scico / scico.py
Arie Cattan
fix
151dd98
raw
history blame
5.13 kB
"""SciCo"""
import os
from datasets.arrow_dataset import DatasetTransformationNotAllowedError
from datasets.utils import metadata
import jsonlines
import datasets
_CITATION = """\
@inproceedings{
cattan2021scico,
title={SciCo: Hierarchical Cross-Document Coreference for Scientific Concepts},
author={Arie Cattan and Sophie Johnson and Daniel S. Weld and Ido Dagan and Iz Beltagy and Doug Downey and Tom Hope},
booktitle={3rd Conference on Automated Knowledge Base Construction},
year={2021},
url={https://openreview.net/forum?id=OFLbgUP04nC}
}
"""
_DESCRIPTION = """\
SciCo is a dataset for hierarchical cross-document coreference resolution
over scientific papers in the CS domain.
"""
_DATA_URL = "https://nlp.biu.ac.il/~ariecattan/scico/data.tar"
class Scico(datasets.GeneratorBasedBuilder):
# BUILDER_CONFIGS = [
# datasets.BuilderConfig(
# name="plain_text",
# version=datasets.Version("1.0.0", ""),
# description="SciCo",
# )
# ]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
homepage="https://scico.apps.allenai.org/",
features=datasets.Features(
{
"flatten_tokens": datasets.features.Sequence(datasets.features.Value("string")),
"flatten_mentions": datasets.features.Sequence(datasets.features.Sequence(datasets.features.Value("int32"), length=3)),
"tokens": datasets.features.Sequence(datasets.features.Sequence(datasets.features.Value("string"))),
"doc_ids": datasets.features.Sequence(datasets.features.Value("int32")),
# "metadata": datasets.features.Sequence(
# {
# "title": datasets.features.Value("string"),
# "paper_sha": datasets.features.Value("string"),
# "fields_of_study": datasets.features.Value("string"),
# "Year": datasets.features.Value("string"),
# "BookTitle": datasets.features.Value("string"),
# "url": datasets.features.Value("string")
# }
# )
"sentences": datasets.features.Sequence(datasets.features.Sequence(datasets.features.Sequence(datasets.features.Value("int32")))),
"mentions": datasets.features.Sequence(datasets.features.Sequence(datasets.features.Value("int32"), length=4)),
"relations": datasets.features.Sequence(datasets.features.Sequence(datasets.features.Value("int32"), length=2)),
"id": datasets.Value("int32"),
"source": datasets.Value("string"),
"hard_10": datasets.features.Value("bool"),
"hard_20": datasets.features.Value("bool"),
"curated": datasets.features.Value("bool")
}
),
supervised_keys=None,
citation = _CITATION)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_DATA_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(data_dir, "test.jsonl")}
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": os.path.join(data_dir, "dev.jsonl")}
),
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(data_dir, "train.jsonl")}
),
]
def _generate_examples(self, filepath):
"""This function returns the examples in the raw (text) form."""
print(filepath)
with jsonlines.open(filepath, 'r') as f:
for i, topic in enumerate(f):
topic['hard_10'] = topic['hard_10'] if 'hard_10' in topic else False
topic['hard_20'] = topic['hard_20'] if 'hard_20' in topic else False
topic["curated"] = topic["curated"] if "curated" in topic else False
yield i, {
"flatten_tokens": topic['flatten_tokens'],
"flatten_mentions": topic["flatten_mentions"],
"tokens": topic["tokens"],
"doc_ids": topic["doc_ids"],
"doc_ids": topic["doc_ids"],
# "metadata": topic["metadata"]
"sentences": topic["sentences"],
"mentions": topic["mentions"],
"relations": topic["relations"],
"id": topic["id"],
"source": topic["source"],
"hard_10": topic["hard_10"],
"hard_20": topic["hard_20"],
"curated": topic["curated"]
}