Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
cpi / cpi.py
gabrielaltay's picture
upload hub_repos/cpi/cpi.py to hub from bigbio repo
970237b
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The compound-protein relationship (CPI) dataset consists of 2,613 sentences from abstracts containing
annotations of proteins, small molecules, and their relationships. For further information see:
https://pubmed.ncbi.nlm.nih.gov/32126064/ and https://github.com/KerstenDoering/CPI-Pipeline
"""
import xml.etree.ElementTree as ET
from pathlib import Path
from typing import Dict, Iterator, Tuple
import datasets
from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@article{doring2020automated,
title={Automated recognition of functional compound-protein relationships in literature},
author={D{\"o}ring, Kersten and Qaseem, Ammar and Becer, Michael and Li, Jianyu and Mishra, Pankaj and Gao, Mingjie and Kirchner, Pascal and Sauter, Florian and Telukunta, Kiran K and Moumbock, Aur{\'e}lien FA and others},
journal={Plos one},
volume={15},
number={3},
pages={e0220925},
year={2020},
publisher={Public Library of Science San Francisco, CA USA}
}
"""
_DATASETNAME = "cpi"
_DISPLAYNAME = "CPI"
_DESCRIPTION = """\
The compound-protein relationship (CPI) dataset consists of 2,613 sentences from abstracts containing \
annotations of proteins, small molecules, and their relationships
"""
_HOMEPAGE = "https://github.com/KerstenDoering/CPI-Pipeline"
_LICENSE = 'ISC License'
_URLS = {
"CPI": "https://github.com/KerstenDoering/CPI-Pipeline/raw/master/data_sets/xml/CPI-DS.xml",
"CPI_IV": "https://github.com/KerstenDoering/CPI-Pipeline/raw/master/data_sets/xml/CPI-DS_IV.xml",
"CPI_NIV": "https://github.com/KerstenDoering/CPI-Pipeline/raw/master/data_sets/xml/CPI-DS_IV.xml",
}
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION, Tasks.RELATION_EXTRACTION]
_SOURCE_VERSION = "1.0.2"
_BIGBIO_VERSION = "1.0.0"
class CpiDataset(datasets.GeneratorBasedBuilder):
"""The compound-protein relationship (CPI) dataset"""
ENTITY_TYPE_TO_DB_NAME = {"compound": "PubChem", "protein": "UniProt"}
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="cpi_source",
version=SOURCE_VERSION,
description="CPI source schema",
schema="source",
subset_id="cpi",
),
BigBioConfig(
name="cpi_iv_source",
version=SOURCE_VERSION,
description="CPI source schema - subset with interaction verbs",
schema="source",
subset_id="cpi_iv",
),
BigBioConfig(
name="cpi_niv_source",
version=SOURCE_VERSION,
description="CPI source schema - subset without interaction verbs",
schema="source",
subset_id="cpi_niv",
),
BigBioConfig(
name="cpi_bigbio_kb",
version=BIGBIO_VERSION,
description="CPI BigBio schema",
schema="bigbio_kb",
subset_id="cpi",
),
]
DEFAULT_CONFIG_NAME = "cpi_source"
def _info(self):
if self.config.schema == "source":
features = datasets.Features(
{
"document_id": datasets.Value("string"),
"document_orig_id": datasets.Value("string"),
"sentences": [
{
"sentence_id": datasets.Value("string"),
"sentence_orig_id": datasets.Value("string"),
"text": datasets.Value("string"),
"entities": [
{
"entity_id": datasets.Value("string"),
"entity_orig_id": datasets.Sequence(datasets.Value("string")),
"type": datasets.Value("string"),
"offset": datasets.Sequence(datasets.Value("int32")),
"text": datasets.Value("string"),
}
],
"pairs": [
{
"pair_id": datasets.Value("string"),
"e1": datasets.Value("string"),
"e2": datasets.Value("string"),
"interaction": datasets.Value("bool"),
}
],
}
],
}
)
elif self.config.schema == "bigbio_kb":
features = kb_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# Distinguish based on the subset id (cpi, cpi_iv, cpi_niv) which file to load
subset_url = _URLS[self.config.subset_id.upper()]
subset_file = dl_manager.download_and_extract(subset_url)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"subset_file": subset_file},
)
]
def _generate_examples(self, subset_file: Path) -> Iterator[Tuple[str, Dict]]:
if self.config.schema == "source":
for doc_id, document in self._read_source_examples(subset_file):
yield doc_id, document
elif self.config.name == "cpi_bigbio_kb":
# Note: The sentences in a CPI document does not (necessarily) occur consecutive in
# the original publication. Nevertheless, in this implementation we capture all sentences
# of a document in one kb-schema document to explicitly model documents.
# Transform each source-schema document to kb-schema document
for doc_id, source_document in self._read_source_examples(subset_file):
sentence_offset = 0
passages = []
entities = []
relations = []
# Transform all sentences to kb-schema sentences
for source_sentence in source_document["sentences"]:
text = source_sentence["text"]
passages.append(
{
"id": source_sentence["sentence_id"],
"text": [text],
"offsets": [[sentence_offset + 0, sentence_offset + len(text)]],
"type": "",
}
)
# Transform source-schema entities to kb-schema entities
for source_entity in source_sentence["entities"]:
db_name = self.ENTITY_TYPE_TO_DB_NAME[source_entity["type"]]
entity_offset = source_entity["offset"]
entity_offset = [sentence_offset + entity_offset[0], sentence_offset + entity_offset[1]]
entities.append(
{
"id": source_entity["entity_id"],
"type": source_entity["type"],
"text": [source_entity["text"]],
"offsets": [entity_offset],
"normalized": [
{"db_name": db_name, "db_id": db_id} for db_id in source_entity["entity_orig_id"]
],
}
)
# Transform source-schema pairs to kb-schema relations
for source_pair in source_sentence["pairs"]:
# Ignore pairs that are annotated to be not in a relationship!
if not source_pair["interaction"]:
continue
relations.append(
{
"id": source_pair["pair_id"],
"type": "compound-protein-interaction",
"arg1_id": source_pair["e1"],
"arg2_id": source_pair["e2"],
"normalized": [],
}
)
sentence_offset += len(text) + 1
kb_document = {
"id": source_document["document_id"],
"document_id": source_document["document_orig_id"],
"passages": passages,
"entities": entities,
"relations": relations,
"events": [],
"coreferences": [],
}
yield source_document["document_id"], kb_document
def _read_source_examples(self, input_file: Path) -> Iterator[Tuple[str, Dict]]:
"""
Reads all instances of the given input file and parses them into the source format.
"""
root = ET.parse(input_file)
for document in root.iter("document"):
sentences = []
for sentence in document.iter("sentence"):
entities = []
for entity in sentence.iter("entity"):
char_offsets = entity.attrib["charOffset"].split("-")
start, end = int(char_offsets[0]), int(char_offsets[1])
entities.append(
{
"entity_id": entity.attrib["id"],
"entity_orig_id": entity.attrib["origId"].split(","),
"type": entity.attrib["type"],
"text": entity.attrib["text"],
"offset": [start, end],
}
)
pairs = []
for pair in sentence.iter("pair"):
pairs.append(
{
"pair_id": pair.attrib["id"],
"e1": pair.attrib["e1"],
"e2": pair.attrib["e2"],
"interaction": pair.attrib["interaction"].lower() == "true",
}
)
sentences.append(
{
"sentence_id": sentence.attrib["id"],
"sentence_orig_id": sentence.attrib["origId"],
"text": sentence.attrib["text"],
"entities": entities,
"pairs": pairs,
}
)
document_dict = {
"document_id": document.attrib["id"],
"document_orig_id": document.attrib["origId"],
"sentences": sentences,
}
yield document.attrib["id"], document_dict