content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import functools from operator import add def gen_cand_keyword_scores(phrase_words, word_score): """ Computes the score for the input phrases. :param phrase_words: phrases to score :type phrase_words: list :param word_score: calculated word scores :type word_score: list :return: dict *{phrase: score, ...}* """ keyword_candidates = defaultdict(int) for phrase, word_list in phrase_words: if not word_list: continue candidate_score = functools.reduce( add, [word_score[word] for word in word_list] ) keyword_candidates[phrase] = candidate_score return keyword_candidates
d219256938ab2538214cbc075451f7da5a253b06
1,031
def analyze_network(directed=False, base_url=DEFAULT_BASE_URL): """Calculate various network statistics. The results are added to the Node and Edge tables and the Results Panel. The summary statistics in the Results Panel are also returned by the function as a list of named values. Args: directed (bool): If True, the network is considered a directed graph. Default is False. base_url (str): Ignore unless you need to specify a custom domain, port or version to connect to the CyREST API. Default is http://127.0.0.1:1234 and the latest version of the CyREST API supported by this version of py4cytoscape. Returns: dict: Named list of summary statistics Raises: requests.exceptions.RequestException: if can't connect to Cytoscape or Cytoscape returns an error Examples: >>> analyze_network() {'networkTitle': 'galFiltered.sif (undirected)', 'nodeCount': '330', 'edgeCount': '359', 'avNeighbors': '2.379032258064516', 'diameter': '27', 'radius': '14', 'avSpl': '9.127660963823953', 'cc': '0.06959203036053131', 'density': '0.009631709546819902', 'heterogeneity': '0.8534500004035027', 'centralization': '0.06375695335900727', 'ncc': '26'} >>> analyze_network(True) {'networkTitle': 'galFiltered.sif (directed)', 'nodeCount': '330', 'edgeCount': '359', 'avNeighbors': '2.16969696969697', 'diameter': '10', 'radius': '1', 'avSpl': '3.4919830756382395', 'cc': '0.03544266191325015', 'density': '0.003297411808050106', 'ncc': '26', 'mnp': '1', 'nsl': '0'} """ res = commands.commands_post(f'analyzer analyze directed={directed}', base_url=base_url) return res
0edd9e848e3b3060055e6845aa5fbb2792c7a1f4
1,032
def create_user(): """ Create new user """ # request.get_json(): extract the JSON from the request and return it as # a Python structure. data = request.get_json() or {} # Validate mandatory fields if 'username' not in data or 'email' not in data or \ 'password' not in data: return bad_request('must include username, email and password fields') if User.query.filter_by(username=data['username']).first(): return bad_request('please use a different username') if User.query.filter_by(email=data['email']).first(): return bad_request('please use a different email address') # Create user user = User() user.from_dict(data, new_user=True) db.session.add(user) db.session.commit() # Make response response = jsonify(user.to_dict()) # The status code for a POST request that creates a resource should be 201 response.status_code = 201 response.headers['Location'] = url_for('api.get_user', id=user.id) return response
a416e0d5bbb6539cee3ce5174ab3cf1186680ee9
1,033
import hashlib import base64 def hash_long_to_short(long_url): """ turn a long input url into a short url's url-safe 5 character hash this is deterministic and the same long_url will always have the same hash """ encoded = long_url.encode("utf-8") md5_hash = hashlib.md5(encoded).digest() return base64.urlsafe_b64encode(md5_hash)[:SHORT_URL_HASH_LENGTH]
050de3e30feeac46f98b152890d82dd8e416f2d0
1,034
def has_prefix(sub_s): """ Test possibility of sub_s before doing recursion. :param sub_s: sub_string of input word from its head. :return: (boolean) whether word stars with sub_s. """ for word in DATABASE: if word.startswith(sub_s): return True
2dde507f7b0b3c56f8a5a9a582d52b784607dd5d
1,036
def transform_results(search_result, user, department_filters): """ Transform podcast and podcast episode, and userlist and learning path in aggregations Add 'is_favorite' and 'lists' fields to the '_source' attributes for learning resources. Args: search_result (dict): The results from ElasticSearch user (User): the user who performed the search Returns: dict: The Elasticsearch response dict with transformed aggregates and source values """ for aggregation_key in [ "type", "topics", "offered_by", "audience", "certification", "department_name", "level", "course_feature_tags", "resource_type", ]: if f"agg_filter_{aggregation_key}" in search_result.get("aggregations", {}): if aggregation_key == "level": levels = ( search_result.get("aggregations", {}) .get(f"agg_filter_{aggregation_key}", {}) .get("level", {}) .get("level", {}) ) if levels: search_result["aggregations"]["level"] = { "buckets": [ { "key": bucket["key"], "doc_count": bucket["courses"]["doc_count"], } for bucket in levels.get("buckets", []) if bucket["courses"]["doc_count"] > 0 ] } else: search_result["aggregations"][aggregation_key] = search_result[ "aggregations" ][f"agg_filter_{aggregation_key}"][aggregation_key] search_result["aggregations"].pop(f"agg_filter_{aggregation_key}") types = search_result.get("aggregations", {}).get("type", {}) if types: type_merges = dict( zip( (PODCAST_EPISODE_TYPE, LEARNING_PATH_TYPE), (PODCAST_TYPE, USER_LIST_TYPE), ) ) for child_type, parent_type in type_merges.items(): child_type_bucket = None parent_type_bucket = None for type_bucket in search_result["aggregations"]["type"]["buckets"]: if type_bucket["key"] == child_type: child_type_bucket = type_bucket elif type_bucket["key"] == parent_type: parent_type_bucket = type_bucket if child_type_bucket and parent_type_bucket: parent_type_bucket["doc_count"] = ( child_type_bucket["doc_count"] + parent_type_bucket["doc_count"] ) search_result["aggregations"]["type"]["buckets"].remove( child_type_bucket ) elif child_type_bucket: child_type_bucket["key"] = parent_type search_result["aggregations"]["type"]["buckets"].sort( key=lambda bucket: bucket["doc_count"], reverse=True ) if not user.is_anonymous: favorites = ( FavoriteItem.objects.select_related("content_type") .filter(user=user) .values_list("content_type__model", "object_id") ) for hit in search_result.get("hits", {}).get("hits", []): object_type = hit["_source"]["object_type"] if object_type in LEARNING_RESOURCE_TYPES: if object_type == LEARNING_PATH_TYPE: object_type = USER_LIST_TYPE object_id = hit["_source"]["id"] hit["_source"]["is_favorite"] = (object_type, object_id) in favorites hit["_source"]["lists"] = get_list_items_by_resource( user, object_type, object_id ) search_result = _transform_search_results_suggest(search_result) if len(department_filters) > 0: _transform_search_results_coursenum(search_result, department_filters) return search_result
93bbb9cb3effa4b0f602e42549a961f4fd53faeb
1,037
def kl_div_loss(inputs: Tensor, targets: Tensor) -> Tensor: """Computes the Kullback–Leibler divergence loss between two probability distributions.""" return F.kl_div(F.log_softmax(inputs, dim=-1), F.softmax(targets, dim=-1), reduction="none")
9a45dacfe8fd529893cf7fa813869a97da562f65
1,038
from typing import List def get_schema_names(connection: psycopg2.extensions.connection) -> List[psycopg2.extras.RealDictRow]: """Function for getting the schema information from the given connection :param psycopg2.extensions.connection connection: The connection :return: List of rows using key-value pairs for the data :rtype: List[psycopg2.extras.RealDictRow] """ with connection.cursor(cursor_factory=psycopg2.extras.RealDictCursor) as cursor: query = """SELECT * FROM information_schema.schemata""" cursor.execute(query) results = cursor.fetchall() return results
69a4e0b70ef443c2480f0fbb1e1e859bbf6f69bd
1,039
def parse(string): """Returns a list of specs from an input string. For creating one spec, see Spec() constructor. """ return SpecParser().parse(string)
788849ebaa29b4dab5e4babcb13573acbc8b8525
1,040
def get_provider_idx(provider_type): """Return the index associated to the type. """ try: return PROVIDERS_TYPE[provider_type]['idx'] except KeyError as error: raise ProviderError( "Provider type (%s) is not supported yet." % (provider_type, ) )
47272903415825c870222b3531fddc11129d62c0
1,041
import collections def file_based_convert_examples_to_features( examples, slot_label_list, intent_label_list, max_seq_length, tokenizer, output_file): """ 将InputExamples转成tf_record,并写入文件 Convert a set of InputExample to a TFRecord file. :param examples: [(text, CRF_label, class_label), ...] :param slot_label_list: CRF标签列表(String) :param intent_label_list: 触发词类别列表(String) :param max_seq_length: :param tokenizer: :param output_file: TFRecord file :return: """ writer = tf.io.TFRecordWriter(output_file) for ex_index, example in enumerate(examples): def create_int_feature(values): return tf.train.Feature(int64_list=tf.train.Int64List(value=list(values))) if ex_index % 10000 == 0: logger.info("Writing example %d of length %d" % (ex_index, len(examples))) feature = convert_single_example(ex_index, example, slot_label_list, intent_label_list, max_seq_length, tokenizer) # convert to tensorflow format features = collections.OrderedDict() features["input_ids"] = create_int_feature(feature.input_ids) features["slot_ids"] = create_int_feature(feature.slot_ids) features["input_mask"] = create_int_feature(feature.input_mask) features["segment_ids"] = create_int_feature(feature.segment_ids) features["label_ids"] = create_int_feature([feature.label_id]) features['is_value_ids'] = create_int_feature(feature.is_value_ids) features["is_real_example"] = create_int_feature([int(feature.is_real_example)]) tf_example = tf.train.Example(features=tf.train.Features(feature=features)) writer.write(tf_example.SerializeToString()) # 写入一个样本到tf_record writer.close()
b5d4a9228af4169307a8a22f4c56a0c3eb6e8f27
1,042
def create_readme(df): """Retrieve text from README.md and update it.""" readme = str categories = pd.unique(df["category"]) categories.sort() with open('README.md', 'r', encoding='utf-8') as read_me_file: read_me = read_me_file.read() splits = read_me.split('<!---->') # Initial project description text_intro = splits[0] # Contribution and contacts text_contributing = splits[3] text_contacts = splits[4] # TOC toc = "\n\n- [Awesome Citizen Science Projects](#awesome-citizen-science-projects)\n" # Add categories for cat in range(len(categories)): toc += f" - [{categories[cat]}](#{categories[cat]})" + "\n" # Add contributing and contact to TOC toc += "- [Contributing guidelines](#contributing-guidelines)\n" toc += "- [Contacts](#contacts)\n" # Add first part and toc to README readme = text_intro + "<!---->" + toc + "\n<!---->\n" # Add projects subtitle readme += "\n## Projects\n" # Add individual categories to README list_blocks = "" for cat in range(len(categories)): block = f"\n### {categories[cat]}\n\n" filtered = df[df["category"] == categories[cat]] list_items = "" for i, r in filtered.iterrows(): try: start_date = int(r['start_date']) except: start_date = "NA" if not pd.isna(r['icon']): project = f"- {r['icon']} [{r['name']}]({r['main_source']}) - {r['description']} (`{start_date}` - `{str(r['end_date'])}`)\n" list_items = list_items + project else: project = f"- [{r['name']}]({r['main_source']}) - {r['description']} (`{start_date}` - `{str(r['end_date'])}`)\n" list_items = list_items + project list_blocks = list_blocks + block + list_items # Add to categories to README.md readme += list_blocks + "\n" # Add contribution and contacts readme += '<!---->' + text_contributing readme += '<!---->' + text_contacts return readme
5e0d207baa3d5c1e1f68b6f2e1a347bffece901a
1,043
async def get_leaderboard_info_by_id( # ScoreSaber leaderboardId leaderboardId: float ): """ GET /api/leaderboard/by-id/{leaderboardId}/info """ # request request_url = f'{SERVER}/api/leaderboard/by-id/{leaderboardId}/info' response_dict = await request.get(request_url) return LeaderboardInfo.gen(response_dict)
ab081d17b462a0738c578c9caed93c7b4a1ec9a6
1,044
def distance(lat1,lon1,lat2,lon2): """Input 2 points in Lat/Lon degrees. Calculates the great circle distance between them in radians """ rlat1= radians(lat1) rlon1= radians(lon1) rlat2= radians(lat2) rlon2= radians(lon2) dlat = rlat1 - rlat2 dlon = rlon1 - rlon2 a = pow(sin(dlat/2.0),2) + cos(rlat1)*cos(rlat2)*pow(sin(dlon/2.0),2) c = 2* atan2(sqrt(a), sqrt(1-a)) return c
2c6b1692843db3f69c750f4b2acda43d49227e7a
1,045
def minimumSwaps(arr): """ O(nlogn) """ len_arr = len(arr) arr_dict = {key+1:value for key, value in enumerate(arr)} arr_checked = [False]*len_arr total_count = 0 for key, value in arr_dict.items(): count = 0 while key != value and arr_checked[key-1] is False: arr_checked[value-1] = True count += 1 value = arr_dict.get(value) arr_checked[key-1] = True total_count += count return total_count
d5251297fd52f99aefce69986bd5c8c126b7e6b6
1,046
def store_user_bot(user_id, intended_user, bot_id): """Store an uploaded bot in object storage.""" if user_id != intended_user: raise api_util.user_mismatch_error( message="Cannot upload bot for another user.") if bot_id != 0: raise util.APIError( 400, message="Sorry, only one bot allowed per user.") uploaded_file = validate_bot_submission() with model.engine.connect() as conn: team = conn.execute(model.team_leader_query(user_id)).first() if team: user_id = intended_user = team["leader_id"] bot_where_clause = (model.bots.c.user_id == user_id) & \ (model.bots.c.id == bot_id) bot = conn.execute(model.bots.select(bot_where_clause)).first() if not bot: raise util.APIError(404, message="Bot not found.") # Check if the user already has a bot compiling if bot["compile_status"] == model.CompileStatus.IN_PROGRESS.value: raise util.APIError(400, message="Cannot upload new bot until " "previous one is compiled.") blob = gcloud_storage.Blob("{}_{}".format(user_id, bot_id), model.get_compilation_bucket(), chunk_size=262144) blob.upload_from_file(uploaded_file) # Flag the user as compiling update = model.bots.update() \ .where(bot_where_clause) \ .values( compile_status=model.CompileStatus.UPLOADED.value, update_time=sqlalchemy.sql.func.now(), timeout_sent=False, ) conn.execute(update) return util.response_success({ "user_id": user_id, "bot_id": bot["id"], })
2b19e4092df3cb93fdadf5f06176ec4ec9300f63
1,047
def parse_conv(weights_file, cfg_parser, section, layer_dict): """ parse conv layer Args: weights_file (file object): file object of .weights file cfg_parser (ConfigParser object): ConfigParser object of .cfg file for net section (str): name of conv layer layer_dict (dictionary): dict storing layer info Returns: dict storing layer info and weights values """ prev_layer_channel = layer_dict['prev_layer_channel'] count = layer_dict['count'] filters = int(cfg_parser[section]['filters']) size = int(cfg_parser[section]['size']) stride = int(cfg_parser[section]['stride']) pad = int(cfg_parser[section]['pad']) activation = cfg_parser[section]['activation'] batch_normalize = 'batch_normalize' in cfg_parser[section] weights_shape = (size, size, prev_layer_channel, filters) darknet_w_shape = (filters, weights_shape[2], size, size) weights_size = np.product(weights_shape) prev_layer_channel = filters print('conv2d', 'bn' if batch_normalize else ' ', activation, weights_shape) bn_weight_list = [] conv_bias = [] if batch_normalize: bn_weights = np.ndarray( shape=(4, filters), dtype='float32', buffer=weights_file.read(filters * 16)) count += 4 * filters bn_weight_list = [ bn_weights[1], # scale gamma bn_weights[0], # shift beta bn_weights[2], # running mean bn_weights[3] # running var ] else: conv_bias = np.ndarray( shape=(filters, ), dtype='float32', buffer=weights_file.read(filters * 4)) count += filters conv_weights = np.ndarray( shape=darknet_w_shape, dtype='float32', buffer=weights_file.read(weights_size * 4)) count += weights_size # DarkNet conv_weights are serialized Caffe-style: # (out_dim, in_dim, height, width) # We would like to set these to Tensorflow order: # (height, width, in_dim, out_dim) conv_weights = np.transpose(conv_weights, [2, 3, 1, 0]) layer_dict['prev_layer_channel'] = prev_layer_channel layer_dict['count'] = count layer_dict['conv_weights'] = conv_weights layer_dict['conv_bias'] = conv_bias layer_dict['bn_weight_list'] = bn_weight_list return layer_dict
6e7cc1d2b4115dc44eaf2ad90240144f7157b30b
1,049
def generate_format_spec(num_vals, sep, dtypes, decimals=None): """ Generate a format specifier for generic input. -------------------------------------------------------------- Input num_vals : number of wild-cards sep : separator string (could be '_', '-', '--' ...) used to separate wild-cards dtypes : data types of the wildcards ('str', 'float', 'int') decimals : number of decimals (only relevant for floats) -------------------------------------------------------------- Output String of the form: "{0:<dtype>}<sep>{1:<dtype>}<sep>...", where each occurrence of <dtype> is replaced by the dtype value of the current wild-card and <sep> is replaced by the separator string. """ assert type(num_vals) is int # dictionary of identifiers for supported data types dident = dict([(str, 's'), (int, 'd'), \ (float, ''), #'.1f'\ (np.float64, '') #'.1f' ] ) if decimals is not None: assert type(decimals) is int dident[float] = '.{}f'.format(decimals) dident[np.float64] = '.{}f'.format(decimals) if not hasattr(dtypes, '__iter__'): dtypes = [dtypes,] * num_vals elif type(dtypes) is str: dtypes = [dtypes,] * num_vals elif len(dtypes) < num_vals: dtypes = [dtypes[0],] * num_vals for dt in dtypes: assert dt in dident.keys(), dt # construct actual output out = "" for i in range(num_vals): out += "{" + str(i) + ":" + dident[dtypes[i]] + "}" out += sep # remove additional separator from output return out[:-len(sep)]
3b65ad3b436b6c578fa2504a2ea4a475700432ce
1,050
from typing import Optional def products_with_low_stock(threshold: Optional[int] = None): """Return queryset with stock lower than given threshold.""" if threshold is None: threshold = settings.LOW_STOCK_THRESHOLD stocks = ( Stock.objects.select_related("product_variant") .values("product_variant__product_id", "warehouse_id") .annotate(total_stock=Sum("quantity")) ) return stocks.filter(total_stock__lte=threshold).distinct()
29bbdd3236b42bf3cef17f84a919ab201946c084
1,051
def robust_topological_sort(deps): """ A topological sorting algorithm which is robust enough to handle cyclic graphs. First, we bucket nodes into strongly connected components (we use Tarjan's linear algorithm for that). Then, we topologically sort these buckets grouping sibling buckets into sets. :param deps: a dictionary representing the dependencies between nodes :return: groups of buckets (a bucket is a strongly connected component) sorted bottom-up >>> deps1 = {'S':{'S','X', 'A'}, 'X':{'Y', 'B'}, 'Y':{'Z'}, 'Z':{'X'}, 'A':{'B'}, 'B':{}} >>> expected = [frozenset({frozenset({'B'})}), frozenset({frozenset({'A'}), frozenset({'Y', 'X', 'Z'})}), frozenset({frozenset({'S'})})] >>> order = robust_topological_sort(deps1) >>> order == expected True """ # correspondences between nodes and buckets (strongly connected components) n2c = defaultdict(None) components = tarjan(deps) for i, component in enumerate(components): for v in component: n2c[v] = i # find the dependencies between strongly connected components cdeps = defaultdict(set) for head, tail in deps.items(): hc = n2c[head] for t in tail: tc = n2c[t] if hc != tc: cdeps[hc].add(tc) # topsort buckets and translate bucket ids back into nodes return deque(frozenset(components[c] for c in group) for group in topological_sort(cdeps))
fb2b70f21ccb97880767e73362b46e27804c2d17
1,052
import inspect import functools import warnings def deprecated(reason): """ This is a decorator which can be used to mark functions and classes as deprecated. It will result in a warning being emitted when the function is used. From https://stackoverflow.com/a/40301488 """ string_types = (type(b""), type(u"")) if isinstance(reason, string_types): # The @deprecated is used with a 'reason'. # # .. code-block:: python # # @deprecated("please, use another function") # def old_function(x, y): # pass def decorator(func1): if inspect.isclass(func1): fmt1 = "Call to deprecated class {name} ({reason})." else: fmt1 = "Call to deprecated function {name} ({reason})." @functools.wraps(func1) def new_func1(*args, **kwargs): warnings.simplefilter("always", DeprecationWarning) warnings.warn( fmt1.format(name=func1.__name__, reason=reason), category=DeprecationWarning, stacklevel=2, ) warnings.simplefilter("default", DeprecationWarning) return func1(*args, **kwargs) return new_func1 return decorator elif inspect.isclass(reason) or inspect.isfunction(reason): # The @deprecated is used without any 'reason'. # # .. code-block:: python # # @deprecated # def old_function(x, y): # pass func2 = reason if inspect.isclass(func2): fmt2 = "Call to deprecated class {name}." else: fmt2 = "Call to deprecated function {name}." @functools.wraps(func2) def new_func2(*args, **kwargs): warnings.simplefilter("always", DeprecationWarning) warnings.warn( fmt2.format(name=func2.__name__), category=DeprecationWarning, stacklevel=2, ) warnings.simplefilter("default", DeprecationWarning) return func2(*args, **kwargs) return new_func2 else: raise TypeError(repr(type(reason)))
1b75306b9b712caf3cd6c8425d2344b8ca170fcb
1,053
import torch def rotate_tensor(l: torch.Tensor, n: int = 1) -> torch.Tensor: """Roate tensor by n positions to the right Args: l (torch.Tensor): input tensor n (int, optional): positions to rotate. Defaults to 1. Returns: torch.Tensor: rotated tensor """ return torch.cat((l[n:], l[:n]))
9cdaa7be718f0676ad85e05b01ee918459697c60
1,054
def generate_all_fish( n_fish, n_replica_fish, channel, interaction, k_coh, k_ar, alpha, lim_neighbors, weights = [1], neighbor_weights=None, fish_max_speeds=None, clock_freqs=None, verbose=False, names=None ): """Generate both replica and regular fish Arguments: n_fish {int} -- Number of ideal fish to generate n_replica_fish {int} -- Number of replica fish to generate channel {Channel} -- Channel instance interaction {Interaction} -- Interaction instance k_coh {float} -- Parameter to Delight Fish k_ar {float} -- Weighting of neighbors in Delight Fish alpha {int} -- Goal distance from neighbor for Delight Fish lim_neighbors {list} -- Tuple of min and max neighbors weights {float|list} -- List of weights for replica fish learned function neighbor_weight {float|list} -- List of neighbor weights fish_max_speeds {float|list} -- List of max speeds clock_freqs {int|list} -- List of clock speeds names {list} -- List of names for your replica fish """ n = n_fish + n_replica_fish if neighbor_weights is None: neighbor_weights = [1.0] * n elif not isinstance(neighbor_weights, list): neighbor_weights = [neighbor_weights] * n if fish_max_speeds is None: fish_max_speeds = [1.0] * n elif not isinstance(fish_max_speeds, list): fish_max_speeds = [fish_max_speeds] * n if clock_freqs is None: clock_freqs = [1] * n elif not isinstance(clock_freqs, list): clock_freqs = [clock_freqs] * n if names is None: names = ['Unnamed'] * n all_fish = [] for i in range(n_fish): all_fish.append(Fish( id=i, channel=channel, interaction=interaction, k_coh = k_coh, k_ar = k_ar, alpha = alpha, lim_neighbors=lim_neighbors, neighbor_weight=neighbor_weights[i], fish_max_speed=fish_max_speeds[i], clock_freq=clock_freqs[i], verbose=verbose, name=names[i] )) for i in range(n_fish, n_fish + n_replica_fish): all_fish.append(ReplicaFish( id=i, channel=channel, interaction=interaction, weights = weights, fish_max_speed=fish_max_speeds[i], clock_freq=clock_freqs[i], name=names[i], verbose=verbose )) return all_fish
3924235d7bdcf25a91dcb1ec40220b761b85f15f
1,055
def allclose(a, b): """ close to machine precision """ return np.allclose(a, b, rtol=1e-14, atol=1e-14)
ad7ee29d7432947aec0030936985b456a5919eaa
1,056
def check_pwhash(pwhash, password): """Check a password against a given hash value. Since many forums save md5 passwords with no salt and it's technically impossible to convert this to an sha hash with a salt we use this to be able to check for plain passwords:: plain$$default md5 passwords without salt:: md5$$c21f969b5f03d33d43e04f8f136e7682 md5 passwords with salt:: md5$123456$7faa731e3365037d264ae6c2e3c7697e sha passwords:: sha$123456$118083bd04c79ab51944a9ef863efcd9c048dd9a Note that the integral passwd column in the table is only 60 chars long. If you have a very large salt or the plaintext password is too long it will be truncated. >>> check_pwhash('plain$$default', 'default') True >>> check_pwhash('sha$$5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8', 'password') True >>> check_pwhash('sha$$5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8', 'wrong') False >>> check_pwhash('md5$xyz$bcc27016b4fdceb2bd1b369d5dc46c3f', u'example') True >>> check_pwhash('sha$5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8', 'password') False >>> check_pwhash('md42$xyz$bcc27016b4fdceb2bd1b369d5dc46c3f', 'example') False """ if isinstance(password, unicode): password = password.encode('utf-8') if pwhash.count('$') < 2: return False method, salt, hashval = pwhash.split('$', 2) if method == 'plain': return hashval == password elif method == 'md5': h = md5() elif method == 'sha': h = sha1() else: return False h.update(salt) h.update(password) return h.hexdigest() == hashval
618cdc8a9f7f7d7062e1e0ae26cf81157a8dbba7
1,057
def make_markov_model(tweets): """Wrapper around making Markov Chain""" return markovify.Text(" ".join(tweets))
0bd98d1a2f3a5aae37591389b06d402073f1a7ec
1,058
def slice_image(sitk_image, start=(0, 0, 0), end=(-1, -1, -1)): """"Returns the `sitk_image` sliced from the `start` index (x,y,z) to the `end` index. """ size = sitk_image.GetSize() assert len(start) == len(end) == len(size) # replace -1 dim index placeholders with the size of that dimension end = [size[i] if end[i] == -1 else end[i] for i in range(len(end))] slice_filter = sitk.SliceImageFilter() slice_filter.SetStart(start) slice_filter.SetStop(end) return slice_filter.Execute(sitk_image)
eda4477c016d1130bb185a5793409ff95b9cd44c
1,059
def MakeGlyphs(src, reverseNormals): """ Glyph the normals on the surface. You may need to adjust the parameters for maskPts, arrow and glyph for a nice appearance. :param: src - the surface to glyph. :param: reverseNormals - if True the normals on the surface are reversed. :return: The glyph object. """ # Sometimes the contouring algorithm can create a volume whose gradient # vector and ordering of polygon (using the right hand rule) are # inconsistent. vtkReverseSense cures this problem. reverse = vtk.vtkReverseSense() # Choose a random subset of points. maskPts = vtk.vtkMaskPoints() maskPts.SetOnRatio(5) maskPts.RandomModeOn() if reverseNormals: reverse.SetInputData(src) reverse.ReverseCellsOn() reverse.ReverseNormalsOn() maskPts.SetInputConnection(reverse.GetOutputPort()) else: maskPts.SetInputData(src) # Source for the glyph filter arrow = vtk.vtkArrowSource() arrow.SetTipResolution(16) arrow.SetTipLength(0.3) arrow.SetTipRadius(0.1) glyph = vtk.vtkGlyph3D() glyph.SetSourceConnection(arrow.GetOutputPort()) glyph.SetInputConnection(maskPts.GetOutputPort()) glyph.SetVectorModeToUseNormal() glyph.SetScaleFactor(1) glyph.SetColorModeToColorByVector() glyph.SetScaleModeToScaleByVector() glyph.OrientOn() glyph.Update() return glyph
0bb28c943a2c371f5e536851208ac0d4b09cd51a
1,060
def get_tags_categorys(self): """02返回添加文档的变量""" tags = Tag.all() categorys = Category.all() return tags, categorys
557e5182dd3dbf3571e005c4e105a20e2cdd3dd1
1,061
import pprint import warnings def single_mode_constant_rotation(**kwargs): """Return WaveformModes object a single nonzero mode, with phase proportional to time The waveform output by this function will have just one nonzero mode. The behavior of that mode will be fairly simple; it will be given by exp(i*omega*t). Note that omega can be complex, which gives damping. Parameters ---------- s : int, optional Spin weight of the waveform field. Default is -2. ell, m : int, optional The (ell, m) values of the nonzero mode in the returned waveform. Default value is (abs(s), -abs(s)). ell_min, ell_max : int, optional Smallest and largest ell values present in the output. Default values are abs(s) and 8. data_type : int, optional Default value is whichever psi_n corresponds to the input spin. It is important to choose these, rather than `h` or `sigma` for the analytical solution to translations, which doesn't account for the direct contribution of supertranslations (as opposed to the indirect contribution, which involves moving points around). t_0, t_1 : float, optional Beginning and end of time. Default values are -20. and 20. dt : float, optional Time step. Default value is 0.1. omega : complex, optional Constant of proportionality such that nonzero mode is exp(i*omega*t). Note that this can be complex, which implies damping. Default is 0.5. """ s = kwargs.pop("s", -2) ell = kwargs.pop("ell", abs(s)) m = kwargs.pop("m", -ell) ell_min = kwargs.pop("ell_min", abs(s)) ell_max = kwargs.pop("ell_max", 8) data_type = kwargs.pop("data_type", scri.DataType[scri.SpinWeights.index(s)]) t_0 = kwargs.pop("t_0", -20.0) t_1 = kwargs.pop("t_1", 20.0) dt = kwargs.pop("dt", 1.0 / 10.0) t = np.arange(t_0, t_1 + dt, dt) n_times = t.size omega = complex(kwargs.pop("omega", 0.5)) data = np.zeros((n_times, sf.LM_total_size(ell_min, ell_max)), dtype=complex) data[:, sf.LM_index(ell, m, ell_min)] = np.exp(1j * omega * t) if kwargs: warnings.warn(f"\nUnused kwargs passed to this function:\n{pprint.pformat(kwargs, width=1)}") return scri.WaveformModes( t=t, data=data, ell_min=ell_min, ell_max=ell_max, frameType=scri.Inertial, dataType=data_type, r_is_scaled_out=True, m_is_scaled_out=True, )
cc31bf0587ff397cb79c42863efd3d8173cddc72
1,063
def get_file(file_pattern: list, sub_type: str = None) -> list: """Get a subset from file patterns that belong to a sub-type. If no sub-type is specified, return all file patterns. Args: file_pattern (list): The input file patterns sub_type (str, optional): A string to search in file patterns. Defaults to None. Raises: ValueError: No file pattern matches the sub-type provided. Returns: list: A filtered sub list of file patterns. """ if sub_type is None: return file_pattern result = [] for entry in file_pattern: if sub_type in entry: result.append(entry) if len(result) < 1: raise ValueError( "No file found for sub-type {}: {}".format(sub_type, file_pattern) ) else: return result
7d39c05fa8a1f7a9370de459472ecf7070aa6569
1,064
def get_all_report_data(db): """ Gets all report data for pre report page """ query = r'SELECT * FROM report WHERE relevent=1 ORDER BY id DESC' return db_get(db, query)
727c4c9ec2125747237d40d7f0dd019b3d116d00
1,066
def find_center_projection(mat1, mat2, flip=True, chunk_height=None, start_row=None, denoise=True, norm=False, use_overlap=False): """ Find the center-of-rotation (COR) using projection images at 0-degree and 180-degree based on a method in Ref. [1]. Parameters ---------- mat1 : array_like 2D array. Projection image at 0-degree. mat2 : array_like 2D array. Projection image at 180-degree. flip : bool, optional Flip the 180-degree projection in the left-right direction if True. chunk_height : int or float, optional Height of the sub-area of projection images. If a float is given, it must be in the range of [0.0, 1.0]. start_row : int, optional Starting row used to extract the sub-area. denoise : bool, optional Apply the Gaussian filter if True. norm : bool, optional Apply the normalization if True. use_overlap : bool, optional Use the combination of images in the overlap area for calculating correlation coefficients if True. Returns ------- cor : float Center-of-rotation. References ---------- .. [1] https://doi.org/10.1364/OE.418448 """ (nrow, ncol) = mat1.shape if flip is True: mat2 = np.fliplr(mat2) win_width = ncol // 2 if chunk_height is None: chunk_height = int(0.1 * nrow) if isinstance(chunk_height, float): if 0.0 < chunk_height <= 1.0: chunk_height = int(chunk_height * nrow) else: chunk_height = int(0.1 * nrow) chunk_height = np.clip(chunk_height, 1, nrow - 1) if start_row is None: start = nrow // 2 - chunk_height // 2 elif start_row < 0: start = nrow + start_row - chunk_height // 2 else: start = start_row - chunk_height // 2 stop = start + chunk_height start = np.clip(start, 0, nrow - chunk_height - 1) stop = np.clip(stop, chunk_height, nrow - 1) mat1_roi = mat1[start: stop] mat2_roi = mat2[start: stop] (overlap, side, _) = find_overlap(mat1_roi, mat2_roi, win_width, side=None, denoise=denoise, norm=norm, use_overlap=use_overlap) if side == 0: cor = overlap / 2.0 - 1.0 else: cor = ncol - overlap / 2.0 - 1.0 return cor
21661a6b9ed33a220ede918954ac18a420e638ae
1,067
def parse_date(str): """ parsing given str to date """ ymd = str.split('-') return date(int(ymd[0]), int(ymd[1]), int(ymd[2]))
29d0f79e2428e315c072c7801d927154c3bfee57
1,068
def mark_as_widget(view): """ Marks @view as a widget so we can later inspect that attribute, for example, when hiding panels in _vi_enter_normal_mode. Used prominently by '/', '?' and ':'. XXX: This doesn't always work as we expect. For example, changing settings to a panel created instants before does not make those settings visible when the panel is activated. Investigate. We still need this so that contexts will ignore widgets, though. However, the fact that they are widgets should suffice to disable Vim keys for them... """ view.settings().set('is_vintageous_widget', True) return view
965555660b82f834e09ba3ffc985755d4fd7fa66
1,069
def module_name(ctx, f): """Given Haskell source file path, turn it into a dot-separated module name. module_name( ctx, "some-workspace/some-package/src/Foo/Bar/Baz.hs", ) => "Foo.Bar.Baz" Args: ctx: Rule context. f: Haskell source file. Returns: string: Haskell module name. """ return _drop_extension(_rel_path_to_module(ctx, f).replace('/', '.'))
77a38f62211a827ac8fe9af0cc36636b11e561d5
1,070
def store(key): """Gets the configured default store. The default is PickleStore :return store: Store object """ global __stores if __stores is None: __stores = {} if key not in __stores: __stores[key] = __configuration[STORE](key) return __stores[key]
76197d8cedc44e15a75c81f1bcb07d3a4e59e021
1,071
def get_label_for_line(line, leg): """ Can't remember what I was using this for but seems useful to keep """ # leg = line.figure.legends[0] # leg = line.axes.get_legend() for h, t in zip(leg.legendHandles, leg.texts): if h.get_label() == line.get_label(): return t.get_text()
4180ae7fd7fe5b98ebafa20fbdf2528205e4ec31
1,072
def _node_parent_listener(target, value, oldvalue, initiator): """Listen for Node.parent being modified and update path""" if value != oldvalue: if value is not None: if target._root != (value._root or value): target._update_root(value._root or value) target._update_path(newparent=value) else: # This node just got orphaned. It's a new root target._update_root(target) target._update_path(newparent=target) return value
06c06b144c777f33673e2051f1d4173204720f65
1,073
import torch import typing def sequential_to_momentum_net(module: torch.nn.Sequential, split_dim=1, coupling_forward: typing.Optional[typing.List[typing.Optional[typing.Callable]]] = None, coupling_inverse: typing.Optional[typing.List[typing.Optional[typing.Callable]]] = None, memory_mode: MemoryModes = MemoryModes.autograd_function, target_device: str = "", fused_optimizer: FUSED_OPTIMIZER = None, residual: bool = False, beta: float = 0.9) -> ReversibleSequential: """ Creates a sequential MomentumNet by unrolling a nn.Sequential module and dispatching to `momentum_net()` :param module: An existing nn.Sequential module that should be converted into a ReversibleSequential module. :param split_dim: RevNets require two streams. This parameter specifies which dimension to split in half to create the two streams. `None` would mean the input gets replicated for both streams. It's usually best to split along the features, which is why the default (1) is compatible with convolutions. :param coupling_forward: RevNet uses y0 = (x0 + f(x1)) as a coupling function, but this allows you to set a custom one. For example, MomentumNet (https://arxiv.org/abs/2102.07870) uses y0 = (beta * x0 + (1 - beta) * f(x1)). The inputs to the coupling function are the residual stream and the function output. For more information, look at the examples. default = revnet couplint :param coupling_inverse: The inverse of the coupling function. default = revnet inverse :param memory_mode: One of `MemoryModes`'s values. Some things are only supported in one mode while others might only be supported in another. default = autograd function (highest coverage but spotty XLA support) :param target_device: Specifies where the parameters should be moved to before computing the forward and backward pass. This allows efficient CPU-offloading. default = no offloading (keep parameters on the device they're on) :param fused_optimizer: Allows an optimizer step to run while the model is computing its backward pass. This means that the gradients don't have to be fully instantiated anymore and can improve speed when used with cpu-offload due to asynchronous compute. It expects a function that generates an optimizer from a list of parameters. (like Adam.__init__) default = no fused optimizer step :param residual: Whether to "undo" a residual stream or not. Using y = f(x0) + x0 + x1 is generally not a good idea, so this would subtract `x0` from y allowing you to patch existing residual modules without modifying their code. :param beta: MomentumNet beta value that controls how much of the velocity stream is kept. :return: Instantiated MomentumNet (instance of `ReversibleSequential`) """ return momentum_net(*maybe_residual_to_plain(module, residual), split_dim=split_dim, coupling_forward=coupling_forward, coupling_inverse=coupling_inverse, memory_mode=memory_mode, target_device=target_device, beta=beta, fused_optimizer=fused_optimizer)
269d45cf845555988c3284a88a7e3ca83fb697b5
1,075
def user_view(request, name): """Render the view page for users""" # argument is the login name, not the uuid in Cassandra user = User.find(name) if not user: return redirect("users:home") ctx = { "req_user": request.user, "user_obj": user, "groups": [Group.find(gname) for gname in user.groups], } return render(request, "users/view.html", ctx)
f7f5bc01d2b60bcca048e0b2183eefcc5f4eb907
1,076
def grelha_nr_colunas(g): """ grelha_nr_colunas: grelha --> inteiro positivo grelha_nr_colunas(g) devolve o numero de colunas da grelha g. """ return len(g[0])
740b06c186ad1455aecadfaf112f253fb434d5ff
1,077
def rmsd(array_a, array_b): """ Calculate the RMSD between two 1d arrays Parameters ---------- array_a, array_b : 1d numpy arrays The arrays to be compared Returns ------- rmsd : float The Root Mean Square Deviation of the elements of the array """ diff = array_a - array_b diff2 = np.square(diff) diff2_sum = np.sum(diff2) norm_diff2_sum = diff2_sum/len(array_a) rmsd = np.sqrt(norm_diff2_sum) return rmsd
7390cebff27d73bc9268cdc23e21c2d362bca2cc
1,078
def readFile(sFile, sMode = 'rb'): """ Reads the entire file. """ oFile = open(sFile, sMode); sRet = oFile.read(); oFile.close(); return sRet;
d44e8217ae7dcab1c826ccbbe80e066d76db31b5
1,079
def VI_cgivens_d( a, b): """ returns cos, sin, r """ c = vsip_cmplx_d(0.0,0.0) s = vsip_cmplx_d(0.0,0.0) r = vsip_cmplx_d(0.0,0.0) am = vsip_cmag_d(a) bm = vsip_cmag_d(b) if am == 0.0: r.r = b.r; r.i=b.i; s.r = 1.0; else: scale = am + bm; alpha = vsip_cmplx_d(a.r/am, a.i/am) scalesq = scale * scale norm = scale * sqrt((am*am)/scalesq + (bm * bm)/scalesq) c.r =am/norm s.r = (alpha.r * b.r + alpha.i * b.i)/norm s.i = (-alpha.r * b.i + alpha.i * b.r)/norm r.r = alpha.r * norm; r.i = alpha.i * norm return (c,s,r)
7ed08b3c583a805cd9a7b0dfcfb80eb67a054e1e
1,080
import json def documint_request_factory(request): """ Create a function that issues a request to a Documint endpoint. Status codes outside the 2xx range are treated as errors. If error responses are JSON then `DocumintError` is raised, otherwise `MalformedDocumintError` is raised. If the status code indicates success, the `IResponse` is returned. """ def _raise_error(data, response): if content_type(response.headers) == b'application/json': try: causes = json.loads(data).get(u'causes', []) raise DocumintError( causes=[DocumintErrorCause(cause.get(u'type'), cause.get(u'reason'), cause.get(u'description')) for cause in causes]) except ValueError: pass raise MalformedDocumintError(data) def _check_status(response): if 200 <= response.code < 300: return response d = response.content() d.addCallback(_raise_error, response) return d def _request(*a, **kw): d = request(*a, **kw) d.addCallback(_check_status) return d return _request
9dc4dcba0df1094c394dbe8d9424f874e3ac3169
1,081
def skip_for_tf2(f): """Decorator that skips tests when using TensorFlow 2.""" def test_wrapper(*args, **kwargs): """Wraps the decorated function to determine whether to skip.""" # Extract test case instance from args. self = args[0] try: # If tf.contrib doesn't exist, we are in TF 2.0. _ = tf.contrib _ = tf.contrib.estimator.regression_head( loss_reduction=tf.compat.v1.losses.Reduction.SUM_OVER_BATCH_SIZE) except (AttributeError, ImportError): self.skipTest("Skipping test in TF 2.0.") return f(*args, **kwargs) return test_wrapper
02059cc9c8e6b83ab49dcd3b69d447fa3ec26324
1,084
import yaml def clean_logfile(logfile_lines,to_remove): """Remove yaml fields from a list of lines. Removes from a set of lines the yaml_fields contained in the to_remove list. Arguments: logfile_lines (list): list of the lines of the logfile. Generated from a file by e.g. :py:meth:`~io.IOBase.readlines`. to_remove (list): list of keys to remove from logfile_lines Returns: list of lines where the removed keys have as values the `"<folded>"` string """ line_rev=logfile_lines #list of the lines of the logfile #loop in the reversed from (such as to parse by blocks) extra_lines=20 #internal variable to be customized line_rev.reverse() #clean the log cleaned_logfile=[] removed=[] #for line in line_rev: #line_iter: while len(line_rev) >0: line=line_rev.pop() to_print=line #check if the line contains interesting information for remove_it in to_remove : stream_list=[] #line without comments valid_line=line.split('#')[0] spaces='nospace' #control that the string between the key and the semicolon is only spaces if remove_it in valid_line and ":" in valid_line: #print "here",remove_it,remove_it in valid_line and ":" in valid_line,valid_line starting_point=valid_line.find(remove_it) tmp_buf=valid_line[:starting_point] #find the closest comma to the staring point, if exists tmp_buf=tmp_buf[::-1] starting_comma=tmp_buf.find(',') if starting_comma <0: st=0 tmp_buf=tmp_buf[st:] tmp_buf=tmp_buf[::-1] tmp_buf=tmp_buf.strip(' ') #print "there",tmp_buf,'starting',starting_point,len(tmp_buf) valid_line= valid_line[starting_point+len(remove_it):] spaces= valid_line[1:valid_line.find(':')] #if remove_it+':' in line.split('#')[0]: if len(spaces.strip(' ')) == 0 and len(tmp_buf)==0: #this means that the key has been found #creates a new Yaml document starting from the line #treat the rest of the line following the key to be removed header=''.join(line.split(':')[1:]) header=header.rstrip()+'\n' #eliminate the anchor header=header.lstrip(' ') header=header.lstrip('*') if len(header) > 0 : stream_list.append(header) #part to be printed, updated to_print = line.split(':')[0] + ": <folded> \n" #then check when the mapping will end: while True: #create a stream with extra_lines block for i in range(0,min(extra_lines,len(line_rev))): stream_list.append(line_rev.pop()) #create a stream to be parsed stream=''.join(stream_list) #then parse the stream until the last valid position has been found try: for i in yaml.parse(stream,Loader=yaml.CLoader): endpos=i.end_mark.index except Exception(e): # print 'error',str(e),stream #convert back the valid stream into a list #if needed the stream can be loaded into a document item_list=stream[:endpos].split('\n') #if lengths are different there is no need to add lines if len(item_list) != len(stream_list): #last line might be shorter, therefore treat it separately last_line=item_list.pop() #purge the stream for item in item_list: stream_list.remove(item+'\n') #extract the remaining line which should be compared with the last one strip_size=len(last_line.rstrip()) if strip_size > 0: first_line=stream_list.pop(0)[strip_size:] if '*' in first_line or '&' in first_line: first_line='' #eliminate anchors else: first_line='' #then put the rest in the line to be treated to_print.rstrip('\n') to_print += first_line+'\n' # the item has been found break stream_list.reverse() #put back the unused part in the document line_rev.extend(stream_list) # mark that the key has been removed if (remove_it not in removed): removed.append(remove_it) write('removed: ',remove_it) # then print out the line cleaned_logfile.append(to_print) # check that everything has been removed, at least once if (set(removed) != set(to_remove)): write('WARNING, not all the requested items have been removed!') write('To_remove : ',to_remove) write('removed : ',removed) write('Difference: ',list(set(to_remove) - set(removed) )) return cleaned_logfile
5e066584488230e777684fcf4e8d25784343afaf
1,085
def no_red_sum(tokens): """Using import json is cheating, let's parse it ourselves in a sinlge pass. Hope you like stacks.""" sums = [0] stack = [] is_red = False for token in tokens: if token == 'red' and not is_red and stack[-1] == '{': is_red = True sums[-1] = 0 stack.append('red') elif token == '{': sums.append(0) stack.append('{') elif token == '}': last_sum = sums.pop() sums[-1] += last_sum if stack[-1] == 'red': stack.pop() is_red = False stack.pop() elif token == '[': stack.append('[') sums.append(0) elif token == ']': stack.pop() last_sum = sums.pop() sums[-1] += last_sum elif not is_red: sums[-1] += neg_safe_cast(token) assert len(sums) == 1 return sums.pop()
7945618bcc76c03b457cacf4f995e767d5b6160c
1,086
def get_all_projects(): """ Return a list with all the projects (open and closed). """ return gazu.project.all_projects()
7279d46e9049f3ff9802dcc93b8e41b2e118c9a2
1,087
def install(opts): """ Install one or more resources. """ resources = _load(opts.resources, opts.output_dir) if opts.all: opts.resource_names = ALL success = _install(resources, opts.resource_names, opts.mirror_url, opts.destination, opts.skip_top_level) if success: if not opts.quiet: print("All resources successfully installed") return 0 else: if not opts.quiet: invalid = _invalid(resources, opts.resource_names) print("Unable to install some resources: {}".format(', '.join(invalid))) return 1
9487490eb9ccb13ce7f9797defacf823161a60a9
1,088
import torch def seq2seq_att(mems, lengths, state, att_net=None): """ :param mems: [B, T, D_mem] This are the memories. I call memory for this variable because I think attention is just like read something and then make alignments with your memories. This memory here is usually the input hidden state of the encoder. :param lengths: [B] :param state: [B, D_state] I call state for this variable because it's the state I percepts at this time step. :param att_net: This is the attention network that will be used to calculate the alignment score between state and memories. input of the att_net is mems and state with shape: mems: [exB, D_mem] state: [exB, D_state] return of the att_net is [exB, 1] So any function that map a vector to a scalar could work. :return: [B, D_result] """ d_state = state.size(1) if not att_net: return state else: batch_list_mems = [] batch_list_state = [] for i, l in enumerate(lengths): b_mems = mems[i, :l] # [T, D_mem] batch_list_mems.append(b_mems) b_state = state[i].expand(b_mems.size(0), d_state) # [T, D_state] batch_list_state.append(b_state) packed_sequence_mems = torch.cat(batch_list_mems, 0) # [sum(l), D_mem] packed_sequence_state = torch.cat(batch_list_state, 0) # [sum(l), D_state] align_score = att_net(packed_sequence_mems, packed_sequence_state) # [sum(l), 1] # The score grouped as [(a1, a2, a3), (a1, a2), (a1, a2, a3, a4)]. # aligned_seq = packed_sequence_mems * align_score start = 0 result_list = [] for i, l in enumerate(lengths): end = start + l b_mems = packed_sequence_mems[start:end, :] # [l, D_mems] b_score = align_score[start:end, :] # [l, 1] softed_b_score = F.softmax(b_score.transpose(0, 1)).transpose(0, 1) # [l, 1] weighted_sum = torch.sum(b_mems * softed_b_score, dim=0, keepdim=False) # [D_mems] result_list.append(weighted_sum) start = end result = torch.stack(result_list, dim=0) return result
992fa8329443a2505c6ff0d83e9c34e69be620d4
1,089
def convert_for_webkit(new_path, filename, reference_support_info, host=Host()): """ Converts a file's |contents| so it will function correctly in its |new_path| in Webkit. Returns the list of modified properties and the modified text if the file was modifed, None otherwise.""" contents = host.filesystem.read_binary_file(filename) converter = _W3CTestConverter(new_path, filename, reference_support_info, host) if filename.endswith('.css'): return converter.add_webkit_prefix_to_unprefixed_properties(contents.decode('utf-8')) else: converter.feed(contents.decode('utf-8')) converter.close() return converter.output()
098774b42f9086b1b61dc231318731ab7eb1a998
1,090
import re def clean_repeated_symbols(text): """ Filters text, replacing symbols repeated more than twice (not allowed in most languages) with a single repetition of the symbol. :param text: the text to be filtered :type: str :return: the filtered text :type: str """ pattern = re.compile(r"(.)\1{2,}", re.DOTALL) return pattern.sub(r"\1\1", text)
bfa758994cfae716caaa715d5a990416a300f9d9
1,092
def sample(x,y, numSamples): """ gives numSamples samples from the distribution funciton fail parameters """ y /= y.sum() return np.random.choice(x, size=numSamples, replace=True, p=y)
4cfbb6977bcd5fa43f27de40b15beff487f1c071
1,093
def make_path_strictly_increase(path): """ Given a warping path, remove all rows that do not strictly increase from the row before """ toKeep = np.ones(path.shape[0]) i0 = 0 for i in range(1, path.shape[0]): if np.abs(path[i0, 0] - path[i, 0]) >= 1 and np.abs(path[i0, 1] - path[i, 1]) >= 1: i0 = i else: toKeep[i] = 0 return path[toKeep == 1, :]
1a5043bdb469c9dd3f9bf57e1b9752ebd8567182
1,094
def set_group_selector(*args): """set_group_selector(sel_t grp, sel_t sel) -> int""" return _idaapi.set_group_selector(*args)
1fbf3807791bf94511f4c7da52278db2815c757e
1,096
def data_context_topology_context_topologyuuid_nodenode_uuid_node_rule_groupnode_rule_group_uuid_latency_characteristictraffic_property_name_get(uuid, node_uuid, node_rule_group_uuid, traffic_property_name): # noqa: E501 """data_context_topology_context_topologyuuid_nodenode_uuid_node_rule_groupnode_rule_group_uuid_latency_characteristictraffic_property_name_get returns tapi.topology.LatencyCharacteristic # noqa: E501 :param uuid: Id of topology :type uuid: str :param node_uuid: Id of node :type node_uuid: str :param node_rule_group_uuid: Id of node-rule-group :type node_rule_group_uuid: str :param traffic_property_name: Id of latency-characteristic :type traffic_property_name: str :rtype: TapiTopologyLatencyCharacteristic """ return 'do some magic!'
5f0aff58f5f5e7f72f6622fdb8a400b03f6aae15
1,097
def getPendingReviewers(db, review): """getPendingReviewers(db, review) -> dictionary Returns a dictionary, like the ones returned by getReviewersAndWatchers(), but with details about remaining unreviewed changes in the review. Changes not assigned to a reviewer are handled the same way.""" cursor = db.cursor() cursor.execute("""SELECT reviewuserfiles.uid, reviewfiles.changeset, reviewfiles.file FROM reviewfiles LEFT OUTER JOIN reviewuserfiles ON (reviewuserfiles.file=reviewfiles.id) WHERE reviewfiles.review=%s AND reviewfiles.state='pending'""", (review.id,)) reviewers = {} for user_id, changeset_id, file_id in cursor.fetchall(): reviewers.setdefault(file_id, {}).setdefault(user_id, set()).add(changeset_id) return reviewers
869a6bb752c4e7c1e40a0000b3aceb62adc28ce1
1,098
import base64 def base64_encode_string(string): # type: (str or bytes) -> str """Base64 encode a string :param str or bytes string: string to encode :rtype: str :return: base64-encoded string """ if on_python2(): return base64.b64encode(string) else: return str(base64.b64encode(string), 'ascii')
0c13ca527171fecdbc5eb93376c6019c0b95e2b7
1,099
def get_error_signature(error_type, n_top, **kwargs): """Generates a signature for the specified settings of pose error calculation. :param error_type: Type of error. :param n_top: Top N pose estimates (with the highest score) to be evaluated for each object class in each image. :return: Generated signature. """ error_sign = "error:" + error_type + "_ntop:" + str(n_top) if error_type == "vsd": if kwargs["vsd_tau"] == float("inf"): vsd_tau_str = "inf" else: vsd_tau_str = "{:.3f}".format(kwargs["vsd_tau"]) error_sign += "_delta:{:.3f}_tau:{}".format(kwargs["vsd_delta"], vsd_tau_str) return error_sign
82036a650862a7b3a6b55493458ff3b7dc6cd2ff
1,100
import re def clean_text_from_multiple_consecutive_whitespaces(text): """Cleans the text from multiple consecutive whitespaces, by replacing these with a single whitespace.""" multi_space_regex = re.compile(r"\s+", re.IGNORECASE) return re.sub(multi_space_regex, ' ', text)
f25b27da070d6a984012a4cb5b1ae4a477713033
1,101
import re def run(filename): """ MUST HAVE FUNCTION! Begins the plugin processing Returns a list of endpoints """ run_results = set() r_rule = re.compile(r"(Route\(\"[^,)]+)", flags=re.IGNORECASE) for line in filename: try: route_match = r_rule.search(line) if route_match: run_results.add(route_match.group(1)[7:-1]) except Exception: # Print the offending line the BurpSuite's extension Output tab print("Error! Couldn't parse: %s" % line) return list(run_results)
e5ad233e3c3e07769b2f8f61657fa712b1f151c4
1,102
import re from unittest.mock import patch async def setup_script(hass, notify_q, notify_q2, now, source, config=None): """Initialize and load the given pyscript.""" conf_dir = hass.config.path(FOLDER) file_contents = {f"{conf_dir}/hello.py": source} Function.hass = None mock_open = MockOpen() for key, value in file_contents.items(): mock_open[key].read_data = value def isfile_side_effect(arg): return arg in file_contents def glob_side_effect(path, recursive=None): result = [] path_re = path.replace("*", "[^/]*").replace(".", "\\.") path_re = path_re.replace("[^/]*[^/]*/", ".*") for this_path in file_contents: if re.match(path_re, this_path): result.append(this_path) return result if not config: config = {DOMAIN: {CONF_ALLOW_ALL_IMPORTS: True}} with patch("custom_components.pyscript.os.path.isdir", return_value=True), patch( "custom_components.pyscript.glob.iglob" ) as mock_glob, patch("custom_components.pyscript.global_ctx.open", mock_open), patch( "custom_components.pyscript.trigger.dt_now", return_value=now ), patch( "custom_components.pyscript.open", mock_open ), patch( "homeassistant.config.load_yaml_config_file", return_value=config ), patch( "custom_components.pyscript.install_requirements", return_value=None, ), patch( "custom_components.pyscript.watchdog_start", return_value=None ), patch( "custom_components.pyscript.os.path.getmtime", return_value=1000 ), patch( "custom_components.pyscript.global_ctx.os.path.getmtime", return_value=1000 ), patch( "custom_components.pyscript.os.path.isfile" ) as mock_isfile: mock_isfile.side_effect = isfile_side_effect mock_glob.side_effect = glob_side_effect assert await async_setup_component(hass, "pyscript", config) # # I'm not sure how to run the mock all the time, so just force the dt_now() # trigger function to return the given list of times in now. # def return_next_time(): nonlocal now if isinstance(now, list): if len(now) > 1: return now.pop(0) return now[0] return now trigger.__dict__["dt_now"] = return_next_time if notify_q or notify_q2: async def state_changed(event): var_name = event.data["entity_id"] if var_name == "pyscript.done": value = event.data["new_state"].state if notify_q: await notify_q.put(value) if var_name == "pyscript.done2": value = event.data["new_state"].state if notify_q2: await notify_q2.put(value) hass.bus.async_listen(EVENT_STATE_CHANGED, state_changed)
d1d194af7686cbf5bb5e61ebc692d7fd7e9aae71
1,103
def get_assignment_grade_summaries(course_id): """ return a list of a course's assignments with a grade summary for each https://canvas.instructure.com/doc/api/analytics.html#method.analytics_api.course_assignments """ assignments = api.get_list('courses/{}/analytics/assignments'.format(course_id)) return [] if 'errors' in assignments else assignments
69dddeee4389ee457201c3d1195537f869d0ea57
1,104
def _list_descriptors(): """Return a list of all registered XModuleDescriptor classes.""" return sorted( [ desc for (_, desc) in XModuleDescriptor.load_classes() ] + XBLOCK_CLASSES, key=str )
e19b7957b3a65495e1d0fb7c33b4b2748bc1473f
1,105
def e3p0(tof,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10): """ Background function for TOF spectra Parameters ---------- tof : array-like The time-of-flight spectrum p1 : float constant background p2 : float multiplier on 1st exponential p3 : float multiplier on time-of-flight in 1st exponent p4 : float constant added to 1st exponent p5-p10 : float (see equation in notes) Returns ------- e3p0 : array-like The function in the length of t (see notes) Notes ----- .. math:: f(t) = p1 + p2e^{p3t+p4} + p5e^{p6t+p7} + p8e^{p9t+p10} """ return p1 + p2*np.exp(p3*tof+p4) + p5*np.exp(p6*tof+p7) + p8*np.exp(p9*tof+p10)
0ad3aad94c4e8b5f48a6ec4458329d0de6eda612
1,106
def dice_coefficient(pred, gt): """ Computes dice coefficients between two masks :param pred: predicted masks - [0 ,1] :param gt: ground truth masks - [0 ,1] :return: dice coefficient """ d = (2 * np.sum(pred * gt) + 1) / ((np.sum(pred) + np.sum(gt)) + 1) return d
d1d97b749ce365c6181a2b17c41d946195339c96
1,107
def get_keep_score(source_counts, prediction_counts, target_counts): """Compute the keep score (Equation 5 in the paper).""" source_and_prediction_counts = source_counts & prediction_counts source_and_target_counts = source_counts & target_counts true_positives = sum((source_and_prediction_counts & source_and_target_counts).values()) selected = sum(source_and_prediction_counts.values()) relevant = sum(source_and_target_counts.values()) return _get_fbeta_score(true_positives, selected, relevant)
ce2d94f3ffc353a3a9843f5c0b6a846608efe962
1,108
def dict_comparator(first_dict, second_dict): """ Функция проверяет на совпадение множеств пар ключ-значение для двух словарей Возвращает True в случае совпадения, иначе False """ if set(first_dict.keys()) != set(second_dict.keys()): return False for key, value in first_dict.items(): if value != second_dict[key]: return False return True
47f28e8810b8437cc0e3bfca6ccba6734c988890
1,110
def word_check(seq1,seq2,word): """Returns False and aborts if seq2 contains a substring of seq1 of length word. Returns True otherwise""" for i in range(len(seq1)-word+1): if seq2.find(seq1[i:i+word])>-1: return seq2.find(seq1[i:i+word]) return -1
86b4cad571fdbf55073f30f9c5fd9a5e25da46d7
1,111
def plasma_parameter(N_particles, N_grid, dx): """ Estimates the plasma parameter as the number of particles per step. Parameters ---------- N_particles : int, float Number of physical particles N_grid : int Number of grid cells dx : float grid step size """ return (N_particles / N_grid) * dx
51d3b96ccba2689db461fd6117cb5c2961dc3812
1,112
import torch def get_ious_and_iou_loss(inputs, targets, weight=None, loss_type="iou", reduction="none"): """ Compute iou loss of type ['iou', 'giou', 'linear_iou'] Args: inputs (tensor): pred values targets (tensor): target values weight (tensor): loss weight box_mode (str): 'xx' or 'lr', 'lr' is currently supported. loss_type (str): 'giou' or 'iou' or 'linear_iou' reduction (str): reduction manner Returns: loss (tensor): computed iou loss. """ # box_mode = "lr" inputs = torch.cat((-inputs[..., :1], inputs[..., 1:]), dim=-1) targets = torch.cat((-targets[..., :1], targets[..., 1:]), dim=-1) eps = torch.finfo(torch.float32).eps inputs_area = (inputs[..., 1] - inputs[..., 0]).clamp_(min=0) targets_area = (targets[..., 1] - targets[..., 0]).clamp_(min=0) w_intersect = (torch.min(inputs[..., 1], targets[..., 1]) - torch.max(inputs[..., 0], targets[..., 0])).clamp_(min=0) area_intersect = w_intersect area_union = targets_area + inputs_area - area_intersect ious = area_intersect / area_union.clamp(min=eps) if loss_type == "iou": loss = -ious.clamp(min=eps).log() elif loss_type == "linear_iou": loss = 1 - ious elif loss_type == "giou": g_w_intersect = torch.max(inputs[..., 1], targets[..., 1]) \ - torch.min(inputs[..., 0], targets[..., 0]) ac_uion = g_w_intersect gious = ious - (ac_uion - area_union) / ac_uion.clamp(min=eps) loss = 1 - gious else: raise NotImplementedError if weight is not None: loss = loss * weight.view(loss.size()) if reduction == "mean": loss = loss.sum() / max(weight.sum().item(), eps) else: if reduction == "mean": loss = loss.mean() if reduction == "sum": loss = loss.sum() return ious, loss
302fb70c888caf33cf0077b553cd0d055ff4003a
1,113
def load_chembl(): """Downloads a small subset of the ChEMBL dataset. Returns ------- ic50_train: sparse matrix sparse train matrix ic50_test: sparse matrix sparse test matrix feat: sparse matrix sparse row features """ # load bioactivity and features ic50 = load_one("chembl-IC50-346targets.mm") feat = load_one("chembl-IC50-compound-feat.mm") ## creating train and test sets ic50_train, ic50_test = make_train_test(ic50, 0.2) return (ic50_train, ic50_test, feat)
f9c5017ab7892f7fbf6c3ee1a1dd9da0e322f66f
1,114
import re def validate_name_dynamotable(table_name): """Validate if table name matches DynamoDB naming standards.""" if not isinstance(table_name, str): ValueError('Input argument \"name\" must a string') if table_name.__len__() < 3 or table_name.__len__() > (255 - 5): # note: deduct 5 chars to allow postfix space (e.g. for .lock) return (False, 'TableName should be of length: [3-255]') if not re.match(r'^[a-zA-Z0-9]', table_name): return (False, 'BucketName should start with a lowercase letter or number') if re.search(r'[-\._]{2}', table_name): return (False, 'TableName can\'t contain two special characters [-, ., _] in a row') if not re.match(r'^[-a-zA-Z0-9\._]*$', table_name): return (False, re.sub(' +', ' ', 'TableName contains invalid character. \ Allowed characters: [a-z, A-Z, 0-9, \'.\', \'-\', \'_\']')) return (True, 'Success')
139391e3ece6cacae24d5bd72fd0fd77b65ecc41
1,115
def delete_item(item_id): """ The method deletes item with the provided id. :param item_id: id of the item to be deleted :return: http response """ try: if DATA_CONTROLLER.delete_bucketlist_item(item_id): return make_response("", 200) else: return make_response("", 404) except ValueError as err: tmp_response = make_response("", 500) return tmp_response
95e0bb38d30cbda6d617bb5f396dba4cfd4ef328
1,116
def import_from_text_file(filename, defaultExt, readDataFcn, verbose=False): """ Opens a given text file and reads data using the specified function Parameters ---------- filename : str the path of a file defaultExt : str the default extension of the file readDataFcn : callable the function to read data from the file. Takes the file as its only parameter. verbose : bool (optional) if True prints messages on console (default is False) Returns ------- unknown the output of the readDataFcn """ return _open_file(filename, defaultExt, 'r', readDataFcn, verbose)
4f5602e09d02446ce9770656e4b42df5dd018ccd
1,117
def is_template_definition(metric_name): """Return if the given metric name is a template definition by convention.""" fields = metric_name.split('/') return fields[0].lower() == TEMPLATE_DEFINITION_PREFIX
da5fb191cf451b542a656c352d64258be74f7710
1,118
def _cm_ramp_points_and_voltages(abf): """ Return [points, voltages] if the sweep contains a ramp suitable for capacitance calculation using a matching doward and upward ramp. points is a list of 3 numbers depicting index values important to this ramp. The first number is the index at the start of the downward ramp, the second is the index of its nadir, and the third is the index where it returns to the original level. voltages is a list of 2 numbers: voltage before and during the ramp. """ assert isinstance(abf, pyabf.ABF) if abf.sweepUnitsY != "pA": raise Exception("must be in voltage clamp configuration") for i, p1 in enumerate(abf.sweepEpochs.p1s): if i == 0: continue # ensure this sweep and the last are both ramps if abf.sweepEpochs.types[i] != "Ramp": continue if abf.sweepEpochs.types[i-1] != "Ramp": continue # ensure the levels are different if abf.sweepEpochs.levels[i] == abf.sweepEpochs.levels[i-1]: continue ptStart = abf.sweepEpochs.p1s[i-1] ptTransition = abf.sweepEpochs.p1s[i] ptEnd = abf.sweepEpochs.p2s[i] points = [ptStart, ptTransition, ptEnd] voltageBefore = abf.sweepEpochs.levels[i-1] voltageDuring = abf.sweepEpochs.levels[i] voltages = [voltageBefore, voltageDuring] return [points, voltages] return None
c73b5f5cbc44c0794b332f6010864e9f25fcff0c
1,119
def single_model_embeddings_specify(single_model_embeddings): """Returns an instance of MultiTaskLSTMCRF initialized with the default configuration file, loaded embeddings and single specified model.""" single_model_embeddings.specify() return single_model_embeddings
fe23c571ca29dbbf87cbccdbfc1e11aaaf784c01
1,120
import bz2 import gzip import json def load_json(filename): """ Load a JSON file that may be .bz2 or .gz compressed """ if '.bz2' in filename: with bz2.open(filename, 'rt') as infile: return json.load(infile) elif '.gz' in filename: with gzip.open(filename, 'rt') as infile: return json.load(infile) else: with open(filename, 'rt') as infile: return json.load(infile)
1b985db386e85c3b8e87911d89a7652133bfee7b
1,121
def get_future_contracts(underlying_symbol, date=None): """ 获取某期货品种在策略当前日期的可交易合约标的列表 :param security 期货合约品种,如 ‘AG’(白银) :return 某期货品种在策略当前日期的可交易合约标的列表 """ assert underlying_symbol, "underlying_symbol is required" dt = to_date_str(date) return JQDataClient.instance().get_future_contracts(underlying_symbol=underlying_symbol, dt=dt)
9945c897c643e410f8a127da5b77525d6e3ba28c
1,122
import urllib3 import requests def rodeo_query(fc, pallet): # 3.5-4 seconds for 150 elem """ Get pd DataFrame with info from rodeo about pallet/tote in TS Out. :param fc: str :param pallet: Pallet or Tote are accepted. :return: df or "No data was found" if status_code = 200, "There was an error while connecting to {url}" otherwise. """ url = f"https://rodeo-dub.amazon.com/{fc}/Search?_enabledColumns=on&enabledColumns=ASIN_TITLES&enabledColumns" \ f"=FC_SKU&enabledColumns=OUTER_SCANNABLE_ID&&searchKey={pallet} " urllib3.disable_warnings() # prevent warnings for unverified request print(COLOR + "Downloading manifested pallet's content from Rodeo.") with requests.Session() as req: resp = req.get(url, timeout=30, verify=False, allow_redirects=True, auth=HTTPKerberosAuth(mutual_authentication=OPTIONAL)) if resp.status_code == 200: data = pd.read_html(resp.text, flavor=None, header=0, parse_dates=["Need To Ship By Date"]) if data is not None and len(data[0]) > 0: df = pd.concat(data, sort=False) df = df.drop(columns='Unnamed: 0') return df else: return f"No data was found at {url}\nPlease check that {pallet} is correct.\nIf the error persists, " \ f"please check Rodeo status for your FC: {fc}." else: # return resp.raise_for_status() # to see error return f"There was an error while connecting to {url}"
926a9f42b5ed82128d4e5fae4adc2c74dab3e567
1,123
import itertools def plan_to_joint_configuration(robot, qgoal, pname='BiRRT', max_iters=20, max_ppiters=40, try_swap=False): """ Plan a trajectory to the given `qgoal` configuration. Parameters ---------- robot: orpy.Robot The OpenRAVE robot qgoal: array_like The goal configuration pname: str Name of the planning algorithm. Available options are: `BasicRRT`, `BiRRT` max_iters: float Maximum iterations for the planning stage max_ppiters: float Maximum iterations for the post-processing stage. It will use a parabolic smoother wich short-cuts the trajectory and then smooths it try_swap: bool If set, will compute the direct and reversed trajectory. The minimum duration trajectory is used. Returns ------- traj: orpy.Trajectory Planned trajectory. If plan fails, this function returns `None`. """ qstart = robot.GetActiveDOFValues() env = robot.GetEnv() planner = orpy.RaveCreatePlanner(env, pname) params = orpy.Planner.PlannerParameters() params.SetMaxIterations(max_iters) if max_ppiters > 0: params.SetPostProcessing('ParabolicSmoother', '<_nmaxiterations>{0}</_nmaxiterations>'.format(max_ppiters)) else: params.SetPostProcessing('', '') # Plan trajectory best_traj = None min_duration = float('inf') reversed_is_better = False count = 0 for qa, qb in itertools.permutations([qstart, qgoal], 2): count += 1 with robot: robot.SetActiveDOFValues(qa) params.SetGoalConfig(qb) params.SetRobotActiveJoints(robot) initsuccess = planner.InitPlan(robot, params) if initsuccess: traj = orpy.RaveCreateTrajectory(env, '') status = planner.PlanPath(traj) # Plan the trajectory if status == orpy.PlannerStatus.HasSolution: duration = traj.GetDuration() if duration < min_duration: min_duration = duration best_traj = orpy.RaveCreateTrajectory(env, traj.GetXMLId()) best_traj.Clone(traj, 0) if count == 2: reversed_is_better = True if not try_swap: break # Check if we need to reverse the trajectory if reversed_is_better: best_traj = orpy.planningutils.ReverseTrajectory(best_traj) return best_traj
78bf727bede2d886ba93825e3a0cd8ccaa99f57e
1,124
def _get_texinfo(data): """Return the texture information of a texture data. Arguments: * data: the texture data as an array. Returns: * texinfo: a dictionary with the information related to the texture data. """ assert data.ndim == 3 size = data.shape[:2] if size[0] == 1: ndim = 1 elif size[0] > 1: ndim = 2 ncomponents = data.shape[2] return dict(size=size, ndim=ndim, ncomponents=ncomponents)
9dfa3b88e65b4c7b7eaa60149f4f24381b36e762
1,125
def set_featured_notebooks(notebook_ids): # noqa: E501 """set_featured_notebooks :param notebook_ids: Array of notebook IDs to be featured. :type notebook_ids: List[str] :rtype: None """ update_multiple(ApiNotebook, [], "featured", False) if notebook_ids: update_multiple(ApiNotebook, notebook_ids, "featured", True) return None, 200
7add2e120bf803cf8fa36c0fa56c854654c447fa
1,126
def speed_to_cadences(bicycle, speed, digits=None): """ Return cadences in hertz (revolutions per second). Speed is measured in kilometers per hour. Assume the following bicycle attributes are non-null and non-empty: - front_cogs - rear_cogs - crank_length - rear_wheel Raise a ``ValueError``, if that is not the case. EXAMPLES:: >>> w = Wheel(diameter=600) >>> b = Bicycle(front_cogs=[40], rear_cogs=[20, 30], crank_length=100, rear_wheel=w) >>> speed_to_cadences(b, 18.1, digits=1) {(40, 30): 2.0, (40, 20): 1.3} """ b = bicycle attrs = ['front_cogs', 'rear_cogs', 'crank_length', 'rear_wheel'] check_attrs(b, *attrs) check_attrs(b.rear_wheel, 'diameter') gr = gain_ratios(b) result = {} for (k, g) in gr.items(): result[k] = speed/(2*pi*b.crank_length*g*(3600/1e6)) if digits is not None: result = {k: round(v, digits) for k, v in result.items()} return result
358343831e341f49facd8b2c0af940ee765083aa
1,127
import hashlib def _gen_version(fields): """Looks at BotGroupConfig fields and derives a digest that summarizes them. This digest is going to be sent to the bot in /handshake, and bot would include it in its state (and thus send it with each /poll). If server detects that the bot is using older version of the config, it would ask the bot to restart. Args: fields: dict with BotGroupConfig fields (without 'version'). Returns: A string that going to be used as 'version' field of BotGroupConfig tuple. """ # Just hash JSON representation (with sorted keys). Assumes it is stable # enough. Add a prefix and trim a bit, to clarify that is it not git hash or # anything like that, but just a dumb hash of the actual config. digest = hashlib.sha256(utils.encode_to_json(fields)).hexdigest() return 'hash:' + digest[:14]
a4bd4420ce548f8a0c40f3120c119f89c158a371
1,128
def pay_and_save_financing(req: request, request_json, account_id): """Set up the financing statement, pay if there is an account id, and save the data.""" # Charge a fee. token: dict = g.jwt_oidc_token_info statement = FinancingStatement.create_from_json(request_json, account_id, token.get('username', None)) invoice_id = None registration = statement.registration[0] pay_trans_type, fee_quantity = resource_utils.get_payment_type_financing(registration) pay_ref = None if not is_reg_staff_account(account_id): pay_account_id: str = account_id if not is_sbc_office_account(account_id) else None payment = Payment(jwt=jwt.get_token_auth_header(), account_id=pay_account_id, details=resource_utils.get_payment_details_financing(registration)) pay_ref = payment.create_payment(pay_trans_type, fee_quantity, None, registration.client_reference_id) else: payment_info = resource_utils.build_staff_registration_payment(req, pay_trans_type, fee_quantity) payment = Payment(jwt=jwt.get_token_auth_header(), account_id=None, details=resource_utils.get_payment_details_financing(registration)) pay_ref = payment.create_payment_staff_registration(payment_info, registration.client_reference_id) invoice_id = pay_ref['invoiceId'] registration.pay_invoice_id = int(invoice_id) registration.pay_path = pay_ref['receipt'] # Try to save the financing statement: failure throws an exception. try: statement.save() except Exception as db_exception: # noqa: B902; handle all db related errors. current_app.logger.error(SAVE_ERROR_MESSAGE.format(account_id, 'financing', repr(db_exception))) if account_id and invoice_id is not None: current_app.logger.info(PAY_REFUND_MESSAGE.format(account_id, 'financing', invoice_id)) try: payment.cancel_payment(invoice_id) except SBCPaymentException as cancel_exception: current_app.logger.error(PAY_REFUND_ERROR.format(account_id, 'financing', invoice_id, repr(cancel_exception))) raise db_exception return statement
0de221d2e6acb090e2e2a135b1280f2daa73b63c
1,130
def resolve_cmds_path(cmds, singlesrv_mode): """Resolve the cmds path if in single server mode. Args: cmds: A list of sender/receiver commands. singlesrv_mode: A bool on whether running in single server mode. Returns: The commands that path has been resolved if needed (in single server mode). """ if not singlesrv_mode: return cmds r_cmds = [] for cmd in cmds: r_cmds.append(_resolve_binary_path_for_timed_cmd(cmd)) return r_cmds
6d7e673a48c657a446785716fc09f47d4f87d81d
1,131
import base64 def _encode_base64(data: str) -> str: """Base 64 encodes a string.""" ebytes = base64.b64encode(data.encode("utf-8")) estring = str(ebytes, "utf-8") return estring
5304972fec4cc54d9fa652cbd977b7c069d228d5
1,132
from typing import Mapping from typing import Any def workflow_spec( dag: DAG, workflow: Workflow, ) -> Mapping[str, Any]: """ Return a minimal representation of a WorkflowSpec for the supplied DAG and metadata. Spec: https://github.com/argoproj/argo-workflows/blob/v3.0.4/docs/fields.md#workflowspec Parameters ---------- dag The DAG to generate the spec for workflow The configuration for this workflow Raises ------ ValueError If any of the extra_spec_options collides with a property used by the runtime. """ validate_parameters(inputs=dag.inputs, params=workflow.params) spec = { "entrypoint": BASE_DAG_NAME, "templates": _templates( node=dag, container_image=workflow.container_image, container_command=workflow.container_entrypoint_to_dag_cli, params=workflow.params, ), } if workflow.params: spec["arguments"] = _workflow_spec_arguments(workflow.params) spec = with_extra_spec_options( original=spec, extra_options=workflow.extra_spec_options, context="the Workflow spec", ) return spec
d13b7242f3158ea7528141ca65a17df01968c14e
1,133
def redirect(request): """ Handling what happens when the groupcode is submitted by user and handles input from user's when they are answering questions. :param request: :return: The methods returns the student view page which is the actual game to the user if they entered a correct groupcode, it will also return messages when user's are answering questions in the quiz telling them if the answers are correct or not """ """handling what happens when the groupcode is entered and submitted aswell as the question logic""" global score global num map_check = False # Below is to check if whether the button is for groupcode or answer to question # process the group code passed from the landing page if request.method == 'POST' and 'submit-groupcode' in request.POST: # Get inputted groupcode from the user groupcode = str(request.POST.get('groupCode')) # if the group code exists, load the treasure hunt page with the correct questions if Gamecode.objects.filter(groupcode=groupcode).exists(): #Below is for question loading and getting question informations questionNum = Gamecode.objects.get(groupcode=groupcode) mapCheck = questionNum.map routeID = questionNum.routeID_id num = questionNum.questionNum score = questionNum.score # Get question by using the question number the group is currently on info = Questions.objects.filter(node_num=int(num),routeID=routeID) # Add group code into user's session request.session['groupcode'] = groupcode # Add score into user's session request.session['score'] = score # Add routeID into user's session request.session['routeID'] = routeID #To show the correct map for the user to go to when the join the game after a question is answered but the # map check is not yet done if num >1: print(num) #set map value to the previous question num -=1 print(num) latest_question = Questions.objects.get(node_num=num, routeID=routeID) #Return number to the correct question number num +=1 else: latest_question = Questions.objects.get(node_num=num , routeID=routeID) location = latest_question.location longtitude = latest_question.longtitude latitude = latest_question.latitude place_name = latest_question.answers return render(request, 'app/studentview.html',{"groupcode":groupcode, "data":info, "id":id, "score":score,"map_check":mapCheck,"location":location,"longtitude": longtitude, "latitude":latitude,"answer":place_name}) # otherwise show an error message else: print("Wrong") messages.error(request, 'The game code does not exist') return render(request, 'app/index.html') # if an answer to question is submitted, check if it is correct if request.method == 'POST' and 'submit-question' in request.POST: # Get routeID from user's session routeID = request.session['routeID'] # Get groupcode from user's session groupcode = request.session['groupcode'] # Get text from the input answer box data = str(request.POST.get('answer')) # Retrieve the current question the group is on from the database questionNum = Gamecode.objects.get(groupcode=groupcode) # if answer is correct for the current node, move onto the next question if it exists, # otherwise show they have finished the quiz if Questions.objects.filter(answers__icontains=data.strip(), node_num=int(num), routeID=routeID).exists(): latest_question = Questions.objects.get(node_num=num, routeID=routeID) location = latest_question.location longtitude = latest_question.longtitude latitude = latest_question.latitude place_name = latest_question.answers map_check = "True" # Add 1 to the counter so the questions moves on to the next one num += 1 # Check whether if the user is on the last question if Questions.objects.filter(node_num=int(num), routeID=routeID).exists(): score += 3 questionNum.map = map_check questionNum.questionNum = num questionNum.score = score questionNum.save() print(location) info = Questions.objects.filter(node_num=num, routeID=routeID) messages.success(request, 'Correct!') #Generate message saying correct return render(request, 'app/studentview.html',{"groupcode":groupcode,"data":info,"id":id, "score":score, "map_check":map_check, "location":location,"longtitude": longtitude, "latitude":latitude,"answer":place_name}) # Case when the user is on the last question else: # To make sure user stays on the last question num -=1 questionNum.questionNum = num questionNum.map = map_check questionNum.save() info = Questions.objects.filter(node_num=num,routeID=routeID) # Generate message when user finish the quiz messages.success(request, 'You have finished the quiz, well done!') # Return the information back to user's view return render(request, 'app/studentview.html', {"groupcode":groupcode,"data":info,"id":id, "score":score, "map_check":map_check, "location":location,"longtitude": longtitude, "latitude":latitude,"answer":place_name,"Finished":"True"}) # Case when user gets the answer wrong else: info = Questions.objects.filter(node_num=num, routeID=routeID) # Return incorrect message messages.error(request, 'That is the wrong answer, please try again') # Return the information back to user's view return render(request, 'app/studentview.html', {"groupcode": groupcode, "data": info, "id": id,"score":score}) # Case when user refreshes the page during the game if 'groupcode' in request.session: # Retrieve information about the questions groupcode = request.session['groupcode'] routeID = request.session['routeID'] questionNum = Gamecode.objects.get(groupcode=groupcode) num = questionNum.questionNum mapcheck = questionNum.map # Get question from the database using num counter info = Questions.objects.filter(node_num=int(num), routeID=routeID) if num > 1: print(num) # set map value to the previous question num -= 1 print(num) latest_question = Questions.objects.get(node_num=num, routeID=routeID) # Return number to the correct question number num += 1 else: latest_question = Questions.objects.get(node_num=num, routeID=routeID) location = latest_question.location longtitude = latest_question.longtitude latitude = latest_question.latitude place_name = latest_question.answers # Return the information back to user's view return render(request, 'app/studentview.html', {"groupcode": groupcode, "data": info, "id": id, "score": score, "map_check": mapcheck, "location": location, "longtitude": longtitude, "latitude": latitude, "answer": place_name}) else: # Redirect user back to start page return render(request, 'app/index.html')
5f906dae9bde9533b5b09bd5540b8458a766e583
1,134
import torch def build_test_fn(policy, optim, log_dir, model_name, train_collector, save_train_buffer, obs_shape, stack_num, env_id, num_episodes): """ Build custom test function for maze world environment """ def custom_test_fn(epoch, env_step): # Save agent print(f"Epoch = {epoch}") torch.save({'model': policy.state_dict(), 'optim': optim.state_dict()}, log_dir + model_name + f'_epoch{epoch}.pth') if save_train_buffer: train_collector.buffer.save_hdf5(f'{log_dir}/epoch{epoch}_train_buffer.hdf5') # Record agent`s performance in video policy.eval() test_env = envpool.make_gym(env_id, num_envs=1, seed=0, episodic_life=False, reward_clip=True, stack_num=4, gray_scale=False, img_height=160, img_width=160) collector = ts.data.Collector(policy, test_env, exploration_noise=True) record.collect_and_record(collector, n_episode=num_episodes // 2, obs_shape=obs_shape, stack_num=stack_num, log_dir=log_dir, epoch=epoch, starting_episode=0) collector = ts.data.Collector(policy, test_env, exploration_noise=False) record.collect_and_record(collector, n_episode=num_episodes // 2, obs_shape=obs_shape, stack_num=stack_num, log_dir=log_dir, epoch=epoch, starting_episode=num_episodes // 2) return custom_test_fn
6fefef23e1a502ce30f556ea9350d933e7303dfd
1,135
def check_score(encoding, min_qual, qual_str): """Return True if the average quality score is at least min_qual """ qscores = [encoding[q] for q in qual_str] return sum(qscores) >= min_qual * len(qscores)
427dd8617d5ab425e3b7989923a271599fc7371a
1,136
import functools import warnings def add_unsafe_warning(func, fig): """ Generate warning if not supported by Paxplot """ @functools.wraps(func) def wrapper(*args, **kwargs): if fig._show_unsafe_warning: warnings.warn( f'The function you have called ({func.__name__}) is not ' 'officially supported by Paxplot, but it may still work. ' 'Report issues to ' 'https://github.com/kravitsjacob/paxplot/issues', Warning ) return func(*args, **kwargs) return wrapper
8bca3fbc514315cd4c761b2e8f7f1168e01af7a9
1,137
from typing import List from typing import Optional def update_dask_partitions_shuffle( ddf: dd.DataFrame, table: str, secondary_indices: List[str], metadata_version: int, partition_on: List[str], store_factory: StoreFactoryType, df_serializer: DataFrameSerializer, dataset_uuid: str, num_buckets: int, sort_partitions_by: Optional[str], bucket_by: List[str], ) -> da.Array: """ Perform a dataset update with dask reshuffling to control partitioning. The shuffle operation will perform the following steps 1. Pack payload data Payload data is serialized and compressed into a single byte value using ``distributed.protocol.serialize_bytes``, see also ``pack_payload``. 2. Apply bucketing Hash the column subset ``bucket_by`` and distribute the hashes in ``num_buckets`` bins/buckets. Internally every bucket is identified by an integer and we will create one physical file for every bucket ID. The bucket ID is not exposed to the user and is dropped after the shuffle, before the store. This is done since we do not want to guarantee at the moment, that the hash function remains stable. 3. Perform shuffle (dask.DataFrame.groupby.apply) The groupby key will be the combination of ``partition_on`` fields and the hash bucket ID. This will create a physical file for every unique tuple in ``partition_on + bucket_ID``. The function which is applied to the dataframe will perform all necessary subtask for storage of the dataset (partition_on, index calc, etc.). 4. Unpack data (within the apply-function) After the shuffle, the first step is to unpack the payload data since the follow up tasks will require the full dataframe. 5. Pre storage processing and parquet serialization We apply important pre storage processing like sorting data, applying final partitioning (at this time there should be only one group in the payload data but using the ``MetaPartition.partition_on`` guarantees the appropriate data structures kartothek expects are created.). After the preprocessing is done, the data is serialized and stored as parquet. The applied function will return an (empty) MetaPartition with indices and metadata which will then be used to commit the dataset. Returns ------- A dask.Array holding relevant MetaPartition objects as values """ if ddf.npartitions == 0: return ddf group_cols = partition_on.copy() if num_buckets is None: raise ValueError("``num_buckets`` must not be None when shuffling data.") meta = ddf._meta meta[_KTK_HASH_BUCKET] = np.uint64(0) ddf = ddf.map_partitions(_hash_bucket, bucket_by, num_buckets, meta=meta) group_cols.append(_KTK_HASH_BUCKET) packed_meta = ddf._meta[group_cols] packed_meta[_PAYLOAD_COL] = b"" unpacked_meta = ddf._meta ddf = pack_payload(ddf, group_key=group_cols) ddf = ddf.groupby(by=group_cols) ddf = ddf.apply( partial( _store_partition, secondary_indices=secondary_indices, sort_partitions_by=sort_partitions_by, table=table, dataset_uuid=dataset_uuid, partition_on=partition_on, store_factory=store_factory, df_serializer=df_serializer, metadata_version=metadata_version, unpacked_meta=unpacked_meta, ), meta=("MetaPartition", "object"), ) return ddf
d7f050247d89997ec76d00cb6e2e7ed25a7b24fb
1,138
def edit_paycheck(paycheck_id): """ Edit a paycheck """ paycheck = Paycheck.query.get(paycheck_id) form = PaycheckForm(obj=paycheck) return render_template('pay/edit_paycheck.jinja', form=form, paycheck_id=paycheck_id)
9e8a22af102bc818c35c32d49b5a26c348b0f221
1,139
def is_meeting_approved(meeting): """Returns True if the meeting is approved""" if meeting.session_set.first().status.slug == 'apprw': return False else: return True
0dca106890d195f613477334d2bb6187c1587e15
1,140
import requests def check_radarr(): """ Connects to an instance of Radarr and returns a tuple containing the instances status. Returns: (str) an instance of the Status enum value representing the status of the service (str) a short descriptive string representing the status of the service """ try: req = requests.get('{}/api/system/status?apikey={}'.format(paths['Radarr'], keys['Radarr']), timeout=0.2) req.raise_for_status() except (requests.ConnectionError, requests.HTTPError, requests.Timeout): return Status.ERROR.value, "NoAPI" try: data = req.json() except ValueError: return Status.ERROR.value, "BadJSON" if data['version']: return Status.ACTIVE.value, "Online" else: return Status.ERROR.value, "BadAPI"
f078ba526e0fb23dad323db92e9f6ac861da4bf0
1,142