task_id
stringlengths
17
19
prompt
stringlengths
129
898
canonical_solution
stringlengths
30
1.05k
test
stringlengths
72
1.05k
entry_point
stringlengths
3
50
difficulty_scale
stringclasses
3 values
qiskitHumanEval/0
from qiskit import QuantumCircuit def create_quantum_circuit(n_qubits): """ Generate a Quantum Circuit for the given int 'n_qubits' and return it. """
return QuantumCircuit(n_qubits)
def check(candidate): result = candidate(3) assert isinstance(result, QuantumCircuit) assert result.num_qubits == 3
create_quantum_circuit
basic
qiskitHumanEval/1
from qiskit import QuantumCircuit from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def run_bell_state_simulator(): """ Define a phi plus bell state using Qiskit, transpile the circuit using pass manager with optimization level as 1, run it using Qiskit Sampler with the Aer simulator as backend and return the counts dictionary. """
bell = QuantumCircuit(2) bell.h(0) bell.cx(0, 1) bell.measure_all() backend = AerSimulator() pass_manager = generate_preset_pass_manager(optimization_level=1, backend=backend) isa_circuit = pass_manager.run(bell) sampler = Sampler(mode=backend) result = sampler.run([isa_circuit], shots=1000).result() return result[0].data.meas.get_counts()
def check(candidate): result = candidate() assert isinstance(result, dict) assert result.keys() == {"00", "11"} assert 0.4 < (result["00"] / sum(result.values())) < 0.6
run_bell_state_simulator
basic
qiskitHumanEval/2
from qiskit.quantum_info import Statevector from math import sqrt def create_bell_statevector() -> Statevector: """ Return a phi+ Bell statevector. """
return (Statevector.from_label("00") + Statevector.from_label("11")) / sqrt(2)
def check(candidate): result = candidate() solution = (Statevector.from_label("00") + Statevector.from_label("11")) / sqrt(2) assert result.equiv(solution)
create_bell_statevector
basic
qiskitHumanEval/3
from qiskit import QuantumCircuit def create_ghz(drawing=False): """ Generate a QuantumCircuit for a 3 qubit GHZ State and measure it. If `drawing` is True, return both the circuit object and the Matplotlib drawing of the circuit, otherwise return just the circuit object. """
ghz = QuantumCircuit(3) ghz.h(0) ghz.cx(0, 1) ghz.cx(0, 2) ghz.measure_all() if drawing: return ghz, ghz.draw(output="mpl") return ghz
def check(candidate): from qiskit.quantum_info import Statevector import math import matplotlib def check_circuit(circuit): assert circuit.data[-1].operation.name == "measure" circuit.remove_final_measurements() ghz_statevector = ( Statevector.from_label("000") + Statevector.from_label("111") ) / math.sqrt(2) assert Statevector.from_instruction(circuit).equiv(ghz_statevector) circuit = candidate() check_circuit(circuit) circuit, drawing = candidate(drawing=True) check_circuit(circuit) assert isinstance(drawing, matplotlib.figure.Figure)
create_ghz
basic
qiskitHumanEval/4
from qiskit import QuantumCircuit def create_unitary_from_matrix(): """ Write the function that converts the matrix [[0, 0, 0, 1],[0, 0, 1, 0],[1, 0, 0, 0],[0, 1, 0, 0]] into a unitary gate and apply it to a Quantum Circuit. Then return the circuit. """
matrix = [[0, 0, 0, 1], [0, 0, 1, 0], [1, 0, 0, 0], [0, 1, 0, 0]] circuit = QuantumCircuit(2) circuit.unitary(matrix, [0, 1]) return circuit
def check(candidate): from qiskit.quantum_info import Operator matrix = [[0, 0, 0, 1], [0, 0, 1, 0], [1, 0, 0, 0], [0, 1, 0, 0]] solution = QuantumCircuit(2) solution.unitary(matrix, [0, 1]) assert Operator(solution).equiv(Operator(candidate()))
create_unitary_from_matrix
basic
qiskitHumanEval/5
from qiskit import QuantumCircuit def create_state_prep(): """ Return a QuantumCircuit that prepares the binary state 1. """
qc = QuantumCircuit(2) qc.prepare_state("01") return qc
def check(candidate): from qiskit.quantum_info import Statevector candidate_circuit = candidate() assert isinstance(candidate_circuit, QuantumCircuit) candidate_sv = Statevector.from_instruction(candidate()) refrence_sv = Statevector.from_label("1".zfill(candidate_sv.num_qubits)) assert candidate_sv.equiv(refrence_sv)
create_state_prep
basic
qiskitHumanEval/6
from qiskit import QuantumCircuit def create_state_prep(num_qubits): """ Return a QuantumCircuit that prepares the state |1> on an n-qubit register. """
qc = QuantumCircuit(num_qubits) qc.prepare_state(1) return qc
def check(candidate): from qiskit.quantum_info import Statevector candidate_circuit = candidate(num_qubits=5) assert isinstance(candidate_circuit, QuantumCircuit) assert candidate_circuit.num_qubits == 5 candidate_sv = Statevector.from_instruction(candidate_circuit) refrence_sv = Statevector.from_label("1".zfill(candidate_sv.num_qubits)) assert candidate_sv.equiv(refrence_sv)
create_state_prep
basic
qiskitHumanEval/7
from qiskit.circuit import QuantumCircuit, Parameter def create_parametrized_gate(): """ Generate a 1 qubit QuantumCircuit with a parametrized Rx gate with parameter "theta". """
theta = Parameter("theta") quantum_circuit = QuantumCircuit(1) quantum_circuit.rx(theta, 0) return quantum_circuit
def check(candidate): circuit = candidate() assert circuit.num_qubits == 1 assert circuit.data[0].operation.name == "rx" assert circuit.data[0].operation.params[0].name == "theta"
create_parametrized_gate
basic
qiskitHumanEval/8
from qiskit.circuit import QuantumCircuit, Parameter def rx_gate(value=None): """ Return a 1-qubit QuantumCircuit with a parametrized Rx gate and parameter "theta". If value is not None, return the circuit with value assigned to theta. """
theta = Parameter("theta") quantum_circuit = QuantumCircuit(1) quantum_circuit.rx(theta, 0) if value is not None: return quantum_circuit.assign_parameters({theta: value}) return quantum_circuit
def check(candidate): from qiskit.quantum_info import Operator import math circuit = candidate() assert circuit.num_qubits == 1 assert circuit.data[0].operation.name == "rx" assert circuit.data[0].operation.params[0].name == "theta" candidate_circuit = candidate(value=math.pi * 3 / 4) solution_circuit = QuantumCircuit(1) solution_circuit.rx((math.pi * 3 / 4), 0) assert Operator(solution_circuit).equiv(Operator(candidate_circuit))
rx_gate
basic
qiskitHumanEval/9
from qiskit.circuit.library import EfficientSU2 def create_efficientSU2(): """ Generate an EfficientSU2 circuit with 3 qubits, 1 reps and make insert_barriers true. """
circuit = EfficientSU2(num_qubits=3, reps=1, insert_barriers=True) return circuit
def check(candidate): result = candidate() solution = EfficientSU2(num_qubits=3, reps=1, insert_barriers=True) assert isinstance(solution, EfficientSU2) assert solution.reps == result.reps assert solution.num_qubits == result.num_qubits
create_efficientSU2
basic
qiskitHumanEval/10
from qiskit.circuit import QuantumCircuit from qiskit.quantum_info.operators import Operator from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def create_operator() -> QuantumCircuit: """ Create a Qiskit circuit with the following unitary [[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0]], consisting of only single-qubit gates and CX gates, then transpile the circuit using pass manager with optimization level as 1. """
XX = Operator([[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0]]) circ = QuantumCircuit(2, 2) circ.append(XX, [0, 1]) pass_manager = generate_preset_pass_manager(optimization_level=1, basis_gates=["u", "cx"]) return pass_manager.run(circ)
def check(candidate): result = candidate() XX = Operator([[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0]]) assert XX.equiv(Operator(result)) for inst in result.data: if inst.operation.num_qubits > 1: assert inst.operation.name in ["cx", "barrier"]
create_operator
basic
qiskitHumanEval/11
from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector def get_statevector(circuit: QuantumCircuit) -> Statevector: """ Return the statevector from a circuit. """
sv = Statevector.from_instruction(circuit) return sv
def check(candidate): test_circuit = QuantumCircuit(2) test_circuit.u(0.39702, 0.238798, 0.298374, 0) test_circuit.cx(0, 1) result = candidate(test_circuit) assert isinstance(result, Statevector) assert Statevector.from_instruction(test_circuit).equiv(result)
get_statevector
basic
qiskitHumanEval/12
from qiskit import QuantumCircuit from qiskit.quantum_info import Operator def get_unitary() -> Operator: """ Get unitary matrix for a phi plus bell circuit and return it. """
circ = QuantumCircuit(2) circ.h(0) circ.cx(0, 1) return Operator.from_circuit(circ).to_matrix()
def check(candidate): result = candidate() solution = QuantumCircuit(2) solution.h(0) solution.cx(0, 1) assert Operator(solution).equiv(result)
get_unitary
basic
qiskitHumanEval/13
from qiskit import QuantumCircuit import numpy as np def custom_rotation_gate() -> QuantumCircuit: """ Create a quantum circuit that carries out a custom single-qubit rotation gate (U gate) with angles theta, phi and lambda all equal to pi/2. """
circuit = QuantumCircuit(1) circuit.u(np.pi / 2, np.pi / 2, np.pi / 2, 0) return circuit
def check(candidate): from qiskit.quantum_info import Operator result = candidate() assert isinstance(result, QuantumCircuit) solution = QuantumCircuit(1) solution.u(np.pi / 2, np.pi / 2, np.pi / 2, 0) assert Operator(solution).equiv(Operator(result))
custom_rotation_gate
basic
qiskitHumanEval/14
from qiskit import QuantumCircuit from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def bell_each_shot() -> list[str]: """ Run a phi plus Bell circuit using Qiskit Sampler with the Aer simulator as backend for 10 shots and return measurement results for each shots. To do so, transpile the circuit using a pass manager with optimization level as 1. """
bell = QuantumCircuit(2) # Apply gates bell.h(0) bell.cx(0, 1) bell.measure_all() # choose simulator backend backend = AerSimulator() # Transpile for simulator pass_manager = generate_preset_pass_manager(optimization_level=1, backend=backend) bell_circ = pass_manager.run(bell) sampler = Sampler(mode=backend) result = sampler.run([bell_circ],shots=10).result() memory = result[0].data.meas.get_bitstrings() return memory
def check(candidate): result = candidate() assert isinstance(result, list) assert len(result) > 0 assert set(result) == {"00", "11"}
bell_each_shot
basic
qiskitHumanEval/15
from qiskit_ibm_runtime.fake_provider import FakeBelemV2 from qiskit_ibm_runtime import Sampler from qiskit_aer import AerSimulator from qiskit import QuantumCircuit from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def noisy_bell(): """ Transpile a bell circuit using pass manager with optimization level as 1, run it using Qiskit Sampler with the Aer simulator as backend and get the execution counts. """
bell = QuantumCircuit(2) bell.h(0) bell.cx(0, 1) bell.measure_all() device_backend = FakeBelemV2() simulator = AerSimulator.from_backend(device_backend) pass_manager = generate_preset_pass_manager(optimization_level=1, backend=simulator) bell_circ = pass_manager.run(bell) sampler = Sampler(mode=simulator) result = sampler.run([bell_circ], shots=1000).result() counts = result[0].data.meas.get_counts() return counts
def check(candidate): result = candidate() assert isinstance(result, dict) assert (result["00"] + result["11"]) != sum(result.values())
noisy_bell
basic
qiskitHumanEval/16
from qiskit_ibm_runtime.fake_provider import FakeCairoV2 from qiskit import QuantumCircuit from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def transpile_circuit(circuit: QuantumCircuit) -> QuantumCircuit: """ For the given Quantum Circuit, return the transpiled circuit for the Fake Cairo V2 backend using pass manager with optimization level as 1. """
backend = FakeCairoV2() pass_manager = generate_preset_pass_manager(optimization_level=1, backend=backend) return pass_manager.run(circuit)
def check(candidate): backend = FakeCairoV2() circuit = QuantumCircuit(4, 3) circuit.cx([0, 1, 2, 3], [1, 2, 3, 0]) t_circuit = candidate(circuit) assert t_circuit.num_qubits == backend.num_qubits for inst in t_circuit.data: assert inst.operation.name in backend.configuration().basis_gates
transpile_circuit
basic
qiskitHumanEval/17
from qiskit import QuantumCircuit from qiskit.circuit.library.standard_gates.equivalence_library import ( StandardEquivalenceLibrary as std_eqlib, ) from qiskit.transpiler.passes import BasisTranslator from qiskit.transpiler import PassManager import numpy as np def unroll_circuit(circuit: QuantumCircuit) -> QuantumCircuit: """ Unroll circuit for the gateset: CX, ID, RZ, SX, X, U. """
pass_ = BasisTranslator(std_eqlib, ["cx", "id", "rz", "sx", "x", "u"]) pm = PassManager(pass_) return pm.run(circuit)
def check(candidate): from qiskit.quantum_info import Operator trial_circuit = QuantumCircuit(2) trial_circuit.h(0) trial_circuit.u(0.3, 0.1, 0.1, 1) trial_circuit.cp(np.pi / 4, 0, 1) trial_circuit.h(0) output = candidate(trial_circuit) assert Operator(output).equiv(Operator(trial_circuit)) for inst in output.data: assert inst.operation.name in ["cx", "id", "rz", "sx", "x", "u"]
unroll_circuit
basic
qiskitHumanEval/18
from qiskit import QuantumCircuit from qiskit_ibm_runtime.fake_provider import FakeSydneyV2 from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def transpile_circuit_noopt() -> QuantumCircuit: """ Transpile a 10-qubit GHZ circuit for the Fake Sydney V2 backend using pass manager with no optimization. """
backend = FakeSydneyV2() ghz = QuantumCircuit(10) ghz.h(0) ghz.cx(0, range(1, 10)) ghz.measure_all() pass_manager = generate_preset_pass_manager(optimization_level=0, backend=backend) return pass_manager.run(ghz)
def check(candidate): result = candidate() backend = FakeSydneyV2() # Optimization level 0 should use trivial qubit mapping # i.e. circuit qubit 'i' => device qubit 'i'. # This is very unlikely with higher optimization levels assert result.layout.initial_index_layout() == list(range(backend.num_qubits))
transpile_circuit_noopt
basic
qiskitHumanEval/19
from qiskit import QuantumCircuit from qiskit_ibm_runtime.fake_provider import FakeTorontoV2 from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def transpile_circuit_maxopt() -> QuantumCircuit: """ Transpile and map an 11-qubit GHZ circuit for the Fake Toronto V2 backend using pass manager with maximum transpiler optimization. """
backend = FakeTorontoV2() ghz = QuantumCircuit(11, 11) ghz.h(0) ghz.cx(0, range(1, 11)) ghz.barrier() pass_manager = generate_preset_pass_manager(optimization_level=3, backend=backend) return pass_manager.run(ghz)
def check(candidate): result = candidate() result.remove_final_measurements() backend = FakeTorontoV2() # Check initial layout is not the trivial layout (this is very unlikely # if transpiled with optimization level 3) assert result.layout.initial_index_layout() != list(range(backend.num_qubits)) # Optimization level 3 should easily find circuits with depth < 200 assert result.depth() < 150
transpile_circuit_maxopt
intermediate
qiskitHumanEval/20
from qiskit import QuantumCircuit from qiskit_ibm_runtime.fake_provider import FakePerth from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def transpile_ghz_customlayout() -> QuantumCircuit: """ Using a pass manager with optimization level as 1, transpile and map a three-qubit GHZ circuit for the Fake Perth backend using custom initial layout: [2,4,6]. """
backend = FakePerth() ghz = QuantumCircuit(3) ghz.h(0) ghz.cx(0, [1, 2]) ghz.barrier() pass_manager = generate_preset_pass_manager(optimization_level=1, backend=backend, initial_layout=[2, 4, 6]) return pass_manager.run(ghz)
def check(candidate): result = candidate() result.remove_final_measurements() backend = FakePerth() assert result.num_qubits == backend.num_qubits assert result.layout.initial_index_layout()[:3] == [2, 4, 6]
transpile_ghz_customlayout
intermediate
qiskitHumanEval/21
from qiskit import QuantumCircuit from qiskit_ibm_runtime.fake_provider import FakeOslo from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def transpile_circuit_dense() -> QuantumCircuit: """ Using a pass manager with optimization level as 1 and dense layout method, transpile and map a bell circuit for the Fake Oslo backend. """
backend = FakeOslo() bell = QuantumCircuit(2) bell.h(0) bell.cx(0, 1) pass_manager = generate_preset_pass_manager(optimization_level=1, backend=backend, layout_method="dense") solution_circ = pass_manager.run(bell) return solution_circ
def check(candidate): result = candidate() backend = FakeOslo() assert result.num_qubits == backend.num_qubits
transpile_circuit_dense
basic
qiskitHumanEval/22
from qiskit import QuantumCircuit from qiskit_ibm_runtime.fake_provider import FakeAuckland from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def transpile_circuit_alap() -> QuantumCircuit: """ Using a pass manager with optimization level as 1 and as-late-as-possible scheduling method, transpile and map a bell circuit for the Fake Auckland backend. Return the circuit. """
backend = FakeAuckland() bell = QuantumCircuit(2) bell.h(0) bell.cx(0, 1) pass_manager = generate_preset_pass_manager(optimization_level=1, backend=backend, scheduling_method="alap") return pass_manager.run(bell)
def check(candidate): result = candidate() backend = FakeAuckland() assert result.num_qubits == backend.num_qubits
transpile_circuit_alap
basic
qiskitHumanEval/23
from qiskit import QuantumCircuit def dj_constant_oracle() -> QuantumCircuit: """ Create a constant oracle for use in a Deutsch-Jozsa experiment. The oracle takes two input bits (qubits 0 and 1) and writes to one output bit (qubit 2). """
oracle = QuantumCircuit(3) oracle.x(2) return oracle
def check(candidate): from qiskit.quantum_info import Operator qc = QuantumCircuit(3) constant_0_oracle = Operator(qc) qc.x(2) constant_1_oracle = Operator(qc) result = Operator(candidate()) assert result.equiv(constant_0_oracle) or result.equiv(constant_1_oracle)
dj_constant_oracle
basic
qiskitHumanEval/24
from qiskit import QuantumCircuit from qiskit.primitives import StatevectorSampler from numpy import isclose def dj_algorithm(oracle: QuantumCircuit) -> bool: """ Given a Deutsch-Jozsa oracle in which the final qubit is the "output" qubit, return True if the oracle is constant or False otherwise. """
n = oracle.num_qubits qc = QuantumCircuit(n, n - 1) qc.x(n - 1) qc.h(range(n)) qc.compose(oracle, inplace=True) qc.h(range(n)) qc.measure(range(n - 1), range(n - 1)) counts = StatevectorSampler().run([qc]).result()[0].data.c.get_counts() return isclose(counts.get('00000000', 0), 1024)
def check(candidate): balanced = QuantumCircuit(5) balanced.cx(3, 4) assert candidate(balanced) == False constant = QuantumCircuit(9) constant.x(8) assert candidate(constant) == True
dj_algorithm
intermediate
qiskitHumanEval/25
from qiskit import QuantumCircuit from qiskit.transpiler import CouplingMap from qiskit.transpiler.passes import LookaheadSwap from qiskit.transpiler.passmanager import PassManager def passmanager_Lookahead(coupling) -> QuantumCircuit: """ Transpile a 7-qubit GHZ circuit using LookaheadSwap pass and an input custom coupling map [[0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 6]]. """
ghz = QuantumCircuit(7) ghz.h(0) ghz.cx(0, range(1, 7)) coupling_map = CouplingMap(couplinglist=coupling) ls = LookaheadSwap(coupling_map=coupling_map) pass_manager = PassManager(ls) lookahead_circ = pass_manager.run(ghz) return lookahead_circ
def check(candidate): from qiskit.quantum_info import Statevector from qiskit.transpiler.passes import CheckMap from qiskit.converters import circuit_to_dag coupling = [[0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 6]] coupling_map = CouplingMap(couplinglist=coupling) result = candidate(coupling) chkmp = CheckMap(coupling_map) chkmp.run(circuit_to_dag(result)) assert chkmp.property_set["is_swap_mapped"] == True solution = QuantumCircuit(7) solution.h(0) solution.cx(0, range(1, 7)) ls = LookaheadSwap(coupling_map=coupling_map) pass_manager = PassManager(ls) lookahead_circ = pass_manager.run(solution) assert Statevector.from_instruction(lookahead_circ).equiv(Statevector.from_instruction(result))
passmanager_Lookahead
intermediate
qiskitHumanEval/26
from qiskit.dagcircuit import DAGCircuit from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.converters import circuit_to_dag def bell_dag() -> DAGCircuit: """ Construct a DAG circuit for a 3-qubit Quantum Circuit with the bell state applied on qubit 0 and 1. Finally return the DAG Circuit object. """
q = QuantumRegister(3, 'q') c = ClassicalRegister(3, 'c') circ = QuantumCircuit(q, c) circ.h(q[0]) circ.cx(q[0], q[1]) circ.measure(q[0], c[0]) dag = circuit_to_dag(circ) return dag
def check(candidate): result = candidate() assert type(result) == DAGCircuit assert result.num_qubits() == 3 assert result.depth() == 3 assert dict(result.count_ops()) == {'h': 1, 'cx': 1, 'measure':1}
bell_dag
basic
qiskitHumanEval/27
from qiskit.dagcircuit import DAGCircuit from qiskit.converters import circuit_to_dag from qiskit.circuit.library import HGate from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit def apply_op_back() -> DAGCircuit: """ Generate a DAG circuit for 3-qubit Quantum Circuit which consists of H gate on qubit 0 and CX gate on qubit 0 and 1. After converting the circuit to DAG, apply a Hadamard operation to the back of qubit 0 and return the DAGCircuit. """
q = QuantumRegister(3, "q") c = ClassicalRegister(3, "c") circ = QuantumCircuit(q, c) circ.h(q[0]) circ.cx(q[0], q[1]) dag = circuit_to_dag(circ) dag.apply_operation_back(HGate(), qargs=[q[0]]) return dag
def check(candidate): from qiskit.quantum_info import Statevector from qiskit.converters import dag_to_circuit result = candidate() assert type(result) == DAGCircuit assert result.num_qubits() == 3 last_node = result.op_nodes()[-1] assert last_node.name == "h" assert len(result.descendants(last_node)) == 1 q = QuantumRegister(3, "q") c = ClassicalRegister(3, "c") circ = QuantumCircuit(q, c) circ.h(q[0]) circ.cx(q[0], q[1]) circ.h(0) candidate_circ = dag_to_circuit(result) assert Statevector.from_instruction(circ).equiv(Statevector.from_instruction(candidate_circ))
apply_op_back
intermediate
qiskitHumanEval/28
from matplotlib.figure import Figure from qiskit import QuantumCircuit from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler from qiskit.visualization import plot_histogram def visualize_bell_states()->Figure: """ Prepare phi plus and phi minus bell states and visualize their results in a histogram and return the histogram. """
phi_plus = QuantumCircuit(2) phi_minus = QuantumCircuit(2) phi_plus.h(0) phi_plus.cx(0,1) phi_minus.x(0) phi_minus.h(0) phi_minus.cx(0,1) phi_plus.measure_all() phi_minus.measure_all() backend = AerSimulator() sampler = Sampler(mode=backend) result_phi_plus = sampler.run([phi_plus], shots=1000).result() result_phi_minus = sampler.run([phi_minus], shots=1000).result() phi_plus_counts = result_phi_plus[0].data.meas.get_counts() phi_minus_counts = result_phi_minus[0].data.meas.get_counts() return plot_histogram([phi_plus_counts, phi_minus_counts], legend = ['|Φ+⟩ Count', '|Φ-⟩ Count'])
def check(candidate): from matplotlib.patches import Rectangle result = candidate() assert isinstance(result, Figure) gca = result.gca() assert {xlabel.get_text() for xlabel in gca.get_xticklabels()} == {"00", "11"} objs = gca.findobj(Rectangle) assert len(objs) >= 4 counts = [obj.get_height() for obj in objs[:4]] shots = counts[0] + counts[1] for i in range(4): assert round(counts[i]/shots, 1) == 0.5
visualize_bell_states
basic
qiskitHumanEval/29
from matplotlib.figure import Figure from qiskit.visualization import plot_circuit_layout from qiskit import QuantumCircuit from qiskit_ibm_runtime.fake_provider import FakeAthensV2 from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def plot_circuit_layout_bell() -> Figure: """ Plot a circuit layout visualization for a transpiled bell circuit using a pass manager with optimization level as 1 for the Fake Athens V2 backend. """
backend = FakeAthensV2() bell = QuantumCircuit(2) bell.h(0) bell.cx(0,1) pass_manager = generate_preset_pass_manager(optimization_level=1, backend=backend) brisbane_bell = pass_manager.run(bell) return (plot_circuit_layout(brisbane_bell, backend))
def check(candidate): result = candidate() assert type(result) == Figure
plot_circuit_layout_bell
intermediate
qiskitHumanEval/30
from qiskit import QuantumCircuit from matplotlib.figure import Figure from qiskit.visualization import plot_state_city from qiskit.quantum_info import Statevector def plot_circuit_layout_bell() -> Figure: """ Plot a city_state for a bell circuit. """
bell = QuantumCircuit(2) bell.h(0) bell.cx(0,1) bell_state = Statevector(bell) plot_state_city(bell_state) return plot_state_city(bell_state)
def check(candidate): result = candidate() assert type(result) == Figure assert len(result.axes) == 2
plot_circuit_layout_bell
basic
qiskitHumanEval/31
from typing import Dict from qiskit import QuantumCircuit from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler from qiskit_ibm_runtime.options import SamplerOptions def sampler_qiskit() -> Dict: """ Run a Bell circuit on Qiskit Sampler and run the circuit on the Aer simulator with the seed set as 42. Return the resulting counts dictionary. """
qc = QuantumCircuit(2) qc.h(0) qc.cx(0,1) qc.measure_all() options = SamplerOptions() options.simulator.seed_simulator=42 sampler = Sampler(mode=AerSimulator(), options=options) job = sampler.run([qc]) result = job.result()[0].data.meas.get_counts() return result
def check(candidate): result = candidate() assert result == {"00": 521, "11": 503}
sampler_qiskit
intermediate
qiskitHumanEval/32
from numpy import float64 from qiskit import QuantumCircuit from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Estimator from qiskit.quantum_info import SparsePauliOp def estimator_qiskit() -> float64: """ Run a Bell circuit on Qiskit Estimator and return expectation values for the bases II, XX, YY, ZZ. """
observable = SparsePauliOp(["II","XX","YY","ZZ"], coeffs=[1, 1, -1, 1]) qc = QuantumCircuit(2) qc.h(0) qc.cx(0,1) estimator = Estimator(mode=AerSimulator()) job = estimator.run([(qc, observable)]) result = job.result()[0].data.evs.item() return result
def check(candidate): result = candidate() assert result == 4.0
estimator_qiskit
intermediate
qiskitHumanEval/33
from typing import List from qiskit.circuit.random import random_circuit from qiskit_ibm_runtime import Sampler, SamplerOptions from qiskit_aer import AerSimulator def run_multiple_sampler() -> List: """ Generate two random quantum circuits, each with 2 qubits and a depth of 2, using seed values of 0 and 1 respectively. Run the circuits using the Sampler on the Aer simulator with the seed set as 42 and return the counts for both circuits. """
circuits = ( random_circuit(2, 2, seed=0, measure=True).decompose(reps=1), random_circuit(2, 2, seed=1, measure=True).decompose(reps=1), ) options = SamplerOptions() options.simulator.seed_simulator=42 sampler = Sampler(mode=AerSimulator(), options=options) job = sampler.run(circuits) results = job.result() statevectors = [result.data.c.get_counts() for result in results] return statevectors
def check(candidate): result = candidate() assert isinstance(result, list) assert result == [{"01": 1024}, {"00": 552, "01": 472}]
run_multiple_sampler
intermediate
qiskitHumanEval/34
from typing import Dict, Optional, Tuple from qiskit_ibm_runtime import Batch, Sampler from qiskit.primitives.primitive_job import PrimitiveJob from qiskit_ibm_runtime.fake_provider import FakeCairoV2 from qiskit import QuantumCircuit from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def run_jobs_on_batch() -> Tuple[Dict[str, PrimitiveJob], Optional[str]]: """ Generate all four Bell states and execute them on the Fake Cairo V2 backend using SamplerV2 with batch mode. Each Bell state circuit will be transpiled with an optimization level of 3, with the seed 123 for the transpiler. Returns a dictionary where the keys are the Bell state names ['phi_plus', 'phi_minus', 'psi_plus', 'psi_minus'] and the values are the corresponding RuntimeJob objects and the batch id. """
def create_bell_circuit(state): "Helper function to create bell state" qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) if state == "phi_minus": qc.z(0) elif state == "psi_plus": qc.x(1) elif state == "psi_minus'": qc.x(1) qc.z(0) qc.measure_all() return qc # Create bell states bell_states = ["phi_plus", "phi_minus", "psi_plus", "psi_minus"] circuits = [create_bell_circuit(state) for state in bell_states] # Setting backend and pass managers backend = FakeCairoV2() pm = generate_preset_pass_manager(optimization_level = 3, backend=backend, seed_transpiler=123) # Running jobs using batch with Batch(backend=backend) as batch: jobs = {} sampler = Sampler(mode=batch) for bell_state, bell_circuit in zip(bell_states, circuits): isa_bell_circuit = pm.run(bell_circuit) jobs[bell_state] = sampler.run([(isa_bell_circuit)]) return jobs
def check(candidate): from numpy import isclose jobs = candidate() reference_data = { 'phi_plus': {'00': 0.10, '11': 0.10}, 'phi_minus': {'00': 0.10, '11': 0.10}, 'psi_plus': {'01': 0.10, '10': 0.10}, 'psi_minus': {'01': 0.001, '10': 0.002} } assert isinstance(jobs, dict) assert set(jobs.keys()) == set(reference_data.keys()) for state, job in jobs.items(): assert isinstance(job, PrimitiveJob) assert job.job_id() is not None counts = job.result()[0].data.meas.get_counts() shots = 4096 normalized_counts = {k: v/shots for k, v in counts.items()} for key, value in reference_data[state].items(): assert isclose(normalized_counts[key], value, atol=1e-01)
run_jobs_on_batch
difficult
qiskitHumanEval/35
from qiskit.circuit.library import EfficientSU2 from qiskit.quantum_info import SparsePauliOp import numpy as np from qiskit_ibm_runtime import QiskitRuntimeService, Estimator, EstimatorOptions from qiskit.primitives.primitive_job import PrimitiveJob from qiskit_ibm_runtime.fake_provider import FakeCairoV2 from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def run_circuit_with_dd_trex() -> PrimitiveJob: """ Run an EfficientSU2 circuit with 5 qubits, 2 repetitions, and pairwise entanglement on the Fake Cairo V2 backend. The circuit should be transpiled with an optimization level of 1 and a transpiler seed of 789. Use 1*Z_-1 observable to calculate the expectation value. """
n_qubits = 5 reps = 2 circuit = EfficientSU2(n_qubits, entanglement="pairwise", reps=reps) observable = SparsePauliOp.from_sparse_list([("Z", [-1], 1.0)], num_qubits=n_qubits) # Generate random parameters rng = np.random.default_rng(1234) params = rng.uniform(-np.pi, np.pi, size=circuit.num_parameters) backend = FakeCairoV2() pm = generate_preset_pass_manager(optimization_level = 1, backend=backend, seed_transpiler=789) isa_circuit = pm.run(circuit) isa_observable = observable.apply_layout(isa_circuit.layout) options = EstimatorOptions() options.environment.job_tags = ["run_circ_dd_trex"] estimator = Estimator(mode=backend, options=options) job = estimator.run([(isa_circuit, isa_observable, params)]) return job
def check(candidate): from numpy import isclose job = candidate() assert isinstance(job, PrimitiveJob) assert job.job_id() is not None result = job.result() assert isclose(result[0].data.evs.item(), 0.33, atol=0.06)
run_circuit_with_dd_trex
difficult
qiskitHumanEval/36
from qiskit import QuantumCircuit def bv_function(s: str) -> QuantumCircuit: """ Write a function to design a Bernstein-Vazirani oracle from a bitstring and return it. """
n = len(s) qc = QuantumCircuit(n + 1) for index, bit in enumerate(reversed(s)): if bit == "1": qc.cx(index, n) return qc
def check(candidate): from qiskit.quantum_info.operators import Operator s = "1111" result = candidate(s) assert isinstance(result, QuantumCircuit) assert result.num_qubits == 5 solution = QuantumCircuit(5) for i in range(4): solution.cx(i, 4) assert Operator(result).equiv(Operator(solution))
bv_function
intermediate
qiskitHumanEval/37
from qiskit import QuantumCircuit from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler from qiskit.primitives.containers.primitive_result import PrimitiveResult def bv_algorithm(s: str) -> [list, PrimitiveResult]: """ Illustrate a Bernstein-Vazirani algorithm routine on Qiskit and run it using Qiskit Sampler with Aer simulator as backend for a string of 0s and 1s. Return the bit strings of the result and the result itself. """
qc = QuantumCircuit(len(s) + 1) for index, bit in enumerate(reversed(s)): if bit == "1": qc.cx(index, len(s)) qc.measure_all() backend = AerSimulator() sampler = Sampler(mode=backend) result= sampler.run([qc], shots=1).result() bitstrings = result[0].data.meas.get_bitstrings() return [bitstrings, result]
def check(candidate): s = "1111" result = candidate(s) assert (type(result[0]) == list) assert (len(result[0]) == result[1][0].data.meas.num_shots) assert (type(result[1]) == PrimitiveResult)
bv_algorithm
intermediate
qiskitHumanEval/38
from qiskit import QuantumCircuit def create_quantum_circuit_based_h0_crz01_h1_cry10(theta): """ Build a 2-qubit Quantum Circuit composed by H gate in Quantum register 0, Controlled-RZ gate in quantum register 0 1 with given input theta value, H gate in quantum register 1 and Controlled-RY gate in quantum register 1 0 with given input theta value. """
qc = QuantumCircuit(2) qc.h(0) qc.crz(theta,0,1) qc.h(1) qc.cry(theta,1,0) return qc
def check(candidate): from qiskit import QuantumRegister from qiskit.circuit import CircuitInstruction from math import pi from qiskit.circuit.library import HGate, CRZGate, CRYGate qr = QuantumRegister(2, name="q") theta = pi/2 data = candidate(theta).data assert data[0]==CircuitInstruction(HGate(), [qr[0]], []) assert data[1]==CircuitInstruction(CRZGate(theta), [qr[0], qr[1]], []) assert data[2]==CircuitInstruction(HGate(), [qr[1]], []) assert data[3]==CircuitInstruction(CRYGate(theta), [qr[1], qr[0]], [])
create_quantum_circuit_based_h0_crz01_h1_cry10
basic
qiskitHumanEval/39
from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector def create_uniform_superposition(n: int) -> QuantumCircuit: """ Initialize a uniform superposition on n qubits and return statevector. """
qc = QuantumCircuit(n) qc.h(range(n)) return Statevector(qc)
def check(candidate): from qiskit.quantum_info import state_fidelity from math import sqrt assert round(state_fidelity(candidate(1), [1/sqrt(2)]*2),3)==1 assert round(state_fidelity(candidate(2), [0.5]*4),3)==1 assert round(state_fidelity(candidate(3), [1/sqrt(8)]*8),3)==1
create_uniform_superposition
basic
qiskitHumanEval/40
from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler from qiskit_ibm_runtime.options import SamplerOptions def init_random_3qubit(desired_vector: [complex])-> dict: """ Initialize a non-trivial 3-qubit state for a given desired vector state and return counts after running it using Qiskit Sampler with the Aer simulator as backend and ser=t seed as 42. """
qc = QuantumCircuit(3) qc.initialize(desired_vector, range(3)) qc.measure_all() backend = AerSimulator() options = SamplerOptions() options.simulator.seed_simulator=42 sampler = Sampler(mode=backend,options=options) result = sampler.run([qc]).result() return result[0].data.meas.get_counts()
def check(candidate): from math import sqrt from qiskit.quantum_info import state_fidelity desired_vector = [0.25j, 1 /sqrt(8)+0j, 0.25+0.25j, 0, 0,1 / sqrt(8) * (1+2j), 0.25+0j, 0] result = candidate(desired_vector) assert isinstance(result, dict) assert result == {"101": 665, "010": 118, "000": 49, "110": 51, "001": 141}
init_random_3qubit
basic
qiskitHumanEval/41
from qiskit.quantum_info.operators import Operator, Pauli import numpy as np def compose_op() -> Operator: """ Compose XZ with a 3-qubit identity operator using the Operator and the Pauli 'YX' class in Qiskit. Return the operator instance. """
op = Operator(np.eye(2 ** 3)) YX = Operator(Pauli('YX')) op.compose(YX, qargs=[0, 2], front=True) return op
def check(candidate): result = candidate() op = Operator(np.eye(2 ** 3)) YX = Operator(Pauli('YX')) op.compose(YX, qargs=[0, 2], front=True) assert(result == op)
compose_op
basic
qiskitHumanEval/42
from qiskit.quantum_info.operators import Operator, Pauli def combine_op() -> Operator: """ Combine the following three operators XX YY ZZ as: 0.5 * (XX + YY - 3 * ZZ). """
XX = Operator(Pauli('XX')) YY = Operator(Pauli('YY')) ZZ = Operator(Pauli('ZZ')) op = 0.5 * (XX + YY - 3 * ZZ) return op
def check(candidate): result = candidate() XX = Operator(Pauli('XX')) YY = Operator(Pauli('YY')) ZZ = Operator(Pauli('ZZ')) op = 0.5 * (XX + YY - 3 * ZZ) assert (result == op)
combine_op
basic
qiskitHumanEval/43
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager from qiskit_ibm_runtime import QiskitRuntimeService from qiskit import QuantumCircuit def generate_pass_manager_obj()-> QuantumCircuit: """ Instantiate a preset_passmanager using Qiskit using the least busy device available and optimzation level 3. Return the resulting passmanager instance. """
provider = QiskitRuntimeService() backend = provider.least_busy() pass_manager = generate_preset_pass_manager(optimization_level=3, backend=backend) return pass_manager
def check(candidate): from qiskit.transpiler.passmanager import StagedPassManager result = candidate() assert(type(result) == StagedPassManager)
generate_pass_manager_obj
basic
qiskitHumanEval/44
from qiskit import QuantumCircuit def tensor_circuits() -> QuantumCircuit: """ Write an example using Qiskit that performs tensor operation on a 1-qubit quantum circuit with an X gate and a 2-qubit quantum circuit with a CRY gate, where the CRY gate has an angle of 0.2 radians and is controlled by qubit 0. """
top = QuantumCircuit(1) top.x(0) bottom = QuantumCircuit(2) bottom.cry(0.2, 0, 1) tensored = bottom.tensor(top) return tensored
def check(candidate): from qiskit.quantum_info import Statevector result = candidate() top = QuantumCircuit(1) top.x(0); bottom = QuantumCircuit(2) bottom.cry(0.2, 0, 1) tensored = bottom.tensor(top) assert Statevector.from_instruction(result).equiv(Statevector.from_instruction(tensored))
tensor_circuits
basic
qiskitHumanEval/45
from qiskit.quantum_info.random import random_clifford def get_random_clifford(n_qubits): """ Generate a random clifford circuit using the input n_qubit as number of qubits. """
return random_clifford(num_qubits=n_qubits)
def check(candidate): from qiskit.quantum_info import Clifford result = candidate(3) assert result.num_qubits == 3 assert isinstance(result, Clifford)
get_random_clifford
basic
qiskitHumanEval/46
from qiskit.circuit.library import LinearFunction from qiskit.synthesis.linear.linear_matrix_utils import random_invertible_binary_matrix def get_random_linear_function(n_qubits, seed): """ Generate a random linear function circuit using the input parameters n_qubits and seed, and the random_invertible_binary_matrix method. """
return LinearFunction(random_invertible_binary_matrix(num_qubits=n_qubits, seed=seed))
def check(candidate): result = candidate(3,3) assert result.num_qubits == 3 assert isinstance(result, LinearFunction)
get_random_linear_function
basic
qiskitHumanEval/47
from qiskit import QuantumCircuit from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler def random_coin_flip(samples: int)->dict: """ Design a Quantum Circuit that simulates random coin flips for the given samples using Qiskit Sampler with the Aer simulator as backend and outputs the count of heads and tails in a dictionary. The heads should be stored in the dict as 'Heads' and tails as 'Tails'. For example random_coin_flip(10) == {'Heads' : 5, 'Tails : 5} random_coin_flip(20) == {'Heads' : 9, 'Tails : 11}. """
circuit = QuantumCircuit(1,1) circuit.h(0) circuit.measure_all() backend = AerSimulator() sampler = Sampler(mode=backend) result = sampler.run([circuit], shots=samples).result() counts = result[0].data.meas.get_counts() return {'Heads' : counts['0'], 'Tails': counts['1']}
def check(candidate): samples = 2000 result = candidate(samples) assert result.keys() == {'Heads', 'Tails'} assert round(result['Heads']/samples, 1) == 0.5 assert round(result['Tails']/samples, 1) == 0.5
random_coin_flip
intermediate
qiskitHumanEval/48
from qiskit import QuantumCircuit from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler def random_number_generator_unsigned_8bit(n: int)->[int]: """ Write a function that generates n number of random 8-bit unsigned integers using a Quantum Circuit and outputs a list of integers. """
circuit = QuantumCircuit(8) circuit.h(range(8)) circuit.measure_all() backend = AerSimulator() sampler = Sampler(mode=backend) result = sampler.run([circuit], shots=n).result() samples = result[0].data.meas.get_bitstrings() return [int(sample, 2) for sample in samples]
def check(candidate): result = candidate(10) assert isinstance(result, list) assert len(result) == 10 for i in range(10): assert result[i] >= 0 and result[i] < 256
random_number_generator_unsigned_8bit
intermediate
qiskitHumanEval/49
from qiskit import QuantumCircuit def simple_elitzur_vaidman()->QuantumCircuit: """ Return a simple Elitzur Vaidman bomb tester circuit. """
circuit = QuantumCircuit(2) circuit.h(0) circuit.cx(0,1) circuit.h(0) return circuit
def check(candidate): from qiskit.quantum_info import Statevector result = candidate() assert isinstance(result, QuantumCircuit) assert result.num_qubits == 2 circuit = QuantumCircuit(2) circuit.h(0) circuit.cx(0,1) circuit.h(0) assert Statevector.from_instruction(result).equiv(Statevector.from_instruction(circuit))
simple_elitzur_vaidman
intermediate
qiskitHumanEval/50
from qiskit import QuantumCircuit def remove_gate_in_position(circuit: QuantumCircuit, position: int): """ Remove the gate in the input position for the given Quantum Circuit. """
del circuit.data[position] return circuit
def check(candidate): qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) qc.h(1) qc.h(0) expected_qc = QuantumCircuit(2) expected_qc.cx(0, 1) expected_qc.h(1) expected_qc.h(0) assert candidate(qc, 0)==expected_qc
remove_gate_in_position
basic
qiskitHumanEval/51
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.circuit import Instruction def quantum_teleportation_circuit(data: [Instruction])->QuantumCircuit: """ Write a function to build a quantum teleportation circuit that takes a list of instructions as an argument to transfer the data from the sender to the receiver while taking advantage of dynamic circuits. """
sender = QuantumRegister(1, "sender") receiver = QuantumRegister(1, "receiver") ancillary = QuantumRegister(1, "ancillary") c_sender = ClassicalRegister(1, "c_sender") c_receiver = ClassicalRegister(1, "c_receiver") c_ancillary = ClassicalRegister(1, "c_ancillary") circuit = QuantumCircuit(sender, ancillary, receiver, c_sender, c_ancillary, c_receiver) for gate in data: circuit.append(gate, [0]) circuit.barrier() circuit.h(ancillary) circuit.cx(ancillary, receiver) circuit.barrier() circuit.cx(sender, ancillary) circuit.h(sender) circuit.measure(sender, c_sender) circuit.measure(ancillary, c_ancillary) circuit.barrier() with circuit.if_test((c_ancillary, 1)): circuit.x(receiver) with circuit.if_test((c_sender, 1)): circuit.z(receiver) circuit.barrier() circuit.measure(receiver, c_receiver) return circuit
def check(candidate): from qiskit.circuit.library import XGate, HGate from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler from qiskit.result import marginal_distribution result_x = candidate([XGate()]) backend = AerSimulator() sampler = Sampler(mode=backend) assert isinstance(result_x, QuantumCircuit) assert result_x.num_qubits == 3 assert result_x.count_ops()['x'] == 1 and result_x.count_ops()['if_else'] == 2 assert marginal_distribution(sampler.run([result_x]).result()[0].data.c_receiver.get_counts()) == {'1': 1024} result_h = candidate([HGate()]) assert result_h.count_ops()['h'] == 3 and result_h.count_ops()['if_else'] == 2 assert round(marginal_distribution(sampler.run([result_h]).result()[0].data.c_receiver.get_counts())['0']/1024, 1) == 0.5
quantum_teleportation_circuit
intermediate
qiskitHumanEval/52
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit def send_bits(bitstring: str)->QuantumCircuit: """ Provide a quantum circuit that enables the transmission of two classical bits from the sender to the receiver through a single qubit of quantum communication, given that the sender and receiver have access to entangled qubits. """
sender = QuantumRegister(1, "sender") receiver = QuantumRegister(1, "receiver") measure = ClassicalRegister(2, "measure") circuit = QuantumCircuit(sender, receiver, measure) # Prepare ebit used for superdense coding circuit.h(sender) circuit.cx(sender, receiver) circuit.barrier() # sender's operations if bitstring[1] == "1": circuit.z(sender) if bitstring[0] == "1": circuit.x(sender) circuit.barrier() # receiver's actions circuit.cx(sender, receiver) circuit.h(sender) circuit.measure(sender, measure[0]) circuit.measure(receiver, measure[1]) return circuit
def check(candidate): from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler result_1 = candidate("10") backend = AerSimulator() sampler = Sampler(mode=backend) assert isinstance(result_1, QuantumCircuit) assert result_1.num_qubits == 2 assert result_1.count_ops()["x"] == 1 assert sampler.run([result_1]).result()[0].data.measure.get_counts() == {"10": 1024} result_2 = candidate("01") assert result_2.depth() == 6 assert result_2.count_ops()["z"] == 1 assert sampler.run([result_2]).result()[0].data.measure.get_counts() == {"01": 1024}
send_bits
intermediate
qiskitHumanEval/53
from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler from qiskit.circuit.library import XOR def xor_gate(a: int, b: int)->dict: """ Given two 8-bit integers a and b design a Quantum Circuit that acts as a classical XOR gate. Simulate the circuit using Qiskit Sampler with the Aer simulator as backend and return the counts of the result. """
circuit = XOR(8, a).compose(XOR(8, b)) circuit.measure_all() backend = AerSimulator() sampler = Sampler(mode=backend) result = sampler.run([circuit.decompose()]).result() return result[0].data.meas.get_counts()
def check(candidate): assert candidate(10, 20) == {"00011110": 1024} assert candidate(61, 9) == {"00110100": 1024} assert candidate(47, 8) == {"00100111": 1024}
xor_gate
intermediate
qiskitHumanEval/54
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler def and_gate(a: int, b: int)->dict: """ Given two 3-bit integers a and b, design a quantum circuit that acts as a classical AND gate. Simulate the circuit on using Qiskit Sampler with the Aer simulator as backend and return the counts of the result. """
qr_a = QuantumRegister(3, "qr_a") qr_b = QuantumRegister(3, "qr_b") ancillary = QuantumRegister(3, "ancillary") measure = ClassicalRegister(3, "measure") circuit = QuantumCircuit(qr_a, qr_b, ancillary, measure) a = format(a, '03b') b = format(b, '03b') for i in range(3): if a[2-i] == '1': circuit.x(qr_a[i]) if b[2-i] == '1': circuit.x(qr_b[i]) for i in range(3): circuit.ccx(qr_a[i], qr_b[i], ancillary[i]) circuit.measure(ancillary, measure) backend = AerSimulator() sampler = Sampler(mode=backend) result = sampler.run([circuit]).result() return result[0].data.measure.get_counts()
def check(candidate): assert candidate(1, 2) == {'000': 1024} assert candidate(6, 7) == {'110': 1024} assert candidate(3, 5) == {'001': 1024}
and_gate
intermediate
qiskitHumanEval/55
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler def or_gate(a: int, b: int)->dict: """ Given two 3-bit integers a and b, design a quantum circuit that acts as a classical OR gate. Simulate the circuit using Qiskit Sampler with the Aer simulator as backend and return the counts of the result. """
qr_a = QuantumRegister(3, "qr_a") qr_b = QuantumRegister(3, "qr_b") ancillary = QuantumRegister(3, "ancillary") measure = ClassicalRegister(3, "measure") circuit = QuantumCircuit(qr_a, qr_b, ancillary, measure) a = format(a, '03b') b = format(b, '03b') for i in range(3): if a[2-i] == '0': circuit.x(qr_a[i]) if b[2-i] == '0': circuit.x(qr_b[i]) for i in range(3): circuit.ccx(qr_a[i], qr_b[i], ancillary[i]) circuit.x(ancillary) circuit.measure(ancillary, measure) backend = AerSimulator() sampler = Sampler(mode=backend) result = sampler.run([circuit]).result() return result[0].data.measure.get_counts()
def check(candidate): assert candidate(1, 2) == {"011": 1024} assert candidate(6, 7) == {"111": 1024} assert candidate(0, 5) == {"101": 1024}
or_gate
intermediate
qiskitHumanEval/56
from qiskit import QuantumCircuit from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler def not_gate(a: int)->dict: """ Given two 8-bit integers, design a quantum circuit that acts as a classical NOT gate. Simulate the circuit Qiskit Sampler with the Aer simulator as backend and return the counts of the result. """
circuit = QuantumCircuit(8) a = format(a, "08b") for i in range(8): if a[7-i] == "0": circuit.x(i) circuit.measure_all() backend = AerSimulator() sampler = Sampler(mode=backend) result = sampler.run([circuit]).result() return result[0].data.meas.get_counts()
def check(candidate): assert candidate(0) == {"11111111": 1024} assert candidate(238) == {"00010001": 1024} assert candidate(59) == {"11000100": 1024}
not_gate
intermediate
qiskitHumanEval/57
from qiskit import QuantumCircuit def create_swap_gate()->QuantumCircuit: """ Design a SWAP gate using only CX gates. """
circuit = QuantumCircuit(2) circuit.cx(0,1) circuit.cx(1,0) circuit.cx(0,1) return circuit
def check(candidate): from qiskit.circuit.library import SwapGate from qiskit.quantum_info.operators import Operator result = candidate() assert isinstance(result, QuantumCircuit) assert result.num_qubits == 2 assert dict(result.count_ops()) == {'cx': 3} assert Operator(result) == Operator(SwapGate())
create_swap_gate
intermediate
qiskitHumanEval/58
from qiskit import QuantumCircuit from numpy import pi def create_ch_gate()->QuantumCircuit: """ Design a CH gate using CX and RY gates. """
circuit = QuantumCircuit(2) circuit.ry(pi/4, 1) circuit.cx(0,1) circuit.ry(-pi/4, 1) return circuit
def check(candidate): from qiskit.circuit.library import CHGate from qiskit.quantum_info.operators import Operator result = candidate() assert isinstance(result, QuantumCircuit) assert result.num_qubits == 2 assert dict(result.count_ops()) == {'ry': 2, 'cx': 1} assert Operator(result) == Operator(CHGate())
create_ch_gate
intermediate
qiskitHumanEval/59
from qiskit import QuantumCircuit def create_cz_gate()->QuantumCircuit: """ Design a CZ gate using only H and CNOT gates and return the quantum circuit. """
circuit = QuantumCircuit(2) circuit.h(1) circuit.cx(0,1) circuit.h(1) return circuit
def check(candidate): from qiskit.circuit.library import CZGate from qiskit.quantum_info.operators import Operator result = candidate() assert isinstance(result, QuantumCircuit) assert result.num_qubits == 2 assert dict(result.count_ops()) == {'h': 2, 'cx': 1} assert Operator(result) == Operator(CZGate())
create_cz_gate
intermediate
qiskitHumanEval/60
from qiskit import QuantumCircuit def create_cy_gate()->QuantumCircuit: """ Design a CY gate using only one CX gate and any other single qubit gates. """
circuit = QuantumCircuit(2) circuit.sdg(1) circuit.cx(0,1) circuit.s(1) return circuit
def check(candidate): from qiskit.circuit.library import CYGate from qiskit.quantum_info.operators import Operator result = candidate() assert isinstance(result, QuantumCircuit) assert result.num_qubits == 2 assert 'cx' in result.count_ops() for gate in result.data: op = gate.operation assert op.num_qubits == 1 or op.name == 'cx' or op.name == 'barrier' assert Operator(result) == Operator(CYGate())
create_cy_gate
intermediate
qiskitHumanEval/61
from qiskit import QuantumRegister, QuantumCircuit, ClassicalRegister def create_quantum_circuit_with_one_qubit_and_measure(): """ Build a Quantum Circuit by first creating one Quantum Register and one Classical Register and then perform measurement on it. """
q = QuantumRegister(1, 'q') c = ClassicalRegister(1, 'c') qc = QuantumCircuit(q, c) qc.measure(q, c) return qc
def check(candidate): result = candidate() assert result.depth() == 1 assert result.width() == 2 assert dict(result.count_ops()) == {'measure': 1}
create_quantum_circuit_with_one_qubit_and_measure
basic
qiskitHumanEval/62
from qiskit import QuantumCircuit def bb84_senders_circuit(state: [int], basis: [int])->QuantumCircuit: """ Construct a BB84 protocol circuit for the sender, inputting both the states and the measured bases. """
num_qubits = len(state) circuit = QuantumCircuit(num_qubits) for i in range(len(basis)): if state[i] == 1: circuit.x(i) if basis[i] == 1: circuit.h(i) return circuit
def check(candidate): from qiskit.quantum_info import Statevector from numpy.random import randint, seed seed(12345) qubits = 5 state = randint(2, size=qubits) basis = randint(2, size=qubits) result = candidate(state, basis) assert isinstance(result, QuantumCircuit) assert result.num_qubits == qubits assert result.count_ops()['h'] == sum(basis) assert result.count_ops()['x'] == sum(state) solution = QuantumCircuit(5) solution.x([1,2,3]) solution.h([0,3]) assert Statevector.from_instruction(result).equiv(Statevector.from_instruction(solution))
bb84_senders_circuit
intermediate
qiskitHumanEval/63
from qiskit import QuantumCircuit from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler from numpy.random import randint def bb84_circuit_generate_key(senders_basis: [int], circuit: QuantumCircuit)->str: """ Write a function to generate the key from the circuit and the sender's basis generated by the sender using BB84 protocol. """
n = len(senders_basis) receivers_basis = randint(2, size=n) for i in range(n): if receivers_basis[i]: circuit.h(i) circuit.measure_all() backend = AerSimulator() sampler = Sampler(mode=backend) result = sampler.run([circuit.reverse_bits()], shots=1).result() count= result[0].data.meas.get_counts() key = next(iter(count)) encryption_key = '' for i in range(n): if senders_basis[i] == receivers_basis[i]: encryption_key += str(key[i]) return encryption_key
def check(candidate): from numpy.random import seed seed(12345) basis = [1, 0, 0, 1, 1] circuit = QuantumCircuit(5) circuit.x([3, 4]) circuit.h([0, 3, 4]) result = candidate(basis, circuit) assert result == "1"
bb84_circuit_generate_key
difficult
qiskitHumanEval/64
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister def simons_algorithm(s: str)->QuantumCircuit: """ Write a function that takes the bitstring 's' as the input and builds a Quantum Circuit such that the output when xor-ed with the input 's' is same as the 's'. When building the quantum circuit make sure the classical registers is named 'c'. """
n = len(s) s = s[::-1] q_reg1 = QuantumRegister(n,"reg1") q_reg2 = QuantumRegister(n,"reg2") c_reg = ClassicalRegister(n, "c") circuit = QuantumCircuit (q_reg1, q_reg2, c_reg) circuit.h(q_reg1) circuit.barrier() circuit.cx(q_reg1, q_reg2) if "1" in s: i = s.find("1") for j in range(n): if s[j] == "1": circuit.cx(i, q_reg2[j]) circuit.barrier() circuit.h(q_reg1) circuit.measure(q_reg1, c_reg) return circuit
def check(candidate): from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler result = candidate('1010') assert isinstance(result, QuantumCircuit) assert result.num_qubits == 8 def dpm2(vec1, vec2): return sum(int(a) * int(b) for a, b in zip(vec1, vec2)) % 2 backend = AerSimulator() sampler = Sampler(mode=backend) job = sampler.run([result]).result() data = job[0].data counts= data.c.get_counts() for key in counts: assert dpm2(key, "1010") == 0
simons_algorithm
intermediate
qiskitHumanEval/65
from qiskit import QuantumCircuit from numpy import pi def QFT(n: int)->QuantumCircuit: """ Design a Quantum Fourier Transform circuit for n qubits using basic Quantum gates. """
circuit = QuantumCircuit(n) def swap_registers(circuit, n): for qubit in range(n//2): circuit.swap(qubit, n-qubit-1) return circuit def qft_rotations(circuit, n): """Performs qft on the first n qubits in circuit (without swaps)""" if n == 0: return circuit n -= 1 circuit.h(n) for qubit in range(n): circuit.cp(pi/2**(n-qubit), qubit, n) qft_rotations(circuit, n) qft_rotations(circuit, n) swap_registers(circuit, n) return circuit
def check(candidate): from qiskit.circuit.library import QFT as QiskitQFT from qiskit.quantum_info.operators import Operator result = candidate(3) assert isinstance(result, QuantumCircuit) assert result.num_qubits == 3 for gate in result.data: op = gate.operation assert op.num_qubits <= 2 or op.name == 'barrier' solution = QiskitQFT(3) assert Operator(result).equiv(Operator(solution))
QFT
intermediate
qiskitHumanEval/66
from qiskit import QuantumCircuit from numpy import arccos, sqrt def w_state()->QuantumCircuit: """ Generate a Quantum Circuit for a W state and measure it. """
circuit = QuantumCircuit(3) circuit.ry(2*arccos(1/sqrt(3)), 0) circuit.ch(0,1) circuit.cx(1,2) circuit.cx(0,1) circuit.x(0) circuit.measure_all() return circuit
def check(candidate): from qiskit_aer import AerSimulator from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager from qiskit_ibm_runtime import Sampler result = candidate() assert isinstance(result, QuantumCircuit) assert result.num_qubits == 3 backend = AerSimulator() sampler = Sampler(mode=backend) pass_manager = generate_preset_pass_manager(optimization_level=1, backend=backend) isa_circuit = pass_manager.run(result) job = sampler.run([isa_circuit]).result() counts= job[0].data.meas.get_counts() assert counts.keys() == {'001', '010' , '100'} assert counts['001'] >= 300 and counts['001'] <= 400 assert counts['010'] >= 300 and counts['010'] <= 400 assert counts['100'] >= 300 and counts['100'] <= 400 assert counts['001'] + counts['010'] + counts['100'] == 1024
w_state
intermediate
qiskitHumanEval/67
from qiskit import QuantumCircuit from numpy import pi def chsh_circuit(alice: int, bob: int)->QuantumCircuit: """ Design a CHSH circuit that takes bits of Alice and Bob as input and return the Quantum Circuit after measuring. """
qc = QuantumCircuit(2, 2) qc.h(0) qc.cx(0, 1) qc.barrier() if alice == 0: qc.ry(0, 0) else: qc.ry(-pi / 2, 0) qc.measure(0, 0) if bob == 0: qc.ry(-pi / 4, 1) else: qc.ry(pi / 4, 1) qc.measure(1, 1) return qc
def check(candidate): result = candidate(0,1) assert isinstance(result, QuantumCircuit) assert result.num_qubits == 2 assert result.width() == 4 assert result.depth() == 4 assert set({'ry': 2, 'measure': 2, 'h': 1, 'cx': 1}.items()).issubset(set(result.count_ops().items()))
chsh_circuit
intermediate
qiskitHumanEval/68
from qiskit import QuantumCircuit from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler from numpy import pi def zeno_elitzur_vaidman_bomb_tester(bomb_live: bool)->(float, float, float): """ Design a Zeno Elitzur Vaidman Bomb Tester circuit which takes the boolean if the bomb is live and outputs the percentage of successful live bomb predictions, dud bomb predictions and bombs that detonated. Use 25 cycles to increase the efficiency of the circuit. """
live_predictions = dud_predictions = detonations = 0 shots = 1024 cycles = 25 e = pi/cycles measurements = cycles + 1 if bomb_live else 1 circuit = QuantumCircuit(1, measurements) for i in range(cycles): circuit.ry(e, 0) if bomb_live: circuit.measure(0, i) circuit.measure(0, measurements - 1) backend = AerSimulator() sampler = Sampler(mode=backend) job = sampler.run([circuit],shots=shots).result() counts= job[0].data.c.get_counts() if bomb_live: for key, value in counts.items(): if key[0] == '1': detonations += value elif '1' in key[1:]: dud_predictions += value else: live_predictions += value else: live_predictions = counts['0'] if '0' in counts else 0 dud_predictions = counts['1'] detonations = 0 return (live_predictions/shots, dud_predictions/shots, detonations/shots)
def check(candidate): result = candidate(True) assert isinstance(result, tuple) and len(result) == 3 assert result[0] >= 0.85 and result[1] <= 0.03 and result[2] <= 0.12 assert candidate(False) == (0.0, 1.0, 0.0)
zeno_elitzur_vaidman_bomb_tester
difficult
qiskitHumanEval/69
from qiskit import QuantumCircuit def create_quantum_circuit_based_h0_cs01_h1_csdg10(): """ Build a Quantum Circuit composed by the gates H in Quantum register 0, Controlled-S gate in quantum register 0 1, H gate in quantum register 1 and Controlled-S dagger gate in quantum register 1 0. """
qc = QuantumCircuit(2) qc.h(0) qc.cs(0,1) qc.h(1) qc.csdg(1,0) return qc
def check(candidate): result = candidate() assert isinstance(result, QuantumCircuit) assert result.num_qubits == 2 assert result.depth() == 4 assert dict(result.count_ops()) == {'h': 2, 'cs': 1, 'csdg': 1}
create_quantum_circuit_based_h0_cs01_h1_csdg10
basic
qiskitHumanEval/70
from qiskit import QuantumCircuit def create_quantum_circuit_based_h0_cswap012_h1_csdg10(): """ Build a Quantum Circuit composed by the gates H in Quantum register 0, Controlled-SWAP gate, also known as the Fredkin gate in quantum register 0 1 2, H gate in quantum register 1 and Controlled-S dagger gate in quantum register 1 0. """
qc = QuantumCircuit(3) qc.h(0) qc.cswap(0,1,2) qc.h(1) qc.csdg(1,0) return qc
def check(candidate): result = candidate() assert isinstance(result, QuantumCircuit) assert result.num_qubits == 3 assert result.depth() == 4 assert dict(result.count_ops()) == {"h": 2, "cswap": 1, "csdg": 1}
create_quantum_circuit_based_h0_cswap012_h1_csdg10
basic
qiskitHumanEval/71
from qiskit import QuantumCircuit def create_quantum_circuit_based_h0_csx01_h1(): """ Build a Quantum Circuit composed by the gates H in Quantum register 0, Controlled-√X gate in quantum register 0 1, and H gate in quantum register 1. """
qc = QuantumCircuit(3) qc.h(0) qc.csx(0,1) qc.h(1) return qc
def check(candidate): result = candidate() assert isinstance(result, QuantumCircuit) assert result.num_qubits == 3 assert result.depth() == 3 assert dict(result.count_ops()) == {"h": 2, "csx": 1}
create_quantum_circuit_based_h0_csx01_h1
basic
qiskitHumanEval/72
import contextlib from qiskit import QuantumCircuit from qiskit.circuit import Gate def gate_if_clbits( circuit: QuantumCircuit, gate: Gate, qubits: list[int], condition_clbits: list[int] ) -> None: """ Apply `gate` to qubits with indices `qubits`, conditioned on all `condition_clbits` being 1. """
with contextlib.ExitStack() as stack: for index in condition_clbits: stack.enter_context(circuit.if_test((index, 1))) circuit.append(gate, qubits)
def check(candidate): from qiskit.circuit.library import CXGate from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler qc = QuantumCircuit(2, 3) qc.x(0) candidate(qc, CXGate(), [0, 1], [0, 2]) qc.measure_all() sampler = Sampler(mode=AerSimulator()) result = sampler.run([qc]).result()[0].data.meas.get_counts() assert result.get("01") == 1024 qc = QuantumCircuit(2, 3) qc.x([0, 1]) qc.measure([0, 1], [0, 2]) qc.x(1) candidate(qc, CXGate(), [0, 1], [0, 2]) qc.measure_all() result = sampler.run([qc]).result()[0].data.meas.get_counts() assert result.get("11") == 1024
gate_if_clbits
intermediate
qiskitHumanEval/73
from qiskit import QuantumCircuit def x_measurement(circuit: QuantumCircuit, qubit: int, clbit: int) -> None: """ Add an X-basis measurement on qubit at index `qubit`, storing the result to classical bit `clbit`. """
circuit.h(qubit) circuit.measure(qubit, clbit)
def check(candidate): from qiskit.primitives import StatevectorSampler qc = QuantumCircuit(3, 2) qc.x(1) qc.h(1) candidate(qc, 1, 0) result = StatevectorSampler().run([qc]).result()[0].data.c.get_counts() assert result.get('01') == 1024
x_measurement
basic
qiskitHumanEval/74
from qiskit import QuantumCircuit from qiskit.circuit.library import Barrier def split_circuit_at_barriers(circuit: QuantumCircuit) -> list[QuantumCircuit]: """ Split `circuit` at each barrier operation. Do not include barriers in the output circuits. """
output = [] new_circuit = circuit.copy_empty_like() for inst in circuit.data: if isinstance(inst.operation, Barrier): output.append(new_circuit) new_circuit = circuit.copy_empty_like() continue new_circuit.data.append(inst) output.append(new_circuit) return output
def check(candidate): qc = QuantumCircuit(3) qc.x(0) qc.barrier() qc.cx(0, 1) qc.h([0, 1]) qc.z(1) qc.barrier() qc.barrier() qc.tdg(0) circuits = candidate(qc) assert len(circuits) == 4 for circuit, expected_length in zip(circuits, [1, 4, 0, 1]): assert len(circuit.data) == expected_length
split_circuit_at_barriers
intermediate
qiskitHumanEval/75
from qiskit import QuantumCircuit from qiskit.primitives import StatevectorSampler def circuit_to_bools(circuit: QuantumCircuit) -> list[bool]: """ Given a QuantumCircuit, sample it once and convert the measurement result to a list of bools, where the 0th bool is the result of the 0th classical bit. """
result = StatevectorSampler().run([circuit], shots=1).result()[0].data.meas.get_counts() measurement_int = int(list(result.keys())[0], 2) output = [] for bit_index in range(circuit.num_clbits): # Use bit-masking to get bits from `int` bit = bool(2 ** (bit_index) & measurement_int) output.append(bit) return output
def check(candidate): # 101 qc = QuantumCircuit(3) qc.x([0, 2]) qc.measure_all() assert candidate(qc) == [True, False, True] # 00011 qc = QuantumCircuit(5) qc.x([3, 4]) qc.measure_all() assert candidate(qc) == [False] * 3 + [True] * 2 # 111011111 qc = QuantumCircuit(9) qc.x(range(9)) qc.x(3) qc.measure_all() assert candidate(qc) == [True] * 3 + [False] + [True] * 5
circuit_to_bools
intermediate
qiskitHumanEval/76
from qiskit import QuantumRegister from qiskit.transpiler.basepasses import TransformationPass from qiskit.dagcircuit import DAGCircuit from qiskit.circuit.library import ZGate, HGate, XGate def create_hxh_pass() -> TransformationPass: """ Return a transpiler pass that replaces all non-controlled Z-gates with H-X-H-gate sequences. """
class HXHPass(TransformationPass): def run( self, dag: DAGCircuit, ) -> DAGCircuit: for node in dag.op_nodes(): if not isinstance(node.op, ZGate): continue # Create HXH gate sequence hxh_dag = DAGCircuit() register = QuantumRegister(1) hxh_dag.add_qreg(register) hxh_dag.apply_operation_back(HGate(), [register[0]]) hxh_dag.apply_operation_back(XGate(), [register[0]]) hxh_dag.apply_operation_back(HGate(), [register[0]]) dag.substitute_node_with_dag(node, hxh_dag) return dag return HXHPass()
def check(candidate): from qiskit.transpiler import PassManager from qiskit import QuantumCircuit hxh_pass = candidate() # Be lenient and accept both class and instance of class if not isinstance(hxh_pass, TransformationPass): hxh_pass = hxh_pass() assert isinstance(hxh_pass, TransformationPass) passmanager = PassManager(hxh_pass) qc = QuantumCircuit(1) qc.x(0) qc.z(0) result = passmanager.run(qc) result_op_strings = list( map(lambda circuit_inst: circuit_inst.operation.name, result.data) ) assert result_op_strings == ["x", "h", "x", "h"] qc = QuantumCircuit(3) qc.h(1) qc.z(1) qc.cz(0, 1) qc.cx(1, 2) result = passmanager.run(qc) result_op_strings = list( map(lambda circuit_inst: circuit_inst.operation.name, result.data) ) assert result_op_strings == ["h", "h", "x", "h", "cz", "cx"]
create_hxh_pass
intermediate
qiskitHumanEval/77
import math from qiskit import QuantumCircuit def circuit_from_probability_dist(probability_dist: dict[int, float]) -> QuantumCircuit: """ Given a distribution as a dictionary of the form { measurement: probability }, return a quantum circuit that produces that distribution. """
num_qubits = math.ceil(math.log2(max(probability_dist.keys()) + 1)) or 1 amplitudes = [] for basis_state in range(2**num_qubits): prob = probability_dist.get(basis_state, 0) amplitudes.append(math.sqrt(prob)) qc = QuantumCircuit(num_qubits) qc.prepare_state(amplitudes, range(num_qubits)) return qc
def check(candidate): from qiskit.quantum_info import Statevector def _check(input_dist): circuit = candidate(input_dist) # allow circuits with or without final measurements circuit.remove_final_measurements() probability_dist = Statevector(circuit).probabilities() for basis_state, target_probability in input_dist.items(): assert math.isclose( target_probability, probability_dist[basis_state], abs_tol=0.05 ) for input_dist in [ {0: 1}, {0: 0.1, 1: 0.1, 2: 0.7, 3: 0.1}, {0: 0.5, 3: 0.5}, {1: 0.5, 2: 0.5}, ]: _check(input_dist)
circuit_from_probability_dist
intermediate
qiskitHumanEval/78
from qiskit import QuantumCircuit from qiskit.circuit.library import QFT def qft_no_swaps(num_qubits: int) -> QuantumCircuit: """ Return an inverse quantum Fourier transform circuit without the swap gates. """
qft = QFT(num_qubits=num_qubits, do_swaps=False, inverse=True) return qft
def check(candidate): from qiskit.quantum_info import Operator for num_qubits in [1, 3, 8]: qft = QFT(num_qubits=num_qubits, do_swaps=False, inverse=True) response = candidate(num_qubits) assert Operator(qft) == Operator(response)
qft_no_swaps
intermediate
qiskitHumanEval/79
from qiskit import QuantumCircuit def count_instructions(circuit: QuantumCircuit) -> int: """ Return the total number of instructions in the circuit. """
return len(circuit.data)
def check(candidate): qc = QuantumCircuit(4) qc.x(0) assert candidate(qc) == 1 qc.cx(0, [1, 2]) assert candidate(qc) == 3 qc.measure_all() assert candidate(qc) == 8
count_instructions
basic
qiskitHumanEval/80
from qiskit import QuantumCircuit from qiskit.circuit import Gate def count_gates(circuit: QuantumCircuit) -> int: """ Return the total number of unitary gates in the circuit. """
count = 0 for inst in circuit.data: if isinstance(inst.operation, Gate): count += 1 return count
def check(candidate): qc = QuantumCircuit(4) qc.reset(0) qc.tdg(0) assert candidate(qc) == 1 qc.cx(0, [1, 2]) assert candidate(qc) == 3 qc.measure_all() assert candidate(qc) == 3
count_gates
basic
qiskitHumanEval/81
from qiskit import QuantumCircuit def convert_qasm_string_to_quantum_circuit() -> QuantumCircuit: """ Generate a QASM 2 string representing a Phi plus Bell state quantum circuit. Then, convert this QASM 2 string into a Quantum Circuit object and return the resulting circuit. """
qasm_string="""OPENQASM 2.0; include "qelib1.inc"; qreg q[2]; creg c[2]; h q[0]; cx q[0],q[1];""" qc = QuantumCircuit.from_qasm_str(qasm_string) return qc
def check(candidate): from qiskit.quantum_info import Statevector from math import sqrt data = candidate() bell_state = (Statevector.from_label("11") + Statevector.from_label("00"))/sqrt(2) assert Statevector.from_instruction(data) == bell_state
convert_qasm_string_to_quantum_circuit
basic
qiskitHumanEval/82
from qiskit import QuantumCircuit from qiskit import qpy def create_binary_serialization(): """ Create a file containing the binary serialization of a Phi plus Bell state quantum circuit and write it as 'bell.qpy' in binary mode. """
qc = QuantumCircuit(2, name='Bell', metadata={'test': True}) qc.h(0) qc.cx(0, 1) with open('bell.qpy', 'wb') as fd: qpy.dump(qc, fd)
def check(candidate): from qiskit.quantum_info import Statevector from math import sqrt candidate() with open('bell.qpy', 'rb') as fd: data = qpy.load(fd)[0] bell_state = (Statevector.from_label("11") + Statevector.from_label("00"))/sqrt(2) assert Statevector.from_instruction(data) == bell_state
create_binary_serialization
basic
qiskitHumanEval/83
from qiskit import QuantumCircuit from qiskit.quantum_info import DensityMatrix, concurrence def calculate_bell_state_properties(): """ Construct a Phi plus Bell state quantum circuit, compute its Density Matrix and Concurrence, and return these results in a tuple in the same order. """
qc = QuantumCircuit(2, name='Bell') qc.h(0) qc.cx(0, 1) rho = DensityMatrix.from_instruction(qc) concur = concurrence(rho) return rho, concur
def check(candidate): import numpy as np DensityMatrix, concurrence = candidate() assert round(concurrence,1) == 1 expected_rho = np.array([[0.5, 0, 0, 0.5], [0, 0, 0, 0], [0, 0, 0, 0], [0.5, 0, 0, 0.5]]) np.testing.assert_array_almost_equal(DensityMatrix, expected_rho, decimal=5, err_msg='Density matrix does not match the expected Bell state density matrix')
calculate_bell_state_properties
basic
qiskitHumanEval/84
from qiskit import pulse from qiskit_ibm_runtime.fake_provider import FakeBelemV2 from qiskit.pulse import DriveChannel, Gaussian def define_gaussian_pulse_schedule(): """ Using Qiskit Pulse, create a Gaussian pulse schedule on drive channel 0 with a duration of 128 and name this schedule 'gaussian_pulse_schedule'. Configure it for the FakeBelem backend and return the resulting pulse schedule. """
backend = FakeBelemV2() gaussian_pulse = Gaussian(duration=128, amp=0.1, sigma=16) d0 = DriveChannel(0) with pulse.build(backend=backend, name='gaussian_pulse_schedule') as gaussian_pulse_schedule: pulse.play(gaussian_pulse, d0) return gaussian_pulse_schedule
def check(candidate): gaussian_pulse_schedule = candidate() assert gaussian_pulse_schedule.name == 'gaussian_pulse_schedule' assert gaussian_pulse_schedule.duration == 128
define_gaussian_pulse_schedule
intermediate
qiskitHumanEval/85
from qiskit import QuantumCircuit import qiskit.qasm2 def convert_quantum_circuit_to_qasm_string(circuit: QuantumCircuit) -> str: """ Given a QuantumCircuit, convert it into qasm2 string and return it. """
qasm_str = qiskit.qasm2.dumps(circuit) return qasm_str
def check(candidate): from qiskit.quantum_info import Statevector qc = QuantumCircuit(2, 2) qc.h(0) qc.cx(0,1) qasm_str = candidate(qc) circuit = QuantumCircuit.from_qasm_str(qasm_str) assert Statevector.from_instruction(circuit) == Statevector.from_instruction(qc)
convert_quantum_circuit_to_qasm_string
basic
qiskitHumanEval/86
from qiskit import pulse from qiskit_ibm_runtime.fake_provider import FakeBelemV2 from qiskit.pulse import DriveChannel, Constant, Play, Delay def pulse_schedule_with_constant_and_delay(): """ Using Qiskit Pulse, create a schedule with a constant pulse on drive channel 0, featuring a duration of 160 and an amplitude of 0.1 and name this schedule "pulse_schedule_with_constant_and_delay". Use the FakeBelem backend for configuration. After creating the pulse, add a delay of 400 to the schedule, then replay the same pulse. Return the completed pulse schedule. """
backend = FakeBelemV2() constant_pulse = Constant(duration=160, amp=0.1) drive_chan = DriveChannel(0) with pulse.build(backend=backend, name="pulse_schedule_with_constant_and_delay") as pulse_sched: pulse.play(constant_pulse, drive_chan) pulse.delay(400, drive_chan) pulse.play(constant_pulse, drive_chan) return pulse_sched
def check(candidate): pulse_sched = candidate() constant_pulses = 0 delays = 0 for _, inst in pulse_sched.instructions: if isinstance(inst, Play): if isinstance(inst.pulse, Constant): constant_pulses += 1 elif isinstance(inst, Delay): delays += 1 assert constant_pulses == 2, "Schedule should contain exactly two Constant pulses." assert delays == 1, "Schedule should contain exactly one Delay instruction." assert pulse_sched.name == "pulse_schedule_with_constant_and_delay"
pulse_schedule_with_constant_and_delay
intermediate
qiskitHumanEval/87
from qiskit import QuantumCircuit def quantum_circuit_with_delay(): """ Create a one-qubit quantum circuit, apply hadamard gate, then add a delay of 100 and then again apply hadamard gate and return the circuit. """
qc = QuantumCircuit(1) qc.h(0) delay_duration = 100 qc.delay(delay_duration, 0, unit="dt") qc.h(0) return qc
def check(candidate): from qiskit import QuantumRegister from qiskit.circuit import CircuitInstruction from qiskit.circuit.library import HGate from qiskit.circuit import Delay qr = QuantumRegister(1, name="q") data = candidate().data assert data[0]==CircuitInstruction(HGate(), [qr[0]], []) assert data[1]==CircuitInstruction(Delay(100), [qr[0]], []) assert data[2]==CircuitInstruction(HGate(), [qr[0]], [])
quantum_circuit_with_delay
intermediate
qiskitHumanEval/88
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit.circuit import IfElseOp def create_conditional_circuit(): """ Create a one-qubit quantum circuit, apply a Hadamard gate, and then measure it. Based on the classical output, use an IfElseOp operation: if the output is 1, append a one-qubit quantum circuit with a Z gate; if the output is 0, append a one-qubit quantum circuit with an X gate. Finally, add a measurement to the appended circuit and return the complete quantum circuit. """
qr = QuantumRegister(1, 'q') cr = ClassicalRegister(1, 'c') circuit = QuantumCircuit(qr, cr) circuit.h(qr[0]) circuit.measure(qr[0], cr[0]) true_body = QuantumCircuit(qr, cr) true_body.z(qr[0]) false_body = QuantumCircuit(qr, cr) false_body.x(qr[0]) if_else_gate = IfElseOp((cr, 1), true_body, false_body) circuit.append(if_else_gate, [qr[0]], [cr[0]]) circuit.measure(qr[0], cr[0]) return circuit
def check(candidate): from qiskit import QuantumRegister from qiskit.circuit import CircuitInstruction from qiskit.circuit.library import HGate from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler qr = QuantumRegister(1, name="q") circuit = candidate() data = circuit.data assert data[0]==CircuitInstruction(HGate(), [qr[0]], []) assert data[2].operation.name == "if_else" backend = AerSimulator() sampler = Sampler(mode=backend) results = sampler.run([circuit],shots=1024).result() counts= results[0].data.c.get_counts() assert counts == {'1': 1024} assert sum(counts.values()) == 1024
create_conditional_circuit
intermediate
qiskitHumanEval/89
from qiskit.circuit.library import HGate from qiskit import QuantumCircuit, QuantumRegister def create_controlled_hgate()->QuantumCircuit: """ Construct a quantum circuit with a three-qubit controlled-Hadamard gate, using qubit 0 and qubit 1 as the control bits and qubit 2 as the target bit. Return the circuit. """
qr = QuantumRegister(3) qc = QuantumCircuit(qr) c3h_gate = HGate().control(2) qc.append(c3h_gate, qr) return qc
def check(candidate): from qiskit.quantum_info import Operator solution_register = QuantumRegister(3) solution_circuit = QuantumCircuit(solution_register) c3h_gate = HGate().control(2) solution_circuit.append(c3h_gate, solution_register) qc = candidate() assert Operator(qc).equiv(solution_circuit)
create_controlled_hgate
basic
qiskitHumanEval/90
from qiskit import QuantumCircuit def create_custom_controlled()-> QuantumCircuit: """ Create a custom 2-qubit gate with an X gate on qubit 0 and an H gate on qubit 1. Then, add two control qubits to this gate. Apply this controlled gate to a 4-qubit circuit, using qubits 0 and 3 as controls and qubits 1 and 2 as targets. Return the final circuit. """
qc1 = QuantumCircuit(2) qc1.x(0) qc1.h(1) custom = qc1.to_gate().control(2) qc2 = QuantumCircuit(4) qc2.append(custom, [0, 3, 1, 2]) return qc2
def check(candidate): from qiskit.quantum_info import Operator qc1 = QuantumCircuit(2) qc1.x(0) qc1.h(1) custom = qc1.to_gate().control(2) qc2 = QuantumCircuit(4) qc2.append(custom, [0, 3, 1, 2]) candidate_circuit = candidate() assert Operator(qc2).equiv(candidate_circuit)
create_custom_controlled
basic
qiskitHumanEval/91
from qiskit import QuantumCircuit from qiskit.converters import circuit_to_instruction def convert_circuit_to_instruction(): """ Create a circuit that produces a phi plus bell state with name bell_instruction and convert it into a quantum instruction. """
circ = QuantumCircuit(2, 2, name="bell_instruction") circ.h(0) circ.cx(0,1) circ.measure([0, 1], [0, 1]) instruction = circuit_to_instruction(circ) return instruction
def check(candidate): instruction = candidate() assert instruction.name == "bell_instruction" assert instruction.num_qubits == 2 circ = QuantumCircuit(2, 2) circ.h(0) circ.cx(0,1) circ.measure([0, 1], [0, 1]) assert instruction.definition == circ
convert_circuit_to_instruction
basic
qiskitHumanEval/92
from qiskit import QuantumCircuit from qiskit.quantum_info import StabilizerState def calculate_stabilizer_state_info(): """ Construct a Phi plus Bell state quantum circuit, compute its stabilizer state, and return both the stabilizer state and a dictionary of the stabilizer state measurement probabilities. """
qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) stab = StabilizerState(qc) probabilities_dict = stab.probabilities_dict() return stab, probabilities_dict
def check(candidate): stab, probabilities_dict = candidate() assert isinstance(stab, StabilizerState) assert isinstance(probabilities_dict, dict) assert probabilities_dict == {"00": 0.5, "11": 0.5} qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) new_stab = StabilizerState(qc) assert stab.equiv(new_stab)
calculate_stabilizer_state_info
basic
qiskitHumanEval/93
from qiskit.synthesis import synth_clifford_full from qiskit.quantum_info.random import random_clifford def synthesize_clifford_circuit(n_qubits:int): """ Create a random clifford circuit using the random_clifford function for a given n qubits with seed 1234 and synthesize it using synth_clifford_full method and return. """
qc = random_clifford(n_qubits, seed=1234) synthesized_qc = synth_clifford_full(qc) return synthesized_qc
def check(candidate): from qiskit.quantum_info import Operator n_qubits = 6 synthesized_qc = candidate(n_qubits) qc = random_clifford(n_qubits) synthesized_qc = synth_clifford_full(qc) assert Operator(synthesized_qc) == Operator(qc)
synthesize_clifford_circuit
basic
qiskitHumanEval/94
from qiskit import QuantumCircuit import qiskit.qasm3 def convert_quantum_circuit_to_qasm_string(circuit: QuantumCircuit) -> str: """ Given a Quantum Circuit as the argument, convert it into qasm3 string and return it. """
qasm_str = qiskit.qasm3.dumps(circuit) return qasm_str
def check(candidate): from qiskit.quantum_info import Operator qc = QuantumCircuit(2, 2) qc.h(0) qc.cx(0,1) qasm_str = candidate(qc) circuit = qiskit.qasm3.loads(qasm_str) assert Operator(circuit).equiv(Operator(qc)), "Loaded QASM does not match circuit"
convert_quantum_circuit_to_qasm_string
basic
qiskitHumanEval/95
from qiskit import QuantumCircuit from qiskit.transpiler.passes import RemoveBarriers def remove_barrier(circuit: QuantumCircuit): """ For a given Quantum Circuit remove all the barriers from it and return. """
return RemoveBarriers()(circuit)
def check(candidate): from qiskit.quantum_info import Operator circuit = QuantumCircuit(1) circuit.h(0) circuit.barrier() circuit.x(0) candidate_circuit = candidate(circuit) for inst in candidate_circuit.data: assert inst.operation.name != 'barrier' assert Operator(circuit).equiv(candidate_circuit)
remove_barrier
basic
qiskitHumanEval/96
from qiskit_ibm_runtime.fake_provider import FakeKyoto from qiskit.circuit import QuantumCircuit from qiskit_ibm_runtime import Sampler from qiskit_ibm_runtime.options import SamplerOptions from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def bell_state_noisy() -> dict: """ Create the phi+ Bell state, run it in the FakeKyoto backend and return the counts. Use seed 42 for the sampler. """
backend = FakeKyoto() qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) qc.measure_all() pass_manager = generate_preset_pass_manager(optimization_level=1, backend=backend) isa_circuit = pass_manager.run(qc) options = SamplerOptions() options.simulator.seed_simulator=42 sampler = Sampler(backend, options=options) result = sampler.run([isa_circuit]).result() counts = result[0].data.meas.get_counts() return counts
def check(candidate): from qiskit.quantum_info import hellinger_fidelity counts_can = candidate() backend = FakeKyoto() qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) qc.measure_all() pass_manager = generate_preset_pass_manager(optimization_level=1, backend=backend) isa_circuit = pass_manager.run(qc) sampler = Sampler(backend) result = sampler.run([isa_circuit]).result() counts_exp = result[0].data.meas.get_counts() assert isinstance(counts_can, dict), "Return the counts" assert 0.7 < hellinger_fidelity(counts_can, counts_exp) < 1, "Output doesn't match with the results from Fake Kyoto"
bell_state_noisy
basic
qiskitHumanEval/97
from qiskit_ibm_runtime.fake_provider.fake_backend import FakeBackendV2 from qiskit_ibm_runtime import IBMBackend from typing import Union def two_qubit_conections( backend: Union[FakeBackendV2, IBMBackend] ) -> list: """ Return the two qubit connections for any input backend of type FakeBackendV2, IBMBackend. """
if isinstance(backend, FakeBackendV2): return backend.coupling_map return backend.configuration().coupling_map
def check(candidate): from qiskit_ibm_runtime.fake_provider import FakeKyoto from qiskit_ibm_runtime import QiskitRuntimeService backend_v2 = FakeKyoto() backend_ser = QiskitRuntimeService().least_busy() connections_can_v2 = candidate(backend_v2) connections_exp_v2 = backend_v2.coupling_map assert connections_exp_v2 == connections_can_v2, "The list of connections doesn't match the two qubit connections from the backend" connections_can_ser = candidate(backend_ser) connections_exp_ser = backend_ser.configuration().coupling_map assert connections_exp_ser == connections_can_ser, "The list of connections doesn't match the two qubit connections from the backend"
two_qubit_conections
intermediate
qiskitHumanEval/98
import numpy as np from typing import Union from qiskit_ibm_runtime.fake_provider.fake_backend import FakeBackendV2 from qiskit_ibm_runtime import IBMBackend def qubit_with_least_readout_error(backend: Union[IBMBackend, FakeBackendV2])-> float: """ Return the minimum readout error of any input backend of type FakeBackendV2, IBMBackend. """
error_list = [] if issubclass(type(backend), FakeBackendV2): for qubits in range(backend.num_qubits): error_list.append(backend.target["measure"][(qubits,)].error) else: for qubits in range(backend.configuration().num_qubits): error_list.append(backend.properties().readout_error(qubits)) return np.min(error_list)
def check(candidate): from qiskit_ibm_runtime.fake_provider import FakeKyoto from qiskit_ibm_runtime import QiskitRuntimeService backend_v2 = FakeKyoto() error_can_v2 = candidate(backend_v2) error_list_v2 = [] for qubits in range(backend_v2.num_qubits): error_list_v2.append(backend_v2.target["measure"][(qubits,)].error) error_exp_v2 = np.min(error_list_v2) assert error_can_v2 == error_exp_v2, "The qubit returned doesn't have the least readout error" backend_ser = QiskitRuntimeService().least_busy() error_can_ser = candidate(backend_ser) error_list_ser = [] for qubits in range(backend_ser.configuration().num_qubits): error_list_ser.append(backend_ser.properties().readout_error(qubits)) error_exp_ser = np.min(error_list_ser) assert error_can_ser == error_exp_ser, "The qubit returned doesn't have the least readout error"
qubit_with_least_readout_error
basic
qiskitHumanEval/99
from qiskit.circuit import Parameter, QuantumCircuit def remove_unassigned_parameterized_gates(circuit: QuantumCircuit) -> QuantumCircuit: """ Remove all the gates with unassigned parameters from the given circuit. """
circuit_data = circuit.data.copy() circuit_without_params = QuantumCircuit(circuit.num_qubits, circuit.num_clbits) #for instr, qargs, cargs in circuit_data: for instruction in circuit_data: instr, qargs, cargs = instruction.operation, instruction.qubits, instruction.clbits if not (isinstance(instr.params, Parameter) or isinstance(instr.params[0], Parameter)): circuit_without_params.append(instr, qargs, cargs) return circuit_without_params
def check(candidate): from qiskit.circuit.library import RXGate, RZGate circ = QuantumCircuit(2) theta = Parameter("θ") circ.rx(0.1, 1) circ.ry(theta, 1) circ.rx(theta, 0) circ.cp(theta, 0, 1) circ.rz(0.4, 0) circ_can = candidate(circ) assert isinstance(circ_can, QuantumCircuit), "Not a quantum circuit" assert len(circ_can.parameters) == 0, "Circuit consists of gates with unassigned parameters." has_rx = False has_rz = False for instruction in circ_can: instr, qargs, cargs = instruction.operation, instruction.qubits, instruction.clbits if isinstance(instr, RXGate): has_rx = True if isinstance(instr, RZGate): has_rz = True assert has_rx is True, "Removed rx gates with assigned parameters from the circuit" assert has_rz is True, "Removed rz gates with assigned parameters from the circuit"
remove_unassigned_parameterized_gates
basic

qiskit_humaneval

qiskit_humaneval is a dataset for evaluating LLM's at writing Qiskit code.

Dataset

The Qiskit HumanEval dataset is inspired by OpenAI's HumanEval. It includes 151 Qiskit problems written by human Qiskit advocates.

Terms of use

License

Apache License 2.0

Downloads last month
25
Edit dataset card