content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def do(ARGV): """Allow to check whether the exception handlers are all in place. """ if len(ARGV) != 3: return False elif ARGV[1] != "<<TEST:Exceptions/function>>" \ and ARGV[1] != "<<TEST:Exceptions/on-import>>": return False if len(ARGV) < 3: return False exception = ARGV[2] if exception == "KeyboardInterrupt": raise KeyboardInterrupt() elif exception == "AssertionError": raise AssertionError() elif exception == "Exception": raise Exception() # If we did not raise an exception here, we didn't do anything print("No exception was triggered.") return False
56b83d119f74a00f1b557c370d75fb9ff633d691
1,255
def get_available_language_packs(): """Get list of registered language packs. :return list: """ ensure_autodiscover() return [val for (key, val) in registry.registry.items()]
faf3c95ff808c1e970e49c56feb5ad1f61623053
1,256
import ctypes def topo_star(jd_tt, delta_t, star, position, accuracy=0): """ Computes the topocentric place of a star at 'date', given its catalog mean place, proper motion, parallax, and radial velocity. Parameters ---------- jd_tt : float TT Julian date for topocentric place. delta_t : float Difference TT-UT1 at 'date', in seconds of time. star : CatEntry Instance of CatEntry type object containing catalog data for the object in the ICRS. position : OnSurface Instance of OnSurface type object specifying the position of the observer. accuracy : {0, 1}, optional Code specifying the relative accuracy of the output position. = 0 ... full accuracy (default) = 1 ... reduced accuracy Returns ------- (ra, dec) : tuple of floats Topocentric (right ascension in hours, declination in degrees), referred to true equator and equinox of date 'jd_tt'. References ---------- .. [R1] Bangert, J. et. al. (2011), 'User's Guide to NOVAS Version C3.1', C62-C63. .. [R2] Explanatory Supplement to the Astronomical Almanac (1992), Chapter 3. """ if jd_tt < 0.0: raise ValueError(_neg_err.format(name='jd_tt')) if accuracy not in [0, 1]: raise ValueError(_option_err.format(name='accuracy', allowed=[0, 1])) _topo_star = novaslib.topo_star _topo_star.argtypes = (ctypes.c_double, ctypes.c_double, ctypes.POINTER(CatEntry), ctypes.POINTER(OnSurface), ctypes.c_short, ctypes.POINTER(ctypes.c_double), ctypes.POINTER(ctypes.c_double)) _topo_star.restype = ctypes.c_short _topo_star.errcheck = _check_c_errors _topo_star.c_errors = { 1: (ValueError, "from C function 'topo_star': Invalid value of 'where' in ctypes.Structure 'location'"), 11: (ValueError, "from C function 'make_object': invalid value of 'type'"), 12: (ValueError, "from C function 'make_object': 'number' out of range"), 13: (InitializationError, "from C function 'make_object': Initialization of 'cel_obj' failed (object name)."), 14: (InitializationError, "from C function 'make_object': Initialization of 'cel_obj' failed (catalog name)."), 15: (ValueError, "from C function 'make_object': 'name' is out of string bounds."), 21: (ValueError, "from C function 'place': invalid value of 'coord_sys'"), 22: (ValueError, "from C function 'place': invalid value of 'accuracy'"), 23: (ValueError, "from C function 'place': Earth is the observed object, and the observer is either at the geocenter or on the Earth's surface (not permitted)") } ra = ctypes.c_double() dec = ctypes.c_double() _topo_star(jd_tt, delta_t, ctypes.byref(star), ctypes.byref(position), accuracy, ctypes.byref(ra), ctypes.byref(dec)) return (ra.value, dec.value)
fba937116b5f63b450fb028cc68a26e0e10305ae
1,257
def py_multiplicative_inverse(a, n): """Multiplicative inverse of a modulo n (in Python). Implements extended Euclidean algorithm. Args: a: int-like np.ndarray. n: int. Returns: Multiplicative inverse as an int32 np.ndarray with same shape as a. """ batched_a = np.asarray(a, dtype=np.int32) n = np.asarray(n, dtype=np.int32) batched_inverse = [] for a in np.nditer(batched_a): inverse = 0 new_inverse = 1 remainder = n new_remainder = a while new_remainder != 0: quotient = remainder // new_remainder (inverse, new_inverse) = (new_inverse, inverse - quotient * new_inverse) (remainder, new_remainder) = (new_remainder, remainder - quotient * new_remainder) if remainder > 1: raise ValueError( 'Inverse for {} modulo {} does not exist.'.format(a, n)) if inverse < 0: inverse += n batched_inverse.append(inverse) return np.asarray(batched_inverse, dtype=np.int32).reshape(batched_a.shape)
87f4e21f9f8b5a9f10dbf4ec80128a37c1fa912c
1,258
def resample_nearest_neighbour(input_tif, extents, new_res, output_file): """ Nearest neighbor resampling and cropping of an image. :param str input_tif: input geotiff file path :param list extents: new extents for cropping :param float new_res: new resolution for resampling :param str output_file: output geotiff file path :return: dst: resampled image :rtype: ndarray """ dst, resampled_proj, src, _ = _crop_resample_setup(extents, input_tif, new_res, output_file) # Do the work gdal.ReprojectImage(src, dst, '', resampled_proj, gdalconst.GRA_NearestNeighbour) return dst.ReadAsArray()
107bcb72aff9060d024ff00d86b164cf41078630
1,260
def harvester_api_info(request, name): """ This function returns the pretty rendered api help text of an harvester. """ harvester = get_object_or_404(Harvester, name=name) api = InitHarvester(harvester).get_harvester_api() response = api.api_infotext() content = response.data[harvester.name].replace('\n', '<br>') return HttpResponse(content, content_type='text/plain')
6b02168d7c77414c57ca74104ff93dae1e698e30
1,261
import sqlite3 def init_db(): """Open SQLite database, create facebook table, return connection.""" db = sqlite3.connect('facebook.sql') cur = db.cursor() cur.execute(SQL_CREATE) db.commit() cur.execute(SQL_CHECK) parse = list(cur.fetchall())[0][0] == 0 return db, cur, parse
61d8cc968c66aaddfc55ef27ee02dec13c4b28f2
1,262
def aggregate_gradients_using_copy_with_variable_colocation( tower_grads, use_mean, check_inf_nan): """Aggregate gradients, colocating computation with the gradient's variable. Args: tower_grads: List of lists of (gradient, variable) tuples. The outer list is over towers. The inner list is over individual gradients. All variables of the same gradient across towers must be the same (that is, tower_grads[x][a][1] == tower_grads[y][a][1] for all indices x, y, and a) use_mean: if True, mean is taken, else sum of gradients is taken. check_inf_nan: If true, check grads for nans and infs. Returns: The tuple ([(average_gradient, variable),], has_nan_or_inf) where the gradient has been averaged across all towers. The variable is chosen from the first tower. The has_nan_or_inf indicates the grads has nan or inf. """ agg_grads = [] has_nan_or_inf_list = [] for single_grads in zip(*tower_grads): # Note that each single_grads looks like the following: # ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN)) var = single_grads[0][1] for _, v in single_grads: assert v == var with tf.device(var.device): grad_and_var, has_nan_or_inf = aggregate_single_gradient_using_copy( single_grads, use_mean, check_inf_nan) agg_grads.append(grad_and_var) has_nan_or_inf_list.append(has_nan_or_inf) if check_inf_nan: return agg_grads, tf.reduce_any(has_nan_or_inf_list) else: return agg_grads, None
bf6bc2f7b0a7bb9eaa23a0c28686bfe16a8e3ced
1,264
def module_for_category( category ): """Return the OpenGL.GL.x module for the given category name""" if category.startswith( 'VERSION_' ): name = 'OpenGL.GL' else: owner,name = category.split( '_',1) if owner.startswith( '3' ): owner = owner[1:] name = 'OpenGL.GL.%s.%s'%( owner,name ) return __import__( name, {}, {}, name.split( '.' ))
0e88467a1dd7f5b132d46a9bdc99765c274f69f3
1,265
def timestamp() -> str: """generate formatted timestamp for the invocation moment""" return dt.now().strftime("%d-%m-%Y %H:%M:%S")
4f5e3de7f8d0027a210055850c4fa2b4764a39b2
1,267
def sde(trains, events=None, start=0 * pq.ms, stop=None, kernel_size=100 * pq.ms, optimize_steps=0, minimum_kernel=10 * pq.ms, maximum_kernel=500 * pq.ms, kernel=None, time_unit=pq.ms, progress=None): """ Create a spike density estimation plot. The spike density estimations give an estimate of the instantaneous rate. Optionally finds optimal kernel size for given data. :param dict trains: A dictionary of :class:`neo.core.SpikeTrain` lists. :param dict events: A dictionary (with the same indices as ``trains``) of Event objects or lists of Event objects. In case of lists, the first event in the list will be used for alignment. The events will be at time 0 on the plot. If None, spike trains are used unmodified. :param start: The desired time for the start of the first bin. It will be recalculated if there are spike trains which start later than this time. This parameter can be negative (which could be useful when aligning on events). :type start: Quantity scalar :param stop: The desired time for the end of the last bin. It will be recalculated if there are spike trains which end earlier than this time. :type stop: Quantity scalar :param kernel_size: A uniform kernel size for all spike trains. Only used if optimization of kernel sizes is not used (i.e. ``optimize_steps`` is 0). :type kernel_size: Quantity scalar :param int optimize_steps: The number of different kernel sizes tried between ``minimum_kernel`` and ``maximum_kernel``. If 0, ``kernel_size`` will be used. :param minimum_kernel: The minimum kernel size to try in optimization. :type minimum_kernel: Quantity scalar :param maximum_kernel: The maximum kernel size to try in optimization. :type maximum_kernel: Quantity scalar :param kernel: The kernel function or instance to use, should accept two parameters: A ndarray of distances and a kernel size. The total area under the kernel function should be 1. Automatic optimization assumes a Gaussian kernel and will likely not produce optimal results for different kernels. Default: Gaussian kernel :type kernel: func or :class:`spykeutils.signal_processing.Kernel` :param Quantity time_unit: Unit of X-Axis. :param progress: Set this parameter to report progress. :type progress: :class:`spykeutils.progress_indicator.ProgressIndicator` """ if not progress: progress = ProgressIndicator() start.units = time_unit if stop: stop.units = time_unit kernel_size.units = time_unit minimum_kernel.units = time_unit maximum_kernel.units = time_unit if kernel is None: kernel = signal_processing.GaussianKernel(100 * pq.ms) # Align spike trains for u in trains: if events: trains[u] = rate_estimation.aligned_spike_trains( trains[u], events) # Calculate spike density estimation if optimize_steps: steps = sp.logspace(sp.log10(minimum_kernel), sp.log10(maximum_kernel), optimize_steps) * time_unit sde, kernel_size, eval_points = \ rate_estimation.spike_density_estimation( trains, start, stop, optimize_steps=steps, kernel=kernel, progress=progress) else: sde, kernel_size, eval_points = \ rate_estimation.spike_density_estimation( trains, start, stop, kernel_size=kernel_size, kernel=kernel, progress=progress) progress.done() if not sde: raise SpykeException('No spike trains for SDE!') # Plot win_title = 'Kernel Density Estimation' win = PlotDialog(toolbar=True, wintitle=win_title) pW = BaseCurveWidget(win) plot = pW.plot plot.set_antialiasing(True) for u in trains: if u and u.name: name = u.name else: name = 'Unknown' curve = make.curve( eval_points, sde[u], title='%s, Kernel width %.2f %s' % (name, kernel_size[u], time_unit.dimensionality.string), color=helper.get_object_color(u)) plot.add_item(curve) plot.set_axis_title(BasePlot.X_BOTTOM, 'Time') plot.set_axis_unit(BasePlot.X_BOTTOM, eval_points.dimensionality.string) plot.set_axis_title(BasePlot.Y_LEFT, 'Rate') plot.set_axis_unit(BasePlot.Y_LEFT, 'Hz') l = make.legend() plot.add_item(l) win.add_plot_widget(pW, 0) win.add_custom_curve_tools() win.add_legend_option([l], True) win.show() return win
0b045ec676a9c31f4e0f89361d5ff8c13a238624
1,268
def content(obj): """Strip HTML tags for list display.""" return strip_tags(obj.content.replace('</', ' </'))
413eed5f6b9ede0f31ede6a029e111a2910cc805
1,269
def flux(Q, N, ne, Ap, Am): """ calculates the flux between two boundary sides of connected elements for element i """ # for every element we have 2 faces to other elements (left and right) out = np.zeros((ne, N + 1, 2)) # Calculate Fluxes inside domain for i in range(1, ne - 1): out[i, 0, :] = Ap @ (-Q[i - 1, N, :]) + Am @ (-Q[i, 0, :]) out[i, N, :] = Ap @ (Q[i, N, :]) + Am @ (Q[i + 1, 0, :]) # Boundaries # Left out[0, 0, :] = Ap @ np.array([0, 0]) + Am @ (-Q[i, 0, :]) out[0, N, :] = Ap @ (Q[0, N, :]) + Am @ (Q[1, 0, :]) # Right out[ne - 1, 0, :] = Ap @ (-Q[ne - 2, N, :]) + Am @ (-Q[ne - 1, 0, :]) out[ne - 1, N, :] = Ap @ (Q[ne - 1, N, :]) + Am @ np.array([0, 0]) return out
decc1b84cd0f23ac7f437d2c47e76cf6ed961a28
1,270
import shutil def cp_dir(src_dir, dest_dir): """Function: cp_dir Description: Copies a directory from source to destination. Arguments: (input) src_dir -> Source directory. (input) dest_dir -> Destination directory. (output) status -> True|False - True if copy was successful. (output) err_msg -> Error message from copytree exception or None. """ status = True err_msg = None try: shutil.copytree(src_dir, dest_dir) # Directory permission error. except shutil.Error as err: err_msg = "Directory not copied. Perms Error Message: %s" % (err) status = False # Directory does not exist. except OSError as err: err_msg = "Directory not copied. Exist Error Message: %s" % (err) status = False return status, err_msg
13f82a485fb46e102780c2462f0ab092f0d62df1
1,271
import torch def listnet_loss(y_i, z_i): """ y_i: (n_i, 1) z_i: (n_i, 1) """ P_y_i = F.softmax(y_i, dim=0) P_z_i = F.softmax(z_i, dim=0) return - torch.sum(y_i * torch.log(P_z_i))
c2b7dd9800ed591af392b17993c70b443f99524c
1,272
def normalize(data, **kw): """Calculates the normalization of the given array. The normalizated array is returned as a different array. Args: data The data to be normalized Kwargs: upper_bound The upper bound of the normalization. It has the value of 1 by default. lower_bound The lower bound to be used for normalization. It has the value of 0 by default dtype The type of the returned ndarray. If the dtype given is an integer type the returned array values will be truncated after normalized. Returns: An instance of np.array with normalizated values """ upper_bound = 1 lower_bound = 0 dtype = np.float64 if 'upper_bound' in kw: upper_bound = kw['upper_bound'] if 'lower_bound' in kw: lower_bound = kw['lower_bound'] if 'dtype' in kw: dtype = kw['dtype'] check_ndarray(data) newdata = data - data.min() newdata = newdata / newdata.max() newdata = newdata * (upper_bound - lower_bound) newdata += lower_bound return newdata.astype(dtype)
2f6f1a28a5bac4eee221923465a022c79ec185af
1,274
def cc_across_time(tfx, tfy, cc_func, cc_args=()): """Cross correlations across time. Args: tfx : time-frequency domain signal 1 tfy : time-frequency domain signal 2 cc_func : cross correlation function. cc_args : list of extra arguments of cc_func. Returns: cc_atime : cross correlation at different time. Note: If tfx and tfy are not of the same length, the result will be truncated to the shorter one. """ return np.array([cc_func(x, y, *cc_args) for x, y in zip(tfx, tfy)])
c22670b2f722884b048758dbc20df3bc58cd9b0f
1,276
import chardet def predict_encoding(file_path, n_lines=20): """Predict a file's encoding using chardet""" # Open the file as binary data with open(file_path, "rb") as f: # Join binary lines for specified number of lines rawdata = b"".join([f.readline() for _ in range(n_lines)]) return chardet.detect(rawdata)["encoding"]
1ccef9982846fe0c88124b9e583cf68be070e63a
1,277
def redirect_handler(url, client_id, client_secret, redirect_uri, scope): """ Convenience redirect handler. Provide the redirect url (containing auth code) along with client credentials. Returns a spotify access token. """ auth = ExtendedOAuth( client_id, client_secret, redirect_uri, scope=scope) code = auth.parse_response_code(url) token = auth.get_access_token(code) return token
c682af3d7da51afdcba9a46aa4b44dd983d3fe40
1,278
def convert_coordinate(coordinate): """ :param coordinate: str - a string map coordinate :return: tuple - the string coordinate seperated into its individual components. """ coord = (coordinate[0], coordinate[1]) return coord
a3852f5b4e4faac066c8f71e945ed7f46fbf2509
1,279
from typing import List def get_noun_phrases(doc: Doc) -> List[Span]: """Compile a list of noun phrases in sense2vec's format (without determiners). Separated out to make it easier to customize, e.g. for languages that don't implement a noun_chunks iterator out-of-the-box, or use different label schemes. doc (Doc): The Doc to get noun phrases from. RETURNS (list): The noun phrases as a list of Span objects. """ trim_labels = ("advmod", "amod", "compound") spans = [] if doc.is_parsed: for np in doc.noun_chunks: while len(np) > 1 and np[0].dep_ not in trim_labels: np = np[1:] spans.append(np) return spans
38d78164147b012437f7c8b8d4c7fe13eb574515
1,282
import json def load_file_from_url(url): """Load the data from url.""" url_path = get_absolute_url_path(url, PATH) response = urlopen(url_path) contents = json.loads(response.read()) return parse_file_contents(contents, url_path.endswith(".mrsys"))
7eaa3d666c9e1fbdd9bad57047dd1b98712bd22b
1,283
def speedPunisherMin(v, vmin): """ :param v: :param vmin: :return: """ x = fmin(v - vmin, 0) return x ** 2
9e6e929226ea20d70d26f6748f938981885914c7
1,284
def hexagonal_packing_cross_section(nseeds, Areq, insu, out_insu): """ Make a hexagonal packing and scale the result to be Areq cross section Parameter insu must be a percentage of the strand radius. out_insu is the insulation thickness around the wire as meters Returns: (wire diameter, strand diameter, strand center points) """ seeds = np.linspace(-0.5, 0.5,nseeds) dx = seeds[1]-seeds[0] xs, ys = np.meshgrid(seeds, seeds) if (nseeds-1) % 4 == 0: ys[:,1::2] = ys[:,1::2] + 0.5*dx; else: ys[:,0::2] = ys[:,0::2] + 0.5*dx; ys = ys*2/np.sqrt(3); points = np.stack([xs.reshape(-1), ys.reshape(-1)], axis=1) vor = Voronoi(points) hexs = [v for v in vor.regions if len(v) == 6] all_cells = vor.vertices[hexs, :] max_dists = np.max(np.linalg.norm(all_cells, axis=2), axis=1) cells = all_cells[max_dists < 0.5, :] strand_cps = np.mean(cells, axis=1) # if strand bundle is not symmetric, it will be off center so... # move it back to center strand_cps = strand_cps - np.mean(strand_cps, axis=0) # quite a silly way to calculate the strand diameter.but it indeed is # the minimum of the distances from the first cell center to all the rest # minus the insulation thickness strand_diam = np.min(np.linalg.norm(strand_cps[1:]-strand_cps[0], axis=1))*(1-insu) nstrands = len(strand_cps) Acu = nstrands*(strand_diam/2)**2*np.pi scale = np.sqrt(Areq/Acu) strand_cps_scaled = scale*strand_cps strand_diam_scaled = scale*strand_diam wire_diameter = (np.max(np.linalg.norm(strand_cps_scaled, axis=1), axis=0)*2 + strand_diam_scaled*(1+insu)/(1-insu) + out_insu) return wire_diameter, strand_diam_scaled, strand_cps_scaled
759cc26a9606ac327851d9b1e691052123029d66
1,286
def bk(): """ Returns an RGB object representing a black pixel. This function is created to make smile() more legible. """ return introcs.RGB(0,0,0)
0343367302c601fce9057a8191b666a098eaec81
1,287
def autoEpochToTime(epoch): """ Converts a long offset from Epoch value to a DBDateTime. This method uses expected date ranges to infer whether the passed value is in milliseconds, microseconds, or nanoseconds. Thresholds used are TimeConstants.MICROTIME_THRESHOLD divided by 1000 for milliseconds, as-is for microseconds, and multiplied by 1000 for nanoseconds. The value is tested to see if its ABS exceeds the threshold. E.g. a value whose ABS is greater than 1000 * TimeConstants.MICROTIME_THRESHOLD will be treated as nanoseconds. :param epoch: (long) - The long Epoch offset value to convert. :return: (io.deephaven.db.tables.utils.DBDateTime) null, if the input is equal to QueryConstants.NULL_LONG, otherwise a DBDateTime based on the inferred conversion. """ return _java_type_.autoEpochToTime(epoch)
1f2ae0397044c19413544a359a1d966a4f223128
1,288
def compile_recursive_descent(file_lines, *args, **kwargs): """Given a file and its lines, recursively compile until no ksx statements remain""" visited_files = kwargs.get('visited_files', set()) # calculate a hash of the file_lines and check if we have already compiled # this one file_hash = hash_file_contents(file_lines) if len(visited_files) > RECURSION_DESCENT_LIMIT: msg = ( "Compiler appears to be in a circular reference loop, " "this is currently non-recoverable and is a known issue.\n\n" "See: https://github.com/LeonardMH/kos-scripts/issues/7 \n\n" "In the meantime check your library for files which import a " "file, where that file imports the original (A->B->A).\n\n" "You might also attempt using the 'from x import y' syntax which " "has slightly narrower scope." ) raise CircularImportError(msg) if file_hash in visited_files: # we have already compiled this file, no need to do so again return "" else: # we will now compile the file, mark that it has been visited visited_files.add(file_hash) # compile and split back out to individual lines file_oneline = compile_single_file_lines(file_lines, *args, **kwargs) file_lines = file_oneline.split('\n') # if there are no more ksx directives in the lines compiled we are done, # return the stringified compile result if not file_has_ksx_directive(file_lines): return file_oneline # if there are still more ksx directives in the lines compiled so far, run # again kwargs['visited_files'] = visited_files return compile_recursive_descent(file_lines, *args, **kwargs).rstrip() + '\n'
9e5306c2d2cc6696883ac3ec37114c13340fe1f5
1,289
def majority_voting(masks, voting='hard', weights=None, threshold=0.5): """Soft Voting/Majority Rule mask merging; Signature based upon the Scikit-learn VotingClassifier (https://github.com/scikit-learn/scikit-learn/blob/2beed55847ee70d363bdbfe14ee4401438fba057/sklearn/ensemble/_voting.py#L141) Parameters ---------- masks : segmentations masks to merge, ndarray Expected shape is num_of_masks * 1 * h * w Accepts masks in range 0-1 (i.e apply sigmoid before passing to this function) voting : {'hard', 'soft'}, default='hard' If 'hard', uses predicted class labels for majority rule voting. Else if 'soft', predicts the class label based on the argmax of the sums of the predicted probabilities, which is recommended for an ensemble of well-calibrated classifiers. weights : array-like of shape (n_classifiers,), default=None Sequence of weights (`float` or `int`) to weight the occurrences of predicted class labels (`hard` voting) or class probabilities before averaging (`soft` voting). Uses uniform weights if `None`. threshold : for separating between the positive and negative class, default=0.5 Applied first in case of hard voting and applied last in case of soft voting """ assert len(masks.shape) == 4 if voting not in ('soft', 'hard'): raise ValueError(f"Voting must be 'soft' or 'hard'; got (voting= {voting})") for m in masks: assert (m >= 0.).all() and (m <= 1.).all() if voting == 'hard': masks = (masks >= threshold).astype(np.float32) if weights is None: weights = np.array([1] * masks.shape[0]) else: weights = np.array(weights) # Broadcasting starts with the trailing (i.e. rightmost) dimensions and works its way left, therefore we move the "mask" dimension to the right masks= np.transpose(masks, (1, 2, 3, 0)) masks = masks * weights masks= np.transpose(masks, (3, 0, 1, 2)) masks = masks.sum(axis=0) if voting == 'soft': masks = (masks >= (threshold * weights.sum())).astype(np.float32) elif voting == 'hard': # Same as doing a majority vote masks = (masks > (0.5 * weights.sum())).astype(np.float32) assert len(masks.shape) == 3 return masks.astype(np.float32)
882e98bc3a0c817c225f740042eb43b3bc4734fa
1,290
def animate(zdata, xdata, ydata, conversionFactorArray, timedata, BoxSize, timeSteps=100, filename="particle"): """ Animates the particle's motion given the z, x and y signal (in Volts) and the conversion factor (to convert between V and nm). Parameters ---------- zdata : ndarray Array containing the z signal in volts with time. xdata : ndarray Array containing the x signal in volts with time. ydata : ndarray Array containing the y signal in volts with time. conversionFactorArray : ndarray Array of 3 values of conversion factors for z, x and y (in units of Volts/Metre) timedata : ndarray Array containing the time data in seconds. BoxSize : float The size of the box in which to animate the particle - in nm timeSteps : int, optional Number of time steps to animate filename : string, optional filename to create the mp4 under (<filename>.mp4) """ timePerFrame = 0.203 print("This will take ~ {} minutes".format(timePerFrame * timeSteps / 60)) convZ = conversionFactorArray[0] * 1e-9 convX = conversionFactorArray[1] * 1e-9 convY = conversionFactorArray[2] * 1e-9 ZBoxStart = -BoxSize # 1/conv*(_np.mean(zdata)-0.06) ZBoxEnd = BoxSize # 1/conv*(_np.mean(zdata)+0.06) XBoxStart = -BoxSize # 1/conv*(_np.mean(xdata)-0.06) XBoxEnd = BoxSize # 1/conv*(_np.mean(xdata)+0.06) YBoxStart = -BoxSize # 1/conv*(_np.mean(ydata)-0.06) YBoxEnd = BoxSize # 1/conv*(_np.mean(ydata)+0.06) FrameInterval = 1 # how many timesteps = 1 frame in animation a = 20 b = 0.6 * a myFPS = 7 myBitrate = 1000000 fig = _plt.figure(figsize=(a, b)) ax = fig.add_subplot(111, projection='3d') ax.set_title("{} us".format(timedata[0] * 1000000)) ax.set_xlabel('X (nm)') ax.set_xlim([XBoxStart, XBoxEnd]) ax.set_ylabel('Y (nm)') ax.set_ylim([YBoxStart, YBoxEnd]) ax.set_zlabel('Z (nm)') ax.set_zlim([ZBoxStart, ZBoxEnd]) ax.view_init(20, -30) # ax.view_init(0, 0) def setup_plot(): XArray = 1 / convX * xdata[0] YArray = 1 / convY * ydata[0] ZArray = 1 / convZ * zdata[0] scatter = ax.scatter(XArray, YArray, ZArray) return scatter, def animate(i): # print "\r {}".format(i), print("Frame: {}".format(i), end="\r") ax.clear() ax.view_init(20, -30) ax.set_title("{} us".format(int(timedata[i] * 1000000))) ax.set_xlabel('X (nm)') ax.set_xlim([XBoxStart, XBoxEnd]) ax.set_ylabel('Y (nm)') ax.set_ylim([YBoxStart, YBoxEnd]) ax.set_zlabel('Z (nm)') ax.set_zlim([ZBoxStart, ZBoxEnd]) XArray = 1 / convX * xdata[i] YArray = 1 / convY * ydata[i] ZArray = 1 / convZ * zdata[i] scatter = ax.scatter(XArray, YArray, ZArray) ax.scatter([XArray], [0], [-ZBoxEnd], c='k', alpha=0.9) ax.scatter([-XBoxEnd], [YArray], [0], c='k', alpha=0.9) ax.scatter([0], [YBoxEnd], [ZArray], c='k', alpha=0.9) Xx, Yx, Zx, Xy, Yy, Zy, Xz, Yz, Zz = [], [], [], [], [], [], [], [], [] for j in range(0, 30): Xlast = 1 / convX * xdata[i - j] Ylast = 1 / convY * ydata[i - j] Zlast = 1 / convZ * zdata[i - j] Alpha = 0.5 - 0.05 * j if Alpha > 0: ax.scatter([Xlast], [0 + j * 10], [-ZBoxEnd], c='grey', alpha=Alpha) ax.scatter([-XBoxEnd], [Ylast], [0 - j * 10], c='grey', alpha=Alpha) ax.scatter([0 - j * 2], [YBoxEnd], [Zlast], c='grey', alpha=Alpha) Xx.append(Xlast) Yx.append(0 + j * 10) Zx.append(-ZBoxEnd) Xy.append(-XBoxEnd) Yy.append(Ylast) Zy.append(0 - j * 10) Xz.append(0 - j * 2) Yz.append(YBoxEnd) Zz.append(Zlast) if j < 15: XCur = 1 / convX * xdata[i - j + 1] YCur = 1 / convY * ydata[i - j + 1] ZCur = 1 / convZ * zdata[i - j + 1] ax.plot([Xlast, XCur], [Ylast, YCur], [Zlast, ZCur], alpha=0.4) ax.plot_wireframe(Xx, Yx, Zx, color='grey') ax.plot_wireframe(Xy, Yy, Zy, color='grey') ax.plot_wireframe(Xz, Yz, Zz, color='grey') return scatter, anim = _animation.FuncAnimation(fig, animate, int(timeSteps / FrameInterval), init_func=setup_plot, blit=True) _plt.rcParams['animation.ffmpeg_path'] = '/usr/bin/ffmpeg' mywriter = _animation.FFMpegWriter(fps=myFPS, bitrate=myBitrate) # , fps = myFPS, bitrate = myBitrate) anim.save('{}.mp4'.format(filename), writer=mywriter) return None
aa0f08481f7efc39dae725a0c5f7fbc377586261
1,291
import re def name_of_decompressed(filename): """ Given a filename check if it is in compressed type (any of ['.Z', '.gz', '.tar.gz', '.zip']; if indeed it is compressed return the name of the uncompressed file, else return the input filename. """ dct = { '.Z': re.compile('.Z$'), '.tar.gz': re.compile('.tar.gz$'), '.gz': re.compile('.gz$'), '.zip': re.compile('.zip$') } ctype = find_os_compression_type(filename) if ctype is None: return filename try: return re.sub(dct[ctype], '', filename) except: raise RuntimeError('[ERROR] decompress:name_of_decompressed Failed!')
ee0c49edca853fbf1da8caccbba68c9cde391f6b
1,292
import random def sample_distribution(distribution): """Sample one element from a distribution assumed to be an array of normalized probabilities. """ r = random.uniform(0, 1) s = 0 for i in range(len(distribution)): s += distribution[i] if s >= r: return i return len(distribution) - 1
2e8a5e2d3c8fd6770e78a6ad30afc52f63c43073
1,293
def benchmark(func): """Decorator to mark a benchmark.""" BENCHMARKS[func.__name__] = func return func
0edadb46c446ed5603434d14ab7a40cdf76651b5
1,294
def do_positive_DFT(data_in, tmax): """ Do Discrete Fourier transformation and take POSITIVE frequency component part. Args: data_in (array): input data. tmax (float): sample frequency. Returns: data_s (array): output array with POSITIVE frequency component part. data_w (array): the Discrete Fourier Transform sample frequencies POSITIVE frequency component part. """ data_s = np.fft.fft(data_in) data_w = np.fft.fftfreq(tmax) # only take the positive frequency components return data_w[0:tmax//2], data_s[0:tmax//2]
c3bab6b9595cf77869f65eacf6acf6d7f990ca10
1,295
def service(base_app, location): """Service fixture.""" return base_app.extensions["invenio-records-lom"].records_service
52ad7f4624e7d0af153f0fcaaccfb56effddb86d
1,296
def check_file_content(path, expected_content): """Check file has expected content. :param str path: Path to file. :param str expected_content: Expected file content. """ with open(path) as input: return expected_content == input.read()
77bdfae956ce86f2422ed242c4afcaab19cab384
1,297
from datetime import datetime import select def verify_apikey(payload, raiseonfail=False, override_authdb_path=None, override_permissions_json=None, config=None): """Checks if an API key is valid. This version does not require a session. Parameters ---------- payload : dict This dict contains a single key: - apikey_dict: the decrypted and verified API key info dict from the frontend. - user_id: the user ID of the person wanting to verify this key. - user_role: the user role of the person wanting to verify this key. raiseonfail : bool If True, will raise an Exception if something goes wrong. override_authdb_path : str or None If given as a str, is the alternative path to the auth DB. override_permissions_json : str or None If given as a str, is the alternative path to the permissions JSON to use. This is used to check if the user_id is allowed to actually verify ("read") an API key. config : SimpleNamespace object or None An object containing systemwide config variables as attributes. This is useful when the wrapping function needs to pass in some settings directly from environment variables. Returns ------- dict The dict returned is of the form:: {'success': True if API key is OK and False otherwise, 'messages': list of str messages if any} """ for key in ('reqid', 'pii_salt'): if key not in payload: LOGGER.error( "Missing %s in payload dict. Can't process this request." % key ) return { 'success': False, 'failure_reason': ( "invalid request: missing '%s' in request" % key ), 'apikey': None, 'expires': None, 'messages': ["Invalid API key request."], } for key in ('apikey_dict', 'user_id', 'user_role'): if key not in payload: LOGGER.error( '[%s] Invalid API key request, missing %s.' % (payload['reqid'], key) ) return { 'success': False, 'failure_reason': ( "invalid request: missing '%s' in request" % key ), 'messages': ["Some required keys are missing from payload."] } apikey_dict = payload['apikey_dict'] user_id = payload['user_id'] user_role = payload['user_role'] # check if the user is allowed to read the presented API key apikey_verify_allowed = check_user_access( {'user_id': user_id, 'user_role': user_role, 'action': 'view', 'target_name': 'apikey', 'target_owner': apikey_dict['uid'], 'target_visibility': 'private', 'target_sharedwith': None, 'reqid': payload['reqid'], 'pii_salt': payload['pii_salt']}, raiseonfail=raiseonfail, override_permissions_json=override_permissions_json, override_authdb_path=override_authdb_path ) if not apikey_verify_allowed['success']: LOGGER.error( "[%s] Invalid API key verification request. " "from user_id: %s, role: %s. The API key presented is " "not readable by this user." % (payload['reqid'], pii_hash(user_id, payload['pii_salt']), pii_hash(user_role, payload['pii_salt'])) ) return { 'success': False, 'failure_reason': ( "originating user is not allowed to operate on this API key" ), 'messages': ["API key verification failed. " "You are not allowed to operate on this API key."] } # this checks if the database connection is live currproc = mp.current_process() engine = getattr(currproc, 'authdb_engine', None) if override_authdb_path: currproc.auth_db_path = override_authdb_path if not engine: currproc.authdb_engine, currproc.authdb_conn, currproc.authdb_meta = ( authdb.get_auth_db( currproc.auth_db_path, echo=raiseonfail ) ) apikeys = currproc.authdb_meta.tables['apikeys_nosession'] # the apikey sent to us must match the stored apikey's properties: # - token # - userid # - expired must be in the future # - issued must be in the past # - not_valid_before must be in the past dt_utcnow = datetime.utcnow() sel = select([ apikeys.c.apikey, apikeys.c.expires, ]).select_from(apikeys).where( apikeys.c.apikey == apikey_dict['tkn'] ).where( apikeys.c.user_id == apikey_dict['uid'] ).where( apikeys.c.user_role == apikey_dict['rol'] ).where( apikeys.c.expires > dt_utcnow ).where( apikeys.c.issued < dt_utcnow ).where( apikeys.c.not_valid_before < dt_utcnow ) result = currproc.authdb_conn.execute(sel) row = result.fetchone() result.close() if row is not None and len(row) != 0: LOGGER.info( "[%s] No-session API key verified successfully. " "user_id: %s, role: '%s', audience: '%s', subject: '%s', " "apiversion: %s, expires on: %s" % (payload['reqid'], pii_hash(apikey_dict['uid'], payload['pii_salt']), apikey_dict['rol'], apikey_dict['aud'], apikey_dict['sub'], apikey_dict['ver'], apikey_dict['exp']) ) return { 'success': True, 'messages': [( "No-session API key verified successfully. Expires: %s." % row['expires'].isoformat() )] } else: LOGGER.error( "[%s] No-session API key verification failed. Failed key " "user_id: %s, role: '%s', audience: '%s', subject: '%s', " "apiversion: %s, expires on: %s" % (payload['reqid'], pii_hash(apikey_dict['uid'], payload['pii_salt']), apikey_dict['rol'], apikey_dict['aud'], apikey_dict['sub'], apikey_dict['ver'], apikey_dict['exp']) ) return { 'success': False, 'failure_reason': ( "key validation failed, " "provided key does not match stored key or has expired" ), 'messages': [( "API key could not be verified." )] }
f1f5d9f65b2c9b8b9175ea4729042d9bb040a0e7
1,299
def case_mc2us(x): """ mixed case to underscore notation """ return case_cw2us(x)
13cd638311bea75699789a2f13b7a7d854f856bd
1,301
def detail_url(reteta_id): """"Return reteta detail URL""" return reverse('reteta:reteta-detail', args=[reteta_id])
4b7219b5e0d7ae32656766a08c34f54a02d1634e
1,303
def load_metadata_txt(file_path): """ Load distortion coefficients from a text file. Parameters ---------- file_path : str Path to a file. Returns ------- tuple of floats and list Tuple of (xcenter, ycenter, list_fact). """ if ("\\" in file_path): raise ValueError( "Please use a file path following the Unix convention") with open(file_path, 'r') as f: x = f.read().splitlines() list_data = [] for i in x: list_data.append(float(i.split()[-1])) xcenter = list_data[0] ycenter = list_data[1] list_fact = list_data[2:] return xcenter, ycenter, list_fact
44e6319aec6d77910e15e8890bcd78ffcdca3aa4
1,304
import torch def _output_gradient(f, loss_function, dataset, labels, out0, batch_indices, chunk): """ internal function """ x = _getitems(dataset, batch_indices) y = _getitems(labels, batch_indices) if out0 is not None: out0 = out0[batch_indices] out = [] grad = 0 loss_value = 0 for i in [slice(i, i + chunk) for i in range(0, len(x), chunk)]: o = f(x[i]) if out0 is not None: o = o - out0[i] l = loss_function(o, y[i]) assert l.shape == (len(o),) l = l.sum() / len(x) grad += gradient(l, f.parameters()) out.append(o) loss_value += l.item() return torch.cat(out), grad, loss_value
252f79065ce953eb99df17842d62786cebadee67
1,305
def __material_desc_dict(m, d): """ Unpack positions 18-34 into material specific dict. """ return dict(zip(MD_FIELDS[m], {"BK": __material_bk, "CF": __material_cf, "MP": __material_mp, "MU": __material_mu, "CR": __material_cr, "VM": __material_vm, "MX": __material_mx}[m](d)))
9f87ce915bd5d226fa1d1ffd5991779c9a4fbdba
1,306
def toint(x): """Try to convert x to an integer number without raising an exception.""" try: return int(x) except: return x
bd1a675cb3f8f5c48e36f8f405a89dc637f3f558
1,307
def obtain_time_image(x, y, centroid_x, centroid_y, psi, time_gradient, time_intercept): """Create a pulse time image for a toymodel shower. Assumes the time development occurs only along the longitudinal (major) axis of the shower, and scales linearly with distance along the axis. Parameters ---------- x : u.Quantity[length] X camera coordinate to evaluate the time at. Usually the array of pixel X positions y : u.Quantity[length] Y camera coordinate to evaluate the time at. Usually the array of pixel Y positions centroid_x : u.Quantity[length] X camera coordinate for the centroid of the shower centroid_y : u.Quantity[length] Y camera coordinate for the centroid of the shower psi : convertible to `astropy.coordinates.Angle` rotation angle about the centroid (0=x-axis) time_gradient : u.Quantity[time/length] Rate at which the time changes with distance along the shower axis time_intercept : u.Quantity[time] Pulse time at the shower centroid Returns ------- float or ndarray Pulse time in nanoseconds at (x, y) """ longitudinal, _ = camera_to_shower_coordinates(x, y, centroid_x, centroid_y, psi) longitudinal_m = longitudinal.to_value(u.m) time_gradient_ns_m = time_gradient.to_value(u.ns / u.m) time_intercept_ns = time_intercept.to_value(u.ns) return longitudinal_m * time_gradient_ns_m + time_intercept_ns
4a57399e041c0fd487fe039e5091986438d4b8b8
1,308
import re def remove_comment(to_remove, infile): """Removes trailing block comments from the end of a string. Parameters: to_remove: The string to remove the comment from. infile: The file being read from. Returns: The paramter string with the block comment removed (if comment was present in string). """ start_comment = re.search('\s*(\/\*|//)', to_remove) # Remove comments if they are in the matched group. if start_comment: end_comment = re.search('.*\*\/', to_remove) if end_comment or ('//' in to_remove and not '/*' in to_remove) : removed = to_remove[:start_comment.start(0)] + '\n' return removed while not end_comment: to_remove = next(infile) end_comment = end_comment = re.search('.*\*\/', to_remove) return '' else: removed = to_remove return removed
0172b295c9a023eb96fbad7a6c3a388874e106bc
1,309
def generate_notification_header(obj): """ Generates notification header information based upon the object -- this is used to preface the notification's context. Could possibly be used for "Favorites" descriptions as well. :param obj: The top-level object instantiated class. :type obj: class which inherits from :class:`crits.core.crits_mongoengine.CritsBaseAttributes`. :returns: str with a human readable identification of the object """ generate_notification_header_handler = NotificationHeaderManager.get_header_handler(obj._meta['crits_type']) if generate_notification_header_handler is not None: return generate_notification_header_handler(obj) else: return "%s: %s" % (obj._meta['crits_type'], str(obj.id))
e02c2bdd9827077a49236ed7aa813458659f453c
1,310
def promptyn(msg, default=None): """ Display a blocking prompt until the user confirms """ while True: yes = "Y" if default else "y" if default or default is None: no = "n" else: no = "N" confirm = raw_input("%s [%s/%s]" % (msg, yes, no)) confirm = confirm.lower().strip() if confirm == "y" or confirm == "yes": return True elif confirm == "n" or confirm == "no": return False elif len(confirm) == 0 and default is not None: return default
1bec535462b8e859bac32c424e8500c432eb7751
1,311
def plan_launch_spec(state): """ Read current job params, and prescribe the next training job to launch """ last_run_spec = state['run_spec'] last_warmup_rate = last_run_spec['warmup_learning_rate'] add_batch_norm = last_run_spec['add_batch_norm'] learning_rate = last_run_spec['learning_rate'] if last_warmup_rate / 5 >= 1e-3: logger.info('Reducing warmup rate by 1/5') state['history']['num_warmup_adjustments'] += 1 state['run_spec']['warmup_learning_rate'] = last_warmup_rate * 0.5 state['next_action'] = 'launch_new' elif add_batch_norm == 0: logger.info('Adding batch normalization layer') state['history']['num_batch_layer_adjustments'] += 1 state['run_spec']['add_batch_norm'] = 1 # we are only changing the model by adding batch layers # prior to ELU. But can make more tweaks here. state['next_action'] = 'launch_new' elif learning_rate * 0.9 > 0.001: state['run_spec']['learning_rate'] = learning_rate * 0.9 state['history']['num_learning_rate_adjustments'] += 1 state['next_action'] = 'launch_new' else: state['next_action'] = 'end' return state
5fee797f24db05eccb49a5b10a9d88917987f905
1,312
def ssgenTxOut0(): """ ssgenTxOut0 is the 0th position output in a valid SSGen tx used to test out the IsSSGen function """ # fmt: off return msgtx.TxOut( value=0x00000000, # 0 version=0x0000, pkScript=ByteArray( [ 0x6a, # OP_RETURN 0x24, # 36 bytes to be pushed 0x94, 0x8c, 0x76, 0x5a, # 32 byte hash 0x69, 0x14, 0xd4, 0x3f, 0x2a, 0x7a, 0xc1, 0x77, 0xda, 0x2c, 0x2f, 0x6b, 0x52, 0xde, 0x3d, 0x7c, 0xda, 0x2c, 0x2f, 0x6b, 0x52, 0xde, 0x3d, 0x7c, 0x52, 0xde, 0x3d, 0x7c, 0x00, 0xe3, 0x23, 0x21, # 4 byte height ] ), ) # fmt: on
3bee03ef9bc3a326fff381b6d2594c3ea4c909e7
1,313
def sexag_to_dec(sexag_unit): """ Converts Latitude and Longitude Coordinates from the Sexagesimal Notation to the Decimal/Degree Notation""" add_to_degree = (sexag_unit[1] + (sexag_unit[2]/60))/60 return sexag_unit[0]+add_to_degree
c9c4394920d2b483332eb4a81c0f0d9010179339
1,314
import apysc as ap from typing import Any from typing import Tuple def is_immutable_type(value: Any) -> bool: """ Get a boolean value whether specified value is immutable type or not. Notes ----- apysc's value types, such as the `Int`, are checked as immutable since these js types are immutable. Parameters ---------- value : Any Target value to check. Returns ------- result : bool If a specified value is immutable, then True will be set. """ immutable_types: Tuple = ( int, float, bool, str, complex, tuple, range, bytes, ap.Int, ap.Number, ap.String, ap.Boolean, ) if isinstance(value, immutable_types): return True return False
79538477528df2e13eaf806231e2f43c756abacd
1,315
def add_column_node_type(df: pd.DataFrame) -> pd.DataFrame: """Add column `node_type` indicating whether a post is a parent or a leaf node Args: df: The posts DataFrame with the columns `id_post` and `id_parent_post`. Returns: df: A copy of df, extended by `node_type`. """ if "node_type" not in df.columns: df_parent_posts = pd.DataFrame({"id_post": df.query("id_parent_post == id_parent_post").id_parent_post.unique()}) df_parent_posts["node_type"] = "parent" return df.merge(df_parent_posts, how="left", on="id_post").replace({"node_type": np.nan}, "leaf") else: return df.copy()
3ad8a12f1a872d36a14257bdaa38229768714fa5
1,316
import random def read_motifs(fmotif): """ create a random pool of motifs to choose from for the monte-carlo simulations """ motif_pool = [] for line in open(fmotif): if not line.strip(): continue if line[0] == "#": continue motif, count = line.rstrip().split() motif_pool.extend(motif * int(count)) random.shuffle(motif_pool) return motif_pool
168a7f82727917aa5ca1a30b9aa9df1699261585
1,317
from App import Proxys import math def createCone( axis=1, basePos=-1, tipPos=1, radius=1, colour=(0.6,0.6,0.6), moiScale = 1, withMesh = True, **kwargs ): """ Create a rigid body for a cone with the specified attributes (axis is 0:x, 1:y, 2:z). Other rigid body parameters can be specified with keyword arguments, look at App.Proxys.RigidBody for more details on available arguments. The following arguments will not be used: meshes, moi, cdps. If a negative mass parameter is specified, it will be scaled by the box volume and made positive. """ _fixMass( kwargs, math.pi*radius*radius*math.fabs(tipPos-basePos) ) proxy = Proxys.RigidBody( **kwargs ) return _createCone( proxy, axis, basePos, tipPos, radius, colour, moiScale, withMesh )
43a7e0134627ed8069359c29bc53f354d70498d9
1,318
from typing import Union def ef(candles: np.ndarray, lp_per: int = 10, hp_per: int = 30, f_type: str = "Ehlers", normalize: bool = False, source_type: str = "close", sequential: bool = False) -> Union[ float, np.ndarray]: # added to definition : use_comp: bool = False, comp_intensity: float = 90.0, """ https://www.tradingview.com/script/kPe86Nbc-Roofing-Filter-DW/ compression function not working """ candles = slice_candles(candles, sequential) source = get_candle_source(candles, source_type=source_type) if f_type == "Ehlers": roof = erf( source, hp_per, lp_per) elif f_type == "Gaussian": roof = grf( source, hp_per, lp_per) elif f_type == "Butterworth": roof = brf( source, hp_per, lp_per) rms = RMS(source, roof, np.round((hp_per + lp_per)/2)) if roof[-1] > 0: norm_roof = roof/rms elif roof[-1] < 0: norm_roof = -np.abs(roof)/rms else: norm_roof = 0 if normalize: filt = norm_roof else: filt = roof if sequential: return filt else: return filt[-1]
6dd19e9a1cb5a8f293f4ec3eebef625e2b05bcfe
1,319
from typing import Dict def parse_displays(config: Dict) -> Dict[str, QueryDisplay]: """Parse display options from configuration.""" display_configs = config.get("displays") if not display_configs: return {} displays = {} for name, display_config in display_configs.items(): displays[name] = QueryDisplay( name=name, nrql=display_config.get("nrql"), visualization=WidgetVisualization.from_str(display_config["visualization"]), ) return displays
a7f3c32d3ceaf6c39ea16ee7e2f7ec843036487e
1,320
async def update_result(user: dict, form: dict) -> str: """Extract form data and update one result and corresponding start event.""" informasjon = await create_finish_time_events(user, "finish_bib", form) # type: ignore return informasjon
b9b97f3b08f08dc35a0744f38323d76ecb0c3fba
1,321
from typing import List import torch import copy def rasterize_polygons_within_box( polygons: List[np.ndarray], box: np.ndarray, mask_size: int ) -> torch.Tensor: """ Rasterize the polygons into a mask image and crop the mask content in the given box. The cropped mask is resized to (mask_size, mask_size). This function is used when generating training targets for mask head in Mask R-CNN. Given original ground-truth masks for an image, new ground-truth mask training targets in the size of `mask_size x mask_size` must be provided for each predicted box. This function will be called to produce such targets. Args: polygons (list[ndarray[float]]): a list of polygons, which represents an instance. box: 4-element numpy array mask_size (int): Returns: Tensor: BoolTensor of shape (mask_size, mask_size) """ # 1. Shift the polygons w.r.t the boxes w, h = box[2] - box[0], box[3] - box[1] polygons = copy.deepcopy(polygons) for p in polygons: p[0::2] = p[0::2] - box[0] p[1::2] = p[1::2] - box[1] # 2. Rescale the polygons to the new box size ratio_h = mask_size / max(h, 0.1) ratio_w = mask_size / max(w, 0.1) if ratio_h == ratio_w: for p in polygons: p *= ratio_h else: for p in polygons: p[0::2] *= ratio_w p[1::2] *= ratio_h # 3. Rasterize the polygons with coco api mask = polygons_to_bitmask(polygons, mask_size, mask_size) mask = torch.from_numpy(mask) return mask
98a35b477338f0f472d34b49f4be9f9cd0303654
1,322
def has_ao_num(trexio_file) -> bool: """Check that ao_num variable exists in the TREXIO file. Parameter is a ~TREXIO File~ object that has been created by a call to ~open~ function. Returns: True if the variable exists, False otherwise Raises: - Exception from trexio.Error class if TREXIO return code ~rc~ is TREXIO_FAILURE and prints the error message using string_of_error. - Exception from some other error (e.g. RuntimeError). """ try: rc = pytr.trexio_has_ao_num(trexio_file.pytrexio_s) if rc == TREXIO_FAILURE: raise Error(rc) except: raise if rc == TREXIO_SUCCESS: return True else: return False
6a10204cc5d64a71e991fed1e43fd9ff81a250b9
1,323
def teapot(size=1.0): """ Z-axis aligned Utah teapot Parameters ---------- size : float Relative size of the teapot. """ vertices, indices = data.get("teapot.obj") xmin = vertices["position"][:,0].min() xmax = vertices["position"][:,0].max() ymin = vertices["position"][:,1].min() ymax = vertices["position"][:,1].max() zmin = vertices["position"][:,2].min() zmax = vertices["position"][:,2].max() # Centering vertices["position"][:,0] -= xmin + (xmax-xmin)/2 vertices["position"][:,1] -= ymin + (ymax-ymin)/2 vertices["position"][:,2] -= zmin + (zmax-zmin)/2 # Rotation to align on Z-axis X = vertices["position"][:,0].copy() Y = vertices["position"][:,1].copy() Z = vertices["position"][:,2].copy() NX = vertices["normal"][:,0].copy() NY = vertices["normal"][:,1].copy() NZ = vertices["normal"][:,2].copy() vertices["position"][:,0] = X vertices["position"][:,1] = Z vertices["position"][:,2] = Y vertices["normal"][:,0] = NX vertices["normal"][:,1] = NZ vertices["normal"][:,2] = NY # Scaling according to height vertices["position"] *= 2.0*size/(zmax-zmin) return vertices, indices
94cef5111384599f74bfe59fb97ba417c738ca50
1,324
def f30(x, rotations=None, shifts=None, shuffles=None): """ Composition Function 10 (N=3) Args: x (array): Input vector of dimension 2, 10, 20, 30, 50 or 100. rotations (matrix): Optional rotation matrices (NxDxD). If None (default), the official matrices from the benchmark suite will be used. shifts (array): Optional shift vectors (NxD). If None (default), the official vectors from the benchmark suite will be used. shuffles (array): Optional shuffle vectors (NxD). If None (default), the official permutation vectors from the benchmark suite will be used. """ nx = len(x) if rotations is None: rotations = transforms.rotations_cf[nx][9] if shifts is None: shifts = transforms.shifts_cf[9] if shuffles is None: shuffles = transforms.shuffles_cf[nx][1] N = 3 funcs = [hybrid.f15, hybrid.f18, hybrid.f19] sigmas = np.array([10.0, 30.0, 50.0]) biases = np.array([0.0, 100.0, 200.0]) offsets = np.array( [1500, 1800, 1900] ) # subtract F* added at the end of the functions vals = np.zeros(N) w = np.zeros(N) w_sm = 0.0 for i in range(0, N): x_shifted = x - shifts[i][:nx] vals[i] = funcs[i]( x, rotation=rotations[i], shift=shifts[i][:nx], shuffle=shuffles[i] ) vals[i] -= offsets[i] w[i] = _calc_w(x_shifted, sigmas[i]) w_sm += w[i] if w_sm != 0.0: w /= w_sm else: w = np.full(N, 1 / N) return np.sum(w * (vals + biases)) + 3000
d2bfe7a0bba501e1d7d5bcf29475ecc36f73913b
1,325
def loadNode( collada, node, localscope ): """Generic scene node loading from a xml `node` and a `collada` object. Knowing the supported nodes, create the appropiate class for the given node and return it. """ if node.tag == tag('node'): return Node.load(collada, node, localscope) elif node.tag == tag('translate'): return TranslateTransform.load(collada, node) elif node.tag == tag('rotate'): return RotateTransform.load(collada, node) elif node.tag == tag('scale'): return ScaleTransform.load(collada, node) elif node.tag == tag('matrix'): return MatrixTransform.load(collada, node) elif node.tag == tag('lookat'): return LookAtTransform.load(collada, node) elif node.tag == tag('instance_geometry'): return GeometryNode.load(collada, node) elif node.tag == tag('instance_camera'): return CameraNode.load(collada, node) elif node.tag == tag('instance_light'): return LightNode.load(collada, node) elif node.tag == tag('instance_controller'): return ControllerNode.load(collada, node) elif node.tag == tag('instance_node'): return NodeNode.load(collada, node, localscope) elif node.tag == tag('extra'): return ExtraNode.load(collada, node) elif node.tag == tag('asset'): return None else: raise DaeUnsupportedError('Unknown scene node %s' % str(node.tag))
68083c4490e44e71f33d1221776837f2c1d59b69
1,326
def create_xla_tff_computation(xla_computation, type_spec): """Creates an XLA TFF computation. Args: xla_computation: An instance of `xla_client.XlaComputation`. type_spec: The TFF type of the computation to be constructed. Returns: An instance of `pb.Computation`. """ py_typecheck.check_type(xla_computation, xla_client.XlaComputation) py_typecheck.check_type(type_spec, computation_types.FunctionType) return pb.Computation( type=type_serialization.serialize_type(type_spec), xla=pb.Xla( hlo_module=pack_xla_computation(xla_computation), parameter=_make_xla_binding_for_type(type_spec.parameter), result=_make_xla_binding_for_type(type_spec.result)))
5a02051913026029cab95d12199eb321fa511654
1,327
def render_contact_form(context): """ Renders the contact form which must be in the template context. The most common use case for this template tag is to call it in the template rendered by :class:`~envelope.views.ContactView`. The template tag will then render a sub-template ``envelope/contact_form.html``. .. versionadded:: 0.7.0 """ try: form = context['form'] except KeyError: raise template.TemplateSyntaxError("There is no 'form' variable in the template context.") return { 'form': form, }
e243502fadbf094ed7277ec5db770a3b209174e2
1,328
from typing import List from typing import Dict def get_basic_project(reviews: int = 0) -> List[Dict]: """Get basic project config with reviews.""" reviews = max(reviews, MIN_REVIEW) reviews = min(reviews, MAX_REVIEW) middle_stages, entry_point = _get_middle_stages(reviews, OUTPUT_NAME) input_stage = { "brickName": "labelset-input", "routing": { "nextStageName": entry_point, }, "stageName": "Input", "stageConfig": {}, } output_stage = { "brickName": "labelset-output", "stageName": OUTPUT_NAME, "routing": { "nextStageName": "END", }, "stageConfig": {}, } temp = [input_stage] + middle_stages + [output_stage] return temp
14c2252dec69ebbcec04fbd00de0fa5ac6d1cdf7
1,329
import re def choose_quality(link, name=None, selected_link=None): """ choose quality for scraping Keyword Arguments: link -- Jenitem link with sublinks name -- Name to display in dialog (default None) """ if name is None: name = xbmc.getInfoLabel('listitem.label') if link.startswith("http") or link.startswith("plugin"): sublinks = [link] else: jen_link = JenItem(link) sublinks = jen_link.getAll("sublink") if not sublinks: sublinks = [jen_link] links = [] message = get_link_message() if selected_link is None: default_link = ADDON.getSetting("default_link") else: default_link = selected_link link_dialog = ADDON.getSetting("use_link_dialog") == "true" direct_links = False for sublink in sublinks: if link_dialog and "search" in sublink: continue if "searchsd" in sublink: if default_link == "SD": return sublink label = 'SD' if message['SD'] != '': label += ' (%s)' % message['SD'] new_item = (label, sublink) elif "search" in sublink: if default_link == "HD": return sublink label = 'HD' if message['HD'] != '': label += ' (%s)' % message['HD'] new_item = (label, sublink) else: direct_links = True match = re.findall("(.*?)\((.*?)\)", sublink) if match: new_item = ('%s' % match[0][1], match[0][0]) else: new_item = ('Link %s' % (int(sublinks.index(sublink)) + 1), sublink) links.append(new_item) if link_dialog and (not direct_links or len(sublinks) > 1): links.append(("Search", "search")) if len(links) == 1: url = links[0][1] return url select = xbmcgui.Dialog().select(name, [i[0] for i in links]) if select == -1: return False else: url = links[select][1] return url
a75214cd0acd1c0e3ede34241baeb07342aadb1b
1,330
def picp_loss(target, predictions, total = True): """ Calculate 1 - PICP (see eval_metrics.picp for more details) Parameters ---------- target : torch.Tensor The true values of the target variable predictions : list - predictions[0] = y_pred_upper, predicted upper limit of the target variable (torch.Tensor) - predictions[1] = y_pred_lower, predicted lower limit of the target variable (torch.Tensor) total : bool, default = True - When total is set to True, return a scalar value for 1- PICP - When total is set to False, return 1-PICP along the horizon Returns ------- torch.Tensor Returns 1-PICP, either as a scalar or over the horizon """ return 1-picp(target, predictions, total)
a6d8d150241b1a2f8dda00c9c182ba7196c65585
1,331
def index_wrap(data, index): """ Description: Select an index from an array data :param data: array data :param index: index (e.g. 1,2,3, account_data,..) :return: Data inside the position index """ return data[index]
42b53f1d9edf237b904f822c15ad1f1b930aa69c
1,333
def mzml_to_pandas_df(filename): """ Reads mzML file and returns a pandas.DataFrame. """ cols = ["retentionTime", "m/z array", "intensity array"] slices = [] file = mzml.MzML(filename) while True: try: data = file.next() data["retentionTime"] = data["scanList"]["scan"][0]["scan time"] / 60 del data["scanList"] slices.append(pd.DataFrame(data)) except: break df = pd.concat(slices)[cols] df_to_numeric(df) return df
2c6f1956d7c499c9f22bc85665bd6b5ce9ed51c3
1,335
def metadata_volumes(response: Response, request: Request=Query(None, title=opasConfig.TITLE_REQUEST, description=opasConfig.DESCRIPTION_REQUEST), sourcetype: str=Query(None, title=opasConfig.TITLE_SOURCETYPE, description=opasConfig.DESCRIPTION_PARAM_SOURCETYPE), sourcecode: str=Query(None, title=opasConfig.TITLE_SOURCECODE, description=opasConfig.DESCRIPTION_SOURCECODE), limit: int=Query(200, title=opasConfig.TITLE_LIMIT, description=opasConfig.DESCRIPTION_LIMIT), offset: int=Query(0, title=opasConfig.TITLE_OFFSET, description=opasConfig.DESCRIPTION_OFFSET), ): """ ## Function <b>Return a list of volumes for a SourceCode (aka, PEPCode (e.g., IJP)) per the limit and offset parameters</b> ## Return Type models.JournalInfoList ## Status This endpoint is working. ## Sample Call http://localhost:9100/v1/Metadata/Volumes/CPS/ ## Notes ## Potential Errors """ ocd, session_info = opasAPISupportLib.get_session_info(request, response) # Solr is case sensitive, make sure arg is upper try: source_code = sourcecode.upper() except: source_code = None src_exists = ocd.get_sources(source_code=source_code) if not src_exists[0] and source_code != "*" and source_code != "ZBK" and source_code is not None: # ZBK not in productbase table without booknum response.status_code = httpCodes.HTTP_400_BAD_REQUEST status_message = f"Failure: Bad SourceCode {source_code}" ocd.record_session_endpoint(api_endpoint_id=opasCentralDBLib.API_METADATA_VOLUME_INDEX, session_info=session_info, params=request.url._url, item_of_interest=f"{source_code}", return_status_code=response.status_code, status_message=status_message ) raise HTTPException( status_code=response.status_code, detail=status_message ) else: try: ret_val = opasAPISupportLib.metadata_get_volumes(source_code, source_type=sourcetype, req_url=request.url, limit=limit, offset=offset) except Exception as e: response.status_code = httpCodes.HTTP_400_BAD_REQUEST, status_message = "Error: {}".format(e) ocd.record_session_endpoint(api_endpoint_id=opasCentralDBLib.API_METADATA_VOLUME_INDEX, session_info=session_info, params=request.url._url, item_of_interest=f"{source_code}", return_status_code=response.status_code, status_message=status_message ) raise HTTPException( status_code=response.status_code, detail=status_message ) else: response.status_code = httpCodes.HTTP_200_OK status_message = opasCentralDBLib.API_STATUS_SUCCESS # 2020-07-23 No need to log success for these, can be excessive. #ocd.record_session_endpoint(api_endpoint_id=opasCentralDBLib.API_METADATA_VOLUME_INDEX, #session_info=session_info, #params=request.url._url, #item_of_interest=f"{source_code}", #return_status_code=response.status_code, #status_message=status_message #) return ret_val
e8e4a686eaac21b20f2d758b8bc7de74d38571ab
1,336
def do_step_right(pos: int, step: int, width: int) -> int: """Takes current position and do 3 steps to the right. Be aware of overflow as the board limit on the right is reached.""" new_pos = (pos + step) % width return new_pos
530f3760bab00a7b943314ca735c3a11343b87f5
1,337
def log_agm(x, prec): """ Fixed-point computation of -log(x) = log(1/x), suitable for large precision. It is required that 0 < x < 1. The algorithm used is the Sasaki-Kanada formula -log(x) = pi/agm(theta2(x)^2,theta3(x)^2). [1] For faster convergence in the theta functions, x should be chosen closer to 0. Guard bits must be added by the caller. HYPOTHESIS: if x = 2^(-n), n bits need to be added to account for the truncation to a fixed-point number, and this is the only significant cancellation error. The number of bits lost to roundoff is small and can be considered constant. [1] Richard P. Brent, "Fast Algorithms for High-Precision Computation of Elementary Functions (extended abstract)", http://wwwmaths.anu.edu.au/~brent/pd/RNC7-Brent.pdf """ x2 = (x*x) >> prec # Compute jtheta2(x)**2 s = a = b = x2 while a: b = (b*x2) >> prec a = (a*b) >> prec s += a s += (MPZ_ONE<<prec) s = (s*s)>>(prec-2) s = (s*isqrt_fast(x<<prec))>>prec # Compute jtheta3(x)**2 t = a = b = x while a: b = (b*x2) >> prec a = (a*b) >> prec t += a t = (MPZ_ONE<<prec) + (t<<1) t = (t*t)>>prec # Final formula p = agm_fixed(s, t, prec) return (pi_fixed(prec) << prec) // p
e873db3a45270eb077d9dc17f2951e2e791ad601
1,338
import unicodedata def simplify_name(name): """Converts the `name` to lower-case ASCII for fuzzy comparisons.""" return unicodedata.normalize('NFKD', name.lower()).encode('ascii', 'ignore')
a7c01471245e738fce8ab441e3a23cc0a67c71be
1,339
async def parse_regex(opsdroid, skills, message): """Parse a message against all regex skills.""" matched_skills = [] for skill in skills: for matcher in skill.matchers: if "regex" in matcher: opts = matcher["regex"] matched_regex = await match_regex(message.text, opts) if matched_regex: message.regex = matched_regex for regroup, value in matched_regex.groupdict().items(): message.update_entity(regroup, value, None) matched_skills.append( { "score": await calculate_score( opts["expression"], opts["score_factor"] ), "skill": skill, "config": skill.config, "message": message, } ) return matched_skills
aa3ad8ff48854b974ba90135b510074644e10028
1,340
def interpolate_minusones(y): """ Replace -1 in the array by the interpolation between their neighbor non zeros points y is a [t] x [n] array """ x = np.arange(y.shape[0]) ynew = np.zeros(y.shape) for ni in range(y.shape[1]): idx = np.where(y[:,ni] != -1)[0] if len(idx)>1: last_value = y[idx[-1],ni] interp = interp1d(x[idx],y[idx,ni], kind='previous',fill_value=(0,last_value),bounds_error = False) ynew[:,ni] = interp(x) elif len(idx) == 1: last_value = y[idx[-1],ni] ynew[:,ni] = last_value return ynew
db3e347ba75a39f40cd3ee90481efe8392ce08ed
1,341
def precision(y, yhat, positive=True): """Returns the precision (higher is better). :param y: true function values :param yhat: predicted function values :param positive: the positive label :returns: number of true positive predictions / number of positive predictions """ table = contingency_table(y, yhat, positive) return _precision(table)
f643631781565ddb049c1c4d22c6e5ea64ce4a22
1,342
def add_posibility_for_red_cross(svg): """add a symbol which represents a red cross in a white circle Arguments: svg {Svg} -- root element """ symbol = Svg(etree.SubElement(svg.root, 'symbol', {'id': 'red_cross', 'view_box': '0 0 20 20' })) symbol.create_circle( [10, 10], 9, "red_cross_circle", fill_colour="white", additional_arguments={'stroke': 'black'} ) symbol.create_rectangle( [4, 8], [12, 4], "red_cross_rect_1", fill_colour="red") symbol.create_rectangle( [8, 4], [4, 12], "red_cross_rect_2", fill_colour="red") return symbol
df621fb907187a36cb3f7387047a8cda6cb42992
1,343
def getTestSuite(select="unit"): """ Get test suite select is one of the following: "unit" return suite of unit tests only "component" return suite of unit and component tests "all" return suite of unit, component and integration tests "pending" return suite of pending tests name a single named test to be run """ testdict = { "unit": [ "testDummy" ], "zzcomponent": [ "testDummy" ], "integration": [ "testLoad" , "testStartStop" , "testVolume" ], "pending": [ "testDummy" ] } return TestUtils.getTestSuite(testITunes, testdict, select=select)
529cb8d6312eaa129a52f1679294d85c1d9bfbd0
1,345
import ctypes def dasopw(fname): """ Open a DAS file for writing. https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/dasopw_c.html :param fname: Name of a DAS file to be opened. :type fname: str :return: Handle assigned to the opened DAS file. """ fname = stypes.stringToCharP(fname) handle = ctypes.c_int(0) libspice.dasopw_c(fname, ctypes.byref(handle)) return handle.value
63f164ba82e6e135763969c8823d7eb46dd52c0e
1,346
import re def is_ncname(value): """ BNode identifiers must be valid NCNames. From the `W3C RDF Syntax doc <http://www.w3.org/TR/REC-rdf-syntax/#section-blank-nodeid-event>`_ "The value is a function of the value of the ``identifier`` accessor. The string value begins with "_:" and the entire value MUST match the `N-Triples nodeID <http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/#nodeID>`_ production". The nodeID production is specified to be a `name <http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/#name>`_ name ::= [A-Za-z][A-Za-z0-9]* >>> assert is_ncname('') == False >>> assert is_ncname('999') == False >>> assert is_ncname('x') == True >>> assert is_ncname(u'x') == True >>> assert is_ncname(u'Michèle') == True However, vanilla uuid4s are not necessarily NCNames: >>> assert is_ncname('6fa459ea-ee8a-3ca4-894e-db77e160355e') == False So this has to be finessed with an appropriate prefix ... >>> assert is_ncname("urn:uuid:"+str(uuid4())) == True >>> from rdflib import BNode >>> assert is_ncname(BNode(_sn_gen=bnode_uuid, _prefix="urn:uuid:")) == True """ ncnameexp = re.compile("[A-Za-z][A-Za-z0-9]*") if ncnameexp.match(value): return True else: return False
78cbfe9209b9f39cd6bc90c0ed5c8e5291bc1562
1,347
from typing import Dict def health_func() -> Dict[str, str]: """Give the user the API health.""" return "ok"
5c14795d9d0560ddb34b193575917ac184dbe8a3
1,348
def queue_worker(decoy: Decoy) -> QueueWorker: """Get a mock QueueWorker.""" return decoy.mock(cls=QueueWorker)
aec88b037e393b195abd0c2704e8f2784e9a9f8d
1,349
def astra_fp_3d(volume, proj_geom): """ :param proj_geom: :param volume: :return:3D sinogram """ detector_size = volume.shape[1] slices_number = volume.shape[0] rec_size = detector_size vol_geom = build_volume_geometry_3d(rec_size, slices_number) sinogram_id = astra.data3d.create('-sino', proj_geom) # Create a data object for the reconstruction rec_id = astra.data3d.create('-vol', vol_geom, data=volume) # Set up the parameters for a reconstruction algorithm using the GPU cfg = astra.astra_dict('FP3D_CUDA') cfg['VolumeDataId'] = rec_id cfg['ProjectionDataId'] = sinogram_id cfg['option'] = {} alg_id = astra.algorithm.create(cfg) astra.algorithm.run(alg_id, 1) res_sino = astra.data3d.get(sinogram_id) # Clean up. Note that GPU memory is tied up in the algorithm object, # and main RAM in the data objects. astra.algorithm.delete(alg_id) astra.data3d.delete(rec_id) astra.data3d.delete(sinogram_id) astra.clear() return res_sino
7066bb61dc29fac331ffb13c6fe1432349eac185
1,350
def get_wf_neb_from_images( parent, images, user_incar_settings, additional_spec=None, user_kpoints_settings=None, additional_cust_args=None, ): """ Get a CI-NEB workflow from given images. Workflow: NEB_1 -- NEB_2 - ... - NEB_n Args: parent (Structure): parent structure. images ([Structure]): All images and two endpoints. user_incar_settings([dict]): Additional user_incar_settings. Note that the order of the list is set as: "parent", "ep_relax", "neb1", "neb2" etc., which contains at least three elements. The first dict is for parent structure relaxation, the second dict is for endpoints relaxation, and the rest are for NEB calculations. For example, [{}, {}, {"IOPT": 7}, {"IOPT": 1}]. Besides, user_incar_settings is used to determine how many NEB rounds will be. Default is [{}, {}, {}]. additional_spec (dict): User spec settings to overwrite default_spec. user_kpoints_settings ([dict]): Additional user_kpoints_settings, which contains at at least three elements, which is similar to user_incar_settings. For example, [{}, {}, {"grid_density": 100}] for the workflow from the parent structure relaxation, then the endpoint relaxation followed by one-round NEB simulation. Default values depend on the selected VaspInputSet. additional_cust_args ([dict]): Optional parameters for RunVaspCustodian, same structure with user_incar_settings and user_kpoints_settings. Returns: Workflow """ spec = _update_spec(additional_spec) spec["parent"] = parent.as_dict() assert isinstance(images, list) and len(images) >= 3 spec["neb"] = [[s.as_dict() for s in images]] spec["_queueadapter"] = { "nnodes": str(len(images) - 2), "nodes": str(len(images) - 2), } if spec["neb_walltime"] is not None: spec["_queueadapter"].update({"walltime": spec.get("neb_walltime")}) wf_name = spec["wf_name"] # Assume one round NEB if user_incar_settings not provided. user_incar_settings = user_incar_settings or [{}, {}, {}] neb_round = len(user_incar_settings[2:]) user_kpoints_settings = user_kpoints_settings or [{"grid_density": 1000}] * ( neb_round + 2 ) additional_cust_args = additional_cust_args or [{}] * (neb_round + 2) fws = [] # Get neb fireworks. for n in range(neb_round): fw = NEBFW( spec=spec, neb_label=str(n + 1), from_images=True, user_incar_settings=user_incar_settings[n + 2], user_kpoints_settings=user_kpoints_settings[n + 2], additional_cust_args=additional_cust_args[n + 2], ) fws.append(fw) # Build fireworks link links_dict = {} if neb_round >= 2: for i in range(neb_round - 1): links_dict[fws[i]] = [fws[i + 1]] workflow = Workflow(fws, name=wf_name, links_dict=links_dict) return workflow
15ed110d3685c9d8de216733e8d87f6c07580529
1,351
def categorize_folder_items(folder_items): """ Categorize submission items into three lists: CDM, PII, UNKNOWN :param folder_items: list of filenames in a submission folder (name of folder excluded) :return: a tuple with three separate lists - (cdm files, pii files, unknown files) """ found_cdm_files = [] unknown_files = [] found_pii_files = [] for item in folder_items: if _is_cdm_file(item): found_cdm_files.append(item) elif _is_pii_file(item): found_pii_files.append(item) else: if not (_is_known_file(item) or _is_string_excluded_file(item)): unknown_files.append(item) return found_cdm_files, found_pii_files, unknown_files
14e840817cce4cc91ed50d6d9dcfa1c19a2bcbeb
1,352
def _broadcast_all(indexArrays, cshape): """returns a list of views of 'indexArrays' broadcast to shape 'cshape'""" result = [] for i in indexArrays: if isinstance(i, NDArray) and i._strides is not None: result.append(_broadcast(i, cshape)) else: result.append(i) return tuple(result)
b7b98245bc534074e408d5c9592bf68ae53f580e
1,353
def _none_tozero_array(inarray, refarray): """Repair an array which is None with one which is not by just buiding zeros Attributes inarray: numpy array refarray: numpy array """ if inarray is None: if _check_ifarrays([refarray]): inarray = np.zeros_like(refarray) else: if not _check_ifarrays([inarray]): inarray = None return inarray
9b0852655a13b572106acc809d842ca38d24e707
1,354
def dpuGetExceptionMode(): """ Get the exception handling mode for runtime N2Cube Returns: Current exception handing mode for N2Cube APIs. Available values include: - N2CUBE_EXCEPTION_MODE_PRINT_AND_EXIT - N2CUBE_EXCEPTION_MODE_RET_ERR_CODE """ return pyc_libn2cube.pyc_dpuGetExceptionMode()
fd33aba868a05f3cc196c89e3c2d428b0cce108a
1,355
import re def clean_links(links, category): """ clean up query fields for display as category buttons to browse by :param links: list of query outputs :param category: category of search from route :return: list of cleansed links """ cleansedlinks = [] for item in links: # remove blanks if item == "" or item == "-": continue else: #crop chromosome location output to eg 13p (check if substrate) if category[:3] == 'Sub': item = re.search("[\d|X|Y]+[pq]", item).group(0) # remove forward slashes item = item.replace("/", "&F&") if item not in cleansedlinks: cleansedlinks.append(item) # sort the links cleansedlinks.sort() return cleansedlinks
f43af81a8ef8e5520726e886dd74d991c999a32d
1,356
from typing import Any from typing import Optional def as_bool(value: Any, schema: Optional[BooleanType] = None) -> bool: """Parses value as boolean""" schema = schema or BooleanType() value = value.decode() if isinstance(value, bytes) else value if value: value = str(value).lower() value = BOOLEANS.get(value) validation.validate(schema.as_dict(), value) return value
7085b7bc7eccb2db95f5645b358e4940914f68f9
1,357
from typing import Dict from typing import List from typing import Tuple def get_raw_feature( column: Text, value: slicer_lib.FeatureValueType, boundaries: Dict[Text, List[float]] ) -> Tuple[Text, slicer_lib.FeatureValueType]: """Get raw feature name and value. Args: column: Raw or transformed column name. value: Raw or transformed column value. boundaries: Dictionary containing quantile boundaries of features keyed by column name. Returns: Tuple of raw column name and raw column value. """ if column.startswith(auto_slice_key_extractor.TRANSFORMED_FEATURE_PREFIX): raw_feature = column[len(auto_slice_key_extractor.TRANSFORMED_FEATURE_PREFIX ):] (start, end) = auto_slice_key_extractor.get_bucket_boundary( value, boundaries[raw_feature]) return (raw_feature, _format_boundary(start, end)) return (column, value)
29323b8e1a7ef32f19ff94f31efca20567780aa4
1,358
from typing import Union def ndmi(nir: Union[xr.DataArray, np.ndarray, float, int], swir1: Union[xr.DataArray, np.ndarray, float, int]) -> \ Union[xr.DataArray, np.ndarray, float, int]: """ Normalized difference moisture index. Sentinel-2: B8A, B11 Parameters ---------- nir : xr.DataArray or np.ndarray or float or int Near infrared band acquisition. swir1 : xr.DataArray or np.ndarray or float or int Short wave infrared band acquisition. Returns ------- same as input: Normalised difference moisture index. """ return utils.normalized_difference(nir, swir1)
f66a68cd75d9c030c0257e1d543c2caf9efcf652
1,359
def _collect_data_and_enum_definitions(parsed_models: dict) -> dict[str, dict]: """ Collect all data and enum definitions that are referenced as interface messages or as a nested type within an interface message. Args: parsed_models: A dict containing models parsed from an AaC yaml file. Returns: A dict of data message type keys to data message parsed model values """ def collect_nested_types(interface_data_message_types: list[str]): nested_types = [] for message_type in interface_data_message_types: data_model = parsed_models[message_type]["data"] for field in data_model.get("fields"): field_type = field.get("type") if field_type in parsed_models: nested_types.append(field_type) return list(set(nested_types)) def collect_behaviors(model_with_behaviors): return util.search(model_with_behaviors, ["model", "behavior"]) def convert_behavior_io_to_data_type(behavior_io_model): return behavior_io_model.get("type") def collect_data_message_types(behavior_model): inputs = behavior_model.get("input") or [] outputs = behavior_model.get("output") or [] return list(map(convert_behavior_io_to_data_type, inputs + outputs)) model_definitions = util.get_models_by_type(parsed_models, "model") behaviors = list(flatten(map(collect_behaviors, model_definitions.values()))) interface_data_message_types = list(set(flatten(map(collect_data_message_types, behaviors)))) all_definitions_types_to_generate = interface_data_message_types + collect_nested_types(interface_data_message_types) return {data_message_type: parsed_models[data_message_type] for data_message_type in all_definitions_types_to_generate}
0d561003c8cdbe7d2eb7df2f03d5939f70d81467
1,360
def _list_goals(context, message): """Show all installed goals.""" context.log.error(message) # Execute as if the user had run "./pants goals". return Phase.execute(context, 'goals')
5e823770528e97b4254e426a2d99113d119368b0
1,361
def values(df, varname): """Values and counts in index order. df: DataFrame varname: strign column name returns: Series that maps from value to frequency """ return df[varname].value_counts().sort_index()
ea548afc8e0b030e441baa54abad32318c9c007f
1,362
def get_or_none(l, n): """Get value or return 'None'""" try: return l[n] except (TypeError, IndexError): return 'None'
c46a0f4c8edc9286b0122f1643e24a04113a5bfc
1,363
def pfam_clan_to_pdb(clan): """get a list of associated PDB ids for given pfam clan access key. :param clan: pfam accession key of clan :type clan: str :return: List of associated PDB ids :rettype:list""" url='http://pfam.xfam.org/clan/'+clan+'/structures' pattern='/structure/[A-Z, 0-9]{4}' return _xfam_to(url,pattern)
820e8a058edfeee256ab01281020c6e38e2d7c6d
1,364
def fib(n): """Compute the nth Fibonacci number. >>> fib(8) 21 """ if n == 0: return 0 elif n == 1: return 1 else: return fib(n-2) + fib(n-1)
0db631be60754376e1a9287a4486ceb5ad7e392f
1,365
from typing import List from typing import Union def score_tours_absolute(problems: List[N_TSP], tours: List[Union[int, NDArray]]) -> NDArray: """Calculate tour lengths for a batch of tours. Args: problems (List[N_TSP]): list of TSPs tours (List[Union[int, NDArray]]): list of tours (in either index or segment format) Returns: NDArray: tour lengths """ result = np.ndarray((len(problems),), dtype=np.float) for i, (p, t) in enumerate(zip(problems, tours)): result[i] = p.score(t) return result
b13ad2df2bfaf58f2b6989f2f2e67d917475b5bb
1,367
def has(pred: Pred, seq: Seq) -> bool: """ Return True if sequence has at least one item that satisfy the predicate. """ for x in seq: if pred(x): return True return False
bc41ceb21804cd273d0c2a71327f63f2269763d9
1,368
from typing import Optional from typing import Union from typing import List from typing import Dict from typing import Any import re from datetime import datetime def _get_dataset_domain( dataset_folder: str, is_periodic: bool, spotlight_id: Optional[Union[str, List]] = None, time_unit: Optional[str] = "day", ): """ Returns a domain for a given dataset as identified by a folder. If a time_unit is passed as a function parameter, the function will assume that the domain is periodic and with only return the min/max dates, otherwise ALL dates available for that dataset/spotlight will be returned. Params: ------ dataset_folder (str): dataset folder to search within time_unit (Optional[str]): time_unit from the dataset's metadata json file spotlight_id (Optional[str]): a dictionary containing the `spotlight_id` of a spotlight to restrict the domain search to. time_unit (Optional[str] - one of ["day", "month"]): Wether the {date} object in the S3 filenames should be matched to YYYY_MM_DD (day) or YYYYMM (month) Return: ------ List[datetime] """ s3_keys_args: Dict[str, Any] = {"prefix": dataset_folder} if spotlight_id: s3_keys_args["spotlight_id"] = spotlight_id keys = _gather_s3_keys(**s3_keys_args) if not keys: raise NoKeysFoundForSpotlight dates = [] for key in keys: # matches either dates like: YYYYMM or YYYY_MM_DD pattern = re.compile( r"[^a-zA-Z0-9]((?P<YEAR>\d{4})_(?P<MONTH>\d{2})_(?P<DAY>\d{2}))[^a-zA-Z0-9]" ) if time_unit == "month": pattern = re.compile( r"[^a-zA-Z0-9](?P<YEAR>(\d{4}))(?P<MONTH>(\d{2}))[^a-zA-Z0-9]" ) result = pattern.search(key, re.IGNORECASE,) if not result: continue date = None try: date = datetime.datetime( int(result.group("YEAR")), int(result.group("MONTH")), int(result.groupdict().get("DAY", 1)), ) except ValueError: # Invalid date value matched - skip date continue # Some files happen to have 6 consecutive digits (likely an ID of sorts) # that sometimes gets matched as a date. This further restriction of # matched timestamps will reduce the number of "false" positives (although # ID's between 201011 and 203011 will slip by) if not datetime.datetime(2010, 1, 1) < date < datetime.datetime(2030, 1, 1): continue dates.append(date.strftime("%Y-%m-%dT%H:%M:%SZ")) if is_periodic and len(dates): return [min(dates), max(dates)] return sorted(set(dates))
bc230145eee3f60491b4c42453fcbf5145ac7761
1,369