ds1000 / README.md
claudios's picture
Update README.md
3b4e2a5 verified
---
dataset_info:
features:
- name: prompt
dtype: string
- name: reference_code
dtype: string
- name: code_context
dtype: string
- name: problem_id
dtype: int64
- name: library_problem_id
dtype: int64
- name: library
dtype:
class_label:
names:
'0': Matplotlib
'1': Numpy
'2': Pandas
'3': Pytorch
'4': Scipy
'5': Sklearn
'6': Tensorflow
- name: test_case_cnt
dtype: int64
- name: perturbation_type
dtype:
class_label:
names:
'0': Difficult-Rewrite
'1': Origin
'2': Semantic
'3': Surface
- name: perturbation_origin_id
dtype: int64
splits:
- name: test
num_bytes: 3136179
num_examples: 1000
download_size: 712717
dataset_size: 3136179
configs:
- config_name: default
data_files:
- split: test
path: data/test-*
license: cc-by-sa-4.0
language:
- code
task_categories:
- text2text-generation
tags:
- code-generation
arxiv: 2211.11501
---
This is a reupload of [DS-1000](https://huggingface.co/datasets/xlangai/DS-1000). The metadata dictionary has been extracted into columns and the categorical variables are now `ClassLabel` types, and the dataset is natively a parquet. The features are as follows:
| Column | Type |
|----------------------|-----------------------------------------------------------------------------------------------------------|
|problem_id |`Value(dtype='int64', id=None)` |
|prompt |`Value(dtype='string', id=None)` |
|reference_code |`Value(dtype='string', id=None)` |
|code_context |`Value(dtype='string', id=None)` |
|library_problem_id |`Value(dtype='int64', id=None)` |
|library |`ClassLabel(names=['Matplotlib', 'Numpy', 'Pandas', 'Pytorch', 'Scipy', 'Sklearn', 'Tensorflow'], id=None)`|
|test_case_cnt |`Value(dtype='int64', id=None)` |
|perturbation_type |`ClassLabel(names=['Difficult-Rewrite', 'Origin', 'Semantic', 'Surface'], id=None)` |
|perturbation_origin_id|`Value(dtype='int64', id=None)` |
All credits go to the original authors below.
---
<h1 align="center"> DS-1000 in simplified format </h1>
See testing code and more information in the [DS-1000 repo](https://github.com/xlang-ai/DS-1000/).
Reformatting credits: Yuhang Lai, Sida Wang