content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import collections import math def compute_bleu(reference_corpus, translation_corpus, max_order=4, smooth=False): """Computes BLEU score of translated segments against one or more references. Args: reference_corpus: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. translation_corpus: list of translations to score. Each translation should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 3-Tuple with the BLEU score, n-gram precisions, geometric mean of n-gram precisions and brevity penalty. bleu:float,翻译句子的bleu得分, precisions:list, 包含每种ngram的准确率, bp:brevity penalty, 短句惩罚系数, ratio:translation_length / min(reference_length), translation_length:int,翻译长度, reference_length:int,最短的reference长度 """ matches_by_order = [0] * max_order possible_matches_by_order = [0] * max_order reference_length = 0 translation_length = 0 for (references, translation) in zip(reference_corpus, translation_corpus): reference_length += min(len(r) for r in references) translation_length += len(translation) merged_ref_ngram_counts = collections.Counter() for reference in references: # 同时考虑多个references merged_ref_ngram_counts |= _get_ngrams(reference, max_order) # 位或 translation_ngram_counts = _get_ngrams(translation, max_order) overlap = translation_ngram_counts & merged_ref_ngram_counts # 位与 # matches_by_order:{len(ngram):sum of ngram overlap counts} for ngram in overlap: matches_by_order[len(ngram) - 1] += overlap[ngram] # possible_matches_by_order(可匹配n-gram总数):{len(ngram):sum of each ngram possible matches} for order in range(1, max_order + 1): possible_matches = len(translation) - order + 1 if possible_matches > 0: possible_matches_by_order[order - 1] += possible_matches precisions = [0] * max_order for i in range(0, max_order): if smooth: precisions[i] = ((matches_by_order[i] + 1.) / (possible_matches_by_order[i] + 1.)) else: if possible_matches_by_order[i] > 0: precisions[i] = (float(matches_by_order[i]) / possible_matches_by_order[i]) else: precisions[i] = 0.0 if min(precisions) > 0: p_log_sum = sum((1. / max_order) * math.log(p) for p in precisions) geo_mean = math.exp(p_log_sum) else: geo_mean = 0 # 翻译长度惩罚(对较短的翻译基于较大的惩罚,以防止短翻译准确率会更高的问题) ratio = float(translation_length) / reference_length if ratio > 1.0: bp = 1. else: bp = math.exp(1 - 1. / ratio) bleu = geo_mean * bp return (bleu, precisions, bp, ratio, translation_length, reference_length)
4a7f45ea988e24ada554b38cea84083effe164bd
3,658,953
def rf_agg_local_mean(tile_col): """Compute the cellwise/local mean operation between Tiles in a column.""" return _apply_column_function('rf_agg_local_mean', tile_col)
d65f6c7de674aac10ee91d39c8e5bc4ea6284e58
3,658,954
import json def Shot(project, name): """ 샷 정보를 가지고 오는 함수. (딕셔너리, err)값을 반환한다. """ restURL = "http://10.0.90.251/api/shot?project=%s&name=%s" % (project, name) try: data = json.load(urllib2.urlopen(restURL)) except: return {}, "RestAPI에 연결할 수 없습니다." if "error" in data: return {}, data["error"] return data["data"], None
6bd7ac1e3663faf8b120c03a1e873255557bc30d
3,658,955
def inversion_double(in_array): """ Get the input boolean array along with its element-wise logical not beside it. For error correction. >>> inversion_double(np.array([1,0,1,1,1,0,0,1], dtype=np.bool)) array([[ True, False, True, True, True, False, False, True], [False, True, False, False, False, True, True, False]]) """ return np.stack((in_array, np.logical_not(in_array)))
84253bdec88d665ad8f68b0eb252f3111f4a91ac
3,658,956
def solution(N): """ This is a fairly simple task. What we need to do is: 1. Get string representation in binary form (I love formatted string literals) 2. Measure biggest gap of zeroes (pretty self explanatory) """ # get binary representation of number binary_repr = f"{N:b}" # initialise counters current_gap, max_gap = 0, 0 for b in binary_repr: # end of gap, update max if b == '1': max_gap = max(current_gap, max_gap) current_gap = 0 # increase gap counter else: current_gap += 1 return max_gap
54b9dffe219fd5d04e9e3e3b07e4cb0120167a6f
3,658,957
from typing import Tuple def distributed_compute_expectations( building_blocks: Tuple[cw.ComplexDeviceArray], operating_axes: Tuple[Tuple[int]], pbaxisums: Tuple[Tuple[cw.ComplexDeviceArray]], pbaxisums_operating_axes: Tuple[Tuple[Tuple[int]]], pbaxisum_coeffs: Tuple[Tuple[float]], num_discretes: int, ) -> ShardedDeviceArray: """ Compute the expectation values of several observables given in `pbaxisums`. This function uses a single pmap and can be memory intesive for pbaxisums with many long prob-basis-axis-strings. Args: building_blocks: The building_blocks in super-matrix format (i.e. 128x128) operating_axes: The discrete axes on which `building_blocks` act. pbaxisums: Supermatrices of large_block representation of pauli sum operators. A single pbaxistring is represented as an innermost list of matrix-large_blocks. The outermost list iterates through different prob-basis-axis-sums, the intermediate list iterates through pbaxistrings within a pbaxisum. pbaxisums_operating_axes: The discrete axes on which the pbaxisums act. pbaxisum_coeffs: The coefficients of the prob-basis-axis-strings appearing in the union of all prob-basis-axis-sum operators. num_discretes: The number of discretes needed for the simulation. num_params: The number of parameters on which the acyclic_graph depends. Returns: ShardedDeviceArray: The expectation values. """ num_pbaxisums = len(pbaxisums) expectation_values = jnp.zeros(num_pbaxisums) final_state = helpers.get_final_state(building_blocks, operating_axes, num_discretes) for m, pbaxisum in enumerate(pbaxisums): pbaxisum_op_axes = pbaxisums_operating_axes[m] pbaxisum_coeff = pbaxisum_coeffs[m] # `psi` is brought into natural discrete order # don't forget to also align the axes here! coeff = pbaxisum_coeff[0] psi = helpers.apply_building_blocks( final_state, pbaxisum[0], pbaxisum_op_axes[0] ).align_axes() expectation_value = ( helpers.scalar_product_real(psi, final_state) * coeff ) for n in range(1, len(pbaxisum)): pbaxistring = pbaxisum[n] op_axes = pbaxisum_op_axes[n] coeff = pbaxisum_coeff[n] psi = helpers.apply_building_blocks( final_state, pbaxistring, op_axes ).align_axes() expectation_value += ( helpers.scalar_product_real(psi, final_state) * coeff ) # at this point all `psis` are in natural discrete ordering, # with the same `labels` values as `final_state` (i.e. # `labels = [0,1,2,3,..., num_discretes - 1]`). They also all have the # same (sorted) `perm` ordering due to the call to `align_axes()`. # compute the expectation values. Note that `psi` and `final_state` # have identical `perm` and `labels`. expectation_values = expectation_values.at[m].set( expectation_value.real[0] ) return expectation_values
d26c7595c604f7c52b3546083837de35ef4b4202
3,658,958
def extractStudents(filename): """ Pre: The list in xls file is not empty Post: All students are extract from file Returns students list """ list = [] try: # open Excel file wb = xlrd.open_workbook(str(filename)) except IOError: print ("Oops! No file "+filename+ " has been found !") else: sh = wb.sheet_by_name(wb.sheet_names()[0]) for rownum in range(1,sh.nrows):#1 to remove title line student = sh.row_values(rownum) list.append(student) return list
e10d942c4e1742b4e8de9ec6a1248f27b2a4b1d5
3,658,959
def clean_ip(ip): """ Cleans the ip address up, useful for removing leading zeros, e.g.:: 1234:0:01:02:: -> 1234:0:1:2:: 1234:0000:0000:0000:0000:0000:0000:000A -> 1234::a 1234:0000:0000:0000:0001:0000:0000:0000 -> 1234:0:0:0:1:: 0000:0000:0000:0000:0001:0000:0000:0000 -> ::1:0:0:0 :type ip: string :param ip: An IP address. :rtype: string :return: The cleaned up IP. """ theip = normalize_ip(ip) segments = ['%x' % int(s, 16) for s in theip.split(':')] # Find the longest consecutive sequence of zeroes. seq = {0: 0} start = None count = 0 for n, segment in enumerate(segments): if segment != '0': start = None count = 0 continue if start is None: start = n count += 1 seq[count] = start # Replace those zeroes by a double colon. count = max(seq) start = seq[count] result = [] for n, segment in enumerate(segments): if n == start and count > 1: if n == 0: result.append('') result.append('') if n == 7: result.append('') continue elif start < n < start + count: if n == 7: result.append('') continue result.append(segment) return ':'.join(result)
f0828e793a3adfef536bf7cb76d73a9af097aa00
3,658,961
def meta_caption(meta) -> str: """makes text from metadata for captioning video""" caption = "" try: caption += meta.title + " - " except (TypeError, LookupError, AttributeError): pass try: caption += meta.artist except (TypeError, LookupError, AttributeError): pass return caption
6ef117eb5d7a04adcee25a755337909bfe142014
3,658,963
def ticket_id_correctly_formatted(s: str) -> bool: """Checks if Ticket ID is in the form of 'PROJECTNAME-1234'""" return matches(r"^\w+-\d+$|^---$|^-$")(s)
2bb1624ac2080852badc6ab2badcb2e1229f5fcc
3,658,964
def test_1(): """ f(x) = max(.2, sin(x)^2) """ test_graph = FunctionTree('Test_1') max_node = Max('max') const_node = Constant('0.2', .2) square_node = Square('square') sin_node = Sin('sin') test_graph.insert_node(max_node, 'Output', 'x') test_graph.insert_node(square_node, 'max', 'x') test_graph.insert_node(const_node, 'max') test_graph.insert_node(sin_node, 'square', 'x') return test_graph
c6b47e386cdb7caa2290df2250fee3ad6aecbab7
3,658,965
def export_vector(vector, description, output_name, output_method='asset'): """Exports vector to GEE Asset in GEE or to shapefile in Google Drive. Parameters ---------- vector : ee.FeatureCollection Classified vector segments/clusters. description : str Description of the exported layer. output_name : str Path for the output file. Path must exist within Google Earth Engine Assets path or Google Drive. output_method : str Export method/destination. Options include 'asset' for export to Google Earth Engine Assets or 'drive' for export to Google Drive. Returns ------- output_message : str Message indicating location of the exported layer. Example ------- >>> import ee >>> peak_green = ee.Image('LANDSAT/LC08/C01/T1_SR/LC08_008057_20170602') >>> post_harvest = ee.Image('LANDSAT/LC08/C01/T1_SR/LC08_008057_20170906') >>> image_collection = ee.ImageCollection([peak_green, post_harvest]) >>> ndvi_diff = ndvi_diff_landsat8(image_collection, 1, 0) >>> study_area_boundary = ee.FeatureCollection("users/calekochenour/vegetation-change/drtt_study_area_boundary") >>> ndvi_change_thresholds = [-2.0, -0.5, -0.5, -0.35] >>> change_features = segment_snic(ndvi_diff, study_area_boundary, ndvi_change_thresholds) >>> change_primary_vector = raster_to_vector(change_features.get('primary'), study_area_boundary) >>> change_secondary_vector = raster_to_vector(change_features.get('secondary'), study_area_boundary) >>> change_primary_export = export_vector(vector=change_primary_vector, description='Primary Change', output_name=change_primary_asset_name, output_method='asset' >>> change_secondary_export = export_vector(vector=change_secondary_vector, description='Secondary Change', output_name=change_secondary_asset_name, output_method='asset') """ # Create export task for Google Drive if output_method.lower() == "drive": # Export vectors as shapefile to Google Drive task = ee.batch.Export.table.toDrive(**{ 'collection': vector, 'description': output_name, 'fileFormat': 'SHP'}) # Assign output message output_message = f"Exporting {output_name.split('/')[-1]} to Google Drive..." # Create task for GEE Asset elif output_method.lower() == "asset": # Export vectors to GEE Asset task = ee.batch.Export.table.toAsset(**{ 'collection': vector, 'description': description, 'assetId': output_name}) # Assign output message output_message = f"Exporting {output_name.split('/')[-1]} to GEE Asset..." else: # Rasie error raise ValueError("Invalid export method. Please specify 'Drive' or 'Asset'.") # Start export task task.start() # Return output message return print(output_message)
19cfa1a907aec4f25b1d8392f02a628f9e07ed7c
3,658,966
def optimize_centers_mvuiq(A, B, Q, centers, keep_sparsity=True): """ minimize reconstruction error after weighting by matrix A and make it unbiased min_{c_i} \|A.(\sum_i Q_i c_i) - B\|_F^2 such that sum(B-A(\sum_i Q_i c_i)) = 0 """ num_levels = len(centers) thr = sla.norm(A) * 1e-6 # 1- compute A*(Q==i) and store it. find the non-empty quantization bins in the process valid_idx = [] AQ = [np.zeros(1) for _ in range(num_levels)] for i in range(num_levels): AQ[i] = np.matmul(A, Q == i) if (sla.norm(AQ[i]) >= thr) and ((centers[i] != 0) or not keep_sparsity): # check whether the i-th bin has any effect on the quantization performance and # do not consider sparse values (center=0) valid_idx += [i] if not valid_idx: return # 2- find the optimum reconstruction points for the non-empty quantization bins # 2.a- create matrix M, used in the optimization problem num_valid = len(valid_idx) d = np.sum(B) f = np.zeros(num_valid) M = np.zeros(shape=(num_valid, num_valid)) e = np.zeros(shape=num_valid) for r in range(num_valid): f[r] = np.sum(AQ[valid_idx[r]]) for c in range(r, num_valid): # trace(AQ[valid_idx[c]].T @ AQ[valid_idx[r]]) M[r, c] = np.sum(AQ[valid_idx[c]] * AQ[valid_idx[r]]) M[c, r] = M[r, c] # trace(B.T @ AQ[valid_idx[r]]) e[r] = np.sum(AQ[valid_idx[r]] * B) # 2.b- solve for min |Mx-e| such that fx=d if num_valid == 0: v = 0 elif num_valid == 1: v = d / f[0] elif num_valid == 2: # for the special binary case, the solution can be found easily scale = sla.norm(f) + 1e-12 f /= scale d /= scale u = np.array([-f[1], f[0]]) a = (e - d * M.dot(f)).dot(u) / (M.dot(u).dot(u) + 1e-12) v = d * f + a * u else: # use quadratic programming (Goldfarb-Idnani algorithm) to solve the problem d = np.array([d]).astype(np.float) f = np.reshape(f, newshape=(-1, 1)) v = quadprog.solve_qp(M, e, f, d, 1)[0] # 3- copy the found center points centers[valid_idx] = v return centers
5a059bf9a88ed31a6cc75cecd2b0f7ef4273c5af
3,658,967
def container_instance_task_arns(cluster, instance_arn): """Fetch tasks for a container instance ARN.""" arns = ecs.list_tasks(cluster=cluster, containerInstance=instance_arn)['taskArns'] return arns
ca5f0be6aa054f7d839435a8c32c395429697639
3,658,968
def benchmark(pipelines=None, datasets=None, hyperparameters=None, metrics=METRICS, rank='f1', distributed=False, test_split=False, detrend=False, output_path=None): """Evaluate pipelines on the given datasets and evaluate the performance. The pipelines are used to analyze the given signals and later on the detected anomalies are scored against the known anomalies using the indicated metrics. Finally, the scores obtained with each metric are averaged accross all the signals, ranked by the indicated metric and returned on a ``pandas.DataFrame``. Args: pipelines (dict or list): dictionary with pipeline names as keys and their JSON paths as values. If a list is given, it should be of JSON paths, and the paths themselves will be used as names. If not give, all verified pipelines will be used for evaluation. datasets (dict or list): dictionary of dataset name as keys and list of signals as values. If a list is given then it will be under a generic name ``dataset``. If not given, all benchmark datasets will be used used. hyperparameters (dict or list): dictionary with pipeline names as keys and their hyperparameter JSON paths or dictionaries as values. If a list is given, it should be of corresponding order to pipelines. metrics (dict or list): dictionary with metric names as keys and scoring functions as values. If a list is given, it should be of scoring functions, and they ``__name__`` value will be used as the metric name. If not given, all the available metrics will be used. rank (str): Sort and rank the pipelines based on the given metric. If not given, rank using the first metric. distributed (bool): Whether to use dask for distributed computing. If not given, use ``False``. test_split (bool or float): Whether to use the prespecified train-test split. If float, then it should be between 0.0 and 1.0 and represent the proportion of the signal to include in the test split. If not given, use ``False``. detrend (bool): Whether to use ``scipy.detrend``. If not given, use ``False``. output_path (str): Location to save the intermediatry results. If not given, intermediatry results will not be saved. Returns: pandas.DataFrame: Table containing the scores obtained with each scoring function accross all the signals for each pipeline. """ pipelines = pipelines or VERIFIED_PIPELINES datasets = datasets or BENCHMARK_DATA if isinstance(pipelines, list): pipelines = {pipeline: pipeline for pipeline in pipelines} if isinstance(datasets, list): datasets = {'dataset': datasets} if isinstance(hyperparameters, list): hyperparameters = {pipeline: hyperparameter for pipeline, hyperparameter in zip(pipelines.keys(), hyperparameters)} if isinstance(metrics, list): metrics_ = dict() for metric in metrics: if callable(metric): metrics_[metric.__name__] = metric elif metric in METRICS: metrics_[metric] = METRICS[metric] else: raise ValueError('Unknown metric: {}'.format(metric)) metrics = metrics_ results = _evaluate_datasets( pipelines, datasets, hyperparameters, metrics, distributed, test_split, detrend) if output_path: LOGGER.info('Saving benchmark report to %s', output_path) results.to_csv(output_path) return _sort_leaderboard(results, rank, metrics)
09e7ebda30d0e9eec1b11a68fbc566bf8f39d841
3,658,969
def notNone(arg,default=None): """ Returns arg if not None, else returns default. """ return [arg,default][arg is None]
71e6012db54b605883491efdc389448931f418d0
3,658,970
def get_scorer(scoring): """Get a scorer from string """ if isinstance(scoring, str) and scoring in _SCORERS: scoring = _SCORERS[scoring] return _metrics.get_scorer(scoring)
fbf1759ae4c6f93be036a6af479de89a732bc520
3,658,971
from typing import Iterator def triangle_num(value: int) -> int: """Returns triangular number for a given value. Parameters ---------- value : int Integer value to use in triangular number calculaton. Returns ------- int Triangular number. Examples: >>> triangle_num(0) 0 >>> triangle_num(1) 1 >>> triangle_num(4) 10 >>> triangle_num(10) 55 >>> triangle_num("A") Traceback (most recent call last): ... TypeError: '>' not supported between instances of 'str' and 'int' >>> triangle_num(-1) Traceback (most recent call last): ... TypeError: Please use positive integer value """ if value >= 0: tot : list = [0] def recur(n: int, t: list) -> Iterator: if n > 0: t[0] += n n -= 1 return recur(n, t) recur(value, tot) return tot[0] raise ValueError("Please use positive integer value.")
f22554b2c220d368b1e694021f8026162381a7d0
3,658,972
import torch def locations_sim_euclidean(image:DataBunch, **kwargs): """ A locations similarity function that uses euclidean similarity between vectors. Predicts the anatomical locations of the input image, and then returns the eucliean similarity between the input embryo's locations vector and the locations vectors of the database embryos. Euclidean similarity and distance are computed between unnormalized, one-hot locations vectors. The euclidean similarity between two locations vectors is defined as 1/(1 + euclidean distance). Arguments: - image: The input image DataBunch Returns: A tensor of similarity values (one for each database image). Each similarity score is the euclidean similarity between locations vectors. """ locations_pred = run_inference(image, do_stage=False)[0] _, database_image_locations = retrieve_predictions() euclidean_distance = torch.norm(database_image_locations-locations_pred, dim=1).unsqueeze(1) return 1/(1+euclidean_distance)
d45c33641ac6327963f0634878c99461de9c1052
3,658,973
def _butter_bandpass_filter(data, low_cut, high_cut, fs, axis=0, order=5): """Apply a bandpass butterworth filter with zero-phase filtering Args: data: (np.array) low_cut: (float) lower bound cutoff for high pass filter high_cut: (float) upper bound cutoff for low pass filter fs: (float) sampling frequency in Hz axis: (int) axis to perform filtering. order: (int) filter order for butterworth bandpass Returns: bandpass filtered data. """ nyq = 0.5 * fs b, a = butter(order, [low_cut / nyq, high_cut / nyq], btype="band") return filtfilt(b, a, data, axis=axis)
706770bbf78e103786a6247fc56df7fd8b41665a
3,658,974
def transform_and_normalize(vecs, kernel, bias): """应用变换,然后标准化 """ if not (kernel is None or bias is None): vecs = (vecs + bias).dot(kernel) return vecs / (vecs**2).sum(axis=1, keepdims=True)**0.5
bb32cd5c74df7db8d4a6b6e3ea211b0c9b79db47
3,658,975
def mpesa_response(r): """ Create MpesaResponse object from requests.Response object Arguments: r (requests.Response) -- The response to convert """ r.__class__ = MpesaResponse json_response = r.json() r.response_description = json_response.get('ResponseDescription', '') r.error_code = json_response.get('errorCode') r.error_message = json_response.get('errorMessage', '') return r
e416030d39411ce19aee28735465ba035461f802
3,658,976
def swap_flies(dataset, indices, flies1=0, flies2=1): """Swap flies in dataset. Caution: datavariables are currently hard-coded! Caution: Swap *may* be in place so *might* will alter original dataset. Args: dataset ([type]): Dataset for which to swap flies indices ([type]): List of indices at which to swap flies. flies1 (int or list/tuple, optional): Either a single value for all indices or a list with one value per item in indices. Defaults to 0. flies2 (int or list/tuple, optional): Either a single value for all indices or a list with one value per item in indices. Defaults to 1. Returns: dataset with swapped indices () """ for cnt, index in enumerate(indices): if isinstance(flies1, (list, tuple)) and isinstance(flies2, (list, tuple)): fly1, fly2 = flies1[cnt], flies2[cnt] else: fly1, fly2 = flies1, flies2 if 'pose_positions_allo' in dataset: dataset.pose_positions_allo.values[index:, [fly2, fly1], ...] = dataset.pose_positions_allo.values[index:, [fly1, fly2], ...] if 'pose_positions' in dataset: dataset.pose_positions.values[index:, [fly2, fly1], ...] = dataset.pose_positions.values[index:, [fly1, fly2], ...] if 'body_positions' in dataset: dataset.body_positions.values[index:, [fly2, fly1], ...] = dataset.body_positions.values[index:, [fly1, fly2], ...] return dataset
1f1941d8d6481b63efd1cc54fcf13f7734bccf8b
3,658,977
def periodic_kernel(avetoas, log10_sigma=-7, log10_ell=2, log10_gam_p=0, log10_p=0): """Quasi-periodic kernel for DM""" r = np.abs(avetoas[None, :] - avetoas[:, None]) # convert units to seconds sigma = 10**log10_sigma l = 10**log10_ell * 86400 p = 10**log10_p * 3.16e7 gam_p = 10**log10_gam_p d = np.eye(r.shape[0]) * (sigma/500)**2 K = sigma**2 * np.exp(-r**2/2/l**2 - gam_p*np.sin(np.pi*r/p)**2) + d return K
14dc89fbbf501ee42d7778bd14a9e35d22bc69ea
3,658,978
def emails(request): """ A view to send emails out to hunt participants upon receiving a valid post request as well as rendering the staff email form page """ teams = Hunt.objects.get(is_current_hunt=True).real_teams people = [] for team in teams: people = people + list(team.person_set.all()) email_list = [person.user.email for person in people] if request.method == 'POST': email_form = EmailForm(request.POST) if email_form.is_valid(): subject = email_form.cleaned_data['subject'] message = email_form.cleaned_data['message'] email_to_chunks = [email_list[x: x + 80] for x in range(0, len(email_list), 80)] for to_chunk in email_to_chunks: email = EmailMessage(subject, message, 'puzzlehuntcmu@gmail.com', [], to_chunk) email.send() return HttpResponseRedirect('') else: email_form = EmailForm() context = {'email_list': (', ').join(email_list), 'email_form': email_form} return render(request, 'email.html', add_apps_to_context(context, request))
93cc8099e8f73b2607ab736a2aae4ae59ca1fe4d
3,658,979
def _stochastic_universal_sampling(parents: Population, prob_distribution: list, n: int): """ Stochastic universal sampling (SUS) algorithm. Whenever more than one sample is to be drawn from the distribution the use of the stochastic universal sampling algorithm is preferred compared to roulette wheel algorithm. Parameters ---------- :param parents: beagle.Population Population from which n individuals are going to be selected. :param prob_distribution: list Cumulative probability distribution. :param n: int Length of the selected population. Returns ------- :return: list of beagle.Individual Selected individuals. Exceptions ----------- :raise Exception If the algorithm enters an infinite loop because random_num is greater than 1 an exception will occur. """ current_member, i = 0, 0 mating_pool = [None] * n random_num = np.random.uniform(low=0, high=(1/n)) while current_member < n: while random_num <= prob_distribution[i]: mating_pool[current_member] = parents[i] random_num += 1 / n current_member += 1 if random_num > 1: raise Exception( 'The SUS algorithm has entered an infinite loop. Verify that the selected population ' 'sizes are suitable for this type of operator.') i += 1 mating_pool = [deepcopy(individual) for individual in mating_pool] # Make a deepcopy of each selected individual return mating_pool
fb6b58cbdedbd133a7ba72470c2fc6586265ed4c
3,658,980
def _add_simple_procparser(subparsers, name, helpstr, func, defname='proc', xd=False, yd=False, dualy=False, other_ftypes=True): """Add a simple subparser.""" parser = _add_procparser(subparsers, name, helpstr, func, defname=defname) _add_def_args(parser, xd=xd, yd=yd, dualy=dualy) return parser
d7ba916453921d4ad362367c43f597f81fb2db9b
3,658,982
def comprspaces(*args): """ .. function:: comprspaces(text1, [text2,...]) -> text This function strips (from the beginning and the end) and compresses the spaces in its input. Examples: >>> table1(''' ... ' an example with spaces ' 'another example with spaces ' ... ''') >>> sql("select comprspaces(a,b) from table1") comprspaces(a,b) -------------------------------------------------- an example with spaces another example with spaces """ if len(args) == 1: return reduce_spaces.sub(' ', strip_remove_newlines.sub('', args[0])) out=[] for i in args: o=reduce_spaces.sub(' ', strip_remove_newlines.sub('', i)) out+=[o] return ' '.join(out)
7cf4d23dac7fb0d36f9224598f103b5918167bd5
3,658,985
import socket def find_available_port(): """Find an available port. Simple trick: open a socket to localhost, see what port was allocated. Could fail in highly concurrent setups, though. """ s = socket.socket() s.bind(('localhost', 0)) _address, port = s.getsockname() s.close() return port
1d81ff79fa824bc8b38c121a632890973f0639ea
3,658,986
def merge_deep(dct1, dct2, merger=None): """ Deep merge by this spec below :param dct1: :param dct2: :param merger Optional merger :return: """ my_merger = merger or Merger( # pass in a list of tuples,with the # strategies you are looking to apply # to each type. [ (list, ["append"]), (dict, ["merge"]) ], # next, choose the fallback strategies, # applied to all other types: ["override"], # finally, choose the strategies in # the case where the types conflict: ["override"] ) return my_merger.merge(dct1, dct2)
1257e7a8242fde6a70feb3cfe373979bbf439726
3,658,988
def step( context, bind_to, data, title='', area=False, x_is_category=False, labels=False, vertical_grid_line=False, horizontal_grid_line=False, show_legend=True, zoom=False, group_tooltip=True, height=None, width=None ): """Generates javascript code to show a 'step' chart. Args: context: Context of template. bind_to: A string that specifics an HTML element (eg: id or class) that chart will be shown in that. (like: '#chart') data: It is dictinary that contains data of chart, some informations about extra lines, grouping of data and chart axis labels. eg: { 'x': ['2017-5-19', '2017-5-20', '2017-5-21', '2017-5-22'], 'horizontal_lines': [40], # 'vertical_lines': [40], 'data': [ {'title': 'A', 'values': [26, 35, 52, 34, 45, 74], 'color': '#FF34FF'}, # {'title': 'B', 'values': [54, 25, 52, 26, 20, 89]}, ], # 'groups': [('A', 'B')] } vertical_lines works just if x_is_category seted to False. title: A string that will be shown on top of the chart. area: It's a boolean option. If true, the area under the curve will be colored. x_is_category: It's a boolean option. If false, labels of X axis will be considered as real number and sortable. (they will be sorted automatically) labels: It's a boolean option. If true, value of record will be shown on column. vertical_grid_line: It's boolean option, If true some vertical rows will be drawn in chart. (grid lines) horizontal_grid_line: It's boolean option, If true some horizontal rows will be drawn in chart. (grid lines) show_legend: It's boolean option, If false, legends of the chart will be hidden. zoom: It's boolean option, If true, end user can scroll on chart to zoom in and zoom out. group_tooltip: It's boolean option, If true, data of all records in that point whill be shown to gather. height: It's an integer option, it will determine heigth of chart in pixel. width: It's an integer option, it will determine width of chart in pixel. Returns: A string contains chart js code and import code of C3 static files, if it did not imported yet. You can see structure of chart in chart_structur variable. """ # step chart structure in JS chart_structur = ( '\n<script type="text/javascript">' '\n var chart = c3.generate({' '\n bindto: "%s",' '\n data: {' '\n x: %s,' '\n columns: [' '\n %s' '\n ],' '\n type : "%s",' '\n colors: {' '\n %s' '\n },' '\n groups: [' '\n %s' '\n ],' '\n labels : %s' '\n },' '\n title: { text: "%s"},' '\n axis: { x: { type: "%s" } },' '\n grid: {' '\n x: { show: %s ,lines: [%s] },' '\n y: { show: %s ,lines: [%s] },' '\n },' '\n legend: { show: %s },' '\n zoom: { enabled: %s },' '\n tooltip: { grouped: %s },' '\n size: { height: %s, width: %s }' '\n });' '\n</script>' ) # convert parameters to strings to be acceptable in JS and C3 syntax. if area: _type = 'area-step' else: _type = 'step' if x_is_category: x_type = 'category' else: x_type = '' if labels: labels = 'true' else: labels = 'false' if vertical_grid_line: vertical_grid_line = 'true' else: vertical_grid_line = 'false' if horizontal_grid_line: horizontal_grid_line = 'true' else: horizontal_grid_line = 'false' if show_legend: show_legend = 'true' else: show_legend = 'false' if zoom: zoom = 'true' else: zoom = 'false' if group_tooltip: group_tooltip = 'true' else: group_tooltip = 'false' if height is not None: height = int(height) else: height = 'null' if width is not None: width = int(width) else: width = 'null' # read horizontal line points from data horizontal_lines = str() if 'horizontal_lines' in data.keys(): for line in data['horizontal_lines']: horizontal_lines = ''.join([horizontal_lines, '{ value: %s}' % line, ',']) # read vertical line points from data # raise an exception if x_is_category set to true and vertical_lines exists vertical_lines = str() if 'vertical_lines' in data.keys(): if x_is_category: raise Exception( "It's meaningless to use vertical_lines with x_is_category." ) for line in data['vertical_lines']: vertical_lines = ''.join( [vertical_lines, '{ value: %s}' % line, ',']) # reads 'x' field of data and creates X axis labels. # a hash is used to naming X axis labels x_labels = str() if 'x' in data.keys(): if x_is_category: x_labels = data['x'] else: x_labels = list(filter(lambda x: int(x), data['x'])) x_labels = ','.join([repr(str(label)) for label in x_labels]) x_labels = '["2d2014226823e74c2accfcce8e0ca141", %s],' % x_labels x_label_list_name = '"2d2014226823e74c2accfcce8e0ca141"' else: x_labels = '' x_label_list_name = "null" # read records points to draw on chart data_title_list = list() chart_data = str() for item in data['data']: values = ','.join([str(v) for v in item['values']]) item_data = '["%s", %s], ' % (item['title'], values) chart_data = ' '.join([chart_data, item_data]) data_title_list.append(item['title']) # add X axis labels to chart data chart_data = ''.join([chart_data, x_labels]) # read colors of data chart_color = str() for item in data['data']: if 'color' in item.keys(): item_color = '"%s": "%s", ' % (item['title'], item['color']) chart_color = ' '.join([chart_color, item_color]) # read grouping details of data total_group_string = str() if 'groups' in data.keys(): for group in data['groups']: group_string = str() for item in group: # raise an exception if mentioned key were not exist in data if item not in data_title_list: raise ValueError("%s is not exists in your data!" % item) group_string = ''.join([group_string, ',', repr(item)]) total_group_string = ''.join( [total_group_string, '[', group_string, ']', ',']) # pass arguments to chart structure chart = chart_structur % ( bind_to, x_label_list_name, chart_data, _type, chart_color, total_group_string, labels, title, x_type, vertical_grid_line, vertical_lines, horizontal_grid_line, horizontal_lines, show_legend, zoom, group_tooltip, height, width ) # add import C3 elements to it, if it does not imported yet and return it. if not ('import_js_c3' in context and context['import_js_c3']): context['import_js_c3'] = True return mark_safe('%s\n%s' % (import_c3(), chart)) else: return mark_safe(chart)
e135f1315dc635cc12dec403b3b6a268ed1c0a2b
3,658,989
from typing import List def get_baseline_y(line: PageXMLTextLine) -> List[int]: """Return the Y/vertical coordinates of a text line's baseline.""" if line_starts_with_big_capital(line): return [point[1] for point in line.baseline.points if point[1] < line.baseline.bottom - 20] else: return [point[1] for point in line.baseline.points]
7195f801e3012f5514b0d4eea7d5df9a36764412
3,658,991
import time def get_device_type(dev, num_try=1): """ Tries to get the device type with delay """ if num_try >= MAX_DEVICE_TYPE_CHECK_RETRIES: return time.sleep(1) # if devtype is checked to early it is reported as 'unknown' iface = xwiimote.iface(dev) device_type = iface.get_devtype() if not device_type or device_type == 'unknown': return get_device_type(dev, num_try + 1) return device_type
0caec78baeeb3da7ba3b99d68d80b9d1439af294
3,658,992
def index(): """ This is the grocery list. Concatenates the ingredients from all the upcoming recipes The ingredients dict that we pass to the template has this structure { "carrot": { "g": 200, "number": 4, "str": "200g, 4number", }, "salt": { "g": 20, "pinch": 3, "str": "20g, 3pinch", }, } If two ingredients have the same unit, I add the quantities, but trying to unify all the different ways of expressing ingredient units would be a lost cause. We add the str key because doing formatting work in the template is so much fun """ recipes = Recipe.query.filter_by(upcoming=True) ingredients = dict() for recipe in recipes: recipe_d = recipe.to_dict() for ingredient in recipe_d["ingredients"]: #worth changing the ingredients to a named tuple ? #would be better at least here name, unit, quantity = (ingredient["name"], ingredient["unit"], ingredient["quantity"]) quantity = quantity * recipe.upcoming_servings / recipe.servings if name in ingredients: if unit in ingredients[name]: ingredients[name][unit] += quantity else: ingredients[name][unit] = quantity else: ingredients[name] = { unit: quantity, } for name, d in ingredients.items(): s = ", ".join("{:g}{}".format( round(quantity, 2), unit) for unit, quantity in d.items()) ingredients[name]["str"] = s return render_template("grocery_list.html", title="Grocery list", recipes=recipes, ingredients=ingredients)
343f54d097c95e92bbca1bbe087168a348d42771
3,658,993
def test_Fit_MinFunc(): """ There are times where I don't pass just a simple function to the fitting algorithm. Instead I need to calculate the error myself and pass that to the model. This tests that ability. """ init = { 'm': 20, 'b': -10 } def func(X, *args): vecLinear = np.vectorize(funcs.linear) yThr = vecLinear(linearData['X'], *args) return np.sqrt(np.sum((linearData['Y'] - yThr) ** 2)) LinMod = model(func) LinMod.setParams(init) LinMod.fit(linearData['X'], linearData['Y']) results = LinMod.parameters.copy() for key in linearParams.keys(): error = np.abs((results[key]-linearParams[key])/linearParams[key])*100 assert error < 15
4884302ad03cb04e4d293e05b743f1d2aaf51141
3,658,994
def BOP(data): """ Balance of Power Indicator :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :return pd.Series: with indicator data calculation results """ fn = Function('BOP') return fn(data)
14502e0c1fd6f5224edfa403ae58e75a4056c74c
3,658,995
def get_infinite(emnist_client_data, num_pseudo_clients): """Converts a Federated EMNIST dataset into an Infinite Federated EMNIST set. Infinite Federated EMNIST expands each writer from the EMNIST dataset into some number of pseudo-clients each of whose characters are the same but apply a fixed random affine transformation to the original user's characters. The distribution over affine transformation is approximately equivalent to the one described at https://www.cs.toronto.edu/~tijmen/affNIST/. It applies the following transformations in this order: 1. A random rotation chosen uniformly between -20 and 20 degrees. 2. A random shearing adding between -0.2 to 0.2 of the x coordinate to the y coordinate (after centering). 3. A random scaling between 0.8 and 1.25 (sampled log uniformly). 4. A random translation between -5 and 5 pixels in both the x and y axes. Args: emnist_client_data: The `tff.simulation.ClientData` to convert. num_pseudo_clients: How many pseudo-clients to generate for each real client. Each pseudo-client is formed by applying a given random affine transformation to the characters written by a given real user. The first pseudo-client for a given user applies the identity transformation, so the original users are always included. Returns: An expanded `tff.simulation.ClientData`. """ num_client_ids = len(emnist_client_data.client_ids) return transforming_client_data.TransformingClientData( raw_client_data=emnist_client_data, make_transform_fn=_make_transform_fn, num_transformed_clients=(num_client_ids * num_pseudo_clients))
68b4ed0643e48adba2478022eff10a52222f75df
3,658,996
def create_plot(df, title, carbon_unit, cost_unit, ylimit=None): """ :param df: :param title: string, plot title :param carbon_unit: string, the unit of carbon emissions used in the database/model, e.g. "tCO2" :param cost_unit: string, the unit of cost used in the database/model, e.g. "USD" :param ylimit: float/int, upper limit of y-axis; optional :return: """ if df.empty: return figure() # Set up data source source = ColumnDataSource(data=df) # Determine column types for plotting, legend and colors # Order of stacked_cols will define order of stacked areas in chart x_col = "period" line_col = "carbon_cap" stacked_cols = ["in_zone_project_emissions", "import_emissions_degen"] # Stacked Area Colors colors = ["#666666", "#999999"] # Set up the figure plot = figure( plot_width=800, plot_height=500, tools=["pan", "reset", "zoom_in", "zoom_out", "save", "help"], title=title, x_range=df[x_col] # sizing_mode="scale_both" ) # Add stacked bar chart to plot bar_renderers = plot.vbar_stack( stackers=stacked_cols, x=x_col, source=source, color=colors, width=0.5, ) # Add Carbon Cap target line chart to plot target_renderer = plot.circle( x=x_col, y=line_col, source=source, size=20, color="black", fill_alpha=0.2, line_width=2, ) # Create legend items legend_items = [ ("Project Emissions", [bar_renderers[0]]), ("Import Emissions", [bar_renderers[1]]), ("Carbon Target", [target_renderer]), ] # Add Legend legend = Legend(items=legend_items) plot.add_layout(legend, "right") plot.legend[0].items.reverse() # Reverse legend to match stacked order plot.legend.click_policy = "hide" # Add interactivity to the legend # Note: Doesn't rescale the graph down, simply hides the area # Note2: There's currently no way to auto-size legend based on graph size(?) # except for maybe changing font size automatically? show_hide_legend(plot=plot) # Hide legend on double click # Format Axes (labels, number formatting, range, etc.) plot.xaxis.axis_label = "Period" plot.yaxis.axis_label = "Emissions ({})".format(carbon_unit) plot.yaxis.formatter = NumeralTickFormatter(format="0,0") plot.y_range.end = ylimit # will be ignored if ylimit is None # Add delivered RPS HoverTool r_delivered = bar_renderers[0] # renderer for delivered RPS hover = HoverTool( tooltips=[ ("Period", "@period"), ( "Project Emissions", "@%s{0,0} %s (@fraction_of_project_emissions{0%%})" % (stacked_cols[0], carbon_unit), ), ], renderers=[r_delivered], toggleable=False, ) plot.add_tools(hover) # Add curtailed RPS HoverTool r_curtailed = bar_renderers[1] # renderer for curtailed RPS hover = HoverTool( tooltips=[ ("Period", "@period"), ( "Import Emissions", "@%s{0,0} %s (@fraction_of_import_emissions{0%%})" % (stacked_cols[1], carbon_unit), ), ], renderers=[r_curtailed], toggleable=False, ) plot.add_tools(hover) # Add RPS Target HoverTool hover = HoverTool( tooltips=[ ("Period", "@period"), ("Carbon Target", "@%s{0,0} %s" % (line_col, carbon_unit)), ( "Marginal Cost", "@carbon_cap_marginal_cost_per_emission{0,0} %s/%s" % (cost_unit, carbon_unit), ), ], renderers=[target_renderer], toggleable=False, ) plot.add_tools(hover) return plot
e320a523bbdbfc12a3e84948935803da5304624e
3,658,997
def get_app(name, **kwargs): """Returns an instantiated Application based on the name. Args: name (str): The name of the application kwargs (dict): Keyword arguments used for application instantiation Returns: deepcell.applications.Application: The instantiated application """ name = str(name).lower() app_map = dca.settings.VALID_APPLICATIONS try: return app_map[name]['class'](**kwargs) except KeyError: raise ValueError('{} is not a valid application name. ' 'Valid applications: {}'.format( name, list(app_map.keys())))
1fe9d1e300a086b7184760556c65470c62a0cc14
3,658,998
def worker_complete(): """Complete worker.""" participant_id = request.args.get('participant_id') if not participant_id: return error_response( error_type="bad request", error_text='participantId parameter is required' ) try: _worker_complete(participant_id) except KeyError: return error_response(error_type='ParticipantId not found: {}'.format(participant_id)) return success_response(status="success")
e30b45e84025b11bcf6640931f72d9fc4f4f9873
3,658,999
def combine(connected_events): """ Combine connected events into a graph. :param connected_events: see polychronous.filter :return: graph_of_connected_events """ graph_of_connected_events = nx.Graph() graph_of_connected_events.add_edges_from(connected_events) return (graph_of_connected_events)
99471930f70bea0583d36d3c0c13fc62b23d6fe8
3,659,000
import hashlib def calculate_hash(filepath, hash_name): """Calculate the hash of a file. The available hashes are given by the hashlib module. The available hashes can be listed with hashlib.algorithms_available.""" hash_name = hash_name.lower() if not hasattr(hashlib, hash_name): raise Exception('Hash algorithm not available : {}'\ .format(hash_name)) with open(filepath, 'rb') as f: checksum = getattr(hashlib, hash_name)() for chunk in iter(lambda: f.read(4096), b''): checksum.update(chunk) return checksum.hexdigest()
975fe0a2a4443ca3abc67ed950fb7200409f2497
3,659,001
def default_mp_value_parameters(): """Set the different default parameters used for mp-values. Returns ------- dict A default parameter set with keys: rescale_pca (whether the PCA should be scaled by variance explained) and nb_permutations (how many permutations to calculate empirical p-value). Defaults to True and 100, respectively. """ params = {"rescale_pca": True, "nb_permutations": 100} return params
0dcac3981154fbf0cc1fa0eeed6e83a1e1b63294
3,659,003
def svn_wc_diff(*args): """ svn_wc_diff(svn_wc_adm_access_t anchor, char target, svn_wc_diff_callbacks_t callbacks, void callback_baton, svn_boolean_t recurse, apr_pool_t pool) -> svn_error_t """ return _wc.svn_wc_diff(*args)
c4fbc11d26b6da2d595cb79314b0d901b084eb52
3,659,005
import re def _FindResourceIds(header, resource_names): """Returns the numerical resource IDs that correspond to the given resource names, as #defined in the given header file." """ pattern = re.compile( r'^#define (%s) _Pragma\S+ (\d+)$' % '|'.join(resource_names)) with open(header, 'r') as f: res_ids = [ int(pattern.match(line).group(2)) for line in f if pattern.match(line) ] if len(res_ids) != len(resource_names): raise Exception('Find resource id failed: the result is ' + ', '.join(str(i) for i in res_ids)) return set(res_ids)
24847b1d4374a2022ae12f5161bd9df4becd110d
3,659,006
import re def resolve_request_path(requested_uri): """ Check for any aliases and alter the path accordingly. Returns resolved_uri """ for key, val in PATH_ALIASES.items(): if re.match(key, requested_uri): return re.sub(key, val, requested_uri) return requested_uri
5405a795a95279a354d455f3702dbf2c3dc6f1e0
3,659,007
def apim_api_delete( client, resource_group_name, service_name, api_id, delete_revisions=None, if_match=None, no_wait=False): """Deletes an existing API. """ cms = client.api return sdk_no_wait( no_wait, cms.delete, resource_group_name=resource_group_name, service_name=service_name, api_id=api_id, if_match="*" if if_match is None else if_match, delete_revisions=delete_revisions if delete_revisions is not None else False)
4be4f895ae576ee1ffd08af31abcdad193b84b2c
3,659,008
def deep_copy(obj): """Make deep copy of VTK object.""" copy = obj.NewInstance() copy.DeepCopy(obj) return copy
c00c4ff44dad5c0c018152f489955f08e633f5ed
3,659,009
def get_dunn_index(fdist, *clusters): """ Returns the Dunn index for the given selection of nodes. J.C. Dunn. Well separated clusters and optimal fuzzy partitions. 1974. J.Cybern. 4. 95-104. """ if len(clusters)<2: raise ValueError, "At least 2 clusters are required" intra_dist = [] for c in clusters: for i in c.get_leaves(): if i is not None: # item intraclsuterdist -> Centroid Diameter a = fdist(i.profile, c.profile)*2 intra_dist.append(a) max_a = numpy.max(intra_dist) inter_dist = [] for i, ci in enumerate(clusters): for cj in clusters[i+1:]: # intracluster dist -> Centroid Linkage b = fdist(ci.profile, cj.profile) inter_dist.append(b) min_b = numpy.min(inter_dist) if max_a == 0.0: D = 0.0 else: D = min_b / max_a return D
c78c5302d78b5d5969a5edf9e19b81ee6f68bfbf
3,659,010
import random def sample(words, n=10) -> str: """Sample n random words from a list of words.""" return [random.choice(words) for _ in range(n)]
cad435238c776b5fcda84d50295ac50298bf3ab2
3,659,011
def cov_dense(n_features=100, scale=0.5, edges='ones', pos=True, force_psd=True, random_state=None): """ Returns a covariance matrix with a constant diagonal and whose off diagnale elements are obtained from adj_mats.complete_graph() Parameters ---------- n_features: int scale: float Scale of the off diagonal entries. edges: str How the edges should be sampled. See adj_mats.complete_graph() pos: bool Should the off-diagonal entries be all positive. force_psd: bool Make sure the covariance matrix is positive semi-definite zeroing out all negative eigenvalues. random_state: None, int Random seed for sampling. Output ------ cov: array-like, (n_features, n_features) The sampled covariance matrix. """ cov = complete_graph(n_nodes=n_features, edges=edges, pos=pos, random_state=random_state) cov = cov * scale np.fill_diagonal(cov, 1.0) if force_psd: cov = project_psd(cov) return cov
48b8f5fec91ea11acaf9ce026d8b1742b5185604
3,659,013
def measure_fwhm(array): """Fit a Gaussian2D model to a PSF and return the FWHM Parameters ---------- array : numpy.ndarray Array containing PSF Returns ------- x_fwhm : float FWHM in x direction in units of pixels y_fwhm : float FWHM in y direction in units of pixels """ yp, xp = array.shape y, x, = np.mgrid[:yp, :xp] p_init = models.Gaussian2D() fit_p = fitting.LevMarLSQFitter() fitted_psf = fit_p(p_init, x, y, array) return fitted_psf.x_fwhm, fitted_psf.y_fwhm
e3ee047b453b979387505a19bdfebb75950a3916
3,659,014
def exists(profile, bucket, name): """Check if a file exists in an S3 bucket. Args: profile A profile to connect to AWS with. bucket The name of the bucket you want to find the file in. name The name of a file. Returns: True if it exists, False if it doesn't. """ result = fetch_by_name(profile, bucket, name) return len(result) > 0
5269cca9198a1d100b76b13f6e2fbf7314d948fd
3,659,015
def project_login(driver): """ 針對多綫程執行設定不同樣本編號,若修改問卷,也許提供該問卷樣本編號的第一順位號碼。 """ SAMPLE_NUMBER = 20200101+sample_add try: WebDriverWait(driver, 3).until(EC.presence_of_element_located((By.XPATH, '//*[@name="{}"][1]' .format(str(SAMPLE_NUMBER))))).click() # 選擇樣本編號作答 sleep(1) driver.find_element_by_class_name('btn.btn-blue').click() # 點擊開始訪問 print("STEP 3[project_login]: Project Login Successfully !") form_basic_info(driver) except NoSuchElementException: driver.find_element_by_xpath('//*[@id="case_in_prj_next"]/a').click() # 若搜尋不到樣本編號則尋找下一頁按鈕 return project_login(driver) else: return "STEP 3[project_login]: Loading took too much time !"
db3ef26e1769cb991c887509427f9d809047398d
3,659,017
def convert_convolutionfunction_to_image(cf): """ Convert ConvolutionFunction to an image :param cf: :return: """ return create_image_from_array(cf.data, cf.grid_wcs, cf.polarisation_frame)
6f5819abce6a987665ff49af9e5fca70f586a478
3,659,018
def macro(libname): """Decorator for macros (Moya callables).""" def deco(f): exposed_elements[libname] = f return f return deco
c4d06d2b9e3fa7913445554794027e68328ab918
3,659,019
import logging import torch def get_dataloaders(dataset, mode='train', root=None, shuffle=True, pin_memory=True, batch_size=8, logger=logging.getLogger(__name__), normalize=False, **kwargs): """A generic data loader Parameters ---------- dataset : {"openimages", "jetimages", "evaluation"} Name of the dataset to load root : str Path to the dataset root. If `None` uses the default one. kwargs : Additional arguments to `DataLoader`. Default values are modified. """ pin_memory = pin_memory and torch.cuda.is_available # only pin if GPU available Dataset = get_dataset(dataset) if root is None: dataset = Dataset(logger=logger, mode=mode, normalize=normalize, **kwargs) else: dataset = Dataset(root=root, logger=logger, mode=mode, normalize=normalize, **kwargs) return DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, num_workers=NUM_DATASET_WORKERS, collate_fn=exception_collate_fn, pin_memory=pin_memory)
6bb40b3eb1bc004418dd8910dab1432cd3984ca5
3,659,020
def stats_file(filename, shape, dtype=None, file_format='raw', out_of_core=True, buffer_size=None, max_memory=None, progress_frequency=None): """stats_file(filename, shape, dtype=None, file_format='raw', out_of_core=True, buffer_size=None, max_memory=None, progress_frequency=None) -> StatsInfo object returns a StatsInfo about the content of 'filename', which is a cube with 'shape'. If 'out_of_core' (out-of-core) is True, process 'buffer_size' elements at a time. """ shape = Shape(shape) filename = interpolate_filename(filename, shape=shape, file_format=file_format, dtype=dtype) if out_of_core and file_format == 'raw': stats_info = stats_info_out_of_core(filename, shape=shape, dtype=dtype, buffer_size=buffer_size, max_memory=max_memory, progress_frequency=progress_frequency) else: cube = read_cube(file=filename, shape=shape, dtype=dtype, file_format=file_format) stats_info = StatsInfo.stats_info(cube) return stats_info
750b4d334aa25a2423e5278eab7cd5ee43385303
3,659,021
def _weight_func(dist): """Weight function to replace lambda d: d ** -2. The lambda function is not valid because: if d==0 then 0^-2 is not valid.""" # Dist could be multidimensional, flatten it so all values # can be looped with np.errstate(divide="ignore"): retval = 1.0 / dist return retval**2
9052b68592f2f6cf4c59c623a3561f77d3d2b933
3,659,023
def two_poles(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None): """Returns the Cartpole Balance task with two poles.""" physics = Physics.from_xml_string(*get_model_and_assets(num_poles=2)) task = Balance(swing_up=True, sparse=False, random=random) environment_kwargs = environment_kwargs or {} return control.Environment( physics, task, time_limit=time_limit, **environment_kwargs)
b5236731d61464067073c3275cdd03d493f17821
3,659,024
def process_topic_entity(entity: dict, language: str) -> bool: """ Given a topic entity, gather its metadata :param entity :param language: :type entity dict :type language str :returns bool """ try: # Get ID remote_id = entity["title"] print("%s\t%s" % ("ID".ljust(16), remote_id)) # Get name from label name = entity["labels"][language]["value"].lower() print("%s\t%s" % ("name".ljust(16), name)) # Get brief brief = entity["descriptions"][language]["value"].lower() print("%s\t%s" % ("description".ljust(16), brief)) print_end() except Exception as err: print_err("%s error: %s" % (remote_id, err)) return False return True
2f03c0d24f35e49cd05ac11389b91345cc43de6e
3,659,025
import math import torch def _no_grad_trunc_normal_(tensor: Tensor, mean: float, std: float, a: float, b: float) -> Tensor: """Cut & paste from PyTorch official master until it's in a few official releases - RW Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf Args: tensor (Tensor): An n-dimensional `Tensor`. mean (float): Mean of the normal distribution. std (float): Standard deviation of the normal distribution. a (float): Minimum cutoff value. b (float): Maximum cutoff value. """ def norm_cdf(x): # Computes standard normal cumulative distribution function return (1. + math.erf(x / math.sqrt(2.))) / 2. if (mean < a - 2 * std) or (mean > b + 2 * std): error_console.log( "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " "Fdistribution of values may be incorrect.", stacklevel=2 ) with torch.no_grad(): # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) # Uniformly fill image with values from [l, u], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * l - 1, 2 * u - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) return tensor
064fce46591c490999c6495999554700f478878b
3,659,026
def inverse_update(C, m, return_drop=False): """ Compute the inverse of a matrix with the m-th row and column dropped given knowledge of the inverse of the original matrix. C = inv(A) B = drop_col(drop_row(A, m),m) computes inv(B) given only C Args: C: inverse of full matirix m: row and col to drop return_drop: whether to also return the array used to drop the m-th row/col. Returns: B if return_drop: the array to drop row/col using jnp.take(v, drop_array) """ drop = drop_array(C.shape[0], m) _a = jnp.take(C, drop, axis=0) # drop m row a = jnp.take(_a, drop, axis=1) c = jnp.take(C, drop, axis=1)[None, m, :] # drop m col b = _a[:, m, None] d = C[m, m] res = a - (b @ c) / d if return_drop: return res, drop return res
0f368d30d0459fe3d07d6fc1fa19dedc449e23e9
3,659,027
def loss_calc(settings, all_batch, market_batch): """ Calculates nn's NEGATIVE loss. Args: settings: contains the neural net all_batch: the inputs to neural net market_batch: [open close high low] used to calculate loss Returns: cost: loss - l1 penalty """ loss = settings['nn'].loss_np(all_batch, market_batch) return -loss
fdca1bb0fa86d1972c2a0f8b1fab10183e98fb4e
3,659,028
def fits_downloaded_correctly(fits_loc): """ Is there a readable fits image at fits_loc? Does NOT check for bad pixels Args: fits_loc (str): location of fits file to open Returns: (bool) True if file at fits_loc is readable, else False """ try: img, _ = fits.getdata(fits_loc, 0, header=True) return True except Exception: # image fails to open return False
8df470b4b2895fb7d77cbccefbd2eae7f22c649b
3,659,029
def union_of_rects(rects): """ Calculates union of two rectangular boxes Assumes both rects of form N x [xmin, ymin, xmax, ymax] """ xA = np.min(rects[:, 0]) yA = np.min(rects[:, 1]) xB = np.max(rects[:, 2]) yB = np.max(rects[:, 3]) return np.array([xA, yA, xB, yB], dtype=np.int32)
904cb58f593bedfbf0e28136a446b4f877955e49
3,659,030
from typing import List from typing import Dict def configure_services(config: List[Dict]) -> Dict[str, GcpServiceQuery]: """ Generate GcpServiceQuery list from config :param config: list with GcpServieQuery's configuration :return: mapping of service name to GcpServiceQuery objects """ if not isinstance(config, list): raise GcpServiceQueryConfigError(f"Invalid GcpServiceQuery config {config}") result = {} for entry in config: if not isinstance(entry, dict): raise GcpServiceQueryConfigError(f"Invalid GcpServiceQuery entry type: '{entry}'. " f"Should be dict, is {type(entry)}") serviceName = entry.get(SERVICE_NAME, None) version = entry.get(VERSION, None) queries = entry.get(QUERIES, None) if not serviceName or not version or not queries: raise GcpServiceQueryConfigError(f"Missing required key for entry {entry}") gcp_service_query = GcpServiceQuery(serviceName, version) # Check multiple entries with same name if serviceName in result: raise GcpServiceQueryConfigError(f"Multiple GCP service with same name: {serviceName}") result[serviceName] = gcp_service_query return result
3c9b9472de4d319446ec4da1d990ecc1750bd248
3,659,031
def tags_get(): """ Get endpoint /api/tag args: optional company_filter(int) - id of a company, will only return tag relation to said company optional crowd(int) - 0 - 2 specifing crowd sourcing option. Key: 0 - all tags 1 - Only crowd sourced tags 2 - Only non crowd sourced tags optional only_ids - if set only returns ids of tags return: List Tags - A json list of all tags that match the optional args. """ request_data = request.get_json() company_filter = get_if_exist(request_data, "company_filter") only_ids = get_if_exist(request_data,"only_ids") crowd = get_if_exist(request_data, "crowd") if crowd: if crowd > 2: return status.HTTP_400_BAD_REQUEST crowd = 0 if company_filter: t = db.session.query( Tag_company.tag, ).filter(Tag_company.company == int(company_filter)).group_by(Tag_company.tag).subquery('t') Tag_query = Tag.query.filter( Tag.id == t.c.tag ) else: Tag_query = Tag.query if crowd != 0: crowd = (1==crowd) Tag_query = Tag_query.filter_by(crowd_soured = crowd) tags = Tag_query.all() if only_ids: return jsonify([tag.id for tag in tags]), status.HTTP_200_OK else: return jsonify([tag.serialize for tag in tags]), status.HTTP_200_OK
c009c0b84bbc825383dffb1141361dd1732b7b19
3,659,032
def get_accept_languages(accept): """Returns a list of languages, by order of preference, based on an HTTP Accept-Language string.See W3C RFC 2616 (http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html) for specification. """ langs = parse_http_accept_header(accept) for index, lang in enumerate(langs): langs[index] = lang_in_gettext_format(lang) return langs
ad329605cd0101e61c2c21aa42f2c81a84db771b
3,659,034
def get_princ_axes_xyz(tensor): """ Gets the principal stress axes from a stress tensor. Modified from beachball.py from ObsPy, written by Robert Barsch. That code is modified from Generic Mapping Tools (gmt.soest.hawaii.edu) Returns 'PrincipalAxis' classes, which have attributes val, trend, plunge Returns T, N, P """ tensor = np.array(tensor) (D, V) = sorted_eigens(tensor) pl = np.arcsin( -V[2] ) # 2 az = np.arctan2( V[0], -V[1] ) # 0 # 1 for i in range(0, 3): if pl[i] <= 0: pl[i] = -pl[i] az[i] += np.pi if az[i] < 0: az[i] += 2 * np.pi if az[i] > 2 * np.pi: az[i] -= 2 * np.pi pl *= 180 / np.pi az *= 180 / np.pi T = PrincipalAxis( D[0], az[0], pl[0] ) # 0 0 0 N = PrincipalAxis( D[1], az[1], pl[1] ) P = PrincipalAxis( D[2], az[2], pl[2] ) # 2 2 2 return(T, N, P)
e9285464e17eb987ebfd21c8e066ff745a856dc1
3,659,035
def extractYoushoku(item): """ """ vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if 'The Other World Dining Hall' in item['tags'] and (chp or vol): return buildReleaseMessageWithType(item, 'The Other World Dining Hall', vol, chp, frag=frag, postfix=postfix) return False
686daef4d594e0e53779be48d7c49a525cabe4ee
3,659,036
def _perform_Miecalculations(diam, wavelength, n, noOfAngles=100.): """ Performs Mie calculations Parameters ---------- diam: NumPy array of floats Array of diameters over which to perform Mie calculations; units are um wavelength: float Wavelength of light in um for which to perform calculations n: complex Ensemble complex index of refraction Returns panda DataTable with the diameters as the index and the mie results in the different collumns total_extinction_coefficient: this takes the sum of all particles crossections of the particular diameter in a qubic meter. This is in principle the AOD of an L """ diam = np.asarray(diam) extinction_efficiency = np.zeros(diam.shape) scattering_efficiency = np.zeros(diam.shape) absorption_efficiency = np.zeros(diam.shape) extinction_crossection = np.zeros(diam.shape) scattering_crossection = np.zeros(diam.shape) absorption_crossection = np.zeros(diam.shape) # phase_function_natural = pd.DataFrame() angular_scattering_natural = pd.DataFrame() # extinction_coefficient = np.zeros(diam.shape) # scattering_coefficient = np.zeros(diam.shape) # absorption_coefficient = np.zeros(diam.shape) # Function for calculating the size parameter for wavelength l and radius r sp = lambda r, l: 2. * np.pi * r / l for e, d in enumerate(diam): radius = d / 2. # print('sp(radius, wavelength)', sp(radius, wavelength)) # print('n', n) # print('d', d) mie = bhmie.bhmie_hagen(sp(radius, wavelength), n, noOfAngles, diameter=d) values = mie.return_Values_as_dict() extinction_efficiency[e] = values['extinction_efficiency'] # print("values['extinction_crosssection']",values['extinction_crosssection']) scattering_efficiency[e] = values['scattering_efficiency'] absorption_efficiency[e] = values['extinction_efficiency'] - values['scattering_efficiency'] extinction_crossection[e] = values['extinction_crosssection'] scattering_crossection[e] = values['scattering_crosssection'] absorption_crossection[e] = values['extinction_crosssection'] - values['scattering_crosssection'] # phase_function_natural[d] = values['phaseFct_natural']['Phase_function_natural'].values angular_scattering_natural[d] = mie.get_angular_scatt_func().natural.values # print('\n') # phase_function_natural.index = values['phaseFct_natural'].index angular_scattering_natural.index = mie.get_angular_scatt_func().index out = pd.DataFrame(index=diam) out['extinction_efficiency'] = pd.Series(extinction_efficiency, index=diam) out['scattering_efficiency'] = pd.Series(scattering_efficiency, index=diam) out['absorption_efficiency'] = pd.Series(absorption_efficiency, index=diam) out['extinction_crossection'] = pd.Series(extinction_crossection, index=diam) out['scattering_crossection'] = pd.Series(scattering_crossection, index=diam) out['absorption_crossection'] = pd.Series(absorption_crossection, index=diam) return out, angular_scattering_natural
4ce8fa518477c3eb38816d8f441207716b3a90df
3,659,037
from typing import Tuple def load_config_dict(pipette_id: str) -> Tuple[ 'PipetteFusedSpec', 'PipetteModel']: """ Give updated config with overrides for a pipette. This will add the default value for a mutable config before returning the modified config value. """ override = load_overrides(pipette_id) model = override['model'] config = fuse_specs(model) if 'quirks' not in override.keys(): override['quirks'] = {key: True for key in config['quirks']} for top_level_key in config.keys(): if top_level_key != 'quirks': add_default(config[top_level_key]) # type: ignore config.update(override) # type: ignore return config, model
485db2aad493eda30e6dad07b3d6c9413bc5c3c8
3,659,038
def ErrorAddEncKey(builder, encKey): """This method is deprecated. Please switch to AddEncKey.""" return AddEncKey(builder, encKey)
c39bb36b3923ca1a0e508b23ef84a6de130700a3
3,659,039
def _read_txs_from_file(f): """ Validate headers and read buy/sell transactions from the open file-like object 'f'. Note: we use the seek method on f. """ ans = [] f.seek(0) workbook = openpyxl.load_workbook(f) sheet = workbook.active all_contents = list(sheet.rows) _validate_header(all_contents[0]) contents = all_contents[1:] for row in contents: item = _tx_from_gemini_row(row) if item is not None: ans.append(item) return ans
0c62c647a2ff1a797fb5e8593279bbf64bc0d495
3,659,040
from typing import Union def get_generator_regulation_lower_term_4(data, trader_id, intervention) -> Union[float, None]: """Get L5RE term 4 in FCAS availability calculation""" # Term parameters enablement_min = get_effective_enablement_min(data, trader_id, 'L5RE') energy_target = lookup.get_trader_solution_attribute(data, trader_id, '@EnergyTarget', float, intervention) lower_slope_coefficient = get_lower_slope_coefficient(data, trader_id, 'L5RE') # Ignore limit if slope coefficient = 0 if lower_slope_coefficient == 0: return None return 0 if (lower_slope_coefficient is None) else (energy_target - enablement_min) / lower_slope_coefficient
626ab26f92feefea25777046c1fc37c4115f7be8
3,659,041
def count_parameters(model): """count model parameters""" return sum(p.numel() for p in model.parameters() if p.requires_grad)
5edcb3ee03794cb66f5986670c4825efab93a1d8
3,659,042
def string_rule_variable(label=None, params=None, options=None, public=True): """ Decorator to make a function into a string rule variable. NOTE: add **kwargs argument to receive Rule as parameters :param label: Label for Variable :param params: Parameters expected by the Variable function :param options: Options parameter to specify expected options for the variable. The value used in the Condition IS NOT checked against this list. :param public: Flag to identify if a variable is public or not :return: Decorator function wrapper """ return _rule_variable_wrapper(StringType, label, params=params, options=options, public=public)
3bd35ac2e27c58ee35f7e13bb359cb8240f8efda
3,659,043
def detect_horizon_lines(image_thre, row, busbar, cell_size, thre=0.6, split=50, peak_interval=None, margin=None): """ Detect horizontal edges by segmenting image into vertical splits Parameters --------- image_thre: array Adaptive threshold of raw images row: int Number of rows of solar module busbar: int Number of busbars of a solar cell cell_size: int Output cell size in pixel thre: float Peak intensity above THRE will be set as 1. Note that the edge's peak intensity should be lowest because edges are black split: int Number of splits peak_interval: int Distance between each peak. Returns ------- hline_abs_couple: array Suppose a line is y=a*x+b. Return 'a' and 'b' of a couple edges (top and bottom of a cell). """ #width = image_thre.shape[1] #end = int(width / split) #image_vsplits = np.hsplit(image_thre[:, :end * split], split) # vertical splits #image_vsplits.append(image_thre[:, end * split:]) image_vsplits = split_img(image_thre, split=split, direction=1) edge_y = [] inx_x = [] for inx, im_split in enumerate(image_vsplits): #sum_split = np.sum(im_split, axis=1) #sum_split = sum_split / np.max(sum_split) #sum_split[sum_split > thre] = 1 #if peak_interval is None: # peak_interval = int(cell_size / (busbar + 1) * 0.5) #peak, _ = find_peaks(-1 * sum_split, distance=peak_interval) peak = detect_peaks(im_split, 1, cell_size, busbar, thre, peak_interval, margin=margin) if len(peak) >= row * (busbar + 1) - 1: peak_new = [peak[0]] for i in range(1, len(peak) - 1): if np.abs(peak[i] - peak[i + 1]) < 15: peak_mean = (peak[i] + peak[i + 1]) / 2 peak_new.append(peak_mean) elif np.abs(peak[i] - peak[i - 1]) > 15: peak_new.append(peak[i]) peak_new.append(peak[-1]) peak_new = np.array(peak_new) peak_new_a = np.delete(peak_new, 0) peak_new_b = np.delete(peak_new, -1) peak_new_detect = peak_new[detectoutliers(np.abs(peak_new_a - peak_new_b), rate=0.5, option=1)] if len(peak_new_detect) == (busbar + 1) * row + 1: edge_y.append(peak_new_detect) inx_mean = ((2 * inx + 1) * (image_thre.shape[1] / split) - 1) / 2 inx_x.append(inx_mean) edge_y = np.array(edge_y) hlines = list(zip(*edge_y)) hlines = np.array(hlines) inx_x = np.array(inx_x) # for lines in hlines: # lines_new = self.detectoutliers(lines, option=0) # while np.std(lines_new) > 10: # lines_new = self.detectoutliers(lines, rate=1, option=0) # hb_abs = [] # all lines including busbar hb_abs = linear_regression(inx_x, hlines, outlier_filter=True) hline_abs_couple = [] # all lines excluding busbar # for horizonline in hlines: # ab, _ = curve_fit(self.linear, inx_x, horizonline) # y = ax + b # hb_abs.append(ab) hline_abs_couple = [(hb_abs[(busbar + 1) * i], hb_abs[(busbar + 1) * (i + 1)]) for i in range(row)] # hline_abs = [(hb_abs[(4+1)*i],hb_abs[(4+1)*(i+1)]) for i in range(6)] # hline_abs = [(hb_abs[(self.busbar+2)*i],hb_abs[(self.busbar+2)*(i+1)-1]) for i in range(self.row)] return hline_abs_couple
e8365b29829d6e1a71c4c9caefff221d9357b0a3
3,659,044
def countRoem(cards, trumpSuit=None): """Counts the amount of roem (additional points) in a list of cards Args: Returns: Integer value how many points of roem are in the cards in total """ roem = 0 # Stuk # Without a trumpSuit, stuk is impossible if trumpSuit is not None: #trumpKing = list(filter(lambda c: c.suit == trumpSuit and c.rank == 4, cards)) #trumpQueen = list(filter(lambda c: c.suit == trumpSuit and c.rank == 5, cards)) trumpKing = [card for card in cards if card.suit == trumpSuit and card.rank == 4] trumpQueen = [card for card in cards if card.suit == trumpSuit and card.rank == 5] if trumpKing and trumpQueen: roem += 20 # Normal roem # For each suit we check whether there are 3 cards in that suit, if so there is chance for roem for i in range(4): #cardsInSuit = list(filter(lambda c: c.suit == i, cards)) cardsInSuit = [card for card in cards if card.suit == i] if len(cardsInSuit) >= 3: cards = cardsInSuit # We sort the list and check the difference between consecutive cards cards.sort(key=lambda c: c.rank) subtractList = [] for i in range(len(cards) - 1): #subtract = abs(cards[i].roemRank - cards[i+1].roemRank) subtract = abs(ROEMRANKS[cards[i].rank] - ROEMRANKS[cards[i].rank]) subtractList.append(subtract) # If more than 1 difference equals 1, we know at least 3 cards have consecutive ranks #lenOfOnes = len(list(filter(lambda x: x == 1, subtractList))) lenOfOnes = len([x for x in subtractList if x == 1]) if lenOfOnes == 2: roem += 20 elif lenOfOnes == 3: roem += 50 return roem
31e2dbf346801fa81e5a5905a480f6d5b8e9ce1a
3,659,045
from typing import Optional def batch_to_space( data: NodeInput, block_shape: NodeInput, crops_begin: NodeInput, crops_end: NodeInput, name: Optional[str] = None, ) -> Node: """Perform BatchToSpace operation on the input tensor. BatchToSpace permutes data from the batch dimension of the data tensor into spatial dimensions. :param data: Node producing the data tensor. :param block_shape: The sizes of the block of values to be moved. :param crops_begin: Specifies the amount to crop from the beginning along each axis of `data`. :param crops_end: Specifies the amount to crop from the end along each axis of `data`. :param name: Optional output node name. :return: The new node performing a BatchToSpace operation. """ return _get_node_factory_opset2().create( "BatchToSpace", as_nodes(data, block_shape, crops_begin, crops_end), )
fe7004243e7c4a6dfd78b1f39df22ba7290c9244
3,659,046
def url_in(url): """ Send a URL and I'll post it to Hive """ custom_json = {'url': url} trx_id , success = send_notification(custom_json) return trx_id, success
ecfcb02cdbd9050a5a305f38d9673d64b9b1d307
3,659,047
def login(): """ Display a basic login form in order to log in a user """ if request.method == 'GET': return render_template('login.html') else: try: usr = User.query.get(request.form['user_id']) if bcrypt.checkpw(request.form['user_password'].encode('utf-8'),usr.password): login_user(usr, remember=True) flash('Logged in successfully') return redirect(session['next_url']) except Exception as e: print("Sorry this user don't exist") print(e) return render_template('login.html')
37702dc290d627544d5714ed21d8804eaa00f354
3,659,048
def hflip(stream): """Flip the input video horizontally. Official documentation: `hflip <https://ffmpeg.org/ffmpeg-filters.html#hflip>`__ """ return FilterNode(stream, hflip.__name__).stream()
140f7d4ceecee09e5f0ba7db9a68cee15e536ffa
3,659,049
def get_diagonal_ripple_rainbows_2(): """ Returns 11 diagonal ripple rainbows Programs that use this function: - Diagonal Ripple 3 - Diagonal Ripple 4 """ rainbow01 = [ [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1H, C2, C3, C4, C5, C6, C7, C8] ] rainbow02 = [ [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1H, C2, C3, C4, C5, C6, C7, C8], [C1, C2H, C3, C4, C5, C6, C7, C8] ] rainbow03 = [ [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1H, C2, C3, C4, C5, C6, C7, C8], [C1, C2H, C3, C4, C5, C6, C7, C8], [C1, C2, C3H, C4, C5, C6, C7, C8] ] rainbow04 = [ [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1H, C2, C3, C4, C5, C6, C7, C8], [C1, C2H, C3, C4, C5, C6, C7, C8], [C1, C2, C3H, C4, C5, C6, C7, C8], [C1, C2, C3, C4H, C5, C6, C7, C8] ] rainbow05 = [ [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1H, C2, C3, C4, C5, C6, C7, C8], [C1, C2H, C3, C4, C5, C6, C7, C8], [C1, C2, C3H, C4, C5, C6, C7, C8], [C1, C2, C3, C4H, C5, C6, C7, C8], [C1, C2, C3, C4, C5H, C6, C7, C8] ] rainbow06 = [ [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1H, C2, C3, C4, C5, C6, C7, C8], [C1, C2H, C3, C4, C5, C6, C7, C8], [C1, C2, C3H, C4, C5, C6, C7, C8], [C1, C2, C3, C4H, C5, C6, C7, C8], [C1, C2, C3, C4, C5H, C6, C7, C8], [C1, C2, C3, C4, C5, C6H, C7, C8] ] rainbow07 = [ [C1, C2, C3, C4, C5, C6, C7, C8], [C1H, C2, C3, C4, C5, C6, C7, C8], [C1, C2H, C3, C4, C5, C6, C7, C8], [C1, C2, C3H, C4, C5, C6, C7, C8], [C1, C2, C3, C4H, C5, C6, C7, C8], [C1, C2, C3, C4, C5H, C6, C7, C8], [C1, C2, C3, C4, C5, C6H, C7, C8], [C1, C2, C3, C4, C5, C6, C7H, C8] ] rainbow08 = [ [C1H, C2, C3, C4, C5, C6, C7, C8], [C1, C2H, C3, C4, C5, C6, C7, C8], [C1, C2, C3H, C4, C5, C6, C7, C8], [C1, C2, C3, C4H, C5, C6, C7, C8], [C1, C2, C3, C4, C5H, C6, C7, C8], [C1, C2, C3, C4, C5, C6H, C7, C8], [C1, C2, C3, C4, C5, C6, C7H, C8], [C1, C2, C3, C4, C5, C6, C7, C8H] ] rainbow09 = [ [C1, C2H, C3, C4, C5, C6, C7, C8], [C1, C2, C3H, C4, C5, C6, C7, C8], [C1, C2, C3, C4H, C5, C6, C7, C8], [C1, C2, C3, C4, C5H, C6, C7, C8], [C1, C2, C3, C4, C5, C6H, C7, C8], [C1, C2, C3, C4, C5, C6, C7H, C8], [C1, C2, C3, C4, C5, C6, C7, C8H], [C1, C2, C3, C4, C5, C6, C7, C8] ] rainbow10 = [ [C1, C2, C3H, C4, C5, C6, C7, C8], [C1, C2, C3, C4H, C5, C6, C7, C8], [C1, C2, C3, C4, C5H, C6, C7, C8], [C1, C2, C3, C4, C5, C6H, C7, C8], [C1, C2, C3, C4, C5, C6, C7H, C8], [C1, C2, C3, C4, C5, C6, C7, C8H], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8] ] rainbow11 = [ [C1, C2, C3, C4H, C5, C6, C7, C8], [C1, C2, C3, C4, C5H, C6, C7, C8], [C1, C2, C3, C4, C5, C6H, C7, C8], [C1, C2, C3, C4, C5, C6, C7H, C8], [C1, C2, C3, C4, C5, C6, C7, C8H], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8] ] rainbow12 = [ [C1, C2, C3, C4, C5H, C6, C7, C8], [C1, C2, C3, C4, C5, C6H, C7, C8], [C1, C2, C3, C4, C5, C6, C7H, C8], [C1, C2, C3, C4, C5, C6, C7, C8H], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8] ] rainbow13 = [ [C1, C2, C3, C4, C5, C6H, C7, C8], [C1, C2, C3, C4, C5, C6, C7H, C8], [C1, C2, C3, C4, C5, C6, C7, C8H], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8] ] rainbow14 = [ [C1, C2, C3, C4, C5, C6, C7H, C8], [C1, C2, C3, C4, C5, C6, C7, C8H], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8] ] rainbow15 = [ [C1, C2, C3, C4, C5, C6, C7, C8H], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8] ] return rainbow01, rainbow02, rainbow03, rainbow04, rainbow05, \ rainbow06, rainbow07, rainbow08, rainbow09, rainbow10, \ rainbow11, rainbow12, rainbow13, rainbow14, rainbow15
ce917a063de580b2fcacfe2b59991585aefe30a4
3,659,050
def matrix_prod(A, B, display = False): """ Computes the matrix product of two matrices using array slicing and vector operations. """ if A.shape[1] != B.shape[0]: raise ValueError("Dimensions not compatible.") # Not allowed!? #matrix = A.dot(B) # Dotproduct of each A.row*B.clm matrix = np.array([[np.sum(A[i,:]*B[:,j]) for j in range(B.shape[1])] for i in range(A.shape[0])]) if display: print(matrix) return matrix
c38c3c3c9b1d2cc3edf6efb1997fe94a15c870ec
3,659,051
def remove_quat_discontinuities(rotations): """ Removing quat discontinuities on the time dimension (removing flips) :param rotations: Array of quaternions of shape (T, J, 4) :return: The processed array without quaternion inversion. """ rots_inv = -rotations for i in range(1, rotations.shape[0]): # Compare dot products replace_mask = np.sum(rotations[i - 1: i] * rotations[i: i + 1], axis=-1) < np.sum( rotations[i - 1: i] * rots_inv[i: i + 1], axis=-1) replace_mask = replace_mask[..., np.newaxis] rotations[i] = replace_mask * rots_inv[i] + (1.0 - replace_mask) * rotations[i] return rotations
7d3874f5c56f82f3a8951daef48ac115f7f8943a
3,659,052
import glob def compute_profile_from_frames(frames_str, ax, bt, box, N_bins=100, \ shift=None, verbose=False): """ Compute a density profile from a batch of xyz frames. Input ===== - frames_str: a regex containing frames in xyz format - ax: axis along which to compute the profile - bt: bead type - box: box size, a (3, 3) matrix - N_bins: number of bins Output ====== - r: position vector - pr: density profile vector """ frames = glob.glob(frames_str) assert len(frames) != 0, "No xyz frames captured." Nf = len(frames) N = int(open(frames[0], "r").readline()) if verbose: print(frames) L = np.diag(box) bins = np.linspace(0, L[ax], N_bins + 1) dr = bins[1] - bins[0] r = dr / 2.0 + bins[:-1] Lsurf = L[list(set(range(3)).difference([ax]))] # cross-sectional surface pr = np.zeros_like(r) for frame in frames: bl, X0 = read_xyz(frame) if shift is not None: assert len(shift) == 3, "Vector of shifting must be of size 3." shift = np.array(shift) X0 = X0 + shift X0 = X0 % L if bt == -1: X = X0 else: X = X0[bl == bt] pr += np.histogram(X[:, ax], bins=bins)[0] pr = pr / (dr * np.prod(Lsurf)) / Nf return r, pr
70702dbcf73f2a7e9894899ca20f81eadc3046fe
3,659,053
import urllib import requests import json def wikipedia_search(query, lang="en", max_result=1): """ https://www.mediawiki.org/wiki/API:Opensearch """ query = any2unicode(query) params = { "action":"opensearch", "search": query, "format":"json", #"formatversion":2, #"namespace":0, "suggest":"true", "limit": 10 } urlBase = "https://{}.wikipedia.org/w/api.php?".format(lang) url = urlBase + urllib.urlencode(any2utf8(params)) #logging.info(url) r = requests.get(url) jsonData = json.loads(r.content) #logging.info(jsonData) items = [] ret = {"query":query, "itemList":items} for idx, label in enumerate(jsonData[1][0:max_result]): description = jsonData[2][idx] url = jsonData[3][idx] item = { "name": label, "description":description, "url": url, } items.append(item) return ret
e88b50c11d78989e086417d15e91515d24151586
3,659,054
def group_result(result, func): """ :param result: A list of rows from the database: e.g. [(key, data1), (key, data2)] :param func: the function to reduce the data e.g. func=median :return: the data that is reduced. e.g. [(key, (data1+data2)/2)] """ data = {} for key, value in result: if key in data.keys(): data[key].append(value) else: data[key] = [value] for key in data: data[key] = func(data[key]) return data.items()
7687521c216210badcda5ee54bd59a3bc6a234bd
3,659,055
import torch def prep_image(img, inp_dim): """ Prepare image for inputting to the neural network. Returns a Variable """ orig_im = img dim = orig_im.shape[1], orig_im.shape[0] img = cv2.resize(orig_im, (inp_dim, inp_dim)) # img_ = img[:,:,::-1].transpose((2,0,1)).copy() img_ = img.transpose((2,0,1)).copy() img_ = torch.from_numpy(img_).float().div(255.0).unsqueeze(0) return img_, orig_im, dim
65159c8ce3a2df3cb09a6f1f318bb3374943e314
3,659,056
import uuid def extractLogData(context): """ helper function to extract all important data from the web context. :param context: the web.py context object :return: a dictionary with all information for the logging. """ logData = {} logData['ip'] = context.ip logData['account'] = context.env.get('HTTP_RUCIO_ACCOUNT') logData['appid'] = 'clients' # has to changed, but atm no appid is send with the clients logData['clientref'] = context.env.get('HTTP_RUCIO_CLIENTREF') logData['uri'] = context.method + ' ' + context.protocol + "://" + context.host + context.homepath + context.fullpath logData['requestid'] = uuid() logData['requestHeader'] = context.env logData['responseHeader'] = '' logData['httpCode'] = '' logData['duration'] = '' return logData
5fb68d4f19dae0b7175a089dd1366cab0407152b
3,659,057
def Backbone(backbone_type='ResNet50', use_pretrain=True): """Backbone Model""" weights = None if use_pretrain: weights = 'imagenet' def backbone(x_in): if backbone_type == 'ResNet50': return ResNet50(input_shape=x_in.shape[1:], include_top=False, weights=weights)(x_in) elif backbone_type == 'MobileNetV2': return MobileNetV2(input_shape=x_in.shape[1:], include_top=False, weights=weights)(x_in) else: raise TypeError('backbone_type error!') return backbone
23bc493e8306d5dc5dba33cd2f67de231cbb3e02
3,659,058
def start(ctx, vca_client, **kwargs): """ power on server and wait network connection availability for host """ # combine properties obj = combine_properties( ctx, kwargs=kwargs, names=['server'], properties=[VCLOUD_VAPP_NAME, 'management_network']) # get external if obj.get('use_external_resource'): ctx.logger.info('not starting server since an external server is ' 'being used') else: vapp_name = get_vapp_name(ctx.instance.runtime_properties) config = get_vcloud_config() vdc = vca_client.get_vdc(config['vdc']) vapp = vca_client.get_vapp(vdc, vapp_name) _power_on_vm(ctx, vca_client, vapp, vapp_name) if not _get_state(ctx=ctx, vca_client=vca_client): return ctx.operation.retry( message="Waiting for VM's configuration to complete", retry_after=5)
6e3e3a94095ef200e586f7dfdc7e117ae3ee375f
3,659,059
def softplus(z): """Numerically stable version of log(1 + exp(z)).""" # see stabilizing softplus: http://sachinashanbhag.blogspot.com/2014/05/numerically-approximation-of-log-1-expy.html # noqa mu = z.copy() mu[z > 35] = z[z > 35] mu[z < -10] = np.exp(z[z < -10]) mu[(z >= -10) & (z <= 35)] = log1p(np.exp(z[(z >= -10) & (z <= 35)])) return mu
f683c1f2240d053c4ee2c24f64ff5576c0d9d32d
3,659,060
from typing import Mapping from typing import Hashable from typing import Union from typing import Sequence from typing import Set from typing import Tuple from typing import OrderedDict from typing import Any def merge_indexes( indexes: Mapping[Hashable, Union[Hashable, Sequence[Hashable]]], variables: Mapping[Hashable, Variable], coord_names: Set[Hashable], append: bool = False, ) -> "Tuple[OrderedDict[Any, Variable], Set[Hashable]]": """Merge variables into multi-indexes. Not public API. Used in Dataset and DataArray set_index methods. """ vars_to_replace = {} # Dict[Any, Variable] vars_to_remove = [] # type: list error_msg = "{} is not the name of an existing variable." for dim, var_names in indexes.items(): if isinstance(var_names, str) or not isinstance(var_names, Sequence): var_names = [var_names] names, codes, levels = [], [], [] # type: (list, list, list) current_index_variable = variables.get(dim) for n in var_names: try: var = variables[n] except KeyError: raise ValueError(error_msg.format(n)) if ( current_index_variable is not None and var.dims != current_index_variable.dims ): raise ValueError( "dimension mismatch between %r %s and %r %s" % (dim, current_index_variable.dims, n, var.dims) ) if current_index_variable is not None and append: current_index = current_index_variable.to_index() if isinstance(current_index, pd.MultiIndex): try: current_codes = current_index.codes except AttributeError: # fpr pandas<0.24 current_codes = current_index.labels names.extend(current_index.names) codes.extend(current_codes) levels.extend(current_index.levels) else: names.append("%s_level_0" % dim) cat = pd.Categorical(current_index.values, ordered=True) codes.append(cat.codes) levels.append(cat.categories) if not len(names) and len(var_names) == 1: idx = pd.Index(variables[var_names[0]].values) else: for n in var_names: try: var = variables[n] except KeyError: raise ValueError(error_msg.format(n)) names.append(n) cat = pd.Categorical(var.values, ordered=True) codes.append(cat.codes) levels.append(cat.categories) idx = pd.MultiIndex(levels, codes, names=names) vars_to_replace[dim] = IndexVariable(dim, idx) vars_to_remove.extend(var_names) new_variables = OrderedDict( [(k, v) for k, v in variables.items() if k not in vars_to_remove] ) new_variables.update(vars_to_replace) new_coord_names = coord_names | set(vars_to_replace) new_coord_names -= set(vars_to_remove) return new_variables, new_coord_names
b893d118312697d1995a0a42bbff8354b73ca642
3,659,061
def least_squares(m, n): """ Create a least squares problem with m datapoints and n dimensions """ A = np.random.randn(m, n) _x = np.random.randn(n) b = A.dot(_x) x = cp.Variable(n) return (x, cp.Problem(cp.Minimize(cp.sum_squares(A * x - b) + cp.norm(x, 2))))
21b3b4577ec232f6e74d1f096946d0923f867cf7
3,659,062
def expand_amn(a, kpoints, idx, Rvectors, nproj_atom=None): """ Expand the projections matrix by translations of the orbitals Parameters ---------- a : ndarray, shape (nkpts, nbnds, nproj) kpoints : ndarray, shape (nkpts, 3) idx : ndarray indices of translated orbitals Rvectors: ndarray translation vectors for the orbitals nproj_atom: ndarray, optional number of projections on each atom, with idx and Rvectors now describing atoms instead of orbitals """ assert len(Rvectors) == len(idx) if nproj_atom is not None: assert len(nproj_atom) == len(idx) idx_new = [] Rvectors_new = [] for iatom, i in enumerate(idx): offset = np.sum(nproj_atom[:i]) for j in range(nproj_atom[i]): idx_new.append(offset+j) Rvectors_new.append(Rvectors[iatom]) idx = idx_new Rvectors = Rvectors_new nkpts, nbnds, nproj = a.shape a1 = np.zeros((nkpts, nbnds, len(idx)), dtype=complex) k_dot_R = np.einsum('ki,ri->kr', kpoints, Rvectors) exp_factors = np.exp(-1j * 2*np.pi * k_dot_R) a1 = a[:, :, idx] * exp_factors[:, np.newaxis, :] return a1
d68a7cd4cb019b2d516305d0b6a2b45f6a422ba8
3,659,065
def combine_basis_vectors(weights, vectors, default_value=None, node_num=None): """ Combine basis vectors using ``weights`` as the Manning's n value for each basis vector. If a ``default_value`` is set then all nodes with out data are set to the ``default_value``. :type weights: :class:`numpy.ndarray` :param weights: array of size (num_of_basis_vec, 1) :type vectors: list of dicts OR :class:`numpy.ndarray` of size (node_num, num_of_basis_vec) :param vectors: basis vectors :returns: an array of size (node_num, 1) containing the manningsn value at all nodes in numerical order or a dictionary """ if len(weights) != len(vectors): raise LenError('weights, vectors', 'dimensions do not match') if isinstance(vectors[0], np.array): combine_bv_array(weights, vectors) elif default_value and node_num: return dict_to_array(add_dict(vectors, weights)[0], default_value, node_num) else: return add_dict(vectors, weights)[0]
50a0cc5ba8ad88a480fc589f6fbe184548700485
3,659,066
from typing import List from typing import Tuple from typing import Any def _prepare_data_for_node_classification( graph: nx.Graph, seed_node: int ) -> List[Tuple[Any, Any]]: """ Position seed node as the first node in the data. TensorFlow GNN has a convention whereby the node to be classified, the "seed node", is positioned first in the component. This is for use with layers such as `tfgnn.keras.layers.ReadoutFirstNode` which extracts the first node from a component. """ seed_data = graph.nodes(data=True)[seed_node] data = [(seed_data["features"], seed_data["label"])] data += [ (data["features"], data["label"]) for node, data in graph.nodes(data=True) if node != seed_node ] return data
3ed718e583d9e96b2c5bd28e5640c36e5e009065
3,659,067