content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
import torch
def combined_loss(x, reconstructed_x, mean, log_var, args):
"""
MSE loss for reconstruction, KLD loss as per VAE.
Also want to output dimension (element) wise RCL and KLD
"""
# First, binary data
loss1 = torch.nn.BCEWithLogitsLoss(size_average=False)
loss1_per_element = torch.nn.BCEWithLogitsLoss(
size_average=False,
reduce=False
)
binary_range = args.binary_real_one_hot_parameters['binary_range']
reconstructed_x1 = reconstructed_x[:, binary_range[0]: binary_range[1]]
x1 = x[:, binary_range[0]: binary_range[1]]
RCL1 = loss1(reconstructed_x1, x1)
RCL1_per_element = loss1_per_element(reconstructed_x1, x1)
# Next, real data
loss2 = torch.nn.MSELoss(size_average=False)
loss2_per_element = torch.nn.MSELoss(size_average=False, reduce=False)
real_range = args.binary_real_one_hot_parameters['real_range']
reconstructed_x2 = reconstructed_x[:, real_range[0]: real_range[1]]
x2 = x[:, real_range[0]: real_range[1]]
RCL2 = loss2(reconstructed_x2, x2)
RCL2_per_element = loss2_per_element(reconstructed_x2, x2)
# Next, one-hot data
loss3 = torch.nn.CrossEntropyLoss(size_average=True)
loss3_per_element = torch.nn.CrossEntropyLoss(
size_average=True,
reduce=False
)
one_hot_range = args.binary_real_one_hot_parameters['one_hot_range']
reconstructed_x3 = reconstructed_x[:, one_hot_range[0]: one_hot_range[1]]
x3 = x[:, one_hot_range[0]: one_hot_range[1]]
# This has 3 one-hot's. lets split it up
x3_1 = x3[:, :19]
x3_2 = x3[:, 19:19 + 19]
x3_3 = x3[:, 19+19:]
reconstructed_x3_1 = reconstructed_x3[:, :19]
reconstructed_x3_2 = reconstructed_x3[:, 19:19 + 19]
reconstructed_x3_3 = reconstructed_x3[:, 19+19:]
_, labels1 = x3_1.max(dim=1)
_, labels2 = x3_2.max(dim=1)
_, labels3 = x3_3.max(dim=1)
# print(labels.size(), reconstructed_x3.size(), x3.size())
RCL3_1 = loss3(reconstructed_x3_1, labels1.long())
RCL3_per_element_1 = loss3_per_element(reconstructed_x3_1, labels1.long())
RCL3_2 = loss3(reconstructed_x3_2, labels2.long())
RCL3_per_element_2 = loss3_per_element(reconstructed_x3_2, labels2.long())
RCL3_3 = loss3(reconstructed_x3_3, labels3.long())
RCL3_per_element_3 = loss3_per_element(reconstructed_x3_3, labels3.long())
KLD = -0.5 * torch.sum(1 + log_var - mean.pow(2) - log_var.exp())
KLD_per_element = -0.5 * (1 + log_var - mean.pow(2) - log_var.exp())
RCL = RCL1 + RCL2 + RCL3_1 + RCL3_2 + RCL3_3
RCL_per_element = torch.cat(
(
RCL1_per_element,
RCL2_per_element,
RCL3_per_element_1.view([-1, 1]),
RCL3_per_element_2.view([-1, 1]),
RCL3_per_element_3.view([-1, 1])
),
1
)
return RCL + args.beta_vae*KLD, RCL, KLD, RCL_per_element, KLD_per_element | 162b2706f9643f66ebb0c3b000ea025d411029e2 | 3,097 |
def isfloat(string: str) -> bool:
"""
This function receives a string and returns if it is a float or not.
:param str string: The string to check.
:return: A boolean representing if the string is a float.
:rtype: bool
"""
try:
float(string)
return True
except (ValueError, TypeError):
return False | ac6d8fcbbcf6b8cb442c50895576f417618a7429 | 3,098 |
def hook(t):
"""Calculate the progress from download callbacks (For progress bar)"""
def inner(bytes_amount):
t.update(bytes_amount) # Update progress bar
return inner | d8228b9dec203aaa32d268dea8feef52e8db6137 | 3,102 |
import gzip
import pickle
def load_object(filename):
"""
Load saved object from file
:param filename: The file to load
:return: the loaded object
"""
with gzip.GzipFile(filename, 'rb') as f:
return pickle.load(f) | f7e15216c371e1ab05169d40ca4df15611fa7978 | 3,106 |
def response_map(fetch_map):
"""Create an expected FETCH response map from the given request map.
Most of the keys returned in a FETCH response are unmodified from the
request. The exceptions are BODY.PEEK and BODY partial range. A BODY.PEEK
request is answered without the .PEEK suffix. A partial range (e.g.
BODY[]<0.1000>) has the octet count (1000) removed, since that information
is provided in the literal size (and may be different if the data was
truncated).
"""
if not isinstance(fetch_map, dict):
fetch_map = dict((v, v) for v in fetch_map)
rmap = {}
for k, v in fetch_map.items():
for name in ('BODY', 'BINARY'):
if k.startswith(name):
k = k.replace(name + '.PEEK', name, 1)
if k.endswith('>'):
k = k.rsplit('.', 1)[0] + '>'
rmap[k] = v
return rmap | 42d992662e5bba62046c2fc1a50f0f8275798ef8 | 3,107 |
import numpy
def img_to_vector(img_fn, label=0):
"""Read the first 32 characters of the first 32 rows of an image file.
@return <ndarray>: a 1x(1024+1) numpy array with data and label, while the
label is defaults to 0.
"""
img = ""
for line in open(img_fn).readlines()[:32]:
img += line[:32]
# labels are always attached at the last position
itera = [_ for _ in img + str(label)]
return numpy.fromiter(itera, "f4") | f1d7161a0bc4d6ffebc6ee1b32eafb28c4d75f7f | 3,108 |
import json
def from_config(func):
"""Run a function from a JSON configuration file."""
def decorator(filename):
with open(filename, 'r') as file_in:
config = json.load(file_in)
return func(**config)
return decorator | 4342a5f6fab8f8274b9dfb762be3255672f4f332 | 3,109 |
def examine_mode(mode):
"""
Returns a numerical index corresponding to a mode
:param str mode: the subset user wishes to examine
:return: the numerical index
"""
if mode == 'test':
idx_set = 2
elif mode == 'valid':
idx_set = 1
elif mode == 'train':
idx_set = 0
else:
raise NotImplementedError
return idx_set | 4fee6f018cacff4c760cb92ef250cad21b497697 | 3,110 |
def add_classification_categories(json_object, classes_file):
"""
Reads the name of classes from the file *classes_file* and adds them to
the JSON object *json_object*. The function assumes that the first line
corresponds to output no. 0, i.e. we use 0-based indexing.
Modifies json_object in-place.
Args:
json_object: an object created from a json in the format of the detection API output
classes_file: the list of classes that correspond to the output elements of the classifier
Return:
The modified json_object with classification_categories added. If the field 'classification_categories'
already exists, then this function is a no-op.
"""
if ('classification_categories' not in json_object.keys()) or (len(json_object['classification_categories']) == 0):
# Read the name of all classes
with open(classes_file, 'rt') as fi:
class_names = fi.read().splitlines()
# remove empty lines
class_names = [cn for cn in class_names if cn.strip()]
# Create field with name *classification_categories*
json_object['classification_categories'] = dict()
# Add classes using 0-based indexing
for idx, name in enumerate(class_names):
json_object['classification_categories']['%i'%idx] = name
else:
print('WARNING: The input json already contains the list of classification categories.')
return json_object | ef92902210f275238271c21e20f8f0eec90253b0 | 3,111 |
import os
def _DevNull():
"""On Windows, sometimes the inherited stdin handle from the parent process
fails. Workaround this by passing null to stdin to the subprocesses commands.
This function can be used to create the null file handler.
"""
return open(os.devnull, 'r') | dc815c172fd45dee4b0ed47cbd9497ce7e643972 | 3,112 |
def sumdigits(a: int):
"""Sum of the digits of an integer"""
return sum(map(int, str(a))) | 018bcc429e6ea3842fd9e9e2580820aed29bc0aa | 3,113 |
def get_hostname():
"""Returns the hostname, from /etc/hostname."""
hostname = ""
try:
with open('/etc/hostname') as f:
hostname = f.read().rstrip()
if len(hostname) == 0:
hostname = "Unknown"
except:
hostname = "Unknown"
return hostname | 4cd4ffc1c8c56bc2e440443fdbc315d27fb94033 | 3,114 |
def is_valid_body(val):
"""Body must be a dictionary."""
return isinstance(val, dict) | ef3a605e1e84ce9d74f77c07799d1abb58aaf61a | 3,115 |
def _vba_to_python_op(op, is_boolean):
"""
Convert a VBA boolean operator to a Python boolean operator.
"""
op_map = {
"Not" : "not",
"And" : "and",
"AndAlso" : "and",
"Or" : "or",
"OrElse" : "or",
"Eqv" : "|eq|",
"=" : "|eq|",
">" : ">",
"<" : "<",
">=" : ">=",
"=>" : ">=",
"<=" : "<=",
"=<" : "<=",
"<>" : "|neq|",
"is" : "|eq|"
}
if (not is_boolean):
op_map["Not"] = "~"
op_map["And"] = "&"
op_map["AndAlso"] = "&"
op_map["Or"] = "|"
op_map["OrElse"] = "|"
return op_map[op] | a6ed0c65c6c2d2635f14fb664540eaf283ee4065 | 3,116 |
def get_label_number(window):
"""This method assigns to each label of a window a number."""
mode_list = ["bike", "car", "walk", "bus", "train"]
current_label_number = 0
for mode in enumerate(mode_list):
if window[1] == mode[1]:
current_label_number = mode[0]
return current_label_number | 5ed3c683e8619e1b07857992f54079bc68fdfa58 | 3,117 |
import copy
import json
import os
def remap_classes(dataset, class_map):
""" Replaces classes of dataset based on a dictionary"""
class_new_names = list(set(class_map.values()))
class_new_names.sort() # NOTE sort() is a NoneType return method, it sorts the list without outputting new vars
class_originals = copy.deepcopy(dataset['categories'])
dataset['categories'] = [] # removing all dependencies
class_ids_map = {} # map from old id to new id
# Check whether the category has background or not, assign index 0. Useful for panoptic segmentation.
has_background = False
if 'Background' in class_new_names:
# Check whether the backgroun category has index zero.
if class_new_names.index('Background') != 0:
class_new_names.remove('Background')
class_new_names.insert(0, 'Background')
has_background = True
# Catching duplicates - TACO had duplicates for id 4040 and 309. Re-id'd
id_ann_all = []
id_ann_repeated = []
for index_old, ann_old in enumerate(dataset['annotations']):
if ann_old['id'] in id_ann_all:
# if found a duplicate, re-id at the end
id_ann_repeated.append(ann_old['id'])
ann_old['id'] = len(dataset['annotations'])+len(id_ann_repeated)-1
else:
id_ann_all.append(ann_old['id'])
print(f'Found {len(id_ann_repeated)} annotations repeated.'
f'\nPlease double check input file, annotation id(s) {id_ann_repeated} are duplicated!\n')
# Replace categories, iterating through every class name
for id_new, class_new_name in enumerate(class_new_names):
# Make sure id:0 is reserved for background
id_rectified = id_new
if not has_background:
id_rectified += 1
# Creating new category dictionary, using new category ID and the new class name
category = {
'supercategory': '',
'id': id_rectified, # Background has id=0
'name': class_new_name,
}
dataset['categories'].append(category) # assigning new categories
# Map class names
for class_original in class_originals:
# If the new class exists in the value of the class map dict, create new class id
if class_map[class_original['name']] == class_new_name:
class_ids_map[class_original['id']] = id_rectified
# Update annotations category id tag
for ann in dataset['annotations']:
ann['category_id'] = class_ids_map[ann['category_id']]
# Saving the newly created file as a JSON file
num_classes = str(len(class_new_names))
ann_out_path = './data' + '/' + 'ann_'+ 'map_to_' + num_classes +'.json'
with open(ann_out_path, 'w+') as f:
f.write(json.dumps(dataset))
# return path to new file, for loading somewhere else.
return str(os.path.abspath(ann_out_path)) | fd3c971221a102f296c76f72d6296ebf0a0e4763 | 3,118 |
def shave_bd(img, bd):
"""
Shave border area of spatial views. A common operation in SR.
:param img:
:param bd:
:return:
"""
return img[bd:-bd, bd:-bd, :] | 4b822c5e57787edb74955fd350ad361080b8640b | 3,119 |
from typing import Dict
from typing import Any
def _apply_modifier(s: str, modifier: str, d: Dict[Any, str]) -> str:
"""
This will search for the ^ signs and replace the next
digit or (digits when {} is used) with its/their uppercase representation.
:param s: Latex string code
:param modifier: Modifier command
:param d: Dict to look upon
:return: New text with replaced text.
"""
s = s.replace(modifier, "^")
newtext = ""
mode_normal, mode_modified, mode_long = range(3)
mode = mode_normal
for ch in s:
if mode == mode_normal and ch == '^':
mode = mode_modified
continue
elif mode == mode_modified and ch == '{':
mode = mode_long
continue
elif mode == mode_modified:
newtext += d.get(ch, ch)
mode = mode_normal
continue
elif mode == mode_long and ch == '}':
mode = mode_normal
continue
if mode == mode_normal:
newtext += ch
else:
newtext += d.get(ch, ch)
return newtext | c54a2c66ff6ee768e588b14472fa5707edf9bc56 | 3,121 |
def adjust_learning_rate(optimizer, iteration, epoch_size, hyp, epoch, epochs):
"""adjust learning rate, warmup and lr decay
:param optimizer: optimizer
:param gamma: gamma
:param iteration: iteration
:param epoch_size: epoch_size
:param hyp: hyperparameters
:param epoch: epoch
:param epochs: the number of epochs
:return: lr
"""
step_index = 0
if epoch < 6:
# The first 6 epochs carried out warm up
learning_rate = 1e-6 + (hyp['lr0'] - 1e-6) * iteration / (epoch_size * 2)
else:
if epoch > epochs * 0.5:
# At 50% of the epochs, the learning rate decays in Gamma
step_index = 1
if epoch > epochs * 0.7:
# At 70% of the epochs, the learning rate decays in Gamma^2
step_index = 2
learning_rate = hyp['lr0'] * (0.1 ** (step_index))
for param_group in optimizer.param_groups:
param_group['lr'] = learning_rate
return learning_rate | c90c61fcecca99d31214c96cdf7d96b6ba682daa | 3,122 |
def generate_dict_entry(key, wordlist):
"""Generate one entry of the python dictionary"""
entry = " '{}': {},\n".format(key, wordlist)
return entry | 57ab3c063df0bde1261602f0c6279c70900a7a88 | 3,124 |
def line(value):
"""
| Line which can be used to cross with functions like RSI or MACD.
| Name: line\_\ **value**\
:param value: Value of the line
:type value: float
"""
def return_function(data):
column_name = f'line_{value}'
if column_name not in data.columns:
data[column_name] = value
return data[column_name].copy()
return return_function | 07b4f9671ae06cf63c02062a9da4eb2a0b1a265a | 3,125 |
def _is_hangul_syllable(i):
"""
Function for determining if a Unicode scalar value i is within the range of Hangul syllables.
:param i: Unicode scalar value to lookup
:return: Boolean: True if the lookup value is within the range of Hangul syllables, otherwise False.
"""
if i in range(0xAC00, 0xD7A3 + 1): # Range of Hangul characters as defined in UnicodeData.txt
return True
return False | 793519ec33a8920ea13328b0e5a4f814c859b0d3 | 3,127 |
def validate_model(model):
"""
Validate a single data model parameter or a full data model block by
recursively calling the 'validate' method on each node working from
the leaf nodes up the tree.
:param model: part of data model to validate
:type model: :graphit:GraphAxis
:return: overall successful validation
:rtype: :py:bool
"""
allnodes = model.nodes.keys()
leaves = model.leaves(return_nids=True)
done = []
def _walk_ancestors(nodes, success=True):
parents = []
for node in nodes:
node = model.getnodes(node)
# Continue only if the node was found and it has a 'validate' method
if not node.empty() and hasattr(node, 'validate'):
val = node.validate()
done.append(node.nid)
if not val:
return False
pnid = node.parent().nid
if pnid not in done and pnid in allnodes:
parents.append(pnid)
if parents:
return _walk_ancestors(set(parents), success=success)
return success
# Recursively walk the tree from leaves up to root.
return _walk_ancestors(leaves) | 009c629fe80af65f574c698567cb6b5213e9c888 | 3,128 |
import os
def __modules_with_root_module_path(path):
"""
Returns all modules beneath the root module path. This treats all
directories as packages regardless of whether or not they include
a __init__.py.
"""
modules = []
if os.path.isfile(path) and os.path.splitext(path)[1] == '.py' and os.path.basename(path) != '__init__.py':
name = os.path.splitext(os.path.basename(path))[0]
modules.append(name)
elif os.path.isdir(path):
pkg_name = os.path.basename(path)
modules.append(pkg_name)
for ff in os.listdir(path):
modules.extend(['.'.join([pkg_name, m]) for m in __modules_with_root_module_path(os.path.join(path, ff))])
return modules | 96086c8f8e7a277033086c2da6a3bdad16c41756 | 3,129 |
def is_pull_request_merged(pull_request):
"""Takes a github3.pulls.ShortPullRequest object"""
return pull_request.merged_at is not None | 0fecf82b96f7a46cfb4e9895897bd4998d6f225b | 3,130 |
def format_data_hex(data):
"""Convert the bytes array to an hex representation."""
# Bytes are separated by spaces.
return ' '.join('%02X' % byte for byte in data) | 27239052d9ca0b12c19977e79d512e0cab04182e | 3,134 |
def sort_dict(original):
"""Recursively sorts dictionary keys and dictionary values in alphabetical order"""
if isinstance(original, dict):
res = (
dict()
) # Make a new "ordered" dictionary. No need for Collections in Python 3.7+
for k, v in sorted(original.items()):
res[k] = v
d = res
else:
d = original
for k in d:
if isinstance(d[k], str):
continue
if isinstance(d[k], list) and len(d[k]) > 1 and isinstance(d[k][0], str):
d[k] = sorted(d[k])
if isinstance(d[k], dict):
d[k] = sort_dict(d[k])
if isinstance(d[k], list) and len(d[k]) >= 1 and isinstance(d[k][0], dict):
for i in range(len(d[k])):
d[k][i] = sort_dict(d[k][i])
return d | 8c194af76160b0e4d3bad135720e051a4d4622b0 | 3,135 |
def train_classifier(classifier, features, labels):
"""This function must concern itself with training the classifier
on the specified data."""
return classifier.fit(features, labels) | ef74548aeb6e245d8728caf3205163c249046aae | 3,136 |
from typing import Dict
from typing import List
import math
def best_broaders(supers_for_all_entities: Dict,
per_candidate_links_and_supers: List[Dict],
num_best: int = 5,
super_counts_field: str = "broader_counts",
doprint=False,
representativeness_threshold=0.1):
"""
Returns the best matching super for a candidate class, according to a list of supers for entities in the class
and entities in the whole corpus. If comparing to a taxonomy, a super is a broader.
@param super_counts_field:
@param super_counts: a dictionary that has, for every possible entity, the supers it belongs to
@param per_candidate_links_and_supers: a list of dictionaries, one per candidate. Fro each, at least
two fields are expected "entities" containing the list of entities, and that given by super_counts_field
which is, in turn, a dictionary whose keys are supers and whose values are the number of entities in that
candidate having this broad
@param num_best: maximum number of best matching supers to be returned
@return: for every candidate class, the num_best best matching supers and their log odds ratio
"""
result = []
global_counts = dict()
for ent, bros in supers_for_all_entities.items():
for bro in bros:
global_counts[bro] = global_counts.get(bro, 0) + 1
onlytopmost = []
for can in per_candidate_links_and_supers:
# For this entity, the following dictionaries have an element for every possible super
# Using notation from the paper
# T_cc : The number of entities narrower to a candidate which are tagged with NER typeT
T_cc = {x: y for x, y in can[super_counts_field].items()
if y > representativeness_threshold * len(can["entities"])}
if len(T_cc) == 0:
T_cc = {x: y for x, y in can[super_counts_field].items()}
# T_w : is the number of entities in the wholecorpus tagged with T
T_w = {y: global_counts[y] for y in T_cc.keys()}
# w : the total number of entities in the whole corpus
w = float(len(supers_for_all_entities))
# cc : the total number of entities in this candidate
cc = float(len(can["entities"]))
# dict of the form super : log_odds
log_odds_per_super = {x: math.log((T_cc[x] / cc) / (T_w[x] / w))
for x in T_cc.keys()}
logslist = list(log_odds_per_super.items())
logslist.sort(key=lambda x: x[1])
logslist.reverse()
maxbroads = min(len(logslist), num_best)
logodds = []
for bi in range(maxbroads):
logodds.append({"candidatesbroader": logslist[bi][0],
"loggods": logslist[bi][1]})
can["log_odds"] = logodds
if doprint:
print("\t\t---", ", ".join([str(x[1]) for x in logslist[:maxbroads]]))
if len(logslist) > 0:
onlytopmost.append(logslist[0][1])
can["best_match_broader"] = logslist[0][0]
else:
onlytopmost.append(None)
can["best_match_broader"] = None
return onlytopmost | 9aa9826c43e67a28eeca463b107296e093709246 | 3,137 |
import os
def _NormalizedSource(source):
"""Normalize the path.
But not if that gets rid of a variable, as this may expand to something
larger than one directory.
Arguments:
source: The path to be normalize.d
Returns:
The normalized path.
"""
normalized = os.path.normpath(source)
if source.count('$') == normalized.count('$'):
source = normalized
return source | 5ecaeddf2c3941bbfb0d89ee902a961f7aeab838 | 3,138 |
import re
def is_heading(line):
"""Determine whether a given line is a section header
that describes subsequent lines of a report.
"""
has_cattle = re.search(r'steer?|hfrs?|calves|cows?|bulls?', line, re.IGNORECASE)
has_price = re.search(r'\$[0-9]+\.[0-9]{2}', line)
return bool(has_cattle) and not bool(has_price) | ccbc80f7db61f7ba82aa88e54112d1995d457764 | 3,139 |
def merge_dicts(dict1, dict2):
""" _merge_dicts
Merges two dictionaries into one.
INPUTS
@dict1 [dict]: First dictionary to merge.
@dict2 [dict]: Second dictionary to merge.
RETURNS
@merged [dict]: Merged dictionary
"""
merged = {**dict1, **dict2}
return merged | 67e96ba9c9831e6e2aa4bbd6cd8b8d1d5edb93c4 | 3,140 |
import itertools
def gen_positions(n, n_boulders):
"""Generates state codes for boulders. Includes empty rows
Parameters:
n: number of rows/columns
n_boulders: number of boulders per row
return value:
Possible boulder and alien states
"""
boulder_positions=[]; b_p=[]
alien_positions_with_0=["{}1{}".format('0'*(n-i-1),'0'*(i)) for i in range(n)]+['0'*n]
if n_boulders==1:
return alien_positions_with_0, alien_positions_with_0[0:n]
else:
positions=[]
position_index=list(itertools.combinations(range(n), n_boulders))
for tup in position_index:
pos=''
for i in range(n):
if i in tup:
pos+='1'
else:
pos+='0'
positions.append(pos)
if '0'*n not in boulder_positions:
positions.append('0'*n)
return positions, alien_positions_with_0[0:n] | 0a20594f2e021bf8e190f6c7c726159fde0b8367 | 3,141 |
def put_path(components, value):
"""Recursive function to put value in component"""
if len(components) > 1:
new = components.pop(0)
value = put_path(components, value)
else:
new = components[0]
return {new: value} | 77db4064a77cf1cdcde1d74d901410525722b66e | 3,143 |
def lookup_material_probase(information_extractor, query, num):
"""Lookup material in Probase"""
material_params = {
'instance': query,
'topK': num
}
result = information_extractor.lookup_probase(material_params)
rank = information_extractor.rank_probase_result_material(result)
return rank | 9cecf99e3a9689f85788df21ef01d4e86c9a392d | 3,144 |
import traceback
import sys
def get_error_info():
"""Return info about last error."""
msg = "{0}\n{1}".format(str(traceback.format_exc()), str(sys.exc_info()))
return msg | 539a26f0a6bd6b733aa6e6ff1325faac6a32be12 | 3,146 |
import os
def append_source_filess(index_filename, source_files, driver):
"""This appends the paths to different source files to the temporary index file
For example
SRCSRV: source files ---------------------------------------
c:\php-sdk\phpdev\vc15\x86\php-7.2.14-src\ext\pdo_sqlsrv\pdo_dbh.cpp*pdo_sqlsrv/pdo_dbh.cpp
c:\php-sdk\phpdev\vc15\x86\php-7.2.14-src\ext\pdo_sqlsrv\pdo_init.cpp*pdo_sqlsrv/pdo_init.cpp
... ...
c:\php-sdk\phpdev\vc15\x86\php-7.2.14-src\ext\pdo_sqlsrv\shared\core_stream.cpp*shared/core_stream.cpp
c:\php-sdk\phpdev\vc15\x86\php-7.2.14-src\ext\pdo_sqlsrv\shared\core_util.cpp*shared/core_util.cpp
SRCSRV: end ------------------------------------------------
"""
failed = False
with open(index_filename, 'a') as idx_file:
idx_file.write('SRCSRV: source files ---------------------------------------' + os.linesep)
with open(source_files, 'r') as src_file:
for line in src_file:
pos = line.find('shared')
if (pos > 0): # it's a nested folder, so it must be positive
relative_path = line[pos:]
src_line = line[:-1] + '*' + relative_path.replace('\\', '/')
else: # not a file in the shared folder
pos = line.find(driver)
if (pos <= 0):
print('ERROR: Expected to find', driver, 'in', line)
failed = True
break
else:
relative_path = line[pos:]
src_line = line[:-1] + '*' + relative_path.replace('\\', '/')
idx_file.write(src_line)
idx_file.write('SRCSRV: end ------------------------------------------------' + os.linesep)
return failed | e26252740c2c64b581d4be56e25086216bc36e1b | 3,147 |
def an(pos=5):
"""
Alineamiento del texto.
@pos:
1: Abajo izquierda
2: Abajo centro
3: Abajo derecha
4: Mitad derecha
5: Mitad centro
6: Mitad derecha
7: Arriba izquierda
8: Arriba centro
9: Arriba derecha
"""
apos = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
if pos not in apos:
raise ValueError('\n\nan(pos):\n<pos> solo acepta los '
'sigientes valores: ' + str(apos))
else:
return '\\an{:d}'.format(pos) | fbe1e89282ebdf7b4977bee295e2cac7735bd652 | 3,148 |
import logging
def create_logger(logfile=r"/tmp/tomoproc.log"):
"""Default logger for exception tracking"""
logger = logging.getLogger("tomoproc_logger")
logger.setLevel(logging.INFO)
# create the logging file handler
fh = logging.FileHandler(logfile)
fh.setFormatter(
logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
)
# add handler to logger object
logger.addHandler(fh)
return logger | a0c005c39af9d24d7198790cf0cfe31a1b6395a0 | 3,149 |
import torch
def masks_empty(sample, mask_names):
""" Tests whether a sample has any non-masked values """
return any(not torch.any(sample[name] != 0) for name in mask_names) | 4c13b123fe6f5a17c3cd2ee673c54de331af7b23 | 3,152 |
def listSplit(aList, n):
"""将一个列表以n个元素为一个单元进行均分,返回嵌套列表"""
return [aList[i:i+n] for i in range(0,len(aList),n)] | 936d4ff5b3bbbc39c57c01dc6a12e42b7dc6e0de | 3,153 |
def _add_left_zeros(number, iteration_digits):
"""Add zeros to the left side of the experiment run number.
Zeros will be added according to missing spaces until iterations_digits are
reached.
"""
number = str(number)
return f'{"0" * (iteration_digits - len(number))}{number}' | e3f86a7e7f276ceff4eb662a3f5bc364b4d10ea3 | 3,154 |
def default_data_to_device(
input, target=None, device: str = "cuda", non_blocking: bool = True
):
"""Sends data output from a PyTorch Dataloader to the device."""
input = input.to(device=device, non_blocking=non_blocking)
if target is not None:
target = target.to(device=device, non_blocking=non_blocking)
return input, target | 8dafddbd52b54a576ddc67d7d79af4372fbd57dc | 3,155 |
def vec_add(iter_a, iter_b):
"""element wise addition"""
if len(iter_a) != len(iter_b):
raise ValueError
return (a + b for a, b in zip(iter_a, iter_b)) | f3e5bf50d61cfe518ee8b0eb838503a7f054baa8 | 3,156 |
def get_info(obj):
"""
get info from account obj
:type obj: account object
:param obj: the object of account
:return: dict of account info
"""
if obj:
return dict(db_instance_id=obj.dbinstance_id,
account_name=obj.account_name,
account_status=obj.account_status,
account_type=obj.account_type,
account_description=obj.account_description,
database_privileges=obj.database_privileges)
return {} | c654ab1bdb4b4bf20223172dae450e1e7e6a52b9 | 3,157 |
import collections
import random
def random_sample_with_weight_and_cost(population, weights, costs, cost_limit):
"""
Like random_sample_with_weight but with the addition of a cost and limit.
While performing random samples (with priority for higher weight) we'll keep track of cost
If cost exceeds the cost limit, we stop selecting
Basically the knapsack problem, but with deliberately random selection rather than dynamic optimization
"""
population_weights = {request: weight for (request, weight) in zip(population, weights)}
population_costs = {request: cost for (request, cost) in zip(population, costs)}
selected = []
not_selected = []
cost = 0
# Create a Counter from the population, assigning count by weight
counter = collections.Counter(population_weights)
while counter:
# Turn the Counter into a list for random selection from
# The list will have n repetitions of an element with weight n
choice = random.choice(list(counter.elements()))
choice_cost = population_costs[choice]
# If the cost would cause us to exceed our limit it shouldn't be selected
if cost + choice_cost > cost_limit:
not_selected.append(choice)
else:
cost += choice_cost
selected.append(choice)
# When chosen (whether selected or not), remove the element from the population
# Effectively removes all repetitions of the element
counter.pop(choice)
return selected, not_selected | 637afd1c0e83bbda879f41bd15feb0f65b238fb3 | 3,159 |
def _client_row_class(client: dict) -> str:
"""
Set the row class depending on what's in the client record.
"""
required_cols = ['trust_balance', 'refresh_trigger']
for col in required_cols:
if col not in client:
return 'dark'
try:
if client['trust_balance'] > client['refresh_trigger']:
return 'success'
except TypeError:
return 'dark'
return 'danger' | cd5ebd8fd64c7d994d6803df473cd317af65e9ac | 3,161 |
from typing import Iterable
from typing import List
def flatten(l: Iterable) -> List:
"""Return a list of all non-list items in l
:param l: list to be flattened
:return:
"""
rval = []
for e in l:
if not isinstance(e, str) and isinstance(e, Iterable):
if len(list(e)):
rval += flatten(e)
else:
rval.append(e)
return rval | 2d2202c21e6da7064491d55d5519c259d10f42c0 | 3,163 |
def create_vector_clock(node_id, timeout):
"""This method builds the initial vector clock for a new key.
Parameters
----------
node_id : int
the id of one node in the cluster
timeout : int
the expire timeout of the key
Returns
-------
dict
the vector clock as dictonary
"""
if node_id is not None and timeout is not None:
return {
"versions": [{"nodeId": node_id, "version": 1}],
"timestamp": timeout
}
else:
raise ValueError("You must gave the node id and the timeout.") | ed6df0e7e493d448f52e5fe47b55df8a1de94543 | 3,164 |
def stellar_radius(M, logg):
"""Calculate stellar radius given mass and logg"""
if not isinstance(M, (int, float)):
raise TypeError('Mass must be int or float. {} type given'.format(type(M)))
if not isinstance(logg, (int, float)):
raise TypeError('logg must be int or float. {} type given'.format(type(logg)))
if M < 0:
raise ValueError('Only positive stellar masses allowed.')
M = float(M)
return M/(10**(logg-4.44)) | 2afbd991c7461d7861370f18d90df840569da857 | 3,166 |
def set_plus_row(sets, row):
"""Update each set in list with values in row."""
for i in range(len(sets)):
sets[i].add(row[i])
return sets | 87f448dc3199c8d3137d5811dd184b3d2bd7cbe3 | 3,167 |
from typing import List
from typing import Union
def bytes_to_string(
bytes_to_convert: List[int], strip_null: bool = False
) -> Union[str, None]:
"""
Litteral bytes to string
:param bytes_to_convert: list of bytes in integer format
:return: resulting string
"""
try:
value = "".join(chr(i) for i in bytes_to_convert)
if strip_null:
return value.strip("\x00")
return value
# AttributeError when None object has no strip attribute
except (ValueError, TypeError, AttributeError):
return None | a04dee89fb8aed33b6069a7ff0ca8c497d0a6062 | 3,168 |
import math
def gauss_distribution(x, mu, sigma):
"""
Calculate value of gauss (normal) distribution
Parameters
----------
x : float
Input argument
mu :
Mean of distribution
sigma :
Standard deviation
Returns
-------
float
Probability, values from range [0-1]
"""
return 1 / (2 * math.sqrt(math.pi) * sigma) * math.exp(-(1 / 2) * ((x - mu) / sigma) ** 2) | 05cf2c14b337b45a81ddbe7655b4d7cf21e352cd | 3,169 |
def manhatten(type_profile, song_profile):
"""
Calculate the Manhatten distance between the profile of specific
output_colums value (e.g. specific composer) and the profile of a
song
"""
# Sort profiles by frequency
type_profile = type_profile.most_common()
song_profile = song_profile.most_common()
flat_type_profile = [ngram for (ngram, freq) in type_profile]
flat_song_profile = [ngram for (ngram, freq) in song_profile]
manhatten = 0
for i in range(len(flat_song_profile)):
ngram = flat_song_profile[i]
if ngram in flat_type_profile:
manhatten += abs(flat_type_profile.index(ngram) - i)
else:
manhatten += abs(len(flat_type_profile) - i)
return manhatten | 4703585f9f60551bf2a5e2762612d45efb47a453 | 3,171 |
def _mark_untranslated_strings(translation_dict):
"""Marks all untranslated keys as untranslated by surrounding them with
lte and gte symbols.
This function modifies the translation dictionary passed into it in-place
and then returns it.
"""
# This was a requirement when burton was written, but may be an unwanted
# side effect for other projects that adopt burton. We should replace it
# with something more flexible.
for key in translation_dict:
if key is not None and translation_dict[key] is None:
translation_dict[key] = u"\u2264" + key + u"\u2265"
return translation_dict | d15ac2d0fe8d50d5357bcc1e54b9666f7076aefd | 3,172 |
from typing import Dict
def serialize(name: str, engine: str) -> Dict:
"""Get dictionary serialization for a dataset locator.
Parameters
----------
name: string
Unique dataset name.
engine: string
Unique identifier of the database engine (API).
Returns
-------
dict
"""
return {'name': name, 'database': engine} | 9ab11318050caf3feb4664310e491ed48e7e5357 | 3,175 |
def support_acctgroup_acctproject(version):
"""
Whether this Lustre version supports acctgroup and acctproject
"""
if version.lv_name == "es2":
return False
return True | 858ec772a90e66431731ffcdd145fa7e56daad02 | 3,177 |
from typing import AnyStr
import unicodedata
def normalize_nfc(txt: AnyStr) -> bytes:
"""
Normalize message to NFC and return bytes suitable for protobuf.
This seems to be bitcoin-qt standard of doing things.
"""
str_txt = txt.decode() if isinstance(txt, bytes) else txt
return unicodedata.normalize("NFC", str_txt).encode() | 12b6e037225878e0bbca1d52d9f58d57abb35746 | 3,180 |
def set_or_none(list_l):
"""Function to avoid list->set transformation to return set={None}."""
if list_l == [None]:
res = None
else:
res = set(list_l)
return res | ee5fb4539e63afc7fd8013610229d9ab784b88c5 | 3,184 |
import re
def case_mismatch(vm_type, param):
"""Return True if vm_type matches a portion of param in a case
insensitive search, but does not equal that portion;
return False otherwise.
The "portions" of param are delimited by "_".
"""
re_portion = re.compile(
"(^(%(x)s)_)|(_(%(x)s)_)|(_(%(x)s)$)" % dict(x=vm_type), re.IGNORECASE
)
found = re_portion.search(param)
if found:
param_vm_type = [x for x in found.groups()[1::2] if x][0]
return param_vm_type != vm_type
else:
return False | e7fb565ac6e10fd15dd62a64fbf7f14a8bcfde6b | 3,185 |
import math
def perm(x, y=None):
"""Return the number of ways to choose k items from n items without repetition and with order."""
if not isinstance(x, int) or (not isinstance(y, int) and y is not None):
raise ValueError(f"Expected integers. Received [{type(x)}] {x} and [{type(y)}] {y}")
return math.perm(x, y) | c9ad65c6ce3cc3e5ba488c5f2ddd1aabbdc7da6a | 3,186 |
def _padwithzeros(vector, pad_width, iaxis, kwargs):
"""Pad with zeros"""
vector[: pad_width[0]] = 0
vector[-pad_width[1] :] = 0
return vector | 1a3a9fc4fd3b0fc17a905fa9ecd283d60310655d | 3,187 |
from collections import deque
from typing import Iterable
from typing import Deque
def array_shift(data: Iterable, shift: int) -> Deque:
"""
left(-) or right(+) shift of array
>>> arr = range(10)
>>> array_shift(arr, -3)
deque([3, 4, 5, 6, 7, 8, 9, 0, 1, 2])
>>> array_shift(arr, 3)
deque([7, 8, 9, 0, 1, 2, 3, 4, 5, 6])
"""
deq = deque(data)
deq.rotate(shift)
return deq | c14e115808592808bc9b0cf20fa8bc3d5ece7768 | 3,189 |
import math
def parents(level, idx):
"""
Return all the (grand-)parents of the Healpix pixel idx at level (in nested format)
:param level: Resolution level
:param idx: Pixel index
:return: All the parents of the pixel
"""
assert idx < 12 * 2 ** (2 * level)
plpairs = []
for ind in range(level, 0, -1):
idx = int(math.floor(idx / 4))
plpairs.append(tuple((ind - 1, idx)))
level -= 1
return plpairs[::-1] | 355c3acffa07065de10049059ef064abefdd7ca0 | 3,190 |
def compare_data_identifiers(a, b):
"""Checks if all the identifiers match, besides those that are not in both lists"""
a = {tuple(key): value for key, value in a}
b = {tuple(key): value for key, value in b}
matching_keys = a.keys() & b.keys()
a = {k: v for k, v in a.items() if k in matching_keys}
b = {k: v for k, v in b.items() if k in matching_keys}
return a == b | f0f5f08e4cc685b62b2af19e0c724561988ed1b9 | 3,191 |
def canonical_order(match):
"""
It does not make sense to define a separate bond between atoms 1 and 2,
and between atoms 2 and 1. This function will swap the atoms in the bond
if the first atom > second atom.
"""
# match[0][0:2] contains the ID numbers for the 2 atoms in the match
atom0 = match[0][0]
atom1 = match[0][1]
# match[1][0:1] contains the ID numbers for the 1 bond
bond0 = match[1][0]
if atom0 < atom1:
# return ((atom0, atom1), (bond0)) same thing as:
return match
else:
return ((atom1, atom0), (bond0)) | ea268fedaa365e0fad3ea49944cc1d1bb5fa7a51 | 3,192 |
from typing import List
from pathlib import Path
def files_filter_ext(files: List[Path], ext: str) -> List[Path]:
"""Filter files from a list matching a extension.
Args:
files: List of files.
ext: Extension to filter.
Returns:
List of files that have the extension.
"""
return [f for f in files if f.suffix == ext] | 0ed134583f9fa4868111d1475b8be4d67ba4feb7 | 3,193 |
import os
def input_files_exist(paths):
"""Ensure all the input files actually exist.
Args:
paths (list): List of paths.
Returns:
bool: True if they all exist, False otherwise.
"""
for path in paths:
if not os.path.isfile(path):
return False
return True | 7feba57335cdf435950bef1e01b9ab09c1b5f9c1 | 3,195 |
import requests
def get_qid_for_title(title):
"""
Gets the best Wikidata candidate from the title of the paper.
"""
api_call = f"https://www.wikidata.org/w/api.php?action=wbsearchentities&search={title}&language=en&format=json"
api_result = requests.get(api_call).json()
if api_result["success"] == 1:
return(api_result["search"][0]["id"]) | 663db71c7a1bbf1617941ba81c5fa3b7d359e00b | 3,196 |
def get_ind_sphere(mesh, ind_active, origin, radius):
"""Retreives the indices of a sphere object coordintes in a mesh."""
return (
(mesh.gridCC[ind_active, 0] <= origin[0] + radius)
& (mesh.gridCC[ind_active, 0] >= origin[0] - radius)
& (mesh.gridCC[ind_active, 1] <= origin[1] + radius)
& (mesh.gridCC[ind_active, 1] >= origin[1] - radius)
& (mesh.gridCC[ind_active, 2] <= origin[2] + radius)
& (mesh.gridCC[ind_active, 2] >= origin[2] - radius)
) | 9e246c3c0d3d7750a668476f0d0d90b28c46fc27 | 3,197 |
def tidy_output(differences):
"""Format the output given by other functions properly."""
out = []
if differences:
out.append("--ACLS--")
out.append("User Path Port Protocol")
for item in differences:
#if item[2] != None: #En algunos casos salían procesos con puerto None
out.append("%s %s %s %s" % item)
# En item queda un elemento que es el protocolo
# no se usa en la salida normal
return out | 2a7007ae16e91b111f556ea95eedc466a8606494 | 3,198 |
import os
def find_files(top, exts):
"""Return a list of file paths with one of the given extensions.
Args:
top (str): The top level directory to search in.
exts (tuple): a tuple of extensions to search for.
Returns:
a list of matching file paths.
"""
return [os.path.join(dirpath, name)
for dirpath, dirnames, filenames in os.walk(top)
for name in filenames
if name.endswith(exts)] | bb13d91b234b7411fd51e66fda96d5622ec11a1d | 3,199 |
def add_hp_label(merged_annotations_column, label_type):
"""Adds prefix to annotation labels that identify the annotation as
belonging to the provided label_type (e.g. 'h@' for host proteins).
Parameters
----------
merged_annotations_column : array-like (pandas Series))
An array containing sets of annotations that need to be labeled.
e.g.
0 {GO:0010008, GO:0070062, IPR036865, GO:0048471...
1 {GO:0006351, GO:0070062, GO:0007623, GO:004851...
2 {GO:0019888, GO:0006470, GO:0001754, GO:009024...
label_type : str
The prefix to be appended (without the "@" separator).
Returns
-------
labeled_annotations : array-like (pandas Series)
A new pandas Series where all annotations have received a prefix.
"""
labeled_annotations = merged_annotations_column.map(
lambda x: set([label_type + '@' + i for i in x]))
return labeled_annotations | 648f548931a1fae5d19291d81f2355a0a00877c3 | 3,200 |
def return_union_close():
"""union of statements, close statement"""
return " return __result" | c1a1b6b6b1164a641a7f9e598eec346af13f2aa7 | 3,201 |
def get_val(tup):
"""Get the value from an index-value pair"""
return tup[1] | 5966bbbb28006c46eaf11afaef152573aaaa8d2a | 3,202 |
import os
import subprocess
def repoinit(testconfig, profiler=None):
"""Determines revision and sets up the repo. If given the profiler optional
argument, wil init the profiler repo instead of the default one."""
revision = ''
#Update the repo
if profiler == "gnu-profiler":
if testconfig.repo_prof is not None:
os.chdir(testconfig.repo_prof)
else:
raise ValueError('Profiling repo is not defined')
elif profiler == "google-profiler":
if testconfig.repo_gprof is not None:
os.chdir(testconfig.repo_gprof)
else:
raise ValueError('Profiling repo is not defined')
else:
os.chdir(testconfig.repo)
#Checkout specific branch, else maintain main branch
if testconfig.branch != 'master':
subprocess.call(['git', 'checkout', testconfig.branch])
rev, _ = subprocess.Popen(['git', 'rev-parse', 'HEAD'],\
stdout=subprocess.PIPE, stderr=subprocess.PIPE).communicate()
revision = str(rev).replace("\\n'", '').replace("b'", '')
else:
subprocess.call(['git checkout master'], shell=True)
#Check a specific revision. Else checkout master.
if testconfig.revision:
subprocess.call(['git', 'checkout', testconfig.revision])
revision = testconfig.revision
elif testconfig.branch == 'master':
subprocess.call(['git pull'], shell=True)
rev, _ = subprocess.Popen(['git rev-parse HEAD'], stdout=subprocess.PIPE,\
stderr=subprocess.PIPE, shell=True).communicate()
revision = str(rev).replace("\\n'", '').replace("b'", '')
return revision | b2348bb6ba6eb8284119a9b7bcbe162702338946 | 3,203 |
import argparse
def parse_args():
"""Parse input arguments
Return:
parsed arguments struncture
"""
parser = argparse.ArgumentParser()
subparsers = parser.add_subparsers(dest='type')
subparsers.required = True
parser_file = subparsers.add_parser('file')
parser_file.add_argument(
"-i", "--input", help="Input file name.", required=True)
parser_file.add_argument(
"-d", "--database", help="Token database.", required=True)
parser_file.add_argument(
"-o", "--output", help="Output file name.", required=True)
parser_file = subparsers.add_parser('serial')
parser_file.add_argument(
"-i", "--input", help="Input serial port name.", required=True)
parser_file.add_argument(
"-d", "--database", help="Token database.", required=True)
parser_file.add_argument(
"-o", "--output", help="Output file name. Write to stdout and to file.")
return parser.parse_args() | bb2fe92206bd786492dda2668ffa9c2d0d54004e | 3,204 |
import re
from typing import OrderedDict
def read_avg_residuemap(infile):
""" Read sequence definition from PSN avg file, returning sequence Map
:param infile: File handle pointing to WORDOM avgpsn output file
:return: Returns an internal.map.Map object mapping the .pdb
residues to WORDOM id's from "Seq" section of the avgpsn-file
"""
m_start = re.compile("^\*\*\* Seq \*\*\*")
m_end = re.compile("^============")
m_entry = re.compile("^\s*\d+\s+.:.\d+\s+\d+\.\d+\s*$")
residuemap = OrderedDict()
reading = False
for line in infile:
if reading:
# Stop reading if end of interaction strength section
if m_end.search(line):
break
else:
if m_entry.search(line):
[num, resname, normfact] = line.split()
residuemap[resname] = int(num)
# Start reading when header found
elif m_start.search(line):
reading = True
return residuemap | 92c4cbe53edcd3d894a038d7cb9308c653e37146 | 3,206 |
import re
def check_playlist_url(playlist_url):
"""Check if a playlist URL is well-formated.
Parameters
----------
playlist_url : str
URL to a YouTube playlist.
Returns
-------
str
If the URL is well-formated, return the playlist ID. Else return `None`.
"""
match = re.match(
r"https?://www\.youtube\.com/playlist\?list=(.+)",
playlist_url.strip()
)
if match is None:
raise ValueError("Incorrect URL: %s" % playlist_url)
return match.group(1) | b14808e3dc25fcb7f91e9b66ec5f31ae869c6ae5 | 3,212 |
def f(t, T):
"""
returns -1, 0, or 1 based on relationship between t and T
throws IndexError
"""
if(t > 0 and t < float(T/2)):
return 1
elif(t == float(T/2)):
return 0
elif(t > float(T/2) and t < T):
return -1
raise IndexError("Out of function domain") | f2365094d41d2a151322ad640dcf4b290dd1de79 | 3,213 |
def maxsubarray(list):
"""
Find a maximum subarray following this idea:
Knowing a maximum subarray of list[0..j]
find a maximum subarray of list[0..j+1] which is either
(I) the maximum subarray of list[0..j]
(II) or is a maximum subarray list[i..j+1] for some 0 <= i <= j
We can determine (II) in constant time by keeping a max
subarray ending at the current j.
This is done in the first if of the loop, where the max
subarray ending at j is max(previousSumUntilJ + array[j], array[j])
This works because if array[j] + sum so far is less than array[j]
then the sum of the subarray so far is negative (and less than array[j]
in case it is also negative) so it has a bad impact on the
subarray until J sum and we can safely discard it and start anew
from array[j]
Complexity (n = length of list)
Time complexity: O(n)
Space complexity: O(1)
"""
if len(list) == 0:
return (-1, -1, 0)
# keep the max sum of subarray ending in position j
maxSumJ = list[0]
# keep the starting index of the maxSumJ
maxSumJStart = 0
# keep the sum of the maximum subarray found so far
maxSum = list[0]
# keep the starting index of the current max subarray found
maxStart = 0
# keep the ending index of the current max subarray found
maxEnd = 0
for j in range(1, len(list)):
if maxSumJ + list[j] >= list[j]:
maxSumJ = maxSumJ + list[j]
else:
maxSumJ = list[j]
maxSumJStart = j
if maxSum < maxSumJ:
maxSum = maxSumJ
maxStart = maxSumJStart
maxEnd = j
return (maxSum, maxStart, maxEnd) | a991ca09c0594b0d47eb4dd8be44d093d593cd36 | 3,215 |
def sort_cipher_suites(cipher_suites, ordering):
"""Sorts the given list of CipherSuite instances in a specific order."""
if ordering == 'asc':
return cipher_suites.order_by('name')
elif ordering == 'desc':
return cipher_suites.order_by('-name')
else:
return cipher_suites | 5a554ba1e2e4d82f53f29c5a1c2f4d311f538889 | 3,216 |
import torch
def reward(static, tour_indices):
"""
Euclidean distance between all cities / nodes given by tour_indices
"""
# Convert the indices back into a tour
idx = tour_indices.unsqueeze(1).expand(-1, static.size(1), -1)
tour = torch.gather(static.data, 2, idx).permute(0, 2, 1)
# Ensure we're always returning to the depot - note the extra concat
# won't add any extra loss, as the euclidean distance between consecutive
# points is 0
start = static.data[:, :, 0].unsqueeze(1)
y = torch.cat((start, tour, start), dim=1)
# Euclidean distance between each consecutive point
tour_len = torch.sqrt(torch.sum(torch.pow(y[:, :-1] - y[:, 1:], 2), dim=2))
return tour_len.sum(1) | f7197bcfb3699cafa4df3c1430b4f9ee1bf53242 | 3,217 |
def abc19():
"""Solution to exercise C-1.19.
Demonstrate how to use Python’s list comprehension syntax to produce
the list [ a , b , c , ..., z ], but without having to type all 26 such
characters literally.
"""
a_idx = 97
return [chr(a_idx + x) for x in range(26)] | c9bb948ad57ddbc138dfbc0c481fabb45de620ba | 3,218 |
import os
import json
def _get_corpora_json_contents(corpora_file):
"""
Get the contents of corpora.json, or an empty dict
"""
exists = os.path.isfile(corpora_file)
if not exists:
print("Corpora file not found at {}!".format(corpora_file))
return dict()
with open(corpora_file, "r") as fo:
return json.loads(fo.read()) | d2a0dcf8bbbca573121237190b96c8d372d027b4 | 3,219 |
def moveTo(self, parent):
"""Move this element to new parent, as last child"""
self.getParent().removeChild(self)
parent.addChild(self)
return self | 40caa9681346db9a6cfb5c95fdb761a9f98e607a | 3,220 |
def is_num_idx(k):
"""This key corresponds to """
return k.endswith("_x") and (k.startswith("tap_x") or k.startswith("sig")) | bd4ed2c9c4a24ae423ec6c738d99b31ace6ec267 | 3,221 |
def conditional(condition, decorator):
""" Decorator for a conditionally applied decorator.
Example:
@conditional(get_config('use_cache'), ormcache)
def fn():
pass
"""
if condition:
return decorator
else:
return lambda fn: fn | 7c17ad3aaacffd0008ec1cf66871ea6755f7869a | 3,222 |
import statistics
def variance(data, mu=None):
"""Compute variance over a list."""
if mu is None:
mu = statistics.mean(data)
return sum([(x - mu) ** 2 for x in data]) / len(data) | 92f89d35c2ae5abf742b10ba838a381d6f74e92c | 3,223 |
def IMF_N(m,a=.241367,b=.241367,c=.497056):
"""
returns number of stars with mass m
"""
# a,b,c = (.241367,.241367,.497056)
# a=b=c=1/3.6631098624
if .1 <= m <= .3:
res = c*( m**(-1.2) )
elif .3 < m <= 1.:
res = b*( m**(-1.8) )
elif 1. < m <= 100.:
# res = a*( m**(-1.3)-100**(-1.3) )/1.3
res = a*( m**(-2.3) )
else:
res = 0
return res | 4d120af2840a793468335cddd867f6d29940d415 | 3,224 |
import random
def get_random_tcp_start_pos():
""" reachability area:
x = [-0.2; 0.4]
y = [-0.28; -0.1] """
z_up = 0.6
tcp_x = round(random.uniform(-0.2, 0.4), 4)
tcp_y = round(random.uniform(-0.28, -0.1), 4)
start_tcp_pos = (tcp_x, tcp_y, z_up)
# start_tcp_pos = (-0.2, -0.28, z_up)
return start_tcp_pos | adf87dec45bf5a81c321f94c93d45a67f0aeff0d | 3,226 |
def _to_system(abbreviation):
"""Converts an abbreviation to a system identifier.
Args:
abbreviation: a `pronto.Term.id`
Returns:
a system identifier
"""
try:
return {
'HP': 'http://www.human-phenotype-ontology.org/'
}[abbreviation]
except KeyError:
raise RuntimeError(
'system abbreviation \'%s\' is not supported' % abbreviation) | f43942b242e67866028a385e6614133dc25b31b0 | 3,227 |
def find_edges(mesh, key):
""" Temp replacement for mesh.findEdges().
This is painfully slow.
"""
for edge in mesh.edges:
v = edge.vertices
if key[0] == v[0] and key[1] == v[1]:
return edge.index | 98247b64a0e5671a7dbbf314f314cef2c5c8aae3 | 3,228 |
def _process_create_group(event: dict) -> list:
""" Process CreateGroup event. This function doesn't set tags. """
return [event['responseElements']['group']['groupName']] | 978b3ffc3c4aa72165914b79dc06cb7691c5c5a5 | 3,230 |
def egg_translator(cell):
"""If the cell has the DNA for harboring its offspring inside it, granting it additional food
and protection at the risk of the parent cell, it is an egg.
Active DNA: x,A,(C/D),x,x,x
"""
dna = cell.dna.split(',')
if dna[1] == 'A' and dna[2] == 'C':
return True
elif dna[1] == 'A' and dna[2] == 'D':
return True
else:
return False
del dna[:] | af0d9097c8a0b5002722c79d6ec8262a66cc375d | 3,231 |
import random
def randbit():
"""Returns a random bit."""
return random.randrange(2) | 4b47101df7368b7cb423920e6a5338b76ab4ecaa | 3,232 |
def calc_points(goals, assists):
"""
Calculate the total traditional and weighted points for all
players, grouped by player id.
Author: Rasmus Säfvenberg
Parameters
----------
goals : pandas.DataFrame
A data frame with total goals and weighted assists per player.
assists : pandas.DataFrame
A data frame with total assists and weighted assists per player.
Returns
-------
points : pandas.DataFrame
A data frame with total points and weighted points per player.
"""
# Specify columns to keep for merging
goals = goals[["PlayerId", "PlayerName", "Position", "Goals", "WeightedGoals"]]
assists = assists[["PlayerId", "PlayerName", "Position", "Assists", "WeightedAssists"]]
# Combine goals and assists
points = goals.merge(assists, on=["PlayerId", "PlayerName", "Position"],
how="outer")
# Fill missing values with 0 (some players only score goals etc.)
points.fillna(0, inplace=True)
# Calculate points = goals + assists
points["Points"] = points["Goals"] + points["Assists"]
# Calculate weighted points = weighted goals + weighted assists
points["WeightedPoints"] = points["WeightedGoals"] + points["WeightedAssists"]
# Sort by weighted points
points.sort_values("WeightedPoints", ascending=False, inplace=True)
return points | 1801cf2602a473bdf532e1c0ee58b883dc3e79d1 | 3,233 |
def rosenbrock_grad(x, y):
"""Gradient of Rosenbrock function."""
return (-400 * x * (-(x ** 2) + y) + 2 * x - 2, -200 * x ** 2 + 200 * y) | c7acf0bbe11a6d1cbb38b6853eb1b508e3846657 | 3,236 |
import os
import glob
def get_patient_dirs(root_dir):
"""
Function used to get the root director for all patients
:param root_dir: root director of all image data
:return patient_paths: list of all patient paths, one for each patient
"""
search_path = os.path.join(root_dir, '[0-1]', '*')
patient_paths = glob.glob(search_path)
return patient_paths | d0d38f02214175b867fd8bf8b1e13db8ee8a83f2 | 3,237 |
def digitize(n):
"""Convert a number to a reversed array of digits."""
l = list(str(n))
n_l = []
for d in l:
n_l.append(int(d))
n_l.reverse()
return n_l | e4355b68da41e4be87ce18b53afb2a406eb120c7 | 3,238 |