content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import torch def get_prob_and_custom_prob_per_crops( logits_for_patches, img_size_work_px_space, n_pixels_in_crop, descendent_specifier, target_list, rf, DEVICE, ): """Determine the probability and the custom probability (i.e. the non-Deep-Learning "logit", cf. Appendix C.2) for crops according to the descendent_specifier, i.e. either each crop or only the four corner crops. Note that for the grouping of patches into one crop, each directly neighboring patch is considered (stride 1: logits_for_patches_reshaped[start_row:stop_row:stride_1, start_col:stop_col:stride_1]). This enables us to both either select all data for all crops or only the data for the corner crops. This is in contrast to the value that was used to train and evaluate BagNet-33 (stride = 8). Args: logits_for_patches: logit predictions for each patch torch tensor, dtype = torch.float32 np_array of dimensions n_patches x 1000 img_size_work_px_space: number of image pixels in latest parent n_pixels_in_crop: size of child crop descendent_specifier: choice between selecting all crops ("stride1") or only four corner crops ("Ullman4") target_list: list of targets rf: number of pixels in image crop for BagNet-33 rf stands for receptive field size Returns: prob_per_crop: list of length n_crops^2 containing the probabilities per relevant crop custom_prob_per_crop: list of length n_crops^2 containing the custom probabilities per relevant crop """ # When the crop is larger than 33x33 (or in fact 37x37 because that's the # next larger pixel size appearing in the decreasing order of pixels when # decreasing by 80% for each crop from 224 pixels), group patches into # crops to calculate the probaiblities and the custom probabilities if img_size_work_px_space > 37: # calculate how many crops there are n_crops = img_size_work_px_space - n_pixels_in_crop + 1 # calculate how many patches contribute to one crop in one dimensions # (i.e. width or height) n_patches_contribute_to_crop = n_pixels_in_crop - rf + 1 # make matrix square instead of one-dimensional along the patch-axis patch_square_length = int(np.sqrt(logits_for_patches.size()[0])) logits_for_patches_reshaped = torch.reshape( logits_for_patches, (patch_square_length, patch_square_length, logits_for_patches.shape[1]), ) # loop through each crop prob_per_crop = [] custom_prob_per_crop = [] for start_row in range(n_crops): stop_row = start_row + n_patches_contribute_to_crop for start_col in range(n_crops): stop_col = start_col + n_patches_contribute_to_crop # average logits over patches logit_avg_of_cur_patch = torch.mean( torch.mean( logits_for_patches_reshaped[ start_row:stop_row, start_col:stop_col ], dim=0, ), dim=0, ) # calculate probabilities prob_for_targets_summed = get_prob_for_logits( logit_avg_of_cur_patch[None, :], target_list ) prob_per_crop.append(prob_for_targets_summed) # calculate custom probabilities cur_custom_prob_per_crop = get_custom_prob( logit_avg_of_cur_patch[None, :], target_list, DEVICE ) custom_prob_per_crop.append(cur_custom_prob_per_crop[0]) # patches correspond to crops else: custom_prob_per_crop = get_custom_prob( logits_for_patches, target_list, DEVICE) prob_per_crop = list( get_prob_for_logits( logits_for_patches, target_list)) # if only the four corner crops are of interest ("Ullman4"), get that data # only if descendent_specifier == "Ullman4": prob_per_crop, custom_prob_per_crop = extract_corner_data_for_Ullman4( prob_per_crop, custom_prob_per_crop ) return prob_per_crop, custom_prob_per_crop
18a4c166334c6e5c3fa3300ddd255992677d412b
300
def xywh_to_xyxy(boxes): """Convert [x y w h] box format to [x1 y1 x2 y2] format.""" if boxes is None or len(boxes) == 0: return boxes boxes = np.array(boxes) return np.hstack((boxes[:, 0:2], boxes[:, 0:2] + boxes[:, 2:4] - 1))
391c55ddd2e84cf60073cbd02d0e5d595f3ea3b1
301
def vscat(a,fig=None,ls=None,marker='o',nmin=2,mhmin=-3,density=False,out=None) : """ Make histograms of VSCATTER for different bins of Teff H], given min NVISITS, and min [M/H] """ if fig == None : fig,ax=plots.multi(4,6,hspace=0.001,wspace=0.4,figsize=(12,8)) else : fig,ax=fig tbins=[3000,3500,4000,4500,5500,8000,30000] hbins=[8,11,12,13,15] try: snr = a['SNREV'] except: snr=a['SNR'] j=np.where(snr > 300) [0] snr[j] = 300 for i in range(len(tbins)-1) : ax[i,0].text(0.9,0.9,'{:d}<=RV_TEFF<{:d}'.format(tbins[i],tbins[i+1]),ha='right',transform=ax[i,0].transAxes,fontsize=8) for j in range(len(hbins)-1) : ax[0,j].set_title('{:d}<=H<{:d}'.format(hbins[j],hbins[j+1])) gd = np.where((a['RV_TEFF']>=tbins[i]) & (a['RV_TEFF']<tbins[i+1]) & (a['H']>=hbins[j]) & (a['H']<hbins[j+1]) & (a['NVISITS']>nmin) & (a['RV_FEH']>mhmin) & (a['VSCATTER'] > 0)) [0] print(tbins[i],tbins[i+1],hbins[j],hbins[j+1],nmin,len(gd)) try : #plots.plotc(ax[i,2],snr[gd],a['VSCATTER'][gd],a['RV_FEH'][gd],marker=marker,xr=[0,310],yr=[0,1],xt='S/N',yt='VSCATTER') ax[i,j].hist(a['VSCATTER'][gd],bins=np.arange(0,1,0.01),ls=ls,histtype='step',color=colors[j],normed=density) ax[i,j].set_xlabel('VSCATTER (km/s)') ax[i,j].plot([0.1,0.1],ax[i,j].get_ylim()) #ax[i,1].hist(a['VSCATTER'][gd],bins=np.arange(0,1,0.01),histtype='step',cumulative=True,normed=True,ls=ls,color=colors[j]) #ax[i,1].set_xlabel('VSCATTER') except : pass if out is not None : fig.savefig(out+'.png') plt.close() fig.suptitle('NVISITS>{:d} [M/H]>{:6.2f}'.format(nmin,mhmin)) return fig,ax
b302883263ef79682e697d4c82b0fc352eb597ec
302
def parse_unique_count_for_column(column_df, column): """ returns column specific distribution details. sample output, ``` "<column_df>": { "<>": 30 } ``` """ return {column: get_unique_counts_of_column(column_df)}
275375c012d8ffc2bd8f209bf57e1c1aa1d183f6
303
def transaction(): """ Get database transaction object :return: _TransactionContext object usage: with transaction(): # transactions operation pass >>> def update_profile(t_id, name, rollback): ... u = dict(id=t_id, name=name, email='%s@test.org' % name, password=name, last_modified=time.time()) ... insert('testuser', **u) ... update('update testuser set password=%s where id=%s', name.upper(), t_id) ... if rollback: ... raise StandardError('will cause rollback...') >>> with transaction(): ... update_profile(900301, 'Python', False) >>> select_one('select * from testuser where id=%s', 900301).name u'Python' >>> with transaction(): ... update_profile(900302, 'Ruby', True) Traceback (most recent call last): ... StandardError: will cause rollback... >>> select('select * from testuser where id=%s', 900302) [] """ return _TransactionContext()
d0b941dd9c2ce3e07079280edc74324a28d60509
304
from typing import Union from typing import Dict from typing import Any import typing def _BoundedIntRange( description: str = "", description_tooltip: str = None, layout: Union[Dict[str, Any], Element[ipywidgets.widgets.widget_layout.Layout]] = {}, max: int = 100, min: int = 0, style: Union[Dict[str, Any], Element[ipywidgets.widgets.widget_description.DescriptionStyle]] = {}, value: tuple = (0, 1), on_description: typing.Callable[[str], Any] = None, on_description_tooltip: typing.Callable[[str], Any] = None, on_layout: typing.Callable[[Union[Dict[str, Any], Element[ipywidgets.widgets.widget_layout.Layout]]], Any] = None, on_max: typing.Callable[[int], Any] = None, on_min: typing.Callable[[int], Any] = None, on_style: typing.Callable[[Union[Dict[str, Any], Element[ipywidgets.widgets.widget_description.DescriptionStyle]]], Any] = None, on_value: typing.Callable[[tuple], Any] = None, ) -> Element[ipywidgets.widgets.widget_int._BoundedIntRange]: """ :param description: Description of the control. :param description_tooltip: Tooltip for the description (defaults to description). :param max: Max value :param min: Min value :param style: Styling customizations :param value: Tuple of (lower, upper) bounds """ kwargs: Dict[Any, Any] = without_default(_BoundedIntRange, locals()) if isinstance(kwargs.get("layout"), dict): kwargs["layout"] = Layout(**kwargs["layout"]) if isinstance(kwargs.get("style"), dict): kwargs["style"] = DescriptionStyle(**kwargs["style"]) widget_cls = ipywidgets.widgets.widget_int._BoundedIntRange comp = react.core.ComponentWidget(widget=widget_cls) return Element(comp, **kwargs)
0f54f750da5000df2952298b0f6bec987a7b02b4
305
import os import torch def load_static_mnist(args, **kwargs): """ Dataloading function for static mnist. Outputs image data in vectorized form: each image is a vector of size 784 """ args.dynamic_binarization = False args.input_type = 'binary' args.input_size = [1, 28, 28] # start processing def lines_to_np_array(lines): return np.array([[int(i) for i in line.split()] for line in lines]) with open(os.path.join('data', 'MNIST_static', 'binarized_mnist_train.amat')) as f: lines = f.readlines() x_train = lines_to_np_array(lines).astype('float32') with open(os.path.join('data', 'MNIST_static', 'binarized_mnist_valid.amat')) as f: lines = f.readlines() x_val = lines_to_np_array(lines).astype('float32') with open(os.path.join('data', 'MNIST_static', 'binarized_mnist_test.amat')) as f: lines = f.readlines() x_test = lines_to_np_array(lines).astype('float32') # shuffle train data np.random.shuffle(x_train) # idle y's y_train = np.zeros((x_train.shape[0], 1)) y_val = np.zeros((x_val.shape[0], 1)) y_test = np.zeros((x_test.shape[0], 1)) # pytorch data loader train = data_utils.TensorDataset(torch.from_numpy(x_train), torch.from_numpy(y_train)) train_loader = data_utils.DataLoader(train, batch_size=args.batch_size, shuffle=True, **kwargs) validation = data_utils.TensorDataset(torch.from_numpy(x_val).float(), torch.from_numpy(y_val)) val_loader = data_utils.DataLoader(validation, batch_size=args.batch_size, shuffle=False, **kwargs) test = data_utils.TensorDataset(torch.from_numpy(x_test).float(), torch.from_numpy(y_test)) test_loader = data_utils.DataLoader(test, batch_size=args.batch_size, shuffle=False, **kwargs) return train_loader, val_loader, test_loader, args
bdd9fd491048f7e0af5bcc5007bb61fd6ee65e2f
306
def get_benchmark_snapshot(benchmark_df, threshold=_MIN_FRACTION_OF_ALIVE_TRIALS_AT_SNAPSHOT): """Finds the latest time where |threshold| fraction of the trials were still running. In most cases, this is the end of the experiment. However, if less than |threshold| fraction of the trials reached the end of the experiment, then we will use an earlier "snapshot" time for comparing results. Returns a data frame that only contains the measurements of the picked snapshot time. """ # Allow overriding threshold with environment variable as well. threshold = environment.get('BENCHMARK_SAMPLE_NUM_THRESHOLD', threshold) num_trials = benchmark_df.trial_id.nunique() trials_running_at_time = benchmark_df.time.value_counts() criteria = trials_running_at_time >= threshold * num_trials ok_times = trials_running_at_time[criteria] latest_ok_time = ok_times.index.max() benchmark_snapshot_df = benchmark_df[benchmark_df.time == latest_ok_time] return benchmark_snapshot_df
6e7f887f3f720612013dfe06b5decbf2e092a2e2
307
from selenium.webdriver.chrome.options import Options from selenium import webdriver from os import getcwd def configChromeDriver(webVisible : bool = True , filePathDownload : str = None, filePathWebDriver: str = None) -> WebDriver: """ Configure o seu Chrome Driver: - webVisible ==> Por padrão True para ocultar o webDriver. - filePathDownload ==> Por padrão será criado uma pasta Downloads na raiz do projeto, caso não seja informado uma pasta para envio dos downloads ("nameFolder\\folderDownload"). - filePathWebDriver ==> Informar o endereço completo, inclusive ("nameFolder\\91\\chromedriver.exe"). Por padrão é utilizado a pasta raiz (webDriver), caso ela não exista, cria-la e colocar a pasta do driver nomeada com o numero da versão. """ filePathDownload = filePathDownload or pathDownload() filePathWebDriver = filePathWebDriver or fr"{getcwd()}\webDriver\{lastWebDriver()}\chromedriver.exe" options = Options() options.headless = webVisible prefs = {"download.default_directory": filePathDownload} options.add_experimental_option("prefs", prefs) options.add_experimental_option('excludeSwitches', ['enable-logging']) options.add_argument("--lang=pt") return webdriver.Chrome(executable_path=filePathWebDriver, options=options)
755e02ffcb4f9ab102023e65f97f4f30a030debf
308
import traceback import sys def create_trigger_function_with_trigger(server, db_name, schema_name, func_name): """This function add the trigger function to schema""" try: connection = utils.get_db_connection(db_name, server['username'], server['db_password'], server['host'], server['port'], server['sslmode']) pg_cursor = connection.cursor() query = "CREATE FUNCTION " + schema_name + "." + func_name + \ "()" \ " RETURNS trigger LANGUAGE 'plpgsql' STABLE LEAKPROOF" \ " SECURITY DEFINER SET enable_sort=true AS $BODY$ BEGIN" \ " NULL; END; $BODY$" pg_cursor.execute(query) connection.commit() # Get 'oid' from newly created function pg_cursor.execute("SELECT pro.oid, pro.proname FROM" " pg_proc pro WHERE pro.proname='%s'" % func_name) functions = pg_cursor.fetchone() connection.close() return functions except Exception: traceback.print_exc(file=sys.stderr)
0a142f77793a608a9da8342f2ce566327a258332
309
import tqdm import timeit import warnings def get_results_seq_len(given_true_eig, hidden_dim, input_dim, min_seq_len, max_seq_len, num_sampled_seq_len, num_repeat, input_mean, input_stddev, output_noise_stddev, init_state_mean=0.0, init_state_stddev=0.0, generate_diagonalizable_only=False, random_seed=0): """Get results for varying sequence lengths. Args: given_true_eig: Ground truth of eigenvalues. If None, generate random eigenvalues from uniform [-1,1] in each repeat of experiment. hidden_dim: Assumed hidden dim. If 0, use true hidden dim. input_dim: The input dim. min_seq_len: Min seq len in experiments. max_seq_len: Max seq len in experiments. num_sampled_seq_len: Number of sampled seq len values in between min and max seq len. num_repeat: Number of repeated experiments for each seq_len. input_mean: Scalar or 1D array of length hidden state dim. input_stddev: Scalar of 1D array of length hidden state dim. output_noise_stddev: Scalar. init_state_mean: Scalar or 1D array of length hidden state dim. init_state_stddev: Scalar of 1D array of length hidden state dim. generate_diagonalizable_only: Whether to only use diagonalizable LDSs in simulations. random_seed: Random seed, integer. Returns: A pandas DataFrame with columns `method`, `seq_len`, `t_secs`, `failed_ratio`, and `l2_r_error`. The same method and seq_len will appear in num_repeat many rows. """ np.random.seed(random_seed) progress_bar = tqdm.tqdm(total=num_repeat * num_sampled_seq_len) gen = lds.SequenceGenerator( input_mean=input_mean, input_stddev=input_stddev, output_noise_stddev=output_noise_stddev, init_state_mean=init_state_mean, init_state_stddev=init_state_stddev) # seq_len_vals = np.linspace(min_seq_len, max_seq_len, num_sampled_seq_len) # seq_len_vals = [int(round(x)) for x in seq_len_vals] min_inv_sqrt_seq_len = 1. / np.sqrt(max_seq_len) max_inv_sqrt_seq_len = 1. / np.sqrt(min_seq_len) inv_sqrt_seq_len_vals = np.linspace(min_inv_sqrt_seq_len, max_inv_sqrt_seq_len, num_sampled_seq_len) seq_len_vals = [int(round(1. / (x * x))) for x in inv_sqrt_seq_len_vals] learning_fns = create_learning_fns(hidden_dim) metric_dict = { k: [] for k in [ 'method', 'seq_len', 't_secs', 'l2_a_error', 'l2_r_error', 'failed_convg' ] } for _ in xrange(num_repeat): if given_true_eig is not None: ground_truth = lds.generate_linear_dynamical_system( hidden_dim, input_dim, eigvalues=given_true_eig) else: ground_truth = lds.generate_linear_dynamical_system( hidden_dim, input_dim, diagonalizable=generate_diagonalizable_only) true_eig = ground_truth.get_spectrum() for seq_len in seq_len_vals: seq = gen.generate_seq(ground_truth, seq_len=seq_len) for k, fn in learning_fns.iteritems(): start_t = timeit.default_timer() with warnings.catch_warnings(record=True) as caught: warnings.filterwarnings( 'always', category=sm_exceptions.ConvergenceWarning) if FLAGS.hide_inputs: eig_pred = fn(seq.outputs, None) else: eig_pred = fn(seq.outputs, seq.inputs) t_elapsed = timeit.default_timer() - start_t metric_dict['seq_len'].append(seq_len) metric_dict['method'].append(k) metric_dict['t_secs'].append(t_elapsed) metric_dict['l2_a_error'].append(np.linalg.norm(true_eig - eig_pred)) metric_dict['l2_r_error'].append( np.linalg.norm(true_eig - eig_pred) / np.linalg.norm(true_eig)) metric_dict['failed_convg'].append(False) for w in caught: if w.category in [ RuntimeWarning, sm_exceptions.ConvergenceWarning, sm_exceptions.HessianInversionWarning ]: metric_dict['failed_convg'][-1] = True else: warnings.warn(w.message, w.category) progress_bar.update(1) progress_bar.close() return pd.DataFrame(data=metric_dict)
6d7439b4b9c5bca6010eaffc4c924ef8f09fbb4f
310
import functools def episode_to_timestep_batch( episode: rlds.BatchedStep, return_horizon: int = 0, drop_return_horizon: bool = False, flatten_observations: bool = False, calculate_episode_return: bool = False) -> tf.data.Dataset: """Converts an episode into multi-timestep batches. Args: episode: Batched steps as provided directly by RLDS. return_horizon: int describing the horizon to which we should accumulate the return. drop_return_horizon: bool whether we should drop the last `return_horizon` steps to avoid mis-calculated returns near the end of the episode. flatten_observations: bool whether we should flatten dict-based observations into a single 1-d vector. calculate_episode_return: Whether to calculate episode return. Can be an expensive operation on datasets with many episodes. Returns: rl_dataset.DatasetType of 3-batched transitions, with scalar rewards expanded to 1D rewards This means that for every step, the corresponding elements will be a batch of size 3, with the first batched element corresponding to *_t-1, the second to *_t and the third to *_t+1, e.g. you can access the previous observation as: ``` o_tm1 = el[types.OBSERVATION][0] ``` Two additional keys can be added: 'R_t' which corresponds to the undiscounted return for horizon `return_horizon` from time t (always present), and 'R_total' which corresponds to the total return of the associated episode (if `calculate_episode_return` is True). Rewards are converted to be (at least) one-dimensional, prior to batching (to avoid ()-shaped elements). In this example, 0-valued observations correspond to o_{t-1}, 1-valued observations correspond to o_t, and 2-valued observations correspond to s_{t+1}. This same structure is true for all keys, except 'R_t' and 'R_total' which are both scalars. ``` ipdb> el[types.OBSERVATION] <tf.Tensor: shape=(3, 11), dtype=float32, numpy= array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2.]], dtype=float32)> ``` """ steps = episode[rlds.STEPS] if drop_return_horizon: episode_length = steps.cardinality() steps = steps.take(episode_length - return_horizon) # Calculate n-step return: rewards = steps.map(lambda step: step[rlds.REWARD]) batched_rewards = rlds.transformations.batch( rewards, size=return_horizon, shift=1, stride=1, drop_remainder=True) returns = batched_rewards.map(tf.math.reduce_sum) output = tf.data.Dataset.zip((steps, returns)).map(_append_n_step_return) # Calculate total episode return for potential filtering, use total # of steps # to calculate return. if calculate_episode_return: dtype = jnp.float64 if jax.config.jax_enable_x64 else jnp.float32 # Need to redefine this here to avoid a tf.data crash. rewards = steps.map(lambda step: step[rlds.REWARD]) episode_return = rewards.reduce(dtype(0), lambda x, y: x + y) output = output.map( functools.partial( _append_episode_return, episode_return=episode_return)) output = output.map(_expand_scalars) if flatten_observations: output = output.map(_flatten_observations) output = rlds.transformations.batch( output, size=3, shift=1, drop_remainder=True) return output
105c528772257b990897d35e8f8b82663e26e57c
311
def parse(authz_file, modules): """Parse a Subversion authorization file. Return a dict of modules, each containing a dict of paths, each containing a dict mapping users to permissions. Only modules contained in `modules` are retained. """ parser = UnicodeConfigParser(ignorecase_option=False) parser.read(authz_file) groups = {} aliases = {} sections = {} for section in parser.sections(): if section == 'groups': for name, value in parser.items(section): groups.setdefault(name, set()).update(to_list(value)) elif section == 'aliases': for name, value in parser.items(section): aliases[name] = value.strip() else: for name, value in parser.items(section): parts = section.split(':', 1) module, path = parts[0] if len(parts) > 1 else '', parts[-1] if module in modules: sections.setdefault((module, path), []) \ .append((name, value)) def resolve(subject, done): if subject.startswith('@'): done.add(subject) for members in groups[subject[1:]] - done: for each in resolve(members, done): yield each elif subject.startswith('&'): yield aliases[subject[1:]] else: yield subject authz = {} for (module, path), items in sections.iteritems(): section = authz.setdefault(module, {}).setdefault(path, {}) for subject, perms in items: readable = 'r' in perms # Ordering isn't significant; any entry could grant permission section.update((user, readable) for user in resolve(subject, set()) if not section.get(user)) return authz
9102d77ed5db05c582a0ecbc3eb26a63fd579ce6
312
def send_expiry_note(invite, request, user_name): """ Send a notification email to the issuer of an invitation when a user attempts to accept an expired invitation. :param invite: ProjectInvite object :param request: HTTP request :param user_name: User name of invited user :return: Amount of sent email (int) """ subject = ( SUBJECT_PREFIX + ' ' + SUBJECT_EXPIRY.format( user_name=user_name, project=invite.project.title ) ) message = get_email_header( MESSAGE_HEADER.format( recipient=invite.issuer.get_full_name(), site_title=SITE_TITLE ) ) message += MESSAGE_EXPIRY_BODY.format( role=invite.role.name, project=invite.project.title, user_name=user_name, user_email=invite.email, date_expire=localtime(invite.date_expire).strftime('%Y-%m-%d %H:%M'), site_title=SITE_TITLE, project_label=get_display_name(invite.project.type), ) if not settings.PROJECTROLES_EMAIL_SENDER_REPLY: message += NO_REPLY_NOTE message += get_email_footer() return send_mail(subject, message, [invite.issuer.email], request)
62602f670724630ff5aeb99ab28b7dfb18fc5233
313
def level_is_between(level, min_level_value, max_level_value): """Returns True if level is between the specified min or max, inclusive.""" level_value = get_level_value(level) if level_value is None: # unknown level value return False return level_value >= min_level_value and level_value <= max_level_value
b0bc1c4ea749d51af147bc1237aac5a5d1e5ba1b
314
def voronoiMatrix(sz=512,percent=0.1,num_classes=27): """ Create voronoi polygons. Parameters ---------- sz : int row and column size of the space in which the circle is placed percent : float Percent of the space to place down centers of the voronoi polygons. Smaller percent makes the polygons larger num_classes : int Number of classes to assign to each of the voronoi polygons Returns ------- X : 2D array Array containing all voronoi polygons """ X = np.zeros((sz,sz)) #fill in percentage of the space locs = np.random.rand(sz,sz)<=percent vals = np.random.randint(0,num_classes,size=(sz,sz)) X[locs]=vals[locs] #get all the indices of the matrix cc,rr = np.meshgrid(np.arange(0,sz),np.arange(0,sz)) f = np.zeros((sz**2,2)) f[:,0]=rr.ravel() #feature1 f[:,1]=cc.ravel() #feature2 t = X.ravel() #target train_ind = locs.ravel() f_train = f[train_ind] t_train = t[train_ind] clf = neighbors.KNeighborsClassifier(n_neighbors=1) clf.fit(f_train, t_train) preds = clf.predict(f) locs = f.astype(int) X[locs[:,0],locs[:,1]] = preds return X
c4dfb74ae5b9e26494cb8642eb96dca565d6497d
315
from typing import Counter def genVBOF2(virus_record, model, model_name=None): """New version of the genVBOF function by Hadrien. Builds a Virus Biomass Objective Function (basically a virus biomass production reaction, from aminoacids and nucleotides) from a genbank file. Params: - virus_record: genbank record of a virus (output from Bio.SeqIO.parse) - model: a cobra metabolic model (cobra.core.model.Model) Returns: - virus biomass objective function (cobra.core.reaction.Reaction) """ met_dict = load_metabolite_id_dict(model, model_name=model_name) # VIRUS IDENTIFICATION taxonomy = " ".join([taxon.lower() for taxon in virus_record.annotations["taxonomy"]]) if "betacoronavirus" not in taxonomy: raise NotImplementedError('Virus family is not supported: Unable to create VBOF. Consult _README') short_name, full_name = get_virus_names(virus_record) # AMINOACID COUNT all_cds = {feature for feature in virus_record.features if feature.type == "CDS"} # Check that our own virus_composition dict contain exactly the # proteins defined in the genbank file, no more, no less. protein_names_in_gb_file = {cds.qualifiers["product"][0] for cds in all_cds} protein_names_in_our_data = {protein_name for protein_name in virus_composition[short_name]["proteins"]} assert protein_names_in_gb_file == protein_names_in_our_data virus_aa_composition = Counter() # protein name -> number of atp involved in its peptide bonds formations # (accounting for the number of copies of protein) peptide_bond_formation = dict() for cds in all_cds: protein_name = cds.qualifiers["product"][0] aa_sequence = cds.qualifiers["translation"][0] aa_count = Counter(aa_sequence) copies_per_virus = virus_composition[short_name]["proteins"][protein_name] virus_aa_composition += multiply_counter(aa_count, copies_per_virus) peptide_bond_formation[protein_name] = (len(aa_sequence) * k_atp_protein - k_atp_protein) * copies_per_virus # [3] Precursor frequency # Genome [Nucleotides] Cg = virus_composition[short_name]["Cg"] # number of genome copies per virus virus_nucl_count = Counter(str(virus_record.seq)) countA = virus_nucl_count["A"] countC = virus_nucl_count["C"] countG = virus_nucl_count["G"] countU = virus_nucl_count["T"] # Base 'T' is pseudo for base 'U' antiA = countU antiC = countG antiG = countC antiU = countA # Count summation totNTPS = (Cg * (countA + countC + countG + countU + antiA + antiC + antiG + antiU)) totAA = sum(count for count in virus_aa_composition.values()) # [4] VBOF Calculations # Nucleotides # mol.ntps/mol.virus V_a = (Cg*(countA + antiA)) V_c = (Cg*(countC + antiC)) V_g = (Cg*(countG + antiG)) V_u = (Cg*(countU + antiU)) # g.ntps/mol.virus G_a = V_a * ntpsDict["atp"] G_c = V_c * ntpsDict["ctp"] G_g = V_g * ntpsDict["gtp"] G_u = V_u * ntpsDict["ttp"] # Amino Acids # g.a/mol.virus G_aa = {aa: count * aaDict[aa] for aa, count in virus_aa_composition.items()} # Total genomic and proteomic molar mass M_v = (G_a + G_c + G_g + G_u) + sum(G_aa.values()) # Stoichiometric coefficients # Nucleotides [mmol.ntps/g.virus] (for the genome) S_atp = 1000 * (V_a/M_v) S_ctp = 1000 * (V_c/M_v) S_gtp = 1000 * (V_g/M_v) S_utp = 1000 * (V_u/M_v) # Amino acids [mmol.aa/g.virus] S_aa = {aa: 1000 * V_aa / M_v for aa, V_aa in virus_aa_composition.items()} # Energy requirements # Genome: Phosphodiester bond formation products [Pyrophosphate] # SARS Cov 2 is a single stranded RNA virus: it has to first do an # intermediary reverse copy of itself and then replicate itself from # that intermediary strand. genTemp = (((countA + countC + countG + countU) * k_ppi) - k_ppi) genRep = (((antiA + antiC + antiG + antiU) * k_ppi) - k_ppi) genTot = genTemp + genRep V_ppi = genTot S_ppi = 1000 * (V_ppi / M_v) # Proteome: Peptide bond formation [ATP + H2O] # Note: ATP used in this process is denoated as ATPe/Ae [e = energy version] V_Ae = sum(peptide_bond_formation.values()) S_Ae = 1000 * (V_Ae / M_v) # [5] VBOF Reaction formatting and output # Left-hand terms: Nucleotides # Note: ATP term is a summation of genome and energy requirements S_ATP = (S_atp + S_Ae) * -1 S_CTP = S_ctp * -1 S_GTP = S_gtp * -1 S_UTP = S_utp * -1 # Left-hand terms: Amino Acids S_AAf = {aa: -coef for aa, coef in S_aa.items()} # Left-hand terms: Energy Requirements S_H2O = S_Ae * -1 # Right-hand terms: Energy Requirements S_ADP = S_Ae S_Pi = S_Ae S_H = S_Ae S_PPi = S_ppi reaction_name = short_name + '_prodrxn_VN' virus_reaction = Reaction(reaction_name) virus_reaction.name = full_name + ' production reaction' virus_reaction.subsystem = 'Virus Production' virus_reaction.lower_bound = 0 virus_reaction.upper_bound = 1000 virus_reaction.add_metabolites(({ met_dict['atp']: S_ATP, met_dict['ctp']: S_CTP, met_dict['gtp']: S_GTP, met_dict['utp']: S_UTP, met_dict['A']: S_AAf['A'], met_dict['R']: S_AAf['R'], met_dict['N']: S_AAf['N'], met_dict['D']: S_AAf['D'], met_dict['C']: S_AAf['C'], met_dict['Q']: S_AAf['Q'], met_dict['E']: S_AAf['E'], met_dict['G']: S_AAf['G'], met_dict['H']: S_AAf['H'], met_dict['I']: S_AAf['I'], met_dict['L']: S_AAf['L'], met_dict['K']: S_AAf['K'], met_dict['M']: S_AAf['M'], met_dict['F']: S_AAf['F'], met_dict['P']: S_AAf['P'], met_dict['S']: S_AAf['S'], met_dict['T']: S_AAf['T'], met_dict['W']: S_AAf['W'], met_dict['Y']: S_AAf['Y'], met_dict['V']: S_AAf['V'], met_dict['h2o']: S_H2O, met_dict['adp']: S_ADP, met_dict['Pi']: S_Pi, met_dict['h']: S_H, met_dict['PPi']: S_PPi})) return virus_reaction
98f0aafae9efa65d18b65e23eb9d7c0457641bb0
316
import awsglue.utils as au def parse_args(arguments: Sequence, options: List[str] = None) -> Dict: """ Parse input arguments. Simple assessment that module AWS Glue is not available in pyshell jobs. Parameters ---------- arguments Sequence of options and values to be parsed. (sys.argv) options Options which value is resolved. Returns ------- Parsed options and values. """ LOGGER.debug("Parsing arguments: %s options: %s", arguments, options) try: except ImportError: return parse_args_fallback(arguments, options) try: resolved = au.getResolvedOptions(args=arguments, options=options) LOGGER.debug("awsglue.utils args resolved: %s", resolved) return resolved except au.GlueArgumentError: return parse_args_fallback(arguments, options)
aa32d521e5fee4f10097355593a9adf0b8108357
317
import time def get_current_ms_time() -> int: """ :return: the current time in milliseconds """ return int(time.time() * 1000)
3c037bffb486ebae3ffcfba5fe431bd9b69b3bda
318
def get_service_info(): # noqa: E501 """Get information about Workflow Execution Service. May include information related (but not limited to) the workflow descriptor formats, versions supported, the WES API versions supported, and information about general service availability. # noqa: E501 :rtype: ServiceInfo """ return adapter.get_service_info()
693d7c47a235dc96f9c44d993fba25607994f2e3
319
def str_of_tuple(d, str_format): """Convert tuple to str. It's just str_format.format(*d). Why even write such a function? (1) To have a consistent interface for key conversions (2) We want a KeyValidationError to occur here Args: d: tuple if params to str_format str_format: Auto fields format string. If you have manual fields, consider auto_field_format_str to convert. Returns: parametrized string >>> str_of_tuple(('hello', 'world'), "Well, {} dear {}!") 'Well, hello dear world!' """ try: return str_format.format(*d) except Exception as e: raise KeyValidationError(e)
b5612efb3b189754cb278f40c7f471284dfc1daa
320
def _intersect(bboxes1, bboxes2): """ bboxes: t x n x 4 """ assert bboxes1.shape[0] == bboxes2.shape[0] t = bboxes1.shape[0] inters = np.zeros((bboxes1.shape[1], bboxes2.shape[1]), dtype=np.float32) _min = np.empty((bboxes1.shape[1], bboxes2.shape[1]), dtype=np.float32) _max = np.empty((bboxes1.shape[1], bboxes2.shape[1]), dtype=np.float32) w = np.empty((bboxes1.shape[1], bboxes2.shape[1]), dtype=np.float32) h = np.empty((bboxes1.shape[1], bboxes2.shape[1]), dtype=np.float32) for i in range(t): np.maximum.outer(bboxes1[i, :, 0], bboxes2[i, :, 0], out=_min) np.minimum.outer(bboxes1[i, :, 2], bboxes2[i, :, 2], out=_max) np.subtract(_max + 1, _min, out=w) w.clip(min=0, out=w) np.maximum.outer(bboxes1[i, :, 1], bboxes2[i, :, 1], out=_min) np.minimum.outer(bboxes1[i, :, 3], bboxes2[i, :, 3], out=_max) np.subtract(_max + 1, _min, out=h) h.clip(min=0, out=h) np.multiply(w, h, out=w) inters += w return inters
91056250d3adf829d1815a016a75423f93adb6c1
321
def convert_x_to_bbox(x,score=None): """ Takes a bounding box in the centre form [x,y,s,r] and returns it in the form [x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right """ w = np.sqrt(np.abs(x[2] * x[3])) if(w<=0): w=1 h = x[2] / w if(score==None): return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.],np.float32) else: return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.,score]).reshape((1,5))
f49a6b7c306087d92e99acb5bd679c59308f81b3
322
from typing import Tuple def decimal_to_boolean_list(num: int, padding: int = 0) -> Tuple[bool, ...]: """ Convert a decimal number into a tuple of booleans, representing its binary value. """ # Convert the decimal into binary binary = bin(num).replace('0b', '').zfill(padding) # Return a tuple of booleans, one for each element of the binary number (it's either '0' or '1' so we can convert # directly to boolean) return tuple(char == '1' for char in binary)
c13831214faece847960089f781cc1c6442205ec
323
def get_credentials(fn, url, username, allowed): """Call fn and return the credentials object""" url_str = maybe_string(url) username_str = maybe_string(username) creds = fn(url_str, username_str, allowed) credential_type = getattr(creds, 'credential_type', None) credential_tuple = getattr(creds, 'credential_tuple', None) if not credential_type or not credential_tuple: raise TypeError("credential does not implement interface") cred_type = credential_type if not (allowed & cred_type): raise TypeError("invalid credential type") ccred = ffi.new('git_cred **') if cred_type == C.GIT_CREDTYPE_USERPASS_PLAINTEXT: name, passwd = credential_tuple err = C.git_cred_userpass_plaintext_new(ccred, to_bytes(name), to_bytes(passwd)) elif cred_type == C.GIT_CREDTYPE_SSH_KEY: name, pubkey, privkey, passphrase = credential_tuple if pubkey is None and privkey is None: err = C.git_cred_ssh_key_from_agent(ccred, to_bytes(name)) else: err = C.git_cred_ssh_key_new(ccred, to_bytes(name), to_bytes(pubkey), to_bytes(privkey), to_bytes(passphrase)) else: raise TypeError("unsupported credential type") check_error(err) return ccred
931d01d2c8ea44e1f8522f5dedb14a66367f3d4f
324
def tpack(text, width=100): """Pack a list of words into lines, so long as each line (including intervening spaces) is no longer than _width_""" lines = [text[0]] for word in text[1:]: if len(lines[-1]) + 1 + len(word) <= width: lines[-1] += (' ' + word) else: lines += [word] return lines
e1b1b54a528c8dc2142a750156d3db1f754b4268
325
import torch def _log_evidence_func(arr): """Returns an estimate of the log evidence from a set of log importance wegiths in arr. arr has shape TxN where T is the number of trials and N is the number of samples for estimation. Args: arr (torch.FloatTensor of shape TxN): log importance weights Returns: A tensor of shape (T,) representing the estimates for each set of sampels. """ T, N = arr.shape log_evidence = torch.logsumexp(arr, dim=1) - np.log(N) return log_evidence
6fd0f7a3e6ad677300a1c2d342082417d6c1a2c8
326
import logging def _accumulated_moments_for_inference(mean, variance, is_training): """Use accumulated statistics for moments during inference. After training the user is responsible for filling the accumulators with the actual values. See _UpdateBnAccumulators() in eval_gan_lib.py for an example. Args: mean: Tensor of shape [num_channels] with the mean of the current batch. variance: Tensor of shape [num_channels] with the variance of the current batch. is_training: Boolean, wheather to construct ops for training or inference graph. Returns: Tuple of (mean, variance) to use. This can the same as the inputs. """ variable_collections = [ tf.GraphKeys.MODEL_VARIABLES, tf.GraphKeys.GLOBAL_VARIABLES, ] with tf.variable_scope("accu", values=[mean, variance]): # Create variables for accumulating batch statistic and use them during # inference. The ops for filling the accumulators must be created and run # before eval. See docstring above. accu_mean = tf.get_variable( "accu_mean", shape=mean.shape, initializer=tf.zeros_initializer(), trainable=False, collections=variable_collections) accu_variance = tf.get_variable( "accu_variance", shape=variance.shape, initializer=tf.zeros_initializer(), trainable=False, collections=variable_collections) accu_counter = tf.get_variable( "accu_counter", shape=[], initializer=tf.initializers.constant(1e-12), trainable=False, collections=variable_collections) update_accus = tf.get_variable( "update_accus", shape=[], dtype=tf.int32, initializer=tf.zeros_initializer(), trainable=False, collections=variable_collections) mean = tf.identity(mean, "mean") variance = tf.identity(variance, "variance") if is_training: return mean, variance logging.debug("Using accumulated moments.") # Return the accumulated batch statistics and add current batch statistics # to accumulators if update_accus variables equals 1. def update_accus_fn(): return tf.group([ tf.assign_add(accu_mean, mean), tf.assign_add(accu_variance, variance), tf.assign_add(accu_counter, 1), ]) dep = tf.cond( tf.equal(update_accus, 1), update_accus_fn, tf.no_op) with tf.control_dependencies([dep]): return accu_mean / accu_counter, accu_variance / accu_counter
5c4e65c7a84e5e3658c10c62f44027749f039ad2
327
import struct def parse_bgp_attr(atype, aval_buf): """Given a type and value buffer, parses a BGP attribute and returns the value parsed""" if atype == BGP_ATYPE_ORIGIN: attr = 'ORIGIN' if len(aval_buf) != 1: return None, None, -1 aval = struct.unpack('B', aval_buf)[0] aval = BGP_ORIGIN_TYPES[aval] return attr, aval, 1 elif atype == BGP_ATYPE_ASPATH: attr = 'ASPATH' segtype, seglen = struct.unpack('BB', aval_buf[:2]) ases = [] segproc = 2 for i in range(seglen): as_, = struct.unpack('>I', aval_buf[segproc:segproc+4]) segproc += 4 ases.append(as_) return attr, ases, len(aval_buf) elif atype == BGP_ATYPE_NEXTHOP: attr = 'NEXTHOP' aval = inet_ntoa(aval_buf) return attr, aval, 4 else: return None, None, len(aval_buf)
337ee8d0178759afead4ef1c55653639ed901fac
328
import os def _get_embedding_filename(base_dir, split_name, step): """Create the filename for embeddings.""" return os.path.join(base_dir, str(step), f'{split_name}-embeddings.tfrecord')
d6e4ca535b462ddf120ee77924c1bf2f3c662f24
329
def getUsage(): """ Get usage information about running APBS via Python Returns (usage) usage: Text about running APBS via Python """ usage = "\n\n\ ----------------------------------------------------------------------\n\ This driver program calculates electrostatic potentials, energies,\n\ and forces using both multigrid methods.\n\ It is invoked as:\n\n\ python main.py apbs.in\n\ ----------------------------------------------------------------------\n\n" return usage
c21950b52106400cb20dd9d30a5cf742e98f9da9
330
def run_length_div_decode(x, n, divisor): """Decodes a run length encoded array and scales/converts integer values to float Parameters ---------- x : encoded array of integers (value, repeat pairs) n : number of element in decoded array """ y = np.empty(n, dtype=np.float32) start = 0 for i in range(0, x.shape[0] - 1, 2): end = x[i + 1] + start y[start:end] = x[i] / divisor start = end return y
434edfb44d1225277526233989ece2c91be14b0c
331
import argparse def parse_args(): """Build file label list""" parser = argparse.ArgumentParser(description='Build file label list') parser.add_argument('data_path', type=str, help='root directory for the dataset') parser.add_argument('dataset', type=str, choices=[ 'ucf101', 'hmdb51', 'kinetics400', 'kinetics600', 'kinetics700', 'sthv1', 'sthv2'], help='name of the dataset') parser.add_argument('--ann_root', type=str, default='annotation') parser.add_argument('--out_root', type=str, default='../datalist') parser.add_argument('--phase', type=str, default='train', choices=['train', 'val']) parser.add_argument('--level', type=int, default=2, choices=[1, 2]) parser.add_argument('--source', type=str, default='rgb', choices=['rgb', 'flow', 'video']) parser.add_argument('--split', type=int, default=1, choices=[1, 2, 3]) args = parser.parse_args() return args
267d6fbe34e48525dfa50987fb3ce674ec28d381
332
def modelFnBuilder(config): """Returns 'model_fn' closure for Estimator.""" def model_fn(features, labels, mode, params): print('*** Features ***') for name in sorted(features.keys()): tf.logging.info(' name = {}, shape = {}'.format(name, features[name].shape)) is_training = (mode == tf.estimator.ModeKeys.TRAIN) # get the data input_texts = features['input_texts'] input_texts_length = features['input_texts_length'] input_chars = features['input_chars'] input_chars_length = features['input_chars_length'] output_tags = labels['output_tags'] if is_training else None # build the model model = MultiTaskIntentModel(config, cg.BATCH_SIZE, is_training, input_texts=input_texts, input_texts_length=input_texts_length, input_chars=input_chars, input_chars_length=input_chars_length, output_tags=output_tags) # predict if mode == tf.estimator.ModeKeys.PREDICT: intent_logits = model.getResults('intent_logits') intent_probs = tf.nn.softmax(intent_logits, axis=-1) intent_labels = tf.math.argmax(intent_probs, axis=-1) tag_logits = model.getResults('tag_logits') viterbi_sequence, viterbi_score = model.decode(logit=tag_logits, sequence_lengths=input_texts_length) predictions = {'intent_labels': intent_labels, 'viterbi_sequence': viterbi_sequence, 'viterbi_score': viterbi_score} output_spec = tf.estimator.EstimatorSpec(mode, predictions) elif mode == tf.estimator.ModeKeys.TRAIN: gold_intent_labels = labels['output_indents'] intent_logits = model.getResults('intent_logits') # max_time = tf.shape(gold_intent_labels)[1] # target_weights = tf.sequence_mask(input_texts_length, max_time, dtype=intent_logits.dtype) batch_size = tf.cast(cg.BATCH_SIZE, dtype=tf.float32) intent_loss = tf.reduce_sum( tf.nn.sparse_softmax_cross_entropy_with_logits( labels=gold_intent_labels, logits=intent_logits)) / batch_size tag_log_likelihood = model.getResults('log_likelihood') tag_loss = tf.reduce_mean(-tag_log_likelihood) loss = intent_loss + tag_loss tvars = tf.trainable_variables() l2_loss = 1e-2 * (tf.reduce_mean([tf.nn.l2_loss(v) for v in tvars])) loss += l2_loss lr = tf.train.polynomial_decay( cg.LEARNING_RATE, tf.train.get_or_create_global_step(), cg.TRAIN_STEPS) lr = tf.maximum(tf.constant(cg.LEARNING_RATE_LIMIT), lr) # create optimizer and update optimizer = tf.train.AdamOptimizer(learning_rate=lr) gradients = tf.gradients(loss, tvars, colocate_gradients_with_ops=True) clipped_gradients, _ = tf.clip_by_global_norm(gradients, 5.0) train_op = optimizer.apply_gradients(zip(clipped_gradients, tvars), global_step=tf.train.get_global_step()) logging_hook = tf.train.LoggingTensorHook({'step': tf.train.get_global_step(), 'loss': loss, 'l2_loss': l2_loss, 'lr': lr, 'intent_loss': intent_loss, 'tag_loss': tag_loss}, every_n_iter=1) output_spec = tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op, training_hooks=[logging_hook]) else: raise NotImplementedError return output_spec return model_fn
ea39f0ed099ec9455667ec79df0f91fdda425783
333
from notifications.utils import notify_people, unotify_people def accreds_validate(request, pk): """Validate an accred""" accreds = [get_object_or_404(Accreditation, pk=pk_, end_date=None) for pk_ in filter(lambda x: x, pk.split(','))] multi_obj = len(accreds) > 1 for accred in accreds: if not accred.rights_can('VALIDATE', request.user): raise Http404 if request.method == 'POST': for accred in accreds: accred.need_validation = False accred.save() accred.user.clear_rights_cache() AccreditationLog(accreditation=accred, who=request.user, type='validated').save() dest_users = accred.unit.users_with_access('ACCREDITATION', no_parent=True) notify_people(request, 'Accreds.Validated', 'accreds_validated', accred, dest_users) unotify_people('Accreds.ToValidate', accred) if multi_obj: messages.success(request, _(u'Accréditations validées !')) else: messages.success(request, _(u'Accréditation validée !')) return redirect('units-views-accreds_list') return render(request, 'units/accreds/validate.html', {'accreds': accreds, 'multi_obj': multi_obj})
9f539b4dacfc8bc4e824af9bff2acc4aad552c6c
334
def need_verified_email(request, *args, **kwargs): # pylint: disable=unused-argument """ Returns error page for unverified email on edX """ return standard_error_page(request, 401, "verify_email.html")
258f0cd7cc9d48724a4192397742ad476baf0aaf
335
def random_masking(token_ids_all): """对输入进行随机mask,增加泛化能力 """ result = [] for token_ids in token_ids_all: rands = np.random.random(len(token_ids)) result.append([ t if r > 0.15 else np.random.choice(token_ids) for r, t in zip(rands, token_ids) ]) return result
5798fd271b6f8a1749ef04139c44a53ef2801473
336
import os def is_directory(dir_path): """Validates that the argument passed into 'argparse' is a directory.""" if not os.path.isdir(dir_path): raise ValueError('Path is not a directory: %s' % dir_path) return dir_path
57f8407eb02ae0c035f14d139a41a424d36df378
337
def used_caches_and_sources(layers, caches, sources): """ Find used cache and source names in layers and caches configuration. """ used_layer_sources = find_layer_sources(layers) used_cache_sources = find_cache_sources(caches) all_used_sources = used_layer_sources.union(used_cache_sources) avail_caches = set(caches.keys()) avail_sources = set(sources.keys()) used_caches = avail_caches.intersection(all_used_sources) used_sources = avail_sources.intersection(all_used_sources).difference(used_caches) return used_caches, used_sources
21df59bea5cf4d336f9f103de841bfbbedadf3d5
338
from typing import Union def encode_labels( labels: Union[list, np.ndarray, pd.Series], multi_label: bool = False, sep: str = '|' ): """Encode labels Return coded labels, encoder, and decoder. Examples: >>> # multi-class problem >>> labels = ['OK', 'OK', 'NG1', 'NG2', 'OK'] >>> encode_labels(labels) ( [0, 0, 1, 2, 0], {'OK': 0, 'NG1': 1, 'NG2': 2}, {0: 'OK', 1: 'NG1', 2: 'NG2} ) >>> # multi-label problem, a.k.a. one hot encoding >>> labels = ['dog', 'cat', 'dog|cat'] >>> encode_labels(labels, multi_label=True) ( [[0, 1], [1, 0], [1, 1]], {'dog': 0, 'cat': 1}, {0: 'dog', 1: 'cat'} ) Args: labels (list, np.ndarray): List of labels with string elements. multi_label (bool, optional): Is multi label classification. sep (str, optional): For multi-label only. Default is '|'. Returns: list or np.array: Coded labels. List in list out, array in array out. dict: encoder dict: decoder """ # get classes if not multi_label: classes = mlsorted(filter(None, set(labels))) else: classes = mlsorted( {labs for item in filter(None, labels) for labs in item.split(sep)} ) classes = [_ for _ in classes if _ not in ['']] n_classes = len(classes) # generate encoder and decoder encoder = {_class: code for code, _class in enumerate(classes)} decoder = {v: k for k, v in encoder.items()} # create coded labels if not multi_label: coded_labels = [encoder[x] if x is not None else x for x in labels] else: coded_labels = list() for x in labels: labs = [0] * n_classes if x is not None: for lab in x.split(sep): labs[encoder[lab]] = 1 coded_labels.append(labs) # to numpy or to dataframe if isinstance(labels, (pd.Series, pd.DataFrame)): if multi_label: coded_labels = pd.DataFrame( coded_labels, columns=encoder.keys() ) else: coded_labels = pd.DataFrame( {'y': coded_labels}, dtype=np.int32 ) elif isinstance(labels, (np.ndarray, Categorical)): coded_labels = np.array(coded_labels, dtype=np.int32) return coded_labels, encoder, decoder
2cd3ec563edfe0d0f42df3018bfd2cf007738c9d
339
def sigmoid_xent(*, logits, labels, reduction=True): """Computes a sigmoid cross-entropy (Bernoulli NLL) loss over examples.""" log_p = jax.nn.log_sigmoid(logits) log_not_p = jax.nn.log_sigmoid(-logits) nll = -jnp.sum(labels * log_p + (1. - labels) * log_not_p, axis=-1) return jnp.mean(nll) if reduction else nll
a427532ddf0feba69879bc5b5d5a9a34d71d9ca6
340
def is_palindrome(s: str) -> bool: """Return whether a string is a palindrome This is as efficient as you can get when computing whether a string is a palindrome. It runs in O(n) time and O(1) space. """ if len(s) <= 1: return True i = 0 j = len(s) - 1 while i < j: if s[i] != s[j]: return False i += 1 j -= 1 return True
6d3001486fe3603a17e72861e3bdea495cd675c1
341
def accuracy(pred_cls, true_cls, nclass=3): """ compute per-node classification accuracy """ accu = [] for i in range(nclass): intersect = ((pred_cls == i) + (true_cls == i)).eq(2).sum().item() thiscls = (true_cls == i).sum().item() accu.append(intersect / thiscls) return np.array(accu)
208c2e31b5df37179b2d67a2b8423c3236c64264
342
def my_hostogram(gray, bins): """ pixel values has to be within bins range, otherwise index out of range, for example if pixel 400th has value 70, but bins are -> [0...40], then histogram[70] yields IOR """ histogram = [0 for i in bins] for i in range(gray.shape[0]): for j in range(gray.shape[1]): histogram[gray[i][j]] = histogram[gray[i][j]] + 1 return histogram
a2e774fb7b2249325191b20e6fa08847e38211c2
343
def reverse(password, position_x, position_y): """Reverse from position_x to position_y in password.""" password_slice = password[position_x:position_y + 1] password[position_x:position_y + 1] = password_slice[::-1] return password
46fec2c6b9c02d8efa71d53451974e46cbe68102
344
from typing import Union from typing import List import random def gen_sentence( start_seq: str = None, N: int = 4, prob: float = 0.001, output_str: bool = True ) -> Union[List[str], str]: """ Text generator using Thai2fit :param str start_seq: word for begin word. :param int N: number of word. :param bool output_str: output is str :param bool duplicate: duplicate word in sent :return: list words or str words :rtype: List[str], str :Example: :: from pythainlp.generate.thai2fit import gen_sentence gen_sentence() # output: 'แคทรียา อิงลิช (นักแสดง' gen_sentence("แมว") # output: 'แมว คุณหลวง ' """ if start_seq is None: start_seq = random.choice(list(thwiki_itos)) list_word = learn.predict( start_seq, N, temperature=0.8, min_p=prob, sep='-*-' ).split('-*-') if output_str: return ''.join(list_word) return list_word
800b498498396a4cda84885481b09df689f541aa
345
def GetBoolValueFromString(s): """Returns True for true/1 strings, and False for false/0, None otherwise.""" if s and s.lower() == 'true' or s == '1': return True elif s and s.lower() == 'false' or s == '0': return False else: return None
d6ef53e837fc825a32e073e3a86185093dd1d037
346
def genomic_del6_abs_37(genomic_del6_37_loc): """Create test fixture absolute copy number variation""" return { "type": "AbsoluteCopyNumber", "_id": "ga4gh:VAC.60XjT6dzYKX8rn6ocG4AVAxCoUFfdjI6", "subject": genomic_del6_37_loc, "copies": {"type": "Number", "value": 1} }
64d8bb95768587adef71c8a98111e0454dfdbb93
347
def get_typical_qualifications(cfg): """ create qualification list to filter just workers with: - + 98% approval rate - + 500 or more accepted HIT - Location USA :param cfg: :return: """ if not cfg['hit_type'].getboolean('apply_qualification'): return [] qualification_requirements=[ { # Worker_​NumberHITsApproved 'QualificationTypeId': '00000000000000000040', 'Comparator': 'GreaterThanOrEqualTo', 'IntegerValues': [ 500, ], 'RequiredToPreview': False, 'ActionsGuarded': 'Accept' }, { # Worker_​PercentAssignmentsApproved 'QualificationTypeId': '000000000000000000L0', 'Comparator': 'GreaterThanOrEqualTo', 'IntegerValues': [ 98, ], 'RequiredToPreview': False, 'ActionsGuarded': 'Accept' }, { # Worker_Locale 'QualificationTypeId': '00000000000000000071', 'Comparator': 'EqualTo', 'LocaleValues': [ { 'Country':"US" } ], 'RequiredToPreview': False, 'ActionsGuarded': 'Accept' }, ] return qualification_requirements
4cfad92d7c2587e2fce1caeac032a69f87c70c01
348
from typing import Callable from typing import Tuple from typing import Type def _gen_codegen_dev_to_reg( nybble: int, ) -> Callable[[Context, Op], Tuple[Context, Op]]: """'Code generator generator' for device-to-register instructions.""" def codegen_dev_to_reg(context: Context, op: Op) -> Tuple[Context, Op]: op = op._replace(args=parse_args_if_able( _PARSE_OPTIONS, context, op, Type.REGISTER, Type.ADDRESS)) if all_args_parsed(op.args): _regcheck(op.args[0]) _devcheck(op.args[1]) digits = (nybble, op.args[0].integer, op.args[1].integer) op = op._replace(todo=None, hex='{:X}{:X}{:X}F'.format(*digits)) # We can still update pos whether we've parsed all args or not. return context.advance_by_bytes(2), op return codegen_dev_to_reg
96a1a7dd3d1e9fb69b735ba7e2034ea0c612f6bb
349
def _shell_wrap_inner(command, shell=True, sudo_prefix=None): """ Conditionally wrap given command in env.shell (while honoring sudo.) (Modified from fabric.operations._shell_wrap to avoid double escaping, as the wrapping host command would also get shell escaped.) """ # Honor env.shell, while allowing the 'shell' kwarg to override it (at # least in terms of turning it off.) if shell and not env.use_shell: shell = False # Sudo plus space, or empty string if sudo_prefix is None: sudo_prefix = "" else: sudo_prefix += " " # If we're shell wrapping, prefix shell and space, escape the command and # then quote it. Otherwise, empty string. if shell: shell = env.shell + " " command = '"%s"' % command # !! removed _shell_escape() here else: shell = "" # Resulting string should now have correct formatting return sudo_prefix + shell + command
6a1a185262e312aac193b70babf9c4b8c1fc2c73
350
from typing import List import time def events_until(events: List[ScheduleEvent], until: time, *, after: time = None) \ -> List[ScheduleEvent]: """ Return events up to and including the given time. Keyword arguments: after -- if specified, only events after this time will be included. """ if after is not None: events = events_after(events, after) return [event for event in events if event[0] <= until]
8d7390c684fb5590ad1fbdaa0680b3aff7474c56
351
import socket def get_ip(): """ Get local ip from socket connection :return: IP Addr string """ s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.connect(('bing.com', 80)) return s.getsockname()[0]
9afb9cfc5721ea7a89764579bd878a9b51361af2
352
import unicodedata def shave_marks(txt): """去掉全部变音符号""" norm_txt = unicodedata.normalize('NFD', txt) # 把所有的字符分解为基字符和组合记号 shaved = ''.join(c for c in norm_txt if not unicodedata.combining(c)) # 过滤掉所有的组合记号 return unicodedata.normalize('NFC', shaved)
0b8e15c72854a5bca7b12f6452292d7472bbf1bc
353
def _kld_gamma(p_data, q_data): """ Computes the Kullback-Leibler divergence between two gamma PDFs Parameters ---------- p_data: np.array Data of the first process q_data: np.array Data of the first process Returns ------- r_kld_gamma: numeric Kullback-Leibler Divergence Quantity References ---------- [1] Bauckhage, Christian. (2014). Computing the Kullback-Leibler Divergence between two Generalized Gamma Distributions. arXiv. 1401.6853. """ # -------------------------------------------------------------------------- Distribution Parameters -- # def _gamma_params(data, method='MoM'): """ Computes the parameters of a gamma probability density function (pdf), according to the selected method. Parameters ---------- data: np.array The data with which will be adjusted the pdf method: str Method to calculate the value of the parameters for the pdf 'MoM': Method of Moments (Default) Returns ------- r_params: dict {'alpha': gamma distribution paramerter, 'beta': gamma distribution parameter} """ # -- Methods of Moments -- # if method == 'MoM': # first two moments mean = np.mean(data) variance = np.var(data) # sometimes refered in literature as k alpha = mean**2/variance # sometimes refered in literature as 1/theta beta = mean/variance # return the gamma distribution empirically adjusted parameters return alpha, beta # -- For errors or other unsupported methods else: raise ValueError("Currently, the supported methods are: 'MoM'") # alpha_1: Distribution 1: shape parameter, alpha_1 > 0 # beta_1: Distribution 1: rate or inverse scale distribution parameter, beta_1 > 0 alpha_1, beta_1 = _gamma_params(data=p_data) # alpha_2: Distribution 2: shape parameter, alpha_2 > 0 # beta_2: Distribution 2: rate or inverse scale parameter, beta_2 > 0 alpha_2, beta_2 = _gamma_params(data=q_data) # Expression with beta instead of theta theta_1 = 1/beta_1 theta_2 = 1/beta_2 p1, p2 = 1, 1 # Generalized Gamma Distribution with p=1 is a gamma distribution [1] # Calculations, see [1] for mathematical details. a = p1*(theta_2**alpha_2)*sps.gamma(alpha_2/p2) b = p2*(theta_1**alpha_1)*sps.gamma(alpha_1/p1) c = (((sps.digamma(alpha_1/p1))/p1) + np.log(theta_1))*(alpha_1 - alpha_2) # Bi-gamma functions d = sps.gamma((alpha_1+p2)/p1) e = sps.gamma((alpha_1/p1)) # Calculations f = (theta_1/theta_2)**(p2) g = alpha_1/p1 # General calculation and output r_kld = np.log(a/b) + c + (d/e)*f - g # Final Kullback-Leibler Divergence for Empirically Adjusted Gamma PDFs return r_kld
c20fd6764299300dc555bca356d9942e98d38214
354
def interpolate_rat(nodes, values, use_mp=False): """Compute a rational function which interpolates the given nodes/values. Args: nodes (array): the interpolation nodes; must have odd length and be passed in strictly increasing or decreasing order values (array): the values at the interpolation nodes use_mp (bool): whether to use ``mpmath`` for extended precision. Is automatically enabled if `nodes` or `values` use ``mpmath``. Returns: BarycentricRational: the rational interpolant. If there are `2n + 1` nodes, both the numerator and denominator have degree at most `n`. References: https://doi.org/10.1109/LSP.2007.913583 """ # ref: (Knockaert 2008), doi:10.1109/LSP.2007.913583 # see also: (Ionita 2013), PhD thesis, Rice U values = np.asanyarray(values) nodes = np.asanyarray(nodes) n = len(values) // 2 + 1 m = n - 1 if not len(values) == n + m or not len(nodes) == n + m: raise ValueError('number of nodes should be odd') xa, xb = nodes[0::2], nodes[1::2] va, vb = values[0::2], values[1::2] # compute the Loewner matrix B = (vb[:, None] - va[None, :]) / (xb[:, None] - xa[None, :]) # choose a weight vector in the nullspace of B weights = _nullspace_vector(B, use_mp=use_mp) return BarycentricRational(xa, va, weights)
cdc98a0a04a6d35fb409fb4235dab759c1f96c1c
355
import re def binder_update_page_range(payload): """Parser for `binder_update_page_range`""" try: match = re.match(binder_update_page_range_pattern, payload) if match: match_group_dict = match.groupdict() return BinderUpdatePageRange(int(match.group(1)), int(match.group(2)), int(match.group(3)), int(match.group(4))) except Exception as e: raise ParserError(e.message)
82f3bc931bebc5816b38feb75f918779fa271840
356
import re def generate_breadcrumb(url: str, separator: str) -> str: """ Fungsi yang menerima input berupa string url dan separator dan mengembalikan string yang berisi navigasi breadcrumb. Halaman Wikipedia tentang navigasi breadcrumb: https://en.wikipedia.org/wiki/Breadcrumb_navigation Contoh: >>> generate_breadcrumb("youtube.com", " > ") '<span class="active">HOME</span>' >>> generate_breadcrumb("https://github.com/harmonify/index.html", " > ") '<a href="/">HOME</a> > <span class="active">HARMONIFY</span>' >>> generate_breadcrumb("facebook.com/sebuah-slug-yang-panjang-sekali", " / ") '<a href="/">HOME</a> / <span class="active">SSYPS</span>' """ # inisialisasi variabel untuk menampung hasil result = [] # ambil path dari url path = parse_path(url) # filter akhiran index.* dari path path = re.sub(r"index\.?.*$", "", path) # split path menjadi list pathList = path.split("/") if pathList[-1] == "": pathList.pop() # generate tag anchor dari awal sampai dengan # elemen kedua terakhir dari pathList for i in range(len(pathList[:-1])): url = "/".join(pathList[: i + 1]) desc = generate_description(pathList[i]) anchor = generate_anchor_tag(url, desc) result.append(anchor) # generate tag span dengan elemen terakhir dari pathList span = generate_span_tag(generate_description(pathList[-1])) result.append(span) # return hasil join tag anchor dengan separator return separator.join(result)
8fc4e84ba68a5ff0d359ded9c70aef9ebec89b32
357
import time import os def get_work_path(): """ 获取工作目录,若不存在并创建 :return: work_path str """ work_dir = config.WORK_DIR work_path = f'{work_dir}/{time.strftime("%Y%m%d%H%M%S")}' print(f'work path: {work_path}') if not os.path.exists(work_path): os.makedirs(work_path) return work_path
a5c32034b5d2d65de5a15d1add2004af3692d747
358
from pathlib import Path def extract_all_sentences(dataset_path, features_outfile=None): """ Extract features from sentences using pretrained universal sentence embeddings and save them in a pickle file :param dataset_path: the path of the dataset to use :param features_outfile: file used to store the extracted features :return: extracted embeddings """ model_path = Path(__file__).parent.parent.parent / "data" / "models" / "use" use = hub.load(str(model_path.absolute())) feature_extractor = TextFeatureExtractor(use) return feature_extractor.extract_all_features(dataset_path, features_outfile)
259ef284310c8bc2a52aa201ec17522e4b00b6d1
359
import os import yaml def _load_yaml(blueoil_config_filename): """load blueoil config yaml Args: blueoil_config_filename(str): File path of blueoil config yaml file. Returns: blueoil_config(dict): dict of blueoil config. """ if not os.path.exists(blueoil_config_filename): FileNotFoundError("File not found: {}".format(blueoil_config_filename)) with open(blueoil_config_filename, "r") as f: blueoil_config = yaml.load(f) model_name, _ = os.path.splitext(os.path.basename(blueoil_config_filename)) blueoil_config["model_name"] = model_name return blueoil_config
83d259059b734a280884496f22975d67ef3c3e06
360
def bat_activity(request): """ """ # TODO: wave_file_name = 'WURB-2_20160908T220024+0200_N57.6627E12.6393_TE-384.wav' # Pandas data frame peak_df = None try: # Prod: peak_df = pd.read_csv('/srv/django/cloudedbats/src/test_data/peak_file.txt', sep="\t") except: # Dev: # peak_df = pd.read_csv('cloudedbats_django/cloudedbats_django/test_data/peak_file.txt', # sep="\t") peak_df = pd.read_csv('test_data/peak_file.txt', sep="\t") peak_df['time_s'] = peak_df.time/1000 peak_df['amplitude_log'] = np.log(peak_df.amplitude + 2) * 3 #* 10 # Bokeh data source. ds = ColumnDataSource(peak_df) # ### TOOLS="pan, box_zoom, wheel_zoom, undo, redo, reset, hover, resize, save" TOOLS="pan, box_zoom, wheel_zoom, undo, redo, reset, hover, save" # MORE_TOOLS="crosshair, tap,box_select, poly_select, lasso_select, tap" p = figure(tools=TOOLS, toolbar_location="above") # p = figure(tools=TOOLS, toolbar_location="above", active_drag="box_zoom") # p.title.text="WURB-2_20160908T220024+0200_N57.6627E12.6393_TE-384" p.plot_width = 700 # 1800 p.plot_height = 300 # s = p.scatter(source = ds, x='time_s', y='frequency', marker='circle', size='amplitude_log', line_color="navy", fill_color="red", alpha=0.5, ) p.xaxis.axis_label="Time (sec)" p.yaxis.axis_label="Peak frequency (kHz)" p.x_range = Range1d(0, 300, bounds=(0, 300)) p.y_range = Range1d(0, 100, bounds=(0, 150)) # hover = p.select_one(HoverTool) hover.point_policy = "follow_mouse" hover.tooltips = [ ("Frequency (kHz)", "@frequency"), ("Amplitude", "@amplitude"), ("Time (sec.)", "@time_s")] # script, div = components(p) # js_resources = INLINE.render_js() css_resources = INLINE.render_css() # return render(request, "cloudedbats_bat_activity.html", { 'wave_file_name': wave_file_name, 'js_resources': js_resources, 'css_resources': css_resources, 'plot_script': script, 'plot_div': div} )
dd64970f03b6ad90be07d9887e25b66703081126
361
def search_sorted(array, value): """ Searches the given sorted array for the given value using a BinarySearch which should execute in O(log N). array a 1D sorted numerical array value the numerical value to search for returns index of array closest to value returns None if value is outside variable bounds """ def index_to_check(rmin, rmax): return (rmin + rmax) / 2 range_min = 0 range_max_0 = len(array) range_max = range_max_0 numloops = 0 while numloops < 100: numloops += 1 if (range_max - range_min) == 1: if (range_max == range_max_0) or (range_min == 0): raise LookupError("For some reason, range_max-" +\ "range_min reached 1 before " +\ "the element was found. The " +\ "element being searched for " +\ ("was %s. (min,max)" % (value,) +\ ("=%s" % ((range_min, range_max),)))) else: high_index = range_max else: high_index = index_to_check(range_min, range_max) high_val = array[high_index] low_val = array[high_index - 1] if value < low_val: range_max = high_index elif value > high_val: range_min = high_index else: # low_val <= value <= high_val if (2 * (high_val - value)) < (high_val - low_val): return high_index else: return high_index - 1 raise NotImplementedError("Something went wrong! I " +\ "caught a pseudo-infinite loop!")
6eec5fb24cd2da1989b4b80260ce185191d782f1
362
from typing import Dict import attr def to_doc(d: DatasetDoc) -> Dict: """ Serialise a DatasetDoc to a dict If you plan to write this out as a yaml file on disk, you're better off with `to_formatted_doc()`. """ doc = attr.asdict( d, recurse=True, dict_factory=dict, # Exclude fields that are the default. filter=lambda attr, value: "doc_exclude" not in attr.metadata and value != attr.default # Exclude any fields set to None. The distinction should never matter in our docs. and value is not None, retain_collection_types=False, ) doc["$schema"] = ODC_DATASET_SCHEMA_URL if d.geometry is not None: doc["geometry"] = shapely.geometry.mapping(d.geometry) doc["id"] = str(d.id) doc["properties"] = dict(d.properties) return doc
83a3ca0838074e000238765c34067e8086e4a2ab
363
def annealing_exp(start, end, pct): """Exponentially anneal from start to end as pct goes from 0.0 to 1.0.""" return start * (end / start) ** pct
4517b07ad7d065a1ba8d4f963c688677846640e3
364
def _compile_theano_function(param, vars, givens=None): """Compile theano function for a given parameter and input variables. This function is memoized to avoid repeating costly theano compilations when repeatedly drawing values, which is done when generating posterior predictive samples. Parameters ---------- param : Model variable from which to draw value vars : Children variables of `param` givens : Variables to be replaced in the Theano graph Returns ------- A compiled theano function that takes the values of `vars` as input positional args """ return function(vars, param, givens=givens, rebuild_strict=True, on_unused_input='ignore', allow_input_downcast=True)
bed6879a63beebe3af8eaabf654e5617e550e971
365
def redirect(url): """Create a response object representing redirection. :param url: a URL :return: a Response """ headers = { "Location": url, } return Response(headers=headers, code=HTTPStatus.FOUND)
13a61d5854fd5ef50ce51e38a0dc38af282a5693
366
import json def remove_ordereddict(data, dangerous=True): """turns a nested OrderedDict dict into a regular dictionary. dangerous=True will replace unserializable values with the string '[unserializable]' """ # so nasty. return json.loads(json_dumps(data, dangerous))
f5ca4db424c721a5e9015e77cd727f71b3912699
367
from typing import List def evaluate_v1(tokens: List[str]) -> Number: """Evaluates a tokenized expression and returns the result""" stack: List = [] for token in tokens: stack = consume_token(token, stack) return get_result_from_stack(stack)
1507baf55f427096b12690d76854d0189ec1571e
368
def load_gromacs_reaction_coord_files(us_path, n_wins, step=10, verbose=False): """ Parameters ---------- us_path: string Path to the xvg files with sampled reaction coordinate values n_wins: integer Number of umbrella runs step: integer Time interval for analysis verbose: Boolean Verbosity Outputs ------- us_pull_l: list list of reaction coordinates values sampled in the umbrella runs """ us_pull_l = [] bar = pyprind.ProgBar(n_wins, update_interval=15) for win_i in (range(1, n_wins+1)): if verbose: print(win_i) us_pull_l.append( np.loadtxt(us_path.format(win_i), skiprows=17)[::step]) bar.update(force_flush=False) return us_pull_l
47a304592306b142b96638f40410685ce31e0482
369
from typing import Dict def h_customer_role_playing( process_configuration: Dict[str, str], h_customer: Hub, staging_table: StagingTable ) -> RolePlayingHub: """Define h_customer_role_playing test hub. Args: process_configuration: Process configuration fixture value. h_customer: Hub customer fixture value. staging_table: Staging table fixture value. Returns: Deserialized role playing hub h_customer_role_playing. """ h_customer_role_playing_fields = [ Field( parent_table_name="h_customer_role_playing", name="h_customer_role_playing_hashkey", data_type=FieldDataType.TEXT, position=1, is_mandatory=True, length=32, ), Field( parent_table_name="h_customer_role_playing", name="r_timestamp", data_type=FieldDataType.TIMESTAMP_NTZ, position=2, is_mandatory=True, ), Field( parent_table_name="h_customer_role_playing", name="r_source", data_type=FieldDataType.TEXT, position=3, is_mandatory=True, ), Field( parent_table_name="h_customer_role_playing", name="customer_role_playing_id", data_type=FieldDataType.TEXT, position=4, is_mandatory=True, ), ] h_customer_role_playing = RolePlayingHub( schema=process_configuration["target_schema"], name="h_customer_role_playing", fields=h_customer_role_playing_fields, ) h_customer_role_playing.parent_table = h_customer h_customer_role_playing.staging_table = staging_table return h_customer_role_playing
f8f6fadc9dad8c637fbf173a2d10378f087954f6
370
import os import subprocess def call_port(command, arguments): """ This function calls the port executable with the specified parameters, printing the output to stdout. """ command = ["port", command] + arguments if (os.getuid != 0): print("Using sudo to execute port.") return subprocess.call(["sudo"] + command) else: return subprocess.call(command)
b5209388a03093758b680220600dd99749be5c81
371
def _classify(text:str, name:str=None, service:str=None, language:Language=None): """Takes the input text (and optional filename) and makes a best effort to extract/label the code content needed for classification. E.g. a markdown file has codeblocks extracted and labeled with language, and a code file is extracted in its entirety and labeled accordingly.""" targeted_content = [] # First let's extract what metadata we can, as well as target our classification to important bits (code) if is_markdown(text, name): # Try to extract code blocks. targeted_content += _extract_and_label_codefences(text) # TODO: May want to refine this (e.g. don't run code-specific models on non-code) # If none, or if code blocks don't do anything, fall back to treating whole thing as text. # if not targeted_content: # targeted_content.append((text, language, service)) # Treat as code as long as it's one of the languages we expect to deal with elif is_code(text, name): targeted_content.append((text, language or is_code(text, name), service)) # We also want to handle yaml, but we don't do anything special with that. elif is_yaml(text, name): targeted_content.append((text, language, service)) #TODO: Might want to do something custom for yaml in the future. # otherwise short circuit out. ( e.g. json, etc) else: # Maybe should treat it as raw text, parse whole thing? # TODO: figure this out. targeted_content.append((text, language, service)) # TODO: If sdk/language aren't specified, try to determine them. # If we know what they are with high confidence, use the targeted model, otherwise use a generic model. (Maybe run both anyhow and make sure they agree or mosaic) return targeted_content
7f146b8b0c9b041e681c4cb2d5ef5a3b175c7eda
372
import argparse import os def parse_command_line_arguments(): """ Parse the command-line arguments being passed to RMG Py. This uses the :mod:`argparse` module, which ensures that the command-line arguments are sensible, parses them, and returns them. """ parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-i', '--input', metavar='FILE', help='a predictor training input file') parser.add_argument('-w', '--weights', metavar='H5', help='Saved model weights to continue training on (typically for transfer learning)') parser.add_argument('-d', '--data', metavar='FILE', help='A file specifying which datasets to train on. Alternatively, a space-separated .csv file' ' with SMILES/InChI and output(s) in the first and subsequent columns, respectively.') parser.add_argument('-o', '--out_dir', metavar='DIR', default=os.getcwd(), help='Output directory') parser.add_argument('-n', '--normalize', action='store_true', help='Normalize output based on training set mean and standard deviation') parser.add_argument('--save_tensors_dir', metavar='DIR', help='Location to save tensors on disk (frees up memory)') parser.add_argument('--keep_tensors', action='store_true', help='Do not delete directory containing tensors at end of job') parser.add_argument('-f', '--folds', type=int, default=5, help='number of folds for training') parser.add_argument('-tr', '--train_ratio', type=float, default=0.9, help='Fraction of training data to use for actual training, rest is early-stopping validation') parser.add_argument('-te', '--test_ratio', type=float, default=0.0, help='Fraction of data to use for testing. If loading data from database,' ' test ratios are specified in datasets file') parser.add_argument('-t', '--train_mode', default='full_train', help='train mode: currently support in_house and keras for k-fold cross-validation,' ' and full_train for full training') parser.add_argument('-bs', '--batch_size', type=int, default=1, help='batch training size') parser.add_argument('-lr', '--learning_rate', default='0.0007_30.0', help='two parameters for learning rate') parser.add_argument('-ep', '--nb_epoch', type=int, default=150, help='number of epochs for training') parser.add_argument('-pc', '--patience', type=int, default=10, help='Number of consecutive epochs allowed for loss increase before stopping early.' ' Note: A value of -1 indicates that the best model will NOT be saved!') parser.add_argument('-s', '--seed', type=int, default=0, help='Numpy random seed') return parser.parse_args()
49b0beb15f6f8b2bba903e15dcb0bf43d79ac11e
373
def _js_requires(offline: bool = False) -> str: """Format JS requires for Plotly dependency. Args: offline: if True, inject entire Plotly library for offline use. Returns: str: <script> block with Plotly dependency. """ helper_fxns = _load_js_resource(_AxPlotJSResources.HELPER_FXNS) if offline: script = Template(_load_js_resource(_AxPlotJSResources.PLOTLY_OFFLINE)).render( library=plotly_offline.offline.get_plotlyjs() ) else: script = _load_js_resource(_AxPlotJSResources.PLOTLY_ONLINE) return script + helper_fxns
cc5bf8b5c6a840b9905008c0986f5b7ef65d6942
374
def resnet_retinanet(num_classes, backbone='resnet50', inputs=None, modifier=None, **kwargs): """ Constructs a retinanet model using a resnet backbone. Args num_classes: Number of classes to predict. backbone: Which backbone to use (one of ('resnet50', 'resnet101', 'resnet152')). inputs: The inputs to the network (defaults to a Tensor of shape (None, None, 3)). modifier: A function handler which can modify the backbone before using it in retinanet (this can be used to freeze backbone layers for example). Returns RetinaNet model with a ResNet backbone. """ # choose default input if inputs is None: inputs = keras.layers.Input(shape=(None, None, 3)) # create the resnet backbone if backbone == 'resnet50': resnet = keras_resnet.models.ResNet50(inputs, include_top=False, freeze_bn=True) elif backbone == 'resnet101': resnet = keras_resnet.models.ResNet101(inputs, include_top=False, freeze_bn=True) elif backbone == 'resnet152': resnet = keras_resnet.models.ResNet152(inputs, include_top=False, freeze_bn=True) else: raise ValueError('Backbone (\'{}\') is invalid.'.format(backbone)) # invoke modifier if given if modifier: resnet = modifier(resnet) # create the full model return retinanet.retinanet(inputs=inputs, num_classes=num_classes, backbone_layers=resnet.outputs[1:], **kwargs)
9e44d811cc0da8e7810731379259f8921483e907
375
def trans_full_matrix_projection(input, size=0, param_attr=None): """ Different from full_matrix_projection, this projection performs matrix multiplication, using transpose of weight. .. math:: out.row[i] += in.row[i] * w^\mathrm{T} :math:`w^\mathrm{T}` means transpose of weight. The simply usage is: .. code-block:: python proj = trans_full_matrix_projection(input=layer, size=100, param_attr=ParamAttr( name='_proj', initial_mean=0.0, initial_std=0.01)) :param input: input layer :type input: LayerOutput :param size: The parameter size. Means the width of parameter. :type size: int :param param_attr: Parameter config, None if use default. :type param_attr: ParameterAttribute :return: A TransposedFullMatrixProjection Object. :rtype: TransposedFullMatrixProjection """ proj = TransposedFullMatrixProjection( input_layer_name=input.name, size=size, **param_attr.attr) proj.origin = input return proj
c8c69a01bf311d449ec6b9af68d61fe917073c75
376
def http_head_deck_etag(gist_url): """Perform a HEAD against gist_url and return the etag.""" class HeadRequest(Request): def get_method(self): return 'HEAD' head_request = HeadRequest(gist_url + '/raw') response = urlopen(head_request) headers = response.headers etag = headers['etag'] return etag
b5f4d4ebb80ec95059562c500edc8fc3a4040064
377
def _get_fluxes(sol, reactions): """Get the primal values for a set of variables.""" fluxes = { r.id: sol.fluxes.loc[r.community_id, r.global_id] for r in reactions } return pd.Series(fluxes)
da5ff0af1a3072baca70ac338ee29a7ea91606ac
378
def compatible_elfs(elf1, elf2): """See if two ELFs are compatible This compares the aspects of the ELF to see if they're compatible: bit size, endianness, machine type, and operating system. Parameters ---------- elf1 : ELFFile elf2 : ELFFile Returns ------- True if compatible, False otherwise """ osabis = frozenset([e.header['e_ident']['EI_OSABI'] for e in (elf1, elf2)]) compat_sets = (frozenset('ELFOSABI_%s' % x for x in ('NONE', 'SYSV', 'GNU', 'LINUX', )), ) return ((len(osabis) == 1 or any(osabis.issubset(x) for x in compat_sets)) and elf1.elfclass == elf2.elfclass and elf1.little_endian == elf2.little_endian and elf1.header['e_machine'] == elf2.header['e_machine'])
808c52de45e96d177429ebe1339f4a97c2c219d0
379
import tempfile import os import atexit import importlib import sys def load_source(source, delete_on_exit): """Loads the given source code as a Python module.""" with tempfile.NamedTemporaryFile( mode='w', suffix='.py', prefix='__autograph_generated_file', delete=False, encoding='utf-8') as f: module_name = os.path.basename(f.name[:-3]) file_name = f.name f.write(source) if delete_on_exit: atexit.register(lambda: _remove_file(file_name)) spec = importlib.util.spec_from_file_location(module_name, file_name) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) # TODO(mdan): Use our own garbage-collected cache instead of sys.modules. sys.modules[module_name] = module return module, file_name
4881ed3722d8962fd45c80c0fed9e9d75ed7746a
380
def _tear_down_response(data): """Helper function to extract header, payload and end from received response data.""" response_header = data[2:17] # Below is actually not used response_payload_size = data[18] response_payload = data[19:-2] response_end = data[-2:] return response_header, response_payload, response_end
0c9684c2c054beaff018f85a6775d46202d0095a
381
import pymysql def read_data_from_bd(query, host, user, port, database, password): """ get data from abc database arg: query: sql username: database username password: database password return: df: dataframe """ connection = pymysql.connect(host=host, user=user, port=port, db=database, password=password) df = pd.read_sql(query, connection) return df
a7ff96f9bda9b71bced1baaceeeb7c7797839bb4
382
def stack_atomic_call_middleware(q_dict, q_queryset, logger, middleware): """ Calls the middleware function atomically. * Returns cached queue on error or None """ cached_q_dict = q_dict[:] cached_q_query = q_queryset.all() try: middleware(q_dict, q_queryset, logger) except: logger.error('MM_STACK: Middleware exception occurred in %s' % middleware.__name__) return [cached_q_dict, cached_q_query] return None
9d01c51e19702ba4bc0ae155f0b9b386a4d947b6
383
def collate_with_neg_fn(generator): """Collate a list of datapoints into a batch, with negative samples in last half of batch.""" users, items, item_attr, num_attr = collate_fn(generator) users[len(users) // 2:] = users[:len(users) // 2] return users, items, item_attr, num_attr
189104ba993e522a1a5f7b40dfcaa06b25e69966
384
def build_scenario_3(FW, verbosity=None): """ Tests if override is cleared when all switch behaviours go out of scope. And tests switch command with opaque value. Returns a list of 2-lists: [time, 0ary function] that describes exactly what needs to be executed when. The 0ary functions return a falsey value when it succeeded, and a string describing what went wrong else. """ def setup_scenario_3(): sendBehaviour(0, buildTwilight(9, 14, 80)) sendBehaviour(1, buildSwitchBehaviour(9, 12, 70)) scenario = TestScenario(FW, "scenario 3") add_common_setup(scenario) scenario.addEvent(setup_scenario_3) if verbosity is not None: scenario.setVerbosity(verbosity) # behaviours both become active scenario.setTime(9, 0) scenario.addExpect("SwitchAggregator", "overrideState", "-1", "overridestate should've been set to translucent") scenario.addExpect("SwitchAggregator", "aggregatedState", "70", "aggregatedState should be equal to minimum of active behaviour and twilight") # switch command occurs scenario.setTime(10, 0) scenario.addEvent(bind(sendSwitchCommand, 50)) scenario.addExpect("SwitchAggregator", "overrideState", "50", "overridestate should've been set to translucent") scenario.setTime(10, 0) scenario.addExpect("SwitchAggregator", "aggregatedState", "50", "aggregatedState should be equal to override state when it is opaque") # all behaviours become inactive scenario.setTime(12, 0) scenario.addExpect("SwitchAggregator", "overrideState", "-1", "overridestate should've been cleared when it is non-zero and all switch behaviours become inactive") scenario.addExpect("SwitchAggregator", "aggregatedState", "0", "aggregatedState should be equal to 0 when no override state or switch behaviours are active") return scenario
a676d7997affcb92ea19dc007a8c38eebc919af3
385
def read(input): """Read an entire zonefile, returning an AST for it which contains formatting information.""" return _parse(input, actions=Actions())
46cbef9f1b5f85705166ec0527f60e8346157955
386
def generate_conditionally(text='welcome', random_seed=1, **kwargs): """ Input: text - str random_seed - integer Output: stroke - numpy 2D-array (T x 3) """ model = ConditionalStrokeModel.load( str(MODEL_DIR / 'conditional-stroke-model'), batch_size=1, rnn_steps=1, is_train=False, char_seq_len=len(text) + 1) return conditional_decode(model, seed=random_seed, text=text, **kwargs)
e58a06fc620a71e6ff0704bfe5cae3693ef5f758
387
import torch def cross_entropy(pred, soft_targets): """ pred: unscaled logits soft_targets: target-distributions (i.e., sum to 1) """ logsoftmax = nn.LogSoftmax(dim=1) return torch.mean(torch.sum(-soft_targets * logsoftmax(pred), 1))
1a81e36a9839600bd621ec0e3bb0da1d5fca0c0a
388
def test_separations(): """Test if sky separations are the same in all spherical coordinate systems. This is a simple consistency check. Sky separations computed between consecutive event positions should be the same in any spherical coordinate system. """ table = Table.read('hess_event_list_2.fits') def separation(table, lon_colname, lat_colname): lon = np.array(table[lon_colname], dtype=np.float64) lat = np.array(table[lat_colname], dtype=np.float64) pos1 = SkyCoord(lon[:1], lat[:1], unit='deg') pos2 = SkyCoord(lon[1:], lat[1:], unit='deg') sep = pos1.separation(pos2).arcsec res = np.empty(len(table), dtype=np.float64) res[:-1] = sep res[-1] = np.nan return res table['SEP_RADEC'] = separation(table, 'RA', 'DEC') table['SEP_RADEC_FOV'] = separation(table, 'FOV_RADEC_LON', 'FOV_RADEC_LAT') table['SEP_RADEC_FOV_MINUS_SEP_RADEC'] = table['SEP_RADEC_FOV'] - table['SEP_RADEC'] print('Max separation difference RADEC_FOV to RADEC: {} arcsec'.format(np.nanmax(table['SEP_RADEC_FOV_MINUS_SEP_RADEC']))) # TODO: this currently gives 14.9 arcsec, i.e. there's an issue! table['SEP_RADEC_FOV_ASTROPY'] = separation(table, 'FOV_RADEC_LON_ASTROPY', 'FOV_RADEC_LAT_ASTROPY') table['SEP_RADEC_FOV_ASTROPY_MINUS_SEP_RADEC'] = table['SEP_RADEC_FOV_ASTROPY'] - table['SEP_RADEC'] print('Max separation difference RADEC_FOV_ASTROPY to RADEC: {} arcsec'.format(np.nanmax(table['SEP_RADEC_FOV_ASTROPY_MINUS_SEP_RADEC']))) # 0.02 arcsec => OK # Note: for ALTAZ this is not expected to match RADEC, because the earth is rotating between events. # table['SEP_ALTAZ'] = separation(table, 'AZ', 'ALT') # table['SEP_RADEC_MINUS_SEP_ALTAZ'] = table['SEP_RADEC'] - table['SEP_ALTAZ'] # print('Max separation difference RADEC to ALTAZ: {}'.format(np.nanmax(table['SEP_RADEC_MINUS_SEP_ALTAZ']))) # table.info('stats') # table.write('temp.fits', overwrite=True)
f22efca62d5cd7beaecfbb46c6bef3ae12158aec
389
import json def config(path) -> None: """Read the default config""" logger.debug("Reading config from %s", path) try: with open(path, encoding="utf-8") as config_file_object: # Read into dict config_json = json.load(config_file_object) logger.info("Loaded config into dict") except FileNotFoundError: logger.critical("Unable to find file %s", path) stager.utils.dialog.error( "Config file not found", f"The config file {path} was not found", ) return False except json.JSONDecodeError as exception_: logger.critical("Unable to parse %s: %s", path, exception_.msg) stager.utils.dialog.error("Unable to parse config", exception_.msg) return False # Set defaults for config if not present # Validate the config config_json_keys = config_json.keys() for req in REQUIRED: if req not in config_json_keys: logger.critical("Missing required key %s in config", req) stager.utils.dialog.error( "Config invalid", f"Missing required key {req} in config" ) return False # Fill in optional fields with a default for opt in OPTIONAL_DEFAULTS: # TODO move to items if opt not in config_json_keys: # Add to the config json config_json[opt] = OPTIONAL_DEFAULTS[opt]["default_value"] # Reload prefs namespace config_ns = convert_to_namespace(json.dumps(config_json)) stager.utils.CONFIG = config_ns return True
34a4accedea3bf09e60cd4116ce7bff858f63b03
390
def get_credentials(_globals: dict): """ Gets Credentials from Globals Structure may be found in modules/ducktests/tests/checks/utils/check_get_credentials.py This function return default username and password, defaults may be overriden throw globals """ if USERNAME_KEY in _globals[AUTHENTICATION_KEY] and PASSWORD_KEY in _globals[AUTHENTICATION_KEY]: return _globals[AUTHENTICATION_KEY][USERNAME_KEY], _globals[AUTHENTICATION_KEY][PASSWORD_KEY] return DEFAULT_AUTH_USERNAME, DEFAULT_AUTH_PASSWORD
2ca95af842f1e68eb31b452374adec4d0b830383
391
def hideablerevs(repo): """Revision candidates to be hidden This is a standalone function to allow extensions to wrap it. Because we use the set of immutable changesets as a fallback subset in branchmap (see mercurial.branchmap.subsettable), you cannot set "public" changesets as "hideable". Doing so would break multiple code assertions and lead to crashes.""" return obsolete.getrevs(repo, 'obsolete')
caf59496abeb0f6d42063509f3357c7520a90d82
392
import torch def squeeze_features(protein): """Remove singleton and repeated dimensions in protein features.""" protein["aatype"] = torch.argmax(protein["aatype"], dim=-1) for k in [ "domain_name", "msa", "num_alignments", "seq_length", "sequence", "superfamily", "deletion_matrix", "resolution", "between_segment_residues", "residue_index", "template_all_atom_mask", ]: if k in protein: final_dim = protein[k].shape[-1] if isinstance(final_dim, int) and final_dim == 1: if torch.is_tensor(protein[k]): protein[k] = torch.squeeze(protein[k], dim=-1) else: protein[k] = np.squeeze(protein[k], axis=-1) for k in ["seq_length", "num_alignments"]: if k in protein: protein[k] = protein[k][0] return protein
05c1a174935f7ebe845a0a3b308ca933baccfde6
393
import pathlib def get_cache_dir(app_name: str, suffix: str = None, create: bool = True): """Get a local cache directory for a given application name. Args: app_name: The name of the application. suffix: A subdirectory appended to the cache dir. create: Whether to create the directory and its parents if it does not already exist. """ appdirs = _import_appdirs() if appdirs is None: raise ImportError( "To use `dm.utils.fs.get_cache_dir()`, you must have `appdirs` " "installed: `conda install appdirs`." ) cache_dir = pathlib.Path(appdirs.user_cache_dir(appname=app_name)) if suffix is not None: cache_dir /= suffix if create: cache_dir.mkdir(exist_ok=True, parents=True) return cache_dir
40db55ce5d891a5cd496d23760ac66fe23206ed7
394
import random import pickle def _dump_test_data(filename, num_per_type=10): """Get corpus of statements for testing that has a range of stmt types.""" sp = signor.process_from_web() # Group statements by type stmts_by_type = defaultdict(list) for stmt in sp.statements: stmts_by_type[stmt.__class__].append(stmt) # Sample statements of each type (without replacement) stmt_sample = [] for stmt_type, stmt_list in stmts_by_type.items(): if len(stmt_list) <= num_per_type: stmt_sample.extend(stmt_list) else: stmt_sample.extend(random.sample(stmt_list, num_per_type)) # Make a random binary class vector for the stmt list y_arr = [random.choice((0, 1)) for s in stmt_sample] with open(test_stmt_path, 'wb') as f: pickle.dump((stmt_sample, y_arr), f) return stmt_sample
4eb2fbcfc6524d3f10c92e13f01475834f26f7f2
395
def gin_dict_parser(coll): """ Use for parsing collections that may contain a 'gin' key. The 'gin' key is assumed to map to either a dict or str value that contains gin bindings. e.g. {'gin': {'Classifier.n_layers': 2, 'Classifier.width': 3}} or {'gin': 'Classifier.n_layers = 2\nClassifier.width = 3'} """ if 'gin' in coll: if is_mapping(coll['gin']): gin.parse_config("".join(map(lambda t: f'{t[0]} = {t[1]}\n', iteritems(coll['gin'])))) elif isinstance(coll['gin'], str): gin.parse_config(coll['gin']) return coll
d47fa1785948d70e5bf4575ed879fe37827db6ba
396
def ones(shape, dtype): """ Declare a new worker-local tensor with all elements initialized to one. :param shape: the tensor shape :param dtype: the tensor data type :return: the tensor expression """ np_dtype = DType(dtype).as_numpy() init = _ConstTensor(np.ones(shape, dtype=np_dtype)) return LocalTensor(init)
7345dad51739c1ada5dfd89ae9c0d0b21df54ce8
397
def _valid_url(url): """Checks that the given URL is Discord embed friendly. Or at least, it tries.""" def _valid_string(segment, main=True): if not len(segment): return False for c in [ord(it.lower()) for it in segment]: if not (97 <= c <= 122 or (main and (48 <= c <= 57 or c == 45))): return False return True test = urlparse(url) if not (test.scheme and test.netloc and '.' in test.netloc): return False # Discord only accepts http or https if test.scheme not in ('http', 'https'): return False # Test for valid netloc netloc_split = test.netloc.split('.') if (len(netloc_split) < 2): return False # http://foo tld = test.netloc.split('.')[-1] if not (len(tld) >= 2 and _valid_string(tld, main=False)): return False # http://foo.123 for segment in netloc_split[:-1]: if not _valid_string(segment): return False # http://foo..bar or http://fo*o.bar for c in url: if not 33 <= ord(c) <= 126: return False # non-ASCII only URLs return True
74d359bc2c8430fc5990cead6695626ea825db64
398
def isText(node): """ Returns True if the supplied node is free text. """ return node.nodeType == node.TEXT_NODE
150efc016028d0fab4630ad5e754ebaeed0c82c0
399