content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def _checker(word: dict):
"""checks if the 'word' dictionary is fine
:param word: the node in the list of the text
:type word: dict
:return: if "f", "ref" and "sig" in word, returns true, else, returns false
:rtype: bool
"""
if "f" in word and "ref" in word and "sig" in word:
return True
return False | ee6ec5a7ee393ddcbc97b13f6c09cdd9019fb1a6 | 709,680 |
def classified_unread_counts():
"""
Unread counts return by
helper.classify_unread_counts function.
"""
return {
'all_msg': 12,
'all_pms': 8,
'unread_topics': {
(1000, 'Some general unread topic'): 3,
(99, 'Some private unread topic'): 1
},
'unread_pms': {
1: 2,
2: 1,
},
'unread_huddles': {
frozenset({1001, 11, 12}): 3,
frozenset({1001, 11, 12, 13}): 2
},
'streams': {
1000: 3,
99: 1
}
} | 4d5e984641de88fd497b6c78891b7e6478bb8385 | 709,681 |
def to_n_class(digit_lst, data, labels):
"""to make a subset of MNIST dataset, which has particular digits
Parameters
----------
digit_lst : list
for example, [0,1,2] or [1, 5, 8]
data : numpy.array, shape (n_samples, n_features)
labels : numpy.array or list of str
Returns
-------
numpy.array, list of int
"""
if not set(digit_lst) <= set(range(10)):
raise ValueError
indices = []
new_labels = []
for i, x in enumerate(data):
for digit in digit_lst:
if labels[i] == str(digit):
indices.append(i)
new_labels.append(digit)
return data[indices], new_labels | 79652687ec0670ec00d67681711903ae01f4cc87 | 709,682 |
def format_value_with_percentage(original_value):
"""
Return a value in percentage format from
an input argument, the original value
"""
percentage_value = "{0:.2%}".format(original_value)
return percentage_value | 78bfb753b974bc7cbe3ac96f58ee49251063d2e7 | 709,684 |
import numpy
def get_Z_and_extent(topofile):
"""Get data from an ESRI ASCII file."""
f = open(topofile, "r")
ncols = int(f.readline().split()[1])
nrows = int(f.readline().split()[1])
xllcorner = float(f.readline().split()[1])
yllcorner = float(f.readline().split()[1])
cellsize = float(f.readline().split()[1])
nodatavalue = float(f.readline().split()[1])
data = numpy.zeros((nrows, ncols), dtype=numpy.float64)
for i in range(nrows):
data[i, :] = f.readline().strip().split()
f.close()
extent = [xllcorner, xllcorner+ncols*cellsize,
yllcorner, yllcorner+nrows*cellsize]
return data, extent | e96db5c2ae4a0d6c94654d7ad29598c3231ec186 | 709,685 |
import torch
def train_discrim(discrim, state_features, actions, optim, demostrations,
settings):
"""demostractions: [state_features|actions]
"""
criterion = torch.nn.BCELoss()
for _ in range(settings.VDB_UPDATE_NUM):
learner = discrim(torch.cat([state_features, actions], dim=-1))
expert = discrim(demostrations)
discrim_loss = criterion(learner, torch.ones(
[len(state_features), 1])) + criterion(
expert, torch.zeros(len(demostrations), 1))
optim.zero_grad()
discrim_loss.backward()
optim.step()
expert_acc = ((discrim(demostrations) < 0.5).float()).mean()
learner_acc = ((discrim(torch.cat([state_features, actions], dim=1)) >
0.5).float()).mean()
return expert_acc, learner_acc | 7e6c16fc396b371e92d3a04179eacb9cae63659c | 709,686 |
def max_tb(collection): # pragma: no cover
"""Returns the maximum number of TB recorded in the collection"""
max_TB = 0
for doc in collection.find({}).sort([('total_TB',-1)]).limit(1):
max_TB = doc['total_TB']
return max_TB | bde417de0b38de7a7b5e4e3db8c05e87fa6c55ca | 709,687 |
import time
def datetime_to_timestamp(d):
"""convert a datetime object to seconds since Epoch.
Args:
d: a naive datetime object in default timezone
Return:
int, timestamp in seconds
"""
return int(time.mktime(d.timetuple())) | 356ac090b0827d49e9929a7ef26041b26c6cc690 | 709,688 |
def decomposePath(path):
"""
:example:
>>> decomposePath(None)
>>> decomposePath("")
>>> decomposePath(1)
>>> decomposePath("truc")
('', 'truc', '', 'truc')
>>> decomposePath("truc.txt")
('', 'truc', 'txt', 'truc.txt')
>>> decomposePath("/home/truc.txt")
('/home/', 'truc', 'txt', 'truc.txt')
>>> decomposePath("/home/truc.txt.bz2")
('/home/', 'truc.txt', 'bz2', 'truc.txt.bz2')
>>> decomposePath("/truc.txt.bz2")
('/', 'truc.txt', 'bz2', 'truc.txt.bz2')
>>> decomposePath("./truc.txt.bz2")
('./', 'truc.txt', 'bz2', 'truc.txt.bz2')
>>> decomposePath(".truc.txt.bz2")
('', '.truc.txt', 'bz2', '.truc.txt.bz2')
"""
if path is None or type(path) is not str or len(path) == 0:
return None
filenameExt = path.split("/")[-1]
dir = path[0:-len(filenameExt)]
filename = ".".join(filenameExt.split(".")[0:-1])
ext = filenameExt.split(".")[-1]
if len(filename) == 0 and len(ext) > 0:
filename, ext = ext, filename
return (dir, filename, ext, filenameExt) | 7b45cfe64f631912fc56246f404ddbea51b9f1ec | 709,689 |
def update_coverage(coverage, path, func, line, status):
"""Add to coverage the coverage status of a single line"""
coverage[path] = coverage.get(path, {})
coverage[path][func] = coverage[path].get(func, {})
coverage[path][func][line] = coverage[path][func].get(line, status)
coverage[path][func][line] = coverage[path][func][line].combine(status)
return coverage | 46e5a1e5c4ebba3a9483f90ada96a0f7f94d8c1d | 709,690 |
def cross_product(v1, v2):
"""Calculate the cross product of 2 vectors as (x1 * y2 - x2 * y1)."""
return v1.x * v2.y - v2.x * v1.y | 871d803ef687bf80facf036549b4b2062f713994 | 709,691 |
def divisors(num):
"""
Takes a number and returns all divisors of the number, ordered least to greatest
:param num: int
:return: list (int)
"""
# Fill in the function and change the return statment.
return 0 | f15169b2672847294a219207f6022ad3e49338d2 | 709,692 |
def compare_distance(tree,target):
"""
Checks tree edit distance. Since every node has a unique position, we know that the node is the
same when the positions are the same. Hence, a simple method of counting the number of edits
one needs to do to create the target tree out of a given tree is equal to the number of positional
differences.
"""
# check for positional overlap
edit_value = 0
for node in target:
node.found = False
for node in tree:
same_node = False
for t_node in target:
if node.pos[0] == t_node.pos[0] and node.pos[1] == t_node.pos[1]:
same_node = True
t_node.found = True
if same_node == False:
edit_value += 1
# count found
for node in target:
if not node.found:
edit_value += 1
return edit_value | 96b57e88b8e70dbb43231b56cbe7e9b7ebcfd10f | 709,693 |
def header(name='peptide'):
"""
Parameters
----------
name
Returns
-------
"""
with open('{}.pdb'.format(name), 'r') as f:
file = f.read()
model = file.find('\nMODEL')
atom = file.find('\nATOM')
if atom < 0:
raise ValueError('no ATOM entries found in PDB')
if model < 0:
index = atom
else:
index = min(model, atom)
return file[:index] + '\n' | 84e75e34771b7c395ee36611c8d055ca1fdf67dc | 709,694 |
def str2bytes(seq):
""" Converts an string to a list of integers """
return map(ord,str(seq)) | 7afe8e40cd4133c59be673b537f2717591b093cf | 709,695 |
import os
def getsize(filename):
"""Return the size of a file, reported by os.stat()."""
return os.stat(filename).st_size | f21bd048bf1fdbc80cdcbd4f14dba8f390439f74 | 709,697 |
def drop_path(input, drop_prob=0.0, training=False, scale_by_keep=True):
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = input.new_empty(shape).bernoulli_(keep_prob)
if keep_prob > 0.0 and scale_by_keep:
random_tensor.div_(keep_prob)
return input * random_tensor | 289ae545fa184bb459275685d3a2894e5219db2e | 709,698 |
import os
def envi_header(inputpath):
"""
Convert a envi binary/header path to a header, handling extensions
Args:
inputpath: path to envi binary file
Returns:
str: the header file associated with the input reference.
"""
if os.path.splitext(inputpath)[-1] == '.img' or os.path.splitext(inputpath)[-1] == '.dat' or os.path.splitext(inputpath)[-1] == '.raw':
# headers could be at either filename.img.hdr or filename.hdr. Check both, return the one that exists if it
# does, if not return the latter (new file creation presumed).
hdrfile = os.path.splitext(inputpath)[0] + '.hdr'
if os.path.isfile(hdrfile):
return hdrfile
elif os.path.isfile(inputpath + '.hdr'):
return inputpath + '.hdr'
return hdrfile
elif os.path.splitext(inputpath)[-1] == '.hdr':
return inputpath
else:
return inputpath + '.hdr' | 45df7507017676648cd4fae955da26916bbf4738 | 709,700 |
import socket
def basic_checks(server,port):
"""Perform basics checks on given host"""
sock = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
# 2 seconds timeout
sock.settimeout(2)
return sock.connect_ex((server,int(port))) == 0 | 4a31521089feb2c178bb5202fa818804dfe87142 | 709,703 |
def ordToString(ordList):
"""Use this function to convert ord values to strings."""
newStrList = []
cstr = ""
for cint in ordList:
cstr += chr(cint)
if cint == 44:
newStrList.append(cstr[:-1])
cstr = ""
return newStrList | 5a836f7fe34803744de90aa2608e3d99a081c7ff | 709,704 |
import re
def _xfsdump_output(data):
"""
Parse CLI output of the xfsdump utility.
"""
out = {}
summary = []
summary_block = False
for line in [l.strip() for l in data.split("\n") if l.strip()]:
line = re.sub("^xfsdump: ", "", line)
if line.startswith("session id:"):
out["Session ID"] = line.split(" ")[-1]
elif line.startswith("session label:"):
out["Session label"] = re.sub("^session label: ", "", line)
elif line.startswith("media file size"):
out["Media size"] = re.sub(r"^media file size\s+", "", line)
elif line.startswith("dump complete:"):
out["Dump complete"] = re.sub(r"^dump complete:\s+", "", line)
elif line.startswith("Dump Status:"):
out["Status"] = re.sub(r"^Dump Status:\s+", "", line)
elif line.startswith("Dump Summary:"):
summary_block = True
continue
if line.startswith(" ") and summary_block:
summary.append(line.strip())
elif not line.startswith(" ") and summary_block:
summary_block = False
if summary:
out["Summary"] = " ".join(summary)
return out | dbc7fbf9dced99b83a7dc5917c473a1dee16d749 | 709,705 |
def csstext(text: str, cls: str, span: bool=False, header: bool=False) -> str:
"""
Custom build HTML text element.
"""
if span:
tag = 'span'
elif header:
tag = 'h1'
else:
tag = 'p'
return f'<{tag} class="{cls}">{str(text)}</{tag}>' | 0833fd9d83143e09b5c234e193a8e53ef653112b | 709,706 |
def trans_exam_list_to_colum(example_list, headers=None):
"""
将example列表转换成以列表示的形式,用于适配输出附加信息
:param example_list: example 列表
:param headers: 需要的属性,默认为("question", "answer", "yes_or_no")
:return: {header1:[...],header2:[...],...}
"""
if headers is None:
headers = ("question", "answer", "yes_or_no")
result = {}
for header in headers:
result[header] = []
for example in example_list:
for header in headers:
result[header].append(getattr(example, header, ""))
return result | ff5a2e5f6e27ce0a32717e55ba35dbd864a11dbb | 709,707 |
def parseParams(opt):
"""Parse a set of name=value parameters in the input value.
Return list of (name,value) pairs.
Raise ValueError if a parameter is badly formatted.
"""
params = []
for nameval in opt:
try:
name, val = nameval.split("=")
except ValueError:
raise ValueError("Bad name=value format for '%s'" % nameval)
params.append((name, val))
return params | b932f74c8e5502ebdd7a8749c2de4b30921d518b | 709,708 |
def _get_name(dist):
"""Attempts to get a distribution's short name, excluding the name scope."""
return getattr(dist, 'parameters', {}).get('name', dist.name) | fd57e523c1a84a36f9ed56236e4b8db1e887575c | 709,709 |
def GenerateConfig(context):
"""Generates configuration."""
key_ring = {
'name': 'keyRing',
'type': 'gcp-types/cloudkms-v1:projects.locations.keyRings',
'properties': {
'parent': 'projects/' + context.env['project'] + '/locations/' + context.properties['region'],
'keyRingId': context.env['deployment'] + '-key-ring'
}
}
crypto_key = {
'name': 'cryptoKey',
'type': 'gcp-types/cloudkms-v1:projects.locations.keyRings.cryptoKeys',
'properties': {
'parent': '$(ref.keyRing.name)',
'cryptoKeyId': context.env['deployment'] + '-crypto-key',
'purpose': 'ENCRYPT_DECRYPT'
}
}
resources = [key_ring, crypto_key]
outputs = [{
'name': 'primaryVersion',
'value': '$(ref.cryptoKey.primary)'
}]
return { 'resources': resources, 'outputs': outputs } | 257b7217c1a08bba46866aff0b7faa1a03fe7fdc | 709,710 |
def _remove_none_from_post_data_additional_rules_list(json):
"""
removes hidden field value from json field "additional_rules" list,
which is there to ensure field exists for editing purposes
:param json: this is data that is going to be posted
"""
data = json
additional_rules = json.get("additional_rules", None)
if additional_rules and "None" in additional_rules:
new_additional_rules = []
for rule in additional_rules:
if rule != "None":
new_additional_rules.append(rule)
data["additional_rules"] = new_additional_rules
return data | c82aa568f82ba4abcb8f4e6f9c770969277d078f | 709,711 |
def NO_MERGE(writer, segments):
"""This policy does not merge any existing segments.
"""
return segments | 0742365f30d59cb219ac60483b867180bd910ba8 | 709,712 |
import os
def package_files(directory):
"""package_files
recursive method which will lets you set the
package_data parameter in the setup call.
"""
paths = []
for (path, _, filenames) in os.walk(directory):
for filename in filenames:
paths.append(os.path.join('..', path, filename))
return paths | e043de9a9e8ed9092f933df00b167b092ba6abaa | 709,713 |
def transplant(root, u, v):
"""
注意, 这里要返回root, 不然修改不了
"""
if u.parent == None:
root = v
elif u.parent.left == u:
u.parent.left = v
else:
u.parent.right = v
if v:
v.parent = u.parent
return root | cadf0433399e428596d1d0d4ab200e4d79285d21 | 709,714 |
import subprocess
def pr_branches() -> list[str]:
"""List of branches that start with 'pr-'"""
out = subprocess.run(
[
"git",
"for-each-ref",
"--shell",
'--format="%(refname:strip=3)"',
"refs/remotes/origin/pr-*",
],
capture_output=True,
)
branches = out.stdout.decode().splitlines()
return [branch.replace('"', "").replace("'", "") for branch in branches] | f144d2546ef59cb392f4ad1226c2246384bdfd99 | 709,715 |
from typing import Union
def parse_boolean(val: str) -> Union[str, bool]:
"""Try to parse a string into boolean.
The string is returned as-is if it does not look like a boolean value.
"""
val = val.lower()
if val in ('y', 'yes', 't', 'true', 'on', '1'):
return True
if val in ('n', 'no', 'f', 'false', 'off', '0'):
return False
return val | e2cbda5a849e1166e0f2a3953220c93d1f3ba119 | 709,716 |
def supports_color(stream) -> bool: # type: ignore
"""Determine whether an output stream (e.g. stdout/stderr) supports displaying colored text.
A stream that is redirected to a file does not support color.
"""
return stream.isatty() and hasattr(stream, "isatty") | 4a427d6725206ef33b3f4da0ace6f2d6c3db78a9 | 709,717 |
import os
def get_current_version_name():
"""Returns the version of the current instance.
If this is version "v1" of module "module5" for app "my-app", this function
will return "v1".
"""
return os.environ['CURRENT_VERSION_ID'].split('.')[0] | cbd7fdbb9af4990e32130f2aa3af0cfe8bf59816 | 709,718 |
import re
def safe_htcondor_attribute(attribute: str) -> str:
"""Convert input attribute name into a valid HTCondor attribute name
HTCondor ClassAd attribute names consist only of alphanumeric characters or
underscores. It is not clearly documented, but the alphanumeric characters
are probably restricted to ASCII. Attribute names created from multiple
words typically capitalize the first letter in each word for readability,
although all comparisions are case-insensitive.
e.g., "central-manager" -> "CentralManager"
Args:
attribute: a string representing the name of an attribute
Returns:
The attribute name stripped of invalid characters and re-capitalized in
the manner typical of HTCondor ClassAd attributes.
Raises:
None
"""
# splitting by invalid characters removes them from the resulting array
split_attr = re.split(r"[^\w]", attribute, flags=re.ASCII)
safe_attr = "".join([word.capitalize() for word in split_attr if word])
return safe_attr | 7a4dda539b2379120e68737d72a80226c45f5602 | 709,720 |
def make_csv(headers, data):
"""
Creates a CSV given a set of headers and a list of database query results
:param headers: A list containg the first row of the CSV
:param data: The list of query results from the Database
:returns: A str containing a csv of the query results
"""
# Create a list where each entry is one row of the CSV file, starting
# with the headers
csvRows =[','.join(headers),]
# Iterate through the provided data and create the rest of the CSV's rows
for datum in data:
currentRow = ''
for header in headers:
# Get this rows value for the given header
val = getattr(datum, header)
if type(val) is str:
# Escape the strings
currentRow += '"' + val + '",'
elif type(val) is float:
# Don't Escape the floats
currentRow += str(val) + ','
else:
# If it is empty and a place holder
currentRow += ','
csvRows.append(currentRow[:-1])
# Combine all of the rows into a single single string and return it.
return "\n".join(csvRows) | 5101d53de8dd09d8ebe743d77d71bff9aeb26334 | 709,721 |
from typing import Tuple
def extract_value_from_config(
config: dict,
keys: Tuple[str, ...],
):
"""
Traverse a config dictionary to get some hyper-parameter's value.
Parameters
----------
config
A config dictionary.
keys
The possible names of a hyper-parameter.
Returns
-------
The hyper-parameter value.
"""
result = []
for k, v in config.items():
if k in keys:
result.append(v)
elif isinstance(v, dict):
result += extract_value_from_config(v, keys)
else:
pass
return result | d545d4c9298c74776ec52fb6b2c8d54d0e653489 | 709,722 |
import numpy
def boundaryStats(a):
"""
Returns the minimum and maximum values of a only on the boundaries of the array.
"""
amin = numpy.amin(a[0,:])
amin = min(amin, numpy.amin(a[1:,-1]))
amin = min(amin, numpy.amin(a[-1,:-1]))
amin = min(amin, numpy.amin(a[1:-1,0]))
amax = numpy.amax(a[0,:])
amax = max(amax, numpy.amax(a[1:,-1]))
amax = max(amax, numpy.amax(a[-1,:-1]))
amax = max(amax, numpy.amax(a[1:-1,0]))
return amin, amax | 6c007c6cf2c7c5774ca74365be8f63094864d962 | 709,723 |
def vision_matched_template_get_pose(template_match):
"""
Get the pose of a previously detected template match. Use list operations
to get specific entries, otherwise returns value of first entry.
Parameters:
template_match (List[MatchedTemplate3D] or MatchedTemplate3D): The template match(s)
Return (Pose): The pose of the template match
"""
if isinstance(template_match,list):
template_match = template_match[0]
return template_match.pose.pose.pose | b854da7a085934f4f3aba510e76852fb8c0a440a | 709,724 |
def no_zero(t):
"""
This function replaces all zeros in a tensor with ones.
This allows us to take the logarithm and then sum over all values in the matrix.
Args:
t: tensor to be replaced
returns:
t: tensor with ones instead of zeros.
"""
t[t==0] = 1.
return t | 8119d1859dc8b248f5bb09b7cc0fc3b492d9b7bd | 709,726 |
def get_vocabulary(query_tree):
"""Extracts the normalized search terms from the leaf nodes of a parsed
query to construct the vocabulary for the text vectorization.
Arguments
---------
query_tree: pythonds.trees.BinaryTree
The binary tree object representing a parsed search query. Each leaf
node is a search term and internal nodes represent boolean operations.
See parse_query() for details.
Returns
-------
vocabulary: list
List of strings representing unique normalized search terms.
"""
def _getleafnodes(node):
terms = []
if node.isLeaf():
return terms + [node.normedterm]
elif node.leftChild and not node.rightChild:
return terms + _getleafnodes(node.getLeftChild())
elif node.rightChild and not node.leftChild:
return terms + _getleafnodes(node.getRightChild())
else: # has two children
return terms + _getleafnodes(node.getLeftChild()) \
+ _getleafnodes(node.getRightChild())
# extract terms from the leaf nodes of the query object.
terms = _getleafnodes(query_tree)
# remove duplicates.
vocabulary = list(set(terms))
return vocabulary | bd03f4894cd3f9a7964196bfb163335f84a048d7 | 709,728 |
def find_point_in_section_list(point, section_list):
"""Returns the start of the section the given point belongs to.
The given list is assumed to contain start points of consecutive
sections, except for the final point, assumed to be the end point of the
last section. For example, the list [5, 8, 30, 31] is interpreted as the
following list of sections: [5-8), [8-30), [30-31], so the points -32, 4.5,
32 and 100 all match no section, while 5 and 7.5 match [5-8) and so for
them the function returns 5, and 30, 30.7 and 31 all match [30-31].
Parameters
---------
point : float
The point for which to match a section.
section_list : sortedcontainers.SortedList
A list of start points of consecutive sections.
Returns
-------
float
The start of the section the given point belongs to. None if no match
was found.
Example
-------
>>> from sortedcontainers import SortedList
>>> seclist = SortedList([5, 8, 30, 31])
>>> find_point_in_section_list(4, seclist)
>>> find_point_in_section_list(5, seclist)
5
>>> find_point_in_section_list(27, seclist)
8
>>> find_point_in_section_list(31, seclist)
30
"""
if point < section_list[0] or point > section_list[-1]:
return None
if point in section_list:
if point == section_list[-1]:
return section_list[-2]
ind = section_list.bisect(point)-1
if ind == 0:
return section_list[0]
return section_list[ind]
try:
ind = section_list.bisect(point)
return section_list[ind-1]
except IndexError:
return None | 47d5cda15b140ba8505ee658fd46ab090b2fda8a | 709,729 |
import os
import types
def generate_module(file_allocator, name):
"""
Generate an in-memory module from a generated Python implementation.
"""
assert name in file_allocator.allocated_files
f = file_allocator.allocated_files[name]
f.seek(0)
data = f.read()
modname, _ = os.path.splitext(name)
d = {}
eval(compile(data, name, "exec"), d, d)
m = types.ModuleType(modname)
vars(m).update(d)
return m | beab4cdf12fcdfeacef9f8a8607e995b771d6012 | 709,730 |
def choose(population, sample):
"""
Returns ``population`` choose ``sample``, given
by: n! / k!(n-k)!, where n == ``population`` and
k == ``sample``.
"""
if sample > population:
return 0
s = max(sample, population - sample)
assert s <= population
assert population > -1
if s == population:
return 1
numerator = 1
denominator = 1
for i in range(s+1, population + 1):
numerator *= i
denominator *= (i - s)
return numerator/denominator | 659eac683cae737888df74c0db21aa3ece746b33 | 709,731 |
def eea(m, n):
"""
Compute numbers a, b such that a*m + b*n = gcd(m, n)
using the Extended Euclidean algorithm.
"""
p, q, r, s = 1, 0, 0, 1
while n != 0:
k = m // n
m, n, p, q, r, s = n, m - k*n, q, p - k*q, s, r - k*s
return (p, r) | 56e1c59ac3a51e26d416fe5c65cf6612dbe56b8c | 709,733 |
import csv
def parse_kinetics_splits(level):
"""Parse Kinetics-400 dataset into "train", "val", "test" splits.
Args:
level (int): Directory level of data. 1 for the single-level directory,
2 for the two-level directory.
Returns:
list: "train", "val", "test" splits of Kinetics-400.
"""
def convert_label(s, keep_whitespaces=False):
"""Convert label name to a formal string.
Remove redundant '"' and convert whitespace to '_'.
Args:
s (str): String to be converted.
keep_whitespaces(bool): Whether to keep whitespace. Default: False.
Returns:
str: Converted string.
"""
if not keep_whitespaces:
return s.replace('"', '').replace(' ', '_')
else:
return s.replace('"', '')
def line_to_map(x, test=False):
"""A function to map line string to vid and label.
Args:
x (str): A single line from Kinetics-400 csv file.
test (bool): Indicate whether the line comes from test
annotation file.
Returns:
tuple[str, str]: (vid, label), vid is the video id,
label is the video label.
"""
if test:
# vid = f'{x[0]}_{int(x[1]):06d}_{int(x[2]):06d}'
vid = f'{x[1]}_{int(float(x[2])):06d}_{int(float(x[3])):06d}'
label = -1 # label unknown
return vid, label
else:
vid = f'{x[1]}_{int(float(x[2])):06d}_{int(float(x[3])):06d}'
if level == 2:
vid = f'{convert_label(x[0])}/{vid}'
else:
assert level == 1
label = class_mapping[convert_label(x[0])]
return vid, label
train_file = 'data/kinetics400/annotations/kinetics_train.csv'
val_file = 'data/kinetics400/annotations/kinetics_val.csv'
test_file = 'data/kinetics400/annotations/kinetics_test.csv'
csv_reader = csv.reader(open(train_file))
# skip the first line
next(csv_reader)
labels_sorted = sorted(set([convert_label(row[0]) for row in csv_reader]))
class_mapping = {label: i for i, label in enumerate(labels_sorted)}
csv_reader = csv.reader(open(train_file))
next(csv_reader)
train_list = [line_to_map(x) for x in csv_reader]
csv_reader = csv.reader(open(val_file))
next(csv_reader)
val_list = [line_to_map(x) for x in csv_reader]
csv_reader = csv.reader(open(test_file))
next(csv_reader)
test_list = [line_to_map(x, test=True) for x in csv_reader]
splits = ((train_list, val_list, test_list), )
return splits | ee2521919f9f9c3f499cd28bc6003528eb402d2b | 709,736 |
import uuid
def ticket() -> str:
"""生成请求饿百接口所需的ticket参数"""
return str(uuid.uuid1()).upper() | aaf1135d6ef5e61aa65960c5c38007848cbd0b17 | 709,737 |
def get_clients( wlc, *vargs, **kvargs ):
"""
create a single dictionary containing information
about all associated stations.
"""
rsp = wlc.rpc.get_stat_user_session_status()
ret_data = {}
for session in rsp.findall('.//USER-SESSION-STATUS'):
locstat = session.find('.//USER-LOCATION-MEMBER')
ret_data[session.get('mac-addr')] = dict(session.attrib)
ret_data[session.get('mac-addr')].update(locstat.attrib)
return ret_data | c4ab5941033632d7f2b95bc23878f0464d12adb7 | 709,738 |
def maximum_value(tab):
"""
brief: return maximum value of the list
args:
tab: a list of numeric value expects at leas one positive value
return:
the max value of the list
the index of the max value
raises:
ValueError if expected a list as input
ValueError if no positive value found
"""
if not(isinstance(tab, list)):
raise ValueError('Expected a list as input')
valMax = 0.0
valMaxIndex = -1;
nPositiveValues = 0
for i in range(len(tab)):
if tab[i] >= 0 and tab[i] > valMax:
valMax = float(tab[i])
valMaxIndex = i
nPositiveValues += 1
if nPositiveValues <= 0:
raise ValueError('No positive value found')
return valMax, valMaxIndex | 1c31daf3a953a9d781bc48378ef53323313dc22a | 709,739 |
import math
def dsh(
incidence1: float, solar_az1: float, incidence2: float, solar_az2: float
):
"""Returns the Shadow-Tip Distance (dsh) as detailed in
Becker et al.(2015).
The input angles are assumed to be in radians.
This is defined as the distance between the tips of the shadows
in the two images for a hypothetical vertical post of unit
height. The "shadow length" describes the shadow of a hypothetical
pole so it applies whether there are actually shadows in the
image or not. It's a simple and consistent geometrical way to
quantify the difference in illumination. This quantity is
computed analogously to dp.
"""
def shx(inc: float, sunazgnd: float):
return -1 * math.tan(inc) * math.cos(sunazgnd)
def shy(inc: float, sunazgnd: float):
return math.tan(inc) * math.sin(sunazgnd)
shx1 = shx(incidence1, solar_az1)
shx2 = shx(incidence2, solar_az2)
shy1 = shy(incidence1, solar_az1)
shy2 = shy(incidence2, solar_az2)
return math.sqrt(math.pow(shx1 - shx2, 2) + math.pow(shy1 - shy2, 2)) | 5aef1c9d7ffeb3e8534568a53cf537d26d97324a | 709,740 |
def instantiate(class_name, *args, **kwargs):
"""Helper to dynamically instantiate a class from a name."""
split_name = class_name.split(".")
module_name = split_name[0]
class_name = ".".join(split_name[1:])
module = __import__(module_name)
class_ = getattr(module, class_name)
return class_(*args, **kwargs) | d5906c835de9c2e86fbe3c15a9236662d6c7815d | 709,741 |
import six
def _stringcoll(coll):
"""
Predicate function to determine whether COLL is a non-empty
collection (list/tuple) containing only strings.
Arguments:
- `coll`:*
Return: bool
Exceptions: None
"""
if isinstance(coll, (list, tuple)) and coll:
return len([s for s in coll if isinstance(s, six.string_types)]) == len(coll)
return False | 9490a973900e230f70fea112f250cfe29be3a8bc | 709,742 |
def __check_complete_list(list_, nb_max, def_value):
"""
make sure the list is long enough
complete with default value if not
:param list_: list to check
:param nb_max: maximum length of the list
:param def_value: if list too small,
completes it with this value
:return: boolean, False if the list is too long
"""
if len(list_) <= nb_max:
list_.extend([def_value] * (nb_max - len(list_)))
return True
else:
return False | 9d439cd3eeea04e7a3e0e59aa4fe0bbb875bdfe4 | 709,743 |
def verify_parentheses(parentheses_string: str) -> bool:
"""Takes input string of only '{},[],()' and evaluates to True if valid."""
open_parentheses = []
valid_parentheses_set = {'(', ')', '[', ']', '{', '}'}
parentheses_pairs = {
')' : '(',
']' : '[',
'}' : '{'
}
if len(parentheses_string) % 2 != 0:
return False
for character in parentheses_string:
if character not in valid_parentheses_set:
raise ValueError("Only parentheses may be part of input string.")
if character in {'(', '[', '{'}:
open_parentheses.append(character)
if character in {')', ']', '}'}:
if len(open_parentheses) == 0:
return False
elif open_parentheses[-1] != parentheses_pairs[character]:
return False
del open_parentheses[-1]
if len(open_parentheses) > 0:
return False
return True | 2e2c07314d474b582f12af8cf53a311c0fa323c1 | 709,745 |
import re
def compute_dict(file_path):
"""Computes the dict for a file whose path is file_path"""
file_dict = {}
with open(file_path, encoding = 'utf8') as fin:
for line in fin:
line = line.strip()
txt = re.sub('([^a-zA-Z0-9\s]+)',' \\1 ',line)
txt = re.sub('([\s]+)',' ',txt)
words = txt.split(" ")
for word in words:
w = str(word)
if(w not in file_dict):
file_dict[w] = 1
else:
file_dict[w] = file_dict[w] + 1
return file_dict | 821e29181aad781279b27174be0fd7458b60481f | 709,747 |
def isMatch(s, p):
""" Perform regular simple expression matching
Given an input string s and a pattern p, run regular expression
matching with support for '.' and '*'.
Parameters
----------
s : str
The string to match.
p : str
The pattern to match.
Returns
-------
bool
Was it a match or not.
"""
dp = [[False] * (len(p) + 1) for _ in range(len(s) + 1)]
dp[0][0] = True
# The only way to match a length zero string
# is to have a pattern of all *'s.
for ii in range(1, len(p)):
if p[ii] == "*" and dp[0][ii-1]:
dp[0][ii + 1] = True
for ii in range(len(s)):
for jj in range(len(p)):
# Matching a single caracter c or '.'.
if p[jj] in {s[ii], '.'}:
dp[ii+1][jj+1] = dp[ii][jj]
elif p[jj] == '*':
# Double **, which is equivalent to *
if p[jj-1] not in {s[ii], '.'}:
dp[ii+1][jj+1] = dp[ii+1][jj-1]
# We can match .* or c* multiple times, once, or zero
# times (respective clauses in the or's)
else:
dp[ii+1][jj+1] = dp[ii][jj+1] or dp[ii+1][jj] or dp[ii+1][jj-1]
return dp[-1][-1] | 92cd3171afeb73c6a58bbcd3d3ea6d707401cb09 | 709,748 |
from typing import Optional
def convert_postgres_array_as_string_to_list(array_as_string: str) -> Optional[list]:
"""
Postgres arrays are stored in CSVs as strings. Elasticsearch is able to handle lists of items, but needs to
be passed a list instead of a string. In the case of an empty array, return null.
For example, "{this,is,a,postgres,array}" -> ["this", "is", "a", "postgres", "array"].
"""
return array_as_string[1:-1].split(",") if len(array_as_string) > 2 else None | cc64fe8e0cc765624f80abc3900985a443f76792 | 709,749 |
def add_prefix(key):
"""Dummy key_function for testing index code."""
return "id_" + key | 96dda0bd57b4eb89f17c8bb69ad48e3e1675a470 | 709,750 |
def binaryToString(binary):
"""
从二进制字符串转为 UTF-8 字符串
"""
index = 0
string = []
rec = lambda x, i: x[2:8] + (rec(x[8:], i - 1) if i > 1 else '') if x else ''
fun = lambda x, i: x[i + 1:8] + rec(x[8:], i - 1)
while index + 1 < len(binary):
chartype = binary[index:].index('0') # 存放字符所占字节数,一个字节的字符会存为0
length = chartype * 8 if chartype else 8
string.append(chr(int(fun(binary[index:index + length], chartype), 2)))
index += length
return ''.join(string) | 2044109d573abe7c9428b64b289b5aa82ec4d624 | 709,751 |
import functools
import logging
def disable_log_warning(fun):
"""Temporarily set FTP server's logging level to ERROR."""
@functools.wraps(fun)
def wrapper(self, *args, **kwargs):
logger = logging.getLogger('pyftpdlib')
level = logger.getEffectiveLevel()
logger.setLevel(logging.ERROR)
try:
return fun(self, *args, **kwargs)
finally:
logger.setLevel(level)
return wrapper | 6990a2a1a60ea5a24e4d3ac5c5e7fbf443825e48 | 709,752 |
import json
import operator
def my_subs_helper(s):
"""Helper function to handle badly formed JSON stored in the database"""
try:
return {'time_created':s.time_created, 'json_obj':sorted(json.loads(s.json_data).iteritems(), key=operator.itemgetter(0)), 'plain_json_obj':json.dumps(json.loads(s.json_data)),'id':s.id, 'json_score_data':json.dumps(s.json_score_data)}
except ValueError:
return {'time_created':s.time_created, 'json_obj':"__ERROR__", 'plain_json_obj':"__ERROR__", 'id':s.id} | 4b649d865c3a99f89111baa694df4902e65243e6 | 709,753 |
def add_to_codetree(tword,codetree,freq=1):
""" Adds one tuple-word to tree structure - one node per symbol
word end in the tree characterized by node[0]>0
"""
unique=0
for pos in range(len(tword)):
s = tword[pos]
if s not in codetree:
codetree[s] = [0,{}]
unique+=1
codetree[s][0] += freq
codetree = codetree[s][1]
return unique | e92a48f112e7a774bed3b125509f7f64dce0a7ec | 709,754 |
def remove_from_dict(obj, keys=list(), keep_keys=True):
""" Prune a class or dictionary of all but keys (keep_keys=True).
Prune a class or dictionary of specified keys.(keep_keys=False).
"""
if type(obj) == dict:
items = list(obj.items())
elif isinstance(obj, dict):
items = list(obj.items())
else:
items = list(obj.__dict__.items())
if keep_keys:
return {k: v for k, v in items if k in keys}
else:
return {k: v for k, v in items if k not in keys} | b1d9a2bd17269e079ce136cc464060fc47fe5906 | 709,755 |
def stringToTupleOfFloats(s):
"""
Converts s to a tuple
@param s: string
@return: tuple represented by s
"""
ans = []
for i in s.strip("()").split(","):
if i.strip() != "":
if i == "null":
ans.append(None)
else:
ans.append(float(i))
return tuple(ans) | 7eec23232f884035b12c6498f1e68616e4580878 | 709,756 |
import sys
def factorial(x):
"""factorial(x) -> Integral
"Find x!. Raise a ValueError if x is negative or non-integral."""
if isinstance(x, float):
fl = int(x)
if fl != x:
raise ValueError("float arguments must be integral")
x = fl
if x > sys.maxsize:
raise OverflowError("Too large for a factorial")
if x <= 100:
if x < 0:
raise ValueError("x must be >= 0")
res = 1
for i in range(2, x + 1):
res *= i
return res
# Experimentally this gap seems good
gap = max(100, x >> 7)
def _fac_odd(low, high):
if low + gap >= high:
t = 1
for i in range(low, high, 2):
t *= i
return t
mid = ((low + high) >> 1) | 1
return _fac_odd(low, mid) * _fac_odd(mid, high)
def _fac1(x):
if x <= 2:
return 1, 1, x - 1
x2 = x >> 1
f, g, shift = _fac1(x2)
g *= _fac_odd((x2 + 1) | 1, x + 1)
return (f * g, g, shift + x2)
res, _, shift = _fac1(x)
return res << shift | 664cc8e0e215f089bbc57fec68553d788305e4c0 | 709,757 |
import json
def read_json(file_name):
"""Read json from file."""
with open(file_name) as f:
return json.load(f) | 2eccab7dddb1c1038de737879c465f293a00e5de | 709,758 |
def _decode_end(_fp):
"""Decode the end tag, which has no data in the file, returning 0.
:type _fp: A binary `file object`
:rtype: int
"""
return 0 | 5e8da3585dda0b9c3c7cd428b7e1606e585e15c6 | 709,759 |
def get_camelcase_name_chunks(name):
"""
Given a name, get its parts.
E.g: maxCount -> ["max", "count"]
"""
out = []
out_str = ""
for c in name:
if c.isupper():
if out_str:
out.append(out_str)
out_str = c.lower()
else:
out_str += c
out.append(out_str)
return out | 134a8b1d98af35f185b37c999fbf499d18bf76c5 | 709,760 |
def orb_scf_input(sdmc):
""" find the scf inputs used to generate sdmc """
myinputs = None # this is the goal
sdep = 'dependencies' # string representation of the dependencies entry
# step 1: find the p2q simulation id
p2q_id = None
for key in sdmc[sdep].keys():
if sdmc[sdep][key].result_names[0] == 'orbitals':
p2q_id = key
# end if
# end for dep
# step 2: find the nscf simulation
nscf_id_list = sdmc[sdep][p2q_id]['sim'][sdep].keys()
assert len(nscf_id_list) == 1
nscf_id = nscf_id_list[0]
nscf = sdmc[sdep][p2q_id]['sim'][sdep][nscf_id]
myinputs = nscf['sim']['input']
# step 3: find the scf simulation
calc = myinputs['control']['calculation']
if (calc=='scf'): # scf may actually be the scf simulation
pass # myinputs is already set
elif (calc=='nscf'): # if nscf is not the scf, then we need to go deeper
scf_id = nscf['sim'][sdep].keys()[0]
scf = nscf['sim'][sdep][scf_id]
myinputs = scf['sim']['input'] # this is it!
scalc = myinputs['control']['calculation']
if scalc != 'scf':
RuntimeError('nscf depends on %s instead of scf'%scalc)
# end if
else:
raise RuntimeError('unknown simulation type %s'%calc)
# end if
return myinputs.to_dict() | c319693e9673edf540615025baf5b5199c5e27a3 | 709,762 |
def is_success(code):
""" Returns the expected response codes for HTTP GET requests
:param code: HTTP response codes
:type code: int
"""
if (200 <= code < 300) or code in [404, 500]:
return True
return False | fa502b4989d80edc6e1c6c717b6fe1347f99990d | 709,763 |
import json
def get_node_to_srn_mapping(match_config_filename):
"""
Returns the node-to-srn map from match_conf.json
"""
with open(match_config_filename) as config_file:
config_json = json.loads(config_file.read())
if "node_to_srn_mapping" in config_json:
return config_json["node_to_srn_mapping"]
else:
node_to_srn = {}
for node_info in config_json["NodeData"]:
node_id = node_info["TrafficNode"]
srn_num = node_info["srn_number"]
node_to_srn[node_id] = srn_num
return node_to_srn | 37bf2f266f4e5163cc4d6e9290a8eaf17e220cd3 | 709,765 |
def nest_dictionary(flat_dict, separator):
""" Nests a given flat dictionary.
Nested keys are created by splitting given keys around the `separator`.
"""
nested_dict = {}
for key, val in flat_dict.items():
split_key = key.split(separator)
act_dict = nested_dict
final_key = split_key.pop()
for new_key in split_key:
if not new_key in act_dict:
act_dict[new_key] = {}
act_dict = act_dict[new_key]
act_dict[final_key] = val
return nested_dict | f5b8649d916055fa5911fd1f80a8532e5dbee274 | 709,766 |
def list_a_minus_b(list1, list2):
"""Given two lists, A and B, returns A-B."""
return filter(lambda x: x not in list2, list1) | 8fbac6452077ef7cf73e0625303822a35d0869c3 | 709,767 |
def gt_dosage(gt):
"""Convert unphased genotype to dosage"""
x = gt.split(b'/')
return int(x[0])+int(x[1]) | 819fc9beb834f57e44bcb0ac3e1d3c664c7efd42 | 709,768 |
import csv
import re
import sys
def read_mapping_file(map_file):
"""
Mappings are simply a CSV file with three columns.
The first is a string to be matched against an entry description.
The second is the payee against which such entries should be posted.
The third is the account against which such entries should be posted.
If the match string begins and ends with '/' it is taken to be a
regular expression.
"""
mappings = []
with open(map_file, "r", encoding='utf-8', newline='') as f:
map_reader = csv.reader(f)
for row in map_reader:
if len(row) > 1:
pattern = row[0].strip()
payee = row[1].strip()
account = row[2].strip()
tags = row[3:]
if pattern.startswith('/') and pattern.endswith('/'):
try:
pattern = re.compile(pattern[1:-1])
except re.error as e:
print("Invalid regex '{0}' in '{1}': {2}"
.format(pattern, map_file, e),
file=sys.stderr)
sys.exit(1)
mappings.append((pattern, payee, account, tags))
return mappings | e72ceb08daac0a12a426062f95cfa06776cfdedd | 709,769 |
import os
def GetEnvironFallback(var_list, default):
"""Look up a key in the environment, with fallback to secondary keys
and finally falling back to a default value."""
for var in var_list:
if var in os.environ:
return os.environ[var]
return default | 1b9cad3c46264c089f250ccb19119cff8cacd0d1 | 709,770 |
def task_migrate():
"""Create django databases"""
return {
'actions': ['''cd CCwebsite && python3 manage.py migrate''']
} | d0d146c2e628abbe33714ae0ff6a546aab9842cc | 709,771 |
import os
def print_header(args, argv, preamble='CIFAR10', printfn=print,
log=open(os.devnull, 'w'),
first=('model','dataset','epoch','batchsize','resume','out')):
""" Prints the arguments and header, and returns a logging print function """
def logprint(*args, file=log, **kwargs):
if printfn:
printfn(*args, **kwargs)
print(*args, file=file, **kwargs)
file.flush()
vargs = vars(args)
args_sorted = sorted(vargs.items())
logprint('{' + ', '.join("'{}':{}".format(k,repr(v)) for k,v, in args_sorted) + '}')
logprint(' '.join(argv))
logprint('')
logprint(preamble)
logprint('')
logprint('Arguments: ')
def print_arg(arg):
logprint(' {:20}: {},'.format("'%s'"%arg,repr(vargs[arg])))
for arg in first:
print_arg(arg)
logprint('')
for arg,_ in args_sorted:
if arg in first:
continue
print_arg(arg)
logprint('')
return logprint | c1213f441696dbabedafe9888a681cf64bab4249 | 709,772 |
def tempo_para_percorrer_uma_distancia(distancia, velocidade):
""" Recebe uma distância e a velocidade de movimentação, e retorna
as horas que seriam gastas para percorrer em linha reta"""
horas = distancia / velocidade
return round(horas,2) | e7754e87e010988284a6f89497bb1c5582ea0e85 | 709,773 |
def find_last_index(l, x):
"""Returns the last index of element x within the list l"""
for idx in reversed(range(len(l))):
if l[idx] == x:
return idx
raise ValueError("'{}' is not in list".format(x)) | f787b26dd6c06507380bf2e336a58887d1f1f7ea | 709,774 |
def _CheckUploadStatus(status_code):
"""Validates that HTTP status for upload is 2xx."""
return status_code / 100 == 2 | d799797af012e46945cf413ff54d2ee946d364ba | 709,776 |
def identifyEntity(tweet, entities):
"""
Identify the target entity of the tweet from the list of entities
:param tweet:
:param entities:
:return:
"""
best_score = 0 # best score over all entities
targetEntity = "" # the entity corresponding to the best score
for word in tweet:
for entity in entities:
cur_score = 0 # the score for the current entity
if word == entity:
cur_score = 1 # set the current score to 1 in case the entity name is mentioned in the tweet
for entity_related_word in entities[entity]:
if word == entity_related_word:
cur_score = cur_score + 1 # increment the current score by 1 in case a related term to
# the current entity is mentioned in the tweet
if cur_score > best_score: # update the best score and the target entity
best_score = cur_score
targetEntity = entity
return targetEntity | d6825dfddf01706ee266e0f1c82128a42bcb8554 | 709,777 |
def _apply_D_loss(scores_fake, scores_real, loss_func):
"""Compute Discriminator losses and normalize loss values
Arguments
---------
scores_fake : list
discriminator scores of generated waveforms
scores_real : list
discriminator scores of groundtruth waveforms
loss_func : object
object of target discriminator loss
"""
loss = 0
real_loss = 0
fake_loss = 0
if isinstance(scores_fake, list):
# multi-scale loss
for score_fake, score_real in zip(scores_fake, scores_real):
total_loss, real_loss, fake_loss = loss_func(
score_fake=score_fake, score_real=score_real
)
loss += total_loss
real_loss += real_loss
fake_loss += fake_loss
# normalize loss values with number of scales (discriminators)
# loss /= len(scores_fake)
# real_loss /= len(scores_real)
# fake_loss /= len(scores_fake)
else:
# single scale loss
total_loss, real_loss, fake_loss = loss_func(scores_fake, scores_real)
loss = total_loss
return loss, real_loss, fake_loss | 9432962af57193c07a268d00a3f1f01d372cb6a0 | 709,778 |
import random
def pick_op(r, maxr, w, maxw):
"""Choose a read or a write operation"""
if r == maxr or random.random() >= float(w) / maxw:
return "write"
else:
return "read" | a45f53bf12538412b46f78e2c076966c26cf61ac | 709,779 |
import os
def isvalid(save_path, file):
""" Returns true if the file described by the parameters is a file with
the appropriate file extension. """
return os.path.isfile(os.path.join(save_path, file)) and \
str(file).endswith('.meta') | 55f76212eaaae3be6706a01f3f28d24005d28f75 | 709,781 |
def min_index(array, i, j):
"""Pomocna funkce pro razeni vyberem. Vrati index nejmensiho prvku
v poli 'array' mezi 'i' a 'j'-1.
"""
index = i
for k in range(i, j):
if array[k] < array[index]:
index = k
return index | 4c59362fac2e918ba5a0dfe9f6f1670b3e95d68c | 709,782 |
def average_precision(gt, pred):
"""
Computes the average precision.
This function computes the average prescision at k between two lists of
items.
Parameters
----------
gt: set
A set of ground-truth elements (order doesn't matter)
pred: list
A list of predicted elements (order does matter)
Returns
-------
score: double
The average precision over the input lists
"""
if not gt:
return 0.0
score = 0.0
num_hits = 0.0
for i,p in enumerate(pred):
if p in gt and p not in pred[:i]:
num_hits += 1.0
score += num_hits / (i + 1.0)
return score / max(1.0, len(gt)) | ca265471d073b6a0c7543e24ef0ba4f872737997 | 709,784 |
import math
def rotate_coo(x, y, phi):
"""Rotate the coordinates in the *.coo files for data sets
containing images at different PAs.
"""
# Rotate around center of image, and keep origin at center
xin = 512.
yin = 512.
xout = 512.
yout = 512.
cos = math.cos(math.radians(phi))
sin = math.sin(math.radians(phi))
xrot = (x - xin) * cos - (y - yin) * sin + xout
yrot = (x - xin) * sin + (y - yin) * cos + yout
return [xrot, yrot] | a57a4c36119e96d757bd23f28a0790f6d68661fc | 709,785 |
def ip_block_array():
"""
Return an ipBlock array instance fixture
"""
return ['10.0.0.1', '10.0.0.2', '10.0.0.3'] | c74756f34b97d2550cb238bd63e0c9505f3935d3 | 709,786 |
import os
def _find_modules_and_directories(top_level_directory):
"""
Recursive helper function to find all python files included in top level
package. This will recurse down the directory paths of any package to find
all modules and subpackages in order to create an exhaustive list of all
python files within a given package.
:param top_level_directory: Path to the top level of a python package.
:type top_level_directory: str
:return: Returns a list of paths to all python files within that package.
:rtype: list [str]
"""
modules = []
directories = []
for item in os.listdir(top_level_directory):
if item.endswith(".py"):
modules.append(os.path.join(top_level_directory, item))
elif os.path.isdir(os.path.join(top_level_directory, item)):
directories.append(os.path.join(top_level_directory, item))
for directory in directories:
modules.extend(_find_modules_and_directories(directory))
return modules | 2aecb5974f83ce01b2a8e4a6fb8313399756c1d4 | 709,787 |
import math
import torch
def log_density_gaussian(x, mu, logvar):
"""Calculates log density of a gaussian.
Parameters
----------
mu: torch.Tensor or np.ndarray or float
Mean.
logvar: torch.Tensor or np.ndarray or float
Log variance.
"""
normalization = - 0.5 * (math.log(2 * math.pi) + logvar)
inv_var = torch.exp(-logvar)
log_density = normalization - 0.5 * ((x - mu)**2 * inv_var)
return log_density | 3fdc751aa58b3ec82e1aa454f593879d5da4c310 | 709,788 |
def split_page(array, limit, index):
"""
按限制要求分割数组,返回下标所指向的页面
:param array: 需要分割的数组
:param limit: 每个数组的大小
:param index: 需要返回的分割后的数组
:return: 数组
"""
end = index * limit
start = end - limit
return array[start:end] | ecce83d6e2e09d47e124536f294ece1e1631e6b6 | 709,789 |
def Flatten(matrix):
"""Flattens a 2d array 'matrix' to an array."""
array = []
for a in matrix:
array += a
return array | 00389b4dd295274d8081331d6ae78f233f0b5b59 | 709,790 |
def get_ws_param(args, attr):
"""get the corresponding warm start parameter, if it is not exists, use the value of the general parameter"""
assert hasattr(args, attr), 'Invalid warm start parameter!'
val = getattr(args, attr)
if hasattr(args, 'ws_' + attr):
ws_val = getattr(args, 'ws_' + attr)
if isinstance(ws_val, str):
ws_val = ws_val.strip()
if ws_val or isinstance(ws_val, list) or isinstance(ws_val, int) or isinstance(ws_val, float):
val = ws_val
return val | ea1d762654153602f8ad54048e54995c26304e40 | 709,791 |
def escape_name(name):
"""Escape sensor and request names to be valid Python identifiers."""
return name.replace('.', '_').replace('-', '_') | 856b8fe709e216e027f5ab085dcab91604c93c2e | 709,792 |
def multiset_counter(mset):
"""
Return the sum of occurences of elements present in a token ids multiset,
aka. the multiset cardinality.
"""
return sum(mset.values()) | 36885abd5bf666aa6c77a262a647c227e46d2e88 | 709,793 |
def lengthenFEN(fen):
"""Lengthen FEN to 71-character form (ex. '3p2Q' becomes '111p11Q')"""
return fen.replace('8','11111111').replace('7','1111111') \
.replace('6','111111').replace('5','11111') \
.replace('4','1111').replace('3','111').replace('2','11') | f49cdf8ad6919fbaaad1abc83e24b1a33a3ed3f8 | 709,794 |
import os
import pickle
def load_flags(save_dir, save_file="flags.obj"):
"""
This function inflate the pickled object to flags object for reuse, typically during evaluation (after training)
:param save_dir: The place where the obj is located
:param save_file: The file name of the file, usually flags.obj
:return: flags
"""
with open(os.path.join(save_dir, save_file), 'rb') as f: # Open the file
flags = pickle.load(f) # Use pickle to inflate the obj back to RAM
return flags | 44cc70f185645799fdfd81c8806f3d3f8585fef4 | 709,795 |
def pancakeSort(self, A):
# ! 这个方法实际上是在每轮循环中寻找最大的那个数,使其在正确的位置
"""
:type A: List[int]
:rtype: List[int]
"""
bucket = sorted(A)
ans = []
for k in range(len(A),0,-1):
i = A.index(bucket.pop())+1
ans += [i, k]
A = A[i:k][::-1] + A[:i] + A[k:]
print(A)
return ans | 35d358c6631f5cc708232f67a3e55d685116dff8 | 709,797 |
def includeme(config):
"""
Get build Git repository directory and make it accessible
to all requests generated via Cornice
"""
# Make DB connection accessible as a request property
def _get_repos(request):
_settings = request.registry.settings
repo_dir = _settings['repo_basedir']
return repo_dir
config.add_request_method(_get_repos, 'repo_dir', reify=True) | f2d73eb01b616f79059f4001c7b3faad67f48cd2 | 709,798 |