content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
def encrypt(key, pt, Nk=4):
"""Encrypt a plain text block."""
assert Nk in {4, 6, 8}
rkey = key_expand(key, Nk)
ct = cipher(rkey, pt, Nk)
return ct | 41d94f1c050d89e85c6e9f3c74de1cb3cae7a899 | 1,000 |
import requests
import logging
def upload(filename, url, token=None):
"""
Upload a file to a URL
"""
headers = {}
if token:
headers['X-Auth-Token'] = token
try:
with open(filename, 'rb') as file_obj:
response = requests.put(url, data=file_obj, timeout=120, headers=headers, verify=False)
except requests.exceptions.RequestException as err:
logging.warning('RequestException when trying to upload file %s: %s', filename, err)
return None
except IOError as err:
logging.warning('IOError when trying to upload file %s: %s', filename, err)
return None
if response.status_code == 200 or response.status_code == 201:
return True
return None | eb8a8060294322bd9df187c8076d8f66b4dc775c | 1,001 |
import torch
def cost(states, sigma=0.25):
"""Pendulum-v0: Same as OpenAI-Gym"""
l = 0.6
goal = Variable(torch.FloatTensor([0.0, l]))#.cuda()
# Cart position
cart_x = states[:, 0]
# Pole angle
thetas = states[:, 2]
# Pole position
x = torch.sin(thetas)*l
y = torch.cos(thetas)*l
positions = torch.stack([cart_x + x, y], 1)
squared_distance = torch.sum((goal - positions)**2, 1)
squared_sigma = sigma**2
cost = 1 - torch.exp(-0.5*squared_distance/squared_sigma)
return cost | fdbf3105ff04437b05b5914aac43c61706f87287 | 1,002 |
def flatmap(fn, seq):
"""
Map the fn to each element of seq and append the results of the
sublists to a resulting list.
"""
result = []
for lst in map(fn, seq):
for elt in lst:
result.append(elt)
return result | c42d07f712a29ece76cd2d4cec4f91ec2562a1c0 | 1,003 |
def the_test_file():
"""the test file."""
filename = 'tests/resources/grype.json'
script = 'docker-grype/parse-grype-json.py'
return {
'command': f'{script} {filename}',
'host_url': 'local://'
} | d97d621d05f3844053b42c878dc8189fc8d264d0 | 1,004 |
import csv
def build_stations() -> tuple[dict, dict]:
"""Builds the station dict from source file"""
stations, code_map = {}, {}
data = csv.reader(_SOURCE["airports"].splitlines())
next(data) # Skip header
for station in data:
code = get_icao(station)
if code and station[2] in ACCEPTED_STATION_TYPES:
stations[code] = format_station(code, station)
code_map[station[0]] = code
return stations, code_map | 773d34c7d33585611dfb79fc4beaf8702a2c57df | 1,005 |
def vox_mesh_iou(voxelgrid, mesh_size, mesh_center, points, points_occ, vox_side_len=24, pc=None):
"""LeoZDong addition: Compare iou between voxel and mesh (represented as
points sampled uniformly inside the mesh). Everything is a single element
(i.e. no batch dimension).
"""
# Un-rotate voxels to pointcloud orientation
voxelgrid = voxelgrid.copy()
voxelgrid = np.flip(voxelgrid, 1)
voxelgrid = np.swapaxes(voxelgrid, 0, 1)
# voxelgrid = np.swapaxes(voxelgrid, 0, 2)
# Find voxel centers as if they are in a [-0.5, 0.5] bbox
vox_center = get_vox_centers(voxelgrid)
# Rescale points so that the mesh object is 0-centered and has longest side
# to be 0.75 (vox_side_len=24 / 32)
points += vox_center - mesh_center
scale = (vox_side_len / voxelgrid.shape[0]) / mesh_size
points *= scale
# import ipdb; ipdb.set_trace()
cond = np.stack((points.min(1) > -0.5, points.max(1) < 0.5), 0)
in_bounds = np.all(cond, 0)
vox_occ = np.zeros_like(points_occ)
vox_occ[in_bounds] = points_occ_in_voxel(voxelgrid, points[in_bounds, :])
# Find occupancy in voxel for the query points
# vox_occ = points_occ_in_voxel(voxelgrid, points)
iou = occ_iou(points_occ, vox_occ)
#### DEBUG ####
# vox_occ_points = points[vox_occ > 0.5]
# gt_occ_points = points[points_occ > 0.5]
# int_occ_points = points[(vox_occ * points_occ) > 0.5]
# save_dir = '/viscam/u/leozdong/shape2prog/output/chair/GA_24/meshes/table/cd5f235344ff4c10d5b24cafb84903c7'
# save_ply(vox_occ_points, os.path.join(save_dir, 'vox_occ_points.ply'))
# save_ply(gt_occ_points, os.path.join(save_dir, 'gt_occ_points.ply'))
# save_ply(int_occ_points, os.path.join(save_dir, 'int_occ_points.ply'))
# print("iou:", iou)
return iou | a720701dadb6321e402048425224cbaf91f507aa | 1,006 |
def qhxl_attr_2_bcp47(hxlatt: str) -> str:
"""qhxl_attr_2_bcp47
Convert HXL attribute part to BCP47
Args:
hxlatt (str):
Returns:
str:
"""
resultatum = ''
tempus1 = hxlatt.replace('+i_', '')
tempus1 = tempus1.split('+is_')
resultatum = tempus1[0] + '-' + tempus1[1].capitalize()
# @TODO: test better cases with +ix_
resultatum = resultatum.replace('+ix_', '-x-')
return resultatum | a44a0c09345176104e7b7c1d26a920620157ec67 | 1,007 |
def _(output):
"""Handle the output of a bash process."""
logger.debug('bash handler: subprocess output: {}'.format(output))
if output.returncode == 127:
raise exceptions.ScriptNotFound()
return output | e71ce6c566c09e100ae3463109f5bcc6d676b494 | 1,008 |
def process_row(row, fiscal_fields):
"""Add and remove appropriate columns.
"""
surplus_keys = set(row) - set(fiscal_fields)
missing_keys = set(fiscal_fields) - set(row)
for key in missing_keys:
row[key] = None
for key in surplus_keys:
del row[key]
assert set(row) == set(fiscal_fields)
return row | 1c55fe628b53be72633d2fcae7cc1fbac91d04ae | 1,009 |
def DefaultTo(default_value, msg=None):
"""Sets a value to default_value if none provided.
>>> s = Schema(DefaultTo(42))
>>> s(None)
42
"""
def f(v):
if v is None:
v = default_value
return v
return f | 10401d7214d15c2b0bf28f52430ef71b5df0a116 | 1,010 |
def load_files(file_list, inputpath):
"""
function to load the data from potentially multiple files into one pandas DataFrame
"""
df = None
# loop through files and append
for i, file in enumerate(file_list):
path = f"{inputpath}/{file}"
print(path)
df_i = pd.read_csv(path)
if i == 0:
df = df_i
else:
df = pd.concat([df, df_i], axis=0, ignore_index=True)
return df | 2f1ec9519c4ff1cb9d8a2f492e80cc05ecb968db | 1,011 |
def list_all():
"""
List all systems
List all transit systems that are installed in this Transiter instance.
"""
return systemservice.list_all() | 21efc81b1312f01d6b016fa10cdf675b0e22655f | 1,012 |
def putText(image: np.ndarray, text: str,
org=(0, 0),
font=_cv2.FONT_HERSHEY_PLAIN,
fontScale=1, color=(0, 0, 255),
thickness=1,
lineType=_cv2.LINE_AA,
bottomLeftOrigin=False) -> np.ndarray:
"""Add text to `cv2` image, with default values.
:param image: image array
:param text: text to be added
:param org: origin of text, from top left by default
:param font: font choice
:param fontScale: font size
:param color: BGR color, red by default
:param thickness: font thickness
:param lineType: line type of text
:param bottomLeftOrigin: True to start from bottom left, default False
:return: image with text added
"""
return _cv2.putText(image, text, org, font, fontScale, color, thickness, lineType, bottomLeftOrigin) | 37fd20c2afb70a59f78f35741c235e9793721dab | 1,013 |
def gaussFilter(fx: int, fy: int, sigma: int):
""" Gaussian Filter
"""
x = tf.range(-int(fx / 2), int(fx / 2) + 1, 1)
Y, X = tf.meshgrid(x, x)
sigma = -2 * (sigma**2)
z = tf.cast(tf.add(tf.square(X), tf.square(Y)), tf.float32)
k = 2 * tf.exp(tf.divide(z, sigma))
k = tf.divide(k, tf.reduce_sum(k))
return k | b83bcadba782f16f6932c081b9f20ad9bd71828b | 1,014 |
def do_something(param=None):
"""
Several routes for the same function
FOO and BAR have different documentation
---
"""
return "I did something with {}".format(request.url_rule), 200 | 7a50206c27b66d2b3ff588777ea95927b527a719 | 1,015 |
import re
from typing import Literal
def extract_text(
pattern: re.Pattern[str] | str,
source_text: str,
) -> str | Literal[False]:
"""Match the given pattern and extract the matched text as a string."""
match = re.search(pattern, source_text)
if not match:
return False
match_text = match.groups()[0] if match.groups() else match.group()
return match_text | a6f762cfd26dd1231db4b6e88247e2566d186212 | 1,016 |
import os
def _checksum_paths():
"""Returns dict {'dataset_name': 'path/to/checksums/file'}."""
dataset2path = {}
for dir_path in _CHECKSUM_DIRS:
for fname in _list_dir(dir_path):
if not fname.endswith(_CHECKSUM_SUFFIX):
continue
fpath = os.path.join(dir_path, fname)
dataset_name = fname[:-len(_CHECKSUM_SUFFIX)]
dataset2path[dataset_name] = fpath
return dataset2path | 5685ad37a6b38355a59f24bcd02f90db265b0714 | 1,017 |
def get_merged_message_df(messages_df, address_book, print_debug=False):
"""
Merges a message dataframe with the address book dataframe to return a single dataframe that contains all
messages with detailed information (e.g. name, company, birthday) about the sender.
Args:
messages_df: a dataframe containing all transmitted messages
address_book: a dataframe containing the address book as loaded via this module
print_debug: true if we should print out the first row of each intermediary table as it's created
Returns:
a dataframe that contained all messages with info about their senders
"""
phones_with_message_id_df = __get_address_joined_with_message_id(address_book)
if print_debug:
print('Messages Dataframe')
display(messages_df.head(1))
print('Address Book Dataframe')
display(address_book.head(1))
print('Phones/emails merged with message IDs via chats Dataframe')
display(phones_with_message_id_df.head(1))
return messages_df.merge(phones_with_message_id_df,
how='left',
suffixes=['_messages_df', '_other_join_tbl'],
left_index=True, right_on='message_id',
indicator='merge_chat_with_address_and_messages') | be7f98c2b2415f02795e54d8c9b627b5f5a037cd | 1,018 |
def nodal_distribution_factors_v2(topo: ndarray, volumes: ndarray):
"""The j-th factor of the i-th row is the contribution of
element i to the j-th node. Assumes a regular topology."""
ndf = nodal_distribution_factors(topo, volumes)
return ndf | b805b9fa2617bc9501910bc43cb623cd15d3aea5 | 1,019 |
def game_core_binary(number_to_guess):
"""Binary search approach.
Set the first predict value as the middle of interval, i.e. 50.
Then decrease or increase the predict number by step.
The step is calculated using the check interval divided by 2,
i.e. 25, 13 ... 1
The minimum step is always 1.
The function return count of guesses"""
count_guesses = 1
predict = step = round(MAX_NUMBER / 2)
while number_to_guess != predict:
count_guesses += 1
step = round(step / 2) if step > 1 else 1
if number_to_guess > predict:
predict += step
elif number_to_guess < predict:
predict -= step
return count_guesses | 909322bda51c25175c372708896bc6aca5e9753b | 1,020 |
def linear_trend(series, return_line=True):
"""
USAGE
-----
line = linear_trend(series, return_line=True)
OR
b, a, x = linear_trend(series, return_line=False)
Returns the linear fit (line = b*x + a) associated
with the 'series' array.
Adapted from pylab.detrend_linear.
"""
series = np.asanyarray(series)
x = np.arange(series.size, dtype=np.float_)
C = np.cov(x, series, bias=1) # Covariance matrix.
b = C[0, 1]/C[0, 0] # Angular coefficient.
a = series.mean() - b*x.mean() # Linear coefficient.
line = b*x + a
if return_line:
return line
else:
return b, a, x | 129b63dd9f194dd0a6506e2645e330fe92ea6a1c | 1,021 |
import torch
def gradcheck_wrapper_masked_operation(op, input, *args, **kwargs):
"""Gradcheck wrapper for masked operations.
When mask is specified, replaces masked-out elements with zeros.
Use for operations that produce non-finite masked-out elements,
for instance, for minimum and maximum reductions.
"""
output = op(input, *args, **kwargs)
mask = kwargs.get('mask')
if mask is not None:
output_mask = torch._masked._output_mask(op, input, *args, **kwargs)
output = torch.where(output_mask, output, output.new_zeros([]))
return output | fa0d3433a8cf3d60c81c96dc154d8f0e82acd791 | 1,022 |
def classify(neural_net, image_file):
"""
Using the given model and image file, returns the model's prediction
for the image as an array.
"""
img = Image.open(image_file)
img.load()
img_array = np.asarray(img)
img_array.shape = (1, 100, 100, 3)
prediction = model.predict(img_array)[0][0]
return prediction | 3d8b301b3f41b5cad04233228198424670f06506 | 1,023 |
def delete(job):
"""Delete a job."""
# Initialise variables.
jobid = job["jobid"]
try:
shellout = shellwrappers.sendtossh(job, ["qdel " + jobid])
except exceptions.SSHError:
raise exceptions.JobdeleteError("Unable to delete job.")
return shellout[0] | c870e07210063136ac3651691d1e54dc292f0830 | 1,024 |
import itertools
def optimum_simrank(x_p, x_n, alpha):
"""Intermediary function to the one below."""
pos_pair_1 = itertools.combinations(x_p, 2)
pos_pair_2 = itertools.combinations(x_n, 2)
neg_pair = itertools.product(x_p, x_n)
def get_val_from_pair(x):
# Transforms each pair into one minus the minimum of its l1 distance to (0,0) or (1,1).
distance_to_lower_corner = max(abs(x[0]), abs(x[1]))
distance_to_upper_corner = max(abs(1. - x[0]), abs(1. - x[1]))
return 1 - min(distance_to_lower_corner, distance_to_upper_corner)
x_p = (np.array(list(map(get_val_from_pair, pos_pair_1))
+ list(map(get_val_from_pair, pos_pair_2))))
x_n = np.array(list(map(get_val_from_pair, neg_pair)))
def opt_fun(i_p, i_n):
if float(i_n) / x_n.shape[0] <= alpha:
return i_p / x_p.shape[0]
return - float("inf")
X = np.hstack([x_p, x_n])
Y = np.array([+1]*len(x_p) + [-1]*len(x_n))
f_opt, crit_opt, _ = ut.bipart_partition(X, Y, opt_fun)
return 1-f_opt, crit_opt | bc4f451dc2ae5f9fe653e9330241202b5f470e49 | 1,025 |
from enaml.core.import_hooks import imports
from contextlib import contextmanager
from enaml.core.operators import operator_context
def imports(operators=None, union=True):
""" Lazily imports and returns an enaml imports context.
Parameters
----------
operators : dict, optional
An optional dictionary of operators to push onto the operator
stack for the duration of the import context. If this is not
provided, the default Enaml operators will be used. Unless a
custom model framework is being used (i.e. not Atom), custom
operators will typically not be needed.
union : bool, optional
Whether to union the operators with the operators on the top
of the operator stack. The default is True and is typically
the correct choice to allow overriding a subset of the default
Enaml operators.
Returns
-------
result : context manager
A context manager which will install the Enaml import hook
(and optional operators) for the duration of the context.
"""
if operators is None:
return imports()
@contextmanager
def imports_context():
with imports():
with operator_context(operators, union):
yield
return imports_context() | c0068c39a4c9c39c8789fd79ed651ecf2e50c3b7 | 1,026 |
import io
import tokenize
from typing import cast
def apply_job_security(code):
"""Treat input `code` like Python 2 (implicit strings are byte literals).
The implementation is horribly inefficient but the goal is to be compatible
with what Mercurial does at runtime.
"""
buf = io.BytesIO(code.encode("utf8"))
tokens = tokenize.tokenize(buf.readline)
# NOTE: by setting the fullname to `mercurial.pycompat` below, we're
# ensuring that hg-specific pycompat imports aren't inserted to the code.
data = tokenize.untokenize(replacetokens(list(tokens), "mercurial.pycompat"))
return cast(str, data.decode("utf8")) | 8dd7e0f6ad91f9c98ea50ac76fb30616d9d8f266 | 1,027 |
def fetch(gpname: str):
""""
Gives gunpowder
Parameters
----------
gpname: str
Gunpowder name
Returns
-------
gpowder: dict
Gunpowder in dictionary form
"""
gpowders = _load_many()
return gpowders[gpname] | e880a62c92937d564ff84af33c7c0e1dd2383d9d | 1,028 |
def _kc_frequency_features(time_data, times, sfreq):
""" Calculate absolute power of delta and alpha band before (on a 3 seconds
windows) and after K-complexes"""
exp = [('before', -2.5, -0.5), ('after', 1, 3)]
res = {}
for m in exp:
kc_matrix_temp = time_data[:, np.bitwise_and(times > m[1], times < m[2])]
absol_power = compute_absol_pow_freq_bands(sfreq, kc_matrix_temp, psd_method='multitaper',
psd_params={'mt_adaptive': True, 'mt_bandwidth': 3,
'mt_low_bias': True},
freq_bands=[0.5, 4, 8, 12])
delta = absol_power[:, 0]
alpha = absol_power[:, 2]
res[m[0]] = (delta, alpha)
delta_before, alpha_before, delta_after, alpha_after = res['before'][0], res['before'][1],\
res['after'][0], res['after'][1]
return delta_before, alpha_before, delta_after, alpha_after | 0e0df2c3f2b0baa8e6fb8118fa01a89b62c2656c | 1,029 |
import numpy as np
import pandas.io.data as pd
from matplotlib.pyplot import plot, grid, show, figure
def gentrends(x, window=1/3.0, charts=True):
"""
Returns a Pandas dataframe with support and resistance lines.
:param x: One-dimensional data set
:param window: How long the trendlines should be. If window < 1, then it
will be taken as a percentage of the size of the data
:param charts: Boolean value saying whether to print chart to screen
"""
x = np.array(x)
if window < 1:
window = int(window * len(x))
max1 = np.where(x == max(x))[0][0] # find the index of the abs max
min1 = np.where(x == min(x))[0][0] # find the index of the abs min
# First the max
if max1 + window > len(x):
max2 = max(x[0:(max1 - window)])
else:
max2 = max(x[(max1 + window):])
# Now the min
if min1 - window < 0:
min2 = min(x[(min1 + window):])
else:
min2 = min(x[0:(min1 - window)])
# Now find the indices of the secondary extrema
max2 = np.where(x == max2)[0][0] # find the index of the 2nd max
min2 = np.where(x == min2)[0][0] # find the index of the 2nd min
# Create & extend the lines
maxslope = (x[max1] - x[max2]) / (max1 - max2) # slope between max points
minslope = (x[min1] - x[min2]) / (min1 - min2) # slope between min points
a_max = x[max1] - (maxslope * max1) # y-intercept for max trendline
a_min = x[min1] - (minslope * min1) # y-intercept for min trendline
b_max = x[max1] + (maxslope * (len(x) - max1)) # extend to last data pt
b_min = x[min1] + (minslope * (len(x) - min1)) # extend to last data point
maxline = np.linspace(a_max, b_max, len(x)) # Y values between max's
minline = np.linspace(a_min, b_min, len(x)) # Y values between min's
# OUTPUT
trends = np.transpose(np.array((x, maxline, minline)))
trends = pd.DataFrame(trends, index=np.arange(0, len(x)),
columns=['Data', 'Max Line', 'Min Line'])
if charts is True:
figure()
plot(trends)
grid()
show()
return trends, maxslope, minslope | 236ca4e206619da83b9f4dea92655c80714e062f | 1,030 |
import functools
from operator import add
def gen_cand_keyword_scores(phrase_words, word_score):
"""
Computes the score for the input phrases.
:param phrase_words: phrases to score
:type phrase_words: list
:param word_score: calculated word scores
:type word_score: list
:return: dict *{phrase: score, ...}*
"""
keyword_candidates = defaultdict(int)
for phrase, word_list in phrase_words:
if not word_list:
continue
candidate_score = functools.reduce(
add, [word_score[word] for word in word_list]
)
keyword_candidates[phrase] = candidate_score
return keyword_candidates | d219256938ab2538214cbc075451f7da5a253b06 | 1,031 |
def analyze_network(directed=False, base_url=DEFAULT_BASE_URL):
"""Calculate various network statistics.
The results are added to the Node and Edge tables and the Results Panel.
The summary statistics in the Results Panel are also returned by the function
as a list of named values.
Args:
directed (bool): If True, the network is considered a directed graph. Default is False.
base_url (str): Ignore unless you need to specify a custom domain,
port or version to connect to the CyREST API. Default is http://127.0.0.1:1234
and the latest version of the CyREST API supported by this version of py4cytoscape.
Returns:
dict: Named list of summary statistics
Raises:
requests.exceptions.RequestException: if can't connect to Cytoscape or Cytoscape returns an error
Examples:
>>> analyze_network()
{'networkTitle': 'galFiltered.sif (undirected)', 'nodeCount': '330', 'edgeCount': '359', 'avNeighbors': '2.379032258064516', 'diameter': '27', 'radius': '14', 'avSpl': '9.127660963823953', 'cc': '0.06959203036053131', 'density': '0.009631709546819902', 'heterogeneity': '0.8534500004035027', 'centralization': '0.06375695335900727', 'ncc': '26'}
>>> analyze_network(True)
{'networkTitle': 'galFiltered.sif (directed)', 'nodeCount': '330', 'edgeCount': '359', 'avNeighbors': '2.16969696969697', 'diameter': '10', 'radius': '1', 'avSpl': '3.4919830756382395', 'cc': '0.03544266191325015', 'density': '0.003297411808050106', 'ncc': '26', 'mnp': '1', 'nsl': '0'}
"""
res = commands.commands_post(f'analyzer analyze directed={directed}', base_url=base_url)
return res | 0edd9e848e3b3060055e6845aa5fbb2792c7a1f4 | 1,032 |
def create_user():
"""
Create new user
"""
# request.get_json(): extract the JSON from the request and return it as
# a Python structure.
data = request.get_json() or {}
# Validate mandatory fields
if 'username' not in data or 'email' not in data or \
'password' not in data:
return bad_request('must include username, email and password fields')
if User.query.filter_by(username=data['username']).first():
return bad_request('please use a different username')
if User.query.filter_by(email=data['email']).first():
return bad_request('please use a different email address')
# Create user
user = User()
user.from_dict(data, new_user=True)
db.session.add(user)
db.session.commit()
# Make response
response = jsonify(user.to_dict())
# The status code for a POST request that creates a resource should be 201
response.status_code = 201
response.headers['Location'] = url_for('api.get_user', id=user.id)
return response | a416e0d5bbb6539cee3ce5174ab3cf1186680ee9 | 1,033 |
import hashlib
import base64
def hash_long_to_short(long_url):
"""
turn a long input url into a short url's url-safe 5 character hash
this is deterministic and the same long_url will always have the same hash
"""
encoded = long_url.encode("utf-8")
md5_hash = hashlib.md5(encoded).digest()
return base64.urlsafe_b64encode(md5_hash)[:SHORT_URL_HASH_LENGTH] | 050de3e30feeac46f98b152890d82dd8e416f2d0 | 1,034 |
import os
def cutout_vstAtlas(ra, dec, bands=["u","g","r","i","z"], database="ATLASDR3",\
psfmags=None, imDir="/data/vst-atlas/", input_filename=[], saveFITS=False,\
width_as=20., smooth=False, cmap="binary", minmax="MAD", origin="lower", figTitle=True, \
return_val=False, saveDir=None):
"""
Plot all the bands cutouts on one plot for an input source position
## Cutouts parameters
width_as: size of the cutout box; default is 20arcsec
smooth: gaussian smoothing with sigma=1.0; defaul is False
cmap: image colour map
minmax: Defined the min-max scale of the image; default is from sigma_MAD(image) (SEE def cutout_scale)
origin: where to place the [0,0] index of the image; default is "lower"
figTitle: add a title to the final figure (ex: VISTA cutout 20"x20" ra=, dec= (Jradec); default is True)
## VISTA parameters
ra, dec: position of the source in deg (single object, not an array)
bands: filters for which to do the cutouts
psfmags: magnitudes of the source. Should be an array of the same size than bands or None (default)
Will be added to band cutout title if not None
imDir: directory of the fits file if already save on disk
input_filename: name of the input file if save on disk
database: ATLAS database used = ATLAS + DataRealease
saveFITS: save fits tile file on disk (to imDir)
## Output parameters
return_val: return image data, min-max(image); default is False
saveDir: output directory to save the final figure. If None do not save; default is None
"""
print("VST-ATLAS cutout(s), band(s):", "".join(bands))
### radec: HHMMSSsDDMMSS
radec_str = radecStr(ra, dec, precision=1)
### Figure: defined fig and gs
figWidth = len(bands) * 8./3.
fig = plt.figure(figsize=(figWidth, 4))
fig.subplots_adjust(left = 0.05, right = 0.95, top = 0.90, bottom = 0, wspace = 0)
gs = gridspec.GridSpec(1, len(bands))
datas = []
for i, band in enumerate(bands):
print("{}-band".format(band))
### Filename of fits image if save of the disk
if len(input_filename) == 0:
input_filename = ""
else:
input_filename = input_filename[i]
filename = imDir + input_filename
### If filename does nor exists -> get file from url
if not os.path.exists(filename) or input_filename == "":
filename = cdl.vstAtlas_dl(ra, dec, band, database=database, width_as=width_as,\
FitsOutputPath=imDir, saveFITS=saveFITS)
print(" ", filename)
### Read fits file: cutout size = width_as
### filename could be a system path or an url or ""
print(" Try to read the fits file ...")
image,wcs = rd_fits(filename, ra, dec, hdrNum=1, width_as=width_as, pixelscale=0.21, smooth=smooth)
### Plot image: cutout size = width_as
print(" Plot the cutout ...")
ax = fig.add_subplot(gs[0,i])
if psfmags is not None:
psfmags = psfmags[i]
vmin, vmax = plt_image(band, image, fig, ax, psfmags=psfmags, cmap=cmap, minmax=minmax, origin=origin)
datas.append((image, vmin, vmax, wcs))
## Add a title to the figure
if figTitle:
fig.suptitle('VST-ATLAS cutouts ({:.0f}"x{:.0f}") \n ra: {:.4f}, dec: {:.4f} (J{})'.format(width_as, width_as,\
ra, dec, radec_str), fontsize=15)
### Output
if return_val:
print(" Return image data")
plt.close(fig)
return datas
if saveDir is not None:
print(" Save the figure to", saveDir)
allBands = "".join(bands)
plt.savefig(saveDir + "Cutouts_VISTA-{}_{}_{}_{:.0f}arcsec.png".format(survey, radec_str, allBands, width_as),\
bbox_inches="tight")
plt.close()
else:
print(" Return the figure")
return fig | 7bf0d0ba8d7bcad847206e2cee1f386616939b66 | 1,035 |
def has_prefix(sub_s):
"""
Test possibility of sub_s before doing recursion.
:param sub_s: sub_string of input word from its head.
:return: (boolean) whether word stars with sub_s.
"""
for word in DATABASE:
if word.startswith(sub_s):
return True | 2dde507f7b0b3c56f8a5a9a582d52b784607dd5d | 1,036 |
def transform_results(search_result, user, department_filters):
"""
Transform podcast and podcast episode, and userlist and learning path in aggregations
Add 'is_favorite' and 'lists' fields to the '_source' attributes for learning resources.
Args:
search_result (dict): The results from ElasticSearch
user (User): the user who performed the search
Returns:
dict: The Elasticsearch response dict with transformed aggregates and source values
"""
for aggregation_key in [
"type",
"topics",
"offered_by",
"audience",
"certification",
"department_name",
"level",
"course_feature_tags",
"resource_type",
]:
if f"agg_filter_{aggregation_key}" in search_result.get("aggregations", {}):
if aggregation_key == "level":
levels = (
search_result.get("aggregations", {})
.get(f"agg_filter_{aggregation_key}", {})
.get("level", {})
.get("level", {})
)
if levels:
search_result["aggregations"]["level"] = {
"buckets": [
{
"key": bucket["key"],
"doc_count": bucket["courses"]["doc_count"],
}
for bucket in levels.get("buckets", [])
if bucket["courses"]["doc_count"] > 0
]
}
else:
search_result["aggregations"][aggregation_key] = search_result[
"aggregations"
][f"agg_filter_{aggregation_key}"][aggregation_key]
search_result["aggregations"].pop(f"agg_filter_{aggregation_key}")
types = search_result.get("aggregations", {}).get("type", {})
if types:
type_merges = dict(
zip(
(PODCAST_EPISODE_TYPE, LEARNING_PATH_TYPE),
(PODCAST_TYPE, USER_LIST_TYPE),
)
)
for child_type, parent_type in type_merges.items():
child_type_bucket = None
parent_type_bucket = None
for type_bucket in search_result["aggregations"]["type"]["buckets"]:
if type_bucket["key"] == child_type:
child_type_bucket = type_bucket
elif type_bucket["key"] == parent_type:
parent_type_bucket = type_bucket
if child_type_bucket and parent_type_bucket:
parent_type_bucket["doc_count"] = (
child_type_bucket["doc_count"] + parent_type_bucket["doc_count"]
)
search_result["aggregations"]["type"]["buckets"].remove(
child_type_bucket
)
elif child_type_bucket:
child_type_bucket["key"] = parent_type
search_result["aggregations"]["type"]["buckets"].sort(
key=lambda bucket: bucket["doc_count"], reverse=True
)
if not user.is_anonymous:
favorites = (
FavoriteItem.objects.select_related("content_type")
.filter(user=user)
.values_list("content_type__model", "object_id")
)
for hit in search_result.get("hits", {}).get("hits", []):
object_type = hit["_source"]["object_type"]
if object_type in LEARNING_RESOURCE_TYPES:
if object_type == LEARNING_PATH_TYPE:
object_type = USER_LIST_TYPE
object_id = hit["_source"]["id"]
hit["_source"]["is_favorite"] = (object_type, object_id) in favorites
hit["_source"]["lists"] = get_list_items_by_resource(
user, object_type, object_id
)
search_result = _transform_search_results_suggest(search_result)
if len(department_filters) > 0:
_transform_search_results_coursenum(search_result, department_filters)
return search_result | 93bbb9cb3effa4b0f602e42549a961f4fd53faeb | 1,037 |
def kl_div_loss(inputs: Tensor, targets: Tensor) -> Tensor:
"""Computes the Kullback–Leibler divergence loss between two probability distributions."""
return F.kl_div(F.log_softmax(inputs, dim=-1), F.softmax(targets, dim=-1), reduction="none") | 9a45dacfe8fd529893cf7fa813869a97da562f65 | 1,038 |
from typing import List
def get_schema_names(connection: psycopg2.extensions.connection) -> List[psycopg2.extras.RealDictRow]:
"""Function for getting the schema information from the given connection
:param psycopg2.extensions.connection connection: The connection
:return: List of rows using key-value pairs for the data
:rtype: List[psycopg2.extras.RealDictRow]
"""
with connection.cursor(cursor_factory=psycopg2.extras.RealDictCursor) as cursor:
query = """SELECT *
FROM information_schema.schemata"""
cursor.execute(query)
results = cursor.fetchall()
return results | 69a4e0b70ef443c2480f0fbb1e1e859bbf6f69bd | 1,039 |
def parse(string):
"""Returns a list of specs from an input string.
For creating one spec, see Spec() constructor.
"""
return SpecParser().parse(string) | 788849ebaa29b4dab5e4babcb13573acbc8b8525 | 1,040 |
def get_provider_idx(provider_type):
"""Return the index associated to the type.
"""
try:
return PROVIDERS_TYPE[provider_type]['idx']
except KeyError as error:
raise ProviderError(
"Provider type (%s) is not supported yet." % (provider_type, )
) | 47272903415825c870222b3531fddc11129d62c0 | 1,041 |
import collections
def file_based_convert_examples_to_features(
examples, slot_label_list, intent_label_list, max_seq_length, tokenizer, output_file):
"""
将InputExamples转成tf_record,并写入文件
Convert a set of InputExample to a TFRecord file.
:param examples: [(text, CRF_label, class_label), ...]
:param slot_label_list: CRF标签列表(String)
:param intent_label_list: 触发词类别列表(String)
:param max_seq_length:
:param tokenizer:
:param output_file: TFRecord file
:return:
"""
writer = tf.io.TFRecordWriter(output_file)
for ex_index, example in enumerate(examples):
def create_int_feature(values):
return tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
if ex_index % 10000 == 0:
logger.info("Writing example %d of length %d" % (ex_index, len(examples)))
feature = convert_single_example(ex_index, example, slot_label_list, intent_label_list,
max_seq_length, tokenizer)
# convert to tensorflow format
features = collections.OrderedDict()
features["input_ids"] = create_int_feature(feature.input_ids)
features["slot_ids"] = create_int_feature(feature.slot_ids)
features["input_mask"] = create_int_feature(feature.input_mask)
features["segment_ids"] = create_int_feature(feature.segment_ids)
features["label_ids"] = create_int_feature([feature.label_id])
features['is_value_ids'] = create_int_feature(feature.is_value_ids)
features["is_real_example"] = create_int_feature([int(feature.is_real_example)])
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
writer.write(tf_example.SerializeToString()) # 写入一个样本到tf_record
writer.close() | b5d4a9228af4169307a8a22f4c56a0c3eb6e8f27 | 1,042 |
def create_readme(df):
"""Retrieve text from README.md and update it."""
readme = str
categories = pd.unique(df["category"])
categories.sort()
with open('README.md', 'r', encoding='utf-8') as read_me_file:
read_me = read_me_file.read()
splits = read_me.split('<!---->')
# Initial project description
text_intro = splits[0]
# Contribution and contacts
text_contributing = splits[3]
text_contacts = splits[4]
# TOC
toc = "\n\n- [Awesome Citizen Science Projects](#awesome-citizen-science-projects)\n"
# Add categories
for cat in range(len(categories)):
toc += f" - [{categories[cat]}](#{categories[cat]})" + "\n"
# Add contributing and contact to TOC
toc += "- [Contributing guidelines](#contributing-guidelines)\n"
toc += "- [Contacts](#contacts)\n"
# Add first part and toc to README
readme = text_intro + "<!---->" + toc + "\n<!---->\n"
# Add projects subtitle
readme += "\n## Projects\n"
# Add individual categories to README
list_blocks = ""
for cat in range(len(categories)):
block = f"\n### {categories[cat]}\n\n"
filtered = df[df["category"] == categories[cat]]
list_items = ""
for i, r in filtered.iterrows():
try:
start_date = int(r['start_date'])
except:
start_date = "NA"
if not pd.isna(r['icon']):
project = f"- {r['icon']} [{r['name']}]({r['main_source']}) - {r['description']} (`{start_date}` - `{str(r['end_date'])}`)\n"
list_items = list_items + project
else:
project = f"- [{r['name']}]({r['main_source']}) - {r['description']} (`{start_date}` - `{str(r['end_date'])}`)\n"
list_items = list_items + project
list_blocks = list_blocks + block + list_items
# Add to categories to README.md
readme += list_blocks + "\n"
# Add contribution and contacts
readme += '<!---->' + text_contributing
readme += '<!---->' + text_contacts
return readme | 5e0d207baa3d5c1e1f68b6f2e1a347bffece901a | 1,043 |
async def get_leaderboard_info_by_id(
# ScoreSaber leaderboardId
leaderboardId: float
):
"""
GET /api/leaderboard/by-id/{leaderboardId}/info
"""
# request
request_url = f'{SERVER}/api/leaderboard/by-id/{leaderboardId}/info'
response_dict = await request.get(request_url)
return LeaderboardInfo.gen(response_dict) | ab081d17b462a0738c578c9caed93c7b4a1ec9a6 | 1,044 |
def distance(lat1,lon1,lat2,lon2):
"""Input 2 points in Lat/Lon degrees.
Calculates the great circle distance between them in radians
"""
rlat1= radians(lat1)
rlon1= radians(lon1)
rlat2= radians(lat2)
rlon2= radians(lon2)
dlat = rlat1 - rlat2
dlon = rlon1 - rlon2
a = pow(sin(dlat/2.0),2) + cos(rlat1)*cos(rlat2)*pow(sin(dlon/2.0),2)
c = 2* atan2(sqrt(a), sqrt(1-a))
return c | 2c6b1692843db3f69c750f4b2acda43d49227e7a | 1,045 |
def minimumSwaps(arr):
"""
O(nlogn)
"""
len_arr = len(arr)
arr_dict = {key+1:value for key, value in enumerate(arr)}
arr_checked = [False]*len_arr
total_count = 0
for key, value in arr_dict.items():
count = 0
while key != value and arr_checked[key-1] is False:
arr_checked[value-1] = True
count += 1
value = arr_dict.get(value)
arr_checked[key-1] = True
total_count += count
return total_count | d5251297fd52f99aefce69986bd5c8c126b7e6b6 | 1,046 |
def store_user_bot(user_id, intended_user, bot_id):
"""Store an uploaded bot in object storage."""
if user_id != intended_user:
raise api_util.user_mismatch_error(
message="Cannot upload bot for another user.")
if bot_id != 0:
raise util.APIError(
400, message="Sorry, only one bot allowed per user.")
uploaded_file = validate_bot_submission()
with model.engine.connect() as conn:
team = conn.execute(model.team_leader_query(user_id)).first()
if team:
user_id = intended_user = team["leader_id"]
bot_where_clause = (model.bots.c.user_id == user_id) & \
(model.bots.c.id == bot_id)
bot = conn.execute(model.bots.select(bot_where_clause)).first()
if not bot:
raise util.APIError(404, message="Bot not found.")
# Check if the user already has a bot compiling
if bot["compile_status"] == model.CompileStatus.IN_PROGRESS.value:
raise util.APIError(400, message="Cannot upload new bot until "
"previous one is compiled.")
blob = gcloud_storage.Blob("{}_{}".format(user_id, bot_id),
model.get_compilation_bucket(),
chunk_size=262144)
blob.upload_from_file(uploaded_file)
# Flag the user as compiling
update = model.bots.update() \
.where(bot_where_clause) \
.values(
compile_status=model.CompileStatus.UPLOADED.value,
update_time=sqlalchemy.sql.func.now(),
timeout_sent=False,
)
conn.execute(update)
return util.response_success({
"user_id": user_id,
"bot_id": bot["id"],
}) | 2b19e4092df3cb93fdadf5f06176ec4ec9300f63 | 1,047 |
def dispatch(methods, request, notification_errors=False):
"""Dispatch JSON-RPC requests to a list of methods::
r = dispatch([cat], {'jsonrpc': '2.0', 'method': 'cat', 'id': 1})
The first parameter can be either:
- A *list* of functions, each identifiable by its ``__name__`` attribute.
- Or a *dictionary* of name:method pairs.
When using a **list**, the methods must be identifiable by a ``__name__``
attribute.
Functions already have a ``__name__`` attribute::
>>> def cat():
... return 'meow'
...
>>> cat.__name__
'cat'
>>> dispatch([cat], ...)
Lambdas require setting it::
>>> cat = lambda: 'meow'
>>> cat.__name__ = 'cat'
>>> dispatch([cat], ...)
As do partials::
>>> max_ten = partial(min, 10)
>>> max_ten.__name__ = 'max_ten'
>>> dispatch([max_ten], ...)
Alternatively, consider using a **dictionary** instead::
>>> dispatch({'cat': cat, 'max_ten': max_ten}, ...)
See the `Methods`_ module for another easy way to build the list of methods.
:param methods: List or dict of methods to dispatch to.
:param request:
JSON-RPC request. This can be in dict or string form. Byte arrays
should be `decoded
<https://docs.python.org/3/library/codecs.html#codecs.decode>`_ first.
:param notification_errors:
Should `notifications
<http://www.jsonrpc.org/specification#notification>`_ get error
responses? Typically notifications don't receive any response, except
for "Parse error" and "Invalid request" errors. Enabling this will
include all other errors such as "Method not found". A notification is
then similar to many unix commands - *"There was no response, so I can
assume the request was successful."*
:returns: A `Response`_ object - either `RequestResponse`_,
`NotificationResponse`_, or `ErrorResponse`_ if there was a
problem processing the request. In any case, the return value
gives you ``body``, ``body_debug``, ``json``, ``json_debug``, and
``http_status`` values.
"""
# Process the request
r = None
error = None
try:
# Log the request
request_log.info(str(request))
# Create request object (also validates the request)
r = Request(request)
# Call the requested method
result = _call(methods, r.method_name, r.args, r.kwargs)
# Catch any JsonRpcServerError raised (Invalid Request, etc)
except JsonRpcServerError as e:
error = e
# Catch uncaught exceptions, respond with ServerError
except Exception as e: # pylint: disable=broad-except
# Log the uncaught exception
logger.exception(e)
# Create an exception object, used to build the response
error = ServerError(str(e))
# Now build a response.
# Error
if error:
# Notifications get a non-response - see spec
if r and r.is_notification and not notification_errors:
response = NotificationResponse()
else:
# Get the 'id' part of the request, to include in error response
request_id = r.request_id if r else None
response = ErrorResponse(
error.http_status, request_id, error.code, error.message,
error.data)
# Success
else:
# Notifications get a non-response
if r and r.is_notification:
response = NotificationResponse()
else:
response = RequestResponse(r.request_id, result)
# Log the response and return it
response_log.info(response.body, extra={
'http_code': response.http_status,
'http_reason': HTTP_STATUS_CODES[response.http_status]})
return response | 3c086f864740086f611b702b1ad7f228fff4031f | 1,048 |
def parse_conv(weights_file, cfg_parser, section, layer_dict):
""" parse conv layer
Args:
weights_file (file object): file object of .weights file
cfg_parser (ConfigParser object): ConfigParser object of .cfg file for net
section (str): name of conv layer
layer_dict (dictionary): dict storing layer info
Returns:
dict storing layer info and weights values
"""
prev_layer_channel = layer_dict['prev_layer_channel']
count = layer_dict['count']
filters = int(cfg_parser[section]['filters'])
size = int(cfg_parser[section]['size'])
stride = int(cfg_parser[section]['stride'])
pad = int(cfg_parser[section]['pad'])
activation = cfg_parser[section]['activation']
batch_normalize = 'batch_normalize' in cfg_parser[section]
weights_shape = (size, size, prev_layer_channel, filters)
darknet_w_shape = (filters, weights_shape[2], size, size)
weights_size = np.product(weights_shape)
prev_layer_channel = filters
print('conv2d', 'bn'
if batch_normalize else ' ', activation, weights_shape)
bn_weight_list = []
conv_bias = []
if batch_normalize:
bn_weights = np.ndarray(
shape=(4, filters),
dtype='float32',
buffer=weights_file.read(filters * 16))
count += 4 * filters
bn_weight_list = [
bn_weights[1], # scale gamma
bn_weights[0], # shift beta
bn_weights[2], # running mean
bn_weights[3] # running var
]
else:
conv_bias = np.ndarray(
shape=(filters, ),
dtype='float32',
buffer=weights_file.read(filters * 4))
count += filters
conv_weights = np.ndarray(
shape=darknet_w_shape,
dtype='float32',
buffer=weights_file.read(weights_size * 4))
count += weights_size
# DarkNet conv_weights are serialized Caffe-style:
# (out_dim, in_dim, height, width)
# We would like to set these to Tensorflow order:
# (height, width, in_dim, out_dim)
conv_weights = np.transpose(conv_weights, [2, 3, 1, 0])
layer_dict['prev_layer_channel'] = prev_layer_channel
layer_dict['count'] = count
layer_dict['conv_weights'] = conv_weights
layer_dict['conv_bias'] = conv_bias
layer_dict['bn_weight_list'] = bn_weight_list
return layer_dict | 6e7cc1d2b4115dc44eaf2ad90240144f7157b30b | 1,049 |
def generate_format_spec(num_vals, sep, dtypes, decimals=None):
"""
Generate a format specifier for generic input.
--------------------------------------------------------------
Input
num_vals : number of wild-cards
sep : separator string (could be '_', '-', '--' ...)
used to separate wild-cards
dtypes : data types of the wildcards ('str', 'float', 'int')
decimals : number of decimals (only relevant for floats)
--------------------------------------------------------------
Output
String of the form: "{0:<dtype>}<sep>{1:<dtype>}<sep>...",
where each occurrence of <dtype> is replaced by the dtype value of
the current wild-card and <sep> is replaced by the separator string.
"""
assert type(num_vals) is int
# dictionary of identifiers for supported data types
dident = dict([(str, 's'),
(int, 'd'), \
(float, ''), #'.1f'\
(np.float64, '') #'.1f'
]
)
if decimals is not None:
assert type(decimals) is int
dident[float] = '.{}f'.format(decimals)
dident[np.float64] = '.{}f'.format(decimals)
if not hasattr(dtypes, '__iter__'):
dtypes = [dtypes,] * num_vals
elif type(dtypes) is str:
dtypes = [dtypes,] * num_vals
elif len(dtypes) < num_vals:
dtypes = [dtypes[0],] * num_vals
for dt in dtypes:
assert dt in dident.keys(), dt
# construct actual output
out = ""
for i in range(num_vals):
out += "{" + str(i) + ":" + dident[dtypes[i]] + "}"
out += sep
# remove additional separator from output
return out[:-len(sep)] | 3b65ad3b436b6c578fa2504a2ea4a475700432ce | 1,050 |
from typing import Optional
def products_with_low_stock(threshold: Optional[int] = None):
"""Return queryset with stock lower than given threshold."""
if threshold is None:
threshold = settings.LOW_STOCK_THRESHOLD
stocks = (
Stock.objects.select_related("product_variant")
.values("product_variant__product_id", "warehouse_id")
.annotate(total_stock=Sum("quantity"))
)
return stocks.filter(total_stock__lte=threshold).distinct() | 29bbdd3236b42bf3cef17f84a919ab201946c084 | 1,051 |
def robust_topological_sort(deps):
"""
A topological sorting algorithm which is robust enough to handle cyclic graphs.
First, we bucket nodes into strongly connected components (we use Tarjan's linear algorithm for that).
Then, we topologically sort these buckets grouping sibling buckets into sets.
:param deps: a dictionary representing the dependencies between nodes
:return: groups of buckets (a bucket is a strongly connected component) sorted bottom-up
>>> deps1 = {'S':{'S','X', 'A'}, 'X':{'Y', 'B'}, 'Y':{'Z'}, 'Z':{'X'}, 'A':{'B'}, 'B':{}}
>>> expected = [frozenset({frozenset({'B'})}), frozenset({frozenset({'A'}), frozenset({'Y', 'X', 'Z'})}), frozenset({frozenset({'S'})})]
>>> order = robust_topological_sort(deps1)
>>> order == expected
True
"""
# correspondences between nodes and buckets (strongly connected components)
n2c = defaultdict(None)
components = tarjan(deps)
for i, component in enumerate(components):
for v in component:
n2c[v] = i
# find the dependencies between strongly connected components
cdeps = defaultdict(set)
for head, tail in deps.items():
hc = n2c[head]
for t in tail:
tc = n2c[t]
if hc != tc:
cdeps[hc].add(tc)
# topsort buckets and translate bucket ids back into nodes
return deque(frozenset(components[c] for c in group) for group in topological_sort(cdeps)) | fb2b70f21ccb97880767e73362b46e27804c2d17 | 1,052 |
import inspect
import functools
import warnings
def deprecated(reason):
"""
This is a decorator which can be used to mark functions and classes
as deprecated. It will result in a warning being emitted
when the function is used.
From https://stackoverflow.com/a/40301488
"""
string_types = (type(b""), type(u""))
if isinstance(reason, string_types):
# The @deprecated is used with a 'reason'.
#
# .. code-block:: python
#
# @deprecated("please, use another function")
# def old_function(x, y):
# pass
def decorator(func1):
if inspect.isclass(func1):
fmt1 = "Call to deprecated class {name} ({reason})."
else:
fmt1 = "Call to deprecated function {name} ({reason})."
@functools.wraps(func1)
def new_func1(*args, **kwargs):
warnings.simplefilter("always", DeprecationWarning)
warnings.warn(
fmt1.format(name=func1.__name__, reason=reason),
category=DeprecationWarning,
stacklevel=2,
)
warnings.simplefilter("default", DeprecationWarning)
return func1(*args, **kwargs)
return new_func1
return decorator
elif inspect.isclass(reason) or inspect.isfunction(reason):
# The @deprecated is used without any 'reason'.
#
# .. code-block:: python
#
# @deprecated
# def old_function(x, y):
# pass
func2 = reason
if inspect.isclass(func2):
fmt2 = "Call to deprecated class {name}."
else:
fmt2 = "Call to deprecated function {name}."
@functools.wraps(func2)
def new_func2(*args, **kwargs):
warnings.simplefilter("always", DeprecationWarning)
warnings.warn(
fmt2.format(name=func2.__name__),
category=DeprecationWarning,
stacklevel=2,
)
warnings.simplefilter("default", DeprecationWarning)
return func2(*args, **kwargs)
return new_func2
else:
raise TypeError(repr(type(reason))) | 1b75306b9b712caf3cd6c8425d2344b8ca170fcb | 1,053 |
import torch
def rotate_tensor(l: torch.Tensor, n: int = 1) -> torch.Tensor:
"""Roate tensor by n positions to the right
Args:
l (torch.Tensor): input tensor
n (int, optional): positions to rotate. Defaults to 1.
Returns:
torch.Tensor: rotated tensor
"""
return torch.cat((l[n:], l[:n])) | 9cdaa7be718f0676ad85e05b01ee918459697c60 | 1,054 |
def generate_all_fish(
n_fish,
n_replica_fish,
channel,
interaction,
k_coh,
k_ar,
alpha,
lim_neighbors,
weights = [1],
neighbor_weights=None,
fish_max_speeds=None,
clock_freqs=None,
verbose=False,
names=None
):
"""Generate both replica and regular fish
Arguments:
n_fish {int} -- Number of ideal fish to generate
n_replica_fish {int} -- Number of replica fish to generate
channel {Channel} -- Channel instance
interaction {Interaction} -- Interaction instance
k_coh {float} -- Parameter to Delight Fish
k_ar {float} -- Weighting of neighbors in Delight Fish
alpha {int} -- Goal distance from neighbor for Delight Fish
lim_neighbors {list} -- Tuple of min and max neighbors
weights {float|list} -- List of weights for replica fish learned function
neighbor_weight {float|list} -- List of neighbor weights
fish_max_speeds {float|list} -- List of max speeds
clock_freqs {int|list} -- List of clock speeds
names {list} -- List of names for your replica fish
"""
n = n_fish + n_replica_fish
if neighbor_weights is None:
neighbor_weights = [1.0] * n
elif not isinstance(neighbor_weights, list):
neighbor_weights = [neighbor_weights] * n
if fish_max_speeds is None:
fish_max_speeds = [1.0] * n
elif not isinstance(fish_max_speeds, list):
fish_max_speeds = [fish_max_speeds] * n
if clock_freqs is None:
clock_freqs = [1] * n
elif not isinstance(clock_freqs, list):
clock_freqs = [clock_freqs] * n
if names is None:
names = ['Unnamed'] * n
all_fish = []
for i in range(n_fish):
all_fish.append(Fish(
id=i,
channel=channel,
interaction=interaction,
k_coh = k_coh,
k_ar = k_ar,
alpha = alpha,
lim_neighbors=lim_neighbors,
neighbor_weight=neighbor_weights[i],
fish_max_speed=fish_max_speeds[i],
clock_freq=clock_freqs[i],
verbose=verbose,
name=names[i]
))
for i in range(n_fish, n_fish + n_replica_fish):
all_fish.append(ReplicaFish(
id=i,
channel=channel,
interaction=interaction,
weights = weights,
fish_max_speed=fish_max_speeds[i],
clock_freq=clock_freqs[i],
name=names[i],
verbose=verbose
))
return all_fish | 3924235d7bdcf25a91dcb1ec40220b761b85f15f | 1,055 |
def allclose(a, b):
""" close to machine precision """
return np.allclose(a, b, rtol=1e-14, atol=1e-14) | ad7ee29d7432947aec0030936985b456a5919eaa | 1,056 |
def check_pwhash(pwhash, password):
"""Check a password against a given hash value. Since
many forums save md5 passwords with no salt and it's
technically impossible to convert this to an sha hash
with a salt we use this to be able to check for
plain passwords::
plain$$default
md5 passwords without salt::
md5$$c21f969b5f03d33d43e04f8f136e7682
md5 passwords with salt::
md5$123456$7faa731e3365037d264ae6c2e3c7697e
sha passwords::
sha$123456$118083bd04c79ab51944a9ef863efcd9c048dd9a
Note that the integral passwd column in the table is
only 60 chars long. If you have a very large salt
or the plaintext password is too long it will be
truncated.
>>> check_pwhash('plain$$default', 'default')
True
>>> check_pwhash('sha$$5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8', 'password')
True
>>> check_pwhash('sha$$5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8', 'wrong')
False
>>> check_pwhash('md5$xyz$bcc27016b4fdceb2bd1b369d5dc46c3f', u'example')
True
>>> check_pwhash('sha$5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8', 'password')
False
>>> check_pwhash('md42$xyz$bcc27016b4fdceb2bd1b369d5dc46c3f', 'example')
False
"""
if isinstance(password, unicode):
password = password.encode('utf-8')
if pwhash.count('$') < 2:
return False
method, salt, hashval = pwhash.split('$', 2)
if method == 'plain':
return hashval == password
elif method == 'md5':
h = md5()
elif method == 'sha':
h = sha1()
else:
return False
h.update(salt)
h.update(password)
return h.hexdigest() == hashval | 618cdc8a9f7f7d7062e1e0ae26cf81157a8dbba7 | 1,057 |
def make_markov_model(tweets):
"""Wrapper around making Markov Chain"""
return markovify.Text(" ".join(tweets)) | 0bd98d1a2f3a5aae37591389b06d402073f1a7ec | 1,058 |
def slice_image(sitk_image, start=(0, 0, 0), end=(-1, -1, -1)):
""""Returns the `sitk_image` sliced from the `start` index (x,y,z) to the `end` index.
"""
size = sitk_image.GetSize()
assert len(start) == len(end) == len(size)
# replace -1 dim index placeholders with the size of that dimension
end = [size[i] if end[i] == -1 else end[i] for i in range(len(end))]
slice_filter = sitk.SliceImageFilter()
slice_filter.SetStart(start)
slice_filter.SetStop(end)
return slice_filter.Execute(sitk_image) | eda4477c016d1130bb185a5793409ff95b9cd44c | 1,059 |
def MakeGlyphs(src, reverseNormals):
"""
Glyph the normals on the surface.
You may need to adjust the parameters for maskPts, arrow and glyph for a
nice appearance.
:param: src - the surface to glyph.
:param: reverseNormals - if True the normals on the surface are reversed.
:return: The glyph object.
"""
# Sometimes the contouring algorithm can create a volume whose gradient
# vector and ordering of polygon (using the right hand rule) are
# inconsistent. vtkReverseSense cures this problem.
reverse = vtk.vtkReverseSense()
# Choose a random subset of points.
maskPts = vtk.vtkMaskPoints()
maskPts.SetOnRatio(5)
maskPts.RandomModeOn()
if reverseNormals:
reverse.SetInputData(src)
reverse.ReverseCellsOn()
reverse.ReverseNormalsOn()
maskPts.SetInputConnection(reverse.GetOutputPort())
else:
maskPts.SetInputData(src)
# Source for the glyph filter
arrow = vtk.vtkArrowSource()
arrow.SetTipResolution(16)
arrow.SetTipLength(0.3)
arrow.SetTipRadius(0.1)
glyph = vtk.vtkGlyph3D()
glyph.SetSourceConnection(arrow.GetOutputPort())
glyph.SetInputConnection(maskPts.GetOutputPort())
glyph.SetVectorModeToUseNormal()
glyph.SetScaleFactor(1)
glyph.SetColorModeToColorByVector()
glyph.SetScaleModeToScaleByVector()
glyph.OrientOn()
glyph.Update()
return glyph | 0bb28c943a2c371f5e536851208ac0d4b09cd51a | 1,060 |
def get_tags_categorys(self):
"""02返回添加文档的变量"""
tags = Tag.all()
categorys = Category.all()
return tags, categorys | 557e5182dd3dbf3571e005c4e105a20e2cdd3dd1 | 1,061 |
import sys
def main():
"""Operations executed when calling this script from the command line"""
args = ArgparseUserOptions(
description=parser_description,
args_dict_list=[required_args_dict, optional_args_dict],
epilog=__doc__,
).parse_args(sys.argv[1:])
return args | 95f99464384ba08b0ac5b1295f1562493f8efcbf | 1,062 |
import pprint
import warnings
def single_mode_constant_rotation(**kwargs):
"""Return WaveformModes object a single nonzero mode, with phase proportional to time
The waveform output by this function will have just one nonzero mode. The behavior of that mode will be fairly
simple; it will be given by exp(i*omega*t). Note that omega can be complex, which gives damping.
Parameters
----------
s : int, optional
Spin weight of the waveform field. Default is -2.
ell, m : int, optional
The (ell, m) values of the nonzero mode in the returned waveform. Default value is (abs(s), -abs(s)).
ell_min, ell_max : int, optional
Smallest and largest ell values present in the output. Default values are abs(s) and 8.
data_type : int, optional
Default value is whichever psi_n corresponds to the input spin. It is important to choose these, rather than
`h` or `sigma` for the analytical solution to translations, which doesn't account for the direct contribution
of supertranslations (as opposed to the indirect contribution, which involves moving points around).
t_0, t_1 : float, optional
Beginning and end of time. Default values are -20. and 20.
dt : float, optional
Time step. Default value is 0.1.
omega : complex, optional
Constant of proportionality such that nonzero mode is exp(i*omega*t). Note that this can be complex, which
implies damping. Default is 0.5.
"""
s = kwargs.pop("s", -2)
ell = kwargs.pop("ell", abs(s))
m = kwargs.pop("m", -ell)
ell_min = kwargs.pop("ell_min", abs(s))
ell_max = kwargs.pop("ell_max", 8)
data_type = kwargs.pop("data_type", scri.DataType[scri.SpinWeights.index(s)])
t_0 = kwargs.pop("t_0", -20.0)
t_1 = kwargs.pop("t_1", 20.0)
dt = kwargs.pop("dt", 1.0 / 10.0)
t = np.arange(t_0, t_1 + dt, dt)
n_times = t.size
omega = complex(kwargs.pop("omega", 0.5))
data = np.zeros((n_times, sf.LM_total_size(ell_min, ell_max)), dtype=complex)
data[:, sf.LM_index(ell, m, ell_min)] = np.exp(1j * omega * t)
if kwargs:
warnings.warn(f"\nUnused kwargs passed to this function:\n{pprint.pformat(kwargs, width=1)}")
return scri.WaveformModes(
t=t,
data=data,
ell_min=ell_min,
ell_max=ell_max,
frameType=scri.Inertial,
dataType=data_type,
r_is_scaled_out=True,
m_is_scaled_out=True,
) | cc31bf0587ff397cb79c42863efd3d8173cddc72 | 1,063 |
def get_file(file_pattern: list, sub_type: str = None) -> list:
"""Get a subset from file patterns that belong to a sub-type.
If no sub-type is specified, return all file patterns.
Args:
file_pattern (list): The input file patterns
sub_type (str, optional): A string to search in file patterns. Defaults to None.
Raises:
ValueError: No file pattern matches the sub-type provided.
Returns:
list: A filtered sub list of file patterns.
"""
if sub_type is None:
return file_pattern
result = []
for entry in file_pattern:
if sub_type in entry:
result.append(entry)
if len(result) < 1:
raise ValueError(
"No file found for sub-type {}: {}".format(sub_type, file_pattern)
)
else:
return result | 7d39c05fa8a1f7a9370de459472ecf7070aa6569 | 1,064 |
def etopo_subset(llcrnrlon=None, urcrnrlon=None, llcrnrlat=None,
urcrnrlat=None, tfile='dap', smoo=False, subsample=False):
"""Get a etopo subset.
Should work on any netCDF with x, y, data
http://www.trondkristiansen.com/wp-content/uploads/downloads/
2011/07/contourICEMaps.py
Example
-------
>>> import matplotlib.pyplot as plt
>>> offset = 5
>>> #tfile = './ETOPO1_Bed_g_gmt4.grd'
>>> tfile = 'dap'
>>> llcrnrlon, urcrnrlon, llcrnrlat, urcrnrlat = -43, -30, -22, -17
>>> lons, lats, bathy = etopo_subset(llcrnrlon - offset,
... urcrnrlon + offset,
... llcrnrlat - offset,
... urcrnrlat + offset,
... smoo=True, tfile=tfile)
>>> fig, ax = plt.subplots()
>>> cs = ax.pcolormesh(lons, lats, bathy)
>>> _ = ax.axis([-42, -28, -23, -15])
>>> _ = ax.set_title(tfile)
"""
if tfile == 'dap':
tfile = 'http://opendap.ccst.inpe.br/Misc/etopo2/ETOPO2v2c_f4.nc'
etopo = Dataset(tfile, 'r')
lons = etopo.variables["x"][:]
lats = etopo.variables["y"][:]
res = get_indices(llcrnrlat, urcrnrlat, llcrnrlon, urcrnrlon, lons, lats)
lon, lat = np.meshgrid(lons[res[0]:res[1]], lats[res[2]:res[3]])
bathy = etopo.variables["z"][int(res[2]):int(res[3]),
int(res[0]):int(res[1])]
if smoo:
bathy = laplace_filter(bathy, M=None)
if subsample:
bathy = bathy[::subsample]
lon, lat = lon[::subsample], lat[::subsample]
return lon, lat, bathy | 6af3b6773c7ef28cde75b7708370819fd5637697 | 1,065 |
def get_all_report_data(db):
"""
Gets all report data for pre report page
"""
query = r'SELECT * FROM report WHERE relevent=1 ORDER BY id DESC'
return db_get(db, query) | 727c4c9ec2125747237d40d7f0dd019b3d116d00 | 1,066 |
def find_center_projection(mat1, mat2, flip=True, chunk_height=None,
start_row=None, denoise=True, norm=False,
use_overlap=False):
"""
Find the center-of-rotation (COR) using projection images at 0-degree
and 180-degree based on a method in Ref. [1].
Parameters
----------
mat1 : array_like
2D array. Projection image at 0-degree.
mat2 : array_like
2D array. Projection image at 180-degree.
flip : bool, optional
Flip the 180-degree projection in the left-right direction if True.
chunk_height : int or float, optional
Height of the sub-area of projection images. If a float is given, it
must be in the range of [0.0, 1.0].
start_row : int, optional
Starting row used to extract the sub-area.
denoise : bool, optional
Apply the Gaussian filter if True.
norm : bool, optional
Apply the normalization if True.
use_overlap : bool, optional
Use the combination of images in the overlap area for calculating
correlation coefficients if True.
Returns
-------
cor : float
Center-of-rotation.
References
----------
.. [1] https://doi.org/10.1364/OE.418448
"""
(nrow, ncol) = mat1.shape
if flip is True:
mat2 = np.fliplr(mat2)
win_width = ncol // 2
if chunk_height is None:
chunk_height = int(0.1 * nrow)
if isinstance(chunk_height, float):
if 0.0 < chunk_height <= 1.0:
chunk_height = int(chunk_height * nrow)
else:
chunk_height = int(0.1 * nrow)
chunk_height = np.clip(chunk_height, 1, nrow - 1)
if start_row is None:
start = nrow // 2 - chunk_height // 2
elif start_row < 0:
start = nrow + start_row - chunk_height // 2
else:
start = start_row - chunk_height // 2
stop = start + chunk_height
start = np.clip(start, 0, nrow - chunk_height - 1)
stop = np.clip(stop, chunk_height, nrow - 1)
mat1_roi = mat1[start: stop]
mat2_roi = mat2[start: stop]
(overlap, side, _) = find_overlap(mat1_roi, mat2_roi, win_width, side=None,
denoise=denoise, norm=norm,
use_overlap=use_overlap)
if side == 0:
cor = overlap / 2.0 - 1.0
else:
cor = ncol - overlap / 2.0 - 1.0
return cor | 21661a6b9ed33a220ede918954ac18a420e638ae | 1,067 |
def parse_date(str):
"""
parsing given str
to date
"""
ymd = str.split('-')
return date(int(ymd[0]), int(ymd[1]), int(ymd[2])) | 29d0f79e2428e315c072c7801d927154c3bfee57 | 1,068 |
def mark_as_widget(view):
"""
Marks @view as a widget so we can later inspect that attribute, for
example, when hiding panels in _vi_enter_normal_mode.
Used prominently by '/', '?' and ':'.
XXX: This doesn't always work as we expect. For example, changing
settings to a panel created instants before does not make those
settings visible when the panel is activated. Investigate.
We still need this so that contexts will ignore widgets, though.
However, the fact that they are widgets should suffice to disable
Vim keys for them...
"""
view.settings().set('is_vintageous_widget', True)
return view | 965555660b82f834e09ba3ffc985755d4fd7fa66 | 1,069 |
def module_name(ctx, f):
"""Given Haskell source file path, turn it into a dot-separated module name.
module_name(
ctx,
"some-workspace/some-package/src/Foo/Bar/Baz.hs",
) => "Foo.Bar.Baz"
Args:
ctx: Rule context.
f: Haskell source file.
Returns:
string: Haskell module name.
"""
return _drop_extension(_rel_path_to_module(ctx, f).replace('/', '.')) | 77a38f62211a827ac8fe9af0cc36636b11e561d5 | 1,070 |
def store(key):
"""Gets the configured default store. The default is PickleStore
:return store: Store object
"""
global __stores
if __stores is None:
__stores = {}
if key not in __stores:
__stores[key] = __configuration[STORE](key)
return __stores[key] | 76197d8cedc44e15a75c81f1bcb07d3a4e59e021 | 1,071 |
def get_label_for_line(line, leg):
"""
Can't remember what I was using this for but seems useful to keep
"""
# leg = line.figure.legends[0]
# leg = line.axes.get_legend()
for h, t in zip(leg.legendHandles, leg.texts):
if h.get_label() == line.get_label():
return t.get_text() | 4180ae7fd7fe5b98ebafa20fbdf2528205e4ec31 | 1,072 |
def _node_parent_listener(target, value, oldvalue, initiator):
"""Listen for Node.parent being modified and update path"""
if value != oldvalue:
if value is not None:
if target._root != (value._root or value):
target._update_root(value._root or value)
target._update_path(newparent=value)
else:
# This node just got orphaned. It's a new root
target._update_root(target)
target._update_path(newparent=target)
return value | 06c06b144c777f33673e2051f1d4173204720f65 | 1,073 |
import os
def save_model_architecture(model, project_name, keras_model_type, cat_vocab_dict,
model_options, chart_name="model_before"):
"""
This function saves the model architecture in a PNG file in the artifacts sub-folder of project_name folder
"""
if isinstance(project_name,str):
if project_name == '':
project_name = "deep_autoviml"
else:
print('Project name must be a string and helps create a folder to store model.')
project_name = "deep_autoviml"
save_model_path = model_options['save_model_path']
save_artifacts_path = os.path.join(save_model_path, "artifacts")
try:
plot_filename = os.path.join(save_artifacts_path,chart_name)+".png"
print('\nSaving model architecture...')
tf.keras.utils.plot_model(model = model, to_file=plot_filename, dpi=72,
show_layer_names=True, rankdir="LR", show_shapes=True)
print(' model architecture saved in file: %s' %plot_filename)
except:
print('Model architecture not saved due to error. Continuing...')
plot_filename = ""
return plot_filename | 6cbe18b35bb503d3042458f45929b93091d5a2c7 | 1,074 |
import torch
import typing
def sequential_to_momentum_net(module: torch.nn.Sequential,
split_dim=1,
coupling_forward: typing.Optional[typing.List[typing.Optional[typing.Callable]]] = None,
coupling_inverse: typing.Optional[typing.List[typing.Optional[typing.Callable]]] = None,
memory_mode: MemoryModes = MemoryModes.autograd_function,
target_device: str = "",
fused_optimizer: FUSED_OPTIMIZER = None,
residual: bool = False,
beta: float = 0.9) -> ReversibleSequential:
"""
Creates a sequential MomentumNet by unrolling a nn.Sequential module and dispatching to `momentum_net()`
:param module: An existing nn.Sequential module that should be converted into a ReversibleSequential module.
:param split_dim: RevNets require two streams. This parameter specifies which dimension to split in half to
create the two streams. `None` would mean the input gets replicated for both streams. It's usually best to split
along the features, which is why the default (1) is compatible with convolutions.
:param coupling_forward: RevNet uses y0 = (x0 + f(x1)) as a coupling function, but this allows you to set a
custom one. For example, MomentumNet (https://arxiv.org/abs/2102.07870) uses
y0 = (beta * x0 + (1 - beta) * f(x1)). The inputs to the coupling function are the residual stream and the
function output. For more information, look at the examples. default = revnet couplint
:param coupling_inverse: The inverse of the coupling function. default = revnet inverse
:param memory_mode: One of `MemoryModes`'s values. Some things are only supported in one mode while others
might only be supported in another. default = autograd function (highest coverage but spotty XLA support)
:param target_device: Specifies where the parameters should be moved to before computing the forward and
backward pass. This allows efficient CPU-offloading.
default = no offloading (keep parameters on the device they're on)
:param fused_optimizer: Allows an optimizer step to run while the model is computing its backward pass. This
means that the gradients don't have to be fully instantiated anymore and can improve speed when used with
cpu-offload due to asynchronous compute. It expects a function that generates an optimizer from a list of
parameters. (like Adam.__init__) default = no fused optimizer step
:param residual: Whether to "undo" a residual stream or not. Using y = f(x0) + x0 + x1 is generally not a good idea,
so this would subtract `x0` from y allowing you to patch existing residual modules without modifying their code.
:param beta: MomentumNet beta value that controls how much of the velocity stream is kept.
:return: Instantiated MomentumNet (instance of `ReversibleSequential`)
"""
return momentum_net(*maybe_residual_to_plain(module, residual), split_dim=split_dim,
coupling_forward=coupling_forward, coupling_inverse=coupling_inverse, memory_mode=memory_mode,
target_device=target_device, beta=beta, fused_optimizer=fused_optimizer) | 269d45cf845555988c3284a88a7e3ca83fb697b5 | 1,075 |
def user_view(request, name):
"""Render the view page for users"""
# argument is the login name, not the uuid in Cassandra
user = User.find(name)
if not user:
return redirect("users:home")
ctx = {
"req_user": request.user,
"user_obj": user,
"groups": [Group.find(gname) for gname in user.groups],
}
return render(request, "users/view.html", ctx) | f7f5bc01d2b60bcca048e0b2183eefcc5f4eb907 | 1,076 |
def grelha_nr_colunas(g):
"""
grelha_nr_colunas: grelha --> inteiro positivo
grelha_nr_colunas(g) devolve o numero de colunas da grelha g.
"""
return len(g[0]) | 740b06c186ad1455aecadfaf112f253fb434d5ff | 1,077 |
def rmsd(array_a, array_b):
"""
Calculate the RMSD between two 1d arrays
Parameters
----------
array_a, array_b : 1d numpy arrays
The arrays to be compared
Returns
-------
rmsd : float
The Root Mean Square Deviation of the elements of the array
"""
diff = array_a - array_b
diff2 = np.square(diff)
diff2_sum = np.sum(diff2)
norm_diff2_sum = diff2_sum/len(array_a)
rmsd = np.sqrt(norm_diff2_sum)
return rmsd | 7390cebff27d73bc9268cdc23e21c2d362bca2cc | 1,078 |
def readFile(sFile, sMode = 'rb'):
"""
Reads the entire file.
"""
oFile = open(sFile, sMode);
sRet = oFile.read();
oFile.close();
return sRet; | d44e8217ae7dcab1c826ccbbe80e066d76db31b5 | 1,079 |
def VI_cgivens_d( a, b):
"""
returns cos, sin, r
"""
c = vsip_cmplx_d(0.0,0.0)
s = vsip_cmplx_d(0.0,0.0)
r = vsip_cmplx_d(0.0,0.0)
am = vsip_cmag_d(a)
bm = vsip_cmag_d(b)
if am == 0.0:
r.r = b.r; r.i=b.i;
s.r = 1.0;
else:
scale = am + bm;
alpha = vsip_cmplx_d(a.r/am, a.i/am)
scalesq = scale * scale
norm = scale * sqrt((am*am)/scalesq + (bm * bm)/scalesq)
c.r =am/norm
s.r = (alpha.r * b.r + alpha.i * b.i)/norm
s.i = (-alpha.r * b.i + alpha.i * b.r)/norm
r.r = alpha.r * norm; r.i = alpha.i * norm
return (c,s,r) | 7ed08b3c583a805cd9a7b0dfcfb80eb67a054e1e | 1,080 |
import json
def documint_request_factory(request):
"""
Create a function that issues a request to a Documint endpoint.
Status codes outside the 2xx range are treated as errors. If error
responses are JSON then `DocumintError` is raised, otherwise
`MalformedDocumintError` is raised.
If the status code indicates success, the `IResponse` is returned.
"""
def _raise_error(data, response):
if content_type(response.headers) == b'application/json':
try:
causes = json.loads(data).get(u'causes', [])
raise DocumintError(
causes=[DocumintErrorCause(cause.get(u'type'),
cause.get(u'reason'),
cause.get(u'description'))
for cause in causes])
except ValueError:
pass
raise MalformedDocumintError(data)
def _check_status(response):
if 200 <= response.code < 300:
return response
d = response.content()
d.addCallback(_raise_error, response)
return d
def _request(*a, **kw):
d = request(*a, **kw)
d.addCallback(_check_status)
return d
return _request | 9dc4dcba0df1094c394dbe8d9424f874e3ac3169 | 1,081 |
import os
def roipac_header(file_path, params):
"""
Function to obtain a header for roipac interferogram file or converted
geotiff.
"""
rsc_file = os.path.join(params[cf.DEM_HEADER_FILE])
if rsc_file is not None:
projection = parse_header(rsc_file)[ifc.PYRATE_DATUM]
else:
raise RoipacException('No DEM resource/header file is '
'provided')
if file_path.endswith('_dem.tif'):
header_file = os.path.join(params[cf.DEM_HEADER_FILE])
elif file_path.endswith('_unw.tif'):
base_file = file_path[:-8]
header_file = base_file + '.unw.' + ROI_PAC_HEADER_FILE_EXT
else:
header_file = "%s.%s" % (file_path, ROI_PAC_HEADER_FILE_EXT)
header = manage_header(header_file, projection)
return header | 743640ff38af24dcdc046727f0bf65fe243fba4a | 1,082 |
import os
import fnmatch
def find_exe_in_path(exe, bypass_permissions_check=None, add_exe_to_path=None):
"""
Check that an executable exists in $PATH
"""
paths = os.environ["PATH"].split(os.pathsep)
for path in paths:
fullexe = os.path.join(path,exe)
if os.path.exists(fullexe):
if not bypass_permissions_check:
check_file_executable(fullexe)
if add_exe_to_path:
path=fullexe
return path
elif os.path.isdir(path):
# allow for filename filter matching
exematch = fnmatch.filter(os.listdir(path),exe)
if exematch and os.path.exists(os.path.join(path,exematch[0])):
if not bypass_permissions_check:
check_file_executable(os.path.join(path,exematch[0]))
if add_exe_to_path:
path=os.path.join(path,exematch[0])
return path
return None | 9e3919c0c479bf272e582937d62c45e826eb6d6e | 1,083 |
def skip_for_tf2(f):
"""Decorator that skips tests when using TensorFlow 2."""
def test_wrapper(*args, **kwargs):
"""Wraps the decorated function to determine whether to skip."""
# Extract test case instance from args.
self = args[0]
try:
# If tf.contrib doesn't exist, we are in TF 2.0.
_ = tf.contrib
_ = tf.contrib.estimator.regression_head(
loss_reduction=tf.compat.v1.losses.Reduction.SUM_OVER_BATCH_SIZE)
except (AttributeError, ImportError):
self.skipTest("Skipping test in TF 2.0.")
return f(*args, **kwargs)
return test_wrapper | 02059cc9c8e6b83ab49dcd3b69d447fa3ec26324 | 1,084 |
import yaml
def clean_logfile(logfile_lines,to_remove):
"""Remove yaml fields from a list of lines.
Removes from a set of lines the yaml_fields contained in the to_remove list.
Arguments:
logfile_lines (list): list of the lines of the logfile. Generated from a file by e.g. :py:meth:`~io.IOBase.readlines`.
to_remove (list): list of keys to remove from logfile_lines
Returns:
list of lines where the removed keys have as values the `"<folded>"` string
"""
line_rev=logfile_lines #list of the lines of the logfile
#loop in the reversed from (such as to parse by blocks)
extra_lines=20 #internal variable to be customized
line_rev.reverse()
#clean the log
cleaned_logfile=[]
removed=[]
#for line in line_rev: #line_iter:
while len(line_rev) >0:
line=line_rev.pop()
to_print=line
#check if the line contains interesting information
for remove_it in to_remove :
stream_list=[]
#line without comments
valid_line=line.split('#')[0]
spaces='nospace'
#control that the string between the key and the semicolon is only spaces
if remove_it in valid_line and ":" in valid_line:
#print "here",remove_it,remove_it in valid_line and ":" in valid_line,valid_line
starting_point=valid_line.find(remove_it)
tmp_buf=valid_line[:starting_point]
#find the closest comma to the staring point, if exists
tmp_buf=tmp_buf[::-1]
starting_comma=tmp_buf.find(',')
if starting_comma <0: st=0
tmp_buf=tmp_buf[st:]
tmp_buf=tmp_buf[::-1]
tmp_buf=tmp_buf.strip(' ')
#print "there",tmp_buf,'starting',starting_point,len(tmp_buf)
valid_line= valid_line[starting_point+len(remove_it):]
spaces= valid_line[1:valid_line.find(':')]
#if remove_it+':' in line.split('#')[0]:
if len(spaces.strip(' ')) == 0 and len(tmp_buf)==0: #this means that the key has been found
#creates a new Yaml document starting from the line
#treat the rest of the line following the key to be removed
header=''.join(line.split(':')[1:])
header=header.rstrip()+'\n'
#eliminate the anchor
header=header.lstrip(' ')
header=header.lstrip('*')
if len(header) > 0 :
stream_list.append(header)
#part to be printed, updated
to_print = line.split(':')[0] + ": <folded> \n"
#then check when the mapping will end:
while True:
#create a stream with extra_lines block
for i in range(0,min(extra_lines,len(line_rev))):
stream_list.append(line_rev.pop())
#create a stream to be parsed
stream=''.join(stream_list)
#then parse the stream until the last valid position has been found
try:
for i in yaml.parse(stream,Loader=yaml.CLoader):
endpos=i.end_mark.index
except Exception(e):
# print 'error',str(e),stream
#convert back the valid stream into a list
#if needed the stream can be loaded into a document
item_list=stream[:endpos].split('\n')
#if lengths are different there is no need to add lines
if len(item_list) != len(stream_list):
#last line might be shorter, therefore treat it separately
last_line=item_list.pop()
#purge the stream
for item in item_list:
stream_list.remove(item+'\n')
#extract the remaining line which should be compared with the last one
strip_size=len(last_line.rstrip())
if strip_size > 0:
first_line=stream_list.pop(0)[strip_size:]
if '*' in first_line or '&' in first_line:
first_line='' #eliminate anchors
else:
first_line=''
#then put the rest in the line to be treated
to_print.rstrip('\n')
to_print += first_line+'\n'
# the item has been found
break
stream_list.reverse()
#put back the unused part in the document
line_rev.extend(stream_list)
# mark that the key has been removed
if (remove_it not in removed):
removed.append(remove_it)
write('removed: ',remove_it)
# then print out the line
cleaned_logfile.append(to_print)
# check that everything has been removed, at least once
if (set(removed) != set(to_remove)):
write('WARNING, not all the requested items have been removed!')
write('To_remove : ',to_remove)
write('removed : ',removed)
write('Difference: ',list(set(to_remove) - set(removed) ))
return cleaned_logfile | 5e066584488230e777684fcf4e8d25784343afaf | 1,085 |
def no_red_sum(tokens):
"""Using import json is cheating, let's parse it ourselves in a sinlge pass. Hope you like stacks."""
sums = [0]
stack = []
is_red = False
for token in tokens:
if token == 'red' and not is_red and stack[-1] == '{':
is_red = True
sums[-1] = 0
stack.append('red')
elif token == '{':
sums.append(0)
stack.append('{')
elif token == '}':
last_sum = sums.pop()
sums[-1] += last_sum
if stack[-1] == 'red':
stack.pop()
is_red = False
stack.pop()
elif token == '[':
stack.append('[')
sums.append(0)
elif token == ']':
stack.pop()
last_sum = sums.pop()
sums[-1] += last_sum
elif not is_red:
sums[-1] += neg_safe_cast(token)
assert len(sums) == 1
return sums.pop() | 7945618bcc76c03b457cacf4f995e767d5b6160c | 1,086 |
def get_all_projects():
"""
Return a list with all the projects (open and closed).
"""
return gazu.project.all_projects() | 7279d46e9049f3ff9802dcc93b8e41b2e118c9a2 | 1,087 |
def install(opts):
"""
Install one or more resources.
"""
resources = _load(opts.resources, opts.output_dir)
if opts.all:
opts.resource_names = ALL
success = _install(resources, opts.resource_names, opts.mirror_url,
opts.destination, opts.skip_top_level)
if success:
if not opts.quiet:
print("All resources successfully installed")
return 0
else:
if not opts.quiet:
invalid = _invalid(resources, opts.resource_names)
print("Unable to install some resources: {}".format(', '.join(invalid)))
return 1 | 9487490eb9ccb13ce7f9797defacf823161a60a9 | 1,088 |
import torch
def seq2seq_att(mems, lengths, state, att_net=None):
"""
:param mems: [B, T, D_mem] This are the memories.
I call memory for this variable because I think attention is just like read something and then
make alignments with your memories.
This memory here is usually the input hidden state of the encoder.
:param lengths: [B]
:param state: [B, D_state]
I call state for this variable because it's the state I percepts at this time step.
:param att_net: This is the attention network that will be used to calculate the alignment score between
state and memories.
input of the att_net is mems and state with shape:
mems: [exB, D_mem]
state: [exB, D_state]
return of the att_net is [exB, 1]
So any function that map a vector to a scalar could work.
:return: [B, D_result]
"""
d_state = state.size(1)
if not att_net:
return state
else:
batch_list_mems = []
batch_list_state = []
for i, l in enumerate(lengths):
b_mems = mems[i, :l] # [T, D_mem]
batch_list_mems.append(b_mems)
b_state = state[i].expand(b_mems.size(0), d_state) # [T, D_state]
batch_list_state.append(b_state)
packed_sequence_mems = torch.cat(batch_list_mems, 0) # [sum(l), D_mem]
packed_sequence_state = torch.cat(batch_list_state, 0) # [sum(l), D_state]
align_score = att_net(packed_sequence_mems, packed_sequence_state) # [sum(l), 1]
# The score grouped as [(a1, a2, a3), (a1, a2), (a1, a2, a3, a4)].
# aligned_seq = packed_sequence_mems * align_score
start = 0
result_list = []
for i, l in enumerate(lengths):
end = start + l
b_mems = packed_sequence_mems[start:end, :] # [l, D_mems]
b_score = align_score[start:end, :] # [l, 1]
softed_b_score = F.softmax(b_score.transpose(0, 1)).transpose(0, 1) # [l, 1]
weighted_sum = torch.sum(b_mems * softed_b_score, dim=0, keepdim=False) # [D_mems]
result_list.append(weighted_sum)
start = end
result = torch.stack(result_list, dim=0)
return result | 992fa8329443a2505c6ff0d83e9c34e69be620d4 | 1,089 |
def convert_for_webkit(new_path, filename, reference_support_info, host=Host()):
""" Converts a file's |contents| so it will function correctly in its |new_path| in Webkit.
Returns the list of modified properties and the modified text if the file was modifed, None otherwise."""
contents = host.filesystem.read_binary_file(filename)
converter = _W3CTestConverter(new_path, filename, reference_support_info, host)
if filename.endswith('.css'):
return converter.add_webkit_prefix_to_unprefixed_properties(contents.decode('utf-8'))
else:
converter.feed(contents.decode('utf-8'))
converter.close()
return converter.output() | 098774b42f9086b1b61dc231318731ab7eb1a998 | 1,090 |
from typing import Callable
from typing import Optional
def bond(fn: Callable[..., Array],
displacement_or_metric: DisplacementOrMetricFn,
static_bonds: Optional[Array]=None,
static_bond_types: Optional[Array]=None,
ignore_unused_parameters: bool=False,
**kwargs) -> Callable[..., Array]:
"""Promotes a function that acts on a single pair to one on a set of bonds.
TODO(schsam): It seems like bonds might potentially have poor memory access.
Should think about this a bit and potentially optimize.
Args:
fn: A function that takes an ndarray of pairwise distances or displacements
of shape [n, m] or [n, m, d_in] respectively as well as kwargs specifying
parameters for the function. fn returns an ndarray of evaluations of shape
[n, m, d_out].
metric: A function that takes two ndarray of positions of shape
[spatial_dimension] and [spatial_dimension] respectively and returns
an ndarray of distances or displacements of shape [] or [d_in]
respectively. The metric can optionally take a floating point time as a
third argument.
static_bonds: An ndarray of integer pairs wth shape [b, 2] where each pair
specifies a bond. static_bonds are baked into the returned compute
function statically and cannot be changed after the fact.
static_bond_types: An ndarray of integers of shape [b] specifying the type
of each bond. Only specify bond types if you want to specify bond
parameters by type. One can also specify constant or per-bond parameters
(see below).
ignore_unused_parameters: A boolean that denotes whether dynamically
specified keyword arguments passed to the mapped function get ignored
if they were not first specified as keyword arguments when calling
`smap.bond(...)`.
kwargs: Arguments providing parameters to the mapped function. In cases
where no bond type information is provided these should be either 1) a
scalar or 2) an ndarray of shape [b]. If bond type information is
provided then the parameters should be specified as either 1) a scalar or
2) an ndarray of shape [max_bond_type].
Returns:
A function fn_mapped. Note that fn_mapped can take arguments bonds and
bond_types which will be bonds that are specified dynamically. This will
incur a recompilation when the number of bonds changes. Improving this
state of affairs I will leave as a TODO until someone actually uses this
feature and runs into speed issues.
"""
# Each call to vmap adds a single batch dimension. Here, we would like to
# promote the metric function from one that computes the distance /
# displacement between two vectors to one that acts on two lists of vectors.
# Thus, we apply a single application of vmap.
merge_dicts = partial(util.merge_dicts,
ignore_unused_parameters=ignore_unused_parameters)
def compute_fn(R, bonds, bond_types, static_kwargs, dynamic_kwargs):
Ra = R[bonds[:, 0]]
Rb = R[bonds[:, 1]]
_kwargs = merge_dicts(static_kwargs, dynamic_kwargs)
_kwargs = _kwargs_to_bond_parameters(bond_types, _kwargs)
# NOTE(schsam): This pattern is needed due to JAX issue #912.
d = vmap(partial(displacement_or_metric, **dynamic_kwargs), 0, 0)
dr = d(Ra, Rb)
return high_precision_sum(fn(dr, **_kwargs))
def mapped_fn(R: Array,
bonds: Optional[Array]=None,
bond_types: Optional[Array]=None,
**dynamic_kwargs) -> Array:
accum = f32(0)
if bonds is not None:
accum = accum + compute_fn(R, bonds, bond_types, kwargs, dynamic_kwargs)
if static_bonds is not None:
accum = accum + compute_fn(
R, static_bonds, static_bond_types, kwargs, dynamic_kwargs)
return accum
return mapped_fn | 4a4fefaf8fce84e632634fef778a7508cd5412b8 | 1,091 |
import re
def clean_repeated_symbols(text):
"""
Filters text, replacing symbols repeated more than twice (not allowed
in most languages) with a single repetition of the symbol.
:param text: the text to be filtered
:type: str
:return: the filtered text
:type: str
"""
pattern = re.compile(r"(.)\1{2,}", re.DOTALL)
return pattern.sub(r"\1\1", text) | bfa758994cfae716caaa715d5a990416a300f9d9 | 1,092 |
def sample(x,y, numSamples):
"""
gives numSamples samples from the distribution funciton fail
parameters
"""
y /= y.sum()
return np.random.choice(x, size=numSamples, replace=True, p=y) | 4cfbb6977bcd5fa43f27de40b15beff487f1c071 | 1,093 |
def make_path_strictly_increase(path):
"""
Given a warping path, remove all rows that do not
strictly increase from the row before
"""
toKeep = np.ones(path.shape[0])
i0 = 0
for i in range(1, path.shape[0]):
if np.abs(path[i0, 0] - path[i, 0]) >= 1 and np.abs(path[i0, 1] - path[i, 1]) >= 1:
i0 = i
else:
toKeep[i] = 0
return path[toKeep == 1, :] | 1a5043bdb469c9dd3f9bf57e1b9752ebd8567182 | 1,094 |
from typing import OrderedDict
import itertools
import logging
def generate_frequency_spectrum(samples, wild_threshold):
"""
Generates the site frequency spectrum for a given set of samples
:param samples: List of sample accession codes
:param wild_threshold: The index position of the last wild sample (used for resolving group membership)
:return:
"""
# open all files for reading
filehandles = [open("vcf/{}.vcf".format(sample), 'r') for sample in samples]
# skip over the block comments (which are variable length)
for fin in filehandles:
while fin.readline().startswith("##"):
pass
# keep count of SNP sites
snpcount = 0
# store the SNPs in a dictionary
variants = defaultdict(OrderedDict)
try:
# get the next line from all the files
for lines in itertools.izip(*filehandles):
try:
# convert each line from a string to a list
lines = [line.split() for line in lines]
# rephase the files, if not all the sequence positions match
if len(set(line[POS] for line in lines)) != 1:
rephase_files(lines, filehandles)
# TODO drop sites with coverage lower than 1st quartile or higher than 3rd quartile
# get the outgroup
outgroup = lines[0]
# get the chromosome number and position
chrm = int(outgroup[CHROM])
pos = int(outgroup[POS])
# skip all sites with indels
if 'INDEL' in outgroup[INFO]:
raise InDelException(chrm, pos, outgroup[INFO])
# get the reference and outgroup alleles
ref_allele = outgroup[REF]
out_allele = outgroup[ALT].replace('.', ref_allele)
# get the genotype of the outgroup
out_genotype = outgroup[GENOTYPE].split(':')[0]
# skip het sites in the outgroup
if out_genotype == '0/1':
raise HeterozygousException(chrm, pos, outgroup[GENOTYPE])
# keep track of all the observed alleles at this site
all_alleles = {ref_allele, out_allele}
# dictionary for counting observations
frequencies = {}
# process all the samples (omitting the outgroup)
for idx, line in enumerate(lines[1:]):
# skip all sites with indels
if 'INDEL' in line[INFO]:
raise InDelException(chrm, pos, line[REF])
# get the alt allele for this sample
alt_allele = line[ALT].replace('.', ref_allele)
# get the genotype of the sample
genotype = line[GENOTYPE].split(':')[0]
# resolve the genotype
if genotype == '0/0':
sample_alleles = [ref_allele, ref_allele] # 0/0 - the sample is homozygous reference
elif genotype == '0/1':
sample_alleles = [ref_allele, alt_allele] # 0/1 - the sample is heterozygous
elif genotype == '1/1':
sample_alleles = [alt_allele, alt_allele] # 1/1 - the sample is homozygous alternate
# add them to the all alleles set
all_alleles |= set(sample_alleles)
# skip sites with more than two alleles observed across all samples
if len(all_alleles) > 2:
raise PolyallelicException(chrm, pos, all_alleles)
# use the index threshold to determine which group this sample belongs to
group = 'wild' if idx < wild_threshold else 'doms'
# count the observations of each allele for each group
for allele in sample_alleles:
# initialise the counter, if necessary
if allele not in frequencies:
frequencies[allele] = {'wild': 0, 'doms': 0}
# increment the counter
frequencies[allele][group] += 1
if len(all_alleles) == 1:
# skip homozygous sites, because there is nothing to coalesce
raise HomozygousException(chrm, pos, all_alleles)
if len(frequencies) == 1:
# deal with fixed allele sites by initilising the missing allele to 0
for allele in all_alleles:
if allele not in frequencies:
frequencies[allele] = {'wild': 0, 'doms': 0}
# add the site to the SNP dictionary (so we can look up the flanking bases when we're done here)
variants[chrm][pos] = dict(ref=ref_allele, out=out_allele, frq=frequencies)
# increment the SNP count
snpcount += 1
except (InDelException, PolyallelicException, HeterozygousException, HomozygousException) as e:
# skip all sites containing indels, polyallelic sites in ingroup samples, heterozygous sites in the
# outgroup, or homozygous sites across all the populations
logging.debug('Skipping site chr{} {} because of a {} - {}'.format(outgroup[CHROM],
outgroup[POS],
type(e).__name__,
e))
except StopIteration as e:
logging.debug('Reached the end of one of the files {}'.format(e))
pass
# close all the open files
for fin in filehandles:
fin.close()
# reopen the outgroup file
fin = open("vcf/{}.vcf".format(samples.iterkeys().next()), 'r')
# skip over the block comments (which are variable length)
while fin.readline().startswith("##"):
pass
# start composing the output file
output = 'Rabbit\tHare\tAllele1\tWLD\tDOM\tAllele2\tWLD\tDOM\tGene\tPosition\n'
for chrm in variants:
for pos in variants[chrm]:
# Ref | Out | Allele1 | WILD | DOMS | Allele2 | WILD | DOMS | Gene | Position
# fetch the flanking bases for the reference and outgroup sequeneces
(ref_left, ref_right, out_left, out_right) = fetch_flanking_bases(chrm, pos, fin)
# add the output row
output += '{ref_left}{ref}{ref_right}\t{out_left}{out}{out_right}\t'.format(ref_left=ref_left,
ref=variants[chrm][pos]['ref'],
ref_right=ref_right,
out_left=out_left,
out=variants[chrm][pos]['out'],
out_right=out_right)
for allele, count in variants[chrm][pos]['frq'].iteritems():
# output the allele counts
output += '{alle}\t{wild}\t{doms}\t'.format(alle=allele,
wild=count['wild'],
doms=count['doms'])
# add the chromosome name and position
output += 'chr{chrm}\t{pos}\n'.format(chrm=chrm, pos=pos)
fin.close()
logging.debug('Finished! Found {} suitable SNP sites'.format(snpcount))
return output | f953c09cc22d5f4744a9f505daefbe3b4e72cc92 | 1,095 |
def set_group_selector(*args):
"""set_group_selector(sel_t grp, sel_t sel) -> int"""
return _idaapi.set_group_selector(*args) | 1fbf3807791bf94511f4c7da52278db2815c757e | 1,096 |
def data_context_topology_context_topologyuuid_nodenode_uuid_node_rule_groupnode_rule_group_uuid_latency_characteristictraffic_property_name_get(uuid, node_uuid, node_rule_group_uuid, traffic_property_name): # noqa: E501
"""data_context_topology_context_topologyuuid_nodenode_uuid_node_rule_groupnode_rule_group_uuid_latency_characteristictraffic_property_name_get
returns tapi.topology.LatencyCharacteristic # noqa: E501
:param uuid: Id of topology
:type uuid: str
:param node_uuid: Id of node
:type node_uuid: str
:param node_rule_group_uuid: Id of node-rule-group
:type node_rule_group_uuid: str
:param traffic_property_name: Id of latency-characteristic
:type traffic_property_name: str
:rtype: TapiTopologyLatencyCharacteristic
"""
return 'do some magic!' | 5f0aff58f5f5e7f72f6622fdb8a400b03f6aae15 | 1,097 |
def getPendingReviewers(db, review):
"""getPendingReviewers(db, review) -> dictionary
Returns a dictionary, like the ones returned by getReviewersAndWatchers(), but
with details about remaining unreviewed changes in the review. Changes not
assigned to a reviewer are handled the same way."""
cursor = db.cursor()
cursor.execute("""SELECT reviewuserfiles.uid, reviewfiles.changeset, reviewfiles.file
FROM reviewfiles
LEFT OUTER JOIN reviewuserfiles ON (reviewuserfiles.file=reviewfiles.id)
WHERE reviewfiles.review=%s
AND reviewfiles.state='pending'""",
(review.id,))
reviewers = {}
for user_id, changeset_id, file_id in cursor.fetchall():
reviewers.setdefault(file_id, {}).setdefault(user_id, set()).add(changeset_id)
return reviewers | 869a6bb752c4e7c1e40a0000b3aceb62adc28ce1 | 1,098 |
import base64
def base64_encode_string(string):
# type: (str or bytes) -> str
"""Base64 encode a string
:param str or bytes string: string to encode
:rtype: str
:return: base64-encoded string
"""
if on_python2():
return base64.b64encode(string)
else:
return str(base64.b64encode(string), 'ascii') | 0c13ca527171fecdbc5eb93376c6019c0b95e2b7 | 1,099 |