content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def _load_edge_data(graph, regions): """Load and return all relevant edges from the graph.""" has_seat = _load_edges_from_query( graph, 'SELECT inV().@rid AS in_rid, outV().@rid AS out_rid FROM Has_Seat') # The edges in the existing dataset point from parent to child region / settlement. # In the desired dataset, we want the edge to be the other way, so we switch # the "in_rid" and "out_rid" names. has_parent_region = _load_edges_from_query( graph, ''' SELECT inV().@rid AS out_rid, outV().@rid AS in_rid FROM E WHERE ( @this INSTANCEOF "Has_Castles" OR @this INSTANCEOF "Has_Cities" OR @this INSTANCEOF "Has_Towns" OR @this INSTANCEOF "Has_Villages" OR @this INSTANCEOF "Has_Regional+capital" OR @this INSTANCEOF "Has_Places" ) AND ( inV() INSTANCEOF "Region" OR inV() INSTANCEOF "Settlement" ) AND ( outV() INSTANCEOF "Region" OR outV() INSTANCEOF "Settlement" ) ''') + _load_missing_region_edges(regions) lives_in = _load_edges_from_query( graph, ''' SELECT inV().@rid AS in_rid, outV().@rid AS out_rid FROM Has_Place WHERE ( (inV() INSTANCEOF "Region" OR inV() INSTANCEOF "Settlement") AND outV() INSTANCEOF "Character" )''') owes_allegiance_to = _load_edges_from_query( graph, ''' SELECT inV().@rid AS in_rid, outV().@rid AS out_rid FROM Has_Allegiance WHERE ( ( inV() INSTANCEOF "Character" OR inV() INSTANCEOF "Noblehouse" OR inV() INSTANCEOF "Noble_house" ) AND ( outV() INSTANCEOF "Character" OR outV() INSTANCEOF "Noblehouse" OR outV() INSTANCEOF "Noble_house" ) )''') return set(has_seat), set(has_parent_region), set(lives_in), set(owes_allegiance_to)
d7a002c6214b614e95edc42d850dc9df51a26462
3,658,725
def get_story_assignee(jira_sheet, process): """ Accessor for Story Assignee Accessor method for retrieving the value for Story Assignee on the JIRA Stories Sheet. There is a check to make certain the process in question is amongst those qualified to exist. Args: jira_sheet: A variable holding an Excel Workbook sheet in memory. process: A variable holding the process of an Issue. Returns: A string value of the Parent """ if process in PROCESS_DICT: return (jira_sheet[PROCESS_DICT.get(process) + "6"].value) else: print("""Error: " + process + " is an invalid process. The following QE processes are acceptable: Complaints, Inquiry, CAPA, Quality Event, Change Control.\n""")
3f49c10e540b001cf0f4eebf69a1821a16ec9476
3,658,726
def predict_mhalo(obs_dsigma, mock_use, logms_mod_tot, logms_mod_inn, sig_logms=None): """Halo mass and its scatter in each bin. Parameters ---------- obs_dsigma: list List of observed DeltaSigma profiles. mock_use: numpy array UniverseMachine mock catalog. logms_mod_tot : ndarray Total stellar mass (e.g. M100) predicted by UM. logms_mod_inn : ndarray Inner stellar mass (e.g. M10) predicted by UM. sig_logms: numpy array, optional Uncertainties of stellar mass. Default: None """ # The mock catalog and precomputed mass files for subsamples return [get_mean_mhalo(mock_use, obs_prof, logms_mod_tot, logms_mod_inn, sig_logms=sig_logms) for obs_prof in obs_dsigma]
0c68d773155f997d85361ae663bf0eaae09be258
3,658,727
def create_agent_model(env, lr=1e-4, h_size=128, epsilon=0.2, beta=1e-3, max_step=5e6, normalize=False, num_layers=2): """ Takes a Unity environment and model-specific hyper-parameters and returns the appropriate PPO agent model for the environment. :param env: a Unity environment. :param lr: Learning rate. :param h_size: Size of hidden layers/ :param epsilon: Value for policy-divergence threshold. :param beta: Strength of entropy regularization. :return: a sub-class of PPOAgent tailored to the environment. :param max_step: Total number of training steps. """ if num_layers < 1: num_layers = 1 brain_name = env.brain_names[0] brain = env.brains[brain_name] if brain.action_space_type == "continuous": return ContinuousControlModel(lr, brain, h_size, epsilon, max_step, normalize, num_layers) if brain.action_space_type == "discrete": return DiscreteControlModel(lr, brain, h_size, epsilon, beta, max_step, normalize, num_layers)
ef43219e9e12ba46c81ed3a39ecb1b82e8953585
3,658,728
from typing import List def decode_to_sequence(encoded_sequence: Bytes) -> List[RLP]: """ Decodes a rlp encoded byte stream assuming that the decoded data should be of type `Sequence` of objects. Parameters ---------- encoded_sequence : An RLP encoded Sequence. Returns ------- decoded : `Sequence[RLP]` Sequence of objects decoded from `encoded_sequence`. """ if encoded_sequence[0] <= 0xF7: len_joined_encodings = encoded_sequence[0] - 0xC0 ensure(len_joined_encodings < len(encoded_sequence)) joined_encodings = encoded_sequence[1 : 1 + len_joined_encodings] else: joined_encodings_start_idx = 1 + encoded_sequence[0] - 0xF7 ensure(joined_encodings_start_idx - 1 < len(encoded_sequence)) # Expectation is that the big endian bytes shouldn't start with 0 # while trying to decode using RLP, in which case is an error. ensure(encoded_sequence[1] != 0) len_joined_encodings = Uint.from_be_bytes( encoded_sequence[1:joined_encodings_start_idx] ) ensure(len_joined_encodings >= 0x38) joined_encodings_end_idx = ( joined_encodings_start_idx + len_joined_encodings ) ensure(joined_encodings_end_idx - 1 < len(encoded_sequence)) joined_encodings = encoded_sequence[ joined_encodings_start_idx:joined_encodings_end_idx ] return decode_joined_encodings(joined_encodings)
cb33dd9da8deb2096ce3ad205a743c4c22c0f4c8
3,658,729
def list_field_override_choices(override_map=None, html=True): """ This returns either a list of allowable choices, or an HTML-formatted unordered list (default). """ if override_map: if html: choices = '<b>These are the allowable field override choices for field name:<ul>' else: choices = [] for item in override_map: if html: choices += '<li>{}</li>'.format(item['field']) else: choices.append(item['field']) return choices return None
9b29493af651d95d67f8bd2c4283f53e737e7c5c
3,658,730
import six def _safe_resolve_url(url): """ Previously, resolve_url_lazy would fail if the url was a unicode object. See <https://github.com/fusionbox/django-authtools/issues/13> for more information. Thanks to GitHub user alanwj for pointing out the problem and providing this solution. """ return six.text_type(resolve_url(url))
9b06bc346ebe03b1e5209aa8c108b76aae895089
3,658,733
def get_metrics( reset: bool = False, include_custom: bool = True, raise_errors: bool = True, ) -> pd.DataFrame: """ Returns table of available metrics used for CV. Example ------- >>> from pycaret.datasets import get_data >>> boston = get_data('boston') >>> from pycaret.regression import * >>> exp_name = setup(data = boston, target = 'medv') >>> all_metrics = get_metrics() reset: bool, default = False When True, will reset all changes made using the ``add_metric`` and ``remove_metric`` function. include_custom: bool, default = True Whether to include user added (custom) metrics or not. raise_errors: bool, default = True If False, will suppress all exceptions, ignoring models that couldn't be created. Returns: pandas.DataFrame """ return pycaret.internal.tabular.get_metrics( reset=reset, include_custom=include_custom, raise_errors=raise_errors, )
1d2ed9372aa6f26cd740e6987a2e94baaef647dc
3,658,734
def get_unique_wikilinks(filepath): """Get UNIQUE wikilinks from a md file. The links' order of appearance in the file IS preserved in the output. This accounts for: - Aliases / alt text, so [[Lorem ipsum|L.I.]] will be represented as 'Lorem ipsum'. - Header text links, so [[Lorem ipsum#Dummy text]] will be represented as 'Lorem ipsum'. Args: filepath (pathlib Path): Path object representing the file from which info will be extracted. Returns: list of strings """ plaintext = _get_ascii_plaintext_from_md_file(filepath, remove_code=True) wikilinks = _get_unique_wikilinks(plaintext, remove_aliases=True) return wikilinks
ca02428942d8a555d606a5c4b8190859917c22c7
3,658,735
def parse_single_example(serialized_example, params): """Parses a singel serialized TFExample string.""" decoder = tf_example_decoder.TfExampleDecoder() data = decoder.decode(serialized_example) image = data['image'] source_id = data['source_id'] source_id = dataloader_utils.process_source_id(source_id) height = data['height'] width = data['width'] boxes = data['groundtruth_boxes'] boxes = box_utils.denormalize_boxes(boxes, tf.shape(image)[:2]) classes = data['groundtruth_classes'] is_crowds = data['groundtruth_is_crowd'] areas = data['groundtruth_area'] image = input_utils.normalize_image(image) image, image_info = input_utils.resize_and_crop_image( image, params.retinanet_parser.output_size, padded_size=input_utils.compute_padded_size( params.retinanet_parser.output_size, 2 ** params.anchor.max_level), aug_scale_min=1.0, aug_scale_max=1.0) anchors = anchor.Anchor( params.anchor.min_level, params.anchor.max_level, params.anchor.num_scales, params.anchor.aspect_ratios, params.anchor.anchor_size, image.get_shape().as_list()[:2]) labels = { 'anchor_boxes': anchors.multilevel_boxes, 'image_info': image_info, } groundtruths = { 'source_id': source_id, 'height': height, 'width': width, 'num_detections': tf.shape(classes), 'boxes': boxes, 'classes': classes, 'areas': areas, 'is_crowds': tf.cast(is_crowds, tf.int32), } return image, labels, groundtruths
e274a6ebfe7e7aa51dc7bc6b779ef222081a7e47
3,658,736
def eval_blocking(lamb, mu, k): """Finds the blocking probability of a queue. Args: lamb (float): The rate into the queue. mu (float): The rate out of the queue. k (int): Maximum number of customers able to be in the queue. """ rho = lamb/mu return rho**k*((1-rho)/(1-rho**(k+1)))
4c1ea7f5f7984fb24c85a5c1c6c77cdbc2e1e76a
3,658,737
def get_dependent_columns(covar): """ Get the list of dependent columns :param covar: The covariance matrix :return: Dependent columns """ ind_columns = (np.where(~covar.any(axis=1))[0]).tolist() dep_columns_z = [] for i in range(0, covar.shape[0]): if i not in ind_columns: dep_columns_z.append(i) return exclude_linear_combination_variables(covar, dep_columns_z)
d0145649ce685a4d609809a57d374b1e362c303e
3,658,738
def results_to_answers(guess_hints, answers): """Provide remaining valid answers matching a list of guesses and corresponding hints """ gh_stack = guess_hints.copy() new_ans = answers.copy() while len(gh_stack) > 0: gh = gh_stack.pop() guess = gh[0] hint = gh[1] new_ans = answers_guess_hint_to_answers(new_ans, guess, hint) return new_ans
243cbaeb2d36c66e49cd570c1487bbca7636cd2c
3,658,739
from typing import Optional def get_archive_map(data: DataFrame, row_col: Optional[str] = "ROW") -> Series: """ Get a series mapping object names to archive names :param data: Dataset with archive names as ARCHIVE column and object names in index :type data: DataFrame :param row_col: column with rol index, defaults to "ROW". Set to None if not applicable :type row_col: str, optional :return: Series mapping object names to archive names :rtype: Series """ archive_map = data.ARCHIVE.drop_duplicates() if row_col is not None: archive_map = archive_map.droplevel(row_col) return archive_map
2d66c55c64dab89e7523778411a7bf70ac784bf6
3,658,740
from typing import Iterable import math def gain_ratio(x_mat: ndarray, y_row: ndarray, prop: int, prop_values: Iterable, gain_value: float = None) -> float: """ 计算使用属性 prop 对样本集进行划分的信息增益率,值越大表示使用属性 prop 进行划分 所获得的纯度提升越大。此方法对可取值数目较少的属性有所偏好 :param x_mat: 特征向量组,行数 m 表示样本数,列数 n 表示特征数 :param y_row: 输出向量。是一个只有一个维度的行向量,要和 x_mat 匹配 :param prop: 进行划分的属性 :param prop_values: 属性的取值 :param gain_value: 信息增益。给出该值是为了避免重复计算。 :return: 信息增益率 """ prop_x = x_mat[:, prop] prop_y_num = [] for v in prop_values: prop_y_num.append(len(y_row[prop_x == v])) m = y_row.shape[0] intrinsic_value = 0 for num in prop_y_num: tmp = num / m intrinsic_value = intrinsic_value - tmp * (0 if math.isclose(tmp, 0) else math.log2(tmp)) if gain_value is None: gain_value = gain(x_mat, y_row, prop, prop_values) return gain_value / intrinsic_value
08a26ba4c3dc7712ca515f128f7e3039f005b993
3,658,741
def _LengthError(e: ByteList): """Check if the length of the EDID is a multiple of 128. Args: e: The list form of the EDID to be checked. Returns: A list of error.Error objects, or None. """ if not len(e) % 128: return None else: return [ error.Error( "Overall EDID", "Invalid length", "Length % 128 = 0", "Length %% 128 = %d" % (len(e) % 128), ) ]
940b6f4b2648eefe79afe69f623b0f1e02583ce1
3,658,742
def __single_auc_score__(feature_i, clf, cv_indices, X, y, sample_weight=None): """Method determining the 'area under curve' for a single test set. This function is intended for internal use. Parameters ---------- feature_i: int Index of the tested feature. clf: object Classifier that should be used for the classification. It needs a fit and a predict_proba function. cv_indices: list of tuples Indices for all the cross validation steps. They are explicit pass, so all test sets use the same splitting. X : numpy.float32array, shape=(n_samples, n_obs) Values describing the samples. y : numpy.float32array, shape=(n_samples) Array of the true labels. sample_weight : None or numpy.float32array, shape=(n_samples) If weights are used this has to contain the sample weights. None in the case of no weights. Returns ------- feature_i: int Index of the tested feature. It is need as a return value for asynchronous parallel processing auc_score: float Returns calculated auc score. """ y_pred = np.zeros_like(y, dtype=float) for i, [train_idx, test_idx] in enumerate(cv_indices): X_train = X[train_idx] X_test = X[test_idx] y_train = y[train_idx] if sample_weight is None: sample_weight_train = None sample_weight_test = None else: sample_weight_train = sample_weight[train_idx] sample_weight_test = sample_weight[test_idx] clf = clf.fit(X=X_train, y=y_train, sample_weight=sample_weight_train) y_pred[test_idx] = clf.predict_proba(X_test)[:, 1] auc_score = roc_auc_score(y, y_pred, sample_weight=sample_weight_test) return feature_i, auc_score
51738218bde23aeb3633bcfa47dff918af29c4cd
3,658,743
def IntCurveSurface_ThePolygonToolOfHInter_Bounding(*args): """ :param thePolygon: :type thePolygon: IntCurveSurface_ThePolygonOfHInter & :rtype: Bnd_Box """ return _IntCurveSurface.IntCurveSurface_ThePolygonToolOfHInter_Bounding(*args)
294da704fcc9a59a8e7fc2042d050255aa45accb
3,658,744
def identity_show(client, resource_group_name, account_name): """ Show the identity for Azure Cognitive Services account. """ sa = client.get(resource_group_name, account_name) return sa.identity if sa.identity else {}
19018c895f3fdf0b2b79788547bf80a400724336
3,658,745
import re def normalize_country_code(country_code): """ Normalize country codes a bit by making capitalization consistent and removing trailing comments (and other words). """ if not country_code: return country_code country_code = re.match(r'^(\w+)', country_code).group(1) return country_code.upper()
37dce64b62ae4ec20cb2d9b10c66beeba73c5683
3,658,747
import math def get_angle(p1, p2): """Get the angle between two points.""" return math.atan2(p2[1] - p1[1], p2[0] - p1[0])
a29ea1ed74a6c071cf314d1c38c6e2f920bd1c3a
3,658,748
def per_application(): """ :return: a seeder function that always returns 1, ensuring at most one delegate is ever spawned for the entire application. """ return lambda msg: 1
7ecc568846ab484557e768ad372f4faf85238401
3,658,749
import requests from bs4 import BeautifulSoup def get_job_information(url): """ Uses bs4 to grab the information from each job container based on the url. Parameters ---------- url : str Career builder url of any job Returns ------ job_data : dict Contains Job Name, Company Name, Job Location, Description, Skills and apply link. """ website = requests.get(url).text job_soup = BeautifulSoup(website, 'html.parser') job_name = "N/A" try: job_name = job_soup.select('h2.h3')[0].getText() except Exception as err: print(f"The job tile could not be selected properly") print(err) print(f'Skipping {url}...') company_name = "N/A" try: company_name = job_soup.select('.data-details > span:nth-child(1)')[0].getText() except Exception as err: print(f"The company name could not be selected properly") print(err) print(f'Skipping {url}...') job_location = "N/A" try: job_location = job_soup.select('.data-details > span:nth-child(2)')[0].getText() except Exception as err: print(f"The location could not be selected properly") print(err) print(f'Skipping {url}...') job_description = job_soup.select('#jdp_description > div.col-2 > div.col.big.col-mobile-full > p') job_description_2 = job_soup.select('#jdp_description > div:nth-child(1) > div:nth-child(1)') desc = [ ] for idx, paragraph in enumerate(job_description): desc.append(job_description[idx].text) if len(desc) == 0: for idx, paragraph in enumerate(job_description_2): desc.append(job_description_2[idx].text) job_skills = [ ] skills_container = job_soup.findAll("div", {"class": "check-bubble"}) for idx, skill in enumerate(skills_container): job_skills.append(skills_container[idx].text) job_data = {'Job Title': job_name, 'Company': company_name, 'Location': job_location, 'Description': desc, 'Skills': job_skills, 'Application Url': url} return job_data
a5c0b53338dbacc7fe0e7c7eb91b66855968af2b
3,658,750
def idiv(self, other): """Compute the element-wise division. Parameters ---------- other : Union[dragon.Tensor, number] The value to divide. Returns ------- dragon.Tensor The self. See Also -------- `dragon.math.div(...)`_ """ return _apply_binary_op([self, other], 'Div', [self])
05afbc883ec835e06cceaa9a13119fbac0df8f5c
3,658,751
def getAudioMetadata(fileRef): """Extract metadata for audio file""" args = [config.mediaInfoExe] args.append("--Output=EBUCore") args.append(fileRef) # Command line as string (used for logging purposes only) cmdStr = " ".join(args) status, out, err = shared.launchSubProcess(args) # Configure XML parser to get rid of blank lines in MediaInfo output parser = etree.XMLParser(remove_blank_text=True) # Parse string to element outElt = etree.XML(out.encode('utf-8'), parser=parser) # Main results to dictionary dictOut = {} dictOut["cmdStr"] = cmdStr dictOut["status"] = status dictOut["outElt"] = outElt dictOut["stderr"] = err return dictOut
4f954d45e6b029b22001a02e49ad453a2f572bb8
3,658,752
def simulation_test(**kwargs): """Decorate a unit test and mark it as a simulation test. The arguments provided to this decorator will be passed to :py:meth:`~reviewbot.tools.testing.testcases.BaseToolTestCase .setup_simulation_test`. Args: **kwargs (dict): Keyword arguments to pass during setup. Returns: callable: The new unit test function. """ def _dec(func): func.simulation_setup_kwargs = kwargs return func return _dec
56aa51374e66bb765bfc3d4da51e3254d06c0b55
3,658,753
def update_action_state(): """ :type action: dart.model.action.Action """ # we receive a list of {action_id, action_status, workflow_instance_id/status} # We will update the database for each such entry try: action_status_updates = request.get_json() _logger.info("AWS_Batch: extracted json from request: {0}".format(action_status_updates)) except Exception as err: _logger.error("AWS_Batch: Failed to extract json from request") return {'result': str(err)}, 500 try: for action_status in action_status_updates: # updating the action state current_action = action_service().get_action(action_status['action_id']) if should_update(action_status['action_status'], current_action.data.state): _logger.info("AWS_Batch: Updating action={0} from {1} to state {2}".format(current_action.id, current_action.data.state, action_status['action_status'])) action_service().update_action_state(current_action, action_status['action_status']) # if we receive a workflow_instance_id (not empty) then we need to set workflow_instance status. # we may need to set workflow and datastore status if they need to be deactivated on failure. if action_status.get('workflow_instance_id'): wfs = action_status.get('workflow_instance_status') wf_instance_status = WorkflowInstanceState.FAILED if (wfs == 'FAILED') else WorkflowInstanceState.COMPLETED _logger.info("AWS_Batch: Updating workflow_instance={0} to state {1}".format(action_status.get('workflow_instance_id'), wf_instance_status)) # Updating workflow_instance with the status sent (success or failure). wf_instance = workflow_service().get_workflow_instance(action_status.get('workflow_instance_id')) workflow_service().update_workflow_instance_state(wf_instance, wf_instance_status) # check if need to deactivate workflow and datastore. if wf_instance_status == WorkflowInstanceState.FAILED: workflow_id = wf_instance.data.workflow_id master_workflow = workflow_service().get_workflow(workflow_id) # Failed action with deactivate on_failure should deactivate the current workflow. if current_action.data.on_failure == ActionOnFailure.HALT: _logger.info("AWS_Batch: Action in workflow={0} failed. Halting on failure and remaining in state {2}".format(master_workflow.id, WorkflowState.ACTIVE)) elif current_action.data.on_failure == ActionOnFailure.DEACTIVATE: _logger.info("AWS_Batch: Updating workflow={0} to state {2}".format(master_workflow.id, WorkflowState.INACTIVE)) workflow_service().update_workflow_state(master_workflow, WorkflowState.INACTIVE) if master_workflow.data.on_failure == WorkflowOnFailure.DEACTIVATE: datastore_id = master_workflow.data.datastore_id _logger.info("AWS_Batch: Updating datastore={0} to state {2}".format(datastore_id, DatastoreState.INACTIVE)) datastore = datastore_service().get_datastore(datastore_id) datastore_service().update_datastore_state(datastore, DatastoreState.INACTIVE) except Exception as err: _logger.error("AWS_Batch: Failed to update action state. err= {0}".format(err)) return {'result': str(err)}, 501 # if all pass we send success status (200) otherwise we will try again later. return {'result': "OK"}, 200
f89142b6877f615cce253d727c001737729394fa
3,658,754
def page_not_found(): """Directs to error page if user is not logged in. :return: HTML file for error page. """ error = 'You must be logged in to view this page.' return render_template('error.html', error=error)
ff3cc2c369154bec1303658bb3c691de448d8231
3,658,755
def mtf_toy_model_parallel(): """Set of hyperparameters.""" hparams = mtf_toy_base() hparams.add_hparam("layout", "hidden:0") return hparams
74c01e9f8c68f07d332119fd7cead21b92e4de84
3,658,756
from typing import Union from pathlib import Path def to_dataframe(sas7bdat_file: Union[str, Path]) -> pd.DataFrame: """Converts a sas7bdat and/or xpt file into a pandas dataframe. args: sas7bdat_file: The name, including the path, for the sas7bdat file. return: A pandas dataframe containing the data from the sas7bdat file. """ df = pd.read_sas(sas7bdat_file) # convert binary strings to utf-8 str_df = df.select_dtypes([np.dtype(object)]) if len(str_df.columns) > 0: str_df = str_df.stack().str.decode("utf-8").unstack() for col in str_df: df[col] = str_df[col] # end conversion to utf-8 return df
70564f16c43a6c6fdaf65841ee1d0c48d8f550f2
3,658,757
def shift_scale_rmsf(rmsf_double, phi, cellsize, ccomp, faraday_peak): """Shift and scale the RMSF, to the parameters of the found clean component. Args: rmsf_double (numpy array): double sized array of complex point spread function values in Faraday space. phi (numpy array): array of Faraday depths. cellsize (float): advised cellsize in Faraday space. ccomp (float): the complex-valued clean component. faraday_peak (int): the index of the peak of the clean component. Returns: ccomp*rmsf_shifted: the shifted and scaled RMSF. """ # Calculate the integer number of pixels required to shift the RMSF: faraday_shift = phi[faraday_peak]/cellsize faraday_shift = faraday_shift.astype(int) # Shift the RMSF and pad with zeros based upon its sign: if faraday_shift > 0: rmsf_shifted = np.roll(rmsf_double, faraday_shift) rmsf_shifted[0:faraday_shift] = 0.0 elif faraday_shift < 0: rmsf_shifted = np.roll(rmsf_double, faraday_shift) rmsf_shifted[len(rmsf_shifted)+faraday_shift:len(rmsf_shifted)] = 0.0 elif faraday_shift == 0: rmsf_shifted = np.copy(rmsf_double) # The shifted RMSF is double the width of the sampled Faraday space # to ensure the shifted beam is subtracted correctly. # Truncate the RMSF so it has same dimension as sampled parameter space: rmsf_len = len(rmsf_shifted) rmsf_shifted = np.delete(rmsf_shifted, np.arange((3*((rmsf_len-1)//4))+1, rmsf_len)) rmsf_shifted = np.delete(rmsf_shifted, np.arange(0, ((rmsf_len-1)//4))) # Scale the RMSF by the magnitude of the clean component: return ccomp*rmsf_shifted
d658cfece87276075b7c53b987772906908b5b80
3,658,758
def region_filter(annos, annotation): """filter for Region annotations. The 'time' parameter can match either 'time' or 'timeEnd' parameters. """ result = [] for anno in annos: time = annotation.get("time") timeEnd = annotation.get("timeEnd") for key in ['text', 'tags']: if anno.get(key) != annotation.get(key): continue if anno.get("regionId") == 0: continue if anno.get("time") not in [time, timeEnd]: continue result.append(anno) return result
3ca4c6ba39d44370b3022f5eb17a25e0e1c9f056
3,658,759
def estimator_mixt_default(sample): """Default estimator of mixture distribution This estimator returns tuple with two non-overlaping parts of `sample` which are estimated to come from continuous and discrete parts of mixture distribution. Estimation is done by deciding sample element to be from discrete part if it is present at least twice in input `sample`. If some part of estimation has no elements, it is represented as `None` in output. Parameters ---------- sample : array_like This should be a valid input to `np.asarray()` so that its output is numeric. Returns ------- sample_cont, sample_disc : tuple with two elements Elements can be `None` if estimation showed no elements from corresponding mixture part. """ # Detect sample from discrete part sample = np.asarray(sample) vals, inverse, counts = np.unique(sample, return_inverse=True, return_counts=True) disc_inds = np.nonzero(counts >= 2)[0] sample_is_disc = np.isin(inverse, disc_inds) # Return separation if np.all(sample_is_disc): return (None, sample) elif np.all(~sample_is_disc): return (sample, None) else: return (sample[~sample_is_disc], sample[sample_is_disc])
31394305d9da7afe553f0dab9753d919b6aa7c73
3,658,760
import inspect def get_post_processors(): """ Loads post processors by inspecting members of the 'post_processors' package. """ post_processor_classes = [] for _, member in inspect.getmembers(post_processors): if inspect.isclass(member): post_processor_classes.append(member) return post_processor_classes
6b65c438657230661b189c8851ca5b662714c4df
3,658,762
def vulcanize(name: str) -> str: """Add prefixes to names that are similar to the prefixes seen in Vulcan characters in the Star Trek™ franchise. :param name: The name to modify. :return: A :class:str object. :rtype: str Usage: >>> # Seed the RNG to make the example predictable. Don't do >>> # this if you want the modification to be random. >>> seed('spam') >>> >>> name = 'Bacon' >>> vulcanize(name) "T'Bacon" """ letter = 't' if roll('1d6') > 5: letters = 'd k l m n p s su v'.split() index = roll(f'1d{len(letters)}') - 1 letter = letters[index] letter = letter.title() name = name.title() return f"{letter}'{name}"
00cd22427ab873852af519a6657bf9504b945fb3
3,658,763
def B(j, p, x, knots): """ Compute B-splines using recursive definition. """ if p == 0: if knots[j] <= x < knots[j+1]: return 1.0 else: return 0.0 else: left = special_div((x-knots[j])*B(j,p-1,x,knots), knots[j+p]-knots[j]) right = special_div((knots[j+1+p]-x)*B(j+1,p-1,x,knots), knots[j+1+p]-knots[j+1]) return left + right
1c578e317a3e2ff00f31b8e0b31b4f184e9bd338
3,658,764
from re import T def not_falsy(item: T, item_name: str) -> T: """ Check if a value is falsy and throw an exception if so. :param item: the item to check for falsiness. :param item_name: the name of the item to include in any exception. :raises ValueError: if the item is falsy. :returns: the item. """ if not item: raise ValueError(f"{item_name} cannot be a value that evaluates to false") return item
b758d3ffe8f4c30086248fc9df2a9e82e05553d3
3,658,765
def _apply_limit_abs_unit(x, lim, unit): """Return one limit with applied unit(abs(x)). See get_limits.""" if unit is None: return lim unit = unit.lower() if unit == 'near': return lim * np.nanmin(np.abs(x)) if unit == 'far': return lim * np.nanmax(np.abs(x)) elif unit == 'median': return lim * np.nanmedian(np.abs(x)) elif unit == 'mean': return lim * np.nanmean(np.abs(x)) else: raise ValueError("Unknown unit %s"%unit)
e3c77192b90b04b4c488ca8bac41f79024517a6b
3,658,766
def load_fits(name): """ Open a fits file image Inputs: name: name of the .fits file (str). Output: image: """ while True: try: file = fits.open(name) image = file.copy() return image, name except FileNotFoundError: print(f"File {name} not found") name = input('Please enter a different file name: ')
24a348239e89cc9e565238e9f124875090ffe92b
3,658,767
def cleanup(): """Clean up resoruces in use by implementation. Clean up any resources that have been allocated by the RPC implementation. This is typically open connections to a messaging service. This function would get called before an application using this API exits to allow connections to get torn down cleanly. :returns: None """ return _get_impl().cleanup()
984d2c3b297c47c1ffaec43302cfb741cfe369e4
3,658,769
def social_bonus_count(user, count): """Returns True if the number of social bonus the user received equals to count.""" return user.actionmember_set.filter(social_bonus_awarded=True).count() >= count
b2469833f315410df266cd0a9b36933edb1f9ac6
3,658,770
def del_category_tag_lib(self,c_uuid,t_uuid): """04删除便签或分类""" if c_uuid: category = Category.by_uuid(c_uuid) if category is None: flash(self, '分类不存在', 'error') return {'status':False} if category.articles: flash(self,'分类下面有文章,请先删除文章','error') return {'status': False} self.db.delete(category) self.db.commit() flash(self, '分类删除成功', 'success') return {'status':True} if t_uuid: tag = Tag.by_uuid(t_uuid) if tag is None: flash(self, '标签不存在', 'error') return {'status':False} if tag.articles: flash(self, '标签下面有文章,请先删除文章', 'error') return {'status': False} self.db.delete(tag) self.db.commit() flash(self, '标签删除成功', 'success') return {'status':True} flash(self, '请输入标签或分类', 'error') return {'status': False}
db915fe29943d9bb63122d73d59a052715798818
3,658,771
import math def get_distance_metres(aLocation1, aLocation2): """ Returns the ground distance in metres between two `LocationGlobal` or `LocationGlobalRelative` objects. This method is an approximation, and will not be accurate over large distances and close to the earth's poles. It comes from the ArduPilot test code: https://github.com/diydrones/ardupilot/blob/master/Tools/autotest/common.py """ dlat = aLocation2.lat - aLocation1.lat dlong = aLocation2.lon - aLocation1.lon return math.sqrt((dlat*dlat) + (dlong*dlong)) * 1.113195e5
57a56fac2d0a3a83083b769b5f896cb82d55dc56
3,658,772
import copy def get_export_summary(results): """Prints to screen the exporting results of example programs. Args: results - results of the compilation stage. which is the output of and export_repos() Returns: Numbers of failed results """ pass_table = PrettyTable() pass_table.field_names = ["EXAMPLE NAME", "TARGET", "IDE", "EXPORT RESULT", "BUILD RESULT"] pass_table.align["EXAMPLE NAME"] = "l" fail_table = copy.deepcopy(pass_table) failure_counter = 0 for exp, status in list(results.items()): for summary in status[2]: pass_table.add_row([summary["name"], summary["target"], summary["ide"], "PASSED", "PASSED"]) for summary in status[3]: fail_table.add_row([summary["name"], summary["target"], summary["ide"], "FAILED", ""]) failure_counter+=1 for summary in status[4]: fail_table.add_row([summary["name"], summary["target"], summary["ide"], "PASSED", "FAILED"]) failure_counter+=1 for summary in status[5]: pass_table.add_row([summary["name"], summary["target"], summary["ide"], "PASSED", "SKIPPED"]) print("\n\nPassed Example Exporting:") print(pass_table) if (failure_counter > 0): print("\n\nFailed Example Exporting:") print(fail_table) print("Number of failures = %d" % failure_counter) return failure_counter
0f68e8da955a73c401536f83e18faa223d603d15
3,658,774
import numpy def _misfitfunc(data, predicted): """ Calculate the total data misfit function between the observed and predicted data. """ result = 0. for d, p, in zip(data, predicted): residuals = d.observed - p result += sqrt(numpy.dot(d.weights*residuals, residuals))/d.norm return result
c21fb4c8d68a2abe20ca155e5776124c69ce2eff
3,658,775
def stream_doi(app, doi): """Returns tuple of URL string and a urlopen() return value.""" apikey = app.cfg.get_or_die('api-keys', 'crossref') url = ('http://crossref.org/openurl/?id=%s&noredirect=true&pid=%s&' 'format=unixref' % (wu.urlquote(doi), wu.urlquote(apikey))) return url, wu.urlopen(url)
7c3569c4492b52c68ed13bcaac9dae0b6805bdb6
3,658,776
from typing import Optional import getpass from datetime import datetime import json def do_evaluation( *, input_path, training_path: Optional[str] = None, testing_path: Optional[str] = None, method, prediction_task, dimensions: int = 300, number_walks: int = 8, walk_length: int = 8, window_size: int = 4, p: float = 1.5, q: float = 2.1, alpha: float = 0.1, beta: float = 4, epochs: int = 5, kstep: int = 4, order: int = 3, embeddings_path: Optional[str] = None, predictive_model_path: Optional[str] = None, training_model_path: Optional[str] = None, evaluation_file: Optional[str] = None, classifier_type: Optional[str] = None, weighted: bool = False, labels_file: Optional[str] = None, ): """Train and evaluate an NRL model.""" if prediction_task == 'link_prediction': node_list = None labels = None graph, graph_train, testing_pos_edges, train_graph_filename = create_graphs( input_path=input_path, training_path=training_path, testing_path=testing_path, weighted=weighted, ) else: if not labels_file: raise ValueError("No input label file. Exit.") node_list, labels = read_node_labels(labels_file) train_graph_filename = input_path graph, graph_train, testing_pos_edges = None, None, None model = embedding_training( train_graph_filename=train_graph_filename, method=method, dimensions=dimensions, number_walks=number_walks, walk_length=walk_length, window_size=window_size, p=p, q=q, alpha=alpha, beta=beta, epochs=epochs, kstep=kstep, order=order, weighted=weighted, ) if training_model_path is not None: model.save_model(training_model_path) if embeddings_path is not None: model.save_embeddings(embeddings_path) if method == 'LINE': embeddings = model.get_embeddings_train() else: embeddings = model.get_embeddings() _results = dict( input=input_path, method=method, dimension=dimensions, user=getpass.getuser(), date=datetime.datetime.now().strftime('%Y-%m-%d-%H%M%S'), ) if prediction_task == 'link_prediction': auc_roc, auc_pr, accuracy, f1, mcc = do_link_prediction( embeddings=embeddings, original_graph=graph, train_graph=graph_train, test_pos_edges=testing_pos_edges, save_model=predictive_model_path, classifier_type=classifier_type, ) _results['results'] = dict( auc_roc=auc_roc, auc_pr=auc_pr, accuracy=accuracy, f1=f1, mcc=mcc, ) else: accuracy, macro_f1, micro_f1, mcc = do_node_classification( embeddings=embeddings, node_list=node_list, labels=labels, save_model=predictive_model_path, classifier_type=classifier_type, ) _results['results'] = dict( accuracy=accuracy, macro_f1=macro_f1, micro_f1=micro_f1, mcc=mcc, ) if evaluation_file is not None: json.dump(_results, evaluation_file, sort_keys=True, indent=2) return _results
ab5939065d9cf70c6e5ddba8530f91cb2577a31c
3,658,777
import re def test_structure_fatal_deformities(good_structure, deformity): """Make specific checks upon performing single invalidating deformations of the data of a good structure. """ if deformity is None: return StructureResource(**good_structure) deformity, message = deformity good_structure["attributes"].update(deformity) with pytest.raises(ValidationError, match=fr".*{re.escape(message)}.*"): StructureResource(**good_structure)
28acc95fb29564ddbf844de70704e31212e59b9f
3,658,778
def edit_user(): """ 返回待编辑用户信息 """ data = request.json user_id = data.get('id') _edit = User.query.filter_by(id=user_id).first() _data = {'account': _edit.account, 'name': _edit.name, 'role_id': _edit.role_id} return jsonify({'data': _data, 'status': 1})
7423eb2342dd135a219bbb6f34ba7f82740b49d0
3,658,779
def transactions(request): """See all transactions that have been contained in blocks.""" vote_list = Vote.objects.all().order_by('timestamp') paginator = Paginator(vote_list, 100, orphans=20, allow_empty_first_page=True) page = request.GET.get('page') votes = paginator.get_page(page) hashes = [SHA3_256.new(str(v).encode('utf-8')).hexdigest() for v in votes] # This happens if you don't use foreign key block_hashes = [] for i in range(0, len(votes)): try: b = Block.objects.get(id=votes[i].block_id) h = b.h except: h = 404 block_hashes.append(h) # zip the three iters votes_pg = votes # for pagination votes = zip(votes, hashes, block_hashes) # Calculate the voting result of 3 cands, the ugly way result = [] for i in range(0, 3): try: r = Vote.objects.filter(vote=i+1).count() except: r = 0 result.append(r) context = { 'votes': votes, 'result': result, 'votes_pg': votes_pg, } return render(request, 'simulation/transactions.html', context)
7ed0d4a8b997a41112eccfc67a19784283e65fd8
3,658,780
import pandas def elections_vote_places_geo(source="xd", folder=".", fLOG=noLOG): """ Retrieves data vote places (bureaux de vote in French) with geocodes. @param source should be None unless you want to use the backup plan ("xd") @param folder where to download @param fLOG logging function @return list of dataframe """ if source is None: raise NotImplementedError("use source='xd'") url = source file = "bureauxvotegeo.zip" data = download_data(file, website=url, whereTo=folder, fLOG=fLOG) for d in data: if d.endswith(".txt"): df = pandas.read_csv(d, sep="\t", encoding="utf-8") return df raise DataNotAvailableError( "Unable to find any csv file in '{0}'".format(file))
b81abbeeed1968e01477cb71897a373a113ffafb
3,658,781
from typing import Optional def erfc( x: oneflow._oneflow_internal.BlobDesc, name: Optional[str] = None ) -> oneflow._oneflow_internal.BlobDesc: """This operator computes the :math:`1-erf(x)`, for more details of `erf` function please refer to `math.erf`. Args: x (oneflow._oneflow_internal.BlobDesc): A Blob name (Optional[str], optional): The name for the operation. Defaults to None. Returns: oneflow._oneflow_internal.BlobDesc: The result Blob For example: .. code-block:: python import oneflow.compatible.single_client as flow import numpy as np import oneflow.compatible.single_client.typing as tp @flow.global_function() def erfc_Job(x: tp.Numpy.Placeholder((3,)) ) -> tp.Numpy: return flow.math.erfc(x) x = np.array([1, 2, 3]).astype(np.float32) out = erfc_Job(x) # out [1.5729921e-01 4.6777353e-03 2.2090495e-05] """ return build_unary_elemwise_math_op("erfc", x, name)
0fd6f01b0d6dbbdf7449a5a7dc2ac9ee3f0bce0e
3,658,782
from typing import Union from typing import Iterable from typing import Optional from typing import List from typing import Dict from typing import Any def ner_manual_tokenizers_bert( dataset: str, source: Union[str, Iterable[dict]], loader: Optional[str] = None, label: Optional[List[str]] = None, tokenizer_vocab: Optional[str] = None, lowercase: bool = False, hide_special: bool = False, hide_wp_prefix: bool = False, ) -> Dict[str, Any]: """Example recipe that shows how to use model-specific tokenizers like the BERT word piece tokenizer to preprocess your incoming text for fast and efficient NER annotation and to make sure that all annotations you collect always map to tokens and can be used to train and fine-tune your model (even if the tokenization isn't that intuitive, because word pieces). The selection automatically snaps to the token boundaries and you can double-click single tokens to select them. Setting "honor_token_whitespace": true will ensure that whitespace between tokens is only shown if whitespace is present in the original text. This keeps the text readable. Requires Prodigy v1.10+ and usese the HuggingFace tokenizers library.""" stream = get_stream(source, loader=loader, input_key="text") # You can replace this with other tokenizers if needed tokenizer = BertWordPieceTokenizer(tokenizer_vocab, lowercase=lowercase) sep_token = tokenizer._parameters.get("sep_token") cls_token = tokenizer._parameters.get("cls_token") special_tokens = (sep_token, cls_token) wp_prefix = tokenizer._parameters.get("wordpieces_prefix") def add_tokens(stream): for eg in stream: tokens = tokenizer.encode(eg["text"]) eg_tokens = [] idx = 0 for (text, (start, end), tid) in zip( tokens.tokens, tokens.offsets, tokens.ids ): # If we don't want to see special tokens, don't add them if hide_special and text in special_tokens: continue # If we want to strip out word piece prefix, remove it from text if hide_wp_prefix and wp_prefix is not None: if text.startswith(wp_prefix): text = text[len(wp_prefix) :] token = { "text": text, "id": idx, "start": start, "end": end, # This is the encoded ID returned by the tokenizer "tokenizer_id": tid, # Don't allow selecting spacial SEP/CLS tokens "disabled": text in special_tokens, } eg_tokens.append(token) idx += 1 for i, token in enumerate(eg_tokens): # If the next start offset != the current end offset, we # assume there's whitespace in between if i < len(eg_tokens) - 1 and token["text"] not in special_tokens: next_token = eg_tokens[i + 1] token["ws"] = ( next_token["start"] > token["end"] or next_token["text"] in special_tokens ) else: token["ws"] = True eg["tokens"] = eg_tokens yield eg stream = add_tokens(stream) return { "dataset": dataset, "stream": stream, "view_id": "ner_manual", "config": { "honor_token_whitespace": True, "labels": label, "exclude_by": "input", "force_stream_order": True, }, }
982ddc4ab2e574870a5790dc37854ff5ffec648a
3,658,783
def test_nested_simple_condition() -> None: """ Iterates and maps expressions over a complex Condition: (A=B OR A=B) AND (A=B OR A=B) """ c1 = Column(None, "t1", "c1") c2 = Column(None, "t1", "c2") co1 = binary_condition(None, ConditionFunctions.EQ, c1, c2) c3 = Column(None, "t1", "c1") c4 = Column(None, "t1", "c2") co2 = binary_condition(None, ConditionFunctions.EQ, c3, c4) or1 = binary_condition(None, BooleanFunctions.OR, co1, co2) c5 = Column(None, "t1", "c1") c6 = Column(None, "t1", "c2") co4 = binary_condition(None, ConditionFunctions.EQ, c5, c6) c7 = Column(None, "t1", "c1") c8 = Column(None, "t1", "c2") co5 = binary_condition(None, ConditionFunctions.EQ, c7, c8) or2 = binary_condition(None, BooleanFunctions.OR, co4, co5) and1 = binary_condition(None, BooleanFunctions.AND, or1, or2) ret = list(and1) expected = [c1, c2, co1, c3, c4, co2, or1, c5, c6, co4, c7, c8, co5, or2, and1] assert ret == expected cX = Column(None, "t1", "cX") co1_b = binary_condition(None, ConditionFunctions.EQ, c1, cX) co2_b = binary_condition(None, ConditionFunctions.EQ, c3, cX) or1_b = binary_condition(None, BooleanFunctions.OR, co1_b, co2_b) co4_b = binary_condition(None, ConditionFunctions.EQ, c5, cX) co5_b = binary_condition(None, ConditionFunctions.EQ, c7, cX) or2_b = binary_condition(None, BooleanFunctions.OR, co4_b, co5_b) and1_b = binary_condition(None, BooleanFunctions.AND, or1_b, or2_b) def replace_col(e: Expression) -> Expression: if isinstance(e, Column) and e.column_name == "c2": return cX return e and1 = and1.transform(replace_col) ret = list(and1) expected = [ c1, cX, co1_b, c3, cX, co2_b, or1_b, c5, cX, co4_b, c7, cX, co5_b, or2_b, and1_b, ] assert ret == expected
f047f916f3ace9142e8940a39fd47d36d43dc108
3,658,784
import functools def _deep_setattr(obj, key, val): """ Set an attribute `key` on the object. If any of the prefix attributes do not exist, they are set to :class:`~pyro.nn.PyroModule`. """ def _getattr(obj, attr): obj_next = getattr(obj, attr, None) if obj_next is not None: return obj_next setattr(obj, attr, PyroModule()) return getattr(obj, attr) lpart, _, rpart = key.rpartition(".") # Recursive getattr while setting any prefix attributes to PyroModule if lpart: obj = functools.reduce(_getattr, [obj] + lpart.split(".")) setattr(obj, rpart, val)
a28b01484de71dc486c73fe9ad01238675b15a04
3,658,785
def inverse_max_dcg(labels, gain_fn=lambda labels: tf.pow(2.0, labels) - 1., rank_discount_fn=lambda rank: 1. / tf.math.log1p(rank), topn=None): """Computes the inverse of max DCG. Args: labels: A `Tensor` with shape [batch_size, list_size]. Each value is the graded relevance of the corresponding item. gain_fn: A gain function. By default this is set to: 2^label - 1. rank_discount_fn: A discount function. By default this is set to: 1/log(1+rank). topn: An integer as the cutoff of examples in the sorted list. Returns: A `Tensor` with shape [batch_size, 1]. """ ideal_sorted_labels, = sort_by_scores(labels, [labels], topn=topn) rank = tf.range(tf.shape(input=ideal_sorted_labels)[1]) + 1 discounted_gain = gain_fn(ideal_sorted_labels) * rank_discount_fn( tf.cast(rank, dtype=tf.float32)) discounted_gain = tf.reduce_sum( input_tensor=discounted_gain, axis=1, keepdims=True) return tf.compat.v1.where( tf.greater(discounted_gain, 0.), 1. / discounted_gain, tf.zeros_like(discounted_gain))
60e5b05af91fbd8e51a58894f9f19a5a8f92d1b5
3,658,786
def get(url): """ 用 GET 请求 url 并返回响应,对301进行了处理 :param url: :return:status_code, headers, body """ protocol, host, port, path = parsed_url(url) s = socket_by_protocol(protocol) s.connect((host, port)) request = 'GET {} HTTP/1.1\r\nhost: {}\r\nConnection: close\r\n\r\n'.format(path, host) encoding = 'utf-8' s.send(request.encode(encoding)) response = response_by_socket(s) r = response.decode(encoding) status_code, headers, body = parsed_response(r) if status_code == 301: url = headers['Location'] return get(url) else: return status_code, headers, body
3ef816149e8b4953e119c807726112feeacc6eed
3,658,787
def NotEqual(data1, data2, target=utils.CCE): """ check whether data1 notequals to data2. Args: data1 (tvm.tensor.Tensor): Tensor. data2 (tvm.tensor.Tensor): Tensor. Returns: tvm.tensor.Tensor. If data1 notequal to data2 return True, else return False. Supported Platforms: 'Ascend', 'GPU', 'CPU' """ utils.check_supported_target(target) if target == utils.CCE: return _not_equal_ascend(data1, data2) else: return _not_equal(data1, data2)
88be9ea40900644a61dd3f37c0a05f9fa8c3eb76
3,658,789
def read_labels(labels_path): """Reads list of labels from a file""" with open(labels_path, 'rb') as f: return [w.strip() for w in f.readlines()]
3ebc61c76dd1ae83b73aa8b77584661c08a51321
3,658,790
def calc_distance_two_points(long_from, lat_from, long_to, lat_to): """Calculate distance between two points Parameters ---------- long_from : float Longitute coordinate from point lat_from : float Latitute coordinate from point long_to : float Longitute coordinate to point lat_to : float Latitue coordinate to point Return ------ distance : float Distance """ distance_in_km = haversine( (long_from, lat_from), (long_to, lat_to), miles=False) return distance_in_km
0c35c22458db165684242389470248632f2e1edb
3,658,792
from typing import Counter def modified_precision(reference_max_counts, hypothesis, n): """ Calculate modified ngram precision. The normal precision method may lead to some wrong translations with high-precision, e.g., the translation, in which a word of reference repeats several times, has very high precision. This function only returns the Fraction object that contains the numerator and denominator necessary to calculate the corpus-level precision. To calculate the modified precision for a single pair of hypothesis and references, cast the Fraction object into a float. The famous "the the the ... " example shows that you can get BLEU precision by duplicating high frequency words. >>> reference1 = 'the cat is on the mat'.split() >>> reference2 = 'there is a cat on the mat'.split() >>> hypothesis1 = 'the the the the the the the'.split() >>> references = [reference1, reference2] >>> float(modified_precision(references, hypothesis1, n=1)) # doctest: +ELLIPSIS 0.2857... In the modified n-gram precision, a reference word will be considered exhausted after a matching hypothesis word is identified, e.g. >>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'military', 'will', ... 'forever', 'heed', 'Party', 'commands'] >>> reference2 = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'military', 'forces', 'always', ... 'being', 'under', 'the', 'command', 'of', 'the', ... 'Party'] >>> reference3 = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'army', 'always', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'party'] >>> hypothesis = 'of the'.split() >>> references = [reference1, reference2, reference3] >>> float(modified_precision(references, hypothesis, n=1)) 1.0 >>> float(modified_precision(references, hypothesis, n=2)) 1.0 An example of a normal machine translation hypothesis: >>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'military', 'always', ... 'obeys', 'the', 'commands', 'of', 'the', 'party'] >>> hypothesis2 = ['It', 'is', 'to', 'insure', 'the', 'troops', ... 'forever', 'hearing', 'the', 'activity', 'guidebook', ... 'that', 'party', 'direct'] >>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'military', 'will', ... 'forever', 'heed', 'Party', 'commands'] >>> reference2 = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'military', 'forces', 'always', ... 'being', 'under', 'the', 'command', 'of', 'the', ... 'Party'] >>> reference3 = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'army', 'always', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'party'] >>> references = [reference1, reference2, reference3] >>> float(modified_precision(references, hypothesis1, n=1)) # doctest: +ELLIPSIS 0.9444... >>> float(modified_precision(references, hypothesis2, n=1)) # doctest: +ELLIPSIS 0.5714... >>> float(modified_precision(references, hypothesis1, n=2)) # doctest: +ELLIPSIS 0.5882352941176471 >>> float(modified_precision(references, hypothesis2, n=2)) # doctest: +ELLIPSIS 0.07692... :param references: A list of reference translations. :type references: list(list(str)) :param hypothesis: A hypothesis translation. :type hypothesis: list(str) :param n: The ngram order. :type n: int :return: BLEU's modified precision for the nth order ngram. :rtype: Fraction """ # Extracts all ngrams in hypothesis # Set an empty Counter if hypothesis is empty. counts = Counter(ngrams(hypothesis, n)) if len(hypothesis) >= n else Counter() # Extract a union of references' counts. # max_counts = reduce(or_, [Counter(ngrams(ref, n)) for ref in references]) max_counts = reference_max_counts[n - 1] # Assigns the intersection between hypothesis and references' counts. clipped_counts = { ngram: min(count, max_counts.get(ngram, 0)) for ngram, count in counts.items() } numerator = sum(clipped_counts.values()) # Ensures that denominator is minimum 1 to avoid ZeroDivisionError. # Usually this happens when the ngram order is > len(reference). denominator = max(1, sum(counts.values())) return Fraction(numerator, denominator, _normalize=False)
cbaf2ca391a6b0ac8bfcf9e2f85aba83f4b585d0
3,658,793
def bin_spectrum(bin_width, wavelength, doppler_shift, flux, flux_uncertainty, final_uncertainty='combine'): """ Args: wavelength: doppler_shift: flux: flux_uncertainty: Returns: """ bw = bin_width wv = wavelength ds = doppler_shift f = flux u = flux_uncertainty v_bins = np.arange(min(ds), max(ds) + bw, bw) binned_data, edges, inds = binned_statistic(ds, [wv, ds, f], bins=v_bins, statistic='mean') wv_bin = binned_data[0] v_bin = binned_data[1] f_bin = binned_data[2] # Combine uncertainties assuming Gaussian regime if final_uncertainty == 'combine': u_bin, edges, inds = binned_statistic(ds, u ** 2, bins=v_bins, statistic='sum') u_count, edges, inds = binned_statistic(ds, u ** 2, bins=v_bins, statistic='count') u_bin = u_bin ** 0.5 / u_count ** 0.5 elif final_uncertainty == 'poisson': confidence_interval = poisson_conf_interval(f_bin) u_bin = np.mean(confidence_interval, axis=0) else: raise ValueError('This final uncertainty type is not implemented.') return wv_bin, v_bin, f_bin, u_bin
3c71977ae845161156ed95b42f68d7de65b80f66
3,658,794
def scrub(old_fs: Vfs, new_fs: Vfs) -> Vfs: """Try to eliminate files which were previously installed but are no longer used.""" old_fs = old_fs.copy() new_fs = new_fs.copy() # Look for files in the old log which are no longer present in the new log for txn in old_fs._log: if txn[0] == "link" and txn not in new_fs._log: new_fs.unlink(txn[2]) elif txn[0] == "mkdir" and txn not in new_fs._log: new_fs.unlink(txn[1]) return new_fs
c1cdfad6c658e481b05658d3041458ab6fd3419c
3,658,795
def get_filename(row): """ Assembles the name of the feature file. Parameters ---------- row : pandas.Series A row fom the sequence dataframe. Must have the following index values: "sample_name", "inj_number", "batch_name", "acquisition_date_and_time". Returns ------- filename : str The filename of the feature file. """ acquisition = row.acquisition_date_and_time if pd.isna(acquisition): acquisition = "1900-01-01_000000" filename = ( "_".join( [ str(row.sample_name), str(row.inj_number), str(row.batch_name), acquisition, ] ) + ".featureXML" ) return filename
68624971527442da110734043bdbaa1c68dc4875
3,658,796
def create_plotly_trace(data_x, data_y, namexy, chosen_mode='lines', use_gl = True, swap_xy = False): """ Создание одного trace по данным :param data_x: данные для оси x :param data_y: данные для оси y :param namexy: название для trace :param chosen_mode: настройка отображения 'lines', 'markers' :return: один trace """ if swap_xy: data_x, data_y = data_y, data_x hovertemplate = namexy + ": %{x}<extra></extra>" else: hovertemplate = namexy + ": %{y}<extra></extra>" if use_gl == True: one_trace = go.Scattergl( x=data_x, y=data_y, name=namexy, mode=chosen_mode, hovertemplate=hovertemplate ) else: one_trace = go.Scatter( x=data_x, y=data_y, name=namexy, mode=chosen_mode, hovertemplate=hovertemplate ) return one_trace
dd90d370c27968053bfaf98f509868d959416d39
3,658,797
import yaml def read_metadata() -> dict: """Reads and returns raw metadata.""" with open(metadata_path().resolve(), "r") as fd: return yaml.safe_load(fd)
0eafc0a722ac5cae69407a7e76d5bf62b7541b69
3,658,798
def new_token(): """ Generate an access token for the user. This endpoint requires basic auth with nickname and password. """ return jsonify({'token': generate_token(g.current_user['id'])})
07497cebfd29a133ab986c86b72b603975378ed8
3,658,800
def get_room_info(room_real_id: int, verify: utils.Verify = None, cookies = None): """ 获取直播间信息(标题,简介等) :param room_real_id: 真实房间ID :param verify: :return: """ if verify is None: verify = utils.Verify() api = API["live"]["info"]["room_info"] if cookies is None: resp = utils.get(api["url"], {"room_id": room_real_id}, cookies=verify.get_cookies()) else: resp = utils.get(api["url"], {"room_id": room_real_id}, cookies=cookies) return resp
a6aa07886034a5f8c539026f8afacaa149860252
3,658,801
def parse_raw(setup, id=None, first_line_is_header=(-1,0,1)): """Used in conjunction with lazy_import and parse_setup in order to make alterations before parsing. Parameters ---------- setup : dict Result of h2o.parse_setup id : str, optional An id for the frame. first_line_is_header : int, optional -1,0,1 if the first line is to be used as the header Returns ------- H2OFrame """ if id: setup["destination_frame"] = _quoted(id).replace("%",".").replace("&",".") if first_line_is_header != (-1,0,1): if first_line_is_header not in (-1, 0, 1): raise ValueError("first_line_is_header should be -1, 0, or 1") setup["check_header"] = first_line_is_header fr = H2OFrame() fr._parse_raw(setup) return fr
56d490eeaa28258ee668ed5efcc0f8a869acaa2b
3,658,802
from datetime import datetime def import_year(year: int = None) -> bool: """Downloads, extracts and imports the Losungen of a given year. The year defaults to the next year.""" session: Session = SessionMaker() repo = TagesLosungRepository(session) year = datetime.date.today().year + 1 if year is None else year losungen = repo.get_by_year(year) session.close() if losungen: return True # Already imported if download_zip(year): extract_zip() import_xml() logger.info("Successfully imported Losungen for %i", year) return True logger.warning("Failed to download zip archive for %i", year) return False
a0e5933178f5d18332f0b231f7a6ec43c0651714
3,658,803
import re def isURL(url: str) -> bool: """ Check whether a given string is a URL. """ return url is not None and re.match(urlregex, url) is not None
6d32fee1fa374c07214d2a75cc39b868338ffa1c
3,658,804
def rmse(Y_true, Y_hat): """ returns root mean squared error Args: Y_true : true outputs [N,(1)] Y_hat : predicted outputs [N, (1)] """ if Y_true.ndim == 2: Y_true = Y_true[:, 0] if Y_hat.ndim == 2: Y_hat = Y_hat[:, 0] return np.sqrt(np.mean((Y_true - Y_hat)**2))
676d14a5058632fbf1cd40e4d60d5cfb4c46e137
3,658,805
def getAllDescWords(itemList): """Returns a list of "description words" for each item named in itemList.""" itemList = list(set(itemList)) # make itemList unique descWords = [] for item in itemList: descWords.extend(NYCitems[item][DESCWORDS]) return list(set(descWords))
fb7ea77fac5aae3abc2e6dbcc1c3af7ac404b5c2
3,658,806
def create_constrained_mechanical_system_from_component(structural_component, constant_mass=False, constant_damping=False, constraint_formulation='boolean', **formulation_options): """ Create a mechanical system from a component where the constraints are applied by a constraint formulation Parameters ---------- structural_component : amfe.component.StructuralComponent Structural component describing the mechanical system constant_mass : bool Flag indicating if mass matrix is constant constant_damping : bool Flag indicating if damping matrix is constant constraint_formulation : str {'boolean', 'lagrange', 'nullspace_elimination'} String describing the constraint formulation that shall be used formulation_options : dict options passed to the set_options method of the constraint formulation Returns ------- system : amfe.solver.translators.MechanicalSystem formulation : amfe.constraint.ConstraintFormulation """ system_unconstrained = create_mechanical_system_from_structural_component(structural_component) constraint_formulation = _create_constraint_formulation(system_unconstrained, structural_component, constraint_formulation, **formulation_options) if constant_mass: M = MemoizeConstant(constraint_formulation.M) else: M = constraint_formulation.M if constant_damping: D = MemoizeConstant(constraint_formulation.D) else: D = constraint_formulation.D f_int = constraint_formulation.f_int K = constraint_formulation.K f_ext = constraint_formulation.f_ext dimension = constraint_formulation.dimension system = MechanicalSystem(dimension, M, D, K, f_ext, f_int) return system, constraint_formulation
e661ba16a691266e60b14d4594db16e09d81c2e2
3,658,808
def parse_certificate_issuer_id(id): """ :param id: The resource collection type. :type id: str :rtype: KeyVaultId """ return parse_object_id('certificates/issuers', id)
919ad42ede4081c67c38f9d44945045d3f84bf87
3,658,809
def normalize_whitespace( text, no_line_breaks=False, strip_lines=True, keep_two_line_breaks=False ): """ Given ``text`` str, replace one or more spacings with a single space, and one or more line breaks with a single newline. Also strip leading/trailing whitespace. """ if strip_lines: text = "\n".join([x.strip() for x in text.splitlines()]) if no_line_breaks: text = constants.MULTI_WHITESPACE_TO_ONE_REGEX.sub(" ", text) else: if keep_two_line_breaks: text = constants.NONBREAKING_SPACE_REGEX.sub( " ", constants.TWO_LINEBREAK_REGEX.sub(r"\n\n", text) ) else: text = constants.NONBREAKING_SPACE_REGEX.sub( " ", constants.LINEBREAK_REGEX.sub(r"\n", text) ) return text.strip()
46d60967f48cb2b14ee44eaa4979592b87e8d811
3,658,810
import numpy def nancumprod(x1, **kwargs): """ Return the cumulative product of array elements over a given axis treating Not a Numbers (NaNs) as one. For full documentation refer to :obj:`numpy.nancumprod`. Limitations ----------- Parameter ``x`` is supported as :obj:`dpnp.ndarray`. Keyword arguments ``kwargs`` are currently unsupported. Otherwise the functions will be executed sequentially on CPU. Input array data types are limited by supported DPNP :ref:`Data types`. .. seealso:: :obj:`dpnp.cumprod` : Return the cumulative product of elements along a given axis. Examples -------- >>> import dpnp as np >>> a = np.array([1., np.nan]) >>> result = np.nancumprod(a) >>> [x for x in result] [1.0, 1.0] >>> b = np.array([[1., 2., np.nan], [4., np.nan, 6.]]) >>> result = np.nancumprod(b) >>> [x for x in result] [1.0, 2.0, 2.0, 8.0, 8.0, 48.0] """ if not use_origin_backend(x1) and not kwargs: if not isinstance(x1, dparray): pass else: return dpnp_nancumprod(x1) return call_origin(numpy.nancumprod, x1, **kwargs)
e388081ca78decb8b05a6138173cb487a1c72c58
3,658,811
def error(data, mn, mx, confidence): """ Compute the error components. :param data: the collected data. :param mn: the critical value (minimum). :param mx: the critical value (maximum). :param confidence: the confidence level. :return: (Dict) the dictionary of errors. """ return errutils.error_two_tails(data, mn, mx, confidence)
31ba96b58a5017a3bd3a5166b460878a886f2bb3
3,658,813
def retry_connection(f): """Decorator. Recconect on failure. """ def retry(*args, **kwargs): seconds_to_retry = 5 success = False while (not success): try: result = f(*args, **kwargs) success = True return result except: print "{0}: {1} --> connection problems . retry in {2} seconds.".format(curr_date(), f.__name__, seconds_to_retry) time.sleep(seconds_to_retry) # return None return retry
d9ccbe725f50a6061f77ac76d02e11c52dd91cb1
3,658,814
def shift_mean(x_mod, x_org): """ Shift the mean value of `x_mod` such that it equals the mean of `x_org`. Parameters ---------- x_org : ndarray The array which hold the "true" mean value. x_mod : ndarray The modified copy of `x_org` which must have its mean value shifted. Returns ------- shifted_x_mod : ndarray A copy of `x_mod` with the same mean value as `x_org`. Examples -------- For example, >>> import numpy as np >>> from magni.imaging.visualisation import shift_mean >>> x_org = np.arange(4).reshape(2, 2) >>> x_mod = np.ones((2, 2)) >>> print('{:.1f}'.format(x_org.mean())) 1.5 >>> print('{:.1f}'.format(x_mod.mean())) 1.0 >>> shifted_x_mod = shift_mean(x_mod, x_org) >>> print('{:.1f}'.format(shifted_x_mod.mean())) 1.5 >>> np.set_printoptions(suppress=True) >>> shifted_x_mod array([[ 1.5, 1.5], [ 1.5, 1.5]]) """ @_decorate_validation def validate_input(): _numeric('x_mod', ('integer', 'floating', 'complex'), shape=(-1, -1)) _numeric('x_org', ('integer', 'floating', 'complex'), shape=x_mod.shape) validate_input() return x_mod + (x_org.mean() - x_mod.mean())
0f04e37a9434548cff77a1c92d7540595ee5a1cf
3,658,815
def conversation_detail(request, pk): """ Retrieve, update or delete a conversation. """ try: conversation = Conversation.objects.get(pk=pk) except Conversation.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) if request.method == 'GET': serializer = Conv_Serializer(conversation) return Response("serializer.data") elif request.method == 'PUT': serializer = Conv_Serializer(conversation, data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) elif request.method == 'DELETE': conversation.delete() return Response(status=status.HTTP_204_NO_CONTENT)
5c4a0b20f38ca7b75415ecb88f25e9992e2a3e57
3,658,816
def purchase_products(product_id): """Purchase a product""" app.logger.info("Request to purchase product with id %s", product_id) check_content_type("application/json") product = Product.find(product_id) if not product: abort( status.HTTP_404_NOT_FOUND, "product with id '{}' was not found.".format(product_id) ) return make_response(jsonify(product.serialize()), status.HTTP_200_OK)
c6681110ffaa25cab1ea2fd649c845c513b7b178
3,658,817
def process_alerts(data): """ Returns a Pandas DataFrame from the API call. :return: A pandas DataFrame. """ data_dicts = data.get("data", []) lines = [] for data_dict in data_dicts: data_dict["alertDescription"] = helper.extract_json_field( data_dict.get("alertProps", {}), "description.descriptionId") description_dict = helper.extract_json_field( data_dict.get("alertProps", {}), "description.descriptionObj") data_dict.update(description_dict) alert_context = helper.extract_json_field( data_dict.get("keys", {}), "src.keys.alert") if alert_context: data_dict.update(alert_context) lines.append(data_dict) return pd.DataFrame(lines)
64a06486ebfde2610f11110b55a73a359fe8d0c0
3,658,818
def validate(df): """Validate the timeseries dataframe """ err_msgs = [] warn_msgs = [] # check column names for col in EXP_COLS: if col not in df: err_msgs.append(f"**{col}** column missing") msgs = { "errors": err_msgs, "warnings": warn_msgs } is_valid_file = len(err_msgs) == 0 return msgs, is_valid_file
74480413646d1f7480c7915cdd1d28116ace83c6
3,658,819
def _gcs_uri_rewriter(raw_uri): """Rewrite GCS file paths as required by the rewrite_uris method. The GCS rewriter performs no operations on the raw_path and simply returns it as the normalized URI. The docker path has the gs:// prefix replaced with gs/ so that it can be mounted inside a docker image. Args: raw_uri: (str) the raw GCS URI, prefix, or pattern. Returns: normalized: a cleaned version of the uri provided by command line. docker_path: the uri rewritten in the format required for mounting inside a docker worker. """ docker_path = raw_uri.replace('gs://', 'gs/', 1) return raw_uri, docker_path
6e476860cb175dd2936cc0c080d3be1d09e04b77
3,658,820
def remove_apostrophe(text): """Remove apostrophes from text""" return text.replace("'", " ")
c7d918e56646a247564a639462c4f4d26bb27fc4
3,658,821
def generate_initials(text): """ Extract initials from a string Args: text(str): The string to extract initials from Returns: str: The initials extracted from the string """ if not text: return None text = text.strip() if text: split_text = text.split(" ") if len(split_text) > 1: return (split_text[0][0] + split_text[-1][0]).upper() else: return split_text[0][0].upper() return None
709e53392c790585588da25290a80ab2d19309f8
3,658,822
def nmf_manifold_vec_update(X, U, V, k_to_W, k_to_D, k_to_L, k_to_feat_inds, n_steps=10, gamma=1.0, delta=1.0, i=0, verbose=False, norm_X=None): """ Perform <n_steps> update steps with a fixed Laplacian matrix for each latent factor Parameters ---------- X : np.array data to factor U : np.array previous setting of U to update V : np.array previous setting of V to update k_to_W : dict mapping of latent factor to weighted adjacency matrix k_to_D : dict mapping of latent factor to diagonal matrix that is the sum of W along a row (or column) k_to_L : dict mapping of latent factor to L = D - W n_steps : int number of update steps to perform gamma : float relative importance of manifold regularization term delta : float relative importance of ignoring manifold penalty i : int number of previous iterations verbose : bool if True, print objective function value after each iteration norm_X : float or None stored value of the norm of X """ obj_data = None m, k_latent = U.shape n, k_latent = V.shape for n_step in range(n_steps): U_up_num = X.dot(V) U_up_denom = U.dot((V.transpose().dot(V))) + U U = np.multiply(U, np.divide(U_up_num, U_up_denom, out=np.ones_like(U_up_num), where=U_up_denom!=0)) # 0 / 0 := 1 V_up_num_recon = X.transpose().dot(U) V_up_denom_recon = V.dot((U.transpose().dot(U))) # update each column vector of V separately to accomodate different Laplacians V_up_num_man = np.zeros((n, k_latent)) V_up_denom_man = np.zeros((n, k_latent)) V_up_num_ign = np.zeros((n, k_latent)) for k in range(k_latent): W = k_to_W[k] D = k_to_D[k] V_up_num_man[:,k] = gamma * W.dot(V[:,k]) V_up_denom_man[:,k] = gamma * D.dot(V[:,k]) nz_inds = k_to_feat_inds[k] V_up_num_ign[nz_inds,k] = delta * np.power(V[nz_inds,k] + 1, -2) V_up_num = V_up_num_recon + (V_up_num_man + V_up_num_ign) V_up_denom = V_up_denom_recon + V_up_denom_man V_up_denom[V_up_denom < EPSILON] = EPSILON V = np.multiply(V, np.divide(V_up_num, V_up_denom, out=np.ones_like(V_up_num), where=V_up_denom!=0)) V[V < EPSILON] = EPSILON obj_data = nmf_manifold_vec_obj(X, U, V, k_to_L, k_to_feat_inds, gamma=gamma, delta=delta) print(i+n_step+1, obj_data['obj']) if(verbose): print(obj_data) return U, V, obj_data
f1998d8ccd000892f441341240216ada5fd46a70
3,658,823
def check_xyz_species_for_drawing(xyz, species): """A helper function to avoid repetative code""" if species is not None and xyz is None: xyz = xyz if xyz is not None else species.final_xyz if species is not None and not isinstance(species, ARCSpecies): raise InputError('Species must be an ARCSpecies instance. Got {0}.'.format(type(species))) if species is not None and not species.final_xyz: raise InputError('Species {0} has an empty final_xyz attribute.'.format(species.label)) return xyz
26caa32c55eee43dab53f85e442775095da92580
3,658,824
def GetUDPStreamSample(command_out, sending_vm, receiving_vm, request_bandwidth, network_type, iteration): """Get a sample from the nuttcp string results. Args: command_out: the nuttcp output. sending_vm: vm sending the UDP packets. receiving_vm: vm receiving the UDP packets. request_bandwidth: the requested bandwidth in the nuttcp sample. network_type: the type of the network, external or internal. iteration: the run number of the test. Returns: sample from the results of the nuttcp tests. """ data_line = command_out.split('\n')[0].split(' ') data_line = [val for val in data_line if val] actual_bandwidth = float(data_line[6]) units = data_line[7] packet_loss = data_line[16] metadata = { 'receiving_machine_type': receiving_vm.machine_type, 'receiving_zone': receiving_vm.zone, 'sending_machine_type': sending_vm.machine_type, 'sending_zone': sending_vm.zone, 'packet_loss': packet_loss, 'bandwidth_requested': request_bandwidth, 'network_type': network_type, 'iteration': iteration } return sample.Sample('bandwidth', actual_bandwidth, units, metadata)
d9f0e75602768ee574d280215ebc78ebd67a520b
3,658,825
def setSwaggerParamDesc(swagger,searchParams): """ Set the Swagger GET Parameter Description to what is stored in the search Parameters using helper function """ for id in range(len(swagger['tags'])): # Paths are prefaced with forward slash idName = '/'+swagger['tags'][id]['name'] # Filter out Capability statement if idName != '/CapabilityStatement': for paramId in range(len(swagger['paths'][idName]['get']['parameters'])): # Get the parameter name to use getParamDesc function paramName = swagger['paths'][idName]['get']['parameters'][paramId]['name'] # Set description to what is returned from search Parameters swagger['paths'][idName]['get']['parameters'][paramId]['description'] = getParamDesc(searchParams,idName,paramName) swagger = removeFormatParam(swagger) return swagger
e83c4c713718d382e5ce6f2429d029d4eb9ae588
3,658,826
def parse_args(args=[], doc=False): """ Handle parsing of arguments and flags. Generates docs using help from `ArgParser` Args: args (list): argv passed to the binary doc (bool): If the function should generate and return manpage Returns: Processed args and a copy of the `ArgParser` object if not `doc` else a `string` containing the generated manpage """ parser = ArgParser(prog=__COMMAND__, description=f"{__COMMAND__} - {__DESCRIPTION__}") parser.add_argument("username", help="Username of the new user to add") parser.add_argument("-p", dest="password", help="Password for the new user") parser.add_argument("-n", dest="noninteractive", action="store_false", help="Don't ask for user input") parser.add_argument("--version", action="store_true", help=f"print program version") args = parser.parse_args(args) arg_helps_with_dups = parser._actions arg_helps = [] [arg_helps.append(x) for x in arg_helps_with_dups if x not in arg_helps] NAME = f"**NAME*/\n\t{__COMMAND__} - {__DESCRIPTION__}" SYNOPSIS = f"**SYNOPSIS*/\n\t{__COMMAND__} [OPTION]... " DESCRIPTION = f"**DESCRIPTION*/\n\t{__DESCRIPTION_LONG__}\n\n" for item in arg_helps: # Its a positional argument if len(item.option_strings) == 0: # If the argument is optional: if item.nargs == "?": SYNOPSIS += f"[{item.dest.upper()}] " elif item.nargs == "+": SYNOPSIS += f"[{item.dest.upper()}]... " else: SYNOPSIS += f"{item.dest.upper()} " else: # Boolean flag if item.nargs == 0: if len(item.option_strings) == 1: DESCRIPTION += f"\t**{' '.join(item.option_strings)}*/\t{item.help}\n\n" else: DESCRIPTION += f"\t**{' '.join(item.option_strings)}*/\n\t\t{item.help}\n\n" elif item.nargs == "+": DESCRIPTION += f"\t**{' '.join(item.option_strings)}*/=[{item.dest.upper()}]...\n\t\t{item.help}\n\n" else: DESCRIPTION += f"\t**{' '.join(item.option_strings)}*/={item.dest.upper()}\n\t\t{item.help}\n\n" if doc: return f"{NAME}\n\n{SYNOPSIS}\n\n{DESCRIPTION}\n\n" else: return args, parser
ca77aad1d31287f1394678db90c0857dbdae6a43
3,658,827
import array def interact(u, v): """Compute element-wise mean(s) from two arrays.""" return tuple(mean(array([u, v]), axis=0))
9dd567568d5301dd62fcf19b7b4ac0130fc5b527
3,658,828
def part_allocation_count(build, part, *args, **kwargs): """ Return the total number of <part> allocated to <build> """ return build.getAllocatedQuantity(part)
84c94ca4e1b1006e293851189d17f63fc992b420
3,658,829
def stat_threshold(Z,mce='fdr_bh',a_level=0.05,side='two',copy=True): """ Threshold z maps Parameters ---------- mce: multiple comparison error correction method, should be among of the options below. [defualt: 'fdr_bh']. The options are from statsmodels packages: `b`, `bonferroni` : one-step correction `s`, `sidak` : one-step correction `hs`, `holm-sidak` : step down method using Sidak adjustments `h`, `holm` : step-down method using Bonferroni adjustments `sh`, `simes-hochberg` : step-up method (independent) `hommel` : closed method based on Simes tests (non-negative) `fdr_i`, `fdr_bh` : Benjamini/Hochberg (non-negative) `fdr_n`, `fdr_by` : Benjamini/Yekutieli (negative) 'fdr_tsbh' : two stage fdr correction (Benjamini/Hochberg) 'fdr_tsbky' : two stage fdr correction (Benjamini/Krieger/Yekutieli) 'fdr_gbs' : adaptive step-down fdr correction (Gavrilov, Benjamini, Sarkar) """ if copy: Z = Z.copy() if side=='one': sideflag = 1 elif side=='two' or 'double': sideflag = 2 Idx = np.triu_indices(Z.shape[0],1) Zv = Z[Idx] Pv = sp.norm.cdf(-np.abs(Zv))*sideflag [Hv,adjpvalsv] = smmt.multipletests(Pv,method = mce)[:2] adj_pvals = np.zeros(Z.shape) Zt = np.zeros(Z.shape) Zv[np.invert(Hv)] = 0 Zt[Idx] = Zv Zt = Zt + Zt.T; adj_pvals[Idx] = adjpvalsv adj_pvals = adj_pvals + adj_pvals.T; adj_pvals[range(Z.shape[0]),range(Z.shape[0])] = 0 return Zt, binarize(Zt), adj_pvals
3c582c0a59f8bd5544f8620870732562200f4f0a
3,658,830
def esmf_grid(lon, lat, periodic=False, mask=None): """ Create an ESMF.Grid object, for constructing ESMF.Field and ESMF.Regrid. Parameters ---------- lon, lat : 2D numpy array Longitute/Latitude of cell centers. Recommend Fortran-ordering to match ESMPy internal. Shape should be ``(Nlon, Nlat)`` for rectilinear grid, or ``(Nx, Ny)`` for general quadrilateral grid. periodic : bool, optional Periodic in longitude? Default to False. Only useful for source grid. mask : 2D numpy array, optional Grid mask. According to the ESMF convention, masked cells are set to 0 and unmasked cells to 1. Shape should be ``(Nlon, Nlat)`` for rectilinear grid, or ``(Nx, Ny)`` for general quadrilateral grid. Returns ------- grid : ESMF.Grid object """ # ESMPy expects Fortran-ordered array. # Passing C-ordered array will slow down performance. for a in [lon, lat]: warn_f_contiguous(a) warn_lat_range(lat) # ESMF.Grid can actually take 3D array (lon, lat, radius), # but regridding only works for 2D array assert lon.ndim == 2, 'Input grid must be 2D array' assert lon.shape == lat.shape, 'lon and lat must have same shape' staggerloc = ESMF.StaggerLoc.CENTER # actually just integer 0 if periodic: num_peri_dims = 1 else: num_peri_dims = None # ESMPy documentation claims that if staggerloc and coord_sys are None, # they will be set to default values (CENTER and SPH_DEG). # However, they actually need to be set explicitly, # otherwise grid._coord_sys and grid._staggerloc will still be None. grid = ESMF.Grid( np.array(lon.shape), staggerloc=staggerloc, coord_sys=ESMF.CoordSys.SPH_DEG, num_peri_dims=num_peri_dims, ) # The grid object points to the underlying Fortran arrays in ESMF. # To modify lat/lon coordinates, need to get pointers to them lon_pointer = grid.get_coords(coord_dim=0, staggerloc=staggerloc) lat_pointer = grid.get_coords(coord_dim=1, staggerloc=staggerloc) # Use [...] to avoid overwritting the object. Only change array values. lon_pointer[...] = lon lat_pointer[...] = lat # Follows SCRIP convention where 1 is unmasked and 0 is masked. # See https://github.com/NCPP/ocgis/blob/61d88c60e9070215f28c1317221c2e074f8fb145/src/ocgis/regrid/base.py#L391-L404 if mask is not None: # remove fractional values mask = np.where(mask == 0, 0, 1) # convert array type to integer (ESMF compat) grid_mask = mask.astype(np.int32) if not (grid_mask.shape == lon.shape): raise ValueError( 'mask must have the same shape as the latitude/longitude' 'coordinates, got: mask.shape = %s, lon.shape = %s' % (mask.shape, lon.shape) ) grid.add_item(ESMF.GridItem.MASK, staggerloc=ESMF.StaggerLoc.CENTER, from_file=False) grid.mask[0][:] = grid_mask return grid
8087cfbf0c4923338984913dcd1a421e3a46dd29
3,658,831
def convert_to_numeral(decimal_integer: int, roman_format="brackets"): """Convert decimal to Roman numeral. roman_format is a str containing either 'brackets' or 'latex' The default option, 'brackets', converts 3,000,000,000 to [[MMM]] and 3,000,000 to [MMM]. 'latex' outputs a LaTeX formula for the numeral. """ def barfunction_latex(prefix: str, unbarred_string: str, num_of_bars: int, separator_size: int = 2): """Return a LaTeX-renderable representation of overline bars.""" bars_before = (r"\overline{" * num_of_bars) + r"\text{" bars_after = r"}" + ("}" * num_of_bars) if prefix: separation = f"\\hspace{{{separator_size}pt}}" else: separation = "" return prefix + separation + bars_before + unbarred_string + bars_after def barfunction_brackets(prefix: str, unbarred_string: str, num_of_bars: int): """Represent bars as (possibly nested) square brackets. For example, 3,000,000,000 is converted to [[MMM]]. """ bars_before = ("[" * num_of_bars) bars_after = ("]" * num_of_bars) return prefix + bars_before + unbarred_string + bars_after def latex_surround_with_dollars(string): """Surround LaTeX math expression with dollar signs.""" return "$" + string + "$" def list_occurring_roman_symbols(roman_symbols, integer_value): """List symbols that occur in Roman representation of number. + roman_symbols is [(int, str)], a list of tuples, each of which representing one Roman symbol and its corresponding integer value. For example, (3, 'III'). + integer_value is the value to be converted. Return: remainder, list_of_occurring_symbols + remainder: what remains from the number, which was too small to represent with the provided symbols + list_of_occurring_symbols: a list of the symbols present in the Roman representation of the number. """ remainder = integer_value list_of_occurring_symbols = [] for integer_value, str_roman_symbol in roman_symbols: repetitions, remainder = divmod(remainder, integer_value) list_of_occurring_symbols.append(str_roman_symbol * repetitions) return remainder, list_of_occurring_symbols def apply_barfunction(list_of_occurring_symbols, barfunction, numeral_string, num_of_bars): """Build up Roman numeral representation applying barfunction. The barfunction is only applied if list_of_occurring_symbols is not empty, otherwise the original numeral_string is returned untouched. """ unbarred_string = "".join(list_of_occurring_symbols) if unbarred_string: numeral_string = barfunction(numeral_string, unbarred_string, num_of_bars) return numeral_string if roman_format == 'latex': barfunction = barfunction_latex elif roman_format == 'brackets': barfunction = barfunction_brackets else: raise ValueError('roman_format should be either "latex" or "brackets"') remainder = decimal_integer numeral_string = "" for symbolset in ROMAN_NUMERAL_TABLE: num_of_bars = symbolset["bars"] symbols = symbolset["symbols"] remainder, list_of_occurring_symbols = list_occurring_roman_symbols( symbols, remainder) numeral_string = apply_barfunction(list_of_occurring_symbols, barfunction, numeral_string, num_of_bars) if roman_format == 'latex': return latex_surround_with_dollars(numeral_string) return numeral_string
ebfd2b323879bcca9e20be0d9598104bf0f31e33
3,658,833
def transpose(x): """Tensor transpose """ return np.transpose(x)
286c7e36629ff8e38ad5d0233bd1f8fd823514f2
3,658,834
from typing import Optional from typing import List from typing import Tuple def greedy_reduction_flat(m: Mat2) -> Optional[List[Tuple[int, int]]]: """Returns a list of tuples (r1,r2) that specify which row should be added to which other row in order to reduce one row of m to only contain a single 1. In contrast to :func:`greedy_reduction`, it preforms the brute-force search starting with the highest indices, and places the row operations in such a way that the resulting depth is log_2 of the number of rows that have to be added together. Used in :func:`lookahead_extract_base`""" indicest = find_minimal_sums(m, True) if indicest is None: return indicest return flat_indices(m, list(indicest))[0]
85c8098dd6e727abe64c3d1410c63161309b5135
3,658,835
def estimate_psd(vec, num_segs=DEFAULT_NUM_SEGS, overlap=DEFAULT_OVERLAP, dt=DEFAULT_DT, tukey_alpha=DEFAULT_TUKEY_ALPHA, one_sided=True): """ estimates the PSD using a DFT divides vec into "num_segs" with a fractional overlap of "overlap" between neighbors returns the average PSD from these samples (arithmetic mean) if one_sided, returns the one-sided PSD. Otherwise, returns the two-sided PSD (one half the one-sided PSD). WARNING: your logic on how to split segments may be fragile... """ N = len(vec) if overlap > N - num_segs: raise ValueError, "overlap is too big!" n = N/(1. + (num_segs-1.)*(1.-overlap)) ### compute the number of entries per segment overlap = int(n*overlap) ### compute the number of overlapping entries n = int(n) seglen = dt*n ### compute dfts for each segment separately psds = np.empty((n/2, num_segs), complex) for segNo in xrange(num_segs): start = segNo*(n-overlap) psds[:,segNo], freqs = dft(vec[start:start+n]*tukey(n, tukey_alpha), dt=dt) ### average mean_psd = np.sum(psds.real**2 + psds.imag**2, axis=1) / (seglen*num_segs) if one_sided: mean_psd *= 2 ### multiply by 2 to account for the power at negative frequencies in the one-sided PSD return mean_psd, freqs
1c2d8c51bfd75d617f75dbc4aa3304c05c36e899
3,658,836