HazeT_Hieu / models /networks /generator_module /HEtransformerEncoder.py
datnguyentien204's picture
Upload 1403 files
83034b6 verified
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from .ViT_helper import to_2tuple, to_ntuple,DropPath
class Mlp(nn.Module):
"""MLP as implemented in timm
"""
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
drops = to_2tuple(drop)
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.drop1 = nn.Dropout(drops[0])
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop2 = nn.Dropout(drops[1])
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop1(x)
x = self.fc2(x)
x = self.drop2(x)
return x
class Attention(nn.Module):
"""Self Attention as implemented in timm
"""
def __init__(self, d_model, nhead=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
super().__init__()
assert d_model % nhead == 0, 'd_model needs to be divisible by nhead'
self.nhead = nhead
self.scale = (d_model // nhead) ** -0.5
self.to_qkv = nn.Linear(d_model, d_model * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(d_model, d_model)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.size()
qkv = self.to_qkv(x).reshape(B, N, 3, self.nhead, C // self.nhead).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
attn = (q @ k.transpose(-1, -2)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Attention_Cross(nn.Module):
"""Attention for decoder layer.Some palce may be called "inter attention"
"""
def __init__(self, d_model, nhead=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
super().__init__()
assert d_model % nhead == 0, 'd_model needs to be divisible by nhead'
self.nhead = nhead
self.scale = (d_model // nhead) ** -0.5
self.to_q = nn.Linear(d_model, d_model, bias=qkv_bias)
self.to_kv = nn.Linear(d_model, d_model * 2, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(d_model, d_model)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, y):
"""
Args:
x: output of the former layer
y: memery of the encoder layer
"""
B, Nx, C = x.size()
_, Ny, _ = y.size()
q = self.to_q(x).reshape(B, Nx, self.nhead, C // self.nhead).permute(0, 2, 1, 3)
kv = self.to_kv(y).reshape(B, Ny, 2, self.nhead, C // self.nhead).permute(2, 0, 3, 1, 4)
k, v = kv.unbind(0)
attn = (q @ k.transpose(-1, -2)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, Nx, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
def split_int(num):
"""Split an integer into 2 integers evenly
Args:
num (int): The input integer
Returns:
num_1 (int)
num_2 (int)
"""
if num % 2 == 0:
num_1 = num_2 = num // 2
else:
num_1 = num // 2
num_2 = num_1 + 1
return num_1, num_2
def unpad2D(input, pad):
"""Crop the input tensor according to pad.(Inverse operation for padding)
Args:
input (Tensor): (B, C, H, W)
pad (Tuple of int): (left, right, top, bottom)
Returns:
output (Tensor): (B, C, new_H, new_W)
"""
pad_W_left, pad_W_right, pad_H_top, pad_H_bottom = pad
if pad_H_top == 0 and pad_H_bottom == 0 and not (pad_W_left == 0 and pad_W_right == 0):
output = input[:, :, :, pad_W_left:-pad_W_right]
elif pad_W_left == 0 and pad_W_right == 0 and not (pad_H_top == 0 and pad_H_bottom == 0):
output = input[:, :, pad_H_top:-pad_H_bottom, :]
elif pad_H_top == 0 and pad_H_bottom == 0 and pad_W_left == 0 and pad_W_right == 0:
output = input
else:
output = input[:, :, pad_H_top:-pad_H_bottom, pad_W_left:-pad_W_right]
return output
def seq_padding(x, dividable_size, input_resolution, pad_mode='constant'):
"""Padding for sequential data
Args:
x (Tensor): (B, L, C)
dividable_size (Tuple | int): dividable size
input_resolution (Tuple): resolution of x
Returns:
x (Tensor): (B, new_L, C)
output_resolution (Tuple): new resolution of x
pad (Tuple of int): (left, right, top, bottom)
"""
H, W = input_resolution
B, L, C = x.shape
assert L == H * W, 'Input of wrong size.'
dividable_size = to_2tuple(dividable_size)
x = x.permute(0, 2, 1).reshape(B, C, H, W)
rema_H, rema_W = H % dividable_size[0], W % dividable_size[1]
pad_H, pad_W = dividable_size[0] - rema_H, dividable_size[1] - rema_W
pad_H_top, pad_H_bottom = split_int(pad_H) if rema_H != 0 else (0, 0)
pad_W_left, pad_W_right = split_int(pad_W) if rema_W != 0 else (0, 0)
x = F.pad(x, (pad_W_left, pad_W_right, pad_H_top, pad_H_bottom), pad_mode, 0)
padded_H, padded_W = x.shape[-2:]
x = x.reshape(B, C, -1).permute(0, 2, 1)
return x, (padded_H, padded_W), (pad_W_left, pad_W_right, pad_H_top, pad_H_bottom)
# Example
# x = torch.randn(1, 14, 768)
# y = seq_padding(x, dividable_size=7, input_resolution=(2, 7))
# print(y[0].shape, y[1], y[2])
def seq_unpad(x, input_resolution, pad):
"""Unpadding for sequential data
Args:
x (Tensor): (B, L, C)
input_resolution (Tuple): resolution of x
pad (Tuple of int): (left, right, top, bottom)
Returns:
x (Tensor): (B, new_L, C)
output_resolution (Tuple): new resolution of x
"""
padded_H, padded_W = input_resolution
B, L, C = x.shape
assert L == padded_H * padded_W, 'Input of wrong size.'
x = x.permute(0, 2, 1).reshape(B, C, padded_H, padded_W)
x = unpad2D(x, pad=pad)
H, W = x.shape[-2:]
x = x.reshape(B, C, -1).permute(0, 2, 1)
return x, (H, W)
def window_partition(x, window_size):
"""Slightly modified for arbitrary window_size & resolution combination
Args:
x: (B,H,W,C)
window_size (tuple[int] | int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C)
"""
window_size = to_2tuple(window_size)
B, H, W, C = x.shape
n_win_H = H // window_size[0]
n_win_W = W // window_size[1]
if not (H % window_size[0] == 0 and W % window_size[1] == 0):
x = x[:, :n_win_H * window_size[0], :n_win_W * window_size[1], :]
x = x.view(B, n_win_H, window_size[0], n_win_W, window_size[1], C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C)
return windows
def window_reverse(windows, window_size, H, W):
"""Slightly modified for arbitrary window_size & resolution combination
Args:
windows: (num_windows*B, window_size, window_size, C)
window_size (tuple[int] | int): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, H, W, C)
"""
window_size = to_2tuple(window_size)
n_win_H = H // window_size[0]
n_win_W = W // window_size[1]
B = windows.shape[0] // (n_win_H * n_win_W)
x = windows.view(B, n_win_H, n_win_W, window_size[0], window_size[1], -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, n_win_H * window_size[0], n_win_W * window_size[1], -1)
return x
# Example
# H, W = 6, 6
# window_size = 2
# x = torch.randn(1, H, W, 3)
# win = window_partition(x, window_size=window_size)
# y = window_reverse(win, window_size=window_size, H=H, W=W)
# print(x.shape)
# print(win.shape)
# print(y.shape)
# print(x[0].permute(2,0,1)[0])
# print(y[0].permute(2,0,1)[0])
def seq_crop(x, dividable_size, input_resolution):
"""
Arg:
x (Tensor): (B, L, C)
dividable_size (Tuple | int): dividable size
input_resolution (Tuple): resolution of x
Returns:
x (Tensor): (B, new_L, C)
output_resolution (Tuple): new resolution of x
"""
H, W = input_resolution
B, L, C = x.shape
assert L == H * W, 'Input of wrong size.'
dividable_size = to_2tuple(dividable_size)
x = x.reshape(B, H, W, C)
rema_H, rema_W = H % dividable_size[0], W % dividable_size[1]
new_H, new_W = H - rema_H, W - rema_W
if rema_H != 0 or rema_W != 0:
x = x[:, :new_H, :new_W, :]
x = x.reshape(B, -1, C)
return x, (new_H, new_W)
# Example
# H, W = 22, 34
# x = torch.randn(2, H*W, 96)
# x, new_size = seq_crop(x, dividable_size=7, input_resolution=(H, W))
# print(x.shape, new_size)
class PatchEmbed_Kai(nn.Module):
""" 2D Image to Patch Embedding
"""
def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None, flatten=True):
super().__init__()
patch_size = to_2tuple(patch_size)
self.in_chans = in_chans
self.flatten = flatten
self.proj = nn.Conv2d(self.in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
def forward(self, x):
B, C, H, W = x.shape
assert C == self.in_chans, 'Input image need to have same numbers of channels with the initialed.'
x = self.proj(x)
H, W = x.shape[2], x.shape[3]
if self.flatten:
x = x.flatten(2).transpose(1, 2) # BCHW -> BNC
x = self.norm(x)
return x, (H, W)
# Example
# model = PatchEmbed_Kai(patch_size=4, in_chans=3, embed_dim=96)
# x = torch.randn(1, 3, 224, 224)
# y = model(x)
# torch.save(model.state_dict(), "./PatchEmbed.pkl")
# print(y[0].shape, y[1])
class PatchMerging_Kai(nn.Module):
""" Patch Merging Layer.
Args:
input_resolution (tuple[int] | int): Resolution of input feature.
d_model (int): Number of input channels.
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, input_resolution, d_model, norm_layer=nn.LayerNorm):
super().__init__()
self.input_resolution = to_2tuple(input_resolution)
self.d_model = d_model
self.reduction = nn.Linear(4 * d_model, 2 * d_model, bias=False)
self.norm = norm_layer(4 * d_model)
def forward(self, x):
"""
Args:
x (Tuple): (Tensor, arbitrary_input, (H,W)), arbitrary_input (bool)
if arbitrary_input=False, (H,W) will not be required
B, H*W, C -> B, H/2*W/2, 4*C
"""
arbitrary_input = x[1]
if arbitrary_input:
H, W = x[2]
else:
H, W = self.input_resolution
x = x[0]
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
x = x.view(B, H, W, C)
if H % 2 != 0:
x = x[:, 0:-1, :, :]
if W % 2 != 0:
x = x[:, :, 0:-1, :]
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
H, W = x.shape[1], x.shape[2]
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
x = self.norm(x)
x = self.reduction(x)
return x, arbitrary_input, (H, W)
# Example
# model = PatchMerging_Kai(input_resolution=(5,4), d_model=3)
# arbitrary_input = True
# # x = torch.randn(1, 20, 3)
# # y = model((x, arbitrary_input))
# x = torch.randn(1, 45, 3)
# y = model((x, arbitrary_input, (5,9)))
# print(y[0].shape, y[2])
class WindowAttention_Kai(nn.Module):
def __init__(self, d_model, window_size, nhead, qkv_bias=True, attn_drop=0., proj_drop=0.):
super().__init__()
assert d_model % nhead == 0, 'd_model needs to be divisible by nhead'
self.window_size = to_2tuple(window_size)
self.nhead = nhead
self.scale = (d_model // nhead) ** -0.5
# Relative Position Bias's parameter Table
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1), nhead)
)
# Compute indice of relative_position_bias_table for attention matrix
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w]))
coords_flatten = torch.flatten(coords, 1)
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
relative_coords[:, :, 0] += self.window_size[0] - 1
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1)
self.register_buffer("relative_position_index", relative_position_index)
self.qkv = nn.Linear(d_model, d_model * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(d_model, d_model)
self.proj_drop = nn.Dropout(proj_drop)
nn.init.trunc_normal_(self.relative_position_bias_table, std=.02)
def forward(self, x, shape):
H, W = shape
Bi, Ni, Ci = x.size()
assert Ni == H * W, "Inputs with wrong size."
x = x.reshape(Bi, H, W, Ci)
# print(self.window_size)
x = window_partition(x, self.window_size)
x = x.reshape(-1, self.window_size[0] * self.window_size[1], Ci)
B_, N, C = x.shape
qkv = self.qkv(x).reshape(B_, N, 3, self.nhead, C // self.nhead).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
attn = (q @ k.transpose(-2, -1)) * self.scale
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], self.nhead)
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
attn = attn + relative_position_bias.unsqueeze(0)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
x = self.proj_drop(x)
x = window_reverse(x, self.window_size, H, W)
x = x.reshape(Bi, Ni, Ci)
return x
# Example
# model = WindowAttention_Kai(
# d_model=768,
# window_size=7,
# nhead=8
# )
# x = torch.randn(1, 784, 768)
# y = model(x, shape=(28, 28))
# print(y.shape)
class StripAttention(nn.Module):
def __init__(self, d_model, nhead=8, strip_width=7, is_vertical=False, qkv_bias=False, attn_drop=0., proj_drop=0.):
super().__init__()
self.d_model = d_model
self.strip_width = strip_width
self.is_vertical = is_vertical
self.attn = Attention(
d_model=d_model,
nhead=nhead,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=proj_drop,
)
def forward(self, x, shape):
H, W = shape
B, N, C = x.size()
assert N == H * W, "Inputs with wrong size."
x = x.reshape(B, H, W, C)
# print(self.strip_width)
if self.is_vertical:
x = window_partition(x, (H, self.strip_width))
x = x.reshape(-1, H * self.strip_width, C)
else:
x = window_partition(x, (self.strip_width, W))
x = x.reshape(-1, W * self.strip_width, C)
wins = self.attn(x)
if self.is_vertical:
x = window_reverse(wins, (H, self.strip_width), H, W)
else:
x = window_reverse(wins, (self.strip_width, W), H, W)
x = x.reshape(B, N, C)
return x
# Example
# model = StripAttention(
# d_model=768,
# nhead=8,
# strip_width=7,
# is_vertical=False
# )
# x = torch.randn(1, 784, 768)
# y = model(x, (28, 28))
# print(y.shape)
class StripAttentionBlock(nn.Module):
def __init__(self, d_model, input_resolution, nhead=8, strip_width=7,
mlp_ratio=4, qkv_bias=False, drop=0., attn_drop=0., drop_path=0.,
act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.d_model = d_model
self.input_resolution = to_2tuple(input_resolution)
self.strip_width = strip_width
self.norm1 = norm_layer(d_model)
self.attn1 = StripAttention(
d_model=d_model,
nhead=nhead,
strip_width=strip_width,
is_vertical=False,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=drop
)
self.attn2 = StripAttention(
d_model=d_model,
nhead=nhead,
strip_width=strip_width,
is_vertical=True,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=drop
)
self.attn3 = WindowAttention_Kai(
d_model=d_model,
window_size=(strip_width * 2, strip_width * 2),
nhead=nhead,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=drop
)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(d_model)
mlp_hidden_dim = int(d_model * mlp_ratio)
self.mlp = Mlp(d_model, hidden_features=mlp_hidden_dim, out_features=d_model, act_layer=act_layer, drop=drop)
def forward(self, x):
arbitrary_input = x[1]
if arbitrary_input:
H, W = x[2]
# x, (H, W) = seq_crop(x[0], dividable_size=self.strip_width*2, input_resolution=(H, W))
x, (H, W), pad = seq_padding(x[0], dividable_size=self.strip_width * 2, input_resolution=(H, W),
pad_mode='constant')
else:
H, W = self.input_resolution
x = x[0]
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
shortcut = x
x = self.norm1(x)
x1 = self.attn1(x, shape=(H, W))
x2 = self.attn2(x, shape=(H, W))
x3 = self.attn3(x, shape=(H, W))
# Method 1
# x = x1 + x2 + x3
# Method 2
q_x = x.unsqueeze(dim=2)
k_x = torch.stack([x, x1, x2, x3], dim=2)
attn_x = (q_x @ k_x.transpose(-1, -2)).softmax(dim=-1)
x = attn_x @ k_x
x = x.squeeze(dim=2)
x = shortcut + self.drop_path(x)
# FFN
x = x + self.drop_path(self.mlp(self.norm2(x)))
if arbitrary_input:
x, (H, W) = seq_unpad(x, (H, W), pad)
return (x, arbitrary_input, (H, W))
# Example
# model = StripAttentionBlock(
# d_model=96,
# input_resolution=28,
# nhead=8,
# strip_width=7
# )
# arbitrary_input = True
# # x = (torch.randn(1, 784, 96), arbitrary_input, (28,28))
# # y = model(x)
# x = (torch.randn(1, 840, 96), arbitrary_input, (28, 30))
# y = model(x)
# print(y[0].shape, y[2])
class BasicLayer_SA(nn.Module):
def __init__(self, d_model, input_resolution, depth, nhead, strip_width,
mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):
super().__init__()
self.d_model = d_model
self.input_resolution = to_2tuple(input_resolution)
self.depth = depth
self.strip_width = list(to_ntuple(self.depth)(strip_width))
self.use_checkpoint = use_checkpoint
# build blocks
self.blocks = nn.ModuleList([
StripAttentionBlock(
d_model=d_model,
input_resolution=self.input_resolution,
nhead=nhead,
strip_width=self.strip_width[i],
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
drop=drop,
attn_drop=attn_drop,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
norm_layer=norm_layer
)
for i in range(self.depth)
])
# patch merging layer
if downsample is not None:
self.downsample = downsample(self.input_resolution, d_model=d_model, norm_layer=norm_layer)
else:
self.downsample = None
def forward(self, x):
for blk in self.blocks:
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x)
else:
x = blk(x)
# print(x[0].shape, x[1], x[2])
if self.downsample is not None:
x = self.downsample(x)
return x
# Example
# model = BasicLayer_SA(
# d_model=768,
# input_resolution=112,
# depth=3,
# nhead=8,
# strip_width=[7, 2, 7],
# drop_path=0.,
# downsample=PatchMerging_Kai,
# use_checkpoint=False
# )
# arbitrary_input = True
# # x = (torch.randn(1, 12544, 768), arbitrary_input, (112,112))
# # y = model(x)
# x = (torch.randn(1, 810, 768), arbitrary_input, (27,30))
# y = model(x)
# print(y[0].shape, y[2])
########################################## S2WAT ##########################################
class HeTransformerEncoder(nn.Module):
def __init__(self, img_size=224, patch_size=4, in_chans=3,
embed_dim=96, depths=[2, 2, 6, 2], nhead=[3, 6, 12, 24],
strip_width=7, mlp_ratio=4., qkv_bias=True,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
use_checkpoint=False):
super().__init__()
self.img_size = to_2tuple(img_size)
self.patch_size = to_2tuple(patch_size)
self.num_layers = len(depths)
self.strip_width = list(to_ntuple(self.num_layers)(strip_width))
self.embed_dim = embed_dim
self.ape = ape
self.printed_modes = set()
self.patch_norm = patch_norm
self.device="cuda" if torch.cuda.is_available() else "cpu"
# split image into non-overlapping patches
self.patch_embed = PatchEmbed_Kai(
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
norm_layer=norm_layer if self.patch_norm else None
)
self.patches_resolution = (self.img_size[0] // self.patch_size[0], self.img_size[1] // self.patch_size[1])
self.num_patches = self.patches_resolution[0] * self.patches_resolution[1]
# absolute position embedding
if self.ape:
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, self.num_patches, embed_dim))
nn.init.trunc_normal_(self.absolute_pos_embed, std=.02)
self.pos_drop = nn.Dropout(drop_rate)
# stochastic depth
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
# build layers
self.layers = nn.ModuleList()
for i in range(self.num_layers):
layer = BasicLayer_SA(
d_model=int(self.embed_dim * 2 ** i),
input_resolution=(self.patches_resolution[0] // (2 ** i),
self.patches_resolution[1] // (2 ** i)),
depth=depths[i],
nhead=nhead[i],
strip_width=self.strip_width[i],
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[sum(depths[:i]):sum(depths[:i + 1])],
norm_layer=norm_layer,
downsample=PatchMerging_Kai if (i < self.num_layers - 1) else None,
use_checkpoint=use_checkpoint
)
self.layers.append(layer)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
nn.init.trunc_normal_(m.weight, std=.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'absolute_pos_embed'}
@torch.jit.ignore
def no_weight_decay_keywords(self):
return {'relative_position_bias_table'}
def add_z(self, x, alpha, mode):
if mode not in self.printed_modes:
if mode == 1:
print("Using Hadamard Product => Element-wise multiplication")
elif mode == 2:
print("Using Addition")
elif mode == 3:
print("Joint Embedding (concatenation along a new dimension)")
else:
raise ValueError("Invalid mode. Please choose 1, 2, or 3")
self.printed_modes.add(mode)
size = x[0].size()
alpha_exp = alpha.expand(size)
if mode == 1:
x_concat_alpha = x[0].to(self.device) * alpha_exp.to(self.device)
elif mode == 2:
x_concat_alpha = x[0].to(self.device) + alpha_exp.to(self.device)
elif mode == 3:
x_concat_alpha = torch.cat((x[0].to(self.device), alpha_exp.to(self.device)))
else:
raise ValueError("Invalid mode. Please choose 1, 2, or 3")
return x_concat_alpha.to(self.device)
def forward_features(self, x,alpha,mode):
x, arbitrary_input = x[0], x[1]
x, (H, W) = self.patch_embed(x)
if self.ape:
x = x + self.absolute_pos_embed
x = self.pos_drop(x)
x = (x, arbitrary_input, (H, W))
for layer in self.layers:
x = layer(x)
x = (self.add_z(x, alpha, mode), x[1], x[2])
return x
def forward(self, x,arbitrary_input=False,alpha=None,mode=2):
if arbitrary_input:
H, W = x.shape[2], x.shape[3]
x = (x, arbitrary_input, (H, W))
else:
x = (x, arbitrary_input)
x = self.forward_features(x,alpha,mode)
return x