Datasets:
File size: 1,689 Bytes
0af82e8 9368f59 0af82e8 9368f59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
---
license: cc-by-4.0
task_categories:
- text-classification
language:
- fi
size_categories:
- 10K<n<100K
---
# Dataset Card for HunEmPoli_finnish
This dataset is a machine translated version of the HunEmPoli dataset set available here: https://osf.io/67zsf/?view_only=a23e5b6ba5ef443892a885a3f1d1d1e7 <br>
Details about the dataset can be found in the original paper. <br>
The dataset was translated into Finnish using DeepL: https://www.deepl.com/translator
## Uses
The dataset can be used to train an emotion analysis model.
## Dataset Structure
The data fiels are:
- `text`: A sentence from the Hungarian parliament.
- `label`: Aclassification label, where 0 = `neutral`, 1 = `fear`, 2 = `sadness`, 3 = `anger`, 4 = `disgust`, 5 = `success`, 6 = `joy`, 7 = `trust`.
- `id`: Anique identifier for each sentence. Numbering matches the row numbers in the original dataset.
## Recommendations
The dataset is machine translated and, thus, might include mistranslations. The quality of the translation has not been verified. Make sure the data is suitable for your use case!
## Citation
Please, cite the original work when using the data.
@ARTICLE{10149341,
author={Üveges, István and Ring, Orsolya},
journal={IEEE Access},
title={HunEmBERT: A Fine-Tuned BERT-Model for Classifying Sentiment and Emotion in Political Communication},
year={2023},
volume={11},
number={},
pages={60267-60278},
keywords={Analytical models;Task analysis;Sentiment analysis;Dictionaries;Social sciences;Bit error rate;Data models;Emotion recognition;Fine-tuned BERT-model;huBERT;emotion analysis;sentiment analysis;political communication},
doi={10.1109/ACCESS.2023.3285536}
}
|