content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def spg_line_search_step_length(current_step_length, delta, f_old, f_new,
sigma_one=0.1, sigma_two=0.9):
"""Return next step length for line search."""
step_length_tmp = (-0.5 * current_step_length ** 2 * delta /
(f_new - f_old - current_step_length * delta))
next_step_length = 0
if sigma_one <= step_length_tmp <= sigma_two * current_step_length:
next_step_length = step_length_tmp
else:
next_step_length = 0.5 * current_step_length
return next_step_length | 844cccdfe1ec3f9c2c287384284ceb2ac3530e8e | 709,570 |
def samps2ms(samples: float, sr: int) -> float:
"""samples to milliseconds given a sampling rate"""
return (samples / sr) * 1000.0 | 49e07ee02984bf0e9a0a54715ef6b6e5a3c87798 | 709,572 |
import os
def get_folder_name(path, prefix=''):
"""
Look at the current path and change the name of the experiment
if it is repeated
Args:
path (string): folder path
prefix (string): prefix to add
Returns:
string: unique path to save the experiment
"""
if prefix == '':
prefix = path.split('/')[-1]
path = '/'.join(path.split('/')[:-1])
folders = [f for f in os.listdir(path) if os.path.isdir(os.path.join(path, f))]
if prefix not in folders:
path = os.path.join(path, prefix)
elif not os.path.isdir(os.path.join(path, '{}_0'.format(prefix))):
path = os.path.join(path, '{}_0'.format(prefix))
else:
n = sorted([int(f.split('_')[-1]) for f in folders if '_' in f[-2:]])[-1]
path = os.path.join(path, '{}_{}'.format(prefix, n+1))
return path | 126648fbe460581272eedafc8599a3af1ded07e4 | 709,573 |
import argparse
def get_args():
"""! Command line parser for Utterance level classification Leave
one speaker out schema pipeline -- Find Best Models"""
parser = argparse.ArgumentParser(
description='Utterance level classification Leave one '
'speaker out schema pipeline -- Find Best Models' )
parser.add_argument('-i', '--input_features_paths', nargs='+',
help='File paths of the features you want to '
'concatenate and the classify')
args = parser.parse_args()
return args | 4a349da4fe3b570dae359937ed80494075bf26ea | 709,574 |
def esOperador(o):
""""retorna true si 'o' es un operador"""
return o == "+" or o == "-" or o == "/" or o == "*" | 7e1088b641dee7cad2594159c4a34cf979362458 | 709,575 |
def valid_identity(identity):
"""Determines whether or not the provided identity is a valid value."""
valid = (identity == "homer") or (identity == "sherlock")
return valid | 9865d19802b596d1d5fdce6ff8d236678da29ee6 | 709,576 |
import argparse
def parse_arguments():
"""parse_arguments"""
parser = argparse.ArgumentParser(description="MindSpore Tensorflow weight transfer")
parser.add_argument("--pretrained", default=None, type=str)
parser.add_argument("--name", default="imagenet22k", choices=["imagenet22k",])
args = parser.parse_args()
return args | 08b57fffe7f95a96f19e35839ca137f9382573ba | 709,577 |
import argparse
def build_arg_parser():
"""
Builds an argparse object to handle command-line arguments passed in.
"""
parser = argparse.ArgumentParser(description="Loads an ontology file in " +
"OBO file format into a Neo4j graph database.")
parser.add_argument('-i', '--input_obo_file', required=True,
help="The input OBO file")
parser.add_argument('-s', '--neo4j_server_address', required=True,
help="The address to the Neo4j server. Must include port number")
parser.add_argument('-t', '--typedefs', default="is_a", help="Typedefs that" +
"that are present in this ontology. These will be used to define " +
"the types of relationships supported in the input ontology")
parser.add_argument('-r', '--root_node', required=True, action="append",
default=[], help='DOID\'s for any root nodes in this ontology')
args = parser.parse_args()
return args | 8b9da4a060138b5487f346452c9e3ca85e55b801 | 709,580 |
def get_username() -> str:
"""
Prompts the user to enter a username and then returns it
:return: The username entered by the user
"""
while True:
print("Please enter your username (without spaces)")
username = input().strip()
if ' ' not in username:
return username | 1a18a229908b86c32a0822c068b5b9081cc9fdc3 | 709,581 |
def get_pip_package_name(provider_package_id: str) -> str:
"""
Returns PIP package name for the package id.
:param provider_package_id: id of the package
:return: the name of pip package
"""
return "apache-airflow-providers-" + provider_package_id.replace(".", "-") | e7aafbdfb0e296e60fedfcf7e4970d750e4f3ffa | 709,582 |
def first(iterable, default=None):
"""
Returns the first item or a default value
>>> first(x for x in [1, 2, 3] if x % 2 == 0)
2
>>> first((x for x in [1, 2, 3] if x > 42), -1)
-1
"""
return next(iter(iterable), default) | 6907e63934967c332eea9cedb5e0ee767a88fe8f | 709,583 |
import random
def random_small_number():
"""
随机生成一个小数
:return: 返回小数
"""
return random.random() | 45143c2c78dc72e21cbbe0a9c10babd00100be77 | 709,585 |
def float_to_16(value):
""" convert float value into fixed exponent (8) number
returns 16 bit integer, as value * 256
"""
value = int(round(value*0x100,0))
return value & 0xffff | 0a587e4505c9c19b0cbdd2f94c8a964f2a5a3ccd | 709,587 |
import os
def get_parent_dir():
"""Returns the root directory of the project."""
return os.path.abspath(os.path.join(os.getcwd(), os.pardir)) | f6c0a43cf2a38f507736f09429b7ca7012739559 | 709,588 |
def context():
"""Return an instance of the JIRA tool context."""
return dict() | e24e859add22eef279b650f28dce4f6732c346b8 | 709,589 |
def f(OPL,R):
""" Restoration function calculated from optical path length (OPL)
and from rational function parameter (R). The rational is multiplied
along all optical path.
"""
x = 1
for ii in range(len(OPL)):
x = x * (OPL[ii] + R[ii][2]) / (R[ii][0] * OPL[ii] + R[ii][1])
return x | 5b64b232646768d2068b114d112a8da749c84706 | 709,590 |
def _str_conv(number, rounded=False):
"""
Convenience tool to convert a number, either float or int into a string.
If the int or float is None, returns empty string.
>>> print(_str_conv(12.3))
12.3
>>> print(_str_conv(12.34546, rounded=1))
12.3
>>> print(_str_conv(None))
<BLANKLINE>
>>> print(_str_conv(1123040))
11.2e5
"""
if not number:
return str(' ')
if not rounded and isinstance(number, (float, int)):
if number < 100000:
string = str(number)
else:
exponant = int('{0:.2E}'.format(number).split('E+')[-1]) - 1
divisor = 10 ** exponant
string = '{0:.1f}'.format(number / divisor) + 'e' + str(exponant)
elif rounded == 2 and isinstance(number, (float, int)):
if number < 100000:
string = '{0:.2f}'.format(number)
else:
exponant = int('{0:.2E}'.format(number).split('E+')[-1]) - 1
divisor = 10 ** exponant
string = '{0:.2f}'.format(number / divisor) + 'e' + str(exponant)
elif rounded == 1 and isinstance(number, (float, int)):
if number < 100000:
string = '{0:.1f}'.format(number)
else:
exponant = int('{0:.2E}'.format(number).split('E+')[-1]) - 1
divisor = 10 ** exponant
string = '{0:.1f}'.format(number / divisor) + 'e' + str(exponant)
else:
return str(number)
return string | d352e8f0956b821a25513bf4a4eecfae5a6a7dcd | 709,591 |
def label_smoothed_nll_loss(lprobs, target, epsilon: float = 1e-8, ignore_index=None):
"""Adapted from fairseq
Parameters
----------
lprobs
Log probabilities of amino acids per position
target
Target amino acids encoded as integer indices
epsilon
Smoothing factor between 0 and 1, by default 1e-8
ignore_index, optional
Amino acid (encoded as integer) to ignore, by default None
Returns
-------
Negative log-likelihood loss
"""
nll_loss = -lprobs.gather(dim=-1, index=target)
smooth_loss = -lprobs.sum(dim=-1, keepdim=True)
if ignore_index is not None:
pad_mask = target.eq(ignore_index)
nll_loss.masked_fill_(pad_mask, 0.0)
smooth_loss.masked_fill_(pad_mask, 0.0)
else:
nll_loss = nll_loss.squeeze(-1)
smooth_loss = smooth_loss.squeeze(-1)
nll_loss = nll_loss.sum()
smooth_loss = smooth_loss.sum()
eps_i = epsilon / lprobs.size(-1)
loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss
return loss | eb09b7dd5c800b01b723f33cd0f7a84ae93b3489 | 709,592 |
import re
def parse_date(regexen, date_str):
"""
Parse a messy string into a granular date
`regexen` is of the form [ (regex, (granularity, groups -> datetime)) ]
"""
if date_str:
for reg, (gran, dater) in regexen:
m = re.match(reg, date_str)
if m:
try:
return gran, dater(m.groups())
except ValueError:
return 0, None
return 0, None | a141cad6762556115699ca0327b801537bab1c7e | 709,593 |
import requests
def is_referenced(url, id, catalog_info):
"""Given the url of a resource from the catalog, this function returns True
if the resource is referenced by data.gouv.fr
False otherwise
:param :url: url of a resource in the catalog
:type :url: string"""
dgf_page = catalog_info['url_dgf']
headers = requests.head(url).headers
downloadable = 'attachment' in headers.get('Content-Disposition', '')
if not downloadable:
raise Exception(f'This id is associated to a dataset not referenced by data.gouv.fr. \n '
f'Please download the dataset from here: {dgf_page}\n'
f'Then manually upload it in the corresponding folder and name it: {id}.csv')
return downloadable | 15cfa64979f2765d29d7c4bb60a7a017feb27d43 | 709,594 |
from typing import Dict
def get_entity_contents(entity: Dict) -> Dict:
"""
:param entity: Entity is a dictionary
:return: A dict representation of the contents of entity
"""
return {
'ID': entity.get('id'),
'Name': entity.get('name'),
'EmailAddress': entity.get('email_address'),
'Organization': entity.get('organization'),
'Tags': entity.get('labels'),
'StrictNameMatching': entity.get('strict_name_matching'),
'PolicyID': entity.get('policy_id'),
'Profile': entity.get('profile'),
'EntityGroupID': entity.get('entity_group', {}).get('id') if entity.get('entity_group') else None,
'EntityGroupName': entity.get('entity_group', {}).get('name') if entity.get('entity_group') else None,
'TypeID': entity.get('type', {}).get('id') if entity.get('type') else None,
'TypeName': entity.get('type', {}).get('name') if entity.get('type') else None
} | 3c9e133bf80bc4d59c6f663503b5083401acc4e0 | 709,595 |
def t68tot90(t68):
"""Convert from IPTS-68 to ITS-90 temperature scales,
as specified in the CF Standard Name information for
sea_water_temperature
http://cfconventions.org/Data/cf-standard-names/27/build/cf-standard-name-table.html
temperatures are in degrees C"""
t90 = 0.99976 * t68
return t90 | 87ff55a196f01b8f1afd78381e7d012eafa079fa | 709,596 |
def is_insertion(ref, alt):
"""Is alt an insertion w.r.t. ref?
Args:
ref: A string of the reference allele.
alt: A string of the alternative allele.
Returns:
True if alt is an insertion w.r.t. ref.
"""
return len(ref) < len(alt) | 17d7d6b8dfdf387e6dd491a6f782e8c9bde22aff | 709,597 |
import os
def get_testfile_paths():
"""
return the necessary paths for the testfile tests
Returns
-------
str
absolute file path to the test file
str
absolute folder path to the expected output folder
"""
testfile = os.path.join(os.path.dirname(os.path.dirname(__file__)), 'test_data', '0009_20170523_181119_FA2806.all')
expected_output = os.path.join(os.path.dirname(os.path.dirname(__file__)), 'test_data', 'converted')
return testfile, expected_output | f1cb8d29c70c686fbca43175637f44b7c5342180 | 709,598 |
def singleton(cls):
"""Decorator that provides singleton functionality.
>>> @singleton
... class Foo(object):
... pass
...
>>> a = Foo()
>>> b = Foo()
>>> a is b
True
"""
_inst = [None]
def decorated(*args, **kwargs):
if _inst[0] is None:
_inst[0] = cls(*args, **kwargs)
return _inst[0]
return decorated | 4ae64aeaaba1b838232e4d7700d692dcc109be6d | 709,599 |
def get_choice(options):
"""Devuelve como entero la opcion seleccionada para el input con mensaje message"""
print(options)
try:
return int(input("Por favor, escoja una opción: "))
except ValueError:
return 0 | 32e95e0113650d0b94449e5e31e7d8156ae85981 | 709,600 |
def _listminus(list1, list2):
"""
"""
return [a for a in list1 if a not in list2] | 3f05d8bfd4169d92bb51c4617536b54779b387c9 | 709,601 |
def get_station_freqs(df, method='median'):
"""
apply to df after applying group_by_days and group_by_station
"""
#df['DATE'] = df.index.get_level_values('DATE')
df['DAY'] = [d.dayofweek for d in df.index.get_level_values('DATE')]
df['DAYNAME'] = [d.day_name() for d in df.index.get_level_values('DATE')]
return df.groupby(['STATION', 'DAY','DAYNAME']).agg({'INS':method, 'OUTS':method}) | aebc1a2486c48ff2d829fc70f1f2c4b38bd3017b | 709,603 |
import numpy
def quantile(data, num_breaks):
"""
Calculate quantile breaks.
Arguments:
data -- Array of values to classify.
num_breaks -- Number of breaks to perform.
"""
def scipy_mquantiles(a, prob=list([.25,.5,.75]), alphap=.4, betap=.4, axis=None, limit=()):
""" function copied from scipy 0.13.3::scipy.stats.mstats.mquantiles """
def _quantiles1D(data,m,p):
x = numpy.sort(data.compressed())
n = len(x)
if n == 0:
return numpy.ma.array(numpy.empty(len(p), dtype=float), mask=True)
elif n == 1:
return numpy.ma.array(numpy.resize(x, p.shape), mask=numpy.ma.nomask)
aleph = (n*p + m)
k = numpy.floor(aleph.clip(1, n-1)).astype(int)
gamma = (aleph-k).clip(0,1)
return (1.-gamma)*x[(k-1).tolist()] + gamma*x[k.tolist()]
# Initialization & checks ---------
data = numpy.ma.array(a, copy=False)
if data.ndim > 2:
raise TypeError("Array should be 2D at most !")
#
if limit:
condition = (limit[0] < data) & (data < limit[1])
data[~condition.filled(True)] = numpy.ma.masked
#
p = numpy.array(prob, copy=False, ndmin=1)
m = alphap + p*(1.-alphap-betap)
# Computes quantiles along axis (or globally)
if (axis is None):
return _quantiles1D(data, m, p)
return numpy.ma.apply_along_axis(_quantiles1D, axis, data, m, p)
return scipy_mquantiles(data, numpy.linspace(1.0 / num_breaks, 1, num_breaks)) | 24486e39fcefb9e6cf969067836d1793b9f4a7c8 | 709,604 |
def get_valid_fields(val: int, cs: dict) -> set:
"""
A value is valid if there's at least one field's interval which contains it.
"""
return {
field
for field, intervals in cs.items()
if any(map(lambda i: i[0] <= val <= i[1], intervals))
} | 3016e78637374eadf7d0e2029d060538fea86377 | 709,605 |
def get_successors(graph):
"""Returns a dict of all successors of each node."""
d = {}
for e in graph.get_edge_list():
src = e.get_source()
dst = e.get_destination()
if src in d.keys():
d[src].add(dst)
else:
d[src] = set([dst])
return d | 1ec7b0ab8772dc738758bb14fe4abd5dd4b9074e | 709,606 |
def route53_scan(assets, record_value, record):
"""
Scan Route53
"""
for i, asset in enumerate(assets):
asset_type = asset.get_type()
if asset_type == 'EC2' and record_value in (asset.public_ip, asset.private_ip):
assets[i].dns_record = record['Name'].replace('\\052', '*')
elif asset_type == 'ELBV2' and record_value == f'{asset.name}.':
assets[i].dns_record = record['Name'].replace('\\052', '*')
return assets | eccbb2d716ef7b5dd713e7fbbd210c246c97347d | 709,607 |
def to_int(text):
"""Text to integer."""
try:
return int(text)
except ValueError:
return '' | d870ee05c3117111adcf85c91038b19beaf9585b | 709,608 |
def flooding(loss, b):
"""flooding loss
"""
return (loss - b).abs() + b | c34eedf0421b60e27bd813381ff7dfe96a3912eb | 709,609 |
def nir_mean(msarr,nir_band=7):
"""
Calculate the mean of the (unmasked) values of the NIR (near infrared) band
of an image array. The default `nir_band` value of 7 selects the NIR2 band
in WorldView-2 imagery. If you're working with a different type of imagery,
you will need figure out the appropriate value to use instead.
Parameters
----------
msarr : numpy array (RxCxBands shape)
The multispectral image array. See `OpticalRS.RasterDS` for more info.
nir_band : int (Default value = 7)
The default `nir_band` value of 7 selects the NIR2 band in WorldView-2
imagery. If you're working with a different type of imagery, you will
need figure out the appropriate value to use instead. This is a zero
indexed number (the first band is 0, not 1).
Returns
-------
float
The mean radiance in the NIR band.
"""
return msarr[...,nir_band].mean() | 7ba6ea8b7d51b8942a0597f2f89a05ecbee9f46e | 709,610 |
def sizeFromString(sizeStr, relativeSize):
"""
Converts from a size string to a float size.
sizeStr: The string representation of the size.
relativeSize: The size to use in case of percentages.
"""
if not sizeStr:
raise Exception("Size not specified")
dpi = 96.0
cm = 2.54
if len(sizeStr) > 2 and sizeStr[-2:] == 'cm':
return float(sizeStr[:-2])*dpi/cm
elif len(sizeStr) > 2 and sizeStr[-2:] == 'mm':
return float(sizeStr[:-2])*dpi/(cm*10.0)
elif len(sizeStr) > 1 and sizeStr[-1:] == 'Q':
return float(sizeStr[:-1])*dpi/(cm*40.0)
elif len(sizeStr) > 2 and sizeStr[-2:] == 'in':
return float(sizeStr[:-2])*dpi
elif len(sizeStr) > 2 and sizeStr[-2:] == 'pc':
return float(sizeStr[:-2])*dpi/6.0
elif len(sizeStr) > 2 and sizeStr[-2:] == 'pt':
return float(sizeStr[:-2])*dpi/72.0
elif len(sizeStr) > 2 and sizeStr[-2:] == 'em':
return float(sizeStr[:-2])*16.0
elif len(sizeStr) > 2 and sizeStr[-2:] == 'px':
return float(sizeStr[:-2])
elif len(sizeStr) > 1 and sizeStr[-1:] == '%':
return float(sizeStr[:-1])/100.0*relativeSize
return float(sizeStr) | 5f53d7d1ea86d4c54beb3aaebca228f7706e5a9b | 709,611 |
import re
def verify_time_format(time_str):
"""
This method is to verify time str format, which is in the format of 'hour:minute', both can be either one or two
characters.
Hour must be greater or equal 0 and smaller than 24, minute must be greater or equal 0 and smaller than 60
:param time_str: time str
:return:
"""
if not isinstance(time_str, str):
return False
time_format = r'^(\d{1,2}):(\d{1,2})$'
matched = re.match(time_format, time_str)
if matched:
if 0 <= int(matched.group(1)) < 24 and 0 <= int(matched.group(2)) < 60:
return True
else:
print('Hour should be within [0, 24); Minute should be within [0, 60)')
return False
else:
return False | fee469248d4d1d792c1ed858cf9043e5695c9f5d | 709,612 |
def has_space_element(source):
"""
判断对象中的元素,如果存在 None 或空字符串,则返回 True, 否则返回 False, 支持字典、列表和元组
:param:
* source: (list, set, dict) 需要检查的对象
:return:
* result: (bool) 存在 None 或空字符串或空格字符串返回 True, 否则返回 False
举例如下::
print('--- has_space_element demo---')
print(has_space_element([1, 2, 'test_str']))
print(has_space_element([0, 2]))
print(has_space_element([1, 2, None]))
print(has_space_element((1, [1, 2], 3, '')))
print(has_space_element({'a': 1, 'b': 0}))
print(has_space_element({'a': 1, 'b': []}))
print('---')
执行结果::
--- has_space_element demo---
False
False
True
True
False
True
---
"""
if isinstance(source, dict):
check_list = list(source.values())
elif isinstance(source, list) or isinstance(source, tuple):
check_list = list(source)
else:
raise TypeError('source except list, tuple or dict, but got {}'.format(type(source)))
for i in check_list:
if i is 0:
continue
if not (i and str(i).strip()):
return True
return False | ab8a968fb807654af73d9017145c0af2259ae41e | 709,613 |
def return_latest_psm_is(df, id_col, file_col, instr_col, psm_col):
""" Extracts info on PSM number, search ID and Instrument from the last row in DB
"""
last_row = df.iloc[-1]
search_id = last_row[id_col]
instr = last_row[instr_col]
psm = last_row[psm_col]
psm_string = str(psm) + ' PSMs in file ' + str(last_row[file_col])
print('String to put on the graph', psm_string)
return (search_id, instr, psm, psm_string) | 73c5acc945b9a6ef40aa1ce102351152b948a4b6 | 709,614 |
def add_parser_arguments_misc(parser):
"""
Adds the options that the command line parser will search for, some miscellaneous parameters, like use of gpu,
timing, etc.
:param parser: the argument parser
:return: the same parser, but with the added options.
"""
parser.add_argument('--use_gpu', action='store_true',
help='use GPU (CUDA). For loading data on Windows OS, if you get an Access Denied or Operation '
'Not Supported for cuda, you must set --loader_num_workers to 0 '
'(you can\'t share CUDA tensors among Windows processes).')
parser.add_argument('--gpu_num', default="0", type=str)
parser.add_argument('--map_gpu_beginning', action='store_true',
help='Will map all tensors (including FULL dataset) to GPU at the start of the instance, if '
'--use_gpu flag is supplied and CUDA is available. This option is NOT recommended if you '
'have low GPU memory or if you dataset is very large, since you may quickly run out of '
'memory.')
parser.add_argument('--timing', action='store_true',
help='if specified, will display times for several parts of training')
parser.add_argument('--load_args_from_json', type=str, default=None,
help='Path to json file containing args to pass. Should be an object containing the keys of '
'the attributes you want to change (keys that you don\'t supply will be left unchanged) '
'and their values according to their type (int, str, bool, list, etc.)')
return parser | 706ec64dfd6393fd1bd4741568e5e1af1d22a4d0 | 709,615 |
import os
import json
def get_jobs(job_filename):
"""Reads jobs from a known job file location
"""
jobs = list()
if job_filename and os.path.isfile(job_filename):
with open(job_filename, 'r') as input_fd:
data = input_fd.read()
job_dict = json.loads(data)
del data
for job in job_dict['jobs']:
jobs.append(job)
os.unlink(job_filename)
return jobs | eaa091131a026c8a4c5f4e788406e185e1bbffde | 709,617 |
from typing import List
from typing import Set
def grouping_is_valid(
proposed_grouping: List[Set[str]],
past_groups: List[Set[str]],
max_intersection_size: int,
) -> bool:
"""Returns true if no group in the proposed grouping intersects with any
past group with intersection size strictly greater than
`max_intersection_size`.
"""
for group in proposed_grouping:
for past_group in past_groups:
if len(group & past_group) > max_intersection_size:
return False
return True | caeb7568a2e8fddea9058ccc512dc9c06070ece9 | 709,618 |
def next_wire_in_dimension(wire1, tile1, wire2, tile2, tiles, x_wires, y_wires,
wire_map, wires_in_node):
""" next_wire_in_dimension returns true if tile1 and tile2 are in the same
row and column, and must be adjcent.
"""
tile1_info = tiles[tile1]
tile2_info = tiles[tile2]
tile1_x = tile1_info['grid_x']
tile2_x = tile2_info['grid_x']
tile1_y = tile1_info['grid_y']
tile2_y = tile2_info['grid_y']
# All wires are in the same row or column or if the each wire lies in its own
# row or column.
if len(y_wires) == 1 or len(x_wires) == len(wires_in_node) or abs(
tile1_y - tile2_y) == 0:
ordered_wires = sorted(x_wires.keys())
idx1 = ordered_wires.index(tile1_x)
idx2 = ordered_wires.index(tile2_x)
if len(x_wires[tile1_x]) == 1 and len(x_wires[tile2_x]) == 1:
return abs(idx1 - idx2) == 1
if len(x_wires) == 1 or len(y_wires) == len(wires_in_node) or abs(
tile1_x - tile2_x) == 0:
ordered_wires = sorted(y_wires.keys())
idx1 = ordered_wires.index(tile1_y)
idx2 = ordered_wires.index(tile2_y)
if len(y_wires[tile1_y]) == 1 and len(y_wires[tile2_y]) == 1:
return abs(idx1 - idx2) == 1
return None | 2c2b6a2cb4d117f2435568437d38f05311b7dd13 | 709,619 |
def sampleM(a0, bk, njk, m_cap=20):
"""produces sample from distribution over M using normalized log probabilities parameterizing a
categorical dist."""
raise DeprecationWarning()
wts = np.empty((m_cap,))
sum = 0
for m in range(m_cap):
wts[m] = gammaln(a0*bk) - gammaln(a0*bk+njk) + log(stirling.get(njk, m)+1e-9) + m*(a0+bk)
sum += wts[-1]
wts = np.array(wts) / sum
print(wts, np.sum(wts))
return rand.multinomial(1, wts) | 76cc9e0bd6a0594bd8b6350053957073ccf9caf9 | 709,620 |
def or_default(none_or_value, default):
"""
inputs:
none_or_value: variable to test
default: value to return if none_or_value is None
"""
return none_or_value if none_or_value is not None else default | 43200fe3bd1308eed87de0ad905873fd3c629067 | 709,621 |
import re
def keyclean(key):
"""
Default way to clean table headers so they make good
dictionary keys.
"""
clean = re.sub(r'\s+', '_', key.strip())
clean = re.sub(r'[^\w]', '', clean)
return clean | 0f28f0e92e2817a98a31396949690a46e7538ace | 709,622 |
import collections
def get_rfactors_for_each(lpin):
"""
R-FACTORS FOR INTENSITIES OF DATA SET /isilon/users/target/target/Iwata/_proc_ox2r/150415-hirata/1010/06/DS/multi011_1-5/XDS_ASCII_fullres.HKL
RESOLUTION R-FACTOR R-FACTOR COMPARED
LIMIT observed expected
5.84 60.4% 50.1% 174
4.13 58.1% 51.5% 310
3.38 60.0% 54.6% 410
2.92 90.3% 76.1% 483
2.62 130.4% 100.3% 523
2.39 241.1% 180.5% 612
2.21 353.9% 277.9% 634
2.07 541.1% 444.0% 673
1.95 -99.9% -99.9% 535
total 84.5% 71.2% 4354
"""
read_flag = False
filename = None
ret = collections.OrderedDict() # {filename: list of [dmin, Robs, Rexpt, Compared]}
for l in open(lpin):
if "R-FACTORS FOR INTENSITIES OF DATA SET" in l:
filename = l.strip().split()[-1]
elif "LIMIT observed expected" in l:
read_flag = True
elif read_flag:
sp = l.strip().replace("%","").split()
if len(sp) == 4:
dmin, robs, rexp, compared = sp
if dmin != "total": dmin = float(dmin)
else: dmin, read_flag = None, False
robs, rexp = map(float, (robs, rexp))
compared = int(compared)
ret.setdefault(filename, []).append([dmin, robs, rexp, compared])
return ret | 937ad8e2cf01fa6ab92838d235a385f9bbfb1b63 | 709,623 |
def value_left(self, right):
"""
Returns the value of the right type instance to use in an
operator method, namely when the method's instance is on the
left side of the expression.
"""
return right.value if isinstance(right, self.__class__) else right | f28c2f0548d3e004e3dd37601dda6c1ea5ab36f6 | 709,624 |
def get_mid_surface(in_surfaces):
"""get_mid_surface gives the mid surface when dealing with the 7 different surfaces
Args:
(list of strings) in_surfaces : List of path to the 7 different surfaces generated by mris_expand
Returns:
(string) Path to the mid surface
"""
return in_surfaces[3] | 718ab8fa7a3b716241ae05a4e507f40ab6cb0efd | 709,625 |
def parse_type(msg_type):
"""
Parse ROS message field type
:param msg_type: ROS field type, ``str``
:returns: base_type, is_array, array_length, ``(str, bool, int)``
:raises: :exc:`ValueError` If *msg_type* cannot be parsed
"""
if not msg_type:
raise ValueError("Invalid empty type")
if '[' in msg_type:
var_length = msg_type.endswith('[]')
splits = msg_type.split('[')
if len(splits) > 2:
raise ValueError("Currently only support 1-dimensional array types: %s"%msg_type)
if var_length:
return msg_type[:-2], True, None
else:
try:
length = int(splits[1][:-1])
return splits[0], True, length
except ValueError:
raise ValueError("Invalid array dimension: [%s]"%splits[1][:-1])
else:
return msg_type, False, None | 1dfe4f3abb7b69bed17b60ee2666279081666dc6 | 709,626 |
def echo(text):
"""Return echo function."""
return text | c128bc86bc63006a1ac5b209c10b21f787b7100a | 709,627 |
def zernike_name(index, framework='Noll'):
"""
Get the name of the Zernike with input index in input framework (Noll or WSS).
:param index: int, Zernike index
:param framework: str, 'Noll' or 'WSS' for Zernike ordering framework
:return zern_name: str, name of the Zernike in the chosen framework
"""
noll_names = {1: 'piston', 2: 'tip', 3: 'tilt', 4: 'defocus', 5: 'astig45', 6: 'astig0', 7: 'ycoma', 8: 'xcoma',
9: 'ytrefoil', 10: 'xtrefoil', 11: 'spherical'}
wss_names = {1: 'piston', 2: 'tip', 3: 'tilt', 5: 'defocus', 4: 'astig45', 6: 'astig0', 8: 'ycoma', 7: 'xcoma',
10: 'ytrefoil', 11: 'xtrefoil', 9: 'spherical'}
if framework == 'Noll':
zern_name = noll_names[index]
elif framework == 'WSS':
zern_name = wss_names[index]
else:
raise ValueError('No known Zernike convention passed.')
return zern_name | 33e73739c11bc2340a47162e161ba7d87e26d279 | 709,628 |
def xml_string(line, tag, namespace, default=None):
""" Get string value from etree element """
try:
val = (line.find(namespace + tag).text)
except:
val = default
return val | 77745d463cf6604ed787e220fdabf6ff998f770e | 709,629 |
def probabilities (X) -> dict:
""" This function maps the set of outcomes found in the sequence of events, 'X', to their respective probabilty of occuring in 'X'.
The return value is a python dictionary where the keys are the set of outcomes and the values are their associated probabilities."""
# The set of outcomes, denoted as 'C', and the total events, denoted as 'T'.
C, T = set(X), len(X)
return {c: X.count(c) / T for c in C} | c908a1186feea270be71bb1f03485c901bc82733 | 709,630 |
def select_daily(ds, day_init=15, day_end=21):
"""
Select lead time days.
Args:
ds: xarray dataset.
day_init (int): first lead day selection. Defaults to 15.
day_end (int): last lead day selection. Defaults to 21.
Returns:
xarray dataset subset based on time selection.
::Lead time indices for reference::
Week 1: 1, 2, 3, 4, 5, 6, 7
Week 2: 8, 9, 10, 11, 12, 13, 14
Week 3: 15, 16, 17, 18, 19, 20, 21
Week 4: 22, 23, 24, 25, 26, 27, 28
Week 5: 29, 30, 31, 32, 33, 34, 35
Week 6: 36, 37, 38, 39, 40, 41, 42
"""
return ds.isel(lead=slice(day_init, day_end + 1)) | 9948ecba5acc3c1ca2fe28526585d0bfa81fb862 | 709,631 |
def bulk_lookup(license_dict, pkg_list):
"""Lookup package licenses"""
pkg_licenses = {}
for pkg in pkg_list:
# Failsafe in case the bom file contains incorrect entries
if not pkg.get("name") or not pkg.get("version"):
continue
pkg_key = pkg["name"] + "@" + pkg["version"]
if pkg.get("vendor"):
pkg_key = pkg.get("vendor") + ":" + pkg["name"] + "@" + pkg["version"]
for lic in pkg.get("licenses"):
if lic == "X11":
lic = "MIT"
elif "MIT" in lic:
lic = "MIT"
curr_list = pkg_licenses.get(pkg_key, [])
match_lic = license_dict.get(lic)
if match_lic:
curr_list.append(match_lic)
pkg_licenses[pkg_key] = curr_list
return pkg_licenses | aa06b02fdfaa079dbfc4e1210ccccc995393dc52 | 709,632 |
def pack_bits(bools):
"""Pack sequence of bools into bits"""
if len(bools) % 8 != 0:
raise ValueError("list length must be multiple of 8")
bytes_ = []
b = 0
for j, v in enumerate(reversed(bools)):
b <<= 1
b |= v
if j % 8 == 7:
bytes_.append(b)
b = 0
return bytes_ | fadfb5e6abdb80691473262fac57f22384827c50 | 709,633 |
import json
def LoadJSON(json_string):
"""Loads json object from string, or None.
Args:
json_string: A string to get object from.
Returns:
JSON object if the string represents a JSON object, None otherwise.
"""
try:
data = json.loads(json_string)
except ValueError:
data = None
return data | 598c9b4d5e358a7a4672b25541c9db7743fcd587 | 709,634 |
def map_aemo_facility_status(facility_status: str) -> str:
"""
Maps an AEMO facility status to an Opennem facility status
"""
unit_status = facility_status.lower().strip()
if unit_status.startswith("in service"):
return "operating"
if unit_status.startswith("in commissioning"):
return "commissioning"
if unit_status.startswith("committed"):
return "committed"
if unit_status.startswith("maturing"):
return "maturing"
if unit_status.startswith("emerging"):
return "emerging"
raise Exception(
"Could not find AEMO status for facility status: {}".format(
unit_status
)
) | 43e1d5e5ea984d36260604cf25f4c7b90d5e56f1 | 709,635 |
def demand_monthly_ba(tfr_dfs):
"""A stub transform function."""
return tfr_dfs | 74bbb3d732b64a30f0529f76deedd646cc7d4171 | 709,636 |
def _SortableApprovalStatusValues(art, fd_list):
"""Return a list of approval statuses relevant to one UI table column."""
sortable_value_list = []
for fd in fd_list:
for av in art.approval_values:
if av.approval_id == fd.field_id:
# Order approval statuses by life cycle.
# NOT_SET == 8 but should be before all other statuses.
sortable_value_list.append(
0 if av.status.number == 8 else av.status.number)
return sortable_value_list | 15ce3c6191495957674ab38c2f990d34f10ecdf6 | 709,637 |
def load_config_file(config_file):
""" Loads the given file into a list of lines
:param config_file: file name of the config file
:type config_file: str
:return: config file as a list (one item per line) as returned by open().readlines()
"""
with open(config_file, 'r') as f:
config_document = f.readlines()
return config_document | 6a6e0199566e9ea27db309b2164f323cd5f57fdc | 709,638 |
import re
import requests
def get(url: str) -> dict:
"""
author、audioName、audios
"""
data = {}
headers = {
"Accept": "application/json, text/plain, */*",
"Accept-Encoding": "gzip, deflate",
"Accept-Language": "zh-CN,zh;q=0.9",
"Connection": "keep-alive",
"Host": "www.kuwo.cn",
"Referer": "http://www.kuwo.cn/",
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.117 Safari/537.36",
}
song_info_url_format = "http://m.kuwo.cn/newh5/singles/songinfoandlrc?musicId={id}"
mp3_url_format = "http://www.kuwo.cn/url?format=mp3&rid={id}&response=url&type=convert_url3&br={quality}&from=web"
# http://www.kuwo.cn/play_detail/*********
id = re.findall(r"/(\d{1,})", url)
if id:
id = id[0]
else:
data["msg"] = "不支持输入的链接形式"
return data
session = requests.session()
# 得到最高品质以及歌曲信息
with session.get(song_info_url_format.format(id=id), headers=headers, timeout=10) as rep:
if rep.status_code == 200 and rep.json().get("status") == 200:
best_quality = rep.json().get("data").get(
"songinfo").get("coopFormats")[0]
author = rep.json().get("data").get("songinfo").get("artist")
song_name = rep.json().get("data").get("songinfo").get("songName")
pic = rep.json().get("data").get("songinfo").get("pic")
data["author"] = author
data["audioName"] = song_name
data["imgs"] = [pic]
else:
data["msg"] = "获取失败"
return data
if not best_quality:
best_quality = "128kmp3"
# 得到歌曲链接
with session.get(mp3_url_format.format(id=id, quality=best_quality), headers=headers, timeout=10) as rep:
if rep.status_code == 200 and rep.json().get("code") == 200:
play_url = rep.json().get("url")
data["audios"] = [play_url]
else:
data["msg"] = "获取音频链接失败"
return data | 5dd97f4974b1fdc0a89ad36bbb14ad5c26e1582d | 709,639 |
from pathlib import Path
def check_overwrite(path: str, overwrite: bool = False) -> str:
"""
Check if a path exists, if so raising a RuntimeError if overwriting is disabled.
:param path: Path
:param overwrite: Whether to overwrite
:return: Path
"""
if Path(path).is_file() and not overwrite:
raise RuntimeError(
f"Requested existing {path!r} as output, but overwriting is disabled."
)
return path | 961affdcc87b055cdd5acb9a28547ef87ae426b9 | 709,640 |
import struct
def bytes_to_text(input):
"""Converts given bytes (latin-1 char + padding)*length to text"""
content = struct.unpack((int(len(input)/2))*"sx", input)
return "".join([x.decode("latin-1") for x in content]).rstrip("\x00") | f058847886fc3a488c54b8e01c3d7506f6d76510 | 709,641 |
def update_game(game_obj, size, center1, center2):
"""
Update game state
"""
new_game_obj = game_obj.copy()
if center1 is not None:
new_game_obj['rudder1_pos'] = center1
if center2 is not None:
new_game_obj['rudder2_pos'] = center2
# Check if hitting corner
init_vel = new_game_obj['velocity']
if new_game_obj['pos'][1] >= 480-15 or new_game_obj['pos'][1] <= 15:
new_game_obj['velocity'] = (init_vel[0], -1*init_vel[1])
if new_game_obj['pos'][0] >= 640-15:
new_game_obj['pos'] = (size[1]/2, size[0]/2)
new_game_obj['velocity'] = (-1.05*abs(new_game_obj['velocity'][0]),
1.05*abs(new_game_obj['velocity'][1]))
new_game_obj['score1'] += 1
elif new_game_obj['pos'][0] <= 15:
new_game_obj['pos'] = (size[1]/2, size[0]/2)
new_game_obj['score2'] += 1
new_game_obj['velocity'] = (1.05*abs(new_game_obj['velocity'][0]),
-1.05*abs(new_game_obj['velocity'][1]))
elif 0 <= new_game_obj['pos'][0]-new_game_obj['rudder1_pos'][0] <= 17 and new_game_obj['rudder1_pos'][1]-(50+15) < new_game_obj['pos'][1] < new_game_obj['rudder1_pos'][1] + 50+15:
new_game_obj['velocity'] = (-1*init_vel[0], init_vel[1])
elif 0 <= new_game_obj['rudder2_pos'][0] - new_game_obj['pos'][0] <= 17 and new_game_obj['rudder2_pos'][1]-(50+15) < new_game_obj['pos'][1] < new_game_obj['rudder2_pos'][1]+(50+15):
init_vel = new_game_obj['velocity']
new_game_obj['velocity'] = (-1*init_vel[0], init_vel[1])
new_game_obj['pos'] = (new_game_obj['pos'][0] + new_game_obj['velocity']
[0], new_game_obj['pos'][1] + new_game_obj['velocity'][1])
# print(new_game_obj)
return new_game_obj | 33646593e6743d11174f72be6f4b825633fe8782 | 709,642 |
def mulaw_to_value(mudata):
"""Convert a mu-law encoded value to linear."""
position = ((mudata & 0xF0) >> 4) + 5
return ((1 << position) | ((mudata & 0xF) << (position - 4)) | (1 << (position - 5))) - 33 | 2ccca7f13861c7a212ac3a1dd2afc439839b19a7 | 709,643 |
def validate_watch(value):
"""Validate "watch" parameter."""
if not value:
return None
if isinstance(value, str):
value = [_ for _ in value.split("\n") if _]
return value | 203b77f376a747cbd10f0c674897f912bb75618f | 709,644 |
import re
def test_invalid_patterns(list, pattern):
"""
Function to facilitate the tests in MyRegExTest class
:param list: list with strings of invalid cases
:param pattern: a regular expression
:return: list with the result of all matches which should be a list of None
"""
newList = []
for item in list:
matched = re.match(pattern, item)
if matched is None:
newList.append(None)
else:
raise ValueError(item + ' matched to ' + pattern + ' while it should not have matched')
return newList | 94a8232d66ff4c705e7a587aedc9d1cbe0b4f072 | 709,645 |
import argparse
def args_parse():
"""Parse the input args."""
parser = argparse.ArgumentParser(description='Certificate import')
parser.add_argument("--cert", default="./kmc/config/crt/sever.cert", type=str,
help="The path of certificate file")
parser.add_argument("--key", default='./kmc/config/crt/sever.key', type=str,
help="The path of private Key file.")
parser.add_argument("--key_component_1", default='./kmc/config/ksf/ksmaster.dat', type=str,
help="key material 1.")
parser.add_argument("--key_component_2", default='./kmc/config/ksf/ksstandby.dat', type=str,
help="key material 2.")
args = parser.parse_args()
return args | 88b114ac63afe32bac097a26bb15fe704fc2e8c1 | 709,646 |
def remove_constant_features(sfm):
"""
Remove features that are constant across all samples
"""
# boolean matrix of whether x == first column (feature)
x_not_equal_to_1st_row = sfm._x != sfm._x[0]
non_const_f_bool_ind = x_not_equal_to_1st_row.sum(axis=0) >= 1
return sfm.ind_x(selected_f_inds=non_const_f_bool_ind) | ae8c6e1d14b7260c8d2491b2f8a00ba352d7375a | 709,647 |
def _find_ntc_family(guide_id):
"""Return a String of the NTC family
"""
guide_id_list = guide_id.split('_')
return '_'.join(guide_id_list[0:2]) | 2b340694c2379682b232e49c9b0f1f0a91c778cf | 709,648 |
def _chr_ord(x):
"""
This is a private utility function for getBytesIOString to return
chr(ord(x))
"""
return chr(ord(x)) | 8529686bf3a40cd1f2c32f458ebdba17a9b35a05 | 709,649 |
def load_glove_vectors(glove_file="/home/yaguang/pretrained_models/glove.6B.50d.txt"):
"""Load the glove word vectors"""
word_vectors = {}
with open(glove_file) as f:
for line in f:
split = line.split()
word_vectors[split[0]] = [float(x) for x in split[1:]]
return word_vectors | a7bb1650885e12f436273b012d0c1c381e1be311 | 709,650 |
import math
def compute_recommended_batch_size_for_trustworthy_experiments(C: int, H: int, W: int, safety_val: float) -> int:
"""
Based on inequality with safety_val=s:
N' >= s*D'
the recommended batch size is, assuming N'=B*H*W and D'=C (so considering neurons as filter, patches as data):
B*H*W >= s*C
leading to any batch size B that satisfies:
B >= (s*C)/(H*W)
for the current layer and model. So, C, H, W are for the current model at that layer.
note:
- recommended way to compute this is to get the largest B after plugging in the C, H, W for all the layers of
your model - essentially computing the "worst-case" B needed for the model.
:return:
"""
recommended_batch_size: int = int(math.ceil(safety_val * C / (H * W)))
assert (recommended_batch_size > 0), 'Batch size that was recommnded was negative, check the input your using.'
return recommended_batch_size | 80f11adb87b252a31aba590c38e60350535025ae | 709,651 |
def load_document(filepath):
"""
Description:Opens and loads the file specified by filepath as a raw txt string; assumes valid text file format.
Input: String -> filepath of file from current directory
Output: Entire contents of text file as a string
"""
#assert(filepath.endswith(".txt")), "Function: Load Document -> File specificed by filepath is not of type .txt"
file = open(filepath, 'r')
file_string = file.read()
file.close()
return file_string | b44a3af09ec7c776a1d3bd1a90efe3deb90da821 | 709,653 |
def readByte (file):
""" Read a byte from file. """
return ord (file.read (1)) | 4e82d1b688d7742fd1dd1025cd7ac1ccb13bbca0 | 709,655 |
def _column_sel_dispatch(columns_to_select, df): # noqa: F811
"""
Base function for column selection.
Applies only to slices.
The start slice value must be a string or None;
same goes for the stop slice value.
The step slice value should be an integer or None.
A slice, if passed correctly in a Multindex column,
returns a list of tuples across all levels of the
column.
A list of column names is returned.
"""
df_columns = df.columns
filtered_columns = None
start_check = None
stop_check = None
step_check = None
if not df_columns.is_unique:
raise ValueError(
"""
The column labels are not unique.
Kindly ensure the labels are unique
to ensure the correct output.
"""
)
start, stop, step = (
columns_to_select.start,
columns_to_select.stop,
columns_to_select.step,
)
start_check = any((start is None, isinstance(start, str)))
stop_check = any((stop is None, isinstance(stop, str)))
step_check = any((step is None, isinstance(step, int)))
if not start_check:
raise ValueError(
"""
The start value for the slice
must either be a string or `None`.
"""
)
if not stop_check:
raise ValueError(
"""
The stop value for the slice
must either be a string or `None`.
"""
)
if not step_check:
raise ValueError(
"""
The step value for the slice
must either be an integer or `None`.
"""
)
start_check = any((start is None, start in df_columns))
stop_check = any((stop is None, stop in df_columns))
if not start_check:
raise ValueError(
"""
The start value for the slice must either be `None`
or exist in the dataframe's columns.
"""
)
if not stop_check:
raise ValueError(
"""
The stop value for the slice must either be `None`
or exist in the dataframe's columns.
"""
)
if start is None:
start = 0
else:
start = df_columns.get_loc(start)
if stop is None:
stop = len(df_columns) + 1
else:
stop = df_columns.get_loc(stop)
if start > stop:
filtered_columns = df_columns[slice(stop, start + 1, step)][::-1]
else:
filtered_columns = df_columns[slice(start, stop + 1, step)]
df_columns = None
return [*filtered_columns] | 177fd2f84884e068b08b509037788c998c026502 | 709,656 |
def sdfGetMolBlock(mol):
"""
sdfGetMolBlock() returns the MOL block of the molecule
"""
return mol["molblock"] | 399874a696f30f492ee878ef661094119bd5f96f | 709,657 |
def createPhysicalAddressDataframe(userDf):
"""
This method create PhoneNumber dataframe for CDM
:param userDf: person dataframe
:type userDf: object
"""
addressColumns = [
"id as personId","city","country","officeLocation","postalCode","state","streetAddress"
]
return userDf.selectExpr(addressColumns).where(userDf.country.isNotNull()) | 4d185175ff6719476ed843680c17d0f267fa15ff | 709,659 |
from typing import Optional
from pathlib import Path
import os
def is_stem(path: Optional[str]) -> bool:
"""Check if the given path is a stem."""
if path is None:
return False
path = path.lower()
parent = str(Path(path).parent)
if parent == ".":
root, ext = os.path.splitext(path)
if ext == "":
return True
return False | c14053cb93997eaea118f9187d96869b82c97539 | 709,660 |
import os
def get_resource_path(filename: str = "") -> str:
"""
get the resource path in the resource in the test dir.
/path/to/resource/filename
"""
current = os.path.abspath(__file__)
current_path = os.path.dirname(current)
resource_dir = os.path.join(current_path, 'resource')
return os.path.join(resource_dir, filename) | 4e140c7619336a508f3eb833b95513bc7e84bd4e | 709,661 |
def noop_chew_func(_data, _arg):
"""
No-op chew function.
"""
return 0 | 82ef82b350c2a01e5ba22f288c003032bf6e63e0 | 709,662 |
def find_middle_snake_less_memory(old_sequence, N, new_sequence, M):
"""
A variant of the 'find middle snake' function that uses O(min(len(a), len(b)))
memory instead of O(len(a) + len(b)) memory. This does not improve the
worst-case memory requirement, but it takes the best case memory requirement
down to near zero.
"""
MAX = N + M
Delta = N - M
V_SIZE=2*min(M,N) + 2
Vf = [None] * V_SIZE
Vb = [None] * V_SIZE
Vf[1] = 0
Vb[1] = 0
for D in range(0, (MAX//2+(MAX%2!=0)) + 1):
for k in range(-(D - 2*max(0, D-M)), D - 2*max(0, D-N) + 1, 2):
if k == -D or k != D and Vf[(k - 1) % V_SIZE] < Vf[(k + 1) % V_SIZE]:
x = Vf[(k + 1) % V_SIZE]
else:
x = Vf[(k - 1) % V_SIZE] + 1
y = x - k
x_i = x
y_i = y
while x < N and y < M and old_sequence[x] == new_sequence[y]:
x = x + 1
y = y + 1
Vf[k % V_SIZE] = x
inverse_k = (-(k - Delta))
if (Delta % 2 == 1) and inverse_k >= -(D -1) and inverse_k <= (D -1):
if Vf[k % V_SIZE] + Vb[inverse_k % V_SIZE] >= N:
return 2 * D -1, x_i, y_i, x, y
for k in range(-(D - 2*max(0, D-M)), (D - 2*max(0, D-N)) + 1, 2):
if k == -D or k != D and Vb[(k - 1) % V_SIZE] < Vb[(k + 1) % V_SIZE]:
x = Vb[(k + 1) % V_SIZE]
else:
x = Vb[(k - 1) % V_SIZE] + 1
y = x - k
x_i = x
y_i = y
while x < N and y < M and old_sequence[N - x -1] == new_sequence[M - y - 1]:
x = x + 1
y = y + 1
Vb[k % V_SIZE] = x
inverse_k = (-(k - Delta))
if (Delta % 2 == 0) and inverse_k >= -D and inverse_k <= D:
if Vb[k % V_SIZE] + Vf[inverse_k % V_SIZE] >= N:
return 2 * D, N - x, M - y, N - x_i, M - y_i | d320090f975525a620a7fafc479e9eec8b9a4ffa | 709,663 |
from datetime import datetime
def set_clock(child, timestamp=None):
"""Set the device's clock.
:param pexpect.spawn child: The connection in a child application object.
:param datetime timestamp: A datetime tuple (year, month, day, hour, minute, second).
:returns: The updated connection in a child application object.
:rtype: pexpect.spawn
"""
if not timestamp:
timestamp = datetime.utcnow()
child.sendline("clock set {0}\r".format(timestamp.strftime("%H:%M:%S %d %b %Y")))
child.expect_exact("{0}, configured from console by console".format(timestamp.strftime("%H:%M:%S UTC %a %b %d %Y")))
return child | b6299ab780ffc9e9d27b0715decf095b3d6a6272 | 709,664 |
def index(request):
"""Render site index page."""
return {} | 38c0a1e47cdbe2eed374b6231761698efa1bc166 | 709,665 |
def parse_file(filename):
"""Parses the file containing the db schema
Key Arguments:
filename - the file to parse"""
f = open(filename, 'r')
lines = f.readlines()
f.close()
db = {}
for line in lines:
s_line = line.split('\t')
if s_line[0] == 'TABLE_CATALOG':
continue
if s_line[1] in db:
db[s_line[1]].append(s_line[2])
else:
db[s_line[1]] = [s_line[2]]
return db | 0b02829505a1b07c8a1ed9cc8a34c651cf4be41c | 709,666 |
import os
import requests
def check_token(token) -> bool:
"""Check ReCaptcha token
Args:
token
Returns:
bool
"""
if os.getenv("CI"):
return True
url = "https://www.google.com/recaptcha/api/siteverify"
secret_key = os.getenv("RECAPTCHA_SECRET_KEY")
payload = {
"secret": secret_key,
"response": token,
}
response = requests.post(url, data=payload)
return response.json()["success"] and response.json()["score"] >= 0.5 | 5c78e55333e4e5484ae30acaea58a988247152dd | 709,667 |
import argparse
def get_commandline_parser():
"""it parses commandline arguments."""
parser = argparse.ArgumentParser(description='Toolpath generator.')
parser.add_argument('--stl-filepath', help='filpath of stl file.')
parser.add_argument('--diameter', help='Diameter of toolbit.')
parser.add_argument('--step-size', help='Step size of the CNC machine.')
parser.add_argument('--feed-rate', help='Feed rate of CNC machine.')
parser.add_argument('--calculate-time', help='Flag to print time.',
type=bool)
return parser | d8727b7a9f40f63e0c322074ae88585e7dd5f0eb | 709,668 |
def uniquify_contacts(contacts):
"""
Return a sequence of contacts with all duplicates removed.
If any duplicate names are found without matching numbers, an exception is raised.
"""
ctd = {}
for ct in contacts:
stored_ct = ctd.setdefault(ct.name, ct)
if stored_ct.dmrid != ct.dmrid:
raise RuntimeError(
"Two contacts named {} have different IDs: {} {}".format(
ct.name, ct.dmrid, stored_ct.dmrid
)
)
return list(ctd.values()) | f4bf001abcccad1307633e6de6ed6228516ba0b2 | 709,669 |
def optimize_bank_transaction_list(bank_transactions):
"""Append related objects using select_related and prefetch_related"""
return bank_transactions.select_related('block') | c7c7242336f9cddf399efc9d813b7650b0f6ce5e | 709,670 |
def determine_if_is_hmmdb(infp):
"""Return True if the given file is an HMM database (generated using
hmmpress from the HMMer3 software package), and return False otherwise.
"""
#if open(infp, 'r').read().startswith('HMMER3/f'):
if open(infp, 'r').readline().startswith('HMMER3/f'):
return True
else:
return False | 33b962e24c76e9e25f2cc76d4e7f78565adf8a3e | 709,671 |
def template_footer(in_template):
"""Extracts footer from the notebook template.
Args:
in_template (str): Input notebook template file path.
Returns:
list: List of lines.
"""
footer = []
template_lines = []
footer_start_index = 0
with open(in_template) as f:
template_lines = f.readlines()
for index, line in enumerate(template_lines):
if '## Display Earth Engine data layers' in line:
footer_start_index = index - 3
footer = ['\n'] + template_lines[footer_start_index:]
return footer | cb872076b82b2012b2e27fcb1be9b8704cd60d27 | 709,672 |
def post_step1(records):
"""Apply whatever extensions we have for GISTEMP step 1, that run
after the main step 1. None at present."""
return records | 98287f6930db6aa025715356084b3bef8c851774 | 709,673 |
def Position(context):
"""Function: <number> position()"""
return context.position | e5ddf5aa8d5321ce9e7dc14b635cb942fbbbcbf1 | 709,674 |
import math
def spatial_shift_crop_list(size, images, spatial_shift_pos, boxes=None):
"""
Perform left, center, or right crop of the given list of images.
Args:
size (int): size to crop.
image (list): ilist of images to perform short side scale. Dimension is
`height` x `width` x `channel` or `channel` x `height` x `width`.
spatial_shift_pos (int): option includes 0 (left), 1 (middle), and
2 (right) crop.
boxes (list): optional. Corresponding boxes to images.
Dimension is `num boxes` x 4.
Returns:
cropped (ndarray): the cropped list of images with dimension of
`height` x `width` x `channel`.
boxes (list): optional. Corresponding boxes to images. Dimension is
`num boxes` x 4.
"""
assert spatial_shift_pos in [0, 1, 2]
height = images[0].shape[0]
width = images[0].shape[1]
y_offset = int(math.ceil((height - size) / 2))
x_offset = int(math.ceil((width - size) / 2))
if height > width:
if spatial_shift_pos == 0:
y_offset = 0
elif spatial_shift_pos == 2:
y_offset = height - size
else:
if spatial_shift_pos == 0:
x_offset = 0
elif spatial_shift_pos == 2:
x_offset = width - size
cropped = [
image[y_offset : y_offset + size, x_offset : x_offset + size, :]
for image in images
]
assert cropped[0].shape[0] == size, "Image height not cropped properly"
assert cropped[0].shape[1] == size, "Image width not cropped properly"
if boxes is not None:
for i in range(len(boxes)):
boxes[i][:, [0, 2]] -= x_offset
boxes[i][:, [1, 3]] -= y_offset
return cropped, boxes | c80d8ab83f072c94887d48c3d1cfe5bb18285dbb | 709,675 |
import argparse
def get_input_args():
"""
Used to parse the command line arguments in order to predict the flower name and the class probability.
Options:
Return top KK most likely classes: python predict.py input checkpoint --top_k 3
Use a mapping of categories to real names: python predict.py input checkpoint --category_names cat_to_name.json
Use GPU for inference: python predict.py input checkpoint --gpu
"""
# Create Parse using ArgumentParser
parser = argparse.ArgumentParser(
description='Process Image Folder, CNN Model Architecture, Set hyper parameters')
parser.add_argument('single_image', metavar='single_image', type=str, nargs=1,
help='a single image for which the flower name and the class probability is to be predicted')
parser.add_argument('checkpoint', metavar='checkpoint', type=str, nargs=1,
help='The checkpoint from which the model is re-built for the prediction')
parser.add_argument('--top_k', type=int, default='3',
help='The number of most likely classes with default value \'3\'')
parser.add_argument('--category_names', type=str, default='cat_to_name.json',
help='A file mapping of categories to real names with default value \'cat_to_name.json\'')
parser.add_argument('--gpu', action='store_true',
help='If available then the GPU will be used, else not')
return parser.parse_args() | 145e6d2601b37b10f4c8dbac649ab8abec2951a5 | 709,676 |
import sys
import os
def IsInteractive(output=False, error=False, heuristic=False):
"""Determines if the current terminal session is interactive.
sys.stdin must be a terminal input stream.
Args:
output: If True then sys.stdout must also be a terminal output stream.
error: If True then sys.stderr must also be a terminal output stream.
heuristic: If True then we also do some additional heuristics to check if
we are in an interactive context. Checking home path for example.
Returns:
True if the current terminal session is interactive.
"""
if not sys.stdin.isatty():
return False
if output and not sys.stdout.isatty():
return False
if error and not sys.stderr.isatty():
return False
if heuristic:
# Check the home path. Most startup scripts for example are executed by
# users that don't have a home path set. Home is OS dependent though, so
# check everything.
# *NIX OS usually sets the HOME env variable. It is usually '/home/user',
# but can also be '/root'. If it's just '/' we are most likely in an init
# script.
# Windows usually sets HOMEDRIVE and HOMEPATH. If they don't exist we are
# probably being run from a task scheduler context. HOMEPATH can be '\'
# when a user has a network mapped home directory.
# Cygwin has it all! Both Windows and Linux. Checking both is perfect.
home = os.getenv('HOME')
homepath = os.getenv('HOMEPATH')
if not homepath and (not home or home == '/'):
return False
return True | 8037e2d38dca9fc745b7b0b79cfb83226e59d42d | 709,677 |
import os
import errno
import stat
def ismount(path):
"""
Test whether a path is a mount point.
This is code hijacked from C Python 2.6.8, adapted to remove the extra
lstat() system call.
"""
try:
s1 = os.lstat(path)
except os.error as err:
if err.errno == errno.ENOENT:
# It doesn't exist -- so not a mount point :-)
return False
raise
if stat.S_ISLNK(s1.st_mode):
# A symlink can never be a mount point
return False
s2 = os.lstat(os.path.join(path, '..'))
dev1 = s1.st_dev
dev2 = s2.st_dev
if dev1 != dev2:
# path/.. on a different device as path
return True
ino1 = s1.st_ino
ino2 = s2.st_ino
if ino1 == ino2:
# path/.. is the same i-node as path
return True
return False | d1d18af449c720ed0b616436d905c28313ed88d1 | 709,678 |
def write_results(conn, cursor, mag_dict, position_dict):
"""
Write star truth results to the truth table
Parameters
----------
conn is a sqlite3 connection to the database
cursor is a sqlite3.conneciton.cursor() object
mag_dict is a dict of mags. It is keyed on the pid of the
Process used to process a chunk of magnitudes. Each value
is a 2-D numpy array of shape (n_obj, n_bandpasses). It is
produced by calculate_magnitudes.
position_dict is a dict keyed on pid of the Process used to
process a chunk of stars. The values are also dicts, these
keyed on 'healpix', 'ra', 'dec', 'id' with the values being
arrays of those quantities for the corresponding chunk of
stars.
Returns
-------
None
Just writes to the database
"""
assert len(mag_dict) == len(position_dict)
row_ct = 0
for k in mag_dict.keys():
mm = mag_dict[k]
pp = position_dict[k]
row_ct += len(pp['ra'])
if len(mm) != len(pp['ra']):
raise RuntimeError('%d mm %d pp' % (len(mm), len(pp['ra'])))
values = ((int(pp['healpix'][i_obj]),
int(pp['id'][i_obj]), 1, 0, 0,
pp['ra'][i_obj], pp['dec'][i_obj], 0.0,
mm[i_obj][0], mm[i_obj][1], mm[i_obj][2],
mm[i_obj][3], mm[i_obj][4], mm[i_obj][5])
for i_obj in range(len(pp['ra'])))
cursor.executemany('''INSERT INTO truth
VALUES (?,?,?,?,?,?,?,?,?,?,?,?,?,?)''', values)
conn.commit()
return row_ct | 0b0c9234a32050277a7e70fee3ab7ba1be5931bb | 709,679 |