repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
balavenkatesan/yellowbrick
yellowbrick/features/radviz.py
1
8495
# yellowbrick.features.radviz # Implements radviz for feature analysis. # # Author: Benjamin Bengfort <bbengfort@districtdatalabs.com> # Created: Fri Oct 07 13:18:00 2016 -0400 # # Copyright (C) 2016 District Data Labs # For license information, see LICENSE.txt # # ID: radviz.py [] benjamin@bengfort.com $ """ Implements radviz for feature analysis. """ ########################################################################## ## Imports ########################################################################## import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as patches from yellowbrick.features.base import DataVisualizer from yellowbrick.exceptions import YellowbrickTypeError from yellowbrick.style.colors import resolve_colors, get_color_cycle ########################################################################## ## Quick Methods ########################################################################## def radviz(X, y=None, ax=None, features=None, classes=None, color=None, colormap=None, **kwargs): """Displays each feature as an axis around a circle surrounding a scatter plot whose points are each individual instance. This helper function is a quick wrapper to utilize the RadialVisualizer (Transformer) for one-off analysis. Parameters ---------- X : ndarray or DataFrame of shape n x m A matrix of n instances with m features y : ndarray or Series of length n An array or series of target or class values ax : matplotlib axes The axes to plot the figure on. features : list of strings The names of the features or columns classes : list of strings The names of the classes in the target color : list or tuple of colors Specify the colors for each individual class colormap : string or matplotlib cmap Sequential colormap for continuous target Returns ------- ax : matplotlib axes Returns the axes that the parallel coordinates were drawn on. """ # Instantiate the visualizer visualizer = RadialVisualizer( ax, features, classes, color, colormap, **kwargs ) # Fit and transform the visualizer (calls draw) visualizer.fit(X, y, **kwargs) visualizer.transform(X) # Return the axes object on the visualizer return visualizer.ax ########################################################################## ## Static RadViz Visualizer ########################################################################## class RadialVisualizer(DataVisualizer): """ RadViz is a multivariate data visualization algorithm that plots each axis uniformely around the circumference of a circle then plots points on the interior of the circle such that the point normalizes its values on the axes from the center to each arc. """ def __init__(self, ax=None, features=None, classes=None, color=None, colormap=None, **kwargs): """ Initialize the base radviz with many of the options required in order to make the visualization work. Parameters ---------- :param ax: the axis to plot the figure on. :param features: a list of feature names to use If a DataFrame is passed to fit and features is None, feature names are selected as the columns of the DataFrame. :param classes: a list of class names for the legend If classes is None and a y value is passed to fit then the classes are selected from the target vector. :param color: optional list or tuple of colors to colorize lines Use either color to colorize the lines on a per class basis or colormap to color them on a continuous scale. :param colormap: optional string or matplotlib cmap to colorize lines Use either color to colorize the lines on a per class basis or colormap to color them on a continuous scale. :param kwargs: keyword arguments passed to the super class. These parameters can be influenced later on in the visualization process, but can and should be set as early as possible. """ super(RadialVisualizer, self).__init__( ax, features, classes, color, colormap, **kwargs ) @staticmethod def normalize(X): """ MinMax normalization to fit a matrix in the space [0,1] by column. """ a = X.min(axis=0) b = X.max(axis=0) return (X - a[np.newaxis, :]) / ((b - a)[np.newaxis, :]) def draw(self, X, y, **kwargs): """ Called from the fit method, this method creates the radviz canvas and draws each instance as a class or target colored point, whose location is determined by the feature data set. """ # Get the shape of the data nrows, ncols = X.shape # Create the axes if they don't exist if self.ax is None: self.ax = plt.gca(xlim=[-1,1], ylim=[-1,1]) # Create the colors # TODO: Allow both colormap, listed colors, and palette definition # TODO: Make this an independent function or property for override! # color_values = resolve_colors( # num_colors=len(self.classes_), colormap=self.colormap, color=self.color # ) color_values = get_color_cycle() colors = dict(zip(self.classes_, color_values)) # Create a data structure to hold scatter plot representations to_plot = {} for kls in self.classes_: to_plot[kls] = [[], []] # Compute the arcs around the circumference for each feature axis # TODO: make this an independent function for override s = np.array([ (np.cos(t), np.sin(t)) for t in [ 2.0 * np.pi * (i / float(ncols)) for i in range(ncols) ] ]) # Compute the locations of the scatter plot for each class # Normalize the data first to plot along the 0, 1 axis for i, row in enumerate(self.normalize(X)): row_ = np.repeat(np.expand_dims(row, axis=1), 2, axis=1) xy = (s * row_).sum(axis=0) / row.sum() kls = self.classes_[y[i]] to_plot[kls][0].append(xy[0]) to_plot[kls][1].append(xy[1]) # Add the scatter plots from the to_plot function # TODO: store these plots to add more instances to later # TODO: make this a separate function for i, kls in enumerate(self.classes_): self.ax.scatter(to_plot[kls][0], to_plot[kls][1], color=colors[kls], label=str(kls), **kwargs) # Add the circular axis path # TODO: Make this a seperate function (along with labeling) self.ax.add_patch(patches.Circle((0.0, 0.0), radius=1.0, facecolor='none')) # Add the feature names for xy, name in zip(s, self.features_): # Add the patch indicating the location of the axis self.ax.add_patch(patches.Circle(xy, radius=0.025, facecolor='#777777')) # Add the feature names offset around the axis marker if xy[0] < 0.0 and xy[1] < 0.0: self.ax.text(xy[0] - 0.025, xy[1] - 0.025, name, ha='right', va='top', size='small') elif xy[0] < 0.0 and xy[1] >= 0.0: self.ax.text(xy[0] - 0.025, xy[1] + 0.025, name, ha='right', va='bottom', size='small') elif xy[0] >= 0.0 and xy[1] < 0.0: self.ax.text(xy[0] + 0.025, xy[1] - 0.025, name, ha='left', va='top', size='small') elif xy[0] >= 0.0 and xy[1] >= 0.0: self.ax.text(xy[0] + 0.025, xy[1] + 0.025, name, ha='left', va='bottom', size='small') self.ax.axis('equal') def finalize(self, **kwargs): """ Finalize executes any subclass-specific axes finalization steps. The user calls poof and poof calls finalize. Parameters ---------- kwargs: generic keyword arguments. """ # Set the title self.set_title( 'RadViz for {} Features'.format(len(self.features_)) ) # Remove the ticks from the graph self.ax.set_yticks([]) self.ax.set_xticks([]) # Add the legend self.ax.legend(loc='best') # Alias for RadViz RadViz = RadialVisualizer
apache-2.0
appapantula/scikit-learn
sklearn/gaussian_process/tests/test_gaussian_process.py
267
6813
""" Testing for Gaussian Process module (sklearn.gaussian_process) """ # Author: Vincent Dubourg <vincent.dubourg@gmail.com> # Licence: BSD 3 clause from nose.tools import raises from nose.tools import assert_true import numpy as np from sklearn.gaussian_process import GaussianProcess from sklearn.gaussian_process import regression_models as regression from sklearn.gaussian_process import correlation_models as correlation from sklearn.datasets import make_regression from sklearn.utils.testing import assert_greater f = lambda x: x * np.sin(x) X = np.atleast_2d([1., 3., 5., 6., 7., 8.]).T X2 = np.atleast_2d([2., 4., 5.5, 6.5, 7.5]).T y = f(X).ravel() def test_1d(regr=regression.constant, corr=correlation.squared_exponential, random_start=10, beta0=None): # MLE estimation of a one-dimensional Gaussian Process model. # Check random start optimization. # Test the interpolating property. gp = GaussianProcess(regr=regr, corr=corr, beta0=beta0, theta0=1e-2, thetaL=1e-4, thetaU=1e-1, random_start=random_start, verbose=False).fit(X, y) y_pred, MSE = gp.predict(X, eval_MSE=True) y2_pred, MSE2 = gp.predict(X2, eval_MSE=True) assert_true(np.allclose(y_pred, y) and np.allclose(MSE, 0.) and np.allclose(MSE2, 0., atol=10)) def test_2d(regr=regression.constant, corr=correlation.squared_exponential, random_start=10, beta0=None): # MLE estimation of a two-dimensional Gaussian Process model accounting for # anisotropy. Check random start optimization. # Test the interpolating property. b, kappa, e = 5., .5, .1 g = lambda x: b - x[:, 1] - kappa * (x[:, 0] - e) ** 2. X = np.array([[-4.61611719, -6.00099547], [4.10469096, 5.32782448], [0.00000000, -0.50000000], [-6.17289014, -4.6984743], [1.3109306, -6.93271427], [-5.03823144, 3.10584743], [-2.87600388, 6.74310541], [5.21301203, 4.26386883]]) y = g(X).ravel() thetaL = [1e-4] * 2 thetaU = [1e-1] * 2 gp = GaussianProcess(regr=regr, corr=corr, beta0=beta0, theta0=[1e-2] * 2, thetaL=thetaL, thetaU=thetaU, random_start=random_start, verbose=False) gp.fit(X, y) y_pred, MSE = gp.predict(X, eval_MSE=True) assert_true(np.allclose(y_pred, y) and np.allclose(MSE, 0.)) eps = np.finfo(gp.theta_.dtype).eps assert_true(np.all(gp.theta_ >= thetaL - eps)) # Lower bounds of hyperparameters assert_true(np.all(gp.theta_ <= thetaU + eps)) # Upper bounds of hyperparameters def test_2d_2d(regr=regression.constant, corr=correlation.squared_exponential, random_start=10, beta0=None): # MLE estimation of a two-dimensional Gaussian Process model accounting for # anisotropy. Check random start optimization. # Test the GP interpolation for 2D output b, kappa, e = 5., .5, .1 g = lambda x: b - x[:, 1] - kappa * (x[:, 0] - e) ** 2. f = lambda x: np.vstack((g(x), g(x))).T X = np.array([[-4.61611719, -6.00099547], [4.10469096, 5.32782448], [0.00000000, -0.50000000], [-6.17289014, -4.6984743], [1.3109306, -6.93271427], [-5.03823144, 3.10584743], [-2.87600388, 6.74310541], [5.21301203, 4.26386883]]) y = f(X) gp = GaussianProcess(regr=regr, corr=corr, beta0=beta0, theta0=[1e-2] * 2, thetaL=[1e-4] * 2, thetaU=[1e-1] * 2, random_start=random_start, verbose=False) gp.fit(X, y) y_pred, MSE = gp.predict(X, eval_MSE=True) assert_true(np.allclose(y_pred, y) and np.allclose(MSE, 0.)) @raises(ValueError) def test_wrong_number_of_outputs(): gp = GaussianProcess() gp.fit([[1, 2, 3], [4, 5, 6]], [1, 2, 3]) def test_more_builtin_correlation_models(random_start=1): # Repeat test_1d and test_2d for several built-in correlation # models specified as strings. all_corr = ['absolute_exponential', 'squared_exponential', 'cubic', 'linear'] for corr in all_corr: test_1d(regr='constant', corr=corr, random_start=random_start) test_2d(regr='constant', corr=corr, random_start=random_start) test_2d_2d(regr='constant', corr=corr, random_start=random_start) def test_ordinary_kriging(): # Repeat test_1d and test_2d with given regression weights (beta0) for # different regression models (Ordinary Kriging). test_1d(regr='linear', beta0=[0., 0.5]) test_1d(regr='quadratic', beta0=[0., 0.5, 0.5]) test_2d(regr='linear', beta0=[0., 0.5, 0.5]) test_2d(regr='quadratic', beta0=[0., 0.5, 0.5, 0.5, 0.5, 0.5]) test_2d_2d(regr='linear', beta0=[0., 0.5, 0.5]) test_2d_2d(regr='quadratic', beta0=[0., 0.5, 0.5, 0.5, 0.5, 0.5]) def test_no_normalize(): gp = GaussianProcess(normalize=False).fit(X, y) y_pred = gp.predict(X) assert_true(np.allclose(y_pred, y)) def test_random_starts(): # Test that an increasing number of random-starts of GP fitting only # increases the reduced likelihood function of the optimal theta. n_samples, n_features = 50, 3 np.random.seed(0) rng = np.random.RandomState(0) X = rng.randn(n_samples, n_features) * 2 - 1 y = np.sin(X).sum(axis=1) + np.sin(3 * X).sum(axis=1) best_likelihood = -np.inf for random_start in range(1, 5): gp = GaussianProcess(regr="constant", corr="squared_exponential", theta0=[1e-0] * n_features, thetaL=[1e-4] * n_features, thetaU=[1e+1] * n_features, random_start=random_start, random_state=0, verbose=False).fit(X, y) rlf = gp.reduced_likelihood_function()[0] assert_greater(rlf, best_likelihood - np.finfo(np.float32).eps) best_likelihood = rlf def test_mse_solving(): # test the MSE estimate to be sane. # non-regression test for ignoring off-diagonals of feature covariance, # testing with nugget that renders covariance useless, only # using the mean function, with low effective rank of data gp = GaussianProcess(corr='absolute_exponential', theta0=1e-4, thetaL=1e-12, thetaU=1e-2, nugget=1e-2, optimizer='Welch', regr="linear", random_state=0) X, y = make_regression(n_informative=3, n_features=60, noise=50, random_state=0, effective_rank=1) gp.fit(X, y) assert_greater(1000, gp.predict(X, eval_MSE=True)[1].mean())
bsd-3-clause
rohanp/scikit-learn
sklearn/utils/tests/test_estimator_checks.py
69
3894
import scipy.sparse as sp import numpy as np import sys from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.utils.testing import assert_raises_regex, assert_true from sklearn.utils.estimator_checks import check_estimator from sklearn.utils.estimator_checks import check_estimators_unfitted from sklearn.ensemble import AdaBoostClassifier from sklearn.linear_model import MultiTaskElasticNet from sklearn.utils.validation import check_X_y, check_array class CorrectNotFittedError(ValueError): """Exception class to raise if estimator is used before fitting. Like NotFittedError, it inherits from ValueError, but not from AttributeError. Used for testing only. """ class BaseBadClassifier(BaseEstimator, ClassifierMixin): def fit(self, X, y): return self def predict(self, X): return np.ones(X.shape[0]) class NoCheckinPredict(BaseBadClassifier): def fit(self, X, y): X, y = check_X_y(X, y) return self class NoSparseClassifier(BaseBadClassifier): def fit(self, X, y): X, y = check_X_y(X, y, accept_sparse=['csr', 'csc']) if sp.issparse(X): raise ValueError("Nonsensical Error") return self def predict(self, X): X = check_array(X) return np.ones(X.shape[0]) class CorrectNotFittedErrorClassifier(BaseBadClassifier): def fit(self, X, y): X, y = check_X_y(X, y) self.coef_ = np.ones(X.shape[1]) return self def predict(self, X): if not hasattr(self, 'coef_'): raise CorrectNotFittedError("estimator is not fitted yet") X = check_array(X) return np.ones(X.shape[0]) def test_check_estimator(): # tests that the estimator actually fails on "bad" estimators. # not a complete test of all checks, which are very extensive. # check that we have a set_params and can clone msg = "it does not implement a 'get_params' methods" assert_raises_regex(TypeError, msg, check_estimator, object) # check that we have a fit method msg = "object has no attribute 'fit'" assert_raises_regex(AttributeError, msg, check_estimator, BaseEstimator) # check that fit does input validation msg = "TypeError not raised by fit" assert_raises_regex(AssertionError, msg, check_estimator, BaseBadClassifier) # check that predict does input validation (doesn't accept dicts in input) msg = "Estimator doesn't check for NaN and inf in predict" assert_raises_regex(AssertionError, msg, check_estimator, NoCheckinPredict) # check for sparse matrix input handling name = NoSparseClassifier.__name__ msg = "Estimator " + name + " doesn't seem to fail gracefully on sparse data" # the check for sparse input handling prints to the stdout, # instead of raising an error, so as not to remove the original traceback. # that means we need to jump through some hoops to catch it. old_stdout = sys.stdout string_buffer = StringIO() sys.stdout = string_buffer try: check_estimator(NoSparseClassifier) except: pass finally: sys.stdout = old_stdout assert_true(msg in string_buffer.getvalue()) # doesn't error on actual estimator check_estimator(AdaBoostClassifier) check_estimator(MultiTaskElasticNet) def test_check_estimators_unfitted(): # check that a ValueError/AttributeError is raised when calling predict # on an unfitted estimator msg = "AttributeError or ValueError not raised by predict" assert_raises_regex(AssertionError, msg, check_estimators_unfitted, "estimator", NoSparseClassifier) # check that CorrectNotFittedError inherit from either ValueError # or AttributeError check_estimators_unfitted("estimator", CorrectNotFittedErrorClassifier)
bsd-3-clause
cainiaocome/scikit-learn
sklearn/cluster/__init__.py
364
1228
""" The :mod:`sklearn.cluster` module gathers popular unsupervised clustering algorithms. """ from .spectral import spectral_clustering, SpectralClustering from .mean_shift_ import (mean_shift, MeanShift, estimate_bandwidth, get_bin_seeds) from .affinity_propagation_ import affinity_propagation, AffinityPropagation from .hierarchical import (ward_tree, AgglomerativeClustering, linkage_tree, FeatureAgglomeration) from .k_means_ import k_means, KMeans, MiniBatchKMeans from .dbscan_ import dbscan, DBSCAN from .bicluster import SpectralBiclustering, SpectralCoclustering from .birch import Birch __all__ = ['AffinityPropagation', 'AgglomerativeClustering', 'Birch', 'DBSCAN', 'KMeans', 'FeatureAgglomeration', 'MeanShift', 'MiniBatchKMeans', 'SpectralClustering', 'affinity_propagation', 'dbscan', 'estimate_bandwidth', 'get_bin_seeds', 'k_means', 'linkage_tree', 'mean_shift', 'spectral_clustering', 'ward_tree', 'SpectralBiclustering', 'SpectralCoclustering']
bsd-3-clause
inhuszar/histreg
register-img.py
1
25627
#!/Users/inhuszar/MND_HistReg/MND_HistReg_Python/bin/python # 2017-Jun-14 # Fork of the original insert-block.py. Goal: make it a user-friendly utility # capable of registering multi-channel 2D images using rigid-body transformation import numpy as np import matplotlib.pyplot as plt import tifffile as tiff from scipy.optimize import minimize, differential_evolution, basinhopping, brute from scipy.interpolate import RegularGridInterpolator from math import sin, cos, pi, floor, sqrt from fractions import Fraction from args import * import os from PIL import Image from skimage.color import rgb2grey from mutual_information import mutual_information CLFLAGS = {'ref': '--ref', 'rgb': '--rgb', 'apply': '--applyxfm', 'maskval': '--maskval', 'initvals': '--initvals', 'bounds': '--bounds', 'steps': '--steps', 'show': '--show', 'out': '--out', 'omat': '--omat', 'tif': '--tif', 'ds': '--ds', 'verbose': '-v'} N_AFF_PARAMS = 4 # ~~~~~~~~~~~~~~~~~~~~~~~~~~ # # ## FUNCTION DEFINITIONS ## # # ~~~~~~~~~~~~~~~~~~~~~~~~~~ # def extract_shape(img): """Additional flexibility to work with multi-channel images.""" s = img.shape if len(s) == 2: s = s + (1,) if len(s) == 3: pass else: print ('Invalid dimensions for image') raise ValueError return s def downsample(img, factor, bounds_error=False, fill_value=0): """Downsample images isotropically by a given scalar. Uses interpolation.""" h, w, ch = extract_shape(img) dtype = img.dtype nx = np.linspace(0, w, int(floor(w / factor)) + 1, False) ny = np.linspace(0, h, int(floor(h / factor)) + 1, False) nyy, nxx = np.meshgrid(ny, nx, indexing='ij') newimg = np.zeros((ny.size, nx.size, ch), dtype=dtype) for c in range(ch): if ch == 1: ipol = RegularGridInterpolator((range(h), range(w)), img[:, :], bounds_error=bounds_error, fill_value=fill_value) else: ipol = RegularGridInterpolator((range(h), range(w)), img[:, :, c], bounds_error=bounds_error, fill_value=fill_value) newimg[:, :, c] = ipol(np.vstack((nyy.ravel(), nxx.ravel())).T) \ .reshape(nxx.shape).astype(dtype) if ch == 1: return newimg[:, :, 0] else: return newimg def colour_grad(img, kernelsize=3): """Calculates local multi-channel gradients using my harmonic kernel.""" h, w, ch = extract_shape(img) harmonic = lambda n: sum(Fraction(1, d) for d in range(1, n + 1)) U = np.ones((1, kernelsize)) D = 2.0 / (kernelsize * (kernelsize - 1)) * \ np.array([float(harmonic(i) - harmonic(kernelsize - 1 - i)) for i in range(kernelsize)]) offset = int(kernelsize / 2) dx = np.zeros((h,w,ch), dtype=np.float64) dy = np.zeros((h,w,ch), dtype=np.float64) for c in range(ch): for y in xrange(offset, h - (kernelsize - offset)): #print '{}/{} row...'.format(y - offset + 1, h - kernelsize) for x in xrange(offset, w - (kernelsize - offset)): if ch == 1: K = img[y - offset:y - offset + kernelsize, x - offset:x - offset + kernelsize] else: K = img[y - offset:y - offset + kernelsize, x - offset:x - offset + kernelsize, c] current_dx = np.dot(np.dot(U, K), D.T) current_dy = np.dot(D, np.dot(K, U.T)) magnitude = sqrt(current_dx ** 2 + current_dy ** 2) if magnitude == 0: dx[y, x, c] = 0 dy[y, x, c] = 0 continue dx[y, x, c] = current_dx * 1.0 / magnitude dy[y, x, c] = current_dy * 1.0 / magnitude return np.sqrt(dx**2 + dy**2) def get_affine_from_params(affine_params, orig_x=0, orig_y=0, factor=1): """Creates 3x3 affine matrix from the supplied 4 parameters. Please note the constraint of isometric scaling. The factor compensates for downscaling.""" rot_z, dx, dy, sx = affine_params sy = sx affine = np.array([[sx * cos(rot_z), -sy * sin(rot_z), factor * (-orig_x) * sx * cos(rot_z) - factor * (-orig_y) * sy * sin(rot_z) + factor * dx], [sx * sin(rot_z), sy * cos(rot_z), factor * (-orig_x) * sx * sin(rot_z) + factor * (-orig_y) * sy * cos(rot_z) + factor * dy], [0, 0, 1]]) return affine def transform(img, affine, refimg=None): """Performs affine transformation on the coordinates of an image given the transformation matrix. Output coordinates are based on the coordinates of a reference image and are in the form array([Y, X]). If no reference image is specified, the transformation is self-referential. The rotation is relative to the point (orig_x, orig_y). If either is not specified, they are set to the respective component of the centre of gravity.""" if refimg is not None: h, w, ch = extract_shape(refimg) else: h, w, ch = extract_shape(img) yy, xx = np.meshgrid(range(h), range(w), indexing='ij') res = np.dot(np.linalg.inv(affine), np.vstack((xx.ravel(), yy.ravel(), np.ones(xx.size)))) return np.roll(res[:2, :].T, 1, axis=1) def transform_img(img, affine, refimg=None): """Performs actual image transformation based on the location of the origin and the components of an affine matrix.""" h, w, ch = extract_shape(img) dtype = img.dtype ipol = RegularGridInterpolator((range(h), range(w)), img, bounds_error=False, fill_value=np.array([0]*ch)) if refimg is not None: h, w, ch = extract_shape(refimg) transformed_img = ipol(transform(img, affine, refimg=refimg))\ .reshape((h,w,ch)).astype(dtype) if ch == 1: return transformed_img[:, :, 0] else: return transformed_img def set_interpolators(img, refimg, gradients=False): """Creates interpolators for both the input and the reference images. Also creates interpolators for the multi-channel gradient maps (optional). The interpolators bridge the gap between the potentially different sizes of the input and the reference image. Setting up the interpolators outside the cost function improves the performance of registration.""" h, w, ch = extract_shape(refimg) ih, iw, ich = extract_shape(img) # Define interpolators for both the input and the reference image refimg_ipol = RegularGridInterpolator((range(h), range(w)), refimg, bounds_error=False, fill_value=np.array([0] * ch)) img_ipol = RegularGridInterpolator((range(ih), range(iw)), img, bounds_error=False, fill_value=np.array([0] * ich)) # Define interpolators for the colour gradient maps if gradients: img_grad_ipol = RegularGridInterpolator((range(ih), range(iw)), colour_grad(img, 10), bounds_error=False, fill_value=np.array( [0] * ich)) refimg_grad_ipol = RegularGridInterpolator((range(h), range(w)), colour_grad(refimg, 10), bounds_error=False, fill_value=np.array( [0] * ch)) return img_ipol, refimg_ipol, img_grad_ipol, refimg_grad_ipol else: return img_ipol, refimg_ipol def costfun(affine_params, img_ipol, refimg_ipol, img_grad_ipol=None, refimg_grad_ipol=None, orig_x=0, orig_y=0, maskval=None, verbose=False): """Calculates the alignment penalty score (cost) between the input image and the reference image given the transformation parameters. The cost function measures the normalised mutual information.""" if verbose: print affine_params affine = get_affine_from_params(affine_params, orig_x, orig_y, 1) yx_xfm = transform(img=img_ipol.values, affine=affine, refimg=refimg_ipol.values) yy, xx = np.meshgrid(refimg_ipol.grid[0], refimg_ipol.grid[1], indexing='ij') yx_ref = np.vstack((yy.ravel(), xx.ravel())).T # Measure the area of the transformed input image. This will be a second # normalisation factor for the normalised mutual information metric, so as # to avoid the otherwise inevitable inflation of the image. if maskval is not None: roi_img_yx = np.where((img_ipol(yx_xfm) != maskval).any(axis=1))[0] total = roi_img_yx.size else: total = 1 h, w, ch = extract_shape(refimg_ipol.values) cost = -mutual_information(rgb2grey(img_ipol(yx_xfm).reshape((h, w, ch))), rgb2grey(refimg_ipol(yx_ref).reshape((h, w, ch))))/total #plt.imshow(rgb2grey(img_ipol(yx_xfm).reshape((h, w, ch))), cmap='gray') #plt.show() if verbose: print cost return cost def costfun_lsq(affine_params, img_ipol, refimg_ipol, img_grad_ipol=None, refimg_grad_ipol=None, orig_x=0, orig_y=0, maskval=None, verbose=False): """Calculates the alignment penalty score (cost) between the input image and the reference image given the transformation parameters. The total cost is the sum of squared differences plus a scalar multiple of a regularisation term, which is currently a sum of squared differences between multi-channel gradients.""" alpha = 1 # the scalar affine = get_affine_from_params(affine_params, orig_x, orig_y, 1) yx_xfm = transform(img=img_ipol.values, affine=affine, refimg=refimg_ipol.values) yy, xx = np.meshgrid(refimg_ipol.grid[0], refimg_ipol.grid[1], indexing='ij') yx_ref = np.vstack((yy.ravel(), xx.ravel())).T h, w, ch = extract_shape(refimg_ipol.values) if maskval is not None: #roi_img_yx = np.where((img_ipol(yx_xfm) != maskval).any(axis=1))[0] roi_ref_yx = np.where((refimg_ipol(yx_ref) != maskval).any(axis=1))[0] #im = img_ipol(yx_xfm).astype(np.uint8) #im[roi_img_yx, :] = np.array([255,255,255]) #print affine_params #plt.imshow(im.reshape(refimg_ipol.values.shape)) #plt.show() lsqterm = np.sum((refimg_ipol(yx_ref)[roi_ref_yx] - img_ipol(yx_xfm)[roi_ref_yx]) ** 2) regterm = np.sum((refimg_grad_ipol(yx_ref)[roi_ref_yx] - img_grad_ipol(yx_xfm)[roi_ref_yx]) ** 2) else: lsqterm = np.sum((refimg_ipol(yx_ref).reshape((h, w, ch)) - img_ipol(yx_xfm).reshape((h, w, ch))) ** 2) regterm = np.sum((refimg_grad_ipol(yx_ref).reshape((h, w, ch)) - img_grad_ipol(yx_xfm).reshape((h, w, ch))) ** 2) cost = lsqterm #+ alpha * regterm if verbose: print cost return cost def perform_registration(img, refimg, affine_param_bounds, init_steps=5, dscale=1, initvals=None, maskval=None, verbose=True): """Perform registration given the input and the reference image plus the bounds on the affine parameters and the number of initialisation steps for each affine parameter.""" # Set up interpolators ipols = set_interpolators(downsample(img, dscale), downsample(refimg, dscale), gradients=True) # Calculate the centre of gravity for the input image h, w, ch = extract_shape(ipols[0].values) if ch > 1: orig_y, orig_x = \ np.mean(np.vstack(np.where(np.sum(ipols[0].values, axis=2)!=0)).T, axis=0) else: orig_y, orig_x = np.mean(np.vstack(np.where(ipols[0].values != 0)).T, axis=0) # Adjust the affine parameter bounds to the current scale affine_param_bounds = np.array(affine_param_bounds) affine_param_bounds[1:3,:] = affine_param_bounds[1:3,:] / float(dscale) affine_param_bounds = tuple([tuple(row) for row in affine_param_bounds]) # Initialise registration if initvals is None: gridpts = tuple([np.linspace(affine_param_bounds[i][0], affine_param_bounds[i][1], init_steps, endpoint=True) for i in range(len(affine_param_bounds))]) grid = np.meshgrid(*gridpts) grid = np.vstack([grid[i].ravel() for i in range(len(grid))]).T initial_costs = [] print 'Calculating initial guess...' print 'Scaled parameter boundaries:', affine_param_bounds for x0 in grid: initial_costs.append(costfun(x0, img_ipol=ipols[0], refimg_ipol=ipols[1], img_grad_ipol=ipols[2], refimg_grad_ipol=ipols[3], orig_x=orig_x, orig_y=orig_y, maskval=maskval, verbose=False)) x0 = grid[np.argmin(np.vstack(initial_costs))] print 'Best guess for initialisation: ', x0 else: x0 = initvals x0[1] = x0[1] * 1.0 / dscale x0[2] = x0[2] * 1.0 / dscale print 'Scaled initial affine parameters:', x0 # Perform registration by minimising the cost function print 'Optimizing...' print 'Scaled param bounds:', affine_param_bounds """ opt = minimize(costfun, x0=x0, bounds=affine_param_bounds, args=(ipols[0], ipols[1], ipols[2], ipols[3], orig_x, orig_y, maskval, verbose), method='TNC', options={'eps': 0.01, 'scale': [1,10,10,1]}, jac=False) """ opt = differential_evolution(costfun, bounds=affine_param_bounds, args=(ipols[0], ipols[1], ipols[2], ipols[3], orig_x, orig_y, maskval, verbose), strategy='best2exp') """ opt = basinhopping(costfun, x0=x0, bounds=affine_param_bounds, args=(ipols[0], ipols[1], ipols[2], ipols[3], orig_x, orig_y, maskval, verbose)) opt = brute(costfun, ranges=affine_param_bounds, args=(ipols[0], ipols[1], ipols[2], ipols[3], orig_x, orig_y, maskval, verbose), Ns=20) """ # Generate output: transformed image and transformation matrix print opt.x omat = get_affine_from_params(opt.x, orig_x=orig_x, orig_y=orig_y, factor=dscale) out = transform_img(img, omat, refimg) return out, omat # ~~~~~~~~~~~~~~~~~~~~~~~~~~ # # ## MAIN CODE ## # # ~~~~~~~~~~~~~~~~~~~~~~~~~~ # def main(): err = 0 # Load input image imfile = subarg(sys.argv[0])[0] fpath, fname = os.path.split(imfile) try: if argexist(CLFLAGS['tif']): img = tiff.imread(imfile) else: img = np.array(Image.open(imfile)) if argexist(CLFLAGS['rgb']) & (extract_shape(img)[2] > 3): img = img[:,:,:3] except: print ('Input image could not be opened from {}.'.format(imfile)) exit() # Read reference if argexist(CLFLAGS['ref']): if argexist(CLFLAGS['ref'], True): refimfile = subarg(CLFLAGS['ref'])[0] try: if argexist(CLFLAGS['tif']): refimg = tiff.imread(refimfile) else: refimg = np.array(Image.open(refimfile)) if argexist(CLFLAGS['rgb']) & (extract_shape(refimg)[2] > 3): refimg = refimg[:, :, :3] except: print ('Reference image could not be opened from {}.' .format(refimfile)) exit() else: print ('Reference image was not specified.') exit() # Check image compatibility if extract_shape(img)[2] != extract_shape(refimg)[2]: print ('Channel number mismatch between input and reference.') exit() # Read downsample factor try: factor = float(subarg(CLFLAGS['ds'], 1)[0]) except: print ('Invalid factor for downsampling.') exit() # Read transformation matrix from file if specified mat = None # this will remain None if registration is needed if argexist(CLFLAGS['apply']): matfile = subarg(CLFLAGS['apply'])[0] try: mat = np.loadtxt(matfile, dtype=np.float64) except: print ('Transformation matrix could not be loaded from {}' .format(matfile)) exit() if mat.shape != (3,3): print ('Transformation matrix had invalid shape.') exit() # Read initialisation values initvals = None if argexist(CLFLAGS['initvals']): if argexist(CLFLAGS['initvals'], True): initvals = subarg(CLFLAGS['initvals']) if len(initvals) != N_AFF_PARAMS: print ('Invalid affine parameters for initialisation.') exit() try: # Strip brackets if not str(initvals[0][0]).isdigit(): initvals[0] = initvals[0][1:] if not str(initvals[-1][-1]).isdigit(): initvals[-1] = initvals[-1][:-1] initvals = np.array([float(val) for val in initvals]) except: print ('Invalid affine parameters for initialisation.') exit() # The user-provided initial conditions must never be out of the # deafult bounds. if not argexist(CLFLAGS['bounds'], True): bnds = [[-pi, pi], [initvals[1]*0.5, initvals[1]*1.5], [initvals[2]*0.5, initvals[2]*1.5], [initvals[3]*0.9, initvals[3]*1.1]] else: print ('Initial affine parameters are not specified.') exit() # Read bounds if argexist(CLFLAGS['bounds']): if argexist(CLFLAGS['bounds'], True): bnds = subarg(CLFLAGS['bounds']) if len(bnds) != 2 * N_AFF_PARAMS: print ('Invalid bounds for initial parameter search.') exit() try: bnds[0] = bnds[0][1:] bnds[-1] = bnds[-1][:-1] bnds = [[float(bnds[2*i]), float(bnds[2*i+1])] for i in range(N_AFF_PARAMS)] except: print ('Invalid bounds for initial parameter search.') exit() else: print ('Invalid bounds for initial parameter search.') exit() # Don't override the bounds that have been adapted to the provided initvals elif not argexist(CLFLAGS['initvals'], True): h, w, ch = extract_shape(img) bnds = [[-pi, pi], [-w/2, w/2], [-h/2, h/2], [0.8, 1.2]] else: pass # Read grid search step count steps = 5 if argexist(CLFLAGS['steps']): if argexist(CLFLAGS['steps'], True): steps = subarg(CLFLAGS['steps'])[0] try: steps = int(steps) except: print ('Invalid number of steps for initial grid search.') exit() else: print ('Invalid number of steps for initial grid search.') exit() # Read mask value maskval = None if argexist(CLFLAGS['maskval']): if argexist(CLFLAGS['maskval'], True): maskval = subarg(CLFLAGS['maskval']) h, w, ch = extract_shape(img) if len(maskval) == ch: # Strip brackets if not str(maskval[0][0]).isdigit(): maskval[0] = maskval[0][1:] if not str(maskval[-1][-1]).isdigit(): maskval[-1] = maskval[-1][:-1] try: maskval = np.array([float(val) for val in maskval]) except: print ('Invalid mask value.') exit() else: print ('Mask value dimension must match the number of' ' channels.') exit() else: print ('Invalid mask value.') exit() # Read output name outfile = None if argexist(CLFLAGS['out']): outfile = subarg(CLFLAGS['out'], os.path.join(fpath, fname[:-4] + '_aligned' + fname[-4:]))[0] omatfile = None if argexist(CLFLAGS['omat']): omatfile = subarg(CLFLAGS['omat'], os.path.join(fpath, fname[:-4] + '_omat.mat'))[0] # Read verbose switch if argexist(CLFLAGS['verbose']): verbose = True else: verbose = False # Do the job if mat is None: print ('REGISTRATION MODE active.') outimg, omat = perform_registration(img, refimg, affine_param_bounds=bnds, init_steps=steps, dscale=factor, initvals=initvals, maskval=maskval, verbose=verbose) if argexist(CLFLAGS['show']): print ('Showing the alignment...') plt.imshow((outimg.astype(np.float64)-refimg.astype(np.float64))) plt.show() else: print ('TRANSFORMATION MODE active.') try: outimg = transform_img(img, mat, refimg) if argexist(CLFLAGS['show']): print ('Showing the transformed image...') plt.imshow(outimg.astype(img.dtype)) plt.show() except: print ('ERROR: The transformation was not successful.') err = err + 1 # Save the output if outfile is not None: try: if argexist(CLFLAGS['tif']): tiff.imsave(outfile, outimg.astype(img.dtype)) else: Image.fromarray(outimg).save(outfile) print ('SAVED: {}'.format(outfile)) except: print ('ERROR: {} could not be saved.'.format(outfile)) err = err + 1 if omatfile is not None: try: np.savetxt(omatfile, omat) print ('SAVED: {}'.format(omatfile)) except: print ('ERROR: {} could not be saved.'.format(omatfile)) err = err + 1 # Conclude run if err > 0: print ('{} error(s) occured.'.format(err)) else: print ('All tasks were successfully completed.') # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # Program execution starts here. # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # if __name__ == "__main__": if len(sys.argv) > 1: main() else: print ( """ The register-img.py utility performs rigid-body registration between two 2D images. Given a prespecified affine matrix, a linear transformation is carried out on the input image. When the program is run to register images, a transformed image and/or the transformation matrix is returned. The size and shape of the output image are equal to the size and shape of the reference image. When the program is run to perform a prespecified linear transformation, the resultant image is returned. Usage: ./register-img.py <input> --ref <reference> --out [output] --omat ./register-img.py <input> --applyxfm <affine.mat> --out [output] Options: --rgb Forces to use maximum 3 channels. (Use for RGBA.) --ds <factor> Downsample images for better performance. (px/mm) (Default: off. Recommended downsampling: to 1mm/px) --initvals Manual initialisation of affine parameters. Use []! [rz,dx,dy,sxy] (rz: rotation, dx, dy: translation, sxy: scale) (Default: automatic best-guess initialisation.) --bounds Lower and upper bounds for the affine parameters. [l1,u1...l4,u4] (Default: [-pi,pi,-w/2,w/2,-h/2,h/2,0.8,1.2]) --maskval [v1...] Masked input pixels are excluded from the cost. --steps <n_steps> Number of steps per parameter during the gridsearch. --tif Forces to use tifffile.py for the input and output. --show Show the output. -v Verbose: report the evolution of the cost function. """ )
mit
avistous/QSTK
Bin/converter.py
2
2914
''' (c) 2011, 2012 Georgia Tech Research Corporation This source code is released under the New BSD license. Please see http://wiki.quantsoftware.org/index.php?title=QSTK_License for license details. Created on Jan 1, 2011 @author:Drew Bratcher @contact: dbratcher@gatech.edu @summary: Contains tutorial for backtester and report. ''' # # fundsToPNG.py # # Short script which produces a graph of funds # over time from a pickle file. # # Drew Bratcher # from pylab import * from qstkutil import DataAccess as da from qstkutil import tsutil as tsu from quicksim import quickSim from copy import deepcopy import math from pandas import * import matplotlib.pyplot as plt import cPickle def fundsToPNG(funds,output_file): plt.clf() if(type(funds)==type(list())): for i in range(0,len(funds)): plt.plot(funds[i].index,funds[i].values) else: plt.plot(funds.index,funds.values) plt.ylabel('Fund Value') plt.xlabel('Date') plt.gcf().autofmt_xdate(rotation=45) plt.draw() savefig(output_file, format='png') def fundsAnalysisToPNG(funds,output_file): plt.clf() if(type(funds)!=type(list())): print 'fundsmatrix only contains one timeseries, not able to analyze.' #convert to daily returns count=list() dates=list() sum=list() for i in range(0,len(funds)): ret=tsu.daily(funds[i].values) for j in range(0, len(ret)): if (funds[i].index[j] in dates): sum[dates.index(funds[i].index[j])]+=ret[j] count[dates.index(funds[i].index[j])]+=1 else: dates.append(funds[i].index[j]) count.append(1) sum.append(ret[j]) #compute average tot_ret=deepcopy(sum) for i in range(0,len(sum)): tot_ret[i]=sum[i]/count[i] #compute std std=zeros(len(sum)) for i in range(0,len(funds)): temp=tsu.daily(funds[i].values) for j in range(0,len(temp)): std[dates.index(funds[i].index[j])]=0 std[dates.index(funds[i].index[j])]+=math.pow(temp[j]-tot_ret[dates.index(funds[i].index[j])],2) for i in range(1, len(std)): # std[i]=math.sqrt(std[i]/count[i])+std[i-1] std[i]=math.sqrt(std[i]/count[i]) #compute total returns lower=deepcopy(tot_ret) upper=deepcopy(tot_ret) tot_ret[0]=funds[0].values[0] lower[0]=funds[0].values[0] upper[0]=lower[0] # for i in range(1,len(tot_ret)): # tot_ret[i]=tot_ret[i-1]+(tot_ret[i])*tot_ret[i-1] # lower[i]=tot_ret[i-1]-(std[i])*tot_ret[i-1] # upper[i]=tot_ret[i-1]+(std[i])*tot_ret[i-1] for i in range(1,len(tot_ret)): lower[i]=(tot_ret[i]-std[i]+1)*lower[i-1] upper[i]=(tot_ret[i]+std[i]+1)*upper[i-1] tot_ret[i]=(tot_ret[i]+1)*tot_ret[i-1] plt.clf() plt.plot(dates,tot_ret) plt.plot(dates,lower) plt.plot(dates,upper) plt.legend(('Tot_Ret','Lower','Upper'),loc='upper left') plt.ylabel('Fund Total Return') plt.ylim(ymin=0,ymax=2*tot_ret[0]) plt.draw() savefig(output_file, format='png')
bsd-3-clause
aminoj/Interactive-Orbitals-Simulation
export 3d pic /3p.py
1
8570
from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as np fig = plt.figure() ax = fig.add_subplot(111, projection='3d') rstride = 15 cstride = 15 MaxBound = 3 MinBound = -3 u = np.linspace(0, 2*np.pi, 100) v = np.linspace(0, np.pi, 100) #OUTSIDE -ALL DIRECTIONS #------------------------------------------------------------------------------- #Left-Outer Outer x2 = np.outer(np.cos(u), np.sin(v)) z2 = np.outer(np.sin(u), np.sin(v)) y2 = -0.4*np.cos(u)-2.05 ax.plot_surface(x2, y2, z2, rstride = rstride, cstride = cstride, color=(0,1,0.44), linewidth=0) #------------------------------------------------------------------------------- #Left-Outer Inner x3 = np.outer(np.cos(u), np.sin(v)) z3 = np.outer(np.sin(u), np.sin(v)) y3 = abs((x3)**2 + (z3)**2 + 5)**(0.5)-4.1 ax.plot_surface(x3, y3, z3, rstride = rstride, cstride = cstride, color=(0,1,0.44), linewidth=0) #------------------------------------------------------------------------------- #Right-Outer Outer x4 = np.outer(np.cos(u), np.sin(v)) z4 = np.outer(np.sin(u), np.sin(v)) y4 = 0.4*np.cos(u)+2.05 ax.plot_surface(x4, y4, z4, rstride = rstride, cstride = cstride, color=(0,1,0.44), linewidth=0) #------------------------------------------------------------------------------- #Right-Outer Inner x5 = np.outer(np.cos(u), np.sin(v)) z5 = np.outer(np.sin(u), np.sin(v)) y5 = abs((x5)**2 + (z5)**2 - 5)**(0.5)-0.35 ax.plot_surface(x5, y5, z5, rstride = rstride, cstride = cstride, color=(0,1,0.44), linewidth=0) #------------------------------------------------------------------------------- #DIFFERENT DIRECTION #------------------------------------------------------------------------------- #Left-Outer Outer y2 = np.outer(np.cos(u), np.sin(v)) z2 = np.outer(np.sin(u), np.sin(v)) x2 = -0.4*np.cos(u)-2.07 ax.plot_surface(x2, y2, z2, rstride = rstride, cstride = cstride, color=(0,1,0.44), linewidth=0) #------------------------------------------------------------------------------- #Left-Outer Inner y3 = np.outer(np.cos(u), np.sin(v)) z3 = np.outer(np.sin(u), np.sin(v)) x3 = abs((y3)**2 + (z3)**2 + 5)**(0.5)-4.1 ax.plot_surface(x3, y3, z3, rstride = rstride, cstride = cstride, color=(0,1,0.44), linewidth=0) #------------------------------------------------------------------------------- #Right-Outer Outer y4 = np.outer(np.cos(u), np.sin(v)) z4 = np.outer(np.sin(u), np.sin(v)) x4 = 0.4*np.cos(u)+2.07 ax.plot_surface(x4, y4, z4, rstride = rstride, cstride = cstride, color=(0,1,0.44), linewidth=0) #------------------------------------------------------------------------------- #Right-Outer Inner y5 = np.outer(np.cos(u), np.sin(v)) z5 = np.outer(np.sin(u), np.sin(v)) x5 = abs((y5)**2 + (z5)**2 - 5)**(0.5)-0.35 ax.plot_surface(x5, y5, z5, rstride = rstride, cstride = cstride, color=(0,1,0.44), linewidth=0) #------------------------------------------------------------------------------- #DIFFERENT DIRECTION #------------------------------------------------------------------------------- #Left-Outer Outer y2 = np.outer(np.cos(u), np.sin(v)) x2 = np.outer(np.sin(u), np.sin(v)) z2 = -0.4*np.cos(u)-2.07 ax.plot_surface(x2, y2, z2, rstride = rstride, cstride = cstride, color=(0,1,0.44), linewidth=0) #------------------------------------------------------------------------------- #Left-Outer Inner y3 = np.outer(np.cos(u), np.sin(v)) x3 = np.outer(np.sin(u), np.sin(v)) z3 = abs((x3)**2 + (y3)**2 + 5)**(0.5)-4.1 ax.plot_surface(x3, y3, z3, rstride = rstride, cstride = cstride, color=(0,1,0.44), linewidth=0) #------------------------------------------------------------------------------- #Right-Outer Outer x4 = np.outer(np.cos(u), np.sin(v)) y4 = np.outer(np.sin(u), np.sin(v)) z4 = 0.4*np.cos(u)+2.07 ax.plot_surface(x4, y4, z4, rstride = rstride, cstride = cstride, color=(0,1,0.44), linewidth=0) #------------------------------------------------------------------------------- #Right-Outer Inner x5 = np.outer(np.cos(u), np.sin(v)) y5 = np.outer(np.sin(u), np.sin(v)) z5 = abs((x5)**2 + (y5)**2 - 5)**(0.5)-0.35 ax.plot_surface(x5, y5, z5, rstride = rstride, cstride = cstride, color=(0,1,0.44), linewidth=0) #------------------------------------------------------------------------------- #INSIDE - ALL DIRECTIONS #------------------------------------------------------------------------------- #Right-Inner Outer x6 = 0.5*np.outer(np.cos(u), np.sin(v)) z6 = 0.5*np.outer(np.sin(u), np.sin(v)) y6 = 0.2*np.cos(u) +1 ax.plot_surface(x6, y6, z6, rstride = rstride, cstride = cstride, color=(0,1,0.44), linewidth=0) #------------------------------------------------------------------------------- #Left-Inner Outer x7 = 0.5*np.outer(np.cos(u), np.sin(v)) z7 = 0.5*np.outer(np.sin(u), np.sin(v)) y7 = 0.2*np.cos(u) +1 ax.plot_surface(x7, -y7, z7, rstride = rstride, cstride = cstride, color=(0,1,0.44), linewidth=0) #------------------------------------------------------------------------------- #Right-Inner Inner x8 = 0.5*np.outer(np.cos(u), np.sin(v)) z8 = 0.5*np.outer(np.sin(u), np.sin(v)) y8 = abs((x8)**2 + (z8)**2 - 5)**(0.5)-1.4 ax.plot_surface(x8, y8, z8, rstride = rstride, cstride = cstride, color=(0,1,0.44), linewidth=0) #------------------------------------------------------------------------------- #Left-Inner Inner x8 = 0.5*np.outer(np.cos(u), np.sin(v)) z8 = 0.5*np.outer(np.sin(u), np.sin(v)) y8 = abs((x8)**2 + (z8)**2 - 5)**(0.5)-1.4 ax.plot_surface(x8, -y8, z8, rstride = rstride, cstride = cstride, color=(0,1,0.44), linewidth=0) #------------------------------------------------------------------------------- #Right-Inner Outer y6 = 0.5*np.outer(np.cos(u), np.sin(v)) z6 = 0.5*np.outer(np.sin(u), np.sin(v)) x6 = 0.2*np.cos(u) +1 ax.plot_surface(x6, y6, z6, rstride = rstride, cstride = cstride, color=(0,1,0.44), linewidth=0) #------------------------------------------------------------------------------- #Left-Inner Outer y7 = 0.5*np.outer(np.cos(u), np.sin(v)) z7 = 0.5*np.outer(np.sin(u), np.sin(v)) x7 = 0.2*np.cos(u) +1 ax.plot_surface(-x7, y7, z7, rstride = rstride, cstride = cstride, color=(0,1,0.44), linewidth=0) #------------------------------------------------------------------------------- #Right-Inner Inner y8 = 0.5*np.outer(np.cos(u), np.sin(v)) z8 = 0.5*np.outer(np.sin(u), np.sin(v)) x8 = abs((y8)**2 + (z8)**2 - 5)**(0.5)-1.4 ax.plot_surface(x8, y8, z8, rstride = rstride, cstride = cstride, color=(0,1,0.44), linewidth=0) #------------------------------------------------------------------------------- #Left-Inner Inner y9 = 0.5*np.outer(np.cos(u), np.sin(v)) z9 = 0.5*np.outer(np.sin(u), np.sin(v)) x9 = abs((y9)**2 + (z9)**2 - 5)**(0.5)-1.4 ax.plot_surface(-x9, y9, z9, rstride = rstride, cstride = cstride, color=(0,1,0.44), linewidth=0) #------------------------------------------------------------------------------- #Right-Inner Outer x6 = 0.5*np.outer(np.cos(u), np.sin(v)) y6 = 0.5*np.outer(np.sin(u), np.sin(v)) z6 = 0.2*np.cos(u) +1 ax.plot_surface(x6, y6, z6, rstride = rstride, cstride = cstride, color=(0,1,0.44), linewidth=0) #------------------------------------------------------------------------------- #Left-Inner Outer x7 = 0.5*np.outer(np.cos(u), np.sin(v)) y7 = 0.5*np.outer(np.sin(u), np.sin(v)) z7 = 0.2*np.cos(u) +1 ax.plot_surface(x7, y7, -z7, rstride = rstride, cstride = cstride, color=(0,1,0.44), linewidth=0) #------------------------------------------------------------------------------- #Right-Inner Inner x8 = 0.5*np.outer(np.cos(u), np.sin(v)) y8 = 0.5*np.outer(np.sin(u), np.sin(v)) z8 = abs((x8)**2 + (y8)**2 - 5)**(0.5)-1.4 ax.plot_surface(x8, y8, z8, rstride = rstride, cstride = cstride, color=(0,1,0.44), linewidth=0) #------------------------------------------------------------------------------- #Left-Inner Inner x8 = 0.5*np.outer(np.cos(u), np.sin(v)) y8 = 0.5*np.outer(np.sin(u), np.sin(v)) z8 = abs((x8)**2 + (y8)**2 - 5)**(0.5)-1.4 ax.plot_surface(x8, y8, -z8, rstride = rstride, cstride = cstride, color=(0,1,0.44), linewidth=0) plt.show() ax.set_xlim3d(MaxBound, MinBound) ax.set_ylim3d(MaxBound, MinBound) ax.set_zlim3d(MaxBound, MinBound) e = 0 b = 0 for ii in xrange(0,120,1): ax.view_init(elev=e, azim=b*4) if(ii < 10) : plt.savefig("3p/movie00%s.png" %ii) elif(ii < 100): plt.savefig("3p/movie0%s.png" %ii) else : plt.savefig("3p/movie%s.png" %ii) if(ii == 20 or ii == 40 or ii == 60 or ii == 80 or ii == 100): e = e + 12 b = 0 b = b + 1
apache-2.0
acapet/GHER-POSTPROC
Examples/EasyExample.py
1
2826
# We only import librairies needed for plotting # Other librairies are imported in the class definition file, G3D_class.py, # which contains all process and variables function definition. import matplotlib matplotlib.use('pdf') import matplotlib.pyplot as plt import matplotlib.dates as mdates import datetime as dt import G3D_class # We instantiate an object of the class G3D, just by giving the path to the netcdf file to work with # Up to now I'm working with 4D netcdf files containing several variables. # Outputs from different files can be merged easily, as can be seen in other examples G = G3D_class.G3D('../data/CART1CLIP/1980.nc') # All loaded variables are attributes of the G3D instance. # For instance the variable "bat" is defined directly when the object is instantiated. # Other are loaded only when needed. # Variables are python Masked_array, so they have an attribute mask which is an arreay of booleans # Here we want to define a mask based on bathymetry maskDS= (G.bat<50 ) & ~(G.bat.mask) # Mask should be True where masked maskSH= (G.bat>=50) & ~(G.bat.mask) # Mask should be True where masked # All processing functions are called as function of the G3D instance. # Variable name is given as an argument. Some functions allows more argument. # This would give the basin averaged time series of salinity T1 = G.avgspatial('SAL') # The avgspatial function enables an optional mask argument # Note also , that we can use a variable name that is not defined in the netcdf file. # In this case the toolbox will automatically look for the function "instance_SSS" sssDS=G.avgspatial('SSS',maskDS) sssSH=G.avgspatial('SSS',maskSH) # The following is general python plotting .. # the "dates" attributes is also loaded automatically #################### # 1st figure : #################### locator = mdates.AutoDateLocator() formator = mdates.AutoDateFormatter(locator) fig=plt.figure(figsize=(15, 8)) ax=plt.subplot(1, 1, 1) ax.xaxis_date() ax.xaxis.set_major_locator(locator) ax.xaxis.set_major_formatter(formator) plt.plot(G.dates,sssSH, label = 'Average surface salinity on the shelf') plt.plot(G.dates,sssDS, label = 'Average surface salinity in the open sea') plt.title('Salinity') plt.ylabel('Salinity - [p.s.u.]') fig.savefig(G.figoutputdir+'Simple.png')
gpl-3.0
hrjn/scikit-learn
examples/svm/plot_svm_kernels.py
96
2019
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= SVM-Kernels ========================================================= Three different types of SVM-Kernels are displayed below. The polynomial and RBF are especially useful when the data-points are not linearly separable. """ print(__doc__) # Code source: Gaël Varoquaux # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import svm # Our dataset and targets X = np.c_[(.4, -.7), (-1.5, -1), (-1.4, -.9), (-1.3, -1.2), (-1.1, -.2), (-1.2, -.4), (-.5, 1.2), (-1.5, 2.1), (1, 1), # -- (1.3, .8), (1.2, .5), (.2, -2), (.5, -2.4), (.2, -2.3), (0, -2.7), (1.3, 2.1)].T Y = [0] * 8 + [1] * 8 # figure number fignum = 1 # fit the model for kernel in ('linear', 'poly', 'rbf'): clf = svm.SVC(kernel=kernel, gamma=2) clf.fit(X, Y) # plot the line, the points, and the nearest vectors to the plane plt.figure(fignum, figsize=(4, 3)) plt.clf() plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='none', zorder=10, edgecolors='k') plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired, edgecolors='k') plt.axis('tight') x_min = -3 x_max = 3 y_min = -3 y_max = 3 XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j] Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()]) # Put the result into a color plot Z = Z.reshape(XX.shape) plt.figure(fignum, figsize=(4, 3)) plt.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired) plt.contour(XX, YY, Z, colors=['k', 'k', 'k'], linestyles=['--', '-', '--'], levels=[-.5, 0, .5]) plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) fignum = fignum + 1 plt.show()
bsd-3-clause
davidsandberg/facenet
contributed/batch_represent.py
1
5519
#!/usr/bin/env python # coding=utf-8 from __future__ import absolute_import from __future__ import division from __future__ import print_function """ Allows you to generate embeddings from a directory of images in the format: Instructions: Image data directory should look like the following figure: person-1 ├── image-1.jpg ├── image-2.png ... └── image-p.png ... person-m ├── image-1.png ├── image-2.jpg ... └── image-q.png Trained Model: - Both the trained model metagraph and the model parameters need to exist in the same directory, and the metagraph should have the extension '.meta'. #### USAGE: $ python batch_represent.py -d <YOUR IMAGE DATA DIRECTORY> -o <DIRECTORY TO STORE OUTPUT ARRAYS> --trained_model_dir <DIRECTORY CONTAINING PRETRAINED MODEL> ### """ """ Attributions: The code is heavily inspired by the code from by David Sandberg's ../src/validate_on_lfw.py The concept is inspired by Brandon Amos' github.com/cmusatyalab/openface/blob/master/batch-represent/batch-represent.lua """ #---------------------------------------------------- # MIT License # # Copyright (c) 2017 Rakshak Talwar # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. #---------------------------------------------------- import os import sys import argparse import importlib import time sys.path.insert(1, "../src") import facenet import numpy as np from sklearn.datasets import load_files import tensorflow as tf from six.moves import xrange def main(args): with tf.Graph().as_default(): with tf.Session() as sess: # create output directory if it doesn't exist output_dir = os.path.expanduser(args.output_dir) if not os.path.isdir(output_dir): os.makedirs(output_dir) # load the model print("Loading trained model...\n") meta_file, ckpt_file = facenet.get_model_filenames(os.path.expanduser(args.trained_model_dir)) facenet.load_model(args.trained_model_dir, meta_file, ckpt_file) # grab all image paths and labels print("Finding image paths and targets...\n") data = load_files(args.data_dir, load_content=False, shuffle=False) labels_array = data['target'] paths = data['filenames'] # Get input and output tensors images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0") embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0") phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0") image_size = images_placeholder.get_shape()[1] embedding_size = embeddings.get_shape()[1] # Run forward pass to calculate embeddings print('Generating embeddings from images...\n') start_time = time.time() batch_size = args.batch_size nrof_images = len(paths) nrof_batches = int(np.ceil(1.0*nrof_images / batch_size)) emb_array = np.zeros((nrof_images, embedding_size)) for i in xrange(nrof_batches): start_index = i*batch_size end_index = min((i+1)*batch_size, nrof_images) paths_batch = paths[start_index:end_index] images = facenet.load_data(paths_batch, do_random_crop=False, do_random_flip=False, image_size=image_size, do_prewhiten=True) feed_dict = { images_placeholder:images, phase_train_placeholder:False} emb_array[start_index:end_index,:] = sess.run(embeddings, feed_dict=feed_dict) time_avg_forward_pass = (time.time() - start_time) / float(nrof_images) print("Forward pass took avg of %.3f[seconds/image] for %d images\n" % (time_avg_forward_pass, nrof_images)) print("Finally saving embeddings and gallery to: %s" % (output_dir)) # save the gallery and embeddings (signatures) as numpy arrays to disk np.save(os.path.join(output_dir, "gallery.npy"), labels_array) np.save(os.path.join(output_dir, "signatures.npy"), emb_array) def parse_arguments(argv): parser = argparse.ArgumentParser(description="Batch-represent face embeddings from a given data directory") parser.add_argument('-d', '--data_dir', type=str, help='directory of images with structure as seen at the top of this file.') parser.add_argument('-o', '--output_dir', type=str, help='directory containing aligned face patches with file structure as seen at the top of this file.') parser.add_argument('--trained_model_dir', type=str, help='Load a trained model before training starts.') parser.add_argument('--batch_size', type=int, help='Number of images to process in a batch.', default=50) return parser.parse_args(argv) if __name__ == "__main__": main(parse_arguments(sys.argv[1:]))
mit
mne-tools/mne-tools.github.io
stable/_downloads/ca415e118a91c7bc4499db9f40b0a222/topo_customized.py
15
1940
""" ======================================== Plot custom topographies for MEG sensors ======================================== This example exposes the :func:`~mne.viz.iter_topography` function that makes it very easy to generate custom sensor topography plots. Here we will plot the power spectrum of each channel on a topographic layout. """ # Author: Denis A. Engemann <denis.engemann@gmail.com> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt import mne from mne.viz import iter_topography from mne import io from mne.time_frequency import psd_welch from mne.datasets import sample print(__doc__) data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' raw = io.read_raw_fif(raw_fname, preload=True) raw.filter(1, 20, fir_design='firwin') picks = mne.pick_types(raw.info, meg=True, exclude=[]) tmin, tmax = 0, 120 # use the first 120s of data fmin, fmax = 2, 20 # look at frequencies between 2 and 20Hz n_fft = 2048 # the FFT size (n_fft). Ideally a power of 2 psds, freqs = psd_welch(raw, picks=picks, tmin=tmin, tmax=tmax, fmin=fmin, fmax=fmax) psds = 20 * np.log10(psds) # scale to dB def my_callback(ax, ch_idx): """ This block of code is executed once you click on one of the channel axes in the plot. To work with the viz internals, this function should only take two parameters, the axis and the channel or data index. """ ax.plot(freqs, psds[ch_idx], color='red') ax.set_xlabel('Frequency (Hz)') ax.set_ylabel('Power (dB)') for ax, idx in iter_topography(raw.info, fig_facecolor='white', axis_facecolor='white', axis_spinecolor='white', on_pick=my_callback): ax.plot(psds[idx], color='red') plt.gcf().suptitle('Power spectral densities') plt.show()
bsd-3-clause
zoyahav/incubator-airflow
airflow/hooks/hive_hooks.py
22
27917
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import print_function from builtins import zip from past.builtins import basestring import collections import unicodecsv as csv import itertools import logging import re import subprocess import time from tempfile import NamedTemporaryFile import hive_metastore from airflow.exceptions import AirflowException from airflow.hooks.base_hook import BaseHook from airflow.utils.helpers import as_flattened_list from airflow.utils.file import TemporaryDirectory from airflow import configuration import airflow.security.utils as utils HIVE_QUEUE_PRIORITIES = ['VERY_HIGH', 'HIGH', 'NORMAL', 'LOW', 'VERY_LOW'] class HiveCliHook(BaseHook): """Simple wrapper around the hive CLI. It also supports the ``beeline`` a lighter CLI that runs JDBC and is replacing the heavier traditional CLI. To enable ``beeline``, set the use_beeline param in the extra field of your connection as in ``{ "use_beeline": true }`` Note that you can also set default hive CLI parameters using the ``hive_cli_params`` to be used in your connection as in ``{"hive_cli_params": "-hiveconf mapred.job.tracker=some.jobtracker:444"}`` Parameters passed here can be overridden by run_cli's hive_conf param The extra connection parameter ``auth`` gets passed as in the ``jdbc`` connection string as is. :param mapred_queue: queue used by the Hadoop Scheduler (Capacity or Fair) :type mapred_queue: string :param mapred_queue_priority: priority within the job queue. Possible settings include: VERY_HIGH, HIGH, NORMAL, LOW, VERY_LOW :type mapred_queue_priority: string :param mapred_job_name: This name will appear in the jobtracker. This can make monitoring easier. :type mapred_job_name: string """ def __init__( self, hive_cli_conn_id="hive_cli_default", run_as=None, mapred_queue=None, mapred_queue_priority=None, mapred_job_name=None): conn = self.get_connection(hive_cli_conn_id) self.hive_cli_params = conn.extra_dejson.get('hive_cli_params', '') self.use_beeline = conn.extra_dejson.get('use_beeline', False) self.auth = conn.extra_dejson.get('auth', 'noSasl') self.conn = conn self.run_as = run_as if mapred_queue_priority: mapred_queue_priority = mapred_queue_priority.upper() if mapred_queue_priority not in HIVE_QUEUE_PRIORITIES: raise AirflowException( "Invalid Mapred Queue Priority. Valid values are: " "{}".format(', '.join(HIVE_QUEUE_PRIORITIES))) self.mapred_queue = mapred_queue self.mapred_queue_priority = mapred_queue_priority self.mapred_job_name = mapred_job_name def _prepare_cli_cmd(self): """ This function creates the command list from available information """ conn = self.conn hive_bin = 'hive' cmd_extra = [] if self.use_beeline: hive_bin = 'beeline' jdbc_url = "jdbc:hive2://{conn.host}:{conn.port}/{conn.schema}" if configuration.get('core', 'security') == 'kerberos': template = conn.extra_dejson.get( 'principal', "hive/_HOST@EXAMPLE.COM") if "_HOST" in template: template = utils.replace_hostname_pattern( utils.get_components(template)) proxy_user = "" # noqa if conn.extra_dejson.get('proxy_user') == "login" and conn.login: proxy_user = "hive.server2.proxy.user={0}".format(conn.login) elif conn.extra_dejson.get('proxy_user') == "owner" and self.run_as: proxy_user = "hive.server2.proxy.user={0}".format(self.run_as) jdbc_url += ";principal={template};{proxy_user}" elif self.auth: jdbc_url += ";auth=" + self.auth jdbc_url = jdbc_url.format(**locals()) cmd_extra += ['-u', jdbc_url] if conn.login: cmd_extra += ['-n', conn.login] if conn.password: cmd_extra += ['-p', conn.password] hive_params_list = self.hive_cli_params.split() return [hive_bin] + cmd_extra + hive_params_list def _prepare_hiveconf(self, d): """ This function prepares a list of hiveconf params from a dictionary of key value pairs. :param d: :type d: dict >>> hh = HiveCliHook() >>> hive_conf = {"hive.exec.dynamic.partition": "true", ... "hive.exec.dynamic.partition.mode": "nonstrict"} >>> hh._prepare_hiveconf(hive_conf) ["-hiveconf", "hive.exec.dynamic.partition=true",\ "-hiveconf", "hive.exec.dynamic.partition.mode=nonstrict"] """ if not d: return [] return as_flattened_list( itertools.izip( ["-hiveconf"] * len(d), ["{}={}".format(k, v) for k, v in d.items()] ) ) def run_cli(self, hql, schema=None, verbose=True, hive_conf=None): """ Run an hql statement using the hive cli. If hive_conf is specified it should be a dict and the entries will be set as key/value pairs in HiveConf :param hive_conf: if specified these key value pairs will be passed to hive as ``-hiveconf "key"="value"``. Note that they will be passed after the ``hive_cli_params`` and thus will override whatever values are specified in the database. :type hive_conf: dict >>> hh = HiveCliHook() >>> result = hh.run_cli("USE airflow;") >>> ("OK" in result) True """ conn = self.conn schema = schema or conn.schema if schema: hql = "USE {schema};\n{hql}".format(**locals()) with TemporaryDirectory(prefix='airflow_hiveop_') as tmp_dir: with NamedTemporaryFile(dir=tmp_dir) as f: f.write(hql.encode('UTF-8')) f.flush() hive_cmd = self._prepare_cli_cmd() hive_conf_params = self._prepare_hiveconf(hive_conf) if self.mapred_queue: hive_conf_params.extend( ['-hiveconf', 'mapreduce.job.queuename={}' .format(self.mapred_queue)]) if self.mapred_queue_priority: hive_conf_params.extend( ['-hiveconf', 'mapreduce.job.priority={}' .format(self.mapred_queue_priority)]) if self.mapred_job_name: hive_conf_params.extend( ['-hiveconf', 'mapred.job.name={}' .format(self.mapred_job_name)]) hive_cmd.extend(hive_conf_params) hive_cmd.extend(['-f', f.name]) if verbose: logging.info(" ".join(hive_cmd)) sp = subprocess.Popen( hive_cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, cwd=tmp_dir) self.sp = sp stdout = '' while True: line = sp.stdout.readline() if not line: break stdout += line.decode('UTF-8') if verbose: logging.info(line.decode('UTF-8').strip()) sp.wait() if sp.returncode: raise AirflowException(stdout) return stdout def test_hql(self, hql): """ Test an hql statement using the hive cli and EXPLAIN """ create, insert, other = [], [], [] for query in hql.split(';'): # naive query_original = query query = query.lower().strip() if query.startswith('create table'): create.append(query_original) elif query.startswith(('set ', 'add jar ', 'create temporary function')): other.append(query_original) elif query.startswith('insert'): insert.append(query_original) other = ';'.join(other) for query_set in [create, insert]: for query in query_set: query_preview = ' '.join(query.split())[:50] logging.info("Testing HQL [{0} (...)]".format(query_preview)) if query_set == insert: query = other + '; explain ' + query else: query = 'explain ' + query try: self.run_cli(query, verbose=False) except AirflowException as e: message = e.args[0].split('\n')[-2] logging.info(message) error_loc = re.search('(\d+):(\d+)', message) if error_loc and error_loc.group(1).isdigit(): l = int(error_loc.group(1)) begin = max(l-2, 0) end = min(l+3, len(query.split('\n'))) context = '\n'.join(query.split('\n')[begin:end]) logging.info("Context :\n {0}".format(context)) else: logging.info("SUCCESS") def load_df( self, df, table, create=True, recreate=False, field_dict=None, delimiter=',', encoding='utf8', pandas_kwargs=None, **kwargs): """ Loads a pandas DataFrame into hive. Hive data types will be inferred if not passed but column names will not be sanitized. :param table: target Hive table, use dot notation to target a specific database :type table: str :param create: whether to create the table if it doesn't exist :type create: bool :param recreate: whether to drop and recreate the table at every execution :type recreate: bool :param field_dict: mapping from column name to hive data type :type field_dict: dict :param encoding: string encoding to use when writing DataFrame to file :type encoding: str :param pandas_kwargs: passed to DataFrame.to_csv :type pandas_kwargs: dict :param kwargs: passed to self.load_file """ def _infer_field_types_from_df(df): DTYPE_KIND_HIVE_TYPE = { 'b': 'BOOLEAN', # boolean 'i': 'BIGINT', # signed integer 'u': 'BIGINT', # unsigned integer 'f': 'DOUBLE', # floating-point 'c': 'STRING', # complex floating-point 'O': 'STRING', # object 'S': 'STRING', # (byte-)string 'U': 'STRING', # Unicode 'V': 'STRING' # void } return dict((col, DTYPE_KIND_HIVE_TYPE[dtype.kind]) for col, dtype in df.dtypes.iteritems()) if pandas_kwargs is None: pandas_kwargs = {} with TemporaryDirectory(prefix='airflow_hiveop_') as tmp_dir: with NamedTemporaryFile(dir=tmp_dir) as f: if field_dict is None and (create or recreate): field_dict = _infer_field_types_from_df(df) df.to_csv(f, sep=delimiter, **pandas_kwargs) return self.load_file(filepath=f.name, table=table, delimiter=delimiter, field_dict=field_dict, **kwargs) def load_file( self, filepath, table, delimiter=",", field_dict=None, create=True, overwrite=True, partition=None, recreate=False): """ Loads a local file into Hive Note that the table generated in Hive uses ``STORED AS textfile`` which isn't the most efficient serialization format. If a large amount of data is loaded and/or if the tables gets queried considerably, you may want to use this operator only to stage the data into a temporary table before loading it into its final destination using a ``HiveOperator``. :param table: target Hive table, use dot notation to target a specific database :type table: str :param create: whether to create the table if it doesn't exist :type create: bool :param recreate: whether to drop and recreate the table at every execution :type recreate: bool :param partition: target partition as a dict of partition columns and values :type partition: dict :param delimiter: field delimiter in the file :type delimiter: str """ hql = '' if recreate: hql += "DROP TABLE IF EXISTS {table};\n" if create or recreate: if field_dict is None: raise ValueError("Must provide a field dict when creating a table") fields = ",\n ".join( [k + ' ' + v for k, v in field_dict.items()]) hql += "CREATE TABLE IF NOT EXISTS {table} (\n{fields})\n" if partition: pfields = ",\n ".join( [p + " STRING" for p in partition]) hql += "PARTITIONED BY ({pfields})\n" hql += "ROW FORMAT DELIMITED\n" hql += "FIELDS TERMINATED BY '{delimiter}'\n" hql += "STORED AS textfile;" hql = hql.format(**locals()) logging.info(hql) self.run_cli(hql) hql = "LOAD DATA LOCAL INPATH '{filepath}' " if overwrite: hql += "OVERWRITE " hql += "INTO TABLE {table} " if partition: pvals = ", ".join( ["{0}='{1}'".format(k, v) for k, v in partition.items()]) hql += "PARTITION ({pvals});" hql = hql.format(**locals()) logging.info(hql) self.run_cli(hql) def kill(self): if hasattr(self, 'sp'): if self.sp.poll() is None: print("Killing the Hive job") self.sp.terminate() time.sleep(60) self.sp.kill() class HiveMetastoreHook(BaseHook): """ Wrapper to interact with the Hive Metastore""" def __init__(self, metastore_conn_id='metastore_default'): self.metastore_conn = self.get_connection(metastore_conn_id) self.metastore = self.get_metastore_client() def __getstate__(self): # This is for pickling to work despite the thirft hive client not # being pickable d = dict(self.__dict__) del d['metastore'] return d def __setstate__(self, d): self.__dict__.update(d) self.__dict__['metastore'] = self.get_metastore_client() def get_metastore_client(self): """ Returns a Hive thrift client. """ from thrift.transport import TSocket, TTransport from thrift.protocol import TBinaryProtocol from hive_service import ThriftHive ms = self.metastore_conn auth_mechanism = ms.extra_dejson.get('authMechanism', 'NOSASL') if configuration.get('core', 'security') == 'kerberos': auth_mechanism = ms.extra_dejson.get('authMechanism', 'GSSAPI') kerberos_service_name = ms.extra_dejson.get('kerberos_service_name', 'hive') socket = TSocket.TSocket(ms.host, ms.port) if configuration.get('core', 'security') == 'kerberos' and auth_mechanism == 'GSSAPI': try: import saslwrapper as sasl except ImportError: import sasl def sasl_factory(): sasl_client = sasl.Client() sasl_client.setAttr("host", ms.host) sasl_client.setAttr("service", kerberos_service_name) sasl_client.init() return sasl_client from thrift_sasl import TSaslClientTransport transport = TSaslClientTransport(sasl_factory, "GSSAPI", socket) else: transport = TTransport.TBufferedTransport(socket) protocol = TBinaryProtocol.TBinaryProtocol(transport) return ThriftHive.Client(protocol) def get_conn(self): return self.metastore def check_for_partition(self, schema, table, partition): """ Checks whether a partition exists :param schema: Name of hive schema (database) @table belongs to :type schema: string :param table: Name of hive table @partition belongs to :type schema: string :partition: Expression that matches the partitions to check for (eg `a = 'b' AND c = 'd'`) :type schema: string :rtype: boolean >>> hh = HiveMetastoreHook() >>> t = 'static_babynames_partitioned' >>> hh.check_for_partition('airflow', t, "ds='2015-01-01'") True """ self.metastore._oprot.trans.open() partitions = self.metastore.get_partitions_by_filter( schema, table, partition, 1) self.metastore._oprot.trans.close() if partitions: return True else: return False def check_for_named_partition(self, schema, table, partition_name): """ Checks whether a partition with a given name exists :param schema: Name of hive schema (database) @table belongs to :type schema: string :param table: Name of hive table @partition belongs to :type schema: string :partition: Name of the partitions to check for (eg `a=b/c=d`) :type schema: string :rtype: boolean >>> hh = HiveMetastoreHook() >>> t = 'static_babynames_partitioned' >>> hh.check_for_named_partition('airflow', t, "ds=2015-01-01") True >>> hh.check_for_named_partition('airflow', t, "ds=xxx") False """ self.metastore._oprot.trans.open() try: self.metastore.get_partition_by_name( schema, table, partition_name) return True except hive_metastore.ttypes.NoSuchObjectException: return False finally: self.metastore._oprot.trans.close() def get_table(self, table_name, db='default'): """Get a metastore table object >>> hh = HiveMetastoreHook() >>> t = hh.get_table(db='airflow', table_name='static_babynames') >>> t.tableName 'static_babynames' >>> [col.name for col in t.sd.cols] ['state', 'year', 'name', 'gender', 'num'] """ self.metastore._oprot.trans.open() if db == 'default' and '.' in table_name: db, table_name = table_name.split('.')[:2] table = self.metastore.get_table(dbname=db, tbl_name=table_name) self.metastore._oprot.trans.close() return table def get_tables(self, db, pattern='*'): """ Get a metastore table object """ self.metastore._oprot.trans.open() tables = self.metastore.get_tables(db_name=db, pattern=pattern) objs = self.metastore.get_table_objects_by_name(db, tables) self.metastore._oprot.trans.close() return objs def get_databases(self, pattern='*'): """ Get a metastore table object """ self.metastore._oprot.trans.open() dbs = self.metastore.get_databases(pattern) self.metastore._oprot.trans.close() return dbs def get_partitions( self, schema, table_name, filter=None): """ Returns a list of all partitions in a table. Works only for tables with less than 32767 (java short max val). For subpartitioned table, the number might easily exceed this. >>> hh = HiveMetastoreHook() >>> t = 'static_babynames_partitioned' >>> parts = hh.get_partitions(schema='airflow', table_name=t) >>> len(parts) 1 >>> parts [{'ds': '2015-01-01'}] """ self.metastore._oprot.trans.open() table = self.metastore.get_table(dbname=schema, tbl_name=table_name) if len(table.partitionKeys) == 0: raise AirflowException("The table isn't partitioned") else: if filter: parts = self.metastore.get_partitions_by_filter( db_name=schema, tbl_name=table_name, filter=filter, max_parts=32767) else: parts = self.metastore.get_partitions( db_name=schema, tbl_name=table_name, max_parts=32767) self.metastore._oprot.trans.close() pnames = [p.name for p in table.partitionKeys] return [dict(zip(pnames, p.values)) for p in parts] def max_partition(self, schema, table_name, field=None, filter=None): """ Returns the maximum value for all partitions in a table. Works only for tables that have a single partition key. For subpartitioned table, we recommend using signal tables. >>> hh = HiveMetastoreHook() >>> t = 'static_babynames_partitioned' >>> hh.max_partition(schema='airflow', table_name=t) '2015-01-01' """ parts = self.get_partitions(schema, table_name, filter) if not parts: return None elif len(parts[0]) == 1: field = list(parts[0].keys())[0] elif not field: raise AirflowException( "Please specify the field you want the max " "value for") return max([p[field] for p in parts]) def table_exists(self, table_name, db='default'): """ Check if table exists >>> hh = HiveMetastoreHook() >>> hh.table_exists(db='airflow', table_name='static_babynames') True >>> hh.table_exists(db='airflow', table_name='does_not_exist') False """ try: t = self.get_table(table_name, db) return True except Exception as e: return False class HiveServer2Hook(BaseHook): """ Wrapper around the impyla library Note that the default authMechanism is PLAIN, to override it you can specify it in the ``extra`` of your connection in the UI as in """ def __init__(self, hiveserver2_conn_id='hiveserver2_default'): self.hiveserver2_conn_id = hiveserver2_conn_id def get_conn(self, schema=None): db = self.get_connection(self.hiveserver2_conn_id) auth_mechanism = db.extra_dejson.get('authMechanism', 'PLAIN') kerberos_service_name = None if configuration.get('core', 'security') == 'kerberos': auth_mechanism = db.extra_dejson.get('authMechanism', 'GSSAPI') kerberos_service_name = db.extra_dejson.get('kerberos_service_name', 'hive') # impyla uses GSSAPI instead of KERBEROS as a auth_mechanism identifier if auth_mechanism == 'KERBEROS': logging.warning("Detected deprecated 'KERBEROS' for authMechanism for %s. Please use 'GSSAPI' instead", self.hiveserver2_conn_id) auth_mechanism = 'GSSAPI' from impala.dbapi import connect return connect( host=db.host, port=db.port, auth_mechanism=auth_mechanism, kerberos_service_name=kerberos_service_name, user=db.login, database=schema or db.schema or 'default') def get_results(self, hql, schema='default', arraysize=1000): from impala.error import ProgrammingError with self.get_conn(schema) as conn: if isinstance(hql, basestring): hql = [hql] results = { 'data': [], 'header': [], } cur = conn.cursor() for statement in hql: cur.execute(statement) records = [] try: # impala Lib raises when no results are returned # we're silencing here as some statements in the list # may be `SET` or DDL records = cur.fetchall() except ProgrammingError: logging.debug("get_results returned no records") if records: results = { 'data': records, 'header': cur.description, } return results def to_csv( self, hql, csv_filepath, schema='default', delimiter=',', lineterminator='\r\n', output_header=True, fetch_size=1000): schema = schema or 'default' with self.get_conn(schema) as conn: with conn.cursor() as cur: logging.info("Running query: " + hql) cur.execute(hql) schema = cur.description with open(csv_filepath, 'wb') as f: writer = csv.writer(f, delimiter=delimiter, lineterminator=lineterminator, encoding='utf-8') if output_header: writer.writerow([c[0] for c in cur.description]) i = 0 while True: rows = [row for row in cur.fetchmany(fetch_size) if row] if not rows: break writer.writerows(rows) i += len(rows) logging.info("Written {0} rows so far.".format(i)) logging.info("Done. Loaded a total of {0} rows.".format(i)) def get_records(self, hql, schema='default'): """ Get a set of records from a Hive query. >>> hh = HiveServer2Hook() >>> sql = "SELECT * FROM airflow.static_babynames LIMIT 100" >>> len(hh.get_records(sql)) 100 """ return self.get_results(hql, schema=schema)['data'] def get_pandas_df(self, hql, schema='default'): """ Get a pandas dataframe from a Hive query >>> hh = HiveServer2Hook() >>> sql = "SELECT * FROM airflow.static_babynames LIMIT 100" >>> df = hh.get_pandas_df(sql) >>> len(df.index) 100 """ import pandas as pd res = self.get_results(hql, schema=schema) df = pd.DataFrame(res['data']) df.columns = [c[0] for c in res['header']] return df
apache-2.0
jat255/hyperspy
hyperspy/tests/drawing/test_plot_signal1d.py
1
11359
# Copyright 2007-2020 The HyperSpy developers # # This file is part of HyperSpy. # # HyperSpy is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # HyperSpy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with HyperSpy. If not, see <http://www.gnu.org/licenses/>. import os from shutil import copyfile import matplotlib.pyplot as plt import numpy as np import pytest import scipy.misc import hyperspy.api as hs from hyperspy.misc.test_utils import update_close_figure from hyperspy.signals import Signal1D from hyperspy.drawing.signal1d import Signal1DLine from hyperspy.tests.drawing.test_plot_signal import _TestPlot scalebar_color = 'blue' default_tol = 2.0 baseline_dir = 'plot_signal1d' style_pytest_mpl = 'default' style = ['default', 'overlap', 'cascade', 'mosaic', 'heatmap'] @pytest.fixture def mpl_generate_path_cmdopt(request): return request.config.getoption("--mpl-generate-path") def _generate_filename_list(style): path = os.path.dirname(__file__) filename_list = ['test_plot_spectra_%s' % s for s in style] + \ ['test_plot_spectra_rev_%s' % s for s in style] filename_list2 = [] for filename in filename_list: for i in range(0, 4): filename_list2.append(os.path.join(path, baseline_dir, '%s%i.png' % (filename, i))) return filename_list2 @pytest.fixture def setup_teardown(request, scope="class"): mpl_generate_path_cmdopt = request.config.getoption("--mpl-generate-path") # SETUP # duplicate baseline images to match the test_name when the # parametrized 'test_plot_spectra' are run. For a same 'style', the # expected images are the same. if mpl_generate_path_cmdopt is None: for filename in _generate_filename_list(style): copyfile("%s.png" % filename[:-5], filename) yield # TEARDOWN # Create the baseline images: copy one baseline image for each test # and remove the other ones. if mpl_generate_path_cmdopt: for filename in _generate_filename_list(style): copyfile(filename, "%s.png" % filename[:-5]) # Delete the images that have been created in 'setup_class' for filename in _generate_filename_list(style): os.remove(filename) @pytest.mark.usefixtures("setup_teardown") class TestPlotSpectra(): s = hs.signals.Signal1D(scipy.misc.ascent()[100:160:10]) # Add a test signal with decreasing axis s_reverse = s.deepcopy() s_reverse.axes_manager[1].offset = 512 s_reverse.axes_manager[1].scale = -1 def _generate_parameters(style): parameters = [] for s in style: for fig in [True, None]: for ax in [True, None]: parameters.append([s, fig, ax]) return parameters def _generate_ids(style, duplicate=4): ids = [] for s in style: ids.extend([s] * duplicate) return ids @pytest.mark.parametrize(("style", "fig", "ax"), _generate_parameters(style), ids=_generate_ids(style)) @pytest.mark.mpl_image_compare(baseline_dir=baseline_dir, tolerance=default_tol, style=style_pytest_mpl) def test_plot_spectra(self, style, fig, ax): if fig: fig = plt.figure() if ax: fig = plt.figure() ax = fig.add_subplot(111) ax = hs.plot.plot_spectra(self.s, style=style, legend='auto', fig=fig, ax=ax) if style == 'mosaic': ax = ax[0] return ax.figure @pytest.mark.parametrize(("style", "fig", "ax"), _generate_parameters(style), ids=_generate_ids(style)) @pytest.mark.mpl_image_compare(baseline_dir=baseline_dir, tolerance=default_tol, style=style_pytest_mpl) def test_plot_spectra_rev(self, style, fig, ax): if fig: fig = plt.figure() if ax: fig = plt.figure() ax = fig.add_subplot(111) ax = hs.plot.plot_spectra(self.s_reverse, style=style, legend='auto', fig=fig, ax=ax) if style == 'mosaic': ax = ax[0] return ax.figure @pytest.mark.parametrize("figure", ['1nav', '1sig', '2nav', '2sig']) @pytest.mark.mpl_image_compare(baseline_dir=baseline_dir, tolerance=default_tol, style=style_pytest_mpl) def test_plot_spectra_sync(self, figure): s1 = hs.signals.Signal1D(scipy.misc.face()).as_signal1D(0).inav[:, :3] s2 = s1.deepcopy() * -1 hs.plot.plot_signals([s1, s2]) if figure == '1nav': return s1._plot.signal_plot.figure if figure == '1sig': return s1._plot.navigator_plot.figure if figure == '2nav': return s2._plot.navigator_plot.figure if figure == '2sig': return s2._plot.navigator_plot.figure def test_plot_spectra_legend_pick(self): x = np.linspace(0., 2., 512) n = np.arange(1, 5) x_pow_n = x[None, :]**n[:, None] s = hs.signals.Signal1D(x_pow_n) my_legend = [r'x^' + str(io) for io in n] f = plt.figure() ax = hs.plot.plot_spectra(s, legend=my_legend, fig=f) leg = ax.get_legend() leg_artists = leg.get_lines() click = plt.matplotlib.backend_bases.MouseEvent( 'button_press_event', f.canvas, 0, 0, 'left') for artist, li in zip(leg_artists, ax.lines[::-1]): plt.matplotlib.backends.backend_agg.FigureCanvasBase.pick_event( f.canvas, click, artist) assert not li.get_visible() plt.matplotlib.backends.backend_agg.FigureCanvasBase.pick_event( f.canvas, click, artist) @pytest.mark.mpl_image_compare(baseline_dir=baseline_dir, tolerance=default_tol, style=style_pytest_mpl) def test_plot_spectra_auto_update(self): s = hs.signals.Signal1D(np.arange(100)) s2 = s / 2 ax = hs.plot.plot_spectra([s, s2]) s.data = -s.data s.events.data_changed.trigger(s) s2.data = -s2.data * 4 + 50 s2.events.data_changed.trigger(s2) return ax.get_figure() @update_close_figure def test_plot_nav0_close(): test_plot = _TestPlot(ndim=0, sdim=1) test_plot.signal.plot() return test_plot.signal @update_close_figure def test_plot_nav1_close(): test_plot = _TestPlot(ndim=1, sdim=1) test_plot.signal.plot() return test_plot.signal @update_close_figure def test_plot_nav2_close(): test_plot = _TestPlot(ndim=2, sdim=1) test_plot.signal.plot() return test_plot.signal def _test_plot_two_cursors(ndim): test_plot = _TestPlot(ndim=ndim, sdim=1) # sdim=2 not supported s = test_plot.signal s.metadata.General.title = 'Nav %i, Sig 1, two cursor' % ndim s.axes_manager[0].index = 4 s.plot() s._plot.add_right_pointer() s._plot.navigator_plot.figure.canvas.draw() s._plot.signal_plot.figure.canvas.draw() s._plot.right_pointer.axes_manager[0].index = 2 if ndim == 2: s.axes_manager[1].index = 2 s._plot.right_pointer.axes_manager[1].index = 3 return s @pytest.mark.parametrize('autoscale', ['', 'x', 'xv', 'v']) @pytest.mark.parametrize('norm', ['log', 'auto']) def test_plot_two_cursos_parameters(autoscale, norm): kwargs = {'autoscale':autoscale, 'norm':norm} test_plot = _TestPlot(ndim=2, sdim=1) # sdim=2 not supported s = test_plot.signal s.plot(**kwargs) s._plot.add_right_pointer(**kwargs) for line in s._plot.signal_plot.ax_lines: assert line.autoscale == autoscale def _generate_parameter(): parameters = [] for ndim in [1, 2]: for plot_type in ['nav', 'sig']: parameters.append([ndim, plot_type]) return parameters @pytest.mark.mpl_image_compare(baseline_dir=baseline_dir, tolerance=default_tol, style=style_pytest_mpl) def test_plot_log_scale(): s = Signal1D(np.exp(-np.arange(100) / 5.0)) s.plot(norm='log') return s._plot.signal_plot.figure @pytest.mark.parametrize(("ndim", "plot_type"), _generate_parameter()) @pytest.mark.mpl_image_compare(baseline_dir=baseline_dir, tolerance=default_tol, style=style_pytest_mpl) def test_plot_two_cursors(ndim, plot_type): s = _test_plot_two_cursors(ndim=ndim) if plot_type == "sig": f = s._plot.signal_plot.figure else: f= s._plot.navigator_plot.figure f.canvas.draw() f.canvas.flush_events() return f @update_close_figure def test_plot_nav2_sig1_two_cursors_close(): return _test_plot_two_cursors(ndim=2) def test_plot_with_non_finite_value(): s = hs.signals.Signal1D(np.array([np.nan, 2.0])) s.plot() s.axes_manager.events.indices_changed.trigger(s.axes_manager) s = hs.signals.Signal1D(np.array([np.nan, np.nan])) s.plot() s.axes_manager.events.indices_changed.trigger(s.axes_manager) s = hs.signals.Signal1D(np.array([-np.inf, 2.0])) s.plot() s.axes_manager.events.indices_changed.trigger(s.axes_manager) s = hs.signals.Signal1D(np.array([np.inf, 2.0])) s.plot() s.axes_manager.events.indices_changed.trigger(s.axes_manager) def test_plot_add_line_events(): s = hs.signals.Signal1D(np.arange(100)) s.plot() assert len(s.axes_manager.events.indices_changed.connected) == 1 figure = s._plot.signal_plot def line_function(axes_manager=None): return 100 - np.arange(100) line = Signal1DLine() line.data_function = line_function line.set_line_properties(color='blue', type='line', scaley=False) figure.add_line(line, connect_navigation=True) line.plot() assert len(line.events.closed.connected) == 1 assert len(s.axes_manager.events.indices_changed.connected) == 2 line.close() figure.close_right_axis() assert len(line.events.closed.connected) == 0 assert len(s.axes_manager.events.indices_changed.connected) == 1 figure.close() assert len(s.axes_manager.events.indices_changed.connected) == 0 @pytest.mark.parametrize("autoscale", ['', 'x', 'xv', 'v']) @pytest.mark.mpl_image_compare(baseline_dir=baseline_dir, tolerance=default_tol, style=style_pytest_mpl) def test_plot_autoscale(autoscale): s = hs.datasets.artificial_data.get_core_loss_eels_line_scan_signal( add_powerlaw=True, add_noise=False) s.plot(autoscale=autoscale) ax = s._plot.signal_plot.ax ax.set_xlim(500.0, 700.0) ax.set_ylim(-10.0, 20.0) s.axes_manager.events.indices_changed.trigger(s.axes_manager) return s._plot.signal_plot.figure
gpl-3.0
zihua/scikit-learn
examples/cluster/plot_agglomerative_clustering.py
343
2931
""" Agglomerative clustering with and without structure =================================================== This example shows the effect of imposing a connectivity graph to capture local structure in the data. The graph is simply the graph of 20 nearest neighbors. Two consequences of imposing a connectivity can be seen. First clustering with a connectivity matrix is much faster. Second, when using a connectivity matrix, average and complete linkage are unstable and tend to create a few clusters that grow very quickly. Indeed, average and complete linkage fight this percolation behavior by considering all the distances between two clusters when merging them. The connectivity graph breaks this mechanism. This effect is more pronounced for very sparse graphs (try decreasing the number of neighbors in kneighbors_graph) and with complete linkage. In particular, having a very small number of neighbors in the graph, imposes a geometry that is close to that of single linkage, which is well known to have this percolation instability. """ # Authors: Gael Varoquaux, Nelle Varoquaux # License: BSD 3 clause import time import matplotlib.pyplot as plt import numpy as np from sklearn.cluster import AgglomerativeClustering from sklearn.neighbors import kneighbors_graph # Generate sample data n_samples = 1500 np.random.seed(0) t = 1.5 * np.pi * (1 + 3 * np.random.rand(1, n_samples)) x = t * np.cos(t) y = t * np.sin(t) X = np.concatenate((x, y)) X += .7 * np.random.randn(2, n_samples) X = X.T # Create a graph capturing local connectivity. Larger number of neighbors # will give more homogeneous clusters to the cost of computation # time. A very large number of neighbors gives more evenly distributed # cluster sizes, but may not impose the local manifold structure of # the data knn_graph = kneighbors_graph(X, 30, include_self=False) for connectivity in (None, knn_graph): for n_clusters in (30, 3): plt.figure(figsize=(10, 4)) for index, linkage in enumerate(('average', 'complete', 'ward')): plt.subplot(1, 3, index + 1) model = AgglomerativeClustering(linkage=linkage, connectivity=connectivity, n_clusters=n_clusters) t0 = time.time() model.fit(X) elapsed_time = time.time() - t0 plt.scatter(X[:, 0], X[:, 1], c=model.labels_, cmap=plt.cm.spectral) plt.title('linkage=%s (time %.2fs)' % (linkage, elapsed_time), fontdict=dict(verticalalignment='top')) plt.axis('equal') plt.axis('off') plt.subplots_adjust(bottom=0, top=.89, wspace=0, left=0, right=1) plt.suptitle('n_cluster=%i, connectivity=%r' % (n_clusters, connectivity is not None), size=17) plt.show()
bsd-3-clause
wooey/Wooey
wooey/tests/scripts/heatmap.py
6
1803
#!/usr/bin/env python __author__ = 'chris' import argparse import os import sys import pandas as pd import seaborn as sns import numpy as np parser = argparse.ArgumentParser(description="Create a heatmap from a delimited file.") parser.add_argument('--tsv', help='The delimited file to plot.', type=argparse.FileType('r'), required=True) parser.add_argument('--delimiter', help='The delimiter for fields. Default: tab', type=str, default='\t') parser.add_argument('--row', help='The column containing row to create a heatmap from. Default to first row.', type=str) parser.add_argument('--cols', help='The columns to choose values from (separate by a comma for multiple). Default: All non-rows', type=str) parser.add_argument('--log-normalize', help='Whether to log normalize data.', action='store_true') def main(): args = parser.parse_args() data = pd.read_table(args.tsv, index_col=args.row if args.row else 0, sep=args.delimiter, encoding='utf-8') if args.cols: try: data = data.loc[:,args.cols.split(',')] except KeyError: data = data.iloc[:,[int(i)-1 for i in args.cols.split(',')]] if len(data.columns) > 50: raise BaseException('Too many columns') data = np.log2(data) if args.log_normalize else data data[data==-1*np.inf] = data[data!=-1*np.inf].min().min() width = 5+0 if len(data.columns)<50 else (len(data.columns)-50)/100 row_cutoff = 1000 height = 15+0 if len(data)<row_cutoff else (len(data)-row_cutoff)/75.0 seaborn_map = sns.clustermap(data, figsize=(width, height)) seaborn_map.savefig('{}_heatmap.png'.format(os.path.split(args.tsv.name)[1])) seaborn_map.data2d.to_csv('{}_heatmap.tsv'.format(os.path.split(args.tsv.name)[1]), sep='\t') if __name__ == "__main__": sys.exit(main())
bsd-3-clause
msultan/msmbuilder
msmbuilder/hmm/discrete_approx.py
12
6593
"""Discrete approximations to continuous distributions""" # Author: Robert McGibbon <rmcgibbo@gmail.com> # Contributors: # Copyright (c) 2014, Stanford University # All rights reserved. #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- from __future__ import print_function, division, absolute_import import numpy as np import scipy.misc import scipy.linalg import scipy.optimize from mdtraj.utils import ensure_type __all__ = ['discrete_approx_mvn', 'NotSatisfiableError'] #----------------------------------------------------------------------------- # Code #----------------------------------------------------------------------------- class NotSatisfiableError(Exception): pass def discrete_approx_mvn(X, means, covars, match_variances=True): """Find a discrete approximation to a multivariate normal distribution. The method employs find the discrete distribution with support only at the supplied points X with minimal K-L divergence to a target multivariate normal distribution under the constraints that the mean and variance of the discrete distribution match the normal distribution exactly. Parameters ---------- X : np.ndarray, shape=(n_points, n_features) The allowable points means : np.ndarray, shape=(n_features) The mean vector of the MVN covars : np.ndarray, shape=(n_features, n_features) or shape=(n_features,) If covars is 2D, it's interpreted as the covariance matrix for the model. If 1D, we assume a diagonal covariance matrix with the specified diagonal entries. match_variances : bool, optimal When True, both the means and the variances of the discrete distribution are constrained. Under some circumstances, this is not satisfiable (e.g. if there aren't enough samples Returns ------- weights : np.ndarray, shape=(n_samples,) The weight for each of the points in X in the resulting discrete probability distribution Notes ----- The discrete distribution is one that has mass only at the specified points. It can therefore be parameterized by a set of weights on each point. If :math:`\{X_i\}` is the set of allowable points, and :math:`\{w_i\}` are the weights, then our discrete distribution has the form .. math:: p(y; w) = w_i \sum \delta(y - X_i). We chose the :math:`w_i` by minimizing the K-L divergence from the our discrete distribution to the desired multivariate normal subject to a constraint that the first moments of the discrete distribution match the mean of the multivariate normal exactly, and that the variances also match. Let :math:`q(x)` be the target distribution. The optimal weights are then .. math:: min_{\{w_i\}} \sum_i p(X_i; w) \log \frac{p(X_i; w)}{q(X_i)} subject to .. math:: \sum_i (X_i) p(X_i; w) = \int_\Omega (x) q(x) = \mu, \sum_i (X_i-mu)**2 p(X_i; w) = \int_\Omega (x-mu) q(x). References ---------- .. [1] Tanaka, Ken'ichiro, and Alexis Akira Toda. "Discrete approximations of continuous distributions by maximum entropy." Economics Letters 118.3 (2013): 445-450. """ X = ensure_type(np.asarray(X), dtype=np.float32, ndim=2, name='X', warn_on_cast=False) means = ensure_type(np.asarray(means), np.float64, ndim=1, name='means', warn_on_cast=False) covars = np.asarray(covars) # Get the un-normalized probability of each point X_i in the MVN # `prob` are the q(X_i) in the mathematics # `moments` are the \bar{T} that we want to match. if covars.ndim == 1: # diagonal covariance case if not len(covars) == len(means): raise ValueError('Shape Error: covars and means musth have the same length') prob = np.exp(-0.5 * np.sum(1. / np.sqrt(covars) * (X - means) ** 2, axis=1)) moments = np.concatenate((means, covars)) if match_variances else means elif covars.ndim == 2: if not (covars.shape[0] == len(means) and covars.shape[1] == len(means)): raise ValueError('Shape Error: covars must be square, with size = len(means)') # full 2d covariance matrix cv_chol = scipy.linalg.cholesky(covars, lower=True) cv_sol = scipy.linalg.solve_triangular(cv_chol, (X - means).T, lower=True).T prob = np.exp(-0.5 * (np.sum(cv_sol ** 2, axis=1))) moments = np.concatenate((means, np.diag(covars))) if match_variances else means else: raise ValueError('covars must be 1D or 2D') # this is T(x_i) for each X_i moment_contributions = np.hstack((X, (X - means) ** 2)) if match_variances else X def objective_and_grad(l): dot = np.dot(moment_contributions, l) lse = scipy.misc.logsumexp(dot, b=prob) # value of the objective function obj_value = lse - np.dot(l, moments) # gradient of objective function dot_max = dot.max(axis=0) exp_term = np.sum(moment_contributions * (prob * np.exp(dot - dot_max)).reshape(-1, 1), axis=0) log_numerator = np.log(exp_term) + dot_max grad_value = np.exp(log_numerator - lse) - moments return obj_value, grad_value result = scipy.optimize.minimize( objective_and_grad, jac=True, x0=np.ones_like(moments), method='BFGS') if not result['success']: raise NotSatisfiableError() dot = np.dot(moment_contributions, result['x']) log_denominator = scipy.misc.logsumexp(dot, b=prob) weights = prob * np.exp(dot - log_denominator) if not np.all(np.isfinite(weights)): raise NotSatisfiableError() weights = weights / np.sum(weights) return weights if __name__ == '__main__': np.random.seed(10) import matplotlib.pyplot as pp length = 100 X = np.random.uniform(low=-5, high=5, size=(length, 1)) weights = discrete_approx_mvn(X, [0], [2]) pp.title('dot(weights, X) = %.5f, dot(weights, X**2)=%f' % (np.dot(weights, X), np.dot(weights, X ** 2))) for i in range(length): pp.plot([X[i, 0], X[i, 0]], [0, weights[i]]) pp.figure() X = np.random.uniform(low=-2, high=2, size=(length, 1)) weights = discrete_approx_mvn(X, [0], [1]) pp.title('dot(weights, X) = %.5f, dot(weights, X**2)=%f' % (np.dot(weights, X), np.dot(weights, X ** 2))) for i in range(length): pp.plot([X[i, 0], X[i, 0]], [0, weights[i]]) pp.show()
lgpl-2.1
AndreasMadsen/bachelor-code
test/test.py
1
2947
from nose.tools import * import warnings import os.path as path import sys import os thisdir = path.dirname(path.realpath(__file__)) sys.path.append(path.join(thisdir, '..')) import progressbar import matplotlib as mpl if (os.environ.get('DISPLAY') is None): mpl.use('Agg') import matplotlib.pyplot as plt import numpy as np import theano import neural np.random.seed(42) warnings.filterwarnings( action='error', category=UserWarning ) warnings.filterwarnings( action='ignore', message='numpy.ndarray size changed, may indicate binary incompatibility' ) is_HPC = (os.environ.get('DTU_HPC') is not None) is_optimize = (os.environ.get('OPTIMIZE') is not None) run_name = (os.environ.get('OUTNAME') if os.environ.get('OUTNAME') is not None else str(os.getpid())) if (not is_HPC): theano.config.compute_test_value = 'warn' if (not is_optimize and not is_HPC): theano.config.optimizer = 'None' theano.config.linker = 'py' theano.config.exception_verbosity = 'high' if (theano.config.optimizer != 'None'): print('Theano optimizer enabled') def classifier(model, generator, y_shape, performance, trainer=neural.learn.batch, train_size=500, test_size=100, asserts=True, plot=False, epochs=100, **kwargs): if (plot): print('testing classifier') # Setup dataset and train model train_dataset = generator(train_size) test_dataset = generator(test_size) train_error = np.zeros(epochs + 1) test_error = np.zeros(epochs + 1) # Train and show progress if (not plot): print() pbar = progressbar.ProgressBar( widgets=[ 'Training: ', progressbar.Bar(), progressbar.Percentage(), ' | ', progressbar.ETA() ], maxval=epochs ).start() def on_epoch(model, epoch_i): if (plot or epoch_i == 0 or epoch_i == epochs): train_error[epoch_i] = model.test(*train_dataset.astuple()) test_error[epoch_i] = model.test(*test_dataset.astuple()) pbar.update(epoch_i) trainer(model, train_dataset, on_epoch=on_epoch, epochs=epochs, **kwargs) pbar.finish() # Calculate precition and missclassificationrate y = model.predict(test_dataset.data) misses = np.mean(np.argmax(y, axis=1) != test_dataset.target) # Plot if (plot): print('miss classifications:', misses) plt.figure() plt.plot(np.arange(0, epochs + 1), train_error, label='train', alpha=0.5) plt.plot(np.arange(0, epochs + 1), test_error, label='test', alpha=0.5) plt.legend() plt.ylabel('loss') if (is_HPC): plt.savefig('loss.png') else: plt.show() # Assert if (asserts): assert(train_error[0] > train_error[-1] > 0) assert(test_error[0] > test_error[-1] > 0) assert_equal(y.shape, y_shape) assert((1 - misses) > performance) __all__ = ['classifier']
mit
rajat1994/scikit-learn
examples/decomposition/plot_incremental_pca.py
244
1878
""" =============== Incremental PCA =============== Incremental principal component analysis (IPCA) is typically used as a replacement for principal component analysis (PCA) when the dataset to be decomposed is too large to fit in memory. IPCA builds a low-rank approximation for the input data using an amount of memory which is independent of the number of input data samples. It is still dependent on the input data features, but changing the batch size allows for control of memory usage. This example serves as a visual check that IPCA is able to find a similar projection of the data to PCA (to a sign flip), while only processing a few samples at a time. This can be considered a "toy example", as IPCA is intended for large datasets which do not fit in main memory, requiring incremental approaches. """ print(__doc__) # Authors: Kyle Kastner # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.decomposition import PCA, IncrementalPCA iris = load_iris() X = iris.data y = iris.target n_components = 2 ipca = IncrementalPCA(n_components=n_components, batch_size=10) X_ipca = ipca.fit_transform(X) pca = PCA(n_components=n_components) X_pca = pca.fit_transform(X) for X_transformed, title in [(X_ipca, "Incremental PCA"), (X_pca, "PCA")]: plt.figure(figsize=(8, 8)) for c, i, target_name in zip("rgb", [0, 1, 2], iris.target_names): plt.scatter(X_transformed[y == i, 0], X_transformed[y == i, 1], c=c, label=target_name) if "Incremental" in title: err = np.abs(np.abs(X_pca) - np.abs(X_ipca)).mean() plt.title(title + " of iris dataset\nMean absolute unsigned error " "%.6f" % err) else: plt.title(title + " of iris dataset") plt.legend(loc="best") plt.axis([-4, 4, -1.5, 1.5]) plt.show()
bsd-3-clause
yavalvas/yav_com
build/matplotlib/examples/event_handling/pick_event_demo.py
7
6316
#!/usr/bin/env python """ You can enable picking by setting the "picker" property of an artist (for example, a matplotlib Line2D, Text, Patch, Polygon, AxesImage, etc...) There are a variety of meanings of the picker property None - picking is disabled for this artist (default) boolean - if True then picking will be enabled and the artist will fire a pick event if the mouse event is over the artist float - if picker is a number it is interpreted as an epsilon tolerance in points and the artist will fire off an event if it's data is within epsilon of the mouse event. For some artists like lines and patch collections, the artist may provide additional data to the pick event that is generated, for example, the indices of the data within epsilon of the pick event function - if picker is callable, it is a user supplied function which determines whether the artist is hit by the mouse event. hit, props = picker(artist, mouseevent) to determine the hit test. If the mouse event is over the artist, return hit=True and props is a dictionary of properties you want added to the PickEvent attributes After you have enabled an artist for picking by setting the "picker" property, you need to connect to the figure canvas pick_event to get pick callbacks on mouse press events. For example, def pick_handler(event): mouseevent = event.mouseevent artist = event.artist # now do something with this... The pick event (matplotlib.backend_bases.PickEvent) which is passed to your callback is always fired with two attributes: mouseevent - the mouse event that generate the pick event. The mouse event in turn has attributes like x and y (the coordinates in display space, such as pixels from left, bottom) and xdata, ydata (the coords in data space). Additionally, you can get information about which buttons were pressed, which keys were pressed, which Axes the mouse is over, etc. See matplotlib.backend_bases.MouseEvent for details. artist - the matplotlib.artist that generated the pick event. Additionally, certain artists like Line2D and PatchCollection may attach additional meta data like the indices into the data that meet the picker criteria (for example, all the points in the line that are within the specified epsilon tolerance) The examples below illustrate each of these methods. """ from __future__ import print_function import matplotlib.pyplot as plt from matplotlib.lines import Line2D from matplotlib.patches import Rectangle from matplotlib.text import Text from matplotlib.image import AxesImage import numpy as np from numpy.random import rand if 1: # simple picking, lines, rectangles and text fig, (ax1, ax2) = plt.subplots(2,1) ax1.set_title('click on points, rectangles or text', picker=True) ax1.set_ylabel('ylabel', picker=True, bbox=dict(facecolor='red')) line, = ax1.plot(rand(100), 'o', picker=5) # 5 points tolerance # pick the rectangle bars = ax2.bar(range(10), rand(10), picker=True) for label in ax2.get_xticklabels(): # make the xtick labels pickable label.set_picker(True) def onpick1(event): if isinstance(event.artist, Line2D): thisline = event.artist xdata = thisline.get_xdata() ydata = thisline.get_ydata() ind = event.ind print('onpick1 line:', zip(np.take(xdata, ind), np.take(ydata, ind))) elif isinstance(event.artist, Rectangle): patch = event.artist print('onpick1 patch:', patch.get_path()) elif isinstance(event.artist, Text): text = event.artist print('onpick1 text:', text.get_text()) fig.canvas.mpl_connect('pick_event', onpick1) if 1: # picking with a custom hit test function # you can define custom pickers by setting picker to a callable # function. The function has the signature # # hit, props = func(artist, mouseevent) # # to determine the hit test. if the mouse event is over the artist, # return hit=True and props is a dictionary of # properties you want added to the PickEvent attributes def line_picker(line, mouseevent): """ find the points within a certain distance from the mouseclick in data coords and attach some extra attributes, pickx and picky which are the data points that were picked """ if mouseevent.xdata is None: return False, dict() xdata = line.get_xdata() ydata = line.get_ydata() maxd = 0.05 d = np.sqrt((xdata-mouseevent.xdata)**2. + (ydata-mouseevent.ydata)**2.) ind = np.nonzero(np.less_equal(d, maxd)) if len(ind): pickx = np.take(xdata, ind) picky = np.take(ydata, ind) props = dict(ind=ind, pickx=pickx, picky=picky) return True, props else: return False, dict() def onpick2(event): print('onpick2 line:', event.pickx, event.picky) fig, ax = plt.subplots() ax.set_title('custom picker for line data') line, = ax.plot(rand(100), rand(100), 'o', picker=line_picker) fig.canvas.mpl_connect('pick_event', onpick2) if 1: # picking on a scatter plot (matplotlib.collections.RegularPolyCollection) x, y, c, s = rand(4, 100) def onpick3(event): ind = event.ind print('onpick3 scatter:', ind, np.take(x, ind), np.take(y, ind)) fig, ax = plt.subplots() col = ax.scatter(x, y, 100*s, c, picker=True) #fig.savefig('pscoll.eps') fig.canvas.mpl_connect('pick_event', onpick3) if 1: # picking images (matplotlib.image.AxesImage) fig, ax = plt.subplots() im1 = ax.imshow(rand(10,5), extent=(1,2,1,2), picker=True) im2 = ax.imshow(rand(5,10), extent=(3,4,1,2), picker=True) im3 = ax.imshow(rand(20,25), extent=(1,2,3,4), picker=True) im4 = ax.imshow(rand(30,12), extent=(3,4,3,4), picker=True) ax.axis([0,5,0,5]) def onpick4(event): artist = event.artist if isinstance(artist, AxesImage): im = artist A = im.get_array() print('onpick4 image', A.shape) fig.canvas.mpl_connect('pick_event', onpick4) plt.show()
mit
vikramvgarg/grins
contrib/scripts/plot_transport.py
6
2004
import matplotlib from matplotlib import rc rc('text',usetex=True) #matplotlib.use("PDF") import matplotlib.pyplot as plot from numpy import loadtxt import sys tick_label_fontsize=14 axis_label_fontsize=14 matplotlib.rc('xtick', labelsize=tick_label_fontsize ) matplotlib.rc(('xtick.major','xtick.minor'), pad=10) matplotlib.rc('ytick', labelsize=tick_label_fontsize) matplotlib.rc('text.latex', preamble=[r"\usepackage{amsmath}"]) matplotlib.rc('font', **{'family':'serif', 'serif':['Computer Modern Roman'], 'monospace':['Computer Modern Typewriter']}) if( len(sys.argv) < 2 ): print "Error: Must supply transport data file name!" sys.exit(1) datafile = sys.argv[1] file = open(datafile, "r") file.readline() species = file.readline().split() file.close() n_species = len(species) data = loadtxt( datafile, comments="#", skiprows=3) T = data[:,0] mu = data[:,1] k = data[:,2] D = data[:,3:3+n_species+1] line_formats = [ "b-", "r-", "g-", "c-", "k-", \ "b--", "r--", "g--", "c--", "k--", \ "b:", "r:", "g:", "c:", "k:", \ "b-.", "r-.", "g-.", "c-.", "k-.", \ "b.", "r.", "g.", "c.", "k." ] fig = plot.figure() axes = fig.add_subplot(111) axes.yaxis.major.formatter.set_powerlimits((0,0)) axes.set_xlabel(r"$T$ [K]") axes.set_ylabel(r"$mu$") axes.plot(T,mu,"b-") axes.grid(True) plot.savefig("mu.png") fig2 = plot.figure() axes2 = fig2.add_subplot(111) axes2.yaxis.major.formatter.set_powerlimits((0,0)) axes2.set_xlabel(r"$T$ [K]") axes2.set_ylabel(r"$k$") axes2.plot(T,k,"b-") axes2.grid(True) plot.savefig("k.png") fig3 = plot.figure() axes3 = fig3.add_subplot(111) axes3.yaxis.major.formatter.set_powerlimits((0,0)) axes3.set_xlabel(r"$T$ [K]") axes3.set_ylabel(r"$D$") for i,s in enumerate(species): axes3.plot(T, D[:,i], line_formats[i], label=r"D "+s) axes3.legend(loc="upper left") axes3.grid(True) plot.savefig("D.png") plot.show()
lgpl-2.1
yunque/sms-tools
lectures/04-STFT/plots-code/blackman-even-odd.py
24
1481
import matplotlib.pyplot as plt import numpy as np from scipy.fftpack import fft, fftshift from scipy import signal M = 32 N = 128 hN = N/2 hM = M/2 fftbuffer = np.zeros(N) w = signal.blackman(M) plt.figure(1, figsize=(9.5, 6)) plt.subplot(3,2,1) plt.plot(np.arange(-hM, hM), w, 'b', lw=1.5) plt.axis([-hM, hM-1, 0, 1.05]) plt.title('w1, M=32') fftbuffer = np.zeros(N) fftbuffer[:hM] = w[hM:] fftbuffer[N-hM:] = w[:hM] X = fft(fftbuffer) mX = 20*np.log10(abs(fftshift(X))) plt.subplot(3,2,3) plt.plot(np.arange(-hN, hN), mX-max(mX), 'r', lw=1.5) plt.axis([-hN/2,hN/2,-80,1]) plt.title('mW1') pX = np.angle(fftshift(X)) plt.subplot(3,2,5) plt.plot(np.arange(-hN, hN), pX, 'c', lw=1.5) plt.axis([-hN,hN-1,-np.pi,np.pi]) plt.title('pW1') M = 31 N = 128 hN = N/2 hM = (M+1)/2 fftbuffer = np.zeros(N) w = signal.blackman(M) plt.subplot(3,2,2) plt.plot(np.arange(-hM, hM-1), w, 'b', lw=1.5) plt.axis([-hM, hM, 0, 1.05]) plt.title('w2, M=31') fftbuffer = np.zeros(N) fftbuffer[:hM] = w[hM-1:] fftbuffer[N-hM+1:] = w[:hM-1] X = fft(fftbuffer) mX = 20*np.log10(abs(fftshift(X))) plt.subplot(3,2,4) plt.plot(np.arange(-hN, hN), mX-max(mX), 'r', lw=1.5) plt.axis([-hN/2,hN/2-1,-80,1]) plt.title('mW2') pX = np.angle(fftshift(X)) plt.subplot(3,2,6) plt.plot(np.arange(-hN, hN), pX, 'c', lw=1.5) plt.axis([-hN,hN-1,-np.pi,np.pi]) plt.title('pW2') plt.tight_layout() plt.savefig('blackman-even-odd.png') plt.show()
agpl-3.0
ericjpj/ns-3-dev
src/core/examples/sample-rng-plot.py
188
1246
# -*- Mode:Python; -*- # /* # * This program is free software; you can redistribute it and/or modify # * it under the terms of the GNU General Public License version 2 as # * published by the Free Software Foundation # * # * This program is distributed in the hope that it will be useful, # * but WITHOUT ANY WARRANTY; without even the implied warranty of # * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # * GNU General Public License for more details. # * # * You should have received a copy of the GNU General Public License # * along with this program; if not, write to the Free Software # * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # */ # Demonstrate use of ns-3 as a random number generator integrated with # plotting tools; adapted from Gustavo Carneiro's ns-3 tutorial import numpy as np import matplotlib.pyplot as plt import ns.core # mu, var = 100, 225 rng = ns.core.NormalVariable(100.0, 225.0) x = [rng.GetValue() for t in range(10000)] # the histogram of the data n, bins, patches = plt.hist(x, 50, normed=1, facecolor='g', alpha=0.75) plt.title('ns-3 histogram') plt.text(60, .025, r'$\mu=100,\ \sigma=15$') plt.axis([40, 160, 0, 0.03]) plt.grid(True) plt.show()
gpl-2.0
Bismarrck/tensorflow
tensorflow/contrib/learn/python/learn/learn_io/__init__.py
42
2656
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tools to allow different io formats (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.learn.python.learn.learn_io.dask_io import extract_dask_data from tensorflow.contrib.learn.python.learn.learn_io.dask_io import extract_dask_labels from tensorflow.contrib.learn.python.learn.learn_io.dask_io import HAS_DASK from tensorflow.contrib.learn.python.learn.learn_io.graph_io import queue_parsed_features from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_batch_examples from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_batch_features from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_batch_record_features from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_keyed_batch_examples from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_keyed_batch_examples_shared_queue from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_keyed_batch_features from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_keyed_batch_features_shared_queue from tensorflow.contrib.learn.python.learn.learn_io.numpy_io import numpy_input_fn from tensorflow.contrib.learn.python.learn.learn_io.pandas_io import extract_pandas_data from tensorflow.contrib.learn.python.learn.learn_io.pandas_io import extract_pandas_labels from tensorflow.contrib.learn.python.learn.learn_io.pandas_io import extract_pandas_matrix from tensorflow.contrib.learn.python.learn.learn_io.pandas_io import HAS_PANDAS from tensorflow.contrib.learn.python.learn.learn_io.pandas_io import pandas_input_fn from tensorflow.contrib.learn.python.learn.learn_io.generator_io import generator_input_fn
apache-2.0
mirjalil/ml-visual-recognition
codes/utilities.py
1
3143
import numpy as np import pandas import sys ndim = 900 ### Calclulate Standardized Mean Difference Between Classes def calStandMeanDiff(y, cstat, yneg, ypos): sx = np.zeros(shape=ndim, dtype=float) ssx = np.zeros(shape=ndim, dtype=float) n1 = np.sum(np.in1d(y, yneg)) n2 = np.sum(np.in1d(y, ypos)) sys.stderr.write("Number of samples in NegClass: %d and PosClass: %d \n"%(n1, n2)) for yi in yneg: sx += cstat[yi][0] ssx += cstat[yi][1] r1_mean = sx / float(n1) r1_var = (ssx - 2*sx*r1_mean + r1_mean**2) / float(n1) sx = np.zeros(shape=ndim, dtype=float) ssx = np.zeros(shape=ndim, dtype=float) for yi in ypos: sx += cstat[yi][0] ssx += cstat[yi][1] r2_mean = sx / float(n2) r2_var = (ssx - 2*sx*r2_mean + r2_mean**2) / float(n2) tot_mean = cstat['all'][0] / float(cstat['all'][2]) tot_var = (cstat['all'][1] - 2*cstat['all'][0]*tot_mean + tot_mean**2) / float(cstat['all'][2]) rdiff = (r1_mean - r2_mean) / np.sqrt(tot_var) return (rdiff) ########################################## def readRandomSample(data_fname, y, size, goodfeat=None, acc_miny=None, acc_maxy=None): """ Read a random sample """ if goodfeat is None: goodfeat = np.arange(ndim) Xsub = np.empty(shape=(size,goodfeat.shape[0]), dtype=float) ysub = np.zeros(shape=size, dtype=int) if acc_miny is None: acc_miny = np.min(y) if acc_maxy is None: acc_maxy = np.max(y) #yuniq, ycount = np.unique(y, return_counts=True) #tot_acceptable = np.sum(ycount[np.where((yuniq >= acc_miny) & (yuniq <= acc_maxy))[0]]) acceptable_indx = np.where((y>=acc_miny) & (y<=acc_maxy))[0] assert(acceptable_indx.shape[0] > size) choice_indx = np.sort(np.random.choice(acceptable_indx, size, replace=False)) print(choice_indx.shape) #sys.stderr.write("Total Accetables: --> %d"%(tot_acceptable)) #proba = 1.0 - size/float(tot_acceptable) with open(data_fname, 'r') as fp: n = 0 nf = 0 for line in fp: # if (y[n] >= acc_miny and y[n]<=acc_maxy): # if np.random.uniform(low=0, high=1) > proba and nf < size: if nf < size: if n == choice_indx[nf]: line = line.strip().split() ix = -1 for i,v in enumerate(line): if np.any(goodfeat == i): ix += 1 Xsub[nf,ix] = int(v) ysub[nf] = y[n] nf += 1 n += 1 return(Xsub, ysub) ### Performance Evaluation def evalPerformance(ytrue, ypred): assert(ytrue.shape == ypred.shape) tp = np.sum(ypred[np.where(ytrue == 1)[0]] == 1) fp = np.sum(ypred[np.where(ytrue == -1)[0]] == 1) tn = np.sum(ypred[np.where(ytrue == -1)[0]] == -1) fn = ytrue.shape[0]-(tp+fp+tn) #sys.stderr.write (" (%d %d %d %d)"%(tp, fp, tn, fn)) prec = tp / float(tp + fp) recall = tp / float(tp + fn) f1score = 2*tp / float(2*tp + fp + fn) return (prec, recall, f1score)
apache-2.0
NaturalEcon/RDb
RDb/models/managers.py
1
8223
from django.db.models.query import QuerySet import numpy as np import pandas as pd from django.db import models from model_utils.managers import PassThroughManager """ managers.py: Django managers module. Created on Wed Jan 8 22:43:33 2014 @author: acumen, chrisdev """ table_prefix = 'RDb_ne' # Thanks to 'chrisdev' for the Django-Pandas code. class DataFrameQuerySet(QuerySet): def to_pivot_table(self, *fields, **kwargs): """ A convenience method for creating a time series i.e the DataFrame index is instance of a DateTime or PeriodIndex Parameters ---------- fields: The model fields to utilise in creating the frame. to span a relationship, just use the field name of related fields across models, separated by double underscores, values : column to aggregate, optional rows : list of column names or arrays to group on Keys to group on the x-axis of the pivot table cols : list of column names or arrays to group on Keys to group on the y-axis of the pivot table aggfunc : function, default numpy.mean, or list of functions If list of functions passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves) fill_value : scalar, default None Value to replace missing values with margins : boolean, default False Add all row / columns (e.g. for subtotal / grand totals) dropna : boolean, default True Do not include columns whose entries are all NaN """ df = self.to_dataframe(*fields) values = kwargs.pop('values') rows = kwargs.pop('rows') cols = kwargs.pop('cols') aggfunc = kwargs.pop('aggfunc', np.mean) fill_value = kwargs.pop('fill_value', None) margins = kwargs.pop('margins', False) dropna = kwargs.pop('dropna', False) return pd.pivot_table(df, values=values, fill_value=fill_value, rows=rows, cols=cols, aggfunc=aggfunc, margins=margins, dropna=dropna) def to_timeseries(self, *fields, **kwargs): """ A convenience method for creating a time series i.e. the DataFrame index is instance of a DateTime or PeriodIndex Parameters ---------- fields: The model fields to utilise in creating the frame. to span a relationship, just use the field name of related fields across models, separated by double underscores, index: Specify the field to use for the index. If the index field is not in the field list it will be appended. This is mandatory. storage: Specify if the queryset uses the `wide` or `long` format for data. pivot_column: Required once the you specify `long` format storage. This could either be a list or string identifying the field name or combination of field. If the pivot_column is a single column, then the unique values in this column become new columns in the DataFrame If the pivot column is a list the values in these columns are concatenated (using the '-' as a separator) and these values are used for the new timeseries columns values: Also required if you utilize the `long` storage the values column name is use for populating new frame values freq: The offset string or object representing a target conversion rs_kwargs: Arguments based on pandas.DataFrame.resample """ index = kwargs.pop('index', None) if not index: raise AssertionError('You must supply an index field') storage = kwargs.get('storage', 'wide') if storage not in ['wide', 'long']: raise AssertionError('storage must be wide or long') if storage == 'wide': df = self.to_dataframe(*fields, index=index) else: df = self.to_dataframe(*fields) values = kwargs.get('values', None) if values is None: raise AssertionError('You must specify a values field') pivot_columns = kwargs.get('pivot_columns', None) if pivot_columns is None: raise AssertionError('You must specify pivot_columns') if isinstance(pivot_columns, list): df['combined_keys'] = '' for c in pivot_columns: df['combined_keys'] += df[c].str.upper() + '.' df['combined_keys'] += values.lower() df = df.pivot(index=index, columns='combined_keys', values=values) else: df = df.pivot(index=index, columns=pivot_columns, values=values) rule = kwargs.get('freq', None) if rule: rs_kwargs = kwargs.get('rs_kwargs', None) if rs_kwargs: df = df.resample(rule, **rs_kwargs) else: df = df.resample(rule) return df def to_dataframe(self, *fields, **kwargs): """ Returns a DataFrame from the queryset Parameters ----------- fields: The model fields to utilise in creating the frame. to span a relationship, just use the field name of related fields across models, separated by double underscores, :param index: Specify the field to use for the index. If the index field is not in the field list it will be appended :param fill_na: Fill in missing observations using one of the following this is a string specifying a pandas fill method {'backfill, 'bill', 'pad', 'ffill'} or a scalar value :param coerce_float: Attempt to convert the numeric non-string fields like object, decimal etc. to float if possible """ index = kwargs.pop('index', None) fill_na = kwargs.pop('fill_na', None) coerce_float = kwargs.pop('coerce_float', False) if not fields: fields = tuple(self.model._meta.get_all_field_names()) if index is not None: # add it to the fields if not already there if index not in fields: fields = fields + (index,) qs = self.values_list(*fields) recs = None try: recs = np.core.records.fromrecords(qs, names=qs.field_names) except IndexError: pass df = pd.DataFrame.from_records(recs, coerce_float=coerce_float) if index is not None: df = df.set_index(index) if fill_na is not None: if fill_na not in ['backfill', 'bfill', 'pad', 'ffill']: df = df.fillna(value=fill_na) else: df = df.fillna(method=fill_na) return df class DataFrameManager(PassThroughManager): def get_query_set(self): return DataFrameQuerySet(self.model) class ABOUTManager(models.Manager): """ABOUTManager: A manager for models based on the ABOUT abstract class.""" def resources(self): return super(ABOUTManager, self).get_queryset().exclude(resource__exact=None) def collections(self): return super(ABOUTManager, self).get_queryset().exclude(collection__exact=None) def processes(self): return super(ABOUTManager, self).get_queryset().exclude(process__exact=None) def actors(self): return super(ABOUTManager, self).get_queryset().exclude(actor__exact=None) class ResourceSurveyManager(models.Manager): def get_query_set(self): return super(ABOUTManager, self).get_queryset().filter(resource__neid=self.neid) def by_value_type(self,value_type): return self.surveys.filter(value_type__exact=value_type)
gpl-3.0
fyffyt/scikit-learn
sklearn/linear_model/tests/test_randomized_l1.py
214
4690
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr> # License: BSD 3 clause import numpy as np from scipy import sparse from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.linear_model.randomized_l1 import (lasso_stability_path, RandomizedLasso, RandomizedLogisticRegression) from sklearn.datasets import load_diabetes, load_iris from sklearn.feature_selection import f_regression, f_classif from sklearn.preprocessing import StandardScaler from sklearn.linear_model.base import center_data diabetes = load_diabetes() X = diabetes.data y = diabetes.target X = StandardScaler().fit_transform(X) X = X[:, [2, 3, 6, 7, 8]] # test that the feature score of the best features F, _ = f_regression(X, y) def test_lasso_stability_path(): # Check lasso stability path # Load diabetes data and add noisy features scaling = 0.3 coef_grid, scores_path = lasso_stability_path(X, y, scaling=scaling, random_state=42, n_resampling=30) assert_array_equal(np.argsort(F)[-3:], np.argsort(np.sum(scores_path, axis=1))[-3:]) def test_randomized_lasso(): # Check randomized lasso scaling = 0.3 selection_threshold = 0.5 # or with 1 alpha clf = RandomizedLasso(verbose=False, alpha=1, random_state=42, scaling=scaling, selection_threshold=selection_threshold) feature_scores = clf.fit(X, y).scores_ assert_array_equal(np.argsort(F)[-3:], np.argsort(feature_scores)[-3:]) # or with many alphas clf = RandomizedLasso(verbose=False, alpha=[1, 0.8], random_state=42, scaling=scaling, selection_threshold=selection_threshold) feature_scores = clf.fit(X, y).scores_ assert_equal(clf.all_scores_.shape, (X.shape[1], 2)) assert_array_equal(np.argsort(F)[-3:], np.argsort(feature_scores)[-3:]) X_r = clf.transform(X) X_full = clf.inverse_transform(X_r) assert_equal(X_r.shape[1], np.sum(feature_scores > selection_threshold)) assert_equal(X_full.shape, X.shape) clf = RandomizedLasso(verbose=False, alpha='aic', random_state=42, scaling=scaling) feature_scores = clf.fit(X, y).scores_ assert_array_equal(feature_scores, X.shape[1] * [1.]) clf = RandomizedLasso(verbose=False, scaling=-0.1) assert_raises(ValueError, clf.fit, X, y) clf = RandomizedLasso(verbose=False, scaling=1.1) assert_raises(ValueError, clf.fit, X, y) def test_randomized_logistic(): # Check randomized sparse logistic regression iris = load_iris() X = iris.data[:, [0, 2]] y = iris.target X = X[y != 2] y = y[y != 2] F, _ = f_classif(X, y) scaling = 0.3 clf = RandomizedLogisticRegression(verbose=False, C=1., random_state=42, scaling=scaling, n_resampling=50, tol=1e-3) X_orig = X.copy() feature_scores = clf.fit(X, y).scores_ assert_array_equal(X, X_orig) # fit does not modify X assert_array_equal(np.argsort(F), np.argsort(feature_scores)) clf = RandomizedLogisticRegression(verbose=False, C=[1., 0.5], random_state=42, scaling=scaling, n_resampling=50, tol=1e-3) feature_scores = clf.fit(X, y).scores_ assert_array_equal(np.argsort(F), np.argsort(feature_scores)) def test_randomized_logistic_sparse(): # Check randomized sparse logistic regression on sparse data iris = load_iris() X = iris.data[:, [0, 2]] y = iris.target X = X[y != 2] y = y[y != 2] # center here because sparse matrices are usually not centered X, y, _, _, _ = center_data(X, y, True, True) X_sp = sparse.csr_matrix(X) F, _ = f_classif(X, y) scaling = 0.3 clf = RandomizedLogisticRegression(verbose=False, C=1., random_state=42, scaling=scaling, n_resampling=50, tol=1e-3) feature_scores = clf.fit(X, y).scores_ clf = RandomizedLogisticRegression(verbose=False, C=1., random_state=42, scaling=scaling, n_resampling=50, tol=1e-3) feature_scores_sp = clf.fit(X_sp, y).scores_ assert_array_equal(feature_scores, feature_scores_sp)
bsd-3-clause
zafargilani/stcs
lib/clustering/gmm.py
1
2963
#!/usr/bin/env/ python -W ignore # -*- coding: utf-8 -*- """ Gaussian Mixture Model for clustering types of Twitter accts by using python scikit-learn (sklearn) GaussianMixture class. (gmm) refr: https://brilliant.org/wiki/gaussian-mixture-model/ libr: http://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html code: https://github.com/scikit-learn/scikit-learn/blob/master/examples/mixture (preprocessing) libr: http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.normalize.html libr: http://scikit-learn.org/stable/modules/preprocessing.html#normalization (dependencies) numpy sklearn (execute) python gmm.py K /input/to/userengagements.csv /output/to/ """ import sys import csv import numpy as np from sklearn import preprocessing from sklearn import mixture ############################################### ''' Apply Gaussian Mixture Models to the tweet feature-set for clustering entities ''' def process_gmm(): K = int(sys.argv[1]) # load all cols except screen_names (0) #X = np.loadtxt(sys.argv[2], delimiter=',', skiprows=1, X = np.loadtxt(sys.argv[2], delimiter=',', skiprows=0, #usecols=range(1,23)) # range(start,stop) - stop not inclusive, 1-16 or 1-23, 0 is screen_name usecols=range(1,16)) # range(start,stop) - stop not inclusive, 1-16 or 1-23, 0 is screen_name #X = np.genfromtxt(sys.argv[2], delimiter=',', skip_header=1, # #usecols=range(1,23)) # range(start,stop) - stop not inclusive, 1-16 or 1-23, 0 is screen_name # usecols=range(1,16)) # range(start,stop) - stop not inclusive, 1-16 or 1-23, 0 is screen_name ## Tranpose (to normalise per col), Normalise, Tranpose (back to correct matrix arrangement) #X_tran = X.transpose() #X_norm = preprocessing.normalize(X_tran, norm='l1') # L1 for least absolute deviations #X = X_norm.transpose() #print("K: {}, data shape: [{}][{}]".format(K, len(X), len(X[0]))) # Fit a Gaussian mixture with EM using K components gmm = mixture.GaussianMixture(n_components=K, covariance_type='full', tol=1e-4, max_iter=500, n_init=3, init_params='kmeans', warm_start=True, verbose=1).fit(X) ## generate random samples from the fitted Gaussian distribution #sample = gmm.sample(1000) # load screen_names with open(sys.argv[2]) as csvfile: read_csv = csv.reader(csvfile, delimiter=',') screen_names = [] for row in read_csv: screen_names.append(row[0]) # label clusters labels = gmm.predict(X) clusters = {} i = 0 for label in labels: if label in clusters: clusters[label].append(screen_names[i]) else: clusters[label] = [screen_names[i]] i += 1 # outputs for cluster in clusters: f = open(sys.argv[3]+"/gmm."+sys.argv[2].split("/")[-1:].pop()+".K"+sys.argv[1]+".cluster"+str(cluster)+".out", "w+") for c in clusters[cluster]: f.write("{}\n".format(c)) f.close() ############################################### if __name__ == "__main__": try: process_gmm() except: raise
gpl-3.0
zhewang/lcvis
curve_fit.py
2
2081
import argparse import csv import json import numpy as np # import matplotlib.pyplot as plt from supersmoother import SuperSmoother from scipy import interpolate def fillNaN(x, y): length = len(x) yy = [] for i in range(length): if 0*y[i] != 0*y[i]: for j in range(length): if y[j % length] == y[j % length]: yy.append(y[j]) break else: yy.append(y[i]) return x, yy def fitcurve(lc_data, period): Mag = np.array([i["mag"] for i in lc_data], dtype=np.float32) MJD = np.array([i["time"] for i in lc_data], dtype=np.float32) Error = np.array([i["error"] for i in lc_data], dtype=np.float32) t = MJD - MJD.min() phi = np.array([i/period - int(i/period) for i in t]) xdata = phi ydata = Mag model = SuperSmoother() model.fit(xdata, ydata) x = np.linspace(0, 1, num = 50).tolist() y = model.predict(x).tolist() data = [{"phase": [], "mag": []}] x, y = fillNaN(x, y) for i in range(len(y)): if y[i] == y[i]: data[0]["phase"].append(x[i]) data[0]["mag"].append(y[i]) return data def feature_derive(fileName, period, saveFileName): lc_file = open(fileName, 'r') lc_data = json.load(lc_file) data = fitcurve(lc_data, period) f_out = open(saveFileName, 'w') f_out.write(json.dumps(data, sort_keys=True, indent=4)) f_out.close() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('path', help='path to dataset folder') args = parser.parse_args() with open('{}/object_list.csv'.format(args.path), newline='') as csvfile: objects = csv.reader(csvfile) next(objects, None) for row in objects: obj_id = int(row[0]) period = float(row[1]) print("Fitting {}".format(obj_id)) if period > 0: feature_derive(args.path+'/'+str(obj_id)+'.dat.json', period, args.path+'/'+str(obj_id)+'.fit.json')
gpl-2.0
Hi-king/scikitcl
hmm.py
1
3145
#! /usr/bin/python # -*- coding: utf-8 -*- ##==========## ## argument ## ##==========## import argparse import sys class ArgumentParser(argparse.ArgumentParser): def error(self, message): sys.stderr.write('error: %s\n' % message) self.print_help() sys.exit(2) class MyFormatter(argparse.ArgumentDefaultsHelpFormatter, argparse.RawDescriptionHelpFormatter): pass parser = ArgumentParser( formatter_class=MyFormatter, description=''' ========================================================= Random Forest Classifier ========================================================= ''',epilog = ''' output: testset_svmdata_rforest_predict.dat ========================================================= ogaki@iis.u-tokyo.ac.jp 2013/1/10 ========================================================= ''') parser.add_argument('input_svmdata', help='.dat') parser.add_argument('testset_svmdata', help='.dat') parser.add_argument('--n_components', type=int, default=6, help='number of components') parser.add_argument('--n_mixture', type=int, default=10, help='mixture of GMM') ##========## ## Import ## ##========## import sys import os import re import scipy import csv import sklearn.hmm herepath = os.path.dirname(sys.argv[0]) sys.path.append(herepath+"/..") import egovision def main(args): ##==========## ## Constant ## ##==========## SUFFIX = "_hmm" flag_proba = True ##======## ## init ## ##======## inputfilename = args.input_svmdata testsetfilename = args.testset_svmdata n_components = args.n_components n_mixture = args.n_mixture base,ext = os.path.splitext(testsetfilename) outputfilename = base+SUFFIX+"_predict_labeled.csv" outputpredictname = base+SUFFIX+"_predict.dat" probabilities_filename = base+SUFFIX+"_probabilities.csv" ##======## ## main ## ##======## if inputfilename.find(".csv")>0: inputdata = scipy.array(egovision.readcsvtolist_float(inputfilename)) else: inputdata,inputlabels = egovision.read_libsvmdata(inputfilename) if testsetfilename.find(".csv")>0: testdata= scipy.array(egovision.readcsvtolist_float(testsetfilename)) else: testdata, testlabels = egovision.read_libsvmdata(testsetfilename) classifier = sklearn.hmm.GMMHMM(n_components,n_mixture, covariance_type="diag", n_iter=1000) # tmpdata = [] # for i in xrange(0, len(inputdata)-3199, 3200): # print i # tmpdata.append(inputdata[i:i+3200, :]) # inputdata = scipy.array(tmpdata) print inputdata.shape #print inputdata.shape classifier.fit([inputdata]) predictlabels = map(int, classifier.predict(testdata)) if flag_proba: probabilities = classifier.predict_proba(testdata) csv.writer(open(outputpredictname, "w+")).writerows( map(lambda x: [x], predictlabels) ) if flag_proba: csv.writer(open(probabilities_filename, "w+")).writerows( probabilities ) exit(0) if __name__ == '__main__': args = parser.parse_args() print args main(args)
bsd-2-clause
MohammedWasim/scikit-learn
sklearn/ensemble/tests/test_weight_boosting.py
83
17276
"""Testing for the boost module (sklearn.ensemble.boost).""" import numpy as np from sklearn.utils.testing import assert_array_equal, assert_array_less from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal, assert_true from sklearn.utils.testing import assert_raises, assert_raises_regexp from sklearn.base import BaseEstimator from sklearn.cross_validation import train_test_split from sklearn.grid_search import GridSearchCV from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import AdaBoostRegressor from sklearn.ensemble import weight_boosting from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import coo_matrix from scipy.sparse import dok_matrix from scipy.sparse import lil_matrix from sklearn.svm import SVC, SVR from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.utils import shuffle from sklearn import datasets # Common random state rng = np.random.RandomState(0) # Toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y_class = ["foo", "foo", "foo", 1, 1, 1] # test string class labels y_regr = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] y_t_class = ["foo", 1, 1] y_t_regr = [-1, 1, 1] # Load the iris dataset and randomly permute it iris = datasets.load_iris() perm = rng.permutation(iris.target.size) iris.data, iris.target = shuffle(iris.data, iris.target, random_state=rng) # Load the boston dataset and randomly permute it boston = datasets.load_boston() boston.data, boston.target = shuffle(boston.data, boston.target, random_state=rng) def test_samme_proba(): # Test the `_samme_proba` helper function. # Define some example (bad) `predict_proba` output. probs = np.array([[1, 1e-6, 0], [0.19, 0.6, 0.2], [-999, 0.51, 0.5], [1e-6, 1, 1e-9]]) probs /= np.abs(probs.sum(axis=1))[:, np.newaxis] # _samme_proba calls estimator.predict_proba. # Make a mock object so I can control what gets returned. class MockEstimator(object): def predict_proba(self, X): assert_array_equal(X.shape, probs.shape) return probs mock = MockEstimator() samme_proba = weight_boosting._samme_proba(mock, 3, np.ones_like(probs)) assert_array_equal(samme_proba.shape, probs.shape) assert_true(np.isfinite(samme_proba).all()) # Make sure that the correct elements come out as smallest -- # `_samme_proba` should preserve the ordering in each example. assert_array_equal(np.argmin(samme_proba, axis=1), [2, 0, 0, 2]) assert_array_equal(np.argmax(samme_proba, axis=1), [0, 1, 1, 1]) def test_classification_toy(): # Check classification on a toy dataset. for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg, random_state=0) clf.fit(X, y_class) assert_array_equal(clf.predict(T), y_t_class) assert_array_equal(np.unique(np.asarray(y_t_class)), clf.classes_) assert_equal(clf.predict_proba(T).shape, (len(T), 2)) assert_equal(clf.decision_function(T).shape, (len(T),)) def test_regression_toy(): # Check classification on a toy dataset. clf = AdaBoostRegressor(random_state=0) clf.fit(X, y_regr) assert_array_equal(clf.predict(T), y_t_regr) def test_iris(): # Check consistency on dataset iris. classes = np.unique(iris.target) clf_samme = prob_samme = None for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg) clf.fit(iris.data, iris.target) assert_array_equal(classes, clf.classes_) proba = clf.predict_proba(iris.data) if alg == "SAMME": clf_samme = clf prob_samme = proba assert_equal(proba.shape[1], len(classes)) assert_equal(clf.decision_function(iris.data).shape[1], len(classes)) score = clf.score(iris.data, iris.target) assert score > 0.9, "Failed with algorithm %s and score = %f" % \ (alg, score) # Somewhat hacky regression test: prior to # ae7adc880d624615a34bafdb1d75ef67051b8200, # predict_proba returned SAMME.R values for SAMME. clf_samme.algorithm = "SAMME.R" assert_array_less(0, np.abs(clf_samme.predict_proba(iris.data) - prob_samme)) def test_boston(): # Check consistency on dataset boston house prices. clf = AdaBoostRegressor(random_state=0) clf.fit(boston.data, boston.target) score = clf.score(boston.data, boston.target) assert score > 0.85 def test_staged_predict(): # Check staged predictions. rng = np.random.RandomState(0) iris_weights = rng.randint(10, size=iris.target.shape) boston_weights = rng.randint(10, size=boston.target.shape) # AdaBoost classification for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg, n_estimators=10) clf.fit(iris.data, iris.target, sample_weight=iris_weights) predictions = clf.predict(iris.data) staged_predictions = [p for p in clf.staged_predict(iris.data)] proba = clf.predict_proba(iris.data) staged_probas = [p for p in clf.staged_predict_proba(iris.data)] score = clf.score(iris.data, iris.target, sample_weight=iris_weights) staged_scores = [ s for s in clf.staged_score( iris.data, iris.target, sample_weight=iris_weights)] assert_equal(len(staged_predictions), 10) assert_array_almost_equal(predictions, staged_predictions[-1]) assert_equal(len(staged_probas), 10) assert_array_almost_equal(proba, staged_probas[-1]) assert_equal(len(staged_scores), 10) assert_array_almost_equal(score, staged_scores[-1]) # AdaBoost regression clf = AdaBoostRegressor(n_estimators=10, random_state=0) clf.fit(boston.data, boston.target, sample_weight=boston_weights) predictions = clf.predict(boston.data) staged_predictions = [p for p in clf.staged_predict(boston.data)] score = clf.score(boston.data, boston.target, sample_weight=boston_weights) staged_scores = [ s for s in clf.staged_score( boston.data, boston.target, sample_weight=boston_weights)] assert_equal(len(staged_predictions), 10) assert_array_almost_equal(predictions, staged_predictions[-1]) assert_equal(len(staged_scores), 10) assert_array_almost_equal(score, staged_scores[-1]) def test_gridsearch(): # Check that base trees can be grid-searched. # AdaBoost classification boost = AdaBoostClassifier(base_estimator=DecisionTreeClassifier()) parameters = {'n_estimators': (1, 2), 'base_estimator__max_depth': (1, 2), 'algorithm': ('SAMME', 'SAMME.R')} clf = GridSearchCV(boost, parameters) clf.fit(iris.data, iris.target) # AdaBoost regression boost = AdaBoostRegressor(base_estimator=DecisionTreeRegressor(), random_state=0) parameters = {'n_estimators': (1, 2), 'base_estimator__max_depth': (1, 2)} clf = GridSearchCV(boost, parameters) clf.fit(boston.data, boston.target) def test_pickle(): # Check pickability. import pickle # Adaboost classifier for alg in ['SAMME', 'SAMME.R']: obj = AdaBoostClassifier(algorithm=alg) obj.fit(iris.data, iris.target) score = obj.score(iris.data, iris.target) s = pickle.dumps(obj) obj2 = pickle.loads(s) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(iris.data, iris.target) assert_equal(score, score2) # Adaboost regressor obj = AdaBoostRegressor(random_state=0) obj.fit(boston.data, boston.target) score = obj.score(boston.data, boston.target) s = pickle.dumps(obj) obj2 = pickle.loads(s) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(boston.data, boston.target) assert_equal(score, score2) def test_importances(): # Check variable importances. X, y = datasets.make_classification(n_samples=2000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=1) for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg) clf.fit(X, y) importances = clf.feature_importances_ assert_equal(importances.shape[0], 10) assert_equal((importances[:3, np.newaxis] >= importances[3:]).all(), True) def test_error(): # Test that it gives proper exception on deficient input. assert_raises(ValueError, AdaBoostClassifier(learning_rate=-1).fit, X, y_class) assert_raises(ValueError, AdaBoostClassifier(algorithm="foo").fit, X, y_class) assert_raises(ValueError, AdaBoostClassifier().fit, X, y_class, sample_weight=np.asarray([-1])) def test_base_estimator(): # Test different base estimators. from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC # XXX doesn't work with y_class because RF doesn't support classes_ # Shouldn't AdaBoost run a LabelBinarizer? clf = AdaBoostClassifier(RandomForestClassifier()) clf.fit(X, y_regr) clf = AdaBoostClassifier(SVC(), algorithm="SAMME") clf.fit(X, y_class) from sklearn.ensemble import RandomForestRegressor from sklearn.svm import SVR clf = AdaBoostRegressor(RandomForestRegressor(), random_state=0) clf.fit(X, y_regr) clf = AdaBoostRegressor(SVR(), random_state=0) clf.fit(X, y_regr) # Check that an empty discrete ensemble fails in fit, not predict. X_fail = [[1, 1], [1, 1], [1, 1], [1, 1]] y_fail = ["foo", "bar", 1, 2] clf = AdaBoostClassifier(SVC(), algorithm="SAMME") assert_raises_regexp(ValueError, "worse than random", clf.fit, X_fail, y_fail) def test_sample_weight_missing(): from sklearn.linear_model import LogisticRegression from sklearn.cluster import KMeans clf = AdaBoostClassifier(LogisticRegression(), algorithm="SAMME") assert_raises(ValueError, clf.fit, X, y_regr) clf = AdaBoostClassifier(KMeans(), algorithm="SAMME") assert_raises(ValueError, clf.fit, X, y_regr) clf = AdaBoostRegressor(KMeans()) assert_raises(ValueError, clf.fit, X, y_regr) def test_sparse_classification(): # Check classification with sparse input. class CustomSVC(SVC): """SVC variant that records the nature of the training set.""" def fit(self, X, y, sample_weight=None): """Modification on fit caries data type for later verification.""" super(CustomSVC, self).fit(X, y, sample_weight=sample_weight) self.data_type_ = type(X) return self X, y = datasets.make_multilabel_classification(n_classes=1, n_samples=15, n_features=5, random_state=42) # Flatten y to a 1d array y = np.ravel(y) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) for sparse_format in [csc_matrix, csr_matrix, lil_matrix, coo_matrix, dok_matrix]: X_train_sparse = sparse_format(X_train) X_test_sparse = sparse_format(X_test) # Trained on sparse format sparse_classifier = AdaBoostClassifier( base_estimator=CustomSVC(probability=True), random_state=1, algorithm="SAMME" ).fit(X_train_sparse, y_train) # Trained on dense format dense_classifier = AdaBoostClassifier( base_estimator=CustomSVC(probability=True), random_state=1, algorithm="SAMME" ).fit(X_train, y_train) # predict sparse_results = sparse_classifier.predict(X_test_sparse) dense_results = dense_classifier.predict(X_test) assert_array_equal(sparse_results, dense_results) # decision_function sparse_results = sparse_classifier.decision_function(X_test_sparse) dense_results = dense_classifier.decision_function(X_test) assert_array_equal(sparse_results, dense_results) # predict_log_proba sparse_results = sparse_classifier.predict_log_proba(X_test_sparse) dense_results = dense_classifier.predict_log_proba(X_test) assert_array_equal(sparse_results, dense_results) # predict_proba sparse_results = sparse_classifier.predict_proba(X_test_sparse) dense_results = dense_classifier.predict_proba(X_test) assert_array_equal(sparse_results, dense_results) # score sparse_results = sparse_classifier.score(X_test_sparse, y_test) dense_results = dense_classifier.score(X_test, y_test) assert_array_equal(sparse_results, dense_results) # staged_decision_function sparse_results = sparse_classifier.staged_decision_function( X_test_sparse) dense_results = dense_classifier.staged_decision_function(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # staged_predict sparse_results = sparse_classifier.staged_predict(X_test_sparse) dense_results = dense_classifier.staged_predict(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # staged_predict_proba sparse_results = sparse_classifier.staged_predict_proba(X_test_sparse) dense_results = dense_classifier.staged_predict_proba(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # staged_score sparse_results = sparse_classifier.staged_score(X_test_sparse, y_test) dense_results = dense_classifier.staged_score(X_test, y_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # Verify sparsity of data is maintained during training types = [i.data_type_ for i in sparse_classifier.estimators_] assert all([(t == csc_matrix or t == csr_matrix) for t in types]) def test_sparse_regression(): # Check regression with sparse input. class CustomSVR(SVR): """SVR variant that records the nature of the training set.""" def fit(self, X, y, sample_weight=None): """Modification on fit caries data type for later verification.""" super(CustomSVR, self).fit(X, y, sample_weight=sample_weight) self.data_type_ = type(X) return self X, y = datasets.make_regression(n_samples=15, n_features=50, n_targets=1, random_state=42) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) for sparse_format in [csc_matrix, csr_matrix, lil_matrix, coo_matrix, dok_matrix]: X_train_sparse = sparse_format(X_train) X_test_sparse = sparse_format(X_test) # Trained on sparse format sparse_classifier = AdaBoostRegressor( base_estimator=CustomSVR(), random_state=1 ).fit(X_train_sparse, y_train) # Trained on dense format dense_classifier = dense_results = AdaBoostRegressor( base_estimator=CustomSVR(), random_state=1 ).fit(X_train, y_train) # predict sparse_results = sparse_classifier.predict(X_test_sparse) dense_results = dense_classifier.predict(X_test) assert_array_equal(sparse_results, dense_results) # staged_predict sparse_results = sparse_classifier.staged_predict(X_test_sparse) dense_results = dense_classifier.staged_predict(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) types = [i.data_type_ for i in sparse_classifier.estimators_] assert all([(t == csc_matrix or t == csr_matrix) for t in types]) def test_sample_weight_adaboost_regressor(): """ AdaBoostRegressor should work without sample_weights in the base estimator The random weighted sampling is done internally in the _boost method in AdaBoostRegressor. """ class DummyEstimator(BaseEstimator): def fit(self, X, y): pass def predict(self, X): return np.zeros(X.shape[0]) boost = AdaBoostRegressor(DummyEstimator(), n_estimators=3) boost.fit(X, y_regr) assert_equal(len(boost.estimator_weights_), len(boost.estimator_errors_))
bsd-3-clause
urinieto/hier_eval
segment_tree.py
2
51887
# CREATED:2013-08-13 12:02:42 by Brian McFee <brm2132@columbia.edu> ''' Evaluation criteria for structural segmentation fall into two categories: boundary annotation and structural annotation. Boundary annotation is the task of predicting the times at which structural changes occur, such as when a verse transitions to a refrain. Metrics for boundary annotation compare estimated segment boundaries to reference boundaries. Structural annotation is the task of assigning labels to detected segments. The estimated labels may be arbitrary strings - such as A, B, C, - and they need not describe functional concepts. Metrics for structural annotation are similar to those use for clustering data. Conventions ----------- Both boundary and structural annotation metrics require two dimensional arrays with two columns, one for boundary start times and one for boundary end times. Structural annotation further require lists of reference and estimated segment labels which must have a length which is equal to the number of rows in the corresponding list of boundary edges. In both tasks, we assume that annotations express a partitioning of the track into intervals. The function :func:`mir_eval.util.adjust_intervals` can be used to pad or crop the segment boundaries to span the duration of the entire track. Metrics ------- * :func:`mir_eval.segment.detection`: An estimated boundary is considered correct if it falls within a window around a reference boundary * :func:`mir_eval.segment.deviation`: Computes the median absolute time difference from a reference boundary to its nearest estimated boundary, and vice versa * :func:`mir_eval.segment.pairwise`: For classifying pairs of sampled time instants as belonging to the same structural component * :func:`mir_eval.segment.rand_index`: Clusters reference and estimated annotations and compares them by the Rand Index * :func:`mir_eval.segment.ari`: Computes the Rand index, adjusted for chance * :func:`mir_eval.segment.nce`: Interprets sampled reference and estimated labels as samples of random variables :math:`Y_R, Y_E` from which the conditional entropy of :math:`Y_R` given :math:`Y_E` (Under-Segmentation) and :math:`Y_E` given :math:`Y_R` (Over-Segmentation) are estimated * :func:`mir_eval.segment.mutual_information`: Computes the standard, normalized, and adjusted mutual information of sampled reference and estimated segments ''' import numpy as np import scipy.stats import scipy.sparse import scipy.misc import scipy.special import collections import warnings from mir_eval import util # For hierarchical eval import tree def validate_boundary(reference_intervals, estimated_intervals, trim): '''Checks that the input annotations to a segment boundary estimation metric (i.e. one that only takes in segment intervals) look like valid segment times, and throws helpful errors if not. :parameters: - reference_intervals : np.ndarray, shape=(n, 2) reference segment intervals, in the format returned by :func:`mir_eval.io.load_intervals` or :func:`mir_eval.io.load_labeled_intervals`. - estimated_intervals : np.ndarray, shape=(m, 2) estimated segment intervals, in the format returned by :func:`mir_eval.io.load_intervals` or :func:`mir_eval.io.load_labeled_intervals`. - trim : bool will the start and end events be trimmed? :raises: - ValueError Thrown when the provided annotations are not valid. ''' if trim: # If we're trimming, then we need at least 2 intervals min_size = 2 else: # If we're not trimming, then we only need one interval min_size = 1 if len(reference_intervals) < min_size: warnings.warn("Reference intervals are empty.") if len(estimated_intervals) < min_size: warnings.warn("Estimated intervals are empty.") for intervals in [reference_intervals, estimated_intervals]: util.validate_intervals(intervals) def validate_structure(reference_intervals, reference_labels, estimated_intervals, estimated_labels): '''Checks that the input annotations to a structure estimation metric (i.e. one that takes in both segment boundaries and their labels) look like valid segment times and labels, and throws helpful errors if not. :parameters: - reference_intervals : np.ndarray, shape=(n, 2) reference segment intervals, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. - reference_labels : list, shape=(n,) reference segment labels, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. - estimated_intervals : np.ndarray, shape=(m, 2) estimated segment intervals, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. - estimated_labels : list, shape=(m,) estimated segment labels, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. :raises: - ValueError Thrown when the provided annotations are not valid. ''' for (intervals, labels) in [(reference_intervals, reference_labels), (estimated_intervals, estimated_labels)]: util.validate_intervals(intervals) if intervals.shape[0] != len(labels): raise ValueError('Number of intervals does not match number ' 'of labels') # Check only when intervals are non-empty if intervals.size > 0: # Make sure intervals start at 0 if not np.allclose(intervals[0, 0], 0.0): raise ValueError('Segment intervals do not start at 0') if reference_intervals.size == 0: warnings.warn("Reference intervals are empty.") if estimated_intervals.size == 0: warnings.warn("Estimated intervals are empty.") # Check only when intervals are non-empty if reference_intervals.size > 0 and estimated_intervals.size > 0: if not np.allclose(reference_intervals[-1, 1], estimated_intervals[-1, 1]): raise ValueError('End times do not match') def detection(reference_intervals, estimated_intervals, window=0.5, beta=1.0, trim=False): '''Boundary detection hit-rate. A hit is counted whenever an reference boundary is within ``window`` of a estimated boundary. Note that each boundary is matched at most once: this is achieved by computing the size of a maximal matching between reference and estimated boundary points, subject to the window constraint. :usage: >>> ref_intervals, _ = mir_eval.io.load_labeled_intervals('ref.lab') >>> est_intervals, _ = mir_eval.io.load_labeled_intervals('est.lab') >>> # With 0.5s windowing >>> P05, R05, F05 = mir_eval.boundary.detection(ref_intervals, est_intervals, window=0.5) >>> # With 3s windowing >>> P3, R3, F3 = mir_eval.boundary.detection(ref_intervals, est_intervals, window=3) >>> # Ignoring hits for the beginning and end of track >>> P, R, F = mir_eval.boundary.detection(ref_intervals, est_intervals, window=0.5, trim=True) :parameters: - reference_intervals : np.ndarray, shape=(n, 2) reference segment intervals, in the format returned by :func:`mir_eval.io.load_intervals` or :func:`mir_eval.io.load_labeled_intervals`. - estimated_intervals : np.ndarray, shape=(m, 2) estimated segment intervals, in the format returned by :func:`mir_eval.io.load_intervals` or :func:`mir_eval.io.load_labeled_intervals`. - window : float > 0 size of the window of 'correctness' around ground-truth beats (in seconds) - beta : float > 0 weighting constant for F-measure. - trim : boolean if ``True``, the first and last boundary times are ignored. Typically, these denote start (0) and end-markers. :returns: - precision : float precision of estimated predictions - recall : float recall of reference reference boundaries - f_measure : float F-measure (weighted harmonic mean of ``precision`` and ``recall``) :raises: - ValueError Thrown when the provided annotations are not valid. :references: .. [#] D. Turnbull, G. Lanckriet, E. Pampalk, and M. Goto. A supervised approach for detecting boundaries in music using difference features and boosting. In Proceedings of the 8th International Society for Music Information Retrieval Conference (ISMIR), pages 51-54, 2007. ''' validate_boundary(reference_intervals, estimated_intervals, trim) # Convert intervals to boundaries reference_boundaries = util.intervals_to_boundaries(reference_intervals) estimated_boundaries = util.intervals_to_boundaries(estimated_intervals) # Suppress the first and last intervals if trim: reference_boundaries = reference_boundaries[1:-1] estimated_boundaries = estimated_boundaries[1:-1] # If we have no boundaries, we get no score. if len(reference_boundaries) == 0 or len(estimated_boundaries) == 0: return 0.0, 0.0, 0.0 matching = util.match_events(reference_boundaries, estimated_boundaries, window) precision = float(len(matching)) / len(estimated_boundaries) recall = float(len(matching)) / len(reference_boundaries) f_measure = util.f_measure(precision, recall, beta=beta) return precision, recall, f_measure def deviation(reference_intervals, estimated_intervals, trim=False): '''Compute the median deviations between reference and estimated boundary times. :usage: >>> ref_intervals, _ = mir_eval.io.load_labeled_intervals('ref.lab') >>> est_intervals, _ = mir_eval.io.load_labeled_intervals('est.lab') >>> r_to_e, e_to_r = mir_eval.boundary.deviation(ref_intervals, est_intervals) :parameters: - reference_intervals : np.ndarray, shape=(n, 2) reference segment intervals, in the format returned by :func:`mir_eval.io.load_intervals` or :func:`mir_eval.io.load_labeled_intervals`. - estimated_intervals : np.ndarray, shape=(m, 2) estimated segment intervals, in the format returned by :func:`mir_eval.io.load_intervals` or :func:`mir_eval.io.load_labeled_intervals`. - trim : boolean if ``True``, the first and last intervals are ignored. Typically, these denote start (0.0) and end-of-track markers. :returns: - reference_to_estimated : float median time from each reference boundary to the closest estimated boundary - estimated_to_reference : float median time from each estimated boundary to the closest reference boundary :raises: - ValueError Thrown when the provided annotations are not valid. :references: .. [#] D. Turnbull, G. Lanckriet, E. Pampalk, and M. Goto. A supervised approach for detecting boundaries in music using difference features and boosting. In Proceedings of the 8th International Society for Music Information Retrieval Conference (ISMIR), pages 51-54, 2007. ''' validate_boundary(reference_intervals, estimated_intervals, trim) # Convert intervals to boundaries reference_boundaries = util.intervals_to_boundaries(reference_intervals) estimated_boundaries = util.intervals_to_boundaries(estimated_intervals) # Suppress the first and last intervals if trim: reference_boundaries = reference_boundaries[1:-1] estimated_boundaries = estimated_boundaries[1:-1] # If we have no boundaries, we get no score. if len(reference_boundaries) == 0 or len(estimated_boundaries) == 0: return np.nan, np.nan dist = np.abs(np.subtract.outer(reference_boundaries, estimated_boundaries)) estimated_to_reference = np.median(dist.min(axis=0)) reference_to_estimated = np.median(dist.min(axis=1)) return reference_to_estimated, estimated_to_reference def pairwise(reference_intervals, reference_labels, estimated_intervals, estimated_labels, frame_size=0.1, beta=1.0): '''Frame-clustering segmentation evaluation by pair-wise agreement. :usage: >>> (ref_intervals, ref_labels) = mir_eval.io.load_labeled_intervals('ref.lab') >>> (est_intervals, est_labels) = mir_eval.io.load_labeled_intervals('est.lab') >>> # Trim or pad the estimate to match reference timing >>> (ref_intervals, ref_labels) = mir_eval.util.adjust_intervals(ref_intervals, ref_labels, t_min=0) >>> (est_intervals, est_labels) = mir_eval.util.adjust_intervals(est_intervals, est_labels, t_min=0, t_max=ref_intervals.max()) >>> precision, recall, f = mir_eval.structure.pairwise(ref_intervals, ref_labels, est_intervals, est_labels) :parameters: - reference_intervals : np.ndarray, shape=(n, 2) reference segment intervals, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. - reference_labels : list, shape=(n,) reference segment labels, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. - estimated_intervals : np.ndarray, shape=(m, 2) estimated segment intervals, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. - estimated_labels : list, shape=(m,) estimated segment labels, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. - frame_size : float > 0 length (in seconds) of frames for clustering - beta : float > 0 beta value for F-measure :returns: - precision : float > 0 Precision of detecting whether frames belong in the same cluster - recall : float > 0 Recall of detecting whether frames belong in the same cluster - f : float > 0 F-measure of detecting whether frames belong in the same cluster :raises: - ValueError Thrown when the provided annotations are not valid. :references: .. [#] M. Levy and M. Sandler. Structural segmentation of musical audio by constrained clustering. IEEE Transactions on Audio, Speech, and Language Processing, 16(2):318-326, 2008. ''' validate_structure(reference_intervals, reference_labels, estimated_intervals, estimated_labels) # Check for empty annotations. Don't need to check labels because # validate_structure makes sure they're the same size as intervals if reference_intervals.size == 0 or estimated_intervals.size == 0: return 0., 0., 0. # Generate the cluster labels y_ref = util.intervals_to_samples(reference_intervals, reference_labels, sample_size=frame_size)[-1] y_ref = util.index_labels(y_ref)[0] # Map to index space y_est = util.intervals_to_samples(estimated_intervals, estimated_labels, sample_size=frame_size)[-1] y_est = util.index_labels(y_est)[0] # Build the reference label agreement matrix agree_ref = np.equal.outer(y_ref, y_ref) # Count the unique pairs n_agree_ref = (agree_ref.sum() - len(y_ref)) / 2.0 # Repeat for estimate agree_est = np.equal.outer(y_est, y_est) n_agree_est = (agree_est.sum() - len(y_est)) / 2.0 # Find where they agree matches = np.logical_and(agree_ref, agree_est) n_matches = (matches.sum() - len(y_ref)) / 2.0 precision = n_matches / n_agree_est recall = n_matches / n_agree_ref f_measure = util.f_measure(precision, recall, beta=beta) return precision, recall, f_measure def rand_index(reference_intervals, reference_labels, estimated_intervals, estimated_labels, frame_size=0.1, beta=1.0): '''(Non-adjusted) Rand index. :usage: >>> (ref_intervals, ref_labels) = mir_eval.io.load_labeled_intervals('ref.lab') >>> (est_intervals, est_labels) = mir_eval.io.load_labeled_intervals('est.lab') >>> # Trim or pad the estimate to match reference timing >>> (ref_intervals, ref_labels) = mir_eval.util.adjust_intervals(ref_intervals, ref_labels, t_min=0) >>> (est_intervals, est_labels) = mir_eval.util.adjust_intervals(est_intervals, est_labels, t_min=0, t_max=ref_intervals.max()) >>> rand_index = mir_eval.structure.rand_index(ref_intervals, ref_labels, est_intervals, est_labels) :parameters: - reference_intervals : np.ndarray, shape=(n, 2) reference segment intervals, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. - reference_labels : list, shape=(n,) reference segment labels, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. - estimated_intervals : np.ndarray, shape=(m, 2) estimated segment intervals, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. - estimated_labels : list, shape=(m,) estimated segment labels, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. - frame_size : float > 0 length (in seconds) of frames for clustering - beta : float > 0 beta value for F-measure :returns: - rand_index : float > 0 Rand index :raises: - ValueError Thrown when the provided annotations are not valid. :references: .. [#] W. M. Rand. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical association, 66(336):846-850, 1971. ''' validate_structure(reference_intervals, reference_labels, estimated_intervals, estimated_labels) # Check for empty annotations. Don't need to check labels because # validate_structure makes sure they're the same size as intervals if reference_intervals.size == 0 or estimated_intervals.size == 0: return 0., 0., 0. # Generate the cluster labels y_ref = util.intervals_to_samples(reference_intervals, reference_labels, sample_size=frame_size)[-1] y_ref = util.index_labels(y_ref)[0] # Map to index space y_est = util.intervals_to_samples(estimated_intervals, estimated_labels, sample_size=frame_size)[-1] y_est = util.index_labels(y_est)[0] # Build the reference label agreement matrix agree_ref = np.equal.outer(y_ref, y_ref) # Repeat for estimate agree_est = np.equal.outer(y_est, y_est) # Find where they agree matches_pos = np.logical_and(agree_ref, agree_est) # Find where they disagree matches_neg = np.logical_and(~agree_ref, ~agree_est) n_pairs = len(y_ref) * (len(y_ref) - 1) / 2.0 n_matches_pos = (matches_pos.sum() - len(y_ref)) / 2.0 n_matches_neg = matches_neg.sum() / 2.0 rand = (n_matches_pos + n_matches_neg) / n_pairs return rand def _contingency_matrix(reference_indices, estimated_indices): ''' Computes the contingency matrix of a true labeling vs an estimated one. :parameters: - reference_indices : np.ndarray Array of reference indices - estimated_indices : np.ndarray Array of estimated indices :returns: - contingency_matrix : np.ndarray Contingency matrix, shape=(#reference indices, #estimated indices) .. note:: Based on sklearn.metrics.cluster.contingency_matrix ''' ref_classes, ref_class_idx = np.unique(reference_indices, return_inverse=True) est_classes, est_class_idx = np.unique(estimated_indices, return_inverse=True) n_ref_classes = ref_classes.shape[0] n_est_classes = est_classes.shape[0] # Using coo_matrix is faster than histogram2d return scipy.sparse.coo_matrix((np.ones(ref_class_idx.shape[0]), (ref_class_idx, est_class_idx)), shape=(n_ref_classes, n_est_classes), dtype=np.int).toarray() def _adjusted_rand_index(reference_indices, estimated_indices): ''' Compute the Rand index, adjusted for change. :parameters: - reference_indices : np.ndarray Array of reference indices - estimated_indices : np.ndarray Array of estimated indices :returns: - ari : float Adjusted Rand index .. note:: Based on sklearn.metrics.cluster.adjusted_rand_score ''' n_samples = len(reference_indices) ref_classes = np.unique(reference_indices) est_classes = np.unique(estimated_indices) # Special limit cases: no clustering since the data is not split; # or trivial clustering where each document is assigned a unique cluster. # These are perfect matches hence return 1.0. if (ref_classes.shape[0] == est_classes.shape[0] == 1 or ref_classes.shape[0] == est_classes.shape[0] == 0 or (ref_classes.shape[0] == est_classes.shape[0] == len(reference_indices))): return 1.0 contingency = _contingency_matrix(reference_indices, estimated_indices) # Compute the ARI using the contingency data sum_comb_c = sum(scipy.misc.comb(n_c, 2, exact=1) for n_c in contingency.sum(axis=1)) sum_comb_k = sum(scipy.misc.comb(n_k, 2, exact=1) for n_k in contingency.sum(axis=0)) sum_comb = sum((scipy.misc.comb(n_ij, 2, exact=1) for n_ij in contingency.flatten())) prod_comb = (sum_comb_c * sum_comb_k)/float(scipy.misc.comb(n_samples, 2)) mean_comb = (sum_comb_k + sum_comb_c)/2. return ((sum_comb - prod_comb)/(mean_comb - prod_comb)) def ari(reference_intervals, reference_labels, estimated_intervals, estimated_labels, frame_size=0.1): '''Adjusted Rand Index (ARI) for frame clustering segmentation evaluation. :usage: >>> (ref_intervals, ref_labels) = mir_eval.io.load_labeled_intervals('ref.lab') >>> (est_intervals, est_labels) = mir_eval.io.load_labeled_intervals('est.lab') >>> # Trim or pad the estimate to match reference timing >>> (ref_intervals, ref_labels) = mir_eval.util.adjust_intervals(ref_intervals, ref_labels, t_min=0) >>> (est_intervals, est_labels) = mir_eval.util.adjust_intervals(est_intervals, est_labels, t_min=0, t_max=ref_intervals.max()) >>> ari_score = mir_eval.structure.ari(ref_intervals, ref_labels, est_intervals, est_labels) :parameters: - reference_intervals : np.ndarray, shape=(n, 2) reference segment intervals, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. - reference_labels : list, shape=(n,) reference segment labels, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. - estimated_intervals : np.ndarray, shape=(m, 2) estimated segment intervals, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. - estimated_labels : list, shape=(m,) estimated segment labels, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. - frame_size : float > 0 length (in seconds) of frames for clustering :returns: - ari_score : float > 0 Adjusted Rand index between segmentations. :raises: - ValueError Thrown when the provided annotations are not valid. :references: .. [#] W. M. Rand. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical association, 66(336):846-850, 1971. .. note:: It is assumed that ``intervals[-1]`` == length of song .. note:: Segment intervals will be rounded down to the nearest multiple of frame_size. ''' validate_structure(reference_intervals, reference_labels, estimated_intervals, estimated_labels) # Check for empty annotations. Don't need to check labels because # validate_structure makes sure they're the same size as intervals if reference_intervals.size == 0 or estimated_intervals.size == 0: return 0., 0., 0. # Generate the cluster labels y_ref = util.intervals_to_samples(reference_intervals, reference_labels, sample_size=frame_size)[-1] y_ref = util.index_labels(y_ref)[0] # Map to index space y_est = util.intervals_to_samples(estimated_intervals, estimated_labels, sample_size=frame_size)[-1] y_est = util.index_labels(y_est)[0] return _adjusted_rand_index(y_ref, y_est) def _mutual_info_score(reference_indices, estimated_indices, contingency=None): ''' Compute the mutual information between two sequence labelings. :parameters: - reference_indices : np.ndarray Array of reference indices - estimated_indices : np.ndarray Array of estimated indices - contingency : np.ndarray Pre-computed contingency matrix. If None, one will be computed. :returns: - mi : float Mutual information .. note:: Based on sklearn.metrics.cluster.mutual_info_score ''' if contingency is None: contingency = _contingency_matrix(reference_indices, estimated_indices).astype(float) contingency_sum = np.sum(contingency) pi = np.sum(contingency, axis=1) pj = np.sum(contingency, axis=0) outer = np.outer(pi, pj) nnz = contingency != 0.0 # normalized contingency contingency_nm = contingency[nnz] log_contingency_nm = np.log(contingency_nm) contingency_nm /= contingency_sum # log(a / b) should be calculated as log(a) - log(b) for # possible loss of precision log_outer = -np.log(outer[nnz]) + np.log(pi.sum()) + np.log(pj.sum()) mi = (contingency_nm * (log_contingency_nm - np.log(contingency_sum)) + contingency_nm * log_outer) return mi.sum() def _entropy(labels): ''' Calculates the entropy for a labeling. :parameters: - labels : list-like List of labels. :returns: - entropy : float Entropy of the labeling. .. note:: Based on sklearn.metrics.cluster.entropy ''' if len(labels) == 0: return 1.0 label_idx = np.unique(labels, return_inverse=True)[1] pi = np.bincount(label_idx).astype(np.float) pi = pi[pi > 0] pi_sum = np.sum(pi) # log(a / b) should be calculated as log(a) - log(b) for # possible loss of precision return -np.sum((pi / pi_sum) * (np.log(pi) - np.log(pi_sum))) def _adjusted_mutual_info_score(reference_indices, estimated_indices): ''' Compute the mutual information between two sequence labelings, adjusted for chance. :parameters: - reference_indices : np.ndarray Array of reference indices - estimated_indices : np.ndarray Array of estimated indices :returns: - ami : float <= 1.0 Mutual information .. note:: Based on sklearn.metrics.cluster.adjusted_mutual_info_score and sklearn.metrics.cluster.expected_mutual_info_score ''' n_samples = len(reference_indices) ref_classes = np.unique(reference_indices) est_classes = np.unique(estimated_indices) # Special limit cases: no clustering since the data is not split. # This is a perfect match hence return 1.0. if (ref_classes.shape[0] == est_classes.shape[0] == 1 or ref_classes.shape[0] == est_classes.shape[0] == 0): return 1.0 contingency = _contingency_matrix(reference_indices, estimated_indices).astype(float) # Calculate the MI for the two clusterings mi = _mutual_info_score(reference_indices, estimated_indices, contingency=contingency) # The following code is based on # sklearn.metrics.cluster.expected_mutual_information R, C = contingency.shape N = float(n_samples) a = np.sum(contingency, axis=1).astype(np.int32) b = np.sum(contingency, axis=0).astype(np.int32) # There are three major terms to the EMI equation, which are multiplied to # and then summed over varying nij values. # While nijs[0] will never be used, having it simplifies the indexing. nijs = np.arange(0, max(np.max(a), np.max(b)) + 1, dtype='float') # Stops divide by zero warnings. As its not used, no issue. nijs[0] = 1 # term1 is nij / N term1 = nijs / N # term2 is log((N*nij) / (a * b)) == log(N * nij) - log(a * b) # term2 uses the outer product log_ab_outer = np.log(np.outer(a, b)) # term2 uses N * nij log_Nnij = np.log(N * nijs) # term3 is large, and involved many factorials. Calculate these in log # space to stop overflows. gln_a = scipy.special.gammaln(a + 1) gln_b = scipy.special.gammaln(b + 1) gln_Na = scipy.special.gammaln(N - a + 1) gln_Nb = scipy.special.gammaln(N - b + 1) gln_N = scipy.special.gammaln(N + 1) gln_nij = scipy.special.gammaln(nijs + 1) # start and end values for nij terms for each summation. start = np.array([[v - N + w for w in b] for v in a], dtype='int') start = np.maximum(start, 1) end = np.minimum(np.resize(a, (C, R)).T, np.resize(b, (R, C))) + 1 # emi itself is a summation over the various values. emi = 0 for i in range(R): for j in range(C): for nij in range(start[i, j], end[i, j]): term2 = log_Nnij[nij] - log_ab_outer[i, j] # Numerators are positive, denominators are negative. gln = (gln_a[i] + gln_b[j] + gln_Na[i] + gln_Nb[j] - gln_N - gln_nij[nij] - scipy.special.gammaln(a[i] - nij + 1) - scipy.special.gammaln(b[j] - nij + 1) - scipy.special.gammaln(N - a[i] - b[j] + nij + 1)) term3 = np.exp(gln) emi += (term1[nij] * term2 * term3) # Calculate entropy for each labeling h_true, h_pred = _entropy(reference_indices), _entropy(estimated_indices) ami = (mi - emi) / (max(h_true, h_pred) - emi) return ami def _normalized_mutual_info_score(reference_indices, estimated_indices): ''' Compute the mutual information between two sequence labelings, adjusted for chance. :parameters: - reference_indices : np.ndarray Array of reference indices - estimated_indices : np.ndarray Array of estimated indices :returns: - nmi : float <= 1.0 Normalized mutual information .. note:: Based on sklearn.metrics.cluster.normalized_mutual_info_score ''' ref_classes = np.unique(reference_indices) est_classes = np.unique(estimated_indices) # Special limit cases: no clustering since the data is not split. # This is a perfect match hence return 1.0. if (ref_classes.shape[0] == est_classes.shape[0] == 1 or ref_classes.shape[0] == est_classes.shape[0] == 0): return 1.0 contingency = _contingency_matrix(reference_indices, estimated_indices).astype(float) contingency = np.array(contingency, dtype='float') # Calculate the MI for the two clusterings mi = _mutual_info_score(reference_indices, estimated_indices, contingency=contingency) # Calculate the expected value for the mutual information # Calculate entropy for each labeling h_true, h_pred = _entropy(reference_indices), _entropy(estimated_indices) nmi = mi / max(np.sqrt(h_true * h_pred), 1e-10) return nmi def mutual_information(reference_intervals, reference_labels, estimated_intervals, estimated_labels, frame_size=0.1): '''Frame-clustering segmentation: mutual information metrics. :usage: >>> (ref_intervals, ref_labels) = mir_eval.io.load_labeled_intervals('ref.lab') >>> (est_intervals, est_labels) = mir_eval.io.load_labeled_intervals('est.lab') >>> # Trim or pad the estimate to match reference timing >>> (ref_intervals, ref_labels) = mir_eval.util.adjust_intervals(ref_intervals, ref_labels, t_min=0) >>> (est_intervals, est_labels) = mir_eval.util.adjust_intervals(est_intervals, est_labels, t_min=0, t_max=ref_intervals.max()) >>> mi, ami, nmi = mir_eval.structure.mutual_information(ref_intervals, ref_labels, est_intervals, est_labels) :parameters: - reference_intervals : np.ndarray, shape=(n, 2) reference segment intervals, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. - reference_labels : list, shape=(n,) reference segment labels, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. - estimated_intervals : np.ndarray, shape=(m, 2) estimated segment intervals, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. - estimated_labels : list, shape=(m,) estimated segment labels, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. - frame_size : float > 0 length (in seconds) of frames for clustering :returns: - MI : float > 0 Mutual information between segmentations - AMI : float Adjusted mutual information between segmentations. - NMI : float > 0 Normalize mutual information between segmentations :raises: - ValueError Thrown when the provided annotations are not valid. .. note:: It is assumed that `intervals[-1] == length of song` .. note:: Segment intervals will be rounded down to the nearest multiple of frame_size. ''' validate_structure(reference_intervals, reference_labels, estimated_intervals, estimated_labels) # Check for empty annotations. Don't need to check labels because # validate_structure makes sure they're the same size as intervals if reference_intervals.size == 0 or estimated_intervals.size == 0: return 0., 0., 0. # Generate the cluster labels y_ref = util.intervals_to_samples(reference_intervals, reference_labels, sample_size=frame_size)[-1] y_ref = util.index_labels(y_ref)[0] # Map to index space y_est = util.intervals_to_samples(estimated_intervals, estimated_labels, sample_size=frame_size)[-1] y_est = util.index_labels(y_est)[0] # Mutual information mutual_info = _mutual_info_score(y_ref, y_est) # Adjusted mutual information adj_mutual_info = _adjusted_mutual_info_score(y_ref, y_est) # Normalized mutual information norm_mutual_info = _normalized_mutual_info_score(y_ref, y_est) return mutual_info, adj_mutual_info, norm_mutual_info def nce(reference_intervals, reference_labels, estimated_intervals, estimated_labels, frame_size=0.1, beta=1.0): '''Frame-clustering segmentation: normalized conditional entropy Computes cross-entropy of cluster assignment, normalized by the max-entropy. :usage: >>> (ref_intervals, ref_labels) = mir_eval.io.load_labeled_intervals('ref.lab') >>> (est_intervals, est_labels) = mir_eval.io.load_labeled_intervals('est.lab') >>> # Trim or pad the estimate to match reference timing >>> (ref_intervals, ref_labels) = mir_eval.util.adjust_intervals(ref_intervals, ref_labels, t_min=0) >>> (est_intervals, est_labels) = mir_eval.util.adjust_intervals(est_intervals, est_labels, t_min=0, t_max=ref_intervals.max()) >>> S_over, S_under, S_F = mir_eval.structure.nce(ref_intervals, ref_labels, est_intervals, est_labels) :parameters: - reference_intervals : np.ndarray, shape=(n, 2) reference segment intervals, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. - reference_labels : list, shape=(n,) reference segment labels, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. - estimated_intervals : np.ndarray, shape=(m, 2) estimated segment intervals, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. - estimated_labels : list, shape=(m,) estimated segment labels, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. - frame_size : float > 0 length (in seconds) of frames for clustering - beta : float > 0 beta for F-measure :returns: - S_over Over-clustering score: ``1 - H(y_est | y_ref) / log(|y_est|)`` If `|y_est|==1`, then `S_over` will be 0. - S_under Under-clustering score: ``1 - H(y_ref | y_est) / log(|y_ref|)`` If `|y_ref|==1`, then `S_under` will be 0. - S_F F-measure for (S_over, S_under) :raises: - ValueError Thrown when the provided annotations are not valid. :references: .. [#] Hanna M. Lukashevich. "Towards Quantitative Measures of Evaluating Song Segmentation," in Proceedings of the 9th International Society for Music Information Retrieval Conference, 2007, pp. 375-380. ''' validate_structure(reference_intervals, reference_labels, estimated_intervals, estimated_labels) # Check for empty annotations. Don't need to check labels because # validate_structure makes sure they're the same size as intervals if reference_intervals.size == 0 or estimated_intervals.size == 0: return 0., 0., 0. # Generate the cluster labels y_ref = util.intervals_to_samples(reference_intervals, reference_labels, sample_size=frame_size)[-1] y_ref = util.index_labels(y_ref)[0] # Map to index space y_est = util.intervals_to_samples(estimated_intervals, estimated_labels, sample_size=frame_size)[-1] y_est = util.index_labels(y_est)[0] # Make the contingency table: shape = (n_ref, n_est) contingency = _contingency_matrix(y_ref, y_est).astype(float) # Normalize by the number of frames contingency = contingency / len(y_ref) # Compute the marginals p_est = contingency.sum(axis=0) p_ref = contingency.sum(axis=1) # H(true | prediction) = sum_j P[estimated = j] * # sum_i P[true = i | estimated = j] log P[true = i | estimated = j] # entropy sums over axis=0, which is true labels true_given_est = p_est.dot(scipy.stats.entropy(contingency, base=2)) pred_given_ref = p_ref.dot(scipy.stats.entropy(contingency.T, base=2)) score_under = 0.0 if contingency.shape[0] > 1: score_under = 1. - true_given_est / np.log2(contingency.shape[0]) score_over = 0.0 if contingency.shape[1] > 1: score_over = 1. - pred_given_ref / np.log2(contingency.shape[1]) f_measure = util.f_measure(score_over, score_under, beta=beta) return score_over, score_under, f_measure def evaluate(ref_intervals, ref_labels, est_intervals, est_labels, **kwargs): ''' Compute all metrics for the given reference and estimated annotations. :usage: >>> (ref_intervals, ref_labels) = mir_eval.io.load_labeled_intervals('ref.lab') >>> (est_intervals, est_labels) = mir_eval.io.load_labeled_intervals('est.lab') >>> scores = mir_eval.segment.evaluate(ref_intervals, ref_labels, est_intervals, est_labels) :parameters: - ref_intervals : np.ndarray, shape=(n, 2) reference segment intervals, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. - ref_labels : list, shape=(n,) reference segment labels, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. - est_intervals : np.ndarray, shape=(m, 2) estimated segment intervals, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. - est_labels : list, shape=(m,) estimated segment labels, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. - kwargs Additional keyword arguments which will be passed to the appropriate metric or preprocessing functions. :returns: - scores : dict Dictionary of scores, where the key is the metric name (str) and the value is the (float) score achieved. :raises: - ValueError Thrown when the provided annotations are not valid. ''' # Adjust timespan of estimations relative to ground truth ref_intervals, ref_labels = \ util.adjust_intervals(ref_intervals, labels=ref_labels, t_min=0.0) est_intervals, est_labels = \ util.adjust_intervals(est_intervals, labels=est_labels, t_min=0.0, t_max=ref_intervals[-1, -1]) # Now compute all the metrics scores = collections.OrderedDict() # Boundary detection # Force these values for window kwargs['window'] = .5 scores['Precision@0.5'], scores['Recall@0.5'], scores['F-measure@0.5'] = \ util.filter_kwargs(detection, ref_intervals, est_intervals, **kwargs) kwargs['window'] = 3.0 scores['Precision@3.0'], scores['Recall@3.0'], scores['F-measure@3.0'] = \ util.filter_kwargs(detection, ref_intervals, est_intervals, **kwargs) # Boundary deviation scores['Ref-to-est deviation'], scores['Est-to-ref deviation'] = \ util.filter_kwargs(deviation, ref_intervals, est_intervals, **kwargs) # Pairwise clustering (scores['Pairwise Precision'], scores['Pairwise Recall'], scores['Pairwise F-measure']) = util.filter_kwargs(pairwise, ref_intervals, ref_labels, est_intervals, est_labels, **kwargs) # Rand index scores['Rand Index'] = util.filter_kwargs(rand_index, ref_intervals, ref_labels, est_intervals, est_labels, **kwargs) # Adjusted rand index scores['Adjusted Rand Index'] = util.filter_kwargs(ari, ref_intervals, ref_labels, est_intervals, est_labels, **kwargs) # Mutual information metrics (scores['Mutual Information'], scores['Adjusted Mutual Information'], scores['Normalized Mutual Information']) = \ util.filter_kwargs(mutual_information, ref_intervals, ref_labels, est_intervals, est_labels, **kwargs) # Conditional entropy metrics scores['NCE Over'], scores['NCE Under'], scores['NCE F-measure'] = \ util.filter_kwargs(nce, ref_intervals, ref_labels, est_intervals, est_labels, **kwargs) return scores def hmeasure(ref_tree, est_tree, transitive=True, window=10, res=0.1, beta=1.0): ''' Computes the h-measure for the hierarchical segment annotations. :parameters: - ref_tree : tree.SegmentTree reference hierarchical tree. - est_tree : tree.SegmentTree estimated hierarchical tree. - transitive : bool whether to compute the h-measures using transitivity or not. - window : int size of the window (in frames) to compute the h-measures. - res : float > 0 frame rate in seconds. - beta : float > 0 beta parameter for the F-measure. :returns: - h_over Hierarchical oversegmentation score. - h_under Hierarchical undersegmentation score. - h_measure F-measure for (h_over, h_under) ''' def round_time(t, res=0.1): v = int(t / float(res)) * res return v def lca_matrix(tree, res): ''' Input: a segment tree Output: an n-by-n integer matrix indicating the height of the least common ancestor of each pair of frames (i, j). ''' # Figure out how many frames we need n = int((round_time(tree.root.segment.end, res=res) - round_time(tree.root.segment.start, res=res)) / res) # Build a mapping of level->height height_map = {} # Initialize the LCA matrix H = np.zeros( (n, n), dtype=np.uint8) # Breadth-first traversal of the tree queue = [tree.root] while queue: node = queue.pop(0) # Get the node's level if node.parent is not None: height_map[node] = 1 + height_map[node.parent] else: height_map[node] = 0 s = int(round_time(node.segment.start, res=res) / res) t = int(round_time(node.segment.end, res=res) / res) H[s:t, s:t] = height_map[node] queue.extend(node.children) return H def tree_gauc(H_ref, H_est, transitive, window, res): # First, build the LCA matrices # Make sure we have the right number of frames assert H_ref.shape == H_est.shape # How many frames? n = H_ref.shape[0] # By default, the window covers the entire track if window is None: window = n # Initialize the score score = 0.0 # Iterate over query frames n_f = 0 for q in range(n): # Find all pairs i,j such that H_ref[q, i] > H_ref[q, j] R = H_ref[q, max(0, q-window):min(n, q+window)] # And the same for the estimation E = H_est[q, max(0, q-window):min(n, q+window)] if transitive: # Transitive: count comparisons across any level S_ref = np.greater.outer(R, R) else: # Non-transitive: count comparisons only across immediate levels S_ref = np.equal.outer(R, R+1) S_est = np.greater.outer(E, E) # Don't count (q,q) as a result idx = min(q, window) S_ref[idx, :] = False S_ref[:, idx] = False # Compute normalization constant Z = float(S_ref.sum()) # Add up agreement for frames if Z > 0: score += np.sum(np.logical_and(S_ref, S_est)) / Z n_f += 1.0 if n_f: return score / n_f # Convention: 0/0 = 0 return score H_ref = lca_matrix(ref_tree, res) H_est = lca_matrix(est_tree, res) h_under = tree_gauc(H_ref, H_est, transitive, window, res) h_over = tree_gauc(H_est, H_ref, transitive, window, res) f_measure = util.f_measure(h_over, h_under, beta=beta) return h_over, h_under, f_measure
gpl-3.0
Barmaley-exe/scikit-learn
examples/linear_model/plot_iris_logistic.py
283
1678
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Logistic Regression 3-class Classifier ========================================================= Show below is a logistic-regression classifiers decision boundaries on the `iris <http://en.wikipedia.org/wiki/Iris_flower_data_set>`_ dataset. The datapoints are colored according to their labels. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model, datasets # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. Y = iris.target h = .02 # step size in the mesh logreg = linear_model.LogisticRegression(C=1e5) # we create an instance of Neighbours Classifier and fit the data. logreg.fit(X, Y) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = logreg.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure(1, figsize=(4, 3)) plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=Y, edgecolors='k', cmap=plt.cm.Paired) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
0todd0000/probFEApy
modelB/modelB.py
1
4767
''' This script implements the "Model B" analyses from: Pataky TC, Koseki M, Cox PG (2016) Probabilistic biomechanical finite element simulations: whole-model classical hypothesis testing based on upcrossing geometry. PeerJ Computer Science. (in press) !!!NOTE!!! In order to run this script you must modify the "path2febio" variable below. There are three sub models: modelB0.feb modelB1.feb modelB2.feb Model B0 contains an indenter with a perfectly flat surface. Models B1 and B2 add random noise to the indenter surface's z coordinates, with the randomness amplitude biased toward one side (B1) or the other (B2). The main procedures implemented in this script include: 1. FEBio model file manipulation (material stiffness distribution) 2. Simulation (using the FEBio solver version 2.5) 3. FEBio results parsing Software dependencies: (other versions of the following packages should also work) Non-Python software: FEBio 2.4 (febio.org) Python software: Python 2.7 (python.org) NumPy 1.10 (scipy.org) Matplotlib 1.5 (matplotlib.org) This script runs in 2.1 minutes on: Mac OS X 10.11, 2.7 GHz 12-core Intel Xeon E5, 32 GB 1866 MHz DDR3 ECC It was also tested on Windows 7 32-bit Version 0.1 (2016.09.02) ''' import os import numpy as np from matplotlib import pyplot from xml.etree.ElementTree import ElementTree #---------------------------------------------------------------# ### USER PARAMETERS ### ### Specify the path to the FEBio binary executable: path2febio = '/Applications/febio/v2.5.0/bin/FEBio2' ### Default executable locations are: ### Mac OS X: /Applications/FEBio2.X.X/bin/FEBio2 ### Windows: C:\\Program Files\\febio-2.X.X\\bin\\FEBio2.exe #---------------------------------------------------------------# def parse_logfile(fnameLOG, nElements=2048): ''' Reads the strain and stress tensor fields from the final data record in an FEBio log file. Arguments: fname -- full path to the log file Returns: A -- an (nElement x 12) array containing the strain and stress tensor fields ''' with open(fnameLOG, 'r') as fid: lines = fid.readlines() ind = [] for i,s in enumerate(lines): if s.startswith('Data Record'): ind.append(i) i = ind[-1] + 5 A = [s.strip().split(' ')[1:] for s in lines[i:i+nElements]] return np.asarray(A, dtype=float) def simulate(fname0, k, fname1, silent=False): ''' Simulate the model given a material value "k". Arguments: fname0 -- template FEB file E -- stiffness profile: a (101,) numpy array fname1 -- temporary FEB file to be written and simulated Returns: stress -- von Mises stress field of the indented surface (top elements only) ''' write_model(fname0, k, fname1) ### simulate: command = '"%s" -i %s' %(path2febio, fnameFEB1) if silent: command += ' -silent' os.system( command ) ### parse output: fnameLOG = os.path.splitext(fnameFEB1)[0] + '.log' A = parse_logfile(fnameLOG) stress = tensor2effective(A[:,6:]) ### reshape into an image: nex,ney = 32,32 #numbers of elements in the x and y directions n = nex*ney #total number of elements in the top layer return stress[-n:].reshape([nex,ney]) def tensor2effective(Y): ''' Compute effective strain field from a strain tensor field. (Or compute von Mises stress field from a stress tensor field) Arguments: Y -- a (101,6) numpy array containing the tensor field Returns: y -- effective strain field (or von Mises stress field): a (101,) numpy array ''' x0,x1,x2, a,b,c = Y.T s = (x0-x1)**2 + (x0-x2)**2 + (x1-x2)**2 + 6*(a*a + b*b + c*c) return (0.5*s)**0.5 def write_model(fnameFEB0, k, fnameFEB1): ''' Write a new FEB file with a new Mooney-Rivlin parameter "k" Arguments: fnameFEB0 : template FEB file k : scalar fnameFEB1 : FEB file to be written (will be overwritten if it exists) ''' tree = ElementTree() tree.parse(fnameFEB0) root = tree.getroot() root = tree.getroot() node = root.find('Material/material/k') node.text = str(k) tree.write(fnameFEB1, encoding='ISO-8859-1') #(0) Run model: dir0 = os.path.split(__file__)[0] model = 1 #0, 1 or 2 (0=flat contact surface, 1&2=jagged contact surfaces) fnameFEB0 = os.path.join( dir0 , 'modelB%d.feb' %model) fnameFEB1 = os.path.join( dir0 , 'temp.feb') k = 800 S = simulate(fnameFEB0, k, fnameFEB1, silent=False) #silent=True will silence FEBio output #(1) Plot the distribution: pyplot.close('all') fig = pyplot.figure(figsize=(6,4)) pyplot.get_current_fig_manager().window.move(0, 0) ax = pyplot.axes() ax.imshow(S, interpolation='nearest') cb = pyplot.colorbar(mappable=ax.images[0]) cb.set_label('von Mises stress (Pa)') pyplot.show()
mit
magnastrazh/NEUCOGAR
nest/serotonin/research/C/nest-2.10.0/examples/nest/Potjans_2014/spike_analysis.py
13
5601
# -*- coding: utf-8 -*- # # spike_analysis.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. # Merges spike files, produces raster plots, calculates and plots firing rates import numpy as np import glob import matplotlib.pyplot as plt import os datapath = '../data' # get simulation time and numbers of neurons recorded from sim_params.sli f = open(os.path.join(datapath, 'sim_params.sli'), 'r') for line in f: if 't_sim' in line: T = float(line.split()[1]) if '/record_fraction_neurons_spikes' in line: record_frac = line.split()[1] f.close() f = open(os.path.join(datapath, 'sim_params.sli'), 'r') for line in f: if record_frac == 'true': if 'frac_rec_spikes' in line: frac_rec = float(line.split()[1]) else: if 'n_rec_spikes' in line: n_rec = int(line.split()[1]) f.close() T_start = 200. # starting point of analysis (to avoid transients) # load GIDs gidfile = open(os.path.join(datapath , 'population_GIDs.dat'), 'r') gids = [] for l in gidfile: a = l.split() gids.append([int(a[0]),int(a[1])]) print 'Global IDs:' print gids print # number of populations num_pops = len(gids) print 'Number of populations:' print num_pops print # first GID in each population raw_first_gids = [gids[i][0] for i in np.arange(len(gids))] # population sizes pop_sizes = [gids[i][1]-gids[i][0]+1 for i in np.arange(len(gids))] # numbers of neurons for which spikes were recorded if record_frac == 'true': rec_sizes = [int(pop_sizes[i]*frac_rec) for i in xrange(len(pop_sizes))] else: rec_sizes = [n_rec]*len(pop_sizes) # first GID of each population once device GIDs are dropped first_gids=[int(1 + np.sum(pop_sizes[:i])) for i in np.arange(len(pop_sizes))] # last GID of each population once device GIDs are dropped last_gids = [int(np.sum(pop_sizes[:i+1])) for i in np.arange(len(pop_sizes))] # convert lists to a nicer format, i.e. [[2/3e, 2/3i], []....] Pop_sizes =[pop_sizes[i:i+2] for i in xrange(0,len(pop_sizes),2)] print 'Population sizes:' print Pop_sizes print Raw_first_gids =[raw_first_gids[i:i+2] for i in xrange(0,len(raw_first_gids),2)] First_gids = [first_gids[i:i+2] for i in xrange(0,len(first_gids),2)] Last_gids = [last_gids[i:i+2] for i in xrange(0,len(last_gids),2)] # total number of neurons in the simulation num_neurons = last_gids[len(last_gids)-1] print 'Total number of neurons:' print num_neurons print # load spikes from gdf files, correct GIDs and merge them in population files, # and store spike trains # will contain neuron id resolved spike trains neuron_spikes = [[] for i in np.arange(num_neurons+1)] # container for population-resolved spike data spike_data= [[[],[]],[[],[]],[[],[]],[[],[]],[[],[]],[[],[]],[[],[]],[[],[]]] counter = 0 for layer in ['0','1','2','3']: for population in ['0','1']: output = os.path.join(datapath, 'population_spikes-{}-{}.gdf'.format(layer, population)) file_pattern = os.path.join(datapath, 'spikes_{}_{}*'.format(layer, population)) files = glob.glob(file_pattern) print 'Merge '+str(len(files))+' spike files from L'+layer+'P'+population if files: merged_file = open(output,'w') for f in files: data = open(f,'r') for l in data : a = l.split() a[0] = int(a[0]) a[1] = float(a[1]) raw_first_gid = Raw_first_gids[int(layer)][int(population)] first_gid = First_gids[int(layer)][int(population)] a[0] = a[0] - raw_first_gid + first_gid if(a[1] > T_start): # discard data in the start-up phase spike_data[counter][0].append(num_neurons-a[0]) spike_data[counter][1].append(a[1]-T_start) neuron_spikes[a[0]].append(a[1]-T_start) converted_line = str(a[0]) + '\t' + str(a[1]) +'\n' merged_file.write(converted_line) data.close() merged_file.close() counter +=1 clrs=['0','0.5','0','0.5','0','0.5','0','0.5'] plt.ion() # raster plot plt.figure(1) counter = 1 for j in np.arange(num_pops): for i in np.arange(first_gids[j],first_gids[j]+rec_sizes[j]): plt.plot(neuron_spikes[i],np.ones_like(neuron_spikes[i])+sum(rec_sizes)-counter,'k o',ms=1, mfc=clrs[j],mec=clrs[j]) counter+=1 plt.xlim(0,T-T_start) plt.ylim(0,sum(rec_sizes)) plt.xlabel(r'time (ms)') plt.ylabel(r'neuron id') plt.savefig(os.path.join(datapath, 'rasterplot.png')) # firing rates rates = [] temp = 0 for i in np.arange(num_pops): for j in np.arange(first_gids[i], last_gids[i]): temp+= len(neuron_spikes[j]) rates.append(temp/(rec_sizes[i]*(T-T_start))*1e3) temp = 0 print print 'Firing rates:' print rates plt.figure(2) ticks= np.arange(num_pops) plt.bar(ticks, rates, width=0.9, color='k') xticklabels = ['L2/3e','L2/3i','L4e','L4i','L5e','L5i','L6e','L6i'] plt.setp(plt.gca(), xticks=ticks+0.5, xticklabels=xticklabels) plt.xlabel(r'subpopulation') plt.ylabel(r'firing rate (spikes/s)') plt.savefig(os.path.join(datapath, 'firing_rates.png')) plt.show()
gpl-2.0
andnovar/ggplot
ggplot/tests/test_scale_facet_wrap.py
12
4935
from __future__ import (absolute_import, division, print_function, unicode_literals) from . import cleanup, get_assert_same_ggplot assert_same_ggplot = get_assert_same_ggplot(__file__) from nose.tools import assert_true, assert_raises from ggplot import * import matplotlib.pyplot as plt @cleanup def test_not_turn_off_first_axis(): # as per GH47, the first axis was switched off when we had a square number of axis import pandas as pd # 4 plots dat4 = pd.DataFrame({'x': range(40), 'y': range(40), 'w': (list('abcd')* 10)}) gg = ggplot(aes(x = 'x', y = 'y'), data=dat4) + geom_line() + facet_wrap('w') assert_same_ggplot(gg, "first_ax_not_off") @cleanup def test_scale_facet_wrap_visual(): p = ggplot(aes(x="price"), data=diamonds) + geom_histogram() assert_same_ggplot(p + facet_wrap("cut", scales="free"), "free") assert_same_ggplot(p + facet_wrap("cut", scales="free_x"), "free_x") assert_same_ggplot(p + facet_wrap("cut", scales="free_y"), "free_y") assert_same_ggplot(p + facet_wrap("cut", scales=None), "none") def test_scale_facet_wrap_exception(): with assert_raises(Exception): # need at least one variable facet_wrap() def test_add_scale_returns_new_ggplot_object(): # an older implementation set values on the original ggplot object and only made a deepcopy on the last step. # Actually all geoms/... should have such a test... p = ggplot(aes(x="price"), data=diamonds) + geom_histogram() c, r = p.n_columns, p.n_rows p2 = p + facet_wrap("cut", scales="free") cn, rn = p.n_columns, p.n_rows c2, r2 = p2.n_columns, p2.n_rows assert_true(c==cn and r==rn, "Original object changed!") assert_true(c!=c2 or r!=r2, "New object not changed!") @cleanup def test_scale_facet_wrap_internals(): def convertText(t): """Return a float for the text value of a matplotlib Text object.""" try: return float(t.get_text()) except: # don't mask the error, just let the assert raise the test failure return 0 def empty(t): """Return True if the Text object is an empty string.""" return len(t.get_text().strip()) == 0 p = ggplot(aes(x="price"), data=diamonds) + geom_histogram() # Only p2 has the new measures for column! p2 = p + facet_wrap("cut", scales="free") print(p2) columns = p2.n_columns fig = plt.gcf() # When the scales are free, every plot should have x and y labels. Don't # test the tick values because each plot is free to set its own. for ax in fig.axes: assert_true(len(ax.get_xticklabels()) > 0) assert_true(len(ax.get_yticklabels()) > 0) print(p + facet_wrap("cut", scales="free_x")) fig = plt.gcf() yticks = fig.axes[0].get_yticks() for pos, ax in enumerate(fig.axes): # When only the x-axis is free, all plots should have the same y scale assert_true(all(ax.get_yticks() == yticks)) if pos % columns == 0: # Only plots in the first column should have y labels assert_true(all(list(map(convertText, ax.get_yticklabels())) == yticks)) else: # Plots in all other columns should have no labels assert_true(all(map(empty, ax.get_yticklabels()))) # Every plot should have labels on its x-axis assert_true(len(ax.get_xticklabels()) > 0) print(p + facet_wrap("cut", scales="free_y")) fig = plt.gcf() xticks = fig.axes[0].get_xticks() subplots = len(fig.axes) for pos, ax in enumerate(fig.axes): assert_true(all(ax.get_xticks() == xticks)) if subplots - pos > columns: # Only the bottom plot of each column gets x labels. So only the # last N plots (where N = number of columns) get labels. assert_true(all(map(empty, ax.get_xticklabels()))) else: assert_true(all(list(map(convertText, ax.get_xticklabels())) == xticks)) # All plots should have y labels assert_true(len(ax.get_yticklabels()) > 0) print(p + facet_wrap("cut", scales=None)) fig = plt.gcf() xticks = fig.axes[0].get_xticks() yticks = fig.axes[0].get_yticks() for pos, ax in enumerate(fig.axes): # Every plot should have the same x and y scales assert_true(all(ax.get_xticks() == xticks)) assert_true(all(ax.get_yticks() == yticks)) # Repeat the tests for labels from both free_x and free_y if subplots - pos > columns: assert_true(all(map(empty, ax.get_xticklabels()))) else: assert_true(all(list(map(convertText, ax.get_xticklabels())) == xticks)) if pos % columns == 0: assert_true(all(list(map(convertText, ax.get_yticklabels())) == yticks)) else: assert_true(all(map(empty, ax.get_yticklabels())))
bsd-2-clause
zzcclp/spark
python/run-tests.py
15
13614
#!/usr/bin/env python3 # # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import logging from argparse import ArgumentParser import os import re import shutil import subprocess import sys import tempfile from threading import Thread, Lock import time import uuid import queue as Queue from multiprocessing import Manager # Append `SPARK_HOME/dev` to the Python path so that we can import the sparktestsupport module sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), "../dev/")) from sparktestsupport import SPARK_HOME # noqa (suppress pep8 warnings) from sparktestsupport.shellutils import which, subprocess_check_output # noqa from sparktestsupport.modules import all_modules, pyspark_sql # noqa python_modules = dict((m.name, m) for m in all_modules if m.python_test_goals if m.name != 'root') def print_red(text): print('\033[31m' + text + '\033[0m') SKIPPED_TESTS = None LOG_FILE = os.path.join(SPARK_HOME, "python/unit-tests.log") FAILURE_REPORTING_LOCK = Lock() LOGGER = logging.getLogger() # Find out where the assembly jars are located. # TODO: revisit for Scala 2.13 for scala in ["2.12"]: build_dir = os.path.join(SPARK_HOME, "assembly", "target", "scala-" + scala) if os.path.isdir(build_dir): SPARK_DIST_CLASSPATH = os.path.join(build_dir, "jars", "*") break else: raise RuntimeError("Cannot find assembly build directory, please build Spark first.") def run_individual_python_test(target_dir, test_name, pyspark_python): env = dict(os.environ) env.update({ 'SPARK_DIST_CLASSPATH': SPARK_DIST_CLASSPATH, 'SPARK_TESTING': '1', 'SPARK_PREPEND_CLASSES': '1', 'PYSPARK_PYTHON': which(pyspark_python), 'PYSPARK_DRIVER_PYTHON': which(pyspark_python), # Preserve legacy nested timezone behavior for pyarrow>=2, remove after SPARK-32285 'PYARROW_IGNORE_TIMEZONE': '1', }) # Create a unique temp directory under 'target/' for each run. The TMPDIR variable is # recognized by the tempfile module to override the default system temp directory. tmp_dir = os.path.join(target_dir, str(uuid.uuid4())) while os.path.isdir(tmp_dir): tmp_dir = os.path.join(target_dir, str(uuid.uuid4())) os.mkdir(tmp_dir) env["TMPDIR"] = tmp_dir metastore_dir = os.path.join(tmp_dir, str(uuid.uuid4())) while os.path.isdir(metastore_dir): metastore_dir = os.path.join(metastore_dir, str(uuid.uuid4())) os.mkdir(metastore_dir) # Also override the JVM's temp directory by setting driver and executor options. java_options = "-Djava.io.tmpdir={0} -Dio.netty.tryReflectionSetAccessible=true".format(tmp_dir) spark_args = [ "--conf", "spark.driver.extraJavaOptions='{0}'".format(java_options), "--conf", "spark.executor.extraJavaOptions='{0}'".format(java_options), "--conf", "spark.sql.warehouse.dir='{0}'".format(metastore_dir), "pyspark-shell" ] env["PYSPARK_SUBMIT_ARGS"] = " ".join(spark_args) LOGGER.info("Starting test(%s): %s", pyspark_python, test_name) start_time = time.time() try: per_test_output = tempfile.TemporaryFile() retcode = subprocess.Popen( [os.path.join(SPARK_HOME, "bin/pyspark")] + test_name.split(), stderr=per_test_output, stdout=per_test_output, env=env).wait() shutil.rmtree(tmp_dir, ignore_errors=True) except: LOGGER.exception("Got exception while running %s with %s", test_name, pyspark_python) # Here, we use os._exit() instead of sys.exit() in order to force Python to exit even if # this code is invoked from a thread other than the main thread. os._exit(1) duration = time.time() - start_time # Exit on the first failure. if retcode != 0: try: with FAILURE_REPORTING_LOCK: with open(LOG_FILE, 'ab') as log_file: per_test_output.seek(0) log_file.writelines(per_test_output) per_test_output.seek(0) for line in per_test_output: decoded_line = line.decode("utf-8", "replace") if not re.match('[0-9]+', decoded_line): print(decoded_line, end='') per_test_output.close() except: LOGGER.exception("Got an exception while trying to print failed test output") finally: print_red("\nHad test failures in %s with %s; see logs." % (test_name, pyspark_python)) # Here, we use os._exit() instead of sys.exit() in order to force Python to exit even if # this code is invoked from a thread other than the main thread. os._exit(-1) else: skipped_counts = 0 try: per_test_output.seek(0) # Here expects skipped test output from unittest when verbosity level is # 2 (or --verbose option is enabled). decoded_lines = map(lambda line: line.decode("utf-8", "replace"), iter(per_test_output)) skipped_tests = list(filter( lambda line: re.search(r'test_.* \(pyspark\..*\) ... (skip|SKIP)', line), decoded_lines)) skipped_counts = len(skipped_tests) if skipped_counts > 0: key = (pyspark_python, test_name) assert SKIPPED_TESTS is not None SKIPPED_TESTS[key] = skipped_tests per_test_output.close() except: import traceback print_red("\nGot an exception while trying to store " "skipped test output:\n%s" % traceback.format_exc()) # Here, we use os._exit() instead of sys.exit() in order to force Python to exit even if # this code is invoked from a thread other than the main thread. os._exit(-1) if skipped_counts != 0: LOGGER.info( "Finished test(%s): %s (%is) ... %s tests were skipped", pyspark_python, test_name, duration, skipped_counts) else: LOGGER.info( "Finished test(%s): %s (%is)", pyspark_python, test_name, duration) def get_default_python_executables(): python_execs = [x for x in ["python3.6", "pypy3"] if which(x)] if "python3.6" not in python_execs: p = which("python3") if not p: LOGGER.error("No python3 executable found. Exiting!") os._exit(1) else: python_execs.insert(0, p) return python_execs def parse_opts(): parser = ArgumentParser( prog="run-tests" ) parser.add_argument( "--python-executables", type=str, default=','.join(get_default_python_executables()), help="A comma-separated list of Python executables to test against (default: %(default)s)" ) parser.add_argument( "--modules", type=str, default=",".join(sorted(python_modules.keys())), help="A comma-separated list of Python modules to test (default: %(default)s)" ) parser.add_argument( "-p", "--parallelism", type=int, default=4, help="The number of suites to test in parallel (default %(default)d)" ) parser.add_argument( "--verbose", action="store_true", help="Enable additional debug logging" ) group = parser.add_argument_group("Developer Options") group.add_argument( "--testnames", type=str, default=None, help=( "A comma-separated list of specific modules, classes and functions of doctest " "or unittest to test. " "For example, 'pyspark.sql.foo' to run the module as unittests or doctests, " "'pyspark.sql.tests FooTests' to run the specific class of unittests, " "'pyspark.sql.tests FooTests.test_foo' to run the specific unittest in the class. " "'--modules' option is ignored if they are given.") ) args, unknown = parser.parse_known_args() if unknown: parser.error("Unsupported arguments: %s" % ' '.join(unknown)) if args.parallelism < 1: parser.error("Parallelism cannot be less than 1") return args def _check_coverage(python_exec): # Make sure if coverage is installed. try: subprocess_check_output( [python_exec, "-c", "import coverage"], stderr=open(os.devnull, 'w')) except: print_red("Coverage is not installed in Python executable '%s' " "but 'COVERAGE_PROCESS_START' environment variable is set, " "exiting." % python_exec) sys.exit(-1) def main(): opts = parse_opts() if opts.verbose: log_level = logging.DEBUG else: log_level = logging.INFO should_test_modules = opts.testnames is None logging.basicConfig(stream=sys.stdout, level=log_level, format="%(message)s") LOGGER.info("Running PySpark tests. Output is in %s", LOG_FILE) if os.path.exists(LOG_FILE): os.remove(LOG_FILE) python_execs = opts.python_executables.split(',') LOGGER.info("Will test against the following Python executables: %s", python_execs) if should_test_modules: modules_to_test = [] for module_name in opts.modules.split(','): if module_name in python_modules: modules_to_test.append(python_modules[module_name]) else: print("Error: unrecognized module '%s'. Supported modules: %s" % (module_name, ", ".join(python_modules))) sys.exit(-1) LOGGER.info("Will test the following Python modules: %s", [x.name for x in modules_to_test]) else: testnames_to_test = opts.testnames.split(',') LOGGER.info("Will test the following Python tests: %s", testnames_to_test) task_queue = Queue.PriorityQueue() for python_exec in python_execs: # Check if the python executable has coverage installed when 'COVERAGE_PROCESS_START' # environmental variable is set. if "COVERAGE_PROCESS_START" in os.environ: _check_coverage(python_exec) python_implementation = subprocess_check_output( [python_exec, "-c", "import platform; print(platform.python_implementation())"], universal_newlines=True).strip() LOGGER.info("%s python_implementation is %s", python_exec, python_implementation) LOGGER.info("%s version is: %s", python_exec, subprocess_check_output( [python_exec, "--version"], stderr=subprocess.STDOUT, universal_newlines=True).strip()) if should_test_modules: for module in modules_to_test: if python_implementation not in module.excluded_python_implementations: for test_goal in module.python_test_goals: heavy_tests = ['pyspark.streaming.tests', 'pyspark.mllib.tests', 'pyspark.tests', 'pyspark.sql.tests', 'pyspark.ml.tests', 'pyspark.pandas.tests'] if any(map(lambda prefix: test_goal.startswith(prefix), heavy_tests)): priority = 0 else: priority = 100 task_queue.put((priority, (python_exec, test_goal))) else: for test_goal in testnames_to_test: task_queue.put((0, (python_exec, test_goal))) # Create the target directory before starting tasks to avoid races. target_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), 'target')) if not os.path.isdir(target_dir): os.mkdir(target_dir) def process_queue(task_queue): while True: try: (priority, (python_exec, test_goal)) = task_queue.get_nowait() except Queue.Empty: break try: run_individual_python_test(target_dir, test_goal, python_exec) finally: task_queue.task_done() start_time = time.time() for _ in range(opts.parallelism): worker = Thread(target=process_queue, args=(task_queue,)) worker.daemon = True worker.start() try: task_queue.join() except (KeyboardInterrupt, SystemExit): print_red("Exiting due to interrupt") sys.exit(-1) total_duration = time.time() - start_time LOGGER.info("Tests passed in %i seconds", total_duration) for key, lines in sorted(SKIPPED_TESTS.items()): pyspark_python, test_name = key LOGGER.info("\nSkipped tests in %s with %s:" % (test_name, pyspark_python)) for line in lines: LOGGER.info(" %s" % line.rstrip()) if __name__ == "__main__": SKIPPED_TESTS = Manager().dict() main()
apache-2.0
billy-inn/scikit-learn
examples/mixture/plot_gmm.py
248
2817
""" ================================= Gaussian Mixture Model Ellipsoids ================================= Plot the confidence ellipsoids of a mixture of two Gaussians with EM and variational Dirichlet process. Both models have access to five components with which to fit the data. Note that the EM model will necessarily use all five components while the DP model will effectively only use as many as are needed for a good fit. This is a property of the Dirichlet Process prior. Here we can see that the EM model splits some components arbitrarily, because it is trying to fit too many components, while the Dirichlet Process model adapts it number of state automatically. This example doesn't show it, as we're in a low-dimensional space, but another advantage of the Dirichlet process model is that it can fit full covariance matrices effectively even when there are less examples per cluster than there are dimensions in the data, due to regularization properties of the inference algorithm. """ import itertools import numpy as np from scipy import linalg import matplotlib.pyplot as plt import matplotlib as mpl from sklearn import mixture # Number of samples per component n_samples = 500 # Generate random sample, two components np.random.seed(0) C = np.array([[0., -0.1], [1.7, .4]]) X = np.r_[np.dot(np.random.randn(n_samples, 2), C), .7 * np.random.randn(n_samples, 2) + np.array([-6, 3])] # Fit a mixture of Gaussians with EM using five components gmm = mixture.GMM(n_components=5, covariance_type='full') gmm.fit(X) # Fit a Dirichlet process mixture of Gaussians using five components dpgmm = mixture.DPGMM(n_components=5, covariance_type='full') dpgmm.fit(X) color_iter = itertools.cycle(['r', 'g', 'b', 'c', 'm']) for i, (clf, title) in enumerate([(gmm, 'GMM'), (dpgmm, 'Dirichlet Process GMM')]): splot = plt.subplot(2, 1, 1 + i) Y_ = clf.predict(X) for i, (mean, covar, color) in enumerate(zip( clf.means_, clf._get_covars(), color_iter)): v, w = linalg.eigh(covar) u = w[0] / linalg.norm(w[0]) # as the DP will not use every component it has access to # unless it needs it, we shouldn't plot the redundant # components. if not np.any(Y_ == i): continue plt.scatter(X[Y_ == i, 0], X[Y_ == i, 1], .8, color=color) # Plot an ellipse to show the Gaussian component angle = np.arctan(u[1] / u[0]) angle = 180 * angle / np.pi # convert to degrees ell = mpl.patches.Ellipse(mean, v[0], v[1], 180 + angle, color=color) ell.set_clip_box(splot.bbox) ell.set_alpha(0.5) splot.add_artist(ell) plt.xlim(-10, 10) plt.ylim(-3, 6) plt.xticks(()) plt.yticks(()) plt.title(title) plt.show()
bsd-3-clause
hetaodie/hetaodie.github.io
assets/media/uda-ml/fjd/ccjl/DBSCAN 解决/dbscan_lab_helper.py
1
2801
import matplotlib.pyplot as plt import numpy as np from itertools import cycle, islice from sklearn import cluster figsize = (10,10) point_size=150 point_border=0.8 def plot_dataset(dataset, xlim=(-15, 15), ylim=(-15, 15)): plt.figure(figsize=figsize) plt.scatter(dataset[:,0], dataset[:,1], s=point_size, color="#00B3E9", edgecolor='black', lw=point_border) plt.xlim(xlim) plt.ylim(ylim) plt.show() def plot_clustered_dataset(dataset, y_pred, xlim=(-15, 15), ylim=(-15, 15), neighborhood=False, epsilon=0.5): fig, ax = plt.subplots(figsize=figsize) colors = np.array(list(islice(cycle(['#df8efd', '#78c465', '#ff8e34', '#f65e97', '#a65628', '#984ea3', '#999999', '#e41a1c', '#dede00']), int(max(y_pred) + 1)))) colors = np.append(colors, '#BECBD6') if neighborhood: for point in dataset: circle1 = plt.Circle(point, epsilon, color='#666666', fill=False, zorder=0, alpha=0.3) ax.add_artist(circle1) ax.scatter(dataset[:, 0], dataset[:, 1], s=point_size, color=colors[y_pred], zorder=10, edgecolor='black', lw=point_border) plt.xlim(xlim) plt.ylim(ylim) plt.show() def plot_dbscan_grid(dataset, eps_values, min_samples_values): fig = plt.figure(figsize=(16, 20)) plt.subplots_adjust(left=.02, right=.98, bottom=0.001, top=.96, wspace=.05, hspace=0.25) plot_num = 1 for i, min_samples in enumerate(min_samples_values): for j, eps in enumerate(eps_values): ax = fig.add_subplot( len(min_samples_values) , len(eps_values), plot_num) dbscan = cluster.DBSCAN(eps=eps, min_samples=min_samples) y_pred_2 = dbscan.fit_predict(dataset) colors = np.array(list(islice(cycle(['#df8efd', '#78c465', '#ff8e34', '#f65e97', '#a65628', '#984ea3', '#999999', '#e41a1c', '#dede00']), int(max(y_pred_2) + 1)))) colors = np.append(colors, '#BECBD6') for point in dataset: circle1 = plt.Circle(point, eps, color='#666666', fill=False, zorder=0, alpha=0.3) ax.add_artist(circle1) ax.text(0, -0.03, 'Epsilon: {} \nMin_samples: {}'.format(eps, min_samples), transform=ax.transAxes, fontsize=16, va='top') ax.scatter(dataset[:, 0], dataset[:, 1], s=50, color=colors[y_pred_2], zorder=10, edgecolor='black', lw=0.5) plt.xticks(()) plt.yticks(()) plt.xlim(-14, 5) plt.ylim(-12, 7) plot_num = plot_num + 1 plt.show()
mit
andyraib/data-storage
python_scripts/env/lib/python3.6/site-packages/matplotlib/tri/triinterpolate.py
10
66366
""" Interpolation inside triangular grids. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six from six.moves import xrange from matplotlib.tri import Triangulation from matplotlib.tri.trifinder import TriFinder from matplotlib.tri.tritools import TriAnalyzer import numpy as np import warnings __all__ = ('TriInterpolator', 'LinearTriInterpolator', 'CubicTriInterpolator') class TriInterpolator(object): """ Abstract base class for classes used to perform interpolation on triangular grids. Derived classes implement the following methods: - ``__call__(x, y)`` , where x, y are array_like point coordinates of the same shape, and that returns a masked array of the same shape containing the interpolated z-values. - ``gradient(x, y)`` , where x, y are array_like point coordinates of the same shape, and that returns a list of 2 masked arrays of the same shape containing the 2 derivatives of the interpolator (derivatives of interpolated z values with respect to x and y). """ def __init__(self, triangulation, z, trifinder=None): if not isinstance(triangulation, Triangulation): raise ValueError("Expected a Triangulation object") self._triangulation = triangulation self._z = np.asarray(z) if self._z.shape != self._triangulation.x.shape: raise ValueError("z array must have same length as triangulation x" " and y arrays") if trifinder is not None and not isinstance(trifinder, TriFinder): raise ValueError("Expected a TriFinder object") self._trifinder = trifinder or self._triangulation.get_trifinder() # Default scaling factors : 1.0 (= no scaling) # Scaling may be used for interpolations for which the order of # magnitude of x, y has an impact on the interpolant definition. # Please refer to :meth:`_interpolate_multikeys` for details. self._unit_x = 1.0 self._unit_y = 1.0 # Default triangle renumbering: None (= no renumbering) # Renumbering may be used to avoid unecessary computations # if complex calculations are done inside the Interpolator. # Please refer to :meth:`_interpolate_multikeys` for details. self._tri_renum = None # __call__ and gradient docstrings are shared by all subclasses # (except, if needed, relevant additions). # However these methods are only implemented in subclasses to avoid # confusion in the documentation. docstring__call__ = """ Returns a masked array containing interpolated values at the specified x,y points. Parameters ---------- x, y : array-like x and y coordinates of the same shape and any number of dimensions. Returns ------- z : np.ma.array Masked array of the same shape as *x* and *y* ; values corresponding to (*x*, *y*) points outside of the triangulation are masked out. """ docstringgradient = """ Returns a list of 2 masked arrays containing interpolated derivatives at the specified x,y points. Parameters ---------- x, y : array-like x and y coordinates of the same shape and any number of dimensions. Returns ------- dzdx, dzdy : np.ma.array 2 masked arrays of the same shape as *x* and *y* ; values corresponding to (x,y) points outside of the triangulation are masked out. The first returned array contains the values of :math:`\\frac{\\partial z}{\\partial x}` and the second those of :math:`\\frac{\\partial z}{\\partial y}`. """ def _interpolate_multikeys(self, x, y, tri_index=None, return_keys=('z',)): """ Versatile (private) method defined for all TriInterpolators. :meth:`_interpolate_multikeys` is a wrapper around method :meth:`_interpolate_single_key` (to be defined in the child subclasses). :meth:`_interpolate_single_key actually performs the interpolation, but only for 1-dimensional inputs and at valid locations (inside unmasked triangles of the triangulation). The purpose of :meth:`_interpolate_multikeys` is to implement the following common tasks needed in all subclasses implementations: - calculation of containing triangles - dealing with more than one interpolation request at the same location (e.g., if the 2 derivatives are requested, it is unnecessary to compute the containing triangles twice) - scaling according to self._unit_x, self._unit_y - dealing with points outside of the grid (with fill value np.nan) - dealing with multi-dimensionnal *x*, *y* arrays: flattening for :meth:`_interpolate_params` call and final reshaping. (Note that np.vectorize could do most of those things very well for you, but it does it by function evaluations over successive tuples of the input arrays. Therefore, this tends to be more time consuming than using optimized numpy functions - e.g., np.dot - which can be used easily on the flattened inputs, in the child-subclass methods :meth:`_interpolate_single_key`.) It is guaranteed that the calls to :meth:`_interpolate_single_key` will be done with flattened (1-d) array_like input parameters `x`, `y` and with flattened, valid `tri_index` arrays (no -1 index allowed). Parameters ---------- x, y : array_like x and y coordinates indicating where interpolated values are requested. tri_index : integer array_like, optional Array of the containing triangle indices, same shape as *x* and *y*. Defaults to None. If None, these indices will be computed by a TriFinder instance. (Note: For point outside the grid, tri_index[ipt] shall be -1). return_keys : tuple of keys from {'z', 'dzdx', 'dzdy'} Defines the interpolation arrays to return, and in which order. Returns ------- ret : list of arrays Each array-like contains the expected interpolated values in the order defined by *return_keys* parameter. """ # Flattening and rescaling inputs arrays x, y # (initial shape is stored for output) x = np.asarray(x, dtype=np.float64) y = np.asarray(y, dtype=np.float64) sh_ret = x.shape if (x.shape != y.shape): raise ValueError("x and y shall have same shapes." " Given: {0} and {1}".format(x.shape, y.shape)) x = np.ravel(x) y = np.ravel(y) x_scaled = x/self._unit_x y_scaled = y/self._unit_y size_ret = np.size(x_scaled) # Computes & ravels the element indexes, extract the valid ones. if tri_index is None: tri_index = self._trifinder(x, y) else: if (tri_index.shape != sh_ret): raise ValueError( "tri_index array is provided and shall" " have same shape as x and y. Given: " "{0} and {1}".format(tri_index.shape, sh_ret)) tri_index = np.ravel(tri_index) mask_in = (tri_index != -1) if self._tri_renum is None: valid_tri_index = tri_index[mask_in] else: valid_tri_index = self._tri_renum[tri_index[mask_in]] valid_x = x_scaled[mask_in] valid_y = y_scaled[mask_in] ret = [] for return_key in return_keys: # Find the return index associated with the key. try: return_index = {'z': 0, 'dzdx': 1, 'dzdy': 2}[return_key] except KeyError: raise ValueError("return_keys items shall take values in" " {'z', 'dzdx', 'dzdy'}") # Sets the scale factor for f & df components scale = [1., 1./self._unit_x, 1./self._unit_y][return_index] # Computes the interpolation ret_loc = np.empty(size_ret, dtype=np.float64) ret_loc[~mask_in] = np.nan ret_loc[mask_in] = self._interpolate_single_key( return_key, valid_tri_index, valid_x, valid_y) * scale ret += [np.ma.masked_invalid(ret_loc.reshape(sh_ret), copy=False)] return ret def _interpolate_single_key(self, return_key, tri_index, x, y): """ Performs the interpolation at points belonging to the triangulation (inside an unmasked triangles). Parameters ---------- return_index : string key from {'z', 'dzdx', 'dzdy'} Identifies the requested values (z or its derivatives) tri_index : 1d integer array Valid triangle index (-1 prohibited) x, y : 1d arrays, same shape as `tri_index` Valid locations where interpolation is requested. Returns ------- ret : 1-d array Returned array of the same size as *tri_index* """ raise NotImplementedError("TriInterpolator subclasses" + "should implement _interpolate_single_key!") class LinearTriInterpolator(TriInterpolator): """ A LinearTriInterpolator performs linear interpolation on a triangular grid. Each triangle is represented by a plane so that an interpolated value at point (x,y) lies on the plane of the triangle containing (x,y). Interpolated values are therefore continuous across the triangulation, but their first derivatives are discontinuous at edges between triangles. Parameters ---------- triangulation : :class:`~matplotlib.tri.Triangulation` object The triangulation to interpolate over. z : array_like of shape (npoints,) Array of values, defined at grid points, to interpolate between. trifinder : :class:`~matplotlib.tri.TriFinder` object, optional If this is not specified, the Triangulation's default TriFinder will be used by calling :func:`matplotlib.tri.Triangulation.get_trifinder`. Methods ------- `__call__` (x, y) : Returns interpolated values at x,y points `gradient` (x, y) : Returns interpolated derivatives at x,y points """ def __init__(self, triangulation, z, trifinder=None): TriInterpolator.__init__(self, triangulation, z, trifinder) # Store plane coefficients for fast interpolation calculations. self._plane_coefficients = \ self._triangulation.calculate_plane_coefficients(self._z) def __call__(self, x, y): return self._interpolate_multikeys(x, y, tri_index=None, return_keys=('z',))[0] __call__.__doc__ = TriInterpolator.docstring__call__ def gradient(self, x, y): return self._interpolate_multikeys(x, y, tri_index=None, return_keys=('dzdx', 'dzdy')) gradient.__doc__ = TriInterpolator.docstringgradient def _interpolate_single_key(self, return_key, tri_index, x, y): if return_key == 'z': return (self._plane_coefficients[tri_index, 0]*x + self._plane_coefficients[tri_index, 1]*y + self._plane_coefficients[tri_index, 2]) elif return_key == 'dzdx': return self._plane_coefficients[tri_index, 0] elif return_key == 'dzdy': return self._plane_coefficients[tri_index, 1] else: raise ValueError("Invalid return_key: " + return_key) class CubicTriInterpolator(TriInterpolator): """ A CubicTriInterpolator performs cubic interpolation on triangular grids. In one-dimension - on a segment - a cubic interpolating function is defined by the values of the function and its derivative at both ends. This is almost the same in 2-d inside a triangle, except that the values of the function and its 2 derivatives have to be defined at each triangle node. The CubicTriInterpolator takes the value of the function at each node - provided by the user - and internally computes the value of the derivatives, resulting in a smooth interpolation. (As a special feature, the user can also impose the value of the derivatives at each node, but this is not supposed to be the common usage.) Parameters ---------- triangulation : :class:`~matplotlib.tri.Triangulation` object The triangulation to interpolate over. z : array_like of shape (npoints,) Array of values, defined at grid points, to interpolate between. kind : {'min_E', 'geom', 'user'}, optional Choice of the smoothing algorithm, in order to compute the interpolant derivatives (defaults to 'min_E'): - if 'min_E': (default) The derivatives at each node is computed to minimize a bending energy. - if 'geom': The derivatives at each node is computed as a weighted average of relevant triangle normals. To be used for speed optimization (large grids). - if 'user': The user provides the argument `dz`, no computation is hence needed. trifinder : :class:`~matplotlib.tri.TriFinder` object, optional If not specified, the Triangulation's default TriFinder will be used by calling :func:`matplotlib.tri.Triangulation.get_trifinder`. dz : tuple of array_likes (dzdx, dzdy), optional Used only if *kind* ='user'. In this case *dz* must be provided as (dzdx, dzdy) where dzdx, dzdy are arrays of the same shape as *z* and are the interpolant first derivatives at the *triangulation* points. Methods ------- `__call__` (x, y) : Returns interpolated values at x,y points `gradient` (x, y) : Returns interpolated derivatives at x,y points Notes ----- This note is a bit technical and details the way a :class:`~matplotlib.tri.CubicTriInterpolator` computes a cubic interpolation. The interpolation is based on a Clough-Tocher subdivision scheme of the *triangulation* mesh (to make it clearer, each triangle of the grid will be divided in 3 child-triangles, and on each child triangle the interpolated function is a cubic polynomial of the 2 coordinates). This technique originates from FEM (Finite Element Method) analysis; the element used is a reduced Hsieh-Clough-Tocher (HCT) element. Its shape functions are described in [1]_. The assembled function is guaranteed to be C1-smooth, i.e. it is continuous and its first derivatives are also continuous (this is easy to show inside the triangles but is also true when crossing the edges). In the default case (*kind* ='min_E'), the interpolant minimizes a curvature energy on the functional space generated by the HCT element shape functions - with imposed values but arbitrary derivatives at each node. The minimized functional is the integral of the so-called total curvature (implementation based on an algorithm from [2]_ - PCG sparse solver): .. math:: E(z) = \\ \\frac{1}{2} \\int_{\\Omega} \\left( \\left( \\frac{\\partial^2{z}}{\\partial{x}^2} \\right)^2 + \\left( \\frac{\\partial^2{z}}{\\partial{y}^2} \\right)^2 + 2\\left( \\frac{\\partial^2{z}}{\\partial{y}\\partial{x}} \\right)^2 \\right) dx\\,dy If the case *kind* ='geom' is chosen by the user, a simple geometric approximation is used (weighted average of the triangle normal vectors), which could improve speed on very large grids. References ---------- .. [1] Michel Bernadou, Kamal Hassan, "Basis functions for general Hsieh-Clough-Tocher triangles, complete or reduced.", International Journal for Numerical Methods in Engineering, 17(5):784 - 789. 2.01. .. [2] C.T. Kelley, "Iterative Methods for Optimization". """ def __init__(self, triangulation, z, kind='min_E', trifinder=None, dz=None): TriInterpolator.__init__(self, triangulation, z, trifinder) # Loads the underlying c++ _triangulation. # (During loading, reordering of triangulation._triangles may occur so # that all final triangles are now anti-clockwise) self._triangulation.get_cpp_triangulation() # To build the stiffness matrix and avoid zero-energy spurious modes # we will only store internally the valid (unmasked) triangles and # the necessary (used) points coordinates. # 2 renumbering tables need to be computed and stored: # - a triangle renum table in order to translate the result from a # TriFinder instance into the internal stored triangle number. # - a node renum table to overwrite the self._z values into the new # (used) node numbering. tri_analyzer = TriAnalyzer(self._triangulation) (compressed_triangles, compressed_x, compressed_y, tri_renum, node_renum) = tri_analyzer._get_compressed_triangulation(True, True) self._triangles = compressed_triangles self._tri_renum = tri_renum # Taking into account the node renumbering in self._z: node_mask = (node_renum == -1) self._z[node_renum[~node_mask]] = self._z self._z = self._z[~node_mask] # Computing scale factors self._unit_x = np.max(compressed_x) - np.min(compressed_x) self._unit_y = np.max(compressed_y) - np.min(compressed_y) self._pts = np.vstack((compressed_x/float(self._unit_x), compressed_y/float(self._unit_y))).T # Computing triangle points self._tris_pts = self._pts[self._triangles] # Computing eccentricities self._eccs = self._compute_tri_eccentricities(self._tris_pts) # Computing dof estimations for HCT triangle shape function self._dof = self._compute_dof(kind, dz=dz) # Loading HCT element self._ReferenceElement = _ReducedHCT_Element() def __call__(self, x, y): return self._interpolate_multikeys(x, y, tri_index=None, return_keys=('z',))[0] __call__.__doc__ = TriInterpolator.docstring__call__ def gradient(self, x, y): return self._interpolate_multikeys(x, y, tri_index=None, return_keys=('dzdx', 'dzdy')) gradient.__doc__ = TriInterpolator.docstringgradient + """ Examples -------- An example of effective application is shown below (plot of the direction of the vector field derivated from a known potential field): .. plot:: mpl_examples/pylab_examples/trigradient_demo.py """ def _interpolate_single_key(self, return_key, tri_index, x, y): tris_pts = self._tris_pts[tri_index] alpha = self._get_alpha_vec(x, y, tris_pts) ecc = self._eccs[tri_index] dof = np.expand_dims(self._dof[tri_index], axis=1) if return_key == 'z': return self._ReferenceElement.get_function_values( alpha, ecc, dof) elif return_key in ['dzdx', 'dzdy']: J = self._get_jacobian(tris_pts) dzdx = self._ReferenceElement.get_function_derivatives( alpha, J, ecc, dof) if return_key == 'dzdx': return dzdx[:, 0, 0] else: return dzdx[:, 1, 0] else: raise ValueError("Invalid return_key: " + return_key) def _compute_dof(self, kind, dz=None): """ Computes and returns nodal dofs according to kind Parameters ---------- kind: {'min_E', 'geom', 'user'} Choice of the _DOF_estimator subclass to perform the gradient estimation. dz: tuple of array_likes (dzdx, dzdy), optional Used only if *kind=user ; in this case passed to the :class:`_DOF_estimator_user`. Returns ------- dof : array_like, shape (npts,2) Estimation of the gradient at triangulation nodes (stored as degree of freedoms of reduced-HCT triangle elements). """ if kind == 'user': if dz is None: raise ValueError("For a CubicTriInterpolator with " "*kind*='user', a valid *dz* " "argument is expected.") TE = _DOF_estimator_user(self, dz=dz) elif kind == 'geom': TE = _DOF_estimator_geom(self) elif kind == 'min_E': TE = _DOF_estimator_min_E(self) else: raise ValueError("CubicTriInterpolator *kind* proposed: {0} ; " "should be one of: " "'user', 'geom', 'min_E'".format(kind)) return TE.compute_dof_from_df() @staticmethod def _get_alpha_vec(x, y, tris_pts): """ Fast (vectorized) function to compute barycentric coordinates alpha. Parameters ---------- x, y : array-like of dim 1 (shape (nx,)) Coordinates of the points whose points barycentric coordinates are requested tris_pts : array like of dim 3 (shape: (nx,3,2)) Coordinates of the containing triangles apexes. Returns ------- alpha : array of dim 2 (shape (nx,3)) Barycentric coordinates of the points inside the containing triangles. """ ndim = tris_pts.ndim-2 a = tris_pts[:, 1, :] - tris_pts[:, 0, :] b = tris_pts[:, 2, :] - tris_pts[:, 0, :] abT = np.concatenate([np.expand_dims(a, ndim+1), np.expand_dims(b, ndim+1)], ndim+1) ab = _transpose_vectorized(abT) x = np.expand_dims(x, ndim) y = np.expand_dims(y, ndim) OM = np.concatenate([x, y], ndim) - tris_pts[:, 0, :] metric = _prod_vectorized(ab, abT) # Here we try to deal with the colinear cases. # metric_inv is in this case set to the Moore-Penrose pseudo-inverse # meaning that we will still return a set of valid barycentric # coordinates. metric_inv = _pseudo_inv22sym_vectorized(metric) Covar = _prod_vectorized(ab, _transpose_vectorized( np.expand_dims(OM, ndim))) ksi = _prod_vectorized(metric_inv, Covar) alpha = _to_matrix_vectorized([ [1-ksi[:, 0, 0]-ksi[:, 1, 0]], [ksi[:, 0, 0]], [ksi[:, 1, 0]]]) return alpha @staticmethod def _get_jacobian(tris_pts): """ Fast (vectorized) function to compute triangle jacobian matrix. Parameters ---------- tris_pts : array like of dim 3 (shape: (nx,3,2)) Coordinates of the containing triangles apexes. Returns ------- J : array of dim 3 (shape (nx,2,2)) Barycentric coordinates of the points inside the containing triangles. J[itri,:,:] is the jacobian matrix at apex 0 of the triangle itri, so that the following (matrix) relationship holds: [dz/dksi] = [J] x [dz/dx] with x: global coordinates ksi: element parametric coordinates in triangle first apex local basis. """ a = np.array(tris_pts[:, 1, :] - tris_pts[:, 0, :]) b = np.array(tris_pts[:, 2, :] - tris_pts[:, 0, :]) J = _to_matrix_vectorized([[a[:, 0], a[:, 1]], [b[:, 0], b[:, 1]]]) return J @staticmethod def _compute_tri_eccentricities(tris_pts): """ Computes triangle eccentricities Parameters ---------- tris_pts : array like of dim 3 (shape: (nx,3,2)) Coordinates of the triangles apexes. Returns ------- ecc : array like of dim 2 (shape: (nx,3)) The so-called eccentricity parameters [1] needed for HCT triangular element. """ a = np.expand_dims(tris_pts[:, 2, :]-tris_pts[:, 1, :], axis=2) b = np.expand_dims(tris_pts[:, 0, :]-tris_pts[:, 2, :], axis=2) c = np.expand_dims(tris_pts[:, 1, :]-tris_pts[:, 0, :], axis=2) # Do not use np.squeeze, this is dangerous if only one triangle # in the triangulation... dot_a = _prod_vectorized(_transpose_vectorized(a), a)[:, 0, 0] dot_b = _prod_vectorized(_transpose_vectorized(b), b)[:, 0, 0] dot_c = _prod_vectorized(_transpose_vectorized(c), c)[:, 0, 0] # Note that this line will raise a warning for dot_a, dot_b or dot_c # zeros, but we choose not to support triangles with duplicate points. return _to_matrix_vectorized([[(dot_c-dot_b) / dot_a], [(dot_a-dot_c) / dot_b], [(dot_b-dot_a) / dot_c]]) # FEM element used for interpolation and for solving minimisation # problem (Reduced HCT element) class _ReducedHCT_Element(): """ Implementation of reduced HCT triangular element with explicit shape functions. Computes z, dz, d2z and the element stiffness matrix for bending energy: E(f) = integral( (d2z/dx2 + d2z/dy2)**2 dA) *** Reference for the shape functions: *** [1] Basis functions for general Hsieh-Clough-Tocher _triangles, complete or reduced. Michel Bernadou, Kamal Hassan International Journal for Numerical Methods in Engineering. 17(5):784 - 789. 2.01 *** Element description: *** 9 dofs: z and dz given at 3 apex C1 (conform) """ # 1) Loads matrices to generate shape functions as a function of # triangle eccentricities - based on [1] p.11 ''' M = np.array([ [ 0.00, 0.00, 0.00, 4.50, 4.50, 0.00, 0.00, 0.00, 0.00, 0.00], [-0.25, 0.00, 0.00, 0.50, 1.25, 0.00, 0.00, 0.00, 0.00, 0.00], [-0.25, 0.00, 0.00, 1.25, 0.50, 0.00, 0.00, 0.00, 0.00, 0.00], [ 0.50, 1.00, 0.00, -1.50, 0.00, 3.00, 3.00, 0.00, 0.00, 3.00], [ 0.00, 0.00, 0.00, -0.25, 0.25, 0.00, 1.00, 0.00, 0.00, 0.50], [ 0.25, 0.00, 0.00, -0.50, -0.25, 1.00, 0.00, 0.00, 0.00, 1.00], [ 0.50, 0.00, 1.00, 0.00, -1.50, 0.00, 0.00, 3.00, 3.00, 3.00], [ 0.25, 0.00, 0.00, -0.25, -0.50, 0.00, 0.00, 0.00, 1.00, 1.00], [ 0.00, 0.00, 0.00, 0.25, -0.25, 0.00, 0.00, 1.00, 0.00, 0.50]]) M0 = np.array([ [ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], [ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], [ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], [-1.00, 0.00, 0.00, 1.50, 1.50, 0.00, 0.00, 0.00, 0.00, -3.00], [-0.50, 0.00, 0.00, 0.75, 0.75, 0.00, 0.00, 0.00, 0.00, -1.50], [ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], [ 1.00, 0.00, 0.00, -1.50, -1.50, 0.00, 0.00, 0.00, 0.00, 3.00], [ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], [ 0.50, 0.00, 0.00, -0.75, -0.75, 0.00, 0.00, 0.00, 0.00, 1.50]]) M1 = np.array([ [-0.50, 0.00, 0.00, 1.50, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], [ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], [-0.25, 0.00, 0.00, 0.75, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], [ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], [ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], [ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], [ 0.50, 0.00, 0.00, -1.50, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], [ 0.25, 0.00, 0.00, -0.75, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], [ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00]]) M2 = np.array([ [ 0.50, 0.00, 0.00, 0.00, -1.50, 0.00, 0.00, 0.00, 0.00, 0.00], [ 0.25, 0.00, 0.00, 0.00, -0.75, 0.00, 0.00, 0.00, 0.00, 0.00], [ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], [-0.50, 0.00, 0.00, 0.00, 1.50, 0.00, 0.00, 0.00, 0.00, 0.00], [ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], [-0.25, 0.00, 0.00, 0.00, 0.75, 0.00, 0.00, 0.00, 0.00, 0.00], [ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], [ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], [ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00]]) # 2) Loads matrices to rotate components of gradient & Hessian # vectors in the reference basis of triangle first apex (a0) rotate_dV = np.array([[ 1., 0.], [ 0., 1.], [ 0., 1.], [-1., -1.], [-1., -1.], [ 1., 0.]]) rotate_d2V = np.array([[1., 0., 0.], [0., 1., 0.], [ 0., 0., 1.], [0., 1., 0.], [1., 1., 1.], [ 0., -2., -1.], [1., 1., 1.], [1., 0., 0.], [-2., 0., -1.]]) # 3) Loads Gauss points & weights on the 3 sub-_triangles for P2 # exact integral - 3 points on each subtriangles. # NOTE: as the 2nd derivative is discontinuous , we really need those 9 # points! n_gauss = 9 gauss_pts = np.array([[13./18., 4./18., 1./18.], [ 4./18., 13./18., 1./18.], [ 7./18., 7./18., 4./18.], [ 1./18., 13./18., 4./18.], [ 1./18., 4./18., 13./18.], [ 4./18., 7./18., 7./18.], [ 4./18., 1./18., 13./18.], [13./18., 1./18., 4./18.], [ 7./18., 4./18., 7./18.]], dtype=np.float64) gauss_w = np.ones([9], dtype=np.float64) / 9. # 4) Stiffness matrix for curvature energy E = np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 2.]]) # 5) Loads the matrix to compute DOF_rot from tri_J at apex 0 J0_to_J1 = np.array([[-1., 1.], [-1., 0.]]) J0_to_J2 = np.array([[ 0., -1.], [ 1., -1.]]) def get_function_values(self, alpha, ecc, dofs): """ Parameters ---------- alpha : is a (N x 3 x 1) array (array of column-matrices) of barycentric coordinates, ecc : is a (N x 3 x 1) array (array of column-matrices) of triangle eccentricities, dofs : is a (N x 1 x 9) arrays (arrays of row-matrices) of computed degrees of freedom. Returns ------- Returns the N-array of interpolated function values. """ subtri = np.argmin(alpha, axis=1)[:, 0] ksi = _roll_vectorized(alpha, -subtri, axis=0) E = _roll_vectorized(ecc, -subtri, axis=0) x = ksi[:, 0, 0] y = ksi[:, 1, 0] z = ksi[:, 2, 0] x_sq = x*x y_sq = y*y z_sq = z*z V = _to_matrix_vectorized([ [x_sq*x], [y_sq*y], [z_sq*z], [x_sq*z], [x_sq*y], [y_sq*x], [y_sq*z], [z_sq*y], [z_sq*x], [x*y*z]]) prod = _prod_vectorized(self.M, V) prod += _scalar_vectorized(E[:, 0, 0], _prod_vectorized(self.M0, V)) prod += _scalar_vectorized(E[:, 1, 0], _prod_vectorized(self.M1, V)) prod += _scalar_vectorized(E[:, 2, 0], _prod_vectorized(self.M2, V)) s = _roll_vectorized(prod, 3*subtri, axis=0) return _prod_vectorized(dofs, s)[:, 0, 0] def get_function_derivatives(self, alpha, J, ecc, dofs): """ Parameters ---------- *alpha* is a (N x 3 x 1) array (array of column-matrices of barycentric coordinates) *J* is a (N x 2 x 2) array of jacobian matrices (jacobian matrix at triangle first apex) *ecc* is a (N x 3 x 1) array (array of column-matrices of triangle eccentricities) *dofs* is a (N x 1 x 9) arrays (arrays of row-matrices) of computed degrees of freedom. Returns ------- Returns the values of interpolated function derivatives [dz/dx, dz/dy] in global coordinates at locations alpha, as a column-matrices of shape (N x 2 x 1). """ subtri = np.argmin(alpha, axis=1)[:, 0] ksi = _roll_vectorized(alpha, -subtri, axis=0) E = _roll_vectorized(ecc, -subtri, axis=0) x = ksi[:, 0, 0] y = ksi[:, 1, 0] z = ksi[:, 2, 0] x_sq = x*x y_sq = y*y z_sq = z*z dV = _to_matrix_vectorized([ [ -3.*x_sq, -3.*x_sq], [ 3.*y_sq, 0.], [ 0., 3.*z_sq], [ -2.*x*z, -2.*x*z+x_sq], [-2.*x*y+x_sq, -2.*x*y], [ 2.*x*y-y_sq, -y_sq], [ 2.*y*z, y_sq], [ z_sq, 2.*y*z], [ -z_sq, 2.*x*z-z_sq], [ x*z-y*z, x*y-y*z]]) # Puts back dV in first apex basis dV = _prod_vectorized(dV, _extract_submatrices( self.rotate_dV, subtri, block_size=2, axis=0)) prod = _prod_vectorized(self.M, dV) prod += _scalar_vectorized(E[:, 0, 0], _prod_vectorized(self.M0, dV)) prod += _scalar_vectorized(E[:, 1, 0], _prod_vectorized(self.M1, dV)) prod += _scalar_vectorized(E[:, 2, 0], _prod_vectorized(self.M2, dV)) dsdksi = _roll_vectorized(prod, 3*subtri, axis=0) dfdksi = _prod_vectorized(dofs, dsdksi) # In global coordinates: # Here we try to deal with the simpliest colinear cases, returning a # null matrix. J_inv = _safe_inv22_vectorized(J) dfdx = _prod_vectorized(J_inv, _transpose_vectorized(dfdksi)) return dfdx def get_function_hessians(self, alpha, J, ecc, dofs): """ Parameters ---------- *alpha* is a (N x 3 x 1) array (array of column-matrices) of barycentric coordinates *J* is a (N x 2 x 2) array of jacobian matrices (jacobian matrix at triangle first apex) *ecc* is a (N x 3 x 1) array (array of column-matrices) of triangle eccentricities *dofs* is a (N x 1 x 9) arrays (arrays of row-matrices) of computed degrees of freedom. Returns ------- Returns the values of interpolated function 2nd-derivatives [d2z/dx2, d2z/dy2, d2z/dxdy] in global coordinates at locations alpha, as a column-matrices of shape (N x 3 x 1). """ d2sdksi2 = self.get_d2Sidksij2(alpha, ecc) d2fdksi2 = _prod_vectorized(dofs, d2sdksi2) H_rot = self.get_Hrot_from_J(J) d2fdx2 = _prod_vectorized(d2fdksi2, H_rot) return _transpose_vectorized(d2fdx2) def get_d2Sidksij2(self, alpha, ecc): """ Parameters ---------- *alpha* is a (N x 3 x 1) array (array of column-matrices) of barycentric coordinates *ecc* is a (N x 3 x 1) array (array of column-matrices) of triangle eccentricities Returns ------- Returns the arrays d2sdksi2 (N x 3 x 1) Hessian of shape functions expressed in covariante coordinates in first apex basis. """ subtri = np.argmin(alpha, axis=1)[:, 0] ksi = _roll_vectorized(alpha, -subtri, axis=0) E = _roll_vectorized(ecc, -subtri, axis=0) x = ksi[:, 0, 0] y = ksi[:, 1, 0] z = ksi[:, 2, 0] d2V = _to_matrix_vectorized([ [ 6.*x, 6.*x, 6.*x], [ 6.*y, 0., 0.], [ 0., 6.*z, 0.], [ 2.*z, 2.*z-4.*x, 2.*z-2.*x], [2.*y-4.*x, 2.*y, 2.*y-2.*x], [2.*x-4.*y, 0., -2.*y], [ 2.*z, 0., 2.*y], [ 0., 2.*y, 2.*z], [ 0., 2.*x-4.*z, -2.*z], [ -2.*z, -2.*y, x-y-z]]) # Puts back d2V in first apex basis d2V = _prod_vectorized(d2V, _extract_submatrices( self.rotate_d2V, subtri, block_size=3, axis=0)) prod = _prod_vectorized(self.M, d2V) prod += _scalar_vectorized(E[:, 0, 0], _prod_vectorized(self.M0, d2V)) prod += _scalar_vectorized(E[:, 1, 0], _prod_vectorized(self.M1, d2V)) prod += _scalar_vectorized(E[:, 2, 0], _prod_vectorized(self.M2, d2V)) d2sdksi2 = _roll_vectorized(prod, 3*subtri, axis=0) return d2sdksi2 def get_bending_matrices(self, J, ecc): """ Parameters ---------- *J* is a (N x 2 x 2) array of jacobian matrices (jacobian matrix at triangle first apex) *ecc* is a (N x 3 x 1) array (array of column-matrices) of triangle eccentricities Returns ------- Returns the element K matrices for bending energy expressed in GLOBAL nodal coordinates. K_ij = integral [ (d2zi/dx2 + d2zi/dy2) * (d2zj/dx2 + d2zj/dy2) dA] tri_J is needed to rotate dofs from local basis to global basis """ n = np.size(ecc, 0) # 1) matrix to rotate dofs in global coordinates J1 = _prod_vectorized(self.J0_to_J1, J) J2 = _prod_vectorized(self.J0_to_J2, J) DOF_rot = np.zeros([n, 9, 9], dtype=np.float64) DOF_rot[:, 0, 0] = 1 DOF_rot[:, 3, 3] = 1 DOF_rot[:, 6, 6] = 1 DOF_rot[:, 1:3, 1:3] = J DOF_rot[:, 4:6, 4:6] = J1 DOF_rot[:, 7:9, 7:9] = J2 # 2) matrix to rotate Hessian in global coordinates. H_rot, area = self.get_Hrot_from_J(J, return_area=True) # 3) Computes stiffness matrix # Gauss quadrature. K = np.zeros([n, 9, 9], dtype=np.float64) weights = self.gauss_w pts = self.gauss_pts for igauss in range(self.n_gauss): alpha = np.tile(pts[igauss, :], n).reshape(n, 3) alpha = np.expand_dims(alpha, 3) weight = weights[igauss] d2Skdksi2 = self.get_d2Sidksij2(alpha, ecc) d2Skdx2 = _prod_vectorized(d2Skdksi2, H_rot) K += weight * _prod_vectorized(_prod_vectorized(d2Skdx2, self.E), _transpose_vectorized(d2Skdx2)) # 4) With nodal (not elem) dofs K = _prod_vectorized(_prod_vectorized(_transpose_vectorized(DOF_rot), K), DOF_rot) # 5) Need the area to compute total element energy return _scalar_vectorized(area, K) def get_Hrot_from_J(self, J, return_area=False): """ Parameters ---------- *J* is a (N x 2 x 2) array of jacobian matrices (jacobian matrix at triangle first apex) Returns ------- Returns H_rot used to rotate Hessian from local basis of first apex, to global coordinates. if *return_area* is True, returns also the triangle area (0.5*det(J)) """ # Here we try to deal with the simpliest colinear cases ; a null # energy and area is imposed. J_inv = _safe_inv22_vectorized(J) Ji00 = J_inv[:, 0, 0] Ji11 = J_inv[:, 1, 1] Ji10 = J_inv[:, 1, 0] Ji01 = J_inv[:, 0, 1] H_rot = _to_matrix_vectorized([ [Ji00*Ji00, Ji10*Ji10, Ji00*Ji10], [Ji01*Ji01, Ji11*Ji11, Ji01*Ji11], [2*Ji00*Ji01, 2*Ji11*Ji10, Ji00*Ji11+Ji10*Ji01]]) if not return_area: return H_rot else: area = 0.5 * (J[:, 0, 0]*J[:, 1, 1] - J[:, 0, 1]*J[:, 1, 0]) return H_rot, area def get_Kff_and_Ff(self, J, ecc, triangles, Uc): """ Builds K and F for the following elliptic formulation: minimization of curvature energy with value of function at node imposed and derivatives 'free'. Builds the global Kff matrix in cco format. Builds the full Ff vec Ff = - Kfc x Uc Parameters ---------- *J* is a (N x 2 x 2) array of jacobian matrices (jacobian matrix at triangle first apex) *ecc* is a (N x 3 x 1) array (array of column-matrices) of triangle eccentricities *triangles* is a (N x 3) array of nodes indexes. *Uc* is (N x 3) array of imposed displacements at nodes Returns ------- (Kff_rows, Kff_cols, Kff_vals) Kff matrix in coo format - Duplicate (row, col) entries must be summed. Ff: force vector - dim npts * 3 """ ntri = np.size(ecc, 0) vec_range = np.arange(ntri, dtype=np.int32) c_indices = -np.ones(ntri, dtype=np.int32) # for unused dofs, -1 f_dof = [1, 2, 4, 5, 7, 8] c_dof = [0, 3, 6] # vals, rows and cols indices in global dof numbering f_dof_indices = _to_matrix_vectorized([[ c_indices, triangles[:, 0]*2, triangles[:, 0]*2+1, c_indices, triangles[:, 1]*2, triangles[:, 1]*2+1, c_indices, triangles[:, 2]*2, triangles[:, 2]*2+1]]) expand_indices = np.ones([ntri, 9, 1], dtype=np.int32) f_row_indices = _prod_vectorized(_transpose_vectorized(f_dof_indices), _transpose_vectorized(expand_indices)) f_col_indices = _prod_vectorized(expand_indices, f_dof_indices) K_elem = self.get_bending_matrices(J, ecc) # Extracting sub-matrices # Explanation & notations: # * Subscript f denotes 'free' degrees of freedom (i.e. dz/dx, dz/dx) # * Subscript c denotes 'condensated' (imposed) degrees of freedom # (i.e. z at all nodes) # * F = [Ff, Fc] is the force vector # * U = [Uf, Uc] is the imposed dof vector # [ Kff Kfc ] # * K = [ ] is the laplacian stiffness matrix # [ Kcf Kff ] # * As F = K x U one gets straightforwardly: Ff = - Kfc x Uc # Computing Kff stiffness matrix in sparse coo format Kff_vals = np.ravel(K_elem[np.ix_(vec_range, f_dof, f_dof)]) Kff_rows = np.ravel(f_row_indices[np.ix_(vec_range, f_dof, f_dof)]) Kff_cols = np.ravel(f_col_indices[np.ix_(vec_range, f_dof, f_dof)]) # Computing Ff force vector in sparse coo format Kfc_elem = K_elem[np.ix_(vec_range, f_dof, c_dof)] Uc_elem = np.expand_dims(Uc, axis=2) Ff_elem = - _prod_vectorized(Kfc_elem, Uc_elem)[:, :, 0] Ff_indices = f_dof_indices[np.ix_(vec_range, [0], f_dof)][:, 0, :] # Extracting Ff force vector in dense format # We have to sum duplicate indices - using bincount Ff = np.bincount(np.ravel(Ff_indices), weights=np.ravel(Ff_elem)) return Kff_rows, Kff_cols, Kff_vals, Ff # :class:_DOF_estimator, _DOF_estimator_user, _DOF_estimator_geom, # _DOF_estimator_min_E # Private classes used to compute the degree of freedom of each triangular # element for the TriCubicInterpolator. class _DOF_estimator(): """ Abstract base class for classes used to perform estimation of a function first derivatives, and deduce the dofs for a CubicTriInterpolator using a reduced HCT element formulation. Derived classes implement compute_df(self,**kwargs), returning np.vstack([dfx,dfy]).T where : dfx, dfy are the estimation of the 2 gradient coordinates. """ def __init__(self, interpolator, **kwargs): if not isinstance(interpolator, CubicTriInterpolator): raise ValueError("Expected a CubicTriInterpolator object") self._pts = interpolator._pts self._tris_pts = interpolator._tris_pts self.z = interpolator._z self._triangles = interpolator._triangles (self._unit_x, self._unit_y) = (interpolator._unit_x, interpolator._unit_y) self.dz = self.compute_dz(**kwargs) self.compute_dof_from_df() def compute_dz(self, **kwargs): raise NotImplementedError def compute_dof_from_df(self): """ Computes reduced-HCT elements degrees of freedom, knowing the gradient. """ J = CubicTriInterpolator._get_jacobian(self._tris_pts) tri_z = self.z[self._triangles] tri_dz = self.dz[self._triangles] tri_dof = self.get_dof_vec(tri_z, tri_dz, J) return tri_dof @staticmethod def get_dof_vec(tri_z, tri_dz, J): """ Computes the dof vector of a triangle, knowing the value of f, df and of the local Jacobian at each node. *tri_z*: array of shape (3,) of f nodal values *tri_dz*: array of shape (3,2) of df/dx, df/dy nodal values *J*: Jacobian matrix in local basis of apex 0 Returns dof array of shape (9,) so that for each apex iapex: dof[iapex*3+0] = f(Ai) dof[iapex*3+1] = df(Ai).(AiAi+) dof[iapex*3+2] = df(Ai).(AiAi-)] """ npt = tri_z.shape[0] dof = np.zeros([npt, 9], dtype=np.float64) J1 = _prod_vectorized(_ReducedHCT_Element.J0_to_J1, J) J2 = _prod_vectorized(_ReducedHCT_Element.J0_to_J2, J) col0 = _prod_vectorized(J, np.expand_dims(tri_dz[:, 0, :], axis=3)) col1 = _prod_vectorized(J1, np.expand_dims(tri_dz[:, 1, :], axis=3)) col2 = _prod_vectorized(J2, np.expand_dims(tri_dz[:, 2, :], axis=3)) dfdksi = _to_matrix_vectorized([ [col0[:, 0, 0], col1[:, 0, 0], col2[:, 0, 0]], [col0[:, 1, 0], col1[:, 1, 0], col2[:, 1, 0]]]) dof[:, 0:7:3] = tri_z dof[:, 1:8:3] = dfdksi[:, 0] dof[:, 2:9:3] = dfdksi[:, 1] return dof class _DOF_estimator_user(_DOF_estimator): """ dz is imposed by user / Accounts for scaling if any """ def compute_dz(self, dz): (dzdx, dzdy) = dz dzdx = dzdx * self._unit_x dzdy = dzdy * self._unit_y return np.vstack([dzdx, dzdy]).T class _DOF_estimator_geom(_DOF_estimator): """ Fast 'geometric' approximation, recommended for large arrays. """ def compute_dz(self): """ self.df is computed as weighted average of _triangles sharing a common node. On each triangle itri f is first assumed linear (= ~f), which allows to compute d~f[itri] Then the following approximation of df nodal values is then proposed: f[ipt] = SUM ( w[itri] x d~f[itri] , for itri sharing apex ipt) The weighted coeff. w[itri] are proportional to the angle of the triangle itri at apex ipt """ el_geom_w = self.compute_geom_weights() el_geom_grad = self.compute_geom_grads() # Sum of weights coeffs w_node_sum = np.bincount(np.ravel(self._triangles), weights=np.ravel(el_geom_w)) # Sum of weighted df = (dfx, dfy) dfx_el_w = np.empty_like(el_geom_w) dfy_el_w = np.empty_like(el_geom_w) for iapex in range(3): dfx_el_w[:, iapex] = el_geom_w[:, iapex]*el_geom_grad[:, 0] dfy_el_w[:, iapex] = el_geom_w[:, iapex]*el_geom_grad[:, 1] dfx_node_sum = np.bincount(np.ravel(self._triangles), weights=np.ravel(dfx_el_w)) dfy_node_sum = np.bincount(np.ravel(self._triangles), weights=np.ravel(dfy_el_w)) # Estimation of df dfx_estim = dfx_node_sum/w_node_sum dfy_estim = dfy_node_sum/w_node_sum return np.vstack([dfx_estim, dfy_estim]).T def compute_geom_weights(self): """ Builds the (nelems x 3) weights coeffs of _triangles angles, renormalized so that np.sum(weights, axis=1) == np.ones(nelems) """ weights = np.zeros([np.size(self._triangles, 0), 3]) tris_pts = self._tris_pts for ipt in range(3): p0 = tris_pts[:, (ipt) % 3, :] p1 = tris_pts[:, (ipt+1) % 3, :] p2 = tris_pts[:, (ipt-1) % 3, :] alpha1 = np.arctan2(p1[:, 1]-p0[:, 1], p1[:, 0]-p0[:, 0]) alpha2 = np.arctan2(p2[:, 1]-p0[:, 1], p2[:, 0]-p0[:, 0]) # In the below formula we could take modulo 2. but # modulo 1. is safer regarding round-off errors (flat triangles). angle = np.abs(np.mod((alpha2-alpha1) / np.pi, 1.)) # Weight proportional to angle up np.pi/2 ; null weight for # degenerated cases 0. and np.pi (Note that `angle` is normalized # by np.pi) weights[:, ipt] = 0.5 - np.abs(angle-0.5) return weights def compute_geom_grads(self): """ Compute the (global) gradient component of f assumed linear (~f). returns array df of shape (nelems,2) df[ielem].dM[ielem] = dz[ielem] i.e. df = dz x dM = dM.T^-1 x dz """ tris_pts = self._tris_pts tris_f = self.z[self._triangles] dM1 = tris_pts[:, 1, :] - tris_pts[:, 0, :] dM2 = tris_pts[:, 2, :] - tris_pts[:, 0, :] dM = np.dstack([dM1, dM2]) # Here we try to deal with the simpliest colinear cases: a null # gradient is assumed in this case. dM_inv = _safe_inv22_vectorized(dM) dZ1 = tris_f[:, 1] - tris_f[:, 0] dZ2 = tris_f[:, 2] - tris_f[:, 0] dZ = np.vstack([dZ1, dZ2]).T df = np.empty_like(dZ) # With np.einsum : could be ej,eji -> ej df[:, 0] = dZ[:, 0]*dM_inv[:, 0, 0] + dZ[:, 1]*dM_inv[:, 1, 0] df[:, 1] = dZ[:, 0]*dM_inv[:, 0, 1] + dZ[:, 1]*dM_inv[:, 1, 1] return df class _DOF_estimator_min_E(_DOF_estimator_geom): """ The 'smoothest' approximation, df is computed through global minimization of the bending energy: E(f) = integral[(d2z/dx2 + d2z/dy2 + 2 d2z/dxdy)**2 dA] """ def __init__(self, Interpolator): self._eccs = Interpolator._eccs _DOF_estimator_geom.__init__(self, Interpolator) def compute_dz(self): """ Elliptic solver for bending energy minimization. Uses a dedicated 'toy' sparse Jacobi PCG solver. """ # Initial guess for iterative PCG solver. dz_init = _DOF_estimator_geom.compute_dz(self) Uf0 = np.ravel(dz_init) reference_element = _ReducedHCT_Element() J = CubicTriInterpolator._get_jacobian(self._tris_pts) eccs = self._eccs triangles = self._triangles Uc = self.z[self._triangles] # Building stiffness matrix and force vector in coo format Kff_rows, Kff_cols, Kff_vals, Ff = reference_element.get_Kff_and_Ff( J, eccs, triangles, Uc) # Building sparse matrix and solving minimization problem # We could use scipy.sparse direct solver ; however to avoid this # external dependency an implementation of a simple PCG solver with # a simplendiagonal Jocabi preconditioner is implemented. tol = 1.e-10 n_dof = Ff.shape[0] Kff_coo = _Sparse_Matrix_coo(Kff_vals, Kff_rows, Kff_cols, shape=(n_dof, n_dof)) Kff_coo.compress_csc() Uf, err = _cg(A=Kff_coo, b=Ff, x0=Uf0, tol=tol) # If the PCG did not converge, we return the best guess between Uf0 # and Uf. err0 = np.linalg.norm(Kff_coo.dot(Uf0) - Ff) if err0 < err: # Maybe a good occasion to raise a warning here ? warnings.warn("In TriCubicInterpolator initialization, PCG sparse" " solver did not converge after 1000 iterations. " "`geom` approximation is used instead of `min_E`") Uf = Uf0 # Building dz from Uf dz = np.empty([self._pts.shape[0], 2], dtype=np.float64) dz[:, 0] = Uf[::2] dz[:, 1] = Uf[1::2] return dz # The following private :class:_Sparse_Matrix_coo and :func:_cg provide # a PCG sparse solver for (symmetric) elliptic problems. class _Sparse_Matrix_coo(object): def __init__(self, vals, rows, cols, shape): """ Creates a sparse matrix in coo format *vals*: arrays of values of non-null entries of the matrix *rows*: int arrays of rows of non-null entries of the matrix *cols*: int arrays of cols of non-null entries of the matrix *shape*: 2-tuple (n,m) of matrix shape """ self.n, self.m = shape self.vals = np.asarray(vals, dtype=np.float64) self.rows = np.asarray(rows, dtype=np.int32) self.cols = np.asarray(cols, dtype=np.int32) def dot(self, V): """ Dot product of self by a vector *V* in sparse-dense to dense format *V* dense vector of shape (self.m,) """ assert V.shape == (self.m,) # For a more generic implementation we could use below kw argument # minlength=self.m of bincount ; however: # - it is new in numpy 1.6 # - it is unecessary when each row have at least 1 entry in global # matrix, which is the case here. return np.bincount(self.rows, weights=self.vals*V[self.cols]) def compress_csc(self): """ Compress rows, cols, vals / summing duplicates. Sort for csc format. """ _, unique, indices = np.unique( self.rows + self.n*self.cols, return_index=True, return_inverse=True) self.rows = self.rows[unique] self.cols = self.cols[unique] self.vals = np.bincount(indices, weights=self.vals) def compress_csr(self): """ Compress rows, cols, vals / summing duplicates. Sort for csr format. """ _, unique, indices = np.unique( self.m*self.rows + self.cols, return_index=True, return_inverse=True) self.rows = self.rows[unique] self.cols = self.cols[unique] self.vals = np.bincount(indices, weights=self.vals) def to_dense(self): """ Returns a dense matrix representing self. Mainly for debugging purposes. """ ret = np.zeros([self.n, self.m], dtype=np.float64) nvals = self.vals.size for i in range(nvals): ret[self.rows[i], self.cols[i]] += self.vals[i] return ret def __str__(self): return self.to_dense().__str__() @property def diag(self): """ Returns the (dense) vector of the diagonal elements. """ in_diag = (self.rows == self.cols) diag = np.zeros(min(self.n, self.n), dtype=np.float64) # default 0. diag[self.rows[in_diag]] = self.vals[in_diag] return diag def _cg(A, b, x0=None, tol=1.e-10, maxiter=1000): """ Use Preconditioned Conjugate Gradient iteration to solve A x = b A simple Jacobi (diagonal) preconditionner is used. Parameters ---------- A: _Sparse_Matrix_coo *A* must have been compressed before by compress_csc or compress_csr method. b: array Right hand side of the linear system. Returns ------- x: array. The converged solution. err: float The absolute error np.linalg.norm(A.dot(x) - b) Other parameters ---------------- x0: array. Starting guess for the solution. tol: float. Tolerance to achieve. The algorithm terminates when the relative residual is below tol. maxiter: integer. Maximum number of iterations. Iteration will stop after maxiter steps even if the specified tolerance has not been achieved. """ n = b.size assert A.n == n assert A.m == n b_norm = np.linalg.norm(b) # Jacobi pre-conditioner kvec = A.diag # For diag elem < 1e-6 we keep 1e-6. kvec = np.where(kvec > 1.e-6, kvec, 1.e-6) # Initial guess if x0 is None: x = np.zeros(n) else: x = x0 r = b - A.dot(x) w = r/kvec p = np.zeros(n) beta = 0.0 rho = np.dot(r, w) k = 0 # Following C. T. Kelley while (np.sqrt(abs(rho)) > tol*b_norm) and (k < maxiter): p = w + beta*p z = A.dot(p) alpha = rho/np.dot(p, z) r = r - alpha*z w = r/kvec rhoold = rho rho = np.dot(r, w) x = x + alpha*p beta = rho/rhoold #err = np.linalg.norm(A.dot(x) - b) # absolute accuracy - not used k += 1 err = np.linalg.norm(A.dot(x) - b) return x, err # The following private functions: # :func:`_inv22_vectorized` # :func:`_safe_inv22_vectorized` # :func:`_pseudo_inv22sym_vectorized` # :func:`_prod_vectorized` # :func:`_scalar_vectorized` # :func:`_transpose_vectorized` # :func:`_roll_vectorized` # :func:`_to_matrix_vectorized` # :func:`_extract_submatrices` # provide fast numpy implementation of some standard operations on arrays of # matrices - stored as (:, n_rows, n_cols)-shaped np.arrays. def _inv22_vectorized(M): """ Inversion of arrays of (2,2) matrices. """ assert (M.ndim == 3) assert (M.shape[-2:] == (2, 2)) M_inv = np.empty_like(M) delta_inv = np.reciprocal(M[:, 0, 0]*M[:, 1, 1] - M[:, 0, 1]*M[:, 1, 0]) M_inv[:, 0, 0] = M[:, 1, 1]*delta_inv M_inv[:, 0, 1] = -M[:, 0, 1]*delta_inv M_inv[:, 1, 0] = -M[:, 1, 0]*delta_inv M_inv[:, 1, 1] = M[:, 0, 0]*delta_inv return M_inv # Development note: Dealing with pathologic 'flat' triangles in the # CubicTriInterpolator code and impact on (2,2)-matrix inversion functions # :func:`_safe_inv22_vectorized` and :func:`_pseudo_inv22sym_vectorized`. # # Goals: # 1) The CubicTriInterpolator should be able to handle flat or almost flat # triangles without raising an error, # 2) These degenerated triangles should have no impact on the automatic dof # calculation (associated with null weight for the _DOF_estimator_geom and # with null energy for the _DOF_estimator_min_E), # 3) Linear patch test should be passed exactly on degenerated meshes, # 4) Interpolation (with :meth:`_interpolate_single_key` or # :meth:`_interpolate_multi_key`) shall be correctly handled even *inside* # the pathologic triangles, to interact correctly with a TriRefiner class. # # Difficulties: # Flat triangles have rank-deficient *J* (so-called jacobian matrix) and # *metric* (the metric tensor = J x J.T). Computation of the local # tangent plane is also problematic. # # Implementation: # Most of the time, when computing the inverse of a rank-deficient matrix it # is safe to simply return the null matrix (which is the implementation in # :func:`_safe_inv22_vectorized`). This is because of point 2), itself # enforced by: # - null area hence null energy in :class:`_DOF_estimator_min_E` # - angles close or equal to 0 or np.pi hence null weight in # :class:`_DOF_estimator_geom`. # Note that the function angle -> weight is continuous and maximum for an # angle np.pi/2 (refer to :meth:`compute_geom_weights`) # The exception is the computation of barycentric coordinates, which is done # by inversion of the *metric* matrix. In this case, we need to compute a set # of valid coordinates (1 among numerous possibilities), to ensure point 4). # We benefit here from the symmetry of metric = J x J.T, which makes it easier # to compute a pseudo-inverse in :func:`_pseudo_inv22sym_vectorized` def _safe_inv22_vectorized(M): """ Inversion of arrays of (2,2) matrices, returns 0 for rank-deficient matrices. *M* : array of (2,2) matrices to inverse, shape (n,2,2) """ assert M.ndim == 3 assert M.shape[-2:] == (2, 2) M_inv = np.empty_like(M) prod1 = M[:, 0, 0]*M[:, 1, 1] delta = prod1 - M[:, 0, 1]*M[:, 1, 0] # We set delta_inv to 0. in case of a rank deficient matrix ; a # rank-deficient input matrix *M* will lead to a null matrix in output rank2 = (np.abs(delta) > 1e-8*np.abs(prod1)) if np.all(rank2): # Normal 'optimized' flow. delta_inv = 1./delta else: # 'Pathologic' flow. delta_inv = np.zeros(M.shape[0]) delta_inv[rank2] = 1./delta[rank2] M_inv[:, 0, 0] = M[:, 1, 1]*delta_inv M_inv[:, 0, 1] = -M[:, 0, 1]*delta_inv M_inv[:, 1, 0] = -M[:, 1, 0]*delta_inv M_inv[:, 1, 1] = M[:, 0, 0]*delta_inv return M_inv def _pseudo_inv22sym_vectorized(M): """ Inversion of arrays of (2,2) SYMMETRIC matrices ; returns the (Moore-Penrose) pseudo-inverse for rank-deficient matrices. In case M is of rank 1, we have M = trace(M) x P where P is the orthogonal projection on Im(M), and we return trace(M)^-1 x P == M / trace(M)**2 In case M is of rank 0, we return the null matrix. *M* : array of (2,2) matrices to inverse, shape (n,2,2) """ assert M.ndim == 3 assert M.shape[-2:] == (2, 2) M_inv = np.empty_like(M) prod1 = M[:, 0, 0]*M[:, 1, 1] delta = prod1 - M[:, 0, 1]*M[:, 1, 0] rank2 = (np.abs(delta) > 1e-8*np.abs(prod1)) if np.all(rank2): # Normal 'optimized' flow. M_inv[:, 0, 0] = M[:, 1, 1] / delta M_inv[:, 0, 1] = -M[:, 0, 1] / delta M_inv[:, 1, 0] = -M[:, 1, 0] / delta M_inv[:, 1, 1] = M[:, 0, 0] / delta else: # 'Pathologic' flow. # Here we have to deal with 2 sub-cases # 1) First sub-case: matrices of rank 2: delta = delta[rank2] M_inv[rank2, 0, 0] = M[rank2, 1, 1] / delta M_inv[rank2, 0, 1] = -M[rank2, 0, 1] / delta M_inv[rank2, 1, 0] = -M[rank2, 1, 0] / delta M_inv[rank2, 1, 1] = M[rank2, 0, 0] / delta # 2) Second sub-case: rank-deficient matrices of rank 0 and 1: rank01 = ~rank2 tr = M[rank01, 0, 0] + M[rank01, 1, 1] tr_zeros = (np.abs(tr) < 1.e-8) sq_tr_inv = (1.-tr_zeros) / (tr**2+tr_zeros) #sq_tr_inv = 1. / tr**2 M_inv[rank01, 0, 0] = M[rank01, 0, 0] * sq_tr_inv M_inv[rank01, 0, 1] = M[rank01, 0, 1] * sq_tr_inv M_inv[rank01, 1, 0] = M[rank01, 1, 0] * sq_tr_inv M_inv[rank01, 1, 1] = M[rank01, 1, 1] * sq_tr_inv return M_inv def _prod_vectorized(M1, M2): """ Matrix product between arrays of matrices, or a matrix and an array of matrices (*M1* and *M2*) """ sh1 = M1.shape sh2 = M2.shape assert len(sh1) >= 2 assert len(sh2) >= 2 assert sh1[-1] == sh2[-2] ndim1 = len(sh1) t1_index = list(xrange(ndim1-2)) + [ndim1-1, ndim1-2] return np.sum(np.transpose(M1, t1_index)[..., np.newaxis] * M2[..., np.newaxis, :], -3) def _scalar_vectorized(scalar, M): """ Scalar product between scalars and matrices. """ return scalar[:, np.newaxis, np.newaxis]*M def _transpose_vectorized(M): """ Transposition of an array of matrices *M*. """ ndim = M.ndim assert ndim == 3 return np.transpose(M, [0, ndim-1, ndim-2]) def _roll_vectorized(M, roll_indices, axis): """ Rolls an array of matrices along an axis according to an array of indices *roll_indices* *axis* can be either 0 (rolls rows) or 1 (rolls columns). """ assert axis in [0, 1] ndim = M.ndim assert ndim == 3 ndim_roll = roll_indices.ndim assert ndim_roll == 1 sh = M.shape r, c = sh[-2:] assert sh[0] == roll_indices.shape[0] vec_indices = np.arange(sh[0], dtype=np.int32) # Builds the rolled matrix M_roll = np.empty_like(M) if axis == 0: for ir in range(r): for ic in range(c): M_roll[:, ir, ic] = M[vec_indices, (-roll_indices+ir) % r, ic] elif axis == 1: for ir in range(r): for ic in range(c): M_roll[:, ir, ic] = M[vec_indices, ir, (-roll_indices+ic) % c] return M_roll def _to_matrix_vectorized(M): """ Builds an array of matrices from individuals np.arrays of identical shapes. *M*: ncols-list of nrows-lists of shape sh. Returns M_res np.array of shape (sh, nrow, ncols) so that: M_res[...,i,j] = M[i][j] """ assert isinstance(M, (tuple, list)) assert all([isinstance(item, (tuple, list)) for item in M]) c_vec = np.asarray([len(item) for item in M]) assert np.all(c_vec-c_vec[0] == 0) r = len(M) c = c_vec[0] M00 = np.asarray(M[0][0]) dt = M00.dtype sh = [M00.shape[0], r, c] M_ret = np.empty(sh, dtype=dt) for irow in range(r): for icol in range(c): M_ret[:, irow, icol] = np.asarray(M[irow][icol]) return M_ret def _extract_submatrices(M, block_indices, block_size, axis): """ Extracts selected blocks of a matrices *M* depending on parameters *block_indices* and *block_size*. Returns the array of extracted matrices *Mres* so that: M_res[...,ir,:] = M[(block_indices*block_size+ir), :] """ assert block_indices.ndim == 1 assert axis in [0, 1] r, c = M.shape if axis == 0: sh = [block_indices.shape[0], block_size, c] elif axis == 1: sh = [block_indices.shape[0], r, block_size] dt = M.dtype M_res = np.empty(sh, dtype=dt) if axis == 0: for ir in range(block_size): M_res[:, ir, :] = M[(block_indices*block_size+ir), :] elif axis == 1: for ic in range(block_size): M_res[:, :, ic] = M[:, (block_indices*block_size+ic)] return M_res
apache-2.0
jmschrei/scikit-learn
sklearn/metrics/tests/test_ranking.py
16
41687
from __future__ import division, print_function import numpy as np from itertools import product import warnings from scipy.sparse import csr_matrix from sklearn import datasets from sklearn import svm from sklearn import ensemble from sklearn.datasets import make_multilabel_classification from sklearn.random_projection import sparse_random_matrix from sklearn.utils.validation import check_array, check_consistent_length from sklearn.utils.validation import check_random_state from sklearn.utils.testing import assert_raises, clean_warning_registry from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_warns from sklearn.metrics import auc from sklearn.metrics import average_precision_score from sklearn.metrics import coverage_error from sklearn.metrics import label_ranking_average_precision_score from sklearn.metrics import precision_recall_curve from sklearn.metrics import label_ranking_loss from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve from sklearn.exceptions import UndefinedMetricWarning ############################################################################### # Utilities for testing def make_prediction(dataset=None, binary=False): """Make some classification predictions on a toy dataset using a SVC If binary is True restrict to a binary classification problem instead of a multiclass classification problem """ if dataset is None: # import some data to play with dataset = datasets.load_iris() X = dataset.data y = dataset.target if binary: # restrict to a binary classification task X, y = X[y < 2], y[y < 2] n_samples, n_features = X.shape p = np.arange(n_samples) rng = check_random_state(37) rng.shuffle(p) X, y = X[p], y[p] half = int(n_samples / 2) # add noisy features to make the problem harder and avoid perfect results rng = np.random.RandomState(0) X = np.c_[X, rng.randn(n_samples, 200 * n_features)] # run classifier, get class probabilities and label predictions clf = svm.SVC(kernel='linear', probability=True, random_state=0) probas_pred = clf.fit(X[:half], y[:half]).predict_proba(X[half:]) if binary: # only interested in probabilities of the positive case # XXX: do we really want a special API for the binary case? probas_pred = probas_pred[:, 1] y_pred = clf.predict(X[half:]) y_true = y[half:] return y_true, y_pred, probas_pred ############################################################################### # Tests def _auc(y_true, y_score): """Alternative implementation to check for correctness of `roc_auc_score`.""" pos_label = np.unique(y_true)[1] # Count the number of times positive samples are correctly ranked above # negative samples. pos = y_score[y_true == pos_label] neg = y_score[y_true != pos_label] diff_matrix = pos.reshape(1, -1) - neg.reshape(-1, 1) n_correct = np.sum(diff_matrix > 0) return n_correct / float(len(pos) * len(neg)) def _average_precision(y_true, y_score): """Alternative implementation to check for correctness of `average_precision_score`.""" pos_label = np.unique(y_true)[1] n_pos = np.sum(y_true == pos_label) order = np.argsort(y_score)[::-1] y_score = y_score[order] y_true = y_true[order] score = 0 for i in range(len(y_score)): if y_true[i] == pos_label: # Compute precision up to document i # i.e, percentage of relevant documents up to document i. prec = 0 for j in range(0, i + 1): if y_true[j] == pos_label: prec += 1.0 prec /= (i + 1.0) score += prec return score / n_pos def test_roc_curve(): # Test Area under Receiver Operating Characteristic (ROC) curve y_true, _, probas_pred = make_prediction(binary=True) expected_auc = _auc(y_true, probas_pred) for drop in [True, False]: fpr, tpr, thresholds = roc_curve(y_true, probas_pred, drop_intermediate=drop) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, expected_auc, decimal=2) assert_almost_equal(roc_auc, roc_auc_score(y_true, probas_pred)) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_curve_end_points(): # Make sure that roc_curve returns a curve start at 0 and ending and # 1 even in corner cases rng = np.random.RandomState(0) y_true = np.array([0] * 50 + [1] * 50) y_pred = rng.randint(3, size=100) fpr, tpr, thr = roc_curve(y_true, y_pred, drop_intermediate=True) assert_equal(fpr[0], 0) assert_equal(fpr[-1], 1) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thr.shape) def test_roc_returns_consistency(): # Test whether the returned threshold matches up with tpr # make small toy dataset y_true, _, probas_pred = make_prediction(binary=True) fpr, tpr, thresholds = roc_curve(y_true, probas_pred) # use the given thresholds to determine the tpr tpr_correct = [] for t in thresholds: tp = np.sum((probas_pred >= t) & y_true) p = np.sum(y_true) tpr_correct.append(1.0 * tp / p) # compare tpr and tpr_correct to see if the thresholds' order was correct assert_array_almost_equal(tpr, tpr_correct, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_nonrepeating_thresholds(): # Test to ensure that we don't return spurious repeating thresholds. # Duplicated thresholds can arise due to machine precision issues. dataset = datasets.load_digits() X = dataset['data'] y = dataset['target'] # This random forest classifier can only return probabilities # significant to two decimal places clf = ensemble.RandomForestClassifier(n_estimators=100, random_state=0) # How well can the classifier predict whether a digit is less than 5? # This task contributes floating point roundoff errors to the probabilities train, test = slice(None, None, 2), slice(1, None, 2) probas_pred = clf.fit(X[train], y[train]).predict_proba(X[test]) y_score = probas_pred[:, :5].sum(axis=1) # roundoff errors begin here y_true = [yy < 5 for yy in y[test]] # Check for repeating values in the thresholds fpr, tpr, thresholds = roc_curve(y_true, y_score, drop_intermediate=False) assert_equal(thresholds.size, np.unique(np.round(thresholds, 2)).size) def test_roc_curve_multi(): # roc_curve not applicable for multi-class problems y_true, _, probas_pred = make_prediction(binary=False) assert_raises(ValueError, roc_curve, y_true, probas_pred) def test_roc_curve_confidence(): # roc_curve for confidence scores y_true, _, probas_pred = make_prediction(binary=True) fpr, tpr, thresholds = roc_curve(y_true, probas_pred - 0.5) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.90, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_curve_hard(): # roc_curve for hard decisions y_true, pred, probas_pred = make_prediction(binary=True) # always predict one trivial_pred = np.ones(y_true.shape) fpr, tpr, thresholds = roc_curve(y_true, trivial_pred) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.50, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) # always predict zero trivial_pred = np.zeros(y_true.shape) fpr, tpr, thresholds = roc_curve(y_true, trivial_pred) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.50, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) # hard decisions fpr, tpr, thresholds = roc_curve(y_true, pred) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.78, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_curve_one_label(): y_true = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] y_pred = [0, 1, 0, 1, 0, 1, 0, 1, 0, 1] # assert there are warnings w = UndefinedMetricWarning fpr, tpr, thresholds = assert_warns(w, roc_curve, y_true, y_pred) # all true labels, all fpr should be nan assert_array_equal(fpr, np.nan * np.ones(len(thresholds))) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) # assert there are warnings fpr, tpr, thresholds = assert_warns(w, roc_curve, [1 - x for x in y_true], y_pred) # all negative labels, all tpr should be nan assert_array_equal(tpr, np.nan * np.ones(len(thresholds))) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_curve_toydata(): # Binary classification y_true = [0, 1] y_score = [0, 1] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1]) assert_array_almost_equal(fpr, [1, 1]) assert_almost_equal(roc_auc, 1.) y_true = [0, 1] y_score = [1, 0] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1, 1]) assert_array_almost_equal(fpr, [0, 0, 1]) assert_almost_equal(roc_auc, 0.) y_true = [1, 0] y_score = [1, 1] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1]) assert_array_almost_equal(fpr, [0, 1]) assert_almost_equal(roc_auc, 0.5) y_true = [1, 0] y_score = [1, 0] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1]) assert_array_almost_equal(fpr, [1, 1]) assert_almost_equal(roc_auc, 1.) y_true = [1, 0] y_score = [0.5, 0.5] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1]) assert_array_almost_equal(fpr, [0, 1]) assert_almost_equal(roc_auc, .5) y_true = [0, 0] y_score = [0.25, 0.75] tpr, fpr, _ = roc_curve(y_true, y_score) assert_raises(ValueError, roc_auc_score, y_true, y_score) assert_array_almost_equal(tpr, [0., 0.5, 1.]) assert_array_almost_equal(fpr, [np.nan, np.nan, np.nan]) y_true = [1, 1] y_score = [0.25, 0.75] tpr, fpr, _ = roc_curve(y_true, y_score) assert_raises(ValueError, roc_auc_score, y_true, y_score) assert_array_almost_equal(tpr, [np.nan, np.nan]) assert_array_almost_equal(fpr, [0.5, 1.]) # Multi-label classification task y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [0, 1]]) assert_raises(ValueError, roc_auc_score, y_true, y_score, average="macro") assert_raises(ValueError, roc_auc_score, y_true, y_score, average="weighted") assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), 1.) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), 1.) y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) assert_raises(ValueError, roc_auc_score, y_true, y_score, average="macro") assert_raises(ValueError, roc_auc_score, y_true, y_score, average="weighted") assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), 0.5) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), 0.5) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) assert_almost_equal(roc_auc_score(y_true, y_score, average="macro"), 0) assert_almost_equal(roc_auc_score(y_true, y_score, average="weighted"), 0) assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), 0) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), 0) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0.5, 0.5], [0.5, 0.5]]) assert_almost_equal(roc_auc_score(y_true, y_score, average="macro"), .5) assert_almost_equal(roc_auc_score(y_true, y_score, average="weighted"), .5) assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), .5) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), .5) def test_roc_curve_drop_intermediate(): # Test that drop_intermediate drops the correct thresholds y_true = [0, 0, 0, 0, 1, 1] y_score = [0., 0.2, 0.5, 0.6, 0.7, 1.0] tpr, fpr, thresholds = roc_curve(y_true, y_score, drop_intermediate=True) assert_array_almost_equal(thresholds, [1., 0.7, 0.]) # Test dropping thresholds with repeating scores y_true = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] y_score = [0., 0.1, 0.6, 0.6, 0.7, 0.8, 0.9, 0.6, 0.7, 0.8, 0.9, 0.9, 1.0] tpr, fpr, thresholds = roc_curve(y_true, y_score, drop_intermediate=True) assert_array_almost_equal(thresholds, [1.0, 0.9, 0.7, 0.6, 0.]) def test_auc(): # Test Area Under Curve (AUC) computation x = [0, 1] y = [0, 1] assert_array_almost_equal(auc(x, y), 0.5) x = [1, 0] y = [0, 1] assert_array_almost_equal(auc(x, y), 0.5) x = [1, 0, 0] y = [0, 1, 1] assert_array_almost_equal(auc(x, y), 0.5) x = [0, 1] y = [1, 1] assert_array_almost_equal(auc(x, y), 1) x = [0, 0.5, 1] y = [0, 0.5, 1] assert_array_almost_equal(auc(x, y), 0.5) def test_auc_duplicate_values(): # Test Area Under Curve (AUC) computation with duplicate values # auc() was previously sorting the x and y arrays according to the indices # from numpy.argsort(x), which was reordering the tied 0's in this example # and resulting in an incorrect area computation. This test detects the # error. x = [-2.0, 0.0, 0.0, 0.0, 1.0] y1 = [2.0, 0.0, 0.5, 1.0, 1.0] y2 = [2.0, 1.0, 0.0, 0.5, 1.0] y3 = [2.0, 1.0, 0.5, 0.0, 1.0] for y in (y1, y2, y3): assert_array_almost_equal(auc(x, y, reorder=True), 3.0) def test_auc_errors(): # Incompatible shapes assert_raises(ValueError, auc, [0.0, 0.5, 1.0], [0.1, 0.2]) # Too few x values assert_raises(ValueError, auc, [0.0], [0.1]) # x is not in order assert_raises(ValueError, auc, [1.0, 0.0, 0.5], [0.0, 0.0, 0.0]) def test_auc_score_non_binary_class(): # Test that roc_auc_score function returns an error when trying # to compute AUC for non-binary class values. rng = check_random_state(404) y_pred = rng.rand(10) # y_true contains only one class value y_true = np.zeros(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) y_true = np.ones(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) y_true = -np.ones(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) # y_true contains three different class values y_true = rng.randint(0, 3, size=10) assert_raise_message(ValueError, "multiclass format is not supported", roc_auc_score, y_true, y_pred) clean_warning_registry() with warnings.catch_warnings(record=True): rng = check_random_state(404) y_pred = rng.rand(10) # y_true contains only one class value y_true = np.zeros(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) y_true = np.ones(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) y_true = -np.ones(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) # y_true contains three different class values y_true = rng.randint(0, 3, size=10) assert_raise_message(ValueError, "multiclass format is not supported", roc_auc_score, y_true, y_pred) def test_precision_recall_curve(): y_true, _, probas_pred = make_prediction(binary=True) _test_precision_recall_curve(y_true, probas_pred) # Use {-1, 1} for labels; make sure original labels aren't modified y_true[np.where(y_true == 0)] = -1 y_true_copy = y_true.copy() _test_precision_recall_curve(y_true, probas_pred) assert_array_equal(y_true_copy, y_true) labels = [1, 0, 0, 1] predict_probas = [1, 2, 3, 4] p, r, t = precision_recall_curve(labels, predict_probas) assert_array_almost_equal(p, np.array([0.5, 0.33333333, 0.5, 1., 1.])) assert_array_almost_equal(r, np.array([1., 0.5, 0.5, 0.5, 0.])) assert_array_almost_equal(t, np.array([1, 2, 3, 4])) assert_equal(p.size, r.size) assert_equal(p.size, t.size + 1) def test_precision_recall_curve_pos_label(): y_true, _, probas_pred = make_prediction(binary=False) pos_label = 2 p, r, thresholds = precision_recall_curve(y_true, probas_pred[:, pos_label], pos_label=pos_label) p2, r2, thresholds2 = precision_recall_curve(y_true == pos_label, probas_pred[:, pos_label]) assert_array_almost_equal(p, p2) assert_array_almost_equal(r, r2) assert_array_almost_equal(thresholds, thresholds2) assert_equal(p.size, r.size) assert_equal(p.size, thresholds.size + 1) def _test_precision_recall_curve(y_true, probas_pred): # Test Precision-Recall and aread under PR curve p, r, thresholds = precision_recall_curve(y_true, probas_pred) precision_recall_auc = auc(r, p) assert_array_almost_equal(precision_recall_auc, 0.85, 2) assert_array_almost_equal(precision_recall_auc, average_precision_score(y_true, probas_pred)) assert_almost_equal(_average_precision(y_true, probas_pred), precision_recall_auc, 1) assert_equal(p.size, r.size) assert_equal(p.size, thresholds.size + 1) # Smoke test in the case of proba having only one value p, r, thresholds = precision_recall_curve(y_true, np.zeros_like(probas_pred)) precision_recall_auc = auc(r, p) assert_array_almost_equal(precision_recall_auc, 0.75, 3) assert_equal(p.size, r.size) assert_equal(p.size, thresholds.size + 1) def test_precision_recall_curve_errors(): # Contains non-binary labels assert_raises(ValueError, precision_recall_curve, [0, 1, 2], [[0.0], [1.0], [1.0]]) def test_precision_recall_curve_toydata(): with np.errstate(all="raise"): # Binary classification y_true = [0, 1] y_score = [0, 1] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [1, 1]) assert_array_almost_equal(r, [1, 0]) assert_almost_equal(auc_prc, 1.) y_true = [0, 1] y_score = [1, 0] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [0.5, 0., 1.]) assert_array_almost_equal(r, [1., 0., 0.]) assert_almost_equal(auc_prc, 0.25) y_true = [1, 0] y_score = [1, 1] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [0.5, 1]) assert_array_almost_equal(r, [1., 0]) assert_almost_equal(auc_prc, .75) y_true = [1, 0] y_score = [1, 0] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [1, 1]) assert_array_almost_equal(r, [1, 0]) assert_almost_equal(auc_prc, 1.) y_true = [1, 0] y_score = [0.5, 0.5] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [0.5, 1]) assert_array_almost_equal(r, [1, 0.]) assert_almost_equal(auc_prc, .75) y_true = [0, 0] y_score = [0.25, 0.75] assert_raises(Exception, precision_recall_curve, y_true, y_score) assert_raises(Exception, average_precision_score, y_true, y_score) y_true = [1, 1] y_score = [0.25, 0.75] p, r, _ = precision_recall_curve(y_true, y_score) assert_almost_equal(average_precision_score(y_true, y_score), 1.) assert_array_almost_equal(p, [1., 1., 1.]) assert_array_almost_equal(r, [1, 0.5, 0.]) # Multi-label classification task y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [0, 1]]) assert_raises(Exception, average_precision_score, y_true, y_score, average="macro") assert_raises(Exception, average_precision_score, y_true, y_score, average="weighted") assert_almost_equal(average_precision_score(y_true, y_score, average="samples"), 1.) assert_almost_equal(average_precision_score(y_true, y_score, average="micro"), 1.) y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) assert_raises(Exception, average_precision_score, y_true, y_score, average="macro") assert_raises(Exception, average_precision_score, y_true, y_score, average="weighted") assert_almost_equal(average_precision_score(y_true, y_score, average="samples"), 0.625) assert_almost_equal(average_precision_score(y_true, y_score, average="micro"), 0.625) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) assert_almost_equal(average_precision_score(y_true, y_score, average="macro"), 0.25) assert_almost_equal(average_precision_score(y_true, y_score, average="weighted"), 0.25) assert_almost_equal(average_precision_score(y_true, y_score, average="samples"), 0.25) assert_almost_equal(average_precision_score(y_true, y_score, average="micro"), 0.25) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0.5, 0.5], [0.5, 0.5]]) assert_almost_equal(average_precision_score(y_true, y_score, average="macro"), 0.75) assert_almost_equal(average_precision_score(y_true, y_score, average="weighted"), 0.75) assert_almost_equal(average_precision_score(y_true, y_score, average="samples"), 0.75) assert_almost_equal(average_precision_score(y_true, y_score, average="micro"), 0.75) def test_score_scale_invariance(): # Test that average_precision_score and roc_auc_score are invariant by # the scaling or shifting of probabilities y_true, _, probas_pred = make_prediction(binary=True) roc_auc = roc_auc_score(y_true, probas_pred) roc_auc_scaled = roc_auc_score(y_true, 100 * probas_pred) roc_auc_shifted = roc_auc_score(y_true, probas_pred - 10) assert_equal(roc_auc, roc_auc_scaled) assert_equal(roc_auc, roc_auc_shifted) pr_auc = average_precision_score(y_true, probas_pred) pr_auc_scaled = average_precision_score(y_true, 100 * probas_pred) pr_auc_shifted = average_precision_score(y_true, probas_pred - 10) assert_equal(pr_auc, pr_auc_scaled) assert_equal(pr_auc, pr_auc_shifted) def check_lrap_toy(lrap_score): # Check on several small example that it works assert_almost_equal(lrap_score([[0, 1]], [[0.25, 0.75]]), 1) assert_almost_equal(lrap_score([[0, 1]], [[0.75, 0.25]]), 1 / 2) assert_almost_equal(lrap_score([[1, 1]], [[0.75, 0.25]]), 1) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.25, 0.5, 0.75]]), 1) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.25, 0.5, 0.75]]), 1 / 2) assert_almost_equal(lrap_score([[0, 1, 1]], [[0.25, 0.5, 0.75]]), 1) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.25, 0.5, 0.75]]), 1 / 3) assert_almost_equal(lrap_score([[1, 0, 1]], [[0.25, 0.5, 0.75]]), (2 / 3 + 1 / 1) / 2) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.25, 0.5, 0.75]]), (2 / 3 + 1 / 2) / 2) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.75, 0.5, 0.25]]), 1 / 3) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.75, 0.5, 0.25]]), 1 / 2) assert_almost_equal(lrap_score([[0, 1, 1]], [[0.75, 0.5, 0.25]]), (1 / 2 + 2 / 3) / 2) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(lrap_score([[1, 0, 1]], [[0.75, 0.5, 0.25]]), (1 + 2 / 3) / 2) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(lrap_score([[1, 1, 1]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.5, 0.75, 0.25]]), 1 / 3) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.5, 0.75, 0.25]]), 1) assert_almost_equal(lrap_score([[0, 1, 1]], [[0.5, 0.75, 0.25]]), (1 + 2 / 3) / 2) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.5, 0.75, 0.25]]), 1 / 2) assert_almost_equal(lrap_score([[1, 0, 1]], [[0.5, 0.75, 0.25]]), (1 / 2 + 2 / 3) / 2) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.5, 0.75, 0.25]]), 1) assert_almost_equal(lrap_score([[1, 1, 1]], [[0.5, 0.75, 0.25]]), 1) # Tie handling assert_almost_equal(lrap_score([[1, 0]], [[0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[0, 1]], [[0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[1, 1]], [[0.5, 0.5]]), 1) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.25, 0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.25, 0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[0, 1, 1]], [[0.25, 0.5, 0.5]]), 1) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.25, 0.5, 0.5]]), 1 / 3) assert_almost_equal(lrap_score([[1, 0, 1]], [[0.25, 0.5, 0.5]]), (2 / 3 + 1 / 2) / 2) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.25, 0.5, 0.5]]), (2 / 3 + 1 / 2) / 2) assert_almost_equal(lrap_score([[1, 1, 1]], [[0.25, 0.5, 0.5]]), 1) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.5, 0.5, 0.5]]), 2 / 3) assert_almost_equal(lrap_score([[1, 1, 1, 0]], [[0.5, 0.5, 0.5, 0.5]]), 3 / 4) def check_zero_or_all_relevant_labels(lrap_score): random_state = check_random_state(0) for n_labels in range(2, 5): y_score = random_state.uniform(size=(1, n_labels)) y_score_ties = np.zeros_like(y_score) # No relevant labels y_true = np.zeros((1, n_labels)) assert_equal(lrap_score(y_true, y_score), 1.) assert_equal(lrap_score(y_true, y_score_ties), 1.) # Only relevant labels y_true = np.ones((1, n_labels)) assert_equal(lrap_score(y_true, y_score), 1.) assert_equal(lrap_score(y_true, y_score_ties), 1.) # Degenerate case: only one label assert_almost_equal(lrap_score([[1], [0], [1], [0]], [[0.5], [0.5], [0.5], [0.5]]), 1.) def check_lrap_error_raised(lrap_score): # Raise value error if not appropriate format assert_raises(ValueError, lrap_score, [0, 1, 0], [0.25, 0.3, 0.2]) assert_raises(ValueError, lrap_score, [0, 1, 2], [[0.25, 0.75, 0.0], [0.7, 0.3, 0.0], [0.8, 0.2, 0.0]]) assert_raises(ValueError, lrap_score, [(0), (1), (2)], [[0.25, 0.75, 0.0], [0.7, 0.3, 0.0], [0.8, 0.2, 0.0]]) # Check that that y_true.shape != y_score.shape raise the proper exception assert_raises(ValueError, lrap_score, [[0, 1], [0, 1]], [0, 1]) assert_raises(ValueError, lrap_score, [[0, 1], [0, 1]], [[0, 1]]) assert_raises(ValueError, lrap_score, [[0, 1], [0, 1]], [[0], [1]]) assert_raises(ValueError, lrap_score, [[0, 1]], [[0, 1], [0, 1]]) assert_raises(ValueError, lrap_score, [[0], [1]], [[0, 1], [0, 1]]) assert_raises(ValueError, lrap_score, [[0, 1], [0, 1]], [[0], [1]]) def check_lrap_only_ties(lrap_score): # Check tie handling in score # Basic check with only ties and increasing label space for n_labels in range(2, 10): y_score = np.ones((1, n_labels)) # Check for growing number of consecutive relevant for n_relevant in range(1, n_labels): # Check for a bunch of positions for pos in range(n_labels - n_relevant): y_true = np.zeros((1, n_labels)) y_true[0, pos:pos + n_relevant] = 1 assert_almost_equal(lrap_score(y_true, y_score), n_relevant / n_labels) def check_lrap_without_tie_and_increasing_score(lrap_score): # Check that Label ranking average precision works for various # Basic check with increasing label space size and decreasing score for n_labels in range(2, 10): y_score = n_labels - (np.arange(n_labels).reshape((1, n_labels)) + 1) # First and last y_true = np.zeros((1, n_labels)) y_true[0, 0] = 1 y_true[0, -1] = 1 assert_almost_equal(lrap_score(y_true, y_score), (2 / n_labels + 1) / 2) # Check for growing number of consecutive relevant label for n_relevant in range(1, n_labels): # Check for a bunch of position for pos in range(n_labels - n_relevant): y_true = np.zeros((1, n_labels)) y_true[0, pos:pos + n_relevant] = 1 assert_almost_equal(lrap_score(y_true, y_score), sum((r + 1) / ((pos + r + 1) * n_relevant) for r in range(n_relevant))) def _my_lrap(y_true, y_score): """Simple implementation of label ranking average precision""" check_consistent_length(y_true, y_score) y_true = check_array(y_true) y_score = check_array(y_score) n_samples, n_labels = y_true.shape score = np.empty((n_samples, )) for i in range(n_samples): # The best rank correspond to 1. Rank higher than 1 are worse. # The best inverse ranking correspond to n_labels. unique_rank, inv_rank = np.unique(y_score[i], return_inverse=True) n_ranks = unique_rank.size rank = n_ranks - inv_rank # Rank need to be corrected to take into account ties # ex: rank 1 ex aequo means that both label are rank 2. corr_rank = np.bincount(rank, minlength=n_ranks + 1).cumsum() rank = corr_rank[rank] relevant = y_true[i].nonzero()[0] if relevant.size == 0 or relevant.size == n_labels: score[i] = 1 continue score[i] = 0. for label in relevant: # Let's count the number of relevant label with better rank # (smaller rank). n_ranked_above = sum(rank[r] <= rank[label] for r in relevant) # Weight by the rank of the actual label score[i] += n_ranked_above / rank[label] score[i] /= relevant.size return score.mean() def check_alternative_lrap_implementation(lrap_score, n_classes=5, n_samples=20, random_state=0): _, y_true = make_multilabel_classification(n_features=1, allow_unlabeled=False, random_state=random_state, n_classes=n_classes, n_samples=n_samples) # Score with ties y_score = sparse_random_matrix(n_components=y_true.shape[0], n_features=y_true.shape[1], random_state=random_state) if hasattr(y_score, "toarray"): y_score = y_score.toarray() score_lrap = label_ranking_average_precision_score(y_true, y_score) score_my_lrap = _my_lrap(y_true, y_score) assert_almost_equal(score_lrap, score_my_lrap) # Uniform score random_state = check_random_state(random_state) y_score = random_state.uniform(size=(n_samples, n_classes)) score_lrap = label_ranking_average_precision_score(y_true, y_score) score_my_lrap = _my_lrap(y_true, y_score) assert_almost_equal(score_lrap, score_my_lrap) def test_label_ranking_avp(): for fn in [label_ranking_average_precision_score, _my_lrap]: yield check_lrap_toy, fn yield check_lrap_without_tie_and_increasing_score, fn yield check_lrap_only_ties, fn yield check_zero_or_all_relevant_labels, fn yield check_lrap_error_raised, label_ranking_average_precision_score for n_samples, n_classes, random_state in product((1, 2, 8, 20), (2, 5, 10), range(1)): yield (check_alternative_lrap_implementation, label_ranking_average_precision_score, n_classes, n_samples, random_state) def test_coverage_error(): # Toy case assert_almost_equal(coverage_error([[0, 1]], [[0.25, 0.75]]), 1) assert_almost_equal(coverage_error([[0, 1]], [[0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 1]], [[0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[0, 0]], [[0.75, 0.25]]), 0) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.25, 0.5, 0.75]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.25, 0.5, 0.75]]), 1) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.25, 0.5, 0.75]]), 2) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.25, 0.5, 0.75]]), 2) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.75, 0.5, 0.25]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.75, 0.5, 0.25]]), 2) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.75, 0.5, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.5, 0.75, 0.25]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.5, 0.75, 0.25]]), 3) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.5, 0.75, 0.25]]), 1) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.5, 0.75, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.5, 0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.5, 0.75, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.5, 0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.5, 0.75, 0.25]]), 3) # Non trival case assert_almost_equal(coverage_error([[0, 1, 0], [1, 1, 0]], [[0.1, 10., -3], [0, 1, 3]]), (1 + 3) / 2.) assert_almost_equal(coverage_error([[0, 1, 0], [1, 1, 0], [0, 1, 1]], [[0.1, 10, -3], [0, 1, 3], [0, 2, 0]]), (1 + 3 + 3) / 3.) assert_almost_equal(coverage_error([[0, 1, 0], [1, 1, 0], [0, 1, 1]], [[0.1, 10, -3], [3, 1, 3], [0, 2, 0]]), (1 + 3 + 3) / 3.) def test_coverage_tie_handling(): assert_almost_equal(coverage_error([[0, 0]], [[0.5, 0.5]]), 0) assert_almost_equal(coverage_error([[1, 0]], [[0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 1]], [[0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[1, 1]], [[0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.25, 0.5, 0.5]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.25, 0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.25, 0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.25, 0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.25, 0.5, 0.5]]), 3) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.25, 0.5, 0.5]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.25, 0.5, 0.5]]), 3) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.25, 0.5, 0.5]]), 3) def test_label_ranking_loss(): assert_almost_equal(label_ranking_loss([[0, 1]], [[0.25, 0.75]]), 0) assert_almost_equal(label_ranking_loss([[0, 1]], [[0.75, 0.25]]), 1) assert_almost_equal(label_ranking_loss([[0, 0, 1]], [[0.25, 0.5, 0.75]]), 0) assert_almost_equal(label_ranking_loss([[0, 1, 0]], [[0.25, 0.5, 0.75]]), 1 / 2) assert_almost_equal(label_ranking_loss([[0, 1, 1]], [[0.25, 0.5, 0.75]]), 0) assert_almost_equal(label_ranking_loss([[1, 0, 0]], [[0.25, 0.5, 0.75]]), 2 / 2) assert_almost_equal(label_ranking_loss([[1, 0, 1]], [[0.25, 0.5, 0.75]]), 1 / 2) assert_almost_equal(label_ranking_loss([[1, 1, 0]], [[0.25, 0.5, 0.75]]), 2 / 2) # Undefined metrics - the ranking doesn't matter assert_almost_equal(label_ranking_loss([[0, 0]], [[0.75, 0.25]]), 0) assert_almost_equal(label_ranking_loss([[1, 1]], [[0.75, 0.25]]), 0) assert_almost_equal(label_ranking_loss([[0, 0]], [[0.5, 0.5]]), 0) assert_almost_equal(label_ranking_loss([[1, 1]], [[0.5, 0.5]]), 0) assert_almost_equal(label_ranking_loss([[0, 0, 0]], [[0.5, 0.75, 0.25]]), 0) assert_almost_equal(label_ranking_loss([[1, 1, 1]], [[0.5, 0.75, 0.25]]), 0) assert_almost_equal(label_ranking_loss([[0, 0, 0]], [[0.25, 0.5, 0.5]]), 0) assert_almost_equal(label_ranking_loss([[1, 1, 1]], [[0.25, 0.5, 0.5]]), 0) # Non trival case assert_almost_equal(label_ranking_loss([[0, 1, 0], [1, 1, 0]], [[0.1, 10., -3], [0, 1, 3]]), (0 + 2 / 2) / 2.) assert_almost_equal(label_ranking_loss( [[0, 1, 0], [1, 1, 0], [0, 1, 1]], [[0.1, 10, -3], [0, 1, 3], [0, 2, 0]]), (0 + 2 / 2 + 1 / 2) / 3.) assert_almost_equal(label_ranking_loss( [[0, 1, 0], [1, 1, 0], [0, 1, 1]], [[0.1, 10, -3], [3, 1, 3], [0, 2, 0]]), (0 + 2 / 2 + 1 / 2) / 3.) # Sparse csr matrices assert_almost_equal(label_ranking_loss( csr_matrix(np.array([[0, 1, 0], [1, 1, 0]])), [[0.1, 10, -3], [3, 1, 3]]), (0 + 2 / 2) / 2.) def test_ranking_appropriate_input_shape(): # Check that that y_true.shape != y_score.shape raise the proper exception assert_raises(ValueError, label_ranking_loss, [[0, 1], [0, 1]], [0, 1]) assert_raises(ValueError, label_ranking_loss, [[0, 1], [0, 1]], [[0, 1]]) assert_raises(ValueError, label_ranking_loss, [[0, 1], [0, 1]], [[0], [1]]) assert_raises(ValueError, label_ranking_loss, [[0, 1]], [[0, 1], [0, 1]]) assert_raises(ValueError, label_ranking_loss, [[0], [1]], [[0, 1], [0, 1]]) assert_raises(ValueError, label_ranking_loss, [[0, 1], [0, 1]], [[0], [1]]) def test_ranking_loss_ties_handling(): # Tie handling assert_almost_equal(label_ranking_loss([[1, 0]], [[0.5, 0.5]]), 1) assert_almost_equal(label_ranking_loss([[0, 1]], [[0.5, 0.5]]), 1) assert_almost_equal(label_ranking_loss([[0, 0, 1]], [[0.25, 0.5, 0.5]]), 1 / 2) assert_almost_equal(label_ranking_loss([[0, 1, 0]], [[0.25, 0.5, 0.5]]), 1 / 2) assert_almost_equal(label_ranking_loss([[0, 1, 1]], [[0.25, 0.5, 0.5]]), 0) assert_almost_equal(label_ranking_loss([[1, 0, 0]], [[0.25, 0.5, 0.5]]), 1) assert_almost_equal(label_ranking_loss([[1, 0, 1]], [[0.25, 0.5, 0.5]]), 1) assert_almost_equal(label_ranking_loss([[1, 1, 0]], [[0.25, 0.5, 0.5]]), 1)
bsd-3-clause
andyraib/data-storage
python_scripts/env/lib/python3.6/site-packages/pandas/tests/formats/test_printing.py
8
4905
# -*- coding: utf-8 -*- import nose from pandas import compat import pandas.formats.printing as printing import pandas.formats.format as fmt import pandas.util.testing as tm import pandas.core.config as cf _multiprocess_can_split_ = True def test_adjoin(): data = [['a', 'b', 'c'], ['dd', 'ee', 'ff'], ['ggg', 'hhh', 'iii']] expected = 'a dd ggg\nb ee hhh\nc ff iii' adjoined = printing.adjoin(2, *data) assert (adjoined == expected) def test_repr_binary_type(): import string letters = string.ascii_letters btype = compat.binary_type try: raw = btype(letters, encoding=cf.get_option('display.encoding')) except TypeError: raw = btype(letters) b = compat.text_type(compat.bytes_to_str(raw)) res = printing.pprint_thing(b, quote_strings=True) tm.assert_equal(res, repr(b)) res = printing.pprint_thing(b, quote_strings=False) tm.assert_equal(res, b) class TestFormattBase(tm.TestCase): def test_adjoin(self): data = [['a', 'b', 'c'], ['dd', 'ee', 'ff'], ['ggg', 'hhh', 'iii']] expected = 'a dd ggg\nb ee hhh\nc ff iii' adjoined = printing.adjoin(2, *data) self.assertEqual(adjoined, expected) def test_adjoin_unicode(self): data = [[u'あ', 'b', 'c'], ['dd', u'ええ', 'ff'], ['ggg', 'hhh', u'いいい']] expected = u'あ dd ggg\nb ええ hhh\nc ff いいい' adjoined = printing.adjoin(2, *data) self.assertEqual(adjoined, expected) adj = fmt.EastAsianTextAdjustment() expected = u"""あ dd ggg b ええ hhh c ff いいい""" adjoined = adj.adjoin(2, *data) self.assertEqual(adjoined, expected) cols = adjoined.split('\n') self.assertEqual(adj.len(cols[0]), 13) self.assertEqual(adj.len(cols[1]), 13) self.assertEqual(adj.len(cols[2]), 16) expected = u"""あ dd ggg b ええ hhh c ff いいい""" adjoined = adj.adjoin(7, *data) self.assertEqual(adjoined, expected) cols = adjoined.split('\n') self.assertEqual(adj.len(cols[0]), 23) self.assertEqual(adj.len(cols[1]), 23) self.assertEqual(adj.len(cols[2]), 26) def test_justify(self): adj = fmt.EastAsianTextAdjustment() def just(x, *args, **kwargs): # wrapper to test single str return adj.justify([x], *args, **kwargs)[0] self.assertEqual(just('abc', 5, mode='left'), 'abc ') self.assertEqual(just('abc', 5, mode='center'), ' abc ') self.assertEqual(just('abc', 5, mode='right'), ' abc') self.assertEqual(just(u'abc', 5, mode='left'), 'abc ') self.assertEqual(just(u'abc', 5, mode='center'), ' abc ') self.assertEqual(just(u'abc', 5, mode='right'), ' abc') self.assertEqual(just(u'パンダ', 5, mode='left'), u'パンダ') self.assertEqual(just(u'パンダ', 5, mode='center'), u'パンダ') self.assertEqual(just(u'パンダ', 5, mode='right'), u'パンダ') self.assertEqual(just(u'パンダ', 10, mode='left'), u'パンダ ') self.assertEqual(just(u'パンダ', 10, mode='center'), u' パンダ ') self.assertEqual(just(u'パンダ', 10, mode='right'), u' パンダ') def test_east_asian_len(self): adj = fmt.EastAsianTextAdjustment() self.assertEqual(adj.len('abc'), 3) self.assertEqual(adj.len(u'abc'), 3) self.assertEqual(adj.len(u'パンダ'), 6) self.assertEqual(adj.len(u'パンダ'), 5) self.assertEqual(adj.len(u'パンダpanda'), 11) self.assertEqual(adj.len(u'パンダpanda'), 10) def test_ambiguous_width(self): adj = fmt.EastAsianTextAdjustment() self.assertEqual(adj.len(u'¡¡ab'), 4) with cf.option_context('display.unicode.ambiguous_as_wide', True): adj = fmt.EastAsianTextAdjustment() self.assertEqual(adj.len(u'¡¡ab'), 6) data = [[u'あ', 'b', 'c'], ['dd', u'ええ', 'ff'], ['ggg', u'¡¡ab', u'いいい']] expected = u'あ dd ggg \nb ええ ¡¡ab\nc ff いいい' adjoined = adj.adjoin(2, *data) self.assertEqual(adjoined, expected) # TODO: fix this broken test # def test_console_encode(): # """ # On Python 2, if sys.stdin.encoding is None (IPython with zmq frontend) # common.console_encode should encode things as utf-8. # """ # if compat.PY3: # raise nose.SkipTest # with tm.stdin_encoding(encoding=None): # result = printing.console_encode(u"\u05d0") # expected = u"\u05d0".encode('utf-8') # assert (result == expected) if __name__ == '__main__': nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
apache-2.0
antoinecarme/pyaf
tests/basic_checks/issue_46_negative_horizon.py
1
3171
import numpy as np import pandas as pd import pyaf.ForecastEngine as autof # the goal of these tests is to make pyaf as robust as possible against very small/bad datasets # pyaf should automatically produce reasonable/naive/trivial models in these cases. # it should not fail in any case (normal behavior expected) def test_fake_model_1_row(iHorizon_train , iHorizon_apply): # one row dataset => always constant forecast df = pd.DataFrame([[0 , 0.54543]], columns = ['date' , 'signal']) lEngine = autof.cForecastEngine() lEngine.train(df , 'date' , 'signal', iHorizon_train); # print(lEngine.mSignalDecomposition.mBestModel.mTimeInfo.info()) print(lEngine.mSignalDecomposition.mBestModel.getFormula()) print("PERFS_MAPE_MASE", lEngine.mSignalDecomposition.mBestModel.mForecastPerf.mMAPE, lEngine.mSignalDecomposition.mBestModel.mForecastPerf.mMASE, ) # print(df.head()) df1 = lEngine.forecast(df , iHorizon_apply) # print(df1.columns) Forecast_DF = df1[['date' , 'signal', 'signal' + '_Forecast', 'signal_Residue', 'signal_Forecast_Lower_Bound', 'signal_Forecast_Upper_Bound']] # print(Forecast_DF.info()) print("Forecasts\n" , Forecast_DF.tail(iHorizon_apply)); def test_fake_model_2_rows(iHorizon_train , iHorizon_apply): # one row dataset => always constant forecast df = pd.DataFrame([[0 , 0.54543] , [1 , 0.43]], columns = ['date' , 'signal']) lEngine = autof.cForecastEngine() lEngine.train(df , 'date' , 'signal', iHorizon_train); # print(lEngine.mSignalDecomposition.mBestModel.mTimeInfo.info()) print(lEngine.mSignalDecomposition.mBestModel.getFormula()) print("PERFS_MAPE_MASE", lEngine.mSignalDecomposition.mBestModel.mForecastPerf.mMAPE, lEngine.mSignalDecomposition.mBestModel.mForecastPerf.mMASE, ) # print(df.head()) df1 = lEngine.forecast(df , iHorizon_apply) # print(df1.columns) Forecast_DF = df1[['date' , 'signal', 'signal' + '_Forecast', 'signal_Residue', 'signal_Forecast_Lower_Bound', 'signal_Forecast_Upper_Bound']] # print(Forecast_DF.info()) print("Forecasts\n" , Forecast_DF.tail(iHorizon_apply)); def test_fake_model_1_row_fail(iHorizon_train , iHorizon_apply): try: test_fake_model_1_row(iHorizon_train, iHorizon_apply) raise Exception("NOT_OK") except Exception as e: # should fail print(str(e)); if(str(e) == "NOT_OK"): raise pass def test_fake_model_2_rows_fail(iHorizon_train , iHorizon_apply): try: test_fake_model_2_rows(iHorizon_train, iHorizon_apply) raise Exception("NOT_OK") except Exception as e: # should fail print(str(e)); if(str(e) == "NOT_OK"): raise pass test_fake_model_1_row_fail( 0, -1) test_fake_model_1_row_fail( 2, 0) test_fake_model_1_row_fail( 2, 0) test_fake_model_1_row_fail( -1, -2) test_fake_model_1_row_fail( -2, -10) test_fake_model_1_row_fail( -20, -10) test_fake_model_2_rows_fail( -1, -4) test_fake_model_2_rows_fail( -6, -2) test_fake_model_2_rows_fail( -6, -1) test_fake_model_2_rows_fail( -1 , -7)
bsd-3-clause
LohithBlaze/scikit-learn
sklearn/ensemble/tests/test_voting_classifier.py
140
6926
"""Testing for the boost module (sklearn.ensemble.boost).""" import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_equal from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import VotingClassifier from sklearn.grid_search import GridSearchCV from sklearn import datasets from sklearn import cross_validation from sklearn.datasets import make_multilabel_classification from sklearn.svm import SVC from sklearn.multiclass import OneVsRestClassifier # Load the iris dataset and randomly permute it iris = datasets.load_iris() X, y = iris.data[:, 1:3], iris.target def test_majority_label_iris(): """Check classification by majority label on dataset iris.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard') scores = cross_validation.cross_val_score(eclf, X, y, cv=5, scoring='accuracy') assert_almost_equal(scores.mean(), 0.95, decimal=2) def test_tie_situation(): """Check voting classifier selects smaller class label in tie situation.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2)], voting='hard') assert_equal(clf1.fit(X, y).predict(X)[73], 2) assert_equal(clf2.fit(X, y).predict(X)[73], 1) assert_equal(eclf.fit(X, y).predict(X)[73], 1) def test_weights_iris(): """Check classification by average probabilities on dataset iris.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft', weights=[1, 2, 10]) scores = cross_validation.cross_val_score(eclf, X, y, cv=5, scoring='accuracy') assert_almost_equal(scores.mean(), 0.93, decimal=2) def test_predict_on_toy_problem(): """Manually check predicted class labels for toy dataset.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2], [2.1, 1.4], [3.1, 2.3]]) y = np.array([1, 1, 1, 2, 2, 2]) assert_equal(all(clf1.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) assert_equal(all(clf2.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) assert_equal(all(clf3.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard', weights=[1, 1, 1]) assert_equal(all(eclf.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft', weights=[1, 1, 1]) assert_equal(all(eclf.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) def test_predict_proba_on_toy_problem(): """Calculate predicted probabilities on toy dataset.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]]) y = np.array([1, 1, 2, 2]) clf1_res = np.array([[0.59790391, 0.40209609], [0.57622162, 0.42377838], [0.50728456, 0.49271544], [0.40241774, 0.59758226]]) clf2_res = np.array([[0.8, 0.2], [0.8, 0.2], [0.2, 0.8], [0.3, 0.7]]) clf3_res = np.array([[0.9985082, 0.0014918], [0.99845843, 0.00154157], [0., 1.], [0., 1.]]) t00 = (2*clf1_res[0][0] + clf2_res[0][0] + clf3_res[0][0]) / 4 t11 = (2*clf1_res[1][1] + clf2_res[1][1] + clf3_res[1][1]) / 4 t21 = (2*clf1_res[2][1] + clf2_res[2][1] + clf3_res[2][1]) / 4 t31 = (2*clf1_res[3][1] + clf2_res[3][1] + clf3_res[3][1]) / 4 eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft', weights=[2, 1, 1]) eclf_res = eclf.fit(X, y).predict_proba(X) assert_almost_equal(t00, eclf_res[0][0], decimal=1) assert_almost_equal(t11, eclf_res[1][1], decimal=1) assert_almost_equal(t21, eclf_res[2][1], decimal=1) assert_almost_equal(t31, eclf_res[3][1], decimal=1) try: eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard') eclf.fit(X, y).predict_proba(X) except AttributeError: pass else: raise AssertionError('AttributeError for voting == "hard"' ' and with predict_proba not raised') def test_multilabel(): """Check if error is raised for multilabel classification.""" X, y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=False, random_state=123) clf = OneVsRestClassifier(SVC(kernel='linear')) eclf = VotingClassifier(estimators=[('ovr', clf)], voting='hard') try: eclf.fit(X, y) except NotImplementedError: return def test_gridsearch(): """Check GridSearch support.""" clf1 = LogisticRegression(random_state=1) clf2 = RandomForestClassifier(random_state=1) clf3 = GaussianNB() eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft') params = {'lr__C': [1.0, 100.0], 'voting': ['soft', 'hard'], 'weights': [[0.5, 0.5, 0.5], [1.0, 0.5, 0.5]]} grid = GridSearchCV(estimator=eclf, param_grid=params, cv=5) grid.fit(iris.data, iris.target)
bsd-3-clause
3manuek/scikit-learn
sklearn/preprocessing/tests/test_data.py
113
38432
import warnings import numpy as np import numpy.linalg as la from scipy import sparse from distutils.version import LooseVersion from sklearn.utils.testing import assert_almost_equal, clean_warning_registry from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_less_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regex from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import assert_no_warnings from sklearn.utils.sparsefuncs import mean_variance_axis from sklearn.preprocessing.data import _transform_selected from sklearn.preprocessing.data import Binarizer from sklearn.preprocessing.data import KernelCenterer from sklearn.preprocessing.data import Normalizer from sklearn.preprocessing.data import normalize from sklearn.preprocessing.data import OneHotEncoder from sklearn.preprocessing.data import StandardScaler from sklearn.preprocessing.data import scale from sklearn.preprocessing.data import MinMaxScaler from sklearn.preprocessing.data import minmax_scale from sklearn.preprocessing.data import MaxAbsScaler from sklearn.preprocessing.data import maxabs_scale from sklearn.preprocessing.data import RobustScaler from sklearn.preprocessing.data import robust_scale from sklearn.preprocessing.data import add_dummy_feature from sklearn.preprocessing.data import PolynomialFeatures from sklearn.utils.validation import DataConversionWarning from sklearn import datasets iris = datasets.load_iris() def toarray(a): if hasattr(a, "toarray"): a = a.toarray() return a def test_polynomial_features(): # Test Polynomial Features X1 = np.arange(6)[:, np.newaxis] P1 = np.hstack([np.ones_like(X1), X1, X1 ** 2, X1 ** 3]) deg1 = 3 X2 = np.arange(6).reshape((3, 2)) x1 = X2[:, :1] x2 = X2[:, 1:] P2 = np.hstack([x1 ** 0 * x2 ** 0, x1 ** 1 * x2 ** 0, x1 ** 0 * x2 ** 1, x1 ** 2 * x2 ** 0, x1 ** 1 * x2 ** 1, x1 ** 0 * x2 ** 2]) deg2 = 2 for (deg, X, P) in [(deg1, X1, P1), (deg2, X2, P2)]: P_test = PolynomialFeatures(deg, include_bias=True).fit_transform(X) assert_array_almost_equal(P_test, P) P_test = PolynomialFeatures(deg, include_bias=False).fit_transform(X) assert_array_almost_equal(P_test, P[:, 1:]) interact = PolynomialFeatures(2, interaction_only=True, include_bias=True) X_poly = interact.fit_transform(X) assert_array_almost_equal(X_poly, P2[:, [0, 1, 2, 4]]) def test_scaler_1d(): # Test scaling of dataset along single axis rng = np.random.RandomState(0) X = rng.randn(5) X_orig_copy = X.copy() scaler = StandardScaler() X_scaled = scaler.fit(X).transform(X, copy=False) assert_array_almost_equal(X_scaled.mean(axis=0), 0.0) assert_array_almost_equal(X_scaled.std(axis=0), 1.0) # check inverse transform X_scaled_back = scaler.inverse_transform(X_scaled) assert_array_almost_equal(X_scaled_back, X_orig_copy) # Test with 1D list X = [0., 1., 2, 0.4, 1.] scaler = StandardScaler() X_scaled = scaler.fit(X).transform(X, copy=False) assert_array_almost_equal(X_scaled.mean(axis=0), 0.0) assert_array_almost_equal(X_scaled.std(axis=0), 1.0) X_scaled = scale(X) assert_array_almost_equal(X_scaled.mean(axis=0), 0.0) assert_array_almost_equal(X_scaled.std(axis=0), 1.0) X = np.ones(5) assert_array_equal(scale(X, with_mean=False), X) def test_standard_scaler_numerical_stability(): """Test numerical stability of scaling""" # np.log(1e-5) is taken because of its floating point representation # was empirically found to cause numerical problems with np.mean & np.std. x = np.zeros(8, dtype=np.float64) + np.log(1e-5, dtype=np.float64) if LooseVersion(np.__version__) >= LooseVersion('1.9'): # This does not raise a warning as the number of samples is too low # to trigger the problem in recent numpy x_scaled = assert_no_warnings(scale, x) assert_array_almost_equal(scale(x), np.zeros(8)) else: w = "standard deviation of the data is probably very close to 0" x_scaled = assert_warns_message(UserWarning, w, scale, x) assert_array_almost_equal(x_scaled, np.zeros(8)) # with 2 more samples, the std computation run into numerical issues: x = np.zeros(10, dtype=np.float64) + np.log(1e-5, dtype=np.float64) w = "standard deviation of the data is probably very close to 0" x_scaled = assert_warns_message(UserWarning, w, scale, x) assert_array_almost_equal(x_scaled, np.zeros(10)) x = np.ones(10, dtype=np.float64) * 1e-100 x_small_scaled = assert_no_warnings(scale, x) assert_array_almost_equal(x_small_scaled, np.zeros(10)) # Large values can cause (often recoverable) numerical stability issues: x_big = np.ones(10, dtype=np.float64) * 1e100 w = "Dataset may contain too large values" x_big_scaled = assert_warns_message(UserWarning, w, scale, x_big) assert_array_almost_equal(x_big_scaled, np.zeros(10)) assert_array_almost_equal(x_big_scaled, x_small_scaled) x_big_centered = assert_warns_message(UserWarning, w, scale, x_big, with_std=False) assert_array_almost_equal(x_big_centered, np.zeros(10)) assert_array_almost_equal(x_big_centered, x_small_scaled) def test_scaler_2d_arrays(): # Test scaling of 2d array along first axis rng = np.random.RandomState(0) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero scaler = StandardScaler() X_scaled = scaler.fit(X).transform(X, copy=True) assert_false(np.any(np.isnan(X_scaled))) assert_array_almost_equal(X_scaled.mean(axis=0), 5 * [0.0]) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) # Check that X has been copied assert_true(X_scaled is not X) # check inverse transform X_scaled_back = scaler.inverse_transform(X_scaled) assert_true(X_scaled_back is not X) assert_true(X_scaled_back is not X_scaled) assert_array_almost_equal(X_scaled_back, X) X_scaled = scale(X, axis=1, with_std=False) assert_false(np.any(np.isnan(X_scaled))) assert_array_almost_equal(X_scaled.mean(axis=1), 4 * [0.0]) X_scaled = scale(X, axis=1, with_std=True) assert_false(np.any(np.isnan(X_scaled))) assert_array_almost_equal(X_scaled.mean(axis=1), 4 * [0.0]) assert_array_almost_equal(X_scaled.std(axis=1), 4 * [1.0]) # Check that the data hasn't been modified assert_true(X_scaled is not X) X_scaled = scaler.fit(X).transform(X, copy=False) assert_false(np.any(np.isnan(X_scaled))) assert_array_almost_equal(X_scaled.mean(axis=0), 5 * [0.0]) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) # Check that X has not been copied assert_true(X_scaled is X) X = rng.randn(4, 5) X[:, 0] = 1.0 # first feature is a constant, non zero feature scaler = StandardScaler() X_scaled = scaler.fit(X).transform(X, copy=True) assert_false(np.any(np.isnan(X_scaled))) assert_array_almost_equal(X_scaled.mean(axis=0), 5 * [0.0]) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) # Check that X has not been copied assert_true(X_scaled is not X) def test_min_max_scaler_iris(): X = iris.data scaler = MinMaxScaler() # default params X_trans = scaler.fit_transform(X) assert_array_almost_equal(X_trans.min(axis=0), 0) assert_array_almost_equal(X_trans.min(axis=0), 0) assert_array_almost_equal(X_trans.max(axis=0), 1) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # not default params: min=1, max=2 scaler = MinMaxScaler(feature_range=(1, 2)) X_trans = scaler.fit_transform(X) assert_array_almost_equal(X_trans.min(axis=0), 1) assert_array_almost_equal(X_trans.max(axis=0), 2) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # min=-.5, max=.6 scaler = MinMaxScaler(feature_range=(-.5, .6)) X_trans = scaler.fit_transform(X) assert_array_almost_equal(X_trans.min(axis=0), -.5) assert_array_almost_equal(X_trans.max(axis=0), .6) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # raises on invalid range scaler = MinMaxScaler(feature_range=(2, 1)) assert_raises(ValueError, scaler.fit, X) def test_min_max_scaler_zero_variance_features(): # Check min max scaler on toy data with zero variance features X = [[0., 1., +0.5], [0., 1., -0.1], [0., 1., +1.1]] X_new = [[+0., 2., 0.5], [-1., 1., 0.0], [+0., 1., 1.5]] # default params scaler = MinMaxScaler() X_trans = scaler.fit_transform(X) X_expected_0_1 = [[0., 0., 0.5], [0., 0., 0.0], [0., 0., 1.0]] assert_array_almost_equal(X_trans, X_expected_0_1) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) X_trans_new = scaler.transform(X_new) X_expected_0_1_new = [[+0., 1., 0.500], [-1., 0., 0.083], [+0., 0., 1.333]] assert_array_almost_equal(X_trans_new, X_expected_0_1_new, decimal=2) # not default params scaler = MinMaxScaler(feature_range=(1, 2)) X_trans = scaler.fit_transform(X) X_expected_1_2 = [[1., 1., 1.5], [1., 1., 1.0], [1., 1., 2.0]] assert_array_almost_equal(X_trans, X_expected_1_2) # function interface X_trans = minmax_scale(X) assert_array_almost_equal(X_trans, X_expected_0_1) X_trans = minmax_scale(X, feature_range=(1, 2)) assert_array_almost_equal(X_trans, X_expected_1_2) def test_minmax_scale_axis1(): X = iris.data X_trans = minmax_scale(X, axis=1) assert_array_almost_equal(np.min(X_trans, axis=1), 0) assert_array_almost_equal(np.max(X_trans, axis=1), 1) def test_min_max_scaler_1d(): # Test scaling of dataset along single axis rng = np.random.RandomState(0) X = rng.randn(5) X_orig_copy = X.copy() scaler = MinMaxScaler() X_scaled = scaler.fit(X).transform(X) assert_array_almost_equal(X_scaled.min(axis=0), 0.0) assert_array_almost_equal(X_scaled.max(axis=0), 1.0) # check inverse transform X_scaled_back = scaler.inverse_transform(X_scaled) assert_array_almost_equal(X_scaled_back, X_orig_copy) # Test with 1D list X = [0., 1., 2, 0.4, 1.] scaler = MinMaxScaler() X_scaled = scaler.fit(X).transform(X) assert_array_almost_equal(X_scaled.min(axis=0), 0.0) assert_array_almost_equal(X_scaled.max(axis=0), 1.0) # Constant feature. X = np.zeros(5) scaler = MinMaxScaler() X_scaled = scaler.fit(X).transform(X) assert_greater_equal(X_scaled.min(), 0.) assert_less_equal(X_scaled.max(), 1.) def test_scaler_without_centering(): rng = np.random.RandomState(42) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) assert_raises(ValueError, StandardScaler().fit, X_csr) null_transform = StandardScaler(with_mean=False, with_std=False, copy=True) X_null = null_transform.fit_transform(X_csr) assert_array_equal(X_null.data, X_csr.data) X_orig = null_transform.inverse_transform(X_null) assert_array_equal(X_orig.data, X_csr.data) scaler = StandardScaler(with_mean=False).fit(X) X_scaled = scaler.transform(X, copy=True) assert_false(np.any(np.isnan(X_scaled))) scaler_csr = StandardScaler(with_mean=False).fit(X_csr) X_csr_scaled = scaler_csr.transform(X_csr, copy=True) assert_false(np.any(np.isnan(X_csr_scaled.data))) scaler_csc = StandardScaler(with_mean=False).fit(X_csc) X_csc_scaled = scaler_csr.transform(X_csc, copy=True) assert_false(np.any(np.isnan(X_csc_scaled.data))) assert_equal(scaler.mean_, scaler_csr.mean_) assert_array_almost_equal(scaler.std_, scaler_csr.std_) assert_equal(scaler.mean_, scaler_csc.mean_) assert_array_almost_equal(scaler.std_, scaler_csc.std_) assert_array_almost_equal( X_scaled.mean(axis=0), [0., -0.01, 2.24, -0.35, -0.78], 2) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) X_csr_scaled_mean, X_csr_scaled_std = mean_variance_axis(X_csr_scaled, 0) assert_array_almost_equal(X_csr_scaled_mean, X_scaled.mean(axis=0)) assert_array_almost_equal(X_csr_scaled_std, X_scaled.std(axis=0)) # Check that X has not been modified (copy) assert_true(X_scaled is not X) assert_true(X_csr_scaled is not X_csr) X_scaled_back = scaler.inverse_transform(X_scaled) assert_true(X_scaled_back is not X) assert_true(X_scaled_back is not X_scaled) assert_array_almost_equal(X_scaled_back, X) X_csr_scaled_back = scaler_csr.inverse_transform(X_csr_scaled) assert_true(X_csr_scaled_back is not X_csr) assert_true(X_csr_scaled_back is not X_csr_scaled) assert_array_almost_equal(X_csr_scaled_back.toarray(), X) X_csc_scaled_back = scaler_csr.inverse_transform(X_csc_scaled.tocsc()) assert_true(X_csc_scaled_back is not X_csc) assert_true(X_csc_scaled_back is not X_csc_scaled) assert_array_almost_equal(X_csc_scaled_back.toarray(), X) def test_scaler_int(): # test that scaler converts integer input to floating # for both sparse and dense matrices rng = np.random.RandomState(42) X = rng.randint(20, size=(4, 5)) X[:, 0] = 0 # first feature is always of zero X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) null_transform = StandardScaler(with_mean=False, with_std=False, copy=True) clean_warning_registry() with warnings.catch_warnings(record=True): X_null = null_transform.fit_transform(X_csr) assert_array_equal(X_null.data, X_csr.data) X_orig = null_transform.inverse_transform(X_null) assert_array_equal(X_orig.data, X_csr.data) clean_warning_registry() with warnings.catch_warnings(record=True): scaler = StandardScaler(with_mean=False).fit(X) X_scaled = scaler.transform(X, copy=True) assert_false(np.any(np.isnan(X_scaled))) clean_warning_registry() with warnings.catch_warnings(record=True): scaler_csr = StandardScaler(with_mean=False).fit(X_csr) X_csr_scaled = scaler_csr.transform(X_csr, copy=True) assert_false(np.any(np.isnan(X_csr_scaled.data))) clean_warning_registry() with warnings.catch_warnings(record=True): scaler_csc = StandardScaler(with_mean=False).fit(X_csc) X_csc_scaled = scaler_csr.transform(X_csc, copy=True) assert_false(np.any(np.isnan(X_csc_scaled.data))) assert_equal(scaler.mean_, scaler_csr.mean_) assert_array_almost_equal(scaler.std_, scaler_csr.std_) assert_equal(scaler.mean_, scaler_csc.mean_) assert_array_almost_equal(scaler.std_, scaler_csc.std_) assert_array_almost_equal( X_scaled.mean(axis=0), [0., 1.109, 1.856, 21., 1.559], 2) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) X_csr_scaled_mean, X_csr_scaled_std = mean_variance_axis( X_csr_scaled.astype(np.float), 0) assert_array_almost_equal(X_csr_scaled_mean, X_scaled.mean(axis=0)) assert_array_almost_equal(X_csr_scaled_std, X_scaled.std(axis=0)) # Check that X has not been modified (copy) assert_true(X_scaled is not X) assert_true(X_csr_scaled is not X_csr) X_scaled_back = scaler.inverse_transform(X_scaled) assert_true(X_scaled_back is not X) assert_true(X_scaled_back is not X_scaled) assert_array_almost_equal(X_scaled_back, X) X_csr_scaled_back = scaler_csr.inverse_transform(X_csr_scaled) assert_true(X_csr_scaled_back is not X_csr) assert_true(X_csr_scaled_back is not X_csr_scaled) assert_array_almost_equal(X_csr_scaled_back.toarray(), X) X_csc_scaled_back = scaler_csr.inverse_transform(X_csc_scaled.tocsc()) assert_true(X_csc_scaled_back is not X_csc) assert_true(X_csc_scaled_back is not X_csc_scaled) assert_array_almost_equal(X_csc_scaled_back.toarray(), X) def test_scaler_without_copy(): # Check that StandardScaler.fit does not change input rng = np.random.RandomState(42) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero X_csr = sparse.csr_matrix(X) X_copy = X.copy() StandardScaler(copy=False).fit(X) assert_array_equal(X, X_copy) X_csr_copy = X_csr.copy() StandardScaler(with_mean=False, copy=False).fit(X_csr) assert_array_equal(X_csr.toarray(), X_csr_copy.toarray()) def test_scale_sparse_with_mean_raise_exception(): rng = np.random.RandomState(42) X = rng.randn(4, 5) X_csr = sparse.csr_matrix(X) # check scaling and fit with direct calls on sparse data assert_raises(ValueError, scale, X_csr, with_mean=True) assert_raises(ValueError, StandardScaler(with_mean=True).fit, X_csr) # check transform and inverse_transform after a fit on a dense array scaler = StandardScaler(with_mean=True).fit(X) assert_raises(ValueError, scaler.transform, X_csr) X_transformed_csr = sparse.csr_matrix(scaler.transform(X)) assert_raises(ValueError, scaler.inverse_transform, X_transformed_csr) def test_scale_input_finiteness_validation(): # Check if non finite inputs raise ValueError X = [np.nan, 5, 6, 7, 8] assert_raises_regex(ValueError, "Input contains NaN, infinity or a value too large", scale, X) X = [np.inf, 5, 6, 7, 8] assert_raises_regex(ValueError, "Input contains NaN, infinity or a value too large", scale, X) def test_scale_function_without_centering(): rng = np.random.RandomState(42) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero X_csr = sparse.csr_matrix(X) X_scaled = scale(X, with_mean=False) assert_false(np.any(np.isnan(X_scaled))) X_csr_scaled = scale(X_csr, with_mean=False) assert_false(np.any(np.isnan(X_csr_scaled.data))) # test csc has same outcome X_csc_scaled = scale(X_csr.tocsc(), with_mean=False) assert_array_almost_equal(X_scaled, X_csc_scaled.toarray()) # raises value error on axis != 0 assert_raises(ValueError, scale, X_csr, with_mean=False, axis=1) assert_array_almost_equal(X_scaled.mean(axis=0), [0., -0.01, 2.24, -0.35, -0.78], 2) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) # Check that X has not been copied assert_true(X_scaled is not X) X_csr_scaled_mean, X_csr_scaled_std = mean_variance_axis(X_csr_scaled, 0) assert_array_almost_equal(X_csr_scaled_mean, X_scaled.mean(axis=0)) assert_array_almost_equal(X_csr_scaled_std, X_scaled.std(axis=0)) def test_robust_scaler_2d_arrays(): """Test robust scaling of 2d array along first axis""" rng = np.random.RandomState(0) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero scaler = RobustScaler() X_scaled = scaler.fit(X).transform(X) assert_array_almost_equal(np.median(X_scaled, axis=0), 5 * [0.0]) assert_array_almost_equal(X_scaled.std(axis=0)[0], 0) def test_robust_scaler_iris(): X = iris.data scaler = RobustScaler() X_trans = scaler.fit_transform(X) assert_array_almost_equal(np.median(X_trans, axis=0), 0) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) q = np.percentile(X_trans, q=(25, 75), axis=0) iqr = q[1] - q[0] assert_array_almost_equal(iqr, 1) def test_robust_scale_axis1(): X = iris.data X_trans = robust_scale(X, axis=1) assert_array_almost_equal(np.median(X_trans, axis=1), 0) q = np.percentile(X_trans, q=(25, 75), axis=1) iqr = q[1] - q[0] assert_array_almost_equal(iqr, 1) def test_robust_scaler_zero_variance_features(): """Check RobustScaler on toy data with zero variance features""" X = [[0., 1., +0.5], [0., 1., -0.1], [0., 1., +1.1]] scaler = RobustScaler() X_trans = scaler.fit_transform(X) # NOTE: for such a small sample size, what we expect in the third column # depends HEAVILY on the method used to calculate quantiles. The values # here were calculated to fit the quantiles produces by np.percentile # using numpy 1.9 Calculating quantiles with # scipy.stats.mstats.scoreatquantile or scipy.stats.mstats.mquantiles # would yield very different results! X_expected = [[0., 0., +0.0], [0., 0., -1.0], [0., 0., +1.0]] assert_array_almost_equal(X_trans, X_expected) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # make sure new data gets transformed correctly X_new = [[+0., 2., 0.5], [-1., 1., 0.0], [+0., 1., 1.5]] X_trans_new = scaler.transform(X_new) X_expected_new = [[+0., 1., +0.], [-1., 0., -0.83333], [+0., 0., +1.66667]] assert_array_almost_equal(X_trans_new, X_expected_new, decimal=3) def test_maxabs_scaler_zero_variance_features(): """Check MaxAbsScaler on toy data with zero variance features""" X = [[0., 1., +0.5], [0., 1., -0.3], [0., 1., +1.5], [0., 0., +0.0]] scaler = MaxAbsScaler() X_trans = scaler.fit_transform(X) X_expected = [[0., 1., 1.0 / 3.0], [0., 1., -0.2], [0., 1., 1.0], [0., 0., 0.0]] assert_array_almost_equal(X_trans, X_expected) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # make sure new data gets transformed correctly X_new = [[+0., 2., 0.5], [-1., 1., 0.0], [+0., 1., 1.5]] X_trans_new = scaler.transform(X_new) X_expected_new = [[+0., 2.0, 1.0 / 3.0], [-1., 1.0, 0.0], [+0., 1.0, 1.0]] assert_array_almost_equal(X_trans_new, X_expected_new, decimal=2) # sparse data X_csr = sparse.csr_matrix(X) X_trans = scaler.fit_transform(X_csr) X_expected = [[0., 1., 1.0 / 3.0], [0., 1., -0.2], [0., 1., 1.0], [0., 0., 0.0]] assert_array_almost_equal(X_trans.A, X_expected) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv.A) def test_maxabs_scaler_large_negative_value(): """Check MaxAbsScaler on toy data with a large negative value""" X = [[0., 1., +0.5, -1.0], [0., 1., -0.3, -0.5], [0., 1., -100.0, 0.0], [0., 0., +0.0, -2.0]] scaler = MaxAbsScaler() X_trans = scaler.fit_transform(X) X_expected = [[0., 1., 0.005, -0.5], [0., 1., -0.003, -0.25], [0., 1., -1.0, 0.0], [0., 0., 0.0, -1.0]] assert_array_almost_equal(X_trans, X_expected) def test_warning_scaling_integers(): # Check warning when scaling integer data X = np.array([[1, 2, 0], [0, 0, 0]], dtype=np.uint8) w = "Data with input dtype uint8 was converted to float64" clean_warning_registry() assert_warns_message(DataConversionWarning, w, scale, X) assert_warns_message(DataConversionWarning, w, StandardScaler().fit, X) assert_warns_message(DataConversionWarning, w, MinMaxScaler().fit, X) def test_normalizer_l1(): rng = np.random.RandomState(0) X_dense = rng.randn(4, 5) X_sparse_unpruned = sparse.csr_matrix(X_dense) # set the row number 3 to zero X_dense[3, :] = 0.0 # set the row number 3 to zero without pruning (can happen in real life) indptr_3 = X_sparse_unpruned.indptr[3] indptr_4 = X_sparse_unpruned.indptr[4] X_sparse_unpruned.data[indptr_3:indptr_4] = 0.0 # build the pruned variant using the regular constructor X_sparse_pruned = sparse.csr_matrix(X_dense) # check inputs that support the no-copy optim for X in (X_dense, X_sparse_pruned, X_sparse_unpruned): normalizer = Normalizer(norm='l1', copy=True) X_norm = normalizer.transform(X) assert_true(X_norm is not X) X_norm1 = toarray(X_norm) normalizer = Normalizer(norm='l1', copy=False) X_norm = normalizer.transform(X) assert_true(X_norm is X) X_norm2 = toarray(X_norm) for X_norm in (X_norm1, X_norm2): row_sums = np.abs(X_norm).sum(axis=1) for i in range(3): assert_almost_equal(row_sums[i], 1.0) assert_almost_equal(row_sums[3], 0.0) # check input for which copy=False won't prevent a copy for init in (sparse.coo_matrix, sparse.csc_matrix, sparse.lil_matrix): X = init(X_dense) X_norm = normalizer = Normalizer(norm='l2', copy=False).transform(X) assert_true(X_norm is not X) assert_true(isinstance(X_norm, sparse.csr_matrix)) X_norm = toarray(X_norm) for i in range(3): assert_almost_equal(row_sums[i], 1.0) assert_almost_equal(la.norm(X_norm[3]), 0.0) def test_normalizer_l2(): rng = np.random.RandomState(0) X_dense = rng.randn(4, 5) X_sparse_unpruned = sparse.csr_matrix(X_dense) # set the row number 3 to zero X_dense[3, :] = 0.0 # set the row number 3 to zero without pruning (can happen in real life) indptr_3 = X_sparse_unpruned.indptr[3] indptr_4 = X_sparse_unpruned.indptr[4] X_sparse_unpruned.data[indptr_3:indptr_4] = 0.0 # build the pruned variant using the regular constructor X_sparse_pruned = sparse.csr_matrix(X_dense) # check inputs that support the no-copy optim for X in (X_dense, X_sparse_pruned, X_sparse_unpruned): normalizer = Normalizer(norm='l2', copy=True) X_norm1 = normalizer.transform(X) assert_true(X_norm1 is not X) X_norm1 = toarray(X_norm1) normalizer = Normalizer(norm='l2', copy=False) X_norm2 = normalizer.transform(X) assert_true(X_norm2 is X) X_norm2 = toarray(X_norm2) for X_norm in (X_norm1, X_norm2): for i in range(3): assert_almost_equal(la.norm(X_norm[i]), 1.0) assert_almost_equal(la.norm(X_norm[3]), 0.0) # check input for which copy=False won't prevent a copy for init in (sparse.coo_matrix, sparse.csc_matrix, sparse.lil_matrix): X = init(X_dense) X_norm = normalizer = Normalizer(norm='l2', copy=False).transform(X) assert_true(X_norm is not X) assert_true(isinstance(X_norm, sparse.csr_matrix)) X_norm = toarray(X_norm) for i in range(3): assert_almost_equal(la.norm(X_norm[i]), 1.0) assert_almost_equal(la.norm(X_norm[3]), 0.0) def test_normalizer_max(): rng = np.random.RandomState(0) X_dense = rng.randn(4, 5) X_sparse_unpruned = sparse.csr_matrix(X_dense) # set the row number 3 to zero X_dense[3, :] = 0.0 # set the row number 3 to zero without pruning (can happen in real life) indptr_3 = X_sparse_unpruned.indptr[3] indptr_4 = X_sparse_unpruned.indptr[4] X_sparse_unpruned.data[indptr_3:indptr_4] = 0.0 # build the pruned variant using the regular constructor X_sparse_pruned = sparse.csr_matrix(X_dense) # check inputs that support the no-copy optim for X in (X_dense, X_sparse_pruned, X_sparse_unpruned): normalizer = Normalizer(norm='max', copy=True) X_norm1 = normalizer.transform(X) assert_true(X_norm1 is not X) X_norm1 = toarray(X_norm1) normalizer = Normalizer(norm='max', copy=False) X_norm2 = normalizer.transform(X) assert_true(X_norm2 is X) X_norm2 = toarray(X_norm2) for X_norm in (X_norm1, X_norm2): row_maxs = X_norm.max(axis=1) for i in range(3): assert_almost_equal(row_maxs[i], 1.0) assert_almost_equal(row_maxs[3], 0.0) # check input for which copy=False won't prevent a copy for init in (sparse.coo_matrix, sparse.csc_matrix, sparse.lil_matrix): X = init(X_dense) X_norm = normalizer = Normalizer(norm='l2', copy=False).transform(X) assert_true(X_norm is not X) assert_true(isinstance(X_norm, sparse.csr_matrix)) X_norm = toarray(X_norm) for i in range(3): assert_almost_equal(row_maxs[i], 1.0) assert_almost_equal(la.norm(X_norm[3]), 0.0) def test_normalize(): # Test normalize function # Only tests functionality not used by the tests for Normalizer. X = np.random.RandomState(37).randn(3, 2) assert_array_equal(normalize(X, copy=False), normalize(X.T, axis=0, copy=False).T) assert_raises(ValueError, normalize, [[0]], axis=2) assert_raises(ValueError, normalize, [[0]], norm='l3') def test_binarizer(): X_ = np.array([[1, 0, 5], [2, 3, -1]]) for init in (np.array, list, sparse.csr_matrix, sparse.csc_matrix): X = init(X_.copy()) binarizer = Binarizer(threshold=2.0, copy=True) X_bin = toarray(binarizer.transform(X)) assert_equal(np.sum(X_bin == 0), 4) assert_equal(np.sum(X_bin == 1), 2) X_bin = binarizer.transform(X) assert_equal(sparse.issparse(X), sparse.issparse(X_bin)) binarizer = Binarizer(copy=True).fit(X) X_bin = toarray(binarizer.transform(X)) assert_true(X_bin is not X) assert_equal(np.sum(X_bin == 0), 2) assert_equal(np.sum(X_bin == 1), 4) binarizer = Binarizer(copy=True) X_bin = binarizer.transform(X) assert_true(X_bin is not X) X_bin = toarray(X_bin) assert_equal(np.sum(X_bin == 0), 2) assert_equal(np.sum(X_bin == 1), 4) binarizer = Binarizer(copy=False) X_bin = binarizer.transform(X) if init is not list: assert_true(X_bin is X) X_bin = toarray(X_bin) assert_equal(np.sum(X_bin == 0), 2) assert_equal(np.sum(X_bin == 1), 4) binarizer = Binarizer(threshold=-0.5, copy=True) for init in (np.array, list): X = init(X_.copy()) X_bin = toarray(binarizer.transform(X)) assert_equal(np.sum(X_bin == 0), 1) assert_equal(np.sum(X_bin == 1), 5) X_bin = binarizer.transform(X) # Cannot use threshold < 0 for sparse assert_raises(ValueError, binarizer.transform, sparse.csc_matrix(X)) def test_center_kernel(): # Test that KernelCenterer is equivalent to StandardScaler # in feature space rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) scaler = StandardScaler(with_std=False) scaler.fit(X_fit) X_fit_centered = scaler.transform(X_fit) K_fit = np.dot(X_fit, X_fit.T) # center fit time matrix centerer = KernelCenterer() K_fit_centered = np.dot(X_fit_centered, X_fit_centered.T) K_fit_centered2 = centerer.fit_transform(K_fit) assert_array_almost_equal(K_fit_centered, K_fit_centered2) # center predict time matrix X_pred = rng.random_sample((2, 4)) K_pred = np.dot(X_pred, X_fit.T) X_pred_centered = scaler.transform(X_pred) K_pred_centered = np.dot(X_pred_centered, X_fit_centered.T) K_pred_centered2 = centerer.transform(K_pred) assert_array_almost_equal(K_pred_centered, K_pred_centered2) def test_fit_transform(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) for obj in ((StandardScaler(), Normalizer(), Binarizer())): X_transformed = obj.fit(X).transform(X) X_transformed2 = obj.fit_transform(X) assert_array_equal(X_transformed, X_transformed2) def test_add_dummy_feature(): X = [[1, 0], [0, 1], [0, 1]] X = add_dummy_feature(X) assert_array_equal(X, [[1, 1, 0], [1, 0, 1], [1, 0, 1]]) def test_add_dummy_feature_coo(): X = sparse.coo_matrix([[1, 0], [0, 1], [0, 1]]) X = add_dummy_feature(X) assert_true(sparse.isspmatrix_coo(X), X) assert_array_equal(X.toarray(), [[1, 1, 0], [1, 0, 1], [1, 0, 1]]) def test_add_dummy_feature_csc(): X = sparse.csc_matrix([[1, 0], [0, 1], [0, 1]]) X = add_dummy_feature(X) assert_true(sparse.isspmatrix_csc(X), X) assert_array_equal(X.toarray(), [[1, 1, 0], [1, 0, 1], [1, 0, 1]]) def test_add_dummy_feature_csr(): X = sparse.csr_matrix([[1, 0], [0, 1], [0, 1]]) X = add_dummy_feature(X) assert_true(sparse.isspmatrix_csr(X), X) assert_array_equal(X.toarray(), [[1, 1, 0], [1, 0, 1], [1, 0, 1]]) def test_one_hot_encoder_sparse(): # Test OneHotEncoder's fit and transform. X = [[3, 2, 1], [0, 1, 1]] enc = OneHotEncoder() # discover max values automatically X_trans = enc.fit_transform(X).toarray() assert_equal(X_trans.shape, (2, 5)) assert_array_equal(enc.active_features_, np.where([1, 0, 0, 1, 0, 1, 1, 0, 1])[0]) assert_array_equal(enc.feature_indices_, [0, 4, 7, 9]) # check outcome assert_array_equal(X_trans, [[0., 1., 0., 1., 1.], [1., 0., 1., 0., 1.]]) # max value given as 3 enc = OneHotEncoder(n_values=4) X_trans = enc.fit_transform(X) assert_equal(X_trans.shape, (2, 4 * 3)) assert_array_equal(enc.feature_indices_, [0, 4, 8, 12]) # max value given per feature enc = OneHotEncoder(n_values=[3, 2, 2]) X = [[1, 0, 1], [0, 1, 1]] X_trans = enc.fit_transform(X) assert_equal(X_trans.shape, (2, 3 + 2 + 2)) assert_array_equal(enc.n_values_, [3, 2, 2]) # check that testing with larger feature works: X = np.array([[2, 0, 1], [0, 1, 1]]) enc.transform(X) # test that an error is raised when out of bounds: X_too_large = [[0, 2, 1], [0, 1, 1]] assert_raises(ValueError, enc.transform, X_too_large) assert_raises(ValueError, OneHotEncoder(n_values=2).fit_transform, X) # test that error is raised when wrong number of features assert_raises(ValueError, enc.transform, X[:, :-1]) # test that error is raised when wrong number of features in fit # with prespecified n_values assert_raises(ValueError, enc.fit, X[:, :-1]) # test exception on wrong init param assert_raises(TypeError, OneHotEncoder(n_values=np.int).fit, X) enc = OneHotEncoder() # test negative input to fit assert_raises(ValueError, enc.fit, [[0], [-1]]) # test negative input to transform enc.fit([[0], [1]]) assert_raises(ValueError, enc.transform, [[0], [-1]]) def test_one_hot_encoder_dense(): # check for sparse=False X = [[3, 2, 1], [0, 1, 1]] enc = OneHotEncoder(sparse=False) # discover max values automatically X_trans = enc.fit_transform(X) assert_equal(X_trans.shape, (2, 5)) assert_array_equal(enc.active_features_, np.where([1, 0, 0, 1, 0, 1, 1, 0, 1])[0]) assert_array_equal(enc.feature_indices_, [0, 4, 7, 9]) # check outcome assert_array_equal(X_trans, np.array([[0., 1., 0., 1., 1.], [1., 0., 1., 0., 1.]])) def _check_transform_selected(X, X_expected, sel): for M in (X, sparse.csr_matrix(X)): Xtr = _transform_selected(M, Binarizer().transform, sel) assert_array_equal(toarray(Xtr), X_expected) def test_transform_selected(): X = [[3, 2, 1], [0, 1, 1]] X_expected = [[1, 2, 1], [0, 1, 1]] _check_transform_selected(X, X_expected, [0]) _check_transform_selected(X, X_expected, [True, False, False]) X_expected = [[1, 1, 1], [0, 1, 1]] _check_transform_selected(X, X_expected, [0, 1, 2]) _check_transform_selected(X, X_expected, [True, True, True]) _check_transform_selected(X, X_expected, "all") _check_transform_selected(X, X, []) _check_transform_selected(X, X, [False, False, False]) def _run_one_hot(X, X2, cat): enc = OneHotEncoder(categorical_features=cat) Xtr = enc.fit_transform(X) X2tr = enc.transform(X2) return Xtr, X2tr def _check_one_hot(X, X2, cat, n_features): ind = np.where(cat)[0] # With mask A, B = _run_one_hot(X, X2, cat) # With indices C, D = _run_one_hot(X, X2, ind) # Check shape assert_equal(A.shape, (2, n_features)) assert_equal(B.shape, (1, n_features)) assert_equal(C.shape, (2, n_features)) assert_equal(D.shape, (1, n_features)) # Check that mask and indices give the same results assert_array_equal(toarray(A), toarray(C)) assert_array_equal(toarray(B), toarray(D)) def test_one_hot_encoder_categorical_features(): X = np.array([[3, 2, 1], [0, 1, 1]]) X2 = np.array([[1, 1, 1]]) cat = [True, False, False] _check_one_hot(X, X2, cat, 4) # Edge case: all non-categorical cat = [False, False, False] _check_one_hot(X, X2, cat, 3) # Edge case: all categorical cat = [True, True, True] _check_one_hot(X, X2, cat, 5) def test_one_hot_encoder_unknown_transform(): X = np.array([[0, 2, 1], [1, 0, 3], [1, 0, 2]]) y = np.array([[4, 1, 1]]) # Test that one hot encoder raises error for unknown features # present during transform. oh = OneHotEncoder(handle_unknown='error') oh.fit(X) assert_raises(ValueError, oh.transform, y) # Test the ignore option, ignores unknown features. oh = OneHotEncoder(handle_unknown='ignore') oh.fit(X) assert_array_equal( oh.transform(y).toarray(), np.array([[0., 0., 0., 0., 1., 0., 0.]]) ) # Raise error if handle_unknown is neither ignore or error. oh = OneHotEncoder(handle_unknown='42') oh.fit(X) assert_raises(ValueError, oh.transform, y)
bsd-3-clause
ahaberlie/MetPy
examples/sigma_to_pressure_interpolation.py
3
3544
# Copyright (c) 2017,2018 MetPy Developers. # Distributed under the terms of the BSD 3-Clause License. # SPDX-License-Identifier: BSD-3-Clause """ =============================== Sigma to Pressure Interpolation =============================== By using `metpy.calc.log_interp`, data with sigma as the vertical coordinate can be interpolated to isobaric coordinates. """ import cartopy.crs as ccrs import cartopy.feature as cfeature import matplotlib.pyplot as plt from netCDF4 import Dataset, num2date from metpy.cbook import get_test_data from metpy.interpolate import log_interpolate_1d from metpy.plots import add_metpy_logo, add_timestamp from metpy.units import units ###################################### # **Data** # # The data for this example comes from the outer domain of a WRF-ARW model forecast # initialized at 1200 UTC on 03 June 1980. Model data courtesy Matthew Wilson, Valparaiso # University Department of Geography and Meteorology. data = Dataset(get_test_data('wrf_example.nc', False)) lat = data.variables['lat'][:] lon = data.variables['lon'][:] time = data.variables['time'] vtimes = num2date(time[:], time.units) temperature = units.Quantity(data.variables['temperature'][:], 'degC') pres = units.Quantity(data.variables['pressure'][:], 'Pa') hgt = units.Quantity(data.variables['height'][:], 'meter') #################################### # Array of desired pressure levels plevs = [700.] * units.hPa ##################################### # **Interpolate The Data** # # Now that the data is ready, we can interpolate to the new isobaric levels. The data is # interpolated from the irregular pressure values for each sigma level to the new input # mandatory isobaric levels. `mpcalc.log_interp` will interpolate over a specified dimension # with the `axis` argument. In this case, `axis=1` will correspond to interpolation on the # vertical axis. The interpolated data is output in a list, so we will pull out each # variable for plotting. height, temp = log_interpolate_1d(plevs, pres, hgt, temperature, axis=1) #################################### # **Plotting the Data for 700 hPa.** # Set up our projection crs = ccrs.LambertConformal(central_longitude=-100.0, central_latitude=45.0) # Set the forecast hour FH = 1 # Create the figure and grid for subplots fig = plt.figure(figsize=(17, 12)) add_metpy_logo(fig, 470, 320, size='large') # Plot 700 hPa ax = plt.subplot(111, projection=crs) ax.add_feature(cfeature.COASTLINE.with_scale('50m'), linewidth=0.75) ax.add_feature(cfeature.STATES, linewidth=0.5) # Plot the heights cs = ax.contour(lon, lat, height[FH, 0, :, :], transform=ccrs.PlateCarree(), colors='k', linewidths=1.0, linestyles='solid') ax.clabel(cs, fontsize=10, inline=1, inline_spacing=7, fmt='%i', rightside_up=True, use_clabeltext=True) # Contour the temperature cf = ax.contourf(lon, lat, temp[FH, 0, :, :], range(-20, 20, 1), cmap=plt.cm.RdBu_r, transform=ccrs.PlateCarree()) cb = fig.colorbar(cf, orientation='horizontal', extend='max', aspect=65, shrink=0.5, pad=0.05, extendrect='True') cb.set_label('Celsius', size='x-large') ax.set_extent([-106.5, -90.4, 34.5, 46.75], crs=ccrs.PlateCarree()) # Make the axis title ax.set_title('{:.0f} hPa Heights (m) and Temperature (C)'.format(plevs[0].m), loc='center', fontsize=10) # Set the figure title fig.suptitle('WRF-ARW Forecast VALID: {:s} UTC'.format(str(vtimes[FH])), fontsize=14) add_timestamp(ax, vtimes[FH], y=0.02, high_contrast=True) plt.show()
bsd-3-clause
pablosv/dynamic_multifarious
tools/plot.py
1
5429
""" This file contains several plotting functions """ import matplotlib as mpl mpl.use('Agg') from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as np import evaluation as ev def plot_lattice(lat, blocks, mode='color-species', title='L_000.npy'): """ This function reads the type of coloring and chooses the corresponding plotter. """ cases = {'color-species': plot_lattice_color_species, 'color-structures': plot_lattice_color_structures, 'color-structures2': plot_lattice_color_structures2} return cases[mode](lat, blocks, title) def plot_lattice_color_species(lat, blocks, title): """ we begin by creating a colormap in which each of the M components of the structures is made of a different color. """ colors = [(1.0,1.0,1.0),(.0,.0,.0)] colors.extend(mpl.cm.jet(np.linspace(0, 1, blocks.M-1))) cmap = mpl.colors.ListedColormap(colors) plt.matshow(lat, cmap=cmap) return 0 def plot_lattice_color_structures(lat, blocks, title): """ we begin by creating a colormap in which each of the structures is made of a different color. """ col = ['w'] col.extend(mpl.cm.hsv(np.linspace(0, 1, 1+blocks.m))) cmap = mpl.colors.ListedColormap(col) # Calculate the overlap lattice ms = ev.overlap(lat, blocks) # Create a lat_s = np.zeros_like(lat) for i in range(blocks.L): for j in range(blocks.L): if lat[i,j]==0: lat_s[i,j] = 0 # empty site else: lat_s[i,j] = 1 + np.argmax(ms[i, j, :]) # site w plt.matshow(lat_s, cmap=cmap, vmin=0, vmax=1+blocks.m) return 0 def plot_lattice_color_structures2(lat, blocks, title): """ we begin by creating a colormap in which each of the structures is made of a different color. """ col = ['w', '0.5', 'k'] col.extend(mpl.cm.hsv(np.linspace(0, 1, 1+blocks.m))) cmap = mpl.colors.ListedColormap(col) # Calculate the overlap lattice ms = ev.overlap(lat, blocks) # Create a lat_s = np.zeros_like(lat) for i in range(blocks.L): for j in range(blocks.L): if lat[i,j]==0: lat_s[i,j] = -2 # empty site elif (ms[i, j, :]!=1).all(): lat_s[i,j] = -1# monomer or ... elif (ms[i, j, :]==1).sum()>1: lat_s[i,j] = 0 # site else: lat_s[i,j] = 1 + np.argmax(ms[i, j, :]) # site with plt.matshow(lat_s, cmap=cmap, vmin=-2, vmax=1+blocks.m) plt.title(title) return 0 def plot_structures(blocks, mode = 'color-species'): """ This function reads the type of coloring and chooses the corresponding plotter. """ cases = {'color-species': plot_structures_color_species, 'color-structures': plot_structures_color_species, 'color-structures2': plot_structures_color_species} return cases[mode](blocks) def plot_structures_color_species(blocks): colors = [(1.0,1.0,1.0),(.0,.0,.0)] colors.extend(mpl.cm.jet(np.linspace(0, 1, blocks.M-1))) cmap = mpl.colors.ListedColormap(colors) f, (ax1, ax2) = plt.subplots(1, 2, figsize=(6, 3)) ax1.matshow(blocks.structures[:,:,0], cmap=cmap) ax1.set_title('Structure 0') ax1.set_xticklabels('') ax1.set_yticklabels('') ax2.matshow(blocks.structures[:,:,1], cmap=cmap) ax2.set_title('Structure 1') ax2.set_xticklabels('') ax2.set_yticklabels('') return def plot_errors(errors, blocks, show=True, path='./tmp', name='/errors.png'): """ This function plots the errors with all the target structures over time, each one with a different color. """ fig = plt.figure() ax = fig.add_subplot(111) plt.ylabel('errors, $\epsilon^{S}$',fontdict={'fontsize':20}) plt.xlabel('time',fontdict={'fontsize':20}) plt.axis([0, errors.shape[0], -.2, 1.2]) col = mpl.cm.hsv(np.linspace(0, 1, 1+blocks.m)) for i in range(len(errors[0,:])): plt.plot(errors[:,i], label="$S=${0}".format(i), color=col[i]) plt.legend(title='errors, $\epsilon^{S}$', ncol=2, shadow=True,\ fancybox=True) ax.xaxis.set_major_locator(mpl.ticker.MultipleLocator(10)) ax.xaxis.grid(True,'major') plt.savefig( path + name , bbox_inches='tight') if show==True: fig.show() return 0 def plot_phase(errors, blocks, show=True, path='./tmp', name='/phase.png'): """ This function plots the trajectory of the assemblies in the phase space of the errors. In practice, it's not very informative. """ fig = plt.figure() ax = fig.add_subplot(111, projection='3d') gains_r = 1-errors[:,0] gains_g = 1-errors[:,1] gains_b = 1-errors[:,2] ax.scatter(gains_g, gains_r, gains_b, facecolors=1-errors, alpha=.05,s=70.) ax.set_xlim3d([0,1.]) ax.set_ylim3d([1.,0]) ax.set_zlim3d([0,1.]) ax.set_aspect(.9,'box') ax.set_xlabel('$1-\epsilon_G$') ax.set_ylabel('$1-\epsilon_R$') ax.set_zlabel('$1-\epsilon_B$') plt.savefig( path + name , bbox_inches='tight') if show==True: fig.show() return 0 def plot_conformations(conformations, lattice, title='No_title'): """ Plot the weights of all elements """ normalized_conformations = (conformations.T*np.sign(lattice).T).T normalized_conformations += (np.sign(lattice)-1) * 2 min_c = -2 max_c = np.max(normalized_conformations) fig = plt.figure() ax = fig.add_subplot(111) conformations_plot = ax.matshow(normalized_conformations, vmin=min_c, vmax=max_c) plt.title(title) fig.colorbar(conformations_plot) fig.show() return 0
gpl-3.0
ran5515/DeepDecision
tensorflow/python/estimator/inputs/queues/feeding_functions.py
46
15782
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Helper functions for enqueuing data from arrays and pandas `DataFrame`s.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import random import types as tp import numpy as np import six from tensorflow.python.estimator.inputs.queues import feeding_queue_runner as fqr from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import tf_logging as logging from tensorflow.python.summary import summary from tensorflow.python.training import queue_runner try: # pylint: disable=g-import-not-at-top import pandas as pd HAS_PANDAS = True except IOError: # Pandas writes a temporary file during import. If it fails, don't use pandas. HAS_PANDAS = False except ImportError: HAS_PANDAS = False def _get_integer_indices_for_next_batch( batch_indices_start, batch_size, epoch_end, array_length, current_epoch, total_epochs): """Returns the integer indices for next batch. If total epochs is not None and current epoch is the final epoch, the end index of the next batch should not exceed the `epoch_end` (i.e., the final batch might not have size `batch_size` to avoid overshooting the last epoch). Args: batch_indices_start: Integer, the index to start next batch. batch_size: Integer, size of batches to return. epoch_end: Integer, the end index of the epoch. The epoch could start from a random position, so `epoch_end` provides the end index for that. array_length: Integer, the length of the array. current_epoch: Integer, the epoch number has been emitted. total_epochs: Integer or `None`, the total number of epochs to emit. If `None` will run forever. Returns: A tuple of a list with integer indices for next batch and `current_epoch` value after the next batch. Raises: OutOfRangeError if `current_epoch` is not less than `total_epochs`. """ if total_epochs is not None and current_epoch >= total_epochs: raise errors.OutOfRangeError(None, None, "Already emitted %s epochs." % current_epoch) batch_indices_end = batch_indices_start + batch_size batch_indices = [j % array_length for j in range(batch_indices_start, batch_indices_end)] epoch_end_indices = [i for i, x in enumerate(batch_indices) if x == epoch_end] current_epoch += len(epoch_end_indices) if total_epochs is None or current_epoch < total_epochs: return (batch_indices, current_epoch) # Now we might have emitted more data for expected epochs. Need to trim. final_epoch_end_inclusive = epoch_end_indices[ -(current_epoch - total_epochs + 1)] batch_indices = batch_indices[:final_epoch_end_inclusive + 1] return (batch_indices, total_epochs) class _ArrayFeedFn(object): """Creates feed dictionaries from numpy arrays.""" def __init__(self, placeholders, array, batch_size, random_start=False, seed=None, num_epochs=None): if len(placeholders) != 2: raise ValueError("_array_feed_fn expects 2 placeholders; got {}.".format( len(placeholders))) self._placeholders = placeholders self._array = array self._max = len(array) self._batch_size = batch_size self._num_epochs = num_epochs self._epoch = 0 random.seed(seed) self._trav = random.randrange(self._max) if random_start else 0 self._epoch_end = (self._trav - 1) % self._max def __call__(self): integer_indexes, self._epoch = _get_integer_indices_for_next_batch( batch_indices_start=self._trav, batch_size=self._batch_size, epoch_end=self._epoch_end, array_length=self._max, current_epoch=self._epoch, total_epochs=self._num_epochs) self._trav = (integer_indexes[-1] + 1) % self._max return { self._placeholders[0]: integer_indexes, self._placeholders[1]: self._array[integer_indexes] } class _OrderedDictNumpyFeedFn(object): """Creates feed dictionaries from `OrderedDict`s of numpy arrays.""" def __init__(self, placeholders, ordered_dict_of_arrays, batch_size, random_start=False, seed=None, num_epochs=None): if len(placeholders) != len(ordered_dict_of_arrays) + 1: raise ValueError("Expected {} placeholders; got {}.".format( len(ordered_dict_of_arrays), len(placeholders))) self._index_placeholder = placeholders[0] self._col_placeholders = placeholders[1:] self._ordered_dict_of_arrays = ordered_dict_of_arrays self._max = len(next(iter(ordered_dict_of_arrays.values()))) for _, v in ordered_dict_of_arrays.items(): if len(v) != self._max: raise ValueError("Array lengths must match.") self._batch_size = batch_size self._num_epochs = num_epochs self._epoch = 0 random.seed(seed) self._trav = random.randrange(self._max) if random_start else 0 self._epoch_end = (self._trav - 1) % self._max def __call__(self): integer_indexes, self._epoch = _get_integer_indices_for_next_batch( batch_indices_start=self._trav, batch_size=self._batch_size, epoch_end=self._epoch_end, array_length=self._max, current_epoch=self._epoch, total_epochs=self._num_epochs) self._trav = (integer_indexes[-1] + 1) % self._max feed_dict = {self._index_placeholder: integer_indexes} cols = [ column[integer_indexes] for column in self._ordered_dict_of_arrays.values() ] feed_dict.update(dict(zip(self._col_placeholders, cols))) return feed_dict class _PandasFeedFn(object): """Creates feed dictionaries from pandas `DataFrames`.""" def __init__(self, placeholders, dataframe, batch_size, random_start=False, seed=None, num_epochs=None): if len(placeholders) != len(dataframe.columns) + 1: raise ValueError("Expected {} placeholders; got {}.".format( len(dataframe.columns), len(placeholders))) self._index_placeholder = placeholders[0] self._col_placeholders = placeholders[1:] self._dataframe = dataframe self._max = len(dataframe) self._batch_size = batch_size self._num_epochs = num_epochs self._epoch = 0 random.seed(seed) self._trav = random.randrange(self._max) if random_start else 0 self._epoch_end = (self._trav - 1) % self._max def __call__(self): integer_indexes, self._epoch = _get_integer_indices_for_next_batch( batch_indices_start=self._trav, batch_size=self._batch_size, epoch_end=self._epoch_end, array_length=self._max, current_epoch=self._epoch, total_epochs=self._num_epochs) self._trav = (integer_indexes[-1] + 1) % self._max result = self._dataframe.iloc[integer_indexes] cols = [result[col].values for col in result.columns] feed_dict = dict(zip(self._col_placeholders, cols)) feed_dict[self._index_placeholder] = result.index.values return feed_dict class _GeneratorFeedFn(object): """Creates feed dictionaries from `Generator` of `dicts` of numpy arrays.""" def __init__(self, placeholders, generator, batch_size, random_start=False, seed=None, num_epochs=None): first_sample = next(generator()) if len(placeholders) != len(first_sample): raise ValueError("Expected {} placeholders; got {}.".format( len(first_sample), len(placeholders))) self._keys = sorted(list(first_sample.keys())) self._col_placeholders = placeholders self._generator_function = generator self._iterator = generator() self._batch_size = batch_size self._num_epochs = num_epochs self._epoch = 0 random.seed(seed) def __call__(self): if self._num_epochs and self._epoch >= self._num_epochs: raise errors.OutOfRangeError(None, None, "Already emitted %s epochs." % self._epoch) list_dict = {} list_dict_size = 0 while list_dict_size < self._batch_size: try: data_row = next(self._iterator) except StopIteration: self._epoch += 1 self._iterator = self._generator_function() data_row = next(self._iterator) for index, key in enumerate(self._keys): if key not in data_row.keys(): raise KeyError("key mismatch between dicts emitted by GenFun" "Expected {} keys; got {}".format( self._keys, data_row.keys())) list_dict.setdefault(self._col_placeholders[index], list()).append(data_row[key]) list_dict_size += 1 feed_dict = {key: np.asarray(item) for key, item in list(list_dict.items())} return feed_dict def _enqueue_data(data, capacity, shuffle=False, min_after_dequeue=None, num_threads=1, seed=None, name="enqueue_input", enqueue_size=1, num_epochs=None): """Creates a queue filled from a numpy array or pandas `DataFrame`. Returns a queue filled with the rows of the given (`OrderedDict` of) array or `DataFrame`. In the case of a pandas `DataFrame`, the first enqueued `Tensor` corresponds to the index of the `DataFrame`. For (`OrderedDict` of) numpy arrays, the first enqueued `Tensor` contains the row number. Args: data: a numpy `ndarray`, `OrderedDict` of numpy arrays, or a generator yielding `dict`s of numpy arrays or pandas `DataFrame` that will be read into the queue. capacity: the capacity of the queue. shuffle: whether or not to shuffle the rows of the array. min_after_dequeue: minimum number of elements that can remain in the queue after a dequeue operation. Only used when `shuffle` is true. If not set, defaults to `capacity` / 4. num_threads: number of threads used for reading and enqueueing. seed: used to seed shuffling and reader starting points. name: a scope name identifying the data. enqueue_size: the number of rows to enqueue per step. num_epochs: limit enqueuing to a specified number of epochs, if provided. Returns: A queue filled with the rows of the given (`OrderedDict` of) array or `DataFrame`. Raises: TypeError: `data` is not a Pandas `DataFrame`, an `OrderedDict` of numpy arrays, a numpy `ndarray`, or a generator producing these. """ with ops.name_scope(name): if isinstance(data, np.ndarray): types = [dtypes.int64, dtypes.as_dtype(data.dtype)] queue_shapes = [(), data.shape[1:]] get_feed_fn = _ArrayFeedFn elif isinstance(data, collections.OrderedDict): types = [dtypes.int64] + [ dtypes.as_dtype(col.dtype) for col in data.values() ] queue_shapes = [()] + [col.shape[1:] for col in data.values()] get_feed_fn = _OrderedDictNumpyFeedFn elif isinstance(data, tp.FunctionType): x_first_el = six.next(data()) x_first_keys = sorted(x_first_el.keys()) x_first_values = [x_first_el[key] for key in x_first_keys] types = [dtypes.as_dtype(col.dtype) for col in x_first_values] queue_shapes = [col.shape for col in x_first_values] get_feed_fn = _GeneratorFeedFn elif HAS_PANDAS and isinstance(data, pd.DataFrame): types = [ dtypes.as_dtype(dt) for dt in [data.index.dtype] + list(data.dtypes) ] queue_shapes = [() for _ in types] get_feed_fn = _PandasFeedFn else: raise TypeError( "data must be either a numpy array or pandas DataFrame if pandas is " "installed; got {}".format(type(data).__name__)) # TODO(jamieas): TensorBoard warnings for all warnings below once available. if num_threads > 1 and num_epochs is not None: logging.warning( "enqueue_data was called with num_epochs and num_threads > 1. " "num_epochs is applied per thread, so this will produce more " "epochs than you probably intend. " "If you want to limit epochs, use one thread.") if shuffle and num_threads > 1 and num_epochs is not None: logging.warning( "enqueue_data was called with shuffle=True, num_threads > 1, and " "num_epochs. This will create multiple threads, all reading the " "array/dataframe in order adding to the same shuffling queue; the " "results will likely not be sufficiently shuffled.") if not shuffle and num_threads > 1: logging.warning( "enqueue_data was called with shuffle=False and num_threads > 1. " "This will create multiple threads, all reading the " "array/dataframe in order. If you want examples read in order, use" " one thread; if you want multiple threads, enable shuffling.") if shuffle: min_after_dequeue = int(capacity / 4 if min_after_dequeue is None else min_after_dequeue) queue = data_flow_ops.RandomShuffleQueue( capacity, min_after_dequeue, dtypes=types, shapes=queue_shapes, seed=seed) else: min_after_dequeue = 0 # just for the summary text queue = data_flow_ops.FIFOQueue( capacity, dtypes=types, shapes=queue_shapes) enqueue_ops = [] feed_fns = [] for i in range(num_threads): # Note the placeholders have no shapes, so they will accept any # enqueue_size. enqueue_many below will break them up. placeholders = [array_ops.placeholder(t) for t in types] enqueue_ops.append(queue.enqueue_many(placeholders)) seed_i = None if seed is None else (i + 1) * seed feed_fns.append( get_feed_fn( placeholders, data, enqueue_size, random_start=shuffle, seed=seed_i, num_epochs=num_epochs)) runner = fqr._FeedingQueueRunner( # pylint: disable=protected-access queue=queue, enqueue_ops=enqueue_ops, feed_fns=feed_fns) queue_runner.add_queue_runner(runner) full = (math_ops.cast( math_ops.maximum(0, queue.size() - min_after_dequeue), dtypes.float32) * (1. / (capacity - min_after_dequeue))) # Note that name contains a '/' at the end so we intentionally do not place # a '/' after %s below. summary_name = ("queue/%sfraction_over_%d_of_%d_full" % (queue.name, min_after_dequeue, capacity - min_after_dequeue)) summary.scalar(summary_name, full) return queue
apache-2.0
RomainBrault/scikit-learn
examples/neighbors/plot_regression.py
349
1402
""" ============================ Nearest Neighbors regression ============================ Demonstrate the resolution of a regression problem using a k-Nearest Neighbor and the interpolation of the target using both barycenter and constant weights. """ print(__doc__) # Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Fabian Pedregosa <fabian.pedregosa@inria.fr> # # License: BSD 3 clause (C) INRIA ############################################################################### # Generate sample data import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors np.random.seed(0) X = np.sort(5 * np.random.rand(40, 1), axis=0) T = np.linspace(0, 5, 500)[:, np.newaxis] y = np.sin(X).ravel() # Add noise to targets y[::5] += 1 * (0.5 - np.random.rand(8)) ############################################################################### # Fit regression model n_neighbors = 5 for i, weights in enumerate(['uniform', 'distance']): knn = neighbors.KNeighborsRegressor(n_neighbors, weights=weights) y_ = knn.fit(X, y).predict(T) plt.subplot(2, 1, i + 1) plt.scatter(X, y, c='k', label='data') plt.plot(T, y_, c='g', label='prediction') plt.axis('tight') plt.legend() plt.title("KNeighborsRegressor (k = %i, weights = '%s')" % (n_neighbors, weights)) plt.show()
bsd-3-clause
ecell/epdp_ecell4_impl_temporary
samples/reversible/plot.py
3
2585
#!/usr/bin/env/python # PYTHONPATH=../.. python plot.py rev.-2.out p_rev.-2.tsv 0.000000125 rev.-1.out p_rev.-1.tsv 0.00000125 rev.0.out p_rev.0.tsv 0.0000125 rev.1.out p_rev.1.tsv 0.000125 rev.2.out p_rev.2.tsv 0.00125 rev.3.out p_rev.3.tsv 0.0125 # rev.-3.out p_rev.-3.tsv 0.0000000125 import sys import numpy import scipy.io from matplotlib.pylab import * #import _gfrd infilename = sys.argv[1] N_A = 6.0221367e23 sigma = 5e-9 #r0 = sigma D_tot = 2e-12 #kf = 10 * sigma * D tau = sigma*sigma / D_tot rmin = sigma def load_data(filename): infile = open(filename) data = array([float(x) for x in infile.read().split()], numpy.float) infile.close() return data def plot_sol(filename, t): rmax = 3.1 * math.sqrt(6 * D_tot * t) + rmin data = scipy.io.read_array(filename) rarray, parray = numpy.transpose(data) mask = numpy.less_equal(rarray, rmax) rarray = numpy.compress(mask, rarray) parray = numpy.compress(mask, parray) return loglog(rarray / sigma, parray * sigma, 'k-')[0] def plot_hist(data, T, i): bins = 30 nonreactions = numpy.compress(data >= sigma, data) print 'max', max(nonreactions) hist, r = numpy.histogram(numpy.log(nonreactions), bins=bins) r = r[:-1] # new numpy.histogram returns len(r)=len(hist)+1 histsum = hist.sum() S_sim = float(len(nonreactions)) / len(data) print 'S_sim', S_sim hist = hist.astype(numpy.float) r = numpy.concatenate([r, [r[-1] - r[-2]]]) r = numpy.exp(r) xticks = r[1:]-r[:-1] hist /= len(data) * xticks r = r[:-1] + (xticks * .5) #print 'x', x #pStyles = ['o', '^', 'v', '<', '>', 's', '+'] colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k'] loglog(r / sigma, hist * sigma, colors[i] + 'o', label=r'$T = \tau^{%d}$' % round(math.log10(T/tau))) if __name__ == '__main__': axes([.14,.15,.84,.82]) for i in range(len(sys.argv[1:])/3): simfilename = sys.argv[i*3+1] solfilename = sys.argv[i*3+2] T = float(sys.argv[i*3+3]) print simfilename,solfilename,T data = load_data(simfilename) plot_hist(data, T, i) solline = plot_sol(solfilename, T) xlabel(r'$r / \sigma$', size=28) ylabel(r'$p_{rev}$', size=28) xlim(0.9, 2.2e2) ylim(2e-6, 2e1) xticks([1, 10, 100], ['1', '10', '100'], size=22) yticks(size=18) solline.set_label(r'theory') #legend(handlelen=0.02, pad=0.02,handletextsep=0.01, labelsep=0.001) #grid() savefig('rev.eps') show()
gpl-2.0
Sentient07/scikit-learn
sklearn/metrics/cluster/tests/test_bicluster.py
394
1770
"""Testing for bicluster metrics module""" import numpy as np from sklearn.utils.testing import assert_equal, assert_almost_equal from sklearn.metrics.cluster.bicluster import _jaccard from sklearn.metrics import consensus_score def test_jaccard(): a1 = np.array([True, True, False, False]) a2 = np.array([True, True, True, True]) a3 = np.array([False, True, True, False]) a4 = np.array([False, False, True, True]) assert_equal(_jaccard(a1, a1, a1, a1), 1) assert_equal(_jaccard(a1, a1, a2, a2), 0.25) assert_equal(_jaccard(a1, a1, a3, a3), 1.0 / 7) assert_equal(_jaccard(a1, a1, a4, a4), 0) def test_consensus_score(): a = [[True, True, False, False], [False, False, True, True]] b = a[::-1] assert_equal(consensus_score((a, a), (a, a)), 1) assert_equal(consensus_score((a, a), (b, b)), 1) assert_equal(consensus_score((a, b), (a, b)), 1) assert_equal(consensus_score((a, b), (b, a)), 1) assert_equal(consensus_score((a, a), (b, a)), 0) assert_equal(consensus_score((a, a), (a, b)), 0) assert_equal(consensus_score((b, b), (a, b)), 0) assert_equal(consensus_score((b, b), (b, a)), 0) def test_consensus_score_issue2445(): ''' Different number of biclusters in A and B''' a_rows = np.array([[True, True, False, False], [False, False, True, True], [False, False, False, True]]) a_cols = np.array([[True, True, False, False], [False, False, True, True], [False, False, False, True]]) idx = [0, 2] s = consensus_score((a_rows, a_cols), (a_rows[idx], a_cols[idx])) # B contains 2 of the 3 biclusters in A, so score should be 2/3 assert_almost_equal(s, 2.0/3.0)
bsd-3-clause
ideaplat/Tback
machinelearning/svmregression/model.py
1
5636
# -*- coding: utf-8 -*- from __future__ import unicode_literals import math import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.svm import SVR from data.dbaccess import normalize from data.db import get_db_session, Pinkunhu2015 class SVRRegressionModel(object): """ 使用线性回归预测下一年人均年收入 """ # 提取的属性 features = [ 'tv', 'washing_machine', 'fridge', 'reason', 'is_danger_house', 'is_back_poor', 'is_debt', 'standard', 'arable_land', 'debt_total', 'living_space', 'member_count', 'person_year_total_income', 'year_total_income', 'subsidy_total', 'wood_land', 'xin_nong_he_total', 'xin_yang_lao_total', 'call_number', 'bank_name', 'bank_number', 'help_plan' ] # 验证的目标 target = 'ny_person_income' def run(self): """ 运行 """ # 获取数据 X, Y = self._fetch_data() clf = self.get_classifier(X, Y) # 测试 X, Y = self._fetch_test_data() res = [] for item in range(11): hit_ratio = self.predict(clf, X, Y, item * 0.1) res.append([item * 0.1 * 100, hit_ratio * 100]) # 绘制误差与命中率的线性关系图 arr = np.array(res) plt.plot(arr[:, 0], arr[:, 1]) # 绘制线 plt.plot(arr[:, 0], arr[:, 1], 'ro') # 绘制点 plt.xlabel('误差率(%)') plt.ylabel('命中率(%)') plt.title('使用线性回归预测下一年人均年收入效果图') plt.show() def get_classifier(self, X, Y): """ 构建线性回归模型 :param X: 训练数据 :param Y: 训练数据结果 :return: 模型 """ clf = SVR(kernel='linear') clf.fit(X, Y) return clf def predict(self, clf, X, Y, deviation=0.1): """ 用当前的模型预测 :param clf: 模型 :param X: 测试数据 :param Y: 测试数据结果 :param deviation: 允许误差率 :return: 命中率 """ Y2 = clf.predict(X) total, hit = len(Y), 0 for idx, v in enumerate(Y2): if math.fabs(Y[idx] - v) <= math.fabs(Y[idx] * deviation): # 误差小于deviation,则认为预测准确 hit += 1 print 'Deviation: %d%%, Total: %d, Hit: %d, Precision: %.2f%%' % (100 * deviation, total, hit, 100.0*hit/total) # 用 A县 的模型去预测 B县 的结果 # Deviation: 0%, Total: 40820, Hit: 0, Precision: 0.00% # Deviation: 10%, Total: 40820, Hit: 24418, Precision: 59.82% # Deviation: 20%, Total: 40820, Hit: 32935, Precision: 80.68% # Deviation: 30%, Total: 40820, Hit: 36211, Precision: 88.71% # Deviation: 40%, Total: 40820, Hit: 37367, Precision: 91.54% # Deviation: 50%, Total: 40820, Hit: 38041, Precision: 93.19% # Deviation: 60%, Total: 40820, Hit: 38502, Precision: 94.32% # Deviation: 70%, Total: 40820, Hit: 38816, Precision: 95.09% # Deviation: 80%, Total: 40820, Hit: 39071, Precision: 95.72% # Deviation: 90%, Total: 40820, Hit: 39282, Precision: 96.23% # Deviation: 100%, Total: 40820, Hit: 39432, Precision: 96.60% return hit * 1.0 / total def _fetch_data(self): """ 获取建模数据 """ session = get_db_session() objs = session.query(Pinkunhu2015).filter( Pinkunhu2015.county == 'A县', Pinkunhu2015.ny_person_income != -1, Pinkunhu2015.person_year_total_income > 0, Pinkunhu2015.person_year_total_income < 7000, ).all() X, Y = [], [] for item in objs: col_list = [] for col in self.features: normalized_value = normalize(col, getattr(item, col)) col_list.append(normalized_value) X.append(col_list) normalized_value = normalize(self.target, getattr(item, self.target)) Y.append(normalized_value) # # 筛掉可能有错误的数据 # 人均年收入除以100后,查看分布,少于5次的不纳入模型, 效果不佳,废弃 # df = pd.DataFrame(X, columns=self.features) # print '#df.shape:', df.shape # df['person_year_total_income'] = df['person_year_total_income'] / 100 # df['person_year_total_income'] = df['person_year_total_income'].astype(int) # df['person_year_total_income'] = df['person_year_total_income'] * 100 # df = df.groupby('person_year_total_income').filter(lambda x: len(x) > 5) # print '#df.shape:', df.shape # X, Y = df.loc[:, self.features[:-1]], df.loc[:, self.target] return X, Y def _fetch_test_data(self): """ 获取测试数据 """ session = get_db_session() objs = session.query(Pinkunhu2015).filter( Pinkunhu2015.county == 'B县', Pinkunhu2015.ny_person_income != -1, Pinkunhu2015.person_year_total_income > 0, Pinkunhu2015.person_year_total_income < 7000, ).all() X, Y = [], [] for item in objs: col_list = [] for col in self.features: normalized_value = normalize(col, getattr(item, col)) col_list.append(normalized_value) X.append(col_list) normalized_value = normalize(self.target, getattr(item, self.target)) Y.append(normalized_value) return X, Y if __name__ == '__main__': m = SVRRegressionModel() m.run()
mit
mncmilan/CUBA
free_mode_with_ML.py
1
5037
# free_mode_with_ML.py # Mónica Milán (@mncmilan) # mncmilan@gmail.com # http://steelhummingbird.blogspot.com.es/ # This code obtains acceleration data from eZ430-Chronos watch by Texas Instruments, then it eliminates the noise in X # and Y axis and finally it plots the resulting values. It also uses machine learning in order to detect a clap, the # background color of the graph. import matplotlib.pyplot as plt import time import warnings import numpy as np from libs import communications, filterings, graphics, datalog from sklearn.preprocessing import normalize from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier warnings.filterwarnings("ignore", category=DeprecationWarning) communication = communications.CommunicationManager() filtering = filterings.FilteringManager() graphic = graphics.GraphicsManager() report = datalog.DatalogManager() # Load dataset train_digits = np.genfromtxt('data/clapping.csv', delimiter = ';') train_data = train_digits[:, :-1] train_labels = train_digits[:, -1] train_data=normalize(train_data) # Create a classifier classifier = KNeighborsClassifier() #classifier = SVC(gamma=0.001, probability=True) #classifier = DecisionTreeClassifier(random_state=0) #classifier = RandomForestClassifier(n_estimators = 100) # Train the classifier classifier.fit(train_data, train_labels) class FreeMovementML(): communication.open_serial_port() max_samples = 10 watch_samples_counter = -1 save_into_file = True lower_index = 0 higher_index = 30 snapfingers = 0 old_prediction=0 x_axis_acceleration = [] y_axis_acceleration = [] z_axis_acceleration = [] test_digits = [] time_limit = 60 # Datalog time report.create_file('probabilities.txt') report.create_file('dataPython.txt') report.create_file('clapping.txt') report.record_data('dataPython.txt','t', 'x', 'y', 'z') k = 0 t1=0 time_initial = time.time() graphic.set_plot_parameters() while time.time() - time_initial <= time_limit: time_final = time.time() bytes_to_read = communication.send_data_request() inbyte = communication.read_data(bytes_to_read) if (bytes_to_read == 7 and inbyte[3] == 1) or (bytes_to_read == 14 and inbyte[10] == 1): watch_samples_counter += 1 x_axis_acceleration.append(inbyte[bytes_to_read-3]) filtering.filter_acceleration(x_axis_acceleration, watch_samples_counter) y_axis_acceleration.append(inbyte[bytes_to_read-2]) filtering.filter_acceleration(y_axis_acceleration, watch_samples_counter) z_axis_acceleration.append(inbyte[bytes_to_read-1]) filtering.filter_acceleration(z_axis_acceleration, watch_samples_counter) time_final = time.time() report.record_data('dataPython.txt',time_final - time_initial, x_axis_acceleration[watch_samples_counter], y_axis_acceleration[watch_samples_counter], z_axis_acceleration[watch_samples_counter]) report.record_for_training(x_axis_acceleration[watch_samples_counter], y_axis_acceleration[watch_samples_counter], z_axis_acceleration[watch_samples_counter]) test_digits = test_digits + [x_axis_acceleration[watch_samples_counter], y_axis_acceleration[watch_samples_counter], z_axis_acceleration[watch_samples_counter]] if watch_samples_counter>=9 and higher_index <= len(test_digits): # Load the dataset test_data = normalize(test_digits[lower_index:higher_index]) # Predict values test_predicted = classifier.predict(test_data) test_probabilities = classifier.predict_proba(test_data) report.record_probabilities(int(test_predicted[0]), test_probabilities,test_digits[lower_index:higher_index]) if test_predicted == 1 and old_prediction==0: snapfingers += 1 graphic.change_color() lower_index += 15 higher_index += 15 print(snapfingers) t1=time.time() else: print(time.time()-t1) graphic.restore_color() lower_index += 3 higher_index += 3 old_prediction=test_predicted graphic.plot_data(x_axis_acceleration[watch_samples_counter], y_axis_acceleration[watch_samples_counter]) plt.pause(0.05) # 50m report.next_line() k +=1 #communication.close_serial_port()
apache-2.0
ArtjomIASM/MultitankGUI
MultiTankGui_one_level/graphcanvas.py
1
5456
import traceback, sys import matplotlib import numpy as np import random matplotlib.use("Qt4Agg") from matplotlib.figure import Figure from matplotlib.animation import TimedAnimation from matplotlib.lines import Line2D from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas from time import time from threading import Lock from matplotlib.ticker import FuncFormatter from config import * class GraphCanvas(FigureCanvas, TimedAnimation): TAIL_LEN_SEC = 2 TIME_MARGIN = 5 def __init__(self, graphXLimit, graphYLimit, graphYLevelMin): print("Using: matplotlib v." + matplotlib.__version__) timeSpanFormatter = FuncFormatter(self.formatTime) self.graphXLimit = graphXLimit self.graphYLimit = graphYLimit self.graphYLevelMin = graphYLevelMin self.valuesXYP = ([0.0], [0.0], -1) self.dataLock = Lock() # The window self.fig = Figure(dpi=100) self.ax1 = self.fig.add_subplot(111) # self.ax1 settings self.ax1.set_xlabel('Time') self.ax1.set_ylabel('Level') self.ax1.grid(True) self.ax1.xaxis.set_major_formatter(timeSpanFormatter) self.line1 = Line2D([], [], color='blue') self.line1_tail = Line2D([], [], color='red', linewidth=2) self.line1_head = Line2D([], [], color='red', marker='o', markeredgecolor='r') self.ax1.add_line(self.line1) self.ax1.add_line(self.line1_tail) self.ax1.add_line(self.line1_head) self.ax1.set_xlim(0, self.graphXLimit - 1) # X axis range self.ax1.set_ylim(self.graphYLevelMin, self.graphYLimit - 1) # Y axis range self.line_setPoint = None FigureCanvas.__init__(self, self.fig) TimedAnimation.__init__(self, self.fig, interval=TIMED_INTERVAL, blit=False) # Graph interval for delay in millisecond / Change it if you have weak cpu # Set blit = True if need more cpu % def closeEvent(self, event): # Stop the animation loop on exit FigureCanvas.closeEvent(self, event) self._stop() event.accept() def setData(self, valuesX, valuesY, setPoint): # To avoid manipulations with partially updated data, do update under lock self.dataLock.acquire(True) try: self.valuesXYP = (valuesX, valuesY, setPoint) finally: self.dataLock.release() def getData(self): self.dataLock.acquire(True) try: return self.valuesXYP finally: self.dataLock.release() def _init_draw(self): lines = [self.line1, self.line1_tail, self.line1_head] for line2D in lines: line2D.set_data([], []) if None != self.line_setPoint: self.line_setPoint.set_data([], []) def _step(self, *args): try: # Extends the _step() method for the TimedAnimation class. TimedAnimation._step(self, *args) except Exception as e: print("Failed to execute animation. Animation stopped!") traceback.print_exc(file=sys.stdout) TimedAnimation._stop(self) pass def new_frame_seq(self): return iter(range(self.valuesXYP[0].__len__())) def _draw_frame(self, framedata): # Draw graph line itself # Print random.uniform(0, 10) # Check if drawing closed valuesX, valuesY, setPoint = self.getData() tailXY = (valuesX, valuesY) self.line1.set_data(valuesX, valuesY) lastTimeValue = valuesX[len(valuesX) - 1] tailEndTime = lastTimeValue - self.TAIL_LEN_SEC for i in reversed(range(len(valuesX))): if valuesX[i] < tailEndTime: tailStartIdx = min(i + 1, len(valuesX)) tailEndIndex = len(valuesX) if (tailStartIdx == tailEndIndex and len(valuesX) > 1): tailStartIdx = len(valuesX) - 2 tailXY = (valuesX[tailStartIdx: tailEndIndex], valuesY[tailStartIdx: tailEndIndex]) break self.line1_tail.set_data(tailXY) self.line1_head.set_data([valuesX[len(valuesX) - 1]], [valuesY[len(valuesY) - 1]]) lastTimeValueRounded = round(lastTimeValue, 0) # Maximum and minimum values for x xMin = max(0, lastTimeValueRounded - self.graphXLimit + self.TIME_MARGIN) xMax = max(self.graphXLimit, lastTimeValueRounded + self.TIME_MARGIN) self.ax1.set_xlim(xMin, xMax) # X axis range # Create set point line if self.line_setPoint is None and -1 != setPoint: self.line_setPoint = Line2D([], [], color='black') self.ax1.add_line(self.line_setPoint) lstArtists = [self.line1, self.line1_tail, self.line1_head, self.ax1] if None != self.line_setPoint: self.line_setPoint.set_data([xMin, xMax], [setPoint, setPoint]) lstArtists.append(self.line_setPoint) self._drawn_artists = lstArtists def formatTime(self, value, position): nHours, nRemainder = divmod(int(value), 3600) nMinutes, nSeconds = divmod(nRemainder, 60) if (nHours > 0): return '%02d:02%d:02%d' % (nHours, nMinutes, nSeconds) else: return '%02d:%02d' % (nMinutes, nSeconds)
mit
procoder317/scikit-learn
sklearn/externals/joblib/parallel.py
79
35628
""" Helpers for embarrassingly parallel code. """ # Author: Gael Varoquaux < gael dot varoquaux at normalesup dot org > # Copyright: 2010, Gael Varoquaux # License: BSD 3 clause from __future__ import division import os import sys import gc import warnings from math import sqrt import functools import time import threading import itertools from numbers import Integral try: import cPickle as pickle except: import pickle from ._multiprocessing_helpers import mp if mp is not None: from .pool import MemmapingPool from multiprocessing.pool import ThreadPool from .format_stack import format_exc, format_outer_frames from .logger import Logger, short_format_time from .my_exceptions import TransportableException, _mk_exception from .disk import memstr_to_kbytes from ._compat import _basestring VALID_BACKENDS = ['multiprocessing', 'threading'] # Environment variables to protect against bad situations when nesting JOBLIB_SPAWNED_PROCESS = "__JOBLIB_SPAWNED_PARALLEL__" # In seconds, should be big enough to hide multiprocessing dispatching # overhead. # This settings was found by running benchmarks/bench_auto_batching.py # with various parameters on various platforms. MIN_IDEAL_BATCH_DURATION = .2 # Should not be too high to avoid stragglers: long jobs running alone # on a single worker while other workers have no work to process any more. MAX_IDEAL_BATCH_DURATION = 2 # Under Python 3.4+ use the 'forkserver' start method by default: this makes it # possible to avoid crashing 3rd party libraries that manage an internal thread # pool that does not tolerate forking if hasattr(mp, 'get_start_method'): method = os.environ.get('JOBLIB_START_METHOD') if (method is None and mp.get_start_method() == 'fork' and 'forkserver' in mp.get_all_start_methods()): method = 'forkserver' DEFAULT_MP_CONTEXT = mp.get_context(method=method) else: DEFAULT_MP_CONTEXT = None class BatchedCalls(object): """Wrap a sequence of (func, args, kwargs) tuples as a single callable""" def __init__(self, iterator_slice): self.items = list(iterator_slice) self._size = len(self.items) def __call__(self): return [func(*args, **kwargs) for func, args, kwargs in self.items] def __len__(self): return self._size ############################################################################### # CPU count that works also when multiprocessing has been disabled via # the JOBLIB_MULTIPROCESSING environment variable def cpu_count(): """ Return the number of CPUs. """ if mp is None: return 1 return mp.cpu_count() ############################################################################### # For verbosity def _verbosity_filter(index, verbose): """ Returns False for indices increasingly apart, the distance depending on the value of verbose. We use a lag increasing as the square of index """ if not verbose: return True elif verbose > 10: return False if index == 0: return False verbose = .5 * (11 - verbose) ** 2 scale = sqrt(index / verbose) next_scale = sqrt((index + 1) / verbose) return (int(next_scale) == int(scale)) ############################################################################### class WorkerInterrupt(Exception): """ An exception that is not KeyboardInterrupt to allow subprocesses to be interrupted. """ pass ############################################################################### class SafeFunction(object): """ Wraps a function to make it exception with full traceback in their representation. Useful for parallel computing with multiprocessing, for which exceptions cannot be captured. """ def __init__(self, func): self.func = func def __call__(self, *args, **kwargs): try: return self.func(*args, **kwargs) except KeyboardInterrupt: # We capture the KeyboardInterrupt and reraise it as # something different, as multiprocessing does not # interrupt processing for a KeyboardInterrupt raise WorkerInterrupt() except: e_type, e_value, e_tb = sys.exc_info() text = format_exc(e_type, e_value, e_tb, context=10, tb_offset=1) if issubclass(e_type, TransportableException): raise else: raise TransportableException(text, e_type) ############################################################################### def delayed(function, check_pickle=True): """Decorator used to capture the arguments of a function. Pass `check_pickle=False` when: - performing a possibly repeated check is too costly and has been done already once outside of the call to delayed. - when used in conjunction `Parallel(backend='threading')`. """ # Try to pickle the input function, to catch the problems early when # using with multiprocessing: if check_pickle: pickle.dumps(function) def delayed_function(*args, **kwargs): return function, args, kwargs try: delayed_function = functools.wraps(function)(delayed_function) except AttributeError: " functools.wraps fails on some callable objects " return delayed_function ############################################################################### class ImmediateComputeBatch(object): """Sequential computation of a batch of tasks. This replicates the async computation API but actually does not delay the computations when joblib.Parallel runs in sequential mode. """ def __init__(self, batch): # Don't delay the application, to avoid keeping the input # arguments in memory self.results = batch() def get(self): return self.results ############################################################################### class BatchCompletionCallBack(object): """Callback used by joblib.Parallel's multiprocessing backend. This callable is executed by the parent process whenever a worker process has returned the results of a batch of tasks. It is used for progress reporting, to update estimate of the batch processing duration and to schedule the next batch of tasks to be processed. """ def __init__(self, dispatch_timestamp, batch_size, parallel): self.dispatch_timestamp = dispatch_timestamp self.batch_size = batch_size self.parallel = parallel def __call__(self, out): self.parallel.n_completed_tasks += self.batch_size this_batch_duration = time.time() - self.dispatch_timestamp if (self.parallel.batch_size == 'auto' and self.batch_size == self.parallel._effective_batch_size): # Update the smoothed streaming estimate of the duration of a batch # from dispatch to completion old_duration = self.parallel._smoothed_batch_duration if old_duration == 0: # First record of duration for this batch size after the last # reset. new_duration = this_batch_duration else: # Update the exponentially weighted average of the duration of # batch for the current effective size. new_duration = 0.8 * old_duration + 0.2 * this_batch_duration self.parallel._smoothed_batch_duration = new_duration self.parallel.print_progress() if self.parallel._original_iterator is not None: self.parallel.dispatch_next() ############################################################################### class Parallel(Logger): ''' Helper class for readable parallel mapping. Parameters ----------- n_jobs: int, default: 1 The maximum number of concurrently running jobs, such as the number of Python worker processes when backend="multiprocessing" or the size of the thread-pool when backend="threading". If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. backend: str or None, default: 'multiprocessing' Specify the parallelization backend implementation. Supported backends are: - "multiprocessing" used by default, can induce some communication and memory overhead when exchanging input and output data with the with the worker Python processes. - "threading" is a very low-overhead backend but it suffers from the Python Global Interpreter Lock if the called function relies a lot on Python objects. "threading" is mostly useful when the execution bottleneck is a compiled extension that explicitly releases the GIL (for instance a Cython loop wrapped in a "with nogil" block or an expensive call to a library such as NumPy). verbose: int, optional The verbosity level: if non zero, progress messages are printed. Above 50, the output is sent to stdout. The frequency of the messages increases with the verbosity level. If it more than 10, all iterations are reported. pre_dispatch: {'all', integer, or expression, as in '3*n_jobs'} The number of batches (of tasks) to be pre-dispatched. Default is '2*n_jobs'. When batch_size="auto" this is reasonable default and the multiprocessing workers shoud never starve. batch_size: int or 'auto', default: 'auto' The number of atomic tasks to dispatch at once to each worker. When individual evaluations are very fast, multiprocessing can be slower than sequential computation because of the overhead. Batching fast computations together can mitigate this. The ``'auto'`` strategy keeps track of the time it takes for a batch to complete, and dynamically adjusts the batch size to keep the time on the order of half a second, using a heuristic. The initial batch size is 1. ``batch_size="auto"`` with ``backend="threading"`` will dispatch batches of a single task at a time as the threading backend has very little overhead and using larger batch size has not proved to bring any gain in that case. temp_folder: str, optional Folder to be used by the pool for memmaping large arrays for sharing memory with worker processes. If None, this will try in order: - a folder pointed by the JOBLIB_TEMP_FOLDER environment variable, - /dev/shm if the folder exists and is writable: this is a RAMdisk filesystem available by default on modern Linux distributions, - the default system temporary folder that can be overridden with TMP, TMPDIR or TEMP environment variables, typically /tmp under Unix operating systems. Only active when backend="multiprocessing". max_nbytes int, str, or None, optional, 1M by default Threshold on the size of arrays passed to the workers that triggers automated memory mapping in temp_folder. Can be an int in Bytes, or a human-readable string, e.g., '1M' for 1 megabyte. Use None to disable memmaping of large arrays. Only active when backend="multiprocessing". Notes ----- This object uses the multiprocessing module to compute in parallel the application of a function to many different arguments. The main functionality it brings in addition to using the raw multiprocessing API are (see examples for details): * More readable code, in particular since it avoids constructing list of arguments. * Easier debugging: - informative tracebacks even when the error happens on the client side - using 'n_jobs=1' enables to turn off parallel computing for debugging without changing the codepath - early capture of pickling errors * An optional progress meter. * Interruption of multiprocesses jobs with 'Ctrl-C' * Flexible pickling control for the communication to and from the worker processes. * Ability to use shared memory efficiently with worker processes for large numpy-based datastructures. Examples -------- A simple example: >>> from math import sqrt >>> from sklearn.externals.joblib import Parallel, delayed >>> Parallel(n_jobs=1)(delayed(sqrt)(i**2) for i in range(10)) [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0] Reshaping the output when the function has several return values: >>> from math import modf >>> from sklearn.externals.joblib import Parallel, delayed >>> r = Parallel(n_jobs=1)(delayed(modf)(i/2.) for i in range(10)) >>> res, i = zip(*r) >>> res (0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5) >>> i (0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 4.0, 4.0) The progress meter: the higher the value of `verbose`, the more messages:: >>> from time import sleep >>> from sklearn.externals.joblib import Parallel, delayed >>> r = Parallel(n_jobs=2, verbose=5)(delayed(sleep)(.1) for _ in range(10)) #doctest: +SKIP [Parallel(n_jobs=2)]: Done 1 out of 10 | elapsed: 0.1s remaining: 0.9s [Parallel(n_jobs=2)]: Done 3 out of 10 | elapsed: 0.2s remaining: 0.5s [Parallel(n_jobs=2)]: Done 6 out of 10 | elapsed: 0.3s remaining: 0.2s [Parallel(n_jobs=2)]: Done 9 out of 10 | elapsed: 0.5s remaining: 0.1s [Parallel(n_jobs=2)]: Done 10 out of 10 | elapsed: 0.5s finished Traceback example, note how the line of the error is indicated as well as the values of the parameter passed to the function that triggered the exception, even though the traceback happens in the child process:: >>> from heapq import nlargest >>> from sklearn.externals.joblib import Parallel, delayed >>> Parallel(n_jobs=2)(delayed(nlargest)(2, n) for n in (range(4), 'abcde', 3)) #doctest: +SKIP #... --------------------------------------------------------------------------- Sub-process traceback: --------------------------------------------------------------------------- TypeError Mon Nov 12 11:37:46 2012 PID: 12934 Python 2.7.3: /usr/bin/python ........................................................................... /usr/lib/python2.7/heapq.pyc in nlargest(n=2, iterable=3, key=None) 419 if n >= size: 420 return sorted(iterable, key=key, reverse=True)[:n] 421 422 # When key is none, use simpler decoration 423 if key is None: --> 424 it = izip(iterable, count(0,-1)) # decorate 425 result = _nlargest(n, it) 426 return map(itemgetter(0), result) # undecorate 427 428 # General case, slowest method TypeError: izip argument #1 must support iteration ___________________________________________________________________________ Using pre_dispatch in a producer/consumer situation, where the data is generated on the fly. Note how the producer is first called a 3 times before the parallel loop is initiated, and then called to generate new data on the fly. In this case the total number of iterations cannot be reported in the progress messages:: >>> from math import sqrt >>> from sklearn.externals.joblib import Parallel, delayed >>> def producer(): ... for i in range(6): ... print('Produced %s' % i) ... yield i >>> out = Parallel(n_jobs=2, verbose=100, pre_dispatch='1.5*n_jobs')( ... delayed(sqrt)(i) for i in producer()) #doctest: +SKIP Produced 0 Produced 1 Produced 2 [Parallel(n_jobs=2)]: Done 1 jobs | elapsed: 0.0s Produced 3 [Parallel(n_jobs=2)]: Done 2 jobs | elapsed: 0.0s Produced 4 [Parallel(n_jobs=2)]: Done 3 jobs | elapsed: 0.0s Produced 5 [Parallel(n_jobs=2)]: Done 4 jobs | elapsed: 0.0s [Parallel(n_jobs=2)]: Done 5 out of 6 | elapsed: 0.0s remaining: 0.0s [Parallel(n_jobs=2)]: Done 6 out of 6 | elapsed: 0.0s finished ''' def __init__(self, n_jobs=1, backend='multiprocessing', verbose=0, pre_dispatch='2 * n_jobs', batch_size='auto', temp_folder=None, max_nbytes='1M', mmap_mode='r'): self.verbose = verbose self._mp_context = DEFAULT_MP_CONTEXT if backend is None: # `backend=None` was supported in 0.8.2 with this effect backend = "multiprocessing" elif hasattr(backend, 'Pool') and hasattr(backend, 'Lock'): # Make it possible to pass a custom multiprocessing context as # backend to change the start method to forkserver or spawn or # preload modules on the forkserver helper process. self._mp_context = backend backend = "multiprocessing" if backend not in VALID_BACKENDS: raise ValueError("Invalid backend: %s, expected one of %r" % (backend, VALID_BACKENDS)) self.backend = backend self.n_jobs = n_jobs if (batch_size == 'auto' or isinstance(batch_size, Integral) and batch_size > 0): self.batch_size = batch_size else: raise ValueError( "batch_size must be 'auto' or a positive integer, got: %r" % batch_size) self.pre_dispatch = pre_dispatch self._temp_folder = temp_folder if isinstance(max_nbytes, _basestring): self._max_nbytes = 1024 * memstr_to_kbytes(max_nbytes) else: self._max_nbytes = max_nbytes self._mmap_mode = mmap_mode # Not starting the pool in the __init__ is a design decision, to be # able to close it ASAP, and not burden the user with closing it # unless they choose to use the context manager API with a with block. self._pool = None self._output = None self._jobs = list() self._managed_pool = False # This lock is used coordinate the main thread of this process with # the async callback thread of our the pool. self._lock = threading.Lock() def __enter__(self): self._managed_pool = True self._initialize_pool() return self def __exit__(self, exc_type, exc_value, traceback): self._terminate_pool() self._managed_pool = False def _effective_n_jobs(self): n_jobs = self.n_jobs if n_jobs == 0: raise ValueError('n_jobs == 0 in Parallel has no meaning') elif mp is None or n_jobs is None: # multiprocessing is not available or disabled, fallback # to sequential mode return 1 elif n_jobs < 0: n_jobs = max(mp.cpu_count() + 1 + n_jobs, 1) return n_jobs def _initialize_pool(self): """Build a process or thread pool and return the number of workers""" n_jobs = self._effective_n_jobs() # The list of exceptions that we will capture self.exceptions = [TransportableException] if n_jobs == 1: # Sequential mode: do not use a pool instance to avoid any # useless dispatching overhead self._pool = None elif self.backend == 'threading': self._pool = ThreadPool(n_jobs) elif self.backend == 'multiprocessing': if mp.current_process().daemon: # Daemonic processes cannot have children self._pool = None warnings.warn( 'Multiprocessing-backed parallel loops cannot be nested,' ' setting n_jobs=1', stacklevel=3) return 1 elif threading.current_thread().name != 'MainThread': # Prevent posix fork inside in non-main posix threads self._pool = None warnings.warn( 'Multiprocessing backed parallel loops cannot be nested' ' below threads, setting n_jobs=1', stacklevel=3) return 1 else: already_forked = int(os.environ.get(JOBLIB_SPAWNED_PROCESS, 0)) if already_forked: raise ImportError('[joblib] Attempting to do parallel computing ' 'without protecting your import on a system that does ' 'not support forking. To use parallel-computing in a ' 'script, you must protect your main loop using "if ' "__name__ == '__main__'" '". Please see the joblib documentation on Parallel ' 'for more information' ) # Set an environment variable to avoid infinite loops os.environ[JOBLIB_SPAWNED_PROCESS] = '1' # Make sure to free as much memory as possible before forking gc.collect() poolargs = dict( max_nbytes=self._max_nbytes, mmap_mode=self._mmap_mode, temp_folder=self._temp_folder, verbose=max(0, self.verbose - 50), context_id=0, # the pool is used only for one call ) if self._mp_context is not None: # Use Python 3.4+ multiprocessing context isolation poolargs['context'] = self._mp_context self._pool = MemmapingPool(n_jobs, **poolargs) # We are using multiprocessing, we also want to capture # KeyboardInterrupts self.exceptions.extend([KeyboardInterrupt, WorkerInterrupt]) else: raise ValueError("Unsupported backend: %s" % self.backend) return n_jobs def _terminate_pool(self): if self._pool is not None: self._pool.close() self._pool.terminate() # terminate does a join() self._pool = None if self.backend == 'multiprocessing': os.environ.pop(JOBLIB_SPAWNED_PROCESS, 0) def _dispatch(self, batch): """Queue the batch for computing, with or without multiprocessing WARNING: this method is not thread-safe: it should be only called indirectly via dispatch_one_batch. """ # If job.get() catches an exception, it closes the queue: if self._aborting: return if self._pool is None: job = ImmediateComputeBatch(batch) self._jobs.append(job) self.n_dispatched_batches += 1 self.n_dispatched_tasks += len(batch) self.n_completed_tasks += len(batch) if not _verbosity_filter(self.n_dispatched_batches, self.verbose): self._print('Done %3i tasks | elapsed: %s', (self.n_completed_tasks, short_format_time(time.time() - self._start_time) )) else: dispatch_timestamp = time.time() cb = BatchCompletionCallBack(dispatch_timestamp, len(batch), self) job = self._pool.apply_async(SafeFunction(batch), callback=cb) self._jobs.append(job) self.n_dispatched_tasks += len(batch) self.n_dispatched_batches += 1 def dispatch_next(self): """Dispatch more data for parallel processing This method is meant to be called concurrently by the multiprocessing callback. We rely on the thread-safety of dispatch_one_batch to protect against concurrent consumption of the unprotected iterator. """ if not self.dispatch_one_batch(self._original_iterator): self._iterating = False self._original_iterator = None def dispatch_one_batch(self, iterator): """Prefetch the tasks for the next batch and dispatch them. The effective size of the batch is computed here. If there are no more jobs to dispatch, return False, else return True. The iterator consumption and dispatching is protected by the same lock so calling this function should be thread safe. """ if self.batch_size == 'auto' and self.backend == 'threading': # Batching is never beneficial with the threading backend batch_size = 1 elif self.batch_size == 'auto': old_batch_size = self._effective_batch_size batch_duration = self._smoothed_batch_duration if (batch_duration > 0 and batch_duration < MIN_IDEAL_BATCH_DURATION): # The current batch size is too small: the duration of the # processing of a batch of task is not large enough to hide # the scheduling overhead. ideal_batch_size = int( old_batch_size * MIN_IDEAL_BATCH_DURATION / batch_duration) # Multiply by two to limit oscilations between min and max. batch_size = max(2 * ideal_batch_size, 1) self._effective_batch_size = batch_size if self.verbose >= 10: self._print("Batch computation too fast (%.4fs.) " "Setting batch_size=%d.", ( batch_duration, batch_size)) elif (batch_duration > MAX_IDEAL_BATCH_DURATION and old_batch_size >= 2): # The current batch size is too big. If we schedule overly long # running batches some CPUs might wait with nothing left to do # while a couple of CPUs a left processing a few long running # batches. Better reduce the batch size a bit to limit the # likelihood of scheduling such stragglers. self._effective_batch_size = batch_size = old_batch_size // 2 if self.verbose >= 10: self._print("Batch computation too slow (%.2fs.) " "Setting batch_size=%d.", ( batch_duration, batch_size)) else: # No batch size adjustment batch_size = old_batch_size if batch_size != old_batch_size: # Reset estimation of the smoothed mean batch duration: this # estimate is updated in the multiprocessing apply_async # CallBack as long as the batch_size is constant. Therefore # we need to reset the estimate whenever we re-tune the batch # size. self._smoothed_batch_duration = 0 else: # Fixed batch size strategy batch_size = self.batch_size with self._lock: tasks = BatchedCalls(itertools.islice(iterator, batch_size)) if not tasks: # No more tasks available in the iterator: tell caller to stop. return False else: self._dispatch(tasks) return True def _print(self, msg, msg_args): """Display the message on stout or stderr depending on verbosity""" # XXX: Not using the logger framework: need to # learn to use logger better. if not self.verbose: return if self.verbose < 50: writer = sys.stderr.write else: writer = sys.stdout.write msg = msg % msg_args writer('[%s]: %s\n' % (self, msg)) def print_progress(self): """Display the process of the parallel execution only a fraction of time, controlled by self.verbose. """ if not self.verbose: return elapsed_time = time.time() - self._start_time # This is heuristic code to print only 'verbose' times a messages # The challenge is that we may not know the queue length if self._original_iterator: if _verbosity_filter(self.n_dispatched_batches, self.verbose): return self._print('Done %3i tasks | elapsed: %s', (self.n_completed_tasks, short_format_time(elapsed_time), )) else: index = self.n_dispatched_batches # We are finished dispatching total_tasks = self.n_dispatched_tasks # We always display the first loop if not index == 0: # Display depending on the number of remaining items # A message as soon as we finish dispatching, cursor is 0 cursor = (total_tasks - index + 1 - self._pre_dispatch_amount) frequency = (total_tasks // self.verbose) + 1 is_last_item = (index + 1 == total_tasks) if (is_last_item or cursor % frequency): return remaining_time = (elapsed_time / (index + 1) * (self.n_dispatched_tasks - index - 1.)) self._print('Done %3i out of %3i | elapsed: %s remaining: %s', (index + 1, total_tasks, short_format_time(elapsed_time), short_format_time(remaining_time), )) def retrieve(self): self._output = list() while self._iterating or len(self._jobs) > 0: if len(self._jobs) == 0: # Wait for an async callback to dispatch new jobs time.sleep(0.01) continue # We need to be careful: the job list can be filling up as # we empty it and Python list are not thread-safe by default hence # the use of the lock with self._lock: job = self._jobs.pop(0) try: self._output.extend(job.get()) except tuple(self.exceptions) as exception: # Stop dispatching any new job in the async callback thread self._aborting = True if isinstance(exception, TransportableException): # Capture exception to add information on the local # stack in addition to the distant stack this_report = format_outer_frames(context=10, stack_start=1) report = """Multiprocessing exception: %s --------------------------------------------------------------------------- Sub-process traceback: --------------------------------------------------------------------------- %s""" % (this_report, exception.message) # Convert this to a JoblibException exception_type = _mk_exception(exception.etype)[0] exception = exception_type(report) # Kill remaining running processes without waiting for # the results as we will raise the exception we got back # to the caller instead of returning any result. with self._lock: self._terminate_pool() if self._managed_pool: # In case we had to terminate a managed pool, let # us start a new one to ensure that subsequent calls # to __call__ on the same Parallel instance will get # a working pool as they expect. self._initialize_pool() raise exception def __call__(self, iterable): if self._jobs: raise ValueError('This Parallel instance is already running') # A flag used to abort the dispatching of jobs in case an # exception is found self._aborting = False if not self._managed_pool: n_jobs = self._initialize_pool() else: n_jobs = self._effective_n_jobs() if self.batch_size == 'auto': self._effective_batch_size = 1 iterator = iter(iterable) pre_dispatch = self.pre_dispatch if pre_dispatch == 'all' or n_jobs == 1: # prevent further dispatch via multiprocessing callback thread self._original_iterator = None self._pre_dispatch_amount = 0 else: self._original_iterator = iterator if hasattr(pre_dispatch, 'endswith'): pre_dispatch = eval(pre_dispatch) self._pre_dispatch_amount = pre_dispatch = int(pre_dispatch) # The main thread will consume the first pre_dispatch items and # the remaining items will later be lazily dispatched by async # callbacks upon task completions. iterator = itertools.islice(iterator, pre_dispatch) self._start_time = time.time() self.n_dispatched_batches = 0 self.n_dispatched_tasks = 0 self.n_completed_tasks = 0 self._smoothed_batch_duration = 0.0 try: self._iterating = True while self.dispatch_one_batch(iterator): pass if pre_dispatch == "all" or n_jobs == 1: # The iterable was consumed all at once by the above for loop. # No need to wait for async callbacks to trigger to # consumption. self._iterating = False self.retrieve() # Make sure that we get a last message telling us we are done elapsed_time = time.time() - self._start_time self._print('Done %3i out of %3i | elapsed: %s finished', (len(self._output), len(self._output), short_format_time(elapsed_time))) finally: if not self._managed_pool: self._terminate_pool() self._jobs = list() output = self._output self._output = None return output def __repr__(self): return '%s(n_jobs=%s)' % (self.__class__.__name__, self.n_jobs)
bsd-3-clause
kagayakidan/scikit-learn
sklearn/tests/test_discriminant_analysis.py
19
11711
try: # Python 2 compat reload except NameError: # Regular Python 3+ import from importlib import reload import numpy as np from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_greater from sklearn.utils.testing import ignore_warnings from sklearn.datasets import make_blobs from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis # Data is just 6 separable points in the plane X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]], dtype='f') y = np.array([1, 1, 1, 2, 2, 2]) y3 = np.array([1, 1, 2, 2, 3, 3]) # Degenerate data with only one feature (still should be separable) X1 = np.array([[-2, ], [-1, ], [-1, ], [1, ], [1, ], [2, ]], dtype='f') # Data is just 9 separable points in the plane X6 = np.array([[0, 0], [-2, -2], [-2, -1], [-1, -1], [-1, -2], [1, 3], [1, 2], [2, 1], [2, 2]]) y6 = np.array([1, 1, 1, 1, 1, 2, 2, 2, 2]) y7 = np.array([1, 2, 3, 2, 3, 1, 2, 3, 1]) # Degenerate data with 1 feature (still should be separable) X7 = np.array([[-3, ], [-2, ], [-1, ], [-1, ], [0, ], [1, ], [1, ], [2, ], [3, ]]) # Data that has zero variance in one dimension and needs regularization X2 = np.array([[-3, 0], [-2, 0], [-1, 0], [-1, 0], [0, 0], [1, 0], [1, 0], [2, 0], [3, 0]]) # One element class y4 = np.array([1, 1, 1, 1, 1, 1, 1, 1, 2]) # Data with less samples in a class than n_features X5 = np.c_[np.arange(8), np.zeros((8, 3))] y5 = np.array([0, 0, 0, 0, 0, 1, 1, 1]) solver_shrinkage = [('svd', None), ('lsqr', None), ('eigen', None), ('lsqr', 'auto'), ('lsqr', 0), ('lsqr', 0.43), ('eigen', 'auto'), ('eigen', 0), ('eigen', 0.43)] def test_lda_predict(): # Test LDA classification. # This checks that LDA implements fit and predict and returns correct # values for simple toy data. for test_case in solver_shrinkage: solver, shrinkage = test_case clf = LinearDiscriminantAnalysis(solver=solver, shrinkage=shrinkage) y_pred = clf.fit(X, y).predict(X) assert_array_equal(y_pred, y, 'solver %s' % solver) # Assert that it works with 1D data y_pred1 = clf.fit(X1, y).predict(X1) assert_array_equal(y_pred1, y, 'solver %s' % solver) # Test probability estimates y_proba_pred1 = clf.predict_proba(X1) assert_array_equal((y_proba_pred1[:, 1] > 0.5) + 1, y, 'solver %s' % solver) y_log_proba_pred1 = clf.predict_log_proba(X1) assert_array_almost_equal(np.exp(y_log_proba_pred1), y_proba_pred1, 8, 'solver %s' % solver) # Primarily test for commit 2f34950 -- "reuse" of priors y_pred3 = clf.fit(X, y3).predict(X) # LDA shouldn't be able to separate those assert_true(np.any(y_pred3 != y3), 'solver %s' % solver) # Test invalid shrinkages clf = LinearDiscriminantAnalysis(solver="lsqr", shrinkage=-0.2231) assert_raises(ValueError, clf.fit, X, y) clf = LinearDiscriminantAnalysis(solver="eigen", shrinkage="dummy") assert_raises(ValueError, clf.fit, X, y) clf = LinearDiscriminantAnalysis(solver="svd", shrinkage="auto") assert_raises(NotImplementedError, clf.fit, X, y) # Test unknown solver clf = LinearDiscriminantAnalysis(solver="dummy") assert_raises(ValueError, clf.fit, X, y) def test_lda_priors(): # Test priors (negative priors) priors = np.array([0.5, -0.5]) clf = LinearDiscriminantAnalysis(priors=priors) msg = "priors must be non-negative" assert_raise_message(ValueError, msg, clf.fit, X, y) # Test that priors passed as a list are correctly handled (run to see if # failure) clf = LinearDiscriminantAnalysis(priors=[0.5, 0.5]) clf.fit(X, y) # Test that priors always sum to 1 priors = np.array([0.5, 0.6]) prior_norm = np.array([0.45, 0.55]) clf = LinearDiscriminantAnalysis(priors=priors) clf.fit(X, y) assert_array_almost_equal(clf.priors_, prior_norm, 2) def test_lda_coefs(): # Test if the coefficients of the solvers are approximately the same. n_features = 2 n_classes = 2 n_samples = 1000 X, y = make_blobs(n_samples=n_samples, n_features=n_features, centers=n_classes, random_state=11) clf_lda_svd = LinearDiscriminantAnalysis(solver="svd") clf_lda_lsqr = LinearDiscriminantAnalysis(solver="lsqr") clf_lda_eigen = LinearDiscriminantAnalysis(solver="eigen") clf_lda_svd.fit(X, y) clf_lda_lsqr.fit(X, y) clf_lda_eigen.fit(X, y) assert_array_almost_equal(clf_lda_svd.coef_, clf_lda_lsqr.coef_, 1) assert_array_almost_equal(clf_lda_svd.coef_, clf_lda_eigen.coef_, 1) assert_array_almost_equal(clf_lda_eigen.coef_, clf_lda_lsqr.coef_, 1) def test_lda_transform(): # Test LDA transform. clf = LinearDiscriminantAnalysis(solver="svd", n_components=1) X_transformed = clf.fit(X, y).transform(X) assert_equal(X_transformed.shape[1], 1) clf = LinearDiscriminantAnalysis(solver="eigen", n_components=1) X_transformed = clf.fit(X, y).transform(X) assert_equal(X_transformed.shape[1], 1) clf = LinearDiscriminantAnalysis(solver="lsqr", n_components=1) clf.fit(X, y) msg = "transform not implemented for 'lsqr'" assert_raise_message(NotImplementedError, msg, clf.transform, X) def test_lda_explained_variance_ratio(): # Test if the sum of the normalized eigen vectors values equals 1 n_features = 2 n_classes = 2 n_samples = 1000 X, y = make_blobs(n_samples=n_samples, n_features=n_features, centers=n_classes, random_state=11) clf_lda_eigen = LinearDiscriminantAnalysis(solver="eigen") clf_lda_eigen.fit(X, y) assert_almost_equal(clf_lda_eigen.explained_variance_ratio_.sum(), 1.0, 3) def test_lda_orthogonality(): # arrange four classes with their means in a kite-shaped pattern # the longer distance should be transformed to the first component, and # the shorter distance to the second component. means = np.array([[0, 0, -1], [0, 2, 0], [0, -2, 0], [0, 0, 5]]) # We construct perfectly symmetric distributions, so the LDA can estimate # precise means. scatter = np.array([[0.1, 0, 0], [-0.1, 0, 0], [0, 0.1, 0], [0, -0.1, 0], [0, 0, 0.1], [0, 0, -0.1]]) X = (means[:, np.newaxis, :] + scatter[np.newaxis, :, :]).reshape((-1, 3)) y = np.repeat(np.arange(means.shape[0]), scatter.shape[0]) # Fit LDA and transform the means clf = LinearDiscriminantAnalysis(solver="svd").fit(X, y) means_transformed = clf.transform(means) d1 = means_transformed[3] - means_transformed[0] d2 = means_transformed[2] - means_transformed[1] d1 /= np.sqrt(np.sum(d1 ** 2)) d2 /= np.sqrt(np.sum(d2 ** 2)) # the transformed within-class covariance should be the identity matrix assert_almost_equal(np.cov(clf.transform(scatter).T), np.eye(2)) # the means of classes 0 and 3 should lie on the first component assert_almost_equal(np.abs(np.dot(d1[:2], [1, 0])), 1.0) # the means of classes 1 and 2 should lie on the second component assert_almost_equal(np.abs(np.dot(d2[:2], [0, 1])), 1.0) def test_lda_scaling(): # Test if classification works correctly with differently scaled features. n = 100 rng = np.random.RandomState(1234) # use uniform distribution of features to make sure there is absolutely no # overlap between classes. x1 = rng.uniform(-1, 1, (n, 3)) + [-10, 0, 0] x2 = rng.uniform(-1, 1, (n, 3)) + [10, 0, 0] x = np.vstack((x1, x2)) * [1, 100, 10000] y = [-1] * n + [1] * n for solver in ('svd', 'lsqr', 'eigen'): clf = LinearDiscriminantAnalysis(solver=solver) # should be able to separate the data perfectly assert_equal(clf.fit(x, y).score(x, y), 1.0, 'using covariance: %s' % solver) def test_qda(): # QDA classification. # This checks that QDA implements fit and predict and returns # correct values for a simple toy dataset. clf = QuadraticDiscriminantAnalysis() y_pred = clf.fit(X6, y6).predict(X6) assert_array_equal(y_pred, y6) # Assure that it works with 1D data y_pred1 = clf.fit(X7, y6).predict(X7) assert_array_equal(y_pred1, y6) # Test probas estimates y_proba_pred1 = clf.predict_proba(X7) assert_array_equal((y_proba_pred1[:, 1] > 0.5) + 1, y6) y_log_proba_pred1 = clf.predict_log_proba(X7) assert_array_almost_equal(np.exp(y_log_proba_pred1), y_proba_pred1, 8) y_pred3 = clf.fit(X6, y7).predict(X6) # QDA shouldn't be able to separate those assert_true(np.any(y_pred3 != y7)) # Classes should have at least 2 elements assert_raises(ValueError, clf.fit, X6, y4) def test_qda_priors(): clf = QuadraticDiscriminantAnalysis() y_pred = clf.fit(X6, y6).predict(X6) n_pos = np.sum(y_pred == 2) neg = 1e-10 clf = QuadraticDiscriminantAnalysis(priors=np.array([neg, 1 - neg])) y_pred = clf.fit(X6, y6).predict(X6) n_pos2 = np.sum(y_pred == 2) assert_greater(n_pos2, n_pos) def test_qda_store_covariances(): # The default is to not set the covariances_ attribute clf = QuadraticDiscriminantAnalysis().fit(X6, y6) assert_true(not hasattr(clf, 'covariances_')) # Test the actual attribute: clf = QuadraticDiscriminantAnalysis().fit(X6, y6, store_covariances=True) assert_true(hasattr(clf, 'covariances_')) assert_array_almost_equal( clf.covariances_[0], np.array([[0.7, 0.45], [0.45, 0.7]]) ) assert_array_almost_equal( clf.covariances_[1], np.array([[0.33333333, -0.33333333], [-0.33333333, 0.66666667]]) ) def test_qda_regularization(): # the default is reg_param=0. and will cause issues # when there is a constant variable clf = QuadraticDiscriminantAnalysis() with ignore_warnings(): y_pred = clf.fit(X2, y6).predict(X2) assert_true(np.any(y_pred != y6)) # adding a little regularization fixes the problem clf = QuadraticDiscriminantAnalysis(reg_param=0.01) with ignore_warnings(): clf.fit(X2, y6) y_pred = clf.predict(X2) assert_array_equal(y_pred, y6) # Case n_samples_in_a_class < n_features clf = QuadraticDiscriminantAnalysis(reg_param=0.1) with ignore_warnings(): clf.fit(X5, y5) y_pred5 = clf.predict(X5) assert_array_equal(y_pred5, y5) def test_deprecated_lda_qda_deprecation(): def import_lda_module(): import sklearn.lda # ensure that we trigger DeprecationWarning even if the sklearn.lda # was loaded previously by another test. reload(sklearn.lda) return sklearn.lda lda = assert_warns(DeprecationWarning, import_lda_module) assert lda.LDA is LinearDiscriminantAnalysis def import_qda_module(): import sklearn.qda # ensure that we trigger DeprecationWarning even if the sklearn.qda # was loaded previously by another test. reload(sklearn.qda) return sklearn.qda qda = assert_warns(DeprecationWarning, import_qda_module) assert qda.QDA is QuadraticDiscriminantAnalysis
bsd-3-clause
sellberg/SACLA2016A8015
scripts/06_plot_WAXS.py
2
2304
#!/home/software/SACLA_tool/bin/python2.7 import numpy as np import h5py import matplotlib import matplotlib.pyplot as plt import argparse import time #import pandas as pd import sys # -- default parameters run = 448571#448539 nshots = 100 threshold = 40 # -- folders file_folder = '/UserData/fperakis/2016_6/run%d/'%(run) src_folder = '/home/fperakis/2016_06/git/SACLA2016A8015/src/' fig_folder = '/home/fperakis/2016_06/figs/' # -- filenames and paths file_name = '%d.h5'%(run) file_path = file_folder+file_name sys.path.insert(0, src_folder) from img_class import * # -- import data fh5 = h5py.File(file_path, 'r') #h5keys = fh5.keys() run_key = [ k for k in fh5.keys() if k.startswith('run_') ][0] #print fh5,run_key #tags = fh5['/%s/detector_2d_assembled_1'%run_key].keys()[1:] tags = fh5['/%s/detector_2d_1'%run_key].keys()[1:] #gp = fh5.get(h5keys[1]) #subgp = gp.items() #print subgp # -- image generator num_im = len(tags) img_gen = ( fh5['%s/detector_2d_1/%s/detector_data'%(run_key,tag) ].value for tag in tags ) num_im = len(tags) mean_int = np.zeros(num_im) #mean_int = np.zeros(num_im) # -- get first image im1 = img_gen.next() # -- make mask #mask = np.ones(im1.shape) #mask[im1>threshold]=0 # -- loop over shots im = img_gen.next()#im1*mask i=0 for im_next in img_gen: #for ishot in range(nshots):#img_gen: #im_next = img_gen.next()#img_gen[ishot] t1 = time.time() #mean_int[i] = np.average(im_next[im_next<threshold].flatten()) mean_int[i] = np.average(im_next.flatten())#[im_next<threshold].flatten()) im += im_next#*mask i += 1 print 'R.%d | S.%d/%.d | %.1f Hz'%(run,i,num_im,1.0/(time.time() - t1)) im /= num_im # -- run mean #total_mean = np.average(mean_int) # -- histogram bi,bf,db = 5,30,0.1# min(sum_int),max(sum_int),1#0,1e6,1 hy,hx = np.histogram(mean_int,bins = np.arange(bi,bf,db)) # -- hit rate # -- plot plt.figure() plt.subplot(2,1,1) plt.imshow(np.rot90(im),vmax=24,vmin=12) plt.colorbar() plt.title('r.%d'%(run)) plt.subplot(2,1,2) plt.bar(hx[:-1]-db/2.,hy,width = db) plt.yscale('log',nonposy='clip') plt.xlabel('mean ADUs per shot') plt.ylabel('number of shots') #plt.title('hit rate: %.3f percent'%(hit_rate)) plt.tight_layout() # -- save figure plt.savefig(fig_folder+'run%d.png'%(run))
bsd-2-clause
pratapvardhan/scikit-learn
sklearn/utils/estimator_checks.py
17
56571
from __future__ import print_function import types import warnings import sys import traceback import pickle from copy import deepcopy import numpy as np from scipy import sparse import struct from sklearn.externals.six.moves import zip from sklearn.externals.joblib import hash, Memory from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regex from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_in from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import META_ESTIMATORS from sklearn.utils.testing import set_random_state from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import SkipTest from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_warns from sklearn.base import (clone, ClassifierMixin, RegressorMixin, TransformerMixin, ClusterMixin, BaseEstimator) from sklearn.metrics import accuracy_score, adjusted_rand_score, f1_score from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.random_projection import BaseRandomProjection from sklearn.feature_selection import SelectKBest from sklearn.svm.base import BaseLibSVM from sklearn.pipeline import make_pipeline from sklearn.decomposition import NMF, ProjectedGradientNMF from sklearn.exceptions import ConvergenceWarning from sklearn.exceptions import DataConversionWarning from sklearn.model_selection import train_test_split from sklearn.utils import shuffle from sklearn.utils.fixes import signature from sklearn.preprocessing import StandardScaler from sklearn.datasets import load_iris, load_boston, make_blobs BOSTON = None CROSS_DECOMPOSITION = ['PLSCanonical', 'PLSRegression', 'CCA', 'PLSSVD'] MULTI_OUTPUT = ['CCA', 'DecisionTreeRegressor', 'ElasticNet', 'ExtraTreeRegressor', 'ExtraTreesRegressor', 'GaussianProcess', 'GaussianProcessRegressor', 'KNeighborsRegressor', 'KernelRidge', 'Lars', 'Lasso', 'LassoLars', 'LinearRegression', 'MultiTaskElasticNet', 'MultiTaskElasticNetCV', 'MultiTaskLasso', 'MultiTaskLassoCV', 'OrthogonalMatchingPursuit', 'PLSCanonical', 'PLSRegression', 'RANSACRegressor', 'RadiusNeighborsRegressor', 'RandomForestRegressor', 'Ridge', 'RidgeCV'] # Estimators with deprecated transform methods. Should be removed in 0.19 when # _LearntSelectorMixin is removed. DEPRECATED_TRANSFORM = [ "RandomForestClassifier", "RandomForestRegressor", "ExtraTreesClassifier", "ExtraTreesRegressor", "DecisionTreeClassifier", "DecisionTreeRegressor", "ExtraTreeClassifier", "ExtraTreeRegressor", "LinearSVC", "SGDClassifier", "SGDRegressor", "Perceptron", "LogisticRegression", "LogisticRegressionCV", "GradientBoostingClassifier", "GradientBoostingRegressor"] def _yield_non_meta_checks(name, Estimator): yield check_estimators_dtypes yield check_fit_score_takes_y yield check_dtype_object yield check_estimators_fit_returns_self # Check that all estimator yield informative messages when # trained on empty datasets yield check_estimators_empty_data_messages if name not in CROSS_DECOMPOSITION + ['SpectralEmbedding']: # SpectralEmbedding is non-deterministic, # see issue #4236 # cross-decomposition's "transform" returns X and Y yield check_pipeline_consistency if name not in ['Imputer']: # Test that all estimators check their input for NaN's and infs yield check_estimators_nan_inf if name not in ['GaussianProcess']: # FIXME! # in particular GaussianProcess! yield check_estimators_overwrite_params if hasattr(Estimator, 'sparsify'): yield check_sparsify_coefficients yield check_estimator_sparse_data # Test that estimators can be pickled, and once pickled # give the same answer as before. yield check_estimators_pickle def _yield_classifier_checks(name, Classifier): # test classifiers can handle non-array data yield check_classifier_data_not_an_array # test classifiers trained on a single label always return this label yield check_classifiers_one_label yield check_classifiers_classes yield check_estimators_partial_fit_n_features # basic consistency testing yield check_classifiers_train yield check_classifiers_regression_target if (name not in ["MultinomialNB", "LabelPropagation", "LabelSpreading"] # TODO some complication with -1 label and name not in ["DecisionTreeClassifier", "ExtraTreeClassifier"]): # We don't raise a warning in these classifiers, as # the column y interface is used by the forests. yield check_supervised_y_2d # test if NotFittedError is raised yield check_estimators_unfitted if 'class_weight' in Classifier().get_params().keys(): yield check_class_weight_classifiers def check_supervised_y_no_nan(name, Estimator): # Checks that the Estimator targets are not NaN. rng = np.random.RandomState(888) X = rng.randn(10, 5) y = np.ones(10) * np.inf y = multioutput_estimator_convert_y_2d(name, y) errmsg = "Input contains NaN, infinity or a value too large for " \ "dtype('float64')." try: Estimator().fit(X, y) except ValueError as e: if str(e) != errmsg: raise ValueError("Estimator {0} raised warning as expected, but " "does not match expected error message" .format(name)) else: raise ValueError("Estimator {0} should have raised error on fitting " "array y with NaN value.".format(name)) def _yield_regressor_checks(name, Regressor): # TODO: test with intercept # TODO: test with multiple responses # basic testing yield check_regressors_train yield check_regressor_data_not_an_array yield check_estimators_partial_fit_n_features yield check_regressors_no_decision_function yield check_supervised_y_2d yield check_supervised_y_no_nan if name != 'CCA': # check that the regressor handles int input yield check_regressors_int if name != "GaussianProcessRegressor": # Test if NotFittedError is raised yield check_estimators_unfitted def _yield_transformer_checks(name, Transformer): # All transformers should either deal with sparse data or raise an # exception with type TypeError and an intelligible error message if name not in ['AdditiveChi2Sampler', 'Binarizer', 'Normalizer', 'PLSCanonical', 'PLSRegression', 'CCA', 'PLSSVD']: yield check_transformer_data_not_an_array # these don't actually fit the data, so don't raise errors if name not in ['AdditiveChi2Sampler', 'Binarizer', 'FunctionTransformer', 'Normalizer']: # basic tests yield check_transformer_general yield check_transformers_unfitted def _yield_clustering_checks(name, Clusterer): yield check_clusterer_compute_labels_predict if name not in ('WardAgglomeration', "FeatureAgglomeration"): # this is clustering on the features # let's not test that here. yield check_clustering yield check_estimators_partial_fit_n_features def _yield_all_checks(name, Estimator): for check in _yield_non_meta_checks(name, Estimator): yield check if issubclass(Estimator, ClassifierMixin): for check in _yield_classifier_checks(name, Estimator): yield check if issubclass(Estimator, RegressorMixin): for check in _yield_regressor_checks(name, Estimator): yield check if issubclass(Estimator, TransformerMixin): if name not in DEPRECATED_TRANSFORM: for check in _yield_transformer_checks(name, Estimator): yield check if issubclass(Estimator, ClusterMixin): for check in _yield_clustering_checks(name, Estimator): yield check yield check_fit2d_predict1d yield check_fit2d_1sample yield check_fit2d_1feature yield check_fit1d_1feature yield check_fit1d_1sample def check_estimator(Estimator): """Check if estimator adheres to sklearn conventions. This estimator will run an extensive test-suite for input validation, shapes, etc. Additional tests for classifiers, regressors, clustering or transformers will be run if the Estimator class inherits from the corresponding mixin from sklearn.base. Parameters ---------- Estimator : class Class to check. Estimator is a class object (not an instance). """ name = Estimator.__name__ check_parameters_default_constructible(name, Estimator) for check in _yield_all_checks(name, Estimator): check(name, Estimator) def _boston_subset(n_samples=200): global BOSTON if BOSTON is None: boston = load_boston() X, y = boston.data, boston.target X, y = shuffle(X, y, random_state=0) X, y = X[:n_samples], y[:n_samples] X = StandardScaler().fit_transform(X) BOSTON = X, y return BOSTON def set_testing_parameters(estimator): # set parameters to speed up some estimators and # avoid deprecated behaviour params = estimator.get_params() if ("n_iter" in params and estimator.__class__.__name__ != "TSNE"): estimator.set_params(n_iter=5) if "max_iter" in params: warnings.simplefilter("ignore", ConvergenceWarning) if estimator.max_iter is not None: estimator.set_params(max_iter=min(5, estimator.max_iter)) # LinearSVR if estimator.__class__.__name__ == 'LinearSVR': estimator.set_params(max_iter=20) # NMF if estimator.__class__.__name__ == 'NMF': estimator.set_params(max_iter=100) # MLP if estimator.__class__.__name__ in ['MLPClassifier', 'MLPRegressor']: estimator.set_params(max_iter=100) if "n_resampling" in params: # randomized lasso estimator.set_params(n_resampling=5) if "n_estimators" in params: # especially gradient boosting with default 100 estimator.set_params(n_estimators=min(5, estimator.n_estimators)) if "max_trials" in params: # RANSAC estimator.set_params(max_trials=10) if "n_init" in params: # K-Means estimator.set_params(n_init=2) if "decision_function_shape" in params: # SVC estimator.set_params(decision_function_shape='ovo') if estimator.__class__.__name__ == "SelectFdr": # be tolerant of noisy datasets (not actually speed) estimator.set_params(alpha=.5) if estimator.__class__.__name__ == "TheilSenRegressor": estimator.max_subpopulation = 100 if isinstance(estimator, BaseRandomProjection): # Due to the jl lemma and often very few samples, the number # of components of the random matrix projection will be probably # greater than the number of features. # So we impose a smaller number (avoid "auto" mode) estimator.set_params(n_components=1) if isinstance(estimator, SelectKBest): # SelectKBest has a default of k=10 # which is more feature than we have in most case. estimator.set_params(k=1) if isinstance(estimator, NMF): if not isinstance(estimator, ProjectedGradientNMF): estimator.set_params(solver='cd') class NotAnArray(object): " An object that is convertable to an array" def __init__(self, data): self.data = data def __array__(self, dtype=None): return self.data def _is_32bit(): """Detect if process is 32bit Python.""" return struct.calcsize('P') * 8 == 32 def check_estimator_sparse_data(name, Estimator): rng = np.random.RandomState(0) X = rng.rand(40, 10) X[X < .8] = 0 X_csr = sparse.csr_matrix(X) y = (4 * rng.rand(40)).astype(np.int) for sparse_format in ['csr', 'csc', 'dok', 'lil', 'coo', 'dia', 'bsr']: X = X_csr.asformat(sparse_format) # catch deprecation warnings with warnings.catch_warnings(): if name in ['Scaler', 'StandardScaler']: estimator = Estimator(with_mean=False) else: estimator = Estimator() set_testing_parameters(estimator) # fit and predict try: estimator.fit(X, y) if hasattr(estimator, "predict"): pred = estimator.predict(X) assert_equal(pred.shape, (X.shape[0],)) if hasattr(estimator, 'predict_proba'): probs = estimator.predict_proba(X) assert_equal(probs.shape, (X.shape[0], 4)) except TypeError as e: if 'sparse' not in repr(e): print("Estimator %s doesn't seem to fail gracefully on " "sparse data: error message state explicitly that " "sparse input is not supported if this is not the case." % name) raise except Exception: print("Estimator %s doesn't seem to fail gracefully on " "sparse data: it should raise a TypeError if sparse input " "is explicitly not supported." % name) raise def check_dtype_object(name, Estimator): # check that estimators treat dtype object as numeric if possible rng = np.random.RandomState(0) X = rng.rand(40, 10).astype(object) y = (X[:, 0] * 4).astype(np.int) y = multioutput_estimator_convert_y_2d(name, y) with warnings.catch_warnings(): estimator = Estimator() set_testing_parameters(estimator) estimator.fit(X, y) if hasattr(estimator, "predict"): estimator.predict(X) if (hasattr(estimator, "transform") and name not in DEPRECATED_TRANSFORM): estimator.transform(X) try: estimator.fit(X, y.astype(object)) except Exception as e: if "Unknown label type" not in str(e): raise X[0, 0] = {'foo': 'bar'} msg = "argument must be a string or a number" assert_raises_regex(TypeError, msg, estimator.fit, X, y) @ignore_warnings def check_fit2d_predict1d(name, Estimator): # check by fitting a 2d array and prediting with a 1d array rnd = np.random.RandomState(0) X = 3 * rnd.uniform(size=(20, 3)) y = X[:, 0].astype(np.int) y = multioutput_estimator_convert_y_2d(name, y) estimator = Estimator() set_testing_parameters(estimator) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 set_random_state(estimator, 1) estimator.fit(X, y) for method in ["predict", "transform", "decision_function", "predict_proba"]: if hasattr(estimator, method): try: assert_warns(DeprecationWarning, getattr(estimator, method), X[0]) except ValueError: pass @ignore_warnings def check_fit2d_1sample(name, Estimator): # check by fitting a 2d array and prediting with a 1d array rnd = np.random.RandomState(0) X = 3 * rnd.uniform(size=(1, 10)) y = X[:, 0].astype(np.int) y = multioutput_estimator_convert_y_2d(name, y) estimator = Estimator() set_testing_parameters(estimator) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 set_random_state(estimator, 1) try: estimator.fit(X, y) except ValueError: pass @ignore_warnings def check_fit2d_1feature(name, Estimator): # check by fitting a 2d array and prediting with a 1d array rnd = np.random.RandomState(0) X = 3 * rnd.uniform(size=(10, 1)) y = X[:, 0].astype(np.int) y = multioutput_estimator_convert_y_2d(name, y) estimator = Estimator() set_testing_parameters(estimator) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 set_random_state(estimator, 1) try: estimator.fit(X, y) except ValueError: pass @ignore_warnings def check_fit1d_1feature(name, Estimator): # check fitting 1d array with 1 feature rnd = np.random.RandomState(0) X = 3 * rnd.uniform(size=(20)) y = X.astype(np.int) y = multioutput_estimator_convert_y_2d(name, y) estimator = Estimator() set_testing_parameters(estimator) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 set_random_state(estimator, 1) try: estimator.fit(X, y) except ValueError: pass @ignore_warnings def check_fit1d_1sample(name, Estimator): # check fitting 1d array with 1 feature rnd = np.random.RandomState(0) X = 3 * rnd.uniform(size=(20)) y = np.array([1]) y = multioutput_estimator_convert_y_2d(name, y) estimator = Estimator() set_testing_parameters(estimator) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 set_random_state(estimator, 1) try: estimator.fit(X, y) except ValueError: pass def check_transformer_general(name, Transformer): X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) X = StandardScaler().fit_transform(X) X -= X.min() _check_transformer(name, Transformer, X, y) _check_transformer(name, Transformer, X.tolist(), y.tolist()) def check_transformer_data_not_an_array(name, Transformer): X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) X = StandardScaler().fit_transform(X) # We need to make sure that we have non negative data, for things # like NMF X -= X.min() - .1 this_X = NotAnArray(X) this_y = NotAnArray(np.asarray(y)) _check_transformer(name, Transformer, this_X, this_y) def check_transformers_unfitted(name, Transformer): X, y = _boston_subset() with warnings.catch_warnings(record=True): transformer = Transformer() assert_raises((AttributeError, ValueError), transformer.transform, X) def _check_transformer(name, Transformer, X, y): if name in ('CCA', 'LocallyLinearEmbedding', 'KernelPCA') and _is_32bit(): # Those transformers yield non-deterministic output when executed on # a 32bit Python. The same transformers are stable on 64bit Python. # FIXME: try to isolate a minimalistic reproduction case only depending # on numpy & scipy and/or maybe generate a test dataset that does not # cause such unstable behaviors. msg = name + ' is non deterministic on 32bit Python' raise SkipTest(msg) n_samples, n_features = np.asarray(X).shape # catch deprecation warnings with warnings.catch_warnings(record=True): transformer = Transformer() set_random_state(transformer) set_testing_parameters(transformer) # fit if name in CROSS_DECOMPOSITION: y_ = np.c_[y, y] y_[::2, 1] *= 2 else: y_ = y transformer.fit(X, y_) # fit_transform method should work on non fitted estimator transformer_clone = clone(transformer) X_pred = transformer_clone.fit_transform(X, y=y_) if isinstance(X_pred, tuple): for x_pred in X_pred: assert_equal(x_pred.shape[0], n_samples) else: # check for consistent n_samples assert_equal(X_pred.shape[0], n_samples) if hasattr(transformer, 'transform'): if name in CROSS_DECOMPOSITION: X_pred2 = transformer.transform(X, y_) X_pred3 = transformer.fit_transform(X, y=y_) else: X_pred2 = transformer.transform(X) X_pred3 = transformer.fit_transform(X, y=y_) if isinstance(X_pred, tuple) and isinstance(X_pred2, tuple): for x_pred, x_pred2, x_pred3 in zip(X_pred, X_pred2, X_pred3): assert_array_almost_equal( x_pred, x_pred2, 2, "fit_transform and transform outcomes not consistent in %s" % Transformer) assert_array_almost_equal( x_pred, x_pred3, 2, "consecutive fit_transform outcomes not consistent in %s" % Transformer) else: assert_array_almost_equal( X_pred, X_pred2, 2, "fit_transform and transform outcomes not consistent in %s" % Transformer) assert_array_almost_equal( X_pred, X_pred3, 2, "consecutive fit_transform outcomes not consistent in %s" % Transformer) assert_equal(len(X_pred2), n_samples) assert_equal(len(X_pred3), n_samples) # raises error on malformed input for transform if hasattr(X, 'T'): # If it's not an array, it does not have a 'T' property assert_raises(ValueError, transformer.transform, X.T) @ignore_warnings def check_pipeline_consistency(name, Estimator): if name in ('CCA', 'LocallyLinearEmbedding', 'KernelPCA') and _is_32bit(): # Those transformers yield non-deterministic output when executed on # a 32bit Python. The same transformers are stable on 64bit Python. # FIXME: try to isolate a minimalistic reproduction case only depending # scipy and/or maybe generate a test dataset that does not # cause such unstable behaviors. msg = name + ' is non deterministic on 32bit Python' raise SkipTest(msg) # check that make_pipeline(est) gives same score as est X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) X -= X.min() y = multioutput_estimator_convert_y_2d(name, y) estimator = Estimator() set_testing_parameters(estimator) set_random_state(estimator) pipeline = make_pipeline(estimator) estimator.fit(X, y) pipeline.fit(X, y) if name in DEPRECATED_TRANSFORM: funcs = ["score"] else: funcs = ["score", "fit_transform"] for func_name in funcs: func = getattr(estimator, func_name, None) if func is not None: func_pipeline = getattr(pipeline, func_name) result = func(X, y) result_pipe = func_pipeline(X, y) assert_array_almost_equal(result, result_pipe) @ignore_warnings def check_fit_score_takes_y(name, Estimator): # check that all estimators accept an optional y # in fit and score so they can be used in pipelines rnd = np.random.RandomState(0) X = rnd.uniform(size=(10, 3)) y = np.arange(10) % 3 y = multioutput_estimator_convert_y_2d(name, y) estimator = Estimator() set_testing_parameters(estimator) set_random_state(estimator) if name in DEPRECATED_TRANSFORM: funcs = ["fit", "score", "partial_fit", "fit_predict"] else: funcs = [ "fit", "score", "partial_fit", "fit_predict", "fit_transform"] for func_name in funcs: func = getattr(estimator, func_name, None) if func is not None: func(X, y) args = [p.name for p in signature(func).parameters.values()] assert_true(args[1] in ["y", "Y"], "Expected y or Y as second argument for method " "%s of %s. Got arguments: %r." % (func_name, Estimator.__name__, args)) @ignore_warnings def check_estimators_dtypes(name, Estimator): rnd = np.random.RandomState(0) X_train_32 = 3 * rnd.uniform(size=(20, 5)).astype(np.float32) X_train_64 = X_train_32.astype(np.float64) X_train_int_64 = X_train_32.astype(np.int64) X_train_int_32 = X_train_32.astype(np.int32) y = X_train_int_64[:, 0] y = multioutput_estimator_convert_y_2d(name, y) if name in DEPRECATED_TRANSFORM: methods = ["predict", "decision_function", "predict_proba"] else: methods = [ "predict", "transform", "decision_function", "predict_proba"] for X_train in [X_train_32, X_train_64, X_train_int_64, X_train_int_32]: with warnings.catch_warnings(record=True): estimator = Estimator() set_testing_parameters(estimator) set_random_state(estimator, 1) estimator.fit(X_train, y) for method in methods: if hasattr(estimator, method): getattr(estimator, method)(X_train) def check_estimators_empty_data_messages(name, Estimator): e = Estimator() set_testing_parameters(e) set_random_state(e, 1) X_zero_samples = np.empty(0).reshape(0, 3) # The precise message can change depending on whether X or y is # validated first. Let us test the type of exception only: assert_raises(ValueError, e.fit, X_zero_samples, []) X_zero_features = np.empty(0).reshape(3, 0) # the following y should be accepted by both classifiers and regressors # and ignored by unsupervised models y = multioutput_estimator_convert_y_2d(name, np.array([1, 0, 1])) msg = ("0 feature\(s\) \(shape=\(3, 0\)\) while a minimum of \d* " "is required.") assert_raises_regex(ValueError, msg, e.fit, X_zero_features, y) def check_estimators_nan_inf(name, Estimator): # Checks that Estimator X's do not contain NaN or inf. rnd = np.random.RandomState(0) X_train_finite = rnd.uniform(size=(10, 3)) X_train_nan = rnd.uniform(size=(10, 3)) X_train_nan[0, 0] = np.nan X_train_inf = rnd.uniform(size=(10, 3)) X_train_inf[0, 0] = np.inf y = np.ones(10) y[:5] = 0 y = multioutput_estimator_convert_y_2d(name, y) error_string_fit = "Estimator doesn't check for NaN and inf in fit." error_string_predict = ("Estimator doesn't check for NaN and inf in" " predict.") error_string_transform = ("Estimator doesn't check for NaN and inf in" " transform.") for X_train in [X_train_nan, X_train_inf]: # catch deprecation warnings with warnings.catch_warnings(record=True): estimator = Estimator() set_testing_parameters(estimator) set_random_state(estimator, 1) # try to fit try: estimator.fit(X_train, y) except ValueError as e: if 'inf' not in repr(e) and 'NaN' not in repr(e): print(error_string_fit, Estimator, e) traceback.print_exc(file=sys.stdout) raise e except Exception as exc: print(error_string_fit, Estimator, exc) traceback.print_exc(file=sys.stdout) raise exc else: raise AssertionError(error_string_fit, Estimator) # actually fit estimator.fit(X_train_finite, y) # predict if hasattr(estimator, "predict"): try: estimator.predict(X_train) except ValueError as e: if 'inf' not in repr(e) and 'NaN' not in repr(e): print(error_string_predict, Estimator, e) traceback.print_exc(file=sys.stdout) raise e except Exception as exc: print(error_string_predict, Estimator, exc) traceback.print_exc(file=sys.stdout) else: raise AssertionError(error_string_predict, Estimator) # transform if (hasattr(estimator, "transform") and name not in DEPRECATED_TRANSFORM): try: estimator.transform(X_train) except ValueError as e: if 'inf' not in repr(e) and 'NaN' not in repr(e): print(error_string_transform, Estimator, e) traceback.print_exc(file=sys.stdout) raise e except Exception as exc: print(error_string_transform, Estimator, exc) traceback.print_exc(file=sys.stdout) else: raise AssertionError(error_string_transform, Estimator) @ignore_warnings def check_estimators_pickle(name, Estimator): """Test that we can pickle all estimators""" if name in DEPRECATED_TRANSFORM: check_methods = ["predict", "decision_function", "predict_proba"] else: check_methods = ["predict", "transform", "decision_function", "predict_proba"] X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) # some estimators can't do features less than 0 X -= X.min() # some estimators only take multioutputs y = multioutput_estimator_convert_y_2d(name, y) # catch deprecation warnings with warnings.catch_warnings(record=True): estimator = Estimator() set_random_state(estimator) set_testing_parameters(estimator) estimator.fit(X, y) result = dict() for method in check_methods: if hasattr(estimator, method): result[method] = getattr(estimator, method)(X) # pickle and unpickle! pickled_estimator = pickle.dumps(estimator) unpickled_estimator = pickle.loads(pickled_estimator) for method in result: unpickled_result = getattr(unpickled_estimator, method)(X) assert_array_almost_equal(result[method], unpickled_result) def check_estimators_partial_fit_n_features(name, Alg): # check if number of features changes between calls to partial_fit. if not hasattr(Alg, 'partial_fit'): return X, y = make_blobs(n_samples=50, random_state=1) X -= X.min() with warnings.catch_warnings(record=True): alg = Alg() if not hasattr(alg, 'partial_fit'): # check again as for mlp this depends on algorithm return set_testing_parameters(alg) try: if isinstance(alg, ClassifierMixin): classes = np.unique(y) alg.partial_fit(X, y, classes=classes) else: alg.partial_fit(X, y) except NotImplementedError: return assert_raises(ValueError, alg.partial_fit, X[:, :-1], y) def check_clustering(name, Alg): X, y = make_blobs(n_samples=50, random_state=1) X, y = shuffle(X, y, random_state=7) X = StandardScaler().fit_transform(X) n_samples, n_features = X.shape # catch deprecation and neighbors warnings with warnings.catch_warnings(record=True): alg = Alg() set_testing_parameters(alg) if hasattr(alg, "n_clusters"): alg.set_params(n_clusters=3) set_random_state(alg) if name == 'AffinityPropagation': alg.set_params(preference=-100) alg.set_params(max_iter=100) # fit alg.fit(X) # with lists alg.fit(X.tolist()) assert_equal(alg.labels_.shape, (n_samples,)) pred = alg.labels_ assert_greater(adjusted_rand_score(pred, y), 0.4) # fit another time with ``fit_predict`` and compare results if name is 'SpectralClustering': # there is no way to make Spectral clustering deterministic :( return set_random_state(alg) with warnings.catch_warnings(record=True): pred2 = alg.fit_predict(X) assert_array_equal(pred, pred2) def check_clusterer_compute_labels_predict(name, Clusterer): """Check that predict is invariant of compute_labels""" X, y = make_blobs(n_samples=20, random_state=0) clusterer = Clusterer() if hasattr(clusterer, "compute_labels"): # MiniBatchKMeans if hasattr(clusterer, "random_state"): clusterer.set_params(random_state=0) X_pred1 = clusterer.fit(X).predict(X) clusterer.set_params(compute_labels=False) X_pred2 = clusterer.fit(X).predict(X) assert_array_equal(X_pred1, X_pred2) def check_classifiers_one_label(name, Classifier): error_string_fit = "Classifier can't train when only one class is present." error_string_predict = ("Classifier can't predict when only one class is " "present.") rnd = np.random.RandomState(0) X_train = rnd.uniform(size=(10, 3)) X_test = rnd.uniform(size=(10, 3)) y = np.ones(10) # catch deprecation warnings with warnings.catch_warnings(record=True): classifier = Classifier() set_testing_parameters(classifier) # try to fit try: classifier.fit(X_train, y) except ValueError as e: if 'class' not in repr(e): print(error_string_fit, Classifier, e) traceback.print_exc(file=sys.stdout) raise e else: return except Exception as exc: print(error_string_fit, Classifier, exc) traceback.print_exc(file=sys.stdout) raise exc # predict try: assert_array_equal(classifier.predict(X_test), y) except Exception as exc: print(error_string_predict, Classifier, exc) raise exc @ignore_warnings # Warnings are raised by decision function def check_classifiers_train(name, Classifier): X_m, y_m = make_blobs(n_samples=300, random_state=0) X_m, y_m = shuffle(X_m, y_m, random_state=7) X_m = StandardScaler().fit_transform(X_m) # generate binary problem from multi-class one y_b = y_m[y_m != 2] X_b = X_m[y_m != 2] for (X, y) in [(X_m, y_m), (X_b, y_b)]: # catch deprecation warnings classes = np.unique(y) n_classes = len(classes) n_samples, n_features = X.shape with warnings.catch_warnings(record=True): classifier = Classifier() if name in ['BernoulliNB', 'MultinomialNB']: X -= X.min() set_testing_parameters(classifier) set_random_state(classifier) # raises error on malformed input for fit assert_raises(ValueError, classifier.fit, X, y[:-1]) # fit classifier.fit(X, y) # with lists classifier.fit(X.tolist(), y.tolist()) assert_true(hasattr(classifier, "classes_")) y_pred = classifier.predict(X) assert_equal(y_pred.shape, (n_samples,)) # training set performance if name not in ['BernoulliNB', 'MultinomialNB']: assert_greater(accuracy_score(y, y_pred), 0.83) # raises error on malformed input for predict assert_raises(ValueError, classifier.predict, X.T) if hasattr(classifier, "decision_function"): try: # decision_function agrees with predict decision = classifier.decision_function(X) if n_classes is 2: assert_equal(decision.shape, (n_samples,)) dec_pred = (decision.ravel() > 0).astype(np.int) assert_array_equal(dec_pred, y_pred) if (n_classes is 3 and not isinstance(classifier, BaseLibSVM)): # 1on1 of LibSVM works differently assert_equal(decision.shape, (n_samples, n_classes)) assert_array_equal(np.argmax(decision, axis=1), y_pred) # raises error on malformed input assert_raises(ValueError, classifier.decision_function, X.T) # raises error on malformed input for decision_function assert_raises(ValueError, classifier.decision_function, X.T) except NotImplementedError: pass if hasattr(classifier, "predict_proba"): # predict_proba agrees with predict y_prob = classifier.predict_proba(X) assert_equal(y_prob.shape, (n_samples, n_classes)) assert_array_equal(np.argmax(y_prob, axis=1), y_pred) # check that probas for all classes sum to one assert_array_almost_equal(np.sum(y_prob, axis=1), np.ones(n_samples)) # raises error on malformed input assert_raises(ValueError, classifier.predict_proba, X.T) # raises error on malformed input for predict_proba assert_raises(ValueError, classifier.predict_proba, X.T) def check_estimators_fit_returns_self(name, Estimator): """Check if self is returned when calling fit""" X, y = make_blobs(random_state=0, n_samples=9, n_features=4) y = multioutput_estimator_convert_y_2d(name, y) # some want non-negative input X -= X.min() estimator = Estimator() set_testing_parameters(estimator) set_random_state(estimator) assert_true(estimator.fit(X, y) is estimator) @ignore_warnings def check_estimators_unfitted(name, Estimator): """Check that predict raises an exception in an unfitted estimator. Unfitted estimators should raise either AttributeError or ValueError. The specific exception type NotFittedError inherits from both and can therefore be adequately raised for that purpose. """ # Common test for Regressors as well as Classifiers X, y = _boston_subset() with warnings.catch_warnings(record=True): est = Estimator() msg = "fit" if hasattr(est, 'predict'): assert_raise_message((AttributeError, ValueError), msg, est.predict, X) if hasattr(est, 'decision_function'): assert_raise_message((AttributeError, ValueError), msg, est.decision_function, X) if hasattr(est, 'predict_proba'): assert_raise_message((AttributeError, ValueError), msg, est.predict_proba, X) if hasattr(est, 'predict_log_proba'): assert_raise_message((AttributeError, ValueError), msg, est.predict_log_proba, X) def check_supervised_y_2d(name, Estimator): if "MultiTask" in name: # These only work on 2d, so this test makes no sense return rnd = np.random.RandomState(0) X = rnd.uniform(size=(10, 3)) y = np.arange(10) % 3 # catch deprecation warnings with warnings.catch_warnings(record=True): estimator = Estimator() set_testing_parameters(estimator) set_random_state(estimator) # fit estimator.fit(X, y) y_pred = estimator.predict(X) set_random_state(estimator) # Check that when a 2D y is given, a DataConversionWarning is # raised with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", DataConversionWarning) warnings.simplefilter("ignore", RuntimeWarning) estimator.fit(X, y[:, np.newaxis]) y_pred_2d = estimator.predict(X) msg = "expected 1 DataConversionWarning, got: %s" % ( ", ".join([str(w_x) for w_x in w])) if name not in MULTI_OUTPUT: # check that we warned if we don't support multi-output assert_greater(len(w), 0, msg) assert_true("DataConversionWarning('A column-vector y" " was passed when a 1d array was expected" in msg) assert_array_almost_equal(y_pred.ravel(), y_pred_2d.ravel()) def check_classifiers_classes(name, Classifier): X, y = make_blobs(n_samples=30, random_state=0, cluster_std=0.1) X, y = shuffle(X, y, random_state=7) X = StandardScaler().fit_transform(X) # We need to make sure that we have non negative data, for things # like NMF X -= X.min() - .1 y_names = np.array(["one", "two", "three"])[y] for y_names in [y_names, y_names.astype('O')]: if name in ["LabelPropagation", "LabelSpreading"]: # TODO some complication with -1 label y_ = y else: y_ = y_names classes = np.unique(y_) # catch deprecation warnings with warnings.catch_warnings(record=True): classifier = Classifier() if name == 'BernoulliNB': classifier.set_params(binarize=X.mean()) set_testing_parameters(classifier) set_random_state(classifier) # fit classifier.fit(X, y_) y_pred = classifier.predict(X) # training set performance assert_array_equal(np.unique(y_), np.unique(y_pred)) if np.any(classifier.classes_ != classes): print("Unexpected classes_ attribute for %r: " "expected %s, got %s" % (classifier, classes, classifier.classes_)) def check_regressors_int(name, Regressor): X, _ = _boston_subset() X = X[:50] rnd = np.random.RandomState(0) y = rnd.randint(3, size=X.shape[0]) y = multioutput_estimator_convert_y_2d(name, y) rnd = np.random.RandomState(0) # catch deprecation warnings with warnings.catch_warnings(record=True): # separate estimators to control random seeds regressor_1 = Regressor() regressor_2 = Regressor() set_testing_parameters(regressor_1) set_testing_parameters(regressor_2) set_random_state(regressor_1) set_random_state(regressor_2) if name in CROSS_DECOMPOSITION: y_ = np.vstack([y, 2 * y + rnd.randint(2, size=len(y))]) y_ = y_.T else: y_ = y # fit regressor_1.fit(X, y_) pred1 = regressor_1.predict(X) regressor_2.fit(X, y_.astype(np.float)) pred2 = regressor_2.predict(X) assert_array_almost_equal(pred1, pred2, 2, name) def check_regressors_train(name, Regressor): X, y = _boston_subset() y = StandardScaler().fit_transform(y.reshape(-1, 1)) # X is already scaled y = y.ravel() y = multioutput_estimator_convert_y_2d(name, y) rnd = np.random.RandomState(0) # catch deprecation warnings with warnings.catch_warnings(record=True): regressor = Regressor() set_testing_parameters(regressor) if not hasattr(regressor, 'alphas') and hasattr(regressor, 'alpha'): # linear regressors need to set alpha, but not generalized CV ones regressor.alpha = 0.01 if name == 'PassiveAggressiveRegressor': regressor.C = 0.01 # raises error on malformed input for fit assert_raises(ValueError, regressor.fit, X, y[:-1]) # fit if name in CROSS_DECOMPOSITION: y_ = np.vstack([y, 2 * y + rnd.randint(2, size=len(y))]) y_ = y_.T else: y_ = y set_random_state(regressor) regressor.fit(X, y_) regressor.fit(X.tolist(), y_.tolist()) y_pred = regressor.predict(X) assert_equal(y_pred.shape, y_.shape) # TODO: find out why PLS and CCA fail. RANSAC is random # and furthermore assumes the presence of outliers, hence # skipped if name not in ('PLSCanonical', 'CCA', 'RANSACRegressor'): assert_greater(regressor.score(X, y_), 0.5) @ignore_warnings def check_regressors_no_decision_function(name, Regressor): # checks whether regressors have decision_function or predict_proba rng = np.random.RandomState(0) X = rng.normal(size=(10, 4)) y = multioutput_estimator_convert_y_2d(name, X[:, 0]) regressor = Regressor() set_testing_parameters(regressor) if hasattr(regressor, "n_components"): # FIXME CCA, PLS is not robust to rank 1 effects regressor.n_components = 1 regressor.fit(X, y) funcs = ["decision_function", "predict_proba", "predict_log_proba"] for func_name in funcs: func = getattr(regressor, func_name, None) if func is None: # doesn't have function continue # has function. Should raise deprecation warning msg = func_name assert_warns_message(DeprecationWarning, msg, func, X) def check_class_weight_classifiers(name, Classifier): if name == "NuSVC": # the sparse version has a parameter that doesn't do anything raise SkipTest if name.endswith("NB"): # NaiveBayes classifiers have a somewhat different interface. # FIXME SOON! raise SkipTest for n_centers in [2, 3]: # create a very noisy dataset X, y = make_blobs(centers=n_centers, random_state=0, cluster_std=20) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5, random_state=0) n_centers = len(np.unique(y_train)) if n_centers == 2: class_weight = {0: 1000, 1: 0.0001} else: class_weight = {0: 1000, 1: 0.0001, 2: 0.0001} with warnings.catch_warnings(record=True): classifier = Classifier(class_weight=class_weight) if hasattr(classifier, "n_iter"): classifier.set_params(n_iter=100) if hasattr(classifier, "min_weight_fraction_leaf"): classifier.set_params(min_weight_fraction_leaf=0.01) set_random_state(classifier) classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) assert_greater(np.mean(y_pred == 0), 0.89) def check_class_weight_balanced_classifiers(name, Classifier, X_train, y_train, X_test, y_test, weights): with warnings.catch_warnings(record=True): classifier = Classifier() if hasattr(classifier, "n_iter"): classifier.set_params(n_iter=100) set_random_state(classifier) classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) classifier.set_params(class_weight='balanced') classifier.fit(X_train, y_train) y_pred_balanced = classifier.predict(X_test) assert_greater(f1_score(y_test, y_pred_balanced, average='weighted'), f1_score(y_test, y_pred, average='weighted')) def check_class_weight_balanced_linear_classifier(name, Classifier): """Test class weights with non-contiguous class labels.""" X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = np.array([1, 1, 1, -1, -1]) with warnings.catch_warnings(record=True): classifier = Classifier() if hasattr(classifier, "n_iter"): # This is a very small dataset, default n_iter are likely to prevent # convergence classifier.set_params(n_iter=1000) set_random_state(classifier) # Let the model compute the class frequencies classifier.set_params(class_weight='balanced') coef_balanced = classifier.fit(X, y).coef_.copy() # Count each label occurrence to reweight manually n_samples = len(y) n_classes = float(len(np.unique(y))) class_weight = {1: n_samples / (np.sum(y == 1) * n_classes), -1: n_samples / (np.sum(y == -1) * n_classes)} classifier.set_params(class_weight=class_weight) coef_manual = classifier.fit(X, y).coef_.copy() assert_array_almost_equal(coef_balanced, coef_manual) def check_estimators_overwrite_params(name, Estimator): X, y = make_blobs(random_state=0, n_samples=9) y = multioutput_estimator_convert_y_2d(name, y) # some want non-negative input X -= X.min() with warnings.catch_warnings(record=True): # catch deprecation warnings estimator = Estimator() set_testing_parameters(estimator) set_random_state(estimator) # Make a physical copy of the original estimator parameters before fitting. params = estimator.get_params() original_params = deepcopy(params) # Fit the model estimator.fit(X, y) # Compare the state of the model parameters with the original parameters new_params = estimator.get_params() for param_name, original_value in original_params.items(): new_value = new_params[param_name] # We should never change or mutate the internal state of input # parameters by default. To check this we use the joblib.hash function # that introspects recursively any subobjects to compute a checksum. # The only exception to this rule of immutable constructor parameters # is possible RandomState instance but in this check we explicitly # fixed the random_state params recursively to be integer seeds. assert_equal(hash(new_value), hash(original_value), "Estimator %s should not change or mutate " " the parameter %s from %s to %s during fit." % (name, param_name, original_value, new_value)) def check_sparsify_coefficients(name, Estimator): X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [-1, -2], [2, 2], [-2, -2]]) y = [1, 1, 1, 2, 2, 2, 3, 3, 3] est = Estimator() est.fit(X, y) pred_orig = est.predict(X) # test sparsify with dense inputs est.sparsify() assert_true(sparse.issparse(est.coef_)) pred = est.predict(X) assert_array_equal(pred, pred_orig) # pickle and unpickle with sparse coef_ est = pickle.loads(pickle.dumps(est)) assert_true(sparse.issparse(est.coef_)) pred = est.predict(X) assert_array_equal(pred, pred_orig) def check_classifier_data_not_an_array(name, Estimator): X = np.array([[3, 0], [0, 1], [0, 2], [1, 1], [1, 2], [2, 1]]) y = [1, 1, 1, 2, 2, 2] y = multioutput_estimator_convert_y_2d(name, y) check_estimators_data_not_an_array(name, Estimator, X, y) def check_regressor_data_not_an_array(name, Estimator): X, y = _boston_subset(n_samples=50) y = multioutput_estimator_convert_y_2d(name, y) check_estimators_data_not_an_array(name, Estimator, X, y) def check_estimators_data_not_an_array(name, Estimator, X, y): if name in CROSS_DECOMPOSITION: raise SkipTest # catch deprecation warnings with warnings.catch_warnings(record=True): # separate estimators to control random seeds estimator_1 = Estimator() estimator_2 = Estimator() set_testing_parameters(estimator_1) set_testing_parameters(estimator_2) set_random_state(estimator_1) set_random_state(estimator_2) y_ = NotAnArray(np.asarray(y)) X_ = NotAnArray(np.asarray(X)) # fit estimator_1.fit(X_, y_) pred1 = estimator_1.predict(X_) estimator_2.fit(X, y) pred2 = estimator_2.predict(X) assert_array_almost_equal(pred1, pred2, 2, name) def check_parameters_default_constructible(name, Estimator): classifier = LinearDiscriminantAnalysis() # test default-constructibility # get rid of deprecation warnings with warnings.catch_warnings(record=True): if name in META_ESTIMATORS: estimator = Estimator(classifier) else: estimator = Estimator() # test cloning clone(estimator) # test __repr__ repr(estimator) # test that set_params returns self assert_true(estimator.set_params() is estimator) # test if init does nothing but set parameters # this is important for grid_search etc. # We get the default parameters from init and then # compare these against the actual values of the attributes. # this comes from getattr. Gets rid of deprecation decorator. init = getattr(estimator.__init__, 'deprecated_original', estimator.__init__) try: def param_filter(p): """Identify hyper parameters of an estimator""" return (p.name != 'self' and p.kind != p.VAR_KEYWORD and p.kind != p.VAR_POSITIONAL) init_params = [p for p in signature(init).parameters.values() if param_filter(p)] except (TypeError, ValueError): # init is not a python function. # true for mixins return params = estimator.get_params() if name in META_ESTIMATORS: # they can need a non-default argument init_params = init_params[1:] for init_param in init_params: assert_not_equal(init_param.default, init_param.empty, "parameter %s for %s has no default value" % (init_param.name, type(estimator).__name__)) assert_in(type(init_param.default), [str, int, float, bool, tuple, type(None), np.float64, types.FunctionType, Memory]) if init_param.name not in params.keys(): # deprecated parameter, not in get_params assert_true(init_param.default is None) continue param_value = params[init_param.name] if isinstance(param_value, np.ndarray): assert_array_equal(param_value, init_param.default) else: assert_equal(param_value, init_param.default) def multioutput_estimator_convert_y_2d(name, y): # Estimators in mono_output_task_error raise ValueError if y is of 1-D # Convert into a 2-D y for those estimators. if "MultiTask" in name: return np.reshape(y, (-1, 1)) return y def check_non_transformer_estimators_n_iter(name, estimator, multi_output=False): # Check if all iterative solvers, run for more than one iteration iris = load_iris() X, y_ = iris.data, iris.target if multi_output: y_ = np.reshape(y_, (-1, 1)) set_random_state(estimator, 0) if name == 'AffinityPropagation': estimator.fit(X) else: estimator.fit(X, y_) # HuberRegressor depends on scipy.optimize.fmin_l_bfgs_b # which doesn't return a n_iter for old versions of SciPy. if not (name == 'HuberRegressor' and estimator.n_iter_ is None): assert_greater_equal(estimator.n_iter_, 1) def check_transformer_n_iter(name, estimator): if name in CROSS_DECOMPOSITION: # Check using default data X = [[0., 0., 1.], [1., 0., 0.], [2., 2., 2.], [2., 5., 4.]] y_ = [[0.1, -0.2], [0.9, 1.1], [0.1, -0.5], [0.3, -0.2]] else: X, y_ = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) X -= X.min() - 0.1 set_random_state(estimator, 0) estimator.fit(X, y_) # These return a n_iter per component. if name in CROSS_DECOMPOSITION: for iter_ in estimator.n_iter_: assert_greater_equal(iter_, 1) else: assert_greater_equal(estimator.n_iter_, 1) def check_get_params_invariance(name, estimator): class T(BaseEstimator): """Mock classifier """ def __init__(self): pass def fit(self, X, y): return self if name in ('FeatureUnion', 'Pipeline'): e = estimator([('clf', T())]) elif name in ('GridSearchCV', 'RandomizedSearchCV', 'SelectFromModel'): return else: e = estimator() shallow_params = e.get_params(deep=False) deep_params = e.get_params(deep=True) assert_true(all(item in deep_params.items() for item in shallow_params.items())) def check_classifiers_regression_target(name, Estimator): # Check if classifier throws an exception when fed regression targets boston = load_boston() X, y = boston.data, boston.target e = Estimator() msg = 'Unknown label type: ' assert_raises_regex(ValueError, msg, e.fit, X, y)
bsd-3-clause
PrashntS/scikit-learn
examples/linear_model/plot_ard.py
248
2622
""" ================================================== Automatic Relevance Determination Regression (ARD) ================================================== Fit regression model with Bayesian Ridge Regression. See :ref:`bayesian_ridge_regression` for more information on the regressor. Compared to the OLS (ordinary least squares) estimator, the coefficient weights are slightly shifted toward zeros, which stabilises them. The histogram of the estimated weights is very peaked, as a sparsity-inducing prior is implied on the weights. The estimation of the model is done by iteratively maximizing the marginal log-likelihood of the observations. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from scipy import stats from sklearn.linear_model import ARDRegression, LinearRegression ############################################################################### # Generating simulated data with Gaussian weights # Parameters of the example np.random.seed(0) n_samples, n_features = 100, 100 # Create Gaussian data X = np.random.randn(n_samples, n_features) # Create weigts with a precision lambda_ of 4. lambda_ = 4. w = np.zeros(n_features) # Only keep 10 weights of interest relevant_features = np.random.randint(0, n_features, 10) for i in relevant_features: w[i] = stats.norm.rvs(loc=0, scale=1. / np.sqrt(lambda_)) # Create noite with a precision alpha of 50. alpha_ = 50. noise = stats.norm.rvs(loc=0, scale=1. / np.sqrt(alpha_), size=n_samples) # Create the target y = np.dot(X, w) + noise ############################################################################### # Fit the ARD Regression clf = ARDRegression(compute_score=True) clf.fit(X, y) ols = LinearRegression() ols.fit(X, y) ############################################################################### # Plot the true weights, the estimated weights and the histogram of the # weights plt.figure(figsize=(6, 5)) plt.title("Weights of the model") plt.plot(clf.coef_, 'b-', label="ARD estimate") plt.plot(ols.coef_, 'r--', label="OLS estimate") plt.plot(w, 'g-', label="Ground truth") plt.xlabel("Features") plt.ylabel("Values of the weights") plt.legend(loc=1) plt.figure(figsize=(6, 5)) plt.title("Histogram of the weights") plt.hist(clf.coef_, bins=n_features, log=True) plt.plot(clf.coef_[relevant_features], 5 * np.ones(len(relevant_features)), 'ro', label="Relevant features") plt.ylabel("Features") plt.xlabel("Values of the weights") plt.legend(loc=1) plt.figure(figsize=(6, 5)) plt.title("Marginal log-likelihood") plt.plot(clf.scores_) plt.ylabel("Score") plt.xlabel("Iterations") plt.show()
bsd-3-clause
sarahgrogan/scikit-learn
sklearn/externals/joblib/parallel.py
79
35628
""" Helpers for embarrassingly parallel code. """ # Author: Gael Varoquaux < gael dot varoquaux at normalesup dot org > # Copyright: 2010, Gael Varoquaux # License: BSD 3 clause from __future__ import division import os import sys import gc import warnings from math import sqrt import functools import time import threading import itertools from numbers import Integral try: import cPickle as pickle except: import pickle from ._multiprocessing_helpers import mp if mp is not None: from .pool import MemmapingPool from multiprocessing.pool import ThreadPool from .format_stack import format_exc, format_outer_frames from .logger import Logger, short_format_time from .my_exceptions import TransportableException, _mk_exception from .disk import memstr_to_kbytes from ._compat import _basestring VALID_BACKENDS = ['multiprocessing', 'threading'] # Environment variables to protect against bad situations when nesting JOBLIB_SPAWNED_PROCESS = "__JOBLIB_SPAWNED_PARALLEL__" # In seconds, should be big enough to hide multiprocessing dispatching # overhead. # This settings was found by running benchmarks/bench_auto_batching.py # with various parameters on various platforms. MIN_IDEAL_BATCH_DURATION = .2 # Should not be too high to avoid stragglers: long jobs running alone # on a single worker while other workers have no work to process any more. MAX_IDEAL_BATCH_DURATION = 2 # Under Python 3.4+ use the 'forkserver' start method by default: this makes it # possible to avoid crashing 3rd party libraries that manage an internal thread # pool that does not tolerate forking if hasattr(mp, 'get_start_method'): method = os.environ.get('JOBLIB_START_METHOD') if (method is None and mp.get_start_method() == 'fork' and 'forkserver' in mp.get_all_start_methods()): method = 'forkserver' DEFAULT_MP_CONTEXT = mp.get_context(method=method) else: DEFAULT_MP_CONTEXT = None class BatchedCalls(object): """Wrap a sequence of (func, args, kwargs) tuples as a single callable""" def __init__(self, iterator_slice): self.items = list(iterator_slice) self._size = len(self.items) def __call__(self): return [func(*args, **kwargs) for func, args, kwargs in self.items] def __len__(self): return self._size ############################################################################### # CPU count that works also when multiprocessing has been disabled via # the JOBLIB_MULTIPROCESSING environment variable def cpu_count(): """ Return the number of CPUs. """ if mp is None: return 1 return mp.cpu_count() ############################################################################### # For verbosity def _verbosity_filter(index, verbose): """ Returns False for indices increasingly apart, the distance depending on the value of verbose. We use a lag increasing as the square of index """ if not verbose: return True elif verbose > 10: return False if index == 0: return False verbose = .5 * (11 - verbose) ** 2 scale = sqrt(index / verbose) next_scale = sqrt((index + 1) / verbose) return (int(next_scale) == int(scale)) ############################################################################### class WorkerInterrupt(Exception): """ An exception that is not KeyboardInterrupt to allow subprocesses to be interrupted. """ pass ############################################################################### class SafeFunction(object): """ Wraps a function to make it exception with full traceback in their representation. Useful for parallel computing with multiprocessing, for which exceptions cannot be captured. """ def __init__(self, func): self.func = func def __call__(self, *args, **kwargs): try: return self.func(*args, **kwargs) except KeyboardInterrupt: # We capture the KeyboardInterrupt and reraise it as # something different, as multiprocessing does not # interrupt processing for a KeyboardInterrupt raise WorkerInterrupt() except: e_type, e_value, e_tb = sys.exc_info() text = format_exc(e_type, e_value, e_tb, context=10, tb_offset=1) if issubclass(e_type, TransportableException): raise else: raise TransportableException(text, e_type) ############################################################################### def delayed(function, check_pickle=True): """Decorator used to capture the arguments of a function. Pass `check_pickle=False` when: - performing a possibly repeated check is too costly and has been done already once outside of the call to delayed. - when used in conjunction `Parallel(backend='threading')`. """ # Try to pickle the input function, to catch the problems early when # using with multiprocessing: if check_pickle: pickle.dumps(function) def delayed_function(*args, **kwargs): return function, args, kwargs try: delayed_function = functools.wraps(function)(delayed_function) except AttributeError: " functools.wraps fails on some callable objects " return delayed_function ############################################################################### class ImmediateComputeBatch(object): """Sequential computation of a batch of tasks. This replicates the async computation API but actually does not delay the computations when joblib.Parallel runs in sequential mode. """ def __init__(self, batch): # Don't delay the application, to avoid keeping the input # arguments in memory self.results = batch() def get(self): return self.results ############################################################################### class BatchCompletionCallBack(object): """Callback used by joblib.Parallel's multiprocessing backend. This callable is executed by the parent process whenever a worker process has returned the results of a batch of tasks. It is used for progress reporting, to update estimate of the batch processing duration and to schedule the next batch of tasks to be processed. """ def __init__(self, dispatch_timestamp, batch_size, parallel): self.dispatch_timestamp = dispatch_timestamp self.batch_size = batch_size self.parallel = parallel def __call__(self, out): self.parallel.n_completed_tasks += self.batch_size this_batch_duration = time.time() - self.dispatch_timestamp if (self.parallel.batch_size == 'auto' and self.batch_size == self.parallel._effective_batch_size): # Update the smoothed streaming estimate of the duration of a batch # from dispatch to completion old_duration = self.parallel._smoothed_batch_duration if old_duration == 0: # First record of duration for this batch size after the last # reset. new_duration = this_batch_duration else: # Update the exponentially weighted average of the duration of # batch for the current effective size. new_duration = 0.8 * old_duration + 0.2 * this_batch_duration self.parallel._smoothed_batch_duration = new_duration self.parallel.print_progress() if self.parallel._original_iterator is not None: self.parallel.dispatch_next() ############################################################################### class Parallel(Logger): ''' Helper class for readable parallel mapping. Parameters ----------- n_jobs: int, default: 1 The maximum number of concurrently running jobs, such as the number of Python worker processes when backend="multiprocessing" or the size of the thread-pool when backend="threading". If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. backend: str or None, default: 'multiprocessing' Specify the parallelization backend implementation. Supported backends are: - "multiprocessing" used by default, can induce some communication and memory overhead when exchanging input and output data with the with the worker Python processes. - "threading" is a very low-overhead backend but it suffers from the Python Global Interpreter Lock if the called function relies a lot on Python objects. "threading" is mostly useful when the execution bottleneck is a compiled extension that explicitly releases the GIL (for instance a Cython loop wrapped in a "with nogil" block or an expensive call to a library such as NumPy). verbose: int, optional The verbosity level: if non zero, progress messages are printed. Above 50, the output is sent to stdout. The frequency of the messages increases with the verbosity level. If it more than 10, all iterations are reported. pre_dispatch: {'all', integer, or expression, as in '3*n_jobs'} The number of batches (of tasks) to be pre-dispatched. Default is '2*n_jobs'. When batch_size="auto" this is reasonable default and the multiprocessing workers shoud never starve. batch_size: int or 'auto', default: 'auto' The number of atomic tasks to dispatch at once to each worker. When individual evaluations are very fast, multiprocessing can be slower than sequential computation because of the overhead. Batching fast computations together can mitigate this. The ``'auto'`` strategy keeps track of the time it takes for a batch to complete, and dynamically adjusts the batch size to keep the time on the order of half a second, using a heuristic. The initial batch size is 1. ``batch_size="auto"`` with ``backend="threading"`` will dispatch batches of a single task at a time as the threading backend has very little overhead and using larger batch size has not proved to bring any gain in that case. temp_folder: str, optional Folder to be used by the pool for memmaping large arrays for sharing memory with worker processes. If None, this will try in order: - a folder pointed by the JOBLIB_TEMP_FOLDER environment variable, - /dev/shm if the folder exists and is writable: this is a RAMdisk filesystem available by default on modern Linux distributions, - the default system temporary folder that can be overridden with TMP, TMPDIR or TEMP environment variables, typically /tmp under Unix operating systems. Only active when backend="multiprocessing". max_nbytes int, str, or None, optional, 1M by default Threshold on the size of arrays passed to the workers that triggers automated memory mapping in temp_folder. Can be an int in Bytes, or a human-readable string, e.g., '1M' for 1 megabyte. Use None to disable memmaping of large arrays. Only active when backend="multiprocessing". Notes ----- This object uses the multiprocessing module to compute in parallel the application of a function to many different arguments. The main functionality it brings in addition to using the raw multiprocessing API are (see examples for details): * More readable code, in particular since it avoids constructing list of arguments. * Easier debugging: - informative tracebacks even when the error happens on the client side - using 'n_jobs=1' enables to turn off parallel computing for debugging without changing the codepath - early capture of pickling errors * An optional progress meter. * Interruption of multiprocesses jobs with 'Ctrl-C' * Flexible pickling control for the communication to and from the worker processes. * Ability to use shared memory efficiently with worker processes for large numpy-based datastructures. Examples -------- A simple example: >>> from math import sqrt >>> from sklearn.externals.joblib import Parallel, delayed >>> Parallel(n_jobs=1)(delayed(sqrt)(i**2) for i in range(10)) [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0] Reshaping the output when the function has several return values: >>> from math import modf >>> from sklearn.externals.joblib import Parallel, delayed >>> r = Parallel(n_jobs=1)(delayed(modf)(i/2.) for i in range(10)) >>> res, i = zip(*r) >>> res (0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5) >>> i (0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 4.0, 4.0) The progress meter: the higher the value of `verbose`, the more messages:: >>> from time import sleep >>> from sklearn.externals.joblib import Parallel, delayed >>> r = Parallel(n_jobs=2, verbose=5)(delayed(sleep)(.1) for _ in range(10)) #doctest: +SKIP [Parallel(n_jobs=2)]: Done 1 out of 10 | elapsed: 0.1s remaining: 0.9s [Parallel(n_jobs=2)]: Done 3 out of 10 | elapsed: 0.2s remaining: 0.5s [Parallel(n_jobs=2)]: Done 6 out of 10 | elapsed: 0.3s remaining: 0.2s [Parallel(n_jobs=2)]: Done 9 out of 10 | elapsed: 0.5s remaining: 0.1s [Parallel(n_jobs=2)]: Done 10 out of 10 | elapsed: 0.5s finished Traceback example, note how the line of the error is indicated as well as the values of the parameter passed to the function that triggered the exception, even though the traceback happens in the child process:: >>> from heapq import nlargest >>> from sklearn.externals.joblib import Parallel, delayed >>> Parallel(n_jobs=2)(delayed(nlargest)(2, n) for n in (range(4), 'abcde', 3)) #doctest: +SKIP #... --------------------------------------------------------------------------- Sub-process traceback: --------------------------------------------------------------------------- TypeError Mon Nov 12 11:37:46 2012 PID: 12934 Python 2.7.3: /usr/bin/python ........................................................................... /usr/lib/python2.7/heapq.pyc in nlargest(n=2, iterable=3, key=None) 419 if n >= size: 420 return sorted(iterable, key=key, reverse=True)[:n] 421 422 # When key is none, use simpler decoration 423 if key is None: --> 424 it = izip(iterable, count(0,-1)) # decorate 425 result = _nlargest(n, it) 426 return map(itemgetter(0), result) # undecorate 427 428 # General case, slowest method TypeError: izip argument #1 must support iteration ___________________________________________________________________________ Using pre_dispatch in a producer/consumer situation, where the data is generated on the fly. Note how the producer is first called a 3 times before the parallel loop is initiated, and then called to generate new data on the fly. In this case the total number of iterations cannot be reported in the progress messages:: >>> from math import sqrt >>> from sklearn.externals.joblib import Parallel, delayed >>> def producer(): ... for i in range(6): ... print('Produced %s' % i) ... yield i >>> out = Parallel(n_jobs=2, verbose=100, pre_dispatch='1.5*n_jobs')( ... delayed(sqrt)(i) for i in producer()) #doctest: +SKIP Produced 0 Produced 1 Produced 2 [Parallel(n_jobs=2)]: Done 1 jobs | elapsed: 0.0s Produced 3 [Parallel(n_jobs=2)]: Done 2 jobs | elapsed: 0.0s Produced 4 [Parallel(n_jobs=2)]: Done 3 jobs | elapsed: 0.0s Produced 5 [Parallel(n_jobs=2)]: Done 4 jobs | elapsed: 0.0s [Parallel(n_jobs=2)]: Done 5 out of 6 | elapsed: 0.0s remaining: 0.0s [Parallel(n_jobs=2)]: Done 6 out of 6 | elapsed: 0.0s finished ''' def __init__(self, n_jobs=1, backend='multiprocessing', verbose=0, pre_dispatch='2 * n_jobs', batch_size='auto', temp_folder=None, max_nbytes='1M', mmap_mode='r'): self.verbose = verbose self._mp_context = DEFAULT_MP_CONTEXT if backend is None: # `backend=None` was supported in 0.8.2 with this effect backend = "multiprocessing" elif hasattr(backend, 'Pool') and hasattr(backend, 'Lock'): # Make it possible to pass a custom multiprocessing context as # backend to change the start method to forkserver or spawn or # preload modules on the forkserver helper process. self._mp_context = backend backend = "multiprocessing" if backend not in VALID_BACKENDS: raise ValueError("Invalid backend: %s, expected one of %r" % (backend, VALID_BACKENDS)) self.backend = backend self.n_jobs = n_jobs if (batch_size == 'auto' or isinstance(batch_size, Integral) and batch_size > 0): self.batch_size = batch_size else: raise ValueError( "batch_size must be 'auto' or a positive integer, got: %r" % batch_size) self.pre_dispatch = pre_dispatch self._temp_folder = temp_folder if isinstance(max_nbytes, _basestring): self._max_nbytes = 1024 * memstr_to_kbytes(max_nbytes) else: self._max_nbytes = max_nbytes self._mmap_mode = mmap_mode # Not starting the pool in the __init__ is a design decision, to be # able to close it ASAP, and not burden the user with closing it # unless they choose to use the context manager API with a with block. self._pool = None self._output = None self._jobs = list() self._managed_pool = False # This lock is used coordinate the main thread of this process with # the async callback thread of our the pool. self._lock = threading.Lock() def __enter__(self): self._managed_pool = True self._initialize_pool() return self def __exit__(self, exc_type, exc_value, traceback): self._terminate_pool() self._managed_pool = False def _effective_n_jobs(self): n_jobs = self.n_jobs if n_jobs == 0: raise ValueError('n_jobs == 0 in Parallel has no meaning') elif mp is None or n_jobs is None: # multiprocessing is not available or disabled, fallback # to sequential mode return 1 elif n_jobs < 0: n_jobs = max(mp.cpu_count() + 1 + n_jobs, 1) return n_jobs def _initialize_pool(self): """Build a process or thread pool and return the number of workers""" n_jobs = self._effective_n_jobs() # The list of exceptions that we will capture self.exceptions = [TransportableException] if n_jobs == 1: # Sequential mode: do not use a pool instance to avoid any # useless dispatching overhead self._pool = None elif self.backend == 'threading': self._pool = ThreadPool(n_jobs) elif self.backend == 'multiprocessing': if mp.current_process().daemon: # Daemonic processes cannot have children self._pool = None warnings.warn( 'Multiprocessing-backed parallel loops cannot be nested,' ' setting n_jobs=1', stacklevel=3) return 1 elif threading.current_thread().name != 'MainThread': # Prevent posix fork inside in non-main posix threads self._pool = None warnings.warn( 'Multiprocessing backed parallel loops cannot be nested' ' below threads, setting n_jobs=1', stacklevel=3) return 1 else: already_forked = int(os.environ.get(JOBLIB_SPAWNED_PROCESS, 0)) if already_forked: raise ImportError('[joblib] Attempting to do parallel computing ' 'without protecting your import on a system that does ' 'not support forking. To use parallel-computing in a ' 'script, you must protect your main loop using "if ' "__name__ == '__main__'" '". Please see the joblib documentation on Parallel ' 'for more information' ) # Set an environment variable to avoid infinite loops os.environ[JOBLIB_SPAWNED_PROCESS] = '1' # Make sure to free as much memory as possible before forking gc.collect() poolargs = dict( max_nbytes=self._max_nbytes, mmap_mode=self._mmap_mode, temp_folder=self._temp_folder, verbose=max(0, self.verbose - 50), context_id=0, # the pool is used only for one call ) if self._mp_context is not None: # Use Python 3.4+ multiprocessing context isolation poolargs['context'] = self._mp_context self._pool = MemmapingPool(n_jobs, **poolargs) # We are using multiprocessing, we also want to capture # KeyboardInterrupts self.exceptions.extend([KeyboardInterrupt, WorkerInterrupt]) else: raise ValueError("Unsupported backend: %s" % self.backend) return n_jobs def _terminate_pool(self): if self._pool is not None: self._pool.close() self._pool.terminate() # terminate does a join() self._pool = None if self.backend == 'multiprocessing': os.environ.pop(JOBLIB_SPAWNED_PROCESS, 0) def _dispatch(self, batch): """Queue the batch for computing, with or without multiprocessing WARNING: this method is not thread-safe: it should be only called indirectly via dispatch_one_batch. """ # If job.get() catches an exception, it closes the queue: if self._aborting: return if self._pool is None: job = ImmediateComputeBatch(batch) self._jobs.append(job) self.n_dispatched_batches += 1 self.n_dispatched_tasks += len(batch) self.n_completed_tasks += len(batch) if not _verbosity_filter(self.n_dispatched_batches, self.verbose): self._print('Done %3i tasks | elapsed: %s', (self.n_completed_tasks, short_format_time(time.time() - self._start_time) )) else: dispatch_timestamp = time.time() cb = BatchCompletionCallBack(dispatch_timestamp, len(batch), self) job = self._pool.apply_async(SafeFunction(batch), callback=cb) self._jobs.append(job) self.n_dispatched_tasks += len(batch) self.n_dispatched_batches += 1 def dispatch_next(self): """Dispatch more data for parallel processing This method is meant to be called concurrently by the multiprocessing callback. We rely on the thread-safety of dispatch_one_batch to protect against concurrent consumption of the unprotected iterator. """ if not self.dispatch_one_batch(self._original_iterator): self._iterating = False self._original_iterator = None def dispatch_one_batch(self, iterator): """Prefetch the tasks for the next batch and dispatch them. The effective size of the batch is computed here. If there are no more jobs to dispatch, return False, else return True. The iterator consumption and dispatching is protected by the same lock so calling this function should be thread safe. """ if self.batch_size == 'auto' and self.backend == 'threading': # Batching is never beneficial with the threading backend batch_size = 1 elif self.batch_size == 'auto': old_batch_size = self._effective_batch_size batch_duration = self._smoothed_batch_duration if (batch_duration > 0 and batch_duration < MIN_IDEAL_BATCH_DURATION): # The current batch size is too small: the duration of the # processing of a batch of task is not large enough to hide # the scheduling overhead. ideal_batch_size = int( old_batch_size * MIN_IDEAL_BATCH_DURATION / batch_duration) # Multiply by two to limit oscilations between min and max. batch_size = max(2 * ideal_batch_size, 1) self._effective_batch_size = batch_size if self.verbose >= 10: self._print("Batch computation too fast (%.4fs.) " "Setting batch_size=%d.", ( batch_duration, batch_size)) elif (batch_duration > MAX_IDEAL_BATCH_DURATION and old_batch_size >= 2): # The current batch size is too big. If we schedule overly long # running batches some CPUs might wait with nothing left to do # while a couple of CPUs a left processing a few long running # batches. Better reduce the batch size a bit to limit the # likelihood of scheduling such stragglers. self._effective_batch_size = batch_size = old_batch_size // 2 if self.verbose >= 10: self._print("Batch computation too slow (%.2fs.) " "Setting batch_size=%d.", ( batch_duration, batch_size)) else: # No batch size adjustment batch_size = old_batch_size if batch_size != old_batch_size: # Reset estimation of the smoothed mean batch duration: this # estimate is updated in the multiprocessing apply_async # CallBack as long as the batch_size is constant. Therefore # we need to reset the estimate whenever we re-tune the batch # size. self._smoothed_batch_duration = 0 else: # Fixed batch size strategy batch_size = self.batch_size with self._lock: tasks = BatchedCalls(itertools.islice(iterator, batch_size)) if not tasks: # No more tasks available in the iterator: tell caller to stop. return False else: self._dispatch(tasks) return True def _print(self, msg, msg_args): """Display the message on stout or stderr depending on verbosity""" # XXX: Not using the logger framework: need to # learn to use logger better. if not self.verbose: return if self.verbose < 50: writer = sys.stderr.write else: writer = sys.stdout.write msg = msg % msg_args writer('[%s]: %s\n' % (self, msg)) def print_progress(self): """Display the process of the parallel execution only a fraction of time, controlled by self.verbose. """ if not self.verbose: return elapsed_time = time.time() - self._start_time # This is heuristic code to print only 'verbose' times a messages # The challenge is that we may not know the queue length if self._original_iterator: if _verbosity_filter(self.n_dispatched_batches, self.verbose): return self._print('Done %3i tasks | elapsed: %s', (self.n_completed_tasks, short_format_time(elapsed_time), )) else: index = self.n_dispatched_batches # We are finished dispatching total_tasks = self.n_dispatched_tasks # We always display the first loop if not index == 0: # Display depending on the number of remaining items # A message as soon as we finish dispatching, cursor is 0 cursor = (total_tasks - index + 1 - self._pre_dispatch_amount) frequency = (total_tasks // self.verbose) + 1 is_last_item = (index + 1 == total_tasks) if (is_last_item or cursor % frequency): return remaining_time = (elapsed_time / (index + 1) * (self.n_dispatched_tasks - index - 1.)) self._print('Done %3i out of %3i | elapsed: %s remaining: %s', (index + 1, total_tasks, short_format_time(elapsed_time), short_format_time(remaining_time), )) def retrieve(self): self._output = list() while self._iterating or len(self._jobs) > 0: if len(self._jobs) == 0: # Wait for an async callback to dispatch new jobs time.sleep(0.01) continue # We need to be careful: the job list can be filling up as # we empty it and Python list are not thread-safe by default hence # the use of the lock with self._lock: job = self._jobs.pop(0) try: self._output.extend(job.get()) except tuple(self.exceptions) as exception: # Stop dispatching any new job in the async callback thread self._aborting = True if isinstance(exception, TransportableException): # Capture exception to add information on the local # stack in addition to the distant stack this_report = format_outer_frames(context=10, stack_start=1) report = """Multiprocessing exception: %s --------------------------------------------------------------------------- Sub-process traceback: --------------------------------------------------------------------------- %s""" % (this_report, exception.message) # Convert this to a JoblibException exception_type = _mk_exception(exception.etype)[0] exception = exception_type(report) # Kill remaining running processes without waiting for # the results as we will raise the exception we got back # to the caller instead of returning any result. with self._lock: self._terminate_pool() if self._managed_pool: # In case we had to terminate a managed pool, let # us start a new one to ensure that subsequent calls # to __call__ on the same Parallel instance will get # a working pool as they expect. self._initialize_pool() raise exception def __call__(self, iterable): if self._jobs: raise ValueError('This Parallel instance is already running') # A flag used to abort the dispatching of jobs in case an # exception is found self._aborting = False if not self._managed_pool: n_jobs = self._initialize_pool() else: n_jobs = self._effective_n_jobs() if self.batch_size == 'auto': self._effective_batch_size = 1 iterator = iter(iterable) pre_dispatch = self.pre_dispatch if pre_dispatch == 'all' or n_jobs == 1: # prevent further dispatch via multiprocessing callback thread self._original_iterator = None self._pre_dispatch_amount = 0 else: self._original_iterator = iterator if hasattr(pre_dispatch, 'endswith'): pre_dispatch = eval(pre_dispatch) self._pre_dispatch_amount = pre_dispatch = int(pre_dispatch) # The main thread will consume the first pre_dispatch items and # the remaining items will later be lazily dispatched by async # callbacks upon task completions. iterator = itertools.islice(iterator, pre_dispatch) self._start_time = time.time() self.n_dispatched_batches = 0 self.n_dispatched_tasks = 0 self.n_completed_tasks = 0 self._smoothed_batch_duration = 0.0 try: self._iterating = True while self.dispatch_one_batch(iterator): pass if pre_dispatch == "all" or n_jobs == 1: # The iterable was consumed all at once by the above for loop. # No need to wait for async callbacks to trigger to # consumption. self._iterating = False self.retrieve() # Make sure that we get a last message telling us we are done elapsed_time = time.time() - self._start_time self._print('Done %3i out of %3i | elapsed: %s finished', (len(self._output), len(self._output), short_format_time(elapsed_time))) finally: if not self._managed_pool: self._terminate_pool() self._jobs = list() output = self._output self._output = None return output def __repr__(self): return '%s(n_jobs=%s)' % (self.__class__.__name__, self.n_jobs)
bsd-3-clause
ndawe/rootpy
docs/sphinxext/ipython_directive.py
2
27193
# -*- coding: utf-8 -*- """Sphinx directive to support embedded IPython code. This directive allows pasting of entire interactive IPython sessions, prompts and all, and their code will actually get re-executed at doc build time, with all prompts renumbered sequentially. It also allows you to input code as a pure python input by giving the argument python to the directive. The output looks like an interactive ipython section. To enable this directive, simply list it in your Sphinx ``conf.py`` file (making sure the directory where you placed it is visible to sphinx, as is needed for all Sphinx directives). By default this directive assumes that your prompts are unchanged IPython ones, but this can be customized. The configurable options that can be placed in conf.py are ipython_savefig_dir: The directory in which to save the figures. This is relative to the Sphinx source directory. The default is `html_static_path`. ipython_rgxin: The compiled regular expression to denote the start of IPython input lines. The default is re.compile('In \[(\d+)\]:\s?(.*)\s*'). You shouldn't need to change this. ipython_rgxout: The compiled regular expression to denote the start of IPython output lines. The default is re.compile('Out\[(\d+)\]:\s?(.*)\s*'). You shouldn't need to change this. ipython_promptin: The string to represent the IPython input prompt in the generated ReST. The default is 'In [%d]:'. This expects that the line numbers are used in the prompt. ipython_promptout: The string to represent the IPython prompt in the generated ReST. The default is 'Out [%d]:'. This expects that the line numbers are used in the prompt. ToDo ---- - Turn the ad-hoc test() function into a real test suite. - Break up ipython-specific functionality from matplotlib stuff into better separated code. Authors ------- - John D Hunter: orignal author. - Fernando Perez: refactoring, documentation, cleanups, port to 0.11. - VáclavŠmilauer <eudoxos-AT-arcig.cz>: Prompt generalizations. - Skipper Seabold, refactoring, cleanups, pure python addition """ #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Stdlib import cStringIO import os import re import sys import tempfile import ast # To keep compatibility with various python versions try: from hashlib import md5 except ImportError: from md5 import md5 # Third-party import matplotlib import sphinx from docutils.parsers.rst import directives from docutils import nodes from docutils.parsers.rst import Directive matplotlib.use('Agg') # Our own from IPython import Config, InteractiveShell from IPython.core.profiledir import ProfileDir from IPython.utils import io #----------------------------------------------------------------------------- # Globals #----------------------------------------------------------------------------- # for tokenizing blocks COMMENT, INPUT, OUTPUT = range(3) #----------------------------------------------------------------------------- # Functions and class declarations #----------------------------------------------------------------------------- def block_parser(part, rgxin, rgxout, fmtin, fmtout): """ part is a string of ipython text, comprised of at most one input, one ouput, comments, and blank lines. The block parser parses the text into a list of:: blocks = [ (TOKEN0, data0), (TOKEN1, data1), ...] where TOKEN is one of [COMMENT | INPUT | OUTPUT ] and data is, depending on the type of token:: COMMENT : the comment string INPUT: the (DECORATOR, INPUT_LINE, REST) where DECORATOR: the input decorator (or None) INPUT_LINE: the input as string (possibly multi-line) REST : any stdout generated by the input line (not OUTPUT) OUTPUT: the output string, possibly multi-line """ block = [] lines = part.split('\n') N = len(lines) i = 0 decorator = None while 1: if i==N: # nothing left to parse -- the last line break line = lines[i] i += 1 line_stripped = line.strip() if line_stripped.startswith('#'): block.append((COMMENT, line)) continue if line_stripped.startswith('@'): # we're assuming at most one decorator -- may need to # rethink decorator = line_stripped continue # does this look like an input line? matchin = rgxin.match(line) if matchin: lineno, inputline = int(matchin.group(1)), matchin.group(2) # the ....: continuation string continuation = ' %s:'%''.join(['.']*(len(str(lineno))+2)) Nc = len(continuation) # input lines can continue on for more than one line, if # we have a '\' line continuation char or a function call # echo line 'print'. The input line can only be # terminated by the end of the block or an output line, so # we parse out the rest of the input line if it is # multiline as well as any echo text rest = [] while i<N: # look ahead; if the next line is blank, or a comment, or # an output line, we're done nextline = lines[i] matchout = rgxout.match(nextline) #print "nextline=%s, continuation=%s, starts=%s"%(nextline, continuation, nextline.startswith(continuation)) if matchout or nextline.startswith('#'): break elif nextline.startswith(continuation): inputline += '\n' + nextline[Nc:] else: rest.append(nextline) i+= 1 block.append((INPUT, (decorator, inputline, '\n'.join(rest)))) continue # if it looks like an output line grab all the text to the end # of the block matchout = rgxout.match(line) if matchout: lineno, output = int(matchout.group(1)), matchout.group(2) if i<N-1: output = '\n'.join([output] + lines[i:]) block.append((OUTPUT, output)) break return block class EmbeddedSphinxShell(object): """An embedded IPython instance to run inside Sphinx""" def __init__(self): self.cout = cStringIO.StringIO() # Create config object for IPython config = Config() config.Global.display_banner = False config.Global.exec_lines = ['import numpy as np', 'from pylab import *' ] config.InteractiveShell.autocall = False config.InteractiveShell.autoindent = False config.InteractiveShell.colors = 'NoColor' # create a profile so instance history isn't saved tmp_profile_dir = tempfile.mkdtemp(prefix='profile_') profname = 'auto_profile_sphinx_build' pdir = os.path.join(tmp_profile_dir,profname) profile = ProfileDir.create_profile_dir(pdir) # Create and initialize ipython, but don't start its mainloop IP = InteractiveShell.instance(config=config, profile_dir=profile) # io.stdout redirect must be done *after* instantiating InteractiveShell io.stdout = self.cout io.stderr = self.cout # For debugging, so we can see normal output, use this: #from IPython.utils.io import Tee #io.stdout = Tee(self.cout, channel='stdout') # dbg #io.stderr = Tee(self.cout, channel='stderr') # dbg # Store a few parts of IPython we'll need. self.IP = IP self.user_ns = self.IP.user_ns self.user_global_ns = self.IP.user_global_ns self.input = '' self.output = '' self.is_verbatim = False self.is_doctest = False self.is_suppress = False # on the first call to the savefig decorator, we'll import # pyplot as plt so we can make a call to the plt.gcf().savefig self._pyplot_imported = False def clear_cout(self): self.cout.seek(0) self.cout.truncate(0) def process_input_line(self, line, store_history=True): """process the input, capturing stdout""" #print "input='%s'"%self.input stdout = sys.stdout splitter = self.IP.input_splitter try: sys.stdout = self.cout splitter.push(line) more = splitter.push_accepts_more() if not more: source_raw = splitter.source_raw_reset()[1] self.IP.run_cell(source_raw, store_history=store_history) finally: sys.stdout = stdout def process_image(self, decorator): """ # build out an image directive like # .. image:: somefile.png # :width 4in # # from an input like # savefig somefile.png width=4in """ savefig_dir = self.savefig_dir source_dir = self.source_dir saveargs = decorator.split(' ') filename = saveargs[1] # insert relative path to image file in source outfile = os.path.relpath(os.path.join(savefig_dir,filename), source_dir) imagerows = ['.. image:: %s'%outfile] for kwarg in saveargs[2:]: arg, val = kwarg.split('=') arg = arg.strip() val = val.strip() imagerows.append(' :%s: %s'%(arg, val)) image_file = os.path.basename(outfile) # only return file name image_directive = '\n'.join(imagerows) return image_file, image_directive # Callbacks for each type of token def process_input(self, data, input_prompt, lineno): """Process data block for INPUT token.""" decorator, input, rest = data image_file = None image_directive = None #print 'INPUT:', data # dbg is_verbatim = decorator=='@verbatim' or self.is_verbatim is_doctest = decorator=='@doctest' or self.is_doctest is_suppress = decorator=='@suppress' or self.is_suppress is_savefig = decorator is not None and \ decorator.startswith('@savefig') input_lines = input.split('\n') if len(input_lines) > 1: if input_lines[-1] != "": input_lines.append('') # make sure there's a blank line # so splitter buffer gets reset continuation = ' %s:'%''.join(['.']*(len(str(lineno))+2)) Nc = len(continuation) if is_savefig: image_file, image_directive = self.process_image(decorator) ret = [] is_semicolon = False for i, line in enumerate(input_lines): if line.endswith(';'): is_semicolon = True if i==0: # process the first input line if is_verbatim: self.process_input_line('') self.IP.execution_count += 1 # increment it anyway else: # only submit the line in non-verbatim mode self.process_input_line(line, store_history=True) formatted_line = '%s %s'%(input_prompt, line) else: # process a continuation line if not is_verbatim: self.process_input_line(line, store_history=True) formatted_line = '%s %s'%(continuation, line) if not is_suppress: ret.append(formatted_line) if not is_suppress and len(rest.strip()) and is_verbatim: # the "rest" is the standard output of the # input, which needs to be added in # verbatim mode ret.append(rest) self.cout.seek(0) output = self.cout.read() if not is_suppress and not is_semicolon: ret.append(output) elif is_semicolon: # get spacing right ret.append('') self.cout.truncate(0) return (ret, input_lines, output, is_doctest, image_file, image_directive) #print 'OUTPUT', output # dbg def process_output(self, data, output_prompt, input_lines, output, is_doctest, image_file): """Process data block for OUTPUT token.""" if is_doctest: submitted = data.strip() found = output if found is not None: found = found.strip() # XXX - fperez: in 0.11, 'output' never comes with the prompt # in it, just the actual output text. So I think all this code # can be nuked... # the above comment does not appear to be accurate... (minrk) ind = found.find(output_prompt) if ind<0: e='output prompt="%s" does not match out line=%s' % \ (output_prompt, found) raise RuntimeError(e) found = found[len(output_prompt):].strip() if found!=submitted: e = ('doctest failure for input_lines="%s" with ' 'found_output="%s" and submitted output="%s"' % (input_lines, found, submitted) ) raise RuntimeError(e) #print 'doctest PASSED for input_lines="%s" with found_output="%s" and submitted output="%s"'%(input_lines, found, submitted) def process_comment(self, data): """Process data fPblock for COMMENT token.""" if not self.is_suppress: return [data] def save_image(self, image_file): """ Saves the image file to disk. """ self.ensure_pyplot() command = 'plt.gcf().savefig("%s")'%image_file #print 'SAVEFIG', command # dbg self.process_input_line('bookmark ipy_thisdir', store_history=False) self.process_input_line('cd -b ipy_savedir', store_history=False) self.process_input_line(command, store_history=False) self.process_input_line('cd -b ipy_thisdir', store_history=False) self.process_input_line('bookmark -d ipy_thisdir', store_history=False) self.clear_cout() def process_block(self, block): """ process block from the block_parser and return a list of processed lines """ ret = [] output = None input_lines = None lineno = self.IP.execution_count input_prompt = self.promptin%lineno output_prompt = self.promptout%lineno image_file = None image_directive = None for token, data in block: if token==COMMENT: out_data = self.process_comment(data) elif token==INPUT: (out_data, input_lines, output, is_doctest, image_file, image_directive) = \ self.process_input(data, input_prompt, lineno) elif token==OUTPUT: out_data = \ self.process_output(data, output_prompt, input_lines, output, is_doctest, image_file) if out_data: ret.extend(out_data) # save the image files if image_file is not None: self.save_image(image_file) return ret, image_directive def ensure_pyplot(self): if self._pyplot_imported: return self.process_input_line('import matplotlib.pyplot as plt', store_history=False) def process_pure_python(self, content): """ content is a list of strings. it is unedited directive conent This runs it line by line in the InteractiveShell, prepends prompts as needed capturing stderr and stdout, then returns the content as a list as if it were ipython code """ output = [] savefig = False # keep up with this to clear figure multiline = False # to handle line continuation multiline_start = None fmtin = self.promptin ct = 0 for lineno, line in enumerate(content): line_stripped = line.strip() if not len(line): output.append(line) continue # handle decorators if line_stripped.startswith('@'): output.extend([line]) if 'savefig' in line: savefig = True # and need to clear figure continue # handle comments if line_stripped.startswith('#'): output.extend([line]) continue # deal with lines checking for multiline continuation = u' %s:'% ''.join(['.']*(len(str(ct))+2)) if not multiline: modified = u"%s %s" % (fmtin % ct, line_stripped) output.append(modified) ct += 1 try: ast.parse(line_stripped) output.append(u'') except Exception: # on a multiline multiline = True multiline_start = lineno else: # still on a multiline modified = u'%s %s' % (continuation, line) output.append(modified) try: mod = ast.parse( '\n'.join(content[multiline_start:lineno+1])) if isinstance(mod.body[0], ast.FunctionDef): # check to see if we have the whole function for element in mod.body[0].body: if isinstance(element, ast.Return): multiline = False else: output.append(u'') multiline = False except Exception: pass if savefig: # clear figure if plotted self.ensure_pyplot() self.process_input_line('plt.clf()', store_history=False) self.clear_cout() savefig = False return output class IpythonDirective(Directive): has_content = True required_arguments = 0 optional_arguments = 4 # python, suppress, verbatim, doctest final_argumuent_whitespace = True option_spec = { 'python': directives.unchanged, 'suppress' : directives.flag, 'verbatim' : directives.flag, 'doctest' : directives.flag, } shell = EmbeddedSphinxShell() def get_config_options(self): # contains sphinx configuration variables config = self.state.document.settings.env.config # get config variables to set figure output directory confdir = self.state.document.settings.env.app.confdir savefig_dir = config.ipython_savefig_dir source_dir = os.path.dirname(self.state.document.current_source) if savefig_dir is None: savefig_dir = config.html_static_path if isinstance(savefig_dir, list): savefig_dir = savefig_dir[0] # safe to assume only one path? savefig_dir = os.path.join(confdir, savefig_dir) # get regex and prompt stuff rgxin = config.ipython_rgxin rgxout = config.ipython_rgxout promptin = config.ipython_promptin promptout = config.ipython_promptout return savefig_dir, source_dir, rgxin, rgxout, promptin, promptout def setup(self): # reset the execution count if we haven't processed this doc #NOTE: this may be borked if there are multiple seen_doc tmp files #check time stamp? seen_docs = [i for i in os.listdir(tempfile.tempdir) if i.startswith('seen_doc')] if seen_docs: fname = os.path.join(tempfile.tempdir, seen_docs[0]) docs = open(fname).read().split('\n') if not self.state.document.current_source in docs: self.shell.IP.history_manager.reset() self.shell.IP.execution_count = 1 else: # haven't processed any docs yet docs = [] # get config values (savefig_dir, source_dir, rgxin, rgxout, promptin, promptout) = self.get_config_options() # and attach to shell so we don't have to pass them around self.shell.rgxin = rgxin self.shell.rgxout = rgxout self.shell.promptin = promptin self.shell.promptout = promptout self.shell.savefig_dir = savefig_dir self.shell.source_dir = source_dir # setup bookmark for saving figures directory self.shell.process_input_line('bookmark ipy_savedir %s'%savefig_dir, store_history=False) self.shell.clear_cout() # write the filename to a tempfile because it's been "seen" now if not self.state.document.current_source in docs: fd, fname = tempfile.mkstemp(prefix="seen_doc", text=True) fout = open(fname, 'a') fout.write(self.state.document.current_source+'\n') fout.close() return rgxin, rgxout, promptin, promptout def teardown(self): # delete last bookmark self.shell.process_input_line('bookmark -d ipy_savedir', store_history=False) self.shell.clear_cout() def run(self): debug = False #TODO, any reason block_parser can't be a method of embeddable shell # then we wouldn't have to carry these around rgxin, rgxout, promptin, promptout = self.setup() options = self.options self.shell.is_suppress = 'suppress' in options self.shell.is_doctest = 'doctest' in options self.shell.is_verbatim = 'verbatim' in options # handle pure python code if 'python' in self.arguments: content = self.content self.content = self.shell.process_pure_python(content) parts = '\n'.join(self.content).split('\n\n') lines = ['.. code-block:: ipython',''] figures = [] for part in parts: block = block_parser(part, rgxin, rgxout, promptin, promptout) if len(block): rows, figure = self.shell.process_block(block) for row in rows: lines.extend([' %s'%line for line in row.split('\n')]) if figure is not None: figures.append(figure) #text = '\n'.join(lines) #figs = '\n'.join(figures) for figure in figures: lines.append('') lines.extend(figure.split('\n')) lines.append('') #print lines if len(lines)>2: if debug: print '\n'.join(lines) else: #NOTE: this raises some errors, what's it for? #print 'INSERTING %d lines'%len(lines) self.state_machine.insert_input( lines, self.state_machine.input_lines.source(0)) text = '\n'.join(lines) txtnode = nodes.literal_block(text, text) txtnode['language'] = 'ipython' #imgnode = nodes.image(figs) # cleanup self.teardown() return []#, imgnode] # Enable as a proper Sphinx directive def setup(app): setup.app = app app.add_directive('ipython', IpythonDirective) app.add_config_value('ipython_savefig_dir', None, True) app.add_config_value('ipython_rgxin', re.compile('In \[(\d+)\]:\s?(.*)\s*'), True) app.add_config_value('ipython_rgxout', re.compile('Out\[(\d+)\]:\s?(.*)\s*'), True) app.add_config_value('ipython_promptin', 'In [%d]:', True) app.add_config_value('ipython_promptout', 'Out[%d]:', True) # Simple smoke test, needs to be converted to a proper automatic test. def test(): examples = [ r""" In [9]: pwd Out[9]: '/home/jdhunter/py4science/book' In [10]: cd bookdata/ /home/jdhunter/py4science/book/bookdata In [2]: from pylab import * In [2]: ion() In [3]: im = imread('stinkbug.png') @savefig mystinkbug.png width=4in In [4]: imshow(im) Out[4]: <matplotlib.image.AxesImage object at 0x39ea850> """, r""" In [1]: x = 'hello world' # string methods can be # used to alter the string @doctest In [2]: x.upper() Out[2]: 'HELLO WORLD' @verbatim In [3]: x.st<TAB> x.startswith x.strip """, r""" In [130]: url = 'http://ichart.finance.yahoo.com/table.csv?s=CROX\ .....: &d=9&e=22&f=2009&g=d&a=1&br=8&c=2006&ignore=.csv' In [131]: print url.split('&') ['http://ichart.finance.yahoo.com/table.csv?s=CROX', 'd=9', 'e=22', 'f=2009', 'g=d', 'a=1', 'b=8', 'c=2006', 'ignore=.csv'] In [60]: import urllib """, r"""\ In [133]: import numpy.random @suppress In [134]: numpy.random.seed(2358) @doctest In [135]: numpy.random.rand(10,2) Out[135]: array([[ 0.64524308, 0.59943846], [ 0.47102322, 0.8715456 ], [ 0.29370834, 0.74776844], [ 0.99539577, 0.1313423 ], [ 0.16250302, 0.21103583], [ 0.81626524, 0.1312433 ], [ 0.67338089, 0.72302393], [ 0.7566368 , 0.07033696], [ 0.22591016, 0.77731835], [ 0.0072729 , 0.34273127]]) """, r""" In [106]: print x jdh In [109]: for i in range(10): .....: print i .....: .....: 0 1 2 3 4 5 6 7 8 9 """, r""" In [144]: from pylab import * In [145]: ion() # use a semicolon to suppress the output @savefig test_hist.png width=4in In [151]: hist(np.random.randn(10000), 100); @savefig test_plot.png width=4in In [151]: plot(np.random.randn(10000), 'o'); """, r""" # use a semicolon to suppress the output In [151]: plt.clf() @savefig plot_simple.png width=4in In [151]: plot([1,2,3]) @savefig hist_simple.png width=4in In [151]: hist(np.random.randn(10000), 100); """, r""" # update the current fig In [151]: ylabel('number') In [152]: title('normal distribution') @savefig hist_with_text.png In [153]: grid(True) """, ] # skip local-file depending first example: examples = examples[1:] #ipython_directive.DEBUG = True # dbg #options = dict(suppress=True) # dbg options = dict() for example in examples: content = example.split('\n') ipython_directive('debug', arguments=None, options=options, content=content, lineno=0, content_offset=None, block_text=None, state=None, state_machine=None, ) # Run test suite as a script if __name__=='__main__': if not os.path.isdir('_static'): os.mkdir('_static') test() print 'All OK? Check figures in _static/'
bsd-3-clause
yydxlv/data-science-from-scratch
code/neural_networks.py
54
6622
from __future__ import division from collections import Counter from functools import partial from linear_algebra import dot import math, random import matplotlib import matplotlib.pyplot as plt def step_function(x): return 1 if x >= 0 else 0 def perceptron_output(weights, bias, x): """returns 1 if the perceptron 'fires', 0 if not""" return step_function(dot(weights, x) + bias) def sigmoid(t): return 1 / (1 + math.exp(-t)) def neuron_output(weights, inputs): return sigmoid(dot(weights, inputs)) def feed_forward(neural_network, input_vector): """takes in a neural network (represented as a list of lists of lists of weights) and returns the output from forward-propagating the input""" outputs = [] for layer in neural_network: input_with_bias = input_vector + [1] # add a bias input output = [neuron_output(neuron, input_with_bias) # compute the output for neuron in layer] # for this layer outputs.append(output) # and remember it # the input to the next layer is the output of this one input_vector = output return outputs def backpropagate(network, input_vector, target): hidden_outputs, outputs = feed_forward(network, input_vector) # the output * (1 - output) is from the derivative of sigmoid output_deltas = [output * (1 - output) * (output - target[i]) for i, output in enumerate(outputs)] # adjust weights for output layer (network[-1]) for i, output_neuron in enumerate(network[-1]): for j, hidden_output in enumerate(hidden_outputs + [1]): output_neuron[j] -= output_deltas[i] * hidden_output # back-propagate errors to hidden layer hidden_deltas = [hidden_output * (1 - hidden_output) * dot(output_deltas, [n[i] for n in network[-1]]) for i, hidden_output in enumerate(hidden_outputs)] # adjust weights for hidden layer (network[0]) for i, hidden_neuron in enumerate(network[0]): for j, input in enumerate(input_vector + [1]): hidden_neuron[j] -= hidden_deltas[i] * input def patch(x, y, hatch, color): """return a matplotlib 'patch' object with the specified location, crosshatch pattern, and color""" return matplotlib.patches.Rectangle((x - 0.5, y - 0.5), 1, 1, hatch=hatch, fill=False, color=color) def show_weights(neuron_idx): weights = network[0][neuron_idx] abs_weights = map(abs, weights) grid = [abs_weights[row:(row+5)] # turn the weights into a 5x5 grid for row in range(0,25,5)] # [weights[0:5], ..., weights[20:25]] ax = plt.gca() # to use hatching, we'll need the axis ax.imshow(grid, # here same as plt.imshow cmap=matplotlib.cm.binary, # use white-black color scale interpolation='none') # plot blocks as blocks # cross-hatch the negative weights for i in range(5): # row for j in range(5): # column if weights[5*i + j] < 0: # row i, column j = weights[5*i + j] # add black and white hatches, so visible whether dark or light ax.add_patch(patch(j, i, '/', "white")) ax.add_patch(patch(j, i, '\\', "black")) plt.show() if __name__ == "__main__": raw_digits = [ """11111 1...1 1...1 1...1 11111""", """..1.. ..1.. ..1.. ..1.. ..1..""", """11111 ....1 11111 1.... 11111""", """11111 ....1 11111 ....1 11111""", """1...1 1...1 11111 ....1 ....1""", """11111 1.... 11111 ....1 11111""", """11111 1.... 11111 1...1 11111""", """11111 ....1 ....1 ....1 ....1""", """11111 1...1 11111 1...1 11111""", """11111 1...1 11111 ....1 11111"""] def make_digit(raw_digit): return [1 if c == '1' else 0 for row in raw_digit.split("\n") for c in row.strip()] inputs = map(make_digit, raw_digits) targets = [[1 if i == j else 0 for i in range(10)] for j in range(10)] random.seed(0) # to get repeatable results input_size = 25 # each input is a vector of length 25 num_hidden = 5 # we'll have 5 neurons in the hidden layer output_size = 10 # we need 10 outputs for each input # each hidden neuron has one weight per input, plus a bias weight hidden_layer = [[random.random() for __ in range(input_size + 1)] for __ in range(num_hidden)] # each output neuron has one weight per hidden neuron, plus a bias weight output_layer = [[random.random() for __ in range(num_hidden + 1)] for __ in range(output_size)] # the network starts out with random weights network = [hidden_layer, output_layer] # 10,000 iterations seems enough to converge for __ in range(10000): for input_vector, target_vector in zip(inputs, targets): backpropagate(network, input_vector, target_vector) def predict(input): return feed_forward(network, input)[-1] for i, input in enumerate(inputs): outputs = predict(input) print i, [round(p,2) for p in outputs] print """.@@@. ...@@ ..@@. ...@@ .@@@.""" print [round(x, 2) for x in predict( [0,1,1,1,0, # .@@@. 0,0,0,1,1, # ...@@ 0,0,1,1,0, # ..@@. 0,0,0,1,1, # ...@@ 0,1,1,1,0]) # .@@@. ] print print """.@@@. @..@@ .@@@. @..@@ .@@@.""" print [round(x, 2) for x in predict( [0,1,1,1,0, # .@@@. 1,0,0,1,1, # @..@@ 0,1,1,1,0, # .@@@. 1,0,0,1,1, # @..@@ 0,1,1,1,0]) # .@@@. ] print
unlicense
devanshdalal/scikit-learn
examples/svm/plot_separating_hyperplane.py
294
1273
""" ========================================= SVM: Maximum margin separating hyperplane ========================================= Plot the maximum margin separating hyperplane within a two-class separable dataset using a Support Vector Machine classifier with linear kernel. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm # we create 40 separable points np.random.seed(0) X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]] Y = [0] * 20 + [1] * 20 # fit the model clf = svm.SVC(kernel='linear') clf.fit(X, Y) # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(-5, 5) yy = a * xx - (clf.intercept_[0]) / w[1] # plot the parallels to the separating hyperplane that pass through the # support vectors b = clf.support_vectors_[0] yy_down = a * xx + (b[1] - a * b[0]) b = clf.support_vectors_[-1] yy_up = a * xx + (b[1] - a * b[0]) # plot the line, the points, and the nearest vectors to the plane plt.plot(xx, yy, 'k-') plt.plot(xx, yy_down, 'k--') plt.plot(xx, yy_up, 'k--') plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='none') plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired) plt.axis('tight') plt.show()
bsd-3-clause
jcesardasilva/agpy
doc/conf.py
6
9638
# -*- coding: utf-8 -*- # # agpy documentation build configuration file, created by # sphinx-quickstart on Wed Dec 21 22:31:14 2011. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' from astropy.sphinx.conf import * del html_style # I don't want theirs because I don't have it # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.pngmath', 'sphinx.ext.viewcode', 'sphinx.ext.autosummary', 'sphinx.ext.inheritance_diagram', 'numpydoc', 'sphinx.ext.ifconfig', 'sphinx.ext.intersphinx'] # 'sphinx.ext.intersphinx', # 'sphinx.ext.doctest', numpydoc_show_class_members = False try: import matplotlib.sphinxext.plot_directive extensions += [matplotlib.sphinxext.plot_directive.__name__] except ImportError: warnings.warn( "matplotlib's plot_directive could not be imported. " + "Inline plots will not be included in the output") # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'agpy' copyright = u'2011, Adam Ginsburg' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # from agpy import __version__ as version # The short X.Y version. version = version # The full version, including alpha/beta/rc tags. release = version # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. default_role = 'obj' # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'agogo' html_style = 'extra.css' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} html_theme_options = dict( pagewidth = '1000px', documentwidth = '760px', sidebarwidth = '200px', headerbg="#666666", headercolor1="#000000", headercolor2="#000000", headerlinkcolor="#FF9522", linkcolor="#4a8f43", textalign='left', ) # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static','_static/extra.css','_static/scipy.css','_static/astropy.css'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'agpydoc' # -- Options for LaTeX output -------------------------------------------------- # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'agpy.tex', u'agpy Documentation', u'Adam Ginsburg', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Additional stuff for the LaTeX preamble. #latex_preamble = '' # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'agpy', u'agpy Documentation', [u'Adam Ginsburg'], 1) ] # -- Options for Epub output --------------------------------------------------- # Bibliographic Dublin Core info. epub_title = u'agpy' epub_author = u'Adam Ginsburg' epub_publisher = u'Adam Ginsburg' epub_copyright = u'2011, Adam Ginsburg' # The language of the text. It defaults to the language option # or en if the language is not set. #epub_language = '' # The scheme of the identifier. Typical schemes are ISBN or URL. #epub_scheme = '' # The unique identifier of the text. This can be a ISBN number # or the project homepage. #epub_identifier = '' # A unique identification for the text. #epub_uid = '' # HTML files that should be inserted before the pages created by sphinx. # The format is a list of tuples containing the path and title. #epub_pre_files = [] # HTML files shat should be inserted after the pages created by sphinx. # The format is a list of tuples containing the path and title. #epub_post_files = [] # A list of files that should not be packed into the epub file. #epub_exclude_files = [] # The depth of the table of contents in toc.ncx. #epub_tocdepth = 3 # Allow duplicate toc entries. #epub_tocdup = True # Example configuration for intersphinx: refer to the Python standard library. # imported from astropy #intersphinx_mapping = {'python':('http://docs.python.org/', None), # 'numpy':('http://docs.scipy.org/doc/','http://docs.scipy.org/doc/numpy/objects.inv'), # 'np':('http://docs.scipy.org/doc/','http://docs.scipy.org/doc/numpy/objects.inv'), # }
mit
mbakker7/ttim
ttim/circareasink.py
1
7000
import numpy as np import matplotlib.pyplot as plt from scipy.special import kv, iv import inspect # Used for storing the input from .element import Element class CircAreaSink(Element): """ Create a circular area-sink with uniform infiltration rate in aquifer layer 0. Infiltration rate in length / time, positive for water entering the aquifer. Parameters ---------- model : Model object model to which the element is added xc : float x-coordinate of center of area-sink yc : float y-coordinate of center of area-sink R : radius of area-sink tsandN : list of tuples tuples of starting time and infiltration rate after starting time label : string or None (default: None) label of the area-sink """ def __init__(self, model, xc=0, yc=0, R=0.1, tsandN=[(0, 1)], name='CircAreaSink', label=None): self.storeinput(inspect.currentframe()) Element.__init__(self, model, nparam=1, nunknowns=0, layers=0, tsandbc=tsandN, type='g', name=name, label=label) self.xc = float(xc); self.yc = float(yc); self.R = float(R) self.model.addelement(self) def __repr__(self): return self.name + ' at ' + str((self.xc, self.yc)) def initialize(self): self.aq = self.model.aq.find_aquifer_data(self.xc, self.yc) self.setbc() self.setflowcoef() # Since recharge is in layer 0, and RHS is -N self.an = self.aq.coef[0, :] * self.flowcoef self.an.shape = (self.aq.naq, self.model.nint, self.model.npint) self.termin = self.aq.lab2 * self.R * self.an self.termin2 = self.aq.lab2 ** 2 * self.an self.terminq = self.R * self.an self.termout = self.aq.lab2 * self.R * self.an self.i1R = iv(1, self.R / self.aq.lab2) self.k1R = kv(1, self.R / self.aq.lab2) self.termoutq= self.R * self.an self.dischargeinf = self.aq.coef[0, :] * self.flowcoef self.dischargeinflayers = np.sum(self.dischargeinf * self.aq.eigvec[self.layers, :, :], 1) def setflowcoef(self): '''Separate function so that this can be overloaded for other types''' self.flowcoef = 1.0 / self.model.p # Step function def potinf(self, x, y, aq=None): '''Can be called with only one x,y value''' if aq is None: aq = self.model.aq.find_aquifer_data(x, y) rv = np.zeros((self.nparam, aq.naq, self.model.nint, self.model.npint), 'D') if aq == self.aq: r = np.sqrt((x - self.xc) ** 2 + (y - self.yc) ** 2) pot = np.zeros(self.model.npint, 'D') if r < self.R: for i in range(self.aq.naq): for j in range(self.model.nint): #if r / abs(self.aq.lab2[i,j,0]) < self.rzero: rv[0, i, j] = -self.termin[i, j] * \ self.K1RI0r(r, i, j) + self.termin2[i, j] else: for i in range(self.aq.naq): for j in range(self.model.nint): if (r - self.R) / \ abs(self.aq.lab2[i, j, 0]) < self.rzero: rv[0, i, j, :] = self.termout[i, j, :] * \ self.I1RK0r(r, i, j) rv.shape = (self.nparam, aq.naq, self.model.npval) return rv def disvecinf(self,x,y,aq=None): '''Can be called with only one x,y value''' if aq is None: aq = self.model.aq.find_aquifer_data(x, y) qx = np.zeros((self.nparam, aq.naq, self.model.npval), 'D') qy = np.zeros((self.nparam, aq.naq, self.model.npval), 'D') if aq == self.aq: qr = np.zeros((self.nparam, aq.naq, self.model.nint, self.model.npint), 'D') r = np.sqrt((x - self.xc) ** 2 + (y - self.yc) ** 2) if r < self.R: for i in range(self.aq.naq): for j in range(self.model.nint): #if r / abs(self.aq.lab2[i,j,0]) < self.rzero: qr[0, i, j] = self.terminq[i, j] * self.K1RI1r(r, i, j) else: for i in range(self.aq.naq): for j in range(self.model.nint): if (r - self.R) / \ abs(self.aq.lab2[i, j, 0]) < self.rzero: qr[0, i, j] = self.termoutq[i, j, :] * \ self.I1RK1r(r, i, j) qr.shape = (self.nparam, aq.naq, self.model.npval) qx[:] = qr * (x - self.xc) / r qy[:] = qr * (y - self.yc) / r return qx, qy def plot(self): plt.plot(self.xc + self.R * np.cos(np.linspace(0, 2 * np.pi, 100)), \ self.yc + self.R * np.sin(np.linspace(0, 2 * np.pi, 100)), 'k') def K1RI0r(self, rin, iaq, ipint): r = rin / self.aq.lab2[iaq, ipint] R = self.R / self.aq.lab2[iaq, ipint] if np.isinf(self.i1R[iaq, ipint]).any(): rv = np.sqrt(1 / (4 * r * R)) * np.exp(r - R) * \ (1 + 3 / (8 * R) - 15 / (128 * R ** 2) + 315 / (3072 * R ** 3)) * \ (1 + 1 / (8 * r) + 9 / (128 * r ** 2) + 225 / (3072 * r ** 3)) else: rv = self.k1R[iaq, ipint] * iv(0, r) return rv def I1RK0r(self, rin, iaq, ipint): r = rin / self.aq.lab2[iaq, ipint] R = self.R / self.aq.lab2[iaq, ipint] if np.isinf(self.i1R[iaq, ipint]).any(): rv = np.sqrt(1 / (4 * r * R)) * np.exp(R - r) * \ (1 - 3 / (8 * R) - 15 / (128 * R ** 2) - 315 / (3072 * R ** 3)) * \ (1 - 1 / (8 * r) + 9 / (128 * r ** 2) - 225 / (3072 * r ** 3)) else: rv = self.i1R[iaq, ipint] * kv(0, r) return rv def K1RI1r(self, rin, iaq, ipint): r = rin / self.aq.lab2[iaq, ipint] R = self.R / self.aq.lab2[iaq, ipint] if np.isinf(self.i1R[iaq, ipint]).any(): rv = np.sqrt(1 / (4 * r * R)) * np.exp(r - R) * \ (1 + 3 / (8 * R) - 15 / (128 * R ** 2) + 315 / (3072 * R ** 3)) * \ (1 - 3 / (8 * r) - 15 / (128 * r ** 2) - 315 / (3072 * r ** 3)) else: rv = self.k1R[iaq, ipint] * iv(1, r) return rv def I1RK1r(self, rin, iaq, ipint): r = rin / self.aq.lab2[iaq, ipint] R = self.R / self.aq.lab2[iaq, ipint] if np.isinf(self.i1R[iaq, ipint]).any(): rv = np.sqrt(1 / (4 * r * R)) * np.exp(R - r) * \ (1 - 3 / (8 * R) - 15 / (128 * R ** 2) - 315 / (3072 * R ** 3)) * \ (1 + 3 / (8 * r) - 15 / (128 * r ** 2) + 315 / (3072 * r ** 3)) else: rv = self.i1R[iaq, ipint] * kv(1, r) return rv
mit
marcocaccin/scikit-learn
sklearn/cluster/mean_shift_.py
6
15512
"""Mean shift clustering algorithm. Mean shift clustering aims to discover *blobs* in a smooth density of samples. It is a centroid based algorithm, which works by updating candidates for centroids to be the mean of the points within a given region. These candidates are then filtered in a post-processing stage to eliminate near-duplicates to form the final set of centroids. Seeding is performed using a binning technique for scalability. """ # Authors: Conrad Lee <conradlee@gmail.com> # Alexandre Gramfort <alexandre.gramfort@inria.fr> # Gael Varoquaux <gael.varoquaux@normalesup.org> # Martino Sorbaro <martino.sorbaro@ed.ac.uk> import numpy as np import warnings from collections import defaultdict from ..externals import six from ..utils.validation import check_is_fitted from ..utils import extmath, check_random_state, gen_batches, check_array from ..base import BaseEstimator, ClusterMixin from ..neighbors import NearestNeighbors from ..metrics.pairwise import pairwise_distances_argmin from ..externals.joblib import Parallel from ..externals.joblib import delayed def estimate_bandwidth(X, quantile=0.3, n_samples=None, random_state=0): """Estimate the bandwidth to use with the mean-shift algorithm. That this function takes time at least quadratic in n_samples. For large datasets, it's wise to set that parameter to a small value. Parameters ---------- X : array-like, shape=[n_samples, n_features] Input points. quantile : float, default 0.3 should be between [0, 1] 0.5 means that the median of all pairwise distances is used. n_samples : int, optional The number of samples to use. If not given, all samples are used. random_state : int or RandomState Pseudo-random number generator state used for random sampling. Returns ------- bandwidth : float The bandwidth parameter. """ random_state = check_random_state(random_state) if n_samples is not None: idx = random_state.permutation(X.shape[0])[:n_samples] X = X[idx] nbrs = NearestNeighbors(n_neighbors=int(X.shape[0] * quantile)) nbrs.fit(X) bandwidth = 0. for batch in gen_batches(len(X), 500): d, _ = nbrs.kneighbors(X[batch, :], return_distance=True) bandwidth += np.max(d, axis=1).sum() return bandwidth / X.shape[0] # separate function for each seed's iterative loop def _mean_shift_single_seed(my_mean, X, nbrs, max_iter): # For each seed, climb gradient until convergence or max_iter bandwidth = nbrs.get_params()['radius'] stop_thresh = 1e-3 * bandwidth # when mean has converged completed_iterations = 0 while True: # Find mean of points within bandwidth i_nbrs = nbrs.radius_neighbors([my_mean], bandwidth, return_distance=False)[0] points_within = X[i_nbrs] if len(points_within) == 0: break # Depending on seeding strategy this condition may occur my_old_mean = my_mean # save the old mean my_mean = np.mean(points_within, axis=0) # If converged or at max_iter, adds the cluster if (extmath.norm(my_mean - my_old_mean) < stop_thresh or completed_iterations == max_iter): return tuple(my_mean), len(points_within) completed_iterations += 1 def mean_shift(X, bandwidth=None, seeds=None, bin_seeding=False, min_bin_freq=1, cluster_all=True, max_iter=300, max_iterations=None, n_jobs=1): """Perform mean shift clustering of data using a flat kernel. Read more in the :ref:`User Guide <mean_shift>`. Parameters ---------- X : array-like, shape=[n_samples, n_features] Input data. bandwidth : float, optional Kernel bandwidth. If bandwidth is not given, it is determined using a heuristic based on the median of all pairwise distances. This will take quadratic time in the number of samples. The sklearn.cluster.estimate_bandwidth function can be used to do this more efficiently. seeds : array-like, shape=[n_seeds, n_features] or None Point used as initial kernel locations. If None and bin_seeding=False, each data point is used as a seed. If None and bin_seeding=True, see bin_seeding. bin_seeding : boolean, default=False If true, initial kernel locations are not locations of all points, but rather the location of the discretized version of points, where points are binned onto a grid whose coarseness corresponds to the bandwidth. Setting this option to True will speed up the algorithm because fewer seeds will be initialized. Ignored if seeds argument is not None. min_bin_freq : int, default=1 To speed up the algorithm, accept only those bins with at least min_bin_freq points as seeds. cluster_all : boolean, default True If true, then all points are clustered, even those orphans that are not within any kernel. Orphans are assigned to the nearest kernel. If false, then orphans are given cluster label -1. max_iter : int, default 300 Maximum number of iterations, per seed point before the clustering operation terminates (for that seed point), if has not converged yet. n_jobs : int The number of jobs to use for the computation. This works by computing each of the n_init runs in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. .. versionadded:: 0.17 Parallel Execution using *n_jobs*. Returns ------- cluster_centers : array, shape=[n_clusters, n_features] Coordinates of cluster centers. labels : array, shape=[n_samples] Cluster labels for each point. Notes ----- See examples/cluster/plot_meanshift.py for an example. """ # FIXME To be removed in 0.18 if max_iterations is not None: warnings.warn("The `max_iterations` parameter has been renamed to " "`max_iter` from version 0.16. The `max_iterations` " "parameter will be removed in 0.18", DeprecationWarning) max_iter = max_iterations if bandwidth is None: bandwidth = estimate_bandwidth(X) elif bandwidth <= 0: raise ValueError("bandwidth needs to be greater than zero or None,\ got %f" % bandwidth) if seeds is None: if bin_seeding: seeds = get_bin_seeds(X, bandwidth, min_bin_freq) else: seeds = X n_samples, n_features = X.shape center_intensity_dict = {} nbrs = NearestNeighbors(radius=bandwidth).fit(X) # execute iterations on all seeds in parallel all_res = Parallel(n_jobs=n_jobs)( delayed(_mean_shift_single_seed) (seed, X, nbrs, max_iter) for seed in seeds) # copy results in a dictionary for i in range(len(seeds)): if all_res[i] is not None: center_intensity_dict[all_res[i][0]] = all_res[i][1] if not center_intensity_dict: # nothing near seeds raise ValueError("No point was within bandwidth=%f of any seed." " Try a different seeding strategy \ or increase the bandwidth." % bandwidth) # POST PROCESSING: remove near duplicate points # If the distance between two kernels is less than the bandwidth, # then we have to remove one because it is a duplicate. Remove the # one with fewer points. sorted_by_intensity = sorted(center_intensity_dict.items(), key=lambda tup: tup[1], reverse=True) sorted_centers = np.array([tup[0] for tup in sorted_by_intensity]) unique = np.ones(len(sorted_centers), dtype=np.bool) nbrs = NearestNeighbors(radius=bandwidth).fit(sorted_centers) for i, center in enumerate(sorted_centers): if unique[i]: neighbor_idxs = nbrs.radius_neighbors([center], return_distance=False)[0] unique[neighbor_idxs] = 0 unique[i] = 1 # leave the current point as unique cluster_centers = sorted_centers[unique] # ASSIGN LABELS: a point belongs to the cluster that it is closest to nbrs = NearestNeighbors(n_neighbors=1).fit(cluster_centers) labels = np.zeros(n_samples, dtype=np.int) distances, idxs = nbrs.kneighbors(X) if cluster_all: labels = idxs.flatten() else: labels.fill(-1) bool_selector = distances.flatten() <= bandwidth labels[bool_selector] = idxs.flatten()[bool_selector] return cluster_centers, labels def get_bin_seeds(X, bin_size, min_bin_freq=1): """Finds seeds for mean_shift. Finds seeds by first binning data onto a grid whose lines are spaced bin_size apart, and then choosing those bins with at least min_bin_freq points. Parameters ---------- X : array-like, shape=[n_samples, n_features] Input points, the same points that will be used in mean_shift. bin_size : float Controls the coarseness of the binning. Smaller values lead to more seeding (which is computationally more expensive). If you're not sure how to set this, set it to the value of the bandwidth used in clustering.mean_shift. min_bin_freq : integer, optional Only bins with at least min_bin_freq will be selected as seeds. Raising this value decreases the number of seeds found, which makes mean_shift computationally cheaper. Returns ------- bin_seeds : array-like, shape=[n_samples, n_features] Points used as initial kernel positions in clustering.mean_shift. """ # Bin points bin_sizes = defaultdict(int) for point in X: binned_point = np.round(point / bin_size) bin_sizes[tuple(binned_point)] += 1 # Select only those bins as seeds which have enough members bin_seeds = np.array([point for point, freq in six.iteritems(bin_sizes) if freq >= min_bin_freq], dtype=np.float32) if len(bin_seeds) == len(X): warnings.warn("Binning data failed with provided bin_size=%f," " using data points as seeds." % bin_size) return X bin_seeds = bin_seeds * bin_size return bin_seeds class MeanShift(BaseEstimator, ClusterMixin): """Mean shift clustering using a flat kernel. Mean shift clustering aims to discover "blobs" in a smooth density of samples. It is a centroid-based algorithm, which works by updating candidates for centroids to be the mean of the points within a given region. These candidates are then filtered in a post-processing stage to eliminate near-duplicates to form the final set of centroids. Seeding is performed using a binning technique for scalability. Read more in the :ref:`User Guide <mean_shift>`. Parameters ---------- bandwidth : float, optional Bandwidth used in the RBF kernel. If not given, the bandwidth is estimated using sklearn.cluster.estimate_bandwidth; see the documentation for that function for hints on scalability (see also the Notes, below). seeds : array, shape=[n_samples, n_features], optional Seeds used to initialize kernels. If not set, the seeds are calculated by clustering.get_bin_seeds with bandwidth as the grid size and default values for other parameters. bin_seeding : boolean, optional If true, initial kernel locations are not locations of all points, but rather the location of the discretized version of points, where points are binned onto a grid whose coarseness corresponds to the bandwidth. Setting this option to True will speed up the algorithm because fewer seeds will be initialized. default value: False Ignored if seeds argument is not None. min_bin_freq : int, optional To speed up the algorithm, accept only those bins with at least min_bin_freq points as seeds. If not defined, set to 1. cluster_all : boolean, default True If true, then all points are clustered, even those orphans that are not within any kernel. Orphans are assigned to the nearest kernel. If false, then orphans are given cluster label -1. n_jobs : int The number of jobs to use for the computation. This works by computing each of the n_init runs in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. Attributes ---------- cluster_centers_ : array, [n_clusters, n_features] Coordinates of cluster centers. labels_ : Labels of each point. Notes ----- Scalability: Because this implementation uses a flat kernel and a Ball Tree to look up members of each kernel, the complexity will is to O(T*n*log(n)) in lower dimensions, with n the number of samples and T the number of points. In higher dimensions the complexity will tend towards O(T*n^2). Scalability can be boosted by using fewer seeds, for example by using a higher value of min_bin_freq in the get_bin_seeds function. Note that the estimate_bandwidth function is much less scalable than the mean shift algorithm and will be the bottleneck if it is used. References ---------- Dorin Comaniciu and Peter Meer, "Mean Shift: A robust approach toward feature space analysis". IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002. pp. 603-619. """ def __init__(self, bandwidth=None, seeds=None, bin_seeding=False, min_bin_freq=1, cluster_all=True, n_jobs=1): self.bandwidth = bandwidth self.seeds = seeds self.bin_seeding = bin_seeding self.cluster_all = cluster_all self.min_bin_freq = min_bin_freq self.n_jobs = n_jobs def fit(self, X, y=None): """Perform clustering. Parameters ----------- X : array-like, shape=[n_samples, n_features] Samples to cluster. """ X = check_array(X) self.cluster_centers_, self.labels_ = \ mean_shift(X, bandwidth=self.bandwidth, seeds=self.seeds, min_bin_freq=self.min_bin_freq, bin_seeding=self.bin_seeding, cluster_all=self.cluster_all, n_jobs=self.n_jobs) return self def predict(self, X): """Predict the closest cluster each sample in X belongs to. Parameters ---------- X : {array-like, sparse matrix}, shape=[n_samples, n_features] New data to predict. Returns ------- labels : array, shape [n_samples,] Index of the cluster each sample belongs to. """ check_is_fitted(self, "cluster_centers_") return pairwise_distances_argmin(X, self.cluster_centers_)
bsd-3-clause
UDST/pandana
tests/test_pandash5.py
1
4514
import os import tempfile import pandas as pd import pytest import pandas.util.testing as pdt from pandana import Network from pandana.testing import skipifci from pandana.loaders import pandash5 as ph5 @pytest.fixture(scope='module') def nodes(): return pd.DataFrame( {'x': [1, 2, 3, 4] * 3, 'y': [1] * 4 + [2] * 4 + [3] * 4}) @pytest.fixture(scope='module') def edges(): return pd.DataFrame( {'from': [0, 4, 5, 6, 2, 2, 6, 10, 9, 7], 'to': [4, 5, 6, 2, 1, 3, 10, 9, 8, 11]}) @pytest.fixture(scope='module') def impedance_names(): return ['distance', 'time'] @pytest.fixture(scope='module') def edge_weights(edges, impedance_names): return pd.DataFrame( {impedance_names[0]: [1] * len(edges), impedance_names[1]: list(range(1, len(edges) + 1))}) @pytest.fixture(scope='module') def two_way(): return True @pytest.fixture(scope='module') def network(nodes, edges, edge_weights, two_way): return Network( nodes['x'], nodes['y'], edges['from'], edges['to'], edge_weights, two_way) @pytest.fixture(scope='module') def edges_df(edges, edge_weights): return edges.join(edge_weights) @pytest.fixture(scope='module') def rm_nodes(): return [0, 7, 6] @pytest.fixture def tmpfile(request): fname = tempfile.NamedTemporaryFile().name def cleanup(): if os.path.exists(fname): os.remove(fname) request.addfinalizer(cleanup) return fname @skipifci def test_remove_nodes(network, rm_nodes): # node 0 is connected to node 4, which is in turn connected to node 5 # node 7 is connected to node 11, which has no other connections # node 6 is connected to nodes 2, 5, and 10, # which all have other connections nodes, edges = ph5.remove_nodes(network, rm_nodes) exp_nodes = pd.DataFrame( {'x': [2, 3, 4, 1, 2, 1, 2, 3, 4], 'y': [1, 1, 1, 2, 2, 3, 3, 3, 3]}, index=[1, 2, 3, 4, 5, 8, 9, 10, 11]) exp_edges = pd.DataFrame( {'from': [4, 2, 2, 10, 9], 'to': [5, 1, 3, 9, 8], 'distance': [1, 1, 1, 1, 1], 'time': [2, 5, 6, 8, 9]}, index=[1, 4, 5, 7, 8]) exp_edges = exp_edges[['from', 'to', 'distance', 'time']] # order columns pdt.assert_frame_equal(nodes, exp_nodes) pdt.assert_frame_equal(edges, exp_edges) @skipifci def test_network_to_pandas_hdf5( tmpfile, network, nodes, edges_df, impedance_names, two_way): ph5.network_to_pandas_hdf5(network, tmpfile) store = pd.HDFStore(tmpfile) pdt.assert_frame_equal(store['nodes'], nodes) pdt.assert_frame_equal(store['edges'], edges_df) pdt.assert_series_equal(store['two_way'], pd.Series([two_way])) pdt.assert_series_equal( store['impedance_names'], pd.Series(impedance_names)) @skipifci def test_network_to_pandas_hdf5_removal( tmpfile, network, impedance_names, two_way, rm_nodes): nodes, edges = ph5.remove_nodes(network, rm_nodes) ph5.network_to_pandas_hdf5(network, tmpfile, rm_nodes) store = pd.HDFStore(tmpfile) pdt.assert_frame_equal(store['nodes'], nodes) pdt.assert_frame_equal(store['edges'], edges) pdt.assert_series_equal(store['two_way'], pd.Series([two_way])) pdt.assert_series_equal( store['impedance_names'], pd.Series(impedance_names)) @skipifci def test_network_from_pandas_hdf5( tmpfile, network, nodes, edges_df, impedance_names, two_way): ph5.network_to_pandas_hdf5(network, tmpfile) new_net = ph5.network_from_pandas_hdf5(Network, tmpfile) pdt.assert_frame_equal(new_net.nodes_df, nodes) pdt.assert_frame_equal(new_net.edges_df, edges_df) assert new_net._twoway == two_way assert new_net.impedance_names == impedance_names @skipifci def test_network_save_load_hdf5( tmpfile, network, impedance_names, two_way, rm_nodes): network.save_hdf5(tmpfile, rm_nodes) new_net = Network.from_hdf5(tmpfile) nodes, edges = ph5.remove_nodes(network, rm_nodes) pdt.assert_frame_equal(new_net.nodes_df, nodes) pdt.assert_frame_equal(new_net.edges_df, edges) assert new_net._twoway == two_way assert new_net.impedance_names == impedance_names # this is an odd place for this test because it's not related to HDF5, # but my test Network is perfect. @skipifci def test_network_low_connectivity_nodes(network, impedance_names): nodes = network.low_connectivity_nodes(10, 3, imp_name=impedance_names[0]) assert list(nodes) == [7, 11]
agpl-3.0
jjx02230808/project0223
sklearn/manifold/tests/test_mds.py
324
1862
import numpy as np from numpy.testing import assert_array_almost_equal from nose.tools import assert_raises from sklearn.manifold import mds def test_smacof(): # test metric smacof using the data of "Modern Multidimensional Scaling", # Borg & Groenen, p 154 sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) Z = np.array([[-.266, -.539], [.451, .252], [.016, -.238], [-.200, .524]]) X, _ = mds.smacof(sim, init=Z, n_components=2, max_iter=1, n_init=1) X_true = np.array([[-1.415, -2.471], [1.633, 1.107], [.249, -.067], [-.468, 1.431]]) assert_array_almost_equal(X, X_true, decimal=3) def test_smacof_error(): # Not symmetric similarity matrix: sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) assert_raises(ValueError, mds.smacof, sim) # Not squared similarity matrix: sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [4, 2, 1, 0]]) assert_raises(ValueError, mds.smacof, sim) # init not None and not correct format: sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) Z = np.array([[-.266, -.539], [.016, -.238], [-.200, .524]]) assert_raises(ValueError, mds.smacof, sim, init=Z, n_init=1) def test_MDS(): sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) mds_clf = mds.MDS(metric=False, n_jobs=3, dissimilarity="precomputed") mds_clf.fit(sim)
bsd-3-clause
btabibian/scikit-learn
examples/semi_supervised/plot_label_propagation_versus_svm_iris.py
38
2381
""" ===================================================================== Decision boundary of label propagation versus SVM on the Iris dataset ===================================================================== Comparison for decision boundary generated on iris dataset between Label Propagation and SVM. This demonstrates Label Propagation learning a good boundary even with a small amount of labeled data. """ print(__doc__) # Authors: Clay Woolam <clay@woolam.org> # License: BSD import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn import svm from sklearn.semi_supervised import label_propagation rng = np.random.RandomState(0) iris = datasets.load_iris() X = iris.data[:, :2] y = iris.target # step size in the mesh h = .02 y_30 = np.copy(y) y_30[rng.rand(len(y)) < 0.3] = -1 y_50 = np.copy(y) y_50[rng.rand(len(y)) < 0.5] = -1 # we create an instance of SVM and fit out data. We do not scale our # data since we want to plot the support vectors ls30 = (label_propagation.LabelSpreading().fit(X, y_30), y_30) ls50 = (label_propagation.LabelSpreading().fit(X, y_50), y_50) ls100 = (label_propagation.LabelSpreading().fit(X, y), y) rbf_svc = (svm.SVC(kernel='rbf').fit(X, y), y) # create a mesh to plot in x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # title for the plots titles = ['Label Spreading 30% data', 'Label Spreading 50% data', 'Label Spreading 100% data', 'SVC with rbf kernel'] color_map = {-1: (1, 1, 1), 0: (0, 0, .9), 1: (1, 0, 0), 2: (.8, .6, 0)} for i, (clf, y_train) in enumerate((ls30, ls50, ls100, rbf_svc)): # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, x_max]x[y_min, y_max]. plt.subplot(2, 2, i + 1) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, cmap=plt.cm.Paired) plt.axis('off') # Plot also the training points colors = [color_map[y] for y in y_train] plt.scatter(X[:, 0], X[:, 1], c=colors, edgecolors='black') plt.title(titles[i]) plt.suptitle("Unlabeled points are colored white", y=0.1) plt.show()
bsd-3-clause
google-research/google-research
talk_about_random_splits/probing/create_test_set_from_gutenberg_word_content_main.py
1
6287
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 r"""Creates test sets for the SentEval word_content task from Gutenberg data. In the word_content task, all sentences contain exactly 1 out of a set of mid-frequency words. This script creates new test sets conforming to the same setup. Please note that the number of target words in the new test set might be smaller than the original 1000, because we might not have enough sentences for all of the target words. This is not a problem, because it resembles exactly possible test time scenarios. The script assumes that the Gutenberg data was preprocessed with fl_preprocess_gutenberg_main. Train and dev sets are kept as is, meaning they are the original SentEval train/dev data. This way the existing architecture can be trained as usual but tested on new Gutenberg data. This script doesn't do any case normalization, neither on the target words nor on sentence duplicate detection. This script generates the following directory structure under the `base_out_dir`. This follows the original SentEval directory structure and thus allows running the original scripts with no change. base_out_dir/ probing/TASK_NAME.txt # Data for this task. probing/TASK_NAME.txt-settings.json # Some information on the generated data. TASK_NAME.txt contains all examples with their respective set labels attached. This file follows the original SentEval data format. Example call: python -m \ talk_about_random_splits.probing.\ create_test_set_from_gutenberg_word_content_main \ --senteval_path="/tmp/senteval/task_data/probing" \ --base_out_dir="YOUR_PATH_HERE" \ --gutenberg_path="YOUR_PREPROCESSED_DATA_PATH_HERE" --alsologtostderr \ """ import csv import json import os import random from absl import app from absl import flags from absl import logging import pandas as pd from talk_about_random_splits.probing import probing_utils FLAGS = flags.FLAGS flags.DEFINE_string( 'gutenberg_path', None, 'Path to the preprocessed Gutenberg data. Data must be preprocessed with ' 'fl_preprocess_gutenberg_main.') flags.DEFINE_string('senteval_path', None, 'Path to the original SentEval data in tsv format.') flags.DEFINE_string( 'base_out_dir', None, 'Base working dir in which to create subdirs for this script\'s results.') flags.DEFINE_string( 'split_name', 'gutenberg', 'Determines the base name of result sub-directories in `base_out_dir`.') flags.DEFINE_integer('num_trials', 5, 'Number of trials to generate data for.') flags.DEFINE_integer('test_set_size', 10000, 'Number of requested examples in test sets.') _TASK_NAME = 'word_content.txt' def main(argv): if len(argv) > 1: raise app.UsageError('Too many command-line arguments.') word_content_data = probing_utils.read_senteval_data(FLAGS.senteval_path, _TASK_NAME) target_words = set(word_content_data['target']) senteval_sentences = set(word_content_data['text']) target_word_to_sentences = probing_utils.get_target_word_to_sentence_mapping( target_words, senteval_sentences, probing_utils.get_strings_from_sharded_recordio(FLAGS.gutenberg_path)) class_count = len(target_words) items_per_class = FLAGS.test_set_size // class_count target_word_counts = {k: len(v) for k, v in target_word_to_sentences.items()} valid_target_words = { k for k, v in target_word_counts.items() if v >= items_per_class } logging.info('Number of target words for which we have enough data: %d.', len(valid_target_words)) assert valid_target_words train_set = word_content_data.loc[word_content_data['set'] == 'tr', :] dev_set = word_content_data.loc[word_content_data['set'] == 'va', :] experiment_base_dir = os.path.join(FLAGS.base_out_dir, f'{FLAGS.split_name}-{{}}') for trial_id in range(FLAGS.num_trials): split_dir = experiment_base_dir.format(trial_id) probing_dir = os.path.join(split_dir, 'probing') settings_path = os.path.join(probing_dir, f'{_TASK_NAME}-settings.json') data_out_path = os.path.join(probing_dir, _TASK_NAME) logging.info('Starting run: %d.', trial_id) data_sample = [] for valid_target_word in valid_target_words: sentences = target_word_to_sentences[valid_target_word] current_sample = random.sample(sentences, items_per_class) data_sample.extend( ('te', valid_target_word, sample) for sample in current_sample) test_set = pd.DataFrame(data_sample, columns=train_set.columns) new_data = pd.concat([train_set, dev_set, test_set], ignore_index=True) logging.info('Writing output to file: %s.', data_out_path) os.make_dirs(probing_dir) with open(settings_path, 'w') as settings_file: settings = { 'task_name': _TASK_NAME, 'trial_id': trial_id, 'train_size': len(train_set), 'dev_size': len(dev_set), 'test_size': len(test_set), 'valid_target_words_size': len(valid_target_words), 'valid_target_words': sorted(valid_target_words), } logging.info('Settings:\n%r', settings) json.dump(settings, settings_file, indent=2) with open(data_out_path, 'w') as data_file: # Don't add quoting to retain the original format unaltered. new_data[['set', 'target', 'text']].to_csv( data_file, sep='\t', header=False, index=False, quoting=csv.QUOTE_NONE, doublequote=False) if __name__ == '__main__': flags.mark_flags_as_required( ['gutenberg_path', 'senteval_path', 'base_out_dir']) app.run(main)
apache-2.0
saiwing-yeung/scikit-learn
sklearn/linear_model/tests/test_passive_aggressive.py
169
8809
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_array_almost_equal, assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.base import ClassifierMixin from sklearn.utils import check_random_state from sklearn.datasets import load_iris from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.linear_model import PassiveAggressiveRegressor iris = load_iris() random_state = check_random_state(12) indices = np.arange(iris.data.shape[0]) random_state.shuffle(indices) X = iris.data[indices] y = iris.target[indices] X_csr = sp.csr_matrix(X) class MyPassiveAggressive(ClassifierMixin): def __init__(self, C=1.0, epsilon=0.01, loss="hinge", fit_intercept=True, n_iter=1, random_state=None): self.C = C self.epsilon = epsilon self.loss = loss self.fit_intercept = fit_intercept self.n_iter = n_iter def fit(self, X, y): n_samples, n_features = X.shape self.w = np.zeros(n_features, dtype=np.float64) self.b = 0.0 for t in range(self.n_iter): for i in range(n_samples): p = self.project(X[i]) if self.loss in ("hinge", "squared_hinge"): loss = max(1 - y[i] * p, 0) else: loss = max(np.abs(p - y[i]) - self.epsilon, 0) sqnorm = np.dot(X[i], X[i]) if self.loss in ("hinge", "epsilon_insensitive"): step = min(self.C, loss / sqnorm) elif self.loss in ("squared_hinge", "squared_epsilon_insensitive"): step = loss / (sqnorm + 1.0 / (2 * self.C)) if self.loss in ("hinge", "squared_hinge"): step *= y[i] else: step *= np.sign(y[i] - p) self.w += step * X[i] if self.fit_intercept: self.b += step def project(self, X): return np.dot(X, self.w) + self.b def test_classifier_accuracy(): for data in (X, X_csr): for fit_intercept in (True, False): clf = PassiveAggressiveClassifier(C=1.0, n_iter=30, fit_intercept=fit_intercept, random_state=0) clf.fit(data, y) score = clf.score(data, y) assert_greater(score, 0.79) def test_classifier_partial_fit(): classes = np.unique(y) for data in (X, X_csr): clf = PassiveAggressiveClassifier(C=1.0, fit_intercept=True, random_state=0) for t in range(30): clf.partial_fit(data, y, classes) score = clf.score(data, y) assert_greater(score, 0.79) def test_classifier_refit(): # Classifier can be retrained on different labels and features. clf = PassiveAggressiveClassifier().fit(X, y) assert_array_equal(clf.classes_, np.unique(y)) clf.fit(X[:, :-1], iris.target_names[y]) assert_array_equal(clf.classes_, iris.target_names) def test_classifier_correctness(): y_bin = y.copy() y_bin[y != 1] = -1 for loss in ("hinge", "squared_hinge"): clf1 = MyPassiveAggressive(C=1.0, loss=loss, fit_intercept=True, n_iter=2) clf1.fit(X, y_bin) for data in (X, X_csr): clf2 = PassiveAggressiveClassifier(C=1.0, loss=loss, fit_intercept=True, n_iter=2, shuffle=False) clf2.fit(data, y_bin) assert_array_almost_equal(clf1.w, clf2.coef_.ravel(), decimal=2) def test_classifier_undefined_methods(): clf = PassiveAggressiveClassifier() for meth in ("predict_proba", "predict_log_proba", "transform"): assert_raises(AttributeError, lambda x: getattr(clf, x), meth) def test_class_weights(): # Test class weights. X2 = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y2 = [1, 1, 1, -1, -1] clf = PassiveAggressiveClassifier(C=0.1, n_iter=100, class_weight=None, random_state=100) clf.fit(X2, y2) assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1])) # we give a small weights to class 1 clf = PassiveAggressiveClassifier(C=0.1, n_iter=100, class_weight={1: 0.001}, random_state=100) clf.fit(X2, y2) # now the hyperplane should rotate clock-wise and # the prediction on this point should shift assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1])) def test_partial_fit_weight_class_balanced(): # partial_fit with class_weight='balanced' not supported clf = PassiveAggressiveClassifier(class_weight="balanced") assert_raises(ValueError, clf.partial_fit, X, y, classes=np.unique(y)) def test_equal_class_weight(): X2 = [[1, 0], [1, 0], [0, 1], [0, 1]] y2 = [0, 0, 1, 1] clf = PassiveAggressiveClassifier(C=0.1, n_iter=1000, class_weight=None) clf.fit(X2, y2) # Already balanced, so "balanced" weights should have no effect clf_balanced = PassiveAggressiveClassifier(C=0.1, n_iter=1000, class_weight="balanced") clf_balanced.fit(X2, y2) clf_weighted = PassiveAggressiveClassifier(C=0.1, n_iter=1000, class_weight={0: 0.5, 1: 0.5}) clf_weighted.fit(X2, y2) # should be similar up to some epsilon due to learning rate schedule assert_almost_equal(clf.coef_, clf_weighted.coef_, decimal=2) assert_almost_equal(clf.coef_, clf_balanced.coef_, decimal=2) def test_wrong_class_weight_label(): # ValueError due to wrong class_weight label. X2 = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y2 = [1, 1, 1, -1, -1] clf = PassiveAggressiveClassifier(class_weight={0: 0.5}) assert_raises(ValueError, clf.fit, X2, y2) def test_wrong_class_weight_format(): # ValueError due to wrong class_weight argument type. X2 = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y2 = [1, 1, 1, -1, -1] clf = PassiveAggressiveClassifier(class_weight=[0.5]) assert_raises(ValueError, clf.fit, X2, y2) clf = PassiveAggressiveClassifier(class_weight="the larch") assert_raises(ValueError, clf.fit, X2, y2) def test_regressor_mse(): y_bin = y.copy() y_bin[y != 1] = -1 for data in (X, X_csr): for fit_intercept in (True, False): reg = PassiveAggressiveRegressor(C=1.0, n_iter=50, fit_intercept=fit_intercept, random_state=0) reg.fit(data, y_bin) pred = reg.predict(data) assert_less(np.mean((pred - y_bin) ** 2), 1.7) def test_regressor_partial_fit(): y_bin = y.copy() y_bin[y != 1] = -1 for data in (X, X_csr): reg = PassiveAggressiveRegressor(C=1.0, fit_intercept=True, random_state=0) for t in range(50): reg.partial_fit(data, y_bin) pred = reg.predict(data) assert_less(np.mean((pred - y_bin) ** 2), 1.7) def test_regressor_correctness(): y_bin = y.copy() y_bin[y != 1] = -1 for loss in ("epsilon_insensitive", "squared_epsilon_insensitive"): reg1 = MyPassiveAggressive(C=1.0, loss=loss, fit_intercept=True, n_iter=2) reg1.fit(X, y_bin) for data in (X, X_csr): reg2 = PassiveAggressiveRegressor(C=1.0, loss=loss, fit_intercept=True, n_iter=2, shuffle=False) reg2.fit(data, y_bin) assert_array_almost_equal(reg1.w, reg2.coef_.ravel(), decimal=2) def test_regressor_undefined_methods(): reg = PassiveAggressiveRegressor() for meth in ("transform",): assert_raises(AttributeError, lambda x: getattr(reg, x), meth)
bsd-3-clause
ssaeger/scikit-learn
sklearn/linear_model/tests/test_least_angle.py
42
20925
from nose.tools import assert_equal import numpy as np from scipy import linalg from sklearn.model_selection import train_test_split from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_no_warnings, assert_warns from sklearn.utils.testing import TempMemmap from sklearn.exceptions import ConvergenceWarning from sklearn import linear_model, datasets from sklearn.linear_model.least_angle import _lars_path_residues diabetes = datasets.load_diabetes() X, y = diabetes.data, diabetes.target # TODO: use another dataset that has multiple drops def test_simple(): # Principle of Lars is to keep covariances tied and decreasing # also test verbose output from sklearn.externals.six.moves import cStringIO as StringIO import sys old_stdout = sys.stdout try: sys.stdout = StringIO() alphas_, active, coef_path_ = linear_model.lars_path( diabetes.data, diabetes.target, method="lar", verbose=10) sys.stdout = old_stdout for (i, coef_) in enumerate(coef_path_.T): res = y - np.dot(X, coef_) cov = np.dot(X.T, res) C = np.max(abs(cov)) eps = 1e-3 ocur = len(cov[C - eps < abs(cov)]) if i < X.shape[1]: assert_true(ocur == i + 1) else: # no more than max_pred variables can go into the active set assert_true(ocur == X.shape[1]) finally: sys.stdout = old_stdout def test_simple_precomputed(): # The same, with precomputed Gram matrix G = np.dot(diabetes.data.T, diabetes.data) alphas_, active, coef_path_ = linear_model.lars_path( diabetes.data, diabetes.target, Gram=G, method="lar") for i, coef_ in enumerate(coef_path_.T): res = y - np.dot(X, coef_) cov = np.dot(X.T, res) C = np.max(abs(cov)) eps = 1e-3 ocur = len(cov[C - eps < abs(cov)]) if i < X.shape[1]: assert_true(ocur == i + 1) else: # no more than max_pred variables can go into the active set assert_true(ocur == X.shape[1]) def test_all_precomputed(): # Test that lars_path with precomputed Gram and Xy gives the right answer X, y = diabetes.data, diabetes.target G = np.dot(X.T, X) Xy = np.dot(X.T, y) for method in 'lar', 'lasso': output = linear_model.lars_path(X, y, method=method) output_pre = linear_model.lars_path(X, y, Gram=G, Xy=Xy, method=method) for expected, got in zip(output, output_pre): assert_array_almost_equal(expected, got) def test_lars_lstsq(): # Test that Lars gives least square solution at the end # of the path X1 = 3 * diabetes.data # use un-normalized dataset clf = linear_model.LassoLars(alpha=0.) clf.fit(X1, y) coef_lstsq = np.linalg.lstsq(X1, y)[0] assert_array_almost_equal(clf.coef_, coef_lstsq) def test_lasso_gives_lstsq_solution(): # Test that Lars Lasso gives least square solution at the end # of the path alphas_, active, coef_path_ = linear_model.lars_path(X, y, method="lasso") coef_lstsq = np.linalg.lstsq(X, y)[0] assert_array_almost_equal(coef_lstsq, coef_path_[:, -1]) def test_collinearity(): # Check that lars_path is robust to collinearity in input X = np.array([[3., 3., 1.], [2., 2., 0.], [1., 1., 0]]) y = np.array([1., 0., 0]) f = ignore_warnings _, _, coef_path_ = f(linear_model.lars_path)(X, y, alpha_min=0.01) assert_true(not np.isnan(coef_path_).any()) residual = np.dot(X, coef_path_[:, -1]) - y assert_less((residual ** 2).sum(), 1.) # just make sure it's bounded n_samples = 10 X = np.random.rand(n_samples, 5) y = np.zeros(n_samples) _, _, coef_path_ = linear_model.lars_path(X, y, Gram='auto', copy_X=False, copy_Gram=False, alpha_min=0., method='lasso', verbose=0, max_iter=500) assert_array_almost_equal(coef_path_, np.zeros_like(coef_path_)) def test_no_path(): # Test that the ``return_path=False`` option returns the correct output alphas_, active_, coef_path_ = linear_model.lars_path( diabetes.data, diabetes.target, method="lar") alpha_, active, coef = linear_model.lars_path( diabetes.data, diabetes.target, method="lar", return_path=False) assert_array_almost_equal(coef, coef_path_[:, -1]) assert_true(alpha_ == alphas_[-1]) def test_no_path_precomputed(): # Test that the ``return_path=False`` option with Gram remains correct G = np.dot(diabetes.data.T, diabetes.data) alphas_, active_, coef_path_ = linear_model.lars_path( diabetes.data, diabetes.target, method="lar", Gram=G) alpha_, active, coef = linear_model.lars_path( diabetes.data, diabetes.target, method="lar", Gram=G, return_path=False) assert_array_almost_equal(coef, coef_path_[:, -1]) assert_true(alpha_ == alphas_[-1]) def test_no_path_all_precomputed(): # Test that the ``return_path=False`` option with Gram and Xy remains # correct X, y = 3 * diabetes.data, diabetes.target G = np.dot(X.T, X) Xy = np.dot(X.T, y) alphas_, active_, coef_path_ = linear_model.lars_path( X, y, method="lasso", Gram=G, Xy=Xy, alpha_min=0.9) print("---") alpha_, active, coef = linear_model.lars_path( X, y, method="lasso", Gram=G, Xy=Xy, alpha_min=0.9, return_path=False) assert_array_almost_equal(coef, coef_path_[:, -1]) assert_true(alpha_ == alphas_[-1]) def test_singular_matrix(): # Test when input is a singular matrix X1 = np.array([[1, 1.], [1., 1.]]) y1 = np.array([1, 1]) alphas, active, coef_path = linear_model.lars_path(X1, y1) assert_array_almost_equal(coef_path.T, [[0, 0], [1, 0]]) def test_rank_deficient_design(): # consistency test that checks that LARS Lasso is handling rank # deficient input data (with n_features < rank) in the same way # as coordinate descent Lasso y = [5, 0, 5] for X in ([[5, 0], [0, 5], [10, 10]], [[10, 10, 0], [1e-32, 0, 0], [0, 0, 1]], ): # To be able to use the coefs to compute the objective function, # we need to turn off normalization lars = linear_model.LassoLars(.1, normalize=False) coef_lars_ = lars.fit(X, y).coef_ obj_lars = (1. / (2. * 3.) * linalg.norm(y - np.dot(X, coef_lars_)) ** 2 + .1 * linalg.norm(coef_lars_, 1)) coord_descent = linear_model.Lasso(.1, tol=1e-6, normalize=False) coef_cd_ = coord_descent.fit(X, y).coef_ obj_cd = ((1. / (2. * 3.)) * linalg.norm(y - np.dot(X, coef_cd_)) ** 2 + .1 * linalg.norm(coef_cd_, 1)) assert_less(obj_lars, obj_cd * (1. + 1e-8)) def test_lasso_lars_vs_lasso_cd(verbose=False): # Test that LassoLars and Lasso using coordinate descent give the # same results. X = 3 * diabetes.data alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso') lasso_cd = linear_model.Lasso(fit_intercept=False, tol=1e-8) for c, a in zip(lasso_path.T, alphas): if a == 0: continue lasso_cd.alpha = a lasso_cd.fit(X, y) error = linalg.norm(c - lasso_cd.coef_) assert_less(error, 0.01) # similar test, with the classifiers for alpha in np.linspace(1e-2, 1 - 1e-2, 20): clf1 = linear_model.LassoLars(alpha=alpha, normalize=False).fit(X, y) clf2 = linear_model.Lasso(alpha=alpha, tol=1e-8, normalize=False).fit(X, y) err = linalg.norm(clf1.coef_ - clf2.coef_) assert_less(err, 1e-3) # same test, with normalized data X = diabetes.data alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso') lasso_cd = linear_model.Lasso(fit_intercept=False, normalize=True, tol=1e-8) for c, a in zip(lasso_path.T, alphas): if a == 0: continue lasso_cd.alpha = a lasso_cd.fit(X, y) error = linalg.norm(c - lasso_cd.coef_) assert_less(error, 0.01) def test_lasso_lars_vs_lasso_cd_early_stopping(verbose=False): # Test that LassoLars and Lasso using coordinate descent give the # same results when early stopping is used. # (test : before, in the middle, and in the last part of the path) alphas_min = [10, 0.9, 1e-4] for alphas_min in alphas_min: alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso', alpha_min=0.9) lasso_cd = linear_model.Lasso(fit_intercept=False, tol=1e-8) lasso_cd.alpha = alphas[-1] lasso_cd.fit(X, y) error = linalg.norm(lasso_path[:, -1] - lasso_cd.coef_) assert_less(error, 0.01) alphas_min = [10, 0.9, 1e-4] # same test, with normalization for alphas_min in alphas_min: alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso', alpha_min=0.9) lasso_cd = linear_model.Lasso(fit_intercept=True, normalize=True, tol=1e-8) lasso_cd.alpha = alphas[-1] lasso_cd.fit(X, y) error = linalg.norm(lasso_path[:, -1] - lasso_cd.coef_) assert_less(error, 0.01) def test_lasso_lars_path_length(): # Test that the path length of the LassoLars is right lasso = linear_model.LassoLars() lasso.fit(X, y) lasso2 = linear_model.LassoLars(alpha=lasso.alphas_[2]) lasso2.fit(X, y) assert_array_almost_equal(lasso.alphas_[:3], lasso2.alphas_) # Also check that the sequence of alphas is always decreasing assert_true(np.all(np.diff(lasso.alphas_) < 0)) def test_lasso_lars_vs_lasso_cd_ill_conditioned(): # Test lasso lars on a very ill-conditioned design, and check that # it does not blow up, and stays somewhat close to a solution given # by the coordinate descent solver # Also test that lasso_path (using lars_path output style) gives # the same result as lars_path and previous lasso output style # under these conditions. rng = np.random.RandomState(42) # Generate data n, m = 70, 100 k = 5 X = rng.randn(n, m) w = np.zeros((m, 1)) i = np.arange(0, m) rng.shuffle(i) supp = i[:k] w[supp] = np.sign(rng.randn(k, 1)) * (rng.rand(k, 1) + 1) y = np.dot(X, w) sigma = 0.2 y += sigma * rng.rand(*y.shape) y = y.squeeze() lars_alphas, _, lars_coef = linear_model.lars_path(X, y, method='lasso') _, lasso_coef2, _ = linear_model.lasso_path(X, y, alphas=lars_alphas, tol=1e-6, fit_intercept=False) assert_array_almost_equal(lars_coef, lasso_coef2, decimal=1) def test_lasso_lars_vs_lasso_cd_ill_conditioned2(): # Create an ill-conditioned situation in which the LARS has to go # far in the path to converge, and check that LARS and coordinate # descent give the same answers # Note it used to be the case that Lars had to use the drop for good # strategy for this but this is no longer the case with the # equality_tolerance checks X = [[1e20, 1e20, 0], [-1e-32, 0, 0], [1, 1, 1]] y = [10, 10, 1] alpha = .0001 def objective_function(coef): return (1. / (2. * len(X)) * linalg.norm(y - np.dot(X, coef)) ** 2 + alpha * linalg.norm(coef, 1)) lars = linear_model.LassoLars(alpha=alpha, normalize=False) assert_warns(ConvergenceWarning, lars.fit, X, y) lars_coef_ = lars.coef_ lars_obj = objective_function(lars_coef_) coord_descent = linear_model.Lasso(alpha=alpha, tol=1e-4, normalize=False) cd_coef_ = coord_descent.fit(X, y).coef_ cd_obj = objective_function(cd_coef_) assert_less(lars_obj, cd_obj * (1. + 1e-8)) def test_lars_add_features(): # assure that at least some features get added if necessary # test for 6d2b4c # Hilbert matrix n = 5 H = 1. / (np.arange(1, n + 1) + np.arange(n)[:, np.newaxis]) clf = linear_model.Lars(fit_intercept=False).fit( H, np.arange(n)) assert_true(np.all(np.isfinite(clf.coef_))) def test_lars_n_nonzero_coefs(verbose=False): lars = linear_model.Lars(n_nonzero_coefs=6, verbose=verbose) lars.fit(X, y) assert_equal(len(lars.coef_.nonzero()[0]), 6) # The path should be of length 6 + 1 in a Lars going down to 6 # non-zero coefs assert_equal(len(lars.alphas_), 7) @ignore_warnings def test_multitarget(): # Assure that estimators receiving multidimensional y do the right thing X = diabetes.data Y = np.vstack([diabetes.target, diabetes.target ** 2]).T n_targets = Y.shape[1] for estimator in (linear_model.LassoLars(), linear_model.Lars()): estimator.fit(X, Y) Y_pred = estimator.predict(X) Y_dec = assert_warns(DeprecationWarning, estimator.decision_function, X) assert_array_almost_equal(Y_pred, Y_dec) alphas, active, coef, path = (estimator.alphas_, estimator.active_, estimator.coef_, estimator.coef_path_) for k in range(n_targets): estimator.fit(X, Y[:, k]) y_pred = estimator.predict(X) assert_array_almost_equal(alphas[k], estimator.alphas_) assert_array_almost_equal(active[k], estimator.active_) assert_array_almost_equal(coef[k], estimator.coef_) assert_array_almost_equal(path[k], estimator.coef_path_) assert_array_almost_equal(Y_pred[:, k], y_pred) def test_lars_cv(): # Test the LassoLarsCV object by checking that the optimal alpha # increases as the number of samples increases. # This property is not actually guaranteed in general and is just a # property of the given dataset, with the given steps chosen. old_alpha = 0 lars_cv = linear_model.LassoLarsCV() for length in (400, 200, 100): X = diabetes.data[:length] y = diabetes.target[:length] lars_cv.fit(X, y) np.testing.assert_array_less(old_alpha, lars_cv.alpha_) old_alpha = lars_cv.alpha_ def test_lasso_lars_ic(): # Test the LassoLarsIC object by checking that # - some good features are selected. # - alpha_bic > alpha_aic # - n_nonzero_bic < n_nonzero_aic lars_bic = linear_model.LassoLarsIC('bic') lars_aic = linear_model.LassoLarsIC('aic') rng = np.random.RandomState(42) X = diabetes.data y = diabetes.target X = np.c_[X, rng.randn(X.shape[0], 4)] # add 4 bad features lars_bic.fit(X, y) lars_aic.fit(X, y) nonzero_bic = np.where(lars_bic.coef_)[0] nonzero_aic = np.where(lars_aic.coef_)[0] assert_greater(lars_bic.alpha_, lars_aic.alpha_) assert_less(len(nonzero_bic), len(nonzero_aic)) assert_less(np.max(nonzero_bic), diabetes.data.shape[1]) # test error on unknown IC lars_broken = linear_model.LassoLarsIC('<unknown>') assert_raises(ValueError, lars_broken.fit, X, y) def test_no_warning_for_zero_mse(): # LassoLarsIC should not warn for log of zero MSE. y = np.arange(10, dtype=float) X = y.reshape(-1, 1) lars = linear_model.LassoLarsIC(normalize=False) assert_no_warnings(lars.fit, X, y) assert_true(np.any(np.isinf(lars.criterion_))) def test_lars_path_readonly_data(): # When using automated memory mapping on large input, the # fold data is in read-only mode # This is a non-regression test for: # https://github.com/scikit-learn/scikit-learn/issues/4597 splitted_data = train_test_split(X, y, random_state=42) with TempMemmap(splitted_data) as (X_train, X_test, y_train, y_test): # The following should not fail despite copy=False _lars_path_residues(X_train, y_train, X_test, y_test, copy=False) def test_lars_path_positive_constraint(): # this is the main test for the positive parameter on the lars_path method # the estimator classes just make use of this function # we do the test on the diabetes dataset # ensure that we get negative coefficients when positive=False # and all positive when positive=True # for method 'lar' (default) and lasso for method in ['lar', 'lasso']: alpha, active, coefs = \ linear_model.lars_path(diabetes['data'], diabetes['target'], return_path=True, method=method, positive=False) assert_true(coefs.min() < 0) alpha, active, coefs = \ linear_model.lars_path(diabetes['data'], diabetes['target'], return_path=True, method=method, positive=True) assert_true(coefs.min() >= 0) # now we gonna test the positive option for all estimator classes default_parameter = {'fit_intercept': False} estimator_parameter_map = {'Lars': {'n_nonzero_coefs': 5}, 'LassoLars': {'alpha': 0.1}, 'LarsCV': {}, 'LassoLarsCV': {}, 'LassoLarsIC': {}} def test_estimatorclasses_positive_constraint(): # testing the transmissibility for the positive option of all estimator # classes in this same function here for estname in estimator_parameter_map: params = default_parameter.copy() params.update(estimator_parameter_map[estname]) estimator = getattr(linear_model, estname)(positive=False, **params) estimator.fit(diabetes['data'], diabetes['target']) assert_true(estimator.coef_.min() < 0) estimator = getattr(linear_model, estname)(positive=True, **params) estimator.fit(diabetes['data'], diabetes['target']) assert_true(min(estimator.coef_) >= 0) def test_lasso_lars_vs_lasso_cd_positive(verbose=False): # Test that LassoLars and Lasso using coordinate descent give the # same results when using the positive option # This test is basically a copy of the above with additional positive # option. However for the middle part, the comparison of coefficient values # for a range of alphas, we had to make an adaptations. See below. # not normalized data X = 3 * diabetes.data alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso', positive=True) lasso_cd = linear_model.Lasso(fit_intercept=False, tol=1e-8, positive=True) for c, a in zip(lasso_path.T, alphas): if a == 0: continue lasso_cd.alpha = a lasso_cd.fit(X, y) error = linalg.norm(c - lasso_cd.coef_) assert_less(error, 0.01) # The range of alphas chosen for coefficient comparison here is restricted # as compared with the above test without the positive option. This is due # to the circumstance that the Lars-Lasso algorithm does not converge to # the least-squares-solution for small alphas, see 'Least Angle Regression' # by Efron et al 2004. The coefficients are typically in congruence up to # the smallest alpha reached by the Lars-Lasso algorithm and start to # diverge thereafter. See # https://gist.github.com/michigraber/7e7d7c75eca694c7a6ff for alpha in np.linspace(6e-1, 1 - 1e-2, 20): clf1 = linear_model.LassoLars(fit_intercept=False, alpha=alpha, normalize=False, positive=True).fit(X, y) clf2 = linear_model.Lasso(fit_intercept=False, alpha=alpha, tol=1e-8, normalize=False, positive=True).fit(X, y) err = linalg.norm(clf1.coef_ - clf2.coef_) assert_less(err, 1e-3) # normalized data X = diabetes.data alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso', positive=True) lasso_cd = linear_model.Lasso(fit_intercept=False, normalize=True, tol=1e-8, positive=True) for c, a in zip(lasso_path.T[:-1], alphas[:-1]): # don't include alpha=0 lasso_cd.alpha = a lasso_cd.fit(X, y) error = linalg.norm(c - lasso_cd.coef_) assert_less(error, 0.01)
bsd-3-clause
allantu/trading-with-python
sandbox/spreadCalculations.py
78
1496
''' Created on 28 okt 2011 @author: jev ''' from tradingWithPython import estimateBeta, Spread, returns, Portfolio, readBiggerScreener from tradingWithPython.lib import yahooFinance from pandas import DataFrame, Series import numpy as np import matplotlib.pyplot as plt import os symbols = ['SPY','IWM'] y = yahooFinance.HistData('temp.csv') y.startDate = (2007,1,1) df = y.loadSymbols(symbols,forceDownload=False) #df = y.downloadData(symbols) res = readBiggerScreener('CointPairs.csv') #---check with spread scanner #sp = DataFrame(index=symbols) # #sp['last'] = df.ix[-1,:] #sp['targetCapital'] = Series({'SPY':100,'IWM':-100}) #sp['targetShares'] = sp['targetCapital']/sp['last'] #print sp #The dollar-neutral ratio is about 1 * IWM - 1.7 * IWM. You will get the spread = zero (or probably very near zero) #s = Spread(symbols, histClose = df) #print s #s.value.plot() #print 'beta (returns)', estimateBeta(df[symbols[0]],df[symbols[1]],algo='returns') #print 'beta (log)', estimateBeta(df[symbols[0]],df[symbols[1]],algo='log') #print 'beta (standard)', estimateBeta(df[symbols[0]],df[symbols[1]],algo='standard') #p = Portfolio(df) #p.setShares([1, -1.7]) #p.value.plot() quote = yahooFinance.getQuote(symbols) print quote s = Spread(symbols,histClose=df, estimateBeta = False) s.setLast(quote['last']) s.setShares(Series({'SPY':1,'IWM':-1.7})) print s #s.value.plot() #s.plot() fig = figure(2) s.plot()
bsd-3-clause
Akshay0724/scikit-learn
examples/plot_kernel_ridge_regression.py
26
6289
""" ============================================= Comparison of kernel ridge regression and SVR ============================================= Both kernel ridge regression (KRR) and SVR learn a non-linear function by employing the kernel trick, i.e., they learn a linear function in the space induced by the respective kernel which corresponds to a non-linear function in the original space. They differ in the loss functions (ridge versus epsilon-insensitive loss). In contrast to SVR, fitting a KRR can be done in closed-form and is typically faster for medium-sized datasets. On the other hand, the learned model is non-sparse and thus slower than SVR at prediction-time. This example illustrates both methods on an artificial dataset, which consists of a sinusoidal target function and strong noise added to every fifth datapoint. The first figure compares the learned model of KRR and SVR when both complexity/regularization and bandwidth of the RBF kernel are optimized using grid-search. The learned functions are very similar; however, fitting KRR is approx. seven times faster than fitting SVR (both with grid-search). However, prediction of 100000 target values is more than tree times faster with SVR since it has learned a sparse model using only approx. 1/3 of the 100 training datapoints as support vectors. The next figure compares the time for fitting and prediction of KRR and SVR for different sizes of the training set. Fitting KRR is faster than SVR for medium- sized training sets (less than 1000 samples); however, for larger training sets SVR scales better. With regard to prediction time, SVR is faster than KRR for all sizes of the training set because of the learned sparse solution. Note that the degree of sparsity and thus the prediction time depends on the parameters epsilon and C of the SVR. """ # Authors: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de> # License: BSD 3 clause from __future__ import division import time import numpy as np from sklearn.svm import SVR from sklearn.model_selection import GridSearchCV from sklearn.model_selection import learning_curve from sklearn.kernel_ridge import KernelRidge import matplotlib.pyplot as plt rng = np.random.RandomState(0) ############################################################################# # Generate sample data X = 5 * rng.rand(10000, 1) y = np.sin(X).ravel() # Add noise to targets y[::5] += 3 * (0.5 - rng.rand(X.shape[0] // 5)) X_plot = np.linspace(0, 5, 100000)[:, None] ############################################################################# # Fit regression model train_size = 100 svr = GridSearchCV(SVR(kernel='rbf', gamma=0.1), cv=5, param_grid={"C": [1e0, 1e1, 1e2, 1e3], "gamma": np.logspace(-2, 2, 5)}) kr = GridSearchCV(KernelRidge(kernel='rbf', gamma=0.1), cv=5, param_grid={"alpha": [1e0, 0.1, 1e-2, 1e-3], "gamma": np.logspace(-2, 2, 5)}) t0 = time.time() svr.fit(X[:train_size], y[:train_size]) svr_fit = time.time() - t0 print("SVR complexity and bandwidth selected and model fitted in %.3f s" % svr_fit) t0 = time.time() kr.fit(X[:train_size], y[:train_size]) kr_fit = time.time() - t0 print("KRR complexity and bandwidth selected and model fitted in %.3f s" % kr_fit) sv_ratio = svr.best_estimator_.support_.shape[0] / train_size print("Support vector ratio: %.3f" % sv_ratio) t0 = time.time() y_svr = svr.predict(X_plot) svr_predict = time.time() - t0 print("SVR prediction for %d inputs in %.3f s" % (X_plot.shape[0], svr_predict)) t0 = time.time() y_kr = kr.predict(X_plot) kr_predict = time.time() - t0 print("KRR prediction for %d inputs in %.3f s" % (X_plot.shape[0], kr_predict)) ############################################################################# # look at the results sv_ind = svr.best_estimator_.support_ plt.scatter(X[sv_ind], y[sv_ind], c='r', s=50, label='SVR support vectors', zorder=2) plt.scatter(X[:100], y[:100], c='k', label='data', zorder=1) plt.hold('on') plt.plot(X_plot, y_svr, c='r', label='SVR (fit: %.3fs, predict: %.3fs)' % (svr_fit, svr_predict)) plt.plot(X_plot, y_kr, c='g', label='KRR (fit: %.3fs, predict: %.3fs)' % (kr_fit, kr_predict)) plt.xlabel('data') plt.ylabel('target') plt.title('SVR versus Kernel Ridge') plt.legend() # Visualize training and prediction time plt.figure() # Generate sample data X = 5 * rng.rand(10000, 1) y = np.sin(X).ravel() y[::5] += 3 * (0.5 - rng.rand(X.shape[0] // 5)) sizes = np.logspace(1, 4, 7, dtype=np.int) for name, estimator in {"KRR": KernelRidge(kernel='rbf', alpha=0.1, gamma=10), "SVR": SVR(kernel='rbf', C=1e1, gamma=10)}.items(): train_time = [] test_time = [] for train_test_size in sizes: t0 = time.time() estimator.fit(X[:train_test_size], y[:train_test_size]) train_time.append(time.time() - t0) t0 = time.time() estimator.predict(X_plot[:1000]) test_time.append(time.time() - t0) plt.plot(sizes, train_time, 'o-', color="r" if name == "SVR" else "g", label="%s (train)" % name) plt.plot(sizes, test_time, 'o--', color="r" if name == "SVR" else "g", label="%s (test)" % name) plt.xscale("log") plt.yscale("log") plt.xlabel("Train size") plt.ylabel("Time (seconds)") plt.title('Execution Time') plt.legend(loc="best") # Visualize learning curves plt.figure() svr = SVR(kernel='rbf', C=1e1, gamma=0.1) kr = KernelRidge(kernel='rbf', alpha=0.1, gamma=0.1) train_sizes, train_scores_svr, test_scores_svr = \ learning_curve(svr, X[:100], y[:100], train_sizes=np.linspace(0.1, 1, 10), scoring="neg_mean_squared_error", cv=10) train_sizes_abs, train_scores_kr, test_scores_kr = \ learning_curve(kr, X[:100], y[:100], train_sizes=np.linspace(0.1, 1, 10), scoring="neg_mean_squared_error", cv=10) plt.plot(train_sizes, -test_scores_svr.mean(1), 'o-', color="r", label="SVR") plt.plot(train_sizes, -test_scores_kr.mean(1), 'o-', color="g", label="KRR") plt.xlabel("Train size") plt.ylabel("Mean Squared Error") plt.title('Learning curves') plt.legend(loc="best") plt.show()
bsd-3-clause
jim-pansn/graph-tool
doc/conf.py
3
8055
# -*- coding: utf-8 -*- # # graph-tool documentation build configuration file, created by # sphinx-quickstart on Sun Oct 26 18:29:16 2008. # # This file is execfile()d with the current directory set to its containing dir. # # The contents of this file are pickled, so don't put values in the namespace # that aren't pickleable (module imports are okay, they're removed # automatically). # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os # If your extensions are in another directory, add it here. If the directory # is relative to the documentation root, use os.path.abspath to make it # absolute, like shown here. sys.path.append(os.path.abspath('.')) # General configuration # --------------------- # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', 'mathjax', 'sphinx.ext.autosummary', 'numpydoc', 'sphinx.ext.extlinks', 'sphinx.ext.viewcode' #'sphinx.ext.linkcode' #'matplotlib.sphinxext.plot_directive' ] mathjax_path = "MathJax/MathJax.js?config=default" # Add any paths that contain templates here, relative to this directory. templates_path = ['.templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. source_encoding = 'utf-8' # The master toctree document. master_doc = 'index' # General information about the project. project = u'graph-tool' copyright = u'2015, Tiago de Paula Peixoto <tiago@skewed.de>' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. from graph_tool import __version__ as gt_version version = gt_version.split()[0] # The full version, including alpha/beta/rc tags. release = gt_version.split()[0] # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. #unused_docs = [] # List of directories, relative to source directory, that shouldn't be searched # for source files. exclude_trees = ['.build'] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # doctest doctest_global_setup = open("pyenv.py").read() # Options for HTML outputs # ----------------------- # The style sheet to use for HTML and HTML Help pages. A file of that name # must exist either in Sphinx' static/ path, or in one of the custom paths # given in html_static_path. # html_style = 'default.css' html_theme = "gt_theme" html_theme_path = ["."] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. html_favicon = "graph-icon.ico" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['.static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_use_modindex = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, the reST sources are included in the HTML build as _sources/<name>. html_copy_source = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. html_use_opensearch = 'http://graph-tool.skewed.de/doc/' # If nonempty, this is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = '' # Output file base name for HTML help builder. htmlhelp_basename = 'graph-tooldoc' # Options for LaTeX output # ------------------------ # Grouping the document tree into LaTeX files. List of tuples (source start # file, target name, title, author, document class [howto/manual]). latex_documents = [ ('index', 'graph-tool.tex', ur'graph-tool documentation', ur'Tiago de Paula Peixoto', 'manual'), ] latex_preamble = """ \setcounter{tocdepth}{2} """ latex_show_pagerefs = True latex_show_urls = False latex_paper_size = "a4" latex_logo = "blockmodel.pdf" latex_elements = { 'papersize': "a4paper", 'fontpkg': r"\usepackage{bookman}"} # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'python': ('http://docs.python.org/3', None), 'numpy': ('http://docs.scipy.org/doc/numpy', None), 'scipy': ('http://docs.scipy.org/doc/scipy/reference', None), 'matplotlib': ('http://matplotlib.sourceforge.net', None), 'cairo': ('http://www.cairographics.org/documentation/pycairo/3/', None), 'ipython': ('http://ipython.org/ipython-doc/stable/', None), 'panda': ('http://pandas.pydata.org/pandas-docs/stable/', None)} extlinks = {'ticket': ('http://graph-tool.skewed.de/tickets/ticket/%s', 'ticket '), 'doi': ('http://dx.doi.org/%s', 'DOI: '), 'arxiv': ('http://arxiv.org/abs/%s', 'arXiv: ')} # def process_docstring(app, what, name, obj, options, lines): # for i, line in enumerate(lines): # if "arg1" in line and "->" in line: # lines[i] = "" # if "C++ signature :" in line or "graph_tool::Python" in line: # lines[i] = "" # def setup(app): # app.connect('autodoc-process-docstring', process_docstring) # plot directive import pyenv plot_rcparams = pyenv.rcParams #plot_pre_code = open("pyenv.py").read() autodoc_default_flags = ['members', 'undoc-members'] numpydoc_show_class_members = False autodoc_docstring_signature = False autodoc_member_order = 'bysource' autoclass_content = 'both' imported_members = True def linkcode_resolve(domain, info): if domain != 'py': return None if not info['module']: return None modname = info['module'].replace('.', '/') return "https://git.skewed.de/count0/graph-tool/tree/master/src/%s/__init__.py" % modname
gpl-3.0
jrmontag/Data-Science-45min-Intros
adaboost-101/sample_code.py
20
5548
''' Created on Nov 28, 2010 Adaboost is short for Adaptive Boosting @author: Peter ''' from numpy import * def loadSimpData(): datMat = matrix([[ 1. , 2.1], [ 2. , 1.1], [ 1.3, 1. ], [ 1. , 1. ], [ 2. , 1. ]]) classLabels = [1.0, 1.0, -1.0, -1.0, 1.0] return datMat,classLabels def loadDataSet(fileName): #general function to parse tab -delimited floats numFeat = len(open(fileName).readline().split('\t')) #get number of fields dataMat = []; labelMat = [] fr = open(fileName) for line in fr.readlines(): lineArr =[] curLine = line.strip().split('\t') for i in range(numFeat-1): lineArr.append(float(curLine[i])) dataMat.append(lineArr) labelMat.append(float(curLine[-1])) return dataMat,labelMat def stumpClassify(dataMatrix,dimen,threshVal,threshIneq):#just classify the data retArray = ones((shape(dataMatrix)[0],1)) if threshIneq == 'lt': retArray[dataMatrix[:,dimen] <= threshVal] = -1.0 else: retArray[dataMatrix[:,dimen] > threshVal] = -1.0 return retArray def buildStump(dataArr,classLabels,D): dataMatrix = mat(dataArr); labelMat = mat(classLabels).T m,n = shape(dataMatrix) numSteps = 10.0; bestStump = {}; bestClasEst = mat(zeros((m,1))) minError = inf #init error sum, to +infinity for i in range(n):#loop over all dimensions rangeMin = dataMatrix[:,i].min(); rangeMax = dataMatrix[:,i].max(); stepSize = (rangeMax-rangeMin)/numSteps for j in range(-1,int(numSteps)+1):#loop over all range in current dimension for inequal in ['lt', 'gt']: #go over less than and greater than threshVal = (rangeMin + float(j) * stepSize) predictedVals = stumpClassify(dataMatrix,i,threshVal,inequal)#call stump classify with i, j, lessThan errArr = mat(ones((m,1))) errArr[predictedVals == labelMat] = 0 weightedError = D.T*errArr #calc total error multiplied by D #print "split: dim %d, thresh %.2f, thresh ineqal: %s, the weighted error is %.3f" % (i, threshVal, inequal, weightedError) if weightedError < minError: minError = weightedError bestClasEst = predictedVals.copy() bestStump['dim'] = i bestStump['thresh'] = threshVal bestStump['ineq'] = inequal return bestStump,minError,bestClasEst def adaBoostTrainDS(dataArr,classLabels,numIt=40): weakClassArr = [] m = shape(dataArr)[0] D = mat(ones((m,1))/m) #init D to all equal aggClassEst = mat(zeros((m,1))) for i in range(numIt): bestStump,error,classEst = buildStump(dataArr,classLabels,D)#build Stump #print "D:",D.T alpha = float(0.5*log((1.0-error)/max(error,1e-16)))#calc alpha, throw in max(error,eps) to account for error=0 bestStump['alpha'] = alpha weakClassArr.append(bestStump) #store Stump Params in Array #print "classEst: ",classEst.T expon = multiply(-1*alpha*mat(classLabels).T,classEst) #exponent for D calc, getting messy D = multiply(D,exp(expon)) #Calc New D for next iteration D = D/D.sum() #calc training error of all classifiers, if this is 0 quit for loop early (use break) aggClassEst += alpha*classEst #print "aggClassEst: ",aggClassEst.T aggErrors = multiply(sign(aggClassEst) != mat(classLabels).T,ones((m,1))) errorRate = aggErrors.sum()/m print "total error: ",errorRate if errorRate == 0.0: break return weakClassArr,aggClassEst def adaClassify(datToClass,classifierArr): dataMatrix = mat(datToClass)#do stuff similar to last aggClassEst in adaBoostTrainDS m = shape(dataMatrix)[0] aggClassEst = mat(zeros((m,1))) for i in range(len(classifierArr)): classEst = stumpClassify(dataMatrix,classifierArr[i]['dim'],\ classifierArr[i]['thresh'],\ classifierArr[i]['ineq'])#call stump classify aggClassEst += classifierArr[i]['alpha']*classEst print aggClassEst return sign(aggClassEst) def plotROC(predStrengths, classLabels): import matplotlib.pyplot as plt cur = (1.0,1.0) #cursor ySum = 0.0 #variable to calculate AUC numPosClas = sum(array(classLabels)==1.0) yStep = 1/float(numPosClas); xStep = 1/float(len(classLabels)-numPosClas) sortedIndicies = predStrengths.argsort()#get sorted index, it's reverse fig = plt.figure() fig.clf() ax = plt.subplot(111) #loop through all the values, drawing a line segment at each point for index in sortedIndicies.tolist()[0]: if classLabels[index] == 1.0: delX = 0; delY = yStep; else: delX = xStep; delY = 0; ySum += cur[1] #draw line from cur to (cur[0]-delX,cur[1]-delY) ax.plot([cur[0],cur[0]-delX],[cur[1],cur[1]-delY], c='b') cur = (cur[0]-delX,cur[1]-delY) ax.plot([0,1],[0,1],'b--') plt.xlabel('False positive rate'); plt.ylabel('True positive rate') plt.title('ROC curve for AdaBoost horse colic detection system') ax.axis([0,1,0,1]) plt.show() print "the Area Under the Curve is: ",ySum*xStep
unlicense
tflovorn/scExplorer
plots/grapher.py
1
5305
import sys import json import math import matplotlib.pyplot as plt from matplotlib.ticker import FormatStrFormatter from matplotlib.font_manager import FontProperties from numpy import arange, meshgrid _GRAPH_DEFAULTS = {"xlabel":"$x$", "ylabel":"$y$", "num_ticks":5, "axis_label_fontsize":"x-large", "tick_formatstr":"%.2f", "legend_fontsize":"large", "legend_loc":0, "legend_title":None, "ymin":None, "xmax":None, "graph_filepath":None, "plot_type": "scatter", "delta":"0.05", "th":None,"thp":None,"t0":None,"D1":None,"Mu_h":None,"epsilon_min":None} _SERIES_DEFAULTS = {"label":None, "style":"k."} def parse_file(file_path): '''Return the plot representation of the JSON file specified.''' # -- todo : check for IOError -- return import_json(open(file_path, 'r').read()) def import_json(json_string): '''Return the plot representation of the given JSON string.''' graph_data = json.loads(json_string) if isinstance(graph_data, list): graph_data = [add_default_data(graph) for graph in graph_data] else: graph_data = add_default_data(graph_data) return graph_data def add_default_data(graph_data): # graph-wide defaults for key, value in _GRAPH_DEFAULTS.items(): if key not in graph_data: graph_data[key] = value # hack to give a fresh series list each time if "series" not in graph_data: graph_data["series"] = [] # series-specific defaults for series in graph_data["series"]: for key, value in _SERIES_DEFAULTS.items(): if key not in series: series[key] = value return graph_data def make_graph(graph_data): '''Take a dictionary representing a graph or a list of such dictionaries. Build the graph(s), save them to file(s) (if requested), and return the matplotlib figures. ''' # Process a list of graphs one element at a time. if isinstance(graph_data, list): return [make_graph(some_graph) for some_graph in graph_data] # If we need to make a Fermi surface plot, go to the function for that. if graph_data["plot_type"] == "Fermi_surface": return plot_Fermi_surface(graph_data) # If we get here, this is not a Fermi surface plot - make scatter plot instead. try: dims = graph_data["dimensions"] fig = plt.figure(figsize=(dims[0], dims[1])) except: fig = plt.figure() axes = fig.add_subplot(1, 1, 1) bounds = [None, None] # plot the data for series in graph_data["series"]: fig,axes,bounds = _graph_series(graph_data,series,fig,axes,bounds) # set properties fontprop_legend = FontProperties(size=graph_data["legend_fontsize"]) axes.legend(loc=graph_data["legend_loc"], title=graph_data["legend_title"], prop=fontprop_legend) axes.set_xlabel(graph_data["xlabel"], size=graph_data["axis_label_fontsize"]) axes.set_ylabel(graph_data["ylabel"], size=graph_data["axis_label_fontsize"]) axes.tick_params(axis='x', pad=7) if graph_data["xmax"] != None and graph_data["xmax"] != "": axes.set_xlim(right=float(graph_data["xmax"]), auto=None) if graph_data["ymin"] != None and graph_data["ymin"] != "": axes.set_ylim(bottom=float(graph_data["ymin"]), auto=None) _save_figure(graph_data, fig) return fig, axes def _graph_series(graph_data, series, fig, axes, bounds): # -- todo : set ticks -- axes.plot(_xData(series), _yData(series), series["style"], label=series["label"]) return fig, axes, bounds def _xData(series): return [point[0] for point in series["data"]] def _yData(series): return [point[1] for point in series["data"]] def _save_figure(graph_data, fig): if graph_data["graph_filepath"] is None: return fig.savefig(graph_data["graph_filepath"] + ".png", bbox_inches="tight", dpi=200) fig.savefig(graph_data["graph_filepath"] + ".eps", bbox_inches="tight", dpi=200) # Plot a single Fermi surface. # To make this plot, graph_data["Fermi_surface_data"] must be a dictionary # with the keys "th", "thp", "t0", "D1", "Mu_h", and "epsilon_min". def plot_Fermi_surface(graph_data): delta = float(graph_data["delta"]) x = arange(-math.pi, math.pi, delta) y = arange(-math.pi, math.pi, delta) X, Y = meshgrid(x, y) FS = lambda x, y: _step(_xi_h(graph_data, x, y)) Z = [] for i in range(len(y)): Z.append([]) for j in range(len(x)): Z[i].append(FS(x[j], y[i])) fig = plt.figure() axes = fig.add_subplot(1, 1, 1) axes.set_xlabel(graph_data["xlabel"], size=graph_data["axis_label_fontsize"]) axes.set_ylabel(graph_data["ylabel"], size=graph_data["axis_label_fontsize"]) CS = axes.contour(X, Y, Z) _save_figure(graph_data, fig) def _xi_h(fsd, kx, ky): sx, sy = math.sin(kx), math.sin(ky) envVars = map(float, [fsd["th"], fsd["D1"], fsd["t0"], fsd["thp"], fsd["epsilon_min"], fsd["Mu_h"]]) th, D1, t0, thp, epsilon_min, Mu_h = envVars eps = 2.0*th*((sx+sy)*(sx+sy) - 1.0) + 4.0*(2.0*D1*t0 - thp)*sx*sy - epsilon_min return eps - Mu_h def _step(x): if x < 0.0: return 0.0 else: return 1.0 if __name__ == "__main__": if len(sys.argv) > 1: make_graph(parse_file(sys.argv[1]))
mit
markus-antero/Stock
data/geographic/geo.py
1
10188
''' Created on 2.5.2017 @author: Markus.Walden - https://media.readthedocs.org/pdf/geopy/latest/geopy.pdf - https://freegisdata.rtwilson.com/ - https://www.ncbi.nlm.nih.gov/gds/ - http://www.gis.usu.edu/~chrisg/python/2009/ gdal - http://www.gdal.org/ - https://pypi.python.org/pypi/GDAL - http://desktop.arcgis.com/en/analytics/python-in-arcgis/iii-python.htm shapefile - loaded world map - https://github.com/GeospatialPython/pyshp arcgis manuals - https://github.com/Esri/arcgis-python-api/tree/master/samples/04_gis_analysts_data_scientists - https://developers.arcgis.com/python/ - https://developers.arcgis.com/python/sample-notebooks/chennai-floods-analysis/ - https://developers.arcgis.com/documentation/ -web service - http://resources.arcgis.com/en/help/runtime-wpf/concepts/index.html#/Welcome_to_the_help_for_developing_Operations_Dashboard_for_ArcGIS_add_ins/0170000000np000000/ python cource - https://www.e-education.psu.edu/geog485/book/export/html/ publish data arcgis - https://github.com/Esri/arcgis-python-api/tree/master/samples/05_content_publishers/data aggregate - https://developers.arcgis.com/python/guide/summarizing-feature-data/ ''' import arcgis from arcgis.gis import GIS from arcgis.features import find_locations from arcgis.features.analyze_patterns import interpolate_points from arcgis.features import use_proximity import pandas as pd import json from data.geographic import gisPass, gisUser class AddInformationUsingDataFrame(object): ''' classdocs Templates: item_properties = { "title": "Worldwide gun ownership", "tags" : "guns,violence", "snippet": " GSR Worldwide gun ownership", "description": "test description", "text": json.dumps({"featureCollection": {"layers": [dict(fc.layer)]}}), "type": "Feature Collection", "typeKeywords": "Data, Feature Collection, Singlelayer", "extent" : "-102.5272,-41.7886,172.5967,64.984" } ''' def __init__(self, conn = "https://www.arcgis.com"): ''' Constructor Initiate gis instance ''' self.gis = GIS(conn, gisUser, gisPass) def addGisItem(self, item_properties): item = self.gis.content.add(item_properties) return item def createDir(self, dir = 'packages'): try: self.gis.content.create_folder(dir) return True except: return False def addContent(self, source, destinationDir): try: self.gis.content.add({}, data=source, folder=destinationDir) return True except: return False @staticmethod def postMapUseWikipedia(item_properties, gis, fc): map1 = gis.map('UK') map1.add_layer(fc, {"renderer":"ClassedSizeRenderer", "field_name": "Guns_per_100_Residents"}) item = gis.content.add(item_properties) return map1, item class GisMapUpdate(AddInformationUsingDataFrame): def __init__(self): super.__init__() def addSDFile(self, sd_file = "./data/Ebola_Treatment_Units.sd"): item = self.gis.content.add({},sd_file) new_item = item.publish() return new_item def readJSONFile(self, jsonFile): with open(jsonFile,"r") as file_handle: self.web_map_json = json.load(file_handle) @staticmethod def printOperationalLayer(web_scene_obj): for layer in web_scene_obj['operationalLayers']: print(layer['title'] + " :: " + layer['layerType']) if layer['layerType'] == 'GroupLayer': for sub_layer in layer['layers']: print("\t" + sub_layer['title'] + " :: "+ sub_layer['url']) @staticmethod def makeMapLayer(df_toInterpolate, gis, map, featureCollection): # 1. Create an arcgis.features.FeatureCollection object by importing the pandas dataframe with an address field rainfall = gis.content.import_data(df_toInterpolate, {"Address" : "LOCATION"}) # 2. add dataframe to arcgis map using method add_layer map.add_layer(rainfall, { "renderer":"ClassedSizeRenderer", "field_name":"RAINFALL" }) # 3. using the interpolate_point interpolated_rf = interpolate_points(rainfall, field='RAINFALL') # 4. using find location and use floodprone_buffer = use_proximity.create_buffers(find_locations.trace_downstream(featureCollection), [ 1 ], units='Miles') return interpolated_rf, floodprone_buffer def main(): # Test adding Data to gis useMyAccount = False myGis = AddInformationUsingDataFrame() if useMyAccount: gis = GIS(myGis.gis) else: gis = GIS() fc = gis.content.import_data(readWiki(), {"CountryCode":"Country"}) item_properties = { "title": "Worldwide gun ownership", "tags" : "guns,violence", "snippet": " GSR Worldwide gun ownership", "description": "test description", "text": json.dumps({"featureCollection": {"layers": [dict(fc.layer)]}}), "type": "Feature Collection", "typeKeywords": "Data, Feature Collection, Singlelayer", "extent" : "-102.5272,-41.7886,172.5967,64.984" } map1, item, gis = AddInformationUsingDataFrame.postMapUseWikipedia(item_properties = item_properties, gis = gis) # Test webMap using testWebMapScene() def readWiki(): df = pd.read_html("https://en.wikipedia.org/wiki/Number_of_guns_per_capita_by_country")[1] df.columns = df.iloc[0] df = df.reindex(df.index.drop(0)) # change number + index to number df.iloc[0,2] = 112.6 # change column format converted_column = pd.to_numeric(df["Guns per 100 Residents"], errors = 'coerce') df['Guns per 100 Residents'] = converted_column return df def testArcgisWeb(): ''' creates 3d object layer on buildings in montreal, canada ''' myGis = GisMapUpdate() myGis.readJSONFile(jsonFile = "./data/arcgis_map.json") json1 = myGis.web_map_json myGis.readJSONFile(jsonFile = "./data/arcgis_map_scene.json") json2 = myGis.web_map_json search_result = myGis.gis.content.search("title:2012 USA Median Age AND owner:esri", item_type = "Map Service", outside_org = True) median_age_weblayer = search_result[1] json2['operationalLayers'][0]['itemId'] = median_age_weblayer.itemid json2['operationalLayers'][0]['layerType'] = "ArcGISMapServiceLayer" json2['operationalLayers'][0]['title'] = median_age_weblayer.title json2['operationalLayers'][0]['url'] = median_age_weblayer.url web_map_properties = {'title':'USA median age map', 'type':'Web Map', 'snippet':'This map service shows the median age of people' +\ 'in the United States as of 2012 census. The Median Age for' +\ 'the U.S. is 37 years of age.', 'tags':'ArcGIS Python API', 'text':json.dumps(json2)} web_map_item = myGis.gis.content.add(web_map_properties) search_result = myGis.gis.content.search("title:Montreal, Canada Buildings AND owner:esri_3d", item_type="scene service", outside_org = True) buildings_layer = search_result[0] json1['operationalLayers'][0]['itemId'] = buildings_layer.itemid json1['operationalLayers'][0]['layerType'] = "ArcGISSceneServiceLayer" json1['operationalLayers'][0]['title'] = buildings_layer.title json1['operationalLayers'][0]['url'] = buildings_layer.url web_scene_item_properties = {'title':'Web scene with photo realistic buildings', 'type':'Web Scene', 'snippet':'This scene highlights buildings of Montreal, Canada', 'tags':'ArcGIS Python API', 'text': json.dumps(json1)} # Use the add() method to publish a new web scenej web_scene_item = myGis.gis.content.add(web_scene_item_properties) web_scene_item.share(True) web_scene_obj = arcgis.mapping.WebScene(web_scene_item) return web_scene_obj def testWebMapScene(): ''' - Test JSON load to - publish a web map ''' myGis = GisMapUpdate() myGis.readJSONFile(jsonFile = "./data/map_ebola.json") web_map_item_properties = {'title':'Ebola treatment locations', 'type':'Web Map', 'snippet':'This map shows locations of Ebola treatment centers in Africa', 'tags':'ArcGIS Python API', 'text':json.dumps(myGis.web_map_json)} web_map_item = myGis.addGisItem(item_properties = web_map_item_properties) # create a web map object out of the item web_map_obj = arcgis.mapping.WebMap(web_map_item) layer_list = web_map_obj['operationalLayers'] search_result = myGis.gis.content.search('title:Ebola', item_type='Feature Layer') ebola = search_result[0] # set the url to feature service item's url layer_list[0]['url'] = ebola.layers[1].url layer_list[0]['itemId'] = search_result[0].id # update the web map object's operationalLayers dictionary web_map_obj['operationalLayers'] = layer_list search_result = myGis.gis.content.search('title:Western Pacific Typhoons (2005) AND owner:esri_3d', item_type = 'Web Scene', outside_org = True) web_scene_item = search_result[0] web_scene_obj = arcgis.mapping.WebScene(web_scene_item) return web_scene_obj if __name__ == "__main__": main()
apache-2.0
m12i/pykml
docs/sphinxext/matplotlib/ipython_directive.py
7
15656
import sys, os, shutil, imp, warnings, cStringIO, re import IPython from IPython.Shell import MatplotlibShell try: from hashlib import md5 except ImportError: from md5 import md5 from docutils.parsers.rst import directives import sphinx sphinx_version = sphinx.__version__.split(".") # The split is necessary for sphinx beta versions where the string is # '6b1' sphinx_version = tuple([int(re.split('[a-z]', x)[0]) for x in sphinx_version[:2]]) COMMENT, INPUT, OUTPUT = range(3) rgxin = re.compile('In \[(\d+)\]:\s?(.*)\s*') rgxout = re.compile('Out\[(\d+)\]:\s?(.*)\s*') fmtin = 'In [%d]:' fmtout = 'Out[%d]:' def block_parser(part): """ part is a string of ipython text, comprised of at most one input, one ouput, comments, and blank lines. The block parser parses the text into a list of:: blocks = [ (TOKEN0, data0), (TOKEN1, data1), ...] where TOKEN is one of [COMMENT | INPUT | OUTPUT ] and data is, depending on the type of token:: COMMENT : the comment string INPUT: the (DECORATOR, INPUT_LINE, REST) where DECORATOR: the input decorator (or None) INPUT_LINE: the input as string (possibly multi-line) REST : any stdout generated by the input line (not OUTPUT) OUTPUT: the output string, possibly multi-line """ block = [] lines = part.split('\n') #print 'PARSE', lines N = len(lines) i = 0 decorator = None while 1: if i==N: # nothing left to parse -- the last line break line = lines[i] i += 1 line_stripped = line.strip() if line_stripped.startswith('#'): block.append((COMMENT, line)) continue if line_stripped.startswith('@'): # we're assuming at most one decorator -- may need to # rethink decorator = line_stripped continue # does this look like an input line? matchin = rgxin.match(line) if matchin: lineno, inputline = int(matchin.group(1)), matchin.group(2) # the ....: continuation string continuation = ' %s:'%''.join(['.']*(len(str(lineno))+2)) Nc = len(continuation) # input lines can continue on for more than one line, if # we have a '\' line continuation char or a function call # echo line 'print'. The input line can only be # terminated by the end of the block or an output line, so # we parse out the rest of the input line if it is # multiline as well as any echo text rest = [] while i<N: # look ahead; if the next line is blank, or a comment, or # an output line, we're done nextline = lines[i] matchout = rgxout.match(nextline) #print "nextline=%s, continuation=%s, starts=%s"%(nextline, continuation, nextline.startswith(continuation)) if matchout or nextline.startswith('#'): break elif nextline.startswith(continuation): inputline += '\n' + nextline[Nc:] else: rest.append(nextline) i+= 1 block.append((INPUT, (decorator, inputline, '\n'.join(rest)))) continue # if it looks like an output line grab all the text to the end # of the block matchout = rgxout.match(line) if matchout: lineno, output = int(matchout.group(1)), matchout.group(2) if i<N-1: output = '\n'.join([output] + lines[i:]) #print 'OUTPUT', output block.append((OUTPUT, output)) break #print 'returning block', block return block import matplotlib matplotlib.use('Agg') class EmbeddedSphinxShell: def __init__(self): self.cout = cStringIO.StringIO() IPython.Shell.Term.cout = self.cout IPython.Shell.Term.cerr = self.cout argv = ['-autocall', '0'] self.user_ns = {} self.user_glocal_ns = {} self.IP = IPython.ipmaker.make_IPython( argv, self.user_ns, self.user_glocal_ns, embedded=True, #shell_class=IPython.Shell.InteractiveShell, shell_class=MatplotlibShell, rc_override=dict(colors = 'NoColor')) self.input = '' self.output = '' self.is_verbatim = False self.is_doctest = False self.is_suppress = False # on the first call to the savefig decorator, we'll import # pyplot as plt so we can make a call to the plt.gcf().savefig self._pyplot_imported = False # we need bookmark the current dir first so we can save # relative to it self.process_input('bookmark ipy_basedir') self.cout.seek(0) self.cout.truncate(0) def process_input(self, line): 'process the input, capturing stdout' #print "input='%s'"%self.input stdout = sys.stdout sys.stdout = self.cout #self.IP.resetbuffer() self.IP.push(self.IP.prefilter(line, 0)) #self.IP.runlines(line) sys.stdout = stdout def process_block(self, block): """ process block from the block_parser and return a list of processed lines """ #print 'BLOCK', block ret = [] output = None input_lines = None m = rgxin.match(str(self.IP.outputcache.prompt1).strip()) lineno = int(m.group(1)) input_prompt = fmtin%lineno output_prompt = fmtout%lineno image_file = None image_directive = None for token, data in block: if token==COMMENT: if not self.is_suppress: ret.append(data) elif token==INPUT: decorator, input, rest = data #print 'INPUT:', data is_verbatim = decorator=='@verbatim' or self.is_verbatim is_doctest = decorator=='@doctest' or self.is_doctest is_suppress = decorator=='@suppress' or self.is_suppress is_savefig = decorator is not None and decorator.startswith('@savefig') #print 'is_verbatim=%s, is_doctest=%s, is_suppress=%s, is_savefig=%s'%(is_verbatim, is_doctest, is_suppress, is_savefig) input_lines = input.split('\n') continuation = ' %s:'%''.join(['.']*(len(str(lineno))+2)) Nc = len(continuation) if is_savefig: saveargs = decorator.split(' ') filename = saveargs[1] outfile = os.path.join('_static/%s'%filename) # build out an image directive like # .. image:: somefile.png # :width 4in # # from an input like # savefig somefile.png width=4in imagerows = ['.. image:: %s'%outfile] for kwarg in saveargs[2:]: arg, val = kwarg.split('=') arg = arg.strip() val = val.strip() imagerows.append(' :%s: %s'%(arg, val)) image_file = outfile image_directive = '\n'.join(imagerows) # TODO: can we get "rest" from ipython #self.process_input('\n'.join(input_lines)) is_semicolon = False for i, line in enumerate(input_lines): if line.endswith(';'): is_semicolon = True if i==0: # process the first input line if is_verbatim: self.process_input('') else: # only submit the line in non-verbatim mode self.process_input(line) formatted_line = '%s %s'%(input_prompt, line) else: # process a continuation line if not is_verbatim: self.process_input(line) formatted_line = '%s %s'%(continuation, line) if not is_suppress: ret.append(formatted_line) if not is_suppress: if len(rest.strip()): if is_verbatim: # the "rest" is the standard output of the # input, which needs to be added in # verbatim mode ret.append("%s"%rest) ret.append('') self.cout.seek(0) output = self.cout.read() if not is_suppress and not is_semicolon and not is_verbatim: ret.append(output) self.cout.truncate(0) elif token==OUTPUT: #print 'token==OUTPUT is_verbatim=%s'%is_verbatim if is_verbatim: # construct a mock output prompt output = '%s %s\n'%(fmtout%lineno, data) ret.append(output) #print 'token==OUTPUT', output if is_doctest: submitted = data.strip() found = output if found is not None: ind = found.find(output_prompt) if ind<0: raise RuntimeError('output prompt="%s" does not match out line=%s'%(output_prompt, found)) found = found[len(output_prompt):].strip() if found!=submitted: raise RuntimeError('doctest failure for input_lines="%s" with found_output="%s" and submitted output="%s"'%(input_lines, found, submitted)) #print 'doctest PASSED for input_lines="%s" with found_output="%s" and submitted output="%s"'%(input_lines, found, submitted) if image_file is not None: self.insure_pyplot() command = 'plt.gcf().savefig("%s")'%image_file #print 'SAVEFIG', command self.process_input('bookmark ipy_thisdir') self.process_input('cd -b ipy_basedir') self.process_input(command) self.process_input('cd -b ipy_thisdir') self.cout.seek(0) self.cout.truncate(0) #print 'returning', ret, figure return ret, image_directive def insure_pyplot(self): if self._pyplot_imported: return self.process_input('import matplotlib.pyplot as plt') shell = EmbeddedSphinxShell() def ipython_directive(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine, ): debug = ipython_directive.DEBUG shell.is_suppress = options.has_key('suppress') shell.is_doctest = options.has_key('doctest') shell.is_verbatim = options.has_key('verbatim') #print 'ipy', shell.is_suppress, options parts = '\n'.join(content).split('\n\n') lines = ['.. sourcecode:: ipython', ''] figures = [] for part in parts: block = block_parser(part) if len(block): rows, figure = shell.process_block(block) for row in rows: lines.extend([' %s'%line for line in row.split('\n')]) if figure is not None: figures.append(figure) for figure in figures: lines.append('') lines.extend(figure.split('\n')) lines.append('') #print lines if len(lines)>2: if debug: print '\n'.join(lines) else: #print 'INSERTING %d lines'%len(lines) state_machine.insert_input( lines, state_machine.input_lines.source(0)) return [] ipython_directive.DEBUG = False def setup(app): setup.app = app options = { 'suppress': directives.flag, 'doctest': directives.flag, 'verbatim': directives.flag, } app.add_directive('ipython', ipython_directive, True, (0, 2, 0), **options) def test(): examples = [ r""" In [9]: pwd Out[9]: '/home/jdhunter/py4science/book' In [10]: cd bookdata/ /home/jdhunter/py4science/book/bookdata In [2]: from pylab import * In [2]: ion() In [3]: im = imread('stinkbug.png') @savefig mystinkbug.png width=4in In [4]: imshow(im) Out[4]: <matplotlib.image.AxesImage object at 0x39ea850> """, r""" In [1]: x = 'hello world' # string methods can be # used to alter the string @doctest In [2]: x.upper() Out[2]: 'HELLO WORLD' @verbatim In [3]: x.st<TAB> x.startswith x.strip """, r""" In [130]: url = 'http://ichart.finance.yahoo.com/table.csv?s=CROX\ .....: &d=9&e=22&f=2009&g=d&a=1&br=8&c=2006&ignore=.csv' In [131]: print url.split('&') --------> print(url.split('&')) ['http://ichart.finance.yahoo.com/table.csv?s=CROX', 'd=9', 'e=22', 'f=2009', 'g=d', 'a=1', 'b=8', 'c=2006', 'ignore=.csv'] In [60]: import urllib """, r"""\ In [133]: import numpy.random @suppress In [134]: numpy.random.seed(2358) @doctest In [135]: np.random.rand(10,2) Out[135]: array([[ 0.64524308, 0.59943846], [ 0.47102322, 0.8715456 ], [ 0.29370834, 0.74776844], [ 0.99539577, 0.1313423 ], [ 0.16250302, 0.21103583], [ 0.81626524, 0.1312433 ], [ 0.67338089, 0.72302393], [ 0.7566368 , 0.07033696], [ 0.22591016, 0.77731835], [ 0.0072729 , 0.34273127]]) """, r""" In [106]: print x --------> print(x) jdh In [109]: for i in range(10): .....: print i .....: .....: 0 1 2 3 4 5 6 7 8 9 """, r""" In [144]: from pylab import * In [145]: ion() # use a semicolon to suppress the output @savefig test_hist.png width=4in In [151]: hist(np.random.randn(10000), 100); @savefig test_plot.png width=4in In [151]: plot(np.random.randn(10000), 'o'); """, r""" # use a semicolon to suppress the output In [151]: plt.clf() @savefig plot_simple.png width=4in In [151]: plot([1,2,3]) @savefig hist_simple.png width=4in In [151]: hist(np.random.randn(10000), 100); """, r""" # update the current fig In [151]: ylabel('number') In [152]: title('normal distribution') @savefig hist_with_text.png In [153]: grid(True) """, r""" In [239]: 1/2 @verbatim Out[239]: 0 In [240]: 1.0/2.0 Out[240]: 0.5 """, r""" @verbatim In [6]: pwd Out[6]: '/home/jdhunter/mypy' """, r""" @verbatim In [151]: myfile.upper? Type: builtin_function_or_method Base Class: <type 'builtin_function_or_method'> String Form: <built-in method upper of str object at 0x980e2f0> Namespace: Interactive Docstring: S.upper() -> string Return a copy of the string S converted to uppercase. """ ] ipython_directive.DEBUG = True #options = dict(suppress=True) options = dict() for example in examples: content = example.split('\n') ipython_directive('debug', arguments=None, options=options, content=content, lineno=0, content_offset=None, block_text=None, state=None, state_machine=None, ) if __name__=='__main__': test()
bsd-3-clause
yavalvas/yav_com
build/matplotlib/examples/axes_grid/demo_axes_hbox_divider.py
7
1547
import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.axes_divider import HBoxDivider import mpl_toolkits.axes_grid1.axes_size as Size def make_heights_equal(fig, rect, ax1, ax2, pad): # pad in inches h1, v1 = Size.AxesX(ax1), Size.AxesY(ax1) h2, v2 = Size.AxesX(ax2), Size.AxesY(ax2) pad_v = Size.Scaled(1) pad_h = Size.Fixed(pad) my_divider = HBoxDivider(fig, rect, horizontal=[h1, pad_h, h2], vertical=[v1, pad_v, v2]) ax1.set_axes_locator(my_divider.new_locator(0)) ax2.set_axes_locator(my_divider.new_locator(2)) if __name__ == "__main__": arr1 = np.arange(20).reshape((4,5)) arr2 = np.arange(20).reshape((5,4)) fig, (ax1, ax2) = plt.subplots(1,2) ax1.imshow(arr1, interpolation="nearest") ax2.imshow(arr2, interpolation="nearest") rect = 111 # subplot param for combined axes make_heights_equal(fig, rect, ax1, ax2, pad=0.5) # pad in inches for ax in [ax1, ax2]: ax.locator_params(nbins=4) # annotate ax3 = plt.axes([0.5, 0.5, 0.001, 0.001], frameon=False) ax3.xaxis.set_visible(False) ax3.yaxis.set_visible(False) ax3.annotate("Location of two axes are adjusted\n" "so that they have equal heights\n" "while maintaining their aspect ratios", (0.5, 0.5), xycoords="axes fraction", va="center", ha="center", bbox=dict(boxstyle="round, pad=1", fc="w")) plt.show()
mit
asurve/incubator-systemml
src/main/python/tests/test_mllearn_numpy.py
12
8831
#!/usr/bin/python #------------------------------------------------------------- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # #------------------------------------------------------------- # To run: # - Python 2: `PYSPARK_PYTHON=python2 spark-submit --master local[*] --driver-class-path SystemML.jar test_mllearn_numpy.py` # - Python 3: `PYSPARK_PYTHON=python3 spark-submit --master local[*] --driver-class-path SystemML.jar test_mllearn_numpy.py` # Make the `systemml` package importable import os import sys path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "../") sys.path.insert(0, path) import unittest import numpy as np from pyspark.ml import Pipeline from pyspark.ml.feature import HashingTF, Tokenizer from pyspark.sql import SparkSession from sklearn import datasets, metrics, neighbors from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import accuracy_score, r2_score from systemml.mllearn import LinearRegression, LogisticRegression, NaiveBayes, SVM from sklearn import linear_model sparkSession = SparkSession.builder.getOrCreate() def writeColVector(X, fileName): fileName = os.path.join(os.getcwd(), fileName) X.tofile(fileName, sep='\n') metaDataFileContent = '{ "data_type": "matrix", "value_type": "double", "rows":' + str(len(X)) + ', "cols": 1, "nnz": -1, "format": "csv", "author": "systemml-tests", "created": "0000-00-00 00:00:00 PST" }' with open(fileName+'.mtd', 'w') as text_file: text_file.write(metaDataFileContent) def deleteIfExists(fileName): try: os.remove(fileName) except OSError: pass # Currently not integrated with JUnit test # ~/spark-1.6.1-scala-2.11/bin/spark-submit --master local[*] --driver-class-path SystemML.jar test.py class TestMLLearn(unittest.TestCase): def test_logistic(self): digits = datasets.load_digits() X_digits = digits.data y_digits = digits.target n_samples = len(X_digits) X_train = X_digits[:int(.9 * n_samples)] y_train = y_digits[:int(.9 * n_samples)] X_test = X_digits[int(.9 * n_samples):] y_test = y_digits[int(.9 * n_samples):] logistic = LogisticRegression(sparkSession) logistic.fit(X_train, y_train) mllearn_predicted = logistic.predict(X_test) sklearn_logistic = linear_model.LogisticRegression() sklearn_logistic.fit(X_train, y_train) self.failUnless(accuracy_score(sklearn_logistic.predict(X_test), mllearn_predicted) > 0.95) # We are comparable to a similar algorithm in scikit learn def test_logistic_mlpipeline(self): training = sparkSession.createDataFrame([ ("a b c d e spark", 1.0), ("b d", 2.0), ("spark f g h", 1.0), ("hadoop mapreduce", 2.0), ("b spark who", 1.0), ("g d a y", 2.0), ("spark fly", 1.0), ("was mapreduce", 2.0), ("e spark program", 1.0), ("a e c l", 2.0), ("spark compile", 1.0), ("hadoop software", 2.0) ], ["text", "label"]) tokenizer = Tokenizer(inputCol="text", outputCol="words") hashingTF = HashingTF(inputCol="words", outputCol="features", numFeatures=20) lr = LogisticRegression(sparkSession) pipeline = Pipeline(stages=[tokenizer, hashingTF, lr]) model = pipeline.fit(training) test = sparkSession.createDataFrame([ ("spark i j k", 1.0), ("l m n", 2.0), ("mapreduce spark", 1.0), ("apache hadoop", 2.0)], ["text", "label"]) result = model.transform(test) predictionAndLabels = result.select("prediction", "label") from pyspark.ml.evaluation import MulticlassClassificationEvaluator evaluator = MulticlassClassificationEvaluator() score = evaluator.evaluate(predictionAndLabels) self.failUnless(score == 1.0) def test_linear_regression(self): diabetes = datasets.load_diabetes() diabetes_X = diabetes.data[:, np.newaxis, 2] diabetes_X_train = diabetes_X[:-20] diabetes_X_test = diabetes_X[-20:] diabetes_y_train = diabetes.target[:-20] diabetes_y_test = diabetes.target[-20:] regr = LinearRegression(sparkSession, solver='direct-solve') regr.fit(diabetes_X_train, diabetes_y_train) mllearn_predicted = regr.predict(diabetes_X_test) sklearn_regr = linear_model.LinearRegression() sklearn_regr.fit(diabetes_X_train, diabetes_y_train) self.failUnless(r2_score(sklearn_regr.predict(diabetes_X_test), mllearn_predicted) > 0.95) # We are comparable to a similar algorithm in scikit learn def test_linear_regression_cg(self): diabetes = datasets.load_diabetes() diabetes_X = diabetes.data[:, np.newaxis, 2] diabetes_X_train = diabetes_X[:-20] diabetes_X_test = diabetes_X[-20:] diabetes_y_train = diabetes.target[:-20] diabetes_y_test = diabetes.target[-20:] regr = LinearRegression(sparkSession, solver='newton-cg') regr.fit(diabetes_X_train, diabetes_y_train) mllearn_predicted = regr.predict(diabetes_X_test) sklearn_regr = linear_model.LinearRegression() sklearn_regr.fit(diabetes_X_train, diabetes_y_train) self.failUnless(r2_score(sklearn_regr.predict(diabetes_X_test), mllearn_predicted) > 0.95) # We are comparable to a similar algorithm in scikit learn def test_svm(self): digits = datasets.load_digits() X_digits = digits.data y_digits = digits.target n_samples = len(X_digits) X_train = X_digits[:int(.9 * n_samples)] y_train = y_digits[:int(.9 * n_samples)] X_test = X_digits[int(.9 * n_samples):] y_test = y_digits[int(.9 * n_samples):] svm = SVM(sparkSession, is_multi_class=True, tol=0.0001) mllearn_predicted = svm.fit(X_train, y_train).predict(X_test) from sklearn import linear_model, svm clf = svm.LinearSVC() sklearn_predicted = clf.fit(X_train, y_train).predict(X_test) accuracy = accuracy_score(sklearn_predicted, mllearn_predicted) evaluation = 'test_svm accuracy_score(sklearn_predicted, mllearn_predicted) was {}'.format(accuracy) self.failUnless(accuracy > 0.95, evaluation) def test_naive_bayes(self): digits = datasets.load_digits() X_digits = digits.data y_digits = digits.target n_samples = len(X_digits) X_train = X_digits[:int(.9 * n_samples)] y_train = y_digits[:int(.9 * n_samples)] X_test = X_digits[int(.9 * n_samples):] y_test = y_digits[int(.9 * n_samples):] nb = NaiveBayes(sparkSession) mllearn_predicted = nb.fit(X_train, y_train).predict(X_test) from sklearn.naive_bayes import MultinomialNB clf = MultinomialNB() sklearn_predicted = clf.fit(X_train, y_train).predict(X_test) self.failUnless(accuracy_score(sklearn_predicted, mllearn_predicted) > 0.95 ) def test_naive_bayes1(self): categories = ['alt.atheism', 'talk.religion.misc', 'comp.graphics', 'sci.space'] newsgroups_train = fetch_20newsgroups(subset='train', categories=categories) newsgroups_test = fetch_20newsgroups(subset='test', categories=categories) vectorizer = TfidfVectorizer() # Both vectors and vectors_test are SciPy CSR matrix vectors = vectorizer.fit_transform(newsgroups_train.data) vectors_test = vectorizer.transform(newsgroups_test.data) nb = NaiveBayes(sparkSession) mllearn_predicted = nb.fit(vectors, newsgroups_train.target).predict(vectors_test) from sklearn.naive_bayes import MultinomialNB clf = MultinomialNB() sklearn_predicted = clf.fit(vectors, newsgroups_train.target).predict(vectors_test) self.failUnless(accuracy_score(sklearn_predicted, mllearn_predicted) > 0.95 ) if __name__ == '__main__': unittest.main()
apache-2.0
LennonLab/simplex
tools/SADfits/SADfits.py
9
3639
from __future__ import division import matplotlib.pyplot as plt import sys import os from random import shuffle import numpy as np ########### PATHS ############################################################## mydir = os.path.expanduser("~/GitHub/residence-time") tools = os.path.expanduser(mydir + "/tools") sys.path.append(tools + "/DiversityTools/macroeco_distributions") import macroeco_distributions as md sys.path.append(tools + "/DiversityTools/distributions") import distributions as dist sys.path.append(tools + "/DiversityTools/macroecotools") import macroecotools as mct sys.path.append(tools + "/metrics") import metrics sys.path.append(tools + "/DiversityTools/mete") import mete #sys.path.append(tools + "/pln") #import pln from scipy.stats.kde import gaussian_kde from macroeco_distributions import pln, pln_solver from numpy import empty def get_kdens_choose_kernel(_list,kernel): """ Finds the kernel density function across a sample of SADs """ density = gaussian_kde(_list) n = len(_list) xs = np.linspace(min(_list),max(_list),n) #xs = np.linspace(0.0,1.0,n) density.covariance_factor = lambda : kernel density._compute_covariance() D = [xs,density(xs)] return D def get_rad_pln(S, mu, sigma, lower_trunc = True): """Obtain the predicted RAD from a Poisson lognormal distribution""" abundance = list(empty([S])) rank = range(1, int(S) + 1) cdf_obs = [(rank[i]-0.5) / S for i in range(0, int(S))] j = 0 cdf_cum = 0 i = 1 while j < S: cdf_cum += pln.pmf(i, mu, sigma, lower_trunc) while cdf_cum >= cdf_obs[j]: abundance[j] = i j += 1 if j == S: abundance.reverse() return abundance i += 1 def get_rad_from_obs(ab, dist): mu, sigma = pln_solver(ab) pred_rad = get_rad_pln(len(ab), mu, sigma) return pred_rad data = mydir + '/results/simulated_data/protected/RAD-Data.csv' RADs = [] with open(data) as f: for d in f: d = list(eval(d)) sim = d.pop(0) ct = d.pop(0) if len(d) >= 10: d = sorted(d, reverse=True) RADs.append(d) print 'Number of RADs:', len(RADs) mete_r2s = [] zipf_r2s = [] pln_r2s = [] shuffle(RADs) for i, obs in enumerate(RADs): N = int(sum(obs)) S = int(len(obs)) print i, N, S, len(pln_r2s) if S >= 10 and N > 50: if N < 10000: result = mete.get_mete_rad(S, N) predRAD = result[0] mete_r2 = mct.obs_pred_rsquare(np.array(obs), np.array(predRAD)) mete_r2s.append(mete_r2) #zipf_pred = dist.zipf(obs) #predRAD = zipf_pred.from_cdf() #zipf_r2 = mct.obs_pred_rsquare(np.array(obs), np.array(predRAD)) #zipf_r2s.append(zipf_r2) predRAD = get_rad_from_obs(obs, 'pln') pln_r2 = mct.obs_pred_rsquare(np.array(obs), np.array(predRAD)) pln_r2s.append(pln_r2) if len(pln_r2s) > 200: break fig = plt.figure(111) kernel = 0.5 D = get_kdens_choose_kernel(mete_r2s, kernel) plt.plot(D[0],D[1],color = '0.3', lw=3, alpha = 0.99,label= 'METE') #D = get_kdens_choose_kernel(zipf_r2s, kernel) #plt.plot(D[0],D[1],color = 'c', lw=3, alpha = 0.99,label= 'Zipf') D = get_kdens_choose_kernel(pln_r2s, kernel) plt.plot(D[0],D[1],color = 'm', lw=3, alpha = 0.99, label= 'PLN') plt.xlim(0.0, 1) plt.legend(loc=2, fontsize=16) plt.xlabel('$r$'+r'$^{2}$', fontsize=22) plt.ylabel('$density$', fontsize=22) plt.savefig(mydir + '/results/figures/SADfits.png', dpi=600, bbox_inches = "tight") plt.close()
mit
pnedunuri/scikit-learn
sklearn/feature_extraction/image.py
263
17600
""" The :mod:`sklearn.feature_extraction.image` submodule gathers utilities to extract features from images. """ # Authors: Emmanuelle Gouillart <emmanuelle.gouillart@normalesup.org> # Gael Varoquaux <gael.varoquaux@normalesup.org> # Olivier Grisel # Vlad Niculae # License: BSD 3 clause from itertools import product import numbers import numpy as np from scipy import sparse from numpy.lib.stride_tricks import as_strided from ..utils import check_array, check_random_state from ..utils.fixes import astype from ..base import BaseEstimator __all__ = ['PatchExtractor', 'extract_patches_2d', 'grid_to_graph', 'img_to_graph', 'reconstruct_from_patches_2d'] ############################################################################### # From an image to a graph def _make_edges_3d(n_x, n_y, n_z=1): """Returns a list of edges for a 3D image. Parameters =========== n_x: integer The size of the grid in the x direction. n_y: integer The size of the grid in the y direction. n_z: integer, optional The size of the grid in the z direction, defaults to 1 """ vertices = np.arange(n_x * n_y * n_z).reshape((n_x, n_y, n_z)) edges_deep = np.vstack((vertices[:, :, :-1].ravel(), vertices[:, :, 1:].ravel())) edges_right = np.vstack((vertices[:, :-1].ravel(), vertices[:, 1:].ravel())) edges_down = np.vstack((vertices[:-1].ravel(), vertices[1:].ravel())) edges = np.hstack((edges_deep, edges_right, edges_down)) return edges def _compute_gradient_3d(edges, img): n_x, n_y, n_z = img.shape gradient = np.abs(img[edges[0] // (n_y * n_z), (edges[0] % (n_y * n_z)) // n_z, (edges[0] % (n_y * n_z)) % n_z] - img[edges[1] // (n_y * n_z), (edges[1] % (n_y * n_z)) // n_z, (edges[1] % (n_y * n_z)) % n_z]) return gradient # XXX: Why mask the image after computing the weights? def _mask_edges_weights(mask, edges, weights=None): """Apply a mask to edges (weighted or not)""" inds = np.arange(mask.size) inds = inds[mask.ravel()] ind_mask = np.logical_and(np.in1d(edges[0], inds), np.in1d(edges[1], inds)) edges = edges[:, ind_mask] if weights is not None: weights = weights[ind_mask] if len(edges.ravel()): maxval = edges.max() else: maxval = 0 order = np.searchsorted(np.unique(edges.ravel()), np.arange(maxval + 1)) edges = order[edges] if weights is None: return edges else: return edges, weights def _to_graph(n_x, n_y, n_z, mask=None, img=None, return_as=sparse.coo_matrix, dtype=None): """Auxiliary function for img_to_graph and grid_to_graph """ edges = _make_edges_3d(n_x, n_y, n_z) if dtype is None: if img is None: dtype = np.int else: dtype = img.dtype if img is not None: img = np.atleast_3d(img) weights = _compute_gradient_3d(edges, img) if mask is not None: edges, weights = _mask_edges_weights(mask, edges, weights) diag = img.squeeze()[mask] else: diag = img.ravel() n_voxels = diag.size else: if mask is not None: mask = astype(mask, dtype=np.bool, copy=False) mask = np.asarray(mask, dtype=np.bool) edges = _mask_edges_weights(mask, edges) n_voxels = np.sum(mask) else: n_voxels = n_x * n_y * n_z weights = np.ones(edges.shape[1], dtype=dtype) diag = np.ones(n_voxels, dtype=dtype) diag_idx = np.arange(n_voxels) i_idx = np.hstack((edges[0], edges[1])) j_idx = np.hstack((edges[1], edges[0])) graph = sparse.coo_matrix((np.hstack((weights, weights, diag)), (np.hstack((i_idx, diag_idx)), np.hstack((j_idx, diag_idx)))), (n_voxels, n_voxels), dtype=dtype) if return_as is np.ndarray: return graph.toarray() return return_as(graph) def img_to_graph(img, mask=None, return_as=sparse.coo_matrix, dtype=None): """Graph of the pixel-to-pixel gradient connections Edges are weighted with the gradient values. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- img : ndarray, 2D or 3D 2D or 3D image mask : ndarray of booleans, optional An optional mask of the image, to consider only part of the pixels. return_as : np.ndarray or a sparse matrix class, optional The class to use to build the returned adjacency matrix. dtype : None or dtype, optional The data of the returned sparse matrix. By default it is the dtype of img Notes ----- For sklearn versions 0.14.1 and prior, return_as=np.ndarray was handled by returning a dense np.matrix instance. Going forward, np.ndarray returns an np.ndarray, as expected. For compatibility, user code relying on this method should wrap its calls in ``np.asarray`` to avoid type issues. """ img = np.atleast_3d(img) n_x, n_y, n_z = img.shape return _to_graph(n_x, n_y, n_z, mask, img, return_as, dtype) def grid_to_graph(n_x, n_y, n_z=1, mask=None, return_as=sparse.coo_matrix, dtype=np.int): """Graph of the pixel-to-pixel connections Edges exist if 2 voxels are connected. Parameters ---------- n_x : int Dimension in x axis n_y : int Dimension in y axis n_z : int, optional, default 1 Dimension in z axis mask : ndarray of booleans, optional An optional mask of the image, to consider only part of the pixels. return_as : np.ndarray or a sparse matrix class, optional The class to use to build the returned adjacency matrix. dtype : dtype, optional, default int The data of the returned sparse matrix. By default it is int Notes ----- For sklearn versions 0.14.1 and prior, return_as=np.ndarray was handled by returning a dense np.matrix instance. Going forward, np.ndarray returns an np.ndarray, as expected. For compatibility, user code relying on this method should wrap its calls in ``np.asarray`` to avoid type issues. """ return _to_graph(n_x, n_y, n_z, mask=mask, return_as=return_as, dtype=dtype) ############################################################################### # From an image to a set of small image patches def _compute_n_patches(i_h, i_w, p_h, p_w, max_patches=None): """Compute the number of patches that will be extracted in an image. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- i_h : int The image height i_w : int The image with p_h : int The height of a patch p_w : int The width of a patch max_patches : integer or float, optional default is None The maximum number of patches to extract. If max_patches is a float between 0 and 1, it is taken to be a proportion of the total number of patches. """ n_h = i_h - p_h + 1 n_w = i_w - p_w + 1 all_patches = n_h * n_w if max_patches: if (isinstance(max_patches, (numbers.Integral)) and max_patches < all_patches): return max_patches elif (isinstance(max_patches, (numbers.Real)) and 0 < max_patches < 1): return int(max_patches * all_patches) else: raise ValueError("Invalid value for max_patches: %r" % max_patches) else: return all_patches def extract_patches(arr, patch_shape=8, extraction_step=1): """Extracts patches of any n-dimensional array in place using strides. Given an n-dimensional array it will return a 2n-dimensional array with the first n dimensions indexing patch position and the last n indexing the patch content. This operation is immediate (O(1)). A reshape performed on the first n dimensions will cause numpy to copy data, leading to a list of extracted patches. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- arr : ndarray n-dimensional array of which patches are to be extracted patch_shape : integer or tuple of length arr.ndim Indicates the shape of the patches to be extracted. If an integer is given, the shape will be a hypercube of sidelength given by its value. extraction_step : integer or tuple of length arr.ndim Indicates step size at which extraction shall be performed. If integer is given, then the step is uniform in all dimensions. Returns ------- patches : strided ndarray 2n-dimensional array indexing patches on first n dimensions and containing patches on the last n dimensions. These dimensions are fake, but this way no data is copied. A simple reshape invokes a copying operation to obtain a list of patches: result.reshape([-1] + list(patch_shape)) """ arr_ndim = arr.ndim if isinstance(patch_shape, numbers.Number): patch_shape = tuple([patch_shape] * arr_ndim) if isinstance(extraction_step, numbers.Number): extraction_step = tuple([extraction_step] * arr_ndim) patch_strides = arr.strides slices = [slice(None, None, st) for st in extraction_step] indexing_strides = arr[slices].strides patch_indices_shape = ((np.array(arr.shape) - np.array(patch_shape)) // np.array(extraction_step)) + 1 shape = tuple(list(patch_indices_shape) + list(patch_shape)) strides = tuple(list(indexing_strides) + list(patch_strides)) patches = as_strided(arr, shape=shape, strides=strides) return patches def extract_patches_2d(image, patch_size, max_patches=None, random_state=None): """Reshape a 2D image into a collection of patches The resulting patches are allocated in a dedicated array. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- image : array, shape = (image_height, image_width) or (image_height, image_width, n_channels) The original image data. For color images, the last dimension specifies the channel: a RGB image would have `n_channels=3`. patch_size : tuple of ints (patch_height, patch_width) the dimensions of one patch max_patches : integer or float, optional default is None The maximum number of patches to extract. If max_patches is a float between 0 and 1, it is taken to be a proportion of the total number of patches. random_state : int or RandomState Pseudo number generator state used for random sampling to use if `max_patches` is not None. Returns ------- patches : array, shape = (n_patches, patch_height, patch_width) or (n_patches, patch_height, patch_width, n_channels) The collection of patches extracted from the image, where `n_patches` is either `max_patches` or the total number of patches that can be extracted. Examples -------- >>> from sklearn.feature_extraction import image >>> one_image = np.arange(16).reshape((4, 4)) >>> one_image array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) >>> patches = image.extract_patches_2d(one_image, (2, 2)) >>> print(patches.shape) (9, 2, 2) >>> patches[0] array([[0, 1], [4, 5]]) >>> patches[1] array([[1, 2], [5, 6]]) >>> patches[8] array([[10, 11], [14, 15]]) """ i_h, i_w = image.shape[:2] p_h, p_w = patch_size if p_h > i_h: raise ValueError("Height of the patch should be less than the height" " of the image.") if p_w > i_w: raise ValueError("Width of the patch should be less than the width" " of the image.") image = check_array(image, allow_nd=True) image = image.reshape((i_h, i_w, -1)) n_colors = image.shape[-1] extracted_patches = extract_patches(image, patch_shape=(p_h, p_w, n_colors), extraction_step=1) n_patches = _compute_n_patches(i_h, i_w, p_h, p_w, max_patches) if max_patches: rng = check_random_state(random_state) i_s = rng.randint(i_h - p_h + 1, size=n_patches) j_s = rng.randint(i_w - p_w + 1, size=n_patches) patches = extracted_patches[i_s, j_s, 0] else: patches = extracted_patches patches = patches.reshape(-1, p_h, p_w, n_colors) # remove the color dimension if useless if patches.shape[-1] == 1: return patches.reshape((n_patches, p_h, p_w)) else: return patches def reconstruct_from_patches_2d(patches, image_size): """Reconstruct the image from all of its patches. Patches are assumed to overlap and the image is constructed by filling in the patches from left to right, top to bottom, averaging the overlapping regions. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- patches : array, shape = (n_patches, patch_height, patch_width) or (n_patches, patch_height, patch_width, n_channels) The complete set of patches. If the patches contain colour information, channels are indexed along the last dimension: RGB patches would have `n_channels=3`. image_size : tuple of ints (image_height, image_width) or (image_height, image_width, n_channels) the size of the image that will be reconstructed Returns ------- image : array, shape = image_size the reconstructed image """ i_h, i_w = image_size[:2] p_h, p_w = patches.shape[1:3] img = np.zeros(image_size) # compute the dimensions of the patches array n_h = i_h - p_h + 1 n_w = i_w - p_w + 1 for p, (i, j) in zip(patches, product(range(n_h), range(n_w))): img[i:i + p_h, j:j + p_w] += p for i in range(i_h): for j in range(i_w): # divide by the amount of overlap # XXX: is this the most efficient way? memory-wise yes, cpu wise? img[i, j] /= float(min(i + 1, p_h, i_h - i) * min(j + 1, p_w, i_w - j)) return img class PatchExtractor(BaseEstimator): """Extracts patches from a collection of images Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- patch_size : tuple of ints (patch_height, patch_width) the dimensions of one patch max_patches : integer or float, optional default is None The maximum number of patches per image to extract. If max_patches is a float in (0, 1), it is taken to mean a proportion of the total number of patches. random_state : int or RandomState Pseudo number generator state used for random sampling. """ def __init__(self, patch_size=None, max_patches=None, random_state=None): self.patch_size = patch_size self.max_patches = max_patches self.random_state = random_state def fit(self, X, y=None): """Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. """ return self def transform(self, X): """Transforms the image samples in X into a matrix of patch data. Parameters ---------- X : array, shape = (n_samples, image_height, image_width) or (n_samples, image_height, image_width, n_channels) Array of images from which to extract patches. For color images, the last dimension specifies the channel: a RGB image would have `n_channels=3`. Returns ------- patches: array, shape = (n_patches, patch_height, patch_width) or (n_patches, patch_height, patch_width, n_channels) The collection of patches extracted from the images, where `n_patches` is either `n_samples * max_patches` or the total number of patches that can be extracted. """ self.random_state = check_random_state(self.random_state) n_images, i_h, i_w = X.shape[:3] X = np.reshape(X, (n_images, i_h, i_w, -1)) n_channels = X.shape[-1] if self.patch_size is None: patch_size = i_h // 10, i_w // 10 else: patch_size = self.patch_size # compute the dimensions of the patches array p_h, p_w = patch_size n_patches = _compute_n_patches(i_h, i_w, p_h, p_w, self.max_patches) patches_shape = (n_images * n_patches,) + patch_size if n_channels > 1: patches_shape += (n_channels,) # extract the patches patches = np.empty(patches_shape) for ii, image in enumerate(X): patches[ii * n_patches:(ii + 1) * n_patches] = extract_patches_2d( image, patch_size, self.max_patches, self.random_state) return patches
bsd-3-clause
hammerlab/mhcflurry
downloads-generation/models_class1_kim_benchmark/curate.py
1
9601
""" Filter and combine various peptide/MHC datasets to derive a composite training set, optionally including eluted peptides identified by mass-spec. """ import sys import argparse import pandas from mhcflurry.common import normalize_allele_name def normalize_allele_name_or_return_unknown(s): result = normalize_allele_name( s, raise_on_error=False, default_value="UNKNOWN") parser = argparse.ArgumentParser(usage=__doc__) parser.add_argument( "--data-kim2014", action="append", default=[], help="Path to Kim 2014-style affinity data") parser.add_argument( "--data-iedb", action="append", default=[], help="Path to IEDB-style affinity data (e.g. mhc_ligand_full.csv)") parser.add_argument( "--data-systemhc-atlas", action="append", default=[], help="Path to systemhc-atlas-style mass-spec data") parser.add_argument( "--data-abelin-mass-spec", action="append", default=[], help="Path to Abelin Immunity 2017 mass-spec hits") parser.add_argument( "--include-iedb-mass-spec", action="store_true", default=False, help="Include mass-spec observations in IEDB") parser.add_argument( "--out-csv", required=True, help="Result file") QUALITATIVE_TO_AFFINITY_AND_INEQUALITY = { "Negative": (5000.0, ">"), "Positive": (500.0, "<"), # used for mass-spec hits "Positive-High": (100.0, "<"), "Positive-Intermediate": (1000.0, "<"), "Positive-Low": (5000.0, "<"), } QUALITATIVE_TO_AFFINITY = dict( (key, value[0]) for (key, value) in QUALITATIVE_TO_AFFINITY_AND_INEQUALITY.items()) QUALITATIVE_TO_INEQUALITY = dict( (key, value[1]) for (key, value) in QUALITATIVE_TO_AFFINITY_AND_INEQUALITY.items()) EXCLUDE_IEDB_ALLELES = [ "HLA class I", "HLA class II", ] def load_data_kim2014(filename): df = pandas.read_table(filename) print("Loaded kim2014 data: %s" % str(df.shape)) df["measurement_source"] = "kim2014" df["measurement_value"] = df.meas df["measurement_type"] = (df.inequality == "=").map({ True: "quantitative", False: "qualitative", }) df["measurement_inequality"] = df.inequality df["original_allele"] = df.mhc df["peptide"] = df.sequence df["allele"] = df.mhc.map(normalize_allele_name_or_return_unknown) print("Dropping un-parseable alleles: %s" % ", ".join( df.ix[df.allele == "UNKNOWN"]["mhc"].unique())) df = df.ix[df.allele != "UNKNOWN"] print("Loaded kim2014 data: %s" % str(df.shape)) return df def load_data_systemhc_atlas(filename, min_probability=0.99): df = pandas.read_csv(filename) print("Loaded systemhc atlas data: %s" % str(df.shape)) df["measurement_source"] = "systemhc-atlas" df["measurement_value"] = QUALITATIVE_TO_AFFINITY["Positive"] df["measurement_inequality"] = "<" df["measurement_type"] = "qualitative" df["original_allele"] = df.top_allele df["peptide"] = df.search_hit df["allele"] = df.top_allele.map(normalize_allele_name_or_return_unknown) print("Dropping un-parseable alleles: %s" % ", ".join( str(x) for x in df.ix[df.allele == "UNKNOWN"]["top_allele"].unique())) df = df.loc[df.allele != "UNKNOWN"] print("Systemhc atlas data now: %s" % str(df.shape)) print("Dropping data points with probability < %f" % min_probability) df = df.loc[df.prob >= min_probability] print("Systemhc atlas data now: %s" % str(df.shape)) print("Removing duplicates") df = df.drop_duplicates(["allele", "peptide"]) print("Systemhc atlas data now: %s" % str(df.shape)) return df def load_data_abelin_mass_spec(filename): df = pandas.read_csv(filename) print("Loaded Abelin mass-spec data: %s" % str(df.shape)) df["measurement_source"] = "abelin-mass-spec" df["measurement_value"] = QUALITATIVE_TO_AFFINITY["Positive"] df["measurement_inequality"] = "<" df["measurement_type"] = "qualitative" df["original_allele"] = df.allele df["allele"] = df.original_allele.map(normalize_allele_name_or_return_unknown) print("Dropping un-parseable alleles: %s" % ", ".join( str(x) for x in df.ix[df.allele == "UNKNOWN"]["allele"].unique())) df = df.loc[df.allele != "UNKNOWN"] print("Abelin mass-spec data now: %s" % str(df.shape)) print("Removing duplicates") df = df.drop_duplicates(["allele", "peptide"]) print("Abelin mass-spec data now: %s" % str(df.shape)) return df def load_data_iedb(iedb_csv, include_qualitative=True, include_mass_spec=False): iedb_df = pandas.read_csv(iedb_csv, skiprows=1, low_memory=False) print("Loaded iedb data: %s" % str(iedb_df.shape)) print("Selecting only class I") iedb_df = iedb_df.ix[ iedb_df["MHC allele class"].str.strip().str.upper() == "I" ] print("New shape: %s" % str(iedb_df.shape)) print("Dropping known unusuable alleles") iedb_df = iedb_df.ix[ ~iedb_df["Allele Name"].isin(EXCLUDE_IEDB_ALLELES) ] iedb_df = iedb_df.ix[ (~iedb_df["Allele Name"].str.contains("mutant")) & (~iedb_df["Allele Name"].str.contains("CD1")) ] iedb_df["allele"] = iedb_df["Allele Name"].map(normalize_allele_name_or_return_unknown) print("Dropping un-parseable alleles: %s" % ", ".join( iedb_df.ix[iedb_df.allele == "UNKNOWN"]["Allele Name"].unique())) iedb_df = iedb_df.ix[iedb_df.allele != "UNKNOWN"] print("IEDB measurements per allele:\n%s" % iedb_df.allele.value_counts()) quantitative = iedb_df.ix[iedb_df["Units"] == "nM"].copy() quantitative["measurement_type"] = "quantitative" quantitative["measurement_inequality"] = "=" print("Quantitative measurements: %d" % len(quantitative)) qualitative = iedb_df.ix[iedb_df["Units"] != "nM"].copy() qualitative["measurement_type"] = "qualitative" print("Qualitative measurements: %d" % len(qualitative)) if not include_mass_spec: qualitative = qualitative.ix[ (~qualitative["Method/Technique"].str.contains("mass spec")) ].copy() qualitative["Quantitative measurement"] = ( qualitative["Qualitative Measure"].map(QUALITATIVE_TO_AFFINITY)) qualitative["measurement_inequality"] = ( qualitative["Qualitative Measure"].map(QUALITATIVE_TO_INEQUALITY)) print("Qualitative measurements (possibly after dropping MS): %d" % ( len(qualitative))) iedb_df = pandas.concat( ( ([quantitative]) + ([qualitative] if include_qualitative else [])), ignore_index=True) print("IEDB measurements per allele:\n%s" % iedb_df.allele.value_counts()) print("Subselecting to valid peptides. Starting with: %d" % len(iedb_df)) iedb_df["Description"] = iedb_df.Description.str.strip() iedb_df = iedb_df.ix[ iedb_df.Description.str.match("^[ACDEFGHIKLMNPQRSTVWY]+$") ] print("Now: %d" % len(iedb_df)) print("Annotating last author and category") iedb_df["last_author"] = iedb_df.Authors.map( lambda x: ( x.split(";")[-1] .split(",")[-1] .split(" ")[-1] .strip() .replace("*", ""))).values iedb_df["category"] = ( iedb_df["last_author"] + " - " + iedb_df["Method/Technique"]).values train_data = pandas.DataFrame() train_data["peptide"] = iedb_df.Description.values train_data["measurement_value"] = iedb_df[ "Quantitative measurement" ].values train_data["measurement_source"] = iedb_df.category.values train_data["measurement_inequality"] = iedb_df.measurement_inequality.values train_data["allele"] = iedb_df["allele"].values train_data["original_allele"] = iedb_df["Allele Name"].values train_data["measurement_type"] = iedb_df["measurement_type"].values train_data = train_data.drop_duplicates().reset_index(drop=True) return train_data def run(): args = parser.parse_args(sys.argv[1:]) dfs = [] for filename in args.data_iedb: df = load_data_iedb(filename, include_mass_spec=args.include_iedb_mass_spec) dfs.append(df) for filename in args.data_kim2014: df = load_data_kim2014(filename) df["allele_peptide"] = df.allele + "_" + df.peptide # Give precedence to IEDB data. if dfs: iedb_df = dfs[0] iedb_df["allele_peptide"] = iedb_df.allele + "_" + iedb_df.peptide print("Dropping kim2014 data present in IEDB.") df = df.ix[ ~df.allele_peptide.isin(iedb_df.allele_peptide) ] print("Kim2014 data now: %s" % str(df.shape)) dfs.append(df) for filename in args.data_systemhc_atlas: df = load_data_systemhc_atlas(filename) dfs.append(df) for filename in args.data_abelin_mass_spec: df = load_data_abelin_mass_spec(filename) dfs.append(df) df = pandas.concat(dfs, ignore_index=True) print("Combined df: %s" % (str(df.shape))) print("Removing combined duplicates") df = df.drop_duplicates(["allele", "peptide", "measurement_value"]) print("New combined df: %s" % (str(df.shape))) df = df[[ "allele", "peptide", "measurement_value", "measurement_inequality", "measurement_type", "measurement_source", "original_allele", ]].sort_values(["allele", "peptide"]).dropna() print("Final combined df: %s" % (str(df.shape))) df.to_csv(args.out_csv, index=False) print("Wrote: %s" % args.out_csv) if __name__ == '__main__': run()
apache-2.0
russellgeoff/blog
DMPs/dmp.py
4
7299
''' Copyright (C) 2013 Travis DeWolf This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. ''' import numpy as np from cs import CanonicalSystem class DMPs(object): """Implementation of Dynamic Motor Primitives, as described in Dr. Stefan Schaal's (2002) paper.""" def __init__(self, dmps, bfs, dt=.01, y0=0, goal=1, w=None, ay=None, by=None, **kwargs): """ dmps int: number of dynamic motor primitives bfs int: number of basis functions per DMP dt float: timestep for simulation y0 list: initial state of DMPs goal list: goal state of DMPs w list: tunable parameters, control amplitude of basis functions ay int: gain on attractor term y dynamics by int: gain on attractor term y dynamics """ self.dmps = dmps self.bfs = bfs self.dt = dt if isinstance(y0, (int, float)): y0 = np.ones(self.dmps)*y0 self.y0 = y0 if isinstance(goal, (int, float)): goal = np.ones(self.dmps)*goal self.goal = goal if w is None: # default is f = 0 w = np.zeros((self.dmps, self.bfs)) self.w = w if ay is None: ay = np.ones(dmps)*25 # Schaal 2012 self.ay = ay if by is None: by = self.ay.copy() / 4 # Schaal 2012 self.by = by # set up the CS self.cs = CanonicalSystem(dt=self.dt, **kwargs) self.timesteps = int(self.cs.run_time / self.dt) # set up the DMP system self.reset_state() def check_offset(self): """Check to see if initial position and goal are the same if they are, offset slightly so that the forcing term is not 0""" for d in range(self.dmps): if (self.y0[d] == self.goal[d]): self.goal[d] += 1e-4 def gen_front_term(self, x, dmp_num): raise NotImplementedError() def gen_goal(self, y_des): raise NotImplementedError() def gen_psi(self): raise NotImplementedError() def gen_weights(self, f_target): raise NotImplementedError() def imitate_path(self, y_des): """Takes in a desired trajectory and generates the set of system parameters that best realize this path. y_des list/array: the desired trajectories of each DMP should be shaped [dmps, run_time] """ # set initial state and goal if y_des.ndim == 1: y_des = y_des.reshape(1,len(y_des)) self.y0 = y_des[:,0].copy() self.y_des = y_des.copy() self.goal = self.gen_goal(y_des) self.check_offset() # generate function to interpolate the desired trajectory import scipy.interpolate path = np.zeros((self.dmps, self.timesteps)) x = np.linspace(0, self.cs.run_time, y_des.shape[1]) for d in range(self.dmps): path_gen = scipy.interpolate.interp1d(x, y_des[d]) for t in range(self.timesteps): path[d, t] = path_gen(t * self.dt) y_des = path # calculate velocity of y_des dy_des = np.diff(y_des) / self.dt # add zero to the beginning of every row dy_des = np.hstack((np.zeros((self.dmps, 1)), dy_des)) # calculate acceleration of y_des ddy_des = np.diff(dy_des) / self.dt # add zero to the beginning of every row ddy_des = np.hstack((np.zeros((self.dmps, 1)), ddy_des)) f_target = np.zeros((y_des.shape[1], self.dmps)) # find the force required to move along this trajectory for d in range(self.dmps): f_target[:,d] = ddy_des[d] - self.ay[d] * \ (self.by[d] * (self.goal[d] - y_des[d]) - \ dy_des[d]) # efficiently generate weights to realize f_target self.gen_weights(f_target) '''# plot the basis function activations import matplotlib.pyplot as plt plt.figure() plt.subplot(211) plt.plot(psi_track) plt.title('psi_track') # plot the desired forcing function vs approx plt.subplot(212) plt.plot(f_target[:,0]) plt.plot(np.sum(psi_track * self.w[0], axis=1)) plt.legend(['f_target', 'w*psi']) plt.tight_layout() plt.show()''' self.reset_state() return y_des def rollout(self, timesteps=None, **kwargs): """Generate a system trial, no feedback is incorporated.""" self.reset_state() if timesteps is None: if kwargs.has_key('tau'): timesteps = int(self.timesteps / kwargs['tau']) else: timesteps = self.timesteps # set up tracking vectors y_track = np.zeros((timesteps, self.dmps)) dy_track = np.zeros((timesteps, self.dmps)) ddy_track = np.zeros((timesteps, self.dmps)) for t in range(timesteps): y, dy, ddy = self.step(**kwargs) # record timestep y_track[t] = y dy_track[t] = dy ddy_track[t] = ddy return y_track, dy_track, ddy_track def reset_state(self): """Reset the system state""" self.y = self.y0.copy() self.dy = np.zeros(self.dmps) self.ddy = np.zeros(self.dmps) self.cs.reset_state() def step(self, tau=1.0, state_fb=None): """Run the DMP system for a single timestep. tau float: scales the timestep increase tau to make the system execute faster state_fb np.array: optional system feedback """ # run canonical system cs_args = {'tau':tau, 'error_coupling':1.0} if state_fb is not None: # take the 2 norm of the overall error state_fb = state_fb.reshape(1,self.dmps) dist = np.sqrt(np.sum((state_fb - self.y)**2)) cs_args['error_coupling'] = 1.0 / (1.0 + 10*dist) x = self.cs.step(**cs_args) # generate basis function activation psi = self.gen_psi(x) for d in range(self.dmps): # generate the forcing term f = self.gen_front_term(x, d) * \ (np.dot(psi, self.w[d])) / np.sum(psi) # DMP acceleration self.ddy[d] = (self.ay[d] * (self.by[d] * (self.goal[d] - self.y[d]) - \ self.dy[d]/tau) + f) * tau**2 self.dy[d] += self.ddy[d] * self.dt * cs_args['error_coupling'] self.y[d] += self.dy[d] * self.dt * cs_args['error_coupling'] return self.y, self.dy, self.ddy
gpl-3.0
plotly/python-api
packages/python/plotly/plotly/graph_objs/_scattercarpet.py
1
78536
from plotly.basedatatypes import BaseTraceType as _BaseTraceType import copy as _copy class Scattercarpet(_BaseTraceType): # class properties # -------------------- _parent_path_str = "" _path_str = "scattercarpet" _valid_props = { "a", "asrc", "b", "bsrc", "carpet", "connectgaps", "customdata", "customdatasrc", "fill", "fillcolor", "hoverinfo", "hoverinfosrc", "hoverlabel", "hoveron", "hovertemplate", "hovertemplatesrc", "hovertext", "hovertextsrc", "ids", "idssrc", "legendgroup", "line", "marker", "meta", "metasrc", "mode", "name", "opacity", "selected", "selectedpoints", "showlegend", "stream", "text", "textfont", "textposition", "textpositionsrc", "textsrc", "texttemplate", "texttemplatesrc", "type", "uid", "uirevision", "unselected", "visible", "xaxis", "yaxis", } # a # - @property def a(self): """ Sets the a-axis coordinates. The 'a' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["a"] @a.setter def a(self, val): self["a"] = val # asrc # ---- @property def asrc(self): """ Sets the source reference on Chart Studio Cloud for a . The 'asrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["asrc"] @asrc.setter def asrc(self, val): self["asrc"] = val # b # - @property def b(self): """ Sets the b-axis coordinates. The 'b' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["b"] @b.setter def b(self, val): self["b"] = val # bsrc # ---- @property def bsrc(self): """ Sets the source reference on Chart Studio Cloud for b . The 'bsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["bsrc"] @bsrc.setter def bsrc(self, val): self["bsrc"] = val # carpet # ------ @property def carpet(self): """ An identifier for this carpet, so that `scattercarpet` and `contourcarpet` traces can specify a carpet plot on which they lie The 'carpet' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["carpet"] @carpet.setter def carpet(self, val): self["carpet"] = val # connectgaps # ----------- @property def connectgaps(self): """ Determines whether or not gaps (i.e. {nan} or missing values) in the provided data arrays are connected. The 'connectgaps' property must be specified as a bool (either True, or False) Returns ------- bool """ return self["connectgaps"] @connectgaps.setter def connectgaps(self, val): self["connectgaps"] = val # customdata # ---------- @property def customdata(self): """ Assigns extra data each datum. This may be useful when listening to hover, click and selection events. Note that, "scatter" traces also appends customdata items in the markers DOM elements The 'customdata' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["customdata"] @customdata.setter def customdata(self, val): self["customdata"] = val # customdatasrc # ------------- @property def customdatasrc(self): """ Sets the source reference on Chart Studio Cloud for customdata . The 'customdatasrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["customdatasrc"] @customdatasrc.setter def customdatasrc(self, val): self["customdatasrc"] = val # fill # ---- @property def fill(self): """ Sets the area to fill with a solid color. Use with `fillcolor` if not "none". scatterternary has a subset of the options available to scatter. "toself" connects the endpoints of the trace (or each segment of the trace if it has gaps) into a closed shape. "tonext" fills the space between two traces if one completely encloses the other (eg consecutive contour lines), and behaves like "toself" if there is no trace before it. "tonext" should not be used if one trace does not enclose the other. The 'fill' property is an enumeration that may be specified as: - One of the following enumeration values: ['none', 'toself', 'tonext'] Returns ------- Any """ return self["fill"] @fill.setter def fill(self, val): self["fill"] = val # fillcolor # --------- @property def fillcolor(self): """ Sets the fill color. Defaults to a half-transparent variant of the line color, marker color, or marker line color, whichever is available. The 'fillcolor' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen Returns ------- str """ return self["fillcolor"] @fillcolor.setter def fillcolor(self, val): self["fillcolor"] = val # hoverinfo # --------- @property def hoverinfo(self): """ Determines which trace information appear on hover. If `none` or `skip` are set, no information is displayed upon hovering. But, if `none` is set, click and hover events are still fired. The 'hoverinfo' property is a flaglist and may be specified as a string containing: - Any combination of ['a', 'b', 'text', 'name'] joined with '+' characters (e.g. 'a+b') OR exactly one of ['all', 'none', 'skip'] (e.g. 'skip') - A list or array of the above Returns ------- Any|numpy.ndarray """ return self["hoverinfo"] @hoverinfo.setter def hoverinfo(self, val): self["hoverinfo"] = val # hoverinfosrc # ------------ @property def hoverinfosrc(self): """ Sets the source reference on Chart Studio Cloud for hoverinfo . The 'hoverinfosrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["hoverinfosrc"] @hoverinfosrc.setter def hoverinfosrc(self, val): self["hoverinfosrc"] = val # hoverlabel # ---------- @property def hoverlabel(self): """ The 'hoverlabel' property is an instance of Hoverlabel that may be specified as: - An instance of :class:`plotly.graph_objs.scattercarpet.Hoverlabel` - A dict of string/value properties that will be passed to the Hoverlabel constructor Supported dict properties: align Sets the horizontal alignment of the text content within hover label box. Has an effect only if the hover label text spans more two or more lines alignsrc Sets the source reference on Chart Studio Cloud for align . bgcolor Sets the background color of the hover labels for this trace bgcolorsrc Sets the source reference on Chart Studio Cloud for bgcolor . bordercolor Sets the border color of the hover labels for this trace. bordercolorsrc Sets the source reference on Chart Studio Cloud for bordercolor . font Sets the font used in hover labels. namelength Sets the default length (in number of characters) of the trace name in the hover labels for all traces. -1 shows the whole name regardless of length. 0-3 shows the first 0-3 characters, and an integer >3 will show the whole name if it is less than that many characters, but if it is longer, will truncate to `namelength - 3` characters and add an ellipsis. namelengthsrc Sets the source reference on Chart Studio Cloud for namelength . Returns ------- plotly.graph_objs.scattercarpet.Hoverlabel """ return self["hoverlabel"] @hoverlabel.setter def hoverlabel(self, val): self["hoverlabel"] = val # hoveron # ------- @property def hoveron(self): """ Do the hover effects highlight individual points (markers or line points) or do they highlight filled regions? If the fill is "toself" or "tonext" and there are no markers or text, then the default is "fills", otherwise it is "points". The 'hoveron' property is a flaglist and may be specified as a string containing: - Any combination of ['points', 'fills'] joined with '+' characters (e.g. 'points+fills') Returns ------- Any """ return self["hoveron"] @hoveron.setter def hoveron(self, val): self["hoveron"] = val # hovertemplate # ------------- @property def hovertemplate(self): """ Template string used for rendering the information that appear on hover box. Note that this will override `hoverinfo`. Variables are inserted using %{variable}, for example "y: %{y}". Numbers are formatted using d3-format's syntax %{variable:d3-format}, for example "Price: %{y:$.2f}". https://github.com/d3/d3-3.x-api- reference/blob/master/Formatting.md#d3_format for details on the formatting syntax. Dates are formatted using d3-time- format's syntax %{variable|d3-time-format}, for example "Day: %{2019-01-01|%A}". https://github.com/d3/d3-3.x-api- reference/blob/master/Time-Formatting.md#format for details on the date formatting syntax. The variables available in `hovertemplate` are the ones emitted as event data described at this link https://plotly.com/javascript/plotlyjs-events/#event- data. Additionally, every attributes that can be specified per- point (the ones that are `arrayOk: true`) are available. Anything contained in tag `<extra>` is displayed in the secondary box, for example "<extra>{fullData.name}</extra>". To hide the secondary box completely, use an empty tag `<extra></extra>`. The 'hovertemplate' property is a string and must be specified as: - A string - A number that will be converted to a string - A tuple, list, or one-dimensional numpy array of the above Returns ------- str|numpy.ndarray """ return self["hovertemplate"] @hovertemplate.setter def hovertemplate(self, val): self["hovertemplate"] = val # hovertemplatesrc # ---------------- @property def hovertemplatesrc(self): """ Sets the source reference on Chart Studio Cloud for hovertemplate . The 'hovertemplatesrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["hovertemplatesrc"] @hovertemplatesrc.setter def hovertemplatesrc(self, val): self["hovertemplatesrc"] = val # hovertext # --------- @property def hovertext(self): """ Sets hover text elements associated with each (a,b) point. If a single string, the same string appears over all the data points. If an array of strings, the items are mapped in order to the the data points in (a,b). To be seen, trace `hoverinfo` must contain a "text" flag. The 'hovertext' property is a string and must be specified as: - A string - A number that will be converted to a string - A tuple, list, or one-dimensional numpy array of the above Returns ------- str|numpy.ndarray """ return self["hovertext"] @hovertext.setter def hovertext(self, val): self["hovertext"] = val # hovertextsrc # ------------ @property def hovertextsrc(self): """ Sets the source reference on Chart Studio Cloud for hovertext . The 'hovertextsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["hovertextsrc"] @hovertextsrc.setter def hovertextsrc(self, val): self["hovertextsrc"] = val # ids # --- @property def ids(self): """ Assigns id labels to each datum. These ids for object constancy of data points during animation. Should be an array of strings, not numbers or any other type. The 'ids' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["ids"] @ids.setter def ids(self, val): self["ids"] = val # idssrc # ------ @property def idssrc(self): """ Sets the source reference on Chart Studio Cloud for ids . The 'idssrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["idssrc"] @idssrc.setter def idssrc(self, val): self["idssrc"] = val # legendgroup # ----------- @property def legendgroup(self): """ Sets the legend group for this trace. Traces part of the same legend group hide/show at the same time when toggling legend items. The 'legendgroup' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["legendgroup"] @legendgroup.setter def legendgroup(self, val): self["legendgroup"] = val # line # ---- @property def line(self): """ The 'line' property is an instance of Line that may be specified as: - An instance of :class:`plotly.graph_objs.scattercarpet.Line` - A dict of string/value properties that will be passed to the Line constructor Supported dict properties: color Sets the line color. dash Sets the dash style of lines. Set to a dash type string ("solid", "dot", "dash", "longdash", "dashdot", or "longdashdot") or a dash length list in px (eg "5px,10px,2px,2px"). shape Determines the line shape. With "spline" the lines are drawn using spline interpolation. The other available values correspond to step-wise line shapes. smoothing Has an effect only if `shape` is set to "spline" Sets the amount of smoothing. 0 corresponds to no smoothing (equivalent to a "linear" shape). width Sets the line width (in px). Returns ------- plotly.graph_objs.scattercarpet.Line """ return self["line"] @line.setter def line(self, val): self["line"] = val # marker # ------ @property def marker(self): """ The 'marker' property is an instance of Marker that may be specified as: - An instance of :class:`plotly.graph_objs.scattercarpet.Marker` - A dict of string/value properties that will be passed to the Marker constructor Supported dict properties: autocolorscale Determines whether the colorscale is a default palette (`autocolorscale: true`) or the palette determined by `marker.colorscale`. Has an effect only if in `marker.color`is set to a numerical array. In case `colorscale` is unspecified or `autocolorscale` is true, the default palette will be chosen according to whether numbers in the `color` array are all positive, all negative or mixed. cauto Determines whether or not the color domain is computed with respect to the input data (here in `marker.color`) or the bounds set in `marker.cmin` and `marker.cmax` Has an effect only if in `marker.color`is set to a numerical array. Defaults to `false` when `marker.cmin` and `marker.cmax` are set by the user. cmax Sets the upper bound of the color domain. Has an effect only if in `marker.color`is set to a numerical array. Value should have the same units as in `marker.color` and if set, `marker.cmin` must be set as well. cmid Sets the mid-point of the color domain by scaling `marker.cmin` and/or `marker.cmax` to be equidistant to this point. Has an effect only if in `marker.color`is set to a numerical array. Value should have the same units as in `marker.color`. Has no effect when `marker.cauto` is `false`. cmin Sets the lower bound of the color domain. Has an effect only if in `marker.color`is set to a numerical array. Value should have the same units as in `marker.color` and if set, `marker.cmax` must be set as well. color Sets themarkercolor. It accepts either a specific color or an array of numbers that are mapped to the colorscale relative to the max and min values of the array or relative to `marker.cmin` and `marker.cmax` if set. coloraxis Sets a reference to a shared color axis. References to these shared color axes are "coloraxis", "coloraxis2", "coloraxis3", etc. Settings for these shared color axes are set in the layout, under `layout.coloraxis`, `layout.coloraxis2`, etc. Note that multiple color scales can be linked to the same color axis. colorbar :class:`plotly.graph_objects.scattercarpet.mark er.ColorBar` instance or dict with compatible properties colorscale Sets the colorscale. Has an effect only if in `marker.color`is set to a numerical array. The colorscale must be an array containing arrays mapping a normalized value to an rgb, rgba, hex, hsl, hsv, or named color string. At minimum, a mapping for the lowest (0) and highest (1) values are required. For example, `[[0, 'rgb(0,0,255)'], [1, 'rgb(255,0,0)']]`. To control the bounds of the colorscale in color space, use`marker.cmin` and `marker.cmax`. Alternatively, `colorscale` may be a palette name string of the following list: Greys,YlGnBu,Greens,YlOrRd,Bluered,RdBu,Reds,Bl ues,Picnic,Rainbow,Portland,Jet,Hot,Blackbody,E arth,Electric,Viridis,Cividis. colorsrc Sets the source reference on Chart Studio Cloud for color . gradient :class:`plotly.graph_objects.scattercarpet.mark er.Gradient` instance or dict with compatible properties line :class:`plotly.graph_objects.scattercarpet.mark er.Line` instance or dict with compatible properties maxdisplayed Sets a maximum number of points to be drawn on the graph. 0 corresponds to no limit. opacity Sets the marker opacity. opacitysrc Sets the source reference on Chart Studio Cloud for opacity . reversescale Reverses the color mapping if true. Has an effect only if in `marker.color`is set to a numerical array. If true, `marker.cmin` will correspond to the last color in the array and `marker.cmax` will correspond to the first color. showscale Determines whether or not a colorbar is displayed for this trace. Has an effect only if in `marker.color`is set to a numerical array. size Sets the marker size (in px). sizemin Has an effect only if `marker.size` is set to a numerical array. Sets the minimum size (in px) of the rendered marker points. sizemode Has an effect only if `marker.size` is set to a numerical array. Sets the rule for which the data in `size` is converted to pixels. sizeref Has an effect only if `marker.size` is set to a numerical array. Sets the scale factor used to determine the rendered size of marker points. Use with `sizemin` and `sizemode`. sizesrc Sets the source reference on Chart Studio Cloud for size . symbol Sets the marker symbol type. Adding 100 is equivalent to appending "-open" to a symbol name. Adding 200 is equivalent to appending "-dot" to a symbol name. Adding 300 is equivalent to appending "-open-dot" or "dot- open" to a symbol name. symbolsrc Sets the source reference on Chart Studio Cloud for symbol . Returns ------- plotly.graph_objs.scattercarpet.Marker """ return self["marker"] @marker.setter def marker(self, val): self["marker"] = val # meta # ---- @property def meta(self): """ Assigns extra meta information associated with this trace that can be used in various text attributes. Attributes such as trace `name`, graph, axis and colorbar `title.text`, annotation `text` `rangeselector`, `updatemenues` and `sliders` `label` text all support `meta`. To access the trace `meta` values in an attribute in the same trace, simply use `%{meta[i]}` where `i` is the index or key of the `meta` item in question. To access trace `meta` in layout attributes, use `%{data[n[.meta[i]}` where `i` is the index or key of the `meta` and `n` is the trace index. The 'meta' property accepts values of any type Returns ------- Any|numpy.ndarray """ return self["meta"] @meta.setter def meta(self, val): self["meta"] = val # metasrc # ------- @property def metasrc(self): """ Sets the source reference on Chart Studio Cloud for meta . The 'metasrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["metasrc"] @metasrc.setter def metasrc(self, val): self["metasrc"] = val # mode # ---- @property def mode(self): """ Determines the drawing mode for this scatter trace. If the provided `mode` includes "text" then the `text` elements appear at the coordinates. Otherwise, the `text` elements appear on hover. If there are less than 20 points and the trace is not stacked then the default is "lines+markers". Otherwise, "lines". The 'mode' property is a flaglist and may be specified as a string containing: - Any combination of ['lines', 'markers', 'text'] joined with '+' characters (e.g. 'lines+markers') OR exactly one of ['none'] (e.g. 'none') Returns ------- Any """ return self["mode"] @mode.setter def mode(self, val): self["mode"] = val # name # ---- @property def name(self): """ Sets the trace name. The trace name appear as the legend item and on hover. The 'name' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["name"] @name.setter def name(self, val): self["name"] = val # opacity # ------- @property def opacity(self): """ Sets the opacity of the trace. The 'opacity' property is a number and may be specified as: - An int or float in the interval [0, 1] Returns ------- int|float """ return self["opacity"] @opacity.setter def opacity(self, val): self["opacity"] = val # selected # -------- @property def selected(self): """ The 'selected' property is an instance of Selected that may be specified as: - An instance of :class:`plotly.graph_objs.scattercarpet.Selected` - A dict of string/value properties that will be passed to the Selected constructor Supported dict properties: marker :class:`plotly.graph_objects.scattercarpet.sele cted.Marker` instance or dict with compatible properties textfont :class:`plotly.graph_objects.scattercarpet.sele cted.Textfont` instance or dict with compatible properties Returns ------- plotly.graph_objs.scattercarpet.Selected """ return self["selected"] @selected.setter def selected(self, val): self["selected"] = val # selectedpoints # -------------- @property def selectedpoints(self): """ Array containing integer indices of selected points. Has an effect only for traces that support selections. Note that an empty array means an empty selection where the `unselected` are turned on for all points, whereas, any other non-array values means no selection all where the `selected` and `unselected` styles have no effect. The 'selectedpoints' property accepts values of any type Returns ------- Any """ return self["selectedpoints"] @selectedpoints.setter def selectedpoints(self, val): self["selectedpoints"] = val # showlegend # ---------- @property def showlegend(self): """ Determines whether or not an item corresponding to this trace is shown in the legend. The 'showlegend' property must be specified as a bool (either True, or False) Returns ------- bool """ return self["showlegend"] @showlegend.setter def showlegend(self, val): self["showlegend"] = val # stream # ------ @property def stream(self): """ The 'stream' property is an instance of Stream that may be specified as: - An instance of :class:`plotly.graph_objs.scattercarpet.Stream` - A dict of string/value properties that will be passed to the Stream constructor Supported dict properties: maxpoints Sets the maximum number of points to keep on the plots from an incoming stream. If `maxpoints` is set to 50, only the newest 50 points will be displayed on the plot. token The stream id number links a data trace on a plot with a stream. See https://chart- studio.plotly.com/settings for more details. Returns ------- plotly.graph_objs.scattercarpet.Stream """ return self["stream"] @stream.setter def stream(self, val): self["stream"] = val # text # ---- @property def text(self): """ Sets text elements associated with each (a,b) point. If a single string, the same string appears over all the data points. If an array of strings, the items are mapped in order to the the data points in (a,b). If trace `hoverinfo` contains a "text" flag and "hovertext" is not set, these elements will be seen in the hover labels. The 'text' property is a string and must be specified as: - A string - A number that will be converted to a string - A tuple, list, or one-dimensional numpy array of the above Returns ------- str|numpy.ndarray """ return self["text"] @text.setter def text(self, val): self["text"] = val # textfont # -------- @property def textfont(self): """ Sets the text font. The 'textfont' property is an instance of Textfont that may be specified as: - An instance of :class:`plotly.graph_objs.scattercarpet.Textfont` - A dict of string/value properties that will be passed to the Textfont constructor Supported dict properties: color colorsrc Sets the source reference on Chart Studio Cloud for color . family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart-studio.plotly.com or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". familysrc Sets the source reference on Chart Studio Cloud for family . size sizesrc Sets the source reference on Chart Studio Cloud for size . Returns ------- plotly.graph_objs.scattercarpet.Textfont """ return self["textfont"] @textfont.setter def textfont(self, val): self["textfont"] = val # textposition # ------------ @property def textposition(self): """ Sets the positions of the `text` elements with respects to the (x,y) coordinates. The 'textposition' property is an enumeration that may be specified as: - One of the following enumeration values: ['top left', 'top center', 'top right', 'middle left', 'middle center', 'middle right', 'bottom left', 'bottom center', 'bottom right'] - A tuple, list, or one-dimensional numpy array of the above Returns ------- Any|numpy.ndarray """ return self["textposition"] @textposition.setter def textposition(self, val): self["textposition"] = val # textpositionsrc # --------------- @property def textpositionsrc(self): """ Sets the source reference on Chart Studio Cloud for textposition . The 'textpositionsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["textpositionsrc"] @textpositionsrc.setter def textpositionsrc(self, val): self["textpositionsrc"] = val # textsrc # ------- @property def textsrc(self): """ Sets the source reference on Chart Studio Cloud for text . The 'textsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["textsrc"] @textsrc.setter def textsrc(self, val): self["textsrc"] = val # texttemplate # ------------ @property def texttemplate(self): """ Template string used for rendering the information text that appear on points. Note that this will override `textinfo`. Variables are inserted using %{variable}, for example "y: %{y}". Numbers are formatted using d3-format's syntax %{variable:d3-format}, for example "Price: %{y:$.2f}". https://github.com/d3/d3-3.x-api- reference/blob/master/Formatting.md#d3_format for details on the formatting syntax. Dates are formatted using d3-time- format's syntax %{variable|d3-time-format}, for example "Day: %{2019-01-01|%A}". https://github.com/d3/d3-3.x-api- reference/blob/master/Time-Formatting.md#format for details on the date formatting syntax. Every attributes that can be specified per-point (the ones that are `arrayOk: true`) are available. variables `a`, `b` and `text`. The 'texttemplate' property is a string and must be specified as: - A string - A number that will be converted to a string - A tuple, list, or one-dimensional numpy array of the above Returns ------- str|numpy.ndarray """ return self["texttemplate"] @texttemplate.setter def texttemplate(self, val): self["texttemplate"] = val # texttemplatesrc # --------------- @property def texttemplatesrc(self): """ Sets the source reference on Chart Studio Cloud for texttemplate . The 'texttemplatesrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["texttemplatesrc"] @texttemplatesrc.setter def texttemplatesrc(self, val): self["texttemplatesrc"] = val # uid # --- @property def uid(self): """ Assign an id to this trace, Use this to provide object constancy between traces during animations and transitions. The 'uid' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["uid"] @uid.setter def uid(self, val): self["uid"] = val # uirevision # ---------- @property def uirevision(self): """ Controls persistence of some user-driven changes to the trace: `constraintrange` in `parcoords` traces, as well as some `editable: true` modifications such as `name` and `colorbar.title`. Defaults to `layout.uirevision`. Note that other user-driven trace attribute changes are controlled by `layout` attributes: `trace.visible` is controlled by `layout.legend.uirevision`, `selectedpoints` is controlled by `layout.selectionrevision`, and `colorbar.(x|y)` (accessible with `config: {editable: true}`) is controlled by `layout.editrevision`. Trace changes are tracked by `uid`, which only falls back on trace index if no `uid` is provided. So if your app can add/remove traces before the end of the `data` array, such that the same trace has a different index, you can still preserve user-driven changes if you give each trace a `uid` that stays with it as it moves. The 'uirevision' property accepts values of any type Returns ------- Any """ return self["uirevision"] @uirevision.setter def uirevision(self, val): self["uirevision"] = val # unselected # ---------- @property def unselected(self): """ The 'unselected' property is an instance of Unselected that may be specified as: - An instance of :class:`plotly.graph_objs.scattercarpet.Unselected` - A dict of string/value properties that will be passed to the Unselected constructor Supported dict properties: marker :class:`plotly.graph_objects.scattercarpet.unse lected.Marker` instance or dict with compatible properties textfont :class:`plotly.graph_objects.scattercarpet.unse lected.Textfont` instance or dict with compatible properties Returns ------- plotly.graph_objs.scattercarpet.Unselected """ return self["unselected"] @unselected.setter def unselected(self, val): self["unselected"] = val # visible # ------- @property def visible(self): """ Determines whether or not this trace is visible. If "legendonly", the trace is not drawn, but can appear as a legend item (provided that the legend itself is visible). The 'visible' property is an enumeration that may be specified as: - One of the following enumeration values: [True, False, 'legendonly'] Returns ------- Any """ return self["visible"] @visible.setter def visible(self, val): self["visible"] = val # xaxis # ----- @property def xaxis(self): """ Sets a reference between this trace's x coordinates and a 2D cartesian x axis. If "x" (the default value), the x coordinates refer to `layout.xaxis`. If "x2", the x coordinates refer to `layout.xaxis2`, and so on. The 'xaxis' property is an identifier of a particular subplot, of type 'x', that may be specified as the string 'x' optionally followed by an integer >= 1 (e.g. 'x', 'x1', 'x2', 'x3', etc.) Returns ------- str """ return self["xaxis"] @xaxis.setter def xaxis(self, val): self["xaxis"] = val # yaxis # ----- @property def yaxis(self): """ Sets a reference between this trace's y coordinates and a 2D cartesian y axis. If "y" (the default value), the y coordinates refer to `layout.yaxis`. If "y2", the y coordinates refer to `layout.yaxis2`, and so on. The 'yaxis' property is an identifier of a particular subplot, of type 'y', that may be specified as the string 'y' optionally followed by an integer >= 1 (e.g. 'y', 'y1', 'y2', 'y3', etc.) Returns ------- str """ return self["yaxis"] @yaxis.setter def yaxis(self, val): self["yaxis"] = val # type # ---- @property def type(self): return self._props["type"] # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ a Sets the a-axis coordinates. asrc Sets the source reference on Chart Studio Cloud for a . b Sets the b-axis coordinates. bsrc Sets the source reference on Chart Studio Cloud for b . carpet An identifier for this carpet, so that `scattercarpet` and `contourcarpet` traces can specify a carpet plot on which they lie connectgaps Determines whether or not gaps (i.e. {nan} or missing values) in the provided data arrays are connected. customdata Assigns extra data each datum. This may be useful when listening to hover, click and selection events. Note that, "scatter" traces also appends customdata items in the markers DOM elements customdatasrc Sets the source reference on Chart Studio Cloud for customdata . fill Sets the area to fill with a solid color. Use with `fillcolor` if not "none". scatterternary has a subset of the options available to scatter. "toself" connects the endpoints of the trace (or each segment of the trace if it has gaps) into a closed shape. "tonext" fills the space between two traces if one completely encloses the other (eg consecutive contour lines), and behaves like "toself" if there is no trace before it. "tonext" should not be used if one trace does not enclose the other. fillcolor Sets the fill color. Defaults to a half-transparent variant of the line color, marker color, or marker line color, whichever is available. hoverinfo Determines which trace information appear on hover. If `none` or `skip` are set, no information is displayed upon hovering. But, if `none` is set, click and hover events are still fired. hoverinfosrc Sets the source reference on Chart Studio Cloud for hoverinfo . hoverlabel :class:`plotly.graph_objects.scattercarpet.Hoverlabel` instance or dict with compatible properties hoveron Do the hover effects highlight individual points (markers or line points) or do they highlight filled regions? If the fill is "toself" or "tonext" and there are no markers or text, then the default is "fills", otherwise it is "points". hovertemplate Template string used for rendering the information that appear on hover box. Note that this will override `hoverinfo`. Variables are inserted using %{variable}, for example "y: %{y}". Numbers are formatted using d3-format's syntax %{variable:d3-format}, for example "Price: %{y:$.2f}". https://github.com/d3/d3-3.x-api- reference/blob/master/Formatting.md#d3_format for details on the formatting syntax. Dates are formatted using d3-time-format's syntax %{variable|d3-time- format}, for example "Day: %{2019-01-01|%A}". https://github.com/d3/d3-3.x-api- reference/blob/master/Time-Formatting.md#format for details on the date formatting syntax. The variables available in `hovertemplate` are the ones emitted as event data described at this link https://plotly.com/javascript/plotlyjs-events/#event- data. Additionally, every attributes that can be specified per-point (the ones that are `arrayOk: true`) are available. Anything contained in tag `<extra>` is displayed in the secondary box, for example "<extra>{fullData.name}</extra>". To hide the secondary box completely, use an empty tag `<extra></extra>`. hovertemplatesrc Sets the source reference on Chart Studio Cloud for hovertemplate . hovertext Sets hover text elements associated with each (a,b) point. If a single string, the same string appears over all the data points. If an array of strings, the items are mapped in order to the the data points in (a,b). To be seen, trace `hoverinfo` must contain a "text" flag. hovertextsrc Sets the source reference on Chart Studio Cloud for hovertext . ids Assigns id labels to each datum. These ids for object constancy of data points during animation. Should be an array of strings, not numbers or any other type. idssrc Sets the source reference on Chart Studio Cloud for ids . legendgroup Sets the legend group for this trace. Traces part of the same legend group hide/show at the same time when toggling legend items. line :class:`plotly.graph_objects.scattercarpet.Line` instance or dict with compatible properties marker :class:`plotly.graph_objects.scattercarpet.Marker` instance or dict with compatible properties meta Assigns extra meta information associated with this trace that can be used in various text attributes. Attributes such as trace `name`, graph, axis and colorbar `title.text`, annotation `text` `rangeselector`, `updatemenues` and `sliders` `label` text all support `meta`. To access the trace `meta` values in an attribute in the same trace, simply use `%{meta[i]}` where `i` is the index or key of the `meta` item in question. To access trace `meta` in layout attributes, use `%{data[n[.meta[i]}` where `i` is the index or key of the `meta` and `n` is the trace index. metasrc Sets the source reference on Chart Studio Cloud for meta . mode Determines the drawing mode for this scatter trace. If the provided `mode` includes "text" then the `text` elements appear at the coordinates. Otherwise, the `text` elements appear on hover. If there are less than 20 points and the trace is not stacked then the default is "lines+markers". Otherwise, "lines". name Sets the trace name. The trace name appear as the legend item and on hover. opacity Sets the opacity of the trace. selected :class:`plotly.graph_objects.scattercarpet.Selected` instance or dict with compatible properties selectedpoints Array containing integer indices of selected points. Has an effect only for traces that support selections. Note that an empty array means an empty selection where the `unselected` are turned on for all points, whereas, any other non-array values means no selection all where the `selected` and `unselected` styles have no effect. showlegend Determines whether or not an item corresponding to this trace is shown in the legend. stream :class:`plotly.graph_objects.scattercarpet.Stream` instance or dict with compatible properties text Sets text elements associated with each (a,b) point. If a single string, the same string appears over all the data points. If an array of strings, the items are mapped in order to the the data points in (a,b). If trace `hoverinfo` contains a "text" flag and "hovertext" is not set, these elements will be seen in the hover labels. textfont Sets the text font. textposition Sets the positions of the `text` elements with respects to the (x,y) coordinates. textpositionsrc Sets the source reference on Chart Studio Cloud for textposition . textsrc Sets the source reference on Chart Studio Cloud for text . texttemplate Template string used for rendering the information text that appear on points. Note that this will override `textinfo`. Variables are inserted using %{variable}, for example "y: %{y}". Numbers are formatted using d3-format's syntax %{variable:d3-format}, for example "Price: %{y:$.2f}". https://github.com/d3/d3-3.x-api- reference/blob/master/Formatting.md#d3_format for details on the formatting syntax. Dates are formatted using d3-time-format's syntax %{variable|d3-time- format}, for example "Day: %{2019-01-01|%A}". https://github.com/d3/d3-3.x-api- reference/blob/master/Time-Formatting.md#format for details on the date formatting syntax. Every attributes that can be specified per-point (the ones that are `arrayOk: true`) are available. variables `a`, `b` and `text`. texttemplatesrc Sets the source reference on Chart Studio Cloud for texttemplate . uid Assign an id to this trace, Use this to provide object constancy between traces during animations and transitions. uirevision Controls persistence of some user-driven changes to the trace: `constraintrange` in `parcoords` traces, as well as some `editable: true` modifications such as `name` and `colorbar.title`. Defaults to `layout.uirevision`. Note that other user-driven trace attribute changes are controlled by `layout` attributes: `trace.visible` is controlled by `layout.legend.uirevision`, `selectedpoints` is controlled by `layout.selectionrevision`, and `colorbar.(x|y)` (accessible with `config: {editable: true}`) is controlled by `layout.editrevision`. Trace changes are tracked by `uid`, which only falls back on trace index if no `uid` is provided. So if your app can add/remove traces before the end of the `data` array, such that the same trace has a different index, you can still preserve user-driven changes if you give each trace a `uid` that stays with it as it moves. unselected :class:`plotly.graph_objects.scattercarpet.Unselected` instance or dict with compatible properties visible Determines whether or not this trace is visible. If "legendonly", the trace is not drawn, but can appear as a legend item (provided that the legend itself is visible). xaxis Sets a reference between this trace's x coordinates and a 2D cartesian x axis. If "x" (the default value), the x coordinates refer to `layout.xaxis`. If "x2", the x coordinates refer to `layout.xaxis2`, and so on. yaxis Sets a reference between this trace's y coordinates and a 2D cartesian y axis. If "y" (the default value), the y coordinates refer to `layout.yaxis`. If "y2", the y coordinates refer to `layout.yaxis2`, and so on. """ def __init__( self, arg=None, a=None, asrc=None, b=None, bsrc=None, carpet=None, connectgaps=None, customdata=None, customdatasrc=None, fill=None, fillcolor=None, hoverinfo=None, hoverinfosrc=None, hoverlabel=None, hoveron=None, hovertemplate=None, hovertemplatesrc=None, hovertext=None, hovertextsrc=None, ids=None, idssrc=None, legendgroup=None, line=None, marker=None, meta=None, metasrc=None, mode=None, name=None, opacity=None, selected=None, selectedpoints=None, showlegend=None, stream=None, text=None, textfont=None, textposition=None, textpositionsrc=None, textsrc=None, texttemplate=None, texttemplatesrc=None, uid=None, uirevision=None, unselected=None, visible=None, xaxis=None, yaxis=None, **kwargs ): """ Construct a new Scattercarpet object Plots a scatter trace on either the first carpet axis or the carpet axis with a matching `carpet` attribute. Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.Scattercarpet` a Sets the a-axis coordinates. asrc Sets the source reference on Chart Studio Cloud for a . b Sets the b-axis coordinates. bsrc Sets the source reference on Chart Studio Cloud for b . carpet An identifier for this carpet, so that `scattercarpet` and `contourcarpet` traces can specify a carpet plot on which they lie connectgaps Determines whether or not gaps (i.e. {nan} or missing values) in the provided data arrays are connected. customdata Assigns extra data each datum. This may be useful when listening to hover, click and selection events. Note that, "scatter" traces also appends customdata items in the markers DOM elements customdatasrc Sets the source reference on Chart Studio Cloud for customdata . fill Sets the area to fill with a solid color. Use with `fillcolor` if not "none". scatterternary has a subset of the options available to scatter. "toself" connects the endpoints of the trace (or each segment of the trace if it has gaps) into a closed shape. "tonext" fills the space between two traces if one completely encloses the other (eg consecutive contour lines), and behaves like "toself" if there is no trace before it. "tonext" should not be used if one trace does not enclose the other. fillcolor Sets the fill color. Defaults to a half-transparent variant of the line color, marker color, or marker line color, whichever is available. hoverinfo Determines which trace information appear on hover. If `none` or `skip` are set, no information is displayed upon hovering. But, if `none` is set, click and hover events are still fired. hoverinfosrc Sets the source reference on Chart Studio Cloud for hoverinfo . hoverlabel :class:`plotly.graph_objects.scattercarpet.Hoverlabel` instance or dict with compatible properties hoveron Do the hover effects highlight individual points (markers or line points) or do they highlight filled regions? If the fill is "toself" or "tonext" and there are no markers or text, then the default is "fills", otherwise it is "points". hovertemplate Template string used for rendering the information that appear on hover box. Note that this will override `hoverinfo`. Variables are inserted using %{variable}, for example "y: %{y}". Numbers are formatted using d3-format's syntax %{variable:d3-format}, for example "Price: %{y:$.2f}". https://github.com/d3/d3-3.x-api- reference/blob/master/Formatting.md#d3_format for details on the formatting syntax. Dates are formatted using d3-time-format's syntax %{variable|d3-time- format}, for example "Day: %{2019-01-01|%A}". https://github.com/d3/d3-3.x-api- reference/blob/master/Time-Formatting.md#format for details on the date formatting syntax. The variables available in `hovertemplate` are the ones emitted as event data described at this link https://plotly.com/javascript/plotlyjs-events/#event- data. Additionally, every attributes that can be specified per-point (the ones that are `arrayOk: true`) are available. Anything contained in tag `<extra>` is displayed in the secondary box, for example "<extra>{fullData.name}</extra>". To hide the secondary box completely, use an empty tag `<extra></extra>`. hovertemplatesrc Sets the source reference on Chart Studio Cloud for hovertemplate . hovertext Sets hover text elements associated with each (a,b) point. If a single string, the same string appears over all the data points. If an array of strings, the items are mapped in order to the the data points in (a,b). To be seen, trace `hoverinfo` must contain a "text" flag. hovertextsrc Sets the source reference on Chart Studio Cloud for hovertext . ids Assigns id labels to each datum. These ids for object constancy of data points during animation. Should be an array of strings, not numbers or any other type. idssrc Sets the source reference on Chart Studio Cloud for ids . legendgroup Sets the legend group for this trace. Traces part of the same legend group hide/show at the same time when toggling legend items. line :class:`plotly.graph_objects.scattercarpet.Line` instance or dict with compatible properties marker :class:`plotly.graph_objects.scattercarpet.Marker` instance or dict with compatible properties meta Assigns extra meta information associated with this trace that can be used in various text attributes. Attributes such as trace `name`, graph, axis and colorbar `title.text`, annotation `text` `rangeselector`, `updatemenues` and `sliders` `label` text all support `meta`. To access the trace `meta` values in an attribute in the same trace, simply use `%{meta[i]}` where `i` is the index or key of the `meta` item in question. To access trace `meta` in layout attributes, use `%{data[n[.meta[i]}` where `i` is the index or key of the `meta` and `n` is the trace index. metasrc Sets the source reference on Chart Studio Cloud for meta . mode Determines the drawing mode for this scatter trace. If the provided `mode` includes "text" then the `text` elements appear at the coordinates. Otherwise, the `text` elements appear on hover. If there are less than 20 points and the trace is not stacked then the default is "lines+markers". Otherwise, "lines". name Sets the trace name. The trace name appear as the legend item and on hover. opacity Sets the opacity of the trace. selected :class:`plotly.graph_objects.scattercarpet.Selected` instance or dict with compatible properties selectedpoints Array containing integer indices of selected points. Has an effect only for traces that support selections. Note that an empty array means an empty selection where the `unselected` are turned on for all points, whereas, any other non-array values means no selection all where the `selected` and `unselected` styles have no effect. showlegend Determines whether or not an item corresponding to this trace is shown in the legend. stream :class:`plotly.graph_objects.scattercarpet.Stream` instance or dict with compatible properties text Sets text elements associated with each (a,b) point. If a single string, the same string appears over all the data points. If an array of strings, the items are mapped in order to the the data points in (a,b). If trace `hoverinfo` contains a "text" flag and "hovertext" is not set, these elements will be seen in the hover labels. textfont Sets the text font. textposition Sets the positions of the `text` elements with respects to the (x,y) coordinates. textpositionsrc Sets the source reference on Chart Studio Cloud for textposition . textsrc Sets the source reference on Chart Studio Cloud for text . texttemplate Template string used for rendering the information text that appear on points. Note that this will override `textinfo`. Variables are inserted using %{variable}, for example "y: %{y}". Numbers are formatted using d3-format's syntax %{variable:d3-format}, for example "Price: %{y:$.2f}". https://github.com/d3/d3-3.x-api- reference/blob/master/Formatting.md#d3_format for details on the formatting syntax. Dates are formatted using d3-time-format's syntax %{variable|d3-time- format}, for example "Day: %{2019-01-01|%A}". https://github.com/d3/d3-3.x-api- reference/blob/master/Time-Formatting.md#format for details on the date formatting syntax. Every attributes that can be specified per-point (the ones that are `arrayOk: true`) are available. variables `a`, `b` and `text`. texttemplatesrc Sets the source reference on Chart Studio Cloud for texttemplate . uid Assign an id to this trace, Use this to provide object constancy between traces during animations and transitions. uirevision Controls persistence of some user-driven changes to the trace: `constraintrange` in `parcoords` traces, as well as some `editable: true` modifications such as `name` and `colorbar.title`. Defaults to `layout.uirevision`. Note that other user-driven trace attribute changes are controlled by `layout` attributes: `trace.visible` is controlled by `layout.legend.uirevision`, `selectedpoints` is controlled by `layout.selectionrevision`, and `colorbar.(x|y)` (accessible with `config: {editable: true}`) is controlled by `layout.editrevision`. Trace changes are tracked by `uid`, which only falls back on trace index if no `uid` is provided. So if your app can add/remove traces before the end of the `data` array, such that the same trace has a different index, you can still preserve user-driven changes if you give each trace a `uid` that stays with it as it moves. unselected :class:`plotly.graph_objects.scattercarpet.Unselected` instance or dict with compatible properties visible Determines whether or not this trace is visible. If "legendonly", the trace is not drawn, but can appear as a legend item (provided that the legend itself is visible). xaxis Sets a reference between this trace's x coordinates and a 2D cartesian x axis. If "x" (the default value), the x coordinates refer to `layout.xaxis`. If "x2", the x coordinates refer to `layout.xaxis2`, and so on. yaxis Sets a reference between this trace's y coordinates and a 2D cartesian y axis. If "y" (the default value), the y coordinates refer to `layout.yaxis`. If "y2", the y coordinates refer to `layout.yaxis2`, and so on. Returns ------- Scattercarpet """ super(Scattercarpet, self).__init__("scattercarpet") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.Scattercarpet constructor must be a dict or an instance of :class:`plotly.graph_objs.Scattercarpet`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("a", None) _v = a if a is not None else _v if _v is not None: self["a"] = _v _v = arg.pop("asrc", None) _v = asrc if asrc is not None else _v if _v is not None: self["asrc"] = _v _v = arg.pop("b", None) _v = b if b is not None else _v if _v is not None: self["b"] = _v _v = arg.pop("bsrc", None) _v = bsrc if bsrc is not None else _v if _v is not None: self["bsrc"] = _v _v = arg.pop("carpet", None) _v = carpet if carpet is not None else _v if _v is not None: self["carpet"] = _v _v = arg.pop("connectgaps", None) _v = connectgaps if connectgaps is not None else _v if _v is not None: self["connectgaps"] = _v _v = arg.pop("customdata", None) _v = customdata if customdata is not None else _v if _v is not None: self["customdata"] = _v _v = arg.pop("customdatasrc", None) _v = customdatasrc if customdatasrc is not None else _v if _v is not None: self["customdatasrc"] = _v _v = arg.pop("fill", None) _v = fill if fill is not None else _v if _v is not None: self["fill"] = _v _v = arg.pop("fillcolor", None) _v = fillcolor if fillcolor is not None else _v if _v is not None: self["fillcolor"] = _v _v = arg.pop("hoverinfo", None) _v = hoverinfo if hoverinfo is not None else _v if _v is not None: self["hoverinfo"] = _v _v = arg.pop("hoverinfosrc", None) _v = hoverinfosrc if hoverinfosrc is not None else _v if _v is not None: self["hoverinfosrc"] = _v _v = arg.pop("hoverlabel", None) _v = hoverlabel if hoverlabel is not None else _v if _v is not None: self["hoverlabel"] = _v _v = arg.pop("hoveron", None) _v = hoveron if hoveron is not None else _v if _v is not None: self["hoveron"] = _v _v = arg.pop("hovertemplate", None) _v = hovertemplate if hovertemplate is not None else _v if _v is not None: self["hovertemplate"] = _v _v = arg.pop("hovertemplatesrc", None) _v = hovertemplatesrc if hovertemplatesrc is not None else _v if _v is not None: self["hovertemplatesrc"] = _v _v = arg.pop("hovertext", None) _v = hovertext if hovertext is not None else _v if _v is not None: self["hovertext"] = _v _v = arg.pop("hovertextsrc", None) _v = hovertextsrc if hovertextsrc is not None else _v if _v is not None: self["hovertextsrc"] = _v _v = arg.pop("ids", None) _v = ids if ids is not None else _v if _v is not None: self["ids"] = _v _v = arg.pop("idssrc", None) _v = idssrc if idssrc is not None else _v if _v is not None: self["idssrc"] = _v _v = arg.pop("legendgroup", None) _v = legendgroup if legendgroup is not None else _v if _v is not None: self["legendgroup"] = _v _v = arg.pop("line", None) _v = line if line is not None else _v if _v is not None: self["line"] = _v _v = arg.pop("marker", None) _v = marker if marker is not None else _v if _v is not None: self["marker"] = _v _v = arg.pop("meta", None) _v = meta if meta is not None else _v if _v is not None: self["meta"] = _v _v = arg.pop("metasrc", None) _v = metasrc if metasrc is not None else _v if _v is not None: self["metasrc"] = _v _v = arg.pop("mode", None) _v = mode if mode is not None else _v if _v is not None: self["mode"] = _v _v = arg.pop("name", None) _v = name if name is not None else _v if _v is not None: self["name"] = _v _v = arg.pop("opacity", None) _v = opacity if opacity is not None else _v if _v is not None: self["opacity"] = _v _v = arg.pop("selected", None) _v = selected if selected is not None else _v if _v is not None: self["selected"] = _v _v = arg.pop("selectedpoints", None) _v = selectedpoints if selectedpoints is not None else _v if _v is not None: self["selectedpoints"] = _v _v = arg.pop("showlegend", None) _v = showlegend if showlegend is not None else _v if _v is not None: self["showlegend"] = _v _v = arg.pop("stream", None) _v = stream if stream is not None else _v if _v is not None: self["stream"] = _v _v = arg.pop("text", None) _v = text if text is not None else _v if _v is not None: self["text"] = _v _v = arg.pop("textfont", None) _v = textfont if textfont is not None else _v if _v is not None: self["textfont"] = _v _v = arg.pop("textposition", None) _v = textposition if textposition is not None else _v if _v is not None: self["textposition"] = _v _v = arg.pop("textpositionsrc", None) _v = textpositionsrc if textpositionsrc is not None else _v if _v is not None: self["textpositionsrc"] = _v _v = arg.pop("textsrc", None) _v = textsrc if textsrc is not None else _v if _v is not None: self["textsrc"] = _v _v = arg.pop("texttemplate", None) _v = texttemplate if texttemplate is not None else _v if _v is not None: self["texttemplate"] = _v _v = arg.pop("texttemplatesrc", None) _v = texttemplatesrc if texttemplatesrc is not None else _v if _v is not None: self["texttemplatesrc"] = _v _v = arg.pop("uid", None) _v = uid if uid is not None else _v if _v is not None: self["uid"] = _v _v = arg.pop("uirevision", None) _v = uirevision if uirevision is not None else _v if _v is not None: self["uirevision"] = _v _v = arg.pop("unselected", None) _v = unselected if unselected is not None else _v if _v is not None: self["unselected"] = _v _v = arg.pop("visible", None) _v = visible if visible is not None else _v if _v is not None: self["visible"] = _v _v = arg.pop("xaxis", None) _v = xaxis if xaxis is not None else _v if _v is not None: self["xaxis"] = _v _v = arg.pop("yaxis", None) _v = yaxis if yaxis is not None else _v if _v is not None: self["yaxis"] = _v # Read-only literals # ------------------ self._props["type"] = "scattercarpet" arg.pop("type", None) # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
mit
kaiserroll14/301finalproject
main/pandas/computation/scope.py
24
9002
"""Module for scope operations """ import sys import struct import inspect import datetime import itertools import pprint import numpy as np import pandas as pd from pandas.compat import DeepChainMap, map, StringIO from pandas.core.base import StringMixin import pandas.computation as compu def _ensure_scope(level, global_dict=None, local_dict=None, resolvers=(), target=None, **kwargs): """Ensure that we are grabbing the correct scope.""" return Scope(level + 1, global_dict=global_dict, local_dict=local_dict, resolvers=resolvers, target=target) def _replacer(x): """Replace a number with its hexadecimal representation. Used to tag temporary variables with their calling scope's id. """ # get the hex repr of the binary char and remove 0x and pad by pad_size # zeros try: hexin = ord(x) except TypeError: # bytes literals masquerade as ints when iterating in py3 hexin = x return hex(hexin) def _raw_hex_id(obj): """Return the padded hexadecimal id of ``obj``.""" # interpret as a pointer since that's what really what id returns packed = struct.pack('@P', id(obj)) return ''.join(map(_replacer, packed)) _DEFAULT_GLOBALS = { 'Timestamp': pd.lib.Timestamp, 'datetime': datetime.datetime, 'True': True, 'False': False, 'list': list, 'tuple': tuple, 'inf': np.inf, 'Inf': np.inf, } def _get_pretty_string(obj): """Return a prettier version of obj Parameters ---------- obj : object Object to pretty print Returns ------- s : str Pretty print object repr """ sio = StringIO() pprint.pprint(obj, stream=sio) return sio.getvalue() class Scope(StringMixin): """Object to hold scope, with a few bells to deal with some custom syntax and contexts added by pandas. Parameters ---------- level : int global_dict : dict or None, optional, default None local_dict : dict or Scope or None, optional, default None resolvers : list-like or None, optional, default None target : object Attributes ---------- level : int scope : DeepChainMap target : object temps : dict """ __slots__ = 'level', 'scope', 'target', 'temps' def __init__(self, level, global_dict=None, local_dict=None, resolvers=(), target=None): self.level = level + 1 # shallow copy because we don't want to keep filling this up with what # was there before if there are multiple calls to Scope/_ensure_scope self.scope = DeepChainMap(_DEFAULT_GLOBALS.copy()) self.target = target if isinstance(local_dict, Scope): self.scope.update(local_dict.scope) if local_dict.target is not None: self.target = local_dict.target self.update(local_dict.level) frame = sys._getframe(self.level) try: # shallow copy here because we don't want to replace what's in # scope when we align terms (alignment accesses the underlying # numpy array of pandas objects) self.scope = self.scope.new_child((global_dict or frame.f_globals).copy()) if not isinstance(local_dict, Scope): self.scope = self.scope.new_child((local_dict or frame.f_locals).copy()) finally: del frame # assumes that resolvers are going from outermost scope to inner if isinstance(local_dict, Scope): resolvers += tuple(local_dict.resolvers.maps) self.resolvers = DeepChainMap(*resolvers) self.temps = {} def __unicode__(self): scope_keys = _get_pretty_string(list(self.scope.keys())) res_keys = _get_pretty_string(list(self.resolvers.keys())) return '%s(scope=%s, resolvers=%s)' % (type(self).__name__, scope_keys, res_keys) @property def has_resolvers(self): """Return whether we have any extra scope. For example, DataFrames pass Their columns as resolvers during calls to ``DataFrame.eval()`` and ``DataFrame.query()``. Returns ------- hr : bool """ return bool(len(self.resolvers)) def resolve(self, key, is_local): """Resolve a variable name in a possibly local context Parameters ---------- key : text_type A variable name is_local : bool Flag indicating whether the variable is local or not (prefixed with the '@' symbol) Returns ------- value : object The value of a particular variable """ try: # only look for locals in outer scope if is_local: return self.scope[key] # not a local variable so check in resolvers if we have them if self.has_resolvers: return self.resolvers[key] # if we're here that means that we have no locals and we also have # no resolvers assert not is_local and not self.has_resolvers return self.scope[key] except KeyError: try: # last ditch effort we look in temporaries # these are created when parsing indexing expressions # e.g., df[df > 0] return self.temps[key] except KeyError: raise compu.ops.UndefinedVariableError(key, is_local) def swapkey(self, old_key, new_key, new_value=None): """Replace a variable name, with a potentially new value. Parameters ---------- old_key : str Current variable name to replace new_key : str New variable name to replace `old_key` with new_value : object Value to be replaced along with the possible renaming """ if self.has_resolvers: maps = self.resolvers.maps + self.scope.maps else: maps = self.scope.maps maps.append(self.temps) for mapping in maps: if old_key in mapping: mapping[new_key] = new_value return def _get_vars(self, stack, scopes): """Get specifically scoped variables from a list of stack frames. Parameters ---------- stack : list A list of stack frames as returned by ``inspect.stack()`` scopes : sequence of strings A sequence containing valid stack frame attribute names that evaluate to a dictionary. For example, ('locals', 'globals') """ variables = itertools.product(scopes, stack) for scope, (frame, _, _, _, _, _) in variables: try: d = getattr(frame, 'f_' + scope) self.scope = self.scope.new_child(d) finally: # won't remove it, but DECREF it # in Py3 this probably isn't necessary since frame won't be # scope after the loop del frame def update(self, level): """Update the current scope by going back `level` levels. Parameters ---------- level : int or None, optional, default None """ sl = level + 1 # add sl frames to the scope starting with the # most distant and overwriting with more current # makes sure that we can capture variable scope stack = inspect.stack() try: self._get_vars(stack[:sl], scopes=['locals']) finally: del stack[:], stack def add_tmp(self, value): """Add a temporary variable to the scope. Parameters ---------- value : object An arbitrary object to be assigned to a temporary variable. Returns ------- name : basestring The name of the temporary variable created. """ name = '{0}_{1}_{2}'.format(type(value).__name__, self.ntemps, _raw_hex_id(self)) # add to inner most scope assert name not in self.temps self.temps[name] = value assert name in self.temps # only increment if the variable gets put in the scope return name @property def ntemps(self): """The number of temporary variables in this scope""" return len(self.temps) @property def full_scope(self): """Return the full scope for use with passing to engines transparently as a mapping. Returns ------- vars : DeepChainMap All variables in this scope. """ maps = [self.temps] + self.resolvers.maps + self.scope.maps return DeepChainMap(*maps)
gpl-3.0
ast0815/remu
docs/examples/02/fit_models.py
2
3824
from six import print_ import numpy as np from remu import binning from remu import plotting from remu import likelihood from multiprocess import Pool pool = Pool(8) likelihood.mapper = pool.map response_matrix = "../01/response_matrix.npz" with open("../01/reco-binning.yml", 'rt') as f: reco_binning = binning.yaml.full_load(f) with open("../01/optimised-truth-binning.yml", 'rt') as f: truth_binning = binning.yaml.full_load(f) reco_binning.fill_from_csv_file("../00/real_data.txt") data = reco_binning.get_entries_as_ndarray() data_model = likelihood.PoissonData(data) matrix_predictor = likelihood.ResponseMatrixPredictor(response_matrix) calc = likelihood.LikelihoodCalculator(data_model, matrix_predictor) test = likelihood.HypothesisTester(calc) truth_binning.fill_from_csv_file("../00/modelA_truth.txt") modelA = truth_binning.get_values_as_ndarray() modelA /= np.sum(modelA) truth_binning.reset() truth_binning.fill_from_csv_file("../00/modelB_truth.txt") modelB = truth_binning.get_values_as_ndarray() modelB /= np.sum(modelB) with open("simple_hypotheses.txt", 'w') as f: print_(calc(modelA*1000), file=f) print_(test.likelihood_p_value(modelA*1000), file=f) print_(calc(modelB*1000), file=f) print_(test.likelihood_p_value(modelB*1000), file=f) modelA_shape = likelihood.TemplatePredictor([modelA]) modelA_reco_shape = matrix_predictor.compose(modelA_shape) calcA = likelihood.LikelihoodCalculator(data_model, modelA_reco_shape) maxi = likelihood.BasinHoppingMaximizer() retA = maxi(calcA) with open("modelA_fit.txt", 'w') as f: print_(retA, file=f) modelB_shape = likelihood.TemplatePredictor([modelB]) calcB = calc.compose(modelB_shape) retB = maxi(calcB) with open("modelB_fit.txt", 'w') as f: print_(retB, file=f) testA = likelihood.HypothesisTester(calcA, maximizer=maxi) testB = likelihood.HypothesisTester(calcB, maximizer=maxi) with open("fit_p-values.txt", 'w') as f: print_(testA.max_likelihood_p_value(), file=f) print_(testB.max_likelihood_p_value(), file=f) pltr = plotting.get_plotter(reco_binning) pltr.plot_entries(label='data', hatch=None) modelA_reco, modelA_weights = modelA_reco_shape(retA.x) modelA_logL = calcA(retA.x) modelA_p = testA.likelihood_p_value(retA.x) modelB_reco, modelB_weights = calcB.predictor(retB.x) modelB_logL = calcB(retB.x) modelB_p = testB.likelihood_p_value(retB.x) pltr.plot_array(modelA_reco, label='model A: $\log L=%.1f$, $p=%.3f$'%(modelA_logL, modelA_p), hatch=None, linestyle='dashed') pltr.plot_array(modelB_reco, label='model B: $\log L=%.1f$, $p=%.3f$'%(modelB_logL, modelB_p), hatch=None, linestyle='dotted') pltr.legend(loc='lower center') pltr.savefig("reco-comparison.png") mix_model = likelihood.TemplatePredictor([modelA, modelB]) calc_mix = calc.compose(mix_model) ret = maxi.maximize_log_likelihood(calc_mix) with open("mix_model_fit.txt", 'w') as f: print_(ret, file=f) test = likelihood.HypothesisTester(calc_mix) with open("mix_model_p_value.txt", 'w') as f: print_(test.max_likelihood_p_value(), file=f) p_values = [] A_values = np.linspace(0, 1000, 11) for A in A_values: p = test.max_likelihood_ratio_p_value((A,None)) print_(A, p) p_values.append(p) wilks_p_values = [] fine_A_values = np.linspace(0, 1000, 100) for A in fine_A_values: p = test.wilks_max_likelihood_ratio_p_value((A,None)) print_(A, p) wilks_p_values.append(p) from matplotlib import pyplot as plt fig, ax = plt.subplots() ax.set_xlabel("Model A weight") ax.set_ylabel("p-value") ax.plot(A_values, p_values, label="Profile plug-in") ax.plot(fine_A_values, wilks_p_values, label="Wilks") ax.axvline(ret.x[0], color='k', linestyle='solid') ax.axhline(0.32, color='k', linestyle='dashed') ax.axhline(0.05, color='k', linestyle='dashed') ax.legend(loc='best') fig.savefig("p-values.png")
mit
IndraVikas/scikit-learn
examples/linear_model/plot_polynomial_interpolation.py
251
1895
#!/usr/bin/env python """ ======================== Polynomial interpolation ======================== This example demonstrates how to approximate a function with a polynomial of degree n_degree by using ridge regression. Concretely, from n_samples 1d points, it suffices to build the Vandermonde matrix, which is n_samples x n_degree+1 and has the following form: [[1, x_1, x_1 ** 2, x_1 ** 3, ...], [1, x_2, x_2 ** 2, x_2 ** 3, ...], ...] Intuitively, this matrix can be interpreted as a matrix of pseudo features (the points raised to some power). The matrix is akin to (but different from) the matrix induced by a polynomial kernel. This example shows that you can do non-linear regression with a linear model, using a pipeline to add non-linear features. Kernel methods extend this idea and can induce very high (even infinite) dimensional feature spaces. """ print(__doc__) # Author: Mathieu Blondel # Jake Vanderplas # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import Ridge from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import make_pipeline def f(x): """ function to approximate by polynomial interpolation""" return x * np.sin(x) # generate points used to plot x_plot = np.linspace(0, 10, 100) # generate points and keep a subset of them x = np.linspace(0, 10, 100) rng = np.random.RandomState(0) rng.shuffle(x) x = np.sort(x[:20]) y = f(x) # create matrix versions of these arrays X = x[:, np.newaxis] X_plot = x_plot[:, np.newaxis] plt.plot(x_plot, f(x_plot), label="ground truth") plt.scatter(x, y, label="training points") for degree in [3, 4, 5]: model = make_pipeline(PolynomialFeatures(degree), Ridge()) model.fit(X, y) y_plot = model.predict(X_plot) plt.plot(x_plot, y_plot, label="degree %d" % degree) plt.legend(loc='lower left') plt.show()
bsd-3-clause
vortex-ape/scikit-learn
sklearn/metrics/tests/test_regression.py
21
8513
from __future__ import division, print_function import numpy as np from itertools import product from sklearn.utils.testing import assert_raises, assert_raises_regex from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.metrics import explained_variance_score from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_squared_log_error from sklearn.metrics import median_absolute_error from sklearn.metrics import r2_score from sklearn.metrics.regression import _check_reg_targets def test_regression_metrics(n_samples=50): y_true = np.arange(n_samples) y_pred = y_true + 1 assert_almost_equal(mean_squared_error(y_true, y_pred), 1.) assert_almost_equal(mean_squared_log_error(y_true, y_pred), mean_squared_error(np.log(1 + y_true), np.log(1 + y_pred))) assert_almost_equal(mean_absolute_error(y_true, y_pred), 1.) assert_almost_equal(median_absolute_error(y_true, y_pred), 1.) assert_almost_equal(r2_score(y_true, y_pred), 0.995, 2) assert_almost_equal(explained_variance_score(y_true, y_pred), 1.) def test_multioutput_regression(): y_true = np.array([[1, 0, 0, 1], [0, 1, 1, 1], [1, 1, 0, 1]]) y_pred = np.array([[0, 0, 0, 1], [1, 0, 1, 1], [0, 0, 0, 1]]) error = mean_squared_error(y_true, y_pred) assert_almost_equal(error, (1. / 3 + 2. / 3 + 2. / 3) / 4.) error = mean_squared_log_error(y_true, y_pred) assert_almost_equal(error, 0.200, decimal=2) # mean_absolute_error and mean_squared_error are equal because # it is a binary problem. error = mean_absolute_error(y_true, y_pred) assert_almost_equal(error, (1. / 3 + 2. / 3 + 2. / 3) / 4.) error = r2_score(y_true, y_pred, multioutput='variance_weighted') assert_almost_equal(error, 1. - 5. / 2) error = r2_score(y_true, y_pred, multioutput='uniform_average') assert_almost_equal(error, -.875) def test_regression_metrics_at_limits(): assert_almost_equal(mean_squared_error([0.], [0.]), 0.00, 2) assert_almost_equal(mean_squared_log_error([0.], [0.]), 0.00, 2) assert_almost_equal(mean_absolute_error([0.], [0.]), 0.00, 2) assert_almost_equal(median_absolute_error([0.], [0.]), 0.00, 2) assert_almost_equal(explained_variance_score([0.], [0.]), 1.00, 2) assert_almost_equal(r2_score([0., 1], [0., 1]), 1.00, 2) assert_raises_regex(ValueError, "Mean Squared Logarithmic Error cannot be " "used when targets contain negative values.", mean_squared_log_error, [-1.], [-1.]) assert_raises_regex(ValueError, "Mean Squared Logarithmic Error cannot be " "used when targets contain negative values.", mean_squared_log_error, [1., 2., 3.], [1., -2., 3.]) assert_raises_regex(ValueError, "Mean Squared Logarithmic Error cannot be " "used when targets contain negative values.", mean_squared_log_error, [1., -2., 3.], [1., 2., 3.]) def test__check_reg_targets(): # All of length 3 EXAMPLES = [ ("continuous", [1, 2, 3], 1), ("continuous", [[1], [2], [3]], 1), ("continuous-multioutput", [[1, 1], [2, 2], [3, 1]], 2), ("continuous-multioutput", [[5, 1], [4, 2], [3, 1]], 2), ("continuous-multioutput", [[1, 3, 4], [2, 2, 2], [3, 1, 1]], 3), ] for (type1, y1, n_out1), (type2, y2, n_out2) in product(EXAMPLES, repeat=2): if type1 == type2 and n_out1 == n_out2: y_type, y_check1, y_check2, multioutput = _check_reg_targets( y1, y2, None) assert_equal(type1, y_type) if type1 == 'continuous': assert_array_equal(y_check1, np.reshape(y1, (-1, 1))) assert_array_equal(y_check2, np.reshape(y2, (-1, 1))) else: assert_array_equal(y_check1, y1) assert_array_equal(y_check2, y2) else: assert_raises(ValueError, _check_reg_targets, y1, y2, None) def test__check_reg_targets_exception(): invalid_multioutput = 'this_value_is_not_valid' expected_message = ("Allowed 'multioutput' string values are.+" "You provided multioutput={!r}".format( invalid_multioutput)) assert_raises_regex(ValueError, expected_message, _check_reg_targets, [1, 2, 3], [[1], [2], [3]], invalid_multioutput) def test_regression_multioutput_array(): y_true = [[1, 2], [2.5, -1], [4.5, 3], [5, 7]] y_pred = [[1, 1], [2, -1], [5, 4], [5, 6.5]] mse = mean_squared_error(y_true, y_pred, multioutput='raw_values') mae = mean_absolute_error(y_true, y_pred, multioutput='raw_values') r = r2_score(y_true, y_pred, multioutput='raw_values') evs = explained_variance_score(y_true, y_pred, multioutput='raw_values') assert_array_almost_equal(mse, [0.125, 0.5625], decimal=2) assert_array_almost_equal(mae, [0.25, 0.625], decimal=2) assert_array_almost_equal(r, [0.95, 0.93], decimal=2) assert_array_almost_equal(evs, [0.95, 0.93], decimal=2) # mean_absolute_error and mean_squared_error are equal because # it is a binary problem. y_true = [[0, 0]]*4 y_pred = [[1, 1]]*4 mse = mean_squared_error(y_true, y_pred, multioutput='raw_values') mae = mean_absolute_error(y_true, y_pred, multioutput='raw_values') r = r2_score(y_true, y_pred, multioutput='raw_values') assert_array_almost_equal(mse, [1., 1.], decimal=2) assert_array_almost_equal(mae, [1., 1.], decimal=2) assert_array_almost_equal(r, [0., 0.], decimal=2) r = r2_score([[0, -1], [0, 1]], [[2, 2], [1, 1]], multioutput='raw_values') assert_array_almost_equal(r, [0, -3.5], decimal=2) assert_equal(np.mean(r), r2_score([[0, -1], [0, 1]], [[2, 2], [1, 1]], multioutput='uniform_average')) evs = explained_variance_score([[0, -1], [0, 1]], [[2, 2], [1, 1]], multioutput='raw_values') assert_array_almost_equal(evs, [0, -1.25], decimal=2) # Checking for the condition in which both numerator and denominator is # zero. y_true = [[1, 3], [-1, 2]] y_pred = [[1, 4], [-1, 1]] r2 = r2_score(y_true, y_pred, multioutput='raw_values') assert_array_almost_equal(r2, [1., -3.], decimal=2) assert_equal(np.mean(r2), r2_score(y_true, y_pred, multioutput='uniform_average')) evs = explained_variance_score(y_true, y_pred, multioutput='raw_values') assert_array_almost_equal(evs, [1., -3.], decimal=2) assert_equal(np.mean(evs), explained_variance_score(y_true, y_pred)) # Handling msle separately as it does not accept negative inputs. y_true = np.array([[0.5, 1], [1, 2], [7, 6]]) y_pred = np.array([[0.5, 2], [1, 2.5], [8, 8]]) msle = mean_squared_log_error(y_true, y_pred, multioutput='raw_values') msle2 = mean_squared_error(np.log(1 + y_true), np.log(1 + y_pred), multioutput='raw_values') assert_array_almost_equal(msle, msle2, decimal=2) def test_regression_custom_weights(): y_true = [[1, 2], [2.5, -1], [4.5, 3], [5, 7]] y_pred = [[1, 1], [2, -1], [5, 4], [5, 6.5]] msew = mean_squared_error(y_true, y_pred, multioutput=[0.4, 0.6]) maew = mean_absolute_error(y_true, y_pred, multioutput=[0.4, 0.6]) rw = r2_score(y_true, y_pred, multioutput=[0.4, 0.6]) evsw = explained_variance_score(y_true, y_pred, multioutput=[0.4, 0.6]) assert_almost_equal(msew, 0.39, decimal=2) assert_almost_equal(maew, 0.475, decimal=3) assert_almost_equal(rw, 0.94, decimal=2) assert_almost_equal(evsw, 0.94, decimal=2) # Handling msle separately as it does not accept negative inputs. y_true = np.array([[0.5, 1], [1, 2], [7, 6]]) y_pred = np.array([[0.5, 2], [1, 2.5], [8, 8]]) msle = mean_squared_log_error(y_true, y_pred, multioutput=[0.3, 0.7]) msle2 = mean_squared_error(np.log(1 + y_true), np.log(1 + y_pred), multioutput=[0.3, 0.7]) assert_almost_equal(msle, msle2, decimal=2)
bsd-3-clause
raghavrv/scikit-learn
examples/model_selection/plot_underfitting_overfitting.py
78
2702
""" ============================ Underfitting vs. Overfitting ============================ This example demonstrates the problems of underfitting and overfitting and how we can use linear regression with polynomial features to approximate nonlinear functions. The plot shows the function that we want to approximate, which is a part of the cosine function. In addition, the samples from the real function and the approximations of different models are displayed. The models have polynomial features of different degrees. We can see that a linear function (polynomial with degree 1) is not sufficient to fit the training samples. This is called **underfitting**. A polynomial of degree 4 approximates the true function almost perfectly. However, for higher degrees the model will **overfit** the training data, i.e. it learns the noise of the training data. We evaluate quantitatively **overfitting** / **underfitting** by using cross-validation. We calculate the mean squared error (MSE) on the validation set, the higher, the less likely the model generalizes correctly from the training data. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression from sklearn.model_selection import cross_val_score def true_fun(X): return np.cos(1.5 * np.pi * X) np.random.seed(0) n_samples = 30 degrees = [1, 4, 15] X = np.sort(np.random.rand(n_samples)) y = true_fun(X) + np.random.randn(n_samples) * 0.1 plt.figure(figsize=(14, 5)) for i in range(len(degrees)): ax = plt.subplot(1, len(degrees), i + 1) plt.setp(ax, xticks=(), yticks=()) polynomial_features = PolynomialFeatures(degree=degrees[i], include_bias=False) linear_regression = LinearRegression() pipeline = Pipeline([("polynomial_features", polynomial_features), ("linear_regression", linear_regression)]) pipeline.fit(X[:, np.newaxis], y) # Evaluate the models using crossvalidation scores = cross_val_score(pipeline, X[:, np.newaxis], y, scoring="neg_mean_squared_error", cv=10) X_test = np.linspace(0, 1, 100) plt.plot(X_test, pipeline.predict(X_test[:, np.newaxis]), label="Model") plt.plot(X_test, true_fun(X_test), label="True function") plt.scatter(X, y, edgecolor='b', s=20, label="Samples") plt.xlabel("x") plt.ylabel("y") plt.xlim((0, 1)) plt.ylim((-2, 2)) plt.legend(loc="best") plt.title("Degree {}\nMSE = {:.2e}(+/- {:.2e})".format( degrees[i], -scores.mean(), scores.std())) plt.show()
bsd-3-clause
PythonProgramming/Support-Vector-Machines---Basics-and-Fundamental-Investing-Project
p22.py
2
5141
import pandas as pd import os import time from datetime import datetime import re from time import mktime import matplotlib import matplotlib.pyplot as plt from matplotlib import style style.use("dark_background") def Forward( gather=[ "Total Debt/Equity", 'Trailing P/E', 'Price/Sales', 'Price/Book', 'Profit Margin', 'Operating Margin', 'Return on Assets', 'Return on Equity', 'Revenue Per Share', 'Market Cap', 'Enterprise Value', 'Forward P/E', 'PEG Ratio', 'Enterprise Value/Revenue', 'Enterprise Value/EBITDA', 'Revenue', 'Gross Profit', 'EBITDA', 'Net Income Avl to Common ', 'Diluted EPS', 'Earnings Growth', 'Revenue Growth', 'Total Cash', 'Total Cash Per Share', 'Total Debt', 'Current Ratio', 'Book Value Per Share', 'Cash Flow', 'Beta', 'Held by Insiders', 'Held by Institutions', 'Shares Short (as of', 'Short Ratio', 'Short % of Float', 'Shares Short (prior ' ] ): df = pd.DataFrame( columns = [ 'Date', 'Unix', 'Ticker', 'Price', 'stock_p_change', 'SP500', 'sp500_p_change', 'Difference', ############## 'DE Ratio', 'Trailing P/E', 'Price/Sales', 'Price/Book', 'Profit Margin', 'Operating Margin', 'Return on Assets', 'Return on Equity', 'Revenue Per Share', 'Market Cap', 'Enterprise Value', 'Forward P/E', 'PEG Ratio', 'Enterprise Value/Revenue', 'Enterprise Value/EBITDA', 'Revenue', 'Gross Profit', 'EBITDA', 'Net Income Avl to Common ', 'Diluted EPS', 'Earnings Growth', 'Revenue Growth', 'Total Cash', 'Total Cash Per Share', 'Total Debt', 'Current Ratio', 'Book Value Per Share', 'Cash Flow', 'Beta', 'Held by Insiders', 'Held by Institutions', 'Shares Short (as of', 'Short Ratio', 'Short % of Float', 'Shares Short (prior ', ############## 'Status' ] ) file_list = os.listdir("forward") for each_file in file_list[1:]: ticker = each_file.split(".html")[0] full_file_path = "forward/"+each_file source = open(full_file_path,'r').read() try: value_list = [] for each_data in gather: try: regex = re.escape(each_data) + r'.*?(\d{1,8}\.\d{1,8}M?B?|N/A)%?</td>' value = re.search(regex, source) value = (value.group(1)) if "B" in value: value = float(value.replace("B",''))*1000000000 elif "M" in value: value = float(value.replace("M",''))*1000000 value_list.append(value) except Exception as e: value = "N/A" value_list.append(value) # if value_list.count("N/A") > 0: if value_list.count("N/A") > 15: pass else: df = df.append( { 'Date':"N/A", 'Unix':"N/A", 'Ticker':ticker, 'Price':"N/A", 'stock_p_change':"N/A", 'SP500':"N/A", 'sp500_p_change':"N/A", 'Difference':"N/A", 'DE Ratio':value_list[0], #'Market Cap':value_list[1], 'Trailing P/E':value_list[1], 'Price/Sales':value_list[2], 'Price/Book':value_list[3], 'Profit Margin':value_list[4], 'Operating Margin':value_list[5], 'Return on Assets':value_list[6], 'Return on Equity':value_list[7], 'Revenue Per Share':value_list[8], 'Market Cap':value_list[9], 'Enterprise Value':value_list[10], 'Forward P/E':value_list[11], 'PEG Ratio':value_list[12], 'Enterprise Value/Revenue':value_list[13], 'Enterprise Value/EBITDA':value_list[14], 'Revenue':value_list[15], 'Gross Profit':value_list[16], 'EBITDA':value_list[17], 'Net Income Avl to Common ':value_list[18], 'Diluted EPS':value_list[19], 'Earnings Growth':value_list[20], 'Revenue Growth':value_list[21], 'Total Cash':value_list[22], 'Total Cash Per Share':value_list[23], 'Total Debt':value_list[24], 'Current Ratio':value_list[25], 'Book Value Per Share':value_list[26], 'Cash Flow':value_list[27], 'Beta':value_list[28], 'Held by Insiders':value_list[29], 'Held by Institutions':value_list[30], 'Shares Short (as of':value_list[31], 'Short Ratio':value_list[32], 'Short % of Float':value_list[33], 'Shares Short (prior ':value_list[34], 'Status':"N/A" }, ignore_index=True) except Exception as e: pass # df.to_csv("forward_sample_NO_NA.csv") df.to_csv("forward_sample_WITH_NA.csv") Forward()
mit
sarahgrogan/scikit-learn
examples/covariance/plot_robust_vs_empirical_covariance.py
248
6359
r""" ======================================= Robust vs Empirical covariance estimate ======================================= The usual covariance maximum likelihood estimate is very sensitive to the presence of outliers in the data set. In such a case, it would be better to use a robust estimator of covariance to guarantee that the estimation is resistant to "erroneous" observations in the data set. Minimum Covariance Determinant Estimator ---------------------------------------- The Minimum Covariance Determinant estimator is a robust, high-breakdown point (i.e. it can be used to estimate the covariance matrix of highly contaminated datasets, up to :math:`\frac{n_\text{samples} - n_\text{features}-1}{2}` outliers) estimator of covariance. The idea is to find :math:`\frac{n_\text{samples} + n_\text{features}+1}{2}` observations whose empirical covariance has the smallest determinant, yielding a "pure" subset of observations from which to compute standards estimates of location and covariance. After a correction step aiming at compensating the fact that the estimates were learned from only a portion of the initial data, we end up with robust estimates of the data set location and covariance. The Minimum Covariance Determinant estimator (MCD) has been introduced by P.J.Rousseuw in [1]_. Evaluation ---------- In this example, we compare the estimation errors that are made when using various types of location and covariance estimates on contaminated Gaussian distributed data sets: - The mean and the empirical covariance of the full dataset, which break down as soon as there are outliers in the data set - The robust MCD, that has a low error provided :math:`n_\text{samples} > 5n_\text{features}` - The mean and the empirical covariance of the observations that are known to be good ones. This can be considered as a "perfect" MCD estimation, so one can trust our implementation by comparing to this case. References ---------- .. [1] P. J. Rousseeuw. Least median of squares regression. J. Am Stat Ass, 79:871, 1984. .. [2] Johanna Hardin, David M Rocke. Journal of Computational and Graphical Statistics. December 1, 2005, 14(4): 928-946. .. [3] Zoubir A., Koivunen V., Chakhchoukh Y. and Muma M. (2012). Robust estimation in signal processing: A tutorial-style treatment of fundamental concepts. IEEE Signal Processing Magazine 29(4), 61-80. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt import matplotlib.font_manager from sklearn.covariance import EmpiricalCovariance, MinCovDet # example settings n_samples = 80 n_features = 5 repeat = 10 range_n_outliers = np.concatenate( (np.linspace(0, n_samples / 8, 5), np.linspace(n_samples / 8, n_samples / 2, 5)[1:-1])) # definition of arrays to store results err_loc_mcd = np.zeros((range_n_outliers.size, repeat)) err_cov_mcd = np.zeros((range_n_outliers.size, repeat)) err_loc_emp_full = np.zeros((range_n_outliers.size, repeat)) err_cov_emp_full = np.zeros((range_n_outliers.size, repeat)) err_loc_emp_pure = np.zeros((range_n_outliers.size, repeat)) err_cov_emp_pure = np.zeros((range_n_outliers.size, repeat)) # computation for i, n_outliers in enumerate(range_n_outliers): for j in range(repeat): rng = np.random.RandomState(i * j) # generate data X = rng.randn(n_samples, n_features) # add some outliers outliers_index = rng.permutation(n_samples)[:n_outliers] outliers_offset = 10. * \ (np.random.randint(2, size=(n_outliers, n_features)) - 0.5) X[outliers_index] += outliers_offset inliers_mask = np.ones(n_samples).astype(bool) inliers_mask[outliers_index] = False # fit a Minimum Covariance Determinant (MCD) robust estimator to data mcd = MinCovDet().fit(X) # compare raw robust estimates with the true location and covariance err_loc_mcd[i, j] = np.sum(mcd.location_ ** 2) err_cov_mcd[i, j] = mcd.error_norm(np.eye(n_features)) # compare estimators learned from the full data set with true # parameters err_loc_emp_full[i, j] = np.sum(X.mean(0) ** 2) err_cov_emp_full[i, j] = EmpiricalCovariance().fit(X).error_norm( np.eye(n_features)) # compare with an empirical covariance learned from a pure data set # (i.e. "perfect" mcd) pure_X = X[inliers_mask] pure_location = pure_X.mean(0) pure_emp_cov = EmpiricalCovariance().fit(pure_X) err_loc_emp_pure[i, j] = np.sum(pure_location ** 2) err_cov_emp_pure[i, j] = pure_emp_cov.error_norm(np.eye(n_features)) # Display results font_prop = matplotlib.font_manager.FontProperties(size=11) plt.subplot(2, 1, 1) plt.errorbar(range_n_outliers, err_loc_mcd.mean(1), yerr=err_loc_mcd.std(1) / np.sqrt(repeat), label="Robust location", color='m') plt.errorbar(range_n_outliers, err_loc_emp_full.mean(1), yerr=err_loc_emp_full.std(1) / np.sqrt(repeat), label="Full data set mean", color='green') plt.errorbar(range_n_outliers, err_loc_emp_pure.mean(1), yerr=err_loc_emp_pure.std(1) / np.sqrt(repeat), label="Pure data set mean", color='black') plt.title("Influence of outliers on the location estimation") plt.ylabel(r"Error ($||\mu - \hat{\mu}||_2^2$)") plt.legend(loc="upper left", prop=font_prop) plt.subplot(2, 1, 2) x_size = range_n_outliers.size plt.errorbar(range_n_outliers, err_cov_mcd.mean(1), yerr=err_cov_mcd.std(1), label="Robust covariance (mcd)", color='m') plt.errorbar(range_n_outliers[:(x_size / 5 + 1)], err_cov_emp_full.mean(1)[:(x_size / 5 + 1)], yerr=err_cov_emp_full.std(1)[:(x_size / 5 + 1)], label="Full data set empirical covariance", color='green') plt.plot(range_n_outliers[(x_size / 5):(x_size / 2 - 1)], err_cov_emp_full.mean(1)[(x_size / 5):(x_size / 2 - 1)], color='green', ls='--') plt.errorbar(range_n_outliers, err_cov_emp_pure.mean(1), yerr=err_cov_emp_pure.std(1), label="Pure data set empirical covariance", color='black') plt.title("Influence of outliers on the covariance estimation") plt.xlabel("Amount of contamination (%)") plt.ylabel("RMSE") plt.legend(loc="upper center", prop=font_prop) plt.show()
bsd-3-clause
NunoEdgarGub1/scikit-learn
sklearn/neighbors/approximate.py
128
22351
"""Approximate nearest neighbor search""" # Author: Maheshakya Wijewardena <maheshakya.10@cse.mrt.ac.lk> # Joel Nothman <joel.nothman@gmail.com> import numpy as np import warnings from scipy import sparse from .base import KNeighborsMixin, RadiusNeighborsMixin from ..base import BaseEstimator from ..utils.validation import check_array from ..utils import check_random_state from ..metrics.pairwise import pairwise_distances from ..random_projection import GaussianRandomProjection __all__ = ["LSHForest"] HASH_DTYPE = '>u4' MAX_HASH_SIZE = np.dtype(HASH_DTYPE).itemsize * 8 def _find_matching_indices(tree, bin_X, left_mask, right_mask): """Finds indices in sorted array of integers. Most significant h bits in the binary representations of the integers are matched with the items' most significant h bits. """ left_index = np.searchsorted(tree, bin_X & left_mask) right_index = np.searchsorted(tree, bin_X | right_mask, side='right') return left_index, right_index def _find_longest_prefix_match(tree, bin_X, hash_size, left_masks, right_masks): """Find the longest prefix match in tree for each query in bin_X Most significant bits are considered as the prefix. """ hi = np.empty_like(bin_X, dtype=np.intp) hi.fill(hash_size) lo = np.zeros_like(bin_X, dtype=np.intp) res = np.empty_like(bin_X, dtype=np.intp) left_idx, right_idx = _find_matching_indices(tree, bin_X, left_masks[hi], right_masks[hi]) found = right_idx > left_idx res[found] = lo[found] = hash_size r = np.arange(bin_X.shape[0]) kept = r[lo < hi] # indices remaining in bin_X mask while kept.shape[0]: mid = (lo.take(kept) + hi.take(kept)) // 2 left_idx, right_idx = _find_matching_indices(tree, bin_X.take(kept), left_masks[mid], right_masks[mid]) found = right_idx > left_idx mid_found = mid[found] lo[kept[found]] = mid_found + 1 res[kept[found]] = mid_found hi[kept[~found]] = mid[~found] kept = r[lo < hi] return res class ProjectionToHashMixin(object): """Turn a transformed real-valued array into a hash""" @staticmethod def _to_hash(projected): if projected.shape[1] % 8 != 0: raise ValueError('Require reduced dimensionality to be a multiple ' 'of 8 for hashing') # XXX: perhaps non-copying operation better out = np.packbits((projected > 0).astype(int)).view(dtype=HASH_DTYPE) return out.reshape(projected.shape[0], -1) def fit_transform(self, X, y=None): self.fit(X) return self.transform(X) def transform(self, X, y=None): return self._to_hash(super(ProjectionToHashMixin, self).transform(X)) class GaussianRandomProjectionHash(ProjectionToHashMixin, GaussianRandomProjection): """Use GaussianRandomProjection to produce a cosine LSH fingerprint""" def __init__(self, n_components=8, random_state=None): super(GaussianRandomProjectionHash, self).__init__( n_components=n_components, random_state=random_state) def _array_of_arrays(list_of_arrays): """Creates an array of array from list of arrays.""" out = np.empty(len(list_of_arrays), dtype=object) out[:] = list_of_arrays return out class LSHForest(BaseEstimator, KNeighborsMixin, RadiusNeighborsMixin): """Performs approximate nearest neighbor search using LSH forest. LSH Forest: Locality Sensitive Hashing forest [1] is an alternative method for vanilla approximate nearest neighbor search methods. LSH forest data structure has been implemented using sorted arrays and binary search and 32 bit fixed-length hashes. Random projection is used as the hash family which approximates cosine distance. The cosine distance is defined as ``1 - cosine_similarity``: the lowest value is 0 (identical point) but it is bounded above by 2 for the farthest points. Its value does not depend on the norm of the vector points but only on their relative angles. Read more in the :ref:`User Guide <approximate_nearest_neighbors>`. Parameters ---------- n_estimators : int (default = 10) Number of trees in the LSH Forest. min_hash_match : int (default = 4) lowest hash length to be searched when candidate selection is performed for nearest neighbors. n_candidates : int (default = 10) Minimum number of candidates evaluated per estimator, assuming enough items meet the `min_hash_match` constraint. n_neighbors : int (default = 5) Number of neighbors to be returned from query function when it is not provided to the :meth:`kneighbors` method. radius : float, optinal (default = 1.0) Radius from the data point to its neighbors. This is the parameter space to use by default for the :meth`radius_neighbors` queries. radius_cutoff_ratio : float, optional (default = 0.9) A value ranges from 0 to 1. Radius neighbors will be searched until the ratio between total neighbors within the radius and the total candidates becomes less than this value unless it is terminated by hash length reaching `min_hash_match`. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- hash_functions_ : list of GaussianRandomProjectionHash objects Hash function g(p,x) for a tree is an array of 32 randomly generated float arrays with the same dimenstion as the data set. This array is stored in GaussianRandomProjectionHash object and can be obtained from ``components_`` attribute. trees_ : array, shape (n_estimators, n_samples) Each tree (corresponding to a hash function) contains an array of sorted hashed values. The array representation may change in future versions. original_indices_ : array, shape (n_estimators, n_samples) Original indices of sorted hashed values in the fitted index. References ---------- .. [1] M. Bawa, T. Condie and P. Ganesan, "LSH Forest: Self-Tuning Indexes for Similarity Search", WWW '05 Proceedings of the 14th international conference on World Wide Web, 651-660, 2005. Examples -------- >>> from sklearn.neighbors import LSHForest >>> X_train = [[5, 5, 2], [21, 5, 5], [1, 1, 1], [8, 9, 1], [6, 10, 2]] >>> X_test = [[9, 1, 6], [3, 1, 10], [7, 10, 3]] >>> lshf = LSHForest() >>> lshf.fit(X_train) # doctest: +NORMALIZE_WHITESPACE LSHForest(min_hash_match=4, n_candidates=50, n_estimators=10, n_neighbors=5, radius=1.0, radius_cutoff_ratio=0.9, random_state=None) >>> distances, indices = lshf.kneighbors(X_test, n_neighbors=2) >>> distances # doctest: +ELLIPSIS array([[ 0.069..., 0.149...], [ 0.229..., 0.481...], [ 0.004..., 0.014...]]) >>> indices array([[1, 2], [2, 0], [4, 0]]) """ def __init__(self, n_estimators=10, radius=1.0, n_candidates=50, n_neighbors=5, min_hash_match=4, radius_cutoff_ratio=.9, random_state=None): self.n_estimators = n_estimators self.radius = radius self.random_state = random_state self.n_candidates = n_candidates self.n_neighbors = n_neighbors self.min_hash_match = min_hash_match self.radius_cutoff_ratio = radius_cutoff_ratio def _compute_distances(self, query, candidates): """Computes the cosine distance. Distance is from the query to points in the candidates array. Returns argsort of distances in the candidates array and sorted distances. """ if candidates.shape == (0,): # needed since _fit_X[np.array([])] doesn't work if _fit_X sparse return np.empty(0, dtype=np.int), np.empty(0, dtype=float) if sparse.issparse(self._fit_X): candidate_X = self._fit_X[candidates] else: candidate_X = self._fit_X.take(candidates, axis=0, mode='clip') distances = pairwise_distances(query, candidate_X, metric='cosine')[0] distance_positions = np.argsort(distances) distances = distances.take(distance_positions, mode='clip', axis=0) return distance_positions, distances def _generate_masks(self): """Creates left and right masks for all hash lengths.""" tri_size = MAX_HASH_SIZE + 1 # Called once on fitting, output is independent of hashes left_mask = np.tril(np.ones((tri_size, tri_size), dtype=int))[:, 1:] right_mask = left_mask[::-1, ::-1] self._left_mask = np.packbits(left_mask).view(dtype=HASH_DTYPE) self._right_mask = np.packbits(right_mask).view(dtype=HASH_DTYPE) def _get_candidates(self, query, max_depth, bin_queries, n_neighbors): """Performs the Synchronous ascending phase. Returns an array of candidates, their distance ranks and distances. """ index_size = self._fit_X.shape[0] # Number of candidates considered including duplicates # XXX: not sure whether this is being calculated correctly wrt # duplicates from different iterations through a single tree n_candidates = 0 candidate_set = set() min_candidates = self.n_candidates * self.n_estimators while (max_depth > self.min_hash_match and (n_candidates < min_candidates or len(candidate_set) < n_neighbors)): left_mask = self._left_mask[max_depth] right_mask = self._right_mask[max_depth] for i in range(self.n_estimators): start, stop = _find_matching_indices(self.trees_[i], bin_queries[i], left_mask, right_mask) n_candidates += stop - start candidate_set.update( self.original_indices_[i][start:stop].tolist()) max_depth -= 1 candidates = np.fromiter(candidate_set, count=len(candidate_set), dtype=np.intp) # For insufficient candidates, candidates are filled. # Candidates are filled from unselected indices uniformly. if candidates.shape[0] < n_neighbors: warnings.warn( "Number of candidates is not sufficient to retrieve" " %i neighbors with" " min_hash_match = %i. Candidates are filled up" " uniformly from unselected" " indices." % (n_neighbors, self.min_hash_match)) remaining = np.setdiff1d(np.arange(0, index_size), candidates) to_fill = n_neighbors - candidates.shape[0] candidates = np.concatenate((candidates, remaining[:to_fill])) ranks, distances = self._compute_distances(query, candidates.astype(int)) return (candidates[ranks[:n_neighbors]], distances[:n_neighbors]) def _get_radius_neighbors(self, query, max_depth, bin_queries, radius): """Finds radius neighbors from the candidates obtained. Their distances from query are smaller than radius. Returns radius neighbors and distances. """ ratio_within_radius = 1 threshold = 1 - self.radius_cutoff_ratio total_candidates = np.array([], dtype=int) total_neighbors = np.array([], dtype=int) total_distances = np.array([], dtype=float) while (max_depth > self.min_hash_match and ratio_within_radius > threshold): left_mask = self._left_mask[max_depth] right_mask = self._right_mask[max_depth] candidates = [] for i in range(self.n_estimators): start, stop = _find_matching_indices(self.trees_[i], bin_queries[i], left_mask, right_mask) candidates.extend( self.original_indices_[i][start:stop].tolist()) candidates = np.setdiff1d(candidates, total_candidates) total_candidates = np.append(total_candidates, candidates) ranks, distances = self._compute_distances(query, candidates) m = np.searchsorted(distances, radius, side='right') positions = np.searchsorted(total_distances, distances[:m]) total_neighbors = np.insert(total_neighbors, positions, candidates[ranks[:m]]) total_distances = np.insert(total_distances, positions, distances[:m]) ratio_within_radius = (total_neighbors.shape[0] / float(total_candidates.shape[0])) max_depth = max_depth - 1 return total_neighbors, total_distances def fit(self, X, y=None): """Fit the LSH forest on the data. This creates binary hashes of input data points by getting the dot product of input points and hash_function then transforming the projection into a binary string array based on the sign (positive/negative) of the projection. A sorted array of binary hashes is created. Parameters ---------- X : array_like or sparse (CSR) matrix, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- self : object Returns self. """ self._fit_X = check_array(X, accept_sparse='csr') # Creates a g(p,x) for each tree self.hash_functions_ = [] self.trees_ = [] self.original_indices_ = [] rng = check_random_state(self.random_state) int_max = np.iinfo(np.int32).max for i in range(self.n_estimators): # This is g(p,x) for a particular tree. # Builds a single tree. Hashing is done on an array of data points. # `GaussianRandomProjection` is used for hashing. # `n_components=hash size and n_features=n_dim. hasher = GaussianRandomProjectionHash(MAX_HASH_SIZE, rng.randint(0, int_max)) hashes = hasher.fit_transform(self._fit_X)[:, 0] original_index = np.argsort(hashes) bin_hashes = hashes[original_index] self.original_indices_.append(original_index) self.trees_.append(bin_hashes) self.hash_functions_.append(hasher) self._generate_masks() return self def _query(self, X): """Performs descending phase to find maximum depth.""" # Calculate hashes of shape (n_samples, n_estimators, [hash_size]) bin_queries = np.asarray([hasher.transform(X)[:, 0] for hasher in self.hash_functions_]) bin_queries = np.rollaxis(bin_queries, 1) # descend phase depths = [_find_longest_prefix_match(tree, tree_queries, MAX_HASH_SIZE, self._left_mask, self._right_mask) for tree, tree_queries in zip(self.trees_, np.rollaxis(bin_queries, 1))] return bin_queries, np.max(depths, axis=0) def kneighbors(self, X, n_neighbors=None, return_distance=True): """Returns n_neighbors of approximate nearest neighbors. Parameters ---------- X : array_like or sparse (CSR) matrix, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single query. n_neighbors : int, opitonal (default = None) Number of neighbors required. If not provided, this will return the number specified at the initialization. return_distance : boolean, optional (default = False) Returns the distances of neighbors if set to True. Returns ------- dist : array, shape (n_samples, n_neighbors) Array representing the cosine distances to each point, only present if return_distance=True. ind : array, shape (n_samples, n_neighbors) Indices of the approximate nearest points in the population matrix. """ if not hasattr(self, 'hash_functions_'): raise ValueError("estimator should be fitted.") if n_neighbors is None: n_neighbors = self.n_neighbors X = check_array(X, accept_sparse='csr') neighbors, distances = [], [] bin_queries, max_depth = self._query(X) for i in range(X.shape[0]): neighs, dists = self._get_candidates(X[i], max_depth[i], bin_queries[i], n_neighbors) neighbors.append(neighs) distances.append(dists) if return_distance: return np.array(distances), np.array(neighbors) else: return np.array(neighbors) def radius_neighbors(self, X, radius=None, return_distance=True): """Finds the neighbors within a given radius of a point or points. Return the indices and distances of some points from the dataset lying in a ball with size ``radius`` around the points of the query array. Points lying on the boundary are included in the results. The result points are *not* necessarily sorted by distance to their query point. LSH Forest being an approximate method, some true neighbors from the indexed dataset might be missing from the results. Parameters ---------- X : array_like or sparse (CSR) matrix, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single query. radius : float Limiting distance of neighbors to return. (default is the value passed to the constructor). return_distance : boolean, optional (default = False) Returns the distances of neighbors if set to True. Returns ------- dist : array, shape (n_samples,) of arrays Each element is an array representing the cosine distances to some points found within ``radius`` of the respective query. Only present if ``return_distance=True``. ind : array, shape (n_samples,) of arrays Each element is an array of indices for neighbors within ``radius`` of the respective query. """ if not hasattr(self, 'hash_functions_'): raise ValueError("estimator should be fitted.") if radius is None: radius = self.radius X = check_array(X, accept_sparse='csr') neighbors, distances = [], [] bin_queries, max_depth = self._query(X) for i in range(X.shape[0]): neighs, dists = self._get_radius_neighbors(X[i], max_depth[i], bin_queries[i], radius) neighbors.append(neighs) distances.append(dists) if return_distance: return _array_of_arrays(distances), _array_of_arrays(neighbors) else: return _array_of_arrays(neighbors) def partial_fit(self, X, y=None): """ Inserts new data into the already fitted LSH Forest. Cost is proportional to new total size, so additions should be batched. Parameters ---------- X : array_like or sparse (CSR) matrix, shape (n_samples, n_features) New data point to be inserted into the LSH Forest. """ X = check_array(X, accept_sparse='csr') if not hasattr(self, 'hash_functions_'): return self.fit(X) if X.shape[1] != self._fit_X.shape[1]: raise ValueError("Number of features in X and" " fitted array does not match.") n_samples = X.shape[0] n_indexed = self._fit_X.shape[0] for i in range(self.n_estimators): bin_X = self.hash_functions_[i].transform(X)[:, 0] # gets the position to be added in the tree. positions = self.trees_[i].searchsorted(bin_X) # adds the hashed value into the tree. self.trees_[i] = np.insert(self.trees_[i], positions, bin_X) # add the entry into the original_indices_. self.original_indices_[i] = np.insert(self.original_indices_[i], positions, np.arange(n_indexed, n_indexed + n_samples)) # adds the entry into the input_array. if sparse.issparse(X) or sparse.issparse(self._fit_X): self._fit_X = sparse.vstack((self._fit_X, X)) else: self._fit_X = np.row_stack((self._fit_X, X)) return self
bsd-3-clause
SCgeeker/OpenSesame
setup-win32.py
2
15674
#!/usr/bin/env python #-*- coding:utf-8 -*- """ This file is part of OpenSesame. OpenSesame is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OpenSesame is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenSesame. If not, see <http://www.gnu.org/licenses/>. ---- ## About This script will create a binary Windows package of OpenSesame, using py2exe. If possible, dependencies are simply copied into a subfolder and compiled to `.pyc` format. If not possible, they are included in the `library.zip` file, which is the default py2exe way of including dependencies. ## Usage To compile all source files to `.pyc` (default), call the script as follows: python setup-win32.py py2exe To compile all source files to `.pyo`, call the script as follows: python -O setup-win32.py py2exe or python -OO setup-win32.py py2exe More options can be tweaked by changing the variables below. ## Output The build will be stored in the `dist` subfolder. ## Python modules The following Python modules should be installed: bidi - This is installed as an egg and therefore not packaged properly. For packaging, simply place the `bidi` source folder directly in the Python site-packages. cairo - Unofficial Windows builds can be downloaded from <http://www.lfd.uci.edu/~gohlke/pythonlibs/#pycairo> expyriment matplotlib Subdependencies: - python-dateutil - Installed as .egg, so requires manual copying. If it fails to install due to decoding errors, the package can be copied manually to site-packages. - pytz - Installed as .egg, so requires manual copying. - six - Installed as .egg, so requires manual copying. opencv2 - Download and extract the regular OpenCV2 package - Copy cv2.pyd from build/python/2.7 to the Python site-packages folder pil psychopy pyflakes - This is installed as an egg and therefore not packaged properly. For packaging, simply place the `pyflakes` source folder directly in the Python site-packages. py2exe pyaudio pygame pyglet - The installer doesn't work. Need to install from ``.zip`. pyopengl pyparallel - Needs to be installed through the `.zip` package - Manually place `simpleio.dll`, which is included with the pyparallel source, in the main Python folder. pyparsing - Required by matplotlib. The installer doesn't work, so needs to be installed from .zip. pyqt4 - The Python 3 modules will break on compilation, and have to be manually removed/ renamed. These are in `uic/port_v3`. pyserial numpy scipy vlc - Required only for media_player_vlc - Place vlc.py in the media_player_vlc folder. See below for folder structure. - Choose the version for VLC 2.0 - Available from <http://liris.cnrs.fr/advene/download/python-ctypes/> ## Folder structure If media_player, media_player_vlc, boks, or pygaze are included, they are assumed to be one folder up. So the folder structure should be as follows: /[parent foler] /opensesame /pygaze /boks /media_player /media_player_vlc --- """ from distutils.core import setup import distutils.sysconfig as sysconfig import compileall import py_compile import glob import py2exe import os import sys import shutil import libqtopensesame.qtopensesame import libopensesame.misc import psychopy import urllib from setup_shared import included_plugins, included_extensions # Set this to False to build a 'light' version without the Qt4 gui. This # options currently breaks opensesamerun as well, so don't set it to False. include_gui = True # Miscellaneous settings include_plugins = True include_extensions = True include_media_player = False include_media_player_vlc = True include_boks = True include_pygaze = True include_examples = True include_sounds = True include_faenza = True include_inpout32 = True include_simpleio = True include_pyqt4_plugins = True release_zip = True release_build = 1 python_folder = os.path.dirname(sys.executable) python_version = "%d.%d" % (sys.version_info[0], sys.version_info[1]) print(u'Python folder: %s' % python_folder) print(u'Python version: %s' % python_version) # Determine which files we're going to keep if '-OO' in sys.argv: strip_ext = '.py', '.pyc' keep_ext = '.pyo' optimize = 2 print(u'Compiling to .pyo') elif '-O' in sys.argv: strip_ext = '.py', '.pyc' keep_ext = '.pyo' optimize = 1 print(u'Compiling to .pyo') else: strip_ext = '.py', '.pyo' keep_ext = '.pyc' optimize = 0 print(u'Compiling to .pyc') print(u'Optimize = %d' % optimize) # Packages that are too be copied for the site-packages folder, rather than # included by py2exe in the library .zip file. Copying packages is in general # preferred, as some packages (e.g. expyriment) do not work well when included # in the library.zip file that py2exe uses to store packages. Note eggs are not # copied properly. copy_packages = [ 'QProgEdit', 'libopensesame', 'openexp', 'expyriment', 'psychopy', 'pyflakes', 'scipy', 'numpy', 'serial', 'parallel', 'OpenGL', 'PIL', 'pygame', 'pyglet', 'libqtopensesame', 'markdown', 'matplotlib', 'bidi', 'yaml', 'pygaze', 'pytz', 'pyparsing', 'dateutil', 'six', 'wx' ] # A list of packages that shouldn't be stripped from .py files, because it # breaks them. no_strip = [ 'expyriment' ] # Packages that are part of the standard Python packages, but should not be # included exclude_packages = [ 'idlelib', 'antigravity', # Kind of funny, importing this opens: http://xkcd.com/353/ 'test', # Avoid automated tests, because they take ages ] # Packages that are not part of the standard Python packages (or not detected # as such), but should nevertheless be included include_packages = [ 'pyaudio', 'cairo', 'Image', 'cv2', 'sip', 'PyQt4.QtCore', 'PyQt4.QtGui', 'PyQt4.Qsci', 'PyQt4.QtWebKit', 'PyQt4.QtNetwork', 'PyQt4.uic', ] exclude_dll = [ "MSVCP90.DLL", "libzmq.dll", ] # Create empty destination folders if os.path.exists("dist"): shutil.rmtree("dist") os.mkdir("dist") os.mkdir(os.path.join("dist", "plugins")) os.mkdir(os.path.join("dist", "extensions")) # Print copy PyQt4 plugins if include_pyqt4_plugins: shutil.copytree('%s\Lib\site-packages\PyQt4\plugins' % python_folder, 'dist\PyQt4_plugins') # A filter to ignore non-relevant package files def ignore_package_files(folder, files): l = [] for f in files: if os.path.splitext(f)[1] in [".pyo", ".pyc"]: l.append(f) return l # A function to strip non-compiled scripts and backup files def strip_py(folder): for path in os.listdir(folder): path = os.path.join(folder, path) if os.path.isdir(path): strip_py(path) continue base, ext = os.path.splitext(path) if (ext in strip_ext and os.path.exists(base+keep_ext)) or \ path[-1] == '~': print('stripping %s' % path) os.remove(path) # Copy packages for pkg in copy_packages: print('copying packages %s ... ' % pkg) exec('import %s as _pkg' % pkg) pkg_folder = os.path.dirname(_pkg.__file__) pkg_target = os.path.join("dist", pkg) # For modules that are .py files in site-packages if pkg_folder.endswith('site-packages'): print('\tmodule %s' % _pkg.__file__) shutil.copy(os.path.join(pkg_folder, '%s.py' % pkg), 'dist') compileall.compile_file(r'dist/%s.py' % pkg) os.remove(r'dist/%s.py' % pkg) # For packages that are subfolder of site-packages else: print('\tfrom %s' % pkg_folder) shutil.copytree(pkg_folder, pkg_target, symlinks=True, \ ignore=ignore_package_files) compileall.compile_dir(pkg_target, force=True) # Expyriment assumes that certain source files are available, see # http://code.google.com/p/expyriment/issues/detail?id=16 if pkg != no_strip: strip_py(pkg_target) # Create a list of standard pakcages that should be included # http://stackoverflow.com/questions/6463918/how-can-i-get-a-list-of-all-the-python-standard-library-modules print('detecting standard Python packages and modules ... ') std_pkg = [] std_lib = sysconfig.get_python_lib(standard_lib=True) for top, dirs, files in os.walk(std_lib): for nm in files: prefix = top[len(std_lib)+1:] if prefix[:13] == 'site-packages': continue if nm == '__init__.py': pkg = top[len(std_lib)+1:].replace(os.path.sep,'.') elif nm[-3:] == '.py': pkg = os.path.join(prefix, nm)[:-3].replace(os.path.sep,'.') elif nm[-3:] == '.so' and top[-11:] == 'lib-dynload': pkg = nm[0:-3] if pkg[0] == '_': continue exclude = False for _pkg in exclude_packages: if pkg.find(_pkg) == 0: exclude = True break if exclude: continue try: exec('import %s' % pkg) except: continue print(pkg) std_pkg.append(pkg) for pkg in sys.builtin_module_names: print(pkg) std_pkg.append(pkg) windows_opensesame = { "script" : "opensesame", "icon_resources": [(0, os.path.join("resources", "opensesame.ico"))], } windows_opensesamerun = { "script" : "opensesamerun", "icon_resources": [(0, os.path.join("resources", "opensesamerun.ico"))], } windows = [windows_opensesamerun] if include_gui: windows += [windows_opensesame] # Setup options setup( # Use 'console' to have the programs run in a terminal and # 'windows' to run them normally. windows = windows, options = { "py2exe" : { "compressed" : True, "optimize": optimize, "bundle_files": 3, "excludes": copy_packages, "includes" : std_pkg + include_packages, "dll_excludes" : exclude_dll, } } ) # A filter to ignore non-relevant resource files def ignore_resources(folder, files): l = [] print("... %s" % folder) for f in files: if os.path.splitext(f)[1] in [".csv", ".pyc"] and f not in \ ["icon_map.csv"]: l.append(f) if 'Faenza' in folder and f == 'scalable': l.append(f) if f == "Faenza" and (not include_faenza or not include_gui): l.append(f) if not include_gui and f in ('theme', 'locale', 'templates', 'ts', \ 'ui'): l.append(f) return l # Compiling opensesame to opensesame.pyc for the multiprocessing functionality print("compiling opensesame") py_compile.compile("opensesame", os.path.join("dist", "opensesame.pyc")) # Copy resource files print("copying resources") shutil.copytree("resources", os.path.join("dist", "resources"), symlinks=True, \ ignore=ignore_resources) print("copying README info etc.") shutil.copyfile("readme.md", os.path.join("dist", "readme.md")) shutil.copyfile("debian/copyright", os.path.join("dist", "copyright")) shutil.copyfile("COPYING", os.path.join("dist", "COPYING")) if include_gui: shutil.copytree("help", os.path.join("dist", "help")) print("copying PyGame/ SDLL dll's") shutil.copyfile(r"%s\Lib\site-packages\pygame\SDL_ttf.dll" \ % python_folder, r"dist\SDL_ttf.dll") shutil.copyfile(r"%s\Lib\site-packages\pygame\libfreetype-6.dll" \ % python_folder, r"dist\libfreetype-6.dll") shutil.copyfile(r"%s\Lib\site-packages\pygame\libogg-0.dll" \ % python_folder, r"dist\libogg-0.dll") print("copying PIL.pth") shutil.copyfile(r"%s\Lib\site-packages\PIL.pth" \ % python_folder, r"dist\PIL.pth") if include_simpleio: print("copying simpleio.dll") shutil.copyfile(r"%s\simpleio.dll" \ % python_folder, r"dist\simpleio.dll") if include_inpout32: print("copying inpout32.dll") urllib.urlretrieve ("http://files.cogsci.nl/misc/inpout32.dll", \ r"dist\inpout32.dll") # Include plug-ins if include_plugins: print("copying plugins" ) for plugin in included_plugins: print("copying plugin %s" % plugin) shutil.copytree(os.path.join("plugins", plugin), os.path.join("dist", \ "plugins", plugin)) for path in os.listdir(os.path.join("plugins", plugin)): if path[-1] == "~" or os.path.splitext(path)[1] in [".pyc"]: print("removing file %s" % path) os.remove(os.path.join("dist", "plugins", plugin, path)) # Include extensions if include_extensions: print("copying extensions" ) for extension in included_extensions: print("copying extension %s" % extension) shutil.copytree(os.path.join("extensions", extension), os.path.join("dist", "extensions", extension)) for path in os.listdir(os.path.join("extensions", extension)): if path[-1] == "~" or os.path.splitext(path)[1] in [".pyc"]: print("removing file %s" % path) os.remove(os.path.join("dist", "extensions", extension, path)) # Include old media_player if include_media_player: print("copying media_player") os.mkdir("dist\plugins\media_player") shutil.copyfile(r"..\media_player\media_player.py", \ r"dist\plugins\media_player\media_player.py""") shutil.copyfile(r"..\media_player\media_player.html", \ r"dist\plugins\media_player\media_player.html") shutil.copyfile(r"..\media_player\media_player.png", \ r"dist\plugins\media_player\media_player.png") shutil.copyfile(r"..\media_player\media_player_large.png", \ r"dist\plugins\media_player\media_player_large.png") shutil.copyfile(r"..\media_player\info.txt", \ r"dist\plugins\media_player\info.txt") # Include new vlc-based media player if include_media_player_vlc: print("copying media_player_vlc") os.mkdir("dist\plugins\media_player_vlc") shutil.copyfile(r"..\media_player_vlc\vlc.py", \ r"dist\plugins\media_player_vlc\vlc.py") shutil.copyfile( \ r"..\media_player_vlc\media_player_vlc.py", \ r"dist\plugins\media_player_vlc\media_player_vlc.py") shutil.copyfile( \ r"..\media_player_vlc\media_player_vlc.md", \ r"dist\plugins\media_player_vlc\media_player_vlc.md") shutil.copyfile( \ r"..\media_player_vlc\media_player_vlc.png", \ r"dist\plugins\media_player_vlc\media_player_vlc.png") shutil.copyfile( \ r"..\media_player_vlc\media_player_vlc_large.png", \ r"dist\plugins\media_player_vlc\media_player_vlc_large.png") shutil.copyfile(r"..\media_player_vlc\info.json", \ r"dist\plugins\media_player_vlc\info.json") # Include Boks plug-in if include_boks: print("copying boks") shutil.copytree(r"..\boks\opensesame\boks", r"dist\plugins\boks", ignore=shutil.ignore_patterns('*.pyc', '.*', '.pyo')) # Include PyGaze plug-ins if include_pygaze: print("copying pygaze") for plugin in ['init', 'log', 'drift_correct', 'start_recording', 'stop_recording', 'wait']: shutil.copytree(r"..\pygaze\opensesame_plugins\pygaze_%s" % plugin, r"dist\plugins\pygaze_%s" % plugin, ignore=shutil.ignore_patterns('*.pyc', '.*', '.pyo')) # Include examples if include_examples: print("copying examples") shutil.copytree("examples", os.path.join("dist", "examples")) for path in os.listdir(os.path.join("dist", "examples")): if path[-1] == "~" or os.path.splitext(path)[1] not in [".opensesame", \ ".gz"]: print("removing file %s" % path) os.remove(os.path.join("dist", "examples", path)) # Include sounds if include_sounds: print("copying sounds") shutil.copytree("sounds", os.path.join("dist", "sounds")) # Create a zip release of the folder if release_zip: import zipfile target_folder = 'opensesame_%s-win32-%s' % (libopensesame.misc.version, \ release_build) target_zip = target_folder + '.zip' shutil.move('dist', target_folder) zipf = zipfile.ZipFile(target_zip, 'w', zipfile.ZIP_DEFLATED) for root, dirs, files in os.walk(target_folder): for file in files: path = os.path.join(root, file) print('Adding %s' % path) zipf.write(path) zipf.close() shutil.move(target_folder, 'dist') print('zipfile: %s' % target_zip)
gpl-3.0
ominux/scikit-learn
benchmarks/bench_sgd_covertype.py
2
6189
""" ================================ Covertype dataset with dense SGD ================================ Benchmark stochastic gradient descent (SGD), Liblinear, and Naive Bayes on the forest covertype dataset of Blackard, Jock, and Dean [1]. The dataset comprises 581,012 samples. It is low-dimensional with 54 features and a sparsity of approx. 23%. Here, we consider the task of predicting class 1 (spruce/fir). The classification performance of SGD is competitive with Liblinear while being two orders of magnitude faster to train:: [..] Classification performance: =========================== Classifier train-time test-time error-rate -------------------------------------------- Liblinear 9.4471s 0.0184s 0.2305 GaussianNB 2.5426s 0.1725s 0.3633 SGD 0.2137s 0.0047s 0.2300 The same task has been used in a number of papers including: * `"SVM Optimization: Inverse Dependence on Training Set Size" <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.139.2112>`_ S. Shalev-Shwartz, N. Srebro - In Proceedings of ICML '08. * `"Pegasos: Primal estimated sub-gradient solver for svm" <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.74.8513>`_ S. Shalev-Shwartz, Y. Singer, N. Srebro - In Proceedings of ICML '07. * `"Training Linear SVMs in Linear Time" <www.cs.cornell.edu/People/tj/publications/joachims_06a.pdf>`_ T. Joachims - In SIGKDD '06 [1] http://archive.ics.uci.edu/ml/datasets/Covertype To run this example use your favorite python shell:: % ipython examples/sgd/covertype_dense_sgd.py """ from __future__ import division print __doc__ # Author: Peter Prettenhoer <peter.prettenhofer@gmail.com> # License: BSD Style. # $Id$ from time import time import os import numpy as np from sklearn.svm import LinearSVC from sklearn.linear_model import SGDClassifier from sklearn.naive_bayes import GaussianNB from sklearn import metrics ###################################################################### ## Download the data, if not already on disk if not os.path.exists('covtype.data.gz'): # Download the data import urllib print "Downloading data, Please Wait (11MB)..." opener = urllib.urlopen( 'http://archive.ics.uci.edu/ml/' 'machine-learning-databases/covtype/covtype.data.gz') open('covtype.data.gz', 'wb').write(opener.read()) ###################################################################### ## Load dataset print("Loading dataset...") import gzip f = gzip.open('covtype.data.gz') X = np.fromstring(f.read().replace(",", " "), dtype=np.float64, sep=" ", count=-1) X = X.reshape((581012, 55)) f.close() # class 1 vs. all others. y = np.ones(X.shape[0]) * -1 y[np.where(X[:, -1] == 1)] = 1 X = X[:, :-1] ###################################################################### ## Create train-test split (as [Joachims, 2006]) print("Creating train-test split...") idx = np.arange(X.shape[0]) np.random.seed(13) np.random.shuffle(idx) train_idx = idx[:522911] test_idx = idx[522911:] X_train = X[train_idx] y_train = y[train_idx] X_test = X[test_idx] y_test = y[test_idx] # free memory del X del y ###################################################################### ## Standardize first 10 features (the numerical ones) mean = X_train.mean(axis=0) std = X_train.std(axis=0) mean[10:] = 0.0 std[10:] = 1.0 X_train = (X_train-mean) / std X_test = (X_test-mean) / std ###################################################################### ## Print dataset statistics print("") print("Dataset statistics:") print("===================") print("%s %d" % ("number of features:".ljust(25), X_train.shape[1])) print("%s %d" % ("number of classes:".ljust(25), np.unique(y_train).shape[0])) print("%s %d (%d, %d)" % ("number of train samples:".ljust(25), X_train.shape[0], np.sum(y_train==1), np.sum(y_train==-1))) print("%s %d (%d, %d)" % ("number of test samples:".ljust(25), X_test.shape[0], np.sum(y_test==1), np.sum(y_test==-1))) print("") print("Training classifiers...") print("") ###################################################################### ## Benchmark classifiers def benchmark(clf): t0 = time() clf.fit(X_train, y_train) train_time = time() - t0 t0 = time() pred = clf.predict(X_test) test_time = time() - t0 err = metrics.zero_one(y_test, pred) / float(pred.shape[0]) return err, train_time, test_time ###################################################################### ## Train Liblinear model liblinear_parameters = { 'loss': 'l2', 'penalty': 'l2', 'C': 1000, 'dual': False, 'tol': 1e-3, } liblinear_res = benchmark(LinearSVC(**liblinear_parameters)) liblinear_err, liblinear_train_time, liblinear_test_time = liblinear_res ###################################################################### ## Train GaussianNB model gnb_err, gnb_train_time, gnb_test_time = benchmark(GaussianNB()) ###################################################################### ## Train SGD model sgd_parameters = { 'alpha': 0.001, 'n_iter': 2, } sgd_err, sgd_train_time, sgd_test_time = benchmark(SGDClassifier( **sgd_parameters)) ###################################################################### ## Print classification performance print("") print("Classification performance:") print("===========================") print("") def print_row(clf_type, train_time, test_time, err): print("%s %s %s %s" % (clf_type.ljust(12), ("%.4fs" % train_time).center(10), ("%.4fs" % test_time).center(10), ("%.4f" % err).center(10))) print("%s %s %s %s" % ("Classifier ", "train-time", "test-time", "error-rate")) print("-" * 44) print_row("Liblinear", liblinear_train_time, liblinear_test_time, liblinear_err) print_row("GaussianNB", gnb_train_time, gnb_test_time, gnb_err) print_row("SGD", sgd_train_time, sgd_test_time, sgd_err) print("") print("")
bsd-3-clause
tomlof/scikit-learn
sklearn/tests/test_dummy.py
186
17778
from __future__ import division import numpy as np import scipy.sparse as sp from sklearn.base import clone from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import ignore_warnings from sklearn.utils.stats import _weighted_percentile from sklearn.dummy import DummyClassifier, DummyRegressor @ignore_warnings def _check_predict_proba(clf, X, y): proba = clf.predict_proba(X) # We know that we can have division by zero log_proba = clf.predict_log_proba(X) y = np.atleast_1d(y) if y.ndim == 1: y = np.reshape(y, (-1, 1)) n_outputs = y.shape[1] n_samples = len(X) if n_outputs == 1: proba = [proba] log_proba = [log_proba] for k in range(n_outputs): assert_equal(proba[k].shape[0], n_samples) assert_equal(proba[k].shape[1], len(np.unique(y[:, k]))) assert_array_equal(proba[k].sum(axis=1), np.ones(len(X))) # We know that we can have division by zero assert_array_equal(np.log(proba[k]), log_proba[k]) def _check_behavior_2d(clf): # 1d case X = np.array([[0], [0], [0], [0]]) # ignored y = np.array([1, 2, 1, 1]) est = clone(clf) est.fit(X, y) y_pred = est.predict(X) assert_equal(y.shape, y_pred.shape) # 2d case y = np.array([[1, 0], [2, 0], [1, 0], [1, 3]]) est = clone(clf) est.fit(X, y) y_pred = est.predict(X) assert_equal(y.shape, y_pred.shape) def _check_behavior_2d_for_constant(clf): # 2d case only X = np.array([[0], [0], [0], [0]]) # ignored y = np.array([[1, 0, 5, 4, 3], [2, 0, 1, 2, 5], [1, 0, 4, 5, 2], [1, 3, 3, 2, 0]]) est = clone(clf) est.fit(X, y) y_pred = est.predict(X) assert_equal(y.shape, y_pred.shape) def _check_equality_regressor(statistic, y_learn, y_pred_learn, y_test, y_pred_test): assert_array_equal(np.tile(statistic, (y_learn.shape[0], 1)), y_pred_learn) assert_array_equal(np.tile(statistic, (y_test.shape[0], 1)), y_pred_test) def test_most_frequent_and_prior_strategy(): X = [[0], [0], [0], [0]] # ignored y = [1, 2, 1, 1] for strategy in ("most_frequent", "prior"): clf = DummyClassifier(strategy=strategy, random_state=0) clf.fit(X, y) assert_array_equal(clf.predict(X), np.ones(len(X))) _check_predict_proba(clf, X, y) if strategy == "prior": assert_array_equal(clf.predict_proba([X[0]]), clf.class_prior_.reshape((1, -1))) else: assert_array_equal(clf.predict_proba([X[0]]), clf.class_prior_.reshape((1, -1)) > 0.5) def test_most_frequent_and_prior_strategy_multioutput(): X = [[0], [0], [0], [0]] # ignored y = np.array([[1, 0], [2, 0], [1, 0], [1, 3]]) n_samples = len(X) for strategy in ("prior", "most_frequent"): clf = DummyClassifier(strategy=strategy, random_state=0) clf.fit(X, y) assert_array_equal(clf.predict(X), np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))])) _check_predict_proba(clf, X, y) _check_behavior_2d(clf) def test_stratified_strategy(): X = [[0]] * 5 # ignored y = [1, 2, 1, 1, 2] clf = DummyClassifier(strategy="stratified", random_state=0) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) p = np.bincount(y_pred) / float(len(X)) assert_almost_equal(p[1], 3. / 5, decimal=1) assert_almost_equal(p[2], 2. / 5, decimal=1) _check_predict_proba(clf, X, y) def test_stratified_strategy_multioutput(): X = [[0]] * 5 # ignored y = np.array([[2, 1], [2, 2], [1, 1], [1, 2], [1, 1]]) clf = DummyClassifier(strategy="stratified", random_state=0) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) for k in range(y.shape[1]): p = np.bincount(y_pred[:, k]) / float(len(X)) assert_almost_equal(p[1], 3. / 5, decimal=1) assert_almost_equal(p[2], 2. / 5, decimal=1) _check_predict_proba(clf, X, y) _check_behavior_2d(clf) def test_uniform_strategy(): X = [[0]] * 4 # ignored y = [1, 2, 1, 1] clf = DummyClassifier(strategy="uniform", random_state=0) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) p = np.bincount(y_pred) / float(len(X)) assert_almost_equal(p[1], 0.5, decimal=1) assert_almost_equal(p[2], 0.5, decimal=1) _check_predict_proba(clf, X, y) def test_uniform_strategy_multioutput(): X = [[0]] * 4 # ignored y = np.array([[2, 1], [2, 2], [1, 2], [1, 1]]) clf = DummyClassifier(strategy="uniform", random_state=0) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) for k in range(y.shape[1]): p = np.bincount(y_pred[:, k]) / float(len(X)) assert_almost_equal(p[1], 0.5, decimal=1) assert_almost_equal(p[2], 0.5, decimal=1) _check_predict_proba(clf, X, y) _check_behavior_2d(clf) def test_string_labels(): X = [[0]] * 5 y = ["paris", "paris", "tokyo", "amsterdam", "berlin"] clf = DummyClassifier(strategy="most_frequent") clf.fit(X, y) assert_array_equal(clf.predict(X), ["paris"] * 5) def test_classifier_exceptions(): clf = DummyClassifier(strategy="unknown") assert_raises(ValueError, clf.fit, [], []) assert_raises(ValueError, clf.predict, []) assert_raises(ValueError, clf.predict_proba, []) def test_mean_strategy_regressor(): random_state = np.random.RandomState(seed=1) X = [[0]] * 4 # ignored y = random_state.randn(4) reg = DummyRegressor() reg.fit(X, y) assert_array_equal(reg.predict(X), [np.mean(y)] * len(X)) def test_mean_strategy_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X_learn = random_state.randn(10, 10) y_learn = random_state.randn(10, 5) mean = np.mean(y_learn, axis=0).reshape((1, -1)) X_test = random_state.randn(20, 10) y_test = random_state.randn(20, 5) # Correctness oracle est = DummyRegressor() est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor(mean, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d(est) def test_regressor_exceptions(): reg = DummyRegressor() assert_raises(ValueError, reg.predict, []) def test_median_strategy_regressor(): random_state = np.random.RandomState(seed=1) X = [[0]] * 5 # ignored y = random_state.randn(5) reg = DummyRegressor(strategy="median") reg.fit(X, y) assert_array_equal(reg.predict(X), [np.median(y)] * len(X)) def test_median_strategy_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X_learn = random_state.randn(10, 10) y_learn = random_state.randn(10, 5) median = np.median(y_learn, axis=0).reshape((1, -1)) X_test = random_state.randn(20, 10) y_test = random_state.randn(20, 5) # Correctness oracle est = DummyRegressor(strategy="median") est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor( median, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d(est) def test_quantile_strategy_regressor(): random_state = np.random.RandomState(seed=1) X = [[0]] * 5 # ignored y = random_state.randn(5) reg = DummyRegressor(strategy="quantile", quantile=0.5) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.median(y)] * len(X)) reg = DummyRegressor(strategy="quantile", quantile=0) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.min(y)] * len(X)) reg = DummyRegressor(strategy="quantile", quantile=1) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.max(y)] * len(X)) reg = DummyRegressor(strategy="quantile", quantile=0.3) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.percentile(y, q=30)] * len(X)) def test_quantile_strategy_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X_learn = random_state.randn(10, 10) y_learn = random_state.randn(10, 5) median = np.median(y_learn, axis=0).reshape((1, -1)) quantile_values = np.percentile(y_learn, axis=0, q=80).reshape((1, -1)) X_test = random_state.randn(20, 10) y_test = random_state.randn(20, 5) # Correctness oracle est = DummyRegressor(strategy="quantile", quantile=0.5) est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor( median, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d(est) # Correctness oracle est = DummyRegressor(strategy="quantile", quantile=0.8) est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor( quantile_values, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d(est) def test_quantile_invalid(): X = [[0]] * 5 # ignored y = [0] * 5 # ignored est = DummyRegressor(strategy="quantile") assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile=None) assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile=[0]) assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile=-0.1) assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile=1.1) assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile='abc') assert_raises(TypeError, est.fit, X, y) def test_quantile_strategy_empty_train(): est = DummyRegressor(strategy="quantile", quantile=0.4) assert_raises(ValueError, est.fit, [], []) def test_constant_strategy_regressor(): random_state = np.random.RandomState(seed=1) X = [[0]] * 5 # ignored y = random_state.randn(5) reg = DummyRegressor(strategy="constant", constant=[43]) reg.fit(X, y) assert_array_equal(reg.predict(X), [43] * len(X)) reg = DummyRegressor(strategy="constant", constant=43) reg.fit(X, y) assert_array_equal(reg.predict(X), [43] * len(X)) def test_constant_strategy_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X_learn = random_state.randn(10, 10) y_learn = random_state.randn(10, 5) # test with 2d array constants = random_state.randn(5) X_test = random_state.randn(20, 10) y_test = random_state.randn(20, 5) # Correctness oracle est = DummyRegressor(strategy="constant", constant=constants) est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor( constants, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d_for_constant(est) def test_y_mean_attribute_regressor(): X = [[0]] * 5 y = [1, 2, 4, 6, 8] # when strategy = 'mean' est = DummyRegressor(strategy='mean') est.fit(X, y) assert_equal(est.constant_, np.mean(y)) def test_unknown_strategey_regressor(): X = [[0]] * 5 y = [1, 2, 4, 6, 8] est = DummyRegressor(strategy='gona') assert_raises(ValueError, est.fit, X, y) def test_constants_not_specified_regressor(): X = [[0]] * 5 y = [1, 2, 4, 6, 8] est = DummyRegressor(strategy='constant') assert_raises(TypeError, est.fit, X, y) def test_constant_size_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X = random_state.randn(10, 10) y = random_state.randn(10, 5) est = DummyRegressor(strategy='constant', constant=[1, 2, 3, 4]) assert_raises(ValueError, est.fit, X, y) def test_constant_strategy(): X = [[0], [0], [0], [0]] # ignored y = [2, 1, 2, 2] clf = DummyClassifier(strategy="constant", random_state=0, constant=1) clf.fit(X, y) assert_array_equal(clf.predict(X), np.ones(len(X))) _check_predict_proba(clf, X, y) X = [[0], [0], [0], [0]] # ignored y = ['two', 'one', 'two', 'two'] clf = DummyClassifier(strategy="constant", random_state=0, constant='one') clf.fit(X, y) assert_array_equal(clf.predict(X), np.array(['one'] * 4)) _check_predict_proba(clf, X, y) def test_constant_strategy_multioutput(): X = [[0], [0], [0], [0]] # ignored y = np.array([[2, 3], [1, 3], [2, 3], [2, 0]]) n_samples = len(X) clf = DummyClassifier(strategy="constant", random_state=0, constant=[1, 0]) clf.fit(X, y) assert_array_equal(clf.predict(X), np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))])) _check_predict_proba(clf, X, y) def test_constant_strategy_exceptions(): X = [[0], [0], [0], [0]] # ignored y = [2, 1, 2, 2] clf = DummyClassifier(strategy="constant", random_state=0) assert_raises(ValueError, clf.fit, X, y) clf = DummyClassifier(strategy="constant", random_state=0, constant=[2, 0]) assert_raises(ValueError, clf.fit, X, y) def test_classification_sample_weight(): X = [[0], [0], [1]] y = [0, 1, 0] sample_weight = [0.1, 1., 0.1] clf = DummyClassifier().fit(X, y, sample_weight) assert_array_almost_equal(clf.class_prior_, [0.2 / 1.2, 1. / 1.2]) def test_constant_strategy_sparse_target(): X = [[0]] * 5 # ignored y = sp.csc_matrix(np.array([[0, 1], [4, 0], [1, 1], [1, 4], [1, 1]])) n_samples = len(X) clf = DummyClassifier(strategy="constant", random_state=0, constant=[1, 0]) clf.fit(X, y) y_pred = clf.predict(X) assert_true(sp.issparse(y_pred)) assert_array_equal(y_pred.toarray(), np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))])) def test_uniform_strategy_sparse_target_warning(): X = [[0]] * 5 # ignored y = sp.csc_matrix(np.array([[2, 1], [2, 2], [1, 4], [4, 2], [1, 1]])) clf = DummyClassifier(strategy="uniform", random_state=0) assert_warns_message(UserWarning, "the uniform strategy would not save memory", clf.fit, X, y) X = [[0]] * 500 y_pred = clf.predict(X) for k in range(y.shape[1]): p = np.bincount(y_pred[:, k]) / float(len(X)) assert_almost_equal(p[1], 1 / 3, decimal=1) assert_almost_equal(p[2], 1 / 3, decimal=1) assert_almost_equal(p[4], 1 / 3, decimal=1) def test_stratified_strategy_sparse_target(): X = [[0]] * 5 # ignored y = sp.csc_matrix(np.array([[4, 1], [0, 0], [1, 1], [1, 4], [1, 1]])) clf = DummyClassifier(strategy="stratified", random_state=0) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) assert_true(sp.issparse(y_pred)) y_pred = y_pred.toarray() for k in range(y.shape[1]): p = np.bincount(y_pred[:, k]) / float(len(X)) assert_almost_equal(p[1], 3. / 5, decimal=1) assert_almost_equal(p[0], 1. / 5, decimal=1) assert_almost_equal(p[4], 1. / 5, decimal=1) def test_most_frequent_and_prior_strategy_sparse_target(): X = [[0]] * 5 # ignored y = sp.csc_matrix(np.array([[1, 0], [1, 3], [4, 0], [0, 1], [1, 0]])) n_samples = len(X) y_expected = np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))]) for strategy in ("most_frequent", "prior"): clf = DummyClassifier(strategy=strategy, random_state=0) clf.fit(X, y) y_pred = clf.predict(X) assert_true(sp.issparse(y_pred)) assert_array_equal(y_pred.toarray(), y_expected) def test_dummy_regressor_sample_weight(n_samples=10): random_state = np.random.RandomState(seed=1) X = [[0]] * n_samples y = random_state.rand(n_samples) sample_weight = random_state.rand(n_samples) est = DummyRegressor(strategy="mean").fit(X, y, sample_weight) assert_equal(est.constant_, np.average(y, weights=sample_weight)) est = DummyRegressor(strategy="median").fit(X, y, sample_weight) assert_equal(est.constant_, _weighted_percentile(y, sample_weight, 50.)) est = DummyRegressor(strategy="quantile", quantile=.95).fit(X, y, sample_weight) assert_equal(est.constant_, _weighted_percentile(y, sample_weight, 95.))
bsd-3-clause
seanrivera/ASEN5090-Project
orbit.py
1
10606
import math import matplotlib.pyplot as plt from numpy import cross, dot, divide, arccos, arcsin, array, matmul, isnan, concatenate, transpose from numpy.linalg import norm from scipy.integrate import ode from constants import * from coordinate_system import eci2ecef, ecef2lla from models import two_body_model class Orbit: DIFF = 1e-8 # Diff for eccentric MAX_ITER = 100 # noinspection PyPep8Naming def __init__(self, a=float('nan'), e=float('nan'), i=float('nan'), Omega=float('nan'), omega=float('nan'), mo=float('nan'), tp=float('nan'), mu=mu_earth, name=''): self.mu = mu self.a = a # Semi-major Axis if not math.isnan(a) and not math.isnan(mu): self.period = 2 * math.pi * math.sqrt((a ** 3) / mu) self.n = 2 * math.pi / self.period else: self.period = float('nan') self.n = float('nan') self.periapsis = float('nan') self.apoapsis = float('nan') self.E = float('nan') # Specific Energy self.phi = float('nan') # flight path angle self.h_hat = [float('nan'), float('nan'), float('nan')] # Angular momentum self.tp = tp # time since periapsis self.e = e # Eccentricity self.i = i # Inclination self.Omega = Omega # Longitude of the ascending node self.omega = omega # Argument of periapsis self.nu = float('nan') # True anomaly -Radians self.ecc_anomaly = float('nan') # Eccentric anomaly -Radians if math.isnan(mo): self.find_mean_anomaly() else: self.mo = mo # Mean anomaly at epoch -Radians self.find_eccentric_anomaly() self.find_true_anomaly() self.find_time_periapsis() self.find_periapsis_apoapsis() self.name = name def xyz_vel_to_kelper(self, rvec, vvec, mu=mu_earth): self.mu = mu r = norm(rvec) # Radius v = norm(vvec) # Velocity self.h_hat = cross(rvec, vvec) # Specific angular momentum h = norm(self.h_hat) self.phi = arcsin(dot(rvec, vvec) / (r * v)) # flight path angle n_hat = cross([0, 0, 1], self.h_hat) period = norm(n_hat) # orbital period e_hat = divide(cross(vvec, self.h_hat), mu) - divide(rvec, r) self.E = (v ** 2 / 2) - (mu / r) self.e = norm(e_hat) self.i = arccos(divide(dot([0, 0, 1], self.h_hat), h)) self.Omega = arccos(n_hat[0] / period) if n_hat[1] < 0: self.Omega = 2 * math.pi - self.Omega self.omega = arccos(dot(n_hat, e_hat) / (period * self.e)) if e_hat[2] < 0: self.omega = 2 * math.pi - self.omega self.nu = arccos(dot(e_hat, rvec) / (self.e * r)) if dot(rvec, vvec) < 0: self.nu = 2 * math.pi - self.nu self.a = -mu / (2 * self.E) self.period = 2 * math.pi * math.sqrt((self.a ** 3) / mu) self.n = 2 * math.pi / self.period self.find_eccentric_anomaly() self.find_mean_anomaly() def kelper_to_xvz_vel(self): p = self.a * (1 - self.e ** 2) # semiparameter rvec_pqw = [p * math.cos(self.nu) / (1 + self.e * math.cos(self.nu)), p * math.sin(self.nu) / (1 + self.e * math.cos(self.nu)), 0] # R in the pqw frame vvec_pqw = [-math.sqrt(self.mu / p) * math.sin(self.nu), math.sqrt(self.mu / p) * (self.e + math.cos(self.nu)), 0] # V vector in the pqw frame transformation__matrix = array([ [math.cos(self.Omega) * math.cos(self.omega) - math.sin(self.Omega) * math.sin(self.omega) * math.cos(self.i), -math.cos(self.Omega) * math.sin(self.omega) - math.sin(self.Omega) * math.cos(self.omega) * math.cos(self.i), math.sin(self.Omega) * math.sin(self.i)], [math.sin(self.Omega) * math.cos(self.omega) + math.cos(self.Omega) * math.sin(self.omega) * math.cos(self.i), -math.sin(self.Omega) * math.sin( self.omega) + math.cos(self.Omega) * math.cos( self.omega) * math.cos(self.i), -math.cos(self.Omega) * math.sin( self.i)], [math.sin(self.omega) * math.sin(self.i), math.cos( self.omega) * math.sin( self.i), math.cos(self.i)]]) rvec_ijk = matmul(transformation__matrix, rvec_pqw) vvec_ijk = matmul(transformation__matrix, vvec_pqw) return rvec_ijk, vvec_ijk def periapsis_apoapsis_set(self, periapsis, apoapsis, mu=mu_earth): self.a = (apoapsis + periapsis) / 2 self.e = (apoapsis - periapsis) / (apoapsis + periapsis) self.mu = mu if not math.isnan(self.a) and not math.isnan(mu): self.period = 2 * math.pi * math.sqrt((self.a ** 3) / mu) self.n = 2 * math.pi / self.period else: self.period = float('nan') self.n = float('nan') def find_periapsis_apoapsis(self): if not math.isnan(self.a) and not math.isnan(self.e): self.periapsis = self.a * (1 - self.e) self.apoapsis = self.a * (1 + self.e) else: self.periapsis = float('nan') self.apoapsis = float('nan') def find_eccentric_anomaly(self): if math.isnan(self.e): self.ecc_anomaly = float('nan') return if not math.isnan(self.mo): cur_diff = float('inf') guess_ecc = self.mo cur_iter = 0 while cur_diff > self.DIFF and cur_iter < self.MAX_ITER: self.ecc_anomaly = guess_ecc - ( (guess_ecc - self.e * math.sin(guess_ecc) - self.mo) / (1 - self.e * math.cos(guess_ecc))) cur_diff = math.fabs(guess_ecc - self.ecc_anomaly) guess_ecc = self.ecc_anomaly cur_iter += 1 elif not math.isnan(self.nu) and not math.isnan(self.a): cos_e = (self.e + math.cos(self.nu)) / (1 + self.e * math.cos(self.nu)) sin_e = (math.sqrt(1 - self.e ** 2) * math.sin(self.nu)) / (1 + self.e * math.cos(self.nu)) self.ecc_anomaly = math.atan2(sin_e, cos_e) else: self.ecc_anomaly = float('nan') def find_true_anomaly(self): if math.isnan(self.ecc_anomaly) or math.isnan(self.e): self.nu = float('nan') else: self.nu = 2 * math.atan2(math.tan(self.ecc_anomaly / 2), math.sqrt((1 - self.e) / (1 + self.e))) def find_mean_anomaly(self): if not math.isnan(self.ecc_anomaly) and not math.isnan(self.e): # Try the eccentric anomaly self.mo = self.ecc_anomaly - self.e * math.sin(self.ecc_anomaly) elif not math.isnan(self.tp) and not math.isnan(self.n): # Try the time since periapsis self.mo = self.n * self.tp else: self.mo = float('nan') if self.mo < 0: self.mo += 2 * math.pi def find_time_periapsis(self): if math.isnan(self.mo) or math.isnan(self.n): self.tp = float('nan') else: self.tp = self.mo / self.n def vis_viva(self, r): v = math.sqrt(self.mu * ((2 / r) - (1 / self.a))) return v def plot_ground_track(self, filename: str, duration: float, time_step: float, theta_gst: float, rot: float = 7.2921158553 * 10 ** -5, out_name: str = "ground_track.png"): plt.figure() with open(filename, 'r') as f: lat_lon_str = f.read() lat = [] lon = [] sat_lat = [] sat_lon = [] for pos in lat_lon_str.split('\n'): lls = pos.split() if lls: lon.append(float(lls[0])) lat.append(float(lls[1])) plt.plot(lon, lat) time = 0 while time < duration: (pos_eci, _) = self.kelper_to_xvz_vel() pos_ecef = eci2ecef(pos_eci=pos_eci, theta_gst=theta_gst) (tmp_lat, tmp_lon, _) = ecef2lla(pos_ecef=pos_ecef) sat_lat.append(math.degrees(tmp_lat)) sat_lon.append(math.degrees(tmp_lon)) self.propagate(time_step=time_step) time += time_step theta_gst += rot * time_step plt.plot(sat_lon, sat_lat, 'gd') plt.xlabel("Latitude (deg)") plt.ylabel("Longitude (deg)") plt.title("Ground track plot") plt.xlim([-180, 180]) plt.ylim([-90, 90]) plt.savefig(out_name) def propagate(self, time_step: float): if not isnan(self.mo): self.mo += self.n * time_step if self.mo > 2 * math.pi: self.mo -= 2 * math.pi self.find_eccentric_anomaly() self.find_true_anomaly() if not isnan(self.tp): self.tp += time_step if self.tp > self.period: self.tp -= self.period def ode_propagate(self, time_step: float, end_time: float, tol: float): t = 0 dt = time_step (X, V) = self.kelper_to_xvz_vel() y0 = array(concatenate((X, transpose(V)))) r = ode(two_body_model).set_integrator('dopri5', atol=tol, rtol=tol) r.set_initial_value(y=y0, t=t).set_f_params(self.mu) while r.successful() and r.t < end_time: r.integrate(r.t + dt) pos_eci = r.y[0:3] vel_eci = r.y[3:6] self.xyz_vel_to_kelper(rvec=pos_eci, vvec=vel_eci, mu=self.mu) def j2_nodal_regression(self, radius: float = rad_earth, j2: float = j2_earth): p = self.a * (1 - self.e ** 2) Omega_dot = -3 * self.n * radius ** 2 * j2 / (2 * p ** 2) * math.cos(self.i) return Omega_dot def polar_plot(self, time_step: float, fig=None, label: str = ""): if not fig: fig = plt.figure().add_subplot(111, 'polar') self.find_eccentric_anomaly() self.find_true_anomaly() r = [] theta = [] r_init = (self.a * (1 - self.e * math.cos(self.ecc_anomaly))) / 1000 theta_init = self.nu fig.plot(theta_init, r_init, '*') counter = 0 while counter < self.period: self.propagate(time_step=time_step) r.append(self.a * (1 - self.e * math.cos(self.ecc_anomaly)) / 1000) theta.append(self.nu) counter += time_step fig.plot(theta, r, label=label)
gpl-3.0
vivekmishra1991/scikit-learn
sklearn/datasets/mlcomp.py
289
3855
# Copyright (c) 2010 Olivier Grisel <olivier.grisel@ensta.org> # License: BSD 3 clause """Glue code to load http://mlcomp.org data as a scikit.learn dataset""" import os import numbers from sklearn.datasets.base import load_files def _load_document_classification(dataset_path, metadata, set_=None, **kwargs): if set_ is not None: dataset_path = os.path.join(dataset_path, set_) return load_files(dataset_path, metadata.get('description'), **kwargs) LOADERS = { 'DocumentClassification': _load_document_classification, # TODO: implement the remaining domain formats } def load_mlcomp(name_or_id, set_="raw", mlcomp_root=None, **kwargs): """Load a datasets as downloaded from http://mlcomp.org Parameters ---------- name_or_id : the integer id or the string name metadata of the MLComp dataset to load set_ : select the portion to load: 'train', 'test' or 'raw' mlcomp_root : the filesystem path to the root folder where MLComp datasets are stored, if mlcomp_root is None, the MLCOMP_DATASETS_HOME environment variable is looked up instead. **kwargs : domain specific kwargs to be passed to the dataset loader. Read more in the :ref:`User Guide <datasets>`. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'filenames', the files holding the raw to learn, 'target', the classification labels (integer index), 'target_names', the meaning of the labels, and 'DESCR', the full description of the dataset. Note on the lookup process: depending on the type of name_or_id, will choose between integer id lookup or metadata name lookup by looking at the unzipped archives and metadata file. TODO: implement zip dataset loading too """ if mlcomp_root is None: try: mlcomp_root = os.environ['MLCOMP_DATASETS_HOME'] except KeyError: raise ValueError("MLCOMP_DATASETS_HOME env variable is undefined") mlcomp_root = os.path.expanduser(mlcomp_root) mlcomp_root = os.path.abspath(mlcomp_root) mlcomp_root = os.path.normpath(mlcomp_root) if not os.path.exists(mlcomp_root): raise ValueError("Could not find folder: " + mlcomp_root) # dataset lookup if isinstance(name_or_id, numbers.Integral): # id lookup dataset_path = os.path.join(mlcomp_root, str(name_or_id)) else: # assume name based lookup dataset_path = None expected_name_line = "name: " + name_or_id for dataset in os.listdir(mlcomp_root): metadata_file = os.path.join(mlcomp_root, dataset, 'metadata') if not os.path.exists(metadata_file): continue with open(metadata_file) as f: for line in f: if line.strip() == expected_name_line: dataset_path = os.path.join(mlcomp_root, dataset) break if dataset_path is None: raise ValueError("Could not find dataset with metadata line: " + expected_name_line) # loading the dataset metadata metadata = dict() metadata_file = os.path.join(dataset_path, 'metadata') if not os.path.exists(metadata_file): raise ValueError(dataset_path + ' is not a valid MLComp dataset') with open(metadata_file) as f: for line in f: if ":" in line: key, value = line.split(":", 1) metadata[key.strip()] = value.strip() format = metadata.get('format', 'unknow') loader = LOADERS.get(format) if loader is None: raise ValueError("No loader implemented for format: " + format) return loader(dataset_path, metadata, set_=set_, **kwargs)
bsd-3-clause
jay-tyler/data-petting-zoo
DATA_PETTING_ZOO/data_petting_zoo/engine.py
1
10941
from re import match from random import sample from string import capwords import pandas as pd import numpy as np from pandas import DataFrame import fiona from shapely.geometry import Point, asShape from shapely.prepared import prep from shapely import speedups from rules import name_rules, geofeat_rules, wiki_codes DATA_ROOT = "" # TODO: wire this up # Warn if a value is being assigned to a copy pd.set_option('mode.chained_assignment', 'warn') # Imports of needed data try: GB = pd.read_pickle("../data/pickles/gb_finalfinal.pk1") except IOError: # TODO: In this case should do a bunch of stuff to get gb into namespace pass try: NAMEFAM = pd.read_table("../data/namefam.tab") except IOError: # TODO: In this case should do a bunch of stuff to get gb into namespace print 'oh no' ################################ # Setup Data Functions ################################ def set_gb(file_path): """Read the GB.txt file from geonames and return an appropriately filtered DataFrame""" gb = pd.read_csv(file_path) # Trim away an initial index column gb = gb.ix[:, 1:20] column_names = [ 'geoid', 'name', 'asciiname', 'altname', 'lat', 'long', 'feature_class', 'feature_code', 'country_code', 'cc2', 'adm1', 'adm2', 'adm3', 'adm4', 'pop', 'elev', 'delev', 'timezone', 'moddate' ] gb.columns = column_names # Removing rows that correspond to Cyprus, N. Ireland, cruft etc. remove_these_adm1 = ['05', '00', '01', 'NIR', '03'] for i in remove_these_adm1: gb = gb[gb.adm1 != i] # Get rid of adm1 with null values gb = gb[~gb.adm1.isnull()] # Setting a list of alternate names from altname string field gb['ls_altname'] = gb['altname'].dropna().apply(lambda x: x.split(',')) # Pick only feature codes that correspond to towns and cities, see # http://www.geonames.org/export/codes.html gb = gb[gb.feature_code.isin(geofeat_rules)] # Clean up index gb.index = range(len(gb)) return gb def set_fam(dfin): """In-place setup name families for df dataframe. Note: this only acts on the 'name' field. Use another function to setup altname families Column changes: will add a ls_namefam column TODO: This is a one run deal; not idempotent. Fix. """ df = dfin.copy() df["ls_namefam"] = np.nan # Iterate over rows in dataframe for index, row in df.iterrows(): # For each row, check each name_rule for namekey, ls_regex in name_rules.iteritems(): result = patinstr(row.loc['name'], ls_regex) if result: cur = df.loc[index, 'ls_namefam'] if not isinstance(cur, list): df.loc[index, 'ls_namefam'] = list([namekey]) else: df.loc[index, 'ls_namefam'].append(namekey) return df def set_alt(df, column_names=None): """DataFrame should only be the dataframe that comes after setgb if columns is left undefined; column_names is a list of column names that the resulting dataframe should contain. This list should include 'parent.'""" df_alt = df.copy() df_alt.drop(['altname'], inplace=True, axis=1) df_alt.drop(['ls_altname'], inplace=True, axis=1) df_alt['parent'] = np.nan if column_names is None: column_names = [ 'geoid', 'name', 'parent', 'asciiname', 'lat', 'long', 'feature_class', 'feature_code', 'country_code', 'cc2', 'adm1', 'adm2', 'adm3', 'adm4', 'pop', 'elev', 'delev', 'timezone', 'moddate' ] df_alt = df_alt[column_names] i = len(df) for index, row in df.iterrows(): parent_name = row['name'] try: a_names = iter(row['ls_altname']) except TypeError: pass else: for a_name in a_names: row['name'] = a_name row['parent'] = parent_name df_alt.ix[i] = row[column_names] i += 1 df_alt[~df_alt['name'].str.contains('/')] return df_alt def set_namefam_table(file_path): """Read the namfam csv file and load to a table""" return pd.read_csv(file_path) def append_nuts3_region(dfin, shapefile_path): """ Take a pandas dataframe with lat and long columns and a shapefile. Convert coordinates to Shapely points to do a point-in-polygon check for each point. Append name of nuts3 region corresponding to point-in-polygon to the dataframe. This is extremely slow. Needs to be optimized with Shapely boundary box. """ df = dfin.copy() df['nuts3'] = np.nan fc = fiona.open(shapefile_path) speedups.enable() for feature in fc: prepared_shape = prep(asShape(feature['geometry'])) for index, row in df.iterrows(): point = Point(row.loc['long'], row.loc['lat']) if prepared_shape.contains(point): df.loc[index, 'nuts3name'] = feature['properties']['NUTS315NM'] df.loc[index, 'nuts3id'] = feature['properties']['NUTS315CD'] return df def append_2013_gva(dfin, csv_file_path): df = dfin.copy() gva = pd.read_csv(csv_file_path) gvasub = DataFrame(columns=['nuts3id', 'gva2013']) gvasub['nuts3id'], gvasub['gva2013'] = gva['nutsid'], gva['2013'] df_gva = pd.merge( left=df, right=gvasub.dropna(), how='left', left_on='nuts3id', right_on='nuts3id') return df_gva ################################ # Helper Query Functions ################################ def patinls(slist, patlist): """Search each string in slist for a substring instance defined by patlist; return re.match if found, None if not found""" found = None try: strings = iter(slist) except TypeError: return for string in strings: if not found: for pat in patlist: found = match(pat, string) if found: break else: break return found def patinstr(string, patlist): """Search string for a substring instance defined by patlist; return re.match if found, None if not found""" found = None if not isinstance(string, str): return None for pat in patlist: found = match(pat, string) if found: break return found ################################ # DataFrame Query Functions ################################ def get_fam(df, namekey): """Return a (sub-dataframe, namekey, placename) corresponding to a particular namefamily. Will return None for placename from that namefamily""" def _droidfind(listin): result = None try: result = namekey in listin except TypeError: pass return result if result is True else None mask = df['ls_namefam'].map(lambda x: _droidfind(x)) return df[~mask.isnull()], namekey, None def query_random(df): """Return a (sub-dataframe, namekey, placename) corresponding to a particular namefamily. Also return a sample placename from that namefamily""" df = df.copy() namekeys = name_rules.keys() namekey = sample(namekeys, 1)[0] subdf = get_fam(df, namekey)[0] placename = subdf['name'].sample().values[0] return subdf, namekey, placename def query_name(df, placestring): """Return a sub-DataFrame containing boolean matches to place name. This is intended as a Helper function. Will attempt a more literal match, and if this fails, will try a loose match. """ # First try to query assuming that the user formatted the placename # correctly, then try a looser search place = capwords(placestring).strip() query = df['name'].str.contains('.*' + place + '.*') if not query.any(): place = placestring.lower().strip() query = df['name'].str.contains('.*' + place + '.*') return query def query_placename(df, placestring): """Attempt to match placestring to a city with a family pattern; return the matching sub-DataFrame, namekey, and full placename if a match is made, else None If there are multiple associated name families, then one will be picked at random""" df = df.copy() query = query_name(df, placestring) # Return a dataframe row with the placename contained; # assure that this row actually has a namefam associated try: namefam_row = df[query & (~df['ls_namefam'].isnull())].sample() except ValueError: # In this case, there is no namefam_row match return None namekey = namefam_row['ls_namefam'].map(lambda x: sample(x, 1)) # An ugly way to get the string out namekey = namekey.values[0][0] placename = namefam_row['name'] return get_fam(df, namekey)[0], namekey, placename.values[0] def query_name_or_fam(df, placestring): """Attempt to match placestring to a city with a family pattern; else attempt to find a place of the same name. Return None otherwise. If namefamily is found: return the matching sub-DataFrame, namekey, and full placenameif a match If namefamily is not found, but placename is: return the singular placename row as a DataFrame, None for namekey, and full placename Otherwise return None.""" df = df.copy() result = query_placename(df, placestring) if result is None: # Case of place with no namefam query = query_name(df, placestring) try: row = df[query].sample() result = row, None, row['name'].values[0] except ValueError: result = None return result def query_pop_slice(df, popthresh): """Return a sub-DataFrame from DataFrame df that excludes all population values below the threshold""" return df[df['pop'] >= popthresh] def query_namefam_table(namekey): """Return a dictionary containing strings of all of the elements of a namefam table in human readable string format""" row = NAMEFAM[NAMEFAM['namekey'] == namekey] if row.shape[0] == 0: # Case of asking for a namekey that doesn't exist return None toreturn = dict() # Turning wiki_code characters into a human readable string wiki_str = "" for code in row['wiki_codes'].values[0].split(): frag = wiki_codes.get(code.rstrip(',').lstrip()) frag = frag if frag is not None else "" wiki_str += "{}, ".format(frag) wiki_str = wiki_str.rstrip(", ") toreturn['wiki_codes'] = wiki_str for colname in ['namekey', 'humandef', 'lan_notes', 'human_namekey']: val = row[colname].values[0] if pd.isnull(val): val = None toreturn[colname] = val return toreturn if __name__ == "__main__": gbf = 'data/pristine/GB.txt' gb = set_gb(gbf) gb2 = set_fam(gb) print gb2['ls_namefam'].dropna()
mit
tkaitchuck/nupic
external/darwin64/lib/python2.6/site-packages/matplotlib/table.py
69
16757
""" Place a table below the x-axis at location loc. The table consists of a grid of cells. The grid need not be rectangular and can have holes. Cells are added by specifying their row and column. For the purposes of positioning the cell at (0, 0) is assumed to be at the top left and the cell at (max_row, max_col) is assumed to be at bottom right. You can add additional cells outside this range to have convenient ways of positioning more interesting grids. Author : John Gill <jng@europe.renre.com> Copyright : 2004 John Gill and John Hunter License : matplotlib license """ from __future__ import division import warnings import artist from artist import Artist from patches import Rectangle from cbook import is_string_like from text import Text from transforms import Bbox class Cell(Rectangle): """ A cell is a Rectangle with some associated text. """ PAD = 0.1 # padding between text and rectangle def __init__(self, xy, width, height, edgecolor='k', facecolor='w', fill=True, text='', loc=None, fontproperties=None ): # Call base Rectangle.__init__(self, xy, width=width, height=height, edgecolor=edgecolor, facecolor=facecolor, ) self.set_clip_on(False) # Create text object if loc is None: loc = 'right' self._loc = loc self._text = Text(x=xy[0], y=xy[1], text=text, fontproperties=fontproperties) self._text.set_clip_on(False) def set_transform(self, trans): Rectangle.set_transform(self, trans) # the text does not get the transform! def set_figure(self, fig): Rectangle.set_figure(self, fig) self._text.set_figure(fig) def get_text(self): 'Return the cell Text intance' return self._text def set_fontsize(self, size): self._text.set_fontsize(size) def get_fontsize(self): 'Return the cell fontsize' return self._text.get_fontsize() def auto_set_font_size(self, renderer): """ Shrink font size until text fits. """ fontsize = self.get_fontsize() required = self.get_required_width(renderer) while fontsize > 1 and required > self.get_width(): fontsize -= 1 self.set_fontsize(fontsize) required = self.get_required_width(renderer) return fontsize def draw(self, renderer): if not self.get_visible(): return # draw the rectangle Rectangle.draw(self, renderer) # position the text self._set_text_position(renderer) self._text.draw(renderer) def _set_text_position(self, renderer): """ Set text up so it draws in the right place. Currently support 'left', 'center' and 'right' """ bbox = self.get_window_extent(renderer) l, b, w, h = bbox.bounds # draw in center vertically self._text.set_verticalalignment('center') y = b + (h / 2.0) # now position horizontally if self._loc == 'center': self._text.set_horizontalalignment('center') x = l + (w / 2.0) elif self._loc == 'left': self._text.set_horizontalalignment('left') x = l + (w * self.PAD) else: self._text.set_horizontalalignment('right') x = l + (w * (1.0 - self.PAD)) self._text.set_position((x, y)) def get_text_bounds(self, renderer): """ Get text bounds in axes co-ordinates. """ bbox = self._text.get_window_extent(renderer) bboxa = bbox.inverse_transformed(self.get_data_transform()) return bboxa.bounds def get_required_width(self, renderer): """ Get width required for this cell. """ l,b,w,h = self.get_text_bounds(renderer) return w * (1.0 + (2.0 * self.PAD)) def set_text_props(self, **kwargs): 'update the text properties with kwargs' self._text.update(kwargs) class Table(Artist): """ Create a table of cells. Table can have (optional) row and column headers. Each entry in the table can be either text or patches. Column widths and row heights for the table can be specifified. Return value is a sequence of text, line and patch instances that make up the table """ codes = {'best' : 0, 'upper right' : 1, # default 'upper left' : 2, 'lower left' : 3, 'lower right' : 4, 'center left' : 5, 'center right' : 6, 'lower center' : 7, 'upper center' : 8, 'center' : 9, 'top right' : 10, 'top left' : 11, 'bottom left' : 12, 'bottom right' : 13, 'right' : 14, 'left' : 15, 'top' : 16, 'bottom' : 17, } FONTSIZE = 10 AXESPAD = 0.02 # the border between the axes and table edge def __init__(self, ax, loc=None, bbox=None): Artist.__init__(self) if is_string_like(loc) and loc not in self.codes: warnings.warn('Unrecognized location %s. Falling back on bottom; valid locations are\n%s\t' %(loc, '\n\t'.join(self.codes.keys()))) loc = 'bottom' if is_string_like(loc): loc = self.codes.get(loc, 1) self.set_figure(ax.figure) self._axes = ax self._loc = loc self._bbox = bbox # use axes coords self.set_transform(ax.transAxes) self._texts = [] self._cells = {} self._autoRows = [] self._autoColumns = [] self._autoFontsize = True self._cachedRenderer = None def add_cell(self, row, col, *args, **kwargs): """ Add a cell to the table. """ xy = (0,0) cell = Cell(xy, *args, **kwargs) cell.set_figure(self.figure) cell.set_transform(self.get_transform()) cell.set_clip_on(False) self._cells[(row, col)] = cell def _approx_text_height(self): return self.FONTSIZE/72.0*self.figure.dpi/self._axes.bbox.height * 1.2 def draw(self, renderer): # Need a renderer to do hit tests on mouseevent; assume the last one will do if renderer is None: renderer = self._cachedRenderer if renderer is None: raise RuntimeError('No renderer defined') self._cachedRenderer = renderer if not self.get_visible(): return renderer.open_group('table') self._update_positions(renderer) keys = self._cells.keys() keys.sort() for key in keys: self._cells[key].draw(renderer) #for c in self._cells.itervalues(): # c.draw(renderer) renderer.close_group('table') def _get_grid_bbox(self, renderer): """Get a bbox, in axes co-ordinates for the cells. Only include those in the range (0,0) to (maxRow, maxCol)""" boxes = [self._cells[pos].get_window_extent(renderer) for pos in self._cells.keys() if pos[0] >= 0 and pos[1] >= 0] bbox = Bbox.union(boxes) return bbox.inverse_transformed(self.get_transform()) def contains(self,mouseevent): """Test whether the mouse event occurred in the table. Returns T/F, {} """ if callable(self._contains): return self._contains(self,mouseevent) # TODO: Return index of the cell containing the cursor so that the user # doesn't have to bind to each one individually. if self._cachedRenderer is not None: boxes = [self._cells[pos].get_window_extent(self._cachedRenderer) for pos in self._cells.keys() if pos[0] >= 0 and pos[1] >= 0] bbox = bbox_all(boxes) return bbox.contains(mouseevent.x,mouseevent.y),{} else: return False,{} def get_children(self): 'Return the Artists contained by the table' return self._cells.values() get_child_artists = get_children # backward compatibility def get_window_extent(self, renderer): 'Return the bounding box of the table in window coords' boxes = [c.get_window_extent(renderer) for c in self._cells] return bbox_all(boxes) def _do_cell_alignment(self): """ Calculate row heights and column widths. Position cells accordingly. """ # Calculate row/column widths widths = {} heights = {} for (row, col), cell in self._cells.iteritems(): height = heights.setdefault(row, 0.0) heights[row] = max(height, cell.get_height()) width = widths.setdefault(col, 0.0) widths[col] = max(width, cell.get_width()) # work out left position for each column xpos = 0 lefts = {} cols = widths.keys() cols.sort() for col in cols: lefts[col] = xpos xpos += widths[col] ypos = 0 bottoms = {} rows = heights.keys() rows.sort() rows.reverse() for row in rows: bottoms[row] = ypos ypos += heights[row] # set cell positions for (row, col), cell in self._cells.iteritems(): cell.set_x(lefts[col]) cell.set_y(bottoms[row]) def auto_set_column_width(self, col): self._autoColumns.append(col) def _auto_set_column_width(self, col, renderer): """ Automagically set width for column. """ cells = [key for key in self._cells if key[1] == col] # find max width width = 0 for cell in cells: c = self._cells[cell] width = max(c.get_required_width(renderer), width) # Now set the widths for cell in cells: self._cells[cell].set_width(width) def auto_set_font_size(self, value=True): """ Automatically set font size. """ self._autoFontsize = value def _auto_set_font_size(self, renderer): if len(self._cells) == 0: return fontsize = self._cells.values()[0].get_fontsize() cells = [] for key, cell in self._cells.iteritems(): # ignore auto-sized columns if key[1] in self._autoColumns: continue size = cell.auto_set_font_size(renderer) fontsize = min(fontsize, size) cells.append(cell) # now set all fontsizes equal for cell in self._cells.itervalues(): cell.set_fontsize(fontsize) def scale(self, xscale, yscale): """ Scale column widths by xscale and row heights by yscale. """ for c in self._cells.itervalues(): c.set_width(c.get_width() * xscale) c.set_height(c.get_height() * yscale) def set_fontsize(self, size): """ Set the fontsize of the cell text ACCEPTS: a float in points """ for cell in self._cells.itervalues(): cell.set_fontsize(size) def _offset(self, ox, oy): 'Move all the artists by ox,oy (axes coords)' for c in self._cells.itervalues(): x, y = c.get_x(), c.get_y() c.set_x(x+ox) c.set_y(y+oy) def _update_positions(self, renderer): # called from renderer to allow more precise estimates of # widths and heights with get_window_extent # Do any auto width setting for col in self._autoColumns: self._auto_set_column_width(col, renderer) if self._autoFontsize: self._auto_set_font_size(renderer) # Align all the cells self._do_cell_alignment() bbox = self._get_grid_bbox(renderer) l,b,w,h = bbox.bounds if self._bbox is not None: # Position according to bbox rl, rb, rw, rh = self._bbox self.scale(rw/w, rh/h) ox = rl - l oy = rb - b self._do_cell_alignment() else: # Position using loc (BEST, UR, UL, LL, LR, CL, CR, LC, UC, C, TR, TL, BL, BR, R, L, T, B) = range(len(self.codes)) # defaults for center ox = (0.5-w/2)-l oy = (0.5-h/2)-b if self._loc in (UL, LL, CL): # left ox = self.AXESPAD - l if self._loc in (BEST, UR, LR, R, CR): # right ox = 1 - (l + w + self.AXESPAD) if self._loc in (BEST, UR, UL, UC): # upper oy = 1 - (b + h + self.AXESPAD) if self._loc in (LL, LR, LC): # lower oy = self.AXESPAD - b if self._loc in (LC, UC, C): # center x ox = (0.5-w/2)-l if self._loc in (CL, CR, C): # center y oy = (0.5-h/2)-b if self._loc in (TL, BL, L): # out left ox = - (l + w) if self._loc in (TR, BR, R): # out right ox = 1.0 - l if self._loc in (TR, TL, T): # out top oy = 1.0 - b if self._loc in (BL, BR, B): # out bottom oy = - (b + h) self._offset(ox, oy) def get_celld(self): 'return a dict of cells in the table' return self._cells def table(ax, cellText=None, cellColours=None, cellLoc='right', colWidths=None, rowLabels=None, rowColours=None, rowLoc='left', colLabels=None, colColours=None, colLoc='center', loc='bottom', bbox=None): """ TABLE(cellText=None, cellColours=None, cellLoc='right', colWidths=None, rowLabels=None, rowColours=None, rowLoc='left', colLabels=None, colColours=None, colLoc='center', loc='bottom', bbox=None) Factory function to generate a Table instance. Thanks to John Gill for providing the class and table. """ # Check we have some cellText if cellText is None: # assume just colours are needed rows = len(cellColours) cols = len(cellColours[0]) cellText = [[''] * rows] * cols rows = len(cellText) cols = len(cellText[0]) for row in cellText: assert len(row) == cols if cellColours is not None: assert len(cellColours) == rows for row in cellColours: assert len(row) == cols else: cellColours = ['w' * cols] * rows # Set colwidths if not given if colWidths is None: colWidths = [1.0/cols] * cols # Check row and column labels rowLabelWidth = 0 if rowLabels is None: if rowColours is not None: rowLabels = [''] * cols rowLabelWidth = colWidths[0] elif rowColours is None: rowColours = 'w' * rows if rowLabels is not None: assert len(rowLabels) == rows offset = 0 if colLabels is None: if colColours is not None: colLabels = [''] * rows offset = 1 elif colColours is None: colColours = 'w' * cols offset = 1 if rowLabels is not None: assert len(rowLabels) == rows # Set up cell colours if not given if cellColours is None: cellColours = ['w' * cols] * rows # Now create the table table = Table(ax, loc, bbox) height = table._approx_text_height() # Add the cells for row in xrange(rows): for col in xrange(cols): table.add_cell(row+offset, col, width=colWidths[col], height=height, text=cellText[row][col], facecolor=cellColours[row][col], loc=cellLoc) # Do column labels if colLabels is not None: for col in xrange(cols): table.add_cell(0, col, width=colWidths[col], height=height, text=colLabels[col], facecolor=colColours[col], loc=colLoc) # Do row labels if rowLabels is not None: for row in xrange(rows): table.add_cell(row+offset, -1, width=rowLabelWidth or 1e-15, height=height, text=rowLabels[row], facecolor=rowColours[row], loc=rowLoc) if rowLabelWidth == 0: table.auto_set_column_width(-1) ax.add_table(table) return table artist.kwdocd['Table'] = artist.kwdoc(Table)
gpl-3.0