporter-otlp (>=1.12.0)", "opentelemetry-exporter-prometheus (>=1.12.0rc1)", "opentelemetry-instrumentation-aiohttp-client (>=0.33b0)", "opentelemetry-instrumentation-fastapi (>=0.33b0)", "opentelemetry-sdk (>=1.14.0)", "pathspec", "prometheus_client (>=0.12.0)", "pydantic", "python-multipart", "requests", "uvicorn[standard]", "uvloop", "websockets"] standrad = ["opentelemetry-exporter-otlp-proto-grpc (>=1.13.0)"] strawberry-graphql = ["strawberry-graphql (>=0.96.0)"] tensorflow = ["tensorflow (>=2.0)"] test = ["Pillow", "black (==22.3.0)", "coverage (==6.2)", "flaky", "kubernetes (>=18.20.0)", "mock", "opentelemetry-test-utils (>=0.33b0)", "prometheus-api-client (>=0.5.1)", "psutil", "pytest", "pytest-asyncio", "pytest-cov (==3.0.0)", "pytest-custom_exit_code", "pytest-kind (==22.11.1)", "pytest-lazy-fixture", "pytest-mock", "pytest-repeat", "pytest-reraise", "pytest-timeout", "requests-mock", "scipy (>=1.6.1)"] torch = ["torch"] "uvicorn[standard" = ["uvicorn[standard]"] uvloop = ["uvloop"] watchfiles = ["watchfiles (>=0.18.0)"] websockets = ["websockets"] [[package]] name = "jina-hubble-sdk" version = "0.37.1" description = "SDK for Hubble API at Jina AI." category = "main" optional = true python-versions = ">=3.7.0" files = [ {file = "jina-hubble-sdk-0.37.1.tar.gz", hash = "sha256:5b6bd9e13f97c8c77be822e9ae49f87a0f16ef8195011f25db2552006a5ca2a0"}, {file = "jina_hubble_sdk-0.37.1-py3-none-any.whl", hash = "sha256:bc54a60ed120508e231fbed28b0fff394c288312d2ffa865c7865c03dbbbb502"}, ] [package.dependencies] aiohttp = "*" docker = "*" filelock = "*" importlib-metadata = "*" pathspec = "*" python-jose = "*" pyyaml = "*" requests = "*" rich = "*" [package.extras] full = ["aiohttp", "black (==22.3.0)", "docker", "filelock", "flake8 (==4.0.1)", "importlib-metadata", "isort (==5.10.1)", "mock (==4.0.3)", "pathspec", "pytest (==7.0.0)", "pytest-asyncio (==0.19.0)", "pytest-cov (==3.0.0)", "pytest-mock (==3.7.0)", "python-jose", "pyyaml", "requests", "rich"] [[package]] name = "jinja2" version = "3.1.2" description = "A very fast and expressive template engine." category = "main" optional = false python-versions = ">=3.7" files = [ {file = "Jinja2-3.1.2-py3-none-any.whl", hash = "sha256:6088930bfe239f0e6710546ab9c19c9ef35e29792895fed6e6e31a023a182a61"}, {file = "Jinja2-3.1.2.tar.gz", hash = "sha256:31351a702a408a9e7595a8fc6150fc3f43bb6bf7e319770cbc0db9df9437e852"}, ] [package.dependencies] MarkupSafe = ">=2.0" [package.extras] i18n = ["Babel (>=2.7)"] [[package]] name = "jmespath" version = "1.0.1" description = "JSON Matching Expressions" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "jmespath-1.0.1-py3-none-any.whl", hash = "sha256:02e2e4cc71b5bcab88332eebf907519190dd9e6e82107fa7f83b1003a6252980"}, {file = "jmespath-1.0.1.tar.gz", hash = "sha256:90261b206d6defd58fdd5e85f478bf633a2901798906be2ad389150c5c60edbe"}, ] [[package]] name = "joblib" version = "1.2.0" description = "Lightweight pipelining with Python functions" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "joblib-1.2.0-py3-none-any.whl", hash = "sha256:091138ed78f800342968c523bdde947e7a305b8594b910a0fea2ab83c3c6d385"}, {file = "joblib-1.2.0.tar.gz", hash = "sha256:e1cee4a79e4af22881164f218d4311f60074197fb707e082e803b61f6d137018"}, ] [[package]] name = "jq" version = "1.4.1" description = "jq is a lightweight and flexible JSON processor." category = "main" optional = true python-versions = ">=3.5" files = [ {file = "jq-1.4.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1708cad6ee0f173ce38c6ebfc81b98a545b35387ae6471c8d7f9f3a02ffb723e"}, {file = "jq-1.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c94e70e5f0798d87018cd4a58175f4eed2afa08727389a0f3f246bf7e7b98d1e"}, {file = "jq-1.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ddc2c6b55c5461c6f155c4b717927bdd29a83a6356250c4e6016297bcea80498"}, {file = "jq-1.4.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e2e71f5a921542efbea12386ca9d91ea1aeb6bd393681073e4a47a720613715f"}, {file = "jq-1.4.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:b2bf666002d23ee8cf9e619d2d1e46d86a089e028367665386b9d67d22b31ceb"}, {file = "jq-1.4.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e33954fe47e61a533556d38e045ddd7b3fa8a8186a70981462a207ed22594d83"}, {file = "jq-1.4.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:07905774df7706588014ca49789548328e8f66738b004089b3f0c42f7f389405"}, {file = "jq-1.4.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:959b2e677e56dc31c8572c0852ad26d3b351a8a458ca72c96f8cedfcde49419f"}, {file = "jq-1.4.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e74ab69d39b171f1625fa666baa8f9a1ff49e7295047082bcb537fcc2d359dfe"}, {file = "jq-1.4.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:103412f7f35175eb9a1005e4e2067b363dfcdb413d02fa962ddf288b2b16cc54"}, {file = "jq-1.4.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1f70d5e0c6445cc58f720de2ab44c156c69ce6d898c4d4ad04f07815868e31ed"}, {file = "jq-1.4.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:db980118c02321c56b6e0ddf817ad1cbbd8b6c90f4637bdebb695e84ee41a296"}, {file = "jq-1.4.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:9b295a51a9ea7e324aa7ad2ce2cca3d51d7492a525cd7a59773666a07b1cc0f7"}, {file = "jq-1.4.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:82b44474641dcdb07b43267d17f77914595768e9464b31de114e6c229a16ac6e"}, {file = "jq-1.4.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:582c40d7e212e310cf1ed0fddc4590853b64a5e09aed1f740613765c83cff072"}, {file = "jq-1.4.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:75f4269f709f746bf3d52df2c4ebc316d4985e0db97b7c1a293f02202befcdcb"}, {file = "jq-1.4.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1a060fd3172f8833828cb26151ea2f6c0f99f0191109ad580baee7befbdd6e65"}, {file = "jq-1.4.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2bfd61be72ad1e35622a7525e55615954ccfbe6ccadabd7f964e879bb4a53ad6"}, {file = "jq-1.4.1-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:4364c45113407f1316a99bd7a8661aa9304eb3578c80b201917aa8568fa40ee1"}, {file = "jq-1.4.1-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:0a8c37073a335596c645f0260fd3ea7b6141c2fb0115a0b8082252b0169f70c8"}, {file = "jq-1.4.1-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:96e5160f77498389e388e7ba3cd1771abc386b52788c82dee897c95bc87efe6f"}, {file = "jq-1.4.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:fac91eb91bec60dee28e2325f863c43d12ffc904ee72248522c6d0157ae98a54"}, {file = "jq-1.4.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:581e771e7c4aad728f9696ce6faee0f3d535cb0c845a49ac20188d8c7918e19d"}, {file = "jq-1.4.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:31b6526533cbc298ae0c0084d22452fbd3b4600ace488dc961ecf9a1dcb51a83"}, {file = "jq-1.4.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1830a9fd394673758010e41e8d0e00be7126b0ea9f3ede017a555c0c805435bc"}, {file = "jq-1.4.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:6b11e71b4d00928898f494d8e2945b80aab0447a4f2e7fb4603ac32cccc4e28e"}, {file = "jq-1.4.1-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:3e4dd3ba62e284479528a5a00084c2923a08de7cb7fe154036a345190ed5bc24"}, {file = "jq-1.4.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:7dfa6ff7424339ed361d911a13635e7c2f888e18e42920a8603e8806d85fdfdc"}, {file = "jq-1.4.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:419f8d28e737b96476ac9ba66e000e4d93e54dd8003f1374269315086b98d822"}, {file = "jq-1.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:de27a580663825b493b061682b59704f29a748011f2e5bc4701b34f8f17ed405"}, {file = "jq-1.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ebfec7c54b3252ec59663a21885e97d49b1dd455d8db0223bb77073b9b248fc3"}, {file = "jq-1.4.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:56a21666412dd1a6b8306475d0ec6e1eba7965100b3dfd6ecf1eb537aabec513"}, {file = "jq-1.4.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:f97b1e2582d64b65069f2d8b5e08f94f1d0998233c98c0d6edcf0a610262cd3a"}, {file = "jq-1.4.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:33b5fcbf32c24557dd638e59b919f2ecfa98e65cf4b96f63c327ed10ea24495d"}, {file = "jq-1.4.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:a16fb7e2e0942b4661a8d210e9ac3292b5f021abbcddbbcb6b783f9eb5d7a6cb"}, {file = "jq-1.4.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4c4d6b9f30556d5f17552ac2ef8563872a2c0271cc7c8789c87546270135ae15"}, {file = "jq-1.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3f82346544116503cbdfd56ac5e90f837c2b96d69b64a3444df2770156dc8d64"}, {file = "jq-1.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1799792f34ca8441fb1c4b3cf05c644ef2a4b28ad07bae65b1c7cde8f26721b4"}, {file = "jq-1.4.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2403bfcaedbe860ffaa3258b65ad3dcf72d2d97c59acf6f8fd5f663a1b0a183a"}, {file = "jq-1.4.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:c59ebcd4f0bb99d5d69085905c80d8ebf95df522750d95e33985121daa4e1de4"}, {file = "jq-1.4.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:aa7fadeca796eb385b93217fb65ac2c54150ac3fcea2722c0c76390f0d6b2681"}, {file = "jq-1.4.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:11fb7e41c4931127cfe5c53b1eb812d797ed7d47a8ab22f6cb294cf470d5038b"}, {file = "jq-1.4.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:fc8f67f7b8140e51bd291686055d63f62b60fa3bea861265309f54fd74f5517d"}, {file = "jq-1.4.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:30ce02d9c01ffea7c92b4ec006b114c4047816f15016173dced3fc046760b854"}, {file = "jq-1.4.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bbbfdfbb0bc2d615edfa8213720423885c022a827ea3c8e8593bce98b6086c99"}, {file = "jq-1.4.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9053a8e9f3636d367e8bb0841a62d839f2116e6965096d95c38a8f9da57eed66"}, {file = "jq-1.4.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:3ecdffb3abc9f1611465b761eebcdb3008ae57946a86a99e76bc6b09fe611f29"}, {file = "jq-1.4.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e5f0688f98dedb49a5c680b961a4f453fe84b34795aa3203eec77f306fa823d5"}, {file = "jq-1.4.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:342f901a9330d12d2c2baf17684b77ae198fade920d061bb844d1b3733097792"}, {file = "jq-1.4.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:761713740c19dd0e0da8b6eaea7f588df2af64d8e32d1157a3a05028b0fec2b3"}, {file = "jq-1.4.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:6343d929e48ba4d75febcd987752931dc7a70e1b2f6f17b74baf3d5179dfb6a5"}, {file = "jq-1.4.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ec82f8925f7a88547cd302f2b479c81af17468dbd3473d688c3714a264f90c0"}, {file = "jq-1.4.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95edc023b97d1a44fd1e8243119a3532bc0e7d121dfdf2722471ec36763b85aa"}, {file = "jq-1.4.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cc4dd73782c039c66b25fc103b07fd46bac5d2f5a62dba29b45ae97ca88ba988"}, {file = "jq-1.4.1.tar.gz", hash = "sha256:52284ee3cb51670e6f537b0ec813654c064c1c0705bd910097ea0fe17313516d"}, ] [[package]] name = "jsonlines" version = "3.1.0" description = "Library with helpers for the jsonlines file format" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "jsonlines-3.1.0-py3-none-any.whl", hash = "sha256:632f5e38f93dfcb1ac8c4e09780b92af3a55f38f26e7c47ae85109d420b6ad39"}, {file = "jsonlines-3.1.0.tar.gz", hash = "sha256:2579cb488d96f815b0eb81629e3e6b0332da0962a18fa3532958f7ba14a5c37f"}, ] [package.dependencies] attrs = ">=19.2.0" [[package]] name = "jsonpointer" version = "2.3" description = "Identify specific nodes in a JSON document (RFC 6901)" category = "dev" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ {file = "jsonpointer-2.3-py2.py3-none-any.whl", hash = "sha256:51801e558539b4e9cd268638c078c6c5746c9ac96bc38152d443400e4f3793e9"}, {file = "jsonpointer-2.3.tar.gz", hash = "sha256:97cba51526c829282218feb99dab1b1e6bdf8efd1c43dc9d57be093c0d69c99a"}, ] [[package]] name = "jsonschema" version = "4.17.3" description = "An implementation of JSON Schema validation for Python" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "jsonschema-4.17.3-py3-none-any.whl", hash = "sha256:a870ad254da1a8ca84b6a2905cac29d265f805acc57af304784962a2aa6508f6"}, {file = "jsonschema-4.17.3.tar.gz", hash = "sha256:0f864437ab8b6076ba6707453ef8f98a6a0d512a80e93f8abdb676f737ecb60d"}, ] [package.dependencies] attrs = ">=17.4.0" fqdn = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} idna = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} importlib-resources = {version = ">=1.4.0", markers = "python_version < \"3.9\""} isoduration = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} jsonpointer = {version = ">1.13", optional = true, markers = "extra == \"format-nongpl\""} pkgutil-resolve-name = {version = ">=1.3.10", markers = "python_version < \"3.9\""} pyrsistent = ">=0.14.0,<0.17.0 || >0.17.0,<0.17.1 || >0.17.1,<0.17.2 || >0.17.2" rfc3339-validator = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} rfc3986-validator = {version = ">0.1.0", optional = true, markers = "extra == \"format-nongpl\""} uri-template = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} webcolors = {version = ">=1.11", optional = true, markers = "extra == \"format-nongpl\""} [package.extras] format = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3987", "uri-template", "webcolors (>=1.11)"] format-nongpl = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3986-validator (>0.1.0)", "uri-template", "webcolors (>=1.11)"] [[package]] name = "jupyter" version = "1.0.0" description = "Jupyter metapackage. Install all the Jupyter components in one go." category = "dev" optional = false python-versions = "*" files = [ {file = "jupyter-1.0.0-py2.py3-none-any.whl", hash = "sha256:5b290f93b98ffbc21c0c7e749f054b3267782166d72fa5e3ed1ed4eaf34a2b78"}, {file = "jupyter-1.0.0.tar.gz", hash = "sha256:d9dc4b3318f310e34c82951ea5d6683f67bed7def4b259fafbfe4f1beb1d8e5f"}, {file = "jupyter-1.0.0.zip", hash = "sha256:3e1f86076bbb7c8c207829390305a2b1fe836d471ed54be66a3b8c41e7f46cc7"}, ] [package.dependencies] ipykernel = "*" ipywidgets = "*" jupyter-console = "*" nbconvert = "*" notebook = "*" qtconsole = "*" [[package]] name = "jupyter-cache" version = "0.6.1" description = "A defined interface for working with a cache of jupyter notebooks." category = "dev" optional = false python-versions = "~=3.8" files = [ {file = "jupyter-cache-0.6.1.tar.gz", hash = "sha256:26f83901143edf4af2f3ff5a91e2d2ad298e46e2cee03c8071d37a23a63ccbfc"}, {file = "jupyter_cache-0.6.1-py3-none-any.whl", hash = "sha256:2fce7d4975805c77f75bdfc1bc2e82bc538b8e5b1af27f2f5e06d55b9f996a82"}, ] [package.dependencies] attrs = "*" click = "*" importlib-metadata = "*" nbclient = ">=0.2,<0.8" nbformat = "*" pyyaml = "*" sqlalchemy = ">=1.3.12,<3" tabulate = "*" [package.extras] cli = ["click-log"] code-style = ["pre-commit (>=2.12,<4.0)"] rtd = ["ipykernel", "jupytext", "myst-nb", "nbdime", "sphinx-book-theme", "sphinx-copybutton"] testing = ["coverage", "ipykernel", "jupytext", "matplotlib", "nbdime", "nbformat (>=5.1)", "numpy", "pandas", "pytest (>=6,<8)", "pytest-cov", "pytest-regressions", "sympy"] [[package]] name = "jupyter-client" version = "8.2.0" description = "Jupyter protocol implementation and client libraries" category = "dev" optional = false python-versions = ">=3.8" files = [ {file = "jupyter_client-8.2.0-py3-none-any.whl", hash = "sha256:b18219aa695d39e2ad570533e0d71fb7881d35a873051054a84ee2a17c4b7389"}, {file = "jupyter_client-8.2.0.tar.gz", hash = "sha256:9fe233834edd0e6c0aa5f05ca2ab4bdea1842bfd2d8a932878212fc5301ddaf0"}, ] [package.dependencies] importlib-metadata = {version = ">=4.8.3", markers = "python_version < \"3.10\""} jupyter-core = ">=4.12,<5.0.0 || >=5.1.0" python-dateutil = ">=2.8.2" pyzmq = ">=23.0" tornado = ">=6.2" traitlets = ">=5.3" [package.extras] docs = ["ipykernel", "myst-parser", "pydata-sphinx-theme", "sphinx (>=4)", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pytest", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] [[package]] name = "jupyter-console" version = "6.6.3" description = "Jupyter terminal console" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "jupyter_console-6.6.3-py3-none-any.whl", hash = "sha256:309d33409fcc92ffdad25f0bcdf9a4a9daa61b6f341177570fdac03de5352485"}, {file = "jupyter_console-6.6.3.tar.gz", hash = "sha256:566a4bf31c87adbfadf22cdf846e3069b59a71ed5da71d6ba4d8aaad14a53539"}, ] [package.dependencies] ipykernel = ">=6.14" ipython = "*" jupyter-client = ">=7.0.0" jupyter-core = ">=4.12,<5.0.0 || >=5.1.0" prompt-toolkit = ">=3.0.30" pygments = "*" pyzmq = ">=17" traitlets = ">=5.4" [package.extras] test = ["flaky", "pexpect", "pytest"] [[package]] name = "jupyter-core" version = "5.3.0" description = "Jupyter core package. A base package on which Jupyter projects rely." category = "dev" optional = false python-versions = ">=3.8" files = [ {file = "jupyter_core-5.3.0-py3-none-any.whl", hash = "sha256:d4201af84559bc8c70cead287e1ab94aeef3c512848dde077b7684b54d67730d"}, {file = "jupyter_core-5.3.0.tar.gz", hash = "sha256:6db75be0c83edbf1b7c9f91ec266a9a24ef945da630f3120e1a0046dc13713fc"}, ] [package.dependencies] platformdirs = ">=2.5" pywin32 = {version = ">=300", markers = "sys_platform == \"win32\" and platform_python_implementation != \"PyPy\""} traitlets = ">=5.3" [package.extras] docs = ["myst-parser", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "traitlets"] test = ["ipykernel", "pre-commit", "pytest", "pytest-cov", "pytest-timeout"] [[package]] name = "jupyter-events" version = "0.6.3" description = "Jupyter Event System library" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "jupyter_events-0.6.3-py3-none-any.whl", hash = "sha256:57a2749f87ba387cd1bfd9b22a0875b889237dbf2edc2121ebb22bde47036c17"}, {file = "jupyter_events-0.6.3.tar.gz", hash = "sha256:9a6e9995f75d1b7146b436ea24d696ce3a35bfa8bfe45e0c33c334c79464d0b3"}, ] [package.dependencies] jsonschema = {version = ">=3.2.0", extras = ["format-nongpl"]} python-json-logger = ">=2.0.4" pyyaml = ">=5.3" rfc3339-validator = "*" rfc3986-validator = ">=0.1.1" traitlets = ">=5.3" [package.extras] cli = ["click", "rich"] docs = ["jupyterlite-sphinx", "myst-parser", "pydata-sphinx-theme", "sphinxcontrib-spelling"] test = ["click", "coverage", "pre-commit", "pytest (>=7.0)", "pytest-asyncio (>=0.19.0)", "pytest-console-scripts", "pytest-cov", "rich"] [[package]] name = "jupyter-server" version = "2.5.0" description = "The backend—i.e. core services, APIs, and REST endpoints—to Jupyter web applications." category = "dev" optional = false python-versions = ">=3.8" files = [ {file = "jupyter_server-2.5.0-py3-none-any.whl", hash = "sha256:e6bc1e9e96d7c55b9ce9699ff6cb9a910581fe7349e27c40389acb67632e24c0"}, {file = "jupyter_server-2.5.0.tar.gz", hash = "sha256:9fde612791f716fd34d610cd939704a9639643744751ba66e7ee8fdc9cead07e"}, ] [package.dependencies] anyio = ">=3.1.0" argon2-cffi = "*" jinja2 = "*" jupyter-client = ">=7.4.4" jupyter-core = ">=4.12,<5.0.0 || >=5.1.0" jupyter-events = ">=0.4.0" jupyter-server-terminals = "*" nbconvert = ">=6.4.4" nbformat = ">=5.3.0" packaging = "*" prometheus-client = "*" pywinpty = {version = "*", markers = "os_name == \"nt\""} pyzmq = ">=24" send2trash = "*" terminado = ">=0.8.3" tornado = ">=6.2.0" traitlets = ">=5.6.0" websocket-client = "*" [package.extras] docs = ["docutils (<0.20)", "ipykernel", "jinja2", "jupyter-client", "jupyter-server", "mistune (<1.0.0)", "myst-parser", "nbformat", "prometheus-client", "pydata-sphinx-theme", "send2trash", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-openapi", "sphinxcontrib-spelling", "sphinxemoji", "tornado", "typing-extensions"] test = ["ipykernel", "pre-commit", "pytest (>=7.0)", "pytest-console-scripts", "pytest-jupyter[server] (>=0.4)", "pytest-timeout", "requests"] [[package]] name = "jupyter-server-terminals" version = "0.4.4" description = "A Jupyter Server Extension Providing Terminals." category = "dev" optional = false python-versions = ">=3.8" files = [ {file = "jupyter_server_terminals-0.4.4-py3-none-any.whl", hash = "sha256:75779164661cec02a8758a5311e18bb8eb70c4e86c6b699403100f1585a12a36"}, {file = "jupyter_server_terminals-0.4.4.tar.gz", hash = "sha256:57ab779797c25a7ba68e97bcfb5d7740f2b5e8a83b5e8102b10438041a7eac5d"}, ] [package.dependencies] pywinpty = {version = ">=2.0.3", markers = "os_name == \"nt\""} terminado = ">=0.8.3" [package.extras] docs = ["jinja2", "jupyter-server", "mistune (<3.0)", "myst-parser", "nbformat", "packaging", "pydata-sphinx-theme", "sphinxcontrib-github-alt", "sphinxcontrib-openapi", "sphinxcontrib-spelling", "sphinxemoji", "tornado"] test = ["coverage", "jupyter-server (>=2.0.0)", "pytest (>=7.0)", "pytest-cov", "pytest-jupyter[server] (>=0.5.3)", "pytest-timeout"] [[package]] name = "jupyterlab-pygments" version = "0.2.2" description = "Pygments theme using JupyterLab CSS variables" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "jupyterlab_pygments-0.2.2-py2.py3-none-any.whl", hash = "sha256:2405800db07c9f770863bcf8049a529c3dd4d3e28536638bd7c1c01d2748309f"}, {file = "jupyterlab_pygments-0.2.2.tar.gz", hash = "sha256:7405d7fde60819d905a9fa8ce89e4cd830e318cdad22a0030f7a901da705585d"}, ] [[package]] name = "jupyterlab-widgets" version = "3.0.7" description = "Jupyter interactive widgets for JupyterLab" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "jupyterlab_widgets-3.0.7-py3-none-any.whl", hash = "sha256:c73f8370338ec19f1bec47254752d6505b03601cbd5a67e6a0b184532f73a459"}, {file = "jupyterlab_widgets-3.0.7.tar.gz", hash = "sha256:c3a50ed5bf528a0c7a869096503af54702f86dda1db469aee1c92dc0c01b43ca"}, ] [[package]] name = "keras" version = "2.11.0" description = "Deep learning for humans." category = "main" optional = true python-versions = ">=3.7" files = [ {file = "keras-2.11.0-py2.py3-none-any.whl", hash = "sha256:38c6fff0ea9a8b06a2717736565c92a73c8cd9b1c239e7125ccb188b7848f65e"}, ] [[package]] name = "lancedb" version = "0.1.2" description = "lancedb" category = "main" optional = true python-versions = ">=3.8" files = [ {file = "lancedb-0.1.2-py3-none-any.whl", hash = "sha256:aa2baea7d16caeaa4c720c25ab46b5c5d88d8833486724e5a132e5b6cf392663"}, {file = "lancedb-0.1.2.tar.gz", hash = "sha256:d561568dacaa4fcdf5aac262bdb807004bb0dde550a44d43f7cdb4f95956b2bf"}, ] [package.dependencies] pylance = ">=0.4.6" ratelimiter = "*" retry = "*" tqdm = "*" [package.extras] dev = ["black", "pre-commit", "ruff"] docs = ["mkdocs", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]"] tests = ["pytest"] [[package]] name = "langcodes" version = "3.3.0" description = "Tools for labeling human languages with IETF language tags" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "langcodes-3.3.0-py3-none-any.whl", hash = "sha256:4d89fc9acb6e9c8fdef70bcdf376113a3db09b67285d9e1d534de6d8818e7e69"}, {file = "langcodes-3.3.0.tar.gz", hash = "sha256:794d07d5a28781231ac335a1561b8442f8648ca07cd518310aeb45d6f0807ef6"}, ] [package.extras] data = ["language-data (>=1.1,<2.0)"] [[package]] name = "langkit" version = "0.0.1b2" description = "A collection of text metric udfs for whylogs profiling and monitoring in WhyLabs" category = "main" optional = true python-versions = ">=3.8,<4.0" files = [ {file = "langkit-0.0.1b2-py3-none-any.whl", hash = "sha256:8059d48bb1bbf90da5f5103585dece57fa09d156b0490f8a6c88277789a19021"}, {file = "langkit-0.0.1b2.tar.gz", hash = "sha256:c2dd7cf93921dc77d6c7516746351fa503684f3be35392c187f4418a0748ef50"}, ] [package.dependencies] datasets = "*" nltk = ">=3.8.1,<4.0.0" openai = "*" pandas = "*" sentence-transformers = ">=2.2.2,<3.0.0" textstat = ">=0.7.3,<0.8.0" whylogs = ">=1.1.42.dev3,<2.0.0" [package.extras] io = ["torch"] [[package]] name = "lark" version = "1.1.5" description = "a modern parsing library" category = "main" optional = false python-versions = "*" files = [ {file = "lark-1.1.5-py3-none-any.whl", hash = "sha256:8476f9903e93fbde4f6c327f74d79e9b4bd0ed9294c5dfa3164ab8c581b5de2a"}, {file = "lark-1.1.5.tar.gz", hash = "sha256:4b534eae1f9af5b4ea000bea95776350befe1981658eea3820a01c37e504bb4d"}, ] [package.extras] atomic-cache = ["atomicwrites"] nearley = ["js2py"] regex = ["regex"] [[package]] name = "libclang" version = "16.0.0" description = "Clang Python Bindings, mirrored from the official LLVM repo: https://github.com/llvm/llvm-project/tree/main/clang/bindings/python, to make the installation process easier." category = "main" optional = true python-versions = "*" files = [ {file = "libclang-16.0.0-py2.py3-none-macosx_10_9_x86_64.whl", hash = "sha256:65258a6bb3e7dc31dc9b26f8d42f53c9d3b959643ade291fcd1aef4855303ca6"}, {file = "libclang-16.0.0-py2.py3-none-macosx_11_0_arm64.whl", hash = "sha256:af55a4aa86fdfe6b2ec68bc8cfe5fdac6c448d591ca7648be86ca17099b41ca8"}, {file = "libclang-16.0.0-py2.py3-none-manylinux2010_x86_64.whl", hash = "sha256:a043138caaf2cb076ebb060c6281ec95612926645d425c691991fc9df00e8a24"}, {file = "libclang-16.0.0-py2.py3-none-manylinux2014_aarch64.whl", hash = "sha256:eb59652cb0559c0e71784ff4c8ba24c14644becc907b1446563ecfaa622d523b"}, {file = "libclang-16.0.0-py2.py3-none-manylinux2014_armv7l.whl", hash = "sha256:7b6686b67a0daa84b4c614bcc119578329fc4fbb52b919565b7376b507c4793b"}, {file = "libclang-16.0.0-py2.py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:2adce42ae652f312245b8f4eda6f30b4076fb61f7619f2dfd0a0c31dee4c32b9"}, {file = "libclang-16.0.0-py2.py3-none-win_amd64.whl", hash = "sha256:ee20bf93e3dd330f71fc50cdbf13b92ced0aec8e540be64251db53502a9b33f7"}, {file = "libclang-16.0.0-py2.py3-none-win_arm64.whl", hash = "sha256:bf4628fc4da7a1dd06a244f9b8e121c5ec68076a763c59d6b13cbb103acc935b"}, ] [[package]] name = "linkchecker" version = "10.2.1" description = "check links in web documents or full websites" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "LinkChecker-10.2.1-py3-none-any.whl", hash = "sha256:5438496290826f5e2f4a2041f11482608378150b6c2d05ca8f94f460b7cb7c9e"}, {file = "LinkChecker-10.2.1.tar.gz", hash = "sha256:97eae069ccfe892a18e380c7f4762dfe3f352e87c442ef6124e8c60b887cddcd"}, ] [package.dependencies] beautifulsoup4 = ">=4.8.1" dnspython = ">=2.0" requests = ">=2.20" [[package]] name = "livereload" version = "2.6.3" description = "Python LiveReload is an awesome tool for web developers" category = "dev" optional = false python-versions = "*" files = [ {file = "livereload-2.6.3-py2.py3-none-any.whl", hash = "sha256:ad4ac6f53b2d62bb6ce1a5e6e96f1f00976a32348afedcb4b6d68df2a1d346e4"}, {file = "livereload-2.6.3.tar.gz", hash = "sha256:776f2f865e59fde56490a56bcc6773b6917366bce0c267c60ee8aaf1a0959869"}, ] [package.dependencies] six = "*" tornado = {version = "*", markers = "python_version > \"2.7\""} [[package]] name = "loguru" version = "0.7.0" description = "Python logging made (stupidly) simple" category = "main" optional = false python-versions = ">=3.5" files = [ {file = "loguru-0.7.0-py3-none-any.whl", hash = "sha256:b93aa30099fa6860d4727f1b81f8718e965bb96253fa190fab2077aaad6d15d3"}, {file = "loguru-0.7.0.tar.gz", hash = "sha256:1612053ced6ae84d7959dd7d5e431a0532642237ec21f7fd83ac73fe539e03e1"}, ] [package.dependencies] colorama = {version = ">=0.3.4", markers = "sys_platform == \"win32\""} win32-setctime = {version = ">=1.0.0", markers = "sys_platform == \"win32\""} [package.extras] dev = ["Sphinx (==5.3.0)", "colorama (==0.4.5)", "colorama (==0.4.6)", "freezegun (==1.1.0)", "freezegun (==1.2.2)", "mypy (==v0.910)", "mypy (==v0.971)", "mypy (==v0.990)", "pre-commit (==3.2.1)", "pytest (==6.1.2)", "pytest (==7.2.1)", "pytest-cov (==2.12.1)", "pytest-cov (==4.0.0)", "pytest-mypy-plugins (==1.10.1)", "pytest-mypy-plugins (==1.9.3)", "sphinx-autobuild (==2021.3.14)", "sphinx-rtd-theme (==1.2.0)", "tox (==3.27.1)", "tox (==4.4.6)"] [[package]] name = "lxml" version = "4.9.2" description = "Powerful and Pythonic XML processing library combining libxml2/libxslt with the ElementTree API." category = "main" optional = true python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, != 3.4.*" files = [ {file = "lxml-4.9.2-cp27-cp27m-macosx_10_15_x86_64.whl", hash = "sha256:76cf573e5a365e790396a5cc2b909812633409306c6531a6877c59061e42c4f2"}, {file = "lxml-4.9.2-cp27-cp27m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b1f42b6921d0e81b1bcb5e395bc091a70f41c4d4e55ba99c6da2b31626c44892"}, {file = "lxml-4.9.2-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:9f102706d0ca011de571de32c3247c6476b55bb6bc65a20f682f000b07a4852a"}, {file = "lxml-4.9.2-cp27-cp27m-win32.whl", hash = "sha256:8d0b4612b66ff5d62d03bcaa043bb018f74dfea51184e53f067e6fdcba4bd8de"}, {file = "lxml-4.9.2-cp27-cp27m-win_amd64.whl", hash = "sha256:4c8f293f14abc8fd3e8e01c5bd86e6ed0b6ef71936ded5bf10fe7a5efefbaca3"}, {file = "lxml-4.9.2-cp27-cp27mu-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2899456259589aa38bfb018c364d6ae7b53c5c22d8e27d0ec7609c2a1ff78b50"}, {file = "lxml-4.9.2-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:6749649eecd6a9871cae297bffa4ee76f90b4504a2a2ab528d9ebe912b101975"}, {file = "lxml-4.9.2-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:a08cff61517ee26cb56f1e949cca38caabe9ea9fbb4b1e10a805dc39844b7d5c"}, {file = "lxml-4.9.2-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl", hash = "sha256:85cabf64adec449132e55616e7ca3e1000ab449d1d0f9d7f83146ed5bdcb6d8a"}, {file = "lxml-4.9.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl", hash = "sha256:8340225bd5e7a701c0fa98284c849c9b9fc9238abf53a0ebd90900f25d39a4e4"}, {file = "lxml-4.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:1ab8f1f932e8f82355e75dda5413a57612c6ea448069d4fb2e217e9a4bed13d4"}, {file = "lxml-4.9.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:699a9af7dffaf67deeae27b2112aa06b41c370d5e7633e0ee0aea2e0b6c211f7"}, {file = "lxml-4.9.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b9cc34af337a97d470040f99ba4282f6e6bac88407d021688a5d585e44a23184"}, {file = "lxml-4.9.2-cp310-cp310-win32.whl", hash = "sha256:d02a5399126a53492415d4906ab0ad0375a5456cc05c3fc0fc4ca11771745cda"}, {file = "lxml-4.9.2-cp310-cp310-win_amd64.whl", hash = "sha256:a38486985ca49cfa574a507e7a2215c0c780fd1778bb6290c21193b7211702ab"}, {file = "lxml-4.9.2-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl", hash = "sha256:c83203addf554215463b59f6399835201999b5e48019dc17f182ed5ad87205c9"}, {file = "lxml-4.9.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl", hash = "sha256:2a87fa548561d2f4643c99cd13131acb607ddabb70682dcf1dff5f71f781a4bf"}, {file = "lxml-4.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:d6b430a9938a5a5d85fc107d852262ddcd48602c120e3dbb02137c83d212b380"}, {file = "lxml-4.9.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:3efea981d956a6f7173b4659849f55081867cf897e719f57383698af6f618a92"}, {file = "lxml-4.9.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:df0623dcf9668ad0445e0558a21211d4e9a149ea8f5666917c8eeec515f0a6d1"}, {file = "lxml-4.9.2-cp311-cp311-win32.whl", hash = "sha256:da248f93f0418a9e9d94b0080d7ebc407a9a5e6d0b57bb30db9b5cc28de1ad33"}, {file = "lxml-4.9.2-cp311-cp311-win_amd64.whl", hash = "sha256:3818b8e2c4b5148567e1b09ce739006acfaa44ce3156f8cbbc11062994b8e8dd"}, {file = "lxml-4.9.2-cp35-cp35m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ca989b91cf3a3ba28930a9fc1e9aeafc2a395448641df1f387a2d394638943b0"}, {file = "lxml-4.9.2-cp35-cp35m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:822068f85e12a6e292803e112ab876bc03ed1f03dddb80154c395f891ca6b31e"}, {file = "lxml-4.9.2-cp35-cp35m-win32.whl", hash = "sha256:be7292c55101e22f2a3d4d8913944cbea71eea90792bf914add27454a13905df"}, {file = "lxml-4.9.2-cp35-cp35m-win_amd64.whl", hash = "sha256:998c7c41910666d2976928c38ea96a70d1aa43be6fe502f21a651e17483a43c5"}, {file = "lxml-4.9.2-cp36-cp36m-macosx_10_15_x86_64.whl", hash = "sha256:b26a29f0b7fc6f0897f043ca366142d2b609dc60756ee6e4e90b5f762c6adc53"}, {file = "lxml-4.9.2-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl", hash = "sha256:ab323679b8b3030000f2be63e22cdeea5b47ee0abd2d6a1dc0c8103ddaa56cd7"}, {file = "lxml-4.9.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:689bb688a1db722485e4610a503e3e9210dcc20c520b45ac8f7533c837be76fe"}, {file = "lxml-4.9.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:f49e52d174375a7def9915c9f06ec4e569d235ad428f70751765f48d5926678c"}, {file = "lxml-4.9.2-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:36c3c175d34652a35475a73762b545f4527aec044910a651d2bf50de9c3352b1"}, {file = "lxml-4.9.2-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:a35f8b7fa99f90dd2f5dc5a9fa12332642f087a7641289ca6c40d6e1a2637d8e"}, {file = "lxml-4.9.2-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:58bfa3aa19ca4c0f28c5dde0ff56c520fbac6f0daf4fac66ed4c8d2fb7f22e74"}, {file = "lxml-4.9.2-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:bc718cd47b765e790eecb74d044cc8d37d58562f6c314ee9484df26276d36a38"}, {file = "lxml-4.9.2-cp36-cp36m-win32.whl", hash = "sha256:d5bf6545cd27aaa8a13033ce56354ed9e25ab0e4ac3b5392b763d8d04b08e0c5"}, {file = "lxml-4.9.2-cp36-cp36m-win_amd64.whl", hash = "sha256:3ab9fa9d6dc2a7f29d7affdf3edebf6ece6fb28a6d80b14c3b2fb9d39b9322c3"}, {file = "lxml-4.9.2-cp37-cp37m-macosx_10_15_x86_64.whl", hash = "sha256:05ca3f6abf5cf78fe053da9b1166e062ade3fa5d4f92b4ed688127ea7d7b1d03"}, {file = "lxml-4.9.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl", hash = "sha256:a5da296eb617d18e497bcf0a5c528f5d3b18dadb3619fbdadf4ed2356ef8d941"}, {file = "lxml-4.9.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl", hash = "sha256:04876580c050a8c5341d706dd464ff04fd597095cc8c023252566a8826505726"}, {file = "lxml-4.9.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:c9ec3eaf616d67db0764b3bb983962b4f385a1f08304fd30c7283954e6a7869b"}, {file = "lxml-4.9.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2a29ba94d065945944016b6b74e538bdb1751a1db6ffb80c9d3c2e40d6fa9894"}, {file = "lxml-4.9.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:a82d05da00a58b8e4c0008edbc8a4b6ec5a4bc1e2ee0fb6ed157cf634ed7fa45"}, {file = "lxml-4.9.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:223f4232855ade399bd409331e6ca70fb5578efef22cf4069a6090acc0f53c0e"}, {file = "lxml-4.9.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:d17bc7c2ccf49c478c5bdd447594e82692c74222698cfc9b5daae7ae7e90743b"}, {file = "lxml-4.9.2-cp37-cp37m-win32.whl", hash = "sha256:b64d891da92e232c36976c80ed7ebb383e3f148489796d8d31a5b6a677825efe"}, {file = "lxml-4.9.2-cp37-cp37m-win_amd64.whl", hash = "sha256:a0a336d6d3e8b234a3aae3c674873d8f0e720b76bc1d9416866c41cd9500ffb9"}, {file = "lxml-4.9.2-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:da4dd7c9c50c059aba52b3524f84d7de956f7fef88f0bafcf4ad7dde94a064e8"}, {file = "lxml-4.9.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl", hash = "sha256:821b7f59b99551c69c85a6039c65b75f5683bdc63270fec660f75da67469ca24"}, {file = "lxml-4.9.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl", hash = "sha256:e5168986b90a8d1f2f9dc1b841467c74221bd752537b99761a93d2d981e04889"}, {file = "lxml-4.9.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:8e20cb5a47247e383cf4ff523205060991021233ebd6f924bca927fcf25cf86f"}, {file = "lxml-4.9.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:13598ecfbd2e86ea7ae45ec28a2a54fb87ee9b9fdb0f6d343297d8e548392c03"}, {file = "lxml-4.9.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:880bbbcbe2fca64e2f4d8e04db47bcdf504936fa2b33933efd945e1b429bea8c"}, {file = "lxml-4.9.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:7d2278d59425777cfcb19735018d897ca8303abe67cc735f9f97177ceff8027f"}, {file = "lxml-4.9.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:5344a43228767f53a9df6e5b253f8cdca7dfc7b7aeae52551958192f56d98457"}, {file = "lxml-4.9.2-cp38-cp38-win32.whl", hash = "sha256:925073b2fe14ab9b87e73f9a5fde6ce6392da430f3004d8b72cc86f746f5163b"}, {file = "lxml-4.9.2-cp38-cp38-win_amd64.whl", hash = "sha256:9b22c5c66f67ae00c0199f6055705bc3eb3fcb08d03d2ec4059a2b1b25ed48d7"}, {file = "lxml-4.9.2-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:5f50a1c177e2fa3ee0667a5ab79fdc6b23086bc8b589d90b93b4bd17eb0e64d1"}, {file = "lxml-4.9.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl", hash = "sha256:090c6543d3696cbe15b4ac6e175e576bcc3f1ccfbba970061b7300b0c15a2140"}, {file = "lxml-4.9.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl", hash = "sha256:63da2ccc0857c311d764e7d3d90f429c252e83b52d1f8f1d1fe55be26827d1f4"}, {file = "lxml-4.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:5b4545b8a40478183ac06c073e81a5ce4cf01bf1734962577cf2bb569a5b3bbf"}, {file = "lxml-4.9.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2e430cd2824f05f2d4f687701144556646bae8f249fd60aa1e4c768ba7018947"}, {file = "lxml-4.9.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:6804daeb7ef69e7b36f76caddb85cccd63d0c56dedb47555d2fc969e2af6a1a5"}, {file = "lxml-4.9.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a6e441a86553c310258aca15d1c05903aaf4965b23f3bc2d55f200804e005ee5"}, {file = "lxml-4.9.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ca34efc80a29351897e18888c71c6aca4a359247c87e0b1c7ada14f0ab0c0fb2"}, {file = "lxml-4.9.2-cp39-cp39-win32.whl", hash = "sha256:6b418afe5df18233fc6b6093deb82a32895b6bb0b1155c2cdb05203f583053f1"}, {file = "lxml-4.9.2-cp39-cp39-win_amd64.whl", hash = "sha256:f1496ea22ca2c830cbcbd473de8f114a320da308438ae65abad6bab7867fe38f"}, {file = "lxml-4.9.2-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl", hash = "sha256:b264171e3143d842ded311b7dccd46ff9ef34247129ff5bf5066123c55c2431c"}, {file = "lxml-4.9.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:0dc313ef231edf866912e9d8f5a042ddab56c752619e92dfd3a2c277e6a7299a"}, {file = "lxml-4.9.2-pp38-pypy38_pp73-macosx_10_15_x86_64.whl", hash = "sha256:16efd54337136e8cd72fb9485c368d91d77a47ee2d42b057564aae201257d419"}, {file = "lxml-4.9.2-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl", hash = "sha256:0f2b1e0d79180f344ff9f321327b005ca043a50ece8713de61d1cb383fb8ac05"}, {file = "lxml-4.9.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:7b770ed79542ed52c519119473898198761d78beb24b107acf3ad65deae61f1f"}, {file = "lxml-4.9.2-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:efa29c2fe6b4fdd32e8ef81c1528506895eca86e1d8c4657fda04c9b3786ddf9"}, {file = "lxml-4.9.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:7e91ee82f4199af8c43d8158024cbdff3d931df350252288f0d4ce656df7f3b5"}, {file = "lxml-4.9.2-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl", hash = "sha256:b23e19989c355ca854276178a0463951a653309fb8e57ce674497f2d9f208746"}, {file = "lxml-4.9.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:01d36c05f4afb8f7c20fd9ed5badca32a2029b93b1750f571ccc0b142531caf7"}, {file = "lxml-4.9.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:7b515674acfdcadb0eb5d00d8a709868173acece5cb0be3dd165950cbfdf5409"}, {file = "lxml-4.9.2.tar.gz", hash = "sha256:2455cfaeb7ac70338b3257f41e21f0724f4b5b0c0e7702da67ee6c3640835b67"}, ] [package.extras] cssselect = ["cssselect (>=0.7)"] html5 = ["html5lib"] htmlsoup = ["BeautifulSoup4"] source = ["Cython (>=0.29.7)"] [[package]] name = "lz4" version = "4.3.2" description = "LZ4 Bindings for Python" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "lz4-4.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1c4c100d99eed7c08d4e8852dd11e7d1ec47a3340f49e3a96f8dfbba17ffb300"}, {file = "lz4-4.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:edd8987d8415b5dad25e797043936d91535017237f72fa456601be1479386c92"}, {file = "lz4-4.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f7c50542b4ddceb74ab4f8b3435327a0861f06257ca501d59067a6a482535a77"}, {file = "lz4-4.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0f5614d8229b33d4a97cb527db2a1ac81308c6e796e7bdb5d1309127289f69d5"}, {file = "lz4-4.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8f00a9ba98f6364cadda366ae6469b7b3568c0cced27e16a47ddf6b774169270"}, {file = "lz4-4.3.2-cp310-cp310-win32.whl", hash = "sha256:b10b77dc2e6b1daa2f11e241141ab8285c42b4ed13a8642495620416279cc5b2"}, {file = "lz4-4.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:86480f14a188c37cb1416cdabacfb4e42f7a5eab20a737dac9c4b1c227f3b822"}, {file = "lz4-4.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7c2df117def1589fba1327dceee51c5c2176a2b5a7040b45e84185ce0c08b6a3"}, {file = "lz4-4.3.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1f25eb322eeb24068bb7647cae2b0732b71e5c639e4e4026db57618dcd8279f0"}, {file = "lz4-4.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8df16c9a2377bdc01e01e6de5a6e4bbc66ddf007a6b045688e285d7d9d61d1c9"}, {file = "lz4-4.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f571eab7fec554d3b1db0d666bdc2ad85c81f4b8cb08906c4c59a8cad75e6e22"}, {file = "lz4-4.3.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7211dc8f636ca625abc3d4fb9ab74e5444b92df4f8d58ec83c8868a2b0ff643d"}, {file = "lz4-4.3.2-cp311-cp311-win32.whl", hash = "sha256:867664d9ca9bdfce840ac96d46cd8838c9ae891e859eb98ce82fcdf0e103a947"}, {file = "lz4-4.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:a6a46889325fd60b8a6b62ffc61588ec500a1883db32cddee9903edfba0b7584"}, {file = "lz4-4.3.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3a85b430138882f82f354135b98c320dafb96fc8fe4656573d95ab05de9eb092"}, {file = "lz4-4.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:65d5c93f8badacfa0456b660285e394e65023ef8071142e0dcbd4762166e1be0"}, {file = "lz4-4.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6b50f096a6a25f3b2edca05aa626ce39979d63c3b160687c8c6d50ac3943d0ba"}, {file = "lz4-4.3.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:200d05777d61ba1ff8d29cb51c534a162ea0b4fe6d3c28be3571a0a48ff36080"}, {file = "lz4-4.3.2-cp37-cp37m-win32.whl", hash = "sha256:edc2fb3463d5d9338ccf13eb512aab61937be50aa70734bcf873f2f493801d3b"}, {file = "lz4-4.3.2-cp37-cp37m-win_amd64.whl", hash = "sha256:83acfacab3a1a7ab9694333bcb7950fbeb0be21660d236fd09c8337a50817897"}, {file = "lz4-4.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:7a9eec24ec7d8c99aab54de91b4a5a149559ed5b3097cf30249b665689b3d402"}, {file = "lz4-4.3.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:31d72731c4ac6ebdce57cd9a5cabe0aecba229c4f31ba3e2c64ae52eee3fdb1c"}, {file = "lz4-4.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:83903fe6db92db0be101acedc677aa41a490b561567fe1b3fe68695b2110326c"}, {file = "lz4-4.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:926b26db87ec8822cf1870efc3d04d06062730ec3279bbbd33ba47a6c0a5c673"}, {file = "lz4-4.3.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e05afefc4529e97c08e65ef92432e5f5225c0bb21ad89dee1e06a882f91d7f5e"}, {file = "lz4-4.3.2-cp38-cp38-win32.whl", hash = "sha256:ad38dc6a7eea6f6b8b642aaa0683253288b0460b70cab3216838747163fb774d"}, {file = "lz4-4.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:7e2dc1bd88b60fa09b9b37f08553f45dc2b770c52a5996ea52b2b40f25445676"}, {file = "lz4-4.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:edda4fb109439b7f3f58ed6bede59694bc631c4b69c041112b1b7dc727fffb23"}, {file = "lz4-4.3.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0ca83a623c449295bafad745dcd399cea4c55b16b13ed8cfea30963b004016c9"}, {file = "lz4-4.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d5ea0e788dc7e2311989b78cae7accf75a580827b4d96bbaf06c7e5a03989bd5"}, {file = "lz4-4.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a98b61e504fb69f99117b188e60b71e3c94469295571492a6468c1acd63c37ba"}, {file = "lz4-4.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4931ab28a0d1c133104613e74eec1b8bb1f52403faabe4f47f93008785c0b929"}, {file = "lz4-4.3.2-cp39-cp39-win32.whl", hash = "sha256:ec6755cacf83f0c5588d28abb40a1ac1643f2ff2115481089264c7630236618a"}, {file = "lz4-4.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:4caedeb19e3ede6c7a178968b800f910db6503cb4cb1e9cc9221157572139b49"}, {file = "lz4-4.3.2.tar.gz", hash = "sha256:e1431d84a9cfb23e6773e72078ce8e65cad6745816d4cbf9ae67da5ea419acda"}, ] [package.extras] docs = ["sphinx (>=1.6.0)", "sphinx-bootstrap-theme"] flake8 = ["flake8"] tests = ["psutil", "pytest (!=3.3.0)", "pytest-cov"] [[package]] name = "manifest-ml" version = "0.0.1" description = "Manifest for Prompt Programming Foundation Models." category = "main" optional = true python-versions = ">=3.8.0" files = [ {file = "manifest-ml-0.0.1.tar.gz", hash = "sha256:f828faf7de41fad5318254beec08acdf5142196e0e22203a4047412c2d3127a0"}, {file = "manifest_ml-0.0.1-py2.py3-none-any.whl", hash = "sha256:fc4e62e706fd767fd8851d91051fdb71bc79b2df9c66f5879736c46d8163a316"}, ] [package.dependencies] dill = ">=0.3.5" redis = ">=4.3.1" requests = ">=2.27.1" sqlitedict = ">=2.0.0" tqdm = ">=4.64.0" [package.extras] all = ["Flask (>=2.1.2)", "accelerate (>=0.10.0)", "autopep8 (>=1.6.0)", "black (>=22.3.0)", "docformatter (>=1.4)", "flake8 (>=4.0.0)", "flake8-docstrings (>=1.6.0)", "isort (>=5.9.3)", "mypy (>=0.950)", "nbsphinx (>=0.8.0)", "pep8-naming (>=0.12.1)", "pre-commit (>=2.14.0)", "pytest (>=7.0.0)", "pytest-cov (>=3.0.0)", "python-dotenv (>=0.20.0)", "recommonmark (>=0.7.1)", "sphinx-autobuild", "sphinx-rtd-theme (>=0.5.1)", "torch (>=1.8.0)", "transformers (>=4.20.0)", "twine", "types-PyYAML (>=6.0.7)", "types-protobuf (>=3.19.21)", "types-python-dateutil (>=2.8.16)", "types-redis (>=4.2.6)", "types-requests (>=2.27.29)", "types-setuptools (>=57.4.17)"] api = ["Flask (>=2.1.2)", "accelerate (>=0.10.0)", "torch (>=1.8.0)", "transformers (>=4.20.0)"] dev = ["autopep8 (>=1.6.0)", "black (>=22.3.0)", "docformatter (>=1.4)", "flake8 (>=4.0.0)", "flake8-docstrings (>=1.6.0)", "isort (>=5.9.3)", "mypy (>=0.950)", "nbsphinx (>=0.8.0)", "pep8-naming (>=0.12.1)", "pre-commit (>=2.14.0)", "pytest (>=7.0.0)", "pytest-cov (>=3.0.0)", "python-dotenv (>=0.20.0)", "recommonmark (>=0.7.1)", "sphinx-autobuild", "sphinx-rtd-theme (>=0.5.1)", "twine", "types-PyYAML (>=6.0.7)", "types-protobuf (>=3.19.21)", "types-python-dateutil (>=2.8.16)", "types-redis (>=4.2.6)", "types-requests (>=2.27.29)", "types-setuptools (>=57.4.17)"] [[package]] name = "markdown" version = "3.4.3" description = "Python implementation of John Gruber's Markdown." category = "main" optional = true python-versions = ">=3.7" files = [ {file = "Markdown-3.4.3-py3-none-any.whl", hash = "sha256:065fd4df22da73a625f14890dd77eb8040edcbd68794bcd35943be14490608b2"}, {file = "Markdown-3.4.3.tar.gz", hash = "sha256:8bf101198e004dc93e84a12a7395e31aac6a9c9942848ae1d99b9d72cf9b3520"}, ] [package.extras] testing = ["coverage", "pyyaml"] [[package]] name = "markdown-it-py" version = "2.2.0" description = "Python port of markdown-it. Markdown parsing, done right!" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "markdown-it-py-2.2.0.tar.gz", hash = "sha256:7c9a5e412688bc771c67432cbfebcdd686c93ce6484913dccf06cb5a0bea35a1"}, {file = "markdown_it_py-2.2.0-py3-none-any.whl", hash = "sha256:5a35f8d1870171d9acc47b99612dc146129b631baf04970128b568f190d0cc30"}, ] [package.dependencies] mdurl = ">=0.1,<1.0" [package.extras] benchmarking = ["psutil", "pytest", "pytest-benchmark"] code-style = ["pre-commit (>=3.0,<4.0)"] compare = ["commonmark (>=0.9,<1.0)", "markdown (>=3.4,<4.0)", "mistletoe (>=1.0,<2.0)", "mistune (>=2.0,<3.0)", "panflute (>=2.3,<3.0)"] linkify = ["linkify-it-py (>=1,<3)"] plugins = ["mdit-py-plugins"] profiling = ["gprof2dot"] rtd = ["attrs", "myst-parser", "pyyaml", "sphinx", "sphinx-copybutton", "sphinx-design", "sphinx_book_theme"] testing = ["coverage", "pytest", "pytest-cov", "pytest-regressions"] [[package]] name = "markupsafe" version = "2.1.2" description = "Safely add untrusted strings to HTML/XML markup." category = "main" optional = false python-versions = ">=3.7" files = [ {file = "MarkupSafe-2.1.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:665a36ae6f8f20a4676b53224e33d456a6f5a72657d9c83c2aa00765072f31f7"}, {file = "MarkupSafe-2.1.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:340bea174e9761308703ae988e982005aedf427de816d1afe98147668cc03036"}, {file = "MarkupSafe-2.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22152d00bf4a9c7c83960521fc558f55a1adbc0631fbb00a9471e097b19d72e1"}, {file = "MarkupSafe-2.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:28057e985dace2f478e042eaa15606c7efccb700797660629da387eb289b9323"}, {file = "MarkupSafe-2.1.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ca244fa73f50a800cf8c3ebf7fd93149ec37f5cb9596aa8873ae2c1d23498601"}, {file = "MarkupSafe-2.1.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d9d971ec1e79906046aa3ca266de79eac42f1dbf3612a05dc9368125952bd1a1"}, {file = "MarkupSafe-2.1.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:7e007132af78ea9df29495dbf7b5824cb71648d7133cf7848a2a5dd00d36f9ff"}, {file = "MarkupSafe-2.1.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:7313ce6a199651c4ed9d7e4cfb4aa56fe923b1adf9af3b420ee14e6d9a73df65"}, {file = "MarkupSafe-2.1.2-cp310-cp310-win32.whl", hash = "sha256:c4a549890a45f57f1ebf99c067a4ad0cb423a05544accaf2b065246827ed9603"}, {file = "MarkupSafe-2.1.2-cp310-cp310-win_amd64.whl", hash = "sha256:835fb5e38fd89328e9c81067fd642b3593c33e1e17e2fdbf77f5676abb14a156"}, {file = "MarkupSafe-2.1.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:2ec4f2d48ae59bbb9d1f9d7efb9236ab81429a764dedca114f5fdabbc3788013"}, {file = "MarkupSafe-2.1.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:608e7073dfa9e38a85d38474c082d4281f4ce276ac0010224eaba11e929dd53a"}, {file = "MarkupSafe-2.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:65608c35bfb8a76763f37036547f7adfd09270fbdbf96608be2bead319728fcd"}, {file = "MarkupSafe-2.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f2bfb563d0211ce16b63c7cb9395d2c682a23187f54c3d79bfec33e6705473c6"}, {file = "MarkupSafe-2.1.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:da25303d91526aac3672ee6d49a2f3db2d9502a4a60b55519feb1a4c7714e07d"}, {file = "MarkupSafe-2.1.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:9cad97ab29dfc3f0249b483412c85c8ef4766d96cdf9dcf5a1e3caa3f3661cf1"}, {file = "MarkupSafe-2.1.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:085fd3201e7b12809f9e6e9bc1e5c96a368c8523fad5afb02afe3c051ae4afcc"}, {file = "MarkupSafe-2.1.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:1bea30e9bf331f3fef67e0a3877b2288593c98a21ccb2cf29b74c581a4eb3af0"}, {file = "MarkupSafe-2.1.2-cp311-cp311-win32.whl", hash = "sha256:7df70907e00c970c60b9ef2938d894a9381f38e6b9db73c5be35e59d92e06625"}, {file = "MarkupSafe-2.1.2-cp311-cp311-win_amd64.whl", hash = "sha256:e55e40ff0cc8cc5c07996915ad367fa47da6b3fc091fdadca7f5403239c5fec3"}, {file = "MarkupSafe-2.1.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:a6e40afa7f45939ca356f348c8e23048e02cb109ced1eb8420961b2f40fb373a"}, {file = "MarkupSafe-2.1.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf877ab4ed6e302ec1d04952ca358b381a882fbd9d1b07cccbfd61783561f98a"}, {file = "MarkupSafe-2.1.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:63ba06c9941e46fa389d389644e2d8225e0e3e5ebcc4ff1ea8506dce646f8c8a"}, {file = "MarkupSafe-2.1.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f1cd098434e83e656abf198f103a8207a8187c0fc110306691a2e94a78d0abb2"}, {file = "MarkupSafe-2.1.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:55f44b440d491028addb3b88f72207d71eeebfb7b5dbf0643f7c023ae1fba619"}, {file = "MarkupSafe-2.1.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:a6f2fcca746e8d5910e18782f976489939d54a91f9411c32051b4aab2bd7c513"}, {file = "MarkupSafe-2.1.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:0b462104ba25f1ac006fdab8b6a01ebbfbce9ed37fd37fd4acd70c67c973e460"}, {file = "MarkupSafe-2.1.2-cp37-cp37m-win32.whl", hash = "sha256:7668b52e102d0ed87cb082380a7e2e1e78737ddecdde129acadb0eccc5423859"}, {file = "MarkupSafe-2.1.2-cp37-cp37m-win_amd64.whl", hash = "sha256:6d6607f98fcf17e534162f0709aaad3ab7a96032723d8ac8750ffe17ae5a0666"}, {file = "MarkupSafe-2.1.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:a806db027852538d2ad7555b203300173dd1b77ba116de92da9afbc3a3be3eed"}, {file = "MarkupSafe-2.1.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a4abaec6ca3ad8660690236d11bfe28dfd707778e2442b45addd2f086d6ef094"}, {file = "MarkupSafe-2.1.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f03a532d7dee1bed20bc4884194a16160a2de9ffc6354b3878ec9682bb623c54"}, {file = "MarkupSafe-2.1.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4cf06cdc1dda95223e9d2d3c58d3b178aa5dacb35ee7e3bbac10e4e1faacb419"}, {file = "MarkupSafe-2.1.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:22731d79ed2eb25059ae3df1dfc9cb1546691cc41f4e3130fe6bfbc3ecbbecfa"}, {file = "MarkupSafe-2.1.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:f8ffb705ffcf5ddd0e80b65ddf7bed7ee4f5a441ea7d3419e861a12eaf41af58"}, {file = "MarkupSafe-2.1.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:8db032bf0ce9022a8e41a22598eefc802314e81b879ae093f36ce9ddf39ab1ba"}, {file = "MarkupSafe-2.1.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:2298c859cfc5463f1b64bd55cb3e602528db6fa0f3cfd568d3605c50678f8f03"}, {file = "MarkupSafe-2.1.2-cp38-cp38-win32.whl", hash = "sha256:50c42830a633fa0cf9e7d27664637532791bfc31c731a87b202d2d8ac40c3ea2"}, {file = "MarkupSafe-2.1.2-cp38-cp38-win_amd64.whl", hash = "sha256:bb06feb762bade6bf3c8b844462274db0c76acc95c52abe8dbed28ae3d44a147"}, {file = "MarkupSafe-2.1.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:99625a92da8229df6d44335e6fcc558a5037dd0a760e11d84be2260e6f37002f"}, {file = "MarkupSafe-2.1.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8bca7e26c1dd751236cfb0c6c72d4ad61d986e9a41bbf76cb445f69488b2a2bd"}, {file = "MarkupSafe-2.1.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:40627dcf047dadb22cd25ea7ecfe9cbf3bbbad0482ee5920b582f3809c97654f"}, {file = "MarkupSafe-2.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:40dfd3fefbef579ee058f139733ac336312663c6706d1163b82b3003fb1925c4"}, {file = "MarkupSafe-2.1.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:090376d812fb6ac5f171e5938e82e7f2d7adc2b629101cec0db8b267815c85e2"}, {file = "MarkupSafe-2.1.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:2e7821bffe00aa6bd07a23913b7f4e01328c3d5cc0b40b36c0bd81d362faeb65"}, {file = "MarkupSafe-2.1.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:c0a33bc9f02c2b17c3ea382f91b4db0e6cde90b63b296422a939886a7a80de1c"}, {file = "MarkupSafe-2.1.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:b8526c6d437855442cdd3d87eede9c425c4445ea011ca38d937db299382e6fa3"}, {file = "MarkupSafe-2.1.2-cp39-cp39-win32.whl", hash = "sha256:137678c63c977754abe9086a3ec011e8fd985ab90631145dfb9294ad09c102a7"}, {file = "MarkupSafe-2.1.2-cp39-cp39-win_amd64.whl", hash = "sha256:0576fe974b40a400449768941d5d0858cc624e3249dfd1e0c33674e5c7ca7aed"}, {file = "MarkupSafe-2.1.2.tar.gz", hash = "sha256:abcabc8c2b26036d62d4c746381a6f7cf60aafcc653198ad678306986b09450d"}, ] [[package]] name = "marshmallow" version = "3.19.0" description = "A lightweight library for converting complex datatypes to and from native Python datatypes." category = "main" optional = false python-versions = ">=3.7" files = [ {file = "marshmallow-3.19.0-py3-none-any.whl", hash = "sha256:93f0958568da045b0021ec6aeb7ac37c81bfcccbb9a0e7ed8559885070b3a19b"}, {file = "marshmallow-3.19.0.tar.gz", hash = "sha256:90032c0fd650ce94b6ec6dc8dfeb0e3ff50c144586462c389b81a07205bedb78"}, ] [package.dependencies] packaging = ">=17.0" [package.extras] dev = ["flake8 (==5.0.4)", "flake8-bugbear (==22.10.25)", "mypy (==0.990)", "pre-commit (>=2.4,<3.0)", "pytest", "pytz", "simplejson", "tox"] docs = ["alabaster (==0.7.12)", "autodocsumm (==0.2.9)", "sphinx (==5.3.0)", "sphinx-issues (==3.0.1)", "sphinx-version-warning (==1.1.2)"] lint = ["flake8 (==5.0.4)", "flake8-bugbear (==22.10.25)", "mypy (==0.990)", "pre-commit (>=2.4,<3.0)"] tests = ["pytest", "pytz", "simplejson"] [[package]] name = "marshmallow-enum" version = "1.5.1" description = "Enum field for Marshmallow" category = "main" optional = false python-versions = "*" files = [ {file = "marshmallow-enum-1.5.1.tar.gz", hash = "sha256:38e697e11f45a8e64b4a1e664000897c659b60aa57bfa18d44e226a9920b6e58"}, {file = "marshmallow_enum-1.5.1-py2.py3-none-any.whl", hash = "sha256:57161ab3dbfde4f57adeb12090f39592e992b9c86d206d02f6bd03ebec60f072"}, ] [package.dependencies] marshmallow = ">=2.0.0" [[package]] name = "mastodon-py" version = "1.8.1" description = "Python wrapper for the Mastodon API" category = "dev" optional = false python-versions = "*" files = [ {file = "Mastodon.py-1.8.1-py2.py3-none-any.whl", hash = "sha256:22bc7e060518ef2eaa69d911cde6e4baf56bed5ea0dd407392c49051a7ac526a"}, {file = "Mastodon.py-1.8.1.tar.gz", hash = "sha256:4a64cb94abadd6add73e4b8eafdb5c466048fa5f638284fd2189034104d4687e"}, ] [package.dependencies] blurhash = ">=1.1.4" decorator = ">=4.0.0" python-dateutil = "*" python-magic = {version = "*", markers = "platform_system != \"Windows\""} python-magic-bin = {version = "*", markers = "platform_system == \"Windows\""} requests = ">=2.4.2" six = "*" [package.extras] blurhash = ["blurhash (>=1.1.4)"] test = ["blurhash (>=1.1.4)", "cryptography (>=1.6.0)", "http-ece (>=1.0.5)", "pytest", "pytest-cov", "pytest-mock", "pytest-runner", "pytest-vcr", "pytz", "requests-mock", "vcrpy"] webpush = ["cryptography (>=1.6.0)", "http-ece (>=1.0.5)"] [[package]] name = "matplotlib-inline" version = "0.1.6" description = "Inline Matplotlib backend for Jupyter" category = "dev" optional = false python-versions = ">=3.5" files = [ {file = "matplotlib-inline-0.1.6.tar.gz", hash = "sha256:f887e5f10ba98e8d2b150ddcf4702c1e5f8b3a20005eb0f74bfdbd360ee6f304"}, {file = "matplotlib_inline-0.1.6-py3-none-any.whl", hash = "sha256:f1f41aab5328aa5aaea9b16d083b128102f8712542f819fe7e6a420ff581b311"}, ] [package.dependencies] traitlets = "*" [[package]] name = "mdit-py-plugins" version = "0.3.5" description = "Collection of plugins for markdown-it-py" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "mdit-py-plugins-0.3.5.tar.gz", hash = "sha256:eee0adc7195e5827e17e02d2a258a2ba159944a0748f59c5099a4a27f78fcf6a"}, {file = "mdit_py_plugins-0.3.5-py3-none-any.whl", hash = "sha256:ca9a0714ea59a24b2b044a1831f48d817dd0c817e84339f20e7889f392d77c4e"}, ] [package.dependencies] markdown-it-py = ">=1.0.0,<3.0.0" [package.extras] code-style = ["pre-commit"] rtd = ["attrs", "myst-parser (>=0.16.1,<0.17.0)", "sphinx-book-theme (>=0.1.0,<0.2.0)"] testing = ["coverage", "pytest", "pytest-cov", "pytest-regressions"] [[package]] name = "mdurl" version = "0.1.2" description = "Markdown URL utilities" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "mdurl-0.1.2-py3-none-any.whl", hash = "sha256:84008a41e51615a49fc9966191ff91509e3c40b939176e643fd50a5c2196b8f8"}, {file = "mdurl-0.1.2.tar.gz", hash = "sha256:bb413d29f5eea38f31dd4754dd7377d4465116fb207585f97bf925588687c1ba"}, ] [[package]] name = "mistune" version = "2.0.5" description = "A sane Markdown parser with useful plugins and renderers" category = "dev" optional = false python-versions = "*" files = [ {file = "mistune-2.0.5-py2.py3-none-any.whl", hash = "sha256:bad7f5d431886fcbaf5f758118ecff70d31f75231b34024a1341120340a65ce8"}, {file = "mistune-2.0.5.tar.gz", hash = "sha256:0246113cb2492db875c6be56974a7c893333bf26cd92891c85f63151cee09d34"}, ] [[package]] name = "mmh3" version = "3.1.0" description = "Python wrapper for MurmurHash (MurmurHash3), a set of fast and robust hash functions." category = "main" optional = false python-versions = "*" files = [ {file = "mmh3-3.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:16ee043b1bac040b4324b8baee39df9fdca480a560a6d74f2eef66a5009a234e"}, {file = "mmh3-3.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:04ac865319e5b36148a4b6cdf27f8bda091c47c4ab7b355d7f353dfc2b8a3cce"}, {file = "mmh3-3.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9e751f5433417a21c2060b0efa1afc67cfbe29977c867336148c8edb086fae70"}, {file = "mmh3-3.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bdb863b89c1b34e3681d4a3b15d424734940eb8036f3457cb35ef34fb87a503c"}, {file = "mmh3-3.1.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1230930fbf2faec4ddf5b76d0768ae73c102de173c301962bdd468177275adf9"}, {file = "mmh3-3.1.0-cp310-cp310-win32.whl", hash = "sha256:b8ed7a2361718795a1b519a08d05f44947a20b27e202b53946561a00dde669c1"}, {file = "mmh3-3.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:29e878e7467a000f34ab68c218ad7ad81312c0a94bc10df3c50a48bcad39dd83"}, {file = "mmh3-3.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c271472325b70d64a4fbb1f2e964ca5b093ac10258e1390f8408890b065868fe"}, {file = "mmh3-3.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:0109320f7e0e262123ff4f1acd06acfbc8b3bf19cc13d98c0bc369264430aaeb"}, {file = "mmh3-3.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:524e29dfe66499695f9496edcfc96782d130aabd6ba12c50c72372163cc6f3ea"}, {file = "mmh3-3.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:66bdb06a03074e65e614da1aa199b1d16c90608bec9d8fc3faa81d887ffe93cc"}, {file = "mmh3-3.1.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2a4d471eb75df8320061ab3b8cbe11c970be9f116b01bc2222ebda9c0a777520"}, {file = "mmh3-3.1.0-cp311-cp311-win32.whl", hash = "sha256:a886d9ce995a4bdfd7a600ddf61b9015cccbc73c50b898f8ff3c78af24384710"}, {file = "mmh3-3.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:5edb5ac882c04aff8a2a18ae8b74a0c339ac9b83db9820d8456f518bb558e0d8"}, {file = "mmh3-3.1.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:190fd10981fbd6c67e10ce3b56bcc021562c0df0fee2e2864347d64e65b1783a"}, {file = "mmh3-3.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cd781b115cf649811cfde76368c33d2e553b6f88bb41131c314f30d8e65e9d24"}, {file = "mmh3-3.1.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f48bb0a867077acc1f548591ad49506389f36d18f36dccd10becf071e5cbdda4"}, {file = "mmh3-3.1.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7d0936a82438e340636a11b9a938378870fc1c7a139632dac09a9a9277351704"}, {file = "mmh3-3.1.0-cp37-cp37m-win32.whl", hash = "sha256:d196cc035c2238493248522ae4e54c3cb790549b1564f6dea4d88dfe4b326313"}, {file = "mmh3-3.1.0-cp37-cp37m-win_amd64.whl", hash = "sha256:731d37f089b6c212fab1beea24e673161146eb6c76baf9ac074a3424d1172d41"}, {file = "mmh3-3.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9977fb81f8c66f4eee8439734a18dba7826fe78723d15ab53f42db977005be0f"}, {file = "mmh3-3.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:bf4f3f20a8b8405c08b13bc9e4ac33bf55129b50b535cd07ce1891b7f96326ac"}, {file = "mmh3-3.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:87cdbc6e70099ad92f17a28b4054ffb1938657e8fb7c1e4e03b194a1b4683fd6"}, {file = "mmh3-3.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6dd81321d14f62aa3711f30533c85a74dc7596e0fee63c8eddd375bc92ab846c"}, {file = "mmh3-3.1.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2e6eba88e5c1a2778f3de00a9502e3c214ebb757337ece2a7d71e060d188ddfa"}, {file = "mmh3-3.1.0-cp38-cp38-win32.whl", hash = "sha256:d91e696925f208d28f3bb7bdf29815524ce955248276af256519bd3538c411ce"}, {file = "mmh3-3.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:cbc2917df568aeb86ec5aa863bfb20fa14e01039cbdce7650efbabc30960df49"}, {file = "mmh3-3.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3b22832d565128be83d69f5d49243bb567840a954df377c9f5b26646a6eec39b"}, {file = "mmh3-3.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ced92a0e285a9111413541c197b0c17d280cee96f7c564b258caf5de5ab8ee01"}, {file = "mmh3-3.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f906833753b4ddcb690c2c1b74e77725868bc3a8b762b7a77737d08be89ae41d"}, {file = "mmh3-3.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:72b5685832a7a87a55ebff481794bc410484d7bd4c5e80dae4d8ac50739138ef"}, {file = "mmh3-3.1.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8d2aa4d422c7c088bbc5d367b45431268ebe6742a0a64eade93fab708e25757c"}, {file = "mmh3-3.1.0-cp39-cp39-win32.whl", hash = "sha256:4459bec818f534dc8378568ad89ab310ff47cda3e00ab322edce48dd899bba32"}, {file = "mmh3-3.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:03e04b3480e71828f48d17653451a3286555f0534942cb6ba93065b10ad5f9dc"}, {file = "mmh3-3.1.0.tar.gz", hash = "sha256:9b0f2b2ab4a915333c9d1089572e290a021ebb5b900bb7f7114dccc03995d732"}, ] [[package]] name = "momento" version = "1.5.0" description = "SDK for Momento" category = "main" optional = false python-versions = ">=3.7,<4.0" files = [ {file = "momento-1.5.0-py3-none-any.whl", hash = "sha256:7f633fb26ddf1bfcaf99a7add37b085f0e23c96f85972b655eaaf2de1c61d7f1"}, {file = "momento-1.5.0.tar.gz", hash = "sha256:68ca5d24b4cb08c5c0bd22d4edd3b8b0fcf087a85d30673cb2c55b11971c76ec"}, ] [package.dependencies] grpcio = ">=1.46.0,<2.0.0" momento-wire-types = ">=0.64,<0.65" pyjwt = ">=2.4.0,<3.0.0" [[package]] name = "momento-wire-types" version = "0.64.0" description = "Momento Client Proto Generated Files" category = "main" optional = false python-versions = ">=3.7,<4.0" files = [ {file = "momento_wire_types-0.64.0-py3-none-any.whl", hash = "sha256:30a5d523cef9209c0863db25e6344044b0c7240fea183a41c1433ca83cefea5b"}, {file = "momento_wire_types-0.64.0.tar.gz", hash = "sha256:5d3647210d49d0c3032a74ae5f5cc012a9faf826786272e1436a3d84d70a8bd5"}, ] [package.dependencies] grpcio = "*" protobuf = ">=3,<5" [[package]] name = "monotonic" version = "1.6" description = "An implementation of time.monotonic() for Python 2 & < 3.3" category = "dev" optional = false python-versions = "*" files = [ {file = "monotonic-1.6-py2.py3-none-any.whl", hash = "sha256:68687e19a14f11f26d140dd5c86f3dba4bf5df58003000ed467e0e2a69bca96c"}, {file = "monotonic-1.6.tar.gz", hash = "sha256:3a55207bcfed53ddd5c5bae174524062935efed17792e9de2ad0205ce9ad63f7"}, ] [[package]] name = "more-itertools" version = "9.1.0" description = "More routines for operating on iterables, beyond itertools" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "more-itertools-9.1.0.tar.gz", hash = "sha256:cabaa341ad0389ea83c17a94566a53ae4c9d07349861ecb14dc6d0345cf9ac5d"}, {file = "more_itertools-9.1.0-py3-none-any.whl", hash = "sha256:d2bc7f02446e86a68911e58ded76d6561eea00cddfb2a91e7019bbb586c799f3"}, ] [[package]] name = "msal" version = "1.22.0" description = "The Microsoft Authentication Library (MSAL) for Python library enables your app to access the Microsoft Cloud by supporting authentication of users with Microsoft Azure Active Directory accounts (AAD) and Microsoft Accounts (MSA) using industry standard OAuth2 and OpenID Connect." category = "main" optional = true python-versions = "*" files = [ {file = "msal-1.22.0-py2.py3-none-any.whl", hash = "sha256:9120b7eafdf061c92f7b3d744e5f325fca35873445fa8ffebb40b1086a13dd58"}, {file = "msal-1.22.0.tar.gz", hash = "sha256:8a82f5375642c1625c89058018430294c109440dce42ea667d466c2cab520acd"}, ] [package.dependencies] cryptography = ">=0.6,<43" PyJWT = {version = ">=1.0.0,<3", extras = ["crypto"]} requests = ">=2.0.0,<3" [package.extras] broker = ["pymsalruntime (>=0.13.2,<0.14)"] [[package]] name = "msal-extensions" version = "1.0.0" description = "Microsoft Authentication Library extensions (MSAL EX) provides a persistence API that can save your data on disk, encrypted on Windows, macOS and Linux. Concurrent data access will be coordinated by a file lock mechanism." category = "main" optional = true python-versions = "*" files = [ {file = "msal-extensions-1.0.0.tar.gz", hash = "sha256:c676aba56b0cce3783de1b5c5ecfe828db998167875126ca4b47dc6436451354"}, {file = "msal_extensions-1.0.0-py2.py3-none-any.whl", hash = "sha256:91e3db9620b822d0ed2b4d1850056a0f133cba04455e62f11612e40f5502f2ee"}, ] [package.dependencies] msal = ">=0.4.1,<2.0.0" portalocker = [ {version = ">=1.0,<3", markers = "python_version >= \"3.5\" and platform_system != \"Windows\""}, {version = ">=1.6,<3", markers = "python_version >= \"3.5\" and platform_system == \"Windows\""}, ] [[package]] name = "msgpack" version = "1.0.5" description = "MessagePack serializer" category = "main" optional = true python-versions = "*" files = [ {file = "msgpack-1.0.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:525228efd79bb831cf6830a732e2e80bc1b05436b086d4264814b4b2955b2fa9"}, {file = "msgpack-1.0.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:4f8d8b3bf1ff2672567d6b5c725a1b347fe838b912772aa8ae2bf70338d5a198"}, {file = "msgpack-1.0.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:cdc793c50be3f01106245a61b739328f7dccc2c648b501e237f0699fe1395b81"}, {file = "msgpack-1.0.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5cb47c21a8a65b165ce29f2bec852790cbc04936f502966768e4aae9fa763cb7"}, {file = "msgpack-1.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e42b9594cc3bf4d838d67d6ed62b9e59e201862a25e9a157019e171fbe672dd3"}, {file = "msgpack-1.0.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:55b56a24893105dc52c1253649b60f475f36b3aa0fc66115bffafb624d7cb30b"}, {file = "msgpack-1.0.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:1967f6129fc50a43bfe0951c35acbb729be89a55d849fab7686004da85103f1c"}, {file = "msgpack-1.0.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:20a97bf595a232c3ee6d57ddaadd5453d174a52594bf9c21d10407e2a2d9b3bd"}, {file = "msgpack-1.0.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:d25dd59bbbbb996eacf7be6b4ad082ed7eacc4e8f3d2df1ba43822da9bfa122a"}, {file = "msgpack-1.0.5-cp310-cp310-win32.whl", hash = "sha256:382b2c77589331f2cb80b67cc058c00f225e19827dbc818d700f61513ab47bea"}, {file = "msgpack-1.0.5-cp310-cp310-win_amd64.whl", hash = "sha256:4867aa2df9e2a5fa5f76d7d5565d25ec76e84c106b55509e78c1ede0f152659a"}, {file = "msgpack-1.0.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:9f5ae84c5c8a857ec44dc180a8b0cc08238e021f57abdf51a8182e915e6299f0"}, {file = "msgpack-1.0.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:9e6ca5d5699bcd89ae605c150aee83b5321f2115695e741b99618f4856c50898"}, {file = "msgpack-1.0.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5494ea30d517a3576749cad32fa27f7585c65f5f38309c88c6d137877fa28a5a"}, {file = "msgpack-1.0.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1ab2f3331cb1b54165976a9d976cb251a83183631c88076613c6c780f0d6e45a"}, {file = "msgpack-1.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:28592e20bbb1620848256ebc105fc420436af59515793ed27d5c77a217477705"}, {file = "msgpack-1.0.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fe5c63197c55bce6385d9aee16c4d0641684628f63ace85f73571e65ad1c1e8d"}, {file = "msgpack-1.0.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ed40e926fa2f297e8a653c954b732f125ef97bdd4c889f243182299de27e2aa9"}, {file = "msgpack-1.0.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:b2de4c1c0538dcb7010902a2b97f4e00fc4ddf2c8cda9749af0e594d3b7fa3d7"}, {file = "msgpack-1.0.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:bf22a83f973b50f9d38e55c6aade04c41ddda19b00c4ebc558930d78eecc64ed"}, {file = "msgpack-1.0.5-cp311-cp311-win32.whl", hash = "sha256:c396e2cc213d12ce017b686e0f53497f94f8ba2b24799c25d913d46c08ec422c"}, {file = "msgpack-1.0.5-cp311-cp311-win_amd64.whl", hash = "sha256:6c4c68d87497f66f96d50142a2b73b97972130d93677ce930718f68828b382e2"}, {file = "msgpack-1.0.5-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:a2b031c2e9b9af485d5e3c4520f4220d74f4d222a5b8dc8c1a3ab9448ca79c57"}, {file = "msgpack-1.0.5-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4f837b93669ce4336e24d08286c38761132bc7ab29782727f8557e1eb21b2080"}, {file = "msgpack-1.0.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b1d46dfe3832660f53b13b925d4e0fa1432b00f5f7210eb3ad3bb9a13c6204a6"}, {file = "msgpack-1.0.5-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:366c9a7b9057e1547f4ad51d8facad8b406bab69c7d72c0eb6f529cf76d4b85f"}, {file = "msgpack-1.0.5-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:4c075728a1095efd0634a7dccb06204919a2f67d1893b6aa8e00497258bf926c"}, {file = "msgpack-1.0.5-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:f933bbda5a3ee63b8834179096923b094b76f0c7a73c1cfe8f07ad608c58844b"}, {file = "msgpack-1.0.5-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:36961b0568c36027c76e2ae3ca1132e35123dcec0706c4b7992683cc26c1320c"}, {file = "msgpack-1.0.5-cp36-cp36m-win32.whl", hash = "sha256:b5ef2f015b95f912c2fcab19c36814963b5463f1fb9049846994b007962743e9"}, {file = "msgpack-1.0.5-cp36-cp36m-win_amd64.whl", hash = "sha256:288e32b47e67f7b171f86b030e527e302c91bd3f40fd9033483f2cacc37f327a"}, {file = "msgpack-1.0.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:137850656634abddfb88236008339fdaba3178f4751b28f270d2ebe77a563b6c"}, {file = "msgpack-1.0.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0c05a4a96585525916b109bb85f8cb6511db1c6f5b9d9cbcbc940dc6b4be944b"}, {file = "msgpack-1.0.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:56a62ec00b636583e5cb6ad313bbed36bb7ead5fa3a3e38938503142c72cba4f"}, {file = "msgpack-1.0.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ef8108f8dedf204bb7b42994abf93882da1159728a2d4c5e82012edd92c9da9f"}, {file = "msgpack-1.0.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:1835c84d65f46900920b3708f5ba829fb19b1096c1800ad60bae8418652a951d"}, {file = "msgpack-1.0.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:e57916ef1bd0fee4f21c4600e9d1da352d8816b52a599c46460e93a6e9f17086"}, {file = "msgpack-1.0.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:17358523b85973e5f242ad74aa4712b7ee560715562554aa2134d96e7aa4cbbf"}, {file = "msgpack-1.0.5-cp37-cp37m-win32.whl", hash = "sha256:cb5aaa8c17760909ec6cb15e744c3ebc2ca8918e727216e79607b7bbce9c8f77"}, {file = "msgpack-1.0.5-cp37-cp37m-win_amd64.whl", hash = "sha256:ab31e908d8424d55601ad7075e471b7d0140d4d3dd3272daf39c5c19d936bd82"}, {file = "msgpack-1.0.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:b72d0698f86e8d9ddf9442bdedec15b71df3598199ba33322d9711a19f08145c"}, {file = "msgpack-1.0.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:379026812e49258016dd84ad79ac8446922234d498058ae1d415f04b522d5b2d"}, {file = "msgpack-1.0.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:332360ff25469c346a1c5e47cbe2a725517919892eda5cfaffe6046656f0b7bb"}, {file = "msgpack-1.0.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:476a8fe8fae289fdf273d6d2a6cb6e35b5a58541693e8f9f019bfe990a51e4ba"}, {file = "msgpack-1.0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a9985b214f33311df47e274eb788a5893a761d025e2b92c723ba4c63936b69b1"}, {file = "msgpack-1.0.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:48296af57cdb1d885843afd73c4656be5c76c0c6328db3440c9601a98f303d87"}, {file = "msgpack-1.0.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:addab7e2e1fcc04bd08e4eb631c2a90960c340e40dfc4a5e24d2ff0d5a3b3edb"}, {file = "msgpack-1.0.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:916723458c25dfb77ff07f4c66aed34e47503b2eb3188b3adbec8d8aa6e00f48"}, {file = "msgpack-1.0.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:821c7e677cc6acf0fd3f7ac664c98803827ae6de594a9f99563e48c5a2f27eb0"}, {file = "msgpack-1.0.5-cp38-cp38-win32.whl", hash = "sha256:1c0f7c47f0087ffda62961d425e4407961a7ffd2aa004c81b9c07d9269512f6e"}, {file = "msgpack-1.0.5-cp38-cp38-win_amd64.whl", hash = "sha256:bae7de2026cbfe3782c8b78b0db9cbfc5455e079f1937cb0ab8d133496ac55e1"}, {file = "msgpack-1.0.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:20c784e66b613c7f16f632e7b5e8a1651aa5702463d61394671ba07b2fc9e025"}, {file = "msgpack-1.0.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:266fa4202c0eb94d26822d9bfd7af25d1e2c088927fe8de9033d929dd5ba24c5"}, {file = "msgpack-1.0.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:18334484eafc2b1aa47a6d42427da7fa8f2ab3d60b674120bce7a895a0a85bdd"}, {file = "msgpack-1.0.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:57e1f3528bd95cc44684beda696f74d3aaa8a5e58c816214b9046512240ef437"}, {file = "msgpack-1.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:586d0d636f9a628ddc6a17bfd45aa5b5efaf1606d2b60fa5d87b8986326e933f"}, {file = "msgpack-1.0.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a740fa0e4087a734455f0fc3abf5e746004c9da72fbd541e9b113013c8dc3282"}, {file = "msgpack-1.0.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:3055b0455e45810820db1f29d900bf39466df96ddca11dfa6d074fa47054376d"}, {file = "msgpack-1.0.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:a61215eac016f391129a013c9e46f3ab308db5f5ec9f25811e811f96962599a8"}, {file = "msgpack-1.0.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:362d9655cd369b08fda06b6657a303eb7172d5279997abe094512e919cf74b11"}, {file = "msgpack-1.0.5-cp39-cp39-win32.whl", hash = "sha256:ac9dd47af78cae935901a9a500104e2dea2e253207c924cc95de149606dc43cc"}, {file = "msgpack-1.0.5-cp39-cp39-win_amd64.whl", hash = "sha256:06f5174b5f8ed0ed919da0e62cbd4ffde676a374aba4020034da05fab67b9164"}, {file = "msgpack-1.0.5.tar.gz", hash = "sha256:c075544284eadc5cddc70f4757331d99dcbc16b2bbd4849d15f8aae4cf36d31c"}, ] [[package]] name = "msrest" version = "0.7.1" description = "AutoRest swagger generator Python client runtime." category = "main" optional = true python-versions = ">=3.6" files = [ {file = "msrest-0.7.1-py3-none-any.whl", hash = "sha256:21120a810e1233e5e6cc7fe40b474eeb4ec6f757a15d7cf86702c369f9567c32"}, {file = "msrest-0.7.1.zip", hash = "sha256:6e7661f46f3afd88b75667b7187a92829924446c7ea1d169be8c4bb7eeb788b9"}, ] [package.dependencies] azure-core = ">=1.24.0" certifi = ">=2017.4.17" isodate = ">=0.6.0" requests = ">=2.16,<3.0" requests-oauthlib = ">=0.5.0" [package.extras] async = ["aiodns", "aiohttp (>=3.0)"] [[package]] name = "multidict" version = "6.0.4" description = "multidict implementation" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "multidict-6.0.4-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:0b1a97283e0c85772d613878028fec909f003993e1007eafa715b24b377cb9b8"}, {file = "multidict-6.0.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:eeb6dcc05e911516ae3d1f207d4b0520d07f54484c49dfc294d6e7d63b734171"}, {file = "multidict-6.0.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d6d635d5209b82a3492508cf5b365f3446afb65ae7ebd755e70e18f287b0adf7"}, {file = "multidict-6.0.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c048099e4c9e9d615545e2001d3d8a4380bd403e1a0578734e0d31703d1b0c0b"}, {file = "multidict-6.0.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ea20853c6dbbb53ed34cb4d080382169b6f4554d394015f1bef35e881bf83547"}, {file = "multidict-6.0.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:16d232d4e5396c2efbbf4f6d4df89bfa905eb0d4dc5b3549d872ab898451f569"}, {file = "multidict-6.0.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:36c63aaa167f6c6b04ef2c85704e93af16c11d20de1d133e39de6a0e84582a93"}, {file = "multidict-6.0.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:64bdf1086b6043bf519869678f5f2757f473dee970d7abf6da91ec00acb9cb98"}, {file = "multidict-6.0.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:43644e38f42e3af682690876cff722d301ac585c5b9e1eacc013b7a3f7b696a0"}, {file = "multidict-6.0.4-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:7582a1d1030e15422262de9f58711774e02fa80df0d1578995c76214f6954988"}, {file = "multidict-6.0.4-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:ddff9c4e225a63a5afab9dd15590432c22e8057e1a9a13d28ed128ecf047bbdc"}, {file = "multidict-6.0.4-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:ee2a1ece51b9b9e7752e742cfb661d2a29e7bcdba2d27e66e28a99f1890e4fa0"}, {file = "multidict-6.0.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:a2e4369eb3d47d2034032a26c7a80fcb21a2cb22e1173d761a162f11e562caa5"}, {file = "multidict-6.0.4-cp310-cp310-win32.whl", hash = "sha256:574b7eae1ab267e5f8285f0fe881f17efe4b98c39a40858247720935b893bba8"}, {file = "multidict-6.0.4-cp310-cp310-win_amd64.whl", hash = "sha256:4dcbb0906e38440fa3e325df2359ac6cb043df8e58c965bb45f4e406ecb162cc"}, {file = "multidict-6.0.4-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:0dfad7a5a1e39c53ed00d2dd0c2e36aed4650936dc18fd9a1826a5ae1cad6f03"}, {file = "multidict-6.0.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:64da238a09d6039e3bd39bb3aee9c21a5e34f28bfa5aa22518581f910ff94af3"}, {file = "multidict-6.0.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ff959bee35038c4624250473988b24f846cbeb2c6639de3602c073f10410ceba"}, {file = "multidict-6.0.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:01a3a55bd90018c9c080fbb0b9f4891db37d148a0a18722b42f94694f8b6d4c9"}, {file = "multidict-6.0.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c5cb09abb18c1ea940fb99360ea0396f34d46566f157122c92dfa069d3e0e982"}, {file = "multidict-6.0.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:666daae833559deb2d609afa4490b85830ab0dfca811a98b70a205621a6109fe"}, {file = "multidict-6.0.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:11bdf3f5e1518b24530b8241529d2050014c884cf18b6fc69c0c2b30ca248710"}, {file = "multidict-6.0.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7d18748f2d30f94f498e852c67d61261c643b349b9d2a581131725595c45ec6c"}, {file = "multidict-6.0.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:458f37be2d9e4c95e2d8866a851663cbc76e865b78395090786f6cd9b3bbf4f4"}, {file = "multidict-6.0.4-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:b1a2eeedcead3a41694130495593a559a668f382eee0727352b9a41e1c45759a"}, {file = "multidict-6.0.4-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:7d6ae9d593ef8641544d6263c7fa6408cc90370c8cb2bbb65f8d43e5b0351d9c"}, {file = "multidict-6.0.4-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:5979b5632c3e3534e42ca6ff856bb24b2e3071b37861c2c727ce220d80eee9ed"}, {file = "multidict-6.0.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:dcfe792765fab89c365123c81046ad4103fcabbc4f56d1c1997e6715e8015461"}, {file = "multidict-6.0.4-cp311-cp311-win32.whl", hash = "sha256:3601a3cece3819534b11d4efc1eb76047488fddd0c85a3948099d5da4d504636"}, {file = "multidict-6.0.4-cp311-cp311-win_amd64.whl", hash = "sha256:81a4f0b34bd92df3da93315c6a59034df95866014ac08535fc819f043bfd51f0"}, {file = "multidict-6.0.4-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:67040058f37a2a51ed8ea8f6b0e6ee5bd78ca67f169ce6122f3e2ec80dfe9b78"}, {file = "multidict-6.0.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:853888594621e6604c978ce2a0444a1e6e70c8d253ab65ba11657659dcc9100f"}, {file = "multidict-6.0.4-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:39ff62e7d0f26c248b15e364517a72932a611a9b75f35b45be078d81bdb86603"}, {file = "multidict-6.0.4-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:af048912e045a2dc732847d33821a9d84ba553f5c5f028adbd364dd4765092ac"}, {file = "multidict-6.0.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b1e8b901e607795ec06c9e42530788c45ac21ef3aaa11dbd0c69de543bfb79a9"}, {file = "multidict-6.0.4-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:62501642008a8b9871ddfccbf83e4222cf8ac0d5aeedf73da36153ef2ec222d2"}, {file = "multidict-6.0.4-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:99b76c052e9f1bc0721f7541e5e8c05db3941eb9ebe7b8553c625ef88d6eefde"}, {file = "multidict-6.0.4-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:509eac6cf09c794aa27bcacfd4d62c885cce62bef7b2c3e8b2e49d365b5003fe"}, {file = "multidict-6.0.4-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:21a12c4eb6ddc9952c415f24eef97e3e55ba3af61f67c7bc388dcdec1404a067"}, {file = "multidict-6.0.4-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:5cad9430ab3e2e4fa4a2ef4450f548768400a2ac635841bc2a56a2052cdbeb87"}, {file = "multidict-6.0.4-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:ab55edc2e84460694295f401215f4a58597f8f7c9466faec545093045476327d"}, {file = "multidict-6.0.4-cp37-cp37m-win32.whl", hash = "sha256:5a4dcf02b908c3b8b17a45fb0f15b695bf117a67b76b7ad18b73cf8e92608775"}, {file = "multidict-6.0.4-cp37-cp37m-win_amd64.whl", hash = "sha256:6ed5f161328b7df384d71b07317f4d8656434e34591f20552c7bcef27b0ab88e"}, {file = "multidict-6.0.4-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:5fc1b16f586f049820c5c5b17bb4ee7583092fa0d1c4e28b5239181ff9532e0c"}, {file = "multidict-6.0.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1502e24330eb681bdaa3eb70d6358e818e8e8f908a22a1851dfd4e15bc2f8161"}, {file = "multidict-6.0.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b692f419760c0e65d060959df05f2a531945af31fda0c8a3b3195d4efd06de11"}, {file = "multidict-6.0.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45e1ecb0379bfaab5eef059f50115b54571acfbe422a14f668fc8c27ba410e7e"}, {file = "multidict-6.0.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ddd3915998d93fbcd2566ddf9cf62cdb35c9e093075f862935573d265cf8f65d"}, {file = "multidict-6.0.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:59d43b61c59d82f2effb39a93c48b845efe23a3852d201ed2d24ba830d0b4cf2"}, {file = "multidict-6.0.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cc8e1d0c705233c5dd0c5e6460fbad7827d5d36f310a0fadfd45cc3029762258"}, {file = "multidict-6.0.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d6aa0418fcc838522256761b3415822626f866758ee0bc6632c9486b179d0b52"}, {file = "multidict-6.0.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:6748717bb10339c4760c1e63da040f5f29f5ed6e59d76daee30305894069a660"}, {file = "multidict-6.0.4-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:4d1a3d7ef5e96b1c9e92f973e43aa5e5b96c659c9bc3124acbbd81b0b9c8a951"}, {file = "multidict-6.0.4-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:4372381634485bec7e46718edc71528024fcdc6f835baefe517b34a33c731d60"}, {file = "multidict-6.0.4-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:fc35cb4676846ef752816d5be2193a1e8367b4c1397b74a565a9d0389c433a1d"}, {file = "multidict-6.0.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:4b9d9e4e2b37daddb5c23ea33a3417901fa7c7b3dee2d855f63ee67a0b21e5b1"}, {file = "multidict-6.0.4-cp38-cp38-win32.whl", hash = "sha256:e41b7e2b59679edfa309e8db64fdf22399eec4b0b24694e1b2104fb789207779"}, {file = "multidict-6.0.4-cp38-cp38-win_amd64.whl", hash = "sha256:d6c254ba6e45d8e72739281ebc46ea5eb5f101234f3ce171f0e9f5cc86991480"}, {file = "multidict-6.0.4-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:16ab77bbeb596e14212e7bab8429f24c1579234a3a462105cda4a66904998664"}, {file = "multidict-6.0.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bc779e9e6f7fda81b3f9aa58e3a6091d49ad528b11ed19f6621408806204ad35"}, {file = "multidict-6.0.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4ceef517eca3e03c1cceb22030a3e39cb399ac86bff4e426d4fc6ae49052cc60"}, {file = "multidict-6.0.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:281af09f488903fde97923c7744bb001a9b23b039a909460d0f14edc7bf59706"}, {file = "multidict-6.0.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:52f2dffc8acaba9a2f27174c41c9e57f60b907bb9f096b36b1a1f3be71c6284d"}, {file = "multidict-6.0.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b41156839806aecb3641f3208c0dafd3ac7775b9c4c422d82ee2a45c34ba81ca"}, {file = "multidict-6.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d5e3fc56f88cc98ef8139255cf8cd63eb2c586531e43310ff859d6bb3a6b51f1"}, {file = "multidict-6.0.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8316a77808c501004802f9beebde51c9f857054a0c871bd6da8280e718444449"}, {file = "multidict-6.0.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:f70b98cd94886b49d91170ef23ec5c0e8ebb6f242d734ed7ed677b24d50c82cf"}, {file = "multidict-6.0.4-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bf6774e60d67a9efe02b3616fee22441d86fab4c6d335f9d2051d19d90a40063"}, {file = "multidict-6.0.4-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:e69924bfcdda39b722ef4d9aa762b2dd38e4632b3641b1d9a57ca9cd18f2f83a"}, {file = "multidict-6.0.4-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:6b181d8c23da913d4ff585afd1155a0e1194c0b50c54fcfe286f70cdaf2b7176"}, {file = "multidict-6.0.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:52509b5be062d9eafc8170e53026fbc54cf3b32759a23d07fd935fb04fc22d95"}, {file = "multidict-6.0.4-cp39-cp39-win32.whl", hash = "sha256:27c523fbfbdfd19c6867af7346332b62b586eed663887392cff78d614f9ec313"}, {file = "multidict-6.0.4-cp39-cp39-win_amd64.whl", hash = "sha256:33029f5734336aa0d4c0384525da0387ef89148dc7191aae00ca5fb23d7aafc2"}, {file = "multidict-6.0.4.tar.gz", hash = "sha256:3666906492efb76453c0e7b97f2cf459b0682e7402c0489a95484965dbc1da49"}, ] [[package]] name = "multiprocess" version = "0.70.14" description = "better multiprocessing and multithreading in python" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "multiprocess-0.70.14-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:560a27540daef4ce8b24ed3cc2496a3c670df66c96d02461a4da67473685adf3"}, {file = "multiprocess-0.70.14-pp37-pypy37_pp73-manylinux_2_24_i686.whl", hash = "sha256:bfbbfa36f400b81d1978c940616bc77776424e5e34cb0c94974b178d727cfcd5"}, {file = "multiprocess-0.70.14-pp37-pypy37_pp73-manylinux_2_24_x86_64.whl", hash = "sha256:89fed99553a04ec4f9067031f83a886d7fdec5952005551a896a4b6a59575bb9"}, {file = "multiprocess-0.70.14-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:40a5e3685462079e5fdee7c6789e3ef270595e1755199f0d50685e72523e1d2a"}, {file = "multiprocess-0.70.14-pp38-pypy38_pp73-manylinux_2_24_i686.whl", hash = "sha256:44936b2978d3f2648727b3eaeab6d7fa0bedf072dc5207bf35a96d5ee7c004cf"}, {file = "multiprocess-0.70.14-pp38-pypy38_pp73-manylinux_2_24_x86_64.whl", hash = "sha256:e628503187b5d494bf29ffc52d3e1e57bb770ce7ce05d67c4bbdb3a0c7d3b05f"}, {file = "multiprocess-0.70.14-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:0d5da0fc84aacb0e4bd69c41b31edbf71b39fe2fb32a54eaedcaea241050855c"}, {file = "multiprocess-0.70.14-pp39-pypy39_pp73-manylinux_2_24_i686.whl", hash = "sha256:6a7b03a5b98e911a7785b9116805bd782815c5e2bd6c91c6a320f26fd3e7b7ad"}, {file = "multiprocess-0.70.14-pp39-pypy39_pp73-manylinux_2_24_x86_64.whl", hash = "sha256:cea5bdedd10aace3c660fedeac8b087136b4366d4ee49a30f1ebf7409bce00ae"}, {file = "multiprocess-0.70.14-py310-none-any.whl", hash = "sha256:7dc1f2f6a1d34894c8a9a013fbc807971e336e7cc3f3ff233e61b9dc679b3b5c"}, {file = "multiprocess-0.70.14-py37-none-any.whl", hash = "sha256:93a8208ca0926d05cdbb5b9250a604c401bed677579e96c14da3090beb798193"}, {file = "multiprocess-0.70.14-py38-none-any.whl", hash = "sha256:6725bc79666bbd29a73ca148a0fb5f4ea22eed4a8f22fce58296492a02d18a7b"}, {file = "multiprocess-0.70.14-py39-none-any.whl", hash = "sha256:63cee628b74a2c0631ef15da5534c8aedbc10c38910b9c8b18dcd327528d1ec7"}, {file = "multiprocess-0.70.14.tar.gz", hash = "sha256:3eddafc12f2260d27ae03fe6069b12570ab4764ab59a75e81624fac453fbf46a"}, ] [package.dependencies] dill = ">=0.3.6" [[package]] name = "murmurhash" version = "1.0.9" description = "Cython bindings for MurmurHash" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "murmurhash-1.0.9-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:697ed01454d92681c7ae26eb1adcdc654b54062bcc59db38ed03cad71b23d449"}, {file = "murmurhash-1.0.9-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:5ef31b5c11be2c064dbbdd0e22ab3effa9ceb5b11ae735295c717c120087dd94"}, {file = "murmurhash-1.0.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7a2bd203377a31bbb2d83fe3f968756d6c9bbfa36c64c6ebfc3c6494fc680bc"}, {file = "murmurhash-1.0.9-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0eb0f8e652431ea238c11bcb671fef5c03aff0544bf7e098df81ea4b6d495405"}, {file = "murmurhash-1.0.9-cp310-cp310-win_amd64.whl", hash = "sha256:cf0b3fe54dca598f5b18c9951e70812e070ecb4c0672ad2cc32efde8a33b3df6"}, {file = "murmurhash-1.0.9-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5dc41be79ba4d09aab7e9110a8a4d4b37b184b63767b1b247411667cdb1057a3"}, {file = "murmurhash-1.0.9-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c0f84ecdf37c06eda0222f2f9e81c0974e1a7659c35b755ab2fdc642ebd366db"}, {file = "murmurhash-1.0.9-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:241693c1c819148eac29d7882739b1099c891f1f7431127b2652c23f81722cec"}, {file = "murmurhash-1.0.9-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:47f5ca56c430230d3b581dfdbc54eb3ad8b0406dcc9afdd978da2e662c71d370"}, {file = "murmurhash-1.0.9-cp311-cp311-win_amd64.whl", hash = "sha256:660ae41fc6609abc05130543011a45b33ca5d8318ae5c70e66bbd351ca936063"}, {file = "murmurhash-1.0.9-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:01137d688a6b259bde642513506b062364ea4e1609f886d9bd095c3ae6da0b94"}, {file = "murmurhash-1.0.9-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1b70bbf55d89713873a35bd4002bc231d38e530e1051d57ca5d15f96c01fd778"}, {file = "murmurhash-1.0.9-cp36-cp36m-win_amd64.whl", hash = "sha256:3e802fa5b0e618ee99e8c114ce99fc91677f14e9de6e18b945d91323a93c84e8"}, {file = "murmurhash-1.0.9-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:213d0248e586082e1cab6157d9945b846fd2b6be34357ad5ea0d03a1931d82ba"}, {file = "murmurhash-1.0.9-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:94b89d02aeab5e6bad5056f9d08df03ac7cfe06e61ff4b6340feb227fda80ce8"}, {file = "murmurhash-1.0.9-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0c2e2ee2d91a87952fe0f80212e86119aa1fd7681f03e6c99b279e50790dc2b3"}, {file = "murmurhash-1.0.9-cp37-cp37m-win_amd64.whl", hash = "sha256:8c3d69fb649c77c74a55624ebf7a0df3c81629e6ea6e80048134f015da57b2ea"}, {file = "murmurhash-1.0.9-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:ab78675510f83e7a3c6bd0abdc448a9a2b0b385b0d7ee766cbbfc5cc278a3042"}, {file = "murmurhash-1.0.9-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:0ac5530c250d2b0073ed058555847c8d88d2d00229e483d45658c13b32398523"}, {file = "murmurhash-1.0.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:69157e8fa6b25c4383645227069f6a1f8738d32ed2a83558961019ca3ebef56a"}, {file = "murmurhash-1.0.9-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2aebe2ae016525a662ff772b72a2c9244a673e3215fcd49897f494258b96f3e7"}, {file = "murmurhash-1.0.9-cp38-cp38-win_amd64.whl", hash = "sha256:a5952f9c18a717fa17579e27f57bfa619299546011a8378a8f73e14eece332f6"}, {file = "murmurhash-1.0.9-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:ef79202feeac68e83971239169a05fa6514ecc2815ce04c8302076d267870f6e"}, {file = "murmurhash-1.0.9-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:799fcbca5693ad6a40f565ae6b8e9718e5875a63deddf343825c0f31c32348fa"}, {file = "murmurhash-1.0.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f9b995bc82eaf9223e045210207b8878fdfe099a788dd8abd708d9ee58459a9d"}, {file = "murmurhash-1.0.9-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b129e1c5ebd772e6ff5ef925bcce695df13169bd885337e6074b923ab6edcfc8"}, {file = "murmurhash-1.0.9-cp39-cp39-win_amd64.whl", hash = "sha256:379bf6b414bd27dd36772dd1570565a7d69918e980457370838bd514df0d91e9"}, {file = "murmurhash-1.0.9.tar.gz", hash = "sha256:fe7a38cb0d3d87c14ec9dddc4932ffe2dbc77d75469ab80fd5014689b0e07b58"}, ] [[package]] name = "mypy" version = "0.991" description = "Optional static typing for Python" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "mypy-0.991-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:7d17e0a9707d0772f4a7b878f04b4fd11f6f5bcb9b3813975a9b13c9332153ab"}, {file = "mypy-0.991-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0714258640194d75677e86c786e80ccf294972cc76885d3ebbb560f11db0003d"}, {file = "mypy-0.991-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:0c8f3be99e8a8bd403caa8c03be619544bc2c77a7093685dcf308c6b109426c6"}, {file = "mypy-0.991-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc9ec663ed6c8f15f4ae9d3c04c989b744436c16d26580eaa760ae9dd5d662eb"}, {file = "mypy-0.991-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4307270436fd7694b41f913eb09210faff27ea4979ecbcd849e57d2da2f65305"}, {file = "mypy-0.991-cp310-cp310-win_amd64.whl", hash = "sha256:901c2c269c616e6cb0998b33d4adbb4a6af0ac4ce5cd078afd7bc95830e62c1c"}, {file = "mypy-0.991-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:d13674f3fb73805ba0c45eb6c0c3053d218aa1f7abead6e446d474529aafc372"}, {file = "mypy-0.991-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:1c8cd4fb70e8584ca1ed5805cbc7c017a3d1a29fb450621089ffed3e99d1857f"}, {file = "mypy-0.991-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:209ee89fbb0deed518605edddd234af80506aec932ad28d73c08f1400ef80a33"}, {file = "mypy-0.991-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:37bd02ebf9d10e05b00d71302d2c2e6ca333e6c2a8584a98c00e038db8121f05"}, {file = "mypy-0.991-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:26efb2fcc6b67e4d5a55561f39176821d2adf88f2745ddc72751b7890f3194ad"}, {file = "mypy-0.991-cp311-cp311-win_amd64.whl", hash = "sha256:3a700330b567114b673cf8ee7388e949f843b356a73b5ab22dd7cff4742a5297"}, {file = "mypy-0.991-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:1f7d1a520373e2272b10796c3ff721ea1a0712288cafaa95931e66aa15798813"}, {file = "mypy-0.991-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:641411733b127c3e0dab94c45af15fea99e4468f99ac88b39efb1ad677da5711"}, {file = "mypy-0.991-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:3d80e36b7d7a9259b740be6d8d906221789b0d836201af4234093cae89ced0cd"}, {file = "mypy-0.991-cp37-cp37m-win_amd64.whl", hash = "sha256:e62ebaad93be3ad1a828a11e90f0e76f15449371ffeecca4a0a0b9adc99abcef"}, {file = "mypy-0.991-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:b86ce2c1866a748c0f6faca5232059f881cda6dda2a893b9a8373353cfe3715a"}, {file = "mypy-0.991-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:ac6e503823143464538efda0e8e356d871557ef60ccd38f8824a4257acc18d93"}, {file = "mypy-0.991-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:0cca5adf694af539aeaa6ac633a7afe9bbd760df9d31be55ab780b77ab5ae8bf"}, {file = "mypy-0.991-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a12c56bf73cdab116df96e4ff39610b92a348cc99a1307e1da3c3768bbb5b135"}, {file = "mypy-0.991-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:652b651d42f155033a1967739788c436491b577b6a44e4c39fb340d0ee7f0d70"}, {file = "mypy-0.991-cp38-cp38-win_amd64.whl", hash = "sha256:4175593dc25d9da12f7de8de873a33f9b2b8bdb4e827a7cae952e5b1a342e243"}, {file = "mypy-0.991-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:98e781cd35c0acf33eb0295e8b9c55cdbef64fcb35f6d3aa2186f289bed6e80d"}, {file = "mypy-0.991-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6d7464bac72a85cb3491c7e92b5b62f3dcccb8af26826257760a552a5e244aa5"}, {file = "mypy-0.991-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c9166b3f81a10cdf9b49f2d594b21b31adadb3d5e9db9b834866c3258b695be3"}, {file = "mypy-0.991-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b8472f736a5bfb159a5e36740847808f6f5b659960115ff29c7cecec1741c648"}, {file = "mypy-0.991-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5e80e758243b97b618cdf22004beb09e8a2de1af481382e4d84bc52152d1c476"}, {file = "mypy-0.991-cp39-cp39-win_amd64.whl", hash = "sha256:74e259b5c19f70d35fcc1ad3d56499065c601dfe94ff67ae48b85596b9ec1461"}, {file = "mypy-0.991-py3-none-any.whl", hash = "sha256:de32edc9b0a7e67c2775e574cb061a537660e51210fbf6006b0b36ea695ae9bb"}, {file = "mypy-0.991.tar.gz", hash = "sha256:3c0165ba8f354a6d9881809ef29f1a9318a236a6d81c690094c5df32107bde06"}, ] [package.dependencies] mypy-extensions = ">=0.4.3" tomli = {version = ">=1.1.0", markers = "python_version < \"3.11\""} typing-extensions = ">=3.10" [package.extras] dmypy = ["psutil (>=4.0)"] install-types = ["pip"] python2 = ["typed-ast (>=1.4.0,<2)"] reports = ["lxml"] [[package]] name = "mypy-extensions" version = "1.0.0" description = "Type system extensions for programs checked with the mypy type checker." category = "main" optional = false python-versions = ">=3.5" files = [ {file = "mypy_extensions-1.0.0-py3-none-any.whl", hash = "sha256:4392f6c0eb8a5668a69e23d168ffa70f0be9ccfd32b5cc2d26a34ae5b844552d"}, {file = "mypy_extensions-1.0.0.tar.gz", hash = "sha256:75dbf8955dc00442a438fc4d0666508a9a97b6bd41aa2f0ffe9d2f2725af0782"}, ] [[package]] name = "myst-nb" version = "0.17.2" description = "A Jupyter Notebook Sphinx reader built on top of the MyST markdown parser." category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "myst-nb-0.17.2.tar.gz", hash = "sha256:0f61386515fab07c73646adca97fff2f69f41e90d313a260217c5bbe419d858b"}, {file = "myst_nb-0.17.2-py3-none-any.whl", hash = "sha256:132ca4d0f5c308fdd4b6fdaba077712e28e119ccdafd04d6e41b51aac5483494"}, ] [package.dependencies] importlib_metadata = "*" ipykernel = "*" ipython = "*" jupyter-cache = ">=0.5,<0.7" myst-parser = ">=0.18.0,<0.19.0" nbclient = "*" nbformat = ">=5.0,<6.0" pyyaml = "*" sphinx = ">=4,<6" typing-extensions = "*" [package.extras] code-style = ["pre-commit"] rtd = ["alabaster", "altair", "bokeh", "coconut (>=1.4.3,<2.3.0)", "ipykernel (>=5.5,<6.0)", "ipywidgets", "jupytext (>=1.11.2,<1.12.0)", "matplotlib", "numpy", "pandas", "plotly", "sphinx-book-theme (>=0.3.0,<0.4.0)", "sphinx-copybutton", "sphinx-design (>=0.4.0,<0.5.0)", "sphinxcontrib-bibtex", "sympy"] testing = ["beautifulsoup4", "coverage (>=6.4,<8.0)", "ipykernel (>=5.5,<6.0)", "ipython (!=8.1.0,<8.5)", "ipywidgets (>=8)", "jupytext (>=1.11.2,<1.12.0)", "matplotlib (>=3.5.3,<3.6)", "nbdime", "numpy", "pandas", "pytest (>=7.1,<8.0)", "pytest-cov (>=3,<5)", "pytest-param-files (>=0.3.3,<0.4.0)", "pytest-regressions", "sympy (>=1.10.1)"] [[package]] name = "myst-parser" version = "0.18.1" description = "An extended commonmark compliant parser, with bridges to docutils & sphinx." category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "myst-parser-0.18.1.tar.gz", hash = "sha256:79317f4bb2c13053dd6e64f9da1ba1da6cd9c40c8a430c447a7b146a594c246d"}, {file = "myst_parser-0.18.1-py3-none-any.whl", hash = "sha256:61b275b85d9f58aa327f370913ae1bec26ebad372cc99f3ab85c8ec3ee8d9fb8"}, ] [package.dependencies] docutils = ">=0.15,<0.20" jinja2 = "*" markdown-it-py = ">=1.0.0,<3.0.0" mdit-py-plugins = ">=0.3.1,<0.4.0" pyyaml = "*" sphinx = ">=4,<6" typing-extensions = "*" [package.extras] code-style = ["pre-commit (>=2.12,<3.0)"] linkify = ["linkify-it-py (>=1.0,<2.0)"] rtd = ["ipython", "sphinx-book-theme", "sphinx-design", "sphinxcontrib.mermaid (>=0.7.1,<0.8.0)", "sphinxext-opengraph (>=0.6.3,<0.7.0)", "sphinxext-rediraffe (>=0.2.7,<0.3.0)"] testing = ["beautifulsoup4", "coverage[toml]", "pytest (>=6,<7)", "pytest-cov", "pytest-param-files (>=0.3.4,<0.4.0)", "pytest-regressions", "sphinx (<5.2)", "sphinx-pytest"] [[package]] name = "nbclassic" version = "1.0.0" description = "Jupyter Notebook as a Jupyter Server extension." category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "nbclassic-1.0.0-py3-none-any.whl", hash = "sha256:f99e4769b4750076cd4235c044b61232110733322384a94a63791d2e7beacc66"}, {file = "nbclassic-1.0.0.tar.gz", hash = "sha256:0ae11eb2319455d805596bf320336cda9554b41d99ab9a3c31bf8180bffa30e3"}, ] [package.dependencies] argon2-cffi = "*" ipykernel = "*" ipython-genutils = "*" jinja2 = "*" jupyter-client = ">=6.1.1" jupyter-core = ">=4.6.1" jupyter-server = ">=1.8" nbconvert = ">=5" nbformat = "*" nest-asyncio = ">=1.5" notebook-shim = ">=0.2.3" prometheus-client = "*" pyzmq = ">=17" Send2Trash = ">=1.8.0" terminado = ">=0.8.3" tornado = ">=6.1" traitlets = ">=4.2.1" [package.extras] docs = ["myst-parser", "nbsphinx", "sphinx", "sphinx-rtd-theme", "sphinxcontrib-github-alt"] json-logging = ["json-logging"] test = ["coverage", "nbval", "pytest", "pytest-cov", "pytest-jupyter", "pytest-playwright", "pytest-tornasync", "requests", "requests-unixsocket", "testpath"] [[package]] name = "nbclient" version = "0.7.4" description = "A client library for executing notebooks. Formerly nbconvert's ExecutePreprocessor." category = "dev" optional = false python-versions = ">=3.7.0" files = [ {file = "nbclient-0.7.4-py3-none-any.whl", hash = "sha256:c817c0768c5ff0d60e468e017613e6eae27b6fa31e43f905addd2d24df60c125"}, {file = "nbclient-0.7.4.tar.gz", hash = "sha256:d447f0e5a4cfe79d462459aec1b3dc5c2e9152597262be8ee27f7d4c02566a0d"}, ] [package.dependencies] jupyter-client = ">=6.1.12" jupyter-core = ">=4.12,<5.0.0 || >=5.1.0" nbformat = ">=5.1" traitlets = ">=5.3" [package.extras] dev = ["pre-commit"] docs = ["autodoc-traits", "mock", "moto", "myst-parser", "nbclient[test]", "sphinx (>=1.7)", "sphinx-book-theme", "sphinxcontrib-spelling"] test = ["flaky", "ipykernel", "ipython", "ipywidgets", "nbconvert (>=7.0.0)", "pytest (>=7.0)", "pytest-asyncio", "pytest-cov (>=4.0)", "testpath", "xmltodict"] [[package]] name = "nbconvert" version = "7.4.0" description = "Converting Jupyter Notebooks" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "nbconvert-7.4.0-py3-none-any.whl", hash = "sha256:af5064a9db524f9f12f4e8be7f0799524bd5b14c1adea37e34e83c95127cc818"}, {file = "nbconvert-7.4.0.tar.gz", hash = "sha256:51b6c77b507b177b73f6729dba15676e42c4e92bcb00edc8cc982ee72e7d89d7"}, ] [package.dependencies] beautifulsoup4 = "*" bleach = "*" defusedxml = "*" importlib-metadata = {version = ">=3.6", markers = "python_version < \"3.10\""} jinja2 = ">=3.0" jupyter-core = ">=4.7" jupyterlab-pygments = "*" markupsafe = ">=2.0" mistune = ">=2.0.3,<3" nbclient = ">=0.5.0" nbformat = ">=5.1" packaging = "*" pandocfilters = ">=1.4.1" pygments = ">=2.4.1" tinycss2 = "*" traitlets = ">=5.0" [package.extras] all = ["nbconvert[docs,qtpdf,serve,test,webpdf]"] docs = ["ipykernel", "ipython", "myst-parser", "nbsphinx (>=0.2.12)", "pydata-sphinx-theme", "sphinx (==5.0.2)", "sphinxcontrib-spelling"] qtpdf = ["nbconvert[qtpng]"] qtpng = ["pyqtwebengine (>=5.15)"] serve = ["tornado (>=6.1)"] test = ["ipykernel", "ipywidgets (>=7)", "pre-commit", "pytest", "pytest-dependency"] webpdf = ["pyppeteer (>=1,<1.1)"] [[package]] name = "nbformat" version = "5.8.0" description = "The Jupyter Notebook format" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "nbformat-5.8.0-py3-none-any.whl", hash = "sha256:d910082bd3e0bffcf07eabf3683ed7dda0727a326c446eeb2922abe102e65162"}, {file = "nbformat-5.8.0.tar.gz", hash = "sha256:46dac64c781f1c34dfd8acba16547024110348f9fc7eab0f31981c2a3dc48d1f"}, ] [package.dependencies] fastjsonschema = "*" jsonschema = ">=2.6" jupyter-core = "*" traitlets = ">=5.1" [package.extras] docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] test = ["pep440", "pre-commit", "pytest", "testpath"] [[package]] name = "nbsphinx" version = "0.8.12" description = "Jupyter Notebook Tools for Sphinx" category = "dev" optional = false python-versions = ">=3.6" files = [ {file = "nbsphinx-0.8.12-py3-none-any.whl", hash = "sha256:c15b681c7fce287000856f91fe1edac50d29f7b0c15bbc746fbe55c8eb84750b"}, {file = "nbsphinx-0.8.12.tar.gz", hash = "sha256:76570416cdecbeb21dbf5c3d6aa204ced6c1dd7ebef4077b5c21b8c6ece9533f"}, ] [package.dependencies] docutils = "*" jinja2 = "*" nbconvert = "!=5.4" nbformat = "*" sphinx = ">=1.8" traitlets = ">=5" [[package]] name = "neo4j" version = "5.8.1" description = "Neo4j Bolt driver for Python" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "neo4j-5.8.1.tar.gz", hash = "sha256:79c947f402e9f8624587add7b8af742b38cbcdf364d48021c5bff9220457965b"}, ] [package.dependencies] pytz = "*" [package.extras] numpy = ["numpy (>=1.7.0,<2.0.0)"] pandas = ["numpy (>=1.7.0,<2.0.0)", "pandas (>=1.1.0,<3.0.0)"] [[package]] name = "nest-asyncio" version = "1.5.6" description = "Patch asyncio to allow nested event loops" category = "main" optional = false python-versions = ">=3.5" files = [ {file = "nest_asyncio-1.5.6-py3-none-any.whl", hash = "sha256:b9a953fb40dceaa587d109609098db21900182b16440652454a146cffb06e8b8"}, {file = "nest_asyncio-1.5.6.tar.gz", hash = "sha256:d267cc1ff794403f7df692964d1d2a3fa9418ffea2a3f6859a439ff482fef290"}, ] [[package]] name = "networkx" version = "2.8.8" description = "Python package for creating and manipulating graphs and networks" category = "main" optional = true python-versions = ">=3.8" files = [ {file = "networkx-2.8.8-py3-none-any.whl", hash = "sha256:e435dfa75b1d7195c7b8378c3859f0445cd88c6b0375c181ed66823a9ceb7524"}, {file = "networkx-2.8.8.tar.gz", hash = "sha256:230d388117af870fce5647a3c52401fcf753e94720e6ea6b4197a5355648885e"}, ] [package.extras] default = ["matplotlib (>=3.4)", "numpy (>=1.19)", "pandas (>=1.3)", "scipy (>=1.8)"] developer = ["mypy (>=0.982)", "pre-commit (>=2.20)"] doc = ["nb2plots (>=0.6)", "numpydoc (>=1.5)", "pillow (>=9.2)", "pydata-sphinx-theme (>=0.11)", "sphinx (>=5.2)", "sphinx-gallery (>=0.11)", "texext (>=0.6.6)"] extra = ["lxml (>=4.6)", "pydot (>=1.4.2)", "pygraphviz (>=1.9)", "sympy (>=1.10)"] test = ["codecov (>=2.1)", "pytest (>=7.2)", "pytest-cov (>=4.0)"] [[package]] name = "nlpcloud" version = "1.0.41" description = "Python client for the NLP Cloud API" category = "main" optional = true python-versions = "*" files = [ {file = "nlpcloud-1.0.41-py3-none-any.whl", hash = "sha256:7a42de3ac84fa3d66eae7166c1f3131c9214cfe8d72474681c25941fcd184ae4"}, {file = "nlpcloud-1.0.41.tar.gz", hash = "sha256:2edc0dd5f17f95fbd7ac1df43f456fb951a7b06f29d5901a9430982ff6bdb861"}, ] [package.dependencies] requests = "*" [[package]] name = "nltk" version = "3.8.1" description = "Natural Language Toolkit" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "nltk-3.8.1-py3-none-any.whl", hash = "sha256:fd5c9109f976fa86bcadba8f91e47f5e9293bd034474752e92a520f81c93dda5"}, {file = "nltk-3.8.1.zip", hash = "sha256:1834da3d0682cba4f2cede2f9aad6b0fafb6461ba451db0efb6f9c39798d64d3"}, ] [package.dependencies] click = "*" joblib = "*" regex = ">=2021.8.3" tqdm = "*" [package.extras] all = ["matplotlib", "numpy", "pyparsing", "python-crfsuite", "requests", "scikit-learn", "scipy", "twython"] corenlp = ["requests"] machine-learning = ["numpy", "python-crfsuite", "scikit-learn", "scipy"] plot = ["matplotlib"] tgrep = ["pyparsing"] twitter = ["twython"] [[package]] name = "nomic" version = "1.1.6" description = "The offical Nomic python client." category = "main" optional = true python-versions = "*" files = [ {file = "nomic-1.1.6.tar.gz", hash = "sha256:8be61aeeb9d5f4f591bfb5655c9ae54a12de97498e6d2e24cf22faf9c118cf81"}, ] [package.dependencies] click = "*" cohere = "*" jsonlines = "*" loguru = "*" numpy = "*" pyarrow = "*" pydantic = "*" requests = "*" rich = "*" tqdm = "*" wonderwords = "*" [package.extras] dev = ["black", "cairosvg", "coverage", "mkautodoc", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]", "myst-parser", "pillow", "pylint", "pytest", "twine"] gpt4all = ["peft (==0.3.0.dev0)", "sentencepiece", "torch", "transformers (==4.28.0.dev0)"] [[package]] name = "notebook" version = "6.5.4" description = "A web-based notebook environment for interactive computing" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "notebook-6.5.4-py3-none-any.whl", hash = "sha256:dd17e78aefe64c768737b32bf171c1c766666a21cc79a44d37a1700771cab56f"}, {file = "notebook-6.5.4.tar.gz", hash = "sha256:517209568bd47261e2def27a140e97d49070602eea0d226a696f42a7f16c9a4e"}, ] [package.dependencies] argon2-cffi = "*" ipykernel = "*" ipython-genutils = "*" jinja2 = "*" jupyter-client = ">=5.3.4" jupyter-core = ">=4.6.1" nbclassic = ">=0.4.7" nbconvert = ">=5" nbformat = "*" nest-asyncio = ">=1.5" prometheus-client = "*" pyzmq = ">=17" Send2Trash = ">=1.8.0" terminado = ">=0.8.3" tornado = ">=6.1" traitlets = ">=4.2.1" [package.extras] docs = ["myst-parser", "nbsphinx", "sphinx", "sphinx-rtd-theme", "sphinxcontrib-github-alt"] json-logging = ["json-logging"] test = ["coverage", "nbval", "pytest", "pytest-cov", "requests", "requests-unixsocket", "selenium (==4.1.5)", "testpath"] [[package]] name = "notebook-shim" version = "0.2.3" description = "A shim layer for notebook traits and config" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "notebook_shim-0.2.3-py3-none-any.whl", hash = "sha256:a83496a43341c1674b093bfcebf0fe8e74cbe7eda5fd2bbc56f8e39e1486c0c7"}, {file = "notebook_shim-0.2.3.tar.gz", hash = "sha256:f69388ac283ae008cd506dda10d0288b09a017d822d5e8c7129a152cbd3ce7e9"}, ] [package.dependencies] jupyter-server = ">=1.8,<3" [package.extras] test = ["pytest", "pytest-console-scripts", "pytest-jupyter", "pytest-tornasync"] [[package]] name = "numcodecs" version = "0.11.0" description = "A Python package providing buffer compression and transformation codecs for use" category = "main" optional = false python-versions = ">=3.8" files = [ {file = "numcodecs-0.11.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c0bc116752be45b4f9dca4315e5a2b4185e3b46f68c997dbb84aef334ceb5a1d"}, {file = "numcodecs-0.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c27dfca402f69fbfa01c46fb572086e77f38121192160cc8ed1177dc30702c52"}, {file = "numcodecs-0.11.0-cp310-cp310-win_amd64.whl", hash = "sha256:0fabc7dfdf64a9555bf8a34911e05b415793c67a1377207dc79cd96342291fa1"}, {file = "numcodecs-0.11.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7dae3f5678f247336c84e7315a0c59a4fec7c33eb7db72d78ff5c776479a812e"}, {file = "numcodecs-0.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:32697785b786bb0039d3feeaabdc10f25eda6c149700cde954653aaa47637832"}, {file = "numcodecs-0.11.0-cp311-cp311-win_amd64.whl", hash = "sha256:8c2f36b21162c6ebccc05d3fe896f86b91dcf8709946809f730cc23a37f8234d"}, {file = "numcodecs-0.11.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0c240858bf29e0ff254b1db60430e8b2658b8c8328b684f80033289d94807a7c"}, {file = "numcodecs-0.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ee5bda16e9d26a7a39fc20b6c1cec23b4debc314df5cfae3ed505149c2eeafc4"}, {file = "numcodecs-0.11.0-cp38-cp38-win_amd64.whl", hash = "sha256:bd05cdb853c7bcfde2efc809a9df2c5e205b96f70405b810e5788b45d0d81f73"}, {file = "numcodecs-0.11.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:694dc2e80b1f169b7deb14bdd0a04b20e5f17ef32cb0f81b71ab690406ec6bd9"}, {file = "numcodecs-0.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf3925eeb37aed0e6c04d7fb9614133a3c8426dc77f8bda54c99c601a44b3bd3"}, {file = "numcodecs-0.11.0-cp39-cp39-win_amd64.whl", hash = "sha256:11596b71267417425ea8afb407477a67d684f434c8b07b1dd59c25a97d5c3ccb"}, {file = "numcodecs-0.11.0.tar.gz", hash = "sha256:6c058b321de84a1729299b0eae4d652b2e48ea1ca7f9df0da65cb13470e635eb"}, ] [package.dependencies] entrypoints = "*" numpy = ">=1.7" [package.extras] docs = ["mock", "numpydoc", "sphinx", "sphinx-issues"] msgpack = ["msgpack"] test = ["coverage", "flake8", "pytest", "pytest-cov"] zfpy = ["zfpy (>=1.0.0)"] [[package]] name = "numexpr" version = "2.8.4" description = "Fast numerical expression evaluator for NumPy" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "numexpr-2.8.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a75967d46b6bd56455dd32da6285e5ffabe155d0ee61eef685bbfb8dafb2e484"}, {file = "numexpr-2.8.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:db93cf1842f068247de631bfc8af20118bf1f9447cd929b531595a5e0efc9346"}, {file = "numexpr-2.8.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7bca95f4473b444428061d4cda8e59ac564dc7dc6a1dea3015af9805c6bc2946"}, {file = "numexpr-2.8.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e34931089a6bafc77aaae21f37ad6594b98aa1085bb8b45d5b3cd038c3c17d9"}, {file = "numexpr-2.8.4-cp310-cp310-win32.whl", hash = "sha256:f3a920bfac2645017110b87ddbe364c9c7a742870a4d2f6120b8786c25dc6db3"}, {file = "numexpr-2.8.4-cp310-cp310-win_amd64.whl", hash = "sha256:6931b1e9d4f629f43c14b21d44f3f77997298bea43790cfcdb4dd98804f90783"}, {file = "numexpr-2.8.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:9400781553541f414f82eac056f2b4c965373650df9694286b9bd7e8d413f8d8"}, {file = "numexpr-2.8.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:6ee9db7598dd4001138b482342b96d78110dd77cefc051ec75af3295604dde6a"}, {file = "numexpr-2.8.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ff5835e8af9a212e8480003d731aad1727aaea909926fd009e8ae6a1cba7f141"}, {file = "numexpr-2.8.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:655d84eb09adfee3c09ecf4a89a512225da153fdb7de13c447404b7d0523a9a7"}, {file = "numexpr-2.8.4-cp311-cp311-win32.whl", hash = "sha256:5538b30199bfc68886d2be18fcef3abd11d9271767a7a69ff3688defe782800a"}, {file = "numexpr-2.8.4-cp311-cp311-win_amd64.whl", hash = "sha256:3f039321d1c17962c33079987b675fb251b273dbec0f51aac0934e932446ccc3"}, {file = "numexpr-2.8.4-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c867cc36cf815a3ec9122029874e00d8fbcef65035c4a5901e9b120dd5d626a2"}, {file = "numexpr-2.8.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:059546e8f6283ccdb47c683101a890844f667fa6d56258d48ae2ecf1b3875957"}, {file = "numexpr-2.8.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:845a6aa0ed3e2a53239b89c1ebfa8cf052d3cc6e053c72805e8153300078c0b1"}, {file = "numexpr-2.8.4-cp37-cp37m-win32.whl", hash = "sha256:a38664e699526cb1687aefd9069e2b5b9387da7feac4545de446141f1ef86f46"}, {file = "numexpr-2.8.4-cp37-cp37m-win_amd64.whl", hash = "sha256:eaec59e9bf70ff05615c34a8b8d6c7bd042bd9f55465d7b495ea5436f45319d0"}, {file = "numexpr-2.8.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:b318541bf3d8326682ebada087ba0050549a16d8b3fa260dd2585d73a83d20a7"}, {file = "numexpr-2.8.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b076db98ca65eeaf9bd224576e3ac84c05e451c0bd85b13664b7e5f7b62e2c70"}, {file = "numexpr-2.8.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:90f12cc851240f7911a47c91aaf223dba753e98e46dff3017282e633602e76a7"}, {file = "numexpr-2.8.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c368aa35ae9b18840e78b05f929d3a7b3abccdba9630a878c7db74ca2368339"}, {file = "numexpr-2.8.4-cp38-cp38-win32.whl", hash = "sha256:b96334fc1748e9ec4f93d5fadb1044089d73fb08208fdb8382ed77c893f0be01"}, {file = "numexpr-2.8.4-cp38-cp38-win_amd64.whl", hash = "sha256:a6d2d7740ae83ba5f3531e83afc4b626daa71df1ef903970947903345c37bd03"}, {file = "numexpr-2.8.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:77898fdf3da6bb96aa8a4759a8231d763a75d848b2f2e5c5279dad0b243c8dfe"}, {file = "numexpr-2.8.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:df35324666b693f13a016bc7957de7cc4d8801b746b81060b671bf78a52b9037"}, {file = "numexpr-2.8.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:17ac9cfe6d0078c5fc06ba1c1bbd20b8783f28c6f475bbabd3cad53683075cab"}, {file = "numexpr-2.8.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:df3a1f6b24214a1ab826e9c1c99edf1686c8e307547a9aef33910d586f626d01"}, {file = "numexpr-2.8.4-cp39-cp39-win32.whl", hash = "sha256:7d71add384adc9119568d7e9ffa8a35b195decae81e0abf54a2b7779852f0637"}, {file = "numexpr-2.8.4-cp39-cp39-win_amd64.whl", hash = "sha256:9f096d707290a6a00b6ffdaf581ee37331109fb7b6c8744e9ded7c779a48e517"}, {file = "numexpr-2.8.4.tar.gz", hash = "sha256:d5432537418d18691b9115d615d6daa17ee8275baef3edf1afbbf8bc69806147"}, ] [package.dependencies] numpy = ">=1.13.3" [[package]] name = "numpy" version = "1.24.3" description = "Fundamental package for array computing in Python" category = "main" optional = false python-versions = ">=3.8" files = [ {file = "numpy-1.24.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:3c1104d3c036fb81ab923f507536daedc718d0ad5a8707c6061cdfd6d184e570"}, {file = "numpy-1.24.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:202de8f38fc4a45a3eea4b63e2f376e5f2dc64ef0fa692838e31a808520efaf7"}, {file = "numpy-1.24.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8535303847b89aa6b0f00aa1dc62867b5a32923e4d1681a35b5eef2d9591a463"}, {file = "numpy-1.24.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2d926b52ba1367f9acb76b0df6ed21f0b16a1ad87c6720a1121674e5cf63e2b6"}, {file = "numpy-1.24.3-cp310-cp310-win32.whl", hash = "sha256:f21c442fdd2805e91799fbe044a7b999b8571bb0ab0f7850d0cb9641a687092b"}, {file = "numpy-1.24.3-cp310-cp310-win_amd64.whl", hash = "sha256:ab5f23af8c16022663a652d3b25dcdc272ac3f83c3af4c02eb8b824e6b3ab9d7"}, {file = "numpy-1.24.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:9a7721ec204d3a237225db3e194c25268faf92e19338a35f3a224469cb6039a3"}, {file = "numpy-1.24.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d6cc757de514c00b24ae8cf5c876af2a7c3df189028d68c0cb4eaa9cd5afc2bf"}, {file = "numpy-1.24.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76e3f4e85fc5d4fd311f6e9b794d0c00e7002ec122be271f2019d63376f1d385"}, {file = "numpy-1.24.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a1d3c026f57ceaad42f8231305d4653d5f05dc6332a730ae5c0bea3513de0950"}, {file = "numpy-1.24.3-cp311-cp311-win32.whl", hash = "sha256:c91c4afd8abc3908e00a44b2672718905b8611503f7ff87390cc0ac3423fb096"}, {file = "numpy-1.24.3-cp311-cp311-win_amd64.whl", hash = "sha256:5342cf6aad47943286afa6f1609cad9b4266a05e7f2ec408e2cf7aea7ff69d80"}, {file = "numpy-1.24.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:7776ea65423ca6a15255ba1872d82d207bd1e09f6d0894ee4a64678dd2204078"}, {file = "numpy-1.24.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:ae8d0be48d1b6ed82588934aaaa179875e7dc4f3d84da18d7eae6eb3f06c242c"}, {file = "numpy-1.24.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ecde0f8adef7dfdec993fd54b0f78183051b6580f606111a6d789cd14c61ea0c"}, {file = "numpy-1.24.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4749e053a29364d3452c034827102ee100986903263e89884922ef01a0a6fd2f"}, {file = "numpy-1.24.3-cp38-cp38-win32.whl", hash = "sha256:d933fabd8f6a319e8530d0de4fcc2e6a61917e0b0c271fded460032db42a0fe4"}, {file = "numpy-1.24.3-cp38-cp38-win_amd64.whl", hash = "sha256:56e48aec79ae238f6e4395886b5eaed058abb7231fb3361ddd7bfdf4eed54289"}, {file = "numpy-1.24.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4719d5aefb5189f50887773699eaf94e7d1e02bf36c1a9d353d9f46703758ca4"}, {file = "numpy-1.24.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0ec87a7084caa559c36e0a2309e4ecb1baa03b687201d0a847c8b0ed476a7187"}, {file = "numpy-1.24.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ea8282b9bcfe2b5e7d491d0bf7f3e2da29700cec05b49e64d6246923329f2b02"}, {file = "numpy-1.24.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:210461d87fb02a84ef243cac5e814aad2b7f4be953b32cb53327bb49fd77fbb4"}, {file = "numpy-1.24.3-cp39-cp39-win32.whl", hash = "sha256:784c6da1a07818491b0ffd63c6bbe5a33deaa0e25a20e1b3ea20cf0e43f8046c"}, {file = "numpy-1.24.3-cp39-cp39-win_amd64.whl", hash = "sha256:d5036197ecae68d7f491fcdb4df90082b0d4960ca6599ba2659957aafced7c17"}, {file = "numpy-1.24.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:352ee00c7f8387b44d19f4cada524586f07379c0d49270f87233983bc5087ca0"}, {file = "numpy-1.24.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1a7d6acc2e7524c9955e5c903160aa4ea083736fde7e91276b0e5d98e6332812"}, {file = "numpy-1.24.3-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:35400e6a8d102fd07c71ed7dcadd9eb62ee9a6e84ec159bd48c28235bbb0f8e4"}, {file = "numpy-1.24.3.tar.gz", hash = "sha256:ab344f1bf21f140adab8e47fdbc7c35a477dc01408791f8ba00d018dd0bc5155"}, ] [[package]] name = "nvidia-cublas-cu11" version = "11.10.3.66" description = "CUBLAS native runtime libraries" category = "main" optional = false python-versions = ">=3" files = [ {file = "nvidia_cublas_cu11-11.10.3.66-py3-none-manylinux1_x86_64.whl", hash = "sha256:d32e4d75f94ddfb93ea0a5dda08389bcc65d8916a25cb9f37ac89edaeed3bded"}, {file = "nvidia_cublas_cu11-11.10.3.66-py3-none-win_amd64.whl", hash = "sha256:8ac17ba6ade3ed56ab898a036f9ae0756f1e81052a317bf98f8c6d18dc3ae49e"}, ] [package.dependencies] setuptools = "*" wheel = "*" [[package]] name = "nvidia-cuda-nvrtc-cu11" version = "11.7.99" description = "NVRTC native runtime libraries" category = "main" optional = false python-versions = ">=3" files = [ {file = "nvidia_cuda_nvrtc_cu11-11.7.99-2-py3-none-manylinux1_x86_64.whl", hash = "sha256:9f1562822ea264b7e34ed5930567e89242d266448e936b85bc97a3370feabb03"}, {file = "nvidia_cuda_nvrtc_cu11-11.7.99-py3-none-manylinux1_x86_64.whl", hash = "sha256:f7d9610d9b7c331fa0da2d1b2858a4a8315e6d49765091d28711c8946e7425e7"}, {file = "nvidia_cuda_nvrtc_cu11-11.7.99-py3-none-win_amd64.whl", hash = "sha256:f2effeb1309bdd1b3854fc9b17eaf997808f8b25968ce0c7070945c4265d64a3"}, ] [package.dependencies] setuptools = "*" wheel = "*" [[package]] name = "nvidia-cuda-runtime-cu11" version = "11.7.99" description = "CUDA Runtime native Libraries" category = "main" optional = false python-versions = ">=3" files = [ {file = "nvidia_cuda_runtime_cu11-11.7.99-py3-none-manylinux1_x86_64.whl", hash = "sha256:cc768314ae58d2641f07eac350f40f99dcb35719c4faff4bc458a7cd2b119e31"}, {file = "nvidia_cuda_runtime_cu11-11.7.99-py3-none-win_amd64.whl", hash = "sha256:bc77fa59a7679310df9d5c70ab13c4e34c64ae2124dd1efd7e5474b71be125c7"}, ] [package.dependencies] setuptools = "*" wheel = "*" [[package]] name = "nvidia-cudnn-cu11" version = "8.5.0.96" description = "cuDNN runtime libraries" category = "main" optional = false python-versions = ">=3" files = [ {file = "nvidia_cudnn_cu11-8.5.0.96-2-py3-none-manylinux1_x86_64.whl", hash = "sha256:402f40adfc6f418f9dae9ab402e773cfed9beae52333f6d86ae3107a1b9527e7"}, {file = "nvidia_cudnn_cu11-8.5.0.96-py3-none-manylinux1_x86_64.whl", hash = "sha256:71f8111eb830879ff2836db3cccf03bbd735df9b0d17cd93761732ac50a8a108"}, ] [package.dependencies] setuptools = "*" wheel = "*" [[package]] name = "o365" version = "2.0.26" description = "Microsoft Graph and Office 365 API made easy" category = "main" optional = true python-versions = ">=3.4" files = [ {file = "O365-2.0.26-py3-none-any.whl", hash = "sha256:220899f2135e5f2de1db808df9858f5f7bd38910e2c870bb08b04d94bd450b3f"}, {file = "O365-2.0.26.tar.gz", hash = "sha256:b478522a652df112c298446aabefccaa446b14bf257b6694fed524c08b76de38"}, ] [package.dependencies] beautifulsoup4 = ">=4.0.0" python-dateutil = ">=2.7" pytz = ">=2018.5" requests = ">=2.18.0" requests-oauthlib = ">=1.2.0" stringcase = ">=1.2.0" tzlocal = ">=4.0" [[package]] name = "oauthlib" version = "3.2.2" description = "A generic, spec-compliant, thorough implementation of the OAuth request-signing logic" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "oauthlib-3.2.2-py3-none-any.whl", hash = "sha256:8139f29aac13e25d502680e9e19963e83f16838d48a0d71c287fe40e7067fbca"}, {file = "oauthlib-3.2.2.tar.gz", hash = "sha256:9859c40929662bec5d64f34d01c99e093149682a3f38915dc0655d5a633dd918"}, ] [package.extras] rsa = ["cryptography (>=3.0.0)"] signals = ["blinker (>=1.4.0)"] signedtoken = ["cryptography (>=3.0.0)", "pyjwt (>=2.0.0,<3)"] [[package]] name = "openai" version = "0.27.6" description = "Python client library for the OpenAI API" category = "main" optional = false python-versions = ">=3.7.1" files = [ {file = "openai-0.27.6-py3-none-any.whl", hash = "sha256:1f07ed06f1cfc6c25126107193726fe4cf476edcc4e1485cd9eb708f068f2606"}, {file = "openai-0.27.6.tar.gz", hash = "sha256:63ca9f6ac619daef8c1ddec6d987fe6aa1c87a9bfdce31ff253204d077222375"}, ] [package.dependencies] aiohttp = "*" requests = ">=2.20" tqdm = "*" [package.extras] datalib = ["numpy", "openpyxl (>=3.0.7)", "pandas (>=1.2.3)", "pandas-stubs (>=1.1.0.11)"] dev = ["black (>=21.6b0,<22.0)", "pytest (>=6.0.0,<7.0.0)", "pytest-asyncio", "pytest-mock"] embeddings = ["matplotlib", "numpy", "openpyxl (>=3.0.7)", "pandas (>=1.2.3)", "pandas-stubs (>=1.1.0.11)", "plotly", "scikit-learn (>=1.0.2)", "scipy", "tenacity (>=8.0.1)"] wandb = ["numpy", "openpyxl (>=3.0.7)", "pandas (>=1.2.3)", "pandas-stubs (>=1.1.0.11)", "wandb"] [[package]] name = "openapi-schema-pydantic" version = "1.2.4" description = "OpenAPI (v3) specification schema as pydantic class" category = "main" optional = false python-versions = ">=3.6.1" files = [ {file = "openapi-schema-pydantic-1.2.4.tar.gz", hash = "sha256:3e22cf58b74a69f752cc7e5f1537f6e44164282db2700cbbcd3bb99ddd065196"}, {file = "openapi_schema_pydantic-1.2.4-py3-none-any.whl", hash = "sha256:a932ecc5dcbb308950282088956e94dea069c9823c84e507d64f6b622222098c"}, ] [package.dependencies] pydantic = ">=1.8.2" [[package]] name = "openlm" version = "0.0.5" description = "Drop-in OpenAI-compatible that can call LLMs from other providers" category = "main" optional = true python-versions = ">=3.8.1,<4.0" files = [ {file = "openlm-0.0.5-py3-none-any.whl", hash = "sha256:9fcbbc575d2869e2a6c0b00827f9be2189c067c2de4bf03ef3cbdf488367ae93"}, {file = "openlm-0.0.5.tar.gz", hash = "sha256:0eb3fd7a9e4f7b4248931ff2f0dc91c525d990b99956886861a1b3f9868bc451"}, ] [package.dependencies] requests = ">=2,<3" [[package]] name = "opensearch-py" version = "2.2.0" description = "Python client for OpenSearch" category = "main" optional = true python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, <4" files = [ {file = "opensearch-py-2.2.0.tar.gz", hash = "sha256:109fe8d2e1e8f419a22358eb901025f51e6ad2f50014c8962e23796b2a23cb67"}, {file = "opensearch_py-2.2.0-py2.py3-none-any.whl", hash = "sha256:595dcebe42e21cdf945add0b5dbaecccace1a8a5ba65d60314813767b564263c"}, ] [package.dependencies] certifi = ">=2022.12.07" python-dateutil = "*" requests = ">=2.4.0,<3.0.0" six = "*" urllib3 = ">=1.21.1,<2" [package.extras] async = ["aiohttp (>=3,<4)"] develop = ["black", "botocore", "coverage (<7.0.0)", "jinja2", "mock", "myst-parser", "pytest (>=3.0.0)", "pytest-cov", "pytest-mock (<4.0.0)", "pytz", "pyyaml", "requests (>=2.0.0,<3.0.0)", "sphinx", "sphinx-copybutton", "sphinx-rtd-theme"] docs = ["myst-parser", "sphinx", "sphinx-copybutton", "sphinx-rtd-theme"] kerberos = ["requests-kerberos"] [[package]] name = "opentelemetry-api" version = "1.17.0" description = "OpenTelemetry Python API" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "opentelemetry_api-1.17.0-py3-none-any.whl", hash = "sha256:b41d9b2a979607b75d2683b9bbf97062a683d190bc696969fb2122fa60aeaabc"}, {file = "opentelemetry_api-1.17.0.tar.gz", hash = "sha256:3480fcf6b783be5d440a226a51db979ccd7c49a2e98d1c747c991031348dcf04"}, ] [package.dependencies] deprecated = ">=1.2.6" importlib-metadata = ">=6.0.0,<6.1.0" setuptools = ">=16.0" [[package]] name = "opentelemetry-exporter-otlp" version = "1.17.0" description = "OpenTelemetry Collector Exporters" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "opentelemetry_exporter_otlp-1.17.0-py3-none-any.whl", hash = "sha256:9708d2b74c9205a7bd9b46e24acec0e3b362465d9a77b62347ea0459d4358044"}, {file = "opentelemetry_exporter_otlp-1.17.0.tar.gz", hash = "sha256:d0fa02b512127b44493c75d12a2dc2557bf251b7f76b354cfaa58b0f820d04ae"}, ] [package.dependencies] opentelemetry-exporter-otlp-proto-grpc = "1.17.0" opentelemetry-exporter-otlp-proto-http = "1.17.0" [[package]] name = "opentelemetry-exporter-otlp-proto-grpc" version = "1.17.0" description = "OpenTelemetry Collector Protobuf over gRPC Exporter" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "opentelemetry_exporter_otlp_proto_grpc-1.17.0-py3-none-any.whl", hash = "sha256:192d781b668a74edb49152b8b5f4f7e25bcb4307a9cf4b2dfcf87e68feac98bd"}, {file = "opentelemetry_exporter_otlp_proto_grpc-1.17.0.tar.gz", hash = "sha256:f01476ae89484bc6210e50d7a4d93c293b3a12aff562253b94f588a85af13f70"}, ] [package.dependencies] backoff = {version = ">=1.10.0,<3.0.0", markers = "python_version >= \"3.7\""} googleapis-common-protos = ">=1.52,<2.0" grpcio = ">=1.0.0,<2.0.0" opentelemetry-api = ">=1.15,<2.0" opentelemetry-proto = "1.17.0" opentelemetry-sdk = ">=1.17.0,<1.18.0" [package.extras] test = ["pytest-grpc"] [[package]] name = "opentelemetry-exporter-otlp-proto-http" version = "1.17.0" description = "OpenTelemetry Collector Protobuf over HTTP Exporter" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "opentelemetry_exporter_otlp_proto_http-1.17.0-py3-none-any.whl", hash = "sha256:81959249b75bd36c3b73c885a9ce36aa21e8022618e8e95fa41ae69609f0c799"}, {file = "opentelemetry_exporter_otlp_proto_http-1.17.0.tar.gz", hash = "sha256:329984da861ee2cc42c4bc5ae1b80092fb76a0ea5a24b3519bc3b52572197fec"}, ] [package.dependencies] backoff = {version = ">=1.10.0,<3.0.0", markers = "python_version >= \"3.7\""} googleapis-common-protos = ">=1.52,<2.0" opentelemetry-api = ">=1.15,<2.0" opentelemetry-proto = "1.17.0" opentelemetry-sdk = ">=1.17.0,<1.18.0" requests = ">=2.7,<3.0" [package.extras] test = ["responses (==0.22.0)"] [[package]] name = "opentelemetry-exporter-prometheus" version = "1.12.0rc1" description = "Prometheus Metric Exporter for OpenTelemetry" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "opentelemetry-exporter-prometheus-1.12.0rc1.tar.gz", hash = "sha256:f10c6c243d69d5b63f755885b36a4ce8ef2cdf3e737c4e6bf00f32e87668f0a9"}, {file = "opentelemetry_exporter_prometheus-1.12.0rc1-py3-none-any.whl", hash = "sha256:1f0c8f93d62e1575313966ceb8abf11e9a46e1839fda9ee4269b06d40494280f"}, ] [package.dependencies] opentelemetry-api = ">=1.10.0" opentelemetry-sdk = ">=1.10.0" prometheus-client = ">=0.5.0,<1.0.0" [[package]] name = "opentelemetry-instrumentation" version = "0.38b0" description = "Instrumentation Tools & Auto Instrumentation for OpenTelemetry Python" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "opentelemetry_instrumentation-0.38b0-py3-none-any.whl", hash = "sha256:48eed87e5db9d2cddd57a8ea359bd15318560c0ffdd80d90a5fc65816e15b7f4"}, {file = "opentelemetry_instrumentation-0.38b0.tar.gz", hash = "sha256:3dbe93248eec7652d5725d3c6d2f9dd048bb8fda6b0505aadbc99e51638d833c"}, ] [package.dependencies] opentelemetry-api = ">=1.4,<2.0" setuptools = ">=16.0" wrapt = ">=1.0.0,<2.0.0" [[package]] name = "opentelemetry-instrumentation-aiohttp-client" version = "0.38b0" description = "OpenTelemetry aiohttp client instrumentation" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "opentelemetry_instrumentation_aiohttp_client-0.38b0-py3-none-any.whl", hash = "sha256:093987f5c96518ac6999eb7480af168655bc3538752ae67d4d9a5807eaad1ee0"}, {file = "opentelemetry_instrumentation_aiohttp_client-0.38b0.tar.gz", hash = "sha256:9c3e637e742b5d8e5c8a76fae4f3812dde5e58f85598d119abd0149cb1c82ec0"}, ] [package.dependencies] opentelemetry-api = ">=1.12,<2.0" opentelemetry-instrumentation = "0.38b0" opentelemetry-semantic-conventions = "0.38b0" opentelemetry-util-http = "0.38b0" wrapt = ">=1.0.0,<2.0.0" [package.extras] instruments = ["aiohttp (>=3.0,<4.0)"] test = ["opentelemetry-instrumentation-aiohttp-client[instruments]"] [[package]] name = "opentelemetry-instrumentation-asgi" version = "0.38b0" description = "ASGI instrumentation for OpenTelemetry" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "opentelemetry_instrumentation_asgi-0.38b0-py3-none-any.whl", hash = "sha256:c5bba11505008a3cd1b2c42b72f85f3f4f5af50ab931eddd0b01bde376dc5971"}, {file = "opentelemetry_instrumentation_asgi-0.38b0.tar.gz", hash = "sha256:32d1034c253de6048d0d0166b304f9125267ca9329e374202ebe011a206eba53"}, ] [package.dependencies] asgiref = ">=3.0,<4.0" opentelemetry-api = ">=1.12,<2.0" opentelemetry-instrumentation = "0.38b0" opentelemetry-semantic-conventions = "0.38b0" opentelemetry-util-http = "0.38b0" [package.extras] instruments = ["asgiref (>=3.0,<4.0)"] test = ["opentelemetry-instrumentation-asgi[instruments]", "opentelemetry-test-utils (==0.38b0)"] [[package]] name = "opentelemetry-instrumentation-fastapi" version = "0.38b0" description = "OpenTelemetry FastAPI Instrumentation" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "opentelemetry_instrumentation_fastapi-0.38b0-py3-none-any.whl", hash = "sha256:91139586732e437b1c3d5cf838dc5be910bce27b4b679612112be03fcc4fa2aa"}, {file = "opentelemetry_instrumentation_fastapi-0.38b0.tar.gz", hash = "sha256:8946fd414084b305ad67556a1907e2d4a497924d023effc5ea3b4b1b0c55b256"}, ] [package.dependencies] opentelemetry-api = ">=1.12,<2.0" opentelemetry-instrumentation = "0.38b0" opentelemetry-instrumentation-asgi = "0.38b0" opentelemetry-semantic-conventions = "0.38b0" opentelemetry-util-http = "0.38b0" [package.extras] instruments = ["fastapi (>=0.58,<1.0)"] test = ["httpx (>=0.22,<1.0)", "opentelemetry-instrumentation-fastapi[instruments]", "opentelemetry-test-utils (==0.38b0)", "requests (>=2.23,<3.0)"] [[package]] name = "opentelemetry-instrumentation-grpc" version = "0.38b0" description = "OpenTelemetry gRPC instrumentation" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "opentelemetry_instrumentation_grpc-0.38b0-py3-none-any.whl", hash = "sha256:64978d158f233c45df809d927f62a79e0bbb1c433d63ae5f7b38133a515397d8"}, {file = "opentelemetry_instrumentation_grpc-0.38b0.tar.gz", hash = "sha256:d6a45e4c64aa4a2f3c29b6ca673b04d88e8ef4c2d0273e9b23209f9248f30325"}, ] [package.dependencies] opentelemetry-api = ">=1.12,<2.0" opentelemetry-instrumentation = "0.38b0" opentelemetry-sdk = ">=1.12,<2.0" opentelemetry-semantic-conventions = "0.38b0" wrapt = ">=1.0.0,<2.0.0" [package.extras] instruments = ["grpcio (>=1.27,<2.0)"] test = ["opentelemetry-instrumentation-grpc[instruments]", "opentelemetry-sdk (>=1.12,<2.0)", "opentelemetry-test-utils (==0.38b0)", "protobuf (>=3.13,<4.0)"] [[package]] name = "opentelemetry-proto" version = "1.17.0" description = "OpenTelemetry Python Proto" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "opentelemetry_proto-1.17.0-py3-none-any.whl", hash = "sha256:c7c0f748668102598e84ca4d51975f87ebf66865aa7469fc2c5e8bdaab813e93"}, {file = "opentelemetry_proto-1.17.0.tar.gz", hash = "sha256:8501fdc3bc76c03a2ed11603a4d9fce6e5a97eeaebd7a20ad84bba7bd79cc9f8"}, ] [package.dependencies] protobuf = ">=3.19,<5.0" [[package]] name = "opentelemetry-sdk" version = "1.17.0" description = "OpenTelemetry Python SDK" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "opentelemetry_sdk-1.17.0-py3-none-any.whl", hash = "sha256:07424cbcc8c012bc120ed573d5443e7322f3fb393512e72866c30111070a8c37"}, {file = "opentelemetry_sdk-1.17.0.tar.gz", hash = "sha256:99bb9a787006774f865a4b24f8179900347d03a214c362a6cb70191f77dd6132"}, ] [package.dependencies] opentelemetry-api = "1.17.0" opentelemetry-semantic-conventions = "0.38b0" setuptools = ">=16.0" typing-extensions = ">=3.7.4" [[package]] name = "opentelemetry-semantic-conventions" version = "0.38b0" description = "OpenTelemetry Semantic Conventions" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "opentelemetry_semantic_conventions-0.38b0-py3-none-any.whl", hash = "sha256:b0ba36e8b70bfaab16ee5a553d809309cc11ff58aec3d2550d451e79d45243a7"}, {file = "opentelemetry_semantic_conventions-0.38b0.tar.gz", hash = "sha256:37f09e47dd5fc316658bf9ee9f37f9389b21e708faffa4a65d6a3de484d22309"}, ] [[package]] name = "opentelemetry-util-http" version = "0.38b0" description = "Web util for OpenTelemetry" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "opentelemetry_util_http-0.38b0-py3-none-any.whl", hash = "sha256:8e5f0451eeb5307b2c628dd799886adc5e113fb13a7207c29c672e8d168eabd8"}, {file = "opentelemetry_util_http-0.38b0.tar.gz", hash = "sha256:85eb032b6129c4d7620583acf574e99fe2e73c33d60e256b54af436f76ceb5ae"}, ] [[package]] name = "opt-einsum" version = "3.3.0" description = "Optimizing numpys einsum function" category = "main" optional = true python-versions = ">=3.5" files = [ {file = "opt_einsum-3.3.0-py3-none-any.whl", hash = "sha256:2455e59e3947d3c275477df7f5205b30635e266fe6dc300e3d9f9646bfcea147"}, {file = "opt_einsum-3.3.0.tar.gz", hash = "sha256:59f6475f77bbc37dcf7cd748519c0ec60722e91e63ca114e68821c0c54a46549"}, ] [package.dependencies] numpy = ">=1.7" [package.extras] docs = ["numpydoc", "sphinx (==1.2.3)", "sphinx-rtd-theme", "sphinxcontrib-napoleon"] tests = ["pytest", "pytest-cov", "pytest-pep8"] [[package]] name = "orjson" version = "3.8.12" description = "Fast, correct Python JSON library supporting dataclasses, datetimes, and numpy" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "orjson-3.8.12-cp310-cp310-macosx_11_0_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl", hash = "sha256:c84046e890e13a119404a83f2e09e622509ed4692846ff94c4ca03654fbc7fb5"}, {file = "orjson-3.8.12-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:29706dd8189835bcf1781faed286e99ae54fd6165437d364dfdbf0276bf39b19"}, {file = "orjson-3.8.12-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f4e22b0aa70c963ac01fcd620de15be21a5027711b0e5d4b96debcdeea43e3ae"}, {file = "orjson-3.8.12-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6d1acf52d3a4b9384af09a5c2658c3a7a472a4d62a0ad1fe2c8fab8ef460c9b4"}, {file = "orjson-3.8.12-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a72b50719bdd6bb0acfca3d4d1c841aa4b191f3ff37268e7aba04e5d6be44ccd"}, {file = "orjson-3.8.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:83e8c740a718fa6d511a82e463adc7ab17631c6eea81a716b723e127a9c51d57"}, {file = "orjson-3.8.12-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:ebb03e4c7648f7bb299872002a6120082da018f41ba7a9ebf4ceae8d765443d2"}, {file = "orjson-3.8.12-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:44f7bb4c995652106276442de1147c9993716d1e2d79b7fd435afa154ff236b9"}, {file = "orjson-3.8.12-cp310-none-win_amd64.whl", hash = "sha256:06e528f9a84fbb4000fd0eee573b5db543ee70ae586fdbc53e740b0ac981701c"}, {file = "orjson-3.8.12-cp311-cp311-macosx_11_0_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl", hash = "sha256:9a6c1594d5a9ff56e5babc4a87ac372af38d37adef9e06744e9f158431e33f43"}, {file = "orjson-3.8.12-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c6390ce0bce24c107fc275736aa8a4f768ef7eb5df935d7dca0cc99815eb5d99"}, {file = "orjson-3.8.12-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:efb3a10030462a22c731682434df5c137a67632a8339f821cd501920b169007e"}, {file = "orjson-3.8.12-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7e405d54c84c30d9b1c918c290bcf4ef484a45c69d5583a95db81ffffba40b44"}, {file = "orjson-3.8.12-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cd6fbd1413559572e81b5ac64c45388147c3ba85cc3df2eaa11002945e0dbd1f"}, {file = "orjson-3.8.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f480ae7b84369b1860d8867f0baf8d885fede400fda390ce088bfa8edf97ffdc"}, {file = "orjson-3.8.12-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:355055e0977c43b0e5325b9312b7208c696fe20cd54eed1d6fc80b0a4d6721f5"}, {file = "orjson-3.8.12-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d937503e4dfba5edc8d5e0426d3cc97ed55716e93212b2e12a198664487b9965"}, {file = "orjson-3.8.12-cp311-none-win_amd64.whl", hash = "sha256:eb16e0195febd24b44f4db1ab3be85ecf6038f92fd511370cebc004b3d422294"}, {file = "orjson-3.8.12-cp37-cp37m-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl", hash = "sha256:dc27a8ec13f28e92dc1ea89bf1232d77e7d3ebfd5c1ccf4f3729a70561cb63bd"}, {file = "orjson-3.8.12-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77710774faed337ac4ad919dadc5f3b655b0cd40518e5386e6f1f116de9c6c25"}, {file = "orjson-3.8.12-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:7e549468867991f6f9cfbd9c5bbc977330173bd8f6ceb79973bbd4634e13e1b9"}, {file = "orjson-3.8.12-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:96fb1eb82b578eb6c0e53e3cf950839fe98ea210626f87c8204bd4fc2cc6ba02"}, {file = "orjson-3.8.12-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8d153b228b6e24f8bccf732a51e01e8e938eef59efed9030c5c257778fbe0804"}, {file = "orjson-3.8.12-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:becbd5af6d035a7ec2ee3239d4700929d52d8517806b97dd04efcc37289403f7"}, {file = "orjson-3.8.12-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:7d63f524048825e05950db3b6998c756d5377a5e8c469b2e3bdb9f3217523d74"}, {file = "orjson-3.8.12-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:ec4f0130d9a27cb400423e09e0f9e46480e9e977f05fdcf663a7a2c68735513e"}, {file = "orjson-3.8.12-cp37-none-win_amd64.whl", hash = "sha256:6f1b01f641f5e87168b819ac1cbd81aa6278e7572c326f3d27e92dea442a2c0d"}, {file = "orjson-3.8.12-cp38-cp38-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl", hash = "sha256:062e67108c218fdb9475edd5272b1629c05b56c66416fa915de5656adde30e73"}, {file = "orjson-3.8.12-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ba645c92801417933fa74448622ba614a275ea82df05e888095c7742d913bb4"}, {file = "orjson-3.8.12-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:7d50d9b1ae409ea15534365fec0ce8a5a5f7dc94aa790aacfb8cfec87ab51aa4"}, {file = "orjson-3.8.12-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8f00038bf5d07439d13c0c2c5cd6ad48eb86df7dbd7a484013ce6a113c421b14"}, {file = "orjson-3.8.12-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:397670665f94cf5cff779054781d80395084ba97191d82f7b3a86f0a20e6102b"}, {file = "orjson-3.8.12-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6f568205519bb0197ca91915c5da6058cfbb59993e557b02dfc3b2718b34770a"}, {file = "orjson-3.8.12-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:4fd240e736ce52cd757d74142d9933fd35a3184396be887c435f0574e0388654"}, {file = "orjson-3.8.12-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:6cae2ff288a80e81ce30313e735c5436495ab58cf8d4fbe84900e616d0ee7a78"}, {file = "orjson-3.8.12-cp38-none-win_amd64.whl", hash = "sha256:710c40c214b753392e46f9275fd795e9630dd737a5ab4ac6e4ee1a02fe83cc0d"}, {file = "orjson-3.8.12-cp39-cp39-macosx_11_0_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl", hash = "sha256:aff761de5ed5543a0a51e9f703668624749aa2239de5d7d37d9c9693daeaf5dc"}, {file = "orjson-3.8.12-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:135f29cf936283a0cd1b8bce86540ca181108f2a4d4483eedad6b8026865d2a9"}, {file = "orjson-3.8.12-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:62f999798f2fa55e567d483864ebfc30120fb055c2696a255979439323a5b15c"}, {file = "orjson-3.8.12-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3fa58ca064c640fa9d823f98fbbc8e71940ecb78cea3ac2507da1cbf49d60b51"}, {file = "orjson-3.8.12-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8682f752c19f6a7d9fc727fd98588b4c8b0dce791b5794bb814c7379ccd64a79"}, {file = "orjson-3.8.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:de3d096dde3e46d01841abc1982b906694ab3c92f338d37a2e6184739dc8a958"}, {file = "orjson-3.8.12-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:834b50df79f1fe89bbaced3a1c1d8c8c92cc99e84cdcd374d8da4974b3560d2a"}, {file = "orjson-3.8.12-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:2ad149ed76dce2bbdfbadd61c35959305e77141badf364a158beb4ef3d88ec37"}, {file = "orjson-3.8.12-cp39-none-win_amd64.whl", hash = "sha256:82d65e478a21f98107b4eb8390104746bb3024c27084b57edab7d427385f1f70"}, {file = "orjson-3.8.12.tar.gz", hash = "sha256:9f0f042cf002a474a6aea006dd9f8d7a5497e35e5fb190ec78eb4d232ec19955"}, ] [[package]] name = "packaging" version = "23.1" description = "Core utilities for Python packages" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "packaging-23.1-py3-none-any.whl", hash = "sha256:994793af429502c4ea2ebf6bf664629d07c1a9fe974af92966e4b8d2df7edc61"}, {file = "packaging-23.1.tar.gz", hash = "sha256:a392980d2b6cffa644431898be54b0045151319d1e7ec34f0cfed48767dd334f"}, ] [[package]] name = "pandas" version = "2.0.1" description = "Powerful data structures for data analysis, time series, and statistics" category = "main" optional = false python-versions = ">=3.8" files = [ {file = "pandas-2.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:70a996a1d2432dadedbb638fe7d921c88b0cc4dd90374eab51bb33dc6c0c2a12"}, {file = "pandas-2.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:909a72b52175590debbf1d0c9e3e6bce2f1833c80c76d80bd1aa09188be768e5"}, {file = "pandas-2.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fe7914d8ddb2d54b900cec264c090b88d141a1eed605c9539a187dbc2547f022"}, {file = "pandas-2.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0a514ae436b23a92366fbad8365807fc0eed15ca219690b3445dcfa33597a5cc"}, {file = "pandas-2.0.1-cp310-cp310-win32.whl", hash = "sha256:12bd6618e3cc737c5200ecabbbb5eaba8ab645a4b0db508ceeb4004bb10b060e"}, {file = "pandas-2.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:2b6fe5f7ce1cba0e74188c8473c9091ead9b293ef0a6794939f8cc7947057abd"}, {file = "pandas-2.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:00959a04a1d7bbc63d75a768540fb20ecc9e65fd80744c930e23768345a362a7"}, {file = "pandas-2.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:af2449e9e984dfad39276b885271ba31c5e0204ffd9f21f287a245980b0e4091"}, {file = "pandas-2.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:910df06feaf9935d05247db6de452f6d59820e432c18a2919a92ffcd98f8f79b"}, {file = "pandas-2.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6fa0067f2419f933101bdc6001bcea1d50812afbd367b30943417d67fbb99678"}, {file = "pandas-2.0.1-cp311-cp311-win32.whl", hash = "sha256:7b8395d335b08bc8b050590da264f94a439b4770ff16bb51798527f1dd840388"}, {file = "pandas-2.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:8db5a644d184a38e6ed40feeb12d410d7fcc36648443defe4707022da127fc35"}, {file = "pandas-2.0.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:7bbf173d364130334e0159a9a034f573e8b44a05320995127cf676b85fd8ce86"}, {file = "pandas-2.0.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6c0853d487b6c868bf107a4b270a823746175b1932093b537b9b76c639fc6f7e"}, {file = "pandas-2.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f25e23a03f7ad7211ffa30cb181c3e5f6d96a8e4cb22898af462a7333f8a74eb"}, {file = "pandas-2.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e09a53a4fe8d6ae2149959a2d02e1ef2f4d2ceb285ac48f74b79798507e468b4"}, {file = "pandas-2.0.1-cp38-cp38-win32.whl", hash = "sha256:a2564629b3a47b6aa303e024e3d84e850d36746f7e804347f64229f8c87416ea"}, {file = "pandas-2.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:03e677c6bc9cfb7f93a8b617d44f6091613a5671ef2944818469be7b42114a00"}, {file = "pandas-2.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3d099ecaa5b9e977b55cd43cf842ec13b14afa1cfa51b7e1179d90b38c53ce6a"}, {file = "pandas-2.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a37ee35a3eb6ce523b2c064af6286c45ea1c7ff882d46e10d0945dbda7572753"}, {file = "pandas-2.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:320b180d125c3842c5da5889183b9a43da4ebba375ab2ef938f57bf267a3c684"}, {file = "pandas-2.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18d22cb9043b6c6804529810f492ab09d638ddf625c5dea8529239607295cb59"}, {file = "pandas-2.0.1-cp39-cp39-win32.whl", hash = "sha256:90d1d365d77d287063c5e339f49b27bd99ef06d10a8843cf00b1a49326d492c1"}, {file = "pandas-2.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:99f7192d8b0e6daf8e0d0fd93baa40056684e4b4aaaef9ea78dff34168e1f2f0"}, {file = "pandas-2.0.1.tar.gz", hash = "sha256:19b8e5270da32b41ebf12f0e7165efa7024492e9513fb46fb631c5022ae5709d"}, ] [package.dependencies] numpy = [ {version = ">=1.20.3", markers = "python_version < \"3.10\""}, {version = ">=1.21.0", markers = "python_version >= \"3.10\""}, {version = ">=1.23.2", markers = "python_version >= \"3.11\""}, ] python-dateutil = ">=2.8.2" pytz = ">=2020.1" tzdata = ">=2022.1" [package.extras] all = ["PyQt5 (>=5.15.1)", "SQLAlchemy (>=1.4.16)", "beautifulsoup4 (>=4.9.3)", "bottleneck (>=1.3.2)", "brotlipy (>=0.7.0)", "fastparquet (>=0.6.3)", "fsspec (>=2021.07.0)", "gcsfs (>=2021.07.0)", "html5lib (>=1.1)", "hypothesis (>=6.34.2)", "jinja2 (>=3.0.0)", "lxml (>=4.6.3)", "matplotlib (>=3.6.1)", "numba (>=0.53.1)", "numexpr (>=2.7.3)", "odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pandas-gbq (>=0.15.0)", "psycopg2 (>=2.8.6)", "pyarrow (>=7.0.0)", "pymysql (>=1.0.2)", "pyreadstat (>=1.1.2)", "pytest (>=7.0.0)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)", "python-snappy (>=0.6.0)", "pyxlsb (>=1.0.8)", "qtpy (>=2.2.0)", "s3fs (>=2021.08.0)", "scipy (>=1.7.1)", "tables (>=3.6.1)", "tabulate (>=0.8.9)", "xarray (>=0.21.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)", "zstandard (>=0.15.2)"] aws = ["s3fs (>=2021.08.0)"] clipboard = ["PyQt5 (>=5.15.1)", "qtpy (>=2.2.0)"] compression = ["brotlipy (>=0.7.0)", "python-snappy (>=0.6.0)", "zstandard (>=0.15.2)"] computation = ["scipy (>=1.7.1)", "xarray (>=0.21.0)"] excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pyxlsb (>=1.0.8)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)"] feather = ["pyarrow (>=7.0.0)"] fss = ["fsspec (>=2021.07.0)"] gcp = ["gcsfs (>=2021.07.0)", "pandas-gbq (>=0.15.0)"] hdf5 = ["tables (>=3.6.1)"] html = ["beautifulsoup4 (>=4.9.3)", "html5lib (>=1.1)", "lxml (>=4.6.3)"] mysql = ["SQLAlchemy (>=1.4.16)", "pymysql (>=1.0.2)"] output-formatting = ["jinja2 (>=3.0.0)", "tabulate (>=0.8.9)"] parquet = ["pyarrow (>=7.0.0)"] performance = ["bottleneck (>=1.3.2)", "numba (>=0.53.1)", "numexpr (>=2.7.1)"] plot = ["matplotlib (>=3.6.1)"] postgresql = ["SQLAlchemy (>=1.4.16)", "psycopg2 (>=2.8.6)"] spss = ["pyreadstat (>=1.1.2)"] sql-other = ["SQLAlchemy (>=1.4.16)"] test = ["hypothesis (>=6.34.2)", "pytest (>=7.0.0)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)"] xml = ["lxml (>=4.6.3)"] [[package]] name = "pandocfilters" version = "1.5.0" description = "Utilities for writing pandoc filters in python" category = "dev" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ {file = "pandocfilters-1.5.0-py2.py3-none-any.whl", hash = "sha256:33aae3f25fd1a026079f5d27bdd52496f0e0803b3469282162bafdcbdf6ef14f"}, {file = "pandocfilters-1.5.0.tar.gz", hash = "sha256:0b679503337d233b4339a817bfc8c50064e2eff681314376a47cb582305a7a38"}, ] [[package]] name = "parso" version = "0.8.3" description = "A Python Parser" category = "dev" optional = false python-versions = ">=3.6" files = [ {file = "parso-0.8.3-py2.py3-none-any.whl", hash = "sha256:c001d4636cd3aecdaf33cbb40aebb59b094be2a74c556778ef5576c175e19e75"}, {file = "parso-0.8.3.tar.gz", hash = "sha256:8c07be290bb59f03588915921e29e8a50002acaf2cdc5fa0e0114f91709fafa0"}, ] [package.extras] qa = ["flake8 (==3.8.3)", "mypy (==0.782)"] testing = ["docopt", "pytest (<6.0.0)"] [[package]] name = "pathos" version = "0.3.0" description = "parallel graph management and execution in heterogeneous computing" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "pathos-0.3.0-py3-none-any.whl", hash = "sha256:b1f5a79b1c79a594330d451832642ee5bb61dd77dc75ba9e5c72087c77e8994c"}, {file = "pathos-0.3.0.tar.gz", hash = "sha256:24fa8db51fbd9284da8e191794097c4bb2aa3fce411090e57af6385e61b97e09"}, ] [package.dependencies] dill = ">=0.3.6" multiprocess = ">=0.70.14" pox = ">=0.3.2" ppft = ">=1.7.6.6" [[package]] name = "pathspec" version = "0.11.1" description = "Utility library for gitignore style pattern matching of file paths." category = "main" optional = false python-versions = ">=3.7" files = [ {file = "pathspec-0.11.1-py3-none-any.whl", hash = "sha256:d8af70af76652554bd134c22b3e8a1cc46ed7d91edcdd721ef1a0c51a84a5293"}, {file = "pathspec-0.11.1.tar.gz", hash = "sha256:2798de800fa92780e33acca925945e9a19a133b715067cf165b8866c15a31687"}, ] [[package]] name = "pathy" version = "0.10.1" description = "pathlib.Path subclasses for local and cloud bucket storage" category = "main" optional = true python-versions = ">= 3.6" files = [ {file = "pathy-0.10.1-py3-none-any.whl", hash = "sha256:a7613ee2d99a0a3300e1d836322e2d947c85449fde59f52906f995dbff67dad4"}, {file = "pathy-0.10.1.tar.gz", hash = "sha256:4cd6e71b4cd5ff875cfbb949ad9fa5519d8d1dbe69d5fc1d1b23aa3cb049618b"}, ] [package.dependencies] smart-open = ">=5.2.1,<7.0.0" typer = ">=0.3.0,<1.0.0" [package.extras] all = ["azure-storage-blob", "boto3", "google-cloud-storage (>=1.26.0,<2.0.0)", "mock", "pytest", "pytest-coverage", "typer-cli"] azure = ["azure-storage-blob"] gcs = ["google-cloud-storage (>=1.26.0,<2.0.0)"] s3 = ["boto3"] test = ["mock", "pytest", "pytest-coverage", "typer-cli"] [[package]] name = "pdfminer-six" version = "20221105" description = "PDF parser and analyzer" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "pdfminer.six-20221105-py3-none-any.whl", hash = "sha256:1eaddd712d5b2732f8ac8486824533514f8ba12a0787b3d5fe1e686cd826532d"}, {file = "pdfminer.six-20221105.tar.gz", hash = "sha256:8448ab7b939d18b64820478ecac5394f482d7a79f5f7eaa7703c6c959c175e1d"}, ] [package.dependencies] charset-normalizer = ">=2.0.0" cryptography = ">=36.0.0" [package.extras] dev = ["black", "mypy (==0.931)", "nox", "pytest"] docs = ["sphinx", "sphinx-argparse"] image = ["Pillow"] [[package]] name = "pexpect" version = "4.8.0" description = "Pexpect allows easy control of interactive console applications." category = "main" optional = false python-versions = "*" files = [ {file = "pexpect-4.8.0-py2.py3-none-any.whl", hash = "sha256:0b48a55dcb3c05f3329815901ea4fc1537514d6ba867a152b581d69ae3710937"}, {file = "pexpect-4.8.0.tar.gz", hash = "sha256:fc65a43959d153d0114afe13997d439c22823a27cefceb5ff35c2178c6784c0c"}, ] [package.dependencies] ptyprocess = ">=0.5" [[package]] name = "pgvector" version = "0.1.7" description = "pgvector support for Python" category = "main" optional = false python-versions = ">=3.6" files = [ {file = "pgvector-0.1.7-py2.py3-none-any.whl", hash = "sha256:b0da0289959372f916b96c1da7c57437725c7aa33fa0c75b4a53c3677369bdd5"}, ] [package.dependencies] numpy = "*" [[package]] name = "pickleshare" version = "0.7.5" description = "Tiny 'shelve'-like database with concurrency support" category = "dev" optional = false python-versions = "*" files = [ {file = "pickleshare-0.7.5-py2.py3-none-any.whl", hash = "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56"}, {file = "pickleshare-0.7.5.tar.gz", hash = "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca"}, ] [[package]] name = "pillow" version = "9.5.0" description = "Python Imaging Library (Fork)" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "Pillow-9.5.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:ace6ca218308447b9077c14ea4ef381ba0b67ee78d64046b3f19cf4e1139ad16"}, {file = "Pillow-9.5.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d3d403753c9d5adc04d4694d35cf0391f0f3d57c8e0030aac09d7678fa8030aa"}, {file = "Pillow-9.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5ba1b81ee69573fe7124881762bb4cd2e4b6ed9dd28c9c60a632902fe8db8b38"}, {file = "Pillow-9.5.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fe7e1c262d3392afcf5071df9afa574544f28eac825284596ac6db56e6d11062"}, {file = "Pillow-9.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f36397bf3f7d7c6a3abdea815ecf6fd14e7fcd4418ab24bae01008d8d8ca15e"}, {file = "Pillow-9.5.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:252a03f1bdddce077eff2354c3861bf437c892fb1832f75ce813ee94347aa9b5"}, {file = "Pillow-9.5.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:85ec677246533e27770b0de5cf0f9d6e4ec0c212a1f89dfc941b64b21226009d"}, {file = "Pillow-9.5.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:b416f03d37d27290cb93597335a2f85ed446731200705b22bb927405320de903"}, {file = "Pillow-9.5.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:1781a624c229cb35a2ac31cc4a77e28cafc8900733a864870c49bfeedacd106a"}, {file = "Pillow-9.5.0-cp310-cp310-win32.whl", hash = "sha256:8507eda3cd0608a1f94f58c64817e83ec12fa93a9436938b191b80d9e4c0fc44"}, {file = "Pillow-9.5.0-cp310-cp310-win_amd64.whl", hash = "sha256:d3c6b54e304c60c4181da1c9dadf83e4a54fd266a99c70ba646a9baa626819eb"}, {file = "Pillow-9.5.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:7ec6f6ce99dab90b52da21cf0dc519e21095e332ff3b399a357c187b1a5eee32"}, {file = "Pillow-9.5.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:560737e70cb9c6255d6dcba3de6578a9e2ec4b573659943a5e7e4af13f298f5c"}, {file = "Pillow-9.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:96e88745a55b88a7c64fa49bceff363a1a27d9a64e04019c2281049444a571e3"}, {file = "Pillow-9.5.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d9c206c29b46cfd343ea7cdfe1232443072bbb270d6a46f59c259460db76779a"}, {file = "Pillow-9.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cfcc2c53c06f2ccb8976fb5c71d448bdd0a07d26d8e07e321c103416444c7ad1"}, {file = "Pillow-9.5.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:a0f9bb6c80e6efcde93ffc51256d5cfb2155ff8f78292f074f60f9e70b942d99"}, {file = "Pillow-9.5.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:8d935f924bbab8f0a9a28404422da8af4904e36d5c33fc6f677e4c4485515625"}, {file = "Pillow-9.5.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:fed1e1cf6a42577953abbe8e6cf2fe2f566daebde7c34724ec8803c4c0cda579"}, {file = "Pillow-9.5.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:c1170d6b195555644f0616fd6ed929dfcf6333b8675fcca044ae5ab110ded296"}, {file = "Pillow-9.5.0-cp311-cp311-win32.whl", hash = "sha256:54f7102ad31a3de5666827526e248c3530b3a33539dbda27c6843d19d72644ec"}, {file = "Pillow-9.5.0-cp311-cp311-win_amd64.whl", hash = "sha256:cfa4561277f677ecf651e2b22dc43e8f5368b74a25a8f7d1d4a3a243e573f2d4"}, {file = "Pillow-9.5.0-cp311-cp311-win_arm64.whl", hash = "sha256:965e4a05ef364e7b973dd17fc765f42233415974d773e82144c9bbaaaea5d089"}, {file = "Pillow-9.5.0-cp312-cp312-win32.whl", hash = "sha256:22baf0c3cf0c7f26e82d6e1adf118027afb325e703922c8dfc1d5d0156bb2eeb"}, {file = "Pillow-9.5.0-cp312-cp312-win_amd64.whl", hash = "sha256:432b975c009cf649420615388561c0ce7cc31ce9b2e374db659ee4f7d57a1f8b"}, {file = "Pillow-9.5.0-cp37-cp37m-macosx_10_10_x86_64.whl", hash = "sha256:5d4ebf8e1db4441a55c509c4baa7a0587a0210f7cd25fcfe74dbbce7a4bd1906"}, {file = "Pillow-9.5.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:375f6e5ee9620a271acb6820b3d1e94ffa8e741c0601db4c0c4d3cb0a9c224bf"}, {file = "Pillow-9.5.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:99eb6cafb6ba90e436684e08dad8be1637efb71c4f2180ee6b8f940739406e78"}, {file = "Pillow-9.5.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2dfaaf10b6172697b9bceb9a3bd7b951819d1ca339a5ef294d1f1ac6d7f63270"}, {file = "Pillow-9.5.0-cp37-cp37m-manylinux_2_28_aarch64.whl", hash = "sha256:763782b2e03e45e2c77d7779875f4432e25121ef002a41829d8868700d119392"}, {file = "Pillow-9.5.0-cp37-cp37m-manylinux_2_28_x86_64.whl", hash = "sha256:35f6e77122a0c0762268216315bf239cf52b88865bba522999dc38f1c52b9b47"}, {file = "Pillow-9.5.0-cp37-cp37m-win32.whl", hash = "sha256:aca1c196f407ec7cf04dcbb15d19a43c507a81f7ffc45b690899d6a76ac9fda7"}, {file = "Pillow-9.5.0-cp37-cp37m-win_amd64.whl", hash = "sha256:322724c0032af6692456cd6ed554bb85f8149214d97398bb80613b04e33769f6"}, {file = "Pillow-9.5.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:a0aa9417994d91301056f3d0038af1199eb7adc86e646a36b9e050b06f526597"}, {file = "Pillow-9.5.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:f8286396b351785801a976b1e85ea88e937712ee2c3ac653710a4a57a8da5d9c"}, {file = "Pillow-9.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c830a02caeb789633863b466b9de10c015bded434deb3ec87c768e53752ad22a"}, {file = "Pillow-9.5.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fbd359831c1657d69bb81f0db962905ee05e5e9451913b18b831febfe0519082"}, {file = "Pillow-9.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8fc330c3370a81bbf3f88557097d1ea26cd8b019d6433aa59f71195f5ddebbf"}, {file = "Pillow-9.5.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:7002d0797a3e4193c7cdee3198d7c14f92c0836d6b4a3f3046a64bd1ce8df2bf"}, {file = "Pillow-9.5.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:229e2c79c00e85989a34b5981a2b67aa079fd08c903f0aaead522a1d68d79e51"}, {file = "Pillow-9.5.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:9adf58f5d64e474bed00d69bcd86ec4bcaa4123bfa70a65ce72e424bfb88ed96"}, {file = "Pillow-9.5.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:662da1f3f89a302cc22faa9f14a262c2e3951f9dbc9617609a47521c69dd9f8f"}, {file = "Pillow-9.5.0-cp38-cp38-win32.whl", hash = "sha256:6608ff3bf781eee0cd14d0901a2b9cc3d3834516532e3bd673a0a204dc8615fc"}, {file = "Pillow-9.5.0-cp38-cp38-win_amd64.whl", hash = "sha256:e49eb4e95ff6fd7c0c402508894b1ef0e01b99a44320ba7d8ecbabefddcc5569"}, {file = "Pillow-9.5.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:482877592e927fd263028c105b36272398e3e1be3269efda09f6ba21fd83ec66"}, {file = "Pillow-9.5.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3ded42b9ad70e5f1754fb7c2e2d6465a9c842e41d178f262e08b8c85ed8a1d8e"}, {file = "Pillow-9.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c446d2245ba29820d405315083d55299a796695d747efceb5717a8b450324115"}, {file = "Pillow-9.5.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8aca1152d93dcc27dc55395604dcfc55bed5f25ef4c98716a928bacba90d33a3"}, {file = "Pillow-9.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:608488bdcbdb4ba7837461442b90ea6f3079397ddc968c31265c1e056964f1ef"}, {file = "Pillow-9.5.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:60037a8db8750e474af7ffc9faa9b5859e6c6d0a50e55c45576bf28be7419705"}, {file = "Pillow-9.5.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:07999f5834bdc404c442146942a2ecadd1cb6292f5229f4ed3b31e0a108746b1"}, {file = "Pillow-9.5.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a127ae76092974abfbfa38ca2d12cbeddcdeac0fb71f9627cc1135bedaf9d51a"}, {file = "Pillow-9.5.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:489f8389261e5ed43ac8ff7b453162af39c3e8abd730af8363587ba64bb2e865"}, {file = "Pillow-9.5.0-cp39-cp39-win32.whl", hash = "sha256:9b1af95c3a967bf1da94f253e56b6286b50af23392a886720f563c547e48e964"}, {file = "Pillow-9.5.0-cp39-cp39-win_amd64.whl", hash = "sha256:77165c4a5e7d5a284f10a6efaa39a0ae8ba839da344f20b111d62cc932fa4e5d"}, {file = "Pillow-9.5.0-pp38-pypy38_pp73-macosx_10_10_x86_64.whl", hash = "sha256:833b86a98e0ede388fa29363159c9b1a294b0905b5128baf01db683672f230f5"}, {file = "Pillow-9.5.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aaf305d6d40bd9632198c766fb64f0c1a83ca5b667f16c1e79e1661ab5060140"}, {file = "Pillow-9.5.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0852ddb76d85f127c135b6dd1f0bb88dbb9ee990d2cd9aa9e28526c93e794fba"}, {file = "Pillow-9.5.0-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:91ec6fe47b5eb5a9968c79ad9ed78c342b1f97a091677ba0e012701add857829"}, {file = "Pillow-9.5.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:cb841572862f629b99725ebaec3287fc6d275be9b14443ea746c1dd325053cbd"}, {file = "Pillow-9.5.0-pp39-pypy39_pp73-macosx_10_10_x86_64.whl", hash = "sha256:c380b27d041209b849ed246b111b7c166ba36d7933ec6e41175fd15ab9eb1572"}, {file = "Pillow-9.5.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7c9af5a3b406a50e313467e3565fc99929717f780164fe6fbb7704edba0cebbe"}, {file = "Pillow-9.5.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5671583eab84af046a397d6d0ba25343c00cd50bce03787948e0fff01d4fd9b1"}, {file = "Pillow-9.5.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:84a6f19ce086c1bf894644b43cd129702f781ba5751ca8572f08aa40ef0ab7b7"}, {file = "Pillow-9.5.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:1e7723bd90ef94eda669a3c2c19d549874dd5badaeefabefd26053304abe5799"}, {file = "Pillow-9.5.0.tar.gz", hash = "sha256:bf548479d336726d7a0eceb6e767e179fbde37833ae42794602631a070d630f1"}, ] [package.extras] docs = ["furo", "olefile", "sphinx (>=2.4)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-removed-in", "sphinxext-opengraph"] tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"] [[package]] name = "pinecone-client" version = "2.2.1" description = "Pinecone client and SDK" category = "main" optional = false python-versions = ">=3.6" files = [ {file = "pinecone-client-2.2.1.tar.gz", hash = "sha256:0878dcaee447c46c8d1b3d71c854689daa7e548e5009a171780907c7d4e74789"}, {file = "pinecone_client-2.2.1-py3-none-any.whl", hash = "sha256:6976a22aee57a9813378607506c8c36b0317dfa36a08a5397aaaeab2eef66c1b"}, ] [package.dependencies] dnspython = ">=2.0.0" loguru = ">=0.5.0" numpy = "*" python-dateutil = ">=2.5.3" pyyaml = ">=5.4" requests = ">=2.19.0" tqdm = ">=4.64.1" typing-extensions = ">=3.7.4" urllib3 = ">=1.21.1" [package.extras] grpc = ["googleapis-common-protos (>=1.53.0)", "grpc-gateway-protoc-gen-openapiv2 (==0.1.0)", "grpcio (>=1.44.0)", "lz4 (>=3.1.3)", "protobuf (==3.19.3)"] [[package]] name = "pinecone-text" version = "0.4.2" description = "Text utilities library by Pinecone.io" category = "main" optional = false python-versions = ">=3.8,<4.0" files = [ {file = "pinecone_text-0.4.2-py3-none-any.whl", hash = "sha256:79468c197b2fc7738c1511a6b5b8e7697fad613604ad935661a438f621ad2004"}, {file = "pinecone_text-0.4.2.tar.gz", hash = "sha256:131d9d1cc5654bdff8c4e497bb00e54fcab07a3b501e38aa16a6f19c2f00d4c6"}, ] [package.dependencies] mmh3 = ">=3.1.0,<4.0.0" nltk = ">=3.6.5,<4.0.0" sentence-transformers = ">=2.0.0,<3.0.0" torch = ">=1.13.1,<2.0.0" transformers = ">=4.26.1,<5.0.0" wget = ">=3.2,<4.0" [[package]] name = "pkgutil-resolve-name" version = "1.3.10" description = "Resolve a name to an object." category = "dev" optional = false python-versions = ">=3.6" files = [ {file = "pkgutil_resolve_name-1.3.10-py3-none-any.whl", hash = "sha256:ca27cc078d25c5ad71a9de0a7a330146c4e014c2462d9af19c6b828280649c5e"}, {file = "pkgutil_resolve_name-1.3.10.tar.gz", hash = "sha256:357d6c9e6a755653cfd78893817c0853af365dd51ec97f3d358a819373bbd174"}, ] [[package]] name = "platformdirs" version = "3.5.1" description = "A small Python package for determining appropriate platform-specific dirs, e.g. a \"user data dir\"." category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "platformdirs-3.5.1-py3-none-any.whl", hash = "sha256:e2378146f1964972c03c085bb5662ae80b2b8c06226c54b2ff4aa9483e8a13a5"}, {file = "platformdirs-3.5.1.tar.gz", hash = "sha256:412dae91f52a6f84830f39a8078cecd0e866cb72294a5c66808e74d5e88d251f"}, ] [package.extras] docs = ["furo (>=2023.3.27)", "proselint (>=0.13)", "sphinx (>=6.2.1)", "sphinx-autodoc-typehints (>=1.23,!=1.23.4)"] test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.3.1)", "pytest-cov (>=4)", "pytest-mock (>=3.10)"] [[package]] name = "playwright" version = "1.33.0" description = "A high-level API to automate web browsers" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "playwright-1.33.0-py3-none-macosx_10_13_x86_64.whl", hash = "sha256:b3f6f27f67ec4ef32216a6fab3ffd8a4e1100383be0e863ff86707e617bec1b6"}, {file = "playwright-1.33.0-py3-none-macosx_11_0_arm64.whl", hash = "sha256:69f90c23c3906837bbbce4cb80774df72adc2e35c43b9744e13638d37049d970"}, {file = "playwright-1.33.0-py3-none-macosx_11_0_universal2.whl", hash = "sha256:08a9cd792a65c7e5f2bb68580f669a706d867fecabc8686098a2fabe3e34f5f8"}, {file = "playwright-1.33.0-py3-none-manylinux1_x86_64.whl", hash = "sha256:84dc9ac79ac828d823161fd6903ffbaf9d3843f4ced2fc2e3414b91b15624d0c"}, {file = "playwright-1.33.0-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9a749f5f2fafc85c5b2a849226cbfdbca4fa047dec3ae20900494e84a390dd0c"}, {file = "playwright-1.33.0-py3-none-win32.whl", hash = "sha256:0671dbb767422621b980b4545eeb2910c73f4e2aabe376a58e4a1ac03990bcec"}, {file = "playwright-1.33.0-py3-none-win_amd64.whl", hash = "sha256:030b273370bcfdec22317ca9fbdd8b66f7493462fb3bf2fce144e3cc82899ae4"}, ] [package.dependencies] greenlet = "2.0.1" pyee = "9.0.4" typing-extensions = {version = "*", markers = "python_version <= \"3.8\""} [[package]] name = "pluggy" version = "1.0.0" description = "plugin and hook calling mechanisms for python" category = "dev" optional = false python-versions = ">=3.6" files = [ {file = "pluggy-1.0.0-py2.py3-none-any.whl", hash = "sha256:74134bbf457f031a36d68416e1509f34bd5ccc019f0bcc952c7b909d06b37bd3"}, {file = "pluggy-1.0.0.tar.gz", hash = "sha256:4224373bacce55f955a878bf9cfa763c1e360858e330072059e10bad68531159"}, ] [package.extras] dev = ["pre-commit", "tox"] testing = ["pytest", "pytest-benchmark"] [[package]] name = "portalocker" version = "2.7.0" description = "Wraps the portalocker recipe for easy usage" category = "main" optional = true python-versions = ">=3.5" files = [ {file = "portalocker-2.7.0-py2.py3-none-any.whl", hash = "sha256:a07c5b4f3985c3cf4798369631fb7011adb498e2a46d8440efc75a8f29a0f983"}, {file = "portalocker-2.7.0.tar.gz", hash = "sha256:032e81d534a88ec1736d03f780ba073f047a06c478b06e2937486f334e955c51"}, ] [package.dependencies] pywin32 = {version = ">=226", markers = "platform_system == \"Windows\""} [package.extras] docs = ["sphinx (>=1.7.1)"] redis = ["redis"] tests = ["pytest (>=5.4.1)", "pytest-cov (>=2.8.1)", "pytest-mypy (>=0.8.0)", "pytest-timeout (>=2.1.0)", "redis", "sphinx (>=6.0.0)"] [[package]] name = "posthog" version = "3.0.1" description = "Integrate PostHog into any python application." category = "dev" optional = false python-versions = "*" files = [ {file = "posthog-3.0.1-py2.py3-none-any.whl", hash = "sha256:9c7f92fecc713257d4b2710d05b456569c9156fbdd3e85655ba7ba5ba6c7b3ae"}, {file = "posthog-3.0.1.tar.gz", hash = "sha256:57d2791ff5752ce56ba0f9bb8876faf3ca9208f1c2c6ceaeb5a2504c34493767"}, ] [package.dependencies] backoff = ">=1.10.0" monotonic = ">=1.5" python-dateutil = ">2.1" requests = ">=2.7,<3.0" six = ">=1.5" [package.extras] dev = ["black", "flake8", "flake8-print", "isort", "pre-commit"] sentry = ["django", "sentry-sdk"] test = ["coverage", "flake8", "freezegun (==0.3.15)", "mock (>=2.0.0)", "pylint", "pytest"] [[package]] name = "pox" version = "0.3.2" description = "utilities for filesystem exploration and automated builds" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "pox-0.3.2-py3-none-any.whl", hash = "sha256:56fe2f099ecd8a557b8948082504492de90e8598c34733c9b1fdeca8f7b6de61"}, {file = "pox-0.3.2.tar.gz", hash = "sha256:e825225297638d6e3d49415f8cfb65407a5d15e56f2fb7fe9d9b9e3050c65ee1"}, ] [[package]] name = "ppft" version = "1.7.6.6" description = "distributed and parallel python" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "ppft-1.7.6.6-py3-none-any.whl", hash = "sha256:f355d2caeed8bd7c9e4a860c471f31f7e66d1ada2791ab5458ea7dca15a51e41"}, {file = "ppft-1.7.6.6.tar.gz", hash = "sha256:f933f0404f3e808bc860745acb3b79cd4fe31ea19a20889a645f900415be60f1"}, ] [package.extras] dill = ["dill (>=0.3.6)"] [[package]] name = "preshed" version = "3.0.8" description = "Cython hash table that trusts the keys are pre-hashed" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "preshed-3.0.8-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:ea4b6df8ef7af38e864235256793bc3056e9699d991afcf6256fa298858582fc"}, {file = "preshed-3.0.8-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8e945fc814bdc29564a2ce137c237b3a9848aa1e76a1160369b6e0d328151fdd"}, {file = "preshed-3.0.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f9a4833530fe53001c351974e0c8bb660211b8d0358e592af185fec1ae12b2d0"}, {file = "preshed-3.0.8-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e1472ee231f323b4f4368b1b5f8f08481ed43af89697d45450c6ae4af46ac08a"}, {file = "preshed-3.0.8-cp310-cp310-win_amd64.whl", hash = "sha256:c8a2e2931eea7e500fbf8e014b69022f3fab2e35a70da882e2fc753e5e487ae3"}, {file = "preshed-3.0.8-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0e1bb8701df7861af26a312225bdf7c4822ac06fcf75aeb60fe2b0a20e64c222"}, {file = "preshed-3.0.8-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e9aef2b0b7687aecef48b1c6ff657d407ff24e75462877dcb888fa904c4a9c6d"}, {file = "preshed-3.0.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:854d58a8913ebf3b193b0dc8064155b034e8987de25f26838dfeca09151fda8a"}, {file = "preshed-3.0.8-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:135e2ac0db1a3948d6ec295598c7e182b52c394663f2fcfe36a97ae51186be21"}, {file = "preshed-3.0.8-cp311-cp311-win_amd64.whl", hash = "sha256:019d8fa4161035811fb2804d03214143298739e162d0ad24e087bd46c50970f5"}, {file = "preshed-3.0.8-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6a49ce52856fbb3ef4f1cc744c53f5d7e1ca370b1939620ac2509a6d25e02a50"}, {file = "preshed-3.0.8-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fdbc2957b36115a576c515ffe963919f19d2683f3c76c9304ae88ef59f6b5ca6"}, {file = "preshed-3.0.8-cp36-cp36m-win_amd64.whl", hash = "sha256:09cc9da2ac1b23010ce7d88a5e20f1033595e6dd80be14318e43b9409f4c7697"}, {file = "preshed-3.0.8-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:e19c8069f1a1450f835f23d47724530cf716d581fcafb398f534d044f806b8c2"}, {file = "preshed-3.0.8-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:25b5ef5e387a0e17ff41202a8c1816184ab6fb3c0d0b847bf8add0ed5941eb8d"}, {file = "preshed-3.0.8-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:53d3e2456a085425c66af7baba62d7eaa24aa5e460e1a9e02c401a2ed59abd7b"}, {file = "preshed-3.0.8-cp37-cp37m-win_amd64.whl", hash = "sha256:85e98a618fb36cdcc37501d8b9b8c1246651cc2f2db3a70702832523e0ae12f4"}, {file = "preshed-3.0.8-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:7f8837bf616335464f3713cbf562a3dcaad22c3ca9193f957018964ef871a68b"}, {file = "preshed-3.0.8-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:720593baf2c2e295f855192974799e486da5f50d4548db93c44f5726a43cefb9"}, {file = "preshed-3.0.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e0ad3d860b9ce88a74cf7414bb4b1c6fd833813e7b818e76f49272c4974b19ce"}, {file = "preshed-3.0.8-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fd19d48440b152657966a52e627780c0ddbe9d907b8d7ee4598505e80a3c55c7"}, {file = "preshed-3.0.8-cp38-cp38-win_amd64.whl", hash = "sha256:246e7c6890dc7fe9b10f0e31de3346b906e3862b6ef42fcbede37968f46a73bf"}, {file = "preshed-3.0.8-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:67643e66691770dc3434b01671648f481e3455209ce953727ef2330b16790aaa"}, {file = "preshed-3.0.8-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0ae25a010c9f551aa2247ee621457f679e07c57fc99d3fd44f84cb40b925f12c"}, {file = "preshed-3.0.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5a6a7fcf7dd2e7711051b3f0432da9ec9c748954c989f49d2cd8eabf8c2d953e"}, {file = "preshed-3.0.8-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5942858170c4f53d9afc6352a86bbc72fc96cc4d8964b6415492114a5920d3ed"}, {file = "preshed-3.0.8-cp39-cp39-win_amd64.whl", hash = "sha256:06793022a56782ef51d74f1399925a2ba958e50c5cfbc6fa5b25c4945e158a07"}, {file = "preshed-3.0.8.tar.gz", hash = "sha256:6c74c70078809bfddda17be96483c41d06d717934b07cab7921011d81758b357"}, ] [package.dependencies] cymem = ">=2.0.2,<2.1.0" murmurhash = ">=0.28.0,<1.1.0" [[package]] name = "prometheus-client" version = "0.16.0" description = "Python client for the Prometheus monitoring system." category = "main" optional = false python-versions = ">=3.6" files = [ {file = "prometheus_client-0.16.0-py3-none-any.whl", hash = "sha256:0836af6eb2c8f4fed712b2f279f6c0a8bbab29f9f4aa15276b91c7cb0d1616ab"}, {file = "prometheus_client-0.16.0.tar.gz", hash = "sha256:a03e35b359f14dd1630898543e2120addfdeacd1a6069c1367ae90fd93ad3f48"}, ] [package.extras] twisted = ["twisted"] [[package]] name = "prompt-toolkit" version = "3.0.38" description = "Library for building powerful interactive command lines in Python" category = "dev" optional = false python-versions = ">=3.7.0" files = [ {file = "prompt_toolkit-3.0.38-py3-none-any.whl", hash = "sha256:45ea77a2f7c60418850331366c81cf6b5b9cf4c7fd34616f733c5427e6abbb1f"}, {file = "prompt_toolkit-3.0.38.tar.gz", hash = "sha256:23ac5d50538a9a38c8bde05fecb47d0b403ecd0662857a86f886f798563d5b9b"}, ] [package.dependencies] wcwidth = "*" [[package]] name = "promptlayer" version = "0.1.81" description = "PromptLayer is a package to keep track of your GPT models training" category = "dev" optional = false python-versions = "*" files = [ {file = "promptlayer-0.1.81.tar.gz", hash = "sha256:75b743977dbe646d9e7365ac7b6dc033886253515f9f88c748481e7a0e9090c2"}, ] [package.dependencies] langchain = "*" openai = "*" requests = "*" [[package]] name = "protobuf" version = "3.19.6" description = "Protocol Buffers" category = "main" optional = false python-versions = ">=3.5" files = [ {file = "protobuf-3.19.6-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:010be24d5a44be7b0613750ab40bc8b8cedc796db468eae6c779b395f50d1fa1"}, {file = "protobuf-3.19.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:11478547958c2dfea921920617eb457bc26867b0d1aa065ab05f35080c5d9eb6"}, {file = "protobuf-3.19.6-cp310-cp310-win32.whl", hash = "sha256:559670e006e3173308c9254d63facb2c03865818f22204037ab76f7a0ff70b5f"}, {file = "protobuf-3.19.6-cp310-cp310-win_amd64.whl", hash = "sha256:347b393d4dd06fb93a77620781e11c058b3b0a5289262f094379ada2920a3730"}, {file = "protobuf-3.19.6-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:a8ce5ae0de28b51dff886fb922012dad885e66176663950cb2344c0439ecb473"}, {file = "protobuf-3.19.6-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90b0d02163c4e67279ddb6dc25e063db0130fc299aefabb5d481053509fae5c8"}, {file = "protobuf-3.19.6-cp36-cp36m-win32.whl", hash = "sha256:30f5370d50295b246eaa0296533403961f7e64b03ea12265d6dfce3a391d8992"}, {file = "protobuf-3.19.6-cp36-cp36m-win_amd64.whl", hash = "sha256:0c0714b025ec057b5a7600cb66ce7c693815f897cfda6d6efb58201c472e3437"}, {file = "protobuf-3.19.6-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:5057c64052a1f1dd7d4450e9aac25af6bf36cfbfb3a1cd89d16393a036c49157"}, {file = "protobuf-3.19.6-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:bb6776bd18f01ffe9920e78e03a8676530a5d6c5911934c6a1ac6eb78973ecb6"}, {file = "protobuf-3.19.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:84a04134866861b11556a82dd91ea6daf1f4925746b992f277b84013a7cc1229"}, {file = "protobuf-3.19.6-cp37-cp37m-win32.whl", hash = "sha256:4bc98de3cdccfb5cd769620d5785b92c662b6bfad03a202b83799b6ed3fa1fa7"}, {file = "protobuf-3.19.6-cp37-cp37m-win_amd64.whl", hash = "sha256:aa3b82ca1f24ab5326dcf4ea00fcbda703e986b22f3d27541654f749564d778b"}, {file = "protobuf-3.19.6-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:2b2d2913bcda0e0ec9a784d194bc490f5dc3d9d71d322d070b11a0ade32ff6ba"}, {file = "protobuf-3.19.6-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:d0b635cefebd7a8a0f92020562dead912f81f401af7e71f16bf9506ff3bdbb38"}, {file = "protobuf-3.19.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a552af4dc34793803f4e735aabe97ffc45962dfd3a237bdde242bff5a3de684"}, {file = "protobuf-3.19.6-cp38-cp38-win32.whl", hash = "sha256:0469bc66160180165e4e29de7f445e57a34ab68f49357392c5b2f54c656ab25e"}, {file = "protobuf-3.19.6-cp38-cp38-win_amd64.whl", hash = "sha256:91d5f1e139ff92c37e0ff07f391101df77e55ebb97f46bbc1535298d72019462"}, {file = "protobuf-3.19.6-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c0ccd3f940fe7f3b35a261b1dd1b4fc850c8fde9f74207015431f174be5976b3"}, {file = "protobuf-3.19.6-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:30a15015d86b9c3b8d6bf78d5b8c7749f2512c29f168ca259c9d7727604d0e39"}, {file = "protobuf-3.19.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:878b4cd080a21ddda6ac6d1e163403ec6eea2e206cf225982ae04567d39be7b0"}, {file = "protobuf-3.19.6-cp39-cp39-win32.whl", hash = "sha256:5a0d7539a1b1fb7e76bf5faa0b44b30f812758e989e59c40f77a7dab320e79b9"}, {file = "protobuf-3.19.6-cp39-cp39-win_amd64.whl", hash = "sha256:bbf5cea5048272e1c60d235c7bd12ce1b14b8a16e76917f371c718bd3005f045"}, {file = "protobuf-3.19.6-py2.py3-none-any.whl", hash = "sha256:14082457dc02be946f60b15aad35e9f5c69e738f80ebbc0900a19bc83734a5a4"}, {file = "protobuf-3.19.6.tar.gz", hash = "sha256:5f5540d57a43042389e87661c6eaa50f47c19c6176e8cf1c4f287aeefeccb5c4"}, ] [[package]] name = "psutil" version = "5.9.5" description = "Cross-platform lib for process and system monitoring in Python." category = "dev" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ {file = "psutil-5.9.5-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:be8929ce4313f9f8146caad4272f6abb8bf99fc6cf59344a3167ecd74f4f203f"}, {file = "psutil-5.9.5-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:ab8ed1a1d77c95453db1ae00a3f9c50227ebd955437bcf2a574ba8adbf6a74d5"}, {file = "psutil-5.9.5-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:4aef137f3345082a3d3232187aeb4ac4ef959ba3d7c10c33dd73763fbc063da4"}, {file = "psutil-5.9.5-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:ea8518d152174e1249c4f2a1c89e3e6065941df2fa13a1ab45327716a23c2b48"}, {file = "psutil-5.9.5-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:acf2aef9391710afded549ff602b5887d7a2349831ae4c26be7c807c0a39fac4"}, {file = "psutil-5.9.5-cp27-none-win32.whl", hash = "sha256:5b9b8cb93f507e8dbaf22af6a2fd0ccbe8244bf30b1baad6b3954e935157ae3f"}, {file = "psutil-5.9.5-cp27-none-win_amd64.whl", hash = "sha256:8c5f7c5a052d1d567db4ddd231a9d27a74e8e4a9c3f44b1032762bd7b9fdcd42"}, {file = "psutil-5.9.5-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:3c6f686f4225553615612f6d9bc21f1c0e305f75d7d8454f9b46e901778e7217"}, {file = "psutil-5.9.5-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7a7dd9997128a0d928ed4fb2c2d57e5102bb6089027939f3b722f3a210f9a8da"}, {file = "psutil-5.9.5-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:89518112647f1276b03ca97b65cc7f64ca587b1eb0278383017c2a0dcc26cbe4"}, {file = "psutil-5.9.5-cp36-abi3-win32.whl", hash = "sha256:104a5cc0e31baa2bcf67900be36acde157756b9c44017b86b2c049f11957887d"}, {file = "psutil-5.9.5-cp36-abi3-win_amd64.whl", hash = "sha256:b258c0c1c9d145a1d5ceffab1134441c4c5113b2417fafff7315a917a026c3c9"}, {file = "psutil-5.9.5-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:c607bb3b57dc779d55e1554846352b4e358c10fff3abf3514a7a6601beebdb30"}, {file = "psutil-5.9.5.tar.gz", hash = "sha256:5410638e4df39c54d957fc51ce03048acd8e6d60abc0f5107af51e5fb566eb3c"}, ] [package.extras] test = ["enum34", "ipaddress", "mock", "pywin32", "wmi"] [[package]] name = "psychicapi" version = "0.5" description = "Psychic.dev is an open-source universal data connector for knowledgebases." category = "main" optional = true python-versions = "*" files = [ {file = "psychicapi-0.5-py3-none-any.whl", hash = "sha256:30637abbecd6c9ebafbceb7c1230987f7ef3af2ca7054f3322ae80f9cbf46039"}, {file = "psychicapi-0.5.tar.gz", hash = "sha256:a2106ef8e3a286f85aa2c26c6d1a778e15009391b3b5e2dd864447c8e7f85942"}, ] [package.dependencies] requests = "*" [[package]] name = "psycopg2-binary" version = "2.9.6" description = "psycopg2 - Python-PostgreSQL Database Adapter" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "psycopg2-binary-2.9.6.tar.gz", hash = "sha256:1f64dcfb8f6e0c014c7f55e51c9759f024f70ea572fbdef123f85318c297947c"}, {file = "psycopg2_binary-2.9.6-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d26e0342183c762de3276cca7a530d574d4e25121ca7d6e4a98e4f05cb8e4df7"}, {file = "psycopg2_binary-2.9.6-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c48d8f2db17f27d41fb0e2ecd703ea41984ee19362cbce52c097963b3a1b4365"}, {file = "psycopg2_binary-2.9.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ffe9dc0a884a8848075e576c1de0290d85a533a9f6e9c4e564f19adf8f6e54a7"}, {file = "psycopg2_binary-2.9.6-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8a76e027f87753f9bd1ab5f7c9cb8c7628d1077ef927f5e2446477153a602f2c"}, {file = "psycopg2_binary-2.9.6-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6460c7a99fc939b849431f1e73e013d54aa54293f30f1109019c56a0b2b2ec2f"}, {file = "psycopg2_binary-2.9.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ae102a98c547ee2288637af07393dd33f440c25e5cd79556b04e3fca13325e5f"}, {file = "psycopg2_binary-2.9.6-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:9972aad21f965599ed0106f65334230ce826e5ae69fda7cbd688d24fa922415e"}, {file = "psycopg2_binary-2.9.6-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:7a40c00dbe17c0af5bdd55aafd6ff6679f94a9be9513a4c7e071baf3d7d22a70"}, {file = "psycopg2_binary-2.9.6-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:cacbdc5839bdff804dfebc058fe25684cae322987f7a38b0168bc1b2df703fb1"}, {file = "psycopg2_binary-2.9.6-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:7f0438fa20fb6c7e202863e0d5ab02c246d35efb1d164e052f2f3bfe2b152bd0"}, {file = "psycopg2_binary-2.9.6-cp310-cp310-win32.whl", hash = "sha256:b6c8288bb8a84b47e07013bb4850f50538aa913d487579e1921724631d02ea1b"}, {file = "psycopg2_binary-2.9.6-cp310-cp310-win_amd64.whl", hash = "sha256:61b047a0537bbc3afae10f134dc6393823882eb263088c271331602b672e52e9"}, {file = "psycopg2_binary-2.9.6-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:964b4dfb7c1c1965ac4c1978b0f755cc4bd698e8aa2b7667c575fb5f04ebe06b"}, {file = "psycopg2_binary-2.9.6-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:afe64e9b8ea66866a771996f6ff14447e8082ea26e675a295ad3bdbffdd72afb"}, {file = "psycopg2_binary-2.9.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:15e2ee79e7cf29582ef770de7dab3d286431b01c3bb598f8e05e09601b890081"}, {file = "psycopg2_binary-2.9.6-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dfa74c903a3c1f0d9b1c7e7b53ed2d929a4910e272add6700c38f365a6002820"}, {file = "psycopg2_binary-2.9.6-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b83456c2d4979e08ff56180a76429263ea254c3f6552cd14ada95cff1dec9bb8"}, {file = "psycopg2_binary-2.9.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0645376d399bfd64da57148694d78e1f431b1e1ee1054872a5713125681cf1be"}, {file = "psycopg2_binary-2.9.6-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e99e34c82309dd78959ba3c1590975b5d3c862d6f279f843d47d26ff89d7d7e1"}, {file = "psycopg2_binary-2.9.6-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:4ea29fc3ad9d91162c52b578f211ff1c931d8a38e1f58e684c45aa470adf19e2"}, {file = "psycopg2_binary-2.9.6-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:4ac30da8b4f57187dbf449294d23b808f8f53cad6b1fc3623fa8a6c11d176dd0"}, {file = "psycopg2_binary-2.9.6-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e78e6e2a00c223e164c417628572a90093c031ed724492c763721c2e0bc2a8df"}, {file = "psycopg2_binary-2.9.6-cp311-cp311-win32.whl", hash = "sha256:1876843d8e31c89c399e31b97d4b9725a3575bb9c2af92038464231ec40f9edb"}, {file = "psycopg2_binary-2.9.6-cp311-cp311-win_amd64.whl", hash = "sha256:b4b24f75d16a89cc6b4cdff0eb6a910a966ecd476d1e73f7ce5985ff1328e9a6"}, {file = "psycopg2_binary-2.9.6-cp36-cp36m-win32.whl", hash = "sha256:498807b927ca2510baea1b05cc91d7da4718a0f53cb766c154c417a39f1820a0"}, {file = "psycopg2_binary-2.9.6-cp36-cp36m-win_amd64.whl", hash = "sha256:0d236c2825fa656a2d98bbb0e52370a2e852e5a0ec45fc4f402977313329174d"}, {file = "psycopg2_binary-2.9.6-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:34b9ccdf210cbbb1303c7c4db2905fa0319391bd5904d32689e6dd5c963d2ea8"}, {file = "psycopg2_binary-2.9.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:84d2222e61f313c4848ff05353653bf5f5cf6ce34df540e4274516880d9c3763"}, {file = "psycopg2_binary-2.9.6-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:30637a20623e2a2eacc420059be11527f4458ef54352d870b8181a4c3020ae6b"}, {file = "psycopg2_binary-2.9.6-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8122cfc7cae0da9a3077216528b8bb3629c43b25053284cc868744bfe71eb141"}, {file = "psycopg2_binary-2.9.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:38601cbbfe600362c43714482f43b7c110b20cb0f8172422c616b09b85a750c5"}, {file = "psycopg2_binary-2.9.6-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:c7e62ab8b332147a7593a385d4f368874d5fe4ad4e341770d4983442d89603e3"}, {file = "psycopg2_binary-2.9.6-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:2ab652e729ff4ad76d400df2624d223d6e265ef81bb8aa17fbd63607878ecbee"}, {file = "psycopg2_binary-2.9.6-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:c83a74b68270028dc8ee74d38ecfaf9c90eed23c8959fca95bd703d25b82c88e"}, {file = "psycopg2_binary-2.9.6-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:d4e6036decf4b72d6425d5b29bbd3e8f0ff1059cda7ac7b96d6ac5ed34ffbacd"}, {file = "psycopg2_binary-2.9.6-cp37-cp37m-win32.whl", hash = "sha256:a8c28fd40a4226b4a84bdf2d2b5b37d2c7bd49486b5adcc200e8c7ec991dfa7e"}, {file = "psycopg2_binary-2.9.6-cp37-cp37m-win_amd64.whl", hash = "sha256:51537e3d299be0db9137b321dfb6a5022caaab275775680e0c3d281feefaca6b"}, {file = "psycopg2_binary-2.9.6-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:cf4499e0a83b7b7edcb8dabecbd8501d0d3a5ef66457200f77bde3d210d5debb"}, {file = "psycopg2_binary-2.9.6-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7e13a5a2c01151f1208d5207e42f33ba86d561b7a89fca67c700b9486a06d0e2"}, {file = "psycopg2_binary-2.9.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e0f754d27fddcfd74006455b6e04e6705d6c31a612ec69ddc040a5468e44b4e"}, {file = "psycopg2_binary-2.9.6-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d57c3fd55d9058645d26ae37d76e61156a27722097229d32a9e73ed54819982a"}, {file = "psycopg2_binary-2.9.6-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:71f14375d6f73b62800530b581aed3ada394039877818b2d5f7fc77e3bb6894d"}, {file = "psycopg2_binary-2.9.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:441cc2f8869a4f0f4bb408475e5ae0ee1f3b55b33f350406150277f7f35384fc"}, {file = "psycopg2_binary-2.9.6-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:65bee1e49fa6f9cf327ce0e01c4c10f39165ee76d35c846ade7cb0ec6683e303"}, {file = "psycopg2_binary-2.9.6-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:af335bac6b666cc6aea16f11d486c3b794029d9df029967f9938a4bed59b6a19"}, {file = "psycopg2_binary-2.9.6-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:cfec476887aa231b8548ece2e06d28edc87c1397ebd83922299af2e051cf2827"}, {file = "psycopg2_binary-2.9.6-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:65c07febd1936d63bfde78948b76cd4c2a411572a44ac50719ead41947d0f26b"}, {file = "psycopg2_binary-2.9.6-cp38-cp38-win32.whl", hash = "sha256:4dfb4be774c4436a4526d0c554af0cc2e02082c38303852a36f6456ece7b3503"}, {file = "psycopg2_binary-2.9.6-cp38-cp38-win_amd64.whl", hash = "sha256:02c6e3cf3439e213e4ee930308dc122d6fb4d4bea9aef4a12535fbd605d1a2fe"}, {file = "psycopg2_binary-2.9.6-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:e9182eb20f41417ea1dd8e8f7888c4d7c6e805f8a7c98c1081778a3da2bee3e4"}, {file = "psycopg2_binary-2.9.6-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:8a6979cf527e2603d349a91060f428bcb135aea2be3201dff794813256c274f1"}, {file = "psycopg2_binary-2.9.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8338a271cb71d8da40b023a35d9c1e919eba6cbd8fa20a54b748a332c355d896"}, {file = "psycopg2_binary-2.9.6-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e3ed340d2b858d6e6fb5083f87c09996506af483227735de6964a6100b4e6a54"}, {file = "psycopg2_binary-2.9.6-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f81e65376e52f03422e1fb475c9514185669943798ed019ac50410fb4c4df232"}, {file = "psycopg2_binary-2.9.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bfb13af3c5dd3a9588000910178de17010ebcccd37b4f9794b00595e3a8ddad3"}, {file = "psycopg2_binary-2.9.6-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:4c727b597c6444a16e9119386b59388f8a424223302d0c06c676ec8b4bc1f963"}, {file = "psycopg2_binary-2.9.6-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:4d67fbdaf177da06374473ef6f7ed8cc0a9dc640b01abfe9e8a2ccb1b1402c1f"}, {file = "psycopg2_binary-2.9.6-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:0892ef645c2fabb0c75ec32d79f4252542d0caec1d5d949630e7d242ca4681a3"}, {file = "psycopg2_binary-2.9.6-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:02c0f3757a4300cf379eb49f543fb7ac527fb00144d39246ee40e1df684ab514"}, {file = "psycopg2_binary-2.9.6-cp39-cp39-win32.whl", hash = "sha256:c3dba7dab16709a33a847e5cd756767271697041fbe3fe97c215b1fc1f5c9848"}, {file = "psycopg2_binary-2.9.6-cp39-cp39-win_amd64.whl", hash = "sha256:f6a88f384335bb27812293fdb11ac6aee2ca3f51d3c7820fe03de0a304ab6249"}, ] [[package]] name = "ptyprocess" version = "0.7.0" description = "Run a subprocess in a pseudo terminal" category = "main" optional = false python-versions = "*" files = [ {file = "ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35"}, {file = "ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220"}, ] [[package]] name = "pure-eval" version = "0.2.2" description = "Safely evaluate AST nodes without side effects" category = "dev" optional = false python-versions = "*" files = [ {file = "pure_eval-0.2.2-py3-none-any.whl", hash = "sha256:01eaab343580944bc56080ebe0a674b39ec44a945e6d09ba7db3cb8cec289350"}, {file = "pure_eval-0.2.2.tar.gz", hash = "sha256:2b45320af6dfaa1750f543d714b6d1c520a1688dec6fd24d339063ce0aaa9ac3"}, ] [package.extras] tests = ["pytest"] [[package]] name = "py" version = "1.11.0" description = "library with cross-python path, ini-parsing, io, code, log facilities" category = "main" optional = true python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" files = [ {file = "py-1.11.0-py2.py3-none-any.whl", hash = "sha256:607c53218732647dff4acdfcd50cb62615cedf612e72d1724fb1a0cc6405b378"}, {file = "py-1.11.0.tar.gz", hash = "sha256:51c75c4126074b472f746a24399ad32f6053d1b34b68d2fa41e558e6f4a98719"}, ] [[package]] name = "py-trello" version = "0.19.0" description = "Python wrapper around the Trello API" category = "main" optional = true python-versions = "*" files = [ {file = "py-trello-0.19.0.tar.gz", hash = "sha256:f4a8c05db61fad0ef5fa35d62c29806c75d9d2b797358d9cf77275e2cbf23020"}, ] [package.dependencies] python-dateutil = "*" pytz = "*" requests = "*" requests-oauthlib = ">=0.4.1" [[package]] name = "py4j" version = "0.10.9.7" description = "Enables Python programs to dynamically access arbitrary Java objects" category = "main" optional = true python-versions = "*" files = [ {file = "py4j-0.10.9.7-py2.py3-none-any.whl", hash = "sha256:85defdfd2b2376eb3abf5ca6474b51ab7e0de341c75a02f46dc9b5976f5a5c1b"}, {file = "py4j-0.10.9.7.tar.gz", hash = "sha256:0b6e5315bb3ada5cf62ac651d107bb2ebc02def3dee9d9548e3baac644ea8dbb"}, ] [[package]] name = "pyaes" version = "1.6.1" description = "Pure-Python Implementation of the AES block-cipher and common modes of operation" category = "main" optional = true python-versions = "*" files = [ {file = "pyaes-1.6.1.tar.gz", hash = "sha256:02c1b1405c38d3c370b085fb952dd8bea3fadcee6411ad99f312cc129c536d8f"}, ] [[package]] name = "pyarrow" version = "12.0.0" description = "Python library for Apache Arrow" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "pyarrow-12.0.0-cp310-cp310-macosx_10_14_x86_64.whl", hash = "sha256:3b97649c8a9a09e1d8dc76513054f1331bd9ece78ee39365e6bf6bc7503c1e94"}, {file = "pyarrow-12.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:bc4ea634dacb03936f50fcf59574a8e727f90c17c24527e488d8ceb52ae284de"}, {file = "pyarrow-12.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d568acfca3faa565d663e53ee34173be8e23a95f78f2abfdad198010ec8f745"}, {file = "pyarrow-12.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1b50bb9a82dca38a002d7cbd802a16b1af0f8c50ed2ec94a319f5f2afc047ee9"}, {file = "pyarrow-12.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:3d1733b1ea086b3c101427d0e57e2be3eb964686e83c2363862a887bb5c41fa8"}, {file = "pyarrow-12.0.0-cp311-cp311-macosx_10_14_x86_64.whl", hash = "sha256:a7cd32fe77f967fe08228bc100433273020e58dd6caced12627bcc0a7675a513"}, {file = "pyarrow-12.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:92fb031e6777847f5c9b01eaa5aa0c9033e853ee80117dce895f116d8b0c3ca3"}, {file = "pyarrow-12.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:280289ebfd4ac3570f6b776515baa01e4dcbf17122c401e4b7170a27c4be63fd"}, {file = "pyarrow-12.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:272f147d4f8387bec95f17bb58dcfc7bc7278bb93e01cb7b08a0e93a8921e18e"}, {file = "pyarrow-12.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:0846ace49998825eda4722f8d7f83fa05601c832549c9087ea49d6d5397d8cec"}, {file = "pyarrow-12.0.0-cp37-cp37m-macosx_10_14_x86_64.whl", hash = "sha256:993287136369aca60005ee7d64130f9466489c4f7425f5c284315b0a5401ccd9"}, {file = "pyarrow-12.0.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7a7b6a765ee4f88efd7d8348d9a1f804487d60799d0428b6ddf3344eaef37282"}, {file = "pyarrow-12.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a1c4fce253d5bdc8d62f11cfa3da5b0b34b562c04ce84abb8bd7447e63c2b327"}, {file = "pyarrow-12.0.0-cp37-cp37m-win_amd64.whl", hash = "sha256:e6be4d85707fc8e7a221c8ab86a40449ce62559ce25c94321df7c8500245888f"}, {file = "pyarrow-12.0.0-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:ea830d9f66bfb82d30b5794642f83dd0e4a718846462d22328981e9eb149cba8"}, {file = "pyarrow-12.0.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7b5b9f60d9ef756db59bec8d90e4576b7df57861e6a3d6a8bf99538f68ca15b3"}, {file = "pyarrow-12.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b99e559d27db36ad3a33868a475f03e3129430fc065accc839ef4daa12c6dab6"}, {file = "pyarrow-12.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5b0810864a593b89877120972d1f7af1d1c9389876dbed92b962ed81492d3ffc"}, {file = "pyarrow-12.0.0-cp38-cp38-win_amd64.whl", hash = "sha256:23a77d97f4d101ddfe81b9c2ee03a177f0e590a7e68af15eafa06e8f3cf05976"}, {file = "pyarrow-12.0.0-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:2cc63e746221cddb9001f7281dee95fd658085dd5b717b076950e1ccc607059c"}, {file = "pyarrow-12.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:d8c26912607e26c2991826bbaf3cf2b9c8c3e17566598c193b492f058b40d3a4"}, {file = "pyarrow-12.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0d8b90efc290e99a81d06015f3a46601c259ecc81ffb6d8ce288c91bd1b868c9"}, {file = "pyarrow-12.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2466be046b81863be24db370dffd30a2e7894b4f9823fb60ef0a733c31ac6256"}, {file = "pyarrow-12.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:0e36425b1c1cbf5447718b3f1751bf86c58f2b3ad299f996cd9b1aa040967656"}, {file = "pyarrow-12.0.0.tar.gz", hash = "sha256:19c812d303610ab5d664b7b1de4051ae23565f9f94d04cbea9e50569746ae1ee"}, ] [package.dependencies] numpy = ">=1.16.6" [[package]] name = "pyasn1" version = "0.5.0" description = "Pure-Python implementation of ASN.1 types and DER/BER/CER codecs (X.208)" category = "main" optional = true python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" files = [ {file = "pyasn1-0.5.0-py2.py3-none-any.whl", hash = "sha256:87a2121042a1ac9358cabcaf1d07680ff97ee6404333bacca15f76aa8ad01a57"}, {file = "pyasn1-0.5.0.tar.gz", hash = "sha256:97b7290ca68e62a832558ec3976f15cbf911bf5d7c7039d8b861c2a0ece69fde"}, ] [[package]] name = "pyasn1-modules" version = "0.3.0" description = "A collection of ASN.1-based protocols modules" category = "main" optional = true python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" files = [ {file = "pyasn1_modules-0.3.0-py2.py3-none-any.whl", hash = "sha256:d3ccd6ed470d9ffbc716be08bd90efbd44d0734bc9303818f7336070984a162d"}, {file = "pyasn1_modules-0.3.0.tar.gz", hash = "sha256:5bd01446b736eb9d31512a30d46c1ac3395d676c6f3cafa4c03eb54b9925631c"}, ] [package.dependencies] pyasn1 = ">=0.4.6,<0.6.0" [[package]] name = "pycares" version = "4.3.0" description = "Python interface for c-ares" category = "main" optional = true python-versions = "*" files = [ {file = "pycares-4.3.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:19c9cdd3322d422931982939773e453e491dfc5c0b2e23d7266959315c7a0824"}, {file = "pycares-4.3.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:9e56e9cdf46a092970dc4b75bbabddea9f480be5eeadc3fcae3eb5c6807c4136"}, {file = "pycares-4.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1c75a6241c79b935048272cb77df498da64b8defc8c4b29fdf9870e43ba4cbb4"}, {file = "pycares-4.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:24d8654fac3742791b8bef59d1fbb3e19ae6a5c48876a6d98659f7c66ee546c4"}, {file = "pycares-4.3.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ebf50b049a245880f1aa16a6f72c4408e0a65b49ea1d3bf13383a44a2cabd2bf"}, {file = "pycares-4.3.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:84daf560962763c0359fd79c750ef480f0fda40c08b57765088dbe362e8dc452"}, {file = "pycares-4.3.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:978d10da7ee74b9979c494afa8b646411119ad0186a29c7f13c72bb4295630c6"}, {file = "pycares-4.3.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:326c5b9d7fe52eb3d243f5ead58d5c0011884226d961df8360a34618c38c7515"}, {file = "pycares-4.3.0-cp310-cp310-win32.whl", hash = "sha256:da7c7089ae617317d2cbe38baefd3821387b3bfef7b3ee5b797b871cb1257974"}, {file = "pycares-4.3.0-cp310-cp310-win_amd64.whl", hash = "sha256:7106dc683db30e1d851283b7b9df7a5ea4964d6bdd000d918d91d4b1f9bed329"}, {file = "pycares-4.3.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:4e7a24ecef0b1933f2a3fdbf328d1b529a76cda113f8364fa0742e5b3bd76566"}, {file = "pycares-4.3.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:e7abccc2aa4771c06994e4d9ed596453061e2b8846f887d9c98a64ccdaf4790a"}, {file = "pycares-4.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:531fed46c5ed798a914c3207be4ae7b297c4d09e4183d3cf8fd9ee59a55d5080"}, {file = "pycares-4.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c9335175af0c64a1e0ba67bdd349eb62d4eea0ad02c235ccdf0d535fd20f323"}, {file = "pycares-4.3.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c5f0e95535027d2dcd51e780410632b0d3ed7e9e5ceb25dc0fe937f2c2960079"}, {file = "pycares-4.3.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:3692179ce5fb96908ba342e1e5303608d0c976f0d5d4619fa9d3d6d9d5a9a1b4"}, {file = "pycares-4.3.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:5c4cb6cc7fe8e0606d30b60367f59fe26d1472e88555d61e202db70dea5c8edb"}, {file = "pycares-4.3.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:3215445396c74103e2054e6b349d9e85883ceda2006d0039fc2d58c9b11818a2"}, {file = "pycares-4.3.0-cp311-cp311-win32.whl", hash = "sha256:6a0c0c3a0adf490bba9dbb37dbd07ec81e4a6584f095036ac34f06a633710ffe"}, {file = "pycares-4.3.0-cp311-cp311-win_amd64.whl", hash = "sha256:995cb37cc39bd40ca87bb16555a0f7724f3be30d9f9059a4caab2fde45b1b903"}, {file = "pycares-4.3.0-cp36-cp36m-win32.whl", hash = "sha256:4c9187be72449c975c11daa1d94d7ddcc494f8a4c37a6c18f977cd7024a531d9"}, {file = "pycares-4.3.0-cp36-cp36m-win_amd64.whl", hash = "sha256:d7405ba10a2903a58b8b0faedcb54994c9ee002ad01963587fabf93e7e479783"}, {file = "pycares-4.3.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:40aaa12081495f879f11f4cfc95edfec1ea14711188563102f9e33fe98728fac"}, {file = "pycares-4.3.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4972cac24b66c5997f3a3e2cb608e408066d80103d443e36d626a88a287b9ae7"}, {file = "pycares-4.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:35886dba7aa5b73affca8729aeb5a1f5e94d3d9a764adb1b7e75bafca44eeca5"}, {file = "pycares-4.3.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5cea6e1f3be016f155d60f27f16c1074d58b4d6e123228fdbc3326d076016af8"}, {file = "pycares-4.3.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:3a9fd2665b053afb39226ac6f8137a60910ca7729358456df2fb94866f4297de"}, {file = "pycares-4.3.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:e8e9195f869120e44e0aa0a6098bb5c19947f4753054365891f592e6f9eab3ef"}, {file = "pycares-4.3.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:674486ecf2afb25ee219171b07cdaba481a1aaa2dabb155779c7be9ded03eaa9"}, {file = "pycares-4.3.0-cp37-cp37m-win32.whl", hash = "sha256:1b6cd3161851499b6894d1e23bfd633e7b775472f5af35ae35409c4a47a2d45e"}, {file = "pycares-4.3.0-cp37-cp37m-win_amd64.whl", hash = "sha256:710120c97b9afdba443564350c3f5f72fd9aae74d95b73dc062ca8ac3d7f36d7"}, {file = "pycares-4.3.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:9103649bd29d84bc6bcfaf09def9c0592bbc766018fad19d76d09989608b915d"}, {file = "pycares-4.3.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:c072dbaf73cb5434279578dc35322867d8d5df053e14fdcdcc589994ba4804ae"}, {file = "pycares-4.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:008531733f9c7a976b59c7760a3672b191159fd69ae76c01ca051f20b5e44164"}, {file = "pycares-4.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2aae02d97d77dcff840ab55f86cb8b99bf644acbca17e1edb7048408b9782088"}, {file = "pycares-4.3.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:257953ae6d400a934fd9193aeb20990ac84a78648bdf5978e998bd007a4045cd"}, {file = "pycares-4.3.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:c28d481efae26936ec08cb6beea305f4b145503b152cf2c4dc68cc4ad9644f0e"}, {file = "pycares-4.3.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:976249b39037dbfb709ccf7e1c40d2785905a0065536385d501b94570cfed96d"}, {file = "pycares-4.3.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:98568c30cfab6b327d94ae1acdf85bbba4cffd415980804985d34ca07e6f4791"}, {file = "pycares-4.3.0-cp38-cp38-win32.whl", hash = "sha256:a2f3c4f49f43162f7e684419d9834c2c8ec165e54cb8dc47aa9dc0c2132701c0"}, {file = "pycares-4.3.0-cp38-cp38-win_amd64.whl", hash = "sha256:1730ef93e33e4682fbbf0e7fb19df2ed9822779d17de8ea6e20d5b0d71c1d2be"}, {file = "pycares-4.3.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:5a26b3f1684557025da26ce65d076619890c82b95e38cc7284ce51c3539a1ce8"}, {file = "pycares-4.3.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:86112cce01655b9f63c5e53b74722084e88e784a7a8ad138d373440337c591c9"}, {file = "pycares-4.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c01465a191dc78e923884bb45cd63c7e012623e520cf7ed67e542413ee334804"}, {file = "pycares-4.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c9fd5d6012f3ee8c8038cbfe16e988bbd17b2f21eea86650874bf63757ee6161"}, {file = "pycares-4.3.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aa36b8ea91eae20b5c7205f3e6654423f066af24a1df02b274770a96cbcafaa7"}, {file = "pycares-4.3.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:61019151130557c1788cae52e4f2f388a7520c9d92574f3a0d61c974c6740db0"}, {file = "pycares-4.3.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:231962bb46274c52632469a1e686fab065dbd106dbef586de4f7fb101e297587"}, {file = "pycares-4.3.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6c979512fa51c7ccef5204fe10ed4e5c44c2bce5f335fe98a3e423f1672bd7d4"}, {file = "pycares-4.3.0-cp39-cp39-win32.whl", hash = "sha256:655cf0df862ce3847a60e1a106dafa2ba2c14e6636bac49e874347acdc7312dc"}, {file = "pycares-4.3.0-cp39-cp39-win_amd64.whl", hash = "sha256:36f2251ad0f99a5ce13df45c94c3161d9734c9e9fa2b9b4cc163b853ca170dc5"}, {file = "pycares-4.3.0.tar.gz", hash = "sha256:c542696f6dac978e9d99192384745a65f80a7d9450501151e4a7563e06010d45"}, ] [package.dependencies] cffi = ">=1.5.0" [package.extras] idna = ["idna (>=2.1)"] [[package]] name = "pycparser" version = "2.21" description = "C parser in Python" category = "main" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ {file = "pycparser-2.21-py2.py3-none-any.whl", hash = "sha256:8ee45429555515e1f6b185e78100aea234072576aa43ab53aefcae078162fca9"}, {file = "pycparser-2.21.tar.gz", hash = "sha256:e644fdec12f7872f86c58ff790da456218b10f863970249516d60a5eaca77206"}, ] [[package]] name = "pydantic" version = "1.10.7" description = "Data validation and settings management using python type hints" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "pydantic-1.10.7-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e79e999e539872e903767c417c897e729e015872040e56b96e67968c3b918b2d"}, {file = "pydantic-1.10.7-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:01aea3a42c13f2602b7ecbbea484a98169fb568ebd9e247593ea05f01b884b2e"}, {file = "pydantic-1.10.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:516f1ed9bc2406a0467dd777afc636c7091d71f214d5e413d64fef45174cfc7a"}, {file = "pydantic-1.10.7-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ae150a63564929c675d7f2303008d88426a0add46efd76c3fc797cd71cb1b46f"}, {file = "pydantic-1.10.7-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:ecbbc51391248116c0a055899e6c3e7ffbb11fb5e2a4cd6f2d0b93272118a209"}, {file = "pydantic-1.10.7-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:f4a2b50e2b03d5776e7f21af73e2070e1b5c0d0df255a827e7c632962f8315af"}, {file = "pydantic-1.10.7-cp310-cp310-win_amd64.whl", hash = "sha256:a7cd2251439988b413cb0a985c4ed82b6c6aac382dbaff53ae03c4b23a70e80a"}, {file = "pydantic-1.10.7-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:68792151e174a4aa9e9fc1b4e653e65a354a2fa0fed169f7b3d09902ad2cb6f1"}, {file = "pydantic-1.10.7-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:dfe2507b8ef209da71b6fb5f4e597b50c5a34b78d7e857c4f8f3115effaef5fe"}, {file = "pydantic-1.10.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10a86d8c8db68086f1e30a530f7d5f83eb0685e632e411dbbcf2d5c0150e8dcd"}, {file = "pydantic-1.10.7-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d75ae19d2a3dbb146b6f324031c24f8a3f52ff5d6a9f22f0683694b3afcb16fb"}, {file = "pydantic-1.10.7-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:464855a7ff7f2cc2cf537ecc421291b9132aa9c79aef44e917ad711b4a93163b"}, {file = "pydantic-1.10.7-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:193924c563fae6ddcb71d3f06fa153866423ac1b793a47936656e806b64e24ca"}, {file = "pydantic-1.10.7-cp311-cp311-win_amd64.whl", hash = "sha256:b4a849d10f211389502059c33332e91327bc154acc1845f375a99eca3afa802d"}, {file = "pydantic-1.10.7-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:cc1dde4e50a5fc1336ee0581c1612215bc64ed6d28d2c7c6f25d2fe3e7c3e918"}, {file = "pydantic-1.10.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e0cfe895a504c060e5d36b287ee696e2fdad02d89e0d895f83037245218a87fe"}, {file = "pydantic-1.10.7-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:670bb4683ad1e48b0ecb06f0cfe2178dcf74ff27921cdf1606e527d2617a81ee"}, {file = "pydantic-1.10.7-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:950ce33857841f9a337ce07ddf46bc84e1c4946d2a3bba18f8280297157a3fd1"}, {file = "pydantic-1.10.7-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:c15582f9055fbc1bfe50266a19771bbbef33dd28c45e78afbe1996fd70966c2a"}, {file = "pydantic-1.10.7-cp37-cp37m-win_amd64.whl", hash = "sha256:82dffb306dd20bd5268fd6379bc4bfe75242a9c2b79fec58e1041fbbdb1f7914"}, {file = "pydantic-1.10.7-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:8c7f51861d73e8b9ddcb9916ae7ac39fb52761d9ea0df41128e81e2ba42886cd"}, {file = "pydantic-1.10.7-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6434b49c0b03a51021ade5c4daa7d70c98f7a79e95b551201fff682fc1661245"}, {file = "pydantic-1.10.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:64d34ab766fa056df49013bb6e79921a0265204c071984e75a09cbceacbbdd5d"}, {file = "pydantic-1.10.7-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:701daea9ffe9d26f97b52f1d157e0d4121644f0fcf80b443248434958fd03dc3"}, {file = "pydantic-1.10.7-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:cf135c46099ff3f919d2150a948ce94b9ce545598ef2c6c7bf55dca98a304b52"}, {file = "pydantic-1.10.7-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:b0f85904f73161817b80781cc150f8b906d521fa11e3cdabae19a581c3606209"}, {file = "pydantic-1.10.7-cp38-cp38-win_amd64.whl", hash = "sha256:9f6f0fd68d73257ad6685419478c5aece46432f4bdd8d32c7345f1986496171e"}, {file = "pydantic-1.10.7-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c230c0d8a322276d6e7b88c3f7ce885f9ed16e0910354510e0bae84d54991143"}, {file = "pydantic-1.10.7-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:976cae77ba6a49d80f461fd8bba183ff7ba79f44aa5cfa82f1346b5626542f8e"}, {file = "pydantic-1.10.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7d45fc99d64af9aaf7e308054a0067fdcd87ffe974f2442312372dfa66e1001d"}, {file = "pydantic-1.10.7-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d2a5ebb48958754d386195fe9e9c5106f11275867051bf017a8059410e9abf1f"}, {file = "pydantic-1.10.7-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:abfb7d4a7cd5cc4e1d1887c43503a7c5dd608eadf8bc615413fc498d3e4645cd"}, {file = "pydantic-1.10.7-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:80b1fab4deb08a8292d15e43a6edccdffa5377a36a4597bb545b93e79c5ff0a5"}, {file = "pydantic-1.10.7-cp39-cp39-win_amd64.whl", hash = "sha256:d71e69699498b020ea198468e2480a2f1e7433e32a3a99760058c6520e2bea7e"}, {file = "pydantic-1.10.7-py3-none-any.whl", hash = "sha256:0cd181f1d0b1d00e2b705f1bf1ac7799a2d938cce3376b8007df62b29be3c2c6"}, {file = "pydantic-1.10.7.tar.gz", hash = "sha256:cfc83c0678b6ba51b0532bea66860617c4cd4251ecf76e9846fa5a9f3454e97e"}, ] [package.dependencies] typing-extensions = ">=4.2.0" [package.extras] dotenv = ["python-dotenv (>=0.10.4)"] email = ["email-validator (>=1.0.3)"] [[package]] name = "pydata-sphinx-theme" version = "0.8.1" description = "Bootstrap-based Sphinx theme from the PyData community" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "pydata_sphinx_theme-0.8.1-py3-none-any.whl", hash = "sha256:af2c99cb0b43d95247b1563860942ba75d7f1596360594fce510caaf8c4fcc16"}, {file = "pydata_sphinx_theme-0.8.1.tar.gz", hash = "sha256:96165702253917ece13dd895e23b96ee6dce422dcc144d560806067852fe1fed"}, ] [package.dependencies] beautifulsoup4 = "*" docutils = "!=0.17.0" packaging = "*" sphinx = ">=3.5.4,<5" [package.extras] coverage = ["codecov", "pydata-sphinx-theme[test]", "pytest-cov"] dev = ["nox", "pre-commit", "pydata-sphinx-theme[coverage]", "pyyaml"] doc = ["jupyter_sphinx", "myst-parser", "numpy", "numpydoc", "pandas", "plotly", "pytest", "pytest-regressions", "sphinx-sitemap", "sphinxext-rediraffe", "xarray"] test = ["pydata-sphinx-theme[doc]", "pytest"] [[package]] name = "pyee" version = "9.0.4" description = "A port of node.js's EventEmitter to python." category = "dev" optional = false python-versions = "*" files = [ {file = "pyee-9.0.4-py2.py3-none-any.whl", hash = "sha256:9f066570130c554e9cc12de5a9d86f57c7ee47fece163bbdaa3e9c933cfbdfa5"}, {file = "pyee-9.0.4.tar.gz", hash = "sha256:2770c4928abc721f46b705e6a72b0c59480c4a69c9a83ca0b00bb994f1ea4b32"}, ] [package.dependencies] typing-extensions = "*" [[package]] name = "pygments" version = "2.15.1" description = "Pygments is a syntax highlighting package written in Python." category = "main" optional = false python-versions = ">=3.7" files = [ {file = "Pygments-2.15.1-py3-none-any.whl", hash = "sha256:db2db3deb4b4179f399a09054b023b6a586b76499d36965813c71aa8ed7b5fd1"}, {file = "Pygments-2.15.1.tar.gz", hash = "sha256:8ace4d3c1dd481894b2005f560ead0f9f19ee64fe983366be1a21e171d12775c"}, ] [package.extras] plugins = ["importlib-metadata"] [[package]] name = "pyjwt" version = "2.7.0" description = "JSON Web Token implementation in Python" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "PyJWT-2.7.0-py3-none-any.whl", hash = "sha256:ba2b425b15ad5ef12f200dc67dd56af4e26de2331f965c5439994dad075876e1"}, {file = "PyJWT-2.7.0.tar.gz", hash = "sha256:bd6ca4a3c4285c1a2d4349e5a035fdf8fb94e04ccd0fcbe6ba289dae9cc3e074"}, ] [package.dependencies] cryptography = {version = ">=3.4.0", optional = true, markers = "extra == \"crypto\""} [package.extras] crypto = ["cryptography (>=3.4.0)"] dev = ["coverage[toml] (==5.0.4)", "cryptography (>=3.4.0)", "pre-commit", "pytest (>=6.0.0,<7.0.0)", "sphinx (>=4.5.0,<5.0.0)", "sphinx-rtd-theme", "zope.interface"] docs = ["sphinx (>=4.5.0,<5.0.0)", "sphinx-rtd-theme", "zope.interface"] tests = ["coverage[toml] (==5.0.4)", "pytest (>=6.0.0,<7.0.0)"] [[package]] name = "pylance" version = "0.4.12" description = "python wrapper for lance-rs" category = "main" optional = true python-versions = ">=3.8" files = [ {file = "pylance-0.4.12-cp38-abi3-macosx_10_15_x86_64.whl", hash = "sha256:2b86fb8dccc03094c0db37bef0d91bda60e8eb0d1eddf245c6971450c8d8a53f"}, {file = "pylance-0.4.12-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:0bc82914b13204187d673b5f3d45f93219c38a0e9d0542ba251074f639669789"}, {file = "pylance-0.4.12-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5a4bcce77f99ecd4cbebbadb01e58d5d8138d40eb56bdcdbc3b20b0475e7a472"}, {file = "pylance-0.4.12-cp38-abi3-win_amd64.whl", hash = "sha256:9616931c5300030adb9626d22515710a127d1e46a46737a7a0f980b52f13627c"}, ] [package.dependencies] duckdb = ">=0.7" numpy = "*" pandas = ">=1.5" pyarrow = ">=10" [package.extras] tests = ["duckdb", "polars[pandas,pyarrow]", "pytest"] [[package]] name = "pymongo" version = "4.3.3" description = "Python driver for MongoDB <http://www.mongodb.org>" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "pymongo-4.3.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:74731c9e423c93cbe791f60c27030b6af6a948cef67deca079da6cd1bb583a8e"}, {file = "pymongo-4.3.3-cp310-cp310-manylinux1_i686.whl", hash = "sha256:66413c50d510e5bcb0afc79880d1693a2185bcea003600ed898ada31338c004e"}, {file = "pymongo-4.3.3-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:9b87b23570565a6ddaa9244d87811c2ee9cffb02a753c8a2da9c077283d85845"}, {file = "pymongo-4.3.3-cp310-cp310-manylinux2014_i686.whl", hash = "sha256:695939036a320f4329ccf1627edefbbb67cc7892b8222d297b0dd2313742bfee"}, {file = "pymongo-4.3.3-cp310-cp310-manylinux2014_ppc64le.whl", hash = "sha256:ffcc8394123ea8d43fff8e5d000095fe7741ce3f8988366c5c919c4f5eb179d3"}, {file = "pymongo-4.3.3-cp310-cp310-manylinux2014_s390x.whl", hash = "sha256:943f208840777f34312c103a2d1caab02d780c4e9be26b3714acf6c4715ba7e1"}, {file = "pymongo-4.3.3-cp310-cp310-manylinux2014_x86_64.whl", hash = "sha256:01f7cbe88d22440b6594c955e37312d932fd632ffed1a86d0c361503ca82cc9d"}, {file = "pymongo-4.3.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cdb87309de97c63cb9a69132e1cb16be470e58cffdfbad68fdd1dc292b22a840"}, {file = "pymongo-4.3.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d86c35d94b5499689354ccbc48438a79f449481ee6300f3e905748edceed78e7"}, {file = "pymongo-4.3.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a966d5304b7d90c45c404914e06bbf02c5bf7e99685c6c12f0047ef2aa837142"}, {file = "pymongo-4.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:be1d2ce7e269215c3ee9a215e296b7a744aff4f39233486d2c4d77f5f0c561a6"}, {file = "pymongo-4.3.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:55b6163dac53ef1e5d834297810c178050bd0548a4136cd4e0f56402185916ca"}, {file = "pymongo-4.3.3-cp310-cp310-win32.whl", hash = "sha256:dc0cff74cd36d7e1edba91baa09622c35a8a57025f2f2b7a41e3f83b1db73186"}, {file = "pymongo-4.3.3-cp310-cp310-win_amd64.whl", hash = "sha256:cafa52873ae12baa512a8721afc20de67a36886baae6a5f394ddef0ce9391f91"}, {file = "pymongo-4.3.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:599d3f6fbef31933b96e2d906b0f169b3371ff79ea6aaf6ecd76c947a3508a3d"}, {file = "pymongo-4.3.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c0640b4e9d008e13956b004d1971a23377b3d45491f87082161c92efb1e6c0d6"}, {file = "pymongo-4.3.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:341221e2f2866a5960e6f8610f4cbac0bb13097f3b1a289aa55aba984fc0d969"}, {file = "pymongo-4.3.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e7fac06a539daef4fcf5d8288d0d21b412f9b750454cd5a3cf90484665db442a"}, {file = "pymongo-4.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3a51901066696c4af38c6c63a1f0aeffd5e282367ff475de8c191ec9609b56d"}, {file = "pymongo-4.3.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f3055510fdfdb1775bc8baa359783022f70bb553f2d46e153c094dfcb08578ff"}, {file = "pymongo-4.3.3-cp311-cp311-win32.whl", hash = "sha256:524d78673518dcd352a91541ecd2839c65af92dc883321c2109ef6e5cd22ef23"}, {file = "pymongo-4.3.3-cp311-cp311-win_amd64.whl", hash = "sha256:b8a03af1ce79b902a43f5f694c4ca8d92c2a4195db0966f08f266549e2fc49bc"}, {file = "pymongo-4.3.3-cp37-cp37m-macosx_10_6_intel.whl", hash = "sha256:39b03045c71f761aee96a12ebfbc2f4be89e724ff6f5e31c2574c1a0e2add8bd"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:6fcfbf435eebf8a1765c6d1f46821740ebe9f54f815a05c8fc30d789ef43cb12"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:7d43ac9c7eeda5100fb0a7152fab7099c9cf9e5abd3bb36928eb98c7d7a339c6"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:3b93043b14ba7eb08c57afca19751658ece1cfa2f0b7b1fb5c7a41452fbb8482"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux2014_i686.whl", hash = "sha256:c09956606c08c4a7c6178a04ba2dd9388fcc5db32002ade9c9bc865ab156ab6d"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux2014_ppc64le.whl", hash = "sha256:b0cfe925610f2fd59555bb7fc37bd739e4b197d33f2a8b2fae7b9c0c6640318c"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux2014_s390x.whl", hash = "sha256:4d00b91c77ceb064c9b0459f0d6ea5bfdbc53ea9e17cf75731e151ef25a830c7"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux2014_x86_64.whl", hash = "sha256:c6258a3663780ae47ba73d43eb63c79c40ffddfb764e09b56df33be2f9479837"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c29e758f0e734e1e90357ae01ec9c6daf19ff60a051192fe110d8fb25c62600e"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:12f3621a46cdc7a9ba8080422262398a91762a581d27e0647746588d3f995c88"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:47f7aa217b25833cd6f0e72b0d224be55393c2692b4f5e0561cb3beeb10296e9"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c2fdc855149efe7cdcc2a01ca02bfa24761c640203ea94df467f3baf19078be"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5effd87c7d363890259eac16c56a4e8da307286012c076223997f8cc4a8c435b"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6dd1cf2995fdbd64fc0802313e8323f5fa18994d51af059b5b8862b73b5e53f0"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:bb869707d8e30645ed6766e44098600ca6cdf7989c22a3ea2b7966bb1d98d4b2"}, {file = "pymongo-4.3.3-cp37-cp37m-win32.whl", hash = "sha256:49210feb0be8051a64d71691f0acbfbedc33e149f0a5d6e271fddf6a12493fed"}, {file = "pymongo-4.3.3-cp37-cp37m-win_amd64.whl", hash = "sha256:54c377893f2cbbffe39abcff5ff2e917b082c364521fa079305f6f064e1a24a9"}, {file = "pymongo-4.3.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:c184ec5be465c0319440734491e1aa4709b5f3ba75fdfc9dbbc2ae715a7f6829"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux1_i686.whl", hash = "sha256:dca34367a4e77fcab0693e603a959878eaf2351585e7d752cac544bc6b2dee46"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:cd6a4afb20fb3c26a7bfd4611a0bbb24d93cbd746f5eb881f114b5e38fd55501"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:0c466710871d0026c190fc4141e810cf9d9affbf4935e1d273fbdc7d7cda6143"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux2014_i686.whl", hash = "sha256:d07d06dba5b5f7d80f9cc45501456e440f759fe79f9895922ed486237ac378a8"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux2014_ppc64le.whl", hash = "sha256:711bc52cb98e7892c03e9b669bebd89c0a890a90dbc6d5bb2c47f30239bac6e9"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux2014_s390x.whl", hash = "sha256:34b040e095e1671df0c095ec0b04fc4ebb19c4c160f87c2b55c079b16b1a6b00"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux2014_x86_64.whl", hash = "sha256:4ed00f96e147f40b565fe7530d1da0b0f3ab803d5dd5b683834500fa5d195ec4"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ef888f48eb9203ee1e04b9fb27429017b290fb916f1e7826c2f7808c88798394"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:316498b642c00401370b2156b5233b256f9b33799e0a8d9d0b8a7da217a20fca"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fa7e202feb683dad74f00dea066690448d0cfa310f8a277db06ec8eb466601b5"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:52896e22115c97f1c829db32aa2760b0d61839cfe08b168c2b1d82f31dbc5f55"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7c051fe37c96b9878f37fa58906cb53ecd13dcb7341d3a85f1e2e2f6b10782d9"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5134d33286c045393c7beb51be29754647cec5ebc051cf82799c5ce9820a2ca2"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:a9c2885b4a8e6e39db5662d8b02ca6dcec796a45e48c2de12552841f061692ba"}, {file = "pymongo-4.3.3-cp38-cp38-win32.whl", hash = "sha256:a6cd6f1db75eb07332bd3710f58f5fce4967eadbf751bad653842750a61bda62"}, {file = "pymongo-4.3.3-cp38-cp38-win_amd64.whl", hash = "sha256:d5571b6978750601f783cea07fb6b666837010ca57e5cefa389c1d456f6222e2"}, {file = "pymongo-4.3.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:81d1a7303bd02ca1c5be4aacd4db73593f573ba8e0c543c04c6da6275fd7a47e"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux1_i686.whl", hash = "sha256:016c412118e1c23fef3a1eada4f83ae6e8844fd91986b2e066fc1b0013cdd9ae"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:8fd6e191b92a10310f5a6cfe10d6f839d79d192fb02480bda325286bd1c7b385"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:e2961b05f9c04a53da8bfc72f1910b6aec7205fcf3ac9c036d24619979bbee4b"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux2014_i686.whl", hash = "sha256:b38a96b3eed8edc515b38257f03216f382c4389d022a8834667e2bc63c0c0c31"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux2014_ppc64le.whl", hash = "sha256:c1a70c51da9fa95bd75c167edb2eb3f3c4d27bc4ddd29e588f21649d014ec0b7"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux2014_s390x.whl", hash = "sha256:8a06a0c02f5606330e8f2e2f3b7949877ca7e4024fa2bff5a4506bec66c49ec7"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux2014_x86_64.whl", hash = "sha256:6c2216d8b6a6d019c6f4b1ad55f890e5e77eb089309ffc05b6911c09349e7474"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eac0a143ef4f28f49670bf89cb15847eb80b375d55eba401ca2f777cd425f338"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:08fc250b5552ee97ceeae0f52d8b04f360291285fc7437f13daa516ce38fdbc6"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:704d939656e21b073bfcddd7228b29e0e8a93dd27b54240eaafc0b9a631629a6"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1074f1a6f23e28b983c96142f2d45be03ec55d93035b471c26889a7ad2365db3"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7b16250238de8dafca225647608dddc7bbb5dce3dd53b4d8e63c1cc287394c2f"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7761cacb8745093062695b11574effea69db636c2fd0a9269a1f0183712927b4"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:fd7bb378d82b88387dc10227cfd964f6273eb083e05299e9b97cbe075da12d11"}, {file = "pymongo-4.3.3-cp39-cp39-win32.whl", hash = "sha256:dc24d245026a72d9b4953729d31813edd4bd4e5c13622d96e27c284942d33f24"}, {file = "pymongo-4.3.3-cp39-cp39-win_amd64.whl", hash = "sha256:fc28e8d85d392a06434e9a934908d97e2cf453d69488d2bcd0bfb881497fd975"}, {file = "pymongo-4.3.3.tar.gz", hash = "sha256:34e95ffb0a68bffbc3b437f2d1f25fc916fef3df5cdeed0992da5f42fae9b807"}, ] [package.dependencies] dnspython = ">=1.16.0,<3.0.0" [package.extras] aws = ["pymongo-auth-aws (<2.0.0)"] encryption = ["pymongo-auth-aws (<2.0.0)", "pymongocrypt (>=1.3.0,<2.0.0)"] gssapi = ["pykerberos"] ocsp = ["certifi", "pyopenssl (>=17.2.0)", "requests (<3.0.0)", "service-identity (>=18.1.0)"] snappy = ["python-snappy"] zstd = ["zstandard"] [[package]] name = "pymupdf" version = "1.22.3" description = "Python bindings for the PDF toolkit and renderer MuPDF" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "PyMuPDF-1.22.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0aff7ba35eb2cc285efea87500dd5ee0aaf94f4bb23a79187f0a74101aba7964"}, {file = "PyMuPDF-1.22.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:13e90a5301990dafc5bba6bfa32aafca1f35809497c274c9d4af4f4bac2d8870"}, {file = "PyMuPDF-1.22.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:201c7aecf9530c3a5aa33cd3d6b68e36492ff9ac48cb270d8f18e66654744419"}, {file = "PyMuPDF-1.22.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dbffc6cabb0cb20033870bde954bbed1436cf9fce33a14682e283bc893767250"}, {file = "PyMuPDF-1.22.3-cp310-cp310-win32.whl", hash = "sha256:e344632215882b49fd2e28ffb848f55b1b34db6b5389917e4865b4d779cbdb4a"}, {file = "PyMuPDF-1.22.3-cp310-cp310-win_amd64.whl", hash = "sha256:9d9bccfb29cbe3962a858c200376d54e7ba64d6f64c0b972ed5b68ff20157b06"}, {file = "PyMuPDF-1.22.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:01daa4e3c2c1b93d357ba0d747d713ad40e0123b9bdca2395bf166f62dd8f703"}, {file = "PyMuPDF-1.22.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:46c7fab408ae4d55c4181f95a76bc4f365f5ead3291f67274d6fe90f1b90c479"}, {file = "PyMuPDF-1.22.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a58af441ce454f33f75a4c93a5f76e4659f2c7c849036180f24ab4b84d9e512f"}, {file = "PyMuPDF-1.22.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6eddb0975ddd0bcf39812616b5675c26d740f83b12a39c3b5c4425f02c3da754"}, {file = "PyMuPDF-1.22.3-cp311-cp311-win32.whl", hash = "sha256:ed4a624ffc9bebe5c67fc80e16798300d404089585bcdac14448034bd38c5072"}, {file = "PyMuPDF-1.22.3-cp311-cp311-win_amd64.whl", hash = "sha256:4d2422dffdb4f1c2c8128e6d151f4de5e722388df276ac165572ad5290ad228a"}, {file = "PyMuPDF-1.22.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:48ece127e202470209dc63ad8fa85f3e19ce302f5af02d38c7fc0b5798b9bfa6"}, {file = "PyMuPDF-1.22.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f00097e8d2bc46dacdb776aeb810b1c760949f6353abdf6d12e8aefdc95dd35"}, {file = "PyMuPDF-1.22.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5932564a713bd7d576418070c3dd926cb5800edb4411f48813f7694af7386d3e"}, {file = "PyMuPDF-1.22.3-cp37-cp37m-win32.whl", hash = "sha256:d4f38ecb9518ba2dc12f5f35f33c64ec5466faf20b833f4ac21a2a4190ffef93"}, {file = "PyMuPDF-1.22.3-cp37-cp37m-win_amd64.whl", hash = "sha256:90950b328603a83b26c2eb2af0cf5498582fbbab84e86074bbb0ae44d745e2a3"}, {file = "PyMuPDF-1.22.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0a2040351a1279fafa1db82e5af50a785eb01dc4e1adb3c98e0abfd6e0a4995f"}, {file = "PyMuPDF-1.22.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a67f2b12120ce9fe5c3f7cb192643134af2c4e28773a2cd5d56cbe1cae66d1b9"}, {file = "PyMuPDF-1.22.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4e0904c9bffdfbb527f4fe293986d74477780f0c98f59fa5b42a95e3e441e1f4"}, {file = "PyMuPDF-1.22.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9aaf3352d9c443ad7622e70b0ff9124079b09c16a1a1aa3f3dde9ba0e19f32a2"}, {file = "PyMuPDF-1.22.3-cp38-cp38-win32.whl", hash = "sha256:4c037d5752efd562ac72e74295dfcc8d8dd406c0f6849054b29d2cbc32237ae0"}, {file = "PyMuPDF-1.22.3-cp38-cp38-win_amd64.whl", hash = "sha256:be0803be2709285f17c932ee11d4b7f6d11d3e74e1888094e6310c55e9543673"}, {file = "PyMuPDF-1.22.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:fa934c1a02f1f3bb04e447b95ef5b19d03cb2575fee76d23cb7a6d0c526444e2"}, {file = "PyMuPDF-1.22.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:932747941ed4973410244376ba77693253e4387e8e09cf2458bc9133348fc16e"}, {file = "PyMuPDF-1.22.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d4ea7b016c4561004b48143b8879e1d888e5ba3a1440e6558ea9a47f0d2e6f65"}, {file = "PyMuPDF-1.22.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf275e5dbf332554f98b469899e5a0928b91cb574a5319aeecf1b7e8075cf4b7"}, {file = "PyMuPDF-1.22.3-cp39-cp39-win32.whl", hash = "sha256:07d171255964f5a382e280a95a3148c08fc4ec20bf7907e040cf423cf29afe30"}, {file = "PyMuPDF-1.22.3-cp39-cp39-win_amd64.whl", hash = "sha256:60db199553fc9c88cb9f2afba35f9cd54c042e7a6ea2b151ddcc542e6e75ac61"}, {file = "PyMuPDF-1.22.3.tar.gz", hash = "sha256:5ecd928e96e63092571020973aa145b57b75707f3a3df97c742e563112615891"}, ] [[package]] name = "pyowm" version = "3.3.0" description = "A Python wrapper around OpenWeatherMap web APIs" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "pyowm-3.3.0-py3-none-any.whl", hash = "sha256:86463108e7613171531ba306040b43c972b3fc0b0acf73b12c50910cdd2107ab"}, {file = "pyowm-3.3.0.tar.gz", hash = "sha256:8196f77c91eac680676ed5ee484aae8a165408055e3e2b28025cbf60b8681e03"}, ] [package.dependencies] geojson = ">=2.3.0,<3" PySocks = ">=1.7.1,<2" requests = [ {version = ">=2.20.0,<3"}, {version = "*", extras = ["socks"]}, ] [[package]] name = "pyparsing" version = "3.0.9" description = "pyparsing module - Classes and methods to define and execute parsing grammars" category = "main" optional = true python-versions = ">=3.6.8" files = [ {file = "pyparsing-3.0.9-py3-none-any.whl", hash = "sha256:5026bae9a10eeaefb61dab2f09052b9f4307d44aee4eda64b309723d8d206bbc"}, {file = "pyparsing-3.0.9.tar.gz", hash = "sha256:2b020ecf7d21b687f219b71ecad3631f644a47f01403fa1d1036b0c6416d70fb"}, ] [package.extras] diagrams = ["jinja2", "railroad-diagrams"] [[package]] name = "pypdf" version = "3.8.1" description = "A pure-python PDF library capable of splitting, merging, cropping, and transforming PDF files" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "pypdf-3.8.1-py3-none-any.whl", hash = "sha256:0c34620e4bbceaf9632b6b7a8ec6d4a4d5b0cdee6e39bdb86dc91a8c44cb0f19"}, {file = "pypdf-3.8.1.tar.gz", hash = "sha256:761ad6dc33abb78d358b4ae42206c5f185798f8b537be9b8fdecd9ee834a894d"}, ] [package.dependencies] typing_extensions = {version = ">=3.10.0.0", markers = "python_version < \"3.10\""} [package.extras] crypto = ["PyCryptodome"] dev = ["black", "flit", "pip-tools", "pre-commit (<2.18.0)", "pytest-cov", "wheel"] docs = ["myst_parser", "sphinx", "sphinx_rtd_theme"] full = ["Pillow", "PyCryptodome"] image = ["Pillow"] [[package]] name = "pypdfium2" version = "4.11.0" description = "Python bindings to PDFium" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "pypdfium2-4.11.0-py3-none-macosx_10_13_x86_64.whl", hash = "sha256:00ef3de857d805b88ae2bca2476b009851da6bd983ea570abb143f05acc34d31"}, {file = "pypdfium2-4.11.0-py3-none-macosx_11_0_arm64.whl", hash = "sha256:3997e7fa2d06ed44569ca8e7b53da8324cd9c667e3d74e9bbb789816b4e4ea38"}, {file = "pypdfium2-4.11.0-py3-none-manylinux_2_26_aarch64.whl", hash = "sha256:35a024794a37e424de83dfb11f346223fdd3ff0fb57a51a4aa3c5cba633bc251"}, {file = "pypdfium2-4.11.0-py3-none-manylinux_2_26_armv7l.whl", hash = "sha256:4d5b4465ddf6cf90454ece306969045c4c3de197089b8d42fbfed9e5d090e00e"}, {file = "pypdfium2-4.11.0-py3-none-manylinux_2_26_i686.whl", hash = "sha256:57e877858ba0b3c823128f1edb7c14a6e1acdb0b2337d9f074a42f654e96cd4f"}, {file = "pypdfium2-4.11.0-py3-none-manylinux_2_26_x86_64.whl", hash = "sha256:067afde1c3e2cc244f566183eb1c9b0a84f7b628ab457ca5c84135fdfc6ff15c"}, {file = "pypdfium2-4.11.0-py3-none-musllinux_1_2_i686.whl", hash = "sha256:40faac6dcece1c0f7e83246eacd4d2a33c15fd48f1ec9e6c2c3802ec38e887d7"}, {file = "pypdfium2-4.11.0-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:9ee58064ba1d287dba8cae91f24078b4ac133fbab99dfc1caeab0c4d80d02014"}, {file = "pypdfium2-4.11.0-py3-none-win32.whl", hash = "sha256:32796faad63dbba82011788a92f1037d6d31caa53a0123671e1bae42f9351455"}, {file = "pypdfium2-4.11.0-py3-none-win_amd64.whl", hash = "sha256:e8e584504ce8e620bee7b762857792f6265002c2e763ce9dc0d5bf1d6682274d"}, {file = "pypdfium2-4.11.0-py3-none-win_arm64.whl", hash = "sha256:0b41e0e198c605a2c5fea266be70b95ca4905734d3eefc0928a05e6cb3f98722"}, {file = "pypdfium2-4.11.0.tar.gz", hash = "sha256:f1d3bd0841f0c2e9db417075896dafc5906bbd7c0ccdc2b6e2b3f44d61d49f46"}, ] [[package]] name = "pyphen" version = "0.14.0" description = "Pure Python module to hyphenate text" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "pyphen-0.14.0-py3-none-any.whl", hash = "sha256:414c9355958ca3c6a3ff233f65678c245b8ecb56418fb291e2b93499d61cd510"}, {file = "pyphen-0.14.0.tar.gz", hash = "sha256:596c8b3be1c1a70411ba5f6517d9ccfe3083c758ae2b94a45f2707346d8e66fa"}, ] [package.extras] doc = ["sphinx", "sphinx_rtd_theme"] test = ["flake8", "isort", "pytest"] [[package]] name = "pyrsistent" version = "0.19.3" description = "Persistent/Functional/Immutable data structures" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "pyrsistent-0.19.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:20460ac0ea439a3e79caa1dbd560344b64ed75e85d8703943e0b66c2a6150e4a"}, {file = "pyrsistent-0.19.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4c18264cb84b5e68e7085a43723f9e4c1fd1d935ab240ce02c0324a8e01ccb64"}, {file = "pyrsistent-0.19.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4b774f9288dda8d425adb6544e5903f1fb6c273ab3128a355c6b972b7df39dcf"}, {file = "pyrsistent-0.19.3-cp310-cp310-win32.whl", hash = "sha256:5a474fb80f5e0d6c9394d8db0fc19e90fa540b82ee52dba7d246a7791712f74a"}, {file = "pyrsistent-0.19.3-cp310-cp310-win_amd64.whl", hash = "sha256:49c32f216c17148695ca0e02a5c521e28a4ee6c5089f97e34fe24163113722da"}, {file = "pyrsistent-0.19.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f0774bf48631f3a20471dd7c5989657b639fd2d285b861237ea9e82c36a415a9"}, {file = "pyrsistent-0.19.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ab2204234c0ecd8b9368dbd6a53e83c3d4f3cab10ecaf6d0e772f456c442393"}, {file = "pyrsistent-0.19.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e42296a09e83028b3476f7073fcb69ffebac0e66dbbfd1bd847d61f74db30f19"}, {file = "pyrsistent-0.19.3-cp311-cp311-win32.whl", hash = "sha256:64220c429e42a7150f4bfd280f6f4bb2850f95956bde93c6fda1b70507af6ef3"}, {file = "pyrsistent-0.19.3-cp311-cp311-win_amd64.whl", hash = "sha256:016ad1afadf318eb7911baa24b049909f7f3bb2c5b1ed7b6a8f21db21ea3faa8"}, {file = "pyrsistent-0.19.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c4db1bd596fefd66b296a3d5d943c94f4fac5bcd13e99bffe2ba6a759d959a28"}, {file = "pyrsistent-0.19.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aeda827381f5e5d65cced3024126529ddc4289d944f75e090572c77ceb19adbf"}, {file = "pyrsistent-0.19.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:42ac0b2f44607eb92ae88609eda931a4f0dfa03038c44c772e07f43e738bcac9"}, {file = "pyrsistent-0.19.3-cp37-cp37m-win32.whl", hash = "sha256:e8f2b814a3dc6225964fa03d8582c6e0b6650d68a232df41e3cc1b66a5d2f8d1"}, {file = "pyrsistent-0.19.3-cp37-cp37m-win_amd64.whl", hash = "sha256:c9bb60a40a0ab9aba40a59f68214eed5a29c6274c83b2cc206a359c4a89fa41b"}, {file = "pyrsistent-0.19.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:a2471f3f8693101975b1ff85ffd19bb7ca7dd7c38f8a81701f67d6b4f97b87d8"}, {file = "pyrsistent-0.19.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cc5d149f31706762c1f8bda2e8c4f8fead6e80312e3692619a75301d3dbb819a"}, {file = "pyrsistent-0.19.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3311cb4237a341aa52ab8448c27e3a9931e2ee09561ad150ba94e4cfd3fc888c"}, {file = "pyrsistent-0.19.3-cp38-cp38-win32.whl", hash = "sha256:f0e7c4b2f77593871e918be000b96c8107da48444d57005b6a6bc61fb4331b2c"}, {file = "pyrsistent-0.19.3-cp38-cp38-win_amd64.whl", hash = "sha256:c147257a92374fde8498491f53ffa8f4822cd70c0d85037e09028e478cababb7"}, {file = "pyrsistent-0.19.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:b735e538f74ec31378f5a1e3886a26d2ca6351106b4dfde376a26fc32a044edc"}, {file = "pyrsistent-0.19.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:99abb85579e2165bd8522f0c0138864da97847875ecbd45f3e7e2af569bfc6f2"}, {file = "pyrsistent-0.19.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3a8cb235fa6d3fd7aae6a4f1429bbb1fec1577d978098da1252f0489937786f3"}, {file = "pyrsistent-0.19.3-cp39-cp39-win32.whl", hash = "sha256:c74bed51f9b41c48366a286395c67f4e894374306b197e62810e0fdaf2364da2"}, {file = "pyrsistent-0.19.3-cp39-cp39-win_amd64.whl", hash = "sha256:878433581fc23e906d947a6814336eee031a00e6defba224234169ae3d3d6a98"}, {file = "pyrsistent-0.19.3-py3-none-any.whl", hash = "sha256:ccf0d6bd208f8111179f0c26fdf84ed7c3891982f2edaeae7422575f47e66b64"}, {file = "pyrsistent-0.19.3.tar.gz", hash = "sha256:1a2994773706bbb4995c31a97bc94f1418314923bd1048c6d964837040376440"}, ] [[package]] name = "pysocks" version = "1.7.1" description = "A Python SOCKS client module. See https://github.com/Anorov/PySocks for more information." category = "main" optional = true python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ {file = "PySocks-1.7.1-py27-none-any.whl", hash = "sha256:08e69f092cc6dbe92a0fdd16eeb9b9ffbc13cadfe5ca4c7bd92ffb078b293299"}, {file = "PySocks-1.7.1-py3-none-any.whl", hash = "sha256:2725bd0a9925919b9b51739eea5f9e2bae91e83288108a9ad338b2e3a4435ee5"}, {file = "PySocks-1.7.1.tar.gz", hash = "sha256:3f8804571ebe159c380ac6de37643bb4685970655d3bba243530d6558b799aa0"}, ] [[package]] name = "pyspark" version = "3.4.0" description = "Apache Spark Python API" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "pyspark-3.4.0.tar.gz", hash = "sha256:167a23e11854adb37f8602de6fcc3a4f96fd5f1e323b9bb83325f38408c5aafd"}, ] [package.dependencies] py4j = "0.10.9.7" [package.extras] connect = ["googleapis-common-protos (>=1.56.4)", "grpcio (>=1.48.1)", "grpcio-status (>=1.48.1)", "numpy (>=1.15)", "pandas (>=1.0.5)", "pyarrow (>=1.0.0)"] ml = ["numpy (>=1.15)"] mllib = ["numpy (>=1.15)"] pandas-on-spark = ["numpy (>=1.15)", "pandas (>=1.0.5)", "pyarrow (>=1.0.0)"] sql = ["numpy (>=1.15)", "pandas (>=1.0.5)", "pyarrow (>=1.0.0)"] [[package]] name = "pytesseract" version = "0.3.10" description = "Python-tesseract is a python wrapper for Google's Tesseract-OCR" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "pytesseract-0.3.10-py3-none-any.whl", hash = "sha256:8f22cc98f765bf13517ead0c70effedb46c153540d25783e04014f28b55a5fc6"}, {file = "pytesseract-0.3.10.tar.gz", hash = "sha256:f1c3a8b0f07fd01a1085d451f5b8315be6eec1d5577a6796d46dc7a62bd4120f"}, ] [package.dependencies] packaging = ">=21.3" Pillow = ">=8.0.0" [[package]] name = "pytest" version = "7.3.1" description = "pytest: simple powerful testing with Python" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "pytest-7.3.1-py3-none-any.whl", hash = "sha256:3799fa815351fea3a5e96ac7e503a96fa51cc9942c3753cda7651b93c1cfa362"}, {file = "pytest-7.3.1.tar.gz", hash = "sha256:434afafd78b1d78ed0addf160ad2b77a30d35d4bdf8af234fe621919d9ed15e3"}, ] [package.dependencies] colorama = {version = "*", markers = "sys_platform == \"win32\""} exceptiongroup = {version = ">=1.0.0rc8", markers = "python_version < \"3.11\""} iniconfig = "*" packaging = "*" pluggy = ">=0.12,<2.0" tomli = {version = ">=1.0.0", markers = "python_version < \"3.11\""} [package.extras] testing = ["argcomplete", "attrs (>=19.2.0)", "hypothesis (>=3.56)", "mock", "nose", "pygments (>=2.7.2)", "requests", "xmlschema"] [[package]] name = "pytest-asyncio" version = "0.20.3" description = "Pytest support for asyncio" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "pytest-asyncio-0.20.3.tar.gz", hash = "sha256:83cbf01169ce3e8eb71c6c278ccb0574d1a7a3bb8eaaf5e50e0ad342afb33b36"}, {file = "pytest_asyncio-0.20.3-py3-none-any.whl", hash = "sha256:f129998b209d04fcc65c96fc85c11e5316738358909a8399e93be553d7656442"}, ] [package.dependencies] pytest = ">=6.1.0" [package.extras] docs = ["sphinx (>=5.3)", "sphinx-rtd-theme (>=1.0)"] testing = ["coverage (>=6.2)", "flaky (>=3.5.0)", "hypothesis (>=5.7.1)", "mypy (>=0.931)", "pytest-trio (>=0.7.0)"] [[package]] name = "pytest-cov" version = "4.0.0" description = "Pytest plugin for measuring coverage." category = "dev" optional = false python-versions = ">=3.6" files = [ {file = "pytest-cov-4.0.0.tar.gz", hash = "sha256:996b79efde6433cdbd0088872dbc5fb3ed7fe1578b68cdbba634f14bb8dd0470"}, {file = "pytest_cov-4.0.0-py3-none-any.whl", hash = "sha256:2feb1b751d66a8bd934e5edfa2e961d11309dc37b73b0eabe73b5945fee20f6b"}, ] [package.dependencies] coverage = {version = ">=5.2.1", extras = ["toml"]} pytest = ">=4.6" [package.extras] testing = ["fields", "hunter", "process-tests", "pytest-xdist", "six", "virtualenv"] [[package]] name = "pytest-dotenv" version = "0.5.2" description = "A py.test plugin that parses environment files before running tests" category = "dev" optional = false python-versions = "*" files = [ {file = "pytest-dotenv-0.5.2.tar.gz", hash = "sha256:2dc6c3ac6d8764c71c6d2804e902d0ff810fa19692e95fe138aefc9b1aa73732"}, {file = "pytest_dotenv-0.5.2-py3-none-any.whl", hash = "sha256:40a2cece120a213898afaa5407673f6bd924b1fa7eafce6bda0e8abffe2f710f"}, ] [package.dependencies] pytest = ">=5.0.0" python-dotenv = ">=0.9.1" [[package]] name = "pytest-mock" version = "3.10.0" description = "Thin-wrapper around the mock package for easier use with pytest" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "pytest-mock-3.10.0.tar.gz", hash = "sha256:fbbdb085ef7c252a326fd8cdcac0aa3b1333d8811f131bdcc701002e1be7ed4f"}, {file = "pytest_mock-3.10.0-py3-none-any.whl", hash = "sha256:f4c973eeae0282963eb293eb173ce91b091a79c1334455acfac9ddee8a1c784b"}, ] [package.dependencies] pytest = ">=5.0" [package.extras] dev = ["pre-commit", "pytest-asyncio", "tox"] [[package]] name = "pytest-socket" version = "0.6.0" description = "Pytest Plugin to disable socket calls during tests" category = "dev" optional = false python-versions = ">=3.7,<4.0" files = [ {file = "pytest_socket-0.6.0-py3-none-any.whl", hash = "sha256:cca72f134ff01e0023c402e78d31b32e68da3efdf3493bf7788f8eba86a6824c"}, {file = "pytest_socket-0.6.0.tar.gz", hash = "sha256:363c1d67228315d4fc7912f1aabfd570de29d0e3db6217d61db5728adacd7138"}, ] [package.dependencies] pytest = ">=3.6.3" [[package]] name = "pytest-vcr" version = "1.0.2" description = "Plugin for managing VCR.py cassettes" category = "dev" optional = false python-versions = "*" files = [ {file = "pytest-vcr-1.0.2.tar.gz", hash = "sha256:23ee51b75abbcc43d926272773aae4f39f93aceb75ed56852d0bf618f92e1896"}, {file = "pytest_vcr-1.0.2-py2.py3-none-any.whl", hash = "sha256:2f316e0539399bea0296e8b8401145c62b6f85e9066af7e57b6151481b0d6d9c"}, ] [package.dependencies] pytest = ">=3.6.0" vcrpy = "*" [[package]] name = "pytest-watcher" version = "0.2.6" description = "Continiously runs pytest on changes in *.py files" category = "dev" optional = false python-versions = ">=3.7.0,<4.0.0" files = [ {file = "pytest-watcher-0.2.6.tar.gz", hash = "sha256:351dfb3477366030ff275bfbfc9f29bee35cd07f16a3355b38bf92766886bae4"}, {file = "pytest_watcher-0.2.6-py3-none-any.whl", hash = "sha256:0a507159d051c9461790363e0f9b2827c1d82ad2ae8966319598695e485b1dd5"}, ] [package.dependencies] watchdog = ">=2.0.0" [[package]] name = "python-dateutil" version = "2.8.2" description = "Extensions to the standard Python datetime module" category = "main" optional = false python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" files = [ {file = "python-dateutil-2.8.2.tar.gz", hash = "sha256:0123cacc1627ae19ddf3c27a5de5bd67ee4586fbdd6440d9748f8abb483d3e86"}, {file = "python_dateutil-2.8.2-py2.py3-none-any.whl", hash = "sha256:961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9"}, ] [package.dependencies] six = ">=1.5" [[package]] name = "python-dotenv" version = "1.0.0" description = "Read key-value pairs from a .env file and set them as environment variables" category = "main" optional = false python-versions = ">=3.8" files = [ {file = "python-dotenv-1.0.0.tar.gz", hash = "sha256:a8df96034aae6d2d50a4ebe8216326c61c3eb64836776504fcca410e5937a3ba"}, {file = "python_dotenv-1.0.0-py3-none-any.whl", hash = "sha256:f5971a9226b701070a4bf2c38c89e5a3f0d64de8debda981d1db98583009122a"}, ] [package.extras] cli = ["click (>=5.0)"] [[package]] name = "python-jose" version = "3.3.0" description = "JOSE implementation in Python" category = "main" optional = true python-versions = "*" files = [ {file = "python-jose-3.3.0.tar.gz", hash = "sha256:55779b5e6ad599c6336191246e95eb2293a9ddebd555f796a65f838f07e5d78a"}, {file = "python_jose-3.3.0-py2.py3-none-any.whl", hash = "sha256:9b1376b023f8b298536eedd47ae1089bcdb848f1535ab30555cd92002d78923a"}, ] [package.dependencies] ecdsa = "!=0.15" pyasn1 = "*" rsa = "*" [package.extras] cryptography = ["cryptography (>=3.4.0)"] pycrypto = ["pyasn1", "pycrypto (>=2.6.0,<2.7.0)"] pycryptodome = ["pyasn1", "pycryptodome (>=3.3.1,<4.0.0)"] [[package]] name = "python-json-logger" version = "2.0.7" description = "A python library adding a json log formatter" category = "dev" optional = false python-versions = ">=3.6" files = [ {file = "python-json-logger-2.0.7.tar.gz", hash = "sha256:23e7ec02d34237c5aa1e29a070193a4ea87583bb4e7f8fd06d3de8264c4b2e1c"}, {file = "python_json_logger-2.0.7-py3-none-any.whl", hash = "sha256:f380b826a991ebbe3de4d897aeec42760035ac760345e57b812938dc8b35e2bd"}, ] [[package]] name = "python-magic" version = "0.4.27" description = "File type identification using libmagic" category = "dev" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" files = [ {file = "python-magic-0.4.27.tar.gz", hash = "sha256:c1ba14b08e4a5f5c31a302b7721239695b2f0f058d125bd5ce1ee36b9d9d3c3b"}, {file = "python_magic-0.4.27-py2.py3-none-any.whl", hash = "sha256:c212960ad306f700aa0d01e5d7a325d20548ff97eb9920dcd29513174f0294d3"}, ] [[package]] name = "python-magic-bin" version = "0.4.14" description = "File type identification using libmagic binary package" category = "dev" optional = false python-versions = "*" files = [ {file = "python_magic_bin-0.4.14-py2.py3-none-macosx_10_6_intel.whl", hash = "sha256:7b1743b3dbf16601d6eedf4e7c2c9a637901b0faaf24ad4df4d4527e7d8f66a4"}, {file = "python_magic_bin-0.4.14-py2.py3-none-win32.whl", hash = "sha256:34a788c03adde7608028203e2dbb208f1f62225ad91518787ae26d603ae68892"}, {file = "python_magic_bin-0.4.14-py2.py3-none-win_amd64.whl", hash = "sha256:90be6206ad31071a36065a2fc169c5afb5e0355cbe6030e87641c6c62edc2b69"}, ] [[package]] name = "python-multipart" version = "0.0.6" description = "A streaming multipart parser for Python" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "python_multipart-0.0.6-py3-none-any.whl", hash = "sha256:ee698bab5ef148b0a760751c261902cd096e57e10558e11aca17646b74ee1c18"}, {file = "python_multipart-0.0.6.tar.gz", hash = "sha256:e9925a80bb668529f1b67c7fdb0a5dacdd7cbfc6fb0bff3ea443fe22bdd62132"}, ] [package.extras] dev = ["atomicwrites (==1.2.1)", "attrs (==19.2.0)", "coverage (==6.5.0)", "hatch", "invoke (==1.7.3)", "more-itertools (==4.3.0)", "pbr (==4.3.0)", "pluggy (==1.0.0)", "py (==1.11.0)", "pytest (==7.2.0)", "pytest-cov (==4.0.0)", "pytest-timeout (==2.1.0)", "pyyaml (==5.1)"] [[package]] name = "pytz" version = "2023.3" description = "World timezone definitions, modern and historical" category = "main" optional = false python-versions = "*" files = [ {file = "pytz-2023.3-py2.py3-none-any.whl", hash = "sha256:a151b3abb88eda1d4e34a9814df37de2a80e301e68ba0fd856fb9b46bfbbbffb"}, {file = "pytz-2023.3.tar.gz", hash = "sha256:1d8ce29db189191fb55338ee6d0387d82ab59f3d00eac103412d64e0ebd0c588"}, ] [[package]] name = "pyvespa" version = "0.33.0" description = "Python API for vespa.ai" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "pyvespa-0.33.0-py3-none-any.whl", hash = "sha256:2681910b3ac5f0259a9e41e6e2649caba2801e836b4c295cc2e48ab25b09672c"}, {file = "pyvespa-0.33.0.tar.gz", hash = "sha256:be3da9022276555b6b25c40b6e846db6e9dbf617486001ba92235ccfab6c9353"}, ] [package.dependencies] aiohttp = "*" cryptography = "*" docker = "*" jinja2 = "*" pandas = "*" requests = "*" tenacity = "*" [package.extras] full = ["keras-tuner", "onnxruntime", "tensorflow", "tensorflow-ranking", "torch (<1.13)", "transformers"] ml = ["keras-tuner", "tensorflow", "tensorflow-ranking", "torch (<1.13)", "transformers"] [[package]] name = "pywin32" version = "306" description = "Python for Window Extensions" category = "main" optional = false python-versions = "*" files = [ {file = "pywin32-306-cp310-cp310-win32.whl", hash = "sha256:06d3420a5155ba65f0b72f2699b5bacf3109f36acbe8923765c22938a69dfc8d"}, {file = "pywin32-306-cp310-cp310-win_amd64.whl", hash = "sha256:84f4471dbca1887ea3803d8848a1616429ac94a4a8d05f4bc9c5dcfd42ca99c8"}, {file = "pywin32-306-cp311-cp311-win32.whl", hash = "sha256:e65028133d15b64d2ed8f06dd9fbc268352478d4f9289e69c190ecd6818b6407"}, {file = "pywin32-306-cp311-cp311-win_amd64.whl", hash = "sha256:a7639f51c184c0272e93f244eb24dafca9b1855707d94c192d4a0b4c01e1100e"}, {file = "pywin32-306-cp311-cp311-win_arm64.whl", hash = "sha256:70dba0c913d19f942a2db25217d9a1b726c278f483a919f1abfed79c9cf64d3a"}, {file = "pywin32-306-cp312-cp312-win32.whl", hash = "sha256:383229d515657f4e3ed1343da8be101000562bf514591ff383ae940cad65458b"}, {file = "pywin32-306-cp312-cp312-win_amd64.whl", hash = "sha256:37257794c1ad39ee9be652da0462dc2e394c8159dfd913a8a4e8eb6fd346da0e"}, {file = "pywin32-306-cp312-cp312-win_arm64.whl", hash = "sha256:5821ec52f6d321aa59e2db7e0a35b997de60c201943557d108af9d4ae1ec7040"}, {file = "pywin32-306-cp37-cp37m-win32.whl", hash = "sha256:1c73ea9a0d2283d889001998059f5eaaba3b6238f767c9cf2833b13e6a685f65"}, {file = "pywin32-306-cp37-cp37m-win_amd64.whl", hash = "sha256:72c5f621542d7bdd4fdb716227be0dd3f8565c11b280be6315b06ace35487d36"}, {file = "pywin32-306-cp38-cp38-win32.whl", hash = "sha256:e4c092e2589b5cf0d365849e73e02c391c1349958c5ac3e9d5ccb9a28e017b3a"}, {file = "pywin32-306-cp38-cp38-win_amd64.whl", hash = "sha256:e8ac1ae3601bee6ca9f7cb4b5363bf1c0badb935ef243c4733ff9a393b1690c0"}, {file = "pywin32-306-cp39-cp39-win32.whl", hash = "sha256:e25fd5b485b55ac9c057f67d94bc203f3f6595078d1fb3b458c9c28b7153a802"}, {file = "pywin32-306-cp39-cp39-win_amd64.whl", hash = "sha256:39b61c15272833b5c329a2989999dcae836b1eed650252ab1b7bfbe1d59f30f4"}, ] [[package]] name = "pywinpty" version = "2.0.10" description = "Pseudo terminal support for Windows from Python." category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "pywinpty-2.0.10-cp310-none-win_amd64.whl", hash = "sha256:4c7d06ad10f6e92bc850a467f26d98f4f30e73d2fe5926536308c6ae0566bc16"}, {file = "pywinpty-2.0.10-cp311-none-win_amd64.whl", hash = "sha256:7ffbd66310b83e42028fc9df7746118978d94fba8c1ebf15a7c1275fdd80b28a"}, {file = "pywinpty-2.0.10-cp37-none-win_amd64.whl", hash = "sha256:38cb924f2778b5751ef91a75febd114776b3af0ae411bc667be45dd84fc881d3"}, {file = "pywinpty-2.0.10-cp38-none-win_amd64.whl", hash = "sha256:902d79444b29ad1833b8d5c3c9aabdfd428f4f068504430df18074007c8c0de8"}, {file = "pywinpty-2.0.10-cp39-none-win_amd64.whl", hash = "sha256:3c46aef80dd50979aff93de199e4a00a8ee033ba7a03cadf0a91fed45f0c39d7"}, {file = "pywinpty-2.0.10.tar.gz", hash = "sha256:cdbb5694cf8c7242c2ecfaca35c545d31fa5d5814c3d67a4e628f803f680ebea"}, ] [[package]] name = "pyyaml" version = "6.0" description = "YAML parser and emitter for Python" category = "main" optional = false python-versions = ">=3.6" files = [ {file = "PyYAML-6.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d4db7c7aef085872ef65a8fd7d6d09a14ae91f691dec3e87ee5ee0539d516f53"}, {file = "PyYAML-6.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9df7ed3b3d2e0ecfe09e14741b857df43adb5a3ddadc919a2d94fbdf78fea53c"}, {file = "PyYAML-6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77f396e6ef4c73fdc33a9157446466f1cff553d979bd00ecb64385760c6babdc"}, {file = "PyYAML-6.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a80a78046a72361de73f8f395f1f1e49f956c6be882eed58505a15f3e430962b"}, {file = "PyYAML-6.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:f84fbc98b019fef2ee9a1cb3ce93e3187a6df0b2538a651bfb890254ba9f90b5"}, {file = "PyYAML-6.0-cp310-cp310-win32.whl", hash = "sha256:2cd5df3de48857ed0544b34e2d40e9fac445930039f3cfe4bcc592a1f836d513"}, {file = "PyYAML-6.0-cp310-cp310-win_amd64.whl", hash = "sha256:daf496c58a8c52083df09b80c860005194014c3698698d1a57cbcfa182142a3a"}, {file = "PyYAML-6.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:d4b0ba9512519522b118090257be113b9468d804b19d63c71dbcf4a48fa32358"}, {file = "PyYAML-6.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:81957921f441d50af23654aa6c5e5eaf9b06aba7f0a19c18a538dc7ef291c5a1"}, {file = "PyYAML-6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:afa17f5bc4d1b10afd4466fd3a44dc0e245382deca5b3c353d8b757f9e3ecb8d"}, {file = "PyYAML-6.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dbad0e9d368bb989f4515da330b88a057617d16b6a8245084f1b05400f24609f"}, {file = "PyYAML-6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:432557aa2c09802be39460360ddffd48156e30721f5e8d917f01d31694216782"}, {file = "PyYAML-6.0-cp311-cp311-win32.whl", hash = "sha256:bfaef573a63ba8923503d27530362590ff4f576c626d86a9fed95822a8255fd7"}, {file = "PyYAML-6.0-cp311-cp311-win_amd64.whl", hash = "sha256:01b45c0191e6d66c470b6cf1b9531a771a83c1c4208272ead47a3ae4f2f603bf"}, {file = "PyYAML-6.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:897b80890765f037df3403d22bab41627ca8811ae55e9a722fd0392850ec4d86"}, {file = "PyYAML-6.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50602afada6d6cbfad699b0c7bb50d5ccffa7e46a3d738092afddc1f9758427f"}, {file = "PyYAML-6.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:48c346915c114f5fdb3ead70312bd042a953a8ce5c7106d5bfb1a5254e47da92"}, {file = "PyYAML-6.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:98c4d36e99714e55cfbaaee6dd5badbc9a1ec339ebfc3b1f52e293aee6bb71a4"}, {file = "PyYAML-6.0-cp36-cp36m-win32.whl", hash = "sha256:0283c35a6a9fbf047493e3a0ce8d79ef5030852c51e9d911a27badfde0605293"}, {file = "PyYAML-6.0-cp36-cp36m-win_amd64.whl", hash = "sha256:07751360502caac1c067a8132d150cf3d61339af5691fe9e87803040dbc5db57"}, {file = "PyYAML-6.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:819b3830a1543db06c4d4b865e70ded25be52a2e0631ccd2f6a47a2822f2fd7c"}, {file = "PyYAML-6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:473f9edb243cb1935ab5a084eb238d842fb8f404ed2193a915d1784b5a6b5fc0"}, {file = "PyYAML-6.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0ce82d761c532fe4ec3f87fc45688bdd3a4c1dc5e0b4a19814b9009a29baefd4"}, {file = "PyYAML-6.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:231710d57adfd809ef5d34183b8ed1eeae3f76459c18fb4a0b373ad56bedcdd9"}, {file = "PyYAML-6.0-cp37-cp37m-win32.whl", hash = "sha256:c5687b8d43cf58545ade1fe3e055f70eac7a5a1a0bf42824308d868289a95737"}, {file = "PyYAML-6.0-cp37-cp37m-win_amd64.whl", hash = "sha256:d15a181d1ecd0d4270dc32edb46f7cb7733c7c508857278d3d378d14d606db2d"}, {file = "PyYAML-6.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0b4624f379dab24d3725ffde76559cff63d9ec94e1736b556dacdfebe5ab6d4b"}, {file = "PyYAML-6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:213c60cd50106436cc818accf5baa1aba61c0189ff610f64f4a3e8c6726218ba"}, {file = "PyYAML-6.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9fa600030013c4de8165339db93d182b9431076eb98eb40ee068700c9c813e34"}, {file = "PyYAML-6.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:277a0ef2981ca40581a47093e9e2d13b3f1fbbeffae064c1d21bfceba2030287"}, {file = "PyYAML-6.0-cp38-cp38-win32.whl", hash = "sha256:d4eccecf9adf6fbcc6861a38015c2a64f38b9d94838ac1810a9023a0609e1b78"}, {file = "PyYAML-6.0-cp38-cp38-win_amd64.whl", hash = "sha256:1e4747bc279b4f613a09eb64bba2ba602d8a6664c6ce6396a4d0cd413a50ce07"}, {file = "PyYAML-6.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:055d937d65826939cb044fc8c9b08889e8c743fdc6a32b33e2390f66013e449b"}, {file = "PyYAML-6.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e61ceaab6f49fb8bdfaa0f92c4b57bcfbea54c09277b1b4f7ac376bfb7a7c174"}, {file = "PyYAML-6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d67d839ede4ed1b28a4e8909735fc992a923cdb84e618544973d7dfc71540803"}, {file = "PyYAML-6.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cba8c411ef271aa037d7357a2bc8f9ee8b58b9965831d9e51baf703280dc73d3"}, {file = "PyYAML-6.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:40527857252b61eacd1d9af500c3337ba8deb8fc298940291486c465c8b46ec0"}, {file = "PyYAML-6.0-cp39-cp39-win32.whl", hash = "sha256:b5b9eccad747aabaaffbc6064800670f0c297e52c12754eb1d976c57e4f74dcb"}, {file = "PyYAML-6.0-cp39-cp39-win_amd64.whl", hash = "sha256:b3d267842bf12586ba6c734f89d1f5b871df0273157918b0ccefa29deb05c21c"}, {file = "PyYAML-6.0.tar.gz", hash = "sha256:68fb519c14306fec9720a2a5b45bc9f0c8d1b9c72adf45c37baedfcd949c35a2"}, ] [[package]] name = "pyzmq" version = "25.0.2" description = "Python bindings for 0MQ" category = "dev" optional = false python-versions = ">=3.6" files = [ {file = "pyzmq-25.0.2-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:ac178e666c097c8d3deb5097b58cd1316092fc43e8ef5b5fdb259b51da7e7315"}, {file = "pyzmq-25.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:659e62e1cbb063151c52f5b01a38e1df6b54feccfa3e2509d44c35ca6d7962ee"}, {file = "pyzmq-25.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8280ada89010735a12b968ec3ea9a468ac2e04fddcc1cede59cb7f5178783b9c"}, {file = "pyzmq-25.0.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a9b5eeb5278a8a636bb0abdd9ff5076bcbb836cd2302565df53ff1fa7d106d54"}, {file = "pyzmq-25.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a2e5fe42dfe6b73ca120b97ac9f34bfa8414feb15e00e37415dbd51cf227ef6"}, {file = "pyzmq-25.0.2-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:827bf60e749e78acb408a6c5af6688efbc9993e44ecc792b036ec2f4b4acf485"}, {file = "pyzmq-25.0.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:7b504ae43d37e282301da586529e2ded8b36d4ee2cd5e6db4386724ddeaa6bbc"}, {file = "pyzmq-25.0.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:cb1f69a0a2a2b1aae8412979dd6293cc6bcddd4439bf07e4758d864ddb112354"}, {file = "pyzmq-25.0.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:2b9c9cc965cdf28381e36da525dcb89fc1571d9c54800fdcd73e3f73a2fc29bd"}, {file = "pyzmq-25.0.2-cp310-cp310-win32.whl", hash = "sha256:24abbfdbb75ac5039205e72d6c75f10fc39d925f2df8ff21ebc74179488ebfca"}, {file = "pyzmq-25.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:6a821a506822fac55d2df2085a52530f68ab15ceed12d63539adc32bd4410f6e"}, {file = "pyzmq-25.0.2-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:9af0bb0277e92f41af35e991c242c9c71920169d6aa53ade7e444f338f4c8128"}, {file = "pyzmq-25.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:54a96cf77684a3a537b76acfa7237b1e79a8f8d14e7f00e0171a94b346c5293e"}, {file = "pyzmq-25.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88649b19ede1cab03b96b66c364cbbf17c953615cdbc844f7f6e5f14c5e5261c"}, {file = "pyzmq-25.0.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:715cff7644a80a7795953c11b067a75f16eb9fc695a5a53316891ebee7f3c9d5"}, {file = "pyzmq-25.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:312b3f0f066b4f1d17383aae509bacf833ccaf591184a1f3c7a1661c085063ae"}, {file = "pyzmq-25.0.2-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:d488c5c8630f7e782e800869f82744c3aca4aca62c63232e5d8c490d3d66956a"}, {file = "pyzmq-25.0.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:38d9f78d69bcdeec0c11e0feb3bc70f36f9b8c44fc06e5d06d91dc0a21b453c7"}, {file = "pyzmq-25.0.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:3059a6a534c910e1d5d068df42f60d434f79e6cc6285aa469b384fa921f78cf8"}, {file = "pyzmq-25.0.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:6526d097b75192f228c09d48420854d53dfbc7abbb41b0e26f363ccb26fbc177"}, {file = "pyzmq-25.0.2-cp311-cp311-win32.whl", hash = "sha256:5c5fbb229e40a89a2fe73d0c1181916f31e30f253cb2d6d91bea7927c2e18413"}, {file = "pyzmq-25.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:ed15e3a2c3c2398e6ae5ce86d6a31b452dfd6ad4cd5d312596b30929c4b6e182"}, {file = "pyzmq-25.0.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:032f5c8483c85bf9c9ca0593a11c7c749d734ce68d435e38c3f72e759b98b3c9"}, {file = "pyzmq-25.0.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:374b55516393bfd4d7a7daa6c3b36d6dd6a31ff9d2adad0838cd6a203125e714"}, {file = "pyzmq-25.0.2-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:08bfcc21b5997a9be4fefa405341320d8e7f19b4d684fb9c0580255c5bd6d695"}, {file = "pyzmq-25.0.2-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:1a843d26a8da1b752c74bc019c7b20e6791ee813cd6877449e6a1415589d22ff"}, {file = "pyzmq-25.0.2-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:b48616a09d7df9dbae2f45a0256eee7b794b903ddc6d8657a9948669b345f220"}, {file = "pyzmq-25.0.2-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:d4427b4a136e3b7f85516c76dd2e0756c22eec4026afb76ca1397152b0ca8145"}, {file = "pyzmq-25.0.2-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:26b0358e8933990502f4513c991c9935b6c06af01787a36d133b7c39b1df37fa"}, {file = "pyzmq-25.0.2-cp36-cp36m-win32.whl", hash = "sha256:c8fedc3ccd62c6b77dfe6f43802057a803a411ee96f14e946f4a76ec4ed0e117"}, {file = "pyzmq-25.0.2-cp36-cp36m-win_amd64.whl", hash = "sha256:2da6813b7995b6b1d1307329c73d3e3be2fd2d78e19acfc4eff2e27262732388"}, {file = "pyzmq-25.0.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:a35960c8b2f63e4ef67fd6731851030df68e4b617a6715dd11b4b10312d19fef"}, {file = "pyzmq-25.0.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eef2a0b880ab40aca5a878933376cb6c1ec483fba72f7f34e015c0f675c90b20"}, {file = "pyzmq-25.0.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:85762712b74c7bd18e340c3639d1bf2f23735a998d63f46bb6584d904b5e401d"}, {file = "pyzmq-25.0.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:64812f29d6eee565e129ca14b0c785744bfff679a4727137484101b34602d1a7"}, {file = "pyzmq-25.0.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:510d8e55b3a7cd13f8d3e9121edf0a8730b87d925d25298bace29a7e7bc82810"}, {file = "pyzmq-25.0.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:b164cc3c8acb3d102e311f2eb6f3c305865ecb377e56adc015cb51f721f1dda6"}, {file = "pyzmq-25.0.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:28fdb9224a258134784a9cf009b59265a9dde79582fb750d4e88a6bcbc6fa3dc"}, {file = "pyzmq-25.0.2-cp37-cp37m-win32.whl", hash = "sha256:dd771a440effa1c36d3523bc6ba4e54ff5d2e54b4adcc1e060d8f3ca3721d228"}, {file = "pyzmq-25.0.2-cp37-cp37m-win_amd64.whl", hash = "sha256:9bdc40efb679b9dcc39c06d25629e55581e4c4f7870a5e88db4f1c51ce25e20d"}, {file = "pyzmq-25.0.2-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:1f82906a2d8e4ee310f30487b165e7cc8ed09c009e4502da67178b03083c4ce0"}, {file = "pyzmq-25.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:21ec0bf4831988af43c8d66ba3ccd81af2c5e793e1bf6790eb2d50e27b3c570a"}, {file = "pyzmq-25.0.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:abbce982a17c88d2312ec2cf7673985d444f1beaac6e8189424e0a0e0448dbb3"}, {file = "pyzmq-25.0.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:9e1d2f2d86fc75ed7f8845a992c5f6f1ab5db99747fb0d78b5e4046d041164d2"}, {file = "pyzmq-25.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a2e92ff20ad5d13266bc999a29ed29a3b5b101c21fdf4b2cf420c09db9fb690e"}, {file = "pyzmq-25.0.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:edbbf06cc2719889470a8d2bf5072bb00f423e12de0eb9ffec946c2c9748e149"}, {file = "pyzmq-25.0.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:77942243ff4d14d90c11b2afd8ee6c039b45a0be4e53fb6fa7f5e4fd0b59da39"}, {file = "pyzmq-25.0.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:ab046e9cb902d1f62c9cc0eca055b1d11108bdc271caf7c2171487298f229b56"}, {file = "pyzmq-25.0.2-cp38-cp38-win32.whl", hash = "sha256:ad761cfbe477236802a7ab2c080d268c95e784fe30cafa7e055aacd1ca877eb0"}, {file = "pyzmq-25.0.2-cp38-cp38-win_amd64.whl", hash = "sha256:8560756318ec7c4c49d2c341012167e704b5a46d9034905853c3d1ade4f55bee"}, {file = "pyzmq-25.0.2-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:ab2c056ac503f25a63f6c8c6771373e2a711b98b304614151dfb552d3d6c81f6"}, {file = "pyzmq-25.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:cca8524b61c0eaaa3505382dc9b9a3bc8165f1d6c010fdd1452c224225a26689"}, {file = "pyzmq-25.0.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:cfb9f7eae02d3ac42fbedad30006b7407c984a0eb4189a1322241a20944d61e5"}, {file = "pyzmq-25.0.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:5eaeae038c68748082137d6896d5c4db7927e9349237ded08ee1bbd94f7361c9"}, {file = "pyzmq-25.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4a31992a8f8d51663ebf79df0df6a04ffb905063083d682d4380ab8d2c67257c"}, {file = "pyzmq-25.0.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:6a979e59d2184a0c8f2ede4b0810cbdd86b64d99d9cc8a023929e40dce7c86cc"}, {file = "pyzmq-25.0.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:1f124cb73f1aa6654d31b183810febc8505fd0c597afa127c4f40076be4574e0"}, {file = "pyzmq-25.0.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:65c19a63b4a83ae45d62178b70223adeee5f12f3032726b897431b6553aa25af"}, {file = "pyzmq-25.0.2-cp39-cp39-win32.whl", hash = "sha256:83d822e8687621bed87404afc1c03d83fa2ce39733d54c2fd52d8829edb8a7ff"}, {file = "pyzmq-25.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:24683285cc6b7bf18ad37d75b9db0e0fefe58404e7001f1d82bf9e721806daa7"}, {file = "pyzmq-25.0.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:4a4b4261eb8f9ed71f63b9eb0198dd7c934aa3b3972dac586d0ef502ba9ab08b"}, {file = "pyzmq-25.0.2-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:62ec8d979f56c0053a92b2b6a10ff54b9ec8a4f187db2b6ec31ee3dd6d3ca6e2"}, {file = "pyzmq-25.0.2-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:affec1470351178e892121b3414c8ef7803269f207bf9bef85f9a6dd11cde264"}, {file = "pyzmq-25.0.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ffc71111433bd6ec8607a37b9211f4ef42e3d3b271c6d76c813669834764b248"}, {file = "pyzmq-25.0.2-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:6fadc60970714d86eff27821f8fb01f8328dd36bebd496b0564a500fe4a9e354"}, {file = "pyzmq-25.0.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:269968f2a76c0513490aeb3ba0dc3c77b7c7a11daa894f9d1da88d4a0db09835"}, {file = "pyzmq-25.0.2-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:f7c8b8368e84381ae7c57f1f5283b029c888504aaf4949c32e6e6fb256ec9bf0"}, {file = "pyzmq-25.0.2-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:25e6873a70ad5aa31e4a7c41e5e8c709296edef4a92313e1cd5fc87bbd1874e2"}, {file = "pyzmq-25.0.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b733076ff46e7db5504c5e7284f04a9852c63214c74688bdb6135808531755a3"}, {file = "pyzmq-25.0.2-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:a6f6ae12478fdc26a6d5fdb21f806b08fa5403cd02fd312e4cb5f72df078f96f"}, {file = "pyzmq-25.0.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:67da1c213fbd208906ab3470cfff1ee0048838365135a9bddc7b40b11e6d6c89"}, {file = "pyzmq-25.0.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:531e36d9fcd66f18de27434a25b51d137eb546931033f392e85674c7a7cea853"}, {file = "pyzmq-25.0.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:34a6fddd159ff38aa9497b2e342a559f142ab365576284bc8f77cb3ead1f79c5"}, {file = "pyzmq-25.0.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b491998ef886662c1f3d49ea2198055a9a536ddf7430b051b21054f2a5831800"}, {file = "pyzmq-25.0.2-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:5d496815074e3e3d183fe2c7fcea2109ad67b74084c254481f87b64e04e9a471"}, {file = "pyzmq-25.0.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:56a94ab1d12af982b55ca96c6853db6ac85505e820d9458ac76364c1998972f4"}, {file = "pyzmq-25.0.2.tar.gz", hash = "sha256:6b8c1bbb70e868dc88801aa532cae6bd4e3b5233784692b786f17ad2962e5149"}, ] [package.dependencies] cffi = {version = "*", markers = "implementation_name == \"pypy\""} [[package]] name = "qdrant-client" version = "1.1.7" description = "Client library for the Qdrant vector search engine" category = "main" optional = true python-versions = ">=3.7,<3.12" files = [ {file = "qdrant_client-1.1.7-py3-none-any.whl", hash = "sha256:4f5d883660b8193840d8982919ab813a0470ace9a7ff46ee730f909841be5319"}, {file = "qdrant_client-1.1.7.tar.gz", hash = "sha256:686d86934bec2ebb70676fc0650c9a44a9e552e0149124ca5a22ee8533879deb"}, ] [package.dependencies] grpcio = ">=1.41.0" grpcio-tools = ">=1.41.0" httpx = {version = ">=0.14.0", extras = ["http2"]} numpy = {version = ">=1.21", markers = "python_version >= \"3.8\""} portalocker = ">=2.7.0,<3.0.0" pydantic = ">=1.8,<2.0" typing-extensions = ">=4.0.0,<5.0.0" urllib3 = ">=1.26.14,<2.0.0" [[package]] name = "qtconsole" version = "5.4.3" description = "Jupyter Qt console" category = "dev" optional = false python-versions = ">= 3.7" files = [ {file = "qtconsole-5.4.3-py3-none-any.whl", hash = "sha256:35fd6e87b1f6d1fd41801b07e69339f8982e76afd4fa8ef35595bc6036717189"}, {file = "qtconsole-5.4.3.tar.gz", hash = "sha256:5e4082a86a201796b2a5cfd4298352d22b158b51b57736531824715fc2a979dd"}, ] [package.dependencies] ipykernel = ">=4.1" ipython-genutils = "*" jupyter-client = ">=4.1" jupyter-core = "*" packaging = "*" pygments = "*" pyzmq = ">=17.1" qtpy = ">=2.0.1" traitlets = "<5.2.1 || >5.2.1,<5.2.2 || >5.2.2" [package.extras] doc = ["Sphinx (>=1.3)"] test = ["flaky", "pytest", "pytest-qt"] [[package]] name = "qtpy" version = "2.3.1" description = "Provides an abstraction layer on top of the various Qt bindings (PyQt5/6 and PySide2/6)." category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "QtPy-2.3.1-py3-none-any.whl", hash = "sha256:5193d20e0b16e4d9d3bc2c642d04d9f4e2c892590bd1b9c92bfe38a95d5a2e12"}, {file = "QtPy-2.3.1.tar.gz", hash = "sha256:a8c74982d6d172ce124d80cafd39653df78989683f760f2281ba91a6e7b9de8b"}, ] [package.dependencies] packaging = "*" [package.extras] test = ["pytest (>=6,!=7.0.0,!=7.0.1)", "pytest-cov (>=3.0.0)", "pytest-qt"] [[package]] name = "ratelimiter" version = "1.2.0.post0" description = "Simple python rate limiting object" category = "main" optional = true python-versions = "*" files = [ {file = "ratelimiter-1.2.0.post0-py3-none-any.whl", hash = "sha256:a52be07bc0bb0b3674b4b304550f10c769bbb00fead3072e035904474259809f"}, {file = "ratelimiter-1.2.0.post0.tar.gz", hash = "sha256:5c395dcabdbbde2e5178ef3f89b568a3066454a6ddc223b76473dac22f89b4f7"}, ] [package.extras] test = ["pytest (>=3.0)", "pytest-asyncio"] [[package]] name = "redis" version = "4.5.5" description = "Python client for Redis database and key-value store" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "redis-4.5.5-py3-none-any.whl", hash = "sha256:77929bc7f5dab9adf3acba2d3bb7d7658f1e0c2f1cafe7eb36434e751c471119"}, {file = "redis-4.5.5.tar.gz", hash = "sha256:dc87a0bdef6c8bfe1ef1e1c40be7034390c2ae02d92dcd0c7ca1729443899880"}, ] [package.dependencies] async-timeout = {version = ">=4.0.2", markers = "python_full_version <= \"3.11.2\""} [package.extras] hiredis = ["hiredis (>=1.0.0)"] ocsp = ["cryptography (>=36.0.1)", "pyopenssl (==20.0.1)", "requests (>=2.26.0)"] [[package]] name = "regex" version = "2023.5.5" description = "Alternative regular expression module, to replace re." category = "main" optional = false python-versions = ">=3.6" files = [ {file = "regex-2023.5.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:48c9ec56579d4ba1c88f42302194b8ae2350265cb60c64b7b9a88dcb7fbde309"}, {file = "regex-2023.5.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:02f4541550459c08fdd6f97aa4e24c6f1932eec780d58a2faa2068253df7d6ff"}, {file = "regex-2023.5.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:53e22e4460f0245b468ee645156a4f84d0fc35a12d9ba79bd7d79bdcd2f9629d"}, {file = "regex-2023.5.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4b870b6f632fc74941cadc2a0f3064ed8409e6f8ee226cdfd2a85ae50473aa94"}, {file = "regex-2023.5.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:171c52e320fe29260da550d81c6b99f6f8402450dc7777ef5ced2e848f3b6f8f"}, {file = "regex-2023.5.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aad5524c2aedaf9aa14ef1bc9327f8abd915699dea457d339bebbe2f0d218f86"}, {file = "regex-2023.5.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5a0f874ee8c0bc820e649c900243c6d1e6dc435b81da1492046716f14f1a2a96"}, {file = "regex-2023.5.5-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:e645c757183ee0e13f0bbe56508598e2d9cd42b8abc6c0599d53b0d0b8dd1479"}, {file = "regex-2023.5.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:a4c5da39bca4f7979eefcbb36efea04471cd68db2d38fcbb4ee2c6d440699833"}, {file = "regex-2023.5.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:5e3f4468b8c6fd2fd33c218bbd0a1559e6a6fcf185af8bb0cc43f3b5bfb7d636"}, {file = "regex-2023.5.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:59e4b729eae1a0919f9e4c0fc635fbcc9db59c74ad98d684f4877be3d2607dd6"}, {file = "regex-2023.5.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:ba73a14e9c8f9ac409863543cde3290dba39098fc261f717dc337ea72d3ebad2"}, {file = "regex-2023.5.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0bbd5dcb19603ab8d2781fac60114fb89aee8494f4505ae7ad141a3314abb1f9"}, {file = "regex-2023.5.5-cp310-cp310-win32.whl", hash = "sha256:40005cbd383438aecf715a7b47fe1e3dcbc889a36461ed416bdec07e0ef1db66"}, {file = "regex-2023.5.5-cp310-cp310-win_amd64.whl", hash = "sha256:59597cd6315d3439ed4b074febe84a439c33928dd34396941b4d377692eca810"}, {file = "regex-2023.5.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8f08276466fedb9e36e5193a96cb944928301152879ec20c2d723d1031cd4ddd"}, {file = "regex-2023.5.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:cd46f30e758629c3ee91713529cfbe107ac50d27110fdcc326a42ce2acf4dafc"}, {file = "regex-2023.5.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f2910502f718828cecc8beff004917dcf577fc5f8f5dd40ffb1ea7612124547b"}, {file = "regex-2023.5.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:445d6f4fc3bd9fc2bf0416164454f90acab8858cd5a041403d7a11e3356980e8"}, {file = "regex-2023.5.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:18196c16a584619c7c1d843497c069955d7629ad4a3fdee240eb347f4a2c9dbe"}, {file = "regex-2023.5.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:33d430a23b661629661f1fe8395be2004006bc792bb9fc7c53911d661b69dd7e"}, {file = "regex-2023.5.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:72a28979cc667e5f82ef433db009184e7ac277844eea0f7f4d254b789517941d"}, {file = "regex-2023.5.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f764e4dfafa288e2eba21231f455d209f4709436baeebb05bdecfb5d8ddc3d35"}, {file = "regex-2023.5.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:23d86ad2121b3c4fc78c58f95e19173790e22ac05996df69b84e12da5816cb17"}, {file = "regex-2023.5.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:690a17db524ee6ac4a27efc5406530dd90e7a7a69d8360235323d0e5dafb8f5b"}, {file = "regex-2023.5.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:1ecf3dcff71f0c0fe3e555201cbe749fa66aae8d18f80d2cc4de8e66df37390a"}, {file = "regex-2023.5.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:811040d7f3dd9c55eb0d8b00b5dcb7fd9ae1761c454f444fd9f37fe5ec57143a"}, {file = "regex-2023.5.5-cp311-cp311-win32.whl", hash = "sha256:c8c143a65ce3ca42e54d8e6fcaf465b6b672ed1c6c90022794a802fb93105d22"}, {file = "regex-2023.5.5-cp311-cp311-win_amd64.whl", hash = "sha256:586a011f77f8a2da4b888774174cd266e69e917a67ba072c7fc0e91878178a80"}, {file = "regex-2023.5.5-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:b6365703e8cf1644b82104cdd05270d1a9f043119a168d66c55684b1b557d008"}, {file = "regex-2023.5.5-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a56c18f21ac98209da9c54ae3ebb3b6f6e772038681d6cb43b8d53da3b09ee81"}, {file = "regex-2023.5.5-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b8b942d8b3ce765dbc3b1dad0a944712a89b5de290ce8f72681e22b3c55f3cc8"}, {file = "regex-2023.5.5-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:844671c9c1150fcdac46d43198364034b961bd520f2c4fdaabfc7c7d7138a2dd"}, {file = "regex-2023.5.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c2ce65bdeaf0a386bb3b533a28de3994e8e13b464ac15e1e67e4603dd88787fa"}, {file = "regex-2023.5.5-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fee0016cc35a8a91e8cc9312ab26a6fe638d484131a7afa79e1ce6165328a135"}, {file = "regex-2023.5.5-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:18f05d14f14a812fe9723f13afafefe6b74ca042d99f8884e62dbd34dcccf3e2"}, {file = "regex-2023.5.5-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:941b3f1b2392f0bcd6abf1bc7a322787d6db4e7457be6d1ffd3a693426a755f2"}, {file = "regex-2023.5.5-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:921473a93bcea4d00295799ab929522fc650e85c6b9f27ae1e6bb32a790ea7d3"}, {file = "regex-2023.5.5-cp36-cp36m-musllinux_1_1_ppc64le.whl", hash = "sha256:e2205a81f815b5bb17e46e74cc946c575b484e5f0acfcb805fb252d67e22938d"}, {file = "regex-2023.5.5-cp36-cp36m-musllinux_1_1_s390x.whl", hash = "sha256:385992d5ecf1a93cb85adff2f73e0402dd9ac29b71b7006d342cc920816e6f32"}, {file = "regex-2023.5.5-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:890a09cb0a62198bff92eda98b2b507305dd3abf974778bae3287f98b48907d3"}, {file = "regex-2023.5.5-cp36-cp36m-win32.whl", hash = "sha256:821a88b878b6589c5068f4cc2cfeb2c64e343a196bc9d7ac68ea8c2a776acd46"}, {file = "regex-2023.5.5-cp36-cp36m-win_amd64.whl", hash = "sha256:7918a1b83dd70dc04ab5ed24c78ae833ae8ea228cef84e08597c408286edc926"}, {file = "regex-2023.5.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:338994d3d4ca4cf12f09822e025731a5bdd3a37aaa571fa52659e85ca793fb67"}, {file = "regex-2023.5.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0a69cf0c00c4d4a929c6c7717fd918414cab0d6132a49a6d8fc3ded1988ed2ea"}, {file = "regex-2023.5.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8f5e06df94fff8c4c85f98c6487f6636848e1dc85ce17ab7d1931df4a081f657"}, {file = "regex-2023.5.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a8906669b03c63266b6a7693d1f487b02647beb12adea20f8840c1a087e2dfb5"}, {file = "regex-2023.5.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9fda3e50abad8d0f48df621cf75adc73c63f7243cbe0e3b2171392b445401550"}, {file = "regex-2023.5.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5ac2b7d341dc1bd102be849d6dd33b09701223a851105b2754339e390be0627a"}, {file = "regex-2023.5.5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:fb2b495dd94b02de8215625948132cc2ea360ae84fe6634cd19b6567709c8ae2"}, {file = "regex-2023.5.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:aa7d032c1d84726aa9edeb6accf079b4caa87151ca9fabacef31fa028186c66d"}, {file = "regex-2023.5.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:3d45864693351c15531f7e76f545ec35000d50848daa833cead96edae1665559"}, {file = "regex-2023.5.5-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:21e90a288e6ba4bf44c25c6a946cb9b0f00b73044d74308b5e0afd190338297c"}, {file = "regex-2023.5.5-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:10250a093741ec7bf74bcd2039e697f519b028518f605ff2aa7ac1e9c9f97423"}, {file = "regex-2023.5.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:6b8d0c153f07a953636b9cdb3011b733cadd4178123ef728ccc4d5969e67f3c2"}, {file = "regex-2023.5.5-cp37-cp37m-win32.whl", hash = "sha256:10374c84ee58c44575b667310d5bbfa89fb2e64e52349720a0182c0017512f6c"}, {file = "regex-2023.5.5-cp37-cp37m-win_amd64.whl", hash = "sha256:9b320677521aabf666cdd6e99baee4fb5ac3996349c3b7f8e7c4eee1c00dfe3a"}, {file = "regex-2023.5.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:afb1c70ec1e594a547f38ad6bf5e3d60304ce7539e677c1429eebab115bce56e"}, {file = "regex-2023.5.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:cf123225945aa58b3057d0fba67e8061c62d14cc8a4202630f8057df70189051"}, {file = "regex-2023.5.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a99757ad7fe5c8a2bb44829fc57ced11253e10f462233c1255fe03888e06bc19"}, {file = "regex-2023.5.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a623564d810e7a953ff1357f7799c14bc9beeab699aacc8b7ab7822da1e952b8"}, {file = "regex-2023.5.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ced02e3bd55e16e89c08bbc8128cff0884d96e7f7a5633d3dc366b6d95fcd1d6"}, {file = "regex-2023.5.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d1cbe6b5be3b9b698d8cc4ee4dee7e017ad655e83361cd0ea8e653d65e469468"}, {file = "regex-2023.5.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4a6e4b0e0531223f53bad07ddf733af490ba2b8367f62342b92b39b29f72735a"}, {file = "regex-2023.5.5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:2e9c4f778514a560a9c9aa8e5538bee759b55f6c1dcd35613ad72523fd9175b8"}, {file = "regex-2023.5.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:256f7f4c6ba145f62f7a441a003c94b8b1af78cee2cccacfc1e835f93bc09426"}, {file = "regex-2023.5.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:bd7b68fd2e79d59d86dcbc1ccd6e2ca09c505343445daaa4e07f43c8a9cc34da"}, {file = "regex-2023.5.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:4a5059bd585e9e9504ef9c07e4bc15b0a621ba20504388875d66b8b30a5c4d18"}, {file = "regex-2023.5.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:6893544e06bae009916a5658ce7207e26ed17385149f35a3125f5259951f1bbe"}, {file = "regex-2023.5.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:c64d5abe91a3dfe5ff250c6bb267ef00dbc01501518225b45a5f9def458f31fb"}, {file = "regex-2023.5.5-cp38-cp38-win32.whl", hash = "sha256:7923470d6056a9590247ff729c05e8e0f06bbd4efa6569c916943cb2d9b68b91"}, {file = "regex-2023.5.5-cp38-cp38-win_amd64.whl", hash = "sha256:4035d6945cb961c90c3e1c1ca2feb526175bcfed44dfb1cc77db4fdced060d3e"}, {file = "regex-2023.5.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:50fd2d9b36938d4dcecbd684777dd12a407add4f9f934f235c66372e630772b0"}, {file = "regex-2023.5.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:d19e57f888b00cd04fc38f5e18d0efbd91ccba2d45039453ab2236e6eec48d4d"}, {file = "regex-2023.5.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bd966475e963122ee0a7118ec9024388c602d12ac72860f6eea119a3928be053"}, {file = "regex-2023.5.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:db09e6c18977a33fea26fe67b7a842f706c67cf8bda1450974d0ae0dd63570df"}, {file = "regex-2023.5.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6164d4e2a82f9ebd7752a06bd6c504791bedc6418c0196cd0a23afb7f3e12b2d"}, {file = "regex-2023.5.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:84397d3f750d153ebd7f958efaa92b45fea170200e2df5e0e1fd4d85b7e3f58a"}, {file = "regex-2023.5.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9c3efee9bb53cbe7b285760c81f28ac80dc15fa48b5fe7e58b52752e642553f1"}, {file = "regex-2023.5.5-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:144b5b017646b5a9392a5554a1e5db0000ae637be4971c9747566775fc96e1b2"}, {file = "regex-2023.5.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:1189fbbb21e2c117fda5303653b61905aeeeea23de4a94d400b0487eb16d2d60"}, {file = "regex-2023.5.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f83fe9e10f9d0b6cf580564d4d23845b9d692e4c91bd8be57733958e4c602956"}, {file = "regex-2023.5.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:72aa4746993a28c841e05889f3f1b1e5d14df8d3daa157d6001a34c98102b393"}, {file = "regex-2023.5.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:de2f780c3242ea114dd01f84848655356af4dd561501896c751d7b885ea6d3a1"}, {file = "regex-2023.5.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:290fd35219486dfbc00b0de72f455ecdd63e59b528991a6aec9fdfc0ce85672e"}, {file = "regex-2023.5.5-cp39-cp39-win32.whl", hash = "sha256:732176f5427e72fa2325b05c58ad0b45af341c459910d766f814b0584ac1f9ac"}, {file = "regex-2023.5.5-cp39-cp39-win_amd64.whl", hash = "sha256:1307aa4daa1cbb23823d8238e1f61292fd07e4e5d8d38a6efff00b67a7cdb764"}, {file = "regex-2023.5.5.tar.gz", hash = "sha256:7d76a8a1fc9da08296462a18f16620ba73bcbf5909e42383b253ef34d9d5141e"}, ] [[package]] name = "requests" version = "2.28.2" description = "Python HTTP for Humans." category = "main" optional = false python-versions = ">=3.7, <4" files = [ {file = "requests-2.28.2-py3-none-any.whl", hash = "sha256:64299f4909223da747622c030b781c0d7811e359c37124b4bd368fb8c6518baa"}, {file = "requests-2.28.2.tar.gz", hash = "sha256:98b1b2782e3c6c4904938b84c0eb932721069dfdb9134313beff7c83c2df24bf"}, ] [package.dependencies] certifi = ">=2017.4.17" charset-normalizer = ">=2,<4" idna = ">=2.5,<4" PySocks = {version = ">=1.5.6,<1.5.7 || >1.5.7", optional = true, markers = "extra == \"socks\""} urllib3 = ">=1.21.1,<1.27" [package.extras] socks = ["PySocks (>=1.5.6,!=1.5.7)"] use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] [[package]] name = "requests-oauthlib" version = "1.3.1" description = "OAuthlib authentication support for Requests." category = "main" optional = true python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ {file = "requests-oauthlib-1.3.1.tar.gz", hash = "sha256:75beac4a47881eeb94d5ea5d6ad31ef88856affe2332b9aafb52c6452ccf0d7a"}, {file = "requests_oauthlib-1.3.1-py2.py3-none-any.whl", hash = "sha256:2577c501a2fb8d05a304c09d090d6e47c306fef15809d102b327cf8364bddab5"}, ] [package.dependencies] oauthlib = ">=3.0.0" requests = ">=2.0.0" [package.extras] rsa = ["oauthlib[signedtoken] (>=3.0.0)"] [[package]] name = "requests-toolbelt" version = "1.0.0" description = "A utility belt for advanced users of python-requests" category = "main" optional = true python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ {file = "requests-toolbelt-1.0.0.tar.gz", hash = "sha256:7681a0a3d047012b5bdc0ee37d7f8f07ebe76ab08caeccfc3921ce23c88d5bc6"}, {file = "requests_toolbelt-1.0.0-py2.py3-none-any.whl", hash = "sha256:cccfdd665f0a24fcf4726e690f65639d272bb0637b9b92dfd91a5568ccf6bd06"}, ] [package.dependencies] requests = ">=2.0.1,<3.0.0" [[package]] name = "responses" version = "0.22.0" description = "A utility library for mocking out the `requests` Python library." category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "responses-0.22.0-py3-none-any.whl", hash = "sha256:dcf294d204d14c436fddcc74caefdbc5764795a40ff4e6a7740ed8ddbf3294be"}, {file = "responses-0.22.0.tar.gz", hash = "sha256:396acb2a13d25297789a5866b4881cf4e46ffd49cc26c43ab1117f40b973102e"}, ] [package.dependencies] requests = ">=2.22.0,<3.0" toml = "*" types-toml = "*" urllib3 = ">=1.25.10" [package.extras] tests = ["coverage (>=6.0.0)", "flake8", "mypy", "pytest (>=7.0.0)", "pytest-asyncio", "pytest-cov", "pytest-httpserver", "types-requests"] [[package]] name = "retry" version = "0.9.2" description = "Easy to use retry decorator." category = "main" optional = true python-versions = "*" files = [ {file = "retry-0.9.2-py2.py3-none-any.whl", hash = "sha256:ccddf89761fa2c726ab29391837d4327f819ea14d244c232a1d24c67a2f98606"}, {file = "retry-0.9.2.tar.gz", hash = "sha256:f8bfa8b99b69c4506d6f5bd3b0aabf77f98cdb17f3c9fc3f5ca820033336fba4"}, ] [package.dependencies] decorator = ">=3.4.2" py = ">=1.4.26,<2.0.0" [[package]] name = "rfc3339-validator" version = "0.1.4" description = "A pure python RFC3339 validator" category = "dev" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" files = [ {file = "rfc3339_validator-0.1.4-py2.py3-none-any.whl", hash = "sha256:24f6ec1eda14ef823da9e36ec7113124b39c04d50a4d3d3a3c2859577e7791fa"}, {file = "rfc3339_validator-0.1.4.tar.gz", hash = "sha256:138a2abdf93304ad60530167e51d2dfb9549521a836871b88d7f4695d0022f6b"}, ] [package.dependencies] six = "*" [[package]] name = "rfc3986-validator" version = "0.1.1" description = "Pure python rfc3986 validator" category = "dev" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" files = [ {file = "rfc3986_validator-0.1.1-py2.py3-none-any.whl", hash = "sha256:2f235c432ef459970b4306369336b9d5dbdda31b510ca1e327636e01f528bfa9"}, {file = "rfc3986_validator-0.1.1.tar.gz", hash = "sha256:3d44bde7921b3b9ec3ae4e3adca370438eccebc676456449b145d533b240d055"}, ] [[package]] name = "rich" version = "13.3.5" description = "Render rich text, tables, progress bars, syntax highlighting, markdown and more to the terminal" category = "main" optional = true python-versions = ">=3.7.0" files = [ {file = "rich-13.3.5-py3-none-any.whl", hash = "sha256:69cdf53799e63f38b95b9bf9c875f8c90e78dd62b2f00c13a911c7a3b9fa4704"}, {file = "rich-13.3.5.tar.gz", hash = "sha256:2d11b9b8dd03868f09b4fffadc84a6a8cda574e40dc90821bd845720ebb8e89c"}, ] [package.dependencies] markdown-it-py = ">=2.2.0,<3.0.0" pygments = ">=2.13.0,<3.0.0" typing-extensions = {version = ">=4.0.0,<5.0", markers = "python_version < \"3.9\""} [package.extras] jupyter = ["ipywidgets (>=7.5.1,<9)"] [[package]] name = "rsa" version = "4.9" description = "Pure-Python RSA implementation" category = "main" optional = true python-versions = ">=3.6,<4" files = [ {file = "rsa-4.9-py3-none-any.whl", hash = "sha256:90260d9058e514786967344d0ef75fa8727eed8a7d2e43ce9f4bcf1b536174f7"}, {file = "rsa-4.9.tar.gz", hash = "sha256:e38464a49c6c85d7f1351b0126661487a7e0a14a50f1675ec50eb34d4f20ef21"}, ] [package.dependencies] pyasn1 = ">=0.1.3" [[package]] name = "ruff" version = "0.0.249" description = "An extremely fast Python linter, written in Rust." category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "ruff-0.0.249-py3-none-macosx_10_7_x86_64.whl", hash = "sha256:03a26f1cb5605508de49d921d0970895b9e3ad4021f776a53be18fa95a4fc25b"}, {file = "ruff-0.0.249-py3-none-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl", hash = "sha256:46537d960221e97adc6a3556159ab3ae4b722b9985de13c50b436732d4659af0"}, {file = "ruff-0.0.249-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6c2dcc1f3053092aeedef8e47704e301b74687fa480fe5e7ebef2b0eb2e4a0bd"}, {file = "ruff-0.0.249-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:855cfe47d146a1eb68347025c7b5ad651c083343de6cb7ccf90585bda3e381db"}, {file = "ruff-0.0.249-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bf3af16748c8539a48451edbcb687994eccc6a764c95f42de22195007ae13a24"}, {file = "ruff-0.0.249-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:2815e05ba168dee6708dbbdab8d0c145bb3b0085c91ee552839c1c18a52f6cb1"}, {file = "ruff-0.0.249-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6ab43389216cc8403db84992977e6f5e8fee83bd10aca05e1f2f262754cd8384"}, {file = "ruff-0.0.249-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7b67c44ab260d3a838ec237c7234be1098bf2ef1421036fbbb229698513d1fc3"}, {file = "ruff-0.0.249-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e3d859744e1cc95ad5e52c4642509b3abb5ea0833f0529c380c2731b8cab5726"}, {file = "ruff-0.0.249-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:a6f494276ee281eb09c7026cc17df1bfc2fe59ab39a87196014ce093ff27f1a0"}, {file = "ruff-0.0.249-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:be23c57b9551d8fcf559755e5bc56ac5bcbc3215fc8a3190ea6ed1bb9133d8dd"}, {file = "ruff-0.0.249-py3-none-musllinux_1_2_i686.whl", hash = "sha256:980a3bce8ba38c9b47bc000915e80a672add9f7e9c5b128375486ec8cd8f860d"}, {file = "ruff-0.0.249-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:f1e988e9365b11c6d7796c0d4a0556f6a26f0627fe57e9e7411ff91f421fb502"}, {file = "ruff-0.0.249-py3-none-win32.whl", hash = "sha256:f4837a7e6d1ff81cb027695deb28793e0945cca8d88e87b46ff845ef38d52c82"}, {file = "ruff-0.0.249-py3-none-win_amd64.whl", hash = "sha256:4cc437ab55a35088008dbe9db598cd8e240b5f70fb88eb8ab6fa1de529007f30"}, {file = "ruff-0.0.249-py3-none-win_arm64.whl", hash = "sha256:3d2d11a7b750433f3acec30641faab673d101aa86a2ddfe4af8bcfa773b178e2"}, {file = "ruff-0.0.249.tar.gz", hash = "sha256:b590689f08ecef971c45555cbda6854cdf48f3828fc326802828e851b1a14b3d"}, ] [[package]] name = "s3transfer" version = "0.6.1" description = "An Amazon S3 Transfer Manager" category = "main" optional = false python-versions = ">= 3.7" files = [ {file = "s3transfer-0.6.1-py3-none-any.whl", hash = "sha256:3c0da2d074bf35d6870ef157158641178a4204a6e689e82546083e31e0311346"}, {file = "s3transfer-0.6.1.tar.gz", hash = "sha256:640bb492711f4c0c0905e1f62b6aaeb771881935ad27884852411f8e9cacbca9"}, ] [package.dependencies] botocore = ">=1.12.36,<2.0a.0" [package.extras] crt = ["botocore[crt] (>=1.20.29,<2.0a.0)"] [[package]] name = "scikit-learn" version = "1.2.2" description = "A set of python modules for machine learning and data mining" category = "main" optional = false python-versions = ">=3.8" files = [ {file = "scikit-learn-1.2.2.tar.gz", hash = "sha256:8429aea30ec24e7a8c7ed8a3fa6213adf3814a6efbea09e16e0a0c71e1a1a3d7"}, {file = "scikit_learn-1.2.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:99cc01184e347de485bf253d19fcb3b1a3fb0ee4cea5ee3c43ec0cc429b6d29f"}, {file = "scikit_learn-1.2.2-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:e6e574db9914afcb4e11ade84fab084536a895ca60aadea3041e85b8ac963edb"}, {file = "scikit_learn-1.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6fe83b676f407f00afa388dd1fdd49e5c6612e551ed84f3b1b182858f09e987d"}, {file = "scikit_learn-1.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2e2642baa0ad1e8f8188917423dd73994bf25429f8893ddbe115be3ca3183584"}, {file = "scikit_learn-1.2.2-cp310-cp310-win_amd64.whl", hash = "sha256:ad66c3848c0a1ec13464b2a95d0a484fd5b02ce74268eaa7e0c697b904f31d6c"}, {file = "scikit_learn-1.2.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:dfeaf8be72117eb61a164ea6fc8afb6dfe08c6f90365bde2dc16456e4bc8e45f"}, {file = "scikit_learn-1.2.2-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:fe0aa1a7029ed3e1dcbf4a5bc675aa3b1bc468d9012ecf6c6f081251ca47f590"}, {file = "scikit_learn-1.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:065e9673e24e0dc5113e2dd2b4ca30c9d8aa2fa90f4c0597241c93b63130d233"}, {file = "scikit_learn-1.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf036ea7ef66115e0d49655f16febfa547886deba20149555a41d28f56fd6d3c"}, {file = "scikit_learn-1.2.2-cp311-cp311-win_amd64.whl", hash = "sha256:8b0670d4224a3c2d596fd572fb4fa673b2a0ccfb07152688ebd2ea0b8c61025c"}, {file = "scikit_learn-1.2.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9c710ff9f9936ba8a3b74a455ccf0dcf59b230caa1e9ba0223773c490cab1e51"}, {file = "scikit_learn-1.2.2-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:2dd3ffd3950e3d6c0c0ef9033a9b9b32d910c61bd06cb8206303fb4514b88a49"}, {file = "scikit_learn-1.2.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:44b47a305190c28dd8dd73fc9445f802b6ea716669cfc22ab1eb97b335d238b1"}, {file = "scikit_learn-1.2.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:953236889928d104c2ef14027539f5f2609a47ebf716b8cbe4437e85dce42744"}, {file = "scikit_learn-1.2.2-cp38-cp38-win_amd64.whl", hash = "sha256:7f69313884e8eb311460cc2f28676d5e400bd929841a2c8eb8742ae78ebf7c20"}, {file = "scikit_learn-1.2.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8156db41e1c39c69aa2d8599ab7577af53e9e5e7a57b0504e116cc73c39138dd"}, {file = "scikit_learn-1.2.2-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:fe175ee1dab589d2e1033657c5b6bec92a8a3b69103e3dd361b58014729975c3"}, {file = "scikit_learn-1.2.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7d5312d9674bed14f73773d2acf15a3272639b981e60b72c9b190a0cffed5bad"}, {file = "scikit_learn-1.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ea061bf0283bf9a9f36ea3c5d3231ba2176221bbd430abd2603b1c3b2ed85c89"}, {file = "scikit_learn-1.2.2-cp39-cp39-win_amd64.whl", hash = "sha256:6477eed40dbce190f9f9e9d0d37e020815825b300121307942ec2110302b66a3"}, ] [package.dependencies] joblib = ">=1.1.1" numpy = ">=1.17.3" scipy = ">=1.3.2" threadpoolctl = ">=2.0.0" [package.extras] benchmark = ["matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "pandas (>=1.0.5)"] docs = ["Pillow (>=7.1.2)", "matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "plotly (>=5.10.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)", "sphinx (>=4.0.1)", "sphinx-gallery (>=0.7.0)", "sphinx-prompt (>=1.3.0)", "sphinxext-opengraph (>=0.4.2)"] examples = ["matplotlib (>=3.1.3)", "pandas (>=1.0.5)", "plotly (>=5.10.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)"] tests = ["black (>=22.3.0)", "flake8 (>=3.8.2)", "matplotlib (>=3.1.3)", "mypy (>=0.961)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "pooch (>=1.6.0)", "pyamg (>=4.0.0)", "pytest (>=5.3.1)", "pytest-cov (>=2.9.0)", "scikit-image (>=0.16.2)"] [[package]] name = "scipy" version = "1.9.3" description = "Fundamental algorithms for scientific computing in Python" category = "main" optional = false python-versions = ">=3.8" files = [ {file = "scipy-1.9.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1884b66a54887e21addf9c16fb588720a8309a57b2e258ae1c7986d4444d3bc0"}, {file = "scipy-1.9.3-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:83b89e9586c62e787f5012e8475fbb12185bafb996a03257e9675cd73d3736dd"}, {file = "scipy-1.9.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1a72d885fa44247f92743fc20732ae55564ff2a519e8302fb7e18717c5355a8b"}, {file = "scipy-1.9.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d01e1dd7b15bd2449c8bfc6b7cc67d630700ed655654f0dfcf121600bad205c9"}, {file = "scipy-1.9.3-cp310-cp310-win_amd64.whl", hash = "sha256:68239b6aa6f9c593da8be1509a05cb7f9efe98b80f43a5861cd24c7557e98523"}, {file = "scipy-1.9.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b41bc822679ad1c9a5f023bc93f6d0543129ca0f37c1ce294dd9d386f0a21096"}, {file = "scipy-1.9.3-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:90453d2b93ea82a9f434e4e1cba043e779ff67b92f7a0e85d05d286a3625df3c"}, {file = "scipy-1.9.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:83c06e62a390a9167da60bedd4575a14c1f58ca9dfde59830fc42e5197283dab"}, {file = "scipy-1.9.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:abaf921531b5aeaafced90157db505e10345e45038c39e5d9b6c7922d68085cb"}, {file = "scipy-1.9.3-cp311-cp311-win_amd64.whl", hash = "sha256:06d2e1b4c491dc7d8eacea139a1b0b295f74e1a1a0f704c375028f8320d16e31"}, {file = "scipy-1.9.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5a04cd7d0d3eff6ea4719371cbc44df31411862b9646db617c99718ff68d4840"}, {file = "scipy-1.9.3-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:545c83ffb518094d8c9d83cce216c0c32f8c04aaf28b92cc8283eda0685162d5"}, {file = "scipy-1.9.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0d54222d7a3ba6022fdf5773931b5d7c56efe41ede7f7128c7b1637700409108"}, {file = "scipy-1.9.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cff3a5295234037e39500d35316a4c5794739433528310e117b8a9a0c76d20fc"}, {file = "scipy-1.9.3-cp38-cp38-win_amd64.whl", hash = "sha256:2318bef588acc7a574f5bfdff9c172d0b1bf2c8143d9582e05f878e580a3781e"}, {file = "scipy-1.9.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d644a64e174c16cb4b2e41dfea6af722053e83d066da7343f333a54dae9bc31c"}, {file = "scipy-1.9.3-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:da8245491d73ed0a994ed9c2e380fd058ce2fa8a18da204681f2fe1f57f98f95"}, {file = "scipy-1.9.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4db5b30849606a95dcf519763dd3ab6fe9bd91df49eba517359e450a7d80ce2e"}, {file = "scipy-1.9.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c68db6b290cbd4049012990d7fe71a2abd9ffbe82c0056ebe0f01df8be5436b0"}, {file = "scipy-1.9.3-cp39-cp39-win_amd64.whl", hash = "sha256:5b88e6d91ad9d59478fafe92a7c757d00c59e3bdc3331be8ada76a4f8d683f58"}, {file = "scipy-1.9.3.tar.gz", hash = "sha256:fbc5c05c85c1a02be77b1ff591087c83bc44579c6d2bd9fb798bb64ea5e1a027"}, ] [package.dependencies] numpy = ">=1.18.5,<1.26.0" [package.extras] dev = ["flake8", "mypy", "pycodestyle", "typing_extensions"] doc = ["matplotlib (>2)", "numpydoc", "pydata-sphinx-theme (==0.9.0)", "sphinx (!=4.1.0)", "sphinx-panels (>=0.5.2)", "sphinx-tabs"] test = ["asv", "gmpy2", "mpmath", "pytest", "pytest-cov", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] [[package]] name = "semver" version = "3.0.0" description = "Python helper for Semantic Versioning (https://semver.org)" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "semver-3.0.0-py3-none-any.whl", hash = "sha256:ab4f69fb1d1ecfb5d81f96411403d7a611fa788c45d252cf5b408025df3ab6ce"}, {file = "semver-3.0.0.tar.gz", hash = "sha256:94df43924c4521ec7d307fc86da1531db6c2c33d9d5cdc3e64cca0eb68569269"}, ] [[package]] name = "send2trash" version = "1.8.2" description = "Send file to trash natively under Mac OS X, Windows and Linux" category = "dev" optional = false python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,>=2.7" files = [ {file = "Send2Trash-1.8.2-py3-none-any.whl", hash = "sha256:a384719d99c07ce1eefd6905d2decb6f8b7ed054025bb0e618919f945de4f679"}, {file = "Send2Trash-1.8.2.tar.gz", hash = "sha256:c132d59fa44b9ca2b1699af5c86f57ce9f4c5eb56629d5d55fbb7a35f84e2312"}, ] [package.extras] nativelib = ["pyobjc-framework-Cocoa", "pywin32"] objc = ["pyobjc-framework-Cocoa"] win32 = ["pywin32"] [[package]] name = "sentence-transformers" version = "2.2.2" description = "Multilingual text embeddings" category = "main" optional = false python-versions = ">=3.6.0" files = [ {file = "sentence-transformers-2.2.2.tar.gz", hash = "sha256:dbc60163b27de21076c9a30d24b5b7b6fa05141d68cf2553fa9a77bf79a29136"}, ] [package.dependencies] huggingface-hub = ">=0.4.0" nltk = "*" numpy = "*" scikit-learn = "*" scipy = "*" sentencepiece = "*" torch = ">=1.6.0" torchvision = "*" tqdm = "*" transformers = ">=4.6.0,<5.0.0" [[package]] name = "sentencepiece" version = "0.1.99" description = "SentencePiece python wrapper" category = "main" optional = false python-versions = "*" files = [ {file = "sentencepiece-0.1.99-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:0eb528e70571b7c02723e5804322469b82fe7ea418c96051d0286c0fa028db73"}, {file = "sentencepiece-0.1.99-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:77d7fafb2c4e4659cbdf303929503f37a26eabc4ff31d3a79bf1c5a1b338caa7"}, {file = "sentencepiece-0.1.99-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:be9cf5b9e404c245aeb3d3723c737ba7a8f5d4ba262ef233a431fa6c45f732a0"}, {file = "sentencepiece-0.1.99-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:baed1a26464998f9710d20e52607c29ffd4293e7c71c6a1f83f51ad0911ec12c"}, {file = "sentencepiece-0.1.99-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9832f08bb372d4c8b567612f8eab9e36e268dff645f1c28f9f8e851be705f6d1"}, {file = "sentencepiece-0.1.99-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:019e7535108e309dae2b253a75834fc3128240aa87c00eb80732078cdc182588"}, {file = "sentencepiece-0.1.99-cp310-cp310-win32.whl", hash = "sha256:fa16a830416bb823fa2a52cbdd474d1f7f3bba527fd2304fb4b140dad31bb9bc"}, {file = "sentencepiece-0.1.99-cp310-cp310-win_amd64.whl", hash = "sha256:14b0eccb7b641d4591c3e12ae44cab537d68352e4d3b6424944f0c447d2348d5"}, {file = "sentencepiece-0.1.99-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:6d3c56f24183a1e8bd61043ff2c58dfecdc68a5dd8955dc13bab83afd5f76b81"}, {file = "sentencepiece-0.1.99-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ed6ea1819fd612c989999e44a51bf556d0ef6abfb553080b9be3d347e18bcfb7"}, {file = "sentencepiece-0.1.99-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a2a0260cd1fb7bd8b4d4f39dc2444a8d5fd4e0a0c4d5c899810ef1abf99b2d45"}, {file = "sentencepiece-0.1.99-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8a1abff4d1ff81c77cac3cc6fefa34fa4b8b371e5ee51cb7e8d1ebc996d05983"}, {file = "sentencepiece-0.1.99-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:004e6a621d4bc88978eecb6ea7959264239a17b70f2cbc348033d8195c9808ec"}, {file = "sentencepiece-0.1.99-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db361e03342c41680afae5807590bc88aa0e17cfd1a42696a160e4005fcda03b"}, {file = "sentencepiece-0.1.99-cp311-cp311-win32.whl", hash = "sha256:2d95e19168875b70df62916eb55428a0cbcb834ac51d5a7e664eda74def9e1e0"}, {file = "sentencepiece-0.1.99-cp311-cp311-win_amd64.whl", hash = "sha256:f90d73a6f81248a909f55d8e6ef56fec32d559e1e9af045f0b0322637cb8e5c7"}, {file = "sentencepiece-0.1.99-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:62e24c81e74bd87a6e0d63c51beb6527e4c0add67e1a17bac18bcd2076afcfeb"}, {file = "sentencepiece-0.1.99-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:57efcc2d51caff20d9573567d9fd3f854d9efe613ed58a439c78c9f93101384a"}, {file = "sentencepiece-0.1.99-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6a904c46197993bd1e95b93a6e373dca2f170379d64441041e2e628ad4afb16f"}, {file = "sentencepiece-0.1.99-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d89adf59854741c0d465f0e1525b388c0d174f611cc04af54153c5c4f36088c4"}, {file = "sentencepiece-0.1.99-cp36-cp36m-win32.whl", hash = "sha256:47c378146928690d1bc106fdf0da768cebd03b65dd8405aa3dd88f9c81e35dba"}, {file = "sentencepiece-0.1.99-cp36-cp36m-win_amd64.whl", hash = "sha256:9ba142e7a90dd6d823c44f9870abdad45e6c63958eb60fe44cca6828d3b69da2"}, {file = "sentencepiece-0.1.99-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b7b1a9ae4d7c6f1f867e63370cca25cc17b6f4886729595b885ee07a58d3cec3"}, {file = "sentencepiece-0.1.99-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d0f644c9d4d35c096a538507b2163e6191512460035bf51358794a78515b74f7"}, {file = "sentencepiece-0.1.99-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c8843d23a0f686d85e569bd6dcd0dd0e0cbc03731e63497ca6d5bacd18df8b85"}, {file = "sentencepiece-0.1.99-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:33e6f690a1caebb4867a2e367afa1918ad35be257ecdb3455d2bbd787936f155"}, {file = "sentencepiece-0.1.99-cp37-cp37m-win32.whl", hash = "sha256:8a321866c2f85da7beac74a824b4ad6ddc2a4c9bccd9382529506d48f744a12c"}, {file = "sentencepiece-0.1.99-cp37-cp37m-win_amd64.whl", hash = "sha256:c42f753bcfb7661c122a15b20be7f684b61fc8592c89c870adf52382ea72262d"}, {file = "sentencepiece-0.1.99-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:85b476406da69c70586f0bb682fcca4c9b40e5059814f2db92303ea4585c650c"}, {file = "sentencepiece-0.1.99-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:cfbcfe13c69d3f87b7fcd5da168df7290a6d006329be71f90ba4f56bc77f8561"}, {file = "sentencepiece-0.1.99-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:445b0ec381af1cd4eef95243e7180c63d9c384443c16c4c47a28196bd1cda937"}, {file = "sentencepiece-0.1.99-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c6890ea0f2b4703f62d0bf27932e35808b1f679bdb05c7eeb3812b935ba02001"}, {file = "sentencepiece-0.1.99-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fb71af492b0eefbf9f2501bec97bcd043b6812ab000d119eaf4bd33f9e283d03"}, {file = "sentencepiece-0.1.99-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:27b866b5bd3ddd54166bbcbf5c8d7dd2e0b397fac8537991c7f544220b1f67bc"}, {file = "sentencepiece-0.1.99-cp38-cp38-win32.whl", hash = "sha256:b133e8a499eac49c581c3c76e9bdd08c338cc1939e441fee6f92c0ccb5f1f8be"}, {file = "sentencepiece-0.1.99-cp38-cp38-win_amd64.whl", hash = "sha256:0eaf3591dd0690a87f44f4df129cf8d05d8a4029b5b6709b489b8e27f9a9bcff"}, {file = "sentencepiece-0.1.99-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:38efeda9bbfb55052d482a009c6a37e52f42ebffcea9d3a98a61de7aee356a28"}, {file = "sentencepiece-0.1.99-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6c030b081dc1e1bcc9fadc314b19b740715d3d566ad73a482da20d7d46fd444c"}, {file = "sentencepiece-0.1.99-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:84dbe53e02e4f8a2e45d2ac3e430d5c83182142658e25edd76539b7648928727"}, {file = "sentencepiece-0.1.99-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0b0f55d0a0ee1719b4b04221fe0c9f0c3461dc3dabd77a035fa2f4788eb3ef9a"}, {file = "sentencepiece-0.1.99-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:18e800f206cd235dc27dc749299e05853a4e4332e8d3dfd81bf13d0e5b9007d9"}, {file = "sentencepiece-0.1.99-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2ae1c40cda8f9d5b0423cfa98542735c0235e7597d79caf318855cdf971b2280"}, {file = "sentencepiece-0.1.99-cp39-cp39-win32.whl", hash = "sha256:c84ce33af12ca222d14a1cdd37bd76a69401e32bc68fe61c67ef6b59402f4ab8"}, {file = "sentencepiece-0.1.99-cp39-cp39-win_amd64.whl", hash = "sha256:350e5c74d739973f1c9643edb80f7cc904dc948578bcb1d43c6f2b173e5d18dd"}, {file = "sentencepiece-0.1.99.tar.gz", hash = "sha256:189c48f5cb2949288f97ccdb97f0473098d9c3dcf5a3d99d4eabe719ec27297f"}, ] [[package]] name = "setuptools" version = "67.7.2" description = "Easily download, build, install, upgrade, and uninstall Python packages" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "setuptools-67.7.2-py3-none-any.whl", hash = "sha256:23aaf86b85ca52ceb801d32703f12d77517b2556af839621c641fca11287952b"}, {file = "setuptools-67.7.2.tar.gz", hash = "sha256:f104fa03692a2602fa0fec6c6a9e63b6c8a968de13e17c026957dd1f53d80990"}, ] [package.extras] docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-hoverxref (<2)", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (==0.8.3)", "sphinx-reredirects", "sphinxcontrib-towncrier"] testing = ["build[virtualenv]", "filelock (>=3.4.0)", "flake8 (<5)", "flake8-2020", "ini2toml[lite] (>=0.9)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "pip (>=19.1)", "pip-run (>=8.8)", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)", "pytest-perf", "pytest-timeout", "pytest-xdist", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"] testing-integration = ["build[virtualenv]", "filelock (>=3.4.0)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "pytest", "pytest-enabler", "pytest-xdist", "tomli", "virtualenv (>=13.0.0)", "wheel"] [[package]] name = "sgmllib3k" version = "1.0.0" description = "Py3k port of sgmllib." category = "main" optional = false python-versions = "*" files = [ {file = "sgmllib3k-1.0.0.tar.gz", hash = "sha256:7868fb1c8bfa764c1ac563d3cf369c381d1325d36124933a726f29fcdaa812e9"}, ] [[package]] name = "six" version = "1.16.0" description = "Python 2 and 3 compatibility utilities" category = "main" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" files = [ {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"}, {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, ] [[package]] name = "smart-open" version = "6.3.0" description = "Utils for streaming large files (S3, HDFS, GCS, Azure Blob Storage, gzip, bz2...)" category = "main" optional = true python-versions = ">=3.6,<4.0" files = [ {file = "smart_open-6.3.0-py3-none-any.whl", hash = "sha256:b4c9ae193ad6d3e7add50944b86afa0d150bd821ab8ec21edb26d9a06b66f6a8"}, {file = "smart_open-6.3.0.tar.gz", hash = "sha256:d5238825fe9a9340645fac3d75b287c08fbb99fb2b422477de781c9f5f09e019"}, ] [package.extras] all = ["azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage (>=2.6.0)", "paramiko", "requests"] azure = ["azure-common", "azure-core", "azure-storage-blob"] gcs = ["google-cloud-storage (>=2.6.0)"] http = ["requests"] s3 = ["boto3"] ssh = ["paramiko"] test = ["azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage (>=2.6.0)", "moto[server]", "paramiko", "pytest", "pytest-rerunfailures", "requests", "responses"] webhdfs = ["requests"] [[package]] name = "sniffio" version = "1.3.0" description = "Sniff out which async library your code is running under" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "sniffio-1.3.0-py3-none-any.whl", hash = "sha256:eecefdce1e5bbfb7ad2eeaabf7c1eeb404d7757c379bd1f7e5cce9d8bf425384"}, {file = "sniffio-1.3.0.tar.gz", hash = "sha256:e60305c5e5d314f5389259b7f22aaa33d8f7dee49763119234af3755c55b9101"}, ] [[package]] name = "snowballstemmer" version = "2.2.0" description = "This package provides 29 stemmers for 28 languages generated from Snowball algorithms." category = "dev" optional = false python-versions = "*" files = [ {file = "snowballstemmer-2.2.0-py2.py3-none-any.whl", hash = "sha256:c8e1716e83cc398ae16824e5572ae04e0d9fc2c6b985fb0f900f5f0c96ecba1a"}, {file = "snowballstemmer-2.2.0.tar.gz", hash = "sha256:09b16deb8547d3412ad7b590689584cd0fe25ec8db3be37788be3810cbf19cb1"}, ] [[package]] name = "soupsieve" version = "2.4.1" description = "A modern CSS selector implementation for Beautiful Soup." category = "main" optional = false python-versions = ">=3.7" files = [ {file = "soupsieve-2.4.1-py3-none-any.whl", hash = "sha256:1c1bfee6819544a3447586c889157365a27e10d88cde3ad3da0cf0ddf646feb8"}, {file = "soupsieve-2.4.1.tar.gz", hash = "sha256:89d12b2d5dfcd2c9e8c22326da9d9aa9cb3dfab0a83a024f05704076ee8d35ea"}, ] [[package]] name = "spacy" version = "3.5.3" description = "Industrial-strength Natural Language Processing (NLP) in Python" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "spacy-3.5.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:4eaa68b677b1292381bade13d5b20342e31791d3ffdaa261eca3c3c0687bf53f"}, {file = "spacy-3.5.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:0b628bdeb6484eb4bfb1141d43013420d0356fc111033430292aea29b34b79e3"}, {file = "spacy-3.5.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:860702748e654489e37464a5fca1444ee1b2534572084d416534a88646639c48"}, {file = "spacy-3.5.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6ff8e6408d7672cdfd1b2035d2b5ca36b6c107c9b46debd9e5ba634700f761f5"}, {file = "spacy-3.5.3-cp310-cp310-win_amd64.whl", hash = "sha256:2474f1a78557c5697529c48c5c9190f590ead21fbddf47cde757b399b807746c"}, {file = "spacy-3.5.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:59a473b8fbd79a22fdc98c017b14135b5c60c1813de01490a1eaa232a95a538b"}, {file = "spacy-3.5.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:902f511ea8f8d9336d62b252f61d9068d93824ae70c5cb048954a3017cc38f1b"}, {file = "spacy-3.5.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c555e20187d7db210e3823eedff0f6fb029d23bc8e138342791f305510bf0c66"}, {file = "spacy-3.5.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a59cea275f5724494c77aec66b1758e42268504c34d055a6db2e95f652bd87a5"}, {file = "spacy-3.5.3-cp311-cp311-win_amd64.whl", hash = "sha256:3549364d4b2bf01736667e3fba3ce599e73ba281f003225de1033a648d5563f9"}, {file = "spacy-3.5.3-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0c83c11310f9dd3872659e7907ee44b128b850775f9765557f890d817362e1df"}, {file = "spacy-3.5.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9248ed4f4daa1e969dda69fe725b2085edbda10c562642d37212f2703971b4ca"}, {file = "spacy-3.5.3-cp36-cp36m-win_amd64.whl", hash = "sha256:98dc4240dd2e27ce33a63f796ed3baf1c1b474e85ade5083b6cb604021423bf1"}, {file = "spacy-3.5.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:0ef98c2f5e36682a88b55ed841548e27bf8a400746c6bba406933f299ea873fc"}, {file = "spacy-3.5.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f01ee5285a40d09c45c71bf756eb360de6ca4bb7d00aab4ca20e5379bb69bce"}, {file = "spacy-3.5.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fa543a185aabf8b33b7e280849fa4f1ae552a34e95a4b6a910d322527def7064"}, {file = "spacy-3.5.3-cp37-cp37m-win_amd64.whl", hash = "sha256:13e54e45b447b6f52c7a050c69898fb7cab5dfc769dc073cc325b4ee8b278893"}, {file = "spacy-3.5.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:acc3ec415ba804515ff1449b13fefc07b393ea6a1ac3461b66b32f62b852467b"}, {file = "spacy-3.5.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:87caac0b18404a3cd43da1823914f7f54b60d640e36cc7240a8d05dff548be9e"}, {file = "spacy-3.5.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d82d1aeae9e8ee04ccf863a42690493b0b0b912be81783bf737c5963e6e5a8c4"}, {file = "spacy-3.5.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:77032fb9f1434ead183e5755e8b4edb58383577c9a14cdb784106aa9771126fc"}, {file = "spacy-3.5.3-cp38-cp38-win_amd64.whl", hash = "sha256:f58297c982823b19476a8efab302d269202af997c0b6500590ee55cd363428e8"}, {file = "spacy-3.5.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d584ff7e6f0c044a5b17ceb6276ea65f054b157f31ce924318bf9b2c75fb8729"}, {file = "spacy-3.5.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:87a5d0d87bc00b0b2c620bea3e8b226cd6913130a723dcaaa07b03e5d933ff59"}, {file = "spacy-3.5.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a06285f19aaf1b4ea8d0c60285cd8712f9577a4cc64984e0841fa213a465e364"}, {file = "spacy-3.5.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9f5c4ca98f12e14f13dba08139c62671a623e6ff2d0d96783f8d09b33a8cd973"}, {file = "spacy-3.5.3-cp39-cp39-win_amd64.whl", hash = "sha256:c28b1bfda0d5b0abba961c8679e21767493d48572c94d54acb4018d27f89f4e1"}, {file = "spacy-3.5.3.tar.gz", hash = "sha256:35971d6721576538d6c423c66a09ce00bf66e10e40726a57b7a81993180c248c"}, ] [package.dependencies] catalogue = ">=2.0.6,<2.1.0" cymem = ">=2.0.2,<2.1.0" jinja2 = "*" langcodes = ">=3.2.0,<4.0.0" murmurhash = ">=0.28.0,<1.1.0" numpy = ">=1.15.0" packaging = ">=20.0" pathy = ">=0.10.0" preshed = ">=3.0.2,<3.1.0" pydantic = ">=1.7.4,<1.8 || >1.8,<1.8.1 || >1.8.1,<1.11.0" requests = ">=2.13.0,<3.0.0" setuptools = "*" smart-open = ">=5.2.1,<7.0.0" spacy-legacy = ">=3.0.11,<3.1.0" spacy-loggers = ">=1.0.0,<2.0.0" srsly = ">=2.4.3,<3.0.0" thinc = ">=8.1.8,<8.2.0" tqdm = ">=4.38.0,<5.0.0" typer = ">=0.3.0,<0.8.0" wasabi = ">=0.9.1,<1.2.0" [package.extras] apple = ["thinc-apple-ops (>=0.1.0.dev0,<1.0.0)"] cuda = ["cupy (>=5.0.0b4,<13.0.0)"] cuda-autodetect = ["cupy-wheel (>=11.0.0,<13.0.0)"] cuda100 = ["cupy-cuda100 (>=5.0.0b4,<13.0.0)"] cuda101 = ["cupy-cuda101 (>=5.0.0b4,<13.0.0)"] cuda102 = ["cupy-cuda102 (>=5.0.0b4,<13.0.0)"] cuda110 = ["cupy-cuda110 (>=5.0.0b4,<13.0.0)"] cuda111 = ["cupy-cuda111 (>=5.0.0b4,<13.0.0)"] cuda112 = ["cupy-cuda112 (>=5.0.0b4,<13.0.0)"] cuda113 = ["cupy-cuda113 (>=5.0.0b4,<13.0.0)"] cuda114 = ["cupy-cuda114 (>=5.0.0b4,<13.0.0)"] cuda115 = ["cupy-cuda115 (>=5.0.0b4,<13.0.0)"] cuda116 = ["cupy-cuda116 (>=5.0.0b4,<13.0.0)"] cuda117 = ["cupy-cuda117 (>=5.0.0b4,<13.0.0)"] cuda11x = ["cupy-cuda11x (>=11.0.0,<13.0.0)"] cuda80 = ["cupy-cuda80 (>=5.0.0b4,<13.0.0)"] cuda90 = ["cupy-cuda90 (>=5.0.0b4,<13.0.0)"] cuda91 = ["cupy-cuda91 (>=5.0.0b4,<13.0.0)"] cuda92 = ["cupy-cuda92 (>=5.0.0b4,<13.0.0)"] ja = ["sudachidict-core (>=20211220)", "sudachipy (>=0.5.2,!=0.6.1)"] ko = ["natto-py (>=0.9.0)"] lookups = ["spacy-lookups-data (>=1.0.3,<1.1.0)"] ray = ["spacy-ray (>=0.1.0,<1.0.0)"] th = ["pythainlp (>=2.0)"] transformers = ["spacy-transformers (>=1.1.2,<1.3.0)"] [[package]] name = "spacy-legacy" version = "3.0.12" description = "Legacy registered functions for spaCy backwards compatibility" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "spacy-legacy-3.0.12.tar.gz", hash = "sha256:b37d6e0c9b6e1d7ca1cf5bc7152ab64a4c4671f59c85adaf7a3fcb870357a774"}, {file = "spacy_legacy-3.0.12-py2.py3-none-any.whl", hash = "sha256:476e3bd0d05f8c339ed60f40986c07387c0a71479245d6d0f4298dbd52cda55f"}, ] [[package]] name = "spacy-loggers" version = "1.0.4" description = "Logging utilities for SpaCy" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "spacy-loggers-1.0.4.tar.gz", hash = "sha256:e6f983bf71230091d5bb7b11bf64bd54415eca839108d5f83d9155d0ba93bf28"}, {file = "spacy_loggers-1.0.4-py3-none-any.whl", hash = "sha256:e050bf2e63208b2f096b777e494971c962ad7c1dc997641c8f95c622550044ae"}, ] [[package]] name = "sphinx" version = "4.5.0" description = "Python documentation generator" category = "dev" optional = false python-versions = ">=3.6" files = [ {file = "Sphinx-4.5.0-py3-none-any.whl", hash = "sha256:ebf612653238bcc8f4359627a9b7ce44ede6fdd75d9d30f68255c7383d3a6226"}, {file = "Sphinx-4.5.0.tar.gz", hash = "sha256:7bf8ca9637a4ee15af412d1a1d9689fec70523a68ca9bb9127c2f3eeb344e2e6"}, ] [package.dependencies] alabaster = ">=0.7,<0.8" babel = ">=1.3" colorama = {version = ">=0.3.5", markers = "sys_platform == \"win32\""} docutils = ">=0.14,<0.18" imagesize = "*" importlib-metadata = {version = ">=4.4", markers = "python_version < \"3.10\""} Jinja2 = ">=2.3" packaging = "*" Pygments = ">=2.0" requests = ">=2.5.0" snowballstemmer = ">=1.1" sphinxcontrib-applehelp = "*" sphinxcontrib-devhelp = "*" sphinxcontrib-htmlhelp = ">=2.0.0" sphinxcontrib-jsmath = "*" sphinxcontrib-qthelp = "*" sphinxcontrib-serializinghtml = ">=1.1.5" [package.extras] docs = ["sphinxcontrib-websupport"] lint = ["docutils-stubs", "flake8 (>=3.5.0)", "isort", "mypy (>=0.931)", "types-requests", "types-typed-ast"] test = ["cython", "html5lib", "pytest", "pytest-cov", "typed-ast"] [[package]] name = "sphinx-autobuild" version = "2021.3.14" description = "Rebuild Sphinx documentation on changes, with live-reload in the browser." category = "dev" optional = false python-versions = ">=3.6" files = [ {file = "sphinx-autobuild-2021.3.14.tar.gz", hash = "sha256:de1ca3b66e271d2b5b5140c35034c89e47f263f2cd5db302c9217065f7443f05"}, {file = "sphinx_autobuild-2021.3.14-py3-none-any.whl", hash = "sha256:8fe8cbfdb75db04475232f05187c776f46f6e9e04cacf1e49ce81bdac649ccac"}, ] [package.dependencies] colorama = "*" livereload = "*" sphinx = "*" [package.extras] test = ["pytest", "pytest-cov"] [[package]] name = "sphinx-book-theme" version = "0.3.3" description = "A clean book theme for scientific explanations and documentation with Sphinx" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "sphinx_book_theme-0.3.3-py3-none-any.whl", hash = "sha256:9685959dbbb492af005165ef1b9229fdd5d5431580ac181578beae3b4d012d91"}, {file = "sphinx_book_theme-0.3.3.tar.gz", hash = "sha256:0ec36208ff14c6d6bf8aee1f1f8268e0c6e2bfa3cef6e41143312b25275a6217"}, ] [package.dependencies] pydata-sphinx-theme = ">=0.8.0,<0.9.0" pyyaml = "*" sphinx = ">=3,<5" [package.extras] code-style = ["pre-commit (>=2.7.0,<2.8.0)"] doc = ["ablog (>=0.10.13,<0.11.0)", "folium", "ipywidgets", "matplotlib", "myst-nb (>=0.13.2,<0.14.0)", "nbclient", "numpy", "numpydoc", "pandas", "plotly", "sphinx (>=4.0,<5.0)", "sphinx-copybutton", "sphinx-design", "sphinx-examples", "sphinx-tabs", "sphinx-thebe (>=0.1.1)", "sphinx-togglebutton (>=0.2.1)", "sphinxcontrib-bibtex (>=2.2,<3.0)", "sphinxcontrib-youtube", "sphinxext-opengraph"] test = ["beautifulsoup4 (>=4.6.1,<5)", "coverage", "myst-nb (>=0.13.2,<0.14.0)", "pytest (>=6.0.1,<6.1.0)", "pytest-cov", "pytest-regressions (>=2.0.1,<2.1.0)", "sphinx_thebe"] [[package]] name = "sphinx-copybutton" version = "0.5.2" description = "Add a copy button to each of your code cells." category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "sphinx-copybutton-0.5.2.tar.gz", hash = "sha256:4cf17c82fb9646d1bc9ca92ac280813a3b605d8c421225fd9913154103ee1fbd"}, {file = "sphinx_copybutton-0.5.2-py3-none-any.whl", hash = "sha256:fb543fd386d917746c9a2c50360c7905b605726b9355cd26e9974857afeae06e"}, ] [package.dependencies] sphinx = ">=1.8" [package.extras] code-style = ["pre-commit (==2.12.1)"] rtd = ["ipython", "myst-nb", "sphinx", "sphinx-book-theme", "sphinx-examples"] [[package]] name = "sphinx-panels" version = "0.6.0" description = "A sphinx extension for creating panels in a grid layout." category = "dev" optional = false python-versions = "*" files = [ {file = "sphinx-panels-0.6.0.tar.gz", hash = "sha256:d36dcd26358117e11888f7143db4ac2301ebe90873ac00627bf1fe526bf0f058"}, {file = "sphinx_panels-0.6.0-py3-none-any.whl", hash = "sha256:bd64afaf85c07f8096d21c8247fc6fd757e339d1be97832c8832d6ae5ed2e61d"}, ] [package.dependencies] docutils = "*" sphinx = ">=2,<5" [package.extras] code-style = ["pre-commit (>=2.7.0,<2.8.0)"] live-dev = ["sphinx-autobuild", "web-compile (>=0.2.0,<0.3.0)"] testing = ["pytest (>=6.0.1,<6.1.0)", "pytest-regressions (>=2.0.1,<2.1.0)"] themes = ["myst-parser (>=0.12.9,<0.13.0)", "pydata-sphinx-theme (>=0.4.0,<0.5.0)", "sphinx-book-theme (>=0.0.36,<0.1.0)", "sphinx-rtd-theme"] [[package]] name = "sphinx-rtd-theme" version = "1.2.0" description = "Read the Docs theme for Sphinx" category = "dev" optional = false python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" files = [ {file = "sphinx_rtd_theme-1.2.0-py2.py3-none-any.whl", hash = "sha256:f823f7e71890abe0ac6aaa6013361ea2696fc8d3e1fa798f463e82bdb77eeff2"}, {file = "sphinx_rtd_theme-1.2.0.tar.gz", hash = "sha256:a0d8bd1a2ed52e0b338cbe19c4b2eef3c5e7a048769753dac6a9f059c7b641b8"}, ] [package.dependencies] docutils = "<0.19" sphinx = ">=1.6,<7" sphinxcontrib-jquery = {version = ">=2.0.0,<3.0.0 || >3.0.0", markers = "python_version > \"3\""} [package.extras] dev = ["bump2version", "sphinxcontrib-httpdomain", "transifex-client", "wheel"] [[package]] name = "sphinx-typlog-theme" version = "0.8.0" description = "A typlog Sphinx theme" category = "dev" optional = false python-versions = "*" files = [ {file = "sphinx_typlog_theme-0.8.0-py2.py3-none-any.whl", hash = "sha256:b0ab728ab31d071523af0229bcb6427a13493958b3fc2bb7db381520fab77de4"}, {file = "sphinx_typlog_theme-0.8.0.tar.gz", hash = "sha256:61dbf97b1fde441bd03a5409874571e229898b67fb3080400837b8f4cee46659"}, ] [package.extras] dev = ["livereload", "sphinx"] [[package]] name = "sphinxcontrib-applehelp" version = "1.0.4" description = "sphinxcontrib-applehelp is a Sphinx extension which outputs Apple help books" category = "dev" optional = false python-versions = ">=3.8" files = [ {file = "sphinxcontrib-applehelp-1.0.4.tar.gz", hash = "sha256:828f867945bbe39817c210a1abfd1bc4895c8b73fcaade56d45357a348a07d7e"}, {file = "sphinxcontrib_applehelp-1.0.4-py3-none-any.whl", hash = "sha256:29d341f67fb0f6f586b23ad80e072c8e6ad0b48417db2bde114a4c9746feb228"}, ] [package.extras] lint = ["docutils-stubs", "flake8", "mypy"] test = ["pytest"] [[package]] name = "sphinxcontrib-devhelp" version = "1.0.2" description = "sphinxcontrib-devhelp is a sphinx extension which outputs Devhelp document." category = "dev" optional = false python-versions = ">=3.5" files = [ {file = "sphinxcontrib-devhelp-1.0.2.tar.gz", hash = "sha256:ff7f1afa7b9642e7060379360a67e9c41e8f3121f2ce9164266f61b9f4b338e4"}, {file = "sphinxcontrib_devhelp-1.0.2-py2.py3-none-any.whl", hash = "sha256:8165223f9a335cc1af7ffe1ed31d2871f325254c0423bc0c4c7cd1c1e4734a2e"}, ] [package.extras] lint = ["docutils-stubs", "flake8", "mypy"] test = ["pytest"] [[package]] name = "sphinxcontrib-htmlhelp" version = "2.0.1" description = "sphinxcontrib-htmlhelp is a sphinx extension which renders HTML help files" category = "dev" optional = false python-versions = ">=3.8" files = [ {file = "sphinxcontrib-htmlhelp-2.0.1.tar.gz", hash = "sha256:0cbdd302815330058422b98a113195c9249825d681e18f11e8b1f78a2f11efff"}, {file = "sphinxcontrib_htmlhelp-2.0.1-py3-none-any.whl", hash = "sha256:c38cb46dccf316c79de6e5515e1770414b797162b23cd3d06e67020e1d2a6903"}, ] [package.extras] lint = ["docutils-stubs", "flake8", "mypy"] test = ["html5lib", "pytest"] [[package]] name = "sphinxcontrib-jquery" version = "4.1" description = "Extension to include jQuery on newer Sphinx releases" category = "dev" optional = false python-versions = ">=2.7" files = [ {file = "sphinxcontrib-jquery-4.1.tar.gz", hash = "sha256:1620739f04e36a2c779f1a131a2dfd49b2fd07351bf1968ced074365933abc7a"}, {file = "sphinxcontrib_jquery-4.1-py2.py3-none-any.whl", hash = "sha256:f936030d7d0147dd026a4f2b5a57343d233f1fc7b363f68b3d4f1cb0993878ae"}, ] [package.dependencies] Sphinx = ">=1.8" [[package]] name = "sphinxcontrib-jsmath" version = "1.0.1" description = "A sphinx extension which renders display math in HTML via JavaScript" category = "dev" optional = false python-versions = ">=3.5" files = [ {file = "sphinxcontrib-jsmath-1.0.1.tar.gz", hash = "sha256:a9925e4a4587247ed2191a22df5f6970656cb8ca2bd6284309578f2153e0c4b8"}, {file = "sphinxcontrib_jsmath-1.0.1-py2.py3-none-any.whl", hash = "sha256:2ec2eaebfb78f3f2078e73666b1415417a116cc848b72e5172e596c871103178"}, ] [package.extras] test = ["flake8", "mypy", "pytest"] [[package]] name = "sphinxcontrib-qthelp" version = "1.0.3" description = "sphinxcontrib-qthelp is a sphinx extension which outputs QtHelp document." category = "dev" optional = false python-versions = ">=3.5" files = [ {file = "sphinxcontrib-qthelp-1.0.3.tar.gz", hash = "sha256:4c33767ee058b70dba89a6fc5c1892c0d57a54be67ddd3e7875a18d14cba5a72"}, {file = "sphinxcontrib_qthelp-1.0.3-py2.py3-none-any.whl", hash = "sha256:bd9fc24bcb748a8d51fd4ecaade681350aa63009a347a8c14e637895444dfab6"}, ] [package.extras] lint = ["docutils-stubs", "flake8", "mypy"] test = ["pytest"] [[package]] name = "sphinxcontrib-serializinghtml" version = "1.1.5" description = "sphinxcontrib-serializinghtml is a sphinx extension which outputs \"serialized\" HTML files (json and pickle)." category = "dev" optional = false python-versions = ">=3.5" files = [ {file = "sphinxcontrib-serializinghtml-1.1.5.tar.gz", hash = "sha256:aa5f6de5dfdf809ef505c4895e51ef5c9eac17d0f287933eb49ec495280b6952"}, {file = "sphinxcontrib_serializinghtml-1.1.5-py2.py3-none-any.whl", hash = "sha256:352a9a00ae864471d3a7ead8d7d79f5fc0b57e8b3f95e9867eb9eb28999b92fd"}, ] [package.extras] lint = ["docutils-stubs", "flake8", "mypy"] test = ["pytest"] [[package]] name = "sqlalchemy" version = "2.0.13" description = "Database Abstraction Library" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "SQLAlchemy-2.0.13-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:7ad24c85f2a1caf0cd1ae8c2fdb668777a51a02246d9039420f94bd7dbfd37ed"}, {file = "SQLAlchemy-2.0.13-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:db24d2738add6db19d66ca820479d2f8f96d3f5a13c223f27fa28dd2f268a4bd"}, {file = "SQLAlchemy-2.0.13-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:72746ec17a7d9c5acf2c57a6e6190ceba3dad7127cd85bb17f24e90acc0e8e3f"}, {file = "SQLAlchemy-2.0.13-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:755f653d693f9b8f4286d987aec0d4279821bf8d179a9de8e8a5c685e77e57d6"}, {file = "SQLAlchemy-2.0.13-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e0d20f27edfd6f35b388da2bdcd7769e4ffa374fef8994980ced26eb287e033a"}, {file = "SQLAlchemy-2.0.13-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:37de4010f53f452e94e5ed6684480432cfe6a7a8914307ef819cd028b05b98d5"}, {file = "SQLAlchemy-2.0.13-cp310-cp310-win32.whl", hash = "sha256:31f72bb300eed7bfdb373c7c046121d84fa0ae6f383089db9505ff553ac27cef"}, {file = "SQLAlchemy-2.0.13-cp310-cp310-win_amd64.whl", hash = "sha256:ec2f525273528425ed2f51861b7b88955160cb95dddb17af0914077040aff4a5"}, {file = "SQLAlchemy-2.0.13-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2424a84f131901fbb20a99844d47b38b517174c6e964c8efb15ea6bb9ced8c2b"}, {file = "SQLAlchemy-2.0.13-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4f9832815257969b3ca9bf0501351e4c02c8d60cbd3ec9f9070d5b0f8852900e"}, {file = "SQLAlchemy-2.0.13-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a30e4db983faa5145e00ef6eaf894a2d503b3221dbf40a595f3011930d3d0bac"}, {file = "SQLAlchemy-2.0.13-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f717944aee40e9f48776cf85b523bb376aa2d9255a268d6d643c57ab387e7264"}, {file = "SQLAlchemy-2.0.13-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:9119795d2405eb23bf7e6707e228fe38124df029494c1b3576459aa3202ea432"}, {file = "SQLAlchemy-2.0.13-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:2ad9688debf1f0ae9c6e0706a4e2d33b1a01281317cee9bd1d7eef8020c5baac"}, {file = "SQLAlchemy-2.0.13-cp311-cp311-win32.whl", hash = "sha256:c61b89803a87a3b2a394089a7dadb79a6c64c89f2e8930cc187fec43b319f8d2"}, {file = "SQLAlchemy-2.0.13-cp311-cp311-win_amd64.whl", hash = "sha256:0aa2cbde85a6eab9263ab480f19e8882d022d30ebcdc14d69e6a8d7c07b0a871"}, {file = "SQLAlchemy-2.0.13-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:9ad883ac4f5225999747f0849643c4d0ec809d9ffe0ddc81a81dd3e68d0af463"}, {file = "SQLAlchemy-2.0.13-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e481e54db8cec1457ee7c05f6d2329e3298a304a70d3b5e2e82e77170850b385"}, {file = "SQLAlchemy-2.0.13-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b4e08e3831671008888bad5d160d757ef35ce34dbb73b78c3998d16aa1334c97"}, {file = "SQLAlchemy-2.0.13-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:f234ba3bb339ad17803009c8251f5ee65dcf283a380817fe486823b08b26383d"}, {file = "SQLAlchemy-2.0.13-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:375b7ba88f261dbd79d044f20cbcd919d88befb63f26af9d084614f10cdf97a6"}, {file = "SQLAlchemy-2.0.13-cp37-cp37m-win32.whl", hash = "sha256:9136d596111c742d061c0f99bab95c5370016c4101a32e72c2b634ad5e0757e6"}, {file = "SQLAlchemy-2.0.13-cp37-cp37m-win_amd64.whl", hash = "sha256:7612a7366a0855a04430363fb4ab392dc6818aaece0b2e325ff30ee77af9b21f"}, {file = "SQLAlchemy-2.0.13-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:49c138856035cb97f0053e5e57ba90ec936b28a0b8b0020d44965c7b0c0bf03a"}, {file = "SQLAlchemy-2.0.13-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a5e9e78332a5d841422b88b8c490dfd7f761e64b3430249b66c05d02f72ceab0"}, {file = "SQLAlchemy-2.0.13-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fd0febae872a4042da44e972c070f0fd49a85a0a7727ab6b85425f74348be14e"}, {file = "SQLAlchemy-2.0.13-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:566a0ac347cf4632f551e7b28bbd0d215af82e6ffaa2556f565a3b6b51dc3f81"}, {file = "SQLAlchemy-2.0.13-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:e5e5dc300a0ca8755ada1569f5caccfcdca28607dfb98b86a54996b288a8ebd3"}, {file = "SQLAlchemy-2.0.13-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:a25b4c4fdd633501233924f873e6f6cd8970732859ecfe4ecfb60635881f70be"}, {file = "SQLAlchemy-2.0.13-cp38-cp38-win32.whl", hash = "sha256:6777673d346071451bf7cccf8d0499024f1bd6a835fc90b4fe7af50373d92ce6"}, {file = "SQLAlchemy-2.0.13-cp38-cp38-win_amd64.whl", hash = "sha256:2f0a355264af0952570f18457102984e1f79510f856e5e0ae652e63316d1ca23"}, {file = "SQLAlchemy-2.0.13-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d93ebbff3dcf05274843ad8cf650b48ee634626e752c5d73614e5ec9df45f0ce"}, {file = "SQLAlchemy-2.0.13-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:fec56c7d1b6a22c8f01557de3975d962ee40270b81b60d1cfdadf2a105d10e84"}, {file = "SQLAlchemy-2.0.13-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0eb14a386a5b610305bec6639b35540b47f408b0a59f75999199aed5b3d40079"}, {file = "SQLAlchemy-2.0.13-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e2f3b5236079bc3e318a92bab2cc3f669cc32127075ab03ff61cacbae1c392b8"}, {file = "SQLAlchemy-2.0.13-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:bf1aae95e80acea02a0a622e1c12d3fefc52ffd0fe7bda70a30d070373fbb6c3"}, {file = "SQLAlchemy-2.0.13-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:cdf80359b641185ae7e580afb9f88cf560298f309a38182972091165bfe1225d"}, {file = "SQLAlchemy-2.0.13-cp39-cp39-win32.whl", hash = "sha256:f463598f9e51ccc04f0fe08500f9a0c3251a7086765350be418598b753b5561d"}, {file = "SQLAlchemy-2.0.13-cp39-cp39-win_amd64.whl", hash = "sha256:881cc388dded44ae6e17a1666364b98bd76bcdc71b869014ae725f06ba298e0e"}, {file = "SQLAlchemy-2.0.13-py3-none-any.whl", hash = "sha256:0d6979c9707f8b82366ba34b38b5a6fe32f75766b2e901f9820e271e95384070"}, {file = "SQLAlchemy-2.0.13.tar.gz", hash = "sha256:8d97b37b4e60073c38bcf94e289e3be09ef9be870de88d163f16e08f2b9ded1a"}, ] [package.dependencies] greenlet = {version = "!=0.4.17", markers = "platform_machine == \"aarch64\" or platform_machine == \"ppc64le\" or platform_machine == \"x86_64\" or platform_machine == \"amd64\" or platform_machine == \"AMD64\" or platform_machine == \"win32\" or platform_machine == \"WIN32\""} typing-extensions = ">=4.2.0" [package.extras] aiomysql = ["aiomysql", "greenlet (!=0.4.17)"] aiosqlite = ["aiosqlite", "greenlet (!=0.4.17)", "typing-extensions (!=3.10.0.1)"] asyncio = ["greenlet (!=0.4.17)"] asyncmy = ["asyncmy (>=0.2.3,!=0.2.4,!=0.2.6)", "greenlet (!=0.4.17)"] mariadb-connector = ["mariadb (>=1.0.1,!=1.1.2,!=1.1.5)"] mssql = ["pyodbc"] mssql-pymssql = ["pymssql"] mssql-pyodbc = ["pyodbc"] mypy = ["mypy (>=0.910)"] mysql = ["mysqlclient (>=1.4.0)"] mysql-connector = ["mysql-connector-python"] oracle = ["cx-oracle (>=7)"] oracle-oracledb = ["oracledb (>=1.0.1)"] postgresql = ["psycopg2 (>=2.7)"] postgresql-asyncpg = ["asyncpg", "greenlet (!=0.4.17)"] postgresql-pg8000 = ["pg8000 (>=1.29.1)"] postgresql-psycopg = ["psycopg (>=3.0.7)"] postgresql-psycopg2binary = ["psycopg2-binary"] postgresql-psycopg2cffi = ["psycopg2cffi"] pymysql = ["pymysql"] sqlcipher = ["sqlcipher3-binary"] [[package]] name = "sqlitedict" version = "2.1.0" description = "Persistent dict in Python, backed up by sqlite3 and pickle, multithread-safe." category = "main" optional = true python-versions = "*" files = [ {file = "sqlitedict-2.1.0.tar.gz", hash = "sha256:03d9cfb96d602996f1d4c2db2856f1224b96a9c431bdd16e78032a72940f9e8c"}, ] [[package]] name = "srsly" version = "2.4.6" description = "Modern high-performance serialization utilities for Python" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "srsly-2.4.6-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:9b96569976420be2ac3716db9ac05b06bf4cd7a358953879ba34f03c9533c123"}, {file = "srsly-2.4.6-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:5a9833c0a870e17c67a9452ed107b3ec033fa5b7addead51af5977fdafd32452"}, {file = "srsly-2.4.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0355d57e89382bc0852d30b000f1d04f0bf1da2a739f60f0427a00b6ea1cd146"}, {file = "srsly-2.4.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2261ef76f6b8d4029b9d2fc4a65ac505a760d2ea1de0132fc4b423883f7df52e"}, {file = "srsly-2.4.6-cp310-cp310-win_amd64.whl", hash = "sha256:02ab79c59e4b0eba4ba44d64b4aeccb5df1379270f3970dc7e30f1eef6cd3851"}, {file = "srsly-2.4.6-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:73acd407c66fa943bbaa8d473c30ea548b31ba4079b51483eda65df94910b61f"}, {file = "srsly-2.4.6-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:99131465fea74aa5e80dbba6effad10ae661bee2c3fbc1fd6da8a1e954e031d0"}, {file = "srsly-2.4.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e4a0152f766930aa41f45bf571b7f6e99206a02810d964cc7bcbd81685e3b624"}, {file = "srsly-2.4.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9742e5f4205c5484cea925ff24b1bd850f1e9291bd0ada6dfe1ec2b715e732b5"}, {file = "srsly-2.4.6-cp311-cp311-win_amd64.whl", hash = "sha256:73ce7c532fecbd8d7ab946fd2b5fa1d767d554526e330e55d7704bcf522c9f66"}, {file = "srsly-2.4.6-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e5c5074628249385640f4fe4ac237fd93631a023938476ea258139d12abb17f9"}, {file = "srsly-2.4.6-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:12b9e6d5a87c64e1d4a4a43fd6c94f98b5c48076c569804072e5fe45f1703c32"}, {file = "srsly-2.4.6-cp36-cp36m-win_amd64.whl", hash = "sha256:bac2b2fa1f315c8a50e7807002a064e892be21c95735334f39d2ec104c00a8f0"}, {file = "srsly-2.4.6-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3a6811eb797101b549fece201c03ba794ed731e9e2d58b81ea56eb3219ed2c8e"}, {file = "srsly-2.4.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:03477c648b76571a5ab0723423fc03ada74e747c4354357feef92c098853246f"}, {file = "srsly-2.4.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9fb1426313af7c560c728fbe8c3cc8e7cc443f5aa489b04a26adc73645214b91"}, {file = "srsly-2.4.6-cp37-cp37m-win_amd64.whl", hash = "sha256:f1fb1ca8e2415bfd9ce1e3d8612dbbd85dd06c574a0a96a0223265c382950b5a"}, {file = "srsly-2.4.6-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:02b0708878f6a1e344284ae7c65b36a9ad8178eeff71583cd212d2d379f0e2ce"}, {file = "srsly-2.4.6-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:720715be0efb9646ab64850185ecd22fe6ace93027d02f6367bdc8842450b369"}, {file = "srsly-2.4.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1da8ac70f994644069451b4ab5fe5d2649218871409ab89f8421e79b0eace76b"}, {file = "srsly-2.4.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7dc1c3877618d67a44ec74830510cd72d54fcfb32339388f2c6cbd559d27d20e"}, {file = "srsly-2.4.6-cp38-cp38-win_amd64.whl", hash = "sha256:0ca1b1065edeca0cbc4a75ef15e915189bfd4b87c8256d542ec662168dd17627"}, {file = "srsly-2.4.6-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:0522d9aeaf58c6d58ee0cec247653a460545422d3266b2d970df7af1530f3dcc"}, {file = "srsly-2.4.6-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:52e3a0a760fb7723c74e566d0c064da78e5707d65d8f69b1d3c2e05b72e3efb2"}, {file = "srsly-2.4.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da8d393ac59cba12b92c27c53550417200601d0f2a9aa50c1559cf5ce9cb9473"}, {file = "srsly-2.4.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e5725f18a76971fc00e788a254bc2da6e119d69d491a811a6d387de77b72ca2"}, {file = "srsly-2.4.6-cp39-cp39-win_amd64.whl", hash = "sha256:52a3b4d2949d9b7623b459054526bc3df04cbd9a8243c4786f13e3c956faf251"}, {file = "srsly-2.4.6.tar.gz", hash = "sha256:47b41f323aba4c9c3311abf60e443c03a9efe9c69f65dc402d173c32f7744a6f"}, ] [package.dependencies] catalogue = ">=2.0.3,<2.1.0" [[package]] name = "stack-data" version = "0.6.2" description = "Extract data from python stack frames and tracebacks for informative displays" category = "dev" optional = false python-versions = "*" files = [ {file = "stack_data-0.6.2-py3-none-any.whl", hash = "sha256:cbb2a53eb64e5785878201a97ed7c7b94883f48b87bfb0bbe8b623c74679e4a8"}, {file = "stack_data-0.6.2.tar.gz", hash = "sha256:32d2dd0376772d01b6cb9fc996f3c8b57a357089dec328ed4b6553d037eaf815"}, ] [package.dependencies] asttokens = ">=2.1.0" executing = ">=1.2.0" pure-eval = "*" [package.extras] tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] [[package]] name = "starlette" version = "0.27.0" description = "The little ASGI library that shines." category = "main" optional = false python-versions = ">=3.7" files = [ {file = "starlette-0.27.0-py3-none-any.whl", hash = "sha256:918416370e846586541235ccd38a474c08b80443ed31c578a418e2209b3eef91"}, {file = "starlette-0.27.0.tar.gz", hash = "sha256:6a6b0d042acb8d469a01eba54e9cda6cbd24ac602c4cd016723117d6a7e73b75"}, ] [package.dependencies] anyio = ">=3.4.0,<5" typing-extensions = {version = ">=3.10.0", markers = "python_version < \"3.10\""} [package.extras] full = ["httpx (>=0.22.0)", "itsdangerous", "jinja2", "python-multipart", "pyyaml"] [[package]] name = "steamship" version = "2.16.9" description = "The fastest way to add language AI to your product." category = "main" optional = true python-versions = "*" files = [ {file = "steamship-2.16.9-py3-none-any.whl", hash = "sha256:02ed613363d912e1deb2811f86753cf398b3035f6afa5b1eb6e5884da61a7c3c"}, {file = "steamship-2.16.9.tar.gz", hash = "sha256:34732b45e470f31ecdeefcbc06a98ac7d7c37d062394e598ec285d2f3faa1b14"}, ] [package.dependencies] aiohttp = ">=3.8.4,<3.9.0" click = ">=8.1.3,<8.2.0" fluent-logger = ">=0.10.0,<0.11.0" inflection = ">=0.5.1,<0.6.0" pydantic = ">=1.10.2,<1.11.0" requests = ">=2.28.1,<2.29.0" semver = ">=3.0.0,<3.1.0" tiktoken = ">=0.3.3,<0.4.0" toml = ">=0.10.2,<0.11.0" [[package]] name = "stringcase" version = "1.2.0" description = "String case converter." category = "main" optional = true python-versions = "*" files = [ {file = "stringcase-1.2.0.tar.gz", hash = "sha256:48a06980661908efe8d9d34eab2b6c13aefa2163b3ced26972902e3bdfd87008"}, ] [[package]] name = "tabulate" version = "0.9.0" description = "Pretty-print tabular data" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "tabulate-0.9.0-py3-none-any.whl", hash = "sha256:024ca478df22e9340661486f85298cff5f6dcdba14f3813e8830015b9ed1948f"}, {file = "tabulate-0.9.0.tar.gz", hash = "sha256:0095b12bf5966de529c0feb1fa08671671b3368eec77d7ef7ab114be2c068b3c"}, ] [package.extras] widechars = ["wcwidth"] [[package]] name = "tair" version = "1.3.3" description = "Python client for Tair" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "tair-1.3.3-py3-none-any.whl", hash = "sha256:28ece5646b795662e4de07f2b982497988e2225df80bd25689704dd29893dfb7"}, {file = "tair-1.3.3.tar.gz", hash = "sha256:fc8a71872afb5fc0aeadb817440bc3690f6f621cc0c4b1548d729de49f1e9e57"}, ] [package.dependencies] redis = ">=4.4.4" [[package]] name = "telethon" version = "1.28.5" description = "Full-featured Telegram client library for Python 3" category = "main" optional = true python-versions = ">=3.5" files = [ {file = "Telethon-1.28.5-py3-none-any.whl", hash = "sha256:edc42fd58b8e1569830d3ead564cafa60fd51d684f03ee2a1fdd5f77a5a10438"}, {file = "Telethon-1.28.5.tar.gz", hash = "sha256:b3990ec22351a3f3e1af376729c985025bbdd3bdabdde8c156112c3d3dfe1941"}, ] [package.dependencies] pyaes = "*" rsa = "*" [package.extras] cryptg = ["cryptg"] [[package]] name = "tenacity" version = "8.2.2" description = "Retry code until it succeeds" category = "main" optional = false python-versions = ">=3.6" files = [ {file = "tenacity-8.2.2-py3-none-any.whl", hash = "sha256:2f277afb21b851637e8f52e6a613ff08734c347dc19ade928e519d7d2d8569b0"}, {file = "tenacity-8.2.2.tar.gz", hash = "sha256:43af037822bd0029025877f3b2d97cc4d7bb0c2991000a3d59d71517c5c969e0"}, ] [package.extras] doc = ["reno", "sphinx", "tornado (>=4.5)"] [[package]] name = "tensorboard" version = "2.11.2" description = "TensorBoard lets you watch Tensors Flow" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "tensorboard-2.11.2-py3-none-any.whl", hash = "sha256:cbaa2210c375f3af1509f8571360a19ccc3ded1d9641533414874b5deca47e89"}, ] [package.dependencies] absl-py = ">=0.4" google-auth = ">=1.6.3,<3" google-auth-oauthlib = ">=0.4.1,<0.5" grpcio = ">=1.24.3" markdown = ">=2.6.8" numpy = ">=1.12.0" protobuf = ">=3.9.2,<4" requests = ">=2.21.0,<3" setuptools = ">=41.0.0" tensorboard-data-server = ">=0.6.0,<0.7.0" tensorboard-plugin-wit = ">=1.6.0" werkzeug = ">=1.0.1" wheel = ">=0.26" [[package]] name = "tensorboard-data-server" version = "0.6.1" description = "Fast data loading for TensorBoard" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "tensorboard_data_server-0.6.1-py3-none-any.whl", hash = "sha256:809fe9887682d35c1f7d1f54f0f40f98bb1f771b14265b453ca051e2ce58fca7"}, {file = "tensorboard_data_server-0.6.1-py3-none-macosx_10_9_x86_64.whl", hash = "sha256:fa8cef9be4fcae2f2363c88176638baf2da19c5ec90addb49b1cde05c95c88ee"}, {file = "tensorboard_data_server-0.6.1-py3-none-manylinux2010_x86_64.whl", hash = "sha256:d8237580755e58eff68d1f3abefb5b1e39ae5c8b127cc40920f9c4fb33f4b98a"}, ] [[package]] name = "tensorboard-plugin-wit" version = "1.8.1" description = "What-If Tool TensorBoard plugin." category = "main" optional = true python-versions = "*" files = [ {file = "tensorboard_plugin_wit-1.8.1-py3-none-any.whl", hash = "sha256:ff26bdd583d155aa951ee3b152b3d0cffae8005dc697f72b44a8e8c2a77a8cbe"}, ] [[package]] name = "tensorflow" version = "2.11.1" description = "TensorFlow is an open source machine learning framework for everyone." category = "main" optional = true python-versions = ">=3.7" files = [ {file = "tensorflow-2.11.1-cp310-cp310-macosx_10_14_x86_64.whl", hash = "sha256:ac0e46c5de7985def49e4f688a0ca4180949a4d5dc62b89e9c6640db3c3982ba"}, {file = "tensorflow-2.11.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45b1669c523fa6dc240688bffe79f08dfbb76bf5e23a7fe10e722ba658637a44"}, {file = "tensorflow-2.11.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a96595e0c068d54717405fa12f36b4a5bb0a9fc53fb9065155a92cff944b35b"}, {file = "tensorflow-2.11.1-cp310-cp310-win_amd64.whl", hash = "sha256:13197f18f31a52d3f2eac28743d1b06abb8efd86017f184110a1b16841b745b1"}, {file = "tensorflow-2.11.1-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:9f030f1bc9e7763fa03ec5738323c42021ababcd562fe861b3a3f41e9ff10e43"}, {file = "tensorflow-2.11.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f12855c1e8373c1327650061fd6a9a3d3772e1bac8241202ea8ccb56213d005"}, {file = "tensorflow-2.11.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:76cd4279cb500074a8ab28af116af7f060f0b015651bef552769d51e55d6fd5c"}, {file = "tensorflow-2.11.1-cp38-cp38-win_amd64.whl", hash = "sha256:f5a2f75f28cd5fb615a5306f2091eac7da3a8fff949ab8804ec06b8e3682f837"}, {file = "tensorflow-2.11.1-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:ea93246ad6c90ff0422f06a82164836fe8098989a8a65c3b02c720eadbe15dde"}, {file = "tensorflow-2.11.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:30ba6b3c2f68037e965a19427a1f2a5f0351b7ceae6c686938a8485b08e1e1f3"}, {file = "tensorflow-2.11.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ddd5c61f68d8125c985370de96a24a80aee5e3f1604efacec7e1c34ca72de24"}, {file = "tensorflow-2.11.1-cp39-cp39-win_amd64.whl", hash = "sha256:b7d8834df3f72d7eab56bc2f34f2e52b82d705776b80b36bf5470b7538c9865c"}, ] [package.dependencies] absl-py = ">=1.0.0" astunparse = ">=1.6.0" flatbuffers = ">=2.0" gast = ">=0.2.1,<=0.4.0" google-pasta = ">=0.1.1" grpcio = ">=1.24.3,<2.0" h5py = ">=2.9.0" keras = ">=2.11.0,<2.12" libclang = ">=13.0.0" numpy = ">=1.20" opt-einsum = ">=2.3.2" packaging = "*" protobuf = ">=3.9.2,<3.20" setuptools = "*" six = ">=1.12.0" tensorboard = ">=2.11,<2.12" tensorflow-estimator = ">=2.11.0,<2.12" tensorflow-io-gcs-filesystem = {version = ">=0.23.1", markers = "platform_machine != \"arm64\" or platform_system != \"Darwin\""} termcolor = ">=1.1.0" typing-extensions = ">=3.6.6" wrapt = ">=1.11.0" [[package]] name = "tensorflow-estimator" version = "2.11.0" description = "TensorFlow Estimator." category = "main" optional = true python-versions = ">=3.7" files = [ {file = "tensorflow_estimator-2.11.0-py2.py3-none-any.whl", hash = "sha256:ea3b64acfff3d9a244f06178c9bdedcbdd3f125b67d0888dba8229498d06468b"}, ] [[package]] name = "tensorflow-hub" version = "0.13.0" description = "TensorFlow Hub is a library to foster the publication, discovery, and consumption of reusable parts of machine learning models." category = "main" optional = true python-versions = "*" files = [ {file = "tensorflow_hub-0.13.0-py2.py3-none-any.whl", hash = "sha256:3544f4fd9fd99e4eeb6da1b5b5320e4a2dbdef7f9bb778f66f76d6790f32dd65"}, ] [package.dependencies] numpy = ">=1.12.0" protobuf = ">=3.19.6" [package.extras] make-image-classifier = ["keras-preprocessing[image]"] make-nearest-neighbour-index = ["annoy", "apache-beam"] [[package]] name = "tensorflow-io-gcs-filesystem" version = "0.32.0" description = "TensorFlow IO" category = "main" optional = true python-versions = ">=3.7, <3.12" files = [ {file = "tensorflow_io_gcs_filesystem-0.32.0-cp310-cp310-macosx_10_14_x86_64.whl", hash = "sha256:74a7e25e83d4117a7ebb09a3f247553a5497393ab48c3ee0cf0d17b405026817"}, {file = "tensorflow_io_gcs_filesystem-0.32.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:045d51bba586390d0545fcd8a18727d62b175eb142f6f4c6d719d39de40774cd"}, {file = "tensorflow_io_gcs_filesystem-0.32.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:db682e9a510c27dd35710ba5a2c62c371e25b727741b2fe3a920355fa501e947"}, {file = "tensorflow_io_gcs_filesystem-0.32.0-cp311-cp311-macosx_10_14_x86_64.whl", hash = "sha256:7f15fd22e592661b10de317be2f42a0f84be7bfc5e6a565fcfcb04b60d625b78"}, {file = "tensorflow_io_gcs_filesystem-0.32.0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:336d9b3fe6b55aea149c4f6aa1fd6ffaf27d4e5c37e55a182340b47caba38846"}, {file = "tensorflow_io_gcs_filesystem-0.32.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:842f5f09cd756bdb3b4d0b5571b3a6f72fd534d42da938b9acf0ef462995eada"}, {file = "tensorflow_io_gcs_filesystem-0.32.0-cp37-cp37m-macosx_10_14_x86_64.whl", hash = "sha256:1ce80e1555d6ee88dda67feddf366cc8b30252b5837a7a17303df7b06a71fc2e"}, {file = "tensorflow_io_gcs_filesystem-0.32.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:05e65d3cb6c93a7929b384d86c6369c63cbbab8a770440a3d95e094878403f9f"}, {file = "tensorflow_io_gcs_filesystem-0.32.0-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:21de7dcc06eb1e7de3c022b0072d90ba35ef886578149663437aa7a6fb5bf6b3"}, {file = "tensorflow_io_gcs_filesystem-0.32.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:79fdd02103b8ae9f8b89af41f744c013fa1caaea709de19833917795e3063857"}, {file = "tensorflow_io_gcs_filesystem-0.32.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5635df0bbe40f971dc1b946e3372744b0bdfda45c38ffcd28ef53a32bb8da4da"}, {file = "tensorflow_io_gcs_filesystem-0.32.0-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:122be149e5f6a030f5c2901be0cc3cb07619232f7b03889e2cdf3da1c0d4f92f"}, {file = "tensorflow_io_gcs_filesystem-0.32.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8214cdf85bea694160f9035ff395221c1e25e119784ccb4c104919b1f5dec84e"}, {file = "tensorflow_io_gcs_filesystem-0.32.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:28202492d904a6e280cf27560791e87ac1c7566000db82065d63a70c27008af2"}, ] [package.extras] tensorflow = ["tensorflow (>=2.12.0,<2.13.0)"] tensorflow-aarch64 = ["tensorflow-aarch64 (>=2.12.0,<2.13.0)"] tensorflow-cpu = ["tensorflow-cpu (>=2.12.0,<2.13.0)"] tensorflow-gpu = ["tensorflow-gpu (>=2.12.0,<2.13.0)"] tensorflow-rocm = ["tensorflow-rocm (>=2.12.0,<2.13.0)"] [[package]] name = "tensorflow-macos" version = "2.11.0" description = "TensorFlow is an open source machine learning framework for everyone." category = "main" optional = true python-versions = ">=3.7" files = [ {file = "tensorflow_macos-2.11.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:0bdbd1bb564d01bd735d6d11451f0658c3dd8187369ee9dd3ed6de6bbdd6df53"}, {file = "tensorflow_macos-2.11.0-cp310-cp310-macosx_12_0_x86_64.whl", hash = "sha256:66eb67915cf418eddd3b4c158132609efd50895fa09fd55e4b2f14a3ab85bd34"}, {file = "tensorflow_macos-2.11.0-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:6810731e2c8353123f6c9c944d2765b58a2226e7eb9fec1e360f73977c6c6aa4"}, {file = "tensorflow_macos-2.11.0-cp38-cp38-macosx_12_0_x86_64.whl", hash = "sha256:881b36d97b67d24197250a091c52c31db14aecfdbf1ac20418a148ec37321978"}, {file = "tensorflow_macos-2.11.0-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:8d56b0d0bd140008b0cc4877804c9c310e1e2735444fa99bc7c88ffb2909153d"}, {file = "tensorflow_macos-2.11.0-cp39-cp39-macosx_12_0_x86_64.whl", hash = "sha256:db97cd91b905bd01069069f07325a2a291705222eb4914148b9574090a5815ae"}, ] [package.dependencies] absl-py = ">=1.0.0" astunparse = ">=1.6.0" flatbuffers = ">=2.0" gast = ">=0.2.1,<=0.4.0" google-pasta = ">=0.1.1" grpcio = ">=1.24.3,<2.0" h5py = ">=2.9.0" keras = ">=2.11.0,<2.12" libclang = ">=13.0.0" numpy = ">=1.20" opt-einsum = ">=2.3.2" packaging = "*" protobuf = ">=3.9.2,<3.20" setuptools = "*" six = ">=1.12.0" tensorboard = ">=2.11,<2.12" tensorflow-estimator = ">=2.11.0,<2.12" termcolor = ">=1.1.0" typing-extensions = ">=3.6.6" wrapt = ">=1.11.0" [[package]] name = "tensorflow-text" version = "2.11.0" description = "TF.Text is a TensorFlow library of text related ops, modules, and subgraphs." category = "main" optional = true python-versions = "*" files = [ {file = "tensorflow_text-2.11.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c9d4797e331da37419f2b19159fbc0f125ed60467340e9a209ab8f8d65856704"}, {file = "tensorflow_text-2.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b4abede4191820ae6d5a7c74f02c335a5f2e2df174eaa38b481b2b82a3330152"}, {file = "tensorflow_text-2.11.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:49194f85e03a2e3f017ac8e0e3d3927104fa20e6e883b43087cff032fe2cbe14"}, {file = "tensorflow_text-2.11.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a3ea14efeb1d627ed5098e791e95bb98ee6f9f928f9eda785205e184cc20b428"}, {file = "tensorflow_text-2.11.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a207ceea4c71a932c35e4d208d7b8c3edc65a5ba0eebfdc9233fc8da546625c9"}, {file = "tensorflow_text-2.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:506fbea82a1ec566d7d0f771adad589c44727d904311103169466d88236ec2c8"}, {file = "tensorflow_text-2.11.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:cf0033bf47872b57d46f78d7058db5676f396a9327fa4d063a2c73cce43586ae"}, {file = "tensorflow_text-2.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:56693df33461ab0e7f32549010ca38a8d01291fd67142e0396d0aeb9fcad2e09"}, ] [package.dependencies] tensorflow = {version = ">=2.11.0,<2.12", markers = "platform_machine != \"arm64\" or platform_system != \"Darwin\""} tensorflow-hub = ">=0.8.0" tensorflow-macos = {version = ">=2.11.0,<2.12", markers = "platform_machine == \"arm64\" and platform_system == \"Darwin\""} [package.extras] tensorflow-cpu = ["tensorflow-cpu (>=2.11.0,<2.12)"] tests = ["absl-py", "pytest", "tensorflow-datasets (>=3.2.0)"] [[package]] name = "termcolor" version = "2.3.0" description = "ANSI color formatting for output in terminal" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "termcolor-2.3.0-py3-none-any.whl", hash = "sha256:3afb05607b89aed0ffe25202399ee0867ad4d3cb4180d98aaf8eefa6a5f7d475"}, {file = "termcolor-2.3.0.tar.gz", hash = "sha256:b5b08f68937f138fe92f6c089b99f1e2da0ae56c52b78bf7075fd95420fd9a5a"}, ] [package.extras] tests = ["pytest", "pytest-cov"] [[package]] name = "terminado" version = "0.17.1" description = "Tornado websocket backend for the Xterm.js Javascript terminal emulator library." category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "terminado-0.17.1-py3-none-any.whl", hash = "sha256:8650d44334eba354dd591129ca3124a6ba42c3d5b70df5051b6921d506fdaeae"}, {file = "terminado-0.17.1.tar.gz", hash = "sha256:6ccbbcd3a4f8a25a5ec04991f39a0b8db52dfcd487ea0e578d977e6752380333"}, ] [package.dependencies] ptyprocess = {version = "*", markers = "os_name != \"nt\""} pywinpty = {version = ">=1.1.0", markers = "os_name == \"nt\""} tornado = ">=6.1.0" [package.extras] docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] test = ["pre-commit", "pytest (>=7.0)", "pytest-timeout"] [[package]] name = "textstat" version = "0.7.3" description = "Calculate statistical features from text" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "textstat-0.7.3-py3-none-any.whl", hash = "sha256:cbd9d641aa5abff0852638f0489913f31ea52fe597ccbaa337b4fc2a44efd15e"}, {file = "textstat-0.7.3.tar.gz", hash = "sha256:60b63cf8949f45bbb3b4205e4411bbc1cd66df4c08aef12545811c7e6e24f011"}, ] [package.dependencies] pyphen = "*" [[package]] name = "thinc" version = "8.1.10" description = "A refreshing functional take on deep learning, compatible with your favorite libraries" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "thinc-8.1.10-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:dbd1dc4394352d80af22131e1a238238eded59de19b55f77e6237436f4865b2c"}, {file = "thinc-8.1.10-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:524e6eb2436084968db1a713cfb5ea99b1b2e3363330d4aac8a403487a16d7c2"}, {file = "thinc-8.1.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ea3da2c0fb9012b6bff8b43d86dc34fd2db463f5b5e5fa725e2f5c49d29620b5"}, {file = "thinc-8.1.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d9bee276fb1f820b9a5f80c08655eb78dc2f368f3c22fd33e958e0fedeaac09b"}, {file = "thinc-8.1.10-cp310-cp310-win_amd64.whl", hash = "sha256:e5b2232e737c25fef3116597d1458fef38ddb7237649747686ce4d4531bb84a3"}, {file = "thinc-8.1.10-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:575b7dbe3a5d773c12f5dd6e366d942ad3c3ef7a5381332ba842bdbaf4d3e820"}, {file = "thinc-8.1.10-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:0bdf3f4e4a2fc0a4c5887e9114340ddb60ccc7b85f2cf92affdc68da82430575"}, {file = "thinc-8.1.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5c9cf2c9d8e44e1edeffe878cb137cbfe5ae1540621b5878be8e5e8d4924d757"}, {file = "thinc-8.1.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5fd1aa467f445860ae8f0943ab80e41be9b64243522c165bea452ad39d4ff46f"}, {file = "thinc-8.1.10-cp311-cp311-win_amd64.whl", hash = "sha256:108dcfef6ad1bef46d00ad31edc5fd3ab4d36c0cadb92cfbdb2f92d060acd8a0"}, {file = "thinc-8.1.10-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5af0392bdc63c621ba1def80ec98d753be9a27ebe1cf812bed2760371f20456"}, {file = "thinc-8.1.10-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:83da33e05fda126e85e385aaeb2eb8d1ae19368c5bc67f23b88bc2927738b5cf"}, {file = "thinc-8.1.10-cp36-cp36m-win_amd64.whl", hash = "sha256:bc321d0fbb8e146de4c152d36ea6000de0669fe081fd9777c8768ad9b4478839"}, {file = "thinc-8.1.10-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:bd9b678bcbf3f3a21260b2f55a65742aeeb7f5442c3ceb475378d95e0e99dc44"}, {file = "thinc-8.1.10-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:042be0f014d896b826d8c0891b7bc8772464a91661938c61cdd7296cef19280d"}, {file = "thinc-8.1.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a65a1e824711b30e0c35ebfb833681b64c6cb2762364548a210c3740838b9d91"}, {file = "thinc-8.1.10-cp37-cp37m-win_amd64.whl", hash = "sha256:d63fa0bd3e60931c76617e993042deef875f57b1679354ac2f0072e621e106d1"}, {file = "thinc-8.1.10-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:ee75162bfb8aab24bd59604c01935abe1602bbd478064a4a6199d3506cb57679"}, {file = "thinc-8.1.10-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:715ed60ddf1ddf5f98b454b2495fddbbfdb947d77bd47a241d1981d3f58ac9a0"}, {file = "thinc-8.1.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b432bf27e4724e2f470e5f36455530906d86a81505a3b406f2f4f5b4644f77d8"}, {file = "thinc-8.1.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d31f6834f1b1c428718a9668b7a06b74854a9217ba1d8186b41e48146d487fa3"}, {file = "thinc-8.1.10-cp38-cp38-win_amd64.whl", hash = "sha256:21a41c90122e9b8a6b33d5ba05913fd8a763757a2b49e0243eed0bce7722d661"}, {file = "thinc-8.1.10-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:0bf181b47d88c60a961e0cd05eec1143d949dd8e7e3523e13f4e8f1ea32f0004"}, {file = "thinc-8.1.10-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:18380a440d617fa704daa5018ed5e7d5a50efd9c237ad536a84047be3bcb767c"}, {file = "thinc-8.1.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50271826c3737168cd9409620c9fcd3f6315136d2fff08279c213a21a5c438e8"}, {file = "thinc-8.1.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2d08eb7c15592d4212cd729d782b8be1daa2ed5248a8169991c4f63659bc6266"}, {file = "thinc-8.1.10-cp39-cp39-win_amd64.whl", hash = "sha256:c245e6a5fcb71fcf23cb329f296349a4925b176fad5713571bb4f0fc8787ad7c"}, {file = "thinc-8.1.10.tar.gz", hash = "sha256:6c4a48d7da07e044e84a68cbb9b22f32f8490995a2bab0bfc60e412d14afb991"}, ] [package.dependencies] blis = ">=0.7.8,<0.8.0" catalogue = ">=2.0.4,<2.1.0" confection = ">=0.0.1,<1.0.0" cymem = ">=2.0.2,<2.1.0" murmurhash = ">=1.0.2,<1.1.0" numpy = ">=1.15.0" packaging = ">=20.0" preshed = ">=3.0.2,<3.1.0" pydantic = ">=1.7.4,<1.8 || >1.8,<1.8.1 || >1.8.1,<1.11.0" setuptools = "*" srsly = ">=2.4.0,<3.0.0" wasabi = ">=0.8.1,<1.2.0" [package.extras] cuda = ["cupy (>=5.0.0b4)"] cuda-autodetect = ["cupy-wheel (>=11.0.0)"] cuda100 = ["cupy-cuda100 (>=5.0.0b4)"] cuda101 = ["cupy-cuda101 (>=5.0.0b4)"] cuda102 = ["cupy-cuda102 (>=5.0.0b4)"] cuda110 = ["cupy-cuda110 (>=5.0.0b4)"] cuda111 = ["cupy-cuda111 (>=5.0.0b4)"] cuda112 = ["cupy-cuda112 (>=5.0.0b4)"] cuda113 = ["cupy-cuda113 (>=5.0.0b4)"] cuda114 = ["cupy-cuda114 (>=5.0.0b4)"] cuda115 = ["cupy-cuda115 (>=5.0.0b4)"] cuda116 = ["cupy-cuda116 (>=5.0.0b4)"] cuda117 = ["cupy-cuda117 (>=5.0.0b4)"] cuda11x = ["cupy-cuda11x (>=11.0.0)"] cuda80 = ["cupy-cuda80 (>=5.0.0b4)"] cuda90 = ["cupy-cuda90 (>=5.0.0b4)"] cuda91 = ["cupy-cuda91 (>=5.0.0b4)"] cuda92 = ["cupy-cuda92 (>=5.0.0b4)"] datasets = ["ml-datasets (>=0.2.0,<0.3.0)"] mxnet = ["mxnet (>=1.5.1,<1.6.0)"] tensorflow = ["tensorflow (>=2.0.0,<2.6.0)"] torch = ["torch (>=1.6.0)"] [[package]] name = "threadpoolctl" version = "3.1.0" description = "threadpoolctl" category = "main" optional = false python-versions = ">=3.6" files = [ {file = "threadpoolctl-3.1.0-py3-none-any.whl", hash = "sha256:8b99adda265feb6773280df41eece7b2e6561b772d21ffd52e372f999024907b"}, {file = "threadpoolctl-3.1.0.tar.gz", hash = "sha256:a335baacfaa4400ae1f0d8e3a58d6674d2f8828e3716bb2802c44955ad391380"}, ] [[package]] name = "tiktoken" version = "0.3.3" description = "tiktoken is a fast BPE tokeniser for use with OpenAI's models" category = "main" optional = false python-versions = ">=3.8" files = [ {file = "tiktoken-0.3.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d1f37fa75ba70c1bc7806641e8ccea1fba667d23e6341a1591ea333914c226a9"}, {file = "tiktoken-0.3.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3d7296c38392a943c2ccc0b61323086b8550cef08dcf6855de9949890dbc1fd3"}, {file = "tiktoken-0.3.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3c84491965e139a905280ac28b74baaa13445b3678e07f96767089ad1ef5ee7b"}, {file = "tiktoken-0.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:65970d77ea85ce6c7fce45131da9258cd58a802ffb29ead8f5552e331c025b2b"}, {file = "tiktoken-0.3.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:bd3f72d0ba7312c25c1652292121a24c8f1711207b63c6d8dab21afe4be0bf04"}, {file = "tiktoken-0.3.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:719c9e13432602dc496b24f13e3c3ad3ec0d2fbdb9aace84abfb95e9c3a425a4"}, {file = "tiktoken-0.3.3-cp310-cp310-win_amd64.whl", hash = "sha256:dc00772284c94e65045b984ed7e9f95d000034f6b2411df252011b069bd36217"}, {file = "tiktoken-0.3.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4db2c40f79f8f7a21a9fdbf1c6dee32dea77b0d7402355dc584a3083251d2e15"}, {file = "tiktoken-0.3.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e3c0f2231aa3829a1a431a882201dc27858634fd9989898e0f7d991dbc6bcc9d"}, {file = "tiktoken-0.3.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:48c13186a479de16cfa2c72bb0631fa9c518350a5b7569e4d77590f7fee96be9"}, {file = "tiktoken-0.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6674e4e37ab225020135cd66a392589623d5164c6456ba28cc27505abed10d9e"}, {file = "tiktoken-0.3.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:4a0c1357f6191211c544f935d5aa3cb9d7abd118c8f3c7124196d5ecd029b4af"}, {file = "tiktoken-0.3.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:2e948d167fc3b04483cbc33426766fd742e7cefe5346cd62b0cbd7279ef59539"}, {file = "tiktoken-0.3.3-cp311-cp311-win_amd64.whl", hash = "sha256:5dca434c8680b987eacde2dbc449e9ea4526574dbf9f3d8938665f638095be82"}, {file = "tiktoken-0.3.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:984758ebc07cd8c557345697c234f1f221bd730b388f4340dd08dffa50213a01"}, {file = "tiktoken-0.3.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:891012f29e159a989541ae47259234fb29ff88c22e1097567316e27ad33a3734"}, {file = "tiktoken-0.3.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:210f8602228e4c5d706deeb389da5a152b214966a5aa558eec87b57a1969ced5"}, {file = "tiktoken-0.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd783564f80d4dc44ff0a64b13756ded8390ed2548549aefadbe156af9188307"}, {file = "tiktoken-0.3.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:03f64bde9b4eb8338bf49c8532bfb4c3578f6a9a6979fc176d939f9e6f68b408"}, {file = "tiktoken-0.3.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:1ac369367b6f5e5bd80e8f9a7766ac2a9c65eda2aa856d5f3c556d924ff82986"}, {file = "tiktoken-0.3.3-cp38-cp38-win_amd64.whl", hash = "sha256:94600798891f78db780e5aa9321456cf355e54a4719fbd554147a628de1f163f"}, {file = "tiktoken-0.3.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:e59db6fca8d5ccea302fe2888917364446d6f4201a25272a1a1c44975c65406a"}, {file = "tiktoken-0.3.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:19340d8ba4d6fd729b2e3a096a547ded85f71012843008f97475f9db484869ee"}, {file = "tiktoken-0.3.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:542686cbc9225540e3a10f472f82fa2e1bebafce2233a211dee8459e95821cfd"}, {file = "tiktoken-0.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a43612b2a09f4787c050163a216bf51123851859e9ab128ad03d2729826cde9"}, {file = "tiktoken-0.3.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a11674f0275fa75fb59941b703650998bd4acb295adbd16fc8af17051aaed19d"}, {file = "tiktoken-0.3.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:65fc0a449630bab28c30b4adec257442a4706d79cffc2337c1d9df3e91825cdd"}, {file = "tiktoken-0.3.3-cp39-cp39-win_amd64.whl", hash = "sha256:0b9a7a9a8b781a50ee9289e85e28771d7e113cc0c656eadfb6fc6d3a106ff9bb"}, {file = "tiktoken-0.3.3.tar.gz", hash = "sha256:97b58b7bfda945791ec855e53d166e8ec20c6378942b93851a6c919ddf9d0496"}, ] [package.dependencies] regex = ">=2022.1.18" requests = ">=2.26.0" [package.extras] blobfile = ["blobfile (>=2)"] [[package]] name = "tinycss2" version = "1.2.1" description = "A tiny CSS parser" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "tinycss2-1.2.1-py3-none-any.whl", hash = "sha256:2b80a96d41e7c3914b8cda8bc7f705a4d9c49275616e886103dd839dfc847847"}, {file = "tinycss2-1.2.1.tar.gz", hash = "sha256:8cff3a8f066c2ec677c06dbc7b45619804a6938478d9d73c284b29d14ecb0627"}, ] [package.dependencies] webencodings = ">=0.4" [package.extras] doc = ["sphinx", "sphinx_rtd_theme"] test = ["flake8", "isort", "pytest"] [[package]] name = "tokenizers" version = "0.13.3" description = "Fast and Customizable Tokenizers" category = "main" optional = false python-versions = "*" files = [ {file = "tokenizers-0.13.3-cp310-cp310-macosx_10_11_x86_64.whl", hash = "sha256:f3835c5be51de8c0a092058a4d4380cb9244fb34681fd0a295fbf0a52a5fdf33"}, {file = "tokenizers-0.13.3-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:4ef4c3e821730f2692489e926b184321e887f34fb8a6b80b8096b966ba663d07"}, {file = "tokenizers-0.13.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c5fd1a6a25353e9aa762e2aae5a1e63883cad9f4e997c447ec39d071020459bc"}, {file = "tokenizers-0.13.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ee0b1b311d65beab83d7a41c56a1e46ab732a9eed4460648e8eb0bd69fc2d059"}, {file = "tokenizers-0.13.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5ef4215284df1277dadbcc5e17d4882bda19f770d02348e73523f7e7d8b8d396"}, {file = "tokenizers-0.13.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a4d53976079cff8a033f778fb9adca2d9d69d009c02fa2d71a878b5f3963ed30"}, {file = "tokenizers-0.13.3-cp310-cp310-win32.whl", hash = "sha256:1f0e3b4c2ea2cd13238ce43548959c118069db7579e5d40ec270ad77da5833ce"}, {file = "tokenizers-0.13.3-cp310-cp310-win_amd64.whl", hash = "sha256:89649c00d0d7211e8186f7a75dfa1db6996f65edce4b84821817eadcc2d3c79e"}, {file = "tokenizers-0.13.3-cp311-cp311-macosx_10_11_universal2.whl", hash = "sha256:56b726e0d2bbc9243872b0144515ba684af5b8d8cd112fb83ee1365e26ec74c8"}, {file = "tokenizers-0.13.3-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:cc5c022ce692e1f499d745af293ab9ee6f5d92538ed2faf73f9708c89ee59ce6"}, {file = "tokenizers-0.13.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f55c981ac44ba87c93e847c333e58c12abcbb377a0c2f2ef96e1a266e4184ff2"}, {file = "tokenizers-0.13.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f247eae99800ef821a91f47c5280e9e9afaeed9980fc444208d5aa6ba69ff148"}, {file = "tokenizers-0.13.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4b3e3215d048e94f40f1c95802e45dcc37c5b05eb46280fc2ccc8cd351bff839"}, {file = "tokenizers-0.13.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ba2b0bf01777c9b9bc94b53764d6684554ce98551fec496f71bc5be3a03e98b"}, {file = "tokenizers-0.13.3-cp311-cp311-win32.whl", hash = "sha256:cc78d77f597d1c458bf0ea7c2a64b6aa06941c7a99cb135b5969b0278824d808"}, {file = "tokenizers-0.13.3-cp311-cp311-win_amd64.whl", hash = "sha256:ecf182bf59bd541a8876deccf0360f5ae60496fd50b58510048020751cf1724c"}, {file = "tokenizers-0.13.3-cp37-cp37m-macosx_10_11_x86_64.whl", hash = "sha256:0527dc5436a1f6bf2c0327da3145687d3bcfbeab91fed8458920093de3901b44"}, {file = "tokenizers-0.13.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:07cbb2c307627dc99b44b22ef05ff4473aa7c7cc1fec8f0a8b37d8a64b1a16d2"}, {file = "tokenizers-0.13.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4560dbdeaae5b7ee0d4e493027e3de6d53c991b5002d7ff95083c99e11dd5ac0"}, {file = "tokenizers-0.13.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:64064bd0322405c9374305ab9b4c07152a1474370327499911937fd4a76d004b"}, {file = "tokenizers-0.13.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b8c6e2ab0f2e3d939ca66aa1d596602105fe33b505cd2854a4c1717f704c51de"}, {file = "tokenizers-0.13.3-cp37-cp37m-win32.whl", hash = "sha256:6cc29d410768f960db8677221e497226e545eaaea01aa3613fa0fdf2cc96cff4"}, {file = "tokenizers-0.13.3-cp37-cp37m-win_amd64.whl", hash = "sha256:fc2a7fdf864554a0dacf09d32e17c0caa9afe72baf9dd7ddedc61973bae352d8"}, {file = "tokenizers-0.13.3-cp38-cp38-macosx_10_11_x86_64.whl", hash = "sha256:8791dedba834c1fc55e5f1521be325ea3dafb381964be20684b92fdac95d79b7"}, {file = "tokenizers-0.13.3-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:d607a6a13718aeb20507bdf2b96162ead5145bbbfa26788d6b833f98b31b26e1"}, {file = "tokenizers-0.13.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3791338f809cd1bf8e4fee6b540b36822434d0c6c6bc47162448deee3f77d425"}, {file = "tokenizers-0.13.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c2f35f30e39e6aab8716f07790f646bdc6e4a853816cc49a95ef2a9016bf9ce6"}, {file = "tokenizers-0.13.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:310204dfed5aa797128b65d63538a9837cbdd15da2a29a77d67eefa489edda26"}, {file = "tokenizers-0.13.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0f9b92ea052305166559f38498b3b0cae159caea712646648aaa272f7160963"}, {file = "tokenizers-0.13.3-cp38-cp38-win32.whl", hash = "sha256:9a3fa134896c3c1f0da6e762d15141fbff30d094067c8f1157b9fdca593b5806"}, {file = "tokenizers-0.13.3-cp38-cp38-win_amd64.whl", hash = "sha256:8e7b0cdeace87fa9e760e6a605e0ae8fc14b7d72e9fc19c578116f7287bb873d"}, {file = "tokenizers-0.13.3-cp39-cp39-macosx_10_11_x86_64.whl", hash = "sha256:00cee1e0859d55507e693a48fa4aef07060c4bb6bd93d80120e18fea9371c66d"}, {file = "tokenizers-0.13.3-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:a23ff602d0797cea1d0506ce69b27523b07e70f6dda982ab8cf82402de839088"}, {file = "tokenizers-0.13.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:70ce07445050b537d2696022dafb115307abdffd2a5c106f029490f84501ef97"}, {file = "tokenizers-0.13.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:280ffe95f50eaaf655b3a1dc7ff1d9cf4777029dbbc3e63a74e65a056594abc3"}, {file = "tokenizers-0.13.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:97acfcec592f7e9de8cadcdcda50a7134423ac8455c0166b28c9ff04d227b371"}, {file = "tokenizers-0.13.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd7730c98a3010cd4f523465867ff95cd9d6430db46676ce79358f65ae39797b"}, {file = "tokenizers-0.13.3-cp39-cp39-win32.whl", hash = "sha256:48625a108029cb1ddf42e17a81b5a3230ba6888a70c9dc14e81bc319e812652d"}, {file = "tokenizers-0.13.3-cp39-cp39-win_amd64.whl", hash = "sha256:bc0a6f1ba036e482db6453571c9e3e60ecd5489980ffd95d11dc9f960483d783"}, {file = "tokenizers-0.13.3.tar.gz", hash = "sha256:2e546dbb68b623008a5442353137fbb0123d311a6d7ba52f2667c8862a75af2e"}, ] [package.extras] dev = ["black (==22.3)", "datasets", "numpy", "pytest", "requests"] docs = ["setuptools-rust", "sphinx", "sphinx-rtd-theme"] testing = ["black (==22.3)", "datasets", "numpy", "pytest", "requests"] [[package]] name = "toml" version = "0.10.2" description = "Python Library for Tom's Obvious, Minimal Language" category = "main" optional = false python-versions = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*" files = [ {file = "toml-0.10.2-py2.py3-none-any.whl", hash = "sha256:806143ae5bfb6a3c6e736a764057db0e6a0e05e338b5630894a5f779cabb4f9b"}, {file = "toml-0.10.2.tar.gz", hash = "sha256:b3bda1d108d5dd99f4a20d24d9c348e91c4db7ab1b749200bded2f839ccbe68f"}, ] [[package]] name = "tomli" version = "2.0.1" description = "A lil' TOML parser" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"}, {file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"}, ] [[package]] name = "torch" version = "1.13.1" description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration" category = "main" optional = false python-versions = ">=3.7.0" files = [ {file = "torch-1.13.1-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:fd12043868a34a8da7d490bf6db66991108b00ffbeecb034228bfcbbd4197143"}, {file = "torch-1.13.1-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:d9fe785d375f2e26a5d5eba5de91f89e6a3be5d11efb497e76705fdf93fa3c2e"}, {file = "torch-1.13.1-cp310-cp310-win_amd64.whl", hash = "sha256:98124598cdff4c287dbf50f53fb455f0c1e3a88022b39648102957f3445e9b76"}, {file = "torch-1.13.1-cp310-none-macosx_10_9_x86_64.whl", hash = "sha256:393a6273c832e047581063fb74335ff50b4c566217019cc6ace318cd79eb0566"}, {file = "torch-1.13.1-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:0122806b111b949d21fa1a5f9764d1fd2fcc4a47cb7f8ff914204fd4fc752ed5"}, {file = "torch-1.13.1-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:22128502fd8f5b25ac1cd849ecb64a418382ae81dd4ce2b5cebaa09ab15b0d9b"}, {file = "torch-1.13.1-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:76024be052b659ac1304ab8475ab03ea0a12124c3e7626282c9c86798ac7bc11"}, {file = "torch-1.13.1-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:ea8dda84d796094eb8709df0fcd6b56dc20b58fdd6bc4e8d7109930dafc8e419"}, {file = "torch-1.13.1-cp37-cp37m-win_amd64.whl", hash = "sha256:2ee7b81e9c457252bddd7d3da66fb1f619a5d12c24d7074de91c4ddafb832c93"}, {file = "torch-1.13.1-cp37-none-macosx_10_9_x86_64.whl", hash = "sha256:0d9b8061048cfb78e675b9d2ea8503bfe30db43d583599ae8626b1263a0c1380"}, {file = "torch-1.13.1-cp37-none-macosx_11_0_arm64.whl", hash = "sha256:f402ca80b66e9fbd661ed4287d7553f7f3899d9ab54bf5c67faada1555abde28"}, {file = "torch-1.13.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:727dbf00e2cf858052364c0e2a496684b9cb5aa01dc8a8bc8bbb7c54502bdcdd"}, {file = "torch-1.13.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:df8434b0695e9ceb8cc70650afc1310d8ba949e6db2a0525ddd9c3b2b181e5fe"}, {file = "torch-1.13.1-cp38-cp38-win_amd64.whl", hash = "sha256:5e1e722a41f52a3f26f0c4fcec227e02c6c42f7c094f32e49d4beef7d1e213ea"}, {file = "torch-1.13.1-cp38-none-macosx_10_9_x86_64.whl", hash = "sha256:33e67eea526e0bbb9151263e65417a9ef2d8fa53cbe628e87310060c9dcfa312"}, {file = "torch-1.13.1-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:eeeb204d30fd40af6a2d80879b46a7efbe3cf43cdbeb8838dd4f3d126cc90b2b"}, {file = "torch-1.13.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:50ff5e76d70074f6653d191fe4f6a42fdbe0cf942fbe2a3af0b75eaa414ac038"}, {file = "torch-1.13.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:2c3581a3fd81eb1f0f22997cddffea569fea53bafa372b2c0471db373b26aafc"}, {file = "torch-1.13.1-cp39-cp39-win_amd64.whl", hash = "sha256:0aa46f0ac95050c604bcf9ef71da9f1172e5037fdf2ebe051962d47b123848e7"}, {file = "torch-1.13.1-cp39-none-macosx_10_9_x86_64.whl", hash = "sha256:6930791efa8757cb6974af73d4996b6b50c592882a324b8fb0589c6a9ba2ddaf"}, {file = "torch-1.13.1-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:e0df902a7c7dd6c795698532ee5970ce898672625635d885eade9976e5a04949"}, ] [package.dependencies] nvidia-cublas-cu11 = {version = "11.10.3.66", markers = "platform_system == \"Linux\""} nvidia-cuda-nvrtc-cu11 = {version = "11.7.99", markers = "platform_system == \"Linux\""} nvidia-cuda-runtime-cu11 = {version = "11.7.99", markers = "platform_system == \"Linux\""} nvidia-cudnn-cu11 = {version = "8.5.0.96", markers = "platform_system == \"Linux\""} typing-extensions = "*" [package.extras] opt-einsum = ["opt-einsum (>=3.3)"] [[package]] name = "torchvision" version = "0.14.1" description = "image and video datasets and models for torch deep learning" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "torchvision-0.14.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:eeb05dd9dd3af5428fee525400759daf8da8e4caec45ddd6908cfb36571f6433"}, {file = "torchvision-0.14.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8d0766ea92affa7af248e327dd85f7c9cfdf51a57530b43212d4e1858548e9d7"}, {file = "torchvision-0.14.1-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:6d7b35653113664ea3fdcb71f515cfbf29d2fe393000fd8aaff27a1284de6908"}, {file = "torchvision-0.14.1-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:8a9eb773a2fa8f516e404ac09c059fb14e6882c48fdbb9c946327d2ce5dba6cd"}, {file = "torchvision-0.14.1-cp310-cp310-win_amd64.whl", hash = "sha256:13986f0c15377ff23039e1401012ccb6ecf71024ce53def27139e4eac5a57592"}, {file = "torchvision-0.14.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:fb7a793fd33ce1abec24b42778419a3fb1e3159d7dfcb274a3ca8fb8cbc408dc"}, {file = "torchvision-0.14.1-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:89fb0419780ec9a9eb9f7856a0149f6ac9f956b28f44b0c0080c6b5b48044db7"}, {file = "torchvision-0.14.1-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:a2d4237d3c9705d7729eb4534e4eb06f1d6be7ff1df391204dfb51586d9b0ecb"}, {file = "torchvision-0.14.1-cp37-cp37m-win_amd64.whl", hash = "sha256:92a324712a87957443cc34223274298ae9496853f115c252f8fc02b931f2340e"}, {file = "torchvision-0.14.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:68ed03359dcd3da9cd21b8ab94da21158df8a6a0c5bad0bf4a42f0e448d28cb3"}, {file = "torchvision-0.14.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:30fcf0e9fe57d4ac4ce6426659a57dce199637ccb6c70be1128670f177692624"}, {file = "torchvision-0.14.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:0ed02aefd09bf1114d35f1aa7dce55aa61c2c7e57f9aa02dce362860be654e85"}, {file = "torchvision-0.14.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:a541e49fc3c4e90e49e6988428ab047415ed52ea97d0c0bfd147d8bacb8f4df8"}, {file = "torchvision-0.14.1-cp38-cp38-win_amd64.whl", hash = "sha256:6099b3191dc2516099a32ae38a5fb349b42e863872a13545ab1a524b6567be60"}, {file = "torchvision-0.14.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c5e744f56e5f5b452deb5fc0f3f2ba4d2f00612d14d8da0dbefea8f09ac7690b"}, {file = "torchvision-0.14.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:758b20d079e810b4740bd60d1eb16e49da830e3360f9be379eb177ee221fa5d4"}, {file = "torchvision-0.14.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:83045507ef8d3c015d4df6be79491375b2f901352cfca6e72b4723e9c4f9a55d"}, {file = "torchvision-0.14.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:eaed58cf454323ed9222d4e0dd5fb897064f454b400696e03a5200e65d3a1e76"}, {file = "torchvision-0.14.1-cp39-cp39-win_amd64.whl", hash = "sha256:b337e1245ca4353623dd563c03cd8f020c2496a7c5d12bba4d2e381999c766e0"}, ] [package.dependencies] numpy = "*" pillow = ">=5.3.0,<8.3.0 || >=8.4.0" requests = "*" torch = "1.13.1" typing-extensions = "*" [package.extras] scipy = ["scipy"] [[package]] name = "tornado" version = "6.3.2" description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." category = "dev" optional = false python-versions = ">= 3.8" files = [ {file = "tornado-6.3.2-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:c367ab6c0393d71171123ca5515c61ff62fe09024fa6bf299cd1339dc9456829"}, {file = "tornado-6.3.2-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:b46a6ab20f5c7c1cb949c72c1994a4585d2eaa0be4853f50a03b5031e964fc7c"}, {file = "tornado-6.3.2-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c2de14066c4a38b4ecbbcd55c5cc4b5340eb04f1c5e81da7451ef555859c833f"}, {file = "tornado-6.3.2-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:05615096845cf50a895026f749195bf0b10b8909f9be672f50b0fe69cba368e4"}, {file = "tornado-6.3.2-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5b17b1cf5f8354efa3d37c6e28fdfd9c1c1e5122f2cb56dac121ac61baa47cbe"}, {file = "tornado-6.3.2-cp38-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:29e71c847a35f6e10ca3b5c2990a52ce38b233019d8e858b755ea6ce4dcdd19d"}, {file = "tornado-6.3.2-cp38-abi3-musllinux_1_1_i686.whl", hash = "sha256:834ae7540ad3a83199a8da8f9f2d383e3c3d5130a328889e4cc991acc81e87a0"}, {file = "tornado-6.3.2-cp38-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:6a0848f1aea0d196a7c4f6772197cbe2abc4266f836b0aac76947872cd29b411"}, {file = "tornado-6.3.2-cp38-abi3-win32.whl", hash = "sha256:7efcbcc30b7c654eb6a8c9c9da787a851c18f8ccd4a5a3a95b05c7accfa068d2"}, {file = "tornado-6.3.2-cp38-abi3-win_amd64.whl", hash = "sha256:0c325e66c8123c606eea33084976c832aa4e766b7dff8aedd7587ea44a604cdf"}, {file = "tornado-6.3.2.tar.gz", hash = "sha256:4b927c4f19b71e627b13f3db2324e4ae660527143f9e1f2e2fb404f3a187e2ba"}, ] [[package]] name = "tqdm" version = "4.65.0" description = "Fast, Extensible Progress Meter" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "tqdm-4.65.0-py3-none-any.whl", hash = "sha256:c4f53a17fe37e132815abceec022631be8ffe1b9381c2e6e30aa70edc99e9671"}, {file = "tqdm-4.65.0.tar.gz", hash = "sha256:1871fb68a86b8fb3b59ca4cdd3dcccbc7e6d613eeed31f4c332531977b89beb5"}, ] [package.dependencies] colorama = {version = "*", markers = "platform_system == \"Windows\""} [package.extras] dev = ["py-make (>=0.1.0)", "twine", "wheel"] notebook = ["ipywidgets (>=6)"] slack = ["slack-sdk"] telegram = ["requests"] [[package]] name = "traitlets" version = "5.9.0" description = "Traitlets Python configuration system" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "traitlets-5.9.0-py3-none-any.whl", hash = "sha256:9e6ec080259b9a5940c797d58b613b5e31441c2257b87c2e795c5228ae80d2d8"}, {file = "traitlets-5.9.0.tar.gz", hash = "sha256:f6cde21a9c68cf756af02035f72d5a723bf607e862e7be33ece505abf4a3bad9"}, ] [package.extras] docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] test = ["argcomplete (>=2.0)", "pre-commit", "pytest", "pytest-mock"] [[package]] name = "transformers" version = "4.29.2" description = "State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow" category = "main" optional = false python-versions = ">=3.7.0" files = [ {file = "transformers-4.29.2-py3-none-any.whl", hash = "sha256:0ef158b99bad6f4e6652a0d8655fbbe58b4cb788ce7040f320b5d29c7c810a75"}, {file = "transformers-4.29.2.tar.gz", hash = "sha256:ed9467661f459f1ce49461d83f18f3b36b6a37f306182dc2ba272935f3b93ebb"}, ] [package.dependencies] filelock = "*" huggingface-hub = ">=0.14.1,<1.0" numpy = ">=1.17" packaging = ">=20.0" pyyaml = ">=5.1" regex = "!=2019.12.17" requests = "*" tokenizers = ">=0.11.1,<0.11.3 || >0.11.3,<0.14" tqdm = ">=4.27" [package.extras] accelerate = ["accelerate (>=0.19.0)"] agents = ["Pillow", "accelerate (>=0.19.0)", "datasets (!=2.5.0)", "diffusers", "opencv-python", "sentencepiece (>=0.1.91,!=0.1.92)", "torch (>=1.9,!=1.12.0)"] all = ["Pillow", "accelerate (>=0.19.0)", "av (==9.2.0)", "codecarbon (==1.2.0)", "decord (==0.6.0)", "flax (>=0.4.1,<=0.6.9)", "jax (>=0.2.8,!=0.3.2,<=0.3.6)", "jaxlib (>=0.1.65,<=0.3.6)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "numba (<0.57.0)", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "phonemizer", "protobuf (<=3.20.2)", "pyctcdecode (>=0.4.0)", "ray[tune]", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>=2.4,<2.13)", "tensorflow-text (<2.13)", "tf2onnx", "timm", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "torch (>=1.9,!=1.12.0)", "torchaudio", "torchvision"] audio = ["kenlm", "librosa", "numba (<0.57.0)", "phonemizer", "pyctcdecode (>=0.4.0)"] codecarbon = ["codecarbon (==1.2.0)"] deepspeed = ["accelerate (>=0.19.0)", "deepspeed (>=0.8.3)"] deepspeed-testing = ["GitPython (<3.1.19)", "accelerate (>=0.19.0)", "beautifulsoup4", "black (>=23.1,<24.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "deepspeed (>=0.8.3)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "hf-doc-builder (>=0.3.0)", "nltk", "optuna", "parameterized", "protobuf (<=3.20.2)", "psutil", "pytest", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "safetensors (>=0.2.1)", "sentencepiece (>=0.1.91,!=0.1.92)", "timeout-decorator"] dev = ["GitPython (<3.1.19)", "Pillow", "accelerate (>=0.19.0)", "av (==9.2.0)", "beautifulsoup4", "black (>=23.1,<24.0)", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "decord (==0.6.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "flax (>=0.4.1,<=0.6.9)", "fugashi (>=1.0)", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "jax (>=0.2.8,!=0.3.2,<=0.3.6)", "jaxlib (>=0.1.65,<=0.3.6)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "nltk", "numba (<0.57.0)", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "parameterized", "phonemizer", "protobuf (<=3.20.2)", "psutil", "pyctcdecode (>=0.4.0)", "pytest", "pytest-timeout", "pytest-xdist", "ray[tune]", "rhoknp (>=1.1.0)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (>=0.0.241,<=0.0.259)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "safetensors (>=0.2.1)", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorflow (>=2.4,<2.13)", "tensorflow-text (<2.13)", "tf2onnx", "timeout-decorator", "timm", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "torch (>=1.9,!=1.12.0)", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"] dev-tensorflow = ["GitPython (<3.1.19)", "Pillow", "beautifulsoup4", "black (>=23.1,<24.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "isort (>=5.5.4)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "nltk", "numba (<0.57.0)", "onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "parameterized", "phonemizer", "protobuf (<=3.20.2)", "psutil", "pyctcdecode (>=0.4.0)", "pytest", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (>=0.0.241,<=0.0.259)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "safetensors (>=0.2.1)", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorflow (>=2.4,<2.13)", "tensorflow-text (<2.13)", "tf2onnx", "timeout-decorator", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "urllib3 (<2.0.0)"] dev-torch = ["GitPython (<3.1.19)", "Pillow", "accelerate (>=0.19.0)", "beautifulsoup4", "black (>=23.1,<24.0)", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "fugashi (>=1.0)", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "kenlm", "librosa", "nltk", "numba (<0.57.0)", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "optuna", "parameterized", "phonemizer", "protobuf (<=3.20.2)", "psutil", "pyctcdecode (>=0.4.0)", "pytest", "pytest-timeout", "pytest-xdist", "ray[tune]", "rhoknp (>=1.1.0)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (>=0.0.241,<=0.0.259)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "safetensors (>=0.2.1)", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "timeout-decorator", "timm", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "torch (>=1.9,!=1.12.0)", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"] docs = ["Pillow", "accelerate (>=0.19.0)", "av (==9.2.0)", "codecarbon (==1.2.0)", "decord (==0.6.0)", "flax (>=0.4.1,<=0.6.9)", "hf-doc-builder", "jax (>=0.2.8,!=0.3.2,<=0.3.6)", "jaxlib (>=0.1.65,<=0.3.6)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "numba (<0.57.0)", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "phonemizer", "protobuf (<=3.20.2)", "pyctcdecode (>=0.4.0)", "ray[tune]", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>=2.4,<2.13)", "tensorflow-text (<2.13)", "tf2onnx", "timm", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "torch (>=1.9,!=1.12.0)", "torchaudio", "torchvision"] docs-specific = ["hf-doc-builder"] fairscale = ["fairscale (>0.3)"] flax = ["flax (>=0.4.1,<=0.6.9)", "jax (>=0.2.8,!=0.3.2,<=0.3.6)", "jaxlib (>=0.1.65,<=0.3.6)", "optax (>=0.0.8,<=0.1.4)"] flax-speech = ["kenlm", "librosa", "numba (<0.57.0)", "phonemizer", "pyctcdecode (>=0.4.0)"] ftfy = ["ftfy"] integrations = ["optuna", "ray[tune]", "sigopt"] ja = ["fugashi (>=1.0)", "ipadic (>=1.0.0,<2.0)", "rhoknp (>=1.1.0)", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)"] modelcreation = ["cookiecutter (==1.7.3)"] natten = ["natten (>=0.14.6)"] onnx = ["onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "tf2onnx"] onnxruntime = ["onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)"] optuna = ["optuna"] quality = ["GitPython (<3.1.19)", "black (>=23.1,<24.0)", "datasets (!=2.5.0)", "hf-doc-builder (>=0.3.0)", "isort (>=5.5.4)", "ruff (>=0.0.241,<=0.0.259)", "urllib3 (<2.0.0)"] ray = ["ray[tune]"] retrieval = ["datasets (!=2.5.0)", "faiss-cpu"] sagemaker = ["sagemaker (>=2.31.0)"] sentencepiece = ["protobuf (<=3.20.2)", "sentencepiece (>=0.1.91,!=0.1.92)"] serving = ["fastapi", "pydantic", "starlette", "uvicorn"] sigopt = ["sigopt"] sklearn = ["scikit-learn"] speech = ["kenlm", "librosa", "numba (<0.57.0)", "phonemizer", "pyctcdecode (>=0.4.0)", "torchaudio"] testing = ["GitPython (<3.1.19)", "beautifulsoup4", "black (>=23.1,<24.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "hf-doc-builder (>=0.3.0)", "nltk", "parameterized", "protobuf (<=3.20.2)", "psutil", "pytest", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "safetensors (>=0.2.1)", "timeout-decorator"] tf = ["keras-nlp (>=0.3.1)", "onnxconverter-common", "tensorflow (>=2.4,<2.13)", "tensorflow-text (<2.13)", "tf2onnx"] tf-cpu = ["keras-nlp (>=0.3.1)", "onnxconverter-common", "tensorflow-cpu (>=2.4,<2.13)", "tensorflow-text (<2.13)", "tf2onnx"] tf-speech = ["kenlm", "librosa", "numba (<0.57.0)", "phonemizer", "pyctcdecode (>=0.4.0)"] timm = ["timm"] tokenizers = ["tokenizers (>=0.11.1,!=0.11.3,<0.14)"] torch = ["accelerate (>=0.19.0)", "torch (>=1.9,!=1.12.0)"] torch-speech = ["kenlm", "librosa", "numba (<0.57.0)", "phonemizer", "pyctcdecode (>=0.4.0)", "torchaudio"] torch-vision = ["Pillow", "torchvision"] torchhub = ["filelock", "huggingface-hub (>=0.14.1,<1.0)", "importlib-metadata", "numpy (>=1.17)", "packaging (>=20.0)", "protobuf (<=3.20.2)", "regex (!=2019.12.17)", "requests", "sentencepiece (>=0.1.91,!=0.1.92)", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "torch (>=1.9,!=1.12.0)", "tqdm (>=4.27)"] video = ["av (==9.2.0)", "decord (==0.6.0)"] vision = ["Pillow"] [[package]] name = "typer" version = "0.7.0" description = "Typer, build great CLIs. Easy to code. Based on Python type hints." category = "main" optional = true python-versions = ">=3.6" files = [ {file = "typer-0.7.0-py3-none-any.whl", hash = "sha256:b5e704f4e48ec263de1c0b3a2387cd405a13767d2f907f44c1a08cbad96f606d"}, {file = "typer-0.7.0.tar.gz", hash = "sha256:ff797846578a9f2a201b53442aedeb543319466870fbe1c701eab66dd7681165"}, ] [package.dependencies] click = ">=7.1.1,<9.0.0" [package.extras] all = ["colorama (>=0.4.3,<0.5.0)", "rich (>=10.11.0,<13.0.0)", "shellingham (>=1.3.0,<2.0.0)"] dev = ["autoflake (>=1.3.1,<2.0.0)", "flake8 (>=3.8.3,<4.0.0)", "pre-commit (>=2.17.0,<3.0.0)"] doc = ["cairosvg (>=2.5.2,<3.0.0)", "mdx-include (>=1.4.1,<2.0.0)", "mkdocs (>=1.1.2,<2.0.0)", "mkdocs-material (>=8.1.4,<9.0.0)", "pillow (>=9.3.0,<10.0.0)"] test = ["black (>=22.3.0,<23.0.0)", "coverage (>=6.2,<7.0)", "isort (>=5.0.6,<6.0.0)", "mypy (==0.910)", "pytest (>=4.4.0,<8.0.0)", "pytest-cov (>=2.10.0,<5.0.0)", "pytest-sugar (>=0.9.4,<0.10.0)", "pytest-xdist (>=1.32.0,<4.0.0)", "rich (>=10.11.0,<13.0.0)", "shellingham (>=1.3.0,<2.0.0)"] [[package]] name = "types-chardet" version = "5.0.4.6" description = "Typing stubs for chardet" category = "dev" optional = false python-versions = "*" files = [ {file = "types-chardet-5.0.4.6.tar.gz", hash = "sha256:caf4c74cd13ccfd8b3313c314aba943b159de562a2573ed03137402b2bb37818"}, {file = "types_chardet-5.0.4.6-py3-none-any.whl", hash = "sha256:ea832d87e798abf1e4dfc73767807c2b7fee35d0003ae90348aea4ae00fb004d"}, ] [[package]] name = "types-pyopenssl" version = "23.1.0.3" description = "Typing stubs for pyOpenSSL" category = "dev" optional = false python-versions = "*" files = [ {file = "types-pyOpenSSL-23.1.0.3.tar.gz", hash = "sha256:e7211088eff3e20d359888dedecb0994f7181d5cce0f26354dd47ca0484dc8a6"}, {file = "types_pyOpenSSL-23.1.0.3-py3-none-any.whl", hash = "sha256:ad024b07a1f4bffbca44699543c71efd04733a6c22781fa9673a971e410a3086"}, ] [package.dependencies] cryptography = ">=35.0.0" [[package]] name = "types-pyyaml" version = "6.0.12.9" description = "Typing stubs for PyYAML" category = "dev" optional = false python-versions = "*" files = [ {file = "types-PyYAML-6.0.12.9.tar.gz", hash = "sha256:c51b1bd6d99ddf0aa2884a7a328810ebf70a4262c292195d3f4f9a0005f9eeb6"}, {file = "types_PyYAML-6.0.12.9-py3-none-any.whl", hash = "sha256:5aed5aa66bd2d2e158f75dda22b059570ede988559f030cf294871d3b647e3e8"}, ] [[package]] name = "types-redis" version = "4.5.5.2" description = "Typing stubs for redis" category = "dev" optional = false python-versions = "*" files = [ {file = "types-redis-4.5.5.2.tar.gz", hash = "sha256:2fe82f374d9dddf007deaf23d81fddcfd9523d9522bf11523c5c43bc5b27099e"}, {file = "types_redis-4.5.5.2-py3-none-any.whl", hash = "sha256:bf8692252038dbe03b007ca4fde87d3ae8e10610854a6858e3bf5d01721a7c4b"}, ] [package.dependencies] cryptography = ">=35.0.0" types-pyOpenSSL = "*" [[package]] name = "types-requests" version = "2.30.0.0" description = "Typing stubs for requests" category = "main" optional = false python-versions = "*" files = [ {file = "types-requests-2.30.0.0.tar.gz", hash = "sha256:dec781054324a70ba64430ae9e62e7e9c8e4618c185a5cb3f87a6738251b5a31"}, {file = "types_requests-2.30.0.0-py3-none-any.whl", hash = "sha256:c6cf08e120ca9f0dc4fa4e32c3f953c3fba222bcc1db6b97695bce8da1ba9864"}, ] [package.dependencies] types-urllib3 = "*" [[package]] name = "types-toml" version = "0.10.8.6" description = "Typing stubs for toml" category = "dev" optional = false python-versions = "*" files = [ {file = "types-toml-0.10.8.6.tar.gz", hash = "sha256:6d3ac79e36c9ee593c5d4fb33a50cca0e3adceb6ef5cff8b8e5aef67b4c4aaf2"}, {file = "types_toml-0.10.8.6-py3-none-any.whl", hash = "sha256:de7b2bb1831d6f7a4b554671ffe5875e729753496961b3e9b202745e4955dafa"}, ] [[package]] name = "types-urllib3" version = "1.26.25.13" description = "Typing stubs for urllib3" category = "main" optional = false python-versions = "*" files = [ {file = "types-urllib3-1.26.25.13.tar.gz", hash = "sha256:3300538c9dc11dad32eae4827ac313f5d986b8b21494801f1bf97a1ac6c03ae5"}, {file = "types_urllib3-1.26.25.13-py3-none-any.whl", hash = "sha256:5dbd1d2bef14efee43f5318b5d36d805a489f6600252bb53626d4bfafd95e27c"}, ] [[package]] name = "typing-extensions" version = "4.5.0" description = "Backported and Experimental Type Hints for Python 3.7+" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "typing_extensions-4.5.0-py3-none-any.whl", hash = "sha256:fb33085c39dd998ac16d1431ebc293a8b3eedd00fd4a32de0ff79002c19511b4"}, {file = "typing_extensions-4.5.0.tar.gz", hash = "sha256:5cb5f4a79139d699607b3ef622a1dedafa84e115ab0024e0d9c044a9479ca7cb"}, ] [[package]] name = "typing-inspect" version = "0.8.0" description = "Runtime inspection utilities for typing module." category = "main" optional = false python-versions = "*" files = [ {file = "typing_inspect-0.8.0-py3-none-any.whl", hash = "sha256:5fbf9c1e65d4fa01e701fe12a5bca6c6e08a4ffd5bc60bfac028253a447c5188"}, {file = "typing_inspect-0.8.0.tar.gz", hash = "sha256:8b1ff0c400943b6145df8119c41c244ca8207f1f10c9c057aeed1560e4806e3d"}, ] [package.dependencies] mypy-extensions = ">=0.3.0" typing-extensions = ">=3.7.4" [[package]] name = "tzdata" version = "2023.3" description = "Provider of IANA time zone data" category = "main" optional = false python-versions = ">=2" files = [ {file = "tzdata-2023.3-py2.py3-none-any.whl", hash = "sha256:7e65763eef3120314099b6939b5546db7adce1e7d6f2e179e3df563c70511eda"}, {file = "tzdata-2023.3.tar.gz", hash = "sha256:11ef1e08e54acb0d4f95bdb1be05da659673de4acbd21bf9c69e94cc5e907a3a"}, ] [[package]] name = "tzlocal" version = "5.0.1" description = "tzinfo object for the local timezone" category = "main" optional = true python-versions = ">=3.7" files = [ {file = "tzlocal-5.0.1-py3-none-any.whl", hash = "sha256:f3596e180296aaf2dbd97d124fe76ae3a0e3d32b258447de7b939b3fd4be992f"}, {file = "tzlocal-5.0.1.tar.gz", hash = "sha256:46eb99ad4bdb71f3f72b7d24f4267753e240944ecfc16f25d2719ba89827a803"}, ] [package.dependencies] "backports.zoneinfo" = {version = "*", markers = "python_version < \"3.9\""} tzdata = {version = "*", markers = "platform_system == \"Windows\""} [package.extras] devenv = ["black", "check-manifest", "flake8", "pyroma", "pytest (>=4.3)", "pytest-cov", "pytest-mock (>=3.3)", "zest.releaser"] [[package]] name = "uri-template" version = "1.2.0" description = "RFC 6570 URI Template Processor" category = "dev" optional = false python-versions = ">=3.6" files = [ {file = "uri_template-1.2.0-py3-none-any.whl", hash = "sha256:f1699c77b73b925cf4937eae31ab282a86dc885c333f2e942513f08f691fc7db"}, {file = "uri_template-1.2.0.tar.gz", hash = "sha256:934e4d09d108b70eb8a24410af8615294d09d279ce0e7cbcdaef1bd21f932b06"}, ] [package.extras] dev = ["flake8 (<4.0.0)", "flake8-annotations", "flake8-bugbear", "flake8-commas", "flake8-comprehensions", "flake8-continuation", "flake8-datetimez", "flake8-docstrings", "flake8-import-order", "flake8-literal", "flake8-noqa", "flake8-requirements", "flake8-type-annotations", "flake8-use-fstring", "mypy", "pep8-naming"] [[package]] name = "uritemplate" version = "4.1.1" description = "Implementation of RFC 6570 URI Templates" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "uritemplate-4.1.1-py2.py3-none-any.whl", hash = "sha256:830c08b8d99bdd312ea4ead05994a38e8936266f84b9a7878232db50b044e02e"}, {file = "uritemplate-4.1.1.tar.gz", hash = "sha256:4346edfc5c3b79f694bccd6d6099a322bbeb628dbf2cd86eea55a456ce5124f0"}, ] [[package]] name = "urllib3" version = "1.26.15" description = "HTTP library with thread-safe connection pooling, file post, and more." category = "main" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*" files = [ {file = "urllib3-1.26.15-py2.py3-none-any.whl", hash = "sha256:aa751d169e23c7479ce47a0cb0da579e3ede798f994f5816a74e4f4500dcea42"}, {file = "urllib3-1.26.15.tar.gz", hash = "sha256:8a388717b9476f934a21484e8c8e61875ab60644d29b9b39e11e4b9dc1c6b305"}, ] [package.extras] brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)", "brotlipy (>=0.6.0)"] secure = ["certifi", "cryptography (>=1.3.4)", "idna (>=2.0.0)", "ipaddress", "pyOpenSSL (>=0.14)", "urllib3-secure-extra"] socks = ["PySocks (>=1.5.6,!=1.5.7,<2.0)"] [[package]] name = "uvicorn" version = "0.22.0" description = "The lightning-fast ASGI server." category = "main" optional = false python-versions = ">=3.7" files = [ {file = "uvicorn-0.22.0-py3-none-any.whl", hash = "sha256:e9434d3bbf05f310e762147f769c9f21235ee118ba2d2bf1155a7196448bd996"}, {file = "uvicorn-0.22.0.tar.gz", hash = "sha256:79277ae03db57ce7d9aa0567830bbb51d7a612f54d6e1e3e92da3ef24c2c8ed8"}, ] [package.dependencies] click = ">=7.0" colorama = {version = ">=0.4", optional = true, markers = "sys_platform == \"win32\" and extra == \"standard\""} h11 = ">=0.8" httptools = {version = ">=0.5.0", optional = true, markers = "extra == \"standard\""} python-dotenv = {version = ">=0.13", optional = true, markers = "extra == \"standard\""} pyyaml = {version = ">=5.1", optional = true, markers = "extra == \"standard\""} uvloop = {version = ">=0.14.0,<0.15.0 || >0.15.0,<0.15.1 || >0.15.1", optional = true, markers = "sys_platform != \"win32\" and sys_platform != \"cygwin\" and platform_python_implementation != \"PyPy\" and extra == \"standard\""} watchfiles = {version = ">=0.13", optional = true, markers = "extra == \"standard\""} websockets = {version = ">=10.4", optional = true, markers = "extra == \"standard\""} [package.extras] standard = ["colorama (>=0.4)", "httptools (>=0.5.0)", "python-dotenv (>=0.13)", "pyyaml (>=5.1)", "uvloop (>=0.14.0,!=0.15.0,!=0.15.1)", "watchfiles (>=0.13)", "websockets (>=10.4)"] [[package]] name = "uvloop" version = "0.17.0" description = "Fast implementation of asyncio event loop on top of libuv" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "uvloop-0.17.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:ce9f61938d7155f79d3cb2ffa663147d4a76d16e08f65e2c66b77bd41b356718"}, {file = "uvloop-0.17.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:68532f4349fd3900b839f588972b3392ee56042e440dd5873dfbbcd2cc67617c"}, {file = "uvloop-0.17.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0949caf774b9fcefc7c5756bacbbbd3fc4c05a6b7eebc7c7ad6f825b23998d6d"}, {file = "uvloop-0.17.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ff3d00b70ce95adce264462c930fbaecb29718ba6563db354608f37e49e09024"}, {file = "uvloop-0.17.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:a5abddb3558d3f0a78949c750644a67be31e47936042d4f6c888dd6f3c95f4aa"}, {file = "uvloop-0.17.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8efcadc5a0003d3a6e887ccc1fb44dec25594f117a94e3127954c05cf144d811"}, {file = "uvloop-0.17.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:3378eb62c63bf336ae2070599e49089005771cc651c8769aaad72d1bd9385a7c"}, {file = "uvloop-0.17.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6aafa5a78b9e62493539456f8b646f85abc7093dd997f4976bb105537cf2635e"}, {file = "uvloop-0.17.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c686a47d57ca910a2572fddfe9912819880b8765e2f01dc0dd12a9bf8573e539"}, {file = "uvloop-0.17.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:864e1197139d651a76c81757db5eb199db8866e13acb0dfe96e6fc5d1cf45fc4"}, {file = "uvloop-0.17.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:2a6149e1defac0faf505406259561bc14b034cdf1d4711a3ddcdfbaa8d825a05"}, {file = "uvloop-0.17.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:6708f30db9117f115eadc4f125c2a10c1a50d711461699a0cbfaa45b9a78e376"}, {file = "uvloop-0.17.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:23609ca361a7fc587031429fa25ad2ed7242941adec948f9d10c045bfecab06b"}, {file = "uvloop-0.17.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2deae0b0fb00a6af41fe60a675cec079615b01d68beb4cc7b722424406b126a8"}, {file = "uvloop-0.17.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:45cea33b208971e87a31c17622e4b440cac231766ec11e5d22c76fab3bf9df62"}, {file = "uvloop-0.17.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:9b09e0f0ac29eee0451d71798878eae5a4e6a91aa275e114037b27f7db72702d"}, {file = "uvloop-0.17.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:dbbaf9da2ee98ee2531e0c780455f2841e4675ff580ecf93fe5c48fe733b5667"}, {file = "uvloop-0.17.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:a4aee22ece20958888eedbad20e4dbb03c37533e010fb824161b4f05e641f738"}, {file = "uvloop-0.17.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:307958f9fc5c8bb01fad752d1345168c0abc5d62c1b72a4a8c6c06f042b45b20"}, {file = "uvloop-0.17.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ebeeec6a6641d0adb2ea71dcfb76017602ee2bfd8213e3fcc18d8f699c5104f"}, {file = "uvloop-0.17.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1436c8673c1563422213ac6907789ecb2b070f5939b9cbff9ef7113f2b531595"}, {file = "uvloop-0.17.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:8887d675a64cfc59f4ecd34382e5b4f0ef4ae1da37ed665adba0c2badf0d6578"}, {file = "uvloop-0.17.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:3db8de10ed684995a7f34a001f15b374c230f7655ae840964d51496e2f8a8474"}, {file = "uvloop-0.17.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7d37dccc7ae63e61f7b96ee2e19c40f153ba6ce730d8ba4d3b4e9738c1dccc1b"}, {file = "uvloop-0.17.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:cbbe908fda687e39afd6ea2a2f14c2c3e43f2ca88e3a11964b297822358d0e6c"}, {file = "uvloop-0.17.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3d97672dc709fa4447ab83276f344a165075fd9f366a97b712bdd3fee05efae8"}, {file = "uvloop-0.17.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f1e507c9ee39c61bfddd79714e4f85900656db1aec4d40c6de55648e85c2799c"}, {file = "uvloop-0.17.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:c092a2c1e736086d59ac8e41f9c98f26bbf9b9222a76f21af9dfe949b99b2eb9"}, {file = "uvloop-0.17.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:30babd84706115626ea78ea5dbc7dd8d0d01a2e9f9b306d24ca4ed5796c66ded"}, {file = "uvloop-0.17.0.tar.gz", hash = "sha256:0ddf6baf9cf11a1a22c71487f39f15b2cf78eb5bde7e5b45fbb99e8a9d91b9e1"}, ] [package.extras] dev = ["Cython (>=0.29.32,<0.30.0)", "Sphinx (>=4.1.2,<4.2.0)", "aiohttp", "flake8 (>=3.9.2,<3.10.0)", "mypy (>=0.800)", "psutil", "pyOpenSSL (>=22.0.0,<22.1.0)", "pycodestyle (>=2.7.0,<2.8.0)", "pytest (>=3.6.0)", "sphinx-rtd-theme (>=0.5.2,<0.6.0)", "sphinxcontrib-asyncio (>=0.3.0,<0.4.0)"] docs = ["Sphinx (>=4.1.2,<4.2.0)", "sphinx-rtd-theme (>=0.5.2,<0.6.0)", "sphinxcontrib-asyncio (>=0.3.0,<0.4.0)"] test = ["Cython (>=0.29.32,<0.30.0)", "aiohttp", "flake8 (>=3.9.2,<3.10.0)", "mypy (>=0.800)", "psutil", "pyOpenSSL (>=22.0.0,<22.1.0)", "pycodestyle (>=2.7.0,<2.8.0)"] [[package]] name = "validators" version = "0.20.0" description = "Python Data Validation for Humans™." category = "main" optional = false python-versions = ">=3.4" files = [ {file = "validators-0.20.0.tar.gz", hash = "sha256:24148ce4e64100a2d5e267233e23e7afeb55316b47d30faae7eb6e7292bc226a"}, ] [package.dependencies] decorator = ">=3.4.0" [package.extras] test = ["flake8 (>=2.4.0)", "isort (>=4.2.2)", "pytest (>=2.2.3)"] [[package]] name = "vcrpy" version = "4.2.1" description = "Automatically mock your HTTP interactions to simplify and speed up testing" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "vcrpy-4.2.1-py2.py3-none-any.whl", hash = "sha256:efac3e2e0b2af7686f83a266518180af7a048619b2f696e7bad9520f5e2eac09"}, {file = "vcrpy-4.2.1.tar.gz", hash = "sha256:7cd3e81a2c492e01c281f180bcc2a86b520b173d2b656cb5d89d99475423e013"}, ] [package.dependencies] PyYAML = "*" six = ">=1.5" wrapt = "*" yarl = "*" [[package]] name = "wasabi" version = "1.1.1" description = "A lightweight console printing and formatting toolkit" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "wasabi-1.1.1-py3-none-any.whl", hash = "sha256:32e44649d99a64e08e40c1c96cddb69fad460bd0cc33802a53cab6714dfb73f8"}, {file = "wasabi-1.1.1.tar.gz", hash = "sha256:f5ee7c609027811bd16e620f2fd7a7319466005848e41b051a62053ab8fd70d6"}, ] [package.dependencies] colorama = {version = ">=0.4.6", markers = "sys_platform == \"win32\" and python_version >= \"3.7\""} [[package]] name = "watchdog" version = "3.0.0" description = "Filesystem events monitoring" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "watchdog-3.0.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:336adfc6f5cc4e037d52db31194f7581ff744b67382eb6021c868322e32eef41"}, {file = "watchdog-3.0.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a70a8dcde91be523c35b2bf96196edc5730edb347e374c7de7cd20c43ed95397"}, {file = "watchdog-3.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:adfdeab2da79ea2f76f87eb42a3ab1966a5313e5a69a0213a3cc06ef692b0e96"}, {file = "watchdog-3.0.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:2b57a1e730af3156d13b7fdddfc23dea6487fceca29fc75c5a868beed29177ae"}, {file = "watchdog-3.0.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7ade88d0d778b1b222adebcc0927428f883db07017618a5e684fd03b83342bd9"}, {file = "watchdog-3.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7e447d172af52ad204d19982739aa2346245cc5ba6f579d16dac4bfec226d2e7"}, {file = "watchdog-3.0.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:9fac43a7466eb73e64a9940ac9ed6369baa39b3bf221ae23493a9ec4d0022674"}, {file = "watchdog-3.0.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:8ae9cda41fa114e28faf86cb137d751a17ffd0316d1c34ccf2235e8a84365c7f"}, {file = "watchdog-3.0.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:25f70b4aa53bd743729c7475d7ec41093a580528b100e9a8c5b5efe8899592fc"}, {file = "watchdog-3.0.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4f94069eb16657d2c6faada4624c39464f65c05606af50bb7902e036e3219be3"}, {file = "watchdog-3.0.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7c5f84b5194c24dd573fa6472685b2a27cc5a17fe5f7b6fd40345378ca6812e3"}, {file = "watchdog-3.0.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3aa7f6a12e831ddfe78cdd4f8996af9cf334fd6346531b16cec61c3b3c0d8da0"}, {file = "watchdog-3.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:233b5817932685d39a7896b1090353fc8efc1ef99c9c054e46c8002561252fb8"}, {file = "watchdog-3.0.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:13bbbb462ee42ec3c5723e1205be8ced776f05b100e4737518c67c8325cf6100"}, {file = "watchdog-3.0.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:8f3ceecd20d71067c7fd4c9e832d4e22584318983cabc013dbf3f70ea95de346"}, {file = "watchdog-3.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:c9d8c8ec7efb887333cf71e328e39cffbf771d8f8f95d308ea4125bf5f90ba64"}, {file = "watchdog-3.0.0-py3-none-manylinux2014_aarch64.whl", hash = "sha256:0e06ab8858a76e1219e68c7573dfeba9dd1c0219476c5a44d5333b01d7e1743a"}, {file = "watchdog-3.0.0-py3-none-manylinux2014_armv7l.whl", hash = "sha256:d00e6be486affb5781468457b21a6cbe848c33ef43f9ea4a73b4882e5f188a44"}, {file = "watchdog-3.0.0-py3-none-manylinux2014_i686.whl", hash = "sha256:c07253088265c363d1ddf4b3cdb808d59a0468ecd017770ed716991620b8f77a"}, {file = "watchdog-3.0.0-py3-none-manylinux2014_ppc64.whl", hash = "sha256:5113334cf8cf0ac8cd45e1f8309a603291b614191c9add34d33075727a967709"}, {file = "watchdog-3.0.0-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:51f90f73b4697bac9c9a78394c3acbbd331ccd3655c11be1a15ae6fe289a8c83"}, {file = "watchdog-3.0.0-py3-none-manylinux2014_s390x.whl", hash = "sha256:ba07e92756c97e3aca0912b5cbc4e5ad802f4557212788e72a72a47ff376950d"}, {file = "watchdog-3.0.0-py3-none-manylinux2014_x86_64.whl", hash = "sha256:d429c2430c93b7903914e4db9a966c7f2b068dd2ebdd2fa9b9ce094c7d459f33"}, {file = "watchdog-3.0.0-py3-none-win32.whl", hash = "sha256:3ed7c71a9dccfe838c2f0b6314ed0d9b22e77d268c67e015450a29036a81f60f"}, {file = "watchdog-3.0.0-py3-none-win_amd64.whl", hash = "sha256:4c9956d27be0bb08fc5f30d9d0179a855436e655f046d288e2bcc11adfae893c"}, {file = "watchdog-3.0.0-py3-none-win_ia64.whl", hash = "sha256:5d9f3a10e02d7371cd929b5d8f11e87d4bad890212ed3901f9b4d68767bee759"}, {file = "watchdog-3.0.0.tar.gz", hash = "sha256:4d98a320595da7a7c5a18fc48cb633c2e73cda78f93cac2ef42d42bf609a33f9"}, ] [package.extras] watchmedo = ["PyYAML (>=3.10)"] [[package]] name = "watchfiles" version = "0.19.0" description = "Simple, modern and high performance file watching and code reload in python." category = "main" optional = false python-versions = ">=3.7" files = [ {file = "watchfiles-0.19.0-cp37-abi3-macosx_10_7_x86_64.whl", hash = "sha256:91633e64712df3051ca454ca7d1b976baf842d7a3640b87622b323c55f3345e7"}, {file = "watchfiles-0.19.0-cp37-abi3-macosx_11_0_arm64.whl", hash = "sha256:b6577b8c6c8701ba8642ea9335a129836347894b666dd1ec2226830e263909d3"}, {file = "watchfiles-0.19.0-cp37-abi3-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:18b28f6ad871b82df9542ff958d0c86bb0d8310bb09eb8e87d97318a3b5273af"}, {file = "watchfiles-0.19.0-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fac19dc9cbc34052394dbe81e149411a62e71999c0a19e1e09ce537867f95ae0"}, {file = "watchfiles-0.19.0-cp37-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:09ea3397aecbc81c19ed7f025e051a7387feefdb789cf768ff994c1228182fda"}, {file = "watchfiles-0.19.0-cp37-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c0376deac92377817e4fb8f347bf559b7d44ff556d9bc6f6208dd3f79f104aaf"}, {file = "watchfiles-0.19.0-cp37-abi3-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9c75eff897786ee262c9f17a48886f4e98e6cfd335e011c591c305e5d083c056"}, {file = "watchfiles-0.19.0-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cb5d45c4143c1dd60f98a16187fd123eda7248f84ef22244818c18d531a249d1"}, {file = "watchfiles-0.19.0-cp37-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:79c533ff593db861ae23436541f481ec896ee3da4e5db8962429b441bbaae16e"}, {file = "watchfiles-0.19.0-cp37-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:3d7d267d27aceeeaa3de0dd161a0d64f0a282264d592e335fff7958cc0cbae7c"}, {file = "watchfiles-0.19.0-cp37-abi3-win32.whl", hash = "sha256:176a9a7641ec2c97b24455135d58012a5be5c6217fc4d5fef0b2b9f75dbf5154"}, {file = "watchfiles-0.19.0-cp37-abi3-win_amd64.whl", hash = "sha256:945be0baa3e2440151eb3718fd8846751e8b51d8de7b884c90b17d271d34cae8"}, {file = "watchfiles-0.19.0-cp37-abi3-win_arm64.whl", hash = "sha256:0089c6dc24d436b373c3c57657bf4f9a453b13767150d17284fc6162b2791911"}, {file = "watchfiles-0.19.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl", hash = "sha256:cae3dde0b4b2078f31527acff6f486e23abed307ba4d3932466ba7cdd5ecec79"}, {file = "watchfiles-0.19.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:7f3920b1285a7d3ce898e303d84791b7bf40d57b7695ad549dc04e6a44c9f120"}, {file = "watchfiles-0.19.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9afd0d69429172c796164fd7fe8e821ade9be983f51c659a38da3faaaaac44dc"}, {file = "watchfiles-0.19.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:68dce92b29575dda0f8d30c11742a8e2b9b8ec768ae414b54f7453f27bdf9545"}, {file = "watchfiles-0.19.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl", hash = "sha256:5569fc7f967429d4bc87e355cdfdcee6aabe4b620801e2cf5805ea245c06097c"}, {file = "watchfiles-0.19.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:5471582658ea56fca122c0f0d0116a36807c63fefd6fdc92c71ca9a4491b6b48"}, {file = "watchfiles-0.19.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b538014a87f94d92f98f34d3e6d2635478e6be6423a9ea53e4dd96210065e193"}, {file = "watchfiles-0.19.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:20b44221764955b1e703f012c74015306fb7e79a00c15370785f309b1ed9aa8d"}, {file = "watchfiles-0.19.0.tar.gz", hash = "sha256:d9b073073e048081e502b6c6b0b88714c026a1a4c890569238d04aca5f9ca74b"}, ] [package.dependencies] anyio = ">=3.0.0" [[package]] name = "wcwidth" version = "0.2.6" description = "Measures the displayed width of unicode strings in a terminal" category = "dev" optional = false python-versions = "*" files = [ {file = "wcwidth-0.2.6-py2.py3-none-any.whl", hash = "sha256:795b138f6875577cd91bba52baf9e445cd5118fd32723b460e30a0af30ea230e"}, {file = "wcwidth-0.2.6.tar.gz", hash = "sha256:a5220780a404dbe3353789870978e472cfe477761f06ee55077256e509b156d0"}, ] [[package]] name = "weaviate-client" version = "3.19.1" description = "A python native weaviate client" category = "main" optional = false python-versions = ">=3.8" files = [ {file = "weaviate-client-3.19.1.tar.gz", hash = "sha256:8528926b0b545225ab75583481d67cccf9494d2dc01cb62f1165a8f187b41ebb"}, {file = "weaviate_client-3.19.1-py3-none-any.whl", hash = "sha256:6b4aae86cd955543fcc6328bc1462fbbae053dc50f7b6822287b05b98fec0d27"}, ] [package.dependencies] authlib = ">=1.1.0" requests = ">=2.28.0,<2.29.0" tqdm = ">=4.59.0,<5.0.0" validators = ">=0.18.2,<=0.21.0" [package.extras] grpc = ["grpcio", "grpcio-tools"] [[package]] name = "webcolors" version = "1.13" description = "A library for working with the color formats defined by HTML and CSS." category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "webcolors-1.13-py3-none-any.whl", hash = "sha256:29bc7e8752c0a1bd4a1f03c14d6e6a72e93d82193738fa860cbff59d0fcc11bf"}, {file = "webcolors-1.13.tar.gz", hash = "sha256:c225b674c83fa923be93d235330ce0300373d02885cef23238813b0d5668304a"}, ] [package.extras] docs = ["furo", "sphinx", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-notfound-page", "sphinxext-opengraph"] tests = ["pytest", "pytest-cov"] [[package]] name = "webencodings" version = "0.5.1" description = "Character encoding aliases for legacy web content" category = "dev" optional = false python-versions = "*" files = [ {file = "webencodings-0.5.1-py2.py3-none-any.whl", hash = "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78"}, {file = "webencodings-0.5.1.tar.gz", hash = "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923"}, ] [[package]] name = "websocket-client" version = "1.5.1" description = "WebSocket client for Python with low level API options" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "websocket-client-1.5.1.tar.gz", hash = "sha256:3f09e6d8230892547132177f575a4e3e73cfdf06526e20cc02aa1c3b47184d40"}, {file = "websocket_client-1.5.1-py3-none-any.whl", hash = "sha256:cdf5877568b7e83aa7cf2244ab56a3213de587bbe0ce9d8b9600fc77b455d89e"}, ] [package.extras] docs = ["Sphinx (>=3.4)", "sphinx-rtd-theme (>=0.5)"] optional = ["python-socks", "wsaccel"] test = ["websockets"] [[package]] name = "websockets" version = "11.0.3" description = "An implementation of the WebSocket Protocol (RFC 6455 & 7692)" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "websockets-11.0.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3ccc8a0c387629aec40f2fc9fdcb4b9d5431954f934da3eaf16cdc94f67dbfac"}, {file = "websockets-11.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d67ac60a307f760c6e65dad586f556dde58e683fab03323221a4e530ead6f74d"}, {file = "websockets-11.0.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:84d27a4832cc1a0ee07cdcf2b0629a8a72db73f4cf6de6f0904f6661227f256f"}, {file = "websockets-11.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ffd7dcaf744f25f82190856bc26ed81721508fc5cbf2a330751e135ff1283564"}, {file = "websockets-11.0.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7622a89d696fc87af8e8d280d9b421db5133ef5b29d3f7a1ce9f1a7bf7fcfa11"}, {file = "websockets-11.0.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bceab846bac555aff6427d060f2fcfff71042dba6f5fca7dc4f75cac815e57ca"}, {file = "websockets-11.0.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:54c6e5b3d3a8936a4ab6870d46bdd6ec500ad62bde9e44462c32d18f1e9a8e54"}, {file = "websockets-11.0.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:41f696ba95cd92dc047e46b41b26dd24518384749ed0d99bea0a941ca87404c4"}, {file = "websockets-11.0.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:86d2a77fd490ae3ff6fae1c6ceaecad063d3cc2320b44377efdde79880e11526"}, {file = "websockets-11.0.3-cp310-cp310-win32.whl", hash = "sha256:2d903ad4419f5b472de90cd2d40384573b25da71e33519a67797de17ef849b69"}, {file = "websockets-11.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:1d2256283fa4b7f4c7d7d3e84dc2ece74d341bce57d5b9bf385df109c2a1a82f"}, {file = "websockets-11.0.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:e848f46a58b9fcf3d06061d17be388caf70ea5b8cc3466251963c8345e13f7eb"}, {file = "websockets-11.0.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:aa5003845cdd21ac0dc6c9bf661c5beddd01116f6eb9eb3c8e272353d45b3288"}, {file = "websockets-11.0.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:b58cbf0697721120866820b89f93659abc31c1e876bf20d0b3d03cef14faf84d"}, {file = "websockets-11.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:660e2d9068d2bedc0912af508f30bbeb505bbbf9774d98def45f68278cea20d3"}, {file = "websockets-11.0.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c1f0524f203e3bd35149f12157438f406eff2e4fb30f71221c8a5eceb3617b6b"}, {file = "websockets-11.0.3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:def07915168ac8f7853812cc593c71185a16216e9e4fa886358a17ed0fd9fcf6"}, {file = "websockets-11.0.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:b30c6590146e53149f04e85a6e4fcae068df4289e31e4aee1fdf56a0dead8f97"}, {file = "websockets-11.0.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:619d9f06372b3a42bc29d0cd0354c9bb9fb39c2cbc1a9c5025b4538738dbffaf"}, {file = "websockets-11.0.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:01f5567d9cf6f502d655151645d4e8b72b453413d3819d2b6f1185abc23e82dd"}, {file = "websockets-11.0.3-cp311-cp311-win32.whl", hash = "sha256:e1459677e5d12be8bbc7584c35b992eea142911a6236a3278b9b5ce3326f282c"}, {file = "websockets-11.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:e7837cb169eca3b3ae94cc5787c4fed99eef74c0ab9506756eea335e0d6f3ed8"}, {file = "websockets-11.0.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:9f59a3c656fef341a99e3d63189852be7084c0e54b75734cde571182c087b152"}, {file = "websockets-11.0.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2529338a6ff0eb0b50c7be33dc3d0e456381157a31eefc561771ee431134a97f"}, {file = "websockets-11.0.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:34fd59a4ac42dff6d4681d8843217137f6bc85ed29722f2f7222bd619d15e95b"}, {file = "websockets-11.0.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:332d126167ddddec94597c2365537baf9ff62dfcc9db4266f263d455f2f031cb"}, {file = "websockets-11.0.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:6505c1b31274723ccaf5f515c1824a4ad2f0d191cec942666b3d0f3aa4cb4007"}, {file = "websockets-11.0.3-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:f467ba0050b7de85016b43f5a22b46383ef004c4f672148a8abf32bc999a87f0"}, {file = "websockets-11.0.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:9d9acd80072abcc98bd2c86c3c9cd4ac2347b5a5a0cae7ed5c0ee5675f86d9af"}, {file = "websockets-11.0.3-cp37-cp37m-win32.whl", hash = "sha256:e590228200fcfc7e9109509e4d9125eace2042fd52b595dd22bbc34bb282307f"}, {file = "websockets-11.0.3-cp37-cp37m-win_amd64.whl", hash = "sha256:b16fff62b45eccb9c7abb18e60e7e446998093cdcb50fed33134b9b6878836de"}, {file = "websockets-11.0.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:fb06eea71a00a7af0ae6aefbb932fb8a7df3cb390cc217d51a9ad7343de1b8d0"}, {file = "websockets-11.0.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:8a34e13a62a59c871064dfd8ffb150867e54291e46d4a7cf11d02c94a5275bae"}, {file = "websockets-11.0.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4841ed00f1026dfbced6fca7d963c4e7043aa832648671b5138008dc5a8f6d99"}, {file = "websockets-11.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1a073fc9ab1c8aff37c99f11f1641e16da517770e31a37265d2755282a5d28aa"}, {file = "websockets-11.0.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:68b977f21ce443d6d378dbd5ca38621755f2063d6fdb3335bda981d552cfff86"}, {file = "websockets-11.0.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e1a99a7a71631f0efe727c10edfba09ea6bee4166a6f9c19aafb6c0b5917d09c"}, {file = "websockets-11.0.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:bee9fcb41db2a23bed96c6b6ead6489702c12334ea20a297aa095ce6d31370d0"}, {file = "websockets-11.0.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:4b253869ea05a5a073ebfdcb5cb3b0266a57c3764cf6fe114e4cd90f4bfa5f5e"}, {file = "websockets-11.0.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:1553cb82942b2a74dd9b15a018dce645d4e68674de2ca31ff13ebc2d9f283788"}, {file = "websockets-11.0.3-cp38-cp38-win32.whl", hash = "sha256:f61bdb1df43dc9c131791fbc2355535f9024b9a04398d3bd0684fc16ab07df74"}, {file = "websockets-11.0.3-cp38-cp38-win_amd64.whl", hash = "sha256:03aae4edc0b1c68498f41a6772d80ac7c1e33c06c6ffa2ac1c27a07653e79d6f"}, {file = "websockets-11.0.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:777354ee16f02f643a4c7f2b3eff8027a33c9861edc691a2003531f5da4f6bc8"}, {file = "websockets-11.0.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8c82f11964f010053e13daafdc7154ce7385ecc538989a354ccc7067fd7028fd"}, {file = "websockets-11.0.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3580dd9c1ad0701169e4d6fc41e878ffe05e6bdcaf3c412f9d559389d0c9e016"}, {file = "websockets-11.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6f1a3f10f836fab6ca6efa97bb952300b20ae56b409414ca85bff2ad241d2a61"}, {file = "websockets-11.0.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:df41b9bc27c2c25b486bae7cf42fccdc52ff181c8c387bfd026624a491c2671b"}, {file = "websockets-11.0.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:279e5de4671e79a9ac877427f4ac4ce93751b8823f276b681d04b2156713b9dd"}, {file = "websockets-11.0.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:1fdf26fa8a6a592f8f9235285b8affa72748dc12e964a5518c6c5e8f916716f7"}, {file = "websockets-11.0.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:69269f3a0b472e91125b503d3c0b3566bda26da0a3261c49f0027eb6075086d1"}, {file = "websockets-11.0.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:97b52894d948d2f6ea480171a27122d77af14ced35f62e5c892ca2fae9344311"}, {file = "websockets-11.0.3-cp39-cp39-win32.whl", hash = "sha256:c7f3cb904cce8e1be667c7e6fef4516b98d1a6a0635a58a57528d577ac18a128"}, {file = "websockets-11.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:c792ea4eabc0159535608fc5658a74d1a81020eb35195dd63214dcf07556f67e"}, {file = "websockets-11.0.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:f2e58f2c36cc52d41f2659e4c0cbf7353e28c8c9e63e30d8c6d3494dc9fdedcf"}, {file = "websockets-11.0.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:de36fe9c02995c7e6ae6efe2e205816f5f00c22fd1fbf343d4d18c3d5ceac2f5"}, {file = "websockets-11.0.3-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0ac56b661e60edd453585f4bd68eb6a29ae25b5184fd5ba51e97652580458998"}, {file = "websockets-11.0.3-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e052b8467dd07d4943936009f46ae5ce7b908ddcac3fda581656b1b19c083d9b"}, {file = "websockets-11.0.3-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:42cc5452a54a8e46a032521d7365da775823e21bfba2895fb7b77633cce031bb"}, {file = "websockets-11.0.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e6316827e3e79b7b8e7d8e3b08f4e331af91a48e794d5d8b099928b6f0b85f20"}, {file = "websockets-11.0.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8531fdcad636d82c517b26a448dcfe62f720e1922b33c81ce695d0edb91eb931"}, {file = "websockets-11.0.3-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c114e8da9b475739dde229fd3bc6b05a6537a88a578358bc8eb29b4030fac9c9"}, {file = "websockets-11.0.3-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e063b1865974611313a3849d43f2c3f5368093691349cf3c7c8f8f75ad7cb280"}, {file = "websockets-11.0.3-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:92b2065d642bf8c0a82d59e59053dd2fdde64d4ed44efe4870fa816c1232647b"}, {file = "websockets-11.0.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:0ee68fe502f9031f19d495dae2c268830df2760c0524cbac5d759921ba8c8e82"}, {file = "websockets-11.0.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dcacf2c7a6c3a84e720d1bb2b543c675bf6c40e460300b628bab1b1efc7c034c"}, {file = "websockets-11.0.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b67c6f5e5a401fc56394f191f00f9b3811fe843ee93f4a70df3c389d1adf857d"}, {file = "websockets-11.0.3-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1d5023a4b6a5b183dc838808087033ec5df77580485fc533e7dab2567851b0a4"}, {file = "websockets-11.0.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:ed058398f55163a79bb9f06a90ef9ccc063b204bb346c4de78efc5d15abfe602"}, {file = "websockets-11.0.3-py3-none-any.whl", hash = "sha256:6681ba9e7f8f3b19440921e99efbb40fc89f26cd71bf539e45d8c8a25c976dc6"}, {file = "websockets-11.0.3.tar.gz", hash = "sha256:88fc51d9a26b10fc331be344f1781224a375b78488fc343620184e95a4b27016"}, ] [[package]] name = "werkzeug" version = "2.3.4" description = "The comprehensive WSGI web application library." category = "main" optional = true python-versions = ">=3.8" files = [ {file = "Werkzeug-2.3.4-py3-none-any.whl", hash = "sha256:48e5e61472fee0ddee27ebad085614ebedb7af41e88f687aaf881afb723a162f"}, {file = "Werkzeug-2.3.4.tar.gz", hash = "sha256:1d5a58e0377d1fe39d061a5de4469e414e78ccb1e1e59c0f5ad6fa1c36c52b76"}, ] [package.dependencies] MarkupSafe = ">=2.1.1" [package.extras] watchdog = ["watchdog (>=2.3)"] [[package]] name = "wget" version = "3.2" description = "pure python download utility" category = "main" optional = false python-versions = "*" files = [ {file = "wget-3.2.zip", hash = "sha256:35e630eca2aa50ce998b9b1a127bb26b30dfee573702782aa982f875e3f16061"}, ] [[package]] name = "wheel" version = "0.40.0" description = "A built-package format for Python" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "wheel-0.40.0-py3-none-any.whl", hash = "sha256:d236b20e7cb522daf2390fa84c55eea81c5c30190f90f29ae2ca1ad8355bf247"}, {file = "wheel-0.40.0.tar.gz", hash = "sha256:cd1196f3faee2b31968d626e1731c94f99cbdb67cf5a46e4f5656cbee7738873"}, ] [package.extras] test = ["pytest (>=6.0.0)"] [[package]] name = "whylabs-client" version = "0.5.1" description = "WhyLabs API client" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "whylabs-client-0.5.1.tar.gz", hash = "sha256:f7aacfab7d176812c2eb4cdeb8c52521eed0d30bc2a0836399798197a513cf04"}, {file = "whylabs_client-0.5.1-py3-none-any.whl", hash = "sha256:dc6958d5bb390f1057fe6f513cbce55c4e71d5f8a1461a7c93eb73814089de33"}, ] [package.dependencies] python-dateutil = "*" urllib3 = ">=1.25.3" [[package]] name = "whylogs" version = "1.1.42.dev3" description = "Profile and monitor your ML data pipeline end-to-end" category = "main" optional = true python-versions = ">=3.7.1,<4" files = [ {file = "whylogs-1.1.42.dev3-py3-none-any.whl", hash = "sha256:99aadb05b68c6c2dc5d00ba1fb45bdd5ac2c3da3fe812f3fd1573a0f06674121"}, {file = "whylogs-1.1.42.dev3.tar.gz", hash = "sha256:c82badf821f56935fd274e696e4d5ed151934e486f23ea5f5c60af31e6cdb632"}, ] [package.dependencies] protobuf = ">=3.19.4" typing-extensions = {version = ">=3.10", markers = "python_version < \"4\""} whylabs-client = ">=0.4.4,<1" whylogs-sketching = ">=3.4.1.dev3" [package.extras] all = ["Pillow (>=9.2.0,<10.0.0)", "boto3 (>=1.22.13,<2.0.0)", "fugue (>=0.8.1,<0.9.0)", "google-cloud-storage (>=2.5.0,<3.0.0)", "ipython", "mlflow-skinny (>=1.26.1,<2.0.0)", "numpy", "numpy (>=1.23.2)", "pandas", "pyarrow (>=8.0.0,<13)", "pybars3 (>=0.9,<0.10)", "pyspark (>=3.0.0,<4.0.0)", "requests (>=2.27,<3.0)", "scikit-learn (>=1.0.2,<2.0.0)", "scikit-learn (>=1.1.2,<2)", "scipy (>=1.5)", "scipy (>=1.9.2)"] datasets = ["pandas"] docs = ["furo (>=2022.3.4,<2023.0.0)", "ipython_genutils (>=0.2.0,<0.3.0)", "myst-parser[sphinx] (>=0.17.2,<0.18.0)", "nbconvert (>=7.0.0,<8.0.0)", "nbsphinx (>=0.8.9,<0.9.0)", "sphinx", "sphinx-autoapi", "sphinx-autobuild (>=2021.3.14,<2022.0.0)", "sphinx-copybutton (>=0.5.0,<0.6.0)", "sphinx-inline-tabs", "sphinxext-opengraph (>=0.6.3,<0.7.0)"] embeddings = ["numpy", "numpy (>=1.23.2)", "scikit-learn (>=1.0.2,<2.0.0)", "scikit-learn (>=1.1.2,<2)"] fugue = ["fugue (>=0.8.1,<0.9.0)"] gcs = ["google-cloud-storage (>=2.5.0,<3.0.0)"] image = ["Pillow (>=9.2.0,<10.0.0)"] mlflow = ["mlflow-skinny (>=1.26.1,<2.0.0)"] s3 = ["boto3 (>=1.22.13,<2.0.0)"] spark = ["pyarrow (>=8.0.0,<13)", "pyspark (>=3.0.0,<4.0.0)"] viz = ["Pillow (>=9.2.0,<10.0.0)", "ipython", "numpy", "numpy (>=1.23.2)", "pybars3 (>=0.9,<0.10)", "requests (>=2.27,<3.0)", "scipy (>=1.5)", "scipy (>=1.9.2)"] whylabs = ["requests (>=2.27,<3.0)"] [[package]] name = "whylogs-sketching" version = "3.4.1.dev3" description = "sketching library of whylogs" category = "main" optional = true python-versions = "*" files = [ {file = "whylogs-sketching-3.4.1.dev3.tar.gz", hash = "sha256:40b90eb9d5e4cbbfa63f6a1f3a3332b72258d270044b79030dc5d720fddd9499"}, {file = "whylogs_sketching-3.4.1.dev3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:9c20134eda881064099264f795d60321777b5e6c2357125a7a2787c9f15db684"}, {file = "whylogs_sketching-3.4.1.dev3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e76ac4c2d0214b8de8598867e721f774cca8877267bc2a9b2d0d06950fe76bd5"}, {file = "whylogs_sketching-3.4.1.dev3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:edc2b463d926ccacb7ee2147d206850bb0cbfea8766f091e8c575ada48db1cfd"}, {file = "whylogs_sketching-3.4.1.dev3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fdc2a3bd73895d1ffac1b3028ff55aaa6b60a9ec42d7b6b5785fa140f303dec0"}, {file = "whylogs_sketching-3.4.1.dev3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:46460eefcf22bcf20b0e6208de32e358478c17b1239221eb038d434f14ec427c"}, {file = "whylogs_sketching-3.4.1.dev3-cp310-cp310-win_amd64.whl", hash = "sha256:58b99a070429a7119a5727ac61c4e9ebcd6e92eed3d2646931a487fff3d6630e"}, {file = "whylogs_sketching-3.4.1.dev3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:531a4af8f707c1e8138a4ae41a117ba53241372bf191666a9e6b44ab6cd9e634"}, {file = "whylogs_sketching-3.4.1.dev3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ba536fca5f9578fa34d106c243fdccfef7d75b9d1fffb9d93df0debfe8e3ebc"}, {file = "whylogs_sketching-3.4.1.dev3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:afa843c68cafa08e82624e6a33d13ab7f00ad0301101960872fe152d5af5ab53"}, {file = "whylogs_sketching-3.4.1.dev3-cp311-cp311-win_amd64.whl", hash = "sha256:303d55c37565340c2d21c268c64a712fad612504cc4b98b1d1df848cac6d934f"}, {file = "whylogs_sketching-3.4.1.dev3-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:9d65fcf8dade1affe50181582b8894929993e37d7daa922d973a811790cd0208"}, {file = "whylogs_sketching-3.4.1.dev3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c4845e77c208ae64ada9170e1b92ed0abe28fe311c0fc35f9d8efa6926211ca2"}, {file = "whylogs_sketching-3.4.1.dev3-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:02cac1c87ac42d7fc7e6597862ac50bc035825988d21e8a2d763b416e83e845f"}, {file = "whylogs_sketching-3.4.1.dev3-cp36-cp36m-win_amd64.whl", hash = "sha256:52a174784e69870543fb87910e5549759f01a7f4cb6cac1773b2cc194ec0b72f"}, {file = "whylogs_sketching-3.4.1.dev3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:0931fc7500b78baf8f44222f1e3b58cfb707b0120328bc16cc50beaab5a954ec"}, {file = "whylogs_sketching-3.4.1.dev3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:803c104338a5c4e1c6eb077d35ca3a4443e455aa4e7f2769c93560bf135cdeb3"}, {file = "whylogs_sketching-3.4.1.dev3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:49e8f20351077497880b088dff9342f4b54d2d3c650c0b43daf121d97fb42468"}, {file = "whylogs_sketching-3.4.1.dev3-cp37-cp37m-win_amd64.whl", hash = "sha256:f9f3507b5df34de7a95b75f80009644371dd6406f9d8795e820edf8a594aeacc"}, {file = "whylogs_sketching-3.4.1.dev3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:2986dd5b35a93267e6d89e7aa256f714105bbe61bdb0381aeab588c2688e46b6"}, {file = "whylogs_sketching-3.4.1.dev3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:14f1bf4903e9cd2a196fe5a7268cca1434d423233e073917130d5b845f539c2a"}, {file = "whylogs_sketching-3.4.1.dev3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2ecfe0e4a629a4cefec9d7c7fac234119688085ba5f62feabed710cb5a322f8b"}, {file = "whylogs_sketching-3.4.1.dev3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:000e2c11b7bbbdefb3a343c15955868a682c02d607557fef7bad5a6ffd09a0cf"}, {file = "whylogs_sketching-3.4.1.dev3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:1e70ed1ed2f9c174a80673ae2ca24c1ec0e2a01c0bd6b0728640492fd5a50178"}, {file = "whylogs_sketching-3.4.1.dev3-cp38-cp38-win_amd64.whl", hash = "sha256:9efd56d5a21566fc49126ef54d37116078763bb9f8955b9c77421b4ca3fd8fc6"}, {file = "whylogs_sketching-3.4.1.dev3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:832247fd9d3ecf13791418a75c359db6c3aeffd51d7372d026e95f307ef286cc"}, {file = "whylogs_sketching-3.4.1.dev3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:cc81b547e331d96f6f4227280b9b5968ca4bd48dd7cb0c8b68c022037800009f"}, {file = "whylogs_sketching-3.4.1.dev3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3abf13da4347393a302843c2f06ce4e5fc56fd9c8564f64da13ceafb81eef90b"}, {file = "whylogs_sketching-3.4.1.dev3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d1d6e7d0ddb66ab725d7af63518ef6a24cd45b075b81e1d2081709df4c989853"}, {file = "whylogs_sketching-3.4.1.dev3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:0b05112e3f70cfccddd2f72e464fa113307d97188891433133d4219b9f8f5456"}, {file = "whylogs_sketching-3.4.1.dev3-cp39-cp39-win_amd64.whl", hash = "sha256:23759a00dd0e7019fbac06d9e9ab005ad6c14f80ec7935ccebccb7127296bc06"}, ] [[package]] name = "widgetsnbextension" version = "4.0.7" description = "Jupyter interactive widgets for Jupyter Notebook" category = "dev" optional = false python-versions = ">=3.7" files = [ {file = "widgetsnbextension-4.0.7-py3-none-any.whl", hash = "sha256:be3228a73bbab189a16be2d4a3cd89ecbd4e31948bfdc64edac17dcdee3cd99c"}, {file = "widgetsnbextension-4.0.7.tar.gz", hash = "sha256:ea67c17a7cd4ae358f8f46c3b304c40698bc0423732e3f273321ee141232c8be"}, ] [[package]] name = "wikipedia" version = "1.4.0" description = "Wikipedia API for Python" category = "main" optional = false python-versions = "*" files = [ {file = "wikipedia-1.4.0.tar.gz", hash = "sha256:db0fad1829fdd441b1852306e9856398204dc0786d2996dd2e0c8bb8e26133b2"}, ] [package.dependencies] beautifulsoup4 = "*" requests = ">=2.0.0,<3.0.0" [[package]] name = "win32-setctime" version = "1.1.0" description = "A small Python utility to set file creation time on Windows" category = "main" optional = false python-versions = ">=3.5" files = [ {file = "win32_setctime-1.1.0-py3-none-any.whl", hash = "sha256:231db239e959c2fe7eb1d7dc129f11172354f98361c4fa2d6d2d7e278baa8aad"}, {file = "win32_setctime-1.1.0.tar.gz", hash = "sha256:15cf5750465118d6929ae4de4eb46e8edae9a5634350c01ba582df868e932cb2"}, ] [package.extras] dev = ["black (>=19.3b0)", "pytest (>=4.6.2)"] [[package]] name = "wolframalpha" version = "5.0.0" description = "Wolfram|Alpha 2.0 API client" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "wolframalpha-5.0.0-py3-none-any.whl", hash = "sha256:159f5d8fd31e4a734a34a9f3ae8aec4e9b2ef392607f82069b4a324b6b1831d5"}, {file = "wolframalpha-5.0.0.tar.gz", hash = "sha256:38bf27654039ec85cc62c199dd319b6a4d6a7badfed7af1cd161f081afdb57c0"}, ] [package.dependencies] "jaraco.context" = "*" more-itertools = "*" xmltodict = "*" [package.extras] docs = ["jaraco.packaging (>=8.2)", "rst.linker (>=1.9)", "sphinx"] testing = ["keyring", "pmxbot", "pytest (>=3.5,!=3.7.3)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=1.2.3)", "pytest-cov", "pytest-enabler", "pytest-flake8", "pytest-mypy"] [[package]] name = "wonderwords" version = "2.2.0" description = "A python package for random words and sentences in the english language" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "wonderwords-2.2.0-py3-none-any.whl", hash = "sha256:65fc665f1f5590e98f6d9259414ea036bf1b6dd83e51aa6ba44473c99ca92da1"}, {file = "wonderwords-2.2.0.tar.gz", hash = "sha256:0b7ec6f591062afc55603bfea71463afbab06794b3064d9f7b04d0ce251a13d0"}, ] [package.extras] cli = ["rich (==9.10.0)"] [[package]] name = "wrapt" version = "1.15.0" description = "Module for decorators, wrappers and monkey patching." category = "main" optional = false python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,>=2.7" files = [ {file = "wrapt-1.15.0-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:ca1cccf838cd28d5a0883b342474c630ac48cac5df0ee6eacc9c7290f76b11c1"}, {file = "wrapt-1.15.0-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:e826aadda3cae59295b95343db8f3d965fb31059da7de01ee8d1c40a60398b29"}, {file = "wrapt-1.15.0-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:5fc8e02f5984a55d2c653f5fea93531e9836abbd84342c1d1e17abc4a15084c2"}, {file = "wrapt-1.15.0-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:96e25c8603a155559231c19c0349245eeb4ac0096fe3c1d0be5c47e075bd4f46"}, {file = "wrapt-1.15.0-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:40737a081d7497efea35ab9304b829b857f21558acfc7b3272f908d33b0d9d4c"}, {file = "wrapt-1.15.0-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:f87ec75864c37c4c6cb908d282e1969e79763e0d9becdfe9fe5473b7bb1e5f09"}, {file = "wrapt-1.15.0-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:1286eb30261894e4c70d124d44b7fd07825340869945c79d05bda53a40caa079"}, {file = "wrapt-1.15.0-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:493d389a2b63c88ad56cdc35d0fa5752daac56ca755805b1b0c530f785767d5e"}, {file = "wrapt-1.15.0-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:58d7a75d731e8c63614222bcb21dd992b4ab01a399f1f09dd82af17bbfc2368a"}, {file = "wrapt-1.15.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:21f6d9a0d5b3a207cdf7acf8e58d7d13d463e639f0c7e01d82cdb671e6cb7923"}, {file = "wrapt-1.15.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ce42618f67741d4697684e501ef02f29e758a123aa2d669e2d964ff734ee00ee"}, {file = "wrapt-1.15.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41d07d029dd4157ae27beab04d22b8e261eddfc6ecd64ff7000b10dc8b3a5727"}, {file = "wrapt-1.15.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:54accd4b8bc202966bafafd16e69da9d5640ff92389d33d28555c5fd4f25ccb7"}, {file = "wrapt-1.15.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2fbfbca668dd15b744418265a9607baa970c347eefd0db6a518aaf0cfbd153c0"}, {file = "wrapt-1.15.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:76e9c727a874b4856d11a32fb0b389afc61ce8aaf281ada613713ddeadd1cfec"}, {file = "wrapt-1.15.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e20076a211cd6f9b44a6be58f7eeafa7ab5720eb796975d0c03f05b47d89eb90"}, {file = "wrapt-1.15.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:a74d56552ddbde46c246b5b89199cb3fd182f9c346c784e1a93e4dc3f5ec9975"}, {file = "wrapt-1.15.0-cp310-cp310-win32.whl", hash = "sha256:26458da5653aa5b3d8dc8b24192f574a58984c749401f98fff994d41d3f08da1"}, {file = "wrapt-1.15.0-cp310-cp310-win_amd64.whl", hash = "sha256:75760a47c06b5974aa5e01949bf7e66d2af4d08cb8c1d6516af5e39595397f5e"}, {file = "wrapt-1.15.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ba1711cda2d30634a7e452fc79eabcadaffedf241ff206db2ee93dd2c89a60e7"}, {file = "wrapt-1.15.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:56374914b132c702aa9aa9959c550004b8847148f95e1b824772d453ac204a72"}, {file = "wrapt-1.15.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a89ce3fd220ff144bd9d54da333ec0de0399b52c9ac3d2ce34b569cf1a5748fb"}, {file = "wrapt-1.15.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3bbe623731d03b186b3d6b0d6f51865bf598587c38d6f7b0be2e27414f7f214e"}, {file = "wrapt-1.15.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3abbe948c3cbde2689370a262a8d04e32ec2dd4f27103669a45c6929bcdbfe7c"}, {file = "wrapt-1.15.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:b67b819628e3b748fd3c2192c15fb951f549d0f47c0449af0764d7647302fda3"}, {file = "wrapt-1.15.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:7eebcdbe3677e58dd4c0e03b4f2cfa346ed4049687d839adad68cc38bb559c92"}, {file = "wrapt-1.15.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:74934ebd71950e3db69960a7da29204f89624dde411afbfb3b4858c1409b1e98"}, {file = "wrapt-1.15.0-cp311-cp311-win32.whl", hash = "sha256:bd84395aab8e4d36263cd1b9308cd504f6cf713b7d6d3ce25ea55670baec5416"}, {file = "wrapt-1.15.0-cp311-cp311-win_amd64.whl", hash = "sha256:a487f72a25904e2b4bbc0817ce7a8de94363bd7e79890510174da9d901c38705"}, {file = "wrapt-1.15.0-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:4ff0d20f2e670800d3ed2b220d40984162089a6e2c9646fdb09b85e6f9a8fc29"}, {file = "wrapt-1.15.0-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:9ed6aa0726b9b60911f4aed8ec5b8dd7bf3491476015819f56473ffaef8959bd"}, {file = "wrapt-1.15.0-cp35-cp35m-manylinux2010_i686.whl", hash = "sha256:896689fddba4f23ef7c718279e42f8834041a21342d95e56922e1c10c0cc7afb"}, {file = "wrapt-1.15.0-cp35-cp35m-manylinux2010_x86_64.whl", hash = "sha256:75669d77bb2c071333417617a235324a1618dba66f82a750362eccbe5b61d248"}, {file = "wrapt-1.15.0-cp35-cp35m-win32.whl", hash = "sha256:fbec11614dba0424ca72f4e8ba3c420dba07b4a7c206c8c8e4e73f2e98f4c559"}, {file = "wrapt-1.15.0-cp35-cp35m-win_amd64.whl", hash = "sha256:fd69666217b62fa5d7c6aa88e507493a34dec4fa20c5bd925e4bc12fce586639"}, {file = "wrapt-1.15.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:b0724f05c396b0a4c36a3226c31648385deb6a65d8992644c12a4963c70326ba"}, {file = "wrapt-1.15.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bbeccb1aa40ab88cd29e6c7d8585582c99548f55f9b2581dfc5ba68c59a85752"}, {file = "wrapt-1.15.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:38adf7198f8f154502883242f9fe7333ab05a5b02de7d83aa2d88ea621f13364"}, {file = "wrapt-1.15.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:578383d740457fa790fdf85e6d346fda1416a40549fe8db08e5e9bd281c6a475"}, {file = "wrapt-1.15.0-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:a4cbb9ff5795cd66f0066bdf5947f170f5d63a9274f99bdbca02fd973adcf2a8"}, {file = "wrapt-1.15.0-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:af5bd9ccb188f6a5fdda9f1f09d9f4c86cc8a539bd48a0bfdc97723970348418"}, {file = "wrapt-1.15.0-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:b56d5519e470d3f2fe4aa7585f0632b060d532d0696c5bdfb5e8319e1d0f69a2"}, {file = "wrapt-1.15.0-cp36-cp36m-win32.whl", hash = "sha256:77d4c1b881076c3ba173484dfa53d3582c1c8ff1f914c6461ab70c8428b796c1"}, {file = "wrapt-1.15.0-cp36-cp36m-win_amd64.whl", hash = "sha256:077ff0d1f9d9e4ce6476c1a924a3332452c1406e59d90a2cf24aeb29eeac9420"}, {file = "wrapt-1.15.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:5c5aa28df055697d7c37d2099a7bc09f559d5053c3349b1ad0c39000e611d317"}, {file = "wrapt-1.15.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3a8564f283394634a7a7054b7983e47dbf39c07712d7b177b37e03f2467a024e"}, {file = "wrapt-1.15.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:780c82a41dc493b62fc5884fb1d3a3b81106642c5c5c78d6a0d4cbe96d62ba7e"}, {file = "wrapt-1.15.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e169e957c33576f47e21864cf3fc9ff47c223a4ebca8960079b8bd36cb014fd0"}, {file = "wrapt-1.15.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:b02f21c1e2074943312d03d243ac4388319f2456576b2c6023041c4d57cd7019"}, {file = "wrapt-1.15.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:f2e69b3ed24544b0d3dbe2c5c0ba5153ce50dcebb576fdc4696d52aa22db6034"}, {file = "wrapt-1.15.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:d787272ed958a05b2c86311d3a4135d3c2aeea4fc655705f074130aa57d71653"}, {file = "wrapt-1.15.0-cp37-cp37m-win32.whl", hash = "sha256:02fce1852f755f44f95af51f69d22e45080102e9d00258053b79367d07af39c0"}, {file = "wrapt-1.15.0-cp37-cp37m-win_amd64.whl", hash = "sha256:abd52a09d03adf9c763d706df707c343293d5d106aea53483e0ec8d9e310ad5e"}, {file = "wrapt-1.15.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:cdb4f085756c96a3af04e6eca7f08b1345e94b53af8921b25c72f096e704e145"}, {file = "wrapt-1.15.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:230ae493696a371f1dbffaad3dafbb742a4d27a0afd2b1aecebe52b740167e7f"}, {file = "wrapt-1.15.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:63424c681923b9f3bfbc5e3205aafe790904053d42ddcc08542181a30a7a51bd"}, {file = "wrapt-1.15.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d6bcbfc99f55655c3d93feb7ef3800bd5bbe963a755687cbf1f490a71fb7794b"}, {file = "wrapt-1.15.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c99f4309f5145b93eca6e35ac1a988f0dc0a7ccf9ccdcd78d3c0adf57224e62f"}, {file = "wrapt-1.15.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:b130fe77361d6771ecf5a219d8e0817d61b236b7d8b37cc045172e574ed219e6"}, {file = "wrapt-1.15.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:96177eb5645b1c6985f5c11d03fc2dbda9ad24ec0f3a46dcce91445747e15094"}, {file = "wrapt-1.15.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:d5fe3e099cf07d0fb5a1e23d399e5d4d1ca3e6dfcbe5c8570ccff3e9208274f7"}, {file = "wrapt-1.15.0-cp38-cp38-win32.whl", hash = "sha256:abd8f36c99512755b8456047b7be10372fca271bf1467a1caa88db991e7c421b"}, {file = "wrapt-1.15.0-cp38-cp38-win_amd64.whl", hash = "sha256:b06fa97478a5f478fb05e1980980a7cdf2712015493b44d0c87606c1513ed5b1"}, {file = "wrapt-1.15.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2e51de54d4fb8fb50d6ee8327f9828306a959ae394d3e01a1ba8b2f937747d86"}, {file = "wrapt-1.15.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0970ddb69bba00670e58955f8019bec4a42d1785db3faa043c33d81de2bf843c"}, {file = "wrapt-1.15.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76407ab327158c510f44ded207e2f76b657303e17cb7a572ffe2f5a8a48aa04d"}, {file = "wrapt-1.15.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cd525e0e52a5ff16653a3fc9e3dd827981917d34996600bbc34c05d048ca35cc"}, {file = "wrapt-1.15.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d37ac69edc5614b90516807de32d08cb8e7b12260a285ee330955604ed9dd29"}, {file = "wrapt-1.15.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:078e2a1a86544e644a68422f881c48b84fef6d18f8c7a957ffd3f2e0a74a0d4a"}, {file = "wrapt-1.15.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:2cf56d0e237280baed46f0b5316661da892565ff58309d4d2ed7dba763d984b8"}, {file = "wrapt-1.15.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:7dc0713bf81287a00516ef43137273b23ee414fe41a3c14be10dd95ed98a2df9"}, {file = "wrapt-1.15.0-cp39-cp39-win32.whl", hash = "sha256:46ed616d5fb42f98630ed70c3529541408166c22cdfd4540b88d5f21006b0eff"}, {file = "wrapt-1.15.0-cp39-cp39-win_amd64.whl", hash = "sha256:eef4d64c650f33347c1f9266fa5ae001440b232ad9b98f1f43dfe7a79435c0a6"}, {file = "wrapt-1.15.0-py3-none-any.whl", hash = "sha256:64b1df0f83706b4ef4cfb4fb0e4c2669100fd7ecacfb59e091fad300d4e04640"}, {file = "wrapt-1.15.0.tar.gz", hash = "sha256:d06730c6aed78cee4126234cf2d071e01b44b915e725a6cb439a879ec9754a3a"}, ] [[package]] name = "xmltodict" version = "0.13.0" description = "Makes working with XML feel like you are working with JSON" category = "main" optional = true python-versions = ">=3.4" files = [ {file = "xmltodict-0.13.0-py2.py3-none-any.whl", hash = "sha256:aa89e8fd76320154a40d19a0df04a4695fb9dc5ba977cbb68ab3e4eb225e7852"}, {file = "xmltodict-0.13.0.tar.gz", hash = "sha256:341595a488e3e01a85a9d8911d8912fd922ede5fecc4dce437eb4b6c8d037e56"}, ] [[package]] name = "xxhash" version = "3.2.0" description = "Python binding for xxHash" category = "main" optional = true python-versions = ">=3.6" files = [ {file = "xxhash-3.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:af44b9e59c4b2926a4e3c7f9d29949ff42fcea28637ff6b8182e654461932be8"}, {file = "xxhash-3.2.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:1bdd57973e2b802ef32553d7bebf9402dac1557874dbe5c908b499ea917662cd"}, {file = "xxhash-3.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b7c9aa77bbce61a5e681bd39cb6a804338474dcc90abe3c543592aa5d6c9a9b"}, {file = "xxhash-3.2.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:11bf87dc7bb8c3b0b5e24b7b941a9a19d8c1f88120b6a03a17264086bc8bb023"}, {file = "xxhash-3.2.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2783d41487ce6d379fdfaa7332fca5187bf7010b9bddcf20cafba923bc1dc665"}, {file = "xxhash-3.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:561076ca0dcef2fbc20b2bc2765bff099e002e96041ae9dbe910a863ca6ee3ea"}, {file = "xxhash-3.2.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3a26eeb4625a6e61cedc8c1b39b89327c9c7e1a8c2c4d786fe3f178eb839ede6"}, {file = "xxhash-3.2.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d93a44d0104d1b9b10de4e7aadf747f6efc1d7ec5ed0aa3f233a720725dd31bd"}, {file = "xxhash-3.2.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:89585adc73395a10306d2e2036e50d6c4ac0cf8dd47edf914c25488871b64f6d"}, {file = "xxhash-3.2.0-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:a892b4b139126a86bfdcb97cd912a2f8c4e8623869c3ef7b50871451dd7afeb0"}, {file = "xxhash-3.2.0-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:e998efb190653f70e0f30d92b39fc645145369a4823bee46af8ddfc244aa969d"}, {file = "xxhash-3.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:e8ed3bd2b8bb3277710843ca63e4f5c3ee6f8f80b083be5b19a7a9905420d11e"}, {file = "xxhash-3.2.0-cp310-cp310-win32.whl", hash = "sha256:20181cbaed033c72cb881b2a1d13c629cd1228f113046133469c9a48cfcbcd36"}, {file = "xxhash-3.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:a0f7a16138279d707db778a63264d1d6016ac13ffd3f1e99f54b2855d6c0d8e1"}, {file = "xxhash-3.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5daff3fb5bfef30bc5a2cb143810d376d43461445aa17aece7210de52adbe151"}, {file = "xxhash-3.2.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:75bb5be3c5de702a547715f320ecf5c8014aeca750ed5147ca75389bd22e7343"}, {file = "xxhash-3.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:01f36b671ff55cb1d5c2f6058b799b697fd0ae4b4582bba6ed0999678068172a"}, {file = "xxhash-3.2.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d4d4519123aac73c93159eb8f61db9682393862dd669e7eae034ecd0a35eadac"}, {file = "xxhash-3.2.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:994e4741d5ed70fc2a335a91ef79343c6b1089d7dfe6e955dd06f8ffe82bede6"}, {file = "xxhash-3.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:919bc1b010aa6ff0eb918838ff73a435aed9e9a19c3202b91acecd296bf75607"}, {file = "xxhash-3.2.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:17b65454c5accbb079c45eca546c27c4782f5175aa320758fafac896b1549d27"}, {file = "xxhash-3.2.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:b0c094d5e65a46dbf3fe0928ff20873a747e6abfd2ed4b675beeb2750624bc2e"}, {file = "xxhash-3.2.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:f94163ebe2d5546e6a5977e96d83621f4689c1054053428cf8d4c28b10f92f69"}, {file = "xxhash-3.2.0-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:cead7c0307977a00b3f784cff676e72c147adbcada19a2e6fc2ddf54f37cf387"}, {file = "xxhash-3.2.0-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:a0e1bd0260c1da35c1883321ce2707ceea07127816ab625e1226ec95177b561a"}, {file = "xxhash-3.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:cc8878935671490efe9275fb4190a6062b73277bd273237179b9b5a2aa436153"}, {file = "xxhash-3.2.0-cp311-cp311-win32.whl", hash = "sha256:a433f6162b18d52f7068175d00bd5b1563b7405f926a48d888a97b90a160c40d"}, {file = "xxhash-3.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:a32d546a1752e4ee7805d6db57944f7224afa7428d22867006b6486e4195c1f3"}, {file = "xxhash-3.2.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:82daaab720866bf690b20b49de5640b0c27e3b8eea2d08aa75bdca2b0f0cfb63"}, {file = "xxhash-3.2.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3126df6520cbdbaddd87ce74794b2b6c45dd2cf6ac2b600a374b8cdb76a2548c"}, {file = "xxhash-3.2.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e172c1ee40507ae3b8d220f4048aaca204f203e1e4197e8e652f5c814f61d1aa"}, {file = "xxhash-3.2.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5384f1d9f30876f5d5b618464fb19ff7ce6c0fe4c690fbaafd1c52adc3aae807"}, {file = "xxhash-3.2.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:26cb52174a7e96a17acad27a3ca65b24713610ac479c99ac9640843822d3bebf"}, {file = "xxhash-3.2.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fbcd613a5e76b1495fc24db9c37a6b7ee5f214fd85979187ec4e032abfc12ded"}, {file = "xxhash-3.2.0-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:f988daf25f31726d5b9d0be6af636ca9000898f9ea43a57eac594daea25b0948"}, {file = "xxhash-3.2.0-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:bbc30c98ab006ab9fc47e5ed439c00f706bc9d4441ff52693b8b6fea335163e0"}, {file = "xxhash-3.2.0-cp36-cp36m-musllinux_1_1_ppc64le.whl", hash = "sha256:2408d49260b0a4a7cc6ba445aebf38e073aeaf482f8e32767ca477e32ccbbf9e"}, {file = "xxhash-3.2.0-cp36-cp36m-musllinux_1_1_s390x.whl", hash = "sha256:3f4152fd0bf8b03b79f2f900fd6087a66866537e94b5a11fd0fd99ef7efe5c42"}, {file = "xxhash-3.2.0-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:0eea848758e4823a01abdbcccb021a03c1ee4100411cbeeb7a5c36a202a0c13c"}, {file = "xxhash-3.2.0-cp36-cp36m-win32.whl", hash = "sha256:77709139af5123c578ab06cf999429cdb9ab211047acd0c787e098dcb3f1cb4d"}, {file = "xxhash-3.2.0-cp36-cp36m-win_amd64.whl", hash = "sha256:91687671fd9d484a4e201ad266d366b695a45a1f2b41be93d116ba60f1b8f3b3"}, {file = "xxhash-3.2.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:e4af8bc5c3fcc2192c266421c6aa2daab1a18e002cb8e66ef672030e46ae25cf"}, {file = "xxhash-3.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e8be562e2ce3e481d9209b6f254c3d7c5ff920eb256aba2380d2fb5ba75d4f87"}, {file = "xxhash-3.2.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9eba0c7c12126b12f7fcbea5513f28c950d28f33d2a227f74b50b77789e478e8"}, {file = "xxhash-3.2.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2198c4901a0223c48f6ec0a978b60bca4f4f7229a11ca4dc96ca325dd6a29115"}, {file = "xxhash-3.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:50ce82a71b22a3069c02e914bf842118a53065e2ec1c6fb54786e03608ab89cc"}, {file = "xxhash-3.2.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b5019fb33711c30e54e4e57ae0ca70af9d35b589d385ac04acd6954452fa73bb"}, {file = "xxhash-3.2.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:0d54ac023eef7e3ac9f0b8841ae8a376b933043bc2ad428121346c6fa61c491c"}, {file = "xxhash-3.2.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:c55fa832fc3fe64e0d29da5dc9b50ba66ca93312107cec2709300ea3d3bab5c7"}, {file = "xxhash-3.2.0-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:f4ce006215497993ae77c612c1883ca4f3973899573ce0c52fee91f0d39c4561"}, {file = "xxhash-3.2.0-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:1afb9b9d27fd675b436cb110c15979976d92d761ad6e66799b83756402f3a974"}, {file = "xxhash-3.2.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:baa99cebf95c1885db21e119395f222a706a2bb75a545f0672880a442137725e"}, {file = "xxhash-3.2.0-cp37-cp37m-win32.whl", hash = "sha256:75aa692936942ccb2e8fd6a386c81c61630ac1b6d6e921698122db8a930579c3"}, {file = "xxhash-3.2.0-cp37-cp37m-win_amd64.whl", hash = "sha256:0a2cdfb5cae9fafb9f7b65fd52ecd60cf7d72c13bb2591ea59aaefa03d5a8827"}, {file = "xxhash-3.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:3a68d1e8a390b660d94b9360ae5baa8c21a101bd9c4790a8b30781bada9f1fc6"}, {file = "xxhash-3.2.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:ce7c3ce28f94302df95eaea7c9c1e2c974b6d15d78a0c82142a97939d7b6c082"}, {file = "xxhash-3.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0dcb419bf7b0bc77d366e5005c25682249c5521a63fd36c51f584bd91bb13bd5"}, {file = "xxhash-3.2.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ae521ed9287f86aac979eeac43af762f03d9d9797b2272185fb9ddd810391216"}, {file = "xxhash-3.2.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b0d16775094423088ffa357d09fbbb9ab48d2fb721d42c0856b801c86f616eec"}, {file = "xxhash-3.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fe454aeab348c42f56d6f7434ff758a3ef90787ac81b9ad5a363cd61b90a1b0b"}, {file = "xxhash-3.2.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:052fd0efdd5525c2dbc61bebb423d92aa619c4905bba605afbf1e985a562a231"}, {file = "xxhash-3.2.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:02badf3754e2133de254a4688798c4d80f0060635087abcb461415cb3eb82115"}, {file = "xxhash-3.2.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:66b8a90b28c13c2aae7a71b32638ceb14cefc2a1c8cf23d8d50dfb64dfac7aaf"}, {file = "xxhash-3.2.0-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:649cdf19df175925ad87289ead6f760cd840730ee85abc5eb43be326a0a24d97"}, {file = "xxhash-3.2.0-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:4b948a03f89f5c72d69d40975af8af241111f0643228796558dc1cae8f5560b0"}, {file = "xxhash-3.2.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:49f51fab7b762da7c2cee0a3d575184d3b9be5e2f64f26cae2dd286258ac9b3c"}, {file = "xxhash-3.2.0-cp38-cp38-win32.whl", hash = "sha256:1a42994f0d42b55514785356722d9031f064fd34e495b3a589e96db68ee0179d"}, {file = "xxhash-3.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:0a6d58ba5865475e53d6c2c4fa6a62e2721e7875e146e2681e5337a6948f12e7"}, {file = "xxhash-3.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:aabdbc082030f8df613e2d2ea1f974e7ad36a539bdfc40d36f34e55c7e4b8e94"}, {file = "xxhash-3.2.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:498843b66b9ca416e9d03037e5875c8d0c0ab9037527e22df3b39aa5163214cd"}, {file = "xxhash-3.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a910b1193cd90af17228f5d6069816646df0148f14f53eefa6b2b11a1dedfcd0"}, {file = "xxhash-3.2.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bb6d8ce31dc25faf4da92991320e211fa7f42de010ef51937b1dc565a4926501"}, {file = "xxhash-3.2.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:883dc3d3942620f4c7dbc3fd6162f50a67f050b714e47da77444e3bcea7d91cc"}, {file = "xxhash-3.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:59dc8bfacf89b8f5be54d55bc3b4bd6d74d0c5320c8a63d2538ac7df5b96f1d5"}, {file = "xxhash-3.2.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:61e6aa1d30c2af692aa88c4dd48709426e8b37bff6a574ee2de677579c34a3d6"}, {file = "xxhash-3.2.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:314ec0bd21f0ee8d30f2bd82ed3759314bd317ddbbd8555668f3d20ab7a8899a"}, {file = "xxhash-3.2.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:dad638cde3a5357ad3163b80b3127df61fb5b5e34e9e05a87697144400ba03c7"}, {file = "xxhash-3.2.0-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:eaa3ea15025b56076d806b248948612289b093e8dcda8d013776b3848dffff15"}, {file = "xxhash-3.2.0-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:7deae3a312feb5c17c97cbf18129f83cbd3f1f9ec25b0f50e2bd9697befb22e7"}, {file = "xxhash-3.2.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:add774341c09853b1612c64a526032d95ab1683053325403e1afbe3ad2f374c5"}, {file = "xxhash-3.2.0-cp39-cp39-win32.whl", hash = "sha256:9b94749130ef3119375c599bfce82142c2500ef9ed3280089157ee37662a7137"}, {file = "xxhash-3.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:e57d94a1552af67f67b27db5dba0b03783ea69d5ca2af2f40e098f0ba3ce3f5f"}, {file = "xxhash-3.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:92fd765591c83e5c5f409b33eac1d3266c03d3d11c71a7dbade36d5cdee4fbc0"}, {file = "xxhash-3.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8970f6a411a9839a02b23b7e90bbbba4a6de52ace009274998566dc43f36ca18"}, {file = "xxhash-3.2.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c5f3e33fe6cbab481727f9aeb136a213aed7e33cd1ca27bd75e916ffacc18411"}, {file = "xxhash-3.2.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:368265392cb696dd53907e2328b5a8c1bee81cf2142d0cc743caf1c1047abb36"}, {file = "xxhash-3.2.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:3b1f3c6d67fa9f49c4ff6b25ce0e7143bab88a5bc0f4116dd290c92337d0ecc7"}, {file = "xxhash-3.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:c5e8db6e1ee7267b7c412ad0afd5863bf7a95286b8333a5958c8097c69f94cf5"}, {file = "xxhash-3.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:761df3c7e2c5270088b691c5a8121004f84318177da1ca1db64222ec83c44871"}, {file = "xxhash-3.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d2d15a707e7f689531eb4134eccb0f8bf3844bb8255ad50823aa39708d9e6755"}, {file = "xxhash-3.2.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e6b2ba4ff53dd5f57d728095e3def7375eb19c90621ce3b41b256de84ec61cfd"}, {file = "xxhash-3.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:61b0bcf946fdfd8ab5f09179dc2b5c74d1ef47cedfc6ed0ec01fdf0ee8682dd3"}, {file = "xxhash-3.2.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:f7b79f0f302396d8e0d444826ceb3d07b61977793886ebae04e82796c02e42dc"}, {file = "xxhash-3.2.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e0773cd5c438ffcd5dbff91cdd503574f88a4b960e70cedeb67736583a17a918"}, {file = "xxhash-3.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4ec1f57127879b419a2c8d2db9d9978eb26c61ae17e5972197830430ae78d25b"}, {file = "xxhash-3.2.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3d4b15c00e807b1d3d0b612338c814739dec310b80fb069bd732b98ddc709ad7"}, {file = "xxhash-3.2.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:9d3f686e3d1c8900c5459eee02b60c7399e20ec5c6402364068a343c83a61d90"}, {file = "xxhash-3.2.0.tar.gz", hash = "sha256:1afd47af8955c5db730f630ad53ae798cf7fae0acb64cebb3cf94d35c47dd088"}, ] [[package]] name = "yarl" version = "1.9.2" description = "Yet another URL library" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "yarl-1.9.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:8c2ad583743d16ddbdf6bb14b5cd76bf43b0d0006e918809d5d4ddf7bde8dd82"}, {file = "yarl-1.9.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:82aa6264b36c50acfb2424ad5ca537a2060ab6de158a5bd2a72a032cc75b9eb8"}, {file = "yarl-1.9.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c0c77533b5ed4bcc38e943178ccae29b9bcf48ffd1063f5821192f23a1bd27b9"}, {file = "yarl-1.9.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ee4afac41415d52d53a9833ebae7e32b344be72835bbb589018c9e938045a560"}, {file = "yarl-1.9.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9bf345c3a4f5ba7f766430f97f9cc1320786f19584acc7086491f45524a551ac"}, {file = "yarl-1.9.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2a96c19c52ff442a808c105901d0bdfd2e28575b3d5f82e2f5fd67e20dc5f4ea"}, {file = "yarl-1.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:891c0e3ec5ec881541f6c5113d8df0315ce5440e244a716b95f2525b7b9f3608"}, {file = "yarl-1.9.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c3a53ba34a636a256d767c086ceb111358876e1fb6b50dfc4d3f4951d40133d5"}, {file = "yarl-1.9.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:566185e8ebc0898b11f8026447eacd02e46226716229cea8db37496c8cdd26e0"}, {file = "yarl-1.9.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:2b0738fb871812722a0ac2154be1f049c6223b9f6f22eec352996b69775b36d4"}, {file = "yarl-1.9.2-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:32f1d071b3f362c80f1a7d322bfd7b2d11e33d2adf395cc1dd4df36c9c243095"}, {file = "yarl-1.9.2-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:e9fdc7ac0d42bc3ea78818557fab03af6181e076a2944f43c38684b4b6bed8e3"}, {file = "yarl-1.9.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:56ff08ab5df8429901ebdc5d15941b59f6253393cb5da07b4170beefcf1b2528"}, {file = "yarl-1.9.2-cp310-cp310-win32.whl", hash = "sha256:8ea48e0a2f931064469bdabca50c2f578b565fc446f302a79ba6cc0ee7f384d3"}, {file = "yarl-1.9.2-cp310-cp310-win_amd64.whl", hash = "sha256:50f33040f3836e912ed16d212f6cc1efb3231a8a60526a407aeb66c1c1956dde"}, {file = "yarl-1.9.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:646d663eb2232d7909e6601f1a9107e66f9791f290a1b3dc7057818fe44fc2b6"}, {file = "yarl-1.9.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:aff634b15beff8902d1f918012fc2a42e0dbae6f469fce134c8a0dc51ca423bb"}, {file = "yarl-1.9.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a83503934c6273806aed765035716216cc9ab4e0364f7f066227e1aaea90b8d0"}, {file = "yarl-1.9.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b25322201585c69abc7b0e89e72790469f7dad90d26754717f3310bfe30331c2"}, {file = "yarl-1.9.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:22a94666751778629f1ec4280b08eb11815783c63f52092a5953faf73be24191"}, {file = "yarl-1.9.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ec53a0ea2a80c5cd1ab397925f94bff59222aa3cf9c6da938ce05c9ec20428d"}, {file = "yarl-1.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:159d81f22d7a43e6eabc36d7194cb53f2f15f498dbbfa8edc8a3239350f59fe7"}, {file = "yarl-1.9.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:832b7e711027c114d79dffb92576acd1bd2decc467dec60e1cac96912602d0e6"}, {file = "yarl-1.9.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:95d2ecefbcf4e744ea952d073c6922e72ee650ffc79028eb1e320e732898d7e8"}, {file = "yarl-1.9.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:d4e2c6d555e77b37288eaf45b8f60f0737c9efa3452c6c44626a5455aeb250b9"}, {file = "yarl-1.9.2-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:783185c75c12a017cc345015ea359cc801c3b29a2966c2655cd12b233bf5a2be"}, {file = "yarl-1.9.2-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:b8cc1863402472f16c600e3e93d542b7e7542a540f95c30afd472e8e549fc3f7"}, {file = "yarl-1.9.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:822b30a0f22e588b32d3120f6d41e4ed021806418b4c9f0bc3048b8c8cb3f92a"}, {file = "yarl-1.9.2-cp311-cp311-win32.whl", hash = "sha256:a60347f234c2212a9f0361955007fcf4033a75bf600a33c88a0a8e91af77c0e8"}, {file = "yarl-1.9.2-cp311-cp311-win_amd64.whl", hash = "sha256:be6b3fdec5c62f2a67cb3f8c6dbf56bbf3f61c0f046f84645cd1ca73532ea051"}, {file = "yarl-1.9.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:38a3928ae37558bc1b559f67410df446d1fbfa87318b124bf5032c31e3447b74"}, {file = "yarl-1.9.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ac9bb4c5ce3975aeac288cfcb5061ce60e0d14d92209e780c93954076c7c4367"}, {file = "yarl-1.9.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3da8a678ca8b96c8606bbb8bfacd99a12ad5dd288bc6f7979baddd62f71c63ef"}, {file = "yarl-1.9.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:13414591ff516e04fcdee8dc051c13fd3db13b673c7a4cb1350e6b2ad9639ad3"}, {file = "yarl-1.9.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf74d08542c3a9ea97bb8f343d4fcbd4d8f91bba5ec9d5d7f792dbe727f88938"}, {file = "yarl-1.9.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6e7221580dc1db478464cfeef9b03b95c5852cc22894e418562997df0d074ccc"}, {file = "yarl-1.9.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:494053246b119b041960ddcd20fd76224149cfea8ed8777b687358727911dd33"}, {file = "yarl-1.9.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:52a25809fcbecfc63ac9ba0c0fb586f90837f5425edfd1ec9f3372b119585e45"}, {file = "yarl-1.9.2-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:e65610c5792870d45d7b68c677681376fcf9cc1c289f23e8e8b39c1485384185"}, {file = "yarl-1.9.2-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:1b1bba902cba32cdec51fca038fd53f8beee88b77efc373968d1ed021024cc04"}, {file = "yarl-1.9.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:662e6016409828ee910f5d9602a2729a8a57d74b163c89a837de3fea050c7582"}, {file = "yarl-1.9.2-cp37-cp37m-win32.whl", hash = "sha256:f364d3480bffd3aa566e886587eaca7c8c04d74f6e8933f3f2c996b7f09bee1b"}, {file = "yarl-1.9.2-cp37-cp37m-win_amd64.whl", hash = "sha256:6a5883464143ab3ae9ba68daae8e7c5c95b969462bbe42e2464d60e7e2698368"}, {file = "yarl-1.9.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:5610f80cf43b6202e2c33ba3ec2ee0a2884f8f423c8f4f62906731d876ef4fac"}, {file = "yarl-1.9.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:b9a4e67ad7b646cd6f0938c7ebfd60e481b7410f574c560e455e938d2da8e0f4"}, {file = "yarl-1.9.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:83fcc480d7549ccebe9415d96d9263e2d4226798c37ebd18c930fce43dfb9574"}, {file = "yarl-1.9.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5fcd436ea16fee7d4207c045b1e340020e58a2597301cfbcfdbe5abd2356c2fb"}, {file = "yarl-1.9.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:84e0b1599334b1e1478db01b756e55937d4614f8654311eb26012091be109d59"}, {file = "yarl-1.9.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3458a24e4ea3fd8930e934c129b676c27452e4ebda80fbe47b56d8c6c7a63a9e"}, {file = "yarl-1.9.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:838162460b3a08987546e881a2bfa573960bb559dfa739e7800ceeec92e64417"}, {file = "yarl-1.9.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f4e2d08f07a3d7d3e12549052eb5ad3eab1c349c53ac51c209a0e5991bbada78"}, {file = "yarl-1.9.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:de119f56f3c5f0e2fb4dee508531a32b069a5f2c6e827b272d1e0ff5ac040333"}, {file = "yarl-1.9.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:149ddea5abf329752ea5051b61bd6c1d979e13fbf122d3a1f9f0c8be6cb6f63c"}, {file = "yarl-1.9.2-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:674ca19cbee4a82c9f54e0d1eee28116e63bc6fd1e96c43031d11cbab8b2afd5"}, {file = "yarl-1.9.2-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:9b3152f2f5677b997ae6c804b73da05a39daa6a9e85a512e0e6823d81cdad7cc"}, {file = "yarl-1.9.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:5415d5a4b080dc9612b1b63cba008db84e908b95848369aa1da3686ae27b6d2b"}, {file = "yarl-1.9.2-cp38-cp38-win32.whl", hash = "sha256:f7a3d8146575e08c29ed1cd287068e6d02f1c7bdff8970db96683b9591b86ee7"}, {file = "yarl-1.9.2-cp38-cp38-win_amd64.whl", hash = "sha256:63c48f6cef34e6319a74c727376e95626f84ea091f92c0250a98e53e62c77c72"}, {file = "yarl-1.9.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:75df5ef94c3fdc393c6b19d80e6ef1ecc9ae2f4263c09cacb178d871c02a5ba9"}, {file = "yarl-1.9.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c027a6e96ef77d401d8d5a5c8d6bc478e8042f1e448272e8d9752cb0aff8b5c8"}, {file = "yarl-1.9.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f3b078dbe227f79be488ffcfc7a9edb3409d018e0952cf13f15fd6512847f3f7"}, {file = "yarl-1.9.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:59723a029760079b7d991a401386390c4be5bfec1e7dd83e25a6a0881859e716"}, {file = "yarl-1.9.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b03917871bf859a81ccb180c9a2e6c1e04d2f6a51d953e6a5cdd70c93d4e5a2a"}, {file = "yarl-1.9.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c1012fa63eb6c032f3ce5d2171c267992ae0c00b9e164efe4d73db818465fac3"}, {file = "yarl-1.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a74dcbfe780e62f4b5a062714576f16c2f3493a0394e555ab141bf0d746bb955"}, {file = "yarl-1.9.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8c56986609b057b4839968ba901944af91b8e92f1725d1a2d77cbac6972b9ed1"}, {file = "yarl-1.9.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:2c315df3293cd521033533d242d15eab26583360b58f7ee5d9565f15fee1bef4"}, {file = "yarl-1.9.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:b7232f8dfbd225d57340e441d8caf8652a6acd06b389ea2d3222b8bc89cbfca6"}, {file = "yarl-1.9.2-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:53338749febd28935d55b41bf0bcc79d634881195a39f6b2f767870b72514caf"}, {file = "yarl-1.9.2-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:066c163aec9d3d073dc9ffe5dd3ad05069bcb03fcaab8d221290ba99f9f69ee3"}, {file = "yarl-1.9.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8288d7cd28f8119b07dd49b7230d6b4562f9b61ee9a4ab02221060d21136be80"}, {file = "yarl-1.9.2-cp39-cp39-win32.whl", hash = "sha256:b124e2a6d223b65ba8768d5706d103280914d61f5cae3afbc50fc3dfcc016623"}, {file = "yarl-1.9.2-cp39-cp39-win_amd64.whl", hash = "sha256:61016e7d582bc46a5378ffdd02cd0314fb8ba52f40f9cf4d9a5e7dbef88dee18"}, {file = "yarl-1.9.2.tar.gz", hash = "sha256:04ab9d4b9f587c06d801c2abfe9317b77cdf996c65a90d5e84ecc45010823571"}, ] [package.dependencies] idna = ">=2.0" multidict = ">=4.0" [[package]] name = "zep-python" version = "0.30" description = "Zep stores, manages, enriches, indexes, and searches long-term memory for conversational AI applications. This is the Python client for the Zep service." category = "main" optional = true python-versions = ">=3.8,<4.0" files = [ {file = "zep_python-0.30-py3-none-any.whl", hash = "sha256:6020d2f3c6dc3c3bfb8de62db88d97a8c0cf4029b5def0c8a682c3ddc2c480d2"}, {file = "zep_python-0.30.tar.gz", hash = "sha256:902720af8ffdda861ae1ee1d88e374a095195f1dc3ef79a78ecc699062ace203"}, ] [package.dependencies] httpx = ">=0.24.0,<0.25.0" pydantic = ">=1.10.7,<2.0.0" [[package]] name = "zipp" version = "3.15.0" description = "Backport of pathlib-compatible object wrapper for zip files" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "zipp-3.15.0-py3-none-any.whl", hash = "sha256:48904fc76a60e542af151aded95726c1a5c34ed43ab4134b597665c86d7ad556"}, {file = "zipp-3.15.0.tar.gz", hash = "sha256:112929ad649da941c23de50f356a2b5570c954b65150642bccdd66bf194d224b"}, ] [package.extras] docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] testing = ["big-O", "flake8 (<5)", "jaraco.functools", "jaraco.itertools", "more-itertools", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)"] [[package]] name = "zstandard" version = "0.21.0" description = "Zstandard bindings for Python" category = "main" optional = false python-versions = ">=3.7" files = [ {file = "zstandard-0.21.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:649a67643257e3b2cff1c0a73130609679a5673bf389564bc6d4b164d822a7ce"}, {file = "zstandard-0.21.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:144a4fe4be2e747bf9c646deab212666e39048faa4372abb6a250dab0f347a29"}, {file = "zstandard-0.21.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b72060402524ab91e075881f6b6b3f37ab715663313030d0ce983da44960a86f"}, {file = "zstandard-0.21.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8257752b97134477fb4e413529edaa04fc0457361d304c1319573de00ba796b1"}, {file = "zstandard-0.21.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:c053b7c4cbf71cc26808ed67ae955836232f7638444d709bfc302d3e499364fa"}, {file = "zstandard-0.21.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2769730c13638e08b7a983b32cb67775650024632cd0476bf1ba0e6360f5ac7d"}, {file = "zstandard-0.21.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:7d3bc4de588b987f3934ca79140e226785d7b5e47e31756761e48644a45a6766"}, {file = "zstandard-0.21.0-cp310-cp310-win32.whl", hash = "sha256:67829fdb82e7393ca68e543894cd0581a79243cc4ec74a836c305c70a5943f07"}, {file = "zstandard-0.21.0-cp310-cp310-win_amd64.whl", hash = "sha256:e6048a287f8d2d6e8bc67f6b42a766c61923641dd4022b7fd3f7439e17ba5a4d"}, {file = "zstandard-0.21.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7f2afab2c727b6a3d466faee6974a7dad0d9991241c498e7317e5ccf53dbc766"}, {file = "zstandard-0.21.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ff0852da2abe86326b20abae912d0367878dd0854b8931897d44cfeb18985472"}, {file = "zstandard-0.21.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d12fa383e315b62630bd407477d750ec96a0f438447d0e6e496ab67b8b451d39"}, {file = "zstandard-0.21.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f1b9703fe2e6b6811886c44052647df7c37478af1b4a1a9078585806f42e5b15"}, {file = "zstandard-0.21.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:df28aa5c241f59a7ab524f8ad8bb75d9a23f7ed9d501b0fed6d40ec3064784e8"}, {file = "zstandard-0.21.0-cp311-cp311-win32.whl", hash = "sha256:0aad6090ac164a9d237d096c8af241b8dcd015524ac6dbec1330092dba151657"}, {file = "zstandard-0.21.0-cp311-cp311-win_amd64.whl", hash = "sha256:48b6233b5c4cacb7afb0ee6b4f91820afbb6c0e3ae0fa10abbc20000acdf4f11"}, {file = "zstandard-0.21.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:e7d560ce14fd209db6adacce8908244503a009c6c39eee0c10f138996cd66d3e"}, {file = "zstandard-0.21.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1e6e131a4df2eb6f64961cea6f979cdff22d6e0d5516feb0d09492c8fd36f3bc"}, {file = "zstandard-0.21.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e1e0c62a67ff425927898cf43da2cf6b852289ebcc2054514ea9bf121bec10a5"}, {file = "zstandard-0.21.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:1545fb9cb93e043351d0cb2ee73fa0ab32e61298968667bb924aac166278c3fc"}, {file = "zstandard-0.21.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fe6c821eb6870f81d73bf10e5deed80edcac1e63fbc40610e61f340723fd5f7c"}, {file = "zstandard-0.21.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ddb086ea3b915e50f6604be93f4f64f168d3fc3cef3585bb9a375d5834392d4f"}, {file = "zstandard-0.21.0-cp37-cp37m-win32.whl", hash = "sha256:57ac078ad7333c9db7a74804684099c4c77f98971c151cee18d17a12649bc25c"}, {file = "zstandard-0.21.0-cp37-cp37m-win_amd64.whl", hash = "sha256:1243b01fb7926a5a0417120c57d4c28b25a0200284af0525fddba812d575f605"}, {file = "zstandard-0.21.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:ea68b1ba4f9678ac3d3e370d96442a6332d431e5050223626bdce748692226ea"}, {file = "zstandard-0.21.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:8070c1cdb4587a8aa038638acda3bd97c43c59e1e31705f2766d5576b329e97c"}, {file = "zstandard-0.21.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4af612c96599b17e4930fe58bffd6514e6c25509d120f4eae6031b7595912f85"}, {file = "zstandard-0.21.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cff891e37b167bc477f35562cda1248acc115dbafbea4f3af54ec70821090965"}, {file = "zstandard-0.21.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:a9fec02ce2b38e8b2e86079ff0b912445495e8ab0b137f9c0505f88ad0d61296"}, {file = "zstandard-0.21.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0bdbe350691dec3078b187b8304e6a9c4d9db3eb2d50ab5b1d748533e746d099"}, {file = "zstandard-0.21.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b69cccd06a4a0a1d9fb3ec9a97600055cf03030ed7048d4bcb88c574f7895773"}, {file = "zstandard-0.21.0-cp38-cp38-win32.whl", hash = "sha256:9980489f066a391c5572bc7dc471e903fb134e0b0001ea9b1d3eff85af0a6f1b"}, {file = "zstandard-0.21.0-cp38-cp38-win_amd64.whl", hash = "sha256:0e1e94a9d9e35dc04bf90055e914077c80b1e0c15454cc5419e82529d3e70728"}, {file = "zstandard-0.21.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d2d61675b2a73edcef5e327e38eb62bdfc89009960f0e3991eae5cc3d54718de"}, {file = "zstandard-0.21.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:25fbfef672ad798afab12e8fd204d122fca3bc8e2dcb0a2ba73bf0a0ac0f5f07"}, {file = "zstandard-0.21.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:62957069a7c2626ae80023998757e27bd28d933b165c487ab6f83ad3337f773d"}, {file = "zstandard-0.21.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:14e10ed461e4807471075d4b7a2af51f5234c8f1e2a0c1d37d5ca49aaaad49e8"}, {file = "zstandard-0.21.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9cff89a036c639a6a9299bf19e16bfb9ac7def9a7634c52c257166db09d950e7"}, {file = "zstandard-0.21.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:52b2b5e3e7670bd25835e0e0730a236f2b0df87672d99d3bf4bf87248aa659fb"}, {file = "zstandard-0.21.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b1367da0dde8ae5040ef0413fb57b5baeac39d8931c70536d5f013b11d3fc3a5"}, {file = "zstandard-0.21.0-cp39-cp39-win32.whl", hash = "sha256:db62cbe7a965e68ad2217a056107cc43d41764c66c895be05cf9c8b19578ce9c"}, {file = "zstandard-0.21.0-cp39-cp39-win_amd64.whl", hash = "sha256:a8d200617d5c876221304b0e3fe43307adde291b4a897e7b0617a61611dfff6a"}, {file = "zstandard-0.21.0.tar.gz", hash = "sha256:f08e3a10d01a247877e4cb61a82a319ea746c356a3786558bed2481e6c405546"}, ] [package.dependencies] cffi = {version = ">=1.11", markers = "platform_python_implementation == \"PyPy\""} [package.extras] cffi = ["cffi (>=1.11)"] [extras] all = ["O365", "aleph-alpha-client", "anthropic", "arxiv", "atlassian-python-api", "azure-ai-formrecognizer", "azure-ai-vision", "azure-cognitiveservices-speech", "azure-cosmos", "azure-identity", "beautifulsoup4", "clickhouse-connect", "cohere", "deeplake", "docarray", "duckduckgo-search", "elasticsearch", "faiss-cpu", "google-api-python-client", "google-search-results", "gptcache", "html2text", "huggingface_hub", "jina", "jinja2", "jq", "lancedb", "langkit", "lark", "lxml", "manifest-ml", "momento", "neo4j", "networkx", "nlpcloud", "nltk", "nomic", "openai", "openlm", "opensearch-py", "pdfminer-six", "pexpect", "pgvector", "pinecone-client", "pinecone-text", "psycopg2-binary", "pymongo", "pyowm", "pypdf", "pytesseract", "pyvespa", "qdrant-client", "redis", "requests-toolbelt", "sentence-transformers", "spacy", "steamship", "tensorflow-text", "tiktoken", "torch", "transformers", "weaviate-client", "wikipedia", "wolframalpha"] azure = ["azure-ai-formrecognizer", "azure-ai-vision", "azure-cognitiveservices-speech", "azure-core", "azure-cosmos", "azure-identity", "openai"] cohere = ["cohere"] docarray = ["docarray"] embeddings = ["sentence-transformers"] extended-testing = ["atlassian-python-api", "beautifulsoup4", "beautifulsoup4", "bibtexparser", "chardet", "gql", "html2text", "jq", "lxml", "pandas", "pdfminer-six", "psychicapi", "py-trello", "pymupdf", "pypdf", "pypdfium2", "pyspark", "requests-toolbelt", "scikit-learn", "telethon", "tqdm", "zep-python"] llms = ["anthropic", "cohere", "huggingface_hub", "manifest-ml", "nlpcloud", "openai", "openlm", "torch", "transformers"] openai = ["openai", "tiktoken"] qdrant = ["qdrant-client"] text-helpers = ["chardet"] [metadata] lock-version = "2.0" python-versions = ">=3.8.1,<4.0" content-hash = "6a28a31679ae3bdb156121ff7c09bfb1f691345f445196eb0384f08e031c84d3"
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,465
Google BigQuery Loader doesn't take credentials
### Feature request I would like to be able to provide credentials to the bigquery.client object ### Motivation I cannot access protected datasets without use of a service account or other credentials ### Your contribution I will submit a PR.
https://github.com/langchain-ai/langchain/issues/5465
https://github.com/langchain-ai/langchain/pull/5466
eab4b4ccd7e1ca4dcfdf4c400250494e4503fcb1
199cc700a344a2b15dff3a8924746a5ceb1aad7e
"2023-05-30T21:18:13Z"
python
"2023-05-30T23:25:22Z"
pyproject.toml
[tool.poetry] name = "langchain" version = "0.0.186" description = "Building applications with LLMs through composability" authors = [] license = "MIT" readme = "README.md" repository = "https://www.github.com/hwchase17/langchain" [tool.poetry.scripts] langchain-server = "langchain.server:main" langchain = "langchain.cli.main:main" [tool.poetry.dependencies] python = ">=3.8.1,<4.0" pydantic = "^1" SQLAlchemy = ">=1.4,<3" requests = "^2" PyYAML = ">=5.4.1" numpy = "^1" azure-core = {version = "^1.26.4", optional=true} tqdm = {version = ">=4.48.0", optional = true} openapi-schema-pydantic = "^1.2" faiss-cpu = {version = "^1", optional = true} wikipedia = {version = "^1", optional = true} elasticsearch = {version = "^8", optional = true} opensearch-py = {version = "^2.0.0", optional = true} redis = {version = "^4", optional = true} manifest-ml = {version = "^0.0.1", optional = true} spacy = {version = "^3", optional = true} nltk = {version = "^3", optional = true} transformers = {version = "^4", optional = true} beautifulsoup4 = {version = "^4", optional = true} torch = {version = ">=1,<3", optional = true} jinja2 = {version = "^3", optional = true} tiktoken = {version = "^0.3.2", optional = true, python="^3.9"} pinecone-client = {version = "^2", optional = true} pinecone-text = {version = "^0.4.2", optional = true} pymongo = {version = "^4.3.3", optional = true} clickhouse-connect = {version="^0.5.14", optional=true} weaviate-client = {version = "^3", optional = true} google-api-python-client = {version = "2.70.0", optional = true} wolframalpha = {version = "5.0.0", optional = true} anthropic = {version = "^0.2.6", optional = true} qdrant-client = {version = "^1.1.2", optional = true, python = ">=3.8.1,<3.12"} dataclasses-json = "^0.5.7" tensorflow-text = {version = "^2.11.0", optional = true, python = "^3.10, <3.12"} tenacity = "^8.1.0" cohere = {version = "^3", optional = true} openai = {version = "^0", optional = true} nlpcloud = {version = "^1", optional = true} nomic = {version = "^1.0.43", optional = true} huggingface_hub = {version = "^0", optional = true} jina = {version = "^3.14", optional = true} google-search-results = {version = "^2", optional = true} sentence-transformers = {version = "^2", optional = true} aiohttp = "^3.8.3" arxiv = {version = "^1.4", optional = true} pypdf = {version = "^3.4.0", optional = true} networkx = {version="^2.6.3", optional = true} aleph-alpha-client = {version="^2.15.0", optional = true} deeplake = {version = "^3.3.0", optional = true} pgvector = {version = "^0.1.6", optional = true} psycopg2-binary = {version = "^2.9.5", optional = true} pyowm = {version = "^3.3.0", optional = true} async-timeout = {version = "^4.0.0", python = "<3.11"} azure-identity = {version = "^1.12.0", optional=true} gptcache = {version = ">=0.1.7", optional = true} atlassian-python-api = {version = "^3.36.0", optional=true} pytesseract = {version = "^0.3.10", optional=true} html2text = {version="^2020.1.16", optional=true} numexpr = "^2.8.4" duckduckgo-search = {version="^2.8.6", optional=true} azure-cosmos = {version="^4.4.0b1", optional=true} lark = {version="^1.1.5", optional=true} lancedb = {version = "^0.1", optional = true} pexpect = {version = "^4.8.0", optional = true} pyvespa = {version = "^0.33.0", optional = true} O365 = {version = "^2.0.26", optional = true} jq = {version = "^1.4.1", optional = true} steamship = {version = "^2.16.9", optional = true} pdfminer-six = {version = "^20221105", optional = true} docarray = {version="^0.32.0", extras=["hnswlib"], optional=true} lxml = {version = "^4.9.2", optional = true} pymupdf = {version = "^1.22.3", optional = true} pypdfium2 = {version = "^4.10.0", optional = true} gql = {version = "^3.4.1", optional = true} pandas = {version = "^2.0.1", optional = true} telethon = {version = "^1.28.5", optional = true} neo4j = {version = "^5.8.1", optional = true} psychicapi = {version = "^0.5", optional = true} zep-python = {version="^0.30", optional=true} langkit = {version = ">=0.0.1.dev3, <0.1.0", optional = true} chardet = {version="^5.1.0", optional=true} requests-toolbelt = {version = "^1.0.0", optional = true} openlm = {version = "^0.0.5", optional = true} scikit-learn = {version = "^1.2.2", optional = true} azure-ai-formrecognizer = {version = "^3.2.1", optional = true} azure-ai-vision = {version = "^0.11.1b1", optional = true} azure-cognitiveservices-speech = {version = "^1.28.0", optional = true} py-trello = {version = "^0.19.0", optional = true} momento = {version = "^1.5.0", optional = true} bibtexparser = {version = "^1.4.0", optional = true} pyspark = {version = "^3.4.0", optional = true} [tool.poetry.group.docs.dependencies] autodoc_pydantic = "^1.8.0" myst_parser = "^0.18.1" nbsphinx = "^0.8.9" sphinx = "^4.5.0" sphinx-autobuild = "^2021.3.14" sphinx_book_theme = "^0.3.3" sphinx_rtd_theme = "^1.0.0" sphinx-typlog-theme = "^0.8.0" sphinx-panels = "^0.6.0" toml = "^0.10.2" myst-nb = "^0.17.1" linkchecker = "^10.2.1" sphinx-copybutton = "^0.5.1" [tool.poetry.group.test.dependencies] # The only dependencies that should be added are # dependencies used for running tests (e.g., pytest, freezegun, response). # Any dependencies that do not meet that criteria will be removed. pytest = "^7.3.0" pytest-cov = "^4.0.0" pytest-dotenv = "^0.5.2" duckdb-engine = "^0.7.0" pytest-watcher = "^0.2.6" freezegun = "^1.2.2" responses = "^0.22.0" pytest-asyncio = "^0.20.3" lark = "^1.1.5" pytest-mock = "^3.10.0" pytest-socket = "^0.6.0" [tool.poetry.group.test_integration] optional = true [tool.poetry.group.test_integration.dependencies] # Do not add dependencies in the test_integration group # Instead: # 1. Add an optional dependency to the main group # poetry add --optional [package name] # 2. Add the package name to the extended_testing extra (find it below) # 3. Relock the poetry file # poetry lock --no-update # 4. Favor unit tests not integration tests. # Use the @pytest.mark.requires(pkg_name) decorator in unit_tests. # Your tests should not rely on network access, as it prevents other # developers from being able to easily run them. # Instead write unit tests that use the `responses` library or mock.patch with # fixtures. Keep the fixtures minimal. # See CONTRIBUTING.md for more instructions on working with optional dependencies. # https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md#working-with-optional-dependencies pytest-vcr = "^1.0.2" wrapt = "^1.15.0" openai = "^0.27.4" elasticsearch = {extras = ["async"], version = "^8.6.2"} redis = "^4.5.4" pinecone-client = "^2.2.1" pinecone-text = "^0.4.2" pymongo = "^4.3.3" clickhouse-connect = "^0.5.14" pgvector = "^0.1.6" transformers = "^4.27.4" pandas = "^2.0.0" deeplake = "^3.2.21" weaviate-client = "^3.15.5" torch = "^1.0.0" chromadb = "^0.3.21" tiktoken = "^0.3.3" python-dotenv = "^1.0.0" sentence-transformers = "^2" gptcache = "^0.1.9" promptlayer = "^0.1.80" tair = "^1.3.3" wikipedia = "^1" cassandra-driver = "^3.27.0" arxiv = "^1.4" mastodon-py = "^1.8.1" momento = "^1.5.0" # Please do not add any dependencies in the test_integration group # See instructions above ^^ [tool.poetry.group.lint.dependencies] ruff = "^0.0.249" types-toml = "^0.10.8.1" types-redis = "^4.3.21.6" black = "^23.1.0" types-chardet = "^5.0.4.6" [tool.poetry.group.typing.dependencies] mypy = "^0.991" types-pyyaml = "^6.0.12.2" types-requests = "^2.28.11.5" [tool.poetry.group.dev] optional = true [tool.poetry.group.dev.dependencies] jupyter = "^1.0.0" playwright = "^1.28.0" setuptools = "^67.6.1" [tool.poetry.extras] llms = ["anthropic", "cohere", "openai", "openlm", "nlpcloud", "huggingface_hub", "manifest-ml", "torch", "transformers"] qdrant = ["qdrant-client"] openai = ["openai", "tiktoken"] text_helpers = ["chardet"] cohere = ["cohere"] docarray = ["docarray"] embeddings = ["sentence-transformers"] azure = ["azure-identity", "azure-cosmos", "openai", "azure-core", "azure-ai-formrecognizer", "azure-ai-vision", "azure-cognitiveservices-speech"] all = [ "anthropic", "cohere", "openai", "nlpcloud", "huggingface_hub", "jina", "manifest-ml", "elasticsearch", "opensearch-py", "google-search-results", "faiss-cpu", "sentence-transformers", "transformers", "spacy", "nltk", "wikipedia", "beautifulsoup4", "tiktoken", "torch", "jinja2", "pinecone-client", "pinecone-text", "pymongo", "weaviate-client", "redis", "google-api-python-client", "wolframalpha", "qdrant-client", "tensorflow-text", "pypdf", "networkx", "nomic", "aleph-alpha-client", "deeplake", "pgvector", "psycopg2-binary", "pyowm", "pytesseract", "html2text", "atlassian-python-api", "gptcache", "duckduckgo-search", "arxiv", "azure-identity", "clickhouse-connect", "azure-cosmos", "lancedb", "langkit", "lark", "pexpect", "pyvespa", "O365", "jq", "docarray", "steamship", "pdfminer-six", "lxml", "requests-toolbelt", "neo4j", "openlm", "azure-ai-formrecognizer", "azure-ai-vision", "azure-cognitiveservices-speech", "momento" ] # An extra used to be able to add extended testing. # Please use new-line on formatting to make it easier to add new packages without # merge-conflicts extended_testing = [ "beautifulsoup4", "bibtexparser", "chardet", "jq", "pdfminer.six", "pypdf", "pymupdf", "pypdfium2", "tqdm", "lxml", "atlassian-python-api", "beautifulsoup4", "pandas", "telethon", "psychicapi", "zep-python", "gql", "requests_toolbelt", "html2text", "py-trello", "scikit-learn", "pyspark", ] [tool.ruff] select = [ "E", # pycodestyle "F", # pyflakes "I", # isort ] exclude = [ "tests/integration_tests/examples/non-utf8-encoding.py", ] [tool.mypy] ignore_missing_imports = "True" disallow_untyped_defs = "True" exclude = ["notebooks"] [tool.coverage.run] omit = [ "tests/*", ] [build-system] requires = ["poetry-core>=1.0.0"] build-backend = "poetry.core.masonry.api" [tool.pytest.ini_options] # --strict-markers will raise errors on unknown marks. # https://docs.pytest.org/en/7.1.x/how-to/mark.html#raising-errors-on-unknown-marks # # https://docs.pytest.org/en/7.1.x/reference/reference.html # --strict-config any warnings encountered while parsing the `pytest` # section of the configuration file raise errors. addopts = "--strict-markers --strict-config --durations=5" # Registering custom markers. # https://docs.pytest.org/en/7.1.x/example/markers.html#registering-markers markers = [ "requires: mark tests as requiring a specific library" ]
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,582
Chroma.update_document bug
### System Info update_document only embeds a single document, but the single page_content string is cast to a list before embedding, resulting in a per-character embedding not a per-document embedding. https://github.com/hwchase17/langchain/blob/4c572ffe959957b515528a9036b374f56cef027f/langchain/vectorstores/chroma.py#LL359C70-L359C70 ### Who can help? Related to @dev2049 vectorstores ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.vectorstores import Chroma from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings # Initial document content and id initial_content = "foo" document_id = "doc1" # Create an instance of Document with initial content and metadata original_doc = Document(page_content=initial_content, metadata={"page": "0"}) # Initialize a Chroma instance with the original document docsearch = Chroma.from_documents( collection_name="test_collection", documents=[original_doc], embedding=FakeEmbeddings(), ids=[document_id], ) # Define updated content for the document updated_content = "updated foo" # Create a new Document instance with the updated content and the same id updated_doc = Document(page_content=updated_content, metadata={"page": "0"}) # Update the document in the Chroma instance docsearch.update_document(document_id=document_id, document=updated_doc) docsearch_peek = docsearch._collection.peek() new_embedding = docsearch_peek['embeddings'][docsearch_peek['ids'].index(document_id)] assert new_embedding \ == docsearch._embedding_function.embed_documents([updated_content[0]])[0] \ == docsearch._embedding_function.embed_documents(list(updated_content))[0] \ == docsearch._embedding_function.embed_documents(['u'])[0] assert new_embedding == docsearch._embedding_function.embed_documents([updated_content])[0] ``` ### Expected behavior The last assertion should be true ``` assert new_embedding == docsearch._embedding_function.embed_documents([updated_content])[0] ```
https://github.com/langchain-ai/langchain/issues/5582
https://github.com/langchain-ai/langchain/pull/5584
3c6fa9126aa6422084e8c064eda06292d40ac517
c5a7a85a4e6cd307f83b2e455d466722d75940b2
"2023-06-01T23:13:30Z"
python
"2023-06-02T18:12:48Z"
langchain/vectorstores/chroma.py
"""Wrapper around ChromaDB embeddings platform.""" from __future__ import annotations import logging import uuid from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Tuple, Type import numpy as np from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.utils import xor_args from langchain.vectorstores.base import VectorStore from langchain.vectorstores.utils import maximal_marginal_relevance if TYPE_CHECKING: import chromadb import chromadb.config logger = logging.getLogger() DEFAULT_K = 4 # Number of Documents to return. def _results_to_docs(results: Any) -> List[Document]: return [doc for doc, _ in _results_to_docs_and_scores(results)] def _results_to_docs_and_scores(results: Any) -> List[Tuple[Document, float]]: return [ # TODO: Chroma can do batch querying, # we shouldn't hard code to the 1st result (Document(page_content=result[0], metadata=result[1] or {}), result[2]) for result in zip( results["documents"][0], results["metadatas"][0], results["distances"][0], ) ] class Chroma(VectorStore): """Wrapper around ChromaDB embeddings platform. To use, you should have the ``chromadb`` python package installed. Example: .. code-block:: python from langchain.vectorstores import Chroma from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vectorstore = Chroma("langchain_store", embeddings.embed_query) """ _LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain" def __init__( self, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, embedding_function: Optional[Embeddings] = None, persist_directory: Optional[str] = None, client_settings: Optional[chromadb.config.Settings] = None, collection_metadata: Optional[Dict] = None, client: Optional[chromadb.Client] = None, ) -> None: """Initialize with Chroma client.""" try: import chromadb import chromadb.config except ImportError: raise ValueError( "Could not import chromadb python package. " "Please install it with `pip install chromadb`." ) if client is not None: self._client = client else: if client_settings: self._client_settings = client_settings else: self._client_settings = chromadb.config.Settings() if persist_directory is not None: self._client_settings = chromadb.config.Settings( chroma_db_impl="duckdb+parquet", persist_directory=persist_directory, ) self._client = chromadb.Client(self._client_settings) self._embedding_function = embedding_function self._persist_directory = persist_directory self._collection = self._client.get_or_create_collection( name=collection_name, embedding_function=self._embedding_function.embed_documents if self._embedding_function is not None else None, metadata=collection_metadata, ) @xor_args(("query_texts", "query_embeddings")) def __query_collection( self, query_texts: Optional[List[str]] = None, query_embeddings: Optional[List[List[float]]] = None, n_results: int = 4, where: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Query the chroma collection.""" try: import chromadb except ImportError: raise ValueError( "Could not import chromadb python package. " "Please install it with `pip install chromadb`." ) for i in range(n_results, 0, -1): try: return self._collection.query( query_texts=query_texts, query_embeddings=query_embeddings, n_results=i, where=where, **kwargs, ) except chromadb.errors.NotEnoughElementsException: logger.error( f"Chroma collection {self._collection.name} " f"contains fewer than {i} elements." ) raise chromadb.errors.NotEnoughElementsException( f"No documents found for Chroma collection {self._collection.name}" ) def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts (Iterable[str]): Texts to add to the vectorstore. metadatas (Optional[List[dict]], optional): Optional list of metadatas. ids (Optional[List[str]], optional): Optional list of IDs. Returns: List[str]: List of IDs of the added texts. """ # TODO: Handle the case where the user doesn't provide ids on the Collection if ids is None: ids = [str(uuid.uuid1()) for _ in texts] embeddings = None if self._embedding_function is not None: embeddings = self._embedding_function.embed_documents(list(texts)) self._collection.add( metadatas=metadatas, embeddings=embeddings, documents=texts, ids=ids ) return ids def similarity_search( self, query: str, k: int = DEFAULT_K, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Run similarity search with Chroma. Args: query (str): Query text to search for. k (int): Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List[Document]: List of documents most similar to the query text. """ docs_and_scores = self.similarity_search_with_score(query, k, filter=filter) return [doc for doc, _ in docs_and_scores] def similarity_search_by_vector( self, embedding: List[float], k: int = DEFAULT_K, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Return docs most similar to embedding vector. Args: embedding (str): Embedding to look up documents similar to. k (int): Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents most similar to the query vector. """ results = self.__query_collection( query_embeddings=embedding, n_results=k, where=filter ) return _results_to_docs(results) def similarity_search_with_score( self, query: str, k: int = DEFAULT_K, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Run similarity search with Chroma with distance. Args: query (str): Query text to search for. k (int): Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List[Tuple[Document, float]]: List of documents most similar to the query text with distance in float. """ if self._embedding_function is None: results = self.__query_collection( query_texts=[query], n_results=k, where=filter ) else: query_embedding = self._embedding_function.embed_query(query) results = self.__query_collection( query_embeddings=[query_embedding], n_results=k, where=filter ) return _results_to_docs_and_scores(results) def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = DEFAULT_K, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents selected by maximal marginal relevance. """ results = self.__query_collection( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) mmr_selected = maximal_marginal_relevance( np.array(embedding, dtype=np.float32), results["embeddings"][0], k=k, lambda_mult=lambda_mult, ) candidates = _results_to_docs(results) selected_results = [r for i, r in enumerate(candidates) if i in mmr_selected] return selected_results def max_marginal_relevance_search( self, query: str, k: int = DEFAULT_K, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents selected by maximal marginal relevance. """ if self._embedding_function is None: raise ValueError( "For MMR search, you must specify an embedding function on" "creation." ) embedding = self._embedding_function.embed_query(query) docs = self.max_marginal_relevance_search_by_vector( embedding, k, fetch_k, lambda_mul=lambda_mult, filter=filter ) return docs def delete_collection(self) -> None: """Delete the collection.""" self._client.delete_collection(self._collection.name) def get(self, include: Optional[List[str]] = None) -> Dict[str, Any]: """Gets the collection. Args: include (Optional[List[str]]): List of fields to include from db. Defaults to None. """ if include is not None: return self._collection.get(include=include) else: return self._collection.get() def persist(self) -> None: """Persist the collection. This can be used to explicitly persist the data to disk. It will also be called automatically when the object is destroyed. """ if self._persist_directory is None: raise ValueError( "You must specify a persist_directory on" "creation to persist the collection." ) self._client.persist() def update_document(self, document_id: str, document: Document) -> None: """Update a document in the collection. Args: document_id (str): ID of the document to update. document (Document): Document to update. """ text = document.page_content metadata = document.metadata if self._embedding_function is None: raise ValueError( "For update, you must specify an embedding function on creation." ) embeddings = self._embedding_function.embed_documents(list(text)) self._collection.update( ids=[document_id], embeddings=[embeddings[0]], documents=[text], metadatas=[metadata], ) @classmethod def from_texts( cls: Type[Chroma], texts: List[str], embedding: Optional[Embeddings] = None, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, persist_directory: Optional[str] = None, client_settings: Optional[chromadb.config.Settings] = None, client: Optional[chromadb.Client] = None, **kwargs: Any, ) -> Chroma: """Create a Chroma vectorstore from a raw documents. If a persist_directory is specified, the collection will be persisted there. Otherwise, the data will be ephemeral in-memory. Args: texts (List[str]): List of texts to add to the collection. collection_name (str): Name of the collection to create. persist_directory (Optional[str]): Directory to persist the collection. embedding (Optional[Embeddings]): Embedding function. Defaults to None. metadatas (Optional[List[dict]]): List of metadatas. Defaults to None. ids (Optional[List[str]]): List of document IDs. Defaults to None. client_settings (Optional[chromadb.config.Settings]): Chroma client settings Returns: Chroma: Chroma vectorstore. """ chroma_collection = cls( collection_name=collection_name, embedding_function=embedding, persist_directory=persist_directory, client_settings=client_settings, client=client, ) chroma_collection.add_texts(texts=texts, metadatas=metadatas, ids=ids) return chroma_collection @classmethod def from_documents( cls: Type[Chroma], documents: List[Document], embedding: Optional[Embeddings] = None, ids: Optional[List[str]] = None, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, persist_directory: Optional[str] = None, client_settings: Optional[chromadb.config.Settings] = None, client: Optional[chromadb.Client] = None, # Add this line **kwargs: Any, ) -> Chroma: """Create a Chroma vectorstore from a list of documents. If a persist_directory is specified, the collection will be persisted there. Otherwise, the data will be ephemeral in-memory. Args: collection_name (str): Name of the collection to create. persist_directory (Optional[str]): Directory to persist the collection. ids (Optional[List[str]]): List of document IDs. Defaults to None. documents (List[Document]): List of documents to add to the vectorstore. embedding (Optional[Embeddings]): Embedding function. Defaults to None. client_settings (Optional[chromadb.config.Settings]): Chroma client settings Returns: Chroma: Chroma vectorstore. """ texts = [doc.page_content for doc in documents] metadatas = [doc.metadata for doc in documents] return cls.from_texts( texts=texts, embedding=embedding, metadatas=metadatas, ids=ids, collection_name=collection_name, persist_directory=persist_directory, client_settings=client_settings, client=client, )
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,582
Chroma.update_document bug
### System Info update_document only embeds a single document, but the single page_content string is cast to a list before embedding, resulting in a per-character embedding not a per-document embedding. https://github.com/hwchase17/langchain/blob/4c572ffe959957b515528a9036b374f56cef027f/langchain/vectorstores/chroma.py#LL359C70-L359C70 ### Who can help? Related to @dev2049 vectorstores ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.vectorstores import Chroma from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings # Initial document content and id initial_content = "foo" document_id = "doc1" # Create an instance of Document with initial content and metadata original_doc = Document(page_content=initial_content, metadata={"page": "0"}) # Initialize a Chroma instance with the original document docsearch = Chroma.from_documents( collection_name="test_collection", documents=[original_doc], embedding=FakeEmbeddings(), ids=[document_id], ) # Define updated content for the document updated_content = "updated foo" # Create a new Document instance with the updated content and the same id updated_doc = Document(page_content=updated_content, metadata={"page": "0"}) # Update the document in the Chroma instance docsearch.update_document(document_id=document_id, document=updated_doc) docsearch_peek = docsearch._collection.peek() new_embedding = docsearch_peek['embeddings'][docsearch_peek['ids'].index(document_id)] assert new_embedding \ == docsearch._embedding_function.embed_documents([updated_content[0]])[0] \ == docsearch._embedding_function.embed_documents(list(updated_content))[0] \ == docsearch._embedding_function.embed_documents(['u'])[0] assert new_embedding == docsearch._embedding_function.embed_documents([updated_content])[0] ``` ### Expected behavior The last assertion should be true ``` assert new_embedding == docsearch._embedding_function.embed_documents([updated_content])[0] ```
https://github.com/langchain-ai/langchain/issues/5582
https://github.com/langchain-ai/langchain/pull/5584
3c6fa9126aa6422084e8c064eda06292d40ac517
c5a7a85a4e6cd307f83b2e455d466722d75940b2
"2023-06-01T23:13:30Z"
python
"2023-06-02T18:12:48Z"
tests/integration_tests/vectorstores/test_chroma.py
"""Test Chroma functionality.""" import pytest from langchain.docstore.document import Document from langchain.vectorstores import Chroma from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings def test_chroma() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] docsearch = Chroma.from_texts( collection_name="test_collection", texts=texts, embedding=FakeEmbeddings() ) output = docsearch.similarity_search("foo", k=1) assert output == [Document(page_content="foo")] @pytest.mark.asyncio async def test_chroma_async() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] docsearch = Chroma.from_texts( collection_name="test_collection", texts=texts, embedding=FakeEmbeddings() ) output = await docsearch.asimilarity_search("foo", k=1) assert output == [Document(page_content="foo")] def test_chroma_with_metadatas() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": str(i)} for i in range(len(texts))] docsearch = Chroma.from_texts( collection_name="test_collection", texts=texts, embedding=FakeEmbeddings(), metadatas=metadatas, ) output = docsearch.similarity_search("foo", k=1) assert output == [Document(page_content="foo", metadata={"page": "0"})] def test_chroma_with_metadatas_with_scores() -> None: """Test end to end construction and scored search.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": str(i)} for i in range(len(texts))] docsearch = Chroma.from_texts( collection_name="test_collection", texts=texts, embedding=FakeEmbeddings(), metadatas=metadatas, ) output = docsearch.similarity_search_with_score("foo", k=1) assert output == [(Document(page_content="foo", metadata={"page": "0"}), 0.0)] def test_chroma_search_filter() -> None: """Test end to end construction and search with metadata filtering.""" texts = ["far", "bar", "baz"] metadatas = [{"first_letter": "{}".format(text[0])} for text in texts] docsearch = Chroma.from_texts( collection_name="test_collection", texts=texts, embedding=FakeEmbeddings(), metadatas=metadatas, ) output = docsearch.similarity_search("far", k=1, filter={"first_letter": "f"}) assert output == [Document(page_content="far", metadata={"first_letter": "f"})] output = docsearch.similarity_search("far", k=1, filter={"first_letter": "b"}) assert output == [Document(page_content="bar", metadata={"first_letter": "b"})] def test_chroma_search_filter_with_scores() -> None: """Test end to end construction and scored search with metadata filtering.""" texts = ["far", "bar", "baz"] metadatas = [{"first_letter": "{}".format(text[0])} for text in texts] docsearch = Chroma.from_texts( collection_name="test_collection", texts=texts, embedding=FakeEmbeddings(), metadatas=metadatas, ) output = docsearch.similarity_search_with_score( "far", k=1, filter={"first_letter": "f"} ) assert output == [ (Document(page_content="far", metadata={"first_letter": "f"}), 0.0) ] output = docsearch.similarity_search_with_score( "far", k=1, filter={"first_letter": "b"} ) assert output == [ (Document(page_content="bar", metadata={"first_letter": "b"}), 1.0) ] def test_chroma_with_persistence() -> None: """Test end to end construction and search, with persistence.""" chroma_persist_dir = "./tests/persist_dir" collection_name = "test_collection" texts = ["foo", "bar", "baz"] docsearch = Chroma.from_texts( collection_name=collection_name, texts=texts, embedding=FakeEmbeddings(), persist_directory=chroma_persist_dir, ) output = docsearch.similarity_search("foo", k=1) assert output == [Document(page_content="foo")] docsearch.persist() # Get a new VectorStore from the persisted directory docsearch = Chroma( collection_name=collection_name, embedding_function=FakeEmbeddings(), persist_directory=chroma_persist_dir, ) output = docsearch.similarity_search("foo", k=1) # Clean up docsearch.delete_collection() # Persist doesn't need to be called again # Data will be automatically persisted on object deletion # Or on program exit def test_chroma_mmr() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] docsearch = Chroma.from_texts( collection_name="test_collection", texts=texts, embedding=FakeEmbeddings() ) output = docsearch.max_marginal_relevance_search("foo", k=1) assert output == [Document(page_content="foo")] def test_chroma_mmr_by_vector() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] embeddings = FakeEmbeddings() docsearch = Chroma.from_texts( collection_name="test_collection", texts=texts, embedding=embeddings ) embedded_query = embeddings.embed_query("foo") output = docsearch.max_marginal_relevance_search_by_vector(embedded_query, k=1) assert output == [Document(page_content="foo")] def test_chroma_with_include_parameter() -> None: """Test end to end construction and include parameter.""" texts = ["foo", "bar", "baz"] docsearch = Chroma.from_texts( collection_name="test_collection", texts=texts, embedding=FakeEmbeddings() ) output = docsearch.get(include=["embeddings"]) assert output["embeddings"] is not None output = docsearch.get() assert output["embeddings"] is None def test_chroma_update_document() -> None: """Test the update_document function in the Chroma class.""" # Initial document content and id initial_content = "foo" document_id = "doc1" # Create an instance of Document with initial content and metadata original_doc = Document(page_content=initial_content, metadata={"page": "0"}) # Initialize a Chroma instance with the original document docsearch = Chroma.from_documents( collection_name="test_collection", documents=[original_doc], embedding=FakeEmbeddings(), ids=[document_id], ) # Define updated content for the document updated_content = "updated foo" # Create a new Document instance with the updated content and the same id updated_doc = Document(page_content=updated_content, metadata={"page": "0"}) # Update the document in the Chroma instance docsearch.update_document(document_id=document_id, document=updated_doc) # Perform a similarity search with the updated content output = docsearch.similarity_search(updated_content, k=1) # Assert that the updated document is returned by the search assert output == [Document(page_content=updated_content, metadata={"page": "0"})]
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,623
cannot import name 'FigmaFileLoader'
### System Info langchain==0.0.189 os:windows11 python=3.10.11 ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction from langchain.document_loaders import FigmaFileLoader ### Expected behavior expected: load the module error: ImportError: cannot import name 'FigmaFileLoader' from 'langchain.document_loaders' (C:\Users\xxx\AppData\Local\miniconda3\envs\xxx\lib\site-packages\langchain\document_loaders\__init__.py) comments: checked the langchain\document_loaders\__init__.py and there is no reference to FigmaFileLoader
https://github.com/langchain-ai/langchain/issues/5623
https://github.com/langchain-ai/langchain/pull/5636
20ec1173f40a13cba73d79cc0efa4653d2489d65
9a7488a5ce65aaf727464f02a10811719b517f11
"2023-06-02T16:39:41Z"
python
"2023-06-02T21:58:41Z"
langchain/document_loaders/__init__.py
"""All different types of document loaders.""" from langchain.document_loaders.airbyte_json import AirbyteJSONLoader from langchain.document_loaders.apify_dataset import ApifyDatasetLoader from langchain.document_loaders.arxiv import ArxivLoader from langchain.document_loaders.azlyrics import AZLyricsLoader from langchain.document_loaders.azure_blob_storage_container import ( AzureBlobStorageContainerLoader, ) from langchain.document_loaders.azure_blob_storage_file import ( AzureBlobStorageFileLoader, ) from langchain.document_loaders.bibtex import BibtexLoader from langchain.document_loaders.bigquery import BigQueryLoader from langchain.document_loaders.bilibili import BiliBiliLoader from langchain.document_loaders.blackboard import BlackboardLoader from langchain.document_loaders.blockchain import BlockchainDocumentLoader from langchain.document_loaders.chatgpt import ChatGPTLoader from langchain.document_loaders.college_confidential import CollegeConfidentialLoader from langchain.document_loaders.confluence import ConfluenceLoader from langchain.document_loaders.conllu import CoNLLULoader from langchain.document_loaders.csv_loader import CSVLoader from langchain.document_loaders.dataframe import DataFrameLoader from langchain.document_loaders.diffbot import DiffbotLoader from langchain.document_loaders.directory import DirectoryLoader from langchain.document_loaders.discord import DiscordChatLoader from langchain.document_loaders.docugami import DocugamiLoader from langchain.document_loaders.duckdb_loader import DuckDBLoader from langchain.document_loaders.email import ( OutlookMessageLoader, UnstructuredEmailLoader, ) from langchain.document_loaders.epub import UnstructuredEPubLoader from langchain.document_loaders.evernote import EverNoteLoader from langchain.document_loaders.facebook_chat import FacebookChatLoader from langchain.document_loaders.gcs_directory import GCSDirectoryLoader from langchain.document_loaders.gcs_file import GCSFileLoader from langchain.document_loaders.git import GitLoader from langchain.document_loaders.gitbook import GitbookLoader from langchain.document_loaders.github import GitHubIssuesLoader from langchain.document_loaders.googledrive import GoogleDriveLoader from langchain.document_loaders.gutenberg import GutenbergLoader from langchain.document_loaders.hn import HNLoader from langchain.document_loaders.html import UnstructuredHTMLLoader from langchain.document_loaders.html_bs import BSHTMLLoader from langchain.document_loaders.hugging_face_dataset import HuggingFaceDatasetLoader from langchain.document_loaders.ifixit import IFixitLoader from langchain.document_loaders.image import UnstructuredImageLoader from langchain.document_loaders.image_captions import ImageCaptionLoader from langchain.document_loaders.imsdb import IMSDbLoader from langchain.document_loaders.joplin import JoplinLoader from langchain.document_loaders.json_loader import JSONLoader from langchain.document_loaders.markdown import UnstructuredMarkdownLoader from langchain.document_loaders.mastodon import MastodonTootsLoader from langchain.document_loaders.max_compute import MaxComputeLoader from langchain.document_loaders.mediawikidump import MWDumpLoader from langchain.document_loaders.modern_treasury import ModernTreasuryLoader from langchain.document_loaders.notebook import NotebookLoader from langchain.document_loaders.notion import NotionDirectoryLoader from langchain.document_loaders.notiondb import NotionDBLoader from langchain.document_loaders.obsidian import ObsidianLoader from langchain.document_loaders.odt import UnstructuredODTLoader from langchain.document_loaders.onedrive import OneDriveLoader from langchain.document_loaders.pdf import ( MathpixPDFLoader, OnlinePDFLoader, PDFMinerLoader, PDFMinerPDFasHTMLLoader, PDFPlumberLoader, PyMuPDFLoader, PyPDFDirectoryLoader, PyPDFium2Loader, PyPDFLoader, UnstructuredPDFLoader, ) from langchain.document_loaders.powerpoint import UnstructuredPowerPointLoader from langchain.document_loaders.psychic import PsychicLoader from langchain.document_loaders.pyspark_dataframe import PySparkDataFrameLoader from langchain.document_loaders.python import PythonLoader from langchain.document_loaders.readthedocs import ReadTheDocsLoader from langchain.document_loaders.reddit import RedditPostsLoader from langchain.document_loaders.roam import RoamLoader from langchain.document_loaders.rtf import UnstructuredRTFLoader from langchain.document_loaders.s3_directory import S3DirectoryLoader from langchain.document_loaders.s3_file import S3FileLoader from langchain.document_loaders.sitemap import SitemapLoader from langchain.document_loaders.slack_directory import SlackDirectoryLoader from langchain.document_loaders.spreedly import SpreedlyLoader from langchain.document_loaders.srt import SRTLoader from langchain.document_loaders.stripe import StripeLoader from langchain.document_loaders.telegram import ( TelegramChatApiLoader, TelegramChatFileLoader, ) from langchain.document_loaders.text import TextLoader from langchain.document_loaders.tomarkdown import ToMarkdownLoader from langchain.document_loaders.toml import TomlLoader from langchain.document_loaders.trello import TrelloLoader from langchain.document_loaders.twitter import TwitterTweetLoader from langchain.document_loaders.unstructured import ( UnstructuredAPIFileIOLoader, UnstructuredAPIFileLoader, UnstructuredFileIOLoader, UnstructuredFileLoader, ) from langchain.document_loaders.url import UnstructuredURLLoader from langchain.document_loaders.url_playwright import PlaywrightURLLoader from langchain.document_loaders.url_selenium import SeleniumURLLoader from langchain.document_loaders.weather import WeatherDataLoader from langchain.document_loaders.web_base import WebBaseLoader from langchain.document_loaders.whatsapp_chat import WhatsAppChatLoader from langchain.document_loaders.wikipedia import WikipediaLoader from langchain.document_loaders.word_document import ( Docx2txtLoader, UnstructuredWordDocumentLoader, ) from langchain.document_loaders.youtube import ( GoogleApiClient, GoogleApiYoutubeLoader, YoutubeLoader, ) # Legacy: only for backwards compat. Use PyPDFLoader instead PagedPDFSplitter = PyPDFLoader # For backwards compatability TelegramChatLoader = TelegramChatFileLoader __all__ = [ "AZLyricsLoader", "AirbyteJSONLoader", "ApifyDatasetLoader", "ArxivLoader", "AzureBlobStorageContainerLoader", "AzureBlobStorageFileLoader", "BSHTMLLoader", "BibtexLoader", "BigQueryLoader", "BiliBiliLoader", "BlackboardLoader", "BlockchainDocumentLoader", "CSVLoader", "ChatGPTLoader", "CoNLLULoader", "CollegeConfidentialLoader", "ConfluenceLoader", "DataFrameLoader", "DiffbotLoader", "DirectoryLoader", "DiscordChatLoader", "DocugamiLoader", "Docx2txtLoader", "DuckDBLoader", "EverNoteLoader", "FacebookChatLoader", "GCSDirectoryLoader", "GCSFileLoader", "GitLoader", "GitHubIssuesLoader", "GitbookLoader", "GoogleApiClient", "GoogleApiYoutubeLoader", "GoogleDriveLoader", "GutenbergLoader", "HNLoader", "HuggingFaceDatasetLoader", "HuggingFaceDatasetLoader", "IFixitLoader", "IMSDbLoader", "ImageCaptionLoader", "JoplinLoader", "JSONLoader", "MWDumpLoader", "MastodonTootsLoader", "MathpixPDFLoader", "MaxComputeLoader", "ModernTreasuryLoader", "NotebookLoader", "NotionDBLoader", "NotionDirectoryLoader", "ObsidianLoader", "OneDriveLoader", "OnlinePDFLoader", "OutlookMessageLoader", "PDFMinerLoader", "PDFMinerPDFasHTMLLoader", "PDFPlumberLoader", "PagedPDFSplitter", "PlaywrightURLLoader", "PyMuPDFLoader", "PyPDFDirectoryLoader", "PyPDFLoader", "PyPDFium2Loader", "PySparkDataFrameLoader", "PythonLoader", "ReadTheDocsLoader", "RedditPostsLoader", "RoamLoader", "S3DirectoryLoader", "S3FileLoader", "SRTLoader", "SeleniumURLLoader", "SitemapLoader", "SlackDirectoryLoader", "TelegramChatFileLoader", "TelegramChatApiLoader", "SpreedlyLoader", "StripeLoader", "TextLoader", "TomlLoader", "TrelloLoader", "TwitterTweetLoader", "UnstructuredAPIFileIOLoader", "UnstructuredAPIFileLoader", "UnstructuredEPubLoader", "UnstructuredEmailLoader", "UnstructuredFileIOLoader", "UnstructuredFileLoader", "UnstructuredHTMLLoader", "UnstructuredImageLoader", "UnstructuredMarkdownLoader", "UnstructuredODTLoader", "UnstructuredPDFLoader", "UnstructuredPowerPointLoader", "UnstructuredRTFLoader", "UnstructuredURLLoader", "UnstructuredWordDocumentLoader", "WeatherDataLoader", "WebBaseLoader", "WhatsAppChatLoader", "WikipediaLoader", "YoutubeLoader", "TelegramChatLoader", "ToMarkdownLoader", "PsychicLoader", ]
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,627
DOC: repetitive parts in Modules pages
### Issue with current documentation: Pages in Modules: Models, Prompts, Memory, ... They all have repeated parts. See a picture. ![image](https://github.com/hwchase17/langchain/assets/2256422/05514908-87b5-453a-9795-8304612f42bf) ### Idea or request for content: The whole "Go Deeper" section can be removed and instead, the links from removed items added to the above items. For example "Prompt Templates" link is added to the "LLM Prompt Templates" in the above text. Etc. This significantly decreases the size of the page and improves user experience. No more repetitive items. _No response_
https://github.com/langchain-ai/langchain/issues/5627
https://github.com/langchain-ai/langchain/pull/5116
bc875a9df16d17db531f9e363c18ed8b5ebbc047
95c6ed0568e808626ffb2ee6490b770a4ac9c508
"2023-06-02T18:24:00Z"
python
"2023-06-03T21:44:32Z"
docs/modules/agents.rst
Agents ========================== .. note:: `Conceptual Guide <https://docs.langchain.com/docs/components/agents>`_ Some applications will require not just a predetermined chain of calls to LLMs/other tools, but potentially an unknown chain that depends on the user's input. In these types of chains, there is a “agent” which has access to a suite of tools. Depending on the user input, the agent can then decide which, if any, of these tools to call. At the moment, there are two main types of agents: 1. "Action Agents": these agents decide an action to take and take that action one step at a time 2. "Plan-and-Execute Agents": these agents first decide a plan of actions to take, and then execute those actions one at a time. When should you use each one? Action Agents are more conventional, and good for small tasks. For more complex or long running tasks, the initial planning step helps to maintain long term objectives and focus. However, that comes at the expense of generally more calls and higher latency. These two agents are also not mutually exclusive - in fact, it is often best to have an Action Agent be in charge of the execution for the Plan and Execute agent. Action Agents ------------- High level pseudocode of agents looks something like: - Some user input is received - The `agent` decides which `tool` - if any - to use, and what the input to that tool should be - That `tool` is then called with that `tool input`, and an `observation` is recorded (this is just the output of calling that tool with that tool input) - That history of `tool`, `tool input`, and `observation` is passed back into the `agent`, and it decides what step to take next - This is repeated until the `agent` decides it no longer needs to use a `tool`, and then it responds directly to the user. The different abstractions involved in agents are as follows: - Agent: this is where the logic of the application lives. Agents expose an interface that takes in user input along with a list of previous steps the agent has taken, and returns either an `AgentAction` or `AgentFinish` - `AgentAction` corresponds to the tool to use and the input to that tool - `AgentFinish` means the agent is done, and has information around what to return to the user - Tools: these are the actions an agent can take. What tools you give an agent highly depend on what you want the agent to do - Toolkits: these are groups of tools designed for a specific use case. For example, in order for an agent to interact with a SQL database in the best way it may need access to one tool to execute queries and another tool to inspect tables. - Agent Executor: this wraps an agent and a list of tools. This is responsible for the loop of running the agent iteratively until the stopping criteria is met. The most important abstraction of the four above to understand is that of the agent. Although an agent can be defined in whatever way one chooses, the typical way to construct an agent is with: - PromptTemplate: this is responsible for taking the user input and previous steps and constructing a prompt to send to the language model - Language Model: this takes the prompt constructed by the PromptTemplate and returns some output - Output Parser: this takes the output of the Language Model and parses it into an `AgentAction` or `AgentFinish` object. In this section of documentation, we first start with a Getting Started notebook to cover how to use all things related to agents in an end-to-end manner. .. toctree:: :maxdepth: 1 :hidden: ./agents/getting_started.ipynb We then split the documentation into the following sections: **Tools** In this section we cover the different types of tools LangChain supports natively. We then cover how to add your own tools. **Agents** In this section we cover the different types of agents LangChain supports natively. We then cover how to modify and create your own agents. **Toolkits** In this section we go over the various toolkits that LangChain supports out of the box, and how to create an agent from them. **Agent Executor** In this section we go over the Agent Executor class, which is responsible for calling the agent and tools in a loop. We go over different ways to customize this, and options you can use for more control. **Go Deeper** .. toctree:: :maxdepth: 1 ./agents/tools.rst ./agents/agents.rst ./agents/toolkits.rst ./agents/agent_executors.rst Plan-and-Execute Agents ----------------------- High level pseudocode of agents looks something like: - Some user input is received - The planner lists out the steps to take - The executor goes through the list of steps, executing them The most typical implementation is to have the planner be a language model, and the executor be an action agent. **Go Deeper** .. toctree:: :maxdepth: 1 ./agents/plan_and_execute.ipynb
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,627
DOC: repetitive parts in Modules pages
### Issue with current documentation: Pages in Modules: Models, Prompts, Memory, ... They all have repeated parts. See a picture. ![image](https://github.com/hwchase17/langchain/assets/2256422/05514908-87b5-453a-9795-8304612f42bf) ### Idea or request for content: The whole "Go Deeper" section can be removed and instead, the links from removed items added to the above items. For example "Prompt Templates" link is added to the "LLM Prompt Templates" in the above text. Etc. This significantly decreases the size of the page and improves user experience. No more repetitive items. _No response_
https://github.com/langchain-ai/langchain/issues/5627
https://github.com/langchain-ai/langchain/pull/5116
bc875a9df16d17db531f9e363c18ed8b5ebbc047
95c6ed0568e808626ffb2ee6490b770a4ac9c508
"2023-06-02T18:24:00Z"
python
"2023-06-03T21:44:32Z"
docs/modules/chains.rst
Chains ========================== .. note:: `Conceptual Guide <https://docs.langchain.com/docs/components/chains>`_ Using an LLM in isolation is fine for some simple applications, but many more complex ones require chaining LLMs - either with each other or with other experts. LangChain provides a standard interface for Chains, as well as some common implementations of chains for ease of use. The following sections of documentation are provided: - `Getting Started <./chains/getting_started.html>`_: A getting started guide for chains, to get you up and running quickly. - `How-To Guides <./chains/how_to_guides.html>`_: A collection of how-to guides. These highlight how to use various types of chains. - `Reference <../reference/modules/chains.html>`_: API reference documentation for all Chain classes. .. toctree:: :maxdepth: 1 :caption: Chains :name: Chains :hidden: ./chains/getting_started.ipynb ./chains/how_to_guides.rst Reference<../reference/modules/chains.rst>
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,627
DOC: repetitive parts in Modules pages
### Issue with current documentation: Pages in Modules: Models, Prompts, Memory, ... They all have repeated parts. See a picture. ![image](https://github.com/hwchase17/langchain/assets/2256422/05514908-87b5-453a-9795-8304612f42bf) ### Idea or request for content: The whole "Go Deeper" section can be removed and instead, the links from removed items added to the above items. For example "Prompt Templates" link is added to the "LLM Prompt Templates" in the above text. Etc. This significantly decreases the size of the page and improves user experience. No more repetitive items. _No response_
https://github.com/langchain-ai/langchain/issues/5627
https://github.com/langchain-ai/langchain/pull/5116
bc875a9df16d17db531f9e363c18ed8b5ebbc047
95c6ed0568e808626ffb2ee6490b770a4ac9c508
"2023-06-02T18:24:00Z"
python
"2023-06-03T21:44:32Z"
docs/modules/indexes.rst
Indexes ========================== .. note:: `Conceptual Guide <https://docs.langchain.com/docs/components/indexing>`_ Indexes refer to ways to structure documents so that LLMs can best interact with them. This module contains utility functions for working with documents, different types of indexes, and then examples for using those indexes in chains. The most common way that indexes are used in chains is in a "retrieval" step. This step refers to taking a user's query and returning the most relevant documents. We draw this distinction because (1) an index can be used for other things besides retrieval, and (2) retrieval can use other logic besides an index to find relevant documents. We therefore have a concept of a "Retriever" interface - this is the interface that most chains work with. Most of the time when we talk about indexes and retrieval we are talking about indexing and retrieving unstructured data (like text documents). For interacting with structured data (SQL tables, etc) or APIs, please see the corresponding use case sections for links to relevant functionality. The primary index and retrieval types supported by LangChain are currently centered around vector databases, and therefore a lot of the functionality we dive deep on those topics. For an overview of everything related to this, please see the below notebook for getting started: .. toctree:: :maxdepth: 1 ./indexes/getting_started.ipynb We then provide a deep dive on the four main components. **Document Loaders** How to load documents from a variety of sources. **Text Splitters** An overview of the abstractions and implementions around splitting text. **VectorStores** An overview of VectorStores and the many integrations LangChain provides. **Retrievers** An overview of Retrievers and the implementations LangChain provides. Go Deeper --------- .. toctree:: :maxdepth: 1 ./indexes/document_loaders.rst ./indexes/text_splitters.rst ./indexes/vectorstores.rst ./indexes/retrievers.rst
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,627
DOC: repetitive parts in Modules pages
### Issue with current documentation: Pages in Modules: Models, Prompts, Memory, ... They all have repeated parts. See a picture. ![image](https://github.com/hwchase17/langchain/assets/2256422/05514908-87b5-453a-9795-8304612f42bf) ### Idea or request for content: The whole "Go Deeper" section can be removed and instead, the links from removed items added to the above items. For example "Prompt Templates" link is added to the "LLM Prompt Templates" in the above text. Etc. This significantly decreases the size of the page and improves user experience. No more repetitive items. _No response_
https://github.com/langchain-ai/langchain/issues/5627
https://github.com/langchain-ai/langchain/pull/5116
bc875a9df16d17db531f9e363c18ed8b5ebbc047
95c6ed0568e808626ffb2ee6490b770a4ac9c508
"2023-06-02T18:24:00Z"
python
"2023-06-03T21:44:32Z"
docs/modules/memory.rst
Memory ========================== .. note:: `Conceptual Guide <https://docs.langchain.com/docs/components/memory>`_ By default, Chains and Agents are stateless, meaning that they treat each incoming query independently (as are the underlying LLMs and chat models). In some applications (chatbots being a GREAT example) it is highly important to remember previous interactions, both at a short term but also at a long term level. The concept of “Memory” exists to do exactly that. LangChain provides memory components in two forms. First, LangChain provides helper utilities for managing and manipulating previous chat messages. These are designed to be modular and useful regardless of how they are used. Secondly, LangChain provides easy ways to incorporate these utilities into chains. The following sections of documentation are provided: - `Getting Started <./memory/getting_started.html>`_: An overview of how to get started with different types of memory. - `How-To Guides <./memory/how_to_guides.html>`_: A collection of how-to guides. These highlight different types of memory, as well as how to use memory in chains. .. toctree:: :maxdepth: 1 :caption: Memory :name: Memory ./memory/getting_started.ipynb ./memory/how_to_guides.rst
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,627
DOC: repetitive parts in Modules pages
### Issue with current documentation: Pages in Modules: Models, Prompts, Memory, ... They all have repeated parts. See a picture. ![image](https://github.com/hwchase17/langchain/assets/2256422/05514908-87b5-453a-9795-8304612f42bf) ### Idea or request for content: The whole "Go Deeper" section can be removed and instead, the links from removed items added to the above items. For example "Prompt Templates" link is added to the "LLM Prompt Templates" in the above text. Etc. This significantly decreases the size of the page and improves user experience. No more repetitive items. _No response_
https://github.com/langchain-ai/langchain/issues/5627
https://github.com/langchain-ai/langchain/pull/5116
bc875a9df16d17db531f9e363c18ed8b5ebbc047
95c6ed0568e808626ffb2ee6490b770a4ac9c508
"2023-06-02T18:24:00Z"
python
"2023-06-03T21:44:32Z"
docs/modules/models.rst
Models ========================== .. note:: `Conceptual Guide <https://docs.langchain.com/docs/components/models>`_ This section of the documentation deals with different types of models that are used in LangChain. On this page we will go over the model types at a high level, but we have individual pages for each model type. The pages contain more detailed "how-to" guides for working with that model, as well as a list of different model providers. **LLMs** Large Language Models (LLMs) are the first type of models we cover. These models take a text string as input, and return a text string as output. **Chat Models** Chat Models are the second type of models we cover. These models are usually backed by a language model, but their APIs are more structured. Specifically, these models take a list of Chat Messages as input, and return a Chat Message. **Text Embedding Models** The third type of models we cover are text embedding models. These models take text as input and return a list of floats. Getting Started --------------- .. toctree:: :maxdepth: 1 ./models/getting_started.ipynb Go Deeper --------- .. toctree:: :maxdepth: 1 ./models/llms.rst ./models/chat.rst ./models/text_embedding.rst
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,627
DOC: repetitive parts in Modules pages
### Issue with current documentation: Pages in Modules: Models, Prompts, Memory, ... They all have repeated parts. See a picture. ![image](https://github.com/hwchase17/langchain/assets/2256422/05514908-87b5-453a-9795-8304612f42bf) ### Idea or request for content: The whole "Go Deeper" section can be removed and instead, the links from removed items added to the above items. For example "Prompt Templates" link is added to the "LLM Prompt Templates" in the above text. Etc. This significantly decreases the size of the page and improves user experience. No more repetitive items. _No response_
https://github.com/langchain-ai/langchain/issues/5627
https://github.com/langchain-ai/langchain/pull/5116
bc875a9df16d17db531f9e363c18ed8b5ebbc047
95c6ed0568e808626ffb2ee6490b770a4ac9c508
"2023-06-02T18:24:00Z"
python
"2023-06-03T21:44:32Z"
docs/modules/prompts.rst
Prompts ========================== .. note:: `Conceptual Guide <https://docs.langchain.com/docs/components/prompts>`_ The new way of programming models is through prompts. A "prompt" refers to the input to the model. This input is rarely hard coded, but rather is often constructed from multiple components. A PromptTemplate is responsible for the construction of this input. LangChain provides several classes and functions to make constructing and working with prompts easy. This section of documentation is split into four sections: **LLM Prompt Templates** How to use PromptTemplates to prompt Language Models. **Chat Prompt Templates** How to use PromptTemplates to prompt Chat Models. **Example Selectors** Often times it is useful to include examples in prompts. These examples can be hardcoded, but it is often more powerful if they are dynamically selected. This section goes over example selection. **Output Parsers** Language models (and Chat Models) output text. But many times you may want to get more structured information than just text back. This is where output parsers come in. Output Parsers are responsible for (1) instructing the model how output should be formatted, (2) parsing output into the desired formatting (including retrying if necessary). Getting Started --------------- .. toctree:: :maxdepth: 1 ./prompts/getting_started.ipynb Go Deeper --------- .. toctree:: :maxdepth: 1 ./prompts/prompt_templates.rst ./prompts/chat_prompt_template.ipynb ./prompts/example_selectors.rst ./prompts/output_parsers.rst
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,627
DOC: repetitive parts in Modules pages
### Issue with current documentation: Pages in Modules: Models, Prompts, Memory, ... They all have repeated parts. See a picture. ![image](https://github.com/hwchase17/langchain/assets/2256422/05514908-87b5-453a-9795-8304612f42bf) ### Idea or request for content: The whole "Go Deeper" section can be removed and instead, the links from removed items added to the above items. For example "Prompt Templates" link is added to the "LLM Prompt Templates" in the above text. Etc. This significantly decreases the size of the page and improves user experience. No more repetitive items. _No response_
https://github.com/langchain-ai/langchain/issues/5627
https://github.com/langchain-ai/langchain/pull/5116
bc875a9df16d17db531f9e363c18ed8b5ebbc047
95c6ed0568e808626ffb2ee6490b770a4ac9c508
"2023-06-02T18:24:00Z"
python
"2023-06-03T21:44:32Z"
docs/modules/prompts/chat_prompt_template.ipynb
{ "cells": [ { "attachments": {}, "cell_type": "markdown", "id": "6488fdaf", "metadata": {}, "source": [ "# Chat Prompt Template\n", "\n", "[Chat Models](../models/chat.rst) takes a list of chat messages as input - this list commonly referred to as a prompt.\n", "These chat messages differ from raw string (which you would pass into a [LLM](../models/llms.rst) model) in that every message is associated with a role.\n", "\n", "For example, in OpenAI [Chat Completion API](https://platform.openai.com/docs/guides/chat/introduction), a chat message can be associated with the AI, human or system role. The model is supposed to follow instruction from system chat message more closely.\n", "\n", "Therefore, LangChain provides several related prompt templates to make constructing and working with prompts easily. You are encouraged to use these chat related prompt templates instead of `PromptTemplate` when querying chat models to fully exploit the potential of underlying chat model.\n" ] }, { "cell_type": "code", "execution_count": 35, "id": "7647a621", "metadata": { "tags": [] }, "outputs": [], "source": [ "from langchain.prompts import (\n", " ChatPromptTemplate,\n", " PromptTemplate,\n", " SystemMessagePromptTemplate,\n", " AIMessagePromptTemplate,\n", " HumanMessagePromptTemplate,\n", ")\n", "from langchain.schema import (\n", " AIMessage,\n", " HumanMessage,\n", " SystemMessage\n", ")" ] }, { "cell_type": "markdown", "id": "acb4a2f6", "metadata": {}, "source": [ "To create a message template associated with a role, you use `MessagePromptTemplate`. \n", "\n", "For convenience, there is a `from_template` method exposed on the template. If you were to use this template, this is what it would look like:" ] }, { "cell_type": "code", "execution_count": 36, "id": "3124f5e9", "metadata": { "tags": [] }, "outputs": [], "source": [ "template=\"You are a helpful assistant that translates {input_language} to {output_language}.\"\n", "system_message_prompt = SystemMessagePromptTemplate.from_template(template)\n", "human_template=\"{text}\"\n", "human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)" ] }, { "cell_type": "markdown", "id": "c8b08cda-7c57-4c15-a1e5-80627cfa9cbd", "metadata": {}, "source": [ "If you wanted to construct the `MessagePromptTemplate` more directly, you could create a PromptTemplate outside and then pass it in, eg:" ] }, { "cell_type": "code", "execution_count": 37, "id": "5a8d249e", "metadata": { "tags": [] }, "outputs": [], "source": [ "prompt=PromptTemplate(\n", " template=\"You are a helpful assistant that translates {input_language} to {output_language}.\",\n", " input_variables=[\"input_language\", \"output_language\"],\n", ")\n", "system_message_prompt_2 = SystemMessagePromptTemplate(prompt=prompt)\n", "\n", "assert system_message_prompt == system_message_prompt_2" ] }, { "cell_type": "markdown", "id": "96836c5c-41f8-4073-95ac-ea1daab2e00e", "metadata": {}, "source": [ "After that, you can build a `ChatPromptTemplate` from one or more `MessagePromptTemplates`. You can use `ChatPromptTemplate`'s `format_prompt` -- this returns a `PromptValue`, which you can convert to a string or Message object, depending on whether you want to use the formatted value as input to an llm or chat model." ] }, { "cell_type": "code", "execution_count": 38, "id": "9c7e2e6f", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/plain": [ "[SystemMessage(content='You are a helpful assistant that translates English to French.', additional_kwargs={}),\n", " HumanMessage(content='I love programming.', additional_kwargs={})]" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])\n", "\n", "# get a chat completion from the formatted messages\n", "chat_prompt.format_prompt(input_language=\"English\", output_language=\"French\", text=\"I love programming.\").to_messages()" ] }, { "attachments": {}, "cell_type": "markdown", "id": "0899f681-012e-4687-a754-199a9a396738", "metadata": { "tags": [] }, "source": [ "## Format output\n", "\n", "The output of the format method is available as string, list of messages and `ChatPromptValue`" ] }, { "cell_type": "markdown", "id": "584166de-0c31-4bc9-bf7a-5b359e7173d8", "metadata": {}, "source": [ "As string:" ] }, { "cell_type": "code", "execution_count": 39, "id": "2f6c7ad1-def5-41dc-a4fe-3731dc8917f9", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/plain": [ "'System: You are a helpful assistant that translates English to French.\\nHuman: I love programming.'" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "output = chat_prompt.format(input_language=\"English\", output_language=\"French\", text=\"I love programming.\")\n", "output" ] }, { "cell_type": "code", "execution_count": 40, "id": "144b3368-43f3-49fa-885f-3f3470e9ab7e", "metadata": { "tags": [] }, "outputs": [], "source": [ "# or alternatively \n", "output_2 = chat_prompt.format_prompt(input_language=\"English\", output_language=\"French\", text=\"I love programming.\").to_string()\n", "\n", "assert output == output_2" ] }, { "cell_type": "markdown", "id": "51970399-c2e1-4c9b-8003-6f5b1236fda8", "metadata": {}, "source": [ "As `ChatPromptValue`" ] }, { "cell_type": "code", "execution_count": 41, "id": "681ce4a7-d972-4cdf-ac77-ec35182fd352", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/plain": [ "ChatPromptValue(messages=[SystemMessage(content='You are a helpful assistant that translates English to French.', additional_kwargs={}), HumanMessage(content='I love programming.', additional_kwargs={})])" ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" } ], "source": [ "chat_prompt.format_prompt(input_language=\"English\", output_language=\"French\", text=\"I love programming.\")" ] }, { "cell_type": "markdown", "id": "61041810-4418-4406-9c8a-91c9034c9752", "metadata": {}, "source": [ "As list of Message objects" ] }, { "cell_type": "code", "execution_count": 44, "id": "4ec2f166-1ef9-4071-8c37-fcfbd3f4bc29", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/plain": [ "[SystemMessage(content='You are a helpful assistant that translates English to French.', additional_kwargs={}),\n", " HumanMessage(content='I love programming.', additional_kwargs={})]" ] }, "execution_count": 44, "metadata": {}, "output_type": "execute_result" } ], "source": [ "chat_prompt.format_prompt(input_language=\"English\", output_language=\"French\", text=\"I love programming.\").to_messages()" ] }, { "cell_type": "markdown", "id": "73dcd3a2-ad6d-4b7b-ab21-1d9e417f959e", "metadata": {}, "source": [ "## Different types of `MessagePromptTemplate`\n", "\n", "LangChain provides different types of `MessagePromptTemplate`. The most commonly used are `AIMessagePromptTemplate`, `SystemMessagePromptTemplate` and `HumanMessagePromptTemplate`, which create an AI message, system message and human message respectively.\n", "\n", "However, in cases where the chat model supports taking chat message with arbitrary role, you can use `ChatMessagePromptTemplate`, which allows user to specify the role name." ] }, { "cell_type": "code", "execution_count": 45, "id": "55a21b1f-9cdc-4072-a41d-695b00dd11e6", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/plain": [ "ChatMessage(content='May the force be with you', additional_kwargs={}, role='Jedi')" ] }, "execution_count": 45, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from langchain.prompts import ChatMessagePromptTemplate\n", "\n", "prompt = \"May the {subject} be with you\"\n", "\n", "chat_message_prompt = ChatMessagePromptTemplate.from_template(role=\"Jedi\", template=prompt)\n", "chat_message_prompt.format(subject=\"force\")" ] }, { "cell_type": "markdown", "id": "cd6bf82b-4709-4683-b215-6b7c468f3347", "metadata": {}, "source": [ "LangChain also provides `MessagesPlaceholder`, which gives you full control of what messages to be rendered during formatting. This can be useful when you are uncertain of what role you should be using for your message prompt templates or when you wish to insert a list of messages during formatting." ] }, { "cell_type": "code", "execution_count": 46, "id": "9f034650-5e50-4bc3-80f8-5e428ca6444d", "metadata": { "tags": [] }, "outputs": [], "source": [ "from langchain.prompts import MessagesPlaceholder\n", "\n", "human_prompt = \"Summarize our conversation so far in {word_count} words.\"\n", "human_message_template = HumanMessagePromptTemplate.from_template(human_prompt)\n", "\n", "chat_prompt = ChatPromptTemplate.from_messages([MessagesPlaceholder(variable_name=\"conversation\"), human_message_template])" ] }, { "cell_type": "code", "execution_count": 47, "id": "9789e8e7-b3f9-4391-a85c-373e576107b3", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/plain": [ "[HumanMessage(content='What is the best way to learn programming?', additional_kwargs={}),\n", " AIMessage(content='1. Choose a programming language: Decide on a programming language that you want to learn. \\n\\n2. Start with the basics: Familiarize yourself with the basic programming concepts such as variables, data types and control structures.\\n\\n3. Practice, practice, practice: The best way to learn programming is through hands-on experience', additional_kwargs={}),\n", " HumanMessage(content='Summarize our conversation so far in 10 words.', additional_kwargs={})]" ] }, "execution_count": 47, "metadata": {}, "output_type": "execute_result" } ], "source": [ "human_message = HumanMessage(content=\"What is the best way to learn programming?\")\n", "ai_message = AIMessage(content=\"\"\"\\\n", "1. Choose a programming language: Decide on a programming language that you want to learn. \n", "\n", "2. Start with the basics: Familiarize yourself with the basic programming concepts such as variables, data types and control structures.\n", "\n", "3. Practice, practice, practice: The best way to learn programming is through hands-on experience\\\n", "\"\"\")\n", "\n", "chat_prompt.format_prompt(conversation=[human_message, ai_message], word_count=\"10\").to_messages()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.10" } }, "nbformat": 4, "nbformat_minor": 5 }
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,191
Support personal access token (PAT) in ConfluenceLoader
### Issue you'd like to raise. The [Atlassian API](https://atlassian-python-api.readthedocs.io/) (including Confluence) supports just passing a PAT (as token=<PAT>) to authenticate as a user, unfortunately the LangChain abstraction doesn't. ### Suggestion: Add an optional "token" parameter to ConfluenceLoader and use it to authenticate within as an alternative to api_key/password/oauth.
https://github.com/langchain-ai/langchain/issues/5191
https://github.com/langchain-ai/langchain/pull/5385
b81f98b8a66999117246fbc134fc09d64a04e230
ae2cf1f598360e1fc83839fdcd363378d663c936
"2023-05-24T11:15:54Z"
python
"2023-06-03T21:57:49Z"
docs/modules/indexes/document_loaders/examples/confluence.ipynb
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Confluence\n", "\n", ">[Confluence](https://www.atlassian.com/software/confluence) is a wiki collaboration platform that saves and organizes all of the project-related material. `Confluence` is a knowledge base that primarily handles content management activities. \n", "\n", "A loader for `Confluence` pages currently supports both `username/api_key` and `Oauth2 login`.\n", "See [instructions](https://support.atlassian.com/atlassian-account/docs/manage-api-tokens-for-your-atlassian-account/).\n", "\n", "\n", "Specify a list `page_id`-s and/or `space_key` to load in the corresponding pages into Document objects, if both are specified the union of both sets will be returned.\n", "\n", "\n", "You can also specify a boolean `include_attachments` to include attachments, this is set to False by default, if set to True all attachments will be downloaded and ConfluenceReader will extract the text from the attachments and add it to the Document object. Currently supported attachment types are: `PDF`, `PNG`, `JPEG/JPG`, `SVG`, `Word` and `Excel`.\n", "\n", "Hint: `space_key` and `page_id` can both be found in the URL of a page in Confluence - https://yoursite.atlassian.com/wiki/spaces/<space_key>/pages/<page_id>\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [] }, "outputs": [], "source": [ "#!pip install atlassian-python-api" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from langchain.document_loaders import ConfluenceLoader\n", "\n", "loader = ConfluenceLoader(\n", " url=\"https://yoursite.atlassian.com/wiki\",\n", " username=\"me\",\n", " api_key=\"12345\"\n", ")\n", "documents = loader.load(space_key=\"SPACE\", include_attachments=True, limit=50)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.6" }, "vscode": { "interpreter": { "hash": "cc99336516f23363341912c6723b01ace86f02e26b4290be1efc0677e2e2ec24" } } }, "nbformat": 4, "nbformat_minor": 4 }
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,191
Support personal access token (PAT) in ConfluenceLoader
### Issue you'd like to raise. The [Atlassian API](https://atlassian-python-api.readthedocs.io/) (including Confluence) supports just passing a PAT (as token=<PAT>) to authenticate as a user, unfortunately the LangChain abstraction doesn't. ### Suggestion: Add an optional "token" parameter to ConfluenceLoader and use it to authenticate within as an alternative to api_key/password/oauth.
https://github.com/langchain-ai/langchain/issues/5191
https://github.com/langchain-ai/langchain/pull/5385
b81f98b8a66999117246fbc134fc09d64a04e230
ae2cf1f598360e1fc83839fdcd363378d663c936
"2023-05-24T11:15:54Z"
python
"2023-06-03T21:57:49Z"
langchain/document_loaders/confluence.py
"""Load Data from a Confluence Space""" import logging from io import BytesIO from typing import Any, Callable, List, Optional, Union from tenacity import ( before_sleep_log, retry, stop_after_attempt, wait_exponential, ) from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader logger = logging.getLogger(__name__) class ConfluenceLoader(BaseLoader): """ Load Confluence pages. Port of https://llamahub.ai/l/confluence This currently supports both username/api_key and Oauth2 login. Specify a list page_ids and/or space_key to load in the corresponding pages into Document objects, if both are specified the union of both sets will be returned. You can also specify a boolean `include_attachments` to include attachments, this is set to False by default, if set to True all attachments will be downloaded and ConfluenceReader will extract the text from the attachments and add it to the Document object. Currently supported attachment types are: PDF, PNG, JPEG/JPG, SVG, Word and Excel. Hint: space_key and page_id can both be found in the URL of a page in Confluence - https://yoursite.atlassian.com/wiki/spaces/<space_key>/pages/<page_id> Example: .. code-block:: python from langchain.document_loaders import ConfluenceLoader loader = ConfluenceLoader( url="https://yoursite.atlassian.com/wiki", username="me", api_key="12345" ) documents = loader.load(space_key="SPACE",limit=50) :param url: _description_ :type url: str :param api_key: _description_, defaults to None :type api_key: str, optional :param username: _description_, defaults to None :type username: str, optional :param oauth2: _description_, defaults to {} :type oauth2: dict, optional :param cloud: _description_, defaults to True :type cloud: bool, optional :param number_of_retries: How many times to retry, defaults to 3 :type number_of_retries: Optional[int], optional :param min_retry_seconds: defaults to 2 :type min_retry_seconds: Optional[int], optional :param max_retry_seconds: defaults to 10 :type max_retry_seconds: Optional[int], optional :param confluence_kwargs: additional kwargs to initialize confluence with :type confluence_kwargs: dict, optional :raises ValueError: Errors while validating input :raises ImportError: Required dependencies not installed. """ def __init__( self, url: str, api_key: Optional[str] = None, username: Optional[str] = None, oauth2: Optional[dict] = None, cloud: Optional[bool] = True, number_of_retries: Optional[int] = 3, min_retry_seconds: Optional[int] = 2, max_retry_seconds: Optional[int] = 10, confluence_kwargs: Optional[dict] = None, ): confluence_kwargs = confluence_kwargs or {} errors = ConfluenceLoader.validate_init_args(url, api_key, username, oauth2) if errors: raise ValueError(f"Error(s) while validating input: {errors}") self.base_url = url self.number_of_retries = number_of_retries self.min_retry_seconds = min_retry_seconds self.max_retry_seconds = max_retry_seconds try: from atlassian import Confluence # noqa: F401 except ImportError: raise ImportError( "`atlassian` package not found, please run " "`pip install atlassian-python-api`" ) if oauth2: self.confluence = Confluence( url=url, oauth2=oauth2, cloud=cloud, **confluence_kwargs ) else: self.confluence = Confluence( url=url, username=username, password=api_key, cloud=cloud, **confluence_kwargs, ) @staticmethod def validate_init_args( url: Optional[str] = None, api_key: Optional[str] = None, username: Optional[str] = None, oauth2: Optional[dict] = None, ) -> Union[List, None]: """Validates proper combinations of init arguments""" errors = [] if url is None: errors.append("Must provide `base_url`") if (api_key and not username) or (username and not api_key): errors.append( "If one of `api_key` or `username` is provided, " "the other must be as well." ) if (api_key or username) and oauth2: errors.append( "Cannot provide a value for `api_key` and/or " "`username` and provide a value for `oauth2`" ) if oauth2 and oauth2.keys() != [ "access_token", "access_token_secret", "consumer_key", "key_cert", ]: errors.append( "You have either ommited require keys or added extra " "keys to the oauth2 dictionary. key values should be " "`['access_token', 'access_token_secret', 'consumer_key', 'key_cert']`" ) if errors: return errors return None def load( self, space_key: Optional[str] = None, page_ids: Optional[List[str]] = None, label: Optional[str] = None, cql: Optional[str] = None, include_restricted_content: bool = False, include_archived_content: bool = False, include_attachments: bool = False, include_comments: bool = False, limit: Optional[int] = 50, max_pages: Optional[int] = 1000, ) -> List[Document]: """ :param space_key: Space key retrieved from a confluence URL, defaults to None :type space_key: Optional[str], optional :param page_ids: List of specific page IDs to load, defaults to None :type page_ids: Optional[List[str]], optional :param label: Get all pages with this label, defaults to None :type label: Optional[str], optional :param cql: CQL Expression, defaults to None :type cql: Optional[str], optional :param include_restricted_content: defaults to False :type include_restricted_content: bool, optional :param include_archived_content: Whether to include archived content, defaults to False :type include_archived_content: bool, optional :param include_attachments: defaults to False :type include_attachments: bool, optional :param include_comments: defaults to False :type include_comments: bool, optional :param limit: Maximum number of pages to retrieve per request, defaults to 50 :type limit: int, optional :param max_pages: Maximum number of pages to retrieve in total, defaults 1000 :type max_pages: int, optional :raises ValueError: _description_ :raises ImportError: _description_ :return: _description_ :rtype: List[Document] """ if not space_key and not page_ids and not label and not cql: raise ValueError( "Must specify at least one among `space_key`, `page_ids`, " "`label`, `cql` parameters." ) docs = [] if space_key: pages = self.paginate_request( self.confluence.get_all_pages_from_space, space=space_key, limit=limit, max_pages=max_pages, status="any" if include_archived_content else "current", expand="body.storage.value", ) docs += self.process_pages( pages, include_restricted_content, include_attachments, include_comments ) if label: pages = self.paginate_request( self.confluence.get_all_pages_by_label, label=label, limit=limit, max_pages=max_pages, ) ids_by_label = [page["id"] for page in pages] if page_ids: page_ids = list(set(page_ids + ids_by_label)) else: page_ids = list(set(ids_by_label)) if cql: pages = self.paginate_request( self.confluence.cql, cql=cql, limit=limit, max_pages=max_pages, include_archived_spaces=include_archived_content, expand="body.storage.value", ) docs += self.process_pages( pages, include_restricted_content, include_attachments, include_comments ) if page_ids: for page_id in page_ids: get_page = retry( reraise=True, stop=stop_after_attempt( self.number_of_retries # type: ignore[arg-type] ), wait=wait_exponential( multiplier=1, # type: ignore[arg-type] min=self.min_retry_seconds, # type: ignore[arg-type] max=self.max_retry_seconds, # type: ignore[arg-type] ), before_sleep=before_sleep_log(logger, logging.WARNING), )(self.confluence.get_page_by_id) page = get_page(page_id=page_id, expand="body.storage.value") if not include_restricted_content and not self.is_public_page(page): continue doc = self.process_page(page, include_attachments, include_comments) docs.append(doc) return docs def paginate_request(self, retrieval_method: Callable, **kwargs: Any) -> List: """Paginate the various methods to retrieve groups of pages. Unfortunately, due to page size, sometimes the Confluence API doesn't match the limit value. If `limit` is >100 confluence seems to cap the response to 100. Also, due to the Atlassian Python package, we don't get the "next" values from the "_links" key because they only return the value from the results key. So here, the pagination starts from 0 and goes until the max_pages, getting the `limit` number of pages with each request. We have to manually check if there are more docs based on the length of the returned list of pages, rather than just checking for the presence of a `next` key in the response like this page would have you do: https://developer.atlassian.com/server/confluence/pagination-in-the-rest-api/ :param retrieval_method: Function used to retrieve docs :type retrieval_method: callable :return: List of documents :rtype: List """ max_pages = kwargs.pop("max_pages") docs: List[dict] = [] while len(docs) < max_pages: get_pages = retry( reraise=True, stop=stop_after_attempt( self.number_of_retries # type: ignore[arg-type] ), wait=wait_exponential( multiplier=1, min=self.min_retry_seconds, # type: ignore[arg-type] max=self.max_retry_seconds, # type: ignore[arg-type] ), before_sleep=before_sleep_log(logger, logging.WARNING), )(retrieval_method) batch = get_pages(**kwargs, start=len(docs)) if not batch: break docs.extend(batch) return docs[:max_pages] def is_public_page(self, page: dict) -> bool: """Check if a page is publicly accessible.""" restrictions = self.confluence.get_all_restrictions_for_content(page["id"]) return ( page["status"] == "current" and not restrictions["read"]["restrictions"]["user"]["results"] and not restrictions["read"]["restrictions"]["group"]["results"] ) def process_pages( self, pages: List[dict], include_restricted_content: bool, include_attachments: bool, include_comments: bool, ) -> List[Document]: """Process a list of pages into a list of documents.""" docs = [] for page in pages: if not include_restricted_content and not self.is_public_page(page): continue doc = self.process_page(page, include_attachments, include_comments) docs.append(doc) return docs def process_page( self, page: dict, include_attachments: bool, include_comments: bool, ) -> Document: try: from bs4 import BeautifulSoup # type: ignore except ImportError: raise ImportError( "`beautifulsoup4` package not found, please run " "`pip install beautifulsoup4`" ) if include_attachments: attachment_texts = self.process_attachment(page["id"]) else: attachment_texts = [] text = BeautifulSoup(page["body"]["storage"]["value"], "lxml").get_text( " ", strip=True ) + "".join(attachment_texts) if include_comments: comments = self.confluence.get_page_comments( page["id"], expand="body.view.value", depth="all" )["results"] comment_texts = [ BeautifulSoup(comment["body"]["view"]["value"], "lxml").get_text( " ", strip=True ) for comment in comments ] text = text + "".join(comment_texts) return Document( page_content=text, metadata={ "title": page["title"], "id": page["id"], "source": self.base_url.strip("/") + page["_links"]["webui"], }, ) def process_attachment(self, page_id: str) -> List[str]: try: from PIL import Image # noqa: F401 except ImportError: raise ImportError( "`Pillow` package not found, " "please run `pip install Pillow`" ) # depending on setup you may also need to set the correct path for # poppler and tesseract attachments = self.confluence.get_attachments_from_content(page_id)["results"] texts = [] for attachment in attachments: media_type = attachment["metadata"]["mediaType"] absolute_url = self.base_url + attachment["_links"]["download"] title = attachment["title"] if media_type == "application/pdf": text = title + self.process_pdf(absolute_url) elif ( media_type == "image/png" or media_type == "image/jpg" or media_type == "image/jpeg" ): text = title + self.process_image(absolute_url) elif ( media_type == "application/vnd.openxmlformats-officedocument" ".wordprocessingml.document" ): text = title + self.process_doc(absolute_url) elif media_type == "application/vnd.ms-excel": text = title + self.process_xls(absolute_url) elif media_type == "image/svg+xml": text = title + self.process_svg(absolute_url) else: continue texts.append(text) return texts def process_pdf(self, link: str) -> str: try: import pytesseract # noqa: F401 from pdf2image import convert_from_bytes # noqa: F401 except ImportError: raise ImportError( "`pytesseract` or `pdf2image` package not found, " "please run `pip install pytesseract pdf2image`" ) response = self.confluence.request(path=link, absolute=True) text = "" if ( response.status_code != 200 or response.content == b"" or response.content is None ): return text try: images = convert_from_bytes(response.content) except ValueError: return text for i, image in enumerate(images): image_text = pytesseract.image_to_string(image) text += f"Page {i + 1}:\n{image_text}\n\n" return text def process_image(self, link: str) -> str: try: import pytesseract # noqa: F401 from PIL import Image # noqa: F401 except ImportError: raise ImportError( "`pytesseract` or `Pillow` package not found, " "please run `pip install pytesseract Pillow`" ) response = self.confluence.request(path=link, absolute=True) text = "" if ( response.status_code != 200 or response.content == b"" or response.content is None ): return text try: image = Image.open(BytesIO(response.content)) except OSError: return text return pytesseract.image_to_string(image) def process_doc(self, link: str) -> str: try: import docx2txt # noqa: F401 except ImportError: raise ImportError( "`docx2txt` package not found, please run `pip install docx2txt`" ) response = self.confluence.request(path=link, absolute=True) text = "" if ( response.status_code != 200 or response.content == b"" or response.content is None ): return text file_data = BytesIO(response.content) return docx2txt.process(file_data) def process_xls(self, link: str) -> str: try: import xlrd # noqa: F401 except ImportError: raise ImportError("`xlrd` package not found, please run `pip install xlrd`") response = self.confluence.request(path=link, absolute=True) text = "" if ( response.status_code != 200 or response.content == b"" or response.content is None ): return text workbook = xlrd.open_workbook(file_contents=response.content) for sheet in workbook.sheets(): text += f"{sheet.name}:\n" for row in range(sheet.nrows): for col in range(sheet.ncols): text += f"{sheet.cell_value(row, col)}\t" text += "\n" text += "\n" return text def process_svg(self, link: str) -> str: try: import pytesseract # noqa: F401 from PIL import Image # noqa: F401 from reportlab.graphics import renderPM # noqa: F401 from svglib.svglib import svg2rlg # noqa: F401 except ImportError: raise ImportError( "`pytesseract`, `Pillow`, `reportlab` or `svglib` package not found, " "please run `pip install pytesseract Pillow reportlab svglib`" ) response = self.confluence.request(path=link, absolute=True) text = "" if ( response.status_code != 200 or response.content == b"" or response.content is None ): return text drawing = svg2rlg(BytesIO(response.content)) img_data = BytesIO() renderPM.drawToFile(drawing, img_data, fmt="PNG") img_data.seek(0) image = Image.open(img_data) return pytesseract.image_to_string(image)
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,400
Add the ability to pass the prompt through to Executor Agents for enrichment during PlanAndExecute
### Feature request Add the ability to pass the original prompt through to the ExecutorAgent so that the original explicit context is not lost during a PlanAndExecute run. ### Motivation PlanAndExecute agents can create a plan of steps dependent on context given in the original prompt. However, this context is lost after the plan is created and is being executed. However, often the plan is formed in a way which refers to the prior context, losing information. For example, I gave the following prompt, and gave the agent access only to the PythonREPL tool: ```py prompt = ( f"Task: Analyse the customer data available in the database with path '{db_path}'. Tell me the average " "sales by month." ) ``` In the above example, `db_path` is a fully formed string which can be passed directly to `sqlalchemy.create_engine`. The first step in the plan formed was: `Connect to the database using the given path`. This would ordinarily be fine, however, the context of the "given path" was lost, as it was not part of the reformed prompt passed to the executor. Optionally including the original prompt in the template should assist with this. ### Your contribution I will be submitting a PR shortly with a proposed solution :)
https://github.com/langchain-ai/langchain/issues/5400
https://github.com/langchain-ai/langchain/pull/5401
ae2cf1f598360e1fc83839fdcd363378d663c936
1f4abb265a9fd6c520835c3bebe8243b077495b5
"2023-05-29T13:19:30Z"
python
"2023-06-03T21:59:09Z"
langchain/experimental/plan_and_execute/agent_executor.py
from typing import Any, Dict, List, Optional from pydantic import Field from langchain.callbacks.manager import CallbackManagerForChainRun from langchain.chains.base import Chain from langchain.experimental.plan_and_execute.executors.base import BaseExecutor from langchain.experimental.plan_and_execute.planners.base import BasePlanner from langchain.experimental.plan_and_execute.schema import ( BaseStepContainer, ListStepContainer, ) class PlanAndExecute(Chain): planner: BasePlanner executor: BaseExecutor step_container: BaseStepContainer = Field(default_factory=ListStepContainer) input_key: str = "input" output_key: str = "output" @property def input_keys(self) -> List[str]: return [self.input_key] @property def output_keys(self) -> List[str]: return [self.output_key] def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: plan = self.planner.plan( inputs, callbacks=run_manager.get_child() if run_manager else None, ) if run_manager: run_manager.on_text(str(plan), verbose=self.verbose) for step in plan.steps: _new_inputs = {"previous_steps": self.step_container, "current_step": step} new_inputs = {**_new_inputs, **inputs} response = self.executor.step( new_inputs, callbacks=run_manager.get_child() if run_manager else None, ) if run_manager: run_manager.on_text( f"*****\n\nStep: {step.value}", verbose=self.verbose ) run_manager.on_text( f"\n\nResponse: {response.response}", verbose=self.verbose ) self.step_container.add_step(step, response) return {self.output_key: self.step_container.get_final_response()}
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,400
Add the ability to pass the prompt through to Executor Agents for enrichment during PlanAndExecute
### Feature request Add the ability to pass the original prompt through to the ExecutorAgent so that the original explicit context is not lost during a PlanAndExecute run. ### Motivation PlanAndExecute agents can create a plan of steps dependent on context given in the original prompt. However, this context is lost after the plan is created and is being executed. However, often the plan is formed in a way which refers to the prior context, losing information. For example, I gave the following prompt, and gave the agent access only to the PythonREPL tool: ```py prompt = ( f"Task: Analyse the customer data available in the database with path '{db_path}'. Tell me the average " "sales by month." ) ``` In the above example, `db_path` is a fully formed string which can be passed directly to `sqlalchemy.create_engine`. The first step in the plan formed was: `Connect to the database using the given path`. This would ordinarily be fine, however, the context of the "given path" was lost, as it was not part of the reformed prompt passed to the executor. Optionally including the original prompt in the template should assist with this. ### Your contribution I will be submitting a PR shortly with a proposed solution :)
https://github.com/langchain-ai/langchain/issues/5400
https://github.com/langchain-ai/langchain/pull/5401
ae2cf1f598360e1fc83839fdcd363378d663c936
1f4abb265a9fd6c520835c3bebe8243b077495b5
"2023-05-29T13:19:30Z"
python
"2023-06-03T21:59:09Z"
langchain/experimental/plan_and_execute/executors/agent_executor.py
from typing import List from langchain.agents.agent import AgentExecutor from langchain.agents.structured_chat.base import StructuredChatAgent from langchain.base_language import BaseLanguageModel from langchain.experimental.plan_and_execute.executors.base import ChainExecutor from langchain.tools import BaseTool HUMAN_MESSAGE_TEMPLATE = """Previous steps: {previous_steps} Current objective: {current_step} {agent_scratchpad}""" def load_agent_executor( llm: BaseLanguageModel, tools: List[BaseTool], verbose: bool = False ) -> ChainExecutor: agent = StructuredChatAgent.from_llm_and_tools( llm, tools, human_message_template=HUMAN_MESSAGE_TEMPLATE, input_variables=["previous_steps", "current_step", "agent_scratchpad"], ) agent_executor = AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, verbose=verbose ) return ChainExecutor(chain=agent_executor)
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,433
FinalStreamingStdOutCallbackHandler not working with ChatOpenAI LLM
### System Info Hi :) I tested the new callback stream handler `FinalStreamingStdOutCallbackHandler` and noticed an issue with it. I copied the code from the documentation and made just one change - use `ChatOpenAI` instead of `OpenAI` ### Who can help? @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [X] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction `llm = ChatOpenAI(streaming=True, callbacks=[FinalStreamingStdOutCallbackHandler()], temperature=0)` here is my only change `tools = load_tools(["wikipedia", "llm-math"], llm=llm)` `agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=False)` `agent.run("It's 2023 now. How many years ago did Konrad Adenauer become Chancellor of Germany.")` ### Expected behavior The code above returns the response from the agent but does not stream it. In my project, I must use the `ChatOpenAI` LLM, so I would appreciate it if someone could fix this issue, please.
https://github.com/langchain-ai/langchain/issues/5433
https://github.com/langchain-ai/langchain/pull/5497
1f4abb265a9fd6c520835c3bebe8243b077495b5
44ad9628c9828e220540dd77680611741a6ed087
"2023-05-30T10:51:06Z"
python
"2023-06-03T22:05:58Z"
docs/modules/agents/streaming_stdout_final_only.ipynb
{ "cells": [ { "cell_type": "markdown", "id": "23234b50-e6c6-4c87-9f97-259c15f36894", "metadata": { "tags": [] }, "source": [ "# Only streaming final agent output" ] }, { "cell_type": "markdown", "id": "29dd6333-307c-43df-b848-65001c01733b", "metadata": {}, "source": [ "If you only want the final output of an agent to be streamed, you can use the callback ``FinalStreamingStdOutCallbackHandler``.\n", "For this, the underlying LLM has to support streaming as well." ] }, { "cell_type": "code", "execution_count": 1, "id": "e4592215-6604-47e2-89ff-5db3af6d1e40", "metadata": { "tags": [] }, "outputs": [], "source": [ "from langchain.agents import load_tools\n", "from langchain.agents import initialize_agent\n", "from langchain.agents import AgentType\n", "from langchain.callbacks.streaming_stdout_final_only import FinalStreamingStdOutCallbackHandler\n", "from langchain.llms import OpenAI" ] }, { "cell_type": "markdown", "id": "19a813f7", "metadata": {}, "source": [ "Let's create the underlying LLM with ``streaming = True`` and pass a new instance of ``FinalStreamingStdOutCallbackHandler``." ] }, { "cell_type": "code", "execution_count": 2, "id": "7fe81ef4", "metadata": {}, "outputs": [], "source": [ "llm = OpenAI(streaming=True, callbacks=[FinalStreamingStdOutCallbackHandler()], temperature=0)" ] }, { "cell_type": "code", "execution_count": 4, "id": "ff45b85d", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Konrad Adenauer became Chancellor of Germany in 1949, 74 years ago in 2023." ] }, { "data": { "text/plain": [ "'Konrad Adenauer became Chancellor of Germany in 1949, 74 years ago in 2023.'" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tools = load_tools([\"wikipedia\", \"llm-math\"], llm=llm)\n", "agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=False)\n", "agent.run(\"It's 2023 now. How many years ago did Konrad Adenauer become Chancellor of Germany.\")" ] }, { "cell_type": "markdown", "id": "53a743b8", "metadata": {}, "source": [ "### Handling custom answer prefixes" ] }, { "cell_type": "markdown", "id": "23602c62", "metadata": {}, "source": [ "By default, we assume that the token sequence ``\"\\nFinal\", \" Answer\", \":\"`` indicates that the agent has reached an answers. We can, however, also pass a custom sequence to use as answer prefix." ] }, { "cell_type": "code", "execution_count": 5, "id": "5662a638", "metadata": {}, "outputs": [], "source": [ "llm = OpenAI(\n", " streaming=True,\n", " callbacks=[FinalStreamingStdOutCallbackHandler(answer_prefix_tokens=[\"\\nThe\", \" answer\", \":\"])],\n", " temperature=0\n", ")" ] }, { "cell_type": "markdown", "id": "b1a96cc0", "metadata": {}, "source": [ "Be aware you likely need to include whitespaces and new line characters in your token. " ] }, { "cell_type": "code", "execution_count": null, "id": "9278b522", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.3" } }, "nbformat": 4, "nbformat_minor": 5 }
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,433
FinalStreamingStdOutCallbackHandler not working with ChatOpenAI LLM
### System Info Hi :) I tested the new callback stream handler `FinalStreamingStdOutCallbackHandler` and noticed an issue with it. I copied the code from the documentation and made just one change - use `ChatOpenAI` instead of `OpenAI` ### Who can help? @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [X] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction `llm = ChatOpenAI(streaming=True, callbacks=[FinalStreamingStdOutCallbackHandler()], temperature=0)` here is my only change `tools = load_tools(["wikipedia", "llm-math"], llm=llm)` `agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=False)` `agent.run("It's 2023 now. How many years ago did Konrad Adenauer become Chancellor of Germany.")` ### Expected behavior The code above returns the response from the agent but does not stream it. In my project, I must use the `ChatOpenAI` LLM, so I would appreciate it if someone could fix this issue, please.
https://github.com/langchain-ai/langchain/issues/5433
https://github.com/langchain-ai/langchain/pull/5497
1f4abb265a9fd6c520835c3bebe8243b077495b5
44ad9628c9828e220540dd77680611741a6ed087
"2023-05-30T10:51:06Z"
python
"2023-06-03T22:05:58Z"
langchain/callbacks/streaming_stdout_final_only.py
"""Callback Handler streams to stdout on new llm token.""" import sys from typing import Any, Dict, List, Optional from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler DEFAULT_ANSWER_PREFIX_TOKENS = ["\nFinal", " Answer", ":"] class FinalStreamingStdOutCallbackHandler(StreamingStdOutCallbackHandler): """Callback handler for streaming in agents. Only works with agents using LLMs that support streaming. Only the final output of the agent will be streamed. """ def __init__(self, answer_prefix_tokens: Optional[List[str]] = None) -> None: super().__init__() if answer_prefix_tokens is None: answer_prefix_tokens = DEFAULT_ANSWER_PREFIX_TOKENS self.answer_prefix_tokens = answer_prefix_tokens self.last_tokens = [""] * len(answer_prefix_tokens) self.answer_reached = False def on_llm_start( self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any ) -> None: """Run when LLM starts running.""" self.answer_reached = False def on_llm_new_token(self, token: str, **kwargs: Any) -> None: """Run on new LLM token. Only available when streaming is enabled.""" # Remember the last n tokens, where n = len(answer_prefix_tokens) self.last_tokens.append(token) if len(self.last_tokens) > len(self.answer_prefix_tokens): self.last_tokens.pop(0) # Check if the last n tokens match the answer_prefix_tokens list ... if self.last_tokens == self.answer_prefix_tokens: self.answer_reached = True # Do not print the last token in answer_prefix_tokens, # as it's not part of the answer yet return # ... if yes, then print tokens from now on if self.answer_reached: sys.stdout.write(token) sys.stdout.flush()
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,545
Issue: Improve Error Messaging When APOC Procedures Fail in Neo4jGraph
### Issue you'd like to raise. In the current implementation, when an APOC procedure fails, a generic error message is raised stating: "Could not use APOC procedures. Please install the APOC plugin in Neo4j." This message can lead to user confusion as it suggests the APOC plugin is not installed when in reality it may be installed but not correctly configured or permitted to run certain procedures. This issue is encountered specifically when the refresh_schema function calls apoc.meta.data(). The function apoc.meta.data() isn't allowed to run under default configurations in the Neo4j database, thus leading to the mentioned error message. Here is the code snippet where the issue arises: ``` # Set schema try: self.refresh_schema() except neo4j.exceptions.ClientError raise ValueError( "Could not use APOC procedures. " "Please install the APOC plugin in Neo4j." ) ``` ### Suggestion: To improve the user experience, I propose that the error message should be made more specific. Instead of merely advising users to install the APOC plugin, it would be beneficial to indicate that certain procedures may not be configured or whitelisted to run by default and to guide the users to check their configurations. I believe this will save users time when troubleshooting and will reduce the potential for confusion.
https://github.com/langchain-ai/langchain/issues/5545
https://github.com/langchain-ai/langchain/pull/5547
33ea606f455f195d74f09ac654e03da8850ecb9b
3e45b8306555a48b5838ed7dd33b1a4c615bdd18
"2023-06-01T08:04:16Z"
python
"2023-06-03T23:56:39Z"
langchain/graphs/neo4j_graph.py
from typing import Any, Dict, List node_properties_query = """ CALL apoc.meta.data() YIELD label, other, elementType, type, property WHERE NOT type = "RELATIONSHIP" AND elementType = "node" WITH label AS nodeLabels, collect({property:property, type:type}) AS properties RETURN {labels: nodeLabels, properties: properties} AS output """ rel_properties_query = """ CALL apoc.meta.data() YIELD label, other, elementType, type, property WHERE NOT type = "RELATIONSHIP" AND elementType = "relationship" WITH label AS nodeLabels, collect({property:property, type:type}) AS properties RETURN {type: nodeLabels, properties: properties} AS output """ rel_query = """ CALL apoc.meta.data() YIELD label, other, elementType, type, property WHERE type = "RELATIONSHIP" AND elementType = "node" RETURN "(:" + label + ")-[:" + property + "]->(:" + toString(other[0]) + ")" AS output """ class Neo4jGraph: """Neo4j wrapper for graph operations.""" def __init__( self, url: str, username: str, password: str, database: str = "neo4j" ) -> None: """Create a new Neo4j graph wrapper instance.""" try: import neo4j except ImportError: raise ValueError( "Could not import neo4j python package. " "Please install it with `pip install neo4j`." ) self._driver = neo4j.GraphDatabase.driver(url, auth=(username, password)) self._database = database self.schema = "" # Verify connection try: self._driver.verify_connectivity() except neo4j.exceptions.ServiceUnavailable: raise ValueError( "Could not connect to Neo4j database. " "Please ensure that the url is correct" ) except neo4j.exceptions.AuthError: raise ValueError( "Could not connect to Neo4j database. " "Please ensure that the username and password are correct" ) # Set schema try: self.refresh_schema() except neo4j.exceptions.ClientError: raise ValueError( "Could not use APOC procedures. " "Please install the APOC plugin in Neo4j." ) @property def get_schema(self) -> str: """Returns the schema of the Neo4j database""" return self.schema def query(self, query: str, params: dict = {}) -> List[Dict[str, Any]]: """Query Neo4j database.""" from neo4j.exceptions import CypherSyntaxError with self._driver.session(database=self._database) as session: try: data = session.run(query, params) # Hard limit of 50 results return [r.data() for r in data][:50] except CypherSyntaxError as e: raise ValueError("Generated Cypher Statement is not valid\n" f"{e}") def refresh_schema(self) -> None: """ Refreshes the Neo4j graph schema information. """ node_properties = self.query(node_properties_query) relationships_properties = self.query(rel_properties_query) relationships = self.query(rel_query) self.schema = f""" Node properties are the following: {[el['output'] for el in node_properties]} Relationship properties are the following: {[el['output'] for el in relationships_properties]} The relationships are the following: {[el['output'] for el in relationships]} """
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,651
AttributeError: 'LLModel' object has no attribute 'model_type' (gpt4all)
### System Info run on docker image with python:3.11.3-bullseye in MAC m1 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction My docker image ``` FROM python:3.11.3-bullseye WORKDIR /src COPY src /src RUN python -m pip install --upgrade pip RUN apt-get update -y RUN apt install cmake -y RUN git clone --recurse-submodules https://github.com/nomic-ai/gpt4all RUN cd gpt4all/gpt4all-backend/ && mkdir build && cd build && cmake .. && cmake --build . --parallel RUN cd gpt4all/gpt4all-bindings/python && pip3 install -e . RUN pip install -r requirements.txt RUN chmod +x app/start_app.sh EXPOSE 8501 ENTRYPOINT ["/bin/bash"] CMD ["app/start_app.sh"] ``` where star_app.sh is run python file that have this line `llm = GPT4All(model=llm_path, backend='gptj', verbose=True, streaming=True, n_threads=os.cpu_count(),temp=temp)` llm_path is path of gpt4all model ### Expected behavior Got this error when try to use gpt4all ``` AttributeError: 'LLModel' object has no attribute 'model_type' Traceback: File "/src/app/utils.py", line 20, in get_chain llm = GPT4All(model=llm_path, backend='gptj', verbose=True, streaming=True, n_threads=os.cpu_count(),temp=temp) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/site-packages/pydantic/main.py", line 339, in __init__ values, fields_set, validation_error = validate_model(__pydantic_self__.__class__, data) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/site-packages/pydantic/main.py", line 1102, in validate_model values = validator(cls_, values) ^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/site-packages/langchain/llms/gpt4all.py", line 156, in validate_environment values["backend"] = values["client"].model.model_type ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ```
https://github.com/langchain-ai/langchain/issues/5651
https://github.com/langchain-ai/langchain/pull/5657
6a3ceaa3771a725046af3c02cf4c15a3e18ec54a
8fea0529c1be9c9f5308a9b5a51f8381067a269a
"2023-06-03T10:37:42Z"
python
"2023-06-04T14:21:16Z"
langchain/llms/gpt4all.py
"""Wrapper for the GPT4All model.""" from functools import partial from typing import Any, Dict, List, Mapping, Optional, Set from pydantic import Extra, Field, root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens class GPT4All(LLM): r"""Wrapper around GPT4All language models. To use, you should have the ``gpt4all`` python package installed, the pre-trained model file, and the model's config information. Example: .. code-block:: python from langchain.llms import GPT4All model = GPT4All(model="./models/gpt4all-model.bin", n_ctx=512, n_threads=8) # Simplest invocation response = model("Once upon a time, ") """ model: str """Path to the pre-trained GPT4All model file.""" backend: Optional[str] = Field(None, alias="backend") n_ctx: int = Field(512, alias="n_ctx") """Token context window.""" n_parts: int = Field(-1, alias="n_parts") """Number of parts to split the model into. If -1, the number of parts is automatically determined.""" seed: int = Field(0, alias="seed") """Seed. If -1, a random seed is used.""" f16_kv: bool = Field(False, alias="f16_kv") """Use half-precision for key/value cache.""" logits_all: bool = Field(False, alias="logits_all") """Return logits for all tokens, not just the last token.""" vocab_only: bool = Field(False, alias="vocab_only") """Only load the vocabulary, no weights.""" use_mlock: bool = Field(False, alias="use_mlock") """Force system to keep model in RAM.""" embedding: bool = Field(False, alias="embedding") """Use embedding mode only.""" n_threads: Optional[int] = Field(4, alias="n_threads") """Number of threads to use.""" n_predict: Optional[int] = 256 """The maximum number of tokens to generate.""" temp: Optional[float] = 0.8 """The temperature to use for sampling.""" top_p: Optional[float] = 0.95 """The top-p value to use for sampling.""" top_k: Optional[int] = 40 """The top-k value to use for sampling.""" echo: Optional[bool] = False """Whether to echo the prompt.""" stop: Optional[List[str]] = [] """A list of strings to stop generation when encountered.""" repeat_last_n: Optional[int] = 64 "Last n tokens to penalize" repeat_penalty: Optional[float] = 1.3 """The penalty to apply to repeated tokens.""" n_batch: int = Field(1, alias="n_batch") """Batch size for prompt processing.""" streaming: bool = False """Whether to stream the results or not.""" context_erase: float = 0.5 """Leave (n_ctx * context_erase) tokens starting from beginning if the context has run out.""" allow_download: bool = False """If model does not exist in ~/.cache/gpt4all/, download it.""" client: Any = None #: :meta private: class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @staticmethod def _model_param_names() -> Set[str]: return { "n_ctx", "n_predict", "top_k", "top_p", "temp", "n_batch", "repeat_penalty", "repeat_last_n", "context_erase", } def _default_params(self) -> Dict[str, Any]: return { "n_ctx": self.n_ctx, "n_predict": self.n_predict, "top_k": self.top_k, "top_p": self.top_p, "temp": self.temp, "n_batch": self.n_batch, "repeat_penalty": self.repeat_penalty, "repeat_last_n": self.repeat_last_n, "context_erase": self.context_erase, } @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that the python package exists in the environment.""" try: from gpt4all import GPT4All as GPT4AllModel except ImportError: raise ImportError( "Could not import gpt4all python package. " "Please install it with `pip install gpt4all`." ) full_path = values["model"] model_path, delimiter, model_name = full_path.rpartition("/") model_path += delimiter values["client"] = GPT4AllModel( model_name, model_path=model_path or None, model_type=values["backend"], allow_download=values["allow_download"], ) if values["n_threads"] is not None: # set n_threads values["client"].model.set_thread_count(values["n_threads"]) values["backend"] = values["client"].model.model_type return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { "model": self.model, **self._default_params(), **{ k: v for k, v in self.__dict__.items() if k in self._model_param_names() }, } @property def _llm_type(self) -> str: """Return the type of llm.""" return "gpt4all" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, ) -> str: r"""Call out to GPT4All's generate method. Args: prompt: The prompt to pass into the model. stop: A list of strings to stop generation when encountered. Returns: The string generated by the model. Example: .. code-block:: python prompt = "Once upon a time, " response = model(prompt, n_predict=55) """ text_callback = None if run_manager: text_callback = partial(run_manager.on_llm_new_token, verbose=self.verbose) text = "" for token in self.client.generate(prompt, **self._default_params()): if text_callback: text_callback(token) text += token if stop is not None: text = enforce_stop_tokens(text, stop) return text
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,638
DOC: "Amazon Bedrock" is not sorted in Integrations section of nav
### Issue with current documentation: In the left nav of the docs, "Amazon Bedrock" is alphabetized after "Beam integration for langchain" and before "Cerebrium AI", not with the rest of the A-named integrations. <img width="254" alt="image" src="https://github.com/hwchase17/langchain/assets/93281816/20836ca0-3946-4614-8b44-4dcf67e27f7e"> ### Idea or request for content: Retitle the page to "Bedrock" so that its URL remains unchanged and the nav is properly sorted.
https://github.com/langchain-ai/langchain/issues/5638
https://github.com/langchain-ai/langchain/pull/5639
6e25e650859fc86365252e0bdf8fd2223e5dec1c
6c11f940132a26d7dc967d213d23d093ddb90b14
"2023-06-02T23:41:12Z"
python
"2023-06-04T21:39:25Z"
docs/integrations/bedrock.md
# Amazon Bedrock >[Amazon Bedrock](https://aws.amazon.com/bedrock/) is a fully managed service that makes FMs from leading AI startups and Amazon available via an API, so you can choose from a wide range of FMs to find the model that is best suited for your use case. ## Installation and Setup ```bash pip install boto3 ``` ## LLM See a [usage example](../modules/models/llms/integrations/bedrock.ipynb). ```python from langchain import Bedrock ``` ## Text Embedding Models See a [usage example](../modules/models/text_embedding/examples/bedrock.ipynb). ```python from langchain.embeddings import BedrockEmbeddings ```
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,638
DOC: "Amazon Bedrock" is not sorted in Integrations section of nav
### Issue with current documentation: In the left nav of the docs, "Amazon Bedrock" is alphabetized after "Beam integration for langchain" and before "Cerebrium AI", not with the rest of the A-named integrations. <img width="254" alt="image" src="https://github.com/hwchase17/langchain/assets/93281816/20836ca0-3946-4614-8b44-4dcf67e27f7e"> ### Idea or request for content: Retitle the page to "Bedrock" so that its URL remains unchanged and the nav is properly sorted.
https://github.com/langchain-ai/langchain/issues/5638
https://github.com/langchain-ai/langchain/pull/5639
6e25e650859fc86365252e0bdf8fd2223e5dec1c
6c11f940132a26d7dc967d213d23d093ddb90b14
"2023-06-02T23:41:12Z"
python
"2023-06-04T21:39:25Z"
docs/modules/models/llms/integrations/bedrock.ipynb
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Amazon Bedrock" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "[Amazon Bedrock](https://aws.amazon.com/bedrock/) is a fully managed service that makes FMs from leading AI startups and Amazon available via an API, so you can choose from a wide range of FMs to find the model that is best suited for your use case" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%pip install boto3" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [] }, "outputs": [], "source": [ "from langchain.llms.bedrock import Bedrock\n", "\n", "llm = Bedrock(credentials_profile_name=\"bedrock-admin\", model_id=\"amazon.titan-tg1-large\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Using in a conversation chain" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from langchain.chains import ConversationChain\n", "from langchain.memory import ConversationBufferMemory\n", "\n", "conversation = ConversationChain(\n", " llm=llm,\n", " verbose=True,\n", " memory=ConversationBufferMemory()\n", ")\n", "\n", "conversation.predict(input=\"Hi there!\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.11" } }, "nbformat": 4, "nbformat_minor": 4 }
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,601
OutputParsers currently allows model to hallucinate the output of an action
### System Info The MRKL and chat output parsers currently will allow an LLM response to generate a valid action, as well as hallucinate a "final answer" based on that response. [Logic](https://github.com/hwchase17/langchain/blob/master/langchain/agents/chat/output_parser.py#L15) This is because the parser is returning an AgentFinish object immediately if `FINAL_ANSWER_ACTION` is in the text, rather than checking if the text also includes a valid action. I had this appear when using the Python agent, where the LLM returned a code block as the action, but simultaneously hallucinated the output and a final answer in one response. (In this case, it was quite obvious because the code block referred to a database which does not exist) I'm not sure if there are any situations where it is desired that a response should output an action as well as an answer? If this is not desired behaviour, it can be easily fixable by raising an exception if a response includes both a valid action, and "final answer" rather than returning immedately from either condition. ### Who can help? @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ````py from langchain.agents.chat.output_parser import ChatOutputParser parser = ChatOutputParser() valid_action = """Action: ``` { "action": "Python REPL", "action_input": "print(\'Hello world!\')" } ``` final_answer = """Final Answer: Goodbye world!""" print(parser.parse(valid_action)) # outputs an AgentFinish print(parser.parse(final_answer)) # outputs an AgentAction print(parser.parse(valid_action + final_answer)) # outputs an AgentFinish, should probably raise an Exception ```` ### Expected behavior An exception should likely be raised if an LLM returns a response that both includes a final answer, and a parse-able action, rather than skipping the action and returning the final answer, since it probably hallucinated an output/observation from the action.
https://github.com/langchain-ai/langchain/issues/5601
https://github.com/langchain-ai/langchain/pull/5609
c112d7334d6cac3296b877250d3f575fbfd46da2
26ec845921425d99f222b6d21bd58eda36b2f49b
"2023-06-02T08:01:50Z"
python
"2023-06-04T21:40:49Z"
langchain/agents/chat/output_parser.py
import json from typing import Union from langchain.agents.agent import AgentOutputParser from langchain.agents.chat.prompt import FORMAT_INSTRUCTIONS from langchain.schema import AgentAction, AgentFinish, OutputParserException FINAL_ANSWER_ACTION = "Final Answer:" class ChatOutputParser(AgentOutputParser): def get_format_instructions(self) -> str: return FORMAT_INSTRUCTIONS def parse(self, text: str) -> Union[AgentAction, AgentFinish]: if FINAL_ANSWER_ACTION in text: return AgentFinish( {"output": text.split(FINAL_ANSWER_ACTION)[-1].strip()}, text ) try: action = text.split("```")[1] response = json.loads(action.strip()) return AgentAction(response["action"], response["action_input"], text) except Exception: raise OutputParserException(f"Could not parse LLM output: {text}") @property def _type(self) -> str: return "chat"
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,601
OutputParsers currently allows model to hallucinate the output of an action
### System Info The MRKL and chat output parsers currently will allow an LLM response to generate a valid action, as well as hallucinate a "final answer" based on that response. [Logic](https://github.com/hwchase17/langchain/blob/master/langchain/agents/chat/output_parser.py#L15) This is because the parser is returning an AgentFinish object immediately if `FINAL_ANSWER_ACTION` is in the text, rather than checking if the text also includes a valid action. I had this appear when using the Python agent, where the LLM returned a code block as the action, but simultaneously hallucinated the output and a final answer in one response. (In this case, it was quite obvious because the code block referred to a database which does not exist) I'm not sure if there are any situations where it is desired that a response should output an action as well as an answer? If this is not desired behaviour, it can be easily fixable by raising an exception if a response includes both a valid action, and "final answer" rather than returning immedately from either condition. ### Who can help? @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ````py from langchain.agents.chat.output_parser import ChatOutputParser parser = ChatOutputParser() valid_action = """Action: ``` { "action": "Python REPL", "action_input": "print(\'Hello world!\')" } ``` final_answer = """Final Answer: Goodbye world!""" print(parser.parse(valid_action)) # outputs an AgentFinish print(parser.parse(final_answer)) # outputs an AgentAction print(parser.parse(valid_action + final_answer)) # outputs an AgentFinish, should probably raise an Exception ```` ### Expected behavior An exception should likely be raised if an LLM returns a response that both includes a final answer, and a parse-able action, rather than skipping the action and returning the final answer, since it probably hallucinated an output/observation from the action.
https://github.com/langchain-ai/langchain/issues/5601
https://github.com/langchain-ai/langchain/pull/5609
c112d7334d6cac3296b877250d3f575fbfd46da2
26ec845921425d99f222b6d21bd58eda36b2f49b
"2023-06-02T08:01:50Z"
python
"2023-06-04T21:40:49Z"
langchain/agents/mrkl/output_parser.py
import re from typing import Union from langchain.agents.agent import AgentOutputParser from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS from langchain.schema import AgentAction, AgentFinish, OutputParserException FINAL_ANSWER_ACTION = "Final Answer:" class MRKLOutputParser(AgentOutputParser): def get_format_instructions(self) -> str: return FORMAT_INSTRUCTIONS def parse(self, text: str) -> Union[AgentAction, AgentFinish]: if FINAL_ANSWER_ACTION in text: return AgentFinish( {"output": text.split(FINAL_ANSWER_ACTION)[-1].strip()}, text ) # \s matches against tab/newline/whitespace regex = ( r"Action\s*\d*\s*:[\s]*(.*?)[\s]*Action\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)" ) match = re.search(regex, text, re.DOTALL) if not match: if not re.search(r"Action\s*\d*\s*:[\s]*(.*?)", text, re.DOTALL): raise OutputParserException( f"Could not parse LLM output: `{text}`", observation="Invalid Format: Missing 'Action:' after 'Thought:'", llm_output=text, send_to_llm=True, ) elif not re.search( r"[\s]*Action\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)", text, re.DOTALL ): raise OutputParserException( f"Could not parse LLM output: `{text}`", observation="Invalid Format:" " Missing 'Action Input:' after 'Action:'", llm_output=text, send_to_llm=True, ) else: raise OutputParserException(f"Could not parse LLM output: `{text}`") action = match.group(1).strip() action_input = match.group(2) tool_input = action_input.strip(" ") # ensure if its a well formed SQL query we don't remove any trailing " chars if tool_input.startswith("SELECT ") is False: tool_input = tool_input.strip('"') return AgentAction(action, tool_input, text) @property def _type(self) -> str: return "mrkl"
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,601
OutputParsers currently allows model to hallucinate the output of an action
### System Info The MRKL and chat output parsers currently will allow an LLM response to generate a valid action, as well as hallucinate a "final answer" based on that response. [Logic](https://github.com/hwchase17/langchain/blob/master/langchain/agents/chat/output_parser.py#L15) This is because the parser is returning an AgentFinish object immediately if `FINAL_ANSWER_ACTION` is in the text, rather than checking if the text also includes a valid action. I had this appear when using the Python agent, where the LLM returned a code block as the action, but simultaneously hallucinated the output and a final answer in one response. (In this case, it was quite obvious because the code block referred to a database which does not exist) I'm not sure if there are any situations where it is desired that a response should output an action as well as an answer? If this is not desired behaviour, it can be easily fixable by raising an exception if a response includes both a valid action, and "final answer" rather than returning immedately from either condition. ### Who can help? @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ````py from langchain.agents.chat.output_parser import ChatOutputParser parser = ChatOutputParser() valid_action = """Action: ``` { "action": "Python REPL", "action_input": "print(\'Hello world!\')" } ``` final_answer = """Final Answer: Goodbye world!""" print(parser.parse(valid_action)) # outputs an AgentFinish print(parser.parse(final_answer)) # outputs an AgentAction print(parser.parse(valid_action + final_answer)) # outputs an AgentFinish, should probably raise an Exception ```` ### Expected behavior An exception should likely be raised if an LLM returns a response that both includes a final answer, and a parse-able action, rather than skipping the action and returning the final answer, since it probably hallucinated an output/observation from the action.
https://github.com/langchain-ai/langchain/issues/5601
https://github.com/langchain-ai/langchain/pull/5609
c112d7334d6cac3296b877250d3f575fbfd46da2
26ec845921425d99f222b6d21bd58eda36b2f49b
"2023-06-02T08:01:50Z"
python
"2023-06-04T21:40:49Z"
tests/unit_tests/agents/test_mrkl.py
"""Test MRKL functionality.""" from typing import Tuple import pytest from langchain.agents.mrkl.base import ZeroShotAgent from langchain.agents.mrkl.output_parser import MRKLOutputParser from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS, PREFIX, SUFFIX from langchain.agents.tools import Tool from langchain.prompts import PromptTemplate from langchain.schema import AgentAction, OutputParserException from tests.unit_tests.llms.fake_llm import FakeLLM def get_action_and_input(text: str) -> Tuple[str, str]: output = MRKLOutputParser().parse(text) if isinstance(output, AgentAction): return output.tool, str(output.tool_input) else: return "Final Answer", output.return_values["output"] def test_get_action_and_input() -> None: """Test getting an action from text.""" llm_output = ( "Thought: I need to search for NBA\n" "Action: Search\n" "Action Input: NBA" ) action, action_input = get_action_and_input(llm_output) assert action == "Search" assert action_input == "NBA" def test_get_action_and_input_whitespace() -> None: """Test getting an action from text.""" llm_output = "Thought: I need to search for NBA\nAction: Search \nAction Input: NBA" action, action_input = get_action_and_input(llm_output) assert action == "Search" assert action_input == "NBA" def test_get_action_and_input_newline() -> None: """Test getting an action from text where Action Input is a code snippet.""" llm_output = ( "Now I need to write a unittest for the function.\n\n" "Action: Python\nAction Input:\n```\nimport unittest\n\nunittest.main()\n```" ) action, action_input = get_action_and_input(llm_output) assert action == "Python" assert action_input == "```\nimport unittest\n\nunittest.main()\n```" def test_get_action_and_input_newline_after_keyword() -> None: """Test getting an action and action input from the text when there is a new line before the action (after the keywords "Action:" and "Action Input:") """ llm_output = """ I can use the `ls` command to list the contents of the directory \ and `grep` to search for the specific file. Action: Terminal Action Input: ls -l ~/.bashrc.d/ """ action, action_input = get_action_and_input(llm_output) assert action == "Terminal" assert action_input == "ls -l ~/.bashrc.d/\n" def test_get_action_and_input_sql_query() -> None: """Test getting the action and action input from the text when the LLM output is a well formed SQL query """ llm_output = """ I should query for the largest single shift payment for every unique user. Action: query_sql_db Action Input: \ SELECT "UserName", MAX(totalpayment) FROM user_shifts GROUP BY "UserName" """ action, action_input = get_action_and_input(llm_output) assert action == "query_sql_db" assert ( action_input == 'SELECT "UserName", MAX(totalpayment) FROM user_shifts GROUP BY "UserName"' ) def test_get_final_answer() -> None: """Test getting final answer.""" llm_output = ( "Thought: I need to search for NBA\n" "Action: Search\n" "Action Input: NBA\n" "Observation: founded in 1994\n" "Thought: I can now answer the question\n" "Final Answer: 1994" ) action, action_input = get_action_and_input(llm_output) assert action == "Final Answer" assert action_input == "1994" def test_get_final_answer_new_line() -> None: """Test getting final answer.""" llm_output = ( "Thought: I need to search for NBA\n" "Action: Search\n" "Action Input: NBA\n" "Observation: founded in 1994\n" "Thought: I can now answer the question\n" "Final Answer:\n1994" ) action, action_input = get_action_and_input(llm_output) assert action == "Final Answer" assert action_input == "1994" def test_get_final_answer_multiline() -> None: """Test getting final answer that is multiline.""" llm_output = ( "Thought: I need to search for NBA\n" "Action: Search\n" "Action Input: NBA\n" "Observation: founded in 1994 and 1993\n" "Thought: I can now answer the question\n" "Final Answer: 1994\n1993" ) action, action_input = get_action_and_input(llm_output) assert action == "Final Answer" assert action_input == "1994\n1993" def test_bad_action_input_line() -> None: """Test handling when no action input found.""" llm_output = "Thought: I need to search for NBA\n" "Action: Search\n" "Thought: NBA" with pytest.raises(OutputParserException) as e_info: get_action_and_input(llm_output) assert e_info.value.observation is not None def test_bad_action_line() -> None: """Test handling when no action found.""" llm_output = ( "Thought: I need to search for NBA\n" "Thought: Search\n" "Action Input: NBA" ) with pytest.raises(OutputParserException) as e_info: get_action_and_input(llm_output) assert e_info.value.observation is not None def test_from_chains() -> None: """Test initializing from chains.""" chain_configs = [ Tool(name="foo", func=lambda x: "foo", description="foobar1"), Tool(name="bar", func=lambda x: "bar", description="foobar2"), ] agent = ZeroShotAgent.from_llm_and_tools(FakeLLM(), chain_configs) expected_tools_prompt = "foo: foobar1\nbar: foobar2" expected_tool_names = "foo, bar" expected_template = "\n\n".join( [ PREFIX, expected_tools_prompt, FORMAT_INSTRUCTIONS.format(tool_names=expected_tool_names), SUFFIX, ] ) prompt = agent.llm_chain.prompt assert isinstance(prompt, PromptTemplate) assert prompt.template == expected_template
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,720
AttributeError: 'GPT4All' object has no attribute 'model_type' (langchain 0.0.190)
### System Info Hi, this is related to #5651 but (on my machine ;) ) the issue is still there. ## Versions * Intel Mac with latest OSX * Python 3.11.2 * langchain 0.0.190, includes fix for #5651 * ggml-mpt-7b-instruct.bin, downloaded at June 5th from https://gpt4all.io/models/ggml-mpt-7b-instruct.bin ### Who can help? @pakcheera @bwv988 First of all: thanks for the report and the fix :). Did this issues disappear on you machines? ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ## Error message ```shell ╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮ │ /Users/christoph/src/sandstorm-labs/development-tools/ai-support-chat/gpt4all/chat.py:30 in │ │ <module> │ │ │ │ 27 │ model_name="all-mpnet-base-v2") │ │ 28 │ │ 29 # see https://gpt4all.io/models/ggml-mpt-7b-instruct.bin │ │ ❱ 30 llm = GPT4All( │ │ 31 │ model="./ggml-mpt-7b-instruct.bin", │ │ 32 │ #backend='gptj', │ │ 33 │ top_p=0.5, │ │ │ │ in pydantic.main.BaseModel.__init__:339 │ │ │ │ in pydantic.main.validate_model:1102 │ │ │ │ /Users/christoph/src/sandstorm-labs/development-tools/ai-support-chat/gpt4all/venv/lib/python3.1 │ │ 1/site-packages/langchain/llms/gpt4all.py:156 in validate_environment │ │ │ │ 153 │ │ if values["n_threads"] is not None: │ │ 154 │ │ │ # set n_threads │ │ 155 │ │ │ values["client"].model.set_thread_count(values["n_threads"]) │ │ ❱ 156 │ │ values["backend"] = values["client"].model_type │ │ 157 │ │ │ │ 158 │ │ return values │ │ 159 │ ╰──────────────────────────────────────────────────────────────────────────────────────────────────╯ ``` As you can see in _gpt4all.py:156_ contains the changed from the fix of #5651 ## Code ```python from langchain.llms import GPT4All # see https://gpt4all.io/models/ggml-mpt-7b-instruct.bin llm = GPT4All( model="./ggml-mpt-7b-instruct.bin", #backend='gptj', top_p=0.5, top_k=0, temp=0.1, repeat_penalty=0.8, n_threads=12, n_batch=16, n_ctx=2048) ``` FYI I am following [this example in a blog post](https://dev.to/akshayballal/beyond-openai-harnessing-open-source-models-to-create-your-personalized-ai-companion-1npb). ### Expected behavior I expect an instance of _GPT4All_ instead of a stacktrace.
https://github.com/langchain-ai/langchain/issues/5720
https://github.com/langchain-ai/langchain/pull/5743
d0d89d39efb5f292f72e70973f3b70c4ca095047
74f8e603d942ca22ed07bf0ea23a57ed67b36b2c
"2023-06-05T09:44:08Z"
python
"2023-06-05T19:45:29Z"
langchain/llms/gpt4all.py
"""Wrapper for the GPT4All model.""" from functools import partial from typing import Any, Dict, List, Mapping, Optional, Set from pydantic import Extra, Field, root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens class GPT4All(LLM): r"""Wrapper around GPT4All language models. To use, you should have the ``gpt4all`` python package installed, the pre-trained model file, and the model's config information. Example: .. code-block:: python from langchain.llms import GPT4All model = GPT4All(model="./models/gpt4all-model.bin", n_ctx=512, n_threads=8) # Simplest invocation response = model("Once upon a time, ") """ model: str """Path to the pre-trained GPT4All model file.""" backend: Optional[str] = Field(None, alias="backend") n_ctx: int = Field(512, alias="n_ctx") """Token context window.""" n_parts: int = Field(-1, alias="n_parts") """Number of parts to split the model into. If -1, the number of parts is automatically determined.""" seed: int = Field(0, alias="seed") """Seed. If -1, a random seed is used.""" f16_kv: bool = Field(False, alias="f16_kv") """Use half-precision for key/value cache.""" logits_all: bool = Field(False, alias="logits_all") """Return logits for all tokens, not just the last token.""" vocab_only: bool = Field(False, alias="vocab_only") """Only load the vocabulary, no weights.""" use_mlock: bool = Field(False, alias="use_mlock") """Force system to keep model in RAM.""" embedding: bool = Field(False, alias="embedding") """Use embedding mode only.""" n_threads: Optional[int] = Field(4, alias="n_threads") """Number of threads to use.""" n_predict: Optional[int] = 256 """The maximum number of tokens to generate.""" temp: Optional[float] = 0.8 """The temperature to use for sampling.""" top_p: Optional[float] = 0.95 """The top-p value to use for sampling.""" top_k: Optional[int] = 40 """The top-k value to use for sampling.""" echo: Optional[bool] = False """Whether to echo the prompt.""" stop: Optional[List[str]] = [] """A list of strings to stop generation when encountered.""" repeat_last_n: Optional[int] = 64 "Last n tokens to penalize" repeat_penalty: Optional[float] = 1.3 """The penalty to apply to repeated tokens.""" n_batch: int = Field(1, alias="n_batch") """Batch size for prompt processing.""" streaming: bool = False """Whether to stream the results or not.""" context_erase: float = 0.5 """Leave (n_ctx * context_erase) tokens starting from beginning if the context has run out.""" allow_download: bool = False """If model does not exist in ~/.cache/gpt4all/, download it.""" client: Any = None #: :meta private: class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @staticmethod def _model_param_names() -> Set[str]: return { "n_ctx", "n_predict", "top_k", "top_p", "temp", "n_batch", "repeat_penalty", "repeat_last_n", "context_erase", } def _default_params(self) -> Dict[str, Any]: return { "n_ctx": self.n_ctx, "n_predict": self.n_predict, "top_k": self.top_k, "top_p": self.top_p, "temp": self.temp, "n_batch": self.n_batch, "repeat_penalty": self.repeat_penalty, "repeat_last_n": self.repeat_last_n, "context_erase": self.context_erase, } @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that the python package exists in the environment.""" try: from gpt4all import GPT4All as GPT4AllModel except ImportError: raise ImportError( "Could not import gpt4all python package. " "Please install it with `pip install gpt4all`." ) full_path = values["model"] model_path, delimiter, model_name = full_path.rpartition("/") model_path += delimiter values["client"] = GPT4AllModel( model_name, model_path=model_path or None, model_type=values["backend"], allow_download=values["allow_download"], ) if values["n_threads"] is not None: # set n_threads values["client"].model.set_thread_count(values["n_threads"]) values["backend"] = values["client"].model_type return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { "model": self.model, **self._default_params(), **{ k: v for k, v in self.__dict__.items() if k in self._model_param_names() }, } @property def _llm_type(self) -> str: """Return the type of llm.""" return "gpt4all" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, ) -> str: r"""Call out to GPT4All's generate method. Args: prompt: The prompt to pass into the model. stop: A list of strings to stop generation when encountered. Returns: The string generated by the model. Example: .. code-block:: python prompt = "Once upon a time, " response = model(prompt, n_predict=55) """ text_callback = None if run_manager: text_callback = partial(run_manager.on_llm_new_token, verbose=self.verbose) text = "" for token in self.client.generate(prompt, **self._default_params()): if text_callback: text_callback(token) text += token if stop is not None: text = enforce_stop_tokens(text, stop) return text
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,699
Sitemap filters not working due to lack of stripping whitespace and newlines
https://github.com/hwchase17/langchain/blob/8d9e9e013ccfe72d839dcfa37a3f17c340a47a88/langchain/document_loaders/sitemap.py#L83 if ``` <urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9" xmlns:xhtml="http://www.w3.org/1999/xhtml"> <url> <loc> https://tatum.com/ </loc> <xhtml:link rel="alternate" hreflang="x-default" href="https://tatum.com/"/> </url> ``` then ` re.match(r, loc.text) for r in self.filter_urls` Comparison to filter here will be comparing against a value that includes those whitespaces and newlines. What worked for me: ``` def parse_sitemap(self, soup: Any) -> List[dict]: """Parse sitemap xml and load into a list of dicts.""" els = [] for url in soup.find_all("url"): loc = url.find("loc") if not loc: continue loc_text = loc.text.strip() if self.filter_urls and not any( re.match(r, loc_text) for r in self.filter_urls ): continue```
https://github.com/langchain-ai/langchain/issues/5699
https://github.com/langchain-ai/langchain/pull/5728
98dd6d068a67c2ac1c14785ea189c2e4c8882bf5
2dcda8a8aca4c427ff5716e6ac37ab0c24a7f2e5
"2023-06-04T22:49:54Z"
python
"2023-06-05T23:33:55Z"
langchain/document_loaders/sitemap.py
"""Loader that fetches a sitemap and loads those URLs.""" import itertools import re from typing import Any, Callable, Generator, Iterable, List, Optional from langchain.document_loaders.web_base import WebBaseLoader from langchain.schema import Document def _default_parsing_function(content: Any) -> str: return str(content.get_text()) def _default_meta_function(meta: dict, _content: Any) -> dict: return {"source": meta["loc"], **meta} def _batch_block(iterable: Iterable, size: int) -> Generator[List[dict], None, None]: it = iter(iterable) while item := list(itertools.islice(it, size)): yield item class SitemapLoader(WebBaseLoader): """Loader that fetches a sitemap and loads those URLs.""" def __init__( self, web_path: str, filter_urls: Optional[List[str]] = None, parsing_function: Optional[Callable] = None, blocksize: Optional[int] = None, blocknum: int = 0, meta_function: Optional[Callable] = None, is_local: bool = False, ): """Initialize with webpage path and optional filter URLs. Args: web_path: url of the sitemap. can also be a local path filter_urls: list of strings or regexes that will be applied to filter the urls that are parsed and loaded parsing_function: Function to parse bs4.Soup output blocksize: number of sitemap locations per block blocknum: the number of the block that should be loaded - zero indexed meta_function: Function to parse bs4.Soup output for metadata remember when setting this method to also copy metadata["loc"] to metadata["source"] if you are using this field is_local: whether the sitemap is a local file """ if blocksize is not None and blocksize < 1: raise ValueError("Sitemap blocksize should be at least 1") if blocknum < 0: raise ValueError("Sitemap blocknum can not be lower then 0") try: import lxml # noqa:F401 except ImportError: raise ImportError( "lxml package not found, please install it with " "`pip install lxml`" ) super().__init__(web_path) self.filter_urls = filter_urls self.parsing_function = parsing_function or _default_parsing_function self.meta_function = meta_function or _default_meta_function self.blocksize = blocksize self.blocknum = blocknum self.is_local = is_local def parse_sitemap(self, soup: Any) -> List[dict]: """Parse sitemap xml and load into a list of dicts.""" els = [] for url in soup.find_all("url"): loc = url.find("loc") if not loc: continue if self.filter_urls and not any( re.match(r, loc.text) for r in self.filter_urls ): continue els.append( { tag: prop.text for tag in ["loc", "lastmod", "changefreq", "priority"] if (prop := url.find(tag)) } ) for sitemap in soup.find_all("sitemap"): loc = sitemap.find("loc") if not loc: continue soup_child = self.scrape_all([loc.text], "xml")[0] els.extend(self.parse_sitemap(soup_child)) return els def load(self) -> List[Document]: """Load sitemap.""" if self.is_local: try: import bs4 except ImportError: raise ImportError( "beautifulsoup4 package not found, please install it" " with `pip install beautifulsoup4`" ) fp = open(self.web_path) soup = bs4.BeautifulSoup(fp, "xml") else: soup = self.scrape("xml") els = self.parse_sitemap(soup) if self.blocksize is not None: elblocks = list(_batch_block(els, self.blocksize)) blockcount = len(elblocks) if blockcount - 1 < self.blocknum: raise ValueError( "Selected sitemap does not contain enough blocks for given blocknum" ) else: els = elblocks[self.blocknum] results = self.scrape_all([el["loc"].strip() for el in els if "loc" in el]) return [ Document( page_content=self.parsing_function(results[i]), metadata=self.meta_function(els[i], results[i]), ) for i in range(len(results)) ]
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
langchain/text_splitter.py
"""Functionality for splitting text.""" from __future__ import annotations import copy import logging import re from abc import ABC, abstractmethod from dataclasses import dataclass from enum import Enum from typing import ( AbstractSet, Any, Callable, Collection, Iterable, List, Literal, Optional, Sequence, Type, TypeVar, Union, ) from langchain.docstore.document import Document from langchain.schema import BaseDocumentTransformer logger = logging.getLogger(__name__) TS = TypeVar("TS", bound="TextSplitter") def _split_text(text: str, separator: str, keep_separator: bool) -> List[str]: # Now that we have the separator, split the text if separator: if keep_separator: # The parentheses in the pattern keep the delimiters in the result. _splits = re.split(f"({separator})", text) splits = [_splits[i] + _splits[i + 1] for i in range(1, len(_splits), 2)] if len(_splits) % 2 == 0: splits += _splits[-1:] splits = [_splits[0]] + splits else: splits = text.split(separator) else: splits = list(text) return [s for s in splits if s != ""] class TextSplitter(BaseDocumentTransformer, ABC): """Interface for splitting text into chunks.""" def __init__( self, chunk_size: int = 4000, chunk_overlap: int = 200, length_function: Callable[[str], int] = len, keep_separator: bool = False, ): """Create a new TextSplitter. Args: chunk_size: Maximum size of chunks to return chunk_overlap: Overlap in characters between chunks length_function: Function that measures the length of given chunks keep_separator: Whether or not to keep the separator in the chunks """ if chunk_overlap > chunk_size: raise ValueError( f"Got a larger chunk overlap ({chunk_overlap}) than chunk size " f"({chunk_size}), should be smaller." ) self._chunk_size = chunk_size self._chunk_overlap = chunk_overlap self._length_function = length_function self._keep_separator = keep_separator @abstractmethod def split_text(self, text: str) -> List[str]: """Split text into multiple components.""" def create_documents( self, texts: List[str], metadatas: Optional[List[dict]] = None ) -> List[Document]: """Create documents from a list of texts.""" _metadatas = metadatas or [{}] * len(texts) documents = [] for i, text in enumerate(texts): for chunk in self.split_text(text): new_doc = Document( page_content=chunk, metadata=copy.deepcopy(_metadatas[i]) ) documents.append(new_doc) return documents def split_documents(self, documents: Iterable[Document]) -> List[Document]: """Split documents.""" texts, metadatas = [], [] for doc in documents: texts.append(doc.page_content) metadatas.append(doc.metadata) return self.create_documents(texts, metadatas=metadatas) def _join_docs(self, docs: List[str], separator: str) -> Optional[str]: text = separator.join(docs) text = text.strip() if text == "": return None else: return text def _merge_splits(self, splits: Iterable[str], separator: str) -> List[str]: # We now want to combine these smaller pieces into medium size # chunks to send to the LLM. separator_len = self._length_function(separator) docs = [] current_doc: List[str] = [] total = 0 for d in splits: _len = self._length_function(d) if ( total + _len + (separator_len if len(current_doc) > 0 else 0) > self._chunk_size ): if total > self._chunk_size: logger.warning( f"Created a chunk of size {total}, " f"which is longer than the specified {self._chunk_size}" ) if len(current_doc) > 0: doc = self._join_docs(current_doc, separator) if doc is not None: docs.append(doc) # Keep on popping if: # - we have a larger chunk than in the chunk overlap # - or if we still have any chunks and the length is long while total > self._chunk_overlap or ( total + _len + (separator_len if len(current_doc) > 0 else 0) > self._chunk_size and total > 0 ): total -= self._length_function(current_doc[0]) + ( separator_len if len(current_doc) > 1 else 0 ) current_doc = current_doc[1:] current_doc.append(d) total += _len + (separator_len if len(current_doc) > 1 else 0) doc = self._join_docs(current_doc, separator) if doc is not None: docs.append(doc) return docs @classmethod def from_huggingface_tokenizer(cls, tokenizer: Any, **kwargs: Any) -> TextSplitter: """Text splitter that uses HuggingFace tokenizer to count length.""" try: from transformers import PreTrainedTokenizerBase if not isinstance(tokenizer, PreTrainedTokenizerBase): raise ValueError( "Tokenizer received was not an instance of PreTrainedTokenizerBase" ) def _huggingface_tokenizer_length(text: str) -> int: return len(tokenizer.encode(text)) except ImportError: raise ValueError( "Could not import transformers python package. " "Please install it with `pip install transformers`." ) return cls(length_function=_huggingface_tokenizer_length, **kwargs) @classmethod def from_tiktoken_encoder( cls: Type[TS], encoding_name: str = "gpt2", model_name: Optional[str] = None, allowed_special: Union[Literal["all"], AbstractSet[str]] = set(), disallowed_special: Union[Literal["all"], Collection[str]] = "all", **kwargs: Any, ) -> TS: """Text splitter that uses tiktoken encoder to count length.""" try: import tiktoken except ImportError: raise ImportError( "Could not import tiktoken python package. " "This is needed in order to calculate max_tokens_for_prompt. " "Please install it with `pip install tiktoken`." ) if model_name is not None: enc = tiktoken.encoding_for_model(model_name) else: enc = tiktoken.get_encoding(encoding_name) def _tiktoken_encoder(text: str) -> int: return len( enc.encode( text, allowed_special=allowed_special, disallowed_special=disallowed_special, ) ) if issubclass(cls, TokenTextSplitter): extra_kwargs = { "encoding_name": encoding_name, "model_name": model_name, "allowed_special": allowed_special, "disallowed_special": disallowed_special, } kwargs = {**kwargs, **extra_kwargs} return cls(length_function=_tiktoken_encoder, **kwargs) def transform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: """Transform sequence of documents by splitting them.""" return self.split_documents(list(documents)) async def atransform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: """Asynchronously transform a sequence of documents by splitting them.""" raise NotImplementedError class CharacterTextSplitter(TextSplitter): """Implementation of splitting text that looks at characters.""" def __init__(self, separator: str = "\n\n", **kwargs: Any): """Create a new TextSplitter.""" super().__init__(**kwargs) self._separator = separator def split_text(self, text: str) -> List[str]: """Split incoming text and return chunks.""" # First we naively split the large input into a bunch of smaller ones. splits = _split_text(text, self._separator, self._keep_separator) _separator = "" if self._keep_separator else self._separator return self._merge_splits(splits, _separator) # should be in newer Python versions (3.10+) # @dataclass(frozen=True, kw_only=True, slots=True) @dataclass(frozen=True) class Tokenizer: chunk_overlap: int tokens_per_chunk: int decode: Callable[[list[int]], str] encode: Callable[[str], List[int]] def split_text_on_tokens(*, text: str, tokenizer: Tokenizer) -> List[str]: """Split incoming text and return chunks.""" splits = [] input_ids = tokenizer.encode(text) start_idx = 0 cur_idx = min(start_idx + tokenizer.tokens_per_chunk, len(input_ids)) chunk_ids = input_ids[start_idx:cur_idx] while start_idx < len(input_ids): splits.append(tokenizer.decode(chunk_ids)) start_idx += tokenizer.tokens_per_chunk - tokenizer.chunk_overlap cur_idx = min(start_idx + tokenizer.tokens_per_chunk, len(input_ids)) chunk_ids = input_ids[start_idx:cur_idx] return splits class TokenTextSplitter(TextSplitter): """Implementation of splitting text that looks at tokens.""" def __init__( self, encoding_name: str = "gpt2", model_name: Optional[str] = None, allowed_special: Union[Literal["all"], AbstractSet[str]] = set(), disallowed_special: Union[Literal["all"], Collection[str]] = "all", **kwargs: Any, ): """Create a new TextSplitter.""" super().__init__(**kwargs) try: import tiktoken except ImportError: raise ImportError( "Could not import tiktoken python package. " "This is needed in order to for TokenTextSplitter. " "Please install it with `pip install tiktoken`." ) if model_name is not None: enc = tiktoken.encoding_for_model(model_name) else: enc = tiktoken.get_encoding(encoding_name) self._tokenizer = enc self._allowed_special = allowed_special self._disallowed_special = disallowed_special def split_text(self, text: str) -> List[str]: def _encode(_text: str) -> List[int]: return self._tokenizer.encode( _text, allowed_special=self._allowed_special, disallowed_special=self._disallowed_special, ) tokenizer = Tokenizer( chunk_overlap=self._chunk_overlap, tokens_per_chunk=self._chunk_size, decode=self._tokenizer.decode, encode=_encode, ) return split_text_on_tokens(text=text, tokenizer=tokenizer) class SentenceTransformersTokenTextSplitter(TextSplitter): """Implementation of splitting text that looks at tokens.""" def __init__( self, chunk_overlap: int = 50, model_name: str = "sentence-transformers/all-mpnet-base-v2", tokens_per_chunk: Optional[int] = None, **kwargs: Any, ): """Create a new TextSplitter.""" super().__init__(**kwargs, chunk_overlap=chunk_overlap) from transformers import AutoTokenizer self.model_name = model_name self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) self._initialize_chunk_configuration(tokens_per_chunk=tokens_per_chunk) def _initialize_chunk_configuration( self, *, tokens_per_chunk: Optional[int] ) -> None: self.maximum_tokens_per_chunk = self.tokenizer.max_len_single_sentence if tokens_per_chunk is None: self.tokens_per_chunk = self.maximum_tokens_per_chunk else: self.tokens_per_chunk = tokens_per_chunk if self.tokens_per_chunk > self.maximum_tokens_per_chunk: raise ValueError( f"The token limit of the models '{self.model_name}'" f" is: {self.maximum_tokens_per_chunk}." f" Argument tokens_per_chunk={self.tokens_per_chunk}" f" > maximum token limit." ) def split_text(self, text: str) -> List[str]: def encode_strip_start_and_stop_token_ids(text: str) -> List[int]: return self._encode(text)[1:-1] tokenizer = Tokenizer( chunk_overlap=self._chunk_overlap, tokens_per_chunk=self.tokens_per_chunk, decode=self.tokenizer.decode, encode=encode_strip_start_and_stop_token_ids, ) return split_text_on_tokens(text=text, tokenizer=tokenizer) def count_tokens(self, *, text: str) -> int: return len(self._encode(text)) _max_length_equal_32_bit_integer = 2**32 def _encode(self, text: str) -> List[int]: token_ids_with_start_and_end_token_ids = self.tokenizer.encode( text, max_length=self._max_length_equal_32_bit_integer, truncation="do_not_truncate", ) return token_ids_with_start_and_end_token_ids class Language(str, Enum): CPP = "cpp" GO = "go" JAVA = "java" JS = "js" PHP = "php" PROTO = "proto" PYTHON = "python" RST = "rst" RUBY = "ruby" RUST = "rust" SCALA = "scala" SWIFT = "swift" MARKDOWN = "markdown" LATEX = "latex" HTML = "html" class RecursiveCharacterTextSplitter(TextSplitter): """Implementation of splitting text that looks at characters. Recursively tries to split by different characters to find one that works. """ def __init__( self, separators: Optional[List[str]] = None, keep_separator: bool = True, **kwargs: Any, ): """Create a new TextSplitter.""" super().__init__(keep_separator=keep_separator, **kwargs) self._separators = separators or ["\n\n", "\n", " ", ""] def _split_text(self, text: str, separators: List[str]) -> List[str]: """Split incoming text and return chunks.""" final_chunks = [] # Get appropriate separator to use separator = separators[-1] new_separators = None for i, _s in enumerate(separators): if _s == "": separator = _s break if _s in text: separator = _s new_separators = separators[i + 1 :] break splits = _split_text(text, separator, self._keep_separator) # Now go merging things, recursively splitting longer texts. _good_splits = [] _separator = "" if self._keep_separator else separator for s in splits: if self._length_function(s) < self._chunk_size: _good_splits.append(s) else: if _good_splits: merged_text = self._merge_splits(_good_splits, _separator) final_chunks.extend(merged_text) _good_splits = [] if new_separators is None: final_chunks.append(s) else: other_info = self._split_text(s, new_separators) final_chunks.extend(other_info) if _good_splits: merged_text = self._merge_splits(_good_splits, _separator) final_chunks.extend(merged_text) return final_chunks def split_text(self, text: str) -> List[str]: return self._split_text(text, self._separators) @classmethod def from_language( cls, language: Language, **kwargs: Any ) -> RecursiveCharacterTextSplitter: separators = cls.get_separators_for_language(language) return cls(separators=separators, **kwargs) @staticmethod def get_separators_for_language(language: Language) -> List[str]: if language == Language.CPP: return [ # Split along class definitions "\nclass ", # Split along function definitions "\nvoid ", "\nint ", "\nfloat ", "\ndouble ", # Split along control flow statements "\nif ", "\nfor ", "\nwhile ", "\nswitch ", "\ncase ", # Split by the normal type of lines "\n\n", "\n", " ", "", ] elif language == Language.GO: return [ # Split along function definitions "\nfunc ", "\nvar ", "\nconst ", "\ntype ", # Split along control flow statements "\nif ", "\nfor ", "\nswitch ", "\ncase ", # Split by the normal type of lines "\n\n", "\n", " ", "", ] elif language == Language.JAVA: return [ # Split along class definitions "\nclass ", # Split along method definitions "\npublic ", "\nprotected ", "\nprivate ", "\nstatic ", # Split along control flow statements "\nif ", "\nfor ", "\nwhile ", "\nswitch ", "\ncase ", # Split by the normal type of lines "\n\n", "\n", " ", "", ] elif language == Language.JS: return [ # Split along function definitions "\nfunction ", "\nconst ", "\nlet ", "\nvar ", "\nclass ", # Split along control flow statements "\nif ", "\nfor ", "\nwhile ", "\nswitch ", "\ncase ", "\ndefault ", # Split by the normal type of lines "\n\n", "\n", " ", "", ] elif language == Language.PHP: return [ # Split along function definitions "\nfunction ", # Split along class definitions "\nclass ", # Split along control flow statements "\nif ", "\nforeach ", "\nwhile ", "\ndo ", "\nswitch ", "\ncase ", # Split by the normal type of lines "\n\n", "\n", " ", "", ] elif language == Language.PROTO: return [ # Split along message definitions "\nmessage ", # Split along service definitions "\nservice ", # Split along enum definitions "\nenum ", # Split along option definitions "\noption ", # Split along import statements "\nimport ", # Split along syntax declarations "\nsyntax ", # Split by the normal type of lines "\n\n", "\n", " ", "", ] elif language == Language.PYTHON: return [ # First, try to split along class definitions "\nclass ", "\ndef ", "\n\tdef ", # Now split by the normal type of lines "\n\n", "\n", " ", "", ] elif language == Language.RST: return [ # Split along section titles "\n===\n", "\n---\n", "\n***\n", # Split along directive markers "\n.. ", # Split by the normal type of lines "\n\n", "\n", " ", "", ] elif language == Language.RUBY: return [ # Split along method definitions "\ndef ", "\nclass ", # Split along control flow statements "\nif ", "\nunless ", "\nwhile ", "\nfor ", "\ndo ", "\nbegin ", "\nrescue ", # Split by the normal type of lines "\n\n", "\n", " ", "", ] elif language == Language.RUST: return [ # Split along function definitions "\nfn ", "\nconst ", "\nlet ", # Split along control flow statements "\nif ", "\nwhile ", "\nfor ", "\nloop ", "\nmatch ", "\nconst ", # Split by the normal type of lines "\n\n", "\n", " ", "", ] elif language == Language.SCALA: return [ # Split along class definitions "\nclass ", "\nobject ", # Split along method definitions "\ndef ", "\nval ", "\nvar ", # Split along control flow statements "\nif ", "\nfor ", "\nwhile ", "\nmatch ", "\ncase ", # Split by the normal type of lines "\n\n", "\n", " ", "", ] elif language == Language.SWIFT: return [ # Split along function definitions "\nfunc ", # Split along class definitions "\nclass ", "\nstruct ", "\nenum ", # Split along control flow statements "\nif ", "\nfor ", "\nwhile ", "\ndo ", "\nswitch ", "\ncase ", # Split by the normal type of lines "\n\n", "\n", " ", "", ] elif language == Language.MARKDOWN: return [ # First, try to split along Markdown headings (starting with level 2) "\n## ", "\n### ", "\n#### ", "\n##### ", "\n###### ", # Note the alternative syntax for headings (below) is not handled here # Heading level 2 # --------------- # End of code block "```\n\n", # Horizontal lines "\n\n***\n\n", "\n\n---\n\n", "\n\n___\n\n", # Note that this splitter doesn't handle horizontal lines defined # by *three or more* of ***, ---, or ___, but this is not handled "\n\n", "\n", " ", "", ] elif language == Language.LATEX: return [ # First, try to split along Latex sections "\n\\chapter{", "\n\\section{", "\n\\subsection{", "\n\\subsubsection{", # Now split by environments "\n\\begin{enumerate}", "\n\\begin{itemize}", "\n\\begin{description}", "\n\\begin{list}", "\n\\begin{quote}", "\n\\begin{quotation}", "\n\\begin{verse}", "\n\\begin{verbatim}", ## Now split by math environments "\n\\begin{align}", "$$", "$", # Now split by the normal type of lines " ", "", ] elif language == Language.HTML: return [ # First, try to split along HTML tags "<body>", "<div>", "<p>", "<br>", "<li>", "<h1>", "<h2>", "<h3>", "<h4>", "<h5>", "<h6>", "<span>", "<table>", "<tr>", "<td>", "<th>", "<ul>", "<ol>", "<header>", "<footer>", "<nav>", # Head "<head>", "<style>", "<script>", "<meta>", "<title>", "", ] else: raise ValueError( f"Language {language} is not supported! " f"Please choose from {list(Language)}" ) class NLTKTextSplitter(TextSplitter): """Implementation of splitting text that looks at sentences using NLTK.""" def __init__(self, separator: str = "\n\n", **kwargs: Any): """Initialize the NLTK splitter.""" super().__init__(**kwargs) try: from nltk.tokenize import sent_tokenize self._tokenizer = sent_tokenize except ImportError: raise ImportError( "NLTK is not installed, please install it with `pip install nltk`." ) self._separator = separator def split_text(self, text: str) -> List[str]: """Split incoming text and return chunks.""" # First we naively split the large input into a bunch of smaller ones. splits = self._tokenizer(text) return self._merge_splits(splits, self._separator) class SpacyTextSplitter(TextSplitter): """Implementation of splitting text that looks at sentences using Spacy.""" def __init__( self, separator: str = "\n\n", pipeline: str = "en_core_web_sm", **kwargs: Any ): """Initialize the spacy text splitter.""" super().__init__(**kwargs) try: import spacy except ImportError: raise ImportError( "Spacy is not installed, please install it with `pip install spacy`." ) self._tokenizer = spacy.load(pipeline) self._separator = separator def split_text(self, text: str) -> List[str]: """Split incoming text and return chunks.""" splits = (str(s) for s in self._tokenizer(text).sents) return self._merge_splits(splits, self._separator) # For backwards compatibility class PythonCodeTextSplitter(RecursiveCharacterTextSplitter): """Attempts to split the text along Python syntax.""" def __init__(self, **kwargs: Any): """Initialize a PythonCodeTextSplitter.""" separators = self.get_separators_for_language(Language.PYTHON) super().__init__(separators=separators, **kwargs) class MarkdownTextSplitter(RecursiveCharacterTextSplitter): """Attempts to split the text along Markdown-formatted headings.""" def __init__(self, **kwargs: Any): """Initialize a MarkdownTextSplitter.""" separators = self.get_separators_for_language(Language.MARKDOWN) super().__init__(separators=separators, **kwargs) class LatexTextSplitter(RecursiveCharacterTextSplitter): """Attempts to split the text along Latex-formatted layout elements.""" def __init__(self, **kwargs: Any): """Initialize a LatexTextSplitter.""" separators = self.get_separators_for_language(Language.LATEX) super().__init__(separators=separators, **kwargs)
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
tests/unit_tests/test_text_splitter.py
"""Test text splitting functionality.""" import pytest from langchain.docstore.document import Document from langchain.text_splitter import ( CharacterTextSplitter, Language, PythonCodeTextSplitter, RecursiveCharacterTextSplitter, ) FAKE_PYTHON_TEXT = """ class Foo: def bar(): def foo(): def testing_func(): def bar(): """ def test_character_text_splitter() -> None: """Test splitting by character count.""" text = "foo bar baz 123" splitter = CharacterTextSplitter(separator=" ", chunk_size=7, chunk_overlap=3) output = splitter.split_text(text) expected_output = ["foo bar", "bar baz", "baz 123"] assert output == expected_output def test_character_text_splitter_empty_doc() -> None: """Test splitting by character count doesn't create empty documents.""" text = "foo bar" splitter = CharacterTextSplitter(separator=" ", chunk_size=2, chunk_overlap=0) output = splitter.split_text(text) expected_output = ["foo", "bar"] assert output == expected_output def test_character_text_splitter_separtor_empty_doc() -> None: """Test edge cases are separators.""" text = "f b" splitter = CharacterTextSplitter(separator=" ", chunk_size=2, chunk_overlap=0) output = splitter.split_text(text) expected_output = ["f", "b"] assert output == expected_output def test_character_text_splitter_long() -> None: """Test splitting by character count on long words.""" text = "foo bar baz a a" splitter = CharacterTextSplitter(separator=" ", chunk_size=3, chunk_overlap=1) output = splitter.split_text(text) expected_output = ["foo", "bar", "baz", "a a"] assert output == expected_output def test_character_text_splitter_short_words_first() -> None: """Test splitting by character count when shorter words are first.""" text = "a a foo bar baz" splitter = CharacterTextSplitter(separator=" ", chunk_size=3, chunk_overlap=1) output = splitter.split_text(text) expected_output = ["a a", "foo", "bar", "baz"] assert output == expected_output def test_character_text_splitter_longer_words() -> None: """Test splitting by characters when splits not found easily.""" text = "foo bar baz 123" splitter = CharacterTextSplitter(separator=" ", chunk_size=1, chunk_overlap=1) output = splitter.split_text(text) expected_output = ["foo", "bar", "baz", "123"] assert output == expected_output def test_character_text_splitting_args() -> None: """Test invalid arguments.""" with pytest.raises(ValueError): CharacterTextSplitter(chunk_size=2, chunk_overlap=4) def test_merge_splits() -> None: """Test merging splits with a given separator.""" splitter = CharacterTextSplitter(separator=" ", chunk_size=9, chunk_overlap=2) splits = ["foo", "bar", "baz"] expected_output = ["foo bar", "baz"] output = splitter._merge_splits(splits, separator=" ") assert output == expected_output def test_create_documents() -> None: """Test create documents method.""" texts = ["foo bar", "baz"] splitter = CharacterTextSplitter(separator=" ", chunk_size=3, chunk_overlap=0) docs = splitter.create_documents(texts) expected_docs = [ Document(page_content="foo"), Document(page_content="bar"), Document(page_content="baz"), ] assert docs == expected_docs def test_create_documents_with_metadata() -> None: """Test create documents with metadata method.""" texts = ["foo bar", "baz"] splitter = CharacterTextSplitter(separator=" ", chunk_size=3, chunk_overlap=0) docs = splitter.create_documents(texts, [{"source": "1"}, {"source": "2"}]) expected_docs = [ Document(page_content="foo", metadata={"source": "1"}), Document(page_content="bar", metadata={"source": "1"}), Document(page_content="baz", metadata={"source": "2"}), ] assert docs == expected_docs def test_metadata_not_shallow() -> None: """Test that metadatas are not shallow.""" texts = ["foo bar"] splitter = CharacterTextSplitter(separator=" ", chunk_size=3, chunk_overlap=0) docs = splitter.create_documents(texts, [{"source": "1"}]) expected_docs = [ Document(page_content="foo", metadata={"source": "1"}), Document(page_content="bar", metadata={"source": "1"}), ] assert docs == expected_docs docs[0].metadata["foo"] = 1 assert docs[0].metadata == {"source": "1", "foo": 1} assert docs[1].metadata == {"source": "1"} def test_iterative_text_splitter() -> None: """Test iterative text splitter.""" text = """Hi.\n\nI'm Harrison.\n\nHow? Are? You?\nOkay then f f f f. This is a weird text to write, but gotta test the splittingggg some how. Bye!\n\n-H.""" splitter = RecursiveCharacterTextSplitter(chunk_size=10, chunk_overlap=1) output = splitter.split_text(text) expected_output = [ "Hi.", "I'm", "Harrison.", "How? Are?", "You?", "Okay then", "f f f f.", "This is a", "weird", "text to", "write,", "but gotta", "test the", "splitting", "gggg", "some how.", "Bye!", "-H.", ] assert output == expected_output def test_split_documents() -> None: """Test split_documents.""" splitter = CharacterTextSplitter(separator="", chunk_size=1, chunk_overlap=0) docs = [ Document(page_content="foo", metadata={"source": "1"}), Document(page_content="bar", metadata={"source": "2"}), Document(page_content="baz", metadata={"source": "1"}), ] expected_output = [ Document(page_content="f", metadata={"source": "1"}), Document(page_content="o", metadata={"source": "1"}), Document(page_content="o", metadata={"source": "1"}), Document(page_content="b", metadata={"source": "2"}), Document(page_content="a", metadata={"source": "2"}), Document(page_content="r", metadata={"source": "2"}), Document(page_content="b", metadata={"source": "1"}), Document(page_content="a", metadata={"source": "1"}), Document(page_content="z", metadata={"source": "1"}), ] assert splitter.split_documents(docs) == expected_output def test_python_text_splitter() -> None: splitter = PythonCodeTextSplitter(chunk_size=30, chunk_overlap=0) splits = splitter.split_text(FAKE_PYTHON_TEXT) split_0 = """class Foo:\n\n def bar():""" split_1 = """def foo():""" split_2 = """def testing_func():""" split_3 = """def bar():""" expected_splits = [split_0, split_1, split_2, split_3] assert splits == expected_splits CHUNK_SIZE = 16 def test_python_code_splitter() -> None: splitter = RecursiveCharacterTextSplitter.from_language( Language.PYTHON, chunk_size=CHUNK_SIZE, chunk_overlap=0 ) code = """ def hello_world(): print("Hello, World!") # Call the function hello_world() """ chunks = splitter.split_text(code) assert chunks == [ "def", "hello_world():", 'print("Hello,', 'World!")', "# Call the", "function", "hello_world()", ] def test_golang_code_splitter() -> None: splitter = RecursiveCharacterTextSplitter.from_language( Language.GO, chunk_size=CHUNK_SIZE, chunk_overlap=0 ) code = """ package main import "fmt" func helloWorld() { fmt.Println("Hello, World!") } func main() { helloWorld() } """ chunks = splitter.split_text(code) assert chunks == [ "package main", 'import "fmt"', "func", "helloWorld() {", 'fmt.Println("He', "llo,", 'World!")', "}", "func main() {", "helloWorld()", "}", ] def test_rst_code_splitter() -> None: splitter = RecursiveCharacterTextSplitter.from_language( Language.RST, chunk_size=CHUNK_SIZE, chunk_overlap=0 ) code = """ Sample Document =============== Section ------- This is the content of the section. Lists ----- - Item 1 - Item 2 - Item 3 """ chunks = splitter.split_text(code) assert chunks == [ "Sample Document", "===============", "Section", "-------", "This is the", "content of the", "section.", "Lists\n-----", "- Item 1", "- Item 2", "- Item 3", ] def test_proto_file_splitter() -> None: splitter = RecursiveCharacterTextSplitter.from_language( Language.PROTO, chunk_size=CHUNK_SIZE, chunk_overlap=0 ) code = """ syntax = "proto3"; package example; message Person { string name = 1; int32 age = 2; repeated string hobbies = 3; } """ chunks = splitter.split_text(code) assert chunks == [ "syntax =", '"proto3";', "package", "example;", "message Person", "{", "string name", "= 1;", "int32 age =", "2;", "repeated", "string hobbies", "= 3;", "}", ] def test_javascript_code_splitter() -> None: splitter = RecursiveCharacterTextSplitter.from_language( Language.JS, chunk_size=CHUNK_SIZE, chunk_overlap=0 ) code = """ function helloWorld() { console.log("Hello, World!"); } // Call the function helloWorld(); """ chunks = splitter.split_text(code) assert chunks == [ "function", "helloWorld() {", 'console.log("He', "llo,", 'World!");', "}", "// Call the", "function", "helloWorld();", ] def test_java_code_splitter() -> None: splitter = RecursiveCharacterTextSplitter.from_language( Language.JAVA, chunk_size=CHUNK_SIZE, chunk_overlap=0 ) code = """ public class HelloWorld { public static void main(String[] args) { System.out.println("Hello, World!"); } } """ chunks = splitter.split_text(code) assert chunks == [ "public class", "HelloWorld {", "public", "static void", "main(String[]", "args) {", "System.out.prin", 'tln("Hello,', 'World!");', "}\n}", ] def test_cpp_code_splitter() -> None: splitter = RecursiveCharacterTextSplitter.from_language( Language.CPP, chunk_size=CHUNK_SIZE, chunk_overlap=0 ) code = """ #include <iostream> int main() { std::cout << "Hello, World!" << std::endl; return 0; } """ chunks = splitter.split_text(code) assert chunks == [ "#include", "<iostream>", "int main() {", "std::cout", '<< "Hello,', 'World!" <<', "std::endl;", "return 0;\n}", ] def test_scala_code_splitter() -> None: splitter = RecursiveCharacterTextSplitter.from_language( Language.SCALA, chunk_size=CHUNK_SIZE, chunk_overlap=0 ) code = """ object HelloWorld { def main(args: Array[String]): Unit = { println("Hello, World!") } } """ chunks = splitter.split_text(code) assert chunks == [ "object", "HelloWorld {", "def", "main(args:", "Array[String]):", "Unit = {", 'println("Hello,', 'World!")', "}\n}", ] def test_ruby_code_splitter() -> None: splitter = RecursiveCharacterTextSplitter.from_language( Language.RUBY, chunk_size=CHUNK_SIZE, chunk_overlap=0 ) code = """ def hello_world puts "Hello, World!" end hello_world """ chunks = splitter.split_text(code) assert chunks == [ "def hello_world", 'puts "Hello,', 'World!"', "end", "hello_world", ] def test_php_code_splitter() -> None: splitter = RecursiveCharacterTextSplitter.from_language( Language.PHP, chunk_size=CHUNK_SIZE, chunk_overlap=0 ) code = """ <?php function hello_world() { echo "Hello, World!"; } hello_world(); ?> """ chunks = splitter.split_text(code) assert chunks == [ "<?php", "function", "hello_world() {", "echo", '"Hello,', 'World!";', "}", "hello_world();", "?>", ] def test_swift_code_splitter() -> None: splitter = RecursiveCharacterTextSplitter.from_language( Language.SWIFT, chunk_size=CHUNK_SIZE, chunk_overlap=0 ) code = """ func helloWorld() { print("Hello, World!") } helloWorld() """ chunks = splitter.split_text(code) assert chunks == [ "func", "helloWorld() {", 'print("Hello,', 'World!")', "}", "helloWorld()", ] def test_rust_code_splitter() -> None: splitter = RecursiveCharacterTextSplitter.from_language( Language.RUST, chunk_size=CHUNK_SIZE, chunk_overlap=0 ) code = """ fn main() { println!("Hello, World!"); } """ chunks = splitter.split_text(code) assert chunks == ["fn main() {", 'println!("Hello', ",", 'World!");', "}"]
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,535
Add Tigris vectorstore for vector search
### Feature request Support Tigris as a vector search backend ### Motivation Tigris is a Serverless NoSQL Database and Search Platform and have their [vector search](https://www.tigrisdata.com/docs/concepts/vector-search/python/) product. It will be great option for users to use an integrated database and search product. ### Your contribution I can submit a a PR
https://github.com/langchain-ai/langchain/issues/5535
https://github.com/langchain-ai/langchain/pull/5703
38dabdbb3a900ae60e4b503cd48c26903b2d4673
233b52735e77121849b0fc9f8eaf6170222f0ac7
"2023-06-01T03:18:00Z"
python
"2023-06-06T03:39:16Z"
docs/modules/indexes/vectorstores/examples/tigris.ipynb
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,535
Add Tigris vectorstore for vector search
### Feature request Support Tigris as a vector search backend ### Motivation Tigris is a Serverless NoSQL Database and Search Platform and have their [vector search](https://www.tigrisdata.com/docs/concepts/vector-search/python/) product. It will be great option for users to use an integrated database and search product. ### Your contribution I can submit a a PR
https://github.com/langchain-ai/langchain/issues/5535
https://github.com/langchain-ai/langchain/pull/5703
38dabdbb3a900ae60e4b503cd48c26903b2d4673
233b52735e77121849b0fc9f8eaf6170222f0ac7
"2023-06-01T03:18:00Z"
python
"2023-06-06T03:39:16Z"
langchain/vectorstores/__init__.py
"""Wrappers on top of vector stores.""" from langchain.vectorstores.analyticdb import AnalyticDB from langchain.vectorstores.annoy import Annoy from langchain.vectorstores.atlas import AtlasDB from langchain.vectorstores.base import VectorStore from langchain.vectorstores.chroma import Chroma from langchain.vectorstores.clickhouse import Clickhouse, ClickhouseSettings from langchain.vectorstores.deeplake import DeepLake from langchain.vectorstores.docarray import DocArrayHnswSearch, DocArrayInMemorySearch from langchain.vectorstores.elastic_vector_search import ElasticVectorSearch from langchain.vectorstores.faiss import FAISS from langchain.vectorstores.lancedb import LanceDB from langchain.vectorstores.milvus import Milvus from langchain.vectorstores.mongodb_atlas import MongoDBAtlasVectorSearch from langchain.vectorstores.myscale import MyScale, MyScaleSettings from langchain.vectorstores.opensearch_vector_search import OpenSearchVectorSearch from langchain.vectorstores.pinecone import Pinecone from langchain.vectorstores.qdrant import Qdrant from langchain.vectorstores.redis import Redis from langchain.vectorstores.sklearn import SKLearnVectorStore from langchain.vectorstores.supabase import SupabaseVectorStore from langchain.vectorstores.tair import Tair from langchain.vectorstores.typesense import Typesense from langchain.vectorstores.vectara import Vectara from langchain.vectorstores.weaviate import Weaviate from langchain.vectorstores.zilliz import Zilliz __all__ = [ "Redis", "ElasticVectorSearch", "FAISS", "VectorStore", "Pinecone", "Weaviate", "Qdrant", "Milvus", "Zilliz", "Chroma", "OpenSearchVectorSearch", "AtlasDB", "DeepLake", "Annoy", "MongoDBAtlasVectorSearch", "MyScale", "MyScaleSettings", "SKLearnVectorStore", "SupabaseVectorStore", "AnalyticDB", "Vectara", "Tair", "LanceDB", "DocArrayHnswSearch", "DocArrayInMemorySearch", "Typesense", "Clickhouse", "ClickhouseSettings", ]
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,535
Add Tigris vectorstore for vector search
### Feature request Support Tigris as a vector search backend ### Motivation Tigris is a Serverless NoSQL Database and Search Platform and have their [vector search](https://www.tigrisdata.com/docs/concepts/vector-search/python/) product. It will be great option for users to use an integrated database and search product. ### Your contribution I can submit a a PR
https://github.com/langchain-ai/langchain/issues/5535
https://github.com/langchain-ai/langchain/pull/5703
38dabdbb3a900ae60e4b503cd48c26903b2d4673
233b52735e77121849b0fc9f8eaf6170222f0ac7
"2023-06-01T03:18:00Z"
python
"2023-06-06T03:39:16Z"
langchain/vectorstores/tigris.py
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,535
Add Tigris vectorstore for vector search
### Feature request Support Tigris as a vector search backend ### Motivation Tigris is a Serverless NoSQL Database and Search Platform and have their [vector search](https://www.tigrisdata.com/docs/concepts/vector-search/python/) product. It will be great option for users to use an integrated database and search product. ### Your contribution I can submit a a PR
https://github.com/langchain-ai/langchain/issues/5535
https://github.com/langchain-ai/langchain/pull/5703
38dabdbb3a900ae60e4b503cd48c26903b2d4673
233b52735e77121849b0fc9f8eaf6170222f0ac7
"2023-06-01T03:18:00Z"
python
"2023-06-06T03:39:16Z"
poetry.lock
# This file is automatically @generated by Poetry 1.5.1 and should not be changed by hand. [[package]] name = "absl-py" version = "1.4.0" description = "Abseil Python Common Libraries, see https://github.com/abseil/abseil-py." optional = true python-versions = ">=3.6" files = [ {file = "absl-py-1.4.0.tar.gz", hash = "sha256:d2c244d01048ba476e7c080bd2c6df5e141d211de80223460d5b3b8a2a58433d"}, {file = "absl_py-1.4.0-py3-none-any.whl", hash = "sha256:0d3fe606adfa4f7db64792dd4c7aee4ee0c38ab75dfd353b7a83ed3e957fcb47"}, ] [[package]] name = "aioboto3" version = "11.2.0" description = "Async boto3 wrapper" optional = false python-versions = ">=3.7,<4.0" files = [ {file = "aioboto3-11.2.0-py3-none-any.whl", hash = "sha256:df4b83c3943b009a4dcd9f397f9f0491a374511b1ef37545082a771ca1e549fb"}, {file = "aioboto3-11.2.0.tar.gz", hash = "sha256:c7f6234fd73efcb60ab6fca383fec33bb6352ca1832f252eac810cd6674f1748"}, ] [package.dependencies] aiobotocore = {version = "2.5.0", extras = ["boto3"]} [package.extras] chalice = ["chalice (>=1.24.0)"] s3cse = ["cryptography (>=2.3.1)"] [[package]] name = "aiobotocore" version = "2.5.0" description = "Async client for aws services using botocore and aiohttp" optional = false python-versions = ">=3.7" files = [ {file = "aiobotocore-2.5.0-py3-none-any.whl", hash = "sha256:9a2a022d7b78ec9a2af0de589916d2721cddbf96264401b78d7a73c1a1435f3b"}, {file = "aiobotocore-2.5.0.tar.gz", hash = "sha256:6a5b397cddd4f81026aa91a14c7dd2650727425740a5af8ba75127ff663faf67"}, ] [package.dependencies] aiohttp = ">=3.3.1" aioitertools = ">=0.5.1" boto3 = {version = ">=1.26.76,<1.26.77", optional = true, markers = "extra == \"boto3\""} botocore = ">=1.29.76,<1.29.77" wrapt = ">=1.10.10" [package.extras] awscli = ["awscli (>=1.27.76,<1.27.77)"] boto3 = ["boto3 (>=1.26.76,<1.26.77)"] [[package]] name = "aiodns" version = "3.0.0" description = "Simple DNS resolver for asyncio" optional = true python-versions = "*" files = [ {file = "aiodns-3.0.0-py3-none-any.whl", hash = "sha256:2b19bc5f97e5c936638d28e665923c093d8af2bf3aa88d35c43417fa25d136a2"}, {file = "aiodns-3.0.0.tar.gz", hash = "sha256:946bdfabe743fceeeb093c8a010f5d1645f708a241be849e17edfb0e49e08cd6"}, ] [package.dependencies] pycares = ">=4.0.0" [[package]] name = "aiofiles" version = "23.1.0" description = "File support for asyncio." optional = true python-versions = ">=3.7,<4.0" files = [ {file = "aiofiles-23.1.0-py3-none-any.whl", hash = "sha256:9312414ae06472eb6f1d163f555e466a23aed1c8f60c30cccf7121dba2e53eb2"}, {file = "aiofiles-23.1.0.tar.gz", hash = "sha256:edd247df9a19e0db16534d4baaf536d6609a43e1de5401d7a4c1c148753a1635"}, ] [[package]] name = "aiohttp" version = "3.8.4" description = "Async http client/server framework (asyncio)" optional = false python-versions = ">=3.6" files = [ {file = "aiohttp-3.8.4-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:5ce45967538fb747370308d3145aa68a074bdecb4f3a300869590f725ced69c1"}, {file = "aiohttp-3.8.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:b744c33b6f14ca26b7544e8d8aadff6b765a80ad6164fb1a430bbadd593dfb1a"}, {file = "aiohttp-3.8.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:1a45865451439eb320784918617ba54b7a377e3501fb70402ab84d38c2cd891b"}, {file = "aiohttp-3.8.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a86d42d7cba1cec432d47ab13b6637bee393a10f664c425ea7b305d1301ca1a3"}, {file = "aiohttp-3.8.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ee3c36df21b5714d49fc4580247947aa64bcbe2939d1b77b4c8dcb8f6c9faecc"}, {file = "aiohttp-3.8.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:176a64b24c0935869d5bbc4c96e82f89f643bcdf08ec947701b9dbb3c956b7dd"}, {file = "aiohttp-3.8.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c844fd628851c0bc309f3c801b3a3d58ce430b2ce5b359cd918a5a76d0b20cb5"}, {file = "aiohttp-3.8.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5393fb786a9e23e4799fec788e7e735de18052f83682ce2dfcabaf1c00c2c08e"}, {file = "aiohttp-3.8.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e4b09863aae0dc965c3ef36500d891a3ff495a2ea9ae9171e4519963c12ceefd"}, {file = "aiohttp-3.8.4-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:adfbc22e87365a6e564c804c58fc44ff7727deea782d175c33602737b7feadb6"}, {file = "aiohttp-3.8.4-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:147ae376f14b55f4f3c2b118b95be50a369b89b38a971e80a17c3fd623f280c9"}, {file = "aiohttp-3.8.4-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:eafb3e874816ebe2a92f5e155f17260034c8c341dad1df25672fb710627c6949"}, {file = "aiohttp-3.8.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c6cc15d58053c76eacac5fa9152d7d84b8d67b3fde92709195cb984cfb3475ea"}, {file = "aiohttp-3.8.4-cp310-cp310-win32.whl", hash = "sha256:59f029a5f6e2d679296db7bee982bb3d20c088e52a2977e3175faf31d6fb75d1"}, {file = "aiohttp-3.8.4-cp310-cp310-win_amd64.whl", hash = "sha256:fe7ba4a51f33ab275515f66b0a236bcde4fb5561498fe8f898d4e549b2e4509f"}, {file = "aiohttp-3.8.4-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:3d8ef1a630519a26d6760bc695842579cb09e373c5f227a21b67dc3eb16cfea4"}, {file = "aiohttp-3.8.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5b3f2e06a512e94722886c0827bee9807c86a9f698fac6b3aee841fab49bbfb4"}, {file = "aiohttp-3.8.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:3a80464982d41b1fbfe3154e440ba4904b71c1a53e9cd584098cd41efdb188ef"}, {file = "aiohttp-3.8.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8b631e26df63e52f7cce0cce6507b7a7f1bc9b0c501fcde69742130b32e8782f"}, {file = "aiohttp-3.8.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3f43255086fe25e36fd5ed8f2ee47477408a73ef00e804cb2b5cba4bf2ac7f5e"}, {file = "aiohttp-3.8.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4d347a172f866cd1d93126d9b239fcbe682acb39b48ee0873c73c933dd23bd0f"}, {file = "aiohttp-3.8.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a3fec6a4cb5551721cdd70473eb009d90935b4063acc5f40905d40ecfea23e05"}, {file = "aiohttp-3.8.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:80a37fe8f7c1e6ce8f2d9c411676e4bc633a8462844e38f46156d07a7d401654"}, {file = "aiohttp-3.8.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d1e6a862b76f34395a985b3cd39a0d949ca80a70b6ebdea37d3ab39ceea6698a"}, {file = "aiohttp-3.8.4-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:cd468460eefef601ece4428d3cf4562459157c0f6523db89365202c31b6daebb"}, {file = "aiohttp-3.8.4-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:618c901dd3aad4ace71dfa0f5e82e88b46ef57e3239fc7027773cb6d4ed53531"}, {file = "aiohttp-3.8.4-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:652b1bff4f15f6287550b4670546a2947f2a4575b6c6dff7760eafb22eacbf0b"}, {file = "aiohttp-3.8.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:80575ba9377c5171407a06d0196b2310b679dc752d02a1fcaa2bc20b235dbf24"}, {file = "aiohttp-3.8.4-cp311-cp311-win32.whl", hash = "sha256:bbcf1a76cf6f6dacf2c7f4d2ebd411438c275faa1dc0c68e46eb84eebd05dd7d"}, {file = "aiohttp-3.8.4-cp311-cp311-win_amd64.whl", hash = "sha256:6e74dd54f7239fcffe07913ff8b964e28b712f09846e20de78676ce2a3dc0bfc"}, {file = "aiohttp-3.8.4-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:880e15bb6dad90549b43f796b391cfffd7af373f4646784795e20d92606b7a51"}, {file = "aiohttp-3.8.4-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bb96fa6b56bb536c42d6a4a87dfca570ff8e52de2d63cabebfd6fb67049c34b6"}, {file = "aiohttp-3.8.4-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4a6cadebe132e90cefa77e45f2d2f1a4b2ce5c6b1bfc1656c1ddafcfe4ba8131"}, {file = "aiohttp-3.8.4-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f352b62b45dff37b55ddd7b9c0c8672c4dd2eb9c0f9c11d395075a84e2c40f75"}, {file = "aiohttp-3.8.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ab43061a0c81198d88f39aaf90dae9a7744620978f7ef3e3708339b8ed2ef01"}, {file = "aiohttp-3.8.4-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c9cb1565a7ad52e096a6988e2ee0397f72fe056dadf75d17fa6b5aebaea05622"}, {file = "aiohttp-3.8.4-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:1b3ea7edd2d24538959c1c1abf97c744d879d4e541d38305f9bd7d9b10c9ec41"}, {file = "aiohttp-3.8.4-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:7c7837fe8037e96b6dd5cfcf47263c1620a9d332a87ec06a6ca4564e56bd0f36"}, {file = "aiohttp-3.8.4-cp36-cp36m-musllinux_1_1_ppc64le.whl", hash = "sha256:3b90467ebc3d9fa5b0f9b6489dfb2c304a1db7b9946fa92aa76a831b9d587e99"}, {file = "aiohttp-3.8.4-cp36-cp36m-musllinux_1_1_s390x.whl", hash = "sha256:cab9401de3ea52b4b4c6971db5fb5c999bd4260898af972bf23de1c6b5dd9d71"}, {file = "aiohttp-3.8.4-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:d1f9282c5f2b5e241034a009779e7b2a1aa045f667ff521e7948ea9b56e0c5ff"}, {file = "aiohttp-3.8.4-cp36-cp36m-win32.whl", hash = "sha256:5e14f25765a578a0a634d5f0cd1e2c3f53964553a00347998dfdf96b8137f777"}, {file = "aiohttp-3.8.4-cp36-cp36m-win_amd64.whl", hash = "sha256:4c745b109057e7e5f1848c689ee4fb3a016c8d4d92da52b312f8a509f83aa05e"}, {file = "aiohttp-3.8.4-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:aede4df4eeb926c8fa70de46c340a1bc2c6079e1c40ccf7b0eae1313ffd33519"}, {file = "aiohttp-3.8.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ddaae3f3d32fc2cb4c53fab020b69a05c8ab1f02e0e59665c6f7a0d3a5be54f"}, {file = "aiohttp-3.8.4-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c4eb3b82ca349cf6fadcdc7abcc8b3a50ab74a62e9113ab7a8ebc268aad35bb9"}, {file = "aiohttp-3.8.4-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9bcb89336efa095ea21b30f9e686763f2be4478f1b0a616969551982c4ee4c3b"}, {file = "aiohttp-3.8.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c08e8ed6fa3d477e501ec9db169bfac8140e830aa372d77e4a43084d8dd91ab"}, {file = "aiohttp-3.8.4-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c6cd05ea06daca6ad6a4ca3ba7fe7dc5b5de063ff4daec6170ec0f9979f6c332"}, {file = "aiohttp-3.8.4-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:b7a00a9ed8d6e725b55ef98b1b35c88013245f35f68b1b12c5cd4100dddac333"}, {file = "aiohttp-3.8.4-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:de04b491d0e5007ee1b63a309956eaed959a49f5bb4e84b26c8f5d49de140fa9"}, {file = "aiohttp-3.8.4-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:40653609b3bf50611356e6b6554e3a331f6879fa7116f3959b20e3528783e699"}, {file = "aiohttp-3.8.4-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:dbf3a08a06b3f433013c143ebd72c15cac33d2914b8ea4bea7ac2c23578815d6"}, {file = "aiohttp-3.8.4-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:854f422ac44af92bfe172d8e73229c270dc09b96535e8a548f99c84f82dde241"}, {file = "aiohttp-3.8.4-cp37-cp37m-win32.whl", hash = "sha256:aeb29c84bb53a84b1a81c6c09d24cf33bb8432cc5c39979021cc0f98c1292a1a"}, {file = "aiohttp-3.8.4-cp37-cp37m-win_amd64.whl", hash = "sha256:db3fc6120bce9f446d13b1b834ea5b15341ca9ff3f335e4a951a6ead31105480"}, {file = "aiohttp-3.8.4-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:fabb87dd8850ef0f7fe2b366d44b77d7e6fa2ea87861ab3844da99291e81e60f"}, {file = "aiohttp-3.8.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:91f6d540163f90bbaef9387e65f18f73ffd7c79f5225ac3d3f61df7b0d01ad15"}, {file = "aiohttp-3.8.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:d265f09a75a79a788237d7f9054f929ced2e69eb0bb79de3798c468d8a90f945"}, {file = "aiohttp-3.8.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3d89efa095ca7d442a6d0cbc755f9e08190ba40069b235c9886a8763b03785da"}, {file = "aiohttp-3.8.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4dac314662f4e2aa5009977b652d9b8db7121b46c38f2073bfeed9f4049732cd"}, {file = "aiohttp-3.8.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fe11310ae1e4cd560035598c3f29d86cef39a83d244c7466f95c27ae04850f10"}, {file = "aiohttp-3.8.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6ddb2a2026c3f6a68c3998a6c47ab6795e4127315d2e35a09997da21865757f8"}, {file = "aiohttp-3.8.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e75b89ac3bd27d2d043b234aa7b734c38ba1b0e43f07787130a0ecac1e12228a"}, {file = "aiohttp-3.8.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:6e601588f2b502c93c30cd5a45bfc665faaf37bbe835b7cfd461753068232074"}, {file = "aiohttp-3.8.4-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:a5d794d1ae64e7753e405ba58e08fcfa73e3fad93ef9b7e31112ef3c9a0efb52"}, {file = "aiohttp-3.8.4-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:a1f4689c9a1462f3df0a1f7e797791cd6b124ddbee2b570d34e7f38ade0e2c71"}, {file = "aiohttp-3.8.4-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:3032dcb1c35bc330134a5b8a5d4f68c1a87252dfc6e1262c65a7e30e62298275"}, {file = "aiohttp-3.8.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8189c56eb0ddbb95bfadb8f60ea1b22fcfa659396ea36f6adcc521213cd7b44d"}, {file = "aiohttp-3.8.4-cp38-cp38-win32.whl", hash = "sha256:33587f26dcee66efb2fff3c177547bd0449ab7edf1b73a7f5dea1e38609a0c54"}, {file = "aiohttp-3.8.4-cp38-cp38-win_amd64.whl", hash = "sha256:e595432ac259af2d4630008bf638873d69346372d38255774c0e286951e8b79f"}, {file = "aiohttp-3.8.4-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:5a7bdf9e57126dc345b683c3632e8ba317c31d2a41acd5800c10640387d193ed"}, {file = "aiohttp-3.8.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:22f6eab15b6db242499a16de87939a342f5a950ad0abaf1532038e2ce7d31567"}, {file = "aiohttp-3.8.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:7235604476a76ef249bd64cb8274ed24ccf6995c4a8b51a237005ee7a57e8643"}, {file = "aiohttp-3.8.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ea9eb976ffdd79d0e893869cfe179a8f60f152d42cb64622fca418cd9b18dc2a"}, {file = "aiohttp-3.8.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:92c0cea74a2a81c4c76b62ea1cac163ecb20fb3ba3a75c909b9fa71b4ad493cf"}, {file = "aiohttp-3.8.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:493f5bc2f8307286b7799c6d899d388bbaa7dfa6c4caf4f97ef7521b9cb13719"}, {file = "aiohttp-3.8.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0a63f03189a6fa7c900226e3ef5ba4d3bd047e18f445e69adbd65af433add5a2"}, {file = "aiohttp-3.8.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10c8cefcff98fd9168cdd86c4da8b84baaa90bf2da2269c6161984e6737bf23e"}, {file = "aiohttp-3.8.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:bca5f24726e2919de94f047739d0a4fc01372801a3672708260546aa2601bf57"}, {file = "aiohttp-3.8.4-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:03baa76b730e4e15a45f81dfe29a8d910314143414e528737f8589ec60cf7391"}, {file = "aiohttp-3.8.4-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:8c29c77cc57e40f84acef9bfb904373a4e89a4e8b74e71aa8075c021ec9078c2"}, {file = "aiohttp-3.8.4-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:03543dcf98a6619254b409be2d22b51f21ec66272be4ebda7b04e6412e4b2e14"}, {file = "aiohttp-3.8.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:17b79c2963db82086229012cff93ea55196ed31f6493bb1ccd2c62f1724324e4"}, {file = "aiohttp-3.8.4-cp39-cp39-win32.whl", hash = "sha256:34ce9f93a4a68d1272d26030655dd1b58ff727b3ed2a33d80ec433561b03d67a"}, {file = "aiohttp-3.8.4-cp39-cp39-win_amd64.whl", hash = "sha256:41a86a69bb63bb2fc3dc9ad5ea9f10f1c9c8e282b471931be0268ddd09430b04"}, {file = "aiohttp-3.8.4.tar.gz", hash = "sha256:bf2e1a9162c1e441bf805a1fd166e249d574ca04e03b34f97e2928769e91ab5c"}, ] [package.dependencies] aiosignal = ">=1.1.2" async-timeout = ">=4.0.0a3,<5.0" attrs = ">=17.3.0" charset-normalizer = ">=2.0,<4.0" frozenlist = ">=1.1.1" multidict = ">=4.5,<7.0" yarl = ">=1.0,<2.0" [package.extras] speedups = ["Brotli", "aiodns", "cchardet"] [[package]] name = "aiohttp-retry" version = "2.8.3" description = "Simple retry client for aiohttp" optional = true python-versions = ">=3.7" files = [ {file = "aiohttp_retry-2.8.3-py3-none-any.whl", hash = "sha256:3aeeead8f6afe48272db93ced9440cf4eda8b6fd7ee2abb25357b7eb28525b45"}, {file = "aiohttp_retry-2.8.3.tar.gz", hash = "sha256:9a8e637e31682ad36e1ff9f8bcba912fcfc7d7041722bc901a4b948da4d71ea9"}, ] [package.dependencies] aiohttp = "*" [[package]] name = "aioitertools" version = "0.11.0" description = "itertools and builtins for AsyncIO and mixed iterables" optional = false python-versions = ">=3.6" files = [ {file = "aioitertools-0.11.0-py3-none-any.whl", hash = "sha256:04b95e3dab25b449def24d7df809411c10e62aab0cbe31a50ca4e68748c43394"}, {file = "aioitertools-0.11.0.tar.gz", hash = "sha256:42c68b8dd3a69c2bf7f2233bf7df4bb58b557bca5252ac02ed5187bbc67d6831"}, ] [package.dependencies] typing_extensions = {version = ">=4.0", markers = "python_version < \"3.10\""} [[package]] name = "aiosignal" version = "1.3.1" description = "aiosignal: a list of registered asynchronous callbacks" optional = false python-versions = ">=3.7" files = [ {file = "aiosignal-1.3.1-py3-none-any.whl", hash = "sha256:f8376fb07dd1e86a584e4fcdec80b36b7f81aac666ebc724e2c090300dd83b17"}, {file = "aiosignal-1.3.1.tar.gz", hash = "sha256:54cd96e15e1649b75d6c87526a6ff0b6c1b0dd3459f43d9ca11d48c339b68cfc"}, ] [package.dependencies] frozenlist = ">=1.1.0" [[package]] name = "aiostream" version = "0.4.5" description = "Generator-based operators for asynchronous iteration" optional = true python-versions = "*" files = [ {file = "aiostream-0.4.5-py3-none-any.whl", hash = "sha256:25b7c2d9c83570d78c0ef5a20e949b7d0b8ea3b0b0a4f22c49d3f721105a6057"}, {file = "aiostream-0.4.5.tar.gz", hash = "sha256:3ecbf87085230fbcd9605c32ca20c4fb41af02c71d076eab246ea22e35947d88"}, ] [[package]] name = "alabaster" version = "0.7.13" description = "A configurable sidebar-enabled Sphinx theme" optional = false python-versions = ">=3.6" files = [ {file = "alabaster-0.7.13-py3-none-any.whl", hash = "sha256:1ee19aca801bbabb5ba3f5f258e4422dfa86f82f3e9cefb0859b283cdd7f62a3"}, {file = "alabaster-0.7.13.tar.gz", hash = "sha256:a27a4a084d5e690e16e01e03ad2b2e552c61a65469419b907243193de1a84ae2"}, ] [[package]] name = "aleph-alpha-client" version = "2.17.0" description = "python client to interact with Aleph Alpha api endpoints" optional = true python-versions = "*" files = [ {file = "aleph-alpha-client-2.17.0.tar.gz", hash = "sha256:c2d664c7b829f4932306153bec45e11c08e03252f1dbfd9f48584c402d7050a3"}, {file = "aleph_alpha_client-2.17.0-py3-none-any.whl", hash = "sha256:9106a36a5e08dba6aea2b0b2a0de6ff0c3bb77926edc98226debae121b0925e2"}, ] [package.dependencies] aiodns = ">=3.0.0" aiohttp = ">=3.8.3" aiohttp-retry = ">=2.8.3" Pillow = ">=9.2.0" requests = ">=2.28" tokenizers = ">=0.13.2" typing-extensions = ">=4.5.0" urllib3 = ">=1.26" [package.extras] dev = ["black", "ipykernel", "mypy", "nbconvert", "pytest", "pytest-aiohttp", "pytest-cov", "pytest-dotenv", "pytest-httpserver", "types-Pillow", "types-requests"] docs = ["sphinx", "sphinx-rtd-theme"] test = ["pytest", "pytest-aiohttp", "pytest-cov", "pytest-dotenv", "pytest-httpserver"] types = ["mypy", "types-Pillow", "types-requests"] [[package]] name = "anthropic" version = "0.2.9" description = "Library for accessing the anthropic API" optional = true python-versions = ">=3.8" files = [ {file = "anthropic-0.2.9-py3-none-any.whl", hash = "sha256:e7cce215cf6c446de29280deb31b07b5587993d48e84850eaad3fc69bd1fec0a"}, {file = "anthropic-0.2.9.tar.gz", hash = "sha256:2d44564d362cced6e8e662366e4de7f94dcdc6cb61346a5e528359b0afc1f2f3"}, ] [package.dependencies] aiohttp = "*" httpx = "*" requests = "*" tokenizers = "*" [package.extras] dev = ["black (>=22.3.0)", "pytest"] [[package]] name = "anyio" version = "3.6.2" description = "High level compatibility layer for multiple asynchronous event loop implementations" optional = false python-versions = ">=3.6.2" files = [ {file = "anyio-3.6.2-py3-none-any.whl", hash = "sha256:fbbe32bd270d2a2ef3ed1c5d45041250284e31fc0a4df4a5a6071842051a51e3"}, {file = "anyio-3.6.2.tar.gz", hash = "sha256:25ea0d673ae30af41a0c442f81cf3b38c7e79fdc7b60335a4c14e05eb0947421"}, ] [package.dependencies] idna = ">=2.8" sniffio = ">=1.1" [package.extras] doc = ["packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"] test = ["contextlib2", "coverage[toml] (>=4.5)", "hypothesis (>=4.0)", "mock (>=4)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (<0.15)", "uvloop (>=0.15)"] trio = ["trio (>=0.16,<0.22)"] [[package]] name = "appnope" version = "0.1.3" description = "Disable App Nap on macOS >= 10.9" optional = false python-versions = "*" files = [ {file = "appnope-0.1.3-py2.py3-none-any.whl", hash = "sha256:265a455292d0bd8a72453494fa24df5a11eb18373a60c7c0430889f22548605e"}, {file = "appnope-0.1.3.tar.gz", hash = "sha256:02bd91c4de869fbb1e1c50aafc4098827a7a54ab2f39d9dcba6c9547ed920e24"}, ] [[package]] name = "argon2-cffi" version = "21.3.0" description = "The secure Argon2 password hashing algorithm." optional = false python-versions = ">=3.6" files = [ {file = "argon2-cffi-21.3.0.tar.gz", hash = "sha256:d384164d944190a7dd7ef22c6aa3ff197da12962bd04b17f64d4e93d934dba5b"}, {file = "argon2_cffi-21.3.0-py3-none-any.whl", hash = "sha256:8c976986f2c5c0e5000919e6de187906cfd81fb1c72bf9d88c01177e77da7f80"}, ] [package.dependencies] argon2-cffi-bindings = "*" [package.extras] dev = ["cogapp", "coverage[toml] (>=5.0.2)", "furo", "hypothesis", "pre-commit", "pytest", "sphinx", "sphinx-notfound-page", "tomli"] docs = ["furo", "sphinx", "sphinx-notfound-page"] tests = ["coverage[toml] (>=5.0.2)", "hypothesis", "pytest"] [[package]] name = "argon2-cffi-bindings" version = "21.2.0" description = "Low-level CFFI bindings for Argon2" optional = false python-versions = ">=3.6" files = [ {file = "argon2-cffi-bindings-21.2.0.tar.gz", hash = "sha256:bb89ceffa6c791807d1305ceb77dbfacc5aa499891d2c55661c6459651fc39e3"}, {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:ccb949252cb2ab3a08c02024acb77cfb179492d5701c7cbdbfd776124d4d2367"}, {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9524464572e12979364b7d600abf96181d3541da11e23ddf565a32e70bd4dc0d"}, {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b746dba803a79238e925d9046a63aa26bf86ab2a2fe74ce6b009a1c3f5c8f2ae"}, {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:58ed19212051f49a523abb1dbe954337dc82d947fb6e5a0da60f7c8471a8476c"}, {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:bd46088725ef7f58b5a1ef7ca06647ebaf0eb4baff7d1d0d177c6cc8744abd86"}, {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_i686.whl", hash = "sha256:8cd69c07dd875537a824deec19f978e0f2078fdda07fd5c42ac29668dda5f40f"}, {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:f1152ac548bd5b8bcecfb0b0371f082037e47128653df2e8ba6e914d384f3c3e"}, {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-win32.whl", hash = "sha256:603ca0aba86b1349b147cab91ae970c63118a0f30444d4bc80355937c950c082"}, {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-win_amd64.whl", hash = "sha256:b2ef1c30440dbbcba7a5dc3e319408b59676e2e039e2ae11a8775ecf482b192f"}, {file = "argon2_cffi_bindings-21.2.0-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:e415e3f62c8d124ee16018e491a009937f8cf7ebf5eb430ffc5de21b900dad93"}, {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:3e385d1c39c520c08b53d63300c3ecc28622f076f4c2b0e6d7e796e9f6502194"}, {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2c3e3cc67fdb7d82c4718f19b4e7a87123caf8a93fde7e23cf66ac0337d3cb3f"}, {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6a22ad9800121b71099d0fb0a65323810a15f2e292f2ba450810a7316e128ee5"}, {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f9f8b450ed0547e3d473fdc8612083fd08dd2120d6ac8f73828df9b7d45bb351"}, {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:93f9bf70084f97245ba10ee36575f0c3f1e7d7724d67d8e5b08e61787c320ed7"}, {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:3b9ef65804859d335dc6b31582cad2c5166f0c3e7975f324d9ffaa34ee7e6583"}, {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d4966ef5848d820776f5f562a7d45fdd70c2f330c961d0d745b784034bd9f48d"}, {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:20ef543a89dee4db46a1a6e206cd015360e5a75822f76df533845c3cbaf72670"}, {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ed2937d286e2ad0cc79a7087d3c272832865f779430e0cc2b4f3718d3159b0cb"}, {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5e00316dabdaea0b2dd82d141cc66889ced0cdcbfa599e8b471cf22c620c329a"}, ] [package.dependencies] cffi = ">=1.0.1" [package.extras] dev = ["cogapp", "pre-commit", "pytest", "wheel"] tests = ["pytest"] [[package]] name = "arrow" version = "1.2.3" description = "Better dates & times for Python" optional = false python-versions = ">=3.6" files = [ {file = "arrow-1.2.3-py3-none-any.whl", hash = "sha256:5a49ab92e3b7b71d96cd6bfcc4df14efefc9dfa96ea19045815914a6ab6b1fe2"}, {file = "arrow-1.2.3.tar.gz", hash = "sha256:3934b30ca1b9f292376d9db15b19446088d12ec58629bc3f0da28fd55fb633a1"}, ] [package.dependencies] python-dateutil = ">=2.7.0" [[package]] name = "arxiv" version = "1.4.7" description = "Python wrapper for the arXiv API: http://arxiv.org/help/api/" optional = false python-versions = ">=3.7" files = [ {file = "arxiv-1.4.7-py3-none-any.whl", hash = "sha256:22b8f610957bb6859a25fac9dc205ab6ba76d521791119a5762ea52625e398a0"}, {file = "arxiv-1.4.7.tar.gz", hash = "sha256:100c8d6b9cd04c7f55f11b34616beb7a1623ab0564b66161b4aeeeb8912c5806"}, ] [package.dependencies] feedparser = "*" [[package]] name = "asgiref" version = "3.6.0" description = "ASGI specs, helper code, and adapters" optional = true python-versions = ">=3.7" files = [ {file = "asgiref-3.6.0-py3-none-any.whl", hash = "sha256:71e68008da809b957b7ee4b43dbccff33d1b23519fb8344e33f049897077afac"}, {file = "asgiref-3.6.0.tar.gz", hash = "sha256:9567dfe7bd8d3c8c892227827c41cce860b368104c3431da67a0c5a65a949506"}, ] [package.extras] tests = ["mypy (>=0.800)", "pytest", "pytest-asyncio"] [[package]] name = "asttokens" version = "2.2.1" description = "Annotate AST trees with source code positions" optional = false python-versions = "*" files = [ {file = "asttokens-2.2.1-py2.py3-none-any.whl", hash = "sha256:6b0ac9e93fb0335014d382b8fa9b3afa7df546984258005da0b9e7095b3deb1c"}, {file = "asttokens-2.2.1.tar.gz", hash = "sha256:4622110b2a6f30b77e1473affaa97e711bc2f07d3f10848420ff1898edbe94f3"}, ] [package.dependencies] six = "*" [package.extras] test = ["astroid", "pytest"] [[package]] name = "astunparse" version = "1.6.3" description = "An AST unparser for Python" optional = true python-versions = "*" files = [ {file = "astunparse-1.6.3-py2.py3-none-any.whl", hash = "sha256:c2652417f2c8b5bb325c885ae329bdf3f86424075c4fd1a128674bc6fba4b8e8"}, {file = "astunparse-1.6.3.tar.gz", hash = "sha256:5ad93a8456f0d084c3456d059fd9a92cce667963232cbf763eac3bc5b7940872"}, ] [package.dependencies] six = ">=1.6.1,<2.0" wheel = ">=0.23.0,<1.0" [[package]] name = "async-timeout" version = "4.0.2" description = "Timeout context manager for asyncio programs" optional = false python-versions = ">=3.6" files = [ {file = "async-timeout-4.0.2.tar.gz", hash = "sha256:2163e1640ddb52b7a8c80d0a67a08587e5d245cc9c553a74a847056bc2976b15"}, {file = "async_timeout-4.0.2-py3-none-any.whl", hash = "sha256:8ca1e4fcf50d07413d66d1a5e416e42cfdf5851c981d679a09851a6853383b3c"}, ] [[package]] name = "atlassian-python-api" version = "3.37.0" description = "Python Atlassian REST API Wrapper" optional = true python-versions = "*" files = [ {file = "atlassian-python-api-3.37.0.tar.gz", hash = "sha256:25f91627cea3f223ba9a0fe7439ce2e35601da84a3085402dac105e28aa397de"}, ] [package.dependencies] deprecated = "*" oauthlib = "*" requests = "*" requests_oauthlib = "*" six = "*" [package.extras] kerberos = ["requests-kerberos"] [[package]] name = "attrs" version = "23.1.0" description = "Classes Without Boilerplate" optional = false python-versions = ">=3.7" files = [ {file = "attrs-23.1.0-py3-none-any.whl", hash = "sha256:1f28b4522cdc2fb4256ac1a020c78acf9cba2c6b461ccd2c126f3aa8e8335d04"}, {file = "attrs-23.1.0.tar.gz", hash = "sha256:6279836d581513a26f1bf235f9acd333bc9115683f14f7e8fae46c98fc50e015"}, ] [package.extras] cov = ["attrs[tests]", "coverage[toml] (>=5.3)"] dev = ["attrs[docs,tests]", "pre-commit"] docs = ["furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier", "zope-interface"] tests = ["attrs[tests-no-zope]", "zope-interface"] tests-no-zope = ["cloudpickle", "hypothesis", "mypy (>=1.1.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] [[package]] name = "authlib" version = "1.2.0" description = "The ultimate Python library in building OAuth and OpenID Connect servers and clients." optional = false python-versions = "*" files = [ {file = "Authlib-1.2.0-py2.py3-none-any.whl", hash = "sha256:4ddf4fd6cfa75c9a460b361d4bd9dac71ffda0be879dbe4292a02e92349ad55a"}, {file = "Authlib-1.2.0.tar.gz", hash = "sha256:4fa3e80883a5915ef9f5bc28630564bc4ed5b5af39812a3ff130ec76bd631e9d"}, ] [package.dependencies] cryptography = ">=3.2" [[package]] name = "autodoc-pydantic" version = "1.8.0" description = "Seamlessly integrate pydantic models in your Sphinx documentation." optional = false python-versions = ">=3.6,<4.0.0" files = [ {file = "autodoc_pydantic-1.8.0-py3-none-any.whl", hash = "sha256:f1bf9318f37369fec906ab523ebe65c1894395a6fc859dbc6fd02ffd90d3242f"}, {file = "autodoc_pydantic-1.8.0.tar.gz", hash = "sha256:77da1cbbe4434fa9963f85a1555c63afff9a4acec06b318dc4f54c4f28a04f2c"}, ] [package.dependencies] pydantic = ">=1.5" Sphinx = ">=3.4" [package.extras] dev = ["coverage (>=5,<6)", "flake8 (>=3,<4)", "pytest (>=6,<7)", "sphinx-copybutton (>=0.4,<0.5)", "sphinx-rtd-theme (>=1.0,<2.0)", "sphinx-tabs (>=3,<4)", "sphinxcontrib-mermaid (>=0.7,<0.8)", "tox (>=3,<4)"] docs = ["sphinx-copybutton (>=0.4,<0.5)", "sphinx-rtd-theme (>=1.0,<2.0)", "sphinx-tabs (>=3,<4)", "sphinxcontrib-mermaid (>=0.7,<0.8)"] test = ["coverage (>=5,<6)", "pytest (>=6,<7)"] [[package]] name = "azure-ai-formrecognizer" version = "3.2.1" description = "Microsoft Azure Form Recognizer Client Library for Python" optional = true python-versions = ">=3.7" files = [ {file = "azure-ai-formrecognizer-3.2.1.zip", hash = "sha256:5768765f9720ce87038f56afe0c0b5259192cfb29c840a39595b1e26e4ddfa32"}, {file = "azure_ai_formrecognizer-3.2.1-py3-none-any.whl", hash = "sha256:4db43b9dd0a2bc5296b752c04dbacb838ae2b8726adfe7cf277c2ea34e99419a"}, ] [package.dependencies] azure-common = ">=1.1,<2.0" azure-core = ">=1.23.0,<2.0.0" msrest = ">=0.6.21" typing-extensions = ">=4.0.1" [[package]] name = "azure-ai-vision" version = "0.11.1b1" description = "Microsoft Azure AI Vision SDK for Python" optional = true python-versions = ">=3.7" files = [ {file = "azure_ai_vision-0.11.1b1-py3-none-manylinux1_x86_64.whl", hash = "sha256:6f8563ae26689da6cdee9b2de009a53546ae2fd86c6c180236ce5da5b45f41d3"}, {file = "azure_ai_vision-0.11.1b1-py3-none-win_amd64.whl", hash = "sha256:f5df03b9156feaa1d8c776631967b1455028d30dfd4cd1c732aa0f9c03d01517"}, ] [[package]] name = "azure-cognitiveservices-speech" version = "1.28.0" description = "Microsoft Cognitive Services Speech SDK for Python" optional = true python-versions = ">=3.7" files = [ {file = "azure_cognitiveservices_speech-1.28.0-py3-none-macosx_10_14_x86_64.whl", hash = "sha256:a6c277ec9c93f586dcc74d3a56a6aa0259f4cf371f5e03afcf169c691e2c4d0c"}, {file = "azure_cognitiveservices_speech-1.28.0-py3-none-macosx_11_0_arm64.whl", hash = "sha256:a412c6c5bc528548e0ee5fc5fe89fb8351307d0c5ef7ac4d506fab3d58efcb4a"}, {file = "azure_cognitiveservices_speech-1.28.0-py3-none-manylinux1_x86_64.whl", hash = "sha256:ceb5a8862da4ab861bd06653074a4e5dc2d66a54f03dd4dd9356da7672febbce"}, {file = "azure_cognitiveservices_speech-1.28.0-py3-none-manylinux2014_aarch64.whl", hash = "sha256:d5cba32e9d8eaffc9d8f482c00950bc471f9dc4d7659c741c083e5e9d831b802"}, {file = "azure_cognitiveservices_speech-1.28.0-py3-none-win32.whl", hash = "sha256:ac52c4549062771db5694346c1547334cf1bb0d08573a193c8dcec8386aa491d"}, {file = "azure_cognitiveservices_speech-1.28.0-py3-none-win_amd64.whl", hash = "sha256:5ff042d81d7ff4e50be196419fcd2042e41a97cebb229e0940026e1314ff7751"}, ] [[package]] name = "azure-common" version = "1.1.28" description = "Microsoft Azure Client Library for Python (Common)" optional = true python-versions = "*" files = [ {file = "azure-common-1.1.28.zip", hash = "sha256:4ac0cd3214e36b6a1b6a442686722a5d8cc449603aa833f3f0f40bda836704a3"}, {file = "azure_common-1.1.28-py2.py3-none-any.whl", hash = "sha256:5c12d3dcf4ec20599ca6b0d3e09e86e146353d443e7fcc050c9a19c1f9df20ad"}, ] [[package]] name = "azure-core" version = "1.26.4" description = "Microsoft Azure Core Library for Python" optional = true python-versions = ">=3.7" files = [ {file = "azure-core-1.26.4.zip", hash = "sha256:075fe06b74c3007950dd93d49440c2f3430fd9b4a5a2756ec8c79454afc989c6"}, {file = "azure_core-1.26.4-py3-none-any.whl", hash = "sha256:d9664b4bc2675d72fba461a285ac43ae33abb2967014a955bf136d9703a2ab3c"}, ] [package.dependencies] requests = ">=2.18.4" six = ">=1.11.0" typing-extensions = ">=4.3.0" [package.extras] aio = ["aiohttp (>=3.0)"] [[package]] name = "azure-cosmos" version = "4.4.0b1" description = "Microsoft Azure Cosmos Client Library for Python" optional = true python-versions = ">=3.6" files = [ {file = "azure-cosmos-4.4.0b1.zip", hash = "sha256:42e7c9c749784f664d9468b10ea4031f86552df99f4e12b77d9f75da048efa5d"}, {file = "azure_cosmos-4.4.0b1-py3-none-any.whl", hash = "sha256:4dc2c438e5e27bd9e4e70539babdea9dd6c09fb4ac73936680609668f2282264"}, ] [package.dependencies] azure-core = ">=1.23.0,<2.0.0" [[package]] name = "azure-identity" version = "1.13.0" description = "Microsoft Azure Identity Library for Python" optional = true python-versions = ">=3.7" files = [ {file = "azure-identity-1.13.0.zip", hash = "sha256:c931c27301ffa86b07b4dcf574e29da73e3deba9ab5d1fe4f445bb6a3117e260"}, {file = "azure_identity-1.13.0-py3-none-any.whl", hash = "sha256:bd700cebb80cd9862098587c29d8677e819beca33c62568ced6d5a8e5e332b82"}, ] [package.dependencies] azure-core = ">=1.11.0,<2.0.0" cryptography = ">=2.5" msal = ">=1.20.0,<2.0.0" msal-extensions = ">=0.3.0,<2.0.0" six = ">=1.12.0" [[package]] name = "babel" version = "2.12.1" description = "Internationalization utilities" optional = false python-versions = ">=3.7" files = [ {file = "Babel-2.12.1-py3-none-any.whl", hash = "sha256:b4246fb7677d3b98f501a39d43396d3cafdc8eadb045f4a31be01863f655c610"}, {file = "Babel-2.12.1.tar.gz", hash = "sha256:cc2d99999cd01d44420ae725a21c9e3711b3aadc7976d6147f622d8581963455"}, ] [package.dependencies] pytz = {version = ">=2015.7", markers = "python_version < \"3.9\""} [[package]] name = "backcall" version = "0.2.0" description = "Specifications for callback functions passed in to an API" optional = false python-versions = "*" files = [ {file = "backcall-0.2.0-py2.py3-none-any.whl", hash = "sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255"}, {file = "backcall-0.2.0.tar.gz", hash = "sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e"}, ] [[package]] name = "backoff" version = "2.2.1" description = "Function decoration for backoff and retry" optional = false python-versions = ">=3.7,<4.0" files = [ {file = "backoff-2.2.1-py3-none-any.whl", hash = "sha256:63579f9a0628e06278f7e47b7d7d5b6ce20dc65c5e96a6f3ca99a6adca0396e8"}, {file = "backoff-2.2.1.tar.gz", hash = "sha256:03f829f5bb1923180821643f8753b0502c3b682293992485b0eef2807afa5cba"}, ] [[package]] name = "backports-zoneinfo" version = "0.2.1" description = "Backport of the standard library zoneinfo module" optional = true python-versions = ">=3.6" files = [ {file = "backports.zoneinfo-0.2.1-cp36-cp36m-macosx_10_14_x86_64.whl", hash = "sha256:da6013fd84a690242c310d77ddb8441a559e9cb3d3d59ebac9aca1a57b2e18bc"}, {file = "backports.zoneinfo-0.2.1-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:89a48c0d158a3cc3f654da4c2de1ceba85263fafb861b98b59040a5086259722"}, {file = "backports.zoneinfo-0.2.1-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:1c5742112073a563c81f786e77514969acb58649bcdf6cdf0b4ed31a348d4546"}, {file = "backports.zoneinfo-0.2.1-cp36-cp36m-win32.whl", hash = "sha256:e8236383a20872c0cdf5a62b554b27538db7fa1bbec52429d8d106effbaeca08"}, {file = "backports.zoneinfo-0.2.1-cp36-cp36m-win_amd64.whl", hash = "sha256:8439c030a11780786a2002261569bdf362264f605dfa4d65090b64b05c9f79a7"}, {file = "backports.zoneinfo-0.2.1-cp37-cp37m-macosx_10_14_x86_64.whl", hash = "sha256:f04e857b59d9d1ccc39ce2da1021d196e47234873820cbeaad210724b1ee28ac"}, {file = "backports.zoneinfo-0.2.1-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:17746bd546106fa389c51dbea67c8b7c8f0d14b5526a579ca6ccf5ed72c526cf"}, {file = "backports.zoneinfo-0.2.1-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:5c144945a7752ca544b4b78c8c41544cdfaf9786f25fe5ffb10e838e19a27570"}, {file = "backports.zoneinfo-0.2.1-cp37-cp37m-win32.whl", hash = "sha256:e55b384612d93be96506932a786bbcde5a2db7a9e6a4bb4bffe8b733f5b9036b"}, {file = "backports.zoneinfo-0.2.1-cp37-cp37m-win_amd64.whl", hash = "sha256:a76b38c52400b762e48131494ba26be363491ac4f9a04c1b7e92483d169f6582"}, {file = "backports.zoneinfo-0.2.1-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:8961c0f32cd0336fb8e8ead11a1f8cd99ec07145ec2931122faaac1c8f7fd987"}, {file = "backports.zoneinfo-0.2.1-cp38-cp38-manylinux1_i686.whl", hash = "sha256:e81b76cace8eda1fca50e345242ba977f9be6ae3945af8d46326d776b4cf78d1"}, {file = "backports.zoneinfo-0.2.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:7b0a64cda4145548fed9efc10322770f929b944ce5cee6c0dfe0c87bf4c0c8c9"}, {file = "backports.zoneinfo-0.2.1-cp38-cp38-win32.whl", hash = "sha256:1b13e654a55cd45672cb54ed12148cd33628f672548f373963b0bff67b217328"}, {file = "backports.zoneinfo-0.2.1-cp38-cp38-win_amd64.whl", hash = "sha256:4a0f800587060bf8880f954dbef70de6c11bbe59c673c3d818921f042f9954a6"}, {file = "backports.zoneinfo-0.2.1.tar.gz", hash = "sha256:fadbfe37f74051d024037f223b8e001611eac868b5c5b06144ef4d8b799862f2"}, ] [package.extras] tzdata = ["tzdata"] [[package]] name = "beautifulsoup4" version = "4.12.2" description = "Screen-scraping library" optional = false python-versions = ">=3.6.0" files = [ {file = "beautifulsoup4-4.12.2-py3-none-any.whl", hash = "sha256:bd2520ca0d9d7d12694a53d44ac482d181b4ec1888909b035a3dbf40d0f57d4a"}, {file = "beautifulsoup4-4.12.2.tar.gz", hash = "sha256:492bbc69dca35d12daac71c4db1bfff0c876c00ef4a2ffacce226d4638eb72da"}, ] [package.dependencies] soupsieve = ">1.2" [package.extras] html5lib = ["html5lib"] lxml = ["lxml"] [[package]] name = "bibtexparser" version = "1.4.0" description = "Bibtex parser for python 3" optional = true python-versions = "*" files = [ {file = "bibtexparser-1.4.0.tar.gz", hash = "sha256:ca7ce2bc34e7c48a678dd49416429bb567441f26dbb13b3609082d8cd109ace6"}, ] [package.dependencies] pyparsing = ">=2.0.3" [[package]] name = "black" version = "23.3.0" description = "The uncompromising code formatter." optional = false python-versions = ">=3.7" files = [ {file = "black-23.3.0-cp310-cp310-macosx_10_16_arm64.whl", hash = "sha256:0945e13506be58bf7db93ee5853243eb368ace1c08a24c65ce108986eac65915"}, {file = "black-23.3.0-cp310-cp310-macosx_10_16_universal2.whl", hash = "sha256:67de8d0c209eb5b330cce2469503de11bca4085880d62f1628bd9972cc3366b9"}, {file = "black-23.3.0-cp310-cp310-macosx_10_16_x86_64.whl", hash = "sha256:7c3eb7cea23904399866c55826b31c1f55bbcd3890ce22ff70466b907b6775c2"}, {file = "black-23.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:32daa9783106c28815d05b724238e30718f34155653d4d6e125dc7daec8e260c"}, {file = "black-23.3.0-cp310-cp310-win_amd64.whl", hash = "sha256:35d1381d7a22cc5b2be2f72c7dfdae4072a3336060635718cc7e1ede24221d6c"}, {file = "black-23.3.0-cp311-cp311-macosx_10_16_arm64.whl", hash = "sha256:a8a968125d0a6a404842fa1bf0b349a568634f856aa08ffaff40ae0dfa52e7c6"}, {file = "black-23.3.0-cp311-cp311-macosx_10_16_universal2.whl", hash = "sha256:c7ab5790333c448903c4b721b59c0d80b11fe5e9803d8703e84dcb8da56fec1b"}, {file = "black-23.3.0-cp311-cp311-macosx_10_16_x86_64.whl", hash = "sha256:a6f6886c9869d4daae2d1715ce34a19bbc4b95006d20ed785ca00fa03cba312d"}, {file = "black-23.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6f3c333ea1dd6771b2d3777482429864f8e258899f6ff05826c3a4fcc5ce3f70"}, {file = "black-23.3.0-cp311-cp311-win_amd64.whl", hash = "sha256:11c410f71b876f961d1de77b9699ad19f939094c3a677323f43d7a29855fe326"}, {file = "black-23.3.0-cp37-cp37m-macosx_10_16_x86_64.whl", hash = "sha256:1d06691f1eb8de91cd1b322f21e3bfc9efe0c7ca1f0e1eb1db44ea367dff656b"}, {file = "black-23.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:50cb33cac881766a5cd9913e10ff75b1e8eb71babf4c7104f2e9c52da1fb7de2"}, {file = "black-23.3.0-cp37-cp37m-win_amd64.whl", hash = "sha256:e114420bf26b90d4b9daa597351337762b63039752bdf72bf361364c1aa05925"}, {file = "black-23.3.0-cp38-cp38-macosx_10_16_arm64.whl", hash = "sha256:48f9d345675bb7fbc3dd85821b12487e1b9a75242028adad0333ce36ed2a6d27"}, {file = "black-23.3.0-cp38-cp38-macosx_10_16_universal2.whl", hash = "sha256:714290490c18fb0126baa0fca0a54ee795f7502b44177e1ce7624ba1c00f2331"}, {file = "black-23.3.0-cp38-cp38-macosx_10_16_x86_64.whl", hash = "sha256:064101748afa12ad2291c2b91c960be28b817c0c7eaa35bec09cc63aa56493c5"}, {file = "black-23.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:562bd3a70495facf56814293149e51aa1be9931567474993c7942ff7d3533961"}, {file = "black-23.3.0-cp38-cp38-win_amd64.whl", hash = "sha256:e198cf27888ad6f4ff331ca1c48ffc038848ea9f031a3b40ba36aced7e22f2c8"}, {file = "black-23.3.0-cp39-cp39-macosx_10_16_arm64.whl", hash = "sha256:3238f2aacf827d18d26db07524e44741233ae09a584273aa059066d644ca7b30"}, {file = "black-23.3.0-cp39-cp39-macosx_10_16_universal2.whl", hash = "sha256:f0bd2f4a58d6666500542b26354978218a9babcdc972722f4bf90779524515f3"}, {file = "black-23.3.0-cp39-cp39-macosx_10_16_x86_64.whl", hash = "sha256:92c543f6854c28a3c7f39f4d9b7694f9a6eb9d3c5e2ece488c327b6e7ea9b266"}, {file = "black-23.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a150542a204124ed00683f0db1f5cf1c2aaaa9cc3495b7a3b5976fb136090ab"}, {file = "black-23.3.0-cp39-cp39-win_amd64.whl", hash = "sha256:6b39abdfb402002b8a7d030ccc85cf5afff64ee90fa4c5aebc531e3ad0175ddb"}, {file = "black-23.3.0-py3-none-any.whl", hash = "sha256:ec751418022185b0c1bb7d7736e6933d40bbb14c14a0abcf9123d1b159f98dd4"}, {file = "black-23.3.0.tar.gz", hash = "sha256:1c7b8d606e728a41ea1ccbd7264677e494e87cf630e399262ced92d4a8dac940"}, ] [package.dependencies] click = ">=8.0.0" mypy-extensions = ">=0.4.3" packaging = ">=22.0" pathspec = ">=0.9.0" platformdirs = ">=2" tomli = {version = ">=1.1.0", markers = "python_version < \"3.11\""} typing-extensions = {version = ">=3.10.0.0", markers = "python_version < \"3.10\""} [package.extras] colorama = ["colorama (>=0.4.3)"] d = ["aiohttp (>=3.7.4)"] jupyter = ["ipython (>=7.8.0)", "tokenize-rt (>=3.2.0)"] uvloop = ["uvloop (>=0.15.2)"] [[package]] name = "bleach" version = "6.0.0" description = "An easy safelist-based HTML-sanitizing tool." optional = false python-versions = ">=3.7" files = [ {file = "bleach-6.0.0-py3-none-any.whl", hash = "sha256:33c16e3353dbd13028ab4799a0f89a83f113405c766e9c122df8a06f5b85b3f4"}, {file = "bleach-6.0.0.tar.gz", hash = "sha256:1a1a85c1595e07d8db14c5f09f09e6433502c51c595970edc090551f0db99414"}, ] [package.dependencies] six = ">=1.9.0" webencodings = "*" [package.extras] css = ["tinycss2 (>=1.1.0,<1.2)"] [[package]] name = "blis" version = "0.7.9" description = "The Blis BLAS-like linear algebra library, as a self-contained C-extension." optional = true python-versions = "*" files = [ {file = "blis-0.7.9-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:b3ea73707a7938304c08363a0b990600e579bfb52dece7c674eafac4bf2df9f7"}, {file = "blis-0.7.9-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e85993364cae82707bfe7e637bee64ec96e232af31301e5c81a351778cb394b9"}, {file = "blis-0.7.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d205a7e69523e2bacdd67ea906b82b84034067e0de83b33bd83eb96b9e844ae3"}, {file = "blis-0.7.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b9737035636452fb6d08e7ab79e5a9904be18a0736868a129179cd9f9ab59825"}, {file = "blis-0.7.9-cp310-cp310-win_amd64.whl", hash = "sha256:d3882b4f44a33367812b5e287c0690027092830ffb1cce124b02f64e761819a4"}, {file = "blis-0.7.9-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3dbb44311029263a6f65ed55a35f970aeb1d20b18bfac4c025de5aadf7889a8c"}, {file = "blis-0.7.9-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:6fd5941bd5a21082b19d1dd0f6d62cd35609c25eb769aa3457d9877ef2ce37a9"}, {file = "blis-0.7.9-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:97ad55e9ef36e4ff06b35802d0cf7bfc56f9697c6bc9427f59c90956bb98377d"}, {file = "blis-0.7.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f7b6315d7b1ac5546bc0350f5f8d7cc064438d23db19a5c21aaa6ae7d93c1ab5"}, {file = "blis-0.7.9-cp311-cp311-win_amd64.whl", hash = "sha256:5fd46c649acd1920482b4f5556d1c88693cba9bf6a494a020b00f14b42e1132f"}, {file = "blis-0.7.9-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:db2959560dcb34e912dad0e0d091f19b05b61363bac15d78307c01334a4e5d9d"}, {file = "blis-0.7.9-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0521231bc95ab522f280da3bbb096299c910a62cac2376d48d4a1d403c54393"}, {file = "blis-0.7.9-cp36-cp36m-win_amd64.whl", hash = "sha256:d811e88480203d75e6e959f313fdbf3326393b4e2b317067d952347f5c56216e"}, {file = "blis-0.7.9-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:5cb1db88ab629ccb39eac110b742b98e3511d48ce9caa82ca32609d9169a9c9c"}, {file = "blis-0.7.9-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c399a03de4059bf8e700b921f9ff5d72b2a86673616c40db40cd0592051bdd07"}, {file = "blis-0.7.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d4eb70a79562a211bd2e6b6db63f1e2eed32c0ab3e9ef921d86f657ae8375845"}, {file = "blis-0.7.9-cp37-cp37m-win_amd64.whl", hash = "sha256:3e3f95e035c7456a1f5f3b5a3cfe708483a00335a3a8ad2211d57ba4d5f749a5"}, {file = "blis-0.7.9-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:179037cb5e6744c2e93b6b5facc6e4a0073776d514933c3db1e1f064a3253425"}, {file = "blis-0.7.9-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:d0e82a6e0337d5231129a4e8b36978fa7b973ad3bb0257fd8e3714a9b35ceffd"}, {file = "blis-0.7.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6d12475e588a322e66a18346a3faa9eb92523504042e665c193d1b9b0b3f0482"}, {file = "blis-0.7.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4d5755ef37a573647be62684ca1545698879d07321f1e5b89a4fd669ce355eb0"}, {file = "blis-0.7.9-cp38-cp38-win_amd64.whl", hash = "sha256:b8a1fcd2eb267301ab13e1e4209c165d172cdf9c0c9e08186a9e234bf91daa16"}, {file = "blis-0.7.9-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8275f6b6eee714b85f00bf882720f508ed6a60974bcde489715d37fd35529da8"}, {file = "blis-0.7.9-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:7417667c221e29fe8662c3b2ff9bc201c6a5214bbb5eb6cc290484868802258d"}, {file = "blis-0.7.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b5f4691bf62013eccc167c38a85c09a0bf0c6e3e80d4c2229cdf2668c1124eb0"}, {file = "blis-0.7.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5cec812ee47b29107eb36af9b457be7191163eab65d61775ed63538232c59d5"}, {file = "blis-0.7.9-cp39-cp39-win_amd64.whl", hash = "sha256:d81c3f627d33545fc25c9dcb5fee66c476d89288a27d63ac16ea63453401ffd5"}, {file = "blis-0.7.9.tar.gz", hash = "sha256:29ef4c25007785a90ffc2f0ab3d3bd3b75cd2d7856a9a482b7d0dac8d511a09d"}, ] [package.dependencies] numpy = ">=1.15.0" [[package]] name = "blurhash" version = "1.1.4" description = "Pure-Python implementation of the blurhash algorithm." optional = false python-versions = "*" files = [ {file = "blurhash-1.1.4-py2.py3-none-any.whl", hash = "sha256:7611c1bc41383d2349b6129208587b5d61e8792ce953893cb49c38beeb400d1d"}, {file = "blurhash-1.1.4.tar.gz", hash = "sha256:da56b163e5a816e4ad07172f5639287698e09d7f3dc38d18d9726d9c1dbc4cee"}, ] [package.extras] test = ["Pillow", "numpy", "pytest"] [[package]] name = "boto3" version = "1.26.76" description = "The AWS SDK for Python" optional = false python-versions = ">= 3.7" files = [ {file = "boto3-1.26.76-py3-none-any.whl", hash = "sha256:b4c2969b7677762914394b8273cc1905dfe5b71f250741c1a575487ae357e729"}, {file = "boto3-1.26.76.tar.gz", hash = "sha256:30c7d967ed1c6b5a05643e42cae9d4d36c3f1cb6782637ddc7007a104cfd9027"}, ] [package.dependencies] botocore = ">=1.29.76,<1.30.0" jmespath = ">=0.7.1,<2.0.0" s3transfer = ">=0.6.0,<0.7.0" [package.extras] crt = ["botocore[crt] (>=1.21.0,<2.0a0)"] [[package]] name = "botocore" version = "1.29.76" description = "Low-level, data-driven core of boto 3." optional = false python-versions = ">= 3.7" files = [ {file = "botocore-1.29.76-py3-none-any.whl", hash = "sha256:70735b00cd529f152992231ca6757e458e5ec25db43767b3526e9a35b2f143b7"}, {file = "botocore-1.29.76.tar.gz", hash = "sha256:c2f67b6b3f8acf2968eafca06526f07b9fb0d27bac4c68a635d51abb675134a7"}, ] [package.dependencies] jmespath = ">=0.7.1,<2.0.0" python-dateutil = ">=2.1,<3.0.0" urllib3 = ">=1.25.4,<1.27" [package.extras] crt = ["awscrt (==0.16.9)"] [[package]] name = "cachetools" version = "5.3.0" description = "Extensible memoizing collections and decorators" optional = false python-versions = "~=3.7" files = [ {file = "cachetools-5.3.0-py3-none-any.whl", hash = "sha256:429e1a1e845c008ea6c85aa35d4b98b65d6a9763eeef3e37e92728a12d1de9d4"}, {file = "cachetools-5.3.0.tar.gz", hash = "sha256:13dfddc7b8df938c21a940dfa6557ce6e94a2f1cdfa58eb90c805721d58f2c14"}, ] [[package]] name = "cassandra-driver" version = "3.27.0" description = "DataStax Driver for Apache Cassandra" optional = false python-versions = "*" files = [ {file = "cassandra-driver-3.27.0.tar.gz", hash = "sha256:3f43b6023d3d2b34ceaea0a33abf9d9602c41cf316f283f651d835d0c4924124"}, {file = "cassandra_driver-3.27.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:1f96d3b187e212b35937e6bd76fd2f1029d2278e50654eedbf85781222439695"}, {file = "cassandra_driver-3.27.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d879cf61395b4682a4a14c73bb4b24cd6e697175197d658c40d1ec863354fcb1"}, {file = "cassandra_driver-3.27.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d68d2eaa70df65497a38227ff977f1a43bba74dee7830b87798f2f4723feb602"}, {file = "cassandra_driver-3.27.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e7d2f6e04a87a511e7278b0c90eaccb40ec110374ab7dbfa0c6b62ca3f49e0ee"}, {file = "cassandra_driver-3.27.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d6ba6c857d163a8b4c1a56632c71de88801a4e5775650a83e05e63707c28da98"}, {file = "cassandra_driver-3.27.0-cp310-cp310-win32.whl", hash = "sha256:73566188aadc975618a3eb26dc11d44228039a5b140ad172d550459c4a1456ed"}, {file = "cassandra_driver-3.27.0-cp310-cp310-win_amd64.whl", hash = "sha256:11655738056ad40a0f62ff10bc80af20216021f7dc7b74184555b2789e8c54e8"}, {file = "cassandra_driver-3.27.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:4ceb8d45502b5e49e294040c0615e588fa1940edb9cf0c778fb200d02e6de6f4"}, {file = "cassandra_driver-3.27.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4b6a6e59ac30da449851384601d1c8425b2ed83d99108aadc44eefbc4ea8f5b7"}, {file = "cassandra_driver-3.27.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:30e308134f925604f7cd7b623d6e431a43c64637f806b62032755a731a21b6ce"}, {file = "cassandra_driver-3.27.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:099b190fb1edf1b9dbb277aedb2ec7eb8e914c95fdba64705a41f680668d4e13"}, {file = "cassandra_driver-3.27.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7d6ffde813e2493408e05145172957e4eb34b3034bc04e6b2dc0806d222986d9"}, {file = "cassandra_driver-3.27.0-cp311-cp311-win32.whl", hash = "sha256:2ffa0ec39dd524668d0b8cd40e9d0da1088a463ef8e93ee58d66ae36f59e7439"}, {file = "cassandra_driver-3.27.0-cp311-cp311-win_amd64.whl", hash = "sha256:15023d9dd803ac9fd4b139b4fcec845711e9cf30bdeb64b07c6f887c461f1421"}, {file = "cassandra_driver-3.27.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:71ca75df8ba135663018137c1e526d53801eb7c5f8027894627cd60f6c0e66cd"}, {file = "cassandra_driver-3.27.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:15993cb71da6e5c03c2bf78289381492e938aab6501adc1fde663956abcf18c0"}, {file = "cassandra_driver-3.27.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6eb1cf024b8cea6ada586b9372032f67143aba2e1b96e7a204e269ffb18e2722"}, {file = "cassandra_driver-3.27.0-cp37-cp37m-win32.whl", hash = "sha256:6a2145b46a0da3fc2bb5f699b8de5a0915b7e61c8ada4bfa1ed5cd4f25642f39"}, {file = "cassandra_driver-3.27.0-cp37-cp37m-win_amd64.whl", hash = "sha256:1e10f3b037dff16af9447aa1fbe41be12c5eabfb9a11220c19f060728ce36264"}, {file = "cassandra_driver-3.27.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:6a4896b2171bedd596ed6e4bb7eec094eba271e65207427651611c2ee70218c4"}, {file = "cassandra_driver-3.27.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9e025bbe5b8f8dafbeef4f5d77d179242bc64d3dc746e53163e93016453d84e9"}, {file = "cassandra_driver-3.27.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:05028c38b1e6aaf5d88182ed77a3ce4b0d251d11e125869f50934c6accac927f"}, {file = "cassandra_driver-3.27.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0eb547fa02cc00cc8f63584a45809709d3ff8a90bfa09700b84d0eaed54c78d9"}, {file = "cassandra_driver-3.27.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a4b2cab7c4d4e0224202cda927a923488ecebb19e5abbe87f1f46cc92add16e3"}, {file = "cassandra_driver-3.27.0-cp38-cp38-win32.whl", hash = "sha256:2d70eb16b74b63c73852943e2a3293b8ac24a1f433988aa7debf687d40d75547"}, {file = "cassandra_driver-3.27.0-cp38-cp38-win_amd64.whl", hash = "sha256:032d5a2636a633df92a8f9977420c088567d2379d0267ad97f0c5ad8245c36e7"}, {file = "cassandra_driver-3.27.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:522bad089c05344824fdc7495d4a66b821757d40cbd5c3f43c482124586deed2"}, {file = "cassandra_driver-3.27.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:addf792e95b41c46c1a06df2ca33c52d4fdc43ab1bf3df3a8a8f34eff0d83a32"}, {file = "cassandra_driver-3.27.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9d8e2acc3d21bb387e4d369b711f02ac4014ef5aa23756757e17f478b314010c"}, {file = "cassandra_driver-3.27.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:62c2ecb0772ad602dbaf73482e1a142ad999b06af061e6a68137e00cab0ee4c1"}, {file = "cassandra_driver-3.27.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:66f7011679d9a1c691f1321a4758477a72d5913d13beb42c226e69be37b2127e"}, {file = "cassandra_driver-3.27.0-cp39-cp39-win32.whl", hash = "sha256:9d59b037c6dc5065f80d3733c204b3cdc9b153744a699d4473f6e2d22a04f7f9"}, {file = "cassandra_driver-3.27.0-cp39-cp39-win_amd64.whl", hash = "sha256:cb37501e693450f00d2409c7e0a47c439ce09608d0055ad8f979446f1c11692d"}, ] [package.dependencies] cryptography = ">=35.0" geomet = ">=0.1,<0.3" six = ">=1.9" [package.extras] graph = ["gremlinpython (==3.4.6)"] [[package]] name = "catalogue" version = "2.0.8" description = "Super lightweight function registries for your library" optional = true python-versions = ">=3.6" files = [ {file = "catalogue-2.0.8-py3-none-any.whl", hash = "sha256:2d786e229d8d202b4f8a2a059858e45a2331201d831e39746732daa704b99f69"}, {file = "catalogue-2.0.8.tar.gz", hash = "sha256:b325c77659208bfb6af1b0d93b1a1aa4112e1bb29a4c5ced816758a722f0e388"}, ] [[package]] name = "certifi" version = "2023.5.7" description = "Python package for providing Mozilla's CA Bundle." optional = false python-versions = ">=3.6" files = [ {file = "certifi-2023.5.7-py3-none-any.whl", hash = "sha256:c6c2e98f5c7869efca1f8916fed228dd91539f9f1b444c314c06eef02980c716"}, {file = "certifi-2023.5.7.tar.gz", hash = "sha256:0f0d56dc5a6ad56fd4ba36484d6cc34451e1c6548c61daad8c320169f91eddc7"}, ] [[package]] name = "cffi" version = "1.15.1" description = "Foreign Function Interface for Python calling C code." optional = false python-versions = "*" files = [ {file = "cffi-1.15.1-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:a66d3508133af6e8548451b25058d5812812ec3798c886bf38ed24a98216fab2"}, {file = "cffi-1.15.1-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:470c103ae716238bbe698d67ad020e1db9d9dba34fa5a899b5e21577e6d52ed2"}, {file = "cffi-1.15.1-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:9ad5db27f9cabae298d151c85cf2bad1d359a1b9c686a275df03385758e2f914"}, {file = "cffi-1.15.1-cp27-cp27m-win32.whl", hash = "sha256:b3bbeb01c2b273cca1e1e0c5df57f12dce9a4dd331b4fa1635b8bec26350bde3"}, {file = "cffi-1.15.1-cp27-cp27m-win_amd64.whl", hash = "sha256:e00b098126fd45523dd056d2efba6c5a63b71ffe9f2bbe1a4fe1716e1d0c331e"}, {file = "cffi-1.15.1-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:d61f4695e6c866a23a21acab0509af1cdfd2c013cf256bbf5b6b5e2695827162"}, {file = "cffi-1.15.1-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:ed9cb427ba5504c1dc15ede7d516b84757c3e3d7868ccc85121d9310d27eed0b"}, {file = "cffi-1.15.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:39d39875251ca8f612b6f33e6b1195af86d1b3e60086068be9cc053aa4376e21"}, {file = "cffi-1.15.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:285d29981935eb726a4399badae8f0ffdff4f5050eaa6d0cfc3f64b857b77185"}, {file = "cffi-1.15.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3eb6971dcff08619f8d91607cfc726518b6fa2a9eba42856be181c6d0d9515fd"}, {file = "cffi-1.15.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:21157295583fe8943475029ed5abdcf71eb3911894724e360acff1d61c1d54bc"}, {file = "cffi-1.15.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5635bd9cb9731e6d4a1132a498dd34f764034a8ce60cef4f5319c0541159392f"}, {file = "cffi-1.15.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2012c72d854c2d03e45d06ae57f40d78e5770d252f195b93f581acf3ba44496e"}, {file = "cffi-1.15.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd86c085fae2efd48ac91dd7ccffcfc0571387fe1193d33b6394db7ef31fe2a4"}, {file = "cffi-1.15.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:fa6693661a4c91757f4412306191b6dc88c1703f780c8234035eac011922bc01"}, {file = "cffi-1.15.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:59c0b02d0a6c384d453fece7566d1c7e6b7bae4fc5874ef2ef46d56776d61c9e"}, {file = "cffi-1.15.1-cp310-cp310-win32.whl", hash = "sha256:cba9d6b9a7d64d4bd46167096fc9d2f835e25d7e4c121fb2ddfc6528fb0413b2"}, {file = "cffi-1.15.1-cp310-cp310-win_amd64.whl", hash = "sha256:ce4bcc037df4fc5e3d184794f27bdaab018943698f4ca31630bc7f84a7b69c6d"}, {file = "cffi-1.15.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3d08afd128ddaa624a48cf2b859afef385b720bb4b43df214f85616922e6a5ac"}, {file = "cffi-1.15.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:3799aecf2e17cf585d977b780ce79ff0dc9b78d799fc694221ce814c2c19db83"}, {file = "cffi-1.15.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a591fe9e525846e4d154205572a029f653ada1a78b93697f3b5a8f1f2bc055b9"}, {file = "cffi-1.15.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3548db281cd7d2561c9ad9984681c95f7b0e38881201e157833a2342c30d5e8c"}, {file = "cffi-1.15.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:91fc98adde3d7881af9b59ed0294046f3806221863722ba7d8d120c575314325"}, {file = "cffi-1.15.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:94411f22c3985acaec6f83c6df553f2dbe17b698cc7f8ae751ff2237d96b9e3c"}, {file = "cffi-1.15.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:03425bdae262c76aad70202debd780501fabeaca237cdfddc008987c0e0f59ef"}, {file = "cffi-1.15.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:cc4d65aeeaa04136a12677d3dd0b1c0c94dc43abac5860ab33cceb42b801c1e8"}, {file = "cffi-1.15.1-cp311-cp311-win32.whl", hash = "sha256:a0f100c8912c114ff53e1202d0078b425bee3649ae34d7b070e9697f93c5d52d"}, {file = "cffi-1.15.1-cp311-cp311-win_amd64.whl", hash = "sha256:04ed324bda3cda42b9b695d51bb7d54b680b9719cfab04227cdd1e04e5de3104"}, {file = "cffi-1.15.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:50a74364d85fd319352182ef59c5c790484a336f6db772c1a9231f1c3ed0cbd7"}, {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e263d77ee3dd201c3a142934a086a4450861778baaeeb45db4591ef65550b0a6"}, {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cec7d9412a9102bdc577382c3929b337320c4c4c4849f2c5cdd14d7368c5562d"}, {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4289fc34b2f5316fbb762d75362931e351941fa95fa18789191b33fc4cf9504a"}, {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:173379135477dc8cac4bc58f45db08ab45d228b3363adb7af79436135d028405"}, {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:6975a3fac6bc83c4a65c9f9fcab9e47019a11d3d2cf7f3c0d03431bf145a941e"}, {file = "cffi-1.15.1-cp36-cp36m-win32.whl", hash = "sha256:2470043b93ff09bf8fb1d46d1cb756ce6132c54826661a32d4e4d132e1977adf"}, {file = "cffi-1.15.1-cp36-cp36m-win_amd64.whl", hash = "sha256:30d78fbc8ebf9c92c9b7823ee18eb92f2e6ef79b45ac84db507f52fbe3ec4497"}, {file = "cffi-1.15.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:198caafb44239b60e252492445da556afafc7d1e3ab7a1fb3f0584ef6d742375"}, {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5ef34d190326c3b1f822a5b7a45f6c4535e2f47ed06fec77d3d799c450b2651e"}, {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8102eaf27e1e448db915d08afa8b41d6c7ca7a04b7d73af6514df10a3e74bd82"}, {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5df2768244d19ab7f60546d0c7c63ce1581f7af8b5de3eb3004b9b6fc8a9f84b"}, {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a8c4917bd7ad33e8eb21e9a5bbba979b49d9a97acb3a803092cbc1133e20343c"}, {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e2642fe3142e4cc4af0799748233ad6da94c62a8bec3a6648bf8ee68b1c7426"}, {file = "cffi-1.15.1-cp37-cp37m-win32.whl", hash = "sha256:e229a521186c75c8ad9490854fd8bbdd9a0c9aa3a524326b55be83b54d4e0ad9"}, {file = "cffi-1.15.1-cp37-cp37m-win_amd64.whl", hash = "sha256:a0b71b1b8fbf2b96e41c4d990244165e2c9be83d54962a9a1d118fd8657d2045"}, {file = "cffi-1.15.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:320dab6e7cb2eacdf0e658569d2575c4dad258c0fcc794f46215e1e39f90f2c3"}, {file = "cffi-1.15.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1e74c6b51a9ed6589199c787bf5f9875612ca4a8a0785fb2d4a84429badaf22a"}, {file = "cffi-1.15.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5c84c68147988265e60416b57fc83425a78058853509c1b0629c180094904a5"}, {file = "cffi-1.15.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3b926aa83d1edb5aa5b427b4053dc420ec295a08e40911296b9eb1b6170f6cca"}, {file = "cffi-1.15.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:87c450779d0914f2861b8526e035c5e6da0a3199d8f1add1a665e1cbc6fc6d02"}, {file = "cffi-1.15.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4f2c9f67e9821cad2e5f480bc8d83b8742896f1242dba247911072d4fa94c192"}, {file = "cffi-1.15.1-cp38-cp38-win32.whl", hash = "sha256:8b7ee99e510d7b66cdb6c593f21c043c248537a32e0bedf02e01e9553a172314"}, {file = "cffi-1.15.1-cp38-cp38-win_amd64.whl", hash = "sha256:00a9ed42e88df81ffae7a8ab6d9356b371399b91dbdf0c3cb1e84c03a13aceb5"}, {file = "cffi-1.15.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:54a2db7b78338edd780e7ef7f9f6c442500fb0d41a5a4ea24fff1c929d5af585"}, {file = "cffi-1.15.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:fcd131dd944808b5bdb38e6f5b53013c5aa4f334c5cad0c72742f6eba4b73db0"}, {file = "cffi-1.15.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7473e861101c9e72452f9bf8acb984947aa1661a7704553a9f6e4baa5ba64415"}, {file = "cffi-1.15.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6c9a799e985904922a4d207a94eae35c78ebae90e128f0c4e521ce339396be9d"}, {file = "cffi-1.15.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3bcde07039e586f91b45c88f8583ea7cf7a0770df3a1649627bf598332cb6984"}, {file = "cffi-1.15.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:33ab79603146aace82c2427da5ca6e58f2b3f2fb5da893ceac0c42218a40be35"}, {file = "cffi-1.15.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d598b938678ebf3c67377cdd45e09d431369c3b1a5b331058c338e201f12b27"}, {file = "cffi-1.15.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:db0fbb9c62743ce59a9ff687eb5f4afbe77e5e8403d6697f7446e5f609976f76"}, {file = "cffi-1.15.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:98d85c6a2bef81588d9227dde12db8a7f47f639f4a17c9ae08e773aa9c697bf3"}, {file = "cffi-1.15.1-cp39-cp39-win32.whl", hash = "sha256:40f4774f5a9d4f5e344f31a32b5096977b5d48560c5592e2f3d2c4374bd543ee"}, {file = "cffi-1.15.1-cp39-cp39-win_amd64.whl", hash = "sha256:70df4e3b545a17496c9b3f41f5115e69a4f2e77e94e1d2a8e1070bc0c38c8a3c"}, {file = "cffi-1.15.1.tar.gz", hash = "sha256:d400bfb9a37b1351253cb402671cea7e89bdecc294e8016a707f6d1d8ac934f9"}, ] [package.dependencies] pycparser = "*" [[package]] name = "chardet" version = "5.1.0" description = "Universal encoding detector for Python 3" optional = true python-versions = ">=3.7" files = [ {file = "chardet-5.1.0-py3-none-any.whl", hash = "sha256:362777fb014af596ad31334fde1e8c327dfdb076e1960d1694662d46a6917ab9"}, {file = "chardet-5.1.0.tar.gz", hash = "sha256:0d62712b956bc154f85fb0a266e2a3c5913c2967e00348701b32411d6def31e5"}, ] [[package]] name = "charset-normalizer" version = "3.1.0" description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." optional = false python-versions = ">=3.7.0" files = [ {file = "charset-normalizer-3.1.0.tar.gz", hash = "sha256:34e0a2f9c370eb95597aae63bf85eb5e96826d81e3dcf88b8886012906f509b5"}, {file = "charset_normalizer-3.1.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:e0ac8959c929593fee38da1c2b64ee9778733cdf03c482c9ff1d508b6b593b2b"}, {file = "charset_normalizer-3.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d7fc3fca01da18fbabe4625d64bb612b533533ed10045a2ac3dd194bfa656b60"}, {file = "charset_normalizer-3.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:04eefcee095f58eaabe6dc3cc2262f3bcd776d2c67005880894f447b3f2cb9c1"}, {file = "charset_normalizer-3.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:20064ead0717cf9a73a6d1e779b23d149b53daf971169289ed2ed43a71e8d3b0"}, {file = "charset_normalizer-3.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1435ae15108b1cb6fffbcea2af3d468683b7afed0169ad718451f8db5d1aff6f"}, {file = "charset_normalizer-3.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c84132a54c750fda57729d1e2599bb598f5fa0344085dbde5003ba429a4798c0"}, {file = "charset_normalizer-3.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:75f2568b4189dda1c567339b48cba4ac7384accb9c2a7ed655cd86b04055c795"}, {file = "charset_normalizer-3.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:11d3bcb7be35e7b1bba2c23beedac81ee893ac9871d0ba79effc7fc01167db6c"}, {file = "charset_normalizer-3.1.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:891cf9b48776b5c61c700b55a598621fdb7b1e301a550365571e9624f270c203"}, {file = "charset_normalizer-3.1.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:5f008525e02908b20e04707a4f704cd286d94718f48bb33edddc7d7b584dddc1"}, {file = "charset_normalizer-3.1.0-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:b06f0d3bf045158d2fb8837c5785fe9ff9b8c93358be64461a1089f5da983137"}, {file = "charset_normalizer-3.1.0-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:49919f8400b5e49e961f320c735388ee686a62327e773fa5b3ce6721f7e785ce"}, {file = "charset_normalizer-3.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:22908891a380d50738e1f978667536f6c6b526a2064156203d418f4856d6e86a"}, {file = "charset_normalizer-3.1.0-cp310-cp310-win32.whl", hash = "sha256:12d1a39aa6b8c6f6248bb54550efcc1c38ce0d8096a146638fd4738e42284448"}, {file = "charset_normalizer-3.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:65ed923f84a6844de5fd29726b888e58c62820e0769b76565480e1fdc3d062f8"}, {file = "charset_normalizer-3.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:9a3267620866c9d17b959a84dd0bd2d45719b817245e49371ead79ed4f710d19"}, {file = "charset_normalizer-3.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6734e606355834f13445b6adc38b53c0fd45f1a56a9ba06c2058f86893ae8017"}, {file = "charset_normalizer-3.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f8303414c7b03f794347ad062c0516cee0e15f7a612abd0ce1e25caf6ceb47df"}, {file = "charset_normalizer-3.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaf53a6cebad0eae578f062c7d462155eada9c172bd8c4d250b8c1d8eb7f916a"}, {file = "charset_normalizer-3.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3dc5b6a8ecfdc5748a7e429782598e4f17ef378e3e272eeb1340ea57c9109f41"}, {file = "charset_normalizer-3.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e1b25e3ad6c909f398df8921780d6a3d120d8c09466720226fc621605b6f92b1"}, {file = "charset_normalizer-3.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ca564606d2caafb0abe6d1b5311c2649e8071eb241b2d64e75a0d0065107e62"}, {file = "charset_normalizer-3.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b82fab78e0b1329e183a65260581de4375f619167478dddab510c6c6fb04d9b6"}, {file = "charset_normalizer-3.1.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:bd7163182133c0c7701b25e604cf1611c0d87712e56e88e7ee5d72deab3e76b5"}, {file = "charset_normalizer-3.1.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:11d117e6c63e8f495412d37e7dc2e2fff09c34b2d09dbe2bee3c6229577818be"}, {file = "charset_normalizer-3.1.0-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:cf6511efa4801b9b38dc5546d7547d5b5c6ef4b081c60b23e4d941d0eba9cbeb"}, {file = "charset_normalizer-3.1.0-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:abc1185d79f47c0a7aaf7e2412a0eb2c03b724581139193d2d82b3ad8cbb00ac"}, {file = "charset_normalizer-3.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:cb7b2ab0188829593b9de646545175547a70d9a6e2b63bf2cd87a0a391599324"}, {file = "charset_normalizer-3.1.0-cp311-cp311-win32.whl", hash = "sha256:c36bcbc0d5174a80d6cccf43a0ecaca44e81d25be4b7f90f0ed7bcfbb5a00909"}, {file = "charset_normalizer-3.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:cca4def576f47a09a943666b8f829606bcb17e2bc2d5911a46c8f8da45f56755"}, {file = "charset_normalizer-3.1.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:0c95f12b74681e9ae127728f7e5409cbbef9cd914d5896ef238cc779b8152373"}, {file = "charset_normalizer-3.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fca62a8301b605b954ad2e9c3666f9d97f63872aa4efcae5492baca2056b74ab"}, {file = "charset_normalizer-3.1.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ac0aa6cd53ab9a31d397f8303f92c42f534693528fafbdb997c82bae6e477ad9"}, {file = "charset_normalizer-3.1.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c3af8e0f07399d3176b179f2e2634c3ce9c1301379a6b8c9c9aeecd481da494f"}, {file = "charset_normalizer-3.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a5fc78f9e3f501a1614a98f7c54d3969f3ad9bba8ba3d9b438c3bc5d047dd28"}, {file = "charset_normalizer-3.1.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:628c985afb2c7d27a4800bfb609e03985aaecb42f955049957814e0491d4006d"}, {file = "charset_normalizer-3.1.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:74db0052d985cf37fa111828d0dd230776ac99c740e1a758ad99094be4f1803d"}, {file = "charset_normalizer-3.1.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:1e8fcdd8f672a1c4fc8d0bd3a2b576b152d2a349782d1eb0f6b8e52e9954731d"}, {file = "charset_normalizer-3.1.0-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:04afa6387e2b282cf78ff3dbce20f0cc071c12dc8f685bd40960cc68644cfea6"}, {file = "charset_normalizer-3.1.0-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:dd5653e67b149503c68c4018bf07e42eeed6b4e956b24c00ccdf93ac79cdff84"}, {file = "charset_normalizer-3.1.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:d2686f91611f9e17f4548dbf050e75b079bbc2a82be565832bc8ea9047b61c8c"}, {file = "charset_normalizer-3.1.0-cp37-cp37m-win32.whl", hash = "sha256:4155b51ae05ed47199dc5b2a4e62abccb274cee6b01da5b895099b61b1982974"}, {file = "charset_normalizer-3.1.0-cp37-cp37m-win_amd64.whl", hash = "sha256:322102cdf1ab682ecc7d9b1c5eed4ec59657a65e1c146a0da342b78f4112db23"}, {file = "charset_normalizer-3.1.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:e633940f28c1e913615fd624fcdd72fdba807bf53ea6925d6a588e84e1151531"}, {file = "charset_normalizer-3.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:3a06f32c9634a8705f4ca9946d667609f52cf130d5548881401f1eb2c39b1e2c"}, {file = "charset_normalizer-3.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7381c66e0561c5757ffe616af869b916c8b4e42b367ab29fedc98481d1e74e14"}, {file = "charset_normalizer-3.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3573d376454d956553c356df45bb824262c397c6e26ce43e8203c4c540ee0acb"}, {file = "charset_normalizer-3.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e89df2958e5159b811af9ff0f92614dabf4ff617c03a4c1c6ff53bf1c399e0e1"}, {file = "charset_normalizer-3.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:78cacd03e79d009d95635e7d6ff12c21eb89b894c354bd2b2ed0b4763373693b"}, {file = "charset_normalizer-3.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:de5695a6f1d8340b12a5d6d4484290ee74d61e467c39ff03b39e30df62cf83a0"}, {file = "charset_normalizer-3.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1c60b9c202d00052183c9be85e5eaf18a4ada0a47d188a83c8f5c5b23252f649"}, {file = "charset_normalizer-3.1.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:f645caaf0008bacf349875a974220f1f1da349c5dbe7c4ec93048cdc785a3326"}, {file = "charset_normalizer-3.1.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:ea9f9c6034ea2d93d9147818f17c2a0860d41b71c38b9ce4d55f21b6f9165a11"}, {file = "charset_normalizer-3.1.0-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:80d1543d58bd3d6c271b66abf454d437a438dff01c3e62fdbcd68f2a11310d4b"}, {file = "charset_normalizer-3.1.0-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:73dc03a6a7e30b7edc5b01b601e53e7fc924b04e1835e8e407c12c037e81adbd"}, {file = "charset_normalizer-3.1.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:6f5c2e7bc8a4bf7c426599765b1bd33217ec84023033672c1e9a8b35eaeaaaf8"}, {file = "charset_normalizer-3.1.0-cp38-cp38-win32.whl", hash = "sha256:12a2b561af122e3d94cdb97fe6fb2bb2b82cef0cdca131646fdb940a1eda04f0"}, {file = "charset_normalizer-3.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:3160a0fd9754aab7d47f95a6b63ab355388d890163eb03b2d2b87ab0a30cfa59"}, {file = "charset_normalizer-3.1.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:38e812a197bf8e71a59fe55b757a84c1f946d0ac114acafaafaf21667a7e169e"}, {file = "charset_normalizer-3.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6baf0baf0d5d265fa7944feb9f7451cc316bfe30e8df1a61b1bb08577c554f31"}, {file = "charset_normalizer-3.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:8f25e17ab3039b05f762b0a55ae0b3632b2e073d9c8fc88e89aca31a6198e88f"}, {file = "charset_normalizer-3.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3747443b6a904001473370d7810aa19c3a180ccd52a7157aacc264a5ac79265e"}, {file = "charset_normalizer-3.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b116502087ce8a6b7a5f1814568ccbd0e9f6cfd99948aa59b0e241dc57cf739f"}, {file = "charset_normalizer-3.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d16fd5252f883eb074ca55cb622bc0bee49b979ae4e8639fff6ca3ff44f9f854"}, {file = "charset_normalizer-3.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:21fa558996782fc226b529fdd2ed7866c2c6ec91cee82735c98a197fae39f706"}, {file = "charset_normalizer-3.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6f6c7a8a57e9405cad7485f4c9d3172ae486cfef1344b5ddd8e5239582d7355e"}, {file = "charset_normalizer-3.1.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:ac3775e3311661d4adace3697a52ac0bab17edd166087d493b52d4f4f553f9f0"}, {file = "charset_normalizer-3.1.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:10c93628d7497c81686e8e5e557aafa78f230cd9e77dd0c40032ef90c18f2230"}, {file = "charset_normalizer-3.1.0-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:6f4f4668e1831850ebcc2fd0b1cd11721947b6dc7c00bf1c6bd3c929ae14f2c7"}, {file = "charset_normalizer-3.1.0-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:0be65ccf618c1e7ac9b849c315cc2e8a8751d9cfdaa43027d4f6624bd587ab7e"}, {file = "charset_normalizer-3.1.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:53d0a3fa5f8af98a1e261de6a3943ca631c526635eb5817a87a59d9a57ebf48f"}, {file = "charset_normalizer-3.1.0-cp39-cp39-win32.whl", hash = "sha256:a04f86f41a8916fe45ac5024ec477f41f886b3c435da2d4e3d2709b22ab02af1"}, {file = "charset_normalizer-3.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:830d2948a5ec37c386d3170c483063798d7879037492540f10a475e3fd6f244b"}, {file = "charset_normalizer-3.1.0-py3-none-any.whl", hash = "sha256:3d9098b479e78c85080c98e1e35ff40b4a31d8953102bb0fd7d1b6f8a2111a3d"}, ] [[package]] name = "chromadb" version = "0.3.23" description = "Chroma." optional = false python-versions = ">=3.7" files = [ {file = "chromadb-0.3.23-py3-none-any.whl", hash = "sha256:c1e04fddff0916243895bedeffc1977745328f62404d70981eb1a0cb9dcdfaf3"}, {file = "chromadb-0.3.23.tar.gz", hash = "sha256:87fa922c92e2e90fb48234b435e9d4f0c61646fbd1526062f53f63326fc21228"}, ] [package.dependencies] clickhouse-connect = ">=0.5.7" duckdb = ">=0.7.1" fastapi = ">=0.85.1" hnswlib = ">=0.7" numpy = ">=1.21.6" pandas = ">=1.3" posthog = ">=2.4.0" pydantic = ">=1.9" requests = ">=2.28" sentence-transformers = ">=2.2.2" typing-extensions = ">=4.5.0" uvicorn = {version = ">=0.18.3", extras = ["standard"]} [[package]] name = "click" version = "8.1.3" description = "Composable command line interface toolkit" optional = false python-versions = ">=3.7" files = [ {file = "click-8.1.3-py3-none-any.whl", hash = "sha256:bb4d8133cb15a609f44e8213d9b391b0809795062913b383c62be0ee95b1db48"}, {file = "click-8.1.3.tar.gz", hash = "sha256:7682dc8afb30297001674575ea00d1814d808d6a36af415a82bd481d37ba7b8e"}, ] [package.dependencies] colorama = {version = "*", markers = "platform_system == \"Windows\""} [[package]] name = "clickhouse-connect" version = "0.5.24" description = "ClickHouse core driver, SqlAlchemy, and Superset libraries" optional = false python-versions = "~=3.7" files = [ {file = "clickhouse-connect-0.5.24.tar.gz", hash = "sha256:f1c6a4a20c19612eedaf1cea82e532010942cb08a29326db74cce0ea48bbe56d"}, {file = "clickhouse_connect-0.5.24-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:5b91584305b6133eff83e8a0436b3c48681dd44dcf8b2f5b54d558bafd30afa6"}, {file = "clickhouse_connect-0.5.24-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:17f3ca231aeff7c9f316dc03cba49ea8cd1e91e0f129519f8857f0e1d9aa7f49"}, {file = "clickhouse_connect-0.5.24-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b126b324ca9e34662bc07335f55ff51f9a5a5c5e4df97778f0a427b4bde8cfa"}, {file = "clickhouse_connect-0.5.24-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c756b8f290fc68af83129d378b749e74c40560107b926ef047c098b7c95a2ad"}, {file = "clickhouse_connect-0.5.24-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:486f538781d765993cc2b6f30ef8c274674b1be2c36dc03767d14feea24df566"}, {file = "clickhouse_connect-0.5.24-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:67cfb63b155c36413ff301c321de09e2476a936dc784c7954a63d612ec66f1ec"}, {file = "clickhouse_connect-0.5.24-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:56b004a0e001e49a2b6a022a98832b5558642299de9c808cf7b9333180f28e1b"}, {file = "clickhouse_connect-0.5.24-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:68bae08ef93aa21e02c961c79f2932cc88d0682a91099ec2f007c032ab4b68e1"}, {file = "clickhouse_connect-0.5.24-cp310-cp310-win32.whl", hash = "sha256:b7f73598f118c7466230f7149de0b4e1af992b2ac086a9200ac0011ab03ee468"}, {file = "clickhouse_connect-0.5.24-cp310-cp310-win_amd64.whl", hash = "sha256:5b83b4c6994e43ce3192c11ac4eb84f8ac8b6317d860fc2c4ff8f8f3609b20c1"}, {file = "clickhouse_connect-0.5.24-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ed329a93171ca867df9b903b95992d9dec2e256a657e16a88d27452dfe8f064e"}, {file = "clickhouse_connect-0.5.24-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:9bc64de89be44c30bf036aab551da196e11ebf14502533b6e2a0e8ca60c27599"}, {file = "clickhouse_connect-0.5.24-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:84adbe15ad0dd745aa1b2a183cf4d1573d39cdb81e9d0a2d37571805dfda4cd7"}, {file = "clickhouse_connect-0.5.24-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a50f7f3756c64791fa8a4ec73f87954a6c3aa44523394ad22e13e31ba1cd9c25"}, {file = "clickhouse_connect-0.5.24-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:08499995addd7d0e758086622d32aa8f8fdf6dde61bedb106f453191b16af15f"}, {file = "clickhouse_connect-0.5.24-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d8607c4b388a46b312fd34cdd26fe958002e414c0320aad0e24ac93854191325"}, {file = "clickhouse_connect-0.5.24-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:f0adcfbda306a1aa9f3cdc2f638b36c748c68104be97d9dc935c130ad632be82"}, {file = "clickhouse_connect-0.5.24-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:2abee0170d60d0621f7feec6b1e9c7434e3bb23a7b025d32a513f2df969b9a2d"}, {file = "clickhouse_connect-0.5.24-cp311-cp311-win32.whl", hash = "sha256:d6f7ea32b46a5fafa49a85b94b18902af38b0910f34ac588ec95b5b66faf7855"}, {file = "clickhouse_connect-0.5.24-cp311-cp311-win_amd64.whl", hash = "sha256:f0ae6e14f526c5fe504103d00992bf8e0ab3359266664b327c273e16f957545d"}, {file = "clickhouse_connect-0.5.24-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:dc0b18678b66160ca4ca6ce7fe074188975546c5d196092ef06510eb16067964"}, {file = "clickhouse_connect-0.5.24-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:91a6d666c4c3f4dea7bca84098a4624102cb3efa7f882352e8b914238b0ab3b0"}, {file = "clickhouse_connect-0.5.24-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1732ea5fddf201425baf53d1434516c1242184139d61202f885575cb8742167c"}, {file = "clickhouse_connect-0.5.24-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:be9c23721caacc52e9f75ba2239a5ca5bbdbafa913d36bcddf9eaf33578ba937"}, {file = "clickhouse_connect-0.5.24-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:b9aee9588b863ab3d33c11e9d2f350cee1f17753db74cedd3eb2bb4fc5ed31d1"}, {file = "clickhouse_connect-0.5.24-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:f7158f70e5ba787f64f01098fa729942d1d4dfd1a46c4519aab10ed3a4b32ead"}, {file = "clickhouse_connect-0.5.24-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:6684d253580c2e9cbcab8322189ca66fafc27ccabf67da58f178b31a09ecb60f"}, {file = "clickhouse_connect-0.5.24-cp37-cp37m-win32.whl", hash = "sha256:ba015b5337ecab0e9064eed3966acd2fe2c10f0391fc5f28d8c0fd73802d0810"}, {file = "clickhouse_connect-0.5.24-cp37-cp37m-win_amd64.whl", hash = "sha256:34feb3cb81298beff8e2be233719cf1271fd0f1aca2a0ae5dfff9716f9ab94c1"}, {file = "clickhouse_connect-0.5.24-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5ae2551daec4731373bffc6bc9d3e30a5dfbc0bdceb66cbc93c56dd0797c0740"}, {file = "clickhouse_connect-0.5.24-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:2cf26c82f3bd03e3088251f249776285a01da3268936d88d98b7cbecb2783497"}, {file = "clickhouse_connect-0.5.24-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0437c44d342edada639fed6f5064226cc9ad9f37406ea1cf550a50cb3f66db5a"}, {file = "clickhouse_connect-0.5.24-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8e7b5f68b7bae44ec5dfc80510bb81f9f2af88662681c103d5a58da170f4eb78"}, {file = "clickhouse_connect-0.5.24-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bc0ccf9ef68377291aba32dc7754b8aab658c2b4cfe06488140114f8abbef819"}, {file = "clickhouse_connect-0.5.24-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:1e9c3f146bdb1929223ebba04610ebf7bbbed313ee452754268c546966eff9db"}, {file = "clickhouse_connect-0.5.24-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:f7e31461ce8e13e2b9f67b21e2ac7bd1121420d85bf6dc888082dfd2f6ca9bc4"}, {file = "clickhouse_connect-0.5.24-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:e7b9b5a24cad361845f1d138ba9fb45f690c84583ca584adac76379a65fd8c00"}, {file = "clickhouse_connect-0.5.24-cp38-cp38-win32.whl", hash = "sha256:7d223477041ae31b62917b5f9abeaa468fe2a1efa8391070da4258a41fdc7643"}, {file = "clickhouse_connect-0.5.24-cp38-cp38-win_amd64.whl", hash = "sha256:c82fcf42d9a2318cf53086147376c31246e3842b73a09b4bac16a6f0c299a294"}, {file = "clickhouse_connect-0.5.24-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:586d7193ece84ddc2608fdc29cd10cc80eff26f283b2ad9d738bbd522f1f84cd"}, {file = "clickhouse_connect-0.5.24-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:71b452bed17aee315b93944174053cd84dc5efb245d4a556a2e49b78022f7ed6"}, {file = "clickhouse_connect-0.5.24-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:788722210e636bec7a870b0625999f97c3285bc19fd46763b58472ee445b67e9"}, {file = "clickhouse_connect-0.5.24-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:268e3375d9a3985ea961cb1be338c1d13154b617f5eb027ace0e8670de9501ce"}, {file = "clickhouse_connect-0.5.24-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:28ea9abd595d7400e3ef2842f5e9db5307133dfa24d97a8c45f71713048bad97"}, {file = "clickhouse_connect-0.5.24-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:00b0ac033dc47e0409a19ff974d938006a198445980028d911a47ba05facf6cd"}, {file = "clickhouse_connect-0.5.24-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:601a26ddb18e266e79b76d1672ac15ef5b6043ea17ba4c9dc3dc80130a0775d9"}, {file = "clickhouse_connect-0.5.24-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:eb502ccb7c5dcb907cf4c8316f9b787e4bd3a7b65cd8cbc37b24c5e9c890a801"}, {file = "clickhouse_connect-0.5.24-cp39-cp39-win32.whl", hash = "sha256:e6acedfd795cd1db7d89f21597389805e583f2b4ae9495cb0b89b8eda13ff6ad"}, {file = "clickhouse_connect-0.5.24-cp39-cp39-win_amd64.whl", hash = "sha256:921d3a8a287844c031c470547c07dd5b7454c883c44f13e1d4f5b9d0896444d2"}, {file = "clickhouse_connect-0.5.24-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:ec051a1f6f3912f2f3b659d3e3c344a67f676d2d42583885b3ed8365c51753b2"}, {file = "clickhouse_connect-0.5.24-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b116538fd7d75df991b211a3db311c158a2664301b2f5d1ffc18feb5b5da89d"}, {file = "clickhouse_connect-0.5.24-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b116747e4b187d3aac49a51e865a4fe0c11b39775724f0d7f719b4222810a5a4"}, {file = "clickhouse_connect-0.5.24-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4fa54e11e651979d9a4e355564d2128c6a8394d4cffda295a8188c9869ab93cc"}, {file = "clickhouse_connect-0.5.24-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:7c17e691e27d3b2e950cb2f597f0a895eb6b9d6717e886fafae861d34ac5bbb0"}, {file = "clickhouse_connect-0.5.24-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:34e2ae809ac1244da6fa67c4021431f9a1865d14c6df2d7fe57d22841f361497"}, {file = "clickhouse_connect-0.5.24-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4e7b2ef89e9c1c92a09988a812626f7d529acfda93f420b75e59fe2981960886"}, {file = "clickhouse_connect-0.5.24-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6200bdf94a52847d3f10ab8675c58db9ff3e90ce6ee98bc0c49f01c74d934798"}, {file = "clickhouse_connect-0.5.24-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4def3ee218f6fbb320fbb1c5c1bb3b23753b9e56e50759fc396ea70631dff846"}, {file = "clickhouse_connect-0.5.24-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:378f6a6289080f0c103f17eda9f8edcabc4878eb783e6b4e596d8bf8f543244e"}, {file = "clickhouse_connect-0.5.24-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e29389baa14a3f1db4e52b32090e1e32533496e35833514c689b190f26dfb039"}, {file = "clickhouse_connect-0.5.24-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7418e2c6533eebf0de9f3e85f1e3b6095d1a0bf42e4fed479f92f538725ff666"}, {file = "clickhouse_connect-0.5.24-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c3f23f819f20d130daed64ba058e01336e2f5f6d4b9f576038c0b800473af1ac"}, {file = "clickhouse_connect-0.5.24-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a846fc412475d55d7727c8a82ba1247b1b7ff0c6341a1818f99fd348ee9b1580"}, {file = "clickhouse_connect-0.5.24-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:34afc74ea27dcb85c1929f6105c4701566f51a1216bd6648b63ccb4871906729"}, ] [package.dependencies] certifi = "*" lz4 = "*" pytz = "*" urllib3 = ">=1.26" zstandard = "*" [package.extras] arrow = ["pyarrow"] numpy = ["numpy"] orjson = ["orjson"] pandas = ["pandas"] sqlalchemy = ["sqlalchemy (>1.3.21,<1.4)"] superset = ["apache-superset (>=1.4.1)"] [[package]] name = "cohere" version = "3.10.0" description = "A Python library for the Cohere API" optional = true python-versions = ">=3.6" files = [ {file = "cohere-3.10.0.tar.gz", hash = "sha256:8c06a87a47aa9521051eeba130ce391d84ab578148c4ea5b62f6dcc41bd3a274"}, ] [package.dependencies] requests = "*" urllib3 = ">=1.26,<2.0" [[package]] name = "colorama" version = "0.4.6" description = "Cross-platform colored terminal text." optional = false python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7" files = [ {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"}, {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, ] [[package]] name = "comm" version = "0.1.3" description = "Jupyter Python Comm implementation, for usage in ipykernel, xeus-python etc." optional = false python-versions = ">=3.6" files = [ {file = "comm-0.1.3-py3-none-any.whl", hash = "sha256:16613c6211e20223f215fc6d3b266a247b6e2641bf4e0a3ad34cb1aff2aa3f37"}, {file = "comm-0.1.3.tar.gz", hash = "sha256:a61efa9daffcfbe66fd643ba966f846a624e4e6d6767eda9cf6e993aadaab93e"}, ] [package.dependencies] traitlets = ">=5.3" [package.extras] lint = ["black (>=22.6.0)", "mdformat (>0.7)", "mdformat-gfm (>=0.3.5)", "ruff (>=0.0.156)"] test = ["pytest"] typing = ["mypy (>=0.990)"] [[package]] name = "confection" version = "0.0.4" description = "The sweetest config system for Python" optional = true python-versions = ">=3.6" files = [ {file = "confection-0.0.4-py3-none-any.whl", hash = "sha256:aeac5919ba770c7b281aa5863bb6b0efed42568a7ad8ea26b6cb632154503fb2"}, {file = "confection-0.0.4.tar.gz", hash = "sha256:b1ddf5885da635f0e260a40b339730806dfb1bd17d30e08764f35af841b04ecf"}, ] [package.dependencies] pydantic = ">=1.7.4,<1.8 || >1.8,<1.8.1 || >1.8.1,<1.11.0" srsly = ">=2.4.0,<3.0.0" [[package]] name = "coverage" version = "7.2.5" description = "Code coverage measurement for Python" optional = false python-versions = ">=3.7" files = [ {file = "coverage-7.2.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:883123d0bbe1c136f76b56276074b0c79b5817dd4238097ffa64ac67257f4b6c"}, {file = "coverage-7.2.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d2fbc2a127e857d2f8898aaabcc34c37771bf78a4d5e17d3e1f5c30cd0cbc62a"}, {file = "coverage-7.2.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f3671662dc4b422b15776cdca89c041a6349b4864a43aa2350b6b0b03bbcc7f"}, {file = "coverage-7.2.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:780551e47d62095e088f251f5db428473c26db7829884323e56d9c0c3118791a"}, {file = "coverage-7.2.5-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:066b44897c493e0dcbc9e6a6d9f8bbb6607ef82367cf6810d387c09f0cd4fe9a"}, {file = "coverage-7.2.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:b9a4ee55174b04f6af539218f9f8083140f61a46eabcaa4234f3c2a452c4ed11"}, {file = "coverage-7.2.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:706ec567267c96717ab9363904d846ec009a48d5f832140b6ad08aad3791b1f5"}, {file = "coverage-7.2.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:ae453f655640157d76209f42c62c64c4d4f2c7f97256d3567e3b439bd5c9b06c"}, {file = "coverage-7.2.5-cp310-cp310-win32.whl", hash = "sha256:f81c9b4bd8aa747d417407a7f6f0b1469a43b36a85748145e144ac4e8d303cb5"}, {file = "coverage-7.2.5-cp310-cp310-win_amd64.whl", hash = "sha256:dc945064a8783b86fcce9a0a705abd7db2117d95e340df8a4333f00be5efb64c"}, {file = "coverage-7.2.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:40cc0f91c6cde033da493227797be2826cbf8f388eaa36a0271a97a332bfd7ce"}, {file = "coverage-7.2.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a66e055254a26c82aead7ff420d9fa8dc2da10c82679ea850d8feebf11074d88"}, {file = "coverage-7.2.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c10fbc8a64aa0f3ed136b0b086b6b577bc64d67d5581acd7cc129af52654384e"}, {file = "coverage-7.2.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9a22cbb5ede6fade0482111fa7f01115ff04039795d7092ed0db43522431b4f2"}, {file = "coverage-7.2.5-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:292300f76440651529b8ceec283a9370532f4ecba9ad67d120617021bb5ef139"}, {file = "coverage-7.2.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:7ff8f3fb38233035028dbc93715551d81eadc110199e14bbbfa01c5c4a43f8d8"}, {file = "coverage-7.2.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:a08c7401d0b24e8c2982f4e307124b671c6736d40d1c39e09d7a8687bddf83ed"}, {file = "coverage-7.2.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:ef9659d1cda9ce9ac9585c045aaa1e59223b143f2407db0eaee0b61a4f266fb6"}, {file = "coverage-7.2.5-cp311-cp311-win32.whl", hash = "sha256:30dcaf05adfa69c2a7b9f7dfd9f60bc8e36b282d7ed25c308ef9e114de7fc23b"}, {file = "coverage-7.2.5-cp311-cp311-win_amd64.whl", hash = "sha256:97072cc90f1009386c8a5b7de9d4fc1a9f91ba5ef2146c55c1f005e7b5c5e068"}, {file = "coverage-7.2.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:bebea5f5ed41f618797ce3ffb4606c64a5de92e9c3f26d26c2e0aae292f015c1"}, {file = "coverage-7.2.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:828189fcdda99aae0d6bf718ea766b2e715eabc1868670a0a07bf8404bf58c33"}, {file = "coverage-7.2.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6e8a95f243d01ba572341c52f89f3acb98a3b6d1d5d830efba86033dd3687ade"}, {file = "coverage-7.2.5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e8834e5f17d89e05697c3c043d3e58a8b19682bf365048837383abfe39adaed5"}, {file = "coverage-7.2.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:d1f25ee9de21a39b3a8516f2c5feb8de248f17da7eead089c2e04aa097936b47"}, {file = "coverage-7.2.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:1637253b11a18f453e34013c665d8bf15904c9e3c44fbda34c643fbdc9d452cd"}, {file = "coverage-7.2.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:8e575a59315a91ccd00c7757127f6b2488c2f914096077c745c2f1ba5b8c0969"}, {file = "coverage-7.2.5-cp37-cp37m-win32.whl", hash = "sha256:509ecd8334c380000d259dc66feb191dd0a93b21f2453faa75f7f9cdcefc0718"}, {file = "coverage-7.2.5-cp37-cp37m-win_amd64.whl", hash = "sha256:12580845917b1e59f8a1c2ffa6af6d0908cb39220f3019e36c110c943dc875b0"}, {file = "coverage-7.2.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:b5016e331b75310610c2cf955d9f58a9749943ed5f7b8cfc0bb89c6134ab0a84"}, {file = "coverage-7.2.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:373ea34dca98f2fdb3e5cb33d83b6d801007a8074f992b80311fc589d3e6b790"}, {file = "coverage-7.2.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a063aad9f7b4c9f9da7b2550eae0a582ffc7623dca1c925e50c3fbde7a579771"}, {file = "coverage-7.2.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:38c0a497a000d50491055805313ed83ddba069353d102ece8aef5d11b5faf045"}, {file = "coverage-7.2.5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a2b3b05e22a77bb0ae1a3125126a4e08535961c946b62f30985535ed40e26614"}, {file = "coverage-7.2.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:0342a28617e63ad15d96dca0f7ae9479a37b7d8a295f749c14f3436ea59fdcb3"}, {file = "coverage-7.2.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:cf97ed82ca986e5c637ea286ba2793c85325b30f869bf64d3009ccc1a31ae3fd"}, {file = "coverage-7.2.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:c2c41c1b1866b670573657d584de413df701f482574bad7e28214a2362cb1fd1"}, {file = "coverage-7.2.5-cp38-cp38-win32.whl", hash = "sha256:10b15394c13544fce02382360cab54e51a9e0fd1bd61ae9ce012c0d1e103c813"}, {file = "coverage-7.2.5-cp38-cp38-win_amd64.whl", hash = "sha256:a0b273fe6dc655b110e8dc89b8ec7f1a778d78c9fd9b4bda7c384c8906072212"}, {file = "coverage-7.2.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5c587f52c81211d4530fa6857884d37f514bcf9453bdeee0ff93eaaf906a5c1b"}, {file = "coverage-7.2.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4436cc9ba5414c2c998eaedee5343f49c02ca93b21769c5fdfa4f9d799e84200"}, {file = "coverage-7.2.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6599bf92f33ab041e36e06d25890afbdf12078aacfe1f1d08c713906e49a3fe5"}, {file = "coverage-7.2.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:857abe2fa6a4973f8663e039ead8d22215d31db613ace76e4a98f52ec919068e"}, {file = "coverage-7.2.5-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6f5cab2d7f0c12f8187a376cc6582c477d2df91d63f75341307fcdcb5d60303"}, {file = "coverage-7.2.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:aa387bd7489f3e1787ff82068b295bcaafbf6f79c3dad3cbc82ef88ce3f48ad3"}, {file = "coverage-7.2.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:156192e5fd3dbbcb11cd777cc469cf010a294f4c736a2b2c891c77618cb1379a"}, {file = "coverage-7.2.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:bd3b4b8175c1db502adf209d06136c000df4d245105c8839e9d0be71c94aefe1"}, {file = "coverage-7.2.5-cp39-cp39-win32.whl", hash = "sha256:ddc5a54edb653e9e215f75de377354e2455376f416c4378e1d43b08ec50acc31"}, {file = "coverage-7.2.5-cp39-cp39-win_amd64.whl", hash = "sha256:338aa9d9883aaaad53695cb14ccdeb36d4060485bb9388446330bef9c361c252"}, {file = "coverage-7.2.5-pp37.pp38.pp39-none-any.whl", hash = "sha256:8877d9b437b35a85c18e3c6499b23674684bf690f5d96c1006a1ef61f9fdf0f3"}, {file = "coverage-7.2.5.tar.gz", hash = "sha256:f99ef080288f09ffc687423b8d60978cf3a465d3f404a18d1a05474bd8575a47"}, ] [package.dependencies] tomli = {version = "*", optional = true, markers = "python_full_version <= \"3.11.0a6\" and extra == \"toml\""} [package.extras] toml = ["tomli"] [[package]] name = "cryptography" version = "40.0.2" description = "cryptography is a package which provides cryptographic recipes and primitives to Python developers." optional = false python-versions = ">=3.6" files = [ {file = "cryptography-40.0.2-cp36-abi3-macosx_10_12_universal2.whl", hash = "sha256:8f79b5ff5ad9d3218afb1e7e20ea74da5f76943ee5edb7f76e56ec5161ec782b"}, {file = "cryptography-40.0.2-cp36-abi3-macosx_10_12_x86_64.whl", hash = "sha256:05dc219433b14046c476f6f09d7636b92a1c3e5808b9a6536adf4932b3b2c440"}, {file = "cryptography-40.0.2-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4df2af28d7bedc84fe45bd49bc35d710aede676e2a4cb7fc6d103a2adc8afe4d"}, {file = "cryptography-40.0.2-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0dcca15d3a19a66e63662dc8d30f8036b07be851a8680eda92d079868f106288"}, {file = "cryptography-40.0.2-cp36-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:a04386fb7bc85fab9cd51b6308633a3c271e3d0d3eae917eebab2fac6219b6d2"}, {file = "cryptography-40.0.2-cp36-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:adc0d980fd2760c9e5de537c28935cc32b9353baaf28e0814df417619c6c8c3b"}, {file = "cryptography-40.0.2-cp36-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:d5a1bd0e9e2031465761dfa920c16b0065ad77321d8a8c1f5ee331021fda65e9"}, {file = "cryptography-40.0.2-cp36-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:a95f4802d49faa6a674242e25bfeea6fc2acd915b5e5e29ac90a32b1139cae1c"}, {file = "cryptography-40.0.2-cp36-abi3-win32.whl", hash = "sha256:aecbb1592b0188e030cb01f82d12556cf72e218280f621deed7d806afd2113f9"}, {file = "cryptography-40.0.2-cp36-abi3-win_amd64.whl", hash = "sha256:b12794f01d4cacfbd3177b9042198f3af1c856eedd0a98f10f141385c809a14b"}, {file = "cryptography-40.0.2-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:142bae539ef28a1c76794cca7f49729e7c54423f615cfd9b0b1fa90ebe53244b"}, {file = "cryptography-40.0.2-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:956ba8701b4ffe91ba59665ed170a2ebbdc6fc0e40de5f6059195d9f2b33ca0e"}, {file = "cryptography-40.0.2-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:4f01c9863da784558165f5d4d916093737a75203a5c5286fde60e503e4276c7a"}, {file = "cryptography-40.0.2-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:3daf9b114213f8ba460b829a02896789751626a2a4e7a43a28ee77c04b5e4958"}, {file = "cryptography-40.0.2-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:48f388d0d153350f378c7f7b41497a54ff1513c816bcbbcafe5b829e59b9ce5b"}, {file = "cryptography-40.0.2-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:c0764e72b36a3dc065c155e5b22f93df465da9c39af65516fe04ed3c68c92636"}, {file = "cryptography-40.0.2-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:cbaba590180cba88cb99a5f76f90808a624f18b169b90a4abb40c1fd8c19420e"}, {file = "cryptography-40.0.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:7a38250f433cd41df7fcb763caa3ee9362777fdb4dc642b9a349721d2bf47404"}, {file = "cryptography-40.0.2.tar.gz", hash = "sha256:c33c0d32b8594fa647d2e01dbccc303478e16fdd7cf98652d5b3ed11aa5e5c99"}, ] [package.dependencies] cffi = ">=1.12" [package.extras] docs = ["sphinx (>=5.3.0)", "sphinx-rtd-theme (>=1.1.1)"] docstest = ["pyenchant (>=1.6.11)", "sphinxcontrib-spelling (>=4.0.1)", "twine (>=1.12.0)"] pep8test = ["black", "check-manifest", "mypy", "ruff"] sdist = ["setuptools-rust (>=0.11.4)"] ssh = ["bcrypt (>=3.1.5)"] test = ["iso8601", "pretend", "pytest (>=6.2.0)", "pytest-benchmark", "pytest-cov", "pytest-shard (>=0.1.2)", "pytest-subtests", "pytest-xdist"] test-randomorder = ["pytest-randomly"] tox = ["tox"] [[package]] name = "cymem" version = "2.0.7" description = "Manage calls to calloc/free through Cython" optional = true python-versions = "*" files = [ {file = "cymem-2.0.7-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:4981fc9182cc1fe54bfedf5f73bfec3ce0c27582d9be71e130c46e35958beef0"}, {file = "cymem-2.0.7-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:42aedfd2e77aa0518a24a2a60a2147308903abc8b13c84504af58539c39e52a3"}, {file = "cymem-2.0.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c183257dc5ab237b664f64156c743e788f562417c74ea58c5a3939fe2d48d6f6"}, {file = "cymem-2.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d18250f97eeb13af2e8b19d3cefe4bf743b963d93320b0a2e729771410fd8cf4"}, {file = "cymem-2.0.7-cp310-cp310-win_amd64.whl", hash = "sha256:864701e626b65eb2256060564ed8eb034ebb0a8f14ce3fbef337e88352cdee9f"}, {file = "cymem-2.0.7-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:314273be1f143da674388e0a125d409e2721fbf669c380ae27c5cbae4011e26d"}, {file = "cymem-2.0.7-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:df543a36e7000808fe0a03d92fd6cd8bf23fa8737c3f7ae791a5386de797bf79"}, {file = "cymem-2.0.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9e5e1b7de7952d89508d07601b9e95b2244e70d7ef60fbc161b3ad68f22815f8"}, {file = "cymem-2.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2aa33f1dbd7ceda37970e174c38fd1cf106817a261aa58521ba9918156868231"}, {file = "cymem-2.0.7-cp311-cp311-win_amd64.whl", hash = "sha256:10178e402bb512b2686b8c2f41f930111e597237ca8f85cb583ea93822ef798d"}, {file = "cymem-2.0.7-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a2971b7da5aa2e65d8fbbe9f2acfc19ff8e73f1896e3d6e1223cc9bf275a0207"}, {file = "cymem-2.0.7-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85359ab7b490e6c897c04863704481600bd45188a0e2ca7375eb5db193e13cb7"}, {file = "cymem-2.0.7-cp36-cp36m-win_amd64.whl", hash = "sha256:0ac45088abffbae9b7db2c597f098de51b7e3c1023cb314e55c0f7f08440cf66"}, {file = "cymem-2.0.7-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:26e5d5c6958855d2fe3d5629afe85a6aae5531abaa76f4bc21b9abf9caaccdfe"}, {file = "cymem-2.0.7-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:011039e12d3144ac1bf3a6b38f5722b817f0d6487c8184e88c891b360b69f533"}, {file = "cymem-2.0.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6f9e63e5ad4ed6ffa21fd8db1c03b05be3fea2f32e32fdace67a840ea2702c3d"}, {file = "cymem-2.0.7-cp37-cp37m-win_amd64.whl", hash = "sha256:5ea6b027fdad0c3e9a4f1b94d28d213be08c466a60c72c633eb9db76cf30e53a"}, {file = "cymem-2.0.7-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:4302df5793a320c4f4a263c7785d2fa7f29928d72cb83ebeb34d64a610f8d819"}, {file = "cymem-2.0.7-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:24b779046484674c054af1e779c68cb224dc9694200ac13b22129d7fb7e99e6d"}, {file = "cymem-2.0.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6c50794c612801ed8b599cd4af1ed810a0d39011711c8224f93e1153c00e08d1"}, {file = "cymem-2.0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a9525ad563b36dc1e30889d0087a0daa67dd7bb7d3e1530c4b61cd65cc756a5b"}, {file = "cymem-2.0.7-cp38-cp38-win_amd64.whl", hash = "sha256:48b98da6b906fe976865263e27734ebc64f972a978a999d447ad6c83334e3f90"}, {file = "cymem-2.0.7-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:e156788d32ad8f7141330913c5d5d2aa67182fca8f15ae22645e9f379abe8a4c"}, {file = "cymem-2.0.7-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3da89464021fe669932fce1578343fcaf701e47e3206f50d320f4f21e6683ca5"}, {file = "cymem-2.0.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4f359cab9f16e25b3098f816c40acbf1697a3b614a8d02c56e6ebcb9c89a06b3"}, {file = "cymem-2.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f165d7bce55d6730930e29d8294569788aa127f1be8d1642d9550ed96223cb37"}, {file = "cymem-2.0.7-cp39-cp39-win_amd64.whl", hash = "sha256:59a09cf0e71b1b88bfa0de544b801585d81d06ea123c1725e7c5da05b7ca0d20"}, {file = "cymem-2.0.7.tar.gz", hash = "sha256:e6034badb5dd4e10344211c81f16505a55553a7164adc314c75bd80cf07e57a8"}, ] [[package]] name = "dataclasses-json" version = "0.5.7" description = "Easily serialize dataclasses to and from JSON" optional = false python-versions = ">=3.6" files = [ {file = "dataclasses-json-0.5.7.tar.gz", hash = "sha256:c2c11bc8214fbf709ffc369d11446ff6945254a7f09128154a7620613d8fda90"}, {file = "dataclasses_json-0.5.7-py3-none-any.whl", hash = "sha256:bc285b5f892094c3a53d558858a88553dd6a61a11ab1a8128a0e554385dcc5dd"}, ] [package.dependencies] marshmallow = ">=3.3.0,<4.0.0" marshmallow-enum = ">=1.5.1,<2.0.0" typing-inspect = ">=0.4.0" [package.extras] dev = ["flake8", "hypothesis", "ipython", "mypy (>=0.710)", "portray", "pytest (>=6.2.3)", "simplejson", "types-dataclasses"] [[package]] name = "datasets" version = "1.18.3" description = "HuggingFace community-driven open-source library of datasets" optional = true python-versions = "*" files = [ {file = "datasets-1.18.3-py3-none-any.whl", hash = "sha256:5862670a3e213af1aa68995a32ff0ce761b9d71d2677c3fa59e7088eb5e2a841"}, {file = "datasets-1.18.3.tar.gz", hash = "sha256:dfdf75c255069f4ed25ccdd0d3f0730c1ff1e2b27f8d4bd1af395b10fe8ebc63"}, ] [package.dependencies] aiohttp = "*" dill = "*" fsspec = {version = ">=2021.05.0", extras = ["http"]} huggingface-hub = ">=0.1.0,<1.0.0" multiprocess = "*" numpy = ">=1.17" packaging = "*" pandas = "*" pyarrow = ">=3.0.0,<4.0.0 || >4.0.0" requests = ">=2.19.0" tqdm = ">=4.62.1" xxhash = "*" [package.extras] apache-beam = ["apache-beam (>=2.26.0)"] audio = ["librosa"] benchmarks = ["numpy (==1.18.5)", "tensorflow (==2.3.0)", "torch (==1.6.0)", "transformers (==3.0.2)"] dev = ["Pillow (>=6.2.1)", "Werkzeug (>=1.0.1)", "absl-py", "aiobotocore", "apache-beam (>=2.26.0)", "bert-score (>=0.3.6)", "black (==21.4b0)", "boto3", "botocore", "bs4", "conllu", "elasticsearch", "fairseq", "faiss-cpu (>=1.6.4)", "fastBPE (==0.1.0)", "flake8 (>=3.8.3)", "fsspec[s3]", "h5py", "importlib-resources", "isort (>=5.0.0)", "jiwer", "langdetect", "librosa", "lxml", "mauve-text", "moto[s3,server] (==2.0.4)", "mwparserfromhell", "nltk", "openpyxl", "py7zr", "pytest", "pytest-datadir", "pytest-xdist", "pytorch-lightning", "pytorch-nlp (==0.5.0)", "pyyaml (>=5.3.1)", "rarfile (>=4.0)", "requests-file (>=1.5.1)", "rouge-score", "s3fs (==2021.08.1)", "sacrebleu", "scikit-learn", "scipy", "sentencepiece", "seqeval", "six (>=1.15.0,<1.16.0)", "soundfile", "tensorflow (>=2.3,!=2.6.0,!=2.6.1)", "texttable (>=1.6.3)", "tldextract", "tldextract (>=3.1.0)", "toml (>=0.10.1)", "torch", "torchaudio", "torchmetrics (==0.6.0)", "transformers", "wget (>=3.2)", "zstandard"] docs = ["Markdown (!=3.3.5)", "docutils (==0.16.0)", "fsspec (<2021.9.0)", "myst-parser", "recommonmark", "s3fs", "sphinx (==3.1.2)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-markdown-tables", "sphinx-panels", "sphinx-rtd-theme (==0.4.3)", "sphinxext-opengraph (==0.4.1)"] quality = ["black (==21.4b0)", "flake8 (>=3.8.3)", "isort (>=5.0.0)", "pyyaml (>=5.3.1)"] s3 = ["boto3", "botocore", "fsspec", "s3fs"] tensorflow = ["tensorflow (>=2.2.0,!=2.6.0,!=2.6.1)"] tensorflow-gpu = ["tensorflow-gpu (>=2.2.0,!=2.6.0,!=2.6.1)"] tests = ["Pillow (>=6.2.1)", "Werkzeug (>=1.0.1)", "absl-py", "aiobotocore", "apache-beam (>=2.26.0)", "bert-score (>=0.3.6)", "boto3", "botocore", "bs4", "conllu", "elasticsearch", "fairseq", "faiss-cpu (>=1.6.4)", "fastBPE (==0.1.0)", "fsspec[s3]", "h5py", "importlib-resources", "jiwer", "langdetect", "librosa", "lxml", "mauve-text", "moto[s3,server] (==2.0.4)", "mwparserfromhell", "nltk", "openpyxl", "py7zr", "pytest", "pytest-datadir", "pytest-xdist", "pytorch-lightning", "pytorch-nlp (==0.5.0)", "rarfile (>=4.0)", "requests-file (>=1.5.1)", "rouge-score", "s3fs (==2021.08.1)", "sacrebleu", "scikit-learn", "scipy", "sentencepiece", "seqeval", "six (>=1.15.0,<1.16.0)", "soundfile", "tensorflow (>=2.3,!=2.6.0,!=2.6.1)", "texttable (>=1.6.3)", "tldextract", "tldextract (>=3.1.0)", "toml (>=0.10.1)", "torch", "torchaudio", "torchmetrics (==0.6.0)", "transformers", "wget (>=3.2)", "zstandard"] torch = ["torch"] vision = ["Pillow (>=6.2.1)"] [[package]] name = "debugpy" version = "1.6.7" description = "An implementation of the Debug Adapter Protocol for Python" optional = false python-versions = ">=3.7" files = [ {file = "debugpy-1.6.7-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:b3e7ac809b991006ad7f857f016fa92014445085711ef111fdc3f74f66144096"}, {file = "debugpy-1.6.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e3876611d114a18aafef6383695dfc3f1217c98a9168c1aaf1a02b01ec7d8d1e"}, {file = "debugpy-1.6.7-cp310-cp310-win32.whl", hash = "sha256:33edb4afa85c098c24cc361d72ba7c21bb92f501104514d4ffec1fb36e09c01a"}, {file = "debugpy-1.6.7-cp310-cp310-win_amd64.whl", hash = "sha256:ed6d5413474e209ba50b1a75b2d9eecf64d41e6e4501977991cdc755dc83ab0f"}, {file = "debugpy-1.6.7-cp37-cp37m-macosx_10_15_x86_64.whl", hash = "sha256:38ed626353e7c63f4b11efad659be04c23de2b0d15efff77b60e4740ea685d07"}, {file = "debugpy-1.6.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:279d64c408c60431c8ee832dfd9ace7c396984fd7341fa3116aee414e7dcd88d"}, {file = "debugpy-1.6.7-cp37-cp37m-win32.whl", hash = "sha256:dbe04e7568aa69361a5b4c47b4493d5680bfa3a911d1e105fbea1b1f23f3eb45"}, {file = "debugpy-1.6.7-cp37-cp37m-win_amd64.whl", hash = "sha256:f90a2d4ad9a035cee7331c06a4cf2245e38bd7c89554fe3b616d90ab8aab89cc"}, {file = "debugpy-1.6.7-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:5224eabbbeddcf1943d4e2821876f3e5d7d383f27390b82da5d9558fd4eb30a9"}, {file = "debugpy-1.6.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bae1123dff5bfe548ba1683eb972329ba6d646c3a80e6b4c06cd1b1dd0205e9b"}, {file = "debugpy-1.6.7-cp38-cp38-win32.whl", hash = "sha256:9cd10cf338e0907fdcf9eac9087faa30f150ef5445af5a545d307055141dd7a4"}, {file = "debugpy-1.6.7-cp38-cp38-win_amd64.whl", hash = "sha256:aaf6da50377ff4056c8ed470da24632b42e4087bc826845daad7af211e00faad"}, {file = "debugpy-1.6.7-cp39-cp39-macosx_11_0_x86_64.whl", hash = "sha256:0679b7e1e3523bd7d7869447ec67b59728675aadfc038550a63a362b63029d2c"}, {file = "debugpy-1.6.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:de86029696e1b3b4d0d49076b9eba606c226e33ae312a57a46dca14ff370894d"}, {file = "debugpy-1.6.7-cp39-cp39-win32.whl", hash = "sha256:d71b31117779d9a90b745720c0eab54ae1da76d5b38c8026c654f4a066b0130a"}, {file = "debugpy-1.6.7-cp39-cp39-win_amd64.whl", hash = "sha256:c0ff93ae90a03b06d85b2c529eca51ab15457868a377c4cc40a23ab0e4e552a3"}, {file = "debugpy-1.6.7-py2.py3-none-any.whl", hash = "sha256:53f7a456bc50706a0eaabecf2d3ce44c4d5010e46dfc65b6b81a518b42866267"}, {file = "debugpy-1.6.7.zip", hash = "sha256:c4c2f0810fa25323abfdfa36cbbbb24e5c3b1a42cb762782de64439c575d67f2"}, ] [[package]] name = "decorator" version = "5.1.1" description = "Decorators for Humans" optional = false python-versions = ">=3.5" files = [ {file = "decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186"}, {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"}, ] [[package]] name = "deeplake" version = "3.5.0" description = "Activeloop Deep Lake" optional = false python-versions = "*" files = [ {file = "deeplake-3.5.0.tar.gz", hash = "sha256:ae640f75b1fec4eed9598a4e8d6b80e7243af87d9f39f0d34f01ce2c6f7c194f"}, ] [package.dependencies] aioboto3 = {version = ">=10.4.0", markers = "python_version >= \"3.7\" and sys_platform != \"win32\""} boto3 = "*" click = "*" humbug = ">=0.3.1" nest_asyncio = {version = "*", markers = "python_version >= \"3.7\" and sys_platform != \"win32\""} numcodecs = "*" numpy = "*" pathos = "*" pillow = "*" pyjwt = "*" tqdm = "*" [package.extras] all = ["IPython", "av (>=8.1.0)", "flask", "google-api-python-client (>=2.31.0,<2.32.0)", "google-auth (>=2.0.1,<2.1.0)", "google-auth-oauthlib (>=0.4.5,<0.5.0)", "google-cloud-storage (>=1.42.0,<1.43.0)", "laspy", "libdeeplake (==0.0.53)", "nibabel", "oauth2client (>=4.1.3,<4.2.0)", "pydicom"] audio = ["av (>=8.1.0)"] av = ["av (>=8.1.0)"] dicom = ["nibabel", "pydicom"] enterprise = ["libdeeplake (==0.0.53)", "pyjwt"] gcp = ["google-auth (>=2.0.1,<2.1.0)", "google-auth-oauthlib (>=0.4.5,<0.5.0)", "google-cloud-storage (>=1.42.0,<1.43.0)"] gdrive = ["google-api-python-client (>=2.31.0,<2.32.0)", "google-auth (>=2.0.1,<2.1.0)", "google-auth-oauthlib (>=0.4.5,<0.5.0)", "oauth2client (>=4.1.3,<4.2.0)"] medical = ["nibabel", "pydicom"] point-cloud = ["laspy"] video = ["av (>=8.1.0)"] visualizer = ["IPython", "flask"] [[package]] name = "defusedxml" version = "0.7.1" description = "XML bomb protection for Python stdlib modules" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" files = [ {file = "defusedxml-0.7.1-py2.py3-none-any.whl", hash = "sha256:a352e7e428770286cc899e2542b6cdaedb2b4953ff269a210103ec58f6198a61"}, {file = "defusedxml-0.7.1.tar.gz", hash = "sha256:1bb3032db185915b62d7c6209c5a8792be6a32ab2fedacc84e01b52c51aa3e69"}, ] [[package]] name = "deprecated" version = "1.2.13" description = "Python @deprecated decorator to deprecate old python classes, functions or methods." optional = true python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ {file = "Deprecated-1.2.13-py2.py3-none-any.whl", hash = "sha256:64756e3e14c8c5eea9795d93c524551432a0be75629f8f29e67ab8caf076c76d"}, {file = "Deprecated-1.2.13.tar.gz", hash = "sha256:43ac5335da90c31c24ba028af536a91d41d53f9e6901ddb021bcc572ce44e38d"}, ] [package.dependencies] wrapt = ">=1.10,<2" [package.extras] dev = ["PyTest", "PyTest (<5)", "PyTest-Cov", "PyTest-Cov (<2.6)", "bump2version (<1)", "configparser (<5)", "importlib-metadata (<3)", "importlib-resources (<4)", "sphinx (<2)", "sphinxcontrib-websupport (<2)", "tox", "zipp (<2)"] [[package]] name = "dill" version = "0.3.6" description = "serialize all of python" optional = false python-versions = ">=3.7" files = [ {file = "dill-0.3.6-py3-none-any.whl", hash = "sha256:a07ffd2351b8c678dfc4a856a3005f8067aea51d6ba6c700796a4d9e280f39f0"}, {file = "dill-0.3.6.tar.gz", hash = "sha256:e5db55f3687856d8fbdab002ed78544e1c4559a130302693d839dfe8f93f2373"}, ] [package.extras] graph = ["objgraph (>=1.7.2)"] [[package]] name = "dnspython" version = "2.3.0" description = "DNS toolkit" optional = false python-versions = ">=3.7,<4.0" files = [ {file = "dnspython-2.3.0-py3-none-any.whl", hash = "sha256:89141536394f909066cabd112e3e1a37e4e654db00a25308b0f130bc3152eb46"}, {file = "dnspython-2.3.0.tar.gz", hash = "sha256:224e32b03eb46be70e12ef6d64e0be123a64e621ab4c0822ff6d450d52a540b9"}, ] [package.extras] curio = ["curio (>=1.2,<2.0)", "sniffio (>=1.1,<2.0)"] dnssec = ["cryptography (>=2.6,<40.0)"] doh = ["h2 (>=4.1.0)", "httpx (>=0.21.1)", "requests (>=2.23.0,<3.0.0)", "requests-toolbelt (>=0.9.1,<0.11.0)"] doq = ["aioquic (>=0.9.20)"] idna = ["idna (>=2.1,<4.0)"] trio = ["trio (>=0.14,<0.23)"] wmi = ["wmi (>=1.5.1,<2.0.0)"] [[package]] name = "docarray" version = "0.32.0" description = "The data structure for multimodal data" optional = true python-versions = ">=3.7,<4.0" files = [ {file = "docarray-0.32.0-py3-none-any.whl", hash = "sha256:5216858966ea42133614be421ef7ae670d020bfdfcd2ab3e0118a4a8ecc77034"}, {file = "docarray-0.32.0.tar.gz", hash = "sha256:7a3156cb0d13dec7d6b85f193b339b823748446fc9fff1e0ca4c2ef50b4183d2"}, ] [package.dependencies] hnswlib = {version = ">=0.6.2", optional = true, markers = "extra == \"hnswlib\""} numpy = ">=1.17.3" orjson = ">=3.8.2" protobuf = {version = ">=3.19.0", optional = true, markers = "extra == \"proto\" or extra == \"hnswlib\" or extra == \"full\""} pydantic = ">=1.10.2" rich = ">=13.1.0" types-requests = ">=2.28.11.6" typing-inspect = ">=0.8.0" [package.extras] audio = ["pydub (>=0.25.1,<0.26.0)"] aws = ["smart-open[s3] (>=6.3.0)"] elasticsearch = ["elastic-transport (>=8.4.0,<9.0.0)", "elasticsearch (>=7.10.1)"] full = ["av (>=10.0.0)", "lz4 (>=1.0.0)", "pandas (>=1.1.0)", "pillow (>=9.3.0)", "protobuf (>=3.19.0)", "pydub (>=0.25.1,<0.26.0)", "trimesh[easy] (>=3.17.1)", "types-pillow (>=9.3.0.1)"] hnswlib = ["hnswlib (>=0.6.2)", "protobuf (>=3.19.0)"] image = ["pillow (>=9.3.0)", "types-pillow (>=9.3.0.1)"] jac = ["jina-hubble-sdk (>=0.34.0)"] mesh = ["trimesh[easy] (>=3.17.1)"] pandas = ["pandas (>=1.1.0)"] proto = ["lz4 (>=1.0.0)", "protobuf (>=3.19.0)"] qdrant = ["qdrant-client (>=1.1.4)"] torch = ["torch (>=1.0.0)"] video = ["av (>=10.0.0)"] weaviate = ["weaviate-client (>=3.15)"] web = ["fastapi (>=0.87.0)"] [[package]] name = "docker" version = "6.1.2" description = "A Python library for the Docker Engine API." optional = true python-versions = ">=3.7" files = [ {file = "docker-6.1.2-py3-none-any.whl", hash = "sha256:134cd828f84543cbf8e594ff81ca90c38288df3c0a559794c12f2e4b634ea19e"}, {file = "docker-6.1.2.tar.gz", hash = "sha256:dcc088adc2ec4e7cfc594e275d8bd2c9738c56c808de97476939ef67db5af8c2"}, ] [package.dependencies] packaging = ">=14.0" pywin32 = {version = ">=304", markers = "sys_platform == \"win32\""} requests = ">=2.26.0" urllib3 = ">=1.26.0" websocket-client = ">=0.32.0" [package.extras] ssh = ["paramiko (>=2.4.3)"] [[package]] name = "docutils" version = "0.17.1" description = "Docutils -- Python Documentation Utilities" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" files = [ {file = "docutils-0.17.1-py2.py3-none-any.whl", hash = "sha256:cf316c8370a737a022b72b56874f6602acf974a37a9fba42ec2876387549fc61"}, {file = "docutils-0.17.1.tar.gz", hash = "sha256:686577d2e4c32380bb50cbb22f575ed742d58168cee37e99117a854bcd88f125"}, ] [[package]] name = "duckdb" version = "0.8.0" description = "DuckDB embedded database" optional = false python-versions = "*" files = [ {file = "duckdb-0.8.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:6455aee00af30770c20f4a8c5e4347918cf59b578f49ee996a13807b12911871"}, {file = "duckdb-0.8.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:b8cf0622ae7f86d4ce72791f8928af4357a46824aadf1b6879c7936b3db65344"}, {file = "duckdb-0.8.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6132e8183ca3ae08a593e43c97cb189794077dedd48546e27ce43bd6a51a9c33"}, {file = "duckdb-0.8.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fe29e5343fa2a95f2cde4519a4f4533f4fd551a48d2d9a8ab5220d40ebf53610"}, {file = "duckdb-0.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:945165987ca87c097dc0e578dcf47a100cad77e1c29f5dd8443d53ce159dc22e"}, {file = "duckdb-0.8.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:673c60daf7ada1d9a8518286a6893ec45efabb64602954af5f3d98f42912fda6"}, {file = "duckdb-0.8.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:d5075fe1ff97ae62331ca5c61e3597e6e9f7682a6fdd418c23ba5c4873ed5cd1"}, {file = "duckdb-0.8.0-cp310-cp310-win32.whl", hash = "sha256:001f5102f45d3d67f389fa8520046c8f55a99e2c6d43b8e68b38ea93261c5395"}, {file = "duckdb-0.8.0-cp310-cp310-win_amd64.whl", hash = "sha256:cb00800f2e1e865584b13221e0121fce9341bb3a39a93e569d563eaed281f528"}, {file = "duckdb-0.8.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:b2707096d6df4321044fcde2c9f04da632d11a8be60957fd09d49a42fae71a29"}, {file = "duckdb-0.8.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b27df1b70ae74d2c88efb5ffca8490954fdc678099509a9c4404ca30acc53426"}, {file = "duckdb-0.8.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:75a97c800271b52dd0f37696d074c50576dcb4b2750b6115932a98696a268070"}, {file = "duckdb-0.8.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:804cac261a5e016506a6d67838a65d19b06a237f7949f1704f0e800eb708286a"}, {file = "duckdb-0.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c6b9abca7fa6713e1d031c18485343b4de99742c7e1b85c10718aa2f31a4e2c6"}, {file = "duckdb-0.8.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:51aa6d606d49072abcfeb3be209eb559ac94c1b5e70f58ac3adbb94aca9cd69f"}, {file = "duckdb-0.8.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:7c8dc769aaf2be0a1c57995ca657e5b92c1c56fc8437edb720ca6cab571adf14"}, {file = "duckdb-0.8.0-cp311-cp311-win32.whl", hash = "sha256:c4207d18b42387c4a035846d8878eb967070198be8ac26fd77797ce320d1a400"}, {file = "duckdb-0.8.0-cp311-cp311-win_amd64.whl", hash = "sha256:0c392257547c20794c3072fcbca99a49ef0a49974005d755e93893e2b4875267"}, {file = "duckdb-0.8.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:2832379e122020814dbe869af7b9ddf3c9f21474cf345531145b099c63ffe17e"}, {file = "duckdb-0.8.0-cp36-cp36m-win32.whl", hash = "sha256:914896526f7caba86b170f2c4f17f11fd06540325deeb0000cb4fb24ec732966"}, {file = "duckdb-0.8.0-cp36-cp36m-win_amd64.whl", hash = "sha256:022ebda86d0e3204cdc206e4af45aa9f0ae0668b34c2c68cf88e08355af4a372"}, {file = "duckdb-0.8.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:96a31c0f3f4ccbf0f5b18f94319f37691205d82f80aae48c6fe04860d743eb2c"}, {file = "duckdb-0.8.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a07c73c6e6a8cf4ce1a634625e0d1b17e5b817242a8a530d26ed84508dfbdc26"}, {file = "duckdb-0.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:424acbd6e857531b06448d757d7c2557938dbddbff0632092090efbf413b4699"}, {file = "duckdb-0.8.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:c83cfd2a868f1acb0692b9c3fd5ef1d7da8faa1348c6eabf421fbf5d8c2f3eb8"}, {file = "duckdb-0.8.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:5c6f6b2d8db56936f662c649539df81856b5a8cb769a31f9544edf18af2a11ff"}, {file = "duckdb-0.8.0-cp37-cp37m-win32.whl", hash = "sha256:0bd6376b40a512172eaf4aa816813b1b9d68994292ca436ce626ccd5f77f8184"}, {file = "duckdb-0.8.0-cp37-cp37m-win_amd64.whl", hash = "sha256:931221885bcf1e7dfce2400f11fd048a7beef566b775f1453bb1db89b828e810"}, {file = "duckdb-0.8.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:42e7853d963d68e72403ea208bcf806b0f28c7b44db0aa85ce49bb124d56c133"}, {file = "duckdb-0.8.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:fcc338399175be3d43366576600aef7d72e82114d415992a7a95aded98a0f3fd"}, {file = "duckdb-0.8.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:03dd08a4624d6b581a59f9f9dbfd34902416398d16795ad19f92361cf21fd9b5"}, {file = "duckdb-0.8.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0c7c24ea0c9d8563dbd5ad49ccb54b7a9a3c7b8c2833d35e5d32a08549cacea5"}, {file = "duckdb-0.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cb58f6505cc0f34b4e976154302d26563d2e5d16b206758daaa04b65e55d9dd8"}, {file = "duckdb-0.8.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:ef37ac7880100c4b3f913c8483a29a13f8289313b9a07df019fadfa8e7427544"}, {file = "duckdb-0.8.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:c2a4f5ee913ca8a6a069c78f8944b9934ffdbc71fd935f9576fdcea2a6f476f1"}, {file = "duckdb-0.8.0-cp38-cp38-win32.whl", hash = "sha256:73831c6d7aefcb5f4072cd677b9efebecbf6c578946d21710791e10a1fc41b9a"}, {file = "duckdb-0.8.0-cp38-cp38-win_amd64.whl", hash = "sha256:faa36d2854734364d234f37d7ef4f3d763b73cd6b0f799cbc2a0e3b7e2575450"}, {file = "duckdb-0.8.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:50a31ec237ed619e50f9ab79eb0ec5111eb9697d4475da6e0ab22c08495ce26b"}, {file = "duckdb-0.8.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:351abb4cc2d229d043920c4bc2a4c29ca31a79fef7d7ef8f6011cf4331f297bf"}, {file = "duckdb-0.8.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:568550a163aca6a787bef8313e358590254de3f4019025a8d68c3a61253fedc1"}, {file = "duckdb-0.8.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2b82617f0e7f9fc080eda217090d82b42d4fad083bc9f6d58dfda9cecb7e3b29"}, {file = "duckdb-0.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d01c9be34d272532b75e8faedda0ff77fa76d1034cde60b8f5768ae85680d6d3"}, {file = "duckdb-0.8.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:8549d6a6bf5f00c012b6916f605416226507e733a3ffc57451682afd6e674d1b"}, {file = "duckdb-0.8.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8d145c6d51e55743c3ed1a74cffa109d9e72f82b07e203b436cfa453c925313a"}, {file = "duckdb-0.8.0-cp39-cp39-win32.whl", hash = "sha256:f8610dfd21e90d7b04e8598b244bf3ad68599fd6ba0daad3428c03cbfd74dced"}, {file = "duckdb-0.8.0-cp39-cp39-win_amd64.whl", hash = "sha256:d0f0f104d30418808bafbe9bccdcd238588a07bd246b3cff13842d60bfd8e8ba"}, {file = "duckdb-0.8.0.tar.gz", hash = "sha256:c68da35bab5072a64ada2646a5b343da620ddc75a7a6e84aa4a1e0628a7ec18f"}, ] [[package]] name = "duckdb-engine" version = "0.7.2" description = "SQLAlchemy driver for duckdb" optional = false python-versions = ">=3.7" files = [ {file = "duckdb_engine-0.7.2-py3-none-any.whl", hash = "sha256:4de6bd4d3b94d2a42f296e72bc3b3442bee612e0e71697218c62f4d2f5afa5b6"}, {file = "duckdb_engine-0.7.2.tar.gz", hash = "sha256:1378ad0f02db55d4498075ff3b65331a2684996974139ab9c78da33bda650b17"}, ] [package.dependencies] duckdb = ">=0.4.0" numpy = "*" sqlalchemy = ">=1.3.22" [[package]] name = "duckduckgo-search" version = "2.8.6" description = "Search for words, documents, images, news, maps and text translation using the DuckDuckGo.com search engine." optional = true python-versions = ">=3.7" files = [ {file = "duckduckgo_search-2.8.6-py3-none-any.whl", hash = "sha256:c9312ad278d03d059ba7ced978dd1bc7806bb735aa239948322936d0570d8d7f"}, {file = "duckduckgo_search-2.8.6.tar.gz", hash = "sha256:ffd620febb8c471bdb4aed520b26e645cd05ae79acdd78db6c0c927cb7b0237c"}, ] [package.dependencies] click = ">=8.1.3" requests = ">=2.28.2" [[package]] name = "ecdsa" version = "0.18.0" description = "ECDSA cryptographic signature library (pure python)" optional = true python-versions = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*" files = [ {file = "ecdsa-0.18.0-py2.py3-none-any.whl", hash = "sha256:80600258e7ed2f16b9aa1d7c295bd70194109ad5a30fdee0eaeefef1d4c559dd"}, {file = "ecdsa-0.18.0.tar.gz", hash = "sha256:190348041559e21b22a1d65cee485282ca11a6f81d503fddb84d5017e9ed1e49"}, ] [package.dependencies] six = ">=1.9.0" [package.extras] gmpy = ["gmpy"] gmpy2 = ["gmpy2"] [[package]] name = "elastic-transport" version = "8.4.0" description = "Transport classes and utilities shared among Python Elastic client libraries" optional = false python-versions = ">=3.6" files = [ {file = "elastic-transport-8.4.0.tar.gz", hash = "sha256:b9ad708ceb7fcdbc6b30a96f886609a109f042c0b9d9f2e44403b3133ba7ff10"}, {file = "elastic_transport-8.4.0-py3-none-any.whl", hash = "sha256:19db271ab79c9f70f8c43f8f5b5111408781a6176b54ab2e54d713b6d9ceb815"}, ] [package.dependencies] certifi = "*" urllib3 = ">=1.26.2,<2" [package.extras] develop = ["aiohttp", "mock", "pytest", "pytest-asyncio", "pytest-cov", "pytest-httpserver", "pytest-mock", "requests", "trustme"] [[package]] name = "elasticsearch" version = "8.7.0" description = "Python client for Elasticsearch" optional = false python-versions = ">=3.6, <4" files = [ {file = "elasticsearch-8.7.0-py3-none-any.whl", hash = "sha256:a06482f4c338ab6ace5cf89ee351cf3ee1854083f29a3b875433e608424fb48c"}, {file = "elasticsearch-8.7.0.tar.gz", hash = "sha256:1849356db4192fbb75b2b8f3d55edb0fb07f8d855f386b318a7889222b49591f"}, ] [package.dependencies] aiohttp = {version = ">=3,<4", optional = true, markers = "extra == \"async\""} elastic-transport = ">=8,<9" [package.extras] async = ["aiohttp (>=3,<4)"] requests = ["requests (>=2.4.0,<3.0.0)"] [[package]] name = "entrypoints" version = "0.4" description = "Discover and load entry points from installed packages." optional = false python-versions = ">=3.6" files = [ {file = "entrypoints-0.4-py3-none-any.whl", hash = "sha256:f174b5ff827504fd3cd97cc3f8649f3693f51538c7e4bdf3ef002c8429d42f9f"}, {file = "entrypoints-0.4.tar.gz", hash = "sha256:b706eddaa9218a19ebcd67b56818f05bb27589b1ca9e8d797b74affad4ccacd4"}, ] [[package]] name = "exceptiongroup" version = "1.1.1" description = "Backport of PEP 654 (exception groups)" optional = false python-versions = ">=3.7" files = [ {file = "exceptiongroup-1.1.1-py3-none-any.whl", hash = "sha256:232c37c63e4f682982c8b6459f33a8981039e5fb8756b2074364e5055c498c9e"}, {file = "exceptiongroup-1.1.1.tar.gz", hash = "sha256:d484c3090ba2889ae2928419117447a14daf3c1231d5e30d0aae34f354f01785"}, ] [package.extras] test = ["pytest (>=6)"] [[package]] name = "executing" version = "1.2.0" description = "Get the currently executing AST node of a frame, and other information" optional = false python-versions = "*" files = [ {file = "executing-1.2.0-py2.py3-none-any.whl", hash = "sha256:0314a69e37426e3608aada02473b4161d4caf5a4b244d1d0c48072b8fee7bacc"}, {file = "executing-1.2.0.tar.gz", hash = "sha256:19da64c18d2d851112f09c287f8d3dbbdf725ab0e569077efb6cdcbd3497c107"}, ] [package.extras] tests = ["asttokens", "littleutils", "pytest", "rich"] [[package]] name = "faiss-cpu" version = "1.7.4" description = "A library for efficient similarity search and clustering of dense vectors." optional = true python-versions = "*" files = [ {file = "faiss-cpu-1.7.4.tar.gz", hash = "sha256:265dc31b0c079bf4433303bf6010f73922490adff9188b915e2d3f5e9c82dd0a"}, {file = "faiss_cpu-1.7.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:50d4ebe7f1869483751c558558504f818980292a9b55be36f9a1ee1009d9a686"}, {file = "faiss_cpu-1.7.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:7b1db7fae7bd8312aeedd0c41536bcd19a6e297229e1dce526bde3a73ab8c0b5"}, {file = "faiss_cpu-1.7.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:17b7fa7194a228a84929d9e6619d0e7dbf00cc0f717e3462253766f5e3d07de8"}, {file = "faiss_cpu-1.7.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dca531952a2e3eac56f479ff22951af4715ee44788a3fe991d208d766d3f95f3"}, {file = "faiss_cpu-1.7.4-cp310-cp310-win_amd64.whl", hash = "sha256:7173081d605e74766f950f2e3d6568a6f00c53f32fd9318063e96728c6c62821"}, {file = "faiss_cpu-1.7.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:d0bbd6f55d7940cc0692f79e32a58c66106c3c950cee2341b05722de9da23ea3"}, {file = "faiss_cpu-1.7.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e13c14280376100f143767d0efe47dcb32618f69e62bbd3ea5cd38c2e1755926"}, {file = "faiss_cpu-1.7.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c521cb8462f3b00c0c7dfb11caff492bb67816528b947be28a3b76373952c41d"}, {file = "faiss_cpu-1.7.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:afdd9fe1141117fed85961fd36ee627c83fc3b9fd47bafb52d3c849cc2f088b7"}, {file = "faiss_cpu-1.7.4-cp311-cp311-win_amd64.whl", hash = "sha256:2ff7f57889ea31d945e3b87275be3cad5d55b6261a4e3f51c7aba304d76b81fb"}, {file = "faiss_cpu-1.7.4-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:eeaf92f27d76249fb53c1adafe617b0f217ab65837acf7b4ec818511caf6e3d8"}, {file = "faiss_cpu-1.7.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:102b1bd763e9b0c281ac312590af3eaf1c8b663ccbc1145821fe6a9f92b8eaaf"}, {file = "faiss_cpu-1.7.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5512da6707c967310c46ff712b00418b7ae28e93cb609726136e826e9f2f14fa"}, {file = "faiss_cpu-1.7.4-cp37-cp37m-win_amd64.whl", hash = "sha256:0c2e5b9d8c28c99f990e87379d5bbcc6c914da91ebb4250166864fd12db5755b"}, {file = "faiss_cpu-1.7.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:43f67f325393145d360171cd98786fcea6120ce50397319afd3bb78be409fb8a"}, {file = "faiss_cpu-1.7.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6a4e4af194b8fce74c4b770cad67ad1dd1b4673677fc169723e4c50ba5bd97a8"}, {file = "faiss_cpu-1.7.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:31bfb7b9cffc36897ae02a983e04c09fe3b8c053110a287134751a115334a1df"}, {file = "faiss_cpu-1.7.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:52d7de96abef2340c0d373c1f5cbc78026a3cebb0f8f3a5920920a00210ead1f"}, {file = "faiss_cpu-1.7.4-cp38-cp38-win_amd64.whl", hash = "sha256:699feef85b23c2c729d794e26ca69bebc0bee920d676028c06fd0e0becc15c7e"}, {file = "faiss_cpu-1.7.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:559a0133f5ed44422acb09ee1ac0acffd90c6666d1bc0d671c18f6e93ad603e2"}, {file = "faiss_cpu-1.7.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ea1d71539fe3dc0f1bed41ef954ca701678776f231046bf0ca22ccea5cf5bef6"}, {file = "faiss_cpu-1.7.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:12d45e0157024eb3249842163162983a1ac8b458f1a8b17bbf86f01be4585a99"}, {file = "faiss_cpu-1.7.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2f0eab359e066d32c874f51a7d4bf6440edeec068b7fe47e6d803c73605a8b4c"}, {file = "faiss_cpu-1.7.4-cp39-cp39-win_amd64.whl", hash = "sha256:98459ceeeb735b9df1a5b94572106ffe0a6ce740eb7e4626715dd218657bb4dc"}, ] [[package]] name = "fastapi" version = "0.95.2" description = "FastAPI framework, high performance, easy to learn, fast to code, ready for production" optional = false python-versions = ">=3.7" files = [ {file = "fastapi-0.95.2-py3-none-any.whl", hash = "sha256:d374dbc4ef2ad9b803899bd3360d34c534adc574546e25314ab72c0c4411749f"}, {file = "fastapi-0.95.2.tar.gz", hash = "sha256:4d9d3e8c71c73f11874bcf5e33626258d143252e329a01002f767306c64fb982"}, ] [package.dependencies] pydantic = ">=1.6.2,<1.7 || >1.7,<1.7.1 || >1.7.1,<1.7.2 || >1.7.2,<1.7.3 || >1.7.3,<1.8 || >1.8,<1.8.1 || >1.8.1,<2.0.0" starlette = ">=0.27.0,<0.28.0" [package.extras] all = ["email-validator (>=1.1.1)", "httpx (>=0.23.0)", "itsdangerous (>=1.1.0)", "jinja2 (>=2.11.2)", "orjson (>=3.2.1)", "python-multipart (>=0.0.5)", "pyyaml (>=5.3.1)", "ujson (>=4.0.1,!=4.0.2,!=4.1.0,!=4.2.0,!=4.3.0,!=5.0.0,!=5.1.0)", "uvicorn[standard] (>=0.12.0)"] dev = ["pre-commit (>=2.17.0,<3.0.0)", "ruff (==0.0.138)", "uvicorn[standard] (>=0.12.0,<0.21.0)"] doc = ["mdx-include (>=1.4.1,<2.0.0)", "mkdocs (>=1.1.2,<2.0.0)", "mkdocs-markdownextradata-plugin (>=0.1.7,<0.3.0)", "mkdocs-material (>=8.1.4,<9.0.0)", "pyyaml (>=5.3.1,<7.0.0)", "typer-cli (>=0.0.13,<0.0.14)", "typer[all] (>=0.6.1,<0.8.0)"] test = ["anyio[trio] (>=3.2.1,<4.0.0)", "black (==23.1.0)", "coverage[toml] (>=6.5.0,<8.0)", "databases[sqlite] (>=0.3.2,<0.7.0)", "email-validator (>=1.1.1,<2.0.0)", "flask (>=1.1.2,<3.0.0)", "httpx (>=0.23.0,<0.24.0)", "isort (>=5.0.6,<6.0.0)", "mypy (==0.982)", "orjson (>=3.2.1,<4.0.0)", "passlib[bcrypt] (>=1.7.2,<2.0.0)", "peewee (>=3.13.3,<4.0.0)", "pytest (>=7.1.3,<8.0.0)", "python-jose[cryptography] (>=3.3.0,<4.0.0)", "python-multipart (>=0.0.5,<0.0.7)", "pyyaml (>=5.3.1,<7.0.0)", "ruff (==0.0.138)", "sqlalchemy (>=1.3.18,<1.4.43)", "types-orjson (==3.6.2)", "types-ujson (==5.7.0.1)", "ujson (>=4.0.1,!=4.0.2,!=4.1.0,!=4.2.0,!=4.3.0,!=5.0.0,!=5.1.0,<6.0.0)"] [[package]] name = "fastjsonschema" version = "2.16.3" description = "Fastest Python implementation of JSON schema" optional = false python-versions = "*" files = [ {file = "fastjsonschema-2.16.3-py3-none-any.whl", hash = "sha256:04fbecc94300436f628517b05741b7ea009506ce8f946d40996567c669318490"}, {file = "fastjsonschema-2.16.3.tar.gz", hash = "sha256:4a30d6315a68c253cfa8f963b9697246315aa3db89f98b97235e345dedfb0b8e"}, ] [package.extras] devel = ["colorama", "json-spec", "jsonschema", "pylint", "pytest", "pytest-benchmark", "pytest-cache", "validictory"] [[package]] name = "feedparser" version = "6.0.10" description = "Universal feed parser, handles RSS 0.9x, RSS 1.0, RSS 2.0, CDF, Atom 0.3, and Atom 1.0 feeds" optional = false python-versions = ">=3.6" files = [ {file = "feedparser-6.0.10-py3-none-any.whl", hash = "sha256:79c257d526d13b944e965f6095700587f27388e50ea16fd245babe4dfae7024f"}, {file = "feedparser-6.0.10.tar.gz", hash = "sha256:27da485f4637ce7163cdeab13a80312b93b7d0c1b775bef4a47629a3110bca51"}, ] [package.dependencies] sgmllib3k = "*" [[package]] name = "filelock" version = "3.12.0" description = "A platform independent file lock." optional = false python-versions = ">=3.7" files = [ {file = "filelock-3.12.0-py3-none-any.whl", hash = "sha256:ad98852315c2ab702aeb628412cbf7e95b7ce8c3bf9565670b4eaecf1db370a9"}, {file = "filelock-3.12.0.tar.gz", hash = "sha256:fc03ae43288c013d2ea83c8597001b1129db351aad9c57fe2409327916b8e718"}, ] [package.extras] docs = ["furo (>=2023.3.27)", "sphinx (>=6.1.3)", "sphinx-autodoc-typehints (>=1.23,!=1.23.4)"] testing = ["covdefaults (>=2.3)", "coverage (>=7.2.3)", "diff-cover (>=7.5)", "pytest (>=7.3.1)", "pytest-cov (>=4)", "pytest-mock (>=3.10)", "pytest-timeout (>=2.1)"] [[package]] name = "flatbuffers" version = "23.5.9" description = "The FlatBuffers serialization format for Python" optional = true python-versions = "*" files = [ {file = "flatbuffers-23.5.9-py2.py3-none-any.whl", hash = "sha256:a02eb8c2d61cba153cd211937de8f8f7764b6a7510971b2c4684ed8b02e6e571"}, {file = "flatbuffers-23.5.9.tar.gz", hash = "sha256:93a506b6ab771c79ce816e7b35a93ed08ec5b4c9edb811101a22c44a4152f018"}, ] [[package]] name = "fluent-logger" version = "0.10.0" description = "A Python logging handler for Fluentd event collector" optional = true python-versions = ">=3.5" files = [ {file = "fluent-logger-0.10.0.tar.gz", hash = "sha256:678bda90c513ff0393964b64544ce41ef25669d2089ce6c3b63d9a18554b9bfa"}, {file = "fluent_logger-0.10.0-py2.py3-none-any.whl", hash = "sha256:543637e5e62ec3fc3c92b44e5a4e148a3cea88a0f8ca4fae26c7e60fda7564c1"}, ] [package.dependencies] msgpack = ">1.0" [[package]] name = "fqdn" version = "1.5.1" description = "Validates fully-qualified domain names against RFC 1123, so that they are acceptable to modern bowsers" optional = false python-versions = ">=2.7, !=3.0, !=3.1, !=3.2, !=3.3, !=3.4, <4" files = [ {file = "fqdn-1.5.1-py3-none-any.whl", hash = "sha256:3a179af3761e4df6eb2e026ff9e1a3033d3587bf980a0b1b2e1e5d08d7358014"}, {file = "fqdn-1.5.1.tar.gz", hash = "sha256:105ed3677e767fb5ca086a0c1f4bb66ebc3c100be518f0e0d755d9eae164d89f"}, ] [[package]] name = "freezegun" version = "1.2.2" description = "Let your Python tests travel through time" optional = false python-versions = ">=3.6" files = [ {file = "freezegun-1.2.2-py3-none-any.whl", hash = "sha256:ea1b963b993cb9ea195adbd893a48d573fda951b0da64f60883d7e988b606c9f"}, {file = "freezegun-1.2.2.tar.gz", hash = "sha256:cd22d1ba06941384410cd967d8a99d5ae2442f57dfafeff2fda5de8dc5c05446"}, ] [package.dependencies] python-dateutil = ">=2.7" [[package]] name = "frozenlist" version = "1.3.3" description = "A list-like structure which implements collections.abc.MutableSequence" optional = false python-versions = ">=3.7" files = [ {file = "frozenlist-1.3.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:ff8bf625fe85e119553b5383ba0fb6aa3d0ec2ae980295aaefa552374926b3f4"}, {file = "frozenlist-1.3.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:dfbac4c2dfcc082fcf8d942d1e49b6aa0766c19d3358bd86e2000bf0fa4a9cf0"}, {file = "frozenlist-1.3.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b1c63e8d377d039ac769cd0926558bb7068a1f7abb0f003e3717ee003ad85530"}, {file = "frozenlist-1.3.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7fdfc24dcfce5b48109867c13b4cb15e4660e7bd7661741a391f821f23dfdca7"}, {file = "frozenlist-1.3.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2c926450857408e42f0bbc295e84395722ce74bae69a3b2aa2a65fe22cb14b99"}, {file = "frozenlist-1.3.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1841e200fdafc3d51f974d9d377c079a0694a8f06de2e67b48150328d66d5483"}, {file = "frozenlist-1.3.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f470c92737afa7d4c3aacc001e335062d582053d4dbe73cda126f2d7031068dd"}, {file = "frozenlist-1.3.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:783263a4eaad7c49983fe4b2e7b53fa9770c136c270d2d4bbb6d2192bf4d9caf"}, {file = "frozenlist-1.3.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:924620eef691990dfb56dc4709f280f40baee568c794b5c1885800c3ecc69816"}, {file = "frozenlist-1.3.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:ae4dc05c465a08a866b7a1baf360747078b362e6a6dbeb0c57f234db0ef88ae0"}, {file = "frozenlist-1.3.3-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:bed331fe18f58d844d39ceb398b77d6ac0b010d571cba8267c2e7165806b00ce"}, {file = "frozenlist-1.3.3-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:02c9ac843e3390826a265e331105efeab489ffaf4dd86384595ee8ce6d35ae7f"}, {file = "frozenlist-1.3.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:9545a33965d0d377b0bc823dcabf26980e77f1b6a7caa368a365a9497fb09420"}, {file = "frozenlist-1.3.3-cp310-cp310-win32.whl", hash = "sha256:d5cd3ab21acbdb414bb6c31958d7b06b85eeb40f66463c264a9b343a4e238642"}, {file = "frozenlist-1.3.3-cp310-cp310-win_amd64.whl", hash = "sha256:b756072364347cb6aa5b60f9bc18e94b2f79632de3b0190253ad770c5df17db1"}, {file = "frozenlist-1.3.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:b4395e2f8d83fbe0c627b2b696acce67868793d7d9750e90e39592b3626691b7"}, {file = "frozenlist-1.3.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:14143ae966a6229350021384870458e4777d1eae4c28d1a7aa47f24d030e6678"}, {file = "frozenlist-1.3.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5d8860749e813a6f65bad8285a0520607c9500caa23fea6ee407e63debcdbef6"}, {file = "frozenlist-1.3.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:23d16d9f477bb55b6154654e0e74557040575d9d19fe78a161bd33d7d76808e8"}, {file = "frozenlist-1.3.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eb82dbba47a8318e75f679690190c10a5e1f447fbf9df41cbc4c3afd726d88cb"}, {file = "frozenlist-1.3.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9309869032abb23d196cb4e4db574232abe8b8be1339026f489eeb34a4acfd91"}, {file = "frozenlist-1.3.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a97b4fe50b5890d36300820abd305694cb865ddb7885049587a5678215782a6b"}, {file = "frozenlist-1.3.3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c188512b43542b1e91cadc3c6c915a82a5eb95929134faf7fd109f14f9892ce4"}, {file = "frozenlist-1.3.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:303e04d422e9b911a09ad499b0368dc551e8c3cd15293c99160c7f1f07b59a48"}, {file = "frozenlist-1.3.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:0771aed7f596c7d73444c847a1c16288937ef988dc04fb9f7be4b2aa91db609d"}, {file = "frozenlist-1.3.3-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:66080ec69883597e4d026f2f71a231a1ee9887835902dbe6b6467d5a89216cf6"}, {file = "frozenlist-1.3.3-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:41fe21dc74ad3a779c3d73a2786bdf622ea81234bdd4faf90b8b03cad0c2c0b4"}, {file = "frozenlist-1.3.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:f20380df709d91525e4bee04746ba612a4df0972c1b8f8e1e8af997e678c7b81"}, {file = "frozenlist-1.3.3-cp311-cp311-win32.whl", hash = "sha256:f30f1928162e189091cf4d9da2eac617bfe78ef907a761614ff577ef4edfb3c8"}, {file = "frozenlist-1.3.3-cp311-cp311-win_amd64.whl", hash = "sha256:a6394d7dadd3cfe3f4b3b186e54d5d8504d44f2d58dcc89d693698e8b7132b32"}, {file = "frozenlist-1.3.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:8df3de3a9ab8325f94f646609a66cbeeede263910c5c0de0101079ad541af332"}, {file = "frozenlist-1.3.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0693c609e9742c66ba4870bcee1ad5ff35462d5ffec18710b4ac89337ff16e27"}, {file = "frozenlist-1.3.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cd4210baef299717db0a600d7a3cac81d46ef0e007f88c9335db79f8979c0d3d"}, {file = "frozenlist-1.3.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:394c9c242113bfb4b9aa36e2b80a05ffa163a30691c7b5a29eba82e937895d5e"}, {file = "frozenlist-1.3.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6327eb8e419f7d9c38f333cde41b9ae348bec26d840927332f17e887a8dcb70d"}, {file = "frozenlist-1.3.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2e24900aa13212e75e5b366cb9065e78bbf3893d4baab6052d1aca10d46d944c"}, {file = "frozenlist-1.3.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:3843f84a6c465a36559161e6c59dce2f2ac10943040c2fd021cfb70d58c4ad56"}, {file = "frozenlist-1.3.3-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:84610c1502b2461255b4c9b7d5e9c48052601a8957cd0aea6ec7a7a1e1fb9420"}, {file = "frozenlist-1.3.3-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:c21b9aa40e08e4f63a2f92ff3748e6b6c84d717d033c7b3438dd3123ee18f70e"}, {file = "frozenlist-1.3.3-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:efce6ae830831ab6a22b9b4091d411698145cb9b8fc869e1397ccf4b4b6455cb"}, {file = "frozenlist-1.3.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:40de71985e9042ca00b7953c4f41eabc3dc514a2d1ff534027f091bc74416401"}, {file = "frozenlist-1.3.3-cp37-cp37m-win32.whl", hash = "sha256:180c00c66bde6146a860cbb81b54ee0df350d2daf13ca85b275123bbf85de18a"}, {file = "frozenlist-1.3.3-cp37-cp37m-win_amd64.whl", hash = "sha256:9bbbcedd75acdfecf2159663b87f1bb5cfc80e7cd99f7ddd9d66eb98b14a8411"}, {file = "frozenlist-1.3.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:034a5c08d36649591be1cbb10e09da9f531034acfe29275fc5454a3b101ce41a"}, {file = "frozenlist-1.3.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:ba64dc2b3b7b158c6660d49cdb1d872d1d0bf4e42043ad8d5006099479a194e5"}, {file = "frozenlist-1.3.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:47df36a9fe24054b950bbc2db630d508cca3aa27ed0566c0baf661225e52c18e"}, {file = "frozenlist-1.3.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:008a054b75d77c995ea26629ab3a0c0d7281341f2fa7e1e85fa6153ae29ae99c"}, {file = "frozenlist-1.3.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:841ea19b43d438a80b4de62ac6ab21cfe6827bb8a9dc62b896acc88eaf9cecba"}, {file = "frozenlist-1.3.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e235688f42b36be2b6b06fc37ac2126a73b75fb8d6bc66dd632aa35286238703"}, {file = "frozenlist-1.3.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ca713d4af15bae6e5d79b15c10c8522859a9a89d3b361a50b817c98c2fb402a2"}, {file = "frozenlist-1.3.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ac5995f2b408017b0be26d4a1d7c61bce106ff3d9e3324374d66b5964325448"}, {file = "frozenlist-1.3.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:a4ae8135b11652b08a8baf07631d3ebfe65a4c87909dbef5fa0cdde440444ee4"}, {file = "frozenlist-1.3.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:4ea42116ceb6bb16dbb7d526e242cb6747b08b7710d9782aa3d6732bd8d27649"}, {file = "frozenlist-1.3.3-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:810860bb4bdce7557bc0febb84bbd88198b9dbc2022d8eebe5b3590b2ad6c842"}, {file = "frozenlist-1.3.3-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:ee78feb9d293c323b59a6f2dd441b63339a30edf35abcb51187d2fc26e696d13"}, {file = "frozenlist-1.3.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:0af2e7c87d35b38732e810befb9d797a99279cbb85374d42ea61c1e9d23094b3"}, {file = "frozenlist-1.3.3-cp38-cp38-win32.whl", hash = "sha256:899c5e1928eec13fd6f6d8dc51be23f0d09c5281e40d9cf4273d188d9feeaf9b"}, {file = "frozenlist-1.3.3-cp38-cp38-win_amd64.whl", hash = "sha256:7f44e24fa70f6fbc74aeec3e971f60a14dde85da364aa87f15d1be94ae75aeef"}, {file = "frozenlist-1.3.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:2b07ae0c1edaa0a36339ec6cce700f51b14a3fc6545fdd32930d2c83917332cf"}, {file = "frozenlist-1.3.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:ebb86518203e12e96af765ee89034a1dbb0c3c65052d1b0c19bbbd6af8a145e1"}, {file = "frozenlist-1.3.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:5cf820485f1b4c91e0417ea0afd41ce5cf5965011b3c22c400f6d144296ccbc0"}, {file = "frozenlist-1.3.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5c11e43016b9024240212d2a65043b70ed8dfd3b52678a1271972702d990ac6d"}, {file = "frozenlist-1.3.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8fa3c6e3305aa1146b59a09b32b2e04074945ffcfb2f0931836d103a2c38f936"}, {file = "frozenlist-1.3.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:352bd4c8c72d508778cf05ab491f6ef36149f4d0cb3c56b1b4302852255d05d5"}, {file = "frozenlist-1.3.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:65a5e4d3aa679610ac6e3569e865425b23b372277f89b5ef06cf2cdaf1ebf22b"}, {file = "frozenlist-1.3.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b1e2c1185858d7e10ff045c496bbf90ae752c28b365fef2c09cf0fa309291669"}, {file = "frozenlist-1.3.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:f163d2fd041c630fed01bc48d28c3ed4a3b003c00acd396900e11ee5316b56bb"}, {file = "frozenlist-1.3.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:05cdb16d09a0832eedf770cb7bd1fe57d8cf4eaf5aced29c4e41e3f20b30a784"}, {file = "frozenlist-1.3.3-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:8bae29d60768bfa8fb92244b74502b18fae55a80eac13c88eb0b496d4268fd2d"}, {file = "frozenlist-1.3.3-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:eedab4c310c0299961ac285591acd53dc6723a1ebd90a57207c71f6e0c2153ab"}, {file = "frozenlist-1.3.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:3bbdf44855ed8f0fbcd102ef05ec3012d6a4fd7c7562403f76ce6a52aeffb2b1"}, {file = "frozenlist-1.3.3-cp39-cp39-win32.whl", hash = "sha256:efa568b885bca461f7c7b9e032655c0c143d305bf01c30caf6db2854a4532b38"}, {file = "frozenlist-1.3.3-cp39-cp39-win_amd64.whl", hash = "sha256:cfe33efc9cb900a4c46f91a5ceba26d6df370ffddd9ca386eb1d4f0ad97b9ea9"}, {file = "frozenlist-1.3.3.tar.gz", hash = "sha256:58bcc55721e8a90b88332d6cd441261ebb22342e238296bb330968952fbb3a6a"}, ] [[package]] name = "fsspec" version = "2023.5.0" description = "File-system specification" optional = false python-versions = ">=3.8" files = [ {file = "fsspec-2023.5.0-py3-none-any.whl", hash = "sha256:51a4ad01a5bb66fcc58036e288c0d53d3975a0df2a5dc59a93b59bade0391f2a"}, {file = "fsspec-2023.5.0.tar.gz", hash = "sha256:b3b56e00fb93ea321bc9e5d9cf6f8522a0198b20eb24e02774d329e9c6fb84ce"}, ] [package.dependencies] aiohttp = {version = "<4.0.0a0 || >4.0.0a0,<4.0.0a1 || >4.0.0a1", optional = true, markers = "extra == \"http\""} requests = {version = "*", optional = true, markers = "extra == \"http\""} [package.extras] abfs = ["adlfs"] adl = ["adlfs"] arrow = ["pyarrow (>=1)"] dask = ["dask", "distributed"] devel = ["pytest", "pytest-cov"] dropbox = ["dropbox", "dropboxdrivefs", "requests"] full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "dask", "distributed", "dropbox", "dropboxdrivefs", "fusepy", "gcsfs", "libarchive-c", "ocifs", "panel", "paramiko", "pyarrow (>=1)", "pygit2", "requests", "s3fs", "smbprotocol", "tqdm"] fuse = ["fusepy"] gcs = ["gcsfs"] git = ["pygit2"] github = ["requests"] gs = ["gcsfs"] gui = ["panel"] hdfs = ["pyarrow (>=1)"] http = ["aiohttp (!=4.0.0a0,!=4.0.0a1)", "requests"] libarchive = ["libarchive-c"] oci = ["ocifs"] s3 = ["s3fs"] sftp = ["paramiko"] smb = ["smbprotocol"] ssh = ["paramiko"] tqdm = ["tqdm"] [[package]] name = "gast" version = "0.4.0" description = "Python AST that abstracts the underlying Python version" optional = true python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ {file = "gast-0.4.0-py3-none-any.whl", hash = "sha256:b7adcdd5adbebf1adf17378da5ba3f543684dbec47b1cda1f3997e573cd542c4"}, {file = "gast-0.4.0.tar.gz", hash = "sha256:40feb7b8b8434785585ab224d1568b857edb18297e5a3047f1ba012bc83b42c1"}, ] [[package]] name = "geojson" version = "2.5.0" description = "Python bindings and utilities for GeoJSON" optional = true python-versions = "*" files = [ {file = "geojson-2.5.0-py2.py3-none-any.whl", hash = "sha256:ccbd13368dd728f4e4f13ffe6aaf725b6e802c692ba0dde628be475040c534ba"}, {file = "geojson-2.5.0.tar.gz", hash = "sha256:6e4bb7ace4226a45d9c8c8b1348b3fc43540658359f93c3f7e03efa9f15f658a"}, ] [[package]] name = "geomet" version = "0.2.1.post1" description = "GeoJSON <-> WKT/WKB conversion utilities" optional = false python-versions = ">2.6, !=3.3.*, <4" files = [ {file = "geomet-0.2.1.post1-py3-none-any.whl", hash = "sha256:a41a1e336b381416d6cbed7f1745c848e91defaa4d4c1bdc1312732e46ffad2b"}, {file = "geomet-0.2.1.post1.tar.gz", hash = "sha256:91d754f7c298cbfcabd3befdb69c641c27fe75e808b27aa55028605761d17e95"}, ] [package.dependencies] click = "*" six = "*" [[package]] name = "google-api-core" version = "2.11.0" description = "Google API client core library" optional = true python-versions = ">=3.7" files = [ {file = "google-api-core-2.11.0.tar.gz", hash = "sha256:4b9bb5d5a380a0befa0573b302651b8a9a89262c1730e37bf423cec511804c22"}, {file = "google_api_core-2.11.0-py3-none-any.whl", hash = "sha256:ce222e27b0de0d7bc63eb043b956996d6dccab14cc3b690aaea91c9cc99dc16e"}, ] [package.dependencies] google-auth = ">=2.14.1,<3.0dev" googleapis-common-protos = ">=1.56.2,<2.0dev" protobuf = ">=3.19.5,<3.20.0 || >3.20.0,<3.20.1 || >3.20.1,<4.21.0 || >4.21.0,<4.21.1 || >4.21.1,<4.21.2 || >4.21.2,<4.21.3 || >4.21.3,<4.21.4 || >4.21.4,<4.21.5 || >4.21.5,<5.0.0dev" requests = ">=2.18.0,<3.0.0dev" [package.extras] grpc = ["grpcio (>=1.33.2,<2.0dev)", "grpcio (>=1.49.1,<2.0dev)", "grpcio-status (>=1.33.2,<2.0dev)", "grpcio-status (>=1.49.1,<2.0dev)"] grpcgcp = ["grpcio-gcp (>=0.2.2,<1.0dev)"] grpcio-gcp = ["grpcio-gcp (>=0.2.2,<1.0dev)"] [[package]] name = "google-api-python-client" version = "2.70.0" description = "Google API Client Library for Python" optional = true python-versions = ">=3.7" files = [ {file = "google-api-python-client-2.70.0.tar.gz", hash = "sha256:262de094d5a30d337f59e66581019fed45b698c078397ac48dd323c0968236e7"}, {file = "google_api_python_client-2.70.0-py2.py3-none-any.whl", hash = "sha256:67da78956f2bf4b763305cd791aeab250878c1f88f1422aaba4682a608b8e5a4"}, ] [package.dependencies] google-api-core = ">=1.31.5,<2.0.dev0 || >2.3.0,<3.0.0dev" google-auth = ">=1.19.0,<3.0.0dev" google-auth-httplib2 = ">=0.1.0" httplib2 = ">=0.15.0,<1dev" uritemplate = ">=3.0.1,<5" [[package]] name = "google-auth" version = "2.18.1" description = "Google Authentication Library" optional = true python-versions = ">=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*" files = [ {file = "google-auth-2.18.1.tar.gz", hash = "sha256:d7a3249027e7f464fbbfd7ee8319a08ad09d2eea51578575c4bd360ffa049ccb"}, {file = "google_auth-2.18.1-py2.py3-none-any.whl", hash = "sha256:55a395cdfd3f3dd3f649131d41f97c17b4ed8a2aac1be3502090c716314e8a37"}, ] [package.dependencies] cachetools = ">=2.0.0,<6.0" pyasn1-modules = ">=0.2.1" rsa = {version = ">=3.1.4,<5", markers = "python_version >= \"3.6\""} six = ">=1.9.0" urllib3 = "<2.0" [package.extras] aiohttp = ["aiohttp (>=3.6.2,<4.0.0dev)", "requests (>=2.20.0,<3.0.0dev)"] enterprise-cert = ["cryptography (==36.0.2)", "pyopenssl (==22.0.0)"] pyopenssl = ["cryptography (>=38.0.3)", "pyopenssl (>=20.0.0)"] reauth = ["pyu2f (>=0.1.5)"] requests = ["requests (>=2.20.0,<3.0.0dev)"] [[package]] name = "google-auth-httplib2" version = "0.1.0" description = "Google Authentication Library: httplib2 transport" optional = true python-versions = "*" files = [ {file = "google-auth-httplib2-0.1.0.tar.gz", hash = "sha256:a07c39fd632becacd3f07718dfd6021bf396978f03ad3ce4321d060015cc30ac"}, {file = "google_auth_httplib2-0.1.0-py2.py3-none-any.whl", hash = "sha256:31e49c36c6b5643b57e82617cb3e021e3e1d2df9da63af67252c02fa9c1f4a10"}, ] [package.dependencies] google-auth = "*" httplib2 = ">=0.15.0" six = "*" [[package]] name = "google-auth-oauthlib" version = "0.4.6" description = "Google Authentication Library" optional = true python-versions = ">=3.6" files = [ {file = "google-auth-oauthlib-0.4.6.tar.gz", hash = "sha256:a90a072f6993f2c327067bf65270046384cda5a8ecb20b94ea9a687f1f233a7a"}, {file = "google_auth_oauthlib-0.4.6-py2.py3-none-any.whl", hash = "sha256:3f2a6e802eebbb6fb736a370fbf3b055edcb6b52878bf2f26330b5e041316c73"}, ] [package.dependencies] google-auth = ">=1.0.0" requests-oauthlib = ">=0.7.0" [package.extras] tool = ["click (>=6.0.0)"] [[package]] name = "google-pasta" version = "0.2.0" description = "pasta is an AST-based Python refactoring library" optional = true python-versions = "*" files = [ {file = "google-pasta-0.2.0.tar.gz", hash = "sha256:c9f2c8dfc8f96d0d5808299920721be30c9eec37f2389f28904f454565c8a16e"}, {file = "google_pasta-0.2.0-py2-none-any.whl", hash = "sha256:4612951da876b1a10fe3960d7226f0c7682cf901e16ac06e473b267a5afa8954"}, {file = "google_pasta-0.2.0-py3-none-any.whl", hash = "sha256:b32482794a366b5366a32c92a9a9201b107821889935a02b3e51f6b432ea84ed"}, ] [package.dependencies] six = "*" [[package]] name = "google-search-results" version = "2.4.2" description = "Scrape and search localized results from Google, Bing, Baidu, Yahoo, Yandex, Ebay, Homedepot, youtube at scale using SerpApi.com" optional = true python-versions = ">=3.5" files = [ {file = "google_search_results-2.4.2.tar.gz", hash = "sha256:603a30ecae2af8e600b22635757a6df275dad4b934f975e67878ccd640b78245"}, ] [package.dependencies] requests = "*" [[package]] name = "googleapis-common-protos" version = "1.59.0" description = "Common protobufs used in Google APIs" optional = true python-versions = ">=3.7" files = [ {file = "googleapis-common-protos-1.59.0.tar.gz", hash = "sha256:4168fcb568a826a52f23510412da405abd93f4d23ba544bb68d943b14ba3cb44"}, {file = "googleapis_common_protos-1.59.0-py2.py3-none-any.whl", hash = "sha256:b287dc48449d1d41af0c69f4ea26242b5ae4c3d7249a38b0984c86a4caffff1f"}, ] [package.dependencies] protobuf = ">=3.19.5,<3.20.0 || >3.20.0,<3.20.1 || >3.20.1,<4.21.1 || >4.21.1,<4.21.2 || >4.21.2,<4.21.3 || >4.21.3,<4.21.4 || >4.21.4,<4.21.5 || >4.21.5,<5.0.0dev" [package.extras] grpc = ["grpcio (>=1.44.0,<2.0.0dev)"] [[package]] name = "gptcache" version = "0.1.24" description = "GPTCache, a powerful caching library that can be used to speed up and lower the cost of chat applications that rely on the LLM service. GPTCache works as a memcache for AIGC applications, similar to how Redis works for traditional applications." optional = false python-versions = ">=3.8.1" files = [ {file = "gptcache-0.1.24-py3-none-any.whl", hash = "sha256:070aad4867ab915a7b5db3a886e9f0289e52d1cb92a407c984b0241298079750"}, {file = "gptcache-0.1.24.tar.gz", hash = "sha256:aa591cb00898d457a50a5e0cd137d0119e86819c110ce6c7bce2adafeae0a467"}, ] [package.dependencies] cachetools = "*" numpy = "*" requests = "*" [[package]] name = "gql" version = "3.4.1" description = "GraphQL client for Python" optional = true python-versions = "*" files = [ {file = "gql-3.4.1-py2.py3-none-any.whl", hash = "sha256:315624ca0f4d571ef149d455033ebd35e45c1a13f18a059596aeddcea99135cf"}, {file = "gql-3.4.1.tar.gz", hash = "sha256:11dc5d8715a827f2c2899593439a4f36449db4f0eafa5b1ea63948f8a2f8c545"}, ] [package.dependencies] backoff = ">=1.11.1,<3.0" graphql-core = ">=3.2,<3.3" yarl = ">=1.6,<2.0" [package.extras] aiohttp = ["aiohttp (>=3.7.1,<3.9.0)"] all = ["aiohttp (>=3.7.1,<3.9.0)", "botocore (>=1.21,<2)", "requests (>=2.26,<3)", "requests-toolbelt (>=0.9.1,<1)", "urllib3 (>=1.26,<2)", "websockets (>=10,<11)", "websockets (>=9,<10)"] botocore = ["botocore (>=1.21,<2)"] dev = ["aiofiles", "aiohttp (>=3.7.1,<3.9.0)", "black (==22.3.0)", "botocore (>=1.21,<2)", "check-manifest (>=0.42,<1)", "flake8 (==3.8.1)", "isort (==4.3.21)", "mock (==4.0.2)", "mypy (==0.910)", "parse (==1.15.0)", "pytest (==6.2.5)", "pytest-asyncio (==0.16.0)", "pytest-console-scripts (==1.3.1)", "pytest-cov (==3.0.0)", "requests (>=2.26,<3)", "requests-toolbelt (>=0.9.1,<1)", "sphinx (>=3.0.0,<4)", "sphinx-argparse (==0.2.5)", "sphinx-rtd-theme (>=0.4,<1)", "types-aiofiles", "types-mock", "types-requests", "urllib3 (>=1.26,<2)", "vcrpy (==4.0.2)", "websockets (>=10,<11)", "websockets (>=9,<10)"] requests = ["requests (>=2.26,<3)", "requests-toolbelt (>=0.9.1,<1)", "urllib3 (>=1.26,<2)"] test = ["aiofiles", "aiohttp (>=3.7.1,<3.9.0)", "botocore (>=1.21,<2)", "mock (==4.0.2)", "parse (==1.15.0)", "pytest (==6.2.5)", "pytest-asyncio (==0.16.0)", "pytest-console-scripts (==1.3.1)", "pytest-cov (==3.0.0)", "requests (>=2.26,<3)", "requests-toolbelt (>=0.9.1,<1)", "urllib3 (>=1.26,<2)", "vcrpy (==4.0.2)", "websockets (>=10,<11)", "websockets (>=9,<10)"] test-no-transport = ["aiofiles", "mock (==4.0.2)", "parse (==1.15.0)", "pytest (==6.2.5)", "pytest-asyncio (==0.16.0)", "pytest-console-scripts (==1.3.1)", "pytest-cov (==3.0.0)", "vcrpy (==4.0.2)"] websockets = ["websockets (>=10,<11)", "websockets (>=9,<10)"] [[package]] name = "graphql-core" version = "3.2.3" description = "GraphQL implementation for Python, a port of GraphQL.js, the JavaScript reference implementation for GraphQL." optional = true python-versions = ">=3.6,<4" files = [ {file = "graphql-core-3.2.3.tar.gz", hash = "sha256:06d2aad0ac723e35b1cb47885d3e5c45e956a53bc1b209a9fc5369007fe46676"}, {file = "graphql_core-3.2.3-py3-none-any.whl", hash = "sha256:5766780452bd5ec8ba133f8bf287dc92713e3868ddd83aee4faab9fc3e303dc3"}, ] [[package]] name = "greenlet" version = "2.0.1" description = "Lightweight in-process concurrent programming" optional = false python-versions = ">=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*" files = [ {file = "greenlet-2.0.1-cp27-cp27m-macosx_10_14_x86_64.whl", hash = "sha256:9ed358312e63bf683b9ef22c8e442ef6c5c02973f0c2a939ec1d7b50c974015c"}, {file = "greenlet-2.0.1-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:4f09b0010e55bec3239278f642a8a506b91034f03a4fb28289a7d448a67f1515"}, {file = "greenlet-2.0.1-cp27-cp27m-win32.whl", hash = "sha256:1407fe45246632d0ffb7a3f4a520ba4e6051fc2cbd61ba1f806900c27f47706a"}, {file = "greenlet-2.0.1-cp27-cp27m-win_amd64.whl", hash = "sha256:3001d00eba6bbf084ae60ec7f4bb8ed375748f53aeaefaf2a37d9f0370558524"}, {file = "greenlet-2.0.1-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:d566b82e92ff2e09dd6342df7e0eb4ff6275a3f08db284888dcd98134dbd4243"}, {file = "greenlet-2.0.1-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:0722c9be0797f544a3ed212569ca3fe3d9d1a1b13942d10dd6f0e8601e484d26"}, {file = "greenlet-2.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d37990425b4687ade27810e3b1a1c37825d242ebc275066cfee8cb6b8829ccd"}, {file = "greenlet-2.0.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:be35822f35f99dcc48152c9839d0171a06186f2d71ef76dc57fa556cc9bf6b45"}, {file = "greenlet-2.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c140e7eb5ce47249668056edf3b7e9900c6a2e22fb0eaf0513f18a1b2c14e1da"}, {file = "greenlet-2.0.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d21681f09e297a5adaa73060737e3aa1279a13ecdcfcc6ef66c292cb25125b2d"}, {file = "greenlet-2.0.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fb412b7db83fe56847df9c47b6fe3f13911b06339c2aa02dcc09dce8bbf582cd"}, {file = "greenlet-2.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:c6a08799e9e88052221adca55741bf106ec7ea0710bca635c208b751f0d5b617"}, {file = "greenlet-2.0.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:9e112e03d37987d7b90c1e98ba5e1b59e1645226d78d73282f45b326f7bddcb9"}, {file = "greenlet-2.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:56961cfca7da2fdd178f95ca407fa330c64f33289e1804b592a77d5593d9bd94"}, {file = "greenlet-2.0.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:13ba6e8e326e2116c954074c994da14954982ba2795aebb881c07ac5d093a58a"}, {file = "greenlet-2.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1bf633a50cc93ed17e494015897361010fc08700d92676c87931d3ea464123ce"}, {file = "greenlet-2.0.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:9f2c221eecb7ead00b8e3ddb913c67f75cba078fd1d326053225a3f59d850d72"}, {file = "greenlet-2.0.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:13ebf93c343dd8bd010cd98e617cb4c1c1f352a0cf2524c82d3814154116aa82"}, {file = "greenlet-2.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:6f61d71bbc9b4a3de768371b210d906726535d6ca43506737682caa754b956cd"}, {file = "greenlet-2.0.1-cp35-cp35m-macosx_10_14_x86_64.whl", hash = "sha256:2d0bac0385d2b43a7bd1d651621a4e0f1380abc63d6fb1012213a401cbd5bf8f"}, {file = "greenlet-2.0.1-cp35-cp35m-manylinux2010_x86_64.whl", hash = "sha256:f6327b6907b4cb72f650a5b7b1be23a2aab395017aa6f1adb13069d66360eb3f"}, {file = "greenlet-2.0.1-cp35-cp35m-win32.whl", hash = "sha256:81b0ea3715bf6a848d6f7149d25bf018fd24554a4be01fcbbe3fdc78e890b955"}, {file = "greenlet-2.0.1-cp35-cp35m-win_amd64.whl", hash = "sha256:38255a3f1e8942573b067510f9611fc9e38196077b0c8eb7a8c795e105f9ce77"}, {file = "greenlet-2.0.1-cp36-cp36m-macosx_10_14_x86_64.whl", hash = "sha256:04957dc96669be041e0c260964cfef4c77287f07c40452e61abe19d647505581"}, {file = "greenlet-2.0.1-cp36-cp36m-manylinux2010_x86_64.whl", hash = "sha256:4aeaebcd91d9fee9aa768c1b39cb12214b30bf36d2b7370505a9f2165fedd8d9"}, {file = "greenlet-2.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:974a39bdb8c90a85982cdb78a103a32e0b1be986d411303064b28a80611f6e51"}, {file = "greenlet-2.0.1-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8dca09dedf1bd8684767bc736cc20c97c29bc0c04c413e3276e0962cd7aeb148"}, {file = "greenlet-2.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a4c0757db9bd08470ff8277791795e70d0bf035a011a528ee9a5ce9454b6cba2"}, {file = "greenlet-2.0.1-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:5067920de254f1a2dee8d3d9d7e4e03718e8fd2d2d9db962c8c9fa781ae82a39"}, {file = "greenlet-2.0.1-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:5a8e05057fab2a365c81abc696cb753da7549d20266e8511eb6c9d9f72fe3e92"}, {file = "greenlet-2.0.1-cp36-cp36m-win32.whl", hash = "sha256:3d75b8d013086b08e801fbbb896f7d5c9e6ccd44f13a9241d2bf7c0df9eda928"}, {file = "greenlet-2.0.1-cp36-cp36m-win_amd64.whl", hash = "sha256:097e3dae69321e9100202fc62977f687454cd0ea147d0fd5a766e57450c569fd"}, {file = "greenlet-2.0.1-cp37-cp37m-macosx_10_15_x86_64.whl", hash = "sha256:cb242fc2cda5a307a7698c93173d3627a2a90d00507bccf5bc228851e8304963"}, {file = "greenlet-2.0.1-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:72b00a8e7c25dcea5946692a2485b1a0c0661ed93ecfedfa9b6687bd89a24ef5"}, {file = "greenlet-2.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d5b0ff9878333823226d270417f24f4d06f235cb3e54d1103b71ea537a6a86ce"}, {file = "greenlet-2.0.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:be9e0fb2ada7e5124f5282d6381903183ecc73ea019568d6d63d33f25b2a9000"}, {file = "greenlet-2.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b493db84d124805865adc587532ebad30efa68f79ad68f11b336e0a51ec86c2"}, {file = "greenlet-2.0.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:0459d94f73265744fee4c2d5ec44c6f34aa8a31017e6e9de770f7bcf29710be9"}, {file = "greenlet-2.0.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:a20d33124935d27b80e6fdacbd34205732660e0a1d35d8b10b3328179a2b51a1"}, {file = "greenlet-2.0.1-cp37-cp37m-win32.whl", hash = "sha256:ea688d11707d30e212e0110a1aac7f7f3f542a259235d396f88be68b649e47d1"}, {file = "greenlet-2.0.1-cp37-cp37m-win_amd64.whl", hash = "sha256:afe07421c969e259e9403c3bb658968702bc3b78ec0b6fde3ae1e73440529c23"}, {file = "greenlet-2.0.1-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:cd4ccc364cf75d1422e66e247e52a93da6a9b73cefa8cad696f3cbbb75af179d"}, {file = "greenlet-2.0.1-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:4c8b1c43e75c42a6cafcc71defa9e01ead39ae80bd733a2608b297412beede68"}, {file = "greenlet-2.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:659f167f419a4609bc0516fb18ea69ed39dbb25594934bd2dd4d0401660e8a1e"}, {file = "greenlet-2.0.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:356e4519d4dfa766d50ecc498544b44c0249b6de66426041d7f8b751de4d6b48"}, {file = "greenlet-2.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:811e1d37d60b47cb8126e0a929b58c046251f28117cb16fcd371eed61f66b764"}, {file = "greenlet-2.0.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:d38ffd0e81ba8ef347d2be0772e899c289b59ff150ebbbbe05dc61b1246eb4e0"}, {file = "greenlet-2.0.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:0109af1138afbfb8ae647e31a2b1ab030f58b21dd8528c27beaeb0093b7938a9"}, {file = "greenlet-2.0.1-cp38-cp38-win32.whl", hash = "sha256:88c8d517e78acdf7df8a2134a3c4b964415b575d2840a2746ddb1cc6175f8608"}, {file = "greenlet-2.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:d6ee1aa7ab36475035eb48c01efae87d37936a8173fc4d7b10bb02c2d75dd8f6"}, {file = "greenlet-2.0.1-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:b1992ba9d4780d9af9726bbcef6a1db12d9ab1ccc35e5773685a24b7fb2758eb"}, {file = "greenlet-2.0.1-cp39-cp39-manylinux2010_x86_64.whl", hash = "sha256:b5e83e4de81dcc9425598d9469a624826a0b1211380ac444c7c791d4a2137c19"}, {file = "greenlet-2.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:505138d4fa69462447a562a7c2ef723c6025ba12ac04478bc1ce2fcc279a2db5"}, {file = "greenlet-2.0.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cce1e90dd302f45716a7715517c6aa0468af0bf38e814ad4eab58e88fc09f7f7"}, {file = "greenlet-2.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e9744c657d896c7b580455e739899e492a4a452e2dd4d2b3e459f6b244a638d"}, {file = "greenlet-2.0.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:662e8f7cad915ba75d8017b3e601afc01ef20deeeabf281bd00369de196d7726"}, {file = "greenlet-2.0.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:41b825d65f31e394b523c84db84f9383a2f7eefc13d987f308f4663794d2687e"}, {file = "greenlet-2.0.1-cp39-cp39-win32.whl", hash = "sha256:db38f80540083ea33bdab614a9d28bcec4b54daa5aff1668d7827a9fc769ae0a"}, {file = "greenlet-2.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:b23d2a46d53210b498e5b701a1913697671988f4bf8e10f935433f6e7c332fb6"}, {file = "greenlet-2.0.1.tar.gz", hash = "sha256:42e602564460da0e8ee67cb6d7236363ee5e131aa15943b6670e44e5c2ed0f67"}, ] [package.extras] docs = ["Sphinx", "docutils (<0.18)"] test = ["faulthandler", "objgraph", "psutil"] [[package]] name = "grpcio" version = "1.47.5" description = "HTTP/2-based RPC framework" optional = false python-versions = ">=3.6" files = [ {file = "grpcio-1.47.5-cp310-cp310-linux_armv7l.whl", hash = "sha256:acc73289d0c44650aa1f21eccfa967f5623b01c3b5e2b4596fe5f9c5bf10956d"}, {file = "grpcio-1.47.5-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:f3174c798959998876d546944523a558f78a9b9feb22a2cbaaa3822f2e158653"}, {file = "grpcio-1.47.5-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:64401ee6d54b4d5869bcba4be3cae9f2e335c44a39ba1e29991ad22cfe2abacb"}, {file = "grpcio-1.47.5-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:39a07eb5e7ec9277e5d124fb0e2d4f51ddbaadc2abdd27e8bbf1716dcf45e581"}, {file = "grpcio-1.47.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:874b138ca95a6375ae6f6a12c10a348827c9aa8fbd05d025b87b5e050ab55b46"}, {file = "grpcio-1.47.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:90539369afba42fc921cdda9d5f697a421f05a2e82ba58342ffbe88aa586019e"}, {file = "grpcio-1.47.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:2b18f970514bbc76547928e26d0cec06996ce3f947a3634b3adbe79d0e48e980"}, {file = "grpcio-1.47.5-cp310-cp310-win32.whl", hash = "sha256:44c52923be0c4a0f662de43644679c6356960c38c4edf44864c23b998693c7cc"}, {file = "grpcio-1.47.5-cp310-cp310-win_amd64.whl", hash = "sha256:07761f427551fced386db8c78701d6a167b2a682aa8df808303dd0a0d44bf6c9"}, {file = "grpcio-1.47.5-cp36-cp36m-linux_armv7l.whl", hash = "sha256:10eb026bf75568de06933366f0340d2b4b207425c74a5640aa1812b8b69e7d9d"}, {file = "grpcio-1.47.5-cp36-cp36m-macosx_10_10_universal2.whl", hash = "sha256:4f8e7fba6b1150a63aebd04d03be779de4ea4c4a8b28869e7a3c8f0b3ec59edc"}, {file = "grpcio-1.47.5-cp36-cp36m-manylinux_2_17_aarch64.whl", hash = "sha256:36d93b19c214bc654fc50ae65cce84b8f7698159191b9d3f21f9ad92ae7bc325"}, {file = "grpcio-1.47.5-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4e59f916bf58528e55893743151c6bd9f0a393fddfe411a6fffd29a300e6acf2"}, {file = "grpcio-1.47.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18f8b2d316a3be464eb2a20afa7026a235a07a0094be879876611206d8026679"}, {file = "grpcio-1.47.5-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:0c3076957cd2aea34fe69384453315fd765948eb6cb73a12f332277308d04b76"}, {file = "grpcio-1.47.5-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:007f5ad07d2f3a4a422c1df589a0d25e918b96d8f6069cb6f0254386a5f09262"}, {file = "grpcio-1.47.5-cp36-cp36m-win32.whl", hash = "sha256:01ac149a5ca9512277b1d2fe85687099f3e442c6f9f924eae003a6700735e23e"}, {file = "grpcio-1.47.5-cp36-cp36m-win_amd64.whl", hash = "sha256:a32ccc88950f2be619157201161e70a5e5ed9e2427662bb2e60f1a8cea7d0db6"}, {file = "grpcio-1.47.5-cp37-cp37m-linux_armv7l.whl", hash = "sha256:ec71f15258e086acadb13ec06e4e4c54eb0f5455cd4c618997f847874d5ff9ea"}, {file = "grpcio-1.47.5-cp37-cp37m-macosx_10_10_universal2.whl", hash = "sha256:4bbf5a63497dbd5e44c4335cab153796a4274be17ca40ec971a7749c3f4fef6a"}, {file = "grpcio-1.47.5-cp37-cp37m-manylinux_2_17_aarch64.whl", hash = "sha256:11e1bc97e88232201256b718c63a8a1fd86ec6fca3a501293be5c5e423de9d56"}, {file = "grpcio-1.47.5-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e568d84fed80713d2fa3221552beee27ed8034f7eff52bb7871bf5ffe4d4ca78"}, {file = "grpcio-1.47.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cb4c838de8e1e7194d3f9a679fd76cc44a1dbe81f18bd39ee233c72347d772bf"}, {file = "grpcio-1.47.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:a74c19baf2f8127b44b3f58e2a5801a17992dae9a20197b4a8fa26e2ea79742b"}, {file = "grpcio-1.47.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:e369ed5ecff11ef85666cabbb5736495604e052c8dc2c03a2104f99dfd0a59e3"}, {file = "grpcio-1.47.5-cp37-cp37m-win32.whl", hash = "sha256:ccb741fab5117aea981d4ac341d2ce1e588f515f83091807d4e2bb388ed59edd"}, {file = "grpcio-1.47.5-cp37-cp37m-win_amd64.whl", hash = "sha256:af9d3b075dfcbc343d44b0e98725ba6d56dc0669e61905a4e71e8f4409cfefbd"}, {file = "grpcio-1.47.5-cp38-cp38-linux_armv7l.whl", hash = "sha256:cac6847a4b9a7e7a1f270a71fef1c17c2e8a6b411c0ca48080ce1e08d284aded"}, {file = "grpcio-1.47.5-cp38-cp38-macosx_10_10_universal2.whl", hash = "sha256:54a3e17d155b6fb141e1fbb7c47d30556bec4c940b66ff4d9513536e2e214d4a"}, {file = "grpcio-1.47.5-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:d1873c0b84a0ffb129f75e7c8be45d2cae427baf0b090d15b9ff46c1841c3f53"}, {file = "grpcio-1.47.5-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e209df91cf8dfb335c2e26784702b0e12c20dc4de7b9b6d2cccd968146155f06"}, {file = "grpcio-1.47.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:350e2627684f93f8b59af9c76a03eeb4aa145ecc589569137d4518486f4f1727"}, {file = "grpcio-1.47.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:23754807314c5aa4c26eb1c50aaf506801a2f7825951100280d2c013b127436f"}, {file = "grpcio-1.47.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:503c3fa0045f3ef80aa1ad082eac6a888081da2e1cd793f281ed499831e4c498"}, {file = "grpcio-1.47.5-cp38-cp38-win32.whl", hash = "sha256:a4eecfbe994c88996461bd1459e43ea460952d4147f53e8c18e089764e6808f5"}, {file = "grpcio-1.47.5-cp38-cp38-win_amd64.whl", hash = "sha256:941927ae4d589a2fef5c22b9c47df9e5e613c737bd750bafc3a9547cc506017c"}, {file = "grpcio-1.47.5-cp39-cp39-linux_armv7l.whl", hash = "sha256:9891c77e69bd4109c25c1bea51d78fbc5ba2fcd9445bf99225bb8fb03d849913"}, {file = "grpcio-1.47.5-cp39-cp39-macosx_10_10_universal2.whl", hash = "sha256:61e83778d85dbbbd7446451ec28b7261e9ebba489cc8c262dfe8fedc119f769b"}, {file = "grpcio-1.47.5-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:21ccfc0e989531cbdc93c54a7581ea5f7c46bf585016d9320b4be042f1e02374"}, {file = "grpcio-1.47.5-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bea35a0114a39827ffe59f73950d242f95d59a9ac2009ae8da7b065c06f0a57f"}, {file = "grpcio-1.47.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:97e75b9e52eeb9d1335aaeecf581cb3cea7fc4bafd7bd675c83f208a386a42a8"}, {file = "grpcio-1.47.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:1fb86f95228827b55e860278d142326af4489c0f4220975780daff325fc87172"}, {file = "grpcio-1.47.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c9b83183525afe58dd9e7bb249f9e55df326e3c3834d09ea476c7a6bb12f73ee"}, {file = "grpcio-1.47.5-cp39-cp39-win32.whl", hash = "sha256:00bff7492875ab04ec5ed3d92550d8f8aa423151e187b79684c8a22c7a6f1670"}, {file = "grpcio-1.47.5-cp39-cp39-win_amd64.whl", hash = "sha256:2b32adae820cc0347e5e44efe91b661b436dbca73f25c5763cadb1cafd1dca10"}, {file = "grpcio-1.47.5.tar.gz", hash = "sha256:b62b8bea0c94b4603bb4c8332d8a814375120bea3c2dbeb71397213bde5ea832"}, ] [package.dependencies] six = ">=1.5.2" [package.extras] protobuf = ["grpcio-tools (>=1.47.5)"] [[package]] name = "grpcio-health-checking" version = "1.47.5" description = "Standard Health Checking Service for gRPC" optional = true python-versions = ">=3.6" files = [ {file = "grpcio-health-checking-1.47.5.tar.gz", hash = "sha256:74f36ef2ff704c46965bd74cdea51afc0bbcde641134c9d09ecb5063391db516"}, {file = "grpcio_health_checking-1.47.5-py3-none-any.whl", hash = "sha256:659b83138cb2b7db71777044d0caf58bab4f958fce972900f8577ebb4edca29d"}, ] [package.dependencies] grpcio = ">=1.47.5" protobuf = ">=3.12.0" [[package]] name = "grpcio-reflection" version = "1.47.5" description = "Standard Protobuf Reflection Service for gRPC" optional = true python-versions = ">=3.6" files = [ {file = "grpcio-reflection-1.47.5.tar.gz", hash = "sha256:ac391ec327861f16bc870638101fee80799eccf39c5b09e9ddd776d6854b9873"}, {file = "grpcio_reflection-1.47.5-py3-none-any.whl", hash = "sha256:8cfd222f2116b7e1bcd55bd2a1fcb168c5a9cd20310151d6278563f516e8ae1e"}, ] [package.dependencies] grpcio = ">=1.47.5" protobuf = ">=3.12.0" [[package]] name = "grpcio-tools" version = "1.47.5" description = "Protobuf code generator for gRPC" optional = true python-versions = ">=3.6" files = [ {file = "grpcio-tools-1.47.5.tar.gz", hash = "sha256:62ced60566a4cbcf35c57e887e2e68b4f108b3474ef3ec0022d38cd579345f92"}, {file = "grpcio_tools-1.47.5-cp310-cp310-linux_armv7l.whl", hash = "sha256:9f92c561b245a562110bd84d3b64b016c8af5afde39febf1f71553ae56f6e8e4"}, {file = "grpcio_tools-1.47.5-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:a0a991844a024705ad177cb858d36e3e6b329ea4a78b7f4c597b2817fc2692e7"}, {file = "grpcio_tools-1.47.5-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:935976d5436d4306de052d1e00848fa25abc667e185aaaffcd367915f33a67c7"}, {file = "grpcio_tools-1.47.5-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2481dba6a30d415a4756cd88cc380780e3f00bb41d56b8f6547bc3c09c6f4e7f"}, {file = "grpcio_tools-1.47.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e62176978faa96b21e4e821e7070b0feed919726ff730c0b3b7e8d106ddb45bf"}, {file = "grpcio_tools-1.47.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:728eb1f4ef6d380366a2de9940d1f910ece8bf4e44de5ca935cd16d4394e82ff"}, {file = "grpcio_tools-1.47.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:d58982c747e107f65c7307ec1646cce105b0785088287bf209f545377aeedaf4"}, {file = "grpcio_tools-1.47.5-cp310-cp310-win32.whl", hash = "sha256:ea6d8f07b087bc2d579b7727daee2abf38fe5dc475c9e7c4f16b4a2c31895319"}, {file = "grpcio_tools-1.47.5-cp310-cp310-win_amd64.whl", hash = "sha256:5e7a4e68072639fa767bde1011f5d83f4461a8e60651ea202af597777ee1ffd7"}, {file = "grpcio_tools-1.47.5-cp36-cp36m-linux_armv7l.whl", hash = "sha256:bb1e066fc50ef7503b024924858658692d3e98582a9727b156f2f845da70e11e"}, {file = "grpcio_tools-1.47.5-cp36-cp36m-macosx_10_10_universal2.whl", hash = "sha256:7d3e397a27e652ae6579f1f7dc3fc0c771db977ccaaded1fe113e882df425c15"}, {file = "grpcio_tools-1.47.5-cp36-cp36m-manylinux_2_17_aarch64.whl", hash = "sha256:b19d8f1e8422826d49fc428acc66b69aa450c70f7090681df32d535188edf524"}, {file = "grpcio_tools-1.47.5-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a0e017bd1022bc981fa1629e757e0d3d4a1991f999fb90ec714c2683fe05b8fa"}, {file = "grpcio_tools-1.47.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:abb56ea33c4a33ee3b707f62339fd579e1a8dbbfeb7665d7ff85ee837cf64794"}, {file = "grpcio_tools-1.47.5-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:02882ff2f703b75d343991608b39104f1621508cf407e427a75c1794ed0fac95"}, {file = "grpcio_tools-1.47.5-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:84395aacae4f8a3358ad648a8bacf6b15bbb8946d8cf73f47dc77cfe1a154d48"}, {file = "grpcio_tools-1.47.5-cp36-cp36m-win32.whl", hash = "sha256:de8901c64a1091cc474318e7a013af8c30feba34c7954c29ca8f477baf07db28"}, {file = "grpcio_tools-1.47.5-cp36-cp36m-win_amd64.whl", hash = "sha256:37cb5c3d94ba1efef0d17a66e5e69b177fc934389eda8b76b161a6623e45e714"}, {file = "grpcio_tools-1.47.5-cp37-cp37m-linux_armv7l.whl", hash = "sha256:5c2d3a35e9341ea9c68afe289054bd8604eda4214e6d916f97b19a316537a296"}, {file = "grpcio_tools-1.47.5-cp37-cp37m-macosx_10_10_universal2.whl", hash = "sha256:89733edb89ec28e52dd9cc25e90b78248b6edd265f564726be2a9c4b4ee78479"}, {file = "grpcio_tools-1.47.5-cp37-cp37m-manylinux_2_17_aarch64.whl", hash = "sha256:489f41535d779287759942c6cced93c4219ea53dad46ebdc4faca6220e1dba88"}, {file = "grpcio_tools-1.47.5-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:072c84f561912400363b81af6bf5424c38fab80f0c9436c0fe19b2e7c2bcf15c"}, {file = "grpcio_tools-1.47.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c650233420279f943bd1dcf286742aaeb4db7cc5f6554a5e8c16c2e4fa19a28f"}, {file = "grpcio_tools-1.47.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:dab220aba6b5777b16df5c5b3a30f831cdbc4f493eabdaf9f6585691bad5496a"}, {file = "grpcio_tools-1.47.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:309ca8508f361895ef2d4f533611272228d2412c8cae754b695673c7c65a2f8b"}, {file = "grpcio_tools-1.47.5-cp37-cp37m-win32.whl", hash = "sha256:f8ce5fb65e97866257943cbf6d504195ab55e01ef467988d86322a36041b6de8"}, {file = "grpcio_tools-1.47.5-cp37-cp37m-win_amd64.whl", hash = "sha256:b9154a18b0ad2bc4b9ceadedd7b67bb65b500b3427495b4d224a1a835aa55ce6"}, {file = "grpcio_tools-1.47.5-cp38-cp38-linux_armv7l.whl", hash = "sha256:aaa4063bc05a18f32ae98e414e2472477468b966b9a1425c41eec160250beff2"}, {file = "grpcio_tools-1.47.5-cp38-cp38-macosx_10_10_universal2.whl", hash = "sha256:093da28f8ce3a0eedd5370b9f09f815fb6c01fd663d60734eab5b300b9a305ec"}, {file = "grpcio_tools-1.47.5-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:0771f57585b9070086dec509b02fa2804a9d4c395e95cd7a6cb42d8f4b5683f7"}, {file = "grpcio_tools-1.47.5-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:68d4cdc674c8596da8e25cf37741aab3f07bdf38731510a92019e5ec57f5fcea"}, {file = "grpcio_tools-1.47.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:08fdce5549acca9fd7a45084c62e8ab0a1ca1c530bcbfa089625e9523f224023"}, {file = "grpcio_tools-1.47.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:8431b9ee083bec444ca6d48705b89774f97ba0a75e8c33ef3b9a2dc6ed2aa584"}, {file = "grpcio_tools-1.47.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:baf37376da0062155d728fb9a1d522ea8f5039ebf774885d269f7772cbc3a2e6"}, {file = "grpcio_tools-1.47.5-cp38-cp38-win32.whl", hash = "sha256:b65a59698f938fa59fd756799cd641c3755fb09cb95de008e4d67a9e5b1af6d5"}, {file = "grpcio_tools-1.47.5-cp38-cp38-win_amd64.whl", hash = "sha256:17c2b5ce8b3100c8da4ae5070d8d2c2466f174e66d8127fb85ef8a7937a03853"}, {file = "grpcio_tools-1.47.5-cp39-cp39-linux_armv7l.whl", hash = "sha256:9070301f079fef76fb0d51b84f393c6738587f3a16a2f0ced303362b0cc0ecf6"}, {file = "grpcio_tools-1.47.5-cp39-cp39-macosx_10_10_universal2.whl", hash = "sha256:5bcf01116a4d3bed2faf832f8c5618d1c69473576f3925240e3c5042dfbc115e"}, {file = "grpcio_tools-1.47.5-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:b555b954aa213eac8efe7df507a178c3ab7323df9f501846a1bbccdf81354831"}, {file = "grpcio_tools-1.47.5-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7604e08530b3edc688e41aa8af46051478d417b08afdf6fc2eafb5eb90528a26"}, {file = "grpcio_tools-1.47.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1d3f80818a560abee8189c4f0b074f45c16309b4596e013cb6ce105a022c5965"}, {file = "grpcio_tools-1.47.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:c801ebd7fa2304ff85aa15147f134aefe33132d85308c43e46f6a5be78b5a8a8"}, {file = "grpcio_tools-1.47.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:235adfc22e9c703533573344de1d2394ddd92b27c82eb259bb5fb46f885159b8"}, {file = "grpcio_tools-1.47.5-cp39-cp39-win32.whl", hash = "sha256:d659c257cbb48c843931b584d3c3da5473fa17275e0d04af79c9e9fdd6077179"}, {file = "grpcio_tools-1.47.5-cp39-cp39-win_amd64.whl", hash = "sha256:9d121c63ff2fddeae2c65f6675eb944f47808a242b647d80b4661b2c5e1e6732"}, ] [package.dependencies] grpcio = ">=1.47.5" protobuf = ">=3.12.0,<4.0dev" setuptools = "*" [[package]] name = "h11" version = "0.14.0" description = "A pure-Python, bring-your-own-I/O implementation of HTTP/1.1" optional = false python-versions = ">=3.7" files = [ {file = "h11-0.14.0-py3-none-any.whl", hash = "sha256:e3fe4ac4b851c468cc8363d500db52c2ead036020723024a109d37346efaa761"}, {file = "h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d"}, ] [[package]] name = "h2" version = "4.1.0" description = "HTTP/2 State-Machine based protocol implementation" optional = true python-versions = ">=3.6.1" files = [ {file = "h2-4.1.0-py3-none-any.whl", hash = "sha256:03a46bcf682256c95b5fd9e9a99c1323584c3eec6440d379b9903d709476bc6d"}, {file = "h2-4.1.0.tar.gz", hash = "sha256:a83aca08fbe7aacb79fec788c9c0bac936343560ed9ec18b82a13a12c28d2abb"}, ] [package.dependencies] hpack = ">=4.0,<5" hyperframe = ">=6.0,<7" [[package]] name = "h5py" version = "3.8.0" description = "Read and write HDF5 files from Python" optional = true python-versions = ">=3.7" files = [ {file = "h5py-3.8.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:533d7dad466ddb7e3b30af274b630eb7c1a6e4ddf01d1c373a0334dc2152110a"}, {file = "h5py-3.8.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c873ba9fd4fa875ad62ce0e4891725e257a8fe7f5abdbc17e51a5d54819be55c"}, {file = "h5py-3.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:98a240cd4c1bfd568aaa52ec42d263131a2582dab82d74d3d42a0d954cac12be"}, {file = "h5py-3.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c3389b63222b1c7a158bb7fe69d11ca00066740ec5574596d47a2fe5317f563a"}, {file = "h5py-3.8.0-cp310-cp310-win_amd64.whl", hash = "sha256:7f3350fc0a8407d668b13247861c2acd23f7f5fe7d060a3ad9b0820f5fcbcae0"}, {file = "h5py-3.8.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:db03e3f2c716205fbdabb34d0848459840585225eb97b4f08998c743821ca323"}, {file = "h5py-3.8.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:36761693efbe53df179627a775476dcbc37727d6e920958277a7efbc18f1fb73"}, {file = "h5py-3.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4a506fc223def428f4329e7e1f9fe1c8c593eab226e7c0942c8d75308ad49950"}, {file = "h5py-3.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:33b15aae79e9147aebe1d0e54099cbcde8d65e3e227cd5b59e49b1272aa0e09d"}, {file = "h5py-3.8.0-cp311-cp311-win_amd64.whl", hash = "sha256:9f6f6ffadd6bfa9b2c5b334805eb4b19ca0a5620433659d8f7fb86692c40a359"}, {file = "h5py-3.8.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:8f55d9c6c84d7d09c79fb85979e97b81ec6071cc776a97eb6b96f8f6ec767323"}, {file = "h5py-3.8.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b685453e538b2b5934c58a644ac3f3b3d0cec1a01b6fb26d57388e9f9b674ad0"}, {file = "h5py-3.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:377865821fe80ad984d003723d6f8890bd54ceeb5981b43c0313b9df95411b30"}, {file = "h5py-3.8.0-cp37-cp37m-win_amd64.whl", hash = "sha256:0fef76e10b9216657fa37e7edff6d8be0709b25bd5066474c229b56cf0098df9"}, {file = "h5py-3.8.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:26ffc344ec9984d2cd3ca0265007299a8bac8d85c1ad48f4639d8d3aed2af171"}, {file = "h5py-3.8.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:bacaa1c16810dd2b3e4417f8e730971b7c4d53d234de61fe4a918db78e80e1e4"}, {file = "h5py-3.8.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bae730580ae928de409d63cbe4fdca4c82c3ad2bed30511d19d34e995d63c77e"}, {file = "h5py-3.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f47f757d1b76f0ecb8aa0508ec8d1b390df67a8b67ee2515dc1b046f3a1596ea"}, {file = "h5py-3.8.0-cp38-cp38-win_amd64.whl", hash = "sha256:f891b17e3a3e974e93f9e34e7cca9f530806543571ce078998676a555837d91d"}, {file = "h5py-3.8.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:290e00fa2de74a10688d1bac98d5a9cdd43f14f58e562c580b5b3dfbd358ecae"}, {file = "h5py-3.8.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:03890b1c123d024fb0239a3279737d5432498c1901c354f8b10d8221d1d16235"}, {file = "h5py-3.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b7865de06779b14d98068da387333ad9bf2756b5b579cc887fac169bc08f87c3"}, {file = "h5py-3.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:49bc857635f935fa30e92e61ac1e87496df8f260a6945a3235e43a9890426866"}, {file = "h5py-3.8.0-cp39-cp39-win_amd64.whl", hash = "sha256:5fd2252d1fc364ba0e93dd0b7089f4906b66805cb4e6aca7fa8874ac08649647"}, {file = "h5py-3.8.0.tar.gz", hash = "sha256:6fead82f0c4000cf38d53f9c030780d81bfa0220218aee13b90b7701c937d95f"}, ] [package.dependencies] numpy = ">=1.14.5" [[package]] name = "hnswlib" version = "0.7.0" description = "hnswlib" optional = false python-versions = "*" files = [ {file = "hnswlib-0.7.0.tar.gz", hash = "sha256:bc459668e7e44bb7454b256b90c98c5af750653919d9a91698dafcf416cf64c4"}, ] [package.dependencies] numpy = "*" [[package]] name = "hpack" version = "4.0.0" description = "Pure-Python HPACK header compression" optional = true python-versions = ">=3.6.1" files = [ {file = "hpack-4.0.0-py3-none-any.whl", hash = "sha256:84a076fad3dc9a9f8063ccb8041ef100867b1878b25ef0ee63847a5d53818a6c"}, {file = "hpack-4.0.0.tar.gz", hash = "sha256:fc41de0c63e687ebffde81187a948221294896f6bdc0ae2312708df339430095"}, ] [[package]] name = "html2text" version = "2020.1.16" description = "Turn HTML into equivalent Markdown-structured text." optional = true python-versions = ">=3.5" files = [ {file = "html2text-2020.1.16-py3-none-any.whl", hash = "sha256:c7c629882da0cf377d66f073329ccf34a12ed2adf0169b9285ae4e63ef54c82b"}, {file = "html2text-2020.1.16.tar.gz", hash = "sha256:e296318e16b059ddb97f7a8a1d6a5c1d7af4544049a01e261731d2d5cc277bbb"}, ] [[package]] name = "httpcore" version = "0.17.1" description = "A minimal low-level HTTP client." optional = true python-versions = ">=3.7" files = [ {file = "httpcore-0.17.1-py3-none-any.whl", hash = "sha256:628e768aaeec1f7effdc6408ba1c3cdbd7487c1fc570f7d66844ec4f003e1ca4"}, {file = "httpcore-0.17.1.tar.gz", hash = "sha256:caf508597c525f9b8bfff187e270666309f63115af30f7d68b16143a403c8356"}, ] [package.dependencies] anyio = ">=3.0,<5.0" certifi = "*" h11 = ">=0.13,<0.15" sniffio = "==1.*" [package.extras] http2 = ["h2 (>=3,<5)"] socks = ["socksio (==1.*)"] [[package]] name = "httplib2" version = "0.22.0" description = "A comprehensive HTTP client library." optional = true python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ {file = "httplib2-0.22.0-py3-none-any.whl", hash = "sha256:14ae0a53c1ba8f3d37e9e27cf37eabb0fb9980f435ba405d546948b009dd64dc"}, {file = "httplib2-0.22.0.tar.gz", hash = "sha256:d7a10bc5ef5ab08322488bde8c726eeee5c8618723fdb399597ec58f3d82df81"}, ] [package.dependencies] pyparsing = {version = ">=2.4.2,<3.0.0 || >3.0.0,<3.0.1 || >3.0.1,<3.0.2 || >3.0.2,<3.0.3 || >3.0.3,<4", markers = "python_version > \"3.0\""} [[package]] name = "httptools" version = "0.5.0" description = "A collection of framework independent HTTP protocol utils." optional = false python-versions = ">=3.5.0" files = [ {file = "httptools-0.5.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:8f470c79061599a126d74385623ff4744c4e0f4a0997a353a44923c0b561ee51"}, {file = "httptools-0.5.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e90491a4d77d0cb82e0e7a9cb35d86284c677402e4ce7ba6b448ccc7325c5421"}, {file = "httptools-0.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c1d2357f791b12d86faced7b5736dea9ef4f5ecdc6c3f253e445ee82da579449"}, {file = "httptools-0.5.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1f90cd6fd97c9a1b7fe9215e60c3bd97336742a0857f00a4cb31547bc22560c2"}, {file = "httptools-0.5.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:5230a99e724a1bdbbf236a1b58d6e8504b912b0552721c7c6b8570925ee0ccde"}, {file = "httptools-0.5.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:3a47a34f6015dd52c9eb629c0f5a8a5193e47bf2a12d9a3194d231eaf1bc451a"}, {file = "httptools-0.5.0-cp310-cp310-win_amd64.whl", hash = "sha256:24bb4bb8ac3882f90aa95403a1cb48465de877e2d5298ad6ddcfdebec060787d"}, {file = "httptools-0.5.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:e67d4f8734f8054d2c4858570cc4b233bf753f56e85217de4dfb2495904cf02e"}, {file = "httptools-0.5.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7e5eefc58d20e4c2da82c78d91b2906f1a947ef42bd668db05f4ab4201a99f49"}, {file = "httptools-0.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0297822cea9f90a38df29f48e40b42ac3d48a28637368f3ec6d15eebefd182f9"}, {file = "httptools-0.5.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:557be7fbf2bfa4a2ec65192c254e151684545ebab45eca5d50477d562c40f986"}, {file = "httptools-0.5.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:54465401dbbec9a6a42cf737627fb0f014d50dc7365a6b6cd57753f151a86ff0"}, {file = "httptools-0.5.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:4d9ebac23d2de960726ce45f49d70eb5466725c0087a078866043dad115f850f"}, {file = "httptools-0.5.0-cp311-cp311-win_amd64.whl", hash = "sha256:e8a34e4c0ab7b1ca17b8763613783e2458e77938092c18ac919420ab8655c8c1"}, {file = "httptools-0.5.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:f659d7a48401158c59933904040085c200b4be631cb5f23a7d561fbae593ec1f"}, {file = "httptools-0.5.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ef1616b3ba965cd68e6f759eeb5d34fbf596a79e84215eeceebf34ba3f61fdc7"}, {file = "httptools-0.5.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3625a55886257755cb15194efbf209584754e31d336e09e2ffe0685a76cb4b60"}, {file = "httptools-0.5.0-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:72ad589ba5e4a87e1d404cc1cb1b5780bfcb16e2aec957b88ce15fe879cc08ca"}, {file = "httptools-0.5.0-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:850fec36c48df5a790aa735417dca8ce7d4b48d59b3ebd6f83e88a8125cde324"}, {file = "httptools-0.5.0-cp36-cp36m-win_amd64.whl", hash = "sha256:f222e1e9d3f13b68ff8a835574eda02e67277d51631d69d7cf7f8e07df678c86"}, {file = "httptools-0.5.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3cb8acf8f951363b617a8420768a9f249099b92e703c052f9a51b66342eea89b"}, {file = "httptools-0.5.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:550059885dc9c19a072ca6d6735739d879be3b5959ec218ba3e013fd2255a11b"}, {file = "httptools-0.5.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a04fe458a4597aa559b79c7f48fe3dceabef0f69f562daf5c5e926b153817281"}, {file = "httptools-0.5.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:7d0c1044bce274ec6711f0770fd2d5544fe392591d204c68328e60a46f88843b"}, {file = "httptools-0.5.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:c6eeefd4435055a8ebb6c5cc36111b8591c192c56a95b45fe2af22d9881eee25"}, {file = "httptools-0.5.0-cp37-cp37m-win_amd64.whl", hash = "sha256:5b65be160adcd9de7a7e6413a4966665756e263f0d5ddeffde277ffeee0576a5"}, {file = "httptools-0.5.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:fe9c766a0c35b7e3d6b6939393c8dfdd5da3ac5dec7f971ec9134f284c6c36d6"}, {file = "httptools-0.5.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:85b392aba273566c3d5596a0a490978c085b79700814fb22bfd537d381dd230c"}, {file = "httptools-0.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f5e3088f4ed33947e16fd865b8200f9cfae1144f41b64a8cf19b599508e096bc"}, {file = "httptools-0.5.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8c2a56b6aad7cc8f5551d8e04ff5a319d203f9d870398b94702300de50190f63"}, {file = "httptools-0.5.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:9b571b281a19762adb3f48a7731f6842f920fa71108aff9be49888320ac3e24d"}, {file = "httptools-0.5.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:aa47ffcf70ba6f7848349b8a6f9b481ee0f7637931d91a9860a1838bfc586901"}, {file = "httptools-0.5.0-cp38-cp38-win_amd64.whl", hash = "sha256:bede7ee075e54b9a5bde695b4fc8f569f30185891796b2e4e09e2226801d09bd"}, {file = "httptools-0.5.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:64eba6f168803a7469866a9c9b5263a7463fa8b7a25b35e547492aa7322036b6"}, {file = "httptools-0.5.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4b098e4bb1174096a93f48f6193e7d9aa7071506a5877da09a783509ca5fff42"}, {file = "httptools-0.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9423a2de923820c7e82e18980b937893f4aa8251c43684fa1772e341f6e06887"}, {file = "httptools-0.5.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ca1b7becf7d9d3ccdbb2f038f665c0f4857e08e1d8481cbcc1a86a0afcfb62b2"}, {file = "httptools-0.5.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:50d4613025f15f4b11f1c54bbed4761c0020f7f921b95143ad6d58c151198142"}, {file = "httptools-0.5.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8ffce9d81c825ac1deaa13bc9694c0562e2840a48ba21cfc9f3b4c922c16f372"}, {file = "httptools-0.5.0-cp39-cp39-win_amd64.whl", hash = "sha256:1af91b3650ce518d226466f30bbba5b6376dbd3ddb1b2be8b0658c6799dd450b"}, {file = "httptools-0.5.0.tar.gz", hash = "sha256:295874861c173f9101960bba332429bb77ed4dcd8cdf5cee9922eb00e4f6bc09"}, ] [package.extras] test = ["Cython (>=0.29.24,<0.30.0)"] [[package]] name = "httpx" version = "0.24.0" description = "The next generation HTTP client." optional = true python-versions = ">=3.7" files = [ {file = "httpx-0.24.0-py3-none-any.whl", hash = "sha256:447556b50c1921c351ea54b4fe79d91b724ed2b027462ab9a329465d147d5a4e"}, {file = "httpx-0.24.0.tar.gz", hash = "sha256:507d676fc3e26110d41df7d35ebd8b3b8585052450f4097401c9be59d928c63e"}, ] [package.dependencies] certifi = "*" h2 = {version = ">=3,<5", optional = true, markers = "extra == \"http2\""} httpcore = ">=0.15.0,<0.18.0" idna = "*" sniffio = "*" [package.extras] brotli = ["brotli", "brotlicffi"] cli = ["click (==8.*)", "pygments (==2.*)", "rich (>=10,<14)"] http2 = ["h2 (>=3,<5)"] socks = ["socksio (==1.*)"] [[package]] name = "huggingface-hub" version = "0.14.1" description = "Client library to download and publish models, datasets and other repos on the huggingface.co hub" optional = false python-versions = ">=3.7.0" files = [ {file = "huggingface_hub-0.14.1-py3-none-any.whl", hash = "sha256:9fc619170d800ff3793ad37c9757c255c8783051e1b5b00501205eb43ccc4f27"}, {file = "huggingface_hub-0.14.1.tar.gz", hash = "sha256:9ab899af8e10922eac65e290d60ab956882ab0bf643e3d990b1394b6b47b7fbc"}, ] [package.dependencies] filelock = "*" fsspec = "*" packaging = ">=20.9" pyyaml = ">=5.1" requests = "*" tqdm = ">=4.42.1" typing-extensions = ">=3.7.4.3" [package.extras] all = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "black (>=23.1,<24.0)", "gradio", "jedi", "mypy (==0.982)", "pytest", "pytest-cov", "pytest-env", "pytest-xdist", "ruff (>=0.0.241)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3"] cli = ["InquirerPy (==0.3.4)"] dev = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "black (>=23.1,<24.0)", "gradio", "jedi", "mypy (==0.982)", "pytest", "pytest-cov", "pytest-env", "pytest-xdist", "ruff (>=0.0.241)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3"] fastai = ["fastai (>=2.4)", "fastcore (>=1.3.27)", "toml"] quality = ["black (>=23.1,<24.0)", "mypy (==0.982)", "ruff (>=0.0.241)"] tensorflow = ["graphviz", "pydot", "tensorflow"] testing = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "gradio", "jedi", "pytest", "pytest-cov", "pytest-env", "pytest-xdist", "soundfile"] torch = ["torch"] typing = ["types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3"] [[package]] name = "humbug" version = "0.3.1" description = "Humbug: Do you build developer tools? Humbug helps you know your users." optional = false python-versions = "*" files = [ {file = "humbug-0.3.1-py3-none-any.whl", hash = "sha256:f9e3c8dd60a8ba943194f7ed45caa66e5db43d99f3745c60030ec40e6313a927"}, {file = "humbug-0.3.1.tar.gz", hash = "sha256:a123ee31551f5465ca7c1ee3da0862a4e0a0e5c8a7b762a863d833da624db215"}, ] [package.dependencies] requests = "*" [package.extras] dev = ["black", "mypy", "types-dataclasses", "types-pkg-resources", "types-psutil", "types-requests", "wheel"] distribute = ["setuptools", "twine", "wheel"] profile = ["GPUtil", "psutil", "types-psutil"] [[package]] name = "hyperframe" version = "6.0.1" description = "HTTP/2 framing layer for Python" optional = true python-versions = ">=3.6.1" files = [ {file = "hyperframe-6.0.1-py3-none-any.whl", hash = "sha256:0ec6bafd80d8ad2195c4f03aacba3a8265e57bc4cff261e802bf39970ed02a15"}, {file = "hyperframe-6.0.1.tar.gz", hash = "sha256:ae510046231dc8e9ecb1a6586f63d2347bf4c8905914aa84ba585ae85f28a914"}, ] [[package]] name = "idna" version = "3.4" description = "Internationalized Domain Names in Applications (IDNA)" optional = false python-versions = ">=3.5" files = [ {file = "idna-3.4-py3-none-any.whl", hash = "sha256:90b77e79eaa3eba6de819a0c442c0b4ceefc341a7a2ab77d7562bf49f425c5c2"}, {file = "idna-3.4.tar.gz", hash = "sha256:814f528e8dead7d329833b91c5faa87d60bf71824cd12a7530b5526063d02cb4"}, ] [[package]] name = "imagesize" version = "1.4.1" description = "Getting image size from png/jpeg/jpeg2000/gif file" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ {file = "imagesize-1.4.1-py2.py3-none-any.whl", hash = "sha256:0d8d18d08f840c19d0ee7ca1fd82490fdc3729b7ac93f49870406ddde8ef8d8b"}, {file = "imagesize-1.4.1.tar.gz", hash = "sha256:69150444affb9cb0d5cc5a92b3676f0b2fb7cd9ae39e947a5e11a36b4497cd4a"}, ] [[package]] name = "importlib-metadata" version = "6.0.1" description = "Read metadata from Python packages" optional = false python-versions = ">=3.7" files = [ {file = "importlib_metadata-6.0.1-py3-none-any.whl", hash = "sha256:1543daade821c89b1c4a55986c326f36e54f2e6ca3bad96be4563d0acb74dcd4"}, {file = "importlib_metadata-6.0.1.tar.gz", hash = "sha256:950127d57e35a806d520817d3e92eec3f19fdae9f0cd99da77a407c5aabefba3"}, ] [package.dependencies] zipp = ">=0.5" [package.extras] docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] perf = ["ipython"] testing = ["flake8 (<5)", "flufl.flake8", "importlib-resources (>=1.3)", "packaging", "pyfakefs", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)", "pytest-perf (>=0.9.2)"] [[package]] name = "importlib-resources" version = "5.12.0" description = "Read resources from Python packages" optional = false python-versions = ">=3.7" files = [ {file = "importlib_resources-5.12.0-py3-none-any.whl", hash = "sha256:7b1deeebbf351c7578e09bf2f63fa2ce8b5ffec296e0d349139d43cca061a81a"}, {file = "importlib_resources-5.12.0.tar.gz", hash = "sha256:4be82589bf5c1d7999aedf2a45159d10cb3ca4f19b2271f8792bc8e6da7b22f6"}, ] [package.dependencies] zipp = {version = ">=3.1.0", markers = "python_version < \"3.10\""} [package.extras] docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] testing = ["flake8 (<5)", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)"] [[package]] name = "inflection" version = "0.5.1" description = "A port of Ruby on Rails inflector to Python" optional = true python-versions = ">=3.5" files = [ {file = "inflection-0.5.1-py2.py3-none-any.whl", hash = "sha256:f38b2b640938a4f35ade69ac3d053042959b62a0f1076a5bbaa1b9526605a8a2"}, {file = "inflection-0.5.1.tar.gz", hash = "sha256:1a29730d366e996aaacffb2f1f1cb9593dc38e2ddd30c91250c6dde09ea9b417"}, ] [[package]] name = "iniconfig" version = "2.0.0" description = "brain-dead simple config-ini parsing" optional = false python-versions = ">=3.7" files = [ {file = "iniconfig-2.0.0-py3-none-any.whl", hash = "sha256:b6a85871a79d2e3b22d2d1b94ac2824226a63c6b741c88f7ae975f18b6778374"}, {file = "iniconfig-2.0.0.tar.gz", hash = "sha256:2d91e135bf72d31a410b17c16da610a82cb55f6b0477d1a902134b24a455b8b3"}, ] [[package]] name = "ipykernel" version = "6.23.1" description = "IPython Kernel for Jupyter" optional = false python-versions = ">=3.8" files = [ {file = "ipykernel-6.23.1-py3-none-any.whl", hash = "sha256:77aeffab056c21d16f1edccdc9e5ccbf7d96eb401bd6703610a21be8b068aadc"}, {file = "ipykernel-6.23.1.tar.gz", hash = "sha256:1aba0ae8453e15e9bc6b24e497ef6840114afcdb832ae597f32137fa19d42a6f"}, ] [package.dependencies] appnope = {version = "*", markers = "platform_system == \"Darwin\""} comm = ">=0.1.1" debugpy = ">=1.6.5" ipython = ">=7.23.1" jupyter-client = ">=6.1.12" jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" matplotlib-inline = ">=0.1" nest-asyncio = "*" packaging = "*" psutil = "*" pyzmq = ">=20" tornado = ">=6.1" traitlets = ">=5.4.0" [package.extras] cov = ["coverage[toml]", "curio", "matplotlib", "pytest-cov", "trio"] docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "trio"] pyqt5 = ["pyqt5"] pyside6 = ["pyside6"] test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio", "pytest-cov", "pytest-timeout"] [[package]] name = "ipython" version = "8.12.2" description = "IPython: Productive Interactive Computing" optional = false python-versions = ">=3.8" files = [ {file = "ipython-8.12.2-py3-none-any.whl", hash = "sha256:ea8801f15dfe4ffb76dea1b09b847430ffd70d827b41735c64a0638a04103bfc"}, {file = "ipython-8.12.2.tar.gz", hash = "sha256:c7b80eb7f5a855a88efc971fda506ff7a91c280b42cdae26643e0f601ea281ea"}, ] [package.dependencies] appnope = {version = "*", markers = "sys_platform == \"darwin\""} backcall = "*" colorama = {version = "*", markers = "sys_platform == \"win32\""} decorator = "*" jedi = ">=0.16" matplotlib-inline = "*" pexpect = {version = ">4.3", markers = "sys_platform != \"win32\""} pickleshare = "*" prompt-toolkit = ">=3.0.30,<3.0.37 || >3.0.37,<3.1.0" pygments = ">=2.4.0" stack-data = "*" traitlets = ">=5" typing-extensions = {version = "*", markers = "python_version < \"3.10\""} [package.extras] all = ["black", "curio", "docrepr", "ipykernel", "ipyparallel", "ipywidgets", "matplotlib", "matplotlib (!=3.2.0)", "nbconvert", "nbformat", "notebook", "numpy (>=1.21)", "pandas", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "qtconsole", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "trio", "typing-extensions"] black = ["black"] doc = ["docrepr", "ipykernel", "matplotlib", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "typing-extensions"] kernel = ["ipykernel"] nbconvert = ["nbconvert"] nbformat = ["nbformat"] notebook = ["ipywidgets", "notebook"] parallel = ["ipyparallel"] qtconsole = ["qtconsole"] test = ["pytest (<7.1)", "pytest-asyncio", "testpath"] test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.21)", "pandas", "pytest (<7.1)", "pytest-asyncio", "testpath", "trio"] [[package]] name = "ipython-genutils" version = "0.2.0" description = "Vestigial utilities from IPython" optional = false python-versions = "*" files = [ {file = "ipython_genutils-0.2.0-py2.py3-none-any.whl", hash = "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8"}, {file = "ipython_genutils-0.2.0.tar.gz", hash = "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8"}, ] [[package]] name = "ipywidgets" version = "8.0.6" description = "Jupyter interactive widgets" optional = false python-versions = ">=3.7" files = [ {file = "ipywidgets-8.0.6-py3-none-any.whl", hash = "sha256:a60bf8d2528997e05ac83fd19ea2fbe65f2e79fbe1b2b35779bdfc46c2941dcc"}, {file = "ipywidgets-8.0.6.tar.gz", hash = "sha256:de7d779f2045d60de9f6c25f653fdae2dba57898e6a1284494b3ba20b6893bb8"}, ] [package.dependencies] ipykernel = ">=4.5.1" ipython = ">=6.1.0" jupyterlab-widgets = ">=3.0.7,<3.1.0" traitlets = ">=4.3.1" widgetsnbextension = ">=4.0.7,<4.1.0" [package.extras] test = ["ipykernel", "jsonschema", "pytest (>=3.6.0)", "pytest-cov", "pytz"] [[package]] name = "isodate" version = "0.6.1" description = "An ISO 8601 date/time/duration parser and formatter" optional = true python-versions = "*" files = [ {file = "isodate-0.6.1-py2.py3-none-any.whl", hash = "sha256:0751eece944162659049d35f4f549ed815792b38793f07cf73381c1c87cbed96"}, {file = "isodate-0.6.1.tar.gz", hash = "sha256:48c5881de7e8b0a0d648cb024c8062dc84e7b840ed81e864c7614fd3c127bde9"}, ] [package.dependencies] six = "*" [[package]] name = "isoduration" version = "20.11.0" description = "Operations with ISO 8601 durations" optional = false python-versions = ">=3.7" files = [ {file = "isoduration-20.11.0-py3-none-any.whl", hash = "sha256:b2904c2a4228c3d44f409c8ae8e2370eb21a26f7ac2ec5446df141dde3452042"}, {file = "isoduration-20.11.0.tar.gz", hash = "sha256:ac2f9015137935279eac671f94f89eb00584f940f5dc49462a0c4ee692ba1bd9"}, ] [package.dependencies] arrow = ">=0.15.0" [[package]] name = "jaraco-context" version = "4.3.0" description = "Context managers by jaraco" optional = true python-versions = ">=3.7" files = [ {file = "jaraco.context-4.3.0-py3-none-any.whl", hash = "sha256:5d9e95ca0faa78943ed66f6bc658dd637430f16125d86988e77844c741ff2f11"}, {file = "jaraco.context-4.3.0.tar.gz", hash = "sha256:4dad2404540b936a20acedec53355bdaea223acb88fd329fa6de9261c941566e"}, ] [package.extras] docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] testing = ["flake8 (<5)", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)"] [[package]] name = "jcloud" version = "0.2.9" description = "Simplify deploying and managing Jina projects on Jina Cloud" optional = true python-versions = "*" files = [ {file = "jcloud-0.2.9.tar.gz", hash = "sha256:eaf8da685f8907e153ff752e6a4b945aeff548b8d94dfd650a035d8450ed547e"}, ] [package.dependencies] aiohttp = ">=3.8.0" jina-hubble-sdk = ">=0.26.10" packaging = "*" python-dateutil = "*" python-dotenv = "*" pyyaml = "*" rich = ">=12.0.0" [package.extras] test = ["black (==22.3.0)", "jina (>=3.7.0)", "mock", "pytest", "pytest-asyncio", "pytest-cov", "pytest-custom_exit_code", "pytest-env", "pytest-mock", "pytest-repeat", "pytest-reraise", "pytest-timeout"] [[package]] name = "jedi" version = "0.18.2" description = "An autocompletion tool for Python that can be used for text editors." optional = false python-versions = ">=3.6" files = [ {file = "jedi-0.18.2-py2.py3-none-any.whl", hash = "sha256:203c1fd9d969ab8f2119ec0a3342e0b49910045abe6af0a3ae83a5764d54639e"}, {file = "jedi-0.18.2.tar.gz", hash = "sha256:bae794c30d07f6d910d32a7048af09b5a39ed740918da923c6b780790ebac612"}, ] [package.dependencies] parso = ">=0.8.0,<0.9.0" [package.extras] docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alabaster (==0.7.12)", "babel (==2.9.1)", "chardet (==4.0.0)", "commonmark (==0.8.1)", "docutils (==0.17.1)", "future (==0.18.2)", "idna (==2.10)", "imagesize (==1.2.0)", "mock (==1.0.1)", "packaging (==20.9)", "pyparsing (==2.4.7)", "pytz (==2021.1)", "readthedocs-sphinx-ext (==2.1.4)", "recommonmark (==0.5.0)", "requests (==2.25.1)", "six (==1.15.0)", "snowballstemmer (==2.1.0)", "sphinx (==1.8.5)", "sphinx-rtd-theme (==0.4.3)", "sphinxcontrib-serializinghtml (==1.1.4)", "sphinxcontrib-websupport (==1.2.4)", "urllib3 (==1.26.4)"] qa = ["flake8 (==3.8.3)", "mypy (==0.782)"] testing = ["Django (<3.1)", "attrs", "colorama", "docopt", "pytest (<7.0.0)"] [[package]] name = "jina" version = "3.14.1" description = "Build multimodal AI services via cloud native technologies · Neural Search · Generative AI · MLOps" optional = true python-versions = "*" files = [ {file = "jina-3.14.1.tar.gz", hash = "sha256:00b1f5995b13c9a49a2287bd534bd32eb8c05706064752035d569e616a15b411"}, ] [package.dependencies] aiofiles = "*" aiohttp = "*" aiostream = "*" docarray = ">=0.16.4" docker = "*" fastapi = ">=0.76.0" filelock = "*" grpcio = ">=1.46.0,<1.48.1" grpcio-health-checking = ">=1.46.0,<1.48.1" grpcio-reflection = ">=1.46.0,<1.48.1" jcloud = ">=0.0.35" jina-hubble-sdk = ">=0.30.4" numpy = "*" opentelemetry-api = ">=1.12.0" opentelemetry-exporter-otlp = ">=1.12.0" opentelemetry-exporter-otlp-proto-grpc = ">=1.13.0" opentelemetry-exporter-prometheus = ">=1.12.0rc1" opentelemetry-instrumentation-aiohttp-client = ">=0.33b0" opentelemetry-instrumentation-fastapi = ">=0.33b0" opentelemetry-instrumentation-grpc = ">=0.35b0" opentelemetry-sdk = ">=1.14.0" packaging = ">=20.0" pathspec = "*" prometheus_client = ">=0.12.0" protobuf = ">=3.19.0" pydantic = "*" python-multipart = "*" pyyaml = ">=5.3.1" requests = "*" uvicorn = {version = "*", extras = ["standard"]} uvloop = "*" websockets = "*" [package.extras] aiofiles = ["aiofiles"] aiohttp = ["aiohttp"] aiostream = ["aiostream"] all = ["Pillow", "aiofiles", "aiohttp", "aiostream", "black (==22.3.0)", "bs4", "coverage (==6.2)", "docarray (>=0.16.4)", "docker", "fastapi (>=0.76.0)", "filelock", "flaky", "grpcio (>=1.46.0,<1.48.1)", "grpcio-health-checking (>=1.46.0,<1.48.1)", "grpcio-reflection (>=1.46.0,<1.48.1)", "jcloud (>=0.0.35)", "jina-hubble-sdk (>=0.30.4)", "jsonschema", "kubernetes (>=18.20.0)", "mock", "numpy", "opentelemetry-api (>=1.12.0)", "opentelemetry-exporter-otlp (>=1.12.0)", "opentelemetry-exporter-otlp-proto-grpc (>=1.13.0)", "opentelemetry-exporter-prometheus (>=1.12.0rc1)", "opentelemetry-instrumentation-aiohttp-client (>=0.33b0)", "opentelemetry-instrumentation-fastapi (>=0.33b0)", "opentelemetry-instrumentation-grpc (>=0.35b0)", "opentelemetry-sdk (>=1.14.0)", "opentelemetry-test-utils (>=0.33b0)", "packaging (>=20.0)", "pathspec", "portforward (>=0.2.4)", "prometheus-api-client (>=0.5.1)", "prometheus_client (>=0.12.0)", "protobuf (>=3.19.0)", "psutil", "pydantic", "pytest", "pytest-asyncio", "pytest-cov (==3.0.0)", "pytest-custom_exit_code", "pytest-kind (==22.11.1)", "pytest-lazy-fixture", "pytest-mock", "pytest-repeat", "pytest-reraise", "pytest-timeout", "python-multipart", "pyyaml (>=5.3.1)", "requests", "requests-mock", "scipy (>=1.6.1)", "sgqlc", "strawberry-graphql (>=0.96.0)", "tensorflow (>=2.0)", "torch", "uvicorn[standard]", "uvloop", "watchfiles (>=0.18.0)", "websockets"] black = ["black (==22.3.0)"] bs4 = ["bs4"] cicd = ["bs4", "jsonschema", "portforward (>=0.2.4)", "sgqlc", "strawberry-graphql (>=0.96.0)", "tensorflow (>=2.0)", "torch"] core = ["docarray (>=0.16.4)", "grpcio (>=1.46.0,<1.48.1)", "grpcio-health-checking (>=1.46.0,<1.48.1)", "grpcio-reflection (>=1.46.0,<1.48.1)", "jcloud (>=0.0.35)", "jina-hubble-sdk (>=0.30.4)", "numpy", "opentelemetry-api (>=1.12.0)", "opentelemetry-instrumentation-grpc (>=0.35b0)", "packaging (>=20.0)", "protobuf (>=3.19.0)", "pyyaml (>=5.3.1)"] coverage = ["coverage (==6.2)"] devel = ["aiofiles", "aiohttp", "aiostream", "docker", "fastapi (>=0.76.0)", "filelock", "opentelemetry-exporter-otlp (>=1.12.0)", "opentelemetry-exporter-otlp-proto-grpc (>=1.13.0)", "opentelemetry-exporter-prometheus (>=1.12.0rc1)", "opentelemetry-instrumentation-aiohttp-client (>=0.33b0)", "opentelemetry-instrumentation-fastapi (>=0.33b0)", "opentelemetry-sdk (>=1.14.0)", "pathspec", "prometheus_client (>=0.12.0)", "pydantic", "python-multipart", "requests", "sgqlc", "strawberry-graphql (>=0.96.0)", "uvicorn[standard]", "uvloop", "watchfiles (>=0.18.0)", "websockets"] docarray = ["docarray (>=0.16.4)"] docker = ["docker"] fastapi = ["fastapi (>=0.76.0)"] filelock = ["filelock"] flaky = ["flaky"] grpcio = ["grpcio (>=1.46.0,<1.48.1)"] grpcio-health-checking = ["grpcio-health-checking (>=1.46.0,<1.48.1)"] grpcio-reflection = ["grpcio-reflection (>=1.46.0,<1.48.1)"] jcloud = ["jcloud (>=0.0.35)"] jina-hubble-sdk = ["jina-hubble-sdk (>=0.30.4)"] jsonschema = ["jsonschema"] kubernetes = ["kubernetes (>=18.20.0)"] mock = ["mock"] numpy = ["numpy"] opentelemetry-api = ["opentelemetry-api (>=1.12.0)"] opentelemetry-exporter-otlp = ["opentelemetry-exporter-otlp (>=1.12.0)"] opentelemetry-exporter-otlp-proto-grpc = ["opentelemetry-exporter-otlp-proto-grpc (>=1.13.0)"] opentelemetry-exporter-prometheus = ["opentelemetry-exporter-prometheus (>=1.12.0rc1)"] opentelemetry-instrumentation-aiohttp-client = ["opentelemetry-instrumentation-aiohttp-client (>=0.33b0)"] opentelemetry-instrumentation-fastapi = ["opentelemetry-instrumentation-fastapi (>=0.33b0)"] opentelemetry-instrumentation-grpc = ["opentelemetry-instrumentation-grpc (>=0.35b0)"] opentelemetry-sdk = ["opentelemetry-sdk (>=1.14.0)"] opentelemetry-test-utils = ["opentelemetry-test-utils (>=0.33b0)"] packaging = ["packaging (>=20.0)"] pathspec = ["pathspec"] perf = ["opentelemetry-exporter-otlp (>=1.12.0)", "opentelemetry-exporter-otlp-proto-grpc (>=1.13.0)", "opentelemetry-exporter-prometheus (>=1.12.0rc1)", "opentelemetry-instrumentation-aiohttp-client (>=0.33b0)", "opentelemetry-instrumentation-fastapi (>=0.33b0)", "opentelemetry-sdk (>=1.14.0)", "prometheus_client (>=0.12.0)", "uvloop"] pillow = ["Pillow"] portforward = ["portforward (>=0.2.4)"] prometheus-api-client = ["prometheus-api-client (>=0.5.1)"] prometheus-client = ["prometheus_client (>=0.12.0)"] protobuf = ["protobuf (>=3.19.0)"] psutil = ["psutil"] pydantic = ["pydantic"] pytest = ["pytest"] pytest-asyncio = ["pytest-asyncio"] pytest-cov = ["pytest-cov (==3.0.0)"] pytest-custom-exit-code = ["pytest-custom_exit_code"] pytest-kind = ["pytest-kind (==22.11.1)"] pytest-lazy-fixture = ["pytest-lazy-fixture"] pytest-mock = ["pytest-mock"] pytest-repeat = ["pytest-repeat"] pytest-reraise = ["pytest-reraise"] pytest-timeout = ["pytest-timeout"] python-multipart = ["python-multipart"] pyyaml = ["pyyaml (>=5.3.1)"] requests = ["requests"] requests-mock = ["requests-mock"] scipy = ["scipy (>=1.6.1)"] sgqlc = ["sgqlc"] standard = ["aiofiles", "aiohttp", "aiostream", "docker", "fastapi (>=0.76.0)", "filelock", "opentelemetry-exporter-otlp (>=1.12.0)", "opentelemetry-exporter-prometheus (>=1.12.0rc1)", "opentelemetry-instrumentation-aiohttp-client (>=0.33b0)", "opentelemetry-instrumentation-fastapi (>=0.33b0)", "opentelemetry-sdk (>=1.14.0)", "pathspec", "prometheus_client (>=0.12.0)", "pydantic", "python-multipart", "requests", "uvicorn[standard]", "uvloop", "websockets"] standrad = ["opentelemetry-exporter-otlp-proto-grpc (>=1.13.0)"] strawberry-graphql = ["strawberry-graphql (>=0.96.0)"] tensorflow = ["tensorflow (>=2.0)"] test = ["Pillow", "black (==22.3.0)", "coverage (==6.2)", "flaky", "kubernetes (>=18.20.0)", "mock", "opentelemetry-test-utils (>=0.33b0)", "prometheus-api-client (>=0.5.1)", "psutil", "pytest", "pytest-asyncio", "pytest-cov (==3.0.0)", "pytest-custom_exit_code", "pytest-kind (==22.11.1)", "pytest-lazy-fixture", "pytest-mock", "pytest-repeat", "pytest-reraise", "pytest-timeout", "requests-mock", "scipy (>=1.6.1)"] torch = ["torch"] "uvicorn[standard" = ["uvicorn[standard]"] uvloop = ["uvloop"] watchfiles = ["watchfiles (>=0.18.0)"] websockets = ["websockets"] [[package]] name = "jina-hubble-sdk" version = "0.37.1" description = "SDK for Hubble API at Jina AI." optional = true python-versions = ">=3.7.0" files = [ {file = "jina-hubble-sdk-0.37.1.tar.gz", hash = "sha256:5b6bd9e13f97c8c77be822e9ae49f87a0f16ef8195011f25db2552006a5ca2a0"}, {file = "jina_hubble_sdk-0.37.1-py3-none-any.whl", hash = "sha256:bc54a60ed120508e231fbed28b0fff394c288312d2ffa865c7865c03dbbbb502"}, ] [package.dependencies] aiohttp = "*" docker = "*" filelock = "*" importlib-metadata = "*" pathspec = "*" python-jose = "*" pyyaml = "*" requests = "*" rich = "*" [package.extras] full = ["aiohttp", "black (==22.3.0)", "docker", "filelock", "flake8 (==4.0.1)", "importlib-metadata", "isort (==5.10.1)", "mock (==4.0.3)", "pathspec", "pytest (==7.0.0)", "pytest-asyncio (==0.19.0)", "pytest-cov (==3.0.0)", "pytest-mock (==3.7.0)", "python-jose", "pyyaml", "requests", "rich"] [[package]] name = "jinja2" version = "3.1.2" description = "A very fast and expressive template engine." optional = false python-versions = ">=3.7" files = [ {file = "Jinja2-3.1.2-py3-none-any.whl", hash = "sha256:6088930bfe239f0e6710546ab9c19c9ef35e29792895fed6e6e31a023a182a61"}, {file = "Jinja2-3.1.2.tar.gz", hash = "sha256:31351a702a408a9e7595a8fc6150fc3f43bb6bf7e319770cbc0db9df9437e852"}, ] [package.dependencies] MarkupSafe = ">=2.0" [package.extras] i18n = ["Babel (>=2.7)"] [[package]] name = "jmespath" version = "1.0.1" description = "JSON Matching Expressions" optional = false python-versions = ">=3.7" files = [ {file = "jmespath-1.0.1-py3-none-any.whl", hash = "sha256:02e2e4cc71b5bcab88332eebf907519190dd9e6e82107fa7f83b1003a6252980"}, {file = "jmespath-1.0.1.tar.gz", hash = "sha256:90261b206d6defd58fdd5e85f478bf633a2901798906be2ad389150c5c60edbe"}, ] [[package]] name = "joblib" version = "1.2.0" description = "Lightweight pipelining with Python functions" optional = false python-versions = ">=3.7" files = [ {file = "joblib-1.2.0-py3-none-any.whl", hash = "sha256:091138ed78f800342968c523bdde947e7a305b8594b910a0fea2ab83c3c6d385"}, {file = "joblib-1.2.0.tar.gz", hash = "sha256:e1cee4a79e4af22881164f218d4311f60074197fb707e082e803b61f6d137018"}, ] [[package]] name = "jq" version = "1.4.1" description = "jq is a lightweight and flexible JSON processor." optional = true python-versions = ">=3.5" files = [ {file = "jq-1.4.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1708cad6ee0f173ce38c6ebfc81b98a545b35387ae6471c8d7f9f3a02ffb723e"}, {file = "jq-1.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c94e70e5f0798d87018cd4a58175f4eed2afa08727389a0f3f246bf7e7b98d1e"}, {file = "jq-1.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ddc2c6b55c5461c6f155c4b717927bdd29a83a6356250c4e6016297bcea80498"}, {file = "jq-1.4.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e2e71f5a921542efbea12386ca9d91ea1aeb6bd393681073e4a47a720613715f"}, {file = "jq-1.4.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:b2bf666002d23ee8cf9e619d2d1e46d86a089e028367665386b9d67d22b31ceb"}, {file = "jq-1.4.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e33954fe47e61a533556d38e045ddd7b3fa8a8186a70981462a207ed22594d83"}, {file = "jq-1.4.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:07905774df7706588014ca49789548328e8f66738b004089b3f0c42f7f389405"}, {file = "jq-1.4.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:959b2e677e56dc31c8572c0852ad26d3b351a8a458ca72c96f8cedfcde49419f"}, {file = "jq-1.4.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e74ab69d39b171f1625fa666baa8f9a1ff49e7295047082bcb537fcc2d359dfe"}, {file = "jq-1.4.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:103412f7f35175eb9a1005e4e2067b363dfcdb413d02fa962ddf288b2b16cc54"}, {file = "jq-1.4.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1f70d5e0c6445cc58f720de2ab44c156c69ce6d898c4d4ad04f07815868e31ed"}, {file = "jq-1.4.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:db980118c02321c56b6e0ddf817ad1cbbd8b6c90f4637bdebb695e84ee41a296"}, {file = "jq-1.4.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:9b295a51a9ea7e324aa7ad2ce2cca3d51d7492a525cd7a59773666a07b1cc0f7"}, {file = "jq-1.4.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:82b44474641dcdb07b43267d17f77914595768e9464b31de114e6c229a16ac6e"}, {file = "jq-1.4.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:582c40d7e212e310cf1ed0fddc4590853b64a5e09aed1f740613765c83cff072"}, {file = "jq-1.4.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:75f4269f709f746bf3d52df2c4ebc316d4985e0db97b7c1a293f02202befcdcb"}, {file = "jq-1.4.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1a060fd3172f8833828cb26151ea2f6c0f99f0191109ad580baee7befbdd6e65"}, {file = "jq-1.4.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2bfd61be72ad1e35622a7525e55615954ccfbe6ccadabd7f964e879bb4a53ad6"}, {file = "jq-1.4.1-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:4364c45113407f1316a99bd7a8661aa9304eb3578c80b201917aa8568fa40ee1"}, {file = "jq-1.4.1-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:0a8c37073a335596c645f0260fd3ea7b6141c2fb0115a0b8082252b0169f70c8"}, {file = "jq-1.4.1-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:96e5160f77498389e388e7ba3cd1771abc386b52788c82dee897c95bc87efe6f"}, {file = "jq-1.4.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:fac91eb91bec60dee28e2325f863c43d12ffc904ee72248522c6d0157ae98a54"}, {file = "jq-1.4.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:581e771e7c4aad728f9696ce6faee0f3d535cb0c845a49ac20188d8c7918e19d"}, {file = "jq-1.4.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:31b6526533cbc298ae0c0084d22452fbd3b4600ace488dc961ecf9a1dcb51a83"}, {file = "jq-1.4.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1830a9fd394673758010e41e8d0e00be7126b0ea9f3ede017a555c0c805435bc"}, {file = "jq-1.4.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:6b11e71b4d00928898f494d8e2945b80aab0447a4f2e7fb4603ac32cccc4e28e"}, {file = "jq-1.4.1-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:3e4dd3ba62e284479528a5a00084c2923a08de7cb7fe154036a345190ed5bc24"}, {file = "jq-1.4.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:7dfa6ff7424339ed361d911a13635e7c2f888e18e42920a8603e8806d85fdfdc"}, {file = "jq-1.4.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:419f8d28e737b96476ac9ba66e000e4d93e54dd8003f1374269315086b98d822"}, {file = "jq-1.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:de27a580663825b493b061682b59704f29a748011f2e5bc4701b34f8f17ed405"}, {file = "jq-1.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ebfec7c54b3252ec59663a21885e97d49b1dd455d8db0223bb77073b9b248fc3"}, {file = "jq-1.4.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:56a21666412dd1a6b8306475d0ec6e1eba7965100b3dfd6ecf1eb537aabec513"}, {file = "jq-1.4.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:f97b1e2582d64b65069f2d8b5e08f94f1d0998233c98c0d6edcf0a610262cd3a"}, {file = "jq-1.4.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:33b5fcbf32c24557dd638e59b919f2ecfa98e65cf4b96f63c327ed10ea24495d"}, {file = "jq-1.4.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:a16fb7e2e0942b4661a8d210e9ac3292b5f021abbcddbbcb6b783f9eb5d7a6cb"}, {file = "jq-1.4.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4c4d6b9f30556d5f17552ac2ef8563872a2c0271cc7c8789c87546270135ae15"}, {file = "jq-1.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3f82346544116503cbdfd56ac5e90f837c2b96d69b64a3444df2770156dc8d64"}, {file = "jq-1.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1799792f34ca8441fb1c4b3cf05c644ef2a4b28ad07bae65b1c7cde8f26721b4"}, {file = "jq-1.4.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2403bfcaedbe860ffaa3258b65ad3dcf72d2d97c59acf6f8fd5f663a1b0a183a"}, {file = "jq-1.4.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:c59ebcd4f0bb99d5d69085905c80d8ebf95df522750d95e33985121daa4e1de4"}, {file = "jq-1.4.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:aa7fadeca796eb385b93217fb65ac2c54150ac3fcea2722c0c76390f0d6b2681"}, {file = "jq-1.4.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:11fb7e41c4931127cfe5c53b1eb812d797ed7d47a8ab22f6cb294cf470d5038b"}, {file = "jq-1.4.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:fc8f67f7b8140e51bd291686055d63f62b60fa3bea861265309f54fd74f5517d"}, {file = "jq-1.4.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:30ce02d9c01ffea7c92b4ec006b114c4047816f15016173dced3fc046760b854"}, {file = "jq-1.4.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bbbfdfbb0bc2d615edfa8213720423885c022a827ea3c8e8593bce98b6086c99"}, {file = "jq-1.4.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9053a8e9f3636d367e8bb0841a62d839f2116e6965096d95c38a8f9da57eed66"}, {file = "jq-1.4.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:3ecdffb3abc9f1611465b761eebcdb3008ae57946a86a99e76bc6b09fe611f29"}, {file = "jq-1.4.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e5f0688f98dedb49a5c680b961a4f453fe84b34795aa3203eec77f306fa823d5"}, {file = "jq-1.4.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:342f901a9330d12d2c2baf17684b77ae198fade920d061bb844d1b3733097792"}, {file = "jq-1.4.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:761713740c19dd0e0da8b6eaea7f588df2af64d8e32d1157a3a05028b0fec2b3"}, {file = "jq-1.4.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:6343d929e48ba4d75febcd987752931dc7a70e1b2f6f17b74baf3d5179dfb6a5"}, {file = "jq-1.4.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ec82f8925f7a88547cd302f2b479c81af17468dbd3473d688c3714a264f90c0"}, {file = "jq-1.4.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95edc023b97d1a44fd1e8243119a3532bc0e7d121dfdf2722471ec36763b85aa"}, {file = "jq-1.4.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cc4dd73782c039c66b25fc103b07fd46bac5d2f5a62dba29b45ae97ca88ba988"}, {file = "jq-1.4.1.tar.gz", hash = "sha256:52284ee3cb51670e6f537b0ec813654c064c1c0705bd910097ea0fe17313516d"}, ] [[package]] name = "jsonlines" version = "3.1.0" description = "Library with helpers for the jsonlines file format" optional = true python-versions = ">=3.6" files = [ {file = "jsonlines-3.1.0-py3-none-any.whl", hash = "sha256:632f5e38f93dfcb1ac8c4e09780b92af3a55f38f26e7c47ae85109d420b6ad39"}, {file = "jsonlines-3.1.0.tar.gz", hash = "sha256:2579cb488d96f815b0eb81629e3e6b0332da0962a18fa3532958f7ba14a5c37f"}, ] [package.dependencies] attrs = ">=19.2.0" [[package]] name = "jsonpointer" version = "2.3" description = "Identify specific nodes in a JSON document (RFC 6901)" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ {file = "jsonpointer-2.3-py2.py3-none-any.whl", hash = "sha256:51801e558539b4e9cd268638c078c6c5746c9ac96bc38152d443400e4f3793e9"}, {file = "jsonpointer-2.3.tar.gz", hash = "sha256:97cba51526c829282218feb99dab1b1e6bdf8efd1c43dc9d57be093c0d69c99a"}, ] [[package]] name = "jsonschema" version = "4.17.3" description = "An implementation of JSON Schema validation for Python" optional = false python-versions = ">=3.7" files = [ {file = "jsonschema-4.17.3-py3-none-any.whl", hash = "sha256:a870ad254da1a8ca84b6a2905cac29d265f805acc57af304784962a2aa6508f6"}, {file = "jsonschema-4.17.3.tar.gz", hash = "sha256:0f864437ab8b6076ba6707453ef8f98a6a0d512a80e93f8abdb676f737ecb60d"}, ] [package.dependencies] attrs = ">=17.4.0" fqdn = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} idna = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} importlib-resources = {version = ">=1.4.0", markers = "python_version < \"3.9\""} isoduration = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} jsonpointer = {version = ">1.13", optional = true, markers = "extra == \"format-nongpl\""} pkgutil-resolve-name = {version = ">=1.3.10", markers = "python_version < \"3.9\""} pyrsistent = ">=0.14.0,<0.17.0 || >0.17.0,<0.17.1 || >0.17.1,<0.17.2 || >0.17.2" rfc3339-validator = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} rfc3986-validator = {version = ">0.1.0", optional = true, markers = "extra == \"format-nongpl\""} uri-template = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} webcolors = {version = ">=1.11", optional = true, markers = "extra == \"format-nongpl\""} [package.extras] format = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3987", "uri-template", "webcolors (>=1.11)"] format-nongpl = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3986-validator (>0.1.0)", "uri-template", "webcolors (>=1.11)"] [[package]] name = "jupyter" version = "1.0.0" description = "Jupyter metapackage. Install all the Jupyter components in one go." optional = false python-versions = "*" files = [ {file = "jupyter-1.0.0-py2.py3-none-any.whl", hash = "sha256:5b290f93b98ffbc21c0c7e749f054b3267782166d72fa5e3ed1ed4eaf34a2b78"}, {file = "jupyter-1.0.0.tar.gz", hash = "sha256:d9dc4b3318f310e34c82951ea5d6683f67bed7def4b259fafbfe4f1beb1d8e5f"}, {file = "jupyter-1.0.0.zip", hash = "sha256:3e1f86076bbb7c8c207829390305a2b1fe836d471ed54be66a3b8c41e7f46cc7"}, ] [package.dependencies] ipykernel = "*" ipywidgets = "*" jupyter-console = "*" nbconvert = "*" notebook = "*" qtconsole = "*" [[package]] name = "jupyter-cache" version = "0.6.1" description = "A defined interface for working with a cache of jupyter notebooks." optional = false python-versions = "~=3.8" files = [ {file = "jupyter-cache-0.6.1.tar.gz", hash = "sha256:26f83901143edf4af2f3ff5a91e2d2ad298e46e2cee03c8071d37a23a63ccbfc"}, {file = "jupyter_cache-0.6.1-py3-none-any.whl", hash = "sha256:2fce7d4975805c77f75bdfc1bc2e82bc538b8e5b1af27f2f5e06d55b9f996a82"}, ] [package.dependencies] attrs = "*" click = "*" importlib-metadata = "*" nbclient = ">=0.2,<0.8" nbformat = "*" pyyaml = "*" sqlalchemy = ">=1.3.12,<3" tabulate = "*" [package.extras] cli = ["click-log"] code-style = ["pre-commit (>=2.12,<4.0)"] rtd = ["ipykernel", "jupytext", "myst-nb", "nbdime", "sphinx-book-theme", "sphinx-copybutton"] testing = ["coverage", "ipykernel", "jupytext", "matplotlib", "nbdime", "nbformat (>=5.1)", "numpy", "pandas", "pytest (>=6,<8)", "pytest-cov", "pytest-regressions", "sympy"] [[package]] name = "jupyter-client" version = "8.2.0" description = "Jupyter protocol implementation and client libraries" optional = false python-versions = ">=3.8" files = [ {file = "jupyter_client-8.2.0-py3-none-any.whl", hash = "sha256:b18219aa695d39e2ad570533e0d71fb7881d35a873051054a84ee2a17c4b7389"}, {file = "jupyter_client-8.2.0.tar.gz", hash = "sha256:9fe233834edd0e6c0aa5f05ca2ab4bdea1842bfd2d8a932878212fc5301ddaf0"}, ] [package.dependencies] importlib-metadata = {version = ">=4.8.3", markers = "python_version < \"3.10\""} jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" python-dateutil = ">=2.8.2" pyzmq = ">=23.0" tornado = ">=6.2" traitlets = ">=5.3" [package.extras] docs = ["ipykernel", "myst-parser", "pydata-sphinx-theme", "sphinx (>=4)", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pytest", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] [[package]] name = "jupyter-console" version = "6.6.3" description = "Jupyter terminal console" optional = false python-versions = ">=3.7" files = [ {file = "jupyter_console-6.6.3-py3-none-any.whl", hash = "sha256:309d33409fcc92ffdad25f0bcdf9a4a9daa61b6f341177570fdac03de5352485"}, {file = "jupyter_console-6.6.3.tar.gz", hash = "sha256:566a4bf31c87adbfadf22cdf846e3069b59a71ed5da71d6ba4d8aaad14a53539"}, ] [package.dependencies] ipykernel = ">=6.14" ipython = "*" jupyter-client = ">=7.0.0" jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" prompt-toolkit = ">=3.0.30" pygments = "*" pyzmq = ">=17" traitlets = ">=5.4" [package.extras] test = ["flaky", "pexpect", "pytest"] [[package]] name = "jupyter-core" version = "5.3.0" description = "Jupyter core package. A base package on which Jupyter projects rely." optional = false python-versions = ">=3.8" files = [ {file = "jupyter_core-5.3.0-py3-none-any.whl", hash = "sha256:d4201af84559bc8c70cead287e1ab94aeef3c512848dde077b7684b54d67730d"}, {file = "jupyter_core-5.3.0.tar.gz", hash = "sha256:6db75be0c83edbf1b7c9f91ec266a9a24ef945da630f3120e1a0046dc13713fc"}, ] [package.dependencies] platformdirs = ">=2.5" pywin32 = {version = ">=300", markers = "sys_platform == \"win32\" and platform_python_implementation != \"PyPy\""} traitlets = ">=5.3" [package.extras] docs = ["myst-parser", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "traitlets"] test = ["ipykernel", "pre-commit", "pytest", "pytest-cov", "pytest-timeout"] [[package]] name = "jupyter-events" version = "0.6.3" description = "Jupyter Event System library" optional = false python-versions = ">=3.7" files = [ {file = "jupyter_events-0.6.3-py3-none-any.whl", hash = "sha256:57a2749f87ba387cd1bfd9b22a0875b889237dbf2edc2121ebb22bde47036c17"}, {file = "jupyter_events-0.6.3.tar.gz", hash = "sha256:9a6e9995f75d1b7146b436ea24d696ce3a35bfa8bfe45e0c33c334c79464d0b3"}, ] [package.dependencies] jsonschema = {version = ">=3.2.0", extras = ["format-nongpl"]} python-json-logger = ">=2.0.4" pyyaml = ">=5.3" rfc3339-validator = "*" rfc3986-validator = ">=0.1.1" traitlets = ">=5.3" [package.extras] cli = ["click", "rich"] docs = ["jupyterlite-sphinx", "myst-parser", "pydata-sphinx-theme", "sphinxcontrib-spelling"] test = ["click", "coverage", "pre-commit", "pytest (>=7.0)", "pytest-asyncio (>=0.19.0)", "pytest-console-scripts", "pytest-cov", "rich"] [[package]] name = "jupyter-server" version = "2.5.0" description = "The backend—i.e. core services, APIs, and REST endpoints—to Jupyter web applications." optional = false python-versions = ">=3.8" files = [ {file = "jupyter_server-2.5.0-py3-none-any.whl", hash = "sha256:e6bc1e9e96d7c55b9ce9699ff6cb9a910581fe7349e27c40389acb67632e24c0"}, {file = "jupyter_server-2.5.0.tar.gz", hash = "sha256:9fde612791f716fd34d610cd939704a9639643744751ba66e7ee8fdc9cead07e"}, ] [package.dependencies] anyio = ">=3.1.0" argon2-cffi = "*" jinja2 = "*" jupyter-client = ">=7.4.4" jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" jupyter-events = ">=0.4.0" jupyter-server-terminals = "*" nbconvert = ">=6.4.4" nbformat = ">=5.3.0" packaging = "*" prometheus-client = "*" pywinpty = {version = "*", markers = "os_name == \"nt\""} pyzmq = ">=24" send2trash = "*" terminado = ">=0.8.3" tornado = ">=6.2.0" traitlets = ">=5.6.0" websocket-client = "*" [package.extras] docs = ["docutils (<0.20)", "ipykernel", "jinja2", "jupyter-client", "jupyter-server", "mistune (<1.0.0)", "myst-parser", "nbformat", "prometheus-client", "pydata-sphinx-theme", "send2trash", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-openapi", "sphinxcontrib-spelling", "sphinxemoji", "tornado", "typing-extensions"] test = ["ipykernel", "pre-commit", "pytest (>=7.0)", "pytest-console-scripts", "pytest-jupyter[server] (>=0.4)", "pytest-timeout", "requests"] [[package]] name = "jupyter-server-terminals" version = "0.4.4" description = "A Jupyter Server Extension Providing Terminals." optional = false python-versions = ">=3.8" files = [ {file = "jupyter_server_terminals-0.4.4-py3-none-any.whl", hash = "sha256:75779164661cec02a8758a5311e18bb8eb70c4e86c6b699403100f1585a12a36"}, {file = "jupyter_server_terminals-0.4.4.tar.gz", hash = "sha256:57ab779797c25a7ba68e97bcfb5d7740f2b5e8a83b5e8102b10438041a7eac5d"}, ] [package.dependencies] pywinpty = {version = ">=2.0.3", markers = "os_name == \"nt\""} terminado = ">=0.8.3" [package.extras] docs = ["jinja2", "jupyter-server", "mistune (<3.0)", "myst-parser", "nbformat", "packaging", "pydata-sphinx-theme", "sphinxcontrib-github-alt", "sphinxcontrib-openapi", "sphinxcontrib-spelling", "sphinxemoji", "tornado"] test = ["coverage", "jupyter-server (>=2.0.0)", "pytest (>=7.0)", "pytest-cov", "pytest-jupyter[server] (>=0.5.3)", "pytest-timeout"] [[package]] name = "jupyterlab-pygments" version = "0.2.2" description = "Pygments theme using JupyterLab CSS variables" optional = false python-versions = ">=3.7" files = [ {file = "jupyterlab_pygments-0.2.2-py2.py3-none-any.whl", hash = "sha256:2405800db07c9f770863bcf8049a529c3dd4d3e28536638bd7c1c01d2748309f"}, {file = "jupyterlab_pygments-0.2.2.tar.gz", hash = "sha256:7405d7fde60819d905a9fa8ce89e4cd830e318cdad22a0030f7a901da705585d"}, ] [[package]] name = "jupyterlab-widgets" version = "3.0.7" description = "Jupyter interactive widgets for JupyterLab" optional = false python-versions = ">=3.7" files = [ {file = "jupyterlab_widgets-3.0.7-py3-none-any.whl", hash = "sha256:c73f8370338ec19f1bec47254752d6505b03601cbd5a67e6a0b184532f73a459"}, {file = "jupyterlab_widgets-3.0.7.tar.gz", hash = "sha256:c3a50ed5bf528a0c7a869096503af54702f86dda1db469aee1c92dc0c01b43ca"}, ] [[package]] name = "keras" version = "2.11.0" description = "Deep learning for humans." optional = true python-versions = ">=3.7" files = [ {file = "keras-2.11.0-py2.py3-none-any.whl", hash = "sha256:38c6fff0ea9a8b06a2717736565c92a73c8cd9b1c239e7125ccb188b7848f65e"}, ] [[package]] name = "lancedb" version = "0.1.2" description = "lancedb" optional = true python-versions = ">=3.8" files = [ {file = "lancedb-0.1.2-py3-none-any.whl", hash = "sha256:aa2baea7d16caeaa4c720c25ab46b5c5d88d8833486724e5a132e5b6cf392663"}, {file = "lancedb-0.1.2.tar.gz", hash = "sha256:d561568dacaa4fcdf5aac262bdb807004bb0dde550a44d43f7cdb4f95956b2bf"}, ] [package.dependencies] pylance = ">=0.4.6" ratelimiter = "*" retry = "*" tqdm = "*" [package.extras] dev = ["black", "pre-commit", "ruff"] docs = ["mkdocs", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]"] tests = ["pytest"] [[package]] name = "langcodes" version = "3.3.0" description = "Tools for labeling human languages with IETF language tags" optional = true python-versions = ">=3.6" files = [ {file = "langcodes-3.3.0-py3-none-any.whl", hash = "sha256:4d89fc9acb6e9c8fdef70bcdf376113a3db09b67285d9e1d534de6d8818e7e69"}, {file = "langcodes-3.3.0.tar.gz", hash = "sha256:794d07d5a28781231ac335a1561b8442f8648ca07cd518310aeb45d6f0807ef6"}, ] [package.extras] data = ["language-data (>=1.1,<2.0)"] [[package]] name = "langkit" version = "0.0.1b2" description = "A collection of text metric udfs for whylogs profiling and monitoring in WhyLabs" optional = true python-versions = ">=3.8,<4.0" files = [ {file = "langkit-0.0.1b2-py3-none-any.whl", hash = "sha256:8059d48bb1bbf90da5f5103585dece57fa09d156b0490f8a6c88277789a19021"}, {file = "langkit-0.0.1b2.tar.gz", hash = "sha256:c2dd7cf93921dc77d6c7516746351fa503684f3be35392c187f4418a0748ef50"}, ] [package.dependencies] datasets = "*" nltk = ">=3.8.1,<4.0.0" openai = "*" pandas = "*" sentence-transformers = ">=2.2.2,<3.0.0" textstat = ">=0.7.3,<0.8.0" whylogs = ">=1.1.42.dev3,<2.0.0" [package.extras] io = ["torch"] [[package]] name = "lark" version = "1.1.5" description = "a modern parsing library" optional = false python-versions = "*" files = [ {file = "lark-1.1.5-py3-none-any.whl", hash = "sha256:8476f9903e93fbde4f6c327f74d79e9b4bd0ed9294c5dfa3164ab8c581b5de2a"}, {file = "lark-1.1.5.tar.gz", hash = "sha256:4b534eae1f9af5b4ea000bea95776350befe1981658eea3820a01c37e504bb4d"}, ] [package.extras] atomic-cache = ["atomicwrites"] nearley = ["js2py"] regex = ["regex"] [[package]] name = "libclang" version = "16.0.0" description = "Clang Python Bindings, mirrored from the official LLVM repo: https://github.com/llvm/llvm-project/tree/main/clang/bindings/python, to make the installation process easier." optional = true python-versions = "*" files = [ {file = "libclang-16.0.0-py2.py3-none-macosx_10_9_x86_64.whl", hash = "sha256:65258a6bb3e7dc31dc9b26f8d42f53c9d3b959643ade291fcd1aef4855303ca6"}, {file = "libclang-16.0.0-py2.py3-none-macosx_11_0_arm64.whl", hash = "sha256:af55a4aa86fdfe6b2ec68bc8cfe5fdac6c448d591ca7648be86ca17099b41ca8"}, {file = "libclang-16.0.0-py2.py3-none-manylinux2010_x86_64.whl", hash = "sha256:a043138caaf2cb076ebb060c6281ec95612926645d425c691991fc9df00e8a24"}, {file = "libclang-16.0.0-py2.py3-none-manylinux2014_aarch64.whl", hash = "sha256:eb59652cb0559c0e71784ff4c8ba24c14644becc907b1446563ecfaa622d523b"}, {file = "libclang-16.0.0-py2.py3-none-manylinux2014_armv7l.whl", hash = "sha256:7b6686b67a0daa84b4c614bcc119578329fc4fbb52b919565b7376b507c4793b"}, {file = "libclang-16.0.0-py2.py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:2adce42ae652f312245b8f4eda6f30b4076fb61f7619f2dfd0a0c31dee4c32b9"}, {file = "libclang-16.0.0-py2.py3-none-win_amd64.whl", hash = "sha256:ee20bf93e3dd330f71fc50cdbf13b92ced0aec8e540be64251db53502a9b33f7"}, {file = "libclang-16.0.0-py2.py3-none-win_arm64.whl", hash = "sha256:bf4628fc4da7a1dd06a244f9b8e121c5ec68076a763c59d6b13cbb103acc935b"}, ] [[package]] name = "linkchecker" version = "10.2.1" description = "check links in web documents or full websites" optional = false python-versions = ">=3.7" files = [ {file = "LinkChecker-10.2.1-py3-none-any.whl", hash = "sha256:5438496290826f5e2f4a2041f11482608378150b6c2d05ca8f94f460b7cb7c9e"}, {file = "LinkChecker-10.2.1.tar.gz", hash = "sha256:97eae069ccfe892a18e380c7f4762dfe3f352e87c442ef6124e8c60b887cddcd"}, ] [package.dependencies] beautifulsoup4 = ">=4.8.1" dnspython = ">=2.0" requests = ">=2.20" [[package]] name = "livereload" version = "2.6.3" description = "Python LiveReload is an awesome tool for web developers" optional = false python-versions = "*" files = [ {file = "livereload-2.6.3-py2.py3-none-any.whl", hash = "sha256:ad4ac6f53b2d62bb6ce1a5e6e96f1f00976a32348afedcb4b6d68df2a1d346e4"}, {file = "livereload-2.6.3.tar.gz", hash = "sha256:776f2f865e59fde56490a56bcc6773b6917366bce0c267c60ee8aaf1a0959869"}, ] [package.dependencies] six = "*" tornado = {version = "*", markers = "python_version > \"2.7\""} [[package]] name = "loguru" version = "0.7.0" description = "Python logging made (stupidly) simple" optional = false python-versions = ">=3.5" files = [ {file = "loguru-0.7.0-py3-none-any.whl", hash = "sha256:b93aa30099fa6860d4727f1b81f8718e965bb96253fa190fab2077aaad6d15d3"}, {file = "loguru-0.7.0.tar.gz", hash = "sha256:1612053ced6ae84d7959dd7d5e431a0532642237ec21f7fd83ac73fe539e03e1"}, ] [package.dependencies] colorama = {version = ">=0.3.4", markers = "sys_platform == \"win32\""} win32-setctime = {version = ">=1.0.0", markers = "sys_platform == \"win32\""} [package.extras] dev = ["Sphinx (==5.3.0)", "colorama (==0.4.5)", "colorama (==0.4.6)", "freezegun (==1.1.0)", "freezegun (==1.2.2)", "mypy (==v0.910)", "mypy (==v0.971)", "mypy (==v0.990)", "pre-commit (==3.2.1)", "pytest (==6.1.2)", "pytest (==7.2.1)", "pytest-cov (==2.12.1)", "pytest-cov (==4.0.0)", "pytest-mypy-plugins (==1.10.1)", "pytest-mypy-plugins (==1.9.3)", "sphinx-autobuild (==2021.3.14)", "sphinx-rtd-theme (==1.2.0)", "tox (==3.27.1)", "tox (==4.4.6)"] [[package]] name = "lxml" version = "4.9.2" description = "Powerful and Pythonic XML processing library combining libxml2/libxslt with the ElementTree API." optional = true python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, != 3.4.*" files = [ {file = "lxml-4.9.2-cp27-cp27m-macosx_10_15_x86_64.whl", hash = "sha256:76cf573e5a365e790396a5cc2b909812633409306c6531a6877c59061e42c4f2"}, {file = "lxml-4.9.2-cp27-cp27m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b1f42b6921d0e81b1bcb5e395bc091a70f41c4d4e55ba99c6da2b31626c44892"}, {file = "lxml-4.9.2-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:9f102706d0ca011de571de32c3247c6476b55bb6bc65a20f682f000b07a4852a"}, {file = "lxml-4.9.2-cp27-cp27m-win32.whl", hash = "sha256:8d0b4612b66ff5d62d03bcaa043bb018f74dfea51184e53f067e6fdcba4bd8de"}, {file = "lxml-4.9.2-cp27-cp27m-win_amd64.whl", hash = "sha256:4c8f293f14abc8fd3e8e01c5bd86e6ed0b6ef71936ded5bf10fe7a5efefbaca3"}, {file = "lxml-4.9.2-cp27-cp27mu-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2899456259589aa38bfb018c364d6ae7b53c5c22d8e27d0ec7609c2a1ff78b50"}, {file = "lxml-4.9.2-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:6749649eecd6a9871cae297bffa4ee76f90b4504a2a2ab528d9ebe912b101975"}, {file = "lxml-4.9.2-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:a08cff61517ee26cb56f1e949cca38caabe9ea9fbb4b1e10a805dc39844b7d5c"}, {file = "lxml-4.9.2-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl", hash = "sha256:85cabf64adec449132e55616e7ca3e1000ab449d1d0f9d7f83146ed5bdcb6d8a"}, {file = "lxml-4.9.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl", hash = "sha256:8340225bd5e7a701c0fa98284c849c9b9fc9238abf53a0ebd90900f25d39a4e4"}, {file = "lxml-4.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:1ab8f1f932e8f82355e75dda5413a57612c6ea448069d4fb2e217e9a4bed13d4"}, {file = "lxml-4.9.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:699a9af7dffaf67deeae27b2112aa06b41c370d5e7633e0ee0aea2e0b6c211f7"}, {file = "lxml-4.9.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b9cc34af337a97d470040f99ba4282f6e6bac88407d021688a5d585e44a23184"}, {file = "lxml-4.9.2-cp310-cp310-win32.whl", hash = "sha256:d02a5399126a53492415d4906ab0ad0375a5456cc05c3fc0fc4ca11771745cda"}, {file = "lxml-4.9.2-cp310-cp310-win_amd64.whl", hash = "sha256:a38486985ca49cfa574a507e7a2215c0c780fd1778bb6290c21193b7211702ab"}, {file = "lxml-4.9.2-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl", hash = "sha256:c83203addf554215463b59f6399835201999b5e48019dc17f182ed5ad87205c9"}, {file = "lxml-4.9.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl", hash = "sha256:2a87fa548561d2f4643c99cd13131acb607ddabb70682dcf1dff5f71f781a4bf"}, {file = "lxml-4.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:d6b430a9938a5a5d85fc107d852262ddcd48602c120e3dbb02137c83d212b380"}, {file = "lxml-4.9.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:3efea981d956a6f7173b4659849f55081867cf897e719f57383698af6f618a92"}, {file = "lxml-4.9.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:df0623dcf9668ad0445e0558a21211d4e9a149ea8f5666917c8eeec515f0a6d1"}, {file = "lxml-4.9.2-cp311-cp311-win32.whl", hash = "sha256:da248f93f0418a9e9d94b0080d7ebc407a9a5e6d0b57bb30db9b5cc28de1ad33"}, {file = "lxml-4.9.2-cp311-cp311-win_amd64.whl", hash = "sha256:3818b8e2c4b5148567e1b09ce739006acfaa44ce3156f8cbbc11062994b8e8dd"}, {file = "lxml-4.9.2-cp35-cp35m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ca989b91cf3a3ba28930a9fc1e9aeafc2a395448641df1f387a2d394638943b0"}, {file = "lxml-4.9.2-cp35-cp35m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:822068f85e12a6e292803e112ab876bc03ed1f03dddb80154c395f891ca6b31e"}, {file = "lxml-4.9.2-cp35-cp35m-win32.whl", hash = "sha256:be7292c55101e22f2a3d4d8913944cbea71eea90792bf914add27454a13905df"}, {file = "lxml-4.9.2-cp35-cp35m-win_amd64.whl", hash = "sha256:998c7c41910666d2976928c38ea96a70d1aa43be6fe502f21a651e17483a43c5"}, {file = "lxml-4.9.2-cp36-cp36m-macosx_10_15_x86_64.whl", hash = "sha256:b26a29f0b7fc6f0897f043ca366142d2b609dc60756ee6e4e90b5f762c6adc53"}, {file = "lxml-4.9.2-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl", hash = "sha256:ab323679b8b3030000f2be63e22cdeea5b47ee0abd2d6a1dc0c8103ddaa56cd7"}, {file = "lxml-4.9.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:689bb688a1db722485e4610a503e3e9210dcc20c520b45ac8f7533c837be76fe"}, {file = "lxml-4.9.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:f49e52d174375a7def9915c9f06ec4e569d235ad428f70751765f48d5926678c"}, {file = "lxml-4.9.2-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:36c3c175d34652a35475a73762b545f4527aec044910a651d2bf50de9c3352b1"}, {file = "lxml-4.9.2-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:a35f8b7fa99f90dd2f5dc5a9fa12332642f087a7641289ca6c40d6e1a2637d8e"}, {file = "lxml-4.9.2-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:58bfa3aa19ca4c0f28c5dde0ff56c520fbac6f0daf4fac66ed4c8d2fb7f22e74"}, {file = "lxml-4.9.2-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:bc718cd47b765e790eecb74d044cc8d37d58562f6c314ee9484df26276d36a38"}, {file = "lxml-4.9.2-cp36-cp36m-win32.whl", hash = "sha256:d5bf6545cd27aaa8a13033ce56354ed9e25ab0e4ac3b5392b763d8d04b08e0c5"}, {file = "lxml-4.9.2-cp36-cp36m-win_amd64.whl", hash = "sha256:3ab9fa9d6dc2a7f29d7affdf3edebf6ece6fb28a6d80b14c3b2fb9d39b9322c3"}, {file = "lxml-4.9.2-cp37-cp37m-macosx_10_15_x86_64.whl", hash = "sha256:05ca3f6abf5cf78fe053da9b1166e062ade3fa5d4f92b4ed688127ea7d7b1d03"}, {file = "lxml-4.9.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl", hash = "sha256:a5da296eb617d18e497bcf0a5c528f5d3b18dadb3619fbdadf4ed2356ef8d941"}, {file = "lxml-4.9.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl", hash = "sha256:04876580c050a8c5341d706dd464ff04fd597095cc8c023252566a8826505726"}, {file = "lxml-4.9.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:c9ec3eaf616d67db0764b3bb983962b4f385a1f08304fd30c7283954e6a7869b"}, {file = "lxml-4.9.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2a29ba94d065945944016b6b74e538bdb1751a1db6ffb80c9d3c2e40d6fa9894"}, {file = "lxml-4.9.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:a82d05da00a58b8e4c0008edbc8a4b6ec5a4bc1e2ee0fb6ed157cf634ed7fa45"}, {file = "lxml-4.9.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:223f4232855ade399bd409331e6ca70fb5578efef22cf4069a6090acc0f53c0e"}, {file = "lxml-4.9.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:d17bc7c2ccf49c478c5bdd447594e82692c74222698cfc9b5daae7ae7e90743b"}, {file = "lxml-4.9.2-cp37-cp37m-win32.whl", hash = "sha256:b64d891da92e232c36976c80ed7ebb383e3f148489796d8d31a5b6a677825efe"}, {file = "lxml-4.9.2-cp37-cp37m-win_amd64.whl", hash = "sha256:a0a336d6d3e8b234a3aae3c674873d8f0e720b76bc1d9416866c41cd9500ffb9"}, {file = "lxml-4.9.2-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:da4dd7c9c50c059aba52b3524f84d7de956f7fef88f0bafcf4ad7dde94a064e8"}, {file = "lxml-4.9.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl", hash = "sha256:821b7f59b99551c69c85a6039c65b75f5683bdc63270fec660f75da67469ca24"}, {file = "lxml-4.9.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl", hash = "sha256:e5168986b90a8d1f2f9dc1b841467c74221bd752537b99761a93d2d981e04889"}, {file = "lxml-4.9.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:8e20cb5a47247e383cf4ff523205060991021233ebd6f924bca927fcf25cf86f"}, {file = "lxml-4.9.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:13598ecfbd2e86ea7ae45ec28a2a54fb87ee9b9fdb0f6d343297d8e548392c03"}, {file = "lxml-4.9.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:880bbbcbe2fca64e2f4d8e04db47bcdf504936fa2b33933efd945e1b429bea8c"}, {file = "lxml-4.9.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:7d2278d59425777cfcb19735018d897ca8303abe67cc735f9f97177ceff8027f"}, {file = "lxml-4.9.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:5344a43228767f53a9df6e5b253f8cdca7dfc7b7aeae52551958192f56d98457"}, {file = "lxml-4.9.2-cp38-cp38-win32.whl", hash = "sha256:925073b2fe14ab9b87e73f9a5fde6ce6392da430f3004d8b72cc86f746f5163b"}, {file = "lxml-4.9.2-cp38-cp38-win_amd64.whl", hash = "sha256:9b22c5c66f67ae00c0199f6055705bc3eb3fcb08d03d2ec4059a2b1b25ed48d7"}, {file = "lxml-4.9.2-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:5f50a1c177e2fa3ee0667a5ab79fdc6b23086bc8b589d90b93b4bd17eb0e64d1"}, {file = "lxml-4.9.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl", hash = "sha256:090c6543d3696cbe15b4ac6e175e576bcc3f1ccfbba970061b7300b0c15a2140"}, {file = "lxml-4.9.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl", hash = "sha256:63da2ccc0857c311d764e7d3d90f429c252e83b52d1f8f1d1fe55be26827d1f4"}, {file = "lxml-4.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:5b4545b8a40478183ac06c073e81a5ce4cf01bf1734962577cf2bb569a5b3bbf"}, {file = "lxml-4.9.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2e430cd2824f05f2d4f687701144556646bae8f249fd60aa1e4c768ba7018947"}, {file = "lxml-4.9.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:6804daeb7ef69e7b36f76caddb85cccd63d0c56dedb47555d2fc969e2af6a1a5"}, {file = "lxml-4.9.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a6e441a86553c310258aca15d1c05903aaf4965b23f3bc2d55f200804e005ee5"}, {file = "lxml-4.9.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ca34efc80a29351897e18888c71c6aca4a359247c87e0b1c7ada14f0ab0c0fb2"}, {file = "lxml-4.9.2-cp39-cp39-win32.whl", hash = "sha256:6b418afe5df18233fc6b6093deb82a32895b6bb0b1155c2cdb05203f583053f1"}, {file = "lxml-4.9.2-cp39-cp39-win_amd64.whl", hash = "sha256:f1496ea22ca2c830cbcbd473de8f114a320da308438ae65abad6bab7867fe38f"}, {file = "lxml-4.9.2-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl", hash = "sha256:b264171e3143d842ded311b7dccd46ff9ef34247129ff5bf5066123c55c2431c"}, {file = "lxml-4.9.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:0dc313ef231edf866912e9d8f5a042ddab56c752619e92dfd3a2c277e6a7299a"}, {file = "lxml-4.9.2-pp38-pypy38_pp73-macosx_10_15_x86_64.whl", hash = "sha256:16efd54337136e8cd72fb9485c368d91d77a47ee2d42b057564aae201257d419"}, {file = "lxml-4.9.2-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl", hash = "sha256:0f2b1e0d79180f344ff9f321327b005ca043a50ece8713de61d1cb383fb8ac05"}, {file = "lxml-4.9.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:7b770ed79542ed52c519119473898198761d78beb24b107acf3ad65deae61f1f"}, {file = "lxml-4.9.2-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:efa29c2fe6b4fdd32e8ef81c1528506895eca86e1d8c4657fda04c9b3786ddf9"}, {file = "lxml-4.9.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:7e91ee82f4199af8c43d8158024cbdff3d931df350252288f0d4ce656df7f3b5"}, {file = "lxml-4.9.2-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl", hash = "sha256:b23e19989c355ca854276178a0463951a653309fb8e57ce674497f2d9f208746"}, {file = "lxml-4.9.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:01d36c05f4afb8f7c20fd9ed5badca32a2029b93b1750f571ccc0b142531caf7"}, {file = "lxml-4.9.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:7b515674acfdcadb0eb5d00d8a709868173acece5cb0be3dd165950cbfdf5409"}, {file = "lxml-4.9.2.tar.gz", hash = "sha256:2455cfaeb7ac70338b3257f41e21f0724f4b5b0c0e7702da67ee6c3640835b67"}, ] [package.extras] cssselect = ["cssselect (>=0.7)"] html5 = ["html5lib"] htmlsoup = ["BeautifulSoup4"] source = ["Cython (>=0.29.7)"] [[package]] name = "lz4" version = "4.3.2" description = "LZ4 Bindings for Python" optional = false python-versions = ">=3.7" files = [ {file = "lz4-4.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1c4c100d99eed7c08d4e8852dd11e7d1ec47a3340f49e3a96f8dfbba17ffb300"}, {file = "lz4-4.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:edd8987d8415b5dad25e797043936d91535017237f72fa456601be1479386c92"}, {file = "lz4-4.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f7c50542b4ddceb74ab4f8b3435327a0861f06257ca501d59067a6a482535a77"}, {file = "lz4-4.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0f5614d8229b33d4a97cb527db2a1ac81308c6e796e7bdb5d1309127289f69d5"}, {file = "lz4-4.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8f00a9ba98f6364cadda366ae6469b7b3568c0cced27e16a47ddf6b774169270"}, {file = "lz4-4.3.2-cp310-cp310-win32.whl", hash = "sha256:b10b77dc2e6b1daa2f11e241141ab8285c42b4ed13a8642495620416279cc5b2"}, {file = "lz4-4.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:86480f14a188c37cb1416cdabacfb4e42f7a5eab20a737dac9c4b1c227f3b822"}, {file = "lz4-4.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7c2df117def1589fba1327dceee51c5c2176a2b5a7040b45e84185ce0c08b6a3"}, {file = "lz4-4.3.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1f25eb322eeb24068bb7647cae2b0732b71e5c639e4e4026db57618dcd8279f0"}, {file = "lz4-4.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8df16c9a2377bdc01e01e6de5a6e4bbc66ddf007a6b045688e285d7d9d61d1c9"}, {file = "lz4-4.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f571eab7fec554d3b1db0d666bdc2ad85c81f4b8cb08906c4c59a8cad75e6e22"}, {file = "lz4-4.3.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7211dc8f636ca625abc3d4fb9ab74e5444b92df4f8d58ec83c8868a2b0ff643d"}, {file = "lz4-4.3.2-cp311-cp311-win32.whl", hash = "sha256:867664d9ca9bdfce840ac96d46cd8838c9ae891e859eb98ce82fcdf0e103a947"}, {file = "lz4-4.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:a6a46889325fd60b8a6b62ffc61588ec500a1883db32cddee9903edfba0b7584"}, {file = "lz4-4.3.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3a85b430138882f82f354135b98c320dafb96fc8fe4656573d95ab05de9eb092"}, {file = "lz4-4.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:65d5c93f8badacfa0456b660285e394e65023ef8071142e0dcbd4762166e1be0"}, {file = "lz4-4.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6b50f096a6a25f3b2edca05aa626ce39979d63c3b160687c8c6d50ac3943d0ba"}, {file = "lz4-4.3.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:200d05777d61ba1ff8d29cb51c534a162ea0b4fe6d3c28be3571a0a48ff36080"}, {file = "lz4-4.3.2-cp37-cp37m-win32.whl", hash = "sha256:edc2fb3463d5d9338ccf13eb512aab61937be50aa70734bcf873f2f493801d3b"}, {file = "lz4-4.3.2-cp37-cp37m-win_amd64.whl", hash = "sha256:83acfacab3a1a7ab9694333bcb7950fbeb0be21660d236fd09c8337a50817897"}, {file = "lz4-4.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:7a9eec24ec7d8c99aab54de91b4a5a149559ed5b3097cf30249b665689b3d402"}, {file = "lz4-4.3.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:31d72731c4ac6ebdce57cd9a5cabe0aecba229c4f31ba3e2c64ae52eee3fdb1c"}, {file = "lz4-4.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:83903fe6db92db0be101acedc677aa41a490b561567fe1b3fe68695b2110326c"}, {file = "lz4-4.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:926b26db87ec8822cf1870efc3d04d06062730ec3279bbbd33ba47a6c0a5c673"}, {file = "lz4-4.3.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e05afefc4529e97c08e65ef92432e5f5225c0bb21ad89dee1e06a882f91d7f5e"}, {file = "lz4-4.3.2-cp38-cp38-win32.whl", hash = "sha256:ad38dc6a7eea6f6b8b642aaa0683253288b0460b70cab3216838747163fb774d"}, {file = "lz4-4.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:7e2dc1bd88b60fa09b9b37f08553f45dc2b770c52a5996ea52b2b40f25445676"}, {file = "lz4-4.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:edda4fb109439b7f3f58ed6bede59694bc631c4b69c041112b1b7dc727fffb23"}, {file = "lz4-4.3.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0ca83a623c449295bafad745dcd399cea4c55b16b13ed8cfea30963b004016c9"}, {file = "lz4-4.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d5ea0e788dc7e2311989b78cae7accf75a580827b4d96bbaf06c7e5a03989bd5"}, {file = "lz4-4.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a98b61e504fb69f99117b188e60b71e3c94469295571492a6468c1acd63c37ba"}, {file = "lz4-4.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4931ab28a0d1c133104613e74eec1b8bb1f52403faabe4f47f93008785c0b929"}, {file = "lz4-4.3.2-cp39-cp39-win32.whl", hash = "sha256:ec6755cacf83f0c5588d28abb40a1ac1643f2ff2115481089264c7630236618a"}, {file = "lz4-4.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:4caedeb19e3ede6c7a178968b800f910db6503cb4cb1e9cc9221157572139b49"}, {file = "lz4-4.3.2.tar.gz", hash = "sha256:e1431d84a9cfb23e6773e72078ce8e65cad6745816d4cbf9ae67da5ea419acda"}, ] [package.extras] docs = ["sphinx (>=1.6.0)", "sphinx-bootstrap-theme"] flake8 = ["flake8"] tests = ["psutil", "pytest (!=3.3.0)", "pytest-cov"] [[package]] name = "manifest-ml" version = "0.0.1" description = "Manifest for Prompt Programming Foundation Models." optional = true python-versions = ">=3.8.0" files = [ {file = "manifest-ml-0.0.1.tar.gz", hash = "sha256:f828faf7de41fad5318254beec08acdf5142196e0e22203a4047412c2d3127a0"}, {file = "manifest_ml-0.0.1-py2.py3-none-any.whl", hash = "sha256:fc4e62e706fd767fd8851d91051fdb71bc79b2df9c66f5879736c46d8163a316"}, ] [package.dependencies] dill = ">=0.3.5" redis = ">=4.3.1" requests = ">=2.27.1" sqlitedict = ">=2.0.0" tqdm = ">=4.64.0" [package.extras] all = ["Flask (>=2.1.2)", "accelerate (>=0.10.0)", "autopep8 (>=1.6.0)", "black (>=22.3.0)", "docformatter (>=1.4)", "flake8 (>=4.0.0)", "flake8-docstrings (>=1.6.0)", "isort (>=5.9.3)", "mypy (>=0.950)", "nbsphinx (>=0.8.0)", "pep8-naming (>=0.12.1)", "pre-commit (>=2.14.0)", "pytest (>=7.0.0)", "pytest-cov (>=3.0.0)", "python-dotenv (>=0.20.0)", "recommonmark (>=0.7.1)", "sphinx-autobuild", "sphinx-rtd-theme (>=0.5.1)", "torch (>=1.8.0)", "transformers (>=4.20.0)", "twine", "types-PyYAML (>=6.0.7)", "types-protobuf (>=3.19.21)", "types-python-dateutil (>=2.8.16)", "types-redis (>=4.2.6)", "types-requests (>=2.27.29)", "types-setuptools (>=57.4.17)"] api = ["Flask (>=2.1.2)", "accelerate (>=0.10.0)", "torch (>=1.8.0)", "transformers (>=4.20.0)"] dev = ["autopep8 (>=1.6.0)", "black (>=22.3.0)", "docformatter (>=1.4)", "flake8 (>=4.0.0)", "flake8-docstrings (>=1.6.0)", "isort (>=5.9.3)", "mypy (>=0.950)", "nbsphinx (>=0.8.0)", "pep8-naming (>=0.12.1)", "pre-commit (>=2.14.0)", "pytest (>=7.0.0)", "pytest-cov (>=3.0.0)", "python-dotenv (>=0.20.0)", "recommonmark (>=0.7.1)", "sphinx-autobuild", "sphinx-rtd-theme (>=0.5.1)", "twine", "types-PyYAML (>=6.0.7)", "types-protobuf (>=3.19.21)", "types-python-dateutil (>=2.8.16)", "types-redis (>=4.2.6)", "types-requests (>=2.27.29)", "types-setuptools (>=57.4.17)"] [[package]] name = "markdown" version = "3.4.3" description = "Python implementation of John Gruber's Markdown." optional = true python-versions = ">=3.7" files = [ {file = "Markdown-3.4.3-py3-none-any.whl", hash = "sha256:065fd4df22da73a625f14890dd77eb8040edcbd68794bcd35943be14490608b2"}, {file = "Markdown-3.4.3.tar.gz", hash = "sha256:8bf101198e004dc93e84a12a7395e31aac6a9c9942848ae1d99b9d72cf9b3520"}, ] [package.extras] testing = ["coverage", "pyyaml"] [[package]] name = "markdown-it-py" version = "2.2.0" description = "Python port of markdown-it. Markdown parsing, done right!" optional = false python-versions = ">=3.7" files = [ {file = "markdown-it-py-2.2.0.tar.gz", hash = "sha256:7c9a5e412688bc771c67432cbfebcdd686c93ce6484913dccf06cb5a0bea35a1"}, {file = "markdown_it_py-2.2.0-py3-none-any.whl", hash = "sha256:5a35f8d1870171d9acc47b99612dc146129b631baf04970128b568f190d0cc30"}, ] [package.dependencies] mdurl = ">=0.1,<1.0" [package.extras] benchmarking = ["psutil", "pytest", "pytest-benchmark"] code-style = ["pre-commit (>=3.0,<4.0)"] compare = ["commonmark (>=0.9,<1.0)", "markdown (>=3.4,<4.0)", "mistletoe (>=1.0,<2.0)", "mistune (>=2.0,<3.0)", "panflute (>=2.3,<3.0)"] linkify = ["linkify-it-py (>=1,<3)"] plugins = ["mdit-py-plugins"] profiling = ["gprof2dot"] rtd = ["attrs", "myst-parser", "pyyaml", "sphinx", "sphinx-copybutton", "sphinx-design", "sphinx_book_theme"] testing = ["coverage", "pytest", "pytest-cov", "pytest-regressions"] [[package]] name = "markupsafe" version = "2.1.2" description = "Safely add untrusted strings to HTML/XML markup." optional = false python-versions = ">=3.7" files = [ {file = "MarkupSafe-2.1.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:665a36ae6f8f20a4676b53224e33d456a6f5a72657d9c83c2aa00765072f31f7"}, {file = "MarkupSafe-2.1.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:340bea174e9761308703ae988e982005aedf427de816d1afe98147668cc03036"}, {file = "MarkupSafe-2.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22152d00bf4a9c7c83960521fc558f55a1adbc0631fbb00a9471e097b19d72e1"}, {file = "MarkupSafe-2.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:28057e985dace2f478e042eaa15606c7efccb700797660629da387eb289b9323"}, {file = "MarkupSafe-2.1.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ca244fa73f50a800cf8c3ebf7fd93149ec37f5cb9596aa8873ae2c1d23498601"}, {file = "MarkupSafe-2.1.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d9d971ec1e79906046aa3ca266de79eac42f1dbf3612a05dc9368125952bd1a1"}, {file = "MarkupSafe-2.1.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:7e007132af78ea9df29495dbf7b5824cb71648d7133cf7848a2a5dd00d36f9ff"}, {file = "MarkupSafe-2.1.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:7313ce6a199651c4ed9d7e4cfb4aa56fe923b1adf9af3b420ee14e6d9a73df65"}, {file = "MarkupSafe-2.1.2-cp310-cp310-win32.whl", hash = "sha256:c4a549890a45f57f1ebf99c067a4ad0cb423a05544accaf2b065246827ed9603"}, {file = "MarkupSafe-2.1.2-cp310-cp310-win_amd64.whl", hash = "sha256:835fb5e38fd89328e9c81067fd642b3593c33e1e17e2fdbf77f5676abb14a156"}, {file = "MarkupSafe-2.1.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:2ec4f2d48ae59bbb9d1f9d7efb9236ab81429a764dedca114f5fdabbc3788013"}, {file = "MarkupSafe-2.1.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:608e7073dfa9e38a85d38474c082d4281f4ce276ac0010224eaba11e929dd53a"}, {file = "MarkupSafe-2.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:65608c35bfb8a76763f37036547f7adfd09270fbdbf96608be2bead319728fcd"}, {file = "MarkupSafe-2.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f2bfb563d0211ce16b63c7cb9395d2c682a23187f54c3d79bfec33e6705473c6"}, {file = "MarkupSafe-2.1.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:da25303d91526aac3672ee6d49a2f3db2d9502a4a60b55519feb1a4c7714e07d"}, {file = "MarkupSafe-2.1.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:9cad97ab29dfc3f0249b483412c85c8ef4766d96cdf9dcf5a1e3caa3f3661cf1"}, {file = "MarkupSafe-2.1.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:085fd3201e7b12809f9e6e9bc1e5c96a368c8523fad5afb02afe3c051ae4afcc"}, {file = "MarkupSafe-2.1.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:1bea30e9bf331f3fef67e0a3877b2288593c98a21ccb2cf29b74c581a4eb3af0"}, {file = "MarkupSafe-2.1.2-cp311-cp311-win32.whl", hash = "sha256:7df70907e00c970c60b9ef2938d894a9381f38e6b9db73c5be35e59d92e06625"}, {file = "MarkupSafe-2.1.2-cp311-cp311-win_amd64.whl", hash = "sha256:e55e40ff0cc8cc5c07996915ad367fa47da6b3fc091fdadca7f5403239c5fec3"}, {file = "MarkupSafe-2.1.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:a6e40afa7f45939ca356f348c8e23048e02cb109ced1eb8420961b2f40fb373a"}, {file = "MarkupSafe-2.1.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf877ab4ed6e302ec1d04952ca358b381a882fbd9d1b07cccbfd61783561f98a"}, {file = "MarkupSafe-2.1.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:63ba06c9941e46fa389d389644e2d8225e0e3e5ebcc4ff1ea8506dce646f8c8a"}, {file = "MarkupSafe-2.1.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f1cd098434e83e656abf198f103a8207a8187c0fc110306691a2e94a78d0abb2"}, {file = "MarkupSafe-2.1.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:55f44b440d491028addb3b88f72207d71eeebfb7b5dbf0643f7c023ae1fba619"}, {file = "MarkupSafe-2.1.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:a6f2fcca746e8d5910e18782f976489939d54a91f9411c32051b4aab2bd7c513"}, {file = "MarkupSafe-2.1.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:0b462104ba25f1ac006fdab8b6a01ebbfbce9ed37fd37fd4acd70c67c973e460"}, {file = "MarkupSafe-2.1.2-cp37-cp37m-win32.whl", hash = "sha256:7668b52e102d0ed87cb082380a7e2e1e78737ddecdde129acadb0eccc5423859"}, {file = "MarkupSafe-2.1.2-cp37-cp37m-win_amd64.whl", hash = "sha256:6d6607f98fcf17e534162f0709aaad3ab7a96032723d8ac8750ffe17ae5a0666"}, {file = "MarkupSafe-2.1.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:a806db027852538d2ad7555b203300173dd1b77ba116de92da9afbc3a3be3eed"}, {file = "MarkupSafe-2.1.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a4abaec6ca3ad8660690236d11bfe28dfd707778e2442b45addd2f086d6ef094"}, {file = "MarkupSafe-2.1.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f03a532d7dee1bed20bc4884194a16160a2de9ffc6354b3878ec9682bb623c54"}, {file = "MarkupSafe-2.1.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4cf06cdc1dda95223e9d2d3c58d3b178aa5dacb35ee7e3bbac10e4e1faacb419"}, {file = "MarkupSafe-2.1.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:22731d79ed2eb25059ae3df1dfc9cb1546691cc41f4e3130fe6bfbc3ecbbecfa"}, {file = "MarkupSafe-2.1.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:f8ffb705ffcf5ddd0e80b65ddf7bed7ee4f5a441ea7d3419e861a12eaf41af58"}, {file = "MarkupSafe-2.1.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:8db032bf0ce9022a8e41a22598eefc802314e81b879ae093f36ce9ddf39ab1ba"}, {file = "MarkupSafe-2.1.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:2298c859cfc5463f1b64bd55cb3e602528db6fa0f3cfd568d3605c50678f8f03"}, {file = "MarkupSafe-2.1.2-cp38-cp38-win32.whl", hash = "sha256:50c42830a633fa0cf9e7d27664637532791bfc31c731a87b202d2d8ac40c3ea2"}, {file = "MarkupSafe-2.1.2-cp38-cp38-win_amd64.whl", hash = "sha256:bb06feb762bade6bf3c8b844462274db0c76acc95c52abe8dbed28ae3d44a147"}, {file = "MarkupSafe-2.1.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:99625a92da8229df6d44335e6fcc558a5037dd0a760e11d84be2260e6f37002f"}, {file = "MarkupSafe-2.1.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8bca7e26c1dd751236cfb0c6c72d4ad61d986e9a41bbf76cb445f69488b2a2bd"}, {file = "MarkupSafe-2.1.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:40627dcf047dadb22cd25ea7ecfe9cbf3bbbad0482ee5920b582f3809c97654f"}, {file = "MarkupSafe-2.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:40dfd3fefbef579ee058f139733ac336312663c6706d1163b82b3003fb1925c4"}, {file = "MarkupSafe-2.1.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:090376d812fb6ac5f171e5938e82e7f2d7adc2b629101cec0db8b267815c85e2"}, {file = "MarkupSafe-2.1.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:2e7821bffe00aa6bd07a23913b7f4e01328c3d5cc0b40b36c0bd81d362faeb65"}, {file = "MarkupSafe-2.1.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:c0a33bc9f02c2b17c3ea382f91b4db0e6cde90b63b296422a939886a7a80de1c"}, {file = "MarkupSafe-2.1.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:b8526c6d437855442cdd3d87eede9c425c4445ea011ca38d937db299382e6fa3"}, {file = "MarkupSafe-2.1.2-cp39-cp39-win32.whl", hash = "sha256:137678c63c977754abe9086a3ec011e8fd985ab90631145dfb9294ad09c102a7"}, {file = "MarkupSafe-2.1.2-cp39-cp39-win_amd64.whl", hash = "sha256:0576fe974b40a400449768941d5d0858cc624e3249dfd1e0c33674e5c7ca7aed"}, {file = "MarkupSafe-2.1.2.tar.gz", hash = "sha256:abcabc8c2b26036d62d4c746381a6f7cf60aafcc653198ad678306986b09450d"}, ] [[package]] name = "marshmallow" version = "3.19.0" description = "A lightweight library for converting complex datatypes to and from native Python datatypes." optional = false python-versions = ">=3.7" files = [ {file = "marshmallow-3.19.0-py3-none-any.whl", hash = "sha256:93f0958568da045b0021ec6aeb7ac37c81bfcccbb9a0e7ed8559885070b3a19b"}, {file = "marshmallow-3.19.0.tar.gz", hash = "sha256:90032c0fd650ce94b6ec6dc8dfeb0e3ff50c144586462c389b81a07205bedb78"}, ] [package.dependencies] packaging = ">=17.0" [package.extras] dev = ["flake8 (==5.0.4)", "flake8-bugbear (==22.10.25)", "mypy (==0.990)", "pre-commit (>=2.4,<3.0)", "pytest", "pytz", "simplejson", "tox"] docs = ["alabaster (==0.7.12)", "autodocsumm (==0.2.9)", "sphinx (==5.3.0)", "sphinx-issues (==3.0.1)", "sphinx-version-warning (==1.1.2)"] lint = ["flake8 (==5.0.4)", "flake8-bugbear (==22.10.25)", "mypy (==0.990)", "pre-commit (>=2.4,<3.0)"] tests = ["pytest", "pytz", "simplejson"] [[package]] name = "marshmallow-enum" version = "1.5.1" description = "Enum field for Marshmallow" optional = false python-versions = "*" files = [ {file = "marshmallow-enum-1.5.1.tar.gz", hash = "sha256:38e697e11f45a8e64b4a1e664000897c659b60aa57bfa18d44e226a9920b6e58"}, {file = "marshmallow_enum-1.5.1-py2.py3-none-any.whl", hash = "sha256:57161ab3dbfde4f57adeb12090f39592e992b9c86d206d02f6bd03ebec60f072"}, ] [package.dependencies] marshmallow = ">=2.0.0" [[package]] name = "mastodon-py" version = "1.8.1" description = "Python wrapper for the Mastodon API" optional = false python-versions = "*" files = [ {file = "Mastodon.py-1.8.1-py2.py3-none-any.whl", hash = "sha256:22bc7e060518ef2eaa69d911cde6e4baf56bed5ea0dd407392c49051a7ac526a"}, {file = "Mastodon.py-1.8.1.tar.gz", hash = "sha256:4a64cb94abadd6add73e4b8eafdb5c466048fa5f638284fd2189034104d4687e"}, ] [package.dependencies] blurhash = ">=1.1.4" decorator = ">=4.0.0" python-dateutil = "*" python-magic = {version = "*", markers = "platform_system != \"Windows\""} python-magic-bin = {version = "*", markers = "platform_system == \"Windows\""} requests = ">=2.4.2" six = "*" [package.extras] blurhash = ["blurhash (>=1.1.4)"] test = ["blurhash (>=1.1.4)", "cryptography (>=1.6.0)", "http-ece (>=1.0.5)", "pytest", "pytest-cov", "pytest-mock", "pytest-runner", "pytest-vcr", "pytz", "requests-mock", "vcrpy"] webpush = ["cryptography (>=1.6.0)", "http-ece (>=1.0.5)"] [[package]] name = "matplotlib-inline" version = "0.1.6" description = "Inline Matplotlib backend for Jupyter" optional = false python-versions = ">=3.5" files = [ {file = "matplotlib-inline-0.1.6.tar.gz", hash = "sha256:f887e5f10ba98e8d2b150ddcf4702c1e5f8b3a20005eb0f74bfdbd360ee6f304"}, {file = "matplotlib_inline-0.1.6-py3-none-any.whl", hash = "sha256:f1f41aab5328aa5aaea9b16d083b128102f8712542f819fe7e6a420ff581b311"}, ] [package.dependencies] traitlets = "*" [[package]] name = "mdit-py-plugins" version = "0.3.5" description = "Collection of plugins for markdown-it-py" optional = false python-versions = ">=3.7" files = [ {file = "mdit-py-plugins-0.3.5.tar.gz", hash = "sha256:eee0adc7195e5827e17e02d2a258a2ba159944a0748f59c5099a4a27f78fcf6a"}, {file = "mdit_py_plugins-0.3.5-py3-none-any.whl", hash = "sha256:ca9a0714ea59a24b2b044a1831f48d817dd0c817e84339f20e7889f392d77c4e"}, ] [package.dependencies] markdown-it-py = ">=1.0.0,<3.0.0" [package.extras] code-style = ["pre-commit"] rtd = ["attrs", "myst-parser (>=0.16.1,<0.17.0)", "sphinx-book-theme (>=0.1.0,<0.2.0)"] testing = ["coverage", "pytest", "pytest-cov", "pytest-regressions"] [[package]] name = "mdurl" version = "0.1.2" description = "Markdown URL utilities" optional = false python-versions = ">=3.7" files = [ {file = "mdurl-0.1.2-py3-none-any.whl", hash = "sha256:84008a41e51615a49fc9966191ff91509e3c40b939176e643fd50a5c2196b8f8"}, {file = "mdurl-0.1.2.tar.gz", hash = "sha256:bb413d29f5eea38f31dd4754dd7377d4465116fb207585f97bf925588687c1ba"}, ] [[package]] name = "mistune" version = "2.0.5" description = "A sane Markdown parser with useful plugins and renderers" optional = false python-versions = "*" files = [ {file = "mistune-2.0.5-py2.py3-none-any.whl", hash = "sha256:bad7f5d431886fcbaf5f758118ecff70d31f75231b34024a1341120340a65ce8"}, {file = "mistune-2.0.5.tar.gz", hash = "sha256:0246113cb2492db875c6be56974a7c893333bf26cd92891c85f63151cee09d34"}, ] [[package]] name = "mmh3" version = "3.1.0" description = "Python wrapper for MurmurHash (MurmurHash3), a set of fast and robust hash functions." optional = false python-versions = "*" files = [ {file = "mmh3-3.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:16ee043b1bac040b4324b8baee39df9fdca480a560a6d74f2eef66a5009a234e"}, {file = "mmh3-3.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:04ac865319e5b36148a4b6cdf27f8bda091c47c4ab7b355d7f353dfc2b8a3cce"}, {file = "mmh3-3.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9e751f5433417a21c2060b0efa1afc67cfbe29977c867336148c8edb086fae70"}, {file = "mmh3-3.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bdb863b89c1b34e3681d4a3b15d424734940eb8036f3457cb35ef34fb87a503c"}, {file = "mmh3-3.1.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1230930fbf2faec4ddf5b76d0768ae73c102de173c301962bdd468177275adf9"}, {file = "mmh3-3.1.0-cp310-cp310-win32.whl", hash = "sha256:b8ed7a2361718795a1b519a08d05f44947a20b27e202b53946561a00dde669c1"}, {file = "mmh3-3.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:29e878e7467a000f34ab68c218ad7ad81312c0a94bc10df3c50a48bcad39dd83"}, {file = "mmh3-3.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c271472325b70d64a4fbb1f2e964ca5b093ac10258e1390f8408890b065868fe"}, {file = "mmh3-3.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:0109320f7e0e262123ff4f1acd06acfbc8b3bf19cc13d98c0bc369264430aaeb"}, {file = "mmh3-3.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:524e29dfe66499695f9496edcfc96782d130aabd6ba12c50c72372163cc6f3ea"}, {file = "mmh3-3.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:66bdb06a03074e65e614da1aa199b1d16c90608bec9d8fc3faa81d887ffe93cc"}, {file = "mmh3-3.1.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2a4d471eb75df8320061ab3b8cbe11c970be9f116b01bc2222ebda9c0a777520"}, {file = "mmh3-3.1.0-cp311-cp311-win32.whl", hash = "sha256:a886d9ce995a4bdfd7a600ddf61b9015cccbc73c50b898f8ff3c78af24384710"}, {file = "mmh3-3.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:5edb5ac882c04aff8a2a18ae8b74a0c339ac9b83db9820d8456f518bb558e0d8"}, {file = "mmh3-3.1.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:190fd10981fbd6c67e10ce3b56bcc021562c0df0fee2e2864347d64e65b1783a"}, {file = "mmh3-3.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cd781b115cf649811cfde76368c33d2e553b6f88bb41131c314f30d8e65e9d24"}, {file = "mmh3-3.1.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f48bb0a867077acc1f548591ad49506389f36d18f36dccd10becf071e5cbdda4"}, {file = "mmh3-3.1.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7d0936a82438e340636a11b9a938378870fc1c7a139632dac09a9a9277351704"}, {file = "mmh3-3.1.0-cp37-cp37m-win32.whl", hash = "sha256:d196cc035c2238493248522ae4e54c3cb790549b1564f6dea4d88dfe4b326313"}, {file = "mmh3-3.1.0-cp37-cp37m-win_amd64.whl", hash = "sha256:731d37f089b6c212fab1beea24e673161146eb6c76baf9ac074a3424d1172d41"}, {file = "mmh3-3.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9977fb81f8c66f4eee8439734a18dba7826fe78723d15ab53f42db977005be0f"}, {file = "mmh3-3.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:bf4f3f20a8b8405c08b13bc9e4ac33bf55129b50b535cd07ce1891b7f96326ac"}, {file = "mmh3-3.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:87cdbc6e70099ad92f17a28b4054ffb1938657e8fb7c1e4e03b194a1b4683fd6"}, {file = "mmh3-3.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6dd81321d14f62aa3711f30533c85a74dc7596e0fee63c8eddd375bc92ab846c"}, {file = "mmh3-3.1.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2e6eba88e5c1a2778f3de00a9502e3c214ebb757337ece2a7d71e060d188ddfa"}, {file = "mmh3-3.1.0-cp38-cp38-win32.whl", hash = "sha256:d91e696925f208d28f3bb7bdf29815524ce955248276af256519bd3538c411ce"}, {file = "mmh3-3.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:cbc2917df568aeb86ec5aa863bfb20fa14e01039cbdce7650efbabc30960df49"}, {file = "mmh3-3.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3b22832d565128be83d69f5d49243bb567840a954df377c9f5b26646a6eec39b"}, {file = "mmh3-3.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ced92a0e285a9111413541c197b0c17d280cee96f7c564b258caf5de5ab8ee01"}, {file = "mmh3-3.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f906833753b4ddcb690c2c1b74e77725868bc3a8b762b7a77737d08be89ae41d"}, {file = "mmh3-3.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:72b5685832a7a87a55ebff481794bc410484d7bd4c5e80dae4d8ac50739138ef"}, {file = "mmh3-3.1.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8d2aa4d422c7c088bbc5d367b45431268ebe6742a0a64eade93fab708e25757c"}, {file = "mmh3-3.1.0-cp39-cp39-win32.whl", hash = "sha256:4459bec818f534dc8378568ad89ab310ff47cda3e00ab322edce48dd899bba32"}, {file = "mmh3-3.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:03e04b3480e71828f48d17653451a3286555f0534942cb6ba93065b10ad5f9dc"}, {file = "mmh3-3.1.0.tar.gz", hash = "sha256:9b0f2b2ab4a915333c9d1089572e290a021ebb5b900bb7f7114dccc03995d732"}, ] [[package]] name = "momento" version = "1.5.0" description = "SDK for Momento" optional = false python-versions = ">=3.7,<4.0" files = [ {file = "momento-1.5.0-py3-none-any.whl", hash = "sha256:7f633fb26ddf1bfcaf99a7add37b085f0e23c96f85972b655eaaf2de1c61d7f1"}, {file = "momento-1.5.0.tar.gz", hash = "sha256:68ca5d24b4cb08c5c0bd22d4edd3b8b0fcf087a85d30673cb2c55b11971c76ec"}, ] [package.dependencies] grpcio = ">=1.46.0,<2.0.0" momento-wire-types = ">=0.64,<0.65" pyjwt = ">=2.4.0,<3.0.0" [[package]] name = "momento-wire-types" version = "0.64.0" description = "Momento Client Proto Generated Files" optional = false python-versions = ">=3.7,<4.0" files = [ {file = "momento_wire_types-0.64.0-py3-none-any.whl", hash = "sha256:30a5d523cef9209c0863db25e6344044b0c7240fea183a41c1433ca83cefea5b"}, {file = "momento_wire_types-0.64.0.tar.gz", hash = "sha256:5d3647210d49d0c3032a74ae5f5cc012a9faf826786272e1436a3d84d70a8bd5"}, ] [package.dependencies] grpcio = "*" protobuf = ">=3,<5" [[package]] name = "monotonic" version = "1.6" description = "An implementation of time.monotonic() for Python 2 & < 3.3" optional = false python-versions = "*" files = [ {file = "monotonic-1.6-py2.py3-none-any.whl", hash = "sha256:68687e19a14f11f26d140dd5c86f3dba4bf5df58003000ed467e0e2a69bca96c"}, {file = "monotonic-1.6.tar.gz", hash = "sha256:3a55207bcfed53ddd5c5bae174524062935efed17792e9de2ad0205ce9ad63f7"}, ] [[package]] name = "more-itertools" version = "9.1.0" description = "More routines for operating on iterables, beyond itertools" optional = true python-versions = ">=3.7" files = [ {file = "more-itertools-9.1.0.tar.gz", hash = "sha256:cabaa341ad0389ea83c17a94566a53ae4c9d07349861ecb14dc6d0345cf9ac5d"}, {file = "more_itertools-9.1.0-py3-none-any.whl", hash = "sha256:d2bc7f02446e86a68911e58ded76d6561eea00cddfb2a91e7019bbb586c799f3"}, ] [[package]] name = "msal" version = "1.22.0" description = "The Microsoft Authentication Library (MSAL) for Python library enables your app to access the Microsoft Cloud by supporting authentication of users with Microsoft Azure Active Directory accounts (AAD) and Microsoft Accounts (MSA) using industry standard OAuth2 and OpenID Connect." optional = true python-versions = "*" files = [ {file = "msal-1.22.0-py2.py3-none-any.whl", hash = "sha256:9120b7eafdf061c92f7b3d744e5f325fca35873445fa8ffebb40b1086a13dd58"}, {file = "msal-1.22.0.tar.gz", hash = "sha256:8a82f5375642c1625c89058018430294c109440dce42ea667d466c2cab520acd"}, ] [package.dependencies] cryptography = ">=0.6,<43" PyJWT = {version = ">=1.0.0,<3", extras = ["crypto"]} requests = ">=2.0.0,<3" [package.extras] broker = ["pymsalruntime (>=0.13.2,<0.14)"] [[package]] name = "msal-extensions" version = "1.0.0" description = "Microsoft Authentication Library extensions (MSAL EX) provides a persistence API that can save your data on disk, encrypted on Windows, macOS and Linux. Concurrent data access will be coordinated by a file lock mechanism." optional = true python-versions = "*" files = [ {file = "msal-extensions-1.0.0.tar.gz", hash = "sha256:c676aba56b0cce3783de1b5c5ecfe828db998167875126ca4b47dc6436451354"}, {file = "msal_extensions-1.0.0-py2.py3-none-any.whl", hash = "sha256:91e3db9620b822d0ed2b4d1850056a0f133cba04455e62f11612e40f5502f2ee"}, ] [package.dependencies] msal = ">=0.4.1,<2.0.0" portalocker = [ {version = ">=1.0,<3", markers = "python_version >= \"3.5\" and platform_system != \"Windows\""}, {version = ">=1.6,<3", markers = "python_version >= \"3.5\" and platform_system == \"Windows\""}, ] [[package]] name = "msgpack" version = "1.0.5" description = "MessagePack serializer" optional = true python-versions = "*" files = [ {file = "msgpack-1.0.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:525228efd79bb831cf6830a732e2e80bc1b05436b086d4264814b4b2955b2fa9"}, {file = "msgpack-1.0.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:4f8d8b3bf1ff2672567d6b5c725a1b347fe838b912772aa8ae2bf70338d5a198"}, {file = "msgpack-1.0.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:cdc793c50be3f01106245a61b739328f7dccc2c648b501e237f0699fe1395b81"}, {file = "msgpack-1.0.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5cb47c21a8a65b165ce29f2bec852790cbc04936f502966768e4aae9fa763cb7"}, {file = "msgpack-1.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e42b9594cc3bf4d838d67d6ed62b9e59e201862a25e9a157019e171fbe672dd3"}, {file = "msgpack-1.0.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:55b56a24893105dc52c1253649b60f475f36b3aa0fc66115bffafb624d7cb30b"}, {file = "msgpack-1.0.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:1967f6129fc50a43bfe0951c35acbb729be89a55d849fab7686004da85103f1c"}, {file = "msgpack-1.0.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:20a97bf595a232c3ee6d57ddaadd5453d174a52594bf9c21d10407e2a2d9b3bd"}, {file = "msgpack-1.0.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:d25dd59bbbbb996eacf7be6b4ad082ed7eacc4e8f3d2df1ba43822da9bfa122a"}, {file = "msgpack-1.0.5-cp310-cp310-win32.whl", hash = "sha256:382b2c77589331f2cb80b67cc058c00f225e19827dbc818d700f61513ab47bea"}, {file = "msgpack-1.0.5-cp310-cp310-win_amd64.whl", hash = "sha256:4867aa2df9e2a5fa5f76d7d5565d25ec76e84c106b55509e78c1ede0f152659a"}, {file = "msgpack-1.0.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:9f5ae84c5c8a857ec44dc180a8b0cc08238e021f57abdf51a8182e915e6299f0"}, {file = "msgpack-1.0.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:9e6ca5d5699bcd89ae605c150aee83b5321f2115695e741b99618f4856c50898"}, {file = "msgpack-1.0.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5494ea30d517a3576749cad32fa27f7585c65f5f38309c88c6d137877fa28a5a"}, {file = "msgpack-1.0.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1ab2f3331cb1b54165976a9d976cb251a83183631c88076613c6c780f0d6e45a"}, {file = "msgpack-1.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:28592e20bbb1620848256ebc105fc420436af59515793ed27d5c77a217477705"}, {file = "msgpack-1.0.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fe5c63197c55bce6385d9aee16c4d0641684628f63ace85f73571e65ad1c1e8d"}, {file = "msgpack-1.0.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ed40e926fa2f297e8a653c954b732f125ef97bdd4c889f243182299de27e2aa9"}, {file = "msgpack-1.0.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:b2de4c1c0538dcb7010902a2b97f4e00fc4ddf2c8cda9749af0e594d3b7fa3d7"}, {file = "msgpack-1.0.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:bf22a83f973b50f9d38e55c6aade04c41ddda19b00c4ebc558930d78eecc64ed"}, {file = "msgpack-1.0.5-cp311-cp311-win32.whl", hash = "sha256:c396e2cc213d12ce017b686e0f53497f94f8ba2b24799c25d913d46c08ec422c"}, {file = "msgpack-1.0.5-cp311-cp311-win_amd64.whl", hash = "sha256:6c4c68d87497f66f96d50142a2b73b97972130d93677ce930718f68828b382e2"}, {file = "msgpack-1.0.5-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:a2b031c2e9b9af485d5e3c4520f4220d74f4d222a5b8dc8c1a3ab9448ca79c57"}, {file = "msgpack-1.0.5-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4f837b93669ce4336e24d08286c38761132bc7ab29782727f8557e1eb21b2080"}, {file = "msgpack-1.0.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b1d46dfe3832660f53b13b925d4e0fa1432b00f5f7210eb3ad3bb9a13c6204a6"}, {file = "msgpack-1.0.5-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:366c9a7b9057e1547f4ad51d8facad8b406bab69c7d72c0eb6f529cf76d4b85f"}, {file = "msgpack-1.0.5-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:4c075728a1095efd0634a7dccb06204919a2f67d1893b6aa8e00497258bf926c"}, {file = "msgpack-1.0.5-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:f933bbda5a3ee63b8834179096923b094b76f0c7a73c1cfe8f07ad608c58844b"}, {file = "msgpack-1.0.5-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:36961b0568c36027c76e2ae3ca1132e35123dcec0706c4b7992683cc26c1320c"}, {file = "msgpack-1.0.5-cp36-cp36m-win32.whl", hash = "sha256:b5ef2f015b95f912c2fcab19c36814963b5463f1fb9049846994b007962743e9"}, {file = "msgpack-1.0.5-cp36-cp36m-win_amd64.whl", hash = "sha256:288e32b47e67f7b171f86b030e527e302c91bd3f40fd9033483f2cacc37f327a"}, {file = "msgpack-1.0.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:137850656634abddfb88236008339fdaba3178f4751b28f270d2ebe77a563b6c"}, {file = "msgpack-1.0.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0c05a4a96585525916b109bb85f8cb6511db1c6f5b9d9cbcbc940dc6b4be944b"}, {file = "msgpack-1.0.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:56a62ec00b636583e5cb6ad313bbed36bb7ead5fa3a3e38938503142c72cba4f"}, {file = "msgpack-1.0.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ef8108f8dedf204bb7b42994abf93882da1159728a2d4c5e82012edd92c9da9f"}, {file = "msgpack-1.0.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:1835c84d65f46900920b3708f5ba829fb19b1096c1800ad60bae8418652a951d"}, {file = "msgpack-1.0.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:e57916ef1bd0fee4f21c4600e9d1da352d8816b52a599c46460e93a6e9f17086"}, {file = "msgpack-1.0.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:17358523b85973e5f242ad74aa4712b7ee560715562554aa2134d96e7aa4cbbf"}, {file = "msgpack-1.0.5-cp37-cp37m-win32.whl", hash = "sha256:cb5aaa8c17760909ec6cb15e744c3ebc2ca8918e727216e79607b7bbce9c8f77"}, {file = "msgpack-1.0.5-cp37-cp37m-win_amd64.whl", hash = "sha256:ab31e908d8424d55601ad7075e471b7d0140d4d3dd3272daf39c5c19d936bd82"}, {file = "msgpack-1.0.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:b72d0698f86e8d9ddf9442bdedec15b71df3598199ba33322d9711a19f08145c"}, {file = "msgpack-1.0.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:379026812e49258016dd84ad79ac8446922234d498058ae1d415f04b522d5b2d"}, {file = "msgpack-1.0.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:332360ff25469c346a1c5e47cbe2a725517919892eda5cfaffe6046656f0b7bb"}, {file = "msgpack-1.0.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:476a8fe8fae289fdf273d6d2a6cb6e35b5a58541693e8f9f019bfe990a51e4ba"}, {file = "msgpack-1.0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a9985b214f33311df47e274eb788a5893a761d025e2b92c723ba4c63936b69b1"}, {file = "msgpack-1.0.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:48296af57cdb1d885843afd73c4656be5c76c0c6328db3440c9601a98f303d87"}, {file = "msgpack-1.0.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:addab7e2e1fcc04bd08e4eb631c2a90960c340e40dfc4a5e24d2ff0d5a3b3edb"}, {file = "msgpack-1.0.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:916723458c25dfb77ff07f4c66aed34e47503b2eb3188b3adbec8d8aa6e00f48"}, {file = "msgpack-1.0.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:821c7e677cc6acf0fd3f7ac664c98803827ae6de594a9f99563e48c5a2f27eb0"}, {file = "msgpack-1.0.5-cp38-cp38-win32.whl", hash = "sha256:1c0f7c47f0087ffda62961d425e4407961a7ffd2aa004c81b9c07d9269512f6e"}, {file = "msgpack-1.0.5-cp38-cp38-win_amd64.whl", hash = "sha256:bae7de2026cbfe3782c8b78b0db9cbfc5455e079f1937cb0ab8d133496ac55e1"}, {file = "msgpack-1.0.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:20c784e66b613c7f16f632e7b5e8a1651aa5702463d61394671ba07b2fc9e025"}, {file = "msgpack-1.0.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:266fa4202c0eb94d26822d9bfd7af25d1e2c088927fe8de9033d929dd5ba24c5"}, {file = "msgpack-1.0.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:18334484eafc2b1aa47a6d42427da7fa8f2ab3d60b674120bce7a895a0a85bdd"}, {file = "msgpack-1.0.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:57e1f3528bd95cc44684beda696f74d3aaa8a5e58c816214b9046512240ef437"}, {file = "msgpack-1.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:586d0d636f9a628ddc6a17bfd45aa5b5efaf1606d2b60fa5d87b8986326e933f"}, {file = "msgpack-1.0.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a740fa0e4087a734455f0fc3abf5e746004c9da72fbd541e9b113013c8dc3282"}, {file = "msgpack-1.0.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:3055b0455e45810820db1f29d900bf39466df96ddca11dfa6d074fa47054376d"}, {file = "msgpack-1.0.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:a61215eac016f391129a013c9e46f3ab308db5f5ec9f25811e811f96962599a8"}, {file = "msgpack-1.0.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:362d9655cd369b08fda06b6657a303eb7172d5279997abe094512e919cf74b11"}, {file = "msgpack-1.0.5-cp39-cp39-win32.whl", hash = "sha256:ac9dd47af78cae935901a9a500104e2dea2e253207c924cc95de149606dc43cc"}, {file = "msgpack-1.0.5-cp39-cp39-win_amd64.whl", hash = "sha256:06f5174b5f8ed0ed919da0e62cbd4ffde676a374aba4020034da05fab67b9164"}, {file = "msgpack-1.0.5.tar.gz", hash = "sha256:c075544284eadc5cddc70f4757331d99dcbc16b2bbd4849d15f8aae4cf36d31c"}, ] [[package]] name = "msrest" version = "0.7.1" description = "AutoRest swagger generator Python client runtime." optional = true python-versions = ">=3.6" files = [ {file = "msrest-0.7.1-py3-none-any.whl", hash = "sha256:21120a810e1233e5e6cc7fe40b474eeb4ec6f757a15d7cf86702c369f9567c32"}, {file = "msrest-0.7.1.zip", hash = "sha256:6e7661f46f3afd88b75667b7187a92829924446c7ea1d169be8c4bb7eeb788b9"}, ] [package.dependencies] azure-core = ">=1.24.0" certifi = ">=2017.4.17" isodate = ">=0.6.0" requests = ">=2.16,<3.0" requests-oauthlib = ">=0.5.0" [package.extras] async = ["aiodns", "aiohttp (>=3.0)"] [[package]] name = "multidict" version = "6.0.4" description = "multidict implementation" optional = false python-versions = ">=3.7" files = [ {file = "multidict-6.0.4-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:0b1a97283e0c85772d613878028fec909f003993e1007eafa715b24b377cb9b8"}, {file = "multidict-6.0.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:eeb6dcc05e911516ae3d1f207d4b0520d07f54484c49dfc294d6e7d63b734171"}, {file = "multidict-6.0.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d6d635d5209b82a3492508cf5b365f3446afb65ae7ebd755e70e18f287b0adf7"}, {file = "multidict-6.0.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c048099e4c9e9d615545e2001d3d8a4380bd403e1a0578734e0d31703d1b0c0b"}, {file = "multidict-6.0.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ea20853c6dbbb53ed34cb4d080382169b6f4554d394015f1bef35e881bf83547"}, {file = "multidict-6.0.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:16d232d4e5396c2efbbf4f6d4df89bfa905eb0d4dc5b3549d872ab898451f569"}, {file = "multidict-6.0.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:36c63aaa167f6c6b04ef2c85704e93af16c11d20de1d133e39de6a0e84582a93"}, {file = "multidict-6.0.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:64bdf1086b6043bf519869678f5f2757f473dee970d7abf6da91ec00acb9cb98"}, {file = "multidict-6.0.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:43644e38f42e3af682690876cff722d301ac585c5b9e1eacc013b7a3f7b696a0"}, {file = "multidict-6.0.4-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:7582a1d1030e15422262de9f58711774e02fa80df0d1578995c76214f6954988"}, {file = "multidict-6.0.4-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:ddff9c4e225a63a5afab9dd15590432c22e8057e1a9a13d28ed128ecf047bbdc"}, {file = "multidict-6.0.4-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:ee2a1ece51b9b9e7752e742cfb661d2a29e7bcdba2d27e66e28a99f1890e4fa0"}, {file = "multidict-6.0.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:a2e4369eb3d47d2034032a26c7a80fcb21a2cb22e1173d761a162f11e562caa5"}, {file = "multidict-6.0.4-cp310-cp310-win32.whl", hash = "sha256:574b7eae1ab267e5f8285f0fe881f17efe4b98c39a40858247720935b893bba8"}, {file = "multidict-6.0.4-cp310-cp310-win_amd64.whl", hash = "sha256:4dcbb0906e38440fa3e325df2359ac6cb043df8e58c965bb45f4e406ecb162cc"}, {file = "multidict-6.0.4-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:0dfad7a5a1e39c53ed00d2dd0c2e36aed4650936dc18fd9a1826a5ae1cad6f03"}, {file = "multidict-6.0.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:64da238a09d6039e3bd39bb3aee9c21a5e34f28bfa5aa22518581f910ff94af3"}, {file = "multidict-6.0.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ff959bee35038c4624250473988b24f846cbeb2c6639de3602c073f10410ceba"}, {file = "multidict-6.0.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:01a3a55bd90018c9c080fbb0b9f4891db37d148a0a18722b42f94694f8b6d4c9"}, {file = "multidict-6.0.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c5cb09abb18c1ea940fb99360ea0396f34d46566f157122c92dfa069d3e0e982"}, {file = "multidict-6.0.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:666daae833559deb2d609afa4490b85830ab0dfca811a98b70a205621a6109fe"}, {file = "multidict-6.0.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:11bdf3f5e1518b24530b8241529d2050014c884cf18b6fc69c0c2b30ca248710"}, {file = "multidict-6.0.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7d18748f2d30f94f498e852c67d61261c643b349b9d2a581131725595c45ec6c"}, {file = "multidict-6.0.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:458f37be2d9e4c95e2d8866a851663cbc76e865b78395090786f6cd9b3bbf4f4"}, {file = "multidict-6.0.4-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:b1a2eeedcead3a41694130495593a559a668f382eee0727352b9a41e1c45759a"}, {file = "multidict-6.0.4-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:7d6ae9d593ef8641544d6263c7fa6408cc90370c8cb2bbb65f8d43e5b0351d9c"}, {file = "multidict-6.0.4-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:5979b5632c3e3534e42ca6ff856bb24b2e3071b37861c2c727ce220d80eee9ed"}, {file = "multidict-6.0.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:dcfe792765fab89c365123c81046ad4103fcabbc4f56d1c1997e6715e8015461"}, {file = "multidict-6.0.4-cp311-cp311-win32.whl", hash = "sha256:3601a3cece3819534b11d4efc1eb76047488fddd0c85a3948099d5da4d504636"}, {file = "multidict-6.0.4-cp311-cp311-win_amd64.whl", hash = "sha256:81a4f0b34bd92df3da93315c6a59034df95866014ac08535fc819f043bfd51f0"}, {file = "multidict-6.0.4-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:67040058f37a2a51ed8ea8f6b0e6ee5bd78ca67f169ce6122f3e2ec80dfe9b78"}, {file = "multidict-6.0.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:853888594621e6604c978ce2a0444a1e6e70c8d253ab65ba11657659dcc9100f"}, {file = "multidict-6.0.4-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:39ff62e7d0f26c248b15e364517a72932a611a9b75f35b45be078d81bdb86603"}, {file = "multidict-6.0.4-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:af048912e045a2dc732847d33821a9d84ba553f5c5f028adbd364dd4765092ac"}, {file = "multidict-6.0.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b1e8b901e607795ec06c9e42530788c45ac21ef3aaa11dbd0c69de543bfb79a9"}, {file = "multidict-6.0.4-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:62501642008a8b9871ddfccbf83e4222cf8ac0d5aeedf73da36153ef2ec222d2"}, {file = "multidict-6.0.4-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:99b76c052e9f1bc0721f7541e5e8c05db3941eb9ebe7b8553c625ef88d6eefde"}, {file = "multidict-6.0.4-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:509eac6cf09c794aa27bcacfd4d62c885cce62bef7b2c3e8b2e49d365b5003fe"}, {file = "multidict-6.0.4-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:21a12c4eb6ddc9952c415f24eef97e3e55ba3af61f67c7bc388dcdec1404a067"}, {file = "multidict-6.0.4-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:5cad9430ab3e2e4fa4a2ef4450f548768400a2ac635841bc2a56a2052cdbeb87"}, {file = "multidict-6.0.4-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:ab55edc2e84460694295f401215f4a58597f8f7c9466faec545093045476327d"}, {file = "multidict-6.0.4-cp37-cp37m-win32.whl", hash = "sha256:5a4dcf02b908c3b8b17a45fb0f15b695bf117a67b76b7ad18b73cf8e92608775"}, {file = "multidict-6.0.4-cp37-cp37m-win_amd64.whl", hash = "sha256:6ed5f161328b7df384d71b07317f4d8656434e34591f20552c7bcef27b0ab88e"}, {file = "multidict-6.0.4-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:5fc1b16f586f049820c5c5b17bb4ee7583092fa0d1c4e28b5239181ff9532e0c"}, {file = "multidict-6.0.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1502e24330eb681bdaa3eb70d6358e818e8e8f908a22a1851dfd4e15bc2f8161"}, {file = "multidict-6.0.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b692f419760c0e65d060959df05f2a531945af31fda0c8a3b3195d4efd06de11"}, {file = "multidict-6.0.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45e1ecb0379bfaab5eef059f50115b54571acfbe422a14f668fc8c27ba410e7e"}, {file = "multidict-6.0.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ddd3915998d93fbcd2566ddf9cf62cdb35c9e093075f862935573d265cf8f65d"}, {file = "multidict-6.0.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:59d43b61c59d82f2effb39a93c48b845efe23a3852d201ed2d24ba830d0b4cf2"}, {file = "multidict-6.0.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cc8e1d0c705233c5dd0c5e6460fbad7827d5d36f310a0fadfd45cc3029762258"}, {file = "multidict-6.0.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d6aa0418fcc838522256761b3415822626f866758ee0bc6632c9486b179d0b52"}, {file = "multidict-6.0.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:6748717bb10339c4760c1e63da040f5f29f5ed6e59d76daee30305894069a660"}, {file = "multidict-6.0.4-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:4d1a3d7ef5e96b1c9e92f973e43aa5e5b96c659c9bc3124acbbd81b0b9c8a951"}, {file = "multidict-6.0.4-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:4372381634485bec7e46718edc71528024fcdc6f835baefe517b34a33c731d60"}, {file = "multidict-6.0.4-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:fc35cb4676846ef752816d5be2193a1e8367b4c1397b74a565a9d0389c433a1d"}, {file = "multidict-6.0.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:4b9d9e4e2b37daddb5c23ea33a3417901fa7c7b3dee2d855f63ee67a0b21e5b1"}, {file = "multidict-6.0.4-cp38-cp38-win32.whl", hash = "sha256:e41b7e2b59679edfa309e8db64fdf22399eec4b0b24694e1b2104fb789207779"}, {file = "multidict-6.0.4-cp38-cp38-win_amd64.whl", hash = "sha256:d6c254ba6e45d8e72739281ebc46ea5eb5f101234f3ce171f0e9f5cc86991480"}, {file = "multidict-6.0.4-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:16ab77bbeb596e14212e7bab8429f24c1579234a3a462105cda4a66904998664"}, {file = "multidict-6.0.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bc779e9e6f7fda81b3f9aa58e3a6091d49ad528b11ed19f6621408806204ad35"}, {file = "multidict-6.0.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4ceef517eca3e03c1cceb22030a3e39cb399ac86bff4e426d4fc6ae49052cc60"}, {file = "multidict-6.0.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:281af09f488903fde97923c7744bb001a9b23b039a909460d0f14edc7bf59706"}, {file = "multidict-6.0.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:52f2dffc8acaba9a2f27174c41c9e57f60b907bb9f096b36b1a1f3be71c6284d"}, {file = "multidict-6.0.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b41156839806aecb3641f3208c0dafd3ac7775b9c4c422d82ee2a45c34ba81ca"}, {file = "multidict-6.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d5e3fc56f88cc98ef8139255cf8cd63eb2c586531e43310ff859d6bb3a6b51f1"}, {file = "multidict-6.0.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8316a77808c501004802f9beebde51c9f857054a0c871bd6da8280e718444449"}, {file = "multidict-6.0.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:f70b98cd94886b49d91170ef23ec5c0e8ebb6f242d734ed7ed677b24d50c82cf"}, {file = "multidict-6.0.4-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bf6774e60d67a9efe02b3616fee22441d86fab4c6d335f9d2051d19d90a40063"}, {file = "multidict-6.0.4-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:e69924bfcdda39b722ef4d9aa762b2dd38e4632b3641b1d9a57ca9cd18f2f83a"}, {file = "multidict-6.0.4-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:6b181d8c23da913d4ff585afd1155a0e1194c0b50c54fcfe286f70cdaf2b7176"}, {file = "multidict-6.0.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:52509b5be062d9eafc8170e53026fbc54cf3b32759a23d07fd935fb04fc22d95"}, {file = "multidict-6.0.4-cp39-cp39-win32.whl", hash = "sha256:27c523fbfbdfd19c6867af7346332b62b586eed663887392cff78d614f9ec313"}, {file = "multidict-6.0.4-cp39-cp39-win_amd64.whl", hash = "sha256:33029f5734336aa0d4c0384525da0387ef89148dc7191aae00ca5fb23d7aafc2"}, {file = "multidict-6.0.4.tar.gz", hash = "sha256:3666906492efb76453c0e7b97f2cf459b0682e7402c0489a95484965dbc1da49"}, ] [[package]] name = "multiprocess" version = "0.70.14" description = "better multiprocessing and multithreading in python" optional = false python-versions = ">=3.7" files = [ {file = "multiprocess-0.70.14-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:560a27540daef4ce8b24ed3cc2496a3c670df66c96d02461a4da67473685adf3"}, {file = "multiprocess-0.70.14-pp37-pypy37_pp73-manylinux_2_24_i686.whl", hash = "sha256:bfbbfa36f400b81d1978c940616bc77776424e5e34cb0c94974b178d727cfcd5"}, {file = "multiprocess-0.70.14-pp37-pypy37_pp73-manylinux_2_24_x86_64.whl", hash = "sha256:89fed99553a04ec4f9067031f83a886d7fdec5952005551a896a4b6a59575bb9"}, {file = "multiprocess-0.70.14-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:40a5e3685462079e5fdee7c6789e3ef270595e1755199f0d50685e72523e1d2a"}, {file = "multiprocess-0.70.14-pp38-pypy38_pp73-manylinux_2_24_i686.whl", hash = "sha256:44936b2978d3f2648727b3eaeab6d7fa0bedf072dc5207bf35a96d5ee7c004cf"}, {file = "multiprocess-0.70.14-pp38-pypy38_pp73-manylinux_2_24_x86_64.whl", hash = "sha256:e628503187b5d494bf29ffc52d3e1e57bb770ce7ce05d67c4bbdb3a0c7d3b05f"}, {file = "multiprocess-0.70.14-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:0d5da0fc84aacb0e4bd69c41b31edbf71b39fe2fb32a54eaedcaea241050855c"}, {file = "multiprocess-0.70.14-pp39-pypy39_pp73-manylinux_2_24_i686.whl", hash = "sha256:6a7b03a5b98e911a7785b9116805bd782815c5e2bd6c91c6a320f26fd3e7b7ad"}, {file = "multiprocess-0.70.14-pp39-pypy39_pp73-manylinux_2_24_x86_64.whl", hash = "sha256:cea5bdedd10aace3c660fedeac8b087136b4366d4ee49a30f1ebf7409bce00ae"}, {file = "multiprocess-0.70.14-py310-none-any.whl", hash = "sha256:7dc1f2f6a1d34894c8a9a013fbc807971e336e7cc3f3ff233e61b9dc679b3b5c"}, {file = "multiprocess-0.70.14-py37-none-any.whl", hash = "sha256:93a8208ca0926d05cdbb5b9250a604c401bed677579e96c14da3090beb798193"}, {file = "multiprocess-0.70.14-py38-none-any.whl", hash = "sha256:6725bc79666bbd29a73ca148a0fb5f4ea22eed4a8f22fce58296492a02d18a7b"}, {file = "multiprocess-0.70.14-py39-none-any.whl", hash = "sha256:63cee628b74a2c0631ef15da5534c8aedbc10c38910b9c8b18dcd327528d1ec7"}, {file = "multiprocess-0.70.14.tar.gz", hash = "sha256:3eddafc12f2260d27ae03fe6069b12570ab4764ab59a75e81624fac453fbf46a"}, ] [package.dependencies] dill = ">=0.3.6" [[package]] name = "murmurhash" version = "1.0.9" description = "Cython bindings for MurmurHash" optional = true python-versions = ">=3.6" files = [ {file = "murmurhash-1.0.9-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:697ed01454d92681c7ae26eb1adcdc654b54062bcc59db38ed03cad71b23d449"}, {file = "murmurhash-1.0.9-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:5ef31b5c11be2c064dbbdd0e22ab3effa9ceb5b11ae735295c717c120087dd94"}, {file = "murmurhash-1.0.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7a2bd203377a31bbb2d83fe3f968756d6c9bbfa36c64c6ebfc3c6494fc680bc"}, {file = "murmurhash-1.0.9-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0eb0f8e652431ea238c11bcb671fef5c03aff0544bf7e098df81ea4b6d495405"}, {file = "murmurhash-1.0.9-cp310-cp310-win_amd64.whl", hash = "sha256:cf0b3fe54dca598f5b18c9951e70812e070ecb4c0672ad2cc32efde8a33b3df6"}, {file = "murmurhash-1.0.9-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5dc41be79ba4d09aab7e9110a8a4d4b37b184b63767b1b247411667cdb1057a3"}, {file = "murmurhash-1.0.9-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c0f84ecdf37c06eda0222f2f9e81c0974e1a7659c35b755ab2fdc642ebd366db"}, {file = "murmurhash-1.0.9-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:241693c1c819148eac29d7882739b1099c891f1f7431127b2652c23f81722cec"}, {file = "murmurhash-1.0.9-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:47f5ca56c430230d3b581dfdbc54eb3ad8b0406dcc9afdd978da2e662c71d370"}, {file = "murmurhash-1.0.9-cp311-cp311-win_amd64.whl", hash = "sha256:660ae41fc6609abc05130543011a45b33ca5d8318ae5c70e66bbd351ca936063"}, {file = "murmurhash-1.0.9-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:01137d688a6b259bde642513506b062364ea4e1609f886d9bd095c3ae6da0b94"}, {file = "murmurhash-1.0.9-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1b70bbf55d89713873a35bd4002bc231d38e530e1051d57ca5d15f96c01fd778"}, {file = "murmurhash-1.0.9-cp36-cp36m-win_amd64.whl", hash = "sha256:3e802fa5b0e618ee99e8c114ce99fc91677f14e9de6e18b945d91323a93c84e8"}, {file = "murmurhash-1.0.9-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:213d0248e586082e1cab6157d9945b846fd2b6be34357ad5ea0d03a1931d82ba"}, {file = "murmurhash-1.0.9-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:94b89d02aeab5e6bad5056f9d08df03ac7cfe06e61ff4b6340feb227fda80ce8"}, {file = "murmurhash-1.0.9-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0c2e2ee2d91a87952fe0f80212e86119aa1fd7681f03e6c99b279e50790dc2b3"}, {file = "murmurhash-1.0.9-cp37-cp37m-win_amd64.whl", hash = "sha256:8c3d69fb649c77c74a55624ebf7a0df3c81629e6ea6e80048134f015da57b2ea"}, {file = "murmurhash-1.0.9-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:ab78675510f83e7a3c6bd0abdc448a9a2b0b385b0d7ee766cbbfc5cc278a3042"}, {file = "murmurhash-1.0.9-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:0ac5530c250d2b0073ed058555847c8d88d2d00229e483d45658c13b32398523"}, {file = "murmurhash-1.0.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:69157e8fa6b25c4383645227069f6a1f8738d32ed2a83558961019ca3ebef56a"}, {file = "murmurhash-1.0.9-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2aebe2ae016525a662ff772b72a2c9244a673e3215fcd49897f494258b96f3e7"}, {file = "murmurhash-1.0.9-cp38-cp38-win_amd64.whl", hash = "sha256:a5952f9c18a717fa17579e27f57bfa619299546011a8378a8f73e14eece332f6"}, {file = "murmurhash-1.0.9-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:ef79202feeac68e83971239169a05fa6514ecc2815ce04c8302076d267870f6e"}, {file = "murmurhash-1.0.9-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:799fcbca5693ad6a40f565ae6b8e9718e5875a63deddf343825c0f31c32348fa"}, {file = "murmurhash-1.0.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f9b995bc82eaf9223e045210207b8878fdfe099a788dd8abd708d9ee58459a9d"}, {file = "murmurhash-1.0.9-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b129e1c5ebd772e6ff5ef925bcce695df13169bd885337e6074b923ab6edcfc8"}, {file = "murmurhash-1.0.9-cp39-cp39-win_amd64.whl", hash = "sha256:379bf6b414bd27dd36772dd1570565a7d69918e980457370838bd514df0d91e9"}, {file = "murmurhash-1.0.9.tar.gz", hash = "sha256:fe7a38cb0d3d87c14ec9dddc4932ffe2dbc77d75469ab80fd5014689b0e07b58"}, ] [[package]] name = "mypy" version = "0.991" description = "Optional static typing for Python" optional = false python-versions = ">=3.7" files = [ {file = "mypy-0.991-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:7d17e0a9707d0772f4a7b878f04b4fd11f6f5bcb9b3813975a9b13c9332153ab"}, {file = "mypy-0.991-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0714258640194d75677e86c786e80ccf294972cc76885d3ebbb560f11db0003d"}, {file = "mypy-0.991-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:0c8f3be99e8a8bd403caa8c03be619544bc2c77a7093685dcf308c6b109426c6"}, {file = "mypy-0.991-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc9ec663ed6c8f15f4ae9d3c04c989b744436c16d26580eaa760ae9dd5d662eb"}, {file = "mypy-0.991-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4307270436fd7694b41f913eb09210faff27ea4979ecbcd849e57d2da2f65305"}, {file = "mypy-0.991-cp310-cp310-win_amd64.whl", hash = "sha256:901c2c269c616e6cb0998b33d4adbb4a6af0ac4ce5cd078afd7bc95830e62c1c"}, {file = "mypy-0.991-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:d13674f3fb73805ba0c45eb6c0c3053d218aa1f7abead6e446d474529aafc372"}, {file = "mypy-0.991-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:1c8cd4fb70e8584ca1ed5805cbc7c017a3d1a29fb450621089ffed3e99d1857f"}, {file = "mypy-0.991-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:209ee89fbb0deed518605edddd234af80506aec932ad28d73c08f1400ef80a33"}, {file = "mypy-0.991-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:37bd02ebf9d10e05b00d71302d2c2e6ca333e6c2a8584a98c00e038db8121f05"}, {file = "mypy-0.991-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:26efb2fcc6b67e4d5a55561f39176821d2adf88f2745ddc72751b7890f3194ad"}, {file = "mypy-0.991-cp311-cp311-win_amd64.whl", hash = "sha256:3a700330b567114b673cf8ee7388e949f843b356a73b5ab22dd7cff4742a5297"}, {file = "mypy-0.991-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:1f7d1a520373e2272b10796c3ff721ea1a0712288cafaa95931e66aa15798813"}, {file = "mypy-0.991-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:641411733b127c3e0dab94c45af15fea99e4468f99ac88b39efb1ad677da5711"}, {file = "mypy-0.991-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:3d80e36b7d7a9259b740be6d8d906221789b0d836201af4234093cae89ced0cd"}, {file = "mypy-0.991-cp37-cp37m-win_amd64.whl", hash = "sha256:e62ebaad93be3ad1a828a11e90f0e76f15449371ffeecca4a0a0b9adc99abcef"}, {file = "mypy-0.991-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:b86ce2c1866a748c0f6faca5232059f881cda6dda2a893b9a8373353cfe3715a"}, {file = "mypy-0.991-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:ac6e503823143464538efda0e8e356d871557ef60ccd38f8824a4257acc18d93"}, {file = "mypy-0.991-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:0cca5adf694af539aeaa6ac633a7afe9bbd760df9d31be55ab780b77ab5ae8bf"}, {file = "mypy-0.991-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a12c56bf73cdab116df96e4ff39610b92a348cc99a1307e1da3c3768bbb5b135"}, {file = "mypy-0.991-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:652b651d42f155033a1967739788c436491b577b6a44e4c39fb340d0ee7f0d70"}, {file = "mypy-0.991-cp38-cp38-win_amd64.whl", hash = "sha256:4175593dc25d9da12f7de8de873a33f9b2b8bdb4e827a7cae952e5b1a342e243"}, {file = "mypy-0.991-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:98e781cd35c0acf33eb0295e8b9c55cdbef64fcb35f6d3aa2186f289bed6e80d"}, {file = "mypy-0.991-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6d7464bac72a85cb3491c7e92b5b62f3dcccb8af26826257760a552a5e244aa5"}, {file = "mypy-0.991-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c9166b3f81a10cdf9b49f2d594b21b31adadb3d5e9db9b834866c3258b695be3"}, {file = "mypy-0.991-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b8472f736a5bfb159a5e36740847808f6f5b659960115ff29c7cecec1741c648"}, {file = "mypy-0.991-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5e80e758243b97b618cdf22004beb09e8a2de1af481382e4d84bc52152d1c476"}, {file = "mypy-0.991-cp39-cp39-win_amd64.whl", hash = "sha256:74e259b5c19f70d35fcc1ad3d56499065c601dfe94ff67ae48b85596b9ec1461"}, {file = "mypy-0.991-py3-none-any.whl", hash = "sha256:de32edc9b0a7e67c2775e574cb061a537660e51210fbf6006b0b36ea695ae9bb"}, {file = "mypy-0.991.tar.gz", hash = "sha256:3c0165ba8f354a6d9881809ef29f1a9318a236a6d81c690094c5df32107bde06"}, ] [package.dependencies] mypy-extensions = ">=0.4.3" tomli = {version = ">=1.1.0", markers = "python_version < \"3.11\""} typing-extensions = ">=3.10" [package.extras] dmypy = ["psutil (>=4.0)"] install-types = ["pip"] python2 = ["typed-ast (>=1.4.0,<2)"] reports = ["lxml"] [[package]] name = "mypy-extensions" version = "1.0.0" description = "Type system extensions for programs checked with the mypy type checker." optional = false python-versions = ">=3.5" files = [ {file = "mypy_extensions-1.0.0-py3-none-any.whl", hash = "sha256:4392f6c0eb8a5668a69e23d168ffa70f0be9ccfd32b5cc2d26a34ae5b844552d"}, {file = "mypy_extensions-1.0.0.tar.gz", hash = "sha256:75dbf8955dc00442a438fc4d0666508a9a97b6bd41aa2f0ffe9d2f2725af0782"}, ] [[package]] name = "myst-nb" version = "0.17.2" description = "A Jupyter Notebook Sphinx reader built on top of the MyST markdown parser." optional = false python-versions = ">=3.7" files = [ {file = "myst-nb-0.17.2.tar.gz", hash = "sha256:0f61386515fab07c73646adca97fff2f69f41e90d313a260217c5bbe419d858b"}, {file = "myst_nb-0.17.2-py3-none-any.whl", hash = "sha256:132ca4d0f5c308fdd4b6fdaba077712e28e119ccdafd04d6e41b51aac5483494"}, ] [package.dependencies] importlib_metadata = "*" ipykernel = "*" ipython = "*" jupyter-cache = ">=0.5,<0.7" myst-parser = ">=0.18.0,<0.19.0" nbclient = "*" nbformat = ">=5.0,<6.0" pyyaml = "*" sphinx = ">=4,<6" typing-extensions = "*" [package.extras] code-style = ["pre-commit"] rtd = ["alabaster", "altair", "bokeh", "coconut (>=1.4.3,<2.3.0)", "ipykernel (>=5.5,<6.0)", "ipywidgets", "jupytext (>=1.11.2,<1.12.0)", "matplotlib", "numpy", "pandas", "plotly", "sphinx-book-theme (>=0.3.0,<0.4.0)", "sphinx-copybutton", "sphinx-design (>=0.4.0,<0.5.0)", "sphinxcontrib-bibtex", "sympy"] testing = ["beautifulsoup4", "coverage (>=6.4,<8.0)", "ipykernel (>=5.5,<6.0)", "ipython (!=8.1.0,<8.5)", "ipywidgets (>=8)", "jupytext (>=1.11.2,<1.12.0)", "matplotlib (>=3.5.3,<3.6)", "nbdime", "numpy", "pandas", "pytest (>=7.1,<8.0)", "pytest-cov (>=3,<5)", "pytest-param-files (>=0.3.3,<0.4.0)", "pytest-regressions", "sympy (>=1.10.1)"] [[package]] name = "myst-parser" version = "0.18.1" description = "An extended commonmark compliant parser, with bridges to docutils & sphinx." optional = false python-versions = ">=3.7" files = [ {file = "myst-parser-0.18.1.tar.gz", hash = "sha256:79317f4bb2c13053dd6e64f9da1ba1da6cd9c40c8a430c447a7b146a594c246d"}, {file = "myst_parser-0.18.1-py3-none-any.whl", hash = "sha256:61b275b85d9f58aa327f370913ae1bec26ebad372cc99f3ab85c8ec3ee8d9fb8"}, ] [package.dependencies] docutils = ">=0.15,<0.20" jinja2 = "*" markdown-it-py = ">=1.0.0,<3.0.0" mdit-py-plugins = ">=0.3.1,<0.4.0" pyyaml = "*" sphinx = ">=4,<6" typing-extensions = "*" [package.extras] code-style = ["pre-commit (>=2.12,<3.0)"] linkify = ["linkify-it-py (>=1.0,<2.0)"] rtd = ["ipython", "sphinx-book-theme", "sphinx-design", "sphinxcontrib.mermaid (>=0.7.1,<0.8.0)", "sphinxext-opengraph (>=0.6.3,<0.7.0)", "sphinxext-rediraffe (>=0.2.7,<0.3.0)"] testing = ["beautifulsoup4", "coverage[toml]", "pytest (>=6,<7)", "pytest-cov", "pytest-param-files (>=0.3.4,<0.4.0)", "pytest-regressions", "sphinx (<5.2)", "sphinx-pytest"] [[package]] name = "nbclassic" version = "1.0.0" description = "Jupyter Notebook as a Jupyter Server extension." optional = false python-versions = ">=3.7" files = [ {file = "nbclassic-1.0.0-py3-none-any.whl", hash = "sha256:f99e4769b4750076cd4235c044b61232110733322384a94a63791d2e7beacc66"}, {file = "nbclassic-1.0.0.tar.gz", hash = "sha256:0ae11eb2319455d805596bf320336cda9554b41d99ab9a3c31bf8180bffa30e3"}, ] [package.dependencies] argon2-cffi = "*" ipykernel = "*" ipython-genutils = "*" jinja2 = "*" jupyter-client = ">=6.1.1" jupyter-core = ">=4.6.1" jupyter-server = ">=1.8" nbconvert = ">=5" nbformat = "*" nest-asyncio = ">=1.5" notebook-shim = ">=0.2.3" prometheus-client = "*" pyzmq = ">=17" Send2Trash = ">=1.8.0" terminado = ">=0.8.3" tornado = ">=6.1" traitlets = ">=4.2.1" [package.extras] docs = ["myst-parser", "nbsphinx", "sphinx", "sphinx-rtd-theme", "sphinxcontrib-github-alt"] json-logging = ["json-logging"] test = ["coverage", "nbval", "pytest", "pytest-cov", "pytest-jupyter", "pytest-playwright", "pytest-tornasync", "requests", "requests-unixsocket", "testpath"] [[package]] name = "nbclient" version = "0.7.4" description = "A client library for executing notebooks. Formerly nbconvert's ExecutePreprocessor." optional = false python-versions = ">=3.7.0" files = [ {file = "nbclient-0.7.4-py3-none-any.whl", hash = "sha256:c817c0768c5ff0d60e468e017613e6eae27b6fa31e43f905addd2d24df60c125"}, {file = "nbclient-0.7.4.tar.gz", hash = "sha256:d447f0e5a4cfe79d462459aec1b3dc5c2e9152597262be8ee27f7d4c02566a0d"}, ] [package.dependencies] jupyter-client = ">=6.1.12" jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" nbformat = ">=5.1" traitlets = ">=5.3" [package.extras] dev = ["pre-commit"] docs = ["autodoc-traits", "mock", "moto", "myst-parser", "nbclient[test]", "sphinx (>=1.7)", "sphinx-book-theme", "sphinxcontrib-spelling"] test = ["flaky", "ipykernel", "ipython", "ipywidgets", "nbconvert (>=7.0.0)", "pytest (>=7.0)", "pytest-asyncio", "pytest-cov (>=4.0)", "testpath", "xmltodict"] [[package]] name = "nbconvert" version = "7.4.0" description = "Converting Jupyter Notebooks" optional = false python-versions = ">=3.7" files = [ {file = "nbconvert-7.4.0-py3-none-any.whl", hash = "sha256:af5064a9db524f9f12f4e8be7f0799524bd5b14c1adea37e34e83c95127cc818"}, {file = "nbconvert-7.4.0.tar.gz", hash = "sha256:51b6c77b507b177b73f6729dba15676e42c4e92bcb00edc8cc982ee72e7d89d7"}, ] [package.dependencies] beautifulsoup4 = "*" bleach = "*" defusedxml = "*" importlib-metadata = {version = ">=3.6", markers = "python_version < \"3.10\""} jinja2 = ">=3.0" jupyter-core = ">=4.7" jupyterlab-pygments = "*" markupsafe = ">=2.0" mistune = ">=2.0.3,<3" nbclient = ">=0.5.0" nbformat = ">=5.1" packaging = "*" pandocfilters = ">=1.4.1" pygments = ">=2.4.1" tinycss2 = "*" traitlets = ">=5.0" [package.extras] all = ["nbconvert[docs,qtpdf,serve,test,webpdf]"] docs = ["ipykernel", "ipython", "myst-parser", "nbsphinx (>=0.2.12)", "pydata-sphinx-theme", "sphinx (==5.0.2)", "sphinxcontrib-spelling"] qtpdf = ["nbconvert[qtpng]"] qtpng = ["pyqtwebengine (>=5.15)"] serve = ["tornado (>=6.1)"] test = ["ipykernel", "ipywidgets (>=7)", "pre-commit", "pytest", "pytest-dependency"] webpdf = ["pyppeteer (>=1,<1.1)"] [[package]] name = "nbformat" version = "5.8.0" description = "The Jupyter Notebook format" optional = false python-versions = ">=3.7" files = [ {file = "nbformat-5.8.0-py3-none-any.whl", hash = "sha256:d910082bd3e0bffcf07eabf3683ed7dda0727a326c446eeb2922abe102e65162"}, {file = "nbformat-5.8.0.tar.gz", hash = "sha256:46dac64c781f1c34dfd8acba16547024110348f9fc7eab0f31981c2a3dc48d1f"}, ] [package.dependencies] fastjsonschema = "*" jsonschema = ">=2.6" jupyter-core = "*" traitlets = ">=5.1" [package.extras] docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] test = ["pep440", "pre-commit", "pytest", "testpath"] [[package]] name = "nbsphinx" version = "0.8.12" description = "Jupyter Notebook Tools for Sphinx" optional = false python-versions = ">=3.6" files = [ {file = "nbsphinx-0.8.12-py3-none-any.whl", hash = "sha256:c15b681c7fce287000856f91fe1edac50d29f7b0c15bbc746fbe55c8eb84750b"}, {file = "nbsphinx-0.8.12.tar.gz", hash = "sha256:76570416cdecbeb21dbf5c3d6aa204ced6c1dd7ebef4077b5c21b8c6ece9533f"}, ] [package.dependencies] docutils = "*" jinja2 = "*" nbconvert = "!=5.4" nbformat = "*" sphinx = ">=1.8" traitlets = ">=5" [[package]] name = "neo4j" version = "5.8.1" description = "Neo4j Bolt driver for Python" optional = true python-versions = ">=3.7" files = [ {file = "neo4j-5.8.1.tar.gz", hash = "sha256:79c947f402e9f8624587add7b8af742b38cbcdf364d48021c5bff9220457965b"}, ] [package.dependencies] pytz = "*" [package.extras] numpy = ["numpy (>=1.7.0,<2.0.0)"] pandas = ["numpy (>=1.7.0,<2.0.0)", "pandas (>=1.1.0,<3.0.0)"] [[package]] name = "nest-asyncio" version = "1.5.6" description = "Patch asyncio to allow nested event loops" optional = false python-versions = ">=3.5" files = [ {file = "nest_asyncio-1.5.6-py3-none-any.whl", hash = "sha256:b9a953fb40dceaa587d109609098db21900182b16440652454a146cffb06e8b8"}, {file = "nest_asyncio-1.5.6.tar.gz", hash = "sha256:d267cc1ff794403f7df692964d1d2a3fa9418ffea2a3f6859a439ff482fef290"}, ] [[package]] name = "networkx" version = "2.8.8" description = "Python package for creating and manipulating graphs and networks" optional = true python-versions = ">=3.8" files = [ {file = "networkx-2.8.8-py3-none-any.whl", hash = "sha256:e435dfa75b1d7195c7b8378c3859f0445cd88c6b0375c181ed66823a9ceb7524"}, {file = "networkx-2.8.8.tar.gz", hash = "sha256:230d388117af870fce5647a3c52401fcf753e94720e6ea6b4197a5355648885e"}, ] [package.extras] default = ["matplotlib (>=3.4)", "numpy (>=1.19)", "pandas (>=1.3)", "scipy (>=1.8)"] developer = ["mypy (>=0.982)", "pre-commit (>=2.20)"] doc = ["nb2plots (>=0.6)", "numpydoc (>=1.5)", "pillow (>=9.2)", "pydata-sphinx-theme (>=0.11)", "sphinx (>=5.2)", "sphinx-gallery (>=0.11)", "texext (>=0.6.6)"] extra = ["lxml (>=4.6)", "pydot (>=1.4.2)", "pygraphviz (>=1.9)", "sympy (>=1.10)"] test = ["codecov (>=2.1)", "pytest (>=7.2)", "pytest-cov (>=4.0)"] [[package]] name = "nlpcloud" version = "1.0.41" description = "Python client for the NLP Cloud API" optional = true python-versions = "*" files = [ {file = "nlpcloud-1.0.41-py3-none-any.whl", hash = "sha256:7a42de3ac84fa3d66eae7166c1f3131c9214cfe8d72474681c25941fcd184ae4"}, {file = "nlpcloud-1.0.41.tar.gz", hash = "sha256:2edc0dd5f17f95fbd7ac1df43f456fb951a7b06f29d5901a9430982ff6bdb861"}, ] [package.dependencies] requests = "*" [[package]] name = "nltk" version = "3.8.1" description = "Natural Language Toolkit" optional = false python-versions = ">=3.7" files = [ {file = "nltk-3.8.1-py3-none-any.whl", hash = "sha256:fd5c9109f976fa86bcadba8f91e47f5e9293bd034474752e92a520f81c93dda5"}, {file = "nltk-3.8.1.zip", hash = "sha256:1834da3d0682cba4f2cede2f9aad6b0fafb6461ba451db0efb6f9c39798d64d3"}, ] [package.dependencies] click = "*" joblib = "*" regex = ">=2021.8.3" tqdm = "*" [package.extras] all = ["matplotlib", "numpy", "pyparsing", "python-crfsuite", "requests", "scikit-learn", "scipy", "twython"] corenlp = ["requests"] machine-learning = ["numpy", "python-crfsuite", "scikit-learn", "scipy"] plot = ["matplotlib"] tgrep = ["pyparsing"] twitter = ["twython"] [[package]] name = "nomic" version = "1.1.6" description = "The offical Nomic python client." optional = true python-versions = "*" files = [ {file = "nomic-1.1.6.tar.gz", hash = "sha256:8be61aeeb9d5f4f591bfb5655c9ae54a12de97498e6d2e24cf22faf9c118cf81"}, ] [package.dependencies] click = "*" cohere = "*" jsonlines = "*" loguru = "*" numpy = "*" pyarrow = "*" pydantic = "*" requests = "*" rich = "*" tqdm = "*" wonderwords = "*" [package.extras] dev = ["black", "cairosvg", "coverage", "mkautodoc", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]", "myst-parser", "pillow", "pylint", "pytest", "twine"] gpt4all = ["peft (==0.3.0.dev0)", "sentencepiece", "torch", "transformers (==4.28.0.dev0)"] [[package]] name = "notebook" version = "6.5.4" description = "A web-based notebook environment for interactive computing" optional = false python-versions = ">=3.7" files = [ {file = "notebook-6.5.4-py3-none-any.whl", hash = "sha256:dd17e78aefe64c768737b32bf171c1c766666a21cc79a44d37a1700771cab56f"}, {file = "notebook-6.5.4.tar.gz", hash = "sha256:517209568bd47261e2def27a140e97d49070602eea0d226a696f42a7f16c9a4e"}, ] [package.dependencies] argon2-cffi = "*" ipykernel = "*" ipython-genutils = "*" jinja2 = "*" jupyter-client = ">=5.3.4" jupyter-core = ">=4.6.1" nbclassic = ">=0.4.7" nbconvert = ">=5" nbformat = "*" nest-asyncio = ">=1.5" prometheus-client = "*" pyzmq = ">=17" Send2Trash = ">=1.8.0" terminado = ">=0.8.3" tornado = ">=6.1" traitlets = ">=4.2.1" [package.extras] docs = ["myst-parser", "nbsphinx", "sphinx", "sphinx-rtd-theme", "sphinxcontrib-github-alt"] json-logging = ["json-logging"] test = ["coverage", "nbval", "pytest", "pytest-cov", "requests", "requests-unixsocket", "selenium (==4.1.5)", "testpath"] [[package]] name = "notebook-shim" version = "0.2.3" description = "A shim layer for notebook traits and config" optional = false python-versions = ">=3.7" files = [ {file = "notebook_shim-0.2.3-py3-none-any.whl", hash = "sha256:a83496a43341c1674b093bfcebf0fe8e74cbe7eda5fd2bbc56f8e39e1486c0c7"}, {file = "notebook_shim-0.2.3.tar.gz", hash = "sha256:f69388ac283ae008cd506dda10d0288b09a017d822d5e8c7129a152cbd3ce7e9"}, ] [package.dependencies] jupyter-server = ">=1.8,<3" [package.extras] test = ["pytest", "pytest-console-scripts", "pytest-jupyter", "pytest-tornasync"] [[package]] name = "numcodecs" version = "0.11.0" description = "A Python package providing buffer compression and transformation codecs for use" optional = false python-versions = ">=3.8" files = [ {file = "numcodecs-0.11.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c0bc116752be45b4f9dca4315e5a2b4185e3b46f68c997dbb84aef334ceb5a1d"}, {file = "numcodecs-0.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c27dfca402f69fbfa01c46fb572086e77f38121192160cc8ed1177dc30702c52"}, {file = "numcodecs-0.11.0-cp310-cp310-win_amd64.whl", hash = "sha256:0fabc7dfdf64a9555bf8a34911e05b415793c67a1377207dc79cd96342291fa1"}, {file = "numcodecs-0.11.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7dae3f5678f247336c84e7315a0c59a4fec7c33eb7db72d78ff5c776479a812e"}, {file = "numcodecs-0.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:32697785b786bb0039d3feeaabdc10f25eda6c149700cde954653aaa47637832"}, {file = "numcodecs-0.11.0-cp311-cp311-win_amd64.whl", hash = "sha256:8c2f36b21162c6ebccc05d3fe896f86b91dcf8709946809f730cc23a37f8234d"}, {file = "numcodecs-0.11.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0c240858bf29e0ff254b1db60430e8b2658b8c8328b684f80033289d94807a7c"}, {file = "numcodecs-0.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ee5bda16e9d26a7a39fc20b6c1cec23b4debc314df5cfae3ed505149c2eeafc4"}, {file = "numcodecs-0.11.0-cp38-cp38-win_amd64.whl", hash = "sha256:bd05cdb853c7bcfde2efc809a9df2c5e205b96f70405b810e5788b45d0d81f73"}, {file = "numcodecs-0.11.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:694dc2e80b1f169b7deb14bdd0a04b20e5f17ef32cb0f81b71ab690406ec6bd9"}, {file = "numcodecs-0.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf3925eeb37aed0e6c04d7fb9614133a3c8426dc77f8bda54c99c601a44b3bd3"}, {file = "numcodecs-0.11.0-cp39-cp39-win_amd64.whl", hash = "sha256:11596b71267417425ea8afb407477a67d684f434c8b07b1dd59c25a97d5c3ccb"}, {file = "numcodecs-0.11.0.tar.gz", hash = "sha256:6c058b321de84a1729299b0eae4d652b2e48ea1ca7f9df0da65cb13470e635eb"}, ] [package.dependencies] entrypoints = "*" numpy = ">=1.7" [package.extras] docs = ["mock", "numpydoc", "sphinx", "sphinx-issues"] msgpack = ["msgpack"] test = ["coverage", "flake8", "pytest", "pytest-cov"] zfpy = ["zfpy (>=1.0.0)"] [[package]] name = "numexpr" version = "2.8.4" description = "Fast numerical expression evaluator for NumPy" optional = false python-versions = ">=3.7" files = [ {file = "numexpr-2.8.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a75967d46b6bd56455dd32da6285e5ffabe155d0ee61eef685bbfb8dafb2e484"}, {file = "numexpr-2.8.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:db93cf1842f068247de631bfc8af20118bf1f9447cd929b531595a5e0efc9346"}, {file = "numexpr-2.8.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7bca95f4473b444428061d4cda8e59ac564dc7dc6a1dea3015af9805c6bc2946"}, {file = "numexpr-2.8.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e34931089a6bafc77aaae21f37ad6594b98aa1085bb8b45d5b3cd038c3c17d9"}, {file = "numexpr-2.8.4-cp310-cp310-win32.whl", hash = "sha256:f3a920bfac2645017110b87ddbe364c9c7a742870a4d2f6120b8786c25dc6db3"}, {file = "numexpr-2.8.4-cp310-cp310-win_amd64.whl", hash = "sha256:6931b1e9d4f629f43c14b21d44f3f77997298bea43790cfcdb4dd98804f90783"}, {file = "numexpr-2.8.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:9400781553541f414f82eac056f2b4c965373650df9694286b9bd7e8d413f8d8"}, {file = "numexpr-2.8.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:6ee9db7598dd4001138b482342b96d78110dd77cefc051ec75af3295604dde6a"}, {file = "numexpr-2.8.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ff5835e8af9a212e8480003d731aad1727aaea909926fd009e8ae6a1cba7f141"}, {file = "numexpr-2.8.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:655d84eb09adfee3c09ecf4a89a512225da153fdb7de13c447404b7d0523a9a7"}, {file = "numexpr-2.8.4-cp311-cp311-win32.whl", hash = "sha256:5538b30199bfc68886d2be18fcef3abd11d9271767a7a69ff3688defe782800a"}, {file = "numexpr-2.8.4-cp311-cp311-win_amd64.whl", hash = "sha256:3f039321d1c17962c33079987b675fb251b273dbec0f51aac0934e932446ccc3"}, {file = "numexpr-2.8.4-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c867cc36cf815a3ec9122029874e00d8fbcef65035c4a5901e9b120dd5d626a2"}, {file = "numexpr-2.8.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:059546e8f6283ccdb47c683101a890844f667fa6d56258d48ae2ecf1b3875957"}, {file = "numexpr-2.8.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:845a6aa0ed3e2a53239b89c1ebfa8cf052d3cc6e053c72805e8153300078c0b1"}, {file = "numexpr-2.8.4-cp37-cp37m-win32.whl", hash = "sha256:a38664e699526cb1687aefd9069e2b5b9387da7feac4545de446141f1ef86f46"}, {file = "numexpr-2.8.4-cp37-cp37m-win_amd64.whl", hash = "sha256:eaec59e9bf70ff05615c34a8b8d6c7bd042bd9f55465d7b495ea5436f45319d0"}, {file = "numexpr-2.8.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:b318541bf3d8326682ebada087ba0050549a16d8b3fa260dd2585d73a83d20a7"}, {file = "numexpr-2.8.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b076db98ca65eeaf9bd224576e3ac84c05e451c0bd85b13664b7e5f7b62e2c70"}, {file = "numexpr-2.8.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:90f12cc851240f7911a47c91aaf223dba753e98e46dff3017282e633602e76a7"}, {file = "numexpr-2.8.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c368aa35ae9b18840e78b05f929d3a7b3abccdba9630a878c7db74ca2368339"}, {file = "numexpr-2.8.4-cp38-cp38-win32.whl", hash = "sha256:b96334fc1748e9ec4f93d5fadb1044089d73fb08208fdb8382ed77c893f0be01"}, {file = "numexpr-2.8.4-cp38-cp38-win_amd64.whl", hash = "sha256:a6d2d7740ae83ba5f3531e83afc4b626daa71df1ef903970947903345c37bd03"}, {file = "numexpr-2.8.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:77898fdf3da6bb96aa8a4759a8231d763a75d848b2f2e5c5279dad0b243c8dfe"}, {file = "numexpr-2.8.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:df35324666b693f13a016bc7957de7cc4d8801b746b81060b671bf78a52b9037"}, {file = "numexpr-2.8.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:17ac9cfe6d0078c5fc06ba1c1bbd20b8783f28c6f475bbabd3cad53683075cab"}, {file = "numexpr-2.8.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:df3a1f6b24214a1ab826e9c1c99edf1686c8e307547a9aef33910d586f626d01"}, {file = "numexpr-2.8.4-cp39-cp39-win32.whl", hash = "sha256:7d71add384adc9119568d7e9ffa8a35b195decae81e0abf54a2b7779852f0637"}, {file = "numexpr-2.8.4-cp39-cp39-win_amd64.whl", hash = "sha256:9f096d707290a6a00b6ffdaf581ee37331109fb7b6c8744e9ded7c779a48e517"}, {file = "numexpr-2.8.4.tar.gz", hash = "sha256:d5432537418d18691b9115d615d6daa17ee8275baef3edf1afbbf8bc69806147"}, ] [package.dependencies] numpy = ">=1.13.3" [[package]] name = "numpy" version = "1.24.3" description = "Fundamental package for array computing in Python" optional = false python-versions = ">=3.8" files = [ {file = "numpy-1.24.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:3c1104d3c036fb81ab923f507536daedc718d0ad5a8707c6061cdfd6d184e570"}, {file = "numpy-1.24.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:202de8f38fc4a45a3eea4b63e2f376e5f2dc64ef0fa692838e31a808520efaf7"}, {file = "numpy-1.24.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8535303847b89aa6b0f00aa1dc62867b5a32923e4d1681a35b5eef2d9591a463"}, {file = "numpy-1.24.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2d926b52ba1367f9acb76b0df6ed21f0b16a1ad87c6720a1121674e5cf63e2b6"}, {file = "numpy-1.24.3-cp310-cp310-win32.whl", hash = "sha256:f21c442fdd2805e91799fbe044a7b999b8571bb0ab0f7850d0cb9641a687092b"}, {file = "numpy-1.24.3-cp310-cp310-win_amd64.whl", hash = "sha256:ab5f23af8c16022663a652d3b25dcdc272ac3f83c3af4c02eb8b824e6b3ab9d7"}, {file = "numpy-1.24.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:9a7721ec204d3a237225db3e194c25268faf92e19338a35f3a224469cb6039a3"}, {file = "numpy-1.24.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d6cc757de514c00b24ae8cf5c876af2a7c3df189028d68c0cb4eaa9cd5afc2bf"}, {file = "numpy-1.24.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76e3f4e85fc5d4fd311f6e9b794d0c00e7002ec122be271f2019d63376f1d385"}, {file = "numpy-1.24.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a1d3c026f57ceaad42f8231305d4653d5f05dc6332a730ae5c0bea3513de0950"}, {file = "numpy-1.24.3-cp311-cp311-win32.whl", hash = "sha256:c91c4afd8abc3908e00a44b2672718905b8611503f7ff87390cc0ac3423fb096"}, {file = "numpy-1.24.3-cp311-cp311-win_amd64.whl", hash = "sha256:5342cf6aad47943286afa6f1609cad9b4266a05e7f2ec408e2cf7aea7ff69d80"}, {file = "numpy-1.24.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:7776ea65423ca6a15255ba1872d82d207bd1e09f6d0894ee4a64678dd2204078"}, {file = "numpy-1.24.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:ae8d0be48d1b6ed82588934aaaa179875e7dc4f3d84da18d7eae6eb3f06c242c"}, {file = "numpy-1.24.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ecde0f8adef7dfdec993fd54b0f78183051b6580f606111a6d789cd14c61ea0c"}, {file = "numpy-1.24.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4749e053a29364d3452c034827102ee100986903263e89884922ef01a0a6fd2f"}, {file = "numpy-1.24.3-cp38-cp38-win32.whl", hash = "sha256:d933fabd8f6a319e8530d0de4fcc2e6a61917e0b0c271fded460032db42a0fe4"}, {file = "numpy-1.24.3-cp38-cp38-win_amd64.whl", hash = "sha256:56e48aec79ae238f6e4395886b5eaed058abb7231fb3361ddd7bfdf4eed54289"}, {file = "numpy-1.24.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4719d5aefb5189f50887773699eaf94e7d1e02bf36c1a9d353d9f46703758ca4"}, {file = "numpy-1.24.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0ec87a7084caa559c36e0a2309e4ecb1baa03b687201d0a847c8b0ed476a7187"}, {file = "numpy-1.24.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ea8282b9bcfe2b5e7d491d0bf7f3e2da29700cec05b49e64d6246923329f2b02"}, {file = "numpy-1.24.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:210461d87fb02a84ef243cac5e814aad2b7f4be953b32cb53327bb49fd77fbb4"}, {file = "numpy-1.24.3-cp39-cp39-win32.whl", hash = "sha256:784c6da1a07818491b0ffd63c6bbe5a33deaa0e25a20e1b3ea20cf0e43f8046c"}, {file = "numpy-1.24.3-cp39-cp39-win_amd64.whl", hash = "sha256:d5036197ecae68d7f491fcdb4df90082b0d4960ca6599ba2659957aafced7c17"}, {file = "numpy-1.24.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:352ee00c7f8387b44d19f4cada524586f07379c0d49270f87233983bc5087ca0"}, {file = "numpy-1.24.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1a7d6acc2e7524c9955e5c903160aa4ea083736fde7e91276b0e5d98e6332812"}, {file = "numpy-1.24.3-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:35400e6a8d102fd07c71ed7dcadd9eb62ee9a6e84ec159bd48c28235bbb0f8e4"}, {file = "numpy-1.24.3.tar.gz", hash = "sha256:ab344f1bf21f140adab8e47fdbc7c35a477dc01408791f8ba00d018dd0bc5155"}, ] [[package]] name = "nvidia-cublas-cu11" version = "11.10.3.66" description = "CUBLAS native runtime libraries" optional = false python-versions = ">=3" files = [ {file = "nvidia_cublas_cu11-11.10.3.66-py3-none-manylinux1_x86_64.whl", hash = "sha256:d32e4d75f94ddfb93ea0a5dda08389bcc65d8916a25cb9f37ac89edaeed3bded"}, {file = "nvidia_cublas_cu11-11.10.3.66-py3-none-win_amd64.whl", hash = "sha256:8ac17ba6ade3ed56ab898a036f9ae0756f1e81052a317bf98f8c6d18dc3ae49e"}, ] [package.dependencies] setuptools = "*" wheel = "*" [[package]] name = "nvidia-cuda-nvrtc-cu11" version = "11.7.99" description = "NVRTC native runtime libraries" optional = false python-versions = ">=3" files = [ {file = "nvidia_cuda_nvrtc_cu11-11.7.99-2-py3-none-manylinux1_x86_64.whl", hash = "sha256:9f1562822ea264b7e34ed5930567e89242d266448e936b85bc97a3370feabb03"}, {file = "nvidia_cuda_nvrtc_cu11-11.7.99-py3-none-manylinux1_x86_64.whl", hash = "sha256:f7d9610d9b7c331fa0da2d1b2858a4a8315e6d49765091d28711c8946e7425e7"}, {file = "nvidia_cuda_nvrtc_cu11-11.7.99-py3-none-win_amd64.whl", hash = "sha256:f2effeb1309bdd1b3854fc9b17eaf997808f8b25968ce0c7070945c4265d64a3"}, ] [package.dependencies] setuptools = "*" wheel = "*" [[package]] name = "nvidia-cuda-runtime-cu11" version = "11.7.99" description = "CUDA Runtime native Libraries" optional = false python-versions = ">=3" files = [ {file = "nvidia_cuda_runtime_cu11-11.7.99-py3-none-manylinux1_x86_64.whl", hash = "sha256:cc768314ae58d2641f07eac350f40f99dcb35719c4faff4bc458a7cd2b119e31"}, {file = "nvidia_cuda_runtime_cu11-11.7.99-py3-none-win_amd64.whl", hash = "sha256:bc77fa59a7679310df9d5c70ab13c4e34c64ae2124dd1efd7e5474b71be125c7"}, ] [package.dependencies] setuptools = "*" wheel = "*" [[package]] name = "nvidia-cudnn-cu11" version = "8.5.0.96" description = "cuDNN runtime libraries" optional = false python-versions = ">=3" files = [ {file = "nvidia_cudnn_cu11-8.5.0.96-2-py3-none-manylinux1_x86_64.whl", hash = "sha256:402f40adfc6f418f9dae9ab402e773cfed9beae52333f6d86ae3107a1b9527e7"}, {file = "nvidia_cudnn_cu11-8.5.0.96-py3-none-manylinux1_x86_64.whl", hash = "sha256:71f8111eb830879ff2836db3cccf03bbd735df9b0d17cd93761732ac50a8a108"}, ] [package.dependencies] setuptools = "*" wheel = "*" [[package]] name = "o365" version = "2.0.26" description = "Microsoft Graph and Office 365 API made easy" optional = true python-versions = ">=3.4" files = [ {file = "O365-2.0.26-py3-none-any.whl", hash = "sha256:220899f2135e5f2de1db808df9858f5f7bd38910e2c870bb08b04d94bd450b3f"}, {file = "O365-2.0.26.tar.gz", hash = "sha256:b478522a652df112c298446aabefccaa446b14bf257b6694fed524c08b76de38"}, ] [package.dependencies] beautifulsoup4 = ">=4.0.0" python-dateutil = ">=2.7" pytz = ">=2018.5" requests = ">=2.18.0" requests-oauthlib = ">=1.2.0" stringcase = ">=1.2.0" tzlocal = ">=4.0" [[package]] name = "oauthlib" version = "3.2.2" description = "A generic, spec-compliant, thorough implementation of the OAuth request-signing logic" optional = true python-versions = ">=3.6" files = [ {file = "oauthlib-3.2.2-py3-none-any.whl", hash = "sha256:8139f29aac13e25d502680e9e19963e83f16838d48a0d71c287fe40e7067fbca"}, {file = "oauthlib-3.2.2.tar.gz", hash = "sha256:9859c40929662bec5d64f34d01c99e093149682a3f38915dc0655d5a633dd918"}, ] [package.extras] rsa = ["cryptography (>=3.0.0)"] signals = ["blinker (>=1.4.0)"] signedtoken = ["cryptography (>=3.0.0)", "pyjwt (>=2.0.0,<3)"] [[package]] name = "openai" version = "0.27.6" description = "Python client library for the OpenAI API" optional = false python-versions = ">=3.7.1" files = [ {file = "openai-0.27.6-py3-none-any.whl", hash = "sha256:1f07ed06f1cfc6c25126107193726fe4cf476edcc4e1485cd9eb708f068f2606"}, {file = "openai-0.27.6.tar.gz", hash = "sha256:63ca9f6ac619daef8c1ddec6d987fe6aa1c87a9bfdce31ff253204d077222375"}, ] [package.dependencies] aiohttp = "*" requests = ">=2.20" tqdm = "*" [package.extras] datalib = ["numpy", "openpyxl (>=3.0.7)", "pandas (>=1.2.3)", "pandas-stubs (>=1.1.0.11)"] dev = ["black (>=21.6b0,<22.0)", "pytest (==6.*)", "pytest-asyncio", "pytest-mock"] embeddings = ["matplotlib", "numpy", "openpyxl (>=3.0.7)", "pandas (>=1.2.3)", "pandas-stubs (>=1.1.0.11)", "plotly", "scikit-learn (>=1.0.2)", "scipy", "tenacity (>=8.0.1)"] wandb = ["numpy", "openpyxl (>=3.0.7)", "pandas (>=1.2.3)", "pandas-stubs (>=1.1.0.11)", "wandb"] [[package]] name = "openapi-schema-pydantic" version = "1.2.4" description = "OpenAPI (v3) specification schema as pydantic class" optional = false python-versions = ">=3.6.1" files = [ {file = "openapi-schema-pydantic-1.2.4.tar.gz", hash = "sha256:3e22cf58b74a69f752cc7e5f1537f6e44164282db2700cbbcd3bb99ddd065196"}, {file = "openapi_schema_pydantic-1.2.4-py3-none-any.whl", hash = "sha256:a932ecc5dcbb308950282088956e94dea069c9823c84e507d64f6b622222098c"}, ] [package.dependencies] pydantic = ">=1.8.2" [[package]] name = "openlm" version = "0.0.5" description = "Drop-in OpenAI-compatible that can call LLMs from other providers" optional = true python-versions = ">=3.8.1,<4.0" files = [ {file = "openlm-0.0.5-py3-none-any.whl", hash = "sha256:9fcbbc575d2869e2a6c0b00827f9be2189c067c2de4bf03ef3cbdf488367ae93"}, {file = "openlm-0.0.5.tar.gz", hash = "sha256:0eb3fd7a9e4f7b4248931ff2f0dc91c525d990b99956886861a1b3f9868bc451"}, ] [package.dependencies] requests = ">=2,<3" [[package]] name = "opensearch-py" version = "2.2.0" description = "Python client for OpenSearch" optional = true python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, <4" files = [ {file = "opensearch-py-2.2.0.tar.gz", hash = "sha256:109fe8d2e1e8f419a22358eb901025f51e6ad2f50014c8962e23796b2a23cb67"}, {file = "opensearch_py-2.2.0-py2.py3-none-any.whl", hash = "sha256:595dcebe42e21cdf945add0b5dbaecccace1a8a5ba65d60314813767b564263c"}, ] [package.dependencies] certifi = ">=2022.12.07" python-dateutil = "*" requests = ">=2.4.0,<3.0.0" six = "*" urllib3 = ">=1.21.1,<2" [package.extras] async = ["aiohttp (>=3,<4)"] develop = ["black", "botocore", "coverage (<7.0.0)", "jinja2", "mock", "myst-parser", "pytest (>=3.0.0)", "pytest-cov", "pytest-mock (<4.0.0)", "pytz", "pyyaml", "requests (>=2.0.0,<3.0.0)", "sphinx", "sphinx-copybutton", "sphinx-rtd-theme"] docs = ["myst-parser", "sphinx", "sphinx-copybutton", "sphinx-rtd-theme"] kerberos = ["requests-kerberos"] [[package]] name = "opentelemetry-api" version = "1.17.0" description = "OpenTelemetry Python API" optional = true python-versions = ">=3.7" files = [ {file = "opentelemetry_api-1.17.0-py3-none-any.whl", hash = "sha256:b41d9b2a979607b75d2683b9bbf97062a683d190bc696969fb2122fa60aeaabc"}, {file = "opentelemetry_api-1.17.0.tar.gz", hash = "sha256:3480fcf6b783be5d440a226a51db979ccd7c49a2e98d1c747c991031348dcf04"}, ] [package.dependencies] deprecated = ">=1.2.6" importlib-metadata = ">=6.0.0,<6.1.0" setuptools = ">=16.0" [[package]] name = "opentelemetry-exporter-otlp" version = "1.17.0" description = "OpenTelemetry Collector Exporters" optional = true python-versions = ">=3.7" files = [ {file = "opentelemetry_exporter_otlp-1.17.0-py3-none-any.whl", hash = "sha256:9708d2b74c9205a7bd9b46e24acec0e3b362465d9a77b62347ea0459d4358044"}, {file = "opentelemetry_exporter_otlp-1.17.0.tar.gz", hash = "sha256:d0fa02b512127b44493c75d12a2dc2557bf251b7f76b354cfaa58b0f820d04ae"}, ] [package.dependencies] opentelemetry-exporter-otlp-proto-grpc = "1.17.0" opentelemetry-exporter-otlp-proto-http = "1.17.0" [[package]] name = "opentelemetry-exporter-otlp-proto-grpc" version = "1.17.0" description = "OpenTelemetry Collector Protobuf over gRPC Exporter" optional = true python-versions = ">=3.7" files = [ {file = "opentelemetry_exporter_otlp_proto_grpc-1.17.0-py3-none-any.whl", hash = "sha256:192d781b668a74edb49152b8b5f4f7e25bcb4307a9cf4b2dfcf87e68feac98bd"}, {file = "opentelemetry_exporter_otlp_proto_grpc-1.17.0.tar.gz", hash = "sha256:f01476ae89484bc6210e50d7a4d93c293b3a12aff562253b94f588a85af13f70"}, ] [package.dependencies] backoff = {version = ">=1.10.0,<3.0.0", markers = "python_version >= \"3.7\""} googleapis-common-protos = ">=1.52,<2.0" grpcio = ">=1.0.0,<2.0.0" opentelemetry-api = ">=1.15,<2.0" opentelemetry-proto = "1.17.0" opentelemetry-sdk = ">=1.17.0,<1.18.0" [package.extras] test = ["pytest-grpc"] [[package]] name = "opentelemetry-exporter-otlp-proto-http" version = "1.17.0" description = "OpenTelemetry Collector Protobuf over HTTP Exporter" optional = true python-versions = ">=3.7" files = [ {file = "opentelemetry_exporter_otlp_proto_http-1.17.0-py3-none-any.whl", hash = "sha256:81959249b75bd36c3b73c885a9ce36aa21e8022618e8e95fa41ae69609f0c799"}, {file = "opentelemetry_exporter_otlp_proto_http-1.17.0.tar.gz", hash = "sha256:329984da861ee2cc42c4bc5ae1b80092fb76a0ea5a24b3519bc3b52572197fec"}, ] [package.dependencies] backoff = {version = ">=1.10.0,<3.0.0", markers = "python_version >= \"3.7\""} googleapis-common-protos = ">=1.52,<2.0" opentelemetry-api = ">=1.15,<2.0" opentelemetry-proto = "1.17.0" opentelemetry-sdk = ">=1.17.0,<1.18.0" requests = ">=2.7,<3.0" [package.extras] test = ["responses (==0.22.0)"] [[package]] name = "opentelemetry-exporter-prometheus" version = "1.12.0rc1" description = "Prometheus Metric Exporter for OpenTelemetry" optional = true python-versions = ">=3.6" files = [ {file = "opentelemetry-exporter-prometheus-1.12.0rc1.tar.gz", hash = "sha256:f10c6c243d69d5b63f755885b36a4ce8ef2cdf3e737c4e6bf00f32e87668f0a9"}, {file = "opentelemetry_exporter_prometheus-1.12.0rc1-py3-none-any.whl", hash = "sha256:1f0c8f93d62e1575313966ceb8abf11e9a46e1839fda9ee4269b06d40494280f"}, ] [package.dependencies] opentelemetry-api = ">=1.10.0" opentelemetry-sdk = ">=1.10.0" prometheus-client = ">=0.5.0,<1.0.0" [[package]] name = "opentelemetry-instrumentation" version = "0.38b0" description = "Instrumentation Tools & Auto Instrumentation for OpenTelemetry Python" optional = true python-versions = ">=3.7" files = [ {file = "opentelemetry_instrumentation-0.38b0-py3-none-any.whl", hash = "sha256:48eed87e5db9d2cddd57a8ea359bd15318560c0ffdd80d90a5fc65816e15b7f4"}, {file = "opentelemetry_instrumentation-0.38b0.tar.gz", hash = "sha256:3dbe93248eec7652d5725d3c6d2f9dd048bb8fda6b0505aadbc99e51638d833c"}, ] [package.dependencies] opentelemetry-api = ">=1.4,<2.0" setuptools = ">=16.0" wrapt = ">=1.0.0,<2.0.0" [[package]] name = "opentelemetry-instrumentation-aiohttp-client" version = "0.38b0" description = "OpenTelemetry aiohttp client instrumentation" optional = true python-versions = ">=3.7" files = [ {file = "opentelemetry_instrumentation_aiohttp_client-0.38b0-py3-none-any.whl", hash = "sha256:093987f5c96518ac6999eb7480af168655bc3538752ae67d4d9a5807eaad1ee0"}, {file = "opentelemetry_instrumentation_aiohttp_client-0.38b0.tar.gz", hash = "sha256:9c3e637e742b5d8e5c8a76fae4f3812dde5e58f85598d119abd0149cb1c82ec0"}, ] [package.dependencies] opentelemetry-api = ">=1.12,<2.0" opentelemetry-instrumentation = "0.38b0" opentelemetry-semantic-conventions = "0.38b0" opentelemetry-util-http = "0.38b0" wrapt = ">=1.0.0,<2.0.0" [package.extras] instruments = ["aiohttp (>=3.0,<4.0)"] test = ["opentelemetry-instrumentation-aiohttp-client[instruments]"] [[package]] name = "opentelemetry-instrumentation-asgi" version = "0.38b0" description = "ASGI instrumentation for OpenTelemetry" optional = true python-versions = ">=3.7" files = [ {file = "opentelemetry_instrumentation_asgi-0.38b0-py3-none-any.whl", hash = "sha256:c5bba11505008a3cd1b2c42b72f85f3f4f5af50ab931eddd0b01bde376dc5971"}, {file = "opentelemetry_instrumentation_asgi-0.38b0.tar.gz", hash = "sha256:32d1034c253de6048d0d0166b304f9125267ca9329e374202ebe011a206eba53"}, ] [package.dependencies] asgiref = ">=3.0,<4.0" opentelemetry-api = ">=1.12,<2.0" opentelemetry-instrumentation = "0.38b0" opentelemetry-semantic-conventions = "0.38b0" opentelemetry-util-http = "0.38b0" [package.extras] instruments = ["asgiref (>=3.0,<4.0)"] test = ["opentelemetry-instrumentation-asgi[instruments]", "opentelemetry-test-utils (==0.38b0)"] [[package]] name = "opentelemetry-instrumentation-fastapi" version = "0.38b0" description = "OpenTelemetry FastAPI Instrumentation" optional = true python-versions = ">=3.7" files = [ {file = "opentelemetry_instrumentation_fastapi-0.38b0-py3-none-any.whl", hash = "sha256:91139586732e437b1c3d5cf838dc5be910bce27b4b679612112be03fcc4fa2aa"}, {file = "opentelemetry_instrumentation_fastapi-0.38b0.tar.gz", hash = "sha256:8946fd414084b305ad67556a1907e2d4a497924d023effc5ea3b4b1b0c55b256"}, ] [package.dependencies] opentelemetry-api = ">=1.12,<2.0" opentelemetry-instrumentation = "0.38b0" opentelemetry-instrumentation-asgi = "0.38b0" opentelemetry-semantic-conventions = "0.38b0" opentelemetry-util-http = "0.38b0" [package.extras] instruments = ["fastapi (>=0.58,<1.0)"] test = ["httpx (>=0.22,<1.0)", "opentelemetry-instrumentation-fastapi[instruments]", "opentelemetry-test-utils (==0.38b0)", "requests (>=2.23,<3.0)"] [[package]] name = "opentelemetry-instrumentation-grpc" version = "0.38b0" description = "OpenTelemetry gRPC instrumentation" optional = true python-versions = ">=3.7" files = [ {file = "opentelemetry_instrumentation_grpc-0.38b0-py3-none-any.whl", hash = "sha256:64978d158f233c45df809d927f62a79e0bbb1c433d63ae5f7b38133a515397d8"}, {file = "opentelemetry_instrumentation_grpc-0.38b0.tar.gz", hash = "sha256:d6a45e4c64aa4a2f3c29b6ca673b04d88e8ef4c2d0273e9b23209f9248f30325"}, ] [package.dependencies] opentelemetry-api = ">=1.12,<2.0" opentelemetry-instrumentation = "0.38b0" opentelemetry-sdk = ">=1.12,<2.0" opentelemetry-semantic-conventions = "0.38b0" wrapt = ">=1.0.0,<2.0.0" [package.extras] instruments = ["grpcio (>=1.27,<2.0)"] test = ["opentelemetry-instrumentation-grpc[instruments]", "opentelemetry-sdk (>=1.12,<2.0)", "opentelemetry-test-utils (==0.38b0)", "protobuf (>=3.13,<4.0)"] [[package]] name = "opentelemetry-proto" version = "1.17.0" description = "OpenTelemetry Python Proto" optional = true python-versions = ">=3.7" files = [ {file = "opentelemetry_proto-1.17.0-py3-none-any.whl", hash = "sha256:c7c0f748668102598e84ca4d51975f87ebf66865aa7469fc2c5e8bdaab813e93"}, {file = "opentelemetry_proto-1.17.0.tar.gz", hash = "sha256:8501fdc3bc76c03a2ed11603a4d9fce6e5a97eeaebd7a20ad84bba7bd79cc9f8"}, ] [package.dependencies] protobuf = ">=3.19,<5.0" [[package]] name = "opentelemetry-sdk" version = "1.17.0" description = "OpenTelemetry Python SDK" optional = true python-versions = ">=3.7" files = [ {file = "opentelemetry_sdk-1.17.0-py3-none-any.whl", hash = "sha256:07424cbcc8c012bc120ed573d5443e7322f3fb393512e72866c30111070a8c37"}, {file = "opentelemetry_sdk-1.17.0.tar.gz", hash = "sha256:99bb9a787006774f865a4b24f8179900347d03a214c362a6cb70191f77dd6132"}, ] [package.dependencies] opentelemetry-api = "1.17.0" opentelemetry-semantic-conventions = "0.38b0" setuptools = ">=16.0" typing-extensions = ">=3.7.4" [[package]] name = "opentelemetry-semantic-conventions" version = "0.38b0" description = "OpenTelemetry Semantic Conventions" optional = true python-versions = ">=3.7" files = [ {file = "opentelemetry_semantic_conventions-0.38b0-py3-none-any.whl", hash = "sha256:b0ba36e8b70bfaab16ee5a553d809309cc11ff58aec3d2550d451e79d45243a7"}, {file = "opentelemetry_semantic_conventions-0.38b0.tar.gz", hash = "sha256:37f09e47dd5fc316658bf9ee9f37f9389b21e708faffa4a65d6a3de484d22309"}, ] [[package]] name = "opentelemetry-util-http" version = "0.38b0" description = "Web util for OpenTelemetry" optional = true python-versions = ">=3.7" files = [ {file = "opentelemetry_util_http-0.38b0-py3-none-any.whl", hash = "sha256:8e5f0451eeb5307b2c628dd799886adc5e113fb13a7207c29c672e8d168eabd8"}, {file = "opentelemetry_util_http-0.38b0.tar.gz", hash = "sha256:85eb032b6129c4d7620583acf574e99fe2e73c33d60e256b54af436f76ceb5ae"}, ] [[package]] name = "opt-einsum" version = "3.3.0" description = "Optimizing numpys einsum function" optional = true python-versions = ">=3.5" files = [ {file = "opt_einsum-3.3.0-py3-none-any.whl", hash = "sha256:2455e59e3947d3c275477df7f5205b30635e266fe6dc300e3d9f9646bfcea147"}, {file = "opt_einsum-3.3.0.tar.gz", hash = "sha256:59f6475f77bbc37dcf7cd748519c0ec60722e91e63ca114e68821c0c54a46549"}, ] [package.dependencies] numpy = ">=1.7" [package.extras] docs = ["numpydoc", "sphinx (==1.2.3)", "sphinx-rtd-theme", "sphinxcontrib-napoleon"] tests = ["pytest", "pytest-cov", "pytest-pep8"] [[package]] name = "orjson" version = "3.8.12" description = "Fast, correct Python JSON library supporting dataclasses, datetimes, and numpy" optional = true python-versions = ">=3.7" files = [ {file = "orjson-3.8.12-cp310-cp310-macosx_11_0_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl", hash = "sha256:c84046e890e13a119404a83f2e09e622509ed4692846ff94c4ca03654fbc7fb5"}, {file = "orjson-3.8.12-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:29706dd8189835bcf1781faed286e99ae54fd6165437d364dfdbf0276bf39b19"}, {file = "orjson-3.8.12-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f4e22b0aa70c963ac01fcd620de15be21a5027711b0e5d4b96debcdeea43e3ae"}, {file = "orjson-3.8.12-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6d1acf52d3a4b9384af09a5c2658c3a7a472a4d62a0ad1fe2c8fab8ef460c9b4"}, {file = "orjson-3.8.12-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a72b50719bdd6bb0acfca3d4d1c841aa4b191f3ff37268e7aba04e5d6be44ccd"}, {file = "orjson-3.8.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:83e8c740a718fa6d511a82e463adc7ab17631c6eea81a716b723e127a9c51d57"}, {file = "orjson-3.8.12-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:ebb03e4c7648f7bb299872002a6120082da018f41ba7a9ebf4ceae8d765443d2"}, {file = "orjson-3.8.12-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:44f7bb4c995652106276442de1147c9993716d1e2d79b7fd435afa154ff236b9"}, {file = "orjson-3.8.12-cp310-none-win_amd64.whl", hash = "sha256:06e528f9a84fbb4000fd0eee573b5db543ee70ae586fdbc53e740b0ac981701c"}, {file = "orjson-3.8.12-cp311-cp311-macosx_11_0_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl", hash = "sha256:9a6c1594d5a9ff56e5babc4a87ac372af38d37adef9e06744e9f158431e33f43"}, {file = "orjson-3.8.12-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c6390ce0bce24c107fc275736aa8a4f768ef7eb5df935d7dca0cc99815eb5d99"}, {file = "orjson-3.8.12-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:efb3a10030462a22c731682434df5c137a67632a8339f821cd501920b169007e"}, {file = "orjson-3.8.12-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7e405d54c84c30d9b1c918c290bcf4ef484a45c69d5583a95db81ffffba40b44"}, {file = "orjson-3.8.12-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cd6fbd1413559572e81b5ac64c45388147c3ba85cc3df2eaa11002945e0dbd1f"}, {file = "orjson-3.8.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f480ae7b84369b1860d8867f0baf8d885fede400fda390ce088bfa8edf97ffdc"}, {file = "orjson-3.8.12-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:355055e0977c43b0e5325b9312b7208c696fe20cd54eed1d6fc80b0a4d6721f5"}, {file = "orjson-3.8.12-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d937503e4dfba5edc8d5e0426d3cc97ed55716e93212b2e12a198664487b9965"}, {file = "orjson-3.8.12-cp311-none-win_amd64.whl", hash = "sha256:eb16e0195febd24b44f4db1ab3be85ecf6038f92fd511370cebc004b3d422294"}, {file = "orjson-3.8.12-cp37-cp37m-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl", hash = "sha256:dc27a8ec13f28e92dc1ea89bf1232d77e7d3ebfd5c1ccf4f3729a70561cb63bd"}, {file = "orjson-3.8.12-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77710774faed337ac4ad919dadc5f3b655b0cd40518e5386e6f1f116de9c6c25"}, {file = "orjson-3.8.12-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:7e549468867991f6f9cfbd9c5bbc977330173bd8f6ceb79973bbd4634e13e1b9"}, {file = "orjson-3.8.12-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:96fb1eb82b578eb6c0e53e3cf950839fe98ea210626f87c8204bd4fc2cc6ba02"}, {file = "orjson-3.8.12-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8d153b228b6e24f8bccf732a51e01e8e938eef59efed9030c5c257778fbe0804"}, {file = "orjson-3.8.12-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:becbd5af6d035a7ec2ee3239d4700929d52d8517806b97dd04efcc37289403f7"}, {file = "orjson-3.8.12-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:7d63f524048825e05950db3b6998c756d5377a5e8c469b2e3bdb9f3217523d74"}, {file = "orjson-3.8.12-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:ec4f0130d9a27cb400423e09e0f9e46480e9e977f05fdcf663a7a2c68735513e"}, {file = "orjson-3.8.12-cp37-none-win_amd64.whl", hash = "sha256:6f1b01f641f5e87168b819ac1cbd81aa6278e7572c326f3d27e92dea442a2c0d"}, {file = "orjson-3.8.12-cp38-cp38-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl", hash = "sha256:062e67108c218fdb9475edd5272b1629c05b56c66416fa915de5656adde30e73"}, {file = "orjson-3.8.12-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ba645c92801417933fa74448622ba614a275ea82df05e888095c7742d913bb4"}, {file = "orjson-3.8.12-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:7d50d9b1ae409ea15534365fec0ce8a5a5f7dc94aa790aacfb8cfec87ab51aa4"}, {file = "orjson-3.8.12-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8f00038bf5d07439d13c0c2c5cd6ad48eb86df7dbd7a484013ce6a113c421b14"}, {file = "orjson-3.8.12-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:397670665f94cf5cff779054781d80395084ba97191d82f7b3a86f0a20e6102b"}, {file = "orjson-3.8.12-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6f568205519bb0197ca91915c5da6058cfbb59993e557b02dfc3b2718b34770a"}, {file = "orjson-3.8.12-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:4fd240e736ce52cd757d74142d9933fd35a3184396be887c435f0574e0388654"}, {file = "orjson-3.8.12-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:6cae2ff288a80e81ce30313e735c5436495ab58cf8d4fbe84900e616d0ee7a78"}, {file = "orjson-3.8.12-cp38-none-win_amd64.whl", hash = "sha256:710c40c214b753392e46f9275fd795e9630dd737a5ab4ac6e4ee1a02fe83cc0d"}, {file = "orjson-3.8.12-cp39-cp39-macosx_11_0_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl", hash = "sha256:aff761de5ed5543a0a51e9f703668624749aa2239de5d7d37d9c9693daeaf5dc"}, {file = "orjson-3.8.12-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:135f29cf936283a0cd1b8bce86540ca181108f2a4d4483eedad6b8026865d2a9"}, {file = "orjson-3.8.12-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:62f999798f2fa55e567d483864ebfc30120fb055c2696a255979439323a5b15c"}, {file = "orjson-3.8.12-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3fa58ca064c640fa9d823f98fbbc8e71940ecb78cea3ac2507da1cbf49d60b51"}, {file = "orjson-3.8.12-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8682f752c19f6a7d9fc727fd98588b4c8b0dce791b5794bb814c7379ccd64a79"}, {file = "orjson-3.8.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:de3d096dde3e46d01841abc1982b906694ab3c92f338d37a2e6184739dc8a958"}, {file = "orjson-3.8.12-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:834b50df79f1fe89bbaced3a1c1d8c8c92cc99e84cdcd374d8da4974b3560d2a"}, {file = "orjson-3.8.12-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:2ad149ed76dce2bbdfbadd61c35959305e77141badf364a158beb4ef3d88ec37"}, {file = "orjson-3.8.12-cp39-none-win_amd64.whl", hash = "sha256:82d65e478a21f98107b4eb8390104746bb3024c27084b57edab7d427385f1f70"}, {file = "orjson-3.8.12.tar.gz", hash = "sha256:9f0f042cf002a474a6aea006dd9f8d7a5497e35e5fb190ec78eb4d232ec19955"}, ] [[package]] name = "packaging" version = "23.1" description = "Core utilities for Python packages" optional = false python-versions = ">=3.7" files = [ {file = "packaging-23.1-py3-none-any.whl", hash = "sha256:994793af429502c4ea2ebf6bf664629d07c1a9fe974af92966e4b8d2df7edc61"}, {file = "packaging-23.1.tar.gz", hash = "sha256:a392980d2b6cffa644431898be54b0045151319d1e7ec34f0cfed48767dd334f"}, ] [[package]] name = "pandas" version = "2.0.1" description = "Powerful data structures for data analysis, time series, and statistics" optional = false python-versions = ">=3.8" files = [ {file = "pandas-2.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:70a996a1d2432dadedbb638fe7d921c88b0cc4dd90374eab51bb33dc6c0c2a12"}, {file = "pandas-2.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:909a72b52175590debbf1d0c9e3e6bce2f1833c80c76d80bd1aa09188be768e5"}, {file = "pandas-2.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fe7914d8ddb2d54b900cec264c090b88d141a1eed605c9539a187dbc2547f022"}, {file = "pandas-2.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0a514ae436b23a92366fbad8365807fc0eed15ca219690b3445dcfa33597a5cc"}, {file = "pandas-2.0.1-cp310-cp310-win32.whl", hash = "sha256:12bd6618e3cc737c5200ecabbbb5eaba8ab645a4b0db508ceeb4004bb10b060e"}, {file = "pandas-2.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:2b6fe5f7ce1cba0e74188c8473c9091ead9b293ef0a6794939f8cc7947057abd"}, {file = "pandas-2.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:00959a04a1d7bbc63d75a768540fb20ecc9e65fd80744c930e23768345a362a7"}, {file = "pandas-2.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:af2449e9e984dfad39276b885271ba31c5e0204ffd9f21f287a245980b0e4091"}, {file = "pandas-2.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:910df06feaf9935d05247db6de452f6d59820e432c18a2919a92ffcd98f8f79b"}, {file = "pandas-2.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6fa0067f2419f933101bdc6001bcea1d50812afbd367b30943417d67fbb99678"}, {file = "pandas-2.0.1-cp311-cp311-win32.whl", hash = "sha256:7b8395d335b08bc8b050590da264f94a439b4770ff16bb51798527f1dd840388"}, {file = "pandas-2.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:8db5a644d184a38e6ed40feeb12d410d7fcc36648443defe4707022da127fc35"}, {file = "pandas-2.0.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:7bbf173d364130334e0159a9a034f573e8b44a05320995127cf676b85fd8ce86"}, {file = "pandas-2.0.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6c0853d487b6c868bf107a4b270a823746175b1932093b537b9b76c639fc6f7e"}, {file = "pandas-2.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f25e23a03f7ad7211ffa30cb181c3e5f6d96a8e4cb22898af462a7333f8a74eb"}, {file = "pandas-2.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e09a53a4fe8d6ae2149959a2d02e1ef2f4d2ceb285ac48f74b79798507e468b4"}, {file = "pandas-2.0.1-cp38-cp38-win32.whl", hash = "sha256:a2564629b3a47b6aa303e024e3d84e850d36746f7e804347f64229f8c87416ea"}, {file = "pandas-2.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:03e677c6bc9cfb7f93a8b617d44f6091613a5671ef2944818469be7b42114a00"}, {file = "pandas-2.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3d099ecaa5b9e977b55cd43cf842ec13b14afa1cfa51b7e1179d90b38c53ce6a"}, {file = "pandas-2.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a37ee35a3eb6ce523b2c064af6286c45ea1c7ff882d46e10d0945dbda7572753"}, {file = "pandas-2.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:320b180d125c3842c5da5889183b9a43da4ebba375ab2ef938f57bf267a3c684"}, {file = "pandas-2.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18d22cb9043b6c6804529810f492ab09d638ddf625c5dea8529239607295cb59"}, {file = "pandas-2.0.1-cp39-cp39-win32.whl", hash = "sha256:90d1d365d77d287063c5e339f49b27bd99ef06d10a8843cf00b1a49326d492c1"}, {file = "pandas-2.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:99f7192d8b0e6daf8e0d0fd93baa40056684e4b4aaaef9ea78dff34168e1f2f0"}, {file = "pandas-2.0.1.tar.gz", hash = "sha256:19b8e5270da32b41ebf12f0e7165efa7024492e9513fb46fb631c5022ae5709d"}, ] [package.dependencies] numpy = [ {version = ">=1.20.3", markers = "python_version < \"3.10\""}, {version = ">=1.21.0", markers = "python_version >= \"3.10\""}, {version = ">=1.23.2", markers = "python_version >= \"3.11\""}, ] python-dateutil = ">=2.8.2" pytz = ">=2020.1" tzdata = ">=2022.1" [package.extras] all = ["PyQt5 (>=5.15.1)", "SQLAlchemy (>=1.4.16)", "beautifulsoup4 (>=4.9.3)", "bottleneck (>=1.3.2)", "brotlipy (>=0.7.0)", "fastparquet (>=0.6.3)", "fsspec (>=2021.07.0)", "gcsfs (>=2021.07.0)", "html5lib (>=1.1)", "hypothesis (>=6.34.2)", "jinja2 (>=3.0.0)", "lxml (>=4.6.3)", "matplotlib (>=3.6.1)", "numba (>=0.53.1)", "numexpr (>=2.7.3)", "odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pandas-gbq (>=0.15.0)", "psycopg2 (>=2.8.6)", "pyarrow (>=7.0.0)", "pymysql (>=1.0.2)", "pyreadstat (>=1.1.2)", "pytest (>=7.0.0)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)", "python-snappy (>=0.6.0)", "pyxlsb (>=1.0.8)", "qtpy (>=2.2.0)", "s3fs (>=2021.08.0)", "scipy (>=1.7.1)", "tables (>=3.6.1)", "tabulate (>=0.8.9)", "xarray (>=0.21.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)", "zstandard (>=0.15.2)"] aws = ["s3fs (>=2021.08.0)"] clipboard = ["PyQt5 (>=5.15.1)", "qtpy (>=2.2.0)"] compression = ["brotlipy (>=0.7.0)", "python-snappy (>=0.6.0)", "zstandard (>=0.15.2)"] computation = ["scipy (>=1.7.1)", "xarray (>=0.21.0)"] excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pyxlsb (>=1.0.8)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)"] feather = ["pyarrow (>=7.0.0)"] fss = ["fsspec (>=2021.07.0)"] gcp = ["gcsfs (>=2021.07.0)", "pandas-gbq (>=0.15.0)"] hdf5 = ["tables (>=3.6.1)"] html = ["beautifulsoup4 (>=4.9.3)", "html5lib (>=1.1)", "lxml (>=4.6.3)"] mysql = ["SQLAlchemy (>=1.4.16)", "pymysql (>=1.0.2)"] output-formatting = ["jinja2 (>=3.0.0)", "tabulate (>=0.8.9)"] parquet = ["pyarrow (>=7.0.0)"] performance = ["bottleneck (>=1.3.2)", "numba (>=0.53.1)", "numexpr (>=2.7.1)"] plot = ["matplotlib (>=3.6.1)"] postgresql = ["SQLAlchemy (>=1.4.16)", "psycopg2 (>=2.8.6)"] spss = ["pyreadstat (>=1.1.2)"] sql-other = ["SQLAlchemy (>=1.4.16)"] test = ["hypothesis (>=6.34.2)", "pytest (>=7.0.0)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)"] xml = ["lxml (>=4.6.3)"] [[package]] name = "pandocfilters" version = "1.5.0" description = "Utilities for writing pandoc filters in python" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ {file = "pandocfilters-1.5.0-py2.py3-none-any.whl", hash = "sha256:33aae3f25fd1a026079f5d27bdd52496f0e0803b3469282162bafdcbdf6ef14f"}, {file = "pandocfilters-1.5.0.tar.gz", hash = "sha256:0b679503337d233b4339a817bfc8c50064e2eff681314376a47cb582305a7a38"}, ] [[package]] name = "parso" version = "0.8.3" description = "A Python Parser" optional = false python-versions = ">=3.6" files = [ {file = "parso-0.8.3-py2.py3-none-any.whl", hash = "sha256:c001d4636cd3aecdaf33cbb40aebb59b094be2a74c556778ef5576c175e19e75"}, {file = "parso-0.8.3.tar.gz", hash = "sha256:8c07be290bb59f03588915921e29e8a50002acaf2cdc5fa0e0114f91709fafa0"}, ] [package.extras] qa = ["flake8 (==3.8.3)", "mypy (==0.782)"] testing = ["docopt", "pytest (<6.0.0)"] [[package]] name = "pathos" version = "0.3.0" description = "parallel graph management and execution in heterogeneous computing" optional = false python-versions = ">=3.7" files = [ {file = "pathos-0.3.0-py3-none-any.whl", hash = "sha256:b1f5a79b1c79a594330d451832642ee5bb61dd77dc75ba9e5c72087c77e8994c"}, {file = "pathos-0.3.0.tar.gz", hash = "sha256:24fa8db51fbd9284da8e191794097c4bb2aa3fce411090e57af6385e61b97e09"}, ] [package.dependencies] dill = ">=0.3.6" multiprocess = ">=0.70.14" pox = ">=0.3.2" ppft = ">=1.7.6.6" [[package]] name = "pathspec" version = "0.11.1" description = "Utility library for gitignore style pattern matching of file paths." optional = false python-versions = ">=3.7" files = [ {file = "pathspec-0.11.1-py3-none-any.whl", hash = "sha256:d8af70af76652554bd134c22b3e8a1cc46ed7d91edcdd721ef1a0c51a84a5293"}, {file = "pathspec-0.11.1.tar.gz", hash = "sha256:2798de800fa92780e33acca925945e9a19a133b715067cf165b8866c15a31687"}, ] [[package]] name = "pathy" version = "0.10.1" description = "pathlib.Path subclasses for local and cloud bucket storage" optional = true python-versions = ">= 3.6" files = [ {file = "pathy-0.10.1-py3-none-any.whl", hash = "sha256:a7613ee2d99a0a3300e1d836322e2d947c85449fde59f52906f995dbff67dad4"}, {file = "pathy-0.10.1.tar.gz", hash = "sha256:4cd6e71b4cd5ff875cfbb949ad9fa5519d8d1dbe69d5fc1d1b23aa3cb049618b"}, ] [package.dependencies] smart-open = ">=5.2.1,<7.0.0" typer = ">=0.3.0,<1.0.0" [package.extras] all = ["azure-storage-blob", "boto3", "google-cloud-storage (>=1.26.0,<2.0.0)", "mock", "pytest", "pytest-coverage", "typer-cli"] azure = ["azure-storage-blob"] gcs = ["google-cloud-storage (>=1.26.0,<2.0.0)"] s3 = ["boto3"] test = ["mock", "pytest", "pytest-coverage", "typer-cli"] [[package]] name = "pdfminer-six" version = "20221105" description = "PDF parser and analyzer" optional = true python-versions = ">=3.6" files = [ {file = "pdfminer.six-20221105-py3-none-any.whl", hash = "sha256:1eaddd712d5b2732f8ac8486824533514f8ba12a0787b3d5fe1e686cd826532d"}, {file = "pdfminer.six-20221105.tar.gz", hash = "sha256:8448ab7b939d18b64820478ecac5394f482d7a79f5f7eaa7703c6c959c175e1d"}, ] [package.dependencies] charset-normalizer = ">=2.0.0" cryptography = ">=36.0.0" [package.extras] dev = ["black", "mypy (==0.931)", "nox", "pytest"] docs = ["sphinx", "sphinx-argparse"] image = ["Pillow"] [[package]] name = "pexpect" version = "4.8.0" description = "Pexpect allows easy control of interactive console applications." optional = false python-versions = "*" files = [ {file = "pexpect-4.8.0-py2.py3-none-any.whl", hash = "sha256:0b48a55dcb3c05f3329815901ea4fc1537514d6ba867a152b581d69ae3710937"}, {file = "pexpect-4.8.0.tar.gz", hash = "sha256:fc65a43959d153d0114afe13997d439c22823a27cefceb5ff35c2178c6784c0c"}, ] [package.dependencies] ptyprocess = ">=0.5" [[package]] name = "pgvector" version = "0.1.7" description = "pgvector support for Python" optional = false python-versions = ">=3.6" files = [ {file = "pgvector-0.1.7-py2.py3-none-any.whl", hash = "sha256:b0da0289959372f916b96c1da7c57437725c7aa33fa0c75b4a53c3677369bdd5"}, ] [package.dependencies] numpy = "*" [[package]] name = "pickleshare" version = "0.7.5" description = "Tiny 'shelve'-like database with concurrency support" optional = false python-versions = "*" files = [ {file = "pickleshare-0.7.5-py2.py3-none-any.whl", hash = "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56"}, {file = "pickleshare-0.7.5.tar.gz", hash = "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca"}, ] [[package]] name = "pillow" version = "9.5.0" description = "Python Imaging Library (Fork)" optional = false python-versions = ">=3.7" files = [ {file = "Pillow-9.5.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:ace6ca218308447b9077c14ea4ef381ba0b67ee78d64046b3f19cf4e1139ad16"}, {file = "Pillow-9.5.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d3d403753c9d5adc04d4694d35cf0391f0f3d57c8e0030aac09d7678fa8030aa"}, {file = "Pillow-9.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5ba1b81ee69573fe7124881762bb4cd2e4b6ed9dd28c9c60a632902fe8db8b38"}, {file = "Pillow-9.5.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fe7e1c262d3392afcf5071df9afa574544f28eac825284596ac6db56e6d11062"}, {file = "Pillow-9.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f36397bf3f7d7c6a3abdea815ecf6fd14e7fcd4418ab24bae01008d8d8ca15e"}, {file = "Pillow-9.5.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:252a03f1bdddce077eff2354c3861bf437c892fb1832f75ce813ee94347aa9b5"}, {file = "Pillow-9.5.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:85ec677246533e27770b0de5cf0f9d6e4ec0c212a1f89dfc941b64b21226009d"}, {file = "Pillow-9.5.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:b416f03d37d27290cb93597335a2f85ed446731200705b22bb927405320de903"}, {file = "Pillow-9.5.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:1781a624c229cb35a2ac31cc4a77e28cafc8900733a864870c49bfeedacd106a"}, {file = "Pillow-9.5.0-cp310-cp310-win32.whl", hash = "sha256:8507eda3cd0608a1f94f58c64817e83ec12fa93a9436938b191b80d9e4c0fc44"}, {file = "Pillow-9.5.0-cp310-cp310-win_amd64.whl", hash = "sha256:d3c6b54e304c60c4181da1c9dadf83e4a54fd266a99c70ba646a9baa626819eb"}, {file = "Pillow-9.5.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:7ec6f6ce99dab90b52da21cf0dc519e21095e332ff3b399a357c187b1a5eee32"}, {file = "Pillow-9.5.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:560737e70cb9c6255d6dcba3de6578a9e2ec4b573659943a5e7e4af13f298f5c"}, {file = "Pillow-9.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:96e88745a55b88a7c64fa49bceff363a1a27d9a64e04019c2281049444a571e3"}, {file = "Pillow-9.5.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d9c206c29b46cfd343ea7cdfe1232443072bbb270d6a46f59c259460db76779a"}, {file = "Pillow-9.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cfcc2c53c06f2ccb8976fb5c71d448bdd0a07d26d8e07e321c103416444c7ad1"}, {file = "Pillow-9.5.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:a0f9bb6c80e6efcde93ffc51256d5cfb2155ff8f78292f074f60f9e70b942d99"}, {file = "Pillow-9.5.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:8d935f924bbab8f0a9a28404422da8af4904e36d5c33fc6f677e4c4485515625"}, {file = "Pillow-9.5.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:fed1e1cf6a42577953abbe8e6cf2fe2f566daebde7c34724ec8803c4c0cda579"}, {file = "Pillow-9.5.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:c1170d6b195555644f0616fd6ed929dfcf6333b8675fcca044ae5ab110ded296"}, {file = "Pillow-9.5.0-cp311-cp311-win32.whl", hash = "sha256:54f7102ad31a3de5666827526e248c3530b3a33539dbda27c6843d19d72644ec"}, {file = "Pillow-9.5.0-cp311-cp311-win_amd64.whl", hash = "sha256:cfa4561277f677ecf651e2b22dc43e8f5368b74a25a8f7d1d4a3a243e573f2d4"}, {file = "Pillow-9.5.0-cp311-cp311-win_arm64.whl", hash = "sha256:965e4a05ef364e7b973dd17fc765f42233415974d773e82144c9bbaaaea5d089"}, {file = "Pillow-9.5.0-cp312-cp312-win32.whl", hash = "sha256:22baf0c3cf0c7f26e82d6e1adf118027afb325e703922c8dfc1d5d0156bb2eeb"}, {file = "Pillow-9.5.0-cp312-cp312-win_amd64.whl", hash = "sha256:432b975c009cf649420615388561c0ce7cc31ce9b2e374db659ee4f7d57a1f8b"}, {file = "Pillow-9.5.0-cp37-cp37m-macosx_10_10_x86_64.whl", hash = "sha256:5d4ebf8e1db4441a55c509c4baa7a0587a0210f7cd25fcfe74dbbce7a4bd1906"}, {file = "Pillow-9.5.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:375f6e5ee9620a271acb6820b3d1e94ffa8e741c0601db4c0c4d3cb0a9c224bf"}, {file = "Pillow-9.5.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:99eb6cafb6ba90e436684e08dad8be1637efb71c4f2180ee6b8f940739406e78"}, {file = "Pillow-9.5.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2dfaaf10b6172697b9bceb9a3bd7b951819d1ca339a5ef294d1f1ac6d7f63270"}, {file = "Pillow-9.5.0-cp37-cp37m-manylinux_2_28_aarch64.whl", hash = "sha256:763782b2e03e45e2c77d7779875f4432e25121ef002a41829d8868700d119392"}, {file = "Pillow-9.5.0-cp37-cp37m-manylinux_2_28_x86_64.whl", hash = "sha256:35f6e77122a0c0762268216315bf239cf52b88865bba522999dc38f1c52b9b47"}, {file = "Pillow-9.5.0-cp37-cp37m-win32.whl", hash = "sha256:aca1c196f407ec7cf04dcbb15d19a43c507a81f7ffc45b690899d6a76ac9fda7"}, {file = "Pillow-9.5.0-cp37-cp37m-win_amd64.whl", hash = "sha256:322724c0032af6692456cd6ed554bb85f8149214d97398bb80613b04e33769f6"}, {file = "Pillow-9.5.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:a0aa9417994d91301056f3d0038af1199eb7adc86e646a36b9e050b06f526597"}, {file = "Pillow-9.5.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:f8286396b351785801a976b1e85ea88e937712ee2c3ac653710a4a57a8da5d9c"}, {file = "Pillow-9.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c830a02caeb789633863b466b9de10c015bded434deb3ec87c768e53752ad22a"}, {file = "Pillow-9.5.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fbd359831c1657d69bb81f0db962905ee05e5e9451913b18b831febfe0519082"}, {file = "Pillow-9.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8fc330c3370a81bbf3f88557097d1ea26cd8b019d6433aa59f71195f5ddebbf"}, {file = "Pillow-9.5.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:7002d0797a3e4193c7cdee3198d7c14f92c0836d6b4a3f3046a64bd1ce8df2bf"}, {file = "Pillow-9.5.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:229e2c79c00e85989a34b5981a2b67aa079fd08c903f0aaead522a1d68d79e51"}, {file = "Pillow-9.5.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:9adf58f5d64e474bed00d69bcd86ec4bcaa4123bfa70a65ce72e424bfb88ed96"}, {file = "Pillow-9.5.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:662da1f3f89a302cc22faa9f14a262c2e3951f9dbc9617609a47521c69dd9f8f"}, {file = "Pillow-9.5.0-cp38-cp38-win32.whl", hash = "sha256:6608ff3bf781eee0cd14d0901a2b9cc3d3834516532e3bd673a0a204dc8615fc"}, {file = "Pillow-9.5.0-cp38-cp38-win_amd64.whl", hash = "sha256:e49eb4e95ff6fd7c0c402508894b1ef0e01b99a44320ba7d8ecbabefddcc5569"}, {file = "Pillow-9.5.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:482877592e927fd263028c105b36272398e3e1be3269efda09f6ba21fd83ec66"}, {file = "Pillow-9.5.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3ded42b9ad70e5f1754fb7c2e2d6465a9c842e41d178f262e08b8c85ed8a1d8e"}, {file = "Pillow-9.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c446d2245ba29820d405315083d55299a796695d747efceb5717a8b450324115"}, {file = "Pillow-9.5.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8aca1152d93dcc27dc55395604dcfc55bed5f25ef4c98716a928bacba90d33a3"}, {file = "Pillow-9.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:608488bdcbdb4ba7837461442b90ea6f3079397ddc968c31265c1e056964f1ef"}, {file = "Pillow-9.5.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:60037a8db8750e474af7ffc9faa9b5859e6c6d0a50e55c45576bf28be7419705"}, {file = "Pillow-9.5.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:07999f5834bdc404c442146942a2ecadd1cb6292f5229f4ed3b31e0a108746b1"}, {file = "Pillow-9.5.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a127ae76092974abfbfa38ca2d12cbeddcdeac0fb71f9627cc1135bedaf9d51a"}, {file = "Pillow-9.5.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:489f8389261e5ed43ac8ff7b453162af39c3e8abd730af8363587ba64bb2e865"}, {file = "Pillow-9.5.0-cp39-cp39-win32.whl", hash = "sha256:9b1af95c3a967bf1da94f253e56b6286b50af23392a886720f563c547e48e964"}, {file = "Pillow-9.5.0-cp39-cp39-win_amd64.whl", hash = "sha256:77165c4a5e7d5a284f10a6efaa39a0ae8ba839da344f20b111d62cc932fa4e5d"}, {file = "Pillow-9.5.0-pp38-pypy38_pp73-macosx_10_10_x86_64.whl", hash = "sha256:833b86a98e0ede388fa29363159c9b1a294b0905b5128baf01db683672f230f5"}, {file = "Pillow-9.5.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aaf305d6d40bd9632198c766fb64f0c1a83ca5b667f16c1e79e1661ab5060140"}, {file = "Pillow-9.5.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0852ddb76d85f127c135b6dd1f0bb88dbb9ee990d2cd9aa9e28526c93e794fba"}, {file = "Pillow-9.5.0-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:91ec6fe47b5eb5a9968c79ad9ed78c342b1f97a091677ba0e012701add857829"}, {file = "Pillow-9.5.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:cb841572862f629b99725ebaec3287fc6d275be9b14443ea746c1dd325053cbd"}, {file = "Pillow-9.5.0-pp39-pypy39_pp73-macosx_10_10_x86_64.whl", hash = "sha256:c380b27d041209b849ed246b111b7c166ba36d7933ec6e41175fd15ab9eb1572"}, {file = "Pillow-9.5.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7c9af5a3b406a50e313467e3565fc99929717f780164fe6fbb7704edba0cebbe"}, {file = "Pillow-9.5.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5671583eab84af046a397d6d0ba25343c00cd50bce03787948e0fff01d4fd9b1"}, {file = "Pillow-9.5.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:84a6f19ce086c1bf894644b43cd129702f781ba5751ca8572f08aa40ef0ab7b7"}, {file = "Pillow-9.5.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:1e7723bd90ef94eda669a3c2c19d549874dd5badaeefabefd26053304abe5799"}, {file = "Pillow-9.5.0.tar.gz", hash = "sha256:bf548479d336726d7a0eceb6e767e179fbde37833ae42794602631a070d630f1"}, ] [package.extras] docs = ["furo", "olefile", "sphinx (>=2.4)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-removed-in", "sphinxext-opengraph"] tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"] [[package]] name = "pinecone-client" version = "2.2.1" description = "Pinecone client and SDK" optional = false python-versions = ">=3.6" files = [ {file = "pinecone-client-2.2.1.tar.gz", hash = "sha256:0878dcaee447c46c8d1b3d71c854689daa7e548e5009a171780907c7d4e74789"}, {file = "pinecone_client-2.2.1-py3-none-any.whl", hash = "sha256:6976a22aee57a9813378607506c8c36b0317dfa36a08a5397aaaeab2eef66c1b"}, ] [package.dependencies] dnspython = ">=2.0.0" loguru = ">=0.5.0" numpy = "*" python-dateutil = ">=2.5.3" pyyaml = ">=5.4" requests = ">=2.19.0" tqdm = ">=4.64.1" typing-extensions = ">=3.7.4" urllib3 = ">=1.21.1" [package.extras] grpc = ["googleapis-common-protos (>=1.53.0)", "grpc-gateway-protoc-gen-openapiv2 (==0.1.0)", "grpcio (>=1.44.0)", "lz4 (>=3.1.3)", "protobuf (==3.19.3)"] [[package]] name = "pinecone-text" version = "0.4.2" description = "Text utilities library by Pinecone.io" optional = false python-versions = ">=3.8,<4.0" files = [ {file = "pinecone_text-0.4.2-py3-none-any.whl", hash = "sha256:79468c197b2fc7738c1511a6b5b8e7697fad613604ad935661a438f621ad2004"}, {file = "pinecone_text-0.4.2.tar.gz", hash = "sha256:131d9d1cc5654bdff8c4e497bb00e54fcab07a3b501e38aa16a6f19c2f00d4c6"}, ] [package.dependencies] mmh3 = ">=3.1.0,<4.0.0" nltk = ">=3.6.5,<4.0.0" sentence-transformers = ">=2.0.0,<3.0.0" torch = ">=1.13.1,<2.0.0" transformers = ">=4.26.1,<5.0.0" wget = ">=3.2,<4.0" [[package]] name = "pkgutil-resolve-name" version = "1.3.10" description = "Resolve a name to an object." optional = false python-versions = ">=3.6" files = [ {file = "pkgutil_resolve_name-1.3.10-py3-none-any.whl", hash = "sha256:ca27cc078d25c5ad71a9de0a7a330146c4e014c2462d9af19c6b828280649c5e"}, {file = "pkgutil_resolve_name-1.3.10.tar.gz", hash = "sha256:357d6c9e6a755653cfd78893817c0853af365dd51ec97f3d358a819373bbd174"}, ] [[package]] name = "platformdirs" version = "3.5.1" description = "A small Python package for determining appropriate platform-specific dirs, e.g. a \"user data dir\"." optional = false python-versions = ">=3.7" files = [ {file = "platformdirs-3.5.1-py3-none-any.whl", hash = "sha256:e2378146f1964972c03c085bb5662ae80b2b8c06226c54b2ff4aa9483e8a13a5"}, {file = "platformdirs-3.5.1.tar.gz", hash = "sha256:412dae91f52a6f84830f39a8078cecd0e866cb72294a5c66808e74d5e88d251f"}, ] [package.extras] docs = ["furo (>=2023.3.27)", "proselint (>=0.13)", "sphinx (>=6.2.1)", "sphinx-autodoc-typehints (>=1.23,!=1.23.4)"] test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.3.1)", "pytest-cov (>=4)", "pytest-mock (>=3.10)"] [[package]] name = "playwright" version = "1.33.0" description = "A high-level API to automate web browsers" optional = false python-versions = ">=3.7" files = [ {file = "playwright-1.33.0-py3-none-macosx_10_13_x86_64.whl", hash = "sha256:b3f6f27f67ec4ef32216a6fab3ffd8a4e1100383be0e863ff86707e617bec1b6"}, {file = "playwright-1.33.0-py3-none-macosx_11_0_arm64.whl", hash = "sha256:69f90c23c3906837bbbce4cb80774df72adc2e35c43b9744e13638d37049d970"}, {file = "playwright-1.33.0-py3-none-macosx_11_0_universal2.whl", hash = "sha256:08a9cd792a65c7e5f2bb68580f669a706d867fecabc8686098a2fabe3e34f5f8"}, {file = "playwright-1.33.0-py3-none-manylinux1_x86_64.whl", hash = "sha256:84dc9ac79ac828d823161fd6903ffbaf9d3843f4ced2fc2e3414b91b15624d0c"}, {file = "playwright-1.33.0-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9a749f5f2fafc85c5b2a849226cbfdbca4fa047dec3ae20900494e84a390dd0c"}, {file = "playwright-1.33.0-py3-none-win32.whl", hash = "sha256:0671dbb767422621b980b4545eeb2910c73f4e2aabe376a58e4a1ac03990bcec"}, {file = "playwright-1.33.0-py3-none-win_amd64.whl", hash = "sha256:030b273370bcfdec22317ca9fbdd8b66f7493462fb3bf2fce144e3cc82899ae4"}, ] [package.dependencies] greenlet = "2.0.1" pyee = "9.0.4" typing-extensions = {version = "*", markers = "python_version <= \"3.8\""} [[package]] name = "pluggy" version = "1.0.0" description = "plugin and hook calling mechanisms for python" optional = false python-versions = ">=3.6" files = [ {file = "pluggy-1.0.0-py2.py3-none-any.whl", hash = "sha256:74134bbf457f031a36d68416e1509f34bd5ccc019f0bcc952c7b909d06b37bd3"}, {file = "pluggy-1.0.0.tar.gz", hash = "sha256:4224373bacce55f955a878bf9cfa763c1e360858e330072059e10bad68531159"}, ] [package.extras] dev = ["pre-commit", "tox"] testing = ["pytest", "pytest-benchmark"] [[package]] name = "portalocker" version = "2.7.0" description = "Wraps the portalocker recipe for easy usage" optional = true python-versions = ">=3.5" files = [ {file = "portalocker-2.7.0-py2.py3-none-any.whl", hash = "sha256:a07c5b4f3985c3cf4798369631fb7011adb498e2a46d8440efc75a8f29a0f983"}, {file = "portalocker-2.7.0.tar.gz", hash = "sha256:032e81d534a88ec1736d03f780ba073f047a06c478b06e2937486f334e955c51"}, ] [package.dependencies] pywin32 = {version = ">=226", markers = "platform_system == \"Windows\""} [package.extras] docs = ["sphinx (>=1.7.1)"] redis = ["redis"] tests = ["pytest (>=5.4.1)", "pytest-cov (>=2.8.1)", "pytest-mypy (>=0.8.0)", "pytest-timeout (>=2.1.0)", "redis", "sphinx (>=6.0.0)"] [[package]] name = "posthog" version = "3.0.1" description = "Integrate PostHog into any python application." optional = false python-versions = "*" files = [ {file = "posthog-3.0.1-py2.py3-none-any.whl", hash = "sha256:9c7f92fecc713257d4b2710d05b456569c9156fbdd3e85655ba7ba5ba6c7b3ae"}, {file = "posthog-3.0.1.tar.gz", hash = "sha256:57d2791ff5752ce56ba0f9bb8876faf3ca9208f1c2c6ceaeb5a2504c34493767"}, ] [package.dependencies] backoff = ">=1.10.0" monotonic = ">=1.5" python-dateutil = ">2.1" requests = ">=2.7,<3.0" six = ">=1.5" [package.extras] dev = ["black", "flake8", "flake8-print", "isort", "pre-commit"] sentry = ["django", "sentry-sdk"] test = ["coverage", "flake8", "freezegun (==0.3.15)", "mock (>=2.0.0)", "pylint", "pytest"] [[package]] name = "pox" version = "0.3.2" description = "utilities for filesystem exploration and automated builds" optional = false python-versions = ">=3.7" files = [ {file = "pox-0.3.2-py3-none-any.whl", hash = "sha256:56fe2f099ecd8a557b8948082504492de90e8598c34733c9b1fdeca8f7b6de61"}, {file = "pox-0.3.2.tar.gz", hash = "sha256:e825225297638d6e3d49415f8cfb65407a5d15e56f2fb7fe9d9b9e3050c65ee1"}, ] [[package]] name = "ppft" version = "1.7.6.6" description = "distributed and parallel python" optional = false python-versions = ">=3.7" files = [ {file = "ppft-1.7.6.6-py3-none-any.whl", hash = "sha256:f355d2caeed8bd7c9e4a860c471f31f7e66d1ada2791ab5458ea7dca15a51e41"}, {file = "ppft-1.7.6.6.tar.gz", hash = "sha256:f933f0404f3e808bc860745acb3b79cd4fe31ea19a20889a645f900415be60f1"}, ] [package.extras] dill = ["dill (>=0.3.6)"] [[package]] name = "preshed" version = "3.0.8" description = "Cython hash table that trusts the keys are pre-hashed" optional = true python-versions = ">=3.6" files = [ {file = "preshed-3.0.8-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:ea4b6df8ef7af38e864235256793bc3056e9699d991afcf6256fa298858582fc"}, {file = "preshed-3.0.8-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8e945fc814bdc29564a2ce137c237b3a9848aa1e76a1160369b6e0d328151fdd"}, {file = "preshed-3.0.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f9a4833530fe53001c351974e0c8bb660211b8d0358e592af185fec1ae12b2d0"}, {file = "preshed-3.0.8-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e1472ee231f323b4f4368b1b5f8f08481ed43af89697d45450c6ae4af46ac08a"}, {file = "preshed-3.0.8-cp310-cp310-win_amd64.whl", hash = "sha256:c8a2e2931eea7e500fbf8e014b69022f3fab2e35a70da882e2fc753e5e487ae3"}, {file = "preshed-3.0.8-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0e1bb8701df7861af26a312225bdf7c4822ac06fcf75aeb60fe2b0a20e64c222"}, {file = "preshed-3.0.8-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e9aef2b0b7687aecef48b1c6ff657d407ff24e75462877dcb888fa904c4a9c6d"}, {file = "preshed-3.0.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:854d58a8913ebf3b193b0dc8064155b034e8987de25f26838dfeca09151fda8a"}, {file = "preshed-3.0.8-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:135e2ac0db1a3948d6ec295598c7e182b52c394663f2fcfe36a97ae51186be21"}, {file = "preshed-3.0.8-cp311-cp311-win_amd64.whl", hash = "sha256:019d8fa4161035811fb2804d03214143298739e162d0ad24e087bd46c50970f5"}, {file = "preshed-3.0.8-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6a49ce52856fbb3ef4f1cc744c53f5d7e1ca370b1939620ac2509a6d25e02a50"}, {file = "preshed-3.0.8-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fdbc2957b36115a576c515ffe963919f19d2683f3c76c9304ae88ef59f6b5ca6"}, {file = "preshed-3.0.8-cp36-cp36m-win_amd64.whl", hash = "sha256:09cc9da2ac1b23010ce7d88a5e20f1033595e6dd80be14318e43b9409f4c7697"}, {file = "preshed-3.0.8-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:e19c8069f1a1450f835f23d47724530cf716d581fcafb398f534d044f806b8c2"}, {file = "preshed-3.0.8-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:25b5ef5e387a0e17ff41202a8c1816184ab6fb3c0d0b847bf8add0ed5941eb8d"}, {file = "preshed-3.0.8-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:53d3e2456a085425c66af7baba62d7eaa24aa5e460e1a9e02c401a2ed59abd7b"}, {file = "preshed-3.0.8-cp37-cp37m-win_amd64.whl", hash = "sha256:85e98a618fb36cdcc37501d8b9b8c1246651cc2f2db3a70702832523e0ae12f4"}, {file = "preshed-3.0.8-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:7f8837bf616335464f3713cbf562a3dcaad22c3ca9193f957018964ef871a68b"}, {file = "preshed-3.0.8-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:720593baf2c2e295f855192974799e486da5f50d4548db93c44f5726a43cefb9"}, {file = "preshed-3.0.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e0ad3d860b9ce88a74cf7414bb4b1c6fd833813e7b818e76f49272c4974b19ce"}, {file = "preshed-3.0.8-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fd19d48440b152657966a52e627780c0ddbe9d907b8d7ee4598505e80a3c55c7"}, {file = "preshed-3.0.8-cp38-cp38-win_amd64.whl", hash = "sha256:246e7c6890dc7fe9b10f0e31de3346b906e3862b6ef42fcbede37968f46a73bf"}, {file = "preshed-3.0.8-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:67643e66691770dc3434b01671648f481e3455209ce953727ef2330b16790aaa"}, {file = "preshed-3.0.8-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0ae25a010c9f551aa2247ee621457f679e07c57fc99d3fd44f84cb40b925f12c"}, {file = "preshed-3.0.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5a6a7fcf7dd2e7711051b3f0432da9ec9c748954c989f49d2cd8eabf8c2d953e"}, {file = "preshed-3.0.8-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5942858170c4f53d9afc6352a86bbc72fc96cc4d8964b6415492114a5920d3ed"}, {file = "preshed-3.0.8-cp39-cp39-win_amd64.whl", hash = "sha256:06793022a56782ef51d74f1399925a2ba958e50c5cfbc6fa5b25c4945e158a07"}, {file = "preshed-3.0.8.tar.gz", hash = "sha256:6c74c70078809bfddda17be96483c41d06d717934b07cab7921011d81758b357"}, ] [package.dependencies] cymem = ">=2.0.2,<2.1.0" murmurhash = ">=0.28.0,<1.1.0" [[package]] name = "prometheus-client" version = "0.16.0" description = "Python client for the Prometheus monitoring system." optional = false python-versions = ">=3.6" files = [ {file = "prometheus_client-0.16.0-py3-none-any.whl", hash = "sha256:0836af6eb2c8f4fed712b2f279f6c0a8bbab29f9f4aa15276b91c7cb0d1616ab"}, {file = "prometheus_client-0.16.0.tar.gz", hash = "sha256:a03e35b359f14dd1630898543e2120addfdeacd1a6069c1367ae90fd93ad3f48"}, ] [package.extras] twisted = ["twisted"] [[package]] name = "prompt-toolkit" version = "3.0.38" description = "Library for building powerful interactive command lines in Python" optional = false python-versions = ">=3.7.0" files = [ {file = "prompt_toolkit-3.0.38-py3-none-any.whl", hash = "sha256:45ea77a2f7c60418850331366c81cf6b5b9cf4c7fd34616f733c5427e6abbb1f"}, {file = "prompt_toolkit-3.0.38.tar.gz", hash = "sha256:23ac5d50538a9a38c8bde05fecb47d0b403ecd0662857a86f886f798563d5b9b"}, ] [package.dependencies] wcwidth = "*" [[package]] name = "promptlayer" version = "0.1.81" description = "PromptLayer is a package to keep track of your GPT models training" optional = false python-versions = "*" files = [ {file = "promptlayer-0.1.81.tar.gz", hash = "sha256:75b743977dbe646d9e7365ac7b6dc033886253515f9f88c748481e7a0e9090c2"}, ] [package.dependencies] langchain = "*" openai = "*" requests = "*" [[package]] name = "protobuf" version = "3.19.6" description = "Protocol Buffers" optional = false python-versions = ">=3.5" files = [ {file = "protobuf-3.19.6-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:010be24d5a44be7b0613750ab40bc8b8cedc796db468eae6c779b395f50d1fa1"}, {file = "protobuf-3.19.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:11478547958c2dfea921920617eb457bc26867b0d1aa065ab05f35080c5d9eb6"}, {file = "protobuf-3.19.6-cp310-cp310-win32.whl", hash = "sha256:559670e006e3173308c9254d63facb2c03865818f22204037ab76f7a0ff70b5f"}, {file = "protobuf-3.19.6-cp310-cp310-win_amd64.whl", hash = "sha256:347b393d4dd06fb93a77620781e11c058b3b0a5289262f094379ada2920a3730"}, {file = "protobuf-3.19.6-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:a8ce5ae0de28b51dff886fb922012dad885e66176663950cb2344c0439ecb473"}, {file = "protobuf-3.19.6-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90b0d02163c4e67279ddb6dc25e063db0130fc299aefabb5d481053509fae5c8"}, {file = "protobuf-3.19.6-cp36-cp36m-win32.whl", hash = "sha256:30f5370d50295b246eaa0296533403961f7e64b03ea12265d6dfce3a391d8992"}, {file = "protobuf-3.19.6-cp36-cp36m-win_amd64.whl", hash = "sha256:0c0714b025ec057b5a7600cb66ce7c693815f897cfda6d6efb58201c472e3437"}, {file = "protobuf-3.19.6-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:5057c64052a1f1dd7d4450e9aac25af6bf36cfbfb3a1cd89d16393a036c49157"}, {file = "protobuf-3.19.6-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:bb6776bd18f01ffe9920e78e03a8676530a5d6c5911934c6a1ac6eb78973ecb6"}, {file = "protobuf-3.19.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:84a04134866861b11556a82dd91ea6daf1f4925746b992f277b84013a7cc1229"}, {file = "protobuf-3.19.6-cp37-cp37m-win32.whl", hash = "sha256:4bc98de3cdccfb5cd769620d5785b92c662b6bfad03a202b83799b6ed3fa1fa7"}, {file = "protobuf-3.19.6-cp37-cp37m-win_amd64.whl", hash = "sha256:aa3b82ca1f24ab5326dcf4ea00fcbda703e986b22f3d27541654f749564d778b"}, {file = "protobuf-3.19.6-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:2b2d2913bcda0e0ec9a784d194bc490f5dc3d9d71d322d070b11a0ade32ff6ba"}, {file = "protobuf-3.19.6-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:d0b635cefebd7a8a0f92020562dead912f81f401af7e71f16bf9506ff3bdbb38"}, {file = "protobuf-3.19.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a552af4dc34793803f4e735aabe97ffc45962dfd3a237bdde242bff5a3de684"}, {file = "protobuf-3.19.6-cp38-cp38-win32.whl", hash = "sha256:0469bc66160180165e4e29de7f445e57a34ab68f49357392c5b2f54c656ab25e"}, {file = "protobuf-3.19.6-cp38-cp38-win_amd64.whl", hash = "sha256:91d5f1e139ff92c37e0ff07f391101df77e55ebb97f46bbc1535298d72019462"}, {file = "protobuf-3.19.6-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c0ccd3f940fe7f3b35a261b1dd1b4fc850c8fde9f74207015431f174be5976b3"}, {file = "protobuf-3.19.6-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:30a15015d86b9c3b8d6bf78d5b8c7749f2512c29f168ca259c9d7727604d0e39"}, {file = "protobuf-3.19.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:878b4cd080a21ddda6ac6d1e163403ec6eea2e206cf225982ae04567d39be7b0"}, {file = "protobuf-3.19.6-cp39-cp39-win32.whl", hash = "sha256:5a0d7539a1b1fb7e76bf5faa0b44b30f812758e989e59c40f77a7dab320e79b9"}, {file = "protobuf-3.19.6-cp39-cp39-win_amd64.whl", hash = "sha256:bbf5cea5048272e1c60d235c7bd12ce1b14b8a16e76917f371c718bd3005f045"}, {file = "protobuf-3.19.6-py2.py3-none-any.whl", hash = "sha256:14082457dc02be946f60b15aad35e9f5c69e738f80ebbc0900a19bc83734a5a4"}, {file = "protobuf-3.19.6.tar.gz", hash = "sha256:5f5540d57a43042389e87661c6eaa50f47c19c6176e8cf1c4f287aeefeccb5c4"}, ] [[package]] name = "psutil" version = "5.9.5" description = "Cross-platform lib for process and system monitoring in Python." optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ {file = "psutil-5.9.5-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:be8929ce4313f9f8146caad4272f6abb8bf99fc6cf59344a3167ecd74f4f203f"}, {file = "psutil-5.9.5-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:ab8ed1a1d77c95453db1ae00a3f9c50227ebd955437bcf2a574ba8adbf6a74d5"}, {file = "psutil-5.9.5-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:4aef137f3345082a3d3232187aeb4ac4ef959ba3d7c10c33dd73763fbc063da4"}, {file = "psutil-5.9.5-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:ea8518d152174e1249c4f2a1c89e3e6065941df2fa13a1ab45327716a23c2b48"}, {file = "psutil-5.9.5-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:acf2aef9391710afded549ff602b5887d7a2349831ae4c26be7c807c0a39fac4"}, {file = "psutil-5.9.5-cp27-none-win32.whl", hash = "sha256:5b9b8cb93f507e8dbaf22af6a2fd0ccbe8244bf30b1baad6b3954e935157ae3f"}, {file = "psutil-5.9.5-cp27-none-win_amd64.whl", hash = "sha256:8c5f7c5a052d1d567db4ddd231a9d27a74e8e4a9c3f44b1032762bd7b9fdcd42"}, {file = "psutil-5.9.5-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:3c6f686f4225553615612f6d9bc21f1c0e305f75d7d8454f9b46e901778e7217"}, {file = "psutil-5.9.5-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7a7dd9997128a0d928ed4fb2c2d57e5102bb6089027939f3b722f3a210f9a8da"}, {file = "psutil-5.9.5-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:89518112647f1276b03ca97b65cc7f64ca587b1eb0278383017c2a0dcc26cbe4"}, {file = "psutil-5.9.5-cp36-abi3-win32.whl", hash = "sha256:104a5cc0e31baa2bcf67900be36acde157756b9c44017b86b2c049f11957887d"}, {file = "psutil-5.9.5-cp36-abi3-win_amd64.whl", hash = "sha256:b258c0c1c9d145a1d5ceffab1134441c4c5113b2417fafff7315a917a026c3c9"}, {file = "psutil-5.9.5-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:c607bb3b57dc779d55e1554846352b4e358c10fff3abf3514a7a6601beebdb30"}, {file = "psutil-5.9.5.tar.gz", hash = "sha256:5410638e4df39c54d957fc51ce03048acd8e6d60abc0f5107af51e5fb566eb3c"}, ] [package.extras] test = ["enum34", "ipaddress", "mock", "pywin32", "wmi"] [[package]] name = "psychicapi" version = "0.5" description = "Psychic.dev is an open-source universal data connector for knowledgebases." optional = true python-versions = "*" files = [ {file = "psychicapi-0.5-py3-none-any.whl", hash = "sha256:30637abbecd6c9ebafbceb7c1230987f7ef3af2ca7054f3322ae80f9cbf46039"}, {file = "psychicapi-0.5.tar.gz", hash = "sha256:a2106ef8e3a286f85aa2c26c6d1a778e15009391b3b5e2dd864447c8e7f85942"}, ] [package.dependencies] requests = "*" [[package]] name = "psycopg2-binary" version = "2.9.6" description = "psycopg2 - Python-PostgreSQL Database Adapter" optional = true python-versions = ">=3.6" files = [ {file = "psycopg2-binary-2.9.6.tar.gz", hash = "sha256:1f64dcfb8f6e0c014c7f55e51c9759f024f70ea572fbdef123f85318c297947c"}, {file = "psycopg2_binary-2.9.6-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d26e0342183c762de3276cca7a530d574d4e25121ca7d6e4a98e4f05cb8e4df7"}, {file = "psycopg2_binary-2.9.6-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c48d8f2db17f27d41fb0e2ecd703ea41984ee19362cbce52c097963b3a1b4365"}, {file = "psycopg2_binary-2.9.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ffe9dc0a884a8848075e576c1de0290d85a533a9f6e9c4e564f19adf8f6e54a7"}, {file = "psycopg2_binary-2.9.6-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8a76e027f87753f9bd1ab5f7c9cb8c7628d1077ef927f5e2446477153a602f2c"}, {file = "psycopg2_binary-2.9.6-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6460c7a99fc939b849431f1e73e013d54aa54293f30f1109019c56a0b2b2ec2f"}, {file = "psycopg2_binary-2.9.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ae102a98c547ee2288637af07393dd33f440c25e5cd79556b04e3fca13325e5f"}, {file = "psycopg2_binary-2.9.6-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:9972aad21f965599ed0106f65334230ce826e5ae69fda7cbd688d24fa922415e"}, {file = "psycopg2_binary-2.9.6-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:7a40c00dbe17c0af5bdd55aafd6ff6679f94a9be9513a4c7e071baf3d7d22a70"}, {file = "psycopg2_binary-2.9.6-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:cacbdc5839bdff804dfebc058fe25684cae322987f7a38b0168bc1b2df703fb1"}, {file = "psycopg2_binary-2.9.6-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:7f0438fa20fb6c7e202863e0d5ab02c246d35efb1d164e052f2f3bfe2b152bd0"}, {file = "psycopg2_binary-2.9.6-cp310-cp310-win32.whl", hash = "sha256:b6c8288bb8a84b47e07013bb4850f50538aa913d487579e1921724631d02ea1b"}, {file = "psycopg2_binary-2.9.6-cp310-cp310-win_amd64.whl", hash = "sha256:61b047a0537bbc3afae10f134dc6393823882eb263088c271331602b672e52e9"}, {file = "psycopg2_binary-2.9.6-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:964b4dfb7c1c1965ac4c1978b0f755cc4bd698e8aa2b7667c575fb5f04ebe06b"}, {file = "psycopg2_binary-2.9.6-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:afe64e9b8ea66866a771996f6ff14447e8082ea26e675a295ad3bdbffdd72afb"}, {file = "psycopg2_binary-2.9.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:15e2ee79e7cf29582ef770de7dab3d286431b01c3bb598f8e05e09601b890081"}, {file = "psycopg2_binary-2.9.6-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dfa74c903a3c1f0d9b1c7e7b53ed2d929a4910e272add6700c38f365a6002820"}, {file = "psycopg2_binary-2.9.6-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b83456c2d4979e08ff56180a76429263ea254c3f6552cd14ada95cff1dec9bb8"}, {file = "psycopg2_binary-2.9.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0645376d399bfd64da57148694d78e1f431b1e1ee1054872a5713125681cf1be"}, {file = "psycopg2_binary-2.9.6-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e99e34c82309dd78959ba3c1590975b5d3c862d6f279f843d47d26ff89d7d7e1"}, {file = "psycopg2_binary-2.9.6-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:4ea29fc3ad9d91162c52b578f211ff1c931d8a38e1f58e684c45aa470adf19e2"}, {file = "psycopg2_binary-2.9.6-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:4ac30da8b4f57187dbf449294d23b808f8f53cad6b1fc3623fa8a6c11d176dd0"}, {file = "psycopg2_binary-2.9.6-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e78e6e2a00c223e164c417628572a90093c031ed724492c763721c2e0bc2a8df"}, {file = "psycopg2_binary-2.9.6-cp311-cp311-win32.whl", hash = "sha256:1876843d8e31c89c399e31b97d4b9725a3575bb9c2af92038464231ec40f9edb"}, {file = "psycopg2_binary-2.9.6-cp311-cp311-win_amd64.whl", hash = "sha256:b4b24f75d16a89cc6b4cdff0eb6a910a966ecd476d1e73f7ce5985ff1328e9a6"}, {file = "psycopg2_binary-2.9.6-cp36-cp36m-win32.whl", hash = "sha256:498807b927ca2510baea1b05cc91d7da4718a0f53cb766c154c417a39f1820a0"}, {file = "psycopg2_binary-2.9.6-cp36-cp36m-win_amd64.whl", hash = "sha256:0d236c2825fa656a2d98bbb0e52370a2e852e5a0ec45fc4f402977313329174d"}, {file = "psycopg2_binary-2.9.6-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:34b9ccdf210cbbb1303c7c4db2905fa0319391bd5904d32689e6dd5c963d2ea8"}, {file = "psycopg2_binary-2.9.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:84d2222e61f313c4848ff05353653bf5f5cf6ce34df540e4274516880d9c3763"}, {file = "psycopg2_binary-2.9.6-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:30637a20623e2a2eacc420059be11527f4458ef54352d870b8181a4c3020ae6b"}, {file = "psycopg2_binary-2.9.6-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8122cfc7cae0da9a3077216528b8bb3629c43b25053284cc868744bfe71eb141"}, {file = "psycopg2_binary-2.9.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:38601cbbfe600362c43714482f43b7c110b20cb0f8172422c616b09b85a750c5"}, {file = "psycopg2_binary-2.9.6-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:c7e62ab8b332147a7593a385d4f368874d5fe4ad4e341770d4983442d89603e3"}, {file = "psycopg2_binary-2.9.6-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:2ab652e729ff4ad76d400df2624d223d6e265ef81bb8aa17fbd63607878ecbee"}, {file = "psycopg2_binary-2.9.6-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:c83a74b68270028dc8ee74d38ecfaf9c90eed23c8959fca95bd703d25b82c88e"}, {file = "psycopg2_binary-2.9.6-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:d4e6036decf4b72d6425d5b29bbd3e8f0ff1059cda7ac7b96d6ac5ed34ffbacd"}, {file = "psycopg2_binary-2.9.6-cp37-cp37m-win32.whl", hash = "sha256:a8c28fd40a4226b4a84bdf2d2b5b37d2c7bd49486b5adcc200e8c7ec991dfa7e"}, {file = "psycopg2_binary-2.9.6-cp37-cp37m-win_amd64.whl", hash = "sha256:51537e3d299be0db9137b321dfb6a5022caaab275775680e0c3d281feefaca6b"}, {file = "psycopg2_binary-2.9.6-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:cf4499e0a83b7b7edcb8dabecbd8501d0d3a5ef66457200f77bde3d210d5debb"}, {file = "psycopg2_binary-2.9.6-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7e13a5a2c01151f1208d5207e42f33ba86d561b7a89fca67c700b9486a06d0e2"}, {file = "psycopg2_binary-2.9.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e0f754d27fddcfd74006455b6e04e6705d6c31a612ec69ddc040a5468e44b4e"}, {file = "psycopg2_binary-2.9.6-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d57c3fd55d9058645d26ae37d76e61156a27722097229d32a9e73ed54819982a"}, {file = "psycopg2_binary-2.9.6-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:71f14375d6f73b62800530b581aed3ada394039877818b2d5f7fc77e3bb6894d"}, {file = "psycopg2_binary-2.9.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:441cc2f8869a4f0f4bb408475e5ae0ee1f3b55b33f350406150277f7f35384fc"}, {file = "psycopg2_binary-2.9.6-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:65bee1e49fa6f9cf327ce0e01c4c10f39165ee76d35c846ade7cb0ec6683e303"}, {file = "psycopg2_binary-2.9.6-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:af335bac6b666cc6aea16f11d486c3b794029d9df029967f9938a4bed59b6a19"}, {file = "psycopg2_binary-2.9.6-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:cfec476887aa231b8548ece2e06d28edc87c1397ebd83922299af2e051cf2827"}, {file = "psycopg2_binary-2.9.6-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:65c07febd1936d63bfde78948b76cd4c2a411572a44ac50719ead41947d0f26b"}, {file = "psycopg2_binary-2.9.6-cp38-cp38-win32.whl", hash = "sha256:4dfb4be774c4436a4526d0c554af0cc2e02082c38303852a36f6456ece7b3503"}, {file = "psycopg2_binary-2.9.6-cp38-cp38-win_amd64.whl", hash = "sha256:02c6e3cf3439e213e4ee930308dc122d6fb4d4bea9aef4a12535fbd605d1a2fe"}, {file = "psycopg2_binary-2.9.6-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:e9182eb20f41417ea1dd8e8f7888c4d7c6e805f8a7c98c1081778a3da2bee3e4"}, {file = "psycopg2_binary-2.9.6-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:8a6979cf527e2603d349a91060f428bcb135aea2be3201dff794813256c274f1"}, {file = "psycopg2_binary-2.9.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8338a271cb71d8da40b023a35d9c1e919eba6cbd8fa20a54b748a332c355d896"}, {file = "psycopg2_binary-2.9.6-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e3ed340d2b858d6e6fb5083f87c09996506af483227735de6964a6100b4e6a54"}, {file = "psycopg2_binary-2.9.6-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f81e65376e52f03422e1fb475c9514185669943798ed019ac50410fb4c4df232"}, {file = "psycopg2_binary-2.9.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bfb13af3c5dd3a9588000910178de17010ebcccd37b4f9794b00595e3a8ddad3"}, {file = "psycopg2_binary-2.9.6-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:4c727b597c6444a16e9119386b59388f8a424223302d0c06c676ec8b4bc1f963"}, {file = "psycopg2_binary-2.9.6-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:4d67fbdaf177da06374473ef6f7ed8cc0a9dc640b01abfe9e8a2ccb1b1402c1f"}, {file = "psycopg2_binary-2.9.6-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:0892ef645c2fabb0c75ec32d79f4252542d0caec1d5d949630e7d242ca4681a3"}, {file = "psycopg2_binary-2.9.6-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:02c0f3757a4300cf379eb49f543fb7ac527fb00144d39246ee40e1df684ab514"}, {file = "psycopg2_binary-2.9.6-cp39-cp39-win32.whl", hash = "sha256:c3dba7dab16709a33a847e5cd756767271697041fbe3fe97c215b1fc1f5c9848"}, {file = "psycopg2_binary-2.9.6-cp39-cp39-win_amd64.whl", hash = "sha256:f6a88f384335bb27812293fdb11ac6aee2ca3f51d3c7820fe03de0a304ab6249"}, ] [[package]] name = "ptyprocess" version = "0.7.0" description = "Run a subprocess in a pseudo terminal" optional = false python-versions = "*" files = [ {file = "ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35"}, {file = "ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220"}, ] [[package]] name = "pure-eval" version = "0.2.2" description = "Safely evaluate AST nodes without side effects" optional = false python-versions = "*" files = [ {file = "pure_eval-0.2.2-py3-none-any.whl", hash = "sha256:01eaab343580944bc56080ebe0a674b39ec44a945e6d09ba7db3cb8cec289350"}, {file = "pure_eval-0.2.2.tar.gz", hash = "sha256:2b45320af6dfaa1750f543d714b6d1c520a1688dec6fd24d339063ce0aaa9ac3"}, ] [package.extras] tests = ["pytest"] [[package]] name = "py" version = "1.11.0" description = "library with cross-python path, ini-parsing, io, code, log facilities" optional = true python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" files = [ {file = "py-1.11.0-py2.py3-none-any.whl", hash = "sha256:607c53218732647dff4acdfcd50cb62615cedf612e72d1724fb1a0cc6405b378"}, {file = "py-1.11.0.tar.gz", hash = "sha256:51c75c4126074b472f746a24399ad32f6053d1b34b68d2fa41e558e6f4a98719"}, ] [[package]] name = "py-trello" version = "0.19.0" description = "Python wrapper around the Trello API" optional = true python-versions = "*" files = [ {file = "py-trello-0.19.0.tar.gz", hash = "sha256:f4a8c05db61fad0ef5fa35d62c29806c75d9d2b797358d9cf77275e2cbf23020"}, ] [package.dependencies] python-dateutil = "*" pytz = "*" requests = "*" requests-oauthlib = ">=0.4.1" [[package]] name = "py4j" version = "0.10.9.7" description = "Enables Python programs to dynamically access arbitrary Java objects" optional = true python-versions = "*" files = [ {file = "py4j-0.10.9.7-py2.py3-none-any.whl", hash = "sha256:85defdfd2b2376eb3abf5ca6474b51ab7e0de341c75a02f46dc9b5976f5a5c1b"}, {file = "py4j-0.10.9.7.tar.gz", hash = "sha256:0b6e5315bb3ada5cf62ac651d107bb2ebc02def3dee9d9548e3baac644ea8dbb"}, ] [[package]] name = "pyaes" version = "1.6.1" description = "Pure-Python Implementation of the AES block-cipher and common modes of operation" optional = true python-versions = "*" files = [ {file = "pyaes-1.6.1.tar.gz", hash = "sha256:02c1b1405c38d3c370b085fb952dd8bea3fadcee6411ad99f312cc129c536d8f"}, ] [[package]] name = "pyarrow" version = "12.0.0" description = "Python library for Apache Arrow" optional = true python-versions = ">=3.7" files = [ {file = "pyarrow-12.0.0-cp310-cp310-macosx_10_14_x86_64.whl", hash = "sha256:3b97649c8a9a09e1d8dc76513054f1331bd9ece78ee39365e6bf6bc7503c1e94"}, {file = "pyarrow-12.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:bc4ea634dacb03936f50fcf59574a8e727f90c17c24527e488d8ceb52ae284de"}, {file = "pyarrow-12.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d568acfca3faa565d663e53ee34173be8e23a95f78f2abfdad198010ec8f745"}, {file = "pyarrow-12.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1b50bb9a82dca38a002d7cbd802a16b1af0f8c50ed2ec94a319f5f2afc047ee9"}, {file = "pyarrow-12.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:3d1733b1ea086b3c101427d0e57e2be3eb964686e83c2363862a887bb5c41fa8"}, {file = "pyarrow-12.0.0-cp311-cp311-macosx_10_14_x86_64.whl", hash = "sha256:a7cd32fe77f967fe08228bc100433273020e58dd6caced12627bcc0a7675a513"}, {file = "pyarrow-12.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:92fb031e6777847f5c9b01eaa5aa0c9033e853ee80117dce895f116d8b0c3ca3"}, {file = "pyarrow-12.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:280289ebfd4ac3570f6b776515baa01e4dcbf17122c401e4b7170a27c4be63fd"}, {file = "pyarrow-12.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:272f147d4f8387bec95f17bb58dcfc7bc7278bb93e01cb7b08a0e93a8921e18e"}, {file = "pyarrow-12.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:0846ace49998825eda4722f8d7f83fa05601c832549c9087ea49d6d5397d8cec"}, {file = "pyarrow-12.0.0-cp37-cp37m-macosx_10_14_x86_64.whl", hash = "sha256:993287136369aca60005ee7d64130f9466489c4f7425f5c284315b0a5401ccd9"}, {file = "pyarrow-12.0.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7a7b6a765ee4f88efd7d8348d9a1f804487d60799d0428b6ddf3344eaef37282"}, {file = "pyarrow-12.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a1c4fce253d5bdc8d62f11cfa3da5b0b34b562c04ce84abb8bd7447e63c2b327"}, {file = "pyarrow-12.0.0-cp37-cp37m-win_amd64.whl", hash = "sha256:e6be4d85707fc8e7a221c8ab86a40449ce62559ce25c94321df7c8500245888f"}, {file = "pyarrow-12.0.0-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:ea830d9f66bfb82d30b5794642f83dd0e4a718846462d22328981e9eb149cba8"}, {file = "pyarrow-12.0.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7b5b9f60d9ef756db59bec8d90e4576b7df57861e6a3d6a8bf99538f68ca15b3"}, {file = "pyarrow-12.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b99e559d27db36ad3a33868a475f03e3129430fc065accc839ef4daa12c6dab6"}, {file = "pyarrow-12.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5b0810864a593b89877120972d1f7af1d1c9389876dbed92b962ed81492d3ffc"}, {file = "pyarrow-12.0.0-cp38-cp38-win_amd64.whl", hash = "sha256:23a77d97f4d101ddfe81b9c2ee03a177f0e590a7e68af15eafa06e8f3cf05976"}, {file = "pyarrow-12.0.0-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:2cc63e746221cddb9001f7281dee95fd658085dd5b717b076950e1ccc607059c"}, {file = "pyarrow-12.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:d8c26912607e26c2991826bbaf3cf2b9c8c3e17566598c193b492f058b40d3a4"}, {file = "pyarrow-12.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0d8b90efc290e99a81d06015f3a46601c259ecc81ffb6d8ce288c91bd1b868c9"}, {file = "pyarrow-12.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2466be046b81863be24db370dffd30a2e7894b4f9823fb60ef0a733c31ac6256"}, {file = "pyarrow-12.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:0e36425b1c1cbf5447718b3f1751bf86c58f2b3ad299f996cd9b1aa040967656"}, {file = "pyarrow-12.0.0.tar.gz", hash = "sha256:19c812d303610ab5d664b7b1de4051ae23565f9f94d04cbea9e50569746ae1ee"}, ] [package.dependencies] numpy = ">=1.16.6" [[package]] name = "pyasn1" version = "0.5.0" description = "Pure-Python implementation of ASN.1 types and DER/BER/CER codecs (X.208)" optional = true python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" files = [ {file = "pyasn1-0.5.0-py2.py3-none-any.whl", hash = "sha256:87a2121042a1ac9358cabcaf1d07680ff97ee6404333bacca15f76aa8ad01a57"}, {file = "pyasn1-0.5.0.tar.gz", hash = "sha256:97b7290ca68e62a832558ec3976f15cbf911bf5d7c7039d8b861c2a0ece69fde"}, ] [[package]] name = "pyasn1-modules" version = "0.3.0" description = "A collection of ASN.1-based protocols modules" optional = true python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" files = [ {file = "pyasn1_modules-0.3.0-py2.py3-none-any.whl", hash = "sha256:d3ccd6ed470d9ffbc716be08bd90efbd44d0734bc9303818f7336070984a162d"}, {file = "pyasn1_modules-0.3.0.tar.gz", hash = "sha256:5bd01446b736eb9d31512a30d46c1ac3395d676c6f3cafa4c03eb54b9925631c"}, ] [package.dependencies] pyasn1 = ">=0.4.6,<0.6.0" [[package]] name = "pycares" version = "4.3.0" description = "Python interface for c-ares" optional = true python-versions = "*" files = [ {file = "pycares-4.3.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:19c9cdd3322d422931982939773e453e491dfc5c0b2e23d7266959315c7a0824"}, {file = "pycares-4.3.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:9e56e9cdf46a092970dc4b75bbabddea9f480be5eeadc3fcae3eb5c6807c4136"}, {file = "pycares-4.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1c75a6241c79b935048272cb77df498da64b8defc8c4b29fdf9870e43ba4cbb4"}, {file = "pycares-4.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:24d8654fac3742791b8bef59d1fbb3e19ae6a5c48876a6d98659f7c66ee546c4"}, {file = "pycares-4.3.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ebf50b049a245880f1aa16a6f72c4408e0a65b49ea1d3bf13383a44a2cabd2bf"}, {file = "pycares-4.3.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:84daf560962763c0359fd79c750ef480f0fda40c08b57765088dbe362e8dc452"}, {file = "pycares-4.3.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:978d10da7ee74b9979c494afa8b646411119ad0186a29c7f13c72bb4295630c6"}, {file = "pycares-4.3.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:326c5b9d7fe52eb3d243f5ead58d5c0011884226d961df8360a34618c38c7515"}, {file = "pycares-4.3.0-cp310-cp310-win32.whl", hash = "sha256:da7c7089ae617317d2cbe38baefd3821387b3bfef7b3ee5b797b871cb1257974"}, {file = "pycares-4.3.0-cp310-cp310-win_amd64.whl", hash = "sha256:7106dc683db30e1d851283b7b9df7a5ea4964d6bdd000d918d91d4b1f9bed329"}, {file = "pycares-4.3.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:4e7a24ecef0b1933f2a3fdbf328d1b529a76cda113f8364fa0742e5b3bd76566"}, {file = "pycares-4.3.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:e7abccc2aa4771c06994e4d9ed596453061e2b8846f887d9c98a64ccdaf4790a"}, {file = "pycares-4.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:531fed46c5ed798a914c3207be4ae7b297c4d09e4183d3cf8fd9ee59a55d5080"}, {file = "pycares-4.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c9335175af0c64a1e0ba67bdd349eb62d4eea0ad02c235ccdf0d535fd20f323"}, {file = "pycares-4.3.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c5f0e95535027d2dcd51e780410632b0d3ed7e9e5ceb25dc0fe937f2c2960079"}, {file = "pycares-4.3.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:3692179ce5fb96908ba342e1e5303608d0c976f0d5d4619fa9d3d6d9d5a9a1b4"}, {file = "pycares-4.3.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:5c4cb6cc7fe8e0606d30b60367f59fe26d1472e88555d61e202db70dea5c8edb"}, {file = "pycares-4.3.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:3215445396c74103e2054e6b349d9e85883ceda2006d0039fc2d58c9b11818a2"}, {file = "pycares-4.3.0-cp311-cp311-win32.whl", hash = "sha256:6a0c0c3a0adf490bba9dbb37dbd07ec81e4a6584f095036ac34f06a633710ffe"}, {file = "pycares-4.3.0-cp311-cp311-win_amd64.whl", hash = "sha256:995cb37cc39bd40ca87bb16555a0f7724f3be30d9f9059a4caab2fde45b1b903"}, {file = "pycares-4.3.0-cp36-cp36m-win32.whl", hash = "sha256:4c9187be72449c975c11daa1d94d7ddcc494f8a4c37a6c18f977cd7024a531d9"}, {file = "pycares-4.3.0-cp36-cp36m-win_amd64.whl", hash = "sha256:d7405ba10a2903a58b8b0faedcb54994c9ee002ad01963587fabf93e7e479783"}, {file = "pycares-4.3.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:40aaa12081495f879f11f4cfc95edfec1ea14711188563102f9e33fe98728fac"}, {file = "pycares-4.3.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4972cac24b66c5997f3a3e2cb608e408066d80103d443e36d626a88a287b9ae7"}, {file = "pycares-4.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:35886dba7aa5b73affca8729aeb5a1f5e94d3d9a764adb1b7e75bafca44eeca5"}, {file = "pycares-4.3.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5cea6e1f3be016f155d60f27f16c1074d58b4d6e123228fdbc3326d076016af8"}, {file = "pycares-4.3.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:3a9fd2665b053afb39226ac6f8137a60910ca7729358456df2fb94866f4297de"}, {file = "pycares-4.3.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:e8e9195f869120e44e0aa0a6098bb5c19947f4753054365891f592e6f9eab3ef"}, {file = "pycares-4.3.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:674486ecf2afb25ee219171b07cdaba481a1aaa2dabb155779c7be9ded03eaa9"}, {file = "pycares-4.3.0-cp37-cp37m-win32.whl", hash = "sha256:1b6cd3161851499b6894d1e23bfd633e7b775472f5af35ae35409c4a47a2d45e"}, {file = "pycares-4.3.0-cp37-cp37m-win_amd64.whl", hash = "sha256:710120c97b9afdba443564350c3f5f72fd9aae74d95b73dc062ca8ac3d7f36d7"}, {file = "pycares-4.3.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:9103649bd29d84bc6bcfaf09def9c0592bbc766018fad19d76d09989608b915d"}, {file = "pycares-4.3.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:c072dbaf73cb5434279578dc35322867d8d5df053e14fdcdcc589994ba4804ae"}, {file = "pycares-4.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:008531733f9c7a976b59c7760a3672b191159fd69ae76c01ca051f20b5e44164"}, {file = "pycares-4.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2aae02d97d77dcff840ab55f86cb8b99bf644acbca17e1edb7048408b9782088"}, {file = "pycares-4.3.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:257953ae6d400a934fd9193aeb20990ac84a78648bdf5978e998bd007a4045cd"}, {file = "pycares-4.3.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:c28d481efae26936ec08cb6beea305f4b145503b152cf2c4dc68cc4ad9644f0e"}, {file = "pycares-4.3.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:976249b39037dbfb709ccf7e1c40d2785905a0065536385d501b94570cfed96d"}, {file = "pycares-4.3.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:98568c30cfab6b327d94ae1acdf85bbba4cffd415980804985d34ca07e6f4791"}, {file = "pycares-4.3.0-cp38-cp38-win32.whl", hash = "sha256:a2f3c4f49f43162f7e684419d9834c2c8ec165e54cb8dc47aa9dc0c2132701c0"}, {file = "pycares-4.3.0-cp38-cp38-win_amd64.whl", hash = "sha256:1730ef93e33e4682fbbf0e7fb19df2ed9822779d17de8ea6e20d5b0d71c1d2be"}, {file = "pycares-4.3.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:5a26b3f1684557025da26ce65d076619890c82b95e38cc7284ce51c3539a1ce8"}, {file = "pycares-4.3.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:86112cce01655b9f63c5e53b74722084e88e784a7a8ad138d373440337c591c9"}, {file = "pycares-4.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c01465a191dc78e923884bb45cd63c7e012623e520cf7ed67e542413ee334804"}, {file = "pycares-4.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c9fd5d6012f3ee8c8038cbfe16e988bbd17b2f21eea86650874bf63757ee6161"}, {file = "pycares-4.3.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aa36b8ea91eae20b5c7205f3e6654423f066af24a1df02b274770a96cbcafaa7"}, {file = "pycares-4.3.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:61019151130557c1788cae52e4f2f388a7520c9d92574f3a0d61c974c6740db0"}, {file = "pycares-4.3.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:231962bb46274c52632469a1e686fab065dbd106dbef586de4f7fb101e297587"}, {file = "pycares-4.3.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6c979512fa51c7ccef5204fe10ed4e5c44c2bce5f335fe98a3e423f1672bd7d4"}, {file = "pycares-4.3.0-cp39-cp39-win32.whl", hash = "sha256:655cf0df862ce3847a60e1a106dafa2ba2c14e6636bac49e874347acdc7312dc"}, {file = "pycares-4.3.0-cp39-cp39-win_amd64.whl", hash = "sha256:36f2251ad0f99a5ce13df45c94c3161d9734c9e9fa2b9b4cc163b853ca170dc5"}, {file = "pycares-4.3.0.tar.gz", hash = "sha256:c542696f6dac978e9d99192384745a65f80a7d9450501151e4a7563e06010d45"}, ] [package.dependencies] cffi = ">=1.5.0" [package.extras] idna = ["idna (>=2.1)"] [[package]] name = "pycparser" version = "2.21" description = "C parser in Python" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ {file = "pycparser-2.21-py2.py3-none-any.whl", hash = "sha256:8ee45429555515e1f6b185e78100aea234072576aa43ab53aefcae078162fca9"}, {file = "pycparser-2.21.tar.gz", hash = "sha256:e644fdec12f7872f86c58ff790da456218b10f863970249516d60a5eaca77206"}, ] [[package]] name = "pydantic" version = "1.10.7" description = "Data validation and settings management using python type hints" optional = false python-versions = ">=3.7" files = [ {file = "pydantic-1.10.7-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e79e999e539872e903767c417c897e729e015872040e56b96e67968c3b918b2d"}, {file = "pydantic-1.10.7-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:01aea3a42c13f2602b7ecbbea484a98169fb568ebd9e247593ea05f01b884b2e"}, {file = "pydantic-1.10.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:516f1ed9bc2406a0467dd777afc636c7091d71f214d5e413d64fef45174cfc7a"}, {file = "pydantic-1.10.7-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ae150a63564929c675d7f2303008d88426a0add46efd76c3fc797cd71cb1b46f"}, {file = "pydantic-1.10.7-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:ecbbc51391248116c0a055899e6c3e7ffbb11fb5e2a4cd6f2d0b93272118a209"}, {file = "pydantic-1.10.7-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:f4a2b50e2b03d5776e7f21af73e2070e1b5c0d0df255a827e7c632962f8315af"}, {file = "pydantic-1.10.7-cp310-cp310-win_amd64.whl", hash = "sha256:a7cd2251439988b413cb0a985c4ed82b6c6aac382dbaff53ae03c4b23a70e80a"}, {file = "pydantic-1.10.7-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:68792151e174a4aa9e9fc1b4e653e65a354a2fa0fed169f7b3d09902ad2cb6f1"}, {file = "pydantic-1.10.7-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:dfe2507b8ef209da71b6fb5f4e597b50c5a34b78d7e857c4f8f3115effaef5fe"}, {file = "pydantic-1.10.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10a86d8c8db68086f1e30a530f7d5f83eb0685e632e411dbbcf2d5c0150e8dcd"}, {file = "pydantic-1.10.7-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d75ae19d2a3dbb146b6f324031c24f8a3f52ff5d6a9f22f0683694b3afcb16fb"}, {file = "pydantic-1.10.7-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:464855a7ff7f2cc2cf537ecc421291b9132aa9c79aef44e917ad711b4a93163b"}, {file = "pydantic-1.10.7-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:193924c563fae6ddcb71d3f06fa153866423ac1b793a47936656e806b64e24ca"}, {file = "pydantic-1.10.7-cp311-cp311-win_amd64.whl", hash = "sha256:b4a849d10f211389502059c33332e91327bc154acc1845f375a99eca3afa802d"}, {file = "pydantic-1.10.7-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:cc1dde4e50a5fc1336ee0581c1612215bc64ed6d28d2c7c6f25d2fe3e7c3e918"}, {file = "pydantic-1.10.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e0cfe895a504c060e5d36b287ee696e2fdad02d89e0d895f83037245218a87fe"}, {file = "pydantic-1.10.7-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:670bb4683ad1e48b0ecb06f0cfe2178dcf74ff27921cdf1606e527d2617a81ee"}, {file = "pydantic-1.10.7-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:950ce33857841f9a337ce07ddf46bc84e1c4946d2a3bba18f8280297157a3fd1"}, {file = "pydantic-1.10.7-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:c15582f9055fbc1bfe50266a19771bbbef33dd28c45e78afbe1996fd70966c2a"}, {file = "pydantic-1.10.7-cp37-cp37m-win_amd64.whl", hash = "sha256:82dffb306dd20bd5268fd6379bc4bfe75242a9c2b79fec58e1041fbbdb1f7914"}, {file = "pydantic-1.10.7-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:8c7f51861d73e8b9ddcb9916ae7ac39fb52761d9ea0df41128e81e2ba42886cd"}, {file = "pydantic-1.10.7-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6434b49c0b03a51021ade5c4daa7d70c98f7a79e95b551201fff682fc1661245"}, {file = "pydantic-1.10.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:64d34ab766fa056df49013bb6e79921a0265204c071984e75a09cbceacbbdd5d"}, {file = "pydantic-1.10.7-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:701daea9ffe9d26f97b52f1d157e0d4121644f0fcf80b443248434958fd03dc3"}, {file = "pydantic-1.10.7-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:cf135c46099ff3f919d2150a948ce94b9ce545598ef2c6c7bf55dca98a304b52"}, {file = "pydantic-1.10.7-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:b0f85904f73161817b80781cc150f8b906d521fa11e3cdabae19a581c3606209"}, {file = "pydantic-1.10.7-cp38-cp38-win_amd64.whl", hash = "sha256:9f6f0fd68d73257ad6685419478c5aece46432f4bdd8d32c7345f1986496171e"}, {file = "pydantic-1.10.7-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c230c0d8a322276d6e7b88c3f7ce885f9ed16e0910354510e0bae84d54991143"}, {file = "pydantic-1.10.7-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:976cae77ba6a49d80f461fd8bba183ff7ba79f44aa5cfa82f1346b5626542f8e"}, {file = "pydantic-1.10.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7d45fc99d64af9aaf7e308054a0067fdcd87ffe974f2442312372dfa66e1001d"}, {file = "pydantic-1.10.7-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d2a5ebb48958754d386195fe9e9c5106f11275867051bf017a8059410e9abf1f"}, {file = "pydantic-1.10.7-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:abfb7d4a7cd5cc4e1d1887c43503a7c5dd608eadf8bc615413fc498d3e4645cd"}, {file = "pydantic-1.10.7-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:80b1fab4deb08a8292d15e43a6edccdffa5377a36a4597bb545b93e79c5ff0a5"}, {file = "pydantic-1.10.7-cp39-cp39-win_amd64.whl", hash = "sha256:d71e69699498b020ea198468e2480a2f1e7433e32a3a99760058c6520e2bea7e"}, {file = "pydantic-1.10.7-py3-none-any.whl", hash = "sha256:0cd181f1d0b1d00e2b705f1bf1ac7799a2d938cce3376b8007df62b29be3c2c6"}, {file = "pydantic-1.10.7.tar.gz", hash = "sha256:cfc83c0678b6ba51b0532bea66860617c4cd4251ecf76e9846fa5a9f3454e97e"}, ] [package.dependencies] typing-extensions = ">=4.2.0" [package.extras] dotenv = ["python-dotenv (>=0.10.4)"] email = ["email-validator (>=1.0.3)"] [[package]] name = "pydata-sphinx-theme" version = "0.8.1" description = "Bootstrap-based Sphinx theme from the PyData community" optional = false python-versions = ">=3.7" files = [ {file = "pydata_sphinx_theme-0.8.1-py3-none-any.whl", hash = "sha256:af2c99cb0b43d95247b1563860942ba75d7f1596360594fce510caaf8c4fcc16"}, {file = "pydata_sphinx_theme-0.8.1.tar.gz", hash = "sha256:96165702253917ece13dd895e23b96ee6dce422dcc144d560806067852fe1fed"}, ] [package.dependencies] beautifulsoup4 = "*" docutils = "!=0.17.0" packaging = "*" sphinx = ">=3.5.4,<5" [package.extras] coverage = ["codecov", "pydata-sphinx-theme[test]", "pytest-cov"] dev = ["nox", "pre-commit", "pydata-sphinx-theme[coverage]", "pyyaml"] doc = ["jupyter_sphinx", "myst-parser", "numpy", "numpydoc", "pandas", "plotly", "pytest", "pytest-regressions", "sphinx-sitemap", "sphinxext-rediraffe", "xarray"] test = ["pydata-sphinx-theme[doc]", "pytest"] [[package]] name = "pyee" version = "9.0.4" description = "A port of node.js's EventEmitter to python." optional = false python-versions = "*" files = [ {file = "pyee-9.0.4-py2.py3-none-any.whl", hash = "sha256:9f066570130c554e9cc12de5a9d86f57c7ee47fece163bbdaa3e9c933cfbdfa5"}, {file = "pyee-9.0.4.tar.gz", hash = "sha256:2770c4928abc721f46b705e6a72b0c59480c4a69c9a83ca0b00bb994f1ea4b32"}, ] [package.dependencies] typing-extensions = "*" [[package]] name = "pygments" version = "2.15.1" description = "Pygments is a syntax highlighting package written in Python." optional = false python-versions = ">=3.7" files = [ {file = "Pygments-2.15.1-py3-none-any.whl", hash = "sha256:db2db3deb4b4179f399a09054b023b6a586b76499d36965813c71aa8ed7b5fd1"}, {file = "Pygments-2.15.1.tar.gz", hash = "sha256:8ace4d3c1dd481894b2005f560ead0f9f19ee64fe983366be1a21e171d12775c"}, ] [package.extras] plugins = ["importlib-metadata"] [[package]] name = "pyjwt" version = "2.7.0" description = "JSON Web Token implementation in Python" optional = false python-versions = ">=3.7" files = [ {file = "PyJWT-2.7.0-py3-none-any.whl", hash = "sha256:ba2b425b15ad5ef12f200dc67dd56af4e26de2331f965c5439994dad075876e1"}, {file = "PyJWT-2.7.0.tar.gz", hash = "sha256:bd6ca4a3c4285c1a2d4349e5a035fdf8fb94e04ccd0fcbe6ba289dae9cc3e074"}, ] [package.dependencies] cryptography = {version = ">=3.4.0", optional = true, markers = "extra == \"crypto\""} [package.extras] crypto = ["cryptography (>=3.4.0)"] dev = ["coverage[toml] (==5.0.4)", "cryptography (>=3.4.0)", "pre-commit", "pytest (>=6.0.0,<7.0.0)", "sphinx (>=4.5.0,<5.0.0)", "sphinx-rtd-theme", "zope.interface"] docs = ["sphinx (>=4.5.0,<5.0.0)", "sphinx-rtd-theme", "zope.interface"] tests = ["coverage[toml] (==5.0.4)", "pytest (>=6.0.0,<7.0.0)"] [[package]] name = "pylance" version = "0.4.12" description = "python wrapper for lance-rs" optional = true python-versions = ">=3.8" files = [ {file = "pylance-0.4.12-cp38-abi3-macosx_10_15_x86_64.whl", hash = "sha256:2b86fb8dccc03094c0db37bef0d91bda60e8eb0d1eddf245c6971450c8d8a53f"}, {file = "pylance-0.4.12-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:0bc82914b13204187d673b5f3d45f93219c38a0e9d0542ba251074f639669789"}, {file = "pylance-0.4.12-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5a4bcce77f99ecd4cbebbadb01e58d5d8138d40eb56bdcdbc3b20b0475e7a472"}, {file = "pylance-0.4.12-cp38-abi3-win_amd64.whl", hash = "sha256:9616931c5300030adb9626d22515710a127d1e46a46737a7a0f980b52f13627c"}, ] [package.dependencies] duckdb = ">=0.7" numpy = "*" pandas = ">=1.5" pyarrow = ">=10" [package.extras] tests = ["duckdb", "polars[pandas,pyarrow]", "pytest"] [[package]] name = "pymongo" version = "4.3.3" description = "Python driver for MongoDB <http://www.mongodb.org>" optional = false python-versions = ">=3.7" files = [ {file = "pymongo-4.3.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:74731c9e423c93cbe791f60c27030b6af6a948cef67deca079da6cd1bb583a8e"}, {file = "pymongo-4.3.3-cp310-cp310-manylinux1_i686.whl", hash = "sha256:66413c50d510e5bcb0afc79880d1693a2185bcea003600ed898ada31338c004e"}, {file = "pymongo-4.3.3-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:9b87b23570565a6ddaa9244d87811c2ee9cffb02a753c8a2da9c077283d85845"}, {file = "pymongo-4.3.3-cp310-cp310-manylinux2014_i686.whl", hash = "sha256:695939036a320f4329ccf1627edefbbb67cc7892b8222d297b0dd2313742bfee"}, {file = "pymongo-4.3.3-cp310-cp310-manylinux2014_ppc64le.whl", hash = "sha256:ffcc8394123ea8d43fff8e5d000095fe7741ce3f8988366c5c919c4f5eb179d3"}, {file = "pymongo-4.3.3-cp310-cp310-manylinux2014_s390x.whl", hash = "sha256:943f208840777f34312c103a2d1caab02d780c4e9be26b3714acf6c4715ba7e1"}, {file = "pymongo-4.3.3-cp310-cp310-manylinux2014_x86_64.whl", hash = "sha256:01f7cbe88d22440b6594c955e37312d932fd632ffed1a86d0c361503ca82cc9d"}, {file = "pymongo-4.3.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cdb87309de97c63cb9a69132e1cb16be470e58cffdfbad68fdd1dc292b22a840"}, {file = "pymongo-4.3.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d86c35d94b5499689354ccbc48438a79f449481ee6300f3e905748edceed78e7"}, {file = "pymongo-4.3.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a966d5304b7d90c45c404914e06bbf02c5bf7e99685c6c12f0047ef2aa837142"}, {file = "pymongo-4.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:be1d2ce7e269215c3ee9a215e296b7a744aff4f39233486d2c4d77f5f0c561a6"}, {file = "pymongo-4.3.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:55b6163dac53ef1e5d834297810c178050bd0548a4136cd4e0f56402185916ca"}, {file = "pymongo-4.3.3-cp310-cp310-win32.whl", hash = "sha256:dc0cff74cd36d7e1edba91baa09622c35a8a57025f2f2b7a41e3f83b1db73186"}, {file = "pymongo-4.3.3-cp310-cp310-win_amd64.whl", hash = "sha256:cafa52873ae12baa512a8721afc20de67a36886baae6a5f394ddef0ce9391f91"}, {file = "pymongo-4.3.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:599d3f6fbef31933b96e2d906b0f169b3371ff79ea6aaf6ecd76c947a3508a3d"}, {file = "pymongo-4.3.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c0640b4e9d008e13956b004d1971a23377b3d45491f87082161c92efb1e6c0d6"}, {file = "pymongo-4.3.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:341221e2f2866a5960e6f8610f4cbac0bb13097f3b1a289aa55aba984fc0d969"}, {file = "pymongo-4.3.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e7fac06a539daef4fcf5d8288d0d21b412f9b750454cd5a3cf90484665db442a"}, {file = "pymongo-4.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3a51901066696c4af38c6c63a1f0aeffd5e282367ff475de8c191ec9609b56d"}, {file = "pymongo-4.3.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f3055510fdfdb1775bc8baa359783022f70bb553f2d46e153c094dfcb08578ff"}, {file = "pymongo-4.3.3-cp311-cp311-win32.whl", hash = "sha256:524d78673518dcd352a91541ecd2839c65af92dc883321c2109ef6e5cd22ef23"}, {file = "pymongo-4.3.3-cp311-cp311-win_amd64.whl", hash = "sha256:b8a03af1ce79b902a43f5f694c4ca8d92c2a4195db0966f08f266549e2fc49bc"}, {file = "pymongo-4.3.3-cp37-cp37m-macosx_10_6_intel.whl", hash = "sha256:39b03045c71f761aee96a12ebfbc2f4be89e724ff6f5e31c2574c1a0e2add8bd"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:6fcfbf435eebf8a1765c6d1f46821740ebe9f54f815a05c8fc30d789ef43cb12"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:7d43ac9c7eeda5100fb0a7152fab7099c9cf9e5abd3bb36928eb98c7d7a339c6"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:3b93043b14ba7eb08c57afca19751658ece1cfa2f0b7b1fb5c7a41452fbb8482"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux2014_i686.whl", hash = "sha256:c09956606c08c4a7c6178a04ba2dd9388fcc5db32002ade9c9bc865ab156ab6d"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux2014_ppc64le.whl", hash = "sha256:b0cfe925610f2fd59555bb7fc37bd739e4b197d33f2a8b2fae7b9c0c6640318c"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux2014_s390x.whl", hash = "sha256:4d00b91c77ceb064c9b0459f0d6ea5bfdbc53ea9e17cf75731e151ef25a830c7"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux2014_x86_64.whl", hash = "sha256:c6258a3663780ae47ba73d43eb63c79c40ffddfb764e09b56df33be2f9479837"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c29e758f0e734e1e90357ae01ec9c6daf19ff60a051192fe110d8fb25c62600e"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:12f3621a46cdc7a9ba8080422262398a91762a581d27e0647746588d3f995c88"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:47f7aa217b25833cd6f0e72b0d224be55393c2692b4f5e0561cb3beeb10296e9"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c2fdc855149efe7cdcc2a01ca02bfa24761c640203ea94df467f3baf19078be"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5effd87c7d363890259eac16c56a4e8da307286012c076223997f8cc4a8c435b"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6dd1cf2995fdbd64fc0802313e8323f5fa18994d51af059b5b8862b73b5e53f0"}, {file = "pymongo-4.3.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:bb869707d8e30645ed6766e44098600ca6cdf7989c22a3ea2b7966bb1d98d4b2"}, {file = "pymongo-4.3.3-cp37-cp37m-win32.whl", hash = "sha256:49210feb0be8051a64d71691f0acbfbedc33e149f0a5d6e271fddf6a12493fed"}, {file = "pymongo-4.3.3-cp37-cp37m-win_amd64.whl", hash = "sha256:54c377893f2cbbffe39abcff5ff2e917b082c364521fa079305f6f064e1a24a9"}, {file = "pymongo-4.3.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:c184ec5be465c0319440734491e1aa4709b5f3ba75fdfc9dbbc2ae715a7f6829"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux1_i686.whl", hash = "sha256:dca34367a4e77fcab0693e603a959878eaf2351585e7d752cac544bc6b2dee46"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:cd6a4afb20fb3c26a7bfd4611a0bbb24d93cbd746f5eb881f114b5e38fd55501"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:0c466710871d0026c190fc4141e810cf9d9affbf4935e1d273fbdc7d7cda6143"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux2014_i686.whl", hash = "sha256:d07d06dba5b5f7d80f9cc45501456e440f759fe79f9895922ed486237ac378a8"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux2014_ppc64le.whl", hash = "sha256:711bc52cb98e7892c03e9b669bebd89c0a890a90dbc6d5bb2c47f30239bac6e9"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux2014_s390x.whl", hash = "sha256:34b040e095e1671df0c095ec0b04fc4ebb19c4c160f87c2b55c079b16b1a6b00"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux2014_x86_64.whl", hash = "sha256:4ed00f96e147f40b565fe7530d1da0b0f3ab803d5dd5b683834500fa5d195ec4"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ef888f48eb9203ee1e04b9fb27429017b290fb916f1e7826c2f7808c88798394"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:316498b642c00401370b2156b5233b256f9b33799e0a8d9d0b8a7da217a20fca"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fa7e202feb683dad74f00dea066690448d0cfa310f8a277db06ec8eb466601b5"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:52896e22115c97f1c829db32aa2760b0d61839cfe08b168c2b1d82f31dbc5f55"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7c051fe37c96b9878f37fa58906cb53ecd13dcb7341d3a85f1e2e2f6b10782d9"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5134d33286c045393c7beb51be29754647cec5ebc051cf82799c5ce9820a2ca2"}, {file = "pymongo-4.3.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:a9c2885b4a8e6e39db5662d8b02ca6dcec796a45e48c2de12552841f061692ba"}, {file = "pymongo-4.3.3-cp38-cp38-win32.whl", hash = "sha256:a6cd6f1db75eb07332bd3710f58f5fce4967eadbf751bad653842750a61bda62"}, {file = "pymongo-4.3.3-cp38-cp38-win_amd64.whl", hash = "sha256:d5571b6978750601f783cea07fb6b666837010ca57e5cefa389c1d456f6222e2"}, {file = "pymongo-4.3.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:81d1a7303bd02ca1c5be4aacd4db73593f573ba8e0c543c04c6da6275fd7a47e"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux1_i686.whl", hash = "sha256:016c412118e1c23fef3a1eada4f83ae6e8844fd91986b2e066fc1b0013cdd9ae"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:8fd6e191b92a10310f5a6cfe10d6f839d79d192fb02480bda325286bd1c7b385"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:e2961b05f9c04a53da8bfc72f1910b6aec7205fcf3ac9c036d24619979bbee4b"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux2014_i686.whl", hash = "sha256:b38a96b3eed8edc515b38257f03216f382c4389d022a8834667e2bc63c0c0c31"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux2014_ppc64le.whl", hash = "sha256:c1a70c51da9fa95bd75c167edb2eb3f3c4d27bc4ddd29e588f21649d014ec0b7"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux2014_s390x.whl", hash = "sha256:8a06a0c02f5606330e8f2e2f3b7949877ca7e4024fa2bff5a4506bec66c49ec7"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux2014_x86_64.whl", hash = "sha256:6c2216d8b6a6d019c6f4b1ad55f890e5e77eb089309ffc05b6911c09349e7474"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eac0a143ef4f28f49670bf89cb15847eb80b375d55eba401ca2f777cd425f338"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:08fc250b5552ee97ceeae0f52d8b04f360291285fc7437f13daa516ce38fdbc6"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:704d939656e21b073bfcddd7228b29e0e8a93dd27b54240eaafc0b9a631629a6"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1074f1a6f23e28b983c96142f2d45be03ec55d93035b471c26889a7ad2365db3"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7b16250238de8dafca225647608dddc7bbb5dce3dd53b4d8e63c1cc287394c2f"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7761cacb8745093062695b11574effea69db636c2fd0a9269a1f0183712927b4"}, {file = "pymongo-4.3.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:fd7bb378d82b88387dc10227cfd964f6273eb083e05299e9b97cbe075da12d11"}, {file = "pymongo-4.3.3-cp39-cp39-win32.whl", hash = "sha256:dc24d245026a72d9b4953729d31813edd4bd4e5c13622d96e27c284942d33f24"}, {file = "pymongo-4.3.3-cp39-cp39-win_amd64.whl", hash = "sha256:fc28e8d85d392a06434e9a934908d97e2cf453d69488d2bcd0bfb881497fd975"}, {file = "pymongo-4.3.3.tar.gz", hash = "sha256:34e95ffb0a68bffbc3b437f2d1f25fc916fef3df5cdeed0992da5f42fae9b807"}, ] [package.dependencies] dnspython = ">=1.16.0,<3.0.0" [package.extras] aws = ["pymongo-auth-aws (<2.0.0)"] encryption = ["pymongo-auth-aws (<2.0.0)", "pymongocrypt (>=1.3.0,<2.0.0)"] gssapi = ["pykerberos"] ocsp = ["certifi", "pyopenssl (>=17.2.0)", "requests (<3.0.0)", "service-identity (>=18.1.0)"] snappy = ["python-snappy"] zstd = ["zstandard"] [[package]] name = "pymupdf" version = "1.22.3" description = "Python bindings for the PDF toolkit and renderer MuPDF" optional = true python-versions = ">=3.7" files = [ {file = "PyMuPDF-1.22.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0aff7ba35eb2cc285efea87500dd5ee0aaf94f4bb23a79187f0a74101aba7964"}, {file = "PyMuPDF-1.22.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:13e90a5301990dafc5bba6bfa32aafca1f35809497c274c9d4af4f4bac2d8870"}, {file = "PyMuPDF-1.22.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:201c7aecf9530c3a5aa33cd3d6b68e36492ff9ac48cb270d8f18e66654744419"}, {file = "PyMuPDF-1.22.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dbffc6cabb0cb20033870bde954bbed1436cf9fce33a14682e283bc893767250"}, {file = "PyMuPDF-1.22.3-cp310-cp310-win32.whl", hash = "sha256:e344632215882b49fd2e28ffb848f55b1b34db6b5389917e4865b4d779cbdb4a"}, {file = "PyMuPDF-1.22.3-cp310-cp310-win_amd64.whl", hash = "sha256:9d9bccfb29cbe3962a858c200376d54e7ba64d6f64c0b972ed5b68ff20157b06"}, {file = "PyMuPDF-1.22.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:01daa4e3c2c1b93d357ba0d747d713ad40e0123b9bdca2395bf166f62dd8f703"}, {file = "PyMuPDF-1.22.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:46c7fab408ae4d55c4181f95a76bc4f365f5ead3291f67274d6fe90f1b90c479"}, {file = "PyMuPDF-1.22.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a58af441ce454f33f75a4c93a5f76e4659f2c7c849036180f24ab4b84d9e512f"}, {file = "PyMuPDF-1.22.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6eddb0975ddd0bcf39812616b5675c26d740f83b12a39c3b5c4425f02c3da754"}, {file = "PyMuPDF-1.22.3-cp311-cp311-win32.whl", hash = "sha256:ed4a624ffc9bebe5c67fc80e16798300d404089585bcdac14448034bd38c5072"}, {file = "PyMuPDF-1.22.3-cp311-cp311-win_amd64.whl", hash = "sha256:4d2422dffdb4f1c2c8128e6d151f4de5e722388df276ac165572ad5290ad228a"}, {file = "PyMuPDF-1.22.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:48ece127e202470209dc63ad8fa85f3e19ce302f5af02d38c7fc0b5798b9bfa6"}, {file = "PyMuPDF-1.22.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f00097e8d2bc46dacdb776aeb810b1c760949f6353abdf6d12e8aefdc95dd35"}, {file = "PyMuPDF-1.22.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5932564a713bd7d576418070c3dd926cb5800edb4411f48813f7694af7386d3e"}, {file = "PyMuPDF-1.22.3-cp37-cp37m-win32.whl", hash = "sha256:d4f38ecb9518ba2dc12f5f35f33c64ec5466faf20b833f4ac21a2a4190ffef93"}, {file = "PyMuPDF-1.22.3-cp37-cp37m-win_amd64.whl", hash = "sha256:90950b328603a83b26c2eb2af0cf5498582fbbab84e86074bbb0ae44d745e2a3"}, {file = "PyMuPDF-1.22.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0a2040351a1279fafa1db82e5af50a785eb01dc4e1adb3c98e0abfd6e0a4995f"}, {file = "PyMuPDF-1.22.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a67f2b12120ce9fe5c3f7cb192643134af2c4e28773a2cd5d56cbe1cae66d1b9"}, {file = "PyMuPDF-1.22.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4e0904c9bffdfbb527f4fe293986d74477780f0c98f59fa5b42a95e3e441e1f4"}, {file = "PyMuPDF-1.22.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9aaf3352d9c443ad7622e70b0ff9124079b09c16a1a1aa3f3dde9ba0e19f32a2"}, {file = "PyMuPDF-1.22.3-cp38-cp38-win32.whl", hash = "sha256:4c037d5752efd562ac72e74295dfcc8d8dd406c0f6849054b29d2cbc32237ae0"}, {file = "PyMuPDF-1.22.3-cp38-cp38-win_amd64.whl", hash = "sha256:be0803be2709285f17c932ee11d4b7f6d11d3e74e1888094e6310c55e9543673"}, {file = "PyMuPDF-1.22.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:fa934c1a02f1f3bb04e447b95ef5b19d03cb2575fee76d23cb7a6d0c526444e2"}, {file = "PyMuPDF-1.22.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:932747941ed4973410244376ba77693253e4387e8e09cf2458bc9133348fc16e"}, {file = "PyMuPDF-1.22.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d4ea7b016c4561004b48143b8879e1d888e5ba3a1440e6558ea9a47f0d2e6f65"}, {file = "PyMuPDF-1.22.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf275e5dbf332554f98b469899e5a0928b91cb574a5319aeecf1b7e8075cf4b7"}, {file = "PyMuPDF-1.22.3-cp39-cp39-win32.whl", hash = "sha256:07d171255964f5a382e280a95a3148c08fc4ec20bf7907e040cf423cf29afe30"}, {file = "PyMuPDF-1.22.3-cp39-cp39-win_amd64.whl", hash = "sha256:60db199553fc9c88cb9f2afba35f9cd54c042e7a6ea2b151ddcc542e6e75ac61"}, {file = "PyMuPDF-1.22.3.tar.gz", hash = "sha256:5ecd928e96e63092571020973aa145b57b75707f3a3df97c742e563112615891"}, ] [[package]] name = "pyowm" version = "3.3.0" description = "A Python wrapper around OpenWeatherMap web APIs" optional = true python-versions = ">=3.7" files = [ {file = "pyowm-3.3.0-py3-none-any.whl", hash = "sha256:86463108e7613171531ba306040b43c972b3fc0b0acf73b12c50910cdd2107ab"}, {file = "pyowm-3.3.0.tar.gz", hash = "sha256:8196f77c91eac680676ed5ee484aae8a165408055e3e2b28025cbf60b8681e03"}, ] [package.dependencies] geojson = ">=2.3.0,<3" PySocks = ">=1.7.1,<2" requests = [ {version = ">=2.20.0,<3"}, {version = "*", extras = ["socks"]}, ] [[package]] name = "pyparsing" version = "3.0.9" description = "pyparsing module - Classes and methods to define and execute parsing grammars" optional = true python-versions = ">=3.6.8" files = [ {file = "pyparsing-3.0.9-py3-none-any.whl", hash = "sha256:5026bae9a10eeaefb61dab2f09052b9f4307d44aee4eda64b309723d8d206bbc"}, {file = "pyparsing-3.0.9.tar.gz", hash = "sha256:2b020ecf7d21b687f219b71ecad3631f644a47f01403fa1d1036b0c6416d70fb"}, ] [package.extras] diagrams = ["jinja2", "railroad-diagrams"] [[package]] name = "pypdf" version = "3.8.1" description = "A pure-python PDF library capable of splitting, merging, cropping, and transforming PDF files" optional = true python-versions = ">=3.6" files = [ {file = "pypdf-3.8.1-py3-none-any.whl", hash = "sha256:0c34620e4bbceaf9632b6b7a8ec6d4a4d5b0cdee6e39bdb86dc91a8c44cb0f19"}, {file = "pypdf-3.8.1.tar.gz", hash = "sha256:761ad6dc33abb78d358b4ae42206c5f185798f8b537be9b8fdecd9ee834a894d"}, ] [package.dependencies] typing_extensions = {version = ">=3.10.0.0", markers = "python_version < \"3.10\""} [package.extras] crypto = ["PyCryptodome"] dev = ["black", "flit", "pip-tools", "pre-commit (<2.18.0)", "pytest-cov", "wheel"] docs = ["myst_parser", "sphinx", "sphinx_rtd_theme"] full = ["Pillow", "PyCryptodome"] image = ["Pillow"] [[package]] name = "pypdfium2" version = "4.11.0" description = "Python bindings to PDFium" optional = true python-versions = ">=3.6" files = [ {file = "pypdfium2-4.11.0-py3-none-macosx_10_13_x86_64.whl", hash = "sha256:00ef3de857d805b88ae2bca2476b009851da6bd983ea570abb143f05acc34d31"}, {file = "pypdfium2-4.11.0-py3-none-macosx_11_0_arm64.whl", hash = "sha256:3997e7fa2d06ed44569ca8e7b53da8324cd9c667e3d74e9bbb789816b4e4ea38"}, {file = "pypdfium2-4.11.0-py3-none-manylinux_2_26_aarch64.whl", hash = "sha256:35a024794a37e424de83dfb11f346223fdd3ff0fb57a51a4aa3c5cba633bc251"}, {file = "pypdfium2-4.11.0-py3-none-manylinux_2_26_armv7l.whl", hash = "sha256:4d5b4465ddf6cf90454ece306969045c4c3de197089b8d42fbfed9e5d090e00e"}, {file = "pypdfium2-4.11.0-py3-none-manylinux_2_26_i686.whl", hash = "sha256:57e877858ba0b3c823128f1edb7c14a6e1acdb0b2337d9f074a42f654e96cd4f"}, {file = "pypdfium2-4.11.0-py3-none-manylinux_2_26_x86_64.whl", hash = "sha256:067afde1c3e2cc244f566183eb1c9b0a84f7b628ab457ca5c84135fdfc6ff15c"}, {file = "pypdfium2-4.11.0-py3-none-musllinux_1_2_i686.whl", hash = "sha256:40faac6dcece1c0f7e83246eacd4d2a33c15fd48f1ec9e6c2c3802ec38e887d7"}, {file = "pypdfium2-4.11.0-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:9ee58064ba1d287dba8cae91f24078b4ac133fbab99dfc1caeab0c4d80d02014"}, {file = "pypdfium2-4.11.0-py3-none-win32.whl", hash = "sha256:32796faad63dbba82011788a92f1037d6d31caa53a0123671e1bae42f9351455"}, {file = "pypdfium2-4.11.0-py3-none-win_amd64.whl", hash = "sha256:e8e584504ce8e620bee7b762857792f6265002c2e763ce9dc0d5bf1d6682274d"}, {file = "pypdfium2-4.11.0-py3-none-win_arm64.whl", hash = "sha256:0b41e0e198c605a2c5fea266be70b95ca4905734d3eefc0928a05e6cb3f98722"}, {file = "pypdfium2-4.11.0.tar.gz", hash = "sha256:f1d3bd0841f0c2e9db417075896dafc5906bbd7c0ccdc2b6e2b3f44d61d49f46"}, ] [[package]] name = "pyphen" version = "0.14.0" description = "Pure Python module to hyphenate text" optional = true python-versions = ">=3.7" files = [ {file = "pyphen-0.14.0-py3-none-any.whl", hash = "sha256:414c9355958ca3c6a3ff233f65678c245b8ecb56418fb291e2b93499d61cd510"}, {file = "pyphen-0.14.0.tar.gz", hash = "sha256:596c8b3be1c1a70411ba5f6517d9ccfe3083c758ae2b94a45f2707346d8e66fa"}, ] [package.extras] doc = ["sphinx", "sphinx_rtd_theme"] test = ["flake8", "isort", "pytest"] [[package]] name = "pyrsistent" version = "0.19.3" description = "Persistent/Functional/Immutable data structures" optional = false python-versions = ">=3.7" files = [ {file = "pyrsistent-0.19.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:20460ac0ea439a3e79caa1dbd560344b64ed75e85d8703943e0b66c2a6150e4a"}, {file = "pyrsistent-0.19.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4c18264cb84b5e68e7085a43723f9e4c1fd1d935ab240ce02c0324a8e01ccb64"}, {file = "pyrsistent-0.19.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4b774f9288dda8d425adb6544e5903f1fb6c273ab3128a355c6b972b7df39dcf"}, {file = "pyrsistent-0.19.3-cp310-cp310-win32.whl", hash = "sha256:5a474fb80f5e0d6c9394d8db0fc19e90fa540b82ee52dba7d246a7791712f74a"}, {file = "pyrsistent-0.19.3-cp310-cp310-win_amd64.whl", hash = "sha256:49c32f216c17148695ca0e02a5c521e28a4ee6c5089f97e34fe24163113722da"}, {file = "pyrsistent-0.19.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f0774bf48631f3a20471dd7c5989657b639fd2d285b861237ea9e82c36a415a9"}, {file = "pyrsistent-0.19.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ab2204234c0ecd8b9368dbd6a53e83c3d4f3cab10ecaf6d0e772f456c442393"}, {file = "pyrsistent-0.19.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e42296a09e83028b3476f7073fcb69ffebac0e66dbbfd1bd847d61f74db30f19"}, {file = "pyrsistent-0.19.3-cp311-cp311-win32.whl", hash = "sha256:64220c429e42a7150f4bfd280f6f4bb2850f95956bde93c6fda1b70507af6ef3"}, {file = "pyrsistent-0.19.3-cp311-cp311-win_amd64.whl", hash = "sha256:016ad1afadf318eb7911baa24b049909f7f3bb2c5b1ed7b6a8f21db21ea3faa8"}, {file = "pyrsistent-0.19.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c4db1bd596fefd66b296a3d5d943c94f4fac5bcd13e99bffe2ba6a759d959a28"}, {file = "pyrsistent-0.19.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aeda827381f5e5d65cced3024126529ddc4289d944f75e090572c77ceb19adbf"}, {file = "pyrsistent-0.19.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:42ac0b2f44607eb92ae88609eda931a4f0dfa03038c44c772e07f43e738bcac9"}, {file = "pyrsistent-0.19.3-cp37-cp37m-win32.whl", hash = "sha256:e8f2b814a3dc6225964fa03d8582c6e0b6650d68a232df41e3cc1b66a5d2f8d1"}, {file = "pyrsistent-0.19.3-cp37-cp37m-win_amd64.whl", hash = "sha256:c9bb60a40a0ab9aba40a59f68214eed5a29c6274c83b2cc206a359c4a89fa41b"}, {file = "pyrsistent-0.19.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:a2471f3f8693101975b1ff85ffd19bb7ca7dd7c38f8a81701f67d6b4f97b87d8"}, {file = "pyrsistent-0.19.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cc5d149f31706762c1f8bda2e8c4f8fead6e80312e3692619a75301d3dbb819a"}, {file = "pyrsistent-0.19.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3311cb4237a341aa52ab8448c27e3a9931e2ee09561ad150ba94e4cfd3fc888c"}, {file = "pyrsistent-0.19.3-cp38-cp38-win32.whl", hash = "sha256:f0e7c4b2f77593871e918be000b96c8107da48444d57005b6a6bc61fb4331b2c"}, {file = "pyrsistent-0.19.3-cp38-cp38-win_amd64.whl", hash = "sha256:c147257a92374fde8498491f53ffa8f4822cd70c0d85037e09028e478cababb7"}, {file = "pyrsistent-0.19.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:b735e538f74ec31378f5a1e3886a26d2ca6351106b4dfde376a26fc32a044edc"}, {file = "pyrsistent-0.19.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:99abb85579e2165bd8522f0c0138864da97847875ecbd45f3e7e2af569bfc6f2"}, {file = "pyrsistent-0.19.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3a8cb235fa6d3fd7aae6a4f1429bbb1fec1577d978098da1252f0489937786f3"}, {file = "pyrsistent-0.19.3-cp39-cp39-win32.whl", hash = "sha256:c74bed51f9b41c48366a286395c67f4e894374306b197e62810e0fdaf2364da2"}, {file = "pyrsistent-0.19.3-cp39-cp39-win_amd64.whl", hash = "sha256:878433581fc23e906d947a6814336eee031a00e6defba224234169ae3d3d6a98"}, {file = "pyrsistent-0.19.3-py3-none-any.whl", hash = "sha256:ccf0d6bd208f8111179f0c26fdf84ed7c3891982f2edaeae7422575f47e66b64"}, {file = "pyrsistent-0.19.3.tar.gz", hash = "sha256:1a2994773706bbb4995c31a97bc94f1418314923bd1048c6d964837040376440"}, ] [[package]] name = "pysocks" version = "1.7.1" description = "A Python SOCKS client module. See https://github.com/Anorov/PySocks for more information." optional = true python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ {file = "PySocks-1.7.1-py27-none-any.whl", hash = "sha256:08e69f092cc6dbe92a0fdd16eeb9b9ffbc13cadfe5ca4c7bd92ffb078b293299"}, {file = "PySocks-1.7.1-py3-none-any.whl", hash = "sha256:2725bd0a9925919b9b51739eea5f9e2bae91e83288108a9ad338b2e3a4435ee5"}, {file = "PySocks-1.7.1.tar.gz", hash = "sha256:3f8804571ebe159c380ac6de37643bb4685970655d3bba243530d6558b799aa0"}, ] [[package]] name = "pyspark" version = "3.4.0" description = "Apache Spark Python API" optional = true python-versions = ">=3.7" files = [ {file = "pyspark-3.4.0.tar.gz", hash = "sha256:167a23e11854adb37f8602de6fcc3a4f96fd5f1e323b9bb83325f38408c5aafd"}, ] [package.dependencies] py4j = "0.10.9.7" [package.extras] connect = ["googleapis-common-protos (>=1.56.4)", "grpcio (>=1.48.1)", "grpcio-status (>=1.48.1)", "numpy (>=1.15)", "pandas (>=1.0.5)", "pyarrow (>=1.0.0)"] ml = ["numpy (>=1.15)"] mllib = ["numpy (>=1.15)"] pandas-on-spark = ["numpy (>=1.15)", "pandas (>=1.0.5)", "pyarrow (>=1.0.0)"] sql = ["numpy (>=1.15)", "pandas (>=1.0.5)", "pyarrow (>=1.0.0)"] [[package]] name = "pytesseract" version = "0.3.10" description = "Python-tesseract is a python wrapper for Google's Tesseract-OCR" optional = true python-versions = ">=3.7" files = [ {file = "pytesseract-0.3.10-py3-none-any.whl", hash = "sha256:8f22cc98f765bf13517ead0c70effedb46c153540d25783e04014f28b55a5fc6"}, {file = "pytesseract-0.3.10.tar.gz", hash = "sha256:f1c3a8b0f07fd01a1085d451f5b8315be6eec1d5577a6796d46dc7a62bd4120f"}, ] [package.dependencies] packaging = ">=21.3" Pillow = ">=8.0.0" [[package]] name = "pytest" version = "7.3.1" description = "pytest: simple powerful testing with Python" optional = false python-versions = ">=3.7" files = [ {file = "pytest-7.3.1-py3-none-any.whl", hash = "sha256:3799fa815351fea3a5e96ac7e503a96fa51cc9942c3753cda7651b93c1cfa362"}, {file = "pytest-7.3.1.tar.gz", hash = "sha256:434afafd78b1d78ed0addf160ad2b77a30d35d4bdf8af234fe621919d9ed15e3"}, ] [package.dependencies] colorama = {version = "*", markers = "sys_platform == \"win32\""} exceptiongroup = {version = ">=1.0.0rc8", markers = "python_version < \"3.11\""} iniconfig = "*" packaging = "*" pluggy = ">=0.12,<2.0" tomli = {version = ">=1.0.0", markers = "python_version < \"3.11\""} [package.extras] testing = ["argcomplete", "attrs (>=19.2.0)", "hypothesis (>=3.56)", "mock", "nose", "pygments (>=2.7.2)", "requests", "xmlschema"] [[package]] name = "pytest-asyncio" version = "0.20.3" description = "Pytest support for asyncio" optional = false python-versions = ">=3.7" files = [ {file = "pytest-asyncio-0.20.3.tar.gz", hash = "sha256:83cbf01169ce3e8eb71c6c278ccb0574d1a7a3bb8eaaf5e50e0ad342afb33b36"}, {file = "pytest_asyncio-0.20.3-py3-none-any.whl", hash = "sha256:f129998b209d04fcc65c96fc85c11e5316738358909a8399e93be553d7656442"}, ] [package.dependencies] pytest = ">=6.1.0" [package.extras] docs = ["sphinx (>=5.3)", "sphinx-rtd-theme (>=1.0)"] testing = ["coverage (>=6.2)", "flaky (>=3.5.0)", "hypothesis (>=5.7.1)", "mypy (>=0.931)", "pytest-trio (>=0.7.0)"] [[package]] name = "pytest-cov" version = "4.0.0" description = "Pytest plugin for measuring coverage." optional = false python-versions = ">=3.6" files = [ {file = "pytest-cov-4.0.0.tar.gz", hash = "sha256:996b79efde6433cdbd0088872dbc5fb3ed7fe1578b68cdbba634f14bb8dd0470"}, {file = "pytest_cov-4.0.0-py3-none-any.whl", hash = "sha256:2feb1b751d66a8bd934e5edfa2e961d11309dc37b73b0eabe73b5945fee20f6b"}, ] [package.dependencies] coverage = {version = ">=5.2.1", extras = ["toml"]} pytest = ">=4.6" [package.extras] testing = ["fields", "hunter", "process-tests", "pytest-xdist", "six", "virtualenv"] [[package]] name = "pytest-dotenv" version = "0.5.2" description = "A py.test plugin that parses environment files before running tests" optional = false python-versions = "*" files = [ {file = "pytest-dotenv-0.5.2.tar.gz", hash = "sha256:2dc6c3ac6d8764c71c6d2804e902d0ff810fa19692e95fe138aefc9b1aa73732"}, {file = "pytest_dotenv-0.5.2-py3-none-any.whl", hash = "sha256:40a2cece120a213898afaa5407673f6bd924b1fa7eafce6bda0e8abffe2f710f"}, ] [package.dependencies] pytest = ">=5.0.0" python-dotenv = ">=0.9.1" [[package]] name = "pytest-mock" version = "3.10.0" description = "Thin-wrapper around the mock package for easier use with pytest" optional = false python-versions = ">=3.7" files = [ {file = "pytest-mock-3.10.0.tar.gz", hash = "sha256:fbbdb085ef7c252a326fd8cdcac0aa3b1333d8811f131bdcc701002e1be7ed4f"}, {file = "pytest_mock-3.10.0-py3-none-any.whl", hash = "sha256:f4c973eeae0282963eb293eb173ce91b091a79c1334455acfac9ddee8a1c784b"}, ] [package.dependencies] pytest = ">=5.0" [package.extras] dev = ["pre-commit", "pytest-asyncio", "tox"] [[package]] name = "pytest-socket" version = "0.6.0" description = "Pytest Plugin to disable socket calls during tests" optional = false python-versions = ">=3.7,<4.0" files = [ {file = "pytest_socket-0.6.0-py3-none-any.whl", hash = "sha256:cca72f134ff01e0023c402e78d31b32e68da3efdf3493bf7788f8eba86a6824c"}, {file = "pytest_socket-0.6.0.tar.gz", hash = "sha256:363c1d67228315d4fc7912f1aabfd570de29d0e3db6217d61db5728adacd7138"}, ] [package.dependencies] pytest = ">=3.6.3" [[package]] name = "pytest-vcr" version = "1.0.2" description = "Plugin for managing VCR.py cassettes" optional = false python-versions = "*" files = [ {file = "pytest-vcr-1.0.2.tar.gz", hash = "sha256:23ee51b75abbcc43d926272773aae4f39f93aceb75ed56852d0bf618f92e1896"}, {file = "pytest_vcr-1.0.2-py2.py3-none-any.whl", hash = "sha256:2f316e0539399bea0296e8b8401145c62b6f85e9066af7e57b6151481b0d6d9c"}, ] [package.dependencies] pytest = ">=3.6.0" vcrpy = "*" [[package]] name = "pytest-watcher" version = "0.2.6" description = "Continiously runs pytest on changes in *.py files" optional = false python-versions = ">=3.7.0,<4.0.0" files = [ {file = "pytest-watcher-0.2.6.tar.gz", hash = "sha256:351dfb3477366030ff275bfbfc9f29bee35cd07f16a3355b38bf92766886bae4"}, {file = "pytest_watcher-0.2.6-py3-none-any.whl", hash = "sha256:0a507159d051c9461790363e0f9b2827c1d82ad2ae8966319598695e485b1dd5"}, ] [package.dependencies] watchdog = ">=2.0.0" [[package]] name = "python-dateutil" version = "2.8.2" description = "Extensions to the standard Python datetime module" optional = false python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" files = [ {file = "python-dateutil-2.8.2.tar.gz", hash = "sha256:0123cacc1627ae19ddf3c27a5de5bd67ee4586fbdd6440d9748f8abb483d3e86"}, {file = "python_dateutil-2.8.2-py2.py3-none-any.whl", hash = "sha256:961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9"}, ] [package.dependencies] six = ">=1.5" [[package]] name = "python-dotenv" version = "1.0.0" description = "Read key-value pairs from a .env file and set them as environment variables" optional = false python-versions = ">=3.8" files = [ {file = "python-dotenv-1.0.0.tar.gz", hash = "sha256:a8df96034aae6d2d50a4ebe8216326c61c3eb64836776504fcca410e5937a3ba"}, {file = "python_dotenv-1.0.0-py3-none-any.whl", hash = "sha256:f5971a9226b701070a4bf2c38c89e5a3f0d64de8debda981d1db98583009122a"}, ] [package.extras] cli = ["click (>=5.0)"] [[package]] name = "python-jose" version = "3.3.0" description = "JOSE implementation in Python" optional = true python-versions = "*" files = [ {file = "python-jose-3.3.0.tar.gz", hash = "sha256:55779b5e6ad599c6336191246e95eb2293a9ddebd555f796a65f838f07e5d78a"}, {file = "python_jose-3.3.0-py2.py3-none-any.whl", hash = "sha256:9b1376b023f8b298536eedd47ae1089bcdb848f1535ab30555cd92002d78923a"}, ] [package.dependencies] ecdsa = "!=0.15" pyasn1 = "*" rsa = "*" [package.extras] cryptography = ["cryptography (>=3.4.0)"] pycrypto = ["pyasn1", "pycrypto (>=2.6.0,<2.7.0)"] pycryptodome = ["pyasn1", "pycryptodome (>=3.3.1,<4.0.0)"] [[package]] name = "python-json-logger" version = "2.0.7" description = "A python library adding a json log formatter" optional = false python-versions = ">=3.6" files = [ {file = "python-json-logger-2.0.7.tar.gz", hash = "sha256:23e7ec02d34237c5aa1e29a070193a4ea87583bb4e7f8fd06d3de8264c4b2e1c"}, {file = "python_json_logger-2.0.7-py3-none-any.whl", hash = "sha256:f380b826a991ebbe3de4d897aeec42760035ac760345e57b812938dc8b35e2bd"}, ] [[package]] name = "python-magic" version = "0.4.27" description = "File type identification using libmagic" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" files = [ {file = "python-magic-0.4.27.tar.gz", hash = "sha256:c1ba14b08e4a5f5c31a302b7721239695b2f0f058d125bd5ce1ee36b9d9d3c3b"}, {file = "python_magic-0.4.27-py2.py3-none-any.whl", hash = "sha256:c212960ad306f700aa0d01e5d7a325d20548ff97eb9920dcd29513174f0294d3"}, ] [[package]] name = "python-magic-bin" version = "0.4.14" description = "File type identification using libmagic binary package" optional = false python-versions = "*" files = [ {file = "python_magic_bin-0.4.14-py2.py3-none-macosx_10_6_intel.whl", hash = "sha256:7b1743b3dbf16601d6eedf4e7c2c9a637901b0faaf24ad4df4d4527e7d8f66a4"}, {file = "python_magic_bin-0.4.14-py2.py3-none-win32.whl", hash = "sha256:34a788c03adde7608028203e2dbb208f1f62225ad91518787ae26d603ae68892"}, {file = "python_magic_bin-0.4.14-py2.py3-none-win_amd64.whl", hash = "sha256:90be6206ad31071a36065a2fc169c5afb5e0355cbe6030e87641c6c62edc2b69"}, ] [[package]] name = "python-multipart" version = "0.0.6" description = "A streaming multipart parser for Python" optional = true python-versions = ">=3.7" files = [ {file = "python_multipart-0.0.6-py3-none-any.whl", hash = "sha256:ee698bab5ef148b0a760751c261902cd096e57e10558e11aca17646b74ee1c18"}, {file = "python_multipart-0.0.6.tar.gz", hash = "sha256:e9925a80bb668529f1b67c7fdb0a5dacdd7cbfc6fb0bff3ea443fe22bdd62132"}, ] [package.extras] dev = ["atomicwrites (==1.2.1)", "attrs (==19.2.0)", "coverage (==6.5.0)", "hatch", "invoke (==1.7.3)", "more-itertools (==4.3.0)", "pbr (==4.3.0)", "pluggy (==1.0.0)", "py (==1.11.0)", "pytest (==7.2.0)", "pytest-cov (==4.0.0)", "pytest-timeout (==2.1.0)", "pyyaml (==5.1)"] [[package]] name = "pytz" version = "2023.3" description = "World timezone definitions, modern and historical" optional = false python-versions = "*" files = [ {file = "pytz-2023.3-py2.py3-none-any.whl", hash = "sha256:a151b3abb88eda1d4e34a9814df37de2a80e301e68ba0fd856fb9b46bfbbbffb"}, {file = "pytz-2023.3.tar.gz", hash = "sha256:1d8ce29db189191fb55338ee6d0387d82ab59f3d00eac103412d64e0ebd0c588"}, ] [[package]] name = "pyvespa" version = "0.33.0" description = "Python API for vespa.ai" optional = true python-versions = ">=3.6" files = [ {file = "pyvespa-0.33.0-py3-none-any.whl", hash = "sha256:2681910b3ac5f0259a9e41e6e2649caba2801e836b4c295cc2e48ab25b09672c"}, {file = "pyvespa-0.33.0.tar.gz", hash = "sha256:be3da9022276555b6b25c40b6e846db6e9dbf617486001ba92235ccfab6c9353"}, ] [package.dependencies] aiohttp = "*" cryptography = "*" docker = "*" jinja2 = "*" pandas = "*" requests = "*" tenacity = "*" [package.extras] full = ["keras-tuner", "onnxruntime", "tensorflow", "tensorflow-ranking", "torch (<1.13)", "transformers"] ml = ["keras-tuner", "tensorflow", "tensorflow-ranking", "torch (<1.13)", "transformers"] [[package]] name = "pywin32" version = "306" description = "Python for Window Extensions" optional = false python-versions = "*" files = [ {file = "pywin32-306-cp310-cp310-win32.whl", hash = "sha256:06d3420a5155ba65f0b72f2699b5bacf3109f36acbe8923765c22938a69dfc8d"}, {file = "pywin32-306-cp310-cp310-win_amd64.whl", hash = "sha256:84f4471dbca1887ea3803d8848a1616429ac94a4a8d05f4bc9c5dcfd42ca99c8"}, {file = "pywin32-306-cp311-cp311-win32.whl", hash = "sha256:e65028133d15b64d2ed8f06dd9fbc268352478d4f9289e69c190ecd6818b6407"}, {file = "pywin32-306-cp311-cp311-win_amd64.whl", hash = "sha256:a7639f51c184c0272e93f244eb24dafca9b1855707d94c192d4a0b4c01e1100e"}, {file = "pywin32-306-cp311-cp311-win_arm64.whl", hash = "sha256:70dba0c913d19f942a2db25217d9a1b726c278f483a919f1abfed79c9cf64d3a"}, {file = "pywin32-306-cp312-cp312-win32.whl", hash = "sha256:383229d515657f4e3ed1343da8be101000562bf514591ff383ae940cad65458b"}, {file = "pywin32-306-cp312-cp312-win_amd64.whl", hash = "sha256:37257794c1ad39ee9be652da0462dc2e394c8159dfd913a8a4e8eb6fd346da0e"}, {file = "pywin32-306-cp312-cp312-win_arm64.whl", hash = "sha256:5821ec52f6d321aa59e2db7e0a35b997de60c201943557d108af9d4ae1ec7040"}, {file = "pywin32-306-cp37-cp37m-win32.whl", hash = "sha256:1c73ea9a0d2283d889001998059f5eaaba3b6238f767c9cf2833b13e6a685f65"}, {file = "pywin32-306-cp37-cp37m-win_amd64.whl", hash = "sha256:72c5f621542d7bdd4fdb716227be0dd3f8565c11b280be6315b06ace35487d36"}, {file = "pywin32-306-cp38-cp38-win32.whl", hash = "sha256:e4c092e2589b5cf0d365849e73e02c391c1349958c5ac3e9d5ccb9a28e017b3a"}, {file = "pywin32-306-cp38-cp38-win_amd64.whl", hash = "sha256:e8ac1ae3601bee6ca9f7cb4b5363bf1c0badb935ef243c4733ff9a393b1690c0"}, {file = "pywin32-306-cp39-cp39-win32.whl", hash = "sha256:e25fd5b485b55ac9c057f67d94bc203f3f6595078d1fb3b458c9c28b7153a802"}, {file = "pywin32-306-cp39-cp39-win_amd64.whl", hash = "sha256:39b61c15272833b5c329a2989999dcae836b1eed650252ab1b7bfbe1d59f30f4"}, ] [[package]] name = "pywinpty" version = "2.0.10" description = "Pseudo terminal support for Windows from Python." optional = false python-versions = ">=3.7" files = [ {file = "pywinpty-2.0.10-cp310-none-win_amd64.whl", hash = "sha256:4c7d06ad10f6e92bc850a467f26d98f4f30e73d2fe5926536308c6ae0566bc16"}, {file = "pywinpty-2.0.10-cp311-none-win_amd64.whl", hash = "sha256:7ffbd66310b83e42028fc9df7746118978d94fba8c1ebf15a7c1275fdd80b28a"}, {file = "pywinpty-2.0.10-cp37-none-win_amd64.whl", hash = "sha256:38cb924f2778b5751ef91a75febd114776b3af0ae411bc667be45dd84fc881d3"}, {file = "pywinpty-2.0.10-cp38-none-win_amd64.whl", hash = "sha256:902d79444b29ad1833b8d5c3c9aabdfd428f4f068504430df18074007c8c0de8"}, {file = "pywinpty-2.0.10-cp39-none-win_amd64.whl", hash = "sha256:3c46aef80dd50979aff93de199e4a00a8ee033ba7a03cadf0a91fed45f0c39d7"}, {file = "pywinpty-2.0.10.tar.gz", hash = "sha256:cdbb5694cf8c7242c2ecfaca35c545d31fa5d5814c3d67a4e628f803f680ebea"}, ] [[package]] name = "pyyaml" version = "6.0" description = "YAML parser and emitter for Python" optional = false python-versions = ">=3.6" files = [ {file = "PyYAML-6.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d4db7c7aef085872ef65a8fd7d6d09a14ae91f691dec3e87ee5ee0539d516f53"}, {file = "PyYAML-6.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9df7ed3b3d2e0ecfe09e14741b857df43adb5a3ddadc919a2d94fbdf78fea53c"}, {file = "PyYAML-6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77f396e6ef4c73fdc33a9157446466f1cff553d979bd00ecb64385760c6babdc"}, {file = "PyYAML-6.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a80a78046a72361de73f8f395f1f1e49f956c6be882eed58505a15f3e430962b"}, {file = "PyYAML-6.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:f84fbc98b019fef2ee9a1cb3ce93e3187a6df0b2538a651bfb890254ba9f90b5"}, {file = "PyYAML-6.0-cp310-cp310-win32.whl", hash = "sha256:2cd5df3de48857ed0544b34e2d40e9fac445930039f3cfe4bcc592a1f836d513"}, {file = "PyYAML-6.0-cp310-cp310-win_amd64.whl", hash = "sha256:daf496c58a8c52083df09b80c860005194014c3698698d1a57cbcfa182142a3a"}, {file = "PyYAML-6.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:d4b0ba9512519522b118090257be113b9468d804b19d63c71dbcf4a48fa32358"}, {file = "PyYAML-6.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:81957921f441d50af23654aa6c5e5eaf9b06aba7f0a19c18a538dc7ef291c5a1"}, {file = "PyYAML-6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:afa17f5bc4d1b10afd4466fd3a44dc0e245382deca5b3c353d8b757f9e3ecb8d"}, {file = "PyYAML-6.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dbad0e9d368bb989f4515da330b88a057617d16b6a8245084f1b05400f24609f"}, {file = "PyYAML-6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:432557aa2c09802be39460360ddffd48156e30721f5e8d917f01d31694216782"}, {file = "PyYAML-6.0-cp311-cp311-win32.whl", hash = "sha256:bfaef573a63ba8923503d27530362590ff4f576c626d86a9fed95822a8255fd7"}, {file = "PyYAML-6.0-cp311-cp311-win_amd64.whl", hash = "sha256:01b45c0191e6d66c470b6cf1b9531a771a83c1c4208272ead47a3ae4f2f603bf"}, {file = "PyYAML-6.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:897b80890765f037df3403d22bab41627ca8811ae55e9a722fd0392850ec4d86"}, {file = "PyYAML-6.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50602afada6d6cbfad699b0c7bb50d5ccffa7e46a3d738092afddc1f9758427f"}, {file = "PyYAML-6.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:48c346915c114f5fdb3ead70312bd042a953a8ce5c7106d5bfb1a5254e47da92"}, {file = "PyYAML-6.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:98c4d36e99714e55cfbaaee6dd5badbc9a1ec339ebfc3b1f52e293aee6bb71a4"}, {file = "PyYAML-6.0-cp36-cp36m-win32.whl", hash = "sha256:0283c35a6a9fbf047493e3a0ce8d79ef5030852c51e9d911a27badfde0605293"}, {file = "PyYAML-6.0-cp36-cp36m-win_amd64.whl", hash = "sha256:07751360502caac1c067a8132d150cf3d61339af5691fe9e87803040dbc5db57"}, {file = "PyYAML-6.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:819b3830a1543db06c4d4b865e70ded25be52a2e0631ccd2f6a47a2822f2fd7c"}, {file = "PyYAML-6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:473f9edb243cb1935ab5a084eb238d842fb8f404ed2193a915d1784b5a6b5fc0"}, {file = "PyYAML-6.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0ce82d761c532fe4ec3f87fc45688bdd3a4c1dc5e0b4a19814b9009a29baefd4"}, {file = "PyYAML-6.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:231710d57adfd809ef5d34183b8ed1eeae3f76459c18fb4a0b373ad56bedcdd9"}, {file = "PyYAML-6.0-cp37-cp37m-win32.whl", hash = "sha256:c5687b8d43cf58545ade1fe3e055f70eac7a5a1a0bf42824308d868289a95737"}, {file = "PyYAML-6.0-cp37-cp37m-win_amd64.whl", hash = "sha256:d15a181d1ecd0d4270dc32edb46f7cb7733c7c508857278d3d378d14d606db2d"}, {file = "PyYAML-6.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0b4624f379dab24d3725ffde76559cff63d9ec94e1736b556dacdfebe5ab6d4b"}, {file = "PyYAML-6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:213c60cd50106436cc818accf5baa1aba61c0189ff610f64f4a3e8c6726218ba"}, {file = "PyYAML-6.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9fa600030013c4de8165339db93d182b9431076eb98eb40ee068700c9c813e34"}, {file = "PyYAML-6.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:277a0ef2981ca40581a47093e9e2d13b3f1fbbeffae064c1d21bfceba2030287"}, {file = "PyYAML-6.0-cp38-cp38-win32.whl", hash = "sha256:d4eccecf9adf6fbcc6861a38015c2a64f38b9d94838ac1810a9023a0609e1b78"}, {file = "PyYAML-6.0-cp38-cp38-win_amd64.whl", hash = "sha256:1e4747bc279b4f613a09eb64bba2ba602d8a6664c6ce6396a4d0cd413a50ce07"}, {file = "PyYAML-6.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:055d937d65826939cb044fc8c9b08889e8c743fdc6a32b33e2390f66013e449b"}, {file = "PyYAML-6.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e61ceaab6f49fb8bdfaa0f92c4b57bcfbea54c09277b1b4f7ac376bfb7a7c174"}, {file = "PyYAML-6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d67d839ede4ed1b28a4e8909735fc992a923cdb84e618544973d7dfc71540803"}, {file = "PyYAML-6.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cba8c411ef271aa037d7357a2bc8f9ee8b58b9965831d9e51baf703280dc73d3"}, {file = "PyYAML-6.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:40527857252b61eacd1d9af500c3337ba8deb8fc298940291486c465c8b46ec0"}, {file = "PyYAML-6.0-cp39-cp39-win32.whl", hash = "sha256:b5b9eccad747aabaaffbc6064800670f0c297e52c12754eb1d976c57e4f74dcb"}, {file = "PyYAML-6.0-cp39-cp39-win_amd64.whl", hash = "sha256:b3d267842bf12586ba6c734f89d1f5b871df0273157918b0ccefa29deb05c21c"}, {file = "PyYAML-6.0.tar.gz", hash = "sha256:68fb519c14306fec9720a2a5b45bc9f0c8d1b9c72adf45c37baedfcd949c35a2"}, ] [[package]] name = "pyzmq" version = "25.0.2" description = "Python bindings for 0MQ" optional = false python-versions = ">=3.6" files = [ {file = "pyzmq-25.0.2-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:ac178e666c097c8d3deb5097b58cd1316092fc43e8ef5b5fdb259b51da7e7315"}, {file = "pyzmq-25.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:659e62e1cbb063151c52f5b01a38e1df6b54feccfa3e2509d44c35ca6d7962ee"}, {file = "pyzmq-25.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8280ada89010735a12b968ec3ea9a468ac2e04fddcc1cede59cb7f5178783b9c"}, {file = "pyzmq-25.0.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a9b5eeb5278a8a636bb0abdd9ff5076bcbb836cd2302565df53ff1fa7d106d54"}, {file = "pyzmq-25.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a2e5fe42dfe6b73ca120b97ac9f34bfa8414feb15e00e37415dbd51cf227ef6"}, {file = "pyzmq-25.0.2-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:827bf60e749e78acb408a6c5af6688efbc9993e44ecc792b036ec2f4b4acf485"}, {file = "pyzmq-25.0.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:7b504ae43d37e282301da586529e2ded8b36d4ee2cd5e6db4386724ddeaa6bbc"}, {file = "pyzmq-25.0.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:cb1f69a0a2a2b1aae8412979dd6293cc6bcddd4439bf07e4758d864ddb112354"}, {file = "pyzmq-25.0.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:2b9c9cc965cdf28381e36da525dcb89fc1571d9c54800fdcd73e3f73a2fc29bd"}, {file = "pyzmq-25.0.2-cp310-cp310-win32.whl", hash = "sha256:24abbfdbb75ac5039205e72d6c75f10fc39d925f2df8ff21ebc74179488ebfca"}, {file = "pyzmq-25.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:6a821a506822fac55d2df2085a52530f68ab15ceed12d63539adc32bd4410f6e"}, {file = "pyzmq-25.0.2-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:9af0bb0277e92f41af35e991c242c9c71920169d6aa53ade7e444f338f4c8128"}, {file = "pyzmq-25.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:54a96cf77684a3a537b76acfa7237b1e79a8f8d14e7f00e0171a94b346c5293e"}, {file = "pyzmq-25.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88649b19ede1cab03b96b66c364cbbf17c953615cdbc844f7f6e5f14c5e5261c"}, {file = "pyzmq-25.0.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:715cff7644a80a7795953c11b067a75f16eb9fc695a5a53316891ebee7f3c9d5"}, {file = "pyzmq-25.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:312b3f0f066b4f1d17383aae509bacf833ccaf591184a1f3c7a1661c085063ae"}, {file = "pyzmq-25.0.2-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:d488c5c8630f7e782e800869f82744c3aca4aca62c63232e5d8c490d3d66956a"}, {file = "pyzmq-25.0.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:38d9f78d69bcdeec0c11e0feb3bc70f36f9b8c44fc06e5d06d91dc0a21b453c7"}, {file = "pyzmq-25.0.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:3059a6a534c910e1d5d068df42f60d434f79e6cc6285aa469b384fa921f78cf8"}, {file = "pyzmq-25.0.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:6526d097b75192f228c09d48420854d53dfbc7abbb41b0e26f363ccb26fbc177"}, {file = "pyzmq-25.0.2-cp311-cp311-win32.whl", hash = "sha256:5c5fbb229e40a89a2fe73d0c1181916f31e30f253cb2d6d91bea7927c2e18413"}, {file = "pyzmq-25.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:ed15e3a2c3c2398e6ae5ce86d6a31b452dfd6ad4cd5d312596b30929c4b6e182"}, {file = "pyzmq-25.0.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:032f5c8483c85bf9c9ca0593a11c7c749d734ce68d435e38c3f72e759b98b3c9"}, {file = "pyzmq-25.0.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:374b55516393bfd4d7a7daa6c3b36d6dd6a31ff9d2adad0838cd6a203125e714"}, {file = "pyzmq-25.0.2-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:08bfcc21b5997a9be4fefa405341320d8e7f19b4d684fb9c0580255c5bd6d695"}, {file = "pyzmq-25.0.2-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:1a843d26a8da1b752c74bc019c7b20e6791ee813cd6877449e6a1415589d22ff"}, {file = "pyzmq-25.0.2-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:b48616a09d7df9dbae2f45a0256eee7b794b903ddc6d8657a9948669b345f220"}, {file = "pyzmq-25.0.2-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:d4427b4a136e3b7f85516c76dd2e0756c22eec4026afb76ca1397152b0ca8145"}, {file = "pyzmq-25.0.2-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:26b0358e8933990502f4513c991c9935b6c06af01787a36d133b7c39b1df37fa"}, {file = "pyzmq-25.0.2-cp36-cp36m-win32.whl", hash = "sha256:c8fedc3ccd62c6b77dfe6f43802057a803a411ee96f14e946f4a76ec4ed0e117"}, {file = "pyzmq-25.0.2-cp36-cp36m-win_amd64.whl", hash = "sha256:2da6813b7995b6b1d1307329c73d3e3be2fd2d78e19acfc4eff2e27262732388"}, {file = "pyzmq-25.0.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:a35960c8b2f63e4ef67fd6731851030df68e4b617a6715dd11b4b10312d19fef"}, {file = "pyzmq-25.0.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eef2a0b880ab40aca5a878933376cb6c1ec483fba72f7f34e015c0f675c90b20"}, {file = "pyzmq-25.0.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:85762712b74c7bd18e340c3639d1bf2f23735a998d63f46bb6584d904b5e401d"}, {file = "pyzmq-25.0.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:64812f29d6eee565e129ca14b0c785744bfff679a4727137484101b34602d1a7"}, {file = "pyzmq-25.0.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:510d8e55b3a7cd13f8d3e9121edf0a8730b87d925d25298bace29a7e7bc82810"}, {file = "pyzmq-25.0.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:b164cc3c8acb3d102e311f2eb6f3c305865ecb377e56adc015cb51f721f1dda6"}, {file = "pyzmq-25.0.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:28fdb9224a258134784a9cf009b59265a9dde79582fb750d4e88a6bcbc6fa3dc"}, {file = "pyzmq-25.0.2-cp37-cp37m-win32.whl", hash = "sha256:dd771a440effa1c36d3523bc6ba4e54ff5d2e54b4adcc1e060d8f3ca3721d228"}, {file = "pyzmq-25.0.2-cp37-cp37m-win_amd64.whl", hash = "sha256:9bdc40efb679b9dcc39c06d25629e55581e4c4f7870a5e88db4f1c51ce25e20d"}, {file = "pyzmq-25.0.2-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:1f82906a2d8e4ee310f30487b165e7cc8ed09c009e4502da67178b03083c4ce0"}, {file = "pyzmq-25.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:21ec0bf4831988af43c8d66ba3ccd81af2c5e793e1bf6790eb2d50e27b3c570a"}, {file = "pyzmq-25.0.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:abbce982a17c88d2312ec2cf7673985d444f1beaac6e8189424e0a0e0448dbb3"}, {file = "pyzmq-25.0.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:9e1d2f2d86fc75ed7f8845a992c5f6f1ab5db99747fb0d78b5e4046d041164d2"}, {file = "pyzmq-25.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a2e92ff20ad5d13266bc999a29ed29a3b5b101c21fdf4b2cf420c09db9fb690e"}, {file = "pyzmq-25.0.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:edbbf06cc2719889470a8d2bf5072bb00f423e12de0eb9ffec946c2c9748e149"}, {file = "pyzmq-25.0.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:77942243ff4d14d90c11b2afd8ee6c039b45a0be4e53fb6fa7f5e4fd0b59da39"}, {file = "pyzmq-25.0.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:ab046e9cb902d1f62c9cc0eca055b1d11108bdc271caf7c2171487298f229b56"}, {file = "pyzmq-25.0.2-cp38-cp38-win32.whl", hash = "sha256:ad761cfbe477236802a7ab2c080d268c95e784fe30cafa7e055aacd1ca877eb0"}, {file = "pyzmq-25.0.2-cp38-cp38-win_amd64.whl", hash = "sha256:8560756318ec7c4c49d2c341012167e704b5a46d9034905853c3d1ade4f55bee"}, {file = "pyzmq-25.0.2-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:ab2c056ac503f25a63f6c8c6771373e2a711b98b304614151dfb552d3d6c81f6"}, {file = "pyzmq-25.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:cca8524b61c0eaaa3505382dc9b9a3bc8165f1d6c010fdd1452c224225a26689"}, {file = "pyzmq-25.0.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:cfb9f7eae02d3ac42fbedad30006b7407c984a0eb4189a1322241a20944d61e5"}, {file = "pyzmq-25.0.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:5eaeae038c68748082137d6896d5c4db7927e9349237ded08ee1bbd94f7361c9"}, {file = "pyzmq-25.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4a31992a8f8d51663ebf79df0df6a04ffb905063083d682d4380ab8d2c67257c"}, {file = "pyzmq-25.0.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:6a979e59d2184a0c8f2ede4b0810cbdd86b64d99d9cc8a023929e40dce7c86cc"}, {file = "pyzmq-25.0.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:1f124cb73f1aa6654d31b183810febc8505fd0c597afa127c4f40076be4574e0"}, {file = "pyzmq-25.0.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:65c19a63b4a83ae45d62178b70223adeee5f12f3032726b897431b6553aa25af"}, {file = "pyzmq-25.0.2-cp39-cp39-win32.whl", hash = "sha256:83d822e8687621bed87404afc1c03d83fa2ce39733d54c2fd52d8829edb8a7ff"}, {file = "pyzmq-25.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:24683285cc6b7bf18ad37d75b9db0e0fefe58404e7001f1d82bf9e721806daa7"}, {file = "pyzmq-25.0.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:4a4b4261eb8f9ed71f63b9eb0198dd7c934aa3b3972dac586d0ef502ba9ab08b"}, {file = "pyzmq-25.0.2-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:62ec8d979f56c0053a92b2b6a10ff54b9ec8a4f187db2b6ec31ee3dd6d3ca6e2"}, {file = "pyzmq-25.0.2-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:affec1470351178e892121b3414c8ef7803269f207bf9bef85f9a6dd11cde264"}, {file = "pyzmq-25.0.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ffc71111433bd6ec8607a37b9211f4ef42e3d3b271c6d76c813669834764b248"}, {file = "pyzmq-25.0.2-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:6fadc60970714d86eff27821f8fb01f8328dd36bebd496b0564a500fe4a9e354"}, {file = "pyzmq-25.0.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:269968f2a76c0513490aeb3ba0dc3c77b7c7a11daa894f9d1da88d4a0db09835"}, {file = "pyzmq-25.0.2-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:f7c8b8368e84381ae7c57f1f5283b029c888504aaf4949c32e6e6fb256ec9bf0"}, {file = "pyzmq-25.0.2-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:25e6873a70ad5aa31e4a7c41e5e8c709296edef4a92313e1cd5fc87bbd1874e2"}, {file = "pyzmq-25.0.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b733076ff46e7db5504c5e7284f04a9852c63214c74688bdb6135808531755a3"}, {file = "pyzmq-25.0.2-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:a6f6ae12478fdc26a6d5fdb21f806b08fa5403cd02fd312e4cb5f72df078f96f"}, {file = "pyzmq-25.0.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:67da1c213fbd208906ab3470cfff1ee0048838365135a9bddc7b40b11e6d6c89"}, {file = "pyzmq-25.0.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:531e36d9fcd66f18de27434a25b51d137eb546931033f392e85674c7a7cea853"}, {file = "pyzmq-25.0.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:34a6fddd159ff38aa9497b2e342a559f142ab365576284bc8f77cb3ead1f79c5"}, {file = "pyzmq-25.0.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b491998ef886662c1f3d49ea2198055a9a536ddf7430b051b21054f2a5831800"}, {file = "pyzmq-25.0.2-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:5d496815074e3e3d183fe2c7fcea2109ad67b74084c254481f87b64e04e9a471"}, {file = "pyzmq-25.0.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:56a94ab1d12af982b55ca96c6853db6ac85505e820d9458ac76364c1998972f4"}, {file = "pyzmq-25.0.2.tar.gz", hash = "sha256:6b8c1bbb70e868dc88801aa532cae6bd4e3b5233784692b786f17ad2962e5149"}, ] [package.dependencies] cffi = {version = "*", markers = "implementation_name == \"pypy\""} [[package]] name = "qdrant-client" version = "1.1.7" description = "Client library for the Qdrant vector search engine" optional = true python-versions = ">=3.7,<3.12" files = [ {file = "qdrant_client-1.1.7-py3-none-any.whl", hash = "sha256:4f5d883660b8193840d8982919ab813a0470ace9a7ff46ee730f909841be5319"}, {file = "qdrant_client-1.1.7.tar.gz", hash = "sha256:686d86934bec2ebb70676fc0650c9a44a9e552e0149124ca5a22ee8533879deb"}, ] [package.dependencies] grpcio = ">=1.41.0" grpcio-tools = ">=1.41.0" httpx = {version = ">=0.14.0", extras = ["http2"]} numpy = {version = ">=1.21", markers = "python_version >= \"3.8\""} portalocker = ">=2.7.0,<3.0.0" pydantic = ">=1.8,<2.0" typing-extensions = ">=4.0.0,<5.0.0" urllib3 = ">=1.26.14,<2.0.0" [[package]] name = "qtconsole" version = "5.4.3" description = "Jupyter Qt console" optional = false python-versions = ">= 3.7" files = [ {file = "qtconsole-5.4.3-py3-none-any.whl", hash = "sha256:35fd6e87b1f6d1fd41801b07e69339f8982e76afd4fa8ef35595bc6036717189"}, {file = "qtconsole-5.4.3.tar.gz", hash = "sha256:5e4082a86a201796b2a5cfd4298352d22b158b51b57736531824715fc2a979dd"}, ] [package.dependencies] ipykernel = ">=4.1" ipython-genutils = "*" jupyter-client = ">=4.1" jupyter-core = "*" packaging = "*" pygments = "*" pyzmq = ">=17.1" qtpy = ">=2.0.1" traitlets = "<5.2.1 || >5.2.1,<5.2.2 || >5.2.2" [package.extras] doc = ["Sphinx (>=1.3)"] test = ["flaky", "pytest", "pytest-qt"] [[package]] name = "qtpy" version = "2.3.1" description = "Provides an abstraction layer on top of the various Qt bindings (PyQt5/6 and PySide2/6)." optional = false python-versions = ">=3.7" files = [ {file = "QtPy-2.3.1-py3-none-any.whl", hash = "sha256:5193d20e0b16e4d9d3bc2c642d04d9f4e2c892590bd1b9c92bfe38a95d5a2e12"}, {file = "QtPy-2.3.1.tar.gz", hash = "sha256:a8c74982d6d172ce124d80cafd39653df78989683f760f2281ba91a6e7b9de8b"}, ] [package.dependencies] packaging = "*" [package.extras] test = ["pytest (>=6,!=7.0.0,!=7.0.1)", "pytest-cov (>=3.0.0)", "pytest-qt"] [[package]] name = "ratelimiter" version = "1.2.0.post0" description = "Simple python rate limiting object" optional = true python-versions = "*" files = [ {file = "ratelimiter-1.2.0.post0-py3-none-any.whl", hash = "sha256:a52be07bc0bb0b3674b4b304550f10c769bbb00fead3072e035904474259809f"}, {file = "ratelimiter-1.2.0.post0.tar.gz", hash = "sha256:5c395dcabdbbde2e5178ef3f89b568a3066454a6ddc223b76473dac22f89b4f7"}, ] [package.extras] test = ["pytest (>=3.0)", "pytest-asyncio"] [[package]] name = "redis" version = "4.5.5" description = "Python client for Redis database and key-value store" optional = false python-versions = ">=3.7" files = [ {file = "redis-4.5.5-py3-none-any.whl", hash = "sha256:77929bc7f5dab9adf3acba2d3bb7d7658f1e0c2f1cafe7eb36434e751c471119"}, {file = "redis-4.5.5.tar.gz", hash = "sha256:dc87a0bdef6c8bfe1ef1e1c40be7034390c2ae02d92dcd0c7ca1729443899880"}, ] [package.dependencies] async-timeout = {version = ">=4.0.2", markers = "python_full_version <= \"3.11.2\""} [package.extras] hiredis = ["hiredis (>=1.0.0)"] ocsp = ["cryptography (>=36.0.1)", "pyopenssl (==20.0.1)", "requests (>=2.26.0)"] [[package]] name = "regex" version = "2023.5.5" description = "Alternative regular expression module, to replace re." optional = false python-versions = ">=3.6" files = [ {file = "regex-2023.5.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:48c9ec56579d4ba1c88f42302194b8ae2350265cb60c64b7b9a88dcb7fbde309"}, {file = "regex-2023.5.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:02f4541550459c08fdd6f97aa4e24c6f1932eec780d58a2faa2068253df7d6ff"}, {file = "regex-2023.5.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:53e22e4460f0245b468ee645156a4f84d0fc35a12d9ba79bd7d79bdcd2f9629d"}, {file = "regex-2023.5.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4b870b6f632fc74941cadc2a0f3064ed8409e6f8ee226cdfd2a85ae50473aa94"}, {file = "regex-2023.5.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:171c52e320fe29260da550d81c6b99f6f8402450dc7777ef5ced2e848f3b6f8f"}, {file = "regex-2023.5.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aad5524c2aedaf9aa14ef1bc9327f8abd915699dea457d339bebbe2f0d218f86"}, {file = "regex-2023.5.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5a0f874ee8c0bc820e649c900243c6d1e6dc435b81da1492046716f14f1a2a96"}, {file = "regex-2023.5.5-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:e645c757183ee0e13f0bbe56508598e2d9cd42b8abc6c0599d53b0d0b8dd1479"}, {file = "regex-2023.5.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:a4c5da39bca4f7979eefcbb36efea04471cd68db2d38fcbb4ee2c6d440699833"}, {file = "regex-2023.5.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:5e3f4468b8c6fd2fd33c218bbd0a1559e6a6fcf185af8bb0cc43f3b5bfb7d636"}, {file = "regex-2023.5.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:59e4b729eae1a0919f9e4c0fc635fbcc9db59c74ad98d684f4877be3d2607dd6"}, {file = "regex-2023.5.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:ba73a14e9c8f9ac409863543cde3290dba39098fc261f717dc337ea72d3ebad2"}, {file = "regex-2023.5.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0bbd5dcb19603ab8d2781fac60114fb89aee8494f4505ae7ad141a3314abb1f9"}, {file = "regex-2023.5.5-cp310-cp310-win32.whl", hash = "sha256:40005cbd383438aecf715a7b47fe1e3dcbc889a36461ed416bdec07e0ef1db66"}, {file = "regex-2023.5.5-cp310-cp310-win_amd64.whl", hash = "sha256:59597cd6315d3439ed4b074febe84a439c33928dd34396941b4d377692eca810"}, {file = "regex-2023.5.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8f08276466fedb9e36e5193a96cb944928301152879ec20c2d723d1031cd4ddd"}, {file = "regex-2023.5.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:cd46f30e758629c3ee91713529cfbe107ac50d27110fdcc326a42ce2acf4dafc"}, {file = "regex-2023.5.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f2910502f718828cecc8beff004917dcf577fc5f8f5dd40ffb1ea7612124547b"}, {file = "regex-2023.5.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:445d6f4fc3bd9fc2bf0416164454f90acab8858cd5a041403d7a11e3356980e8"}, {file = "regex-2023.5.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:18196c16a584619c7c1d843497c069955d7629ad4a3fdee240eb347f4a2c9dbe"}, {file = "regex-2023.5.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:33d430a23b661629661f1fe8395be2004006bc792bb9fc7c53911d661b69dd7e"}, {file = "regex-2023.5.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:72a28979cc667e5f82ef433db009184e7ac277844eea0f7f4d254b789517941d"}, {file = "regex-2023.5.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f764e4dfafa288e2eba21231f455d209f4709436baeebb05bdecfb5d8ddc3d35"}, {file = "regex-2023.5.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:23d86ad2121b3c4fc78c58f95e19173790e22ac05996df69b84e12da5816cb17"}, {file = "regex-2023.5.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:690a17db524ee6ac4a27efc5406530dd90e7a7a69d8360235323d0e5dafb8f5b"}, {file = "regex-2023.5.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:1ecf3dcff71f0c0fe3e555201cbe749fa66aae8d18f80d2cc4de8e66df37390a"}, {file = "regex-2023.5.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:811040d7f3dd9c55eb0d8b00b5dcb7fd9ae1761c454f444fd9f37fe5ec57143a"}, {file = "regex-2023.5.5-cp311-cp311-win32.whl", hash = "sha256:c8c143a65ce3ca42e54d8e6fcaf465b6b672ed1c6c90022794a802fb93105d22"}, {file = "regex-2023.5.5-cp311-cp311-win_amd64.whl", hash = "sha256:586a011f77f8a2da4b888774174cd266e69e917a67ba072c7fc0e91878178a80"}, {file = "regex-2023.5.5-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:b6365703e8cf1644b82104cdd05270d1a9f043119a168d66c55684b1b557d008"}, {file = "regex-2023.5.5-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a56c18f21ac98209da9c54ae3ebb3b6f6e772038681d6cb43b8d53da3b09ee81"}, {file = "regex-2023.5.5-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b8b942d8b3ce765dbc3b1dad0a944712a89b5de290ce8f72681e22b3c55f3cc8"}, {file = "regex-2023.5.5-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:844671c9c1150fcdac46d43198364034b961bd520f2c4fdaabfc7c7d7138a2dd"}, {file = "regex-2023.5.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c2ce65bdeaf0a386bb3b533a28de3994e8e13b464ac15e1e67e4603dd88787fa"}, {file = "regex-2023.5.5-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fee0016cc35a8a91e8cc9312ab26a6fe638d484131a7afa79e1ce6165328a135"}, {file = "regex-2023.5.5-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:18f05d14f14a812fe9723f13afafefe6b74ca042d99f8884e62dbd34dcccf3e2"}, {file = "regex-2023.5.5-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:941b3f1b2392f0bcd6abf1bc7a322787d6db4e7457be6d1ffd3a693426a755f2"}, {file = "regex-2023.5.5-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:921473a93bcea4d00295799ab929522fc650e85c6b9f27ae1e6bb32a790ea7d3"}, {file = "regex-2023.5.5-cp36-cp36m-musllinux_1_1_ppc64le.whl", hash = "sha256:e2205a81f815b5bb17e46e74cc946c575b484e5f0acfcb805fb252d67e22938d"}, {file = "regex-2023.5.5-cp36-cp36m-musllinux_1_1_s390x.whl", hash = "sha256:385992d5ecf1a93cb85adff2f73e0402dd9ac29b71b7006d342cc920816e6f32"}, {file = "regex-2023.5.5-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:890a09cb0a62198bff92eda98b2b507305dd3abf974778bae3287f98b48907d3"}, {file = "regex-2023.5.5-cp36-cp36m-win32.whl", hash = "sha256:821a88b878b6589c5068f4cc2cfeb2c64e343a196bc9d7ac68ea8c2a776acd46"}, {file = "regex-2023.5.5-cp36-cp36m-win_amd64.whl", hash = "sha256:7918a1b83dd70dc04ab5ed24c78ae833ae8ea228cef84e08597c408286edc926"}, {file = "regex-2023.5.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:338994d3d4ca4cf12f09822e025731a5bdd3a37aaa571fa52659e85ca793fb67"}, {file = "regex-2023.5.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0a69cf0c00c4d4a929c6c7717fd918414cab0d6132a49a6d8fc3ded1988ed2ea"}, {file = "regex-2023.5.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8f5e06df94fff8c4c85f98c6487f6636848e1dc85ce17ab7d1931df4a081f657"}, {file = "regex-2023.5.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a8906669b03c63266b6a7693d1f487b02647beb12adea20f8840c1a087e2dfb5"}, {file = "regex-2023.5.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9fda3e50abad8d0f48df621cf75adc73c63f7243cbe0e3b2171392b445401550"}, {file = "regex-2023.5.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5ac2b7d341dc1bd102be849d6dd33b09701223a851105b2754339e390be0627a"}, {file = "regex-2023.5.5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:fb2b495dd94b02de8215625948132cc2ea360ae84fe6634cd19b6567709c8ae2"}, {file = "regex-2023.5.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:aa7d032c1d84726aa9edeb6accf079b4caa87151ca9fabacef31fa028186c66d"}, {file = "regex-2023.5.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:3d45864693351c15531f7e76f545ec35000d50848daa833cead96edae1665559"}, {file = "regex-2023.5.5-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:21e90a288e6ba4bf44c25c6a946cb9b0f00b73044d74308b5e0afd190338297c"}, {file = "regex-2023.5.5-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:10250a093741ec7bf74bcd2039e697f519b028518f605ff2aa7ac1e9c9f97423"}, {file = "regex-2023.5.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:6b8d0c153f07a953636b9cdb3011b733cadd4178123ef728ccc4d5969e67f3c2"}, {file = "regex-2023.5.5-cp37-cp37m-win32.whl", hash = "sha256:10374c84ee58c44575b667310d5bbfa89fb2e64e52349720a0182c0017512f6c"}, {file = "regex-2023.5.5-cp37-cp37m-win_amd64.whl", hash = "sha256:9b320677521aabf666cdd6e99baee4fb5ac3996349c3b7f8e7c4eee1c00dfe3a"}, {file = "regex-2023.5.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:afb1c70ec1e594a547f38ad6bf5e3d60304ce7539e677c1429eebab115bce56e"}, {file = "regex-2023.5.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:cf123225945aa58b3057d0fba67e8061c62d14cc8a4202630f8057df70189051"}, {file = "regex-2023.5.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a99757ad7fe5c8a2bb44829fc57ced11253e10f462233c1255fe03888e06bc19"}, {file = "regex-2023.5.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a623564d810e7a953ff1357f7799c14bc9beeab699aacc8b7ab7822da1e952b8"}, {file = "regex-2023.5.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ced02e3bd55e16e89c08bbc8128cff0884d96e7f7a5633d3dc366b6d95fcd1d6"}, {file = "regex-2023.5.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d1cbe6b5be3b9b698d8cc4ee4dee7e017ad655e83361cd0ea8e653d65e469468"}, {file = "regex-2023.5.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4a6e4b0e0531223f53bad07ddf733af490ba2b8367f62342b92b39b29f72735a"}, {file = "regex-2023.5.5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:2e9c4f778514a560a9c9aa8e5538bee759b55f6c1dcd35613ad72523fd9175b8"}, {file = "regex-2023.5.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:256f7f4c6ba145f62f7a441a003c94b8b1af78cee2cccacfc1e835f93bc09426"}, {file = "regex-2023.5.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:bd7b68fd2e79d59d86dcbc1ccd6e2ca09c505343445daaa4e07f43c8a9cc34da"}, {file = "regex-2023.5.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:4a5059bd585e9e9504ef9c07e4bc15b0a621ba20504388875d66b8b30a5c4d18"}, {file = "regex-2023.5.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:6893544e06bae009916a5658ce7207e26ed17385149f35a3125f5259951f1bbe"}, {file = "regex-2023.5.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:c64d5abe91a3dfe5ff250c6bb267ef00dbc01501518225b45a5f9def458f31fb"}, {file = "regex-2023.5.5-cp38-cp38-win32.whl", hash = "sha256:7923470d6056a9590247ff729c05e8e0f06bbd4efa6569c916943cb2d9b68b91"}, {file = "regex-2023.5.5-cp38-cp38-win_amd64.whl", hash = "sha256:4035d6945cb961c90c3e1c1ca2feb526175bcfed44dfb1cc77db4fdced060d3e"}, {file = "regex-2023.5.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:50fd2d9b36938d4dcecbd684777dd12a407add4f9f934f235c66372e630772b0"}, {file = "regex-2023.5.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:d19e57f888b00cd04fc38f5e18d0efbd91ccba2d45039453ab2236e6eec48d4d"}, {file = "regex-2023.5.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bd966475e963122ee0a7118ec9024388c602d12ac72860f6eea119a3928be053"}, {file = "regex-2023.5.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:db09e6c18977a33fea26fe67b7a842f706c67cf8bda1450974d0ae0dd63570df"}, {file = "regex-2023.5.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6164d4e2a82f9ebd7752a06bd6c504791bedc6418c0196cd0a23afb7f3e12b2d"}, {file = "regex-2023.5.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:84397d3f750d153ebd7f958efaa92b45fea170200e2df5e0e1fd4d85b7e3f58a"}, {file = "regex-2023.5.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9c3efee9bb53cbe7b285760c81f28ac80dc15fa48b5fe7e58b52752e642553f1"}, {file = "regex-2023.5.5-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:144b5b017646b5a9392a5554a1e5db0000ae637be4971c9747566775fc96e1b2"}, {file = "regex-2023.5.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:1189fbbb21e2c117fda5303653b61905aeeeea23de4a94d400b0487eb16d2d60"}, {file = "regex-2023.5.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f83fe9e10f9d0b6cf580564d4d23845b9d692e4c91bd8be57733958e4c602956"}, {file = "regex-2023.5.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:72aa4746993a28c841e05889f3f1b1e5d14df8d3daa157d6001a34c98102b393"}, {file = "regex-2023.5.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:de2f780c3242ea114dd01f84848655356af4dd561501896c751d7b885ea6d3a1"}, {file = "regex-2023.5.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:290fd35219486dfbc00b0de72f455ecdd63e59b528991a6aec9fdfc0ce85672e"}, {file = "regex-2023.5.5-cp39-cp39-win32.whl", hash = "sha256:732176f5427e72fa2325b05c58ad0b45af341c459910d766f814b0584ac1f9ac"}, {file = "regex-2023.5.5-cp39-cp39-win_amd64.whl", hash = "sha256:1307aa4daa1cbb23823d8238e1f61292fd07e4e5d8d38a6efff00b67a7cdb764"}, {file = "regex-2023.5.5.tar.gz", hash = "sha256:7d76a8a1fc9da08296462a18f16620ba73bcbf5909e42383b253ef34d9d5141e"}, ] [[package]] name = "requests" version = "2.28.2" description = "Python HTTP for Humans." optional = false python-versions = ">=3.7, <4" files = [ {file = "requests-2.28.2-py3-none-any.whl", hash = "sha256:64299f4909223da747622c030b781c0d7811e359c37124b4bd368fb8c6518baa"}, {file = "requests-2.28.2.tar.gz", hash = "sha256:98b1b2782e3c6c4904938b84c0eb932721069dfdb9134313beff7c83c2df24bf"}, ] [package.dependencies] certifi = ">=2017.4.17" charset-normalizer = ">=2,<4" idna = ">=2.5,<4" PySocks = {version = ">=1.5.6,<1.5.7 || >1.5.7", optional = true, markers = "extra == \"socks\""} urllib3 = ">=1.21.1,<1.27" [package.extras] socks = ["PySocks (>=1.5.6,!=1.5.7)"] use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] [[package]] name = "requests-oauthlib" version = "1.3.1" description = "OAuthlib authentication support for Requests." optional = true python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ {file = "requests-oauthlib-1.3.1.tar.gz", hash = "sha256:75beac4a47881eeb94d5ea5d6ad31ef88856affe2332b9aafb52c6452ccf0d7a"}, {file = "requests_oauthlib-1.3.1-py2.py3-none-any.whl", hash = "sha256:2577c501a2fb8d05a304c09d090d6e47c306fef15809d102b327cf8364bddab5"}, ] [package.dependencies] oauthlib = ">=3.0.0" requests = ">=2.0.0" [package.extras] rsa = ["oauthlib[signedtoken] (>=3.0.0)"] [[package]] name = "requests-toolbelt" version = "1.0.0" description = "A utility belt for advanced users of python-requests" optional = true python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ {file = "requests-toolbelt-1.0.0.tar.gz", hash = "sha256:7681a0a3d047012b5bdc0ee37d7f8f07ebe76ab08caeccfc3921ce23c88d5bc6"}, {file = "requests_toolbelt-1.0.0-py2.py3-none-any.whl", hash = "sha256:cccfdd665f0a24fcf4726e690f65639d272bb0637b9b92dfd91a5568ccf6bd06"}, ] [package.dependencies] requests = ">=2.0.1,<3.0.0" [[package]] name = "responses" version = "0.22.0" description = "A utility library for mocking out the `requests` Python library." optional = false python-versions = ">=3.7" files = [ {file = "responses-0.22.0-py3-none-any.whl", hash = "sha256:dcf294d204d14c436fddcc74caefdbc5764795a40ff4e6a7740ed8ddbf3294be"}, {file = "responses-0.22.0.tar.gz", hash = "sha256:396acb2a13d25297789a5866b4881cf4e46ffd49cc26c43ab1117f40b973102e"}, ] [package.dependencies] requests = ">=2.22.0,<3.0" toml = "*" types-toml = "*" urllib3 = ">=1.25.10" [package.extras] tests = ["coverage (>=6.0.0)", "flake8", "mypy", "pytest (>=7.0.0)", "pytest-asyncio", "pytest-cov", "pytest-httpserver", "types-requests"] [[package]] name = "retry" version = "0.9.2" description = "Easy to use retry decorator." optional = true python-versions = "*" files = [ {file = "retry-0.9.2-py2.py3-none-any.whl", hash = "sha256:ccddf89761fa2c726ab29391837d4327f819ea14d244c232a1d24c67a2f98606"}, {file = "retry-0.9.2.tar.gz", hash = "sha256:f8bfa8b99b69c4506d6f5bd3b0aabf77f98cdb17f3c9fc3f5ca820033336fba4"}, ] [package.dependencies] decorator = ">=3.4.2" py = ">=1.4.26,<2.0.0" [[package]] name = "rfc3339-validator" version = "0.1.4" description = "A pure python RFC3339 validator" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" files = [ {file = "rfc3339_validator-0.1.4-py2.py3-none-any.whl", hash = "sha256:24f6ec1eda14ef823da9e36ec7113124b39c04d50a4d3d3a3c2859577e7791fa"}, {file = "rfc3339_validator-0.1.4.tar.gz", hash = "sha256:138a2abdf93304ad60530167e51d2dfb9549521a836871b88d7f4695d0022f6b"}, ] [package.dependencies] six = "*" [[package]] name = "rfc3986-validator" version = "0.1.1" description = "Pure python rfc3986 validator" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" files = [ {file = "rfc3986_validator-0.1.1-py2.py3-none-any.whl", hash = "sha256:2f235c432ef459970b4306369336b9d5dbdda31b510ca1e327636e01f528bfa9"}, {file = "rfc3986_validator-0.1.1.tar.gz", hash = "sha256:3d44bde7921b3b9ec3ae4e3adca370438eccebc676456449b145d533b240d055"}, ] [[package]] name = "rich" version = "13.3.5" description = "Render rich text, tables, progress bars, syntax highlighting, markdown and more to the terminal" optional = true python-versions = ">=3.7.0" files = [ {file = "rich-13.3.5-py3-none-any.whl", hash = "sha256:69cdf53799e63f38b95b9bf9c875f8c90e78dd62b2f00c13a911c7a3b9fa4704"}, {file = "rich-13.3.5.tar.gz", hash = "sha256:2d11b9b8dd03868f09b4fffadc84a6a8cda574e40dc90821bd845720ebb8e89c"}, ] [package.dependencies] markdown-it-py = ">=2.2.0,<3.0.0" pygments = ">=2.13.0,<3.0.0" typing-extensions = {version = ">=4.0.0,<5.0", markers = "python_version < \"3.9\""} [package.extras] jupyter = ["ipywidgets (>=7.5.1,<9)"] [[package]] name = "rsa" version = "4.9" description = "Pure-Python RSA implementation" optional = true python-versions = ">=3.6,<4" files = [ {file = "rsa-4.9-py3-none-any.whl", hash = "sha256:90260d9058e514786967344d0ef75fa8727eed8a7d2e43ce9f4bcf1b536174f7"}, {file = "rsa-4.9.tar.gz", hash = "sha256:e38464a49c6c85d7f1351b0126661487a7e0a14a50f1675ec50eb34d4f20ef21"}, ] [package.dependencies] pyasn1 = ">=0.1.3" [[package]] name = "ruff" version = "0.0.249" description = "An extremely fast Python linter, written in Rust." optional = false python-versions = ">=3.7" files = [ {file = "ruff-0.0.249-py3-none-macosx_10_7_x86_64.whl", hash = "sha256:03a26f1cb5605508de49d921d0970895b9e3ad4021f776a53be18fa95a4fc25b"}, {file = "ruff-0.0.249-py3-none-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl", hash = "sha256:46537d960221e97adc6a3556159ab3ae4b722b9985de13c50b436732d4659af0"}, {file = "ruff-0.0.249-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6c2dcc1f3053092aeedef8e47704e301b74687fa480fe5e7ebef2b0eb2e4a0bd"}, {file = "ruff-0.0.249-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:855cfe47d146a1eb68347025c7b5ad651c083343de6cb7ccf90585bda3e381db"}, {file = "ruff-0.0.249-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bf3af16748c8539a48451edbcb687994eccc6a764c95f42de22195007ae13a24"}, {file = "ruff-0.0.249-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:2815e05ba168dee6708dbbdab8d0c145bb3b0085c91ee552839c1c18a52f6cb1"}, {file = "ruff-0.0.249-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6ab43389216cc8403db84992977e6f5e8fee83bd10aca05e1f2f262754cd8384"}, {file = "ruff-0.0.249-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7b67c44ab260d3a838ec237c7234be1098bf2ef1421036fbbb229698513d1fc3"}, {file = "ruff-0.0.249-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e3d859744e1cc95ad5e52c4642509b3abb5ea0833f0529c380c2731b8cab5726"}, {file = "ruff-0.0.249-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:a6f494276ee281eb09c7026cc17df1bfc2fe59ab39a87196014ce093ff27f1a0"}, {file = "ruff-0.0.249-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:be23c57b9551d8fcf559755e5bc56ac5bcbc3215fc8a3190ea6ed1bb9133d8dd"}, {file = "ruff-0.0.249-py3-none-musllinux_1_2_i686.whl", hash = "sha256:980a3bce8ba38c9b47bc000915e80a672add9f7e9c5b128375486ec8cd8f860d"}, {file = "ruff-0.0.249-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:f1e988e9365b11c6d7796c0d4a0556f6a26f0627fe57e9e7411ff91f421fb502"}, {file = "ruff-0.0.249-py3-none-win32.whl", hash = "sha256:f4837a7e6d1ff81cb027695deb28793e0945cca8d88e87b46ff845ef38d52c82"}, {file = "ruff-0.0.249-py3-none-win_amd64.whl", hash = "sha256:4cc437ab55a35088008dbe9db598cd8e240b5f70fb88eb8ab6fa1de529007f30"}, {file = "ruff-0.0.249-py3-none-win_arm64.whl", hash = "sha256:3d2d11a7b750433f3acec30641faab673d101aa86a2ddfe4af8bcfa773b178e2"}, {file = "ruff-0.0.249.tar.gz", hash = "sha256:b590689f08ecef971c45555cbda6854cdf48f3828fc326802828e851b1a14b3d"}, ] [[package]] name = "s3transfer" version = "0.6.1" description = "An Amazon S3 Transfer Manager" optional = false python-versions = ">= 3.7" files = [ {file = "s3transfer-0.6.1-py3-none-any.whl", hash = "sha256:3c0da2d074bf35d6870ef157158641178a4204a6e689e82546083e31e0311346"}, {file = "s3transfer-0.6.1.tar.gz", hash = "sha256:640bb492711f4c0c0905e1f62b6aaeb771881935ad27884852411f8e9cacbca9"}, ] [package.dependencies] botocore = ">=1.12.36,<2.0a.0" [package.extras] crt = ["botocore[crt] (>=1.20.29,<2.0a.0)"] [[package]] name = "scikit-learn" version = "1.2.2" description = "A set of python modules for machine learning and data mining" optional = false python-versions = ">=3.8" files = [ {file = "scikit-learn-1.2.2.tar.gz", hash = "sha256:8429aea30ec24e7a8c7ed8a3fa6213adf3814a6efbea09e16e0a0c71e1a1a3d7"}, {file = "scikit_learn-1.2.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:99cc01184e347de485bf253d19fcb3b1a3fb0ee4cea5ee3c43ec0cc429b6d29f"}, {file = "scikit_learn-1.2.2-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:e6e574db9914afcb4e11ade84fab084536a895ca60aadea3041e85b8ac963edb"}, {file = "scikit_learn-1.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6fe83b676f407f00afa388dd1fdd49e5c6612e551ed84f3b1b182858f09e987d"}, {file = "scikit_learn-1.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2e2642baa0ad1e8f8188917423dd73994bf25429f8893ddbe115be3ca3183584"}, {file = "scikit_learn-1.2.2-cp310-cp310-win_amd64.whl", hash = "sha256:ad66c3848c0a1ec13464b2a95d0a484fd5b02ce74268eaa7e0c697b904f31d6c"}, {file = "scikit_learn-1.2.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:dfeaf8be72117eb61a164ea6fc8afb6dfe08c6f90365bde2dc16456e4bc8e45f"}, {file = "scikit_learn-1.2.2-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:fe0aa1a7029ed3e1dcbf4a5bc675aa3b1bc468d9012ecf6c6f081251ca47f590"}, {file = "scikit_learn-1.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:065e9673e24e0dc5113e2dd2b4ca30c9d8aa2fa90f4c0597241c93b63130d233"}, {file = "scikit_learn-1.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf036ea7ef66115e0d49655f16febfa547886deba20149555a41d28f56fd6d3c"}, {file = "scikit_learn-1.2.2-cp311-cp311-win_amd64.whl", hash = "sha256:8b0670d4224a3c2d596fd572fb4fa673b2a0ccfb07152688ebd2ea0b8c61025c"}, {file = "scikit_learn-1.2.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9c710ff9f9936ba8a3b74a455ccf0dcf59b230caa1e9ba0223773c490cab1e51"}, {file = "scikit_learn-1.2.2-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:2dd3ffd3950e3d6c0c0ef9033a9b9b32d910c61bd06cb8206303fb4514b88a49"}, {file = "scikit_learn-1.2.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:44b47a305190c28dd8dd73fc9445f802b6ea716669cfc22ab1eb97b335d238b1"}, {file = "scikit_learn-1.2.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:953236889928d104c2ef14027539f5f2609a47ebf716b8cbe4437e85dce42744"}, {file = "scikit_learn-1.2.2-cp38-cp38-win_amd64.whl", hash = "sha256:7f69313884e8eb311460cc2f28676d5e400bd929841a2c8eb8742ae78ebf7c20"}, {file = "scikit_learn-1.2.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8156db41e1c39c69aa2d8599ab7577af53e9e5e7a57b0504e116cc73c39138dd"}, {file = "scikit_learn-1.2.2-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:fe175ee1dab589d2e1033657c5b6bec92a8a3b69103e3dd361b58014729975c3"}, {file = "scikit_learn-1.2.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7d5312d9674bed14f73773d2acf15a3272639b981e60b72c9b190a0cffed5bad"}, {file = "scikit_learn-1.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ea061bf0283bf9a9f36ea3c5d3231ba2176221bbd430abd2603b1c3b2ed85c89"}, {file = "scikit_learn-1.2.2-cp39-cp39-win_amd64.whl", hash = "sha256:6477eed40dbce190f9f9e9d0d37e020815825b300121307942ec2110302b66a3"}, ] [package.dependencies] joblib = ">=1.1.1" numpy = ">=1.17.3" scipy = ">=1.3.2" threadpoolctl = ">=2.0.0" [package.extras] benchmark = ["matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "pandas (>=1.0.5)"] docs = ["Pillow (>=7.1.2)", "matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "plotly (>=5.10.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)", "sphinx (>=4.0.1)", "sphinx-gallery (>=0.7.0)", "sphinx-prompt (>=1.3.0)", "sphinxext-opengraph (>=0.4.2)"] examples = ["matplotlib (>=3.1.3)", "pandas (>=1.0.5)", "plotly (>=5.10.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)"] tests = ["black (>=22.3.0)", "flake8 (>=3.8.2)", "matplotlib (>=3.1.3)", "mypy (>=0.961)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "pooch (>=1.6.0)", "pyamg (>=4.0.0)", "pytest (>=5.3.1)", "pytest-cov (>=2.9.0)", "scikit-image (>=0.16.2)"] [[package]] name = "scipy" version = "1.9.3" description = "Fundamental algorithms for scientific computing in Python" optional = false python-versions = ">=3.8" files = [ {file = "scipy-1.9.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1884b66a54887e21addf9c16fb588720a8309a57b2e258ae1c7986d4444d3bc0"}, {file = "scipy-1.9.3-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:83b89e9586c62e787f5012e8475fbb12185bafb996a03257e9675cd73d3736dd"}, {file = "scipy-1.9.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1a72d885fa44247f92743fc20732ae55564ff2a519e8302fb7e18717c5355a8b"}, {file = "scipy-1.9.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d01e1dd7b15bd2449c8bfc6b7cc67d630700ed655654f0dfcf121600bad205c9"}, {file = "scipy-1.9.3-cp310-cp310-win_amd64.whl", hash = "sha256:68239b6aa6f9c593da8be1509a05cb7f9efe98b80f43a5861cd24c7557e98523"}, {file = "scipy-1.9.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b41bc822679ad1c9a5f023bc93f6d0543129ca0f37c1ce294dd9d386f0a21096"}, {file = "scipy-1.9.3-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:90453d2b93ea82a9f434e4e1cba043e779ff67b92f7a0e85d05d286a3625df3c"}, {file = "scipy-1.9.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:83c06e62a390a9167da60bedd4575a14c1f58ca9dfde59830fc42e5197283dab"}, {file = "scipy-1.9.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:abaf921531b5aeaafced90157db505e10345e45038c39e5d9b6c7922d68085cb"}, {file = "scipy-1.9.3-cp311-cp311-win_amd64.whl", hash = "sha256:06d2e1b4c491dc7d8eacea139a1b0b295f74e1a1a0f704c375028f8320d16e31"}, {file = "scipy-1.9.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5a04cd7d0d3eff6ea4719371cbc44df31411862b9646db617c99718ff68d4840"}, {file = "scipy-1.9.3-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:545c83ffb518094d8c9d83cce216c0c32f8c04aaf28b92cc8283eda0685162d5"}, {file = "scipy-1.9.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0d54222d7a3ba6022fdf5773931b5d7c56efe41ede7f7128c7b1637700409108"}, {file = "scipy-1.9.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cff3a5295234037e39500d35316a4c5794739433528310e117b8a9a0c76d20fc"}, {file = "scipy-1.9.3-cp38-cp38-win_amd64.whl", hash = "sha256:2318bef588acc7a574f5bfdff9c172d0b1bf2c8143d9582e05f878e580a3781e"}, {file = "scipy-1.9.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d644a64e174c16cb4b2e41dfea6af722053e83d066da7343f333a54dae9bc31c"}, {file = "scipy-1.9.3-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:da8245491d73ed0a994ed9c2e380fd058ce2fa8a18da204681f2fe1f57f98f95"}, {file = "scipy-1.9.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4db5b30849606a95dcf519763dd3ab6fe9bd91df49eba517359e450a7d80ce2e"}, {file = "scipy-1.9.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c68db6b290cbd4049012990d7fe71a2abd9ffbe82c0056ebe0f01df8be5436b0"}, {file = "scipy-1.9.3-cp39-cp39-win_amd64.whl", hash = "sha256:5b88e6d91ad9d59478fafe92a7c757d00c59e3bdc3331be8ada76a4f8d683f58"}, {file = "scipy-1.9.3.tar.gz", hash = "sha256:fbc5c05c85c1a02be77b1ff591087c83bc44579c6d2bd9fb798bb64ea5e1a027"}, ] [package.dependencies] numpy = ">=1.18.5,<1.26.0" [package.extras] dev = ["flake8", "mypy", "pycodestyle", "typing_extensions"] doc = ["matplotlib (>2)", "numpydoc", "pydata-sphinx-theme (==0.9.0)", "sphinx (!=4.1.0)", "sphinx-panels (>=0.5.2)", "sphinx-tabs"] test = ["asv", "gmpy2", "mpmath", "pytest", "pytest-cov", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] [[package]] name = "semver" version = "3.0.0" description = "Python helper for Semantic Versioning (https://semver.org)" optional = true python-versions = ">=3.7" files = [ {file = "semver-3.0.0-py3-none-any.whl", hash = "sha256:ab4f69fb1d1ecfb5d81f96411403d7a611fa788c45d252cf5b408025df3ab6ce"}, {file = "semver-3.0.0.tar.gz", hash = "sha256:94df43924c4521ec7d307fc86da1531db6c2c33d9d5cdc3e64cca0eb68569269"}, ] [[package]] name = "send2trash" version = "1.8.2" description = "Send file to trash natively under Mac OS X, Windows and Linux" optional = false python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,>=2.7" files = [ {file = "Send2Trash-1.8.2-py3-none-any.whl", hash = "sha256:a384719d99c07ce1eefd6905d2decb6f8b7ed054025bb0e618919f945de4f679"}, {file = "Send2Trash-1.8.2.tar.gz", hash = "sha256:c132d59fa44b9ca2b1699af5c86f57ce9f4c5eb56629d5d55fbb7a35f84e2312"}, ] [package.extras] nativelib = ["pyobjc-framework-Cocoa", "pywin32"] objc = ["pyobjc-framework-Cocoa"] win32 = ["pywin32"] [[package]] name = "sentence-transformers" version = "2.2.2" description = "Multilingual text embeddings" optional = false python-versions = ">=3.6.0" files = [ {file = "sentence-transformers-2.2.2.tar.gz", hash = "sha256:dbc60163b27de21076c9a30d24b5b7b6fa05141d68cf2553fa9a77bf79a29136"}, ] [package.dependencies] huggingface-hub = ">=0.4.0" nltk = "*" numpy = "*" scikit-learn = "*" scipy = "*" sentencepiece = "*" torch = ">=1.6.0" torchvision = "*" tqdm = "*" transformers = ">=4.6.0,<5.0.0" [[package]] name = "sentencepiece" version = "0.1.99" description = "SentencePiece python wrapper" optional = false python-versions = "*" files = [ {file = "sentencepiece-0.1.99-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:0eb528e70571b7c02723e5804322469b82fe7ea418c96051d0286c0fa028db73"}, {file = "sentencepiece-0.1.99-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:77d7fafb2c4e4659cbdf303929503f37a26eabc4ff31d3a79bf1c5a1b338caa7"}, {file = "sentencepiece-0.1.99-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:be9cf5b9e404c245aeb3d3723c737ba7a8f5d4ba262ef233a431fa6c45f732a0"}, {file = "sentencepiece-0.1.99-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:baed1a26464998f9710d20e52607c29ffd4293e7c71c6a1f83f51ad0911ec12c"}, {file = "sentencepiece-0.1.99-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9832f08bb372d4c8b567612f8eab9e36e268dff645f1c28f9f8e851be705f6d1"}, {file = "sentencepiece-0.1.99-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:019e7535108e309dae2b253a75834fc3128240aa87c00eb80732078cdc182588"}, {file = "sentencepiece-0.1.99-cp310-cp310-win32.whl", hash = "sha256:fa16a830416bb823fa2a52cbdd474d1f7f3bba527fd2304fb4b140dad31bb9bc"}, {file = "sentencepiece-0.1.99-cp310-cp310-win_amd64.whl", hash = "sha256:14b0eccb7b641d4591c3e12ae44cab537d68352e4d3b6424944f0c447d2348d5"}, {file = "sentencepiece-0.1.99-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:6d3c56f24183a1e8bd61043ff2c58dfecdc68a5dd8955dc13bab83afd5f76b81"}, {file = "sentencepiece-0.1.99-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ed6ea1819fd612c989999e44a51bf556d0ef6abfb553080b9be3d347e18bcfb7"}, {file = "sentencepiece-0.1.99-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a2a0260cd1fb7bd8b4d4f39dc2444a8d5fd4e0a0c4d5c899810ef1abf99b2d45"}, {file = "sentencepiece-0.1.99-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8a1abff4d1ff81c77cac3cc6fefa34fa4b8b371e5ee51cb7e8d1ebc996d05983"}, {file = "sentencepiece-0.1.99-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:004e6a621d4bc88978eecb6ea7959264239a17b70f2cbc348033d8195c9808ec"}, {file = "sentencepiece-0.1.99-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db361e03342c41680afae5807590bc88aa0e17cfd1a42696a160e4005fcda03b"}, {file = "sentencepiece-0.1.99-cp311-cp311-win32.whl", hash = "sha256:2d95e19168875b70df62916eb55428a0cbcb834ac51d5a7e664eda74def9e1e0"}, {file = "sentencepiece-0.1.99-cp311-cp311-win_amd64.whl", hash = "sha256:f90d73a6f81248a909f55d8e6ef56fec32d559e1e9af045f0b0322637cb8e5c7"}, {file = "sentencepiece-0.1.99-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:62e24c81e74bd87a6e0d63c51beb6527e4c0add67e1a17bac18bcd2076afcfeb"}, {file = "sentencepiece-0.1.99-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:57efcc2d51caff20d9573567d9fd3f854d9efe613ed58a439c78c9f93101384a"}, {file = "sentencepiece-0.1.99-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6a904c46197993bd1e95b93a6e373dca2f170379d64441041e2e628ad4afb16f"}, {file = "sentencepiece-0.1.99-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d89adf59854741c0d465f0e1525b388c0d174f611cc04af54153c5c4f36088c4"}, {file = "sentencepiece-0.1.99-cp36-cp36m-win32.whl", hash = "sha256:47c378146928690d1bc106fdf0da768cebd03b65dd8405aa3dd88f9c81e35dba"}, {file = "sentencepiece-0.1.99-cp36-cp36m-win_amd64.whl", hash = "sha256:9ba142e7a90dd6d823c44f9870abdad45e6c63958eb60fe44cca6828d3b69da2"}, {file = "sentencepiece-0.1.99-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b7b1a9ae4d7c6f1f867e63370cca25cc17b6f4886729595b885ee07a58d3cec3"}, {file = "sentencepiece-0.1.99-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d0f644c9d4d35c096a538507b2163e6191512460035bf51358794a78515b74f7"}, {file = "sentencepiece-0.1.99-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c8843d23a0f686d85e569bd6dcd0dd0e0cbc03731e63497ca6d5bacd18df8b85"}, {file = "sentencepiece-0.1.99-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:33e6f690a1caebb4867a2e367afa1918ad35be257ecdb3455d2bbd787936f155"}, {file = "sentencepiece-0.1.99-cp37-cp37m-win32.whl", hash = "sha256:8a321866c2f85da7beac74a824b4ad6ddc2a4c9bccd9382529506d48f744a12c"}, {file = "sentencepiece-0.1.99-cp37-cp37m-win_amd64.whl", hash = "sha256:c42f753bcfb7661c122a15b20be7f684b61fc8592c89c870adf52382ea72262d"}, {file = "sentencepiece-0.1.99-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:85b476406da69c70586f0bb682fcca4c9b40e5059814f2db92303ea4585c650c"}, {file = "sentencepiece-0.1.99-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:cfbcfe13c69d3f87b7fcd5da168df7290a6d006329be71f90ba4f56bc77f8561"}, {file = "sentencepiece-0.1.99-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:445b0ec381af1cd4eef95243e7180c63d9c384443c16c4c47a28196bd1cda937"}, {file = "sentencepiece-0.1.99-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c6890ea0f2b4703f62d0bf27932e35808b1f679bdb05c7eeb3812b935ba02001"}, {file = "sentencepiece-0.1.99-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fb71af492b0eefbf9f2501bec97bcd043b6812ab000d119eaf4bd33f9e283d03"}, {file = "sentencepiece-0.1.99-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:27b866b5bd3ddd54166bbcbf5c8d7dd2e0b397fac8537991c7f544220b1f67bc"}, {file = "sentencepiece-0.1.99-cp38-cp38-win32.whl", hash = "sha256:b133e8a499eac49c581c3c76e9bdd08c338cc1939e441fee6f92c0ccb5f1f8be"}, {file = "sentencepiece-0.1.99-cp38-cp38-win_amd64.whl", hash = "sha256:0eaf3591dd0690a87f44f4df129cf8d05d8a4029b5b6709b489b8e27f9a9bcff"}, {file = "sentencepiece-0.1.99-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:38efeda9bbfb55052d482a009c6a37e52f42ebffcea9d3a98a61de7aee356a28"}, {file = "sentencepiece-0.1.99-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6c030b081dc1e1bcc9fadc314b19b740715d3d566ad73a482da20d7d46fd444c"}, {file = "sentencepiece-0.1.99-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:84dbe53e02e4f8a2e45d2ac3e430d5c83182142658e25edd76539b7648928727"}, {file = "sentencepiece-0.1.99-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0b0f55d0a0ee1719b4b04221fe0c9f0c3461dc3dabd77a035fa2f4788eb3ef9a"}, {file = "sentencepiece-0.1.99-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:18e800f206cd235dc27dc749299e05853a4e4332e8d3dfd81bf13d0e5b9007d9"}, {file = "sentencepiece-0.1.99-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2ae1c40cda8f9d5b0423cfa98542735c0235e7597d79caf318855cdf971b2280"}, {file = "sentencepiece-0.1.99-cp39-cp39-win32.whl", hash = "sha256:c84ce33af12ca222d14a1cdd37bd76a69401e32bc68fe61c67ef6b59402f4ab8"}, {file = "sentencepiece-0.1.99-cp39-cp39-win_amd64.whl", hash = "sha256:350e5c74d739973f1c9643edb80f7cc904dc948578bcb1d43c6f2b173e5d18dd"}, {file = "sentencepiece-0.1.99.tar.gz", hash = "sha256:189c48f5cb2949288f97ccdb97f0473098d9c3dcf5a3d99d4eabe719ec27297f"}, ] [[package]] name = "setuptools" version = "67.7.2" description = "Easily download, build, install, upgrade, and uninstall Python packages" optional = false python-versions = ">=3.7" files = [ {file = "setuptools-67.7.2-py3-none-any.whl", hash = "sha256:23aaf86b85ca52ceb801d32703f12d77517b2556af839621c641fca11287952b"}, {file = "setuptools-67.7.2.tar.gz", hash = "sha256:f104fa03692a2602fa0fec6c6a9e63b6c8a968de13e17c026957dd1f53d80990"}, ] [package.extras] docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-hoverxref (<2)", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (==0.8.3)", "sphinx-reredirects", "sphinxcontrib-towncrier"] testing = ["build[virtualenv]", "filelock (>=3.4.0)", "flake8 (<5)", "flake8-2020", "ini2toml[lite] (>=0.9)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "pip (>=19.1)", "pip-run (>=8.8)", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)", "pytest-perf", "pytest-timeout", "pytest-xdist", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"] testing-integration = ["build[virtualenv]", "filelock (>=3.4.0)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "pytest", "pytest-enabler", "pytest-xdist", "tomli", "virtualenv (>=13.0.0)", "wheel"] [[package]] name = "sgmllib3k" version = "1.0.0" description = "Py3k port of sgmllib." optional = false python-versions = "*" files = [ {file = "sgmllib3k-1.0.0.tar.gz", hash = "sha256:7868fb1c8bfa764c1ac563d3cf369c381d1325d36124933a726f29fcdaa812e9"}, ] [[package]] name = "six" version = "1.16.0" description = "Python 2 and 3 compatibility utilities" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" files = [ {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"}, {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, ] [[package]] name = "smart-open" version = "6.3.0" description = "Utils for streaming large files (S3, HDFS, GCS, Azure Blob Storage, gzip, bz2...)" optional = true python-versions = ">=3.6,<4.0" files = [ {file = "smart_open-6.3.0-py3-none-any.whl", hash = "sha256:b4c9ae193ad6d3e7add50944b86afa0d150bd821ab8ec21edb26d9a06b66f6a8"}, {file = "smart_open-6.3.0.tar.gz", hash = "sha256:d5238825fe9a9340645fac3d75b287c08fbb99fb2b422477de781c9f5f09e019"}, ] [package.extras] all = ["azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage (>=2.6.0)", "paramiko", "requests"] azure = ["azure-common", "azure-core", "azure-storage-blob"] gcs = ["google-cloud-storage (>=2.6.0)"] http = ["requests"] s3 = ["boto3"] ssh = ["paramiko"] test = ["azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage (>=2.6.0)", "moto[server]", "paramiko", "pytest", "pytest-rerunfailures", "requests", "responses"] webhdfs = ["requests"] [[package]] name = "sniffio" version = "1.3.0" description = "Sniff out which async library your code is running under" optional = false python-versions = ">=3.7" files = [ {file = "sniffio-1.3.0-py3-none-any.whl", hash = "sha256:eecefdce1e5bbfb7ad2eeaabf7c1eeb404d7757c379bd1f7e5cce9d8bf425384"}, {file = "sniffio-1.3.0.tar.gz", hash = "sha256:e60305c5e5d314f5389259b7f22aaa33d8f7dee49763119234af3755c55b9101"}, ] [[package]] name = "snowballstemmer" version = "2.2.0" description = "This package provides 29 stemmers for 28 languages generated from Snowball algorithms." optional = false python-versions = "*" files = [ {file = "snowballstemmer-2.2.0-py2.py3-none-any.whl", hash = "sha256:c8e1716e83cc398ae16824e5572ae04e0d9fc2c6b985fb0f900f5f0c96ecba1a"}, {file = "snowballstemmer-2.2.0.tar.gz", hash = "sha256:09b16deb8547d3412ad7b590689584cd0fe25ec8db3be37788be3810cbf19cb1"}, ] [[package]] name = "soupsieve" version = "2.4.1" description = "A modern CSS selector implementation for Beautiful Soup." optional = false python-versions = ">=3.7" files = [ {file = "soupsieve-2.4.1-py3-none-any.whl", hash = "sha256:1c1bfee6819544a3447586c889157365a27e10d88cde3ad3da0cf0ddf646feb8"}, {file = "soupsieve-2.4.1.tar.gz", hash = "sha256:89d12b2d5dfcd2c9e8c22326da9d9aa9cb3dfab0a83a024f05704076ee8d35ea"}, ] [[package]] name = "spacy" version = "3.5.3" description = "Industrial-strength Natural Language Processing (NLP) in Python" optional = true python-versions = ">=3.6" files = [ {file = "spacy-3.5.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:4eaa68b677b1292381bade13d5b20342e31791d3ffdaa261eca3c3c0687bf53f"}, {file = "spacy-3.5.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:0b628bdeb6484eb4bfb1141d43013420d0356fc111033430292aea29b34b79e3"}, {file = "spacy-3.5.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:860702748e654489e37464a5fca1444ee1b2534572084d416534a88646639c48"}, {file = "spacy-3.5.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6ff8e6408d7672cdfd1b2035d2b5ca36b6c107c9b46debd9e5ba634700f761f5"}, {file = "spacy-3.5.3-cp310-cp310-win_amd64.whl", hash = "sha256:2474f1a78557c5697529c48c5c9190f590ead21fbddf47cde757b399b807746c"}, {file = "spacy-3.5.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:59a473b8fbd79a22fdc98c017b14135b5c60c1813de01490a1eaa232a95a538b"}, {file = "spacy-3.5.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:902f511ea8f8d9336d62b252f61d9068d93824ae70c5cb048954a3017cc38f1b"}, {file = "spacy-3.5.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c555e20187d7db210e3823eedff0f6fb029d23bc8e138342791f305510bf0c66"}, {file = "spacy-3.5.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a59cea275f5724494c77aec66b1758e42268504c34d055a6db2e95f652bd87a5"}, {file = "spacy-3.5.3-cp311-cp311-win_amd64.whl", hash = "sha256:3549364d4b2bf01736667e3fba3ce599e73ba281f003225de1033a648d5563f9"}, {file = "spacy-3.5.3-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0c83c11310f9dd3872659e7907ee44b128b850775f9765557f890d817362e1df"}, {file = "spacy-3.5.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9248ed4f4daa1e969dda69fe725b2085edbda10c562642d37212f2703971b4ca"}, {file = "spacy-3.5.3-cp36-cp36m-win_amd64.whl", hash = "sha256:98dc4240dd2e27ce33a63f796ed3baf1c1b474e85ade5083b6cb604021423bf1"}, {file = "spacy-3.5.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:0ef98c2f5e36682a88b55ed841548e27bf8a400746c6bba406933f299ea873fc"}, {file = "spacy-3.5.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f01ee5285a40d09c45c71bf756eb360de6ca4bb7d00aab4ca20e5379bb69bce"}, {file = "spacy-3.5.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fa543a185aabf8b33b7e280849fa4f1ae552a34e95a4b6a910d322527def7064"}, {file = "spacy-3.5.3-cp37-cp37m-win_amd64.whl", hash = "sha256:13e54e45b447b6f52c7a050c69898fb7cab5dfc769dc073cc325b4ee8b278893"}, {file = "spacy-3.5.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:acc3ec415ba804515ff1449b13fefc07b393ea6a1ac3461b66b32f62b852467b"}, {file = "spacy-3.5.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:87caac0b18404a3cd43da1823914f7f54b60d640e36cc7240a8d05dff548be9e"}, {file = "spacy-3.5.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d82d1aeae9e8ee04ccf863a42690493b0b0b912be81783bf737c5963e6e5a8c4"}, {file = "spacy-3.5.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:77032fb9f1434ead183e5755e8b4edb58383577c9a14cdb784106aa9771126fc"}, {file = "spacy-3.5.3-cp38-cp38-win_amd64.whl", hash = "sha256:f58297c982823b19476a8efab302d269202af997c0b6500590ee55cd363428e8"}, {file = "spacy-3.5.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d584ff7e6f0c044a5b17ceb6276ea65f054b157f31ce924318bf9b2c75fb8729"}, {file = "spacy-3.5.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:87a5d0d87bc00b0b2c620bea3e8b226cd6913130a723dcaaa07b03e5d933ff59"}, {file = "spacy-3.5.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a06285f19aaf1b4ea8d0c60285cd8712f9577a4cc64984e0841fa213a465e364"}, {file = "spacy-3.5.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9f5c4ca98f12e14f13dba08139c62671a623e6ff2d0d96783f8d09b33a8cd973"}, {file = "spacy-3.5.3-cp39-cp39-win_amd64.whl", hash = "sha256:c28b1bfda0d5b0abba961c8679e21767493d48572c94d54acb4018d27f89f4e1"}, {file = "spacy-3.5.3.tar.gz", hash = "sha256:35971d6721576538d6c423c66a09ce00bf66e10e40726a57b7a81993180c248c"}, ] [package.dependencies] catalogue = ">=2.0.6,<2.1.0" cymem = ">=2.0.2,<2.1.0" jinja2 = "*" langcodes = ">=3.2.0,<4.0.0" murmurhash = ">=0.28.0,<1.1.0" numpy = ">=1.15.0" packaging = ">=20.0" pathy = ">=0.10.0" preshed = ">=3.0.2,<3.1.0" pydantic = ">=1.7.4,<1.8 || >1.8,<1.8.1 || >1.8.1,<1.11.0" requests = ">=2.13.0,<3.0.0" setuptools = "*" smart-open = ">=5.2.1,<7.0.0" spacy-legacy = ">=3.0.11,<3.1.0" spacy-loggers = ">=1.0.0,<2.0.0" srsly = ">=2.4.3,<3.0.0" thinc = ">=8.1.8,<8.2.0" tqdm = ">=4.38.0,<5.0.0" typer = ">=0.3.0,<0.8.0" wasabi = ">=0.9.1,<1.2.0" [package.extras] apple = ["thinc-apple-ops (>=0.1.0.dev0,<1.0.0)"] cuda = ["cupy (>=5.0.0b4,<13.0.0)"] cuda-autodetect = ["cupy-wheel (>=11.0.0,<13.0.0)"] cuda100 = ["cupy-cuda100 (>=5.0.0b4,<13.0.0)"] cuda101 = ["cupy-cuda101 (>=5.0.0b4,<13.0.0)"] cuda102 = ["cupy-cuda102 (>=5.0.0b4,<13.0.0)"] cuda110 = ["cupy-cuda110 (>=5.0.0b4,<13.0.0)"] cuda111 = ["cupy-cuda111 (>=5.0.0b4,<13.0.0)"] cuda112 = ["cupy-cuda112 (>=5.0.0b4,<13.0.0)"] cuda113 = ["cupy-cuda113 (>=5.0.0b4,<13.0.0)"] cuda114 = ["cupy-cuda114 (>=5.0.0b4,<13.0.0)"] cuda115 = ["cupy-cuda115 (>=5.0.0b4,<13.0.0)"] cuda116 = ["cupy-cuda116 (>=5.0.0b4,<13.0.0)"] cuda117 = ["cupy-cuda117 (>=5.0.0b4,<13.0.0)"] cuda11x = ["cupy-cuda11x (>=11.0.0,<13.0.0)"] cuda80 = ["cupy-cuda80 (>=5.0.0b4,<13.0.0)"] cuda90 = ["cupy-cuda90 (>=5.0.0b4,<13.0.0)"] cuda91 = ["cupy-cuda91 (>=5.0.0b4,<13.0.0)"] cuda92 = ["cupy-cuda92 (>=5.0.0b4,<13.0.0)"] ja = ["sudachidict-core (>=20211220)", "sudachipy (>=0.5.2,!=0.6.1)"] ko = ["natto-py (>=0.9.0)"] lookups = ["spacy-lookups-data (>=1.0.3,<1.1.0)"] ray = ["spacy-ray (>=0.1.0,<1.0.0)"] th = ["pythainlp (>=2.0)"] transformers = ["spacy-transformers (>=1.1.2,<1.3.0)"] [[package]] name = "spacy-legacy" version = "3.0.12" description = "Legacy registered functions for spaCy backwards compatibility" optional = true python-versions = ">=3.6" files = [ {file = "spacy-legacy-3.0.12.tar.gz", hash = "sha256:b37d6e0c9b6e1d7ca1cf5bc7152ab64a4c4671f59c85adaf7a3fcb870357a774"}, {file = "spacy_legacy-3.0.12-py2.py3-none-any.whl", hash = "sha256:476e3bd0d05f8c339ed60f40986c07387c0a71479245d6d0f4298dbd52cda55f"}, ] [[package]] name = "spacy-loggers" version = "1.0.4" description = "Logging utilities for SpaCy" optional = true python-versions = ">=3.6" files = [ {file = "spacy-loggers-1.0.4.tar.gz", hash = "sha256:e6f983bf71230091d5bb7b11bf64bd54415eca839108d5f83d9155d0ba93bf28"}, {file = "spacy_loggers-1.0.4-py3-none-any.whl", hash = "sha256:e050bf2e63208b2f096b777e494971c962ad7c1dc997641c8f95c622550044ae"}, ] [[package]] name = "sphinx" version = "4.5.0" description = "Python documentation generator" optional = false python-versions = ">=3.6" files = [ {file = "Sphinx-4.5.0-py3-none-any.whl", hash = "sha256:ebf612653238bcc8f4359627a9b7ce44ede6fdd75d9d30f68255c7383d3a6226"}, {file = "Sphinx-4.5.0.tar.gz", hash = "sha256:7bf8ca9637a4ee15af412d1a1d9689fec70523a68ca9bb9127c2f3eeb344e2e6"}, ] [package.dependencies] alabaster = ">=0.7,<0.8" babel = ">=1.3" colorama = {version = ">=0.3.5", markers = "sys_platform == \"win32\""} docutils = ">=0.14,<0.18" imagesize = "*" importlib-metadata = {version = ">=4.4", markers = "python_version < \"3.10\""} Jinja2 = ">=2.3" packaging = "*" Pygments = ">=2.0" requests = ">=2.5.0" snowballstemmer = ">=1.1" sphinxcontrib-applehelp = "*" sphinxcontrib-devhelp = "*" sphinxcontrib-htmlhelp = ">=2.0.0" sphinxcontrib-jsmath = "*" sphinxcontrib-qthelp = "*" sphinxcontrib-serializinghtml = ">=1.1.5" [package.extras] docs = ["sphinxcontrib-websupport"] lint = ["docutils-stubs", "flake8 (>=3.5.0)", "isort", "mypy (>=0.931)", "types-requests", "types-typed-ast"] test = ["cython", "html5lib", "pytest", "pytest-cov", "typed-ast"] [[package]] name = "sphinx-autobuild" version = "2021.3.14" description = "Rebuild Sphinx documentation on changes, with live-reload in the browser." optional = false python-versions = ">=3.6" files = [ {file = "sphinx-autobuild-2021.3.14.tar.gz", hash = "sha256:de1ca3b66e271d2b5b5140c35034c89e47f263f2cd5db302c9217065f7443f05"}, {file = "sphinx_autobuild-2021.3.14-py3-none-any.whl", hash = "sha256:8fe8cbfdb75db04475232f05187c776f46f6e9e04cacf1e49ce81bdac649ccac"}, ] [package.dependencies] colorama = "*" livereload = "*" sphinx = "*" [package.extras] test = ["pytest", "pytest-cov"] [[package]] name = "sphinx-book-theme" version = "0.3.3" description = "A clean book theme for scientific explanations and documentation with Sphinx" optional = false python-versions = ">=3.7" files = [ {file = "sphinx_book_theme-0.3.3-py3-none-any.whl", hash = "sha256:9685959dbbb492af005165ef1b9229fdd5d5431580ac181578beae3b4d012d91"}, {file = "sphinx_book_theme-0.3.3.tar.gz", hash = "sha256:0ec36208ff14c6d6bf8aee1f1f8268e0c6e2bfa3cef6e41143312b25275a6217"}, ] [package.dependencies] pydata-sphinx-theme = ">=0.8.0,<0.9.0" pyyaml = "*" sphinx = ">=3,<5" [package.extras] code-style = ["pre-commit (>=2.7.0,<2.8.0)"] doc = ["ablog (>=0.10.13,<0.11.0)", "folium", "ipywidgets", "matplotlib", "myst-nb (>=0.13.2,<0.14.0)", "nbclient", "numpy", "numpydoc", "pandas", "plotly", "sphinx (>=4.0,<5.0)", "sphinx-copybutton", "sphinx-design", "sphinx-examples", "sphinx-tabs", "sphinx-thebe (>=0.1.1)", "sphinx-togglebutton (>=0.2.1)", "sphinxcontrib-bibtex (>=2.2,<3.0)", "sphinxcontrib-youtube", "sphinxext-opengraph"] test = ["beautifulsoup4 (>=4.6.1,<5)", "coverage", "myst-nb (>=0.13.2,<0.14.0)", "pytest (>=6.0.1,<6.1.0)", "pytest-cov", "pytest-regressions (>=2.0.1,<2.1.0)", "sphinx_thebe"] [[package]] name = "sphinx-copybutton" version = "0.5.2" description = "Add a copy button to each of your code cells." optional = false python-versions = ">=3.7" files = [ {file = "sphinx-copybutton-0.5.2.tar.gz", hash = "sha256:4cf17c82fb9646d1bc9ca92ac280813a3b605d8c421225fd9913154103ee1fbd"}, {file = "sphinx_copybutton-0.5.2-py3-none-any.whl", hash = "sha256:fb543fd386d917746c9a2c50360c7905b605726b9355cd26e9974857afeae06e"}, ] [package.dependencies] sphinx = ">=1.8" [package.extras] code-style = ["pre-commit (==2.12.1)"] rtd = ["ipython", "myst-nb", "sphinx", "sphinx-book-theme", "sphinx-examples"] [[package]] name = "sphinx-panels" version = "0.6.0" description = "A sphinx extension for creating panels in a grid layout." optional = false python-versions = "*" files = [ {file = "sphinx-panels-0.6.0.tar.gz", hash = "sha256:d36dcd26358117e11888f7143db4ac2301ebe90873ac00627bf1fe526bf0f058"}, {file = "sphinx_panels-0.6.0-py3-none-any.whl", hash = "sha256:bd64afaf85c07f8096d21c8247fc6fd757e339d1be97832c8832d6ae5ed2e61d"}, ] [package.dependencies] docutils = "*" sphinx = ">=2,<5" [package.extras] code-style = ["pre-commit (>=2.7.0,<2.8.0)"] live-dev = ["sphinx-autobuild", "web-compile (>=0.2.0,<0.3.0)"] testing = ["pytest (>=6.0.1,<6.1.0)", "pytest-regressions (>=2.0.1,<2.1.0)"] themes = ["myst-parser (>=0.12.9,<0.13.0)", "pydata-sphinx-theme (>=0.4.0,<0.5.0)", "sphinx-book-theme (>=0.0.36,<0.1.0)", "sphinx-rtd-theme"] [[package]] name = "sphinx-rtd-theme" version = "1.2.0" description = "Read the Docs theme for Sphinx" optional = false python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" files = [ {file = "sphinx_rtd_theme-1.2.0-py2.py3-none-any.whl", hash = "sha256:f823f7e71890abe0ac6aaa6013361ea2696fc8d3e1fa798f463e82bdb77eeff2"}, {file = "sphinx_rtd_theme-1.2.0.tar.gz", hash = "sha256:a0d8bd1a2ed52e0b338cbe19c4b2eef3c5e7a048769753dac6a9f059c7b641b8"}, ] [package.dependencies] docutils = "<0.19" sphinx = ">=1.6,<7" sphinxcontrib-jquery = {version = ">=2.0.0,<3.0.0 || >3.0.0", markers = "python_version > \"3\""} [package.extras] dev = ["bump2version", "sphinxcontrib-httpdomain", "transifex-client", "wheel"] [[package]] name = "sphinx-typlog-theme" version = "0.8.0" description = "A typlog Sphinx theme" optional = false python-versions = "*" files = [ {file = "sphinx_typlog_theme-0.8.0-py2.py3-none-any.whl", hash = "sha256:b0ab728ab31d071523af0229bcb6427a13493958b3fc2bb7db381520fab77de4"}, {file = "sphinx_typlog_theme-0.8.0.tar.gz", hash = "sha256:61dbf97b1fde441bd03a5409874571e229898b67fb3080400837b8f4cee46659"}, ] [package.extras] dev = ["livereload", "sphinx"] [[package]] name = "sphinxcontrib-applehelp" version = "1.0.4" description = "sphinxcontrib-applehelp is a Sphinx extension which outputs Apple help books" optional = false python-versions = ">=3.8" files = [ {file = "sphinxcontrib-applehelp-1.0.4.tar.gz", hash = "sha256:828f867945bbe39817c210a1abfd1bc4895c8b73fcaade56d45357a348a07d7e"}, {file = "sphinxcontrib_applehelp-1.0.4-py3-none-any.whl", hash = "sha256:29d341f67fb0f6f586b23ad80e072c8e6ad0b48417db2bde114a4c9746feb228"}, ] [package.extras] lint = ["docutils-stubs", "flake8", "mypy"] test = ["pytest"] [[package]] name = "sphinxcontrib-devhelp" version = "1.0.2" description = "sphinxcontrib-devhelp is a sphinx extension which outputs Devhelp document." optional = false python-versions = ">=3.5" files = [ {file = "sphinxcontrib-devhelp-1.0.2.tar.gz", hash = "sha256:ff7f1afa7b9642e7060379360a67e9c41e8f3121f2ce9164266f61b9f4b338e4"}, {file = "sphinxcontrib_devhelp-1.0.2-py2.py3-none-any.whl", hash = "sha256:8165223f9a335cc1af7ffe1ed31d2871f325254c0423bc0c4c7cd1c1e4734a2e"}, ] [package.extras] lint = ["docutils-stubs", "flake8", "mypy"] test = ["pytest"] [[package]] name = "sphinxcontrib-htmlhelp" version = "2.0.1" description = "sphinxcontrib-htmlhelp is a sphinx extension which renders HTML help files" optional = false python-versions = ">=3.8" files = [ {file = "sphinxcontrib-htmlhelp-2.0.1.tar.gz", hash = "sha256:0cbdd302815330058422b98a113195c9249825d681e18f11e8b1f78a2f11efff"}, {file = "sphinxcontrib_htmlhelp-2.0.1-py3-none-any.whl", hash = "sha256:c38cb46dccf316c79de6e5515e1770414b797162b23cd3d06e67020e1d2a6903"}, ] [package.extras] lint = ["docutils-stubs", "flake8", "mypy"] test = ["html5lib", "pytest"] [[package]] name = "sphinxcontrib-jquery" version = "4.1" description = "Extension to include jQuery on newer Sphinx releases" optional = false python-versions = ">=2.7" files = [ {file = "sphinxcontrib-jquery-4.1.tar.gz", hash = "sha256:1620739f04e36a2c779f1a131a2dfd49b2fd07351bf1968ced074365933abc7a"}, {file = "sphinxcontrib_jquery-4.1-py2.py3-none-any.whl", hash = "sha256:f936030d7d0147dd026a4f2b5a57343d233f1fc7b363f68b3d4f1cb0993878ae"}, ] [package.dependencies] Sphinx = ">=1.8" [[package]] name = "sphinxcontrib-jsmath" version = "1.0.1" description = "A sphinx extension which renders display math in HTML via JavaScript" optional = false python-versions = ">=3.5" files = [ {file = "sphinxcontrib-jsmath-1.0.1.tar.gz", hash = "sha256:a9925e4a4587247ed2191a22df5f6970656cb8ca2bd6284309578f2153e0c4b8"}, {file = "sphinxcontrib_jsmath-1.0.1-py2.py3-none-any.whl", hash = "sha256:2ec2eaebfb78f3f2078e73666b1415417a116cc848b72e5172e596c871103178"}, ] [package.extras] test = ["flake8", "mypy", "pytest"] [[package]] name = "sphinxcontrib-qthelp" version = "1.0.3" description = "sphinxcontrib-qthelp is a sphinx extension which outputs QtHelp document." optional = false python-versions = ">=3.5" files = [ {file = "sphinxcontrib-qthelp-1.0.3.tar.gz", hash = "sha256:4c33767ee058b70dba89a6fc5c1892c0d57a54be67ddd3e7875a18d14cba5a72"}, {file = "sphinxcontrib_qthelp-1.0.3-py2.py3-none-any.whl", hash = "sha256:bd9fc24bcb748a8d51fd4ecaade681350aa63009a347a8c14e637895444dfab6"}, ] [package.extras] lint = ["docutils-stubs", "flake8", "mypy"] test = ["pytest"] [[package]] name = "sphinxcontrib-serializinghtml" version = "1.1.5" description = "sphinxcontrib-serializinghtml is a sphinx extension which outputs \"serialized\" HTML files (json and pickle)." optional = false python-versions = ">=3.5" files = [ {file = "sphinxcontrib-serializinghtml-1.1.5.tar.gz", hash = "sha256:aa5f6de5dfdf809ef505c4895e51ef5c9eac17d0f287933eb49ec495280b6952"}, {file = "sphinxcontrib_serializinghtml-1.1.5-py2.py3-none-any.whl", hash = "sha256:352a9a00ae864471d3a7ead8d7d79f5fc0b57e8b3f95e9867eb9eb28999b92fd"}, ] [package.extras] lint = ["docutils-stubs", "flake8", "mypy"] test = ["pytest"] [[package]] name = "sqlalchemy" version = "2.0.13" description = "Database Abstraction Library" optional = false python-versions = ">=3.7" files = [ {file = "SQLAlchemy-2.0.13-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:7ad24c85f2a1caf0cd1ae8c2fdb668777a51a02246d9039420f94bd7dbfd37ed"}, {file = "SQLAlchemy-2.0.13-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:db24d2738add6db19d66ca820479d2f8f96d3f5a13c223f27fa28dd2f268a4bd"}, {file = "SQLAlchemy-2.0.13-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:72746ec17a7d9c5acf2c57a6e6190ceba3dad7127cd85bb17f24e90acc0e8e3f"}, {file = "SQLAlchemy-2.0.13-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:755f653d693f9b8f4286d987aec0d4279821bf8d179a9de8e8a5c685e77e57d6"}, {file = "SQLAlchemy-2.0.13-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e0d20f27edfd6f35b388da2bdcd7769e4ffa374fef8994980ced26eb287e033a"}, {file = "SQLAlchemy-2.0.13-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:37de4010f53f452e94e5ed6684480432cfe6a7a8914307ef819cd028b05b98d5"}, {file = "SQLAlchemy-2.0.13-cp310-cp310-win32.whl", hash = "sha256:31f72bb300eed7bfdb373c7c046121d84fa0ae6f383089db9505ff553ac27cef"}, {file = "SQLAlchemy-2.0.13-cp310-cp310-win_amd64.whl", hash = "sha256:ec2f525273528425ed2f51861b7b88955160cb95dddb17af0914077040aff4a5"}, {file = "SQLAlchemy-2.0.13-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2424a84f131901fbb20a99844d47b38b517174c6e964c8efb15ea6bb9ced8c2b"}, {file = "SQLAlchemy-2.0.13-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4f9832815257969b3ca9bf0501351e4c02c8d60cbd3ec9f9070d5b0f8852900e"}, {file = "SQLAlchemy-2.0.13-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a30e4db983faa5145e00ef6eaf894a2d503b3221dbf40a595f3011930d3d0bac"}, {file = "SQLAlchemy-2.0.13-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f717944aee40e9f48776cf85b523bb376aa2d9255a268d6d643c57ab387e7264"}, {file = "SQLAlchemy-2.0.13-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:9119795d2405eb23bf7e6707e228fe38124df029494c1b3576459aa3202ea432"}, {file = "SQLAlchemy-2.0.13-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:2ad9688debf1f0ae9c6e0706a4e2d33b1a01281317cee9bd1d7eef8020c5baac"}, {file = "SQLAlchemy-2.0.13-cp311-cp311-win32.whl", hash = "sha256:c61b89803a87a3b2a394089a7dadb79a6c64c89f2e8930cc187fec43b319f8d2"}, {file = "SQLAlchemy-2.0.13-cp311-cp311-win_amd64.whl", hash = "sha256:0aa2cbde85a6eab9263ab480f19e8882d022d30ebcdc14d69e6a8d7c07b0a871"}, {file = "SQLAlchemy-2.0.13-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:9ad883ac4f5225999747f0849643c4d0ec809d9ffe0ddc81a81dd3e68d0af463"}, {file = "SQLAlchemy-2.0.13-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e481e54db8cec1457ee7c05f6d2329e3298a304a70d3b5e2e82e77170850b385"}, {file = "SQLAlchemy-2.0.13-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b4e08e3831671008888bad5d160d757ef35ce34dbb73b78c3998d16aa1334c97"}, {file = "SQLAlchemy-2.0.13-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:f234ba3bb339ad17803009c8251f5ee65dcf283a380817fe486823b08b26383d"}, {file = "SQLAlchemy-2.0.13-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:375b7ba88f261dbd79d044f20cbcd919d88befb63f26af9d084614f10cdf97a6"}, {file = "SQLAlchemy-2.0.13-cp37-cp37m-win32.whl", hash = "sha256:9136d596111c742d061c0f99bab95c5370016c4101a32e72c2b634ad5e0757e6"}, {file = "SQLAlchemy-2.0.13-cp37-cp37m-win_amd64.whl", hash = "sha256:7612a7366a0855a04430363fb4ab392dc6818aaece0b2e325ff30ee77af9b21f"}, {file = "SQLAlchemy-2.0.13-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:49c138856035cb97f0053e5e57ba90ec936b28a0b8b0020d44965c7b0c0bf03a"}, {file = "SQLAlchemy-2.0.13-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a5e9e78332a5d841422b88b8c490dfd7f761e64b3430249b66c05d02f72ceab0"}, {file = "SQLAlchemy-2.0.13-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fd0febae872a4042da44e972c070f0fd49a85a0a7727ab6b85425f74348be14e"}, {file = "SQLAlchemy-2.0.13-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:566a0ac347cf4632f551e7b28bbd0d215af82e6ffaa2556f565a3b6b51dc3f81"}, {file = "SQLAlchemy-2.0.13-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:e5e5dc300a0ca8755ada1569f5caccfcdca28607dfb98b86a54996b288a8ebd3"}, {file = "SQLAlchemy-2.0.13-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:a25b4c4fdd633501233924f873e6f6cd8970732859ecfe4ecfb60635881f70be"}, {file = "SQLAlchemy-2.0.13-cp38-cp38-win32.whl", hash = "sha256:6777673d346071451bf7cccf8d0499024f1bd6a835fc90b4fe7af50373d92ce6"}, {file = "SQLAlchemy-2.0.13-cp38-cp38-win_amd64.whl", hash = "sha256:2f0a355264af0952570f18457102984e1f79510f856e5e0ae652e63316d1ca23"}, {file = "SQLAlchemy-2.0.13-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d93ebbff3dcf05274843ad8cf650b48ee634626e752c5d73614e5ec9df45f0ce"}, {file = "SQLAlchemy-2.0.13-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:fec56c7d1b6a22c8f01557de3975d962ee40270b81b60d1cfdadf2a105d10e84"}, {file = "SQLAlchemy-2.0.13-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0eb14a386a5b610305bec6639b35540b47f408b0a59f75999199aed5b3d40079"}, {file = "SQLAlchemy-2.0.13-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e2f3b5236079bc3e318a92bab2cc3f669cc32127075ab03ff61cacbae1c392b8"}, {file = "SQLAlchemy-2.0.13-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:bf1aae95e80acea02a0a622e1c12d3fefc52ffd0fe7bda70a30d070373fbb6c3"}, {file = "SQLAlchemy-2.0.13-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:cdf80359b641185ae7e580afb9f88cf560298f309a38182972091165bfe1225d"}, {file = "SQLAlchemy-2.0.13-cp39-cp39-win32.whl", hash = "sha256:f463598f9e51ccc04f0fe08500f9a0c3251a7086765350be418598b753b5561d"}, {file = "SQLAlchemy-2.0.13-cp39-cp39-win_amd64.whl", hash = "sha256:881cc388dded44ae6e17a1666364b98bd76bcdc71b869014ae725f06ba298e0e"}, {file = "SQLAlchemy-2.0.13-py3-none-any.whl", hash = "sha256:0d6979c9707f8b82366ba34b38b5a6fe32f75766b2e901f9820e271e95384070"}, {file = "SQLAlchemy-2.0.13.tar.gz", hash = "sha256:8d97b37b4e60073c38bcf94e289e3be09ef9be870de88d163f16e08f2b9ded1a"}, ] [package.dependencies] greenlet = {version = "!=0.4.17", markers = "platform_machine == \"win32\" or platform_machine == \"WIN32\" or platform_machine == \"AMD64\" or platform_machine == \"amd64\" or platform_machine == \"x86_64\" or platform_machine == \"ppc64le\" or platform_machine == \"aarch64\""} typing-extensions = ">=4.2.0" [package.extras] aiomysql = ["aiomysql", "greenlet (!=0.4.17)"] aiosqlite = ["aiosqlite", "greenlet (!=0.4.17)", "typing-extensions (!=3.10.0.1)"] asyncio = ["greenlet (!=0.4.17)"] asyncmy = ["asyncmy (>=0.2.3,!=0.2.4,!=0.2.6)", "greenlet (!=0.4.17)"] mariadb-connector = ["mariadb (>=1.0.1,!=1.1.2,!=1.1.5)"] mssql = ["pyodbc"] mssql-pymssql = ["pymssql"] mssql-pyodbc = ["pyodbc"] mypy = ["mypy (>=0.910)"] mysql = ["mysqlclient (>=1.4.0)"] mysql-connector = ["mysql-connector-python"] oracle = ["cx-oracle (>=7)"] oracle-oracledb = ["oracledb (>=1.0.1)"] postgresql = ["psycopg2 (>=2.7)"] postgresql-asyncpg = ["asyncpg", "greenlet (!=0.4.17)"] postgresql-pg8000 = ["pg8000 (>=1.29.1)"] postgresql-psycopg = ["psycopg (>=3.0.7)"] postgresql-psycopg2binary = ["psycopg2-binary"] postgresql-psycopg2cffi = ["psycopg2cffi"] pymysql = ["pymysql"] sqlcipher = ["sqlcipher3-binary"] [[package]] name = "sqlitedict" version = "2.1.0" description = "Persistent dict in Python, backed up by sqlite3 and pickle, multithread-safe." optional = true python-versions = "*" files = [ {file = "sqlitedict-2.1.0.tar.gz", hash = "sha256:03d9cfb96d602996f1d4c2db2856f1224b96a9c431bdd16e78032a72940f9e8c"}, ] [[package]] name = "srsly" version = "2.4.6" description = "Modern high-performance serialization utilities for Python" optional = true python-versions = ">=3.6" files = [ {file = "srsly-2.4.6-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:9b96569976420be2ac3716db9ac05b06bf4cd7a358953879ba34f03c9533c123"}, {file = "srsly-2.4.6-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:5a9833c0a870e17c67a9452ed107b3ec033fa5b7addead51af5977fdafd32452"}, {file = "srsly-2.4.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0355d57e89382bc0852d30b000f1d04f0bf1da2a739f60f0427a00b6ea1cd146"}, {file = "srsly-2.4.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2261ef76f6b8d4029b9d2fc4a65ac505a760d2ea1de0132fc4b423883f7df52e"}, {file = "srsly-2.4.6-cp310-cp310-win_amd64.whl", hash = "sha256:02ab79c59e4b0eba4ba44d64b4aeccb5df1379270f3970dc7e30f1eef6cd3851"}, {file = "srsly-2.4.6-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:73acd407c66fa943bbaa8d473c30ea548b31ba4079b51483eda65df94910b61f"}, {file = "srsly-2.4.6-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:99131465fea74aa5e80dbba6effad10ae661bee2c3fbc1fd6da8a1e954e031d0"}, {file = "srsly-2.4.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e4a0152f766930aa41f45bf571b7f6e99206a02810d964cc7bcbd81685e3b624"}, {file = "srsly-2.4.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9742e5f4205c5484cea925ff24b1bd850f1e9291bd0ada6dfe1ec2b715e732b5"}, {file = "srsly-2.4.6-cp311-cp311-win_amd64.whl", hash = "sha256:73ce7c532fecbd8d7ab946fd2b5fa1d767d554526e330e55d7704bcf522c9f66"}, {file = "srsly-2.4.6-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e5c5074628249385640f4fe4ac237fd93631a023938476ea258139d12abb17f9"}, {file = "srsly-2.4.6-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:12b9e6d5a87c64e1d4a4a43fd6c94f98b5c48076c569804072e5fe45f1703c32"}, {file = "srsly-2.4.6-cp36-cp36m-win_amd64.whl", hash = "sha256:bac2b2fa1f315c8a50e7807002a064e892be21c95735334f39d2ec104c00a8f0"}, {file = "srsly-2.4.6-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3a6811eb797101b549fece201c03ba794ed731e9e2d58b81ea56eb3219ed2c8e"}, {file = "srsly-2.4.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:03477c648b76571a5ab0723423fc03ada74e747c4354357feef92c098853246f"}, {file = "srsly-2.4.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9fb1426313af7c560c728fbe8c3cc8e7cc443f5aa489b04a26adc73645214b91"}, {file = "srsly-2.4.6-cp37-cp37m-win_amd64.whl", hash = "sha256:f1fb1ca8e2415bfd9ce1e3d8612dbbd85dd06c574a0a96a0223265c382950b5a"}, {file = "srsly-2.4.6-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:02b0708878f6a1e344284ae7c65b36a9ad8178eeff71583cd212d2d379f0e2ce"}, {file = "srsly-2.4.6-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:720715be0efb9646ab64850185ecd22fe6ace93027d02f6367bdc8842450b369"}, {file = "srsly-2.4.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1da8ac70f994644069451b4ab5fe5d2649218871409ab89f8421e79b0eace76b"}, {file = "srsly-2.4.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7dc1c3877618d67a44ec74830510cd72d54fcfb32339388f2c6cbd559d27d20e"}, {file = "srsly-2.4.6-cp38-cp38-win_amd64.whl", hash = "sha256:0ca1b1065edeca0cbc4a75ef15e915189bfd4b87c8256d542ec662168dd17627"}, {file = "srsly-2.4.6-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:0522d9aeaf58c6d58ee0cec247653a460545422d3266b2d970df7af1530f3dcc"}, {file = "srsly-2.4.6-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:52e3a0a760fb7723c74e566d0c064da78e5707d65d8f69b1d3c2e05b72e3efb2"}, {file = "srsly-2.4.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da8d393ac59cba12b92c27c53550417200601d0f2a9aa50c1559cf5ce9cb9473"}, {file = "srsly-2.4.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e5725f18a76971fc00e788a254bc2da6e119d69d491a811a6d387de77b72ca2"}, {file = "srsly-2.4.6-cp39-cp39-win_amd64.whl", hash = "sha256:52a3b4d2949d9b7623b459054526bc3df04cbd9a8243c4786f13e3c956faf251"}, {file = "srsly-2.4.6.tar.gz", hash = "sha256:47b41f323aba4c9c3311abf60e443c03a9efe9c69f65dc402d173c32f7744a6f"}, ] [package.dependencies] catalogue = ">=2.0.3,<2.1.0" [[package]] name = "stack-data" version = "0.6.2" description = "Extract data from python stack frames and tracebacks for informative displays" optional = false python-versions = "*" files = [ {file = "stack_data-0.6.2-py3-none-any.whl", hash = "sha256:cbb2a53eb64e5785878201a97ed7c7b94883f48b87bfb0bbe8b623c74679e4a8"}, {file = "stack_data-0.6.2.tar.gz", hash = "sha256:32d2dd0376772d01b6cb9fc996f3c8b57a357089dec328ed4b6553d037eaf815"}, ] [package.dependencies] asttokens = ">=2.1.0" executing = ">=1.2.0" pure-eval = "*" [package.extras] tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] [[package]] name = "starlette" version = "0.27.0" description = "The little ASGI library that shines." optional = false python-versions = ">=3.7" files = [ {file = "starlette-0.27.0-py3-none-any.whl", hash = "sha256:918416370e846586541235ccd38a474c08b80443ed31c578a418e2209b3eef91"}, {file = "starlette-0.27.0.tar.gz", hash = "sha256:6a6b0d042acb8d469a01eba54e9cda6cbd24ac602c4cd016723117d6a7e73b75"}, ] [package.dependencies] anyio = ">=3.4.0,<5" typing-extensions = {version = ">=3.10.0", markers = "python_version < \"3.10\""} [package.extras] full = ["httpx (>=0.22.0)", "itsdangerous", "jinja2", "python-multipart", "pyyaml"] [[package]] name = "steamship" version = "2.16.9" description = "The fastest way to add language AI to your product." optional = true python-versions = "*" files = [ {file = "steamship-2.16.9-py3-none-any.whl", hash = "sha256:02ed613363d912e1deb2811f86753cf398b3035f6afa5b1eb6e5884da61a7c3c"}, {file = "steamship-2.16.9.tar.gz", hash = "sha256:34732b45e470f31ecdeefcbc06a98ac7d7c37d062394e598ec285d2f3faa1b14"}, ] [package.dependencies] aiohttp = ">=3.8.4,<3.9.0" click = ">=8.1.3,<8.2.0" fluent-logger = ">=0.10.0,<0.11.0" inflection = ">=0.5.1,<0.6.0" pydantic = ">=1.10.2,<1.11.0" requests = ">=2.28.1,<2.29.0" semver = ">=3.0.0,<3.1.0" tiktoken = ">=0.3.3,<0.4.0" toml = ">=0.10.2,<0.11.0" [[package]] name = "stringcase" version = "1.2.0" description = "String case converter." optional = true python-versions = "*" files = [ {file = "stringcase-1.2.0.tar.gz", hash = "sha256:48a06980661908efe8d9d34eab2b6c13aefa2163b3ced26972902e3bdfd87008"}, ] [[package]] name = "tabulate" version = "0.9.0" description = "Pretty-print tabular data" optional = false python-versions = ">=3.7" files = [ {file = "tabulate-0.9.0-py3-none-any.whl", hash = "sha256:024ca478df22e9340661486f85298cff5f6dcdba14f3813e8830015b9ed1948f"}, {file = "tabulate-0.9.0.tar.gz", hash = "sha256:0095b12bf5966de529c0feb1fa08671671b3368eec77d7ef7ab114be2c068b3c"}, ] [package.extras] widechars = ["wcwidth"] [[package]] name = "tair" version = "1.3.3" description = "Python client for Tair" optional = false python-versions = ">=3.7" files = [ {file = "tair-1.3.3-py3-none-any.whl", hash = "sha256:28ece5646b795662e4de07f2b982497988e2225df80bd25689704dd29893dfb7"}, {file = "tair-1.3.3.tar.gz", hash = "sha256:fc8a71872afb5fc0aeadb817440bc3690f6f621cc0c4b1548d729de49f1e9e57"}, ] [package.dependencies] redis = ">=4.4.4" [[package]] name = "telethon" version = "1.28.5" description = "Full-featured Telegram client library for Python 3" optional = true python-versions = ">=3.5" files = [ {file = "Telethon-1.28.5-py3-none-any.whl", hash = "sha256:edc42fd58b8e1569830d3ead564cafa60fd51d684f03ee2a1fdd5f77a5a10438"}, {file = "Telethon-1.28.5.tar.gz", hash = "sha256:b3990ec22351a3f3e1af376729c985025bbdd3bdabdde8c156112c3d3dfe1941"}, ] [package.dependencies] pyaes = "*" rsa = "*" [package.extras] cryptg = ["cryptg"] [[package]] name = "tenacity" version = "8.2.2" description = "Retry code until it succeeds" optional = false python-versions = ">=3.6" files = [ {file = "tenacity-8.2.2-py3-none-any.whl", hash = "sha256:2f277afb21b851637e8f52e6a613ff08734c347dc19ade928e519d7d2d8569b0"}, {file = "tenacity-8.2.2.tar.gz", hash = "sha256:43af037822bd0029025877f3b2d97cc4d7bb0c2991000a3d59d71517c5c969e0"}, ] [package.extras] doc = ["reno", "sphinx", "tornado (>=4.5)"] [[package]] name = "tensorboard" version = "2.11.2" description = "TensorBoard lets you watch Tensors Flow" optional = true python-versions = ">=3.7" files = [ {file = "tensorboard-2.11.2-py3-none-any.whl", hash = "sha256:cbaa2210c375f3af1509f8571360a19ccc3ded1d9641533414874b5deca47e89"}, ] [package.dependencies] absl-py = ">=0.4" google-auth = ">=1.6.3,<3" google-auth-oauthlib = ">=0.4.1,<0.5" grpcio = ">=1.24.3" markdown = ">=2.6.8" numpy = ">=1.12.0" protobuf = ">=3.9.2,<4" requests = ">=2.21.0,<3" setuptools = ">=41.0.0" tensorboard-data-server = ">=0.6.0,<0.7.0" tensorboard-plugin-wit = ">=1.6.0" werkzeug = ">=1.0.1" wheel = ">=0.26" [[package]] name = "tensorboard-data-server" version = "0.6.1" description = "Fast data loading for TensorBoard" optional = true python-versions = ">=3.6" files = [ {file = "tensorboard_data_server-0.6.1-py3-none-any.whl", hash = "sha256:809fe9887682d35c1f7d1f54f0f40f98bb1f771b14265b453ca051e2ce58fca7"}, {file = "tensorboard_data_server-0.6.1-py3-none-macosx_10_9_x86_64.whl", hash = "sha256:fa8cef9be4fcae2f2363c88176638baf2da19c5ec90addb49b1cde05c95c88ee"}, {file = "tensorboard_data_server-0.6.1-py3-none-manylinux2010_x86_64.whl", hash = "sha256:d8237580755e58eff68d1f3abefb5b1e39ae5c8b127cc40920f9c4fb33f4b98a"}, ] [[package]] name = "tensorboard-plugin-wit" version = "1.8.1" description = "What-If Tool TensorBoard plugin." optional = true python-versions = "*" files = [ {file = "tensorboard_plugin_wit-1.8.1-py3-none-any.whl", hash = "sha256:ff26bdd583d155aa951ee3b152b3d0cffae8005dc697f72b44a8e8c2a77a8cbe"}, ] [[package]] name = "tensorflow" version = "2.11.1" description = "TensorFlow is an open source machine learning framework for everyone." optional = true python-versions = ">=3.7" files = [ {file = "tensorflow-2.11.1-cp310-cp310-macosx_10_14_x86_64.whl", hash = "sha256:ac0e46c5de7985def49e4f688a0ca4180949a4d5dc62b89e9c6640db3c3982ba"}, {file = "tensorflow-2.11.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45b1669c523fa6dc240688bffe79f08dfbb76bf5e23a7fe10e722ba658637a44"}, {file = "tensorflow-2.11.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a96595e0c068d54717405fa12f36b4a5bb0a9fc53fb9065155a92cff944b35b"}, {file = "tensorflow-2.11.1-cp310-cp310-win_amd64.whl", hash = "sha256:13197f18f31a52d3f2eac28743d1b06abb8efd86017f184110a1b16841b745b1"}, {file = "tensorflow-2.11.1-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:9f030f1bc9e7763fa03ec5738323c42021ababcd562fe861b3a3f41e9ff10e43"}, {file = "tensorflow-2.11.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f12855c1e8373c1327650061fd6a9a3d3772e1bac8241202ea8ccb56213d005"}, {file = "tensorflow-2.11.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:76cd4279cb500074a8ab28af116af7f060f0b015651bef552769d51e55d6fd5c"}, {file = "tensorflow-2.11.1-cp38-cp38-win_amd64.whl", hash = "sha256:f5a2f75f28cd5fb615a5306f2091eac7da3a8fff949ab8804ec06b8e3682f837"}, {file = "tensorflow-2.11.1-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:ea93246ad6c90ff0422f06a82164836fe8098989a8a65c3b02c720eadbe15dde"}, {file = "tensorflow-2.11.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:30ba6b3c2f68037e965a19427a1f2a5f0351b7ceae6c686938a8485b08e1e1f3"}, {file = "tensorflow-2.11.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ddd5c61f68d8125c985370de96a24a80aee5e3f1604efacec7e1c34ca72de24"}, {file = "tensorflow-2.11.1-cp39-cp39-win_amd64.whl", hash = "sha256:b7d8834df3f72d7eab56bc2f34f2e52b82d705776b80b36bf5470b7538c9865c"}, ] [package.dependencies] absl-py = ">=1.0.0" astunparse = ">=1.6.0" flatbuffers = ">=2.0" gast = ">=0.2.1,<=0.4.0" google-pasta = ">=0.1.1" grpcio = ">=1.24.3,<2.0" h5py = ">=2.9.0" keras = ">=2.11.0,<2.12" libclang = ">=13.0.0" numpy = ">=1.20" opt-einsum = ">=2.3.2" packaging = "*" protobuf = ">=3.9.2,<3.20" setuptools = "*" six = ">=1.12.0" tensorboard = ">=2.11,<2.12" tensorflow-estimator = ">=2.11.0,<2.12" tensorflow-io-gcs-filesystem = {version = ">=0.23.1", markers = "platform_machine != \"arm64\" or platform_system != \"Darwin\""} termcolor = ">=1.1.0" typing-extensions = ">=3.6.6" wrapt = ">=1.11.0" [[package]] name = "tensorflow-estimator" version = "2.11.0" description = "TensorFlow Estimator." optional = true python-versions = ">=3.7" files = [ {file = "tensorflow_estimator-2.11.0-py2.py3-none-any.whl", hash = "sha256:ea3b64acfff3d9a244f06178c9bdedcbdd3f125b67d0888dba8229498d06468b"}, ] [[package]] name = "tensorflow-hub" version = "0.13.0" description = "TensorFlow Hub is a library to foster the publication, discovery, and consumption of reusable parts of machine learning models." optional = true python-versions = "*" files = [ {file = "tensorflow_hub-0.13.0-py2.py3-none-any.whl", hash = "sha256:3544f4fd9fd99e4eeb6da1b5b5320e4a2dbdef7f9bb778f66f76d6790f32dd65"}, ] [package.dependencies] numpy = ">=1.12.0" protobuf = ">=3.19.6" [package.extras] make-image-classifier = ["keras-preprocessing[image]"] make-nearest-neighbour-index = ["annoy", "apache-beam"] [[package]] name = "tensorflow-io-gcs-filesystem" version = "0.32.0" description = "TensorFlow IO" optional = true python-versions = ">=3.7, <3.12" files = [ {file = "tensorflow_io_gcs_filesystem-0.32.0-cp310-cp310-macosx_10_14_x86_64.whl", hash = "sha256:74a7e25e83d4117a7ebb09a3f247553a5497393ab48c3ee0cf0d17b405026817"}, {file = "tensorflow_io_gcs_filesystem-0.32.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:045d51bba586390d0545fcd8a18727d62b175eb142f6f4c6d719d39de40774cd"}, {file = "tensorflow_io_gcs_filesystem-0.32.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:db682e9a510c27dd35710ba5a2c62c371e25b727741b2fe3a920355fa501e947"}, {file = "tensorflow_io_gcs_filesystem-0.32.0-cp311-cp311-macosx_10_14_x86_64.whl", hash = "sha256:7f15fd22e592661b10de317be2f42a0f84be7bfc5e6a565fcfcb04b60d625b78"}, {file = "tensorflow_io_gcs_filesystem-0.32.0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:336d9b3fe6b55aea149c4f6aa1fd6ffaf27d4e5c37e55a182340b47caba38846"}, {file = "tensorflow_io_gcs_filesystem-0.32.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:842f5f09cd756bdb3b4d0b5571b3a6f72fd534d42da938b9acf0ef462995eada"}, {file = "tensorflow_io_gcs_filesystem-0.32.0-cp37-cp37m-macosx_10_14_x86_64.whl", hash = "sha256:1ce80e1555d6ee88dda67feddf366cc8b30252b5837a7a17303df7b06a71fc2e"}, {file = "tensorflow_io_gcs_filesystem-0.32.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:05e65d3cb6c93a7929b384d86c6369c63cbbab8a770440a3d95e094878403f9f"}, {file = "tensorflow_io_gcs_filesystem-0.32.0-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:21de7dcc06eb1e7de3c022b0072d90ba35ef886578149663437aa7a6fb5bf6b3"}, {file = "tensorflow_io_gcs_filesystem-0.32.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:79fdd02103b8ae9f8b89af41f744c013fa1caaea709de19833917795e3063857"}, {file = "tensorflow_io_gcs_filesystem-0.32.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5635df0bbe40f971dc1b946e3372744b0bdfda45c38ffcd28ef53a32bb8da4da"}, {file = "tensorflow_io_gcs_filesystem-0.32.0-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:122be149e5f6a030f5c2901be0cc3cb07619232f7b03889e2cdf3da1c0d4f92f"}, {file = "tensorflow_io_gcs_filesystem-0.32.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8214cdf85bea694160f9035ff395221c1e25e119784ccb4c104919b1f5dec84e"}, {file = "tensorflow_io_gcs_filesystem-0.32.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:28202492d904a6e280cf27560791e87ac1c7566000db82065d63a70c27008af2"}, ] [package.extras] tensorflow = ["tensorflow (>=2.12.0,<2.13.0)"] tensorflow-aarch64 = ["tensorflow-aarch64 (>=2.12.0,<2.13.0)"] tensorflow-cpu = ["tensorflow-cpu (>=2.12.0,<2.13.0)"] tensorflow-gpu = ["tensorflow-gpu (>=2.12.0,<2.13.0)"] tensorflow-rocm = ["tensorflow-rocm (>=2.12.0,<2.13.0)"] [[package]] name = "tensorflow-macos" version = "2.11.0" description = "TensorFlow is an open source machine learning framework for everyone." optional = true python-versions = ">=3.7" files = [ {file = "tensorflow_macos-2.11.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:0bdbd1bb564d01bd735d6d11451f0658c3dd8187369ee9dd3ed6de6bbdd6df53"}, {file = "tensorflow_macos-2.11.0-cp310-cp310-macosx_12_0_x86_64.whl", hash = "sha256:66eb67915cf418eddd3b4c158132609efd50895fa09fd55e4b2f14a3ab85bd34"}, {file = "tensorflow_macos-2.11.0-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:6810731e2c8353123f6c9c944d2765b58a2226e7eb9fec1e360f73977c6c6aa4"}, {file = "tensorflow_macos-2.11.0-cp38-cp38-macosx_12_0_x86_64.whl", hash = "sha256:881b36d97b67d24197250a091c52c31db14aecfdbf1ac20418a148ec37321978"}, {file = "tensorflow_macos-2.11.0-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:8d56b0d0bd140008b0cc4877804c9c310e1e2735444fa99bc7c88ffb2909153d"}, {file = "tensorflow_macos-2.11.0-cp39-cp39-macosx_12_0_x86_64.whl", hash = "sha256:db97cd91b905bd01069069f07325a2a291705222eb4914148b9574090a5815ae"}, ] [package.dependencies] absl-py = ">=1.0.0" astunparse = ">=1.6.0" flatbuffers = ">=2.0" gast = ">=0.2.1,<=0.4.0" google-pasta = ">=0.1.1" grpcio = ">=1.24.3,<2.0" h5py = ">=2.9.0" keras = ">=2.11.0,<2.12" libclang = ">=13.0.0" numpy = ">=1.20" opt-einsum = ">=2.3.2" packaging = "*" protobuf = ">=3.9.2,<3.20" setuptools = "*" six = ">=1.12.0" tensorboard = ">=2.11,<2.12" tensorflow-estimator = ">=2.11.0,<2.12" termcolor = ">=1.1.0" typing-extensions = ">=3.6.6" wrapt = ">=1.11.0" [[package]] name = "tensorflow-text" version = "2.11.0" description = "TF.Text is a TensorFlow library of text related ops, modules, and subgraphs." optional = true python-versions = "*" files = [ {file = "tensorflow_text-2.11.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c9d4797e331da37419f2b19159fbc0f125ed60467340e9a209ab8f8d65856704"}, {file = "tensorflow_text-2.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b4abede4191820ae6d5a7c74f02c335a5f2e2df174eaa38b481b2b82a3330152"}, {file = "tensorflow_text-2.11.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:49194f85e03a2e3f017ac8e0e3d3927104fa20e6e883b43087cff032fe2cbe14"}, {file = "tensorflow_text-2.11.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a3ea14efeb1d627ed5098e791e95bb98ee6f9f928f9eda785205e184cc20b428"}, {file = "tensorflow_text-2.11.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a207ceea4c71a932c35e4d208d7b8c3edc65a5ba0eebfdc9233fc8da546625c9"}, {file = "tensorflow_text-2.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:506fbea82a1ec566d7d0f771adad589c44727d904311103169466d88236ec2c8"}, {file = "tensorflow_text-2.11.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:cf0033bf47872b57d46f78d7058db5676f396a9327fa4d063a2c73cce43586ae"}, {file = "tensorflow_text-2.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:56693df33461ab0e7f32549010ca38a8d01291fd67142e0396d0aeb9fcad2e09"}, ] [package.dependencies] tensorflow = {version = ">=2.11.0,<2.12", markers = "platform_machine != \"arm64\" or platform_system != \"Darwin\""} tensorflow-hub = ">=0.8.0" tensorflow-macos = {version = ">=2.11.0,<2.12", markers = "platform_machine == \"arm64\" and platform_system == \"Darwin\""} [package.extras] tensorflow-cpu = ["tensorflow-cpu (>=2.11.0,<2.12)"] tests = ["absl-py", "pytest", "tensorflow-datasets (>=3.2.0)"] [[package]] name = "termcolor" version = "2.3.0" description = "ANSI color formatting for output in terminal" optional = true python-versions = ">=3.7" files = [ {file = "termcolor-2.3.0-py3-none-any.whl", hash = "sha256:3afb05607b89aed0ffe25202399ee0867ad4d3cb4180d98aaf8eefa6a5f7d475"}, {file = "termcolor-2.3.0.tar.gz", hash = "sha256:b5b08f68937f138fe92f6c089b99f1e2da0ae56c52b78bf7075fd95420fd9a5a"}, ] [package.extras] tests = ["pytest", "pytest-cov"] [[package]] name = "terminado" version = "0.17.1" description = "Tornado websocket backend for the Xterm.js Javascript terminal emulator library." optional = false python-versions = ">=3.7" files = [ {file = "terminado-0.17.1-py3-none-any.whl", hash = "sha256:8650d44334eba354dd591129ca3124a6ba42c3d5b70df5051b6921d506fdaeae"}, {file = "terminado-0.17.1.tar.gz", hash = "sha256:6ccbbcd3a4f8a25a5ec04991f39a0b8db52dfcd487ea0e578d977e6752380333"}, ] [package.dependencies] ptyprocess = {version = "*", markers = "os_name != \"nt\""} pywinpty = {version = ">=1.1.0", markers = "os_name == \"nt\""} tornado = ">=6.1.0" [package.extras] docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] test = ["pre-commit", "pytest (>=7.0)", "pytest-timeout"] [[package]] name = "textstat" version = "0.7.3" description = "Calculate statistical features from text" optional = true python-versions = ">=3.6" files = [ {file = "textstat-0.7.3-py3-none-any.whl", hash = "sha256:cbd9d641aa5abff0852638f0489913f31ea52fe597ccbaa337b4fc2a44efd15e"}, {file = "textstat-0.7.3.tar.gz", hash = "sha256:60b63cf8949f45bbb3b4205e4411bbc1cd66df4c08aef12545811c7e6e24f011"}, ] [package.dependencies] pyphen = "*" [[package]] name = "thinc" version = "8.1.10" description = "A refreshing functional take on deep learning, compatible with your favorite libraries" optional = true python-versions = ">=3.6" files = [ {file = "thinc-8.1.10-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:dbd1dc4394352d80af22131e1a238238eded59de19b55f77e6237436f4865b2c"}, {file = "thinc-8.1.10-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:524e6eb2436084968db1a713cfb5ea99b1b2e3363330d4aac8a403487a16d7c2"}, {file = "thinc-8.1.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ea3da2c0fb9012b6bff8b43d86dc34fd2db463f5b5e5fa725e2f5c49d29620b5"}, {file = "thinc-8.1.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d9bee276fb1f820b9a5f80c08655eb78dc2f368f3c22fd33e958e0fedeaac09b"}, {file = "thinc-8.1.10-cp310-cp310-win_amd64.whl", hash = "sha256:e5b2232e737c25fef3116597d1458fef38ddb7237649747686ce4d4531bb84a3"}, {file = "thinc-8.1.10-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:575b7dbe3a5d773c12f5dd6e366d942ad3c3ef7a5381332ba842bdbaf4d3e820"}, {file = "thinc-8.1.10-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:0bdf3f4e4a2fc0a4c5887e9114340ddb60ccc7b85f2cf92affdc68da82430575"}, {file = "thinc-8.1.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5c9cf2c9d8e44e1edeffe878cb137cbfe5ae1540621b5878be8e5e8d4924d757"}, {file = "thinc-8.1.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5fd1aa467f445860ae8f0943ab80e41be9b64243522c165bea452ad39d4ff46f"}, {file = "thinc-8.1.10-cp311-cp311-win_amd64.whl", hash = "sha256:108dcfef6ad1bef46d00ad31edc5fd3ab4d36c0cadb92cfbdb2f92d060acd8a0"}, {file = "thinc-8.1.10-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5af0392bdc63c621ba1def80ec98d753be9a27ebe1cf812bed2760371f20456"}, {file = "thinc-8.1.10-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:83da33e05fda126e85e385aaeb2eb8d1ae19368c5bc67f23b88bc2927738b5cf"}, {file = "thinc-8.1.10-cp36-cp36m-win_amd64.whl", hash = "sha256:bc321d0fbb8e146de4c152d36ea6000de0669fe081fd9777c8768ad9b4478839"}, {file = "thinc-8.1.10-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:bd9b678bcbf3f3a21260b2f55a65742aeeb7f5442c3ceb475378d95e0e99dc44"}, {file = "thinc-8.1.10-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:042be0f014d896b826d8c0891b7bc8772464a91661938c61cdd7296cef19280d"}, {file = "thinc-8.1.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a65a1e824711b30e0c35ebfb833681b64c6cb2762364548a210c3740838b9d91"}, {file = "thinc-8.1.10-cp37-cp37m-win_amd64.whl", hash = "sha256:d63fa0bd3e60931c76617e993042deef875f57b1679354ac2f0072e621e106d1"}, {file = "thinc-8.1.10-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:ee75162bfb8aab24bd59604c01935abe1602bbd478064a4a6199d3506cb57679"}, {file = "thinc-8.1.10-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:715ed60ddf1ddf5f98b454b2495fddbbfdb947d77bd47a241d1981d3f58ac9a0"}, {file = "thinc-8.1.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b432bf27e4724e2f470e5f36455530906d86a81505a3b406f2f4f5b4644f77d8"}, {file = "thinc-8.1.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d31f6834f1b1c428718a9668b7a06b74854a9217ba1d8186b41e48146d487fa3"}, {file = "thinc-8.1.10-cp38-cp38-win_amd64.whl", hash = "sha256:21a41c90122e9b8a6b33d5ba05913fd8a763757a2b49e0243eed0bce7722d661"}, {file = "thinc-8.1.10-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:0bf181b47d88c60a961e0cd05eec1143d949dd8e7e3523e13f4e8f1ea32f0004"}, {file = "thinc-8.1.10-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:18380a440d617fa704daa5018ed5e7d5a50efd9c237ad536a84047be3bcb767c"}, {file = "thinc-8.1.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50271826c3737168cd9409620c9fcd3f6315136d2fff08279c213a21a5c438e8"}, {file = "thinc-8.1.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2d08eb7c15592d4212cd729d782b8be1daa2ed5248a8169991c4f63659bc6266"}, {file = "thinc-8.1.10-cp39-cp39-win_amd64.whl", hash = "sha256:c245e6a5fcb71fcf23cb329f296349a4925b176fad5713571bb4f0fc8787ad7c"}, {file = "thinc-8.1.10.tar.gz", hash = "sha256:6c4a48d7da07e044e84a68cbb9b22f32f8490995a2bab0bfc60e412d14afb991"}, ] [package.dependencies] blis = ">=0.7.8,<0.8.0" catalogue = ">=2.0.4,<2.1.0" confection = ">=0.0.1,<1.0.0" cymem = ">=2.0.2,<2.1.0" murmurhash = ">=1.0.2,<1.1.0" numpy = ">=1.15.0" packaging = ">=20.0" preshed = ">=3.0.2,<3.1.0" pydantic = ">=1.7.4,<1.8 || >1.8,<1.8.1 || >1.8.1,<1.11.0" setuptools = "*" srsly = ">=2.4.0,<3.0.0" wasabi = ">=0.8.1,<1.2.0" [package.extras] cuda = ["cupy (>=5.0.0b4)"] cuda-autodetect = ["cupy-wheel (>=11.0.0)"] cuda100 = ["cupy-cuda100 (>=5.0.0b4)"] cuda101 = ["cupy-cuda101 (>=5.0.0b4)"] cuda102 = ["cupy-cuda102 (>=5.0.0b4)"] cuda110 = ["cupy-cuda110 (>=5.0.0b4)"] cuda111 = ["cupy-cuda111 (>=5.0.0b4)"] cuda112 = ["cupy-cuda112 (>=5.0.0b4)"] cuda113 = ["cupy-cuda113 (>=5.0.0b4)"] cuda114 = ["cupy-cuda114 (>=5.0.0b4)"] cuda115 = ["cupy-cuda115 (>=5.0.0b4)"] cuda116 = ["cupy-cuda116 (>=5.0.0b4)"] cuda117 = ["cupy-cuda117 (>=5.0.0b4)"] cuda11x = ["cupy-cuda11x (>=11.0.0)"] cuda80 = ["cupy-cuda80 (>=5.0.0b4)"] cuda90 = ["cupy-cuda90 (>=5.0.0b4)"] cuda91 = ["cupy-cuda91 (>=5.0.0b4)"] cuda92 = ["cupy-cuda92 (>=5.0.0b4)"] datasets = ["ml-datasets (>=0.2.0,<0.3.0)"] mxnet = ["mxnet (>=1.5.1,<1.6.0)"] tensorflow = ["tensorflow (>=2.0.0,<2.6.0)"] torch = ["torch (>=1.6.0)"] [[package]] name = "threadpoolctl" version = "3.1.0" description = "threadpoolctl" optional = false python-versions = ">=3.6" files = [ {file = "threadpoolctl-3.1.0-py3-none-any.whl", hash = "sha256:8b99adda265feb6773280df41eece7b2e6561b772d21ffd52e372f999024907b"}, {file = "threadpoolctl-3.1.0.tar.gz", hash = "sha256:a335baacfaa4400ae1f0d8e3a58d6674d2f8828e3716bb2802c44955ad391380"}, ] [[package]] name = "tiktoken" version = "0.3.3" description = "tiktoken is a fast BPE tokeniser for use with OpenAI's models" optional = false python-versions = ">=3.8" files = [ {file = "tiktoken-0.3.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d1f37fa75ba70c1bc7806641e8ccea1fba667d23e6341a1591ea333914c226a9"}, {file = "tiktoken-0.3.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3d7296c38392a943c2ccc0b61323086b8550cef08dcf6855de9949890dbc1fd3"}, {file = "tiktoken-0.3.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3c84491965e139a905280ac28b74baaa13445b3678e07f96767089ad1ef5ee7b"}, {file = "tiktoken-0.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:65970d77ea85ce6c7fce45131da9258cd58a802ffb29ead8f5552e331c025b2b"}, {file = "tiktoken-0.3.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:bd3f72d0ba7312c25c1652292121a24c8f1711207b63c6d8dab21afe4be0bf04"}, {file = "tiktoken-0.3.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:719c9e13432602dc496b24f13e3c3ad3ec0d2fbdb9aace84abfb95e9c3a425a4"}, {file = "tiktoken-0.3.3-cp310-cp310-win_amd64.whl", hash = "sha256:dc00772284c94e65045b984ed7e9f95d000034f6b2411df252011b069bd36217"}, {file = "tiktoken-0.3.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4db2c40f79f8f7a21a9fdbf1c6dee32dea77b0d7402355dc584a3083251d2e15"}, {file = "tiktoken-0.3.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e3c0f2231aa3829a1a431a882201dc27858634fd9989898e0f7d991dbc6bcc9d"}, {file = "tiktoken-0.3.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:48c13186a479de16cfa2c72bb0631fa9c518350a5b7569e4d77590f7fee96be9"}, {file = "tiktoken-0.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6674e4e37ab225020135cd66a392589623d5164c6456ba28cc27505abed10d9e"}, {file = "tiktoken-0.3.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:4a0c1357f6191211c544f935d5aa3cb9d7abd118c8f3c7124196d5ecd029b4af"}, {file = "tiktoken-0.3.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:2e948d167fc3b04483cbc33426766fd742e7cefe5346cd62b0cbd7279ef59539"}, {file = "tiktoken-0.3.3-cp311-cp311-win_amd64.whl", hash = "sha256:5dca434c8680b987eacde2dbc449e9ea4526574dbf9f3d8938665f638095be82"}, {file = "tiktoken-0.3.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:984758ebc07cd8c557345697c234f1f221bd730b388f4340dd08dffa50213a01"}, {file = "tiktoken-0.3.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:891012f29e159a989541ae47259234fb29ff88c22e1097567316e27ad33a3734"}, {file = "tiktoken-0.3.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:210f8602228e4c5d706deeb389da5a152b214966a5aa558eec87b57a1969ced5"}, {file = "tiktoken-0.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd783564f80d4dc44ff0a64b13756ded8390ed2548549aefadbe156af9188307"}, {file = "tiktoken-0.3.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:03f64bde9b4eb8338bf49c8532bfb4c3578f6a9a6979fc176d939f9e6f68b408"}, {file = "tiktoken-0.3.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:1ac369367b6f5e5bd80e8f9a7766ac2a9c65eda2aa856d5f3c556d924ff82986"}, {file = "tiktoken-0.3.3-cp38-cp38-win_amd64.whl", hash = "sha256:94600798891f78db780e5aa9321456cf355e54a4719fbd554147a628de1f163f"}, {file = "tiktoken-0.3.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:e59db6fca8d5ccea302fe2888917364446d6f4201a25272a1a1c44975c65406a"}, {file = "tiktoken-0.3.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:19340d8ba4d6fd729b2e3a096a547ded85f71012843008f97475f9db484869ee"}, {file = "tiktoken-0.3.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:542686cbc9225540e3a10f472f82fa2e1bebafce2233a211dee8459e95821cfd"}, {file = "tiktoken-0.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a43612b2a09f4787c050163a216bf51123851859e9ab128ad03d2729826cde9"}, {file = "tiktoken-0.3.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a11674f0275fa75fb59941b703650998bd4acb295adbd16fc8af17051aaed19d"}, {file = "tiktoken-0.3.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:65fc0a449630bab28c30b4adec257442a4706d79cffc2337c1d9df3e91825cdd"}, {file = "tiktoken-0.3.3-cp39-cp39-win_amd64.whl", hash = "sha256:0b9a7a9a8b781a50ee9289e85e28771d7e113cc0c656eadfb6fc6d3a106ff9bb"}, {file = "tiktoken-0.3.3.tar.gz", hash = "sha256:97b58b7bfda945791ec855e53d166e8ec20c6378942b93851a6c919ddf9d0496"}, ] [package.dependencies] regex = ">=2022.1.18" requests = ">=2.26.0" [package.extras] blobfile = ["blobfile (>=2)"] [[package]] name = "tinycss2" version = "1.2.1" description = "A tiny CSS parser" optional = false python-versions = ">=3.7" files = [ {file = "tinycss2-1.2.1-py3-none-any.whl", hash = "sha256:2b80a96d41e7c3914b8cda8bc7f705a4d9c49275616e886103dd839dfc847847"}, {file = "tinycss2-1.2.1.tar.gz", hash = "sha256:8cff3a8f066c2ec677c06dbc7b45619804a6938478d9d73c284b29d14ecb0627"}, ] [package.dependencies] webencodings = ">=0.4" [package.extras] doc = ["sphinx", "sphinx_rtd_theme"] test = ["flake8", "isort", "pytest"] [[package]] name = "tokenizers" version = "0.13.3" description = "Fast and Customizable Tokenizers" optional = false python-versions = "*" files = [ {file = "tokenizers-0.13.3-cp310-cp310-macosx_10_11_x86_64.whl", hash = "sha256:f3835c5be51de8c0a092058a4d4380cb9244fb34681fd0a295fbf0a52a5fdf33"}, {file = "tokenizers-0.13.3-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:4ef4c3e821730f2692489e926b184321e887f34fb8a6b80b8096b966ba663d07"}, {file = "tokenizers-0.13.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c5fd1a6a25353e9aa762e2aae5a1e63883cad9f4e997c447ec39d071020459bc"}, {file = "tokenizers-0.13.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ee0b1b311d65beab83d7a41c56a1e46ab732a9eed4460648e8eb0bd69fc2d059"}, {file = "tokenizers-0.13.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5ef4215284df1277dadbcc5e17d4882bda19f770d02348e73523f7e7d8b8d396"}, {file = "tokenizers-0.13.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a4d53976079cff8a033f778fb9adca2d9d69d009c02fa2d71a878b5f3963ed30"}, {file = "tokenizers-0.13.3-cp310-cp310-win32.whl", hash = "sha256:1f0e3b4c2ea2cd13238ce43548959c118069db7579e5d40ec270ad77da5833ce"}, {file = "tokenizers-0.13.3-cp310-cp310-win_amd64.whl", hash = "sha256:89649c00d0d7211e8186f7a75dfa1db6996f65edce4b84821817eadcc2d3c79e"}, {file = "tokenizers-0.13.3-cp311-cp311-macosx_10_11_universal2.whl", hash = "sha256:56b726e0d2bbc9243872b0144515ba684af5b8d8cd112fb83ee1365e26ec74c8"}, {file = "tokenizers-0.13.3-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:cc5c022ce692e1f499d745af293ab9ee6f5d92538ed2faf73f9708c89ee59ce6"}, {file = "tokenizers-0.13.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f55c981ac44ba87c93e847c333e58c12abcbb377a0c2f2ef96e1a266e4184ff2"}, {file = "tokenizers-0.13.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f247eae99800ef821a91f47c5280e9e9afaeed9980fc444208d5aa6ba69ff148"}, {file = "tokenizers-0.13.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4b3e3215d048e94f40f1c95802e45dcc37c5b05eb46280fc2ccc8cd351bff839"}, {file = "tokenizers-0.13.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ba2b0bf01777c9b9bc94b53764d6684554ce98551fec496f71bc5be3a03e98b"}, {file = "tokenizers-0.13.3-cp311-cp311-win32.whl", hash = "sha256:cc78d77f597d1c458bf0ea7c2a64b6aa06941c7a99cb135b5969b0278824d808"}, {file = "tokenizers-0.13.3-cp311-cp311-win_amd64.whl", hash = "sha256:ecf182bf59bd541a8876deccf0360f5ae60496fd50b58510048020751cf1724c"}, {file = "tokenizers-0.13.3-cp37-cp37m-macosx_10_11_x86_64.whl", hash = "sha256:0527dc5436a1f6bf2c0327da3145687d3bcfbeab91fed8458920093de3901b44"}, {file = "tokenizers-0.13.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:07cbb2c307627dc99b44b22ef05ff4473aa7c7cc1fec8f0a8b37d8a64b1a16d2"}, {file = "tokenizers-0.13.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4560dbdeaae5b7ee0d4e493027e3de6d53c991b5002d7ff95083c99e11dd5ac0"}, {file = "tokenizers-0.13.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:64064bd0322405c9374305ab9b4c07152a1474370327499911937fd4a76d004b"}, {file = "tokenizers-0.13.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b8c6e2ab0f2e3d939ca66aa1d596602105fe33b505cd2854a4c1717f704c51de"}, {file = "tokenizers-0.13.3-cp37-cp37m-win32.whl", hash = "sha256:6cc29d410768f960db8677221e497226e545eaaea01aa3613fa0fdf2cc96cff4"}, {file = "tokenizers-0.13.3-cp37-cp37m-win_amd64.whl", hash = "sha256:fc2a7fdf864554a0dacf09d32e17c0caa9afe72baf9dd7ddedc61973bae352d8"}, {file = "tokenizers-0.13.3-cp38-cp38-macosx_10_11_x86_64.whl", hash = "sha256:8791dedba834c1fc55e5f1521be325ea3dafb381964be20684b92fdac95d79b7"}, {file = "tokenizers-0.13.3-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:d607a6a13718aeb20507bdf2b96162ead5145bbbfa26788d6b833f98b31b26e1"}, {file = "tokenizers-0.13.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3791338f809cd1bf8e4fee6b540b36822434d0c6c6bc47162448deee3f77d425"}, {file = "tokenizers-0.13.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c2f35f30e39e6aab8716f07790f646bdc6e4a853816cc49a95ef2a9016bf9ce6"}, {file = "tokenizers-0.13.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:310204dfed5aa797128b65d63538a9837cbdd15da2a29a77d67eefa489edda26"}, {file = "tokenizers-0.13.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0f9b92ea052305166559f38498b3b0cae159caea712646648aaa272f7160963"}, {file = "tokenizers-0.13.3-cp38-cp38-win32.whl", hash = "sha256:9a3fa134896c3c1f0da6e762d15141fbff30d094067c8f1157b9fdca593b5806"}, {file = "tokenizers-0.13.3-cp38-cp38-win_amd64.whl", hash = "sha256:8e7b0cdeace87fa9e760e6a605e0ae8fc14b7d72e9fc19c578116f7287bb873d"}, {file = "tokenizers-0.13.3-cp39-cp39-macosx_10_11_x86_64.whl", hash = "sha256:00cee1e0859d55507e693a48fa4aef07060c4bb6bd93d80120e18fea9371c66d"}, {file = "tokenizers-0.13.3-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:a23ff602d0797cea1d0506ce69b27523b07e70f6dda982ab8cf82402de839088"}, {file = "tokenizers-0.13.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:70ce07445050b537d2696022dafb115307abdffd2a5c106f029490f84501ef97"}, {file = "tokenizers-0.13.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:280ffe95f50eaaf655b3a1dc7ff1d9cf4777029dbbc3e63a74e65a056594abc3"}, {file = "tokenizers-0.13.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:97acfcec592f7e9de8cadcdcda50a7134423ac8455c0166b28c9ff04d227b371"}, {file = "tokenizers-0.13.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd7730c98a3010cd4f523465867ff95cd9d6430db46676ce79358f65ae39797b"}, {file = "tokenizers-0.13.3-cp39-cp39-win32.whl", hash = "sha256:48625a108029cb1ddf42e17a81b5a3230ba6888a70c9dc14e81bc319e812652d"}, {file = "tokenizers-0.13.3-cp39-cp39-win_amd64.whl", hash = "sha256:bc0a6f1ba036e482db6453571c9e3e60ecd5489980ffd95d11dc9f960483d783"}, {file = "tokenizers-0.13.3.tar.gz", hash = "sha256:2e546dbb68b623008a5442353137fbb0123d311a6d7ba52f2667c8862a75af2e"}, ] [package.extras] dev = ["black (==22.3)", "datasets", "numpy", "pytest", "requests"] docs = ["setuptools-rust", "sphinx", "sphinx-rtd-theme"] testing = ["black (==22.3)", "datasets", "numpy", "pytest", "requests"] [[package]] name = "toml" version = "0.10.2" description = "Python Library for Tom's Obvious, Minimal Language" optional = false python-versions = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*" files = [ {file = "toml-0.10.2-py2.py3-none-any.whl", hash = "sha256:806143ae5bfb6a3c6e736a764057db0e6a0e05e338b5630894a5f779cabb4f9b"}, {file = "toml-0.10.2.tar.gz", hash = "sha256:b3bda1d108d5dd99f4a20d24d9c348e91c4db7ab1b749200bded2f839ccbe68f"}, ] [[package]] name = "tomli" version = "2.0.1" description = "A lil' TOML parser" optional = false python-versions = ">=3.7" files = [ {file = "tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"}, {file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"}, ] [[package]] name = "torch" version = "1.13.1" description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration" optional = false python-versions = ">=3.7.0" files = [ {file = "torch-1.13.1-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:fd12043868a34a8da7d490bf6db66991108b00ffbeecb034228bfcbbd4197143"}, {file = "torch-1.13.1-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:d9fe785d375f2e26a5d5eba5de91f89e6a3be5d11efb497e76705fdf93fa3c2e"}, {file = "torch-1.13.1-cp310-cp310-win_amd64.whl", hash = "sha256:98124598cdff4c287dbf50f53fb455f0c1e3a88022b39648102957f3445e9b76"}, {file = "torch-1.13.1-cp310-none-macosx_10_9_x86_64.whl", hash = "sha256:393a6273c832e047581063fb74335ff50b4c566217019cc6ace318cd79eb0566"}, {file = "torch-1.13.1-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:0122806b111b949d21fa1a5f9764d1fd2fcc4a47cb7f8ff914204fd4fc752ed5"}, {file = "torch-1.13.1-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:22128502fd8f5b25ac1cd849ecb64a418382ae81dd4ce2b5cebaa09ab15b0d9b"}, {file = "torch-1.13.1-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:76024be052b659ac1304ab8475ab03ea0a12124c3e7626282c9c86798ac7bc11"}, {file = "torch-1.13.1-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:ea8dda84d796094eb8709df0fcd6b56dc20b58fdd6bc4e8d7109930dafc8e419"}, {file = "torch-1.13.1-cp37-cp37m-win_amd64.whl", hash = "sha256:2ee7b81e9c457252bddd7d3da66fb1f619a5d12c24d7074de91c4ddafb832c93"}, {file = "torch-1.13.1-cp37-none-macosx_10_9_x86_64.whl", hash = "sha256:0d9b8061048cfb78e675b9d2ea8503bfe30db43d583599ae8626b1263a0c1380"}, {file = "torch-1.13.1-cp37-none-macosx_11_0_arm64.whl", hash = "sha256:f402ca80b66e9fbd661ed4287d7553f7f3899d9ab54bf5c67faada1555abde28"}, {file = "torch-1.13.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:727dbf00e2cf858052364c0e2a496684b9cb5aa01dc8a8bc8bbb7c54502bdcdd"}, {file = "torch-1.13.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:df8434b0695e9ceb8cc70650afc1310d8ba949e6db2a0525ddd9c3b2b181e5fe"}, {file = "torch-1.13.1-cp38-cp38-win_amd64.whl", hash = "sha256:5e1e722a41f52a3f26f0c4fcec227e02c6c42f7c094f32e49d4beef7d1e213ea"}, {file = "torch-1.13.1-cp38-none-macosx_10_9_x86_64.whl", hash = "sha256:33e67eea526e0bbb9151263e65417a9ef2d8fa53cbe628e87310060c9dcfa312"}, {file = "torch-1.13.1-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:eeeb204d30fd40af6a2d80879b46a7efbe3cf43cdbeb8838dd4f3d126cc90b2b"}, {file = "torch-1.13.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:50ff5e76d70074f6653d191fe4f6a42fdbe0cf942fbe2a3af0b75eaa414ac038"}, {file = "torch-1.13.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:2c3581a3fd81eb1f0f22997cddffea569fea53bafa372b2c0471db373b26aafc"}, {file = "torch-1.13.1-cp39-cp39-win_amd64.whl", hash = "sha256:0aa46f0ac95050c604bcf9ef71da9f1172e5037fdf2ebe051962d47b123848e7"}, {file = "torch-1.13.1-cp39-none-macosx_10_9_x86_64.whl", hash = "sha256:6930791efa8757cb6974af73d4996b6b50c592882a324b8fb0589c6a9ba2ddaf"}, {file = "torch-1.13.1-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:e0df902a7c7dd6c795698532ee5970ce898672625635d885eade9976e5a04949"}, ] [package.dependencies] nvidia-cublas-cu11 = {version = "11.10.3.66", markers = "platform_system == \"Linux\""} nvidia-cuda-nvrtc-cu11 = {version = "11.7.99", markers = "platform_system == \"Linux\""} nvidia-cuda-runtime-cu11 = {version = "11.7.99", markers = "platform_system == \"Linux\""} nvidia-cudnn-cu11 = {version = "8.5.0.96", markers = "platform_system == \"Linux\""} typing-extensions = "*" [package.extras] opt-einsum = ["opt-einsum (>=3.3)"] [[package]] name = "torchvision" version = "0.14.1" description = "image and video datasets and models for torch deep learning" optional = false python-versions = ">=3.7" files = [ {file = "torchvision-0.14.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:eeb05dd9dd3af5428fee525400759daf8da8e4caec45ddd6908cfb36571f6433"}, {file = "torchvision-0.14.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8d0766ea92affa7af248e327dd85f7c9cfdf51a57530b43212d4e1858548e9d7"}, {file = "torchvision-0.14.1-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:6d7b35653113664ea3fdcb71f515cfbf29d2fe393000fd8aaff27a1284de6908"}, {file = "torchvision-0.14.1-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:8a9eb773a2fa8f516e404ac09c059fb14e6882c48fdbb9c946327d2ce5dba6cd"}, {file = "torchvision-0.14.1-cp310-cp310-win_amd64.whl", hash = "sha256:13986f0c15377ff23039e1401012ccb6ecf71024ce53def27139e4eac5a57592"}, {file = "torchvision-0.14.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:fb7a793fd33ce1abec24b42778419a3fb1e3159d7dfcb274a3ca8fb8cbc408dc"}, {file = "torchvision-0.14.1-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:89fb0419780ec9a9eb9f7856a0149f6ac9f956b28f44b0c0080c6b5b48044db7"}, {file = "torchvision-0.14.1-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:a2d4237d3c9705d7729eb4534e4eb06f1d6be7ff1df391204dfb51586d9b0ecb"}, {file = "torchvision-0.14.1-cp37-cp37m-win_amd64.whl", hash = "sha256:92a324712a87957443cc34223274298ae9496853f115c252f8fc02b931f2340e"}, {file = "torchvision-0.14.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:68ed03359dcd3da9cd21b8ab94da21158df8a6a0c5bad0bf4a42f0e448d28cb3"}, {file = "torchvision-0.14.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:30fcf0e9fe57d4ac4ce6426659a57dce199637ccb6c70be1128670f177692624"}, {file = "torchvision-0.14.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:0ed02aefd09bf1114d35f1aa7dce55aa61c2c7e57f9aa02dce362860be654e85"}, {file = "torchvision-0.14.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:a541e49fc3c4e90e49e6988428ab047415ed52ea97d0c0bfd147d8bacb8f4df8"}, {file = "torchvision-0.14.1-cp38-cp38-win_amd64.whl", hash = "sha256:6099b3191dc2516099a32ae38a5fb349b42e863872a13545ab1a524b6567be60"}, {file = "torchvision-0.14.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c5e744f56e5f5b452deb5fc0f3f2ba4d2f00612d14d8da0dbefea8f09ac7690b"}, {file = "torchvision-0.14.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:758b20d079e810b4740bd60d1eb16e49da830e3360f9be379eb177ee221fa5d4"}, {file = "torchvision-0.14.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:83045507ef8d3c015d4df6be79491375b2f901352cfca6e72b4723e9c4f9a55d"}, {file = "torchvision-0.14.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:eaed58cf454323ed9222d4e0dd5fb897064f454b400696e03a5200e65d3a1e76"}, {file = "torchvision-0.14.1-cp39-cp39-win_amd64.whl", hash = "sha256:b337e1245ca4353623dd563c03cd8f020c2496a7c5d12bba4d2e381999c766e0"}, ] [package.dependencies] numpy = "*" pillow = ">=5.3.0,<8.3.dev0 || >=8.4.dev0" requests = "*" torch = "1.13.1" typing-extensions = "*" [package.extras] scipy = ["scipy"] [[package]] name = "tornado" version = "6.3.2" description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." optional = false python-versions = ">= 3.8" files = [ {file = "tornado-6.3.2-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:c367ab6c0393d71171123ca5515c61ff62fe09024fa6bf299cd1339dc9456829"}, {file = "tornado-6.3.2-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:b46a6ab20f5c7c1cb949c72c1994a4585d2eaa0be4853f50a03b5031e964fc7c"}, {file = "tornado-6.3.2-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c2de14066c4a38b4ecbbcd55c5cc4b5340eb04f1c5e81da7451ef555859c833f"}, {file = "tornado-6.3.2-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:05615096845cf50a895026f749195bf0b10b8909f9be672f50b0fe69cba368e4"}, {file = "tornado-6.3.2-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5b17b1cf5f8354efa3d37c6e28fdfd9c1c1e5122f2cb56dac121ac61baa47cbe"}, {file = "tornado-6.3.2-cp38-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:29e71c847a35f6e10ca3b5c2990a52ce38b233019d8e858b755ea6ce4dcdd19d"}, {file = "tornado-6.3.2-cp38-abi3-musllinux_1_1_i686.whl", hash = "sha256:834ae7540ad3a83199a8da8f9f2d383e3c3d5130a328889e4cc991acc81e87a0"}, {file = "tornado-6.3.2-cp38-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:6a0848f1aea0d196a7c4f6772197cbe2abc4266f836b0aac76947872cd29b411"}, {file = "tornado-6.3.2-cp38-abi3-win32.whl", hash = "sha256:7efcbcc30b7c654eb6a8c9c9da787a851c18f8ccd4a5a3a95b05c7accfa068d2"}, {file = "tornado-6.3.2-cp38-abi3-win_amd64.whl", hash = "sha256:0c325e66c8123c606eea33084976c832aa4e766b7dff8aedd7587ea44a604cdf"}, {file = "tornado-6.3.2.tar.gz", hash = "sha256:4b927c4f19b71e627b13f3db2324e4ae660527143f9e1f2e2fb404f3a187e2ba"}, ] [[package]] name = "tqdm" version = "4.65.0" description = "Fast, Extensible Progress Meter" optional = false python-versions = ">=3.7" files = [ {file = "tqdm-4.65.0-py3-none-any.whl", hash = "sha256:c4f53a17fe37e132815abceec022631be8ffe1b9381c2e6e30aa70edc99e9671"}, {file = "tqdm-4.65.0.tar.gz", hash = "sha256:1871fb68a86b8fb3b59ca4cdd3dcccbc7e6d613eeed31f4c332531977b89beb5"}, ] [package.dependencies] colorama = {version = "*", markers = "platform_system == \"Windows\""} [package.extras] dev = ["py-make (>=0.1.0)", "twine", "wheel"] notebook = ["ipywidgets (>=6)"] slack = ["slack-sdk"] telegram = ["requests"] [[package]] name = "traitlets" version = "5.9.0" description = "Traitlets Python configuration system" optional = false python-versions = ">=3.7" files = [ {file = "traitlets-5.9.0-py3-none-any.whl", hash = "sha256:9e6ec080259b9a5940c797d58b613b5e31441c2257b87c2e795c5228ae80d2d8"}, {file = "traitlets-5.9.0.tar.gz", hash = "sha256:f6cde21a9c68cf756af02035f72d5a723bf607e862e7be33ece505abf4a3bad9"}, ] [package.extras] docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] test = ["argcomplete (>=2.0)", "pre-commit", "pytest", "pytest-mock"] [[package]] name = "transformers" version = "4.29.2" description = "State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow" optional = false python-versions = ">=3.7.0" files = [ {file = "transformers-4.29.2-py3-none-any.whl", hash = "sha256:0ef158b99bad6f4e6652a0d8655fbbe58b4cb788ce7040f320b5d29c7c810a75"}, {file = "transformers-4.29.2.tar.gz", hash = "sha256:ed9467661f459f1ce49461d83f18f3b36b6a37f306182dc2ba272935f3b93ebb"}, ] [package.dependencies] filelock = "*" huggingface-hub = ">=0.14.1,<1.0" numpy = ">=1.17" packaging = ">=20.0" pyyaml = ">=5.1" regex = "!=2019.12.17" requests = "*" tokenizers = ">=0.11.1,<0.11.3 || >0.11.3,<0.14" tqdm = ">=4.27" [package.extras] accelerate = ["accelerate (>=0.19.0)"] agents = ["Pillow", "accelerate (>=0.19.0)", "datasets (!=2.5.0)", "diffusers", "opencv-python", "sentencepiece (>=0.1.91,!=0.1.92)", "torch (>=1.9,!=1.12.0)"] all = ["Pillow", "accelerate (>=0.19.0)", "av (==9.2.0)", "codecarbon (==1.2.0)", "decord (==0.6.0)", "flax (>=0.4.1,<=0.6.9)", "jax (>=0.2.8,!=0.3.2,<=0.3.6)", "jaxlib (>=0.1.65,<=0.3.6)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "numba (<0.57.0)", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "phonemizer", "protobuf (<=3.20.2)", "pyctcdecode (>=0.4.0)", "ray[tune]", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>=2.4,<2.13)", "tensorflow-text (<2.13)", "tf2onnx", "timm", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "torch (>=1.9,!=1.12.0)", "torchaudio", "torchvision"] audio = ["kenlm", "librosa", "numba (<0.57.0)", "phonemizer", "pyctcdecode (>=0.4.0)"] codecarbon = ["codecarbon (==1.2.0)"] deepspeed = ["accelerate (>=0.19.0)", "deepspeed (>=0.8.3)"] deepspeed-testing = ["GitPython (<3.1.19)", "accelerate (>=0.19.0)", "beautifulsoup4", "black (>=23.1,<24.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "deepspeed (>=0.8.3)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "hf-doc-builder (>=0.3.0)", "nltk", "optuna", "parameterized", "protobuf (<=3.20.2)", "psutil", "pytest", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "safetensors (>=0.2.1)", "sentencepiece (>=0.1.91,!=0.1.92)", "timeout-decorator"] dev = ["GitPython (<3.1.19)", "Pillow", "accelerate (>=0.19.0)", "av (==9.2.0)", "beautifulsoup4", "black (>=23.1,<24.0)", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "decord (==0.6.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "flax (>=0.4.1,<=0.6.9)", "fugashi (>=1.0)", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "jax (>=0.2.8,!=0.3.2,<=0.3.6)", "jaxlib (>=0.1.65,<=0.3.6)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "nltk", "numba (<0.57.0)", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "parameterized", "phonemizer", "protobuf (<=3.20.2)", "psutil", "pyctcdecode (>=0.4.0)", "pytest", "pytest-timeout", "pytest-xdist", "ray[tune]", "rhoknp (>=1.1.0)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (>=0.0.241,<=0.0.259)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "safetensors (>=0.2.1)", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorflow (>=2.4,<2.13)", "tensorflow-text (<2.13)", "tf2onnx", "timeout-decorator", "timm", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "torch (>=1.9,!=1.12.0)", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"] dev-tensorflow = ["GitPython (<3.1.19)", "Pillow", "beautifulsoup4", "black (>=23.1,<24.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "isort (>=5.5.4)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "nltk", "numba (<0.57.0)", "onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "parameterized", "phonemizer", "protobuf (<=3.20.2)", "psutil", "pyctcdecode (>=0.4.0)", "pytest", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (>=0.0.241,<=0.0.259)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "safetensors (>=0.2.1)", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorflow (>=2.4,<2.13)", "tensorflow-text (<2.13)", "tf2onnx", "timeout-decorator", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "urllib3 (<2.0.0)"] dev-torch = ["GitPython (<3.1.19)", "Pillow", "accelerate (>=0.19.0)", "beautifulsoup4", "black (>=23.1,<24.0)", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "fugashi (>=1.0)", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "kenlm", "librosa", "nltk", "numba (<0.57.0)", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "optuna", "parameterized", "phonemizer", "protobuf (<=3.20.2)", "psutil", "pyctcdecode (>=0.4.0)", "pytest", "pytest-timeout", "pytest-xdist", "ray[tune]", "rhoknp (>=1.1.0)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (>=0.0.241,<=0.0.259)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "safetensors (>=0.2.1)", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "timeout-decorator", "timm", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "torch (>=1.9,!=1.12.0)", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"] docs = ["Pillow", "accelerate (>=0.19.0)", "av (==9.2.0)", "codecarbon (==1.2.0)", "decord (==0.6.0)", "flax (>=0.4.1,<=0.6.9)", "hf-doc-builder", "jax (>=0.2.8,!=0.3.2,<=0.3.6)", "jaxlib (>=0.1.65,<=0.3.6)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "numba (<0.57.0)", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "phonemizer", "protobuf (<=3.20.2)", "pyctcdecode (>=0.4.0)", "ray[tune]", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>=2.4,<2.13)", "tensorflow-text (<2.13)", "tf2onnx", "timm", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "torch (>=1.9,!=1.12.0)", "torchaudio", "torchvision"] docs-specific = ["hf-doc-builder"] fairscale = ["fairscale (>0.3)"] flax = ["flax (>=0.4.1,<=0.6.9)", "jax (>=0.2.8,!=0.3.2,<=0.3.6)", "jaxlib (>=0.1.65,<=0.3.6)", "optax (>=0.0.8,<=0.1.4)"] flax-speech = ["kenlm", "librosa", "numba (<0.57.0)", "phonemizer", "pyctcdecode (>=0.4.0)"] ftfy = ["ftfy"] integrations = ["optuna", "ray[tune]", "sigopt"] ja = ["fugashi (>=1.0)", "ipadic (>=1.0.0,<2.0)", "rhoknp (>=1.1.0)", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)"] modelcreation = ["cookiecutter (==1.7.3)"] natten = ["natten (>=0.14.6)"] onnx = ["onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "tf2onnx"] onnxruntime = ["onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)"] optuna = ["optuna"] quality = ["GitPython (<3.1.19)", "black (>=23.1,<24.0)", "datasets (!=2.5.0)", "hf-doc-builder (>=0.3.0)", "isort (>=5.5.4)", "ruff (>=0.0.241,<=0.0.259)", "urllib3 (<2.0.0)"] ray = ["ray[tune]"] retrieval = ["datasets (!=2.5.0)", "faiss-cpu"] sagemaker = ["sagemaker (>=2.31.0)"] sentencepiece = ["protobuf (<=3.20.2)", "sentencepiece (>=0.1.91,!=0.1.92)"] serving = ["fastapi", "pydantic", "starlette", "uvicorn"] sigopt = ["sigopt"] sklearn = ["scikit-learn"] speech = ["kenlm", "librosa", "numba (<0.57.0)", "phonemizer", "pyctcdecode (>=0.4.0)", "torchaudio"] testing = ["GitPython (<3.1.19)", "beautifulsoup4", "black (>=23.1,<24.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "hf-doc-builder (>=0.3.0)", "nltk", "parameterized", "protobuf (<=3.20.2)", "psutil", "pytest", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "safetensors (>=0.2.1)", "timeout-decorator"] tf = ["keras-nlp (>=0.3.1)", "onnxconverter-common", "tensorflow (>=2.4,<2.13)", "tensorflow-text (<2.13)", "tf2onnx"] tf-cpu = ["keras-nlp (>=0.3.1)", "onnxconverter-common", "tensorflow-cpu (>=2.4,<2.13)", "tensorflow-text (<2.13)", "tf2onnx"] tf-speech = ["kenlm", "librosa", "numba (<0.57.0)", "phonemizer", "pyctcdecode (>=0.4.0)"] timm = ["timm"] tokenizers = ["tokenizers (>=0.11.1,!=0.11.3,<0.14)"] torch = ["accelerate (>=0.19.0)", "torch (>=1.9,!=1.12.0)"] torch-speech = ["kenlm", "librosa", "numba (<0.57.0)", "phonemizer", "pyctcdecode (>=0.4.0)", "torchaudio"] torch-vision = ["Pillow", "torchvision"] torchhub = ["filelock", "huggingface-hub (>=0.14.1,<1.0)", "importlib-metadata", "numpy (>=1.17)", "packaging (>=20.0)", "protobuf (<=3.20.2)", "regex (!=2019.12.17)", "requests", "sentencepiece (>=0.1.91,!=0.1.92)", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "torch (>=1.9,!=1.12.0)", "tqdm (>=4.27)"] video = ["av (==9.2.0)", "decord (==0.6.0)"] vision = ["Pillow"] [[package]] name = "typer" version = "0.7.0" description = "Typer, build great CLIs. Easy to code. Based on Python type hints." optional = true python-versions = ">=3.6" files = [ {file = "typer-0.7.0-py3-none-any.whl", hash = "sha256:b5e704f4e48ec263de1c0b3a2387cd405a13767d2f907f44c1a08cbad96f606d"}, {file = "typer-0.7.0.tar.gz", hash = "sha256:ff797846578a9f2a201b53442aedeb543319466870fbe1c701eab66dd7681165"}, ] [package.dependencies] click = ">=7.1.1,<9.0.0" [package.extras] all = ["colorama (>=0.4.3,<0.5.0)", "rich (>=10.11.0,<13.0.0)", "shellingham (>=1.3.0,<2.0.0)"] dev = ["autoflake (>=1.3.1,<2.0.0)", "flake8 (>=3.8.3,<4.0.0)", "pre-commit (>=2.17.0,<3.0.0)"] doc = ["cairosvg (>=2.5.2,<3.0.0)", "mdx-include (>=1.4.1,<2.0.0)", "mkdocs (>=1.1.2,<2.0.0)", "mkdocs-material (>=8.1.4,<9.0.0)", "pillow (>=9.3.0,<10.0.0)"] test = ["black (>=22.3.0,<23.0.0)", "coverage (>=6.2,<7.0)", "isort (>=5.0.6,<6.0.0)", "mypy (==0.910)", "pytest (>=4.4.0,<8.0.0)", "pytest-cov (>=2.10.0,<5.0.0)", "pytest-sugar (>=0.9.4,<0.10.0)", "pytest-xdist (>=1.32.0,<4.0.0)", "rich (>=10.11.0,<13.0.0)", "shellingham (>=1.3.0,<2.0.0)"] [[package]] name = "types-chardet" version = "5.0.4.6" description = "Typing stubs for chardet" optional = false python-versions = "*" files = [ {file = "types-chardet-5.0.4.6.tar.gz", hash = "sha256:caf4c74cd13ccfd8b3313c314aba943b159de562a2573ed03137402b2bb37818"}, {file = "types_chardet-5.0.4.6-py3-none-any.whl", hash = "sha256:ea832d87e798abf1e4dfc73767807c2b7fee35d0003ae90348aea4ae00fb004d"}, ] [[package]] name = "types-pyopenssl" version = "23.1.0.3" description = "Typing stubs for pyOpenSSL" optional = false python-versions = "*" files = [ {file = "types-pyOpenSSL-23.1.0.3.tar.gz", hash = "sha256:e7211088eff3e20d359888dedecb0994f7181d5cce0f26354dd47ca0484dc8a6"}, {file = "types_pyOpenSSL-23.1.0.3-py3-none-any.whl", hash = "sha256:ad024b07a1f4bffbca44699543c71efd04733a6c22781fa9673a971e410a3086"}, ] [package.dependencies] cryptography = ">=35.0.0" [[package]] name = "types-pyyaml" version = "6.0.12.9" description = "Typing stubs for PyYAML" optional = false python-versions = "*" files = [ {file = "types-PyYAML-6.0.12.9.tar.gz", hash = "sha256:c51b1bd6d99ddf0aa2884a7a328810ebf70a4262c292195d3f4f9a0005f9eeb6"}, {file = "types_PyYAML-6.0.12.9-py3-none-any.whl", hash = "sha256:5aed5aa66bd2d2e158f75dda22b059570ede988559f030cf294871d3b647e3e8"}, ] [[package]] name = "types-redis" version = "4.5.5.2" description = "Typing stubs for redis" optional = false python-versions = "*" files = [ {file = "types-redis-4.5.5.2.tar.gz", hash = "sha256:2fe82f374d9dddf007deaf23d81fddcfd9523d9522bf11523c5c43bc5b27099e"}, {file = "types_redis-4.5.5.2-py3-none-any.whl", hash = "sha256:bf8692252038dbe03b007ca4fde87d3ae8e10610854a6858e3bf5d01721a7c4b"}, ] [package.dependencies] cryptography = ">=35.0.0" types-pyOpenSSL = "*" [[package]] name = "types-requests" version = "2.30.0.0" description = "Typing stubs for requests" optional = false python-versions = "*" files = [ {file = "types-requests-2.30.0.0.tar.gz", hash = "sha256:dec781054324a70ba64430ae9e62e7e9c8e4618c185a5cb3f87a6738251b5a31"}, {file = "types_requests-2.30.0.0-py3-none-any.whl", hash = "sha256:c6cf08e120ca9f0dc4fa4e32c3f953c3fba222bcc1db6b97695bce8da1ba9864"}, ] [package.dependencies] types-urllib3 = "*" [[package]] name = "types-toml" version = "0.10.8.6" description = "Typing stubs for toml" optional = false python-versions = "*" files = [ {file = "types-toml-0.10.8.6.tar.gz", hash = "sha256:6d3ac79e36c9ee593c5d4fb33a50cca0e3adceb6ef5cff8b8e5aef67b4c4aaf2"}, {file = "types_toml-0.10.8.6-py3-none-any.whl", hash = "sha256:de7b2bb1831d6f7a4b554671ffe5875e729753496961b3e9b202745e4955dafa"}, ] [[package]] name = "types-urllib3" version = "1.26.25.13" description = "Typing stubs for urllib3" optional = false python-versions = "*" files = [ {file = "types-urllib3-1.26.25.13.tar.gz", hash = "sha256:3300538c9dc11dad32eae4827ac313f5d986b8b21494801f1bf97a1ac6c03ae5"}, {file = "types_urllib3-1.26.25.13-py3-none-any.whl", hash = "sha256:5dbd1d2bef14efee43f5318b5d36d805a489f6600252bb53626d4bfafd95e27c"}, ] [[package]] name = "typing-extensions" version = "4.5.0" description = "Backported and Experimental Type Hints for Python 3.7+" optional = false python-versions = ">=3.7" files = [ {file = "typing_extensions-4.5.0-py3-none-any.whl", hash = "sha256:fb33085c39dd998ac16d1431ebc293a8b3eedd00fd4a32de0ff79002c19511b4"}, {file = "typing_extensions-4.5.0.tar.gz", hash = "sha256:5cb5f4a79139d699607b3ef622a1dedafa84e115ab0024e0d9c044a9479ca7cb"}, ] [[package]] name = "typing-inspect" version = "0.8.0" description = "Runtime inspection utilities for typing module." optional = false python-versions = "*" files = [ {file = "typing_inspect-0.8.0-py3-none-any.whl", hash = "sha256:5fbf9c1e65d4fa01e701fe12a5bca6c6e08a4ffd5bc60bfac028253a447c5188"}, {file = "typing_inspect-0.8.0.tar.gz", hash = "sha256:8b1ff0c400943b6145df8119c41c244ca8207f1f10c9c057aeed1560e4806e3d"}, ] [package.dependencies] mypy-extensions = ">=0.3.0" typing-extensions = ">=3.7.4" [[package]] name = "tzdata" version = "2023.3" description = "Provider of IANA time zone data" optional = false python-versions = ">=2" files = [ {file = "tzdata-2023.3-py2.py3-none-any.whl", hash = "sha256:7e65763eef3120314099b6939b5546db7adce1e7d6f2e179e3df563c70511eda"}, {file = "tzdata-2023.3.tar.gz", hash = "sha256:11ef1e08e54acb0d4f95bdb1be05da659673de4acbd21bf9c69e94cc5e907a3a"}, ] [[package]] name = "tzlocal" version = "5.0.1" description = "tzinfo object for the local timezone" optional = true python-versions = ">=3.7" files = [ {file = "tzlocal-5.0.1-py3-none-any.whl", hash = "sha256:f3596e180296aaf2dbd97d124fe76ae3a0e3d32b258447de7b939b3fd4be992f"}, {file = "tzlocal-5.0.1.tar.gz", hash = "sha256:46eb99ad4bdb71f3f72b7d24f4267753e240944ecfc16f25d2719ba89827a803"}, ] [package.dependencies] "backports.zoneinfo" = {version = "*", markers = "python_version < \"3.9\""} tzdata = {version = "*", markers = "platform_system == \"Windows\""} [package.extras] devenv = ["black", "check-manifest", "flake8", "pyroma", "pytest (>=4.3)", "pytest-cov", "pytest-mock (>=3.3)", "zest.releaser"] [[package]] name = "uri-template" version = "1.2.0" description = "RFC 6570 URI Template Processor" optional = false python-versions = ">=3.6" files = [ {file = "uri_template-1.2.0-py3-none-any.whl", hash = "sha256:f1699c77b73b925cf4937eae31ab282a86dc885c333f2e942513f08f691fc7db"}, {file = "uri_template-1.2.0.tar.gz", hash = "sha256:934e4d09d108b70eb8a24410af8615294d09d279ce0e7cbcdaef1bd21f932b06"}, ] [package.extras] dev = ["flake8 (<4.0.0)", "flake8-annotations", "flake8-bugbear", "flake8-commas", "flake8-comprehensions", "flake8-continuation", "flake8-datetimez", "flake8-docstrings", "flake8-import-order", "flake8-literal", "flake8-noqa", "flake8-requirements", "flake8-type-annotations", "flake8-use-fstring", "mypy", "pep8-naming"] [[package]] name = "uritemplate" version = "4.1.1" description = "Implementation of RFC 6570 URI Templates" optional = true python-versions = ">=3.6" files = [ {file = "uritemplate-4.1.1-py2.py3-none-any.whl", hash = "sha256:830c08b8d99bdd312ea4ead05994a38e8936266f84b9a7878232db50b044e02e"}, {file = "uritemplate-4.1.1.tar.gz", hash = "sha256:4346edfc5c3b79f694bccd6d6099a322bbeb628dbf2cd86eea55a456ce5124f0"}, ] [[package]] name = "urllib3" version = "1.26.15" description = "HTTP library with thread-safe connection pooling, file post, and more." optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*" files = [ {file = "urllib3-1.26.15-py2.py3-none-any.whl", hash = "sha256:aa751d169e23c7479ce47a0cb0da579e3ede798f994f5816a74e4f4500dcea42"}, {file = "urllib3-1.26.15.tar.gz", hash = "sha256:8a388717b9476f934a21484e8c8e61875ab60644d29b9b39e11e4b9dc1c6b305"}, ] [package.extras] brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)", "brotlipy (>=0.6.0)"] secure = ["certifi", "cryptography (>=1.3.4)", "idna (>=2.0.0)", "ipaddress", "pyOpenSSL (>=0.14)", "urllib3-secure-extra"] socks = ["PySocks (>=1.5.6,!=1.5.7,<2.0)"] [[package]] name = "uvicorn" version = "0.22.0" description = "The lightning-fast ASGI server." optional = false python-versions = ">=3.7" files = [ {file = "uvicorn-0.22.0-py3-none-any.whl", hash = "sha256:e9434d3bbf05f310e762147f769c9f21235ee118ba2d2bf1155a7196448bd996"}, {file = "uvicorn-0.22.0.tar.gz", hash = "sha256:79277ae03db57ce7d9aa0567830bbb51d7a612f54d6e1e3e92da3ef24c2c8ed8"}, ] [package.dependencies] click = ">=7.0" colorama = {version = ">=0.4", optional = true, markers = "sys_platform == \"win32\" and extra == \"standard\""} h11 = ">=0.8" httptools = {version = ">=0.5.0", optional = true, markers = "extra == \"standard\""} python-dotenv = {version = ">=0.13", optional = true, markers = "extra == \"standard\""} pyyaml = {version = ">=5.1", optional = true, markers = "extra == \"standard\""} uvloop = {version = ">=0.14.0,<0.15.0 || >0.15.0,<0.15.1 || >0.15.1", optional = true, markers = "(sys_platform != \"win32\" and sys_platform != \"cygwin\") and platform_python_implementation != \"PyPy\" and extra == \"standard\""} watchfiles = {version = ">=0.13", optional = true, markers = "extra == \"standard\""} websockets = {version = ">=10.4", optional = true, markers = "extra == \"standard\""} [package.extras] standard = ["colorama (>=0.4)", "httptools (>=0.5.0)", "python-dotenv (>=0.13)", "pyyaml (>=5.1)", "uvloop (>=0.14.0,!=0.15.0,!=0.15.1)", "watchfiles (>=0.13)", "websockets (>=10.4)"] [[package]] name = "uvloop" version = "0.17.0" description = "Fast implementation of asyncio event loop on top of libuv" optional = false python-versions = ">=3.7" files = [ {file = "uvloop-0.17.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:ce9f61938d7155f79d3cb2ffa663147d4a76d16e08f65e2c66b77bd41b356718"}, {file = "uvloop-0.17.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:68532f4349fd3900b839f588972b3392ee56042e440dd5873dfbbcd2cc67617c"}, {file = "uvloop-0.17.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0949caf774b9fcefc7c5756bacbbbd3fc4c05a6b7eebc7c7ad6f825b23998d6d"}, {file = "uvloop-0.17.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ff3d00b70ce95adce264462c930fbaecb29718ba6563db354608f37e49e09024"}, {file = "uvloop-0.17.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:a5abddb3558d3f0a78949c750644a67be31e47936042d4f6c888dd6f3c95f4aa"}, {file = "uvloop-0.17.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8efcadc5a0003d3a6e887ccc1fb44dec25594f117a94e3127954c05cf144d811"}, {file = "uvloop-0.17.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:3378eb62c63bf336ae2070599e49089005771cc651c8769aaad72d1bd9385a7c"}, {file = "uvloop-0.17.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6aafa5a78b9e62493539456f8b646f85abc7093dd997f4976bb105537cf2635e"}, {file = "uvloop-0.17.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c686a47d57ca910a2572fddfe9912819880b8765e2f01dc0dd12a9bf8573e539"}, {file = "uvloop-0.17.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:864e1197139d651a76c81757db5eb199db8866e13acb0dfe96e6fc5d1cf45fc4"}, {file = "uvloop-0.17.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:2a6149e1defac0faf505406259561bc14b034cdf1d4711a3ddcdfbaa8d825a05"}, {file = "uvloop-0.17.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:6708f30db9117f115eadc4f125c2a10c1a50d711461699a0cbfaa45b9a78e376"}, {file = "uvloop-0.17.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:23609ca361a7fc587031429fa25ad2ed7242941adec948f9d10c045bfecab06b"}, {file = "uvloop-0.17.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2deae0b0fb00a6af41fe60a675cec079615b01d68beb4cc7b722424406b126a8"}, {file = "uvloop-0.17.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:45cea33b208971e87a31c17622e4b440cac231766ec11e5d22c76fab3bf9df62"}, {file = "uvloop-0.17.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:9b09e0f0ac29eee0451d71798878eae5a4e6a91aa275e114037b27f7db72702d"}, {file = "uvloop-0.17.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:dbbaf9da2ee98ee2531e0c780455f2841e4675ff580ecf93fe5c48fe733b5667"}, {file = "uvloop-0.17.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:a4aee22ece20958888eedbad20e4dbb03c37533e010fb824161b4f05e641f738"}, {file = "uvloop-0.17.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:307958f9fc5c8bb01fad752d1345168c0abc5d62c1b72a4a8c6c06f042b45b20"}, {file = "uvloop-0.17.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ebeeec6a6641d0adb2ea71dcfb76017602ee2bfd8213e3fcc18d8f699c5104f"}, {file = "uvloop-0.17.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1436c8673c1563422213ac6907789ecb2b070f5939b9cbff9ef7113f2b531595"}, {file = "uvloop-0.17.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:8887d675a64cfc59f4ecd34382e5b4f0ef4ae1da37ed665adba0c2badf0d6578"}, {file = "uvloop-0.17.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:3db8de10ed684995a7f34a001f15b374c230f7655ae840964d51496e2f8a8474"}, {file = "uvloop-0.17.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7d37dccc7ae63e61f7b96ee2e19c40f153ba6ce730d8ba4d3b4e9738c1dccc1b"}, {file = "uvloop-0.17.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:cbbe908fda687e39afd6ea2a2f14c2c3e43f2ca88e3a11964b297822358d0e6c"}, {file = "uvloop-0.17.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3d97672dc709fa4447ab83276f344a165075fd9f366a97b712bdd3fee05efae8"}, {file = "uvloop-0.17.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f1e507c9ee39c61bfddd79714e4f85900656db1aec4d40c6de55648e85c2799c"}, {file = "uvloop-0.17.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:c092a2c1e736086d59ac8e41f9c98f26bbf9b9222a76f21af9dfe949b99b2eb9"}, {file = "uvloop-0.17.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:30babd84706115626ea78ea5dbc7dd8d0d01a2e9f9b306d24ca4ed5796c66ded"}, {file = "uvloop-0.17.0.tar.gz", hash = "sha256:0ddf6baf9cf11a1a22c71487f39f15b2cf78eb5bde7e5b45fbb99e8a9d91b9e1"}, ] [package.extras] dev = ["Cython (>=0.29.32,<0.30.0)", "Sphinx (>=4.1.2,<4.2.0)", "aiohttp", "flake8 (>=3.9.2,<3.10.0)", "mypy (>=0.800)", "psutil", "pyOpenSSL (>=22.0.0,<22.1.0)", "pycodestyle (>=2.7.0,<2.8.0)", "pytest (>=3.6.0)", "sphinx-rtd-theme (>=0.5.2,<0.6.0)", "sphinxcontrib-asyncio (>=0.3.0,<0.4.0)"] docs = ["Sphinx (>=4.1.2,<4.2.0)", "sphinx-rtd-theme (>=0.5.2,<0.6.0)", "sphinxcontrib-asyncio (>=0.3.0,<0.4.0)"] test = ["Cython (>=0.29.32,<0.30.0)", "aiohttp", "flake8 (>=3.9.2,<3.10.0)", "mypy (>=0.800)", "psutil", "pyOpenSSL (>=22.0.0,<22.1.0)", "pycodestyle (>=2.7.0,<2.8.0)"] [[package]] name = "validators" version = "0.20.0" description = "Python Data Validation for Humans™." optional = false python-versions = ">=3.4" files = [ {file = "validators-0.20.0.tar.gz", hash = "sha256:24148ce4e64100a2d5e267233e23e7afeb55316b47d30faae7eb6e7292bc226a"}, ] [package.dependencies] decorator = ">=3.4.0" [package.extras] test = ["flake8 (>=2.4.0)", "isort (>=4.2.2)", "pytest (>=2.2.3)"] [[package]] name = "vcrpy" version = "4.2.1" description = "Automatically mock your HTTP interactions to simplify and speed up testing" optional = false python-versions = ">=3.7" files = [ {file = "vcrpy-4.2.1-py2.py3-none-any.whl", hash = "sha256:efac3e2e0b2af7686f83a266518180af7a048619b2f696e7bad9520f5e2eac09"}, {file = "vcrpy-4.2.1.tar.gz", hash = "sha256:7cd3e81a2c492e01c281f180bcc2a86b520b173d2b656cb5d89d99475423e013"}, ] [package.dependencies] PyYAML = "*" six = ">=1.5" wrapt = "*" yarl = "*" [[package]] name = "wasabi" version = "1.1.1" description = "A lightweight console printing and formatting toolkit" optional = true python-versions = ">=3.6" files = [ {file = "wasabi-1.1.1-py3-none-any.whl", hash = "sha256:32e44649d99a64e08e40c1c96cddb69fad460bd0cc33802a53cab6714dfb73f8"}, {file = "wasabi-1.1.1.tar.gz", hash = "sha256:f5ee7c609027811bd16e620f2fd7a7319466005848e41b051a62053ab8fd70d6"}, ] [package.dependencies] colorama = {version = ">=0.4.6", markers = "sys_platform == \"win32\" and python_version >= \"3.7\""} [[package]] name = "watchdog" version = "3.0.0" description = "Filesystem events monitoring" optional = false python-versions = ">=3.7" files = [ {file = "watchdog-3.0.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:336adfc6f5cc4e037d52db31194f7581ff744b67382eb6021c868322e32eef41"}, {file = "watchdog-3.0.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a70a8dcde91be523c35b2bf96196edc5730edb347e374c7de7cd20c43ed95397"}, {file = "watchdog-3.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:adfdeab2da79ea2f76f87eb42a3ab1966a5313e5a69a0213a3cc06ef692b0e96"}, {file = "watchdog-3.0.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:2b57a1e730af3156d13b7fdddfc23dea6487fceca29fc75c5a868beed29177ae"}, {file = "watchdog-3.0.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7ade88d0d778b1b222adebcc0927428f883db07017618a5e684fd03b83342bd9"}, {file = "watchdog-3.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7e447d172af52ad204d19982739aa2346245cc5ba6f579d16dac4bfec226d2e7"}, {file = "watchdog-3.0.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:9fac43a7466eb73e64a9940ac9ed6369baa39b3bf221ae23493a9ec4d0022674"}, {file = "watchdog-3.0.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:8ae9cda41fa114e28faf86cb137d751a17ffd0316d1c34ccf2235e8a84365c7f"}, {file = "watchdog-3.0.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:25f70b4aa53bd743729c7475d7ec41093a580528b100e9a8c5b5efe8899592fc"}, {file = "watchdog-3.0.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4f94069eb16657d2c6faada4624c39464f65c05606af50bb7902e036e3219be3"}, {file = "watchdog-3.0.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7c5f84b5194c24dd573fa6472685b2a27cc5a17fe5f7b6fd40345378ca6812e3"}, {file = "watchdog-3.0.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3aa7f6a12e831ddfe78cdd4f8996af9cf334fd6346531b16cec61c3b3c0d8da0"}, {file = "watchdog-3.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:233b5817932685d39a7896b1090353fc8efc1ef99c9c054e46c8002561252fb8"}, {file = "watchdog-3.0.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:13bbbb462ee42ec3c5723e1205be8ced776f05b100e4737518c67c8325cf6100"}, {file = "watchdog-3.0.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:8f3ceecd20d71067c7fd4c9e832d4e22584318983cabc013dbf3f70ea95de346"}, {file = "watchdog-3.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:c9d8c8ec7efb887333cf71e328e39cffbf771d8f8f95d308ea4125bf5f90ba64"}, {file = "watchdog-3.0.0-py3-none-manylinux2014_aarch64.whl", hash = "sha256:0e06ab8858a76e1219e68c7573dfeba9dd1c0219476c5a44d5333b01d7e1743a"}, {file = "watchdog-3.0.0-py3-none-manylinux2014_armv7l.whl", hash = "sha256:d00e6be486affb5781468457b21a6cbe848c33ef43f9ea4a73b4882e5f188a44"}, {file = "watchdog-3.0.0-py3-none-manylinux2014_i686.whl", hash = "sha256:c07253088265c363d1ddf4b3cdb808d59a0468ecd017770ed716991620b8f77a"}, {file = "watchdog-3.0.0-py3-none-manylinux2014_ppc64.whl", hash = "sha256:5113334cf8cf0ac8cd45e1f8309a603291b614191c9add34d33075727a967709"}, {file = "watchdog-3.0.0-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:51f90f73b4697bac9c9a78394c3acbbd331ccd3655c11be1a15ae6fe289a8c83"}, {file = "watchdog-3.0.0-py3-none-manylinux2014_s390x.whl", hash = "sha256:ba07e92756c97e3aca0912b5cbc4e5ad802f4557212788e72a72a47ff376950d"}, {file = "watchdog-3.0.0-py3-none-manylinux2014_x86_64.whl", hash = "sha256:d429c2430c93b7903914e4db9a966c7f2b068dd2ebdd2fa9b9ce094c7d459f33"}, {file = "watchdog-3.0.0-py3-none-win32.whl", hash = "sha256:3ed7c71a9dccfe838c2f0b6314ed0d9b22e77d268c67e015450a29036a81f60f"}, {file = "watchdog-3.0.0-py3-none-win_amd64.whl", hash = "sha256:4c9956d27be0bb08fc5f30d9d0179a855436e655f046d288e2bcc11adfae893c"}, {file = "watchdog-3.0.0-py3-none-win_ia64.whl", hash = "sha256:5d9f3a10e02d7371cd929b5d8f11e87d4bad890212ed3901f9b4d68767bee759"}, {file = "watchdog-3.0.0.tar.gz", hash = "sha256:4d98a320595da7a7c5a18fc48cb633c2e73cda78f93cac2ef42d42bf609a33f9"}, ] [package.extras] watchmedo = ["PyYAML (>=3.10)"] [[package]] name = "watchfiles" version = "0.19.0" description = "Simple, modern and high performance file watching and code reload in python." optional = false python-versions = ">=3.7" files = [ {file = "watchfiles-0.19.0-cp37-abi3-macosx_10_7_x86_64.whl", hash = "sha256:91633e64712df3051ca454ca7d1b976baf842d7a3640b87622b323c55f3345e7"}, {file = "watchfiles-0.19.0-cp37-abi3-macosx_11_0_arm64.whl", hash = "sha256:b6577b8c6c8701ba8642ea9335a129836347894b666dd1ec2226830e263909d3"}, {file = "watchfiles-0.19.0-cp37-abi3-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:18b28f6ad871b82df9542ff958d0c86bb0d8310bb09eb8e87d97318a3b5273af"}, {file = "watchfiles-0.19.0-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fac19dc9cbc34052394dbe81e149411a62e71999c0a19e1e09ce537867f95ae0"}, {file = "watchfiles-0.19.0-cp37-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:09ea3397aecbc81c19ed7f025e051a7387feefdb789cf768ff994c1228182fda"}, {file = "watchfiles-0.19.0-cp37-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c0376deac92377817e4fb8f347bf559b7d44ff556d9bc6f6208dd3f79f104aaf"}, {file = "watchfiles-0.19.0-cp37-abi3-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9c75eff897786ee262c9f17a48886f4e98e6cfd335e011c591c305e5d083c056"}, {file = "watchfiles-0.19.0-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cb5d45c4143c1dd60f98a16187fd123eda7248f84ef22244818c18d531a249d1"}, {file = "watchfiles-0.19.0-cp37-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:79c533ff593db861ae23436541f481ec896ee3da4e5db8962429b441bbaae16e"}, {file = "watchfiles-0.19.0-cp37-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:3d7d267d27aceeeaa3de0dd161a0d64f0a282264d592e335fff7958cc0cbae7c"}, {file = "watchfiles-0.19.0-cp37-abi3-win32.whl", hash = "sha256:176a9a7641ec2c97b24455135d58012a5be5c6217fc4d5fef0b2b9f75dbf5154"}, {file = "watchfiles-0.19.0-cp37-abi3-win_amd64.whl", hash = "sha256:945be0baa3e2440151eb3718fd8846751e8b51d8de7b884c90b17d271d34cae8"}, {file = "watchfiles-0.19.0-cp37-abi3-win_arm64.whl", hash = "sha256:0089c6dc24d436b373c3c57657bf4f9a453b13767150d17284fc6162b2791911"}, {file = "watchfiles-0.19.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl", hash = "sha256:cae3dde0b4b2078f31527acff6f486e23abed307ba4d3932466ba7cdd5ecec79"}, {file = "watchfiles-0.19.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:7f3920b1285a7d3ce898e303d84791b7bf40d57b7695ad549dc04e6a44c9f120"}, {file = "watchfiles-0.19.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9afd0d69429172c796164fd7fe8e821ade9be983f51c659a38da3faaaaac44dc"}, {file = "watchfiles-0.19.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:68dce92b29575dda0f8d30c11742a8e2b9b8ec768ae414b54f7453f27bdf9545"}, {file = "watchfiles-0.19.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl", hash = "sha256:5569fc7f967429d4bc87e355cdfdcee6aabe4b620801e2cf5805ea245c06097c"}, {file = "watchfiles-0.19.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:5471582658ea56fca122c0f0d0116a36807c63fefd6fdc92c71ca9a4491b6b48"}, {file = "watchfiles-0.19.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b538014a87f94d92f98f34d3e6d2635478e6be6423a9ea53e4dd96210065e193"}, {file = "watchfiles-0.19.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:20b44221764955b1e703f012c74015306fb7e79a00c15370785f309b1ed9aa8d"}, {file = "watchfiles-0.19.0.tar.gz", hash = "sha256:d9b073073e048081e502b6c6b0b88714c026a1a4c890569238d04aca5f9ca74b"}, ] [package.dependencies] anyio = ">=3.0.0" [[package]] name = "wcwidth" version = "0.2.6" description = "Measures the displayed width of unicode strings in a terminal" optional = false python-versions = "*" files = [ {file = "wcwidth-0.2.6-py2.py3-none-any.whl", hash = "sha256:795b138f6875577cd91bba52baf9e445cd5118fd32723b460e30a0af30ea230e"}, {file = "wcwidth-0.2.6.tar.gz", hash = "sha256:a5220780a404dbe3353789870978e472cfe477761f06ee55077256e509b156d0"}, ] [[package]] name = "weaviate-client" version = "3.19.1" description = "A python native weaviate client" optional = false python-versions = ">=3.8" files = [ {file = "weaviate-client-3.19.1.tar.gz", hash = "sha256:8528926b0b545225ab75583481d67cccf9494d2dc01cb62f1165a8f187b41ebb"}, {file = "weaviate_client-3.19.1-py3-none-any.whl", hash = "sha256:6b4aae86cd955543fcc6328bc1462fbbae053dc50f7b6822287b05b98fec0d27"}, ] [package.dependencies] authlib = ">=1.1.0" requests = ">=2.28.0,<2.29.0" tqdm = ">=4.59.0,<5.0.0" validators = ">=0.18.2,<=0.21.0" [package.extras] grpc = ["grpcio", "grpcio-tools"] [[package]] name = "webcolors" version = "1.13" description = "A library for working with the color formats defined by HTML and CSS." optional = false python-versions = ">=3.7" files = [ {file = "webcolors-1.13-py3-none-any.whl", hash = "sha256:29bc7e8752c0a1bd4a1f03c14d6e6a72e93d82193738fa860cbff59d0fcc11bf"}, {file = "webcolors-1.13.tar.gz", hash = "sha256:c225b674c83fa923be93d235330ce0300373d02885cef23238813b0d5668304a"}, ] [package.extras] docs = ["furo", "sphinx", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-notfound-page", "sphinxext-opengraph"] tests = ["pytest", "pytest-cov"] [[package]] name = "webencodings" version = "0.5.1" description = "Character encoding aliases for legacy web content" optional = false python-versions = "*" files = [ {file = "webencodings-0.5.1-py2.py3-none-any.whl", hash = "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78"}, {file = "webencodings-0.5.1.tar.gz", hash = "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923"}, ] [[package]] name = "websocket-client" version = "1.5.1" description = "WebSocket client for Python with low level API options" optional = false python-versions = ">=3.7" files = [ {file = "websocket-client-1.5.1.tar.gz", hash = "sha256:3f09e6d8230892547132177f575a4e3e73cfdf06526e20cc02aa1c3b47184d40"}, {file = "websocket_client-1.5.1-py3-none-any.whl", hash = "sha256:cdf5877568b7e83aa7cf2244ab56a3213de587bbe0ce9d8b9600fc77b455d89e"}, ] [package.extras] docs = ["Sphinx (>=3.4)", "sphinx-rtd-theme (>=0.5)"] optional = ["python-socks", "wsaccel"] test = ["websockets"] [[package]] name = "websockets" version = "11.0.3" description = "An implementation of the WebSocket Protocol (RFC 6455 & 7692)" optional = false python-versions = ">=3.7" files = [ {file = "websockets-11.0.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3ccc8a0c387629aec40f2fc9fdcb4b9d5431954f934da3eaf16cdc94f67dbfac"}, {file = "websockets-11.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d67ac60a307f760c6e65dad586f556dde58e683fab03323221a4e530ead6f74d"}, {file = "websockets-11.0.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:84d27a4832cc1a0ee07cdcf2b0629a8a72db73f4cf6de6f0904f6661227f256f"}, {file = "websockets-11.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ffd7dcaf744f25f82190856bc26ed81721508fc5cbf2a330751e135ff1283564"}, {file = "websockets-11.0.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7622a89d696fc87af8e8d280d9b421db5133ef5b29d3f7a1ce9f1a7bf7fcfa11"}, {file = "websockets-11.0.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bceab846bac555aff6427d060f2fcfff71042dba6f5fca7dc4f75cac815e57ca"}, {file = "websockets-11.0.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:54c6e5b3d3a8936a4ab6870d46bdd6ec500ad62bde9e44462c32d18f1e9a8e54"}, {file = "websockets-11.0.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:41f696ba95cd92dc047e46b41b26dd24518384749ed0d99bea0a941ca87404c4"}, {file = "websockets-11.0.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:86d2a77fd490ae3ff6fae1c6ceaecad063d3cc2320b44377efdde79880e11526"}, {file = "websockets-11.0.3-cp310-cp310-win32.whl", hash = "sha256:2d903ad4419f5b472de90cd2d40384573b25da71e33519a67797de17ef849b69"}, {file = "websockets-11.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:1d2256283fa4b7f4c7d7d3e84dc2ece74d341bce57d5b9bf385df109c2a1a82f"}, {file = "websockets-11.0.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:e848f46a58b9fcf3d06061d17be388caf70ea5b8cc3466251963c8345e13f7eb"}, {file = "websockets-11.0.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:aa5003845cdd21ac0dc6c9bf661c5beddd01116f6eb9eb3c8e272353d45b3288"}, {file = "websockets-11.0.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:b58cbf0697721120866820b89f93659abc31c1e876bf20d0b3d03cef14faf84d"}, {file = "websockets-11.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:660e2d9068d2bedc0912af508f30bbeb505bbbf9774d98def45f68278cea20d3"}, {file = "websockets-11.0.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c1f0524f203e3bd35149f12157438f406eff2e4fb30f71221c8a5eceb3617b6b"}, {file = "websockets-11.0.3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:def07915168ac8f7853812cc593c71185a16216e9e4fa886358a17ed0fd9fcf6"}, {file = "websockets-11.0.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:b30c6590146e53149f04e85a6e4fcae068df4289e31e4aee1fdf56a0dead8f97"}, {file = "websockets-11.0.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:619d9f06372b3a42bc29d0cd0354c9bb9fb39c2cbc1a9c5025b4538738dbffaf"}, {file = "websockets-11.0.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:01f5567d9cf6f502d655151645d4e8b72b453413d3819d2b6f1185abc23e82dd"}, {file = "websockets-11.0.3-cp311-cp311-win32.whl", hash = "sha256:e1459677e5d12be8bbc7584c35b992eea142911a6236a3278b9b5ce3326f282c"}, {file = "websockets-11.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:e7837cb169eca3b3ae94cc5787c4fed99eef74c0ab9506756eea335e0d6f3ed8"}, {file = "websockets-11.0.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:9f59a3c656fef341a99e3d63189852be7084c0e54b75734cde571182c087b152"}, {file = "websockets-11.0.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2529338a6ff0eb0b50c7be33dc3d0e456381157a31eefc561771ee431134a97f"}, {file = "websockets-11.0.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:34fd59a4ac42dff6d4681d8843217137f6bc85ed29722f2f7222bd619d15e95b"}, {file = "websockets-11.0.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:332d126167ddddec94597c2365537baf9ff62dfcc9db4266f263d455f2f031cb"}, {file = "websockets-11.0.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:6505c1b31274723ccaf5f515c1824a4ad2f0d191cec942666b3d0f3aa4cb4007"}, {file = "websockets-11.0.3-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:f467ba0050b7de85016b43f5a22b46383ef004c4f672148a8abf32bc999a87f0"}, {file = "websockets-11.0.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:9d9acd80072abcc98bd2c86c3c9cd4ac2347b5a5a0cae7ed5c0ee5675f86d9af"}, {file = "websockets-11.0.3-cp37-cp37m-win32.whl", hash = "sha256:e590228200fcfc7e9109509e4d9125eace2042fd52b595dd22bbc34bb282307f"}, {file = "websockets-11.0.3-cp37-cp37m-win_amd64.whl", hash = "sha256:b16fff62b45eccb9c7abb18e60e7e446998093cdcb50fed33134b9b6878836de"}, {file = "websockets-11.0.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:fb06eea71a00a7af0ae6aefbb932fb8a7df3cb390cc217d51a9ad7343de1b8d0"}, {file = "websockets-11.0.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:8a34e13a62a59c871064dfd8ffb150867e54291e46d4a7cf11d02c94a5275bae"}, {file = "websockets-11.0.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4841ed00f1026dfbced6fca7d963c4e7043aa832648671b5138008dc5a8f6d99"}, {file = "websockets-11.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1a073fc9ab1c8aff37c99f11f1641e16da517770e31a37265d2755282a5d28aa"}, {file = "websockets-11.0.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:68b977f21ce443d6d378dbd5ca38621755f2063d6fdb3335bda981d552cfff86"}, {file = "websockets-11.0.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e1a99a7a71631f0efe727c10edfba09ea6bee4166a6f9c19aafb6c0b5917d09c"}, {file = "websockets-11.0.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:bee9fcb41db2a23bed96c6b6ead6489702c12334ea20a297aa095ce6d31370d0"}, {file = "websockets-11.0.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:4b253869ea05a5a073ebfdcb5cb3b0266a57c3764cf6fe114e4cd90f4bfa5f5e"}, {file = "websockets-11.0.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:1553cb82942b2a74dd9b15a018dce645d4e68674de2ca31ff13ebc2d9f283788"}, {file = "websockets-11.0.3-cp38-cp38-win32.whl", hash = "sha256:f61bdb1df43dc9c131791fbc2355535f9024b9a04398d3bd0684fc16ab07df74"}, {file = "websockets-11.0.3-cp38-cp38-win_amd64.whl", hash = "sha256:03aae4edc0b1c68498f41a6772d80ac7c1e33c06c6ffa2ac1c27a07653e79d6f"}, {file = "websockets-11.0.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:777354ee16f02f643a4c7f2b3eff8027a33c9861edc691a2003531f5da4f6bc8"}, {file = "websockets-11.0.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8c82f11964f010053e13daafdc7154ce7385ecc538989a354ccc7067fd7028fd"}, {file = "websockets-11.0.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3580dd9c1ad0701169e4d6fc41e878ffe05e6bdcaf3c412f9d559389d0c9e016"}, {file = "websockets-11.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6f1a3f10f836fab6ca6efa97bb952300b20ae56b409414ca85bff2ad241d2a61"}, {file = "websockets-11.0.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:df41b9bc27c2c25b486bae7cf42fccdc52ff181c8c387bfd026624a491c2671b"}, {file = "websockets-11.0.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:279e5de4671e79a9ac877427f4ac4ce93751b8823f276b681d04b2156713b9dd"}, {file = "websockets-11.0.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:1fdf26fa8a6a592f8f9235285b8affa72748dc12e964a5518c6c5e8f916716f7"}, {file = "websockets-11.0.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:69269f3a0b472e91125b503d3c0b3566bda26da0a3261c49f0027eb6075086d1"}, {file = "websockets-11.0.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:97b52894d948d2f6ea480171a27122d77af14ced35f62e5c892ca2fae9344311"}, {file = "websockets-11.0.3-cp39-cp39-win32.whl", hash = "sha256:c7f3cb904cce8e1be667c7e6fef4516b98d1a6a0635a58a57528d577ac18a128"}, {file = "websockets-11.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:c792ea4eabc0159535608fc5658a74d1a81020eb35195dd63214dcf07556f67e"}, {file = "websockets-11.0.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:f2e58f2c36cc52d41f2659e4c0cbf7353e28c8c9e63e30d8c6d3494dc9fdedcf"}, {file = "websockets-11.0.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:de36fe9c02995c7e6ae6efe2e205816f5f00c22fd1fbf343d4d18c3d5ceac2f5"}, {file = "websockets-11.0.3-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0ac56b661e60edd453585f4bd68eb6a29ae25b5184fd5ba51e97652580458998"}, {file = "websockets-11.0.3-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e052b8467dd07d4943936009f46ae5ce7b908ddcac3fda581656b1b19c083d9b"}, {file = "websockets-11.0.3-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:42cc5452a54a8e46a032521d7365da775823e21bfba2895fb7b77633cce031bb"}, {file = "websockets-11.0.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e6316827e3e79b7b8e7d8e3b08f4e331af91a48e794d5d8b099928b6f0b85f20"}, {file = "websockets-11.0.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8531fdcad636d82c517b26a448dcfe62f720e1922b33c81ce695d0edb91eb931"}, {file = "websockets-11.0.3-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c114e8da9b475739dde229fd3bc6b05a6537a88a578358bc8eb29b4030fac9c9"}, {file = "websockets-11.0.3-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e063b1865974611313a3849d43f2c3f5368093691349cf3c7c8f8f75ad7cb280"}, {file = "websockets-11.0.3-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:92b2065d642bf8c0a82d59e59053dd2fdde64d4ed44efe4870fa816c1232647b"}, {file = "websockets-11.0.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:0ee68fe502f9031f19d495dae2c268830df2760c0524cbac5d759921ba8c8e82"}, {file = "websockets-11.0.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dcacf2c7a6c3a84e720d1bb2b543c675bf6c40e460300b628bab1b1efc7c034c"}, {file = "websockets-11.0.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b67c6f5e5a401fc56394f191f00f9b3811fe843ee93f4a70df3c389d1adf857d"}, {file = "websockets-11.0.3-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1d5023a4b6a5b183dc838808087033ec5df77580485fc533e7dab2567851b0a4"}, {file = "websockets-11.0.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:ed058398f55163a79bb9f06a90ef9ccc063b204bb346c4de78efc5d15abfe602"}, {file = "websockets-11.0.3-py3-none-any.whl", hash = "sha256:6681ba9e7f8f3b19440921e99efbb40fc89f26cd71bf539e45d8c8a25c976dc6"}, {file = "websockets-11.0.3.tar.gz", hash = "sha256:88fc51d9a26b10fc331be344f1781224a375b78488fc343620184e95a4b27016"}, ] [[package]] name = "werkzeug" version = "2.3.4" description = "The comprehensive WSGI web application library." optional = true python-versions = ">=3.8" files = [ {file = "Werkzeug-2.3.4-py3-none-any.whl", hash = "sha256:48e5e61472fee0ddee27ebad085614ebedb7af41e88f687aaf881afb723a162f"}, {file = "Werkzeug-2.3.4.tar.gz", hash = "sha256:1d5a58e0377d1fe39d061a5de4469e414e78ccb1e1e59c0f5ad6fa1c36c52b76"}, ] [package.dependencies] MarkupSafe = ">=2.1.1" [package.extras] watchdog = ["watchdog (>=2.3)"] [[package]] name = "wget" version = "3.2" description = "pure python download utility" optional = false python-versions = "*" files = [ {file = "wget-3.2.zip", hash = "sha256:35e630eca2aa50ce998b9b1a127bb26b30dfee573702782aa982f875e3f16061"}, ] [[package]] name = "wheel" version = "0.40.0" description = "A built-package format for Python" optional = false python-versions = ">=3.7" files = [ {file = "wheel-0.40.0-py3-none-any.whl", hash = "sha256:d236b20e7cb522daf2390fa84c55eea81c5c30190f90f29ae2ca1ad8355bf247"}, {file = "wheel-0.40.0.tar.gz", hash = "sha256:cd1196f3faee2b31968d626e1731c94f99cbdb67cf5a46e4f5656cbee7738873"}, ] [package.extras] test = ["pytest (>=6.0.0)"] [[package]] name = "whylabs-client" version = "0.5.1" description = "WhyLabs API client" optional = true python-versions = ">=3.6" files = [ {file = "whylabs-client-0.5.1.tar.gz", hash = "sha256:f7aacfab7d176812c2eb4cdeb8c52521eed0d30bc2a0836399798197a513cf04"}, {file = "whylabs_client-0.5.1-py3-none-any.whl", hash = "sha256:dc6958d5bb390f1057fe6f513cbce55c4e71d5f8a1461a7c93eb73814089de33"}, ] [package.dependencies] python-dateutil = "*" urllib3 = ">=1.25.3" [[package]] name = "whylogs" version = "1.1.42.dev3" description = "Profile and monitor your ML data pipeline end-to-end" optional = true python-versions = ">=3.7.1,<4" files = [ {file = "whylogs-1.1.42.dev3-py3-none-any.whl", hash = "sha256:99aadb05b68c6c2dc5d00ba1fb45bdd5ac2c3da3fe812f3fd1573a0f06674121"}, {file = "whylogs-1.1.42.dev3.tar.gz", hash = "sha256:c82badf821f56935fd274e696e4d5ed151934e486f23ea5f5c60af31e6cdb632"}, ] [package.dependencies] protobuf = ">=3.19.4" typing-extensions = {version = ">=3.10", markers = "python_version < \"4\""} whylabs-client = ">=0.4.4,<1" whylogs-sketching = ">=3.4.1.dev3" [package.extras] all = ["Pillow (>=9.2.0,<10.0.0)", "boto3 (>=1.22.13,<2.0.0)", "fugue (>=0.8.1,<0.9.0)", "google-cloud-storage (>=2.5.0,<3.0.0)", "ipython", "mlflow-skinny (>=1.26.1,<2.0.0)", "numpy", "numpy (>=1.23.2)", "pandas", "pyarrow (>=8.0.0,<13)", "pybars3 (>=0.9,<0.10)", "pyspark (>=3.0.0,<4.0.0)", "requests (>=2.27,<3.0)", "scikit-learn (>=1.0.2,<2.0.0)", "scikit-learn (>=1.1.2,<2)", "scipy (>=1.5)", "scipy (>=1.9.2)"] datasets = ["pandas"] docs = ["furo (>=2022.3.4,<2023.0.0)", "ipython_genutils (>=0.2.0,<0.3.0)", "myst-parser[sphinx] (>=0.17.2,<0.18.0)", "nbconvert (>=7.0.0,<8.0.0)", "nbsphinx (>=0.8.9,<0.9.0)", "sphinx", "sphinx-autoapi", "sphinx-autobuild (>=2021.3.14,<2022.0.0)", "sphinx-copybutton (>=0.5.0,<0.6.0)", "sphinx-inline-tabs", "sphinxext-opengraph (>=0.6.3,<0.7.0)"] embeddings = ["numpy", "numpy (>=1.23.2)", "scikit-learn (>=1.0.2,<2.0.0)", "scikit-learn (>=1.1.2,<2)"] fugue = ["fugue (>=0.8.1,<0.9.0)"] gcs = ["google-cloud-storage (>=2.5.0,<3.0.0)"] image = ["Pillow (>=9.2.0,<10.0.0)"] mlflow = ["mlflow-skinny (>=1.26.1,<2.0.0)"] s3 = ["boto3 (>=1.22.13,<2.0.0)"] spark = ["pyarrow (>=8.0.0,<13)", "pyspark (>=3.0.0,<4.0.0)"] viz = ["Pillow (>=9.2.0,<10.0.0)", "ipython", "numpy", "numpy (>=1.23.2)", "pybars3 (>=0.9,<0.10)", "requests (>=2.27,<3.0)", "scipy (>=1.5)", "scipy (>=1.9.2)"] whylabs = ["requests (>=2.27,<3.0)"] [[package]] name = "whylogs-sketching" version = "3.4.1.dev3" description = "sketching library of whylogs" optional = true python-versions = "*" files = [ {file = "whylogs-sketching-3.4.1.dev3.tar.gz", hash = "sha256:40b90eb9d5e4cbbfa63f6a1f3a3332b72258d270044b79030dc5d720fddd9499"}, {file = "whylogs_sketching-3.4.1.dev3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:9c20134eda881064099264f795d60321777b5e6c2357125a7a2787c9f15db684"}, {file = "whylogs_sketching-3.4.1.dev3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e76ac4c2d0214b8de8598867e721f774cca8877267bc2a9b2d0d06950fe76bd5"}, {file = "whylogs_sketching-3.4.1.dev3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:edc2b463d926ccacb7ee2147d206850bb0cbfea8766f091e8c575ada48db1cfd"}, {file = "whylogs_sketching-3.4.1.dev3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fdc2a3bd73895d1ffac1b3028ff55aaa6b60a9ec42d7b6b5785fa140f303dec0"}, {file = "whylogs_sketching-3.4.1.dev3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:46460eefcf22bcf20b0e6208de32e358478c17b1239221eb038d434f14ec427c"}, {file = "whylogs_sketching-3.4.1.dev3-cp310-cp310-win_amd64.whl", hash = "sha256:58b99a070429a7119a5727ac61c4e9ebcd6e92eed3d2646931a487fff3d6630e"}, {file = "whylogs_sketching-3.4.1.dev3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:531a4af8f707c1e8138a4ae41a117ba53241372bf191666a9e6b44ab6cd9e634"}, {file = "whylogs_sketching-3.4.1.dev3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ba536fca5f9578fa34d106c243fdccfef7d75b9d1fffb9d93df0debfe8e3ebc"}, {file = "whylogs_sketching-3.4.1.dev3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:afa843c68cafa08e82624e6a33d13ab7f00ad0301101960872fe152d5af5ab53"}, {file = "whylogs_sketching-3.4.1.dev3-cp311-cp311-win_amd64.whl", hash = "sha256:303d55c37565340c2d21c268c64a712fad612504cc4b98b1d1df848cac6d934f"}, {file = "whylogs_sketching-3.4.1.dev3-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:9d65fcf8dade1affe50181582b8894929993e37d7daa922d973a811790cd0208"}, {file = "whylogs_sketching-3.4.1.dev3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c4845e77c208ae64ada9170e1b92ed0abe28fe311c0fc35f9d8efa6926211ca2"}, {file = "whylogs_sketching-3.4.1.dev3-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:02cac1c87ac42d7fc7e6597862ac50bc035825988d21e8a2d763b416e83e845f"}, {file = "whylogs_sketching-3.4.1.dev3-cp36-cp36m-win_amd64.whl", hash = "sha256:52a174784e69870543fb87910e5549759f01a7f4cb6cac1773b2cc194ec0b72f"}, {file = "whylogs_sketching-3.4.1.dev3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:0931fc7500b78baf8f44222f1e3b58cfb707b0120328bc16cc50beaab5a954ec"}, {file = "whylogs_sketching-3.4.1.dev3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:803c104338a5c4e1c6eb077d35ca3a4443e455aa4e7f2769c93560bf135cdeb3"}, {file = "whylogs_sketching-3.4.1.dev3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:49e8f20351077497880b088dff9342f4b54d2d3c650c0b43daf121d97fb42468"}, {file = "whylogs_sketching-3.4.1.dev3-cp37-cp37m-win_amd64.whl", hash = "sha256:f9f3507b5df34de7a95b75f80009644371dd6406f9d8795e820edf8a594aeacc"}, {file = "whylogs_sketching-3.4.1.dev3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:2986dd5b35a93267e6d89e7aa256f714105bbe61bdb0381aeab588c2688e46b6"}, {file = "whylogs_sketching-3.4.1.dev3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:14f1bf4903e9cd2a196fe5a7268cca1434d423233e073917130d5b845f539c2a"}, {file = "whylogs_sketching-3.4.1.dev3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2ecfe0e4a629a4cefec9d7c7fac234119688085ba5f62feabed710cb5a322f8b"}, {file = "whylogs_sketching-3.4.1.dev3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:000e2c11b7bbbdefb3a343c15955868a682c02d607557fef7bad5a6ffd09a0cf"}, {file = "whylogs_sketching-3.4.1.dev3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:1e70ed1ed2f9c174a80673ae2ca24c1ec0e2a01c0bd6b0728640492fd5a50178"}, {file = "whylogs_sketching-3.4.1.dev3-cp38-cp38-win_amd64.whl", hash = "sha256:9efd56d5a21566fc49126ef54d37116078763bb9f8955b9c77421b4ca3fd8fc6"}, {file = "whylogs_sketching-3.4.1.dev3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:832247fd9d3ecf13791418a75c359db6c3aeffd51d7372d026e95f307ef286cc"}, {file = "whylogs_sketching-3.4.1.dev3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:cc81b547e331d96f6f4227280b9b5968ca4bd48dd7cb0c8b68c022037800009f"}, {file = "whylogs_sketching-3.4.1.dev3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3abf13da4347393a302843c2f06ce4e5fc56fd9c8564f64da13ceafb81eef90b"}, {file = "whylogs_sketching-3.4.1.dev3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d1d6e7d0ddb66ab725d7af63518ef6a24cd45b075b81e1d2081709df4c989853"}, {file = "whylogs_sketching-3.4.1.dev3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:0b05112e3f70cfccddd2f72e464fa113307d97188891433133d4219b9f8f5456"}, {file = "whylogs_sketching-3.4.1.dev3-cp39-cp39-win_amd64.whl", hash = "sha256:23759a00dd0e7019fbac06d9e9ab005ad6c14f80ec7935ccebccb7127296bc06"}, ] [[package]] name = "widgetsnbextension" version = "4.0.7" description = "Jupyter interactive widgets for Jupyter Notebook" optional = false python-versions = ">=3.7" files = [ {file = "widgetsnbextension-4.0.7-py3-none-any.whl", hash = "sha256:be3228a73bbab189a16be2d4a3cd89ecbd4e31948bfdc64edac17dcdee3cd99c"}, {file = "widgetsnbextension-4.0.7.tar.gz", hash = "sha256:ea67c17a7cd4ae358f8f46c3b304c40698bc0423732e3f273321ee141232c8be"}, ] [[package]] name = "wikipedia" version = "1.4.0" description = "Wikipedia API for Python" optional = false python-versions = "*" files = [ {file = "wikipedia-1.4.0.tar.gz", hash = "sha256:db0fad1829fdd441b1852306e9856398204dc0786d2996dd2e0c8bb8e26133b2"}, ] [package.dependencies] beautifulsoup4 = "*" requests = ">=2.0.0,<3.0.0" [[package]] name = "win32-setctime" version = "1.1.0" description = "A small Python utility to set file creation time on Windows" optional = false python-versions = ">=3.5" files = [ {file = "win32_setctime-1.1.0-py3-none-any.whl", hash = "sha256:231db239e959c2fe7eb1d7dc129f11172354f98361c4fa2d6d2d7e278baa8aad"}, {file = "win32_setctime-1.1.0.tar.gz", hash = "sha256:15cf5750465118d6929ae4de4eb46e8edae9a5634350c01ba582df868e932cb2"}, ] [package.extras] dev = ["black (>=19.3b0)", "pytest (>=4.6.2)"] [[package]] name = "wolframalpha" version = "5.0.0" description = "Wolfram|Alpha 2.0 API client" optional = true python-versions = ">=3.6" files = [ {file = "wolframalpha-5.0.0-py3-none-any.whl", hash = "sha256:159f5d8fd31e4a734a34a9f3ae8aec4e9b2ef392607f82069b4a324b6b1831d5"}, {file = "wolframalpha-5.0.0.tar.gz", hash = "sha256:38bf27654039ec85cc62c199dd319b6a4d6a7badfed7af1cd161f081afdb57c0"}, ] [package.dependencies] "jaraco.context" = "*" more-itertools = "*" xmltodict = "*" [package.extras] docs = ["jaraco.packaging (>=8.2)", "rst.linker (>=1.9)", "sphinx"] testing = ["keyring", "pmxbot", "pytest (>=3.5,!=3.7.3)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=1.2.3)", "pytest-cov", "pytest-enabler", "pytest-flake8", "pytest-mypy"] [[package]] name = "wonderwords" version = "2.2.0" description = "A python package for random words and sentences in the english language" optional = true python-versions = ">=3.6" files = [ {file = "wonderwords-2.2.0-py3-none-any.whl", hash = "sha256:65fc665f1f5590e98f6d9259414ea036bf1b6dd83e51aa6ba44473c99ca92da1"}, {file = "wonderwords-2.2.0.tar.gz", hash = "sha256:0b7ec6f591062afc55603bfea71463afbab06794b3064d9f7b04d0ce251a13d0"}, ] [package.extras] cli = ["rich (==9.10.0)"] [[package]] name = "wrapt" version = "1.15.0" description = "Module for decorators, wrappers and monkey patching." optional = false python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,>=2.7" files = [ {file = "wrapt-1.15.0-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:ca1cccf838cd28d5a0883b342474c630ac48cac5df0ee6eacc9c7290f76b11c1"}, {file = "wrapt-1.15.0-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:e826aadda3cae59295b95343db8f3d965fb31059da7de01ee8d1c40a60398b29"}, {file = "wrapt-1.15.0-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:5fc8e02f5984a55d2c653f5fea93531e9836abbd84342c1d1e17abc4a15084c2"}, {file = "wrapt-1.15.0-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:96e25c8603a155559231c19c0349245eeb4ac0096fe3c1d0be5c47e075bd4f46"}, {file = "wrapt-1.15.0-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:40737a081d7497efea35ab9304b829b857f21558acfc7b3272f908d33b0d9d4c"}, {file = "wrapt-1.15.0-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:f87ec75864c37c4c6cb908d282e1969e79763e0d9becdfe9fe5473b7bb1e5f09"}, {file = "wrapt-1.15.0-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:1286eb30261894e4c70d124d44b7fd07825340869945c79d05bda53a40caa079"}, {file = "wrapt-1.15.0-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:493d389a2b63c88ad56cdc35d0fa5752daac56ca755805b1b0c530f785767d5e"}, {file = "wrapt-1.15.0-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:58d7a75d731e8c63614222bcb21dd992b4ab01a399f1f09dd82af17bbfc2368a"}, {file = "wrapt-1.15.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:21f6d9a0d5b3a207cdf7acf8e58d7d13d463e639f0c7e01d82cdb671e6cb7923"}, {file = "wrapt-1.15.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ce42618f67741d4697684e501ef02f29e758a123aa2d669e2d964ff734ee00ee"}, {file = "wrapt-1.15.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41d07d029dd4157ae27beab04d22b8e261eddfc6ecd64ff7000b10dc8b3a5727"}, {file = "wrapt-1.15.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:54accd4b8bc202966bafafd16e69da9d5640ff92389d33d28555c5fd4f25ccb7"}, {file = "wrapt-1.15.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2fbfbca668dd15b744418265a9607baa970c347eefd0db6a518aaf0cfbd153c0"}, {file = "wrapt-1.15.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:76e9c727a874b4856d11a32fb0b389afc61ce8aaf281ada613713ddeadd1cfec"}, {file = "wrapt-1.15.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e20076a211cd6f9b44a6be58f7eeafa7ab5720eb796975d0c03f05b47d89eb90"}, {file = "wrapt-1.15.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:a74d56552ddbde46c246b5b89199cb3fd182f9c346c784e1a93e4dc3f5ec9975"}, {file = "wrapt-1.15.0-cp310-cp310-win32.whl", hash = "sha256:26458da5653aa5b3d8dc8b24192f574a58984c749401f98fff994d41d3f08da1"}, {file = "wrapt-1.15.0-cp310-cp310-win_amd64.whl", hash = "sha256:75760a47c06b5974aa5e01949bf7e66d2af4d08cb8c1d6516af5e39595397f5e"}, {file = "wrapt-1.15.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ba1711cda2d30634a7e452fc79eabcadaffedf241ff206db2ee93dd2c89a60e7"}, {file = "wrapt-1.15.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:56374914b132c702aa9aa9959c550004b8847148f95e1b824772d453ac204a72"}, {file = "wrapt-1.15.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a89ce3fd220ff144bd9d54da333ec0de0399b52c9ac3d2ce34b569cf1a5748fb"}, {file = "wrapt-1.15.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3bbe623731d03b186b3d6b0d6f51865bf598587c38d6f7b0be2e27414f7f214e"}, {file = "wrapt-1.15.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3abbe948c3cbde2689370a262a8d04e32ec2dd4f27103669a45c6929bcdbfe7c"}, {file = "wrapt-1.15.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:b67b819628e3b748fd3c2192c15fb951f549d0f47c0449af0764d7647302fda3"}, {file = "wrapt-1.15.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:7eebcdbe3677e58dd4c0e03b4f2cfa346ed4049687d839adad68cc38bb559c92"}, {file = "wrapt-1.15.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:74934ebd71950e3db69960a7da29204f89624dde411afbfb3b4858c1409b1e98"}, {file = "wrapt-1.15.0-cp311-cp311-win32.whl", hash = "sha256:bd84395aab8e4d36263cd1b9308cd504f6cf713b7d6d3ce25ea55670baec5416"}, {file = "wrapt-1.15.0-cp311-cp311-win_amd64.whl", hash = "sha256:a487f72a25904e2b4bbc0817ce7a8de94363bd7e79890510174da9d901c38705"}, {file = "wrapt-1.15.0-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:4ff0d20f2e670800d3ed2b220d40984162089a6e2c9646fdb09b85e6f9a8fc29"}, {file = "wrapt-1.15.0-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:9ed6aa0726b9b60911f4aed8ec5b8dd7bf3491476015819f56473ffaef8959bd"}, {file = "wrapt-1.15.0-cp35-cp35m-manylinux2010_i686.whl", hash = "sha256:896689fddba4f23ef7c718279e42f8834041a21342d95e56922e1c10c0cc7afb"}, {file = "wrapt-1.15.0-cp35-cp35m-manylinux2010_x86_64.whl", hash = "sha256:75669d77bb2c071333417617a235324a1618dba66f82a750362eccbe5b61d248"}, {file = "wrapt-1.15.0-cp35-cp35m-win32.whl", hash = "sha256:fbec11614dba0424ca72f4e8ba3c420dba07b4a7c206c8c8e4e73f2e98f4c559"}, {file = "wrapt-1.15.0-cp35-cp35m-win_amd64.whl", hash = "sha256:fd69666217b62fa5d7c6aa88e507493a34dec4fa20c5bd925e4bc12fce586639"}, {file = "wrapt-1.15.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:b0724f05c396b0a4c36a3226c31648385deb6a65d8992644c12a4963c70326ba"}, {file = "wrapt-1.15.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bbeccb1aa40ab88cd29e6c7d8585582c99548f55f9b2581dfc5ba68c59a85752"}, {file = "wrapt-1.15.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:38adf7198f8f154502883242f9fe7333ab05a5b02de7d83aa2d88ea621f13364"}, {file = "wrapt-1.15.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:578383d740457fa790fdf85e6d346fda1416a40549fe8db08e5e9bd281c6a475"}, {file = "wrapt-1.15.0-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:a4cbb9ff5795cd66f0066bdf5947f170f5d63a9274f99bdbca02fd973adcf2a8"}, {file = "wrapt-1.15.0-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:af5bd9ccb188f6a5fdda9f1f09d9f4c86cc8a539bd48a0bfdc97723970348418"}, {file = "wrapt-1.15.0-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:b56d5519e470d3f2fe4aa7585f0632b060d532d0696c5bdfb5e8319e1d0f69a2"}, {file = "wrapt-1.15.0-cp36-cp36m-win32.whl", hash = "sha256:77d4c1b881076c3ba173484dfa53d3582c1c8ff1f914c6461ab70c8428b796c1"}, {file = "wrapt-1.15.0-cp36-cp36m-win_amd64.whl", hash = "sha256:077ff0d1f9d9e4ce6476c1a924a3332452c1406e59d90a2cf24aeb29eeac9420"}, {file = "wrapt-1.15.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:5c5aa28df055697d7c37d2099a7bc09f559d5053c3349b1ad0c39000e611d317"}, {file = "wrapt-1.15.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3a8564f283394634a7a7054b7983e47dbf39c07712d7b177b37e03f2467a024e"}, {file = "wrapt-1.15.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:780c82a41dc493b62fc5884fb1d3a3b81106642c5c5c78d6a0d4cbe96d62ba7e"}, {file = "wrapt-1.15.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e169e957c33576f47e21864cf3fc9ff47c223a4ebca8960079b8bd36cb014fd0"}, {file = "wrapt-1.15.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:b02f21c1e2074943312d03d243ac4388319f2456576b2c6023041c4d57cd7019"}, {file = "wrapt-1.15.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:f2e69b3ed24544b0d3dbe2c5c0ba5153ce50dcebb576fdc4696d52aa22db6034"}, {file = "wrapt-1.15.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:d787272ed958a05b2c86311d3a4135d3c2aeea4fc655705f074130aa57d71653"}, {file = "wrapt-1.15.0-cp37-cp37m-win32.whl", hash = "sha256:02fce1852f755f44f95af51f69d22e45080102e9d00258053b79367d07af39c0"}, {file = "wrapt-1.15.0-cp37-cp37m-win_amd64.whl", hash = "sha256:abd52a09d03adf9c763d706df707c343293d5d106aea53483e0ec8d9e310ad5e"}, {file = "wrapt-1.15.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:cdb4f085756c96a3af04e6eca7f08b1345e94b53af8921b25c72f096e704e145"}, {file = "wrapt-1.15.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:230ae493696a371f1dbffaad3dafbb742a4d27a0afd2b1aecebe52b740167e7f"}, {file = "wrapt-1.15.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:63424c681923b9f3bfbc5e3205aafe790904053d42ddcc08542181a30a7a51bd"}, {file = "wrapt-1.15.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d6bcbfc99f55655c3d93feb7ef3800bd5bbe963a755687cbf1f490a71fb7794b"}, {file = "wrapt-1.15.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c99f4309f5145b93eca6e35ac1a988f0dc0a7ccf9ccdcd78d3c0adf57224e62f"}, {file = "wrapt-1.15.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:b130fe77361d6771ecf5a219d8e0817d61b236b7d8b37cc045172e574ed219e6"}, {file = "wrapt-1.15.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:96177eb5645b1c6985f5c11d03fc2dbda9ad24ec0f3a46dcce91445747e15094"}, {file = "wrapt-1.15.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:d5fe3e099cf07d0fb5a1e23d399e5d4d1ca3e6dfcbe5c8570ccff3e9208274f7"}, {file = "wrapt-1.15.0-cp38-cp38-win32.whl", hash = "sha256:abd8f36c99512755b8456047b7be10372fca271bf1467a1caa88db991e7c421b"}, {file = "wrapt-1.15.0-cp38-cp38-win_amd64.whl", hash = "sha256:b06fa97478a5f478fb05e1980980a7cdf2712015493b44d0c87606c1513ed5b1"}, {file = "wrapt-1.15.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2e51de54d4fb8fb50d6ee8327f9828306a959ae394d3e01a1ba8b2f937747d86"}, {file = "wrapt-1.15.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0970ddb69bba00670e58955f8019bec4a42d1785db3faa043c33d81de2bf843c"}, {file = "wrapt-1.15.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76407ab327158c510f44ded207e2f76b657303e17cb7a572ffe2f5a8a48aa04d"}, {file = "wrapt-1.15.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cd525e0e52a5ff16653a3fc9e3dd827981917d34996600bbc34c05d048ca35cc"}, {file = "wrapt-1.15.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d37ac69edc5614b90516807de32d08cb8e7b12260a285ee330955604ed9dd29"}, {file = "wrapt-1.15.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:078e2a1a86544e644a68422f881c48b84fef6d18f8c7a957ffd3f2e0a74a0d4a"}, {file = "wrapt-1.15.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:2cf56d0e237280baed46f0b5316661da892565ff58309d4d2ed7dba763d984b8"}, {file = "wrapt-1.15.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:7dc0713bf81287a00516ef43137273b23ee414fe41a3c14be10dd95ed98a2df9"}, {file = "wrapt-1.15.0-cp39-cp39-win32.whl", hash = "sha256:46ed616d5fb42f98630ed70c3529541408166c22cdfd4540b88d5f21006b0eff"}, {file = "wrapt-1.15.0-cp39-cp39-win_amd64.whl", hash = "sha256:eef4d64c650f33347c1f9266fa5ae001440b232ad9b98f1f43dfe7a79435c0a6"}, {file = "wrapt-1.15.0-py3-none-any.whl", hash = "sha256:64b1df0f83706b4ef4cfb4fb0e4c2669100fd7ecacfb59e091fad300d4e04640"}, {file = "wrapt-1.15.0.tar.gz", hash = "sha256:d06730c6aed78cee4126234cf2d071e01b44b915e725a6cb439a879ec9754a3a"}, ] [[package]] name = "xmltodict" version = "0.13.0" description = "Makes working with XML feel like you are working with JSON" optional = true python-versions = ">=3.4" files = [ {file = "xmltodict-0.13.0-py2.py3-none-any.whl", hash = "sha256:aa89e8fd76320154a40d19a0df04a4695fb9dc5ba977cbb68ab3e4eb225e7852"}, {file = "xmltodict-0.13.0.tar.gz", hash = "sha256:341595a488e3e01a85a9d8911d8912fd922ede5fecc4dce437eb4b6c8d037e56"}, ] [[package]] name = "xxhash" version = "3.2.0" description = "Python binding for xxHash" optional = true python-versions = ">=3.6" files = [ {file = "xxhash-3.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:af44b9e59c4b2926a4e3c7f9d29949ff42fcea28637ff6b8182e654461932be8"}, {file = "xxhash-3.2.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:1bdd57973e2b802ef32553d7bebf9402dac1557874dbe5c908b499ea917662cd"}, {file = "xxhash-3.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b7c9aa77bbce61a5e681bd39cb6a804338474dcc90abe3c543592aa5d6c9a9b"}, {file = "xxhash-3.2.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:11bf87dc7bb8c3b0b5e24b7b941a9a19d8c1f88120b6a03a17264086bc8bb023"}, {file = "xxhash-3.2.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2783d41487ce6d379fdfaa7332fca5187bf7010b9bddcf20cafba923bc1dc665"}, {file = "xxhash-3.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:561076ca0dcef2fbc20b2bc2765bff099e002e96041ae9dbe910a863ca6ee3ea"}, {file = "xxhash-3.2.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3a26eeb4625a6e61cedc8c1b39b89327c9c7e1a8c2c4d786fe3f178eb839ede6"}, {file = "xxhash-3.2.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d93a44d0104d1b9b10de4e7aadf747f6efc1d7ec5ed0aa3f233a720725dd31bd"}, {file = "xxhash-3.2.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:89585adc73395a10306d2e2036e50d6c4ac0cf8dd47edf914c25488871b64f6d"}, {file = "xxhash-3.2.0-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:a892b4b139126a86bfdcb97cd912a2f8c4e8623869c3ef7b50871451dd7afeb0"}, {file = "xxhash-3.2.0-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:e998efb190653f70e0f30d92b39fc645145369a4823bee46af8ddfc244aa969d"}, {file = "xxhash-3.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:e8ed3bd2b8bb3277710843ca63e4f5c3ee6f8f80b083be5b19a7a9905420d11e"}, {file = "xxhash-3.2.0-cp310-cp310-win32.whl", hash = "sha256:20181cbaed033c72cb881b2a1d13c629cd1228f113046133469c9a48cfcbcd36"}, {file = "xxhash-3.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:a0f7a16138279d707db778a63264d1d6016ac13ffd3f1e99f54b2855d6c0d8e1"}, {file = "xxhash-3.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5daff3fb5bfef30bc5a2cb143810d376d43461445aa17aece7210de52adbe151"}, {file = "xxhash-3.2.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:75bb5be3c5de702a547715f320ecf5c8014aeca750ed5147ca75389bd22e7343"}, {file = "xxhash-3.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:01f36b671ff55cb1d5c2f6058b799b697fd0ae4b4582bba6ed0999678068172a"}, {file = "xxhash-3.2.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d4d4519123aac73c93159eb8f61db9682393862dd669e7eae034ecd0a35eadac"}, {file = "xxhash-3.2.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:994e4741d5ed70fc2a335a91ef79343c6b1089d7dfe6e955dd06f8ffe82bede6"}, {file = "xxhash-3.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:919bc1b010aa6ff0eb918838ff73a435aed9e9a19c3202b91acecd296bf75607"}, {file = "xxhash-3.2.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:17b65454c5accbb079c45eca546c27c4782f5175aa320758fafac896b1549d27"}, {file = "xxhash-3.2.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:b0c094d5e65a46dbf3fe0928ff20873a747e6abfd2ed4b675beeb2750624bc2e"}, {file = "xxhash-3.2.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:f94163ebe2d5546e6a5977e96d83621f4689c1054053428cf8d4c28b10f92f69"}, {file = "xxhash-3.2.0-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:cead7c0307977a00b3f784cff676e72c147adbcada19a2e6fc2ddf54f37cf387"}, {file = "xxhash-3.2.0-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:a0e1bd0260c1da35c1883321ce2707ceea07127816ab625e1226ec95177b561a"}, {file = "xxhash-3.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:cc8878935671490efe9275fb4190a6062b73277bd273237179b9b5a2aa436153"}, {file = "xxhash-3.2.0-cp311-cp311-win32.whl", hash = "sha256:a433f6162b18d52f7068175d00bd5b1563b7405f926a48d888a97b90a160c40d"}, {file = "xxhash-3.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:a32d546a1752e4ee7805d6db57944f7224afa7428d22867006b6486e4195c1f3"}, {file = "xxhash-3.2.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:82daaab720866bf690b20b49de5640b0c27e3b8eea2d08aa75bdca2b0f0cfb63"}, {file = "xxhash-3.2.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3126df6520cbdbaddd87ce74794b2b6c45dd2cf6ac2b600a374b8cdb76a2548c"}, {file = "xxhash-3.2.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e172c1ee40507ae3b8d220f4048aaca204f203e1e4197e8e652f5c814f61d1aa"}, {file = "xxhash-3.2.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5384f1d9f30876f5d5b618464fb19ff7ce6c0fe4c690fbaafd1c52adc3aae807"}, {file = "xxhash-3.2.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:26cb52174a7e96a17acad27a3ca65b24713610ac479c99ac9640843822d3bebf"}, {file = "xxhash-3.2.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fbcd613a5e76b1495fc24db9c37a6b7ee5f214fd85979187ec4e032abfc12ded"}, {file = "xxhash-3.2.0-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:f988daf25f31726d5b9d0be6af636ca9000898f9ea43a57eac594daea25b0948"}, {file = "xxhash-3.2.0-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:bbc30c98ab006ab9fc47e5ed439c00f706bc9d4441ff52693b8b6fea335163e0"}, {file = "xxhash-3.2.0-cp36-cp36m-musllinux_1_1_ppc64le.whl", hash = "sha256:2408d49260b0a4a7cc6ba445aebf38e073aeaf482f8e32767ca477e32ccbbf9e"}, {file = "xxhash-3.2.0-cp36-cp36m-musllinux_1_1_s390x.whl", hash = "sha256:3f4152fd0bf8b03b79f2f900fd6087a66866537e94b5a11fd0fd99ef7efe5c42"}, {file = "xxhash-3.2.0-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:0eea848758e4823a01abdbcccb021a03c1ee4100411cbeeb7a5c36a202a0c13c"}, {file = "xxhash-3.2.0-cp36-cp36m-win32.whl", hash = "sha256:77709139af5123c578ab06cf999429cdb9ab211047acd0c787e098dcb3f1cb4d"}, {file = "xxhash-3.2.0-cp36-cp36m-win_amd64.whl", hash = "sha256:91687671fd9d484a4e201ad266d366b695a45a1f2b41be93d116ba60f1b8f3b3"}, {file = "xxhash-3.2.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:e4af8bc5c3fcc2192c266421c6aa2daab1a18e002cb8e66ef672030e46ae25cf"}, {file = "xxhash-3.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e8be562e2ce3e481d9209b6f254c3d7c5ff920eb256aba2380d2fb5ba75d4f87"}, {file = "xxhash-3.2.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9eba0c7c12126b12f7fcbea5513f28c950d28f33d2a227f74b50b77789e478e8"}, {file = "xxhash-3.2.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2198c4901a0223c48f6ec0a978b60bca4f4f7229a11ca4dc96ca325dd6a29115"}, {file = "xxhash-3.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:50ce82a71b22a3069c02e914bf842118a53065e2ec1c6fb54786e03608ab89cc"}, {file = "xxhash-3.2.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b5019fb33711c30e54e4e57ae0ca70af9d35b589d385ac04acd6954452fa73bb"}, {file = "xxhash-3.2.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:0d54ac023eef7e3ac9f0b8841ae8a376b933043bc2ad428121346c6fa61c491c"}, {file = "xxhash-3.2.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:c55fa832fc3fe64e0d29da5dc9b50ba66ca93312107cec2709300ea3d3bab5c7"}, {file = "xxhash-3.2.0-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:f4ce006215497993ae77c612c1883ca4f3973899573ce0c52fee91f0d39c4561"}, {file = "xxhash-3.2.0-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:1afb9b9d27fd675b436cb110c15979976d92d761ad6e66799b83756402f3a974"}, {file = "xxhash-3.2.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:baa99cebf95c1885db21e119395f222a706a2bb75a545f0672880a442137725e"}, {file = "xxhash-3.2.0-cp37-cp37m-win32.whl", hash = "sha256:75aa692936942ccb2e8fd6a386c81c61630ac1b6d6e921698122db8a930579c3"}, {file = "xxhash-3.2.0-cp37-cp37m-win_amd64.whl", hash = "sha256:0a2cdfb5cae9fafb9f7b65fd52ecd60cf7d72c13bb2591ea59aaefa03d5a8827"}, {file = "xxhash-3.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:3a68d1e8a390b660d94b9360ae5baa8c21a101bd9c4790a8b30781bada9f1fc6"}, {file = "xxhash-3.2.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:ce7c3ce28f94302df95eaea7c9c1e2c974b6d15d78a0c82142a97939d7b6c082"}, {file = "xxhash-3.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0dcb419bf7b0bc77d366e5005c25682249c5521a63fd36c51f584bd91bb13bd5"}, {file = "xxhash-3.2.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ae521ed9287f86aac979eeac43af762f03d9d9797b2272185fb9ddd810391216"}, {file = "xxhash-3.2.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b0d16775094423088ffa357d09fbbb9ab48d2fb721d42c0856b801c86f616eec"}, {file = "xxhash-3.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fe454aeab348c42f56d6f7434ff758a3ef90787ac81b9ad5a363cd61b90a1b0b"}, {file = "xxhash-3.2.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:052fd0efdd5525c2dbc61bebb423d92aa619c4905bba605afbf1e985a562a231"}, {file = "xxhash-3.2.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:02badf3754e2133de254a4688798c4d80f0060635087abcb461415cb3eb82115"}, {file = "xxhash-3.2.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:66b8a90b28c13c2aae7a71b32638ceb14cefc2a1c8cf23d8d50dfb64dfac7aaf"}, {file = "xxhash-3.2.0-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:649cdf19df175925ad87289ead6f760cd840730ee85abc5eb43be326a0a24d97"}, {file = "xxhash-3.2.0-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:4b948a03f89f5c72d69d40975af8af241111f0643228796558dc1cae8f5560b0"}, {file = "xxhash-3.2.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:49f51fab7b762da7c2cee0a3d575184d3b9be5e2f64f26cae2dd286258ac9b3c"}, {file = "xxhash-3.2.0-cp38-cp38-win32.whl", hash = "sha256:1a42994f0d42b55514785356722d9031f064fd34e495b3a589e96db68ee0179d"}, {file = "xxhash-3.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:0a6d58ba5865475e53d6c2c4fa6a62e2721e7875e146e2681e5337a6948f12e7"}, {file = "xxhash-3.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:aabdbc082030f8df613e2d2ea1f974e7ad36a539bdfc40d36f34e55c7e4b8e94"}, {file = "xxhash-3.2.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:498843b66b9ca416e9d03037e5875c8d0c0ab9037527e22df3b39aa5163214cd"}, {file = "xxhash-3.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a910b1193cd90af17228f5d6069816646df0148f14f53eefa6b2b11a1dedfcd0"}, {file = "xxhash-3.2.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bb6d8ce31dc25faf4da92991320e211fa7f42de010ef51937b1dc565a4926501"}, {file = "xxhash-3.2.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:883dc3d3942620f4c7dbc3fd6162f50a67f050b714e47da77444e3bcea7d91cc"}, {file = "xxhash-3.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:59dc8bfacf89b8f5be54d55bc3b4bd6d74d0c5320c8a63d2538ac7df5b96f1d5"}, {file = "xxhash-3.2.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:61e6aa1d30c2af692aa88c4dd48709426e8b37bff6a574ee2de677579c34a3d6"}, {file = "xxhash-3.2.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:314ec0bd21f0ee8d30f2bd82ed3759314bd317ddbbd8555668f3d20ab7a8899a"}, {file = "xxhash-3.2.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:dad638cde3a5357ad3163b80b3127df61fb5b5e34e9e05a87697144400ba03c7"}, {file = "xxhash-3.2.0-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:eaa3ea15025b56076d806b248948612289b093e8dcda8d013776b3848dffff15"}, {file = "xxhash-3.2.0-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:7deae3a312feb5c17c97cbf18129f83cbd3f1f9ec25b0f50e2bd9697befb22e7"}, {file = "xxhash-3.2.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:add774341c09853b1612c64a526032d95ab1683053325403e1afbe3ad2f374c5"}, {file = "xxhash-3.2.0-cp39-cp39-win32.whl", hash = "sha256:9b94749130ef3119375c599bfce82142c2500ef9ed3280089157ee37662a7137"}, {file = "xxhash-3.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:e57d94a1552af67f67b27db5dba0b03783ea69d5ca2af2f40e098f0ba3ce3f5f"}, {file = "xxhash-3.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:92fd765591c83e5c5f409b33eac1d3266c03d3d11c71a7dbade36d5cdee4fbc0"}, {file = "xxhash-3.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8970f6a411a9839a02b23b7e90bbbba4a6de52ace009274998566dc43f36ca18"}, {file = "xxhash-3.2.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c5f3e33fe6cbab481727f9aeb136a213aed7e33cd1ca27bd75e916ffacc18411"}, {file = "xxhash-3.2.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:368265392cb696dd53907e2328b5a8c1bee81cf2142d0cc743caf1c1047abb36"}, {file = "xxhash-3.2.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:3b1f3c6d67fa9f49c4ff6b25ce0e7143bab88a5bc0f4116dd290c92337d0ecc7"}, {file = "xxhash-3.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:c5e8db6e1ee7267b7c412ad0afd5863bf7a95286b8333a5958c8097c69f94cf5"}, {file = "xxhash-3.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:761df3c7e2c5270088b691c5a8121004f84318177da1ca1db64222ec83c44871"}, {file = "xxhash-3.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d2d15a707e7f689531eb4134eccb0f8bf3844bb8255ad50823aa39708d9e6755"}, {file = "xxhash-3.2.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e6b2ba4ff53dd5f57d728095e3def7375eb19c90621ce3b41b256de84ec61cfd"}, {file = "xxhash-3.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:61b0bcf946fdfd8ab5f09179dc2b5c74d1ef47cedfc6ed0ec01fdf0ee8682dd3"}, {file = "xxhash-3.2.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:f7b79f0f302396d8e0d444826ceb3d07b61977793886ebae04e82796c02e42dc"}, {file = "xxhash-3.2.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e0773cd5c438ffcd5dbff91cdd503574f88a4b960e70cedeb67736583a17a918"}, {file = "xxhash-3.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4ec1f57127879b419a2c8d2db9d9978eb26c61ae17e5972197830430ae78d25b"}, {file = "xxhash-3.2.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3d4b15c00e807b1d3d0b612338c814739dec310b80fb069bd732b98ddc709ad7"}, {file = "xxhash-3.2.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:9d3f686e3d1c8900c5459eee02b60c7399e20ec5c6402364068a343c83a61d90"}, {file = "xxhash-3.2.0.tar.gz", hash = "sha256:1afd47af8955c5db730f630ad53ae798cf7fae0acb64cebb3cf94d35c47dd088"}, ] [[package]] name = "yarl" version = "1.9.2" description = "Yet another URL library" optional = false python-versions = ">=3.7" files = [ {file = "yarl-1.9.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:8c2ad583743d16ddbdf6bb14b5cd76bf43b0d0006e918809d5d4ddf7bde8dd82"}, {file = "yarl-1.9.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:82aa6264b36c50acfb2424ad5ca537a2060ab6de158a5bd2a72a032cc75b9eb8"}, {file = "yarl-1.9.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c0c77533b5ed4bcc38e943178ccae29b9bcf48ffd1063f5821192f23a1bd27b9"}, {file = "yarl-1.9.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ee4afac41415d52d53a9833ebae7e32b344be72835bbb589018c9e938045a560"}, {file = "yarl-1.9.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9bf345c3a4f5ba7f766430f97f9cc1320786f19584acc7086491f45524a551ac"}, {file = "yarl-1.9.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2a96c19c52ff442a808c105901d0bdfd2e28575b3d5f82e2f5fd67e20dc5f4ea"}, {file = "yarl-1.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:891c0e3ec5ec881541f6c5113d8df0315ce5440e244a716b95f2525b7b9f3608"}, {file = "yarl-1.9.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c3a53ba34a636a256d767c086ceb111358876e1fb6b50dfc4d3f4951d40133d5"}, {file = "yarl-1.9.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:566185e8ebc0898b11f8026447eacd02e46226716229cea8db37496c8cdd26e0"}, {file = "yarl-1.9.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:2b0738fb871812722a0ac2154be1f049c6223b9f6f22eec352996b69775b36d4"}, {file = "yarl-1.9.2-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:32f1d071b3f362c80f1a7d322bfd7b2d11e33d2adf395cc1dd4df36c9c243095"}, {file = "yarl-1.9.2-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:e9fdc7ac0d42bc3ea78818557fab03af6181e076a2944f43c38684b4b6bed8e3"}, {file = "yarl-1.9.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:56ff08ab5df8429901ebdc5d15941b59f6253393cb5da07b4170beefcf1b2528"}, {file = "yarl-1.9.2-cp310-cp310-win32.whl", hash = "sha256:8ea48e0a2f931064469bdabca50c2f578b565fc446f302a79ba6cc0ee7f384d3"}, {file = "yarl-1.9.2-cp310-cp310-win_amd64.whl", hash = "sha256:50f33040f3836e912ed16d212f6cc1efb3231a8a60526a407aeb66c1c1956dde"}, {file = "yarl-1.9.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:646d663eb2232d7909e6601f1a9107e66f9791f290a1b3dc7057818fe44fc2b6"}, {file = "yarl-1.9.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:aff634b15beff8902d1f918012fc2a42e0dbae6f469fce134c8a0dc51ca423bb"}, {file = "yarl-1.9.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a83503934c6273806aed765035716216cc9ab4e0364f7f066227e1aaea90b8d0"}, {file = "yarl-1.9.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b25322201585c69abc7b0e89e72790469f7dad90d26754717f3310bfe30331c2"}, {file = "yarl-1.9.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:22a94666751778629f1ec4280b08eb11815783c63f52092a5953faf73be24191"}, {file = "yarl-1.9.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ec53a0ea2a80c5cd1ab397925f94bff59222aa3cf9c6da938ce05c9ec20428d"}, {file = "yarl-1.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:159d81f22d7a43e6eabc36d7194cb53f2f15f498dbbfa8edc8a3239350f59fe7"}, {file = "yarl-1.9.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:832b7e711027c114d79dffb92576acd1bd2decc467dec60e1cac96912602d0e6"}, {file = "yarl-1.9.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:95d2ecefbcf4e744ea952d073c6922e72ee650ffc79028eb1e320e732898d7e8"}, {file = "yarl-1.9.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:d4e2c6d555e77b37288eaf45b8f60f0737c9efa3452c6c44626a5455aeb250b9"}, {file = "yarl-1.9.2-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:783185c75c12a017cc345015ea359cc801c3b29a2966c2655cd12b233bf5a2be"}, {file = "yarl-1.9.2-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:b8cc1863402472f16c600e3e93d542b7e7542a540f95c30afd472e8e549fc3f7"}, {file = "yarl-1.9.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:822b30a0f22e588b32d3120f6d41e4ed021806418b4c9f0bc3048b8c8cb3f92a"}, {file = "yarl-1.9.2-cp311-cp311-win32.whl", hash = "sha256:a60347f234c2212a9f0361955007fcf4033a75bf600a33c88a0a8e91af77c0e8"}, {file = "yarl-1.9.2-cp311-cp311-win_amd64.whl", hash = "sha256:be6b3fdec5c62f2a67cb3f8c6dbf56bbf3f61c0f046f84645cd1ca73532ea051"}, {file = "yarl-1.9.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:38a3928ae37558bc1b559f67410df446d1fbfa87318b124bf5032c31e3447b74"}, {file = "yarl-1.9.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ac9bb4c5ce3975aeac288cfcb5061ce60e0d14d92209e780c93954076c7c4367"}, {file = "yarl-1.9.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3da8a678ca8b96c8606bbb8bfacd99a12ad5dd288bc6f7979baddd62f71c63ef"}, {file = "yarl-1.9.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:13414591ff516e04fcdee8dc051c13fd3db13b673c7a4cb1350e6b2ad9639ad3"}, {file = "yarl-1.9.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf74d08542c3a9ea97bb8f343d4fcbd4d8f91bba5ec9d5d7f792dbe727f88938"}, {file = "yarl-1.9.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6e7221580dc1db478464cfeef9b03b95c5852cc22894e418562997df0d074ccc"}, {file = "yarl-1.9.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:494053246b119b041960ddcd20fd76224149cfea8ed8777b687358727911dd33"}, {file = "yarl-1.9.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:52a25809fcbecfc63ac9ba0c0fb586f90837f5425edfd1ec9f3372b119585e45"}, {file = "yarl-1.9.2-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:e65610c5792870d45d7b68c677681376fcf9cc1c289f23e8e8b39c1485384185"}, {file = "yarl-1.9.2-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:1b1bba902cba32cdec51fca038fd53f8beee88b77efc373968d1ed021024cc04"}, {file = "yarl-1.9.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:662e6016409828ee910f5d9602a2729a8a57d74b163c89a837de3fea050c7582"}, {file = "yarl-1.9.2-cp37-cp37m-win32.whl", hash = "sha256:f364d3480bffd3aa566e886587eaca7c8c04d74f6e8933f3f2c996b7f09bee1b"}, {file = "yarl-1.9.2-cp37-cp37m-win_amd64.whl", hash = "sha256:6a5883464143ab3ae9ba68daae8e7c5c95b969462bbe42e2464d60e7e2698368"}, {file = "yarl-1.9.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:5610f80cf43b6202e2c33ba3ec2ee0a2884f8f423c8f4f62906731d876ef4fac"}, {file = "yarl-1.9.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:b9a4e67ad7b646cd6f0938c7ebfd60e481b7410f574c560e455e938d2da8e0f4"}, {file = "yarl-1.9.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:83fcc480d7549ccebe9415d96d9263e2d4226798c37ebd18c930fce43dfb9574"}, {file = "yarl-1.9.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5fcd436ea16fee7d4207c045b1e340020e58a2597301cfbcfdbe5abd2356c2fb"}, {file = "yarl-1.9.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:84e0b1599334b1e1478db01b756e55937d4614f8654311eb26012091be109d59"}, {file = "yarl-1.9.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3458a24e4ea3fd8930e934c129b676c27452e4ebda80fbe47b56d8c6c7a63a9e"}, {file = "yarl-1.9.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:838162460b3a08987546e881a2bfa573960bb559dfa739e7800ceeec92e64417"}, {file = "yarl-1.9.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f4e2d08f07a3d7d3e12549052eb5ad3eab1c349c53ac51c209a0e5991bbada78"}, {file = "yarl-1.9.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:de119f56f3c5f0e2fb4dee508531a32b069a5f2c6e827b272d1e0ff5ac040333"}, {file = "yarl-1.9.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:149ddea5abf329752ea5051b61bd6c1d979e13fbf122d3a1f9f0c8be6cb6f63c"}, {file = "yarl-1.9.2-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:674ca19cbee4a82c9f54e0d1eee28116e63bc6fd1e96c43031d11cbab8b2afd5"}, {file = "yarl-1.9.2-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:9b3152f2f5677b997ae6c804b73da05a39daa6a9e85a512e0e6823d81cdad7cc"}, {file = "yarl-1.9.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:5415d5a4b080dc9612b1b63cba008db84e908b95848369aa1da3686ae27b6d2b"}, {file = "yarl-1.9.2-cp38-cp38-win32.whl", hash = "sha256:f7a3d8146575e08c29ed1cd287068e6d02f1c7bdff8970db96683b9591b86ee7"}, {file = "yarl-1.9.2-cp38-cp38-win_amd64.whl", hash = "sha256:63c48f6cef34e6319a74c727376e95626f84ea091f92c0250a98e53e62c77c72"}, {file = "yarl-1.9.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:75df5ef94c3fdc393c6b19d80e6ef1ecc9ae2f4263c09cacb178d871c02a5ba9"}, {file = "yarl-1.9.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c027a6e96ef77d401d8d5a5c8d6bc478e8042f1e448272e8d9752cb0aff8b5c8"}, {file = "yarl-1.9.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f3b078dbe227f79be488ffcfc7a9edb3409d018e0952cf13f15fd6512847f3f7"}, {file = "yarl-1.9.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:59723a029760079b7d991a401386390c4be5bfec1e7dd83e25a6a0881859e716"}, {file = "yarl-1.9.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b03917871bf859a81ccb180c9a2e6c1e04d2f6a51d953e6a5cdd70c93d4e5a2a"}, {file = "yarl-1.9.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c1012fa63eb6c032f3ce5d2171c267992ae0c00b9e164efe4d73db818465fac3"}, {file = "yarl-1.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a74dcbfe780e62f4b5a062714576f16c2f3493a0394e555ab141bf0d746bb955"}, {file = "yarl-1.9.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8c56986609b057b4839968ba901944af91b8e92f1725d1a2d77cbac6972b9ed1"}, {file = "yarl-1.9.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:2c315df3293cd521033533d242d15eab26583360b58f7ee5d9565f15fee1bef4"}, {file = "yarl-1.9.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:b7232f8dfbd225d57340e441d8caf8652a6acd06b389ea2d3222b8bc89cbfca6"}, {file = "yarl-1.9.2-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:53338749febd28935d55b41bf0bcc79d634881195a39f6b2f767870b72514caf"}, {file = "yarl-1.9.2-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:066c163aec9d3d073dc9ffe5dd3ad05069bcb03fcaab8d221290ba99f9f69ee3"}, {file = "yarl-1.9.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8288d7cd28f8119b07dd49b7230d6b4562f9b61ee9a4ab02221060d21136be80"}, {file = "yarl-1.9.2-cp39-cp39-win32.whl", hash = "sha256:b124e2a6d223b65ba8768d5706d103280914d61f5cae3afbc50fc3dfcc016623"}, {file = "yarl-1.9.2-cp39-cp39-win_amd64.whl", hash = "sha256:61016e7d582bc46a5378ffdd02cd0314fb8ba52f40f9cf4d9a5e7dbef88dee18"}, {file = "yarl-1.9.2.tar.gz", hash = "sha256:04ab9d4b9f587c06d801c2abfe9317b77cdf996c65a90d5e84ecc45010823571"}, ] [package.dependencies] idna = ">=2.0" multidict = ">=4.0" [[package]] name = "zep-python" version = "0.31" description = "Zep stores, manages, enriches, indexes, and searches long-term memory for conversational AI applications. This is the Python client for the Zep service." optional = true python-versions = ">=3.8,<4.0" files = [ {file = "zep_python-0.31-py3-none-any.whl", hash = "sha256:379f3666cea21a055f014be6de2fd831f38be71a4b0056cea2536199bca0695a"}, {file = "zep_python-0.31.tar.gz", hash = "sha256:94203fb9c109e0e933f7ced34dc91d55bdf403561e25e691ea33dadd763042e1"}, ] [package.dependencies] httpx = ">=0.24.0,<0.25.0" pydantic = ">=1.10.7,<2.0.0" [[package]] name = "zipp" version = "3.15.0" description = "Backport of pathlib-compatible object wrapper for zip files" optional = false python-versions = ">=3.7" files = [ {file = "zipp-3.15.0-py3-none-any.whl", hash = "sha256:48904fc76a60e542af151aded95726c1a5c34ed43ab4134b597665c86d7ad556"}, {file = "zipp-3.15.0.tar.gz", hash = "sha256:112929ad649da941c23de50f356a2b5570c954b65150642bccdd66bf194d224b"}, ] [package.extras] docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] testing = ["big-O", "flake8 (<5)", "jaraco.functools", "jaraco.itertools", "more-itertools", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)"] [[package]] name = "zstandard" version = "0.21.0" description = "Zstandard bindings for Python" optional = false python-versions = ">=3.7" files = [ {file = "zstandard-0.21.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:649a67643257e3b2cff1c0a73130609679a5673bf389564bc6d4b164d822a7ce"}, {file = "zstandard-0.21.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:144a4fe4be2e747bf9c646deab212666e39048faa4372abb6a250dab0f347a29"}, {file = "zstandard-0.21.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b72060402524ab91e075881f6b6b3f37ab715663313030d0ce983da44960a86f"}, {file = "zstandard-0.21.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8257752b97134477fb4e413529edaa04fc0457361d304c1319573de00ba796b1"}, {file = "zstandard-0.21.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:c053b7c4cbf71cc26808ed67ae955836232f7638444d709bfc302d3e499364fa"}, {file = "zstandard-0.21.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2769730c13638e08b7a983b32cb67775650024632cd0476bf1ba0e6360f5ac7d"}, {file = "zstandard-0.21.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:7d3bc4de588b987f3934ca79140e226785d7b5e47e31756761e48644a45a6766"}, {file = "zstandard-0.21.0-cp310-cp310-win32.whl", hash = "sha256:67829fdb82e7393ca68e543894cd0581a79243cc4ec74a836c305c70a5943f07"}, {file = "zstandard-0.21.0-cp310-cp310-win_amd64.whl", hash = "sha256:e6048a287f8d2d6e8bc67f6b42a766c61923641dd4022b7fd3f7439e17ba5a4d"}, {file = "zstandard-0.21.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7f2afab2c727b6a3d466faee6974a7dad0d9991241c498e7317e5ccf53dbc766"}, {file = "zstandard-0.21.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ff0852da2abe86326b20abae912d0367878dd0854b8931897d44cfeb18985472"}, {file = "zstandard-0.21.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d12fa383e315b62630bd407477d750ec96a0f438447d0e6e496ab67b8b451d39"}, {file = "zstandard-0.21.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f1b9703fe2e6b6811886c44052647df7c37478af1b4a1a9078585806f42e5b15"}, {file = "zstandard-0.21.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:df28aa5c241f59a7ab524f8ad8bb75d9a23f7ed9d501b0fed6d40ec3064784e8"}, {file = "zstandard-0.21.0-cp311-cp311-win32.whl", hash = "sha256:0aad6090ac164a9d237d096c8af241b8dcd015524ac6dbec1330092dba151657"}, {file = "zstandard-0.21.0-cp311-cp311-win_amd64.whl", hash = "sha256:48b6233b5c4cacb7afb0ee6b4f91820afbb6c0e3ae0fa10abbc20000acdf4f11"}, {file = "zstandard-0.21.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:e7d560ce14fd209db6adacce8908244503a009c6c39eee0c10f138996cd66d3e"}, {file = "zstandard-0.21.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1e6e131a4df2eb6f64961cea6f979cdff22d6e0d5516feb0d09492c8fd36f3bc"}, {file = "zstandard-0.21.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e1e0c62a67ff425927898cf43da2cf6b852289ebcc2054514ea9bf121bec10a5"}, {file = "zstandard-0.21.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:1545fb9cb93e043351d0cb2ee73fa0ab32e61298968667bb924aac166278c3fc"}, {file = "zstandard-0.21.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fe6c821eb6870f81d73bf10e5deed80edcac1e63fbc40610e61f340723fd5f7c"}, {file = "zstandard-0.21.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ddb086ea3b915e50f6604be93f4f64f168d3fc3cef3585bb9a375d5834392d4f"}, {file = "zstandard-0.21.0-cp37-cp37m-win32.whl", hash = "sha256:57ac078ad7333c9db7a74804684099c4c77f98971c151cee18d17a12649bc25c"}, {file = "zstandard-0.21.0-cp37-cp37m-win_amd64.whl", hash = "sha256:1243b01fb7926a5a0417120c57d4c28b25a0200284af0525fddba812d575f605"}, {file = "zstandard-0.21.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:ea68b1ba4f9678ac3d3e370d96442a6332d431e5050223626bdce748692226ea"}, {file = "zstandard-0.21.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:8070c1cdb4587a8aa038638acda3bd97c43c59e1e31705f2766d5576b329e97c"}, {file = "zstandard-0.21.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4af612c96599b17e4930fe58bffd6514e6c25509d120f4eae6031b7595912f85"}, {file = "zstandard-0.21.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cff891e37b167bc477f35562cda1248acc115dbafbea4f3af54ec70821090965"}, {file = "zstandard-0.21.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:a9fec02ce2b38e8b2e86079ff0b912445495e8ab0b137f9c0505f88ad0d61296"}, {file = "zstandard-0.21.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0bdbe350691dec3078b187b8304e6a9c4d9db3eb2d50ab5b1d748533e746d099"}, {file = "zstandard-0.21.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b69cccd06a4a0a1d9fb3ec9a97600055cf03030ed7048d4bcb88c574f7895773"}, {file = "zstandard-0.21.0-cp38-cp38-win32.whl", hash = "sha256:9980489f066a391c5572bc7dc471e903fb134e0b0001ea9b1d3eff85af0a6f1b"}, {file = "zstandard-0.21.0-cp38-cp38-win_amd64.whl", hash = "sha256:0e1e94a9d9e35dc04bf90055e914077c80b1e0c15454cc5419e82529d3e70728"}, {file = "zstandard-0.21.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d2d61675b2a73edcef5e327e38eb62bdfc89009960f0e3991eae5cc3d54718de"}, {file = "zstandard-0.21.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:25fbfef672ad798afab12e8fd204d122fca3bc8e2dcb0a2ba73bf0a0ac0f5f07"}, {file = "zstandard-0.21.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:62957069a7c2626ae80023998757e27bd28d933b165c487ab6f83ad3337f773d"}, {file = "zstandard-0.21.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:14e10ed461e4807471075d4b7a2af51f5234c8f1e2a0c1d37d5ca49aaaad49e8"}, {file = "zstandard-0.21.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9cff89a036c639a6a9299bf19e16bfb9ac7def9a7634c52c257166db09d950e7"}, {file = "zstandard-0.21.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:52b2b5e3e7670bd25835e0e0730a236f2b0df87672d99d3bf4bf87248aa659fb"}, {file = "zstandard-0.21.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b1367da0dde8ae5040ef0413fb57b5baeac39d8931c70536d5f013b11d3fc3a5"}, {file = "zstandard-0.21.0-cp39-cp39-win32.whl", hash = "sha256:db62cbe7a965e68ad2217a056107cc43d41764c66c895be05cf9c8b19578ce9c"}, {file = "zstandard-0.21.0-cp39-cp39-win_amd64.whl", hash = "sha256:a8d200617d5c876221304b0e3fe43307adde291b4a897e7b0617a61611dfff6a"}, {file = "zstandard-0.21.0.tar.gz", hash = "sha256:f08e3a10d01a247877e4cb61a82a319ea746c356a3786558bed2481e6c405546"}, ] [package.dependencies] cffi = {version = ">=1.11", markers = "platform_python_implementation == \"PyPy\""} [package.extras] cffi = ["cffi (>=1.11)"] [extras] all = ["O365", "aleph-alpha-client", "anthropic", "arxiv", "atlassian-python-api", "azure-ai-formrecognizer", "azure-ai-vision", "azure-cognitiveservices-speech", "azure-cosmos", "azure-identity", "beautifulsoup4", "clickhouse-connect", "cohere", "deeplake", "docarray", "duckduckgo-search", "elasticsearch", "faiss-cpu", "google-api-python-client", "google-auth", "google-search-results", "gptcache", "html2text", "huggingface_hub", "jina", "jinja2", "jq", "lancedb", "langkit", "lark", "lxml", "manifest-ml", "momento", "neo4j", "networkx", "nlpcloud", "nltk", "nomic", "openai", "openlm", "opensearch-py", "pdfminer-six", "pexpect", "pgvector", "pinecone-client", "pinecone-text", "psycopg2-binary", "pymongo", "pyowm", "pypdf", "pytesseract", "pyvespa", "qdrant-client", "redis", "requests-toolbelt", "sentence-transformers", "spacy", "steamship", "tensorflow-text", "tiktoken", "torch", "transformers", "weaviate-client", "wikipedia", "wolframalpha"] azure = ["azure-ai-formrecognizer", "azure-ai-vision", "azure-cognitiveservices-speech", "azure-core", "azure-cosmos", "azure-identity", "openai"] cohere = ["cohere"] docarray = ["docarray"] embeddings = ["sentence-transformers"] extended-testing = ["atlassian-python-api", "beautifulsoup4", "beautifulsoup4", "bibtexparser", "chardet", "gql", "html2text", "jq", "lxml", "pandas", "pdfminer-six", "psychicapi", "py-trello", "pymupdf", "pypdf", "pypdfium2", "pyspark", "requests-toolbelt", "scikit-learn", "telethon", "tqdm", "zep-python"] llms = ["anthropic", "cohere", "huggingface_hub", "manifest-ml", "nlpcloud", "openai", "openlm", "torch", "transformers"] openai = ["openai", "tiktoken"] qdrant = ["qdrant-client"] text-helpers = ["chardet"] [metadata] lock-version = "2.0" python-versions = ">=3.8.1,<4.0" content-hash = "8a1402411a32416d6690ecfc7facb64674a884879250b42ae29a1a00eb5288bf"
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,535
Add Tigris vectorstore for vector search
### Feature request Support Tigris as a vector search backend ### Motivation Tigris is a Serverless NoSQL Database and Search Platform and have their [vector search](https://www.tigrisdata.com/docs/concepts/vector-search/python/) product. It will be great option for users to use an integrated database and search product. ### Your contribution I can submit a a PR
https://github.com/langchain-ai/langchain/issues/5535
https://github.com/langchain-ai/langchain/pull/5703
38dabdbb3a900ae60e4b503cd48c26903b2d4673
233b52735e77121849b0fc9f8eaf6170222f0ac7
"2023-06-01T03:18:00Z"
python
"2023-06-06T03:39:16Z"
pyproject.toml
[tool.poetry] name = "langchain" version = "0.0.190" description = "Building applications with LLMs through composability" authors = [] license = "MIT" readme = "README.md" repository = "https://www.github.com/hwchase17/langchain" [tool.poetry.scripts] langchain-server = "langchain.server:main" langchain = "langchain.cli.main:main" [tool.poetry.dependencies] python = ">=3.8.1,<4.0" pydantic = "^1" SQLAlchemy = ">=1.4,<3" requests = "^2" PyYAML = ">=5.4.1" numpy = "^1" azure-core = {version = "^1.26.4", optional=true} tqdm = {version = ">=4.48.0", optional = true} openapi-schema-pydantic = "^1.2" faiss-cpu = {version = "^1", optional = true} wikipedia = {version = "^1", optional = true} elasticsearch = {version = "^8", optional = true} opensearch-py = {version = "^2.0.0", optional = true} redis = {version = "^4", optional = true} manifest-ml = {version = "^0.0.1", optional = true} spacy = {version = "^3", optional = true} nltk = {version = "^3", optional = true} transformers = {version = "^4", optional = true} beautifulsoup4 = {version = "^4", optional = true} torch = {version = ">=1,<3", optional = true} jinja2 = {version = "^3", optional = true} tiktoken = {version = "^0.3.2", optional = true, python="^3.9"} pinecone-client = {version = "^2", optional = true} pinecone-text = {version = "^0.4.2", optional = true} pymongo = {version = "^4.3.3", optional = true} clickhouse-connect = {version="^0.5.14", optional=true} weaviate-client = {version = "^3", optional = true} google-api-python-client = {version = "2.70.0", optional = true} google-auth = {version = "^2.18.1", optional = true} wolframalpha = {version = "5.0.0", optional = true} anthropic = {version = "^0.2.6", optional = true} qdrant-client = {version = "^1.1.2", optional = true, python = ">=3.8.1,<3.12"} dataclasses-json = "^0.5.7" tensorflow-text = {version = "^2.11.0", optional = true, python = "^3.10, <3.12"} tenacity = "^8.1.0" cohere = {version = "^3", optional = true} openai = {version = "^0", optional = true} nlpcloud = {version = "^1", optional = true} nomic = {version = "^1.0.43", optional = true} huggingface_hub = {version = "^0", optional = true} jina = {version = "^3.14", optional = true} google-search-results = {version = "^2", optional = true} sentence-transformers = {version = "^2", optional = true} aiohttp = "^3.8.3" arxiv = {version = "^1.4", optional = true} pypdf = {version = "^3.4.0", optional = true} networkx = {version="^2.6.3", optional = true} aleph-alpha-client = {version="^2.15.0", optional = true} deeplake = {version = "^3.3.0", optional = true} pgvector = {version = "^0.1.6", optional = true} psycopg2-binary = {version = "^2.9.5", optional = true} pyowm = {version = "^3.3.0", optional = true} async-timeout = {version = "^4.0.0", python = "<3.11"} azure-identity = {version = "^1.12.0", optional=true} gptcache = {version = ">=0.1.7", optional = true} atlassian-python-api = {version = "^3.36.0", optional=true} pytesseract = {version = "^0.3.10", optional=true} html2text = {version="^2020.1.16", optional=true} numexpr = "^2.8.4" duckduckgo-search = {version="^2.8.6", optional=true} azure-cosmos = {version="^4.4.0b1", optional=true} lark = {version="^1.1.5", optional=true} lancedb = {version = "^0.1", optional = true} pexpect = {version = "^4.8.0", optional = true} pyvespa = {version = "^0.33.0", optional = true} O365 = {version = "^2.0.26", optional = true} jq = {version = "^1.4.1", optional = true} steamship = {version = "^2.16.9", optional = true} pdfminer-six = {version = "^20221105", optional = true} docarray = {version="^0.32.0", extras=["hnswlib"], optional=true} lxml = {version = "^4.9.2", optional = true} pymupdf = {version = "^1.22.3", optional = true} pypdfium2 = {version = "^4.10.0", optional = true} gql = {version = "^3.4.1", optional = true} pandas = {version = "^2.0.1", optional = true} telethon = {version = "^1.28.5", optional = true} neo4j = {version = "^5.8.1", optional = true} psychicapi = {version = "^0.5", optional = true} zep-python = {version=">=0.31", optional=true} langkit = {version = ">=0.0.1.dev3, <0.1.0", optional = true} chardet = {version="^5.1.0", optional=true} requests-toolbelt = {version = "^1.0.0", optional = true} openlm = {version = "^0.0.5", optional = true} scikit-learn = {version = "^1.2.2", optional = true} azure-ai-formrecognizer = {version = "^3.2.1", optional = true} azure-ai-vision = {version = "^0.11.1b1", optional = true} azure-cognitiveservices-speech = {version = "^1.28.0", optional = true} py-trello = {version = "^0.19.0", optional = true} momento = {version = "^1.5.0", optional = true} bibtexparser = {version = "^1.4.0", optional = true} pyspark = {version = "^3.4.0", optional = true} [tool.poetry.group.docs.dependencies] autodoc_pydantic = "^1.8.0" myst_parser = "^0.18.1" nbsphinx = "^0.8.9" sphinx = "^4.5.0" sphinx-autobuild = "^2021.3.14" sphinx_book_theme = "^0.3.3" sphinx_rtd_theme = "^1.0.0" sphinx-typlog-theme = "^0.8.0" sphinx-panels = "^0.6.0" toml = "^0.10.2" myst-nb = "^0.17.1" linkchecker = "^10.2.1" sphinx-copybutton = "^0.5.1" [tool.poetry.group.test.dependencies] # The only dependencies that should be added are # dependencies used for running tests (e.g., pytest, freezegun, response). # Any dependencies that do not meet that criteria will be removed. pytest = "^7.3.0" pytest-cov = "^4.0.0" pytest-dotenv = "^0.5.2" duckdb-engine = "^0.7.0" pytest-watcher = "^0.2.6" freezegun = "^1.2.2" responses = "^0.22.0" pytest-asyncio = "^0.20.3" lark = "^1.1.5" pytest-mock = "^3.10.0" pytest-socket = "^0.6.0" [tool.poetry.group.test_integration] optional = true [tool.poetry.group.test_integration.dependencies] # Do not add dependencies in the test_integration group # Instead: # 1. Add an optional dependency to the main group # poetry add --optional [package name] # 2. Add the package name to the extended_testing extra (find it below) # 3. Relock the poetry file # poetry lock --no-update # 4. Favor unit tests not integration tests. # Use the @pytest.mark.requires(pkg_name) decorator in unit_tests. # Your tests should not rely on network access, as it prevents other # developers from being able to easily run them. # Instead write unit tests that use the `responses` library or mock.patch with # fixtures. Keep the fixtures minimal. # See CONTRIBUTING.md for more instructions on working with optional dependencies. # https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md#working-with-optional-dependencies pytest-vcr = "^1.0.2" wrapt = "^1.15.0" openai = "^0.27.4" elasticsearch = {extras = ["async"], version = "^8.6.2"} redis = "^4.5.4" pinecone-client = "^2.2.1" pinecone-text = "^0.4.2" pymongo = "^4.3.3" clickhouse-connect = "^0.5.14" pgvector = "^0.1.6" transformers = "^4.27.4" pandas = "^2.0.0" deeplake = "^3.2.21" weaviate-client = "^3.15.5" torch = "^1.0.0" chromadb = "^0.3.21" tiktoken = "^0.3.3" python-dotenv = "^1.0.0" sentence-transformers = "^2" gptcache = "^0.1.9" promptlayer = "^0.1.80" tair = "^1.3.3" wikipedia = "^1" cassandra-driver = "^3.27.0" arxiv = "^1.4" mastodon-py = "^1.8.1" momento = "^1.5.0" # Please do not add any dependencies in the test_integration group # See instructions above ^^ [tool.poetry.group.lint.dependencies] ruff = "^0.0.249" types-toml = "^0.10.8.1" types-redis = "^4.3.21.6" black = "^23.1.0" types-chardet = "^5.0.4.6" [tool.poetry.group.typing.dependencies] mypy = "^0.991" types-pyyaml = "^6.0.12.2" types-requests = "^2.28.11.5" [tool.poetry.group.dev] optional = true [tool.poetry.group.dev.dependencies] jupyter = "^1.0.0" playwright = "^1.28.0" setuptools = "^67.6.1" [tool.poetry.extras] llms = ["anthropic", "cohere", "openai", "openlm", "nlpcloud", "huggingface_hub", "manifest-ml", "torch", "transformers"] qdrant = ["qdrant-client"] openai = ["openai", "tiktoken"] text_helpers = ["chardet"] cohere = ["cohere"] docarray = ["docarray"] embeddings = ["sentence-transformers"] azure = ["azure-identity", "azure-cosmos", "openai", "azure-core", "azure-ai-formrecognizer", "azure-ai-vision", "azure-cognitiveservices-speech"] all = [ "anthropic", "cohere", "openai", "nlpcloud", "huggingface_hub", "jina", "manifest-ml", "elasticsearch", "opensearch-py", "google-search-results", "faiss-cpu", "sentence-transformers", "transformers", "spacy", "nltk", "wikipedia", "beautifulsoup4", "tiktoken", "torch", "jinja2", "pinecone-client", "pinecone-text", "pymongo", "weaviate-client", "redis", "google-api-python-client", "google-auth", "wolframalpha", "qdrant-client", "tensorflow-text", "pypdf", "networkx", "nomic", "aleph-alpha-client", "deeplake", "pgvector", "psycopg2-binary", "pyowm", "pytesseract", "html2text", "atlassian-python-api", "gptcache", "duckduckgo-search", "arxiv", "azure-identity", "clickhouse-connect", "azure-cosmos", "lancedb", "langkit", "lark", "pexpect", "pyvespa", "O365", "jq", "docarray", "steamship", "pdfminer-six", "lxml", "requests-toolbelt", "neo4j", "openlm", "azure-ai-formrecognizer", "azure-ai-vision", "azure-cognitiveservices-speech", "momento" ] # An extra used to be able to add extended testing. # Please use new-line on formatting to make it easier to add new packages without # merge-conflicts extended_testing = [ "beautifulsoup4", "bibtexparser", "chardet", "jq", "pdfminer.six", "pypdf", "pymupdf", "pypdfium2", "tqdm", "lxml", "atlassian-python-api", "beautifulsoup4", "pandas", "telethon", "psychicapi", "zep-python", "gql", "requests_toolbelt", "html2text", "py-trello", "scikit-learn", "pyspark" ] [tool.ruff] select = [ "E", # pycodestyle "F", # pyflakes "I", # isort ] exclude = [ "tests/integration_tests/examples/non-utf8-encoding.py", ] [tool.mypy] ignore_missing_imports = "True" disallow_untyped_defs = "True" exclude = ["notebooks"] [tool.coverage.run] omit = [ "tests/*", ] [build-system] requires = ["poetry-core>=1.0.0"] build-backend = "poetry.core.masonry.api" [tool.pytest.ini_options] # --strict-markers will raise errors on unknown marks. # https://docs.pytest.org/en/7.1.x/how-to/mark.html#raising-errors-on-unknown-marks # # https://docs.pytest.org/en/7.1.x/reference/reference.html # --strict-config any warnings encountered while parsing the `pytest` # section of the configuration file raise errors. addopts = "--strict-markers --strict-config --durations=5" # Registering custom markers. # https://docs.pytest.org/en/7.1.x/example/markers.html#registering-markers markers = [ "requires: mark tests as requiring a specific library" ]
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,822
skip openai params when embedding
### System Info langchain@0.0.192 I upgrade my langchain lib by execute pip install -U langchain, and the verion is 0.0.192。But i found that openai.api_base not working. I use azure openai service as openai backend, the openai.api_base is very import for me. I hava compared tag/0.0.192 and tag/0.0.191, and figure out that: ![image](https://github.com/hwchase17/langchain/assets/6478745/cfa96128-da8a-4339-a92c-5e9031953763) openai params is moved inside _invocation_params function,and used in some openai invoke: ![image](https://github.com/hwchase17/langchain/assets/6478745/e81e41e2-0ac0-4658-9d0d-57d2b347e026) ![image](https://github.com/hwchase17/langchain/assets/6478745/b5f4b9f5-5535-4026-9817-b1046751907a) but still some case not covered like: ![image](https://github.com/hwchase17/langchain/assets/6478745/2c907b5d-81f7-4bf2-9e46-8ab409f99e60) ### Who can help? @hwchase17 i have debug langchain and make a pr, plz review the pr:https://github.com/hwchase17/langchain/pull/5821, thanks ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [X] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. pip install -U langchain 2. exeucte code next: ```python from langchain.embeddings import OpenAIEmbeddings def main(): embeddings = OpenAIEmbeddings( openai_api_key="OPENAI_API_KEY", openai_api_base="OPENAI_API_BASE", ) text = "This is a test document." query_result = embeddings.embed_query(text) print(query_result) if __name__ == "__main__": main() ``` ### Expected behavior same effect as langchain@0.0.191,
https://github.com/langchain-ai/langchain/issues/5822
https://github.com/langchain-ai/langchain/pull/5821
b3ae6bcd3f42ec85ee65eb29c922ab22a17a0210
5a207cce8f026e32c93bf271f80b73570d4b2844
"2023-06-07T08:36:23Z"
python
"2023-06-07T14:32:57Z"
langchain/embeddings/openai.py
"""Wrapper around OpenAI embedding models.""" from __future__ import annotations import logging from typing import ( Any, Callable, Dict, List, Literal, Optional, Sequence, Set, Tuple, Union, ) import numpy as np from pydantic import BaseModel, Extra, root_validator from tenacity import ( before_sleep_log, retry, retry_if_exception_type, stop_after_attempt, wait_exponential, ) from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) def _create_retry_decorator(embeddings: OpenAIEmbeddings) -> Callable[[Any], Any]: import openai min_seconds = 4 max_seconds = 10 # Wait 2^x * 1 second between each retry starting with # 4 seconds, then up to 10 seconds, then 10 seconds afterwards return retry( reraise=True, stop=stop_after_attempt(embeddings.max_retries), wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds), retry=( retry_if_exception_type(openai.error.Timeout) | retry_if_exception_type(openai.error.APIError) | retry_if_exception_type(openai.error.APIConnectionError) | retry_if_exception_type(openai.error.RateLimitError) | retry_if_exception_type(openai.error.ServiceUnavailableError) ), before_sleep=before_sleep_log(logger, logging.WARNING), ) def embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) -> Any: """Use tenacity to retry the embedding call.""" retry_decorator = _create_retry_decorator(embeddings) @retry_decorator def _embed_with_retry(**kwargs: Any) -> Any: return embeddings.client.create(**kwargs) return _embed_with_retry(**kwargs) class OpenAIEmbeddings(BaseModel, Embeddings): """Wrapper around OpenAI embedding models. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain.embeddings import OpenAIEmbeddings openai = OpenAIEmbeddings(openai_api_key="my-api-key") In order to use the library with Microsoft Azure endpoints, you need to set the OPENAI_API_TYPE, OPENAI_API_BASE, OPENAI_API_KEY and OPENAI_API_VERSION. The OPENAI_API_TYPE must be set to 'azure' and the others correspond to the properties of your endpoint. In addition, the deployment name must be passed as the model parameter. Example: .. code-block:: python import os os.environ["OPENAI_API_TYPE"] = "azure" os.environ["OPENAI_API_BASE"] = "https://<your-endpoint.openai.azure.com/" os.environ["OPENAI_API_KEY"] = "your AzureOpenAI key" os.environ["OPENAI_API_VERSION"] = "2023-03-15-preview" os.environ["OPENAI_PROXY"] = "http://your-corporate-proxy:8080" from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings( deployment="your-embeddings-deployment-name", model="your-embeddings-model-name", api_base="https://your-endpoint.openai.azure.com/", api_type="azure", ) text = "This is a test query." query_result = embeddings.embed_query(text) """ client: Any #: :meta private: model: str = "text-embedding-ada-002" deployment: str = model # to support Azure OpenAI Service custom deployment names openai_api_version: Optional[str] = None # to support Azure OpenAI Service custom endpoints openai_api_base: Optional[str] = None # to support Azure OpenAI Service custom endpoints openai_api_type: Optional[str] = None # to support explicit proxy for OpenAI openai_proxy: Optional[str] = None embedding_ctx_length: int = 8191 openai_api_key: Optional[str] = None openai_organization: Optional[str] = None allowed_special: Union[Literal["all"], Set[str]] = set() disallowed_special: Union[Literal["all"], Set[str], Sequence[str]] = "all" chunk_size: int = 1000 """Maximum number of texts to embed in each batch""" max_retries: int = 6 """Maximum number of retries to make when generating.""" request_timeout: Optional[Union[float, Tuple[float, float]]] = None """Timeout in seconds for the OpenAPI request.""" headers: Any = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" values["openai_api_key"] = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY" ) values["openai_api_base"] = get_from_dict_or_env( values, "openai_api_base", "OPENAI_API_BASE", default="", ) values["openai_api_type"] = get_from_dict_or_env( values, "openai_api_type", "OPENAI_API_TYPE", default="", ) values["openai_proxy"] = get_from_dict_or_env( values, "openai_proxy", "OPENAI_PROXY", default="", ) if values["openai_api_type"] in ("azure", "azure_ad", "azuread"): default_api_version = "2022-12-01" else: default_api_version = "" values["openai_api_version"] = get_from_dict_or_env( values, "openai_api_version", "OPENAI_API_VERSION", default=default_api_version, ) values["openai_organization"] = get_from_dict_or_env( values, "openai_organization", "OPENAI_ORGANIZATION", default="", ) try: import openai values["client"] = openai.Embedding except ImportError: raise ImportError( "Could not import openai python package. " "Please install it with `pip install openai`." ) return values @property def _invocation_params(self) -> Dict: openai_args = { "engine": self.deployment, "request_timeout": self.request_timeout, "headers": self.headers, "api_key": self.openai_api_key, "organization": self.openai_organization, "api_base": self.openai_api_base, "api_type": self.openai_api_type, "api_version": self.openai_api_version, } if self.openai_proxy: openai_args["proxy"] = { "http": self.openai_proxy, "https": self.openai_proxy, } return openai_args # please refer to # https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb def _get_len_safe_embeddings( self, texts: List[str], *, engine: str, chunk_size: Optional[int] = None ) -> List[List[float]]: embeddings: List[List[float]] = [[] for _ in range(len(texts))] try: import tiktoken except ImportError: raise ImportError( "Could not import tiktoken python package. " "This is needed in order to for OpenAIEmbeddings. " "Please install it with `pip install tiktoken`." ) tokens = [] indices = [] encoding = tiktoken.model.encoding_for_model(self.model) for i, text in enumerate(texts): if self.model.endswith("001"): # See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500 # replace newlines, which can negatively affect performance. text = text.replace("\n", " ") token = encoding.encode( text, allowed_special=self.allowed_special, disallowed_special=self.disallowed_special, ) for j in range(0, len(token), self.embedding_ctx_length): tokens += [token[j : j + self.embedding_ctx_length]] indices += [i] batched_embeddings = [] _chunk_size = chunk_size or self.chunk_size for i in range(0, len(tokens), _chunk_size): response = embed_with_retry( self, input=tokens[i : i + _chunk_size], **self._invocation_params, ) batched_embeddings += [r["embedding"] for r in response["data"]] results: List[List[List[float]]] = [[] for _ in range(len(texts))] num_tokens_in_batch: List[List[int]] = [[] for _ in range(len(texts))] for i in range(len(indices)): results[indices[i]].append(batched_embeddings[i]) num_tokens_in_batch[indices[i]].append(len(tokens[i])) for i in range(len(texts)): _result = results[i] if len(_result) == 0: average = embed_with_retry( self, input="", engine=self.deployment, request_timeout=self.request_timeout, headers=self.headers, )["data"][0]["embedding"] else: average = np.average(_result, axis=0, weights=num_tokens_in_batch[i]) embeddings[i] = (average / np.linalg.norm(average)).tolist() return embeddings def _embedding_func(self, text: str, *, engine: str) -> List[float]: """Call out to OpenAI's embedding endpoint.""" # handle large input text if len(text) > self.embedding_ctx_length: return self._get_len_safe_embeddings([text], engine=engine)[0] else: if self.model.endswith("001"): # See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500 # replace newlines, which can negatively affect performance. text = text.replace("\n", " ") return embed_with_retry( self, input=[text], engine=engine, request_timeout=self.request_timeout, headers=self.headers, )["data"][0]["embedding"] def embed_documents( self, texts: List[str], chunk_size: Optional[int] = 0 ) -> List[List[float]]: """Call out to OpenAI's embedding endpoint for embedding search docs. Args: texts: The list of texts to embed. chunk_size: The chunk size of embeddings. If None, will use the chunk size specified by the class. Returns: List of embeddings, one for each text. """ # NOTE: to keep things simple, we assume the list may contain texts longer # than the maximum context and use length-safe embedding function. return self._get_len_safe_embeddings(texts, engine=self.deployment) def embed_query(self, text: str) -> List[float]: """Call out to OpenAI's embedding endpoint for embedding query text. Args: text: The text to embed. Returns: Embedding for the text. """ embedding = self._embedding_func(text, engine=self.deployment) return embedding
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,983
RetrievalQA & RetrievalQAWithSourcesChain chains cannot be serialized/saved or loaded
`VectorDBQA` is being deprecated in favour of `RetrievalQA` & similarly, `VectorDBQAWithSourcesChain` is being deprecated for `RetrievalQAWithSourcesChain`. Currently, `VectorDBQA` & `VectorDBQAWithSourcesChain` chains can be serialized using `vec_chain.save(...)` because they have `_chain_type` property - https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/qa_with_sources/vector_db.py#L67 However, `RetrievalQA` & `RetrievalQAWithSourcesChain` do not have that property and raise the following error when trying to save with `ret_chain.save("ret_chain.yaml")`: ``` File [~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45](https://file+.vscode-resource.vscode-cdn.net/Users/smohammed/Development/hackweek-internalqa/~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45), in Chain._chain_type(self) [43](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=42) @property [44](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=43) def _chain_type(self) -> str: ---> [45](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=44) raise NotImplementedError("Saving not supported for this chain type.") NotImplementedError: Saving not supported for this chain type. ``` There isn't any functions to support loading RetrievalQA either, unlike the VectorQA counterparts: https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/loading.py#L313-L356
https://github.com/langchain-ai/langchain/issues/3983
https://github.com/langchain-ai/langchain/pull/5818
b93638ef1ef683dfbb46e8e7654e96325324a98c
5518f24ec38654510bada81025fe4e96c26556a7
"2023-05-02T16:17:48Z"
python
"2023-06-08T04:07:13Z"
langchain/chains/loading.py
"""Functionality for loading chains.""" import json from pathlib import Path from typing import Any, Union import yaml from langchain.chains.api.base import APIChain from langchain.chains.base import Chain from langchain.chains.combine_documents.map_reduce import MapReduceDocumentsChain from langchain.chains.combine_documents.map_rerank import MapRerankDocumentsChain from langchain.chains.combine_documents.refine import RefineDocumentsChain from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.hyde.base import HypotheticalDocumentEmbedder from langchain.chains.llm import LLMChain from langchain.chains.llm_bash.base import LLMBashChain from langchain.chains.llm_checker.base import LLMCheckerChain from langchain.chains.llm_math.base import LLMMathChain from langchain.chains.llm_requests import LLMRequestsChain from langchain.chains.pal.base import PALChain from langchain.chains.qa_with_sources.base import QAWithSourcesChain from langchain.chains.qa_with_sources.vector_db import VectorDBQAWithSourcesChain from langchain.chains.retrieval_qa.base import VectorDBQA from langchain.chains.sql_database.base import SQLDatabaseChain from langchain.llms.loading import load_llm, load_llm_from_config from langchain.prompts.loading import load_prompt, load_prompt_from_config from langchain.utilities.loading import try_load_from_hub URL_BASE = "https://raw.githubusercontent.com/hwchase17/langchain-hub/master/chains/" def _load_llm_chain(config: dict, **kwargs: Any) -> LLMChain: """Load LLM chain from config dict.""" if "llm" in config: llm_config = config.pop("llm") llm = load_llm_from_config(llm_config) elif "llm_path" in config: llm = load_llm(config.pop("llm_path")) else: raise ValueError("One of `llm` or `llm_path` must be present.") if "prompt" in config: prompt_config = config.pop("prompt") prompt = load_prompt_from_config(prompt_config) elif "prompt_path" in config: prompt = load_prompt(config.pop("prompt_path")) else: raise ValueError("One of `prompt` or `prompt_path` must be present.") return LLMChain(llm=llm, prompt=prompt, **config) def _load_hyde_chain(config: dict, **kwargs: Any) -> HypotheticalDocumentEmbedder: """Load hypothetical document embedder chain from config dict.""" if "llm_chain" in config: llm_chain_config = config.pop("llm_chain") llm_chain = load_chain_from_config(llm_chain_config) elif "llm_chain_path" in config: llm_chain = load_chain(config.pop("llm_chain_path")) else: raise ValueError("One of `llm_chain` or `llm_chain_path` must be present.") if "embeddings" in kwargs: embeddings = kwargs.pop("embeddings") else: raise ValueError("`embeddings` must be present.") return HypotheticalDocumentEmbedder( llm_chain=llm_chain, base_embeddings=embeddings, **config ) def _load_stuff_documents_chain(config: dict, **kwargs: Any) -> StuffDocumentsChain: if "llm_chain" in config: llm_chain_config = config.pop("llm_chain") llm_chain = load_chain_from_config(llm_chain_config) elif "llm_chain_path" in config: llm_chain = load_chain(config.pop("llm_chain_path")) else: raise ValueError("One of `llm_chain` or `llm_chain_config` must be present.") if not isinstance(llm_chain, LLMChain): raise ValueError(f"Expected LLMChain, got {llm_chain}") if "document_prompt" in config: prompt_config = config.pop("document_prompt") document_prompt = load_prompt_from_config(prompt_config) elif "document_prompt_path" in config: document_prompt = load_prompt(config.pop("document_prompt_path")) else: raise ValueError( "One of `document_prompt` or `document_prompt_path` must be present." ) return StuffDocumentsChain( llm_chain=llm_chain, document_prompt=document_prompt, **config ) def _load_map_reduce_documents_chain( config: dict, **kwargs: Any ) -> MapReduceDocumentsChain: if "llm_chain" in config: llm_chain_config = config.pop("llm_chain") llm_chain = load_chain_from_config(llm_chain_config) elif "llm_chain_path" in config: llm_chain = load_chain(config.pop("llm_chain_path")) else: raise ValueError("One of `llm_chain` or `llm_chain_config` must be present.") if not isinstance(llm_chain, LLMChain): raise ValueError(f"Expected LLMChain, got {llm_chain}") if "combine_document_chain" in config: combine_document_chain_config = config.pop("combine_document_chain") combine_document_chain = load_chain_from_config(combine_document_chain_config) elif "combine_document_chain_path" in config: combine_document_chain = load_chain(config.pop("combine_document_chain_path")) else: raise ValueError( "One of `combine_document_chain` or " "`combine_document_chain_path` must be present." ) if "collapse_document_chain" in config: collapse_document_chain_config = config.pop("collapse_document_chain") if collapse_document_chain_config is None: collapse_document_chain = None else: collapse_document_chain = load_chain_from_config( collapse_document_chain_config ) elif "collapse_document_chain_path" in config: collapse_document_chain = load_chain(config.pop("collapse_document_chain_path")) return MapReduceDocumentsChain( llm_chain=llm_chain, combine_document_chain=combine_document_chain, collapse_document_chain=collapse_document_chain, **config, ) def _load_llm_bash_chain(config: dict, **kwargs: Any) -> LLMBashChain: llm_chain = None if "llm_chain" in config: llm_chain_config = config.pop("llm_chain") llm_chain = load_chain_from_config(llm_chain_config) elif "llm_chain_path" in config: llm_chain = load_chain(config.pop("llm_chain_path")) # llm attribute is deprecated in favor of llm_chain, here to support old configs elif "llm" in config: llm_config = config.pop("llm") llm = load_llm_from_config(llm_config) # llm_path attribute is deprecated in favor of llm_chain_path, # its to support old configs elif "llm_path" in config: llm = load_llm(config.pop("llm_path")) else: raise ValueError("One of `llm_chain` or `llm_chain_path` must be present.") if "prompt" in config: prompt_config = config.pop("prompt") prompt = load_prompt_from_config(prompt_config) elif "prompt_path" in config: prompt = load_prompt(config.pop("prompt_path")) if llm_chain: return LLMBashChain(llm_chain=llm_chain, prompt=prompt, **config) else: return LLMBashChain(llm=llm, prompt=prompt, **config) def _load_llm_checker_chain(config: dict, **kwargs: Any) -> LLMCheckerChain: if "llm" in config: llm_config = config.pop("llm") llm = load_llm_from_config(llm_config) elif "llm_path" in config: llm = load_llm(config.pop("llm_path")) else: raise ValueError("One of `llm` or `llm_path` must be present.") if "create_draft_answer_prompt" in config: create_draft_answer_prompt_config = config.pop("create_draft_answer_prompt") create_draft_answer_prompt = load_prompt_from_config( create_draft_answer_prompt_config ) elif "create_draft_answer_prompt_path" in config: create_draft_answer_prompt = load_prompt( config.pop("create_draft_answer_prompt_path") ) if "list_assertions_prompt" in config: list_assertions_prompt_config = config.pop("list_assertions_prompt") list_assertions_prompt = load_prompt_from_config(list_assertions_prompt_config) elif "list_assertions_prompt_path" in config: list_assertions_prompt = load_prompt(config.pop("list_assertions_prompt_path")) if "check_assertions_prompt" in config: check_assertions_prompt_config = config.pop("check_assertions_prompt") check_assertions_prompt = load_prompt_from_config( check_assertions_prompt_config ) elif "check_assertions_prompt_path" in config: check_assertions_prompt = load_prompt( config.pop("check_assertions_prompt_path") ) if "revised_answer_prompt" in config: revised_answer_prompt_config = config.pop("revised_answer_prompt") revised_answer_prompt = load_prompt_from_config(revised_answer_prompt_config) elif "revised_answer_prompt_path" in config: revised_answer_prompt = load_prompt(config.pop("revised_answer_prompt_path")) return LLMCheckerChain( llm=llm, create_draft_answer_prompt=create_draft_answer_prompt, list_assertions_prompt=list_assertions_prompt, check_assertions_prompt=check_assertions_prompt, revised_answer_prompt=revised_answer_prompt, **config, ) def _load_llm_math_chain(config: dict, **kwargs: Any) -> LLMMathChain: llm_chain = None if "llm_chain" in config: llm_chain_config = config.pop("llm_chain") llm_chain = load_chain_from_config(llm_chain_config) elif "llm_chain_path" in config: llm_chain = load_chain(config.pop("llm_chain_path")) # llm attribute is deprecated in favor of llm_chain, here to support old configs elif "llm" in config: llm_config = config.pop("llm") llm = load_llm_from_config(llm_config) # llm_path attribute is deprecated in favor of llm_chain_path, # its to support old configs elif "llm_path" in config: llm = load_llm(config.pop("llm_path")) else: raise ValueError("One of `llm_chain` or `llm_chain_path` must be present.") if "prompt" in config: prompt_config = config.pop("prompt") prompt = load_prompt_from_config(prompt_config) elif "prompt_path" in config: prompt = load_prompt(config.pop("prompt_path")) if llm_chain: return LLMMathChain(llm_chain=llm_chain, prompt=prompt, **config) else: return LLMMathChain(llm=llm, prompt=prompt, **config) def _load_map_rerank_documents_chain( config: dict, **kwargs: Any ) -> MapRerankDocumentsChain: if "llm_chain" in config: llm_chain_config = config.pop("llm_chain") llm_chain = load_chain_from_config(llm_chain_config) elif "llm_chain_path" in config: llm_chain = load_chain(config.pop("llm_chain_path")) else: raise ValueError("One of `llm_chain` or `llm_chain_config` must be present.") return MapRerankDocumentsChain(llm_chain=llm_chain, **config) def _load_pal_chain(config: dict, **kwargs: Any) -> PALChain: llm_chain = None if "llm_chain" in config: llm_chain_config = config.pop("llm_chain") llm_chain = load_chain_from_config(llm_chain_config) elif "llm_chain_path" in config: llm_chain = load_chain(config.pop("llm_chain_path")) # llm attribute is deprecated in favor of llm_chain, here to support old configs elif "llm" in config: llm_config = config.pop("llm") llm = load_llm_from_config(llm_config) # llm_path attribute is deprecated in favor of llm_chain_path, # its to support old configs elif "llm_path" in config: llm = load_llm(config.pop("llm_path")) else: raise ValueError("One of `llm_chain` or `llm_chain_path` must be present.") if "prompt" in config: prompt_config = config.pop("prompt") prompt = load_prompt_from_config(prompt_config) elif "prompt_path" in config: prompt = load_prompt(config.pop("prompt_path")) else: raise ValueError("One of `prompt` or `prompt_path` must be present.") if llm_chain: return PALChain(llm_chain=llm_chain, prompt=prompt, **config) else: return PALChain(llm=llm, prompt=prompt, **config) def _load_refine_documents_chain(config: dict, **kwargs: Any) -> RefineDocumentsChain: if "initial_llm_chain" in config: initial_llm_chain_config = config.pop("initial_llm_chain") initial_llm_chain = load_chain_from_config(initial_llm_chain_config) elif "initial_llm_chain_path" in config: initial_llm_chain = load_chain(config.pop("initial_llm_chain_path")) else: raise ValueError( "One of `initial_llm_chain` or `initial_llm_chain_config` must be present." ) if "refine_llm_chain" in config: refine_llm_chain_config = config.pop("refine_llm_chain") refine_llm_chain = load_chain_from_config(refine_llm_chain_config) elif "refine_llm_chain_path" in config: refine_llm_chain = load_chain(config.pop("refine_llm_chain_path")) else: raise ValueError( "One of `refine_llm_chain` or `refine_llm_chain_config` must be present." ) if "document_prompt" in config: prompt_config = config.pop("document_prompt") document_prompt = load_prompt_from_config(prompt_config) elif "document_prompt_path" in config: document_prompt = load_prompt(config.pop("document_prompt_path")) return RefineDocumentsChain( initial_llm_chain=initial_llm_chain, refine_llm_chain=refine_llm_chain, document_prompt=document_prompt, **config, ) def _load_qa_with_sources_chain(config: dict, **kwargs: Any) -> QAWithSourcesChain: if "combine_documents_chain" in config: combine_documents_chain_config = config.pop("combine_documents_chain") combine_documents_chain = load_chain_from_config(combine_documents_chain_config) elif "combine_documents_chain_path" in config: combine_documents_chain = load_chain(config.pop("combine_documents_chain_path")) else: raise ValueError( "One of `combine_documents_chain` or " "`combine_documents_chain_path` must be present." ) return QAWithSourcesChain(combine_documents_chain=combine_documents_chain, **config) def _load_sql_database_chain(config: dict, **kwargs: Any) -> SQLDatabaseChain: if "database" in kwargs: database = kwargs.pop("database") else: raise ValueError("`database` must be present.") if "llm" in config: llm_config = config.pop("llm") llm = load_llm_from_config(llm_config) elif "llm_path" in config: llm = load_llm(config.pop("llm_path")) else: raise ValueError("One of `llm` or `llm_path` must be present.") if "prompt" in config: prompt_config = config.pop("prompt") prompt = load_prompt_from_config(prompt_config) else: prompt = None return SQLDatabaseChain.from_llm(llm, database, prompt=prompt, **config) def _load_vector_db_qa_with_sources_chain( config: dict, **kwargs: Any ) -> VectorDBQAWithSourcesChain: if "vectorstore" in kwargs: vectorstore = kwargs.pop("vectorstore") else: raise ValueError("`vectorstore` must be present.") if "combine_documents_chain" in config: combine_documents_chain_config = config.pop("combine_documents_chain") combine_documents_chain = load_chain_from_config(combine_documents_chain_config) elif "combine_documents_chain_path" in config: combine_documents_chain = load_chain(config.pop("combine_documents_chain_path")) else: raise ValueError( "One of `combine_documents_chain` or " "`combine_documents_chain_path` must be present." ) return VectorDBQAWithSourcesChain( combine_documents_chain=combine_documents_chain, vectorstore=vectorstore, **config, ) def _load_vector_db_qa(config: dict, **kwargs: Any) -> VectorDBQA: if "vectorstore" in kwargs: vectorstore = kwargs.pop("vectorstore") else: raise ValueError("`vectorstore` must be present.") if "combine_documents_chain" in config: combine_documents_chain_config = config.pop("combine_documents_chain") combine_documents_chain = load_chain_from_config(combine_documents_chain_config) elif "combine_documents_chain_path" in config: combine_documents_chain = load_chain(config.pop("combine_documents_chain_path")) else: raise ValueError( "One of `combine_documents_chain` or " "`combine_documents_chain_path` must be present." ) return VectorDBQA( combine_documents_chain=combine_documents_chain, vectorstore=vectorstore, **config, ) def _load_api_chain(config: dict, **kwargs: Any) -> APIChain: if "api_request_chain" in config: api_request_chain_config = config.pop("api_request_chain") api_request_chain = load_chain_from_config(api_request_chain_config) elif "api_request_chain_path" in config: api_request_chain = load_chain(config.pop("api_request_chain_path")) else: raise ValueError( "One of `api_request_chain` or `api_request_chain_path` must be present." ) if "api_answer_chain" in config: api_answer_chain_config = config.pop("api_answer_chain") api_answer_chain = load_chain_from_config(api_answer_chain_config) elif "api_answer_chain_path" in config: api_answer_chain = load_chain(config.pop("api_answer_chain_path")) else: raise ValueError( "One of `api_answer_chain` or `api_answer_chain_path` must be present." ) if "requests_wrapper" in kwargs: requests_wrapper = kwargs.pop("requests_wrapper") else: raise ValueError("`requests_wrapper` must be present.") return APIChain( api_request_chain=api_request_chain, api_answer_chain=api_answer_chain, requests_wrapper=requests_wrapper, **config, ) def _load_llm_requests_chain(config: dict, **kwargs: Any) -> LLMRequestsChain: if "llm_chain" in config: llm_chain_config = config.pop("llm_chain") llm_chain = load_chain_from_config(llm_chain_config) elif "llm_chain_path" in config: llm_chain = load_chain(config.pop("llm_chain_path")) else: raise ValueError("One of `llm_chain` or `llm_chain_path` must be present.") if "requests_wrapper" in kwargs: requests_wrapper = kwargs.pop("requests_wrapper") return LLMRequestsChain( llm_chain=llm_chain, requests_wrapper=requests_wrapper, **config ) else: return LLMRequestsChain(llm_chain=llm_chain, **config) type_to_loader_dict = { "api_chain": _load_api_chain, "hyde_chain": _load_hyde_chain, "llm_chain": _load_llm_chain, "llm_bash_chain": _load_llm_bash_chain, "llm_checker_chain": _load_llm_checker_chain, "llm_math_chain": _load_llm_math_chain, "llm_requests_chain": _load_llm_requests_chain, "pal_chain": _load_pal_chain, "qa_with_sources_chain": _load_qa_with_sources_chain, "stuff_documents_chain": _load_stuff_documents_chain, "map_reduce_documents_chain": _load_map_reduce_documents_chain, "map_rerank_documents_chain": _load_map_rerank_documents_chain, "refine_documents_chain": _load_refine_documents_chain, "sql_database_chain": _load_sql_database_chain, "vector_db_qa_with_sources_chain": _load_vector_db_qa_with_sources_chain, "vector_db_qa": _load_vector_db_qa, } def load_chain_from_config(config: dict, **kwargs: Any) -> Chain: """Load chain from Config Dict.""" if "_type" not in config: raise ValueError("Must specify a chain Type in config") config_type = config.pop("_type") if config_type not in type_to_loader_dict: raise ValueError(f"Loading {config_type} chain not supported") chain_loader = type_to_loader_dict[config_type] return chain_loader(config, **kwargs) def load_chain(path: Union[str, Path], **kwargs: Any) -> Chain: """Unified method for loading a chain from LangChainHub or local fs.""" if hub_result := try_load_from_hub( path, _load_chain_from_file, "chains", {"json", "yaml"}, **kwargs ): return hub_result else: return _load_chain_from_file(path, **kwargs) def _load_chain_from_file(file: Union[str, Path], **kwargs: Any) -> Chain: """Load chain from file.""" # Convert file to Path object. if isinstance(file, str): file_path = Path(file) else: file_path = file # Load from either json or yaml. if file_path.suffix == ".json": with open(file_path) as f: config = json.load(f) elif file_path.suffix == ".yaml": with open(file_path, "r") as f: config = yaml.safe_load(f) else: raise ValueError("File type must be json or yaml") # Override default 'verbose' and 'memory' for the chain if "verbose" in kwargs: config["verbose"] = kwargs.pop("verbose") if "memory" in kwargs: config["memory"] = kwargs.pop("memory") # Load the chain from the config now. return load_chain_from_config(config, **kwargs)
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,983
RetrievalQA & RetrievalQAWithSourcesChain chains cannot be serialized/saved or loaded
`VectorDBQA` is being deprecated in favour of `RetrievalQA` & similarly, `VectorDBQAWithSourcesChain` is being deprecated for `RetrievalQAWithSourcesChain`. Currently, `VectorDBQA` & `VectorDBQAWithSourcesChain` chains can be serialized using `vec_chain.save(...)` because they have `_chain_type` property - https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/qa_with_sources/vector_db.py#L67 However, `RetrievalQA` & `RetrievalQAWithSourcesChain` do not have that property and raise the following error when trying to save with `ret_chain.save("ret_chain.yaml")`: ``` File [~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45](https://file+.vscode-resource.vscode-cdn.net/Users/smohammed/Development/hackweek-internalqa/~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45), in Chain._chain_type(self) [43](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=42) @property [44](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=43) def _chain_type(self) -> str: ---> [45](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=44) raise NotImplementedError("Saving not supported for this chain type.") NotImplementedError: Saving not supported for this chain type. ``` There isn't any functions to support loading RetrievalQA either, unlike the VectorQA counterparts: https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/loading.py#L313-L356
https://github.com/langchain-ai/langchain/issues/3983
https://github.com/langchain-ai/langchain/pull/5818
b93638ef1ef683dfbb46e8e7654e96325324a98c
5518f24ec38654510bada81025fe4e96c26556a7
"2023-05-02T16:17:48Z"
python
"2023-06-08T04:07:13Z"
langchain/chains/retrieval_qa/base.py
"""Chain for question-answering against a vector database.""" from __future__ import annotations import warnings from abc import abstractmethod from typing import Any, Dict, List, Optional from pydantic import Extra, Field, root_validator from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain.chains.base import Chain from langchain.chains.combine_documents.base import BaseCombineDocumentsChain from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.llm import LLMChain from langchain.chains.question_answering import load_qa_chain from langchain.chains.question_answering.stuff_prompt import PROMPT_SELECTOR from langchain.prompts import PromptTemplate from langchain.schema import BaseRetriever, Document from langchain.vectorstores.base import VectorStore class BaseRetrievalQA(Chain): combine_documents_chain: BaseCombineDocumentsChain """Chain to use to combine the documents.""" input_key: str = "query" #: :meta private: output_key: str = "result" #: :meta private: return_source_documents: bool = False """Return the source documents.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True allow_population_by_field_name = True @property def input_keys(self) -> List[str]: """Return the input keys. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Return the output keys. :meta private: """ _output_keys = [self.output_key] if self.return_source_documents: _output_keys = _output_keys + ["source_documents"] return _output_keys @classmethod def from_llm( cls, llm: BaseLanguageModel, prompt: Optional[PromptTemplate] = None, **kwargs: Any, ) -> BaseRetrievalQA: """Initialize from LLM.""" _prompt = prompt or PROMPT_SELECTOR.get_prompt(llm) llm_chain = LLMChain(llm=llm, prompt=_prompt) document_prompt = PromptTemplate( input_variables=["page_content"], template="Context:\n{page_content}" ) combine_documents_chain = StuffDocumentsChain( llm_chain=llm_chain, document_variable_name="context", document_prompt=document_prompt, ) return cls(combine_documents_chain=combine_documents_chain, **kwargs) @classmethod def from_chain_type( cls, llm: BaseLanguageModel, chain_type: str = "stuff", chain_type_kwargs: Optional[dict] = None, **kwargs: Any, ) -> BaseRetrievalQA: """Load chain from chain type.""" _chain_type_kwargs = chain_type_kwargs or {} combine_documents_chain = load_qa_chain( llm, chain_type=chain_type, **_chain_type_kwargs ) return cls(combine_documents_chain=combine_documents_chain, **kwargs) @abstractmethod def _get_docs(self, question: str) -> List[Document]: """Get documents to do question answering over.""" def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: """Run get_relevant_text and llm on input query. If chain has 'return_source_documents' as 'True', returns the retrieved documents as well under the key 'source_documents'. Example: .. code-block:: python res = indexqa({'query': 'This is my query'}) answer, docs = res['result'], res['source_documents'] """ _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() question = inputs[self.input_key] docs = self._get_docs(question) answer = self.combine_documents_chain.run( input_documents=docs, question=question, callbacks=_run_manager.get_child() ) if self.return_source_documents: return {self.output_key: answer, "source_documents": docs} else: return {self.output_key: answer} @abstractmethod async def _aget_docs(self, question: str) -> List[Document]: """Get documents to do question answering over.""" async def _acall( self, inputs: Dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, Any]: """Run get_relevant_text and llm on input query. If chain has 'return_source_documents' as 'True', returns the retrieved documents as well under the key 'source_documents'. Example: .. code-block:: python res = indexqa({'query': 'This is my query'}) answer, docs = res['result'], res['source_documents'] """ _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager() question = inputs[self.input_key] docs = await self._aget_docs(question) answer = await self.combine_documents_chain.arun( input_documents=docs, question=question, callbacks=_run_manager.get_child() ) if self.return_source_documents: return {self.output_key: answer, "source_documents": docs} else: return {self.output_key: answer} class RetrievalQA(BaseRetrievalQA): """Chain for question-answering against an index. Example: .. code-block:: python from langchain.llms import OpenAI from langchain.chains import RetrievalQA from langchain.faiss import FAISS from langchain.vectorstores.base import VectorStoreRetriever retriever = VectorStoreRetriever(vectorstore=FAISS(...)) retrievalQA = RetrievalQA.from_llm(llm=OpenAI(), retriever=retriever) """ retriever: BaseRetriever = Field(exclude=True) def _get_docs(self, question: str) -> List[Document]: return self.retriever.get_relevant_documents(question) async def _aget_docs(self, question: str) -> List[Document]: return await self.retriever.aget_relevant_documents(question) class VectorDBQA(BaseRetrievalQA): """Chain for question-answering against a vector database.""" vectorstore: VectorStore = Field(exclude=True, alias="vectorstore") """Vector Database to connect to.""" k: int = 4 """Number of documents to query for.""" search_type: str = "similarity" """Search type to use over vectorstore. `similarity` or `mmr`.""" search_kwargs: Dict[str, Any] = Field(default_factory=dict) """Extra search args.""" @root_validator() def raise_deprecation(cls, values: Dict) -> Dict: warnings.warn( "`VectorDBQA` is deprecated - " "please use `from langchain.chains import RetrievalQA`" ) return values @root_validator() def validate_search_type(cls, values: Dict) -> Dict: """Validate search type.""" if "search_type" in values: search_type = values["search_type"] if search_type not in ("similarity", "mmr"): raise ValueError(f"search_type of {search_type} not allowed.") return values def _get_docs(self, question: str) -> List[Document]: if self.search_type == "similarity": docs = self.vectorstore.similarity_search( question, k=self.k, **self.search_kwargs ) elif self.search_type == "mmr": docs = self.vectorstore.max_marginal_relevance_search( question, k=self.k, **self.search_kwargs ) else: raise ValueError(f"search_type of {self.search_type} not allowed.") return docs async def _aget_docs(self, question: str) -> List[Document]: raise NotImplementedError("VectorDBQA does not support async") @property def _chain_type(self) -> str: """Return the chain type.""" return "vector_db_qa"
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,983
RetrievalQA & RetrievalQAWithSourcesChain chains cannot be serialized/saved or loaded
`VectorDBQA` is being deprecated in favour of `RetrievalQA` & similarly, `VectorDBQAWithSourcesChain` is being deprecated for `RetrievalQAWithSourcesChain`. Currently, `VectorDBQA` & `VectorDBQAWithSourcesChain` chains can be serialized using `vec_chain.save(...)` because they have `_chain_type` property - https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/qa_with_sources/vector_db.py#L67 However, `RetrievalQA` & `RetrievalQAWithSourcesChain` do not have that property and raise the following error when trying to save with `ret_chain.save("ret_chain.yaml")`: ``` File [~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45](https://file+.vscode-resource.vscode-cdn.net/Users/smohammed/Development/hackweek-internalqa/~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45), in Chain._chain_type(self) [43](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=42) @property [44](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=43) def _chain_type(self) -> str: ---> [45](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=44) raise NotImplementedError("Saving not supported for this chain type.") NotImplementedError: Saving not supported for this chain type. ``` There isn't any functions to support loading RetrievalQA either, unlike the VectorQA counterparts: https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/loading.py#L313-L356
https://github.com/langchain-ai/langchain/issues/3983
https://github.com/langchain-ai/langchain/pull/5818
b93638ef1ef683dfbb46e8e7654e96325324a98c
5518f24ec38654510bada81025fe4e96c26556a7
"2023-05-02T16:17:48Z"
python
"2023-06-08T04:07:13Z"
tests/integration_tests/chains/test_retrieval_qa.py
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,713
Inference parameters for Bedrock titan models not working
### System Info LangChain version 0.0.190 Python 3.9 ### Who can help? @seanpmorgan @3coins ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Tried the following to provide the `temperature` and `maxTokenCount` parameters when using the `Bedrock` class for the `amazon.titan-tg1-large` model. ``` import boto3 import botocore from langchain.chains import LLMChain from langchain.llms.bedrock import Bedrock from langchain.prompts import PromptTemplate from langchain.embeddings import BedrockEmbeddings prompt = PromptTemplate( input_variables=["text"], template="{text}", ) llm = Bedrock(model_id="amazon.titan-tg1-large") llmchain = LLMChain(llm=llm, prompt=prompt) llm.model_kwargs = {'temperature': 0.3, "maxTokenCount": 512} text = "Write a blog explaining Generative AI in ELI5 style." response = llmchain.run(text=text) print(f"prompt={text}\n\nresponse={response}") ``` This results in the following exception ``` ValueError: Error raised by bedrock service: An error occurred (ValidationException) when calling the InvokeModel operation: The provided inference configurations are invalid ``` This happens because https://github.com/hwchase17/langchain/blob/d0d89d39efb5f292f72e70973f3b70c4ca095047/langchain/llms/bedrock.py#L20 passes these params as key value pairs rather than putting them in the `textgenerationConfig` structure as the Titan model expects them to be, The proposed fix is as follows: ``` def prepare_input( cls, provider: str, prompt: str, model_kwargs: Dict[str, Any] ) -> Dict[str, Any]: input_body = {**model_kwargs} if provider == "anthropic" or provider == "ai21": input_body["prompt"] = prompt elif provider == "amazon": input_body = dict() input_body["inputText"] = prompt input_body["textGenerationConfig] = {**model_kwargs} else: input_body["inputText"] = prompt if provider == "anthropic" and "max_tokens_to_sample" not in input_body: input_body["max_tokens_to_sample"] = 50 return input_body ``` ``` ### Expected behavior Support the inference config parameters.
https://github.com/langchain-ai/langchain/issues/5713
https://github.com/langchain-ai/langchain/pull/5896
767fa91eae3455050d85a594fededddff3311dbe
a6ebffb69504576a805f3b9f09732ad344751b89
"2023-06-05T06:48:57Z"
python
"2023-06-08T21:16:01Z"
langchain/llms/bedrock.py
import json from typing import Any, Dict, List, Mapping, Optional from pydantic import Extra, root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens class LLMInputOutputAdapter: """Adapter class to prepare the inputs from Langchain to a format that LLM model expects. Also, provides helper function to extract the generated text from the model response.""" @classmethod def prepare_input( cls, provider: str, prompt: str, model_kwargs: Dict[str, Any] ) -> Dict[str, Any]: input_body = {**model_kwargs} if provider == "anthropic" or provider == "ai21": input_body["prompt"] = prompt else: input_body["inputText"] = prompt if provider == "anthropic" and "max_tokens_to_sample" not in input_body: input_body["max_tokens_to_sample"] = 50 return input_body @classmethod def prepare_output(cls, provider: str, response: Any) -> str: if provider == "anthropic": response_body = json.loads(response.get("body").read().decode()) return response_body.get("completion") else: response_body = json.loads(response.get("body").read()) if provider == "ai21": return response_body.get("completions")[0].get("data").get("text") else: return response_body.get("results")[0].get("outputText") class Bedrock(LLM): """LLM provider to invoke Bedrock models. To authenticate, the AWS client uses the following methods to automatically load credentials: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html If a specific credential profile should be used, you must pass the name of the profile from the ~/.aws/credentials file that is to be used. Make sure the credentials / roles used have the required policies to access the Bedrock service. """ """ Example: .. code-block:: python from bedrock_langchain.bedrock_llm import BedrockLLM llm = BedrockLLM( credentials_profile_name="default", model_id="amazon.titan-tg1-large" ) """ client: Any #: :meta private: region_name: Optional[str] = None """The aws region e.g., `us-west-2`. Fallsback to AWS_DEFAULT_REGION env variable or region specified in ~/.aws/config in case it is not provided here. """ credentials_profile_name: Optional[str] = None """The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which has either access keys or role information specified. If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html """ model_id: str """Id of the model to call, e.g., amazon.titan-tg1-large, this is equivalent to the modelId property in the list-foundation-models api""" model_kwargs: Optional[Dict] = None """Key word arguments to pass to the model.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that AWS credentials to and python package exists in environment.""" # Skip creating new client if passed in constructor if values["client"] is not None: return values try: import boto3 if values["credentials_profile_name"] is not None: session = boto3.Session(profile_name=values["credentials_profile_name"]) else: # use default credentials session = boto3.Session() client_params = {} if values["region_name"]: client_params["region_name"] = values["region_name"] values["client"] = session.client("bedrock", **client_params) except ImportError: raise ModuleNotFoundError( "Could not import boto3 python package. " "Please install it with `pip install boto3`." ) except Exception as e: raise ValueError( "Could not load credentials to authenticate with AWS client. " "Please check that credentials in the specified " "profile name are valid." ) from e return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" _model_kwargs = self.model_kwargs or {} return { **{"model_kwargs": _model_kwargs}, } @property def _llm_type(self) -> str: """Return type of llm.""" return "amazon_bedrock" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, ) -> str: """Call out to Bedrock service model. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = se("Tell me a joke.") """ _model_kwargs = self.model_kwargs or {} provider = self.model_id.split(".")[0] input_body = LLMInputOutputAdapter.prepare_input( provider, prompt, _model_kwargs ) body = json.dumps(input_body) accept = "application/json" contentType = "application/json" try: response = self.client.invoke_model( body=body, modelId=self.model_id, accept=accept, contentType=contentType ) text = LLMInputOutputAdapter.prepare_output(provider, response) except Exception as e: raise ValueError(f"Error raised by bedrock service: {e}") if stop is not None: text = enforce_stop_tokens(text, stop) return text
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,889
When inialztion VertexAI() all passed parameters got ignored
### System Info langchain=0.0.194 python=3.11.3 ### Who can help? @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Run: `VertexAI(project="my_project_name")` ### Expected behavior The client will connect to the supplied project_id
https://github.com/langchain-ai/langchain/issues/5889
https://github.com/langchain-ai/langchain/pull/5891
63fcf41bea5222f64b1c9a822f08cec9e55aa619
0eb1bc1a0245547316fe96ac8f86b0e67acb524f
"2023-06-08T16:06:31Z"
python
"2023-06-09T06:15:22Z"
langchain/llms/vertexai.py
"""Wrapper around Google VertexAI models.""" from typing import TYPE_CHECKING, Any, Dict, List, Optional from pydantic import BaseModel, root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.utilities.vertexai import ( init_vertexai, raise_vertex_import_error, ) if TYPE_CHECKING: from vertexai.language_models._language_models import _LanguageModel class _VertexAICommon(BaseModel): client: "_LanguageModel" = None #: :meta private: model_name: str "Model name to use." temperature: float = 0.0 "Sampling temperature, it controls the degree of randomness in token selection." max_output_tokens: int = 128 "Token limit determines the maximum amount of text output from one prompt." top_p: float = 0.95 "Tokens are selected from most probable to least until the sum of their " "probabilities equals the top-p value." top_k: int = 40 "How the model selects tokens for output, the next token is selected from " "among the top-k most probable tokens." stop: Optional[List[str]] = None "Optional list of stop words to use when generating." project: Optional[str] = None "The default GCP project to use when making Vertex API calls." location: str = "us-central1" "The default location to use when making API calls." credentials: Any = None "The default custom credentials (google.auth.credentials.Credentials) to use " "when making API calls. If not provided, credentials will be ascertained from " "the environment." @property def _default_params(self) -> Dict[str, Any]: base_params = { "temperature": self.temperature, "max_output_tokens": self.max_output_tokens, "top_k": self.top_k, "top_p": self.top_p, } return {**base_params} def _predict(self, prompt: str, stop: Optional[List[str]] = None) -> str: res = self.client.predict(prompt, **self._default_params) return self._enforce_stop_words(res.text, stop) def _enforce_stop_words(self, text: str, stop: Optional[List[str]] = None) -> str: if stop is None and self.stop is not None: stop = self.stop if stop: return enforce_stop_tokens(text, stop) return text @property def _llm_type(self) -> str: return "vertexai" @classmethod def _try_init_vertexai(cls, values: Dict) -> None: allowed_params = ["project", "location", "credentials"] params = {k: v for k, v in values.items() if v in allowed_params} init_vertexai(**params) return None class VertexAI(_VertexAICommon, LLM): """Wrapper around Google Vertex AI large language models.""" model_name: str = "text-bison" tuned_model_name: Optional[str] = None "The name of a tuned model, if it's provided, model_name is ignored." @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that the python package exists in environment.""" cls._try_init_vertexai(values) try: from vertexai.preview.language_models import TextGenerationModel except ImportError: raise_vertex_import_error() tuned_model_name = values.get("tuned_model_name") if tuned_model_name: values["client"] = TextGenerationModel.get_tuned_model(tuned_model_name) else: values["client"] = TextGenerationModel.from_pretrained(values["model_name"]) return values def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, ) -> str: """Call Vertex model to get predictions based on the prompt. Args: prompt: The prompt to pass into the model. stop: A list of stop words (optional). run_manager: A Callbackmanager for LLM run, optional. Returns: The string generated by the model. """ return self._predict(prompt, stop)
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,889
When inialztion VertexAI() all passed parameters got ignored
### System Info langchain=0.0.194 python=3.11.3 ### Who can help? @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Run: `VertexAI(project="my_project_name")` ### Expected behavior The client will connect to the supplied project_id
https://github.com/langchain-ai/langchain/issues/5889
https://github.com/langchain-ai/langchain/pull/5891
63fcf41bea5222f64b1c9a822f08cec9e55aa619
0eb1bc1a0245547316fe96ac8f86b0e67acb524f
"2023-06-08T16:06:31Z"
python
"2023-06-09T06:15:22Z"
langchain/utilities/vertexai.py
"""Utilities to init Vertex AI.""" from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from google.auth.credentials import Credentials def raise_vertex_import_error() -> None: """Raise ImportError related to Vertex SDK being not available. Raises: ImportError: an ImportError that mentions a required version of the SDK. """ sdk = "'google-cloud-aiplatform>=1.25.0'" raise ImportError( "Could not import VertexAI. Please, install it with " f"pip install {sdk}" ) def init_vertexai( project_id: Optional[str] = None, location: Optional[str] = None, credentials: Optional["Credentials"] = None, ) -> None: """Init vertexai. Args: project: The default GCP project to use when making Vertex API calls. location: The default location to use when making API calls. credentials: The default custom credentials to use when making API calls. If not provided credentials will be ascertained from the environment. Raises: ImportError: If importing vertexai SDK didn't not succeed. """ try: import vertexai except ImportError: raise_vertex_import_error() vertexai.init( project=project_id, location=location, credentials=credentials, )
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,835
Support for the AWS endpoint URL in the DynamoDBChatMessageHistory
### Feature request I propose having the possibility of specifying the endpoint URL to AWS in the DynamoDBChatMessageHistory, so that it is possible to target not only the AWS cloud services, but also a local installation. ### Motivation Specifying the endpoint URL, which is normally not done when addressing the cloud services, is very helpful when targeting a local instance (like [Localstack](https://localstack.cloud/)) when running local tests. ### Your contribution I am providing this PR for the implementation: https://github.com/hwchase17/langchain/pull/5836/files
https://github.com/langchain-ai/langchain/issues/5835
https://github.com/langchain-ai/langchain/pull/5836
0eb1bc1a0245547316fe96ac8f86b0e67acb524f
db7ef635c0e061fcbab2f608ccc60af15fc5585d
"2023-06-07T14:01:56Z"
python
"2023-06-09T06:21:11Z"
docs/modules/memory/examples/dynamodb_chat_message_history.ipynb
{ "cells": [ { "cell_type": "markdown", "id": "91c6a7ef", "metadata": {}, "source": [ "# Dynamodb Chat Message History\n", "\n", "This notebook goes over how to use Dynamodb to store chat message history." ] }, { "cell_type": "markdown", "id": "3f608be0", "metadata": {}, "source": [ "First make sure you have correctly configured the [AWS CLI](https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html). Then make sure you have installed boto3." ] }, { "cell_type": "markdown", "id": "030d784f", "metadata": {}, "source": [ "Next, create the DynamoDB Table where we will be storing messages:" ] }, { "cell_type": "code", "execution_count": 1, "id": "93ce1811", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0\n" ] } ], "source": [ "import boto3\n", "\n", "# Get the service resource.\n", "dynamodb = boto3.resource('dynamodb')\n", "\n", "# Create the DynamoDB table.\n", "table = dynamodb.create_table(\n", " TableName='SessionTable',\n", " KeySchema=[\n", " {\n", " 'AttributeName': 'SessionId',\n", " 'KeyType': 'HASH'\n", " }\n", " ],\n", " AttributeDefinitions=[\n", " {\n", " 'AttributeName': 'SessionId',\n", " 'AttributeType': 'S'\n", " }\n", " ],\n", " BillingMode='PAY_PER_REQUEST',\n", ")\n", "\n", "# Wait until the table exists.\n", "table.meta.client.get_waiter('table_exists').wait(TableName='SessionTable')\n", "\n", "# Print out some data about the table.\n", "print(table.item_count)" ] }, { "cell_type": "markdown", "id": "1a9b310b", "metadata": {}, "source": [ "## DynamoDBChatMessageHistory" ] }, { "cell_type": "code", "execution_count": 2, "id": "d15e3302", "metadata": {}, "outputs": [], "source": [ "from langchain.memory.chat_message_histories import DynamoDBChatMessageHistory\n", "\n", "history = DynamoDBChatMessageHistory(table_name=\"SessionTable\", session_id=\"0\")\n", "\n", "history.add_user_message(\"hi!\")\n", "\n", "history.add_ai_message(\"whats up?\")" ] }, { "cell_type": "code", "execution_count": 3, "id": "64fc465e", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[HumanMessage(content='hi!', additional_kwargs={}, example=False),\n", " AIMessage(content='whats up?', additional_kwargs={}, example=False)]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "history.messages" ] }, { "cell_type": "markdown", "id": "3b33c988", "metadata": {}, "source": [ "## Agent with DynamoDB Memory" ] }, { "cell_type": "code", "execution_count": 4, "id": "f92d9499", "metadata": {}, "outputs": [], "source": [ "from langchain.agents import Tool\n", "from langchain.memory import ConversationBufferMemory\n", "from langchain.chat_models import ChatOpenAI\n", "from langchain.agents import initialize_agent\n", "from langchain.agents import AgentType\n", "from langchain.utilities import PythonREPL\n", "from getpass import getpass\n", "\n", "message_history = DynamoDBChatMessageHistory(table_name=\"SessionTable\", session_id=\"1\")\n", "memory = ConversationBufferMemory(memory_key=\"chat_history\", chat_memory=message_history, return_messages=True)" ] }, { "cell_type": "code", "execution_count": 5, "id": "1167eeba", "metadata": {}, "outputs": [], "source": [ "python_repl = PythonREPL()\n", "\n", "# You can create the tool to pass to an agent\n", "tools = [Tool(\n", " name=\"python_repl\",\n", " description=\"A Python shell. Use this to execute python commands. Input should be a valid python command. If you want to see the output of a value, you should print it out with `print(...)`.\",\n", " func=python_repl.run\n", ")]" ] }, { "cell_type": "code", "execution_count": 6, "id": "fce085c5", "metadata": {}, "outputs": [], "source": [ "llm=ChatOpenAI(temperature=0)\n", "agent_chain = initialize_agent(tools, llm, agent=AgentType.CHAT_CONVERSATIONAL_REACT_DESCRIPTION, verbose=True, memory=memory)" ] }, { "cell_type": "code", "execution_count": 7, "id": "952a3103", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\n", "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n", "\u001b[32;1m\u001b[1;3m{\n", " \"action\": \"Final Answer\",\n", " \"action_input\": \"Hello! How can I assist you today?\"\n", "}\u001b[0m\n", "\n", "\u001b[1m> Finished chain.\u001b[0m\n" ] }, { "data": { "text/plain": [ "'Hello! How can I assist you today?'" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "agent_chain.run(input=\"Hello!\")" ] }, { "cell_type": "code", "execution_count": 8, "id": "54c4aaf4", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\n", "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n", "\u001b[32;1m\u001b[1;3m{\n", " \"action\": \"python_repl\",\n", " \"action_input\": \"import requests\\nfrom bs4 import BeautifulSoup\\n\\nurl = 'https://en.wikipedia.org/wiki/Twitter'\\nresponse = requests.get(url)\\nsoup = BeautifulSoup(response.content, 'html.parser')\\nowner = soup.find('th', text='Owner').find_next_sibling('td').text.strip()\\nprint(owner)\"\n", "}\u001b[0m\n", "Observation: \u001b[36;1m\u001b[1;3mX Corp. (2023–present)Twitter, Inc. (2006–2023)\n", "\u001b[0m\n", "Thought:\u001b[32;1m\u001b[1;3m{\n", " \"action\": \"Final Answer\",\n", " \"action_input\": \"X Corp. (2023–present)Twitter, Inc. (2006–2023)\"\n", "}\u001b[0m\n", "\n", "\u001b[1m> Finished chain.\u001b[0m\n" ] }, { "data": { "text/plain": [ "'X Corp. (2023–present)Twitter, Inc. (2006–2023)'" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "agent_chain.run(input=\"Who owns Twitter?\")" ] }, { "cell_type": "code", "execution_count": 9, "id": "f9013118", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\n", "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n", "\u001b[32;1m\u001b[1;3m{\n", " \"action\": \"Final Answer\",\n", " \"action_input\": \"Hello Bob! How can I assist you today?\"\n", "}\u001b[0m\n", "\n", "\u001b[1m> Finished chain.\u001b[0m\n" ] }, { "data": { "text/plain": [ "'Hello Bob! How can I assist you today?'" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "agent_chain.run(input=\"My name is Bob.\")" ] }, { "cell_type": "code", "execution_count": 10, "id": "405e5315", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\n", "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n", "\u001b[32;1m\u001b[1;3m{\n", " \"action\": \"Final Answer\",\n", " \"action_input\": \"Your name is Bob.\"\n", "}\u001b[0m\n", "\n", "\u001b[1m> Finished chain.\u001b[0m\n" ] }, { "data": { "text/plain": [ "'Your name is Bob.'" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "agent_chain.run(input=\"Who am I?\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.3" } }, "nbformat": 4, "nbformat_minor": 5 }
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,835
Support for the AWS endpoint URL in the DynamoDBChatMessageHistory
### Feature request I propose having the possibility of specifying the endpoint URL to AWS in the DynamoDBChatMessageHistory, so that it is possible to target not only the AWS cloud services, but also a local installation. ### Motivation Specifying the endpoint URL, which is normally not done when addressing the cloud services, is very helpful when targeting a local instance (like [Localstack](https://localstack.cloud/)) when running local tests. ### Your contribution I am providing this PR for the implementation: https://github.com/hwchase17/langchain/pull/5836/files
https://github.com/langchain-ai/langchain/issues/5835
https://github.com/langchain-ai/langchain/pull/5836
0eb1bc1a0245547316fe96ac8f86b0e67acb524f
db7ef635c0e061fcbab2f608ccc60af15fc5585d
"2023-06-07T14:01:56Z"
python
"2023-06-09T06:21:11Z"
langchain/memory/chat_message_histories/dynamodb.py
import logging from typing import List from langchain.schema import ( BaseChatMessageHistory, BaseMessage, _message_to_dict, messages_from_dict, messages_to_dict, ) logger = logging.getLogger(__name__) class DynamoDBChatMessageHistory(BaseChatMessageHistory): """Chat message history that stores history in AWS DynamoDB. This class expects that a DynamoDB table with name `table_name` and a partition Key of `SessionId` is present. Args: table_name: name of the DynamoDB table session_id: arbitrary key that is used to store the messages of a single chat session. """ def __init__(self, table_name: str, session_id: str): import boto3 client = boto3.resource("dynamodb") self.table = client.Table(table_name) self.session_id = session_id @property def messages(self) -> List[BaseMessage]: # type: ignore """Retrieve the messages from DynamoDB""" from botocore.exceptions import ClientError try: response = self.table.get_item(Key={"SessionId": self.session_id}) except ClientError as error: if error.response["Error"]["Code"] == "ResourceNotFoundException": logger.warning("No record found with session id: %s", self.session_id) else: logger.error(error) if response and "Item" in response: items = response["Item"]["History"] else: items = [] messages = messages_from_dict(items) return messages def add_message(self, message: BaseMessage) -> None: """Append the message to the record in DynamoDB""" from botocore.exceptions import ClientError messages = messages_to_dict(self.messages) _message = _message_to_dict(message) messages.append(_message) try: self.table.put_item( Item={"SessionId": self.session_id, "History": messages} ) except ClientError as err: logger.error(err) def clear(self) -> None: """Clear session memory from DynamoDB""" from botocore.exceptions import ClientError try: self.table.delete_item(Key={"SessionId": self.session_id}) except ClientError as err: logger.error(err)
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,027
ArxivAPIWrapper
The documentation says: > It limits the Document content by doc_content_chars_max. > Set doc_content_chars_max=None if you don't want to limit the content size. But the claim type of int prevents this to be set as None: https://github.com/hwchase17/langchain/blob/289e9aeb9d122d689d68b2e77236ce3dfcd606a7/langchain/utilities/arxiv.py#LL41C5-L41C38 > ValidationError: 1 validation error for ArxivAPIWrapper > doc_content_chars_max > none is not an allowed value (type=type_error.none.not_allowed) Can you change that? In addition, can you also expose this parameter to the `ArxivLoader`? Thank you!
https://github.com/langchain-ai/langchain/issues/6027
https://github.com/langchain-ai/langchain/pull/6063
a9b97aa6f4f0039804014192345f93612fef93be
b01cf0dd54bf078e348471a038842b82db370d66
"2023-06-12T05:30:46Z"
python
"2023-06-16T05:16:42Z"
langchain/utilities/arxiv.py
"""Util that calls Arxiv.""" import logging import os from typing import Any, Dict, List from pydantic import BaseModel, Extra, root_validator from langchain.schema import Document logger = logging.getLogger(__name__) class ArxivAPIWrapper(BaseModel): """Wrapper around ArxivAPI. To use, you should have the ``arxiv`` python package installed. https://lukasschwab.me/arxiv.py/index.html This wrapper will use the Arxiv API to conduct searches and fetch document summaries. By default, it will return the document summaries of the top-k results. It limits the Document content by doc_content_chars_max. Set doc_content_chars_max=None if you don't want to limit the content size. Parameters: top_k_results: number of the top-scored document used for the arxiv tool ARXIV_MAX_QUERY_LENGTH: the cut limit on the query used for the arxiv tool. load_max_docs: a limit to the number of loaded documents load_all_available_meta: if True: the `metadata` of the loaded Documents gets all available meta info (see https://lukasschwab.me/arxiv.py/index.html#Result), if False: the `metadata` gets only the most informative fields. """ arxiv_search: Any #: :meta private: arxiv_exceptions: Any # :meta private: top_k_results: int = 3 ARXIV_MAX_QUERY_LENGTH = 300 load_max_docs: int = 100 load_all_available_meta: bool = False doc_content_chars_max: int = 4000 class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that the python package exists in environment.""" try: import arxiv values["arxiv_search"] = arxiv.Search values["arxiv_exceptions"] = ( arxiv.ArxivError, arxiv.UnexpectedEmptyPageError, arxiv.HTTPError, ) values["arxiv_result"] = arxiv.Result except ImportError: raise ImportError( "Could not import arxiv python package. " "Please install it with `pip install arxiv`." ) return values def run(self, query: str) -> str: """ Run Arxiv search and get the article meta information. See https://lukasschwab.me/arxiv.py/index.html#Search See https://lukasschwab.me/arxiv.py/index.html#Result It uses only the most informative fields of article meta information. """ try: results = self.arxiv_search( # type: ignore query[: self.ARXIV_MAX_QUERY_LENGTH], max_results=self.top_k_results ).results() except self.arxiv_exceptions as ex: return f"Arxiv exception: {ex}" docs = [ f"Published: {result.updated.date()}\nTitle: {result.title}\n" f"Authors: {', '.join(a.name for a in result.authors)}\n" f"Summary: {result.summary}" for result in results ] if docs: return "\n\n".join(docs)[: self.doc_content_chars_max] else: return "No good Arxiv Result was found" def load(self, query: str) -> List[Document]: """ Run Arxiv search and get the article texts plus the article meta information. See https://lukasschwab.me/arxiv.py/index.html#Search Returns: a list of documents with the document.page_content in text format """ try: import fitz except ImportError: raise ImportError( "PyMuPDF package not found, please install it with " "`pip install pymupdf`" ) try: results = self.arxiv_search( # type: ignore query[: self.ARXIV_MAX_QUERY_LENGTH], max_results=self.load_max_docs ).results() except self.arxiv_exceptions as ex: logger.debug("Error on arxiv: %s", ex) return [] docs: List[Document] = [] for result in results: try: doc_file_name: str = result.download_pdf() with fitz.open(doc_file_name) as doc_file: text: str = "".join(page.get_text() for page in doc_file) except FileNotFoundError as f_ex: logger.debug(f_ex) continue if self.load_all_available_meta: extra_metadata = { "entry_id": result.entry_id, "published_first_time": str(result.published.date()), "comment": result.comment, "journal_ref": result.journal_ref, "doi": result.doi, "primary_category": result.primary_category, "categories": result.categories, "links": [link.href for link in result.links], } else: extra_metadata = {} metadata = { "Published": str(result.updated.date()), "Title": result.title, "Authors": ", ".join(a.name for a in result.authors), "Summary": result.summary, **extra_metadata, } doc = Document( page_content=text[: self.doc_content_chars_max], metadata=metadata ) docs.append(doc) os.remove(doc_file_name) return docs
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,027
ArxivAPIWrapper
The documentation says: > It limits the Document content by doc_content_chars_max. > Set doc_content_chars_max=None if you don't want to limit the content size. But the claim type of int prevents this to be set as None: https://github.com/hwchase17/langchain/blob/289e9aeb9d122d689d68b2e77236ce3dfcd606a7/langchain/utilities/arxiv.py#LL41C5-L41C38 > ValidationError: 1 validation error for ArxivAPIWrapper > doc_content_chars_max > none is not an allowed value (type=type_error.none.not_allowed) Can you change that? In addition, can you also expose this parameter to the `ArxivLoader`? Thank you!
https://github.com/langchain-ai/langchain/issues/6027
https://github.com/langchain-ai/langchain/pull/6063
a9b97aa6f4f0039804014192345f93612fef93be
b01cf0dd54bf078e348471a038842b82db370d66
"2023-06-12T05:30:46Z"
python
"2023-06-16T05:16:42Z"
tests/integration_tests/utilities/test_arxiv.py
"""Integration test for Arxiv API Wrapper.""" from typing import Any, List import pytest from langchain.agents.load_tools import load_tools from langchain.schema import Document from langchain.tools.base import BaseTool from langchain.utilities import ArxivAPIWrapper @pytest.fixture def api_client() -> ArxivAPIWrapper: return ArxivAPIWrapper() def test_run_success(api_client: ArxivAPIWrapper) -> None: """Test that returns the correct answer""" output = api_client.run("1605.08386") assert "Heat-bath random walks with Markov bases" in output def test_run_returns_several_docs(api_client: ArxivAPIWrapper) -> None: """Test that returns several docs""" output = api_client.run("Caprice Stanley") assert "On Mixing Behavior of a Family of Random Walks" in output def test_run_returns_no_result(api_client: ArxivAPIWrapper) -> None: """Test that gives no result.""" output = api_client.run("1605.08386WWW") assert "No good Arxiv Result was found" == output def assert_docs(docs: List[Document]) -> None: for doc in docs: assert doc.page_content assert doc.metadata assert set(doc.metadata) == {"Published", "Title", "Authors", "Summary"} def test_load_success(api_client: ArxivAPIWrapper) -> None: """Test that returns one document""" docs = api_client.load("1605.08386") assert len(docs) == 1 assert_docs(docs) def test_load_returns_no_result(api_client: ArxivAPIWrapper) -> None: """Test that returns no docs""" docs = api_client.load("1605.08386WWW") assert len(docs) == 0 def test_load_returns_limited_docs() -> None: """Test that returns several docs""" expected_docs = 2 api_client = ArxivAPIWrapper(load_max_docs=expected_docs) docs = api_client.load("ChatGPT") assert len(docs) == expected_docs assert_docs(docs) def test_load_returns_full_set_of_metadata() -> None: """Test that returns several docs""" api_client = ArxivAPIWrapper(load_max_docs=1, load_all_available_meta=True) docs = api_client.load("ChatGPT") assert len(docs) == 1 for doc in docs: assert doc.page_content assert doc.metadata assert set(doc.metadata).issuperset( {"Published", "Title", "Authors", "Summary"} ) print(doc.metadata) assert len(set(doc.metadata)) > 4 def _load_arxiv_from_universal_entry(**kwargs: Any) -> BaseTool: tools = load_tools(["arxiv"], **kwargs) assert len(tools) == 1, "loaded more than 1 tool" return tools[0] def test_load_arxiv_from_universal_entry() -> None: arxiv_tool = _load_arxiv_from_universal_entry() output = arxiv_tool("Caprice Stanley") assert ( "On Mixing Behavior of a Family of Random Walks" in output ), "failed to fetch a valid result" def test_load_arxiv_from_universal_entry_with_params() -> None: params = { "top_k_results": 1, "load_max_docs": 10, "load_all_available_meta": True, } arxiv_tool = _load_arxiv_from_universal_entry(**params) assert isinstance(arxiv_tool, ArxivAPIWrapper) wp = arxiv_tool.api_wrapper assert wp.top_k_results == 1, "failed to assert top_k_results" assert wp.load_max_docs == 10, "failed to assert load_max_docs" assert ( wp.load_all_available_meta is True ), "failed to assert load_all_available_meta"
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,282
LLMRequestsChain not enforcing headers when making http requests
### System Info LangChain version 0.0.201 ### Who can help? @hwchase17 @agola ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Based on the documentation example, run the following script: ```python from langchain.llms import OpenAI from langchain.chains import LLMRequestsChain, LLMChain from langchain.prompts import PromptTemplate template = """Here is a company website content : ---- {requests_result} ---- We want to learn more about a company's activity and the kind of clients they target. Perform an analysis and write a short summary. """ PROMPT = PromptTemplate( input_variables=["requests_result"], template=template, ) chain = LLMRequestsChain(llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=PROMPT)) print(chain.requests_wrapper) ``` Gives ```bash python3 bug-langchain-requests.py headers=None aiosession=None ``` ### Expected behavior Provided headers should be enforced ```bash python3 bug-langchain-requests.py headers={'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36'} aiosession=None ```
https://github.com/langchain-ai/langchain/issues/6282
https://github.com/langchain-ai/langchain/pull/6283
23cdebddc446d14b22003819fbe66884b600c998
9ca11c06b73f225ff431500e174bf21fa8eb9a33
"2023-06-16T12:44:22Z"
python
"2023-06-16T23:21:01Z"
langchain/chains/llm_requests.py
"""Chain that hits a URL and then uses an LLM to parse results.""" from __future__ import annotations from typing import Any, Dict, List, Optional from pydantic import Extra, Field, root_validator from langchain.callbacks.manager import CallbackManagerForChainRun from langchain.chains import LLMChain from langchain.chains.base import Chain from langchain.requests import TextRequestsWrapper DEFAULT_HEADERS = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36" # noqa: E501 } class LLMRequestsChain(Chain): """Chain that hits a URL and then uses an LLM to parse results.""" llm_chain: LLMChain requests_wrapper: TextRequestsWrapper = Field( default_factory=TextRequestsWrapper, exclude=True ) text_length: int = 8000 requests_key: str = "requests_result" #: :meta private: input_key: str = "url" #: :meta private: output_key: str = "output" #: :meta private: class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @property def input_keys(self) -> List[str]: """Will be whatever keys the prompt expects. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Will always return text key. :meta private: """ return [self.output_key] @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" try: from bs4 import BeautifulSoup # noqa: F401 except ImportError: raise ValueError( "Could not import bs4 python package. " "Please install it with `pip install bs4`." ) return values def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: from bs4 import BeautifulSoup _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() # Other keys are assumed to be needed for LLM prediction other_keys = {k: v for k, v in inputs.items() if k != self.input_key} url = inputs[self.input_key] res = self.requests_wrapper.get(url) # extract the text from the html soup = BeautifulSoup(res, "html.parser") other_keys[self.requests_key] = soup.get_text()[: self.text_length] result = self.llm_chain.predict( callbacks=_run_manager.get_child(), **other_keys ) return {self.output_key: result} @property def _chain_type(self) -> str: return "llm_requests_chain"
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,039
Make modelname_to_contextsize as a staticmethod to use it without create an object
### Feature request Make [modelname_to_contextsize](https://github.com/hwchase17/langchain/blob/289e9aeb9d122d689d68b2e77236ce3dfcd606a7/langchain/llms/openai.py#L503) as staticmethod to use it without create an object. ### Motivation While using ChatOpenAI or AzureChatOpenAI, to use modelname_to_contextsize we need to create OpenAI or AzureOpenAI object whether we don't use it. For example, llama-index using [modelname_to_contextsize](https://github.com/jerryjliu/llama_index/blob/f614448a045788c9c5c9a774f407a992ae1f7743/llama_index/llm_predictor/base.py#L42) to get context size, but it raise an error if we using AzureOpenAI without setting OPENAI_API_TOKEN. ### Your contribution #6040
https://github.com/langchain-ai/langchain/issues/6039
https://github.com/langchain-ai/langchain/pull/6040
427551eabf32e0c9fa4428dcfad5fed86f99bbdf
cdd1d78bf2a383972af15921611a06e7efe53f93
"2023-06-12T10:23:07Z"
python
"2023-06-17T16:13:08Z"
langchain/llms/openai.py
"""Wrapper around OpenAI APIs.""" from __future__ import annotations import logging import sys import warnings from typing import ( AbstractSet, Any, Callable, Collection, Dict, Generator, List, Literal, Mapping, Optional, Set, Tuple, Union, ) from pydantic import Extra, Field, root_validator from tenacity import ( before_sleep_log, retry, retry_if_exception_type, stop_after_attempt, wait_exponential, ) from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.llms.base import BaseLLM from langchain.schema import Generation, LLMResult from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) def update_token_usage( keys: Set[str], response: Dict[str, Any], token_usage: Dict[str, Any] ) -> None: """Update token usage.""" _keys_to_use = keys.intersection(response["usage"]) for _key in _keys_to_use: if _key not in token_usage: token_usage[_key] = response["usage"][_key] else: token_usage[_key] += response["usage"][_key] def _update_response(response: Dict[str, Any], stream_response: Dict[str, Any]) -> None: """Update response from the stream response.""" response["choices"][0]["text"] += stream_response["choices"][0]["text"] response["choices"][0]["finish_reason"] = stream_response["choices"][0][ "finish_reason" ] response["choices"][0]["logprobs"] = stream_response["choices"][0]["logprobs"] def _streaming_response_template() -> Dict[str, Any]: return { "choices": [ { "text": "", "finish_reason": None, "logprobs": None, } ] } def _create_retry_decorator(llm: Union[BaseOpenAI, OpenAIChat]) -> Callable[[Any], Any]: import openai min_seconds = 4 max_seconds = 10 # Wait 2^x * 1 second between each retry starting with # 4 seconds, then up to 10 seconds, then 10 seconds afterwards return retry( reraise=True, stop=stop_after_attempt(llm.max_retries), wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds), retry=( retry_if_exception_type(openai.error.Timeout) | retry_if_exception_type(openai.error.APIError) | retry_if_exception_type(openai.error.APIConnectionError) | retry_if_exception_type(openai.error.RateLimitError) | retry_if_exception_type(openai.error.ServiceUnavailableError) ), before_sleep=before_sleep_log(logger, logging.WARNING), ) def completion_with_retry(llm: Union[BaseOpenAI, OpenAIChat], **kwargs: Any) -> Any: """Use tenacity to retry the completion call.""" retry_decorator = _create_retry_decorator(llm) @retry_decorator def _completion_with_retry(**kwargs: Any) -> Any: return llm.client.create(**kwargs) return _completion_with_retry(**kwargs) async def acompletion_with_retry( llm: Union[BaseOpenAI, OpenAIChat], **kwargs: Any ) -> Any: """Use tenacity to retry the async completion call.""" retry_decorator = _create_retry_decorator(llm) @retry_decorator async def _completion_with_retry(**kwargs: Any) -> Any: # Use OpenAI's async api https://github.com/openai/openai-python#async-api return await llm.client.acreate(**kwargs) return await _completion_with_retry(**kwargs) class BaseOpenAI(BaseLLM): """Wrapper around OpenAI large language models.""" @property def lc_secrets(self) -> Dict[str, str]: return {"openai_api_key": "OPENAI_API_KEY"} @property def lc_serializable(self) -> bool: return True client: Any #: :meta private: model_name: str = Field("text-davinci-003", alias="model") """Model name to use.""" temperature: float = 0.7 """What sampling temperature to use.""" max_tokens: int = 256 """The maximum number of tokens to generate in the completion. -1 returns as many tokens as possible given the prompt and the models maximal context size.""" top_p: float = 1 """Total probability mass of tokens to consider at each step.""" frequency_penalty: float = 0 """Penalizes repeated tokens according to frequency.""" presence_penalty: float = 0 """Penalizes repeated tokens.""" n: int = 1 """How many completions to generate for each prompt.""" best_of: int = 1 """Generates best_of completions server-side and returns the "best".""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" openai_api_key: Optional[str] = None openai_api_base: Optional[str] = None openai_organization: Optional[str] = None # to support explicit proxy for OpenAI openai_proxy: Optional[str] = None batch_size: int = 20 """Batch size to use when passing multiple documents to generate.""" request_timeout: Optional[Union[float, Tuple[float, float]]] = None """Timeout for requests to OpenAI completion API. Default is 600 seconds.""" logit_bias: Optional[Dict[str, float]] = Field(default_factory=dict) """Adjust the probability of specific tokens being generated.""" max_retries: int = 6 """Maximum number of retries to make when generating.""" streaming: bool = False """Whether to stream the results or not.""" allowed_special: Union[Literal["all"], AbstractSet[str]] = set() """Set of special tokens that are allowed。""" disallowed_special: Union[Literal["all"], Collection[str]] = "all" """Set of special tokens that are not allowed。""" def __new__(cls, **data: Any) -> Union[OpenAIChat, BaseOpenAI]: # type: ignore """Initialize the OpenAI object.""" model_name = data.get("model_name", "") if model_name.startswith("gpt-3.5-turbo") or model_name.startswith("gpt-4"): warnings.warn( "You are trying to use a chat model. This way of initializing it is " "no longer supported. Instead, please use: " "`from langchain.chat_models import ChatOpenAI`" ) return OpenAIChat(**data) return super().__new__(cls) class Config: """Configuration for this pydantic object.""" extra = Extra.ignore allow_population_by_field_name = True @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = cls.all_required_field_names() extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") if field_name not in all_required_field_names: logger.warning( f"""WARNING! {field_name} is not default parameter. {field_name} was transferred to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) invalid_model_kwargs = all_required_field_names.intersection(extra.keys()) if invalid_model_kwargs: raise ValueError( f"Parameters {invalid_model_kwargs} should be specified explicitly. " f"Instead they were passed in as part of `model_kwargs` parameter." ) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" values["openai_api_key"] = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY" ) values["openai_api_base"] = get_from_dict_or_env( values, "openai_api_base", "OPENAI_API_BASE", default="", ) values["openai_proxy"] = get_from_dict_or_env( values, "openai_proxy", "OPENAI_PROXY", default="", ) values["openai_organization"] = get_from_dict_or_env( values, "openai_organization", "OPENAI_ORGANIZATION", default="", ) try: import openai values["client"] = openai.Completion except ImportError: raise ImportError( "Could not import openai python package. " "Please install it with `pip install openai`." ) if values["streaming"] and values["n"] > 1: raise ValueError("Cannot stream results when n > 1.") if values["streaming"] and values["best_of"] > 1: raise ValueError("Cannot stream results when best_of > 1.") return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling OpenAI API.""" normal_params = { "temperature": self.temperature, "max_tokens": self.max_tokens, "top_p": self.top_p, "frequency_penalty": self.frequency_penalty, "presence_penalty": self.presence_penalty, "n": self.n, "request_timeout": self.request_timeout, "logit_bias": self.logit_bias, } # Azure gpt-35-turbo doesn't support best_of # don't specify best_of if it is 1 if self.best_of > 1: normal_params["best_of"] = self.best_of return {**normal_params, **self.model_kwargs} def _generate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: """Call out to OpenAI's endpoint with k unique prompts. Args: prompts: The prompts to pass into the model. stop: Optional list of stop words to use when generating. Returns: The full LLM output. Example: .. code-block:: python response = openai.generate(["Tell me a joke."]) """ # TODO: write a unit test for this params = self._invocation_params params = {**params, **kwargs} sub_prompts = self.get_sub_prompts(params, prompts, stop) choices = [] token_usage: Dict[str, int] = {} # Get the token usage from the response. # Includes prompt, completion, and total tokens used. _keys = {"completion_tokens", "prompt_tokens", "total_tokens"} for _prompts in sub_prompts: if self.streaming: if len(_prompts) > 1: raise ValueError("Cannot stream results with multiple prompts.") params["stream"] = True response = _streaming_response_template() for stream_resp in completion_with_retry( self, prompt=_prompts, **params ): if run_manager: run_manager.on_llm_new_token( stream_resp["choices"][0]["text"], verbose=self.verbose, logprobs=stream_resp["choices"][0]["logprobs"], ) _update_response(response, stream_resp) choices.extend(response["choices"]) else: response = completion_with_retry(self, prompt=_prompts, **params) choices.extend(response["choices"]) if not self.streaming: # Can't update token usage if streaming update_token_usage(_keys, response, token_usage) return self.create_llm_result(choices, prompts, token_usage) async def _agenerate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: """Call out to OpenAI's endpoint async with k unique prompts.""" params = self._invocation_params params = {**params, **kwargs} sub_prompts = self.get_sub_prompts(params, prompts, stop) choices = [] token_usage: Dict[str, int] = {} # Get the token usage from the response. # Includes prompt, completion, and total tokens used. _keys = {"completion_tokens", "prompt_tokens", "total_tokens"} for _prompts in sub_prompts: if self.streaming: if len(_prompts) > 1: raise ValueError("Cannot stream results with multiple prompts.") params["stream"] = True response = _streaming_response_template() async for stream_resp in await acompletion_with_retry( self, prompt=_prompts, **params ): if run_manager: await run_manager.on_llm_new_token( stream_resp["choices"][0]["text"], verbose=self.verbose, logprobs=stream_resp["choices"][0]["logprobs"], ) _update_response(response, stream_resp) choices.extend(response["choices"]) else: response = await acompletion_with_retry(self, prompt=_prompts, **params) choices.extend(response["choices"]) if not self.streaming: # Can't update token usage if streaming update_token_usage(_keys, response, token_usage) return self.create_llm_result(choices, prompts, token_usage) def get_sub_prompts( self, params: Dict[str, Any], prompts: List[str], stop: Optional[List[str]] = None, ) -> List[List[str]]: """Get the sub prompts for llm call.""" if stop is not None: if "stop" in params: raise ValueError("`stop` found in both the input and default params.") params["stop"] = stop if params["max_tokens"] == -1: if len(prompts) != 1: raise ValueError( "max_tokens set to -1 not supported for multiple inputs." ) params["max_tokens"] = self.max_tokens_for_prompt(prompts[0]) sub_prompts = [ prompts[i : i + self.batch_size] for i in range(0, len(prompts), self.batch_size) ] return sub_prompts def create_llm_result( self, choices: Any, prompts: List[str], token_usage: Dict[str, int] ) -> LLMResult: """Create the LLMResult from the choices and prompts.""" generations = [] for i, _ in enumerate(prompts): sub_choices = choices[i * self.n : (i + 1) * self.n] generations.append( [ Generation( text=choice["text"], generation_info=dict( finish_reason=choice.get("finish_reason"), logprobs=choice.get("logprobs"), ), ) for choice in sub_choices ] ) llm_output = {"token_usage": token_usage, "model_name": self.model_name} return LLMResult(generations=generations, llm_output=llm_output) def stream(self, prompt: str, stop: Optional[List[str]] = None) -> Generator: """Call OpenAI with streaming flag and return the resulting generator. BETA: this is a beta feature while we figure out the right abstraction. Once that happens, this interface could change. Args: prompt: The prompts to pass into the model. stop: Optional list of stop words to use when generating. Returns: A generator representing the stream of tokens from OpenAI. Example: .. code-block:: python generator = openai.stream("Tell me a joke.") for token in generator: yield token """ params = self.prep_streaming_params(stop) generator = self.client.create(prompt=prompt, **params) return generator def prep_streaming_params(self, stop: Optional[List[str]] = None) -> Dict[str, Any]: """Prepare the params for streaming.""" params = self._invocation_params if "best_of" in params and params["best_of"] != 1: raise ValueError("OpenAI only supports best_of == 1 for streaming") if stop is not None: if "stop" in params: raise ValueError("`stop` found in both the input and default params.") params["stop"] = stop params["stream"] = True return params @property def _invocation_params(self) -> Dict[str, Any]: """Get the parameters used to invoke the model.""" openai_creds: Dict[str, Any] = { "api_key": self.openai_api_key, "api_base": self.openai_api_base, "organization": self.openai_organization, } if self.openai_proxy: import openai openai.proxy = {"http": self.openai_proxy, "https": self.openai_proxy} # type: ignore[assignment] # noqa: E501 return {**openai_creds, **self._default_params} @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {**{"model_name": self.model_name}, **self._default_params} @property def _llm_type(self) -> str: """Return type of llm.""" return "openai" def get_token_ids(self, text: str) -> List[int]: """Get the token IDs using the tiktoken package.""" # tiktoken NOT supported for Python < 3.8 if sys.version_info[1] < 8: return super().get_num_tokens(text) try: import tiktoken except ImportError: raise ImportError( "Could not import tiktoken python package. " "This is needed in order to calculate get_num_tokens. " "Please install it with `pip install tiktoken`." ) enc = tiktoken.encoding_for_model(self.model_name) return enc.encode( text, allowed_special=self.allowed_special, disallowed_special=self.disallowed_special, ) def modelname_to_contextsize(self, modelname: str) -> int: """Calculate the maximum number of tokens possible to generate for a model. Args: modelname: The modelname we want to know the context size for. Returns: The maximum context size Example: .. code-block:: python max_tokens = openai.modelname_to_contextsize("text-davinci-003") """ model_token_mapping = { "gpt-4": 8192, "gpt-4-0314": 8192, "gpt-4-32k": 32768, "gpt-4-32k-0314": 32768, "gpt-3.5-turbo": 4096, "gpt-3.5-turbo-0301": 4096, "text-ada-001": 2049, "ada": 2049, "text-babbage-001": 2040, "babbage": 2049, "text-curie-001": 2049, "curie": 2049, "davinci": 2049, "text-davinci-003": 4097, "text-davinci-002": 4097, "code-davinci-002": 8001, "code-davinci-001": 8001, "code-cushman-002": 2048, "code-cushman-001": 2048, } # handling finetuned models if "ft-" in modelname: modelname = modelname.split(":")[0] context_size = model_token_mapping.get(modelname, None) if context_size is None: raise ValueError( f"Unknown model: {modelname}. Please provide a valid OpenAI model name." "Known models are: " + ", ".join(model_token_mapping.keys()) ) return context_size def max_tokens_for_prompt(self, prompt: str) -> int: """Calculate the maximum number of tokens possible to generate for a prompt. Args: prompt: The prompt to pass into the model. Returns: The maximum number of tokens to generate for a prompt. Example: .. code-block:: python max_tokens = openai.max_token_for_prompt("Tell me a joke.") """ num_tokens = self.get_num_tokens(prompt) # get max context size for model by name max_size = self.modelname_to_contextsize(self.model_name) return max_size - num_tokens class OpenAI(BaseOpenAI): """Wrapper around OpenAI large language models. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.llms import OpenAI openai = OpenAI(model_name="text-davinci-003") """ @property def _invocation_params(self) -> Dict[str, Any]: return {**{"model": self.model_name}, **super()._invocation_params} class AzureOpenAI(BaseOpenAI): """Wrapper around Azure-specific OpenAI large language models. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.llms import AzureOpenAI openai = AzureOpenAI(model_name="text-davinci-003") """ deployment_name: str = "" """Deployment name to use.""" openai_api_type: str = "azure" openai_api_version: str = "" @root_validator() def validate_azure_settings(cls, values: Dict) -> Dict: values["openai_api_version"] = get_from_dict_or_env( values, "openai_api_version", "OPENAI_API_VERSION", ) values["openai_api_type"] = get_from_dict_or_env( values, "openai_api_type", "OPENAI_API_TYPE", ) return values @property def _identifying_params(self) -> Mapping[str, Any]: return { **{"deployment_name": self.deployment_name}, **super()._identifying_params, } @property def _invocation_params(self) -> Dict[str, Any]: openai_params = { "engine": self.deployment_name, "api_type": self.openai_api_type, "api_version": self.openai_api_version, } return {**openai_params, **super()._invocation_params} @property def _llm_type(self) -> str: """Return type of llm.""" return "azure" class OpenAIChat(BaseLLM): """Wrapper around OpenAI Chat large language models. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.llms import OpenAIChat openaichat = OpenAIChat(model_name="gpt-3.5-turbo") """ client: Any #: :meta private: model_name: str = "gpt-3.5-turbo" """Model name to use.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" openai_api_key: Optional[str] = None openai_api_base: Optional[str] = None # to support explicit proxy for OpenAI openai_proxy: Optional[str] = None max_retries: int = 6 """Maximum number of retries to make when generating.""" prefix_messages: List = Field(default_factory=list) """Series of messages for Chat input.""" streaming: bool = False """Whether to stream the results or not.""" allowed_special: Union[Literal["all"], AbstractSet[str]] = set() """Set of special tokens that are allowed。""" disallowed_special: Union[Literal["all"], Collection[str]] = "all" """Set of special tokens that are not allowed。""" class Config: """Configuration for this pydantic object.""" extra = Extra.ignore @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in cls.__fields__.values()} extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name not in all_required_field_names: if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") extra[field_name] = values.pop(field_name) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" openai_api_key = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY" ) openai_api_base = get_from_dict_or_env( values, "openai_api_base", "OPENAI_API_BASE", default="", ) openai_proxy = get_from_dict_or_env( values, "openai_proxy", "OPENAI_PROXY", default="", ) openai_organization = get_from_dict_or_env( values, "openai_organization", "OPENAI_ORGANIZATION", default="" ) try: import openai openai.api_key = openai_api_key if openai_api_base: openai.api_base = openai_api_base if openai_organization: openai.organization = openai_organization if openai_proxy: openai.proxy = {"http": openai_proxy, "https": openai_proxy} # type: ignore[assignment] # noqa: E501 except ImportError: raise ImportError( "Could not import openai python package. " "Please install it with `pip install openai`." ) try: values["client"] = openai.ChatCompletion except AttributeError: raise ValueError( "`openai` has no `ChatCompletion` attribute, this is likely " "due to an old version of the openai package. Try upgrading it " "with `pip install --upgrade openai`." ) warnings.warn( "You are trying to use a chat model. This way of initializing it is " "no longer supported. Instead, please use: " "`from langchain.chat_models import ChatOpenAI`" ) return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling OpenAI API.""" return self.model_kwargs def _get_chat_params( self, prompts: List[str], stop: Optional[List[str]] = None ) -> Tuple: if len(prompts) > 1: raise ValueError( f"OpenAIChat currently only supports single prompt, got {prompts}" ) messages = self.prefix_messages + [{"role": "user", "content": prompts[0]}] params: Dict[str, Any] = {**{"model": self.model_name}, **self._default_params} if stop is not None: if "stop" in params: raise ValueError("`stop` found in both the input and default params.") params["stop"] = stop if params.get("max_tokens") == -1: # for ChatGPT api, omitting max_tokens is equivalent to having no limit del params["max_tokens"] return messages, params def _generate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: messages, params = self._get_chat_params(prompts, stop) params = {**params, **kwargs} if self.streaming: response = "" params["stream"] = True for stream_resp in completion_with_retry(self, messages=messages, **params): token = stream_resp["choices"][0]["delta"].get("content", "") response += token if run_manager: run_manager.on_llm_new_token( token, ) return LLMResult( generations=[[Generation(text=response)]], ) else: full_response = completion_with_retry(self, messages=messages, **params) llm_output = { "token_usage": full_response["usage"], "model_name": self.model_name, } return LLMResult( generations=[ [Generation(text=full_response["choices"][0]["message"]["content"])] ], llm_output=llm_output, ) async def _agenerate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: messages, params = self._get_chat_params(prompts, stop) params = {**params, **kwargs} if self.streaming: response = "" params["stream"] = True async for stream_resp in await acompletion_with_retry( self, messages=messages, **params ): token = stream_resp["choices"][0]["delta"].get("content", "") response += token if run_manager: await run_manager.on_llm_new_token( token, ) return LLMResult( generations=[[Generation(text=response)]], ) else: full_response = await acompletion_with_retry( self, messages=messages, **params ) llm_output = { "token_usage": full_response["usage"], "model_name": self.model_name, } return LLMResult( generations=[ [Generation(text=full_response["choices"][0]["message"]["content"])] ], llm_output=llm_output, ) @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {**{"model_name": self.model_name}, **self._default_params} @property def _llm_type(self) -> str: """Return type of llm.""" return "openai-chat" def get_token_ids(self, text: str) -> List[int]: """Get the token IDs using the tiktoken package.""" # tiktoken NOT supported for Python < 3.8 if sys.version_info[1] < 8: return super().get_token_ids(text) try: import tiktoken except ImportError: raise ImportError( "Could not import tiktoken python package. " "This is needed in order to calculate get_num_tokens. " "Please install it with `pip install tiktoken`." ) enc = tiktoken.encoding_for_model(self.model_name) return enc.encode( text, allowed_special=self.allowed_special, disallowed_special=self.disallowed_special, )
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
2,698
Permission Error with PDF loader
I was testing OnlinePDFLoader yesterday iirc and it was working fine. Today I tried experimenting and I keep getting this error `PermissionError: [Errno 13] Permission denied: 'C:\\Users\\REALGL~1\\AppData\\Local\\Temp\\tmp3chr08y0` it may be occurring because the `tempfile.NamedTemporaryFile()` in `pdf.py` is still open when the PDF partitioning function is trying to access it
https://github.com/langchain-ai/langchain/issues/2698
https://github.com/langchain-ai/langchain/pull/6170
4fc7939848a600064dc20b44e86c19e2cfa01491
5be465bd86f940cf831e3a4d2841d92ce8699ffb
"2023-04-11T06:17:16Z"
python
"2023-06-18T23:39:57Z"
langchain/document_loaders/pdf.py
"""Loader that loads PDF files.""" import json import logging import os import tempfile import time from abc import ABC from io import StringIO from pathlib import Path from typing import Any, Iterator, List, Mapping, Optional from urllib.parse import urlparse import requests from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader from langchain.document_loaders.blob_loaders import Blob from langchain.document_loaders.parsers.pdf import ( PDFMinerParser, PDFPlumberParser, PyMuPDFParser, PyPDFium2Parser, PyPDFParser, ) from langchain.document_loaders.unstructured import UnstructuredFileLoader from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__file__) class UnstructuredPDFLoader(UnstructuredFileLoader): """Loader that uses unstructured to load PDF files.""" def _get_elements(self) -> List: from unstructured.partition.pdf import partition_pdf return partition_pdf(filename=self.file_path, **self.unstructured_kwargs) class BasePDFLoader(BaseLoader, ABC): """Base loader class for PDF files. Defaults to check for local file, but if the file is a web path, it will download it to a temporary file, and use that, then clean up the temporary file after completion """ def __init__(self, file_path: str): """Initialize with file path.""" self.file_path = file_path self.web_path = None if "~" in self.file_path: self.file_path = os.path.expanduser(self.file_path) # If the file is a web path, download it to a temporary file, and use that if not os.path.isfile(self.file_path) and self._is_valid_url(self.file_path): r = requests.get(self.file_path) if r.status_code != 200: raise ValueError( "Check the url of your file; returned status code %s" % r.status_code ) self.web_path = self.file_path self.temp_file = tempfile.NamedTemporaryFile() self.temp_file.write(r.content) self.file_path = self.temp_file.name elif not os.path.isfile(self.file_path): raise ValueError("File path %s is not a valid file or url" % self.file_path) def __del__(self) -> None: if hasattr(self, "temp_file"): self.temp_file.close() @staticmethod def _is_valid_url(url: str) -> bool: """Check if the url is valid.""" parsed = urlparse(url) return bool(parsed.netloc) and bool(parsed.scheme) @property def source(self) -> str: return self.web_path if self.web_path is not None else self.file_path class OnlinePDFLoader(BasePDFLoader): """Loader that loads online PDFs.""" def load(self) -> List[Document]: """Load documents.""" loader = UnstructuredPDFLoader(str(self.file_path)) return loader.load() class PyPDFLoader(BasePDFLoader): """Loads a PDF with pypdf and chunks at character level. Loader also stores page numbers in metadatas. """ def __init__(self, file_path: str) -> None: """Initialize with file path.""" try: import pypdf # noqa:F401 except ImportError: raise ImportError( "pypdf package not found, please install it with " "`pip install pypdf`" ) self.parser = PyPDFParser() super().__init__(file_path) def load(self) -> List[Document]: """Load given path as pages.""" return list(self.lazy_load()) def lazy_load( self, ) -> Iterator[Document]: """Lazy load given path as pages.""" blob = Blob.from_path(self.file_path) yield from self.parser.parse(blob) class PyPDFium2Loader(BasePDFLoader): """Loads a PDF with pypdfium2 and chunks at character level.""" def __init__(self, file_path: str): """Initialize with file path.""" super().__init__(file_path) self.parser = PyPDFium2Parser() def load(self) -> List[Document]: """Load given path as pages.""" return list(self.lazy_load()) def lazy_load( self, ) -> Iterator[Document]: """Lazy load given path as pages.""" blob = Blob.from_path(self.file_path) yield from self.parser.parse(blob) class PyPDFDirectoryLoader(BaseLoader): """Loads a directory with PDF files with pypdf and chunks at character level. Loader also stores page numbers in metadatas. """ def __init__( self, path: str, glob: str = "**/[!.]*.pdf", silent_errors: bool = False, load_hidden: bool = False, recursive: bool = False, ): self.path = path self.glob = glob self.load_hidden = load_hidden self.recursive = recursive self.silent_errors = silent_errors @staticmethod def _is_visible(path: Path) -> bool: return not any(part.startswith(".") for part in path.parts) def load(self) -> List[Document]: p = Path(self.path) docs = [] items = p.rglob(self.glob) if self.recursive else p.glob(self.glob) for i in items: if i.is_file(): if self._is_visible(i.relative_to(p)) or self.load_hidden: try: loader = PyPDFLoader(str(i)) sub_docs = loader.load() for doc in sub_docs: doc.metadata["source"] = str(i) docs.extend(sub_docs) except Exception as e: if self.silent_errors: logger.warning(e) else: raise e return docs class PDFMinerLoader(BasePDFLoader): """Loader that uses PDFMiner to load PDF files.""" def __init__(self, file_path: str) -> None: """Initialize with file path.""" try: from pdfminer.high_level import extract_text # noqa:F401 except ImportError: raise ImportError( "`pdfminer` package not found, please install it with " "`pip install pdfminer.six`" ) super().__init__(file_path) self.parser = PDFMinerParser() def load(self) -> List[Document]: """Eagerly load the content.""" return list(self.lazy_load()) def lazy_load( self, ) -> Iterator[Document]: """Lazily lod documents.""" blob = Blob.from_path(self.file_path) yield from self.parser.parse(blob) class PDFMinerPDFasHTMLLoader(BasePDFLoader): """Loader that uses PDFMiner to load PDF files as HTML content.""" def __init__(self, file_path: str): """Initialize with file path.""" try: from pdfminer.high_level import extract_text_to_fp # noqa:F401 except ImportError: raise ImportError( "`pdfminer` package not found, please install it with " "`pip install pdfminer.six`" ) super().__init__(file_path) def load(self) -> List[Document]: """Load file.""" from pdfminer.high_level import extract_text_to_fp from pdfminer.layout import LAParams from pdfminer.utils import open_filename output_string = StringIO() with open_filename(self.file_path, "rb") as fp: extract_text_to_fp( fp, # type: ignore[arg-type] output_string, codec="", laparams=LAParams(), output_type="html", ) metadata = {"source": self.file_path} return [Document(page_content=output_string.getvalue(), metadata=metadata)] class PyMuPDFLoader(BasePDFLoader): """Loader that uses PyMuPDF to load PDF files.""" def __init__(self, file_path: str) -> None: """Initialize with file path.""" try: import fitz # noqa:F401 except ImportError: raise ImportError( "`PyMuPDF` package not found, please install it with " "`pip install pymupdf`" ) super().__init__(file_path) def load(self, **kwargs: Optional[Any]) -> List[Document]: """Load file.""" parser = PyMuPDFParser(text_kwargs=kwargs) blob = Blob.from_path(self.file_path) return parser.parse(blob) # MathpixPDFLoader implementation taken largely from Daniel Gross's: # https://gist.github.com/danielgross/3ab4104e14faccc12b49200843adab21 class MathpixPDFLoader(BasePDFLoader): def __init__( self, file_path: str, processed_file_format: str = "mmd", max_wait_time_seconds: int = 500, should_clean_pdf: bool = False, **kwargs: Any, ) -> None: super().__init__(file_path) self.mathpix_api_key = get_from_dict_or_env( kwargs, "mathpix_api_key", "MATHPIX_API_KEY" ) self.mathpix_api_id = get_from_dict_or_env( kwargs, "mathpix_api_id", "MATHPIX_API_ID" ) self.processed_file_format = processed_file_format self.max_wait_time_seconds = max_wait_time_seconds self.should_clean_pdf = should_clean_pdf @property def headers(self) -> dict: return {"app_id": self.mathpix_api_id, "app_key": self.mathpix_api_key} @property def url(self) -> str: return "https://api.mathpix.com/v3/pdf" @property def data(self) -> dict: options = {"conversion_formats": {self.processed_file_format: True}} return {"options_json": json.dumps(options)} def send_pdf(self) -> str: with open(self.file_path, "rb") as f: files = {"file": f} response = requests.post( self.url, headers=self.headers, files=files, data=self.data ) response_data = response.json() if "pdf_id" in response_data: pdf_id = response_data["pdf_id"] return pdf_id else: raise ValueError("Unable to send PDF to Mathpix.") def wait_for_processing(self, pdf_id: str) -> None: url = self.url + "/" + pdf_id for _ in range(0, self.max_wait_time_seconds, 5): response = requests.get(url, headers=self.headers) response_data = response.json() status = response_data.get("status", None) if status == "completed": return elif status == "error": raise ValueError("Unable to retrieve PDF from Mathpix") else: print(f"Status: {status}, waiting for processing to complete") time.sleep(5) raise TimeoutError def get_processed_pdf(self, pdf_id: str) -> str: self.wait_for_processing(pdf_id) url = f"{self.url}/{pdf_id}.{self.processed_file_format}" response = requests.get(url, headers=self.headers) return response.content.decode("utf-8") def clean_pdf(self, contents: str) -> str: contents = "\n".join( [line for line in contents.split("\n") if not line.startswith("![]")] ) # replace \section{Title} with # Title contents = contents.replace("\\section{", "# ").replace("}", "") # replace the "\" slash that Mathpix adds to escape $, %, (, etc. contents = ( contents.replace(r"\$", "$") .replace(r"\%", "%") .replace(r"\(", "(") .replace(r"\)", ")") ) return contents def load(self) -> List[Document]: pdf_id = self.send_pdf() contents = self.get_processed_pdf(pdf_id) if self.should_clean_pdf: contents = self.clean_pdf(contents) metadata = {"source": self.source, "file_path": self.source} return [Document(page_content=contents, metadata=metadata)] class PDFPlumberLoader(BasePDFLoader): """Loader that uses pdfplumber to load PDF files.""" def __init__( self, file_path: str, text_kwargs: Optional[Mapping[str, Any]] = None ) -> None: """Initialize with file path.""" try: import pdfplumber # noqa:F401 except ImportError: raise ImportError( "pdfplumber package not found, please install it with " "`pip install pdfplumber`" ) super().__init__(file_path) self.text_kwargs = text_kwargs or {} def load(self) -> List[Document]: """Load file.""" parser = PDFPlumberParser(text_kwargs=self.text_kwargs) blob = Blob.from_path(self.file_path) return parser.parse(blob)
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,225
OpenAI functions dont work with async streaming...
### System Info Version: 0.0.200 ### Who can help? @hwchase17 , @agola11 - I have a PR ready ... creating an issue so I can pair it ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ... openai.py async def _agenerate( ... has different implementation than def generate... when running the chain with `acall` >> 1. fails on inner_completion += token # token is null, raises error and after fix the function call was not captured... ### Expected behavior the same as `generate`
https://github.com/langchain-ai/langchain/issues/6225
https://github.com/langchain-ai/langchain/pull/6226
ea6a5b03e077526896071da80530bebb94eb390b
e2f36ee6082506049419875fa4a374f8fa2a88fe
"2023-06-15T13:22:11Z"
python
"2023-06-19T00:05:16Z"
langchain/chat_models/openai.py
"""OpenAI chat wrapper.""" from __future__ import annotations import logging import sys from typing import ( TYPE_CHECKING, Any, Callable, Dict, List, Mapping, Optional, Tuple, Union, ) from pydantic import Field, root_validator from tenacity import ( before_sleep_log, retry, retry_if_exception_type, stop_after_attempt, wait_exponential, ) from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.chat_models.base import BaseChatModel from langchain.schema import ( AIMessage, BaseMessage, ChatGeneration, ChatMessage, ChatResult, FunctionMessage, HumanMessage, SystemMessage, ) from langchain.utils import get_from_dict_or_env if TYPE_CHECKING: import tiktoken logger = logging.getLogger(__name__) def _import_tiktoken() -> Any: try: import tiktoken except ImportError: raise ValueError( "Could not import tiktoken python package. " "This is needed in order to calculate get_token_ids. " "Please install it with `pip install tiktoken`." ) return tiktoken def _create_retry_decorator(llm: ChatOpenAI) -> Callable[[Any], Any]: import openai min_seconds = 1 max_seconds = 60 # Wait 2^x * 1 second between each retry starting with # 4 seconds, then up to 10 seconds, then 10 seconds afterwards return retry( reraise=True, stop=stop_after_attempt(llm.max_retries), wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds), retry=( retry_if_exception_type(openai.error.Timeout) | retry_if_exception_type(openai.error.APIError) | retry_if_exception_type(openai.error.APIConnectionError) | retry_if_exception_type(openai.error.RateLimitError) | retry_if_exception_type(openai.error.ServiceUnavailableError) ), before_sleep=before_sleep_log(logger, logging.WARNING), ) async def acompletion_with_retry(llm: ChatOpenAI, **kwargs: Any) -> Any: """Use tenacity to retry the async completion call.""" retry_decorator = _create_retry_decorator(llm) @retry_decorator async def _completion_with_retry(**kwargs: Any) -> Any: # Use OpenAI's async api https://github.com/openai/openai-python#async-api return await llm.client.acreate(**kwargs) return await _completion_with_retry(**kwargs) def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage: role = _dict["role"] if role == "user": return HumanMessage(content=_dict["content"]) elif role == "assistant": content = _dict["content"] or "" # OpenAI returns None for tool invocations if _dict.get("function_call"): additional_kwargs = {"function_call": dict(_dict["function_call"])} else: additional_kwargs = {} return AIMessage(content=content, additional_kwargs=additional_kwargs) elif role == "system": return SystemMessage(content=_dict["content"]) else: return ChatMessage(content=_dict["content"], role=role) def _convert_message_to_dict(message: BaseMessage) -> dict: if isinstance(message, ChatMessage): message_dict = {"role": message.role, "content": message.content} elif isinstance(message, HumanMessage): message_dict = {"role": "user", "content": message.content} elif isinstance(message, AIMessage): message_dict = {"role": "assistant", "content": message.content} if "function_call" in message.additional_kwargs: message_dict["function_call"] = message.additional_kwargs["function_call"] elif isinstance(message, SystemMessage): message_dict = {"role": "system", "content": message.content} elif isinstance(message, FunctionMessage): message_dict = { "role": "function", "content": message.content, "name": message.name, } else: raise ValueError(f"Got unknown type {message}") if "name" in message.additional_kwargs: message_dict["name"] = message.additional_kwargs["name"] return message_dict class ChatOpenAI(BaseChatModel): """Wrapper around OpenAI Chat large language models. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.chat_models import ChatOpenAI openai = ChatOpenAI(model_name="gpt-3.5-turbo") """ @property def lc_serializable(self) -> bool: return True client: Any #: :meta private: model_name: str = Field(default="gpt-3.5-turbo", alias="model") """Model name to use.""" temperature: float = 0.7 """What sampling temperature to use.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" openai_api_key: Optional[str] = None """Base URL path for API requests, leave blank if not using a proxy or service emulator.""" openai_api_base: Optional[str] = None openai_organization: Optional[str] = None # to support explicit proxy for OpenAI openai_proxy: Optional[str] = None request_timeout: Optional[Union[float, Tuple[float, float]]] = None """Timeout for requests to OpenAI completion API. Default is 600 seconds.""" max_retries: int = 6 """Maximum number of retries to make when generating.""" streaming: bool = False """Whether to stream the results or not.""" n: int = 1 """Number of chat completions to generate for each prompt.""" max_tokens: Optional[int] = None """Maximum number of tokens to generate.""" class Config: """Configuration for this pydantic object.""" allow_population_by_field_name = True @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = cls.all_required_field_names() extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") if field_name not in all_required_field_names: logger.warning( f"""WARNING! {field_name} is not default parameter. {field_name} was transferred to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) invalid_model_kwargs = all_required_field_names.intersection(extra.keys()) if invalid_model_kwargs: raise ValueError( f"Parameters {invalid_model_kwargs} should be specified explicitly. " f"Instead they were passed in as part of `model_kwargs` parameter." ) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" values["openai_api_key"] = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY" ) values["openai_organization"] = get_from_dict_or_env( values, "openai_organization", "OPENAI_ORGANIZATION", default="", ) values["openai_api_base"] = get_from_dict_or_env( values, "openai_api_base", "OPENAI_API_BASE", default="", ) values["openai_proxy"] = get_from_dict_or_env( values, "openai_proxy", "OPENAI_PROXY", default="", ) try: import openai except ImportError: raise ValueError( "Could not import openai python package. " "Please install it with `pip install openai`." ) try: values["client"] = openai.ChatCompletion except AttributeError: raise ValueError( "`openai` has no `ChatCompletion` attribute, this is likely " "due to an old version of the openai package. Try upgrading it " "with `pip install --upgrade openai`." ) if values["n"] < 1: raise ValueError("n must be at least 1.") if values["n"] > 1 and values["streaming"]: raise ValueError("n must be 1 when streaming.") return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling OpenAI API.""" return { "model": self.model_name, "request_timeout": self.request_timeout, "max_tokens": self.max_tokens, "stream": self.streaming, "n": self.n, "temperature": self.temperature, **self.model_kwargs, } def _create_retry_decorator(self) -> Callable[[Any], Any]: import openai min_seconds = 1 max_seconds = 60 # Wait 2^x * 1 second between each retry starting with # 4 seconds, then up to 10 seconds, then 10 seconds afterwards return retry( reraise=True, stop=stop_after_attempt(self.max_retries), wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds), retry=( retry_if_exception_type(openai.error.Timeout) | retry_if_exception_type(openai.error.APIError) | retry_if_exception_type(openai.error.APIConnectionError) | retry_if_exception_type(openai.error.RateLimitError) | retry_if_exception_type(openai.error.ServiceUnavailableError) ), before_sleep=before_sleep_log(logger, logging.WARNING), ) def completion_with_retry(self, **kwargs: Any) -> Any: """Use tenacity to retry the completion call.""" retry_decorator = self._create_retry_decorator() @retry_decorator def _completion_with_retry(**kwargs: Any) -> Any: return self.client.create(**kwargs) return _completion_with_retry(**kwargs) def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict: overall_token_usage: dict = {} for output in llm_outputs: if output is None: # Happens in streaming continue token_usage = output["token_usage"] for k, v in token_usage.items(): if k in overall_token_usage: overall_token_usage[k] += v else: overall_token_usage[k] = v return {"token_usage": overall_token_usage, "model_name": self.model_name} def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: message_dicts, params = self._create_message_dicts(messages, stop) params = {**params, **kwargs} if self.streaming: inner_completion = "" role = "assistant" params["stream"] = True function_call: Optional[dict] = None for stream_resp in self.completion_with_retry( messages=message_dicts, **params ): role = stream_resp["choices"][0]["delta"].get("role", role) token = stream_resp["choices"][0]["delta"].get("content") or "" inner_completion += token _function_call = stream_resp["choices"][0]["delta"].get("function_call") if _function_call: if function_call is None: function_call = _function_call else: function_call["arguments"] += _function_call["arguments"] if run_manager: run_manager.on_llm_new_token(token) message = _convert_dict_to_message( { "content": inner_completion, "role": role, "function_call": function_call, } ) return ChatResult(generations=[ChatGeneration(message=message)]) response = self.completion_with_retry(messages=message_dicts, **params) return self._create_chat_result(response) def _create_message_dicts( self, messages: List[BaseMessage], stop: Optional[List[str]] ) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]: params = dict(self._invocation_params) if stop is not None: if "stop" in params: raise ValueError("`stop` found in both the input and default params.") params["stop"] = stop message_dicts = [_convert_message_to_dict(m) for m in messages] return message_dicts, params def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult: generations = [] for res in response["choices"]: message = _convert_dict_to_message(res["message"]) gen = ChatGeneration(message=message) generations.append(gen) llm_output = {"token_usage": response["usage"], "model_name": self.model_name} return ChatResult(generations=generations, llm_output=llm_output) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: message_dicts, params = self._create_message_dicts(messages, stop) params = {**params, **kwargs} if self.streaming: inner_completion = "" role = "assistant" params["stream"] = True async for stream_resp in await acompletion_with_retry( self, messages=message_dicts, **params ): role = stream_resp["choices"][0]["delta"].get("role", role) token = stream_resp["choices"][0]["delta"].get("content", "") inner_completion += token if run_manager: await run_manager.on_llm_new_token(token) message = _convert_dict_to_message( {"content": inner_completion, "role": role} ) return ChatResult(generations=[ChatGeneration(message=message)]) else: response = await acompletion_with_retry( self, messages=message_dicts, **params ) return self._create_chat_result(response) @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {**{"model_name": self.model_name}, **self._default_params} @property def _invocation_params(self) -> Mapping[str, Any]: """Get the parameters used to invoke the model.""" openai_creds: Dict[str, Any] = { "api_key": self.openai_api_key, "api_base": self.openai_api_base, "organization": self.openai_organization, "model": self.model_name, } if self.openai_proxy: import openai openai.proxy = {"http": self.openai_proxy, "https": self.openai_proxy} # type: ignore[assignment] # noqa: E501 return {**openai_creds, **self._default_params} @property def _llm_type(self) -> str: """Return type of chat model.""" return "openai-chat" def _get_encoding_model(self) -> Tuple[str, tiktoken.Encoding]: tiktoken_ = _import_tiktoken() model = self.model_name if model == "gpt-3.5-turbo": # gpt-3.5-turbo may change over time. # Returning num tokens assuming gpt-3.5-turbo-0301. model = "gpt-3.5-turbo-0301" elif model == "gpt-4": # gpt-4 may change over time. # Returning num tokens assuming gpt-4-0314. model = "gpt-4-0314" # Returns the number of tokens used by a list of messages. try: encoding = tiktoken_.encoding_for_model(model) except KeyError: logger.warning("Warning: model not found. Using cl100k_base encoding.") model = "cl100k_base" encoding = tiktoken_.get_encoding(model) return model, encoding def get_token_ids(self, text: str) -> List[int]: """Get the tokens present in the text with tiktoken package.""" # tiktoken NOT supported for Python 3.7 or below if sys.version_info[1] <= 7: return super().get_token_ids(text) _, encoding_model = self._get_encoding_model() return encoding_model.encode(text) def get_num_tokens_from_messages(self, messages: List[BaseMessage]) -> int: """Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package. Official documentation: https://github.com/openai/openai-cookbook/blob/ main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb""" if sys.version_info[1] <= 7: return super().get_num_tokens_from_messages(messages) model, encoding = self._get_encoding_model() if model.startswith("gpt-3.5-turbo"): # every message follows <im_start>{role/name}\n{content}<im_end>\n tokens_per_message = 4 # if there's a name, the role is omitted tokens_per_name = -1 elif model.startswith("gpt-4"): tokens_per_message = 3 tokens_per_name = 1 else: raise NotImplementedError( f"get_num_tokens_from_messages() is not presently implemented " f"for model {model}." "See https://github.com/openai/openai-python/blob/main/chatml.md for " "information on how messages are converted to tokens." ) num_tokens = 0 messages_dict = [_convert_message_to_dict(m) for m in messages] for message in messages_dict: num_tokens += tokens_per_message for key, value in message.items(): num_tokens += len(encoding.encode(value)) if key == "name": num_tokens += tokens_per_name # every reply is primed with <im_start>assistant num_tokens += 3 return num_tokens
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,807
Issue: Integration tests fail for faiss vector store
### Issue you'd like to raise. Integration tests for faiss vector store fail when run. It appears that the tests are not in sync with the module implementation. command: poetry run pytest tests/integration_tests/vectorstores/test_faiss.py Results summary: ======================================================= short test summary info ======================================================= FAILED tests/integration_tests/vectorstores/test_faiss.py::test_faiss_local_save_load - FileExistsError: [Errno 17] File exists: '/var/folders/nm/q080zph50yz4mcc7_vcvdcy00000gp/T/tmpt6hov952' FAILED tests/integration_tests/vectorstores/test_faiss.py::test_faiss_similarity_search_with_relevance_scores - TypeError: __init__() got an unexpected keyword argument 'normalize_score_fn' FAILED tests/integration_tests/vectorstores/test_faiss.py::test_faiss_invalid_normalize_fn - TypeError: __init__() got an unexpected keyword argument 'normalize_score_fn' FAILED tests/integration_tests/vectorstores/test_faiss.py::test_missing_normalize_score_fn - Failed: DID NOT RAISE <class 'ValueError'> =============================================== 4 failed, 6 passed, 2 warnings in 0.70s =============================================== ### Suggestion: Correct tests/integration_tests/vectorstores/test_faiss.py to be in sync with langchain.vectorstores.faiss
https://github.com/langchain-ai/langchain/issues/5807
https://github.com/langchain-ai/langchain/pull/6281
ddd518a161f85a89f5c2dc0b8f262aba11cb3869
6aa7b04f7978e3783e386fd6714d9e1d44b3f5a2
"2023-06-07T03:49:08Z"
python
"2023-06-19T00:25:49Z"
tests/integration_tests/vectorstores/test_faiss.py
"""Test FAISS functionality.""" import datetime import math import tempfile import pytest from langchain.docstore.document import Document from langchain.docstore.in_memory import InMemoryDocstore from langchain.docstore.wikipedia import Wikipedia from langchain.vectorstores.faiss import FAISS from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings def test_faiss() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] docsearch = FAISS.from_texts(texts, FakeEmbeddings()) index_to_id = docsearch.index_to_docstore_id expected_docstore = InMemoryDocstore( { index_to_id[0]: Document(page_content="foo"), index_to_id[1]: Document(page_content="bar"), index_to_id[2]: Document(page_content="baz"), } ) assert docsearch.docstore.__dict__ == expected_docstore.__dict__ output = docsearch.similarity_search("foo", k=1) assert output == [Document(page_content="foo")] def test_faiss_vector_sim() -> None: """Test vector similarity.""" texts = ["foo", "bar", "baz"] docsearch = FAISS.from_texts(texts, FakeEmbeddings()) index_to_id = docsearch.index_to_docstore_id expected_docstore = InMemoryDocstore( { index_to_id[0]: Document(page_content="foo"), index_to_id[1]: Document(page_content="bar"), index_to_id[2]: Document(page_content="baz"), } ) assert docsearch.docstore.__dict__ == expected_docstore.__dict__ query_vec = FakeEmbeddings().embed_query(text="foo") output = docsearch.similarity_search_by_vector(query_vec, k=1) assert output == [Document(page_content="foo")] # make sure we can have k > docstore size output = docsearch.max_marginal_relevance_search_by_vector(query_vec, k=10) assert len(output) == len(texts) def test_faiss_with_metadatas() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": i} for i in range(len(texts))] docsearch = FAISS.from_texts(texts, FakeEmbeddings(), metadatas=metadatas) expected_docstore = InMemoryDocstore( { docsearch.index_to_docstore_id[0]: Document( page_content="foo", metadata={"page": 0} ), docsearch.index_to_docstore_id[1]: Document( page_content="bar", metadata={"page": 1} ), docsearch.index_to_docstore_id[2]: Document( page_content="baz", metadata={"page": 2} ), } ) assert docsearch.docstore.__dict__ == expected_docstore.__dict__ output = docsearch.similarity_search("foo", k=1) assert output == [Document(page_content="foo", metadata={"page": 0})] def test_faiss_with_metadatas_and_filter() -> None: texts = ["foo", "bar", "baz"] metadatas = [{"page": i} for i in range(len(texts))] docsearch = FAISS.from_texts(texts, FakeEmbeddings(), metadatas=metadatas) expected_docstore = InMemoryDocstore( { docsearch.index_to_docstore_id[0]: Document( page_content="foo", metadata={"page": 0} ), docsearch.index_to_docstore_id[1]: Document( page_content="bar", metadata={"page": 1} ), docsearch.index_to_docstore_id[2]: Document( page_content="baz", metadata={"page": 2} ), } ) assert docsearch.docstore.__dict__ == expected_docstore.__dict__ output = docsearch.similarity_search("foo", k=1, filter={"page": 1}) assert output == [] def test_faiss_search_not_found() -> None: """Test what happens when document is not found.""" texts = ["foo", "bar", "baz"] docsearch = FAISS.from_texts(texts, FakeEmbeddings()) # Get rid of the docstore to purposefully induce errors. docsearch.docstore = InMemoryDocstore({}) with pytest.raises(ValueError): docsearch.similarity_search("foo") def test_faiss_add_texts() -> None: """Test end to end adding of texts.""" # Create initial doc store. texts = ["foo", "bar", "baz"] docsearch = FAISS.from_texts(texts, FakeEmbeddings()) # Test adding a similar document as before. docsearch.add_texts(["foo"]) output = docsearch.similarity_search("foo", k=2) assert output == [Document(page_content="foo"), Document(page_content="foo")] def test_faiss_add_texts_not_supported() -> None: """Test adding of texts to a docstore that doesn't support it.""" docsearch = FAISS(FakeEmbeddings().embed_query, None, Wikipedia(), {}) with pytest.raises(ValueError): docsearch.add_texts(["foo"]) def test_faiss_local_save_load() -> None: """Test end to end serialization.""" texts = ["foo", "bar", "baz"] docsearch = FAISS.from_texts(texts, FakeEmbeddings()) temp_timestamp = datetime.datetime.utcnow().strftime("%Y%m%d-%H%M%S") with tempfile.TemporaryDirectory(suffix="_" + temp_timestamp + "/") as temp_folder: docsearch.save_local(temp_folder) new_docsearch = FAISS.load_local(temp_folder, FakeEmbeddings()) assert new_docsearch.index is not None def test_faiss_similarity_search_with_relevance_scores() -> None: """Test the similarity search with normalized similarities.""" texts = ["foo", "bar", "baz"] docsearch = FAISS.from_texts( texts, FakeEmbeddings(), relevance_score_fn=lambda score: 1.0 - score / math.sqrt(2), ) outputs = docsearch.similarity_search_with_relevance_scores("foo", k=1) output, score = outputs[0] assert output == Document(page_content="foo") assert score == 1.0 def test_faiss_invalid_normalize_fn() -> None: """Test the similarity search with normalized similarities.""" texts = ["foo", "bar", "baz"] docsearch = FAISS.from_texts( texts, FakeEmbeddings(), relevance_score_fn=lambda _: 2.0 ) with pytest.warns(Warning, match="scores must be between"): docsearch.similarity_search_with_relevance_scores("foo", k=1) def test_missing_normalize_score_fn() -> None: """Test doesn't perform similarity search without a normalize score function.""" with pytest.raises(ValueError): texts = ["foo", "bar", "baz"] faiss_instance = FAISS.from_texts(texts, FakeEmbeddings()) faiss_instance.relevance_score_fn = None faiss_instance.similarity_search_with_relevance_scores("foo", k=2)
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,131
Azure Cognitive Search Vector Store doesn't apply search_kwargs when performing queries
### System Info Langchain 0.0.199 Python 3.10.11 Windows 11 (but will occur on any platform. ### Who can help? @hwchase17 @ruoccofabrizio ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction To reproduce this issue create an AzureSearch Vector Store and a RetrievalQA with a search_kwargs, like in this sample code: ``` import os cognitive_search_name = os.environ["AZURE_SEARCH_SERVICE_NAME"] vector_store_address: str = f"https://{cognitive_search_name}.search.windows.net/" index_name: str = os.environ["AZURE_SEARCH_SERVICE_INDEX_NAME"] vector_store_password: str = os.environ["AZURE_SEARCH_SERVICE_ADMIN_KEY"] from langchain.vectorstores.azuresearch import AzureSearch embeddings = OpenAIEmbeddings(model="text-embedding-ada-002", chunk_size=1, client=any) vector_store = AzureSearch(azure_search_endpoint=vector_store_address, azure_search_key=vector_store_password, index_name=index_name, embedding_function=embeddings.embed_query) from langchain.chains import RetrievalQA llm = AzureChatOpenAI(deployment_name="gpt35", model_name="gpt-3.5-turbo-0301", openai_api_version="2023-03-15-preview", temperature=temperature, client=None) index = get_vector_store() retriever = index.as_retriever() retriever.search_kwargs = {'filters': "metadata eq 'something'"} qa = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=retriever, ) return qa ``` When you execute this code using ```qa``` the search_kwargs appear in the method ```similarity_search``` in ```azuresearch.py``` but are never passed to the methods ```vector_search```, ```hybrid_search```, and ```semantic_hybrid``` where they actually would be used. ### Expected behavior In my example they should apply a filter to the azure cognitive search index before doing the vector search, but this is not happening because filters will always be empty when it gets to the functions where they are used. (```vector_search```, ```hybrid_search```, and ```semantic_hybrid```)
https://github.com/langchain-ai/langchain/issues/6131
https://github.com/langchain-ai/langchain/pull/6132
395a2a3724507bafc7afe9e04ecbae60a7c66c7e
22862043543e55fa0467c739714230eae3425512
"2023-06-14T02:08:49Z"
python
"2023-06-19T00:39:06Z"
langchain/vectorstores/azuresearch.py
"""Wrapper around Azure Cognitive Search.""" from __future__ import annotations import base64 import json import logging import uuid from typing import ( TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Optional, Tuple, Type, ) import numpy as np from pydantic import BaseModel, root_validator from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.schema import BaseRetriever from langchain.utils import get_from_env from langchain.vectorstores.base import VectorStore logger = logging.getLogger() if TYPE_CHECKING: from azure.search.documents import SearchClient # Allow overriding field names for Azure Search FIELDS_ID = get_from_env( key="AZURESEARCH_FIELDS_ID", env_key="AZURESEARCH_FIELDS_ID", default="id" ) FIELDS_CONTENT = get_from_env( key="AZURESEARCH_FIELDS_CONTENT", env_key="AZURESEARCH_FIELDS_CONTENT", default="content", ) FIELDS_CONTENT_VECTOR = get_from_env( key="AZURESEARCH_FIELDS_CONTENT_VECTOR", env_key="AZURESEARCH_FIELDS_CONTENT_VECTOR", default="content_vector", ) FIELDS_METADATA = get_from_env( key="AZURESEARCH_FIELDS_TAG", env_key="AZURESEARCH_FIELDS_TAG", default="metadata" ) MAX_UPLOAD_BATCH_SIZE = 1000 def _get_search_client( endpoint: str, key: str, index_name: str, embedding_function: Callable, semantic_configuration_name: Optional[str] = None, ) -> SearchClient: from azure.core.credentials import AzureKeyCredential from azure.core.exceptions import ResourceNotFoundError from azure.identity import DefaultAzureCredential from azure.search.documents import SearchClient from azure.search.documents.indexes import SearchIndexClient from azure.search.documents.indexes.models import ( PrioritizedFields, SearchableField, SearchField, SearchFieldDataType, SearchIndex, SemanticConfiguration, SemanticField, SemanticSettings, SimpleField, VectorSearch, VectorSearchAlgorithmConfiguration, ) if key is None: credential = DefaultAzureCredential() else: credential = AzureKeyCredential(key) index_client: SearchIndexClient = SearchIndexClient( endpoint=endpoint, credential=credential ) try: index_client.get_index(name=index_name) except ResourceNotFoundError: # Fields configuration fields = [ SimpleField( name=FIELDS_ID, type=SearchFieldDataType.String, key=True, filterable=True, ), SearchableField( name=FIELDS_CONTENT, type=SearchFieldDataType.String, searchable=True, retrievable=True, ), SearchField( name=FIELDS_CONTENT_VECTOR, type=SearchFieldDataType.Collection(SearchFieldDataType.Single), searchable=True, dimensions=len(embedding_function("Text")), vector_search_configuration="default", ), SearchableField( name=FIELDS_METADATA, type=SearchFieldDataType.String, searchable=True, retrievable=True, ), ] # Vector search configuration vector_search = VectorSearch( algorithm_configurations=[ VectorSearchAlgorithmConfiguration( name="default", kind="hnsw", hnsw_parameters={ "m": 4, "efConstruction": 400, "efSearch": 500, "metric": "cosine", }, ) ] ) # Create the semantic settings with the configuration semantic_settings = ( None if semantic_configuration_name is None else SemanticSettings( configurations=[ SemanticConfiguration( name=semantic_configuration_name, prioritized_fields=PrioritizedFields( prioritized_content_fields=[ SemanticField(field_name=FIELDS_CONTENT) ], ), ) ] ) ) # Create the search index with the semantic settings and vector search index = SearchIndex( name=index_name, fields=fields, vector_search=vector_search, semantic_settings=semantic_settings, ) index_client.create_index(index) # Create the search client return SearchClient(endpoint=endpoint, index_name=index_name, credential=credential) class AzureSearch(VectorStore): def __init__( self, azure_search_endpoint: str, azure_search_key: str, index_name: str, embedding_function: Callable, search_type: str = "hybrid", semantic_configuration_name: Optional[str] = None, semantic_query_language: str = "en-us", **kwargs: Any, ): """Initialize with necessary components.""" # Initialize base class self.embedding_function = embedding_function self.client = _get_search_client( azure_search_endpoint, azure_search_key, index_name, embedding_function, semantic_configuration_name, ) self.search_type = search_type self.semantic_configuration_name = semantic_configuration_name self.semantic_query_language = semantic_query_language def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Add texts data to an existing index.""" keys = kwargs.get("keys") ids = [] # Write data to index data = [] for i, text in enumerate(texts): # Use provided key otherwise use default key key = keys[i] if keys else str(uuid.uuid4()) # Encoding key for Azure Search valid characters key = base64.urlsafe_b64encode(bytes(key, "utf-8")).decode("ascii") metadata = metadatas[i] if metadatas else {} # Add data to index data.append( { "@search.action": "upload", FIELDS_ID: key, FIELDS_CONTENT: text, FIELDS_CONTENT_VECTOR: np.array( self.embedding_function(text), dtype=np.float32 ).tolist(), FIELDS_METADATA: json.dumps(metadata), } ) ids.append(key) # Upload data in batches if len(data) == MAX_UPLOAD_BATCH_SIZE: response = self.client.upload_documents(documents=data) # Check if all documents were successfully uploaded if not all([r.succeeded for r in response]): raise Exception(response) # Reset data data = [] # Considering case where data is an exact multiple of batch-size entries if len(data) == 0: return ids # Upload data to index response = self.client.upload_documents(documents=data) # Check if all documents were successfully uploaded if all([r.succeeded for r in response]): return ids else: raise Exception(response) def similarity_search( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: search_type = kwargs.get("search_type", self.search_type) if search_type == "similarity": docs = self.vector_search(query, k=k) elif search_type == "hybrid": docs = self.hybrid_search(query, k=k) elif search_type == "semantic_hybrid": docs = self.semantic_hybrid_search(query, k=k) else: raise ValueError(f"search_type of {search_type} not allowed.") return docs def vector_search(self, query: str, k: int = 4, **kwargs: Any) -> List[Document]: """ Returns the most similar indexed documents to the query text. Args: query (str): The query text for which to find similar documents. k (int): The number of documents to return. Default is 4. Returns: List[Document]: A list of documents that are most similar to the query text. """ docs_and_scores = self.vector_search_with_score( query, k=k, filters=kwargs.get("filters", None) ) return [doc for doc, _ in docs_and_scores] def vector_search_with_score( self, query: str, k: int = 4, filters: Optional[str] = None ) -> List[Tuple[Document, float]]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query and score for each """ from azure.search.documents.models import Vector results = self.client.search( search_text="", vector=Vector( value=np.array( self.embedding_function(query), dtype=np.float32 ).tolist(), k=k, fields=FIELDS_CONTENT_VECTOR, ), select=[f"{FIELDS_ID},{FIELDS_CONTENT},{FIELDS_METADATA}"], filter=filters, ) # Convert results to Document objects docs = [ ( Document( page_content=result[FIELDS_CONTENT], metadata=json.loads(result[FIELDS_METADATA]), ), float(result["@search.score"]), ) for result in results ] return docs def hybrid_search(self, query: str, k: int = 4, **kwargs: Any) -> List[Document]: """ Returns the most similar indexed documents to the query text. Args: query (str): The query text for which to find similar documents. k (int): The number of documents to return. Default is 4. Returns: List[Document]: A list of documents that are most similar to the query text. """ docs_and_scores = self.hybrid_search_with_score( query, k=k, filters=kwargs.get("filters", None) ) return [doc for doc, _ in docs_and_scores] def hybrid_search_with_score( self, query: str, k: int = 4, filters: Optional[str] = None ) -> List[Tuple[Document, float]]: """Return docs most similar to query with an hybrid query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query and score for each """ from azure.search.documents.models import Vector results = self.client.search( search_text=query, vector=Vector( value=np.array( self.embedding_function(query), dtype=np.float32 ).tolist(), k=k, fields=FIELDS_CONTENT_VECTOR, ), select=[f"{FIELDS_ID},{FIELDS_CONTENT},{FIELDS_METADATA}"], filter=filters, top=k, ) # Convert results to Document objects docs = [ ( Document( page_content=result[FIELDS_CONTENT], metadata=json.loads(result[FIELDS_METADATA]), ), float(result["@search.score"]), ) for result in results ] return docs def semantic_hybrid_search( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: """ Returns the most similar indexed documents to the query text. Args: query (str): The query text for which to find similar documents. k (int): The number of documents to return. Default is 4. Returns: List[Document]: A list of documents that are most similar to the query text. """ docs_and_scores = self.semantic_hybrid_search_with_score( query, k=k, filters=kwargs.get("filters", None) ) return [doc for doc, _ in docs_and_scores] def semantic_hybrid_search_with_score( self, query: str, k: int = 4, filters: Optional[str] = None ) -> List[Tuple[Document, float]]: """Return docs most similar to query with an hybrid query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query and score for each """ from azure.search.documents.models import Vector results = self.client.search( search_text=query, vector=Vector( value=np.array( self.embedding_function(query), dtype=np.float32 ).tolist(), k=50, # Hardcoded value to maximize L2 retrieval fields=FIELDS_CONTENT_VECTOR, ), select=[f"{FIELDS_ID},{FIELDS_CONTENT},{FIELDS_METADATA}"], filter=filters, query_type="semantic", query_language=self.semantic_query_language, semantic_configuration_name=self.semantic_configuration_name, query_caption="extractive", query_answer="extractive", top=k, ) # Get Semantic Answers semantic_answers = results.get_answers() semantic_answers_dict = {} for semantic_answer in semantic_answers: semantic_answers_dict[semantic_answer.key] = { "text": semantic_answer.text, "highlights": semantic_answer.highlights, } # Convert results to Document objects docs = [ ( Document( page_content=result["content"], metadata={ **json.loads(result["metadata"]), **{ "captions": { "text": result.get("@search.captions", [{}])[0].text, "highlights": result.get("@search.captions", [{}])[ 0 ].highlights, } if result.get("@search.captions") else {}, "answers": semantic_answers_dict.get( json.loads(result["metadata"]).get("key"), "" ), }, }, ), float(result["@search.score"]), ) for result in results ] return docs @classmethod def from_texts( cls: Type[AzureSearch], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, azure_search_endpoint: str = "", azure_search_key: str = "", index_name: str = "langchain-index", **kwargs: Any, ) -> AzureSearch: # Creating a new Azure Search instance azure_search = cls( azure_search_endpoint, azure_search_key, index_name, embedding.embed_query, ) azure_search.add_texts(texts, metadatas, **kwargs) return azure_search class AzureSearchVectorStoreRetriever(BaseRetriever, BaseModel): vectorstore: AzureSearch search_type: str = "hybrid" k: int = 4 class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True @root_validator() def validate_search_type(cls, values: Dict) -> Dict: """Validate search type.""" if "search_type" in values: search_type = values["search_type"] if search_type not in ("similarity", "hybrid", "semantic_hybrid"): raise ValueError(f"search_type of {search_type} not allowed.") return values def get_relevant_documents(self, query: str) -> List[Document]: if self.search_type == "similarity": docs = self.vectorstore.vector_search(query, k=self.k) elif self.search_type == "hybrid": docs = self.vectorstore.hybrid_search(query, k=self.k) elif self.search_type == "semantic_hybrid": docs = self.vectorstore.semantic_hybrid_search(query, k=self.k) else: raise ValueError(f"search_type of {self.search_type} not allowed.") return docs async def aget_relevant_documents(self, query: str) -> List[Document]: raise NotImplementedError( "AzureSearchVectorStoreRetriever does not support async" )
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
1,829
UnstructuredURLLoader Error 403
**Issue:** When trying to read data from some URLs, I get a 403 error during load. I assume this is due to the web-server not allowing all user agents. **Expected behavior:** It would be great if I could specify a user agent (e.g. standard browsers like Mozilla, maybe also Google bots) for making the URL requests. **My code** ``` from langchain.document_loaders import UnstructuredURLLoader urls = ["https://dsgvo-gesetz.de/art-1"] loader = UnstructuredURLLoader(urls=urls) data = loader.load() ``` **Error message** ``` ValueError Traceback (most recent call last) Cell In[62], line 1 ----> 1 data = loader.load() File /opt/conda/lib/python3.10/site-packages/langchain/document_loaders/url.py:28, in UnstructuredURLLoader.load(self) 26 docs: List[Document] = list() 27 for url in self.urls: ---> 28 elements = partition_html(url=url) 29 text = "\n\n".join([str(el) for el in elements]) 30 metadata = {"source": url} File /opt/conda/lib/python3.10/site-packages/unstructured/partition/html.py:72, in partition_html(filename, file, text, url, encoding, include_page_breaks, include_metadata, parser) 70 response = requests.get(url) 71 if not response.ok: ---> 72 raise ValueError(f"URL return an error: {response.status_code}") 74 content_type = response.headers.get("Content-Type", "") 75 if not content_type.startswith("text/html"): ValueError: URL return an error: 403 ``` **for reference: URL that works without the 403 error** ```https://www.heise.de/newsticker/```
https://github.com/langchain-ai/langchain/issues/1829
https://github.com/langchain-ai/langchain/pull/6246
ca7a44d0242f2de4bbbb3b78942dcb6309487662
92f05a67a44c5d2a7a60280d7083cb96f3685371
"2023-03-20T21:26:40Z"
python
"2023-06-19T00:47:00Z"
docs/extras/modules/data_connection/document_loaders/integrations/url.ipynb
{ "cells": [ { "cell_type": "markdown", "id": "2dfc4698", "metadata": {}, "source": [ "# URL\n", "\n", "This covers how to load HTML documents from a list of URLs into a document format that we can use downstream." ] }, { "cell_type": "code", "execution_count": 1, "id": "16c3699e", "metadata": {}, "outputs": [], "source": [ "from langchain.document_loaders import UnstructuredURLLoader" ] }, { "cell_type": "code", "execution_count": 2, "id": "836fbac1", "metadata": {}, "outputs": [], "source": [ "urls = [\n", " \"https://www.understandingwar.org/backgrounder/russian-offensive-campaign-assessment-february-8-2023\",\n", " \"https://www.understandingwar.org/backgrounder/russian-offensive-campaign-assessment-february-9-2023\",\n", "]" ] }, { "cell_type": "code", "execution_count": 3, "id": "00f46fda", "metadata": {}, "outputs": [], "source": [ "loader = UnstructuredURLLoader(urls=urls)" ] }, { "cell_type": "code", "execution_count": 4, "id": "b68a26b3", "metadata": {}, "outputs": [], "source": [ "data = loader.load()" ] }, { "attachments": {}, "cell_type": "markdown", "id": "f3afa135", "metadata": {}, "source": [ "# Selenium URL Loader\n", "\n", "This covers how to load HTML documents from a list of URLs using the `SeleniumURLLoader`.\n", "\n", "Using selenium allows us to load pages that require JavaScript to render.\n", "\n", "## Setup\n", "\n", "To use the `SeleniumURLLoader`, you will need to install `selenium` and `unstructured`.\n" ] }, { "cell_type": "code", "execution_count": null, "id": "5fc50835", "metadata": {}, "outputs": [], "source": [ "from langchain.document_loaders import SeleniumURLLoader" ] }, { "cell_type": "code", "execution_count": null, "id": "24e896ce", "metadata": {}, "outputs": [], "source": [ "urls = [\n", " \"https://www.youtube.com/watch?v=dQw4w9WgXcQ\",\n", " \"https://goo.gl/maps/NDSHwePEyaHMFGwh8\",\n", "]" ] }, { "cell_type": "code", "execution_count": null, "id": "60a29397", "metadata": {}, "outputs": [], "source": [ "loader = SeleniumURLLoader(urls=urls)" ] }, { "cell_type": "code", "execution_count": null, "id": "0090cd57", "metadata": {}, "outputs": [], "source": [ "data = loader.load()" ] }, { "attachments": {}, "cell_type": "markdown", "id": "a2c1c79f", "metadata": {}, "source": [ "# Playwright URL Loader\n", "\n", "This covers how to load HTML documents from a list of URLs using the `PlaywrightURLLoader`.\n", "\n", "As in the Selenium case, Playwright allows us to load pages that need JavaScript to render.\n", "\n", "## Setup\n", "\n", "To use the `PlaywrightURLLoader`, you will need to install `playwright` and `unstructured`. Additionally, you will need to install the Playwright Chromium browser:" ] }, { "cell_type": "code", "execution_count": null, "id": "53158417", "metadata": {}, "outputs": [], "source": [ "# Install playwright\n", "!pip install \"playwright\"\n", "!pip install \"unstructured\"\n", "!playwright install" ] }, { "cell_type": "code", "execution_count": null, "id": "0ab4e115", "metadata": {}, "outputs": [], "source": [ "from langchain.document_loaders import PlaywrightURLLoader" ] }, { "cell_type": "code", "execution_count": null, "id": "ce5a9a0a", "metadata": {}, "outputs": [], "source": [ "urls = [\n", " \"https://www.youtube.com/watch?v=dQw4w9WgXcQ\",\n", " \"https://goo.gl/maps/NDSHwePEyaHMFGwh8\",\n", "]" ] }, { "cell_type": "code", "execution_count": null, "id": "2dc3e0bc", "metadata": {}, "outputs": [], "source": [ "loader = PlaywrightURLLoader(urls=urls, remove_selectors=[\"header\", \"footer\"])" ] }, { "cell_type": "code", "execution_count": null, "id": "10b79f80", "metadata": {}, "outputs": [], "source": [ "data = loader.load()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.6" } }, "nbformat": 4, "nbformat_minor": 5 }
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,079
Issue: Can't load a public webpage
### I want to load in the webpage below. Hi, Trying to extract some webpage using webbaseloader: """ loader = WebBaseLoader("https://researchadmin.asu.edu/) data = loader.load() """ But gives the following error: SSLError: HTTPSConnectionPool(host='researchadmin.asu.edu', port=443): Max retries exceeded with url: / (Caused by SSLError(SSLCertVerificationError(1, '[SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable to get local issuer certificate (_ssl.c:1002)'))) It is a public web page. Can anyone help? ### Suggestion: _No response_
https://github.com/langchain-ai/langchain/issues/6079
https://github.com/langchain-ai/langchain/pull/6248
92f05a67a44c5d2a7a60280d7083cb96f3685371
ba90e3c990d21128c67a0ca07e3261a38e579853
"2023-06-13T05:40:52Z"
python
"2023-06-19T00:47:10Z"
docs/extras/modules/data_connection/document_loaders/integrations/web_base.ipynb
{ "cells": [ { "cell_type": "markdown", "id": "bf920da0", "metadata": {}, "source": [ "# WebBaseLoader\n", "\n", "This covers how to use `WebBaseLoader` to load all text from `HTML` webpages into a document format that we can use downstream. For more custom logic for loading webpages look at some child class examples such as `IMSDbLoader`, `AZLyricsLoader`, and `CollegeConfidentialLoader`" ] }, { "cell_type": "code", "execution_count": 1, "id": "00b6de21", "metadata": {}, "outputs": [], "source": [ "from langchain.document_loaders import WebBaseLoader" ] }, { "cell_type": "code", "execution_count": 2, "id": "0231df35", "metadata": {}, "outputs": [], "source": [ "loader = WebBaseLoader(\"https://www.espn.com/\")" ] }, { "cell_type": "code", "execution_count": 3, "id": "f06bdc4e", "metadata": {}, "outputs": [], "source": [ "data = loader.load()" ] }, { "cell_type": "code", "execution_count": 4, "id": "a390d79f", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[Document(page_content=\"\\n\\n\\n\\n\\n\\n\\n\\n\\nESPN - Serving Sports Fans. Anytime. Anywhere.\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n Skip to main content\\n \\n\\n Skip to navigation\\n \\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n<\\n\\n>\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nMenuESPN\\n\\n\\nSearch\\n\\n\\n\\nscores\\n\\n\\n\\nNFLNBANCAAMNCAAWNHLSoccer…MLBNCAAFGolfTennisSports BettingBoxingCFLNCAACricketF1HorseLLWSMMANASCARNBA G LeagueOlympic SportsRacingRN BBRN FBRugbyWNBAWorld Baseball ClassicWWEX GamesXFLMore ESPNFantasyListenWatchESPN+\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n \\n\\nSUBSCRIBE NOW\\n\\n\\n\\n\\n\\nNHL: Select Games\\n\\n\\n\\n\\n\\n\\n\\nXFL\\n\\n\\n\\n\\n\\n\\n\\nMLB: Select Games\\n\\n\\n\\n\\n\\n\\n\\nNCAA Baseball\\n\\n\\n\\n\\n\\n\\n\\nNCAA Softball\\n\\n\\n\\n\\n\\n\\n\\nCricket: Select Matches\\n\\n\\n\\n\\n\\n\\n\\nMel Kiper's NFL Mock Draft 3.0\\n\\n\\nQuick Links\\n\\n\\n\\n\\nMen's Tournament Challenge\\n\\n\\n\\n\\n\\n\\n\\nWomen's Tournament Challenge\\n\\n\\n\\n\\n\\n\\n\\nNFL Draft Order\\n\\n\\n\\n\\n\\n\\n\\nHow To Watch NHL Games\\n\\n\\n\\n\\n\\n\\n\\nFantasy Baseball: Sign Up\\n\\n\\n\\n\\n\\n\\n\\nHow To Watch PGA TOUR\\n\\n\\n\\n\\n\\n\\nFavorites\\n\\n\\n\\n\\n\\n\\n Manage Favorites\\n \\n\\n\\n\\nCustomize ESPNSign UpLog InESPN Sites\\n\\n\\n\\n\\nESPN Deportes\\n\\n\\n\\n\\n\\n\\n\\nAndscape\\n\\n\\n\\n\\n\\n\\n\\nespnW\\n\\n\\n\\n\\n\\n\\n\\nESPNFC\\n\\n\\n\\n\\n\\n\\n\\nX Games\\n\\n\\n\\n\\n\\n\\n\\nSEC Network\\n\\n\\nESPN Apps\\n\\n\\n\\n\\nESPN\\n\\n\\n\\n\\n\\n\\n\\nESPN Fantasy\\n\\n\\nFollow ESPN\\n\\n\\n\\n\\nFacebook\\n\\n\\n\\n\\n\\n\\n\\nTwitter\\n\\n\\n\\n\\n\\n\\n\\nInstagram\\n\\n\\n\\n\\n\\n\\n\\nSnapchat\\n\\n\\n\\n\\n\\n\\n\\nYouTube\\n\\n\\n\\n\\n\\n\\n\\nThe ESPN Daily Podcast\\n\\n\\nAre you ready for Opening Day? Here's your guide to MLB's offseason chaosWait, Jacob deGrom is on the Rangers now? Xander Bogaerts and Trea Turner signed where? And what about Carlos Correa? Yeah, you're going to need to read up before Opening Day.12hESPNIllustration by ESPNEverything you missed in the MLB offseason3h2:33World Series odds, win totals, props for every teamPlay fantasy baseball for free!TOP HEADLINESQB Jackson has requested trade from RavensSources: Texas hiring Terry as full-time coachJets GM: No rush on Rodgers; Lamar not optionLove to leave North Carolina, enter transfer portalBelichick to angsty Pats fans: See last 25 yearsEmbiid out, Harden due back vs. Jokic, NuggetsLynch: Purdy 'earned the right' to start for NinersMan Utd, Wrexham plan July friendly in San DiegoOn paper, Padres overtake DodgersLAMAR WANTS OUT OF BALTIMOREMarcus Spears identifies the two teams that need Lamar Jackson the most8h2:00Would Lamar sit out? Will Ravens draft a QB? Jackson trade request insightsLamar Jackson has asked Baltimore to trade him, but Ravens coach John Harbaugh hopes the QB will be back.3hJamison HensleyBallard, Colts will consider trading for QB JacksonJackson to Indy? Washington? Barnwell ranks the QB's trade fitsSNYDER'S TUMULTUOUS 24-YEAR RUNHow Washington’s NFL franchise sank on and off the field under owner Dan SnyderSnyder purchased one of the NFL's marquee franchises in 1999. Twenty-four years later, and with the team up for sale, he leaves a legacy of on-field futility and off-field scandal.13hJohn KeimESPNIOWA STAR STEPS UP AGAINJ-Will: Caitlin Clark is the biggest brand in college sports right now8h0:47'The better the opponent, the better she plays': Clark draws comparisons to TaurasiCaitlin Clark's performance on Sunday had longtime observers going back decades to find comparisons.16hKevin PeltonWOMEN'S ELITE EIGHT SCOREBOARDMONDAY'S GAMESCheck your bracket!NBA DRAFTHow top prospects fared on the road to the Final FourThe 2023 NCAA tournament is down to four teams, and ESPN's Jonathan Givony recaps the players who saw their NBA draft stock change.11hJonathan GivonyAndy Lyons/Getty ImagesTALKING BASKETBALLWhy AD needs to be more assertive with LeBron on the court10h1:33Why Perk won't blame Kyrie for Mavs' woes8h1:48WHERE EVERY TEAM STANDSNew NFL Power Rankings: Post-free-agency 1-32 poll, plus underrated offseason movesThe free agent frenzy has come and gone. Which teams have improved their 2023 outlook, and which teams have taken a hit?12hNFL Nation reportersIllustration by ESPNTHE BUCK STOPS WITH BELICHICKBruschi: Fair to criticize Bill Belichick for Patriots' struggles10h1:27 Top HeadlinesQB Jackson has requested trade from RavensSources: Texas hiring Terry as full-time coachJets GM: No rush on Rodgers; Lamar not optionLove to leave North Carolina, enter transfer portalBelichick to angsty Pats fans: See last 25 yearsEmbiid out, Harden due back vs. Jokic, NuggetsLynch: Purdy 'earned the right' to start for NinersMan Utd, Wrexham plan July friendly in San DiegoOn paper, Padres overtake DodgersFavorites FantasyManage FavoritesFantasy HomeCustomize ESPNSign UpLog InMarch Madness LiveESPNMarch Madness LiveWatch every men's NCAA tournament game live! ICYMI1:42Austin Peay's coach, pitcher and catcher all ejected after retaliation pitchAustin Peay's pitcher, catcher and coach were all ejected after a pitch was thrown at Liberty's Nathan Keeter, who earlier in the game hit a home run and celebrated while running down the third-base line. Men's Tournament ChallengeIllustration by ESPNMen's Tournament ChallengeCheck your bracket(s) in the 2023 Men's Tournament Challenge, which you can follow throughout the Big Dance. Women's Tournament ChallengeIllustration by ESPNWomen's Tournament ChallengeCheck your bracket(s) in the 2023 Women's Tournament Challenge, which you can follow throughout the Big Dance. Best of ESPN+AP Photo/Lynne SladkyFantasy Baseball ESPN+ Cheat Sheet: Sleepers, busts, rookies and closersYou've read their names all preseason long, it'd be a shame to forget them on draft day. The ESPN+ Cheat Sheet is one way to make sure that doesn't happen.Steph Chambers/Getty ImagesPassan's 2023 MLB season preview: Bold predictions and moreOpening Day is just over a week away -- and Jeff Passan has everything you need to know covered from every possible angle.Photo by Bob Kupbens/Icon Sportswire2023 NFL free agency: Best team fits for unsigned playersWhere could Ezekiel Elliott land? Let's match remaining free agents to teams and find fits for two trade candidates.Illustration by ESPN2023 NFL mock draft: Mel Kiper's first-round pick predictionsMel Kiper Jr. makes his predictions for Round 1 of the NFL draft, including projecting a trade in the top five. Trending NowAnne-Marie Sorvin-USA TODAY SBoston Bruins record tracker: Wins, points, milestonesThe B's are on pace for NHL records in wins and points, along with some individual superlatives as well. Follow along here with our updated tracker.Mandatory Credit: William Purnell-USA TODAY Sports2023 NFL full draft order: AFC, NFC team picks for all roundsStarting with the Carolina Panthers at No. 1 overall, here's the entire 2023 NFL draft broken down round by round. How to Watch on ESPN+Gregory Fisher/Icon Sportswire2023 NCAA men's hockey: Results, bracket, how to watchThe matchups in Tampa promise to be thrillers, featuring plenty of star power, high-octane offense and stellar defense.(AP Photo/Koji Sasahara, File)How to watch the PGA Tour, Masters, PGA Championship and FedEx Cup playoffs on ESPN, ESPN+Here's everything you need to know about how to watch the PGA Tour, Masters, PGA Championship and FedEx Cup playoffs on ESPN and ESPN+.Hailie Lynch/XFLHow to watch the XFL: 2023 schedule, teams, players, news, moreEvery XFL game will be streamed on ESPN+. Find out when and where else you can watch the eight teams compete. Sign up to play the #1 Fantasy Baseball GameReactivate A LeagueCreate A LeagueJoin a Public LeaguePractice With a Mock DraftSports BettingAP Photo/Mike KropfMarch Madness betting 2023: Bracket odds, lines, tips, moreThe 2023 NCAA tournament brackets have finally been released, and we have everything you need to know to make a bet on all of the March Madness games. Sign up to play the #1 Fantasy game!Create A LeagueJoin Public LeagueReactivateMock Draft Now\\n\\nESPN+\\n\\n\\n\\n\\nNHL: Select Games\\n\\n\\n\\n\\n\\n\\n\\nXFL\\n\\n\\n\\n\\n\\n\\n\\nMLB: Select Games\\n\\n\\n\\n\\n\\n\\n\\nNCAA Baseball\\n\\n\\n\\n\\n\\n\\n\\nNCAA Softball\\n\\n\\n\\n\\n\\n\\n\\nCricket: Select Matches\\n\\n\\n\\n\\n\\n\\n\\nMel Kiper's NFL Mock Draft 3.0\\n\\n\\nQuick Links\\n\\n\\n\\n\\nMen's Tournament Challenge\\n\\n\\n\\n\\n\\n\\n\\nWomen's Tournament Challenge\\n\\n\\n\\n\\n\\n\\n\\nNFL Draft Order\\n\\n\\n\\n\\n\\n\\n\\nHow To Watch NHL Games\\n\\n\\n\\n\\n\\n\\n\\nFantasy Baseball: Sign Up\\n\\n\\n\\n\\n\\n\\n\\nHow To Watch PGA TOUR\\n\\n\\nESPN Sites\\n\\n\\n\\n\\nESPN Deportes\\n\\n\\n\\n\\n\\n\\n\\nAndscape\\n\\n\\n\\n\\n\\n\\n\\nespnW\\n\\n\\n\\n\\n\\n\\n\\nESPNFC\\n\\n\\n\\n\\n\\n\\n\\nX Games\\n\\n\\n\\n\\n\\n\\n\\nSEC Network\\n\\n\\nESPN Apps\\n\\n\\n\\n\\nESPN\\n\\n\\n\\n\\n\\n\\n\\nESPN Fantasy\\n\\n\\nFollow ESPN\\n\\n\\n\\n\\nFacebook\\n\\n\\n\\n\\n\\n\\n\\nTwitter\\n\\n\\n\\n\\n\\n\\n\\nInstagram\\n\\n\\n\\n\\n\\n\\n\\nSnapchat\\n\\n\\n\\n\\n\\n\\n\\nYouTube\\n\\n\\n\\n\\n\\n\\n\\nThe ESPN Daily Podcast\\n\\n\\nTerms of UsePrivacy PolicyYour US State Privacy RightsChildren's Online Privacy PolicyInterest-Based AdsAbout Nielsen MeasurementDo Not Sell or Share My Personal InformationContact UsDisney Ad Sales SiteWork for ESPNCopyright: © ESPN Enterprises, Inc. All rights reserved.\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\", lookup_str='', metadata={'source': 'https://www.espn.com/'}, lookup_index=0)]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data" ] }, { "cell_type": "code", "execution_count": 11, "id": "878179f7", "metadata": {}, "outputs": [], "source": [ "\"\"\"\n", "# Use this piece of code for testing new custom BeautifulSoup parsers\n", "\n", "import requests\n", "from bs4 import BeautifulSoup\n", "\n", "html_doc = requests.get(\"{INSERT_NEW_URL_HERE}\")\n", "soup = BeautifulSoup(html_doc.text, 'html.parser')\n", "\n", "# Beautiful soup logic to be exported to langchain.document_loaders.webpage.py\n", "# Example: transcript = soup.select_one(\"td[class='scrtext']\").text\n", "# BS4 documentation can be found here: https://www.crummy.com/software/BeautifulSoup/bs4/doc/\n", "\n", "\"\"\";" ] }, { "cell_type": "markdown", "id": "150988e6", "metadata": {}, "source": [ "## Loading multiple webpages\n", "\n", "You can also load multiple webpages at once by passing in a list of urls to the loader. This will return a list of documents in the same order as the urls passed in." ] }, { "cell_type": "code", "execution_count": 4, "id": "e25bbd3b", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[Document(page_content=\"\\n\\n\\n\\n\\n\\n\\n\\n\\nESPN - Serving Sports Fans. Anytime. Anywhere.\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n Skip to main content\\n \\n\\n Skip to navigation\\n \\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n<\\n\\n>\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nMenuESPN\\n\\n\\nSearch\\n\\n\\n\\nscores\\n\\n\\n\\nNFLNBANCAAMNCAAWNHLSoccer…MLBNCAAFGolfTennisSports BettingBoxingCFLNCAACricketF1HorseLLWSMMANASCARNBA G LeagueOlympic SportsRacingRN BBRN FBRugbyWNBAWorld Baseball ClassicWWEX GamesXFLMore ESPNFantasyListenWatchESPN+\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n \\n\\nSUBSCRIBE NOW\\n\\n\\n\\n\\n\\nNHL: Select Games\\n\\n\\n\\n\\n\\n\\n\\nXFL\\n\\n\\n\\n\\n\\n\\n\\nMLB: Select Games\\n\\n\\n\\n\\n\\n\\n\\nNCAA Baseball\\n\\n\\n\\n\\n\\n\\n\\nNCAA Softball\\n\\n\\n\\n\\n\\n\\n\\nCricket: Select Matches\\n\\n\\n\\n\\n\\n\\n\\nMel Kiper's NFL Mock Draft 3.0\\n\\n\\nQuick Links\\n\\n\\n\\n\\nMen's Tournament Challenge\\n\\n\\n\\n\\n\\n\\n\\nWomen's Tournament Challenge\\n\\n\\n\\n\\n\\n\\n\\nNFL Draft Order\\n\\n\\n\\n\\n\\n\\n\\nHow To Watch NHL Games\\n\\n\\n\\n\\n\\n\\n\\nFantasy Baseball: Sign Up\\n\\n\\n\\n\\n\\n\\n\\nHow To Watch PGA TOUR\\n\\n\\n\\n\\n\\n\\nFavorites\\n\\n\\n\\n\\n\\n\\n Manage Favorites\\n \\n\\n\\n\\nCustomize ESPNSign UpLog InESPN Sites\\n\\n\\n\\n\\nESPN Deportes\\n\\n\\n\\n\\n\\n\\n\\nAndscape\\n\\n\\n\\n\\n\\n\\n\\nespnW\\n\\n\\n\\n\\n\\n\\n\\nESPNFC\\n\\n\\n\\n\\n\\n\\n\\nX Games\\n\\n\\n\\n\\n\\n\\n\\nSEC Network\\n\\n\\nESPN Apps\\n\\n\\n\\n\\nESPN\\n\\n\\n\\n\\n\\n\\n\\nESPN Fantasy\\n\\n\\nFollow ESPN\\n\\n\\n\\n\\nFacebook\\n\\n\\n\\n\\n\\n\\n\\nTwitter\\n\\n\\n\\n\\n\\n\\n\\nInstagram\\n\\n\\n\\n\\n\\n\\n\\nSnapchat\\n\\n\\n\\n\\n\\n\\n\\nYouTube\\n\\n\\n\\n\\n\\n\\n\\nThe ESPN Daily Podcast\\n\\n\\nAre you ready for Opening Day? Here's your guide to MLB's offseason chaosWait, Jacob deGrom is on the Rangers now? Xander Bogaerts and Trea Turner signed where? And what about Carlos Correa? Yeah, you're going to need to read up before Opening Day.12hESPNIllustration by ESPNEverything you missed in the MLB offseason3h2:33World Series odds, win totals, props for every teamPlay fantasy baseball for free!TOP HEADLINESQB Jackson has requested trade from RavensSources: Texas hiring Terry as full-time coachJets GM: No rush on Rodgers; Lamar not optionLove to leave North Carolina, enter transfer portalBelichick to angsty Pats fans: See last 25 yearsEmbiid out, Harden due back vs. Jokic, NuggetsLynch: Purdy 'earned the right' to start for NinersMan Utd, Wrexham plan July friendly in San DiegoOn paper, Padres overtake DodgersLAMAR WANTS OUT OF BALTIMOREMarcus Spears identifies the two teams that need Lamar Jackson the most7h2:00Would Lamar sit out? Will Ravens draft a QB? Jackson trade request insightsLamar Jackson has asked Baltimore to trade him, but Ravens coach John Harbaugh hopes the QB will be back.3hJamison HensleyBallard, Colts will consider trading for QB JacksonJackson to Indy? Washington? Barnwell ranks the QB's trade fitsSNYDER'S TUMULTUOUS 24-YEAR RUNHow Washington’s NFL franchise sank on and off the field under owner Dan SnyderSnyder purchased one of the NFL's marquee franchises in 1999. Twenty-four years later, and with the team up for sale, he leaves a legacy of on-field futility and off-field scandal.13hJohn KeimESPNIOWA STAR STEPS UP AGAINJ-Will: Caitlin Clark is the biggest brand in college sports right now8h0:47'The better the opponent, the better she plays': Clark draws comparisons to TaurasiCaitlin Clark's performance on Sunday had longtime observers going back decades to find comparisons.16hKevin PeltonWOMEN'S ELITE EIGHT SCOREBOARDMONDAY'S GAMESCheck your bracket!NBA DRAFTHow top prospects fared on the road to the Final FourThe 2023 NCAA tournament is down to four teams, and ESPN's Jonathan Givony recaps the players who saw their NBA draft stock change.11hJonathan GivonyAndy Lyons/Getty ImagesTALKING BASKETBALLWhy AD needs to be more assertive with LeBron on the court9h1:33Why Perk won't blame Kyrie for Mavs' woes8h1:48WHERE EVERY TEAM STANDSNew NFL Power Rankings: Post-free-agency 1-32 poll, plus underrated offseason movesThe free agent frenzy has come and gone. Which teams have improved their 2023 outlook, and which teams have taken a hit?12hNFL Nation reportersIllustration by ESPNTHE BUCK STOPS WITH BELICHICKBruschi: Fair to criticize Bill Belichick for Patriots' struggles10h1:27 Top HeadlinesQB Jackson has requested trade from RavensSources: Texas hiring Terry as full-time coachJets GM: No rush on Rodgers; Lamar not optionLove to leave North Carolina, enter transfer portalBelichick to angsty Pats fans: See last 25 yearsEmbiid out, Harden due back vs. Jokic, NuggetsLynch: Purdy 'earned the right' to start for NinersMan Utd, Wrexham plan July friendly in San DiegoOn paper, Padres overtake DodgersFavorites FantasyManage FavoritesFantasy HomeCustomize ESPNSign UpLog InMarch Madness LiveESPNMarch Madness LiveWatch every men's NCAA tournament game live! ICYMI1:42Austin Peay's coach, pitcher and catcher all ejected after retaliation pitchAustin Peay's pitcher, catcher and coach were all ejected after a pitch was thrown at Liberty's Nathan Keeter, who earlier in the game hit a home run and celebrated while running down the third-base line. Men's Tournament ChallengeIllustration by ESPNMen's Tournament ChallengeCheck your bracket(s) in the 2023 Men's Tournament Challenge, which you can follow throughout the Big Dance. Women's Tournament ChallengeIllustration by ESPNWomen's Tournament ChallengeCheck your bracket(s) in the 2023 Women's Tournament Challenge, which you can follow throughout the Big Dance. Best of ESPN+AP Photo/Lynne SladkyFantasy Baseball ESPN+ Cheat Sheet: Sleepers, busts, rookies and closersYou've read their names all preseason long, it'd be a shame to forget them on draft day. The ESPN+ Cheat Sheet is one way to make sure that doesn't happen.Steph Chambers/Getty ImagesPassan's 2023 MLB season preview: Bold predictions and moreOpening Day is just over a week away -- and Jeff Passan has everything you need to know covered from every possible angle.Photo by Bob Kupbens/Icon Sportswire2023 NFL free agency: Best team fits for unsigned playersWhere could Ezekiel Elliott land? Let's match remaining free agents to teams and find fits for two trade candidates.Illustration by ESPN2023 NFL mock draft: Mel Kiper's first-round pick predictionsMel Kiper Jr. makes his predictions for Round 1 of the NFL draft, including projecting a trade in the top five. Trending NowAnne-Marie Sorvin-USA TODAY SBoston Bruins record tracker: Wins, points, milestonesThe B's are on pace for NHL records in wins and points, along with some individual superlatives as well. Follow along here with our updated tracker.Mandatory Credit: William Purnell-USA TODAY Sports2023 NFL full draft order: AFC, NFC team picks for all roundsStarting with the Carolina Panthers at No. 1 overall, here's the entire 2023 NFL draft broken down round by round. How to Watch on ESPN+Gregory Fisher/Icon Sportswire2023 NCAA men's hockey: Results, bracket, how to watchThe matchups in Tampa promise to be thrillers, featuring plenty of star power, high-octane offense and stellar defense.(AP Photo/Koji Sasahara, File)How to watch the PGA Tour, Masters, PGA Championship and FedEx Cup playoffs on ESPN, ESPN+Here's everything you need to know about how to watch the PGA Tour, Masters, PGA Championship and FedEx Cup playoffs on ESPN and ESPN+.Hailie Lynch/XFLHow to watch the XFL: 2023 schedule, teams, players, news, moreEvery XFL game will be streamed on ESPN+. Find out when and where else you can watch the eight teams compete. Sign up to play the #1 Fantasy Baseball GameReactivate A LeagueCreate A LeagueJoin a Public LeaguePractice With a Mock DraftSports BettingAP Photo/Mike KropfMarch Madness betting 2023: Bracket odds, lines, tips, moreThe 2023 NCAA tournament brackets have finally been released, and we have everything you need to know to make a bet on all of the March Madness games. Sign up to play the #1 Fantasy game!Create A LeagueJoin Public LeagueReactivateMock Draft Now\\n\\nESPN+\\n\\n\\n\\n\\nNHL: Select Games\\n\\n\\n\\n\\n\\n\\n\\nXFL\\n\\n\\n\\n\\n\\n\\n\\nMLB: Select Games\\n\\n\\n\\n\\n\\n\\n\\nNCAA Baseball\\n\\n\\n\\n\\n\\n\\n\\nNCAA Softball\\n\\n\\n\\n\\n\\n\\n\\nCricket: Select Matches\\n\\n\\n\\n\\n\\n\\n\\nMel Kiper's NFL Mock Draft 3.0\\n\\n\\nQuick Links\\n\\n\\n\\n\\nMen's Tournament Challenge\\n\\n\\n\\n\\n\\n\\n\\nWomen's Tournament Challenge\\n\\n\\n\\n\\n\\n\\n\\nNFL Draft Order\\n\\n\\n\\n\\n\\n\\n\\nHow To Watch NHL Games\\n\\n\\n\\n\\n\\n\\n\\nFantasy Baseball: Sign Up\\n\\n\\n\\n\\n\\n\\n\\nHow To Watch PGA TOUR\\n\\n\\nESPN Sites\\n\\n\\n\\n\\nESPN Deportes\\n\\n\\n\\n\\n\\n\\n\\nAndscape\\n\\n\\n\\n\\n\\n\\n\\nespnW\\n\\n\\n\\n\\n\\n\\n\\nESPNFC\\n\\n\\n\\n\\n\\n\\n\\nX Games\\n\\n\\n\\n\\n\\n\\n\\nSEC Network\\n\\n\\nESPN Apps\\n\\n\\n\\n\\nESPN\\n\\n\\n\\n\\n\\n\\n\\nESPN Fantasy\\n\\n\\nFollow ESPN\\n\\n\\n\\n\\nFacebook\\n\\n\\n\\n\\n\\n\\n\\nTwitter\\n\\n\\n\\n\\n\\n\\n\\nInstagram\\n\\n\\n\\n\\n\\n\\n\\nSnapchat\\n\\n\\n\\n\\n\\n\\n\\nYouTube\\n\\n\\n\\n\\n\\n\\n\\nThe ESPN Daily Podcast\\n\\n\\nTerms of UsePrivacy PolicyYour US State Privacy RightsChildren's Online Privacy PolicyInterest-Based AdsAbout Nielsen MeasurementDo Not Sell or Share My Personal InformationContact UsDisney Ad Sales SiteWork for ESPNCopyright: © ESPN Enterprises, Inc. All rights reserved.\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\", lookup_str='', metadata={'source': 'https://www.espn.com/'}, lookup_index=0),\n", " Document(page_content='GoogleSearch Images Maps Play YouTube News Gmail Drive More »Web History | Settings | Sign in\\xa0Advanced searchAdvertisingBusiness SolutionsAbout Google© 2023 - Privacy - Terms ', lookup_str='', metadata={'source': 'https://google.com'}, lookup_index=0)]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "loader = WebBaseLoader([\"https://www.espn.com/\", \"https://google.com\"])\n", "docs = loader.load()\n", "docs" ] }, { "cell_type": "markdown", "id": "641be294", "metadata": {}, "source": [ "### Load multiple urls concurrently\n", "\n", "You can speed up the scraping process by scraping and parsing multiple urls concurrently.\n", "\n", "There are reasonable limits to concurrent requests, defaulting to 2 per second. If you aren't concerned about being a good citizen, or you control the server you are scraping and don't care about load, you can change the `requests_per_second` parameter to increase the max concurrent requests. Note, while this will speed up the scraping process, but may cause the server to block you. Be careful!" ] }, { "cell_type": "code", "execution_count": 9, "id": "9f9cf30f", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: nest_asyncio in /Users/harrisonchase/.pyenv/versions/3.9.1/envs/langchain/lib/python3.9/site-packages (1.5.6)\n" ] } ], "source": [ "!pip install nest_asyncio\n", "\n", "# fixes a bug with asyncio and jupyter\n", "import nest_asyncio\n", "\n", "nest_asyncio.apply()" ] }, { "cell_type": "code", "execution_count": 10, "id": "49586eac", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[Document(page_content=\"\\n\\n\\n\\n\\n\\n\\n\\n\\nESPN - Serving Sports Fans. Anytime. Anywhere.\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n Skip to main content\\n \\n\\n Skip to navigation\\n \\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n<\\n\\n>\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nMenuESPN\\n\\n\\nSearch\\n\\n\\n\\nscores\\n\\n\\n\\nNFLNBANCAAMNCAAWNHLSoccer…MLBNCAAFGolfTennisSports BettingBoxingCFLNCAACricketF1HorseLLWSMMANASCARNBA G LeagueOlympic SportsRacingRN BBRN FBRugbyWNBAWorld Baseball ClassicWWEX GamesXFLMore ESPNFantasyListenWatchESPN+\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n \\n\\nSUBSCRIBE NOW\\n\\n\\n\\n\\n\\nNHL: Select Games\\n\\n\\n\\n\\n\\n\\n\\nXFL\\n\\n\\n\\n\\n\\n\\n\\nMLB: Select Games\\n\\n\\n\\n\\n\\n\\n\\nNCAA Baseball\\n\\n\\n\\n\\n\\n\\n\\nNCAA Softball\\n\\n\\n\\n\\n\\n\\n\\nCricket: Select Matches\\n\\n\\n\\n\\n\\n\\n\\nMel Kiper's NFL Mock Draft 3.0\\n\\n\\nQuick Links\\n\\n\\n\\n\\nMen's Tournament Challenge\\n\\n\\n\\n\\n\\n\\n\\nWomen's Tournament Challenge\\n\\n\\n\\n\\n\\n\\n\\nNFL Draft Order\\n\\n\\n\\n\\n\\n\\n\\nHow To Watch NHL Games\\n\\n\\n\\n\\n\\n\\n\\nFantasy Baseball: Sign Up\\n\\n\\n\\n\\n\\n\\n\\nHow To Watch PGA TOUR\\n\\n\\n\\n\\n\\n\\nFavorites\\n\\n\\n\\n\\n\\n\\n Manage Favorites\\n \\n\\n\\n\\nCustomize ESPNSign UpLog InESPN Sites\\n\\n\\n\\n\\nESPN Deportes\\n\\n\\n\\n\\n\\n\\n\\nAndscape\\n\\n\\n\\n\\n\\n\\n\\nespnW\\n\\n\\n\\n\\n\\n\\n\\nESPNFC\\n\\n\\n\\n\\n\\n\\n\\nX Games\\n\\n\\n\\n\\n\\n\\n\\nSEC Network\\n\\n\\nESPN Apps\\n\\n\\n\\n\\nESPN\\n\\n\\n\\n\\n\\n\\n\\nESPN Fantasy\\n\\n\\nFollow ESPN\\n\\n\\n\\n\\nFacebook\\n\\n\\n\\n\\n\\n\\n\\nTwitter\\n\\n\\n\\n\\n\\n\\n\\nInstagram\\n\\n\\n\\n\\n\\n\\n\\nSnapchat\\n\\n\\n\\n\\n\\n\\n\\nYouTube\\n\\n\\n\\n\\n\\n\\n\\nThe ESPN Daily Podcast\\n\\n\\nAre you ready for Opening Day? Here's your guide to MLB's offseason chaosWait, Jacob deGrom is on the Rangers now? Xander Bogaerts and Trea Turner signed where? And what about Carlos Correa? Yeah, you're going to need to read up before Opening Day.12hESPNIllustration by ESPNEverything you missed in the MLB offseason3h2:33World Series odds, win totals, props for every teamPlay fantasy baseball for free!TOP HEADLINESQB Jackson has requested trade from RavensSources: Texas hiring Terry as full-time coachJets GM: No rush on Rodgers; Lamar not optionLove to leave North Carolina, enter transfer portalBelichick to angsty Pats fans: See last 25 yearsEmbiid out, Harden due back vs. Jokic, NuggetsLynch: Purdy 'earned the right' to start for NinersMan Utd, Wrexham plan July friendly in San DiegoOn paper, Padres overtake DodgersLAMAR WANTS OUT OF BALTIMOREMarcus Spears identifies the two teams that need Lamar Jackson the most7h2:00Would Lamar sit out? Will Ravens draft a QB? Jackson trade request insightsLamar Jackson has asked Baltimore to trade him, but Ravens coach John Harbaugh hopes the QB will be back.3hJamison HensleyBallard, Colts will consider trading for QB JacksonJackson to Indy? Washington? Barnwell ranks the QB's trade fitsSNYDER'S TUMULTUOUS 24-YEAR RUNHow Washington’s NFL franchise sank on and off the field under owner Dan SnyderSnyder purchased one of the NFL's marquee franchises in 1999. Twenty-four years later, and with the team up for sale, he leaves a legacy of on-field futility and off-field scandal.13hJohn KeimESPNIOWA STAR STEPS UP AGAINJ-Will: Caitlin Clark is the biggest brand in college sports right now8h0:47'The better the opponent, the better she plays': Clark draws comparisons to TaurasiCaitlin Clark's performance on Sunday had longtime observers going back decades to find comparisons.16hKevin PeltonWOMEN'S ELITE EIGHT SCOREBOARDMONDAY'S GAMESCheck your bracket!NBA DRAFTHow top prospects fared on the road to the Final FourThe 2023 NCAA tournament is down to four teams, and ESPN's Jonathan Givony recaps the players who saw their NBA draft stock change.11hJonathan GivonyAndy Lyons/Getty ImagesTALKING BASKETBALLWhy AD needs to be more assertive with LeBron on the court9h1:33Why Perk won't blame Kyrie for Mavs' woes8h1:48WHERE EVERY TEAM STANDSNew NFL Power Rankings: Post-free-agency 1-32 poll, plus underrated offseason movesThe free agent frenzy has come and gone. Which teams have improved their 2023 outlook, and which teams have taken a hit?12hNFL Nation reportersIllustration by ESPNTHE BUCK STOPS WITH BELICHICKBruschi: Fair to criticize Bill Belichick for Patriots' struggles10h1:27 Top HeadlinesQB Jackson has requested trade from RavensSources: Texas hiring Terry as full-time coachJets GM: No rush on Rodgers; Lamar not optionLove to leave North Carolina, enter transfer portalBelichick to angsty Pats fans: See last 25 yearsEmbiid out, Harden due back vs. Jokic, NuggetsLynch: Purdy 'earned the right' to start for NinersMan Utd, Wrexham plan July friendly in San DiegoOn paper, Padres overtake DodgersFavorites FantasyManage FavoritesFantasy HomeCustomize ESPNSign UpLog InMarch Madness LiveESPNMarch Madness LiveWatch every men's NCAA tournament game live! ICYMI1:42Austin Peay's coach, pitcher and catcher all ejected after retaliation pitchAustin Peay's pitcher, catcher and coach were all ejected after a pitch was thrown at Liberty's Nathan Keeter, who earlier in the game hit a home run and celebrated while running down the third-base line. Men's Tournament ChallengeIllustration by ESPNMen's Tournament ChallengeCheck your bracket(s) in the 2023 Men's Tournament Challenge, which you can follow throughout the Big Dance. Women's Tournament ChallengeIllustration by ESPNWomen's Tournament ChallengeCheck your bracket(s) in the 2023 Women's Tournament Challenge, which you can follow throughout the Big Dance. Best of ESPN+AP Photo/Lynne SladkyFantasy Baseball ESPN+ Cheat Sheet: Sleepers, busts, rookies and closersYou've read their names all preseason long, it'd be a shame to forget them on draft day. The ESPN+ Cheat Sheet is one way to make sure that doesn't happen.Steph Chambers/Getty ImagesPassan's 2023 MLB season preview: Bold predictions and moreOpening Day is just over a week away -- and Jeff Passan has everything you need to know covered from every possible angle.Photo by Bob Kupbens/Icon Sportswire2023 NFL free agency: Best team fits for unsigned playersWhere could Ezekiel Elliott land? Let's match remaining free agents to teams and find fits for two trade candidates.Illustration by ESPN2023 NFL mock draft: Mel Kiper's first-round pick predictionsMel Kiper Jr. makes his predictions for Round 1 of the NFL draft, including projecting a trade in the top five. Trending NowAnne-Marie Sorvin-USA TODAY SBoston Bruins record tracker: Wins, points, milestonesThe B's are on pace for NHL records in wins and points, along with some individual superlatives as well. Follow along here with our updated tracker.Mandatory Credit: William Purnell-USA TODAY Sports2023 NFL full draft order: AFC, NFC team picks for all roundsStarting with the Carolina Panthers at No. 1 overall, here's the entire 2023 NFL draft broken down round by round. How to Watch on ESPN+Gregory Fisher/Icon Sportswire2023 NCAA men's hockey: Results, bracket, how to watchThe matchups in Tampa promise to be thrillers, featuring plenty of star power, high-octane offense and stellar defense.(AP Photo/Koji Sasahara, File)How to watch the PGA Tour, Masters, PGA Championship and FedEx Cup playoffs on ESPN, ESPN+Here's everything you need to know about how to watch the PGA Tour, Masters, PGA Championship and FedEx Cup playoffs on ESPN and ESPN+.Hailie Lynch/XFLHow to watch the XFL: 2023 schedule, teams, players, news, moreEvery XFL game will be streamed on ESPN+. Find out when and where else you can watch the eight teams compete. Sign up to play the #1 Fantasy Baseball GameReactivate A LeagueCreate A LeagueJoin a Public LeaguePractice With a Mock DraftSports BettingAP Photo/Mike KropfMarch Madness betting 2023: Bracket odds, lines, tips, moreThe 2023 NCAA tournament brackets have finally been released, and we have everything you need to know to make a bet on all of the March Madness games. Sign up to play the #1 Fantasy game!Create A LeagueJoin Public LeagueReactivateMock Draft Now\\n\\nESPN+\\n\\n\\n\\n\\nNHL: Select Games\\n\\n\\n\\n\\n\\n\\n\\nXFL\\n\\n\\n\\n\\n\\n\\n\\nMLB: Select Games\\n\\n\\n\\n\\n\\n\\n\\nNCAA Baseball\\n\\n\\n\\n\\n\\n\\n\\nNCAA Softball\\n\\n\\n\\n\\n\\n\\n\\nCricket: Select Matches\\n\\n\\n\\n\\n\\n\\n\\nMel Kiper's NFL Mock Draft 3.0\\n\\n\\nQuick Links\\n\\n\\n\\n\\nMen's Tournament Challenge\\n\\n\\n\\n\\n\\n\\n\\nWomen's Tournament Challenge\\n\\n\\n\\n\\n\\n\\n\\nNFL Draft Order\\n\\n\\n\\n\\n\\n\\n\\nHow To Watch NHL Games\\n\\n\\n\\n\\n\\n\\n\\nFantasy Baseball: Sign Up\\n\\n\\n\\n\\n\\n\\n\\nHow To Watch PGA TOUR\\n\\n\\nESPN Sites\\n\\n\\n\\n\\nESPN Deportes\\n\\n\\n\\n\\n\\n\\n\\nAndscape\\n\\n\\n\\n\\n\\n\\n\\nespnW\\n\\n\\n\\n\\n\\n\\n\\nESPNFC\\n\\n\\n\\n\\n\\n\\n\\nX Games\\n\\n\\n\\n\\n\\n\\n\\nSEC Network\\n\\n\\nESPN Apps\\n\\n\\n\\n\\nESPN\\n\\n\\n\\n\\n\\n\\n\\nESPN Fantasy\\n\\n\\nFollow ESPN\\n\\n\\n\\n\\nFacebook\\n\\n\\n\\n\\n\\n\\n\\nTwitter\\n\\n\\n\\n\\n\\n\\n\\nInstagram\\n\\n\\n\\n\\n\\n\\n\\nSnapchat\\n\\n\\n\\n\\n\\n\\n\\nYouTube\\n\\n\\n\\n\\n\\n\\n\\nThe ESPN Daily Podcast\\n\\n\\nTerms of UsePrivacy PolicyYour US State Privacy RightsChildren's Online Privacy PolicyInterest-Based AdsAbout Nielsen MeasurementDo Not Sell or Share My Personal InformationContact UsDisney Ad Sales SiteWork for ESPNCopyright: © ESPN Enterprises, Inc. All rights reserved.\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\", lookup_str='', metadata={'source': 'https://www.espn.com/'}, lookup_index=0),\n", " Document(page_content='GoogleSearch Images Maps Play YouTube News Gmail Drive More »Web History | Settings | Sign in\\xa0Advanced searchAdvertisingBusiness SolutionsAbout Google© 2023 - Privacy - Terms ', lookup_str='', metadata={'source': 'https://google.com'}, lookup_index=0)]" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "loader = WebBaseLoader([\"https://www.espn.com/\", \"https://google.com\"])\n", "loader.requests_per_second = 1\n", "docs = loader.aload()\n", "docs" ] }, { "cell_type": "markdown", "id": "e337b130", "metadata": {}, "source": [ "## Loading a xml file, or using a different BeautifulSoup parser\n", "\n", "You can also look at `SitemapLoader` for an example of how to load a sitemap file, which is an example of using this feature." ] }, { "cell_type": "code", "execution_count": 2, "id": "16530c50", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[Document(page_content='\\n\\n10\\nEnergy\\n3\\n2018-01-01\\n2018-01-01\\nfalse\\nUniform test method for the measurement of energy efficiency of commercial packaged boilers.\\n§ 431.86\\nSection § 431.86\\n\\nEnergy\\nDEPARTMENT OF ENERGY\\nENERGY CONSERVATION\\nENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT\\nCommercial Packaged Boilers\\nTest Procedures\\n\\n\\n\\n\\n§\\u2009431.86\\nUniform test method for the measurement of energy efficiency of commercial packaged boilers.\\n(a) Scope. This section provides test procedures, pursuant to the Energy Policy and Conservation Act (EPCA), as amended, which must be followed for measuring the combustion efficiency and/or thermal efficiency of a gas- or oil-fired commercial packaged boiler.\\n(b) Testing and Calculations. Determine the thermal efficiency or combustion efficiency of commercial packaged boilers by conducting the appropriate test procedure(s) indicated in Table 1 of this section.\\n\\nTable 1—Test Requirements for Commercial Packaged Boiler Equipment Classes\\n\\nEquipment category\\nSubcategory\\nCertified rated inputBtu/h\\n\\nStandards efficiency metric(§\\u2009431.87)\\n\\nTest procedure(corresponding to\\nstandards efficiency\\nmetric required\\nby §\\u2009431.87)\\n\\n\\n\\nHot Water\\nGas-fired\\n≥300,000 and ≤2,500,000\\nThermal Efficiency\\nAppendix A, Section 2.\\n\\n\\nHot Water\\nGas-fired\\n>2,500,000\\nCombustion Efficiency\\nAppendix A, Section 3.\\n\\n\\nHot Water\\nOil-fired\\n≥300,000 and ≤2,500,000\\nThermal Efficiency\\nAppendix A, Section 2.\\n\\n\\nHot Water\\nOil-fired\\n>2,500,000\\nCombustion Efficiency\\nAppendix A, Section 3.\\n\\n\\nSteam\\nGas-fired (all*)\\n≥300,000 and ≤2,500,000\\nThermal Efficiency\\nAppendix A, Section 2.\\n\\n\\nSteam\\nGas-fired (all*)\\n>2,500,000 and ≤5,000,000\\nThermal Efficiency\\nAppendix A, Section 2.\\n\\n\\n\\u2003\\n\\n>5,000,000\\nThermal Efficiency\\nAppendix A, Section 2.OR\\nAppendix A, Section 3 with Section 2.4.3.2.\\n\\n\\n\\nSteam\\nOil-fired\\n≥300,000 and ≤2,500,000\\nThermal Efficiency\\nAppendix A, Section 2.\\n\\n\\nSteam\\nOil-fired\\n>2,500,000 and ≤5,000,000\\nThermal Efficiency\\nAppendix A, Section 2.\\n\\n\\n\\u2003\\n\\n>5,000,000\\nThermal Efficiency\\nAppendix A, Section 2.OR\\nAppendix A, Section 3. with Section 2.4.3.2.\\n\\n\\n\\n*\\u2009Equipment classes for commercial packaged boilers as of July 22, 2009 (74 FR 36355) distinguish between gas-fired natural draft and all other gas-fired (except natural draft).\\n\\n(c) Field Tests. The field test provisions of appendix A may be used only to test a unit of commercial packaged boiler with rated input greater than 5,000,000 Btu/h.\\n[81 FR 89305, Dec. 9, 2016]\\n\\n\\nEnergy Efficiency Standards\\n\\n', lookup_str='', metadata={'source': 'https://www.govinfo.gov/content/pkg/CFR-2018-title10-vol3/xml/CFR-2018-title10-vol3-sec431-86.xml'}, lookup_index=0)]" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "loader = WebBaseLoader(\n", " \"https://www.govinfo.gov/content/pkg/CFR-2018-title10-vol3/xml/CFR-2018-title10-vol3-sec431-86.xml\"\n", ")\n", "loader.default_parser = \"xml\"\n", "docs = loader.load()\n", "docs" ] }, { "cell_type": "code", "execution_count": null, "id": "1dd8ab23", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.6" } }, "nbformat": 4, "nbformat_minor": 5 }
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,483
[SSL: CERTIFICATE_VERIFY_FAILED] while load from SitemapLoader
### System Info langchain: 0.0.181 platform: windows python: 3.11.3 ### Who can help? @eyurtsev ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```py site_loader = SitemapLoader(web_path="https://help.glueup.com/sitemap_index.xml") docs = site_loader.load() print(docs[0]) # ssl.SSLCertVerificationError: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable to get local issuer certificate (_ssl.c:1002) ``` ### Expected behavior print the frist doc
https://github.com/langchain-ai/langchain/issues/5483
https://github.com/langchain-ai/langchain/pull/6256
10bff4ecc420317a86043a8f0287363618be77e6
b2b9ded12facf3ae205eb4b1cbb455eca6af8977
"2023-05-31T07:52:33Z"
python
"2023-06-19T01:34:18Z"
langchain/document_loaders/web_base.py
"""Web base loader class.""" import asyncio import logging import warnings from typing import Any, Dict, List, Optional, Union import aiohttp import requests from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader logger = logging.getLogger(__name__) default_header_template = { "User-Agent": "", "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*" ";q=0.8", "Accept-Language": "en-US,en;q=0.5", "Referer": "https://www.google.com/", "DNT": "1", "Connection": "keep-alive", "Upgrade-Insecure-Requests": "1", } def _build_metadata(soup: Any, url: str) -> dict: """Build metadata from BeautifulSoup output.""" metadata = {"source": url} if title := soup.find("title"): metadata["title"] = title.get_text() if description := soup.find("meta", attrs={"name": "description"}): metadata["description"] = description.get("content", None) if html := soup.find("html"): metadata["language"] = html.get("lang", None) return metadata class WebBaseLoader(BaseLoader): """Loader that uses urllib and beautiful soup to load webpages.""" web_paths: List[str] requests_per_second: int = 2 """Max number of concurrent requests to make.""" default_parser: str = "html.parser" """Default parser to use for BeautifulSoup.""" requests_kwargs: Dict[str, Any] = {} """kwargs for requests""" def __init__( self, web_path: Union[str, List[str]], header_template: Optional[dict] = None, verify: Optional[bool] = True, ): """Initialize with webpage path.""" # TODO: Deprecate web_path in favor of web_paths, and remove this # left like this because there are a number of loaders that expect single # urls if isinstance(web_path, str): self.web_paths = [web_path] elif isinstance(web_path, List): self.web_paths = web_path self.session = requests.Session() try: import bs4 # noqa:F401 except ImportError: raise ValueError( "bs4 package not found, please install it with " "`pip install bs4`" ) # Choose to verify self.verify = verify headers = header_template or default_header_template if not headers.get("User-Agent"): try: from fake_useragent import UserAgent headers["User-Agent"] = UserAgent().random except ImportError: logger.info( "fake_useragent not found, using default user agent." "To get a realistic header for requests, " "`pip install fake_useragent`." ) self.session.headers = dict(headers) @property def web_path(self) -> str: if len(self.web_paths) > 1: raise ValueError("Multiple webpaths found.") return self.web_paths[0] async def _fetch( self, url: str, retries: int = 3, cooldown: int = 2, backoff: float = 1.5 ) -> str: async with aiohttp.ClientSession() as session: for i in range(retries): try: async with session.get( url, headers=self.session.headers, verify=self.verify ) as response: return await response.text() except aiohttp.ClientConnectionError as e: if i == retries - 1: raise else: logger.warning( f"Error fetching {url} with attempt " f"{i + 1}/{retries}: {e}. Retrying..." ) await asyncio.sleep(cooldown * backoff**i) raise ValueError("retry count exceeded") async def _fetch_with_rate_limit( self, url: str, semaphore: asyncio.Semaphore ) -> str: async with semaphore: return await self._fetch(url) async def fetch_all(self, urls: List[str]) -> Any: """Fetch all urls concurrently with rate limiting.""" semaphore = asyncio.Semaphore(self.requests_per_second) tasks = [] for url in urls: task = asyncio.ensure_future(self._fetch_with_rate_limit(url, semaphore)) tasks.append(task) try: from tqdm.asyncio import tqdm_asyncio return await tqdm_asyncio.gather( *tasks, desc="Fetching pages", ascii=True, mininterval=1 ) except ImportError: warnings.warn("For better logging of progress, `pip install tqdm`") return await asyncio.gather(*tasks) @staticmethod def _check_parser(parser: str) -> None: """Check that parser is valid for bs4.""" valid_parsers = ["html.parser", "lxml", "xml", "lxml-xml", "html5lib"] if parser not in valid_parsers: raise ValueError( "`parser` must be one of " + ", ".join(valid_parsers) + "." ) def scrape_all(self, urls: List[str], parser: Union[str, None] = None) -> List[Any]: """Fetch all urls, then return soups for all results.""" from bs4 import BeautifulSoup results = asyncio.run(self.fetch_all(urls)) final_results = [] for i, result in enumerate(results): url = urls[i] if parser is None: if url.endswith(".xml"): parser = "xml" else: parser = self.default_parser self._check_parser(parser) final_results.append(BeautifulSoup(result, parser)) return final_results def _scrape(self, url: str, parser: Union[str, None] = None) -> Any: from bs4 import BeautifulSoup if parser is None: if url.endswith(".xml"): parser = "xml" else: parser = self.default_parser self._check_parser(parser) html_doc = self.session.get(url, verify=self.verify, **self.requests_kwargs) html_doc.encoding = html_doc.apparent_encoding return BeautifulSoup(html_doc.text, parser) def scrape(self, parser: Union[str, None] = None) -> Any: """Scrape data from webpage and return it in BeautifulSoup format.""" if parser is None: parser = self.default_parser return self._scrape(self.web_path, parser) def load(self) -> List[Document]: """Load text from the url(s) in web_path.""" docs = [] for path in self.web_paths: soup = self._scrape(path) text = soup.get_text() metadata = _build_metadata(soup, path) docs.append(Document(page_content=text, metadata=metadata)) return docs def aload(self) -> List[Document]: """Load text from the urls in web_path async into Documents.""" results = self.scrape_all(self.web_paths) docs = [] for i in range(len(results)): soup = results[i] text = soup.get_text() metadata = _build_metadata(soup, self.web_paths[i]) docs.append(Document(page_content=text, metadata=metadata)) return docs
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,431
ChatPromptTemplate with partial variables is giving validation error
### System Info langchain-0.0.205, python3.10 ### Who can help? @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [X] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. Write this into Notebook cell 2. `from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate chat_prompt = ChatPromptTemplate( messages=[ HumanMessagePromptTemplate.from_template("Do something with {question} using {context} giving it like {formatins}") ], input_variables=["question", "context"], partial_variables={"formatins": "some structure"} ) ` 3. It it throwing following error: `Error: ValidationError: 1 validation error for ChatPromptTemplate __root__ Got mismatched input_variables. Expected: {'formatins', 'question', 'context'}. Got: ['question', 'context'] (type=value_error)` 4. This was working until 24 hours ago. Potentially related to recent commit to langchain/prompts/chat.py. ### Expected behavior The chat_prompt should get created with the partial variables injected. If this is expected change, can you please help with suggesting what should be the new way to use partial_variables? Thanks
https://github.com/langchain-ai/langchain/issues/6431
https://github.com/langchain-ai/langchain/pull/6456
02c0a1e77eb9636850c8c29da33885a32b4cc2eb
6efd5fa2b9d46c7b4db6ad638097f010b745f0cc
"2023-06-19T16:15:49Z"
python
"2023-06-20T05:08:15Z"
langchain/prompts/chat.py
"""Chat prompt template.""" from __future__ import annotations from abc import ABC, abstractmethod from pathlib import Path from typing import Any, Callable, List, Sequence, Tuple, Type, TypeVar, Union from pydantic import Field, root_validator from langchain.load.serializable import Serializable from langchain.memory.buffer import get_buffer_string from langchain.prompts.base import BasePromptTemplate, StringPromptTemplate from langchain.prompts.prompt import PromptTemplate from langchain.schema import ( AIMessage, BaseMessage, ChatMessage, HumanMessage, PromptValue, SystemMessage, ) class BaseMessagePromptTemplate(Serializable, ABC): @property def lc_serializable(self) -> bool: return True @abstractmethod def format_messages(self, **kwargs: Any) -> List[BaseMessage]: """To messages.""" @property @abstractmethod def input_variables(self) -> List[str]: """Input variables for this prompt template.""" class MessagesPlaceholder(BaseMessagePromptTemplate): """Prompt template that assumes variable is already list of messages.""" variable_name: str def format_messages(self, **kwargs: Any) -> List[BaseMessage]: """To a BaseMessage.""" value = kwargs[self.variable_name] if not isinstance(value, list): raise ValueError( f"variable {self.variable_name} should be a list of base messages, " f"got {value}" ) for v in value: if not isinstance(v, BaseMessage): raise ValueError( f"variable {self.variable_name} should be a list of base messages," f" got {value}" ) return value @property def input_variables(self) -> List[str]: """Input variables for this prompt template.""" return [self.variable_name] MessagePromptTemplateT = TypeVar( "MessagePromptTemplateT", bound="BaseStringMessagePromptTemplate" ) class BaseStringMessagePromptTemplate(BaseMessagePromptTemplate, ABC): prompt: StringPromptTemplate additional_kwargs: dict = Field(default_factory=dict) @classmethod def from_template( cls: Type[MessagePromptTemplateT], template: str, template_format: str = "f-string", **kwargs: Any, ) -> MessagePromptTemplateT: prompt = PromptTemplate.from_template(template, template_format=template_format) return cls(prompt=prompt, **kwargs) @classmethod def from_template_file( cls: Type[MessagePromptTemplateT], template_file: Union[str, Path], input_variables: List[str], **kwargs: Any, ) -> MessagePromptTemplateT: prompt = PromptTemplate.from_file(template_file, input_variables) return cls(prompt=prompt, **kwargs) @abstractmethod def format(self, **kwargs: Any) -> BaseMessage: """To a BaseMessage.""" def format_messages(self, **kwargs: Any) -> List[BaseMessage]: return [self.format(**kwargs)] @property def input_variables(self) -> List[str]: return self.prompt.input_variables class ChatMessagePromptTemplate(BaseStringMessagePromptTemplate): role: str def format(self, **kwargs: Any) -> BaseMessage: text = self.prompt.format(**kwargs) return ChatMessage( content=text, role=self.role, additional_kwargs=self.additional_kwargs ) class HumanMessagePromptTemplate(BaseStringMessagePromptTemplate): def format(self, **kwargs: Any) -> BaseMessage: text = self.prompt.format(**kwargs) return HumanMessage(content=text, additional_kwargs=self.additional_kwargs) class AIMessagePromptTemplate(BaseStringMessagePromptTemplate): def format(self, **kwargs: Any) -> BaseMessage: text = self.prompt.format(**kwargs) return AIMessage(content=text, additional_kwargs=self.additional_kwargs) class SystemMessagePromptTemplate(BaseStringMessagePromptTemplate): def format(self, **kwargs: Any) -> BaseMessage: text = self.prompt.format(**kwargs) return SystemMessage(content=text, additional_kwargs=self.additional_kwargs) class ChatPromptValue(PromptValue): messages: List[BaseMessage] def to_string(self) -> str: """Return prompt as string.""" return get_buffer_string(self.messages) def to_messages(self) -> List[BaseMessage]: """Return prompt as messages.""" return self.messages class BaseChatPromptTemplate(BasePromptTemplate, ABC): def format(self, **kwargs: Any) -> str: return self.format_prompt(**kwargs).to_string() def format_prompt(self, **kwargs: Any) -> PromptValue: messages = self.format_messages(**kwargs) return ChatPromptValue(messages=messages) @abstractmethod def format_messages(self, **kwargs: Any) -> List[BaseMessage]: """Format kwargs into a list of messages.""" class ChatPromptTemplate(BaseChatPromptTemplate, ABC): input_variables: List[str] messages: List[Union[BaseMessagePromptTemplate, BaseMessage]] @root_validator(pre=True) def validate_input_variables(cls, values: dict) -> dict: messages = values["messages"] input_vars = set() for message in messages: if isinstance(message, BaseMessagePromptTemplate): input_vars.update(message.input_variables) if "input_variables" in values: if input_vars != set(values["input_variables"]): raise ValueError( "Got mismatched input_variables. " f"Expected: {input_vars}. " f"Got: {values['input_variables']}" ) else: values["input_variables"] = list(input_vars) return values @classmethod def from_template(cls, template: str, **kwargs: Any) -> ChatPromptTemplate: prompt_template = PromptTemplate.from_template(template, **kwargs) message = HumanMessagePromptTemplate(prompt=prompt_template) return cls.from_messages([message]) @classmethod def from_role_strings( cls, string_messages: List[Tuple[str, str]] ) -> ChatPromptTemplate: messages = [ ChatMessagePromptTemplate( prompt=PromptTemplate.from_template(template), role=role ) for role, template in string_messages ] return cls.from_messages(messages) @classmethod def from_strings( cls, string_messages: List[Tuple[Type[BaseMessagePromptTemplate], str]] ) -> ChatPromptTemplate: messages = [ role(prompt=PromptTemplate.from_template(template)) for role, template in string_messages ] return cls.from_messages(messages) @classmethod def from_messages( cls, messages: Sequence[Union[BaseMessagePromptTemplate, BaseMessage]] ) -> ChatPromptTemplate: input_vars = set() for message in messages: if isinstance(message, BaseMessagePromptTemplate): input_vars.update(message.input_variables) return cls(input_variables=list(input_vars), messages=messages) def format(self, **kwargs: Any) -> str: return self.format_prompt(**kwargs).to_string() def format_messages(self, **kwargs: Any) -> List[BaseMessage]: kwargs = self._merge_partial_and_user_variables(**kwargs) result = [] for message_template in self.messages: if isinstance(message_template, BaseMessage): result.extend([message_template]) elif isinstance(message_template, BaseMessagePromptTemplate): rel_params = { k: v for k, v in kwargs.items() if k in message_template.input_variables } message = message_template.format_messages(**rel_params) result.extend(message) else: raise ValueError(f"Unexpected input: {message_template}") return result def partial(self, **kwargs: Union[str, Callable[[], str]]) -> BasePromptTemplate: raise NotImplementedError @property def _prompt_type(self) -> str: return "chat" def save(self, file_path: Union[Path, str]) -> None: raise NotImplementedError
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,431
ChatPromptTemplate with partial variables is giving validation error
### System Info langchain-0.0.205, python3.10 ### Who can help? @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [X] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. Write this into Notebook cell 2. `from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate chat_prompt = ChatPromptTemplate( messages=[ HumanMessagePromptTemplate.from_template("Do something with {question} using {context} giving it like {formatins}") ], input_variables=["question", "context"], partial_variables={"formatins": "some structure"} ) ` 3. It it throwing following error: `Error: ValidationError: 1 validation error for ChatPromptTemplate __root__ Got mismatched input_variables. Expected: {'formatins', 'question', 'context'}. Got: ['question', 'context'] (type=value_error)` 4. This was working until 24 hours ago. Potentially related to recent commit to langchain/prompts/chat.py. ### Expected behavior The chat_prompt should get created with the partial variables injected. If this is expected change, can you please help with suggesting what should be the new way to use partial_variables? Thanks
https://github.com/langchain-ai/langchain/issues/6431
https://github.com/langchain-ai/langchain/pull/6456
02c0a1e77eb9636850c8c29da33885a32b4cc2eb
6efd5fa2b9d46c7b4db6ad638097f010b745f0cc
"2023-06-19T16:15:49Z"
python
"2023-06-20T05:08:15Z"
tests/unit_tests/prompts/test_chat.py
from pathlib import Path from typing import List import pytest from langchain.prompts import PromptTemplate from langchain.prompts.chat import ( AIMessagePromptTemplate, BaseMessagePromptTemplate, ChatMessagePromptTemplate, ChatPromptTemplate, ChatPromptValue, HumanMessagePromptTemplate, SystemMessagePromptTemplate, ) from langchain.schema import HumanMessage def create_messages() -> List[BaseMessagePromptTemplate]: """Create messages.""" system_message_prompt = SystemMessagePromptTemplate( prompt=PromptTemplate( template="Here's some context: {context}", input_variables=["context"], ) ) human_message_prompt = HumanMessagePromptTemplate( prompt=PromptTemplate( template="Hello {foo}, I'm {bar}. Thanks for the {context}", input_variables=["foo", "bar", "context"], ) ) ai_message_prompt = AIMessagePromptTemplate( prompt=PromptTemplate( template="I'm an AI. I'm {foo}. I'm {bar}.", input_variables=["foo", "bar"], ) ) chat_message_prompt = ChatMessagePromptTemplate( role="test", prompt=PromptTemplate( template="I'm a generic message. I'm {foo}. I'm {bar}.", input_variables=["foo", "bar"], ), ) return [ system_message_prompt, human_message_prompt, ai_message_prompt, chat_message_prompt, ] def create_chat_prompt_template() -> ChatPromptTemplate: """Create a chat prompt template.""" return ChatPromptTemplate( input_variables=["foo", "bar", "context"], messages=create_messages(), ) def test_create_chat_prompt_template_from_template() -> None: """Create a chat prompt template.""" prompt = ChatPromptTemplate.from_template("hi {foo} {bar}") assert prompt.messages == [ HumanMessagePromptTemplate.from_template("hi {foo} {bar}") ] def test_create_chat_prompt_template_from_template_partial() -> None: """Create a chat prompt template with partials.""" prompt = ChatPromptTemplate.from_template( "hi {foo} {bar}", partial_variables={"foo": "jim"} ) expected_prompt = PromptTemplate( template="hi {foo} {bar}", input_variables=["bar"], partial_variables={"foo": "jim"}, ) assert len(prompt.messages) == 1 output_prompt = prompt.messages[0] assert isinstance(output_prompt, HumanMessagePromptTemplate) assert output_prompt.prompt == expected_prompt def test_message_prompt_template_from_template_file() -> None: expected = ChatMessagePromptTemplate( prompt=PromptTemplate( template="Question: {question}\nAnswer:", input_variables=["question"] ), role="human", ) actual = ChatMessagePromptTemplate.from_template_file( Path(__file__).parent.parent / "data" / "prompt_file.txt", ["question"], role="human", ) assert expected == actual def test_chat_prompt_template() -> None: """Test chat prompt template.""" prompt_template = create_chat_prompt_template() prompt = prompt_template.format_prompt(foo="foo", bar="bar", context="context") assert isinstance(prompt, ChatPromptValue) messages = prompt.to_messages() assert len(messages) == 4 assert messages[0].content == "Here's some context: context" assert messages[1].content == "Hello foo, I'm bar. Thanks for the context" assert messages[2].content == "I'm an AI. I'm foo. I'm bar." assert messages[3].content == "I'm a generic message. I'm foo. I'm bar." string = prompt.to_string() expected = ( "System: Here's some context: context\n" "Human: Hello foo, I'm bar. Thanks for the context\n" "AI: I'm an AI. I'm foo. I'm bar.\n" "test: I'm a generic message. I'm foo. I'm bar." ) assert string == expected string = prompt_template.format(foo="foo", bar="bar", context="context") assert string == expected def test_chat_prompt_template_from_messages() -> None: """Test creating a chat prompt template from messages.""" chat_prompt_template = ChatPromptTemplate.from_messages(create_messages()) assert sorted(chat_prompt_template.input_variables) == sorted( ["context", "foo", "bar"] ) assert len(chat_prompt_template.messages) == 4 def test_chat_prompt_template_with_messages() -> None: messages = create_messages() + [HumanMessage(content="foo")] chat_prompt_template = ChatPromptTemplate.from_messages(messages) assert sorted(chat_prompt_template.input_variables) == sorted( ["context", "foo", "bar"] ) assert len(chat_prompt_template.messages) == 5 prompt_value = chat_prompt_template.format_prompt( context="see", foo="this", bar="magic" ) prompt_value_messages = prompt_value.to_messages() assert prompt_value_messages[-1] == HumanMessage(content="foo") def test_chat_invalid_input_variables_extra() -> None: messages = [HumanMessage(content="foo")] with pytest.raises(ValueError): ChatPromptTemplate(messages=messages, input_variables=["foo"]) def test_chat_invalid_input_variables_missing() -> None: messages = [HumanMessagePromptTemplate.from_template("{foo}")] with pytest.raises(ValueError): ChatPromptTemplate(messages=messages, input_variables=[]) def test_infer_variables() -> None: messages = [HumanMessagePromptTemplate.from_template("{foo}")] prompt = ChatPromptTemplate(messages=messages) assert prompt.input_variables == ["foo"]
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,380
Neo4J schema not inferred correctly by Neo4JGraph Object
### System Info langchain=0.0.2 ### Who can help? @hwchase17 ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Steps to reproduce behaviors: 1. Push the following dataset to neo4J (say in neo4J browser) ``` CREATE (la:LabelA {property_a: 'a'}) CREATE (lb:LabelB {property_b1: 123, property_b2: 'b2'}) CREATE (lc:LabelC) MERGE (la)-[:REL_TYPE]-> (lb) MERGE (la)-[:REL_TYPE {rel_prop: 'abc'}]-> (lc) ``` 2. Instantiate a Neo4JGraphObject, connect and refresh schema ``` from langchain.graphs import Neo4jGraph graph = Neo4jGraph( url=NEO4J_URL, username=NEO4J_USERNAME, password=NEO4J_PASSWORD, ) graph.refresh_schema() print(graph.get_schema) ``` You will obtain ``` Node properties are the following: [{'properties': [{'property': 'property_a', 'type': 'STRING'}], 'labels': 'LabelA'}, {'properties': [{'property': 'property_b2', 'type': 'STRING'}, {'property': 'property_b1', 'type': 'INTEGER'}], 'labels': 'LabelB'}] Relationship properties are the following: [{'type': 'REL_TYPE', 'properties': [{'property': 'rel_prop', 'type': 'STRING'}]}] The relationships are the following: ['(:LabelA)-[:REL_TYPE]->(:LabelB)'] ``` ### Expected behavior ``` Node properties are the following: [{'properties': [{'property': 'property_a', 'type': 'STRING'}], 'labels': 'LabelA'}, {'properties': [{'property': 'property_b2', 'type': 'STRING'}, {'property': 'property_b1', 'type': 'INTEGER'}], 'labels': 'LabelB'}] Relationship properties are the following: [{'type': 'REL_TYPE', 'properties': [{'property': 'rel_prop', 'type': 'STRING'}]}] The relationships are the following: ['(:LabelA)-[:REL_TYPE]->(:LabelB)', '(:LabelA)-[:REL_TYPE]->(:LabelC)'] ```
https://github.com/langchain-ai/langchain/issues/6380
https://github.com/langchain-ai/langchain/pull/6381
b0d80c4b3e128f27bd1b9df48ed4afbe17950fec
22601b0b6323e6465f78ca9bc16152062a2b65ba
"2023-06-18T19:19:04Z"
python
"2023-06-20T05:48:35Z"
langchain/graphs/neo4j_graph.py
from typing import Any, Dict, List node_properties_query = """ CALL apoc.meta.data() YIELD label, other, elementType, type, property WHERE NOT type = "RELATIONSHIP" AND elementType = "node" WITH label AS nodeLabels, collect({property:property, type:type}) AS properties RETURN {labels: nodeLabels, properties: properties} AS output """ rel_properties_query = """ CALL apoc.meta.data() YIELD label, other, elementType, type, property WHERE NOT type = "RELATIONSHIP" AND elementType = "relationship" WITH label AS nodeLabels, collect({property:property, type:type}) AS properties RETURN {type: nodeLabels, properties: properties} AS output """ rel_query = """ CALL apoc.meta.data() YIELD label, other, elementType, type, property WHERE type = "RELATIONSHIP" AND elementType = "node" RETURN "(:" + label + ")-[:" + property + "]->(:" + toString(other[0]) + ")" AS output """ class Neo4jGraph: """Neo4j wrapper for graph operations.""" def __init__( self, url: str, username: str, password: str, database: str = "neo4j" ) -> None: """Create a new Neo4j graph wrapper instance.""" try: import neo4j except ImportError: raise ValueError( "Could not import neo4j python package. " "Please install it with `pip install neo4j`." ) self._driver = neo4j.GraphDatabase.driver(url, auth=(username, password)) self._database = database self.schema = "" # Verify connection try: self._driver.verify_connectivity() except neo4j.exceptions.ServiceUnavailable: raise ValueError( "Could not connect to Neo4j database. " "Please ensure that the url is correct" ) except neo4j.exceptions.AuthError: raise ValueError( "Could not connect to Neo4j database. " "Please ensure that the username and password are correct" ) # Set schema try: self.refresh_schema() except neo4j.exceptions.ClientError: raise ValueError( "Could not use APOC procedures. " "Please ensure the APOC plugin is installed in Neo4j and that " "'apoc.meta.data()' is allowed in Neo4j configuration " ) @property def get_schema(self) -> str: """Returns the schema of the Neo4j database""" return self.schema def query(self, query: str, params: dict = {}) -> List[Dict[str, Any]]: """Query Neo4j database.""" from neo4j.exceptions import CypherSyntaxError with self._driver.session(database=self._database) as session: try: data = session.run(query, params) return [r.data() for r in data] except CypherSyntaxError as e: raise ValueError("Generated Cypher Statement is not valid\n" f"{e}") def refresh_schema(self) -> None: """ Refreshes the Neo4j graph schema information. """ node_properties = self.query(node_properties_query) relationships_properties = self.query(rel_properties_query) relationships = self.query(rel_query) self.schema = f""" Node properties are the following: {[el['output'] for el in node_properties]} Relationship properties are the following: {[el['output'] for el in relationships_properties]} The relationships are the following: {[el['output'] for el in relationships]} """
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,380
Neo4J schema not inferred correctly by Neo4JGraph Object
### System Info langchain=0.0.2 ### Who can help? @hwchase17 ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Steps to reproduce behaviors: 1. Push the following dataset to neo4J (say in neo4J browser) ``` CREATE (la:LabelA {property_a: 'a'}) CREATE (lb:LabelB {property_b1: 123, property_b2: 'b2'}) CREATE (lc:LabelC) MERGE (la)-[:REL_TYPE]-> (lb) MERGE (la)-[:REL_TYPE {rel_prop: 'abc'}]-> (lc) ``` 2. Instantiate a Neo4JGraphObject, connect and refresh schema ``` from langchain.graphs import Neo4jGraph graph = Neo4jGraph( url=NEO4J_URL, username=NEO4J_USERNAME, password=NEO4J_PASSWORD, ) graph.refresh_schema() print(graph.get_schema) ``` You will obtain ``` Node properties are the following: [{'properties': [{'property': 'property_a', 'type': 'STRING'}], 'labels': 'LabelA'}, {'properties': [{'property': 'property_b2', 'type': 'STRING'}, {'property': 'property_b1', 'type': 'INTEGER'}], 'labels': 'LabelB'}] Relationship properties are the following: [{'type': 'REL_TYPE', 'properties': [{'property': 'rel_prop', 'type': 'STRING'}]}] The relationships are the following: ['(:LabelA)-[:REL_TYPE]->(:LabelB)'] ``` ### Expected behavior ``` Node properties are the following: [{'properties': [{'property': 'property_a', 'type': 'STRING'}], 'labels': 'LabelA'}, {'properties': [{'property': 'property_b2', 'type': 'STRING'}, {'property': 'property_b1', 'type': 'INTEGER'}], 'labels': 'LabelB'}] Relationship properties are the following: [{'type': 'REL_TYPE', 'properties': [{'property': 'rel_prop', 'type': 'STRING'}]}] The relationships are the following: ['(:LabelA)-[:REL_TYPE]->(:LabelB)', '(:LabelA)-[:REL_TYPE]->(:LabelC)'] ```
https://github.com/langchain-ai/langchain/issues/6380
https://github.com/langchain-ai/langchain/pull/6381
b0d80c4b3e128f27bd1b9df48ed4afbe17950fec
22601b0b6323e6465f78ca9bc16152062a2b65ba
"2023-06-18T19:19:04Z"
python
"2023-06-20T05:48:35Z"
tests/integration_tests/chains/test_graph_database.py
"""Test Graph Database Chain.""" import os from langchain.chains.graph_qa.cypher import GraphCypherQAChain from langchain.chains.loading import load_chain from langchain.graphs import Neo4jGraph from langchain.llms.openai import OpenAI def test_connect_neo4j() -> None: """Test that Neo4j database is correctly instantiated and connected.""" url = os.environ.get("NEO4J_URL") username = os.environ.get("NEO4J_USERNAME") password = os.environ.get("NEO4J_PASSWORD") assert url is not None assert username is not None assert password is not None graph = Neo4jGraph( url=url, username=username, password=password, ) output = graph.query( """ RETURN "test" AS output """ ) expected_output = [{"output": "test"}] assert output == expected_output def test_cypher_generating_run() -> None: """Test that Cypher statement is correctly generated and executed.""" url = os.environ.get("NEO4J_URL") username = os.environ.get("NEO4J_USERNAME") password = os.environ.get("NEO4J_PASSWORD") assert url is not None assert username is not None assert password is not None graph = Neo4jGraph( url=url, username=username, password=password, ) # Delete all nodes in the graph graph.query("MATCH (n) DETACH DELETE n") # Create two nodes and a relationship graph.query( "CREATE (a:Actor {name:'Bruce Willis'})" "-[:ACTED_IN]->(:Movie {title: 'Pulp Fiction'})" ) # Refresh schema information graph.refresh_schema() chain = GraphCypherQAChain.from_llm(OpenAI(temperature=0), graph=graph) output = chain.run("Who played in Pulp Fiction?") expected_output = " Bruce Willis played in Pulp Fiction." assert output == expected_output def test_cypher_top_k() -> None: """Test top_k parameter correctly limits the number of results in the context.""" url = os.environ.get("NEO4J_URL") username = os.environ.get("NEO4J_USERNAME") password = os.environ.get("NEO4J_PASSWORD") assert url is not None assert username is not None assert password is not None TOP_K = 1 graph = Neo4jGraph( url=url, username=username, password=password, ) # Delete all nodes in the graph graph.query("MATCH (n) DETACH DELETE n") # Create two nodes and a relationship graph.query( "CREATE (a:Actor {name:'Bruce Willis'})" "-[:ACTED_IN]->(:Movie {title: 'Pulp Fiction'})" "<-[:ACTED_IN]-(:Actor {name:'Foo'})" ) # Refresh schema information graph.refresh_schema() chain = GraphCypherQAChain.from_llm( OpenAI(temperature=0), graph=graph, return_direct=True, top_k=TOP_K ) output = chain.run("Who played in Pulp Fiction?") assert len(output) == TOP_K def test_cypher_intermediate_steps() -> None: """Test the returning of the intermediate steps.""" url = os.environ.get("NEO4J_URL") username = os.environ.get("NEO4J_USERNAME") password = os.environ.get("NEO4J_PASSWORD") assert url is not None assert username is not None assert password is not None graph = Neo4jGraph( url=url, username=username, password=password, ) # Delete all nodes in the graph graph.query("MATCH (n) DETACH DELETE n") # Create two nodes and a relationship graph.query( "CREATE (a:Actor {name:'Bruce Willis'})" "-[:ACTED_IN]->(:Movie {title: 'Pulp Fiction'})" ) # Refresh schema information graph.refresh_schema() chain = GraphCypherQAChain.from_llm( OpenAI(temperature=0), graph=graph, return_intermediate_steps=True ) output = chain("Who played in Pulp Fiction?") expected_output = " Bruce Willis played in Pulp Fiction." assert output["result"] == expected_output query = output["intermediate_steps"][0]["query"] expected_query = ( "\n\nMATCH (a:Actor)-[:ACTED_IN]->" "(m:Movie {title: 'Pulp Fiction'}) RETURN a.name" ) assert query == expected_query context = output["intermediate_steps"][1]["context"] expected_context = [{"a.name": "Bruce Willis"}] assert context == expected_context def test_cypher_return_direct() -> None: """Test that chain returns direct results.""" url = os.environ.get("NEO4J_URL") username = os.environ.get("NEO4J_USERNAME") password = os.environ.get("NEO4J_PASSWORD") assert url is not None assert username is not None assert password is not None graph = Neo4jGraph( url=url, username=username, password=password, ) # Delete all nodes in the graph graph.query("MATCH (n) DETACH DELETE n") # Create two nodes and a relationship graph.query( "CREATE (a:Actor {name:'Bruce Willis'})" "-[:ACTED_IN]->(:Movie {title: 'Pulp Fiction'})" ) # Refresh schema information graph.refresh_schema() chain = GraphCypherQAChain.from_llm( OpenAI(temperature=0), graph=graph, return_direct=True ) output = chain.run("Who played in Pulp Fiction?") expected_output = [{"a.name": "Bruce Willis"}] assert output == expected_output def test_cypher_save_load() -> None: """Test saving and loading.""" FILE_PATH = "cypher.yaml" url = os.environ.get("NEO4J_URL") username = os.environ.get("NEO4J_USERNAME") password = os.environ.get("NEO4J_PASSWORD") assert url is not None assert username is not None assert password is not None graph = Neo4jGraph( url=url, username=username, password=password, ) chain = GraphCypherQAChain.from_llm( OpenAI(temperature=0), graph=graph, return_direct=True ) chain.save(file_path=FILE_PATH) qa_loaded = load_chain(FILE_PATH, graph=graph) assert qa_loaded == chain
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,234
Gmail toolkit cannot handle sending email to one person correctly
### System Info Gmail toolkit cannot handle sending email to one person correctly - if I want to send email to one person it doesn't consider that `action_input` should look like: ``` { ... to: ["email@gmail.com"] ... } ``` Instead it look like: ``` { ... to: "email@gmail.com" ... } ``` It causes error with `To` header - it provides list of letters to Gmail API - ["e", "m", ...]. Error: ``` <HttpError 400 when requesting https://gmail.googleapis.com/gmail/v1/users/me/messages/send?alt=json returned "Invalid To header". Details: "[{'message': 'Invalid To header', 'domain': 'global', 'reason': 'invalidArgument'}]"> ``` ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Ask agent to send email to person using GmailToolkit tools. ### Expected behavior To always use list of emails in `To` header.
https://github.com/langchain-ai/langchain/issues/6234
https://github.com/langchain-ai/langchain/pull/6242
94c789925798053c08ad8cc262b23f2683abd4d2
5d149e4d50325d2821263e59bac667f781c48f7a
"2023-06-15T15:30:50Z"
python
"2023-06-21T08:25:49Z"
langchain/tools/gmail/send_message.py
"""Send Gmail messages.""" import base64 from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from typing import Any, Dict, List, Optional from pydantic import BaseModel, Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.gmail.base import GmailBaseTool class SendMessageSchema(BaseModel): message: str = Field( ..., description="The message to send.", ) to: List[str] = Field( ..., description="The list of recipients.", ) subject: str = Field( ..., description="The subject of the message.", ) cc: Optional[List[str]] = Field( None, description="The list of CC recipients.", ) bcc: Optional[List[str]] = Field( None, description="The list of BCC recipients.", ) class GmailSendMessage(GmailBaseTool): name: str = "send_gmail_message" description: str = ( "Use this tool to send email messages." " The input is the message, recipents" ) def _prepare_message( self, message: str, to: List[str], subject: str, cc: Optional[List[str]] = None, bcc: Optional[List[str]] = None, ) -> Dict[str, Any]: """Create a message for an email.""" mime_message = MIMEMultipart() mime_message.attach(MIMEText(message, "html")) mime_message["To"] = ", ".join(to) mime_message["Subject"] = subject if cc is not None: mime_message["Cc"] = ", ".join(cc) if bcc is not None: mime_message["Bcc"] = ", ".join(bcc) encoded_message = base64.urlsafe_b64encode(mime_message.as_bytes()).decode() return {"raw": encoded_message} def _run( self, message: str, to: List[str], subject: str, cc: Optional[List[str]] = None, bcc: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Run the tool.""" try: create_message = self._prepare_message(message, to, subject, cc=cc, bcc=bcc) send_message = ( self.api_resource.users() .messages() .send(userId="me", body=create_message) ) sent_message = send_message.execute() return f'Message sent. Message Id: {sent_message["id"]}' except Exception as error: raise Exception(f"An error occurred: {error}") async def _arun( self, message: str, to: List[str], subject: str, cc: Optional[List[str]] = None, bcc: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Run the tool asynchronously.""" raise NotImplementedError(f"The tool {self.name} does not support async yet.")
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,118
Issue: Update OpenAI model token mapping to reflect new API update 2023-06-13
### Issue you'd like to raise. The blog post here https://openai.com/blog/function-calling-and-other-api-updates specifies > - new 16k context version of gpt-3.5-turbo (vs the standard 4k version) The `langchain/llms/openai.py` `model_token_mapping` should be changed to reflect this. ### Suggestion: Add `gpt-3.5-turbo-16k` property to `model_token_mapping` with value 16k
https://github.com/langchain-ai/langchain/issues/6118
https://github.com/langchain-ai/langchain/pull/6122
5d149e4d50325d2821263e59bac667f781c48f7a
e0f468f6c1f7f07bb3987f0887d53ce9af92bb29
"2023-06-13T21:22:21Z"
python
"2023-06-21T08:37:16Z"
langchain/llms/openai.py
"""Wrapper around OpenAI APIs.""" from __future__ import annotations import logging import sys import warnings from typing import ( AbstractSet, Any, Callable, Collection, Dict, Generator, List, Literal, Mapping, Optional, Set, Tuple, Union, ) from pydantic import Field, root_validator from tenacity import ( before_sleep_log, retry, retry_if_exception_type, stop_after_attempt, wait_exponential, ) from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.llms.base import BaseLLM from langchain.schema import Generation, LLMResult from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) def update_token_usage( keys: Set[str], response: Dict[str, Any], token_usage: Dict[str, Any] ) -> None: """Update token usage.""" _keys_to_use = keys.intersection(response["usage"]) for _key in _keys_to_use: if _key not in token_usage: token_usage[_key] = response["usage"][_key] else: token_usage[_key] += response["usage"][_key] def _update_response(response: Dict[str, Any], stream_response: Dict[str, Any]) -> None: """Update response from the stream response.""" response["choices"][0]["text"] += stream_response["choices"][0]["text"] response["choices"][0]["finish_reason"] = stream_response["choices"][0][ "finish_reason" ] response["choices"][0]["logprobs"] = stream_response["choices"][0]["logprobs"] def _streaming_response_template() -> Dict[str, Any]: return { "choices": [ { "text": "", "finish_reason": None, "logprobs": None, } ] } def _create_retry_decorator(llm: Union[BaseOpenAI, OpenAIChat]) -> Callable[[Any], Any]: import openai min_seconds = 4 max_seconds = 10 # Wait 2^x * 1 second between each retry starting with # 4 seconds, then up to 10 seconds, then 10 seconds afterwards return retry( reraise=True, stop=stop_after_attempt(llm.max_retries), wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds), retry=( retry_if_exception_type(openai.error.Timeout) | retry_if_exception_type(openai.error.APIError) | retry_if_exception_type(openai.error.APIConnectionError) | retry_if_exception_type(openai.error.RateLimitError) | retry_if_exception_type(openai.error.ServiceUnavailableError) ), before_sleep=before_sleep_log(logger, logging.WARNING), ) def completion_with_retry(llm: Union[BaseOpenAI, OpenAIChat], **kwargs: Any) -> Any: """Use tenacity to retry the completion call.""" retry_decorator = _create_retry_decorator(llm) @retry_decorator def _completion_with_retry(**kwargs: Any) -> Any: return llm.client.create(**kwargs) return _completion_with_retry(**kwargs) async def acompletion_with_retry( llm: Union[BaseOpenAI, OpenAIChat], **kwargs: Any ) -> Any: """Use tenacity to retry the async completion call.""" retry_decorator = _create_retry_decorator(llm) @retry_decorator async def _completion_with_retry(**kwargs: Any) -> Any: # Use OpenAI's async api https://github.com/openai/openai-python#async-api return await llm.client.acreate(**kwargs) return await _completion_with_retry(**kwargs) class BaseOpenAI(BaseLLM): """Wrapper around OpenAI large language models.""" @property def lc_secrets(self) -> Dict[str, str]: return {"openai_api_key": "OPENAI_API_KEY"} @property def lc_serializable(self) -> bool: return True client: Any #: :meta private: model_name: str = Field("text-davinci-003", alias="model") """Model name to use.""" temperature: float = 0.7 """What sampling temperature to use.""" max_tokens: int = 256 """The maximum number of tokens to generate in the completion. -1 returns as many tokens as possible given the prompt and the models maximal context size.""" top_p: float = 1 """Total probability mass of tokens to consider at each step.""" frequency_penalty: float = 0 """Penalizes repeated tokens according to frequency.""" presence_penalty: float = 0 """Penalizes repeated tokens.""" n: int = 1 """How many completions to generate for each prompt.""" best_of: int = 1 """Generates best_of completions server-side and returns the "best".""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" openai_api_key: Optional[str] = None openai_api_base: Optional[str] = None openai_organization: Optional[str] = None # to support explicit proxy for OpenAI openai_proxy: Optional[str] = None batch_size: int = 20 """Batch size to use when passing multiple documents to generate.""" request_timeout: Optional[Union[float, Tuple[float, float]]] = None """Timeout for requests to OpenAI completion API. Default is 600 seconds.""" logit_bias: Optional[Dict[str, float]] = Field(default_factory=dict) """Adjust the probability of specific tokens being generated.""" max_retries: int = 6 """Maximum number of retries to make when generating.""" streaming: bool = False """Whether to stream the results or not.""" allowed_special: Union[Literal["all"], AbstractSet[str]] = set() """Set of special tokens that are allowed。""" disallowed_special: Union[Literal["all"], Collection[str]] = "all" """Set of special tokens that are not allowed。""" def __new__(cls, **data: Any) -> Union[OpenAIChat, BaseOpenAI]: # type: ignore """Initialize the OpenAI object.""" model_name = data.get("model_name", "") if model_name.startswith("gpt-3.5-turbo") or model_name.startswith("gpt-4"): warnings.warn( "You are trying to use a chat model. This way of initializing it is " "no longer supported. Instead, please use: " "`from langchain.chat_models import ChatOpenAI`" ) return OpenAIChat(**data) return super().__new__(cls) class Config: """Configuration for this pydantic object.""" allow_population_by_field_name = True @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = cls.all_required_field_names() extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") if field_name not in all_required_field_names: logger.warning( f"""WARNING! {field_name} is not default parameter. {field_name} was transferred to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) invalid_model_kwargs = all_required_field_names.intersection(extra.keys()) if invalid_model_kwargs: raise ValueError( f"Parameters {invalid_model_kwargs} should be specified explicitly. " f"Instead they were passed in as part of `model_kwargs` parameter." ) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" values["openai_api_key"] = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY" ) values["openai_api_base"] = get_from_dict_or_env( values, "openai_api_base", "OPENAI_API_BASE", default="", ) values["openai_proxy"] = get_from_dict_or_env( values, "openai_proxy", "OPENAI_PROXY", default="", ) values["openai_organization"] = get_from_dict_or_env( values, "openai_organization", "OPENAI_ORGANIZATION", default="", ) try: import openai values["client"] = openai.Completion except ImportError: raise ImportError( "Could not import openai python package. " "Please install it with `pip install openai`." ) if values["streaming"] and values["n"] > 1: raise ValueError("Cannot stream results when n > 1.") if values["streaming"] and values["best_of"] > 1: raise ValueError("Cannot stream results when best_of > 1.") return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling OpenAI API.""" normal_params = { "temperature": self.temperature, "max_tokens": self.max_tokens, "top_p": self.top_p, "frequency_penalty": self.frequency_penalty, "presence_penalty": self.presence_penalty, "n": self.n, "request_timeout": self.request_timeout, "logit_bias": self.logit_bias, } # Azure gpt-35-turbo doesn't support best_of # don't specify best_of if it is 1 if self.best_of > 1: normal_params["best_of"] = self.best_of return {**normal_params, **self.model_kwargs} def _generate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: """Call out to OpenAI's endpoint with k unique prompts. Args: prompts: The prompts to pass into the model. stop: Optional list of stop words to use when generating. Returns: The full LLM output. Example: .. code-block:: python response = openai.generate(["Tell me a joke."]) """ # TODO: write a unit test for this params = self._invocation_params params = {**params, **kwargs} sub_prompts = self.get_sub_prompts(params, prompts, stop) choices = [] token_usage: Dict[str, int] = {} # Get the token usage from the response. # Includes prompt, completion, and total tokens used. _keys = {"completion_tokens", "prompt_tokens", "total_tokens"} for _prompts in sub_prompts: if self.streaming: if len(_prompts) > 1: raise ValueError("Cannot stream results with multiple prompts.") params["stream"] = True response = _streaming_response_template() for stream_resp in completion_with_retry( self, prompt=_prompts, **params ): if run_manager: run_manager.on_llm_new_token( stream_resp["choices"][0]["text"], verbose=self.verbose, logprobs=stream_resp["choices"][0]["logprobs"], ) _update_response(response, stream_resp) choices.extend(response["choices"]) else: response = completion_with_retry(self, prompt=_prompts, **params) choices.extend(response["choices"]) if not self.streaming: # Can't update token usage if streaming update_token_usage(_keys, response, token_usage) return self.create_llm_result(choices, prompts, token_usage) async def _agenerate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: """Call out to OpenAI's endpoint async with k unique prompts.""" params = self._invocation_params params = {**params, **kwargs} sub_prompts = self.get_sub_prompts(params, prompts, stop) choices = [] token_usage: Dict[str, int] = {} # Get the token usage from the response. # Includes prompt, completion, and total tokens used. _keys = {"completion_tokens", "prompt_tokens", "total_tokens"} for _prompts in sub_prompts: if self.streaming: if len(_prompts) > 1: raise ValueError("Cannot stream results with multiple prompts.") params["stream"] = True response = _streaming_response_template() async for stream_resp in await acompletion_with_retry( self, prompt=_prompts, **params ): if run_manager: await run_manager.on_llm_new_token( stream_resp["choices"][0]["text"], verbose=self.verbose, logprobs=stream_resp["choices"][0]["logprobs"], ) _update_response(response, stream_resp) choices.extend(response["choices"]) else: response = await acompletion_with_retry(self, prompt=_prompts, **params) choices.extend(response["choices"]) if not self.streaming: # Can't update token usage if streaming update_token_usage(_keys, response, token_usage) return self.create_llm_result(choices, prompts, token_usage) def get_sub_prompts( self, params: Dict[str, Any], prompts: List[str], stop: Optional[List[str]] = None, ) -> List[List[str]]: """Get the sub prompts for llm call.""" if stop is not None: if "stop" in params: raise ValueError("`stop` found in both the input and default params.") params["stop"] = stop if params["max_tokens"] == -1: if len(prompts) != 1: raise ValueError( "max_tokens set to -1 not supported for multiple inputs." ) params["max_tokens"] = self.max_tokens_for_prompt(prompts[0]) sub_prompts = [ prompts[i : i + self.batch_size] for i in range(0, len(prompts), self.batch_size) ] return sub_prompts def create_llm_result( self, choices: Any, prompts: List[str], token_usage: Dict[str, int] ) -> LLMResult: """Create the LLMResult from the choices and prompts.""" generations = [] for i, _ in enumerate(prompts): sub_choices = choices[i * self.n : (i + 1) * self.n] generations.append( [ Generation( text=choice["text"], generation_info=dict( finish_reason=choice.get("finish_reason"), logprobs=choice.get("logprobs"), ), ) for choice in sub_choices ] ) llm_output = {"token_usage": token_usage, "model_name": self.model_name} return LLMResult(generations=generations, llm_output=llm_output) def stream(self, prompt: str, stop: Optional[List[str]] = None) -> Generator: """Call OpenAI with streaming flag and return the resulting generator. BETA: this is a beta feature while we figure out the right abstraction. Once that happens, this interface could change. Args: prompt: The prompts to pass into the model. stop: Optional list of stop words to use when generating. Returns: A generator representing the stream of tokens from OpenAI. Example: .. code-block:: python generator = openai.stream("Tell me a joke.") for token in generator: yield token """ params = self.prep_streaming_params(stop) generator = self.client.create(prompt=prompt, **params) return generator def prep_streaming_params(self, stop: Optional[List[str]] = None) -> Dict[str, Any]: """Prepare the params for streaming.""" params = self._invocation_params if "best_of" in params and params["best_of"] != 1: raise ValueError("OpenAI only supports best_of == 1 for streaming") if stop is not None: if "stop" in params: raise ValueError("`stop` found in both the input and default params.") params["stop"] = stop params["stream"] = True return params @property def _invocation_params(self) -> Dict[str, Any]: """Get the parameters used to invoke the model.""" openai_creds: Dict[str, Any] = { "api_key": self.openai_api_key, "api_base": self.openai_api_base, "organization": self.openai_organization, } if self.openai_proxy: import openai openai.proxy = {"http": self.openai_proxy, "https": self.openai_proxy} # type: ignore[assignment] # noqa: E501 return {**openai_creds, **self._default_params} @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {**{"model_name": self.model_name}, **self._default_params} @property def _llm_type(self) -> str: """Return type of llm.""" return "openai" def get_token_ids(self, text: str) -> List[int]: """Get the token IDs using the tiktoken package.""" # tiktoken NOT supported for Python < 3.8 if sys.version_info[1] < 8: return super().get_num_tokens(text) try: import tiktoken except ImportError: raise ImportError( "Could not import tiktoken python package. " "This is needed in order to calculate get_num_tokens. " "Please install it with `pip install tiktoken`." ) enc = tiktoken.encoding_for_model(self.model_name) return enc.encode( text, allowed_special=self.allowed_special, disallowed_special=self.disallowed_special, ) @staticmethod def modelname_to_contextsize(modelname: str) -> int: """Calculate the maximum number of tokens possible to generate for a model. Args: modelname: The modelname we want to know the context size for. Returns: The maximum context size Example: .. code-block:: python max_tokens = openai.modelname_to_contextsize("text-davinci-003") """ model_token_mapping = { "gpt-4": 8192, "gpt-4-0314": 8192, "gpt-4-32k": 32768, "gpt-4-32k-0314": 32768, "gpt-3.5-turbo": 4096, "gpt-3.5-turbo-0301": 4096, "text-ada-001": 2049, "ada": 2049, "text-babbage-001": 2040, "babbage": 2049, "text-curie-001": 2049, "curie": 2049, "davinci": 2049, "text-davinci-003": 4097, "text-davinci-002": 4097, "code-davinci-002": 8001, "code-davinci-001": 8001, "code-cushman-002": 2048, "code-cushman-001": 2048, } # handling finetuned models if "ft-" in modelname: modelname = modelname.split(":")[0] context_size = model_token_mapping.get(modelname, None) if context_size is None: raise ValueError( f"Unknown model: {modelname}. Please provide a valid OpenAI model name." "Known models are: " + ", ".join(model_token_mapping.keys()) ) return context_size @property def max_context_size(self) -> int: """Get max context size for this model.""" return self.modelname_to_contextsize(self.model_name) def max_tokens_for_prompt(self, prompt: str) -> int: """Calculate the maximum number of tokens possible to generate for a prompt. Args: prompt: The prompt to pass into the model. Returns: The maximum number of tokens to generate for a prompt. Example: .. code-block:: python max_tokens = openai.max_token_for_prompt("Tell me a joke.") """ num_tokens = self.get_num_tokens(prompt) return self.max_context_size - num_tokens class OpenAI(BaseOpenAI): """Wrapper around OpenAI large language models. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.llms import OpenAI openai = OpenAI(model_name="text-davinci-003") """ @property def _invocation_params(self) -> Dict[str, Any]: return {**{"model": self.model_name}, **super()._invocation_params} class AzureOpenAI(BaseOpenAI): """Wrapper around Azure-specific OpenAI large language models. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.llms import AzureOpenAI openai = AzureOpenAI(model_name="text-davinci-003") """ deployment_name: str = "" """Deployment name to use.""" openai_api_type: str = "azure" openai_api_version: str = "" @root_validator() def validate_azure_settings(cls, values: Dict) -> Dict: values["openai_api_version"] = get_from_dict_or_env( values, "openai_api_version", "OPENAI_API_VERSION", ) values["openai_api_type"] = get_from_dict_or_env( values, "openai_api_type", "OPENAI_API_TYPE", ) return values @property def _identifying_params(self) -> Mapping[str, Any]: return { **{"deployment_name": self.deployment_name}, **super()._identifying_params, } @property def _invocation_params(self) -> Dict[str, Any]: openai_params = { "engine": self.deployment_name, "api_type": self.openai_api_type, "api_version": self.openai_api_version, } return {**openai_params, **super()._invocation_params} @property def _llm_type(self) -> str: """Return type of llm.""" return "azure" class OpenAIChat(BaseLLM): """Wrapper around OpenAI Chat large language models. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.llms import OpenAIChat openaichat = OpenAIChat(model_name="gpt-3.5-turbo") """ client: Any #: :meta private: model_name: str = "gpt-3.5-turbo" """Model name to use.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" openai_api_key: Optional[str] = None openai_api_base: Optional[str] = None # to support explicit proxy for OpenAI openai_proxy: Optional[str] = None max_retries: int = 6 """Maximum number of retries to make when generating.""" prefix_messages: List = Field(default_factory=list) """Series of messages for Chat input.""" streaming: bool = False """Whether to stream the results or not.""" allowed_special: Union[Literal["all"], AbstractSet[str]] = set() """Set of special tokens that are allowed。""" disallowed_special: Union[Literal["all"], Collection[str]] = "all" """Set of special tokens that are not allowed。""" @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in cls.__fields__.values()} extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name not in all_required_field_names: if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") extra[field_name] = values.pop(field_name) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" openai_api_key = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY" ) openai_api_base = get_from_dict_or_env( values, "openai_api_base", "OPENAI_API_BASE", default="", ) openai_proxy = get_from_dict_or_env( values, "openai_proxy", "OPENAI_PROXY", default="", ) openai_organization = get_from_dict_or_env( values, "openai_organization", "OPENAI_ORGANIZATION", default="" ) try: import openai openai.api_key = openai_api_key if openai_api_base: openai.api_base = openai_api_base if openai_organization: openai.organization = openai_organization if openai_proxy: openai.proxy = {"http": openai_proxy, "https": openai_proxy} # type: ignore[assignment] # noqa: E501 except ImportError: raise ImportError( "Could not import openai python package. " "Please install it with `pip install openai`." ) try: values["client"] = openai.ChatCompletion except AttributeError: raise ValueError( "`openai` has no `ChatCompletion` attribute, this is likely " "due to an old version of the openai package. Try upgrading it " "with `pip install --upgrade openai`." ) warnings.warn( "You are trying to use a chat model. This way of initializing it is " "no longer supported. Instead, please use: " "`from langchain.chat_models import ChatOpenAI`" ) return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling OpenAI API.""" return self.model_kwargs def _get_chat_params( self, prompts: List[str], stop: Optional[List[str]] = None ) -> Tuple: if len(prompts) > 1: raise ValueError( f"OpenAIChat currently only supports single prompt, got {prompts}" ) messages = self.prefix_messages + [{"role": "user", "content": prompts[0]}] params: Dict[str, Any] = {**{"model": self.model_name}, **self._default_params} if stop is not None: if "stop" in params: raise ValueError("`stop` found in both the input and default params.") params["stop"] = stop if params.get("max_tokens") == -1: # for ChatGPT api, omitting max_tokens is equivalent to having no limit del params["max_tokens"] return messages, params def _generate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: messages, params = self._get_chat_params(prompts, stop) params = {**params, **kwargs} if self.streaming: response = "" params["stream"] = True for stream_resp in completion_with_retry(self, messages=messages, **params): token = stream_resp["choices"][0]["delta"].get("content", "") response += token if run_manager: run_manager.on_llm_new_token( token, ) return LLMResult( generations=[[Generation(text=response)]], ) else: full_response = completion_with_retry(self, messages=messages, **params) llm_output = { "token_usage": full_response["usage"], "model_name": self.model_name, } return LLMResult( generations=[ [Generation(text=full_response["choices"][0]["message"]["content"])] ], llm_output=llm_output, ) async def _agenerate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: messages, params = self._get_chat_params(prompts, stop) params = {**params, **kwargs} if self.streaming: response = "" params["stream"] = True async for stream_resp in await acompletion_with_retry( self, messages=messages, **params ): token = stream_resp["choices"][0]["delta"].get("content", "") response += token if run_manager: await run_manager.on_llm_new_token( token, ) return LLMResult( generations=[[Generation(text=response)]], ) else: full_response = await acompletion_with_retry( self, messages=messages, **params ) llm_output = { "token_usage": full_response["usage"], "model_name": self.model_name, } return LLMResult( generations=[ [Generation(text=full_response["choices"][0]["message"]["content"])] ], llm_output=llm_output, ) @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {**{"model_name": self.model_name}, **self._default_params} @property def _llm_type(self) -> str: """Return type of llm.""" return "openai-chat" def get_token_ids(self, text: str) -> List[int]: """Get the token IDs using the tiktoken package.""" # tiktoken NOT supported for Python < 3.8 if sys.version_info[1] < 8: return super().get_token_ids(text) try: import tiktoken except ImportError: raise ImportError( "Could not import tiktoken python package. " "This is needed in order to calculate get_num_tokens. " "Please install it with `pip install tiktoken`." ) enc = tiktoken.encoding_for_model(self.model_name) return enc.encode( text, allowed_special=self.allowed_special, disallowed_special=self.disallowed_special, )
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,456
Tools: Inconsistent callbacks/run_manager parameter
### System Info MacOS Ventura 13.3.1 (a) python = "^3.9" langchain = "0.0.185" ### Who can help? @agola11 @vowelparrot ### Related Components - Agents / Agent Executors - Tools / Toolkits - Callbacks/Tracing ### Reproduction I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as: ```python def get_list_of_products( self, profile_description: str, run_manager: CallbackManagerForToolRun ): ``` Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`, ```python new_argument_supported = signature(self.func).parameters.get("callbacks") ``` So the tool can't run, with the error being: ```bash TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager' ``` This behavior applies to Structured tool and Tool. ### Expected behavior Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter.
https://github.com/langchain-ai/langchain/issues/5456
https://github.com/langchain-ai/langchain/pull/6483
b4fe7f3a0995cc6a0111a7e71347eddf2d61f132
980c8651743b653f994ad6b97a27b0fa31ee92b4
"2023-05-30T17:09:02Z"
python
"2023-06-23T08:48:27Z"
langchain/tools/base.py
"""Base implementation for tools or skills.""" from __future__ import annotations import warnings from abc import ABC, abstractmethod from inspect import signature from typing import Any, Awaitable, Callable, Dict, Optional, Tuple, Type, Union from pydantic import ( BaseModel, Extra, Field, create_model, root_validator, validate_arguments, ) from pydantic.main import ModelMetaclass from langchain.callbacks.base import BaseCallbackManager from langchain.callbacks.manager import ( AsyncCallbackManager, AsyncCallbackManagerForToolRun, CallbackManager, CallbackManagerForToolRun, Callbacks, ) class SchemaAnnotationError(TypeError): """Raised when 'args_schema' is missing or has an incorrect type annotation.""" class ToolMetaclass(ModelMetaclass): """Metaclass for BaseTool to ensure the provided args_schema doesn't silently ignored.""" def __new__( cls: Type[ToolMetaclass], name: str, bases: Tuple[Type, ...], dct: dict ) -> ToolMetaclass: """Create the definition of the new tool class.""" schema_type: Optional[Type[BaseModel]] = dct.get("args_schema") if schema_type is not None: schema_annotations = dct.get("__annotations__", {}) args_schema_type = schema_annotations.get("args_schema", None) if args_schema_type is None or args_schema_type == BaseModel: # Throw errors for common mis-annotations. # TODO: Use get_args / get_origin and fully # specify valid annotations. typehint_mandate = """ class ChildTool(BaseTool): ... args_schema: Type[BaseModel] = SchemaClass ...""" raise SchemaAnnotationError( f"Tool definition for {name} must include valid type annotations" f" for argument 'args_schema' to behave as expected.\n" f"Expected annotation of 'Type[BaseModel]'" f" but got '{args_schema_type}'.\n" f"Expected class looks like:\n" f"{typehint_mandate}" ) # Pass through to Pydantic's metaclass return super().__new__(cls, name, bases, dct) def _create_subset_model( name: str, model: BaseModel, field_names: list ) -> Type[BaseModel]: """Create a pydantic model with only a subset of model's fields.""" fields = {} for field_name in field_names: field = model.__fields__[field_name] fields[field_name] = (field.type_, field.field_info) return create_model(name, **fields) # type: ignore def _get_filtered_args( inferred_model: Type[BaseModel], func: Callable, ) -> dict: """Get the arguments from a function's signature.""" schema = inferred_model.schema()["properties"] valid_keys = signature(func).parameters return {k: schema[k] for k in valid_keys if k != "run_manager"} class _SchemaConfig: """Configuration for the pydantic model.""" extra = Extra.forbid arbitrary_types_allowed = True def create_schema_from_function( model_name: str, func: Callable, ) -> Type[BaseModel]: """Create a pydantic schema from a function's signature. Args: model_name: Name to assign to the generated pydandic schema func: Function to generate the schema from Returns: A pydantic model with the same arguments as the function """ # https://docs.pydantic.dev/latest/usage/validation_decorator/ validated = validate_arguments(func, config=_SchemaConfig) # type: ignore inferred_model = validated.model # type: ignore if "run_manager" in inferred_model.__fields__: del inferred_model.__fields__["run_manager"] # Pydantic adds placeholder virtual fields we need to strip valid_properties = _get_filtered_args(inferred_model, func) return _create_subset_model( f"{model_name}Schema", inferred_model, list(valid_properties) ) class ToolException(Exception): """An optional exception that tool throws when execution error occurs. When this exception is thrown, the agent will not stop working, but will handle the exception according to the handle_tool_error variable of the tool, and the processing result will be returned to the agent as observation, and printed in red on the console. """ pass class BaseTool(ABC, BaseModel, metaclass=ToolMetaclass): """Interface LangChain tools must implement.""" name: str """The unique name of the tool that clearly communicates its purpose.""" description: str """Used to tell the model how/when/why to use the tool. You can provide few-shot examples as a part of the description. """ args_schema: Optional[Type[BaseModel]] = None """Pydantic model class to validate and parse the tool's input arguments.""" return_direct: bool = False """Whether to return the tool's output directly. Setting this to True means that after the tool is called, the AgentExecutor will stop looping. """ verbose: bool = False """Whether to log the tool's progress.""" callbacks: Callbacks = Field(default=None, exclude=True) """Callbacks to be called during tool execution.""" callback_manager: Optional[BaseCallbackManager] = Field(default=None, exclude=True) """Deprecated. Please use callbacks instead.""" handle_tool_error: Optional[ Union[bool, str, Callable[[ToolException], str]] ] = False """Handle the content of the ToolException thrown.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @property def is_single_input(self) -> bool: """Whether the tool only accepts a single input.""" keys = {k for k in self.args if k != "kwargs"} return len(keys) == 1 @property def args(self) -> dict: if self.args_schema is not None: return self.args_schema.schema()["properties"] else: schema = create_schema_from_function(self.name, self._run) return schema.schema()["properties"] def _parse_input( self, tool_input: Union[str, Dict], ) -> Union[str, Dict[str, Any]]: """Convert tool input to pydantic model.""" input_args = self.args_schema if isinstance(tool_input, str): if input_args is not None: key_ = next(iter(input_args.__fields__.keys())) input_args.validate({key_: tool_input}) return tool_input else: if input_args is not None: result = input_args.parse_obj(tool_input) return {k: v for k, v in result.dict().items() if k in tool_input} return tool_input @root_validator() def raise_deprecation(cls, values: Dict) -> Dict: """Raise deprecation warning if callback_manager is used.""" if values.get("callback_manager") is not None: warnings.warn( "callback_manager is deprecated. Please use callbacks instead.", DeprecationWarning, ) values["callbacks"] = values.pop("callback_manager", None) return values @abstractmethod def _run( self, *args: Any, **kwargs: Any, ) -> Any: """Use the tool. Add run_manager: Optional[CallbackManagerForToolRun] = None to child implementations to enable tracing, """ @abstractmethod async def _arun( self, *args: Any, **kwargs: Any, ) -> Any: """Use the tool asynchronously. Add run_manager: Optional[AsyncCallbackManagerForToolRun] = None to child implementations to enable tracing, """ def _to_args_and_kwargs(self, tool_input: Union[str, Dict]) -> Tuple[Tuple, Dict]: # For backwards compatibility, if run_input is a string, # pass as a positional argument. if isinstance(tool_input, str): return (tool_input,), {} else: return (), tool_input def run( self, tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = "green", color: Optional[str] = "green", callbacks: Callbacks = None, **kwargs: Any, ) -> Any: """Run the tool.""" parsed_input = self._parse_input(tool_input) if not self.verbose and verbose is not None: verbose_ = verbose else: verbose_ = self.verbose callback_manager = CallbackManager.configure( callbacks, self.callbacks, verbose=verbose_ ) # TODO: maybe also pass through run_manager is _run supports kwargs new_arg_supported = signature(self._run).parameters.get("run_manager") run_manager = callback_manager.on_tool_start( {"name": self.name, "description": self.description}, tool_input if isinstance(tool_input, str) else str(tool_input), color=start_color, **kwargs, ) try: tool_args, tool_kwargs = self._to_args_and_kwargs(parsed_input) observation = ( self._run(*tool_args, run_manager=run_manager, **tool_kwargs) if new_arg_supported else self._run(*tool_args, **tool_kwargs) ) except ToolException as e: if not self.handle_tool_error: run_manager.on_tool_error(e) raise e elif isinstance(self.handle_tool_error, bool): if e.args: observation = e.args[0] else: observation = "Tool execution error" elif isinstance(self.handle_tool_error, str): observation = self.handle_tool_error elif callable(self.handle_tool_error): observation = self.handle_tool_error(e) else: raise ValueError( f"Got unexpected type of `handle_tool_error`. Expected bool, str " f"or callable. Received: {self.handle_tool_error}" ) run_manager.on_tool_end( str(observation), color="red", name=self.name, **kwargs ) return observation except (Exception, KeyboardInterrupt) as e: run_manager.on_tool_error(e) raise e else: run_manager.on_tool_end( str(observation), color=color, name=self.name, **kwargs ) return observation async def arun( self, tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = "green", color: Optional[str] = "green", callbacks: Callbacks = None, **kwargs: Any, ) -> Any: """Run the tool asynchronously.""" parsed_input = self._parse_input(tool_input) if not self.verbose and verbose is not None: verbose_ = verbose else: verbose_ = self.verbose callback_manager = AsyncCallbackManager.configure( callbacks, self.callbacks, verbose=verbose_ ) new_arg_supported = signature(self._arun).parameters.get("run_manager") run_manager = await callback_manager.on_tool_start( {"name": self.name, "description": self.description}, tool_input if isinstance(tool_input, str) else str(tool_input), color=start_color, **kwargs, ) try: # We then call the tool on the tool input to get an observation tool_args, tool_kwargs = self._to_args_and_kwargs(parsed_input) observation = ( await self._arun(*tool_args, run_manager=run_manager, **tool_kwargs) if new_arg_supported else await self._arun(*tool_args, **tool_kwargs) ) except ToolException as e: if not self.handle_tool_error: await run_manager.on_tool_error(e) raise e elif isinstance(self.handle_tool_error, bool): if e.args: observation = e.args[0] else: observation = "Tool execution error" elif isinstance(self.handle_tool_error, str): observation = self.handle_tool_error elif callable(self.handle_tool_error): observation = self.handle_tool_error(e) else: raise ValueError( f"Got unexpected type of `handle_tool_error`. Expected bool, str " f"or callable. Received: {self.handle_tool_error}" ) await run_manager.on_tool_end( str(observation), color="red", name=self.name, **kwargs ) return observation except (Exception, KeyboardInterrupt) as e: await run_manager.on_tool_error(e) raise e else: await run_manager.on_tool_end( str(observation), color=color, name=self.name, **kwargs ) return observation def __call__(self, tool_input: str, callbacks: Callbacks = None) -> str: """Make tool callable.""" return self.run(tool_input, callbacks=callbacks) class Tool(BaseTool): """Tool that takes in function or coroutine directly.""" description: str = "" func: Callable[..., str] """The function to run when the tool is called.""" coroutine: Optional[Callable[..., Awaitable[str]]] = None """The asynchronous version of the function.""" @property def args(self) -> dict: """The tool's input arguments.""" if self.args_schema is not None: return self.args_schema.schema()["properties"] # For backwards compatibility, if the function signature is ambiguous, # assume it takes a single string input. return {"tool_input": {"type": "string"}} def _to_args_and_kwargs(self, tool_input: Union[str, Dict]) -> Tuple[Tuple, Dict]: """Convert tool input to pydantic model.""" args, kwargs = super()._to_args_and_kwargs(tool_input) # For backwards compatibility. The tool must be run with a single input all_args = list(args) + list(kwargs.values()) if len(all_args) != 1: raise ToolException( f"Too many arguments to single-input tool {self.name}." f" Args: {all_args}" ) return tuple(all_args), {} def _run( self, *args: Any, run_manager: Optional[CallbackManagerForToolRun] = None, **kwargs: Any, ) -> Any: """Use the tool.""" new_argument_supported = signature(self.func).parameters.get("callbacks") return ( self.func( *args, callbacks=run_manager.get_child() if run_manager else None, **kwargs, ) if new_argument_supported else self.func(*args, **kwargs) ) async def _arun( self, *args: Any, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, **kwargs: Any, ) -> Any: """Use the tool asynchronously.""" if self.coroutine: new_argument_supported = signature(self.coroutine).parameters.get( "callbacks" ) return ( await self.coroutine( *args, callbacks=run_manager.get_child() if run_manager else None, **kwargs, ) if new_argument_supported else await self.coroutine(*args, **kwargs) ) raise NotImplementedError("Tool does not support async") # TODO: this is for backwards compatibility, remove in future def __init__( self, name: str, func: Callable, description: str, **kwargs: Any ) -> None: """Initialize tool.""" super(Tool, self).__init__( name=name, func=func, description=description, **kwargs ) @classmethod def from_function( cls, func: Callable, name: str, # We keep these required to support backwards compatibility description: str, return_direct: bool = False, args_schema: Optional[Type[BaseModel]] = None, **kwargs: Any, ) -> Tool: """Initialize tool from a function.""" return cls( name=name, func=func, description=description, return_direct=return_direct, args_schema=args_schema, **kwargs, ) class StructuredTool(BaseTool): """Tool that can operate on any number of inputs.""" description: str = "" args_schema: Type[BaseModel] = Field(..., description="The tool schema.") """The input arguments' schema.""" func: Callable[..., Any] """The function to run when the tool is called.""" coroutine: Optional[Callable[..., Awaitable[Any]]] = None """The asynchronous version of the function.""" @property def args(self) -> dict: """The tool's input arguments.""" return self.args_schema.schema()["properties"] def _run( self, *args: Any, run_manager: Optional[CallbackManagerForToolRun] = None, **kwargs: Any, ) -> Any: """Use the tool.""" new_argument_supported = signature(self.func).parameters.get("callbacks") return ( self.func( *args, callbacks=run_manager.get_child() if run_manager else None, **kwargs, ) if new_argument_supported else self.func(*args, **kwargs) ) async def _arun( self, *args: Any, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, **kwargs: Any, ) -> str: """Use the tool asynchronously.""" if self.coroutine: new_argument_supported = signature(self.coroutine).parameters.get( "callbacks" ) return ( await self.coroutine( *args, callbacks=run_manager.get_child() if run_manager else None, **kwargs, ) if new_argument_supported else await self.coroutine(*args, **kwargs) ) raise NotImplementedError("Tool does not support async") @classmethod def from_function( cls, func: Callable, name: Optional[str] = None, description: Optional[str] = None, return_direct: bool = False, args_schema: Optional[Type[BaseModel]] = None, infer_schema: bool = True, **kwargs: Any, ) -> StructuredTool: """Create tool from a given function. A classmethod that helps to create a tool from a function. Args: func: The function from which to create a tool name: The name of the tool. Defaults to the function name description: The description of the tool. Defaults to the function docstring return_direct: Whether to return the result directly or as a callback args_schema: The schema of the tool's input arguments infer_schema: Whether to infer the schema from the function's signature **kwargs: Additional arguments to pass to the tool Returns: The tool Examples: ... code-block:: python def add(a: int, b: int) -> int: \"\"\"Add two numbers\"\"\" return a + b tool = StructuredTool.from_function(add) tool.run(1, 2) # 3 """ name = name or func.__name__ description = description or func.__doc__ assert ( description is not None ), "Function must have a docstring if description not provided." # Description example: # search_api(query: str) - Searches the API for the query. description = f"{name}{signature(func)} - {description.strip()}" _args_schema = args_schema if _args_schema is None and infer_schema: _args_schema = create_schema_from_function(f"{name}Schema", func) return cls( name=name, func=func, args_schema=_args_schema, description=description, return_direct=return_direct, **kwargs, ) def tool( *args: Union[str, Callable], return_direct: bool = False, args_schema: Optional[Type[BaseModel]] = None, infer_schema: bool = True, ) -> Callable: """Make tools out of functions, can be used with or without arguments. Args: *args: The arguments to the tool. return_direct: Whether to return directly from the tool rather than continuing the agent loop. args_schema: optional argument schema for user to specify infer_schema: Whether to infer the schema of the arguments from the function's signature. This also makes the resultant tool accept a dictionary input to its `run()` function. Requires: - Function must be of type (str) -> str - Function must have a docstring Examples: .. code-block:: python @tool def search_api(query: str) -> str: # Searches the API for the query. return @tool("search", return_direct=True) def search_api(query: str) -> str: # Searches the API for the query. return """ def _make_with_name(tool_name: str) -> Callable: def _make_tool(func: Callable) -> BaseTool: if infer_schema or args_schema is not None: return StructuredTool.from_function( func, name=tool_name, return_direct=return_direct, args_schema=args_schema, infer_schema=infer_schema, ) # If someone doesn't want a schema applied, we must treat it as # a simple string->string function assert func.__doc__ is not None, "Function must have a docstring" return Tool( name=tool_name, func=func, description=f"{tool_name} tool", return_direct=return_direct, ) return _make_tool if len(args) == 1 and isinstance(args[0], str): # if the argument is a string, then we use the string as the tool name # Example usage: @tool("search", return_direct=True) return _make_with_name(args[0]) elif len(args) == 1 and callable(args[0]): # if the argument is a function, then we use the function name as the tool name # Example usage: @tool return _make_with_name(args[0].__name__)(args[0]) elif len(args) == 0: # if there are no arguments, then we use the function name as the tool name # Example usage: @tool(return_direct=True) def _partial(func: Callable[[str], str]) -> BaseTool: return _make_with_name(func.__name__)(func) return _partial else: raise ValueError("Too many arguments for tool decorator")
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,456
Tools: Inconsistent callbacks/run_manager parameter
### System Info MacOS Ventura 13.3.1 (a) python = "^3.9" langchain = "0.0.185" ### Who can help? @agola11 @vowelparrot ### Related Components - Agents / Agent Executors - Tools / Toolkits - Callbacks/Tracing ### Reproduction I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as: ```python def get_list_of_products( self, profile_description: str, run_manager: CallbackManagerForToolRun ): ``` Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`, ```python new_argument_supported = signature(self.func).parameters.get("callbacks") ``` So the tool can't run, with the error being: ```bash TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager' ``` This behavior applies to Structured tool and Tool. ### Expected behavior Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter.
https://github.com/langchain-ai/langchain/issues/5456
https://github.com/langchain-ai/langchain/pull/6483
b4fe7f3a0995cc6a0111a7e71347eddf2d61f132
980c8651743b653f994ad6b97a27b0fa31ee92b4
"2023-05-30T17:09:02Z"
python
"2023-06-23T08:48:27Z"
tests/unit_tests/tools/test_base.py
"""Test the base tool implementation.""" import json from datetime import datetime from enum import Enum from functools import partial from typing import Any, Optional, Type, Union import pytest from pydantic import BaseModel from langchain.agents.tools import Tool, tool from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import ( BaseTool, SchemaAnnotationError, StructuredTool, ToolException, ) def test_unnamed_decorator() -> None: """Test functionality with unnamed decorator.""" @tool def search_api(query: str) -> str: """Search the API for the query.""" return "API result" assert isinstance(search_api, BaseTool) assert search_api.name == "search_api" assert not search_api.return_direct assert search_api("test") == "API result" class _MockSchema(BaseModel): arg1: int arg2: bool arg3: Optional[dict] = None class _MockStructuredTool(BaseTool): name = "structured_api" args_schema: Type[BaseModel] = _MockSchema description = "A Structured Tool" def _run(self, arg1: int, arg2: bool, arg3: Optional[dict] = None) -> str: return f"{arg1} {arg2} {arg3}" async def _arun(self, arg1: int, arg2: bool, arg3: Optional[dict] = None) -> str: raise NotImplementedError def test_structured_args() -> None: """Test functionality with structured arguments.""" structured_api = _MockStructuredTool() assert isinstance(structured_api, BaseTool) assert structured_api.name == "structured_api" expected_result = "1 True {'foo': 'bar'}" args = {"arg1": 1, "arg2": True, "arg3": {"foo": "bar"}} assert structured_api.run(args) == expected_result def test_unannotated_base_tool_raises_error() -> None: """Test that a BaseTool without type hints raises an exception.""" "" with pytest.raises(SchemaAnnotationError): class _UnAnnotatedTool(BaseTool): name = "structured_api" # This would silently be ignored without the custom metaclass args_schema = _MockSchema description = "A Structured Tool" def _run(self, arg1: int, arg2: bool, arg3: Optional[dict] = None) -> str: return f"{arg1} {arg2} {arg3}" async def _arun( self, arg1: int, arg2: bool, arg3: Optional[dict] = None ) -> str: raise NotImplementedError def test_misannotated_base_tool_raises_error() -> None: """Test that a BaseTool with the incorrrect typehint raises an exception.""" "" with pytest.raises(SchemaAnnotationError): class _MisAnnotatedTool(BaseTool): name = "structured_api" # This would silently be ignored without the custom metaclass args_schema: BaseModel = _MockSchema # type: ignore description = "A Structured Tool" def _run(self, arg1: int, arg2: bool, arg3: Optional[dict] = None) -> str: return f"{arg1} {arg2} {arg3}" async def _arun( self, arg1: int, arg2: bool, arg3: Optional[dict] = None ) -> str: raise NotImplementedError def test_forward_ref_annotated_base_tool_accepted() -> None: """Test that a using forward ref annotation syntax is accepted.""" "" class _ForwardRefAnnotatedTool(BaseTool): name = "structured_api" args_schema: "Type[BaseModel]" = _MockSchema description = "A Structured Tool" def _run(self, arg1: int, arg2: bool, arg3: Optional[dict] = None) -> str: return f"{arg1} {arg2} {arg3}" async def _arun( self, arg1: int, arg2: bool, arg3: Optional[dict] = None ) -> str: raise NotImplementedError def test_subclass_annotated_base_tool_accepted() -> None: """Test BaseTool child w/ custom schema isn't overwritten.""" class _ForwardRefAnnotatedTool(BaseTool): name = "structured_api" args_schema: Type[_MockSchema] = _MockSchema description = "A Structured Tool" def _run(self, arg1: int, arg2: bool, arg3: Optional[dict] = None) -> str: return f"{arg1} {arg2} {arg3}" async def _arun( self, arg1: int, arg2: bool, arg3: Optional[dict] = None ) -> str: raise NotImplementedError assert issubclass(_ForwardRefAnnotatedTool, BaseTool) tool = _ForwardRefAnnotatedTool() assert tool.args_schema == _MockSchema def test_decorator_with_specified_schema() -> None: """Test that manually specified schemata are passed through to the tool.""" @tool(args_schema=_MockSchema) def tool_func(arg1: int, arg2: bool, arg3: Optional[dict] = None) -> str: """Return the arguments directly.""" return f"{arg1} {arg2} {arg3}" assert isinstance(tool_func, BaseTool) assert tool_func.args_schema == _MockSchema def test_decorated_function_schema_equivalent() -> None: """Test that a BaseTool without a schema meets expectations.""" @tool def structured_tool_input( arg1: int, arg2: bool, arg3: Optional[dict] = None ) -> str: """Return the arguments directly.""" return f"{arg1} {arg2} {arg3}" assert isinstance(structured_tool_input, BaseTool) assert structured_tool_input.args_schema is not None assert ( structured_tool_input.args_schema.schema()["properties"] == _MockSchema.schema()["properties"] == structured_tool_input.args ) def test_args_kwargs_filtered() -> None: class _SingleArgToolWithKwargs(BaseTool): name = "single_arg_tool" description = "A single arged tool with kwargs" def _run( self, some_arg: str, run_manager: Optional[CallbackManagerForToolRun] = None, **kwargs: Any, ) -> str: return "foo" async def _arun( self, some_arg: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, **kwargs: Any, ) -> str: raise NotImplementedError tool = _SingleArgToolWithKwargs() assert tool.is_single_input class _VarArgToolWithKwargs(BaseTool): name = "single_arg_tool" description = "A single arged tool with kwargs" def _run( self, *args: Any, run_manager: Optional[CallbackManagerForToolRun] = None, **kwargs: Any, ) -> str: return "foo" async def _arun( self, *args: Any, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, **kwargs: Any, ) -> str: raise NotImplementedError tool2 = _VarArgToolWithKwargs() assert tool2.is_single_input def test_structured_args_decorator_no_infer_schema() -> None: """Test functionality with structured arguments parsed as a decorator.""" @tool(infer_schema=False) def structured_tool_input( arg1: int, arg2: Union[float, datetime], opt_arg: Optional[dict] = None ) -> str: """Return the arguments directly.""" return f"{arg1}, {arg2}, {opt_arg}" assert isinstance(structured_tool_input, BaseTool) assert structured_tool_input.name == "structured_tool_input" args = {"arg1": 1, "arg2": 0.001, "opt_arg": {"foo": "bar"}} with pytest.raises(ToolException): assert structured_tool_input.run(args) def test_structured_single_str_decorator_no_infer_schema() -> None: """Test functionality with structured arguments parsed as a decorator.""" @tool(infer_schema=False) def unstructured_tool_input(tool_input: str) -> str: """Return the arguments directly.""" assert isinstance(tool_input, str) return f"{tool_input}" assert isinstance(unstructured_tool_input, BaseTool) assert unstructured_tool_input.args_schema is None assert unstructured_tool_input.run("foo") == "foo" def test_structured_tool_types_parsed() -> None: """Test the non-primitive types are correctly passed to structured tools.""" class SomeEnum(Enum): A = "a" B = "b" class SomeBaseModel(BaseModel): foo: str @tool def structured_tool( some_enum: SomeEnum, some_base_model: SomeBaseModel, ) -> dict: """Return the arguments directly.""" return { "some_enum": some_enum, "some_base_model": some_base_model, } assert isinstance(structured_tool, StructuredTool) args = { "some_enum": SomeEnum.A.value, "some_base_model": SomeBaseModel(foo="bar").dict(), } result = structured_tool.run(json.loads(json.dumps(args))) expected = { "some_enum": SomeEnum.A, "some_base_model": SomeBaseModel(foo="bar"), } assert result == expected def test_base_tool_inheritance_base_schema() -> None: """Test schema is correctly inferred when inheriting from BaseTool.""" class _MockSimpleTool(BaseTool): name = "simple_tool" description = "A Simple Tool" def _run(self, tool_input: str) -> str: return f"{tool_input}" async def _arun(self, tool_input: str) -> str: raise NotImplementedError simple_tool = _MockSimpleTool() assert simple_tool.args_schema is None expected_args = {"tool_input": {"title": "Tool Input", "type": "string"}} assert simple_tool.args == expected_args def test_tool_lambda_args_schema() -> None: """Test args schema inference when the tool argument is a lambda function.""" tool = Tool( name="tool", description="A tool", func=lambda tool_input: tool_input, ) assert tool.args_schema is None expected_args = {"tool_input": {"type": "string"}} assert tool.args == expected_args def test_structured_tool_from_function_docstring() -> None: """Test that structured tools can be created from functions.""" def foo(bar: int, baz: str) -> str: """Docstring Args: bar: int baz: str """ raise NotImplementedError() structured_tool = StructuredTool.from_function(foo) assert structured_tool.name == "foo" assert structured_tool.args == { "bar": {"title": "Bar", "type": "integer"}, "baz": {"title": "Baz", "type": "string"}, } assert structured_tool.args_schema.schema() == { "properties": { "bar": {"title": "Bar", "type": "integer"}, "baz": {"title": "Baz", "type": "string"}, }, "title": "fooSchemaSchema", "type": "object", "required": ["bar", "baz"], } prefix = "foo(bar: int, baz: str) -> str - " assert foo.__doc__ is not None assert structured_tool.description == prefix + foo.__doc__.strip() def test_structured_tool_lambda_multi_args_schema() -> None: """Test args schema inference when the tool argument is a lambda function.""" tool = StructuredTool.from_function( name="tool", description="A tool", func=lambda tool_input, other_arg: f"{tool_input}{other_arg}", # type: ignore ) assert tool.args_schema is not None expected_args = { "tool_input": {"title": "Tool Input"}, "other_arg": {"title": "Other Arg"}, } assert tool.args == expected_args def test_tool_partial_function_args_schema() -> None: """Test args schema inference when the tool argument is a partial function.""" def func(tool_input: str, other_arg: str) -> str: assert isinstance(tool_input, str) assert isinstance(other_arg, str) return tool_input + other_arg tool = Tool( name="tool", description="A tool", func=partial(func, other_arg="foo"), ) assert tool.run("bar") == "barfoo" def test_empty_args_decorator() -> None: """Test inferred schema of decorated fn with no args.""" @tool def empty_tool_input() -> str: """Return a constant.""" return "the empty result" assert isinstance(empty_tool_input, BaseTool) assert empty_tool_input.name == "empty_tool_input" assert empty_tool_input.args == {} assert empty_tool_input.run({}) == "the empty result" def test_named_tool_decorator() -> None: """Test functionality when arguments are provided as input to decorator.""" @tool("search") def search_api(query: str) -> str: """Search the API for the query.""" assert isinstance(query, str) return f"API result - {query}" assert isinstance(search_api, BaseTool) assert search_api.name == "search" assert not search_api.return_direct assert search_api.run({"query": "foo"}) == "API result - foo" def test_named_tool_decorator_return_direct() -> None: """Test functionality when arguments and return direct are provided as input.""" @tool("search", return_direct=True) def search_api(query: str, *args: Any) -> str: """Search the API for the query.""" return "API result" assert isinstance(search_api, BaseTool) assert search_api.name == "search" assert search_api.return_direct assert search_api.run({"query": "foo"}) == "API result" def test_unnamed_tool_decorator_return_direct() -> None: """Test functionality when only return direct is provided.""" @tool(return_direct=True) def search_api(query: str) -> str: """Search the API for the query.""" assert isinstance(query, str) return "API result" assert isinstance(search_api, BaseTool) assert search_api.name == "search_api" assert search_api.return_direct assert search_api.run({"query": "foo"}) == "API result" def test_tool_with_kwargs() -> None: """Test functionality when only return direct is provided.""" @tool(return_direct=True) def search_api( arg_0: str, arg_1: float = 4.3, ping: str = "hi", ) -> str: """Search the API for the query.""" return f"arg_0={arg_0}, arg_1={arg_1}, ping={ping}" assert isinstance(search_api, BaseTool) result = search_api.run( tool_input={ "arg_0": "foo", "arg_1": 3.2, "ping": "pong", } ) assert result == "arg_0=foo, arg_1=3.2, ping=pong" result = search_api.run( tool_input={ "arg_0": "foo", } ) assert result == "arg_0=foo, arg_1=4.3, ping=hi" # For backwards compatibility, we still accept a single str arg result = search_api.run("foobar") assert result == "arg_0=foobar, arg_1=4.3, ping=hi" def test_missing_docstring() -> None: """Test error is raised when docstring is missing.""" # expect to throw a value error if theres no docstring with pytest.raises(AssertionError, match="Function must have a docstring"): @tool def search_api(query: str) -> str: return "API result" def test_create_tool_positional_args() -> None: """Test that positional arguments are allowed.""" test_tool = Tool("test_name", lambda x: x, "test_description") assert test_tool("foo") == "foo" assert test_tool.name == "test_name" assert test_tool.description == "test_description" assert test_tool.is_single_input def test_create_tool_keyword_args() -> None: """Test that keyword arguments are allowed.""" test_tool = Tool(name="test_name", func=lambda x: x, description="test_description") assert test_tool.is_single_input assert test_tool("foo") == "foo" assert test_tool.name == "test_name" assert test_tool.description == "test_description" @pytest.mark.asyncio async def test_create_async_tool() -> None: """Test that async tools are allowed.""" async def _test_func(x: str) -> str: return x test_tool = Tool( name="test_name", func=lambda x: x, description="test_description", coroutine=_test_func, ) assert test_tool.is_single_input assert test_tool("foo") == "foo" assert test_tool.name == "test_name" assert test_tool.description == "test_description" assert test_tool.coroutine is not None assert await test_tool.arun("foo") == "foo" class _FakeExceptionTool(BaseTool): name = "exception" description = "an exception-throwing tool" exception: Exception = ToolException() def _run(self) -> str: raise self.exception async def _arun(self) -> str: raise self.exception def test_exception_handling_bool() -> None: _tool = _FakeExceptionTool(handle_tool_error=True) expected = "Tool execution error" actual = _tool.run({}) assert expected == actual def test_exception_handling_str() -> None: expected = "foo bar" _tool = _FakeExceptionTool(handle_tool_error=expected) actual = _tool.run({}) assert expected == actual def test_exception_handling_callable() -> None: expected = "foo bar" handling = lambda _: expected # noqa: E731 _tool = _FakeExceptionTool(handle_tool_error=handling) actual = _tool.run({}) assert expected == actual def test_exception_handling_non_tool_exception() -> None: _tool = _FakeExceptionTool(exception=ValueError()) with pytest.raises(ValueError): _tool.run({}) @pytest.mark.asyncio async def test_async_exception_handling_bool() -> None: _tool = _FakeExceptionTool(handle_tool_error=True) expected = "Tool execution error" actual = await _tool.arun({}) assert expected == actual @pytest.mark.asyncio async def test_async_exception_handling_str() -> None: expected = "foo bar" _tool = _FakeExceptionTool(handle_tool_error=expected) actual = await _tool.arun({}) assert expected == actual @pytest.mark.asyncio async def test_async_exception_handling_callable() -> None: expected = "foo bar" handling = lambda _: expected # noqa: E731 _tool = _FakeExceptionTool(handle_tool_error=handling) actual = await _tool.arun({}) assert expected == actual @pytest.mark.asyncio async def test_async_exception_handling_non_tool_exception() -> None: _tool = _FakeExceptionTool(exception=ValueError()) with pytest.raises(ValueError): await _tool.arun({}) def test_structured_tool_from_function() -> None: """Test that structured tools can be created from functions.""" def foo(bar: int, baz: str) -> str: """Docstring Args: bar: int baz: str """ raise NotImplementedError() structured_tool = StructuredTool.from_function(foo) assert structured_tool.name == "foo" assert structured_tool.args == { "bar": {"title": "Bar", "type": "integer"}, "baz": {"title": "Baz", "type": "string"}, } assert structured_tool.args_schema.schema() == { "title": "fooSchemaSchema", "type": "object", "properties": { "bar": {"title": "Bar", "type": "integer"}, "baz": {"title": "Baz", "type": "string"}, }, "required": ["bar", "baz"], } prefix = "foo(bar: int, baz: str) -> str - " assert foo.__doc__ is not None assert structured_tool.description == prefix + foo.__doc__.strip()
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,610
ChatVertexAI Error: _ChatSessionBase.send_message() got an unexpected keyword argument 'context'
### System Info langchain version: 0.0.209 ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction https://python.langchain.com/docs/modules/model_io/models/chat/integrations/google_vertex_ai_palm ### Expected behavior I get an error saying "TypeError: _ChatSessionBase.send_message() got an unexpected keyword argument 'context'" when I run `chat(messages)` command mentioned in https://python.langchain.com/docs/modules/model_io/models/chat/integrations/google_vertex_ai_palm. This is probably because ChatSession.send_message does not have the argument 'context' and ChatVertexAI._generate automatically adds the context argument to params since chat-bison being a non-code model.
https://github.com/langchain-ai/langchain/issues/6610
https://github.com/langchain-ai/langchain/pull/6652
c2b25c17c5c8d35a7297f665f2327b9671855898
9e52134d30203a9125532621abcd5a102e3f2bfb
"2023-06-22T20:56:38Z"
python
"2023-06-23T20:38:21Z"
langchain/chat_models/vertexai.py
"""Wrapper around Google VertexAI chat-based models.""" from dataclasses import dataclass, field from typing import Any, Dict, List, Optional from pydantic import root_validator from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.chat_models.base import BaseChatModel from langchain.llms.vertexai import _VertexAICommon, is_codey_model from langchain.schema import ( AIMessage, BaseMessage, ChatGeneration, ChatResult, HumanMessage, SystemMessage, ) from langchain.utilities.vertexai import raise_vertex_import_error @dataclass class _MessagePair: """InputOutputTextPair represents a pair of input and output texts.""" question: HumanMessage answer: AIMessage @dataclass class _ChatHistory: """InputOutputTextPair represents a pair of input and output texts.""" history: List[_MessagePair] = field(default_factory=list) system_message: Optional[SystemMessage] = None def _parse_chat_history(history: List[BaseMessage]) -> _ChatHistory: """Parse a sequence of messages into history. A sequence should be either (SystemMessage, HumanMessage, AIMessage, HumanMessage, AIMessage, ...) or (HumanMessage, AIMessage, HumanMessage, AIMessage, ...). CodeChat does not support SystemMessage. Args: history: The list of messages to re-create the history of the chat. Returns: A parsed chat history. Raises: ValueError: If a sequence of message is odd, or a human message is not followed by a message from AI (e.g., Human, Human, AI or AI, AI, Human). """ if not history: return _ChatHistory() first_message = history[0] system_message = first_message if isinstance(first_message, SystemMessage) else None chat_history = _ChatHistory(system_message=system_message) messages_left = history[1:] if system_message else history if len(messages_left) % 2 != 0: raise ValueError( f"Amount of messages in history should be even, got {len(messages_left)}!" ) for question, answer in zip(messages_left[::2], messages_left[1::2]): if not isinstance(question, HumanMessage) or not isinstance(answer, AIMessage): raise ValueError( "A human message should follow a bot one, " f"got {question.type}, {answer.type}." ) chat_history.history.append(_MessagePair(question=question, answer=answer)) return chat_history class ChatVertexAI(_VertexAICommon, BaseChatModel): """Wrapper around Vertex AI large language models.""" model_name: str = "chat-bison" @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that the python package exists in environment.""" cls._try_init_vertexai(values) try: if is_codey_model(values["model_name"]): from vertexai.preview.language_models import CodeChatModel values["client"] = CodeChatModel.from_pretrained(values["model_name"]) else: from vertexai.preview.language_models import ChatModel values["client"] = ChatModel.from_pretrained(values["model_name"]) except ImportError: raise_vertex_import_error() return values def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: """Generate next turn in the conversation. Args: messages: The history of the conversation as a list of messages. Code chat does not support context. stop: The list of stop words (optional). run_manager: The CallbackManager for LLM run, it's not used at the moment. Returns: The ChatResult that contains outputs generated by the model. Raises: ValueError: if the last message in the list is not from human. """ if not messages: raise ValueError( "You should provide at least one message to start the chat!" ) question = messages[-1] if not isinstance(question, HumanMessage): raise ValueError( f"Last message in the list should be from human, got {question.type}." ) history = _parse_chat_history(messages[:-1]) context = history.system_message.content if history.system_message else None params = {**self._default_params, **kwargs} if not self.is_codey_model: params["context"] = context chat = self.client.start_chat(**params) for pair in history.history: chat._history.append((pair.question.content, pair.answer.content)) response = chat.send_message(question.content, **params) text = self._enforce_stop_words(response.text, stop) return ChatResult(generations=[ChatGeneration(message=AIMessage(content=text))]) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: raise NotImplementedError( """Vertex AI doesn't support async requests at the moment.""" )
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,582
Typo
### System Info latest version ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Typo on : https://github.com/hwchase17/langchain/blob/d50de2728f95df0ffc59c538bd67e116a8e75a53/langchain/vectorstores/weaviate.py#L49 Instal - > install ### Expected behavior typo corrected
https://github.com/langchain-ai/langchain/issues/6582
https://github.com/langchain-ai/langchain/pull/6595
f6fdabd20b3b14f8728f8c74d9711322400f9369
ba256b23f241e1669536f7e70c6365ceba7a9cfa
"2023-06-22T09:34:08Z"
python
"2023-06-23T21:56:54Z"
langchain/vectorstores/weaviate.py
"""Wrapper around weaviate vector database.""" from __future__ import annotations import datetime from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Type from uuid import uuid4 import numpy as np from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env from langchain.vectorstores.base import VectorStore from langchain.vectorstores.utils import maximal_marginal_relevance def _default_schema(index_name: str) -> Dict: return { "class": index_name, "properties": [ { "name": "text", "dataType": ["text"], } ], } def _create_weaviate_client(**kwargs: Any) -> Any: client = kwargs.get("client") if client is not None: return client weaviate_url = get_from_dict_or_env(kwargs, "weaviate_url", "WEAVIATE_URL") try: # the weaviate api key param should not be mandatory weaviate_api_key = get_from_dict_or_env( kwargs, "weaviate_api_key", "WEAVIATE_API_KEY", None ) except ValueError: weaviate_api_key = None try: import weaviate except ImportError: raise ValueError( "Could not import weaviate python package. " "Please install it with `pip instal weaviate-client`" ) auth = ( weaviate.auth.AuthApiKey(api_key=weaviate_api_key) if weaviate_api_key is not None else None ) client = weaviate.Client(weaviate_url, auth_client_secret=auth) return client def _default_score_normalizer(val: float) -> float: return 1 - 1 / (1 + np.exp(val)) def _json_serializable(value: Any) -> Any: if isinstance(value, datetime.datetime): return value.isoformat() return value class Weaviate(VectorStore): """Wrapper around Weaviate vector database. To use, you should have the ``weaviate-client`` python package installed. Example: .. code-block:: python import weaviate from langchain.vectorstores import Weaviate client = weaviate.Client(url=os.environ["WEAVIATE_URL"], ...) weaviate = Weaviate(client, index_name, text_key) """ def __init__( self, client: Any, index_name: str, text_key: str, embedding: Optional[Embeddings] = None, attributes: Optional[List[str]] = None, relevance_score_fn: Optional[ Callable[[float], float] ] = _default_score_normalizer, by_text: bool = True, ): """Initialize with Weaviate client.""" try: import weaviate except ImportError: raise ValueError( "Could not import weaviate python package. " "Please install it with `pip install weaviate-client`." ) if not isinstance(client, weaviate.Client): raise ValueError( f"client should be an instance of weaviate.Client, got {type(client)}" ) self._client = client self._index_name = index_name self._embedding = embedding self._text_key = text_key self._query_attrs = [self._text_key] self._relevance_score_fn = relevance_score_fn self._by_text = by_text if attributes is not None: self._query_attrs.extend(attributes) def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Upload texts with metadata (properties) to Weaviate.""" from weaviate.util import get_valid_uuid ids = [] with self._client.batch as batch: for i, text in enumerate(texts): data_properties = {self._text_key: text} if metadatas is not None: for key, val in metadatas[i].items(): data_properties[key] = _json_serializable(val) # Allow for ids (consistent w/ other methods) # # Or uuids (backwards compatble w/ existing arg) # If the UUID of one of the objects already exists # then the existing object will be replaced by the new object. _id = get_valid_uuid(uuid4()) if "uuids" in kwargs: _id = kwargs["uuids"][i] elif "ids" in kwargs: _id = kwargs["ids"][i] if self._embedding is not None: vector = self._embedding.embed_documents([text])[0] else: vector = None batch.add_data_object( data_object=data_properties, class_name=self._index_name, uuid=_id, vector=vector, ) ids.append(_id) return ids def similarity_search( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query. """ if self._by_text: return self.similarity_search_by_text(query, k, **kwargs) else: if self._embedding is None: raise ValueError( "_embedding cannot be None for similarity_search when " "_by_text=False" ) embedding = self._embedding.embed_query(query) return self.similarity_search_by_vector(embedding, k, **kwargs) def similarity_search_by_text( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query. """ content: Dict[str, Any] = {"concepts": [query]} if kwargs.get("search_distance"): content["certainty"] = kwargs.get("search_distance") query_obj = self._client.query.get(self._index_name, self._query_attrs) if kwargs.get("where_filter"): query_obj = query_obj.with_where(kwargs.get("where_filter")) if kwargs.get("additional"): query_obj = query_obj.with_additional(kwargs.get("additional")) result = query_obj.with_near_text(content).with_limit(k).do() if "errors" in result: raise ValueError(f"Error during query: {result['errors']}") docs = [] for res in result["data"]["Get"][self._index_name]: text = res.pop(self._text_key) docs.append(Document(page_content=text, metadata=res)) return docs def similarity_search_by_vector( self, embedding: List[float], k: int = 4, **kwargs: Any ) -> List[Document]: """Look up similar documents by embedding vector in Weaviate.""" vector = {"vector": embedding} query_obj = self._client.query.get(self._index_name, self._query_attrs) if kwargs.get("where_filter"): query_obj = query_obj.with_where(kwargs.get("where_filter")) if kwargs.get("additional"): query_obj = query_obj.with_additional(kwargs.get("additional")) result = query_obj.with_near_vector(vector).with_limit(k).do() if "errors" in result: raise ValueError(f"Error during query: {result['errors']}") docs = [] for res in result["data"]["Get"][self._index_name]: text = res.pop(self._text_key) docs.append(Document(page_content=text, metadata=res)) return docs def max_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns: List of Documents selected by maximal marginal relevance. """ if self._embedding is not None: embedding = self._embedding.embed_query(query) else: raise ValueError( "max_marginal_relevance_search requires a suitable Embeddings object" ) return self.max_marginal_relevance_search_by_vector( embedding, k=k, fetch_k=fetch_k, lambda_mult=lambda_mult, **kwargs ) def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns: List of Documents selected by maximal marginal relevance. """ vector = {"vector": embedding} query_obj = self._client.query.get(self._index_name, self._query_attrs) if kwargs.get("where_filter"): query_obj = query_obj.with_where(kwargs.get("where_filter")) results = ( query_obj.with_additional("vector") .with_near_vector(vector) .with_limit(fetch_k) .do() ) payload = results["data"]["Get"][self._index_name] embeddings = [result["_additional"]["vector"] for result in payload] mmr_selected = maximal_marginal_relevance( np.array(embedding), embeddings, k=k, lambda_mult=lambda_mult ) docs = [] for idx in mmr_selected: text = payload[idx].pop(self._text_key) payload[idx].pop("_additional") meta = payload[idx] docs.append(Document(page_content=text, metadata=meta)) return docs def similarity_search_with_score( self, query: str, k: int = 4, **kwargs: Any ) -> List[Tuple[Document, float]]: """ Return list of documents most similar to the query text and cosine distance in float for each. Lower score represents more similarity. """ if self._embedding is None: raise ValueError( "_embedding cannot be None for similarity_search_with_score" ) content: Dict[str, Any] = {"concepts": [query]} if kwargs.get("search_distance"): content["certainty"] = kwargs.get("search_distance") query_obj = self._client.query.get(self._index_name, self._query_attrs) if not self._by_text: embedding = self._embedding.embed_query(query) vector = {"vector": embedding} result = ( query_obj.with_near_vector(vector) .with_limit(k) .with_additional("vector") .do() ) else: result = ( query_obj.with_near_text(content) .with_limit(k) .with_additional("vector") .do() ) if "errors" in result: raise ValueError(f"Error during query: {result['errors']}") docs_and_scores = [] for res in result["data"]["Get"][self._index_name]: text = res.pop(self._text_key) score = np.dot( res["_additional"]["vector"], self._embedding.embed_query(query) ) docs_and_scores.append((Document(page_content=text, metadata=res), score)) return docs_and_scores def _similarity_search_with_relevance_scores( self, query: str, k: int = 4, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return docs and relevance scores, normalized on a scale from 0 to 1. 0 is dissimilar, 1 is most similar. """ if self._relevance_score_fn is None: raise ValueError( "relevance_score_fn must be provided to" " Weaviate constructor to normalize scores" ) docs_and_scores = self.similarity_search_with_score(query, k=k, **kwargs) return [ (doc, self._relevance_score_fn(score)) for doc, score in docs_and_scores ] @classmethod def from_texts( cls: Type[Weaviate], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> Weaviate: """Construct Weaviate wrapper from raw documents. This is a user-friendly interface that: 1. Embeds documents. 2. Creates a new index for the embeddings in the Weaviate instance. 3. Adds the documents to the newly created Weaviate index. This is intended to be a quick way to get started. Example: .. code-block:: python from langchain.vectorstores.weaviate import Weaviate from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() weaviate = Weaviate.from_texts( texts, embeddings, weaviate_url="http://localhost:8080" ) """ client = _create_weaviate_client(**kwargs) from weaviate.util import get_valid_uuid index_name = kwargs.get("index_name", f"LangChain_{uuid4().hex}") embeddings = embedding.embed_documents(texts) if embedding else None text_key = "text" schema = _default_schema(index_name) attributes = list(metadatas[0].keys()) if metadatas else None # check whether the index already exists if not client.schema.contains(schema): client.schema.create_class(schema) with client.batch as batch: for i, text in enumerate(texts): data_properties = { text_key: text, } if metadatas is not None: for key in metadatas[i].keys(): data_properties[key] = metadatas[i][key] # If the UUID of one of the objects already exists # then the existing objectwill be replaced by the new object. if "uuids" in kwargs: _id = kwargs["uuids"][i] else: _id = get_valid_uuid(uuid4()) # if an embedding strategy is not provided, we let # weaviate create the embedding. Note that this will only # work if weaviate has been installed with a vectorizer module # like text2vec-contextionary for example params = { "uuid": _id, "data_object": data_properties, "class_name": index_name, } if embeddings is not None: params["vector"] = embeddings[i] batch.add_data_object(**params) batch.flush() relevance_score_fn = kwargs.get("relevance_score_fn") by_text: bool = kwargs.get("by_text", False) return cls( client, index_name, text_key, embedding=embedding, attributes=attributes, relevance_score_fn=relevance_score_fn, by_text=by_text, ) def delete(self, ids: List[str]) -> None: """Delete by vector IDs. Args: ids: List of ids to delete. """ # TODO: Check if this can be done in bulk for id in ids: self._client.data_object.delete(uuid=id)
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,472
DOC: Incorrect type for tags parameter in MLflow callback
### Issue with current documentation: In the documentation the tag type is string, but in the code it's a dictionary. The proposed fix is to change the following two lines "tags (str):" to "tags (dict):". https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L120 https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L225 ### Idea or request for content: _No response_
https://github.com/langchain-ai/langchain/issues/6472
https://github.com/langchain-ai/langchain/pull/6473
9187d2f3a97abc6d89daea9b5abfa652a425e1de
fe941cb54a80976bfc7575ce59a518ae428801ee
"2023-06-20T09:57:57Z"
python
"2023-06-26T09:12:23Z"
langchain/callbacks/mlflow_callback.py
import random import string import tempfile import traceback from copy import deepcopy from pathlib import Path from typing import Any, Dict, List, Optional, Union from langchain.callbacks.base import BaseCallbackHandler from langchain.callbacks.utils import ( BaseMetadataCallbackHandler, flatten_dict, hash_string, import_pandas, import_spacy, import_textstat, ) from langchain.schema import AgentAction, AgentFinish, LLMResult from langchain.utils import get_from_dict_or_env def import_mlflow() -> Any: """Import the mlflow python package and raise an error if it is not installed.""" try: import mlflow except ImportError: raise ImportError( "To use the mlflow callback manager you need to have the `mlflow` python " "package installed. Please install it with `pip install mlflow>=2.3.0`" ) return mlflow def analyze_text( text: str, nlp: Any = None, ) -> dict: """Analyze text using textstat and spacy. Parameters: text (str): The text to analyze. nlp (spacy.lang): The spacy language model to use for visualization. Returns: (dict): A dictionary containing the complexity metrics and visualization files serialized to HTML string. """ resp: Dict[str, Any] = {} textstat = import_textstat() spacy = import_spacy() text_complexity_metrics = { "flesch_reading_ease": textstat.flesch_reading_ease(text), "flesch_kincaid_grade": textstat.flesch_kincaid_grade(text), "smog_index": textstat.smog_index(text), "coleman_liau_index": textstat.coleman_liau_index(text), "automated_readability_index": textstat.automated_readability_index(text), "dale_chall_readability_score": textstat.dale_chall_readability_score(text), "difficult_words": textstat.difficult_words(text), "linsear_write_formula": textstat.linsear_write_formula(text), "gunning_fog": textstat.gunning_fog(text), # "text_standard": textstat.text_standard(text), "fernandez_huerta": textstat.fernandez_huerta(text), "szigriszt_pazos": textstat.szigriszt_pazos(text), "gutierrez_polini": textstat.gutierrez_polini(text), "crawford": textstat.crawford(text), "gulpease_index": textstat.gulpease_index(text), "osman": textstat.osman(text), } resp.update({"text_complexity_metrics": text_complexity_metrics}) resp.update(text_complexity_metrics) if nlp is not None: doc = nlp(text) dep_out = spacy.displacy.render( # type: ignore doc, style="dep", jupyter=False, page=True ) ent_out = spacy.displacy.render( # type: ignore doc, style="ent", jupyter=False, page=True ) text_visualizations = { "dependency_tree": dep_out, "entities": ent_out, } resp.update(text_visualizations) return resp def construct_html_from_prompt_and_generation(prompt: str, generation: str) -> Any: """Construct an html element from a prompt and a generation. Parameters: prompt (str): The prompt. generation (str): The generation. Returns: (str): The html string.""" formatted_prompt = prompt.replace("\n", "<br>") formatted_generation = generation.replace("\n", "<br>") return f""" <p style="color:black;">{formatted_prompt}:</p> <blockquote> <p style="color:green;"> {formatted_generation} </p> </blockquote> """ class MlflowLogger: """Callback Handler that logs metrics and artifacts to mlflow server. Parameters: name (str): Name of the run. experiment (str): Name of the experiment. tags (str): Tags to be attached for the run. tracking_uri (str): MLflow tracking server uri. This handler implements the helper functions to initialize, log metrics and artifacts to the mlflow server. """ def __init__(self, **kwargs: Any): self.mlflow = import_mlflow() tracking_uri = get_from_dict_or_env( kwargs, "tracking_uri", "MLFLOW_TRACKING_URI", "" ) self.mlflow.set_tracking_uri(tracking_uri) # User can set other env variables described here # > https://www.mlflow.org/docs/latest/tracking.html#logging-to-a-tracking-server experiment_name = get_from_dict_or_env( kwargs, "experiment_name", "MLFLOW_EXPERIMENT_NAME" ) self.mlf_exp = self.mlflow.get_experiment_by_name(experiment_name) if self.mlf_exp is not None: self.mlf_expid = self.mlf_exp.experiment_id else: self.mlf_expid = self.mlflow.create_experiment(experiment_name) self.start_run(kwargs["run_name"], kwargs["run_tags"]) def start_run(self, name: str, tags: Dict[str, str]) -> None: """To start a new run, auto generates the random suffix for name""" if name.endswith("-%"): rname = "".join(random.choices(string.ascii_uppercase + string.digits, k=7)) name = name.replace("%", rname) self.run = self.mlflow.MlflowClient().create_run( self.mlf_expid, run_name=name, tags=tags ) def finish_run(self) -> None: """To finish the run.""" with self.mlflow.start_run( run_id=self.run.info.run_id, experiment_id=self.mlf_expid ): self.mlflow.end_run() def metric(self, key: str, value: float) -> None: """To log metric to mlflow server.""" with self.mlflow.start_run( run_id=self.run.info.run_id, experiment_id=self.mlf_expid ): self.mlflow.log_metric(key, value) def metrics( self, data: Union[Dict[str, float], Dict[str, int]], step: Optional[int] = 0 ) -> None: """To log all metrics in the input dict.""" with self.mlflow.start_run( run_id=self.run.info.run_id, experiment_id=self.mlf_expid ): self.mlflow.log_metrics(data) def jsonf(self, data: Dict[str, Any], filename: str) -> None: """To log the input data as json file artifact.""" with self.mlflow.start_run( run_id=self.run.info.run_id, experiment_id=self.mlf_expid ): self.mlflow.log_dict(data, f"{filename}.json") def table(self, name: str, dataframe) -> None: # type: ignore """To log the input pandas dataframe as a html table""" self.html(dataframe.to_html(), f"table_{name}") def html(self, html: str, filename: str) -> None: """To log the input html string as html file artifact.""" with self.mlflow.start_run( run_id=self.run.info.run_id, experiment_id=self.mlf_expid ): self.mlflow.log_text(html, f"{filename}.html") def text(self, text: str, filename: str) -> None: """To log the input text as text file artifact.""" with self.mlflow.start_run( run_id=self.run.info.run_id, experiment_id=self.mlf_expid ): self.mlflow.log_text(text, f"{filename}.txt") def artifact(self, path: str) -> None: """To upload the file from given path as artifact.""" with self.mlflow.start_run( run_id=self.run.info.run_id, experiment_id=self.mlf_expid ): self.mlflow.log_artifact(path) def langchain_artifact(self, chain: Any) -> None: with self.mlflow.start_run( run_id=self.run.info.run_id, experiment_id=self.mlf_expid ): self.mlflow.langchain.log_model(chain, "langchain-model") class MlflowCallbackHandler(BaseMetadataCallbackHandler, BaseCallbackHandler): """Callback Handler that logs metrics and artifacts to mlflow server. Parameters: name (str): Name of the run. experiment (str): Name of the experiment. tags (str): Tags to be attached for the run. tracking_uri (str): MLflow tracking server uri. This handler will utilize the associated callback method called and formats the input of each callback function with metadata regarding the state of LLM run, and adds the response to the list of records for both the {method}_records and action. It then logs the response to mlflow server. """ def __init__( self, name: Optional[str] = "langchainrun-%", experiment: Optional[str] = "langchain", tags: Optional[Dict] = {}, tracking_uri: Optional[str] = None, ) -> None: """Initialize callback handler.""" import_pandas() import_textstat() import_mlflow() spacy = import_spacy() super().__init__() self.name = name self.experiment = experiment self.tags = tags self.tracking_uri = tracking_uri self.temp_dir = tempfile.TemporaryDirectory() self.mlflg = MlflowLogger( tracking_uri=self.tracking_uri, experiment_name=self.experiment, run_name=self.name, run_tags=self.tags, ) self.action_records: list = [] self.nlp = spacy.load("en_core_web_sm") self.metrics = { "step": 0, "starts": 0, "ends": 0, "errors": 0, "text_ctr": 0, "chain_starts": 0, "chain_ends": 0, "llm_starts": 0, "llm_ends": 0, "llm_streams": 0, "tool_starts": 0, "tool_ends": 0, "agent_ends": 0, } self.records: Dict[str, Any] = { "on_llm_start_records": [], "on_llm_token_records": [], "on_llm_end_records": [], "on_chain_start_records": [], "on_chain_end_records": [], "on_tool_start_records": [], "on_tool_end_records": [], "on_text_records": [], "on_agent_finish_records": [], "on_agent_action_records": [], "action_records": [], } def _reset(self) -> None: for k, v in self.metrics.items(): self.metrics[k] = 0 for k, v in self.records.items(): self.records[k] = [] def on_llm_start( self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any ) -> None: """Run when LLM starts.""" self.metrics["step"] += 1 self.metrics["llm_starts"] += 1 self.metrics["starts"] += 1 llm_starts = self.metrics["llm_starts"] resp: Dict[str, Any] = {} resp.update({"action": "on_llm_start"}) resp.update(flatten_dict(serialized)) resp.update(self.metrics) self.mlflg.metrics(self.metrics, step=self.metrics["step"]) for idx, prompt in enumerate(prompts): prompt_resp = deepcopy(resp) prompt_resp["prompt"] = prompt self.records["on_llm_start_records"].append(prompt_resp) self.records["action_records"].append(prompt_resp) self.mlflg.jsonf(prompt_resp, f"llm_start_{llm_starts}_prompt_{idx}") def on_llm_new_token(self, token: str, **kwargs: Any) -> None: """Run when LLM generates a new token.""" self.metrics["step"] += 1 self.metrics["llm_streams"] += 1 llm_streams = self.metrics["llm_streams"] resp: Dict[str, Any] = {} resp.update({"action": "on_llm_new_token", "token": token}) resp.update(self.metrics) self.mlflg.metrics(self.metrics, step=self.metrics["step"]) self.records["on_llm_token_records"].append(resp) self.records["action_records"].append(resp) self.mlflg.jsonf(resp, f"llm_new_tokens_{llm_streams}") def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: """Run when LLM ends running.""" self.metrics["step"] += 1 self.metrics["llm_ends"] += 1 self.metrics["ends"] += 1 llm_ends = self.metrics["llm_ends"] resp: Dict[str, Any] = {} resp.update({"action": "on_llm_end"}) resp.update(flatten_dict(response.llm_output or {})) resp.update(self.metrics) self.mlflg.metrics(self.metrics, step=self.metrics["step"]) for generations in response.generations: for idx, generation in enumerate(generations): generation_resp = deepcopy(resp) generation_resp.update(flatten_dict(generation.dict())) generation_resp.update( analyze_text( generation.text, nlp=self.nlp, ) ) complexity_metrics: Dict[str, float] = generation_resp.pop("text_complexity_metrics") # type: ignore # noqa: E501 self.mlflg.metrics( complexity_metrics, step=self.metrics["step"], ) self.records["on_llm_end_records"].append(generation_resp) self.records["action_records"].append(generation_resp) self.mlflg.jsonf(resp, f"llm_end_{llm_ends}_generation_{idx}") dependency_tree = generation_resp["dependency_tree"] entities = generation_resp["entities"] self.mlflg.html(dependency_tree, "dep-" + hash_string(generation.text)) self.mlflg.html(entities, "ent-" + hash_string(generation.text)) def on_llm_error( self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any ) -> None: """Run when LLM errors.""" self.metrics["step"] += 1 self.metrics["errors"] += 1 def on_chain_start( self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any ) -> None: """Run when chain starts running.""" self.metrics["step"] += 1 self.metrics["chain_starts"] += 1 self.metrics["starts"] += 1 chain_starts = self.metrics["chain_starts"] resp: Dict[str, Any] = {} resp.update({"action": "on_chain_start"}) resp.update(flatten_dict(serialized)) resp.update(self.metrics) self.mlflg.metrics(self.metrics, step=self.metrics["step"]) chain_input = ",".join([f"{k}={v}" for k, v in inputs.items()]) input_resp = deepcopy(resp) input_resp["inputs"] = chain_input self.records["on_chain_start_records"].append(input_resp) self.records["action_records"].append(input_resp) self.mlflg.jsonf(input_resp, f"chain_start_{chain_starts}") def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None: """Run when chain ends running.""" self.metrics["step"] += 1 self.metrics["chain_ends"] += 1 self.metrics["ends"] += 1 chain_ends = self.metrics["chain_ends"] resp: Dict[str, Any] = {} chain_output = ",".join([f"{k}={v}" for k, v in outputs.items()]) resp.update({"action": "on_chain_end", "outputs": chain_output}) resp.update(self.metrics) self.mlflg.metrics(self.metrics, step=self.metrics["step"]) self.records["on_chain_end_records"].append(resp) self.records["action_records"].append(resp) self.mlflg.jsonf(resp, f"chain_end_{chain_ends}") def on_chain_error( self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any ) -> None: """Run when chain errors.""" self.metrics["step"] += 1 self.metrics["errors"] += 1 def on_tool_start( self, serialized: Dict[str, Any], input_str: str, **kwargs: Any ) -> None: """Run when tool starts running.""" self.metrics["step"] += 1 self.metrics["tool_starts"] += 1 self.metrics["starts"] += 1 tool_starts = self.metrics["tool_starts"] resp: Dict[str, Any] = {} resp.update({"action": "on_tool_start", "input_str": input_str}) resp.update(flatten_dict(serialized)) resp.update(self.metrics) self.mlflg.metrics(self.metrics, step=self.metrics["step"]) self.records["on_tool_start_records"].append(resp) self.records["action_records"].append(resp) self.mlflg.jsonf(resp, f"tool_start_{tool_starts}") def on_tool_end(self, output: str, **kwargs: Any) -> None: """Run when tool ends running.""" self.metrics["step"] += 1 self.metrics["tool_ends"] += 1 self.metrics["ends"] += 1 tool_ends = self.metrics["tool_ends"] resp: Dict[str, Any] = {} resp.update({"action": "on_tool_end", "output": output}) resp.update(self.metrics) self.mlflg.metrics(self.metrics, step=self.metrics["step"]) self.records["on_tool_end_records"].append(resp) self.records["action_records"].append(resp) self.mlflg.jsonf(resp, f"tool_end_{tool_ends}") def on_tool_error( self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any ) -> None: """Run when tool errors.""" self.metrics["step"] += 1 self.metrics["errors"] += 1 def on_text(self, text: str, **kwargs: Any) -> None: """ Run when agent is ending. """ self.metrics["step"] += 1 self.metrics["text_ctr"] += 1 text_ctr = self.metrics["text_ctr"] resp: Dict[str, Any] = {} resp.update({"action": "on_text", "text": text}) resp.update(self.metrics) self.mlflg.metrics(self.metrics, step=self.metrics["step"]) self.records["on_text_records"].append(resp) self.records["action_records"].append(resp) self.mlflg.jsonf(resp, f"on_text_{text_ctr}") def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None: """Run when agent ends running.""" self.metrics["step"] += 1 self.metrics["agent_ends"] += 1 self.metrics["ends"] += 1 agent_ends = self.metrics["agent_ends"] resp: Dict[str, Any] = {} resp.update( { "action": "on_agent_finish", "output": finish.return_values["output"], "log": finish.log, } ) resp.update(self.metrics) self.mlflg.metrics(self.metrics, step=self.metrics["step"]) self.records["on_agent_finish_records"].append(resp) self.records["action_records"].append(resp) self.mlflg.jsonf(resp, f"agent_finish_{agent_ends}") def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any: """Run on agent action.""" self.metrics["step"] += 1 self.metrics["tool_starts"] += 1 self.metrics["starts"] += 1 tool_starts = self.metrics["tool_starts"] resp: Dict[str, Any] = {} resp.update( { "action": "on_agent_action", "tool": action.tool, "tool_input": action.tool_input, "log": action.log, } ) resp.update(self.metrics) self.mlflg.metrics(self.metrics, step=self.metrics["step"]) self.records["on_agent_action_records"].append(resp) self.records["action_records"].append(resp) self.mlflg.jsonf(resp, f"agent_action_{tool_starts}") def _create_session_analysis_df(self) -> Any: """Create a dataframe with all the information from the session.""" pd = import_pandas() on_llm_start_records_df = pd.DataFrame(self.records["on_llm_start_records"]) on_llm_end_records_df = pd.DataFrame(self.records["on_llm_end_records"]) llm_input_prompts_df = ( on_llm_start_records_df[["step", "prompt", "name"]] .dropna(axis=1) .rename({"step": "prompt_step"}, axis=1) ) complexity_metrics_columns = [] visualizations_columns = [] complexity_metrics_columns = [ "flesch_reading_ease", "flesch_kincaid_grade", "smog_index", "coleman_liau_index", "automated_readability_index", "dale_chall_readability_score", "difficult_words", "linsear_write_formula", "gunning_fog", # "text_standard", "fernandez_huerta", "szigriszt_pazos", "gutierrez_polini", "crawford", "gulpease_index", "osman", ] visualizations_columns = ["dependency_tree", "entities"] llm_outputs_df = ( on_llm_end_records_df[ [ "step", "text", "token_usage_total_tokens", "token_usage_prompt_tokens", "token_usage_completion_tokens", ] + complexity_metrics_columns + visualizations_columns ] .dropna(axis=1) .rename({"step": "output_step", "text": "output"}, axis=1) ) session_analysis_df = pd.concat([llm_input_prompts_df, llm_outputs_df], axis=1) session_analysis_df["chat_html"] = session_analysis_df[ ["prompt", "output"] ].apply( lambda row: construct_html_from_prompt_and_generation( row["prompt"], row["output"] ), axis=1, ) return session_analysis_df def flush_tracker(self, langchain_asset: Any = None, finish: bool = False) -> None: pd = import_pandas() self.mlflg.table("action_records", pd.DataFrame(self.records["action_records"])) session_analysis_df = self._create_session_analysis_df() chat_html = session_analysis_df.pop("chat_html") chat_html = chat_html.replace("\n", "", regex=True) self.mlflg.table("session_analysis", pd.DataFrame(session_analysis_df)) self.mlflg.html("".join(chat_html.tolist()), "chat_html") if langchain_asset: # To avoid circular import error # mlflow only supports LLMChain asset if "langchain.chains.llm.LLMChain" in str(type(langchain_asset)): self.mlflg.langchain_artifact(langchain_asset) else: langchain_asset_path = str(Path(self.temp_dir.name, "model.json")) try: langchain_asset.save(langchain_asset_path) self.mlflg.artifact(langchain_asset_path) except ValueError: try: langchain_asset.save_agent(langchain_asset_path) self.mlflg.artifact(langchain_asset_path) except AttributeError: print("Could not save model.") traceback.print_exc() pass except NotImplementedError: print("Could not save model.") traceback.print_exc() pass except NotImplementedError: print("Could not save model.") traceback.print_exc() pass if finish: self.mlflg.finish_run() self._reset()
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,756
Recent tags change causes AttributeError: 'str' object has no attribute 'value' on initialize_agent call
### System Info - Langchain: 0.0.215 - Platform: ubuntu - Python 3.10.12 ### Who can help? @vowelparrot https://github.com/hwchase17/langchain/blob/d84a3bcf7ab3edf8fe1d49083e066d51c9b5f621/langchain/agents/initialize.py#L54 ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [X] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Fails if agent initialized as follows: ```python agent = initialize_agent( agent='zero-shot-react-description', tools=tools, llm=llm, verbose=True, max_iterations=30, memory=ConversationBufferMemory(), handle_parsing_errors=True) ``` With ``` ... lib/python3.10/site-packages/langchain/agents/initialize.py", line 54, in initialize_agent tags_.append(agent.value) AttributeError: 'str' object has no attribute 'value' ```` ### Expected behavior Expected to work as before where agent is specified as a string (or if this is highlighting that agent should actually be an object, it should indicate that instead of the error being shown).
https://github.com/langchain-ai/langchain/issues/6756
https://github.com/langchain-ai/langchain/pull/6765
ba622764cb7ccf4667878289f959857348ef8c19
6d30acffcbea5807835839585132d3946bb81661
"2023-06-26T11:00:29Z"
python
"2023-06-26T16:28:11Z"
langchain/agents/initialize.py
"""Load agent.""" from typing import Any, Optional, Sequence from langchain.agents.agent import AgentExecutor from langchain.agents.agent_types import AgentType from langchain.agents.loading import AGENT_TO_CLASS, load_agent from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.tools.base import BaseTool def initialize_agent( tools: Sequence[BaseTool], llm: BaseLanguageModel, agent: Optional[AgentType] = None, callback_manager: Optional[BaseCallbackManager] = None, agent_path: Optional[str] = None, agent_kwargs: Optional[dict] = None, *, tags: Optional[Sequence[str]] = None, **kwargs: Any, ) -> AgentExecutor: """Load an agent executor given tools and LLM. Args: tools: List of tools this agent has access to. llm: Language model to use as the agent. agent: Agent type to use. If None and agent_path is also None, will default to AgentType.ZERO_SHOT_REACT_DESCRIPTION. callback_manager: CallbackManager to use. Global callback manager is used if not provided. Defaults to None. agent_path: Path to serialized agent to use. agent_kwargs: Additional key word arguments to pass to the underlying agent tags: Tags to apply to the traced runs. **kwargs: Additional key word arguments passed to the agent executor Returns: An agent executor """ tags_ = list(tags) if tags else [] if agent is None and agent_path is None: agent = AgentType.ZERO_SHOT_REACT_DESCRIPTION if agent is not None and agent_path is not None: raise ValueError( "Both `agent` and `agent_path` are specified, " "but at most only one should be." ) if agent is not None: if agent not in AGENT_TO_CLASS: raise ValueError( f"Got unknown agent type: {agent}. " f"Valid types are: {AGENT_TO_CLASS.keys()}." ) tags_.append(agent.value) agent_cls = AGENT_TO_CLASS[agent] agent_kwargs = agent_kwargs or {} agent_obj = agent_cls.from_llm_and_tools( llm, tools, callback_manager=callback_manager, **agent_kwargs ) elif agent_path is not None: agent_obj = load_agent( agent_path, llm=llm, tools=tools, callback_manager=callback_manager ) try: # TODO: Add tags from the serialized object directly. tags_.append(agent_obj._agent_type) except NotImplementedError: pass else: raise ValueError( "Somehow both `agent` and `agent_path` are None, " "this should never happen." ) return AgentExecutor.from_agent_and_tools( agent=agent_obj, tools=tools, callback_manager=callback_manager, tags=tags_, **kwargs, )
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,756
Recent tags change causes AttributeError: 'str' object has no attribute 'value' on initialize_agent call
### System Info - Langchain: 0.0.215 - Platform: ubuntu - Python 3.10.12 ### Who can help? @vowelparrot https://github.com/hwchase17/langchain/blob/d84a3bcf7ab3edf8fe1d49083e066d51c9b5f621/langchain/agents/initialize.py#L54 ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [X] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Fails if agent initialized as follows: ```python agent = initialize_agent( agent='zero-shot-react-description', tools=tools, llm=llm, verbose=True, max_iterations=30, memory=ConversationBufferMemory(), handle_parsing_errors=True) ``` With ``` ... lib/python3.10/site-packages/langchain/agents/initialize.py", line 54, in initialize_agent tags_.append(agent.value) AttributeError: 'str' object has no attribute 'value' ```` ### Expected behavior Expected to work as before where agent is specified as a string (or if this is highlighting that agent should actually be an object, it should indicate that instead of the error being shown).
https://github.com/langchain-ai/langchain/issues/6756
https://github.com/langchain-ai/langchain/pull/6765
ba622764cb7ccf4667878289f959857348ef8c19
6d30acffcbea5807835839585132d3946bb81661
"2023-06-26T11:00:29Z"
python
"2023-06-26T16:28:11Z"
tests/unit_tests/agents/test_initialize.py
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
4,833
Arbitrary code execution in JiraAPIWrapper
### System Info LangChain version:0.0.171 windows 10 ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. Set the environment variables for jira and openai ```python import os from langchain.utilities.jira import JiraAPIWrapper os.environ["JIRA_API_TOKEN"] = "your jira api token" os.environ["JIRA_USERNAME"] = "your username" os.environ["JIRA_INSTANCE_URL"] = "your url" os.environ["OPENAI_API_KEY"] = "your openai key" ``` 2. Run jira ```python jira = JiraAPIWrapper() output = jira.run('other',"exec(\"import os;print(os.popen('id').read())\")") ``` 3. The `id` command will be executed. Commands can be change to others and attackers can execute arbitrary code. ### Expected behavior The code can be executed without any check.
https://github.com/langchain-ai/langchain/issues/4833
https://github.com/langchain-ai/langchain/pull/6992
61938a02a1e76fa6c6e8203c98a9344a179c810d
a2f191a32229256dd41deadf97786fe41ce04cbb
"2023-05-17T04:11:40Z"
python
"2023-07-05T19:56:01Z"
langchain/tools/jira/prompt.py
# flake8: noqa JIRA_ISSUE_CREATE_PROMPT = """ This tool is a wrapper around atlassian-python-api's Jira issue_create API, useful when you need to create a Jira issue. The input to this tool is a dictionary specifying the fields of the Jira issue, and will be passed into atlassian-python-api's Jira `issue_create` function. For example, to create a low priority task called "test issue" with description "test description", you would pass in the following dictionary: {{"summary": "test issue", "description": "test description", "issuetype": {{"name": "Task"}}, "priority": {{"name": "Low"}}}} """ JIRA_GET_ALL_PROJECTS_PROMPT = """ This tool is a wrapper around atlassian-python-api's Jira project API, useful when you need to fetch all the projects the user has access to, find out how many projects there are, or as an intermediary step that involv searching by projects. there is no input to this tool. """ JIRA_JQL_PROMPT = """ This tool is a wrapper around atlassian-python-api's Jira jql API, useful when you need to search for Jira issues. The input to this tool is a JQL query string, and will be passed into atlassian-python-api's Jira `jql` function, For example, to find all the issues in project "Test" assigned to the me, you would pass in the following string: project = Test AND assignee = currentUser() or to find issues with summaries that contain the word "test", you would pass in the following string: summary ~ 'test' """ JIRA_CATCH_ALL_PROMPT = """ This tool is a wrapper around atlassian-python-api's Jira API. There are other dedicated tools for fetching all projects, and creating and searching for issues, use this tool if you need to perform any other actions allowed by the atlassian-python-api Jira API. The input to this tool is line of python code that calls a function from atlassian-python-api's Jira API For example, to update the summary field of an issue, you would pass in the following string: self.jira.update_issue_field(key, {{"summary": "New summary"}}) or to find out how many projects are in the Jira instance, you would pass in the following string: self.jira.projects() For more information on the Jira API, refer to https://atlassian-python-api.readthedocs.io/jira.html """ JIRA_CONFLUENCE_PAGE_CREATE_PROMPT = """This tool is a wrapper around atlassian-python-api's Confluence atlassian-python-api API, useful when you need to create a Confluence page. The input to this tool is a dictionary specifying the fields of the Confluence page, and will be passed into atlassian-python-api's Confluence `create_page` function. For example, to create a page in the DEMO space titled "This is the title" with body "This is the body. You can use <strong>HTML tags</strong>!", you would pass in the following dictionary: {{"space": "DEMO", "title":"This is the title","body":"This is the body. You can use <strong>HTML tags</strong>!"}} """
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
4,833
Arbitrary code execution in JiraAPIWrapper
### System Info LangChain version:0.0.171 windows 10 ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. Set the environment variables for jira and openai ```python import os from langchain.utilities.jira import JiraAPIWrapper os.environ["JIRA_API_TOKEN"] = "your jira api token" os.environ["JIRA_USERNAME"] = "your username" os.environ["JIRA_INSTANCE_URL"] = "your url" os.environ["OPENAI_API_KEY"] = "your openai key" ``` 2. Run jira ```python jira = JiraAPIWrapper() output = jira.run('other',"exec(\"import os;print(os.popen('id').read())\")") ``` 3. The `id` command will be executed. Commands can be change to others and attackers can execute arbitrary code. ### Expected behavior The code can be executed without any check.
https://github.com/langchain-ai/langchain/issues/4833
https://github.com/langchain-ai/langchain/pull/6992
61938a02a1e76fa6c6e8203c98a9344a179c810d
a2f191a32229256dd41deadf97786fe41ce04cbb
"2023-05-17T04:11:40Z"
python
"2023-07-05T19:56:01Z"
langchain/utilities/jira.py
"""Util that calls Jira.""" from typing import Any, Dict, List, Optional from pydantic import BaseModel, Extra, root_validator from langchain.tools.jira.prompt import ( JIRA_CATCH_ALL_PROMPT, JIRA_CONFLUENCE_PAGE_CREATE_PROMPT, JIRA_GET_ALL_PROJECTS_PROMPT, JIRA_ISSUE_CREATE_PROMPT, JIRA_JQL_PROMPT, ) from langchain.utils import get_from_dict_or_env # TODO: think about error handling, more specific api specs, and jql/project limits class JiraAPIWrapper(BaseModel): """Wrapper for Jira API.""" jira: Any #: :meta private: confluence: Any jira_username: Optional[str] = None jira_api_token: Optional[str] = None jira_instance_url: Optional[str] = None operations: List[Dict] = [ { "mode": "jql", "name": "JQL Query", "description": JIRA_JQL_PROMPT, }, { "mode": "get_projects", "name": "Get Projects", "description": JIRA_GET_ALL_PROJECTS_PROMPT, }, { "mode": "create_issue", "name": "Create Issue", "description": JIRA_ISSUE_CREATE_PROMPT, }, { "mode": "other", "name": "Catch all Jira API call", "description": JIRA_CATCH_ALL_PROMPT, }, { "mode": "create_page", "name": "Create confluence page", "description": JIRA_CONFLUENCE_PAGE_CREATE_PROMPT, }, ] class Config: """Configuration for this pydantic object.""" extra = Extra.forbid def list(self) -> List[Dict]: return self.operations @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" jira_username = get_from_dict_or_env(values, "jira_username", "JIRA_USERNAME") values["jira_username"] = jira_username jira_api_token = get_from_dict_or_env( values, "jira_api_token", "JIRA_API_TOKEN" ) values["jira_api_token"] = jira_api_token jira_instance_url = get_from_dict_or_env( values, "jira_instance_url", "JIRA_INSTANCE_URL" ) values["jira_instance_url"] = jira_instance_url try: from atlassian import Confluence, Jira except ImportError: raise ImportError( "atlassian-python-api is not installed. " "Please install it with `pip install atlassian-python-api`" ) jira = Jira( url=jira_instance_url, username=jira_username, password=jira_api_token, cloud=True, ) confluence = Confluence( url=jira_instance_url, username=jira_username, password=jira_api_token, cloud=True, ) values["jira"] = jira values["confluence"] = confluence return values def parse_issues(self, issues: Dict) -> List[dict]: parsed = [] for issue in issues["issues"]: key = issue["key"] summary = issue["fields"]["summary"] created = issue["fields"]["created"][0:10] priority = issue["fields"]["priority"]["name"] status = issue["fields"]["status"]["name"] try: assignee = issue["fields"]["assignee"]["displayName"] except Exception: assignee = "None" rel_issues = {} for related_issue in issue["fields"]["issuelinks"]: if "inwardIssue" in related_issue.keys(): rel_type = related_issue["type"]["inward"] rel_key = related_issue["inwardIssue"]["key"] rel_summary = related_issue["inwardIssue"]["fields"]["summary"] if "outwardIssue" in related_issue.keys(): rel_type = related_issue["type"]["outward"] rel_key = related_issue["outwardIssue"]["key"] rel_summary = related_issue["outwardIssue"]["fields"]["summary"] rel_issues = {"type": rel_type, "key": rel_key, "summary": rel_summary} parsed.append( { "key": key, "summary": summary, "created": created, "assignee": assignee, "priority": priority, "status": status, "related_issues": rel_issues, } ) return parsed def parse_projects(self, projects: List[dict]) -> List[dict]: parsed = [] for project in projects: id = project["id"] key = project["key"] name = project["name"] type = project["projectTypeKey"] style = project["style"] parsed.append( {"id": id, "key": key, "name": name, "type": type, "style": style} ) return parsed def search(self, query: str) -> str: issues = self.jira.jql(query) parsed_issues = self.parse_issues(issues) parsed_issues_str = ( "Found " + str(len(parsed_issues)) + " issues:\n" + str(parsed_issues) ) return parsed_issues_str def project(self) -> str: projects = self.jira.projects() parsed_projects = self.parse_projects(projects) parsed_projects_str = ( "Found " + str(len(parsed_projects)) + " projects:\n" + str(parsed_projects) ) return parsed_projects_str def issue_create(self, query: str) -> str: try: import json except ImportError: raise ImportError( "json is not installed. Please install it with `pip install json`" ) params = json.loads(query) return self.jira.issue_create(fields=dict(params)) def page_create(self, query: str) -> str: try: import json except ImportError: raise ImportError( "json is not installed. Please install it with `pip install json`" ) params = json.loads(query) return self.confluence.create_page(**dict(params)) def other(self, query: str) -> str: context = {"self": self} exec(f"result = {query}", context) result = context["result"] return str(result) def run(self, mode: str, query: str) -> str: if mode == "jql": return self.search(query) elif mode == "get_projects": return self.project() elif mode == "create_issue": return self.issue_create(query) elif mode == "other": return self.other(query) elif mode == "create_page": return self.page_create(query) else: raise ValueError(f"Got unexpected mode {mode}")
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
4,833
Arbitrary code execution in JiraAPIWrapper
### System Info LangChain version:0.0.171 windows 10 ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. Set the environment variables for jira and openai ```python import os from langchain.utilities.jira import JiraAPIWrapper os.environ["JIRA_API_TOKEN"] = "your jira api token" os.environ["JIRA_USERNAME"] = "your username" os.environ["JIRA_INSTANCE_URL"] = "your url" os.environ["OPENAI_API_KEY"] = "your openai key" ``` 2. Run jira ```python jira = JiraAPIWrapper() output = jira.run('other',"exec(\"import os;print(os.popen('id').read())\")") ``` 3. The `id` command will be executed. Commands can be change to others and attackers can execute arbitrary code. ### Expected behavior The code can be executed without any check.
https://github.com/langchain-ai/langchain/issues/4833
https://github.com/langchain-ai/langchain/pull/6992
61938a02a1e76fa6c6e8203c98a9344a179c810d
a2f191a32229256dd41deadf97786fe41ce04cbb
"2023-05-17T04:11:40Z"
python
"2023-07-05T19:56:01Z"
tests/integration_tests/utilities/test_jira_api.py
"""Integration test for JIRA API Wrapper.""" from langchain.utilities.jira import JiraAPIWrapper def test_search() -> None: """Test for Searching issues on JIRA""" jql = "project = TP" jira = JiraAPIWrapper() output = jira.run("jql", jql) assert "issues" in output def test_getprojects() -> None: """Test for getting projects on JIRA""" jira = JiraAPIWrapper() output = jira.run("get_projects", "") assert "projects" in output def test_create_ticket() -> None: """Test the Create Ticket Call that Creates a Issue/Ticket on JIRA.""" issue_string = ( '{"summary": "Test Summary", "description": "Test Description",' ' "issuetype": {"name": "Bug"}, "project": {"key": "TP"}}' ) jira = JiraAPIWrapper() output = jira.run("create_issue", issue_string) assert "id" in output assert "key" in output def test_create_confluence_page() -> None: """Test for getting projects on JIRA""" jira = JiraAPIWrapper() create_page_dict = ( '{"space": "ROC", "title":"This is the title",' '"body":"This is the body. You can use ' '<strong>HTML tags</strong>!"}' ) output = jira.run("create_page", create_page_dict) assert "type" in output assert "page" in output
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,365
PromptLayerChatOpenAI does not support the newest function calling feature
### System Info Python Version: 3.11 Langchain Version: 0.0.209 ### Who can help? @hwchase17 @agola11 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Steps to reproduce: ``` llm = PromptLayerChatOpenAI(model="gpt-3.5-turbo-0613", pl_tags=tags, return_pl_id=True) predicted_message = self.llm.predict_messages(messages, functions=self.functions, callbacks=callbacks) ``` `predicted_message.additional_kwargs` attribute appears to have a empty dict, because the `functions` kwarg not even passed to the parent class. ### Expected behavior Predicted AI Message should have a `function_call` key on `additional_kwargs` attribute.
https://github.com/langchain-ai/langchain/issues/6365
https://github.com/langchain-ai/langchain/pull/6366
e0cb3ea90c1f8ec26957ffca65c6e451d444c69d
09acbb84101bc6df373ca5a1d6c8d212bd3f577f
"2023-06-18T13:00:32Z"
python
"2023-07-06T17:16:04Z"
langchain/chat_models/promptlayer_openai.py
"""PromptLayer wrapper.""" import datetime from typing import Any, List, Mapping, Optional from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.chat_models import ChatOpenAI from langchain.schema import ChatResult from langchain.schema.messages import BaseMessage class PromptLayerChatOpenAI(ChatOpenAI): """Wrapper around OpenAI Chat large language models and PromptLayer. To use, you should have the ``openai`` and ``promptlayer`` python package installed, and the environment variable ``OPENAI_API_KEY`` and ``PROMPTLAYER_API_KEY`` set with your openAI API key and promptlayer key respectively. All parameters that can be passed to the OpenAI LLM can also be passed here. The PromptLayerChatOpenAI adds to optional parameters: ``pl_tags``: List of strings to tag the request with. ``return_pl_id``: If True, the PromptLayer request ID will be returned in the ``generation_info`` field of the ``Generation`` object. Example: .. code-block:: python from langchain.chat_models import PromptLayerChatOpenAI openai = PromptLayerChatOpenAI(model_name="gpt-3.5-turbo") """ pl_tags: Optional[List[str]] return_pl_id: Optional[bool] = False def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any ) -> ChatResult: """Call ChatOpenAI generate and then call PromptLayer API to log the request.""" from promptlayer.utils import get_api_key, promptlayer_api_request request_start_time = datetime.datetime.now().timestamp() generated_responses = super()._generate(messages, stop, run_manager) request_end_time = datetime.datetime.now().timestamp() message_dicts, params = super()._create_message_dicts(messages, stop) for i, generation in enumerate(generated_responses.generations): response_dict, params = super()._create_message_dicts( [generation.message], stop ) params = {**params, **kwargs} pl_request_id = promptlayer_api_request( "langchain.PromptLayerChatOpenAI", "langchain", message_dicts, params, self.pl_tags, response_dict, request_start_time, request_end_time, get_api_key(), return_pl_id=self.return_pl_id, ) if self.return_pl_id: if generation.generation_info is None or not isinstance( generation.generation_info, dict ): generation.generation_info = {} generation.generation_info["pl_request_id"] = pl_request_id return generated_responses async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any ) -> ChatResult: """Call ChatOpenAI agenerate and then call PromptLayer to log.""" from promptlayer.utils import get_api_key, promptlayer_api_request_async request_start_time = datetime.datetime.now().timestamp() generated_responses = await super()._agenerate(messages, stop, run_manager) request_end_time = datetime.datetime.now().timestamp() message_dicts, params = super()._create_message_dicts(messages, stop) for i, generation in enumerate(generated_responses.generations): response_dict, params = super()._create_message_dicts( [generation.message], stop ) params = {**params, **kwargs} pl_request_id = await promptlayer_api_request_async( "langchain.PromptLayerChatOpenAI.async", "langchain", message_dicts, params, self.pl_tags, response_dict, request_start_time, request_end_time, get_api_key(), return_pl_id=self.return_pl_id, ) if self.return_pl_id: if generation.generation_info is None or not isinstance( generation.generation_info, dict ): generation.generation_info = {} generation.generation_info["pl_request_id"] = pl_request_id return generated_responses @property def _llm_type(self) -> str: return "promptlayer-openai-chat" @property def _identifying_params(self) -> Mapping[str, Any]: return { **super()._identifying_params, "pl_tags": self.pl_tags, "return_pl_id": self.return_pl_id, }
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,283
anthropic_version = packaging.version.parse(version("anthropic")) AttributeError: module 'packaging' has no attribute 'version'
### System Info When I initialise ChatAnthropic(), it got the error: anthropic_version = packaging.version.parse(version("anthropic")) AttributeError: module 'packaging' has no attribute 'version' ### Who can help? @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction from langchain.chat_models import ChatOpenAI, ChatAnthropic llm = ChatAnthropic() ### Expected behavior As shown above.
https://github.com/langchain-ai/langchain/issues/7283
https://github.com/langchain-ai/langchain/pull/7306
d642609a23219b1037f84492c2bc56777e90397a
bac56618b43912acf4970d72d2497507eb14ceb1
"2023-07-06T15:35:39Z"
python
"2023-07-06T23:35:42Z"
langchain/llms/anthropic.py
"""Wrapper around Anthropic APIs.""" import re import warnings from importlib.metadata import version from typing import Any, Callable, Dict, Generator, List, Mapping, Optional import packaging from pydantic import BaseModel, root_validator from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.llms.base import LLM from langchain.utils import get_from_dict_or_env class _AnthropicCommon(BaseModel): client: Any = None #: :meta private: async_client: Any = None #: :meta private: model: str = "claude-v1" """Model name to use.""" max_tokens_to_sample: int = 256 """Denotes the number of tokens to predict per generation.""" temperature: Optional[float] = None """A non-negative float that tunes the degree of randomness in generation.""" top_k: Optional[int] = None """Number of most likely tokens to consider at each step.""" top_p: Optional[float] = None """Total probability mass of tokens to consider at each step.""" streaming: bool = False """Whether to stream the results.""" default_request_timeout: Optional[float] = None """Timeout for requests to Anthropic Completion API. Default is 600 seconds.""" anthropic_api_url: Optional[str] = None anthropic_api_key: Optional[str] = None HUMAN_PROMPT: Optional[str] = None AI_PROMPT: Optional[str] = None count_tokens: Optional[Callable[[str], int]] = None @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" values["anthropic_api_key"] = get_from_dict_or_env( values, "anthropic_api_key", "ANTHROPIC_API_KEY" ) # Get custom api url from environment. values["anthropic_api_url"] = get_from_dict_or_env( values, "anthropic_api_url", "ANTHROPIC_API_URL", default="https://api.anthropic.com", ) try: import anthropic anthropic_version = packaging.version.parse(version("anthropic")) if anthropic_version < packaging.version.parse("0.3"): raise ValueError( f"Anthropic client version must be > 0.3, got {anthropic_version}. " f"To update the client, please run " f"`pip install -U anthropic`" ) values["client"] = anthropic.Anthropic( base_url=values["anthropic_api_url"], api_key=values["anthropic_api_key"], timeout=values["default_request_timeout"], ) values["async_client"] = anthropic.AsyncAnthropic( base_url=values["anthropic_api_url"], api_key=values["anthropic_api_key"], timeout=values["default_request_timeout"], ) values["HUMAN_PROMPT"] = anthropic.HUMAN_PROMPT values["AI_PROMPT"] = anthropic.AI_PROMPT values["count_tokens"] = values["client"].count_tokens except ImportError: raise ImportError( "Could not import anthropic python package. " "Please it install it with `pip install anthropic`." ) return values @property def _default_params(self) -> Mapping[str, Any]: """Get the default parameters for calling Anthropic API.""" d = { "max_tokens_to_sample": self.max_tokens_to_sample, "model": self.model, } if self.temperature is not None: d["temperature"] = self.temperature if self.top_k is not None: d["top_k"] = self.top_k if self.top_p is not None: d["top_p"] = self.top_p return d @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {**{}, **self._default_params} def _get_anthropic_stop(self, stop: Optional[List[str]] = None) -> List[str]: if not self.HUMAN_PROMPT or not self.AI_PROMPT: raise NameError("Please ensure the anthropic package is loaded") if stop is None: stop = [] # Never want model to invent new turns of Human / Assistant dialog. stop.extend([self.HUMAN_PROMPT]) return stop class Anthropic(LLM, _AnthropicCommon): r"""Wrapper around Anthropic's large language models. To use, you should have the ``anthropic`` python package installed, and the environment variable ``ANTHROPIC_API_KEY`` set with your API key, or pass it as a named parameter to the constructor. Example: .. code-block:: python import anthropic from langchain.llms import Anthropic model = Anthropic(model="<model_name>", anthropic_api_key="my-api-key") # Simplest invocation, automatically wrapped with HUMAN_PROMPT # and AI_PROMPT. response = model("What are the biggest risks facing humanity?") # Or if you want to use the chat mode, build a few-shot-prompt, or # put words in the Assistant's mouth, use HUMAN_PROMPT and AI_PROMPT: raw_prompt = "What are the biggest risks facing humanity?" prompt = f"{anthropic.HUMAN_PROMPT} {prompt}{anthropic.AI_PROMPT}" response = model(prompt) """ @root_validator() def raise_warning(cls, values: Dict) -> Dict: """Raise warning that this class is deprecated.""" warnings.warn( "This Anthropic LLM is deprecated. " "Please use `from langchain.chat_models import ChatAnthropic` instead" ) return values @property def _llm_type(self) -> str: """Return type of llm.""" return "anthropic-llm" def _wrap_prompt(self, prompt: str) -> str: if not self.HUMAN_PROMPT or not self.AI_PROMPT: raise NameError("Please ensure the anthropic package is loaded") if prompt.startswith(self.HUMAN_PROMPT): return prompt # Already wrapped. # Guard against common errors in specifying wrong number of newlines. corrected_prompt, n_subs = re.subn(r"^\n*Human:", self.HUMAN_PROMPT, prompt) if n_subs == 1: return corrected_prompt # As a last resort, wrap the prompt ourselves to emulate instruct-style. return f"{self.HUMAN_PROMPT} {prompt}{self.AI_PROMPT} Sure, here you go:\n" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: r"""Call out to Anthropic's completion endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python prompt = "What are the biggest risks facing humanity?" prompt = f"\n\nHuman: {prompt}\n\nAssistant:" response = model(prompt) """ stop = self._get_anthropic_stop(stop) params = {**self._default_params, **kwargs} if self.streaming: stream_resp = self.client.completions.create( prompt=self._wrap_prompt(prompt), stop_sequences=stop, stream=True, **params, ) current_completion = "" for data in stream_resp: delta = data.completion current_completion += delta if run_manager: run_manager.on_llm_new_token( delta, ) return current_completion response = self.client.completions.create( prompt=self._wrap_prompt(prompt), stop_sequences=stop, **params, ) return response.completion async def _acall( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to Anthropic's completion endpoint asynchronously.""" stop = self._get_anthropic_stop(stop) params = {**self._default_params, **kwargs} if self.streaming: stream_resp = await self.async_client.completions.create( prompt=self._wrap_prompt(prompt), stop_sequences=stop, stream=True, **params, ) current_completion = "" async for data in stream_resp: delta = data.completion current_completion += delta if run_manager: await run_manager.on_llm_new_token(delta) return current_completion response = await self.async_client.completions.create( prompt=self._wrap_prompt(prompt), stop_sequences=stop, **params, ) return response.completion def stream(self, prompt: str, stop: Optional[List[str]] = None) -> Generator: r"""Call Anthropic completion_stream and return the resulting generator. BETA: this is a beta feature while we figure out the right abstraction. Once that happens, this interface could change. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: A generator representing the stream of tokens from Anthropic. Example: .. code-block:: python prompt = "Write a poem about a stream." prompt = f"\n\nHuman: {prompt}\n\nAssistant:" generator = anthropic.stream(prompt) for token in generator: yield token """ stop = self._get_anthropic_stop(stop) return self.client.completions.create( prompt=self._wrap_prompt(prompt), stop_sequences=stop, stream=True, **self._default_params, ) def get_num_tokens(self, text: str) -> int: """Calculate number of tokens.""" if not self.count_tokens: raise NameError("Please ensure the anthropic package is loaded") return self.count_tokens(text)
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,472
Pinecone: Support starter tier
### Feature request Adapt the pinecone vectorstore to support upcoming starter tier. The changes are related to removing namespaces and `delete by metadata` feature. ### Motivation Indexes in upcoming Pinecone V4 won't support: * namespaces * `configure_index()` * delete by metadata * `describe_index()` with metadata filtering * `metadata_config` parameter to `create_index()` * `delete()` with the `deleteAll` parameter ### Your contribution I'll do it.
https://github.com/langchain-ai/langchain/issues/7472
https://github.com/langchain-ai/langchain/pull/7473
5debd5043e61d29efea661c20818b48a0f39e5a6
9d13dcd17c2dfab8f087bcc37e99f1181dfe5c63
"2023-07-10T10:19:16Z"
python
"2023-07-10T15:39:47Z"
langchain/vectorstores/pinecone.py
"""Wrapper around Pinecone vector database.""" from __future__ import annotations import logging import uuid from typing import Any, Callable, Iterable, List, Optional, Tuple import numpy as np from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.vectorstores.base import VectorStore from langchain.vectorstores.utils import maximal_marginal_relevance logger = logging.getLogger(__name__) class Pinecone(VectorStore): """Wrapper around Pinecone vector database. To use, you should have the ``pinecone-client`` python package installed. Example: .. code-block:: python from langchain.vectorstores import Pinecone from langchain.embeddings.openai import OpenAIEmbeddings import pinecone # The environment should be the one specified next to the API key # in your Pinecone console pinecone.init(api_key="***", environment="...") index = pinecone.Index("langchain-demo") embeddings = OpenAIEmbeddings() vectorstore = Pinecone(index, embeddings.embed_query, "text") """ def __init__( self, index: Any, embedding_function: Callable, text_key: str, namespace: Optional[str] = None, ): """Initialize with Pinecone client.""" try: import pinecone except ImportError: raise ValueError( "Could not import pinecone python package. " "Please install it with `pip install pinecone-client`." ) if not isinstance(index, pinecone.index.Index): raise ValueError( f"client should be an instance of pinecone.index.Index, " f"got {type(index)}" ) self._index = index self._embedding_function = embedding_function self._text_key = text_key self._namespace = namespace def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, namespace: Optional[str] = None, batch_size: int = 32, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. ids: Optional list of ids to associate with the texts. namespace: Optional pinecone namespace to add the texts to. Returns: List of ids from adding the texts into the vectorstore. """ if namespace is None: namespace = self._namespace # Embed and create the documents docs = [] ids = ids or [str(uuid.uuid4()) for _ in texts] for i, text in enumerate(texts): embedding = self._embedding_function(text) metadata = metadatas[i] if metadatas else {} metadata[self._text_key] = text docs.append((ids[i], embedding, metadata)) # upsert to Pinecone self._index.upsert(vectors=docs, namespace=namespace, batch_size=batch_size) return ids def similarity_search_with_score( self, query: str, k: int = 4, filter: Optional[dict] = None, namespace: Optional[str] = None, ) -> List[Tuple[Document, float]]: """Return pinecone documents most similar to query, along with scores. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Dictionary of argument(s) to filter on metadata namespace: Namespace to search in. Default will search in '' namespace. Returns: List of Documents most similar to the query and score for each """ if namespace is None: namespace = self._namespace query_obj = self._embedding_function(query) docs = [] results = self._index.query( [query_obj], top_k=k, include_metadata=True, namespace=namespace, filter=filter, ) for res in results["matches"]: metadata = res["metadata"] if self._text_key in metadata: text = metadata.pop(self._text_key) score = res["score"] docs.append((Document(page_content=text, metadata=metadata), score)) else: logger.warning( f"Found document with no `{self._text_key}` key. Skipping." ) return docs def similarity_search( self, query: str, k: int = 4, filter: Optional[dict] = None, namespace: Optional[str] = None, **kwargs: Any, ) -> List[Document]: """Return pinecone documents most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Dictionary of argument(s) to filter on metadata namespace: Namespace to search in. Default will search in '' namespace. Returns: List of Documents most similar to the query and score for each """ docs_and_scores = self.similarity_search_with_score( query, k=k, filter=filter, namespace=namespace, **kwargs ) return [doc for doc, _ in docs_and_scores] def _similarity_search_with_relevance_scores( self, query: str, k: int = 4, **kwargs: Any, ) -> List[Tuple[Document, float]]: kwargs.pop("score_threshold", None) return self.similarity_search_with_score(query, k, **kwargs) def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[dict] = None, namespace: Optional[str] = None, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns: List of Documents selected by maximal marginal relevance. """ if namespace is None: namespace = self._namespace results = self._index.query( [embedding], top_k=fetch_k, include_values=True, include_metadata=True, namespace=namespace, filter=filter, ) mmr_selected = maximal_marginal_relevance( np.array([embedding], dtype=np.float32), [item["values"] for item in results["matches"]], k=k, lambda_mult=lambda_mult, ) selected = [results["matches"][i]["metadata"] for i in mmr_selected] return [ Document(page_content=metadata.pop((self._text_key)), metadata=metadata) for metadata in selected ] def max_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[dict] = None, namespace: Optional[str] = None, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns: List of Documents selected by maximal marginal relevance. """ embedding = self._embedding_function(query) return self.max_marginal_relevance_search_by_vector( embedding, k, fetch_k, lambda_mult, filter, namespace ) @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, batch_size: int = 32, text_key: str = "text", index_name: Optional[str] = None, namespace: Optional[str] = None, **kwargs: Any, ) -> Pinecone: """Construct Pinecone wrapper from raw documents. This is a user friendly interface that: 1. Embeds documents. 2. Adds the documents to a provided Pinecone index This is intended to be a quick way to get started. Example: .. code-block:: python from langchain import Pinecone from langchain.embeddings import OpenAIEmbeddings import pinecone # The environment should be the one specified next to the API key # in your Pinecone console pinecone.init(api_key="***", environment="...") embeddings = OpenAIEmbeddings() pinecone = Pinecone.from_texts( texts, embeddings, index_name="langchain-demo" ) """ try: import pinecone except ImportError: raise ValueError( "Could not import pinecone python package. " "Please install it with `pip install pinecone-client`." ) indexes = pinecone.list_indexes() # checks if provided index exists if index_name in indexes: index = pinecone.Index(index_name) elif len(indexes) == 0: raise ValueError( "No active indexes found in your Pinecone project, " "are you sure you're using the right API key and environment?" ) else: raise ValueError( f"Index '{index_name}' not found in your Pinecone project. " f"Did you mean one of the following indexes: {', '.join(indexes)}" ) for i in range(0, len(texts), batch_size): # set end position of batch i_end = min(i + batch_size, len(texts)) # get batch of texts and ids lines_batch = texts[i:i_end] # create ids if not provided if ids: ids_batch = ids[i:i_end] else: ids_batch = [str(uuid.uuid4()) for n in range(i, i_end)] # create embeddings embeds = embedding.embed_documents(lines_batch) # prep metadata and upsert batch if metadatas: metadata = metadatas[i:i_end] else: metadata = [{} for _ in range(i, i_end)] for j, line in enumerate(lines_batch): metadata[j][text_key] = line to_upsert = zip(ids_batch, embeds, metadata) # upsert to Pinecone index.upsert(vectors=list(to_upsert), namespace=namespace) return cls(index, embedding.embed_query, text_key, namespace) @classmethod def from_existing_index( cls, index_name: str, embedding: Embeddings, text_key: str = "text", namespace: Optional[str] = None, ) -> Pinecone: """Load pinecone vectorstore from index name.""" try: import pinecone except ImportError: raise ValueError( "Could not import pinecone python package. " "Please install it with `pip install pinecone-client`." ) return cls( pinecone.Index(index_name), embedding.embed_query, text_key, namespace ) def delete( self, ids: Optional[List[str]] = None, delete_all: Optional[bool] = None, namespace: Optional[str] = None, filter: Optional[dict] = None, **kwargs: Any, ) -> None: """Delete by vector IDs or filter. Args: ids: List of ids to delete. filter: Dictionary of conditions to filter vectors to delete. """ if namespace is None: namespace = self._namespace if delete_all: self._index.delete(delete_all=True, namespace=namespace, **kwargs) elif ids is not None: chunk_size = 1000 for i in range(0, len(ids), chunk_size): chunk = ids[i : i + chunk_size] self._index.delete(ids=chunk, namespace=namespace, **kwargs) elif filter is not None: self._index.delete(filter=filter, namespace=namespace, **kwargs) else: raise ValueError("Either ids, delete_all, or filter must be provided.") return None
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,472
Pinecone: Support starter tier
### Feature request Adapt the pinecone vectorstore to support upcoming starter tier. The changes are related to removing namespaces and `delete by metadata` feature. ### Motivation Indexes in upcoming Pinecone V4 won't support: * namespaces * `configure_index()` * delete by metadata * `describe_index()` with metadata filtering * `metadata_config` parameter to `create_index()` * `delete()` with the `deleteAll` parameter ### Your contribution I'll do it.
https://github.com/langchain-ai/langchain/issues/7472
https://github.com/langchain-ai/langchain/pull/7473
5debd5043e61d29efea661c20818b48a0f39e5a6
9d13dcd17c2dfab8f087bcc37e99f1181dfe5c63
"2023-07-10T10:19:16Z"
python
"2023-07-10T15:39:47Z"
tests/integration_tests/vectorstores/test_pinecone.py
import importlib import os import uuid from typing import List import pinecone import pytest from langchain.docstore.document import Document from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores.pinecone import Pinecone index_name = "langchain-test-index" # name of the index namespace_name = "langchain-test-namespace" # name of the namespace dimension = 1536 # dimension of the embeddings def reset_pinecone() -> None: assert os.environ.get("PINECONE_API_KEY") is not None assert os.environ.get("PINECONE_ENVIRONMENT") is not None import pinecone importlib.reload(pinecone) pinecone.init( api_key=os.environ.get("PINECONE_API_KEY"), environment=os.environ.get("PINECONE_ENVIRONMENT"), ) class TestPinecone: index: pinecone.Index @classmethod def setup_class(cls) -> None: reset_pinecone() cls.index = pinecone.Index(index_name) if index_name in pinecone.list_indexes(): index_stats = cls.index.describe_index_stats() if index_stats["dimension"] == dimension: # delete all the vectors in the index if the dimension is the same # from all namespaces index_stats = cls.index.describe_index_stats() for _namespace_name in index_stats["namespaces"].keys(): cls.index.delete(delete_all=True, namespace=_namespace_name) else: pinecone.delete_index(index_name) pinecone.create_index(name=index_name, dimension=dimension) else: pinecone.create_index(name=index_name, dimension=dimension) # insure the index is empty index_stats = cls.index.describe_index_stats() assert index_stats["dimension"] == dimension if index_stats["namespaces"].get(namespace_name) is not None: assert index_stats["namespaces"][namespace_name]["vector_count"] == 0 @classmethod def teardown_class(cls) -> None: index_stats = cls.index.describe_index_stats() for _namespace_name in index_stats["namespaces"].keys(): cls.index.delete(delete_all=True, namespace=_namespace_name) reset_pinecone() @pytest.fixture(autouse=True) def setup(self) -> None: # delete all the vectors in the index index_stats = self.index.describe_index_stats() for _namespace_name in index_stats["namespaces"].keys(): self.index.delete(delete_all=True, namespace=_namespace_name) reset_pinecone() @pytest.mark.vcr() def test_from_texts( self, texts: List[str], embedding_openai: OpenAIEmbeddings ) -> None: """Test end to end construction and search.""" unique_id = uuid.uuid4().hex needs = f"foobuu {unique_id} booo" texts.insert(0, needs) docsearch = Pinecone.from_texts( texts=texts, embedding=embedding_openai, index_name=index_name, namespace=namespace_name, ) output = docsearch.similarity_search(unique_id, k=1, namespace=namespace_name) assert output == [Document(page_content=needs)] @pytest.mark.vcr() def test_from_texts_with_metadatas( self, texts: List[str], embedding_openai: OpenAIEmbeddings ) -> None: """Test end to end construction and search.""" unique_id = uuid.uuid4().hex needs = f"foobuu {unique_id} booo" texts.insert(0, needs) metadatas = [{"page": i} for i in range(len(texts))] docsearch = Pinecone.from_texts( texts, embedding_openai, index_name=index_name, metadatas=metadatas, namespace=namespace_name, ) output = docsearch.similarity_search(needs, k=1, namespace=namespace_name) # TODO: why metadata={"page": 0.0}) instead of {"page": 0}? assert output == [Document(page_content=needs, metadata={"page": 0.0})] @pytest.mark.vcr() def test_from_texts_with_scores(self, embedding_openai: OpenAIEmbeddings) -> None: """Test end to end construction and search with scores and IDs.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": i} for i in range(len(texts))] docsearch = Pinecone.from_texts( texts, embedding_openai, index_name=index_name, metadatas=metadatas, namespace=namespace_name, ) output = docsearch.similarity_search_with_score( "foo", k=3, namespace=namespace_name ) docs = [o[0] for o in output] scores = [o[1] for o in output] sorted_documents = sorted(docs, key=lambda x: x.metadata["page"]) # TODO: why metadata={"page": 0.0}) instead of {"page": 0}, etc??? assert sorted_documents == [ Document(page_content="foo", metadata={"page": 0.0}), Document(page_content="bar", metadata={"page": 1.0}), Document(page_content="baz", metadata={"page": 2.0}), ] assert scores[0] > scores[1] > scores[2] def test_from_existing_index_with_namespaces( self, embedding_openai: OpenAIEmbeddings ) -> None: """Test that namespaces are properly handled.""" # Create two indexes with the same name but different namespaces texts_1 = ["foo", "bar", "baz"] metadatas = [{"page": i} for i in range(len(texts_1))] Pinecone.from_texts( texts_1, embedding_openai, index_name=index_name, metadatas=metadatas, namespace=f"{index_name}-1", ) texts_2 = ["foo2", "bar2", "baz2"] metadatas = [{"page": i} for i in range(len(texts_2))] Pinecone.from_texts( texts_2, embedding_openai, index_name=index_name, metadatas=metadatas, namespace=f"{index_name}-2", ) # Search with namespace docsearch = Pinecone.from_existing_index( index_name=index_name, embedding=embedding_openai, namespace=f"{index_name}-1", ) output = docsearch.similarity_search("foo", k=20, namespace=f"{index_name}-1") # check that we don't get results from the other namespace page_contents = sorted(set([o.page_content for o in output])) assert all(content in ["foo", "bar", "baz"] for content in page_contents) assert all(content not in ["foo2", "bar2", "baz2"] for content in page_contents) def test_add_documents_with_ids( self, texts: List[str], embedding_openai: OpenAIEmbeddings ) -> None: ids = [uuid.uuid4().hex for _ in range(len(texts))] Pinecone.from_texts( texts=texts, ids=ids, embedding=embedding_openai, index_name=index_name, namespace=index_name, ) index_stats = self.index.describe_index_stats() assert index_stats["namespaces"][index_name]["vector_count"] == len(texts) ids_1 = [uuid.uuid4().hex for _ in range(len(texts))] Pinecone.from_texts( texts=texts, ids=ids_1, embedding=embedding_openai, index_name=index_name, namespace=index_name, ) index_stats = self.index.describe_index_stats() assert index_stats["namespaces"][index_name]["vector_count"] == len(texts) * 2
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,569
Issue: Document loader for Notion DB doesn't supports some properties
### Issue you'd like to raise. Current version of document loader for Notion DB doesn't supports following properties for metadata - `unique_id` - https://www.notion.so/help/unique-id - `status` - https://www.notion.so/help/guides/status-property-gives-clarity-on-tasks - `people` - useful property when you assign some task to assignees ### Suggestion: I would like to make a PR to fix this issue if it's okay.
https://github.com/langchain-ai/langchain/issues/7569
https://github.com/langchain-ai/langchain/pull/7570
5f17c57174c88e8c00bd71216dcf44b14fee7aaf
3f7213586e5fc5222fe6b6c889aa50776cd1c988
"2023-07-12T00:02:03Z"
python
"2023-07-12T07:34:54Z"
langchain/document_loaders/notiondb.py
"""Notion DB loader for langchain""" from typing import Any, Dict, List, Optional import requests from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader NOTION_BASE_URL = "https://api.notion.com/v1" DATABASE_URL = NOTION_BASE_URL + "/databases/{database_id}/query" PAGE_URL = NOTION_BASE_URL + "/pages/{page_id}" BLOCK_URL = NOTION_BASE_URL + "/blocks/{block_id}/children" class NotionDBLoader(BaseLoader): """Notion DB Loader. Reads content from pages within a Notion Database. Args: integration_token (str): Notion integration token. database_id (str): Notion database id. request_timeout_sec (int): Timeout for Notion requests in seconds. Defaults to 10. """ def __init__( self, integration_token: str, database_id: str, request_timeout_sec: Optional[int] = 10, ) -> None: """Initialize with parameters.""" if not integration_token: raise ValueError("integration_token must be provided") if not database_id: raise ValueError("database_id must be provided") self.token = integration_token self.database_id = database_id self.headers = { "Authorization": "Bearer " + self.token, "Content-Type": "application/json", "Notion-Version": "2022-06-28", } self.request_timeout_sec = request_timeout_sec def load(self) -> List[Document]: """Load documents from the Notion database. Returns: List[Document]: List of documents. """ page_summaries = self._retrieve_page_summaries() return list(self.load_page(page_summary) for page_summary in page_summaries) def _retrieve_page_summaries( self, query_dict: Dict[str, Any] = {"page_size": 100} ) -> List[Dict[str, Any]]: """Get all the pages from a Notion database.""" pages: List[Dict[str, Any]] = [] while True: data = self._request( DATABASE_URL.format(database_id=self.database_id), method="POST", query_dict=query_dict, ) pages.extend(data.get("results")) if not data.get("has_more"): break query_dict["start_cursor"] = data.get("next_cursor") return pages def load_page(self, page_summary: Dict[str, Any]) -> Document: """Read a page. Args: page_summary: Page summary from Notion API. """ page_id = page_summary["id"] # load properties as metadata metadata: Dict[str, Any] = {} for prop_name, prop_data in page_summary["properties"].items(): prop_type = prop_data["type"] if prop_type == "rich_text": value = ( prop_data["rich_text"][0]["plain_text"] if prop_data["rich_text"] else None ) elif prop_type == "title": value = ( prop_data["title"][0]["plain_text"] if prop_data["title"] else None ) elif prop_type == "multi_select": value = ( [item["name"] for item in prop_data["multi_select"]] if prop_data["multi_select"] else [] ) elif prop_type == "url": value = prop_data["url"] else: value = None metadata[prop_name.lower()] = value metadata["id"] = page_id return Document(page_content=self._load_blocks(page_id), metadata=metadata) def _load_blocks(self, block_id: str, num_tabs: int = 0) -> str: """Read a block and its children.""" result_lines_arr: List[str] = [] cur_block_id: str = block_id while cur_block_id: data = self._request(BLOCK_URL.format(block_id=cur_block_id)) for result in data["results"]: result_obj = result[result["type"]] if "rich_text" not in result_obj: continue cur_result_text_arr: List[str] = [] for rich_text in result_obj["rich_text"]: if "text" in rich_text: cur_result_text_arr.append( "\t" * num_tabs + rich_text["text"]["content"] ) if result["has_children"]: children_text = self._load_blocks( result["id"], num_tabs=num_tabs + 1 ) cur_result_text_arr.append(children_text) result_lines_arr.append("\n".join(cur_result_text_arr)) cur_block_id = data.get("next_cursor") return "\n".join(result_lines_arr) def _request( self, url: str, method: str = "GET", query_dict: Dict[str, Any] = {} ) -> Any: res = requests.request( method, url, headers=self.headers, json=query_dict, timeout=self.request_timeout_sec, ) res.raise_for_status() return res.json()
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,571
AmazonKendraRetriever "Could not load credentials" error in latest release
### System Info LangChain version: 0.0.229 Platform: AWS Lambda execution Python version: 3.9 I get the following error when creating the AmazonKendraRetriever using LangChain version 0.0.229. Code to create retriever: `retriever = AmazonKendraRetriever(index_id=kendra_index)` Error: ```[ERROR] ValidationError: 1 validation error for AmazonKendraRetriever __root__ Could not load credentials to authenticate with AWS client. Please check that credentials in the specified profile name are valid. (type=value_error) Traceback (most recent call last): File "/var/task/lambda_function.py", line 171, in lambda_handler retriever = AmazonKendraRetriever(index_id=kendra_index) File "/opt/python/langchain/load/serializable.py", line 74, in __init__ super().__init__(**kwargs) File "pydantic/main.py", line 341, in pydantic.main.BaseModel.__init__``` When using LangChain version 0.0.219 this error does not occur. Issue also raised on aws-samples git repo with potential solution: https://github.com/aws-samples/amazon-kendra-langchain-extensions/issues/24 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. Install latest version of Langchain 2. Follow instructions here: https://python.langchain.com/docs/modules/data_connection/retrievers/integrations/amazon_kendra_retriever ### Expected behavior Error not thrown when creating AmazonKendraRetriever
https://github.com/langchain-ai/langchain/issues/7571
https://github.com/langchain-ai/langchain/pull/7629
0e1d7a27c62b15fba6bcafc5f8ac996d57e0b1d3
f11d845dee355709b41dec36dcc7c74f7b90c7ec
"2023-07-12T00:16:40Z"
python
"2023-07-13T03:47:35Z"
langchain/retrievers/kendra.py
import re from typing import Any, Dict, List, Literal, Optional from pydantic import BaseModel, Extra, root_validator from langchain.callbacks.manager import ( AsyncCallbackManagerForRetrieverRun, CallbackManagerForRetrieverRun, ) from langchain.docstore.document import Document from langchain.schema import BaseRetriever def clean_excerpt(excerpt: str) -> str: """Cleans an excerpt from Kendra. Args: excerpt: The excerpt to clean. Returns: The cleaned excerpt. """ if not excerpt: return excerpt res = re.sub("\s+", " ", excerpt).replace("...", "") return res def combined_text(title: str, excerpt: str) -> str: """Combines a title and an excerpt into a single string. Args: title: The title of the document. excerpt: The excerpt of the document. Returns: The combined text. """ if not title or not excerpt: return "" return f"Document Title: {title} \nDocument Excerpt: \n{excerpt}\n" class Highlight(BaseModel, extra=Extra.allow): BeginOffset: int EndOffset: int TopAnswer: Optional[bool] Type: Optional[str] class TextWithHighLights(BaseModel, extra=Extra.allow): Text: str Highlights: Optional[Any] class AdditionalResultAttributeValue(BaseModel, extra=Extra.allow): TextWithHighlightsValue: TextWithHighLights class AdditionalResultAttribute(BaseModel, extra=Extra.allow): Key: str ValueType: Literal["TEXT_WITH_HIGHLIGHTS_VALUE"] Value: AdditionalResultAttributeValue def get_value_text(self) -> str: return self.Value.TextWithHighlightsValue.Text class QueryResultItem(BaseModel, extra=Extra.allow): DocumentId: str DocumentTitle: TextWithHighLights DocumentURI: Optional[str] FeedbackToken: Optional[str] Format: Optional[str] Id: Optional[str] Type: Optional[str] AdditionalAttributes: Optional[List[AdditionalResultAttribute]] = [] DocumentExcerpt: Optional[TextWithHighLights] def get_attribute_value(self) -> str: if not self.AdditionalAttributes: return "" if not self.AdditionalAttributes[0]: return "" else: return self.AdditionalAttributes[0].get_value_text() def get_excerpt(self) -> str: if ( self.AdditionalAttributes and self.AdditionalAttributes[0].Key == "AnswerText" ): excerpt = self.get_attribute_value() elif self.DocumentExcerpt: excerpt = self.DocumentExcerpt.Text else: excerpt = "" return clean_excerpt(excerpt) def to_doc(self) -> Document: title = self.DocumentTitle.Text source = self.DocumentURI excerpt = self.get_excerpt() type = self.Type page_content = combined_text(title, excerpt) metadata = {"source": source, "title": title, "excerpt": excerpt, "type": type} return Document(page_content=page_content, metadata=metadata) class QueryResult(BaseModel, extra=Extra.allow): ResultItems: List[QueryResultItem] def get_top_k_docs(self, top_n: int) -> List[Document]: items_len = len(self.ResultItems) count = items_len if items_len < top_n else top_n docs = [self.ResultItems[i].to_doc() for i in range(0, count)] return docs class DocumentAttributeValue(BaseModel, extra=Extra.allow): DateValue: Optional[str] LongValue: Optional[int] StringListValue: Optional[List[str]] StringValue: Optional[str] class DocumentAttribute(BaseModel, extra=Extra.allow): Key: str Value: DocumentAttributeValue class RetrieveResultItem(BaseModel, extra=Extra.allow): Content: Optional[str] DocumentAttributes: Optional[List[DocumentAttribute]] = [] DocumentId: Optional[str] DocumentTitle: Optional[str] DocumentURI: Optional[str] Id: Optional[str] def get_excerpt(self) -> str: if not self.Content: return "" return clean_excerpt(self.Content) def to_doc(self) -> Document: title = self.DocumentTitle if self.DocumentTitle else "" source = self.DocumentURI excerpt = self.get_excerpt() page_content = combined_text(title, excerpt) metadata = {"source": source, "title": title, "excerpt": excerpt} return Document(page_content=page_content, metadata=metadata) class RetrieveResult(BaseModel, extra=Extra.allow): QueryId: str ResultItems: List[RetrieveResultItem] def get_top_k_docs(self, top_n: int) -> List[Document]: items_len = len(self.ResultItems) count = items_len if items_len < top_n else top_n docs = [self.ResultItems[i].to_doc() for i in range(0, count)] return docs class AmazonKendraRetriever(BaseRetriever): """Retriever class to query documents from Amazon Kendra Index. Args: index_id: Kendra index id region_name: The aws region e.g., `us-west-2`. Fallsback to AWS_DEFAULT_REGION env variable or region specified in ~/.aws/config. credentials_profile_name: The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which has either access keys or role information specified. If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. top_k: No of results to return attribute_filter: Additional filtering of results based on metadata See: https://docs.aws.amazon.com/kendra/latest/APIReference client: boto3 client for Kendra Example: .. code-block:: python retriever = AmazonKendraRetriever( index_id="c0806df7-e76b-4bce-9b5c-d5582f6b1a03" ) """ index_id: str region_name: Optional[str] = None credentials_profile_name: Optional[str] = None top_k: int = 3 attribute_filter: Optional[Dict] = None client: Any @root_validator(pre=True) def create_client(cls, values: Dict[str, Any]) -> Dict[str, Any]: if values.get("client") is not None: return values try: import boto3 if values["credentials_profile_name"] is not None: session = boto3.Session(profile_name=values["credentials_profile_name"]) else: # use default credentials session = boto3.Session() client_params = {} if values["region_name"] is not None: client_params["region_name"] = values["region_name"] values["client"] = session.client("kendra", **client_params) return values except ImportError: raise ModuleNotFoundError( "Could not import boto3 python package. " "Please install it with `pip install boto3`." ) except Exception as e: raise ValueError( "Could not load credentials to authenticate with AWS client. " "Please check that credentials in the specified " "profile name are valid." ) from e def _kendra_query( self, query: str, top_k: int, attribute_filter: Optional[Dict] = None, ) -> List[Document]: if attribute_filter is not None: response = self.client.retrieve( IndexId=self.index_id, QueryText=query.strip(), PageSize=top_k, AttributeFilter=attribute_filter, ) else: response = self.client.retrieve( IndexId=self.index_id, QueryText=query.strip(), PageSize=top_k ) r_result = RetrieveResult.parse_obj(response) result_len = len(r_result.ResultItems) if result_len == 0: # retrieve API returned 0 results, call query API if attribute_filter is not None: response = self.client.query( IndexId=self.index_id, QueryText=query.strip(), PageSize=top_k, AttributeFilter=attribute_filter, ) else: response = self.client.query( IndexId=self.index_id, QueryText=query.strip(), PageSize=top_k ) q_result = QueryResult.parse_obj(response) docs = q_result.get_top_k_docs(top_k) else: docs = r_result.get_top_k_docs(top_k) return docs def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun, ) -> List[Document]: """Run search on Kendra index and get top k documents Example: .. code-block:: python docs = retriever.get_relevant_documents('This is my query') """ docs = self._kendra_query(query, self.top_k, self.attribute_filter) return docs async def _aget_relevant_documents( self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun, ) -> List[Document]: raise NotImplementedError("Async version is not implemented for Kendra yet.")
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,370
Sliding window of intermediate actions for agents
### Feature request Allow tweaking with the history window / intermediate actions that are being sent to the LLM: * Send a sliding window if N last actions * Only send a specific snapshot (can be useful for code generation tasks - for example where the agent needs to perfect the code until it works). ### Motivation Currently, agents use the entire length of intermediate actions whenever they call the LLM. This means that long-running agents can quickly reach the token limit. ### Your contribution I'm willing to write a PR for this if the feature makes sense for the community
https://github.com/langchain-ai/langchain/issues/6370
https://github.com/langchain-ai/langchain/pull/6476
92ef77da3523f051cf17a854b2e5c2c767bbf64f
a8bbfb2da3f8c28869b12c8a9bb21209b0d03089
"2023-06-18T15:56:26Z"
python
"2023-07-13T06:09:25Z"
langchain/agents/agent.py
"""Chain that takes in an input and produces an action and action input.""" from __future__ import annotations import asyncio import json import logging import time from abc import abstractmethod from pathlib import Path from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union import yaml from pydantic import BaseModel, root_validator from langchain.agents.agent_types import AgentType from langchain.agents.tools import InvalidTool from langchain.callbacks.base import BaseCallbackManager from langchain.callbacks.manager import ( AsyncCallbackManagerForChainRun, AsyncCallbackManagerForToolRun, CallbackManagerForChainRun, CallbackManagerForToolRun, Callbacks, ) from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain.input import get_color_mapping from langchain.prompts.few_shot import FewShotPromptTemplate from langchain.prompts.prompt import PromptTemplate from langchain.schema import ( AgentAction, AgentFinish, BaseOutputParser, BasePromptTemplate, OutputParserException, ) from langchain.schema.language_model import BaseLanguageModel from langchain.schema.messages import BaseMessage from langchain.tools.base import BaseTool from langchain.utilities.asyncio import asyncio_timeout logger = logging.getLogger(__name__) class BaseSingleActionAgent(BaseModel): """Base Agent class.""" @property def return_values(self) -> List[str]: """Return values of the agent.""" return ["output"] def get_allowed_tools(self) -> Optional[List[str]]: return None @abstractmethod def plan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations callbacks: Callbacks to run. **kwargs: User inputs. Returns: Action specifying what tool to use. """ @abstractmethod async def aplan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations callbacks: Callbacks to run. **kwargs: User inputs. Returns: Action specifying what tool to use. """ @property @abstractmethod def input_keys(self) -> List[str]: """Return the input keys. :meta private: """ def return_stopped_response( self, early_stopping_method: str, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any, ) -> AgentFinish: """Return response when agent has been stopped due to max iterations.""" if early_stopping_method == "force": # `force` just returns a constant string return AgentFinish( {"output": "Agent stopped due to iteration limit or time limit."}, "" ) else: raise ValueError( f"Got unsupported early_stopping_method `{early_stopping_method}`" ) @classmethod def from_llm_and_tools( cls, llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, **kwargs: Any, ) -> BaseSingleActionAgent: raise NotImplementedError @property def _agent_type(self) -> str: """Return Identifier of agent type.""" raise NotImplementedError def dict(self, **kwargs: Any) -> Dict: """Return dictionary representation of agent.""" _dict = super().dict() _type = self._agent_type if isinstance(_type, AgentType): _dict["_type"] = str(_type.value) else: _dict["_type"] = _type return _dict def save(self, file_path: Union[Path, str]) -> None: """Save the agent. Args: file_path: Path to file to save the agent to. Example: .. code-block:: python # If working with agent executor agent.agent.save(file_path="path/agent.yaml") """ # Convert file to Path object. if isinstance(file_path, str): save_path = Path(file_path) else: save_path = file_path directory_path = save_path.parent directory_path.mkdir(parents=True, exist_ok=True) # Fetch dictionary to save agent_dict = self.dict() if save_path.suffix == ".json": with open(file_path, "w") as f: json.dump(agent_dict, f, indent=4) elif save_path.suffix == ".yaml": with open(file_path, "w") as f: yaml.dump(agent_dict, f, default_flow_style=False) else: raise ValueError(f"{save_path} must be json or yaml") def tool_run_logging_kwargs(self) -> Dict: return {} class BaseMultiActionAgent(BaseModel): """Base Agent class.""" @property def return_values(self) -> List[str]: """Return values of the agent.""" return ["output"] def get_allowed_tools(self) -> Optional[List[str]]: return None @abstractmethod def plan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[List[AgentAction], AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations callbacks: Callbacks to run. **kwargs: User inputs. Returns: Actions specifying what tool to use. """ @abstractmethod async def aplan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[List[AgentAction], AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations callbacks: Callbacks to run. **kwargs: User inputs. Returns: Actions specifying what tool to use. """ @property @abstractmethod def input_keys(self) -> List[str]: """Return the input keys. :meta private: """ def return_stopped_response( self, early_stopping_method: str, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any, ) -> AgentFinish: """Return response when agent has been stopped due to max iterations.""" if early_stopping_method == "force": # `force` just returns a constant string return AgentFinish({"output": "Agent stopped due to max iterations."}, "") else: raise ValueError( f"Got unsupported early_stopping_method `{early_stopping_method}`" ) @property def _agent_type(self) -> str: """Return Identifier of agent type.""" raise NotImplementedError def dict(self, **kwargs: Any) -> Dict: """Return dictionary representation of agent.""" _dict = super().dict() _dict["_type"] = str(self._agent_type) return _dict def save(self, file_path: Union[Path, str]) -> None: """Save the agent. Args: file_path: Path to file to save the agent to. Example: .. code-block:: python # If working with agent executor agent.agent.save(file_path="path/agent.yaml") """ # Convert file to Path object. if isinstance(file_path, str): save_path = Path(file_path) else: save_path = file_path directory_path = save_path.parent directory_path.mkdir(parents=True, exist_ok=True) # Fetch dictionary to save agent_dict = self.dict() if save_path.suffix == ".json": with open(file_path, "w") as f: json.dump(agent_dict, f, indent=4) elif save_path.suffix == ".yaml": with open(file_path, "w") as f: yaml.dump(agent_dict, f, default_flow_style=False) else: raise ValueError(f"{save_path} must be json or yaml") def tool_run_logging_kwargs(self) -> Dict: return {} class AgentOutputParser(BaseOutputParser): @abstractmethod def parse(self, text: str) -> Union[AgentAction, AgentFinish]: """Parse text into agent action/finish.""" class LLMSingleActionAgent(BaseSingleActionAgent): llm_chain: LLMChain output_parser: AgentOutputParser stop: List[str] @property def input_keys(self) -> List[str]: return list(set(self.llm_chain.input_keys) - {"intermediate_steps"}) def dict(self, **kwargs: Any) -> Dict: """Return dictionary representation of agent.""" _dict = super().dict() del _dict["output_parser"] return _dict def plan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations callbacks: Callbacks to run. **kwargs: User inputs. Returns: Action specifying what tool to use. """ output = self.llm_chain.run( intermediate_steps=intermediate_steps, stop=self.stop, callbacks=callbacks, **kwargs, ) return self.output_parser.parse(output) async def aplan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations callbacks: Callbacks to run. **kwargs: User inputs. Returns: Action specifying what tool to use. """ output = await self.llm_chain.arun( intermediate_steps=intermediate_steps, stop=self.stop, callbacks=callbacks, **kwargs, ) return self.output_parser.parse(output) def tool_run_logging_kwargs(self) -> Dict: return { "llm_prefix": "", "observation_prefix": "" if len(self.stop) == 0 else self.stop[0], } class Agent(BaseSingleActionAgent): """Class responsible for calling the language model and deciding the action. This is driven by an LLMChain. The prompt in the LLMChain MUST include a variable called "agent_scratchpad" where the agent can put its intermediary work. """ llm_chain: LLMChain output_parser: AgentOutputParser allowed_tools: Optional[List[str]] = None def dict(self, **kwargs: Any) -> Dict: """Return dictionary representation of agent.""" _dict = super().dict() del _dict["output_parser"] return _dict def get_allowed_tools(self) -> Optional[List[str]]: return self.allowed_tools @property def return_values(self) -> List[str]: return ["output"] def _fix_text(self, text: str) -> str: """Fix the text.""" raise ValueError("fix_text not implemented for this agent.") @property def _stop(self) -> List[str]: return [ f"\n{self.observation_prefix.rstrip()}", f"\n\t{self.observation_prefix.rstrip()}", ] def _construct_scratchpad( self, intermediate_steps: List[Tuple[AgentAction, str]] ) -> Union[str, List[BaseMessage]]: """Construct the scratchpad that lets the agent continue its thought process.""" thoughts = "" for action, observation in intermediate_steps: thoughts += action.log thoughts += f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}" return thoughts def plan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations callbacks: Callbacks to run. **kwargs: User inputs. Returns: Action specifying what tool to use. """ full_inputs = self.get_full_inputs(intermediate_steps, **kwargs) full_output = self.llm_chain.predict(callbacks=callbacks, **full_inputs) return self.output_parser.parse(full_output) async def aplan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations callbacks: Callbacks to run. **kwargs: User inputs. Returns: Action specifying what tool to use. """ full_inputs = self.get_full_inputs(intermediate_steps, **kwargs) full_output = await self.llm_chain.apredict(callbacks=callbacks, **full_inputs) return self.output_parser.parse(full_output) def get_full_inputs( self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any ) -> Dict[str, Any]: """Create the full inputs for the LLMChain from intermediate steps.""" thoughts = self._construct_scratchpad(intermediate_steps) new_inputs = {"agent_scratchpad": thoughts, "stop": self._stop} full_inputs = {**kwargs, **new_inputs} return full_inputs @property def input_keys(self) -> List[str]: """Return the input keys. :meta private: """ return list(set(self.llm_chain.input_keys) - {"agent_scratchpad"}) @root_validator() def validate_prompt(cls, values: Dict) -> Dict: """Validate that prompt matches format.""" prompt = values["llm_chain"].prompt if "agent_scratchpad" not in prompt.input_variables: logger.warning( "`agent_scratchpad` should be a variable in prompt.input_variables." " Did not find it, so adding it at the end." ) prompt.input_variables.append("agent_scratchpad") if isinstance(prompt, PromptTemplate): prompt.template += "\n{agent_scratchpad}" elif isinstance(prompt, FewShotPromptTemplate): prompt.suffix += "\n{agent_scratchpad}" else: raise ValueError(f"Got unexpected prompt type {type(prompt)}") return values @property @abstractmethod def observation_prefix(self) -> str: """Prefix to append the observation with.""" @property @abstractmethod def llm_prefix(self) -> str: """Prefix to append the LLM call with.""" @classmethod @abstractmethod def create_prompt(cls, tools: Sequence[BaseTool]) -> BasePromptTemplate: """Create a prompt for this class.""" @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: """Validate that appropriate tools are passed in.""" pass @classmethod @abstractmethod def _get_default_output_parser(cls, **kwargs: Any) -> AgentOutputParser: """Get default output parser for this class.""" @classmethod def from_llm_and_tools( cls, llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, output_parser: Optional[AgentOutputParser] = None, **kwargs: Any, ) -> Agent: """Construct an agent from an LLM and tools.""" cls._validate_tools(tools) llm_chain = LLMChain( llm=llm, prompt=cls.create_prompt(tools), callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] _output_parser = output_parser or cls._get_default_output_parser() return cls( llm_chain=llm_chain, allowed_tools=tool_names, output_parser=_output_parser, **kwargs, ) def return_stopped_response( self, early_stopping_method: str, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any, ) -> AgentFinish: """Return response when agent has been stopped due to max iterations.""" if early_stopping_method == "force": # `force` just returns a constant string return AgentFinish( {"output": "Agent stopped due to iteration limit or time limit."}, "" ) elif early_stopping_method == "generate": # Generate does one final forward pass thoughts = "" for action, observation in intermediate_steps: thoughts += action.log thoughts += ( f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}" ) # Adding to the previous steps, we now tell the LLM to make a final pred thoughts += ( "\n\nI now need to return a final answer based on the previous steps:" ) new_inputs = {"agent_scratchpad": thoughts, "stop": self._stop} full_inputs = {**kwargs, **new_inputs} full_output = self.llm_chain.predict(**full_inputs) # We try to extract a final answer parsed_output = self.output_parser.parse(full_output) if isinstance(parsed_output, AgentFinish): # If we can extract, we send the correct stuff return parsed_output else: # If we can extract, but the tool is not the final tool, # we just return the full output return AgentFinish({"output": full_output}, full_output) else: raise ValueError( "early_stopping_method should be one of `force` or `generate`, " f"got {early_stopping_method}" ) def tool_run_logging_kwargs(self) -> Dict: return { "llm_prefix": self.llm_prefix, "observation_prefix": self.observation_prefix, } class ExceptionTool(BaseTool): name = "_Exception" description = "Exception tool" def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: return query async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: return query class AgentExecutor(Chain): """Consists of an agent using tools.""" agent: Union[BaseSingleActionAgent, BaseMultiActionAgent] """The agent to run for creating a plan and determining actions to take at each step of the execution loop.""" tools: Sequence[BaseTool] """The valid tools the agent can call.""" return_intermediate_steps: bool = False """Whether to return the agent's trajectory of intermediate steps at the end in addition to the final output.""" max_iterations: Optional[int] = 15 """The maximum number of steps to take before ending the execution loop. Setting to 'None' could lead to an infinite loop.""" max_execution_time: Optional[float] = None """The maximum amount of wall clock time to spend in the execution loop. """ early_stopping_method: str = "force" """The method to use for early stopping if the agent never returns `AgentFinish`. Either 'force' or 'generate'. `"force"` returns a string saying that it stopped because it met a time or iteration limit. `"generate"` calls the agent's LLM Chain one final time to generate a final answer based on the previous steps. """ handle_parsing_errors: Union[ bool, str, Callable[[OutputParserException], str] ] = False """How to handle errors raised by the agent's output parser. Defaults to `False`, which raises the error. s If `true`, the error will be sent back to the LLM as an observation. If a string, the string itself will be sent to the LLM as an observation. If a callable function, the function will be called with the exception as an argument, and the result of that function will be passed to the agent as an observation. """ @classmethod def from_agent_and_tools( cls, agent: Union[BaseSingleActionAgent, BaseMultiActionAgent], tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, **kwargs: Any, ) -> AgentExecutor: """Create from agent and tools.""" return cls( agent=agent, tools=tools, callback_manager=callback_manager, **kwargs ) @root_validator() def validate_tools(cls, values: Dict) -> Dict: """Validate that tools are compatible with agent.""" agent = values["agent"] tools = values["tools"] allowed_tools = agent.get_allowed_tools() if allowed_tools is not None: if set(allowed_tools) != set([tool.name for tool in tools]): raise ValueError( f"Allowed tools ({allowed_tools}) different than " f"provided tools ({[tool.name for tool in tools]})" ) return values @root_validator() def validate_return_direct_tool(cls, values: Dict) -> Dict: """Validate that tools are compatible with agent.""" agent = values["agent"] tools = values["tools"] if isinstance(agent, BaseMultiActionAgent): for tool in tools: if tool.return_direct: raise ValueError( "Tools that have `return_direct=True` are not allowed " "in multi-action agents" ) return values def save(self, file_path: Union[Path, str]) -> None: """Raise error - saving not supported for Agent Executors.""" raise ValueError( "Saving not supported for agent executors. " "If you are trying to save the agent, please use the " "`.save_agent(...)`" ) def save_agent(self, file_path: Union[Path, str]) -> None: """Save the underlying agent.""" return self.agent.save(file_path) @property def input_keys(self) -> List[str]: """Return the input keys. :meta private: """ return self.agent.input_keys @property def output_keys(self) -> List[str]: """Return the singular output key. :meta private: """ if self.return_intermediate_steps: return self.agent.return_values + ["intermediate_steps"] else: return self.agent.return_values def lookup_tool(self, name: str) -> BaseTool: """Lookup tool by name.""" return {tool.name: tool for tool in self.tools}[name] def _should_continue(self, iterations: int, time_elapsed: float) -> bool: if self.max_iterations is not None and iterations >= self.max_iterations: return False if ( self.max_execution_time is not None and time_elapsed >= self.max_execution_time ): return False return True def _return( self, output: AgentFinish, intermediate_steps: list, run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: if run_manager: run_manager.on_agent_finish(output, color="green", verbose=self.verbose) final_output = output.return_values if self.return_intermediate_steps: final_output["intermediate_steps"] = intermediate_steps return final_output async def _areturn( self, output: AgentFinish, intermediate_steps: list, run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, Any]: if run_manager: await run_manager.on_agent_finish( output, color="green", verbose=self.verbose ) final_output = output.return_values if self.return_intermediate_steps: final_output["intermediate_steps"] = intermediate_steps return final_output def _take_next_step( self, name_to_tool_map: Dict[str, BaseTool], color_mapping: Dict[str, str], inputs: Dict[str, str], intermediate_steps: List[Tuple[AgentAction, str]], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Union[AgentFinish, List[Tuple[AgentAction, str]]]: """Take a single step in the thought-action-observation loop. Override this to take control of how the agent makes and acts on choices. """ try: # Call the LLM to see what to do. output = self.agent.plan( intermediate_steps, callbacks=run_manager.get_child() if run_manager else None, **inputs, ) except OutputParserException as e: if isinstance(self.handle_parsing_errors, bool): raise_error = not self.handle_parsing_errors else: raise_error = False if raise_error: raise e text = str(e) if isinstance(self.handle_parsing_errors, bool): if e.send_to_llm: observation = str(e.observation) text = str(e.llm_output) else: observation = "Invalid or incomplete response" elif isinstance(self.handle_parsing_errors, str): observation = self.handle_parsing_errors elif callable(self.handle_parsing_errors): observation = self.handle_parsing_errors(e) else: raise ValueError("Got unexpected type of `handle_parsing_errors`") output = AgentAction("_Exception", observation, text) if run_manager: run_manager.on_agent_action(output, color="green") tool_run_kwargs = self.agent.tool_run_logging_kwargs() observation = ExceptionTool().run( output.tool_input, verbose=self.verbose, color=None, callbacks=run_manager.get_child() if run_manager else None, **tool_run_kwargs, ) return [(output, observation)] # If the tool chosen is the finishing tool, then we end and return. if isinstance(output, AgentFinish): return output actions: List[AgentAction] if isinstance(output, AgentAction): actions = [output] else: actions = output result = [] for agent_action in actions: if run_manager: run_manager.on_agent_action(agent_action, color="green") # Otherwise we lookup the tool if agent_action.tool in name_to_tool_map: tool = name_to_tool_map[agent_action.tool] return_direct = tool.return_direct color = color_mapping[agent_action.tool] tool_run_kwargs = self.agent.tool_run_logging_kwargs() if return_direct: tool_run_kwargs["llm_prefix"] = "" # We then call the tool on the tool input to get an observation observation = tool.run( agent_action.tool_input, verbose=self.verbose, color=color, callbacks=run_manager.get_child() if run_manager else None, **tool_run_kwargs, ) else: tool_run_kwargs = self.agent.tool_run_logging_kwargs() observation = InvalidTool().run( agent_action.tool, verbose=self.verbose, color=None, callbacks=run_manager.get_child() if run_manager else None, **tool_run_kwargs, ) result.append((agent_action, observation)) return result async def _atake_next_step( self, name_to_tool_map: Dict[str, BaseTool], color_mapping: Dict[str, str], inputs: Dict[str, str], intermediate_steps: List[Tuple[AgentAction, str]], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Union[AgentFinish, List[Tuple[AgentAction, str]]]: """Take a single step in the thought-action-observation loop. Override this to take control of how the agent makes and acts on choices. """ try: # Call the LLM to see what to do. output = await self.agent.aplan( intermediate_steps, callbacks=run_manager.get_child() if run_manager else None, **inputs, ) except OutputParserException as e: if isinstance(self.handle_parsing_errors, bool): raise_error = not self.handle_parsing_errors else: raise_error = False if raise_error: raise e text = str(e) if isinstance(self.handle_parsing_errors, bool): if e.send_to_llm: observation = str(e.observation) text = str(e.llm_output) else: observation = "Invalid or incomplete response" elif isinstance(self.handle_parsing_errors, str): observation = self.handle_parsing_errors elif callable(self.handle_parsing_errors): observation = self.handle_parsing_errors(e) else: raise ValueError("Got unexpected type of `handle_parsing_errors`") output = AgentAction("_Exception", observation, text) tool_run_kwargs = self.agent.tool_run_logging_kwargs() observation = await ExceptionTool().arun( output.tool_input, verbose=self.verbose, color=None, callbacks=run_manager.get_child() if run_manager else None, **tool_run_kwargs, ) return [(output, observation)] # If the tool chosen is the finishing tool, then we end and return. if isinstance(output, AgentFinish): return output actions: List[AgentAction] if isinstance(output, AgentAction): actions = [output] else: actions = output async def _aperform_agent_action( agent_action: AgentAction, ) -> Tuple[AgentAction, str]: if run_manager: await run_manager.on_agent_action( agent_action, verbose=self.verbose, color="green" ) # Otherwise we lookup the tool if agent_action.tool in name_to_tool_map: tool = name_to_tool_map[agent_action.tool] return_direct = tool.return_direct color = color_mapping[agent_action.tool] tool_run_kwargs = self.agent.tool_run_logging_kwargs() if return_direct: tool_run_kwargs["llm_prefix"] = "" # We then call the tool on the tool input to get an observation observation = await tool.arun( agent_action.tool_input, verbose=self.verbose, color=color, callbacks=run_manager.get_child() if run_manager else None, **tool_run_kwargs, ) else: tool_run_kwargs = self.agent.tool_run_logging_kwargs() observation = await InvalidTool().arun( agent_action.tool, verbose=self.verbose, color=None, callbacks=run_manager.get_child() if run_manager else None, **tool_run_kwargs, ) return agent_action, observation # Use asyncio.gather to run multiple tool.arun() calls concurrently result = await asyncio.gather( *[_aperform_agent_action(agent_action) for agent_action in actions] ) return list(result) def _call( self, inputs: Dict[str, str], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: """Run text through and get agent response.""" # Construct a mapping of tool name to tool for easy lookup name_to_tool_map = {tool.name: tool for tool in self.tools} # We construct a mapping from each tool to a color, used for logging. color_mapping = get_color_mapping( [tool.name for tool in self.tools], excluded_colors=["green", "red"] ) intermediate_steps: List[Tuple[AgentAction, str]] = [] # Let's start tracking the number of iterations and time elapsed iterations = 0 time_elapsed = 0.0 start_time = time.time() # We now enter the agent loop (until it returns something). while self._should_continue(iterations, time_elapsed): next_step_output = self._take_next_step( name_to_tool_map, color_mapping, inputs, intermediate_steps, run_manager=run_manager, ) if isinstance(next_step_output, AgentFinish): return self._return( next_step_output, intermediate_steps, run_manager=run_manager ) intermediate_steps.extend(next_step_output) if len(next_step_output) == 1: next_step_action = next_step_output[0] # See if tool should return directly tool_return = self._get_tool_return(next_step_action) if tool_return is not None: return self._return( tool_return, intermediate_steps, run_manager=run_manager ) iterations += 1 time_elapsed = time.time() - start_time output = self.agent.return_stopped_response( self.early_stopping_method, intermediate_steps, **inputs ) return self._return(output, intermediate_steps, run_manager=run_manager) async def _acall( self, inputs: Dict[str, str], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, str]: """Run text through and get agent response.""" # Construct a mapping of tool name to tool for easy lookup name_to_tool_map = {tool.name: tool for tool in self.tools} # We construct a mapping from each tool to a color, used for logging. color_mapping = get_color_mapping( [tool.name for tool in self.tools], excluded_colors=["green"] ) intermediate_steps: List[Tuple[AgentAction, str]] = [] # Let's start tracking the number of iterations and time elapsed iterations = 0 time_elapsed = 0.0 start_time = time.time() # We now enter the agent loop (until it returns something). async with asyncio_timeout(self.max_execution_time): try: while self._should_continue(iterations, time_elapsed): next_step_output = await self._atake_next_step( name_to_tool_map, color_mapping, inputs, intermediate_steps, run_manager=run_manager, ) if isinstance(next_step_output, AgentFinish): return await self._areturn( next_step_output, intermediate_steps, run_manager=run_manager, ) intermediate_steps.extend(next_step_output) if len(next_step_output) == 1: next_step_action = next_step_output[0] # See if tool should return directly tool_return = self._get_tool_return(next_step_action) if tool_return is not None: return await self._areturn( tool_return, intermediate_steps, run_manager=run_manager ) iterations += 1 time_elapsed = time.time() - start_time output = self.agent.return_stopped_response( self.early_stopping_method, intermediate_steps, **inputs ) return await self._areturn( output, intermediate_steps, run_manager=run_manager ) except TimeoutError: # stop early when interrupted by the async timeout output = self.agent.return_stopped_response( self.early_stopping_method, intermediate_steps, **inputs ) return await self._areturn( output, intermediate_steps, run_manager=run_manager ) def _get_tool_return( self, next_step_output: Tuple[AgentAction, str] ) -> Optional[AgentFinish]: """Check if the tool is a returning tool.""" agent_action, observation = next_step_output name_to_tool_map = {tool.name: tool for tool in self.tools} # Invalid tools won't be in the map, so we return False. if agent_action.tool in name_to_tool_map: if name_to_tool_map[agent_action.tool].return_direct: return AgentFinish( {self.agent.return_values[0]: observation}, "", ) return None
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,768
Can't use memory for an internal LLMChain inside a SequentialChain
### System Info Langchain 0.0.214 Python 3.11.1 ### Who can help? @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. Create a `SequentialChain` that contains 2 `LLMChain`s, and add a memory to the first one. 2. When running, you'll get a validation error: ``` Missing required input keys: {'chat_history'}, only had {'human_input'} (type=value_error) ``` ### Expected behavior You should be able to add memory to one chain, not just the Sequential Chain
https://github.com/langchain-ai/langchain/issues/6768
https://github.com/langchain-ai/langchain/pull/6769
488d2d5da95a2bacdca3d1623d862ac5ab28d59e
f307ca094b0d175d71ac424eba3d9f7ef5fc44f1
"2023-06-26T16:09:11Z"
python
"2023-07-13T06:47:44Z"
langchain/chains/sequential.py
"""Chain pipeline where the outputs of one step feed directly into next.""" from typing import Any, Dict, List, Optional from pydantic import Extra, root_validator from langchain.callbacks.manager import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain.chains.base import Chain from langchain.input import get_color_mapping class SequentialChain(Chain): """Chain where the outputs of one chain feed directly into next.""" chains: List[Chain] input_variables: List[str] output_variables: List[str] #: :meta private: return_all: bool = False class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @property def input_keys(self) -> List[str]: """Return expected input keys to the chain. :meta private: """ return self.input_variables @property def output_keys(self) -> List[str]: """Return output key. :meta private: """ return self.output_variables @root_validator(pre=True) def validate_chains(cls, values: Dict) -> Dict: """Validate that the correct inputs exist for all chains.""" chains = values["chains"] input_variables = values["input_variables"] memory_keys = list() if "memory" in values and values["memory"] is not None: """Validate that prompt input variables are consistent.""" memory_keys = values["memory"].memory_variables if set(input_variables).intersection(set(memory_keys)): overlapping_keys = set(input_variables) & set(memory_keys) raise ValueError( f"The the input key(s) {''.join(overlapping_keys)} are found " f"in the Memory keys ({memory_keys}) - please use input and " f"memory keys that don't overlap." ) known_variables = set(input_variables + memory_keys) for chain in chains: missing_vars = set(chain.input_keys).difference(known_variables) if missing_vars: raise ValueError( f"Missing required input keys: {missing_vars}, " f"only had {known_variables}" ) overlapping_keys = known_variables.intersection(chain.output_keys) if overlapping_keys: raise ValueError( f"Chain returned keys that already exist: {overlapping_keys}" ) known_variables |= set(chain.output_keys) if "output_variables" not in values: if values.get("return_all", False): output_keys = known_variables.difference(input_variables) else: output_keys = chains[-1].output_keys values["output_variables"] = output_keys else: missing_vars = set(values["output_variables"]).difference(known_variables) if missing_vars: raise ValueError( f"Expected output variables that were not found: {missing_vars}." ) return values def _call( self, inputs: Dict[str, str], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: known_values = inputs.copy() _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() for i, chain in enumerate(self.chains): callbacks = _run_manager.get_child() outputs = chain(known_values, return_only_outputs=True, callbacks=callbacks) known_values.update(outputs) return {k: known_values[k] for k in self.output_variables} async def _acall( self, inputs: Dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, Any]: known_values = inputs.copy() _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager() callbacks = _run_manager.get_child() for i, chain in enumerate(self.chains): outputs = await chain.acall( known_values, return_only_outputs=True, callbacks=callbacks ) known_values.update(outputs) return {k: known_values[k] for k in self.output_variables} class SimpleSequentialChain(Chain): """Simple chain where the outputs of one step feed directly into next.""" chains: List[Chain] strip_outputs: bool = False input_key: str = "input" #: :meta private: output_key: str = "output" #: :meta private: class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @property def input_keys(self) -> List[str]: """Expect input key. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Return output key. :meta private: """ return [self.output_key] @root_validator() def validate_chains(cls, values: Dict) -> Dict: """Validate that chains are all single input/output.""" for chain in values["chains"]: if len(chain.input_keys) != 1: raise ValueError( "Chains used in SimplePipeline should all have one input, got " f"{chain} with {len(chain.input_keys)} inputs." ) if len(chain.output_keys) != 1: raise ValueError( "Chains used in SimplePipeline should all have one output, got " f"{chain} with {len(chain.output_keys)} outputs." ) return values def _call( self, inputs: Dict[str, str], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() _input = inputs[self.input_key] color_mapping = get_color_mapping([str(i) for i in range(len(self.chains))]) for i, chain in enumerate(self.chains): _input = chain.run(_input, callbacks=_run_manager.get_child(f"step_{i+1}")) if self.strip_outputs: _input = _input.strip() _run_manager.on_text( _input, color=color_mapping[str(i)], end="\n", verbose=self.verbose ) return {self.output_key: _input} async def _acall( self, inputs: Dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, Any]: _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager() callbacks = _run_manager.get_child() _input = inputs[self.input_key] color_mapping = get_color_mapping([str(i) for i in range(len(self.chains))]) for i, chain in enumerate(self.chains): _input = await chain.arun(_input, callbacks=callbacks) if self.strip_outputs: _input = _input.strip() await _run_manager.on_text( _input, color=color_mapping[str(i)], end="\n", verbose=self.verbose ) return {self.output_key: _input}