|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
The compound-protein relationship (CPI) dataset consists of 2,613 sentences from abstracts containing |
|
annotations of proteins, small molecules, and their relationships. For further information see: |
|
https://pubmed.ncbi.nlm.nih.gov/32126064/ and https://github.com/KerstenDoering/CPI-Pipeline |
|
""" |
|
import xml.etree.ElementTree as ET |
|
from pathlib import Path |
|
from typing import Dict, Iterator, Tuple |
|
|
|
import datasets |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@article{doring2020automated, |
|
title={Automated recognition of functional compound-protein relationships in literature}, |
|
author={D{\"o}ring, Kersten and Qaseem, Ammar and Becer, Michael and Li, Jianyu and Mishra, Pankaj and Gao, Mingjie and Kirchner, Pascal and Sauter, Florian and Telukunta, Kiran K and Moumbock, Aur{\'e}lien FA and others}, |
|
journal={Plos one}, |
|
volume={15}, |
|
number={3}, |
|
pages={e0220925}, |
|
year={2020}, |
|
publisher={Public Library of Science San Francisco, CA USA} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "cpi" |
|
_DISPLAYNAME = "CPI" |
|
|
|
_DESCRIPTION = """\ |
|
The compound-protein relationship (CPI) dataset consists of 2,613 sentences from abstracts containing \ |
|
annotations of proteins, small molecules, and their relationships |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/KerstenDoering/CPI-Pipeline" |
|
|
|
_LICENSE = 'ISC License' |
|
|
|
_URLS = { |
|
"CPI": "https://github.com/KerstenDoering/CPI-Pipeline/raw/master/data_sets/xml/CPI-DS.xml", |
|
"CPI_IV": "https://github.com/KerstenDoering/CPI-Pipeline/raw/master/data_sets/xml/CPI-DS_IV.xml", |
|
"CPI_NIV": "https://github.com/KerstenDoering/CPI-Pipeline/raw/master/data_sets/xml/CPI-DS_IV.xml", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION, Tasks.RELATION_EXTRACTION] |
|
|
|
_SOURCE_VERSION = "1.0.2" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class CpiDataset(datasets.GeneratorBasedBuilder): |
|
"""The compound-protein relationship (CPI) dataset""" |
|
|
|
ENTITY_TYPE_TO_DB_NAME = {"compound": "PubChem", "protein": "UniProt"} |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="cpi_source", |
|
version=SOURCE_VERSION, |
|
description="CPI source schema", |
|
schema="source", |
|
subset_id="cpi", |
|
), |
|
BigBioConfig( |
|
name="cpi_iv_source", |
|
version=SOURCE_VERSION, |
|
description="CPI source schema - subset with interaction verbs", |
|
schema="source", |
|
subset_id="cpi_iv", |
|
), |
|
BigBioConfig( |
|
name="cpi_niv_source", |
|
version=SOURCE_VERSION, |
|
description="CPI source schema - subset without interaction verbs", |
|
schema="source", |
|
subset_id="cpi_niv", |
|
), |
|
BigBioConfig( |
|
name="cpi_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="CPI BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="cpi", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "cpi_source" |
|
|
|
def _info(self): |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"document_id": datasets.Value("string"), |
|
"document_orig_id": datasets.Value("string"), |
|
"sentences": [ |
|
{ |
|
"sentence_id": datasets.Value("string"), |
|
"sentence_orig_id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"entities": [ |
|
{ |
|
"entity_id": datasets.Value("string"), |
|
"entity_orig_id": datasets.Sequence(datasets.Value("string")), |
|
"type": datasets.Value("string"), |
|
"offset": datasets.Sequence(datasets.Value("int32")), |
|
"text": datasets.Value("string"), |
|
} |
|
], |
|
"pairs": [ |
|
{ |
|
"pair_id": datasets.Value("string"), |
|
"e1": datasets.Value("string"), |
|
"e2": datasets.Value("string"), |
|
"interaction": datasets.Value("bool"), |
|
} |
|
], |
|
} |
|
], |
|
} |
|
) |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
subset_url = _URLS[self.config.subset_id.upper()] |
|
subset_file = dl_manager.download_and_extract(subset_url) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"subset_file": subset_file}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, subset_file: Path) -> Iterator[Tuple[str, Dict]]: |
|
if self.config.schema == "source": |
|
for doc_id, document in self._read_source_examples(subset_file): |
|
yield doc_id, document |
|
|
|
elif self.config.name == "cpi_bigbio_kb": |
|
|
|
|
|
|
|
|
|
|
|
for doc_id, source_document in self._read_source_examples(subset_file): |
|
sentence_offset = 0 |
|
passages = [] |
|
entities = [] |
|
relations = [] |
|
|
|
|
|
for source_sentence in source_document["sentences"]: |
|
text = source_sentence["text"] |
|
passages.append( |
|
{ |
|
"id": source_sentence["sentence_id"], |
|
"text": [text], |
|
"offsets": [[sentence_offset + 0, sentence_offset + len(text)]], |
|
"type": "", |
|
} |
|
) |
|
|
|
|
|
for source_entity in source_sentence["entities"]: |
|
db_name = self.ENTITY_TYPE_TO_DB_NAME[source_entity["type"]] |
|
|
|
entity_offset = source_entity["offset"] |
|
entity_offset = [sentence_offset + entity_offset[0], sentence_offset + entity_offset[1]] |
|
|
|
entities.append( |
|
{ |
|
"id": source_entity["entity_id"], |
|
"type": source_entity["type"], |
|
"text": [source_entity["text"]], |
|
"offsets": [entity_offset], |
|
"normalized": [ |
|
{"db_name": db_name, "db_id": db_id} for db_id in source_entity["entity_orig_id"] |
|
], |
|
} |
|
) |
|
|
|
|
|
for source_pair in source_sentence["pairs"]: |
|
|
|
if not source_pair["interaction"]: |
|
continue |
|
|
|
relations.append( |
|
{ |
|
"id": source_pair["pair_id"], |
|
"type": "compound-protein-interaction", |
|
"arg1_id": source_pair["e1"], |
|
"arg2_id": source_pair["e2"], |
|
"normalized": [], |
|
} |
|
) |
|
|
|
sentence_offset += len(text) + 1 |
|
|
|
kb_document = { |
|
"id": source_document["document_id"], |
|
"document_id": source_document["document_orig_id"], |
|
"passages": passages, |
|
"entities": entities, |
|
"relations": relations, |
|
"events": [], |
|
"coreferences": [], |
|
} |
|
|
|
yield source_document["document_id"], kb_document |
|
|
|
def _read_source_examples(self, input_file: Path) -> Iterator[Tuple[str, Dict]]: |
|
""" |
|
Reads all instances of the given input file and parses them into the source format. |
|
""" |
|
root = ET.parse(input_file) |
|
for document in root.iter("document"): |
|
sentences = [] |
|
for sentence in document.iter("sentence"): |
|
entities = [] |
|
for entity in sentence.iter("entity"): |
|
char_offsets = entity.attrib["charOffset"].split("-") |
|
start, end = int(char_offsets[0]), int(char_offsets[1]) |
|
|
|
entities.append( |
|
{ |
|
"entity_id": entity.attrib["id"], |
|
"entity_orig_id": entity.attrib["origId"].split(","), |
|
"type": entity.attrib["type"], |
|
"text": entity.attrib["text"], |
|
"offset": [start, end], |
|
} |
|
) |
|
|
|
pairs = [] |
|
for pair in sentence.iter("pair"): |
|
pairs.append( |
|
{ |
|
"pair_id": pair.attrib["id"], |
|
"e1": pair.attrib["e1"], |
|
"e2": pair.attrib["e2"], |
|
"interaction": pair.attrib["interaction"].lower() == "true", |
|
} |
|
) |
|
|
|
sentences.append( |
|
{ |
|
"sentence_id": sentence.attrib["id"], |
|
"sentence_orig_id": sentence.attrib["origId"], |
|
"text": sentence.attrib["text"], |
|
"entities": entities, |
|
"pairs": pairs, |
|
} |
|
) |
|
|
|
document_dict = { |
|
"document_id": document.attrib["id"], |
|
"document_orig_id": document.attrib["origId"], |
|
"sentences": sentences, |
|
} |
|
|
|
yield document.attrib["id"], document_dict |
|
|