Datasets:
Tasks:
Text2Text Generation
Formats:
parquet
Languages:
code
Size:
1K - 10K
Tags:
code-generation
License:
metadata
dataset_info:
features:
- name: prompt
dtype: string
- name: reference_code
dtype: string
- name: code_context
dtype: string
- name: problem_id
dtype: int64
- name: library_problem_id
dtype: int64
- name: library
dtype:
class_label:
names:
'0': Matplotlib
'1': Numpy
'2': Pandas
'3': Pytorch
'4': Scipy
'5': Sklearn
'6': Tensorflow
- name: test_case_cnt
dtype: int64
- name: perturbation_type
dtype:
class_label:
names:
'0': Difficult-Rewrite
'1': Origin
'2': Semantic
'3': Surface
- name: perturbation_origin_id
dtype: int64
splits:
- name: test
num_bytes: 3136179
num_examples: 1000
download_size: 712717
dataset_size: 3136179
configs:
- config_name: default
data_files:
- split: test
path: data/test-*
license: cc-by-sa-4.0
language:
- code
task_categories:
- text2text-generation
tags:
- code-generation
arxiv: 2211.11501
This is a reupload of DS-1000. The metadata dictionary has been extracted into columns and the categorical variables are now ClassLabel
types, and the dataset is natively a parquet. The features are as follows:
Column | Type |
---|---|
problem_id | Value(dtype='int64', id=None) |
prompt | Value(dtype='string', id=None) |
reference_code | Value(dtype='string', id=None) |
code_context | Value(dtype='string', id=None) |
library_problem_id | Value(dtype='int64', id=None) |
library | ClassLabel(names=['Matplotlib', 'Numpy', 'Pandas', 'Pytorch', 'Scipy', 'Sklearn', 'Tensorflow'], id=None) |
test_case_cnt | Value(dtype='int64', id=None) |
perturbation_type | ClassLabel(names=['Difficult-Rewrite', 'Origin', 'Semantic', 'Surface'], id=None) |
perturbation_origin_id | Value(dtype='int64', id=None) |
All credits go to the original authors below.
DS-1000 in simplified format
See testing code and more information in the DS-1000 repo.
Reformatting credits: Yuhang Lai, Sida Wang