File size: 20,662 Bytes
0ac4ef8 c1cfd44 0ac4ef8 d533c09 23d0c18 d533c09 0ac4ef8 d533c09 7a8767c 0ac4ef8 23d0c18 d533c09 23d0c18 d533c09 23d0c18 d533c09 abb1ca3 d533c09 9e5af79 066e137 9e5af79 066e137 b6f31bf 9e5af79 d533c09 9e5af79 19f0e69 c1cfd44 19f0e69 c1cfd44 d533c09 abb1ca3 d533c09 abb1ca3 0beca5d c1cfd44 d533c09 c1cfd44 d533c09 c1cfd44 d533c09 c1cfd44 d533c09 19f0e69 c99e5ac d533c09 9e5af79 d533c09 9e5af79 0117c59 76f5c07 0117c59 9e5af79 d533c09 d0542df d533c09 19f0e69 d533c09 d0542df 19f0e69 c99e5ac 19f0e69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
# # coding=utf-8
# # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
# #
# # Licensed under the Apache License, Version 2.0 (the "License");
# # you may not use this file except in compliance with the License.
# # You may obtain a copy of the License at
# #
# # http://www.apache.org/licenses/LICENSE-2.0
# #
# # Unless required by applicable law or agreed to in writing, software
# # distributed under the License is distributed on an "AS IS" BASIS,
# # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# # See the License for the specific language governing permissions and
# # limitations under the License.
# """A Dataset loading script for the Controlled Text Reduction dataset."""
# import datasets
# from dataclasses import dataclass
# from pathlib import Path
# from typing import List, Tuple
# import pandas as pd
# import json
# import gzip
# import itertools
# _CITATION = """"""
# # _CITATION = """\
# # @inproceedings{roit2020controlled,
# # title={Controlled Crowdsourcing for High-Quality QA-SRL Annotation},
# # author={Roit, Paul and Klein, Ayal and Stepanov, Daniela and Mamou, Jonathan and Michael, Julian and Stanovsky, Gabriel and Zettlemoyer, Luke and Dagan, Ido},
# # booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
# # pages={7008--7013},
# # year={2020}
# # }
# # """
# _DESCRIPTION = """\
# The dataset contains document-summary pairs with document spans (referred to as "highlights"), indicating the "pre-selected" spans that lead to the creation of the summary.
# The evaluation and test datasets were constructed via controlled crowdsourcing.
# The train datasets were automatically generated using the summary-source proposition-level alignment model SuperPAL (Ernst et al., 2021).
# """
# _HOMEPAGE = "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main"
# _LICENSE = """MIT License
# Copyright (c) 2022 lovodkin93
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE."""
# # _URLs = {
# # "csv": {
# # "sentences": {
# # "wikinews.dev": "https://github.com/plroit/qasrl-gs/raw/master/data/sentences/wikinews.dev.full.csv",
# # "wikinews.test": "https://github.com/plroit/qasrl-gs/raw/master/data/sentences/wikinews.test.full.csv",
# # "wikipedia.dev": "https://github.com/plroit/qasrl-gs/raw/master/data/sentences/wikipedia.dev.full.csv",
# # "wikipedia.test": "https://github.com/plroit/qasrl-gs/raw/master/data/sentences/wikipedia.test.full.csv",
# # },
# # "qasrl-annotations": {
# # "wikinews.dev": "https://github.com/plroit/qasrl-gs/raw/master/data/gold/wikinews.dev.gold.csv",
# # "wikinews.test": "https://github.com/plroit/qasrl-gs/raw/master/data/gold/wikinews.test.gold.csv",
# # "wikipedia.dev": "https://github.com/plroit/qasrl-gs/raw/master/data/gold/wikipedia.dev.gold.csv",
# # "wikipedia.test": "https://github.com/plroit/qasrl-gs/raw/master/data/gold/wikipedia.test.gold.csv",
# # },
# # },
# # "jsonl": "https://qasrl.org/data/qasrl-gs.tar"
# # }
# _URLs = {
# "DUC-2001-2002": {
# "dev": "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main/data/dev_DUC-2001-2002.csv",
# "test": "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main/data/test_DUC-2001-2002.csv",
# "train": "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main/data/train_DUC-2001-2002.csv"
# },
# "CNN-DM": {
# "train": "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main/data/train_CNNDM.csv",
# "dev": "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main/data/dev_DUC-2001-2002.csv",
# "test": "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main/data/test_DUC-2001-2002.csv",
# },
# }
# @dataclass
# class ControlledTextReductionConfig(datasets.BuilderConfig):
# """ Allow the loader to re-distribute the original dev and test splits between train, dev and test. """
# data_source: str = "DUC-2001-2002" # "DUC-2001-2002" or "CNN-DM"
# class ControlledTextReduction(datasets.GeneratorBasedBuilder):
# """Controlled Text Reduction: dataset for the Controlled Text Reduction task ().
# Each data point consists of a document, a summary, and a list of spans of the document that are the pre-selected content whose summary is the summary"""
# VERSION = datasets.Version("1.0.0")
# BUILDER_CONFIG_CLASS = ControlledTextReductionConfig
# BUILDER_CONFIGS = [
# ControlledTextReductionConfig(
# name="DUC-2001-2002",
# version=VERSION,
# description="This provides the Controlled Text Reduction dataset extracted from the DUC 2001-2002 Single Document Summarization benchmark",
# data_source="DUC-2001-2002"
# ),
# ControlledTextReductionConfig(
# name="CNN-DM",
# version=VERSION,
# description="This provides the Controlled Text Reduction dataset extracted from the CNN-DM dataset (the train split)",
# data_source="CNN-DM"
# )
# ]
# DEFAULT_CONFIG_NAME = (
# "DUC-2001-2002" # It's not mandatory to have a default configuration. Just use one if it make sense.
# )
# def _info(self):
# features = datasets.Features(
# {
# "doc_text": datasets.Value("string"),
# "summary_text": datasets.Value("string"),
# "highlight_spans": datasets.Value("string")
# }
# )
# return datasets.DatasetInfo(
# # This is the description that will appear on the datasets page.
# description=_DESCRIPTION,
# # This defines the different columns of the dataset and their types
# features=features, # Here we define them above because they are different between the two configurations
# # If there's a common (input, target) tuple from the features,
# # specify them here. They'll be used if as_supervised=True in
# # builder.as_dataset.
# supervised_keys=None,
# # Homepage of the dataset for documentation
# homepage=_HOMEPAGE,
# # License for the dataset if available
# license=_LICENSE,
# # Citation for the dataset
# citation=_CITATION,
# )
# def _split_generators(self, dl_manager: datasets.utils.download_manager.DownloadManager):
# """Returns SplitGenerators."""
# URLs = _URLs[self.config.data_source]
# # Download and prepare all files - keep same structure as URLs
# corpora = {section: Path(dl_manager.download_and_extract(URLs[section]))
# for section in URLs}
# if self.config.data_source=="CNN-DM":
# return [
# datasets.SplitGenerator(
# name=datasets.Split.TRAIN,
# # These kwargs will be passed to _generate_examples
# gen_kwargs={
# "filepath": corpora["train"]
# },
# ),
# datasets.SplitGenerator(
# name=datasets.Split.VALIDATION,
# # These kwargs will be passed to _generate_examples
# gen_kwargs={
# "filepath": corpora["dev"]
# },
# ),
# datasets.SplitGenerator(
# name=datasets.Split.TEST,
# # These kwargs will be passed to _generate_examples
# gen_kwargs={
# "filepath": corpora["test"]
# },
# ),
# ]
# else:
# return [
# datasets.SplitGenerator(
# name=datasets.Split.TRAIN,
# # These kwargs will be passed to _generate_examples
# gen_kwargs={
# "filepath": corpora["train"]
# },
# ),
# datasets.SplitGenerator(
# name=datasets.Split.VALIDATION,
# # These kwargs will be passed to _generate_examples
# gen_kwargs={
# "filepath": corpora["dev"]
# },
# ),
# datasets.SplitGenerator(
# name=datasets.Split.TEST,
# # These kwargs will be passed to _generate_examples
# gen_kwargs={
# "filepath": corpora["test"]
# },
# ),
# ]
# def _generate_examples(self, filepath: List[str]):
# """ Yields Controlled Text Reduction examples from a csv file. Each instance contains the document, the summary and the pre-selected spans."""
# # merge annotations from sections
# df = pd.read_csv(filepath, index_col=False)
# for counter, dic in enumerate(df.to_dict('records')):
# columns_to_load_into_object = ["doc_text", "summary_text", "highlight_spans"]
# for key in columns_to_load_into_object:
# dic[key] = eval(dic[key])
# yield counter, dic
#################################################################################################################################################
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A Dataset loading script for the Controlled Text Reduction dataset."""
import datasets
from pathlib import Path
from typing import List
import pandas as pd
from dataclasses import dataclass
_CITATION = """"""
# _CITATION = """\
# @inproceedings{roit2020controlled,
# title={Controlled Crowdsourcing for High-Quality QA-SRL Annotation},
# author={Roit, Paul and Klein, Ayal and Stepanov, Daniela and Mamou, Jonathan and Michael, Julian and Stanovsky, Gabriel and Zettlemoyer, Luke and Dagan, Ido},
# booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
# pages={7008--7013},
# year={2020}
# }
# """
_DESCRIPTION = """\
The dataset contains document-summary pairs with document spans (referred to as "highlights"), indicating the "pre-selected" spans that lead to the creation of the summary.
The evaluation and test datasets were constructed via controlled crowdsourcing.
The train datasets were automatically generated using the summary-source proposition-level alignment model SuperPAL (Ernst et al., 2021).
"""
_HOMEPAGE = "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main"
_LICENSE = """MIT License
Copyright (c) 2022 lovodkin93
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE."""
_URLs = {
"DUC-2001-2002": {
"train": "https://media.githubusercontent.com/media/lovodkin93/Controlled_Text_Reduction/main/data/train_DUC-2001-2002.csv",
"dev": "https://media.githubusercontent.com/media/lovodkin93/Controlled_Text_Reduction/main/data/dev_DUC-2001-2002.csv",
"test": "https://media.githubusercontent.com/media/lovodkin93/Controlled_Text_Reduction/main/data/test_DUC-2001-2002.csv",
},
"CNN-DM": {
"train": "https://media.githubusercontent.com/media/lovodkin93/Controlled_Text_Reduction/main/data/train_CNNDM.csv",
"dev": "https://media.githubusercontent.com/media/lovodkin93/Controlled_Text_Reduction/main/data/dev_DUC-2001-2002.csv",
"test": "https://media.githubusercontent.com/media/lovodkin93/Controlled_Text_Reduction/main/data/test_DUC-2001-2002.csv",
},
}
# _URLs = {
# "dev_DUC-2001-2002": "https://media.githubusercontent.com/media/lovodkin93/Controlled_Text_Reduction/main/data/dev_DUC-2001-2002.csv",
# "test_DUC-2001-2002": "https://media.githubusercontent.com/media/lovodkin93/Controlled_Text_Reduction/main/data/test_DUC-2001-2002.csv",
# "train_DUC-2001-2002": "https://media.githubusercontent.com/media/lovodkin93/Controlled_Text_Reduction/main/data/train_DUC-2001-2002.csv"
# }
COLUMNS = ["doc_text", "summary_text", "highlight_spans"]
# _URLs = {
# "DUC-2001-2002": {
# "dev": "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main/data/dev_DUC-2001-2002.csv",
# "test": "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main/data/test_DUC-2001-2002.csv",
# "train": "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main/data/train_DUC-2001-2002.csv"
# },
# "CNN-DM": {
# "train": "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main/data/train_CNNDM.csv",
# "dev": "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main/data/dev_DUC-2001-2002.csv",
# "test": "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main/data/test_DUC-2001-2002.csv",
# },
# }
@dataclass
class ControlledTextReductionConfig(datasets.BuilderConfig):
""" Allow the loader to re-distribute the original dev and test splits between train, dev and test. """
data_source: str = "DUC-2001-2002" # "DUC-2001-2002" or "CNN-DM"
class ControlledTectReduction(datasets.GeneratorBasedBuilder):
"""Controlled Text Reduction: dataset for the Controlled Text Reduction task ().
Each data point consists of a document, a summary, and a list of spans of the document that are the pre-selected content whose summary is the summary"""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIG_CLASS = ControlledTextReductionConfig
BUILDER_CONFIGS = [
ControlledTextReductionConfig(
name="DUC-2001-2002",
version=VERSION,
description="This provides the Controlled Text Reduction dataset extracted from the DUC 2001-2002 Single Document Summarization benchmark",
data_source="DUC-2001-2002"
),
ControlledTextReductionConfig(
name="CNN-DM",
version=VERSION,
description="This provides the Controlled Text Reduction dataset extracted from the CNN-DM dataset (the train split)",
data_source="CNN-DM"
)
]
DEFAULT_CONFIG_NAME = (
"DUC-2001-2002" # It's not mandatory to have a default configuration. Just use one if it make sense.
)
def _info(self):
features = datasets.Features(
{
"doc_text": datasets.Value("string"),
"summary_text": datasets.Value("string"),
"highlight_spans": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.utils.download_manager.DownloadManager):
"""Returns SplitGenerators."""
URLs = _URLs[self.config.data_source]
# Download and prepare all files - keep same structure as URLs
corpora = {section: Path(dl_manager.download_and_extract(URLs[section]))
for section in URLs}
if self.config.data_source=="CNN-DM":
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": corpora["train"]
},
)
]
else:
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": corpora["train"]
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": corpora["dev"]
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": corpora["test"]
},
),
]
def _generate_examples(self, filepath: List[str]):
""" Yields Controlled Text Reduction examples from a csv file. Each instance contains the document, the summary and the pre-selected spans."""
# merge annotations from sections
df = pd.read_csv(filepath)
for counter, dic in enumerate(df.to_dict('records')):
columns_to_load_into_object = ["doc_text", "summary_text", "highlight_spans"]
# for key in columns_to_load_into_object:
# dic[key] = eval(dic[key])
yield counter, dic
|