task_id
stringlengths
17
19
prompt
stringlengths
129
898
canonical_solution
stringlengths
30
1.05k
test
stringlengths
72
1.05k
entry_point
stringlengths
3
50
difficulty_scale
stringclasses
3 values
qiskitHumanEval/100
from qiskit.transpiler.passes import SolovayKitaev from qiskit.transpiler import PassManager from qiskit.circuit import QuantumCircuit def sol_kit_decomp(circuit: QuantumCircuit) -> QuantumCircuit: """ Create a pass manager to decompose the single qubit gates into gates of the dense subset ['t', 'tdg', 'h'] in the given circuit. """
pm = PassManager([SolovayKitaev()]) circ_dec = pm.run(circuit) return circ_dec
def check(candidate): import numpy as np from qiskit.circuit.library import EfficientSU2 from qiskit.quantum_info import Operator circ = EfficientSU2(3).decompose() circ = circ.assign_parameters(np.random.random(circ.num_parameters)) circ_can = candidate(circ) op_or = Operator(circ) op_can = Operator(circ_can) assert Operator.equiv(op_or, op_can, rtol=0.1, atol=0.1), "Operators are not the same" assert isinstance(circ_can, QuantumCircuit), "Not a quantum circuit" for instruction in circ_can.data: instr, qargs, cargs = instruction.operation, instruction.qubits, instruction.clbits if instr.num_qubits == 1 and instr.name not in {"h", "tdg", "t"}: raise AssertionError("Circuit contains gates outside the given dense subset")
sol_kit_decomp
basic
qiskitHumanEval/101
from qiskit_ibm_runtime.fake_provider import FakeKyoto from qiskit.circuit.library import GraphState import networkx as nx from qiskit.circuit import QuantumCircuit def get_graph_state() -> QuantumCircuit: """ Return the circuit for the graph state of the coupling map of the Fake Kyoto backend. Hint: Use the networkx library to convert the coupling map to a dense adjacency matrix. """
backend = FakeKyoto() coupling_map = backend.coupling_map G = nx.Graph() G.add_edges_from(coupling_map) adj_matrix = nx.adjacency_matrix(G).todense() gr_state_circ = GraphState(adjacency_matrix=adj_matrix) return gr_state_circ
def check(candidate): from collections import OrderedDict from qiskit.transpiler.passes import UnitarySynthesis from qiskit.transpiler import PassManager gr_state_circ_can = candidate() assert isinstance(gr_state_circ_can, QuantumCircuit) gr_state_circ_exp_ops = OrderedDict([("cz", 144), ("h", 127)]) basis_gates = ["cz", "h"] pm = PassManager([UnitarySynthesis(basis_gates)]) gr_state_circ_can_ops = pm.run(gr_state_circ_can.decompose()).count_ops() assert gr_state_circ_can_ops == gr_state_circ_exp_ops
get_graph_state
intermediate
qiskitHumanEval/102
from qiskit.circuit import QuantumCircuit from qiskit_ibm_runtime.fake_provider import FakeKyoto, FakeKyiv, FakeAuckland from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def backend_with_least_instructions() -> str: """ Transpile the circuit for the phi plus bell state for FakeKyoto, FakeKyiv and FakeAuckland using the level 1 preset pass manager and return the backend name with the lowest number of instructions. """
qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) backends = [FakeKyiv(), FakeKyoto(), FakeAuckland()] qc_isa_num_intruc = {} for backend in backends: pm = generate_preset_pass_manager(optimization_level=0, backend=backend) qc_isa_num_intruc[backend.name] = len(pm.run(qc).data) return min(qc_isa_num_intruc, key=qc_isa_num_intruc.get)
def check(candidate): backend_can = candidate() assert backend_can in "fake_auckland" or "auckland" in backend_can
backend_with_least_instructions
basic
qiskitHumanEval/103
import importlib import inspect from qiskit_ibm_runtime.fake_provider import fake_backend def fake_providers_v2_with_ecr() -> list: """ Return the list of names of all the fake providers of type FakeBackendV2 which contains ecr gates in its available operations. """
fake_provider_module = importlib.import_module("qiskit_ibm_runtime.fake_provider") fake_providers = {} for name, obj in inspect.getmembers(fake_provider_module): if inspect.isclass(obj) and issubclass(obj, fake_backend.FakeBackendV2): fake_providers[name] = obj fake_providers_ecr = [] for name, provider in fake_providers.items(): backend = provider() if "ecr" in backend.operation_names: fake_providers_ecr.append(name) return fake_providers_ecr
def check(candidate): providers_can = candidate() providers_exp = [ "FakeCusco", "FakeKawasaki", "FakeKyiv", "FakeKyoto", "FakeOsaka", "FakePeekskill", "FakeQuebec", "FakeSherbrooke", "FakeBrisbane", "FakeCairoV2", ] for providers in providers_can: assert providers in providers_exp for providers in providers_exp: assert providers in providers_can
fake_providers_v2_with_ecr
basic
qiskitHumanEval/104
from qiskit_ibm_runtime.fake_provider import FakeOsaka, FakeSherbrooke, FakeBrisbane from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager from qiskit.circuit.library import QFT def backend_with_lowest_complexity(): """ Transpile the 4-qubit QFT circuit using preset passmanager with optimization level 3 and seed transpiler = 1234 in FakeOsaka, FakeSherbrooke and FakeBrisbane. Compute the cost of the instructions by penalizing the two qubit gate with a cost of 5, rz gates with a cost 1 and other gates with a cost 2 and return the value of the highest cost among these backends. """
qc = QFT(4) backends = [FakeOsaka(), FakeSherbrooke(), FakeBrisbane()] complexity_dict = {} for backend in backends: pm = generate_preset_pass_manager( optimization_level=3, seed_transpiler=1234, backend=backend ) data = pm.run(qc).data complexity = 0 for instruc in data: if instruc.operation.num_qubits == 2: complexity += 5 elif instruc.operation.name == "rz": complexity += 1 else: complexity += 2 complexity_dict[backend.name] = complexity return complexity_dict[max(complexity_dict, key=complexity_dict.get)]
def check(candidate): complexity_can = candidate() complexity_exp = 211 assert complexity_can == complexity_exp
backend_with_lowest_complexity
intermediate
qiskitHumanEval/105
from qiskit import QuantumCircuit from qiskit.quantum_info import CNOTDihedral def initialize_cnot_dihedral() -> CNOTDihedral: """ Initialize a CNOTDihedral element from a QuantumCircuit consist of 2-qubits with cx gate on qubit 0 and 1 and t gate on qubit 0 and return. """
circ = QuantumCircuit(2) # Apply gates circ.cx(0, 1) circ.t(0) elem = CNOTDihedral(circ) return elem
def check(candidate): result = candidate() assert isinstance(result, CNOTDihedral), f'Expected result to be CNOTDihedral, but got {type(result)}' assert result.linear.tolist() == [[1, 0], [1, 1]] assert str(result.poly) == "0 + x_0" assert result.shift.tolist() == [0, 0]
initialize_cnot_dihedral
basic
qiskitHumanEval/106
from qiskit import QuantumCircuit from qiskit.quantum_info import CNOTDihedral def compose_cnot_dihedral() -> CNOTDihedral: """ Create two Quantum Circuits of 2 qubits. First quantum circuit should have a cx gate on qubits 0 and 1 and a T gate on qubit 0. The second one is the same but with an additional X gate on qubit 1. Convert the two quantum circuits into CNOTDihedral elements and return the composed circuit. """
circ1 = QuantumCircuit(2) # Apply gates circ1.cx(0, 1) circ1.t(0) elem1 = CNOTDihedral(circ1) circ2 = circ1.copy() circ2.x(1) elem2 = CNOTDihedral(circ2) composed_elem = elem1.compose(elem2) return composed_elem
def check(candidate): result = candidate() assert isinstance(result, CNOTDihedral), f'Expected result to be CNOTDihedral, but got {type(result)}' assert result.linear.tolist() == [[1, 0], [0, 1]] assert str(result.poly) == "0 + 2*x_0" assert list(result.shift) == [0, 1]
compose_cnot_dihedral
intermediate
qiskitHumanEval/107
from qiskit.quantum_info import ScalarOp def compose_scalar_ops() -> ScalarOp: """ Create two ScalarOp objects with dimension 2 and coefficient 2, compose them together, and return the resulting ScalarOp. """
op1 = ScalarOp(2, 2) op2 = ScalarOp(2, 2) composed_op = op1.compose(op2) return composed_op
def check(candidate): result = candidate() assert isinstance(result, ScalarOp), f'Expected result to be ScalarOp, but got {type(result)}' assert result.coeff == 4 assert result.input_dims() == (2,)
compose_scalar_ops
basic
qiskitHumanEval/108
from qiskit.quantum_info import Choi import numpy as np def initialize_adjoint_and_compose(data1: np.ndarray, data2: np.ndarray) -> (Choi, Choi, Choi): """ Initialize Choi matrices for the given data1 and data2 as inputs. Compute data1 adjoint, and then return the data1 Choi matrix, its adjoint and the composed choi matrices in order. """
choi1 = Choi(data1) choi2 = Choi(data2) adjoint_choi1 = choi1.adjoint() composed_choi = choi1.compose(choi2) return choi1, adjoint_choi1, composed_choi
def check(candidate): data = np.eye(4) choi, adjoint_choi, composed_choi = candidate(data, data) assert isinstance(choi, Choi), f'Expected choi to be Choi, but got {type(choi)}' assert choi.dim == (2, 2), f'Expected dimensions to be (2, 2), but got {choi.dim}' assert isinstance(adjoint_choi, Choi), f'Expected adjoint_choi to be Choi, but got {type(adjoint_choi)}' assert isinstance(composed_choi, Choi), f'Expected composed_choi to be Choi, but got {type(composed_choi)}' expected_adjoint_data = data.conj().T assert np.allclose(adjoint_choi.data, expected_adjoint_data), f'Expected adjoint data to be {expected_adjoint_data}, but got {adjoint_choi.data}'
initialize_adjoint_and_compose
basic
qiskitHumanEval/109
from qiskit.circuit import QuantumCircuit, Parameter def circuit()-> QuantumCircuit: """ Create a parameterized quantum circuit using minimum resources whose statevector output cover the equatorial plane of the surface of the bloch sphere. """
qc = QuantumCircuit(1) qc.h(0) theta = Parameter('th') qc.rz(theta,0) return qc
def check(candidate): import numpy as np from qiskit.quantum_info import Statevector def statevector_to_bloch_angles(state_vector): alpha = state_vector[0] beta = state_vector[1] norm = np.sqrt(np.abs(alpha)**2 + np.abs(beta)**2) alpha = alpha / norm beta = beta / norm theta = 2 * np.arccos(np.abs(alpha)) phi = np.angle(beta) - np.angle(alpha) phi = (phi + 2 * np.pi) % (2 * np.pi) return theta, phi error = 0.000001 for i in range(1000): qc = candidate() num_params = qc.num_parameters qc.assign_parameters(np.random.randn(num_params), inplace=True) sv = Statevector(qc) theta, phi = statevector_to_bloch_angles(sv) assert np.pi/2 - error <= theta <= np.pi/2 + error
circuit
intermediate
qiskitHumanEval/110
from qiskit import QuantumCircuit from qiskit.quantum_info import random_clifford, Operator def equivalent_clifford_circuit(circuit: QuantumCircuit,n: int)->list: """ Given a clifford circuit return a list of n random clifford circuits which are equivalent to the given circuit up to a relative and absolute tolerance of 0.4. """
op_or = Operator(circuit) num_qubits = circuit.num_qubits qc_list = [] counter = 0 while counter< n: qc = random_clifford(num_qubits).to_circuit() op_qc = Operator(qc) if op_qc.equiv(op_or, rtol = 0.4, atol = 0.4) == True: counter += 1 qc_list.append(qc) return qc_list
def check(candidate): from qiskit.quantum_info import Clifford qc_comp = random_clifford(5).to_circuit() op_comp = Operator(qc_comp) can_circ_list = candidate(qc_comp, 10) for item in can_circ_list: assert Operator(item).equiv(op_comp, rtol = 0.4, atol = 0.4) try: Clifford(item) except Exception as err: raise AssertionError("The circuit is not a Clifford circuit.") from err
equivalent_clifford_circuit
intermediate
qiskitHumanEval/111
from qiskit.circuit import QuantumCircuit, Parameter def circuit(): """ Return an ansatz to create a quantum dataset of pure states distributed equally across the bloch sphere. Use minimum number of gates in the ansatz. """
qc = QuantumCircuit(1) p1 = Parameter("p1") p2 = Parameter("p2") qc.rx(p1,0) qc.ry(p2,0) return qc
def check(candidate): assert candidate().num_parameters >= 2 , "The circuit doesn't cover the bloch sphere." assert candidate().num_parameters <= 5 , "The circuit is too long"
circuit
intermediate
qiskitHumanEval/112
from qiskit.quantum_info import Operator from qiskit.circuit.library import PauliEvolutionGate from qiskit.synthesis import LieTrotter from qiskit import QuantumCircuit from qiskit.quantum_info import Pauli, SparsePauliOp def create_product_formula_circuit(pauli_strings: list, times: list, order: int, reps: int) -> QuantumCircuit: """ Create a quantum circuit using LieTrotter for a list of Pauli strings and times. Each Pauli string is associated with a corresponding time in the 'times' list. The function should return the resulting QuantumCircuit. """
qc = QuantumCircuit(len(pauli_strings[0])) synthesizer = LieTrotter(reps=reps) for pauli_string, time in zip(pauli_strings, times): pauli = Pauli(pauli_string) hamiltonian = SparsePauliOp(pauli) evolution_gate = PauliEvolutionGate(hamiltonian, time) synthesized_circuit = synthesizer.synthesize(evolution_gate) qc.append(synthesized_circuit.to_gate(), range(len(pauli_string))) return qc
def check(candidate): pauli_strings = ["X", "Y", "Z"] times = [1.0, 2.0, 3.0] order = 2 reps = 1 def create_solution_circuit(pauli_strings, times, order, reps): qc = QuantumCircuit(len(pauli_strings[0])) synthesizer = LieTrotter(reps=reps) for pauli_string, time in zip(pauli_strings, times): pauli = Pauli(pauli_string) hamiltonian = SparsePauliOp(pauli) evolution_gate = PauliEvolutionGate(hamiltonian, time) synthesized_circuit = synthesizer.synthesize(evolution_gate) qc.append(synthesized_circuit.to_gate(), range(len(pauli_string))) return qc solution_circuit = create_solution_circuit(pauli_strings, times, order, reps) candidate_circuit = candidate(pauli_strings, times, order, reps) assert Operator(solution_circuit) == Operator(candidate_circuit), "The candidate circuit does not match the expected solution." assert isinstance(candidate_circuit, QuantumCircuit), "The returned object is not a QuantumCircuit."
create_product_formula_circuit
intermediate
qiskitHumanEval/113
from qiskit import QuantumCircuit from qiskit.transpiler import PassManager, PropertySet from qiskit.transpiler.passes import RemoveBarriers def calculate_depth_after_barrier_removal(qc: QuantumCircuit) -> PropertySet: """ Remove barriers from the given quantum circuit and calculate the depth before and after removal. Return a PropertySet with 'depth_before', 'depth_after', and 'width' properties. The function should only remove barriers and not perform any other optimizations. """
property_set = PropertySet() property_set["depth_before"] = qc.depth() property_set["width"] = qc.width() pass_manager = PassManager(RemoveBarriers()) optimized_qc = pass_manager.run(qc) property_set['depth_after'] = optimized_qc.depth() return property_set
def check(candidate): qc = QuantumCircuit(3) qc.h(0) qc.barrier() qc.cx(0, 1) qc.barrier() qc.cx(1, 2) qc.measure_all() property_set = candidate(qc) assert property_set["depth_before"] == qc.depth(), "'depth_before' should match the original circuit depth" assert property_set["width"] == qc.width(), "'width' should match the circuit width" optimized_qc = PassManager(RemoveBarriers()).run(qc) assert property_set["depth_after"] == optimized_qc.depth(), "'depth_after' should match the depth of a barrier-free circuit"
calculate_depth_after_barrier_removal
intermediate
qiskitHumanEval/114
from qiskit.transpiler import CouplingMap def create_and_modify_coupling_map() -> CouplingMap: """ Create a CouplingMap with a specific coupling list, then modify it by adding an edge and a physical qubit. The initial coupling list is [[0, 1], [1, 2], [2, 3], [3, 4], [4, 5]]. Add an edge (5, 6), and add a physical qubit "7". """
coupling_list = [[0, 1], [1, 2], [2, 3], [3, 4], [4, 5]] cmap = CouplingMap(couplinglist=coupling_list) cmap.add_edge(5, 6) cmap.add_physical_qubit(7) return cmap
def check(candidate): cmap = candidate() edges = set(cmap.get_edges()) assert edges == { (0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5,6) } assert len(cmap.physical_qubits) == 8
create_and_modify_coupling_map
intermediate
qiskitHumanEval/115
from qiskit.transpiler import Target, InstructionProperties from qiskit.circuit.library import UGate, CXGate from qiskit.circuit import Parameter def create_target() -> Target: """ Create a Target object for a 2-qubit system and add UGate and CXGate instructions with specific properties. - Add UGate for both qubits (0 and 1) with parameters 'theta', 'phi', and 'lambda'. - Add CXGate for qubit pairs (0,1) and (1,0). - All instructions should have nonzero 'duration' and 'error' properties set. """
gmap = Target() theta, phi, lam = [Parameter(p) for p in ("theta", "phi", "lambda")] u_props = { (0,): InstructionProperties(duration=5.23e-8, error=0.00038115), (1,): InstructionProperties(duration=4.52e-8, error=0.00032115), } gmap.add_instruction(UGate(theta, phi, lam), u_props) cx_props = { (0,1): InstructionProperties(duration=5.23e-7, error=0.00098115), (1,0): InstructionProperties(duration=4.52e-7, error=0.00132115), } gmap.add_instruction(CXGate(), cx_props) return gmap
def check(candidate): target = candidate() assert isinstance(target, Target) instructions = target.instructions u_gate_instructions = [inst for inst in instructions if inst[0].name == "u"] cx_gate_instructions = [inst for inst in instructions if inst[0].name == 'cx'] assert len(u_gate_instructions) == 2 assert len(cx_gate_instructions) == 2 for inst in u_gate_instructions + cx_gate_instructions: props = target[inst[0].name][inst[1]] assert isinstance(props, InstructionProperties) assert props.duration > 0 assert props.error >= 0 assert set(inst[1] for inst in u_gate_instructions) == {(0,), (1,)} assert set(inst[1] for inst in cx_gate_instructions) == {(0, 1), (1, 0)}
create_target
intermediate
qiskitHumanEval/116
from qiskit.circuit.library import PauliEvolutionGate from qiskit.synthesis import MatrixExponential from qiskit import QuantumCircuit from qiskit.quantum_info import Pauli, Operator import numpy as np def synthesize_evolution_gate(pauli_string: str, time: float) -> QuantumCircuit: """ Synthesize an evolution gate using MatrixExponential for a given Pauli string and time. The Pauli string can be any combination of 'I', 'X', 'Y', and 'Z'. Return the resulting QuantumCircuit. """
pauli = Pauli(pauli_string) evolution_gate = PauliEvolutionGate(pauli, time) synthesizer = MatrixExponential() qc = synthesizer.synthesize(evolution_gate) return qc
def check(candidate): pauli_string = "X" time = 1.0 qc = candidate(pauli_string, time) assert isinstance(qc, QuantumCircuit), "The function should return a QuantumCircuit" assert qc.size() > 0, "The circuit should not be empty" ideal_solution = QuantumCircuit(1) ideal_solution.rx(2 * time, 0) assert np.allclose(Operator(qc), Operator(ideal_solution)), "The synthesized circuit does not match the expected evolution"
synthesize_evolution_gate
intermediate
qiskitHumanEval/117
from qiskit.synthesis import TwoQubitBasisDecomposer from qiskit.quantum_info import Operator, random_unitary from qiskit.circuit.library import CXGate from qiskit import QuantumCircuit import numpy as np def decompose_unitary(unitary: Operator) -> QuantumCircuit: """ Decompose a 4x4 unitary using the TwoQubitBasisDecomposer with CXGate as the basis gate. Return the resulting QuantumCircuit. """
decomposer = TwoQubitBasisDecomposer(CXGate()) return decomposer(unitary)
def check(candidate): unitary = random_unitary(4) try: qc = candidate(unitary) assert isinstance(qc, QuantumCircuit) assert qc.num_qubits == 2 assert qc.size() > 0 cx_count = sum(1 for inst in qc.data if inst.operation.name == "cx") assert cx_count > 0 except (ValueError, np.linalg.LinAlgError) as e: raise e
decompose_unitary
intermediate
qiskitHumanEval/118
from qiskit import QuantumCircuit from qiskit.circuit.library import C3SXGate def create_c3sx_circuit() -> QuantumCircuit: """ Create a QuantumCircuit with a C3SXGate applied to the first four qubits. """
qc = QuantumCircuit(4) c3sx_gate = C3SXGate() qc.append(c3sx_gate, [0, 1, 2, 3]) return qc
def check(candidate): qc = candidate() assert isinstance(qc, QuantumCircuit) c3sx_instructions = [inst for inst in qc.data if isinstance(inst.operation, C3SXGate)] assert len(c3sx_instructions) == 1 assert c3sx_instructions[0].qubits == tuple([qc.qubits[i] for i in range(4)])
create_c3sx_circuit
intermediate
qiskitHumanEval/119
from qiskit.circuit.library import CDKMRippleCarryAdder from qiskit import QuantumCircuit from qiskit.quantum_info import Operator def create_ripple_carry_adder_circuit(num_state_qubits: int, kind: str) -> QuantumCircuit: """ Create a QuantumCircuit with a CDKMRippleCarryAdder applied to the qubits. The kind of adder can be 'full', 'half', or 'fixed'. """
adder = CDKMRippleCarryAdder(num_state_qubits, kind) qc = QuantumCircuit(adder.num_qubits) qc.append(adder.to_instruction(), range(adder.num_qubits)) return qc
def check(candidate): qc_full = candidate(3, "full") assert isinstance(qc_full, QuantumCircuit), "The function should return a QuantumCircuit" op_full = Operator(qc_full) expected_full = Operator(CDKMRippleCarryAdder(3, "full")) assert op_full.equiv(expected_full), "The circuit does not match the expected CDKMRippleCarryAdder for full kind" qc_fixed = candidate(3, "fixed") assert isinstance(qc_fixed, QuantumCircuit), "The function should return a QuantumCircuit" op_fixed = Operator(qc_fixed) expected_fixed = Operator(CDKMRippleCarryAdder(3, "fixed")) assert op_fixed.equiv(expected_fixed), "The circuit does not match the expected CDKMRippleCarryAdder for fixed kind"
create_ripple_carry_adder_circuit
intermediate
qiskitHumanEval/120
from qiskit.circuit.library import Diagonal from qiskit import QuantumCircuit from qiskit.quantum_info import Operator def create_diagonal_circuit(diag: list) -> QuantumCircuit: """ Create a QuantumCircuit with a Diagonal gate applied to the qubits. The diagonal elements are provided in the list 'diag'. """
diagonal_gate = Diagonal(diag) qc = QuantumCircuit(diagonal_gate.num_qubits) qc.append(diagonal_gate.to_instruction(), range(diagonal_gate.num_qubits)) return qc
def check(candidate): diag = [1, 1j, -1, -1j] qc = candidate(diag) assert isinstance(qc, QuantumCircuit), "The function should return a QuantumCircuit" op_circuit = Operator(qc) expected_diagonal = Diagonal(diag) op_expected = Operator(expected_diagonal) assert op_circuit.equiv(op_expected), "The circuit does not match the expected Diagonal gate"
create_diagonal_circuit
intermediate
qiskitHumanEval/121
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister def conditional_two_qubit_circuit(): """ Create a quantum circuit with one qubit and two classical bits. The qubit's operation depends on its measurement outcome: if it measures to 1 (|1> state), it flips the qubit's state back to |0> using an X gate. The qubit's initial state is randomized using a Hadamard gate. When building the quantum circuit make sure the classical registers is named 'c'. """
qr = QuantumRegister(1) cr = ClassicalRegister(2, 'c') qc = QuantumCircuit(qr, cr) qc.h(qr[0]) qc.measure(qr[0], cr[0]) with qc.if_test((cr[0], 1)): qc.x(qr[0]) qc.measure(qr[0], cr[1]) return qc
def check(candidate): from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler from qiskit_ibm_runtime.options import SamplerOptions qc = candidate() assert isinstance(qc, QuantumCircuit) assert qc.num_qubits == 1 assert qc.num_clbits == 2 ops = dict(qc.count_ops()) assert "h" in ops and "if_else" in ops backend = AerSimulator() options = SamplerOptions() options.simulator.seed_simulator=42 sampler = Sampler(mode=backend, options=options) result = sampler.run([qc]).result() counts = result[0].data.c.get_counts() assert "10" not in counts and "11" not in counts
conditional_two_qubit_circuit
basic
qiskitHumanEval/122
from qiskit.circuit.library import EfficientSU2 from qiskit_ibm_transpiler.transpiler_service import TranspilerService def ai_transpiling(num_qubits): """ Generate an EfficientSU2 circuit with the given number of qubits, 1 reps and make entanglement circular. Then use the Qiskit Transpiler service with the AI flag turned on, use the ibm_brisbane backend and an optimization level of 3 and transpile the generated circuit. """
circuit = EfficientSU2(num_qubits, entanglement="circular", reps=1) transpiler_ai_true = TranspilerService( backend_name="ibm_brisbane", ai=True, optimization_level=3 ) transpiled_circuit = transpiler_ai_true.run(circuit) return transpiled_circuit
def check(candidate): import qiskit num_qubits = 3 backend_name = "ibm_brisbane" ai_flag = True optimization_level = 3 og_circuit = EfficientSU2(num_qubits, entanglement="circular", reps=1) gen_transpiled_circuit = candidate(num_qubits) assert isinstance(gen_transpiled_circuit, qiskit.circuit.QuantumCircuit) transpiler_service = TranspilerService( backend_name=backend_name, ai=ai_flag, optimization_level=optimization_level ) expected_transpiled_circuit = transpiler_service.run(og_circuit) # We can add the following check once we have the random_state/seed feature in the transpiler service # assert gen_transpiled_circuit == expected_transpiled_circuit
ai_transpiling
basic
qiskitHumanEval/123
from qiskit.visualization import plot_error_map from qiskit_ibm_runtime.fake_provider import FakeBelemV2 def backend_error_map(): """ Instantiate a FakeBelemV2 backend and return the plot of its error_map. """
backend = FakeBelemV2() return plot_error_map(backend)
def check(candidate): from matplotlib.figure import Figure result = candidate() assert type(result) == Figure assert len(result.axes) == 5 assert result.get_suptitle() == "fake_belem Error Map"
backend_error_map
basic
qiskitHumanEval/124
from qiskit_ibm_runtime.fake_provider import FakeCairoV2 from qiskit_aer.noise import NoiseModel def gen_noise_model(): """ Generate a noise model from the Fake Cairo V2 backend. """
backend = FakeCairoV2() noise_model = NoiseModel.from_backend(backend) return noise_model
def check(candidate): backend = FakeCairoV2() expected_nm = NoiseModel.from_backend(backend) noise_model = candidate() assert type(noise_model) == NoiseModel assert noise_model == expected_nm
gen_noise_model
basic
qiskitHumanEval/125
from qiskit.converters import circuit_to_gate def circ_to_gate(circ): """ Given a QuantumCircuit, convert it into a gate equivalent to the action of the input circuit and return it. """
circ_gate = circuit_to_gate(circ) return circ_gate
def check(candidate): from qiskit import QuantumCircuit, QuantumRegister from qiskit.circuit.gate import Gate from qiskit.quantum_info import Operator from qiskit.circuit.library import ZGate q = QuantumRegister(3, "q") circ = QuantumCircuit(q) circ.h(q[0]) circ.cx(q[0], q[1]) custom_gate = candidate(circ) assert type(custom_gate) == Gate assert custom_gate.num_qubits == 3 assert custom_gate.num_clbits == 0 q = QuantumRegister(1, "q") circ = QuantumCircuit(q) circ.h(q) circ.x(q) circ.h(q) hxh_gate = circ_to_gate(circ) hxh_op = Operator(hxh_gate) z_op = Operator(ZGate()) assert hxh_op.equiv(z_op)
circ_to_gate
basic
qiskitHumanEval/126
from qiskit.circuit.library import HGate from qiskit.quantum_info import Operator, process_fidelity import numpy as np def calculate_phase_difference_fidelity(): """ Create two quantum operators using Hadamard gate that differ only by a global phase. Calculate the process fidelity between these two operators and return the process fidelity value. """
op_a = Operator(HGate()) op_b = np.exp(1j * 0.5) * Operator(HGate()) fidelity = process_fidelity(op_a, op_b) return fidelity
def check(candidate): result = candidate() assert isinstance(result, float) assert abs(result - 1.0) < 1e-6
calculate_phase_difference_fidelity
basic
qiskitHumanEval/127
from qiskit.circuit.random import random_circuit from qiskit import QuantumCircuit def random_circuit_depth(): """ Using qiskit's random_circuit function, generate a circuit with 4 qubits and a depth of 3 that measures all qubits at the end. Use the seed value 17 and return the generated circuit. """
circuit = random_circuit(4, 3, measure=True, seed = 17) return circuit
def check(candidate): result = candidate() qc = random_circuit(4, 3, measure=True, seed = 17) assert type(result) == QuantumCircuit assert result == qc
random_circuit_depth
basic
qiskitHumanEval/128
from qiskit.circuit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.circuit.classical import expr def conditional_quantum_circuit(): """ Create a quantum circuit with 4 qubits and 4 classical bits. Apply Hadamard gates to the first three qubits, measure them with three classical registers, and conditionally apply an X gate to the fourth qubit based on the XOR of the three classical bits. Finally, measure the fourth qubit into another classical register. """
qr = QuantumRegister(4, "q") cr = ClassicalRegister(4, "c") circ = QuantumCircuit(qr, cr) circ.h(qr[0:3]) circ.measure(qr[0:3], cr[0:3]) _condition = expr.bit_xor(expr.bit_xor(cr[0], cr[1]), cr[2]) with circ.if_test(_condition): circ.x(qr[3]) circ.measure(qr[3], cr[3]) return circ
def check(candidate): from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler, SamplerOptions from qiskit_ibm_runtime.options import SamplerOptions circ_res = candidate() assert type(circ_res) == QuantumCircuit assert circ_res.num_qubits == 4 assert circ_res.num_clbits == 4 assert any(instr.operation.name == "if_else" and instr.operation.num_qubits == 1 and instr.operation.num_clbits == 3 for instr in circ_res.data) sim = AerSimulator() options = SamplerOptions() options.simulator.seed_simulator=17 sampler = Sampler(mode=sim, options=options) counts = sampler.run([circ_res], shots=1024).result()[0].data.c.get_counts() for outcome, _ in counts.items(): qubit_states = outcome[::-1] q3_state = int(qubit_states[3]) q0 = int(qubit_states[0]) q1 = int(qubit_states[1]) q2 = int(qubit_states[2]) expected_q3_state = (q0 ^ q1 ^ q2) assert q3_state == expected_q3_state
conditional_quantum_circuit
basic
qiskitHumanEval/129
from qiskit_ibm_runtime import QiskitRuntimeService def find_highest_rz_error_rate(backend_name): """ Given the name of a quantum backend, retrieve the properties of the specified backend and identify the qubit pair with the highest error rate among its RZ gates. Return this qubit pair along with the corresponding error rate as a tuple. If the backend doesn't support the RZ gate, return None. """
service = QiskitRuntimeService(channel="ibm_quantum") backend = service.backend(backend_name) backend_properties = backend.properties() try: rz_props = backend_properties.gate_property("rz") except: return None qubit_pair = max(rz_props, key=lambda x: rz_props[x]["gate_error"][0]) max_rz_error = rz_props[qubit_pair]["gate_error"][0] return (qubit_pair, max_rz_error)
def check(candidate): service = QiskitRuntimeService(channel="ibm_quantum") backend = service.least_busy(filters=lambda b : ("rz" in b.basis_gates)) max_rz_error_pair, max_rz_error_rate = candidate(backend.name) assert isinstance(max_rz_error_pair, (tuple, list)) assert len(max_rz_error_pair) == 1 assert all(isinstance(qubit, int) for qubit in max_rz_error_pair) assert max_rz_error_rate >= 0 and max_rz_error_rate <= 1 backend_properties = backend.properties() rz_props = backend_properties.gate_property("rz") expected_max_rz_error_pair = max(rz_props, key=lambda x: rz_props[x]["gate_error"][0]) expected_max_rz_error_rate = rz_props[expected_max_rz_error_pair]["gate_error"][0] assert (expected_max_rz_error_pair, expected_max_rz_error_rate) == (max_rz_error_pair, max_rz_error_rate)
find_highest_rz_error_rate
intermediate
qiskitHumanEval/130
from qiskit.circuit import QuantumCircuit def inv_circuit(n): """ Create a quantum circuit with 'n' qubits. Apply Hadamard gates to the second and third qubits. Then apply CNOT gates between the second and fourth qubits, and between the third and fifth qubits. Finally give the inverse of the quantum circuit. """
qc = QuantumCircuit(n) for i in range(2): qc.h(i+1) for i in range(2): qc.cx(i+1, i+2+1) return qc.inverse()
def check(candidate): n = 5 qc_inv = candidate(n) expected_qc = QuantumCircuit(n) for i in range(2): expected_qc.h(i+1) for i in range(2): expected_qc.cx(i+1, i+2+1) expected_qc_inv = expected_qc.inverse() assert qc_inv, QuantumCircuit assert qc_inv == expected_qc_inv
inv_circuit
basic
qiskitHumanEval/131
from qiskit_ibm_runtime.fake_provider import FakeCairoV2 def backend_info(backend_name): """ Given the fake backend name, retrieve information about the backend's number of qubits, coupling map, and supported instructions using the Qiskit Runtime Fake Provider, and create a dictionary containing the info. The dictionary must have the following keys: 'num_qubits' (the number of qubits), 'coupling_map' (the coupling map of the backend), and 'supported_instructions' (the supported instructions of the backend). """
backend = FakeCairoV2() config = backend.configuration() dict_result = {"num_qubits": config.num_qubits, "coupling_map": config.coupling_map, "supported_instructions": config.supported_instructions} return dict_result
def check(candidate): backend = FakeCairoV2() binfo_dict = candidate(backend.name) backend_config = backend.configuration() assert isinstance(binfo_dict, dict) assert binfo_dict["num_qubits"] == backend_config.num_qubits assert binfo_dict["coupling_map"] == backend_config.coupling_map assert binfo_dict["supported_instructions"] == backend_config.supported_instructions
backend_info
basic
qiskitHumanEval/132
from qiskit.circuit.random import random_circuit from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager from qiskit_ibm_runtime import Batch, Sampler from qiskit_ibm_runtime.fake_provider import FakeManilaV2 def run_batched_random_circuits(): """ Generate 6 random quantum circuits, each with 3 qubits, depth of 2 and measure set to True; using the random_circuit Qiskit function, with seed 17. Then use a preset pass manager to optimize these circuits with an optimization level of 1, the backend for the pass manager should be FakeManilaV2, and set the seed value to 1. Partition these optimized circuits into batches of 3 circuits each, and execute these batches using Qiskit Runtime's Batch mode, and return a list containing the measurement outcome for each batch. For the execution of each batch set the seed to 42 for the sampler primitive. """
fake_manila = FakeManilaV2() pm = generate_preset_pass_manager(backend=fake_manila, optimization_level=1, seed_transpiler = 1) circuits = [pm.run(random_circuit(3, 2, measure=True, seed=17)) for _ in range(6)] batch_size = 3 partitions = [circuits[i : i + batch_size] for i in range(0, len(circuits), batch_size)] sampler_options = {"simulator": {"seed_simulator": 42}} with Batch(backend=fake_manila): sampler = Sampler(mode=fake_manila, options=sampler_options) results = [] for partition in partitions: job = sampler.run(partition) results.append(job.result()[0].data.c.get_counts()) return results
def check(candidate): result = candidate() assert isinstance(result, list) assert len(result) == 2 for counts in result: assert isinstance(counts, dict) assert counts == {"110": 423, "100": 474, "000": 58, "010": 52, "101": 8, "111": 8, "011": 1}
run_batched_random_circuits
basic
qiskitHumanEval/133
import datetime from qiskit_ibm_runtime import QiskitRuntimeService def find_recent_jobs(): """ Find and return jobs submitted in the last three months using QiskitRuntimeService. """
three_months_ago = datetime.datetime.now() - datetime.timedelta(days=90) service = QiskitRuntimeService() jobs_in_last_three_months = service.jobs(created_after=three_months_ago) return jobs_in_last_three_months
def check(candidate): result = candidate() assert isinstance(result, list) for job in result: assert hasattr(job, "job_id") assert hasattr(job, "creation_date") assert job.creation_date.replace(tzinfo=None) >= (datetime.datetime.now() - datetime.timedelta(days=90)).replace(tzinfo=None)
find_recent_jobs
basic
qiskitHumanEval/134
from qiskit_ibm_runtime import QiskitRuntimeService def backend_info(): """ Using the QiskitRuntimeService, retrieve the backends that meet the following criteria: they are real quantum devices, they are operational, and they have a minimum of 20 qubits. Then, return a list of dictionaries, each containing the backend's name, number of qubits, and the list of supported instruction names. Ensure that the list of dictionaries is sorted by the backend name. """
service = QiskitRuntimeService() backends = service.backends(simulator=False, operational=True, min_num_qubits=20) backend_info = [] for b in backends: backend_info.append({"backend_name": b.name, "num_qubits": b.num_qubits, "instructions": b.operation_names}) sorted_backend_info = sorted(backend_info, key=lambda x: x["backend_name"]) return sorted_backend_info
def check(candidate): result = candidate() assert isinstance(result, list) service = QiskitRuntimeService() backends = service.backends(simulator=False, operational=True, min_num_qubits=20) backend_info = [] for b in backends: backend_info.append({"backend_name": b.name, "num_qubits": b.num_qubits, "instructions": b.operation_names}) sorted_backend_info_expected = sorted(backend_info, key=lambda x: x["backend_name"]) assert sorted_backend_info_expected == result
backend_info
basic
qiskitHumanEval/135
from qiskit_aer.noise import NoiseModel, ReadoutError def noise_model_with_readouterror(): """ Construct a noise model with specific readout error properties for different qubits. For qubit 0, a readout of 1 has a 20% probability of being erroneously read as 0, and a readout of 0 has a 30% probability of being erroneously read as 1. For all other qubits, a readout of 1 has a 3% probability of being erroneously read as 0, and a readout of 0 has a 2% probability of being erroneously read as 1. """
noise_model = NoiseModel() p0given1_other = 0.03 p1given0_other = 0.02 readout_error_other = ReadoutError( [ [1 - p1given0_other, p1given0_other], [p0given1_other, 1 - p0given1_other], ] ) noise_model.add_all_qubit_readout_error(readout_error_other) p0given1_q0 = 0.2 p1given0_q0 = 0.3 readout_error_q0 = ReadoutError( [ [1 - p1given0_q0, p1given0_q0], [p0given1_q0, 1 - p0given1_q0], ] ) noise_model.add_readout_error(readout_error_q0, [0]) return noise_model
def check(candidate): result = candidate() assert isinstance(result, NoiseModel), "Result should be a NoiseModel instance" global_error = result.to_dict()["errors"][0]['probabilities'] assert global_error == [[0.98, 0.02], [0.03, 0.97]] qubit0_error = result.to_dict()["errors"][1] assert qubit0_error["gate_qubits"][0][0] == 0 assert qubit0_error["probabilities"] == [[0.7, 0.3], [0.2, 0.8]] assert len(result.to_dict()["errors"]) == 2
noise_model_with_readouterror
intermediate
qiskitHumanEval/136
from qiskit.quantum_info import entropy, random_density_matrix, DensityMatrix def pure_states(ε): """ Return a list of ten density matrices which are pure up to a tolerance of ε. """
entropy_list = [] while len(entropy_list) <= 9: density_matrix = random_density_matrix(dims = 2) if entropy(density_matrix) < ε: entropy_list.append(density_matrix) return entropy_list
def check(candidate): tol = 0.01 list_can = candidate(tol) assert len(list_can) == 10," Length of the list is not 10" for _, item in enumerate(list_can): assert isinstance(item, DensityMatrix), "The list doesn't contain density matrices" assert entropy(item) < tol, "Entropy of density matrix is not within tolerance"
pure_states
intermediate
qiskitHumanEval/137
from qiskit.quantum_info import random_density_matrix, entanglement_of_formation def entanglement_dataset(ε): """ Return a dataset of density matrices whose 2-qubit entanglement of formation is within given tolerance. """
entanglement_data = [] while len(entanglement_data) <= 9: density_matrix = random_density_matrix(dims = 4) if entanglement_of_formation(density_matrix)>=ε: entanglement_data.append(density_matrix) return entanglement_data
def check(candidate): from qiskit.quantum_info import DensityMatrix tol = 0.1 can_list = candidate(tol) assert len(can_list) == 10, "Length of list is not 10" for _, item in enumerate(can_list): assert isinstance(item, DensityMatrix), "The list doesn't contain density matrices" assert entanglement_of_formation(item) >= tol , " The entanglement of formation is not within tolerance"
entanglement_dataset
intermediate
qiskitHumanEval/138
from qiskit.quantum_info import mutual_information, random_density_matrix def mutual_information_dataset(ε): """ Return a list of density matrices whose mutual information is greater than the given tolerance. """
mutual_information_list = [] while len(mutual_information_list)<= 9: density_matrix = random_density_matrix(dims = 4) if mutual_information(density_matrix) >= ε: mutual_information_list.append(density_matrix) return mutual_information_list
def check(candidate): from qiskit.quantum_info import DensityMatrix tol = 0.5 can_list = candidate(tol) assert len(can_list) == 10, "Length of the list is not 10" for _,item in enumerate(can_list): assert isinstance(item, DensityMatrix), "The list doesn't contain density matrices" assert mutual_information(item) >= tol, "The mutual information is not above given value"
mutual_information_dataset
intermediate
qiskitHumanEval/139
from qiskit.quantum_info import schmidt_decomposition def schmidt_test(data, qargs_B): """ Return the schmidt decomposition coefficients and the subsystem vectors for the given density matrix and partition. """
return schmidt_decomposition(data, qargs_B)
def check(candidate): from qiskit.quantum_info import random_statevector rs = random_statevector(dims = 16) qargs = [0,1] schmidt_decomp = candidate(rs, qargs) for _, item in enumerate(schmidt_decomp): assert item[0]>=0, "Schmidt coefficients must be real" assert item[1].dims() == (2,2), "The dimension of the first subsystem doesn't match" assert item[2].dims() == (2,2), "The dimension of the second subsystem doesn't match"
schmidt_test
basic
qiskitHumanEval/140
from qiskit.quantum_info import shannon_entropy import numpy as np def shannon_entropy_data(ε): """ Return a list of ten probability vectors each of length 16 whose shannon entropy is greater than a given value. """
shannon_data = [] while len(shannon_data) <= 9: rand_prob = np.random.randn(16) if shannon_entropy(rand_prob) >= ε: shannon_data.append(rand_prob) return shannon_data
def check(candidate): tol = 1 can_list = candidate(tol) assert len(can_list) == 10, " The length of the list is not 10" for _, item in enumerate(can_list): assert shannon_entropy(item)>= tol, "Shannon entropy not greater than given value" assert len(item) == 16, "The length of the probability vector is not 16"
shannon_entropy_data
basic
qiskitHumanEval/141
from qiskit.quantum_info import anti_commutator, SparsePauliOp from qiskit.quantum_info import random_pauli import numpy as np def anticommutators(pauli: SparsePauliOp): """ Return a list of ten anticommutators for the given pauli. """
def is_multiple_of_identity(matrix): identity_matrix = np.eye(matrix.shape[0]) scalar = matrix[0,0] return np.allclose(matrix, scalar*identity_matrix) num_qubits = pauli.num_qubits anticommutator_list = [] while len(anticommutator_list) <= 9: random_pauli_value = SparsePauliOp(random_pauli(num_qubits)) anti_commutator_value = anti_commutator(pauli, random_pauli_value) if is_multiple_of_identity(anti_commutator_value.to_matrix()): anticommutator_list.append(random_pauli_value) return anticommutator_list
def check(candidate): def is_multiple_of_identity(matrix): if matrix.shape[0] != matrix.shape[1]: return False # Not a square matrix identity_matrix = np.eye(matrix.shape[0]) scalar = matrix[0,0] return np.allclose(matrix, scalar*identity_matrix) test_pauli = SparsePauliOp(["XI"]) can_anticommutators = candidate(test_pauli) assert len(can_anticommutators) == 10, "The number of anticommutators is not 10" for _,item in enumerate(can_anticommutators): assert is_multiple_of_identity(anti_commutator(item, test_pauli).to_matrix()), "The operator doesn't anticommute with the given pauli operator"
anticommutators
intermediate
qiskitHumanEval/142
from qiskit.quantum_info import random_density_matrix, purity, DensityMatrix import numpy as np def purity_dataset(): """ Return a list of 10 single qubit density matrices whose purity is greater than 0.5. """
purity_dataset_list = [] while len(purity_dataset_list)<=9: rand_density_matrix = random_density_matrix(dims=2) if np.abs(purity(rand_density_matrix))>=0.5: purity_dataset_list.append(rand_density_matrix) return purity_dataset_list
def check(candidate): can_list = candidate() assert len(can_list) == 10, "Number of density matrices is not 10" for _, item in enumerate(can_list): assert isinstance(item, DensityMatrix) assert np.abs(purity(item))>=0.5, "Purity of the denisty matrices is not less than 0.5"
purity_dataset
intermediate
qiskitHumanEval/143
from qiskit.quantum_info import random_statevector, state_fidelity, Statevector def fidelity_dataset(): """ Return a list of ten pairs of one qubit state vectors whose state fidelity is greater than 0.9. """
fidelity_dataset_list = [] while len(fidelity_dataset_list)<=9: sv_1 = random_statevector(2) sv_2 = random_statevector(2) if state_fidelity(sv_1, sv_2) >= 0.9: fidelity_dataset_list.append((sv_1,sv_2)) return fidelity_dataset_list
def check(candidate): can_list = candidate() assert len(can_list) == 10, "Length of returned list is not 10" for _, item in enumerate(can_list): assert isinstance(item[0], Statevector) assert isinstance(item[1], Statevector) assert(state_fidelity(item[0], item[1]))>=0.9, "State fidelity of the returned pairs is less than 0.9"
fidelity_dataset
intermediate
qiskitHumanEval/144
from qiskit.quantum_info import random_density_matrix, concurrence, DensityMatrix def concurrence_dataset(): """ Return a list of 10 density matrices whose concurrence is 0. """
concurrence_dataset_list = [] while len(concurrence_dataset_list) <= 9: rand_mat = random_density_matrix(dims = 4) if concurrence(rand_mat) == 0: concurrence_dataset_list.append(rand_mat) return concurrence_dataset_list
def check(candidate): can_mat_list = candidate() assert len(can_mat_list) == 10, "The list doesn't contain 10 elements" for _, item in enumerate(can_mat_list): assert isinstance(item, DensityMatrix) assert concurrence(item) == 0, "The concurrence of the density matrix is not 0"
concurrence_dataset
intermediate
qiskitHumanEval/145
from qiskit.circuit.library import QFT from qiskit import QuantumCircuit from qiskit.quantum_info import Operator def qft_inverse(n: int): """ Return the inverse qft circuit for n qubits. """
return QFT(num_qubits=n, approximation_degree=0, inverse=True)
def check(candidate): candidate_circ = candidate(5) assert isinstance(candidate_circ,QuantumCircuit), "Returned circuit is not a quantum circuit" candidate_op = Operator(candidate_circ) test_circ = QFT(5, approximation_degree=0, inverse=True) test_op = Operator(test_circ) assert test_op.equiv(candidate_op), "The circuit doesn't match with the inverse QFT circuit"
qft_inverse
intermediate
qiskitHumanEval/146
from qiskit.transpiler import PassManager, StagedPassManager from qiskit_ibm_runtime import QiskitRuntimeService from qiskit.transpiler.passes.layout.trivial_layout import TrivialLayout def trivial_layout() -> StagedPassManager: """ Generate Qiskit code that sets up a StagedPassManager with a trivial layout using PassManager for the least busy backend available. """
pm_opt = StagedPassManager() pm_opt.layout = PassManager() backend = QiskitRuntimeService().least_busy() cm = backend.coupling_map pm_opt.layout += TrivialLayout(cm) return pm_opt
def check(candidate): pm_opt = candidate() assert isinstance(pm_opt.layout._tasks[0][0], TrivialLayout)
trivial_layout
basic
qiskitHumanEval/147
from qiskit import QuantumCircuit from qiskit.circuit.library import YGate def mcy(qc: QuantumCircuit) -> QuantumCircuit: """ Add a multi-controlled-Y operation to qubit 4, controlled by qubits 0-3. """
mcy_gate = YGate().control(num_ctrl_qubits=4) qc.append(mcy_gate, range(5)) return qc
from qiskit.quantum_info import Operator def check(candidate): expected = QuantumCircuit(6) expected.h([0, 4, 5]) mcy_gate = YGate().control(num_ctrl_qubits=4) expected.append(mcy_gate, range(5)) solution = QuantumCircuit(6) solution.h([0, 4, 5]) solution = candidate(solution) assert Operator(solution) == Operator(expected)
mcy
intermediate
qiskitHumanEval/148
from qiskit import QuantumCircuit from qiskit.transpiler.passes import BasicSwap from qiskit.converters import circuit_to_dag, dag_to_circuit from qiskit_ibm_runtime import IBMBackend def swap_map(qc: QuantumCircuit, backend: IBMBackend) -> QuantumCircuit: """ Add SWAPs to route `qc` for the `backend` object's coupling map, but don't transform any gates. """
swap_pass = BasicSwap(coupling_map=backend.coupling_map) dag = circuit_to_dag(qc) mapped_dag = swap_pass.run(dag) return dag_to_circuit(mapped_dag)
def check(candidate): from qiskit_ibm_runtime.fake_provider import FakeKyiv from qiskit.circuit.random import random_circuit from qiskit.transpiler.passes import CheckMap backend = FakeKyiv() for _ in range(3): qc = random_circuit(5,5) original_ops = qc.count_ops() original_ops.pop("swap", None) mapped_qc = candidate(qc, backend) check_map = CheckMap(coupling_map=backend.coupling_map) dag = circuit_to_dag(mapped_qc) check_map.run(dag) assert check_map.property_set["is_swap_mapped"] mapped_ops = mapped_qc.count_ops() mapped_ops.pop("swap", None) # We convert to set for comparison to ignore dictionary ordering assert set(original_ops.items()) == set(mapped_ops.items())
swap_map
intermediate
qiskitHumanEval/149
from statistics import mode from qiskit.primitives import BitArray def most_common_result(bits: BitArray) -> str: """ Return the most common result as a string of `1`s and `0`s. """
return mode(bits.get_bitstrings())
def check(candidate): test_inputs = [ {"001": 50, "101": 3}, {"1": 1}, {"01101": 302, "10010": 10, "101": 209}, ] for counts in test_inputs: bit_array = BitArray.from_counts(counts) expected = max(counts.items(), key=lambda x: x[1])[0] assert candidate(bit_array) == expected
most_common_result
intermediate
qiskitHumanEval/150
from qiskit import QuantumCircuit from numpy import pi def for_loop_circuit(qc: QuantumCircuit, n: int) -> QuantumCircuit: """ Add a sub-circuit to the quantum circuit `qc` that applies a series of operations for `n` iterations using the `for_loop`. In each iteration `i`, perform the following: 1. Apply a `RY` rotation on qubit 0 with an angle of `pi/n * i`. 2. Apply a Hadamard gate to qubit 0 and a CNOT gate between qubits 0 and 1 to create a phi plus Bell state. 3. Measure qubit 0 and store the result in the corresponding classical register. 4. Break the loop if the classical register for qubit 0 measures the value 1. Use the `for_loop` control flow structure to implement the loop and include conditional breaking based on the measurement. """
with qc.for_loop(range(n)) as i: qc.ry(pi/n*i, 0) qc.h(0) qc.cx(0, 1) qc.measure(0, 0) qc.break_loop().c_if(0, 1) return qc
def check(candidate): from qiskit.circuit.library import RYGate, HGate, CXGate, Measure from qiskit.circuit import BreakLoopOp, CircuitInstruction qc = QuantumCircuit(2,1) solution = candidate(qc, 2) assert len(solution.data) > 0, "Circuit should have operations added" op = solution.data[0].operation assert op.name == "for_loop" assert op.num_qubits == 2 and op.num_clbits == 1 indexset, loop_param, sub_qc = op.params assert indexset == range(2) # Test sub circuit data = sub_qc.data qr = qc.qregs[0] cr = qc.cregs[0] assert data[0] == CircuitInstruction(RYGate(pi/2*loop_param), [qr[0]], []) assert data[1] == CircuitInstruction(HGate(), [qr[0]], []) assert data[2] == CircuitInstruction(CXGate(), [qr[0], qr[1]], []) assert data[3] == CircuitInstruction(Measure(), [qr[0]],[cr[0]]) assert data[4] == CircuitInstruction(BreakLoopOp(2,1), [qr[0], qr[1]], [cr[0]]) or CircuitInstruction(BreakLoopOp(2,1), [qr[1], qr[0]], [cr[0]])
for_loop_circuit
difficult