Datasets:

Languages:
English
ArXiv:
Tags:
code
License:
omniact / README.md
melisa's picture
Update README.md
4f5e606 verified
|
raw
history blame
3.79 kB
---
license: mit
task_categories:
- text-generation
language:
- en
tags:
- code
pretty_name: OmniACT
---
<img src="intro.png" width="700" title="OmniACT">
Dataset for [OmniACT: A Dataset and Benchmark for Enabling Multimodal Generalist Autonomous Agents for Desktop and Web](https://arxiv.org/abs/2402.17553)
Splits:
| split_name | count |
|------------|-------|
| train | 6788 |
| test | 2020 |
| val | 991 |
Example datapoint:
```json
"2849": {
"task": "data/tasks/desktop/ibooks/task_1.30.txt",
"image": "data/data/desktop/ibooks/screen_1.png",
"ocr": "ocr/desktop/ibooks/screen_1.json",
"color": "detact_color/desktop/ibooks/screen_1.json",
"icon": "detact_icon/desktop/ibooks/screen_1.json",
"box": "data/metadata/desktop/boxes/ibooks/screen_1.json"
},
```
where:
- `task` - contains natural language description ("Task") along with the corresponding PyAutoGUI code ("Output Script"):
```text
Task: Navigate to see the upcoming titles
Output Script:
pyautogui.moveTo(1881.5,1116.0)
```
- `image` - screen image where the action is performed
<img src="screen_1.png" width="700" title="example screen image">
- `ocr` - OCR of screen image (all text elements extracted from the screen image)
```json
{
ocr:
{
"Book": [
1838.0,
52.5
],
"Store": [
253.0,
394.5
],
"Browse": [
2845.5,
1323.0
],
"Sections": [
3227.0,
52.5
],
"v": [
3298.5,
53.0
],
"Q": [
47.5,
138.5
],
"Apple": [
73.5,
230.5
],
"Books": [
165.5,
987.5
],
"Top": [
516.5,
227.0
],
"Charts": [
622.0,
224.5
],
...
}
```
- `color` and `icon` - list of UI elements along with their positions
```json
{
"ctrl": [[2319.5, 2037.5], [2278.5, 1886.5], [2125.5, 1887.0], ...]
"filter4": [[2319.5, 2037.5], [2278.5, 1886.5], ...]
"calendar-empty": [[2319.5, 2037.5], [2278.5, 1886.5], [2125.5, 1887.0], ...]
"volume-mute3": [[2319.5, 2037.5], [2278.5, 1886.5], [2125.5, 1887.0], ...]
"command": [[2319.5, 2037.5], [2278.5, 1886.5], [2125.5, 1887.0], ...]
"film3": [[2319.5, 2037.5], [2278.5, 1886.5], [2125.5, 1887.0],
"insert-template": [[2125.5, 1887.0], [2258.5, 1887.0], ...]
"grid7": [[2296.5, 1894.5], [2125.5, 1884.5], [2099.5, 1868.5], [622.5, 1953.5]],
"map5": [[622.5, 1953.5]]
}
```
- `box` - bounding boxes of key UI elements
```json
{
{
"example_0": {
"top_left": [
482,
1232
],
"bottom_right": [
1001,
1516
],
"label": "browse_mystery"
},
"example_1": {
"top_left": [
1053,
1235
],
"bottom_right": [
1572,
1519
],
"label": "browse_kids"
},
"example_2": {
"top_left": [
1622,
1237
],
"bottom_right": [
2141,
1521
],
"label": "browse_non_fiction"
},
"example_3": {
"top_left": [
2191,
1238
],
"bottom_right": [
2710,
1522
],
"label": "browse_romance"
},
...
}
```
To cite OmniACT, please use:
```
@misc{kapoor2024omniact,
title={OmniACT: A Dataset and Benchmark for Enabling Multimodal Generalist Autonomous Agents for Desktop and Web},
author={Raghav Kapoor and Yash Parag Butala and Melisa Russak and Jing Yu Koh and Kiran Kamble and Waseem Alshikh and Ruslan Salakhutdinov},
year={2024},
eprint={2402.17553},
archivePrefix={arXiv},
primaryClass={cs.AI}
}
```