|
|
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
import argparse |
|
import glob |
|
import logging |
|
import os |
|
import pickle |
|
import random |
|
import re |
|
import gc |
|
import shutil |
|
import json |
|
|
|
import numpy as np |
|
import torch |
|
from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler,TensorDataset |
|
from torch.utils.data.distributed import DistributedSampler |
|
|
|
from transformers import (WEIGHTS_NAME, AdamW, get_linear_schedule_with_warmup, |
|
BertConfig, BertForMaskedLM, BertTokenizer, |
|
GPT2Config, GPT2LMHeadModel, GPT2Tokenizer, |
|
OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer, |
|
RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, |
|
DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer) |
|
|
|
class TextDataset(Dataset): |
|
def __init__(self, tokenizer, args, logger, file_type='train', block_size=1024): |
|
if args.local_rank==-1: |
|
local_rank=0 |
|
world_size=1 |
|
else: |
|
local_rank=args.local_rank |
|
world_size=torch.distributed.get_world_size() |
|
|
|
if not os.path.exists(args.output_dir): |
|
os.makedirs(args.output_dir) |
|
cached_file = os.path.join(args.output_dir, file_type+"_langs_%s"%(args.langs)+"_blocksize_%d"%(block_size)+"_wordsize_%d"%(world_size)+"_rank_%d"%(local_rank)) |
|
if os.path.exists(cached_file) and not args.overwrite_cache: |
|
if file_type == 'train': |
|
logger.warning("Loading features from cached file %s", cached_file) |
|
with open(cached_file, 'rb') as handle: |
|
self.inputs = pickle.load(handle) |
|
|
|
else: |
|
self.inputs = [] |
|
if args.langs == 'all': |
|
langs = os.listdir(args.data_dir) |
|
else: |
|
langs = [args.langs] |
|
|
|
data=[] |
|
for lang in langs: |
|
datafile = os.path.join(args.data_dir, lang, file_type+'.pkl') |
|
if file_type == 'train': |
|
logger.warning("Creating features from dataset file at %s", datafile) |
|
|
|
|
|
dataset = pickle.load(open(datafile, 'rb')) |
|
data.extend(['<s> '+' '.join(x['function'].split())+' </s>' for idx,x in enumerate(dataset) if idx%world_size==local_rank]) |
|
|
|
|
|
data = data |
|
length = len(data) |
|
logger.warning("Data size: %d"%(length)) |
|
input_ids = [] |
|
for idx,x in enumerate(data): |
|
try: |
|
input_ids.extend(tokenizer.encode(x)) |
|
except Exception: |
|
pass |
|
if idx % (length//10) == 0: |
|
percent = idx / (length//10) * 10 |
|
logger.warning("Rank %d, load %d"%(local_rank, percent)) |
|
del data |
|
gc.collect() |
|
|
|
length = len(input_ids) |
|
for i in range(0, length-block_size, block_size): |
|
self.inputs.append(input_ids[i : i + block_size]) |
|
del input_ids |
|
gc.collect() |
|
|
|
if file_type == 'train': |
|
logger.warning("Rank %d Training %d token, %d samples"%(local_rank, length, len(self.inputs))) |
|
logger.warning("Saving features into cached file %s", cached_file) |
|
with open(cached_file, 'wb') as handle: |
|
pickle.dump(self.inputs, handle, protocol=pickle.HIGHEST_PROTOCOL) |
|
|
|
def __len__(self): |
|
return len(self.inputs) |
|
|
|
def __getitem__(self, item): |
|
return torch.tensor(self.inputs[item]) |
|
|
|
class finetuneDataset(Dataset): |
|
def __init__(self, tokenizer, args, logger, file_type='train', block_size=1024): |
|
if args.local_rank==-1: |
|
local_rank=0 |
|
world_size=1 |
|
else: |
|
local_rank=args.local_rank |
|
world_size=torch.distributed.get_world_size() |
|
|
|
if not os.path.exists(args.output_dir): |
|
os.makedirs(args.output_dir) |
|
cached_file = os.path.join(args.output_dir, file_type+"_blocksize_%d"%(block_size)+"_wordsize_%d"%(world_size)+"_rank_%d"%(local_rank)) |
|
if os.path.exists(cached_file) and not args.overwrite_cache: |
|
if file_type == 'train': |
|
logger.warning("Loading features from cached file %s", cached_file) |
|
with open(cached_file, 'rb') as handle: |
|
self.inputs = pickle.load(handle) |
|
|
|
else: |
|
self.inputs = [] |
|
|
|
datafile = os.path.join(args.data_dir, f"{file_type}.txt") |
|
if file_type == 'train': |
|
logger.warning("Creating features from dataset file at %s", datafile) |
|
with open(datafile) as f: |
|
data = f.readlines() |
|
|
|
length = len(data) |
|
logger.info("Data size: %d"%(length)) |
|
input_ids = [] |
|
for idx,x in enumerate(data): |
|
x = x.strip() |
|
if x.startswith("<s>") and x.endswith("</s>"): |
|
pass |
|
else: |
|
x = "<s> " + x + " </s>" |
|
try: |
|
input_ids.extend(tokenizer.encode(x)) |
|
except Exception: |
|
pass |
|
if idx % (length//10) == 0: |
|
percent = idx / (length//10) * 10 |
|
logger.warning("Rank %d, load %d"%(local_rank, percent)) |
|
del data |
|
gc.collect() |
|
|
|
length = len(input_ids) // world_size |
|
logger.info(f"tokens: {length*world_size}") |
|
input_ids = input_ids[local_rank*length: (local_rank+1)*length] |
|
|
|
for i in range(0, length-block_size, block_size): |
|
self.inputs.append(input_ids[i : i + block_size]) |
|
del input_ids |
|
gc.collect() |
|
|
|
if file_type == 'train': |
|
logger.warning("Rank %d Training %d token, %d samples"%(local_rank, length, len(self.inputs))) |
|
logger.warning("Saving features into cached file %s", cached_file) |
|
with open(cached_file, 'wb') as handle: |
|
pickle.dump(self.inputs, handle, protocol=pickle.HIGHEST_PROTOCOL) |
|
|
|
def __len__(self): |
|
return len(self.inputs) |
|
|
|
def __getitem__(self, item): |
|
return torch.tensor(self.inputs[item]) |
|
|
|
class EvalDataset(Dataset): |
|
def __init__(self, tokenizer, args, logger, file_type='train', block_size=1024): |
|
if not os.path.exists(args.output_dir): |
|
os.makedirs(args.output_dir) |
|
cached_file = os.path.join(args.output_dir, file_type+"_blocksize_%d"%(block_size)) |
|
if os.path.exists(cached_file) and not args.overwrite_cache: |
|
with open(cached_file, 'rb') as handle: |
|
self.inputs = pickle.load(handle) |
|
|
|
else: |
|
self.inputs = [] |
|
|
|
datafile = os.path.join(args.data_dir, f"{file_type}.txt") |
|
with open(datafile) as f: |
|
data = f.readlines() |
|
|
|
length = len(data) |
|
logger.info("Data size: %d"%(length)) |
|
input_ids = [] |
|
for idx,x in enumerate(data): |
|
x = x.strip() |
|
if x.startswith("<s>") and x.endswith("</s>"): |
|
pass |
|
else: |
|
x = "<s> " + x + " </s>" |
|
try: |
|
input_ids.extend(tokenizer.encode(x)) |
|
except Exception: |
|
pass |
|
if idx % (length//10) == 0: |
|
percent = idx / (length//10) * 10 |
|
logger.warning("load %d"%(percent)) |
|
del data |
|
gc.collect() |
|
|
|
logger.info(f"tokens: {len(input_ids)}") |
|
self.split(input_ids, tokenizer, logger, block_size=block_size) |
|
del input_ids |
|
gc.collect() |
|
|
|
with open(cached_file, 'wb') as handle: |
|
pickle.dump(self.inputs, handle, protocol=pickle.HIGHEST_PROTOCOL) |
|
|
|
def split(self, input_ids, tokenizer, logger, block_size=1024): |
|
sample = [] |
|
i = 0 |
|
while i < len(input_ids): |
|
sample = input_ids[i: i+block_size] |
|
if len(sample) == block_size: |
|
for j in range(block_size): |
|
if tokenizer.convert_ids_to_tokens(sample[block_size-1-j])[0] == '\u0120' or tokenizer.convert_ids_to_tokens(sample[block_size-1-j]).startswith("<NUM_LIT"): |
|
break |
|
if sample[block_size-1-j] in [tokenizer.bos_token_id, tokenizer.eos_token_id, tokenizer.sep_token_id]: |
|
if sample[block_size-1-j] != tokenizer.bos_token_id: |
|
j -= 1 |
|
break |
|
if j == block_size-1: |
|
print(tokenizer.decode(sample)) |
|
exit() |
|
sample = sample[: block_size-1-j] |
|
|
|
i += len(sample) |
|
pad_len = block_size-len(sample) |
|
sample += [tokenizer.pad_token_id]*pad_len |
|
self.inputs.append(sample) |
|
|
|
if len(self.inputs) % 10000 == 0: |
|
logger.info(f"{len(self.inputs)} samples") |
|
|
|
|
|
def __len__(self): |
|
return len(self.inputs) |
|
|
|
def __getitem__(self, item): |
|
return torch.tensor(self.inputs[item]) |
|
|
|
|
|
|
|
class lineDataset(Dataset): |
|
def __init__(self, tokenizer, args, logger, file_type='test', block_size=924): |
|
datafile = os.path.join(args.data_dir, f"{file_type}.json") |
|
with open(datafile) as f: |
|
datas = f.readlines() |
|
|
|
length = len(datas) |
|
logger.info("Data size: %d"%(length)) |
|
self.inputs = [] |
|
self.gts = [] |
|
for data in datas: |
|
data = json.loads(data.strip()) |
|
self.inputs.append(tokenizer.encode(data["input"])[-block_size:]) |
|
self.gts.append(data["gt"]) |
|
|
|
def __len__(self): |
|
return len(self.inputs) |
|
|
|
def __getitem__(self, item): |
|
return torch.tensor(self.inputs[item]), self.gts[item] |
|
|