content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def read_csv_to_lol(full_path, sep=";"):
"""
Read csv file into lists of list.
Make sure to have a empty line at the bottom
"""
with open(full_path, 'r') as ff:
# read from CSV
data = ff.readlines()
# New line at the end of each line is removed
data = [i.replace("\n", "") for i in data]
# Creating lists of list
data = [i.split(sep) for i in data]
return data | e53c46c6a8eabaece788111530fbf859dd23133f | 708,118 |
import json
import sys
import os
def json_loads(data):
"""Load json data, allowing - to represent stdin."""
if data is None:
return ""
if data == "-":
return json.load(sys.stdin)
elif os.path.exists(data):
with open(data, 'r') as handle:
return json.load(handle)
else:
return json.loads(data) | f5bdad826578108adccc32ca93ecd474954bfb7d | 708,119 |
def make_predictions(clf_object,predictors_str,data_source):
"""make_predictions comes up with predictions
from given input data
Input:
clf_object
object
constructed classification model
predictors_str
nd str array
string array containing names
of predictors
data_source
ndarray
source of data
either from valid
or test
Output:
preds
ndarray
prediction classes based on
given input data
"""
preds = clf_object.predict(data_source[predictors_str])
return preds | ed5f29e65ddf3d7f7081b89e6f747925de944567 | 708,120 |
import random
import string
def generate_random_string(N):
"""
Generate a random string
Parameters
-------------
N
length of the string
Returns
-------------
random_string
Random string
"""
return ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(N)) | 3e2e672140e18546260a0882fa6cf06073bdf8e7 | 708,121 |
import re
def extract_charm_name_from_url(charm_url):
"""Extract the charm name from the charm url.
E.g. Extract 'heat' from local:bionic/heat-12
:param charm_url: Name of model to query.
:type charm_url: str
:returns: Charm name
:rtype: str
"""
charm_name = re.sub(r'-[0-9]+$', '', charm_url.split('/')[-1])
return charm_name.split(':')[-1] | 9905d6b5c7a2f5047bc939d1b6e23d128ee8984d | 708,122 |
def class_name(service_name: str) -> str:
"""Map service name to .pyi class name."""
return f"Service_{service_name}" | b4bed8a677f9eedfcd66d6d37078075b0967ea20 | 708,123 |
import re
def select_devices(devices):
""" 选择设备 """
device_count = len(devices)
print("Device list:")
print("0) All devices")
for i, d in enumerate(devices, start=1):
print("%d) %s\t%s" % (i, d['serial'], d['model']))
print("q) Exit this operation")
selected = input("\nselect: ")
nums = None
if selected == '0':
nums = range(0, device_count)
elif selected == 'q':
print("Exit this operation")
exit(-1)
else:
nums = []
for i in re.split(r'[\s+,]', selected):
if i.isdigit():
seq = int(i) - 1
if 0 <= seq < device_count:
nums.append(seq)
continue
print("error input: %s, retry again\n" % i)
return select_devices(devices)
return nums | 91c405c8a198deb01e8abecc592ac2286dc712fd | 708,124 |
def is_number(s):
"""
Check if it is a number.
Args:
s: The variable that needs to be checked.
Returns:
bool: True if float, False otherwise.
"""
try:
float(s)
return True
except ValueError:
return False | 071aeac26a5a907caf1764dc20d7de1c6408714b | 708,125 |
import itertools
def combineSets(listOfSets):
"""
Combines sets of strings by taking the cross product of the sets and \
concatenating the elements in the resulting tuples
:param listOfSets: 2-D list of strings
:returns: a list of strings
"""
totalCrossProduct = ['']
for i in range(len(listOfSets)):
currentProduct = []
for crossProduct in itertools.product(totalCrossProduct, listOfSets[i]):
currentProduct.append((crossProduct[0].strip() + ' ' + crossProduct[1].strip()).strip())
totalCrossProduct = currentProduct
return totalCrossProduct | 26a383d224716fd8f4cf8589607e2df1ccb82a7e | 708,126 |
def _GetTombstoneData(device, tombstone_file):
"""Retrieve the tombstone data from the device
Args:
device: An instance of DeviceUtils.
tombstone_file: the tombstone to retrieve
Returns:
A list of lines
"""
return device.old_interface.GetProtectedFileContents(
'/data/tombstones/' + tombstone_file) | 99322ea3d67e150f4433c713159eb7bc8069271f | 708,127 |
import time
def _strTogYear(v):
"""Test gYear value
@param v: the literal string
@return v
@raise ValueError: invalid value
"""
try:
time.strptime(v+"-01-01", "%Y-%m-%d")
return v
except:
raise ValueError("Invalid gYear %s" % v) | a65e04c2d3790d3d55bbc8788d6802e1aae1b78c | 708,128 |
import random
def giveHint(indexValue, myBoard):
"""Return a random matching card given the index of a card
and a game board"""
validMatches = []
card = myBoard[indexValue]
for c in myBoard:
if (card[0] == c[0]) and (myBoard.index(c) != indexValue):
validMatches.append(myBoard.index(c))
return random.choice(validMatches) | e578f40e7d7e2e17ddac53f9cfdc219e47c861cd | 708,129 |
async def make_getmatch_embed(data):
"""Generate the embed description and other components for a getmatch() command.
As with its parent, remember that this currently does not support non team-vs.
`data` is expected to be the output of `get_individual_match_data()`.
The following `dict` is returned:
```
{
"embed_description": str,
"footer": str,
"embed_color": int (as color hex),
}
```
"""
scores = data["individual_scores"]
team_1_score_strings = []
team_2_score_strings = []
for individual_score in scores:
#at first i thought doing this would make the actual score_string more readable
#now i'm not very sure
player_name = individual_score["user_name"]
score_val = individual_score["score"]
maxcombo = individual_score["combo"]
accuracy = individual_score["accuracy"]
count_300 = individual_score["hits"]["300_count"]
count_100 = individual_score["hits"]["100_count"]
count_50 = individual_score["hits"]["50_count"]
count_miss = individual_score["hits"]["miss_count"]
accuracy = '{:.2%}'.format(accuracy)
score_val = "{:,}".format(score_val)
maxcombo = "{:,}".format(maxcombo)
score_string = (f'**{player_name}** - {score_val} ({maxcombo}x) ({accuracy} - {count_300}/{count_100}/{count_50}/{count_miss})')
team_1_score_strings.append(score_string) if individual_score["team"] == "1" else team_2_score_strings.append(score_string)
team_1_score_string = "\n".join(team_1_score_strings)
team_2_score_string = "\n".join(team_2_score_strings)
winner_string = {
"Blue": f"Blue team wins by {'{:,}'.format(data['score_difference'])}!",
"Red": f"Red team wins by {'{:,}'.format(data['score_difference'])}!",
"Tie": "Tie!"}
winner_color = {
"Blue": 0x0000FF,
"Red": 0xFF0000,
"Tie": 0x808080}
embed_desc = (
f'**{winner_string[data["winner"]]}**\n\n'
f'__Blue Team__ ({"{:,}".format(data["team_1_score"])} points, {"{:,}".format(data["team_1_score_avg"])} average)\n'
f'{team_1_score_string}\n\n'
f'__Red Team__ ({"{:,}".format(data["team_2_score"])} points, {"{:,}".format(data["team_2_score_avg"])} average)\n'
f'{team_2_score_string}')
#footer stuff
scoring_types = {
'0': 'Score',
'1': 'Accuracy',
'2': 'Combo',
'3': 'Score v2'}
team_types = {
'0': 'Head-to-head',
'1': 'Tag Co-op',
'2': 'Team VS',
'3': 'Tag Team VS'}
play_modes = {
'0': 'osu!',
'1': 'Taiko',
'2': 'CTB',
'3': 'osu!mania'}
embed_footer = (f'Played at {data["start_time"]} UTC | '
f'Win condition: {scoring_types[data["scoring_type"]]} | '
f'{team_types[data["team_type"]]} | '
f'{play_modes[data["play_mode"]]}')
final = {
"embed_description": embed_desc,
"footer": embed_footer,
"embed_color": winner_color[data["winner"]],
}
return final | c37e0d6ee948259e4ad898d3cafb8e13b6452d80 | 708,130 |
import torch
def compute_inverse_interpolation_img(weights, indices, img, b, h_i, w_i):
"""
weights: [b, h*w]
indices: [b, h*w]
img: [b, h*w, a, b, c, ...]
"""
w0, w1, w2, w3 = weights
ff_idx, cf_idx, fc_idx, cc_idx = indices
k = len(img.size()) - len(w0.size())
img_0 = w0[(...,) + (None,) * k] * img
img_1 = w1[(...,) + (None,) * k] * img
img_2 = w2[(...,) + (None,) * k] * img
img_3 = w3[(...,) + (None,) * k] * img
img_out = torch.zeros(b, h_i * w_i, *img.shape[2:]).type_as(img)
ff_idx = torch.clamp(ff_idx, min=0, max=h_i * w_i - 1)
cf_idx = torch.clamp(cf_idx, min=0, max=h_i * w_i - 1)
fc_idx = torch.clamp(fc_idx, min=0, max=h_i * w_i - 1)
cc_idx = torch.clamp(cc_idx, min=0, max=h_i * w_i - 1)
img_out.scatter_add_(1, ff_idx[(...,) + (None,) * k].expand_as(img_0), img_0)
img_out.scatter_add_(1, cf_idx[(...,) + (None,) * k].expand_as(img_1), img_1)
img_out.scatter_add_(1, fc_idx[(...,) + (None,) * k].expand_as(img_2), img_2)
img_out.scatter_add_(1, cc_idx[(...,) + (None,) * k].expand_as(img_3), img_3)
return img_out | 6b69aa5ca372a9c8f976512191d4626919d71311 | 708,131 |
def decode(value):
"""Decode utf-8 value to string.
Args:
value: String to decode
Returns:
result: decoded value
"""
# Initialize key variables
result = value
# Start decode
if value is not None:
if isinstance(value, bytes) is True:
result = value.decode('utf-8')
# Return
return result | 9704678f6ff96de3b711758922c28f5ecbd11bc7 | 708,133 |
def _parse_none(arg, fn=None):
"""Parse arguments with support for conversion to None.
Args:
arg (str): Argument to potentially convert.
fn (func): Function to apply to the argument if not converted to None.
Returns:
Any: Arguments that are "none" or "0" are converted to None;
otherwise, returns the original value.
"""
if arg.lower() in ("none", "0"):
return None
return arg if fn is None else fn(arg) | 4ebd283eb9e2218e523ba185c4500c9879d5719d | 708,135 |
def generate_constraint(category_id, user):
"""
generate the proper basic data structure to express a constraint
based on the category string
"""
return {'year': category_id} | f55151a5b4b17bbf6eb697e1b1489ee4897f5db0 | 708,136 |
import os
def input_file_exists(filepath):
""" Return True if the file path exists, or is the stdin marker. """
return (filepath == '-') or os.path.exists(filepath) | 5f6a0c2195ce90ba551679d516ebee0e593184c8 | 708,137 |
from typing import List
from typing import Set
def ladder_length(beginWord: str, endWord: str, wordList: List[str]) -> int:
"""
双端交替迫近目标层,根据一层数量最多节点确定为目标层
:param beginWord:
:param endWord:
:param wordList:
:return:
>>> ladder_length('hit', 'cog', ["hot","dot","dog","lot","log","cog"])
5
>>> ladder_length('hit', 'cog', ["hot","dot","dog","lot","log"])
0
>>> ladder_length("hit","cog",["hot","dot","dog","lot","log"])
"""
if not beginWord or not endWord or endWord not in wordList:
return 0
all_chars: List[str] = [chr(i) for i in range(ord('a'), ord('z') + 1)]
curr_word_set: Set[str] = {beginWord} # 当前层的节点
end_word_set: Set[str] = {endWord} # 目标层的节点
word_set: Set[str] = set(wordList) # 加速单词是否在字典中的判断
level: int = 1
while curr_word_set:
# 避免同层节点临接
level += 1
for cw in curr_word_set:
# beginWord不重复出现在wordList(word_set)
if cw != beginWord:
word_set.remove(cw)
tmp_set: Set[str] = set()
for curr_word in curr_word_set:
for i, w in enumerate(curr_word):
for letter in all_chars:
if w == letter:
continue
changed: str = curr_word[:i] + letter + curr_word[i + 1:]
if changed in end_word_set:
return level
if changed in word_set:
tmp_set.add(changed)
# 让层节点最多的层作为目标层
if len(tmp_set) <= len(end_word_set):
curr_word_set = tmp_set
else:
# 逆转方向
curr_word_set = end_word_set
end_word_set = tmp_set
return 0 | 020f3ffd2e009b682a47ff9aad8d1d6025c29f37 | 708,138 |
def setup_option(request):
"""Создаем объект для удобство работы с переменными в тестовых методах
"""
setup_parameters = {}
if request.config.getoption('--site_url'):
setup_parameters['site_url'] = request.config.getoption('--site_url')
return setup_parameters | 49908ee8e1422cc4fd05c6d93a96c00d734cf6d1 | 708,139 |
def get_unique_tokens(texts):
"""
Returns a set of unique tokens.
>>> get_unique_tokens(['oeffentl', 'ist', 'oeffentl'])
{'oeffentl', 'ist'}
"""
unique_tokens = set()
for text in texts:
for token in text:
unique_tokens.add(token)
return unique_tokens | f9c174b264082b65a328fd9edf9421e7ff7808a2 | 708,140 |
def moved_in(nn_orig, nn_proj, i, k):
"""Determine points that are neighbours in the projection space,
but were not neighbours in the original space.
nn_orig
neighbourhood matrix for original data
nn_proj
neighbourhood matrix for projection data
i
index of the point considered
k
size of the neighbourhood considered
Return a list of indices for points which are 'moved in' to point i
"""
pp = list(nn_proj[i, 1:k + 1])
oo = list(nn_orig[i, 1:k + 1])
for j in oo:
if (j in oo) and (j in pp):
pp.remove(j)
return pp | b63a9b0f53554032fc920aeaf6d3d76b93dd8ab3 | 708,141 |
def getStatic():
"""
These are "static" params for a smoother application flow and fine tuning of some params
Not all functions are implemented yet
Returns the necessary Params to run this application
"""
VISU_PAR = {
# =============================================================================
# More general Params
# =============================================================================
# does not consider samples which are longer than this value in [s]
"delteSampleAbove[s]": 5,
# flag for extractring/considering long Samples
"extractLongs" : False,
# does not consider samples which are longer than this value in [s]
"toShort[s]": 0.003,
# flag for extractring/considering too short Samples
"extractShort" : False,
# this might indicate a loop !!
"bpmConfidence" : 1,
# flag for extractring/considering potential Loops
"extractLoops" : False,
#compress all features to a range from (0,..,1) ->getFeatureStack()
"compress": True,
# invert all negative feature values with a total negative correlation ->getPandasCorrelation()
"invNegative" : True,
# =============================================================================
# Application Modes
# =============================================================================
# scriptMode := ("clustering", "get_N_Closest", "analyseWithGT", "optimizer")
# "clustering" := group samples into 'n Cluster' not regarding their GT
# "get_N_Closest" := select N most similar samples to a reference sample not regarding their GT
# requires path of a JSON file which contains the features of one sample (compareFilePath)
# requires a number (N) (n_mostSimilar)
# "analyseWithGT" := analyse a set of features and evaluate with GT-Labels
# it is still possible to cluster within this option and save a landmap and restructure files
# "optimizer" := trys a new subset of features and save the new subset, Needs GTs
#
# the hiearchy of the application mode is: analyseWithGT (when true, most params below are usefull)
# clustering (There will be no option to select features compared to GT)
# get_N_Closest There will be no option to select features compared to GT)
# -> The best Features calculated and saved will be used ->(getBestFile,getBestFeatureSelektion)
"scriptMode" : "get_N_Closest",
#for get_N_Closest -> This should only contain one file and only the features for one Sample,
"compareFilePath" : "../json_data/singleFile/Dirt-SamplesSingle2020-10-06.17:26:55.json",
"n_mostSimilar": 25,
# path to json files
"dirName" : "../json_data/",
# saved Features of a sample-library
"fileName": "Dirt-Samples2020-09-14.20:53:18.json",
# =============================================================================
# Feature selection and Feature subset creation modes
# =============================================================================
# A fixed set of Features to select by (the names my vary from old JSON-Files to new ones)
"predefinedFeatures" : False,
# You can select Features by yourself if you want. It will refers to the predefined featrues
# the default set can be generated from the Dirst-samples with suboptimalSearchs default values.
"defineYoureOwnFeatureSet" : ['Har-Log_-FACM_10', 'MFCC-4', 'MFCC-7', 'Har-RecChr_-FACM_12','TriChr_Centroid', 'ZeroCrossingRate', 'MFCC-8'],
# "defineYoureOwnFeatureSet" : ["Har-TriChr_-FACM_12", "MFCC-10"],
# Select all features with correlation > suboptimalSearch.second to GT-Labels
# And discard all features with cross correlation > suboptimalSearch.third
"suboptimalSearch" : (True,0.3, 0.8),
# Only take the nBest Features from suboptimaSearch (-1 := all)
"nBest" : 7,
# Consider all Features or take an approach of above.
"calcAllFeatures": False,
#("HillClimber", "Random") optimize features with a) hillclimber b) totaly random
# maxxHill is the maximum iterationof the hillclimber/ max repeat for Random
# probHill is the probability for each individual feature to get selected
# modeHill := ("small", "big", "medium") affects HillClimber
# small -> small steps (1-2 changes at a time)
# big -> every permutation has equal probability
# bigChoice -> bigger steps than "small" but not everything possibe like "big"
"optimizer" : "HillClimber",
"maxHill" : 500,
"probHill": 0.0000001,
"modeHill" : "medium",
# amount of cluster to consider with Hierarch
"nCluster" : 40,
# (Hierarch/OPTICS/AffinityPropagation/SpectralClustering) 1st is hierarchial clustering, 2nd is Density based->getClusteringLabels()
"clusterAlgo" : "Hierarch",
# The mode for hierarchichal clustering. ward = minimum variance, average = minimum of average, complete = maximum of each cluster, single = minimum of each cluster
"hierarchMode" : "average",
# =============================================================================
# Output Params (save files to folder | draw landmap)
# =============================================================================
# save folder for copying all audio files
"saveFolder" : '../estimateSongs/',
# restructure all files within their new assigned cluster Group/
# if mode is n_mostSimilar, it is an folder which contains the n_mostSimilar samples
"copyFilesToFolder" : True,
# draw a distance landmap with graphviz.
"graphviz": False,
# graphvizMode := ("clusterBased", "oneFilePerCluster", "minimalSpan") :
# "minimalSpan" = draw one big landmap without clusters as minimal span tree (not recommended for all Files)
# "clusterBased" = draw seperate clusters in one big landmap |
# "oneFilePerCluster" = generate one landmap file per cluster)
"graphvizMode" : "minimalSpan"
}
# Same Params for Spectral Clustering. This approach be will not be taken further
SpectralClusterParam = {"assign_labels":"kmeans", #{‘kmeans’, ‘discretize’} default kmeans,
"eigen_solver": "amg",
}
VISU_PAR = {**VISU_PAR, **SpectralClusterParam}
return VISU_PAR | f82ed9c4156b8199be924fc1ed62398fcbad9e0c | 708,142 |
def pagenav(object_list, base_url, order_by, reverse, cur_month, is_paginated, paginator):
"""Display page navigation for given list of objects"""
return {'object_list': object_list,
'base_url': base_url,
'order_by': order_by,
'reverse': reverse,
'cur_month': cur_month,
'is_paginated': is_paginated,
'paginator': paginator} | eb61fb76dd32b8d0b3e264e77ce912766d3e38da | 708,143 |
def scale(val, src, dst):
"""
Scale the given value from the scale of src to the scale of dst.
val: float or int
src: tuple
dst: tuple
example: print(scale(99, (0.0, 99.0), (-1.0, +1.0)))
"""
return (float(val - src[0]) / (src[1] - src[0])) * (dst[1] - dst[0]) + dst[0] | 26cfaccaeea861ccecb36697838710c0ab706520 | 708,145 |
def add(c1, c2):
"""Add two encrypted counters"""
a1, b1 = c1
a2, b2 = c2
return (a1 + a2, b1 + b2) | d3e519524fac558622f692a46ffb8fed9899176f | 708,146 |
def error_message(error, text):
"""
Gives default or custom text for the error.
--------------------
Inputs <datatype>:
- error <Error Object>: The error code
- text <string>: Custom error text if error has no message
Returns <datatype>:
- error description <string>: The custom error description or default
"""
try:
return error.description['message']
except TypeError:
return text | 466fec2d2abefc9f05a3f0adf569fba1c63ea4c1 | 708,147 |
def no_rbac_suffix_in_test_filename(filename):
"""Check that RBAC filenames end with "_rbac" suffix.
P101
"""
if "patrole_tempest_plugin/tests/api" in filename:
if filename.endswith('rbac_base.py'):
return
if not filename.endswith('_rbac.py'):
return 0, "RBAC test filenames must end in _rbac suffix" | 6ebfcede8b6e30f24f5ecc1f9d3f0985bd4c44fa | 708,148 |
def minimax(just_mapping, mapping):
"""
Scale the mapping to minimize the maximum error from just intonation.
"""
least_error = float("inf")
best_mapping = mapping
for i in range(len(just_mapping)):
for j in range(i+1, len(just_mapping)):
candidate = mapping / (mapping[i] + mapping[j]) * (just_mapping[i] + just_mapping[j])
error = abs(just_mapping - candidate).max()
if error < least_error:
least_error = error
best_mapping = candidate
return best_mapping | b2226de7a916e3075327cd30c64e7412e186027d | 708,151 |
def transform_color(color1, color2, skipR=1, skipG=1, skipB=1):
"""
transform_color(color1, color2, skipR=1, skipG=1, skipB=1)
This function takes 2 color1 and color2 RGB color arguments, and then returns a
list of colors in-between the color1 and color2
eg- tj.transform_color([0,0,0],[10,10,20]) returns a list:-
[[0, 0, 0], [1, 1, 1], [2, 2, 2] ... [9, 9, 9], [10, 10, 10], [10, 10, 11] ... [10, 10, 20]]
This function is very useful for creating color fade or color transition effects in pygame.
There are 3 optional arguments, which are skip arguments set to 1 by default.
"""
L = []
if (color1[0] < color2[0]):
i = list(range(color1[0],
color2[0] + 1,
skipR))
else:
i = list(range(color2[0], color1[0] + 1, skipR))[::-1]
if i == []:
i = [color1[0]]
if (color1[1] < color2[1]):
j = list(range(color1[1],
color2[1] + 1,
skipG))
else:
j = list(range(color2[1], color1[1] + 1, skipG))[::-1]
if j == []:
j = [color1[1]]
if (color1[2] < color2[2]):
k = list(range(color1[2],
color2[2] + 1,
skipB))
else:
k = list(range(color2[2], color1[2] + 1, skipB))[::-1]
if k == []:
k = [color1[2]]
x = max(len(i), len(j), len(k))
for m in range(len(i), x):
i += [i[-1]]
for m in range(len(j), x):
j += [j[-1]]
for m in range(len(k), x):
k += [k[-1]]
for m in range(x):
l = [i[m], j[m], k[m]]
L += [l]
return L | 5f04daa951c59b0445387b2dc988ab7efb98aff4 | 708,152 |
import os
def create_experiment_dirs(exp_dir):
"""
Create Directories of a regular tensorflow experiment directory
:param exp_dir:
:return summary_dir, checkpoint_dir:
"""
experiment_dir = os.path.realpath(os.path.join(os.path.dirname(__file__))) + "/experiments/" + exp_dir + "/"
summary_dir = experiment_dir + 'summaries/'
checkpoint_dir = experiment_dir + 'checkpoints/'
output_dir = experiment_dir + 'output/'
test_dir = experiment_dir + 'test/'
dirs = [summary_dir, checkpoint_dir, output_dir, test_dir]
try:
for dir_ in dirs:
if not os.path.exists(dir_):
os.makedirs(dir_)
print("Experiment directories created")
return experiment_dir, summary_dir, checkpoint_dir, output_dir, test_dir
except Exception as err:
print("Creating directories error: {0}".format(err))
exit(-1) | 9707152a57a322ad2d935c2614386218c2c66ee9 | 708,153 |
def get_go_module_path(package):
"""assumption: package name starts with <host>/org/repo"""
return "/".join(package.split("/")[3:]) | 1443d59391a36c7b9ba1d72ade9fd51f11cc1cc3 | 708,154 |
def generate_paths(data, path=''):
"""Iterate the json schema file and generate a list of all of the
XPath-like expression for each primitive value. An asterisk * represents
an array of items."""
paths = []
if isinstance(data, dict):
if len(data) == 0:
paths.append(f'{path}')
else:
for key, val in data.items():
if key == 'type':
if isinstance(val, list):
types = set(val)
else:
types = {val}
if types.isdisjoint({'object', 'array'}):
paths.append(f'{path}')
elif key == 'properties':
paths.extend(generate_paths(val, path))
else:
if key == 'items':
key = '*'
paths.extend(generate_paths(val, f'{path}/{key}'))
return paths | 367f244b44c254b077907ff8b219186bd820fccd | 708,155 |
def order_rep(dumper, data):
""" YAML Dumper to represent OrderedDict """
return dumper.represent_mapping(u'tag:yaml.org,2002:map', data.items(),
flow_style=False) | 6b455d49cd5702324f4b1e825dabb4af90734730 | 708,157 |
def make1d(u, v, num_cols=224):
"""Make a 2D image index linear.
"""
return (u * num_cols + v).astype("int") | 1f37c7ae06071ce641561eadc1d0a42a0b74508d | 708,158 |
from datetime import datetime
def header_to_date(header):
""" return the initial date based on the header of an ascii file"""
try:
starttime = datetime.strptime(header[2], '%Y%m%d_%H%M')
except ValueError:
try:
starttime = datetime.strptime(
header[2] + '_' + header[3], '%Y%m%d_%H'
)
except ValueError:
print("Warning: could not retrieve starttime from header,\
setting to default value ")
starttime = datetime(1970, 1, 1)
return starttime | 3e2757ae39a2a9008a5f0fb8cd8fe031770c83ad | 708,159 |
import copy
def permutationwithparity(n):
"""Returns a list of all permutation of n integers, with its first element being the parity"""
if (n == 1):
result = [[1,1]]
return result
else:
result = permutationwithparity(n-1)
newresult = []
for shorterpermutation in result:
for position in range(1,n+1):
parity = shorterpermutation[0]
for swaps in range(n-position):
parity = - parity
newpermutation = copy.deepcopy(shorterpermutation)
newpermutation.insert(position,n)
newpermutation[0] = parity
newresult.append(newpermutation)
return newresult | 218b728c2118a8cca98c019dff036e0ae2593974 | 708,161 |
def gravitationalPotentialEnergy(mass, gravity, y):
"""1 J = 1 N*m = 1 Kg*m**2/s**2
Variables: m=mass g=gravity constant y=height
Usage: Energy stored by springs"""
U = mass*gravity*y
return U | f4fcfc9e7ddac8b246b2200e3886b79f6706936e | 708,162 |
def to_list(obj):
"""List Converter
Takes any object and converts it to a `list`.
If the object is already a `list` it is just returned,
If the object is None an empty `list` is returned,
Else a `list` is created with the object as it's first element.
Args:
obj (any object): the object to be converted
Returns:
A list containing the given object
"""
if isinstance(obj, list):
return obj
elif isinstance(obj, tuple):
return list(obj)
elif obj is None:
return []
else:
return [obj, ] | 3ca373867ea3c30edcf7267bba69ef2ee3c7722e | 708,163 |
def function():
"""
>>> function()
'decorated function'
"""
return 'function' | 46b892fb70b5672909d87efcf76ffd3f96f9cf7f | 708,164 |
def load_stopwords(file_path):
"""
:param file_path: Stop word file path
:return: Stop word list
"""
stopwords = [line.strip() for line in open(file_path, 'r', encoding='utf-8').readlines()]
return stopwords | 9cb6578b5cbc608bc72da7c4f363b4f84d0adbb7 | 708,165 |
from datetime import datetime
import uuid
def versioneer():
"""
Function used to generate a new version string when saving a new Service
bundle. User can also override this function to get a customized version format
"""
date_string = datetime.now().strftime("%Y%m%d")
random_hash = uuid.uuid4().hex[:6].upper()
# Example output: '20191009_D246ED'
return date_string + "_" + random_hash | 7c5123d28e3bee45f2c9f7d519e830cf80e9fea8 | 708,167 |
import subprocess
def get_git_revision_hash():
"""Returns the git version of this project"""
return subprocess.check_output(
["git", "describe", "--always"], universal_newlines=True
) | 51c76a0e814cd8336d488c6d66a17ba3422c5c66 | 708,168 |
def train_test_split(df, frac):
"""
Create a Train/Test split function for a dataframe and return both
the Training and Testing sets.
Frac refers to the percent of data you would like to set aside
for training.
"""
frac = round(len(df)*frac)
train = df[:frac]
test = df[frac:]
return train, test | 8e233e017a261141f57f7b2bff9a527e275d2ed9 | 708,169 |
def filter_imgs(df, properties = [], values = []):
"""Filters pandas dataframe according to properties and a range of values
Input:
df - Pandas dataframe
properties - Array of column names to be filtered
values - Array of tuples containing bounds for each filter
Output:
df - Filtered dataframe
"""
for i, val in enumerate(properties):
df = df.loc[(df[val] > values[i][0]) & (df[val] < values[i][1])]
return df | cdc5c8bfef10fae60f48cee743df049581a0df04 | 708,170 |
from typing import Dict
from typing import Any
from typing import Optional
def _add_extra_kwargs(
kwargs: Dict[str, Any], extra_kwargs: Optional[Dict[str, Any]] = None
) -> Dict[str, Any]:
"""
Safely add additional keyword arguments to an existing dictionary
Parameters
----------
kwargs : dict
Keyword argument dictionary
extra_kwargs : dict, default None
Keyword argument dictionary to add
Returns
-------
dict
Keyword dictionary with added keyword arguments
Notes
-----
There is no checking for duplicate keys
"""
if extra_kwargs is None:
return kwargs
else:
kwargs_copy = kwargs.copy()
kwargs_copy.update(extra_kwargs)
return kwargs_copy | cfc4c17f608c0b7fe1ae3046dc220d385c890caa | 708,171 |
import random
import math
def Hiker(n,xLst,yLst,dist):
"""
Hiker is a function to generate lists of x and y
coordinates of n steps for a random walk of n steps
along with distance between the first and last point
"""
x0=0
y0=0
x=x0
y=y0
xLst[1] = x0
yLst[1] = y0
for i in range (n-1):
rnum = random.random()
if rnum <= 0.19:
y=y+1
x=x
elif rnum <= 0.43:
y=y+1
x=x+1
elif rnum <= 0.60:
y=y
x=x+1
elif rnum <= 0.70:
y = y-1
x= x+1
elif rnum <= 0.72:
y = y-1
x = x
elif rnum <= 0.75:
y = y-1
x = x-1
elif rnum <= 0.85:
y = y
x = x-1
elif rnum <= 1.00:
y = y+1
x = x-1
xLst[i+1] = x
yLst[i+1] = y
dist = math.sqrt ((x-x0)^2 + (y-y0)^2)
return (xLst,yLst,dist) | abe341c8ecdc579de2b72f5af1ace3f07dd40dc3 | 708,172 |
def correct_repeat_line():
""" Matches repeat spec above """
return "2|1|2|3|4|5|6|7" | b9c1e48c5043a042b9f6a6253cba6ae8ce1ca32c | 708,173 |
def char_decoding(value):
""" Decode from 'UTF-8' string to unicode.
:param value:
:return:
"""
if isinstance(value, bytes):
return value.decode('utf-8')
# return directly if unicode or exc happens.
return value | b8054b4a5012a6e23e2c08b6ff063cf3f71d6863 | 708,174 |
def get_relationship_length_fam_mean(data):
"""Calculate mean length of relationship for families DataDef 43
Arguments:
data - data frames to fulfill definiton id
Modifies:
Nothing
Returns: added_members
mean_relationship_length - mean relationship length of families
"""
families = data[1]
return families['max_days_since_first_service'].mean() | 4d9b76c4dca3e1f09e7dd2684bd96e25792177fd | 708,176 |
import os
def read_envs():
"""Function will read in all environment variables into a dictionary
:returns: Dictionary containing all environment variables or defaults
:rtype: dict
"""
envs = {}
envs['QUEUE_INIT_TIMEOUT'] = os.environ.get('QUEUE_INIT_TIMEOUT', '3600')
envs['VALIDATION_TIMEOUT'] = os.environ.get('VALIDATION_TIMEOUT', '28800')
envs['VALIDATION_HOME'] = os.environ.get('VALIDATION_HOME', '/opt/aif-validator')
envs['VALIDATION_FLAGS'] = os.environ.get('VALIDATION_FLAGS')
envs['S3_VALIDATION_BUCKET'] = os.environ.get('S3_VALIDATION_BUCKET')
envs['S3_VALIDATION_PREFIX'] = os.environ.get('S3_VALIDATION_PREFIX')
envs['AWS_BATCH_JOB_ID'] = os.environ.get('AWS_BATCH_JOB_ID')
envs['AWS_BATCH_JOB_NODE_INDEX'] = os.environ.get('AWS_BATCH_JOB_NODE_INDEX')
envs['AWS_DEFAULT_REGION'] = os.environ.get('AWS_DEFAULT_REGION', 'us-east-1')
return envs | 2d357796321d561a735461d425fa7c703082434c | 708,177 |
import numpy
def load_catalog_npy(catalog_path):
"""
Load a numpy catalog (extension ".npy")
@param catalog_path: str
@return record array
"""
return numpy.load(catalog_path) | 912281ad17b043c6912075144e6a2ff3d849a391 | 708,178 |
import torch
def exp2(input, *args, **kwargs):
"""
Computes the base two exponential function of ``input``.
Examples::
>>> import torch
>>> import treetensor.torch as ttorch
>>> ttorch.exp2(ttorch.tensor([-4.0, -1.0, 0, 2.0, 4.8, 8.0]))
tensor([6.2500e-02, 5.0000e-01, 1.0000e+00, 4.0000e+00, 2.7858e+01, 2.5600e+02])
>>> ttorch.exp2(ttorch.tensor({
... 'a': [-4.0, -1.0, 0, 2.0, 4.8, 8.0],
... 'b': {'x': [[-2.0, 1.2, 0.25],
... [16.0, 3.75, -2.34]]},
... }))
<Tensor 0x7ff90a4c3af0>
├── a --> tensor([6.2500e-02, 5.0000e-01, 1.0000e+00, 4.0000e+00, 2.7858e+01, 2.5600e+02])
└── b --> <Tensor 0x7ff90a4c3be0>
└── x --> tensor([[2.5000e-01, 2.2974e+00, 1.1892e+00],
[6.5536e+04, 1.3454e+01, 1.9751e-01]])
"""
return torch.exp2(input, *args, **kwargs) | 17cbc0917acf19932ec4d3a89de8d78545d02e31 | 708,179 |
import pprint
import json
def tryJsonOrPlain(text):
"""Return json formatted, if possible. Otherwise just return."""
try:
return pprint.pformat( json.loads( text ), indent=1 )
except:
return text | 2431479abf6ab3c17ea63356ec740840d2d18a74 | 708,180 |
def get_pool_health(pool):
""" Get ZFS list info. """
pool_name = pool.split()[0]
pool_capacity = pool.split()[6]
pool_health = pool.split()[9]
return pool_name, pool_capacity, pool_health | 1a9dbb8477d8735b225afc2bdd683f550602b36e | 708,181 |
def sum_fib_dp(m, n):
"""
A dynamic programming version.
"""
if m > n: m, n = n, m
large, small = 1, 0
# a running sum for Fibbo m ~ n + 1
running = 0
# dynamically update the two variables
for i in range(n):
large, small = large + small, large
# note that (i + 1) -> small is basically mapping m -> F[m]
if m <= i + 1 <= n:
running += small
return running | 5be6e57ddf54d185ca6d17adebd847d0bc2f56fc | 708,183 |
def fibo_dyn2(n):
"""
return
the n-th fibonacci number
"""
if n < 2:
return 1
else:
a, b = 1, 1
for _ in range(1,n):
a, b = b, a+b
return b | e8483e672914e20c6e7b892f3dab8fb299bac6fc | 708,184 |
import io
def parse_file(fname, is_true=True):
"""Parse file to get labels."""
labels = []
with io.open(fname, "r", encoding="utf-8", errors="igore") as fin:
for line in fin:
label = line.strip().split()[0]
if is_true:
assert label[:9] == "__label__"
label = label[9:]
labels.append(label)
return labels | ea6cbd4b1a272f472f8a75e1cc87a2209e439205 | 708,185 |
import optparse
def _OptionParser():
"""Returns the options parser for run-bisect-perf-regression.py."""
usage = ('%prog [options] [-- chromium-options]\n'
'Used by a try bot to run the bisection script using the parameters'
' provided in the auto_bisect/bisect.cfg file.')
parser = optparse.OptionParser(usage=usage)
parser.add_option('-w', '--working_directory',
type='str',
help='A working directory to supply to the bisection '
'script, which will use it as the location to checkout '
'a copy of the chromium depot.')
parser.add_option('-p', '--path_to_goma',
type='str',
help='Path to goma directory. If this is supplied, goma '
'builds will be enabled.')
parser.add_option('--path_to_config',
type='str',
help='Path to the config file to use. If this is supplied, '
'the bisect script will use this to override the default '
'config file path. The script will attempt to load it '
'as a bisect config first, then a perf config.')
parser.add_option('--extra_src',
type='str',
help='Path to extra source file. If this is supplied, '
'bisect script will use this to override default behavior.')
parser.add_option('--dry_run',
action="store_true",
help='The script will perform the full bisect, but '
'without syncing, building, or running the performance '
'tests.')
return parser | 7485db294d89732c2c5223a3e3fe0b7773444b49 | 708,186 |
import json
import os
def load_config(filename):
"""
Returns:
dict
"""
config = json.load(open(filename, 'r'))
# back-compat
if 'csvFile' in config:
config['modelCategoryFile'] = config['csvFile']
del config['csvFile']
required_files = ["prefix", "modelCategoryFile", "colorFile"]
for f in required_files:
assert f in config, 'Invalid config! key <{}> is missing!'.format(f)
assert os.path.exists(config[f]), 'Invalid config! path <{}> not exists!'.format(config[f])
if ('File' in f):
assert os.path.isfile(config[f]), 'Invalid config! <{}> is not a valid file!'.format(config[f])
return config | af9f6cb02925d38077652703813b9fec201f12f7 | 708,187 |
def convert(chinese):
"""converts Chinese numbers to int
in: string
out: string
"""
numbers = {'零':0, '一':1, '二':2, '三':3, '四':4, '五':5, '六':6, '七':7, '八':8, '九':9, '壹':1, '贰':2, '叁':3, '肆':4, '伍':5, '陆':6, '柒':7, '捌':8, '玖':9, '两':2, '廿':20, '卅':30, '卌':40, '虚':50, '圆':60, '近':70, '枯':80, '无':90}
units = {'个':1, '十':10, '百':100, '千':1000, '万':10000, '亿':100000000,'万亿':1000000000000, '拾':10, '佰':100, '仟':1000}
number, pureNumber = 0, True
for i in range(len(chinese)):
if chinese[i] in units or chinese[i] in ['廿', '卅', '卌', '虚', '圆', '近', '枯', '无']:
pureNumber = False
break
if chinese[i] in numbers:
number = number * 10 + numbers[chinese[i]]
if pureNumber:
return number
number = 0
for i in range(len(chinese)):
if chinese[i] in numbers or chinese[i] == '十' and (i == 0 or chinese[i - 1] not in numbers or chinese[i - 1] == '零'):
base, currentUnit = 10 if chinese[i] == '十' and (i == 0 or chinese[i] == '十' and chinese[i - 1] not in numbers or chinese[i - 1] == '零') else numbers[chinese[i]], '个'
for j in range(i + 1, len(chinese)):
if chinese[j] in units:
if units[chinese[j]] >= units[currentUnit]:
base, currentUnit = base * units[chinese[j]], chinese[j]
number = number + base
return number | cf2ece895698e2d99fde815efa0339687eadda97 | 708,188 |
def getjflag(job):
"""Returns flag if job in finished state"""
return 1 if job['jobstatus'] in ('finished', 'failed', 'cancelled', 'closed') else 0 | bf0c0a85cb1af954d25f4350e55b9e3604cf7c79 | 708,189 |
def construct_pos_line(elem, coor, tags):
"""
Do the opposite of the parse_pos_line
"""
line = "{elem} {x:.10f} {y:.10f} {z:.10f} {tags}"
return line.format(elem=elem, x=coor[0], y=coor[1], z=coor[2], tags=tags) | 21ca509131c85a2c7bc24d00a28e7d4ea580a49a | 708,191 |
def convert_time(time):
"""Convert given time to srt format."""
stime = '%(hours)02d:%(minutes)02d:%(seconds)02d,%(milliseconds)03d' % \
{'hours': time / 3600,
'minutes': (time % 3600) / 60,
'seconds': time % 60,
'milliseconds': (time % 1) * 1000}
return stime | 948e6567c8bc17ccb5f98cf8c8eaf8fe6e8d0bec | 708,192 |
def Returns1(target_bitrate, result):
"""Score function that returns a constant value."""
# pylint: disable=W0613
return 1.0 | 727e58e0d6d596cf4833ca3ca1cbcec6b9eedced | 708,193 |
import re
def remove_repeats(msg):
"""
This function removes repeated characters from text.
:param/return msg: String
"""
# twitter specific repeats
msg = re.sub(r"(.)\1{2,}", r"\1\1\1", msg) # characters repeated 3 or more times
# laughs
msg = re.sub(r"(ja|Ja)(ja|Ja)+(j)?", r"jaja", msg) # spanish
msg = re.sub(r"(rs|Rs)(Rs|rs)+(r)?", r"rsrs", msg) # portugese
msg = re.sub(r"(ha|Ha)(Ha|ha)+(h)?", r"haha", msg) # english
return msg | 590ab42f74deaa9f8dc1eb9c8b11d81622db2e6d | 708,194 |
def _legend_main_get(project, row):
"""
forma la leyenda de la serie principal del gráfico
input
project: es el tag project del proyecto seleccionado
en fichero XYplus_parameters.f_xml -en XYplus_main.py-
row: es fila activa devuelta por select_master) de donde se
extrae el título del gráfico
return
un str con la leyenda del punto principal del gráfico
"""
legend_master = project.find('graph/legend_master').text.strip()
columns_master = project.findall('graph/legend_master/column')
if len(columns_master) == 0:
return legend_master
subs = [row[int(col1.text)-1] for col1 in columns_master]
return legend_master.format(*subs) | 3938d723bd44a67313b86f956464fd186ef25386 | 708,195 |
def repr_should_be_defined(obj):
"""Checks the obj.__repr__() method is properly defined"""
obj_repr = repr(obj)
assert isinstance(obj_repr, str)
assert obj_repr == obj.__repr__()
assert obj_repr.startswith("<")
assert obj_repr.endswith(">")
return obj_repr | 28537f4f48b402a2eba290d8ece9b765eeb9fdc3 | 708,196 |
def is_char_token(c: str) -> bool:
"""Return true for single character tokens."""
return c in ["+", "-", "*", "/", "(", ")"] | 3d5691c8c1b9a592987cdba6dd4809cf2c410ee8 | 708,197 |
import numpy
def _float_arr_to_int_arr(float_arr):
"""Try to cast array to int64. Return original array if data is not representable."""
int_arr = float_arr.astype(numpy.int64)
if numpy.any(int_arr != float_arr):
# we either have a float that is too large or NaN
return float_arr
else:
return int_arr | 73643757b84ec28ed721608a2176b292d6e90837 | 708,198 |
import re
def error_038_italic_tag(text):
"""Fix the error and return (new_text, replacements_count) tuple."""
backup = text
(text, count) = re.subn(r"<(i|em)>([^\n<>]+)</\1>", "''\\2''", text, flags=re.I)
if re.search(r"</?(?:i|em)>", text, flags=re.I):
return (backup, 0)
else:
return (text, count) | b0c2b571ade01cd483a3ffdc6f5c2bbb873cd13c | 708,199 |
def families_horizontal_correctors():
"""."""
return ['CH'] | a3f8de3e0d44ea72d2fb98733050b7a2d598c142 | 708,200 |
def __load_txt_resource__(path):
"""
Loads a txt file template
:param path:
:return:
"""
txt_file = open(path, "r")
return txt_file | 9e3632098c297d1f6407559a86f0d8dc7b68ea75 | 708,201 |
import torch
def policy_improvement(env, V, gamma):
"""
Obtain an improved policy based on the values
@param env: OpenAI Gym environment
@param V: policy values
@param gamma: discount factor
@return: the policy
"""
n_state = env.observation_space.n
n_action = env.action_space.n
policy = torch.zeros(n_state)
for state in range(n_state):
v_actions = torch.zeros(n_action)
for action in range(n_action):
for trans_prob, new_state, reward, _ in env.env.P[state][action]:
v_actions[action] += trans_prob * (reward + gamma * V[new_state])
policy[state] = torch.argmax(v_actions)
return policy | 10587e5d4fb08158eff06a4305de6c02fc2d878c | 708,202 |
import sys
def func(back=2):
"""
Returns the function name
"""
return "{}".format(sys._getframe(back).f_code.co_name) | 97332c32195418e4bf6dd6427adabbc5c4360580 | 708,203 |
def get_A2_const(alpha1, alpha2, lam_c, A1):
"""Function to compute the constant A2.
Args:
alpha1 (float): The alpha1 parameter of the WHSCM.
alpha2 (float): The alpha2 parameter of the WHSCM.
lam_c (float): The switching point between the
two exponents of the double power-laws
in the WHSCM.
A1 (float): The A1 constant of the WHSCM.
Returns:
A2 (float): The A2 constant of the WHSCM.
"""
A2 = A1 * (lam_c**(alpha2 - alpha1))
return A2 | 16fe12e9ef9d72cfe7250cf840e222512409d377 | 708,205 |
def unique_list(a_list, unique_func=None, replace=False):
"""Unique a list like object.
- collection: list like object
- unique_func: the filter functions to return a hashable sign for unique
- replace: the following replace the above with the same sign
Return the unique subcollection of collection.
Example:
data = [(1, 2), (2, 1), (2, 3), (1, 2)]
unique_func = lambda x: tuple(sorted(x))
unique(data) -> [(1, 2), (2, 1), (2, 3)]
unique(data, unique_func) -> [(1, 2), (2, 3)]
unique(data, unique_func, replace=True) -> [(2, 1), (2, 3)]
"""
unique_func = unique_func or (lambda x: x)
result = {}
for item in a_list:
hashable_sign = unique_func(item)
if hashable_sign not in result or replace:
result[hashable_sign] = item
return list(result.values()) | 8d7957a8dffc18b82e8a45129ba3634c28dd0d52 | 708,206 |
def gap2d_cx(cx):
"""Accumulates complexity of gap2d into cx = (h, w, flops, params, acts)."""
cx["h"] = 1
cx["w"] = 1
return cx | 28f6ba5f166f0b21674dfd507871743243fb4737 | 708,207 |
from typing import Sequence
from typing import Any
def find(sequence: Sequence, target_element: Any) -> int:
"""Find the index of the first occurrence of target_element in sequence.
Args:
sequence: A sequence which to search through
target_element: An element to search in the sequence
Returns:
The index of target_element's first occurrence, -1 if it was not found or the sequence is empty
"""
if not sequence:
return -1
try:
return sequence.index(target_element)
except ValueError:
return -1 | 20edfae45baafa218d8d7f37e0409e6f4868b75d | 708,209 |
from pathlib import Path
from typing import List
from typing import Dict
import json
def read_nli_data(p: Path) -> List[Dict]:
"""Read dataset which has been converted to nli form"""
with open(p) as f:
data = json.load(f)
return data | 2218d8dc06e3b9adfe89cb780a9ef4e7cb111d14 | 708,210 |
def prepare_data_from_stooq(df, to_prediction = False, return_days = 5):
"""
Prepares data for X, y format from pandas dataframe
downloaded from stooq. Y is created as closing price in return_days
- opening price
Keyword arguments:
df -- data frame contaning data from stooq
return_days -- number of day frame in which to calculate y.
"""
if 'Wolumen' in df.columns:
df = df.drop(['Data', 'Wolumen', 'LOP'], axis=1)
else:
df = df.drop('Data', axis = 1)
y = df['Zamkniecie'].shift(-return_days) - df['Otwarcie']
if not to_prediction:
df = df.iloc[:-return_days,:]
y = y[:-return_days]/df['Otwarcie']
return df.values, y | 4b5bc45529b70ed1e8517a1d91fb5a6c2ff0b504 | 708,211 |
def represents_int_above_0(s: str) -> bool:
"""Returns value evaluating if a string is an integer > 0.
Args:
s: A string to check if it wil be a float.
Returns:
True if it converts to float, False otherwise.
"""
try:
val = int(s)
if val > 0:
return True
else:
return False
except ValueError:
return False | e39c4afeff8f29b86ef2a80be0af475223654449 | 708,212 |
def sydney():
"""Import most recent Sydney dataset"""
d = {
'zip':'Sydney_geol_100k_shape',
'snap':-1,
}
return(d) | f79a5002ef548769096d3aeb1ad2c7d77ac5ce68 | 708,213 |
def format_non_date(value):
"""Return non-date value as string."""
return_value = None
if value:
return_value = value
return return_value | 9a7a13d7d28a14f5e92920cfef7146f9259315ec | 708,214 |
import functools
import math
def gcd_multiple(*args) -> int:
"""Return greatest common divisor of integers in args"""
return functools.reduce(math.gcd, args) | c686b9495cd45ff047f091e31a79bedcd61f8842 | 708,215 |
from typing import Counter
def chars_to_family(chars):
"""Takes a list of characters and constructs a family from them. So, A1B2
would be created from ['B', 'A', 'B'] for example."""
counter = Counter(chars)
return "".join(sorted([char + str(n) for char, n in counter.items()])) | e78de779599f332045a98edde2aa0a0edc5a653b | 708,216 |
import configparser
def get_config_properties(config_file="config.properties", sections_to_fetch = None):
"""
Returns the list of properties as a dict of key/value pairs in the file config.properties.
:param config_file: filename (string).
:param section: name of section to fetch properties from (if specified); all sections are returned by default (iterable).
:return: A flat (no sections) Python dictionary of properties.
"""
cf = configparser.ConfigParser()
try:
cf.read(config_file)
except Exception as e:
print("[ERROR] exception {} reading configurations from file {}".format(e, config_file))
properties = {}
for section in cf.sections():
# only include args section if requested
if (not sections_to_fetch or (section in sections_to_fetch)):
for item in cf.items(section):
properties[item[0]] = item[1]
return properties | 627d21327560595bb4c2905c98604926f03ca655 | 708,217 |
from typing import Dict
def merge(source: Dict, destination: Dict) -> Dict:
"""
Deep merge two dictionaries
Parameters
----------
source: Dict[Any, Any]
Dictionary to merge from
destination: Dict[Any, Any]
Dictionary to merge to
Returns
-------
Dict[Any, Any]
New dictionary with fields in destination overwritten
with values from source
"""
new_dict = {**destination}
for key, value in source.items():
if isinstance(value, dict):
# get node or create one
node = new_dict.get(key, {})
new_dict[key] = merge(value, node)
else:
new_dict[key] = value
return new_dict | 4ffba933fe1ea939ecaa9f16452b74a4b3859f40 | 708,218 |
import ast
def is_string_expr(expr: ast.AST) -> bool:
"""Check that the expression is a string literal."""
return (
isinstance(expr, ast.Expr)
and isinstance(expr.value, ast.Constant)
and isinstance(expr.value.value, str)
) | f61418b5671c5e11c1e90fce8d90c583659d40e3 | 708,220 |
import subprocess
def get_current_commit_id() -> str:
"""Get current commit id.
Returns:
str: current commit id.
"""
command = "git rev-parse HEAD"
commit_id = (
subprocess.check_output(command.split()).strip().decode("utf-8") # noqa: S603
)
return commit_id | 978bd35fc3cfe71fcc133a6e49fbbe0e27d4feda | 708,221 |
import re
def get_raw_code(file_path):
"""
Removes empty lines, leading and trailing whitespaces, single and multi line comments
:param file_path: path to .java file
:return: list with raw code
"""
raw_code = []
multi_line_comment = False
with open(file_path, "r") as f:
for row in f:
# remove leading and trailing whitespaces
line = row.strip()
# remove '/* comments */'
line = re.sub(r'''
^ # start of string
/\* # "/*" string
.* # any character (except line break) zero or more times
\*/ # "*/" string
\s* # zero or many whitespaces
''', '', line, 0, re.VERBOSE)
# remove '//comments'
line = re.sub(r'''
^ # start of string
// # "//" string
.* # any character (except line break) zero or more times
$ # end of string
''', '', line, 0, re.VERBOSE)
# ignore empty lines
if line != '':
# skip multi-line comments (/*)
if re.search(r'''
^ # start of string
/\* # "/*" string
.* # any character (except line break) zero or more times
''', line, re.VERBOSE):
multi_line_comment = True
continue
# check if multi-line comment was closed (*/)
elif re.search(r'''
.* # any character (except line break) zero or more times
\*/ # "*/" string
$ # end of string
''', line, re.VERBOSE):
multi_line_comment = False
line = re.sub(r'''
.* # any character (except line break) zero or more times
\*/ # "*/" string
\s* # zero or many whitespaces
''', '', line, 0, re.VERBOSE)
if line == '':
continue
# add line if it's not multi-line comment
if not multi_line_comment:
raw_code.append(line)
return raw_code | 6654a0423f024eaea3067c557984c3aa5e9494da | 708,222 |
from typing import Pattern
import re
def _yaml_comment_regex() -> Pattern:
"""
From https://yaml-multiline.info/, it states that `#` cannot appear *after* a space
or a newline, otherwise it will be a syntax error (for multiline strings that don't
use a block scalar). This applies to single lines as well: for example, `a#b` will be
treated as a single value, but `a #b` will only capture `a`, leaving `#b` as a comment.
For lines that *do* use a block scalar, the YAML parser will throw a syntax error if
there is additional text on the same line as the block scalar. Comments however, are fine.
e.g.
key: | # this is ok
blah
key: | but this is not
blah
Given that we've made it to this stage, we can assume the YAML file is syntactically
correct. Therefore, if we add whitespace before the comment character, we can know that
everything else *after* the comment character is a comment for a given line.
"""
return re.compile(r'(\s+#[\S ]*)') | 3b5739f460c3d2c66f802dd46e061d2d07030525 | 708,223 |
import re
def format_ipc_dimension(number: float, decimal_places: int = 2) -> str:
"""
Format a dimension (e.g. lead span or height) according to IPC rules.
"""
formatted = '{:.2f}'.format(number)
stripped = re.sub(r'^0\.', '', formatted)
return stripped.replace('.', '') | 60001f99b5f107faba19c664f90ee2e9fb61fe68 | 708,224 |
def num_in_row(board, row, num):
"""True if num is already in the row, False otherwise"""
return num in board[row] | ca9ab9de4514740e25e0c55f3613d03b2844cdb8 | 708,225 |
def factorial_3(n, acc=1):
"""
Replace all recursive tail calls f(x=x1, y=y1, ...) with (x, y, ...) = (x1, y1, ...); continue
"""
while True:
if n < 2:
return 1 * acc
(n, acc) = (n - 1, acc * n)
continue
break | e067cf4564056bf488e56fe58bbd5b998b0175f3 | 708,226 |
def mod(a1, a2):
"""
Function to give the remainder
"""
return a1 % a2 | f5c03a952aed373e43933bafe37dbc75e796b74d | 708,227 |
def encode_string(s):
"""
Simple utility function to make sure a string is proper
to be used in a SQL query
EXAMPLE:
That's my boy! -> N'That''s my boy!'
"""
res = "N'"+s.replace("'","''")+"'"
res = res.replace("\\''","''")
res = res.replace("\''","''")
return res | 814822b9aa15def24f98b2b280ab899a3f7ea617 | 708,228 |
import subprocess
def get_sha_from_ref(repo_url, reference):
""" Returns the sha corresponding to the reference for a repo
:param repo_url: location of the git repository
:param reference: reference of the branch
:returns: utf-8 encoded string of the SHA found by the git command
"""
# Using subprocess instead of convoluted git libraries.
# Any rc != 0 will be throwing an exception, so we don't have to care
out = subprocess.check_output(
["git", "ls-remote", "--exit-code", repo_url, reference]
)
# out is a b'' type string always finishing up with a newline
# construct list of (ref,sha)
refs = [
(line.split(b"\t")[1], line.split(b"\t")[0])
for line in out.split(b"\n")
if line != b"" and b"^{}" not in line
]
if len(refs) > 1:
raise ValueError(
"More than one ref for reference %s, please be more explicit %s"
% (reference, refs)
)
return refs[0][1].decode("utf-8") | d7ab3e98217fa57e0831a6df94d34f1cf45e3d97 | 708,230 |
def get_motif_proteins(meme_db_file):
""" Hash motif_id's to protein names using the MEME DB file """
motif_protein = {}
for line in open(meme_db_file):
a = line.split()
if len(a) > 0 and a[0] == 'MOTIF':
if a[2][0] == '(':
motif_protein[a[1]] = a[2][1:a[2].find(')')]
else:
motif_protein[a[1]] = a[2]
return motif_protein | 88e42b84314593a965e7dd681ded612914e35629 | 708,231 |
import sys
def in_ipython() -> bool:
"""try to detect whether we are in an ipython shell, e.g., a jupyter notebook"""
ipy_module = sys.modules.get("IPython")
if ipy_module:
return bool(ipy_module.get_ipython())
else:
return False | 7a6804b964bd7fbde6d5795da953954343575413 | 708,232 |