repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
RiccardoPecora/MP
Lib/site-packages/scipy/signal/waveforms.py
55
11609
# Author: Travis Oliphant # 2003 # # Feb. 2010: Updated by Warren Weckesser: # Rewrote much of chirp() # Added sweep_poly() from numpy import asarray, zeros, place, nan, mod, pi, extract, log, sqrt, \ exp, cos, sin, polyval, polyint def sawtooth(t, width=1): """ Return a periodic sawtooth waveform. The sawtooth waveform has a period 2*pi, rises from -1 to 1 on the interval 0 to width*2*pi and drops from 1 to -1 on the interval width*2*pi to 2*pi. `width` must be in the interval [0,1]. Parameters ---------- t : array_like Time. width : float, optional Width of the waveform. Default is 1. Returns ------- y : ndarray Output array containing the sawtooth waveform. Examples -------- >>> import matplotlib.pyplot as plt >>> x = np.linspace(0, 20*np.pi, 500) >>> plt.plot(x, sp.signal.sawtooth(x)) """ t,w = asarray(t), asarray(width) w = asarray(w + (t-t)) t = asarray(t + (w-w)) if t.dtype.char in ['fFdD']: ytype = t.dtype.char else: ytype = 'd' y = zeros(t.shape,ytype) # width must be between 0 and 1 inclusive mask1 = (w > 1) | (w < 0) place(y,mask1,nan) # take t modulo 2*pi tmod = mod(t,2*pi) # on the interval 0 to width*2*pi function is # tmod / (pi*w) - 1 mask2 = (1-mask1) & (tmod < w*2*pi) tsub = extract(mask2,tmod) wsub = extract(mask2,w) place(y,mask2,tsub / (pi*wsub) - 1) # on the interval width*2*pi to 2*pi function is # (pi*(w+1)-tmod) / (pi*(1-w)) mask3 = (1-mask1) & (1-mask2) tsub = extract(mask3,tmod) wsub = extract(mask3,w) place(y,mask3, (pi*(wsub+1)-tsub)/(pi*(1-wsub))) return y def square(t, duty=0.5): """ Return a periodic square-wave waveform. The square wave has a period 2*pi, has value +1 from 0 to 2*pi*duty and -1 from 2*pi*duty to 2*pi. `duty` must be in the interval [0,1]. Parameters ---------- t : array_like The input time array. duty : float, optional Duty cycle. Returns ------- y : array_like The output square wave. """ t,w = asarray(t), asarray(duty) w = asarray(w + (t-t)) t = asarray(t + (w-w)) if t.dtype.char in ['fFdD']: ytype = t.dtype.char else: ytype = 'd' y = zeros(t.shape,ytype) # width must be between 0 and 1 inclusive mask1 = (w > 1) | (w < 0) place(y,mask1,nan) # take t modulo 2*pi tmod = mod(t,2*pi) # on the interval 0 to duty*2*pi function is # 1 mask2 = (1-mask1) & (tmod < w*2*pi) tsub = extract(mask2,tmod) wsub = extract(mask2,w) place(y,mask2,1) # on the interval duty*2*pi to 2*pi function is # (pi*(w+1)-tmod) / (pi*(1-w)) mask3 = (1-mask1) & (1-mask2) tsub = extract(mask3,tmod) wsub = extract(mask3,w) place(y,mask3,-1) return y def gausspulse(t, fc=1000, bw=0.5, bwr=-6, tpr=-60, retquad=False, retenv=False): """ Return a gaussian modulated sinusoid: exp(-a t^2) exp(1j*2*pi*fc*t). If `retquad` is True, then return the real and imaginary parts (in-phase and quadrature). If `retenv` is True, then return the envelope (unmodulated signal). Otherwise, return the real part of the modulated sinusoid. Parameters ---------- t : ndarray, or the string 'cutoff' Input array. fc : int, optional Center frequency (Hz). Default is 1000. bw : float, optional Fractional bandwidth in frequency domain of pulse (Hz). Default is 0.5. bwr: float, optional Reference level at which fractional bandwidth is calculated (dB). Default is -6. tpr : float, optional If `t` is 'cutoff', then the function returns the cutoff time for when the pulse amplitude falls below `tpr` (in dB). Default is -60. retquad : bool, optional If True, return the quadrature (imaginary) as well as the real part of the signal. Default is False. retenv : bool, optional If True, return the envelope of the signal. Default is False. """ if fc < 0: raise ValueError("Center frequency (fc=%.2f) must be >=0." % fc) if bw <= 0: raise ValueError("Fractional bandwidth (bw=%.2f) must be > 0." % bw) if bwr >= 0: raise ValueError("Reference level for bandwidth (bwr=%.2f) must " "be < 0 dB" % bwr) # exp(-a t^2) <-> sqrt(pi/a) exp(-pi^2/a * f^2) = g(f) ref = pow(10.0, bwr / 20.0) # fdel = fc*bw/2: g(fdel) = ref --- solve this for a # # pi^2/a * fc^2 * bw^2 /4=-log(ref) a = -(pi*fc*bw)**2 / (4.0*log(ref)) if t == 'cutoff': # compute cut_off point # Solve exp(-a tc**2) = tref for tc # tc = sqrt(-log(tref) / a) where tref = 10^(tpr/20) if tpr >= 0: raise ValueError("Reference level for time cutoff must be < 0 dB") tref = pow(10.0, tpr / 20.0) return sqrt(-log(tref)/a) yenv = exp(-a*t*t) yI = yenv * cos(2*pi*fc*t) yQ = yenv * sin(2*pi*fc*t) if not retquad and not retenv: return yI if not retquad and retenv: return yI, yenv if retquad and not retenv: return yI, yQ if retquad and retenv: return yI, yQ, yenv def chirp(t, f0, t1, f1, method='linear', phi=0, vertex_zero=True): """Frequency-swept cosine generator. In the following, 'Hz' should be interpreted as 'cycles per time unit'; there is no assumption here that the time unit is one second. The important distinction is that the units of rotation are cycles, not radians. Parameters ---------- t : ndarray Times at which to evaluate the waveform. f0 : float Frequency (in Hz) at time t=0. t1 : float Time at which `f1` is specified. f1 : float Frequency (in Hz) of the waveform at time `t1`. method : {'linear', 'quadratic', 'logarithmic', 'hyperbolic'}, optional Kind of frequency sweep. If not given, `linear` is assumed. See Notes below for more details. phi : float, optional Phase offset, in degrees. Default is 0. vertex_zero : bool, optional This parameter is only used when `method` is 'quadratic'. It determines whether the vertex of the parabola that is the graph of the frequency is at t=0 or t=t1. Returns ------- A numpy array containing the signal evaluated at 't' with the requested time-varying frequency. More precisely, the function returns: ``cos(phase + (pi/180)*phi)`` where `phase` is the integral (from 0 to t) of ``2*pi*f(t)``. ``f(t)`` is defined below. See Also -------- scipy.signal.waveforms.sweep_poly Notes ----- There are four options for the `method`. The following formulas give the instantaneous frequency (in Hz) of the signal generated by `chirp()`. For convenience, the shorter names shown below may also be used. linear, lin, li: ``f(t) = f0 + (f1 - f0) * t / t1`` quadratic, quad, q: The graph of the frequency f(t) is a parabola through (0, f0) and (t1, f1). By default, the vertex of the parabola is at (0, f0). If `vertex_zero` is False, then the vertex is at (t1, f1). The formula is: if vertex_zero is True: ``f(t) = f0 + (f1 - f0) * t**2 / t1**2`` else: ``f(t) = f1 - (f1 - f0) * (t1 - t)**2 / t1**2`` To use a more general quadratic function, or an arbitrary polynomial, use the function `scipy.signal.waveforms.sweep_poly`. logarithmic, log, lo: ``f(t) = f0 * (f1/f0)**(t/t1)`` f0 and f1 must be nonzero and have the same sign. This signal is also known as a geometric or exponential chirp. hyperbolic, hyp: ``f(t) = f0*f1*t1 / ((f0 - f1)*t + f1*t1)`` f1 must be positive, and f0 must be greater than f1. """ # 'phase' is computed in _chirp_phase, to make testing easier. phase = _chirp_phase(t, f0, t1, f1, method, vertex_zero) # Convert phi to radians. phi *= pi / 180 return cos(phase + phi) def _chirp_phase(t, f0, t1, f1, method='linear', vertex_zero=True): """ Calculate the phase used by chirp_phase to generate its output. See `chirp_phase` for a description of the arguments. """ f0 = float(f0) t1 = float(t1) f1 = float(f1) if method in ['linear', 'lin', 'li']: beta = (f1 - f0) / t1 phase = 2*pi * (f0*t + 0.5*beta*t*t) elif method in ['quadratic','quad','q']: beta = (f1 - f0)/(t1**2) if vertex_zero: phase = 2*pi * (f0*t + beta * t**3/3) else: phase = 2*pi * (f1*t + beta * ((t1 - t)**3 - t1**3)/3) elif method in ['logarithmic', 'log', 'lo']: if f0*f1 <= 0.0: raise ValueError("For a geometric chirp, f0 and f1 must be nonzero " \ "and have the same sign.") if f0 == f1: phase = 2*pi * f0 * t else: beta = t1 / log(f1/f0) phase = 2*pi * beta * f0 * (pow(f1/f0, t/t1) - 1.0) elif method in ['hyperbolic', 'hyp']: if f1 <= 0.0 or f0 <= f1: raise ValueError("hyperbolic chirp requires f0 > f1 > 0.0.") c = f1*t1 df = f0 - f1 phase = 2*pi * (f0 * c / df) * log((df*t + c)/c) else: raise ValueError("method must be 'linear', 'quadratic', 'logarithmic', " "or 'hyperbolic', but a value of %r was given." % method) return phase def sweep_poly(t, poly, phi=0): """Frequency-swept cosine generator, with a time-dependent frequency specified as a polynomial. This function generates a sinusoidal function whose instantaneous frequency varies with time. The frequency at time `t` is given by the polynomial `poly`. Parameters ---------- t : ndarray Times at which to evaluate the waveform. poly : 1D ndarray (or array-like), or instance of numpy.poly1d The desired frequency expressed as a polynomial. If `poly` is a list or ndarray of length n, then the elements of `poly` are the coefficients of the polynomial, and the instantaneous frequency is ``f(t) = poly[0]*t**(n-1) + poly[1]*t**(n-2) + ... + poly[n-1]`` If `poly` is an instance of numpy.poly1d, then the instantaneous frequency is ``f(t) = poly(t)`` phi : float, optional Phase offset, in degrees. Default is 0. Returns ------- A numpy array containing the signal evaluated at 't' with the requested time-varying frequency. More precisely, the function returns ``cos(phase + (pi/180)*phi)`` where `phase` is the integral (from 0 to t) of ``2 * pi * f(t)``; ``f(t)`` is defined above. See Also -------- scipy.signal.waveforms.chirp Notes ----- .. versionadded:: 0.8.0 """ # 'phase' is computed in _sweep_poly_phase, to make testing easier. phase = _sweep_poly_phase(t, poly) # Convert to radians. phi *= pi / 180 return cos(phase + phi) def _sweep_poly_phase(t, poly): """ Calculate the phase used by sweep_poly to generate its output. See `sweep_poly` for a description of the arguments. """ # polyint handles lists, ndarrays and instances of poly1d automatically. intpoly = polyint(poly) phase = 2*pi * polyval(intpoly, t) return phase
gpl-3.0
gnychis/grforwarder
gr-utils/src/python/gr_plot_iq.py
10
7206
#!/usr/bin/env python # # Copyright 2007,2008,2011 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # try: import scipy except ImportError: print "Please install SciPy to run this script (http://www.scipy.org/)" raise SystemExit, 1 try: from pylab import * except ImportError: print "Please install Matplotlib to run this script (http://matplotlib.sourceforge.net/)" raise SystemExit, 1 from optparse import OptionParser class draw_iq: def __init__(self, filename, options): self.hfile = open(filename, "r") self.block_length = options.block self.start = options.start self.sample_rate = options.sample_rate self.datatype = scipy.complex64 self.sizeof_data = self.datatype().nbytes # number of bytes per sample in file self.axis_font_size = 16 self.label_font_size = 18 self.title_font_size = 20 self.text_size = 22 # Setup PLOT self.fig = figure(1, figsize=(16, 9), facecolor='w') rcParams['xtick.labelsize'] = self.axis_font_size rcParams['ytick.labelsize'] = self.axis_font_size self.text_file = figtext(0.10, 0.94, ("File: %s" % filename), weight="heavy", size=self.text_size) self.text_file_pos = figtext(0.10, 0.88, "File Position: ", weight="heavy", size=self.text_size) self.text_block = figtext(0.40, 0.88, ("Block Size: %d" % self.block_length), weight="heavy", size=self.text_size) self.text_sr = figtext(0.60, 0.88, ("Sample Rate: %.2f" % self.sample_rate), weight="heavy", size=self.text_size) self.make_plots() self.button_left_axes = self.fig.add_axes([0.45, 0.01, 0.05, 0.05], frameon=True) self.button_left = Button(self.button_left_axes, "<") self.button_left_callback = self.button_left.on_clicked(self.button_left_click) self.button_right_axes = self.fig.add_axes([0.50, 0.01, 0.05, 0.05], frameon=True) self.button_right = Button(self.button_right_axes, ">") self.button_right_callback = self.button_right.on_clicked(self.button_right_click) self.xlim = self.sp_iq.get_xlim() self.manager = get_current_fig_manager() connect('key_press_event', self.click) show() def get_data(self): self.text_file_pos.set_text("File Position: %d" % (self.hfile.tell()//self.sizeof_data)) try: self.iq = scipy.fromfile(self.hfile, dtype=self.datatype, count=self.block_length) except MemoryError: print "End of File" else: self.reals = scipy.array([r.real for r in self.iq]) self.imags = scipy.array([i.imag for i in self.iq]) self.time = scipy.array([i*(1/self.sample_rate) for i in range(len(self.reals))]) def make_plots(self): # if specified on the command-line, set file pointer self.hfile.seek(self.sizeof_data*self.start, 1) self.get_data() # Subplot for real and imaginary parts of signal self.sp_iq = self.fig.add_subplot(2,1,1, position=[0.075, 0.14, 0.85, 0.67]) self.sp_iq.set_title(("I&Q"), fontsize=self.title_font_size, fontweight="bold") self.sp_iq.set_xlabel("Time (s)", fontsize=self.label_font_size, fontweight="bold") self.sp_iq.set_ylabel("Amplitude (V)", fontsize=self.label_font_size, fontweight="bold") self.plot_iq = plot(self.time, self.reals, 'bo-', self.time, self.imags, 'ro-') self.sp_iq.set_ylim([1.5*min([self.reals.min(), self.imags.min()]), 1.5*max([self.reals.max(), self.imags.max()])]) self.sp_iq.set_xlim(self.time.min(), self.time.max()) draw() def update_plots(self): self.plot_iq[0].set_data([self.time, self.reals]) self.plot_iq[1].set_data([self.time, self.imags]) self.sp_iq.set_ylim([1.5*min([self.reals.min(), self.imags.min()]), 1.5*max([self.reals.max(), self.imags.max()])]) self.sp_iq.set_xlim(self.time.min(), self.time.max()) draw() def click(self, event): forward_valid_keys = [" ", "down", "right"] backward_valid_keys = ["up", "left"] if(find(event.key, forward_valid_keys)): self.step_forward() elif(find(event.key, backward_valid_keys)): self.step_backward() def button_left_click(self, event): self.step_backward() def button_right_click(self, event): self.step_forward() def step_forward(self): self.get_data() self.update_plots() def step_backward(self): # Step back in file position if(self.hfile.tell() >= 2*self.sizeof_data*self.block_length ): self.hfile.seek(-2*self.sizeof_data*self.block_length, 1) else: self.hfile.seek(-self.hfile.tell(),1) self.get_data() self.update_plots() def find(item_in, list_search): try: return list_search.index(item_in) != None except ValueError: return False def main(): usage="%prog: [options] input_filename" description = "Takes a GNU Radio complex binary file and displays the I&Q data versus time. You can set the block size to specify how many points to read in at a time and the start position in the file. By default, the system assumes a sample rate of 1, so in time, each sample is plotted versus the sample number. To set a true time axis, set the sample rate (-R or --sample-rate) to the sample rate used when capturing the samples." parser = OptionParser(conflict_handler="resolve", usage=usage, description=description) parser.add_option("-B", "--block", type="int", default=1000, help="Specify the block size [default=%default]") parser.add_option("-s", "--start", type="int", default=0, help="Specify where to start in the file [default=%default]") parser.add_option("-R", "--sample-rate", type="float", default=1.0, help="Set the sampler rate of the data [default=%default]") (options, args) = parser.parse_args () if len(args) != 1: parser.print_help() raise SystemExit, 1 filename = args[0] dc = draw_iq(filename, options) if __name__ == "__main__": try: main() except KeyboardInterrupt: pass
gpl-3.0
mrshu/scikit-learn
benchmarks/bench_random_projections.py
2
8847
""" =========================== Random projection benchmark =========================== Benchmarks for random projections. """ from __future__ import division from __future__ import print_function import gc import sys import optparse from datetime import datetime import collections import numpy as np import scipy.sparse as sp from sklearn import clone from sklearn.random_projection import (SparseRandomProjection, GaussianRandomProjection, johnson_lindenstrauss_min_dim) def type_auto_or_float(val): if val == "auto": return "auto" else: return float(val) def type_auto_or_int(val): if val == "auto": return "auto" else: return int(val) def compute_time(t_start, delta): mu_second = 0.0 + 10 ** 6 # number of microseconds in a second return delta.seconds + delta.microseconds / mu_second def bench_scikit_transformer(X, transfomer): gc.collect() clf = clone(transfomer) # start time t_start = datetime.now() clf.fit(X) delta = (datetime.now() - t_start) # stop time time_to_fit = compute_time(t_start, delta) # start time t_start = datetime.now() clf.transform(X) delta = (datetime.now() - t_start) # stop time time_to_transform = compute_time(t_start, delta) return time_to_fit, time_to_transform # Make some random data with uniformly located non zero entries with # Gaussian distributed values def make_sparse_random_data(n_samples, n_features, n_nonzeros, random_state=None): rng = np.random.RandomState(random_state) data_coo = sp.coo_matrix( (rng.randn(n_nonzeros), (rng.randint(n_samples, size=n_nonzeros), rng.randint(n_features, size=n_nonzeros))), shape=(n_samples, n_features)) return data_coo.toarray(), data_coo.tocsr() def print_row(clf_type, time_fit, time_transform): print("%s | %s | %s" % (clf_type.ljust(30), ("%.4fs" % time_fit).center(12), ("%.4fs" % time_transform).center(12))) if __name__ == "__main__": ########################################################################### # Option parser ########################################################################### op = optparse.OptionParser() op.add_option("--n-times", dest="n_times", default=5, type=int, help="Bench results are average over n_times experiments") op.add_option("--n-features", dest="n_features", default=10 ** 4, type=int, help="Number of features in the benchmarks") op.add_option("--n-components", dest="n_components", default="auto", help="Size of the random subspace." "('auto' or int > 0)") op.add_option("--ratio-nonzeros", dest="ratio_nonzeros", default=10 ** -3, type=float, help="Number of features in the benchmarks") op.add_option("--n-samples", dest="n_samples", default=500, type=int, help="Number of samples in the benchmarks") op.add_option("--random-seed", dest="random_seed", default=13, type=int, help="Seed used by the random number generators.") op.add_option("--density", dest="density", default=1 / 3, help="Density used by the sparse random projection." "('auto' or float (0.0, 1.0]") op.add_option("--eps", dest="eps", default=0.5, type=float, help="See the documentation of the underlying transformers.") op.add_option("--transformers", dest="selected_transformers", default='GaussianRandomProjection,SparseRandomProjection', type=str, help="Comma-separated list of transformer to benchmark. " "Default: %default. Available: " "GaussianRandomProjection,SparseRandomProjection") op.add_option("--dense", dest="dense", default=False, action="store_true", help="Set input space as a dense matrix.") (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) opts.n_components = type_auto_or_int(opts.n_components) opts.density = type_auto_or_float(opts.density) selected_transformers = opts.selected_transformers.split(',') ########################################################################### # Generate dataset ########################################################################### n_nonzeros = int(opts.ratio_nonzeros * opts.n_features) print('Dataset statics') print("===========================") print('n_samples \t= %s' % opts.n_samples) print('n_features \t= %s' % opts.n_features) if opts.n_components == "auto": print('n_components \t= %s (auto)' % johnson_lindenstrauss_min_dim(n_samples=opts.n_samples, eps=opts.eps)) else: print('n_components \t= %s' % opts.n_components) print('n_elements \t= %s' % (opts.n_features * opts.n_samples)) print('n_nonzeros \t= %s per feature' % n_nonzeros) print('ratio_nonzeros \t= %s' % opts.ratio_nonzeros) print('') ########################################################################### # Set transformer input ########################################################################### transformers = {} ########################################################################### # Set GaussianRandomProjection input gaussian_matrix_params = { "n_components": opts.n_components, "random_state": opts.random_seed } transformers["GaussianRandomProjection"] = \ GaussianRandomProjection(**gaussian_matrix_params) ########################################################################### # Set SparseRandomProjection input sparse_matrix_params = { "n_components": opts.n_components, "random_state": opts.random_seed, "density": opts.density, "eps": opts.eps, } transformers["SparseRandomProjection"] = \ SparseRandomProjection(**sparse_matrix_params) ########################################################################### # Perform benchmark ########################################################################### time_fit = collections.defaultdict(list) time_transform = collections.defaultdict(list) print('Benchmarks') print("===========================") print("Generate dataset benchmarks... ", end="") X_dense, X_sparse = make_sparse_random_data(opts.n_samples, opts.n_features, n_nonzeros, random_state=opts.random_seed) X = X_dense if opts.dense else X_sparse print("done") for name in selected_transformers: print("Perform benchmarks for %s..." % name) for iteration in xrange(opts.n_times): print("\titer %s..." % iteration, end="") time_to_fit, time_to_transform = bench_scikit_transformer(X_dense, transformers[name]) time_fit[name].append(time_to_fit) time_transform[name].append(time_to_transform) print("done") print("") ########################################################################### # Print results ########################################################################### print("Script arguments") print("===========================") arguments = vars(opts) print("%s \t | %s " % ("Arguments".ljust(16), "Value".center(12),)) print(25 * "-" + ("|" + "-" * 14) * 1) for key, value in arguments.items(): print("%s \t | %s " % (str(key).ljust(16), str(value).strip().center(12))) print("") print("Transformer performance:") print("===========================") print("Results are averaged over %s repetition(s)." % opts.n_times) print("") print("%s | %s | %s" % ("Transformer".ljust(30), "fit".center(12), "transform".center(12))) print(31 * "-" + ("|" + "-" * 14) * 2) for name in sorted(selected_transformers): print_row(name, np.mean(time_fit[name]), np.mean(time_transform[name])) print("") print("")
bsd-3-clause
akhilaananthram/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/mlab.py
69
104273
""" Numerical python functions written for compatability with matlab(TM) commands with the same names. Matlab(TM) compatible functions ------------------------------- :func:`cohere` Coherence (normalized cross spectral density) :func:`csd` Cross spectral density uing Welch's average periodogram :func:`detrend` Remove the mean or best fit line from an array :func:`find` Return the indices where some condition is true; numpy.nonzero is similar but more general. :func:`griddata` interpolate irregularly distributed data to a regular grid. :func:`prctile` find the percentiles of a sequence :func:`prepca` Principal Component Analysis :func:`psd` Power spectral density uing Welch's average periodogram :func:`rk4` A 4th order runge kutta integrator for 1D or ND systems :func:`specgram` Spectrogram (power spectral density over segments of time) Miscellaneous functions ------------------------- Functions that don't exist in matlab(TM), but are useful anyway: :meth:`cohere_pairs` Coherence over all pairs. This is not a matlab function, but we compute coherence a lot in my lab, and we compute it for a lot of pairs. This function is optimized to do this efficiently by caching the direct FFTs. :meth:`rk4` A 4th order Runge-Kutta ODE integrator in case you ever find yourself stranded without scipy (and the far superior scipy.integrate tools) record array helper functions ------------------------------- A collection of helper methods for numpyrecord arrays .. _htmlonly:: See :ref:`misc-examples-index` :meth:`rec2txt` pretty print a record array :meth:`rec2csv` store record array in CSV file :meth:`csv2rec` import record array from CSV file with type inspection :meth:`rec_append_fields` adds field(s)/array(s) to record array :meth:`rec_drop_fields` drop fields from record array :meth:`rec_join` join two record arrays on sequence of fields :meth:`rec_groupby` summarize data by groups (similar to SQL GROUP BY) :meth:`rec_summarize` helper code to filter rec array fields into new fields For the rec viewer functions(e rec2csv), there are a bunch of Format objects you can pass into the functions that will do things like color negative values red, set percent formatting and scaling, etc. Example usage:: r = csv2rec('somefile.csv', checkrows=0) formatd = dict( weight = FormatFloat(2), change = FormatPercent(2), cost = FormatThousands(2), ) rec2excel(r, 'test.xls', formatd=formatd) rec2csv(r, 'test.csv', formatd=formatd) scroll = rec2gtk(r, formatd=formatd) win = gtk.Window() win.set_size_request(600,800) win.add(scroll) win.show_all() gtk.main() Deprecated functions --------------------- The following are deprecated; please import directly from numpy (with care--function signatures may differ): :meth:`conv` convolution (numpy.convolve) :meth:`corrcoef` The matrix of correlation coefficients :meth:`hist` Histogram (numpy.histogram) :meth:`linspace` Linear spaced array from min to max :meth:`load` load ASCII file - use numpy.loadtxt :meth:`meshgrid` Make a 2D grid from 2 1 arrays (numpy.meshgrid) :meth:`polyfit` least squares best polynomial fit of x to y (numpy.polyfit) :meth:`polyval` evaluate a vector for a vector of polynomial coeffs (numpy.polyval) :meth:`save` save ASCII file - use numpy.savetxt :meth:`trapz` trapeziodal integration (trapz(x,y) -> numpy.trapz(y,x)) :meth:`vander` the Vandermonde matrix (numpy.vander) """ from __future__ import division import csv, warnings, copy, os import numpy as np ma = np.ma from matplotlib import verbose import matplotlib.nxutils as nxutils import matplotlib.cbook as cbook # set is a new builtin function in 2.4; delete the following when # support for 2.3 is dropped. try: set except NameError: from sets import Set as set def linspace(*args, **kw): warnings.warn("use numpy.linspace", DeprecationWarning) return np.linspace(*args, **kw) def meshgrid(x,y): warnings.warn("use numpy.meshgrid", DeprecationWarning) return np.meshgrid(x,y) def mean(x, dim=None): warnings.warn("Use numpy.mean(x) or x.mean()", DeprecationWarning) if len(x)==0: return None return np.mean(x, axis=dim) def logspace(xmin,xmax,N): return np.exp(np.linspace(np.log(xmin), np.log(xmax), N)) def _norm(x): "return sqrt(x dot x)" return np.sqrt(np.dot(x,x)) def window_hanning(x): "return x times the hanning window of len(x)" return np.hanning(len(x))*x def window_none(x): "No window function; simply return x" return x #from numpy import convolve as conv def conv(x, y, mode=2): 'convolve x with y' warnings.warn("Use numpy.convolve(x, y, mode='full')", DeprecationWarning) return np.convolve(x,y,mode) def detrend(x, key=None): if key is None or key=='constant': return detrend_mean(x) elif key=='linear': return detrend_linear(x) def demean(x, axis=0): "Return x minus its mean along the specified axis" x = np.asarray(x) if axis: ind = [slice(None)] * axis ind.append(np.newaxis) return x - x.mean(axis)[ind] return x - x.mean(axis) def detrend_mean(x): "Return x minus the mean(x)" return x - x.mean() def detrend_none(x): "Return x: no detrending" return x def detrend_linear(y): "Return y minus best fit line; 'linear' detrending " # This is faster than an algorithm based on linalg.lstsq. x = np.arange(len(y), dtype=np.float_) C = np.cov(x, y, bias=1) b = C[0,1]/C[0,0] a = y.mean() - b*x.mean() return y - (b*x + a) #This is a helper function that implements the commonality between the #psd, csd, and spectrogram. It is *NOT* meant to be used outside of mlab def _spectral_helper(x, y, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None): #The checks for if y is x are so that we can use the same function to #implement the core of psd(), csd(), and spectrogram() without doing #extra calculations. We return the unaveraged Pxy, freqs, and t. same_data = y is x #Make sure we're dealing with a numpy array. If y and x were the same #object to start with, keep them that way x = np.asarray(x) if not same_data: y = np.asarray(y) # zero pad x and y up to NFFT if they are shorter than NFFT if len(x)<NFFT: n = len(x) x = np.resize(x, (NFFT,)) x[n:] = 0 if not same_data and len(y)<NFFT: n = len(y) y = np.resize(y, (NFFT,)) y[n:] = 0 if pad_to is None: pad_to = NFFT if scale_by_freq is None: warnings.warn("psd, csd, and specgram have changed to scale their " "densities by the sampling frequency for better MatLab " "compatibility. You can pass scale_by_freq=False to disable " "this behavior. Also, one-sided densities are scaled by a " "factor of 2.") scale_by_freq = True # For real x, ignore the negative frequencies unless told otherwise if (sides == 'default' and np.iscomplexobj(x)) or sides == 'twosided': numFreqs = pad_to scaling_factor = 1. elif sides in ('default', 'onesided'): numFreqs = pad_to//2 + 1 scaling_factor = 2. else: raise ValueError("sides must be one of: 'default', 'onesided', or " "'twosided'") # Matlab divides by the sampling frequency so that density function # has units of dB/Hz and can be integrated by the plotted frequency # values. Perform the same scaling here. if scale_by_freq: scaling_factor /= Fs if cbook.iterable(window): assert(len(window) == NFFT) windowVals = window else: windowVals = window(np.ones((NFFT,), x.dtype)) step = NFFT - noverlap ind = np.arange(0, len(x) - NFFT + 1, step) n = len(ind) Pxy = np.zeros((numFreqs,n), np.complex_) # do the ffts of the slices for i in range(n): thisX = x[ind[i]:ind[i]+NFFT] thisX = windowVals * detrend(thisX) fx = np.fft.fft(thisX, n=pad_to) if same_data: fy = fx else: thisY = y[ind[i]:ind[i]+NFFT] thisY = windowVals * detrend(thisY) fy = np.fft.fft(thisY, n=pad_to) Pxy[:,i] = np.conjugate(fx[:numFreqs]) * fy[:numFreqs] # Scale the spectrum by the norm of the window to compensate for # windowing loss; see Bendat & Piersol Sec 11.5.2. Also include # scaling factors for one-sided densities and dividing by the sampling # frequency, if desired. Pxy *= scaling_factor / (np.abs(windowVals)**2).sum() t = 1./Fs * (ind + NFFT / 2.) freqs = float(Fs) / pad_to * np.arange(numFreqs) return Pxy, freqs, t #Split out these keyword docs so that they can be used elsewhere kwdocd = dict() kwdocd['PSD'] =""" Keyword arguments: *NFFT*: integer The number of data points used in each block for the FFT. Must be even; a power 2 is most efficient. The default value is 256. *Fs*: scalar The sampling frequency (samples per time unit). It is used to calculate the Fourier frequencies, freqs, in cycles per time unit. The default value is 2. *detrend*: callable The function applied to each segment before fft-ing, designed to remove the mean or linear trend. Unlike in matlab, where the *detrend* parameter is a vector, in matplotlib is it a function. The :mod:`~matplotlib.pylab` module defines :func:`~matplotlib.pylab.detrend_none`, :func:`~matplotlib.pylab.detrend_mean`, and :func:`~matplotlib.pylab.detrend_linear`, but you can use a custom function as well. *window*: callable or ndarray A function or a vector of length *NFFT*. To create window vectors see :func:`window_hanning`, :func:`window_none`, :func:`numpy.blackman`, :func:`numpy.hamming`, :func:`numpy.bartlett`, :func:`scipy.signal`, :func:`scipy.signal.get_window`, etc. The default is :func:`window_hanning`. If a function is passed as the argument, it must take a data segment as an argument and return the windowed version of the segment. *noverlap*: integer The number of points of overlap between blocks. The default value is 0 (no overlap). *pad_to*: integer The number of points to which the data segment is padded when performing the FFT. This can be different from *NFFT*, which specifies the number of data points used. While not increasing the actual resolution of the psd (the minimum distance between resolvable peaks), this can give more points in the plot, allowing for more detail. This corresponds to the *n* parameter in the call to fft(). The default is None, which sets *pad_to* equal to *NFFT* *sides*: [ 'default' | 'onesided' | 'twosided' ] Specifies which sides of the PSD to return. Default gives the default behavior, which returns one-sided for real data and both for complex data. 'onesided' forces the return of a one-sided PSD, while 'twosided' forces two-sided. *scale_by_freq*: boolean Specifies whether the resulting density values should be scaled by the scaling frequency, which gives density in units of Hz^-1. This allows for integration over the returned frequency values. The default is True for MatLab compatibility. """ def psd(x, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None): """ The power spectral density by Welch's average periodogram method. The vector *x* is divided into *NFFT* length blocks. Each block is detrended by the function *detrend* and windowed by the function *window*. *noverlap* gives the length of the overlap between blocks. The absolute(fft(block))**2 of each segment are averaged to compute *Pxx*, with a scaling to correct for power loss due to windowing. If len(*x*) < *NFFT*, it will be zero padded to *NFFT*. *x* Array or sequence containing the data %(PSD)s Returns the tuple (*Pxx*, *freqs*). Refs: Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John Wiley & Sons (1986) """ Pxx,freqs = csd(x, x, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) return Pxx.real,freqs psd.__doc__ = psd.__doc__ % kwdocd def csd(x, y, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None): """ The cross power spectral density by Welch's average periodogram method. The vectors *x* and *y* are divided into *NFFT* length blocks. Each block is detrended by the function *detrend* and windowed by the function *window*. *noverlap* gives the length of the overlap between blocks. The product of the direct FFTs of *x* and *y* are averaged over each segment to compute *Pxy*, with a scaling to correct for power loss due to windowing. If len(*x*) < *NFFT* or len(*y*) < *NFFT*, they will be zero padded to *NFFT*. *x*, *y* Array or sequence containing the data %(PSD)s Returns the tuple (*Pxy*, *freqs*). Refs: Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John Wiley & Sons (1986) """ Pxy, freqs, t = _spectral_helper(x, y, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) if len(Pxy.shape) == 2 and Pxy.shape[1]>1: Pxy = Pxy.mean(axis=1) return Pxy, freqs csd.__doc__ = csd.__doc__ % kwdocd def specgram(x, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=128, pad_to=None, sides='default', scale_by_freq=None): """ Compute a spectrogram of data in *x*. Data are split into *NFFT* length segements and the PSD of each section is computed. The windowing function *window* is applied to each segment, and the amount of overlap of each segment is specified with *noverlap*. If *x* is real (i.e. non-complex) only the spectrum of the positive frequencie is returned. If *x* is complex then the complete spectrum is returned. %(PSD)s Returns a tuple (*Pxx*, *freqs*, *t*): - *Pxx*: 2-D array, columns are the periodograms of successive segments - *freqs*: 1-D array of frequencies corresponding to the rows in Pxx - *t*: 1-D array of times corresponding to midpoints of segments. .. seealso:: :func:`psd`: :func:`psd` differs in the default overlap; in returning the mean of the segment periodograms; and in not returning times. """ assert(NFFT > noverlap) Pxx, freqs, t = _spectral_helper(x, x, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) Pxx = Pxx.real #Needed since helper implements generically if (np.iscomplexobj(x) and sides == 'default') or sides == 'twosided': # center the frequency range at zero freqs = np.concatenate((freqs[NFFT/2:]-Fs,freqs[:NFFT/2])) Pxx = np.concatenate((Pxx[NFFT/2:,:],Pxx[:NFFT/2,:]),0) return Pxx, freqs, t specgram.__doc__ = specgram.__doc__ % kwdocd _coh_error = """Coherence is calculated by averaging over *NFFT* length segments. Your signal is too short for your choice of *NFFT*. """ def cohere(x, y, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None): """ The coherence between *x* and *y*. Coherence is the normalized cross spectral density: .. math:: C_{xy} = \\frac{|P_{xy}|^2}{P_{xx}P_{yy}} *x*, *y* Array or sequence containing the data %(PSD)s The return value is the tuple (*Cxy*, *f*), where *f* are the frequencies of the coherence vector. For cohere, scaling the individual densities by the sampling frequency has no effect, since the factors cancel out. .. seealso:: :func:`psd` and :func:`csd`: For information about the methods used to compute :math:`P_{xy}`, :math:`P_{xx}` and :math:`P_{yy}`. """ if len(x)<2*NFFT: raise ValueError(_coh_error) Pxx, f = psd(x, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) Pyy, f = psd(y, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) Pxy, f = csd(x, y, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) Cxy = np.divide(np.absolute(Pxy)**2, Pxx*Pyy) Cxy.shape = (len(f),) return Cxy, f cohere.__doc__ = cohere.__doc__ % kwdocd def corrcoef(*args): """ corrcoef(*X*) where *X* is a matrix returns a matrix of correlation coefficients for the columns of *X* corrcoef(*x*, *y*) where *x* and *y* are vectors returns the matrix of correlation coefficients for *x* and *y*. Numpy arrays can be real or complex. The correlation matrix is defined from the covariance matrix *C* as .. math:: r_{ij} = \\frac{C_{ij}}{\\sqrt{C_{ii}C_{jj}}} """ warnings.warn("Use numpy.corrcoef", DeprecationWarning) kw = dict(rowvar=False) return np.corrcoef(*args, **kw) def polyfit(*args, **kwargs): u""" polyfit(*x*, *y*, *N*) Do a best fit polynomial of order *N* of *y* to *x*. Return value is a vector of polynomial coefficients [pk ... p1 p0]. Eg, for *N*=2:: p2*x0^2 + p1*x0 + p0 = y1 p2*x1^2 + p1*x1 + p0 = y1 p2*x2^2 + p1*x2 + p0 = y2 ..... p2*xk^2 + p1*xk + p0 = yk Method: if *X* is a the Vandermonde Matrix computed from *x* (see `vandermonds <http://mathworld.wolfram.com/VandermondeMatrix.html>`_), then the polynomial least squares solution is given by the '*p*' in X*p = y where *X* is a (len(*x*) \N{MULTIPLICATION SIGN} *N* + 1) matrix, *p* is a *N*+1 length vector, and *y* is a (len(*x*) \N{MULTIPLICATION SIGN} 1) vector. This equation can be solved as .. math:: p = (X_t X)^-1 X_t y where :math:`X_t` is the transpose of *X* and -1 denotes the inverse. Numerically, however, this is not a good method, so we use :func:`numpy.linalg.lstsq`. For more info, see `least squares fitting <http://mathworld.wolfram.com/LeastSquaresFittingPolynomial.html>`_, but note that the *k*'s and *n*'s in the superscripts and subscripts on that page. The linear algebra is correct, however. .. seealso:: :func:`polyval` """ warnings.warn("use numpy.poyfit", DeprecationWarning) return np.polyfit(*args, **kwargs) def polyval(*args, **kwargs): """ *y* = polyval(*p*, *x*) *p* is a vector of polynomial coeffients and *y* is the polynomial evaluated at *x*. Example code to remove a polynomial (quadratic) trend from y:: p = polyfit(x, y, 2) trend = polyval(p, x) resid = y - trend .. seealso:: :func:`polyfit` """ warnings.warn("use numpy.polyval", DeprecationWarning) return np.polyval(*args, **kwargs) def vander(*args, **kwargs): """ *X* = vander(*x*, *N* = *None*) The Vandermonde matrix of vector *x*. The *i*-th column of *X* is the the *i*-th power of *x*. *N* is the maximum power to compute; if *N* is *None* it defaults to len(*x*). """ warnings.warn("Use numpy.vander()", DeprecationWarning) return np.vander(*args, **kwargs) def donothing_callback(*args): pass def cohere_pairs( X, ij, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=0, preferSpeedOverMemory=True, progressCallback=donothing_callback, returnPxx=False): u""" Cxy, Phase, freqs = cohere_pairs(X, ij, ...) Compute the coherence for all pairs in *ij*. *X* is a (*numSamples*, *numCols*) numpy array. *ij* is a list of tuples (*i*, *j*). Each tuple is a pair of indexes into the columns of *X* for which you want to compute coherence. For example, if *X* has 64 columns, and you want to compute all nonredundant pairs, define *ij* as:: ij = [] for i in range(64): for j in range(i+1,64): ij.append( (i, j) ) The other function arguments, except for *preferSpeedOverMemory* (see below), are explained in the help string of :func:`psd`. Return value is a tuple (*Cxy*, *Phase*, *freqs*). - *Cxy*: a dictionary of (*i*, *j*) tuples -> coherence vector for that pair. I.e., ``Cxy[(i,j)] = cohere(X[:,i], X[:,j])``. Number of dictionary keys is ``len(ij)``. - *Phase*: a dictionary of phases of the cross spectral density at each frequency for each pair. The keys are ``(i,j)``. - *freqs*: a vector of frequencies, equal in length to either the coherence or phase vectors for any (*i*, *j*) key.. Eg, to make a coherence Bode plot:: subplot(211) plot( freqs, Cxy[(12,19)]) subplot(212) plot( freqs, Phase[(12,19)]) For a large number of pairs, :func:`cohere_pairs` can be much more efficient than just calling :func:`cohere` for each pair, because it caches most of the intensive computations. If *N* is the number of pairs, this function is O(N) for most of the heavy lifting, whereas calling cohere for each pair is O(N\N{SUPERSCRIPT TWO}). However, because of the caching, it is also more memory intensive, making 2 additional complex arrays with approximately the same number of elements as *X*. The parameter *preferSpeedOverMemory*, if *False*, limits the caching by only making one, rather than two, complex cache arrays. This is useful if memory becomes critical. Even when *preferSpeedOverMemory* is *False*, :func:`cohere_pairs` will still give significant performace gains over calling :func:`cohere` for each pair, and will use subtantially less memory than if *preferSpeedOverMemory* is *True*. In my tests with a (43000, 64) array over all non-redundant pairs, *preferSpeedOverMemory* = *True* delivered a 33% performace boost on a 1.7GHZ Athlon with 512MB RAM compared with *preferSpeedOverMemory* = *False*. But both solutions were more than 10x faster than naievly crunching all possible pairs through cohere. .. seealso:: :file:`test/cohere_pairs_test.py` in the src tree: For an example script that shows that this :func:`cohere_pairs` and :func:`cohere` give the same results for a given pair. """ numRows, numCols = X.shape # zero pad if X is too short if numRows < NFFT: tmp = X X = np.zeros( (NFFT, numCols), X.dtype) X[:numRows,:] = tmp del tmp numRows, numCols = X.shape # get all the columns of X that we are interested in by checking # the ij tuples seen = {} for i,j in ij: seen[i]=1; seen[j] = 1 allColumns = seen.keys() Ncols = len(allColumns) del seen # for real X, ignore the negative frequencies if np.iscomplexobj(X): numFreqs = NFFT else: numFreqs = NFFT//2+1 # cache the FFT of every windowed, detrended NFFT length segement # of every channel. If preferSpeedOverMemory, cache the conjugate # as well if cbook.iterable(window): assert(len(window) == NFFT) windowVals = window else: windowVals = window(np.ones((NFFT,), typecode(X))) ind = range(0, numRows-NFFT+1, NFFT-noverlap) numSlices = len(ind) FFTSlices = {} FFTConjSlices = {} Pxx = {} slices = range(numSlices) normVal = norm(windowVals)**2 for iCol in allColumns: progressCallback(i/Ncols, 'Cacheing FFTs') Slices = np.zeros( (numSlices,numFreqs), dtype=np.complex_) for iSlice in slices: thisSlice = X[ind[iSlice]:ind[iSlice]+NFFT, iCol] thisSlice = windowVals*detrend(thisSlice) Slices[iSlice,:] = fft(thisSlice)[:numFreqs] FFTSlices[iCol] = Slices if preferSpeedOverMemory: FFTConjSlices[iCol] = conjugate(Slices) Pxx[iCol] = np.divide(np.mean(absolute(Slices)**2), normVal) del Slices, ind, windowVals # compute the coherences and phases for all pairs using the # cached FFTs Cxy = {} Phase = {} count = 0 N = len(ij) for i,j in ij: count +=1 if count%10==0: progressCallback(count/N, 'Computing coherences') if preferSpeedOverMemory: Pxy = FFTSlices[i] * FFTConjSlices[j] else: Pxy = FFTSlices[i] * np.conjugate(FFTSlices[j]) if numSlices>1: Pxy = np.mean(Pxy) Pxy = np.divide(Pxy, normVal) Cxy[(i,j)] = np.divide(np.absolute(Pxy)**2, Pxx[i]*Pxx[j]) Phase[(i,j)] = np.arctan2(Pxy.imag, Pxy.real) freqs = Fs/NFFT*np.arange(numFreqs) if returnPxx: return Cxy, Phase, freqs, Pxx else: return Cxy, Phase, freqs def entropy(y, bins): r""" Return the entropy of the data in *y*. .. math:: \sum p_i \log_2(p_i) where :math:`p_i` is the probability of observing *y* in the :math:`i^{th}` bin of *bins*. *bins* can be a number of bins or a range of bins; see :func:`numpy.histogram`. Compare *S* with analytic calculation for a Gaussian:: x = mu + sigma * randn(200000) Sanalytic = 0.5 * ( 1.0 + log(2*pi*sigma**2.0) ) """ n,bins = np.histogram(y, bins) n = n.astype(np.float_) n = np.take(n, np.nonzero(n)[0]) # get the positive p = np.divide(n, len(y)) delta = bins[1]-bins[0] S = -1.0*np.sum(p*log(p)) + log(delta) #S = -1.0*np.sum(p*log(p)) return S def hist(y, bins=10, normed=0): """ Return the histogram of *y* with *bins* equally sized bins. If bins is an array, use those bins. Return value is (*n*, *x*) where *n* is the count for each bin in *x*. If *normed* is *False*, return the counts in the first element of the returned tuple. If *normed* is *True*, return the probability density :math:`\\frac{n}{(len(y)\mathrm{dbin}}`. If *y* has rank > 1, it will be raveled. If *y* is masked, only the unmasked values will be used. Credits: the Numeric 22 documentation """ warnings.warn("Use numpy.histogram()", DeprecationWarning) return np.histogram(y, bins=bins, range=None, normed=normed) def normpdf(x, *args): "Return the normal pdf evaluated at *x*; args provides *mu*, *sigma*" mu, sigma = args return 1./(np.sqrt(2*np.pi)*sigma)*np.exp(-0.5 * (1./sigma*(x - mu))**2) def levypdf(x, gamma, alpha): "Returm the levy pdf evaluated at *x* for params *gamma*, *alpha*" N = len(x) if N%2 != 0: raise ValueError, 'x must be an event length array; try\n' + \ 'x = np.linspace(minx, maxx, N), where N is even' dx = x[1]-x[0] f = 1/(N*dx)*np.arange(-N/2, N/2, np.float_) ind = np.concatenate([np.arange(N/2, N, int), np.arange(0, N/2, int)]) df = f[1]-f[0] cfl = exp(-gamma*np.absolute(2*pi*f)**alpha) px = np.fft.fft(np.take(cfl,ind)*df).astype(np.float_) return np.take(px, ind) def find(condition): "Return the indices where ravel(condition) is true" res, = np.nonzero(np.ravel(condition)) return res def trapz(x, y): """ Trapezoidal integral of *y*(*x*). """ warnings.warn("Use numpy.trapz(y,x) instead of trapz(x,y)", DeprecationWarning) return np.trapz(y, x) #if len(x)!=len(y): # raise ValueError, 'x and y must have the same length' #if len(x)<2: # raise ValueError, 'x and y must have > 1 element' #return np.sum(0.5*np.diff(x)*(y[1:]+y[:-1])) def longest_contiguous_ones(x): """ Return the indices of the longest stretch of contiguous ones in *x*, assuming *x* is a vector of zeros and ones. If there are two equally long stretches, pick the first. """ x = np.ravel(x) if len(x)==0: return np.array([]) ind = (x==0).nonzero()[0] if len(ind)==0: return np.arange(len(x)) if len(ind)==len(x): return np.array([]) y = np.zeros( (len(x)+2,), x.dtype) y[1:-1] = x dif = np.diff(y) up = (dif == 1).nonzero()[0]; dn = (dif == -1).nonzero()[0]; i = (dn-up == max(dn - up)).nonzero()[0][0] ind = np.arange(up[i], dn[i]) return ind def longest_ones(x): '''alias for longest_contiguous_ones''' return longest_contiguous_ones(x) def prepca(P, frac=0): """ Compute the principal components of *P*. *P* is a (*numVars*, *numObs*) array. *frac* is the minimum fraction of variance that a component must contain to be included. Return value is a tuple of the form (*Pcomponents*, *Trans*, *fracVar*) where: - *Pcomponents* : a (numVars, numObs) array - *Trans* : the weights matrix, ie, *Pcomponents* = *Trans* * *P* - *fracVar* : the fraction of the variance accounted for by each component returned A similar function of the same name was in the Matlab (TM) R13 Neural Network Toolbox but is not found in later versions; its successor seems to be called "processpcs". """ U,s,v = np.linalg.svd(P) varEach = s**2/P.shape[1] totVar = varEach.sum() fracVar = varEach/totVar ind = slice((fracVar>=frac).sum()) # select the components that are greater Trans = U[:,ind].transpose() # The transformed data Pcomponents = np.dot(Trans,P) return Pcomponents, Trans, fracVar[ind] def prctile(x, p = (0.0, 25.0, 50.0, 75.0, 100.0)): """ Return the percentiles of *x*. *p* can either be a sequence of percentile values or a scalar. If *p* is a sequence, the ith element of the return sequence is the *p*(i)-th percentile of *x*. If *p* is a scalar, the largest value of *x* less than or equal to the *p* percentage point in the sequence is returned. """ x = np.array(x).ravel() # we need a copy x.sort() Nx = len(x) if not cbook.iterable(p): return x[int(p*Nx/100.0)] p = np.asarray(p)* Nx/100.0 ind = p.astype(int) ind = np.where(ind>=Nx, Nx-1, ind) return x.take(ind) def prctile_rank(x, p): """ Return the rank for each element in *x*, return the rank 0..len(*p*). Eg if *p* = (25, 50, 75), the return value will be a len(*x*) array with values in [0,1,2,3] where 0 indicates the value is less than the 25th percentile, 1 indicates the value is >= the 25th and < 50th percentile, ... and 3 indicates the value is above the 75th percentile cutoff. *p* is either an array of percentiles in [0..100] or a scalar which indicates how many quantiles of data you want ranked. """ if not cbook.iterable(p): p = np.arange(100.0/p, 100.0, 100.0/p) else: p = np.asarray(p) if p.max()<=1 or p.min()<0 or p.max()>100: raise ValueError('percentiles should be in range 0..100, not 0..1') ptiles = prctile(x, p) return np.searchsorted(ptiles, x) def center_matrix(M, dim=0): """ Return the matrix *M* with each row having zero mean and unit std. If *dim* = 1 operate on columns instead of rows. (*dim* is opposite to the numpy axis kwarg.) """ M = np.asarray(M, np.float_) if dim: M = (M - M.mean(axis=0)) / M.std(axis=0) else: M = (M - M.mean(axis=1)[:,np.newaxis]) M = M / M.std(axis=1)[:,np.newaxis] return M def rk4(derivs, y0, t): """ Integrate 1D or ND system of ODEs using 4-th order Runge-Kutta. This is a toy implementation which may be useful if you find yourself stranded on a system w/o scipy. Otherwise use :func:`scipy.integrate`. *y0* initial state vector *t* sample times *derivs* returns the derivative of the system and has the signature ``dy = derivs(yi, ti)`` Example 1 :: ## 2D system def derivs6(x,t): d1 = x[0] + 2*x[1] d2 = -3*x[0] + 4*x[1] return (d1, d2) dt = 0.0005 t = arange(0.0, 2.0, dt) y0 = (1,2) yout = rk4(derivs6, y0, t) Example 2:: ## 1D system alpha = 2 def derivs(x,t): return -alpha*x + exp(-t) y0 = 1 yout = rk4(derivs, y0, t) If you have access to scipy, you should probably be using the scipy.integrate tools rather than this function. """ try: Ny = len(y0) except TypeError: yout = np.zeros( (len(t),), np.float_) else: yout = np.zeros( (len(t), Ny), np.float_) yout[0] = y0 i = 0 for i in np.arange(len(t)-1): thist = t[i] dt = t[i+1] - thist dt2 = dt/2.0 y0 = yout[i] k1 = np.asarray(derivs(y0, thist)) k2 = np.asarray(derivs(y0 + dt2*k1, thist+dt2)) k3 = np.asarray(derivs(y0 + dt2*k2, thist+dt2)) k4 = np.asarray(derivs(y0 + dt*k3, thist+dt)) yout[i+1] = y0 + dt/6.0*(k1 + 2*k2 + 2*k3 + k4) return yout def bivariate_normal(X, Y, sigmax=1.0, sigmay=1.0, mux=0.0, muy=0.0, sigmaxy=0.0): """ Bivariate Gaussian distribution for equal shape *X*, *Y*. See `bivariate normal <http://mathworld.wolfram.com/BivariateNormalDistribution.html>`_ at mathworld. """ Xmu = X-mux Ymu = Y-muy rho = sigmaxy/(sigmax*sigmay) z = Xmu**2/sigmax**2 + Ymu**2/sigmay**2 - 2*rho*Xmu*Ymu/(sigmax*sigmay) denom = 2*np.pi*sigmax*sigmay*np.sqrt(1-rho**2) return np.exp( -z/(2*(1-rho**2))) / denom def get_xyz_where(Z, Cond): """ *Z* and *Cond* are *M* x *N* matrices. *Z* are data and *Cond* is a boolean matrix where some condition is satisfied. Return value is (*x*, *y*, *z*) where *x* and *y* are the indices into *Z* and *z* are the values of *Z* at those indices. *x*, *y*, and *z* are 1D arrays. """ X,Y = np.indices(Z.shape) return X[Cond], Y[Cond], Z[Cond] def get_sparse_matrix(M,N,frac=0.1): """ Return a *M* x *N* sparse matrix with *frac* elements randomly filled. """ data = np.zeros((M,N))*0. for i in range(int(M*N*frac)): x = np.random.randint(0,M-1) y = np.random.randint(0,N-1) data[x,y] = np.random.rand() return data def dist(x,y): """ Return the distance between two points. """ d = x-y return np.sqrt(np.dot(d,d)) def dist_point_to_segment(p, s0, s1): """ Get the distance of a point to a segment. *p*, *s0*, *s1* are *xy* sequences This algorithm from http://softsurfer.com/Archive/algorithm_0102/algorithm_0102.htm#Distance%20to%20Ray%20or%20Segment """ p = np.asarray(p, np.float_) s0 = np.asarray(s0, np.float_) s1 = np.asarray(s1, np.float_) v = s1 - s0 w = p - s0 c1 = np.dot(w,v); if ( c1 <= 0 ): return dist(p, s0); c2 = np.dot(v,v) if ( c2 <= c1 ): return dist(p, s1); b = c1 / c2 pb = s0 + b * v; return dist(p, pb) def segments_intersect(s1, s2): """ Return *True* if *s1* and *s2* intersect. *s1* and *s2* are defined as:: s1: (x1, y1), (x2, y2) s2: (x3, y3), (x4, y4) """ (x1, y1), (x2, y2) = s1 (x3, y3), (x4, y4) = s2 den = ((y4-y3) * (x2-x1)) - ((x4-x3)*(y2-y1)) n1 = ((x4-x3) * (y1-y3)) - ((y4-y3)*(x1-x3)) n2 = ((x2-x1) * (y1-y3)) - ((y2-y1)*(x1-x3)) if den == 0: # lines parallel return False u1 = n1/den u2 = n2/den return 0.0 <= u1 <= 1.0 and 0.0 <= u2 <= 1.0 def fftsurr(x, detrend=detrend_none, window=window_none): """ Compute an FFT phase randomized surrogate of *x*. """ if cbook.iterable(window): x=window*detrend(x) else: x = window(detrend(x)) z = np.fft.fft(x) a = 2.*np.pi*1j phase = a * np.random.rand(len(x)) z = z*np.exp(phase) return np.fft.ifft(z).real def liaupunov(x, fprime): """ *x* is a very long trajectory from a map, and *fprime* returns the derivative of *x*. Returns : .. math:: \lambda = \\frac{1}{n}\\sum \\ln|f^'(x_i)| .. seealso:: Sec 10.5 Strogatz (1994) "Nonlinear Dynamics and Chaos". `Wikipedia article on Lyapunov Exponent <http://en.wikipedia.org/wiki/Lyapunov_exponent>`_. .. note:: What the function here calculates may not be what you really want; *caveat emptor*. It also seems that this function's name is badly misspelled. """ return np.mean(np.log(np.absolute(fprime(x)))) class FIFOBuffer: """ A FIFO queue to hold incoming *x*, *y* data in a rotating buffer using numpy arrays under the hood. It is assumed that you will call asarrays much less frequently than you add data to the queue -- otherwise another data structure will be faster. This can be used to support plots where data is added from a real time feed and the plot object wants to grab data from the buffer and plot it to screen less freqeuently than the incoming. If you set the *dataLim* attr to :class:`~matplotlib.transforms.BBox` (eg :attr:`matplotlib.Axes.dataLim`), the *dataLim* will be updated as new data come in. TODO: add a grow method that will extend nmax .. note:: mlab seems like the wrong place for this class. """ def __init__(self, nmax): """ Buffer up to *nmax* points. """ self._xa = np.zeros((nmax,), np.float_) self._ya = np.zeros((nmax,), np.float_) self._xs = np.zeros((nmax,), np.float_) self._ys = np.zeros((nmax,), np.float_) self._ind = 0 self._nmax = nmax self.dataLim = None self.callbackd = {} def register(self, func, N): """ Call *func* every time *N* events are passed; *func* signature is ``func(fifo)``. """ self.callbackd.setdefault(N, []).append(func) def add(self, x, y): """ Add scalar *x* and *y* to the queue. """ if self.dataLim is not None: xys = ((x,y),) self.dataLim.update(xys, -1) #-1 means use the default ignore setting ind = self._ind % self._nmax #print 'adding to fifo:', ind, x, y self._xs[ind] = x self._ys[ind] = y for N,funcs in self.callbackd.items(): if (self._ind%N)==0: for func in funcs: func(self) self._ind += 1 def last(self): """ Get the last *x*, *y* or *None*. *None* if no data set. """ if self._ind==0: return None, None ind = (self._ind-1) % self._nmax return self._xs[ind], self._ys[ind] def asarrays(self): """ Return *x* and *y* as arrays; their length will be the len of data added or *nmax*. """ if self._ind<self._nmax: return self._xs[:self._ind], self._ys[:self._ind] ind = self._ind % self._nmax self._xa[:self._nmax-ind] = self._xs[ind:] self._xa[self._nmax-ind:] = self._xs[:ind] self._ya[:self._nmax-ind] = self._ys[ind:] self._ya[self._nmax-ind:] = self._ys[:ind] return self._xa, self._ya def update_datalim_to_current(self): """ Update the *datalim* in the current data in the fifo. """ if self.dataLim is None: raise ValueError('You must first set the dataLim attr') x, y = self.asarrays() self.dataLim.update_numerix(x, y, True) def movavg(x,n): """ Compute the len(*n*) moving average of *x*. """ w = np.empty((n,), dtype=np.float_) w[:] = 1.0/n return np.convolve(x, w, mode='valid') def save(fname, X, fmt='%.18e',delimiter=' '): """ Save the data in *X* to file *fname* using *fmt* string to convert the data to strings. *fname* can be a filename or a file handle. If the filename ends in '.gz', the file is automatically saved in compressed gzip format. The :func:`load` function understands gzipped files transparently. Example usage:: save('test.out', X) # X is an array save('test1.out', (x,y,z)) # x,y,z equal sized 1D arrays save('test2.out', x) # x is 1D save('test3.out', x, fmt='%1.4e') # use exponential notation *delimiter* is used to separate the fields, eg. *delimiter* ',' for comma-separated values. """ if cbook.is_string_like(fname): if fname.endswith('.gz'): import gzip fh = gzip.open(fname,'wb') else: fh = file(fname,'w') elif hasattr(fname, 'seek'): fh = fname else: raise ValueError('fname must be a string or file handle') X = np.asarray(X) origShape = None if X.ndim == 1: origShape = X.shape X.shape = len(X), 1 for row in X: fh.write(delimiter.join([fmt%val for val in row]) + '\n') if origShape is not None: X.shape = origShape def load(fname,comments='#',delimiter=None, converters=None,skiprows=0, usecols=None, unpack=False, dtype=np.float_): """ Load ASCII data from *fname* into an array and return the array. The data must be regular, same number of values in every row *fname* can be a filename or a file handle. Support for gzipped files is automatic, if the filename ends in '.gz'. matfile data is not supported; for that, use :mod:`scipy.io.mio` module. Example usage:: X = load('test.dat') # data in two columns t = X[:,0] y = X[:,1] Alternatively, you can do the same with "unpack"; see below:: X = load('test.dat') # a matrix of data x = load('test.dat') # a single column of data - *comments*: the character used to indicate the start of a comment in the file - *delimiter* is a string-like character used to seperate values in the file. If *delimiter* is unspecified or *None*, any whitespace string is a separator. - *converters*, if not *None*, is a dictionary mapping column number to a function that will convert that column to a float (or the optional *dtype* if specified). Eg, if column 0 is a date string:: converters = {0:datestr2num} - *skiprows* is the number of rows from the top to skip. - *usecols*, if not *None*, is a sequence of integer column indexes to extract where 0 is the first column, eg ``usecols=[1,4,5]`` to extract just the 2nd, 5th and 6th columns - *unpack*, if *True*, will transpose the matrix allowing you to unpack into named arguments on the left hand side:: t,y = load('test.dat', unpack=True) # for two column data x,y,z = load('somefile.dat', usecols=[3,5,7], unpack=True) - *dtype*: the array will have this dtype. default: ``numpy.float_`` .. seealso:: See :file:`examples/pylab_examples/load_converter.py` in the source tree: Exercises many of these options. """ if converters is None: converters = {} fh = cbook.to_filehandle(fname) X = [] if delimiter==' ': # space splitting is a special case since x.split() is what # you want, not x.split(' ') def splitfunc(x): return x.split() else: def splitfunc(x): return x.split(delimiter) converterseq = None for i,line in enumerate(fh): if i<skiprows: continue line = line.split(comments, 1)[0].strip() if not len(line): continue if converterseq is None: converterseq = [converters.get(j,float) for j,val in enumerate(splitfunc(line))] if usecols is not None: vals = splitfunc(line) row = [converterseq[j](vals[j]) for j in usecols] else: row = [converterseq[j](val) for j,val in enumerate(splitfunc(line))] thisLen = len(row) X.append(row) X = np.array(X, dtype) r,c = X.shape if r==1 or c==1: X.shape = max(r,c), if unpack: return X.transpose() else: return X def slopes(x,y): """ SLOPES calculate the slope y'(x) Given data vectors X and Y SLOPES calculates Y'(X), i.e the slope of a curve Y(X). The slope is estimated using the slope obtained from that of a parabola through any three consecutive points. This method should be superior to that described in the appendix of A CONSISTENTLY WELL BEHAVED METHOD OF INTERPOLATION by Russel W. Stineman (Creative Computing July 1980) in at least one aspect: Circles for interpolation demand a known aspect ratio between x- and y-values. For many functions, however, the abscissa are given in different dimensions, so an aspect ratio is completely arbitrary. The parabola method gives very similar results to the circle method for most regular cases but behaves much better in special cases Norbert Nemec, Institute of Theoretical Physics, University or Regensburg, April 2006 Norbert.Nemec at physik.uni-regensburg.de (inspired by a original implementation by Halldor Bjornsson, Icelandic Meteorological Office, March 2006 halldor at vedur.is) """ # Cast key variables as float. x=np.asarray(x, np.float_) y=np.asarray(y, np.float_) yp=np.zeros(y.shape, np.float_) dx=x[1:] - x[:-1] dy=y[1:] - y[:-1] dydx = dy/dx yp[1:-1] = (dydx[:-1] * dx[1:] + dydx[1:] * dx[:-1])/(dx[1:] + dx[:-1]) yp[0] = 2.0 * dy[0]/dx[0] - yp[1] yp[-1] = 2.0 * dy[-1]/dx[-1] - yp[-2] return yp def stineman_interp(xi,x,y,yp=None): """ STINEMAN_INTERP Well behaved data interpolation. Given data vectors X and Y, the slope vector YP and a new abscissa vector XI the function stineman_interp(xi,x,y,yp) uses Stineman interpolation to calculate a vector YI corresponding to XI. Here's an example that generates a coarse sine curve, then interpolates over a finer abscissa: x = linspace(0,2*pi,20); y = sin(x); yp = cos(x) xi = linspace(0,2*pi,40); yi = stineman_interp(xi,x,y,yp); plot(x,y,'o',xi,yi) The interpolation method is described in the article A CONSISTENTLY WELL BEHAVED METHOD OF INTERPOLATION by Russell W. Stineman. The article appeared in the July 1980 issue of Creative Computing with a note from the editor stating that while they were not an academic journal but once in a while something serious and original comes in adding that this was "apparently a real solution" to a well known problem. For yp=None, the routine automatically determines the slopes using the "slopes" routine. X is assumed to be sorted in increasing order For values xi[j] < x[0] or xi[j] > x[-1], the routine tries a extrapolation. The relevance of the data obtained from this, of course, questionable... original implementation by Halldor Bjornsson, Icelandic Meteorolocial Office, March 2006 halldor at vedur.is completely reworked and optimized for Python by Norbert Nemec, Institute of Theoretical Physics, University or Regensburg, April 2006 Norbert.Nemec at physik.uni-regensburg.de """ # Cast key variables as float. x=np.asarray(x, np.float_) y=np.asarray(y, np.float_) assert x.shape == y.shape N=len(y) if yp is None: yp = slopes(x,y) else: yp=np.asarray(yp, np.float_) xi=np.asarray(xi, np.float_) yi=np.zeros(xi.shape, np.float_) # calculate linear slopes dx = x[1:] - x[:-1] dy = y[1:] - y[:-1] s = dy/dx #note length of s is N-1 so last element is #N-2 # find the segment each xi is in # this line actually is the key to the efficiency of this implementation idx = np.searchsorted(x[1:-1], xi) # now we have generally: x[idx[j]] <= xi[j] <= x[idx[j]+1] # except at the boundaries, where it may be that xi[j] < x[0] or xi[j] > x[-1] # the y-values that would come out from a linear interpolation: sidx = s.take(idx) xidx = x.take(idx) yidx = y.take(idx) xidxp1 = x.take(idx+1) yo = yidx + sidx * (xi - xidx) # the difference that comes when using the slopes given in yp dy1 = (yp.take(idx)- sidx) * (xi - xidx) # using the yp slope of the left point dy2 = (yp.take(idx+1)-sidx) * (xi - xidxp1) # using the yp slope of the right point dy1dy2 = dy1*dy2 # The following is optimized for Python. The solution actually # does more calculations than necessary but exploiting the power # of numpy, this is far more efficient than coding a loop by hand # in Python yi = yo + dy1dy2 * np.choose(np.array(np.sign(dy1dy2), np.int32)+1, ((2*xi-xidx-xidxp1)/((dy1-dy2)*(xidxp1-xidx)), 0.0, 1/(dy1+dy2),)) return yi def inside_poly(points, verts): """ points is a sequence of x,y points verts is a sequence of x,y vertices of a poygon return value is a sequence of indices into points for the points that are inside the polygon """ res, = np.nonzero(nxutils.points_inside_poly(points, verts)) return res def poly_below(ymin, xs, ys): """ given a arrays *xs* and *ys*, return the vertices of a polygon that has a scalar lower bound *ymin* and an upper bound at the *ys*. intended for use with Axes.fill, eg:: xv, yv = poly_below(0, x, y) ax.fill(xv, yv) """ return poly_between(xs, ys, xmin) def poly_between(x, ylower, yupper): """ given a sequence of x, ylower and yupper, return the polygon that fills the regions between them. ylower or yupper can be scalar or iterable. If they are iterable, they must be equal in length to x return value is x, y arrays for use with Axes.fill """ Nx = len(x) if not cbook.iterable(ylower): ylower = ylower*np.ones(Nx) if not cbook.iterable(yupper): yupper = yupper*np.ones(Nx) x = np.concatenate( (x, x[::-1]) ) y = np.concatenate( (yupper, ylower[::-1]) ) return x,y ### the following code was written and submitted by Fernando Perez ### from the ipython numutils package under a BSD license # begin fperez functions """ A set of convenient utilities for numerical work. Most of this module requires numpy or is meant to be used with it. Copyright (c) 2001-2004, Fernando Perez. <Fernando.Perez@colorado.edu> All rights reserved. This license was generated from the BSD license template as found in: http://www.opensource.org/licenses/bsd-license.php Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the IPython project nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import operator import math #***************************************************************************** # Globals #**************************************************************************** # function definitions exp_safe_MIN = math.log(2.2250738585072014e-308) exp_safe_MAX = 1.7976931348623157e+308 def exp_safe(x): """ Compute exponentials which safely underflow to zero. Slow, but convenient to use. Note that numpy provides proper floating point exception handling with access to the underlying hardware. """ if type(x) is np.ndarray: return exp(np.clip(x,exp_safe_MIN,exp_safe_MAX)) else: return math.exp(x) def amap(fn,*args): """ amap(function, sequence[, sequence, ...]) -> array. Works like :func:`map`, but it returns an array. This is just a convenient shorthand for ``numpy.array(map(...))``. """ return np.array(map(fn,*args)) #from numpy import zeros_like def zeros_like(a): """ Return an array of zeros of the shape and typecode of *a*. """ warnings.warn("Use numpy.zeros_like(a)", DeprecationWarning) return np.zeros_like(a) #from numpy import sum as sum_flat def sum_flat(a): """ Return the sum of all the elements of *a*, flattened out. It uses ``a.flat``, and if *a* is not contiguous, a call to ``ravel(a)`` is made. """ warnings.warn("Use numpy.sum(a) or a.sum()", DeprecationWarning) return np.sum(a) #from numpy import mean as mean_flat def mean_flat(a): """ Return the mean of all the elements of *a*, flattened out. """ warnings.warn("Use numpy.mean(a) or a.mean()", DeprecationWarning) return np.mean(a) def rms_flat(a): """ Return the root mean square of all the elements of *a*, flattened out. """ return np.sqrt(np.mean(np.absolute(a)**2)) def l1norm(a): """ Return the *l1* norm of *a*, flattened out. Implemented as a separate function (not a call to :func:`norm` for speed). """ return np.sum(np.absolute(a)) def l2norm(a): """ Return the *l2* norm of *a*, flattened out. Implemented as a separate function (not a call to :func:`norm` for speed). """ return np.sqrt(np.sum(np.absolute(a)**2)) def norm_flat(a,p=2): """ norm(a,p=2) -> l-p norm of a.flat Return the l-p norm of *a*, considered as a flat array. This is NOT a true matrix norm, since arrays of arbitrary rank are always flattened. *p* can be a number or the string 'Infinity' to get the L-infinity norm. """ # This function was being masked by a more general norm later in # the file. We may want to simply delete it. if p=='Infinity': return np.amax(np.absolute(a)) else: return (np.sum(np.absolute(a)**p))**(1.0/p) def frange(xini,xfin=None,delta=None,**kw): """ frange([start,] stop[, step, keywords]) -> array of floats Return a numpy ndarray containing a progression of floats. Similar to :func:`numpy.arange`, but defaults to a closed interval. ``frange(x0, x1)`` returns ``[x0, x0+1, x0+2, ..., x1]``; *start* defaults to 0, and the endpoint *is included*. This behavior is different from that of :func:`range` and :func:`numpy.arange`. This is deliberate, since :func:`frange` will probably be more useful for generating lists of points for function evaluation, and endpoints are often desired in this use. The usual behavior of :func:`range` can be obtained by setting the keyword *closed* = 0, in this case, :func:`frange` basically becomes :func:numpy.arange`. When *step* is given, it specifies the increment (or decrement). All arguments can be floating point numbers. ``frange(x0,x1,d)`` returns ``[x0,x0+d,x0+2d,...,xfin]`` where *xfin* <= *x1*. :func:`frange` can also be called with the keyword *npts*. This sets the number of points the list should contain (and overrides the value *step* might have been given). :func:`numpy.arange` doesn't offer this option. Examples:: >>> frange(3) array([ 0., 1., 2., 3.]) >>> frange(3,closed=0) array([ 0., 1., 2.]) >>> frange(1,6,2) array([1, 3, 5]) or 1,3,5,7, depending on floating point vagueries >>> frange(1,6.5,npts=5) array([ 1. , 2.375, 3.75 , 5.125, 6.5 ]) """ #defaults kw.setdefault('closed',1) endpoint = kw['closed'] != 0 # funny logic to allow the *first* argument to be optional (like range()) # This was modified with a simpler version from a similar frange() found # at http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/66472 if xfin == None: xfin = xini + 0.0 xini = 0.0 if delta == None: delta = 1.0 # compute # of points, spacing and return final list try: npts=kw['npts'] delta=(xfin-xini)/float(npts-endpoint) except KeyError: npts = int(round((xfin-xini)/delta)) + endpoint #npts = int(floor((xfin-xini)/delta)*(1.0+1e-10)) + endpoint # round finds the nearest, so the endpoint can be up to # delta/2 larger than xfin. return np.arange(npts)*delta+xini # end frange() #import numpy.diag as diagonal_matrix def diagonal_matrix(diag): """ Return square diagonal matrix whose non-zero elements are given by the input array. """ warnings.warn("Use numpy.diag(d)", DeprecationWarning) return np.diag(diag) def identity(n, rank=2, dtype='l', typecode=None): """ Returns the identity matrix of shape (*n*, *n*, ..., *n*) (rank *r*). For ranks higher than 2, this object is simply a multi-index Kronecker delta:: / 1 if i0=i1=...=iR, id[i0,i1,...,iR] = -| \ 0 otherwise. Optionally a *dtype* (or typecode) may be given (it defaults to 'l'). Since rank defaults to 2, this function behaves in the default case (when only *n* is given) like ``numpy.identity(n)`` -- but surprisingly, it is much faster. """ if typecode is not None: warnings.warn("Use dtype kwarg instead of typecode", DeprecationWarning) dtype = typecode iden = np.zeros((n,)*rank, dtype) for i in range(n): idx = (i,)*rank iden[idx] = 1 return iden def base_repr (number, base = 2, padding = 0): """ Return the representation of a *number* in any given *base*. """ chars = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ' if number < base: \ return (padding - 1) * chars [0] + chars [int (number)] max_exponent = int (math.log (number)/math.log (base)) max_power = long (base) ** max_exponent lead_digit = int (number/max_power) return chars [lead_digit] + \ base_repr (number - max_power * lead_digit, base, \ max (padding - 1, max_exponent)) def binary_repr(number, max_length = 1025): """ Return the binary representation of the input *number* as a string. This is more efficient than using :func:`base_repr` with base 2. Increase the value of max_length for very large numbers. Note that on 32-bit machines, 2**1023 is the largest integer power of 2 which can be converted to a Python float. """ #assert number < 2L << max_length shifts = map (operator.rshift, max_length * [number], \ range (max_length - 1, -1, -1)) digits = map (operator.mod, shifts, max_length * [2]) if not digits.count (1): return 0 digits = digits [digits.index (1):] return ''.join (map (repr, digits)).replace('L','') def log2(x,ln2 = math.log(2.0)): """ Return the log(*x*) in base 2. This is a _slow_ function but which is guaranteed to return the correct integer value if the input is an integer exact power of 2. """ try: bin_n = binary_repr(x)[1:] except (AssertionError,TypeError): return math.log(x)/ln2 else: if '1' in bin_n: return math.log(x)/ln2 else: return len(bin_n) def ispower2(n): """ Returns the log base 2 of *n* if *n* is a power of 2, zero otherwise. Note the potential ambiguity if *n* == 1: 2**0 == 1, interpret accordingly. """ bin_n = binary_repr(n)[1:] if '1' in bin_n: return 0 else: return len(bin_n) def isvector(X): """ Like the Matlab (TM) function with the same name, returns *True* if the supplied numpy array or matrix *X* looks like a vector, meaning it has a one non-singleton axis (i.e., it can have multiple axes, but all must have length 1, except for one of them). If you just want to see if the array has 1 axis, use X.ndim == 1. """ return np.prod(X.shape)==np.max(X.shape) #from numpy import fromfunction as fromfunction_kw def fromfunction_kw(function, dimensions, **kwargs): """ Drop-in replacement for :func:`numpy.fromfunction`. Allows passing keyword arguments to the desired function. Call it as (keywords are optional):: fromfunction_kw(MyFunction, dimensions, keywords) The function ``MyFunction`` is responsible for handling the dictionary of keywords it will receive. """ warnings.warn("Use numpy.fromfunction()", DeprecationWarning) return np.fromfunction(function, dimensions, **kwargs) ### end fperez numutils code def rem(x,y): """ Deprecated - see :func:`numpy.remainder` """ raise NotImplementedError('Deprecated - see numpy.remainder') def norm(x,y=2): """ Deprecated - see :func:`numpy.linalg.norm` """ raise NotImplementedError('Deprecated - see numpy.linalg.norm') def orth(A): """ Deprecated - needs clean room implementation """ raise NotImplementedError('Deprecated - needs clean room implementation') def rank(x): """ Deprecated - see :func:`numpy.rank` """ raise NotImplementedError('Deprecated - see numpy.rank') def sqrtm(x): """ Deprecated - needs clean room implementation """ raise NotImplementedError('Deprecated - see scipy.linalg.sqrtm') def mfuncC(f, x): """ Deprecated """ raise NotImplementedError('Deprecated - needs clean room implementation') def approx_real(x): """ Deprecated - needs clean room implementation """ raise NotImplementedError('Deprecated - needs clean room implementation') #helpers for loading, saving, manipulating and viewing numpy record arrays def safe_isnan(x): ':func:`numpy.isnan` for arbitrary types' if cbook.is_string_like(x): return False try: b = np.isnan(x) except NotImplementedError: return False except TypeError: return False else: return b def safe_isinf(x): ':func:`numpy.isinf` for arbitrary types' if cbook.is_string_like(x): return False try: b = np.isinf(x) except NotImplementedError: return False except TypeError: return False else: return b def rec_view(rec): """ Return a view of an ndarray as a recarray .. seealso:: http://projects.scipy.org/pipermail/numpy-discussion/2008-August/036429.html """ return rec.view(np.recarray) #return rec.view(dtype=(np.record, rec.dtype), type=np.recarray) def rec_append_field(rec, name, arr, dtype=None): """ Return a new record array with field name populated with data from array *arr*. This function is Deprecated. Please use :func:`rec_append_fields`. """ warnings.warn("use rec_append_fields", DeprecationWarning) return rec_append_fields(rec, name, arr, dtype) def rec_append_fields(rec, names, arrs, dtypes=None): """ Return a new record array with field names populated with data from arrays in *arrs*. If appending a single field, then *names*, *arrs* and *dtypes* do not have to be lists. They can just be the values themselves. """ if (not cbook.is_string_like(names) and cbook.iterable(names) \ and len(names) and cbook.is_string_like(names[0])): if len(names) != len(arrs): raise ValueError, "number of arrays do not match number of names" else: # we have only 1 name and 1 array names = [names] arrs = [arrs] arrs = map(np.asarray, arrs) if dtypes is None: dtypes = [a.dtype for a in arrs] elif not cbook.iterable(dtypes): dtypes = [dtypes] if len(arrs) != len(dtypes): if len(dtypes) == 1: dtypes = dtypes * len(arrs) else: raise ValueError, "dtypes must be None, a single dtype or a list" newdtype = np.dtype(rec.dtype.descr + zip(names, dtypes)) newrec = np.empty(rec.shape, dtype=newdtype) for field in rec.dtype.fields: newrec[field] = rec[field] for name, arr in zip(names, arrs): newrec[name] = arr return rec_view(newrec) def rec_drop_fields(rec, names): """ Return a new numpy record array with fields in *names* dropped. """ names = set(names) Nr = len(rec) newdtype = np.dtype([(name, rec.dtype[name]) for name in rec.dtype.names if name not in names]) newrec = np.empty(Nr, dtype=newdtype) for field in newdtype.names: newrec[field] = rec[field] return rec_view(newrec) def rec_groupby(r, groupby, stats): """ *r* is a numpy record array *groupby* is a sequence of record array attribute names that together form the grouping key. eg ('date', 'productcode') *stats* is a sequence of (*attr*, *func*, *outname*) tuples which will call ``x = func(attr)`` and assign *x* to the record array output with attribute *outname*. For example:: stats = ( ('sales', len, 'numsales'), ('sales', np.mean, 'avgsale') ) Return record array has *dtype* names for each attribute name in the the *groupby* argument, with the associated group values, and for each outname name in the *stats* argument, with the associated stat summary output. """ # build a dictionary from groupby keys-> list of indices into r with # those keys rowd = dict() for i, row in enumerate(r): key = tuple([row[attr] for attr in groupby]) rowd.setdefault(key, []).append(i) # sort the output by groupby keys keys = rowd.keys() keys.sort() rows = [] for key in keys: row = list(key) # get the indices for this groupby key ind = rowd[key] thisr = r[ind] # call each stat function for this groupby slice row.extend([func(thisr[attr]) for attr, func, outname in stats]) rows.append(row) # build the output record array with groupby and outname attributes attrs, funcs, outnames = zip(*stats) names = list(groupby) names.extend(outnames) return np.rec.fromrecords(rows, names=names) def rec_summarize(r, summaryfuncs): """ *r* is a numpy record array *summaryfuncs* is a list of (*attr*, *func*, *outname*) tuples which will apply *func* to the the array *r*[attr] and assign the output to a new attribute name *outname*. The returned record array is identical to *r*, with extra arrays for each element in *summaryfuncs*. """ names = list(r.dtype.names) arrays = [r[name] for name in names] for attr, func, outname in summaryfuncs: names.append(outname) arrays.append(np.asarray(func(r[attr]))) return np.rec.fromarrays(arrays, names=names) def rec_join(key, r1, r2, jointype='inner', defaults=None, r1postfix='1', r2postfix='2'): """ Join record arrays *r1* and *r2* on *key*; *key* is a tuple of field names -- if *key* is a string it is assumed to be a single attribute name. If *r1* and *r2* have equal values on all the keys in the *key* tuple, then their fields will be merged into a new record array containing the intersection of the fields of *r1* and *r2*. *r1* (also *r2*) must not have any duplicate keys. The *jointype* keyword can be 'inner', 'outer', 'leftouter'. To do a rightouter join just reverse *r1* and *r2*. The *defaults* keyword is a dictionary filled with ``{column_name:default_value}`` pairs. The keywords *r1postfix* and *r2postfix* are postfixed to column names (other than keys) that are both in *r1* and *r2*. """ if cbook.is_string_like(key): key = (key, ) for name in key: if name not in r1.dtype.names: raise ValueError('r1 does not have key field %s'%name) if name not in r2.dtype.names: raise ValueError('r2 does not have key field %s'%name) def makekey(row): return tuple([row[name] for name in key]) r1d = dict([(makekey(row),i) for i,row in enumerate(r1)]) r2d = dict([(makekey(row),i) for i,row in enumerate(r2)]) r1keys = set(r1d.keys()) r2keys = set(r2d.keys()) common_keys = r1keys & r2keys r1ind = np.array([r1d[k] for k in common_keys]) r2ind = np.array([r2d[k] for k in common_keys]) common_len = len(common_keys) left_len = right_len = 0 if jointype == "outer" or jointype == "leftouter": left_keys = r1keys.difference(r2keys) left_ind = np.array([r1d[k] for k in left_keys]) left_len = len(left_ind) if jointype == "outer": right_keys = r2keys.difference(r1keys) right_ind = np.array([r2d[k] for k in right_keys]) right_len = len(right_ind) def key_desc(name): 'if name is a string key, use the larger size of r1 or r2 before merging' dt1 = r1.dtype[name] if dt1.type != np.string_: return (name, dt1.descr[0][1]) dt2 = r1.dtype[name] assert dt2==dt1 if dt1.num>dt2.num: return (name, dt1.descr[0][1]) else: return (name, dt2.descr[0][1]) keydesc = [key_desc(name) for name in key] def mapped_r1field(name): """ The column name in *newrec* that corresponds to the column in *r1*. """ if name in key or name not in r2.dtype.names: return name else: return name + r1postfix def mapped_r2field(name): """ The column name in *newrec* that corresponds to the column in *r2*. """ if name in key or name not in r1.dtype.names: return name else: return name + r2postfix r1desc = [(mapped_r1field(desc[0]), desc[1]) for desc in r1.dtype.descr if desc[0] not in key] r2desc = [(mapped_r2field(desc[0]), desc[1]) for desc in r2.dtype.descr if desc[0] not in key] newdtype = np.dtype(keydesc + r1desc + r2desc) newrec = np.empty(common_len + left_len + right_len, dtype=newdtype) if jointype != 'inner' and defaults is not None: # fill in the defaults enmasse newrec_fields = newrec.dtype.fields.keys() for k, v in defaults.items(): if k in newrec_fields: newrec[k] = v for field in r1.dtype.names: newfield = mapped_r1field(field) if common_len: newrec[newfield][:common_len] = r1[field][r1ind] if (jointype == "outer" or jointype == "leftouter") and left_len: newrec[newfield][common_len:(common_len+left_len)] = r1[field][left_ind] for field in r2.dtype.names: newfield = mapped_r2field(field) if field not in key and common_len: newrec[newfield][:common_len] = r2[field][r2ind] if jointype == "outer" and right_len: newrec[newfield][-right_len:] = r2[field][right_ind] newrec.sort(order=key) return rec_view(newrec) def csv2rec(fname, comments='#', skiprows=0, checkrows=0, delimiter=',', converterd=None, names=None, missing='', missingd=None, use_mrecords=True): """ Load data from comma/space/tab delimited file in *fname* into a numpy record array and return the record array. If *names* is *None*, a header row is required to automatically assign the recarray names. The headers will be lower cased, spaces will be converted to underscores, and illegal attribute name characters removed. If *names* is not *None*, it is a sequence of names to use for the column names. In this case, it is assumed there is no header row. - *fname*: can be a filename or a file handle. Support for gzipped files is automatic, if the filename ends in '.gz' - *comments*: the character used to indicate the start of a comment in the file - *skiprows*: is the number of rows from the top to skip - *checkrows*: is the number of rows to check to validate the column data type. When set to zero all rows are validated. - *converted*: if not *None*, is a dictionary mapping column number or munged column name to a converter function. - *names*: if not None, is a list of header names. In this case, no header will be read from the file - *missingd* is a dictionary mapping munged column names to field values which signify that the field does not contain actual data and should be masked, e.g. '0000-00-00' or 'unused' - *missing*: a string whose value signals a missing field regardless of the column it appears in - *use_mrecords*: if True, return an mrecords.fromrecords record array if any of the data are missing If no rows are found, *None* is returned -- see :file:`examples/loadrec.py` """ if converterd is None: converterd = dict() if missingd is None: missingd = {} import dateutil.parser import datetime parsedate = dateutil.parser.parse fh = cbook.to_filehandle(fname) class FH: """ For space-delimited files, we want different behavior than comma or tab. Generally, we want multiple spaces to be treated as a single separator, whereas with comma and tab we want multiple commas to return multiple (empty) fields. The join/strip trick below effects this. """ def __init__(self, fh): self.fh = fh def close(self): self.fh.close() def seek(self, arg): self.fh.seek(arg) def fix(self, s): return ' '.join(s.split()) def next(self): return self.fix(self.fh.next()) def __iter__(self): for line in self.fh: yield self.fix(line) if delimiter==' ': fh = FH(fh) reader = csv.reader(fh, delimiter=delimiter) def process_skiprows(reader): if skiprows: for i, row in enumerate(reader): if i>=(skiprows-1): break return fh, reader process_skiprows(reader) def ismissing(name, val): "Should the value val in column name be masked?" if val == missing or val == missingd.get(name) or val == '': return True else: return False def with_default_value(func, default): def newfunc(name, val): if ismissing(name, val): return default else: return func(val) return newfunc def mybool(x): if x=='True': return True elif x=='False': return False else: raise ValueError('invalid bool') dateparser = dateutil.parser.parse mydateparser = with_default_value(dateparser, datetime.date(1,1,1)) myfloat = with_default_value(float, np.nan) myint = with_default_value(int, -1) mystr = with_default_value(str, '') mybool = with_default_value(mybool, None) def mydate(x): # try and return a date object d = dateparser(x) if d.hour>0 or d.minute>0 or d.second>0: raise ValueError('not a date') return d.date() mydate = with_default_value(mydate, datetime.date(1,1,1)) def get_func(name, item, func): # promote functions in this order funcmap = {mybool:myint,myint:myfloat, myfloat:mydate, mydate:mydateparser, mydateparser:mystr} try: func(name, item) except: if func==mystr: raise ValueError('Could not find a working conversion function') else: return get_func(name, item, funcmap[func]) # recurse else: return func # map column names that clash with builtins -- TODO - extend this list itemd = { 'return' : 'return_', 'file' : 'file_', 'print' : 'print_', } def get_converters(reader): converters = None for i, row in enumerate(reader): if i==0: converters = [mybool]*len(row) if checkrows and i>checkrows: break #print i, len(names), len(row) #print 'converters', zip(converters, row) for j, (name, item) in enumerate(zip(names, row)): func = converterd.get(j) if func is None: func = converterd.get(name) if func is None: #if not item.strip(): continue func = converters[j] if len(item.strip()): func = get_func(name, item, func) else: # how should we handle custom converters and defaults? func = with_default_value(func, None) converters[j] = func return converters # Get header and remove invalid characters needheader = names is None if needheader: for row in reader: #print 'csv2rec', row if len(row) and row[0].startswith(comments): continue headers = row break # remove these chars delete = set("""~!@#$%^&*()-=+~\|]}[{';: /?.>,<""") delete.add('"') names = [] seen = dict() for i, item in enumerate(headers): item = item.strip().lower().replace(' ', '_') item = ''.join([c for c in item if c not in delete]) if not len(item): item = 'column%d'%i item = itemd.get(item, item) cnt = seen.get(item, 0) if cnt>0: names.append(item + '_%d'%cnt) else: names.append(item) seen[item] = cnt+1 else: if cbook.is_string_like(names): names = [n.strip() for n in names.split(',')] # get the converter functions by inspecting checkrows converters = get_converters(reader) if converters is None: raise ValueError('Could not find any valid data in CSV file') # reset the reader and start over fh.seek(0) reader = csv.reader(fh, delimiter=delimiter) process_skiprows(reader) if needheader: skipheader = reader.next() # iterate over the remaining rows and convert the data to date # objects, ints, or floats as approriate rows = [] rowmasks = [] for i, row in enumerate(reader): if not len(row): continue if row[0].startswith(comments): continue rows.append([func(name, val) for func, name, val in zip(converters, names, row)]) rowmasks.append([ismissing(name, val) for name, val in zip(names, row)]) fh.close() if not len(rows): return None if use_mrecords and np.any(rowmasks): try: from numpy.ma import mrecords except ImportError: raise RuntimeError('numpy 1.05 or later is required for masked array support') else: r = mrecords.fromrecords(rows, names=names, mask=rowmasks) else: r = np.rec.fromrecords(rows, names=names) return r # a series of classes for describing the format intentions of various rec views class FormatObj: def tostr(self, x): return self.toval(x) def toval(self, x): return str(x) def fromstr(self, s): return s class FormatString(FormatObj): def tostr(self, x): val = repr(x) return val[1:-1] #class FormatString(FormatObj): # def tostr(self, x): # return '"%r"'%self.toval(x) class FormatFormatStr(FormatObj): def __init__(self, fmt): self.fmt = fmt def tostr(self, x): if x is None: return 'None' return self.fmt%self.toval(x) class FormatFloat(FormatFormatStr): def __init__(self, precision=4, scale=1.): FormatFormatStr.__init__(self, '%%1.%df'%precision) self.precision = precision self.scale = scale def toval(self, x): if x is not None: x = x * self.scale return x def fromstr(self, s): return float(s)/self.scale class FormatInt(FormatObj): def tostr(self, x): return '%d'%int(x) def toval(self, x): return int(x) def fromstr(self, s): return int(s) class FormatBool(FormatObj): def toval(self, x): return str(x) def fromstr(self, s): return bool(s) class FormatPercent(FormatFloat): def __init__(self, precision=4): FormatFloat.__init__(self, precision, scale=100.) class FormatThousands(FormatFloat): def __init__(self, precision=4): FormatFloat.__init__(self, precision, scale=1e-3) class FormatMillions(FormatFloat): def __init__(self, precision=4): FormatFloat.__init__(self, precision, scale=1e-6) class FormatDate(FormatObj): def __init__(self, fmt): self.fmt = fmt def toval(self, x): if x is None: return 'None' return x.strftime(self.fmt) def fromstr(self, x): import dateutil.parser return dateutil.parser.parse(x).date() class FormatDatetime(FormatDate): def __init__(self, fmt='%Y-%m-%d %H:%M:%S'): FormatDate.__init__(self, fmt) def fromstr(self, x): import dateutil.parser return dateutil.parser.parse(x) defaultformatd = { np.bool_ : FormatBool(), np.int16 : FormatInt(), np.int32 : FormatInt(), np.int64 : FormatInt(), np.float32 : FormatFloat(), np.float64 : FormatFloat(), np.object_ : FormatObj(), np.string_ : FormatString(), } def get_formatd(r, formatd=None): 'build a formatd guaranteed to have a key for every dtype name' if formatd is None: formatd = dict() for i, name in enumerate(r.dtype.names): dt = r.dtype[name] format = formatd.get(name) if format is None: format = defaultformatd.get(dt.type, FormatObj()) formatd[name] = format return formatd def csvformat_factory(format): format = copy.deepcopy(format) if isinstance(format, FormatFloat): format.scale = 1. # override scaling for storage format.fmt = '%r' return format def rec2txt(r, header=None, padding=3, precision=3): """ Returns a textual representation of a record array. *r*: numpy recarray *header*: list of column headers *padding*: space between each column *precision*: number of decimal places to use for floats. Set to an integer to apply to all floats. Set to a list of integers to apply precision individually. Precision for non-floats is simply ignored. Example:: precision=[0,2,3] Output:: ID Price Return ABC 12.54 0.234 XYZ 6.32 -0.076 """ if cbook.is_numlike(precision): precision = [precision]*len(r.dtype) def get_type(item,atype=int): tdict = {None:int, int:float, float:str} try: atype(str(item)) except: return get_type(item,tdict[atype]) return atype def get_justify(colname, column, precision): ntype = type(column[0]) if ntype==np.str or ntype==np.str_ or ntype==np.string0 or ntype==np.string_: length = max(len(colname),column.itemsize) return 0, length+padding, "%s" # left justify if ntype==np.int or ntype==np.int16 or ntype==np.int32 or ntype==np.int64 or ntype==np.int8 or ntype==np.int_: length = max(len(colname),np.max(map(len,map(str,column)))) return 1, length+padding, "%d" # right justify # JDH: my powerbook does not have np.float96 using np 1.3.0 """ In [2]: np.__version__ Out[2]: '1.3.0.dev5948' In [3]: !uname -a Darwin Macintosh-5.local 9.4.0 Darwin Kernel Version 9.4.0: Mon Jun 9 19:30:53 PDT 2008; root:xnu-1228.5.20~1/RELEASE_I386 i386 i386 In [4]: np.float96 --------------------------------------------------------------------------- AttributeError Traceback (most recent call la """ if ntype==np.float or ntype==np.float32 or ntype==np.float64 or (hasattr(np, 'float96') and (ntype==np.float96)) or ntype==np.float_: fmt = "%." + str(precision) + "f" length = max(len(colname),np.max(map(len,map(lambda x:fmt%x,column)))) return 1, length+padding, fmt # right justify return 0, max(len(colname),np.max(map(len,map(str,column))))+padding, "%s" if header is None: header = r.dtype.names justify_pad_prec = [get_justify(header[i],r.__getitem__(colname),precision[i]) for i, colname in enumerate(r.dtype.names)] justify_pad_prec_spacer = [] for i in range(len(justify_pad_prec)): just,pad,prec = justify_pad_prec[i] if i == 0: justify_pad_prec_spacer.append((just,pad,prec,0)) else: pjust,ppad,pprec = justify_pad_prec[i-1] if pjust == 0 and just == 1: justify_pad_prec_spacer.append((just,pad-padding,prec,0)) elif pjust == 1 and just == 0: justify_pad_prec_spacer.append((just,pad,prec,padding)) else: justify_pad_prec_spacer.append((just,pad,prec,0)) def format(item, just_pad_prec_spacer): just, pad, prec, spacer = just_pad_prec_spacer if just == 0: return spacer*' ' + str(item).ljust(pad) else: if get_type(item) == float: item = (prec%float(item)) elif get_type(item) == int: item = (prec%int(item)) return item.rjust(pad) textl = [] textl.append(''.join([format(colitem,justify_pad_prec_spacer[j]) for j, colitem in enumerate(header)])) for i, row in enumerate(r): textl.append(''.join([format(colitem,justify_pad_prec_spacer[j]) for j, colitem in enumerate(row)])) if i==0: textl[0] = textl[0].rstrip() text = os.linesep.join(textl) return text def rec2csv(r, fname, delimiter=',', formatd=None, missing='', missingd=None): """ Save the data from numpy recarray *r* into a comma-/space-/tab-delimited file. The record array dtype names will be used for column headers. *fname*: can be a filename or a file handle. Support for gzipped files is automatic, if the filename ends in '.gz' .. seealso:: :func:`csv2rec`: For information about *missing* and *missingd*, which can be used to fill in masked values into your CSV file. """ if missingd is None: missingd = dict() def with_mask(func): def newfunc(val, mask, mval): if mask: return mval else: return func(val) return newfunc formatd = get_formatd(r, formatd) funcs = [] for i, name in enumerate(r.dtype.names): funcs.append(with_mask(csvformat_factory(formatd[name]).tostr)) fh, opened = cbook.to_filehandle(fname, 'w', return_opened=True) writer = csv.writer(fh, delimiter=delimiter) header = r.dtype.names writer.writerow(header) # Our list of specials for missing values mvals = [] for name in header: mvals.append(missingd.get(name, missing)) ismasked = False if len(r): row = r[0] ismasked = hasattr(row, '_fieldmask') for row in r: if ismasked: row, rowmask = row.item(), row._fieldmask.item() else: rowmask = [False] * len(row) writer.writerow([func(val, mask, mval) for func, val, mask, mval in zip(funcs, row, rowmask, mvals)]) if opened: fh.close() def griddata(x,y,z,xi,yi): """ ``zi = griddata(x,y,z,xi,yi)`` fits a surface of the form *z* = *f*(*x*, *y*) to the data in the (usually) nonuniformly spaced vectors (*x*, *y*, *z*). :func:`griddata` interpolates this surface at the points specified by (*xi*, *yi*) to produce *zi*. *xi* and *yi* must describe a regular grid, can be either 1D or 2D, but must be monotonically increasing. A masked array is returned if any grid points are outside convex hull defined by input data (no extrapolation is done). Uses natural neighbor interpolation based on Delaunay triangulation. By default, this algorithm is provided by the :mod:`matplotlib.delaunay` package, written by Robert Kern. The triangulation algorithm in this package is known to fail on some nearly pathological cases. For this reason, a separate toolkit (:mod:`mpl_tookits.natgrid`) has been created that provides a more robust algorithm fof triangulation and interpolation. This toolkit is based on the NCAR natgrid library, which contains code that is not redistributable under a BSD-compatible license. When installed, this function will use the :mod:`mpl_toolkits.natgrid` algorithm, otherwise it will use the built-in :mod:`matplotlib.delaunay` package. The natgrid matplotlib toolkit can be downloaded from http://sourceforge.net/project/showfiles.php?group_id=80706&package_id=142792 """ try: from mpl_toolkits.natgrid import _natgrid, __version__ _use_natgrid = True except ImportError: import matplotlib.delaunay as delaunay from matplotlib.delaunay import __version__ _use_natgrid = False if not griddata._reported: if _use_natgrid: verbose.report('using natgrid version %s' % __version__) else: verbose.report('using delaunay version %s' % __version__) griddata._reported = True if xi.ndim != yi.ndim: raise TypeError("inputs xi and yi must have same number of dimensions (1 or 2)") if xi.ndim != 1 and xi.ndim != 2: raise TypeError("inputs xi and yi must be 1D or 2D.") if not len(x)==len(y)==len(z): raise TypeError("inputs x,y,z must all be 1D arrays of the same length") # remove masked points. if hasattr(z,'mask'): x = x.compress(z.mask == False) y = y.compress(z.mask == False) z = z.compressed() if _use_natgrid: # use natgrid toolkit if available. if xi.ndim == 2: xi = xi[0,:] yi = yi[:,0] # override default natgrid internal parameters. _natgrid.seti('ext',0) _natgrid.setr('nul',np.nan) # cast input arrays to doubles (this makes a copy) x = x.astype(np.float) y = y.astype(np.float) z = z.astype(np.float) xo = xi.astype(np.float) yo = yi.astype(np.float) if min(xo[1:]-xo[0:-1]) < 0 or min(yo[1:]-yo[0:-1]) < 0: raise ValueError, 'output grid defined by xi,yi must be monotone increasing' # allocate array for output (buffer will be overwritten by nagridd) zo = np.empty((yo.shape[0],xo.shape[0]), np.float) _natgrid.natgridd(x,y,z,xo,yo,zo) else: # use Robert Kern's delaunay package from scikits (default) if xi.ndim != yi.ndim: raise TypeError("inputs xi and yi must have same number of dimensions (1 or 2)") if xi.ndim != 1 and xi.ndim != 2: raise TypeError("inputs xi and yi must be 1D or 2D.") if xi.ndim == 1: xi,yi = np.meshgrid(xi,yi) # triangulate data tri = delaunay.Triangulation(x,y) # interpolate data interp = tri.nn_interpolator(z) zo = interp(xi,yi) # mask points on grid outside convex hull of input data. if np.any(np.isnan(zo)): zo = np.ma.masked_where(np.isnan(zo),zo) return zo griddata._reported = False ################################################## # Linear interpolation algorithms ################################################## def less_simple_linear_interpolation( x, y, xi, extrap=False ): """ This function provides simple (but somewhat less so than :func:`cbook.simple_linear_interpolation`) linear interpolation. :func:`simple_linear_interpolation` will give a list of point between a start and an end, while this does true linear interpolation at an arbitrary set of points. This is very inefficient linear interpolation meant to be used only for a small number of points in relatively non-intensive use cases. For real linear interpolation, use scipy. """ if cbook.is_scalar(xi): xi = [xi] x = np.asarray(x) y = np.asarray(y) xi = np.asarray(xi) s = list(y.shape) s[0] = len(xi) yi = np.tile( np.nan, s ) for ii,xx in enumerate(xi): bb = x == xx if np.any(bb): jj, = np.nonzero(bb) yi[ii] = y[jj[0]] elif xx<x[0]: if extrap: yi[ii] = y[0] elif xx>x[-1]: if extrap: yi[ii] = y[-1] else: jj, = np.nonzero(x<xx) jj = max(jj) yi[ii] = y[jj] + (xx-x[jj])/(x[jj+1]-x[jj]) * (y[jj+1]-y[jj]) return yi def slopes(x,y): """ :func:`slopes` calculates the slope *y*'(*x*) The slope is estimated using the slope obtained from that of a parabola through any three consecutive points. This method should be superior to that described in the appendix of A CONSISTENTLY WELL BEHAVED METHOD OF INTERPOLATION by Russel W. Stineman (Creative Computing July 1980) in at least one aspect: Circles for interpolation demand a known aspect ratio between *x*- and *y*-values. For many functions, however, the abscissa are given in different dimensions, so an aspect ratio is completely arbitrary. The parabola method gives very similar results to the circle method for most regular cases but behaves much better in special cases. Norbert Nemec, Institute of Theoretical Physics, University or Regensburg, April 2006 Norbert.Nemec at physik.uni-regensburg.de (inspired by a original implementation by Halldor Bjornsson, Icelandic Meteorological Office, March 2006 halldor at vedur.is) """ # Cast key variables as float. x=np.asarray(x, np.float_) y=np.asarray(y, np.float_) yp=np.zeros(y.shape, np.float_) dx=x[1:] - x[:-1] dy=y[1:] - y[:-1] dydx = dy/dx yp[1:-1] = (dydx[:-1] * dx[1:] + dydx[1:] * dx[:-1])/(dx[1:] + dx[:-1]) yp[0] = 2.0 * dy[0]/dx[0] - yp[1] yp[-1] = 2.0 * dy[-1]/dx[-1] - yp[-2] return yp def stineman_interp(xi,x,y,yp=None): """ Given data vectors *x* and *y*, the slope vector *yp* and a new abscissa vector *xi*, the function :func:`stineman_interp` uses Stineman interpolation to calculate a vector *yi* corresponding to *xi*. Here's an example that generates a coarse sine curve, then interpolates over a finer abscissa:: x = linspace(0,2*pi,20); y = sin(x); yp = cos(x) xi = linspace(0,2*pi,40); yi = stineman_interp(xi,x,y,yp); plot(x,y,'o',xi,yi) The interpolation method is described in the article A CONSISTENTLY WELL BEHAVED METHOD OF INTERPOLATION by Russell W. Stineman. The article appeared in the July 1980 issue of Creative Computing with a note from the editor stating that while they were: not an academic journal but once in a while something serious and original comes in adding that this was "apparently a real solution" to a well known problem. For *yp* = *None*, the routine automatically determines the slopes using the :func:`slopes` routine. *x* is assumed to be sorted in increasing order. For values ``xi[j] < x[0]`` or ``xi[j] > x[-1]``, the routine tries an extrapolation. The relevance of the data obtained from this, of course, is questionable... Original implementation by Halldor Bjornsson, Icelandic Meteorolocial Office, March 2006 halldor at vedur.is Completely reworked and optimized for Python by Norbert Nemec, Institute of Theoretical Physics, University or Regensburg, April 2006 Norbert.Nemec at physik.uni-regensburg.de """ # Cast key variables as float. x=np.asarray(x, np.float_) y=np.asarray(y, np.float_) assert x.shape == y.shape N=len(y) if yp is None: yp = slopes(x,y) else: yp=np.asarray(yp, np.float_) xi=np.asarray(xi, np.float_) yi=np.zeros(xi.shape, np.float_) # calculate linear slopes dx = x[1:] - x[:-1] dy = y[1:] - y[:-1] s = dy/dx #note length of s is N-1 so last element is #N-2 # find the segment each xi is in # this line actually is the key to the efficiency of this implementation idx = np.searchsorted(x[1:-1], xi) # now we have generally: x[idx[j]] <= xi[j] <= x[idx[j]+1] # except at the boundaries, where it may be that xi[j] < x[0] or xi[j] > x[-1] # the y-values that would come out from a linear interpolation: sidx = s.take(idx) xidx = x.take(idx) yidx = y.take(idx) xidxp1 = x.take(idx+1) yo = yidx + sidx * (xi - xidx) # the difference that comes when using the slopes given in yp dy1 = (yp.take(idx)- sidx) * (xi - xidx) # using the yp slope of the left point dy2 = (yp.take(idx+1)-sidx) * (xi - xidxp1) # using the yp slope of the right point dy1dy2 = dy1*dy2 # The following is optimized for Python. The solution actually # does more calculations than necessary but exploiting the power # of numpy, this is far more efficient than coding a loop by hand # in Python yi = yo + dy1dy2 * np.choose(np.array(np.sign(dy1dy2), np.int32)+1, ((2*xi-xidx-xidxp1)/((dy1-dy2)*(xidxp1-xidx)), 0.0, 1/(dy1+dy2),)) return yi ################################################## # Code related to things in and around polygons ################################################## def inside_poly(points, verts): """ *points* is a sequence of *x*, *y* points. *verts* is a sequence of *x*, *y* vertices of a polygon. Return value is a sequence of indices into points for the points that are inside the polygon. """ res, = np.nonzero(nxutils.points_inside_poly(points, verts)) return res def poly_below(xmin, xs, ys): """ Given a sequence of *xs* and *ys*, return the vertices of a polygon that has a horizontal base at *xmin* and an upper bound at the *ys*. *xmin* is a scalar. Intended for use with :meth:`matplotlib.axes.Axes.fill`, eg:: xv, yv = poly_below(0, x, y) ax.fill(xv, yv) """ if ma.isMaskedArray(xs) or ma.isMaskedArray(ys): nx = ma else: nx = np xs = nx.asarray(xs) ys = nx.asarray(ys) Nx = len(xs) Ny = len(ys) assert(Nx==Ny) x = xmin*nx.ones(2*Nx) y = nx.ones(2*Nx) x[:Nx] = xs y[:Nx] = ys y[Nx:] = ys[::-1] return x, y def poly_between(x, ylower, yupper): """ Given a sequence of *x*, *ylower* and *yupper*, return the polygon that fills the regions between them. *ylower* or *yupper* can be scalar or iterable. If they are iterable, they must be equal in length to *x*. Return value is *x*, *y* arrays for use with :meth:`matplotlib.axes.Axes.fill`. """ if ma.isMaskedArray(ylower) or ma.isMaskedArray(yupper) or ma.isMaskedArray(x): nx = ma else: nx = np Nx = len(x) if not cbook.iterable(ylower): ylower = ylower*nx.ones(Nx) if not cbook.iterable(yupper): yupper = yupper*nx.ones(Nx) x = nx.concatenate( (x, x[::-1]) ) y = nx.concatenate( (yupper, ylower[::-1]) ) return x,y def is_closed_polygon(X): """ Tests whether first and last object in a sequence are the same. These are presumably coordinates on a polygonal curve, in which case this function tests if that curve is closed. """ return np.all(X[0] == X[-1]) def contiguous_regions(mask): """ return a list of (ind0, ind1) such that mask[ind0:ind1].all() is True and we cover all such regions TODO: this is a pure python implementation which probably has a much faster numpy impl """ in_region = None boundaries = [] for i, val in enumerate(mask): if in_region is None and val: in_region = i elif in_region is not None and not val: boundaries.append((in_region, i)) in_region = None if in_region is not None: boundaries.append((in_region, i+1)) return boundaries ################################################## # Vector and path length geometry calculations ################################################## def vector_lengths( X, P=2., axis=None ): """ Finds the length of a set of vectors in *n* dimensions. This is like the :func:`numpy.norm` function for vectors, but has the ability to work over a particular axis of the supplied array or matrix. Computes ``(sum((x_i)^P))^(1/P)`` for each ``{x_i}`` being the elements of *X* along the given axis. If *axis* is *None*, compute over all elements of *X*. """ X = np.asarray(X) return (np.sum(X**(P),axis=axis))**(1./P) def distances_along_curve( X ): """ Computes the distance between a set of successive points in *N* dimensions. Where *X* is an *M* x *N* array or matrix. The distances between successive rows is computed. Distance is the standard Euclidean distance. """ X = np.diff( X, axis=0 ) return vector_lengths(X,axis=1) def path_length(X): """ Computes the distance travelled along a polygonal curve in *N* dimensions. Where *X* is an *M* x *N* array or matrix. Returns an array of length *M* consisting of the distance along the curve at each point (i.e., the rows of *X*). """ X = distances_along_curve(X) return np.concatenate( (np.zeros(1), np.cumsum(X)) ) def quad2cubic(q0x, q0y, q1x, q1y, q2x, q2y): """ Converts a quadratic Bezier curve to a cubic approximation. The inputs are the *x* and *y* coordinates of the three control points of a quadratic curve, and the output is a tuple of *x* and *y* coordinates of the four control points of the cubic curve. """ # c0x, c0y = q0x, q0y c1x, c1y = q0x + 2./3. * (q1x - q0x), q0y + 2./3. * (q1y - q0y) c2x, c2y = c1x + 1./3. * (q2x - q0x), c1y + 1./3. * (q2y - q0y) # c3x, c3y = q2x, q2y return q0x, q0y, c1x, c1y, c2x, c2y, q2x, q2y
agpl-3.0
gerritgr/LumPy
ClusterEngine.py
1
15922
import model_parser import numpy as np from utilities import * import sys import sympy import time import pandas as pd import sys def indicators_to_dict(indicators, odes): results = dict() for i in range(len(odes)): m = odes[i] results[m] = indicators[i] return results def clustering(model): degree_distribution = model['degree_distribution'] cluster_number = model['bin_num'] if 'neighborhood' not in model: model['neighborhood'] = list(generate_neighbours(model['k_max'], len(model['states']))) m_vectors = model['neighborhood'] cluster_method = model['heuristic'] logger.info('Start Clustering.') if cluster_number >= len(m_vectors): result = dict() for i, m in enumerate(m_vectors): result[m] = i return result #if cluster_number == 1: # return {m:0 for m in m_vectors} #assert(cluster_number > 1) if isinstance(cluster_method, str): cluster_method = globals()[cluster_method] #try: # result = cluster_method(degree_distribution, cluster_number, m_vectors) #except: result = cluster_method(model) logger.info('Clustering Done.') return result def cluster(degree_distribution, cluster_number, m_vectors): from scipy.spatial.distance import pdist, euclidean from scipy.cluster.hierarchy import linkage, fcluster def dist(a, b): if list(a) == list(b): return 0.0 degree_dist = (np.sum(a) - np.sum(b))**2 * 10 prob_k = np.max(degree_distribution[int(np.sum(a))], degree_distribution[int(np.sum(b))]) eucl_distance = euclidean(a,b) rel_eucl_distance = eucl_distance/np.sqrt(np.sum(a+b)) return degree_dist + rel_eucl_distance * prob_k odes = list(m_vectors) Xd = pdist(odes, dist) Z = linkage(Xd, 'complete') indicators = fcluster(Z, cluster_number, criterion='maxclust') results = dict() for i in range(len(odes)): m = odes[i] results[m] = indicators[i] return results def cluster_alt(degree_distribution, cluster_number, m_vectors): from scipy.spatial.distance import pdist, euclidean from scipy.cluster.hierarchy import linkage, fcluster def dist(a, b): if list(a) == list(b): return 0.0 degree_dist = (np.sum(a) - np.sum(b))**2 * 10 number_of_vectors_a = elemsin_k_vec_with_sum_m(len(a), np.sum(a)) number_of_vectors_b = elemsin_k_vec_with_sum_m(len(b), np.sum(b)) number_of_vectors = max(number_of_vectors_a, number_of_vectors_b) prob_mass_k_a = degree_distribution[int(np.sum(a))] prob_mass_k_b = degree_distribution[int(np.sum(b))] prob_mass_k = max(prob_mass_k_a, prob_mass_k_b ) mass = prob_mass_k / number_of_vectors eucl_distance = euclidean(a,b) rel_eucl_distance = eucl_distance/np.sqrt(np.sum(a+b)) return mass * degree_dist + mass * rel_eucl_distance odes = list(m_vectors) Xd = pdist(odes, dist) Z = linkage(Xd, 'complete') indicators = fcluster(Z, cluster_number, criterion='maxclust') results = dict() for i in range(len(odes)): m = odes[i] results[m] = indicators[i] return results if __name__ == "__main__": degree_distribution = [0.1,0.1,0.1,0.1,0.6] cluster_number = 7 m_vectors = list() for k in range(5): m_vectors += list(m_k_of(k,2)) for cluster_method in [cluster, cluster_alt]: r = cluster_method(degree_distribution, cluster_number, m_vectors) print(r) inv_map = {} for k, v in r.items(): inv_map[v] = inv_map.get(v, []) inv_map[v].append(k) print(inv_map) degree_distribution = [0.1,0.1,0.1,0.1,0.6] cluster_number = 7 m_vectors = list() for k in range(15): m_vectors += list(m_k_of(k,2)) print(cluster2(None, None, m_vectors)) def cluster1(degree_distribution, cluster_number, m_vectors): from scipy.spatial.distance import pdist, euclidean from scipy.cluster.hierarchy import linkage, fcluster odes = list(m_vectors) Xd = pdist(odes, lambda x,y: euclidean(x,y)*1.0/(np.sum(x+y))) Z = linkage(Xd, 'complete') indicators = fcluster(Z, cluster_number, criterion='maxclust') return indicators_to_dict(indicators,odes) def cluster_direction(degree_distribution, cluster_number, m_vectors): from scipy.spatial.distance import pdist, euclidean from scipy.cluster.hierarchy import linkage, fcluster odes = list(m_vectors) def norma(v): return v if np.sum(v) == 0.0 else create_normalized_np(v) Xd = pdist(odes, lambda x,y: euclidean(norma(x), norma(y))+0.1*euclidean(x,y)) Z = linkage(Xd, 'complete') indicators = fcluster(Z, cluster_number, criterion='maxclust') return indicators_to_dict(indicators,odes) def cluster2(degree_distribution, cluster_number, m_vectors): logger.warn('This method ignores cluster_number and degree_distribution.') results = dict() for m in m_vectors: m_new = '' k = int(np.sum(m)) for v in m: if k <= 8: m_new += '_'+str(v) else: m_new += '_'+str(int(v/3)) results[m] = '{}{}'.format(k,m_new) return results def cluster3(degree_distribution, cluster_number, m_vectors): logger.warn('This method ignores cluster_number and degree_distribution.') results = dict() for m in m_vectors: k = int(np.sum(m)) if k == 0: k = 0.1 c_id = [str(int(v/k*10)) for v in m] results[m] = '_'.join(c_id) return results def cluster_vec(degree_distribution, cluster_number, m_vectors): from scipy.spatial.distance import euclidean logger.warn('This method ignores cluster_number and degree_distribution.') base = m_k_of(max(5,int(cluster_number)), len(m_vectors[0])) #arbitrary before 10 #base = cluster_number base = [create_normalized_np(v, True) for v in base] results = dict() for m in m_vectors: k = int(np.sum(m)) if k == 0: # values does not matter for 0-vector bu cannot be 0 k = 0.1 m_normal = [v/k for v in m] distances = [euclidean(b_v, m_normal) for b_v in base] closest_base = distances.index(min(distances)) results[m] = '{}_{}'.format(k, closest_base) return results def cluster_vec2(degree_distribution, cluster_number, m_vectors): from scipy.spatial.distance import euclidean logger.warn('This method ignores cluster_number and degree_distribution.') base = m_k_of(max(5,int(cluster_number)), len(m_vectors[0])) #arbitrary before 10 #base = cluster_number base = [create_normalized_np(v, True) for v in base] results = dict() for m in m_vectors: k = int(np.sum(m)) if k == 0: # values does not matter for 0-vector bu cannot be 0 k = 0.1 m_normal = [v/k for v in m] distances = [euclidean(b_v, m_normal) for b_v in base] closest_base = distances.index(min(distances)) k_clustered = k if k <= 8 else int(k/3)*3 # vorher 5 und 2 results[m] = '{}_{}'.format(k_clustered, closest_base) return results def cluster_vec3(degree_distribution, cluster_number, m_vectors): from scipy.spatial.distance import euclidean logger.warn('This method ignores cluster_number and degree_distribution.') base = m_k_of(max(2,int(cluster_number)), len(m_vectors[0])) #arbitrary before 10 #base = cluster_number base = [create_normalized_np(v, True) for v in base] results = dict() for m in m_vectors: k = int(np.sum(m)) if k == 0: # values does not matter for 0-vector bu cannot be 0 k = 0.1 m_normal = [v/k for v in m] distances = [euclidean(b_v, m_normal) for b_v in base] closest_base = distances.index(min(distances)) k_clustered = k if k <= 15 else int(k/3)*3 # vorher 5 und 2 results[m] = '{}_{}'.format(k_clustered, closest_base) return results def cluster_vec3s(degree_distribution, cluster_number, m_vectors): from scipy.spatial.distance import euclidean logger.warn('This method ignores cluster_number and degree_distribution.') base = m_k_of(max(2,int(cluster_number)), len(m_vectors[0])) #arbitrary before 10 #base = cluster_number base = [create_normalized_np(v, True) for v in base] results = dict() for m in m_vectors: k = int(np.sum(m)) if k == 0: # values does not matter for 0-vector bu cannot be 0 k = 0.1 m_normal = [v/k for v in m] distances = [euclidean(b_v, m_normal) for b_v in base] closest_base = distances.index(min(distances)) k_clustered = k if k <= 4 else int(k/3)*3 # vorher 5 und 2 results[m] = '{}_{}'.format(k_clustered, closest_base) return results def cluster_vec4(degree_distribution, cluster_number, m_vectors): from scipy.spatial.distance import euclidean logger.warn('This method ignores cluster_number and degree_distribution.') base = m_k_of(max(2,int(cluster_number)), len(m_vectors[0])) #arbitrary before 10 #base = cluster_number base = [create_normalized_np(v, True) for v in base] results = dict() for m in m_vectors: k = int(np.sum(m)) if k == 0: # values does not matter for 0-vector bu cannot be 0 k = 0.1 m_normal = [v/k for v in m] distances = [euclidean(b_v, m_normal) for b_v in base] closest_base = distances.index(min(distances)) k_clustered = k if k <= 12 else int(k/2)*2 # vorher 5 und 2 results[m] = '{}_{}'.format(k_clustered, closest_base) return results def cluster_vec5(degree_distribution, cluster_number, m_vectors): from scipy.spatial.distance import euclidean logger.warn('This method ignores cluster_number and degree_distribution.') base = m_k_of(10, len(m_vectors[0])) #arbitrary before 10 #base = cluster_number base = [create_normalized_np(v, True) for v in base] results = dict() for m in m_vectors: k = int(np.sum(m)) if k == 0: # values does not matter for 0-vector bu cannot be 0 k = 0.1 m_normal = [v/k for v in m] distances = [euclidean(b_v, m_normal) for b_v in base] closest_base = distances.index(min(distances)) k_clustered = k if k <= 7 else int(k/5)*2 # vorher 5 und 2 results[m] = '{}_{}'.format(k_clustered, closest_base) return results def cluster_subspace(model): from scipy.spatial.distance import euclidean logger.warn('This method ignores cluster_number and degree_distribution.') merge = int(model.get('merge', 5)) subspace = int(model.get('subspace', 7)) start_clustering = int(model.get('start_clustering', 13)) m_vectors = model['neighborhood'] base = m_k_of(subspace, len(m_vectors[0])) #arbitrary before 10 #base = cluster_number base = [create_normalized_np(v, True) for v in base] results = dict() for m in m_vectors: k = int(np.sum(m)) if k == 0: # values does not matter for 0-vector bu cannot be 0 k = 0.1 m_normal = [v/k for v in m] distances = [euclidean(b_v, m_normal) for b_v in base] closest_base = distances.index(min(distances)) k_clustered = k if k <= start_clustering else int(k/merge)*merge # vorher 5 und 2 results[m] = '{}_{}'.format(k_clustered, closest_base) return results def cluster_subspace5(model): from scipy.spatial.distance import euclidean logger.warn('This method ignores cluster_number and degree_distribution.') m_vectors = model['neighborhood'] base = m_k_of(5, len(m_vectors[0])) #arbitrary before 10 base = [create_normalized_np(v, True) for v in base] degree_cluster = cluster_degrees(model) results = dict() for m in m_vectors: k = int(np.sum(m)) if k == 0: # values does not matter for 0-vector bu cannot be 0 k = 1 m_normal = [v/k for v in m] distances = [euclidean(b_v, m_normal) for b_v in base] closest_base = distances.index(min(distances)) results[m] = '{}_{}'.format(degree_cluster[k], closest_base) return results def cluster_subspace7(model): from scipy.spatial.distance import euclidean logger.warn('This method ignores cluster_number and degree_distribution.') m_vectors = model['neighborhood'] base = m_k_of(7, len(m_vectors[0])) #arbitrary before 10 base = [create_normalized_np(v, True) for v in base] degree_cluster = cluster_degrees(model) results = dict() for m in m_vectors: k = int(np.sum(m)) if k == 0: # values does not matter for 0-vector bu cannot be 0 k = 1 m_normal = [v/k for v in m] distances = [euclidean(b_v, m_normal) for b_v in base] closest_base = distances.index(min(distances)) results[m] = '{}_{}'.format(degree_cluster[k], closest_base) return results def cluster_subspaceS(model): from scipy.spatial.distance import euclidean logger.warn('This method ignores cluster_number and degree_distribution.') m_vectors = model['neighborhood'] base = m_k_of(int(model.get('subspace', 30)), len(m_vectors[0])) #arbitrary before 10 base = [create_normalized_np(v, True) for v in base] degree_cluster = cluster_degrees(model) results = dict() for m in m_vectors: k = int(np.sum(m)) if k == 0: # values does not matter for 0-vector bu cannot be 0 k = 1 m_normal = [v/k for v in m] distances = [euclidean(b_v, m_normal) for b_v in base] closest_base = distances.index(min(distances)) results[m] = '{}_{}'.format(degree_cluster[k], closest_base) return results def cluster_subspaceX(model): from scipy.spatial.distance import euclidean, cosine logger.warn('This method ignores cluster_number.') m_vectors = model['neighborhood'] base = m_k_of(int(model.get('subspace', model['bin_num'])), len(m_vectors[0])) #arbitrary before 10 base = [create_normalized_np(v, True) for v in base] degree_cluster = cluster_degrees(model) results = dict() for m in m_vectors: k = int(np.sum(m)+0.0000001) m_normal = [v/k for v in m] if k > 0 else [0.001 for v in m] m1 = m if k>0 else np.ones(len(m)) #distances = [euclidean(b_v, m_normal) for b_v in base] distances = [cosine(b_v, m1) for b_v in base] # todo closest_base = distances.index(min(distances)) results[m] = '{}_{}'.format(degree_cluster[k], closest_base) return results def cluster_subspaceXX(model): model['subspace'] = int(model['bin_num']*0.5) # gamma = bin_num / k # gamma * k = bin_num # k = bin_num / gamma return cluster_subspaceX(model) def cluster_subspaceXY(model): model['subspace'] = int(model['bin_num']*1.0) return cluster_subspaceX(model) def cluster_subspaceXZ(model): model['subspace'] = int(model['bin_num']*2.0) return cluster_subspaceX(model) def cluster_fixedSubSpace9(model): model['subspace'] = 9 return cluster_subspaceX(model) def cluster_fixedSubSpace10(model): model['subspace'] = 10 return cluster_subspaceX(model) def cluster_fixedSubSpace20(model): model['subspace'] = 20 return cluster_subspaceX(model) def cluster_fixedBinNum5(model): moodel['subspace'] = int(model['bin_num']*1.0) model['bin_num'] = 5 return cluster_subspaceX(model) def cluster_fixedBinNum10(model): moodel['subspace'] = int(model['bin_num']*1.0) model['bin_num'] = 10 return cluster_subspaceX(model) def cluster_fixedBinNum20(model): moodel['subspace'] = int(model['bin_num']*1.0) model['bin_num'] = 20 return cluster_subspaceX(model) def plot_clustering(cluster_results, outpath): global created_images import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns sns.set_style("white") mpl.rc('xtick', labelsize=14) mpl.rc('ytick', labelsize=14) import numpy as np plt.clf() ax = plt.subplot(111, aspect='equal') cluster_ids = sorted(list(set(cluster_results.values()))) vectors = cluster_results.keys() # for more than 2 dimensions: only consider slice x = [v[0] for v in vectors if np.sum(v) == v[0]+v[1]] y = [v[1] for v in vectors if np.sum(v) == v[0]+v[1]] ax.set_ylim([-.1, max(x+y)*1.05]) ax.set_xlim([-.1, max(x+y)*1.05]) colors_per_cluster = np.random.rand(len(cluster_ids)) #colors_per_cluster = np.linspace(0,1,len(cluster_ids)) colors = list() for v in vectors: c = cluster_results[v] c_pos = cluster_ids.index(c) colors.append(colors_per_cluster[c_pos]) colors = [plt.get_cmap('hsv')(c) for c in colors ] #colors = [str(color) for color in colors] #plt.show() plt.scatter(x, y, c=colors, alpha=0.8, s = 10) plt.savefig(outpath, format='pdf', bbox_inches='tight') #------------------------------------------------------ # Heuristics for Degree Clustering #------------------------------------------------------ def cluster_degrees(model): import DegreeClusterEngine as dce #clustering = dce.hierarchical2d_woblist(model) clustering = dce.loss_clustering(model) return clustering #return dce.greedy(model) #return {k: int(k) for k in range(model['k_max']+1)}
gpl-3.0
kcavagnolo/astroML
book_figures/chapter9/fig_bayes_DB_2d.py
3
2283
""" 2D Bayes Decision Boundary -------------------------- Plot a schematic of a two-dimensional decision boundary """ # Author: Jake VanderPlas # License: BSD # The figure produced by this code is published in the textbook # "Statistics, Data Mining, and Machine Learning in Astronomy" (2013) # For more information, see http://astroML.github.com # To report a bug or issue, use the following forum: # https://groups.google.com/forum/#!forum/astroml-general import numpy as np from matplotlib import pyplot as plt from matplotlib.patches import Ellipse #---------------------------------------------------------------------- # This function adjusts matplotlib settings for a uniform feel in the textbook. # Note that with usetex=True, fonts are rendered with LaTeX. This may # result in an error if LaTeX is not installed on your system. In that case, # you can set usetex to False. from astroML.plotting import setup_text_plots setup_text_plots(fontsize=8, usetex=True) #------------------------------------------------------------ # Set up diagram mu1 = (0.25, 0.25) mu2 = (0.85, 0.7) sigma1 = (0.5, 0.5) sigma2 = (0.25, 0.5) y_boundary = np.linspace(-0.1, 1.1, 100) x_boundary = (0.5 + 0.4 * (y_boundary - 0.9) ** 2) #------------------------------------------------------------ # Set up plot fig = plt.figure(figsize=(5, 5), facecolor='w') ax = fig.add_axes([0, 0, 1, 1], frameon=False, xticks=[], yticks=[]) # draw axes plt.annotate(r'$x_1$', (-0.08, -0.02), (1.05, -0.02), ha='center', va='center', arrowprops=dict(arrowstyle='<-', color='k')) plt.annotate(r'$x_2$', (-0.02, -0.08), (-0.02, 1.05), ha='center', va='center', arrowprops=dict(arrowstyle='<-', color='k')) # draw ellipses, points, and boundaries ax.scatter(mu1[:1], mu1[1:], c='k') ax.scatter(mu2[:1], mu2[1:], c='k') ax.add_patch(Ellipse(mu1, sigma1[0], sigma1[1], fc='none', ec='k')) ax.add_patch(Ellipse(mu2, sigma2[0], sigma2[1], fc='none', ec='k')) ax.text(mu1[0] + 0.02, mu1[1] + 0.02, r'$\mu_1$') ax.text(mu2[0] + 0.02, mu2[1] + 0.02, r'$\mu_2$') ax.plot(x_boundary, y_boundary, '--k') ax.text(0.53, 0.28, "decision boundary", rotation=-70, ha='left', va='bottom') ax.set_xlim(-0.1, 1.1) ax.set_ylim(-0.1, 1.1) plt.show()
bsd-2-clause
tmhm/scikit-learn
examples/text/hashing_vs_dict_vectorizer.py
284
3265
""" =========================================== FeatureHasher and DictVectorizer Comparison =========================================== Compares FeatureHasher and DictVectorizer by using both to vectorize text documents. The example demonstrates syntax and speed only; it doesn't actually do anything useful with the extracted vectors. See the example scripts {document_classification_20newsgroups,clustering}.py for actual learning on text documents. A discrepancy between the number of terms reported for DictVectorizer and for FeatureHasher is to be expected due to hash collisions. """ # Author: Lars Buitinck <L.J.Buitinck@uva.nl> # License: BSD 3 clause from __future__ import print_function from collections import defaultdict import re import sys from time import time import numpy as np from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction import DictVectorizer, FeatureHasher def n_nonzero_columns(X): """Returns the number of non-zero columns in a CSR matrix X.""" return len(np.unique(X.nonzero()[1])) def tokens(doc): """Extract tokens from doc. This uses a simple regex to break strings into tokens. For a more principled approach, see CountVectorizer or TfidfVectorizer. """ return (tok.lower() for tok in re.findall(r"\w+", doc)) def token_freqs(doc): """Extract a dict mapping tokens from doc to their frequencies.""" freq = defaultdict(int) for tok in tokens(doc): freq[tok] += 1 return freq categories = [ 'alt.atheism', 'comp.graphics', 'comp.sys.ibm.pc.hardware', 'misc.forsale', 'rec.autos', 'sci.space', 'talk.religion.misc', ] # Uncomment the following line to use a larger set (11k+ documents) #categories = None print(__doc__) print("Usage: %s [n_features_for_hashing]" % sys.argv[0]) print(" The default number of features is 2**18.") print() try: n_features = int(sys.argv[1]) except IndexError: n_features = 2 ** 18 except ValueError: print("not a valid number of features: %r" % sys.argv[1]) sys.exit(1) print("Loading 20 newsgroups training data") raw_data = fetch_20newsgroups(subset='train', categories=categories).data data_size_mb = sum(len(s.encode('utf-8')) for s in raw_data) / 1e6 print("%d documents - %0.3fMB" % (len(raw_data), data_size_mb)) print() print("DictVectorizer") t0 = time() vectorizer = DictVectorizer() vectorizer.fit_transform(token_freqs(d) for d in raw_data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration)) print("Found %d unique terms" % len(vectorizer.get_feature_names())) print() print("FeatureHasher on frequency dicts") t0 = time() hasher = FeatureHasher(n_features=n_features) X = hasher.transform(token_freqs(d) for d in raw_data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration)) print("Found %d unique terms" % n_nonzero_columns(X)) print() print("FeatureHasher on raw tokens") t0 = time() hasher = FeatureHasher(n_features=n_features, input_type="string") X = hasher.transform(tokens(d) for d in raw_data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration)) print("Found %d unique terms" % n_nonzero_columns(X))
bsd-3-clause
BasuruK/sGlass
imports.py
1
5956
""" Manage this file with utmost care, as this file contains all the imports used throughout the application. Load all the AI models and imports in the sections mentioned below and do not change already added variables or anything other unless it belongs to your component. When implementing your module, it is advised to follow OOP approach but not necessarily. import the imports.py (this file) at the beginning of the file and put an alias as IMPORT_MANAGER and use this to access all the imports and models located in this file (imports.py) """ print("Initializing the Application") # Use this section to load all the imports import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # '2' - Turn off Warnings, '3' - Turn of Errors, '1' - Turn off Info logs import time start_time = time.time() import cv2 from gtts import gTTS from PIL import Image import math import random import skimage.io as imutils import tensorflow as tf from keras.preprocessing import image as keras_preprocess import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as patches from keras.models import load_model from keras.applications import VGG19 import threading # Use this section to import Machine Learning and AI Models # Load Outdoor Object Recognition Model print("Loading AI Models") outdoor_objects_classifier = load_model('Outdoor_Object_Recognition_Engine/prediction_model.h5') # Load Indoor Object Recognition Models # CNN def load_cnn_model(): hist = load_model('Indoor_Object_Recognition_Engine/IOIM/Indoor_Object_Recognition.h5') return hist # Hand Gesture def load_hand_model(): hist = load_model('Indoor_Object_Recognition_Engine/Hand_Gesture/Hand_Gesture_Recognition.h5') return hist # Load VGG19 model baseVgg19Model = VGG19(weights='imagenet') # Load Description Generator Model description_generator_model = load_model('Description_Generator/Data/pretrainedmodel/descgenrator.30-2.19.hdf5') print("All Modules Loaded within: ", time.time() - start_time) print("Application Started") # If there are any global methods you need to access throughout the program, place them here # Returns a randomized color code for the use of Bounding Box creation on GBPD algorithm def randomize_color(): cnames = { 'aliceblue': '#F0F8FF', 'antiquewhite': '#FAEBD7', 'aqua': '#00FFFF', 'aquamarine': '#7FFFD4', 'azure': '#F0FFFF' , 'beige': '#F5F5DC', 'bisque': '#FFE4C4', 'black': '#000000', 'blanchedalmond': '#FFEBCD', 'blue': '#0000FF', 'blueviolet': '#8A2BE2', 'brown': '#A52A2A', 'burlywood': '#DEB887', 'cadetblue': '#5F9EA0', 'chartreuse': '#7FFF00', 'chocolate': '#D2691E', 'coral': '#FF7F50', 'cornflowerblue': '#6495ED', 'cornsilk': '#FFF8DC', 'crimson': '#DC143C', 'cyan': '#00FFFF', 'darkblue': '#00008B', 'darkcyan': '#008B8B', 'darkgoldenrod': '#B8860B', 'darkgray': '#A9A9A9', 'darkgreen': '#006400', 'darkkhaki': '#BDB76B', 'darkmagenta': '#8B008B', 'darkolivegreen': '#556B2F', 'darkorange': '#FF8C00', 'darkorchid': '#9932CC', 'darkred': '#8B0000', 'darksalmon': '#E9967A', 'darkseagreen': '#8FBC8F', 'darkslateblue': '#483D8B', 'darkslategray': '#2F4F4F', 'darkturquoise': '#00CED1', 'darkviolet': '#9400D3', 'deeppink': '#FF1493', 'deepskyblue': '#00BFFF', 'dimgray': '#696969', 'dodgerblue': '#1E90FF', 'firebrick': '#B22222', 'floralwhite': '#FFFAF0', 'forestgreen': '#228B22', 'fuchsia': '#FF00FF', 'gainsboro': '#DCDCDC', 'ghostwhite': '#F8F8FF', 'gold': '#FFD700', 'goldenrod': '#DAA520', 'gray': '#808080', 'green': '#008000', 'greenyellow': '#ADFF2F', 'honeydew': '#F0FFF0', 'hotpink': '#FF69B4', 'indianred': '#CD5C5C', 'indigo': '#4B0082', 'ivory': '#FFFFF0', 'khaki': '#F0E68C', 'lavender': '#E6E6FA', 'lavenderblush': '#FFF0F5', 'lawngreen': '#7CFC00', 'lemonchiffon': '#FFFACD', 'lightblue': '#ADD8E6', 'lightcoral': '#F08080', 'lightcyan': '#E0FFFF', 'lightgoldenrodyellow': '#FAFAD2', 'lightgreen': '#90EE90', 'lightgray': '#D3D3D3', 'lightpink': '#FFB6C1', 'lightsalmon': '#FFA07A', 'lightseagreen': '#20B2AA', 'lightskyblue': '#87CEFA', 'lightslategray': '#778899', 'lightsteelblue': '#B0C4DE', 'lightyellow': '#FFFFE0', 'lime': '#00FF00', 'limegreen': '#32CD32', 'linen': '#FAF0E6', 'magenta': '#FF00FF', 'maroon': '#800000', 'mediumaquamarine': '#66CDAA', 'mediumblue': '#0000CD', 'mediumorchid': '#BA55D3', 'mediumpurple': '#9370DB', 'mediumseagreen': '#3CB371', 'mediumslateblue': '#7B68EE', 'mediumspringgreen': '#00FA9A', 'mediumturquoise': '#48D1CC', 'mediumvioletred': '#C71585', 'midnightblue': '#191970', 'mintcream': '#F5FFFA', 'mistyrose': '#FFE4E1', 'moccasin': '#FFE4B5', 'navajowhite': '#FFDEAD', 'navy': '#000080', 'oldlace': '#FDF5E6', 'olive': '#808000', 'olivedrab': '#6B8E23', 'orange': '#FFA500', 'orangered': '#FF4500', 'orchid': '#DA70D6', 'palegoldenrod': '#EEE8AA', 'palegreen': '#98FB98', 'paleturquoise': '#AFEEEE', 'palevioletred': '#DB7093', 'papayawhip': '#FFEFD5', 'peachpuff': '#FFDAB9', 'peru': '#CD853F', 'pink': '#FFC0CB', 'plum': '#DDA0DD', 'powderblue': '#B0E0E6', 'purple': '#800080', 'red': '#FF0000', 'rosybrown': '#BC8F8F', 'royalblue': '#4169E1', 'saddlebrown': '#8B4513', 'salmon': '#FA8072', 'sandybrown': '#FAA460', 'seagreen': '#2E8B57', 'seashell': '#FFF5EE', 'sienna': '#A0522D', 'silver': '#C0C0C0', 'skyblue': '#87CEEB', 'slateblue': '#6A5ACD', 'slategray': '#708090', 'snow': '#FFFAFA', 'springgreen': '#00FF7F', 'steelblue': '#4682B4', 'tan': '#D2B48C', 'teal': '#008080', 'thistle': '#D8BFD8', 'tomato': '#FF6347', 'turquoise': '#40E0D0', 'violet': '#EE82EE', 'wheat': '#F5DEB3', 'white': '#FFFFFF', 'whitesmoke': '#F5F5F5', 'yellow': '#FFFF00', 'yellowgreen': '#9ACD32'} return random.sample(cnames.items(), 1)[0][1]
gpl-3.0
xuewei4d/scikit-learn
examples/model_selection/plot_grid_search_refit_callable.py
25
3648
""" ================================================== Balance model complexity and cross-validated score ================================================== This example balances model complexity and cross-validated score by finding a decent accuracy within 1 standard deviation of the best accuracy score while minimising the number of PCA components [1]. The figure shows the trade-off between cross-validated score and the number of PCA components. The balanced case is when n_components=10 and accuracy=0.88, which falls into the range within 1 standard deviation of the best accuracy score. [1] Hastie, T., Tibshirani, R.,, Friedman, J. (2001). Model Assessment and Selection. The Elements of Statistical Learning (pp. 219-260). New York, NY, USA: Springer New York Inc.. """ # Author: Wenhao Zhang <wenhaoz@ucla.edu> print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_digits from sklearn.decomposition import PCA from sklearn.model_selection import GridSearchCV from sklearn.pipeline import Pipeline from sklearn.svm import LinearSVC def lower_bound(cv_results): """ Calculate the lower bound within 1 standard deviation of the best `mean_test_scores`. Parameters ---------- cv_results : dict of numpy(masked) ndarrays See attribute cv_results_ of `GridSearchCV` Returns ------- float Lower bound within 1 standard deviation of the best `mean_test_score`. """ best_score_idx = np.argmax(cv_results['mean_test_score']) return (cv_results['mean_test_score'][best_score_idx] - cv_results['std_test_score'][best_score_idx]) def best_low_complexity(cv_results): """ Balance model complexity with cross-validated score. Parameters ---------- cv_results : dict of numpy(masked) ndarrays See attribute cv_results_ of `GridSearchCV`. Return ------ int Index of a model that has the fewest PCA components while has its test score within 1 standard deviation of the best `mean_test_score`. """ threshold = lower_bound(cv_results) candidate_idx = np.flatnonzero(cv_results['mean_test_score'] >= threshold) best_idx = candidate_idx[cv_results['param_reduce_dim__n_components'] [candidate_idx].argmin()] return best_idx pipe = Pipeline([ ('reduce_dim', PCA(random_state=42)), ('classify', LinearSVC(random_state=42, C=0.01)), ]) param_grid = { 'reduce_dim__n_components': [6, 8, 10, 12, 14] } grid = GridSearchCV(pipe, cv=10, n_jobs=1, param_grid=param_grid, scoring='accuracy', refit=best_low_complexity) X, y = load_digits(return_X_y=True) grid.fit(X, y) n_components = grid.cv_results_['param_reduce_dim__n_components'] test_scores = grid.cv_results_['mean_test_score'] plt.figure() plt.bar(n_components, test_scores, width=1.3, color='b') lower = lower_bound(grid.cv_results_) plt.axhline(np.max(test_scores), linestyle='--', color='y', label='Best score') plt.axhline(lower, linestyle='--', color='.5', label='Best score - 1 std') plt.title("Balance model complexity and cross-validated score") plt.xlabel('Number of PCA components used') plt.ylabel('Digit classification accuracy') plt.xticks(n_components.tolist()) plt.ylim((0, 1.0)) plt.legend(loc='upper left') best_index_ = grid.best_index_ print("The best_index_ is %d" % best_index_) print("The n_components selected is %d" % n_components[best_index_]) print("The corresponding accuracy score is %.2f" % grid.cv_results_['mean_test_score'][best_index_]) plt.show()
bsd-3-clause
megarcia/WxCD
source/process_NCEI_00.py
2
28889
""" Python script 'process_NCEI_00.py' by Matthew Garcia, PhD student Dept. of Forest and Wildlife Ecology University of Wisconsin - Madison matt.e.garcia@gmail.com Copyright (C) 2015-2016 by Matthew Garcia Licensed Gnu GPL v3; see 'LICENSE_GnuGPLv3.txt' for complete terms Send questions, bug reports, any related requests to matt.e.garcia@gmail.com See also 'README.md', 'DISCLAIMER.txt', 'CITATION.txt', 'ACKNOWLEDGEMENTS.txt' Treat others as you would be treated. Pay it forward. Valar dohaeris. PURPOSE: QA/QC of daily meteorological station data in NOAA/NCEI datasets DEPENDENCIES: h5py, numpy, pandas USAGE: '$ python process_NCEI_00.py NCEI_WLS_20000101-20101231.csv ./data' INPUT: Station meteorological data from NOAA/NCEI in '.csv' format (one file) NOTE: The labels in <metvals> (line 104) are the minimum information that you should request from the NCEI data server. Check your '.csv' file header line to make sure these columns are present. Additional columns will be removed (inside this routine, not from your original data csv file) to reduce memory footprint. OUTPUT: One '.csv' file with the 'cleaned' version of the input dataset One '.csv' file with an accounting of the 'errors' cleaned, by station and variable One '.csv' file with station metadata information One '.h5' file with preliminary metadata TODO: add more data cleaning functionality, e.g. wild P reports examine station-by-station error statistics for spatial patterns extract names/locations of stations for mapping, incl. differentiation of data provided (T only, P only, T & P) """ import sys import datetime import h5py as hdf import numpy as np import pandas as pd def message(char_string): """ prints a string to the terminal and flushes the buffer """ print char_string sys.stdout.flush() return def find_outliers(dset, stnlist, idxlist, nsigma): """ Simplified (simplistic?) implementation of Chauvenet's criterion for outlier detection Reference: https://en.wikipedia.org/wiki/Chauvenet%27s_criterion Primary assumption: normally distributed data (may not be correct!) nsigma >= 1.96 --> p < 0.05 --> 95% chance of data being an outlier 2.58 --> p < 0.01 --> 99% 2.81 --> p < 0.005 --> 99.5% 3.27 --> p < 0.001 --> 99.9% """ outlier_stns = [] outlier_idxs = [] nobs = len(dset) dset_mean = np.mean(dset) dset_std = np.std(dset) dset_z = (dset - dset_mean) / dset_std for j in range(nobs): if abs(dset_z[j]) > nsigma: outlier_stns.append(stnlist[j]) outlier_idxs.append(int(idxlist[j])) return outlier_stns, outlier_idxs outlier_threshold = 3.27 # message(' ') message('process_NCEI_00.py started at %s' % datetime.datetime.now().isoformat()) message(' ') # if len(sys.argv) < 3: message('input warning: no data directory path indicated, using ./data') path = './data' else: path = sys.argv[2] # if len(sys.argv) < 2: message('input error: need CSV file containing NCEI weather data') sys.exit(1) else: NCEIfname = '%s/%s' % (path, sys.argv[1]) cleaneddatafile = '%s_cleaned.csv' % NCEIfname[:-4] errorsdatafile = '%s_errors.csv' % NCEIfname[:-4] stnmetadatafile = '%s_stnmeta.csv' % NCEIfname[:-4] h5outfname = '%s_processed.h5' % NCEIfname[:-4] # message('reading input data file %s' % NCEIfname) stndata_df = pd.read_csv(NCEIfname, low_memory=False) ndatarows, ndatacols = np.shape(stndata_df) message('- read %d total data rows with %d columns' % (ndatarows, ndatacols)) # metvals = ['STATION', 'STATION_NAME', 'ELEVATION', 'LATITUDE', 'LONGITUDE', 'DATE', 'PRCP', 'PRCP_M_FLAG', 'PRCP_Q_FLAG', 'TMAX', 'TMAX_M_FLAG', 'TMAX_Q_FLAG', 'TMIN', 'TMIN_M_FLAG', 'TMIN_Q_FLAG'] idxs = list(stndata_df.columns.values) for i, var in enumerate(idxs): if var == 'PRCP': if 'Measurement Flag' in idxs[i + 1]: idxs[i + 1] = 'PRCP_M_FLAG' if 'Quality Flag' in idxs[i + 2]: idxs[i + 2] = 'PRCP_Q_FLAG' if var == 'TMAX': if 'Measurement Flag' in idxs[i + 1]: idxs[i + 1] = 'TMAX_M_FLAG' if 'Quality Flag' in idxs[i + 2]: idxs[i + 2] = 'TMAX_Q_FLAG' if var == 'TMIN': if 'Measurement Flag' in idxs[i + 1]: idxs[i + 1] = 'TMIN_M_FLAG' if 'Quality Flag' in idxs[i + 2]: idxs[i + 2] = 'TMIN_Q_FLAG' stndata_df.columns = idxs idxs = list(stndata_df.columns.values) idxs_extras = list(set(idxs) - set(metvals)) idxs_missing = list(set(metvals) - (set(idxs) - set(idxs_extras))) if len(idxs_missing) > 0: message('NOTE: 1+ necessary data columns is absent from your dataset') message(' columns needed: %s' % str(metvals)) message(' columns missing: %s' % str(idxs_missing)) sys.exit(1) # for idx in idxs: if idx not in metvals: stndata_df = stndata_df.drop(idx, axis=1) ndatarows, ndatacols = np.shape(stndata_df) message('-- reduced to %d columns' % ndatacols) # # sort by station and date, assign index values, and add matching IDX column stndata_df = stndata_df.sort_values(by=['STATION', 'DATE']) stndata_df.index = pd.Index(np.arange(ndatarows)) stndata_df['IDX'] = np.arange(ndatarows) message('-- assigned index and added index column') message(' ') # message('original input dataset has:') ndatarows, ndatacols = np.shape(stndata_df) message('- %d total data rows' % ndatarows) # # dataset summary by stations stns_all = stndata_df['STATION'] stn_id = list(sorted(stns_all.unique())) message('- %d unique stations' % len(stn_id)) stn_counts = pd.value_counts(stns_all, sort=True) min_dates = min(stn_counts) n_min_dates = sum(stn_counts == min_dates) message('-- minimum %d date entries for %d stations' % (min_dates, n_min_dates)) max_dates = max(stn_counts) n_max_dates = sum(stn_counts == max_dates) message('-- maximum %d date entries for %d stations' % (max_dates, n_max_dates)) avg_dates = np.mean(stn_counts) message('-- average %.1f date entries per station' % avg_dates) med_dates = np.median(stn_counts) message('-- median %d date entries per station' % med_dates) # # dataset summary by dates dates_all = stndata_df['DATE'] dates = list(sorted(dates_all.unique())) message('- %d unique dates from %s to %s' % (len(dates), str(dates[0]), str(dates[-1]))) date_counts = pd.value_counts(dates_all, sort=True) min_stns = min(date_counts) n_min_stns = sum(date_counts == min_stns) message('-- minimum %d station entries for %d dates' % (min_stns, n_min_stns)) max_stns = max(date_counts) n_max_stns = sum(date_counts == max_stns) message('-- maximum %d station entries for %d dates' % (max_stns, n_max_stns)) avg_stns = np.mean(date_counts) message('-- average %.1f station entries per date' % avg_stns) med_stns = np.median(date_counts) message('-- median %d station entries per date' % med_stns) message(' ') # message('cleaning input dataset') message(' ') noperations = 0 # # drop entries with no location information unk_lats_idxs = list(stndata_df.ix[stndata_df['LATITUDE'] == 'unknown', 'IDX']) unk_lats_stns = list(stndata_df.ix[stndata_df['LATITUDE'] == 'unknown', 'STATION'].unique()) message('found %d records at %d stations with unknown latitude' % (len(unk_lats_idxs), len(unk_lats_stns))) unk_lons_idxs = list(stndata_df.ix[stndata_df['LONGITUDE'] == 'unknown', 'IDX']) unk_lons_stns = list(stndata_df.ix[stndata_df['LONGITUDE'] == 'unknown', 'STATION'].unique()) message('found %d records at %d stations with unknown longitude' % (len(unk_lons_idxs), len(unk_lons_stns))) # set union, either lat or lon is missing unk_locs_idxs = list(set(unk_lats_idxs) | set(unk_lons_idxs)) if len(unk_locs_idxs) > 0: stndata_df = stndata_df.drop(unk_locs_idxs) message('dropped %d total records for lack of location information' % len(unk_locs_idxs)) noperations += len(unk_locs_idxs) # # re-index stndata_df = stndata_df.drop('IDX', axis=1) stndata_df = stndata_df.sort_values(by=['STATION', 'DATE']) ndatarows, ndatacols = np.shape(stndata_df) stns_all = stndata_df['STATION'] stn_id = list(sorted(stns_all.unique())) dates_all = stndata_df['DATE'] dates = list(sorted(dates_all.unique())) stndata_df.index = pd.Index(np.arange(ndatarows)) stndata_df['IDX'] = np.arange(ndatarows) message('re-indexed remaining data records') message(' ') # # *actual* null value is -9999, not 9999 as listed in the GHCND documentation # find and adjust any 9999 observation values to -9999 prcp_null_idx = list(stndata_df.ix[stndata_df['PRCP'] == 9999, 'IDX']) if len(prcp_null_idx) > 0: stndata_df.set_value((prcp_null_idx), 'PRCP', -9999) message('PRCP = 9999 set to PRCP = -9999 for %d observations' % len(prcp_null_idx)) noperations += len(prcp_null_idx) tmax_null_idx = list(stndata_df.ix[stndata_df['TMAX'] == 9999, 'IDX']) if len(tmax_null_idx) > 0: stndata_df.set_value((tmax_null_idx), 'TMAX', -9999) message('TMAX = 9999 set to TMAX = -9999 for %d observations' % len(tmax_null_idx)) noperations += len(tmax_null_idx) tmin_null_idx = list(stndata_df.ix[stndata_df['TMIN'] == 9999, 'IDX']) if len(tmin_null_idx) > 0: stndata_df.set_value((tmin_null_idx), 'TMIN', -9999) message('TMIN = 9999 set to TMIN = -9999 for %d observations' % len(tmin_null_idx)) noperations += len(tmin_null_idx) # # set up DataFrame for error accounting and reporting stnerr_df = pd.DataFrame(np.zeros((len(stn_id), 13)).astype(int), index=np.arange(len(stn_id)), columns=['STATION', 'IDX', 'PRCP_T_ADJ', 'PRCP_M_ERR', 'PRCP_Q_ERR', 'PRCP_ZERO_ERR', 'TMAX_M_ERR', 'TMAX_Q_ERR', 'TMIN_M_ERR', 'TMIN_Q_ERR', 'T_REV_ERR', 'TMAX_OUTLIER', 'TMIN_OUTLIER']) stnerr_df['STATION'] = stn_id stnerr_df['IDX'] = np.arange(len(stn_id)) message('established error accounting table') message(' ') # # process PRCP measurement flags # - flags 'B' and 'D' are ok # - flag 'T' means that a value of 0 *should* be 1 (= 0.1 mm ==> 0.01 cm) # - flag 'P' means that value *should* be missing (-9999 instead of 0) prcp_flags_all = stndata_df['PRCP_M_FLAG'] prcp_flags = list(sorted(prcp_flags_all.unique())) message('found %d unique PRCP_M_FLAGS: %s' % (len(prcp_flags), str(prcp_flags))) if len(prcp_flags) > 1: if 'B' in prcp_flags: message('- NOTE: PRCP flag B found, no data adjustments were made') if 'D' in prcp_flags: message('- NOTE: PRCP flag D found, no data adjustments were made') if 'T' in prcp_flags: prcp_t_idx = list(stndata_df.ix[stndata_df['PRCP_M_FLAG'] == 'T', 'IDX']) stndata_df.set_value((prcp_t_idx), 'PRCP', 1) message('- trace PRCP --> PRCP = 1 (= 0.01 cm) for %d observations' % len(prcp_t_idx)) noperations += len(prcp_t_idx) prcp_t_stns_all = stndata_df.ix[stndata_df['PRCP_M_FLAG'] == 'T', 'STATION'] prcp_t_stns = list(prcp_t_stns_all.unique()) message('-- accounting PRCP adjustments for %d stations' % len(prcp_t_stns)) for stn in prcp_t_stns: stnerr_idx = stnerr_df.ix[stnerr_df['STATION'] == stn, 'IDX'] stnerr_count = sum(prcp_t_stns_all == stn) stnerr_df.set_value((stnerr_idx), 'PRCP_T_ADJ', stnerr_count) if 'P' in prcp_flags: prcp_m_idx = list(stndata_df.ix[stndata_df['PRCP_M_FLAG'] == 'P', 'IDX']) stndata_df.set_value((prcp_m_idx), 'PRCP', -9999) message('- presumed PRCP = 0 --> PRCP = -9999 for %d observations' % len(prcp_m_idx)) noperations += len(prcp_m_idx) prcp_m_stns_all = stndata_df.ix[stndata_df['PRCP_M_FLAG'] == 'P', 'STATION'] prcp_m_stns = list(prcp_m_stns_all.unique()) message('-- accounting PRCP adjustments for %d stations' % len(prcp_m_stns)) for stn in prcp_m_stns: stnerr_idx = stnerr_df.ix[stnerr_df['STATION'] == stn, 'IDX'] stnerr_count = sum(prcp_m_stns_all == stn) stnerr_df.set_value((stnerr_idx), 'PRCP_M_ERR', stnerr_count) if len(prcp_flags) > 5: message('- NOTE: PRCP flag other than B/D/T/P was found, \ but no data adjustments were made') message(' ') # # process PRCP quality flags # - anything but a blank here means that the observation failed one of # NOAA/NCEI's own QA checks prcp_flags_all = stndata_df['PRCP_Q_FLAG'] prcp_flags = list(sorted(prcp_flags_all.unique())) message('found %d unique PRCP_Q_FLAGS: %s' % (len(prcp_flags), str(prcp_flags))) if len(prcp_flags) > 1: prcp_q_idx = list(stndata_df.ix[stndata_df['PRCP_Q_FLAG'] != ' ', 'IDX']) stndata_df.set_value((prcp_q_idx), 'PRCP', -9999) message('- QA-failed PRCP set to PRCP = -9999 for %d observations' % len(prcp_q_idx)) noperations += len(prcp_q_idx) prcp_q_stns_all = stndata_df.ix[stndata_df['PRCP_Q_FLAG'] != ' ', 'STATION'] prcp_q_stns = list(prcp_q_stns_all.unique()) message('-- accounting QA-based PRCP adjustments for %d stations' % len(prcp_q_stns)) for stn in prcp_q_stns: stnerr_idx = stnerr_df.ix[stnerr_df['STATION'] == stn, 'IDX'] stnerr_count = sum(prcp_q_stns_all == stn) stnerr_df.set_value((stnerr_idx), 'PRCP_Q_ERR', stnerr_count) message(' ') # # process TMAX measurement flags # - flag 'L' means that the observation may have been recorded some time later # than the actual TMAX occurrence tmax_flags_all = stndata_df['TMAX_M_FLAG'] tmax_flags = list(sorted(tmax_flags_all.unique())) message('found %d unique TMAX_M_FLAGS: %s' % (len(tmax_flags), str(tmax_flags))) if len(tmax_flags) > 1: if 'L' in tmax_flags: tmax_m_idx = list(stndata_df.ix[stndata_df['TMAX_M_FLAG'] == 'L', 'IDX']) stndata_df.set_value((tmax_m_idx), 'TMAX', -9999) message('- lagged TMAX set to TMAX = -9999 for %d observations' % len(tmax_m_idx)) noperations += len(tmax_m_idx) tmax_m_stns_all = stndata_df.ix[stndata_df['TMAX_M_FLAG'] == 'L', 'STATION'] tmax_m_stns = list(tmax_m_stns_all.unique()) message('-- accounting TMAX adjustments for %d stations' % len(tmax_m_stns)) for stn in tmax_m_stns: stnerr_idx = stnerr_df.ix[stnerr_df['STATION'] == stn, 'IDX'] stnerr_count = sum(tmax_m_stns_all == stn) stnerr_df.set_value((stnerr_idx), 'TMAX_M_ERR', stnerr_count) if (len(tmax_flags) > 2) or ('L' not in tmax_flags): message('- NOTE: a TMAX flag other than L was found, but no data \ adjustments were made') message(' ') # # process TMAX quality flags # - anything but a blank here means that the observation failed one of # NOAA/NCEI's own QA checks tmax_flags_all = stndata_df['TMAX_Q_FLAG'] tmax_flags = list(sorted(tmax_flags_all.unique())) n_tmax_flags = len(tmax_flags) message('found %d unique TMAX_Q_FLAGS: %s' % (n_tmax_flags, str(tmax_flags))) if n_tmax_flags > 1: tmax_q_idx = list(stndata_df.ix[stndata_df['TMAX_Q_FLAG'] != ' ', 'IDX']) stndata_df.set_value((tmax_q_idx), 'TMAX', -9999) message('- QA-failed TMAX set to TMAX = -9999 for %d observations' % len(tmax_q_idx)) noperations += len(tmax_q_idx) tmax_q_stns_all = stndata_df.ix[stndata_df['TMAX_Q_FLAG'] != ' ', 'STATION'] tmax_q_stns = list(tmax_q_stns_all.unique()) message('-- accounting QA-based TMAX adjustments for %d stations' % len(tmax_q_stns)) for stn in tmax_q_stns: stnerr_idx = stnerr_df.ix[stnerr_df['STATION'] == stn, 'IDX'] stnerr_count = sum(tmax_q_stns_all == stn) stnerr_df.set_value((stnerr_idx), 'TMAX_Q_ERR', stnerr_count) message(' ') # # process TMIN measurement flags # - flag 'L' means that the observation may have been recorded some time later # than the actual TMIN occurrence tmin_flags_all = stndata_df['TMIN_M_FLAG'] tmin_flags = list(sorted(tmin_flags_all.unique())) n_tmin_flags = len(tmin_flags) message('found %d unique TMIN_M_FLAGS: %s' % (n_tmin_flags, str(tmin_flags))) if n_tmin_flags > 1: if 'L' in tmin_flags: tmin_m_idx = list(stndata_df.ix[stndata_df['TMIN_M_FLAG'] == 'L', 'IDX']) stndata_df.set_value((tmin_m_idx), 'TMIN', -9999) message('- lagged TMIN set to TMIN = -9999 for %d observations' % len(tmin_m_idx)) noperations += len(tmin_m_idx) tmin_m_stns_all = stndata_df.ix[stndata_df['TMIN_M_FLAG'] == 'L', 'STATION'] tmin_m_stns = list(tmin_m_stns_all.unique()) message('-- accounting TMIN adjustments for %d stations' % len(tmin_m_stns)) for stn in tmin_m_stns: stnerr_idx = stnerr_df.ix[stnerr_df['STATION'] == stn, 'IDX'] stnerr_count = sum(tmin_m_stns_all == stn) stnerr_df.set_value((stnerr_idx), 'TMIN_M_ERR', stnerr_count) if (n_tmin_flags > 2) or ('L' not in tmin_flags): message('- NOTE: a TMIN flag other than L was found, but no data \ adjustments were made') message(' ') # # process TMIN quality flags # - anything but a blank here means that the observation failed one of # NOAA/NCEI's own QA checks tmin_flags_all = stndata_df['TMIN_Q_FLAG'] tmin_flags = list(sorted(tmin_flags_all.unique())) n_tmin_flags = len(tmin_flags) message('found %d unique TMIN_Q_FLAGS: %s' % (n_tmin_flags, str(tmin_flags))) if n_tmin_flags > 1: tmin_q_idx = stndata_df.ix[stndata_df['TMIN_Q_FLAG'] != ' ', 'IDX'] stndata_df.set_value((tmin_q_idx), 'TMIN', -9999) message('- QA-failed TMIN set to TMIN = -9999 for %d observations' % len(tmin_q_idx)) noperations += len(tmin_q_idx) tmin_q_stns_all = stndata_df.ix[stndata_df['TMIN_Q_FLAG'] != ' ', 'STATION'] tmin_q_stns = list(tmin_q_stns_all.unique()) message('-- accounting QA-based TMIN adjustments for %d stations' % len(tmin_q_stns)) for stn in tmin_q_stns: stnerr_idx = stnerr_df.ix[stnerr_df['STATION'] == stn, 'IDX'] stnerr_count = sum(tmin_q_stns_all == stn) stnerr_df.set_value((stnerr_idx), 'TMIN_Q_ERR', stnerr_count) message(' ') # # find stations with potentially erroneous P values # (evaluation criterion: all of that station's P values = 0) # (outlier detection of extreme values not yet implemented) message('checking PRCP values for %d individual stations' % len(stn_id)) for stn in stn_id: stn_df = stndata_df[stndata_df['STATION'] == stn] stn_idxs = list(stn_df['IDX']) stn_df = stn_df[stn_df['PRCP'] != -9999] stn_prcp = np.array(stn_df['PRCP']) if sum(stn_prcp) <= 0: message('- station %s may have erroneous PRCP data, setting all %d of \ its PRCP values to -9999' % (stn, len(stn_idxs))) stndata_df.set_value((stn_idxs), 'PRCP', -9999) noperations += len(stn_idxs) stnerr_idx = stnerr_df.ix[stnerr_df['STATION'] == stn, 'IDX'] stnerr_df.set_value((stnerr_idx), 'PRCP_ZERO_ERR', len(stn_idxs)) else: message('- station %s PRCP data seem OK (no check for extreme values \ yet)' % stn) message(' ') # # find entries with potentially erroneous locations/values # (evaluation criteria: reversed Tmax and Tmin values) # ( outlier detection of extreme T values) message('checking PRCP/TMAX/TMIN values for %d individual dates' % len(dates)) for date in dates: date_df = stndata_df[stndata_df['DATE'] == date] stn_vals = list(date_df['STATION']) lats_vals = list(date_df['LATITUDE']) lons_vals = list(date_df['LONGITUDE']) prcp_vals = np.array(date_df['PRCP']) tmax_vals = np.array(date_df['TMAX']) tmin_vals = np.array(date_df['TMIN']) idx_vals = list(date_df['IDX']) # # find transposed Tmax/Tmin values # (only works if valid values are present for both) nvals = len(idx_vals) transposed = 0 for i in range(nvals): if (tmax_vals[i] != -9999) and (tmin_vals[i] != -9999): if tmin_vals[i] > tmax_vals[i]: stndata_df.set_value((int(idx_vals[i])), 'TMAX', tmin_vals[i]) stndata_df.set_value((int(idx_vals[i])), 'TMIN', tmax_vals[i]) transposed += 1 stnerr_idx = stnerr_df.ix[stnerr_df['STATION'] == stn_vals[i], 'IDX'] stnerr_val = stnerr_df.ix[stnerr_df['STATION'] == stn_vals[i], 'T_REV_ERR'] stnerr_df.set_value((stnerr_idx), 'T_REV_ERR', (stnerr_val + 1)) if transposed > 0: message('- date %d has %d entries where Tmax < Tmin, now reversed' % (date, transposed)) noperations += transposed # # find outlier Tmax values (not spatial, purely arithmetic) valid_tmax_vals = date_df[date_df['TMAX'] != -9999] tmax_vals = np.array(valid_tmax_vals['TMAX']) stn_vals = list(valid_tmax_vals['STATION']) idx_vals = list(valid_tmax_vals['IDX']) tmax_outlier_stns, tmax_outlier_idxs = find_outliers(tmax_vals, stn_vals, idx_vals, outlier_threshold) if len(tmax_outlier_stns) > 0: stndata_df.set_value((tmax_outlier_idxs), 'TMAX', -9999) for stn in tmax_outlier_stns: stnerr_idx = stnerr_df.ix[stnerr_df['STATION'] == stn, 'IDX'] stnerr_val = stnerr_df.ix[stnerr_df['STATION'] == stn, 'TMAX_OUTLIER'] stnerr_df.set_value((stnerr_idx), 'TMAX_OUTLIER', (stnerr_val + 1)) message('- date %d has %d outlier Tmax values (p < 0.001), now set to \ -9999' % (date, len(tmax_outlier_stns))) noperations += len(tmax_outlier_stns) # # find outlier Tmin values (not spatial, purely arithmetic) valid_tmin_vals = date_df[date_df['TMIN'] != -9999] tmin_vals = np.array(valid_tmin_vals['TMIN']) stn_vals = list(valid_tmin_vals['STATION']) idx_vals = list(valid_tmin_vals['IDX']) tmin_outlier_stns, tmin_outlier_idxs = find_outliers(tmin_vals, stn_vals, idx_vals, outlier_threshold) if len(tmin_outlier_stns) > 0: stndata_df.set_value((tmin_outlier_idxs), 'TMAX', -9999) for stn in tmin_outlier_stns: stnerr_idx = stnerr_df.ix[stnerr_df['STATION'] == stn, 'IDX'] stnerr_val = stnerr_df.ix[stnerr_df['STATION'] == stn, 'TMIN_OUTLIER'] stnerr_df.set_value((stnerr_idx), 'TMIN_OUTLIER', (stnerr_val + 1)) message('- date %d has %d outlier Tmin values (p < 0.001), now set to \ -9999' % (date, len(tmin_outlier_stns))) noperations += len(tmin_outlier_stns) # # if no apparent errors/outliers found, report that if (transposed + len(tmax_outlier_stns) + len(tmin_outlier_stns)) == 0: message('- date %d data seem OK' % date) message(' ') # # drop entries with no useful meteorological data (just for convenience) no_prcp_data_idxs = list(stndata_df.ix[stndata_df['PRCP'] == -9999, 'IDX']) no_tmax_data_idxs = list(stndata_df.ix[stndata_df['TMAX'] == -9999, 'IDX']) no_tmin_data_idxs = list(stndata_df.ix[stndata_df['TMIN'] == -9999, 'IDX']) # set intersection, see if all met data are missing no_data_idxs = list(set(no_prcp_data_idxs) & set(no_tmax_data_idxs) & set(no_tmin_data_idxs)) if len(no_data_idxs) > 0: stndata_df = stndata_df.drop(no_data_idxs) message('dropped %d records for lack of useful meteorological data' % len(no_data_idxs)) noperations += len(no_data_idxs) # # re-index stndata_df = stndata_df.drop('IDX', axis=1) stndata_df = stndata_df.sort_values(by=['STATION', 'DATE']) ndatarows, ndatacols = np.shape(stndata_df) stndata_df.index = pd.Index(np.arange(ndatarows)) stndata_df['IDX'] = np.arange(ndatarows) message('re-indexed remaining data records') message(' ') # message('a total of %d data value operations were performed' % noperations) message(' ') # ndatarows, ndatacols = np.shape(stndata_df) message('cleaned dataset has:') message('- %d total data rows' % ndatarows) # # dataset summary by stations stns_all = stndata_df['STATION'] stn_id = sorted(stns_all.unique()) message('- %d unique stations' % len(stn_id)) stn_counts = pd.value_counts(stns_all, sort=True) min_dates = min(stn_counts) n_min_dates = sum(stn_counts == min_dates) message('-- minimum %d date entries for %d stations' % (min_dates, n_min_dates)) max_dates = max(stn_counts) n_max_dates = sum(stn_counts == max_dates) message('-- maximum %d date entries for %d stations' % (max_dates, n_max_dates)) avg_dates = np.mean(stn_counts) message('-- average %.1f date entries per station' % avg_dates) med_dates = np.median(stn_counts) message('-- median %d date entries per station' % med_dates) # # dataset summary by dates dates_all = stndata_df['DATE'] dates = sorted(dates_all.unique()) message('- %d unique dates from %s to %s' % (len(dates), str(dates[0]), str(dates[-1]))) date_counts = pd.value_counts(dates_all, sort=True) min_stns = min(date_counts) n_min_stns = sum(date_counts == min_stns) message('-- minimum %d station entries for %d dates' % (min_stns, n_min_stns)) max_stns = max(date_counts) n_max_stns = sum(date_counts == max_stns) message('-- maximum %d station entries for %d dates' % (max_stns, n_max_stns)) avg_stns = np.mean(date_counts) message('-- average %.1f station entries per date' % avg_stns) med_stns = np.median(date_counts) message('-- median %d station entries per date' % med_stns) message(' ') # # dataset summary by variable message('- %d total stations' % len(stn_id)) message('- %d unique dates from %s to %s' % (len(dates), str(dates[0]), str(dates[-1]))) lats = np.zeros((len(stn_id))) lons = np.zeros((len(stn_id))) ndates = np.zeros((len(stn_id))).astype(int) nprcp = np.zeros((len(stn_id))).astype(int) ntmax = np.zeros((len(stn_id))).astype(int) ntmin = np.zeros((len(stn_id))).astype(int) for i in range(len(stn_id)): message('-- processing station %s' % stn_id[i]) stndata_subset = stndata_df[stndata_df['STATION'] == stn_id[i]] lats[i] = list(stndata_subset['LATITUDE'])[-1] lons[i] = list(stndata_subset['LONGITUDE'])[-1] ndates[i] = len(list(stndata_subset['DATE'])) nprcp[i] = sum(list(stndata_subset['PRCP'] != -9999)) ntmax[i] = sum(list(stndata_subset['TMAX'] != -9999)) ntmin[i] = sum(list(stndata_subset['TMIN'] != -9999)) stnmeta_df = pd.DataFrame({'STATION': stn_id, 'LATITUDE': lats, 'LONGITUDE': lons, 'NDATES': ndates, 'NPRCP': nprcp, 'NTMAX': ntmax, 'NTMIN': ntmin}) message(' ') # # save cleaned csv dataset stndata_df.to_csv(cleaneddatafile) message('saved cleaned NCEI dataset to %s' % cleaneddatafile) stnerr_df.to_csv(errorsdatafile) message('saved station-by-station error counts to %s' % errorsdatafile) stnmeta_df.to_csv(stnmetadatafile) message('saved station metadataset to %s' % stnmetadatafile) message(' ') # # initialize HDF5 file for use in next script "process_NCEI_01.py" with hdf.File(h5outfname, 'w') as h5file: h5file.create_dataset('meta/filename', data=h5outfname) h5file.create_dataset('meta/created', data=datetime.datetime.now().isoformat()) h5file.create_dataset('meta/by', data='M. Garcia, UWisconsin-Madison FWE') h5file.create_dataset('meta/last_updated', data=datetime.datetime.now().isoformat()) h5file.create_dataset('meta/at', data='unique stations list, dates list') h5file.create_dataset('stn_id', data=stn_id) h5file.create_dataset('dates', data=dates) message('saved processing metadata to %s' % h5outfname) message(' ') # message('process_NCEI_00.py completed at %s' % datetime.datetime.now().isoformat()) message(' ') sys.exit(0) # end process_NCEI_00.py
gpl-3.0
glennq/scikit-learn
examples/linear_model/plot_ridge_path.py
55
2138
""" =========================================================== Plot Ridge coefficients as a function of the regularization =========================================================== Shows the effect of collinearity in the coefficients of an estimator. .. currentmodule:: sklearn.linear_model :class:`Ridge` Regression is the estimator used in this example. Each color represents a different feature of the coefficient vector, and this is displayed as a function of the regularization parameter. This example also shows the usefulness of applying Ridge regression to highly ill-conditioned matrices. For such matrices, a slight change in the target variable can cause huge variances in the calculated weights. In such cases, it is useful to set a certain regularization (alpha) to reduce this variation (noise). When alpha is very large, the regularization effect dominates the squared loss function and the coefficients tend to zero. At the end of the path, as alpha tends toward zero and the solution tends towards the ordinary least squares, coefficients exhibit big oscillations. In practise it is necessary to tune alpha in such a way that a balance is maintained between both. """ # Author: Fabian Pedregosa -- <fabian.pedregosa@inria.fr> # License: BSD 3 clause print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model # X is the 10x10 Hilbert matrix X = 1. / (np.arange(1, 11) + np.arange(0, 10)[:, np.newaxis]) y = np.ones(10) ############################################################################### # Compute paths n_alphas = 200 alphas = np.logspace(-10, -2, n_alphas) clf = linear_model.Ridge(fit_intercept=False) coefs = [] for a in alphas: clf.set_params(alpha=a) clf.fit(X, y) coefs.append(clf.coef_) ############################################################################### # Display results ax = plt.gca() ax.plot(alphas, coefs) ax.set_xscale('log') ax.set_xlim(ax.get_xlim()[::-1]) # reverse axis plt.xlabel('alpha') plt.ylabel('weights') plt.title('Ridge coefficients as a function of the regularization') plt.axis('tight') plt.show()
bsd-3-clause
waterponey/scikit-learn
examples/cluster/plot_kmeans_digits.py
42
4491
""" =========================================================== A demo of K-Means clustering on the handwritten digits data =========================================================== In this example we compare the various initialization strategies for K-means in terms of runtime and quality of the results. As the ground truth is known here, we also apply different cluster quality metrics to judge the goodness of fit of the cluster labels to the ground truth. Cluster quality metrics evaluated (see :ref:`clustering_evaluation` for definitions and discussions of the metrics): =========== ======================================================== Shorthand full name =========== ======================================================== homo homogeneity score compl completeness score v-meas V measure ARI adjusted Rand index AMI adjusted mutual information silhouette silhouette coefficient =========== ======================================================== """ print(__doc__) from time import time import numpy as np import matplotlib.pyplot as plt from sklearn import metrics from sklearn.cluster import KMeans from sklearn.datasets import load_digits from sklearn.decomposition import PCA from sklearn.preprocessing import scale np.random.seed(42) digits = load_digits() data = scale(digits.data) n_samples, n_features = data.shape n_digits = len(np.unique(digits.target)) labels = digits.target sample_size = 300 print("n_digits: %d, \t n_samples %d, \t n_features %d" % (n_digits, n_samples, n_features)) print(82 * '_') print('init\t\ttime\tinertia\thomo\tcompl\tv-meas\tARI\tAMI\tsilhouette') def bench_k_means(estimator, name, data): t0 = time() estimator.fit(data) print('%-9s\t%.2fs\t%i\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f' % (name, (time() - t0), estimator.inertia_, metrics.homogeneity_score(labels, estimator.labels_), metrics.completeness_score(labels, estimator.labels_), metrics.v_measure_score(labels, estimator.labels_), metrics.adjusted_rand_score(labels, estimator.labels_), metrics.adjusted_mutual_info_score(labels, estimator.labels_), metrics.silhouette_score(data, estimator.labels_, metric='euclidean', sample_size=sample_size))) bench_k_means(KMeans(init='k-means++', n_clusters=n_digits, n_init=10), name="k-means++", data=data) bench_k_means(KMeans(init='random', n_clusters=n_digits, n_init=10), name="random", data=data) # in this case the seeding of the centers is deterministic, hence we run the # kmeans algorithm only once with n_init=1 pca = PCA(n_components=n_digits).fit(data) bench_k_means(KMeans(init=pca.components_, n_clusters=n_digits, n_init=1), name="PCA-based", data=data) print(82 * '_') ############################################################################### # Visualize the results on PCA-reduced data reduced_data = PCA(n_components=2).fit_transform(data) kmeans = KMeans(init='k-means++', n_clusters=n_digits, n_init=10) kmeans.fit(reduced_data) # Step size of the mesh. Decrease to increase the quality of the VQ. h = .02 # point in the mesh [x_min, x_max]x[y_min, y_max]. # Plot the decision boundary. For that, we will assign a color to each x_min, x_max = reduced_data[:, 0].min() - 1, reduced_data[:, 0].max() + 1 y_min, y_max = reduced_data[:, 1].min() - 1, reduced_data[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Obtain labels for each point in mesh. Use last trained model. Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure(1) plt.clf() plt.imshow(Z, interpolation='nearest', extent=(xx.min(), xx.max(), yy.min(), yy.max()), cmap=plt.cm.Paired, aspect='auto', origin='lower') plt.plot(reduced_data[:, 0], reduced_data[:, 1], 'k.', markersize=2) # Plot the centroids as a white X centroids = kmeans.cluster_centers_ plt.scatter(centroids[:, 0], centroids[:, 1], marker='x', s=169, linewidths=3, color='w', zorder=10) plt.title('K-means clustering on the digits dataset (PCA-reduced data)\n' 'Centroids are marked with white cross') plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
mblondel/scikit-learn
sklearn/feature_selection/tests/test_from_model.py
244
1593
import numpy as np import scipy.sparse as sp from nose.tools import assert_raises, assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_greater from sklearn.datasets import load_iris from sklearn.linear_model import LogisticRegression from sklearn.linear_model import SGDClassifier from sklearn.svm import LinearSVC iris = load_iris() def test_transform_linear_model(): for clf in (LogisticRegression(C=0.1), LinearSVC(C=0.01, dual=False), SGDClassifier(alpha=0.001, n_iter=50, shuffle=True, random_state=0)): for thresh in (None, ".09*mean", "1e-5 * median"): for func in (np.array, sp.csr_matrix): X = func(iris.data) clf.set_params(penalty="l1") clf.fit(X, iris.target) X_new = clf.transform(X, thresh) if isinstance(clf, SGDClassifier): assert_true(X_new.shape[1] <= X.shape[1]) else: assert_less(X_new.shape[1], X.shape[1]) clf.set_params(penalty="l2") clf.fit(X_new, iris.target) pred = clf.predict(X_new) assert_greater(np.mean(pred == iris.target), 0.7) def test_invalid_input(): clf = SGDClassifier(alpha=0.1, n_iter=10, shuffle=True, random_state=None) clf.fit(iris.data, iris.target) assert_raises(ValueError, clf.transform, iris.data, "gobbledigook") assert_raises(ValueError, clf.transform, iris.data, ".5 * gobbledigook")
bsd-3-clause
RobertABT/heightmap
build/matplotlib/lib/matplotlib/tri/tritools.py
4
12652
""" Tools for triangular grids. """ from __future__ import print_function from matplotlib.tri import Triangulation import numpy as np class TriAnalyzer(object): """ Define basic tools for triangular mesh analysis and improvement. A TriAnalizer encapsulates a :class:`~matplotlib.tri.Triangulation` object and provides basic tools for mesh analysis and mesh improvement. Parameters ---------- triangulation : :class:`~matplotlib.tri.Triangulation` object The encapsulated triangulation to analyze. Attributes ---------- scale_factors """ def __init__(self, triangulation): if not isinstance(triangulation, Triangulation): raise ValueError("Expected a Triangulation object") self._triangulation = triangulation @property def scale_factors(self): """ Factors to rescale the triangulation into a unit square. Returns *k*, tuple of 2 scale factors. Returns ------- k : tuple of 2 floats (kx, ky) Tuple of floats that would rescale the triangulation : ``[triangulation.x * kx, triangulation.y * ky]`` fits exactly inside a unit square. """ compressed_triangles = self._triangulation.get_masked_triangles() node_used = (np.bincount(np.ravel(compressed_triangles)) != 0) x = self._triangulation.x[node_used] y = self._triangulation.y[node_used] ux = np.max(x)-np.min(x) uy = np.max(y)-np.min(y) return (1./float(ux), 1./float(uy)) def circle_ratios(self, rescale=True): """ Returns a measure of the triangulation triangles flatness. The ratio of the incircle radius over the circumcircle radius is a widely used indicator of a triangle flatness. It is always ``<= 0.5`` and ``== 0.5`` only for equilateral triangles. Circle ratios below 0.01 denote very flat triangles. To avoid unduly low values due to a difference of scale between the 2 axis, the triangular mesh can first be rescaled to fit inside a unit square with :attr:`scale_factors` (Only if *rescale* is True, which is its default value). Parameters ---------- rescale : boolean, optional If True, a rescaling will be internally performed (based on :attr:`scale_factors`, so that the (unmasked) triangles fit exactly inside a unit square mesh. Default is True. Returns ------- circle_ratios : masked array Ratio of the incircle radius over the circumcircle radius, for each 'rescaled' triangle of the encapsulated triangulation. Values corresponding to masked triangles are masked out. """ # Coords rescaling if rescale: (kx, ky) = self.scale_factors else: (kx, ky) = (1.0, 1.0) pts = np.vstack([self._triangulation.x*kx, self._triangulation.y*ky]).T tri_pts = pts[self._triangulation.triangles] # Computes the 3 side lengths a = tri_pts[:, 1, :] - tri_pts[:, 0, :] b = tri_pts[:, 2, :] - tri_pts[:, 1, :] c = tri_pts[:, 0, :] - tri_pts[:, 2, :] a = np.sqrt(a[:, 0]**2 + a[:, 1]**2) b = np.sqrt(b[:, 0]**2 + b[:, 1]**2) c = np.sqrt(c[:, 0]**2 + c[:, 1]**2) # circumcircle and incircle radii s = (a+b+c)*0.5 prod = s*(a+b-s)*(a+c-s)*(b+c-s) # We have to deal with flat triangles with infinite circum_radius bool_flat = (prod == 0.) if np.any(bool_flat): # Pathologic flow ntri = tri_pts.shape[0] circum_radius = np.empty(ntri, dtype=np.float64) circum_radius[bool_flat] = np.inf abc = a*b*c circum_radius[~bool_flat] = abc[~bool_flat] / ( 4.0*np.sqrt(prod[~bool_flat])) else: # Normal optimized flow circum_radius = (a*b*c) / (4.0*np.sqrt(prod)) in_radius = (a*b*c) / (4.0*circum_radius*s) circle_ratio = in_radius/circum_radius mask = self._triangulation.mask if mask is None: return circle_ratio else: return np.ma.array(circle_ratio, mask=mask) def get_flat_tri_mask(self, min_circle_ratio=0.01, rescale=True): """ Eliminates excessively flat border triangles from the triangulation. Returns a mask *new_mask* which allows to clean the encapsulated triangulation from its border-located flat triangles (according to their :meth:`circle_ratios`). This mask is meant to be subsequently applied to the triangulation using :func:`matplotlib.tri.Triangulation.set_mask` . *new_mask* is an extension of the initial triangulation mask in the sense that an initially masked triangle will remain masked. The *new_mask* array is computed recursively ; at each step flat triangles are removed only if they share a side with the current mesh border. Thus no new holes in the triangulated domain will be created. Parameters ---------- min_circle_ratio : float, optional Border triangles with incircle/circumcircle radii ratio r/R will be removed if r/R < *min_circle_ratio*. Default value: 0.01 rescale : boolean, optional If True, a rescaling will first be internally performed (based on :attr:`scale_factors` ), so that the (unmasked) triangles fit exactly inside a unit square mesh. This rescaling accounts for the difference of scale which might exist between the 2 axis. Default (and recommended) value is True. Returns ------- new_mask : array-like of booleans Mask to apply to encapsulated triangulation. All the initially masked triangles remain masked in the *new_mask*. Notes ----- The rationale behind this function is that a Delaunay triangulation - of an unstructured set of points - sometimes contains almost flat triangles at its border, leading to artifacts in plots (especially for high-resolution contouring). Masked with computed *new_mask*, the encapsulated triangulation would contain no more unmasked border triangles with a circle ratio below *min_circle_ratio*, thus improving the mesh quality for subsequent plots or interpolation. Examples -------- Please refer to the following illustrating example: .. plot:: mpl_examples/pylab_examples/tricontour_smooth_delaunay.py """ # Recursively computes the mask_current_borders, true if a triangle is # at the border of the mesh OR touching the border through a chain of # invalid aspect ratio masked_triangles. ntri = self._triangulation.triangles.shape[0] mask_bad_ratio = self.circle_ratios(rescale) < min_circle_ratio current_mask = self._triangulation.mask if current_mask is None: current_mask = np.zeros(ntri, dtype=np.bool) valid_neighbors = np.copy(self._triangulation.neighbors) renum_neighbors = np.arange(ntri, dtype=np.int32) nadd = -1 while nadd != 0: # The active wavefront is the triangles from the border (unmasked # but with a least 1 neighbor equal to -1 wavefront = ((np.min(valid_neighbors, axis=1) == -1) & ~current_mask) # The element from the active wavefront will be masked if their # circle ratio is bad. added_mask = np.logical_and(wavefront, mask_bad_ratio) current_mask = (added_mask | current_mask) nadd = np.sum(added_mask) # now we have to update the tables valid_neighbors valid_neighbors[added_mask, :] = -1 renum_neighbors[added_mask] = -1 valid_neighbors = np.where(valid_neighbors == -1, -1, renum_neighbors[valid_neighbors]) return np.ma.filled(current_mask, True) def _get_compressed_triangulation(self, return_tri_renum=False, return_node_renum=False): """ Compress (if masked) the encapsulated triangulation. Returns minimal-length triangles array (*compressed_triangles*) and coordinates arrays (*compressed_x*, *compressed_y*) that can still describe the unmasked triangles of the encapsulated triangulation. Parameters ---------- return_tri_renum : boolean, optional Indicates whether a renumbering table to translate the triangle numbers from the encapsulated triangulation numbering into the new (compressed) renumbering will be returned. return_node_renum : boolean, optional Indicates whether a renumbering table to translate the nodes numbers from the encapsulated triangulation numbering into the new (compressed) renumbering will be returned. Returns ------- compressed_triangles : array-like the returned compressed triangulation triangles compressed_x : array-like the returned compressed triangulation 1st coordinate compressed_y : array-like the returned compressed triangulation 2nd coordinate tri_renum : array-like of integers renumbering table to translate the triangle numbers from the encapsulated triangulation into the new (compressed) renumbering. -1 for masked triangles (deleted from *compressed_triangles*). Returned only if *return_tri_renum* is True. node_renum : array-like of integers renumbering table to translate the point numbers from the encapsulated triangulation into the new (compressed) renumbering. -1 for unused points (i.e. those deleted from *compressed_x* and *compressed_y*). Returned only if *return_node_renum* is True. """ # Valid triangles and renumbering tri_mask = self._triangulation.mask compressed_triangles = self._triangulation.get_masked_triangles() ntri = self._triangulation.triangles.shape[0] tri_renum = self._total_to_compress_renum(tri_mask, ntri) # Valid nodes and renumbering node_mask = (np.bincount(np.ravel(compressed_triangles)) == 0) compressed_x = self._triangulation.x[~node_mask] compressed_y = self._triangulation.y[~node_mask] node_renum = self._total_to_compress_renum(node_mask) # Now renumbering the valid triangles nodes compressed_triangles = node_renum[compressed_triangles] # 4 cases possible for return if not return_tri_renum: if not return_node_renum: return compressed_triangles, compressed_x, compressed_y else: return (compressed_triangles, compressed_x, compressed_y, node_renum) else: if not return_node_renum: return (compressed_triangles, compressed_x, compressed_y, tri_renum) else: return (compressed_triangles, compressed_x, compressed_y, tri_renum, node_renum) @staticmethod def _total_to_compress_renum(mask, n=None): """ Parameters ---------- mask : 1d boolean array or None mask n : integer length of the mask. Useful only id mask can be None Returns ------- renum : integer array array so that (`valid_array` being a compressed array based on a `masked_array` with mask *mask*) : - For all i such as mask[i] = False: valid_array[renum[i]] = masked_array[i] - For all i such as mask[i] = True: renum[i] = -1 (invalid value) """ if n is None: n = np.size(mask) if mask is not None: renum = -np.ones(n, dtype=np.int32) # Default num is -1 valid = np.arange(n, dtype=np.int32).compress(~mask, axis=0) renum[valid] = np.arange(np.size(valid, 0), dtype=np.int32) return renum else: return np.arange(n, dtype=np.int32)
mit
RNAer/Calour
calour/ratio_experiment.py
1
14235
''' ratio experiment (:mod:`calour.ratio_experiment`) ======================================================= .. currentmodule:: calour.ratio_experiment Classes ^^^^^^^ .. autosummary:: :toctree: generated RatioExperiment ''' # ---------------------------------------------------------------------------- # Copyright (c) 2016--, Calour development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. # ---------------------------------------------------------------------------- from logging import getLogger import numpy as np import pandas as pd import scipy.stats from statsmodels.stats.multitest import multipletests from .experiment import Experiment from .util import _to_list from .analysis import _new_experiment_from_pvals, _CALOUR_DIRECTION, _CALOUR_STAT logger = getLogger(__name__) class RatioExperiment(Experiment): '''This class stores log-ratio data and corresponding analysis methods. This is a child class of :class:`.Experiment`. Parameters ---------- data : numpy.ndarray or scipy.sparse.csr_matrix The log-ratio table for OTUs or ASVs. Samples are in rows and features in columns Note: values can be negative or np.nan as this is log-ratio. np.nan indicates ratio is not applicable between 2 samples for a feature. sample_metadata : pandas.DataFrame The metadata on the samples feature_metadata : pandas.DataFrame The metadata on the features description : str name of experiment sparse : bool store the data array in :class:`scipy.sparse.csr_matrix` or :class:`numpy.ndarray` databases: iterable of str, optional database interface names to show by default in heatmap() function by default use 'dbbact' Attributes ---------- data : numpy.ndarray or scipy.sparse.csr_matrix The log ratio table for OTUs or ASVs. Samples are in row and features in column. values are float (can be negative) with np.nan indicating ratio for the specific feature does not exist. sample_metadata : pandas.DataFrame The metadata on the samples feature_metadata : pandas.DataFrame The metadata on the features shape : tuple of (int, int) the dimension of data sparse : bool store the data as sparse matrix (scipy.sparse.csr_matrix) or dense numpy array. info : dict information about the experiment (data md5, filenames, etc.) description : str name of the experiment databases : dict keys are the database names (i.e. 'dbbact' / 'gnps') values are the database specific data for the experiment (i.e. annotations for dbbact) See Also -------- Experiment ''' def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def heatmap(self, *args, **kwargs): '''Plot a heatmap for the ratio experiment. This method accepts exactly the same parameters as input with its parent class method and does exactly the sample plotting. The only difference is that by default, it uses the diverging colormap 'coolwarm' and `bad_color` parameter is set to white. You can always set it to other colormap/bad_color as explained in :meth:`.Experiment.heatmap`. See Also -------- Experiment.heatmap ''' if 'cmap' not in kwargs: kwargs['cmap'] = 'coolwarm' if 'bad_color' not in kwargs: kwargs['bad_color'] = 'white' if 'clim' not in kwargs: min_val = np.abs(np.nanmin(self.data)) max_val = np.abs(np.nanmax(self.data)) clim_val = np.max([max_val, min_val]) kwargs['clim'] = (-clim_val, clim_val) super().heatmap(*args, **kwargs) @classmethod def from_exp(self, exp, common_field, group_field, value1, value2=None, threshold=5, sample_md_suffix=None): '''Create a RatioExperiment object from two groups of samples in an experiment. ratios are calculated for each unique value of common_field. For each such value, 2 groups of samples (group1/group2) are created by selecting all samples with value1/value2 in the group_field. The ratio for the common field value for each feature is calculated by taking the log2 of mean(group1)/mean(group2) for the feature. Parameters ---------- exp: calour.Experiment The experiment to take the 2 groups of samples from. common_field: str Name of the sample metadata field to calculate the ratio within. For example, to calculate the ratio between 2 timepoints (e.g. before and after treatment) for each subject, common_field would be something like 'subject_id'. group_field: str Name of the sample metadata field on which to divide samples to 2 groups for ratio calculation. For example, to calculate the ratio between before and after treatment for each individual, group_field with be 'treatment' that has 'before_treatment' and 'after_treatment'. value1 : str or iterable of str Values for field that will be assigned to the first (nominator) sample group. For example 'before_treatment'. If more than one sample matches value1 in field group_field (for a given common_field value), use the mean of the frequency (of each feature) as the nominator value for the sample group. value2: str or iterable of str, default=None If not None, values for field that will be assigned to the second (denominator) sample group. For example 'after_treatment' If None, use all samples not in the first sample group as the second sample group. Similar to value1, if more than 1 sample matches, use their mean frequency as the denominator value. threshold: float or None, optional If not None, assign each data value<threshold to threshold. If both nominator and denominator are < threshold, the resulting ratio will assigned be np.nan. For example, in an AmpliconExperiment, ratios calculated between low read numbers are not reliable. So it is advised to set threshold to approx. 10 sample_md_suffix: tuple of (str, str), default=None The suffix to add to the ratio experiment for each sample metadata column name, indicating if it is from value1 or value2 group. If none, append value1 or value2 to the column name respectively. In the ratio experiment, since each sample is the ratio of 2 sample groups, the sample metadata can originate from the first or second group. Therefore the 2 values will be stored in 2 columns for each original metadata column. Returns ------- RatioExperiment The samples are all the unique values of common_field (that have >= 1 sample matching value1 and value2 in group_field). The data values for each feature are the ratio of mean data values in samples of value1 in group_field / data values in samples of value2 in group_field sample_metadata contains two columns for each original sample_metadata column: the value for group1 and for group2 The index for each ratio sample is the index of the group1 sample ''' new_field_val = '%s / ' % value1 exp.sparse = False value1 = _to_list(value1) if value2 is None: new_field_val += 'Other' value2 = [str(x) for x in set(exp.sample_metadata[group_field].unique()).difference(set(value1))] else: new_field_val += '%s' % value2 value2 = _to_list(value2) ratio_mat = np.zeros([len(exp.sample_metadata[common_field].unique()), exp.shape[1]]) # new_sample_metadata = pd.DataFrame() if sample_md_suffix is None: sample_md_suffix = (".".join(value1), ".".join(value2)) new_columns = [x + '_%s' % sample_md_suffix[0] for x in exp.sample_metadata.columns] new_columns.extend([x + '_%s' % sample_md_suffix[1] for x in exp.sample_metadata.columns]) new_sample_metadata = pd.DataFrame(columns=new_columns) # used to count the number of samples that have values in both groups # we then keep only these columns in the ratio_mat found_indices = [] for idx, cexp in enumerate(exp.iterate(common_field, axis=0)): # cfield = cexp.sample_metadata[common_field].iloc[0] group1 = cexp.filter_samples(group_field, value1) group2 = cexp.filter_samples(group_field, value2) if group1.shape[0] == 0 or group2.shape[0] == 0: continue # replace all <= threshold values if needed if threshold is not None: group1.data[group1.data <= threshold] = threshold group2.data[group2.data <= threshold] = threshold mean_g1 = np.mean(group1.data, axis=0) mean_g2 = np.mean(group2.data, axis=0) ratios = np.log2(mean_g1 / mean_g2) # Take care of features where both nominator and denominator are below the min_threshold. We should get np.nan if threshold is not None: ratios[np.logical_and(mean_g1 == threshold, mean_g2 == threshold)] = np.nan ratio_mat[idx, :] = ratios cmetadata = pd.DataFrame(columns=new_columns) # the new index for this ratio is the sampleID of the nominator sample csamp_id = group1.sample_metadata['_sample_id'][0] for ccol in group1.sample_metadata.columns: u1 = group1.sample_metadata[ccol].unique() if len(u1) == 1: cmetadata.at[csamp_id, ccol + '_%s' % sample_md_suffix[0]] = u1[0] else: cmetadata.at[csamp_id, ccol + '_%s' % sample_md_suffix[0]] = 'NA (multiple values)' u2 = group2.sample_metadata[ccol].unique() if len(u2) == 1: cmetadata.at[csamp_id, ccol + '_%s' % sample_md_suffix[1]] = u2[0] else: cmetadata.at[csamp_id, ccol + '_%s' % sample_md_suffix[1]] = 'NA (multiple values)' # cmetadata.at[group_field] = new_field_val new_sample_metadata = new_sample_metadata.append(cmetadata) found_indices.append(idx) # keep only samples that were actually added to the ratio_mat ratio_mat = ratio_mat[found_indices, :] logger.info('Calculated ratios for %d unique sample groups' % len(found_indices)) ratio_exp = RatioExperiment(data=ratio_mat, sample_metadata=new_sample_metadata, feature_metadata=exp.feature_metadata, sparse=False, databases=exp.databases, description=exp.description, info=exp.info) return ratio_exp def get_sign_pvals(self, alpha=0.1, min_present=5): '''Get FDR corrected p-values for rejecting the null hypothesis that the signs of the ratios originate from a p=0.5 binomial distribution. This test is used in order to identify features that increase/decrease significantly. For example, if the RatioExperiments is created for pre- and post-treatment samples of individuals (ratio is pre/post), get_sign_pvals can be used to identify features that significantly increase/decrease following the treatment. NOTE: The test is performed only on the non nan feature values. Parameters ---------- alpha: float, optional The required FDR control level min_present: int, optional The minimal number of samples where the ratio is not nan or zero in order to include in the test. Used as filtering to achieve better FDR power (less hypothesis to test) Returns ------- RatioExperiment Only features with higher than random number of positive or negative ratios. Features are sorted by the effect size (and by p-value for similar effect size). The feature_metadata contains 4 new fields: '__calour_stat', '_calour_pval', '_calour_qval', '_calour_direction' , similar to calour.analysis.diff_abundance(). ''' exp = self.copy() # need to convert to non-sparse in order to use np.isfinite() exp.sparse = False keep = [] pvals = np.ones(exp.shape[1]) esize = np.zeros(exp.shape[1]) npos = np.zeros(exp.shape[1]) nneg = np.zeros(exp.shape[1]) for idx in range(exp.shape[1]): cdat = exp.data[:, idx] cnpos = np.sum(cdat[np.isfinite(cdat)] > 0) cnneg = np.sum(cdat[np.isfinite(cdat)] < 0) npos[idx] = cnpos nneg[idx] = cnneg # test if we have enough non-zero samples if npos[idx] + nneg[idx] >= min_present: # calculate the binomial p-value and effect size for the feature pvals[idx] = scipy.stats.binom_test(cnpos, cnpos + cnneg) esize[idx] = (cnpos - cnneg) / (cnpos + cnneg) keep.append(idx) logger.debug('keeping %d features with enough ratios' % len(keep)) exp = exp.reorder(keep, axis='f') if len(keep) == 0: logger.warning('No significant features found') return exp pvals = pvals[keep] esize = esize[keep] # multiple testing correction using Benjamini-Hochberg FDR # note we cannot use dsFDR as this is not a 2 group test reject, qvals, *_ = multipletests(pvals, alpha=alpha, method='fdr_bh') newexp = _new_experiment_from_pvals(exp, None, reject, esize, pvals, qvals) # set the effect direction field newexp.feature_metadata[_CALOUR_DIRECTION] = ['positive' if x > 0 else 'negative' for x in newexp.feature_metadata[_CALOUR_STAT]] logger.info('found %d significant' % len(newexp.feature_metadata)) return newexp
bsd-3-clause
niketanpansare/systemml
src/main/python/systemml/defmatrix.py
7
48505
# ------------------------------------------------------------- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # ------------------------------------------------------------- __all__ = [ 'setSparkContext', 'matrix', 'eval', 'solve', 'DMLOp', 'set_lazy', 'debug_array_conversion', 'load', 'full', 'seq'] import numpy as np import pandas as pd from scipy.sparse import coo_matrix, spmatrix try: import py4j.java_gateway from py4j.java_gateway import JavaObject from pyspark import SparkContext from pyspark.sql import DataFrame, SparkSession import pyspark.mllib.common except ImportError: raise ImportError( 'Unable to import `pyspark`. Hint: Make sure you are running with PySpark.') from . import MLContext, pydml, _java2py, Matrix from .converters import * def setSparkContext(sc): """ Before using the matrix, the user needs to invoke this function if SparkContext is not previously created in the session. Parameters ---------- sc: SparkContext SparkContext """ matrix.sc = sc matrix.sparkSession = SparkSession.builder.getOrCreate() matrix.ml = MLContext(matrix.sc) def check_MLContext(): if matrix.ml is None: if SparkContext._active_spark_context is not None: setSparkContext(SparkContext._active_spark_context) else: raise Exception( 'Expected setSparkContext(sc) to be called, where sc is active SparkContext.') ########################## AST related operations ######################## class DMLOp(object): """ Represents an intermediate node of Abstract syntax tree created to generate the PyDML script """ def __init__(self, inputs, dml=None): self.inputs = inputs self.dml = dml self.ID = None self.depth = 1 for m in self.inputs: m.referenced = m.referenced + [self] if isinstance(m, matrix) and m.op is not None: self.depth = max(self.depth, m.op.depth + 1) MAX_DEPTH = 0 def _visit(self, execute=True): matrix.dml = matrix.dml + self.dml def _print_ast(self, numSpaces): ret = [] for m in self.inputs: ret = [m._print_ast(numSpaces + 2)] return ''.join(ret) # Special object used internally to specify the placeholder which will be replaced by output ID # This helps to provide dml containing output ID in construct_intermediate_node OUTPUT_ID = '$$OutputID$$' def set_lazy(isLazy): """ This method allows users to set whether the matrix operations should be executed in lazy manner. Parameters ---------- isLazy: True if matrix operations should be evaluated in lazy manner. """ if isLazy: DMLOp.MAX_DEPTH = 0 else: DMLOp.MAX_DEPTH = 1 def construct_intermediate_node(inputs, dml): """ Convenient utility to create an intermediate node of AST. Parameters ---------- inputs = list of input matrix objects and/or DMLOp dml = list of DML string (which will be eventually joined before execution). To specify out.ID, please use the placeholder """ dmlOp = DMLOp(inputs) out = matrix(None, op=dmlOp) dmlOp.dml = [out.ID if x == OUTPUT_ID else x for x in dml] if DMLOp.MAX_DEPTH > 0 and out.op.depth >= DMLOp.MAX_DEPTH: out.eval() return out def load(file, format='csv'): """ Allows user to load a matrix from filesystem Parameters ---------- file: filepath format: can be csv, text or binary or mm """ return construct_intermediate_node( [], [OUTPUT_ID, ' = load(\"', file, '\", format=\"', format, '\")\n']) def full(shape, fill_value): """ Return a new array of given shape filled with fill_value. Parameters ---------- shape: tuple of length 2 fill_value: float or int """ return construct_intermediate_node([], [OUTPUT_ID, ' = full(', str( fill_value), ', rows=', str(shape[0]), ', cols=', str(shape[1]), ')\n']) def reset(): """ Resets the visited status of matrix and the operators in the generated AST. """ for m in matrix.visited: m.visited = False matrix.visited = [] matrix.ml = MLContext(matrix.sc) matrix.dml = [] matrix.script = pydml('') def perform_dfs(outputs, execute): """ Traverses the forest of nodes rooted at outputs nodes and returns the DML script to execute """ for m in outputs: m.output = True m._visit(execute=execute) return ''.join(matrix.dml) ############################################################################### ########################## Utility functions ################################## def _log_base(val, base): if not isinstance(val, str): raise ValueError('The val to _log_base should be of type string') return '(log(' + val + ')/log(' + str(base) + '))' def _matricize(lhs, inputs): """ Utility fn to convert the supported types to matrix class or to string (if float or int) and return the string to be passed to DML as well as inputs """ if isinstance(lhs, SUPPORTED_TYPES): lhs = matrix(lhs) if isinstance(lhs, matrix): lhsStr = lhs.ID inputs = inputs + [lhs] elif isinstance(lhs, float) or isinstance(lhs, int): lhsStr = str(lhs) else: raise TypeError('Incorrect type') return lhsStr, inputs def binary_op(lhs, rhs, opStr): """ Common function called by all the binary operators in matrix class """ inputs = [] lhsStr, inputs = _matricize(lhs, inputs) rhsStr, inputs = _matricize(rhs, inputs) return construct_intermediate_node( inputs, [OUTPUT_ID, ' = ', lhsStr, opStr, rhsStr, '\n']) def binaryMatrixFunction(X, Y, fnName): """ Common function called by supported PyDML built-in function that has two arguments. """ inputs = [] lhsStr, inputs = _matricize(X, inputs) rhsStr, inputs = _matricize(Y, inputs) return construct_intermediate_node( inputs, [OUTPUT_ID, ' = ', fnName, '(', lhsStr, ', ', rhsStr, ')\n']) def unaryMatrixFunction(X, fnName): """ Common function called by supported PyDML built-in function that has one argument. """ inputs = [] lhsStr, inputs = _matricize(X, inputs) return construct_intermediate_node( inputs, [OUTPUT_ID, ' = ', fnName, '(', lhsStr, ')\n']) def seq(start=None, stop=None, step=1): """ Creates a single column vector with values starting from <start>, to <stop>, in increments of <step>. Note: Unlike Numpy's arange which returns a row-vector, this returns a column vector. Also, Unlike Numpy's arange which doesnot include stop, this method includes stop in the interval. Parameters ---------- start: int or float [Optional: default = 0] stop: int or float step : int float [Optional: default = 1] """ if start is None and stop is None: raise ValueError('Both start and stop cannot be None') elif start is not None and stop is None: stop = start start = 0 return construct_intermediate_node( [], [OUTPUT_ID, ' = seq(', str(start), ',', str(stop), ',', str(step), ')\n']) # utility function that converts 1:3 into DML string def convert_seq_to_dml(s): ret = [] if s is None: return '' elif isinstance(s, slice): if s.step is not None: raise ValueError('Slicing with step is not supported.') if s.start is None: ret = ret + ['0 : '] else: ret = ret + [getValue(s.start), ':'] if s.start is None: ret = ret + [''] else: ret = ret + [getValue(s.stop)] else: ret = ret + [getValue(s)] return ''.join(ret) # utility function that converts index (such as [1, 2:3]) into DML string def getIndexingDML(index): ret = ['['] if isinstance(index, tuple) and len(index) == 1: ret = ret + [convert_seq_to_dml(index[0]), ','] elif isinstance(index, tuple) and len(index) == 2: ret = ret + [convert_seq_to_dml(index[0]), ',', convert_seq_to_dml(index[1])] else: raise TypeError( 'matrix indexes can only be tuple of length 2. For example: m[1,1], m[0:1,], m[:, 0:1]') return ret + [']'] def convert_outputs_to_list(outputs): if isinstance(outputs, matrix): return [outputs] elif isinstance(outputs, list): for o in outputs: if not isinstance(o, matrix): raise TypeError('Only matrix or list of matrix allowed') return outputs else: raise TypeError('Only matrix or list of matrix allowed') def reset_output_flag(outputs): for m in outputs: m.output = False ############################################################################### ########################## Global user-facing functions ####################### def solve(A, b): """ Computes the least squares solution for system of linear equations A %*% x = b Examples -------- >>> import numpy as np >>> from sklearn import datasets >>> import SystemML as sml >>> from pyspark.sql import SparkSession >>> diabetes = datasets.load_diabetes() >>> diabetes_X = diabetes.data[:, np.newaxis, 2] >>> X_train = diabetes_X[:-20] >>> X_test = diabetes_X[-20:] >>> y_train = diabetes.target[:-20] >>> y_test = diabetes.target[-20:] >>> sml.setSparkContext(sc) >>> X = sml.matrix(X_train) >>> y = sml.matrix(y_train) >>> A = X.transpose().dot(X) >>> b = X.transpose().dot(y) >>> beta = sml.solve(A, b).toNumPy() >>> y_predicted = X_test.dot(beta) >>> print('Residual sum of squares: %.2f' % np.mean((y_predicted - y_test) ** 2)) Residual sum of squares: 25282.12 """ return binaryMatrixFunction(A, b, 'solve') def eval(outputs, execute=True): """ Executes the unevaluated DML script and computes the matrices specified by outputs. Parameters ---------- outputs: list of matrices or a matrix object execute: specified whether to execute the unevaluated operation or just return the script. """ check_MLContext() reset() outputs = convert_outputs_to_list(outputs) matrix.script.setScriptString(perform_dfs(outputs, execute)) if not execute: reset_output_flag(outputs) return matrix.script.scriptString results = matrix.ml.execute(matrix.script) for m in outputs: m.eval_data = results._java_results.get(m.ID) reset_output_flag(outputs) def debug_array_conversion(throwError): matrix.THROW_ARRAY_CONVERSION_ERROR = throwError def _get_new_var_id(): matrix.systemmlVarID += 1 return 'mVar' + str(matrix.systemmlVarID) ############################################################################### class matrix(object): """ matrix class is a python wrapper that implements basic matrix operators, matrix functions as well as converters to common Python types (for example: Numpy arrays, PySpark DataFrame and Pandas DataFrame). The operators supported are: 1. Arithmetic operators: +, -, *, /, //, %, ** as well as dot (i.e. matrix multiplication) 2. Indexing in the matrix 3. Relational/Boolean operators: <, <=, >, >=, ==, !=, &, | In addition, following functions are supported for matrix: 1. transpose 2. Aggregation functions: sum, mean, var, sd, max, min, argmin, argmax, cumsum 3. Global statistical built-In functions: exp, log, abs, sqrt, round, floor, ceil, ceiling, sin, cos, tan, asin, acos, atan, sign, solve For all the above functions, we always return a two dimensional matrix, especially for aggregation functions with axis. For example: Assuming m1 is a matrix of (3, n), NumPy returns a 1d vector of dimension (3,) for operation m1.sum(axis=1) whereas SystemML returns a 2d matrix of dimension (3, 1). Note: an evaluated matrix contains a data field computed by eval method as DataFrame or NumPy array. Examples -------- >>> import SystemML as sml >>> import numpy as np >>> sml.setSparkContext(sc) Welcome to Apache SystemML! >>> m1 = sml.matrix(np.ones((3,3)) + 2) >>> m2 = sml.matrix(np.ones((3,3)) + 3) >>> m2 = m1 * (m2 + m1) >>> m4 = 1.0 - m2 >>> m4 # This matrix (mVar5) is backed by below given PyDML script (which is not yet evaluated). To fetch the data of this matrix, invoke toNumPy() or toDF() or toPandas() methods. mVar1 = load(" ", format="csv") mVar2 = load(" ", format="csv") mVar3 = mVar2 + mVar1 mVar4 = mVar1 * mVar3 mVar5 = 1.0 - mVar4 save(mVar5, " ") >>> m2.eval() >>> m2 # This matrix (mVar4) is backed by NumPy array. To fetch the NumPy array, invoke toNumPy() method. >>> m4 # This matrix (mVar5) is backed by below given PyDML script (which is not yet evaluated). To fetch the data of this matrix, invoke toNumPy() or toDF() or toPandas() methods. mVar4 = load(" ", format="csv") mVar5 = 1.0 - mVar4 save(mVar5, " ") >>> m4.sum(axis=1).toNumPy() array([[-60.], [-60.], [-60.]]) Design Decisions: 1. Until eval() method is invoked, we create an AST (not exposed to the user) that consist of unevaluated operations and data required by those operations. As an anology, a spark user can treat eval() method similar to calling RDD.persist() followed by RDD.count(). 2. The AST consist of two kinds of nodes: either of type matrix or of type DMLOp. Both these classes expose _visit method, that helps in traversing the AST in DFS manner. 3. A matrix object can either be evaluated or not. If evaluated, the attribute 'data' is set to one of the supported types (for example: NumPy array or DataFrame). In this case, the attribute 'op' is set to None. If not evaluated, the attribute 'op' which refers to one of the intermediate node of AST and if of type DMLOp. In this case, the attribute 'data' is set to None. 4. DMLOp has an attribute 'inputs' which contains list of matrix objects or DMLOp. 5. To simplify the traversal, every matrix object is considered immutable and an matrix operations creates a new matrix object. As an example: `m1 = sml.matrix(np.ones((3,3)))` creates a matrix object backed by 'data=(np.ones((3,3))'. `m1 = m1 * 2` will create a new matrix object which is now backed by 'op=DMLOp( ... )' whose input is earlier created matrix object. 6. Left indexing (implemented in __setitem__ method) is a special case, where Python expects the existing object to be mutated. To ensure the above property, we make deep copy of existing object and point any references to the left-indexed matrix to the newly created object. Then the left-indexed matrix is set to be backed by DMLOp consisting of following pydml: left-indexed-matrix = new-deep-copied-matrix left-indexed-matrix[index] = value 7. Please use m.print_ast() and/or type `m` for debugging. Here is a sample session: >>> npm = np.ones((3,3)) >>> m1 = sml.matrix(npm + 3) >>> m2 = sml.matrix(npm + 5) >>> m3 = m1 + m2 >>> m3 mVar2 = load(" ", format="csv") mVar1 = load(" ", format="csv") mVar3 = mVar1 + mVar2 save(mVar3, " ") >>> m3.print_ast() - [mVar3] (op). - [mVar1] (data). - [mVar2] (data). """ # Global variable that is used to keep track of intermediate matrix # variables in the DML script systemmlVarID = 0 # Since joining of string is expensive operation, we collect the set of strings into list and then join # them before execution: See matrix.script.scriptString = # ''.join(matrix.dml) in eval() method dml = [] # Represents MLContext's script object script = None # Represents MLContext object ml = None # Contains list of nodes visited in Abstract Syntax Tree. This helps to avoid computation of matrix objects # that have been previously evaluated. visited = [] def __init__(self, data, op=None): """ Constructs a lazy matrix Parameters ---------- data: NumPy ndarray, Pandas DataFrame, scipy sparse matrix or PySpark DataFrame. (data cannot be None for external users, 'data=None' is used internally for lazy evaluation). """ self.dtype = np.double check_MLContext() self.visited = False self.output = False self.ID = _get_new_var_id() self.referenced = [] # op refers to the node of Abstract Syntax Tree created internally for # lazy evaluation self.op = op self.eval_data = data self._shape = None if isinstance(data, SUPPORTED_TYPES): self._shape = data.shape if not (isinstance(data, SUPPORTED_TYPES) or hasattr( data, '_jdf') or (data is None and op is not None)): raise TypeError('Unsupported input type') def eval(self): """ This is a convenience function that calls the global eval method """ eval([self]) def toPandas(self): """ This is a convenience function that calls the global eval method and then converts the matrix object into Pandas DataFrame. """ self.eval() if isinstance(self.eval_data, py4j.java_gateway.JavaObject): self.eval_data = _java2py( SparkContext._active_spark_context, self.eval_data) if isinstance(self.eval_data, Matrix): self.eval_data = self.eval_data.toNumPy() self.eval_data = convertToPandasDF(self.eval_data) return self.eval_data def toNumPy(self): """ This is a convenience function that calls the global eval method and then converts the matrix object into NumPy array. """ self.eval() if isinstance(self.eval_data, py4j.java_gateway.JavaObject): self.eval_data = _java2py( SparkContext._active_spark_context, self.eval_data) if isinstance(self.eval_data, Matrix): self.eval_data = self.eval_data.toNumPy() return self.eval_data if isinstance(self.eval_data, pd.DataFrame): self.eval_data = self.eval_data.as_matrix() elif isinstance(self.eval_data, DataFrame): self.eval_data = self.eval_data.toPandas().as_matrix() elif isinstance(self.eval_data, spmatrix): self.eval_data = self.eval_data.toarray() elif isinstance(self.eval_data, Matrix): self.eval_data = self.eval_data.toNumPy() # Always keep default format as NumPy array if possible return self.eval_data def toDF(self): """ This is a convenience function that calls the global eval method and then converts the matrix object into DataFrame. """ if isinstance(self.eval_data, DataFrame): return self.eval_data if isinstance(self.eval_data, py4j.java_gateway.JavaObject): self.eval_data = _java2py( SparkContext._active_spark_context, self.eval_data) if isinstance(self.eval_data, Matrix): self.eval_data = self.eval_data.toDF() return self.eval_data self.eval_data = matrix.sparkSession.createDataFrame(self.toPandas()) return self.eval_data def save(self, file, format='csv'): """ Allows user to save a matrix to filesystem Parameters ---------- file: filepath format: can be csv, text or binary or mm """ tmp = construct_intermediate_node( [self], ['save(', self.ID, ',\"', file, '\", format=\"', format, '\")\n']) construct_intermediate_node( [tmp], [OUTPUT_ID, ' = full(0, rows=1, cols=1)\n']).eval() def _mark_as_visited(self): self.visited = True # for cleanup matrix.visited = matrix.visited + [self] return self def _register_as_input(self, execute): # TODO: Remove this when automatic registration of frame is resolved matrix.dml = [self.ID, ' = load(\" \", format=\"csv\")\n'] + matrix.dml if isinstance(self.eval_data, SUPPORTED_TYPES) and execute: matrix.script.input( self.ID, convertToMatrixBlock( matrix.sc, self.eval_data)) elif execute: matrix.script.input(self.ID, self.toDF()) return self def _register_as_output(self, execute): # TODO: Remove this when automatic registration of frame is resolved matrix.dml = matrix.dml + ['save(', self.ID, ', \" \")\n'] if execute: matrix.script.output(self.ID) def _visit(self, execute=True): """ This function is called for two scenarios: 1. For printing the PyDML script which has not yet been evaluated (execute=False). See '__repr__' method. 2. Called as part of 'eval' method (execute=True). In this scenario, it builds the PyDML script by visiting itself and its child nodes. Also, it does appropriate registration as input or output that is required by MLContext. """ if self.visited: return self self._mark_as_visited() if self.eval_data is not None: self._register_as_input(execute) elif self.op is not None: # Traverse the AST for m in self.op.inputs: m._visit(execute=execute) self.op._visit(execute=execute) else: raise Exception('Expected either op or data to be set') if self.eval_data is None and self.output: self._register_as_output(execute) return self def print_ast(self): """ Please use m.print_ast() and/or type `m` for debugging. Here is a sample session: >>> npm = np.ones((3,3)) >>> m1 = sml.matrix(npm + 3) >>> m2 = sml.matrix(npm + 5) >>> m3 = m1 + m2 >>> m3 mVar2 = load(" ", format="csv") mVar1 = load(" ", format="csv") mVar3 = mVar1 + mVar2 save(mVar3, " ") >>> m3.print_ast() - [mVar3] (op). - [mVar1] (data). - [mVar2] (data). """ return self._print_ast(0) def _print_ast(self, numSpaces): head = ''.join([' '] * numSpaces + ['- [', self.ID, '] ']) if self.eval_data is not None: out = head + '(data).\n' elif self.op is not None: ret = [head, '(op).\n'] for m in self.op.inputs: ret = ret + [m._print_ast(numSpaces + 2)] out = ''.join(ret) else: raise ValueError('Either op or data needs to be set') if numSpaces == 0: print(out) else: return out def __repr__(self): """ This function helps to debug matrix class and also examine the generated PyDML script """ if self.eval_data is None: print( '# This matrix (' + self.ID + ') is backed by below given PyDML script (which is not yet evaluated). To fetch the data of this matrix, invoke toNumPy() or toDF() or toPandas() methods.\n' + eval( [self], execute=False)) else: print('# This matrix (' + self.ID + ') is backed by ' + str(type(self.eval_data)) + '. To fetch the DataFrame or NumPy array, invoke toDF() or toNumPy() method respectively.') return '' ######################### NumPy related methods ########################## __array_priority__ = 10.2 ndim = 2 THROW_ARRAY_CONVERSION_ERROR = False def __array__(self, dtype=np.double): """ As per NumPy from Python, This method is called to obtain an ndarray object when needed. You should always guarantee this returns an actual ndarray object. Using this method, you get back a ndarray object, and subsequent operations on the returned ndarray object will be singlenode. """ if not isinstance(self.eval_data, SUPPORTED_TYPES): # Only warn if there is an unevaluated operation (which could # potentially generate large matrix or if data is non-supported # singlenode formats) import inspect frame, filename, line_number, function_name, lines, index = inspect.stack()[ 1] msg = 'Conversion from SystemML matrix to NumPy array (occurs in ' + str( filename) + ':' + str(line_number) + ' ' + function_name + ")" if matrix.THROW_ARRAY_CONVERSION_ERROR: raise Exception('[ERROR]:' + msg) else: print('[WARN]:' + msg) return np.array(self.toNumPy(), dtype) def astype(self, t): # TODO: Throw error if incorrect type return self def asfptype(self): return self def set_shape(self, shape): raise NotImplementedError('Reshaping is not implemented') def get_shape(self): if self._shape is None: lhsStr, inputs = _matricize(self, []) rlen_ID = _get_new_var_id() clen_ID = _get_new_var_id() multiline_dml = [rlen_ID, ' = ', lhsStr, '.shape(0)\n'] multiline_dml = multiline_dml + \ [clen_ID, ' = ', lhsStr, '.shape(1)\n'] multiline_dml = multiline_dml + \ [OUTPUT_ID, ' = full(0, rows=2, cols=1)\n'] multiline_dml = multiline_dml + \ [OUTPUT_ID, '[0,0] = ', rlen_ID, '\n'] multiline_dml = multiline_dml + \ [OUTPUT_ID, '[1,0] = ', clen_ID, '\n'] ret = construct_intermediate_node(inputs, multiline_dml).toNumPy() self._shape = tuple(np.array(ret, dtype=int).flatten()) return self._shape shape = property(fget=get_shape, fset=set_shape) def __numpy_ufunc__(self, func, method, pos, inputs, **kwargs): """ This function enables systemml matrix to be compatible with NumPy's ufuncs. Parameters ---------- func: ufunc object that was called. method: string indicating which Ufunc method was called (one of "__call__", "reduce", "reduceat", "accumulate", "outer", "inner"). pos: index of self in inputs. inputs: tuple of the input arguments to the ufunc kwargs: dictionary containing the optional input arguments of the ufunc. """ if method != '__call__' or kwargs: return NotImplemented if func in matrix._numpy_to_systeml_mapping: fn = matrix._numpy_to_systeml_mapping[func] else: return NotImplemented if len(inputs) == 2: return fn(inputs[0], inputs[1]) elif len(inputs) == 1: return fn(inputs[0]) else: raise ValueError('Unsupported number of inputs') def hstack(self, other): """ Stack matrices horizontally (column wise). Invokes cbind internally. """ return binaryMatrixFunction(self, other, 'cbind') def vstack(self, other): """ Stack matrices vertically (row wise). Invokes rbind internally. """ return binaryMatrixFunction(self, other, 'rbind') ######################### Arithmetic operators ########################### def negative(self): lhsStr, inputs = _matricize(self, []) return construct_intermediate_node( inputs, [OUTPUT_ID, ' = -', lhsStr, '\n']) def remainder(self, other): inputs = [] lhsStr, inputs = _matricize(self, inputs) rhsStr, inputs = _matricize(other, inputs) return construct_intermediate_node( inputs, [OUTPUT_ID, ' = floor(', lhsStr, '/', rhsStr, ') * ', rhsStr, '\n']) def ldexp(self, other): inputs = [] lhsStr, inputs = _matricize(self, inputs) rhsStr, inputs = _matricize(other, inputs) return construct_intermediate_node( inputs, [OUTPUT_ID, ' = ', lhsStr, '* (2**', rhsStr, ')\n']) def mod(self, other): inputs = [] lhsStr, inputs = _matricize(self, inputs) rhsStr, inputs = _matricize(other, inputs) return construct_intermediate_node(inputs, [ OUTPUT_ID, ' = ', lhsStr, ' - floor(', lhsStr, '/', rhsStr, ') * ', rhsStr, '\n']) def logaddexp(self, other): inputs = [] lhsStr, inputs = _matricize(self, inputs) rhsStr, inputs = _matricize(other, inputs) return construct_intermediate_node( inputs, [OUTPUT_ID, ' = log(exp(', lhsStr, ') + exp(', rhsStr, '))\n']) def logaddexp2(self, other): inputs = [] lhsStr, inputs = _matricize(self, inputs) rhsStr, inputs = _matricize(other, inputs) opStr = _log_base('2**' + lhsStr + '2**' + rhsStr, 2) return construct_intermediate_node( inputs, [OUTPUT_ID, ' = ', opStr, '\n']) def log1p(self): inputs = [] lhsStr, inputs = _matricize(self, inputs) return construct_intermediate_node( inputs, [OUTPUT_ID, ' = log(1 + ', lhsStr, ')\n']) def exp(self): return unaryMatrixFunction(self, 'exp') def exp2(self): inputs = [] lhsStr, inputs = _matricize(self, inputs) return construct_intermediate_node( inputs, [OUTPUT_ID, ' = 2**', lhsStr, '\n']) def square(self): inputs = [] lhsStr, inputs = _matricize(self, inputs) return construct_intermediate_node( inputs, [OUTPUT_ID, ' = ', lhsStr, '**2\n']) def reciprocal(self): inputs = [] lhsStr, inputs = _matricize(self, inputs) return construct_intermediate_node( inputs, [OUTPUT_ID, ' = 1/', lhsStr, '\n']) def expm1(self): inputs = [] lhsStr, inputs = _matricize(self, inputs) return construct_intermediate_node( inputs, [OUTPUT_ID, ' = exp(', lhsStr, ') - 1\n']) def ones_like(self): inputs = [] lhsStr, inputs = _matricize(self, inputs) rlen = lhsStr + '.shape(axis=0)' clen = lhsStr + '.shape(axis=1)' return construct_intermediate_node( inputs, [OUTPUT_ID, ' = full(1, rows=', rlen, ', cols=', clen, ')\n']) def zeros_like(self): inputs = [] lhsStr, inputs = _matricize(self, inputs) rlen = lhsStr + '.shape(axis=0)' clen = lhsStr + '.shape(axis=1)' return construct_intermediate_node( inputs, [OUTPUT_ID, ' = full(0, rows=', rlen, ', cols=', clen, ')\n']) def log2(self): return self.log(2) def log10(self): return self.log(10) def log(self, y=None): if y is None: return unaryMatrixFunction(self, 'log') else: return binaryMatrixFunction(self, y, 'log') def abs(self): return unaryMatrixFunction(self, 'abs') def sqrt(self): return unaryMatrixFunction(self, 'sqrt') def round(self): return unaryMatrixFunction(self, 'round') def floor(self): return unaryMatrixFunction(self, 'floor') def ceil(self): return unaryMatrixFunction(self, 'ceil') def ceiling(self): return unaryMatrixFunction(self, 'ceiling') def sin(self): return unaryMatrixFunction(self, 'sin') def cos(self): return unaryMatrixFunction(self, 'cos') def tan(self): return unaryMatrixFunction(self, 'tan') def sinh(self): return unaryMatrixFunction(self, 'sinh') def cosh(self): return unaryMatrixFunction(self, 'cosh') def tanh(self): return unaryMatrixFunction(self, 'tanh') def arcsin(self): return self.asin() def arccos(self): return self.acos() def arctan(self): return self.atan() def asin(self): return unaryMatrixFunction(self, 'asin') def acos(self): return unaryMatrixFunction(self, 'acos') def atan(self): return unaryMatrixFunction(self, 'atan') def rad2deg(self): """ Convert angles from radians to degrees. """ inputs = [] lhsStr, inputs = _matricize(self, inputs) # 180/pi = 57.2957795131 return construct_intermediate_node( inputs, [OUTPUT_ID, ' = ', lhsStr, '*57.2957795131\n']) def deg2rad(self): """ Convert angles from degrees to radians. """ inputs = [] lhsStr, inputs = _matricize(self, inputs) # pi/180 = 0.01745329251 return construct_intermediate_node( inputs, [OUTPUT_ID, ' = ', lhsStr, '*0.01745329251\n']) def sign(self): return unaryMatrixFunction(self, 'sign') def __add__(self, other): return binary_op(self, other, ' + ') def __sub__(self, other): return binary_op(self, other, ' - ') def __mul__(self, other): return binary_op(self, other, ' * ') def __floordiv__(self, other): return binary_op(self, other, ' // ') def __div__(self, other): """ Performs division (Python 2 way). """ return binary_op(self, other, ' / ') def __truediv__(self, other): """ Performs division (Python 3 way). """ return binary_op(self, other, ' / ') def __mod__(self, other): return binary_op(self, other, ' % ') def __pow__(self, other): return binary_op(self, other, ' ** ') def __radd__(self, other): return binary_op(other, self, ' + ') def __rsub__(self, other): return binary_op(other, self, ' - ') def __rmul__(self, other): return binary_op(other, self, ' * ') def __rfloordiv__(self, other): return binary_op(other, self, ' // ') def __rdiv__(self, other): return binary_op(other, self, ' / ') def __rtruediv__(self, other): """ Performs division (Python 3 way). """ return binary_op(other, self, ' / ') def __rmod__(self, other): return binary_op(other, self, ' % ') def __rpow__(self, other): return binary_op(other, self, ' ** ') def dot(self, other): """ Numpy way of performing matrix multiplication """ return binaryMatrixFunction(self, other, 'dot') def __matmul__(self, other): """ Performs matrix multiplication (infix operator: @). See PEP 465) """ return binaryMatrixFunction(self, other, 'dot') ######################### Relational/Boolean operators ################### def __lt__(self, other): return binary_op(self, other, ' < ') def __le__(self, other): return binary_op(self, other, ' <= ') def __gt__(self, other): return binary_op(self, other, ' > ') def __ge__(self, other): return binary_op(self, other, ' >= ') def __eq__(self, other): return binary_op(self, other, ' == ') def __ne__(self, other): return binary_op(self, other, ' != ') # TODO: Cast the output back into scalar and return boolean results def __and__(self, other): return binary_op(other, self, ' & ') def __or__(self, other): return binary_op(other, self, ' | ') def logical_not(self): inputs = [] lhsStr, inputs = _matricize(self, inputs) return construct_intermediate_node( inputs, [OUTPUT_ID, ' = !', lhsStr, '\n']) def remove_empty(self, axis=None): """ Removes all empty rows or columns from the input matrix target X according to specified axis. Parameters ---------- axis : int (0 or 1) """ if axis is None: raise ValueError('axis is a mandatory argument for remove_empty') if axis == 0: return self._parameterized_helper_fn( self, 'removeEmpty', {'target': self, 'margin': 'rows'}) elif axis == 1: return self._parameterized_helper_fn( self, 'removeEmpty', {'target': self, 'margin': 'cols'}) else: raise ValueError( 'axis for remove_empty needs to be either 0 or 1.') def replace(self, pattern=None, replacement=None): """ Removes all empty rows or columns from the input matrix target X according to specified axis. Parameters ---------- pattern : float or int replacement : float or int """ if pattern is None or not isinstance(pattern, (float, int)): raise ValueError('pattern should be of type float or int') if replacement is None or not isinstance(replacement, (float, int)): raise ValueError('replacement should be of type float or int') return self._parameterized_helper_fn( self, 'replace', {'target': self, 'pattern': pattern, 'replacement': replacement}) def _parameterized_helper_fn(self, fnName, **kwargs): """ Helper to invoke parameterized builtin function """ dml_script = '' lhsStr, inputs = _matricize(self, []) dml_script = [OUTPUT_ID, ' = ', fnName, '(', lhsStr] first_arg = True for key in kwargs: if first_arg: first_arg = False else: dml_script = dml_script + [', '] v = kwargs[key] if isinstance(v, str): dml_script = dml_script + [key, '=\"', v, '\"'] elif isinstance(v, matrix): dml_script = dml_script + [key, '=', v.ID] else: dml_script = dml_script + [key, '=', str(v)] dml_script = dml_script + [')\n'] return construct_intermediate_node(inputs, dml_script) ######################### Aggregation functions ########################## def prod(self): """ Return the product of all cells in matrix """ return self._aggFn('prod', None) def sum(self, axis=None): """ Compute the sum along the specified axis Parameters ---------- axis : int, optional """ return self._aggFn('sum', axis) def mean(self, axis=None): """ Compute the arithmetic mean along the specified axis Parameters ---------- axis : int, optional """ return self._aggFn('mean', axis) def var(self, axis=None): """ Compute the variance along the specified axis. We assume that delta degree of freedom is 1 (unlike NumPy which assumes ddof=0). Parameters ---------- axis : int, optional """ return self._aggFn('var', axis) def moment(self, moment=1, axis=None): """ Calculates the nth moment about the mean Parameters ---------- moment : int can be 1, 2, 3 or 4 axis : int, optional """ if moment == 1: return self.mean(axis) elif moment == 2: return self.var(axis) elif moment == 3 or moment == 4: return self._moment_helper(moment, axis) else: raise ValueError( 'The specified moment is not supported:' + str(moment)) def _moment_helper(self, k, axis=0): dml_script = '' lhsStr, inputs = _matricize(self, []) dml_script = [OUTPUT_ID, ' = moment(', lhsStr, ', ', str(k), ')\n'] dml_script = [OUTPUT_ID, ' = moment(', lhsStr, ', ', str(k), ')\n'] if axis is None: dml_script = [ OUTPUT_ID, ' = moment(full(', lhsStr, ', rows=length(', lhsStr, '), cols=1), ', str(k), ')\n'] elif axis == 0: dml_script = [ OUTPUT_ID, ' = full(0, rows=nrow(', lhsStr, '), cols=1)\n'] dml_script = dml_script + \ ['parfor(i in 1:nrow(', lhsStr, '), check=0):\n'] dml_script = dml_script + ['\t', OUTPUT_ID, '[i-1, 0] = moment(full(', lhsStr, '[i-1,], rows=ncol(', lhsStr, '), cols=1), ', str(k), ')\n\n'] elif axis == 1: dml_script = [ OUTPUT_ID, ' = full(0, rows=1, cols=ncol(', lhsStr, '))\n'] dml_script = dml_script + \ ['parfor(i in 1:ncol(', lhsStr, '), check=0):\n'] dml_script = dml_script + \ ['\t', OUTPUT_ID, '[0, i-1] = moment(', lhsStr, '[,i-1], ', str(k), ')\n\n'] else: raise ValueError('Incorrect axis:' + axis) return construct_intermediate_node(inputs, dml_script) def sd(self, axis=None): """ Compute the standard deviation along the specified axis Parameters ---------- axis : int, optional """ return self._aggFn('sd', axis) def max(self, other=None, axis=None): """ Compute the maximum value along the specified axis Parameters ---------- other: matrix or numpy array (& other supported types) or scalar axis : int, optional """ if other is not None and axis is not None: raise ValueError('Both axis and other cannot be not None') elif other is None and axis is not None: return self._aggFn('max', axis) else: return binaryMatrixFunction(self, other, 'max') def min(self, other=None, axis=None): """ Compute the minimum value along the specified axis Parameters ---------- other: matrix or numpy array (& other supported types) or scalar axis : int, optional """ if other is not None and axis is not None: raise ValueError('Both axis and other cannot be not None') elif other is None and axis is not None: return self._aggFn('min', axis) else: return binaryMatrixFunction(self, other, 'min') def argmin(self, axis=None): """ Returns the indices of the minimum values along an axis. Parameters ---------- axis : int, optional (only axis=1, i.e. rowIndexMax is supported in this version) """ return self._aggFn('argmin', axis) def argmax(self, axis=None): """ Returns the indices of the maximum values along an axis. Parameters ---------- axis : int, optional (only axis=1, i.e. rowIndexMax is supported in this version) """ return self._aggFn('argmax', axis) def cumsum(self, axis=None): """ Returns the indices of the maximum values along an axis. Parameters ---------- axis : int, optional (only axis=0, i.e. cumsum along the rows is supported in this version) """ return self._aggFn('cumsum', axis) def transpose(self): """ Transposes the matrix. """ return self._aggFn('transpose', None) def trace(self): """ Return the sum of the cells of the main diagonal square matrix """ return self._aggFn('trace', None) def _aggFn(self, fnName, axis): """ Common function that is called for functions that have axis as parameter. """ dml_script = '' lhsStr, inputs = _matricize(self, []) if axis is None: dml_script = [OUTPUT_ID, ' = ', fnName, '(', lhsStr, ')\n'] else: dml_script = [OUTPUT_ID, ' = ', fnName, '(', lhsStr, ', axis=', str(axis), ')\n'] return construct_intermediate_node(inputs, dml_script) ######################### Indexing operators ############################# def __getitem__(self, index): """ Implements evaluation of right indexing operations such as m[1,1], m[0:1,], m[:, 0:1] """ return construct_intermediate_node( [self], [OUTPUT_ID, ' = ', self.ID] + getIndexingDML(index) + ['\n']) # Performs deep copy if the matrix is backed by data def _prepareForInPlaceUpdate(self): temp = matrix(self.eval_data, op=self.op) for op in self.referenced: op.inputs = [temp if x.ID == self.ID else x for x in op.inputs] # Copy even the IDs as the IDs might be used to create DML self.ID, temp.ID = temp.ID, self.ID self.op = DMLOp([temp], dml=[self.ID, " = ", temp.ID]) self.eval_data = None temp.referenced = self.referenced + [self.op] self.referenced = [] def __setitem__(self, index, value): """ Implements evaluation of left indexing operations such as m[1,1]=2 """ self._prepareForInPlaceUpdate() if isinstance(value, matrix) or isinstance(value, DMLOp): self.op.inputs = self.op.inputs + [value] if isinstance(value, matrix): value.referenced = value.referenced + [self.op] self.op.dml = self.op.dml + \ ['\n', self.ID] + \ getIndexingDML(index) + [' = ', getValue(value), '\n'] # Not implemented: conj, hyperbolic/inverse-hyperbolic functions(i.e. # sinh, arcsinh, cosh, ...), bitwise operator, xor operator, isreal, # iscomplex, isfinite, isinf, isnan, copysign, nextafter, modf, frexp, # trunc _numpy_to_systeml_mapping = { np.add: __add__, np.subtract: __sub__, np.multiply: __mul__, np.divide: __div__, np.logaddexp: logaddexp, np.true_divide: __truediv__, np.floor_divide: __floordiv__, np.negative: negative, np.power: __pow__, np.remainder: remainder, np.mod: mod, np.fmod: __mod__, np.absolute: abs, np.rint: round, np.sign: sign, np.exp: exp, np.exp2: exp2, np.log: log, np.log2: log2, np.log10: log10, np.expm1: expm1, np.log1p: log1p, np.sqrt: sqrt, np.square: square, np.reciprocal: reciprocal, np.ones_like: ones_like, np.zeros_like: zeros_like, np.sin: sin, np.cos: cos, np.tan: tan, np.arcsin: arcsin, np.arccos: arccos, np.arctan: arctan, np.deg2rad: deg2rad, np.rad2deg: rad2deg, np.greater: __gt__, np.greater_equal: __ge__, np.less: __lt__, np.less_equal: __le__, np.not_equal: __ne__, np.equal: __eq__, np.logical_not: logical_not, np.logical_and: __and__, np.logical_or: __or__, np.maximum: max, np.minimum: min, np.signbit: sign, np.ldexp: ldexp, np.dot: dot}
apache-2.0
chenyyx/scikit-learn-doc-zh
examples/en/gaussian_process/plot_gpc_isoprobability.py
64
3049
#!/usr/bin/python # -*- coding: utf-8 -*- """ ================================================================= Iso-probability lines for Gaussian Processes classification (GPC) ================================================================= A two-dimensional classification example showing iso-probability lines for the predicted probabilities. """ print(__doc__) # Author: Vincent Dubourg <vincent.dubourg@gmail.com> # Adapted to GaussianProcessClassifier: # Jan Hendrik Metzen <jhm@informatik.uni-bremen.de> # License: BSD 3 clause import numpy as np from matplotlib import pyplot as plt from matplotlib import cm from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import DotProduct, ConstantKernel as C # A few constants lim = 8 def g(x): """The function to predict (classification will then consist in predicting whether g(x) <= 0 or not)""" return 5. - x[:, 1] - .5 * x[:, 0] ** 2. # Design of experiments X = np.array([[-4.61611719, -6.00099547], [4.10469096, 5.32782448], [0.00000000, -0.50000000], [-6.17289014, -4.6984743], [1.3109306, -6.93271427], [-5.03823144, 3.10584743], [-2.87600388, 6.74310541], [5.21301203, 4.26386883]]) # Observations y = np.array(g(X) > 0, dtype=int) # Instanciate and fit Gaussian Process Model kernel = C(0.1, (1e-5, np.inf)) * DotProduct(sigma_0=0.1) ** 2 gp = GaussianProcessClassifier(kernel=kernel) gp.fit(X, y) print("Learned kernel: %s " % gp.kernel_) # Evaluate real function and the predicted probability res = 50 x1, x2 = np.meshgrid(np.linspace(- lim, lim, res), np.linspace(- lim, lim, res)) xx = np.vstack([x1.reshape(x1.size), x2.reshape(x2.size)]).T y_true = g(xx) y_prob = gp.predict_proba(xx)[:, 1] y_true = y_true.reshape((res, res)) y_prob = y_prob.reshape((res, res)) # Plot the probabilistic classification iso-values fig = plt.figure(1) ax = fig.gca() ax.axes.set_aspect('equal') plt.xticks([]) plt.yticks([]) ax.set_xticklabels([]) ax.set_yticklabels([]) plt.xlabel('$x_1$') plt.ylabel('$x_2$') cax = plt.imshow(y_prob, cmap=cm.gray_r, alpha=0.8, extent=(-lim, lim, -lim, lim)) norm = plt.matplotlib.colors.Normalize(vmin=0., vmax=0.9) cb = plt.colorbar(cax, ticks=[0., 0.2, 0.4, 0.6, 0.8, 1.], norm=norm) cb.set_label('${\\rm \mathbb{P}}\left[\widehat{G}(\mathbf{x}) \leq 0\\right]$') plt.clim(0, 1) plt.plot(X[y <= 0, 0], X[y <= 0, 1], 'r.', markersize=12) plt.plot(X[y > 0, 0], X[y > 0, 1], 'b.', markersize=12) cs = plt.contour(x1, x2, y_true, [0.], colors='k', linestyles='dashdot') cs = plt.contour(x1, x2, y_prob, [0.666], colors='b', linestyles='solid') plt.clabel(cs, fontsize=11) cs = plt.contour(x1, x2, y_prob, [0.5], colors='k', linestyles='dashed') plt.clabel(cs, fontsize=11) cs = plt.contour(x1, x2, y_prob, [0.334], colors='r', linestyles='solid') plt.clabel(cs, fontsize=11) plt.show()
gpl-3.0
jkarnows/scikit-learn
examples/svm/plot_weighted_samples.py
69
1942
""" ===================== SVM: Weighted samples ===================== Plot decision function of a weighted dataset, where the size of points is proportional to its weight. The sample weighting rescales the C parameter, which means that the classifier puts more emphasis on getting these points right. The effect might often be subtle. To emphasis the effect here, we particularly weight outliers, making the deformation of the decision boundary very visible. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm def plot_decision_function(classifier, sample_weight, axis, title): # plot the decision function xx, yy = np.meshgrid(np.linspace(-4, 5, 500), np.linspace(-4, 5, 500)) Z = classifier.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # plot the line, the points, and the nearest vectors to the plane axis.contourf(xx, yy, Z, alpha=0.75, cmap=plt.cm.bone) axis.scatter(X[:, 0], X[:, 1], c=Y, s=100 * sample_weight, alpha=0.9, cmap=plt.cm.bone) axis.axis('off') axis.set_title(title) # we create 20 points np.random.seed(0) X = np.r_[np.random.randn(10, 2) + [1, 1], np.random.randn(10, 2)] Y = [1] * 10 + [-1] * 10 sample_weight_last_ten = abs(np.random.randn(len(X))) sample_weight_constant = np.ones(len(X)) # and bigger weights to some outliers sample_weight_last_ten[15:] *= 5 sample_weight_last_ten[9] *= 15 # for reference, first fit without class weights # fit the model clf_weights = svm.SVC() clf_weights.fit(X, Y, sample_weight=sample_weight_last_ten) clf_no_weights = svm.SVC() clf_no_weights.fit(X, Y) fig, axes = plt.subplots(1, 2, figsize=(14, 6)) plot_decision_function(clf_no_weights, sample_weight_constant, axes[0], "Constant weights") plot_decision_function(clf_weights, sample_weight_last_ten, axes[1], "Modified weights") plt.show()
bsd-3-clause
huangziwei/pyMF3
pymf3/factorization/_sparseseminmf.py
1
1891
import numpy as np from ._base import Base from sklearn.cluster import KMeans __all__ = ['ssNMF'] class ssNMF(Base): ''' semi-NMF with sparse contraint. ''' def __init__(self, data, W=None, H=None, num_bases=2, sparsity=0.25, **kwargs): super(ssNMF, self).__init__(data, num_bases=num_bases) self._sparsity_param = sparsity def _cost_function(self): cost = np.sqrt(np.sum((self.data[:,:] - np.dot(self.W, self.H)) ** 2)) + self._sparsity_param * np.sum(self.H) return cost def _init_W(self): kmeans = KMeans(n_clusters=self._num_bases, random_state=0).fit(self.data) labels = kmeans.labels_ W = np.zeros([self.ndims[0], self._num_bases]) for i in range(self.ndims[0]): for k in range(self._num_bases): if labels[i] == k: W[i, k] = 1 else: W[i, k] = 0 self.W = W + 0.2 def _update_H(self): WtV = np.dot(self.W.T, self.data) WtW = np.dot(self.W.T, self.W) # try: # self.H = np.dot(np.linalg.inv(WtW), WtV) # except np.linalg.linalg.LinAlgError: # self.H = np.dot(np.linalg.pinv(WtW), WtV) self.H *= WtV / (np.dot(WtW, self.H) + self._sparsity_param) # self.H[self.H == 0] = 1e-16 def _update_W(self): def pos(A): return (np.abs(A) + A) / 2 def neg(A): return (np.abs(A) - A) / 2 VHt = np.dot(self.data, self.H.T) HHt = np.dot(self.H, self.H.T) W1 = pos(VHt) + np.dot(self.W, neg(HHt)) W2 = neg(VHt) + np.dot(self.W, pos(HHt)) W1[W1 == 0] = 1e-16 W2[W2 == 0] = 1e-16 self.W *= np.sqrt(W1/W2) for i in range(self.W.shape[1]): self.W[:, i] /= np.linalg.norm(self.W[:, i])
mit
dcherian/tools
ROMS/pmacc/tools/post_tools/rompy/tags/rompy-0.1.6/make_standard_images.py
1
9070
#!/usr/bin/env python import os import glob from optparse import OptionParser import numpy as np import matplotlib.pyplot as plt from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure from rompy import rompy, plot_utils, utils, extract_utils def surface_map(file,img_file=None,varname='salt',clim=None): (data, coords) = rompy.extract(file,varname=varname,extraction_type='surface') # plot_utils.plot_surface(coords['xm'],coords['ym'],data) title = '%s %s %s %s' % ( extract_utils.run_title(file), os.path.basename(file), var_title_map[var], extract_utils.file_time(file).strftime(title_time_fmt) ) plot_utils.plot_map(coords['xm'],coords['ym'],data,filename=img_file, clim=clim, title=title, caxis_label=clabel_map[varname]) def main_basin_curtain(file,img_file,varname,n=4,clim=None): # Main Basin if varname == 'U': main_basin_U_curtain(file,img_file,n,clim) else: x,y = utils.high_res_main_basin_xy(n=n) (data, coords) = rompy.extract(file, varname=varname, extraction_type='profile', x=x, y=y) title = '%s %s Main Basin %s %s' % (extract_utils.run_title(file), os.path.basename(file), var_title_map[var], extract_utils.file_time(file).strftime(title_time_fmt)) plot_utils.plot_parker(coords=coords, data=data, varname=varname, region='Main Basin', filename=img_file, n=n, x_axis_offset=utils.offset_region(coords), clim=clim,cmap='banas_hsv_cm',labeled_contour_gap=2, title=title, caxis_label=clabel_map[varname]) def hood_canal_curtain(file,img_file,varname,n=1,clim=None): # Hood Canal if varname == 'U': hood_canal_U_curtain(file,img_file,n,clim) else: x,y = utils.high_res_hood_canal_xy(n=n) (data, coords) = rompy.extract(file, varname=varname, extraction_type='profile', x=x, y=y) title = '%s %s Hood Canal %s %s' % (extract_utils.run_title(file), os.path.basename(file), var_title_map[var], extract_utils.file_time(file).strftime(title_time_fmt)) plot_utils.plot_parker(coords=coords, data=data, varname=varname, region='Hood Canal', filename=img_file, n=n, x_axis_offset=utils.offset_region(coords), clim=clim, cmap='banas_hsv_cm',labeled_contour_gap=2, title=title, caxis_label=clabel_map[varname]) def hood_canal_U_curtain(file,img_file,n=1,clim=None): # velocity in Hood Canal x,y = utils.high_res_hood_canal_xy(n=n) (u, coords) = rompy.extract(file,varname='u',extraction_type='profile',x=x,y=y) (v, coords) = rompy.extract(file,varname='v',extraction_type='profile',x=x,y=y) data = np.zeros(u.shape) for i in range(u.shape[1]): if i == u.shape[1]-1: x_vec = np.array([x[i] - x[i-1], y[i] - y[i-1]]) else: x_vec = np.array([x[i+1] - x[i], y[i+1] - y[i]]) for j in range(u.shape[0]): u_vec = np.array([u[j,i], v[j,i]]) data[j,i] = np.dot(x_vec,u_vec)/(np.sqrt(np.dot(x_vec,x_vec))) data = np.ma.array(data, mask=np.abs(data) > 100) title = '%s %s Hood Canal %s %s' % (extract_utils.run_title(file), os.path.basename(file), var_title_map['U'], extract_utils.file_time(file).strftime(title_time_fmt)) hood_U_clim = (np.array(clim)/2.0).tolist() plot_utils.plot_parker(coords=coords,data=data,varname='U', region='Hood Canal', filename=img_file, n=n, clim=clim, x_axis_offset=utils.offset_region(coords), cmap='red_blue', title=title, caxis_label=clabel_map['U']) def main_basin_U_curtain(file,img_file,n=1,clim=None): # velocity in Main Basin x,y = utils.high_res_main_basin_xy(n=n) (u, coords) = rompy.extract(file,varname='u',extraction_type='profile',x=x,y=y) (v, coords) = rompy.extract(file,varname='v',extraction_type='profile',x=x,y=y) data = np.zeros(u.shape) for i in range(u.shape[1]): if i == u.shape[1]-1: x_vec = np.array([x[i] - x[i-1], y[i] - y[i-1]]) else: x_vec = np.array([x[i+1] - x[i], y[i+1] - y[i]]) for j in range(u.shape[0]): u_vec = np.array([u[j,i], v[j,i]]) data[j,i] = np.dot(x_vec,u_vec)/(np.sqrt(np.dot(x_vec,x_vec))) data = np.ma.array(data, mask=np.abs(data) > 100) title = '%s %s Main Basin %s %s' % (extract_utils.run_title(file), os.path.basename(file), var_title_map['U'], extract_utils.file_time(file).strftime(title_time_fmt)) plot_utils.plot_parker(coords=coords,data=data,varname='U', region=' Main Basin', filename=img_file, n=n, clim=clim, x_axis_offset=utils.offset_region(coords),cmap='red_blue', title=title, caxis_label=clabel_map['U']) def daves_curtain(file,img_file,section,varname,clim=None): if varname == 'U': daves_U_curtain(file,img_file,section,varname,clim) else: x = utils.get_daves_section_var(section=section,var='lon') y = utils.get_daves_section_var(section=section,var='lat') (data, coords) = rompy.extract(file, varname=varname, extraction_type='profile', x=x, y=y) title = '%s %s %s %s %s' % (extract_utils.run_title(file), os.path.basename(file), section, var_title_map[var], extract_utils.file_time(file).strftime(title_time_fmt)) plot_utils.plot_parker( coords=coords, data=data, filename=img_file, title=title, x_axis_offset=utils.offset_region(coords), clim=clim, cmap='banas_hsv_cm', labeled_contour_gap=2, caxis_label=clabel_map[varname], inset=inset_dict[section], ctd_ind=ctd_ind_dict[section], label=utils.get_daves_section_var(section=section,var='label'), label_ind=utils.get_daves_section_var(section=section,var='label_ind') ) return def daves_U_curtain(file,img_file,section,varname,clim): x = utils.get_daves_section_var(section=section,var='lon') y = utils.get_daves_section_var(section=section,var='lat') (u, coords) = rompy.extract(file,varname='u',extraction_type='profile',x=x,y=y) (v, coords) = rompy.extract(file,varname='v',extraction_type='profile',x=x,y=y) data = np.zeros(u.shape) for i in range(u.shape[1]): if i == u.shape[1]-1: x_vec = np.array([x[i] - x[i-1], y[i] - y[i-1]]) else: x_vec = np.array([x[i+1] - x[i], y[i+1] - y[i]]) for j in range(u.shape[0]): u_vec = np.array([u[j,i], v[j,i]]) data[j,i] = np.dot(x_vec,u_vec)/(np.sqrt(np.dot(x_vec,x_vec))) data = np.ma.array(data, mask=np.abs(data) > 100) title = '%s %s %s %s %s' % (extract_utils.run_title(file), os.path.basename(file), section, var_title_map['U'], extract_utils.file_time(file).strftime(title_time_fmt)) plot_utils.plot_parker( coords=coords, data=data, filename=img_file, title=title, x_axis_offset=utils.offset_region(coords), clim=clim, cmap='red_blue', labeled_contour_gap=2, caxis_label=clabel_map[varname], inset=inset_dict[section], ctd_ind=ctd_ind_dict[section], label=utils.get_daves_section_var(section=section,var='label'), label_ind=utils.get_daves_section_var(section=section,var='label_ind') ) return # begin actual code that runs. parser = OptionParser() parser.add_option('-i', '--img_dir', dest='img_dir', default='./image_sequence', help='Location to save images. Default is ./image_sequnce') (options, args) = parser.parse_args() if args == []: fl = glob.glob('ocean_his*.nc') print(fl) file_list = [fl[0]] else: file_list = args img_dir = options.img_dir var_list = ['salt','temp','U'] var_title_map = {'salt':'Salinity','temp':'Temperature','U':'Velocity'} title_time_fmt = '%Y-%m-%d %H:%M UTC' clims = {'salt':[0, 21,33, 33], 'temp': [8, 20], 'U':[-2,2]} clabel_map = {'temp': u'\u00B0 C', 'salt': 'psu', 'U': 'm/s'} inset_dict = {'AI_HC':'Puget Sound','AI_WB':'Puget Sound','JdF_SoG':'Strait of Georgia'} ctd_ind_dict = { 'AI_HC':utils.get_daves_section_var(section='AI_HC',var='PRISM_ctd_ind'), 'AI_WB':utils.get_daves_section_var(section='AI_WB',var='PRISM_ctd_ind'), 'JdF_SoG':utils.get_daves_section_var(section='JdF_SoG',var='IOS_ctd_ind') } ctd_ind_dict['JdF_SoG'].extend(utils.get_daves_section_var(section='JdF_SoG',var='JEMS_ctd_ind')) for file in file_list: ncf_index = os.path.basename(file)[:-3] print('%s' %ncf_index) if not os.path.exists(img_dir): os.makedirs(img_dir) for var in var_list: hood_img_file = '%s/%s_hood_%s.png' %(img_dir, ncf_index,var) main_img_file = '%s/%s_main_%s.png' %(img_dir, ncf_index,var) surface_img_file = '%s/%s_surface_%s.png' % (img_dir, ncf_index, var) AI_HC_img_file = '%s/AI_HC_%s_%s.png' %(img_dir,var,ncf_index) AI_WB_img_file = '%s/AI_WB_%s_%s.png' %(img_dir,var,ncf_index) JdF_SoG_img_file = '%s/JdF_SoG_%s_%s.png' %(img_dir,var,ncf_index) print('making hood canal %s' % var) hood_canal_curtain(file, hood_img_file, var, n=8, clim=clims[var]) print('making main basin %s' % var) main_basin_curtain(file, main_img_file, var, n=8, clim=clims[var]) print('making AI_HC %s' % var) daves_curtain(file,AI_HC_img_file,section='AI_HC',varname=var,clim=clims[var]) print('making AI_WB %s' % var) daves_curtain(file,AI_WB_img_file,section='AI_WB',varname=var,clim=clims[var]) print('making JdF_SoG %s' % var) daves_curtain(file,JdF_SoG_img_file,section='JdF_SoG',varname=var,clim=clims[var]) if not var == 'U': print('making surface %s' % var) surface_map(file,surface_img_file,var,clim=clims[var])
mit
ycool/apollo
modules/tools/vehicle_calibration/plot_data.py
3
4296
#!/usr/bin/env python ############################################################################### # Copyright 2017 The Apollo Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################### """ This module provide function to plot the speed control info from log csv file """ import sys import matplotlib.pyplot as plt import numpy as np import tkFileDialog from process import get_start_index from process import preprocess from process import process class Plotter(object): """ Plot the speed info """ def __init__(self): """ Init the speed info """ np.set_printoptions(precision=3) self.file = open('temp_result.csv', 'a') def process_data(self, filename): """ Load the file and preprocess th data """ self.data = preprocess(filename) self.tablecmd, self.tablespeed, self.tableacc, self.speedsection, self.accsection, self.timesection = process( self.data) def plot_result(self): """ Plot the desired data """ fig, axarr = plt.subplots(2, 1, sharex=True) plt.tight_layout() fig.subplots_adjust(hspace=0) axarr[0].plot( self.data['time'], self.data['ctlbrake'], label='Brake CMD') axarr[0].plot( self.data['time'], self.data['brake_percentage'], label='Brake Output') axarr[0].plot( self.data['time'], self.data['ctlthrottle'], label='Throttle CMD') axarr[0].plot( self.data['time'], self.data['throttle_percentage'], label='Throttle Output') axarr[0].plot( self.data['time'], self.data['engine_rpm'] / 100, label='Engine RPM') axarr[0].legend(fontsize='medium') axarr[0].grid(True) axarr[0].set_title('Command') axarr[1].plot( self.data['time'], self.data['vehicle_speed'], label='Vehicle Speed') for i in range(len(self.timesection)): axarr[1].plot( self.timesection[i], self.speedsection[i], label='Speed Segment') axarr[1].plot( self.timesection[i], self.accsection[i], label='IMU Segment') axarr[1].legend(fontsize='medium') axarr[1].grid(True) axarr[1].set_title('Speed') mng = plt.get_current_fig_manager() mng.full_screen_toggle() #plt.tight_layout(pad=0.20) fig.canvas.mpl_connect('key_press_event', self.press) plt.show() def press(self, event): """ Keyboard events during plotting """ if event.key == 'q' or event.key == 'Q': self.file.close() plt.close() if event.key == 'w' or event.key == 'W': for i in range(len(self.tablecmd)): for j in range(len(self.tablespeed[i])): self.file.write("%s, %s, %s\n" % (self.tablecmd[i], self.tablespeed[i][j], self.tableacc[i][j])) print("Finished writing results") def main(): """ demo """ if len(sys.argv) == 2: # Get the latest file file_path = sys.argv[1] else: file_path = tkFileDialog.askopenfilename( initialdir="/home/caros/.ros", filetypes=(("csv files", ".csv"), ("all files", "*.*"))) print('File path: %s' % file_path) plotter = Plotter() plotter.process_data(file_path) print('Finished reading the file.') plotter.plot_result() if __name__ == '__main__': main()
apache-2.0
clarkfitzg/seaborn
seaborn/axisgrid.py
20
66716
from __future__ import division from itertools import product from distutils.version import LooseVersion import warnings from textwrap import dedent import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt from six import string_types from . import utils from .palettes import color_palette class Grid(object): """Base class for grids of subplots.""" _margin_titles = False _legend_out = True def set(self, **kwargs): """Set attributes on each subplot Axes.""" for ax in self.axes.flat: ax.set(**kwargs) return self def savefig(self, *args, **kwargs): """Save the figure.""" kwargs = kwargs.copy() kwargs.setdefault("bbox_inches", "tight") self.fig.savefig(*args, **kwargs) def add_legend(self, legend_data=None, title=None, label_order=None, **kwargs): """Draw a legend, maybe placing it outside axes and resizing the figure. Parameters ---------- legend_data : dict, optional Dictionary mapping label names to matplotlib artist handles. The default reads from ``self._legend_data``. title : string, optional Title for the legend. The default reads from ``self._hue_var``. label_order : list of labels, optional The order that the legend entries should appear in. The default reads from ``self.hue_names`` or sorts the keys in ``legend_data``. kwargs : key, value pairings Other keyword arguments are passed to the underlying legend methods on the Figure or Axes object. Returns ------- self : Grid instance Returns self for easy chaining. """ # Find the data for the legend legend_data = self._legend_data if legend_data is None else legend_data if label_order is None: if self.hue_names is None: label_order = np.sort(list(legend_data.keys())) else: label_order = list(map(str, self.hue_names)) blank_handle = mpl.patches.Patch(alpha=0, linewidth=0) handles = [legend_data.get(l, blank_handle) for l in label_order] title = self._hue_var if title is None else title try: title_size = mpl.rcParams["axes.labelsize"] * .85 except TypeError: # labelsize is something like "large" title_size = mpl.rcParams["axes.labelsize"] # Set default legend kwargs kwargs.setdefault("scatterpoints", 1) if self._legend_out: # Draw a full-figure legend outside the grid figlegend = self.fig.legend(handles, label_order, "center right", **kwargs) self._legend = figlegend figlegend.set_title(title) # Set the title size a roundabout way to maintain # compatability with matplotlib 1.1 prop = mpl.font_manager.FontProperties(size=title_size) figlegend._legend_title_box._text.set_font_properties(prop) # Draw the plot to set the bounding boxes correctly plt.draw() # Calculate and set the new width of the figure so the legend fits legend_width = figlegend.get_window_extent().width / self.fig.dpi figure_width = self.fig.get_figwidth() self.fig.set_figwidth(figure_width + legend_width) # Draw the plot again to get the new transformations plt.draw() # Now calculate how much space we need on the right side legend_width = figlegend.get_window_extent().width / self.fig.dpi space_needed = legend_width / (figure_width + legend_width) margin = .04 if self._margin_titles else .01 self._space_needed = margin + space_needed right = 1 - self._space_needed # Place the subplot axes to give space for the legend self.fig.subplots_adjust(right=right) else: # Draw a legend in the first axis ax = self.axes.flat[0] leg = ax.legend(handles, label_order, loc="best", **kwargs) leg.set_title(title) # Set the title size a roundabout way to maintain # compatability with matplotlib 1.1 prop = mpl.font_manager.FontProperties(size=title_size) leg._legend_title_box._text.set_font_properties(prop) return self def _clean_axis(self, ax): """Turn off axis labels and legend.""" ax.set_xlabel("") ax.set_ylabel("") ax.legend_ = None return self def _update_legend_data(self, ax): """Extract the legend data from an axes object and save it.""" handles, labels = ax.get_legend_handles_labels() data = {l: h for h, l in zip(handles, labels)} self._legend_data.update(data) def _get_palette(self, data, hue, hue_order, palette): """Get a list of colors for the hue variable.""" if hue is None: palette = color_palette(n_colors=1) else: hue_names = utils.categorical_order(data[hue], hue_order) n_colors = len(hue_names) # By default use either the current color palette or HUSL if palette is None: current_palette = mpl.rcParams["axes.color_cycle"] if n_colors > len(current_palette): colors = color_palette("husl", n_colors) else: colors = color_palette(n_colors=n_colors) # Allow for palette to map from hue variable names elif isinstance(palette, dict): color_names = [palette[h] for h in hue_names] colors = color_palette(color_names, n_colors) # Otherwise act as if we just got a list of colors else: colors = color_palette(palette, n_colors) palette = color_palette(colors, n_colors) return palette _facet_docs = dict( data=dedent("""\ data : DataFrame Tidy ("long-form") dataframe where each column is a variable and each row is an observation.\ """), col_wrap=dedent("""\ col_wrap : int, optional "Wrap" the column variable at this width, so that the column facets span multiple rows. Incompatible with a ``row`` facet.\ """), share_xy=dedent("""\ share_{x,y} : bool, optional If true, the facets will share y axes across columns and/or x axes across rows.\ """), size=dedent("""\ size : scalar, optional Height (in inches) of each facet. See also: ``aspect``.\ """), aspect=dedent("""\ aspect : scalar, optional Aspect ratio of each facet, so that ``aspect * size`` gives the width of each facet in inches.\ """), palette=dedent("""\ palette : seaborn color palette or dict, optional Colors to use for the different levels of the ``hue`` variable. Should be something that can be interpreted by :func:`color_palette`, or a dictionary mapping hue levels to matplotlib colors.\ """), legend_out=dedent("""\ legend_out : bool, optional If ``True``, the figure size will be extended, and the legend will be drawn outside the plot on the center right.\ """), margin_titles=dedent("""\ margin_titles : bool, optional If ``True``, the titles for the row variable are drawn to the right of the last column. This option is experimental and may not work in all cases.\ """), ) class FacetGrid(Grid): """Subplot grid for plotting conditional relationships.""" def __init__(self, data, row=None, col=None, hue=None, col_wrap=None, sharex=True, sharey=True, size=3, aspect=1, palette=None, row_order=None, col_order=None, hue_order=None, hue_kws=None, dropna=True, legend_out=True, despine=True, margin_titles=False, xlim=None, ylim=None, subplot_kws=None, gridspec_kws=None): MPL_GRIDSPEC_VERSION = LooseVersion('1.4') OLD_MPL = LooseVersion(mpl.__version__) < MPL_GRIDSPEC_VERSION # Determine the hue facet layer information hue_var = hue if hue is None: hue_names = None else: hue_names = utils.categorical_order(data[hue], hue_order) colors = self._get_palette(data, hue, hue_order, palette) # Set up the lists of names for the row and column facet variables if row is None: row_names = [] else: row_names = utils.categorical_order(data[row], row_order) if col is None: col_names = [] else: col_names = utils.categorical_order(data[col], col_order) # Additional dict of kwarg -> list of values for mapping the hue var hue_kws = hue_kws if hue_kws is not None else {} # Make a boolean mask that is True anywhere there is an NA # value in one of the faceting variables, but only if dropna is True none_na = np.zeros(len(data), np.bool) if dropna: row_na = none_na if row is None else data[row].isnull() col_na = none_na if col is None else data[col].isnull() hue_na = none_na if hue is None else data[hue].isnull() not_na = ~(row_na | col_na | hue_na) else: not_na = ~none_na # Compute the grid shape ncol = 1 if col is None else len(col_names) nrow = 1 if row is None else len(row_names) self._n_facets = ncol * nrow self._col_wrap = col_wrap if col_wrap is not None: if row is not None: err = "Cannot use `row` and `col_wrap` together." raise ValueError(err) ncol = col_wrap nrow = int(np.ceil(len(data[col].unique()) / col_wrap)) self._ncol = ncol self._nrow = nrow # Calculate the base figure size # This can get stretched later by a legend figsize = (ncol * size * aspect, nrow * size) # Validate some inputs if col_wrap is not None: margin_titles = False # Build the subplot keyword dictionary subplot_kws = {} if subplot_kws is None else subplot_kws.copy() gridspec_kws = {} if gridspec_kws is None else gridspec_kws.copy() if xlim is not None: subplot_kws["xlim"] = xlim if ylim is not None: subplot_kws["ylim"] = ylim # Initialize the subplot grid if col_wrap is None: kwargs = dict(figsize=figsize, squeeze=False, sharex=sharex, sharey=sharey, subplot_kw=subplot_kws, gridspec_kw=gridspec_kws) if OLD_MPL: _ = kwargs.pop('gridspec_kw', None) if gridspec_kws: msg = "gridspec module only available in mpl >= {}" warnings.warn(msg.format(MPL_GRIDSPEC_VERSION)) fig, axes = plt.subplots(nrow, ncol, **kwargs) self.axes = axes else: # If wrapping the col variable we need to make the grid ourselves if gridspec_kws: warnings.warn("`gridspec_kws` ignored when using `col_wrap`") n_axes = len(col_names) fig = plt.figure(figsize=figsize) axes = np.empty(n_axes, object) axes[0] = fig.add_subplot(nrow, ncol, 1, **subplot_kws) if sharex: subplot_kws["sharex"] = axes[0] if sharey: subplot_kws["sharey"] = axes[0] for i in range(1, n_axes): axes[i] = fig.add_subplot(nrow, ncol, i + 1, **subplot_kws) self.axes = axes # Now we turn off labels on the inner axes if sharex: for ax in self._not_bottom_axes: for label in ax.get_xticklabels(): label.set_visible(False) ax.xaxis.offsetText.set_visible(False) if sharey: for ax in self._not_left_axes: for label in ax.get_yticklabels(): label.set_visible(False) ax.yaxis.offsetText.set_visible(False) # Set up the class attributes # --------------------------- # First the public API self.data = data self.fig = fig self.axes = axes self.row_names = row_names self.col_names = col_names self.hue_names = hue_names self.hue_kws = hue_kws # Next the private variables self._nrow = nrow self._row_var = row self._ncol = ncol self._col_var = col self._margin_titles = margin_titles self._col_wrap = col_wrap self._hue_var = hue_var self._colors = colors self._legend_out = legend_out self._legend = None self._legend_data = {} self._x_var = None self._y_var = None self._dropna = dropna self._not_na = not_na # Make the axes look good fig.tight_layout() if despine: self.despine() __init__.__doc__ = dedent("""\ Initialize the matplotlib figure and FacetGrid object. The :class:`FacetGrid` is an object that links a Pandas DataFrame to a matplotlib figure with a particular structure. In particular, :class:`FacetGrid` is used to draw plots with multiple Axes where each Axes shows the same relationship conditioned on different levels of some variable. It's possible to condition on up to three variables by assigning variables to the rows and columns of the grid and using different colors for the plot elements. The general approach to plotting here is called "small multiples", where the same kind of plot is repeated multiple times, and the specific use of small multiples to display the same relationship conditioned on one ore more other variables is often called a "trellis plot". The basic workflow is to initialize the :class:`FacetGrid` object with the dataset and the variables that are used to structure the grid. Then one or more plotting functions can be applied to each subset by calling :meth:`FacetGrid.map` or :meth:`FacetGrid.map_dataframe`. Finally, the plot can be tweaked with other methods to do things like change the axis labels, use different ticks, or add a legend. See the detailed code examples below for more information. Parameters ---------- {data} row, col, hue : strings Variables that define subsets of the data, which will be drawn on separate facets in the grid. See the ``*_order`` parameters to control the order of levels of this variable. {col_wrap} {share_xy} {size} {aspect} {palette} {{row,col,hue}}_order : lists, optional Order for the levels of the faceting variables. By default, this will be the order that the levels appear in ``data`` or, if the variables are pandas categoricals, the category order. hue_kws : dictionary of param -> list of values mapping Other keyword arguments to insert into the plotting call to let other plot attributes vary across levels of the hue variable (e.g. the markers in a scatterplot). {legend_out} despine : boolean, optional Remove the top and right spines from the plots. {margin_titles} {{x, y}}lim: tuples, optional Limits for each of the axes on each facet (only relevant when share{{x, y}} is True. subplot_kws : dict, optional Dictionary of keyword arguments passed to matplotlib subplot(s) methods. gridspec_kws : dict, optional Dictionary of keyword arguments passed to matplotlib's ``gridspec`` module (via ``plt.subplots``). Requires matplotlib >= 1.4 and is ignored if ``col_wrap`` is not ``None``. See Also -------- PairGrid : Subplot grid for plotting pairwise relationships. lmplot : Combine a regression plot and a :class:`FacetGrid`. factorplot : Combine a categorical plot and a :class:`FacetGrid`. Examples -------- Initialize a 2x2 grid of facets using the tips dataset: .. plot:: :context: close-figs >>> import seaborn as sns; sns.set(style="ticks", color_codes=True) >>> tips = sns.load_dataset("tips") >>> g = sns.FacetGrid(tips, col="time", row="smoker") Draw a univariate plot on each facet: .. plot:: :context: close-figs >>> import matplotlib.pyplot as plt >>> g = sns.FacetGrid(tips, col="time", row="smoker") >>> g = g.map(plt.hist, "total_bill") (Note that it's not necessary to re-catch the returned variable; it's the same object, but doing so in the examples makes dealing with the doctests somewhat less annoying). Pass additional keyword arguments to the mapped function: .. plot:: :context: close-figs >>> import numpy as np >>> bins = np.arange(0, 65, 5) >>> g = sns.FacetGrid(tips, col="time", row="smoker") >>> g = g.map(plt.hist, "total_bill", bins=bins, color="r") Plot a bivariate function on each facet: .. plot:: :context: close-figs >>> g = sns.FacetGrid(tips, col="time", row="smoker") >>> g = g.map(plt.scatter, "total_bill", "tip", edgecolor="w") Assign one of the variables to the color of the plot elements: .. plot:: :context: close-figs >>> g = sns.FacetGrid(tips, col="time", hue="smoker") >>> g = (g.map(plt.scatter, "total_bill", "tip", edgecolor="w") ... .add_legend()) Change the size and aspect ratio of each facet: .. plot:: :context: close-figs >>> g = sns.FacetGrid(tips, col="day", size=4, aspect=.5) >>> g = g.map(sns.boxplot, "time", "total_bill") Specify the order for plot elements: .. plot:: :context: close-figs >>> g = sns.FacetGrid(tips, col="smoker", col_order=["Yes", "No"]) >>> g = g.map(plt.hist, "total_bill", bins=bins, color="m") Use a different color palette: .. plot:: :context: close-figs >>> kws = dict(s=50, linewidth=.5, edgecolor="w") >>> g = sns.FacetGrid(tips, col="sex", hue="time", palette="Set1", ... hue_order=["Dinner", "Lunch"]) >>> g = (g.map(plt.scatter, "total_bill", "tip", **kws) ... .add_legend()) Use a dictionary mapping hue levels to colors: .. plot:: :context: close-figs >>> pal = dict(Lunch="seagreen", Dinner="gray") >>> g = sns.FacetGrid(tips, col="sex", hue="time", palette=pal, ... hue_order=["Dinner", "Lunch"]) >>> g = (g.map(plt.scatter, "total_bill", "tip", **kws) ... .add_legend()) Additionally use a different marker for the hue levels: .. plot:: :context: close-figs >>> g = sns.FacetGrid(tips, col="sex", hue="time", palette=pal, ... hue_order=["Dinner", "Lunch"], ... hue_kws=dict(marker=["^", "v"])) >>> g = (g.map(plt.scatter, "total_bill", "tip", **kws) ... .add_legend()) "Wrap" a column variable with many levels into the rows: .. plot:: :context: close-figs >>> attend = sns.load_dataset("attention") >>> g = sns.FacetGrid(attend, col="subject", col_wrap=5, ... size=1.5, ylim=(0, 10)) >>> g = g.map(sns.pointplot, "solutions", "score", scale=.7) Define a custom bivariate function to map onto the grid: .. plot:: :context: close-figs >>> from scipy import stats >>> def qqplot(x, y, **kwargs): ... _, xr = stats.probplot(x, fit=False) ... _, yr = stats.probplot(y, fit=False) ... plt.scatter(xr, yr, **kwargs) >>> g = sns.FacetGrid(tips, col="smoker", hue="sex") >>> g = (g.map(qqplot, "total_bill", "tip", **kws) ... .add_legend()) Define a custom function that uses a ``DataFrame`` object and accepts column names as positional variables: .. plot:: :context: close-figs >>> import pandas as pd >>> df = pd.DataFrame( ... data=np.random.randn(90, 4), ... columns=pd.Series(list("ABCD"), name="walk"), ... index=pd.date_range("Jan 1", "March 31", name="date")) >>> df = df.cumsum(axis=0).stack().reset_index(name="val") >>> def dateplot(x, y, **kwargs): ... ax = plt.gca() ... data = kwargs.pop("data") ... data.plot(x=x, y=y, ax=ax, grid=False, **kwargs) >>> g = sns.FacetGrid(df, col="walk", col_wrap=2, size=3.5) >>> g = g.map_dataframe(dateplot, "date", "val") Use different axes labels after plotting: .. plot:: :context: close-figs >>> g = sns.FacetGrid(tips, col="smoker", row="sex") >>> g = (g.map(plt.scatter, "total_bill", "tip", color="g", **kws) ... .set_axis_labels("Total bill (US Dollars)", "Tip")) Set other attributes that are shared across the facetes: .. plot:: :context: close-figs >>> g = sns.FacetGrid(tips, col="smoker", row="sex") >>> g = (g.map(plt.scatter, "total_bill", "tip", color="r", **kws) ... .set(xlim=(0, 60), ylim=(0, 12), ... xticks=[10, 30, 50], yticks=[2, 6, 10])) Use a different template for the facet titles: .. plot:: :context: close-figs >>> g = sns.FacetGrid(tips.sort("size"), col="size", col_wrap=3) >>> g = (g.map(plt.hist, "tip", bins=np.arange(0, 13), color="c") ... .set_titles("{{col_name}} diners")) Tighten the facets: .. plot:: :context: close-figs >>> g = sns.FacetGrid(tips, col="smoker", row="sex", ... margin_titles=True) >>> g = (g.map(plt.scatter, "total_bill", "tip", color="m", **kws) ... .set(xlim=(0, 60), ylim=(0, 12), ... xticks=[10, 30, 50], yticks=[2, 6, 10]) ... .fig.subplots_adjust(wspace=.05, hspace=.05)) """).format(**_facet_docs) def facet_data(self): """Generator for name indices and data subsets for each facet. Yields ------ (i, j, k), data_ijk : tuple of ints, DataFrame The ints provide an index into the {row, col, hue}_names attribute, and the dataframe contains a subset of the full data corresponding to each facet. The generator yields subsets that correspond with the self.axes.flat iterator, or self.axes[i, j] when `col_wrap` is None. """ data = self.data # Construct masks for the row variable if self._nrow == 1 or self._col_wrap is not None: row_masks = [np.repeat(True, len(self.data))] else: row_masks = [data[self._row_var] == n for n in self.row_names] # Construct masks for the column variable if self._ncol == 1: col_masks = [np.repeat(True, len(self.data))] else: col_masks = [data[self._col_var] == n for n in self.col_names] # Construct masks for the hue variable if len(self._colors) == 1: hue_masks = [np.repeat(True, len(self.data))] else: hue_masks = [data[self._hue_var] == n for n in self.hue_names] # Here is the main generator loop for (i, row), (j, col), (k, hue) in product(enumerate(row_masks), enumerate(col_masks), enumerate(hue_masks)): data_ijk = data[row & col & hue & self._not_na] yield (i, j, k), data_ijk def map(self, func, *args, **kwargs): """Apply a plotting function to each facet's subset of the data. Parameters ---------- func : callable A plotting function that takes data and keyword arguments. It must plot to the currently active matplotlib Axes and take a `color` keyword argument. If faceting on the `hue` dimension, it must also take a `label` keyword argument. args : strings Column names in self.data that identify variables with data to plot. The data for each variable is passed to `func` in the order the variables are specified in the call. kwargs : keyword arguments All keyword arguments are passed to the plotting function. Returns ------- self : object Returns self. """ # If color was a keyword argument, grab it here kw_color = kwargs.pop("color", None) # Iterate over the data subsets for (row_i, col_j, hue_k), data_ijk in self.facet_data(): # If this subset is null, move on if not data_ijk.values.tolist(): continue # Get the current axis ax = self.facet_axis(row_i, col_j) # Decide what color to plot with kwargs["color"] = self._facet_color(hue_k, kw_color) # Insert the other hue aesthetics if appropriate for kw, val_list in self.hue_kws.items(): kwargs[kw] = val_list[hue_k] # Insert a label in the keyword arguments for the legend if self._hue_var is not None: kwargs["label"] = str(self.hue_names[hue_k]) # Get the actual data we are going to plot with plot_data = data_ijk[list(args)] if self._dropna: plot_data = plot_data.dropna() plot_args = [v for k, v in plot_data.iteritems()] # Some matplotlib functions don't handle pandas objects correctly if func.__module__ is not None: if func.__module__.startswith("matplotlib"): plot_args = [v.values for v in plot_args] # Draw the plot self._facet_plot(func, ax, plot_args, kwargs) # Finalize the annotations and layout self._finalize_grid(args[:2]) return self def map_dataframe(self, func, *args, **kwargs): """Like `map` but passes args as strings and inserts data in kwargs. This method is suitable for plotting with functions that accept a long-form DataFrame as a `data` keyword argument and access the data in that DataFrame using string variable names. Parameters ---------- func : callable A plotting function that takes data and keyword arguments. Unlike the `map` method, a function used here must "understand" Pandas objects. It also must plot to the currently active matplotlib Axes and take a `color` keyword argument. If faceting on the `hue` dimension, it must also take a `label` keyword argument. args : strings Column names in self.data that identify variables with data to plot. The data for each variable is passed to `func` in the order the variables are specified in the call. kwargs : keyword arguments All keyword arguments are passed to the plotting function. Returns ------- self : object Returns self. """ # If color was a keyword argument, grab it here kw_color = kwargs.pop("color", None) # Iterate over the data subsets for (row_i, col_j, hue_k), data_ijk in self.facet_data(): # If this subset is null, move on if not data_ijk.values.tolist(): continue # Get the current axis ax = self.facet_axis(row_i, col_j) # Decide what color to plot with kwargs["color"] = self._facet_color(hue_k, kw_color) # Insert the other hue aesthetics if appropriate for kw, val_list in self.hue_kws.items(): kwargs[kw] = val_list[hue_k] # Insert a label in the keyword arguments for the legend if self._hue_var is not None: kwargs["label"] = self.hue_names[hue_k] # Stick the facet dataframe into the kwargs if self._dropna: data_ijk = data_ijk.dropna() kwargs["data"] = data_ijk # Draw the plot self._facet_plot(func, ax, args, kwargs) # Finalize the annotations and layout self._finalize_grid(args[:2]) return self def _facet_color(self, hue_index, kw_color): color = self._colors[hue_index] if kw_color is not None: return kw_color elif color is not None: return color def _facet_plot(self, func, ax, plot_args, plot_kwargs): # Draw the plot func(*plot_args, **plot_kwargs) # Sort out the supporting information self._update_legend_data(ax) self._clean_axis(ax) def _finalize_grid(self, axlabels): """Finalize the annotations and layout.""" self.set_axis_labels(*axlabels) self.set_titles() self.fig.tight_layout() def facet_axis(self, row_i, col_j): """Make the axis identified by these indices active and return it.""" # Calculate the actual indices of the axes to plot on if self._col_wrap is not None: ax = self.axes.flat[col_j] else: ax = self.axes[row_i, col_j] # Get a reference to the axes object we want, and make it active plt.sca(ax) return ax def despine(self, **kwargs): """Remove axis spines from the facets.""" utils.despine(self.fig, **kwargs) return self def set_axis_labels(self, x_var=None, y_var=None): """Set axis labels on the left column and bottom row of the grid.""" if x_var is not None: self._x_var = x_var self.set_xlabels(x_var) if y_var is not None: self._y_var = y_var self.set_ylabels(y_var) return self def set_xlabels(self, label=None, **kwargs): """Label the x axis on the bottom row of the grid.""" if label is None: label = self._x_var for ax in self._bottom_axes: ax.set_xlabel(label, **kwargs) return self def set_ylabels(self, label=None, **kwargs): """Label the y axis on the left column of the grid.""" if label is None: label = self._y_var for ax in self._left_axes: ax.set_ylabel(label, **kwargs) return self def set_xticklabels(self, labels=None, step=None, **kwargs): """Set x axis tick labels on the bottom row of the grid.""" for ax in self._bottom_axes: if labels is None: labels = [l.get_text() for l in ax.get_xticklabels()] if step is not None: xticks = ax.get_xticks()[::step] labels = labels[::step] ax.set_xticks(xticks) ax.set_xticklabels(labels, **kwargs) return self def set_yticklabels(self, labels=None, **kwargs): """Set y axis tick labels on the left column of the grid.""" for ax in self._left_axes: if labels is None: labels = [l.get_text() for l in ax.get_yticklabels()] ax.set_yticklabels(labels, **kwargs) return self def set_titles(self, template=None, row_template=None, col_template=None, **kwargs): """Draw titles either above each facet or on the grid margins. Parameters ---------- template : string Template for all titles with the formatting keys {col_var} and {col_name} (if using a `col` faceting variable) and/or {row_var} and {row_name} (if using a `row` faceting variable). row_template: Template for the row variable when titles are drawn on the grid margins. Must have {row_var} and {row_name} formatting keys. col_template: Template for the row variable when titles are drawn on the grid margins. Must have {col_var} and {col_name} formatting keys. Returns ------- self: object Returns self. """ args = dict(row_var=self._row_var, col_var=self._col_var) kwargs["size"] = kwargs.pop("size", mpl.rcParams["axes.labelsize"]) # Establish default templates if row_template is None: row_template = "{row_var} = {row_name}" if col_template is None: col_template = "{col_var} = {col_name}" if template is None: if self._row_var is None: template = col_template elif self._col_var is None: template = row_template else: template = " | ".join([row_template, col_template]) if self._margin_titles: if self.row_names is not None: # Draw the row titles on the right edge of the grid for i, row_name in enumerate(self.row_names): ax = self.axes[i, -1] args.update(dict(row_name=row_name)) title = row_template.format(**args) bgcolor = self.fig.get_facecolor() ax.annotate(title, xy=(1.02, .5), xycoords="axes fraction", rotation=270, ha="left", va="center", backgroundcolor=bgcolor, **kwargs) if self.col_names is not None: # Draw the column titles as normal titles for j, col_name in enumerate(self.col_names): args.update(dict(col_name=col_name)) title = col_template.format(**args) self.axes[0, j].set_title(title, **kwargs) return self # Otherwise title each facet with all the necessary information if (self._row_var is not None) and (self._col_var is not None): for i, row_name in enumerate(self.row_names): for j, col_name in enumerate(self.col_names): args.update(dict(row_name=row_name, col_name=col_name)) title = template.format(**args) self.axes[i, j].set_title(title, **kwargs) elif self.row_names is not None and len(self.row_names): for i, row_name in enumerate(self.row_names): args.update(dict(row_name=row_name)) title = template.format(**args) self.axes[i, 0].set_title(title, **kwargs) elif self.col_names is not None and len(self.col_names): for i, col_name in enumerate(self.col_names): args.update(dict(col_name=col_name)) title = template.format(**args) # Index the flat array so col_wrap works self.axes.flat[i].set_title(title, **kwargs) return self @property def ax(self): """Easy access to single axes.""" if self.axes.shape == (1, 1): return self.axes[0, 0] else: raise AttributeError @property def _inner_axes(self): """Return a flat array of the inner axes.""" if self._col_wrap is None: return self.axes[:-1, 1:].flat else: axes = [] n_empty = self._nrow * self._ncol - self._n_facets for i, ax in enumerate(self.axes): append = (i % self._ncol and i < (self._ncol * (self._nrow - 1)) and i < (self._ncol * (self._nrow - 1) - n_empty)) if append: axes.append(ax) return np.array(axes, object).flat @property def _left_axes(self): """Return a flat array of the left column of axes.""" if self._col_wrap is None: return self.axes[:, 0].flat else: axes = [] for i, ax in enumerate(self.axes): if not i % self._ncol: axes.append(ax) return np.array(axes, object).flat @property def _not_left_axes(self): """Return a flat array of axes that aren't on the left column.""" if self._col_wrap is None: return self.axes[:, 1:].flat else: axes = [] for i, ax in enumerate(self.axes): if i % self._ncol: axes.append(ax) return np.array(axes, object).flat @property def _bottom_axes(self): """Return a flat array of the bottom row of axes.""" if self._col_wrap is None: return self.axes[-1, :].flat else: axes = [] n_empty = self._nrow * self._ncol - self._n_facets for i, ax in enumerate(self.axes): append = (i >= (self._ncol * (self._nrow - 1)) or i >= (self._ncol * (self._nrow - 1) - n_empty)) if append: axes.append(ax) return np.array(axes, object).flat @property def _not_bottom_axes(self): """Return a flat array of axes that aren't on the bottom row.""" if self._col_wrap is None: return self.axes[:-1, :].flat else: axes = [] n_empty = self._nrow * self._ncol - self._n_facets for i, ax in enumerate(self.axes): append = (i < (self._ncol * (self._nrow - 1)) and i < (self._ncol * (self._nrow - 1) - n_empty)) if append: axes.append(ax) return np.array(axes, object).flat class PairGrid(Grid): """Subplot grid for plotting pairwise relationships in a dataset.""" def __init__(self, data, hue=None, hue_order=None, palette=None, hue_kws=None, vars=None, x_vars=None, y_vars=None, diag_sharey=True, size=2.5, aspect=1, despine=True, dropna=True): """Initialize the plot figure and PairGrid object. Parameters ---------- data : DataFrame Tidy (long-form) dataframe where each column is a variable and each row is an observation. hue : string (variable name), optional Variable in ``data`` to map plot aspects to different colors. hue_order : list of strings Order for the levels of the hue variable in the palette palette : dict or seaborn color palette Set of colors for mapping the ``hue`` variable. If a dict, keys should be values in the ``hue`` variable. hue_kws : dictionary of param -> list of values mapping Other keyword arguments to insert into the plotting call to let other plot attributes vary across levels of the hue variable (e.g. the markers in a scatterplot). vars : list of variable names, optional Variables within ``data`` to use, otherwise use every column with a numeric datatype. {x, y}_vars : lists of variable names, optional Variables within ``data`` to use separately for the rows and columns of the figure; i.e. to make a non-square plot. size : scalar, optional Height (in inches) of each facet. aspect : scalar, optional Aspect * size gives the width (in inches) of each facet. despine : boolean, optional Remove the top and right spines from the plots. dropna : boolean, optional Drop missing values from the data before plotting. See Also -------- pairplot : Easily drawing common uses of :class:`PairGrid`. FacetGrid : Subplot grid for plotting conditional relationships. Examples -------- Draw a scatterplot for each pairwise relationship: .. plot:: :context: close-figs >>> import matplotlib.pyplot as plt >>> import seaborn as sns; sns.set() >>> iris = sns.load_dataset("iris") >>> g = sns.PairGrid(iris) >>> g = g.map(plt.scatter) Show a univariate distribution on the diagonal: .. plot:: :context: close-figs >>> g = sns.PairGrid(iris) >>> g = g.map_diag(plt.hist) >>> g = g.map_offdiag(plt.scatter) (It's not actually necessary to catch the return value every time, as it is the same object, but it makes it easier to deal with the doctests). Color the points using a categorical variable: .. plot:: :context: close-figs >>> g = sns.PairGrid(iris, hue="species") >>> g = g.map(plt.scatter) >>> g = g.add_legend() Plot a subset of variables .. plot:: :context: close-figs >>> g = sns.PairGrid(iris, vars=["sepal_length", "sepal_width"]) >>> g = g.map(plt.scatter) Pass additional keyword arguments to the functions .. plot:: :context: close-figs >>> g = sns.PairGrid(iris) >>> g = g.map_diag(plt.hist, edgecolor="w") >>> g = g.map_offdiag(plt.scatter, edgecolor="w", s=40) Use different variables for the rows and columns: .. plot:: :context: close-figs >>> g = sns.PairGrid(iris, ... x_vars=["sepal_length", "sepal_width"], ... y_vars=["petal_length", "petal_width"]) >>> g = g.map(plt.scatter) Use different functions on the upper and lower triangles: .. plot:: :context: close-figs >>> g = sns.PairGrid(iris) >>> g = g.map_upper(plt.scatter) >>> g = g.map_lower(sns.kdeplot, cmap="Blues_d") >>> g = g.map_diag(sns.kdeplot, lw=3, legend=False) Use different colors and markers for each categorical level: .. plot:: :context: close-figs >>> g = sns.PairGrid(iris, hue="species", palette="Set2", ... hue_kws={"marker": ["o", "s", "D"]}) >>> g = g.map(plt.scatter, linewidths=1, edgecolor="w", s=40) >>> g = g.add_legend() """ # Sort out the variables that define the grid if vars is not None: x_vars = list(vars) y_vars = list(vars) elif (x_vars is not None) or (y_vars is not None): if (x_vars is None) or (y_vars is None): raise ValueError("Must specify `x_vars` and `y_vars`") else: numeric_cols = self._find_numeric_cols(data) x_vars = numeric_cols y_vars = numeric_cols if np.isscalar(x_vars): x_vars = [x_vars] if np.isscalar(y_vars): y_vars = [y_vars] self.x_vars = list(x_vars) self.y_vars = list(y_vars) self.square_grid = self.x_vars == self.y_vars # Create the figure and the array of subplots figsize = len(x_vars) * size * aspect, len(y_vars) * size fig, axes = plt.subplots(len(y_vars), len(x_vars), figsize=figsize, sharex="col", sharey="row", squeeze=False) self.fig = fig self.axes = axes self.data = data # Save what we are going to do with the diagonal self.diag_sharey = diag_sharey self.diag_axes = None # Label the axes self._add_axis_labels() # Sort out the hue variable self._hue_var = hue if hue is None: self.hue_names = ["_nolegend_"] self.hue_vals = pd.Series(["_nolegend_"] * len(data), index=data.index) else: hue_names = utils.categorical_order(data[hue], hue_order) if dropna: # Filter NA from the list of unique hue names hue_names = list(filter(pd.notnull, hue_names)) self.hue_names = hue_names self.hue_vals = data[hue] # Additional dict of kwarg -> list of values for mapping the hue var self.hue_kws = hue_kws if hue_kws is not None else {} self.palette = self._get_palette(data, hue, hue_order, palette) self._legend_data = {} # Make the plot look nice if despine: utils.despine(fig=fig) fig.tight_layout() def map(self, func, **kwargs): """Plot with the same function in every subplot. Parameters ---------- func : callable plotting function Must take x, y arrays as positional arguments and draw onto the "currently active" matplotlib Axes. """ kw_color = kwargs.pop("color", None) for i, y_var in enumerate(self.y_vars): for j, x_var in enumerate(self.x_vars): hue_grouped = self.data.groupby(self.hue_vals) for k, label_k in enumerate(self.hue_names): # Attempt to get data for this level, allowing for empty try: data_k = hue_grouped.get_group(label_k) except KeyError: data_k = pd.DataFrame(columns=self.data.columns, dtype=np.float) ax = self.axes[i, j] plt.sca(ax) # Insert the other hue aesthetics if appropriate for kw, val_list in self.hue_kws.items(): kwargs[kw] = val_list[k] color = self.palette[k] if kw_color is None else kw_color func(data_k[x_var], data_k[y_var], label=label_k, color=color, **kwargs) self._clean_axis(ax) self._update_legend_data(ax) if kw_color is not None: kwargs["color"] = kw_color self._add_axis_labels() return self def map_diag(self, func, **kwargs): """Plot with a univariate function on each diagonal subplot. Parameters ---------- func : callable plotting function Must take an x array as a positional arguments and draw onto the "currently active" matplotlib Axes. There is a special case when using a ``hue`` variable and ``plt.hist``; the histogram will be plotted with stacked bars. """ # Add special diagonal axes for the univariate plot if self.square_grid and self.diag_axes is None: diag_axes = [] for i, (var, ax) in enumerate(zip(self.x_vars, np.diag(self.axes))): if i and self.diag_sharey: diag_ax = ax._make_twin_axes(sharex=ax, sharey=diag_axes[0], frameon=False) else: diag_ax = ax._make_twin_axes(sharex=ax, frameon=False) diag_ax.set_axis_off() diag_axes.append(diag_ax) self.diag_axes = np.array(diag_axes, np.object) # Plot on each of the diagonal axes for i, var in enumerate(self.x_vars): ax = self.diag_axes[i] hue_grouped = self.data[var].groupby(self.hue_vals) # Special-case plt.hist with stacked bars if func is plt.hist: plt.sca(ax) vals = [] for label in self.hue_names: # Attempt to get data for this level, allowing for empty try: vals.append(np.asarray(hue_grouped.get_group(label))) except KeyError: vals.append(np.array([])) func(vals, color=self.palette, histtype="barstacked", **kwargs) else: for k, label_k in enumerate(self.hue_names): # Attempt to get data for this level, allowing for empty try: data_k = hue_grouped.get_group(label_k) except KeyError: data_k = np.array([]) plt.sca(ax) func(data_k, label=label_k, color=self.palette[k], **kwargs) self._clean_axis(ax) self._add_axis_labels() return self def map_lower(self, func, **kwargs): """Plot with a bivariate function on the lower diagonal subplots. Parameters ---------- func : callable plotting function Must take x, y arrays as positional arguments and draw onto the "currently active" matplotlib Axes. """ kw_color = kwargs.pop("color", None) for i, j in zip(*np.tril_indices_from(self.axes, -1)): hue_grouped = self.data.groupby(self.hue_vals) for k, label_k in enumerate(self.hue_names): # Attempt to get data for this level, allowing for empty try: data_k = hue_grouped.get_group(label_k) except KeyError: data_k = pd.DataFrame(columns=self.data.columns, dtype=np.float) ax = self.axes[i, j] plt.sca(ax) x_var = self.x_vars[j] y_var = self.y_vars[i] # Insert the other hue aesthetics if appropriate for kw, val_list in self.hue_kws.items(): kwargs[kw] = val_list[k] color = self.palette[k] if kw_color is None else kw_color func(data_k[x_var], data_k[y_var], label=label_k, color=color, **kwargs) self._clean_axis(ax) self._update_legend_data(ax) if kw_color is not None: kwargs["color"] = kw_color self._add_axis_labels() return self def map_upper(self, func, **kwargs): """Plot with a bivariate function on the upper diagonal subplots. Parameters ---------- func : callable plotting function Must take x, y arrays as positional arguments and draw onto the "currently active" matplotlib Axes. """ kw_color = kwargs.pop("color", None) for i, j in zip(*np.triu_indices_from(self.axes, 1)): hue_grouped = self.data.groupby(self.hue_vals) for k, label_k in enumerate(self.hue_names): # Attempt to get data for this level, allowing for empty try: data_k = hue_grouped.get_group(label_k) except KeyError: data_k = pd.DataFrame(columns=self.data.columns, dtype=np.float) ax = self.axes[i, j] plt.sca(ax) x_var = self.x_vars[j] y_var = self.y_vars[i] # Insert the other hue aesthetics if appropriate for kw, val_list in self.hue_kws.items(): kwargs[kw] = val_list[k] color = self.palette[k] if kw_color is None else kw_color func(data_k[x_var], data_k[y_var], label=label_k, color=color, **kwargs) self._clean_axis(ax) self._update_legend_data(ax) if kw_color is not None: kwargs["color"] = kw_color return self def map_offdiag(self, func, **kwargs): """Plot with a bivariate function on the off-diagonal subplots. Parameters ---------- func : callable plotting function Must take x, y arrays as positional arguments and draw onto the "currently active" matplotlib Axes. """ self.map_lower(func, **kwargs) self.map_upper(func, **kwargs) return self def _add_axis_labels(self): """Add labels to the left and bottom Axes.""" for ax, label in zip(self.axes[-1, :], self.x_vars): ax.set_xlabel(label) for ax, label in zip(self.axes[:, 0], self.y_vars): ax.set_ylabel(label) def _find_numeric_cols(self, data): """Find which variables in a DataFrame are numeric.""" # This can't be the best way to do this, but I do not # know what the best way might be, so this seems ok numeric_cols = [] for col in data: try: data[col].astype(np.float) numeric_cols.append(col) except (ValueError, TypeError): pass return numeric_cols class JointGrid(object): """Grid for drawing a bivariate plot with marginal univariate plots.""" def __init__(self, x, y, data=None, size=6, ratio=5, space=.2, dropna=True, xlim=None, ylim=None): """Set up the grid of subplots. Parameters ---------- x, y : strings or vectors Data or names of variables in ``data``. data : DataFrame, optional DataFrame when ``x`` and ``y`` are variable names. size : numeric Size of each side of the figure in inches (it will be square). ratio : numeric Ratio of joint axes size to marginal axes height. space : numeric, optional Space between the joint and marginal axes dropna : bool, optional If True, remove observations that are missing from `x` and `y`. {x, y}lim : two-tuples, optional Axis limits to set before plotting. See Also -------- jointplot : High-level interface for drawing bivariate plots with several different default plot kinds. Examples -------- Initialize the figure but don't draw any plots onto it: .. plot:: :context: close-figs >>> import seaborn as sns; sns.set(style="ticks", color_codes=True) >>> tips = sns.load_dataset("tips") >>> g = sns.JointGrid(x="total_bill", y="tip", data=tips) Add plots using default parameters: .. plot:: :context: close-figs >>> g = sns.JointGrid(x="total_bill", y="tip", data=tips) >>> g = g.plot(sns.regplot, sns.distplot) Draw the join and marginal plots separately, which allows finer-level control other parameters: .. plot:: :context: close-figs >>> import matplotlib.pyplot as plt >>> g = sns.JointGrid(x="total_bill", y="tip", data=tips) >>> g = g.plot_joint(plt.scatter, color=".5", edgecolor="white") >>> g = g.plot_marginals(sns.distplot, kde=False, color=".5") Draw the two marginal plots separately: .. plot:: :context: close-figs >>> import numpy as np >>> g = sns.JointGrid(x="total_bill", y="tip", data=tips) >>> g = g.plot_joint(plt.scatter, color="m", edgecolor="white") >>> _ = g.ax_marg_x.hist(tips["total_bill"], color="b", alpha=.6, ... bins=np.arange(0, 60, 5)) >>> _ = g.ax_marg_y.hist(tips["tip"], color="r", alpha=.6, ... orientation="horizontal", ... bins=np.arange(0, 12, 1)) Add an annotation with a statistic summarizing the bivariate relationship: .. plot:: :context: close-figs >>> from scipy import stats >>> g = sns.JointGrid(x="total_bill", y="tip", data=tips) >>> g = g.plot_joint(plt.scatter, ... color="g", s=40, edgecolor="white") >>> g = g.plot_marginals(sns.distplot, kde=False, color="g") >>> g = g.annotate(stats.pearsonr) Use a custom function and formatting for the annotation .. plot:: :context: close-figs >>> g = sns.JointGrid(x="total_bill", y="tip", data=tips) >>> g = g.plot_joint(plt.scatter, ... color="g", s=40, edgecolor="white") >>> g = g.plot_marginals(sns.distplot, kde=False, color="g") >>> rsquare = lambda a, b: stats.pearsonr(a, b)[0] ** 2 >>> g = g.annotate(rsquare, template="{stat}: {val:.2f}", ... stat="$R^2$", loc="upper left", fontsize=12) Remove the space between the joint and marginal axes: .. plot:: :context: close-figs >>> g = sns.JointGrid(x="total_bill", y="tip", data=tips, space=0) >>> g = g.plot_joint(sns.kdeplot, cmap="Blues_d") >>> g = g.plot_marginals(sns.kdeplot, shade=True) Draw a smaller plot with relatively larger marginal axes: .. plot:: :context: close-figs >>> g = sns.JointGrid(x="total_bill", y="tip", data=tips, ... size=5, ratio=2) >>> g = g.plot_joint(sns.kdeplot, cmap="Reds_d") >>> g = g.plot_marginals(sns.kdeplot, color="r", shade=True) Set limits on the axes: .. plot:: :context: close-figs >>> g = sns.JointGrid(x="total_bill", y="tip", data=tips, ... xlim=(0, 50), ylim=(0, 8)) >>> g = g.plot_joint(sns.kdeplot, cmap="Purples_d") >>> g = g.plot_marginals(sns.kdeplot, color="m", shade=True) """ # Set up the subplot grid f = plt.figure(figsize=(size, size)) gs = plt.GridSpec(ratio + 1, ratio + 1) ax_joint = f.add_subplot(gs[1:, :-1]) ax_marg_x = f.add_subplot(gs[0, :-1], sharex=ax_joint) ax_marg_y = f.add_subplot(gs[1:, -1], sharey=ax_joint) self.fig = f self.ax_joint = ax_joint self.ax_marg_x = ax_marg_x self.ax_marg_y = ax_marg_y # Turn off tick visibility for the measure axis on the marginal plots plt.setp(ax_marg_x.get_xticklabels(), visible=False) plt.setp(ax_marg_y.get_yticklabels(), visible=False) # Turn off the ticks on the density axis for the marginal plots plt.setp(ax_marg_x.yaxis.get_majorticklines(), visible=False) plt.setp(ax_marg_x.yaxis.get_minorticklines(), visible=False) plt.setp(ax_marg_y.xaxis.get_majorticklines(), visible=False) plt.setp(ax_marg_y.xaxis.get_minorticklines(), visible=False) plt.setp(ax_marg_x.get_yticklabels(), visible=False) plt.setp(ax_marg_y.get_xticklabels(), visible=False) ax_marg_x.yaxis.grid(False) ax_marg_y.xaxis.grid(False) # Possibly extract the variables from a DataFrame if data is not None: if x in data: x = data[x] if y in data: y = data[y] # Possibly drop NA if dropna: not_na = pd.notnull(x) & pd.notnull(y) x = x[not_na] y = y[not_na] # Find the names of the variables if hasattr(x, "name"): xlabel = x.name ax_joint.set_xlabel(xlabel) if hasattr(y, "name"): ylabel = y.name ax_joint.set_ylabel(ylabel) # Convert the x and y data to arrays for plotting self.x = np.asarray(x) self.y = np.asarray(y) if xlim is not None: ax_joint.set_xlim(xlim) if ylim is not None: ax_joint.set_ylim(ylim) # Make the grid look nice utils.despine(f) utils.despine(ax=ax_marg_x, left=True) utils.despine(ax=ax_marg_y, bottom=True) f.tight_layout() f.subplots_adjust(hspace=space, wspace=space) def plot(self, joint_func, marginal_func, annot_func=None): """Shortcut to draw the full plot. Use `plot_joint` and `plot_marginals` directly for more control. Parameters ---------- joint_func, marginal_func: callables Functions to draw the bivariate and univariate plots. Returns ------- self : JointGrid instance Returns `self`. """ self.plot_marginals(marginal_func) self.plot_joint(joint_func) if annot_func is not None: self.annotate(annot_func) return self def plot_joint(self, func, **kwargs): """Draw a bivariate plot of `x` and `y`. Parameters ---------- func : plotting callable This must take two 1d arrays of data as the first two positional arguments, and it must plot on the "current" axes. kwargs : key, value mappings Keyword argument are passed to the plotting function. Returns ------- self : JointGrid instance Returns `self`. """ plt.sca(self.ax_joint) func(self.x, self.y, **kwargs) return self def plot_marginals(self, func, **kwargs): """Draw univariate plots for `x` and `y` separately. Parameters ---------- func : plotting callable This must take a 1d array of data as the first positional argument, it must plot on the "current" axes, and it must accept a "vertical" keyword argument to orient the measure dimension of the plot vertically. kwargs : key, value mappings Keyword argument are passed to the plotting function. Returns ------- self : JointGrid instance Returns `self`. """ kwargs["vertical"] = False plt.sca(self.ax_marg_x) func(self.x, **kwargs) kwargs["vertical"] = True plt.sca(self.ax_marg_y) func(self.y, **kwargs) return self def annotate(self, func, template=None, stat=None, loc="best", **kwargs): """Annotate the plot with a statistic about the relationship. Parameters ---------- func : callable Statistical function that maps the x, y vectors either to (val, p) or to val. template : string format template, optional The template must have the format keys "stat" and "val"; if `func` returns a p value, it should also have the key "p". stat : string, optional Name to use for the statistic in the annotation, by default it uses the name of `func`. loc : string or int, optional Matplotlib legend location code; used to place the annotation. kwargs : key, value mappings Other keyword arguments are passed to `ax.legend`, which formats the annotation. Returns ------- self : JointGrid instance. Returns `self`. """ default_template = "{stat} = {val:.2g}; p = {p:.2g}" # Call the function and determine the form of the return value(s) out = func(self.x, self.y) try: val, p = out except TypeError: val, p = out, None default_template, _ = default_template.split(";") # Set the default template if template is None: template = default_template # Default to name of the function if stat is None: stat = func.__name__ # Format the annotation if p is None: annotation = template.format(stat=stat, val=val) else: annotation = template.format(stat=stat, val=val, p=p) # Draw an invisible plot and use the legend to draw the annotation # This is a bit of a hack, but `loc=best` works nicely and is not # easily abstracted. phantom, = self.ax_joint.plot(self.x, self.y, linestyle="", alpha=0) self.ax_joint.legend([phantom], [annotation], loc=loc, **kwargs) phantom.remove() return self def set_axis_labels(self, xlabel="", ylabel="", **kwargs): """Set the axis labels on the bivariate axes. Parameters ---------- xlabel, ylabel : strings Label names for the x and y variables. kwargs : key, value mappings Other keyword arguments are passed to the set_xlabel or set_ylabel. Returns ------- self : JointGrid instance returns `self` """ self.ax_joint.set_xlabel(xlabel, **kwargs) self.ax_joint.set_ylabel(ylabel, **kwargs) return self def savefig(self, *args, **kwargs): """Wrap figure.savefig defaulting to tight bounding box.""" kwargs.setdefault("bbox_inches", "tight") self.fig.savefig(*args, **kwargs)
bsd-3-clause
Jimmy-Morzaria/scikit-learn
sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py
221
5517
""" Testing for the gradient boosting loss functions and initial estimators. """ import numpy as np from numpy.testing import assert_array_equal from numpy.testing import assert_almost_equal from numpy.testing import assert_equal from nose.tools import assert_raises from sklearn.utils import check_random_state from sklearn.ensemble.gradient_boosting import BinomialDeviance from sklearn.ensemble.gradient_boosting import LogOddsEstimator from sklearn.ensemble.gradient_boosting import LeastSquaresError from sklearn.ensemble.gradient_boosting import RegressionLossFunction from sklearn.ensemble.gradient_boosting import LOSS_FUNCTIONS from sklearn.ensemble.gradient_boosting import _weighted_percentile def test_binomial_deviance(): # Check binomial deviance loss. # Check against alternative definitions in ESLII. bd = BinomialDeviance(2) # pred has the same BD for y in {0, 1} assert_equal(bd(np.array([0.0]), np.array([0.0])), bd(np.array([1.0]), np.array([0.0]))) assert_almost_equal(bd(np.array([1.0, 1.0, 1.0]), np.array([100.0, 100.0, 100.0])), 0.0) assert_almost_equal(bd(np.array([1.0, 0.0, 0.0]), np.array([100.0, -100.0, -100.0])), 0) # check if same results as alternative definition of deviance (from ESLII) alt_dev = lambda y, pred: np.mean(np.logaddexp(0.0, -2.0 * (2.0 * y - 1) * pred)) test_data = [(np.array([1.0, 1.0, 1.0]), np.array([100.0, 100.0, 100.0])), (np.array([0.0, 0.0, 0.0]), np.array([100.0, 100.0, 100.0])), (np.array([0.0, 0.0, 0.0]), np.array([-100.0, -100.0, -100.0])), (np.array([1.0, 1.0, 1.0]), np.array([-100.0, -100.0, -100.0]))] for datum in test_data: assert_almost_equal(bd(*datum), alt_dev(*datum)) # check the gradient against the alt_ng = lambda y, pred: (2 * y - 1) / (1 + np.exp(2 * (2 * y - 1) * pred)) for datum in test_data: assert_almost_equal(bd.negative_gradient(*datum), alt_ng(*datum)) def test_log_odds_estimator(): # Check log odds estimator. est = LogOddsEstimator() assert_raises(ValueError, est.fit, None, np.array([1])) est.fit(None, np.array([1.0, 0.0])) assert_equal(est.prior, 0.0) assert_array_equal(est.predict(np.array([[1.0], [1.0]])), np.array([[0.0], [0.0]])) def test_sample_weight_smoke(): rng = check_random_state(13) y = rng.rand(100) pred = rng.rand(100) # least squares loss = LeastSquaresError(1) loss_wo_sw = loss(y, pred) loss_w_sw = loss(y, pred, np.ones(pred.shape[0], dtype=np.float32)) assert_almost_equal(loss_wo_sw, loss_w_sw) def test_sample_weight_init_estimators(): # Smoke test for init estimators with sample weights. rng = check_random_state(13) X = rng.rand(100, 2) sample_weight = np.ones(100) reg_y = rng.rand(100) clf_y = rng.randint(0, 2, size=100) for Loss in LOSS_FUNCTIONS.values(): if Loss is None: continue if issubclass(Loss, RegressionLossFunction): k = 1 y = reg_y else: k = 2 y = clf_y if Loss.is_multi_class: # skip multiclass continue loss = Loss(k) init_est = loss.init_estimator() init_est.fit(X, y) out = init_est.predict(X) assert_equal(out.shape, (y.shape[0], 1)) sw_init_est = loss.init_estimator() sw_init_est.fit(X, y, sample_weight=sample_weight) sw_out = init_est.predict(X) assert_equal(sw_out.shape, (y.shape[0], 1)) # check if predictions match assert_array_equal(out, sw_out) def test_weighted_percentile(): y = np.empty(102, dtype=np.float) y[:50] = 0 y[-51:] = 2 y[-1] = 100000 y[50] = 1 sw = np.ones(102, dtype=np.float) sw[-1] = 0.0 score = _weighted_percentile(y, sw, 50) assert score == 1 def test_weighted_percentile_equal(): y = np.empty(102, dtype=np.float) y.fill(0.0) sw = np.ones(102, dtype=np.float) sw[-1] = 0.0 score = _weighted_percentile(y, sw, 50) assert score == 0 def test_weighted_percentile_zero_weight(): y = np.empty(102, dtype=np.float) y.fill(1.0) sw = np.ones(102, dtype=np.float) sw.fill(0.0) score = _weighted_percentile(y, sw, 50) assert score == 1.0 def test_sample_weight_deviance(): # Test if deviance supports sample weights. rng = check_random_state(13) X = rng.rand(100, 2) sample_weight = np.ones(100) reg_y = rng.rand(100) clf_y = rng.randint(0, 2, size=100) mclf_y = rng.randint(0, 3, size=100) for Loss in LOSS_FUNCTIONS.values(): if Loss is None: continue if issubclass(Loss, RegressionLossFunction): k = 1 y = reg_y p = reg_y else: k = 2 y = clf_y p = clf_y if Loss.is_multi_class: k = 3 y = mclf_y # one-hot encoding p = np.zeros((y.shape[0], k), dtype=np.float64) for i in range(k): p[:, i] = y == i loss = Loss(k) deviance_w_w = loss(y, p, sample_weight) deviance_wo_w = loss(y, p) assert deviance_wo_w == deviance_w_w
bsd-3-clause
NunoEdgarGub1/scikit-learn
examples/neural_networks/plot_rbm_logistic_classification.py
258
4609
""" ============================================================== Restricted Boltzmann Machine features for digit classification ============================================================== For greyscale image data where pixel values can be interpreted as degrees of blackness on a white background, like handwritten digit recognition, the Bernoulli Restricted Boltzmann machine model (:class:`BernoulliRBM <sklearn.neural_network.BernoulliRBM>`) can perform effective non-linear feature extraction. In order to learn good latent representations from a small dataset, we artificially generate more labeled data by perturbing the training data with linear shifts of 1 pixel in each direction. This example shows how to build a classification pipeline with a BernoulliRBM feature extractor and a :class:`LogisticRegression <sklearn.linear_model.LogisticRegression>` classifier. The hyperparameters of the entire model (learning rate, hidden layer size, regularization) were optimized by grid search, but the search is not reproduced here because of runtime constraints. Logistic regression on raw pixel values is presented for comparison. The example shows that the features extracted by the BernoulliRBM help improve the classification accuracy. """ from __future__ import print_function print(__doc__) # Authors: Yann N. Dauphin, Vlad Niculae, Gabriel Synnaeve # License: BSD import numpy as np import matplotlib.pyplot as plt from scipy.ndimage import convolve from sklearn import linear_model, datasets, metrics from sklearn.cross_validation import train_test_split from sklearn.neural_network import BernoulliRBM from sklearn.pipeline import Pipeline ############################################################################### # Setting up def nudge_dataset(X, Y): """ This produces a dataset 5 times bigger than the original one, by moving the 8x8 images in X around by 1px to left, right, down, up """ direction_vectors = [ [[0, 1, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [1, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 1], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 1, 0]]] shift = lambda x, w: convolve(x.reshape((8, 8)), mode='constant', weights=w).ravel() X = np.concatenate([X] + [np.apply_along_axis(shift, 1, X, vector) for vector in direction_vectors]) Y = np.concatenate([Y for _ in range(5)], axis=0) return X, Y # Load Data digits = datasets.load_digits() X = np.asarray(digits.data, 'float32') X, Y = nudge_dataset(X, digits.target) X = (X - np.min(X, 0)) / (np.max(X, 0) + 0.0001) # 0-1 scaling X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=0) # Models we will use logistic = linear_model.LogisticRegression() rbm = BernoulliRBM(random_state=0, verbose=True) classifier = Pipeline(steps=[('rbm', rbm), ('logistic', logistic)]) ############################################################################### # Training # Hyper-parameters. These were set by cross-validation, # using a GridSearchCV. Here we are not performing cross-validation to # save time. rbm.learning_rate = 0.06 rbm.n_iter = 20 # More components tend to give better prediction performance, but larger # fitting time rbm.n_components = 100 logistic.C = 6000.0 # Training RBM-Logistic Pipeline classifier.fit(X_train, Y_train) # Training Logistic regression logistic_classifier = linear_model.LogisticRegression(C=100.0) logistic_classifier.fit(X_train, Y_train) ############################################################################### # Evaluation print() print("Logistic regression using RBM features:\n%s\n" % ( metrics.classification_report( Y_test, classifier.predict(X_test)))) print("Logistic regression using raw pixel features:\n%s\n" % ( metrics.classification_report( Y_test, logistic_classifier.predict(X_test)))) ############################################################################### # Plotting plt.figure(figsize=(4.2, 4)) for i, comp in enumerate(rbm.components_): plt.subplot(10, 10, i + 1) plt.imshow(comp.reshape((8, 8)), cmap=plt.cm.gray_r, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle('100 components extracted by RBM', fontsize=16) plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) plt.show()
bsd-3-clause
quasiben/bokeh
bokeh/core/compat/mplexporter/exporter.py
8
12406
""" Matplotlib Exporter =================== This submodule contains tools for crawling a matplotlib figure and exporting relevant pieces to a renderer. """ import warnings import io from . import utils import matplotlib from matplotlib import transforms from matplotlib.backends.backend_agg import FigureCanvasAgg class Exporter(object): """Matplotlib Exporter Parameters ---------- renderer : Renderer object The renderer object called by the exporter to create a figure visualization. See mplexporter.Renderer for information on the methods which should be defined within the renderer. close_mpl : bool If True (default), close the matplotlib figure as it is rendered. This is useful for when the exporter is used within the notebook, or with an interactive matplotlib backend. """ def __init__(self, renderer, close_mpl=True): self.close_mpl = close_mpl self.renderer = renderer def run(self, fig): """ Run the exporter on the given figure Parameters --------- fig : matplotlib.Figure instance The figure to export """ # Calling savefig executes the draw() command, putting elements # in the correct place. if fig.canvas is None: fig.canvas = FigureCanvasAgg(fig) fig.savefig(io.BytesIO(), format='png', dpi=fig.dpi) if self.close_mpl: import matplotlib.pyplot as plt plt.close(fig) self.crawl_fig(fig) @staticmethod def process_transform(transform, ax=None, data=None, return_trans=False, force_trans=None): """Process the transform and convert data to figure or data coordinates Parameters ---------- transform : matplotlib Transform object The transform applied to the data ax : matplotlib Axes object (optional) The axes the data is associated with data : ndarray (optional) The array of data to be transformed. return_trans : bool (optional) If true, return the final transform of the data force_trans : matplotlib.transform instance (optional) If supplied, first force the data to this transform Returns ------- code : string Code is either "data", "axes", "figure", or "display", indicating the type of coordinates output. transform : matplotlib transform the transform used to map input data to output data. Returned only if return_trans is True new_data : ndarray Data transformed to match the given coordinate code. Returned only if data is specified """ if isinstance(transform, transforms.BlendedGenericTransform): warnings.warn("Blended transforms not yet supported. " "Zoom behavior may not work as expected.") if force_trans is not None: if data is not None: data = (transform - force_trans).transform(data) transform = force_trans code = "display" if ax is not None: for (c, trans) in [("data", ax.transData), ("axes", ax.transAxes), ("figure", ax.figure.transFigure), ("display", transforms.IdentityTransform())]: if transform.contains_branch(trans): code, transform = (c, transform - trans) break if data is not None: if return_trans: return code, transform.transform(data), transform else: return code, transform.transform(data) else: if return_trans: return code, transform else: return code def crawl_fig(self, fig): """Crawl the figure and process all axes""" with self.renderer.draw_figure(fig=fig, props=utils.get_figure_properties(fig)): for ax in fig.axes: self.crawl_ax(ax) def crawl_ax(self, ax): """Crawl the axes and process all elements within""" with self.renderer.draw_axes(ax=ax, props=utils.get_axes_properties(ax)): for line in ax.lines: self.draw_line(ax, line) for text in ax.texts: self.draw_text(ax, text) for (text, ttp) in zip([ax.xaxis.label, ax.yaxis.label, ax.title], ["xlabel", "ylabel", "title"]): if(hasattr(text, 'get_text') and text.get_text()): self.draw_text(ax, text, force_trans=ax.transAxes, text_type=ttp) for artist in ax.artists: # TODO: process other artists if isinstance(artist, matplotlib.text.Text): self.draw_text(ax, artist) for patch in ax.patches: self.draw_patch(ax, patch) for collection in ax.collections: self.draw_collection(ax, collection) for image in ax.images: self.draw_image(ax, image) legend = ax.get_legend() if legend is not None: props = utils.get_legend_properties(ax, legend) with self.renderer.draw_legend(legend=legend, props=props): if props['visible']: self.crawl_legend(ax, legend) def crawl_legend(self, ax, legend): """ Recursively look through objects in legend children """ legendElements = list(utils.iter_all_children(legend._legend_box, skipContainers=True)) legendElements.append(legend.legendPatch) for child in legendElements: # force a large zorder so it appears on top child.set_zorder(1E6 + child.get_zorder()) try: # What kind of object... if isinstance(child, matplotlib.patches.Patch): self.draw_patch(ax, child, force_trans=ax.transAxes) elif isinstance(child, matplotlib.text.Text): if not (child is legend.get_children()[-1] and child.get_text() == 'None'): self.draw_text(ax, child, force_trans=ax.transAxes) elif isinstance(child, matplotlib.lines.Line2D): self.draw_line(ax, child, force_trans=ax.transAxes) elif isinstance(child, matplotlib.collections.Collection): self.draw_collection(ax, child, force_pathtrans=ax.transAxes) else: warnings.warn("Legend element %s not implemented" % child) except NotImplementedError: warnings.warn("Legend element %s not implemented" % child) def draw_line(self, ax, line, force_trans=None): """Process a matplotlib line and call renderer.draw_line""" coordinates, data = self.process_transform(line.get_transform(), ax, line.get_xydata(), force_trans=force_trans) linestyle = utils.get_line_style(line) if linestyle['dasharray'] is None: linestyle = None markerstyle = utils.get_marker_style(line) if (markerstyle['marker'] in ['None', 'none', None] or markerstyle['markerpath'][0].size == 0): markerstyle = None label = line.get_label() if markerstyle or linestyle: self.renderer.draw_marked_line(data=data, coordinates=coordinates, linestyle=linestyle, markerstyle=markerstyle, label=label, mplobj=line) def draw_text(self, ax, text, force_trans=None, text_type=None): """Process a matplotlib text object and call renderer.draw_text""" content = text.get_text() if content: transform = text.get_transform() position = text.get_position() coords, position = self.process_transform(transform, ax, position, force_trans=force_trans) style = utils.get_text_style(text) self.renderer.draw_text(text=content, position=position, coordinates=coords, text_type=text_type, style=style, mplobj=text) def draw_patch(self, ax, patch, force_trans=None): """Process a matplotlib patch object and call renderer.draw_path""" vertices, pathcodes = utils.SVG_path(patch.get_path()) transform = patch.get_transform() coordinates, vertices = self.process_transform(transform, ax, vertices, force_trans=force_trans) linestyle = utils.get_path_style(patch, fill=patch.get_fill()) self.renderer.draw_path(data=vertices, coordinates=coordinates, pathcodes=pathcodes, style=linestyle, mplobj=patch) def draw_collection(self, ax, collection, force_pathtrans=None, force_offsettrans=None): """Process a matplotlib collection and call renderer.draw_collection""" (transform, transOffset, offsets, paths) = collection._prepare_points() offset_coords, offsets = self.process_transform( transOffset, ax, offsets, force_trans=force_offsettrans) path_coords = self.process_transform( transform, ax, force_trans=force_pathtrans) processed_paths = [utils.SVG_path(path) for path in paths] processed_paths = [(self.process_transform( transform, ax, path[0], force_trans=force_pathtrans)[1], path[1]) for path in processed_paths] path_transforms = collection.get_transforms() try: # matplotlib 1.3: path_transforms are transform objects. # Convert them to numpy arrays. path_transforms = [t.get_matrix() for t in path_transforms] except AttributeError: # matplotlib 1.4: path transforms are already numpy arrays. pass styles = {'linewidth': collection.get_linewidths(), 'facecolor': collection.get_facecolors(), 'edgecolor': collection.get_edgecolors(), 'alpha': collection._alpha, 'zorder': collection.get_zorder()} offset_dict = {"data": "before", "screen": "after"} offset_order = offset_dict[collection.get_offset_position()] self.renderer.draw_path_collection(paths=processed_paths, path_coordinates=path_coords, path_transforms=path_transforms, offsets=offsets, offset_coordinates=offset_coords, offset_order=offset_order, styles=styles, mplobj=collection) def draw_image(self, ax, image): """Process a matplotlib image object and call renderer.draw_image""" self.renderer.draw_image(imdata=utils.image_to_base64(image), extent=image.get_extent(), coordinates="data", style={"alpha": image.get_alpha(), "zorder": image.get_zorder()}, mplobj=image)
bsd-3-clause
bootphon/abx_numpy
examples/2D_normal_example.py
1
1680
""" This example apply the abx evaluation on 2D data sampled from gaussian distributions (diagonal covariance) """ from __future__ import print_function import abx_numpy import numpy as np def sample_data(parameters): data = [] n_samples = [] for klass in parameters: sample = np.empty((klass['N'], 2)) for i in range(2): sample[:, i] = np.random.normal(klass['mean'][i], klass['std'][i], klass['N']) data.append(sample) n_samples.append(klass['N']) classes = np.repeat(np.arange(len(parameters)), repeats=n_samples) data = np.concatenate(data, axis=0) return classes, data def plot_data(parameters, data): import matplotlib.pyplot as plt assert len(parameters) <= 3, 'Cannot plot more than 3 classes' i = 0 colors = ['r', 'g', 'b'] for n_klass, klass in enumerate(parameters): plt.plot(*data[i:i+klass['N']].T, marker='o', color=colors[n_klass], ls='', label='class {}'.format(n_klass+1)) i += klass['N'] plt.legend(numpoints=1) plt.title('Normally distributed data points (diagonal covariance)') plt.show() def evaluate(): parameters = [ {'mean': [1, 1], 'std': [0.5, 1], 'N': 100}, {'mean': [1, 3], 'std': [1, 1], 'N': 150}, {'mean': [3, 2], 'std': [0.5, 0.5], 'N': 200} ] classes, data = sample_data(parameters) plot_data(parameters, data) results = abx_numpy.abx(classes, data, lambda x, y: np.linalg.norm(x - y)) print(results) if __name__ == '__main__': evaluate()
gpl-3.0
lmallin/coverage_test
python_venv/lib/python2.7/site-packages/pandas/tests/indexes/timedeltas/test_indexing.py
13
4622
import pytest from datetime import timedelta import pandas.util.testing as tm from pandas import TimedeltaIndex, timedelta_range, compat, Index, Timedelta class TestTimedeltaIndex(object): _multiprocess_can_split_ = True def test_insert(self): idx = TimedeltaIndex(['4day', '1day', '2day'], name='idx') result = idx.insert(2, timedelta(days=5)) exp = TimedeltaIndex(['4day', '1day', '5day', '2day'], name='idx') tm.assert_index_equal(result, exp) # insertion of non-datetime should coerce to object index result = idx.insert(1, 'inserted') expected = Index([Timedelta('4day'), 'inserted', Timedelta('1day'), Timedelta('2day')], name='idx') assert not isinstance(result, TimedeltaIndex) tm.assert_index_equal(result, expected) assert result.name == expected.name idx = timedelta_range('1day 00:00:01', periods=3, freq='s', name='idx') # preserve freq expected_0 = TimedeltaIndex(['1day', '1day 00:00:01', '1day 00:00:02', '1day 00:00:03'], name='idx', freq='s') expected_3 = TimedeltaIndex(['1day 00:00:01', '1day 00:00:02', '1day 00:00:03', '1day 00:00:04'], name='idx', freq='s') # reset freq to None expected_1_nofreq = TimedeltaIndex(['1day 00:00:01', '1day 00:00:01', '1day 00:00:02', '1day 00:00:03'], name='idx', freq=None) expected_3_nofreq = TimedeltaIndex(['1day 00:00:01', '1day 00:00:02', '1day 00:00:03', '1day 00:00:05'], name='idx', freq=None) cases = [(0, Timedelta('1day'), expected_0), (-3, Timedelta('1day'), expected_0), (3, Timedelta('1day 00:00:04'), expected_3), (1, Timedelta('1day 00:00:01'), expected_1_nofreq), (3, Timedelta('1day 00:00:05'), expected_3_nofreq)] for n, d, expected in cases: result = idx.insert(n, d) tm.assert_index_equal(result, expected) assert result.name == expected.name assert result.freq == expected.freq def test_delete(self): idx = timedelta_range(start='1 Days', periods=5, freq='D', name='idx') # prserve freq expected_0 = timedelta_range(start='2 Days', periods=4, freq='D', name='idx') expected_4 = timedelta_range(start='1 Days', periods=4, freq='D', name='idx') # reset freq to None expected_1 = TimedeltaIndex( ['1 day', '3 day', '4 day', '5 day'], freq=None, name='idx') cases = {0: expected_0, -5: expected_0, -1: expected_4, 4: expected_4, 1: expected_1} for n, expected in compat.iteritems(cases): result = idx.delete(n) tm.assert_index_equal(result, expected) assert result.name == expected.name assert result.freq == expected.freq with pytest.raises((IndexError, ValueError)): # either depeidnig on numpy version result = idx.delete(5) def test_delete_slice(self): idx = timedelta_range(start='1 days', periods=10, freq='D', name='idx') # prserve freq expected_0_2 = timedelta_range(start='4 days', periods=7, freq='D', name='idx') expected_7_9 = timedelta_range(start='1 days', periods=7, freq='D', name='idx') # reset freq to None expected_3_5 = TimedeltaIndex(['1 d', '2 d', '3 d', '7 d', '8 d', '9 d', '10d'], freq=None, name='idx') cases = {(0, 1, 2): expected_0_2, (7, 8, 9): expected_7_9, (3, 4, 5): expected_3_5} for n, expected in compat.iteritems(cases): result = idx.delete(n) tm.assert_index_equal(result, expected) assert result.name == expected.name assert result.freq == expected.freq result = idx.delete(slice(n[0], n[-1] + 1)) tm.assert_index_equal(result, expected) assert result.name == expected.name assert result.freq == expected.freq
mit
elijah513/scikit-learn
examples/model_selection/plot_confusion_matrix.py
244
2496
""" ================ Confusion matrix ================ Example of confusion matrix usage to evaluate the quality of the output of a classifier on the iris data set. The diagonal elements represent the number of points for which the predicted label is equal to the true label, while off-diagonal elements are those that are mislabeled by the classifier. The higher the diagonal values of the confusion matrix the better, indicating many correct predictions. The figures show the confusion matrix with and without normalization by class support size (number of elements in each class). This kind of normalization can be interesting in case of class imbalance to have a more visual interpretation of which class is being misclassified. Here the results are not as good as they could be as our choice for the regularization parameter C was not the best. In real life applications this parameter is usually chosen using :ref:`grid_search`. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets from sklearn.cross_validation import train_test_split from sklearn.metrics import confusion_matrix # import some data to play with iris = datasets.load_iris() X = iris.data y = iris.target # Split the data into a training set and a test set X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) # Run classifier, using a model that is too regularized (C too low) to see # the impact on the results classifier = svm.SVC(kernel='linear', C=0.01) y_pred = classifier.fit(X_train, y_train).predict(X_test) def plot_confusion_matrix(cm, title='Confusion matrix', cmap=plt.cm.Blues): plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(iris.target_names)) plt.xticks(tick_marks, iris.target_names, rotation=45) plt.yticks(tick_marks, iris.target_names) plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') # Compute confusion matrix cm = confusion_matrix(y_test, y_pred) np.set_printoptions(precision=2) print('Confusion matrix, without normalization') print(cm) plt.figure() plot_confusion_matrix(cm) # Normalize the confusion matrix by row (i.e by the number of samples # in each class) cm_normalized = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print('Normalized confusion matrix') print(cm_normalized) plt.figure() plot_confusion_matrix(cm_normalized, title='Normalized confusion matrix') plt.show()
bsd-3-clause
boomsbloom/dtm-fmri
DTM/for_gensim/lib/python2.7/site-packages/matplotlib/tests/test_simplification.py
3
7188
from __future__ import (absolute_import, division, print_function, unicode_literals) from matplotlib.externals import six import numpy as np import matplotlib from matplotlib.testing.decorators import image_comparison, knownfailureif, cleanup import matplotlib.pyplot as plt from pylab import * import numpy as np from matplotlib import patches, path, transforms from nose.tools import raises import io nan = np.nan Path = path.Path # NOTE: All of these tests assume that path.simplify is set to True # (the default) @image_comparison(baseline_images=['clipping'], remove_text=True) def test_clipping(): t = np.arange(0.0, 2.0, 0.01) s = np.sin(2*pi*t) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(t, s, linewidth=1.0) ax.set_ylim((-0.20, -0.28)) @image_comparison(baseline_images=['overflow'], remove_text=True) def test_overflow(): x = np.array([1.0,2.0,3.0,2.0e5]) y = np.arange(len(x)) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(x,y) ax.set_xlim(xmin=2,xmax=6) @image_comparison(baseline_images=['clipping_diamond'], remove_text=True) def test_diamond(): x = np.array([0.0, 1.0, 0.0, -1.0, 0.0]) y = np.array([1.0, 0.0, -1.0, 0.0, 1.0]) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(x, y) ax.set_xlim(xmin=-0.6, xmax=0.6) ax.set_ylim(ymin=-0.6, ymax=0.6) @cleanup def test_noise(): np.random.seed(0) x = np.random.uniform(size=(5000,)) * 50 fig = plt.figure() ax = fig.add_subplot(111) p1 = ax.plot(x, solid_joinstyle='round', linewidth=2.0) path = p1[0].get_path() transform = p1[0].get_transform() path = transform.transform_path(path) simplified = list(path.iter_segments(simplify=(800, 600))) assert len(simplified) == 3884 @cleanup def test_sine_plus_noise(): np.random.seed(0) x = np.sin(np.linspace(0, np.pi * 2.0, 1000)) + np.random.uniform(size=(1000,)) * 0.01 fig = plt.figure() ax = fig.add_subplot(111) p1 = ax.plot(x, solid_joinstyle='round', linewidth=2.0) path = p1[0].get_path() transform = p1[0].get_transform() path = transform.transform_path(path) simplified = list(path.iter_segments(simplify=(800, 600))) assert len(simplified) == 876 @image_comparison(baseline_images=['simplify_curve'], remove_text=True) def test_simplify_curve(): pp1 = patches.PathPatch( Path([(0, 0), (1, 0), (1, 1), (nan, 1), (0, 0), (2, 0), (2, 2), (0, 0)], [Path.MOVETO, Path.CURVE3, Path.CURVE3, Path.CURVE3, Path.CURVE3, Path.CURVE3, Path.CURVE3, Path.CLOSEPOLY]), fc="none") fig = plt.figure() ax = fig.add_subplot(111) ax.add_patch(pp1) ax.set_xlim((0, 2)) ax.set_ylim((0, 2)) @image_comparison(baseline_images=['hatch_simplify'], remove_text=True) def test_hatch(): fig = plt.figure() ax = fig.add_subplot(111) ax.add_patch(Rectangle((0, 0), 1, 1, fill=False, hatch="/")) ax.set_xlim((0.45, 0.55)) ax.set_ylim((0.45, 0.55)) @image_comparison(baseline_images=['fft_peaks'], remove_text=True) def test_fft_peaks(): fig = plt.figure() t = arange(65536) ax = fig.add_subplot(111) p1 = ax.plot(abs(fft(sin(2*pi*.01*t)*blackman(len(t))))) path = p1[0].get_path() transform = p1[0].get_transform() path = transform.transform_path(path) simplified = list(path.iter_segments(simplify=(800, 600))) assert len(simplified) == 20 @cleanup def test_start_with_moveto(): # Should be entirely clipped away to a single MOVETO data = b""" ZwAAAAku+v9UAQAA+Tj6/z8CAADpQ/r/KAMAANlO+v8QBAAAyVn6//UEAAC6ZPr/2gUAAKpv+v+8 BgAAm3r6/50HAACLhfr/ewgAAHyQ+v9ZCQAAbZv6/zQKAABepvr/DgsAAE+x+v/lCwAAQLz6/7wM AAAxx/r/kA0AACPS+v9jDgAAFN36/zQPAAAF6Pr/AxAAAPfy+v/QEAAA6f36/5wRAADbCPv/ZhIA AMwT+/8uEwAAvh77//UTAACwKfv/uRQAAKM0+/98FQAAlT/7/z0WAACHSvv//RYAAHlV+/+7FwAA bGD7/3cYAABea/v/MRkAAFF2+//pGQAARIH7/6AaAAA3jPv/VRsAACmX+/8JHAAAHKL7/7ocAAAP rfv/ah0AAAO4+/8YHgAA9sL7/8QeAADpzfv/bx8AANzY+/8YIAAA0OP7/78gAADD7vv/ZCEAALf5 +/8IIgAAqwT8/6kiAACeD/z/SiMAAJIa/P/oIwAAhiX8/4QkAAB6MPz/HyUAAG47/P+4JQAAYkb8 /1AmAABWUfz/5SYAAEpc/P95JwAAPmf8/wsoAAAzcvz/nCgAACd9/P8qKQAAHIj8/7cpAAAQk/z/ QyoAAAWe/P/MKgAA+aj8/1QrAADus/z/2isAAOO+/P9eLAAA2Mn8/+AsAADM1Pz/YS0AAMHf/P/g LQAAtur8/10uAACr9fz/2C4AAKEA/f9SLwAAlgv9/8ovAACLFv3/QDAAAIAh/f+1MAAAdSz9/ycx AABrN/3/mDEAAGBC/f8IMgAAVk39/3UyAABLWP3/4TIAAEFj/f9LMwAANm79/7MzAAAsef3/GjQA ACKE/f9+NAAAF4/9/+E0AAANmv3/QzUAAAOl/f+iNQAA+a/9/wA2AADvuv3/XDYAAOXF/f+2NgAA 29D9/w83AADR2/3/ZjcAAMfm/f+7NwAAvfH9/w44AACz/P3/XzgAAKkH/v+vOAAAnxL+//04AACW Hf7/SjkAAIwo/v+UOQAAgjP+/905AAB5Pv7/JDoAAG9J/v9pOgAAZVT+/606AABcX/7/7zoAAFJq /v8vOwAASXX+/207AAA/gP7/qjsAADaL/v/lOwAALZb+/x48AAAjof7/VTwAABqs/v+LPAAAELf+ /788AAAHwv7/8TwAAP7M/v8hPQAA9df+/1A9AADr4v7/fT0AAOLt/v+oPQAA2fj+/9E9AADQA/// +T0AAMYO//8fPgAAvRn//0M+AAC0JP//ZT4AAKsv//+GPgAAojr//6U+AACZRf//wj4AAJBQ///d PgAAh1v///c+AAB+Zv//Dz8AAHRx//8lPwAAa3z//zk/AABih///TD8AAFmS//9dPwAAUJ3//2w/ AABHqP//ej8AAD6z//+FPwAANb7//48/AAAsyf//lz8AACPU//+ePwAAGt///6M/AAAR6v//pj8A AAj1//+nPwAA/////w==""" import base64 if hasattr(base64, 'encodebytes'): # Python 3 case decodebytes = base64.decodebytes else: # Python 2 case decodebytes = base64.decodestring verts = np.fromstring(decodebytes(data), dtype='<i4') verts = verts.reshape((len(verts) // 2, 2)) path = Path(verts) segs = path.iter_segments(transforms.IdentityTransform(), clip=(0.0, 0.0, 100.0, 100.0)) segs = list(segs) assert len(segs) == 1 assert segs[0][1] == Path.MOVETO @cleanup @raises(OverflowError) def test_throw_rendering_complexity_exceeded(): rcParams['path.simplify'] = False xx = np.arange(200000) yy = np.random.rand(200000) yy[1000] = np.nan fig = plt.figure() ax = fig.add_subplot(111) ax.plot(xx, yy) try: fig.savefig(io.BytesIO()) finally: rcParams['path.simplify'] = True @image_comparison(baseline_images=['clipper_edge'], remove_text=True) def test_clipper(): dat = (0, 1, 0, 2, 0, 3, 0, 4, 0, 5) fig = plt.figure(figsize=(2, 1)) fig.subplots_adjust(left = 0, bottom = 0, wspace = 0, hspace = 0) ax = fig.add_axes((0, 0, 1.0, 1.0), ylim = (0, 5), autoscale_on = False) ax.plot(dat) ax.xaxis.set_major_locator(plt.MultipleLocator(1)) ax.yaxis.set_major_locator(plt.MultipleLocator(1)) ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.set_xlim(5, 9) @image_comparison(baseline_images=['para_equal_perp'], remove_text=True) def test_para_equal_perp(): x = np.array([0, 1, 2, 1, 0, -1, 0, 1] + [1] * 128) y = np.array([1, 1, 2, 1, 0, -1, 0, 0] + [0] * 128) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(x + 1, y + 1) ax.plot(x + 1, y + 1, 'ro') @image_comparison(baseline_images=['clipping_with_nans']) def test_clipping_with_nans(): x = np.linspace(0, 3.14 * 2, 3000) y = np.sin(x) x[::100] = np.nan fig = plt.figure() ax = fig.add_subplot(111) ax.plot(x, y) ax.set_ylim(-0.25, 0.25) if __name__=='__main__': import nose nose.runmodule(argv=['-s','--with-doctest'], exit=False)
mit
dallascard/guac
core/old_extractors/extract_non-distributional_values.py
1
4284
import os import sys import gzip from optparse import OptionParser import numpy as np import pandas as pd from scipy import sparse from ..old_extractors import features from ..old_extractors.features import tokenizer from ..util import file_handling as fh, defines def main(): # Handle input options and arguments usage = "%prog <vector-file.txt.gz>" parser = OptionParser(usage=usage) parser.add_option('-p', dest='prefix', default='_ndv_', help='Token prefix; default=%default') (options, args) = parser.parse_args() prefix = options.prefix input_dir = defines.data_raw_labels_dir files = fh.ls(input_dir, '*.csv') sys.exit("THIS IS NOT WORKING RIGHT NOW") if len(args) < 1: sys.exit('Please specify a set of vectors') vector_filename = args[0] # load the vectors from a file and determine their size print "Loading vectors" vector_filename = os.path.join(defines.non_distributional_vectors_dir, vector_filename) if not os.path.exists(vector_filename): print vector_filename sys.exit("Cannot find vector file") words = get_word_subset(files) vectors = {} vector_size = 0 with gzip.open(vector_filename, 'r') as input_file: count = 0 for line in input_file: parts = line.split() word = parts[0] vector_size = len(parts[1:]) count += 1 if word in words: print word, count vector = sparse.csr_matrix(parts[1:], dtype=np.int8) vectors[word] = vector print "Extracting vector values:" data_matrices = [] for f in files: print f data_matrices.append(extract_vector_values(f, vectors, vector_size, prefix)) data = pd.concat(data_matrices, axis=0) non_zero_cols = data.sum(axis=0) > 0 print data.shape data = data.loc[:, non_zero_cols] print data.shape output_dir = fh.makedirs(defines.data_values_dir) output_filename = fh.make_filename(output_dir, get_feature_name(vector_filename), 'csv') data.to_csv(output_filename) # write default function definition features.make_feature_definition(get_feature_name(vector_filename), prefix, filename=get_feature_name(vector_filename)+'_default', binarize=False, min_doc_threshold=0, feature_type='values') def get_feature_name(vector_filename): return 'non-distributional' + fh.get_basename_wo_ext(vector_filename) def get_word_subset(f): print "Building subset of words" words = set() responses = fh.read_json(defines.data_raw_text_file) Y = fh.read_csv(f) rids = Y.index for rid in rids: text = responses[rid].lower() tokens = [] paragraphs = text.split('/') paragraphs = [p for p in paragraphs if p != ''] for p in paragraphs: sentences = tokenizer.split_sentences(p) for s in sentences: tokens = tokens + tokenizer.make_ngrams(s, n=1) words.update(set(tokens)) print len(words), "words" return words def extract_vector_values(input_filename, vectors, vector_size, prefix): Y = fh.read_csv(input_filename) rids = Y.index n_items = len(rids) responses = fh.read_json(defines.data_raw_text_file) keys = vectors.keys() col_names = [prefix + str(v) for v in np.arange(vector_size)] data = pd.DataFrame(np.zeros([n_items, vector_size]), index=rids, columns=col_names) for rid in rids: text = responses[rid].lower() tokens = [] paragraphs = text.split('/') paragraphs = [p for p in paragraphs if p != ''] for p in paragraphs: sentences = tokenizer.split_sentences(p) for s in sentences: tokens = tokens + tokenizer.make_ngrams(s, n=1) item_vector = sparse.csr_matrix(np.zeros([1, vector_size], dtype=np.int8)) for t in tokens: if t in vectors: vector = vectors[t] item_vector += vector data.loc[rid] = item_vector.todense() return data if __name__ == '__main__': main()
apache-2.0
wittawatj/kernel-gof
kgof/test/test_kernel.py
1
2951
""" Module for testing kernel module. """ __author__ = 'wittawat' import autograd import autograd.numpy as np import matplotlib.pyplot as plt import kgof.data as data import kgof.density as density import kgof.util as util import kgof.kernel as kernel import kgof.goftest as gof import kgof.glo as glo import scipy.stats as stats import numpy.testing as testing import unittest class TestKGauss(unittest.TestCase): def setUp(self): pass def test_basic(self): """ Nothing special. Just test basic things. """ # sample n = 10 d = 3 with util.NumpySeedContext(seed=29): X = np.random.randn(n, d)*3 k = kernel.KGauss(sigma2=1) K = k.eval(X, X) self.assertEqual(K.shape, (n, n)) self.assertTrue(np.all(K >= 0-1e-6)) self.assertTrue(np.all(K <= 1+1e-6), 'K not bounded by 1') def test_pair_gradX_Y(self): # sample n = 11 d = 3 with util.NumpySeedContext(seed=20): X = np.random.randn(n, d)*4 Y = np.random.randn(n, d)*2 k = kernel.KGauss(sigma2=2.1) # n x d pair_grad = k.pair_gradX_Y(X, Y) loop_grad = np.zeros((n, d)) for i in range(n): for j in range(d): loop_grad[i, j] = k.gradX_Y(X[[i], :], Y[[i], :], j) testing.assert_almost_equal(pair_grad, loop_grad) def test_gradX_y(self): n = 10 with util.NumpySeedContext(seed=10): for d in [1, 3]: y = np.random.randn(d)*2 X = np.random.rand(n, d)*3 sigma2 = 1.3 k = kernel.KGauss(sigma2=sigma2) # n x d G = k.gradX_y(X, y) # check correctness K = k.eval(X, y[np.newaxis, :]) myG = -K/sigma2*(X-y) self.assertEqual(G.shape, myG.shape) testing.assert_almost_equal(G, myG) def test_gradXY_sum(self): n = 11 with util.NumpySeedContext(seed=12): for d in [3, 1]: X = np.random.randn(n, d) sigma2 = 1.4 k = kernel.KGauss(sigma2=sigma2) # n x n myG = np.zeros((n, n)) K = k.eval(X, X) for i in range(n): for j in range(n): diffi2 = np.sum( (X[i, :] - X[j, :])**2 ) #myG[i, j] = -diffi2*K[i, j]/(sigma2**2)+ d*K[i, j]/sigma2 myG[i, j] = K[i, j]/sigma2*(d - diffi2/sigma2) # check correctness G = k.gradXY_sum(X, X) self.assertEqual(G.shape, myG.shape) testing.assert_almost_equal(G, myG) def tearDown(self): pass if __name__ == '__main__': unittest.main()
mit
timqian/sms-tools
lectures/8-Sound-transformations/plots-code/stftMorph-orchestra.py
3
2092
import numpy as np import time, os, sys from scipy.signal import hamming, resample import matplotlib.pyplot as plt sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/transformations/')) import dftModel as DFT import utilFunctions as UF import stftTransformations as STFTT import stochasticModel as STOC import math import stft as STFT (fs, x1) = UF.wavread('../../../sounds/orchestra.wav') (fs, x2) = UF.wavread('../../../sounds/speech-male.wav') w1 = np.hamming(1024) N1 = 1024 H1 = 256 w2 = np.hamming(1024) N2 = 1024 smoothf = .2 balancef = 0.5 y = STFTT.stftMorph(x1, x2, fs, w1, N1, w2, N2, H1, smoothf, balancef) L = int(x1.size/H1) H2 = int(x2.size/L) mX2 = STOC.stochasticModelAnal(x2,H2,H2*2, smoothf) mX,pX = STFT.stftAnal(x1, fs, w1, N1, H1) mY,pY = STFT.stftAnal(y, fs, w1, N1, H1) maxplotfreq = 10000.0 plt.figure(1, figsize=(12, 9)) plt.subplot(311) numFrames = int(mX[:,0].size) frmTime = H1*np.arange(numFrames)/float(fs) binFreq = fs*np.arange(N1*maxplotfreq/fs)/N1 plt.pcolormesh(frmTime, binFreq, np.transpose(mX[:,:N1*maxplotfreq/fs+1])) plt.title('mX (orchestra.wav)') plt.autoscale(tight=True) plt.subplot(312) numFrames = int(mX2[:,0].size) frmTime = H2*np.arange(numFrames)/float(fs) N = 2*mX2[0,:].size binFreq = fs*np.arange(N*maxplotfreq/fs)/N plt.pcolormesh(frmTime, binFreq, np.transpose(mX2[:,:N*maxplotfreq/fs+1])) plt.title('mX2 (speech-male.wav)') plt.autoscale(tight=True) plt.subplot(313) numFrames = int(mY[:,0].size) frmTime = H1*np.arange(numFrames)/float(fs) binFreq = fs*np.arange(N1*maxplotfreq/fs)/N1 plt.pcolormesh(frmTime, binFreq, np.transpose(mY[:,:N1*maxplotfreq/fs+1])) plt.title('mY') plt.autoscale(tight=True) plt.tight_layout() UF.wavwrite(y, fs, 'orchestra-speech-stftMorph.wav') plt.savefig('stftMorph-orchestra.png') plt.show()
agpl-3.0
schets/scikit-learn
sklearn/decomposition/tests/test_factor_analysis.py
222
3055
# Author: Christian Osendorfer <osendorf@gmail.com> # Alexandre Gramfort <alexandre.gramfort@inria.fr> # Licence: BSD3 import numpy as np from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils import ConvergenceWarning from sklearn.decomposition import FactorAnalysis def test_factor_analysis(): # Test FactorAnalysis ability to recover the data covariance structure rng = np.random.RandomState(0) n_samples, n_features, n_components = 20, 5, 3 # Some random settings for the generative model W = rng.randn(n_components, n_features) # latent variable of dim 3, 20 of it h = rng.randn(n_samples, n_components) # using gamma to model different noise variance # per component noise = rng.gamma(1, size=n_features) * rng.randn(n_samples, n_features) # generate observations # wlog, mean is 0 X = np.dot(h, W) + noise assert_raises(ValueError, FactorAnalysis, svd_method='foo') fa_fail = FactorAnalysis() fa_fail.svd_method = 'foo' assert_raises(ValueError, fa_fail.fit, X) fas = [] for method in ['randomized', 'lapack']: fa = FactorAnalysis(n_components=n_components, svd_method=method) fa.fit(X) fas.append(fa) X_t = fa.transform(X) assert_equal(X_t.shape, (n_samples, n_components)) assert_almost_equal(fa.loglike_[-1], fa.score_samples(X).sum()) assert_almost_equal(fa.score_samples(X).mean(), fa.score(X)) diff = np.all(np.diff(fa.loglike_)) assert_greater(diff, 0., 'Log likelihood dif not increase') # Sample Covariance scov = np.cov(X, rowvar=0., bias=1.) # Model Covariance mcov = fa.get_covariance() diff = np.sum(np.abs(scov - mcov)) / W.size assert_less(diff, 0.1, "Mean absolute difference is %f" % diff) fa = FactorAnalysis(n_components=n_components, noise_variance_init=np.ones(n_features)) assert_raises(ValueError, fa.fit, X[:, :2]) f = lambda x, y: np.abs(getattr(x, y)) # sign will not be equal fa1, fa2 = fas for attr in ['loglike_', 'components_', 'noise_variance_']: assert_almost_equal(f(fa1, attr), f(fa2, attr)) fa1.max_iter = 1 fa1.verbose = True assert_warns(ConvergenceWarning, fa1.fit, X) # Test get_covariance and get_precision with n_components == n_features # with n_components < n_features and with n_components == 0 for n_components in [0, 2, X.shape[1]]: fa.n_components = n_components fa.fit(X) cov = fa.get_covariance() precision = fa.get_precision() assert_array_almost_equal(np.dot(cov, precision), np.eye(X.shape[1]), 12)
bsd-3-clause
mardub1635/chiasmusDetector
Score.py
1
2538
# -*- coding: utf-8 -*- from sklearn import linear_model from sklearn.metrics import confusion_matrix import numpy as np import sys import dill import scipy.io.arff as scarff from sklearn import cross_validation from sklearn import metrics from ArffData import ArffData from sklearn.cross_validation import train_test_split from sklearn.cross_validation import StratifiedShuffleSplit from scipy import stats class Score: """ Load model """ print dill.load( open( "model.pkl", "rb" ) ) clf=dill.load( open( "model.pkl", "rb" ) )['model'] #y_scores=runModel(X,X,y,y,clf,None) print "Model Weights:" weightfile=open("weights","r") weightList=[float(weight[0:weight.index(":")]) for weight in weightfile.read().splitlines()[1:]] weightfile=open("weights","r") weightLines=weightfile.read().splitlines() #print weightList #print weightLines featureList=[feat[feat.index(":")+1:feat.index("/")] for feat in weightLines[1:]] #print featureList weightfile.close() def indexBadFeat(self,weightList,featureList): """ (self,list)->tuple(list, list) calls the arffLoader/converter for the arfFile of the current object. Returns the list of features names as a list and the list of useless feqture position in the arff file. That keeps track of the useless feature position for later elimination. Elimination via pop() the list must be in decrease order "@Arff file Feat0 Feat1 Feat_TagAB Feat_TagABCD >>>indexBadFeat(self,[Feat2,Feat_TagAB]) ([2,1],[Feat0,Feat_TagABCD]) """ #data=scarff.loadarff(self.arffFile) indexList=[]#The features are present in a certain order. #Some are useless. Their index is listed for elimination later usefulFeat=[] i=0 #print "the weightList:",weightList #print "the featureList:",featureList for featureName in featureList: if weightList[i]==0: indexList.append(i) else: usefulFeat.append(featureName) i+=1 indexList.reverse() #print usefulFeat return (indexList,usefulFeat) def selFeat(self,indexFeat,row): """ returns the predictor instance cleaned from its useless data/features >>>selFeat([0,1,0,0.3333,]) [0,0.3333] """ for i in indexFeat: row.pop(i) return row def scoreFeat(self,featList): indexList=self.indexBadFeat(self.weightList,self.featureList)[0] score=0 row=self.selFeat(indexList,featList) score=self.clf.predict_proba([row])[:,1][0] #print score #i=0 # while i<len(featList): # score=score+featList[i]*self.weightList[i] # i=i+1 return score#+10
gpl-3.0
Jimmy-Morzaria/scikit-learn
sklearn/metrics/regression.py
27
9558
"""Metrics to assess performance on regression task Functions named as ``*_score`` return a scalar value to maximize: the higher the better Function named as ``*_error`` or ``*_loss`` return a scalar value to minimize: the lower the better """ # Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Mathieu Blondel <mathieu@mblondel.org> # Olivier Grisel <olivier.grisel@ensta.org> # Arnaud Joly <a.joly@ulg.ac.be> # Jochen Wersdorfer <jochen@wersdoerfer.de> # Lars Buitinck <L.J.Buitinck@uva.nl> # Joel Nothman <joel.nothman@gmail.com> # Noel Dawe <noel@dawe.me> # License: BSD 3 clause from __future__ import division import numpy as np from ..utils.validation import check_array, check_consistent_length from ..utils.validation import column_or_1d __ALL__ = [ "mean_absolute_error", "mean_squared_error", "median_absolute_error", "r2_score", "explained_variance_score" ] def _check_reg_targets(y_true, y_pred): """Check that y_true and y_pred belong to the same regression task Parameters ---------- y_true : array-like, y_pred : array-like, Returns ------- type_true : one of {'continuous', continuous-multioutput'} The type of the true target data, as output by ``utils.multiclass.type_of_target`` y_true : array-like of shape = [n_samples, n_outputs] Ground truth (correct) target values. y_pred : array-like of shape = [n_samples, n_outputs] Estimated target values. """ check_consistent_length(y_true, y_pred) y_true = check_array(y_true, ensure_2d=False) y_pred = check_array(y_pred, ensure_2d=False) if y_true.ndim == 1: y_true = y_true.reshape((-1, 1)) if y_pred.ndim == 1: y_pred = y_pred.reshape((-1, 1)) if y_true.shape[1] != y_pred.shape[1]: raise ValueError("y_true and y_pred have different number of output " "({0}!={1})".format(y_true.shape[1], y_pred.shape[1])) y_type = 'continuous' if y_true.shape[1] == 1 else 'continuous-multioutput' return y_type, y_true, y_pred def _average_and_variance(values, sample_weight=None): """ Compute the (weighted) average and variance. Parameters ---------- values : array-like of shape = [n_samples] or [n_samples, n_outputs] sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- average : float The weighted average variance : float The weighted variance """ values = np.asarray(values) if values.ndim == 1: values = values.reshape((-1, 1)) if sample_weight is not None: sample_weight = np.asarray(sample_weight) if sample_weight.ndim == 1: sample_weight = sample_weight.reshape((-1, 1)) average = np.average(values, weights=sample_weight) variance = np.average((values - average)**2, weights=sample_weight) return average, variance def mean_absolute_error(y_true, y_pred, sample_weight=None): """Mean absolute error regression loss Parameters ---------- y_true : array-like of shape = [n_samples] or [n_samples, n_outputs] Ground truth (correct) target values. y_pred : array-like of shape = [n_samples] or [n_samples, n_outputs] Estimated target values. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- loss : float A positive floating point value (the best value is 0.0). Examples -------- >>> from sklearn.metrics import mean_absolute_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> mean_absolute_error(y_true, y_pred) 0.5 >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> mean_absolute_error(y_true, y_pred) 0.75 """ y_type, y_true, y_pred = _check_reg_targets(y_true, y_pred) return np.average(np.abs(y_pred - y_true).mean(axis=1), weights=sample_weight) def mean_squared_error(y_true, y_pred, sample_weight=None): """Mean squared error regression loss Parameters ---------- y_true : array-like of shape = [n_samples] or [n_samples, n_outputs] Ground truth (correct) target values. y_pred : array-like of shape = [n_samples] or [n_samples, n_outputs] Estimated target values. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- loss : float A positive floating point value (the best value is 0.0). Examples -------- >>> from sklearn.metrics import mean_squared_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> mean_squared_error(y_true, y_pred) 0.375 >>> y_true = [[0.5, 1],[-1, 1],[7, -6]] >>> y_pred = [[0, 2],[-1, 2],[8, -5]] >>> mean_squared_error(y_true, y_pred) # doctest: +ELLIPSIS 0.708... """ y_type, y_true, y_pred = _check_reg_targets(y_true, y_pred) return np.average(((y_pred - y_true) ** 2).mean(axis=1), weights=sample_weight) def median_absolute_error(y_true, y_pred): """Median absolute error regression loss Parameters ---------- y_true : array-like of shape = [n_samples] or [n_samples, n_outputs] Ground truth (correct) target values. y_pred : array-like of shape = [n_samples] or [n_samples, n_outputs] Estimated target values. Returns ------- loss : float A positive floating point value (the best value is 0.0). Examples -------- >>> from sklearn.metrics import median_absolute_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> median_absolute_error(y_true, y_pred) 0.5 """ y_type, y_true, y_pred = _check_reg_targets(y_true, y_pred) if y_type == 'continuous-multioutput': raise ValueError("Multioutput not supported in median_absolute_error") return np.median(np.abs(y_pred - y_true)) def explained_variance_score(y_true, y_pred, sample_weight=None): """Explained variance regression score function Best possible score is 1.0, lower values are worse. Parameters ---------- y_true : array-like Ground truth (correct) target values. y_pred : array-like Estimated target values. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- score : float The explained variance. Notes ----- This is not a symmetric function. Examples -------- >>> from sklearn.metrics import explained_variance_score >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> explained_variance_score(y_true, y_pred) # doctest: +ELLIPSIS 0.957... """ y_type, y_true, y_pred = _check_reg_targets(y_true, y_pred) if y_type != "continuous": raise ValueError("{0} is not supported".format(y_type)) _, numerator = _average_and_variance(y_true - y_pred, sample_weight) _, denominator = _average_and_variance(y_true, sample_weight) if denominator == 0.0: if numerator == 0.0: return 1.0 else: # arbitrary set to zero to avoid -inf scores, having a constant # y_true is not interesting for scoring a regression anyway return 0.0 return 1 - numerator / denominator def r2_score(y_true, y_pred, sample_weight=None): """R^2 (coefficient of determination) regression score function. Best possible score is 1.0, lower values are worse. Parameters ---------- y_true : array-like of shape = [n_samples] or [n_samples, n_outputs] Ground truth (correct) target values. y_pred : array-like of shape = [n_samples] or [n_samples, n_outputs] Estimated target values. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- z : float The R^2 score. Notes ----- This is not a symmetric function. Unlike most other scores, R^2 score may be negative (it need not actually be the square of a quantity R). References ---------- .. [1] `Wikipedia entry on the Coefficient of determination <http://en.wikipedia.org/wiki/Coefficient_of_determination>`_ Examples -------- >>> from sklearn.metrics import r2_score >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> r2_score(y_true, y_pred) # doctest: +ELLIPSIS 0.948... >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> r2_score(y_true, y_pred) # doctest: +ELLIPSIS 0.938... """ y_type, y_true, y_pred = _check_reg_targets(y_true, y_pred) if sample_weight is not None: sample_weight = column_or_1d(sample_weight) weight = sample_weight[:, np.newaxis] else: weight = 1. numerator = (weight * (y_true - y_pred) ** 2).sum(dtype=np.float64) denominator = (weight * (y_true - np.average( y_true, axis=0, weights=sample_weight)) ** 2).sum(dtype=np.float64) if denominator == 0.0: if numerator == 0.0: return 1.0 else: # arbitrary set to zero to avoid -inf scores, having a constant # y_true is not interesting for scoring a regression anyway return 0.0 return 1 - numerator / denominator
bsd-3-clause
fclesio/learning-space
Python/ims24/oldfolders/module/transform.py
1
8392
#!/usr/bin/env python # -*- coding: utf-8 -*- import pandas as pd import psycopg2 import os import logging import time from sqlalchemy import text from sqlalchemy import create_engine host = os.environ["IMS_HOSTNAME"] user = os.environ["IMS_USERNAME"] password = os.environ["IMS_PASSWORD"] dbname = os.environ["IMS_DB_NAME"] port = os.environ["IMS_PORT"] engine_string = "postgresql://%s:%s@%s:%s/%s" % (user, password, host, port, dbname) engine = create_engine(engine_string) class Transform(object): def __init__(self): super(Transform, self).__init__() @staticmethod def load_csv(): global df df = pd.read_csv("result.csv") @staticmethod def cleasing_1_addresses(): df[["street", "row"]] = pd.DataFrame( df["Address"].str.split(",", 1).tolist(), columns=["street", "row"] ) df[["space", "postal_code", "city", "District"]] = pd.DataFrame( df["row"].str.split(" ", n=3, expand=True) ) df[["street_clean", "house_number"]] = pd.DataFrame( df["street"].str.split(" ", 1).tolist(), columns=["street", "row"] ) @staticmethod def cleasing_2_flat_size(): # Adjustments in Flat size df["Wohnflaeche"] = df["Wohnflaeche"].str.replace("m²", "") df["Wohnflaeche"] = df["Wohnflaeche"].str.replace(" ", "") df["Wohnflaeche"] = df["Wohnflaeche"].str.replace(",", ".") df["Wohnflaeche"] = pd.to_numeric(df["Wohnflaeche"]) @staticmethod def cleasing_3_floor_number(): # Adjustments in Floor df["Etage"] = df["Etage"].astype(str).str[0] @staticmethod def cleasing_4_set_columns(): df.columns = [ "title", "address", "apartment_type", "floor", "square_meters", "availability", "room", "sleep_room", "bathroom", "district", "animals_allowed", "base_rent", "aditional_costs", "heater_tax", "total_amount", "initial_deposit", "agency", "url", "street", "raw_row", "space", "postal_code", "city", "street_clean", "house_number", ] @staticmethod def cleasing_5_drop_unecessary_columns(): df.drop(["space"], axis=1) @staticmethod def cleasing_6_adjust_flat_size(): df["base_rent"] = df["base_rent"].str.replace("€", "") df["base_rent"] = df["base_rent"].str.replace(" ", "") df["base_rent"] = df["base_rent"].str.replace("+", "") df["base_rent"] = df["base_rent"].str.replace(" ", "") df["base_rent"] = df["base_rent"].str.replace(".", "") df["base_rent"] = df["base_rent"].str.replace(",", ".") df["base_rent"] = df["base_rent"].str.strip() @staticmethod def cleasing_7_adjust_aditional_costs(): df["aditional_costs"] = df["aditional_costs"].str.replace("€", "") df["aditional_costs"] = df["aditional_costs"].str.replace(" ", "") df["aditional_costs"] = df["aditional_costs"].str.replace("+", "") df["aditional_costs"] = df["aditional_costs"].str.replace(" ", "") df["aditional_costs"] = df["aditional_costs"].str.replace(".", "") df["aditional_costs"] = df["aditional_costs"].str.replace(",", ".") df["aditional_costs"] = df["aditional_costs"].str.replace("keineAngabe", "") df["aditional_costs"] = df["aditional_costs"].str.strip() @staticmethod def cleasing_8_adjust_heater_tax(): df["heater_tax"] = df["heater_tax"].str.replace("€", "") df["heater_tax"] = df["heater_tax"].str.replace(" ", "") df["heater_tax"] = df["heater_tax"].str.replace("+", "") df["heater_tax"] = df["heater_tax"].str.replace(" ", "") df["heater_tax"] = df["heater_tax"].str.replace(".", "") df["heater_tax"] = df["heater_tax"].str.replace(",", ".") df["heater_tax"] = df["heater_tax"].str.replace("inNebenkostenenthalten", "") df["heater_tax"] = df["heater_tax"].str.replace( "nichtinNebenkostenenthalten", "" ) df["heater_tax"] = df["heater_tax"].str.replace("keineAngabe", "") df["heater_tax"] = df["heater_tax"].str.replace("inkl.", "") df["heater_tax"] = df["heater_tax"].str.replace("nicht", "") df["heater_tax"] = df["heater_tax"].str.strip() @staticmethod def cleasing_9_adjust_total_amount(): df["total_amount"] = df["total_amount"].str.replace("€", "") df["total_amount"] = df["total_amount"].str.replace(" ", "") df["total_amount"] = df["total_amount"].str.replace("+", "") df["total_amount"] = df["total_amount"].str.replace(" ", "") df["total_amount"] = df["total_amount"].str.strip() df["total_amount"] = df["total_amount"].str.replace(".", "") df["total_amount"] = df["total_amount"].str.replace(",", ".") df["total_amount"] = df["total_amount"].str.replace("zzglHeizkosten", "") df["total_amount"] = df["total_amount"].str.replace( "zzglNebenkosten&Heizkosten", "" ) df["total_amount"] = df["total_amount"].str.replace("(", "") df["total_amount"] = df["total_amount"].str.replace(")", "") df["total_amount"] = df["total_amount"].str.replace("zzglNebenkosten", "") @staticmethod def cleasing_10_adjust_availability(): df["availability"] = df["availability"].str.replace(r"[a-zA-Z]", "") df["availability"] = df["availability"].str.strip() df["availability"] = df["availability"].str.replace("!", "") df["availability"] = df["availability"].str.replace("/", "") df["availability"] = df["availability"].str.replace("ü", "") df["availability"] = df["availability"].str.replace("ä", "") df["availability"] = df["availability"].str.replace(" ", "") @staticmethod def cleasing_11_adjust_room(): df["room"] = df["room"].str.replace(" ", "") df["room"] = df["room"].str.replace(",", ".") @staticmethod def cleasing_12_adjust_city(): df["city"] = df["city"].str.replace(",", ".") df["city"] = df["city"].str.replace(" ", "") df["city"] = df["city"].str.replace(".", "") @staticmethod def cleasing_13_adjust_animals_allowed(): df["animals_allowed"] = df["animals_allowed"].str.replace( "Nach Vereinbarung", "Arrangement" ) df["animals_allowed"] = df["animals_allowed"].str.replace("Ja", "Yes") df["animals_allowed"] = df["animals_allowed"].str.replace("Nein", "No") df["animals_allowed"] = df["animals_allowed"].str.replace(" ", "") @staticmethod def soft_delete_raw_data(): engine.execute( text( "update ods.extracted_raw_table set deleted = true where deleted = false;" ).execution_options(autocommit=True) ) @staticmethod def load_transformed_data(): df.to_sql( "extracted_raw_table", engine, schema="ods", if_exists="append", index=False ) @staticmethod def remove_raw_extracted_data(): os.remove("result.csv") def main(): transform = Transform() transform.load_csv() transform.cleasing_1_addresses() transform.cleasing_2_flat_size() transform.cleasing_3_floor_number() transform.cleasing_4_set_columns() transform.cleasing_5_drop_unecessary_columns() transform.cleasing_6_adjust_flat_size() transform.cleasing_7_adjust_aditional_costs() transform.cleasing_8_adjust_heater_tax() transform.cleasing_9_adjust_total_amount() transform.cleasing_10_adjust_availability() transform.cleasing_11_adjust_room() transform.cleasing_12_adjust_city() transform.cleasing_13_adjust_animals_allowed() transform.soft_delete_raw_data() transform.load_transformed_data() transform.remove_raw_extracted_data() if __name__ == "__main__": logging.basicConfig(level=logging.INFO) logging.info("Transformations Started ...") start_time = time.time() main() logging.info("Transformations finished ...") elapsed_time = time.time() - start_time logging.info("Elapsed Time: %s", elapsed_time)
gpl-2.0
kazuar/ThinkStats2
code/hinc.py
67
1494
"""This file contains code used in "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2014 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function import numpy as np import pandas import thinkplot import thinkstats2 def Clean(s): """Converts dollar amounts to integers.""" try: return int(s.lstrip('$').replace(',', '')) except ValueError: if s == 'Under': return 0 elif s == 'over': return np.inf return None def ReadData(filename='hinc06.csv'): """Reads filename and returns populations in thousands filename: string returns: pandas Series of populations in thousands """ data = pandas.read_csv(filename, header=None, skiprows=9) cols = data[[0, 1]] res = [] for _, row in cols.iterrows(): label, freq = row.values freq = int(freq.replace(',', '')) t = label.split() low, high = Clean(t[0]), Clean(t[-1]) res.append((high, freq)) df = pandas.DataFrame(res) # correct the first range df[0][0] -= 1 # compute the cumulative sum of the freqs df[2] = df[1].cumsum() # normalize the cumulative freqs total = df[2][41] df[3] = df[2] / total # add column names df.columns = ['income', 'freq', 'cumsum', 'ps'] return df def main(): df = ReadData() print(df) if __name__ == "__main__": main()
gpl-3.0
MartinDelzant/scikit-learn
examples/ensemble/plot_adaboost_multiclass.py
354
4124
""" ===================================== Multi-class AdaBoosted Decision Trees ===================================== This example reproduces Figure 1 of Zhu et al [1] and shows how boosting can improve prediction accuracy on a multi-class problem. The classification dataset is constructed by taking a ten-dimensional standard normal distribution and defining three classes separated by nested concentric ten-dimensional spheres such that roughly equal numbers of samples are in each class (quantiles of the :math:`\chi^2` distribution). The performance of the SAMME and SAMME.R [1] algorithms are compared. SAMME.R uses the probability estimates to update the additive model, while SAMME uses the classifications only. As the example illustrates, the SAMME.R algorithm typically converges faster than SAMME, achieving a lower test error with fewer boosting iterations. The error of each algorithm on the test set after each boosting iteration is shown on the left, the classification error on the test set of each tree is shown in the middle, and the boost weight of each tree is shown on the right. All trees have a weight of one in the SAMME.R algorithm and therefore are not shown. .. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ print(__doc__) # Author: Noel Dawe <noel.dawe@gmail.com> # # License: BSD 3 clause from sklearn.externals.six.moves import zip import matplotlib.pyplot as plt from sklearn.datasets import make_gaussian_quantiles from sklearn.ensemble import AdaBoostClassifier from sklearn.metrics import accuracy_score from sklearn.tree import DecisionTreeClassifier X, y = make_gaussian_quantiles(n_samples=13000, n_features=10, n_classes=3, random_state=1) n_split = 3000 X_train, X_test = X[:n_split], X[n_split:] y_train, y_test = y[:n_split], y[n_split:] bdt_real = AdaBoostClassifier( DecisionTreeClassifier(max_depth=2), n_estimators=600, learning_rate=1) bdt_discrete = AdaBoostClassifier( DecisionTreeClassifier(max_depth=2), n_estimators=600, learning_rate=1.5, algorithm="SAMME") bdt_real.fit(X_train, y_train) bdt_discrete.fit(X_train, y_train) real_test_errors = [] discrete_test_errors = [] for real_test_predict, discrete_train_predict in zip( bdt_real.staged_predict(X_test), bdt_discrete.staged_predict(X_test)): real_test_errors.append( 1. - accuracy_score(real_test_predict, y_test)) discrete_test_errors.append( 1. - accuracy_score(discrete_train_predict, y_test)) n_trees_discrete = len(bdt_discrete) n_trees_real = len(bdt_real) # Boosting might terminate early, but the following arrays are always # n_estimators long. We crop them to the actual number of trees here: discrete_estimator_errors = bdt_discrete.estimator_errors_[:n_trees_discrete] real_estimator_errors = bdt_real.estimator_errors_[:n_trees_real] discrete_estimator_weights = bdt_discrete.estimator_weights_[:n_trees_discrete] plt.figure(figsize=(15, 5)) plt.subplot(131) plt.plot(range(1, n_trees_discrete + 1), discrete_test_errors, c='black', label='SAMME') plt.plot(range(1, n_trees_real + 1), real_test_errors, c='black', linestyle='dashed', label='SAMME.R') plt.legend() plt.ylim(0.18, 0.62) plt.ylabel('Test Error') plt.xlabel('Number of Trees') plt.subplot(132) plt.plot(range(1, n_trees_discrete + 1), discrete_estimator_errors, "b", label='SAMME', alpha=.5) plt.plot(range(1, n_trees_real + 1), real_estimator_errors, "r", label='SAMME.R', alpha=.5) plt.legend() plt.ylabel('Error') plt.xlabel('Number of Trees') plt.ylim((.2, max(real_estimator_errors.max(), discrete_estimator_errors.max()) * 1.2)) plt.xlim((-20, len(bdt_discrete) + 20)) plt.subplot(133) plt.plot(range(1, n_trees_discrete + 1), discrete_estimator_weights, "b", label='SAMME') plt.legend() plt.ylabel('Weight') plt.xlabel('Number of Trees') plt.ylim((0, discrete_estimator_weights.max() * 1.2)) plt.xlim((-20, n_trees_discrete + 20)) # prevent overlapping y-axis labels plt.subplots_adjust(wspace=0.25) plt.show()
bsd-3-clause
tedoreve/tools
maxwell.py
1
1264
# -*- coding: utf-8 -*- """ Created on Wed Jun 20 12:11:24 2018 @author: tedoreve """ import matplotlib.pyplot as plt import numpy as np import astropy.constants as con import astropy.units as un def maxwell(T,m,v): a = np.sqrt(con.k_B*T/con.m_e) print('a=',a.to('km/s')) return np.sqrt(2/np.pi)*v**2/a**3 * np.exp(-v**2/2/a**2) def ptotal(v): dv = v[1]-v[0] p = maxwell(T,con.m_e,v).to('s/km')*dv return np.sum(p) def accelerator(p,n,v): fin = np.zeros(len(v)) for i in range(len(v)): fin[i] = maxwell(T,con.m_e,v[i])*(1-p) + fin[i-1]*p return fin if __name__ == '__main__': T = 50*un.K #ISM temperature before shock wave arrival p = 0.5 #possibility that the particle remain within the accelerator after each cycle n = 1 #the cycle times dv= 1 #speed addition after each cycle fig, ax = plt.subplots(1, 1) v = np.linspace(0,200, (201-0)/dv)*un.km/un.s ax.plot(v, maxwell(T,con.m_e,v).to('s/km'),'r-', lw=5, alpha=0.6, label='maxwell pdf') ax.set_xlabel('v (km/s)') ax.set_ylabel('pdf (possibility per km/s)') ax.set_title('Maxwell Speed Distribution') plt.legend()
mit
rishikksh20/scikit-learn
examples/decomposition/plot_faces_decomposition.py
42
4843
""" ============================ Faces dataset decompositions ============================ This example applies to :ref:`olivetti_faces` different unsupervised matrix decomposition (dimension reduction) methods from the module :py:mod:`sklearn.decomposition` (see the documentation chapter :ref:`decompositions`) . """ print(__doc__) # Authors: Vlad Niculae, Alexandre Gramfort # License: BSD 3 clause import logging from time import time from numpy.random import RandomState import matplotlib.pyplot as plt from sklearn.datasets import fetch_olivetti_faces from sklearn.cluster import MiniBatchKMeans from sklearn import decomposition # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') n_row, n_col = 2, 3 n_components = n_row * n_col image_shape = (64, 64) rng = RandomState(0) ############################################################################### # Load faces data dataset = fetch_olivetti_faces(shuffle=True, random_state=rng) faces = dataset.data n_samples, n_features = faces.shape # global centering faces_centered = faces - faces.mean(axis=0) # local centering faces_centered -= faces_centered.mean(axis=1).reshape(n_samples, -1) print("Dataset consists of %d faces" % n_samples) ############################################################################### def plot_gallery(title, images, n_col=n_col, n_row=n_row): plt.figure(figsize=(2. * n_col, 2.26 * n_row)) plt.suptitle(title, size=16) for i, comp in enumerate(images): plt.subplot(n_row, n_col, i + 1) vmax = max(comp.max(), -comp.min()) plt.imshow(comp.reshape(image_shape), cmap=plt.cm.gray, interpolation='nearest', vmin=-vmax, vmax=vmax) plt.xticks(()) plt.yticks(()) plt.subplots_adjust(0.01, 0.05, 0.99, 0.93, 0.04, 0.) ############################################################################### # List of the different estimators, whether to center and transpose the # problem, and whether the transformer uses the clustering API. estimators = [ ('Eigenfaces - PCA using randomized SVD', decomposition.PCA(n_components=n_components, svd_solver='randomized', whiten=True), True), ('Non-negative components - NMF', decomposition.NMF(n_components=n_components, init='nndsvda', tol=5e-3), False), ('Independent components - FastICA', decomposition.FastICA(n_components=n_components, whiten=True), True), ('Sparse comp. - MiniBatchSparsePCA', decomposition.MiniBatchSparsePCA(n_components=n_components, alpha=0.8, n_iter=100, batch_size=3, random_state=rng), True), ('MiniBatchDictionaryLearning', decomposition.MiniBatchDictionaryLearning(n_components=15, alpha=0.1, n_iter=50, batch_size=3, random_state=rng), True), ('Cluster centers - MiniBatchKMeans', MiniBatchKMeans(n_clusters=n_components, tol=1e-3, batch_size=20, max_iter=50, random_state=rng), True), ('Factor Analysis components - FA', decomposition.FactorAnalysis(n_components=n_components, max_iter=2), True), ] ############################################################################### # Plot a sample of the input data plot_gallery("First centered Olivetti faces", faces_centered[:n_components]) ############################################################################### # Do the estimation and plot it for name, estimator, center in estimators: print("Extracting the top %d %s..." % (n_components, name)) t0 = time() data = faces if center: data = faces_centered estimator.fit(data) train_time = (time() - t0) print("done in %0.3fs" % train_time) if hasattr(estimator, 'cluster_centers_'): components_ = estimator.cluster_centers_ else: components_ = estimator.components_ # Plot an image representing the pixelwise variance provided by the # estimator e.g its noise_variance_ attribute. The Eigenfaces estimator, # via the PCA decomposition, also provides a scalar noise_variance_ # (the mean of pixelwise variance) that cannot be displayed as an image # so we skip it. if (hasattr(estimator, 'noise_variance_') and estimator.noise_variance_.ndim > 0): # Skip the Eigenfaces case plot_gallery("Pixelwise variance", estimator.noise_variance_.reshape(1, -1), n_col=1, n_row=1) plot_gallery('%s - Train time %.1fs' % (name, train_time), components_[:n_components]) plt.show()
bsd-3-clause
ideaplat/Tback
machinelearning/randomforestclassifier/model.py
1
4250
# -*- coding: utf-8 -*- from __future__ import unicode_literals import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import RandomForestClassifier from data.dbaccess import normalize from data.db import get_db_session, Pinkunhu2015 class RandomForestModel(object): """ 使用随机森林模型预测是否脱贫 """ # 提取的属性 features = [ 'tv', 'washing_machine', 'fridge', 'reason', 'is_danger_house', 'is_back_poor', 'is_debt', 'standard', 'arable_land', 'debt_total', 'living_space', 'member_count', # 'person_year_total_income', 'year_total_income', 'subsidy_total', 'wood_land', 'xin_nong_he_total', 'xin_yang_lao_total', 'call_number', 'bank_number', 'help_plan' ] # 验证的目标 target = 'poor_status' def run(self): """ 运行 """ # 获取数据 X, Y = self._fetch_data() clf = self.get_classifier(X, Y) # 测试 X, Y = self._fetch_test_data() self.predict(clf, X, Y) # 绘制 feature importance self.plot(clf, self.features) def get_classifier(self, X, Y): """ 构建随机森林模型 :param X: 训练数据 :param Y: 训练数据结果 :return: 模型 """ clf = RandomForestClassifier(n_estimators=10) clf.fit(X, Y) return clf def predict(self, clf, X, Y): """ 用当前的模型预测 :param clf: 模型 :param X: 测试数据 :param Y: 测试数据结果 :return: 命中率 """ Y2 = clf.predict(X) total, hit = 0, 0 for idx, v in enumerate(Y2): if v == 1: total += 1 if Y[idx] == v: hit += 1 print 'Total: %d, Hit: %d, Precision: %.2f%%' % (total, hit, 100.0*hit/total) # 用 A县 的模型去预测 B县 的结果 # Total: 6769, Hit: 5295, Precision: 78.22% return hit * 1.0 / total def plot(self, clf, features): """ 绘制 feature importance :param clf: 已构建的分类模型 :param features: 所有的属性列表 :return: """ features_len = len(features) importances = clf.feature_importances_ std = np.std([tree.feature_importances_ for tree in clf.estimators_], axis=0) indices = np.argsort(importances)[::-1] # 打印 feature ranking print("\nFeature ranking:") for f in range(features_len): print("%d. %s (%f)" % (f + 1, features[indices[f]], importances[indices[f]])) # 绘制 feature importances 柱状图 plt.figure() plt.title("Feature importances") plt.bar(range(features_len), importances[indices], color="r", yerr=std[indices], align="center") plt.xticks(range(features_len), np.array(features)[indices], rotation=-90) plt.xlim([-1, features_len]) plt.show() def _fetch_data(self): """ 获取建模数据 """ session = get_db_session() objs = session.query(Pinkunhu2015).filter(Pinkunhu2015.county == 'A县').all() X, Y = [], [] for item in objs: col_list = [] for col in self.features: normalized_value = normalize(col, getattr(item, col)) col_list.append(normalized_value) X.append(col_list) normalized_value = normalize(self.target, getattr(item, self.target)) Y.append(normalized_value) return X, Y def _fetch_test_data(self): """ 获取测试数据 """ session = get_db_session() objs = session.query(Pinkunhu2015).filter(Pinkunhu2015.county == 'B县').all() X, Y = [], [] for item in objs: col_list = [] for col in self.features: normalized_value = normalize(col, getattr(item, col)) col_list.append(normalized_value) X.append(col_list) normalized_value = normalize(self.target, getattr(item, self.target)) Y.append(normalized_value) return X, Y if __name__ == '__main__': m = RandomForestModel() m.run()
mit
Vimos/scikit-learn
benchmarks/bench_saga.py
45
8474
"""Author: Arthur Mensch Benchmarks of sklearn SAGA vs lightning SAGA vs Liblinear. Shows the gain in using multinomial logistic regression in term of learning time. """ import json import time from os.path import expanduser import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import fetch_rcv1, load_iris, load_digits, \ fetch_20newsgroups_vectorized from sklearn.externals.joblib import delayed, Parallel, Memory from sklearn.linear_model import LogisticRegression from sklearn.metrics import log_loss from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelBinarizer, LabelEncoder from sklearn.utils.extmath import safe_sparse_dot, softmax def fit_single(solver, X, y, penalty='l2', single_target=True, C=1, max_iter=10, skip_slow=False): if skip_slow and solver == 'lightning' and penalty == 'l1': print('skip_slowping l1 logistic regression with solver lightning.') return print('Solving %s logistic regression with penalty %s, solver %s.' % ('binary' if single_target else 'multinomial', penalty, solver)) if solver == 'lightning': from lightning.classification import SAGAClassifier if single_target or solver not in ['sag', 'saga']: multi_class = 'ovr' else: multi_class = 'multinomial' X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42, stratify=y) n_samples = X_train.shape[0] n_classes = np.unique(y_train).shape[0] test_scores = [1] train_scores = [1] accuracies = [1 / n_classes] times = [0] if penalty == 'l2': alpha = 1. / (C * n_samples) beta = 0 lightning_penalty = None else: alpha = 0. beta = 1. / (C * n_samples) lightning_penalty = 'l1' for this_max_iter in range(1, max_iter + 1, 2): print('[%s, %s, %s] Max iter: %s' % ('binary' if single_target else 'multinomial', penalty, solver, this_max_iter)) if solver == 'lightning': lr = SAGAClassifier(loss='log', alpha=alpha, beta=beta, penalty=lightning_penalty, tol=-1, max_iter=this_max_iter) else: lr = LogisticRegression(solver=solver, multi_class=multi_class, C=C, penalty=penalty, fit_intercept=False, tol=1e-24, max_iter=this_max_iter, random_state=42, ) t0 = time.clock() lr.fit(X_train, y_train) train_time = time.clock() - t0 scores = [] for (X, y) in [(X_train, y_train), (X_test, y_test)]: try: y_pred = lr.predict_proba(X) except NotImplementedError: # Lightning predict_proba is not implemented for n_classes > 2 y_pred = _predict_proba(lr, X) score = log_loss(y, y_pred, normalize=False) / n_samples score += (0.5 * alpha * np.sum(lr.coef_ ** 2) + beta * np.sum(np.abs(lr.coef_))) scores.append(score) train_score, test_score = tuple(scores) y_pred = lr.predict(X_test) accuracy = np.sum(y_pred == y_test) / y_test.shape[0] test_scores.append(test_score) train_scores.append(train_score) accuracies.append(accuracy) times.append(train_time) return lr, times, train_scores, test_scores, accuracies def _predict_proba(lr, X): pred = safe_sparse_dot(X, lr.coef_.T) if hasattr(lr, "intercept_"): pred += lr.intercept_ return softmax(pred) def exp(solvers, penalties, single_target, n_samples=30000, max_iter=20, dataset='rcv1', n_jobs=1, skip_slow=False): mem = Memory(cachedir=expanduser('~/cache'), verbose=0) if dataset == 'rcv1': rcv1 = fetch_rcv1() lbin = LabelBinarizer() lbin.fit(rcv1.target_names) X = rcv1.data y = rcv1.target y = lbin.inverse_transform(y) le = LabelEncoder() y = le.fit_transform(y) if single_target: y_n = y.copy() y_n[y > 16] = 1 y_n[y <= 16] = 0 y = y_n elif dataset == 'digits': digits = load_digits() X, y = digits.data, digits.target if single_target: y_n = y.copy() y_n[y < 5] = 1 y_n[y >= 5] = 0 y = y_n elif dataset == 'iris': iris = load_iris() X, y = iris.data, iris.target elif dataset == '20newspaper': ng = fetch_20newsgroups_vectorized() X = ng.data y = ng.target if single_target: y_n = y.copy() y_n[y > 4] = 1 y_n[y <= 16] = 0 y = y_n X = X[:n_samples] y = y[:n_samples] cached_fit = mem.cache(fit_single) out = Parallel(n_jobs=n_jobs, mmap_mode=None)( delayed(cached_fit)(solver, X, y, penalty=penalty, single_target=single_target, C=1, max_iter=max_iter, skip_slow=skip_slow) for solver in solvers for penalty in penalties) res = [] idx = 0 for solver in solvers: for penalty in penalties: if not (skip_slow and solver == 'lightning' and penalty == 'l1'): lr, times, train_scores, test_scores, accuracies = out[idx] this_res = dict(solver=solver, penalty=penalty, single_target=single_target, times=times, train_scores=train_scores, test_scores=test_scores, accuracies=accuracies) res.append(this_res) idx += 1 with open('bench_saga.json', 'w+') as f: json.dump(res, f) def plot(): import pandas as pd with open('bench_saga.json', 'r') as f: f = json.load(f) res = pd.DataFrame(f) res.set_index(['single_target', 'penalty'], inplace=True) grouped = res.groupby(level=['single_target', 'penalty']) colors = {'saga': 'blue', 'liblinear': 'orange', 'lightning': 'green'} for idx, group in grouped: single_target, penalty = idx fig = plt.figure(figsize=(12, 4)) ax = fig.add_subplot(131) train_scores = group['train_scores'].values ref = np.min(np.concatenate(train_scores)) * 0.999 for scores, times, solver in zip(group['train_scores'], group['times'], group['solver']): scores = scores / ref - 1 ax.plot(times, scores, label=solver, color=colors[solver]) ax.set_xlabel('Time (s)') ax.set_ylabel('Training objective (relative to min)') ax.set_yscale('log') ax = fig.add_subplot(132) test_scores = group['test_scores'].values ref = np.min(np.concatenate(test_scores)) * 0.999 for scores, times, solver in zip(group['test_scores'], group['times'], group['solver']): scores = scores / ref - 1 ax.plot(times, scores, label=solver, color=colors[solver]) ax.set_xlabel('Time (s)') ax.set_ylabel('Test objective (relative to min)') ax.set_yscale('log') ax = fig.add_subplot(133) for accuracy, times, solver in zip(group['accuracies'], group['times'], group['solver']): ax.plot(times, accuracy, label=solver, color=colors[solver]) ax.set_xlabel('Time (s)') ax.set_ylabel('Test accuracy') ax.legend() name = 'single_target' if single_target else 'multi_target' name += '_%s' % penalty plt.suptitle(name) name += '.png' fig.tight_layout() fig.subplots_adjust(top=0.9) plt.savefig(name) plt.close(fig) if __name__ == '__main__': solvers = ['saga', 'liblinear', 'lightning'] penalties = ['l1', 'l2'] single_target = True exp(solvers, penalties, single_target, n_samples=None, n_jobs=1, dataset='20newspaper', max_iter=20) plot()
bsd-3-clause
lidore/trading-with-python
lib/extra.py
77
2540
''' Created on Apr 28, 2013 Copyright: Jev Kuznetsov License: BSD ''' from __future__ import print_function import sys import urllib import os import xlrd # module for excel file reading import pandas as pd class ProgressBar: def __init__(self, iterations): self.iterations = iterations self.prog_bar = '[]' self.fill_char = '*' self.width = 50 self.__update_amount(0) def animate(self, iteration): print('\r', self, end='') sys.stdout.flush() self.update_iteration(iteration + 1) def update_iteration(self, elapsed_iter): self.__update_amount((elapsed_iter / float(self.iterations)) * 100.0) self.prog_bar += ' %d of %s complete' % (elapsed_iter, self.iterations) def __update_amount(self, new_amount): percent_done = int(round((new_amount / 100.0) * 100.0)) all_full = self.width - 2 num_hashes = int(round((percent_done / 100.0) * all_full)) self.prog_bar = '[' + self.fill_char * num_hashes + ' ' * (all_full - num_hashes) + ']' pct_place = (len(self.prog_bar) // 2) - len(str(percent_done)) pct_string = '%d%%' % percent_done self.prog_bar = self.prog_bar[0:pct_place] + \ (pct_string + self.prog_bar[pct_place + len(pct_string):]) def __str__(self): return str(self.prog_bar) def getSpyHoldings(dataDir): ''' get SPY holdings from the net, uses temp data storage to save xls file ''' dest = os.path.join(dataDir,"spy_holdings.xls") if os.path.exists(dest): print('File found, skipping download') else: print('saving to', dest) urllib.urlretrieve ("https://www.spdrs.com/site-content/xls/SPY_All_Holdings.xls?fund=SPY&docname=All+Holdings&onyx_code1=1286&onyx_code2=1700", dest) # download xls file and save it to data directory # parse wb = xlrd.open_workbook(dest) # open xls file, create a workbook sh = wb.sheet_by_index(0) # select first sheet data = {'name':[], 'symbol':[], 'weight':[],'sector':[]} for rowNr in range(5,505): # cycle through the rows v = sh.row_values(rowNr) # get all row values data['name'].append(v[0]) data['symbol'].append(v[1]) # symbol is in the second column, append it to the list data['weight'].append(float(v[2])) data['sector'].append(v[3]) return pd.DataFrame(data)
bsd-3-clause
smartscheduling/scikit-learn-categorical-tree
sklearn/linear_model/tests/test_randomized_l1.py
214
4690
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr> # License: BSD 3 clause import numpy as np from scipy import sparse from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.linear_model.randomized_l1 import (lasso_stability_path, RandomizedLasso, RandomizedLogisticRegression) from sklearn.datasets import load_diabetes, load_iris from sklearn.feature_selection import f_regression, f_classif from sklearn.preprocessing import StandardScaler from sklearn.linear_model.base import center_data diabetes = load_diabetes() X = diabetes.data y = diabetes.target X = StandardScaler().fit_transform(X) X = X[:, [2, 3, 6, 7, 8]] # test that the feature score of the best features F, _ = f_regression(X, y) def test_lasso_stability_path(): # Check lasso stability path # Load diabetes data and add noisy features scaling = 0.3 coef_grid, scores_path = lasso_stability_path(X, y, scaling=scaling, random_state=42, n_resampling=30) assert_array_equal(np.argsort(F)[-3:], np.argsort(np.sum(scores_path, axis=1))[-3:]) def test_randomized_lasso(): # Check randomized lasso scaling = 0.3 selection_threshold = 0.5 # or with 1 alpha clf = RandomizedLasso(verbose=False, alpha=1, random_state=42, scaling=scaling, selection_threshold=selection_threshold) feature_scores = clf.fit(X, y).scores_ assert_array_equal(np.argsort(F)[-3:], np.argsort(feature_scores)[-3:]) # or with many alphas clf = RandomizedLasso(verbose=False, alpha=[1, 0.8], random_state=42, scaling=scaling, selection_threshold=selection_threshold) feature_scores = clf.fit(X, y).scores_ assert_equal(clf.all_scores_.shape, (X.shape[1], 2)) assert_array_equal(np.argsort(F)[-3:], np.argsort(feature_scores)[-3:]) X_r = clf.transform(X) X_full = clf.inverse_transform(X_r) assert_equal(X_r.shape[1], np.sum(feature_scores > selection_threshold)) assert_equal(X_full.shape, X.shape) clf = RandomizedLasso(verbose=False, alpha='aic', random_state=42, scaling=scaling) feature_scores = clf.fit(X, y).scores_ assert_array_equal(feature_scores, X.shape[1] * [1.]) clf = RandomizedLasso(verbose=False, scaling=-0.1) assert_raises(ValueError, clf.fit, X, y) clf = RandomizedLasso(verbose=False, scaling=1.1) assert_raises(ValueError, clf.fit, X, y) def test_randomized_logistic(): # Check randomized sparse logistic regression iris = load_iris() X = iris.data[:, [0, 2]] y = iris.target X = X[y != 2] y = y[y != 2] F, _ = f_classif(X, y) scaling = 0.3 clf = RandomizedLogisticRegression(verbose=False, C=1., random_state=42, scaling=scaling, n_resampling=50, tol=1e-3) X_orig = X.copy() feature_scores = clf.fit(X, y).scores_ assert_array_equal(X, X_orig) # fit does not modify X assert_array_equal(np.argsort(F), np.argsort(feature_scores)) clf = RandomizedLogisticRegression(verbose=False, C=[1., 0.5], random_state=42, scaling=scaling, n_resampling=50, tol=1e-3) feature_scores = clf.fit(X, y).scores_ assert_array_equal(np.argsort(F), np.argsort(feature_scores)) def test_randomized_logistic_sparse(): # Check randomized sparse logistic regression on sparse data iris = load_iris() X = iris.data[:, [0, 2]] y = iris.target X = X[y != 2] y = y[y != 2] # center here because sparse matrices are usually not centered X, y, _, _, _ = center_data(X, y, True, True) X_sp = sparse.csr_matrix(X) F, _ = f_classif(X, y) scaling = 0.3 clf = RandomizedLogisticRegression(verbose=False, C=1., random_state=42, scaling=scaling, n_resampling=50, tol=1e-3) feature_scores = clf.fit(X, y).scores_ clf = RandomizedLogisticRegression(verbose=False, C=1., random_state=42, scaling=scaling, n_resampling=50, tol=1e-3) feature_scores_sp = clf.fit(X_sp, y).scores_ assert_array_equal(feature_scores, feature_scores_sp)
bsd-3-clause
Sklearn-HMM/scikit-learn-HMM
sklean-hmm/linear_model/coordinate_descent.py
2
53437
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Fabian Pedregosa <fabian.pedregosa@inria.fr> # Olivier Grisel <olivier.grisel@ensta.org> # Gael Varoquaux <gael.varoquaux@inria.fr> # # License: BSD 3 clause import sys import warnings import itertools import operator from abc import ABCMeta, abstractmethod import numpy as np from scipy import sparse from .base import LinearModel, _pre_fit from ..base import RegressorMixin from .base import center_data from ..utils import array2d, atleast2d_or_csc from ..cross_validation import _check_cv as check_cv from ..externals.joblib import Parallel, delayed from ..externals import six from ..externals.six.moves import xrange from ..utils.extmath import safe_sparse_dot from . import cd_fast ############################################################################### # Paths functions def _alpha_grid(X, y, Xy=None, l1_ratio=1.0, fit_intercept=True, eps=1e-3, n_alphas=100, normalize=False, copy_X=True): """ Compute the grid of alpha values for elastic net parameter search Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication y : ndarray, shape = (n_samples,) Target values Xy : array-like, optional Xy = np.dot(X.T, y) that can be precomputed. l1_ratio : float The ElasticNet mixing parameter, with ``0 <= l1_ratio <= 1``. For ``l1_ratio = 0`` the penalty is an L2 penalty. ``For l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2. eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3`` n_alphas : int, optional Number of alphas along the regularization path fit_intercept : bool Fit or not an intercept normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. """ if Xy is None: X = atleast2d_or_csc(X, copy=(copy_X and fit_intercept and not sparse.isspmatrix(X))) if not sparse.isspmatrix(X): # X can be touched inplace thanks to the above line X, y, _, _, _ = center_data(X, y, fit_intercept, normalize, copy=False) Xy = safe_sparse_dot(X.T, y, dense_output=True) n_samples = X.shape[0] else: n_samples = len(y) alpha_max = np.abs(Xy).max() / (n_samples * l1_ratio) alphas = np.logspace(np.log10(alpha_max * eps), np.log10(alpha_max), num=n_alphas)[::-1] return alphas def lasso_path(X, y, eps=1e-3, n_alphas=100, alphas=None, precompute='auto', Xy=None, fit_intercept=None, normalize=None, copy_X=True, coef_init=None, verbose=False, return_models=False, **params): """Compute Lasso path with coordinate descent The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication y : ndarray, shape = (n_samples,) Target values eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3`` n_alphas : int, optional Number of alphas along the regularization path alphas : ndarray, optional List of alphas where to compute the models. If ``None`` alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. Xy : array-like, optional Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. fit_intercept : bool Fit or not an intercept. WARNING : will be deprecated in 0.16 normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. WARNING : will be deprecated in 0.16 copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. coef_init : array, shape (n_features, ) | None The initial values of the coefficients. verbose : bool or integer Amount of verbosity return_models : boolean, optional, default True If ``True``, the function will return list of models. Setting it to ``False`` will change the function output returning the values of the alphas and the coefficients along the path. Returning the model list will be removed in version 0.16. params : kwargs keyword arguments passed to the coordinate descent solver. Returns ------- models : a list of models along the regularization path (Is returned if ``return_models`` is set ``True`` (default). alphas : array, shape: [n_alphas + 1] The alphas along the path where models are computed. (Is returned, along with ``coefs``, when ``return_models`` is set to ``False``) coefs : shape (n_features, n_alphas + 1) Coefficients along the path. (Is returned, along with ``alphas``, when ``return_models`` is set to ``False``). dual_gaps : shape (n_alphas + 1) The dual gaps at the end of the optimization for each alpha. (Is returned, along with ``alphas``, when ``return_models`` is set to ``False``). Notes ----- See examples/linear_model/plot_lasso_coordinate_descent_path.py for an example. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. Note that in certain cases, the Lars solver may be significantly faster to implement this functionality. In particular, linear interpolation can be used to retrieve model coefficients between the values output by lars_path Deprecation Notice: Setting ``return_models`` to ``False`` will make the Lasso Path return an output in the style used by :func:`lars_path`. This will be become the norm as of version 0.16. Leaving ``return_models`` set to `True` will let the function return a list of models as before. Examples --------- Comparing lasso_path and lars_path with interpolation: >>> X = np.array([[1, 2, 3.1], [2.3, 5.4, 4.3]]).T >>> y = np.array([1, 2, 3.1]) >>> # Use lasso_path to compute a coefficient path >>> _, coef_path, _ = lasso_path(X, y, alphas=[5., 1., .5], ... fit_intercept=False) >>> print(coef_path) [[ 0. 0. 0.46874778] [ 0.2159048 0.4425765 0.23689075]] >>> # Now use lars_path and 1D linear interpolation to compute the >>> # same path >>> from sklearn.linear_model import lars_path >>> alphas, active, coef_path_lars = lars_path(X, y, method='lasso') >>> from scipy import interpolate >>> coef_path_continuous = interpolate.interp1d(alphas[::-1], ... coef_path_lars[:, ::-1]) >>> print(coef_path_continuous([5., 1., .5])) [[ 0. 0. 0.46915237] [ 0.2159048 0.4425765 0.23668876]] See also -------- lars_path Lasso LassoLars LassoCV LassoLarsCV sklearn.decomposition.sparse_encode """ return enet_path(X, y, l1_ratio=1., eps=eps, n_alphas=n_alphas, alphas=alphas, precompute=precompute, Xy=Xy, fit_intercept=fit_intercept, normalize=normalize, copy_X=copy_X, coef_init=coef_init, verbose=verbose, return_models=return_models, **params) def enet_path(X, y, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None, precompute='auto', Xy=None, fit_intercept=True, normalize=False, copy_X=True, coef_init=None, verbose=False, return_models=False, **params): """Compute Elastic-Net path with coordinate descent The Elastic Net optimization function is:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication y : ndarray, shape = (n_samples,) Target values l1_ratio : float, optional float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties). ``l1_ratio=1`` corresponds to the Lasso eps : float Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3`` n_alphas : int, optional Number of alphas along the regularization path alphas : ndarray, optional List of alphas where to compute the models. If None alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. Xy : array-like, optional Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. fit_intercept : bool Fit or not an intercept. WARNING : will be deprecated in 0.16 normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. WARNING : will be deprecated in 0.16 copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. coef_init : array, shape (n_features, ) | None The initial values of the coefficients. verbose : bool or integer Amount of verbosity return_models : boolean, optional, default False If ``True``, the function will return list of models. Setting it to ``False`` will change the function output returning the values of the alphas and the coefficients along the path. Returning the model list will be removed in version 0.16. params : kwargs keyword arguments passed to the coordinate descent solver. Returns ------- models : a list of models along the regularization path (Is returned if ``return_models`` is set ``True`` (default). alphas : array, shape: [n_alphas + 1] The alphas along the path where models are computed. (Is returned, along with ``coefs``, when ``return_models`` is set to ``False``) coefs : shape (n_features, n_alphas + 1) Coefficients along the path. (Is returned, along with ``alphas``, when ``return_models`` is set to ``False``). dual_gaps : shape (n_alphas + 1) The dual gaps at the end of the optimization for each alpha. (Is returned, along with ``alphas``, when ``return_models`` is set to ``False``). Notes ----- See examples/plot_lasso_coordinate_descent_path.py for an example. Deprecation Notice: Setting ``return_models`` to ``False`` will make the Lasso Path return an output in the style used by :func:`lars_path`. This will be become the norm as of version 0.15. Leaving ``return_models`` set to `True` will let the function return a list of models as before. See also -------- ElasticNet ElasticNetCV """ if return_models: warnings.warn("Use enet_path(return_models=False), as it returns the" " coefficients and alphas instead of just a list of" " models as previously `lasso_path`/`enet_path` did." " `return_models` will eventually be removed in 0.16," " after which, returning alphas and coefs" " will become the norm.", DeprecationWarning, stacklevel=2) if normalize is True: warnings.warn("normalize param will be removed in 0.16." " Intercept fitting and feature normalization will be" " done in estimators.", DeprecationWarning, stacklevel=2) else: normalize = False if fit_intercept is True or fit_intercept is None: warnings.warn("fit_intercept param will be removed in 0.16." " Intercept fitting and feature normalization will be" " done in estimators.", DeprecationWarning, stacklevel=2) if fit_intercept is None: fit_intercept = True X = atleast2d_or_csc(X, dtype=np.float64, order='F', copy=copy_X and fit_intercept) n_samples, n_features = X.shape if sparse.isspmatrix(X): if 'X_mean' in params: # As sparse matrices are not actually centered we need this # to be passed to the CD solver. X_sparse_scaling = params['X_mean'] / params['X_std'] else: X_sparse_scaling = np.ones(n_features) X, y, X_mean, y_mean, X_std, precompute, Xy = \ _pre_fit(X, y, Xy, precompute, normalize, fit_intercept, copy=False) n_samples = X.shape[0] if alphas is None: # No need to normalize of fit_intercept: it has been done # above alphas = _alpha_grid(X, y, Xy=Xy, l1_ratio=l1_ratio, fit_intercept=False, eps=eps, n_alphas=n_alphas, normalize=False, copy_X=False) else: alphas = np.sort(alphas)[::-1] # make sure alphas are properly ordered n_alphas = len(alphas) if coef_init is None: coef_ = np.zeros(n_features, dtype=np.float64) else: coef_ = coef_init models = [] coefs = np.empty((n_features, n_alphas), dtype=np.float64) dual_gaps = np.empty(n_alphas) tol = params.get('tol', 1e-4) positive = params.get('positive', False) max_iter = params.get('max_iter', 1000) for i, alpha in enumerate(alphas): l1_reg = alpha * l1_ratio * n_samples l2_reg = alpha * (1.0 - l1_ratio) * n_samples if sparse.isspmatrix(X): coef_, dual_gap_, eps_ = cd_fast.sparse_enet_coordinate_descent( coef_, l1_reg, l2_reg, X.data, X.indices, X.indptr, y, X_sparse_scaling, max_iter, tol, positive) else: coef_, dual_gap_, eps_ = cd_fast.enet_coordinate_descent( coef_, l1_reg, l2_reg, X, y, max_iter, tol, positive) if dual_gap_ > eps_: warnings.warn('Objective did not converge.' + ' You might want' + ' to increase the number of iterations') coefs[:, i] = coef_ dual_gaps[i] = dual_gap_ if return_models: model = ElasticNet( alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept if sparse.isspmatrix(X) else False, precompute=precompute) model.coef_ = coefs[:, i] model.dual_gap_ = dual_gaps[-1] if fit_intercept and not sparse.isspmatrix(X): model.fit_intercept = True model._set_intercept(X_mean, y_mean, X_std) models.append(model) if verbose: if verbose > 2: print(model) elif verbose > 1: print('Path: %03i out of %03i' % (i, n_alphas)) else: sys.stderr.write('.') if return_models: return models else: return alphas, coefs, dual_gaps ############################################################################### # ElasticNet model class ElasticNet(LinearModel, RegressorMixin): """Linear Model trained with L1 and L2 prior as regularizer Minimizes the objective function:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:: a * L1 + b * L2 where:: alpha = a + b and l1_ratio = a / (a + b) The parameter l1_ratio corresponds to alpha in the glmnet R package while alpha corresponds to the lambda parameter in glmnet. Specifically, l1_ratio = 1 is the lasso penalty. Currently, l1_ratio <= 0.01 is not reliable, unless you supply your own sequence of alpha. Parameters ---------- alpha : float Constant that multiplies the penalty terms. Defaults to 1.0 See the notes for the exact mathematical meaning of this parameter. ``alpha = 0`` is equivalent to an ordinary least square, solved by the :class:`LinearRegression` object. For numerical reasons, using ``alpha = 0`` with the Lasso object is not advised and you should prefer the LinearRegression object. l1_ratio : float The ElasticNet mixing parameter, with ``0 <= l1_ratio <= 1``. For ``l1_ratio = 0`` the penalty is an L2 penalty. ``For l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2. fit_intercept: bool Whether the intercept should be estimated or not. If ``False``, the data is assumed to be already centered. normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. For sparse input this option is always ``True`` to preserve sparsity. max_iter: int, optional The maximum number of iterations copy_X : boolean, optional, default False If ``True``, X will be copied; else, it may be overwritten. tol: float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. positive: bool, optional When set to ``True``, forces the coefficients to be positive. Attributes ---------- ``coef_`` : array, shape = (n_features,) | (n_targets, n_features) parameter vector (w in the cost function formula) ``sparse_coef_`` : scipy.sparse matrix, shape = (n_features, 1) | \ (n_targets, n_features) ``sparse_coef_`` is a readonly property derived from ``coef_`` ``intercept_`` : float | array, shape = (n_targets,) independent term in decision function. Notes ----- To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ path = staticmethod(enet_path) def __init__(self, alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, copy_X=True, tol=1e-4, warm_start=False, positive=False): self.alpha = alpha self.l1_ratio = l1_ratio self.coef_ = None self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute self.max_iter = max_iter self.copy_X = copy_X self.tol = tol self.warm_start = warm_start self.positive = positive self.intercept_ = 0.0 def fit(self, X, y): """Fit model with coordinate descent. Parameters ----------- X : ndarray or scipy.sparse matrix, (n_samples, n_features) Data y : ndarray, shape = (n_samples,) or (n_samples, n_targets) Target Notes ----- Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically convert the X input as a Fortran-contiguous numpy array if necessary. To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format. """ if self.alpha == 0: warnings.warn("With alpha=0, this algorithm does not converge " "well. You are advised to use the LinearRegression " "estimator", stacklevel=2) X = atleast2d_or_csc(X, dtype=np.float64, order='F', copy=self.copy_X and self.fit_intercept) # From now on X can be touched inplace y = np.asarray(y, dtype=np.float64) X, y, X_mean, y_mean, X_std, precompute, Xy = \ _pre_fit(X, y, None, self.precompute, self.normalize, self.fit_intercept, copy=True) if y.ndim == 1: y = y[:, np.newaxis] if Xy is not None and Xy.ndim == 1: Xy = Xy[:, np.newaxis] n_samples, n_features = X.shape n_targets = y.shape[1] if not self.warm_start or self.coef_ is None: coef_ = np.zeros((n_targets, n_features), dtype=np.float64, order='F') else: coef_ = self.coef_ if coef_.ndim == 1: coef_ = coef_[np.newaxis, :] dual_gaps_ = np.zeros(n_targets, dtype=np.float64) for k in xrange(n_targets): if Xy is not None: this_Xy = Xy[:, k] else: this_Xy = None _, this_coef, this_dual_gap = \ self.path(X, y[:, k], l1_ratio=self.l1_ratio, eps=None, n_alphas=None, alphas=[self.alpha], precompute=precompute, Xy=this_Xy, fit_intercept=False, normalize=False, copy_X=True, verbose=False, tol=self.tol, positive=self.positive, X_mean=X_mean, X_std=X_std, coef_init=coef_[k], max_iter=self.max_iter) coef_[k] = this_coef[:, 0] dual_gaps_[k] = this_dual_gap[0] self.coef_, self.dual_gap_ = map(np.squeeze, [coef_, dual_gaps_]) self._set_intercept(X_mean, y_mean, X_std) # return self for chaining fit and predict calls return self @property def sparse_coef_(self): """ sparse representation of the fitted coef """ return sparse.csr_matrix(self.coef_) def decision_function(self, X): """Decision function of the linear model Parameters ---------- X : numpy array or scipy.sparse matrix of shape (n_samples, n_features) Returns ------- T : array, shape = (n_samples,) The predicted decision function """ if sparse.isspmatrix(X): return np.ravel(safe_sparse_dot(self.coef_, X.T, dense_output=True) + self.intercept_) else: return super(ElasticNet, self).decision_function(X) ############################################################################### # Lasso model class Lasso(ElasticNet): """Linear Model trained with L1 prior as regularizer (aka the Lasso) The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Technically the Lasso model is optimizing the same objective function as the Elastic Net with ``l1_ratio=1.0`` (no L2 penalty). Parameters ---------- alpha : float, optional Constant that multiplies the L1 term. Defaults to 1.0. ``alpha = 0`` is equivalent to an ordinary least square, solved by the :class:`LinearRegression` object. For numerical reasons, using ``alpha = 0`` is with the Lasso object is not advised and you should prefer the LinearRegression object. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. For sparse input this option is always ``True`` to preserve sparsity. max_iter: int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. positive : bool, optional When set to ``True``, forces the coefficients to be positive. Attributes ---------- ``coef_`` : array, shape = (n_features,) | (n_targets, n_features) parameter vector (w in the cost function formula) ``sparse_coef_`` : scipy.sparse matrix, shape = (n_features, 1) | \ (n_targets, n_features) ``sparse_coef_`` is a readonly property derived from ``coef_`` ``intercept_`` : float | array, shape = (n_targets,) independent term in decision function. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.Lasso(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) Lasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000, normalize=False, positive=False, precompute='auto', tol=0.0001, warm_start=False) >>> print(clf.coef_) [ 0.85 0. ] >>> print(clf.intercept_) 0.15 See also -------- lars_path lasso_path LassoLars LassoCV LassoLarsCV sklearn.decomposition.sparse_encode Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ path = staticmethod(enet_path) def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, precompute='auto', copy_X=True, max_iter=1000, tol=1e-4, warm_start=False, positive=False): super(Lasso, self).__init__( alpha=alpha, l1_ratio=1.0, fit_intercept=fit_intercept, normalize=normalize, precompute=precompute, copy_X=copy_X, max_iter=max_iter, tol=tol, warm_start=warm_start, positive=positive) ############################################################################### # Functions for CV with paths functions def _path_residuals(X, y, train, test, path, path_params, l1_ratio=1, X_order=None, dtype=None): """Returns the MSE for the models computed by 'path' Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values train : list of indices The indices of the train set test : list of indices The indices of the test set path : callable function returning a list of models on the path. See enet_path for an example of signature path_params : dictionary Parameters passed to the path function l1_ratio : float, optional float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties). For ``l1_ratio = 0`` the penalty is an L2 penalty. For ``l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2 X_order : {'F', 'C', or None}, optional The order of the arrays expected by the path function to avoid memory copies dtype: a numpy dtype or None The dtype of the arrays expected by the path function to avoid memory copies """ X_train = X[train] y_train = y[train] X_test = X[test] y_test = y[test] fit_intercept = path_params['fit_intercept'] normalize = path_params['normalize'] precompute = path_params['precompute'] X_train, y_train, X_mean, y_mean, X_std, precompute, Xy = \ _pre_fit(X_train, y_train, None, precompute, normalize, fit_intercept, copy=False) # del path_params['precompute'] path_params = path_params.copy() path_params['fit_intercept'] = False path_params['normalize'] = False path_params['Xy'] = Xy path_params['X_mean'] = X_mean path_params['X_std'] = X_std path_params['precompute'] = precompute path_params['copy_X'] = False if 'l1_ratio' in path_params: path_params['l1_ratio'] = l1_ratio # Do the ordering and type casting here, as if it is done in the path, # X is copied and a reference is kept here X_train = atleast2d_or_csc(X_train, dtype=dtype, order=X_order) alphas, coefs, _ = path(X_train, y[train], **path_params) del X_train if normalize: nonzeros = np.flatnonzero(X_std) coefs[nonzeros] /= X_std[nonzeros][:, np.newaxis] intercepts = y_mean - np.dot(X_mean, coefs) residues = safe_sparse_dot(X_test, coefs) - y_test[:, np.newaxis] residues += intercepts[np.newaxis, :] this_mses = (residues ** 2).mean(axis=0) return this_mses, l1_ratio class LinearModelCV(six.with_metaclass(ABCMeta, LinearModel)): """Base class for iterative model fitting along a regularization path""" @abstractmethod def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=1e-4, copy_X=True, cv=None, verbose=False): self.eps = eps self.n_alphas = n_alphas self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute self.max_iter = max_iter self.tol = tol self.copy_X = copy_X self.cv = cv self.verbose = verbose def fit(self, X, y): """Fit linear model with coordinate descent Fit is on grid of alphas and best alpha estimated by cross-validation. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Pass directly as float64, Fortran-contiguous data to avoid unnecessary memory duplication y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values """ # Dealing right with copy_X is important in the following: # multiple functions touch X and subsamples of X and can induce a # lot of duplication of memory copy_X = self.copy_X and self.fit_intercept if isinstance(X, np.ndarray) or sparse.isspmatrix(X): # Keep a reference to X reference_to_old_X = X # Let us not impose fortran ordering or float64 so far: it is # not useful for the cross-validation loop and will be done # by the model fitting itself X = atleast2d_or_csc(X, copy=False) if sparse.isspmatrix(X): if not np.may_share_memory(reference_to_old_X.data, X.data): # X is a sparse matrix and has been copied copy_X = False elif not np.may_share_memory(reference_to_old_X, X): # X has been copied copy_X = False del reference_to_old_X else: X = atleast2d_or_csc(X, dtype=np.float64, order='F', copy=copy_X) copy_X = False y = np.asarray(y, dtype=np.float64) if y.ndim > 1: raise ValueError("For multi-task outputs, fit the linear model " "per output/task") if X.shape[0] != y.shape[0]: raise ValueError("X and y have inconsistent dimensions (%d != %d)" % (X.shape[0], y.shape[0])) # All LinearModelCV parameters except 'cv' are acceptable path_params = self.get_params() if 'l1_ratio' in path_params: l1_ratios = np.atleast_1d(path_params['l1_ratio']) # For the first path, we need to set l1_ratio path_params['l1_ratio'] = l1_ratios[0] else: l1_ratios = [1, ] path_params.pop('cv', None) path_params.pop('n_jobs', None) alphas = self.alphas if alphas is None: mean_l1_ratio = 1. if hasattr(self, 'l1_ratio'): mean_l1_ratio = np.mean(self.l1_ratio) alphas = _alpha_grid(X, y, l1_ratio=mean_l1_ratio, fit_intercept=self.fit_intercept, eps=self.eps, n_alphas=self.n_alphas, normalize=self.normalize, copy_X=self.copy_X) n_alphas = len(alphas) path_params.update({'alphas': alphas, 'n_alphas': n_alphas}) path_params['copy_X'] = copy_X # We are not computing in parallel, we can modify X # inplace in the folds if not (self.n_jobs == 1 or self.n_jobs is None): path_params['copy_X'] = False # init cross-validation generator cv = check_cv(self.cv, X) # Compute path for all folds and compute MSE to get the best alpha folds = list(cv) best_mse = np.inf all_mse_paths = list() # We do a double for loop folded in one, in order to be able to # iterate in parallel on l1_ratio and folds for l1_ratio, mse_alphas in itertools.groupby( Parallel(n_jobs=self.n_jobs, verbose=self.verbose)( delayed(_path_residuals)( X, y, train, test, self.path, path_params, l1_ratio=l1_ratio, X_order='F', dtype=np.float64) for l1_ratio in l1_ratios for train, test in folds ), operator.itemgetter(1)): mse_alphas = [m[0] for m in mse_alphas] mse_alphas = np.array(mse_alphas) mse = np.mean(mse_alphas, axis=0) i_best_alpha = np.argmin(mse) this_best_mse = mse[i_best_alpha] all_mse_paths.append(mse_alphas.T) if this_best_mse < best_mse: best_alpha = alphas[i_best_alpha] best_l1_ratio = l1_ratio best_mse = this_best_mse self.l1_ratio_ = best_l1_ratio self.alpha_ = best_alpha self.alphas_ = np.asarray(alphas) self.mse_path_ = np.squeeze(all_mse_paths) # Refit the model with the parameters selected model = ElasticNet() common_params = dict((name, value) for name, value in self.get_params().items() if name in model.get_params()) model.set_params(**common_params) model.alpha = best_alpha model.l1_ratio = best_l1_ratio model.copy_X = copy_X model.fit(X, y) self.coef_ = model.coef_ self.intercept_ = model.intercept_ self.dual_gap_ = model.dual_gap_ return self class LassoCV(LinearModelCV, RegressorMixin): """Lasso linear model with iterative fitting along a regularization path The best model is selected by cross-validation. The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Parameters ---------- eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. n_alphas : int, optional Number of alphas along the regularization path alphas : numpy array, optional List of alphas where to compute the models. If ``None`` alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter: int, optional The maximum number of iterations tol: float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : integer or cross-validation generator, optional If an integer is passed, it is the number of fold (default 3). Specific cross-validation objects can be passed, see the :mod:`sklearn.cross_validation` module for the list of possible objects. verbose : bool or integer amount of verbosity Attributes ---------- ``alpha_`` : float The amount of penalization chosen by cross validation ``coef_`` : array, shape = (n_features,) | (n_targets, n_features) parameter vector (w in the cost function formula) ``intercept_`` : float | array, shape = (n_targets,) independent term in decision function. ``mse_path_`` : array, shape = (n_alphas, n_folds) mean square error for the test set on each fold, varying alpha ``alphas_`` : numpy array The grid of alphas used for fitting ``l1_ratio_`` : int An artifact of the super class LinearModelCV. In this case, ``l1_ratio_ = 1`` because the Lasso estimator uses an L1 penalty by definition. Typically it is a float between 0 and 1 passed to an estimator such as ElasticNet (scaling between l1 and l2 penalties). For ``l1_ratio = 0`` the penalty is an L2 penalty. For ``l1_ratio = 1`` it is an L1 penalty. ``dual_gap_`` : numpy array The dual gap at the end of the optimization for the optimal alpha (``alpha_``). Notes ----- See examples/linear_model/lasso_path_with_crossvalidation.py for an example. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. See also -------- lars_path lasso_path LassoLars Lasso LassoLarsCV """ path = staticmethod(lasso_path) n_jobs = 1 def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=1e-4, copy_X=True, cv=None, verbose=False): super(LassoCV, self).__init__( eps=eps, n_alphas=n_alphas, alphas=alphas, fit_intercept=fit_intercept, normalize=normalize, precompute=precompute, max_iter=max_iter, tol=tol, copy_X=copy_X, cv=cv, verbose=verbose) class ElasticNetCV(LinearModelCV, RegressorMixin): """Elastic Net model with iterative fitting along a regularization path The best model is selected by cross-validation. Parameters ---------- l1_ratio : float, optional float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties). For ``l1_ratio = 0`` the penalty is an L2 penalty. For ``l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2 This parameter can be a list, in which case the different values are tested by cross-validation and the one giving the best prediction score is used. Note that a good choice of list of values for l1_ratio is often to put more values close to 1 (i.e. Lasso) and less close to 0 (i.e. Ridge), as in ``[.1, .5, .7, .9, .95, .99, 1]`` eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. n_alphas : int, optional Number of alphas along the regularization path alphas : numpy array, optional List of alphas where to compute the models. If None alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : integer or cross-validation generator, optional If an integer is passed, it is the number of fold (default 3). Specific cross-validation objects can be passed, see the :mod:`sklearn.cross_validation` module for the list of possible objects. verbose : bool or integer amount of verbosity n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. Note that this is used only if multiple values for l1_ratio are given. Attributes ---------- ``alpha_`` : float The amount of penalization chosen by cross validation ``l1_ratio_`` : float The compromise between l1 and l2 penalization chosen by cross validation ``coef_`` : array, shape = (n_features,) | (n_targets, n_features) Parameter vector (w in the cost function formula), ``intercept_`` : float | array, shape = (n_targets, n_features) Independent term in the decision function. ``mse_path_`` : array, shape = (n_l1_ratio, n_alpha, n_folds) Mean square error for the test set on each fold, varying l1_ratio and alpha. Notes ----- See examples/linear_model/lasso_path_with_crossvalidation.py for an example. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. The parameter l1_ratio corresponds to alpha in the glmnet R package while alpha corresponds to the lambda parameter in glmnet. More specifically, the optimization objective is:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:: a * L1 + b * L2 for:: alpha = a + b and l1_ratio = a / (a + b). See also -------- enet_path ElasticNet """ path = staticmethod(enet_path) def __init__(self, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=1e-4, cv=None, copy_X=True, verbose=0, n_jobs=1): self.l1_ratio = l1_ratio self.eps = eps self.n_alphas = n_alphas self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute self.max_iter = max_iter self.tol = tol self.cv = cv self.copy_X = copy_X self.verbose = verbose self.n_jobs = n_jobs ############################################################################### # Multi Task ElasticNet and Lasso models (with joint feature selection) class MultiTaskElasticNet(Lasso): """Multi-task ElasticNet model trained with L1/L2 mixed-norm as regularizer The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * l1_ratio * ||W||_21 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of earch row. Parameters ---------- alpha : float, optional Constant that multiplies the L1/L2 term. Defaults to 1.0 l1_ratio : float The ElasticNet mixing parameter, with 0 < l1_ratio <= 1. For l1_ratio = 0 the penalty is an L1/L2 penalty. For l1_ratio = 1 it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1/L2 and L2. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. Attributes ---------- ``intercept_`` : array, shape = (n_tasks,) Independent term in decision function. ``coef_`` : array, shape = (n_tasks, n_features) Parameter vector (W in the cost function formula). If a 1D y is \ passed in at fit (non multi-task usage), ``coef_`` is then a 1D array Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.MultiTaskElasticNet(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [[0, 0], [1, 1], [2, 2]]) ... #doctest: +NORMALIZE_WHITESPACE MultiTaskElasticNet(alpha=0.1, copy_X=True, fit_intercept=True, l1_ratio=0.5, max_iter=1000, normalize=False, tol=0.0001, warm_start=False) >>> print(clf.coef_) [[ 0.45663524 0.45612256] [ 0.45663524 0.45612256]] >>> print(clf.intercept_) [ 0.0872422 0.0872422] See also -------- ElasticNet, MultiTaskLasso Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ def __init__(self, alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, copy_X=True, max_iter=1000, tol=1e-4, warm_start=False): self.l1_ratio = l1_ratio self.alpha = alpha self.coef_ = None self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.copy_X = copy_X self.tol = tol self.warm_start = warm_start def fit(self, X, y): """Fit MultiTaskLasso model with coordinate descent Parameters ----------- X: ndarray, shape = (n_samples, n_features) Data y: ndarray, shape = (n_samples, n_tasks) Target Notes ----- Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically convert the X input as a Fortran-contiguous numpy array if necessary. To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format. """ # X and y must be of type float64 X = array2d(X, dtype=np.float64, order='F', copy=self.copy_X and self.fit_intercept) y = np.asarray(y, dtype=np.float64) squeeze_me = False if y.ndim == 1: squeeze_me = True y = y[:, np.newaxis] n_samples, n_features = X.shape _, n_tasks = y.shape X, y, X_mean, y_mean, X_std = center_data( X, y, self.fit_intercept, self.normalize, copy=False) if not self.warm_start or self.coef_ is None: self.coef_ = np.zeros((n_tasks, n_features), dtype=np.float64, order='F') l1_reg = self.alpha * self.l1_ratio * n_samples l2_reg = self.alpha * (1.0 - self.l1_ratio) * n_samples self.coef_ = np.asfortranarray(self.coef_) # coef contiguous in memory self.coef_, self.dual_gap_, self.eps_ = \ cd_fast.enet_coordinate_descent_multi_task( self.coef_, l1_reg, l2_reg, X, y, self.max_iter, self.tol) self._set_intercept(X_mean, y_mean, X_std) # Make sure that the coef_ have the same shape as the given 'y', # to predict with the same shape if squeeze_me: self.coef_ = self.coef_.squeeze() if self.dual_gap_ > self.eps_: warnings.warn('Objective did not converge, you might want' ' to increase the number of iterations') # return self for chaining fit and predict calls return self class MultiTaskLasso(MultiTaskElasticNet): """Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of earch row. Parameters ---------- alpha : float, optional Constant that multiplies the L1/L2 term. Defaults to 1.0 fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. Attributes ---------- ``coef_`` : array, shape = (n_tasks, n_features) parameter vector (W in the cost function formula) ``intercept_`` : array, shape = (n_tasks,) independent term in decision function. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.MultiTaskLasso(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [[0, 0], [1, 1], [2, 2]]) MultiTaskLasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000, normalize=False, tol=0.0001, warm_start=False) >>> print(clf.coef_) [[ 0.89393398 0. ] [ 0.89393398 0. ]] >>> print(clf.intercept_) [ 0.10606602 0.10606602] See also -------- Lasso, MultiTaskElasticNet Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=1000, tol=1e-4, warm_start=False): self.alpha = alpha self.coef_ = None self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.copy_X = copy_X self.tol = tol self.warm_start = warm_start self.l1_ratio = 1.0
bsd-3-clause
wazeerzulfikar/scikit-learn
benchmarks/bench_plot_nmf.py
27
15580
""" Benchmarks of Non-Negative Matrix Factorization """ # Authors: Tom Dupre la Tour (benchmark) # Chih-Jen Linn (original projected gradient NMF implementation) # Anthony Di Franco (projected gradient, Python and NumPy port) # License: BSD 3 clause from __future__ import print_function from time import time import sys import warnings import numbers import numpy as np import matplotlib.pyplot as plt import pandas from sklearn.utils.testing import ignore_warnings from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.decomposition.nmf import NMF from sklearn.decomposition.nmf import _initialize_nmf from sklearn.decomposition.nmf import _beta_divergence from sklearn.decomposition.nmf import INTEGER_TYPES, _check_init from sklearn.externals.joblib import Memory from sklearn.exceptions import ConvergenceWarning from sklearn.utils.extmath import safe_sparse_dot, squared_norm from sklearn.utils import check_array from sklearn.utils.validation import check_is_fitted, check_non_negative mem = Memory(cachedir='.', verbose=0) ################### # Start of _PGNMF # ################### # This class implements a projected gradient solver for the NMF. # The projected gradient solver was removed from scikit-learn in version 0.19, # and a simplified copy is used here for comparison purpose only. # It is not tested, and it may change or disappear without notice. def _norm(x): """Dot product-based Euclidean norm implementation See: http://fseoane.net/blog/2011/computing-the-vector-norm/ """ return np.sqrt(squared_norm(x)) def _nls_subproblem(X, W, H, tol, max_iter, alpha=0., l1_ratio=0., sigma=0.01, beta=0.1): """Non-negative least square solver Solves a non-negative least squares subproblem using the projected gradient descent algorithm. Parameters ---------- X : array-like, shape (n_samples, n_features) Constant matrix. W : array-like, shape (n_samples, n_components) Constant matrix. H : array-like, shape (n_components, n_features) Initial guess for the solution. tol : float Tolerance of the stopping condition. max_iter : int Maximum number of iterations before timing out. alpha : double, default: 0. Constant that multiplies the regularization terms. Set it to zero to have no regularization. l1_ratio : double, default: 0. The regularization mixing parameter, with 0 <= l1_ratio <= 1. For l1_ratio = 0 the penalty is an L2 penalty. For l1_ratio = 1 it is an L1 penalty. For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2. sigma : float Constant used in the sufficient decrease condition checked by the line search. Smaller values lead to a looser sufficient decrease condition, thus reducing the time taken by the line search, but potentially increasing the number of iterations of the projected gradient procedure. 0.01 is a commonly used value in the optimization literature. beta : float Factor by which the step size is decreased (resp. increased) until (resp. as long as) the sufficient decrease condition is satisfied. Larger values allow to find a better step size but lead to longer line search. 0.1 is a commonly used value in the optimization literature. Returns ------- H : array-like, shape (n_components, n_features) Solution to the non-negative least squares problem. grad : array-like, shape (n_components, n_features) The gradient. n_iter : int The number of iterations done by the algorithm. References ---------- C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19(2007), 2756-2779. http://www.csie.ntu.edu.tw/~cjlin/nmf/ """ WtX = safe_sparse_dot(W.T, X) WtW = np.dot(W.T, W) # values justified in the paper (alpha is renamed gamma) gamma = 1 for n_iter in range(1, max_iter + 1): grad = np.dot(WtW, H) - WtX if alpha > 0 and l1_ratio == 1.: grad += alpha elif alpha > 0: grad += alpha * (l1_ratio + (1 - l1_ratio) * H) # The following multiplication with a boolean array is more than twice # as fast as indexing into grad. if _norm(grad * np.logical_or(grad < 0, H > 0)) < tol: break Hp = H for inner_iter in range(20): # Gradient step. Hn = H - gamma * grad # Projection step. Hn *= Hn > 0 d = Hn - H gradd = np.dot(grad.ravel(), d.ravel()) dQd = np.dot(np.dot(WtW, d).ravel(), d.ravel()) suff_decr = (1 - sigma) * gradd + 0.5 * dQd < 0 if inner_iter == 0: decr_gamma = not suff_decr if decr_gamma: if suff_decr: H = Hn break else: gamma *= beta elif not suff_decr or (Hp == Hn).all(): H = Hp break else: gamma /= beta Hp = Hn if n_iter == max_iter: warnings.warn("Iteration limit reached in nls subproblem.", ConvergenceWarning) return H, grad, n_iter def _fit_projected_gradient(X, W, H, tol, max_iter, nls_max_iter, alpha, l1_ratio): gradW = (np.dot(W, np.dot(H, H.T)) - safe_sparse_dot(X, H.T, dense_output=True)) gradH = (np.dot(np.dot(W.T, W), H) - safe_sparse_dot(W.T, X, dense_output=True)) init_grad = squared_norm(gradW) + squared_norm(gradH.T) # max(0.001, tol) to force alternating minimizations of W and H tolW = max(0.001, tol) * np.sqrt(init_grad) tolH = tolW for n_iter in range(1, max_iter + 1): # stopping condition as discussed in paper proj_grad_W = squared_norm(gradW * np.logical_or(gradW < 0, W > 0)) proj_grad_H = squared_norm(gradH * np.logical_or(gradH < 0, H > 0)) if (proj_grad_W + proj_grad_H) / init_grad < tol ** 2: break # update W Wt, gradWt, iterW = _nls_subproblem(X.T, H.T, W.T, tolW, nls_max_iter, alpha=alpha, l1_ratio=l1_ratio) W, gradW = Wt.T, gradWt.T if iterW == 1: tolW = 0.1 * tolW # update H H, gradH, iterH = _nls_subproblem(X, W, H, tolH, nls_max_iter, alpha=alpha, l1_ratio=l1_ratio) if iterH == 1: tolH = 0.1 * tolH H[H == 0] = 0 # fix up negative zeros if n_iter == max_iter: Wt, _, _ = _nls_subproblem(X.T, H.T, W.T, tolW, nls_max_iter, alpha=alpha, l1_ratio=l1_ratio) W = Wt.T return W, H, n_iter class _PGNMF(NMF): """Non-Negative Matrix Factorization (NMF) with projected gradient solver. This class is private and for comparison purpose only. It may change or disappear without notice. """ def __init__(self, n_components=None, solver='pg', init=None, tol=1e-4, max_iter=200, random_state=None, alpha=0., l1_ratio=0., nls_max_iter=10): super(_PGNMF, self).__init__( n_components=n_components, init=init, solver=solver, tol=tol, max_iter=max_iter, random_state=random_state, alpha=alpha, l1_ratio=l1_ratio) self.nls_max_iter = nls_max_iter def fit(self, X, y=None, **params): self.fit_transform(X, **params) return self def transform(self, X): check_is_fitted(self, 'components_') H = self.components_ W, _, self.n_iter_ = self._fit_transform(X, H=H, update_H=False) return W def inverse_transform(self, W): check_is_fitted(self, 'components_') return np.dot(W, self.components_) def fit_transform(self, X, y=None, W=None, H=None): W, H, self.n_iter = self._fit_transform(X, W=W, H=H, update_H=True) self.components_ = H return W def _fit_transform(self, X, y=None, W=None, H=None, update_H=True): X = check_array(X, accept_sparse=('csr', 'csc')) check_non_negative(X, "NMF (input X)") n_samples, n_features = X.shape n_components = self.n_components if n_components is None: n_components = n_features if (not isinstance(n_components, INTEGER_TYPES) or n_components <= 0): raise ValueError("Number of components must be a positive integer;" " got (n_components=%r)" % n_components) if not isinstance(self.max_iter, INTEGER_TYPES) or self.max_iter < 0: raise ValueError("Maximum number of iterations must be a positive " "integer; got (max_iter=%r)" % self.max_iter) if not isinstance(self.tol, numbers.Number) or self.tol < 0: raise ValueError("Tolerance for stopping criteria must be " "positive; got (tol=%r)" % self.tol) # check W and H, or initialize them if self.init == 'custom' and update_H: _check_init(H, (n_components, n_features), "NMF (input H)") _check_init(W, (n_samples, n_components), "NMF (input W)") elif not update_H: _check_init(H, (n_components, n_features), "NMF (input H)") W = np.zeros((n_samples, n_components)) else: W, H = _initialize_nmf(X, n_components, init=self.init, random_state=self.random_state) if update_H: # fit_transform W, H, n_iter = _fit_projected_gradient( X, W, H, self.tol, self.max_iter, self.nls_max_iter, self.alpha, self.l1_ratio) else: # transform Wt, _, n_iter = _nls_subproblem(X.T, H.T, W.T, self.tol, self.nls_max_iter, alpha=self.alpha, l1_ratio=self.l1_ratio) W = Wt.T if n_iter == self.max_iter and self.tol > 0: warnings.warn("Maximum number of iteration %d reached. Increase it" " to improve convergence." % self.max_iter, ConvergenceWarning) return W, H, n_iter ################# # End of _PGNMF # ################# def plot_results(results_df, plot_name): if results_df is None: return None plt.figure(figsize=(16, 6)) colors = 'bgr' markers = 'ovs' ax = plt.subplot(1, 3, 1) for i, init in enumerate(np.unique(results_df['init'])): plt.subplot(1, 3, i + 1, sharex=ax, sharey=ax) for j, method in enumerate(np.unique(results_df['method'])): mask = np.logical_and(results_df['init'] == init, results_df['method'] == method) selected_items = results_df[mask] plt.plot(selected_items['time'], selected_items['loss'], color=colors[j % len(colors)], ls='-', marker=markers[j % len(markers)], label=method) plt.legend(loc=0, fontsize='x-small') plt.xlabel("Time (s)") plt.ylabel("loss") plt.title("%s" % init) plt.suptitle(plot_name, fontsize=16) @ignore_warnings(category=ConvergenceWarning) # use joblib to cache the results. # X_shape is specified in arguments for avoiding hashing X @mem.cache(ignore=['X', 'W0', 'H0']) def bench_one(name, X, W0, H0, X_shape, clf_type, clf_params, init, n_components, random_state): W = W0.copy() H = H0.copy() clf = clf_type(**clf_params) st = time() W = clf.fit_transform(X, W=W, H=H) end = time() H = clf.components_ this_loss = _beta_divergence(X, W, H, 2.0, True) duration = end - st return this_loss, duration def run_bench(X, clfs, plot_name, n_components, tol, alpha, l1_ratio): start = time() results = [] for name, clf_type, iter_range, clf_params in clfs: print("Training %s:" % name) for rs, init in enumerate(('nndsvd', 'nndsvdar', 'random')): print(" %s %s: " % (init, " " * (8 - len(init))), end="") W, H = _initialize_nmf(X, n_components, init, 1e-6, rs) for max_iter in iter_range: clf_params['alpha'] = alpha clf_params['l1_ratio'] = l1_ratio clf_params['max_iter'] = max_iter clf_params['tol'] = tol clf_params['random_state'] = rs clf_params['init'] = 'custom' clf_params['n_components'] = n_components this_loss, duration = bench_one(name, X, W, H, X.shape, clf_type, clf_params, init, n_components, rs) init_name = "init='%s'" % init results.append((name, this_loss, duration, init_name)) # print("loss: %.6f, time: %.3f sec" % (this_loss, duration)) print(".", end="") sys.stdout.flush() print(" ") # Use a panda dataframe to organize the results results_df = pandas.DataFrame(results, columns="method loss time init".split()) print("Total time = %0.3f sec\n" % (time() - start)) # plot the results plot_results(results_df, plot_name) return results_df def load_20news(): print("Loading 20 newsgroups dataset") print("-----------------------------") from sklearn.datasets import fetch_20newsgroups dataset = fetch_20newsgroups(shuffle=True, random_state=1, remove=('headers', 'footers', 'quotes')) vectorizer = TfidfVectorizer(max_df=0.95, min_df=2, stop_words='english') tfidf = vectorizer.fit_transform(dataset.data) return tfidf def load_faces(): print("Loading Olivetti face dataset") print("-----------------------------") from sklearn.datasets import fetch_olivetti_faces faces = fetch_olivetti_faces(shuffle=True) return faces.data def build_clfs(cd_iters, pg_iters, mu_iters): clfs = [("Coordinate Descent", NMF, cd_iters, {'solver': 'cd'}), ("Projected Gradient", _PGNMF, pg_iters, {'solver': 'pg'}), ("Multiplicative Update", NMF, mu_iters, {'solver': 'mu'}), ] return clfs if __name__ == '__main__': alpha = 0. l1_ratio = 0.5 n_components = 10 tol = 1e-15 # first benchmark on 20 newsgroup dataset: sparse, shape(11314, 39116) plot_name = "20 Newsgroups sparse dataset" cd_iters = np.arange(1, 30) pg_iters = np.arange(1, 6) mu_iters = np.arange(1, 30) clfs = build_clfs(cd_iters, pg_iters, mu_iters) X_20news = load_20news() run_bench(X_20news, clfs, plot_name, n_components, tol, alpha, l1_ratio) # second benchmark on Olivetti faces dataset: dense, shape(400, 4096) plot_name = "Olivetti Faces dense dataset" cd_iters = np.arange(1, 30) pg_iters = np.arange(1, 12) mu_iters = np.arange(1, 30) clfs = build_clfs(cd_iters, pg_iters, mu_iters) X_faces = load_faces() run_bench(X_faces, clfs, plot_name, n_components, tol, alpha, l1_ratio,) plt.show()
bsd-3-clause
baxen/fishbowl
fishbowl/color.py
1
4322
""" color - Definitions and controls for color palettes Provides a series of custom qualitative palettes and an interface for saving (and developing) additional palettes. All functions which accept a palette support the `palettable` package. This module is used by core to set colors with the simple tools, but can also be accessed directly to retrieve and customize palettes. """ import itertools import matplotlib import numpy as np import matplotlib.pyplot as plt from cycler import cycler from fishbowl.base import loads_from_json, saves_to_json def next_color(): """ Next color from the mpl color cycle Note that this cycle is independent of the one used within mpl """ if not hasattr(next_color, '_cycle'): next_color._cycle = matplotlib.rcParams['axes.prop_cycle'] next_color._cycle = itertools.cycle(next_color._cycle) return next(next_color._cycle)['color'] def cmap(arg): """ Configuration for cmap specified by arg Parameters ---------- arg any cmap known by matplotlib or a palettable.palette instance. """ if hasattr(arg, 'mpl_colormap'): matplotlib.cm.register_cmap(arg.name, arg.mpl_colormap) return {'image.cmap': arg.name} elif isinstance(arg, str): return {'image.cmap': arg} else: raise ValueError('Could not interpret the argument provided for cmap: ' + str(arg)) @loads_from_json('fishbowl.palettes.json') def palette(arg): """ Configuration for palette specified by arg Parameters ---------- arg any name known by fishbowl or a palettable.palette instance. """ if hasattr(arg, 'hex_colors'): return {'color.palette': arg.hex_colors} @saves_to_json('fishbowl.palettes.json') def save_palette(name, config): """ Save a new color palette as name. Parameters ---------- name : str save name for the palette config list of hex colors, palettable.palette instance, or name known by fishbowl """ return palette(config) def draw_box_palette(colors, save_name=None, block=10, sep=1, background='white'): """ Draw a series of boxes of color in a grid to show a palette. Parameters ---------- colors a list or list of lists of colors for the boxes a list of lists is drawn as a 2D grid each entry must be a color understood by matplotlib. save_name : str if provided, saves plot to save_name block : int size of the side of each box (pixels) sep : int separation between each box (pixels) background color of the background between palettes """ if not hasattr(colors[0], "__iter__"): colors = [colors] # Calculate pixel sizes rows = len(colors) cols = len(colors[0]) side = block + 2 * sep image = np.zeros((side * rows, side * cols)) # Assign a unique, consecutive value to each color block for col in range(cols): for row in range(rows): image[sep + side * row: sep + block + side * row, sep + side * col:sep + block + side * col] = rows * col + row + 1 # Figure without border or axis, sized to just contain the blocks fig = plt.figure(frameon=False, figsize=(cols, rows)) ax = plt.Axes(fig, [0., 0., 1., 1.]) ax.set_axis_off() fig.add_axes(ax) # Show it as an image, using one color per box value in a cmap ax.imshow(image, cmap=matplotlib.colors.ListedColormap( [background] + list(itertools.chain(*colors))), interpolation="nearest") if save_name: fig.savefig(save_name, dpi=120) def draw_sin_palette(colors, save_name=None): """ Draw a series of sin waves in each color to show a palette. Parameters ---------- colors : array_like list of colors, each must be understood by matplotlib save_name : str if provided, saves plot to save_name """ fig, (ax) = plt.subplots() ax.set_prop_cycle(cycler('color', colors)) n = len(colors) x = np.linspace(-5, 5, 100) for i in range(1, n + 1): ax.plot(x, np.sin(x + i * .5) * (n + 1 - i)) ax.set_axis_off() if save_name: fig.savefig(save_name, dpi=300)
mit
necromuralist/student_intervention
student_intervention/model_probabilities.py
1
1298
from sklearn.preprocessing import MinMaxScaler from bokeh.palettes import Spectral7 tools = "pan,wheel_zoom,box_zoom,reset,resize,hover" #tooltips = [('Variable', '@{0}'.format(variable)) for variable in non_zero_variables] fig = b_figure(tools=tools, title='Variable Probabilities') scaler = MinMaxScaler() #x_normed = normalize(X_test) for v_index, variable in enumerate(non_zero_variables): index = numpy.where(X_test.columns==variable) x_input = numpy.zeros((1, len(X_test.columns))) x = numpy.array([value for value in sorted(X_test[variable].unique())]) with warnings.catch_warnings(): warnings.simplefilter('ignore') x = scaler.fit_transform(x) y = [] x = [x[0], x[-1]] for value in x: x_input[0][index] = value y.append(grid.best_estimator_.predict_proba(x_input)[0][1]) #lines = plot.plot(x, y, label=variable) source = ColumnDataSource({variable: x, 'passed': y, 'name': [variable for item in x]}) #fig.circle(variable, 'passed', name=variable, source=source) hover = fig.select(dict(type=HoverTool)) hover.tooltips = [('Variable', '@name'), ("(x, y)", '($x, $y)')] hover.mode = 'mouse' #hover.line_policy='none' fig.line(x, y, source=source, line_color=Spectral7[v_index], legend=variable)
mit
wanglei828/apollo
modules/tools/mapshow/libs/plot_planning.py
3
3641
#!/usr/bin/env python ############################################################################### # Copyright 2017 The Apollo Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################### import argparse import matplotlib.pyplot as plt import matplotlib.animation as animation from cyber_py import cyber from modules.planning.proto import planning_pb2 from subplot_st_main import StMainSubplot from subplot_path import PathSubplot from subplot_sl_main import SlMainSubplot from subplot_st_speed import StSpeedSubplot from subplot_speed import SpeedSubplot from localization import Localization from planning import Planning planning = Planning() localization = Localization() def update(frame_number): # st_main_subplot.show(planning) # st_speed_subplot.show(planning) map_path_subplot.show(planning, localization) dp_st_main_subplot.show(planning) qp_st_main_subplot.show(planning) speed_subplot.show(planning) sl_main_subplot.show(planning) st_speed_subplot.show(planning) def planning_callback(planning_pb): planning.update_planning_pb(planning_pb) localization.update_localization_pb( planning_pb.debug.planning_data.adc_position) planning.compute_st_data() planning.compute_sl_data() planning.compute_path_data() planning.compute_speed_data() planning.compute_init_point() def add_listener(): planning_sub = cyber.Node("st_plot") planning_sub.create_reader('/apollo/planning', planning_pb2.ADCTrajectory, planning_callback) def press_key(event): if event.key == '+' or event.key == '=': map_path_subplot.zoom_in() if event.key == '-' or event.key == '_': map_path_subplot.zoom_out() if __name__ == '__main__': parser = argparse.ArgumentParser( description="plot_planning is a tool to display " "planning trajs on a map.", prog="plot_planning_old.py") parser.add_argument( "-m", "--map", action="store", type=str, required=False, default=None, help="Specify the map file in txt or binary format") args = parser.parse_args() cyber.init() add_listener() fig = plt.figure() fig.canvas.mpl_connect('key_press_event', press_key) ax = plt.subplot2grid((3, 3), (0, 0), rowspan=2, colspan=2) map_path_subplot = PathSubplot(ax, args.map) ax1 = plt.subplot2grid((3, 3), (0, 2)) speed_subplot = SpeedSubplot(ax1) ax2 = plt.subplot2grid((3, 3), (2, 2)) dp_st_main_subplot = StMainSubplot(ax2, 'QpSplineStSpeedOptimizer') ax3 = plt.subplot2grid((3, 3), (1, 2)) qp_st_main_subplot = StMainSubplot(ax3, 'DpStSpeedOptimizer') ax4 = plt.subplot2grid((3, 3), (2, 0), colspan=1) sl_main_subplot = SlMainSubplot(ax4) ax5 = plt.subplot2grid((3, 3), (2, 1), colspan=1) st_speed_subplot = StSpeedSubplot(ax5, 'QpSplineStSpeedOptimizer') ani = animation.FuncAnimation(fig, update, interval=100) ax.axis('equal') plt.show() cyber.shutdown()
apache-2.0
abulak/TDA-Cause-Effect-Pairs
PlottingUtilities.py
1
5894
import os import json import re import numpy as np import numpy.ma as ma # import matplotlib # matplotlib.use('Agg') import GeometricComplex as GC import matplotlib.pyplot as plt import seaborn as sns from matplotlib.collections import LineCollection, PolyCollection class TopologyPlotter: """ Outlier Plotter; requires outliers model and assumes points.std, outliers.$model, and diagram.$model are in the path given. """ def __init__(self, path, model="knn", name=None): if name is None: self.name = path[-9:-1] else: self.name = name self.suffix = str(model) self.points = standardise(np.loadtxt(os.path.join(path, 'points.std'))) outliers_path = os.path.join(path, 'outliers.' + self.suffix) self.outliers = np.loadtxt(outliers_path).astype(np.int) assert self.outliers.shape[0] == len(set(list(self.outliers))), \ "Duplicates in outliers!" diagrams_path = os.path.join(path, 'diagrams.' + self.suffix) with open(diagrams_path, 'r') as file: self.diagrams = json.load(file) extrema_path = os.path.join(path, 'extrema.' + self.suffix) with open(extrema_path, 'r') as file: self.extrema = json.load(file) def __mask_points__(self, i): masked_points = ma.masked_array(self.points) for outlier in self.outliers[:i]: masked_points[outlier] = ma.masked cleaned_points = masked_points.compressed().reshape( self.points.shape[0] - i, 2) return cleaned_points def plot_diagram(self, i, mpl_axis, filtration, axis, inverted=False): minimal = self.extrema[i]['minima'][axis] maximal = self.extrema[i]['maxima'][axis] mpl_axis.set_aspect('equal') if inverted: minimal *= -1 maximal *= -1 mpl_axis.plot([minimal, maximal], [minimal, maximal], color='black', alpha=0.5) points = np.array(self.diagrams[i][filtration][0]) if points.size: # if the array is not empty... mpl_axis.scatter(points[:, 0], points[:, 1], marker='x', s=100, color='r', linewidth=2) for pt in points: mpl_axis.plot(np.array([pt[0], pt[0]]), np.array([pt[0], pt[1]]), color='black', alpha=0.3) mpl_axis.text(0.5, 0.1, "Filtration: " + filtration, transform=mpl_axis.transAxes) def plot_delaunay(self, i): if i < 1: cleaned_points = self.points else: cleaned_points = standardise(self.__mask_points__(i-1)) edges, triangles = delaunay_triangulation(cleaned_points, dimension=2) lines = LineCollection(edges, linewidths=1, colors='b', alpha=0.3) triangles = PolyCollection(triangles, facecolors='b', alpha=0.1) ax = plt.gca() plt.scatter(cleaned_points[:, 0], cleaned_points[:, 1], color='red', alpha=1, s=5) ax.add_collection(lines) ax.add_collection(triangles) return ax def plot_all_diagrams(self, i): if i > len(self.outliers): print("argument must be less than", len(self.outliers), "for the pair!") else: fig = plt.gcf() cmplx = fig.add_subplot(2,3,1) cmplx.set_aspect('equal') self.plot_delaunay(i) cmplx.tick_params(labeltop='on', labelleft='on', labelright='off', labelbottom='off') inv_cmplx = fig.add_subplot(2,3,6) inv_cmplx.set_aspect('equal') inv_cmplx.tick_params(labeltop='on', labelright='on') inv_cmplx.tick_params(labeltop='off', labelleft='off', labelright='on', labelbottom='on') self.points *= -1 self.plot_delaunay(i) with sns.axes_style("whitegrid"): y_inc = fig.add_subplot(232, sharey=cmplx) x_inc = fig.add_subplot(234, sharex=cmplx) self.plot_diagram(i, mpl_axis=x_inc, filtration="X", axis=0) self.plot_diagram(i, mpl_axis=y_inc, filtration="Y", axis=1) x_dec = fig.add_subplot(233, sharex=inv_cmplx) y_dec = fig.add_subplot(235, sharey=inv_cmplx) self.plot_diagram(i, mpl_axis=x_dec, filtration="X_inverted", axis=0, inverted=True) self.plot_diagram(i, mpl_axis=y_dec, filtration="Y_inverted", axis=1, inverted=True) for ax in [x_inc, y_inc, x_dec, y_dec]: for label in ax.get_xticklabels(): label.set_visible(False) for label in ax.get_yticklabels(): label.set_visible(False) plt.tight_layout() fig.subplots_adjust(wspace=0, hspace=0) for ax in [x_dec, y_dec, inv_cmplx]: pos1 = ax.get_position() pos2 = [pos1.x0 + 0.02, pos1.y0 - 0.03, pos1.width, pos1.height] ax.set_position(pos2) return fig def standardise(points): """ Standardise points :param points: np.array :return: np.array of points after standardisation (mean=0, st deviation=1) """ for i in range(points[0].shape[0]): p = points[:, i] mean = np.mean(p) std = np.std(p) p -= mean p /= std return points def delaunay_triangulation(points, dimension=2): cmplx = GC.AlphaGeometricComplex(points, dimension=dimension) real_edges = cmplx.get_real_edges(cmplx.limited_simplices) real_triangles = cmplx.get_real_triangles(cmplx.limited_simplices) return real_edges, real_triangles
gpl-2.0
BryanCutler/spark
python/pyspark/pandas/tests/test_groupby.py
1
116592
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import unittest import inspect from distutils.version import LooseVersion from itertools import product import numpy as np import pandas as pd from pyspark import pandas as ps from pyspark.pandas.config import option_context from pyspark.pandas.exceptions import PandasNotImplementedError, DataError from pyspark.pandas.missing.groupby import ( MissingPandasLikeDataFrameGroupBy, MissingPandasLikeSeriesGroupBy, ) from pyspark.pandas.testing.utils import ReusedSQLTestCase, TestUtils from pyspark.pandas.groupby import is_multi_agg_with_relabel class GroupByTest(ReusedSQLTestCase, TestUtils): def test_groupby_simple(self): pdf = pd.DataFrame( { "a": [1, 2, 6, 4, 4, 6, 4, 3, 7], "b": [4, 2, 7, 3, 3, 1, 1, 1, 2], "c": [4, 2, 7, 3, None, 1, 1, 1, 2], "d": list("abcdefght"), }, index=[0, 1, 3, 5, 6, 8, 9, 9, 9], ) kdf = ps.from_pandas(pdf) for as_index in [True, False]: if as_index: sort = lambda df: df.sort_index() else: sort = lambda df: df.sort_values("a").reset_index(drop=True) self.assert_eq( sort(kdf.groupby("a", as_index=as_index).sum()), sort(pdf.groupby("a", as_index=as_index).sum()), ) self.assert_eq( sort(kdf.groupby("a", as_index=as_index).b.sum()), sort(pdf.groupby("a", as_index=as_index).b.sum()), ) self.assert_eq( sort(kdf.groupby("a", as_index=as_index)["b"].sum()), sort(pdf.groupby("a", as_index=as_index)["b"].sum()), ) self.assert_eq( sort(kdf.groupby("a", as_index=as_index)[["b", "c"]].sum()), sort(pdf.groupby("a", as_index=as_index)[["b", "c"]].sum()), ) self.assert_eq( sort(kdf.groupby("a", as_index=as_index)[[]].sum()), sort(pdf.groupby("a", as_index=as_index)[[]].sum()), ) self.assert_eq( sort(kdf.groupby("a", as_index=as_index)["c"].sum()), sort(pdf.groupby("a", as_index=as_index)["c"].sum()), ) self.assert_eq(kdf.groupby("a").a.sum().sort_index(), pdf.groupby("a").a.sum().sort_index()) self.assert_eq( kdf.groupby("a")["a"].sum().sort_index(), pdf.groupby("a")["a"].sum().sort_index() ) self.assert_eq( kdf.groupby("a")[["a"]].sum().sort_index(), pdf.groupby("a")[["a"]].sum().sort_index() ) self.assert_eq( kdf.groupby("a")[["a", "c"]].sum().sort_index(), pdf.groupby("a")[["a", "c"]].sum().sort_index(), ) self.assert_eq( kdf.a.groupby(kdf.b).sum().sort_index(), pdf.a.groupby(pdf.b).sum().sort_index() ) for axis in [0, "index"]: self.assert_eq( kdf.groupby("a", axis=axis).a.sum().sort_index(), pdf.groupby("a", axis=axis).a.sum().sort_index(), ) self.assert_eq( kdf.groupby("a", axis=axis)["a"].sum().sort_index(), pdf.groupby("a", axis=axis)["a"].sum().sort_index(), ) self.assert_eq( kdf.groupby("a", axis=axis)[["a"]].sum().sort_index(), pdf.groupby("a", axis=axis)[["a"]].sum().sort_index(), ) self.assert_eq( kdf.groupby("a", axis=axis)[["a", "c"]].sum().sort_index(), pdf.groupby("a", axis=axis)[["a", "c"]].sum().sort_index(), ) self.assert_eq( kdf.a.groupby(kdf.b, axis=axis).sum().sort_index(), pdf.a.groupby(pdf.b, axis=axis).sum().sort_index(), ) self.assertRaises(ValueError, lambda: kdf.groupby("a", as_index=False).a) self.assertRaises(ValueError, lambda: kdf.groupby("a", as_index=False)["a"]) self.assertRaises(ValueError, lambda: kdf.groupby("a", as_index=False)[["a"]]) self.assertRaises(ValueError, lambda: kdf.groupby("a", as_index=False)[["a", "c"]]) self.assertRaises(KeyError, lambda: kdf.groupby("z", as_index=False)[["a", "c"]]) self.assertRaises(KeyError, lambda: kdf.groupby(["z"], as_index=False)[["a", "c"]]) self.assertRaises(TypeError, lambda: kdf.a.groupby(kdf.b, as_index=False)) self.assertRaises(NotImplementedError, lambda: kdf.groupby("a", axis=1)) self.assertRaises(NotImplementedError, lambda: kdf.groupby("a", axis="columns")) self.assertRaises(ValueError, lambda: kdf.groupby("a", "b")) self.assertRaises(TypeError, lambda: kdf.a.groupby(kdf.a, kdf.b)) # we can't use column name/names as a parameter `by` for `SeriesGroupBy`. self.assertRaises(KeyError, lambda: kdf.a.groupby(by="a")) self.assertRaises(KeyError, lambda: kdf.a.groupby(by=["a", "b"])) self.assertRaises(KeyError, lambda: kdf.a.groupby(by=("a", "b"))) # we can't use DataFrame as a parameter `by` for `DataFrameGroupBy`/`SeriesGroupBy`. self.assertRaises(ValueError, lambda: kdf.groupby(kdf)) self.assertRaises(ValueError, lambda: kdf.a.groupby(kdf)) self.assertRaises(ValueError, lambda: kdf.a.groupby((kdf,))) # non-string names pdf = pd.DataFrame( { 10: [1, 2, 6, 4, 4, 6, 4, 3, 7], 20: [4, 2, 7, 3, 3, 1, 1, 1, 2], 30: [4, 2, 7, 3, None, 1, 1, 1, 2], 40: list("abcdefght"), }, index=[0, 1, 3, 5, 6, 8, 9, 9, 9], ) kdf = ps.from_pandas(pdf) for as_index in [True, False]: if as_index: sort = lambda df: df.sort_index() else: sort = lambda df: df.sort_values(10).reset_index(drop=True) self.assert_eq( sort(kdf.groupby(10, as_index=as_index).sum()), sort(pdf.groupby(10, as_index=as_index).sum()), ) self.assert_eq( sort(kdf.groupby(10, as_index=as_index)[20].sum()), sort(pdf.groupby(10, as_index=as_index)[20].sum()), ) self.assert_eq( sort(kdf.groupby(10, as_index=as_index)[[20, 30]].sum()), sort(pdf.groupby(10, as_index=as_index)[[20, 30]].sum()), ) def test_groupby_multiindex_columns(self): pdf = pd.DataFrame( { (10, "a"): [1, 2, 6, 4, 4, 6, 4, 3, 7], (10, "b"): [4, 2, 7, 3, 3, 1, 1, 1, 2], (20, "c"): [4, 2, 7, 3, None, 1, 1, 1, 2], (30, "d"): list("abcdefght"), }, index=[0, 1, 3, 5, 6, 8, 9, 9, 9], ) kdf = ps.from_pandas(pdf) self.assert_eq( kdf.groupby((10, "a")).sum().sort_index(), pdf.groupby((10, "a")).sum().sort_index() ) self.assert_eq( kdf.groupby((10, "a"), as_index=False) .sum() .sort_values((10, "a")) .reset_index(drop=True), pdf.groupby((10, "a"), as_index=False) .sum() .sort_values((10, "a")) .reset_index(drop=True), ) self.assert_eq( kdf.groupby((10, "a"))[[(20, "c")]].sum().sort_index(), pdf.groupby((10, "a"))[[(20, "c")]].sum().sort_index(), ) # TODO: a pandas bug? # expected = pdf.groupby((10, "a"))[(20, "c")].sum().sort_index() expected = pd.Series( [4.0, 2.0, 1.0, 4.0, 8.0, 2.0], name=(20, "c"), index=pd.Index([1, 2, 3, 4, 6, 7], name=(10, "a")), ) self.assert_eq(kdf.groupby((10, "a"))[(20, "c")].sum().sort_index(), expected) if LooseVersion(pd.__version__) < LooseVersion("1.1.3"): self.assert_eq( kdf[(20, "c")].groupby(kdf[(10, "a")]).sum().sort_index(), pdf[(20, "c")].groupby(pdf[(10, "a")]).sum().sort_index(), ) else: # seems like a pandas bug introduced in pandas 1.1.3. self.assert_eq(kdf[(20, "c")].groupby(kdf[(10, "a")]).sum().sort_index(), expected) def test_split_apply_combine_on_series(self): pdf = pd.DataFrame( { "a": [1, 2, 6, 4, 4, 6, 4, 3, 7], "b": [4, 2, 7, 3, 3, 1, 1, 1, 2], "c": [4, 2, 7, 3, None, 1, 1, 1, 2], "d": list("abcdefght"), }, index=[0, 1, 3, 5, 6, 8, 9, 9, 9], ) kdf = ps.from_pandas(pdf) funcs = [ ((True, False), ["sum", "min", "max", "count", "first", "last"]), ((True, True), ["mean"]), ((False, False), ["var", "std"]), ] funcs = [(check_exact, almost, f) for (check_exact, almost), fs in funcs for f in fs] for as_index in [True, False]: if as_index: sort = lambda df: df.sort_index() else: sort = lambda df: df.sort_values(list(df.columns)).reset_index(drop=True) for check_exact, almost, func in funcs: for kkey, pkey in [("b", "b"), (kdf.b, pdf.b)]: with self.subTest(as_index=as_index, func=func, key=pkey): if as_index is True or func != "std": self.assert_eq( sort(getattr(kdf.groupby(kkey, as_index=as_index).a, func)()), sort(getattr(pdf.groupby(pkey, as_index=as_index).a, func)()), check_exact=check_exact, almost=almost, ) self.assert_eq( sort(getattr(kdf.groupby(kkey, as_index=as_index), func)()), sort(getattr(pdf.groupby(pkey, as_index=as_index), func)()), check_exact=check_exact, almost=almost, ) else: # seems like a pandas' bug for as_index=False and func == "std"? self.assert_eq( sort(getattr(kdf.groupby(kkey, as_index=as_index).a, func)()), sort(pdf.groupby(pkey, as_index=True).a.std().reset_index()), check_exact=check_exact, almost=almost, ) self.assert_eq( sort(getattr(kdf.groupby(kkey, as_index=as_index), func)()), sort(pdf.groupby(pkey, as_index=True).std().reset_index()), check_exact=check_exact, almost=almost, ) for kkey, pkey in [(kdf.b + 1, pdf.b + 1), (kdf.copy().b, pdf.copy().b)]: with self.subTest(as_index=as_index, func=func, key=pkey): self.assert_eq( sort(getattr(kdf.groupby(kkey, as_index=as_index).a, func)()), sort(getattr(pdf.groupby(pkey, as_index=as_index).a, func)()), check_exact=check_exact, almost=almost, ) self.assert_eq( sort(getattr(kdf.groupby(kkey, as_index=as_index), func)()), sort(getattr(pdf.groupby(pkey, as_index=as_index), func)()), check_exact=check_exact, almost=almost, ) for check_exact, almost, func in funcs: for i in [0, 4, 7]: with self.subTest(as_index=as_index, func=func, i=i): self.assert_eq( sort(getattr(kdf.groupby(kdf.b > i, as_index=as_index).a, func)()), sort(getattr(pdf.groupby(pdf.b > i, as_index=as_index).a, func)()), check_exact=check_exact, almost=almost, ) self.assert_eq( sort(getattr(kdf.groupby(kdf.b > i, as_index=as_index), func)()), sort(getattr(pdf.groupby(pdf.b > i, as_index=as_index), func)()), check_exact=check_exact, almost=almost, ) for check_exact, almost, func in funcs: for kkey, pkey in [ (kdf.b, pdf.b), (kdf.b + 1, pdf.b + 1), (kdf.copy().b, pdf.copy().b), (kdf.b.rename(), pdf.b.rename()), ]: with self.subTest(func=func, key=pkey): self.assert_eq( getattr(kdf.a.groupby(kkey), func)().sort_index(), getattr(pdf.a.groupby(pkey), func)().sort_index(), check_exact=check_exact, almost=almost, ) self.assert_eq( getattr((kdf.a + 1).groupby(kkey), func)().sort_index(), getattr((pdf.a + 1).groupby(pkey), func)().sort_index(), check_exact=check_exact, almost=almost, ) self.assert_eq( getattr((kdf.b + 1).groupby(kkey), func)().sort_index(), getattr((pdf.b + 1).groupby(pkey), func)().sort_index(), check_exact=check_exact, almost=almost, ) self.assert_eq( getattr(kdf.a.rename().groupby(kkey), func)().sort_index(), getattr(pdf.a.rename().groupby(pkey), func)().sort_index(), check_exact=check_exact, almost=almost, ) def test_aggregate(self): pdf = pd.DataFrame( {"A": [1, 1, 2, 2], "B": [1, 2, 3, 4], "C": [0.362, 0.227, 1.267, -0.562]} ) kdf = ps.from_pandas(pdf) for as_index in [True, False]: if as_index: sort = lambda df: df.sort_index() else: sort = lambda df: df.sort_values(list(df.columns)).reset_index(drop=True) for kkey, pkey in [("A", "A"), (kdf.A, pdf.A)]: with self.subTest(as_index=as_index, key=pkey): self.assert_eq( sort(kdf.groupby(kkey, as_index=as_index).agg("sum")), sort(pdf.groupby(pkey, as_index=as_index).agg("sum")), ) self.assert_eq( sort(kdf.groupby(kkey, as_index=as_index).agg({"B": "min", "C": "sum"})), sort(pdf.groupby(pkey, as_index=as_index).agg({"B": "min", "C": "sum"})), ) self.assert_eq( sort( kdf.groupby(kkey, as_index=as_index).agg( {"B": ["min", "max"], "C": "sum"} ) ), sort( pdf.groupby(pkey, as_index=as_index).agg( {"B": ["min", "max"], "C": "sum"} ) ), ) if as_index: self.assert_eq( sort(kdf.groupby(kkey, as_index=as_index).agg(["sum"])), sort(pdf.groupby(pkey, as_index=as_index).agg(["sum"])), ) else: # seems like a pandas' bug for as_index=False and func_or_funcs is list? self.assert_eq( sort(kdf.groupby(kkey, as_index=as_index).agg(["sum"])), sort(pdf.groupby(pkey, as_index=True).agg(["sum"]).reset_index()), ) for kkey, pkey in [(kdf.A + 1, pdf.A + 1), (kdf.copy().A, pdf.copy().A)]: with self.subTest(as_index=as_index, key=pkey): self.assert_eq( sort(kdf.groupby(kkey, as_index=as_index).agg("sum")), sort(pdf.groupby(pkey, as_index=as_index).agg("sum")), ) self.assert_eq( sort(kdf.groupby(kkey, as_index=as_index).agg({"B": "min", "C": "sum"})), sort(pdf.groupby(pkey, as_index=as_index).agg({"B": "min", "C": "sum"})), ) self.assert_eq( sort( kdf.groupby(kkey, as_index=as_index).agg( {"B": ["min", "max"], "C": "sum"} ) ), sort( pdf.groupby(pkey, as_index=as_index).agg( {"B": ["min", "max"], "C": "sum"} ) ), ) self.assert_eq( sort(kdf.groupby(kkey, as_index=as_index).agg(["sum"])), sort(pdf.groupby(pkey, as_index=as_index).agg(["sum"])), ) expected_error_message = ( r"aggs must be a dict mapping from column name to aggregate functions " r"\(string or list of strings\)." ) with self.assertRaisesRegex(ValueError, expected_error_message): kdf.groupby("A", as_index=as_index).agg(0) # multi-index columns columns = pd.MultiIndex.from_tuples([(10, "A"), (10, "B"), (20, "C")]) pdf.columns = columns kdf.columns = columns for as_index in [True, False]: stats_kdf = kdf.groupby((10, "A"), as_index=as_index).agg( {(10, "B"): "min", (20, "C"): "sum"} ) stats_pdf = pdf.groupby((10, "A"), as_index=as_index).agg( {(10, "B"): "min", (20, "C"): "sum"} ) self.assert_eq( stats_kdf.sort_values(by=[(10, "B"), (20, "C")]).reset_index(drop=True), stats_pdf.sort_values(by=[(10, "B"), (20, "C")]).reset_index(drop=True), ) stats_kdf = kdf.groupby((10, "A")).agg({(10, "B"): ["min", "max"], (20, "C"): "sum"}) stats_pdf = pdf.groupby((10, "A")).agg({(10, "B"): ["min", "max"], (20, "C"): "sum"}) self.assert_eq( stats_kdf.sort_values( by=[(10, "B", "min"), (10, "B", "max"), (20, "C", "sum")] ).reset_index(drop=True), stats_pdf.sort_values( by=[(10, "B", "min"), (10, "B", "max"), (20, "C", "sum")] ).reset_index(drop=True), ) # non-string names pdf.columns = [10, 20, 30] kdf.columns = [10, 20, 30] for as_index in [True, False]: stats_kdf = kdf.groupby(10, as_index=as_index).agg({20: "min", 30: "sum"}) stats_pdf = pdf.groupby(10, as_index=as_index).agg({20: "min", 30: "sum"}) self.assert_eq( stats_kdf.sort_values(by=[20, 30]).reset_index(drop=True), stats_pdf.sort_values(by=[20, 30]).reset_index(drop=True), ) stats_kdf = kdf.groupby(10).agg({20: ["min", "max"], 30: "sum"}) stats_pdf = pdf.groupby(10).agg({20: ["min", "max"], 30: "sum"}) self.assert_eq( stats_kdf.sort_values(by=[(20, "min"), (20, "max"), (30, "sum")]).reset_index( drop=True ), stats_pdf.sort_values(by=[(20, "min"), (20, "max"), (30, "sum")]).reset_index( drop=True ), ) def test_aggregate_func_str_list(self): # this is test for cases where only string or list is assigned pdf = pd.DataFrame( { "kind": ["cat", "dog", "cat", "dog"], "height": [9.1, 6.0, 9.5, 34.0], "weight": [7.9, 7.5, 9.9, 198.0], } ) kdf = ps.from_pandas(pdf) agg_funcs = ["max", "min", ["min", "max"]] for aggfunc in agg_funcs: # Since in Koalas groupby, the order of rows might be different # so sort on index to ensure they have same output sorted_agg_kdf = kdf.groupby("kind").agg(aggfunc).sort_index() sorted_agg_pdf = pdf.groupby("kind").agg(aggfunc).sort_index() self.assert_eq(sorted_agg_kdf, sorted_agg_pdf) # test on multi index column case pdf = pd.DataFrame( {"A": [1, 1, 2, 2], "B": [1, 2, 3, 4], "C": [0.362, 0.227, 1.267, -0.562]} ) kdf = ps.from_pandas(pdf) columns = pd.MultiIndex.from_tuples([("X", "A"), ("X", "B"), ("Y", "C")]) pdf.columns = columns kdf.columns = columns for aggfunc in agg_funcs: sorted_agg_kdf = kdf.groupby(("X", "A")).agg(aggfunc).sort_index() sorted_agg_pdf = pdf.groupby(("X", "A")).agg(aggfunc).sort_index() self.assert_eq(sorted_agg_kdf, sorted_agg_pdf) @unittest.skipIf(pd.__version__ < "0.25.0", "not supported before pandas 0.25.0") def test_aggregate_relabel(self): # this is to test named aggregation in groupby pdf = pd.DataFrame({"group": ["a", "a", "b", "b"], "A": [0, 1, 2, 3], "B": [5, 6, 7, 8]}) kdf = ps.from_pandas(pdf) # different agg column, same function agg_pdf = pdf.groupby("group").agg(a_max=("A", "max"), b_max=("B", "max")).sort_index() agg_kdf = kdf.groupby("group").agg(a_max=("A", "max"), b_max=("B", "max")).sort_index() self.assert_eq(agg_pdf, agg_kdf) # same agg column, different functions agg_pdf = pdf.groupby("group").agg(b_max=("B", "max"), b_min=("B", "min")).sort_index() agg_kdf = kdf.groupby("group").agg(b_max=("B", "max"), b_min=("B", "min")).sort_index() self.assert_eq(agg_pdf, agg_kdf) # test on NamedAgg agg_pdf = ( pdf.groupby("group").agg(b_max=pd.NamedAgg(column="B", aggfunc="max")).sort_index() ) agg_kdf = ( kdf.groupby("group").agg(b_max=ps.NamedAgg(column="B", aggfunc="max")).sort_index() ) self.assert_eq(agg_kdf, agg_pdf) # test on NamedAgg multi columns aggregation agg_pdf = ( pdf.groupby("group") .agg( b_max=pd.NamedAgg(column="B", aggfunc="max"), b_min=pd.NamedAgg(column="B", aggfunc="min"), ) .sort_index() ) agg_kdf = ( kdf.groupby("group") .agg( b_max=ps.NamedAgg(column="B", aggfunc="max"), b_min=ps.NamedAgg(column="B", aggfunc="min"), ) .sort_index() ) self.assert_eq(agg_kdf, agg_pdf) def test_dropna(self): pdf = pd.DataFrame( {"A": [None, 1, None, 1, 2], "B": [1, 2, 3, None, None], "C": [4, 5, 6, 7, None]} ) kdf = ps.from_pandas(pdf) # pd.DataFrame.groupby with dropna parameter is implemented since pandas 1.1.0 if LooseVersion(pd.__version__) >= LooseVersion("1.1.0"): for dropna in [True, False]: for as_index in [True, False]: if as_index: sort = lambda df: df.sort_index() else: sort = lambda df: df.sort_values("A").reset_index(drop=True) self.assert_eq( sort(kdf.groupby("A", as_index=as_index, dropna=dropna).std()), sort(pdf.groupby("A", as_index=as_index, dropna=dropna).std()), ) self.assert_eq( sort(kdf.groupby("A", as_index=as_index, dropna=dropna).B.std()), sort(pdf.groupby("A", as_index=as_index, dropna=dropna).B.std()), ) self.assert_eq( sort(kdf.groupby("A", as_index=as_index, dropna=dropna)["B"].std()), sort(pdf.groupby("A", as_index=as_index, dropna=dropna)["B"].std()), ) self.assert_eq( sort( kdf.groupby("A", as_index=as_index, dropna=dropna).agg( {"B": "min", "C": "std"} ) ), sort( pdf.groupby("A", as_index=as_index, dropna=dropna).agg( {"B": "min", "C": "std"} ) ), ) for dropna in [True, False]: for as_index in [True, False]: if as_index: sort = lambda df: df.sort_index() else: sort = lambda df: df.sort_values(["A", "B"]).reset_index(drop=True) self.assert_eq( sort( kdf.groupby(["A", "B"], as_index=as_index, dropna=dropna).agg( {"C": ["min", "std"]} ) ), sort( pdf.groupby(["A", "B"], as_index=as_index, dropna=dropna).agg( {"C": ["min", "std"]} ) ), almost=True, ) # multi-index columns columns = pd.MultiIndex.from_tuples([("X", "A"), ("X", "B"), ("Y", "C")]) pdf.columns = columns kdf.columns = columns for dropna in [True, False]: for as_index in [True, False]: if as_index: sort = lambda df: df.sort_index() else: sort = lambda df: df.sort_values(("X", "A")).reset_index(drop=True) sorted_stats_kdf = sort( kdf.groupby(("X", "A"), as_index=as_index, dropna=dropna).agg( {("X", "B"): "min", ("Y", "C"): "std"} ) ) sorted_stats_pdf = sort( pdf.groupby(("X", "A"), as_index=as_index, dropna=dropna).agg( {("X", "B"): "min", ("Y", "C"): "std"} ) ) self.assert_eq(sorted_stats_kdf, sorted_stats_pdf) else: # Testing dropna=True (pandas default behavior) for as_index in [True, False]: if as_index: sort = lambda df: df.sort_index() else: sort = lambda df: df.sort_values("A").reset_index(drop=True) self.assert_eq( sort(kdf.groupby("A", as_index=as_index, dropna=True)["B"].min()), sort(pdf.groupby("A", as_index=as_index)["B"].min()), ) if as_index: sort = lambda df: df.sort_index() else: sort = lambda df: df.sort_values(["A", "B"]).reset_index(drop=True) self.assert_eq( sort( kdf.groupby(["A", "B"], as_index=as_index, dropna=True).agg( {"C": ["min", "std"]} ) ), sort(pdf.groupby(["A", "B"], as_index=as_index).agg({"C": ["min", "std"]})), almost=True, ) # Testing dropna=False index = pd.Index([1.0, 2.0, np.nan], name="A") expected = pd.Series([2.0, np.nan, 1.0], index=index, name="B") result = kdf.groupby("A", as_index=True, dropna=False)["B"].min().sort_index() self.assert_eq(expected, result) expected = pd.DataFrame({"A": [1.0, 2.0, np.nan], "B": [2.0, np.nan, 1.0]}) result = ( kdf.groupby("A", as_index=False, dropna=False)["B"] .min() .sort_values("A") .reset_index(drop=True) ) self.assert_eq(expected, result) index = pd.MultiIndex.from_tuples( [(1.0, 2.0), (1.0, None), (2.0, None), (None, 1.0), (None, 3.0)], names=["A", "B"] ) expected = pd.DataFrame( { ("C", "min"): [5.0, 7.0, np.nan, 4.0, 6.0], ("C", "std"): [np.nan, np.nan, np.nan, np.nan, np.nan], }, index=index, ) result = ( kdf.groupby(["A", "B"], as_index=True, dropna=False) .agg({"C": ["min", "std"]}) .sort_index() ) self.assert_eq(expected, result) expected = pd.DataFrame( { ("A", ""): [1.0, 1.0, 2.0, np.nan, np.nan], ("B", ""): [2.0, np.nan, np.nan, 1.0, 3.0], ("C", "min"): [5.0, 7.0, np.nan, 4.0, 6.0], ("C", "std"): [np.nan, np.nan, np.nan, np.nan, np.nan], } ) result = ( kdf.groupby(["A", "B"], as_index=False, dropna=False) .agg({"C": ["min", "std"]}) .sort_values(["A", "B"]) .reset_index(drop=True) ) self.assert_eq(expected, result) def test_describe(self): # support for numeric type, not support for string type yet datas = [] datas.append({"a": [1, 1, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) datas.append({"a": [-1, -1, -3], "b": [-4, -5, -6], "c": [-7, -8, -9]}) datas.append({"a": [0, 0, 0], "b": [0, 0, 0], "c": [0, 8, 0]}) # it is okay if string type column as a group key datas.append({"a": ["a", "a", "c"], "b": [4, 5, 6], "c": [7, 8, 9]}) percentiles = [0.25, 0.5, 0.75] formatted_percentiles = ["25%", "50%", "75%"] non_percentile_stats = ["count", "mean", "std", "min", "max"] for data in datas: pdf = pd.DataFrame(data) kdf = ps.from_pandas(pdf) describe_pdf = pdf.groupby("a").describe().sort_index() describe_kdf = kdf.groupby("a").describe().sort_index() # since the result of percentile columns are slightly difference from pandas, # we should check them separately: non-percentile columns & percentile columns # 1. Check that non-percentile columns are equal. agg_cols = [col.name for col in kdf.groupby("a")._agg_columns] self.assert_eq( describe_kdf.drop(list(product(agg_cols, formatted_percentiles))), describe_pdf.drop(columns=formatted_percentiles, level=1), check_exact=False, ) # 2. Check that percentile columns are equal. # The interpolation argument is yet to be implemented in Koalas. quantile_pdf = pdf.groupby("a").quantile(percentiles, interpolation="nearest") quantile_pdf = quantile_pdf.unstack(level=1).astype(float) self.assert_eq( describe_kdf.drop(list(product(agg_cols, non_percentile_stats))), quantile_pdf.rename(columns="{:.0%}".format, level=1), ) # not support for string type yet datas = [] datas.append({"a": ["a", "a", "c"], "b": ["d", "e", "f"], "c": ["g", "h", "i"]}) datas.append({"a": ["a", "a", "c"], "b": [4, 0, 1], "c": ["g", "h", "i"]}) for data in datas: pdf = pd.DataFrame(data) kdf = ps.from_pandas(pdf) self.assertRaises(NotImplementedError, lambda: kdf.groupby("a").describe().sort_index()) # multi-index columns pdf = pd.DataFrame({("x", "a"): [1, 1, 3], ("x", "b"): [4, 5, 6], ("y", "c"): [7, 8, 9]}) kdf = ps.from_pandas(pdf) describe_pdf = pdf.groupby(("x", "a")).describe().sort_index() describe_kdf = kdf.groupby(("x", "a")).describe().sort_index() # 1. Check that non-percentile columns are equal. agg_column_labels = [col._column_label for col in kdf.groupby(("x", "a"))._agg_columns] self.assert_eq( describe_kdf.drop( [ tuple(list(label) + [s]) for label, s in product(agg_column_labels, formatted_percentiles) ] ), describe_pdf.drop(columns=formatted_percentiles, level=2), check_exact=False, ) # 2. Check that percentile columns are equal. # The interpolation argument is yet to be implemented in Koalas. quantile_pdf = pdf.groupby(("x", "a")).quantile(percentiles, interpolation="nearest") quantile_pdf = quantile_pdf.unstack(level=1).astype(float) self.assert_eq( describe_kdf.drop( [ tuple(list(label) + [s]) for label, s in product(agg_column_labels, non_percentile_stats) ] ), quantile_pdf.rename(columns="{:.0%}".format, level=2), ) def test_aggregate_relabel_multiindex(self): pdf = pd.DataFrame({"A": [0, 1, 2, 3], "B": [5, 6, 7, 8], "group": ["a", "a", "b", "b"]}) pdf.columns = pd.MultiIndex.from_tuples([("y", "A"), ("y", "B"), ("x", "group")]) kdf = ps.from_pandas(pdf) if LooseVersion(pd.__version__) < LooseVersion("1.0.0"): agg_pdf = pd.DataFrame( {"a_max": [1, 3]}, index=pd.Index(["a", "b"], name=("x", "group")) ) elif LooseVersion(pd.__version__) >= LooseVersion("1.0.0"): agg_pdf = pdf.groupby(("x", "group")).agg(a_max=(("y", "A"), "max")).sort_index() agg_kdf = kdf.groupby(("x", "group")).agg(a_max=(("y", "A"), "max")).sort_index() self.assert_eq(agg_pdf, agg_kdf) # same column, different methods if LooseVersion(pd.__version__) < LooseVersion("1.0.0"): agg_pdf = pd.DataFrame( {"a_max": [1, 3], "a_min": [0, 2]}, index=pd.Index(["a", "b"], name=("x", "group")) ) elif LooseVersion(pd.__version__) >= LooseVersion("1.0.0"): agg_pdf = ( pdf.groupby(("x", "group")) .agg(a_max=(("y", "A"), "max"), a_min=(("y", "A"), "min")) .sort_index() ) agg_kdf = ( kdf.groupby(("x", "group")) .agg(a_max=(("y", "A"), "max"), a_min=(("y", "A"), "min")) .sort_index() ) self.assert_eq(agg_pdf, agg_kdf) # different column, different methods if LooseVersion(pd.__version__) < LooseVersion("1.0.0"): agg_pdf = pd.DataFrame( {"a_max": [6, 8], "a_min": [0, 2]}, index=pd.Index(["a", "b"], name=("x", "group")) ) elif LooseVersion(pd.__version__) >= LooseVersion("1.0.0"): agg_pdf = ( pdf.groupby(("x", "group")) .agg(a_max=(("y", "B"), "max"), a_min=(("y", "A"), "min")) .sort_index() ) agg_kdf = ( kdf.groupby(("x", "group")) .agg(a_max=(("y", "B"), "max"), a_min=(("y", "A"), "min")) .sort_index() ) self.assert_eq(agg_pdf, agg_kdf) def test_all_any(self): pdf = pd.DataFrame( { "A": [1, 1, 2, 2, 3, 3, 4, 4, 5, 5], "B": [True, True, True, False, False, False, None, True, None, False], } ) kdf = ps.from_pandas(pdf) for as_index in [True, False]: if as_index: sort = lambda df: df.sort_index() else: sort = lambda df: df.sort_values("A").reset_index(drop=True) self.assert_eq( sort(kdf.groupby("A", as_index=as_index).all()), sort(pdf.groupby("A", as_index=as_index).all()), ) self.assert_eq( sort(kdf.groupby("A", as_index=as_index).any()), sort(pdf.groupby("A", as_index=as_index).any()), ) self.assert_eq( sort(kdf.groupby("A", as_index=as_index).all()).B, sort(pdf.groupby("A", as_index=as_index).all()).B, ) self.assert_eq( sort(kdf.groupby("A", as_index=as_index).any()).B, sort(pdf.groupby("A", as_index=as_index).any()).B, ) self.assert_eq( kdf.B.groupby(kdf.A).all().sort_index(), pdf.B.groupby(pdf.A).all().sort_index() ) self.assert_eq( kdf.B.groupby(kdf.A).any().sort_index(), pdf.B.groupby(pdf.A).any().sort_index() ) # multi-index columns columns = pd.MultiIndex.from_tuples([("X", "A"), ("Y", "B")]) pdf.columns = columns kdf.columns = columns for as_index in [True, False]: if as_index: sort = lambda df: df.sort_index() else: sort = lambda df: df.sort_values(("X", "A")).reset_index(drop=True) self.assert_eq( sort(kdf.groupby(("X", "A"), as_index=as_index).all()), sort(pdf.groupby(("X", "A"), as_index=as_index).all()), ) self.assert_eq( sort(kdf.groupby(("X", "A"), as_index=as_index).any()), sort(pdf.groupby(("X", "A"), as_index=as_index).any()), ) def test_raises(self): kdf = ps.DataFrame( {"a": [1, 2, 6, 4, 4, 6, 4, 3, 7], "b": [4, 2, 7, 3, 3, 1, 1, 1, 2]}, index=[0, 1, 3, 5, 6, 8, 9, 9, 9], ) # test raises with incorrect key self.assertRaises(ValueError, lambda: kdf.groupby([])) self.assertRaises(KeyError, lambda: kdf.groupby("x")) self.assertRaises(KeyError, lambda: kdf.groupby(["a", "x"])) self.assertRaises(KeyError, lambda: kdf.groupby("a")["x"]) self.assertRaises(KeyError, lambda: kdf.groupby("a")["b", "x"]) self.assertRaises(KeyError, lambda: kdf.groupby("a")[["b", "x"]]) def test_nunique(self): pdf = pd.DataFrame( {"a": [1, 1, 1, 1, 1, 0, 0, 0, 0, 0], "b": [2, 2, 2, 3, 3, 4, 4, 5, 5, 5]} ) kdf = ps.from_pandas(pdf) self.assert_eq( kdf.groupby("a").agg({"b": "nunique"}).sort_index(), pdf.groupby("a").agg({"b": "nunique"}).sort_index(), ) if LooseVersion(pd.__version__) < LooseVersion("1.1.0"): expected = ps.DataFrame({"b": [2, 2]}, index=pd.Index([0, 1], name="a")) self.assert_eq(kdf.groupby("a").nunique().sort_index(), expected) self.assert_eq( kdf.groupby("a").nunique(dropna=False).sort_index(), expected, ) else: self.assert_eq( kdf.groupby("a").nunique().sort_index(), pdf.groupby("a").nunique().sort_index() ) self.assert_eq( kdf.groupby("a").nunique(dropna=False).sort_index(), pdf.groupby("a").nunique(dropna=False).sort_index(), ) self.assert_eq( kdf.groupby("a")["b"].nunique().sort_index(), pdf.groupby("a")["b"].nunique().sort_index(), ) self.assert_eq( kdf.groupby("a")["b"].nunique(dropna=False).sort_index(), pdf.groupby("a")["b"].nunique(dropna=False).sort_index(), ) nunique_kdf = kdf.groupby("a", as_index=False).agg({"b": "nunique"}) nunique_pdf = pdf.groupby("a", as_index=False).agg({"b": "nunique"}) self.assert_eq( nunique_kdf.sort_values(["a", "b"]).reset_index(drop=True), nunique_pdf.sort_values(["a", "b"]).reset_index(drop=True), ) # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("y", "b")]) pdf.columns = columns kdf.columns = columns if LooseVersion(pd.__version__) < LooseVersion("1.1.0"): expected = ps.DataFrame({("y", "b"): [2, 2]}, index=pd.Index([0, 1], name=("x", "a"))) self.assert_eq( kdf.groupby(("x", "a")).nunique().sort_index(), expected, ) self.assert_eq( kdf.groupby(("x", "a")).nunique(dropna=False).sort_index(), expected, ) else: self.assert_eq( kdf.groupby(("x", "a")).nunique().sort_index(), pdf.groupby(("x", "a")).nunique().sort_index(), ) self.assert_eq( kdf.groupby(("x", "a")).nunique(dropna=False).sort_index(), pdf.groupby(("x", "a")).nunique(dropna=False).sort_index(), ) def test_unique(self): for pdf in [ pd.DataFrame( {"a": [1, 1, 1, 1, 1, 0, 0, 0, 0, 0], "b": [2, 2, 2, 3, 3, 4, 4, 5, 5, 5]} ), pd.DataFrame( { "a": [1, 1, 1, 1, 1, 0, 0, 0, 0, 0], "b": ["w", "w", "w", "x", "x", "y", "y", "z", "z", "z"], } ), ]: with self.subTest(pdf=pdf): kdf = ps.from_pandas(pdf) actual = kdf.groupby("a")["b"].unique().sort_index().to_pandas() expect = pdf.groupby("a")["b"].unique().sort_index() self.assert_eq(len(actual), len(expect)) for act, exp in zip(actual, expect): self.assertTrue(sorted(act) == sorted(exp)) def test_value_counts(self): pdf = pd.DataFrame({"A": [1, 2, 2, 3, 3, 3], "B": [1, 1, 2, 3, 3, 3]}, columns=["A", "B"]) kdf = ps.from_pandas(pdf) self.assert_eq( kdf.groupby("A")["B"].value_counts().sort_index(), pdf.groupby("A")["B"].value_counts().sort_index(), ) self.assert_eq( kdf.groupby("A")["B"].value_counts(sort=True, ascending=False).sort_index(), pdf.groupby("A")["B"].value_counts(sort=True, ascending=False).sort_index(), ) self.assert_eq( kdf.groupby("A")["B"].value_counts(sort=True, ascending=True).sort_index(), pdf.groupby("A")["B"].value_counts(sort=True, ascending=True).sort_index(), ) self.assert_eq( kdf.B.rename().groupby(kdf.A).value_counts().sort_index(), pdf.B.rename().groupby(pdf.A).value_counts().sort_index(), ) self.assert_eq( kdf.B.groupby(kdf.A.rename()).value_counts().sort_index(), pdf.B.groupby(pdf.A.rename()).value_counts().sort_index(), ) self.assert_eq( kdf.B.rename().groupby(kdf.A.rename()).value_counts().sort_index(), pdf.B.rename().groupby(pdf.A.rename()).value_counts().sort_index(), ) def test_size(self): pdf = pd.DataFrame({"A": [1, 2, 2, 3, 3, 3], "B": [1, 1, 2, 3, 3, 3]}) kdf = ps.from_pandas(pdf) self.assert_eq(kdf.groupby("A").size().sort_index(), pdf.groupby("A").size().sort_index()) self.assert_eq( kdf.groupby("A")["B"].size().sort_index(), pdf.groupby("A")["B"].size().sort_index() ) self.assert_eq( kdf.groupby("A")[["B"]].size().sort_index(), pdf.groupby("A")[["B"]].size().sort_index() ) self.assert_eq( kdf.groupby(["A", "B"]).size().sort_index(), pdf.groupby(["A", "B"]).size().sort_index() ) # multi-index columns columns = pd.MultiIndex.from_tuples([("X", "A"), ("Y", "B")]) pdf.columns = columns kdf.columns = columns self.assert_eq( kdf.groupby(("X", "A")).size().sort_index(), pdf.groupby(("X", "A")).size().sort_index() ) self.assert_eq( kdf.groupby([("X", "A"), ("Y", "B")]).size().sort_index(), pdf.groupby([("X", "A"), ("Y", "B")]).size().sort_index(), ) def test_diff(self): pdf = pd.DataFrame( { "a": [1, 2, 3, 4, 5, 6] * 3, "b": [1, 1, 2, 3, 5, 8] * 3, "c": [1, 4, 9, 16, 25, 36] * 3, } ) kdf = ps.from_pandas(pdf) self.assert_eq(kdf.groupby("b").diff().sort_index(), pdf.groupby("b").diff().sort_index()) self.assert_eq( kdf.groupby(["a", "b"]).diff().sort_index(), pdf.groupby(["a", "b"]).diff().sort_index() ) self.assert_eq( kdf.groupby(["b"])["a"].diff().sort_index(), pdf.groupby(["b"])["a"].diff().sort_index() ) self.assert_eq( kdf.groupby(["b"])[["a", "b"]].diff().sort_index(), pdf.groupby(["b"])[["a", "b"]].diff().sort_index(), ) self.assert_eq( kdf.groupby(kdf.b // 5).diff().sort_index(), pdf.groupby(pdf.b // 5).diff().sort_index() ) self.assert_eq( kdf.groupby(kdf.b // 5)["a"].diff().sort_index(), pdf.groupby(pdf.b // 5)["a"].diff().sort_index(), ) self.assert_eq(kdf.groupby("b").diff().sum(), pdf.groupby("b").diff().sum().astype(int)) self.assert_eq(kdf.groupby(["b"])["a"].diff().sum(), pdf.groupby(["b"])["a"].diff().sum()) # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c")]) pdf.columns = columns kdf.columns = columns self.assert_eq( kdf.groupby(("x", "b")).diff().sort_index(), pdf.groupby(("x", "b")).diff().sort_index() ) self.assert_eq( kdf.groupby([("x", "a"), ("x", "b")]).diff().sort_index(), pdf.groupby([("x", "a"), ("x", "b")]).diff().sort_index(), ) def test_rank(self): pdf = pd.DataFrame( { "a": [1, 2, 3, 4, 5, 6] * 3, "b": [1, 1, 2, 3, 5, 8] * 3, "c": [1, 4, 9, 16, 25, 36] * 3, }, index=np.random.rand(6 * 3), ) kdf = ps.from_pandas(pdf) self.assert_eq(kdf.groupby("b").rank().sort_index(), pdf.groupby("b").rank().sort_index()) self.assert_eq( kdf.groupby(["a", "b"]).rank().sort_index(), pdf.groupby(["a", "b"]).rank().sort_index() ) self.assert_eq( kdf.groupby(["b"])["a"].rank().sort_index(), pdf.groupby(["b"])["a"].rank().sort_index() ) self.assert_eq( kdf.groupby(["b"])[["a", "c"]].rank().sort_index(), pdf.groupby(["b"])[["a", "c"]].rank().sort_index(), ) self.assert_eq( kdf.groupby(kdf.b // 5).rank().sort_index(), pdf.groupby(pdf.b // 5).rank().sort_index() ) self.assert_eq( kdf.groupby(kdf.b // 5)["a"].rank().sort_index(), pdf.groupby(pdf.b // 5)["a"].rank().sort_index(), ) self.assert_eq(kdf.groupby("b").rank().sum(), pdf.groupby("b").rank().sum()) self.assert_eq(kdf.groupby(["b"])["a"].rank().sum(), pdf.groupby(["b"])["a"].rank().sum()) # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c")]) pdf.columns = columns kdf.columns = columns self.assert_eq( kdf.groupby(("x", "b")).rank().sort_index(), pdf.groupby(("x", "b")).rank().sort_index() ) self.assert_eq( kdf.groupby([("x", "a"), ("x", "b")]).rank().sort_index(), pdf.groupby([("x", "a"), ("x", "b")]).rank().sort_index(), ) def test_cumcount(self): pdf = pd.DataFrame( { "a": [1, 2, 3, 4, 5, 6] * 3, "b": [1, 1, 2, 3, 5, 8] * 3, "c": [1, 4, 9, 16, 25, 36] * 3, }, index=np.random.rand(6 * 3), ) kdf = ps.from_pandas(pdf) for ascending in [True, False]: self.assert_eq( kdf.groupby("b").cumcount(ascending=ascending).sort_index(), pdf.groupby("b").cumcount(ascending=ascending).sort_index(), ) self.assert_eq( kdf.groupby(["a", "b"]).cumcount(ascending=ascending).sort_index(), pdf.groupby(["a", "b"]).cumcount(ascending=ascending).sort_index(), ) self.assert_eq( kdf.groupby(["b"])["a"].cumcount(ascending=ascending).sort_index(), pdf.groupby(["b"])["a"].cumcount(ascending=ascending).sort_index(), ) self.assert_eq( kdf.groupby(["b"])[["a", "c"]].cumcount(ascending=ascending).sort_index(), pdf.groupby(["b"])[["a", "c"]].cumcount(ascending=ascending).sort_index(), ) self.assert_eq( kdf.groupby(kdf.b // 5).cumcount(ascending=ascending).sort_index(), pdf.groupby(pdf.b // 5).cumcount(ascending=ascending).sort_index(), ) self.assert_eq( kdf.groupby(kdf.b // 5)["a"].cumcount(ascending=ascending).sort_index(), pdf.groupby(pdf.b // 5)["a"].cumcount(ascending=ascending).sort_index(), ) self.assert_eq( kdf.groupby("b").cumcount(ascending=ascending).sum(), pdf.groupby("b").cumcount(ascending=ascending).sum(), ) self.assert_eq( kdf.a.rename().groupby(kdf.b).cumcount(ascending=ascending).sort_index(), pdf.a.rename().groupby(pdf.b).cumcount(ascending=ascending).sort_index(), ) self.assert_eq( kdf.a.groupby(kdf.b.rename()).cumcount(ascending=ascending).sort_index(), pdf.a.groupby(pdf.b.rename()).cumcount(ascending=ascending).sort_index(), ) self.assert_eq( kdf.a.rename().groupby(kdf.b.rename()).cumcount(ascending=ascending).sort_index(), pdf.a.rename().groupby(pdf.b.rename()).cumcount(ascending=ascending).sort_index(), ) # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c")]) pdf.columns = columns kdf.columns = columns for ascending in [True, False]: self.assert_eq( kdf.groupby(("x", "b")).cumcount(ascending=ascending).sort_index(), pdf.groupby(("x", "b")).cumcount(ascending=ascending).sort_index(), ) self.assert_eq( kdf.groupby([("x", "a"), ("x", "b")]).cumcount(ascending=ascending).sort_index(), pdf.groupby([("x", "a"), ("x", "b")]).cumcount(ascending=ascending).sort_index(), ) def test_cummin(self): pdf = pd.DataFrame( { "a": [1, 2, 3, 4, 5, 6] * 3, "b": [1, 1, 2, 3, 5, 8] * 3, "c": [1, 4, 9, 16, 25, 36] * 3, }, index=np.random.rand(6 * 3), ) kdf = ps.from_pandas(pdf) self.assert_eq( kdf.groupby("b").cummin().sort_index(), pdf.groupby("b").cummin().sort_index() ) self.assert_eq( kdf.groupby(["a", "b"]).cummin().sort_index(), pdf.groupby(["a", "b"]).cummin().sort_index(), ) self.assert_eq( kdf.groupby(["b"])["a"].cummin().sort_index(), pdf.groupby(["b"])["a"].cummin().sort_index(), ) self.assert_eq( kdf.groupby(["b"])[["a", "c"]].cummin().sort_index(), pdf.groupby(["b"])[["a", "c"]].cummin().sort_index(), ) self.assert_eq( kdf.groupby(kdf.b // 5).cummin().sort_index(), pdf.groupby(pdf.b // 5).cummin().sort_index(), ) self.assert_eq( kdf.groupby(kdf.b // 5)["a"].cummin().sort_index(), pdf.groupby(pdf.b // 5)["a"].cummin().sort_index(), ) self.assert_eq( kdf.groupby("b").cummin().sum().sort_index(), pdf.groupby("b").cummin().sum().sort_index(), ) self.assert_eq( kdf.a.rename().groupby(kdf.b).cummin().sort_index(), pdf.a.rename().groupby(pdf.b).cummin().sort_index(), ) self.assert_eq( kdf.a.groupby(kdf.b.rename()).cummin().sort_index(), pdf.a.groupby(pdf.b.rename()).cummin().sort_index(), ) self.assert_eq( kdf.a.rename().groupby(kdf.b.rename()).cummin().sort_index(), pdf.a.rename().groupby(pdf.b.rename()).cummin().sort_index(), ) # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c")]) pdf.columns = columns kdf.columns = columns self.assert_eq( kdf.groupby(("x", "b")).cummin().sort_index(), pdf.groupby(("x", "b")).cummin().sort_index(), ) self.assert_eq( kdf.groupby([("x", "a"), ("x", "b")]).cummin().sort_index(), pdf.groupby([("x", "a"), ("x", "b")]).cummin().sort_index(), ) kdf = ps.DataFrame([["a"], ["b"], ["c"]], columns=["A"]) self.assertRaises(DataError, lambda: kdf.groupby(["A"]).cummin()) kdf = ps.DataFrame([[1, "a"], [2, "b"], [3, "c"]], columns=["A", "B"]) self.assertRaises(DataError, lambda: kdf.groupby(["A"])["B"].cummin()) def test_cummax(self): pdf = pd.DataFrame( { "a": [1, 2, 3, 4, 5, 6] * 3, "b": [1, 1, 2, 3, 5, 8] * 3, "c": [1, 4, 9, 16, 25, 36] * 3, }, index=np.random.rand(6 * 3), ) kdf = ps.from_pandas(pdf) self.assert_eq( kdf.groupby("b").cummax().sort_index(), pdf.groupby("b").cummax().sort_index() ) self.assert_eq( kdf.groupby(["a", "b"]).cummax().sort_index(), pdf.groupby(["a", "b"]).cummax().sort_index(), ) self.assert_eq( kdf.groupby(["b"])["a"].cummax().sort_index(), pdf.groupby(["b"])["a"].cummax().sort_index(), ) self.assert_eq( kdf.groupby(["b"])[["a", "c"]].cummax().sort_index(), pdf.groupby(["b"])[["a", "c"]].cummax().sort_index(), ) self.assert_eq( kdf.groupby(kdf.b // 5).cummax().sort_index(), pdf.groupby(pdf.b // 5).cummax().sort_index(), ) self.assert_eq( kdf.groupby(kdf.b // 5)["a"].cummax().sort_index(), pdf.groupby(pdf.b // 5)["a"].cummax().sort_index(), ) self.assert_eq( kdf.groupby("b").cummax().sum().sort_index(), pdf.groupby("b").cummax().sum().sort_index(), ) self.assert_eq( kdf.a.rename().groupby(kdf.b).cummax().sort_index(), pdf.a.rename().groupby(pdf.b).cummax().sort_index(), ) self.assert_eq( kdf.a.groupby(kdf.b.rename()).cummax().sort_index(), pdf.a.groupby(pdf.b.rename()).cummax().sort_index(), ) self.assert_eq( kdf.a.rename().groupby(kdf.b.rename()).cummax().sort_index(), pdf.a.rename().groupby(pdf.b.rename()).cummax().sort_index(), ) # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c")]) pdf.columns = columns kdf.columns = columns self.assert_eq( kdf.groupby(("x", "b")).cummax().sort_index(), pdf.groupby(("x", "b")).cummax().sort_index(), ) self.assert_eq( kdf.groupby([("x", "a"), ("x", "b")]).cummax().sort_index(), pdf.groupby([("x", "a"), ("x", "b")]).cummax().sort_index(), ) kdf = ps.DataFrame([["a"], ["b"], ["c"]], columns=["A"]) self.assertRaises(DataError, lambda: kdf.groupby(["A"]).cummax()) kdf = ps.DataFrame([[1, "a"], [2, "b"], [3, "c"]], columns=["A", "B"]) self.assertRaises(DataError, lambda: kdf.groupby(["A"])["B"].cummax()) def test_cumsum(self): pdf = pd.DataFrame( { "a": [1, 2, 3, 4, 5, 6] * 3, "b": [1, 1, 2, 3, 5, 8] * 3, "c": [1, 4, 9, 16, 25, 36] * 3, }, index=np.random.rand(6 * 3), ) kdf = ps.from_pandas(pdf) self.assert_eq( kdf.groupby("b").cumsum().sort_index(), pdf.groupby("b").cumsum().sort_index() ) self.assert_eq( kdf.groupby(["a", "b"]).cumsum().sort_index(), pdf.groupby(["a", "b"]).cumsum().sort_index(), ) self.assert_eq( kdf.groupby(["b"])["a"].cumsum().sort_index(), pdf.groupby(["b"])["a"].cumsum().sort_index(), ) self.assert_eq( kdf.groupby(["b"])[["a", "c"]].cumsum().sort_index(), pdf.groupby(["b"])[["a", "c"]].cumsum().sort_index(), ) self.assert_eq( kdf.groupby(kdf.b // 5).cumsum().sort_index(), pdf.groupby(pdf.b // 5).cumsum().sort_index(), ) self.assert_eq( kdf.groupby(kdf.b // 5)["a"].cumsum().sort_index(), pdf.groupby(pdf.b // 5)["a"].cumsum().sort_index(), ) self.assert_eq( kdf.groupby("b").cumsum().sum().sort_index(), pdf.groupby("b").cumsum().sum().sort_index(), ) self.assert_eq( kdf.a.rename().groupby(kdf.b).cumsum().sort_index(), pdf.a.rename().groupby(pdf.b).cumsum().sort_index(), ) self.assert_eq( kdf.a.groupby(kdf.b.rename()).cumsum().sort_index(), pdf.a.groupby(pdf.b.rename()).cumsum().sort_index(), ) self.assert_eq( kdf.a.rename().groupby(kdf.b.rename()).cumsum().sort_index(), pdf.a.rename().groupby(pdf.b.rename()).cumsum().sort_index(), ) # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c")]) pdf.columns = columns kdf.columns = columns self.assert_eq( kdf.groupby(("x", "b")).cumsum().sort_index(), pdf.groupby(("x", "b")).cumsum().sort_index(), ) self.assert_eq( kdf.groupby([("x", "a"), ("x", "b")]).cumsum().sort_index(), pdf.groupby([("x", "a"), ("x", "b")]).cumsum().sort_index(), ) kdf = ps.DataFrame([["a"], ["b"], ["c"]], columns=["A"]) self.assertRaises(DataError, lambda: kdf.groupby(["A"]).cumsum()) kdf = ps.DataFrame([[1, "a"], [2, "b"], [3, "c"]], columns=["A", "B"]) self.assertRaises(DataError, lambda: kdf.groupby(["A"])["B"].cumsum()) def test_cumprod(self): pdf = pd.DataFrame( { "a": [1, 2, -3, 4, -5, 6] * 3, "b": [1, 1, 2, 3, 5, 8] * 3, "c": [1, 0, 9, 16, 25, 36] * 3, }, index=np.random.rand(6 * 3), ) kdf = ps.from_pandas(pdf) self.assert_eq( kdf.groupby("b").cumprod().sort_index(), pdf.groupby("b").cumprod().sort_index(), check_exact=False, ) self.assert_eq( kdf.groupby(["a", "b"]).cumprod().sort_index(), pdf.groupby(["a", "b"]).cumprod().sort_index(), check_exact=False, ) self.assert_eq( kdf.groupby(["b"])["a"].cumprod().sort_index(), pdf.groupby(["b"])["a"].cumprod().sort_index(), check_exact=False, ) self.assert_eq( kdf.groupby(["b"])[["a", "c"]].cumprod().sort_index(), pdf.groupby(["b"])[["a", "c"]].cumprod().sort_index(), check_exact=False, ) self.assert_eq( kdf.groupby(kdf.b // 3).cumprod().sort_index(), pdf.groupby(pdf.b // 3).cumprod().sort_index(), check_exact=False, ) self.assert_eq( kdf.groupby(kdf.b // 3)["a"].cumprod().sort_index(), pdf.groupby(pdf.b // 3)["a"].cumprod().sort_index(), check_exact=False, ) self.assert_eq( kdf.groupby("b").cumprod().sum().sort_index(), pdf.groupby("b").cumprod().sum().sort_index(), check_exact=False, ) self.assert_eq( kdf.a.rename().groupby(kdf.b).cumprod().sort_index(), pdf.a.rename().groupby(pdf.b).cumprod().sort_index(), check_exact=False, ) self.assert_eq( kdf.a.groupby(kdf.b.rename()).cumprod().sort_index(), pdf.a.groupby(pdf.b.rename()).cumprod().sort_index(), check_exact=False, ) self.assert_eq( kdf.a.rename().groupby(kdf.b.rename()).cumprod().sort_index(), pdf.a.rename().groupby(pdf.b.rename()).cumprod().sort_index(), check_exact=False, ) # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c")]) pdf.columns = columns kdf.columns = columns self.assert_eq( kdf.groupby(("x", "b")).cumprod().sort_index(), pdf.groupby(("x", "b")).cumprod().sort_index(), check_exact=False, ) self.assert_eq( kdf.groupby([("x", "a"), ("x", "b")]).cumprod().sort_index(), pdf.groupby([("x", "a"), ("x", "b")]).cumprod().sort_index(), check_exact=False, ) kdf = ps.DataFrame([["a"], ["b"], ["c"]], columns=["A"]) self.assertRaises(DataError, lambda: kdf.groupby(["A"]).cumprod()) kdf = ps.DataFrame([[1, "a"], [2, "b"], [3, "c"]], columns=["A", "B"]) self.assertRaises(DataError, lambda: kdf.groupby(["A"])["B"].cumprod()) def test_nsmallest(self): pdf = pd.DataFrame( { "a": [1, 1, 1, 2, 2, 2, 3, 3, 3] * 3, "b": [1, 2, 2, 2, 3, 3, 3, 4, 4] * 3, "c": [1, 2, 2, 2, 3, 3, 3, 4, 4] * 3, "d": [1, 2, 2, 2, 3, 3, 3, 4, 4] * 3, }, index=np.random.rand(9 * 3), ) kdf = ps.from_pandas(pdf) self.assert_eq( kdf.groupby(["a"])["b"].nsmallest(1).sort_values(), pdf.groupby(["a"])["b"].nsmallest(1).sort_values(), ) self.assert_eq( kdf.groupby(["a"])["b"].nsmallest(2).sort_index(), pdf.groupby(["a"])["b"].nsmallest(2).sort_index(), ) self.assert_eq( (kdf.b * 10).groupby(kdf.a).nsmallest(2).sort_index(), (pdf.b * 10).groupby(pdf.a).nsmallest(2).sort_index(), ) self.assert_eq( kdf.b.rename().groupby(kdf.a).nsmallest(2).sort_index(), pdf.b.rename().groupby(pdf.a).nsmallest(2).sort_index(), ) self.assert_eq( kdf.b.groupby(kdf.a.rename()).nsmallest(2).sort_index(), pdf.b.groupby(pdf.a.rename()).nsmallest(2).sort_index(), ) self.assert_eq( kdf.b.rename().groupby(kdf.a.rename()).nsmallest(2).sort_index(), pdf.b.rename().groupby(pdf.a.rename()).nsmallest(2).sort_index(), ) with self.assertRaisesRegex(ValueError, "nsmallest do not support multi-index now"): kdf.set_index(["a", "b"]).groupby(["c"])["d"].nsmallest(1) def test_nlargest(self): pdf = pd.DataFrame( { "a": [1, 1, 1, 2, 2, 2, 3, 3, 3] * 3, "b": [1, 2, 2, 2, 3, 3, 3, 4, 4] * 3, "c": [1, 2, 2, 2, 3, 3, 3, 4, 4] * 3, "d": [1, 2, 2, 2, 3, 3, 3, 4, 4] * 3, }, index=np.random.rand(9 * 3), ) kdf = ps.from_pandas(pdf) self.assert_eq( kdf.groupby(["a"])["b"].nlargest(1).sort_values(), pdf.groupby(["a"])["b"].nlargest(1).sort_values(), ) self.assert_eq( kdf.groupby(["a"])["b"].nlargest(2).sort_index(), pdf.groupby(["a"])["b"].nlargest(2).sort_index(), ) self.assert_eq( (kdf.b * 10).groupby(kdf.a).nlargest(2).sort_index(), (pdf.b * 10).groupby(pdf.a).nlargest(2).sort_index(), ) self.assert_eq( kdf.b.rename().groupby(kdf.a).nlargest(2).sort_index(), pdf.b.rename().groupby(pdf.a).nlargest(2).sort_index(), ) self.assert_eq( kdf.b.groupby(kdf.a.rename()).nlargest(2).sort_index(), pdf.b.groupby(pdf.a.rename()).nlargest(2).sort_index(), ) self.assert_eq( kdf.b.rename().groupby(kdf.a.rename()).nlargest(2).sort_index(), pdf.b.rename().groupby(pdf.a.rename()).nlargest(2).sort_index(), ) with self.assertRaisesRegex(ValueError, "nlargest do not support multi-index now"): kdf.set_index(["a", "b"]).groupby(["c"])["d"].nlargest(1) def test_fillna(self): pdf = pd.DataFrame( { "A": [1, 1, 2, 2] * 3, "B": [2, 4, None, 3] * 3, "C": [None, None, None, 1] * 3, "D": [0, 1, 5, 4] * 3, } ) kdf = ps.from_pandas(pdf) self.assert_eq( kdf.groupby("A").fillna(0).sort_index(), pdf.groupby("A").fillna(0).sort_index() ) self.assert_eq( kdf.groupby("A")["C"].fillna(0).sort_index(), pdf.groupby("A")["C"].fillna(0).sort_index(), ) self.assert_eq( kdf.groupby("A")[["C"]].fillna(0).sort_index(), pdf.groupby("A")[["C"]].fillna(0).sort_index(), ) self.assert_eq( kdf.groupby("A").fillna(method="bfill").sort_index(), pdf.groupby("A").fillna(method="bfill").sort_index(), ) self.assert_eq( kdf.groupby("A")["C"].fillna(method="bfill").sort_index(), pdf.groupby("A")["C"].fillna(method="bfill").sort_index(), ) self.assert_eq( kdf.groupby("A")[["C"]].fillna(method="bfill").sort_index(), pdf.groupby("A")[["C"]].fillna(method="bfill").sort_index(), ) self.assert_eq( kdf.groupby("A").fillna(method="ffill").sort_index(), pdf.groupby("A").fillna(method="ffill").sort_index(), ) self.assert_eq( kdf.groupby("A")["C"].fillna(method="ffill").sort_index(), pdf.groupby("A")["C"].fillna(method="ffill").sort_index(), ) self.assert_eq( kdf.groupby("A")[["C"]].fillna(method="ffill").sort_index(), pdf.groupby("A")[["C"]].fillna(method="ffill").sort_index(), ) self.assert_eq( kdf.groupby(kdf.A // 5).fillna(method="bfill").sort_index(), pdf.groupby(pdf.A // 5).fillna(method="bfill").sort_index(), ) self.assert_eq( kdf.groupby(kdf.A // 5)["C"].fillna(method="bfill").sort_index(), pdf.groupby(pdf.A // 5)["C"].fillna(method="bfill").sort_index(), ) self.assert_eq( kdf.groupby(kdf.A // 5)[["C"]].fillna(method="bfill").sort_index(), pdf.groupby(pdf.A // 5)[["C"]].fillna(method="bfill").sort_index(), ) self.assert_eq( kdf.groupby(kdf.A // 5).fillna(method="ffill").sort_index(), pdf.groupby(pdf.A // 5).fillna(method="ffill").sort_index(), ) self.assert_eq( kdf.groupby(kdf.A // 5)["C"].fillna(method="ffill").sort_index(), pdf.groupby(pdf.A // 5)["C"].fillna(method="ffill").sort_index(), ) self.assert_eq( kdf.groupby(kdf.A // 5)[["C"]].fillna(method="ffill").sort_index(), pdf.groupby(pdf.A // 5)[["C"]].fillna(method="ffill").sort_index(), ) self.assert_eq( kdf.C.rename().groupby(kdf.A).fillna(0).sort_index(), pdf.C.rename().groupby(pdf.A).fillna(0).sort_index(), ) self.assert_eq( kdf.C.groupby(kdf.A.rename()).fillna(0).sort_index(), pdf.C.groupby(pdf.A.rename()).fillna(0).sort_index(), ) self.assert_eq( kdf.C.rename().groupby(kdf.A.rename()).fillna(0).sort_index(), pdf.C.rename().groupby(pdf.A.rename()).fillna(0).sort_index(), ) # multi-index columns columns = pd.MultiIndex.from_tuples([("X", "A"), ("X", "B"), ("Y", "C"), ("Z", "D")]) pdf.columns = columns kdf.columns = columns self.assert_eq( kdf.groupby(("X", "A")).fillna(0).sort_index(), pdf.groupby(("X", "A")).fillna(0).sort_index(), ) self.assert_eq( kdf.groupby(("X", "A")).fillna(method="bfill").sort_index(), pdf.groupby(("X", "A")).fillna(method="bfill").sort_index(), ) self.assert_eq( kdf.groupby(("X", "A")).fillna(method="ffill").sort_index(), pdf.groupby(("X", "A")).fillna(method="ffill").sort_index(), ) def test_ffill(self): idx = np.random.rand(4 * 3) pdf = pd.DataFrame( { "A": [1, 1, 2, 2] * 3, "B": [2, 4, None, 3] * 3, "C": [None, None, None, 1] * 3, "D": [0, 1, 5, 4] * 3, }, index=idx, ) kdf = ps.from_pandas(pdf) if LooseVersion(pd.__version__) <= LooseVersion("0.24.2"): self.assert_eq( kdf.groupby("A").ffill().sort_index(), pdf.groupby("A").ffill().sort_index().drop("A", 1), ) self.assert_eq( kdf.groupby("A")[["B"]].ffill().sort_index(), pdf.groupby("A")[["B"]].ffill().sort_index().drop("A", 1), ) else: self.assert_eq( kdf.groupby("A").ffill().sort_index(), pdf.groupby("A").ffill().sort_index() ) self.assert_eq( kdf.groupby("A")[["B"]].ffill().sort_index(), pdf.groupby("A")[["B"]].ffill().sort_index(), ) self.assert_eq( kdf.groupby("A")["B"].ffill().sort_index(), pdf.groupby("A")["B"].ffill().sort_index() ) self.assert_eq(kdf.groupby("A")["B"].ffill()[idx[6]], pdf.groupby("A")["B"].ffill()[idx[6]]) # multi-index columns columns = pd.MultiIndex.from_tuples([("X", "A"), ("X", "B"), ("Y", "C"), ("Z", "D")]) pdf.columns = columns kdf.columns = columns if LooseVersion(pd.__version__) <= LooseVersion("0.24.2"): self.assert_eq( kdf.groupby(("X", "A")).ffill().sort_index(), pdf.groupby(("X", "A")).ffill().sort_index().drop(("X", "A"), 1), ) else: self.assert_eq( kdf.groupby(("X", "A")).ffill().sort_index(), pdf.groupby(("X", "A")).ffill().sort_index(), ) def test_bfill(self): idx = np.random.rand(4 * 3) pdf = pd.DataFrame( { "A": [1, 1, 2, 2] * 3, "B": [2, 4, None, 3] * 3, "C": [None, None, None, 1] * 3, "D": [0, 1, 5, 4] * 3, }, index=idx, ) kdf = ps.from_pandas(pdf) if LooseVersion(pd.__version__) <= LooseVersion("0.24.2"): self.assert_eq( kdf.groupby("A").bfill().sort_index(), pdf.groupby("A").bfill().sort_index().drop("A", 1), ) self.assert_eq( kdf.groupby("A")[["B"]].bfill().sort_index(), pdf.groupby("A")[["B"]].bfill().sort_index().drop("A", 1), ) else: self.assert_eq( kdf.groupby("A").bfill().sort_index(), pdf.groupby("A").bfill().sort_index() ) self.assert_eq( kdf.groupby("A")[["B"]].bfill().sort_index(), pdf.groupby("A")[["B"]].bfill().sort_index(), ) self.assert_eq( kdf.groupby("A")["B"].bfill().sort_index(), pdf.groupby("A")["B"].bfill().sort_index(), ) self.assert_eq(kdf.groupby("A")["B"].bfill()[idx[6]], pdf.groupby("A")["B"].bfill()[idx[6]]) # multi-index columns columns = pd.MultiIndex.from_tuples([("X", "A"), ("X", "B"), ("Y", "C"), ("Z", "D")]) pdf.columns = columns kdf.columns = columns if LooseVersion(pd.__version__) <= LooseVersion("0.24.2"): self.assert_eq( kdf.groupby(("X", "A")).bfill().sort_index(), pdf.groupby(("X", "A")).bfill().sort_index().drop(("X", "A"), 1), ) else: self.assert_eq( kdf.groupby(("X", "A")).bfill().sort_index(), pdf.groupby(("X", "A")).bfill().sort_index(), ) @unittest.skipIf(pd.__version__ < "0.24.0", "not supported before pandas 0.24.0") def test_shift(self): pdf = pd.DataFrame( { "a": [1, 1, 2, 2, 3, 3] * 3, "b": [1, 1, 2, 2, 3, 4] * 3, "c": [1, 4, 9, 16, 25, 36] * 3, }, index=np.random.rand(6 * 3), ) kdf = ps.from_pandas(pdf) self.assert_eq(kdf.groupby("a").shift().sort_index(), pdf.groupby("a").shift().sort_index()) # TODO: seems like a pandas' bug when fill_value is not None? # self.assert_eq(kdf.groupby(['a', 'b']).shift(periods=-1, fill_value=0).sort_index(), # pdf.groupby(['a', 'b']).shift(periods=-1, fill_value=0).sort_index()) self.assert_eq( kdf.groupby(["b"])["a"].shift().sort_index(), pdf.groupby(["b"])["a"].shift().sort_index(), ) self.assert_eq( kdf.groupby(["a", "b"])["c"].shift().sort_index(), pdf.groupby(["a", "b"])["c"].shift().sort_index(), ) self.assert_eq( kdf.groupby(kdf.b // 5).shift().sort_index(), pdf.groupby(pdf.b // 5).shift().sort_index(), ) self.assert_eq( kdf.groupby(kdf.b // 5)["a"].shift().sort_index(), pdf.groupby(pdf.b // 5)["a"].shift().sort_index(), ) # TODO: known pandas' bug when fill_value is not None pandas>=1.0.0 # https://github.com/pandas-dev/pandas/issues/31971#issue-565171762 if LooseVersion(pd.__version__) < LooseVersion("1.0.0"): self.assert_eq( kdf.groupby(["b"])[["a", "c"]].shift(periods=-1, fill_value=0).sort_index(), pdf.groupby(["b"])[["a", "c"]].shift(periods=-1, fill_value=0).sort_index(), ) self.assert_eq( kdf.a.rename().groupby(kdf.b).shift().sort_index(), pdf.a.rename().groupby(pdf.b).shift().sort_index(), ) self.assert_eq( kdf.a.groupby(kdf.b.rename()).shift().sort_index(), pdf.a.groupby(pdf.b.rename()).shift().sort_index(), ) self.assert_eq( kdf.a.rename().groupby(kdf.b.rename()).shift().sort_index(), pdf.a.rename().groupby(pdf.b.rename()).shift().sort_index(), ) self.assert_eq(kdf.groupby("a").shift().sum(), pdf.groupby("a").shift().sum().astype(int)) self.assert_eq( kdf.a.rename().groupby(kdf.b).shift().sum(), pdf.a.rename().groupby(pdf.b).shift().sum(), ) # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c")]) pdf.columns = columns kdf.columns = columns self.assert_eq( kdf.groupby(("x", "a")).shift().sort_index(), pdf.groupby(("x", "a")).shift().sort_index(), ) # TODO: seems like a pandas' bug when fill_value is not None? # self.assert_eq(kdf.groupby([('x', 'a'), ('x', 'b')]).shift(periods=-1, # fill_value=0).sort_index(), # pdf.groupby([('x', 'a'), ('x', 'b')]).shift(periods=-1, # fill_value=0).sort_index()) def test_apply(self): pdf = pd.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [1, 1, 2, 3, 5, 8], "c": [1, 4, 9, 16, 25, 36]}, columns=["a", "b", "c"], ) kdf = ps.from_pandas(pdf) self.assert_eq( kdf.groupby("b").apply(lambda x: x + x.min()).sort_index(), pdf.groupby("b").apply(lambda x: x + x.min()).sort_index(), ) self.assert_eq( kdf.groupby("b").apply(len).sort_index(), pdf.groupby("b").apply(len).sort_index(), ) self.assert_eq( kdf.groupby("b")["a"].apply(lambda x, y, z: x + x.min() + y * z, 10, z=20).sort_index(), pdf.groupby("b")["a"].apply(lambda x, y, z: x + x.min() + y * z, 10, z=20).sort_index(), ) self.assert_eq( kdf.groupby("b")[["a"]].apply(lambda x: x + x.min()).sort_index(), pdf.groupby("b")[["a"]].apply(lambda x: x + x.min()).sort_index(), ) self.assert_eq( kdf.groupby(["a", "b"]).apply(lambda x, y, z: x + x.min() + y + z, 1, z=2).sort_index(), pdf.groupby(["a", "b"]).apply(lambda x, y, z: x + x.min() + y + z, 1, z=2).sort_index(), ) self.assert_eq( kdf.groupby(["b"])["c"].apply(lambda x: 1).sort_index(), pdf.groupby(["b"])["c"].apply(lambda x: 1).sort_index(), ) self.assert_eq( kdf.groupby(["b"])["c"].apply(len).sort_index(), pdf.groupby(["b"])["c"].apply(len).sort_index(), ) self.assert_eq( kdf.groupby(kdf.b // 5).apply(lambda x: x + x.min()).sort_index(), pdf.groupby(pdf.b // 5).apply(lambda x: x + x.min()).sort_index(), ) self.assert_eq( kdf.groupby(kdf.b // 5)["a"].apply(lambda x: x + x.min()).sort_index(), pdf.groupby(pdf.b // 5)["a"].apply(lambda x: x + x.min()).sort_index(), ) self.assert_eq( kdf.groupby(kdf.b // 5)[["a"]].apply(lambda x: x + x.min()).sort_index(), pdf.groupby(pdf.b // 5)[["a"]].apply(lambda x: x + x.min()).sort_index(), ) self.assert_eq( kdf.groupby(kdf.b // 5)[["a"]].apply(len).sort_index(), pdf.groupby(pdf.b // 5)[["a"]].apply(len).sort_index(), almost=True, ) self.assert_eq( kdf.a.rename().groupby(kdf.b).apply(lambda x: x + x.min()).sort_index(), pdf.a.rename().groupby(pdf.b).apply(lambda x: x + x.min()).sort_index(), ) self.assert_eq( kdf.a.groupby(kdf.b.rename()).apply(lambda x: x + x.min()).sort_index(), pdf.a.groupby(pdf.b.rename()).apply(lambda x: x + x.min()).sort_index(), ) self.assert_eq( kdf.a.rename().groupby(kdf.b.rename()).apply(lambda x: x + x.min()).sort_index(), pdf.a.rename().groupby(pdf.b.rename()).apply(lambda x: x + x.min()).sort_index(), ) with self.assertRaisesRegex(TypeError, "int object is not callable"): kdf.groupby("b").apply(1) # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c")]) pdf.columns = columns kdf.columns = columns self.assert_eq( kdf.groupby(("x", "b")).apply(lambda x: 1).sort_index(), pdf.groupby(("x", "b")).apply(lambda x: 1).sort_index(), ) self.assert_eq( kdf.groupby([("x", "a"), ("x", "b")]).apply(lambda x: x + x.min()).sort_index(), pdf.groupby([("x", "a"), ("x", "b")]).apply(lambda x: x + x.min()).sort_index(), ) self.assert_eq( kdf.groupby(("x", "b")).apply(len).sort_index(), pdf.groupby(("x", "b")).apply(len).sort_index(), ) self.assert_eq( kdf.groupby([("x", "a"), ("x", "b")]).apply(len).sort_index(), pdf.groupby([("x", "a"), ("x", "b")]).apply(len).sort_index(), ) def test_apply_without_shortcut(self): with option_context("compute.shortcut_limit", 0): self.test_apply() def test_apply_negative(self): def func(_) -> ps.Series[int]: return pd.Series([1]) with self.assertRaisesRegex(TypeError, "Series as a return type hint at frame groupby"): ps.range(10).groupby("id").apply(func) def test_apply_with_new_dataframe(self): pdf = pd.DataFrame( {"timestamp": [0.0, 0.5, 1.0, 0.0, 0.5], "car_id": ["A", "A", "A", "B", "B"]} ) kdf = ps.from_pandas(pdf) self.assert_eq( kdf.groupby("car_id").apply(lambda _: pd.DataFrame({"column": [0.0]})).sort_index(), pdf.groupby("car_id").apply(lambda _: pd.DataFrame({"column": [0.0]})).sort_index(), ) self.assert_eq( kdf.groupby("car_id") .apply(lambda df: pd.DataFrame({"mean": [df["timestamp"].mean()]})) .sort_index(), pdf.groupby("car_id") .apply(lambda df: pd.DataFrame({"mean": [df["timestamp"].mean()]})) .sort_index(), ) # dataframe with 1000+ records pdf = pd.DataFrame( { "timestamp": [0.0, 0.5, 1.0, 0.0, 0.5] * 300, "car_id": ["A", "A", "A", "B", "B"] * 300, } ) kdf = ps.from_pandas(pdf) self.assert_eq( kdf.groupby("car_id").apply(lambda _: pd.DataFrame({"column": [0.0]})).sort_index(), pdf.groupby("car_id").apply(lambda _: pd.DataFrame({"column": [0.0]})).sort_index(), ) self.assert_eq( kdf.groupby("car_id") .apply(lambda df: pd.DataFrame({"mean": [df["timestamp"].mean()]})) .sort_index(), pdf.groupby("car_id") .apply(lambda df: pd.DataFrame({"mean": [df["timestamp"].mean()]})) .sort_index(), ) def test_apply_with_new_dataframe_without_shortcut(self): with option_context("compute.shortcut_limit", 0): self.test_apply_with_new_dataframe() def test_apply_key_handling(self): pdf = pd.DataFrame( {"d": [1.0, 1.0, 1.0, 2.0, 2.0, 2.0], "v": [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]} ) kdf = ps.from_pandas(pdf) self.assert_eq( kdf.groupby("d").apply(sum).sort_index(), pdf.groupby("d").apply(sum).sort_index() ) with ps.option_context("compute.shortcut_limit", 1): self.assert_eq( kdf.groupby("d").apply(sum).sort_index(), pdf.groupby("d").apply(sum).sort_index() ) def test_apply_with_side_effect(self): pdf = pd.DataFrame( {"d": [1.0, 1.0, 1.0, 2.0, 2.0, 2.0], "v": [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]} ) kdf = ps.from_pandas(pdf) acc = ps.utils.default_session().sparkContext.accumulator(0) def sum_with_acc_frame(x) -> ps.DataFrame[np.float64, np.float64]: nonlocal acc acc += 1 return np.sum(x) actual = kdf.groupby("d").apply(sum_with_acc_frame).sort_index() actual.columns = ["d", "v"] self.assert_eq(actual, pdf.groupby("d").apply(sum).sort_index().reset_index(drop=True)) self.assert_eq(acc.value, 2) def sum_with_acc_series(x) -> np.float64: nonlocal acc acc += 1 return np.sum(x) self.assert_eq( kdf.groupby("d")["v"].apply(sum_with_acc_series).sort_index(), pdf.groupby("d")["v"].apply(sum).sort_index().reset_index(drop=True), ) self.assert_eq(acc.value, 4) def test_transform(self): pdf = pd.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [1, 1, 2, 3, 5, 8], "c": [1, 4, 9, 16, 25, 36]}, columns=["a", "b", "c"], ) kdf = ps.from_pandas(pdf) self.assert_eq( kdf.groupby("b").transform(lambda x: x + x.min()).sort_index(), pdf.groupby("b").transform(lambda x: x + x.min()).sort_index(), ) self.assert_eq( kdf.groupby("b")["a"].transform(lambda x: x + x.min()).sort_index(), pdf.groupby("b")["a"].transform(lambda x: x + x.min()).sort_index(), ) self.assert_eq( kdf.groupby("b")[["a"]].transform(lambda x: x + x.min()).sort_index(), pdf.groupby("b")[["a"]].transform(lambda x: x + x.min()).sort_index(), ) self.assert_eq( kdf.groupby(["a", "b"]).transform(lambda x: x + x.min()).sort_index(), pdf.groupby(["a", "b"]).transform(lambda x: x + x.min()).sort_index(), ) self.assert_eq( kdf.groupby(["b"])["c"].transform(lambda x: x + x.min()).sort_index(), pdf.groupby(["b"])["c"].transform(lambda x: x + x.min()).sort_index(), ) self.assert_eq( kdf.groupby(kdf.b // 5).transform(lambda x: x + x.min()).sort_index(), pdf.groupby(pdf.b // 5).transform(lambda x: x + x.min()).sort_index(), ) self.assert_eq( kdf.groupby(kdf.b // 5)["a"].transform(lambda x: x + x.min()).sort_index(), pdf.groupby(pdf.b // 5)["a"].transform(lambda x: x + x.min()).sort_index(), ) self.assert_eq( kdf.groupby(kdf.b // 5)[["a"]].transform(lambda x: x + x.min()).sort_index(), pdf.groupby(pdf.b // 5)[["a"]].transform(lambda x: x + x.min()).sort_index(), ) self.assert_eq( kdf.a.rename().groupby(kdf.b).transform(lambda x: x + x.min()).sort_index(), pdf.a.rename().groupby(pdf.b).transform(lambda x: x + x.min()).sort_index(), ) self.assert_eq( kdf.a.groupby(kdf.b.rename()).transform(lambda x: x + x.min()).sort_index(), pdf.a.groupby(pdf.b.rename()).transform(lambda x: x + x.min()).sort_index(), ) self.assert_eq( kdf.a.rename().groupby(kdf.b.rename()).transform(lambda x: x + x.min()).sort_index(), pdf.a.rename().groupby(pdf.b.rename()).transform(lambda x: x + x.min()).sort_index(), ) # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c")]) pdf.columns = columns kdf.columns = columns self.assert_eq( kdf.groupby(("x", "b")).transform(lambda x: x + x.min()).sort_index(), pdf.groupby(("x", "b")).transform(lambda x: x + x.min()).sort_index(), ) self.assert_eq( kdf.groupby([("x", "a"), ("x", "b")]).transform(lambda x: x + x.min()).sort_index(), pdf.groupby([("x", "a"), ("x", "b")]).transform(lambda x: x + x.min()).sort_index(), ) def test_transform_without_shortcut(self): with option_context("compute.shortcut_limit", 0): self.test_transform() def test_filter(self): pdf = pd.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [1, 1, 2, 3, 5, 8], "c": [1, 4, 9, 16, 25, 36]}, columns=["a", "b", "c"], ) kdf = ps.from_pandas(pdf) self.assert_eq( kdf.groupby("b").filter(lambda x: any(x.a == 2)).sort_index(), pdf.groupby("b").filter(lambda x: any(x.a == 2)).sort_index(), ) self.assert_eq( kdf.groupby("b")["a"].filter(lambda x: any(x == 2)).sort_index(), pdf.groupby("b")["a"].filter(lambda x: any(x == 2)).sort_index(), ) self.assert_eq( kdf.groupby("b")[["a"]].filter(lambda x: any(x.a == 2)).sort_index(), pdf.groupby("b")[["a"]].filter(lambda x: any(x.a == 2)).sort_index(), ) self.assert_eq( kdf.groupby(["a", "b"]).filter(lambda x: any(x.a == 2)).sort_index(), pdf.groupby(["a", "b"]).filter(lambda x: any(x.a == 2)).sort_index(), ) self.assert_eq( kdf.groupby(kdf["b"] // 5).filter(lambda x: any(x.a == 2)).sort_index(), pdf.groupby(pdf["b"] // 5).filter(lambda x: any(x.a == 2)).sort_index(), ) self.assert_eq( kdf.groupby(kdf["b"] // 5)["a"].filter(lambda x: any(x == 2)).sort_index(), pdf.groupby(pdf["b"] // 5)["a"].filter(lambda x: any(x == 2)).sort_index(), ) self.assert_eq( kdf.groupby(kdf["b"] // 5)[["a"]].filter(lambda x: any(x.a == 2)).sort_index(), pdf.groupby(pdf["b"] // 5)[["a"]].filter(lambda x: any(x.a == 2)).sort_index(), ) self.assert_eq( kdf.a.rename().groupby(kdf.b).filter(lambda x: any(x == 2)).sort_index(), pdf.a.rename().groupby(pdf.b).filter(lambda x: any(x == 2)).sort_index(), ) self.assert_eq( kdf.a.groupby(kdf.b.rename()).filter(lambda x: any(x == 2)).sort_index(), pdf.a.groupby(pdf.b.rename()).filter(lambda x: any(x == 2)).sort_index(), ) self.assert_eq( kdf.a.rename().groupby(kdf.b.rename()).filter(lambda x: any(x == 2)).sort_index(), pdf.a.rename().groupby(pdf.b.rename()).filter(lambda x: any(x == 2)).sort_index(), ) with self.assertRaisesRegex(TypeError, "int object is not callable"): kdf.groupby("b").filter(1) # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c")]) pdf.columns = columns kdf.columns = columns self.assert_eq( kdf.groupby(("x", "b")).filter(lambda x: any(x[("x", "a")] == 2)).sort_index(), pdf.groupby(("x", "b")).filter(lambda x: any(x[("x", "a")] == 2)).sort_index(), ) self.assert_eq( kdf.groupby([("x", "a"), ("x", "b")]) .filter(lambda x: any(x[("x", "a")] == 2)) .sort_index(), pdf.groupby([("x", "a"), ("x", "b")]) .filter(lambda x: any(x[("x", "a")] == 2)) .sort_index(), ) def test_idxmax(self): pdf = pd.DataFrame( {"a": [1, 1, 2, 2, 3] * 3, "b": [1, 2, 3, 4, 5] * 3, "c": [5, 4, 3, 2, 1] * 3} ) kdf = ps.from_pandas(pdf) self.assert_eq( pdf.groupby(["a"]).idxmax().sort_index(), kdf.groupby(["a"]).idxmax().sort_index() ) self.assert_eq( pdf.groupby(["a"]).idxmax(skipna=False).sort_index(), kdf.groupby(["a"]).idxmax(skipna=False).sort_index(), ) self.assert_eq( pdf.groupby(["a"])["b"].idxmax().sort_index(), kdf.groupby(["a"])["b"].idxmax().sort_index(), ) self.assert_eq( pdf.b.rename().groupby(pdf.a).idxmax().sort_index(), kdf.b.rename().groupby(kdf.a).idxmax().sort_index(), ) self.assert_eq( pdf.b.groupby(pdf.a.rename()).idxmax().sort_index(), kdf.b.groupby(kdf.a.rename()).idxmax().sort_index(), ) self.assert_eq( pdf.b.rename().groupby(pdf.a.rename()).idxmax().sort_index(), kdf.b.rename().groupby(kdf.a.rename()).idxmax().sort_index(), ) with self.assertRaisesRegex(ValueError, "idxmax only support one-level index now"): kdf.set_index(["a", "b"]).groupby(["c"]).idxmax() # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c")]) pdf.columns = columns kdf.columns = columns self.assert_eq( pdf.groupby(("x", "a")).idxmax().sort_index(), kdf.groupby(("x", "a")).idxmax().sort_index(), ) self.assert_eq( pdf.groupby(("x", "a")).idxmax(skipna=False).sort_index(), kdf.groupby(("x", "a")).idxmax(skipna=False).sort_index(), ) def test_idxmin(self): pdf = pd.DataFrame( {"a": [1, 1, 2, 2, 3] * 3, "b": [1, 2, 3, 4, 5] * 3, "c": [5, 4, 3, 2, 1] * 3} ) kdf = ps.from_pandas(pdf) self.assert_eq( pdf.groupby(["a"]).idxmin().sort_index(), kdf.groupby(["a"]).idxmin().sort_index() ) self.assert_eq( pdf.groupby(["a"]).idxmin(skipna=False).sort_index(), kdf.groupby(["a"]).idxmin(skipna=False).sort_index(), ) self.assert_eq( pdf.groupby(["a"])["b"].idxmin().sort_index(), kdf.groupby(["a"])["b"].idxmin().sort_index(), ) self.assert_eq( pdf.b.rename().groupby(pdf.a).idxmin().sort_index(), kdf.b.rename().groupby(kdf.a).idxmin().sort_index(), ) self.assert_eq( pdf.b.groupby(pdf.a.rename()).idxmin().sort_index(), kdf.b.groupby(kdf.a.rename()).idxmin().sort_index(), ) self.assert_eq( pdf.b.rename().groupby(pdf.a.rename()).idxmin().sort_index(), kdf.b.rename().groupby(kdf.a.rename()).idxmin().sort_index(), ) with self.assertRaisesRegex(ValueError, "idxmin only support one-level index now"): kdf.set_index(["a", "b"]).groupby(["c"]).idxmin() # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c")]) pdf.columns = columns kdf.columns = columns self.assert_eq( pdf.groupby(("x", "a")).idxmin().sort_index(), kdf.groupby(("x", "a")).idxmin().sort_index(), ) self.assert_eq( pdf.groupby(("x", "a")).idxmin(skipna=False).sort_index(), kdf.groupby(("x", "a")).idxmin(skipna=False).sort_index(), ) def test_head(self): pdf = pd.DataFrame( { "a": [1, 1, 1, 1, 2, 2, 2, 3, 3, 3] * 3, "b": [2, 3, 1, 4, 6, 9, 8, 10, 7, 5] * 3, "c": [3, 5, 2, 5, 1, 2, 6, 4, 3, 6] * 3, }, index=np.random.rand(10 * 3), ) kdf = ps.from_pandas(pdf) self.assert_eq(pdf.groupby("a").head(2).sort_index(), kdf.groupby("a").head(2).sort_index()) self.assert_eq( pdf.groupby("a").head(-2).sort_index(), kdf.groupby("a").head(-2).sort_index() ) self.assert_eq( pdf.groupby("a").head(100000).sort_index(), kdf.groupby("a").head(100000).sort_index() ) self.assert_eq( pdf.groupby("a")["b"].head(2).sort_index(), kdf.groupby("a")["b"].head(2).sort_index() ) self.assert_eq( pdf.groupby("a")["b"].head(-2).sort_index(), kdf.groupby("a")["b"].head(-2).sort_index() ) self.assert_eq( pdf.groupby("a")["b"].head(100000).sort_index(), kdf.groupby("a")["b"].head(100000).sort_index(), ) self.assert_eq( pdf.groupby("a")[["b"]].head(2).sort_index(), kdf.groupby("a")[["b"]].head(2).sort_index(), ) self.assert_eq( pdf.groupby("a")[["b"]].head(-2).sort_index(), kdf.groupby("a")[["b"]].head(-2).sort_index(), ) self.assert_eq( pdf.groupby("a")[["b"]].head(100000).sort_index(), kdf.groupby("a")[["b"]].head(100000).sort_index(), ) self.assert_eq( pdf.groupby(pdf.a // 2).head(2).sort_index(), kdf.groupby(kdf.a // 2).head(2).sort_index(), ) self.assert_eq( pdf.groupby(pdf.a // 2)["b"].head(2).sort_index(), kdf.groupby(kdf.a // 2)["b"].head(2).sort_index(), ) self.assert_eq( pdf.groupby(pdf.a // 2)[["b"]].head(2).sort_index(), kdf.groupby(kdf.a // 2)[["b"]].head(2).sort_index(), ) self.assert_eq( pdf.b.rename().groupby(pdf.a).head(2).sort_index(), kdf.b.rename().groupby(kdf.a).head(2).sort_index(), ) self.assert_eq( pdf.b.groupby(pdf.a.rename()).head(2).sort_index(), kdf.b.groupby(kdf.a.rename()).head(2).sort_index(), ) self.assert_eq( pdf.b.rename().groupby(pdf.a.rename()).head(2).sort_index(), kdf.b.rename().groupby(kdf.a.rename()).head(2).sort_index(), ) # multi-index midx = pd.MultiIndex( [["x", "y"], ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j"]], [[0, 0, 0, 0, 0, 1, 1, 1, 1, 1], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]], ) pdf = pd.DataFrame( { "a": [1, 1, 1, 1, 2, 2, 2, 3, 3, 3], "b": [2, 3, 1, 4, 6, 9, 8, 10, 7, 5], "c": [3, 5, 2, 5, 1, 2, 6, 4, 3, 6], }, columns=["a", "b", "c"], index=midx, ) kdf = ps.from_pandas(pdf) self.assert_eq(pdf.groupby("a").head(2).sort_index(), kdf.groupby("a").head(2).sort_index()) self.assert_eq( pdf.groupby("a").head(-2).sort_index(), kdf.groupby("a").head(-2).sort_index() ) self.assert_eq( pdf.groupby("a").head(100000).sort_index(), kdf.groupby("a").head(100000).sort_index() ) self.assert_eq( pdf.groupby("a")["b"].head(2).sort_index(), kdf.groupby("a")["b"].head(2).sort_index() ) self.assert_eq( pdf.groupby("a")["b"].head(-2).sort_index(), kdf.groupby("a")["b"].head(-2).sort_index() ) self.assert_eq( pdf.groupby("a")["b"].head(100000).sort_index(), kdf.groupby("a")["b"].head(100000).sort_index(), ) # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c")]) pdf.columns = columns kdf.columns = columns self.assert_eq( pdf.groupby(("x", "a")).head(2).sort_index(), kdf.groupby(("x", "a")).head(2).sort_index(), ) self.assert_eq( pdf.groupby(("x", "a")).head(-2).sort_index(), kdf.groupby(("x", "a")).head(-2).sort_index(), ) self.assert_eq( pdf.groupby(("x", "a")).head(100000).sort_index(), kdf.groupby(("x", "a")).head(100000).sort_index(), ) def test_missing(self): kdf = ps.DataFrame({"a": [1, 2, 3, 4, 5, 6, 7, 8, 9]}) # DataFrameGroupBy functions missing_functions = inspect.getmembers( MissingPandasLikeDataFrameGroupBy, inspect.isfunction ) unsupported_functions = [ name for (name, type_) in missing_functions if type_.__name__ == "unsupported_function" ] for name in unsupported_functions: with self.assertRaisesRegex( PandasNotImplementedError, "method.*GroupBy.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(kdf.groupby("a"), name)() deprecated_functions = [ name for (name, type_) in missing_functions if type_.__name__ == "deprecated_function" ] for name in deprecated_functions: with self.assertRaisesRegex( PandasNotImplementedError, "method.*GroupBy.*{}.*is deprecated".format(name) ): getattr(kdf.groupby("a"), name)() # SeriesGroupBy functions missing_functions = inspect.getmembers(MissingPandasLikeSeriesGroupBy, inspect.isfunction) unsupported_functions = [ name for (name, type_) in missing_functions if type_.__name__ == "unsupported_function" ] for name in unsupported_functions: with self.assertRaisesRegex( PandasNotImplementedError, "method.*GroupBy.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(kdf.a.groupby(kdf.a), name)() deprecated_functions = [ name for (name, type_) in missing_functions if type_.__name__ == "deprecated_function" ] for name in deprecated_functions: with self.assertRaisesRegex( PandasNotImplementedError, "method.*GroupBy.*{}.*is deprecated".format(name) ): getattr(kdf.a.groupby(kdf.a), name)() # DataFrameGroupBy properties missing_properties = inspect.getmembers( MissingPandasLikeDataFrameGroupBy, lambda o: isinstance(o, property) ) unsupported_properties = [ name for (name, type_) in missing_properties if type_.fget.__name__ == "unsupported_property" ] for name in unsupported_properties: with self.assertRaisesRegex( PandasNotImplementedError, "property.*GroupBy.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(kdf.groupby("a"), name) deprecated_properties = [ name for (name, type_) in missing_properties if type_.fget.__name__ == "deprecated_property" ] for name in deprecated_properties: with self.assertRaisesRegex( PandasNotImplementedError, "property.*GroupBy.*{}.*is deprecated".format(name) ): getattr(kdf.groupby("a"), name) # SeriesGroupBy properties missing_properties = inspect.getmembers( MissingPandasLikeSeriesGroupBy, lambda o: isinstance(o, property) ) unsupported_properties = [ name for (name, type_) in missing_properties if type_.fget.__name__ == "unsupported_property" ] for name in unsupported_properties: with self.assertRaisesRegex( PandasNotImplementedError, "property.*GroupBy.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(kdf.a.groupby(kdf.a), name) deprecated_properties = [ name for (name, type_) in missing_properties if type_.fget.__name__ == "deprecated_property" ] for name in deprecated_properties: with self.assertRaisesRegex( PandasNotImplementedError, "property.*GroupBy.*{}.*is deprecated".format(name) ): getattr(kdf.a.groupby(kdf.a), name) @staticmethod def test_is_multi_agg_with_relabel(): assert is_multi_agg_with_relabel(a="max") is False assert is_multi_agg_with_relabel(a_min=("a", "max"), a_max=("a", "min")) is True def test_get_group(self): pdf = pd.DataFrame( [ ("falcon", "bird", 389.0), ("parrot", "bird", 24.0), ("lion", "mammal", 80.5), ("monkey", "mammal", np.nan), ], columns=["name", "class", "max_speed"], index=[0, 2, 3, 1], ) pdf.columns.name = "Koalas" kdf = ps.from_pandas(pdf) self.assert_eq( kdf.groupby("class").get_group("bird"), pdf.groupby("class").get_group("bird"), ) self.assert_eq( kdf.groupby("class")["name"].get_group("mammal"), pdf.groupby("class")["name"].get_group("mammal"), ) self.assert_eq( kdf.groupby("class")[["name"]].get_group("mammal"), pdf.groupby("class")[["name"]].get_group("mammal"), ) self.assert_eq( kdf.groupby(["class", "name"]).get_group(("mammal", "lion")), pdf.groupby(["class", "name"]).get_group(("mammal", "lion")), ) self.assert_eq( kdf.groupby(["class", "name"])["max_speed"].get_group(("mammal", "lion")), pdf.groupby(["class", "name"])["max_speed"].get_group(("mammal", "lion")), ) self.assert_eq( kdf.groupby(["class", "name"])[["max_speed"]].get_group(("mammal", "lion")), pdf.groupby(["class", "name"])[["max_speed"]].get_group(("mammal", "lion")), ) self.assert_eq( (kdf.max_speed + 1).groupby(kdf["class"]).get_group("mammal"), (pdf.max_speed + 1).groupby(pdf["class"]).get_group("mammal"), ) self.assert_eq( kdf.groupby("max_speed").get_group(80.5), pdf.groupby("max_speed").get_group(80.5), ) self.assertRaises(KeyError, lambda: kdf.groupby("class").get_group("fish")) self.assertRaises(TypeError, lambda: kdf.groupby("class").get_group(["bird", "mammal"])) self.assertRaises(KeyError, lambda: kdf.groupby("class")["name"].get_group("fish")) self.assertRaises( TypeError, lambda: kdf.groupby("class")["name"].get_group(["bird", "mammal"]) ) self.assertRaises( KeyError, lambda: kdf.groupby(["class", "name"]).get_group(("lion", "mammal")) ) self.assertRaises(ValueError, lambda: kdf.groupby(["class", "name"]).get_group(("lion",))) self.assertRaises(ValueError, lambda: kdf.groupby(["class", "name"]).get_group(("mammal",))) self.assertRaises(ValueError, lambda: kdf.groupby(["class", "name"]).get_group("mammal")) # MultiIndex columns pdf.columns = pd.MultiIndex.from_tuples([("A", "name"), ("B", "class"), ("C", "max_speed")]) pdf.columns.names = ["Hello", "Koalas"] kdf = ps.from_pandas(pdf) self.assert_eq( kdf.groupby(("B", "class")).get_group("bird"), pdf.groupby(("B", "class")).get_group("bird"), ) self.assert_eq( kdf.groupby(("B", "class"))[[("A", "name")]].get_group("mammal"), pdf.groupby(("B", "class"))[[("A", "name")]].get_group("mammal"), ) self.assert_eq( kdf.groupby([("B", "class"), ("A", "name")]).get_group(("mammal", "lion")), pdf.groupby([("B", "class"), ("A", "name")]).get_group(("mammal", "lion")), ) self.assert_eq( kdf.groupby([("B", "class"), ("A", "name")])[[("C", "max_speed")]].get_group( ("mammal", "lion") ), pdf.groupby([("B", "class"), ("A", "name")])[[("C", "max_speed")]].get_group( ("mammal", "lion") ), ) self.assert_eq( (kdf[("C", "max_speed")] + 1).groupby(kdf[("B", "class")]).get_group("mammal"), (pdf[("C", "max_speed")] + 1).groupby(pdf[("B", "class")]).get_group("mammal"), ) self.assert_eq( kdf.groupby(("C", "max_speed")).get_group(80.5), pdf.groupby(("C", "max_speed")).get_group(80.5), ) self.assertRaises(KeyError, lambda: kdf.groupby(("B", "class")).get_group("fish")) self.assertRaises( TypeError, lambda: kdf.groupby(("B", "class")).get_group(["bird", "mammal"]) ) self.assertRaises( KeyError, lambda: kdf.groupby(("B", "class"))[("A", "name")].get_group("fish") ) self.assertRaises( KeyError, lambda: kdf.groupby([("B", "class"), ("A", "name")]).get_group(("lion", "mammal")), ) self.assertRaises( ValueError, lambda: kdf.groupby([("B", "class"), ("A", "name")]).get_group(("lion",)), ) self.assertRaises( ValueError, lambda: kdf.groupby([("B", "class"), ("A", "name")]).get_group(("mammal",)) ) self.assertRaises( ValueError, lambda: kdf.groupby([("B", "class"), ("A", "name")]).get_group("mammal") ) def test_median(self): kdf = ps.DataFrame( { "a": [1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0], "b": [2.0, 3.0, 1.0, 4.0, 6.0, 9.0, 8.0, 10.0, 7.0, 5.0], "c": [3.0, 5.0, 2.0, 5.0, 1.0, 2.0, 6.0, 4.0, 3.0, 6.0], }, columns=["a", "b", "c"], index=[7, 2, 4, 1, 3, 4, 9, 10, 5, 6], ) # DataFrame expected_result = ps.DataFrame( {"b": [2.0, 8.0, 7.0], "c": [3.0, 2.0, 4.0]}, index=pd.Index([1.0, 2.0, 3.0], name="a") ) self.assert_eq(expected_result, kdf.groupby("a").median().sort_index()) # Series expected_result = ps.Series( [2.0, 8.0, 7.0], name="b", index=pd.Index([1.0, 2.0, 3.0], name="a") ) self.assert_eq(expected_result, kdf.groupby("a")["b"].median().sort_index()) with self.assertRaisesRegex(ValueError, "accuracy must be an integer; however"): kdf.groupby("a").median(accuracy="a") def test_tail(self): pdf = pd.DataFrame( { "a": [1, 1, 1, 1, 2, 2, 2, 3, 3, 3] * 3, "b": [2, 3, 1, 4, 6, 9, 8, 10, 7, 5] * 3, "c": [3, 5, 2, 5, 1, 2, 6, 4, 3, 6] * 3, }, index=np.random.rand(10 * 3), ) kdf = ps.from_pandas(pdf) self.assert_eq(pdf.groupby("a").tail(2).sort_index(), kdf.groupby("a").tail(2).sort_index()) self.assert_eq( pdf.groupby("a").tail(-2).sort_index(), kdf.groupby("a").tail(-2).sort_index() ) self.assert_eq( pdf.groupby("a").tail(100000).sort_index(), kdf.groupby("a").tail(100000).sort_index() ) self.assert_eq( pdf.groupby("a")["b"].tail(2).sort_index(), kdf.groupby("a")["b"].tail(2).sort_index() ) self.assert_eq( pdf.groupby("a")["b"].tail(-2).sort_index(), kdf.groupby("a")["b"].tail(-2).sort_index() ) self.assert_eq( pdf.groupby("a")["b"].tail(100000).sort_index(), kdf.groupby("a")["b"].tail(100000).sort_index(), ) self.assert_eq( pdf.groupby("a")[["b"]].tail(2).sort_index(), kdf.groupby("a")[["b"]].tail(2).sort_index(), ) self.assert_eq( pdf.groupby("a")[["b"]].tail(-2).sort_index(), kdf.groupby("a")[["b"]].tail(-2).sort_index(), ) self.assert_eq( pdf.groupby("a")[["b"]].tail(100000).sort_index(), kdf.groupby("a")[["b"]].tail(100000).sort_index(), ) self.assert_eq( pdf.groupby(pdf.a // 2).tail(2).sort_index(), kdf.groupby(kdf.a // 2).tail(2).sort_index(), ) self.assert_eq( pdf.groupby(pdf.a // 2)["b"].tail(2).sort_index(), kdf.groupby(kdf.a // 2)["b"].tail(2).sort_index(), ) self.assert_eq( pdf.groupby(pdf.a // 2)[["b"]].tail(2).sort_index(), kdf.groupby(kdf.a // 2)[["b"]].tail(2).sort_index(), ) self.assert_eq( pdf.b.rename().groupby(pdf.a).tail(2).sort_index(), kdf.b.rename().groupby(kdf.a).tail(2).sort_index(), ) self.assert_eq( pdf.b.groupby(pdf.a.rename()).tail(2).sort_index(), kdf.b.groupby(kdf.a.rename()).tail(2).sort_index(), ) self.assert_eq( pdf.b.rename().groupby(pdf.a.rename()).tail(2).sort_index(), kdf.b.rename().groupby(kdf.a.rename()).tail(2).sort_index(), ) # multi-index midx = pd.MultiIndex( [["x", "y"], ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j"]], [[0, 0, 0, 0, 0, 1, 1, 1, 1, 1], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]], ) pdf = pd.DataFrame( { "a": [1, 1, 1, 1, 2, 2, 2, 3, 3, 3], "b": [2, 3, 1, 4, 6, 9, 8, 10, 7, 5], "c": [3, 5, 2, 5, 1, 2, 6, 4, 3, 6], }, columns=["a", "b", "c"], index=midx, ) kdf = ps.from_pandas(pdf) self.assert_eq(pdf.groupby("a").tail(2).sort_index(), kdf.groupby("a").tail(2).sort_index()) self.assert_eq( pdf.groupby("a").tail(-2).sort_index(), kdf.groupby("a").tail(-2).sort_index() ) self.assert_eq( pdf.groupby("a").tail(100000).sort_index(), kdf.groupby("a").tail(100000).sort_index() ) self.assert_eq( pdf.groupby("a")["b"].tail(2).sort_index(), kdf.groupby("a")["b"].tail(2).sort_index() ) self.assert_eq( pdf.groupby("a")["b"].tail(-2).sort_index(), kdf.groupby("a")["b"].tail(-2).sort_index() ) self.assert_eq( pdf.groupby("a")["b"].tail(100000).sort_index(), kdf.groupby("a")["b"].tail(100000).sort_index(), ) # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c")]) pdf.columns = columns kdf.columns = columns self.assert_eq( pdf.groupby(("x", "a")).tail(2).sort_index(), kdf.groupby(("x", "a")).tail(2).sort_index(), ) self.assert_eq( pdf.groupby(("x", "a")).tail(-2).sort_index(), kdf.groupby(("x", "a")).tail(-2).sort_index(), ) self.assert_eq( pdf.groupby(("x", "a")).tail(100000).sort_index(), kdf.groupby(("x", "a")).tail(100000).sort_index(), ) def test_ddof(self): pdf = pd.DataFrame( { "a": [1, 1, 1, 1, 2, 2, 2, 3, 3, 3] * 3, "b": [2, 3, 1, 4, 6, 9, 8, 10, 7, 5] * 3, "c": [3, 5, 2, 5, 1, 2, 6, 4, 3, 6] * 3, }, index=np.random.rand(10 * 3), ) kdf = ps.from_pandas(pdf) for ddof in (0, 1): # std self.assert_eq( pdf.groupby("a").std(ddof=ddof).sort_index(), kdf.groupby("a").std(ddof=ddof).sort_index(), check_exact=False, ) self.assert_eq( pdf.groupby("a")["b"].std(ddof=ddof).sort_index(), kdf.groupby("a")["b"].std(ddof=ddof).sort_index(), check_exact=False, ) # var self.assert_eq( pdf.groupby("a").var(ddof=ddof).sort_index(), kdf.groupby("a").var(ddof=ddof).sort_index(), check_exact=False, ) self.assert_eq( pdf.groupby("a")["b"].var(ddof=ddof).sort_index(), kdf.groupby("a")["b"].var(ddof=ddof).sort_index(), check_exact=False, ) if __name__ == "__main__": from pyspark.pandas.tests.test_groupby import * # noqa: F401 try: import xmlrunner # type: ignore[import] testRunner = xmlrunner.XMLTestRunner(output='target/test-reports', verbosity=2) except ImportError: testRunner = None unittest.main(testRunner=testRunner, verbosity=2)
apache-2.0
cython-testbed/pandas
pandas/tests/extension/test_common.py
1
2358
import numpy as np import pytest import pandas as pd import pandas.util.testing as tm from pandas.core.arrays import ExtensionArray from pandas.core.dtypes.common import is_extension_array_dtype from pandas.core.dtypes import dtypes class DummyDtype(dtypes.ExtensionDtype): pass class DummyArray(ExtensionArray): def __init__(self, data): self.data = data def __array__(self, dtype): return self.data @property def dtype(self): return DummyDtype() def astype(self, dtype, copy=True): # we don't support anything but a single dtype if isinstance(dtype, DummyDtype): if copy: return type(self)(self.data) return self return np.array(self, dtype=dtype, copy=copy) class TestExtensionArrayDtype(object): @pytest.mark.parametrize('values', [ pd.Categorical([]), pd.Categorical([]).dtype, pd.Series(pd.Categorical([])), DummyDtype(), DummyArray(np.array([1, 2])), ]) def test_is_extension_array_dtype(self, values): assert is_extension_array_dtype(values) @pytest.mark.parametrize('values', [ np.array([]), pd.Series(np.array([])), ]) def test_is_not_extension_array_dtype(self, values): assert not is_extension_array_dtype(values) def test_astype(): arr = DummyArray(np.array([1, 2, 3])) expected = np.array([1, 2, 3], dtype=object) result = arr.astype(object) tm.assert_numpy_array_equal(result, expected) result = arr.astype('object') tm.assert_numpy_array_equal(result, expected) def test_astype_no_copy(): arr = DummyArray(np.array([1, 2, 3], dtype=np.int64)) result = arr.astype(arr.dtype, copy=False) assert arr is result result = arr.astype(arr.dtype) assert arr is not result @pytest.mark.parametrize('dtype', [ dtypes.DatetimeTZDtype('ns', 'US/Central'), dtypes.PeriodDtype("D"), ]) def test_is_not_extension_array_dtype(dtype): assert not isinstance(dtype, dtypes.ExtensionDtype) assert not is_extension_array_dtype(dtype) @pytest.mark.parametrize('dtype', [ dtypes.CategoricalDtype(), dtypes.IntervalDtype(), ]) def test_is_extension_array_dtype(dtype): assert isinstance(dtype, dtypes.ExtensionDtype) assert is_extension_array_dtype(dtype)
bsd-3-clause
daodaoliang/neural-network-animation
matplotlib/tests/test_animation.py
9
2643
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import os import tempfile import numpy as np from nose import with_setup from matplotlib import pyplot as plt from matplotlib import animation from matplotlib.testing.noseclasses import KnownFailureTest from matplotlib.testing.decorators import cleanup from matplotlib.testing.decorators import CleanupTest WRITER_OUTPUT = dict(ffmpeg='mp4', ffmpeg_file='mp4', mencoder='mp4', mencoder_file='mp4', avconv='mp4', avconv_file='mp4', imagemagick='gif', imagemagick_file='gif') # Smoke test for saving animations. In the future, we should probably # design more sophisticated tests which compare resulting frames a-la # matplotlib.testing.image_comparison def test_save_animation_smoketest(): for writer, extension in six.iteritems(WRITER_OUTPUT): yield check_save_animation, writer, extension @cleanup def check_save_animation(writer, extension='mp4'): if not animation.writers.is_available(writer): raise KnownFailureTest("writer '%s' not available on this system" % writer) fig, ax = plt.subplots() line, = ax.plot([], []) ax.set_xlim(0, 10) ax.set_ylim(-1, 1) def init(): line.set_data([], []) return line, def animate(i): x = np.linspace(0, 10, 100) y = np.sin(x + i) line.set_data(x, y) return line, # Use NamedTemporaryFile: will be automatically deleted F = tempfile.NamedTemporaryFile(suffix='.' + extension) F.close() anim = animation.FuncAnimation(fig, animate, init_func=init, frames=5) try: anim.save(F.name, fps=30, writer=writer, bitrate=500) except UnicodeDecodeError: raise KnownFailureTest("There can be errors in the numpy " + "import stack, " + "see issues #1891 and #2679") finally: try: os.remove(F.name) except Exception: pass @cleanup def test_no_length_frames(): fig, ax = plt.subplots() line, = ax.plot([], []) def init(): line.set_data([], []) return line, def animate(i): x = np.linspace(0, 10, 100) y = np.sin(x + i) line.set_data(x, y) return line, anim = animation.FuncAnimation(fig, animate, init_func=init, frames=iter(range(5))) if __name__ == "__main__": import nose nose.runmodule(argv=['-s', '--with-doctest'], exit=False)
mit
iLoop2/ResInsight
ThirdParty/Ert/devel/python/test/ert_tests/enkf/export/test_numpy_and_pandas.py
1
2566
import numpy from pandas import MultiIndex, DataFrame, pandas from ert.test import ExtendedTestCase class NumpyAndPandasTest(ExtendedTestCase): def test_numpy(self): data = numpy.empty(shape=(10, 10), dtype=numpy.float64) data.fill(numpy.nan) self.assertTrue(numpy.isnan(data[0][0])) self.assertTrue(numpy.isnan(data[9][9])) with self.assertRaises(IndexError): v = data[10][9] data[5][5] = 1.0 self.assertEqual(data[5][5], 1.0) data[0] = 5.0 test_data = numpy.empty(shape=10) test_data.fill(5.0) self.assertTrue(numpy.array_equal(data[0], test_data)) data = numpy.transpose(data) self.assertTrue(numpy.array_equal(data[:,0], test_data)) row = data[0] row[5] = 11 self.assertEqual(data[0][5], 11) def test_pandas_join(self): multi_index = MultiIndex.from_product([[1, 2], ["A", "B", "C"]], names=["REALIZATION", "LABEL"]) data = DataFrame(data=[[1, 2, 3], [2, 4, 6], [4, 8, 12]] * 2, index=multi_index, columns=["C1", "C2", "C3"]) new_column = DataFrame(data=[4.0, 4.4, 4.8], index=[1, 2, 3], columns=["C4"]) new_column.index.name = "REALIZATION" result = data.join(new_column, how='inner') self.assertFloatEqual(result["C4"][1]["A"], 4.0) self.assertFloatEqual(result["C4"][1]["B"], 4.0) self.assertFloatEqual(result["C4"][1]["C"], 4.0) self.assertFloatEqual(result["C4"][2]["A"], 4.4) self.assertFloatEqual(result["C4"][2]["B"], 4.4) self.assertFloatEqual(result["C4"][2]["C"], 4.4) def test_pandas_concatenate(self): d1 = DataFrame(data=[2, 4, 6, 8], columns=["A"], index=[1, 2, 3, 4]) d2 = DataFrame(data=[[1, 1.1], [3, 3.3], [5, 5.5], [7, 7.7], [9, 9.9]], columns=["A", "B"], index=[1, 2, 3, 4, 5]) result = pandas.concat([d1, d2], keys=[1, 2]) self.assertEqual(result["A"][1][2], 4) self.assertEqual(result["A"][2][2], 3) self.assertTrue(numpy.isnan(result["B"][1][1])) self.assertFloatEqual(result["B"][2][4], 7.7) def test_pandas_extend_index(self): d1 = DataFrame(data=[2, 4, 6, 8], columns=["A"], index=[1, 2, 3, 4]) d1.index.name = "first" d1["second"] = "default" d1.set_index(["second"], append=True, inplace=True) self.assertEqual(d1.index.names, ["first", "second"]) d1 = d1.reorder_levels(["second", "first"]) self.assertEqual(d1.index.names, ["second", "first"])
gpl-3.0
webbpinner/OpenVDMv2
server/lib/openvdm_plugin.py
1
15200
#!/usr/bin/env python3 """ FILE: openvdm_plugin.py DESCRIPTION: OpenVDM parser/plugin python module BUGS: NOTES: AUTHOR: Webb Pinner COMPANY: Capable Solutions VERSION: 2.5 CREATED: 2016-02-02 REVISION: 2020-12-21 LICENSE INFO: Open Vessel Data Management v2.5 (OpenVDMv2) Copyright (C) OceanDataRat.org 2021 This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/gpl-3.0.html>. """ import json import fnmatch import logging from datetime import datetime import numpy as np import pandas as pd STAT_TYPES = [ 'bounds', 'geoBounds', 'rowValidity', 'timeBounds', 'totalValue', 'valueValidity' ] QUALITY_TEST_RESULT_TYPES = [ 'Failed', 'Warning', 'Passed' ] class NpEncoder(json.JSONEncoder): """ Custom JSON string encoder used to deal with NumPy arrays """ def default(self, obj): # pylint: disable=arguments-differ if isinstance(obj, np.integer): return int(obj) if isinstance(obj, np.floating): return float(obj) if isinstance(obj, np.ndarray): return obj.tolist() if isinstance(obj, datetime): return obj.strftime("%Y-%m-%dT%H:%M:%S.%fZ") return super().default(obj) class OpenVDMParserQualityTest(): """ Defines data object and methods for OpenVDM parser QA tests """ def __init__(self, test_name, test_value): if test_value not in QUALITY_TEST_RESULT_TYPES: raise ValueError("Invalid test result type: type must be one of: %s" % ', '.join(QUALITY_TEST_RESULT_TYPES)) self.test_data = { 'testName':test_name, 'results': test_value } def get_test_data(self): """ Return test data object """ return self.test_data def to_json(self): """ Return test data object as a json-formatted string """ return json.dumps(self.get_test_data(), cls=NpEncoder) class OpenVDMParserQualityTestFailed(OpenVDMParserQualityTest): """ Defines data object for a failed OpenVDM QA test """ def __init__(self, test_name): super().__init__(test_name=test_name, test_value='Failed') class OpenVDMParserQualityTestWarning(OpenVDMParserQualityTest): """ Defines data object for a partially failed (warning) OpenVDM QA test """ def __init__(self, test_name): super().__init__(test_name=test_name, test_value='Warning') class OpenVDMParserQualityTestPassed(OpenVDMParserQualityTest): """ Defines data object for a passing OpenVDM QA test """ def __init__(self, test_name): super().__init__(test_name=test_name, test_value='Passed') class OpenVDMParserStat(): """ Defines data object and methods for OpenVDM plugin statistic """ def __init__(self, stat_name, stat_type, stat_value, stat_uom=''): # pylint: disable=too-many-branches if stat_type not in STAT_TYPES: raise ValueError("Invalid stat type, must be one of: %s" % ', '.join(STAT_TYPES)) if stat_type == 'bounds': if not isinstance(stat_value, list) or len(stat_value) != 2: raise ValueError("bounds stat requires list of length 2") for element in stat_value: if not isinstance(element, float) and not isinstance(element, int): raise ValueError("bounds stat requires list of 2 numbers") elif stat_type == 'geoBounds': if not isinstance(stat_value, list) or len(stat_value) != 4: raise ValueError("geoBounds stat requires list of 4 numbers") for element in stat_value: if not isinstance(element, float) and not isinstance(element, int): raise ValueError("geoBounds stat requires list of 4 numbers") elif stat_type == 'rowValidity': if not isinstance(stat_value, list) or len(stat_value) != 2: raise ValueError("rowValidity stat requires list 2 integers") for element in stat_value: if not isinstance(element, int): raise ValueError("rowValidity stat requires list 2 integers") elif stat_type == 'timeBounds': if not isinstance(stat_value, list) or len(stat_value) != 2: raise ValueError("timeBounds stat requires list 2 datetime") for element in stat_value: if not isinstance(element, datetime): logging.debug(type(element)) raise ValueError("timeBounds stat requires list 2 datetime objects") elif stat_type == 'totalValue': if not isinstance(stat_value, list) or len(stat_value) != 1: raise ValueError("totalValue stat requires list 1 number") for element in stat_value: if not isinstance(element, float) and not isinstance(element, int): raise ValueError("totalValue stat requires list 1 number") elif stat_type == 'valueValidity': if not isinstance(stat_value, list) or len(stat_value) != 2: raise ValueError("valueValidity stat requires list 2 numbers") for element in stat_value: if not isinstance(element, float) and not isinstance(element, int): raise ValueError("valueValidity stat requires list 2 numbers") self.stat_data = { 'statName': stat_name, 'statType': stat_type, 'statUnit': stat_uom, 'statValue': stat_value } def get_stat_data(self): """ Return the statistic data """ return self.stat_data def to_json(self): """ Return the statistic data as a json-formatted string """ return json.dumps(self.get_stat_data(), cls=NpEncoder) class OpenVDMParserBoundsStat(OpenVDMParserStat): """ Defines data object and methods for OpenVDM bounds statistic """ def __init__(self, stat_value, stat_name, stat_uom=''): super().__init__(stat_name=stat_name, stat_type="bounds", stat_value=stat_value, stat_uom=stat_uom) class OpenVDMParserGeoBoundsStat(OpenVDMParserStat): """ Defines data object and methods for OpenVDM geoBounds statistic """ def __init__(self, stat_value, stat_name='Geographic Bounds', stat_uom='ddeg'): super().__init__(stat_name=stat_name, stat_type="geoBounds", stat_value=stat_value, stat_uom=stat_uom) class OpenVDMParserRowValidityStat(OpenVDMParserStat): """ Defines data object and methods for OpenVDM rowValidity statistic """ def __init__(self, stat_value): super().__init__(stat_name="Row Validity", stat_type="rowValidity", stat_value=stat_value, stat_uom='') class OpenVDMParserTimeBoundsStat(OpenVDMParserStat): """ Defines data object and methods for OpenVDM timeBounds statistic """ def __init__(self, stat_value, stat_name='Temporal Bounds', stat_uom='seconds'): super().__init__(stat_name=stat_name, stat_type="timeBounds", stat_value=stat_value, stat_uom=stat_uom) class OpenVDMParserTotalValueStat(OpenVDMParserStat): """ Defines data object and methods for OpenVDM totalValue statistic """ def __init__(self, stat_value, stat_name, stat_uom=''): super().__init__(stat_name=stat_name, stat_type="totalValue", stat_value=stat_value, stat_uom=stat_uom) class OpenVDMParserValueValidityStat(OpenVDMParserStat): """ Defines data object and methods for OpenVDM valueValidity statistic """ def __init__(self, stat_value, stat_name): super().__init__(stat_name=stat_name, stat_type="valueValidity", stat_value=stat_value, stat_uom='') class OpenVDMParser(): """ Root Class for a OpenVDM parser object """ def __init__(self): self.plugin_data = { 'visualizerData': [], 'qualityTests': [], 'stats': [] } def get_plugin_data(self): """ Return the plugin data """ if len(self.plugin_data['visualizerData']) > 0 or len(self.plugin_data['qualityTests']) > 0 or len(self.plugin_data['stats']) > 0: return self.plugin_data return None def process_file(self, filepath): """ Process the given file """ raise NotImplementedError('process_file must be implemented by subclass') def add_visualization_data(self, data): """ Add the visualization data to the """ self.plugin_data['visualizerData'].append(data) def add_quality_test_failed(self, name): """ Add a failed QA test with the provided name """ test = OpenVDMParserQualityTestFailed(name) self.plugin_data['qualityTests'].append(test.get_test_data()) def add_quality_test_warning(self, name): """ Add a partially failed QA test with the provided name """ test = OpenVDMParserQualityTestWarning(name) self.plugin_data['qualityTests'].append(test.get_test_data()) def add_quality_test_passed(self, name): """ Add a passing QA test with the provided name """ test = OpenVDMParserQualityTestPassed(name) self.plugin_data['qualityTests'].append(test.get_test_data()) def add_bounds_stat(self, value, name, uom=''): """ Add a bounds statistic with the given name, value and unit of measure """ stat = OpenVDMParserBoundsStat(value, name, uom) self.plugin_data['stats'].append(stat.get_stat_data()) def add_geobounds_stat(self, value, name='Geographic Bounds', uom='ddeg'): """ Add a geoBounds statistic with the given name, value and unit of measure """ stat = OpenVDMParserGeoBoundsStat(value, name, uom) self.plugin_data['stats'].append(stat.get_stat_data()) def add_row_validity_stat(self, value): """ Add a rowValidity statistic with the given name, value and unit of measure """ stat = OpenVDMParserRowValidityStat(value) self.plugin_data['stats'].append(stat.get_stat_data()) def add_time_bounds_stat(self, value, name='Temporal Bounds', uom='seconds'): """ Add a timeBounds statistic with the given name, value and unit of measure """ stat = OpenVDMParserTimeBoundsStat(value, name, uom) self.plugin_data['stats'].append(stat.get_stat_data()) def add_total_value_stat(self, value, name, uom=''): """ Add a totalValue statistic with the given name, value and unit of measure """ stat = OpenVDMParserTotalValueStat(value, name, uom) self.plugin_data['stats'].append(stat.get_stat_data()) def add_value_validity_stat(self, value, name): """ Add a valueValidity statistic with the given name, value and unit of measure """ stat = OpenVDMParserValueValidityStat(value, name) self.plugin_data['stats'].append(stat.get_stat_data()) def to_json(self): """ Return the plugin data and a json-formatted string """ return json.dumps(self.get_plugin_data()) class OpenVDMCSVParser(OpenVDMParser): """ OpenVDM parser for a CSV-style input file """ def __init__(self, start_dt=None, stop_dt=None): self.start_dt = start_dt self.stop_dt = stop_dt self.tmpdir = None super().__init__() def process_file(self, filepath): """ Process the given file """ raise NotImplementedError('process_file must be implemented by subclass') def crop_data(self, data_frame): """ Crop the data to the start/stop time specified in the parser object """ try: if self.start_dt is not None: logging.debug(" start_dt: %s", self.start_dt) data_frame = data_frame[(data_frame['date_time'] >= self.start_dt)] if self.stop_dt is not None: logging.debug(" stop_dt: %s", self.stop_dt) data_frame = data_frame[(data_frame['date_time'] <= self.stop_dt)] except Exception as err: logging.error("Could not crop data") logging.error(str(err)) raise err return data_frame @staticmethod def resample_data(data_frame, resample_interval='1T'): """ Resample the data to the specified interval """ try: resample_df = data_frame.resample(resample_interval, label='right', closed='right').mean() except Exception as err: logging.error("Could not resample data") logging.error(str(err)) raise err # reset index return resample_df.reset_index() @staticmethod def round_data(data_frame, precision=None): """ Round the data to the specified precision """ if precision is None or bool(precision): try: decimals = pd.Series(precision.values(), index=precision.keys()) return data_frame.round(decimals) except Exception as err: logging.error("Could not round data") logging.error(str(err)) raise err return data_frame def to_json(self): """ Output the plugin data as a json-formatted string. """ return json.dumps(self.get_plugin_data(), cls=NpEncoder) class OpenVDMPlugin(): """ OpenVDM plugin object """ def __init__(self, file_type_filters): self.file_type_filters = file_type_filters def get_data_type(self, filepath): """ Return the data type for the given file """ file_type_filter = list(filter(lambda file_type_filter: fnmatch.fnmatch(filepath, file_type_filter['regex']), self.file_type_filters)) if len(file_type_filter) == 0: return None return file_type_filter[0]['data_type'] def get_parser(self, filepath): """ Return the OpenVDM parser object appropriate for the given file """ raise NotImplementedError('process_file must be implemented by subclass') def get_json_str(self, filepath): """ Return the plugin output corresponding to the given file. """ parser = self.get_parser(filepath) if parser is None: return None parser.process_file(filepath) return parser.to_json()
gpl-3.0
Leotrinos/agpy
agpy/__init__.py
5
1642
""" ==== agpy ==== The functions included below are the 'mature' codes from the agpy package. .. moduleauthor:: Adam Ginsburg <adam.g.ginsburg@gmail.com> """ ##from luminosity import luminosity #import readcol as readcol_mod from readcol import readcol ##from UCHIIfitter import HIIregion import gaussfitter from gaussfitter import moments,twodgaussian,gaussfit,onedgaussian,onedgaussfit #import kdist from kdist import kdist,vector_kdist #from plfit import plfit from reg_gal2cel import gal2cel from posang import posang #import densitymap #import downsample as downsample_mod from AG_image_tools import downsample,downsample_cube #from asinh_norm import AsinhNorm #import showspec # imports matplotlib = BAD from contributed import parallel_map from timer import print_timing from region_photometry import region_photometry from region_photometry_files import region_photometry_files from PCA_tools import efuncs,pca_subtract,unpca_subtract,smooth_waterfall import constants import blackbody import AG_fft_tools from AG_fft_tools import * import AG_image_tools from AG_image_tools import * import cutout import get_cutouts import pymc_plotting import imf import montage_wrapper as montage from __version__ import __version__ # import all of the functions but not the modules... __all__ = ['readcol', 'gaussfitter', 'kdist', 'reg_gal2cel', 'posang', 'densitymap', 'downsample', 'correlate2d', 'psds', 'convolve', 'radialprofile', 'constants','gal2cel', 'convolve', 'smooth', 'azimuthalAverage', 'azimuthalAverageBins', 'kdist', 'vector_kdist', 'moments', 'twodgaussian', 'gaussfit', 'onedgaussian', 'onedgaussfit']
mit
elenita1221/BDA_py_demos
demos_ch5/demo5_2.py
19
3326
"""Bayesian Data Analysis, 3rd ed Chapter 5, demo 2 Hierarchical model for SAT-example data (BDA3, p. 102) """ from __future__ import division import numpy as np from scipy.stats import norm import scipy.io # For importing a matlab file import matplotlib.pyplot as plt # Edit default plot settings (colours from colorbrewer2.org) plt.rc('font', size=14) plt.rc('lines', color='#377eb8', linewidth=2) plt.rc('axes', color_cycle=(plt.rcParams['lines.color'],)) # Disable color cycle # SAT-example data (BDA3 p. 120) # y is the estimated treatment effect # s is the standard error of effect estimate y = np.array([28, 8, -3, 7, -1, 1, 18, 12]) s = np.array([15, 10, 16, 11, 9, 11, 10, 18]) M = len(y) # load the pre-computed results for the hierarchical model # replace this with your own code in Ex 5.1* hres_path = '../utilities_and_data/demo5_2.mat' hres = scipy.io.loadmat(hres_path) ''' Content information of the precalculated results: >>> scipy.io.whosmat('demo5_2.mat') [('pxm', (8, 500), 'double'), ('t', (1, 1000), 'double'), ('tp', (1, 1000), 'double'), ('tsd', (8, 1000), 'double'), ('tm', (8, 1000), 'double')] ''' pxm = hres['pxm'] t = hres['t'][0] tp = hres['tp'][0] tsd = hres['tsd'] tm = hres['tm'] # plot the separate, pooled and hierarchical models fig, axes = plt.subplots(3, 1, sharex=True, figsize=(8,10)) x = np.linspace(-40, 60, 500) # separate lines = axes[0].plot(x, norm.pdf(x[:,None], y[1:], s[1:]), linewidth=1) line, = axes[0].plot(x, norm.pdf(x, y[0], s[0]), 'r') axes[0].legend((line, lines[1]), ('school A', 'other schools'), loc='upper left') axes[0].set_yticks(()) axes[0].set_title('separate model') # pooled axes[1].plot( x, norm.pdf( x, np.sum(y/s**2)/np.sum(1/s**2), np.sqrt(1/np.sum(1/s**2)) ), label='All schools' ) axes[1].legend(loc='upper left') axes[1].set_yticks(()) axes[1].set_title('pooled model') # hierarchical lines = axes[2].plot(x, pxm[1:].T, linewidth=1) line, = axes[2].plot(x, pxm[0], 'r') axes[2].legend((line, lines[1]), ('school A', 'other schools'), loc='upper left') axes[2].set_yticks(()) axes[2].set_title('hierarchical model') axes[2].set_xlabel('Treatment effect') # plot various marginal and conditional posterior summaries fig, axes = plt.subplots(3, 1, sharex=True, figsize=(8,10)) axes[0].plot(t, tp) axes[0].set_yticks(()) axes[0].set_title(r'marginal posterior density $p(\tau|y)$') axes[0].set_ylabel(r'$p(\tau|y)$', fontsize=20) axes[0].set_xlim([0,35]) lines = axes[1].plot(t, tm[1:].T, linewidth=1) line, = axes[1].plot(t, tm[0].T, 'r') axes[1].legend((line, lines[1]), ('school A', 'other schools'), loc='upper left') axes[1].set_title(r'conditional posterior means of effects ' r'$\operatorname{E}(\theta_j|\tau,y)$') axes[1].set_ylabel(r'$\operatorname{E}(\theta_j|\tau,y)$', fontsize=20) lines = axes[2].plot(t, tsd[1:].T, linewidth=1) line, = axes[2].plot(t, tsd[0].T, 'r') axes[2].legend((line, lines[1]), ('school A', 'other schools'), loc='upper left') axes[2].set_title(r'standard deviations of effects ' r'$\operatorname{sd}(\theta_j|\tau,y)$') axes[2].set_ylabel(r'$\operatorname{sd}(\theta_j|\tau,y)$', fontsize=20) axes[2].set_xlabel(r'$\tau$', fontsize=20) plt.show()
gpl-3.0
Sentient07/scikit-learn
sklearn/linear_model/coordinate_descent.py
7
81810
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Fabian Pedregosa <fabian.pedregosa@inria.fr> # Olivier Grisel <olivier.grisel@ensta.org> # Gael Varoquaux <gael.varoquaux@inria.fr> # # License: BSD 3 clause import sys import warnings from abc import ABCMeta, abstractmethod import numpy as np from scipy import sparse from .base import LinearModel, _pre_fit from ..base import RegressorMixin from .base import _preprocess_data from ..utils import check_array, check_X_y from ..utils.validation import check_random_state from ..model_selection import check_cv from ..externals.joblib import Parallel, delayed from ..externals import six from ..externals.six.moves import xrange from ..utils.extmath import safe_sparse_dot from ..utils.validation import check_is_fitted from ..utils.validation import column_or_1d from ..exceptions import ConvergenceWarning from . import cd_fast ############################################################################### # Paths functions def _alpha_grid(X, y, Xy=None, l1_ratio=1.0, fit_intercept=True, eps=1e-3, n_alphas=100, normalize=False, copy_X=True): """ Compute the grid of alpha values for elastic net parameter search Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication y : ndarray, shape (n_samples,) Target values Xy : array-like, optional Xy = np.dot(X.T, y) that can be precomputed. l1_ratio : float The elastic net mixing parameter, with ``0 < l1_ratio <= 1``. For ``l1_ratio = 0`` the penalty is an L2 penalty. (currently not supported) ``For l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio <1``, the penalty is a combination of L1 and L2. eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3`` n_alphas : int, optional Number of alphas along the regularization path fit_intercept : boolean, default True Whether to fit an intercept or not normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. This parameter is ignored when ``fit_intercept`` is set to ``False``. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use :class:`preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. """ if l1_ratio == 0: raise ValueError("Automatic alpha grid generation is not supported for" " l1_ratio=0. Please supply a grid by providing " "your estimator with the appropriate `alphas=` " "argument.") n_samples = len(y) sparse_center = False if Xy is None: X_sparse = sparse.isspmatrix(X) sparse_center = X_sparse and (fit_intercept or normalize) X = check_array(X, 'csc', copy=(copy_X and fit_intercept and not X_sparse)) if not X_sparse: # X can be touched inplace thanks to the above line X, y, _, _, _ = _preprocess_data(X, y, fit_intercept, normalize, copy=False) Xy = safe_sparse_dot(X.T, y, dense_output=True) if sparse_center: # Workaround to find alpha_max for sparse matrices. # since we should not destroy the sparsity of such matrices. _, _, X_offset, _, X_scale = _preprocess_data(X, y, fit_intercept, normalize, return_mean=True) mean_dot = X_offset * np.sum(y) if Xy.ndim == 1: Xy = Xy[:, np.newaxis] if sparse_center: if fit_intercept: Xy -= mean_dot[:, np.newaxis] if normalize: Xy /= X_scale[:, np.newaxis] alpha_max = (np.sqrt(np.sum(Xy ** 2, axis=1)).max() / (n_samples * l1_ratio)) if alpha_max <= np.finfo(float).resolution: alphas = np.empty(n_alphas) alphas.fill(np.finfo(float).resolution) return alphas return np.logspace(np.log10(alpha_max * eps), np.log10(alpha_max), num=n_alphas)[::-1] def lasso_path(X, y, eps=1e-3, n_alphas=100, alphas=None, precompute='auto', Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, positive=False, **params): """Compute Lasso path with coordinate descent The Lasso optimization function varies for mono and multi-outputs. For mono-output tasks it is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 For multi-output tasks it is:: (1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <lasso>`. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication. If ``y`` is mono-output then ``X`` can be sparse. y : ndarray, shape (n_samples,), or (n_samples, n_outputs) Target values eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3`` n_alphas : int, optional Number of alphas along the regularization path alphas : ndarray, optional List of alphas where to compute the models. If ``None`` alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. Xy : array-like, optional Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. coef_init : array, shape (n_features, ) | None The initial values of the coefficients. verbose : bool or integer Amount of verbosity. params : kwargs keyword arguments passed to the coordinate descent solver. positive : bool, default False If set to True, forces coefficients to be positive. return_n_iter : bool whether to return the number of iterations or not. Returns ------- alphas : array, shape (n_alphas,) The alphas along the path where models are computed. coefs : array, shape (n_features, n_alphas) or \ (n_outputs, n_features, n_alphas) Coefficients along the path. dual_gaps : array, shape (n_alphas,) The dual gaps at the end of the optimization for each alpha. n_iters : array-like, shape (n_alphas,) The number of iterations taken by the coordinate descent optimizer to reach the specified tolerance for each alpha. Notes ----- See examples/linear_model/plot_lasso_coordinate_descent_path.py for an example. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. Note that in certain cases, the Lars solver may be significantly faster to implement this functionality. In particular, linear interpolation can be used to retrieve model coefficients between the values output by lars_path Examples --------- Comparing lasso_path and lars_path with interpolation: >>> X = np.array([[1, 2, 3.1], [2.3, 5.4, 4.3]]).T >>> y = np.array([1, 2, 3.1]) >>> # Use lasso_path to compute a coefficient path >>> _, coef_path, _ = lasso_path(X, y, alphas=[5., 1., .5]) >>> print(coef_path) [[ 0. 0. 0.46874778] [ 0.2159048 0.4425765 0.23689075]] >>> # Now use lars_path and 1D linear interpolation to compute the >>> # same path >>> from sklearn.linear_model import lars_path >>> alphas, active, coef_path_lars = lars_path(X, y, method='lasso') >>> from scipy import interpolate >>> coef_path_continuous = interpolate.interp1d(alphas[::-1], ... coef_path_lars[:, ::-1]) >>> print(coef_path_continuous([5., 1., .5])) [[ 0. 0. 0.46915237] [ 0.2159048 0.4425765 0.23668876]] See also -------- lars_path Lasso LassoLars LassoCV LassoLarsCV sklearn.decomposition.sparse_encode """ return enet_path(X, y, l1_ratio=1., eps=eps, n_alphas=n_alphas, alphas=alphas, precompute=precompute, Xy=Xy, copy_X=copy_X, coef_init=coef_init, verbose=verbose, positive=positive, return_n_iter=return_n_iter, **params) def enet_path(X, y, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None, precompute='auto', Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, positive=False, check_input=True, **params): """Compute elastic net path with coordinate descent The elastic net optimization function varies for mono and multi-outputs. For mono-output tasks it is:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 For multi-output tasks it is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * l1_ratio * ||W||_21 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <elastic_net>`. Parameters ---------- X : {array-like}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication. If ``y`` is mono-output then ``X`` can be sparse. y : ndarray, shape (n_samples,) or (n_samples, n_outputs) Target values l1_ratio : float, optional float between 0 and 1 passed to elastic net (scaling between l1 and l2 penalties). ``l1_ratio=1`` corresponds to the Lasso eps : float Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3`` n_alphas : int, optional Number of alphas along the regularization path alphas : ndarray, optional List of alphas where to compute the models. If None alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. Xy : array-like, optional Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. coef_init : array, shape (n_features, ) | None The initial values of the coefficients. verbose : bool or integer Amount of verbosity. params : kwargs keyword arguments passed to the coordinate descent solver. return_n_iter : bool whether to return the number of iterations or not. positive : bool, default False If set to True, forces coefficients to be positive. check_input : bool, default True Skip input validation checks, including the Gram matrix when provided assuming there are handled by the caller when check_input=False. Returns ------- alphas : array, shape (n_alphas,) The alphas along the path where models are computed. coefs : array, shape (n_features, n_alphas) or \ (n_outputs, n_features, n_alphas) Coefficients along the path. dual_gaps : array, shape (n_alphas,) The dual gaps at the end of the optimization for each alpha. n_iters : array-like, shape (n_alphas,) The number of iterations taken by the coordinate descent optimizer to reach the specified tolerance for each alpha. (Is returned when ``return_n_iter`` is set to True). Notes ----- See examples/linear_model/plot_lasso_coordinate_descent_path.py for an example. See also -------- MultiTaskElasticNet MultiTaskElasticNetCV ElasticNet ElasticNetCV """ # We expect X and y to be already Fortran ordered when bypassing # checks if check_input: X = check_array(X, 'csc', dtype=[np.float64, np.float32], order='F', copy=copy_X) y = check_array(y, 'csc', dtype=X.dtype.type, order='F', copy=False, ensure_2d=False) if Xy is not None: # Xy should be a 1d contiguous array or a 2D C ordered array Xy = check_array(Xy, dtype=X.dtype.type, order='C', copy=False, ensure_2d=False) n_samples, n_features = X.shape multi_output = False if y.ndim != 1: multi_output = True _, n_outputs = y.shape # MultiTaskElasticNet does not support sparse matrices if not multi_output and sparse.isspmatrix(X): if 'X_offset' in params: # As sparse matrices are not actually centered we need this # to be passed to the CD solver. X_sparse_scaling = params['X_offset'] / params['X_scale'] X_sparse_scaling = np.asarray(X_sparse_scaling, dtype=X.dtype) else: X_sparse_scaling = np.zeros(n_features, dtype=X.dtype) # X should be normalized and fit already if function is called # from ElasticNet.fit if check_input: X, y, X_offset, y_offset, X_scale, precompute, Xy = \ _pre_fit(X, y, Xy, precompute, normalize=False, fit_intercept=False, copy=False) if alphas is None: # No need to normalize of fit_intercept: it has been done # above alphas = _alpha_grid(X, y, Xy=Xy, l1_ratio=l1_ratio, fit_intercept=False, eps=eps, n_alphas=n_alphas, normalize=False, copy_X=False) else: alphas = np.sort(alphas)[::-1] # make sure alphas are properly ordered n_alphas = len(alphas) tol = params.get('tol', 1e-4) max_iter = params.get('max_iter', 1000) dual_gaps = np.empty(n_alphas) n_iters = [] rng = check_random_state(params.get('random_state', None)) selection = params.get('selection', 'cyclic') if selection not in ['random', 'cyclic']: raise ValueError("selection should be either random or cyclic.") random = (selection == 'random') if not multi_output: coefs = np.empty((n_features, n_alphas), dtype=X.dtype) else: coefs = np.empty((n_outputs, n_features, n_alphas), dtype=X.dtype) if coef_init is None: coef_ = np.asfortranarray(np.zeros(coefs.shape[:-1], dtype=X.dtype)) else: coef_ = np.asfortranarray(coef_init, dtype=X.dtype) for i, alpha in enumerate(alphas): l1_reg = alpha * l1_ratio * n_samples l2_reg = alpha * (1.0 - l1_ratio) * n_samples if not multi_output and sparse.isspmatrix(X): model = cd_fast.sparse_enet_coordinate_descent( coef_, l1_reg, l2_reg, X.data, X.indices, X.indptr, y, X_sparse_scaling, max_iter, tol, rng, random, positive) elif multi_output: model = cd_fast.enet_coordinate_descent_multi_task( coef_, l1_reg, l2_reg, X, y, max_iter, tol, rng, random) elif isinstance(precompute, np.ndarray): # We expect precompute to be already Fortran ordered when bypassing # checks if check_input: precompute = check_array(precompute, dtype=X.dtype.type, order='C') model = cd_fast.enet_coordinate_descent_gram( coef_, l1_reg, l2_reg, precompute, Xy, y, max_iter, tol, rng, random, positive) elif precompute is False: model = cd_fast.enet_coordinate_descent( coef_, l1_reg, l2_reg, X, y, max_iter, tol, rng, random, positive) else: raise ValueError("Precompute should be one of True, False, " "'auto' or array-like. Got %r" % precompute) coef_, dual_gap_, eps_, n_iter_ = model coefs[..., i] = coef_ dual_gaps[i] = dual_gap_ n_iters.append(n_iter_) if dual_gap_ > eps_: warnings.warn('Objective did not converge.' + ' You might want' + ' to increase the number of iterations.' + ' Fitting data with very small alpha' + ' may cause precision problems.', ConvergenceWarning) if verbose: if verbose > 2: print(model) elif verbose > 1: print('Path: %03i out of %03i' % (i, n_alphas)) else: sys.stderr.write('.') if return_n_iter: return alphas, coefs, dual_gaps, n_iters return alphas, coefs, dual_gaps ############################################################################### # ElasticNet model class ElasticNet(LinearModel, RegressorMixin): """Linear regression with combined L1 and L2 priors as regularizer. Minimizes the objective function:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:: a * L1 + b * L2 where:: alpha = a + b and l1_ratio = a / (a + b) The parameter l1_ratio corresponds to alpha in the glmnet R package while alpha corresponds to the lambda parameter in glmnet. Specifically, l1_ratio = 1 is the lasso penalty. Currently, l1_ratio <= 0.01 is not reliable, unless you supply your own sequence of alpha. Read more in the :ref:`User Guide <elastic_net>`. Parameters ---------- alpha : float, optional Constant that multiplies the penalty terms. Defaults to 1.0. See the notes for the exact mathematical meaning of this parameter.``alpha = 0`` is equivalent to an ordinary least square, solved by the :class:`LinearRegression` object. For numerical reasons, using ``alpha = 0`` with the ``Lasso`` object is not advised. Given this, you should use the :class:`LinearRegression` object. l1_ratio : float The ElasticNet mixing parameter, with ``0 <= l1_ratio <= 1``. For ``l1_ratio = 0`` the penalty is an L2 penalty. ``For l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2. fit_intercept : bool Whether the intercept should be estimated or not. If ``False``, the data is assumed to be already centered. normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. This parameter is ignored when ``fit_intercept`` is set to ``False``. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use :class:`preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. precompute : True | False | array-like Whether to use a precomputed Gram matrix to speed up calculations. The Gram matrix can also be passed as argument. For sparse input this option is always ``True`` to preserve sparsity. max_iter : int, optional The maximum number of iterations copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. positive : bool, optional When set to ``True``, forces the coefficients to be positive. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- coef_ : array, shape (n_features,) | (n_targets, n_features) parameter vector (w in the cost function formula) sparse_coef_ : scipy.sparse matrix, shape (n_features, 1) | \ (n_targets, n_features) ``sparse_coef_`` is a readonly property derived from ``coef_`` intercept_ : float | array, shape (n_targets,) independent term in decision function. n_iter_ : array-like, shape (n_targets,) number of iterations run by the coordinate descent solver to reach the specified tolerance. Notes ----- To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. See also -------- SGDRegressor: implements elastic net regression with incremental training. SGDClassifier: implements logistic regression with elastic net penalty (``SGDClassifier(loss="log", penalty="elasticnet")``). """ path = staticmethod(enet_path) def __init__(self, alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, precompute=False, max_iter=1000, copy_X=True, tol=1e-4, warm_start=False, positive=False, random_state=None, selection='cyclic'): self.alpha = alpha self.l1_ratio = l1_ratio self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute self.max_iter = max_iter self.copy_X = copy_X self.tol = tol self.warm_start = warm_start self.positive = positive self.random_state = random_state self.selection = selection def fit(self, X, y, check_input=True): """Fit model with coordinate descent. Parameters ----------- X : ndarray or scipy.sparse matrix, (n_samples, n_features) Data y : ndarray, shape (n_samples,) or (n_samples, n_targets) Target check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. Notes ----- Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically convert the X input as a Fortran-contiguous numpy array if necessary. To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format. """ if self.alpha == 0: warnings.warn("With alpha=0, this algorithm does not converge " "well. You are advised to use the LinearRegression " "estimator", stacklevel=2) if isinstance(self.precompute, six.string_types): raise ValueError('precompute should be one of True, False or' ' array-like. Got %r' % self.precompute) # We expect X and y to be float64 or float32 Fortran ordered arrays # when bypassing checks if check_input: X, y = check_X_y(X, y, accept_sparse='csc', order='F', dtype=[np.float64, np.float32], copy=self.copy_X and self.fit_intercept, multi_output=True, y_numeric=True) y = check_array(y, order='F', copy=False, dtype=X.dtype.type, ensure_2d=False) X, y, X_offset, y_offset, X_scale, precompute, Xy = \ _pre_fit(X, y, None, self.precompute, self.normalize, self.fit_intercept, copy=False) if y.ndim == 1: y = y[:, np.newaxis] if Xy is not None and Xy.ndim == 1: Xy = Xy[:, np.newaxis] n_samples, n_features = X.shape n_targets = y.shape[1] if self.selection not in ['cyclic', 'random']: raise ValueError("selection should be either random or cyclic.") if not self.warm_start or not hasattr(self, "coef_"): coef_ = np.zeros((n_targets, n_features), dtype=X.dtype, order='F') else: coef_ = self.coef_ if coef_.ndim == 1: coef_ = coef_[np.newaxis, :] dual_gaps_ = np.zeros(n_targets, dtype=X.dtype) self.n_iter_ = [] for k in xrange(n_targets): if Xy is not None: this_Xy = Xy[:, k] else: this_Xy = None _, this_coef, this_dual_gap, this_iter = \ self.path(X, y[:, k], l1_ratio=self.l1_ratio, eps=None, n_alphas=None, alphas=[self.alpha], precompute=precompute, Xy=this_Xy, fit_intercept=False, normalize=False, copy_X=True, verbose=False, tol=self.tol, positive=self.positive, X_offset=X_offset, X_scale=X_scale, return_n_iter=True, coef_init=coef_[k], max_iter=self.max_iter, random_state=self.random_state, selection=self.selection, check_input=False) coef_[k] = this_coef[:, 0] dual_gaps_[k] = this_dual_gap[0] self.n_iter_.append(this_iter[0]) if n_targets == 1: self.n_iter_ = self.n_iter_[0] self.coef_, self.dual_gap_ = map(np.squeeze, [coef_, dual_gaps_]) self._set_intercept(X_offset, y_offset, X_scale) # workaround since _set_intercept will cast self.coef_ into X.dtype self.coef_ = np.asarray(self.coef_, dtype=X.dtype) # return self for chaining fit and predict calls return self @property def sparse_coef_(self): """ sparse representation of the fitted ``coef_`` """ return sparse.csr_matrix(self.coef_) def _decision_function(self, X): """Decision function of the linear model Parameters ---------- X : numpy array or scipy.sparse matrix of shape (n_samples, n_features) Returns ------- T : array, shape (n_samples,) The predicted decision function """ check_is_fitted(self, 'n_iter_') if sparse.isspmatrix(X): return safe_sparse_dot(X, self.coef_.T, dense_output=True) + self.intercept_ else: return super(ElasticNet, self)._decision_function(X) ############################################################################### # Lasso model class Lasso(ElasticNet): """Linear Model trained with L1 prior as regularizer (aka the Lasso) The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Technically the Lasso model is optimizing the same objective function as the Elastic Net with ``l1_ratio=1.0`` (no L2 penalty). Read more in the :ref:`User Guide <lasso>`. Parameters ---------- alpha : float, optional Constant that multiplies the L1 term. Defaults to 1.0. ``alpha = 0`` is equivalent to an ordinary least square, solved by the :class:`LinearRegression` object. For numerical reasons, using ``alpha = 0`` with the ``Lasso`` object is not advised. Given this, you should use the :class:`LinearRegression` object. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. This parameter is ignored when ``fit_intercept`` is set to ``False``. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use :class:`preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. precompute : True | False | array-like, default=False Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. For sparse input this option is always ``True`` to preserve sparsity. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. positive : bool, optional When set to ``True``, forces the coefficients to be positive. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- coef_ : array, shape (n_features,) | (n_targets, n_features) parameter vector (w in the cost function formula) sparse_coef_ : scipy.sparse matrix, shape (n_features, 1) | \ (n_targets, n_features) ``sparse_coef_`` is a readonly property derived from ``coef_`` intercept_ : float | array, shape (n_targets,) independent term in decision function. n_iter_ : int | array-like, shape (n_targets,) number of iterations run by the coordinate descent solver to reach the specified tolerance. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.Lasso(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) Lasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) >>> print(clf.coef_) [ 0.85 0. ] >>> print(clf.intercept_) 0.15 See also -------- lars_path lasso_path LassoLars LassoCV LassoLarsCV sklearn.decomposition.sparse_encode Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ path = staticmethod(enet_path) def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, precompute=False, copy_X=True, max_iter=1000, tol=1e-4, warm_start=False, positive=False, random_state=None, selection='cyclic'): super(Lasso, self).__init__( alpha=alpha, l1_ratio=1.0, fit_intercept=fit_intercept, normalize=normalize, precompute=precompute, copy_X=copy_X, max_iter=max_iter, tol=tol, warm_start=warm_start, positive=positive, random_state=random_state, selection=selection) ############################################################################### # Functions for CV with paths functions def _path_residuals(X, y, train, test, path, path_params, alphas=None, l1_ratio=1, X_order=None, dtype=None): """Returns the MSE for the models computed by 'path' Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values train : list of indices The indices of the train set test : list of indices The indices of the test set path : callable function returning a list of models on the path. See enet_path for an example of signature path_params : dictionary Parameters passed to the path function alphas : array-like, optional Array of float that is used for cross-validation. If not provided, computed using 'path' l1_ratio : float, optional float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties). For ``l1_ratio = 0`` the penalty is an L2 penalty. For ``l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2 X_order : {'F', 'C', or None}, optional The order of the arrays expected by the path function to avoid memory copies dtype : a numpy dtype or None The dtype of the arrays expected by the path function to avoid memory copies """ X_train = X[train] y_train = y[train] X_test = X[test] y_test = y[test] fit_intercept = path_params['fit_intercept'] normalize = path_params['normalize'] if y.ndim == 1: precompute = path_params['precompute'] else: # No Gram variant of multi-task exists right now. # Fall back to default enet_multitask precompute = False X_train, y_train, X_offset, y_offset, X_scale, precompute, Xy = \ _pre_fit(X_train, y_train, None, precompute, normalize, fit_intercept, copy=False) path_params = path_params.copy() path_params['Xy'] = Xy path_params['X_offset'] = X_offset path_params['X_scale'] = X_scale path_params['precompute'] = precompute path_params['copy_X'] = False path_params['alphas'] = alphas if 'l1_ratio' in path_params: path_params['l1_ratio'] = l1_ratio # Do the ordering and type casting here, as if it is done in the path, # X is copied and a reference is kept here X_train = check_array(X_train, 'csc', dtype=dtype, order=X_order) alphas, coefs, _ = path(X_train, y_train, **path_params) del X_train, y_train if y.ndim == 1: # Doing this so that it becomes coherent with multioutput. coefs = coefs[np.newaxis, :, :] y_offset = np.atleast_1d(y_offset) y_test = y_test[:, np.newaxis] if normalize: nonzeros = np.flatnonzero(X_scale) coefs[:, nonzeros] /= X_scale[nonzeros][:, np.newaxis] intercepts = y_offset[:, np.newaxis] - np.dot(X_offset, coefs) if sparse.issparse(X_test): n_order, n_features, n_alphas = coefs.shape # Work around for sparse matrices since coefs is a 3-D numpy array. coefs_feature_major = np.rollaxis(coefs, 1) feature_2d = np.reshape(coefs_feature_major, (n_features, -1)) X_test_coefs = safe_sparse_dot(X_test, feature_2d) X_test_coefs = X_test_coefs.reshape(X_test.shape[0], n_order, -1) else: X_test_coefs = safe_sparse_dot(X_test, coefs) residues = X_test_coefs - y_test[:, :, np.newaxis] residues += intercepts this_mses = ((residues ** 2).mean(axis=0)).mean(axis=0) return this_mses class LinearModelCV(six.with_metaclass(ABCMeta, LinearModel)): """Base class for iterative model fitting along a regularization path""" @abstractmethod def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=1e-4, copy_X=True, cv=None, verbose=False, n_jobs=1, positive=False, random_state=None, selection='cyclic'): self.eps = eps self.n_alphas = n_alphas self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute self.max_iter = max_iter self.tol = tol self.copy_X = copy_X self.cv = cv self.verbose = verbose self.n_jobs = n_jobs self.positive = positive self.random_state = random_state self.selection = selection def fit(self, X, y): """Fit linear model with coordinate descent Fit is on grid of alphas and best alpha estimated by cross-validation. Parameters ---------- X : {array-like}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication. If y is mono-output, X can be sparse. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values """ y = check_array(y, copy=False, dtype=[np.float64, np.float32], ensure_2d=False) if y.shape[0] == 0: raise ValueError("y has 0 samples: %r" % y) if hasattr(self, 'l1_ratio'): model_str = 'ElasticNet' else: model_str = 'Lasso' if isinstance(self, ElasticNetCV) or isinstance(self, LassoCV): if model_str == 'ElasticNet': model = ElasticNet() else: model = Lasso() if y.ndim > 1 and y.shape[1] > 1: raise ValueError("For multi-task outputs, use " "MultiTask%sCV" % (model_str)) y = column_or_1d(y, warn=True) else: if sparse.isspmatrix(X): raise TypeError("X should be dense but a sparse matrix was" "passed") elif y.ndim == 1: raise ValueError("For mono-task outputs, use " "%sCV" % (model_str)) if model_str == 'ElasticNet': model = MultiTaskElasticNet() else: model = MultiTaskLasso() if self.selection not in ["random", "cyclic"]: raise ValueError("selection should be either random or cyclic.") # This makes sure that there is no duplication in memory. # Dealing right with copy_X is important in the following: # Multiple functions touch X and subsamples of X and can induce a # lot of duplication of memory copy_X = self.copy_X and self.fit_intercept if isinstance(X, np.ndarray) or sparse.isspmatrix(X): # Keep a reference to X reference_to_old_X = X # Let us not impose fortran ordering so far: it is # not useful for the cross-validation loop and will be done # by the model fitting itself X = check_array(X, 'csc', copy=False) if sparse.isspmatrix(X): if (hasattr(reference_to_old_X, "data") and not np.may_share_memory(reference_to_old_X.data, X.data)): # X is a sparse matrix and has been copied copy_X = False elif not np.may_share_memory(reference_to_old_X, X): # X has been copied copy_X = False del reference_to_old_X else: X = check_array(X, 'csc', dtype=[np.float64, np.float32], order='F', copy=copy_X) copy_X = False if X.shape[0] != y.shape[0]: raise ValueError("X and y have inconsistent dimensions (%d != %d)" % (X.shape[0], y.shape[0])) # All LinearModelCV parameters except 'cv' are acceptable path_params = self.get_params() if 'l1_ratio' in path_params: l1_ratios = np.atleast_1d(path_params['l1_ratio']) # For the first path, we need to set l1_ratio path_params['l1_ratio'] = l1_ratios[0] else: l1_ratios = [1, ] path_params.pop('cv', None) path_params.pop('n_jobs', None) alphas = self.alphas n_l1_ratio = len(l1_ratios) if alphas is None: alphas = [] for l1_ratio in l1_ratios: alphas.append(_alpha_grid( X, y, l1_ratio=l1_ratio, fit_intercept=self.fit_intercept, eps=self.eps, n_alphas=self.n_alphas, normalize=self.normalize, copy_X=self.copy_X)) else: # Making sure alphas is properly ordered. alphas = np.tile(np.sort(alphas)[::-1], (n_l1_ratio, 1)) # We want n_alphas to be the number of alphas used for each l1_ratio. n_alphas = len(alphas[0]) path_params.update({'n_alphas': n_alphas}) path_params['copy_X'] = copy_X # We are not computing in parallel, we can modify X # inplace in the folds if not (self.n_jobs == 1 or self.n_jobs is None): path_params['copy_X'] = False # init cross-validation generator cv = check_cv(self.cv) # Compute path for all folds and compute MSE to get the best alpha folds = list(cv.split(X)) best_mse = np.inf # We do a double for loop folded in one, in order to be able to # iterate in parallel on l1_ratio and folds jobs = (delayed(_path_residuals)(X, y, train, test, self.path, path_params, alphas=this_alphas, l1_ratio=this_l1_ratio, X_order='F', dtype=X.dtype.type) for this_l1_ratio, this_alphas in zip(l1_ratios, alphas) for train, test in folds) mse_paths = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")(jobs) mse_paths = np.reshape(mse_paths, (n_l1_ratio, len(folds), -1)) mean_mse = np.mean(mse_paths, axis=1) self.mse_path_ = np.squeeze(np.rollaxis(mse_paths, 2, 1)) for l1_ratio, l1_alphas, mse_alphas in zip(l1_ratios, alphas, mean_mse): i_best_alpha = np.argmin(mse_alphas) this_best_mse = mse_alphas[i_best_alpha] if this_best_mse < best_mse: best_alpha = l1_alphas[i_best_alpha] best_l1_ratio = l1_ratio best_mse = this_best_mse self.l1_ratio_ = best_l1_ratio self.alpha_ = best_alpha if self.alphas is None: self.alphas_ = np.asarray(alphas) if n_l1_ratio == 1: self.alphas_ = self.alphas_[0] # Remove duplicate alphas in case alphas is provided. else: self.alphas_ = np.asarray(alphas[0]) # Refit the model with the parameters selected common_params = dict((name, value) for name, value in self.get_params().items() if name in model.get_params()) model.set_params(**common_params) model.alpha = best_alpha model.l1_ratio = best_l1_ratio model.copy_X = copy_X model.precompute = False model.fit(X, y) if not hasattr(self, 'l1_ratio'): del self.l1_ratio_ self.coef_ = model.coef_ self.intercept_ = model.intercept_ self.dual_gap_ = model.dual_gap_ self.n_iter_ = model.n_iter_ return self class LassoCV(LinearModelCV, RegressorMixin): """Lasso linear model with iterative fitting along a regularization path The best model is selected by cross-validation. The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Read more in the :ref:`User Guide <lasso>`. Parameters ---------- eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. n_alphas : int, optional Number of alphas along the regularization path alphas : numpy array, optional List of alphas where to compute the models. If ``None`` alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. positive : bool, optional If positive, restrict regression coefficients to be positive selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. fit_intercept : boolean, default True whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. This parameter is ignored when ``fit_intercept`` is set to ``False``. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use :class:`preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. Attributes ---------- alpha_ : float The amount of penalization chosen by cross validation coef_ : array, shape (n_features,) | (n_targets, n_features) parameter vector (w in the cost function formula) intercept_ : float | array, shape (n_targets,) independent term in decision function. mse_path_ : array, shape (n_alphas, n_folds) mean square error for the test set on each fold, varying alpha alphas_ : numpy array, shape (n_alphas,) The grid of alphas used for fitting dual_gap_ : ndarray, shape () The dual gap at the end of the optimization for the optimal alpha (``alpha_``). n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. Notes ----- See examples/linear_model/plot_lasso_model_selection.py for an example. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. See also -------- lars_path lasso_path LassoLars Lasso LassoLarsCV """ path = staticmethod(lasso_path) def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=1e-4, copy_X=True, cv=None, verbose=False, n_jobs=1, positive=False, random_state=None, selection='cyclic'): super(LassoCV, self).__init__( eps=eps, n_alphas=n_alphas, alphas=alphas, fit_intercept=fit_intercept, normalize=normalize, precompute=precompute, max_iter=max_iter, tol=tol, copy_X=copy_X, cv=cv, verbose=verbose, n_jobs=n_jobs, positive=positive, random_state=random_state, selection=selection) class ElasticNetCV(LinearModelCV, RegressorMixin): """Elastic Net model with iterative fitting along a regularization path The best model is selected by cross-validation. Read more in the :ref:`User Guide <elastic_net>`. Parameters ---------- l1_ratio : float or array of floats, optional float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties). For ``l1_ratio = 0`` the penalty is an L2 penalty. For ``l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2 This parameter can be a list, in which case the different values are tested by cross-validation and the one giving the best prediction score is used. Note that a good choice of list of values for l1_ratio is often to put more values close to 1 (i.e. Lasso) and less close to 0 (i.e. Ridge), as in ``[.1, .5, .7, .9, .95, .99, 1]`` eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. n_alphas : int, optional Number of alphas along the regularization path, used for each l1_ratio. alphas : numpy array, optional List of alphas where to compute the models. If None alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. positive : bool, optional When set to ``True``, forces the coefficients to be positive. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. This parameter is ignored when ``fit_intercept`` is set to ``False``. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use :class:`preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. Attributes ---------- alpha_ : float The amount of penalization chosen by cross validation l1_ratio_ : float The compromise between l1 and l2 penalization chosen by cross validation coef_ : array, shape (n_features,) | (n_targets, n_features) Parameter vector (w in the cost function formula), intercept_ : float | array, shape (n_targets, n_features) Independent term in the decision function. mse_path_ : array, shape (n_l1_ratio, n_alpha, n_folds) Mean square error for the test set on each fold, varying l1_ratio and alpha. alphas_ : numpy array, shape (n_alphas,) or (n_l1_ratio, n_alphas) The grid of alphas used for fitting, for each l1_ratio. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. Notes ----- See examples/linear_model/plot_lasso_model_selection.py for an example. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. The parameter l1_ratio corresponds to alpha in the glmnet R package while alpha corresponds to the lambda parameter in glmnet. More specifically, the optimization objective is:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:: a * L1 + b * L2 for:: alpha = a + b and l1_ratio = a / (a + b). See also -------- enet_path ElasticNet """ path = staticmethod(enet_path) def __init__(self, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=1e-4, cv=None, copy_X=True, verbose=0, n_jobs=1, positive=False, random_state=None, selection='cyclic'): self.l1_ratio = l1_ratio self.eps = eps self.n_alphas = n_alphas self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute self.max_iter = max_iter self.tol = tol self.cv = cv self.copy_X = copy_X self.verbose = verbose self.n_jobs = n_jobs self.positive = positive self.random_state = random_state self.selection = selection ############################################################################### # Multi Task ElasticNet and Lasso models (with joint feature selection) class MultiTaskElasticNet(Lasso): """Multi-task ElasticNet model trained with L1/L2 mixed-norm as regularizer The optimization objective for MultiTaskElasticNet is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * l1_ratio * ||W||_21 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <multi_task_elastic_net>`. Parameters ---------- alpha : float, optional Constant that multiplies the L1/L2 term. Defaults to 1.0 l1_ratio : float The ElasticNet mixing parameter, with 0 < l1_ratio <= 1. For l1_ratio = 1 the penalty is an L1/L2 penalty. For l1_ratio = 0 it is an L2 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1/L2 and L2. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. This parameter is ignored when ``fit_intercept`` is set to ``False``. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use :class:`preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- intercept_ : array, shape (n_tasks,) Independent term in decision function. coef_ : array, shape (n_tasks, n_features) Parameter vector (W in the cost function formula). If a 1D y is \ passed in at fit (non multi-task usage), ``coef_`` is then a 1D array. Note that ``coef_`` stores the transpose of ``W``, ``W.T``. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.MultiTaskElasticNet(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [[0, 0], [1, 1], [2, 2]]) ... #doctest: +NORMALIZE_WHITESPACE MultiTaskElasticNet(alpha=0.1, copy_X=True, fit_intercept=True, l1_ratio=0.5, max_iter=1000, normalize=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) >>> print(clf.coef_) [[ 0.45663524 0.45612256] [ 0.45663524 0.45612256]] >>> print(clf.intercept_) [ 0.0872422 0.0872422] See also -------- ElasticNet, MultiTaskLasso Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ def __init__(self, alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, copy_X=True, max_iter=1000, tol=1e-4, warm_start=False, random_state=None, selection='cyclic'): self.l1_ratio = l1_ratio self.alpha = alpha self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.copy_X = copy_X self.tol = tol self.warm_start = warm_start self.random_state = random_state self.selection = selection def fit(self, X, y): """Fit MultiTaskElasticNet model with coordinate descent Parameters ----------- X : ndarray, shape (n_samples, n_features) Data y : ndarray, shape (n_samples, n_tasks) Target Notes ----- Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically convert the X input as a Fortran-contiguous numpy array if necessary. To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format. """ X = check_array(X, dtype=[np.float64, np.float32], order='F', copy=self.copy_X and self.fit_intercept) y = check_array(y, dtype=X.dtype.type, ensure_2d=False) if hasattr(self, 'l1_ratio'): model_str = 'ElasticNet' else: model_str = 'Lasso' if y.ndim == 1: raise ValueError("For mono-task outputs, use %s" % model_str) n_samples, n_features = X.shape _, n_tasks = y.shape if n_samples != y.shape[0]: raise ValueError("X and y have inconsistent dimensions (%d != %d)" % (n_samples, y.shape[0])) X, y, X_offset, y_offset, X_scale = _preprocess_data( X, y, self.fit_intercept, self.normalize, copy=False) if not self.warm_start or self.coef_ is None: self.coef_ = np.zeros((n_tasks, n_features), dtype=X.dtype.type, order='F') l1_reg = self.alpha * self.l1_ratio * n_samples l2_reg = self.alpha * (1.0 - self.l1_ratio) * n_samples self.coef_ = np.asfortranarray(self.coef_) # coef contiguous in memory if self.selection not in ['random', 'cyclic']: raise ValueError("selection should be either random or cyclic.") random = (self.selection == 'random') self.coef_, self.dual_gap_, self.eps_, self.n_iter_ = \ cd_fast.enet_coordinate_descent_multi_task( self.coef_, l1_reg, l2_reg, X, y, self.max_iter, self.tol, check_random_state(self.random_state), random) self._set_intercept(X_offset, y_offset, X_scale) if self.dual_gap_ > self.eps_: warnings.warn('Objective did not converge, you might want' ' to increase the number of iterations', ConvergenceWarning) # return self for chaining fit and predict calls return self class MultiTaskLasso(MultiTaskElasticNet): """Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <multi_task_lasso>`. Parameters ---------- alpha : float, optional Constant that multiplies the L1/L2 term. Defaults to 1.0 fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. This parameter is ignored when ``fit_intercept`` is set to ``False``. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use :class:`preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4 random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- coef_ : array, shape (n_tasks, n_features) Parameter vector (W in the cost function formula). Note that ``coef_`` stores the transpose of ``W``, ``W.T``. intercept_ : array, shape (n_tasks,) independent term in decision function. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.MultiTaskLasso(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [[0, 0], [1, 1], [2, 2]]) MultiTaskLasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000, normalize=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) >>> print(clf.coef_) [[ 0.89393398 0. ] [ 0.89393398 0. ]] >>> print(clf.intercept_) [ 0.10606602 0.10606602] See also -------- Lasso, MultiTaskElasticNet Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=1000, tol=1e-4, warm_start=False, random_state=None, selection='cyclic'): self.alpha = alpha self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.copy_X = copy_X self.tol = tol self.warm_start = warm_start self.l1_ratio = 1.0 self.random_state = random_state self.selection = selection class MultiTaskElasticNetCV(LinearModelCV, RegressorMixin): """Multi-task L1/L2 ElasticNet with built-in cross-validation. The optimization objective for MultiTaskElasticNet is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * l1_ratio * ||W||_21 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <multi_task_lasso>`. Parameters ---------- eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. alphas : array-like, optional List of alphas where to compute the models. If not provided, set automatically. n_alphas : int, optional Number of alphas along the regularization path l1_ratio : float or array of floats The ElasticNet mixing parameter, with 0 < l1_ratio <= 1. For l1_ratio = 1 the penalty is an L1/L2 penalty. For l1_ratio = 0 it is an L2 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1/L2 and L2. This parameter can be a list, in which case the different values are tested by cross-validation and the one giving the best prediction score is used. Note that a good choice of list of values for l1_ratio is often to put more values close to 1 (i.e. Lasso) and less close to 0 (i.e. Ridge), as in ``[.1, .5, .7, .9, .95, .99, 1]`` fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. This parameter is ignored when ``fit_intercept`` is set to ``False``. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use :class:`preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. Note that this is used only if multiple values for l1_ratio are given. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- intercept_ : array, shape (n_tasks,) Independent term in decision function. coef_ : array, shape (n_tasks, n_features) Parameter vector (W in the cost function formula). Note that ``coef_`` stores the transpose of ``W``, ``W.T``. alpha_ : float The amount of penalization chosen by cross validation mse_path_ : array, shape (n_alphas, n_folds) or \ (n_l1_ratio, n_alphas, n_folds) mean square error for the test set on each fold, varying alpha alphas_ : numpy array, shape (n_alphas,) or (n_l1_ratio, n_alphas) The grid of alphas used for fitting, for each l1_ratio l1_ratio_ : float best l1_ratio obtained by cross-validation. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.MultiTaskElasticNetCV() >>> clf.fit([[0,0], [1, 1], [2, 2]], ... [[0, 0], [1, 1], [2, 2]]) ... #doctest: +NORMALIZE_WHITESPACE MultiTaskElasticNetCV(alphas=None, copy_X=True, cv=None, eps=0.001, fit_intercept=True, l1_ratio=0.5, max_iter=1000, n_alphas=100, n_jobs=1, normalize=False, random_state=None, selection='cyclic', tol=0.0001, verbose=0) >>> print(clf.coef_) [[ 0.52875032 0.46958558] [ 0.52875032 0.46958558]] >>> print(clf.intercept_) [ 0.00166409 0.00166409] See also -------- MultiTaskElasticNet ElasticNetCV MultiTaskLassoCV Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ path = staticmethod(enet_path) def __init__(self, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, max_iter=1000, tol=1e-4, cv=None, copy_X=True, verbose=0, n_jobs=1, random_state=None, selection='cyclic'): self.l1_ratio = l1_ratio self.eps = eps self.n_alphas = n_alphas self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.tol = tol self.cv = cv self.copy_X = copy_X self.verbose = verbose self.n_jobs = n_jobs self.random_state = random_state self.selection = selection class MultiTaskLassoCV(LinearModelCV, RegressorMixin): """Multi-task L1/L2 Lasso with built-in cross-validation. The optimization objective for MultiTaskLasso is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * ||W||_21 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <multi_task_lasso>`. Parameters ---------- eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. alphas : array-like, optional List of alphas where to compute the models. If not provided, set automatically. n_alphas : int, optional Number of alphas along the regularization path fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. This parameter is ignored when ``fit_intercept`` is set to ``False``. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use :class:`preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations. tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. Note that this is used only if multiple values for l1_ratio are given. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- intercept_ : array, shape (n_tasks,) Independent term in decision function. coef_ : array, shape (n_tasks, n_features) Parameter vector (W in the cost function formula). Note that ``coef_`` stores the transpose of ``W``, ``W.T``. alpha_ : float The amount of penalization chosen by cross validation mse_path_ : array, shape (n_alphas, n_folds) mean square error for the test set on each fold, varying alpha alphas_ : numpy array, shape (n_alphas,) The grid of alphas used for fitting. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. See also -------- MultiTaskElasticNet ElasticNetCV MultiTaskElasticNetCV Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ path = staticmethod(lasso_path) def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, max_iter=1000, tol=1e-4, copy_X=True, cv=None, verbose=False, n_jobs=1, random_state=None, selection='cyclic'): super(MultiTaskLassoCV, self).__init__( eps=eps, n_alphas=n_alphas, alphas=alphas, fit_intercept=fit_intercept, normalize=normalize, max_iter=max_iter, tol=tol, copy_X=copy_X, cv=cv, verbose=verbose, n_jobs=n_jobs, random_state=random_state, selection=selection)
bsd-3-clause
dsullivan7/scikit-learn
sklearn/datasets/twenty_newsgroups.py
4
13432
"""Caching loader for the 20 newsgroups text classification dataset The description of the dataset is available on the official website at: http://people.csail.mit.edu/jrennie/20Newsgroups/ Quoting the introduction: The 20 Newsgroups data set is a collection of approximately 20,000 newsgroup documents, partitioned (nearly) evenly across 20 different newsgroups. To the best of my knowledge, it was originally collected by Ken Lang, probably for his Newsweeder: Learning to filter netnews paper, though he does not explicitly mention this collection. The 20 newsgroups collection has become a popular data set for experiments in text applications of machine learning techniques, such as text classification and text clustering. This dataset loader will download the recommended "by date" variant of the dataset and which features a point in time split between the train and test sets. The compressed dataset size is around 14 Mb compressed. Once uncompressed the train set is 52 MB and the test set is 34 MB. The data is downloaded, extracted and cached in the '~/scikit_learn_data' folder. The `fetch_20newsgroups` function will not vectorize the data into numpy arrays but the dataset lists the filenames of the posts and their categories as target labels. The `fetch_20newsgroups_tfidf` function will in addition do a simple tf-idf vectorization step. """ # Copyright (c) 2011 Olivier Grisel <olivier.grisel@ensta.org> # License: BSD 3 clause import os import logging import tarfile import pickle import shutil import re import codecs import numpy as np import scipy.sparse as sp from .base import get_data_home from .base import Bunch from .base import load_files from ..utils import check_random_state from ..feature_extraction.text import CountVectorizer from ..preprocessing import normalize from ..externals import joblib, six if six.PY3: from urllib.request import urlopen else: from urllib2 import urlopen logger = logging.getLogger(__name__) URL = ("http://people.csail.mit.edu/jrennie/" "20Newsgroups/20news-bydate.tar.gz") ARCHIVE_NAME = "20news-bydate.tar.gz" CACHE_NAME = "20news-bydate.pkz" TRAIN_FOLDER = "20news-bydate-train" TEST_FOLDER = "20news-bydate-test" def download_20newsgroups(target_dir, cache_path): """Download the 20 newsgroups data and stored it as a zipped pickle.""" archive_path = os.path.join(target_dir, ARCHIVE_NAME) train_path = os.path.join(target_dir, TRAIN_FOLDER) test_path = os.path.join(target_dir, TEST_FOLDER) if not os.path.exists(target_dir): os.makedirs(target_dir) if os.path.exists(archive_path): # Download is not complete as the .tar.gz file is removed after # download. logger.warning("Download was incomplete, downloading again.") os.remove(archive_path) logger.warning("Downloading dataset from %s (14 MB)", URL) opener = urlopen(URL) open(archive_path, 'wb').write(opener.read()) logger.info("Decompressing %s", archive_path) tarfile.open(archive_path, "r:gz").extractall(path=target_dir) os.remove(archive_path) # Store a zipped pickle cache = dict(train=load_files(train_path, encoding='latin1'), test=load_files(test_path, encoding='latin1')) compressed_content = codecs.encode(pickle.dumps(cache), 'zlib_codec') open(cache_path, 'wb').write(compressed_content) shutil.rmtree(target_dir) return cache def strip_newsgroup_header(text): """ Given text in "news" format, strip the headers, by removing everything before the first blank line. """ _before, _blankline, after = text.partition('\n\n') return after _QUOTE_RE = re.compile(r'(writes in|writes:|wrote:|says:|said:' r'|^In article|^Quoted from|^\||^>)') def strip_newsgroup_quoting(text): """ Given text in "news" format, strip lines beginning with the quote characters > or |, plus lines that often introduce a quoted section (for example, because they contain the string 'writes:'.) """ good_lines = [line for line in text.split('\n') if not _QUOTE_RE.search(line)] return '\n'.join(good_lines) def strip_newsgroup_footer(text): """ Given text in "news" format, attempt to remove a signature block. As a rough heuristic, we assume that signatures are set apart by either a blank line or a line made of hyphens, and that it is the last such line in the file (disregarding blank lines at the end). """ lines = text.strip().split('\n') for line_num in range(len(lines) - 1, -1, -1): line = lines[line_num] if line.strip().strip('-') == '': break if line_num > 0: return '\n'.join(lines[:line_num]) else: return text def fetch_20newsgroups(data_home=None, subset='train', categories=None, shuffle=True, random_state=42, remove=(), download_if_missing=True): """Load the filenames and data from the 20 newsgroups dataset. Parameters ---------- subset: 'train' or 'test', 'all', optional Select the dataset to load: 'train' for the training set, 'test' for the test set, 'all' for both, with shuffled ordering. data_home: optional, default: None Specify a download and cache folder for the datasets. If None, all scikit-learn data is stored in '~/scikit_learn_data' subfolders. categories: None or collection of string or unicode If None (default), load all the categories. If not None, list of category names to load (other categories ignored). shuffle: bool, optional Whether or not to shuffle the data: might be important for models that make the assumption that the samples are independent and identically distributed (i.i.d.), such as stochastic gradient descent. random_state: numpy random number generator or seed integer Used to shuffle the dataset. download_if_missing: optional, True by default If False, raise an IOError if the data is not locally available instead of trying to download the data from the source site. remove: tuple May contain any subset of ('headers', 'footers', 'quotes'). Each of these are kinds of text that will be detected and removed from the newsgroup posts, preventing classifiers from overfitting on metadata. 'headers' removes newsgroup headers, 'footers' removes blocks at the ends of posts that look like signatures, and 'quotes' removes lines that appear to be quoting another post. 'headers' follows an exact standard; the other filters are not always correct. """ data_home = get_data_home(data_home=data_home) cache_path = os.path.join(data_home, CACHE_NAME) twenty_home = os.path.join(data_home, "20news_home") cache = None if os.path.exists(cache_path): try: with open(cache_path, 'rb') as f: compressed_content = f.read() uncompressed_content = codecs.decode( compressed_content, 'zlib_codec') cache = pickle.loads(uncompressed_content) except Exception as e: print(80 * '_') print('Cache loading failed') print(80 * '_') print(e) if cache is None: if download_if_missing: cache = download_20newsgroups(target_dir=twenty_home, cache_path=cache_path) else: raise IOError('20Newsgroups dataset not found') if subset in ('train', 'test'): data = cache[subset] elif subset == 'all': data_lst = list() target = list() filenames = list() for subset in ('train', 'test'): data = cache[subset] data_lst.extend(data.data) target.extend(data.target) filenames.extend(data.filenames) data.data = data_lst data.target = np.array(target) data.filenames = np.array(filenames) else: raise ValueError( "subset can only be 'train', 'test' or 'all', got '%s'" % subset) data.description = 'the 20 newsgroups by date dataset' if 'headers' in remove: data.data = [strip_newsgroup_header(text) for text in data.data] if 'footers' in remove: data.data = [strip_newsgroup_footer(text) for text in data.data] if 'quotes' in remove: data.data = [strip_newsgroup_quoting(text) for text in data.data] if categories is not None: labels = [(data.target_names.index(cat), cat) for cat in categories] # Sort the categories to have the ordering of the labels labels.sort() labels, categories = zip(*labels) mask = np.in1d(data.target, labels) data.filenames = data.filenames[mask] data.target = data.target[mask] # searchsorted to have continuous labels data.target = np.searchsorted(labels, data.target) data.target_names = list(categories) # Use an object array to shuffle: avoids memory copy data_lst = np.array(data.data, dtype=object) data_lst = data_lst[mask] data.data = data_lst.tolist() if shuffle: random_state = check_random_state(random_state) indices = np.arange(data.target.shape[0]) random_state.shuffle(indices) data.filenames = data.filenames[indices] data.target = data.target[indices] # Use an object array to shuffle: avoids memory copy data_lst = np.array(data.data, dtype=object) data_lst = data_lst[indices] data.data = data_lst.tolist() return data def fetch_20newsgroups_vectorized(subset="train", remove=(), data_home=None): """Load the 20 newsgroups dataset and transform it into tf-idf vectors. This is a convenience function; the tf-idf transformation is done using the default settings for `sklearn.feature_extraction.text.Vectorizer`. For more advanced usage (stopword filtering, n-gram extraction, etc.), combine fetch_20newsgroups with a custom `Vectorizer` or `CountVectorizer`. Parameters ---------- subset: 'train' or 'test', 'all', optional Select the dataset to load: 'train' for the training set, 'test' for the test set, 'all' for both, with shuffled ordering. data_home: optional, default: None Specify an download and cache folder for the datasets. If None, all scikit-learn data is stored in '~/scikit_learn_data' subfolders. remove: tuple May contain any subset of ('headers', 'footers', 'quotes'). Each of these are kinds of text that will be detected and removed from the newsgroup posts, preventing classifiers from overfitting on metadata. 'headers' removes newsgroup headers, 'footers' removes blocks at the ends of posts that look like signatures, and 'quotes' removes lines that appear to be quoting another post. Returns ------- bunch : Bunch object bunch.data: sparse matrix, shape [n_samples, n_features] bunch.target: array, shape [n_samples] bunch.target_names: list, length [n_classes] """ data_home = get_data_home(data_home=data_home) filebase = '20newsgroup_vectorized' if remove: filebase += 'remove-' + ('-'.join(remove)) target_file = os.path.join(data_home, filebase + ".pk") # we shuffle but use a fixed seed for the memoization data_train = fetch_20newsgroups(data_home=data_home, subset='train', categories=None, shuffle=True, random_state=12, remove=remove) data_test = fetch_20newsgroups(data_home=data_home, subset='test', categories=None, shuffle=True, random_state=12, remove=remove) if os.path.exists(target_file): X_train, X_test = joblib.load(target_file) else: vectorizer = CountVectorizer(dtype=np.int16) X_train = vectorizer.fit_transform(data_train.data).tocsr() X_test = vectorizer.transform(data_test.data).tocsr() joblib.dump((X_train, X_test), target_file, compress=9) # the data is stored as int16 for compactness # but normalize needs floats X_train = X_train.astype(np.float64) X_test = X_test.astype(np.float64) normalize(X_train, copy=False) normalize(X_test, copy=False) target_names = data_train.target_names if subset == "train": data = X_train target = data_train.target elif subset == "test": data = X_test target = data_test.target elif subset == "all": data = sp.vstack((X_train, X_test)).tocsr() target = np.concatenate((data_train.target, data_test.target)) else: raise ValueError("%r is not a valid subset: should be one of " "['train', 'test', 'all']" % subset) return Bunch(data=data, target=target, target_names=target_names)
bsd-3-clause
DailyActie/Surrogate-Model
01-codes/scikit-learn-master/sklearn/manifold/setup.py
1
1245
import os from os.path import join import numpy from numpy.distutils.misc_util import Configuration from sklearn._build_utils import get_blas_info def configuration(parent_package="", top_path=None): config = Configuration("manifold", parent_package, top_path) libraries = [] if os.name == 'posix': libraries.append('m') config.add_extension("_utils", sources=["_utils.c"], include_dirs=[numpy.get_include()], libraries=libraries, extra_compile_args=["-O3"]) cblas_libs, blas_info = get_blas_info() eca = blas_info.pop('extra_compile_args', []) eca.append("-O4") config.add_extension("_barnes_hut_tsne", libraries=cblas_libs, sources=["_barnes_hut_tsne.c"], include_dirs=[join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])], extra_compile_args=eca, **blas_info) return config if __name__ == "__main__": from numpy.distutils.core import setup setup(**configuration().todict())
mit
gdikos/trade-smart
market_sim.py
3
5585
import datetime as dt import numpy as np import pandas as pd # QSTK Imports import QSTK.qstkutil.DataAccess as da import QSTK.qstkutil.qsdateutil as du def get_orders_list(s_file_path): l_columns = ["year", "month", "day", "sym", "type", "num"] df_orders_list = pd.read_csv(s_file_path, sep=',', header=None) df_orders_list = df_orders_list.dropna(axis=1, how='all') df_orders_list.columns = l_columns return df_orders_list def get_orders(df_orders_list): na_orders_list = df_orders_list.values l_orders = [] ld_daily_orders = None for order in na_orders_list: dt_date = dt.datetime(order[0], order[1], order[2], hour=16) d_order = {df_orders_list.columns[3]: order[3], \ df_orders_list.columns[4]: order[4], \ df_orders_list.columns[5]: int(order[5])} if l_orders != [] and dt_date == l_orders[-1][0]: l_orders[-1][1].append(d_order) else: ld_daily_orders = [] ld_daily_orders.append(d_order) l_orders.append([dt_date, ld_daily_orders]) na_orders = np.array(l_orders) df_orders = pd.DataFrame(na_orders[:, 1], index=na_orders[:, 0], columns=["ord"]) df_orders = df_orders.sort() dt_start = df_orders.ix[0].name dt_end = df_orders.ix[-1].name ls_symbols = list(set(df_orders_list["sym"])) ls_symbols.sort() # It is neccesary to sort due the use of set return df_orders, dt_start, dt_end, ls_symbols def get_data(dt_start, dt_end, ls_symbols): ldt_timestamps = du.getNYSEdays(dt_start, dt_end, dt.timedelta(hours=16)) ls_keys = ["open", "high", "low", "close", "volume", "actual_close"] dataobj = da.DataAccess('Yahoo') ldf_data = dataobj.get_data(ldt_timestamps, ls_symbols, ls_keys) d_data = dict(zip(ls_keys, ldf_data)) for s_key in ls_keys: d_data[s_key] = d_data[s_key].fillna(method="ffill") d_data[s_key] = d_data[s_key].fillna(method="bfill") d_data[s_key] = d_data[s_key].fillna(1.0) return d_data def get_prices(dt_start, dt_end, ls_symbols, s_key="close"): # close = adjusted close # actual_close = actual close d_data = get_data(dt_start, dt_end, ls_symbols) return d_data[s_key] def process_daily_orders(dt_date, df_orders, df_prices, df_num, df_val, df_res): op = 0 daily_orders = list(df_orders.ix[dt_date, "ord"]) for order in daily_orders: if order["type"] == "Buy": op = 1 elif order["type"] == "Sell": op = -1 df_num.ix[dt_date, order["sym"]] += op * order["num"] df_res.ix[dt_date, "cash"] += -op * order["num"] * df_prices.ix[dt_date, order["sym"]] def update_port(dt_date, dt_last_orders_date, ls_symbols, df_num, df_res): for s_symbol in ls_symbols: df_num.ix[dt_date, s_symbol] = df_num.ix[dt_last_orders_date, s_symbol] df_res.ix[dt_date, "cash"] = df_res.ix[dt_last_orders_date, "cash"] def value_port(dt_date, ls_symbols, df_prices, df_num, df_val, df_res): for s_symbol in ls_symbols: df_val.ix[dt_date, s_symbol] = df_num.ix[dt_date, s_symbol] * df_prices.ix[dt_date, s_symbol] df_res.ix[dt_date, "port"] = np.sum(df_val.ix[dt_date, :]) df_res.ix[dt_date, "total"] = df_res.ix[dt_date, "port"] + df_res.ix[dt_date, "cash"] def process_orders(df_orders, df_prices, cash): ldt_dates = list(df_prices.index) ls_symbols = list(df_prices.columns) df_num = pd.DataFrame(index=ldt_dates, columns=ls_symbols) df_val = pd.DataFrame(index=ldt_dates, columns=ls_symbols) df_res = pd.DataFrame(index=ldt_dates, columns=["port", "cash", "total"]) df_num = df_num.fillna(0.0) df_val = df_val.fillna(0.0) df_res = df_res.fillna(0.0) df_res.ix[0, "cash"] = cash ldt_orders_dates = list(df_orders.index) iter_orders_dates = iter(ldt_orders_dates) dt_orders_date = iter_orders_dates.next() dt_last_orders_date = dt_orders_date for dt_date in ldt_dates: update_port(dt_date, dt_last_orders_date, ls_symbols, df_num, df_res) if dt_date == dt_orders_date: process_daily_orders(dt_date, df_orders, df_prices, df_num, df_val, df_res) try: dt_last_orders_date = dt_orders_date dt_orders_date = iter_orders_dates.next() except StopIteration: pass value_port(dt_date, ls_symbols, df_prices, df_num, df_val, df_res) df_port = df_num.join(df_val, lsuffix="_num", rsuffix="_val").join(df_res) #df_port.to_csv("port.csv") return df_port def save_values(df_port, s_out_file_path): ldt_dates = df_port.index na_dates = np.array([[dt_date.year, dt_date.month, dt_date.day] for dt_date in ldt_dates]) na_total = np.array(df_port["total"]) na_values = np.insert(arr=na_dates, obj=3, values=na_total, axis=1) df_values = pd.DataFrame(na_values, columns=["year", "month", "day", "total"]) df_values.to_csv(s_out_file_path, sep=",", header=False, index=False) if __name__ == '__main__': print "start market_sim.py" s_in_file_path = "data\\q1_orders.csv" s_out_file_path = "data\\q1_values.csv" s_cash = "100000" f_cash = float(s_cash) df_orders_list = get_orders_list(s_in_file_path) df_orders, dt_start, dt_end, ls_symbols = get_orders(df_orders_list) df_prices = get_prices(dt_start, dt_end, ls_symbols) df_port = process_orders(df_orders, df_prices, f_cash) save_values(df_port, s_out_file_path) print "end market_sim.py"
mit
jeiros/Scripts
AnalysisMDTraj/rmsd.py
1
2404
#!/usr/bin/env python import mdtraj import argparse import msmexplorer as msme from cycler import cycler from itertools import cycle from matplotlib import pyplot as plt import numpy as np from matplotlib.ticker import FuncFormatter import seaborn as sns parser = argparse.ArgumentParser(prog='rmsd.py', formatter_class=argparse.RawDescriptionHelpFormatter, description='''version1''') parser.add_argument('prmtop', help="""Topology file matching Trajectories""") parser.add_argument("Trajectories", help="""An indefinite amount of AMBER trajectories""", nargs="+") parser.add_argument('-st', '--stride', type=int, required=False, default=1) parser.add_argument('-sl', '--select', type=str, required=False, default='all') parser.add_argument('-o', '--out_file', type=str, required=False, default='rmsd.pdf') palette = cycler('color', sns.color_palette('colorblind', 10)) palette_cycled = cycle(palette) def to_ns(x, pos): timestep = mdtraj.load_netcdf(args.Trajectories[0], args.prmtop, args.stride).timestep return '%d' % (int(x * timestep / 1000)) def plot_rsmd(traj_list, fout=None): rmsd_list = [mdtraj.rmsd(traj, traj, 0) * 10 for traj in traj_list] ax, side_ax = msme.plot_trace(rmsd_list[0], ylabel='RMSD (Å)', xlabel='Time (ns)', label=args.Trajectories[0][:-3], **next(palette_cycled)) formatter = FuncFormatter(to_ns) ax.xaxis.set_major_formatter(formatter) if len(rmsd_list) > 1: for i, rmsd in enumerate(rmsd_list[1:]): msme.plot_trace(rmsd, ylabel='RMSD (Å)', xlabel='Time (ns)', ax=ax, side_ax=side_ax, label=args.Trajectories[i + 1][:-3], **next(palette_cycled)) if len(rmsd_list) > 5: ax.legend_.remove() sns.despine() f = plt.gcf() f.savefig(fout) if __name__ == '__main__': args = parser.parse_args() print(args) top = mdtraj.load_prmtop(args.prmtop) atom_indices = top.select(args.select) trajs = [mdtraj.load(trj, top=args.prmtop, stride=args.stride, atom_indices=atom_indices) for trj in args.Trajectories] print(trajs) plot_rsmd(trajs, args.out_file)
mit
zuku1985/scikit-learn
sklearn/linear_model/tests/test_randomized_l1.py
57
4736
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr> # License: BSD 3 clause import numpy as np from scipy import sparse from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.linear_model.randomized_l1 import (lasso_stability_path, RandomizedLasso, RandomizedLogisticRegression) from sklearn.datasets import load_diabetes, load_iris from sklearn.feature_selection import f_regression, f_classif from sklearn.preprocessing import StandardScaler from sklearn.linear_model.base import _preprocess_data diabetes = load_diabetes() X = diabetes.data y = diabetes.target X = StandardScaler().fit_transform(X) X = X[:, [2, 3, 6, 7, 8]] # test that the feature score of the best features F, _ = f_regression(X, y) def test_lasso_stability_path(): # Check lasso stability path # Load diabetes data and add noisy features scaling = 0.3 coef_grid, scores_path = lasso_stability_path(X, y, scaling=scaling, random_state=42, n_resampling=30) assert_array_equal(np.argsort(F)[-3:], np.argsort(np.sum(scores_path, axis=1))[-3:]) def test_randomized_lasso(): # Check randomized lasso scaling = 0.3 selection_threshold = 0.5 # or with 1 alpha clf = RandomizedLasso(verbose=False, alpha=1, random_state=42, scaling=scaling, selection_threshold=selection_threshold) feature_scores = clf.fit(X, y).scores_ assert_array_equal(np.argsort(F)[-3:], np.argsort(feature_scores)[-3:]) # or with many alphas clf = RandomizedLasso(verbose=False, alpha=[1, 0.8], random_state=42, scaling=scaling, selection_threshold=selection_threshold) feature_scores = clf.fit(X, y).scores_ assert_equal(clf.all_scores_.shape, (X.shape[1], 2)) assert_array_equal(np.argsort(F)[-3:], np.argsort(feature_scores)[-3:]) X_r = clf.transform(X) X_full = clf.inverse_transform(X_r) assert_equal(X_r.shape[1], np.sum(feature_scores > selection_threshold)) assert_equal(X_full.shape, X.shape) clf = RandomizedLasso(verbose=False, alpha='aic', random_state=42, scaling=scaling) feature_scores = clf.fit(X, y).scores_ assert_array_equal(feature_scores, X.shape[1] * [1.]) clf = RandomizedLasso(verbose=False, scaling=-0.1) assert_raises(ValueError, clf.fit, X, y) clf = RandomizedLasso(verbose=False, scaling=1.1) assert_raises(ValueError, clf.fit, X, y) def test_randomized_logistic(): # Check randomized sparse logistic regression iris = load_iris() X = iris.data[:, [0, 2]] y = iris.target X = X[y != 2] y = y[y != 2] F, _ = f_classif(X, y) scaling = 0.3 clf = RandomizedLogisticRegression(verbose=False, C=1., random_state=42, scaling=scaling, n_resampling=50, tol=1e-3) X_orig = X.copy() feature_scores = clf.fit(X, y).scores_ assert_array_equal(X, X_orig) # fit does not modify X assert_array_equal(np.argsort(F), np.argsort(feature_scores)) clf = RandomizedLogisticRegression(verbose=False, C=[1., 0.5], random_state=42, scaling=scaling, n_resampling=50, tol=1e-3) feature_scores = clf.fit(X, y).scores_ assert_array_equal(np.argsort(F), np.argsort(feature_scores)) def test_randomized_logistic_sparse(): # Check randomized sparse logistic regression on sparse data iris = load_iris() X = iris.data[:, [0, 2]] y = iris.target X = X[y != 2] y = y[y != 2] # center here because sparse matrices are usually not centered # labels should not be centered X, _, _, _, _ = _preprocess_data(X, y, True, True) X_sp = sparse.csr_matrix(X) F, _ = f_classif(X, y) scaling = 0.3 clf = RandomizedLogisticRegression(verbose=False, C=1., random_state=42, scaling=scaling, n_resampling=50, tol=1e-3) feature_scores = clf.fit(X, y).scores_ clf = RandomizedLogisticRegression(verbose=False, C=1., random_state=42, scaling=scaling, n_resampling=50, tol=1e-3) feature_scores_sp = clf.fit(X_sp, y).scores_ assert_array_equal(feature_scores, feature_scores_sp)
bsd-3-clause
loli/sklearn-ensembletrees
sklearn/cross_decomposition/tests/test_pls.py
22
9838
import numpy as np from sklearn.utils.testing import assert_array_almost_equal from sklearn.datasets import load_linnerud from sklearn.cross_decomposition import pls_ from nose.tools import assert_equal def test_pls(): d = load_linnerud() X = d.data Y = d.target # 1) Canonical (symmetric) PLS (PLS 2 blocks canonical mode A) # =========================================================== # Compare 2 algo.: nipals vs. svd # ------------------------------ pls_bynipals = pls_.PLSCanonical(n_components=X.shape[1]) pls_bynipals.fit(X, Y) pls_bysvd = pls_.PLSCanonical(algorithm="svd", n_components=X.shape[1]) pls_bysvd.fit(X, Y) # check equalities of loading (up to the sign of the second column) assert_array_almost_equal( pls_bynipals.x_loadings_, np.multiply(pls_bysvd.x_loadings_, np.array([1, -1, 1])), decimal=5, err_msg="nipals and svd implementation lead to different x loadings") assert_array_almost_equal( pls_bynipals.y_loadings_, np.multiply(pls_bysvd.y_loadings_, np.array([1, -1, 1])), decimal=5, err_msg="nipals and svd implementation lead to different y loadings") # Check PLS properties (with n_components=X.shape[1]) # --------------------------------------------------- plsca = pls_.PLSCanonical(n_components=X.shape[1]) plsca.fit(X, Y) T = plsca.x_scores_ P = plsca.x_loadings_ Wx = plsca.x_weights_ U = plsca.y_scores_ Q = plsca.y_loadings_ Wy = plsca.y_weights_ def check_ortho(M, err_msg): K = np.dot(M.T, M) assert_array_almost_equal(K, np.diag(np.diag(K)), err_msg=err_msg) # Orthogonality of weights # ~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(Wx, "x weights are not orthogonal") check_ortho(Wy, "y weights are not orthogonal") # Orthogonality of latent scores # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(T, "x scores are not orthogonal") check_ortho(U, "y scores are not orthogonal") # Check X = TP' and Y = UQ' (with (p == q) components) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # center scale X, Y Xc, Yc, x_mean, y_mean, x_std, y_std =\ pls_._center_scale_xy(X.copy(), Y.copy(), scale=True) assert_array_almost_equal(Xc, np.dot(T, P.T), err_msg="X != TP'") assert_array_almost_equal(Yc, np.dot(U, Q.T), err_msg="Y != UQ'") # Check that rotations on training data lead to scores # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Xr = plsca.transform(X) assert_array_almost_equal(Xr, plsca.x_scores_, err_msg="rotation on X failed") Xr, Yr = plsca.transform(X, Y) assert_array_almost_equal(Xr, plsca.x_scores_, err_msg="rotation on X failed") assert_array_almost_equal(Yr, plsca.y_scores_, err_msg="rotation on Y failed") # "Non regression test" on canonical PLS # -------------------------------------- # The results were checked against the R-package plspm pls_ca = pls_.PLSCanonical(n_components=X.shape[1]) pls_ca.fit(X, Y) x_weights = np.array( [[-0.61330704, 0.25616119, -0.74715187], [-0.74697144, 0.11930791, 0.65406368], [-0.25668686, -0.95924297, -0.11817271]]) assert_array_almost_equal(pls_ca.x_weights_, x_weights) x_rotations = np.array( [[-0.61330704, 0.41591889, -0.62297525], [-0.74697144, 0.31388326, 0.77368233], [-0.25668686, -0.89237972, -0.24121788]]) assert_array_almost_equal(pls_ca.x_rotations_, x_rotations) y_weights = np.array( [[+0.58989127, 0.7890047, 0.1717553], [+0.77134053, -0.61351791, 0.16920272], [-0.23887670, -0.03267062, 0.97050016]]) assert_array_almost_equal(pls_ca.y_weights_, y_weights) y_rotations = np.array( [[+0.58989127, 0.7168115, 0.30665872], [+0.77134053, -0.70791757, 0.19786539], [-0.23887670, -0.00343595, 0.94162826]]) assert_array_almost_equal(pls_ca.y_rotations_, y_rotations) # 2) Regression PLS (PLS2): "Non regression test" # =============================================== # The results were checked against the R-packages plspm, misOmics and pls pls_2 = pls_.PLSRegression(n_components=X.shape[1]) pls_2.fit(X, Y) x_weights = np.array( [[-0.61330704, -0.00443647, 0.78983213], [-0.74697144, -0.32172099, -0.58183269], [-0.25668686, 0.94682413, -0.19399983]]) assert_array_almost_equal(pls_2.x_weights_, x_weights) x_loadings = np.array( [[-0.61470416, -0.24574278, 0.78983213], [-0.65625755, -0.14396183, -0.58183269], [-0.51733059, 1.00609417, -0.19399983]]) assert_array_almost_equal(pls_2.x_loadings_, x_loadings) y_weights = np.array( [[+0.32456184, 0.29892183, 0.20316322], [+0.42439636, 0.61970543, 0.19320542], [-0.13143144, -0.26348971, -0.17092916]]) assert_array_almost_equal(pls_2.y_weights_, y_weights) y_loadings = np.array( [[+0.32456184, 0.29892183, 0.20316322], [+0.42439636, 0.61970543, 0.19320542], [-0.13143144, -0.26348971, -0.17092916]]) assert_array_almost_equal(pls_2.y_loadings_, y_loadings) # 3) Another non-regression test of Canonical PLS on random dataset # ================================================================= # The results were checked against the R-package plspm n = 500 p_noise = 10 q_noise = 5 # 2 latents vars: np.random.seed(11) l1 = np.random.normal(size=n) l2 = np.random.normal(size=n) latents = np.array([l1, l1, l2, l2]).T X = latents + np.random.normal(size=4 * n).reshape((n, 4)) Y = latents + np.random.normal(size=4 * n).reshape((n, 4)) X = np.concatenate( (X, np.random.normal(size=p_noise * n).reshape(n, p_noise)), axis=1) Y = np.concatenate( (Y, np.random.normal(size=q_noise * n).reshape(n, q_noise)), axis=1) np.random.seed(None) pls_ca = pls_.PLSCanonical(n_components=3) pls_ca.fit(X, Y) x_weights = np.array( [[0.65803719, 0.19197924, 0.21769083], [0.7009113, 0.13303969, -0.15376699], [0.13528197, -0.68636408, 0.13856546], [0.16854574, -0.66788088, -0.12485304], [-0.03232333, -0.04189855, 0.40690153], [0.1148816, -0.09643158, 0.1613305], [0.04792138, -0.02384992, 0.17175319], [-0.06781, -0.01666137, -0.18556747], [-0.00266945, -0.00160224, 0.11893098], [-0.00849528, -0.07706095, 0.1570547], [-0.00949471, -0.02964127, 0.34657036], [-0.03572177, 0.0945091, 0.3414855], [0.05584937, -0.02028961, -0.57682568], [0.05744254, -0.01482333, -0.17431274]]) assert_array_almost_equal(pls_ca.x_weights_, x_weights) x_loadings = np.array( [[0.65649254, 0.1847647, 0.15270699], [0.67554234, 0.15237508, -0.09182247], [0.19219925, -0.67750975, 0.08673128], [0.2133631, -0.67034809, -0.08835483], [-0.03178912, -0.06668336, 0.43395268], [0.15684588, -0.13350241, 0.20578984], [0.03337736, -0.03807306, 0.09871553], [-0.06199844, 0.01559854, -0.1881785], [0.00406146, -0.00587025, 0.16413253], [-0.00374239, -0.05848466, 0.19140336], [0.00139214, -0.01033161, 0.32239136], [-0.05292828, 0.0953533, 0.31916881], [0.04031924, -0.01961045, -0.65174036], [0.06172484, -0.06597366, -0.1244497]]) assert_array_almost_equal(pls_ca.x_loadings_, x_loadings) y_weights = np.array( [[0.66101097, 0.18672553, 0.22826092], [0.69347861, 0.18463471, -0.23995597], [0.14462724, -0.66504085, 0.17082434], [0.22247955, -0.6932605, -0.09832993], [0.07035859, 0.00714283, 0.67810124], [0.07765351, -0.0105204, -0.44108074], [-0.00917056, 0.04322147, 0.10062478], [-0.01909512, 0.06182718, 0.28830475], [0.01756709, 0.04797666, 0.32225745]]) assert_array_almost_equal(pls_ca.y_weights_, y_weights) y_loadings = np.array( [[0.68568625, 0.1674376, 0.0969508], [0.68782064, 0.20375837, -0.1164448], [0.11712173, -0.68046903, 0.12001505], [0.17860457, -0.6798319, -0.05089681], [0.06265739, -0.0277703, 0.74729584], [0.0914178, 0.00403751, -0.5135078], [-0.02196918, -0.01377169, 0.09564505], [-0.03288952, 0.09039729, 0.31858973], [0.04287624, 0.05254676, 0.27836841]]) assert_array_almost_equal(pls_ca.y_loadings_, y_loadings) # Orthogonality of weights # ~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(pls_ca.x_weights_, "x weights are not orthogonal") check_ortho(pls_ca.y_weights_, "y weights are not orthogonal") # Orthogonality of latent scores # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(pls_ca.x_scores_, "x scores are not orthogonal") check_ortho(pls_ca.y_scores_, "y scores are not orthogonal") def test_PLSSVD(): # Let's check the PLSSVD doesn't return all possible component but just # the specificied number d = load_linnerud() X = d.data Y = d.target n_components = 2 for clf in [pls_.PLSSVD, pls_.PLSRegression, pls_.PLSCanonical]: pls = clf(n_components=n_components) pls.fit(X, Y) assert_equal(n_components, pls.y_scores_.shape[1]) def test_scale(): d = load_linnerud() X = d.data Y = d.target # causes X[:, -1].std() to be zero X[:, -1] = 1.0 for clf in [pls_.PLSCanonical(), pls_.PLSRegression(), pls_.PLSSVD()]: clf.set_params(scale=True) clf.fit(X, Y)
bsd-3-clause
karstenw/nodebox-pyobjc
examples/Extended Application/matplotlib/examples/misc/patheffect_demo.py
1
2340
""" =============== Patheffect Demo =============== """ import matplotlib.pyplot as plt import matplotlib.patheffects as PathEffects import numpy as np # nodebox section if __name__ == '__builtin__': # were in nodebox import os import tempfile W = 800 inset = 20 size(W, 600) plt.cla() plt.clf() plt.close('all') def tempimage(): fob = tempfile.NamedTemporaryFile(mode='w+b', suffix='.png', delete=False) fname = fob.name fob.close() return fname imgx = 20 imgy = 0 def pltshow(plt, dpi=150): global imgx, imgy temppath = tempimage() plt.savefig(temppath, dpi=dpi) dx,dy = imagesize(temppath) w = min(W,dx) image(temppath,imgx,imgy,width=w) imgy = imgy + dy + 20 os.remove(temppath) size(W, HEIGHT+dy+40) else: def pltshow(mplpyplot): mplpyplot.show() # nodebox section end if 1: plt.figure(1, figsize=(8, 3)) ax1 = plt.subplot(131) ax1.imshow([[1, 2], [2, 3]]) txt = ax1.annotate("test", (1., 1.), (0., 0), arrowprops=dict(arrowstyle="->", connectionstyle="angle3", lw=2), size=20, ha="center", path_effects=[PathEffects.withStroke(linewidth=3, foreground="w")]) txt.arrow_patch.set_path_effects([ PathEffects.Stroke(linewidth=5, foreground="w"), PathEffects.Normal()]) pe = [PathEffects.withStroke(linewidth=3, foreground="w")] ax1.grid(True, linestyle="-", path_effects=pe) ax2 = plt.subplot(132) arr = np.arange(25).reshape((5, 5)) ax2.imshow(arr) cntr = ax2.contour(arr, colors="k") plt.setp(cntr.collections, path_effects=[ PathEffects.withStroke(linewidth=3, foreground="w")]) clbls = ax2.clabel(cntr, fmt="%2.0f", use_clabeltext=True) plt.setp(clbls, path_effects=[ PathEffects.withStroke(linewidth=3, foreground="w")]) # shadow as a path effect ax3 = plt.subplot(133) p1, = ax3.plot([0, 1], [0, 1]) leg = ax3.legend([p1], ["Line 1"], fancybox=True, loc=2) leg.legendPatch.set_path_effects([PathEffects.withSimplePatchShadow()]) pltshow(plt)
mit
scholer/staplestatter
setup.py
1
2239
from setuptools import setup setup( name='staplestatter', version='1.1', packages=['staplestatter'], url='https://github.com/scholer/staplestatter', license='GNU General Public License v3 (GPLv3)', author='Rasmus Scholer Sorensen', author_email='rasmusscholer@gmail.com', description='Library, tools, and cadnano plugin for analyzing DNA origami designs created with cadnano.', keywords=[ # "GEL", "Image", "Annotation", "PAGE", "Agarose", "Protein", # "SDS", "Gel electrophoresis", "Typhoon", "GelDoc", "DNA Origami", "cadnano", "plugin", "DNA", "DNA sequences", "melting temperature", "sequence manipulation", "Data analysis", "statistics", "plotting", "Data visualization", ], install_requires=[ 'pyyaml', 'six', 'biopython', 'matplotlib', 'svgwrite', ], classifiers=[ # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 4 - Beta', # Indicate who your project is intended for 'Intended Audience :: Science/Research', 'Intended Audience :: Education', 'Intended Audience :: End Users/Desktop', # 'Topic :: Software Development :: Build Tools', 'Topic :: Education', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Bio-Informatics', # Pick your license as you wish (should match "license" above) 'License :: OSI Approved :: GNU General Public License v3 (GPLv3)', # Specify the Python versions you support here. In particular, ensure # that you indicate whether you support Python 2, Python 3 or both. 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Operating System :: MacOS', 'Operating System :: Microsoft', 'Operating System :: POSIX :: Linux', ], )
gpl-3.0
fzalkow/scikit-learn
examples/semi_supervised/plot_label_propagation_digits.py
268
2723
""" =================================================== Label Propagation digits: Demonstrating performance =================================================== This example demonstrates the power of semisupervised learning by training a Label Spreading model to classify handwritten digits with sets of very few labels. The handwritten digit dataset has 1797 total points. The model will be trained using all points, but only 30 will be labeled. Results in the form of a confusion matrix and a series of metrics over each class will be very good. At the end, the top 10 most uncertain predictions will be shown. """ print(__doc__) # Authors: Clay Woolam <clay@woolam.org> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from scipy import stats from sklearn import datasets from sklearn.semi_supervised import label_propagation from sklearn.metrics import confusion_matrix, classification_report digits = datasets.load_digits() rng = np.random.RandomState(0) indices = np.arange(len(digits.data)) rng.shuffle(indices) X = digits.data[indices[:330]] y = digits.target[indices[:330]] images = digits.images[indices[:330]] n_total_samples = len(y) n_labeled_points = 30 indices = np.arange(n_total_samples) unlabeled_set = indices[n_labeled_points:] # shuffle everything around y_train = np.copy(y) y_train[unlabeled_set] = -1 ############################################################################### # Learn with LabelSpreading lp_model = label_propagation.LabelSpreading(gamma=0.25, max_iter=5) lp_model.fit(X, y_train) predicted_labels = lp_model.transduction_[unlabeled_set] true_labels = y[unlabeled_set] cm = confusion_matrix(true_labels, predicted_labels, labels=lp_model.classes_) print("Label Spreading model: %d labeled & %d unlabeled points (%d total)" % (n_labeled_points, n_total_samples - n_labeled_points, n_total_samples)) print(classification_report(true_labels, predicted_labels)) print("Confusion matrix") print(cm) # calculate uncertainty values for each transduced distribution pred_entropies = stats.distributions.entropy(lp_model.label_distributions_.T) # pick the top 10 most uncertain labels uncertainty_index = np.argsort(pred_entropies)[-10:] ############################################################################### # plot f = plt.figure(figsize=(7, 5)) for index, image_index in enumerate(uncertainty_index): image = images[image_index] sub = f.add_subplot(2, 5, index + 1) sub.imshow(image, cmap=plt.cm.gray_r) plt.xticks([]) plt.yticks([]) sub.set_title('predict: %i\ntrue: %i' % ( lp_model.transduction_[image_index], y[image_index])) f.suptitle('Learning with small amount of labeled data') plt.show()
bsd-3-clause
canavandl/bokeh
examples/charts/file/bar.py
37
2221
from collections import OrderedDict import numpy as np import pandas as pd from bokeh.charts import Bar, output_file, show, vplot, hplot from bokeh.models import Range1d from bokeh.sampledata.olympics2014 import data as original_data width = 700 height = 500 legend_position = "top_right" data = {d['abbr']: d['medals'] for d in original_data['data'] if d['medals']['total'] > 0} countries = sorted(data.keys(), key=lambda x: data[x]['total'], reverse=True) gold = np.array([data[abbr]['gold'] for abbr in countries], dtype=np.float) silver = np.array([data[abbr]['silver'] for abbr in countries], dtype=np.float) bronze = np.array([data[abbr]['bronze'] for abbr in countries], dtype=np.float) # dict input medals = OrderedDict(bronze=bronze, silver=silver, gold=gold) dict_stacked = Bar( medals, countries, title="OrderedDict input | Stacked", legend=legend_position, xlabel="countries", ylabel="medals", width=width, height=height, stacked=True ) # data frame input df = pd.DataFrame(medals, index=countries) df_grouped = Bar( df, title="Data Frame input | Grouped", legend=legend_position, xlabel="countries", ylabel="medals", width=width, height=height ) # Numpy array input with different data to affect the ranges random = np.random.rand(3, 8) mixed = random - np.random.rand(3, 8) categories = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'] np_stacked = Bar( random, cat=categories, title="Numpy Array input | Stacked", ylabel="Random Number", xlabel="", width=width, height=height, stacked=True ) np_negative_grouped = Bar( random * -1, cat=categories, title="All negative input | Grouped", ylabel="Random Number", width=width, height=height ) np_custom = Bar( mixed, cat=categories, title="Custom range (start=-3, end=0.4)", ylabel="Random Number", width=width, height=height, continuous_range=Range1d(start=-3, end=0.4) ) np_mixed_grouped = Bar( mixed, cat=categories, title="Mixed-sign input | Grouped", ylabel="Random Number", width=width, height=height ) # collect and display output_file("bar.html") show(vplot( hplot(dict_stacked, df_grouped), hplot(np_stacked, np_negative_grouped), hplot(np_mixed_grouped, np_custom), ))
bsd-3-clause
dannygoldstein/sncosmo
docs/conf.py
3
7855
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst # # Astropy documentation build configuration file. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this file. # # All configuration values have a default. Some values are defined in # the global Astropy configuration which is loaded here before anything else. # See astropy.sphinx.conf for which values are set there. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # sys.path.insert(0, os.path.abspath('..')) # IMPORTANT: the above commented section was generated by sphinx-quickstart, but # is *NOT* appropriate for astropy or Astropy affiliated packages. It is left # commented out with this explanation to make it clear why this should not be # done. If the sys.path entry above is added, when the astropy.sphinx.conf # import occurs, it will import the *source* version of astropy instead of the # version installed (if invoked as "make html" or directly with sphinx), or the # version in the build directory (if "python setup.py build_sphinx" is used). # Thus, any C-extensions that are needed to build the documentation will *not* # be accessible, and the documentation will not build correctly. import sys import os import datetime import sphinx_rtd_theme import sphinx_gallery import matplotlib.sphinxext.plot_directive sys.path.insert(0, os.path.abspath("_helpers")) # -- General configuration ---------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. needs_sphinx = '1.3' intersphinx_mapping = { 'python': ('https://docs.python.org/3/', None), 'numpy': ('https://docs.scipy.org/doc/numpy/', None), 'scipy': ('https://docs.scipy.org/doc/scipy/reference/', None), 'astropy': ('http://docs.astropy.org/en/stable/', None), 'emcee': ('https://emcee.readthedocs.io/en/stable/', None) } # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.intersphinx', 'sphinx.ext.inheritance_diagram', 'sphinx.ext.mathjax', 'sphinx.ext.linkcode', 'sphinx_gallery.gen_gallery', 'numpydoc', matplotlib.sphinxext.plot_directive.__name__ ] numpydoc_show_class_members = False autosummary_generate = True autoclass_content = "class" autodoc_default_flags = ["members", "inherited-members"] autodoc_docstring_signature = False sphinx_gallery_conf = { 'examples_dirs': '_examples', # path to examples scripts 'gallery_dirs': 'examples', # path to gallery generated examples 'backreferences_dir': 'modules/generated', # path to store the module # using example template 'doc_module': ('sncosmo',), # documented module(s) 'download_section_examples': False, 'download_all_examples': False, # don't package up examples. 'default_thumb_file': os.path.join(os.path.dirname(__file__), '_logo', 'spectral_white_bkg.png') } # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # -- Project information ------------------------------------------------------ # This does not *have* to match the package name, but typically does project = 'sncosmo' author = 'Kyle Barbary and contributors' current_year = datetime.datetime.now().year copyright = '2013-{:d}, {}'.format(current_year, author) # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. import sncosmo # The short X.Y version. version = sncosmo.__version__.split('-', 1)[0] # The full version, including alpha/beta/rc tags. release = sncosmo.__version__ # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all # documents. default_role = 'obj' # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # -- Options for HTML output --------------------------------------------------- html_theme = "sphinx_rtd_theme" html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = [sphinx_gallery.glr_path_static()] # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. from os.path import join html_favicon = join('_static','sncosmo_logo_32.ico') # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '' # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". html_title = '{0} v{1}'.format(project, release) # Output file base name for HTML help builder. htmlhelp_basename = project + 'doc' # Add local templates path to modify autosummary templates #templates_path = ['_templates'] # Static files to copy after template files html_static_path = ['_static'] #html_style = 'sncosmo.css' # -- Options for LaTeX output -------------------------------------------------- # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [('index', project + '.tex', project + u' Documentation', author, 'manual')] # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [('index', project.lower(), project + u' Documentation', [author], 1)] # ----------------------------------------------------------------------------- # Source code links # # Lifted from numpy docs conf.py # ----------------------------------------------------------------------------- import inspect from os.path import relpath, dirname def linkcode_resolve(domain, info): """ Determine the URL corresponding to Python object """ if domain != 'py': return None modname = info['module'] fullname = info['fullname'] submod = sys.modules.get(modname) if submod is None: return None obj = submod for part in fullname.split('.'): try: obj = getattr(obj, part) except: return None try: fn = inspect.getsourcefile(obj) except: fn = None if not fn: return None try: source, lineno = inspect.findsource(obj) except: lineno = None if lineno: linespec = "#L%d" % (lineno + 1) else: linespec = "" fn = relpath(fn, start=dirname(sncosmo.__file__)) if 'dev' in sncosmo.__version__: return "http://github.com/sncosmo/sncosmo/blob/master/sncosmo/%s%s" % ( fn, linespec) else: return "http://github.com/sncosmo/sncosmo/blob/v%s/sncosmo/%s%s" % ( sncosmo.__version__, fn, linespec)
bsd-3-clause
wy36101299/technical-analysis
technical-analysis.py
2
12671
# coding: utf-8 # In[1]: # 啟動互動式繪圖環境 get_ipython().magic(u'pylab inline') # In[2]: # 引入相依套件 import numpy as np import pandas as pd from numpy import random import matplotlib.pyplot as plt # 引入檔案 # 資料來源 3008 大立光 2012-8/1 ~ 2014-12/09 # http://www.twse.com.tw/ch/trading/exchange/STOCK_DAY/genpage/Report201412/201412_F3_1_8_3008.php?STK_NO=3008&myear=2014&mmon=12 datapath = '/Users/wy/Desktop/3008.txt' data = pd.read_csv(datapath) # In[3]: # 看檔案前N筆 data.head(5) # In[4]: # data詳細資料 總數,平均數,標準差... data.describe() # In[5]: # 技術分析資料來源 # http://hymar.myweb.hinet.net/study/stock/theory/ # In[6]: # Rise Ratio 漲幅比 def RR(data): # 由於 data 新到舊 0~xxx,遞增,因此需反轉陣列 dataList = range(data['Date'].size) dataList.reverse() tmpList = [] for item in dataList: # 防止 第一筆data沒有更舊的 if item-1 >=0: # (今日收盤價 - 昨日收盤價)/昨日收盤價 tmp = (data['Close'][item-1]-data['Close'][item])/data['Close'][item]*100 tmpList.append(tmp) # 前day 沒data會出現NA tmpList.reverse() tmpSeries = pd.Series(tmpList) # create RR 欄位 data['RR']=tmpSeries # In[7]: # 威廉指標(WMS%R或%R) def WMS(data,day): # 由於 data 新到舊 0~xxx,遞增,因此需反轉陣列 dataList = range(data['Date'].size) dataList.reverse() tmpList = [] for item in dataList: # 防止前day沒有data if item-day+1 >= 0: # 9日WMS%R =(9日內最高價-第9日收盤價) / (9日內最高價-9日內最低價)*100 # [item-day+1:item+1] 今日區間 [item-day+1] 第N日 583-9=574+1=575 tmp = (data['High'][item-day+1:item+1].max()-data['Close'][item-day+1])/(data['High'][item-day+1:item+1].max()-data['Low'][item-day+1:item+1].min())*100 tmpList.append(tmp) # 前day 沒data會出現NA tmpList.reverse() tmpSeries = pd.Series(tmpList) # create WMS 欄位 data['WMS']=tmpSeries # In[8]: # 買賣意願指標 day 建議26 def BR(data,day): # 由於 data 新到舊 0~xxx,遞增,因此需反轉陣列 dataList = range(data['Date'].size) dataList.reverse() tmpList = [] for item in dataList: # 防止前day沒有data if item-day >= 0: # 26日BR = (今日最高價 - 昨日收盤價)26天累計總數 / (昨日收盤價 - 今日最低價)26天累計總數 # [(item-day+1)-1:(item+1)-1] 有-1 今日區間 [(item-day+1):(item+1)] 昨日區間 tmp = (data['High'][(item-day+1)-1:(item+1)-1].sum()-data['Close'][item-day+1:item+1].sum())/(data['Close'][item-day+1:item+1].sum()-data['Low'][(item-day+1)-1:(item+1)-1].sum()) tmpList.append(tmp) # 前day 沒data會出現NA tmpList.reverse() tmpSeries = pd.Series(tmpList) # create BR 欄位 data['BR']=tmpSeries # In[9]: # 買賣氣勢指標 day建議26 def AR(data,day): # 由於 data 新到舊 0~xxx,遞增,因此需反轉陣列 dataList = range(data['Date'].size) dataList.reverse() tmpList = [] for item in dataList: # 防止前day沒有data if item-day+1 >= 0: # 26日AR = (最高價 - 開盤價)26天累計總數 / (開盤價 - 最低價)26天累計總數 # [item-day+1:item+1] 今日區間 tmp = (data['High'][item-day+1:item+1].sum()-data['Open'][item-day+1:item+1].sum())/(data['Open'][item-day+1:item+1].sum()-data['Low'][item-day+1:item+1].sum()) tmpList.append(tmp) # 前day 沒data會出現NA tmpList.reverse() tmpSeries = pd.Series(tmpList) # create AR 欄位 data['AR']=tmpSeries # In[10]: # 平均成交量 mean volumn day建議12 def MV(data,day): # 由於 data 新到舊 0~xxx,遞增,因此需反轉陣列 dataList = range(data['Date'].size) dataList.reverse() tmpList = [] for item in dataList: # 防止前day沒有data if item-day+1 >= 0: # N日平均量 = N日內的成交量總和 / N # [item-day+1:item+1] 今日區間 tmp = data['Volume'][item-day+1:item+1].mean() tmpList.append(tmp) # 前day 沒data會出現NA tmpList.reverse() tmpSeries = pd.Series(tmpList) # create MV 欄位 data['MV']=tmpSeries # In[11]: # 移動平均線(MA,Moving Average) 建議12 def MA(data,day): # 由於 data 新到舊 0~xxx,遞增,因此需反轉陣列 dataList = range(data['Date'].size) dataList.reverse() tmpList = [] for item in dataList: # 防止前day沒有data if item-day+1 >= 0: # 移動平均數 = 採樣天數的股價合計 / 採樣天數 # [item-day+1:item+1] 今日區間 tmp = data['Close'][item-day+1:item+1].mean() tmpList.append(tmp) # 前day 沒data會出現NA tmpList.reverse() tmpSeries = pd.Series(tmpList) # create MA 欄位 data['MA'+str(day)]=tmpSeries # In[12]: # 心理線(PSY) 建議13 def PSY(data,day): # 由於 data 新到舊 0~xxx,遞增,因此需反轉陣列 dataList = range(data['Date'].size) dataList.reverse() tmpList = [] for item in dataList: # 防止前day沒有data if item-day >= 0: # 13日PSY值 = ( 13日內之上漲天數 / 13 ) * 100 # [item-day+1-1:item+1-1] 跳一天 最早的天沒有RR值 count = 0 for a in data['RR'][item-day+1-1:item+1-1]: if a > 0: count+=1 tmp = float(count)/float(13)*100 tmpList.append(tmp) # 前day 沒data會出現NA tmpList.reverse() tmpSeries = pd.Series(tmpList) # create PSY 欄位 data['PSY']=tmpSeries # In[13]: # 能量潮(OBV) 建議12 def OBV(data,day): # 由於 data 新到舊 0~xxx,遞增,因此需反轉陣列 dataList = range(data['Date'].size) dataList.reverse() tmpList = [] for item in dataList: # 防止前day沒有data if item-day >= 0: # 今日OBV值 = 最近12天股價上漲日成交量總和 - 最近12天股價下跌日成交量總和 # 先由 ['RR'] 求出boolean值 > 0 True 套入['Volume']符合True全加起來 bolRise = data['RR'][item-day+1-1:item+1-1]>0 sumVolRise = data['Volume'][item-day+1-1:item+1-1][bolRise].sum() bolDesc = data['RR'][item-day+1-1:item+1-1]<0 sumVolDesc = data['Volume'][item-day+1-1:item+1-1][bolDesc].sum() tmp = sumVolRise-sumVolDesc # 可切換 OBV累積12日移動平均值 = (最近12天股價上漲日成交量總和 - 最近12天股價下跌日成交量總和) / 12 # tmp = (sumVolRise-sumVolDesc)/12 tmpList.append(tmp) # 前day 沒data會出現NA tmpList.reverse() tmpSeries = pd.Series(tmpList) # create OBV 欄位 data['OBV']=tmpSeries # In[14]: # 數量指標(VR) 建議12 def VR(data,day): # 由於 data 新到舊 0~xxx,遞增,因此需反轉陣列 dataList = range(data['Date'].size) dataList.reverse() tmpList = [] for item in dataList: # 防止前day沒有data if item-day >= 0: # VR = ( N日內上漲日成交值總和 + 1/2*N日內平盤日成交值總和) / ( N日內下跌日成交值總和 + 1/2*N日內平盤日成交值總和)* 100% # 先由 ['RR'] 求出boolean值 > 0 True 套入['Volume']符合True全加起來 bolRise = data['RR'][item-day+1-1:item+1-1]>0 sumVolRise = data['Volume'][item-day+1-1:item+1-1][bolRise].sum() bolNorm = data['RR'][item-day+1-1:item+1-1] == 0 sumVolNorm = data['Volume'][item-day+1-1:item+1-1][bolNorm].sum() bolDesc = data['RR'][item-day+1-1:item+1-1]<0 sumVolDesc = data['Volume'][item-day+1-1:item+1-1][bolDesc].sum() tmp = (sumVolRise+0.5*sumVolNorm)/(sumVolDesc+0.5*sumVolNorm)*100 tmpList.append(tmp) # 前day 沒data會出現NA tmpList.reverse() tmpSeries = pd.Series(tmpList) # create VR 欄位 data['VR']=tmpSeries # In[15]: # 相對強弱指標(RSI) 建議6 def RSI(data,day): # 由於 data 新到舊 0~xxx,遞增,因此需反轉陣列 dataList = range(data['Date'].size) dataList.reverse() tmpList = [] for item in dataList: # 防止前day沒有data if item-day >= 0: # 6日RSI=100*6日內收盤上漲總幅度平均值 / (6日內收盤上漲總幅度平均值 - 6日內收盤下跌總幅度平均值) # 先由 ['RR'] 求出boolean值 > 0 True 套入['Volume']符合True全加起來 bolRise = data['RR'][item-day+1-1:item+1-1]>0 meanRise = data['RR'][item-day+1-1:item+1-1][bolRise].mean() bolDesc = data['RR'][item-day+1-1:item+1-1]<0 meanDesc = data['RR'][item-day+1-1:item+1-1][bolDesc].mean() tmp = 100*meanRise/(meanRise-meanDesc) tmpList.append(tmp) # 前day 沒data會出現NA tmpList.reverse() tmpSeries = pd.Series(tmpList) # create RSI 欄位 data['RSI']=tmpSeries # In[16]: # 乖離率(BIAS) def BIAS(data,day): # 由於 data 新到舊 0~xxx,遞增,因此需反轉陣列 dataList = range(data['Date'].size) dataList.reverse() tmpList = [] for item in dataList: # 防止前day沒有data if item-day+1 >= 0: # N日乖離率 = (當日股價 - N日股價移動平均數) / N日平均股價 tmp = (data['Close'][item-day+1]-data['MA'+str(day)][item-day+1])/data['MA'+str(day)][item-day+1]*100 tmpList.append(tmp) # 前day 沒data會出現NA tmpList.reverse() tmpSeries = pd.Series(tmpList) # create BIAS 欄位 data['BIAS']=tmpSeries # In[17]: # RR漲幅比須先算出來,後續指標需用到此項 RR(data) WMS(data,9) BR(data,26) AR(data,26) MV(data,12) MA(data,12) # 算BIAS須先求出MA值 BIAS(data,12) PSY(data,13) OBV(data,12) VR(data,12) RSI(data,6) # In[18]: MA(data,20) MA(data,60) # In[19]: data # In[20]: # Rise Ratio 漲幅比 # 0為最新資料 向左越來越新 fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.plot(data['RR']) ax.set_title('RR') # In[21]: # 威廉指標(WMS%R或%R) # 0為最新資料 向左越來越新 fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.plot(data['WMS']) ax.set_title('WMS') # In[22]: # 買賣意願指標 # 0為最新資料 向左越來越新 fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.plot(data['BR']) ax.set_title('BR') # In[23]: # 買賣氣勢指標 # 0為最新資料 向左越來越新 fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.plot(data['AR']) ax.set_title('AR') # In[24]: # 平均成交量 mean volumn # 0為最新資料 向左越來越新 fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.plot(data['MV']) ax.set_title('MV') # In[25]: # 移動平均線(MA,Moving Average) # 0為最新資料 向左越來越新 fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.plot(data['MA12']) ax.set_title('MA12') # In[26]: # 乖離率(BIAS) # 0為最新資料 向左越來越新 fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.plot(data['BIAS']) ax.set_title('BIAS') # In[27]: # 心理線(PSY) # 0為最新資料 向左越來越新 fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.plot(data['PSY']) ax.set_title('PSY') # In[28]: # 能量潮(OBV) # 0為最新資料 向左越來越新 fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.plot(data['OBV']) ax.set_title('OBV') # In[29]: # 數量指標(VR) # 0為最新資料 向左越來越新 fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.plot(data['VR']) ax.set_title('VR') # In[30]: # 相對強弱指標(RSI) # 0為最新資料 向左越來越新 fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.plot(data['RSI']) ax.set_title('RSI') # In[32]: # MA20 和 MA60 比較 看出黃金交叉和死亡交叉 # 0為最新資料 向左越來越新 fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.plot(data['MA20'],color='#9D442F',label='MA20') ax.plot(data['MA60'],color='#5D947E',label='MA60') ax.legend(loc='best') # In[ ]:
mit
almarklein/scikit-image
doc/examples/plot_equalize.py
1
2802
""" ====================== Histogram Equalization ====================== This examples enhances an image with low contrast, using a method called *histogram equalization*, which "spreads out the most frequent intensity values" in an image [1]_. The equalized image has a roughly linear cumulative distribution function. While histogram equalization has the advantage that it requires no parameters, it sometimes yields unnatural looking images. An alternative method is *contrast stretching*, where the image is rescaled to include all intensities that fall within the 2nd and 98th percentiles [2]_. .. [1] http://en.wikipedia.org/wiki/Histogram_equalization .. [2] http://homepages.inf.ed.ac.uk/rbf/HIPR2/stretch.htm """ import matplotlib import matplotlib.pyplot as plt import numpy as np from skimage import data, img_as_float from skimage import exposure matplotlib.rcParams['font.size'] = 8 def plot_img_and_hist(img, axes, bins=256): """Plot an image along with its histogram and cumulative histogram. """ img = img_as_float(img) ax_img, ax_hist = axes ax_cdf = ax_hist.twinx() # Display image ax_img.imshow(img, cmap=plt.cm.gray) ax_img.set_axis_off() # Display histogram ax_hist.hist(img.ravel(), bins=bins, histtype='step', color='black') ax_hist.ticklabel_format(axis='y', style='scientific', scilimits=(0, 0)) ax_hist.set_xlabel('Pixel intensity') ax_hist.set_xlim(0, 1) ax_hist.set_yticks([]) # Display cumulative distribution img_cdf, bins = exposure.cumulative_distribution(img, bins) ax_cdf.plot(bins, img_cdf, 'r') ax_cdf.set_yticks([]) return ax_img, ax_hist, ax_cdf # Load an example image img = data.moon() # Contrast stretching p2 = np.percentile(img, 2) p98 = np.percentile(img, 98) img_rescale = exposure.rescale_intensity(img, in_range=(p2, p98)) # Equalization img_eq = exposure.equalize_hist(img) # Adaptive Equalization img_adapteq = exposure.equalize_adapthist(img, clip_limit=0.03) # Display results f, axes = plt.subplots(nrows=2, ncols=4, figsize=(8, 5)) ax_img, ax_hist, ax_cdf = plot_img_and_hist(img, axes[:, 0]) ax_img.set_title('Low contrast image') y_min, y_max = ax_hist.get_ylim() ax_hist.set_ylabel('Number of pixels') ax_hist.set_yticks(np.linspace(0, y_max, 5)) ax_img, ax_hist, ax_cdf = plot_img_and_hist(img_rescale, axes[:, 1]) ax_img.set_title('Contrast stretching') ax_img, ax_hist, ax_cdf = plot_img_and_hist(img_eq, axes[:, 2]) ax_img.set_title('Histogram equalization') ax_img, ax_hist, ax_cdf = plot_img_and_hist(img_adapteq, axes[:, 3]) ax_img.set_title('Adaptive equalization') ax_cdf.set_ylabel('Fraction of total intensity') ax_cdf.set_yticks(np.linspace(0, 1, 5)) # prevent overlap of y-axis labels plt.subplots_adjust(wspace=0.4) plt.show()
bsd-3-clause
guiquanz/Dato-Core
src/unity/python/graphlab/test/test_io.py
13
15881
''' Copyright (C) 2015 Dato, Inc. All rights reserved. This software may be modified and distributed under the terms of the BSD license. See the DATO-PYTHON-LICENSE file for details. ''' import commands import json import logging import os import re import tempfile import unittest import pandas import graphlab import graphlab.connect.main as glconnect import graphlab.sys_util as _sys_util from graphlab.test.util import create_server, start_test_tcp_server from pandas.util.testing import assert_frame_equal def _test_save_load_object_helper(testcase, obj, url): """ Helper function to test save and load a server side object to a given url. """ def cleanup(url): """ Remove the saved file from temp directory. """ protocol = None path = None splits = url.split("://") if len(splits) > 1: protocol = splits[0] path = splits[1] else: path = url if not protocol or protocol is "local" or protocol is "remote": tempdir = tempfile.gettempdir() pattern = path + ".*" for f in os.listdir(tempdir): if re.search(pattern, f): os.remove(os.path.join(tempdir, f)) if isinstance(obj, graphlab.SGraph): obj.save(url + ".graph") newobj = graphlab.load_graph(url + ".graph") testcase.assertItemsEqual(obj.get_fields(), newobj.get_fields()) testcase.assertDictEqual(obj.summary(), newobj.summary()) elif isinstance(obj, graphlab.Model): obj.save(url + ".model") newobj = graphlab.load_model(url + ".model") testcase.assertItemsEqual(obj.list_fields(), newobj.list_fields()) testcase.assertEqual(type(obj), type(newobj)) elif isinstance(obj, graphlab.SFrame): obj.save(url + ".frame_idx") newobj = graphlab.load_sframe(url + ".frame_idx") testcase.assertEqual(obj.shape, newobj.shape) testcase.assertEqual(obj.column_names(), newobj.column_names()) testcase.assertEqual(obj.column_types(), newobj.column_types()) assert_frame_equal(obj.head(obj.num_rows()).to_dataframe(), newobj.head(newobj.num_rows()).to_dataframe()) else: raise TypeError cleanup(url) def create_test_objects(): vertices = pandas.DataFrame({'vid': ['1', '2', '3'], 'color': ['g', 'r', 'b'], 'vec': [[.1, .1, .1], [.1, .1, .1], [.1, .1, .1]]}) edges = pandas.DataFrame({'src_id': ['1', '2', '3'], 'dst_id': ['2', '3', '4'], 'weight': [0., 0.1, 1.]}) graph = graphlab.SGraph().add_vertices(vertices, 'vid').add_edges(edges, 'src_id', 'dst_id') sframe = graphlab.SFrame(edges) model = graphlab.pagerank.create(graph) return (graph, sframe, model) class LocalFSConnectorTests(unittest.TestCase): @classmethod def setUpClass(self): self.tempfile = tempfile.NamedTemporaryFile().name (self.graph, self.sframe, self.model) = create_test_objects() def _test_read_write_helper(self, url, content): url = graphlab.util._make_internal_url(url) glconnect.get_unity().__write__(url, content) content_read = glconnect.get_unity().__read__(url) self.assertEquals(content_read, content) if os.path.exists(url): os.remove(url) def test_object_save_load(self): for prefix in ['', 'local://', 'remote://']: _test_save_load_object_helper(self, self.graph, prefix + self.tempfile) _test_save_load_object_helper(self, self.model, prefix + self.tempfile) _test_save_load_object_helper(self, self.sframe, prefix + self.tempfile) def test_basic(self): self._test_read_write_helper(self.tempfile, 'hello world') self._test_read_write_helper("local://" + self.tempfile + ".csv", 'hello,world,woof') self._test_read_write_helper("remote://" + self.tempfile + ".csv", 'hello,world,woof') def test_gzip(self): self._test_read_write_helper(self.tempfile + ".gz", 'hello world') self._test_read_write_helper(self.tempfile + ".csv.gz", 'hello world') self._test_read_write_helper("local://" + self.tempfile + ".csv.gz", 'hello world') self._test_read_write_helper("remote://" + self.tempfile + ".csv.gz", 'hello world') def test_exception(self): self.assertRaises(IOError, lambda: glconnect.get_unity().__read__("/root/tmp")) self.assertRaises(IOError, lambda: glconnect.get_unity().__write__("/root/tmp", '.....')) self.assertRaises(IOError, lambda: glconnect.get_unity().__read__("/root/tmp")) self.assertRaises(IOError, lambda: glconnect.get_unity().__write__("/root/tmp", '.....')) self.assertRaises(IOError, lambda: self.graph.save("/root/tmp.graph")) self.assertRaises(IOError, lambda: self.sframe.save("/root/tmp.frame_idx")) self.assertRaises(IOError, lambda: self.model.save("/root/tmp.model")) self.assertRaises(IOError, lambda: graphlab.load_graph("/root/tmp.graph")) self.assertRaises(IOError, lambda: graphlab.load_sframe("/root/tmp.frame_idx")) self.assertRaises(IOError, lambda: graphlab.load_model("/root/tmp.model")) class RemoteFSConnectorTests(unittest.TestCase): @classmethod def setUpClass(self): glconnect.stop() auth_token = 'graphlab_awesome' self.server = start_test_tcp_server(auth_token=auth_token) glconnect.launch(self.server.get_server_addr(), auth_token=auth_token) self.tempfile = tempfile.NamedTemporaryFile().name (self.graph, self.sframe, self.model) = create_test_objects() @classmethod def tearDownClass(self): glconnect.stop() self.server.stop() def _test_read_write_helper(self, url, content): url = graphlab.util._make_internal_url(url) glconnect.get_unity().__write__(url, content) content_read = glconnect.get_unity().__read__(url) self.assertEquals(content_read, content) def test_basic(self): self._test_read_write_helper("remote://" + self.tempfile, 'hello,world,woof') def test_gzip(self): self._test_read_write_helper("remote://" + self.tempfile + ".csv.gz", 'hello,world,woof') def test_object_save_load(self): prefix = "remote://" _test_save_load_object_helper(self, self.graph, prefix + self.tempfile) _test_save_load_object_helper(self, self.model, prefix + self.tempfile) _test_save_load_object_helper(self, self.sframe, prefix + self.tempfile) def test_exception(self): self.assertRaises(ValueError, lambda: self._test_read_write_helper(self.tempfile, 'hello world')) self.assertRaises(ValueError, lambda: self._test_read_write_helper("local://" + self.tempfile + ".csv.gz", 'hello,world,woof')) self.assertRaises(IOError, lambda: glconnect.get_unity().__read__("remote:///root/tmp")) self.assertRaises(IOError, lambda: glconnect.get_unity().__read__("remote:///root/tmp")) self.assertRaises(IOError, lambda: glconnect.get_unity().__write__("remote:///root/tmp", '.....')) self.assertRaises(IOError, lambda: self.graph.save("remote:///root/tmp.graph")) self.assertRaises(IOError, lambda: self.sframe.save("remote:///root/tmp.frame_idx")) self.assertRaises(IOError, lambda: self.model.save("remote:///root/tmp.model")) self.assertRaises(IOError, lambda: graphlab.load_graph("remote:///root/tmp.graph")) self.assertRaises(IOError, lambda: graphlab.load_sframe("remote:///root/tmp.frame_idx")) self.assertRaises(IOError, lambda: graphlab.load_model("remote:///root/tmp.model")) class HttpConnectorTests(unittest.TestCase): @classmethod def setUpClass(self): self.url = "http://s3-us-west-2.amazonaws.com/testdatasets/a_to_z.txt.gz" def _test_read_helper(self, url, content_expected): url = graphlab.util._make_internal_url(url) content_read = glconnect.get_unity().__read__(url) self.assertEquals(content_read, content_expected) def test_read(self): expected = "\n".join([str(unichr(i + ord('a'))) for i in range(26)]) expected = expected + "\n" self._test_read_helper(self.url, expected) def test_exception(self): self.assertRaises(IOError, lambda: glconnect.get_unity().__write__(self.url, '.....')) @unittest.skip("Disabling HDFS Connector Tests") class HDFSConnectorTests(unittest.TestCase): # This test requires hadoop to be installed and avaiable in $PATH. # If not, the tests will be skipped. @classmethod def setUpClass(self): self.has_hdfs = len(_sys_util.get_hadoop_class_path()) > 0 self.tempfile = tempfile.NamedTemporaryFile().name (self.graph, self.sframe, self.model) = create_test_objects() def _test_read_write_helper(self, url, content_expected): url = graphlab.util._make_internal_url(url) glconnect.get_unity().__write__(url, content_expected) content_read = glconnect.get_unity().__read__(url) self.assertEquals(content_read, content_expected) # clean up the file we wrote status, output = commands.getstatusoutput('hadoop fs -test -e ' + url) if status is 0: commands.getstatusoutput('hadoop fs -rm ' + url) def test_basic(self): if self.has_hdfs: self._test_read_write_helper("hdfs://" + self.tempfile, 'hello,world,woof') else: logging.getLogger(__name__).info("No hdfs avaiable. Test pass.") def test_gzip(self): if self.has_hdfs: self._test_read_write_helper("hdfs://" + self.tempfile + ".gz", 'hello,world,woof') self._test_read_write_helper("hdfs://" + self.tempfile + ".csv.gz", 'hello,world,woof') else: logging.getLogger(__name__).info("No hdfs avaiable. Test pass.") def test_object_save_load(self): if self.has_hdfs: prefix = "hdfs://" _test_save_load_object_helper(self, self.graph, prefix + self.tempfile) _test_save_load_object_helper(self, self.model, prefix + self.tempfile) _test_save_load_object_helper(self, self.sframe, prefix + self.tempfile) else: logging.getLogger(__name__).info("No hdfs avaiable. Test pass.") def test_exception(self): bad_url = "hdfs:///root/" if self.has_hdfs: self.assertRaises(IOError, lambda: glconnect.get_unity().__read__("hdfs:///")) self.assertRaises(IOError, lambda: glconnect.get_unity().__read__("hdfs:///tmp")) self.assertRaises(IOError, lambda: glconnect.get_unity().__read__("hdfs://" + self.tempfile)) self.assertRaises(IOError, lambda: glconnect.get_unity().__write__(bad_url + "/tmp", "somerandomcontent")) self.assertRaises(IOError, lambda: self.graph.save(bad_url + "x.graph")) self.assertRaises(IOError, lambda: self.sframe.save(bad_url + "x.frame_idx")) self.assertRaises(IOError, lambda: self.model.save(bad_url + "x.model")) self.assertRaises(IOError, lambda: graphlab.load_graph(bad_url + "mygraph")) self.assertRaises(IOError, lambda: graphlab.load_sframe(bad_url + "x.frame_idx")) self.assertRaises(IOError, lambda: graphlab.load_model(bad_url + "x.model")) else: logging.getLogger(__name__).info("No hdfs avaiable. Test pass.") @unittest.skip("Disabling S3 Connector Tests") class S3ConnectorTests(unittest.TestCase): # This test requires aws cli to be installed. If not, the tests will be skipped. @classmethod def setUpClass(self): status, output = commands.getstatusoutput('aws s3api list-buckets') self.has_s3 = (status is 0) self.standard_bucket = None self.regional_bucket = None # Use aws cli s3api to find a bucket with "gl-testdata" in the name, and use it as out test bucket. # Temp files will be read from /written to the test bucket's /tmp folder and be cleared on exist. if self.has_s3: try: json_output = json.loads(output) bucket_list = [b['Name'] for b in json_output['Buckets']] assert 'gl-testdata' in bucket_list assert 'gl-testdata-oregon' in bucket_list self.standard_bucket = 'gl-testdata' self.regional_bucket = 'gl-testdata-oregon' self.tempfile = tempfile.NamedTemporaryFile().name (self.graph, self.sframe, self.model) = create_test_objects() except: logging.getLogger(__name__).warning("Fail parsing ioutput of s3api into json. Please check your awscli version.") self.has_s3 = False def _test_read_write_helper(self, url, content_expected): s3url = graphlab.util._make_internal_url(url) glconnect.get_unity().__write__(s3url, content_expected) content_read = glconnect.get_unity().__read__(s3url) self.assertEquals(content_read, content_expected) (status, output) = commands.getstatusoutput('aws s3 rm --region us-west-2 ' + url) if status is not 0: logging.getLogger(__name__).warning("Cannot remove file: " + url) def test_basic(self): if self.has_s3: for bucket in [self.standard_bucket, self.regional_bucket]: self._test_read_write_helper("s3://" + bucket + self.tempfile, 'hello,world,woof') else: logging.getLogger(__name__).info("No s3 bucket avaiable. Test pass.") def test_gzip(self): if self.has_s3: self._test_read_write_helper("s3://" + self.standard_bucket + self.tempfile + ".gz", 'hello,world,woof') else: logging.getLogger(__name__).info("No s3 bucket avaiable. Test pass.") def test_object_save_load(self): if self.has_s3: prefix = "s3://" + self.standard_bucket _test_save_load_object_helper(self, self.graph, prefix + self.tempfile) _test_save_load_object_helper(self, self.model, prefix + self.tempfile) _test_save_load_object_helper(self, self.sframe, prefix + self.tempfile) else: logging.getLogger(__name__).info("No s3 bucket avaiable. Test pass.") def test_exception(self): if self.has_s3: bad_bucket = "i_am_a_bad_bucket" prefix = "s3://" + bad_bucket self.assertRaises(IOError, lambda: glconnect.get_unity().__read__("s3:///")) self.assertRaises(IOError, lambda: glconnect.get_unity().__read__("s3://" + self.standard_bucket + "/somerandomfile")) self.assertRaises(IOError, lambda: glconnect.get_unity().__read__("s3://" + "/somerandomfile")) self.assertRaises(IOError, lambda: glconnect.get_unity().__write__("s3://" + "/somerandomfile", "somerandomcontent")) self.assertRaises(IOError, lambda: glconnect.get_unity().__write__("s3://" + self.standard_bucket + "I'amABadUrl/", "somerandomcontent")) self.assertRaises(IOError, lambda: self.graph.save(prefix + "/x.graph")) self.assertRaises(IOError, lambda: self.sframe.save(prefix + "/x.frame_idx")) self.assertRaises(IOError, lambda: self.model.save(prefix + "/x.model")) self.assertRaises(IOError, lambda: graphlab.load_graph(prefix + "/x.graph")) self.assertRaises(IOError, lambda: graphlab.load_sframe(prefix + "/x.frame_idx")) self.assertRaises(IOError, lambda: graphlab.load_model(prefix + "/x.model")) else: logging.getLogger(__name__).info("No s3 bucket avaiable. Test pass.")
agpl-3.0
samzhang111/scikit-learn
examples/datasets/plot_random_dataset.py
348
2254
""" ============================================== Plot randomly generated classification dataset ============================================== Plot several randomly generated 2D classification datasets. This example illustrates the :func:`datasets.make_classification` :func:`datasets.make_blobs` and :func:`datasets.make_gaussian_quantiles` functions. For ``make_classification``, three binary and two multi-class classification datasets are generated, with different numbers of informative features and clusters per class. """ print(__doc__) import matplotlib.pyplot as plt from sklearn.datasets import make_classification from sklearn.datasets import make_blobs from sklearn.datasets import make_gaussian_quantiles plt.figure(figsize=(8, 8)) plt.subplots_adjust(bottom=.05, top=.9, left=.05, right=.95) plt.subplot(321) plt.title("One informative feature, one cluster per class", fontsize='small') X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=1, n_clusters_per_class=1) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.subplot(322) plt.title("Two informative features, one cluster per class", fontsize='small') X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=2, n_clusters_per_class=1) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.subplot(323) plt.title("Two informative features, two clusters per class", fontsize='small') X2, Y2 = make_classification(n_features=2, n_redundant=0, n_informative=2) plt.scatter(X2[:, 0], X2[:, 1], marker='o', c=Y2) plt.subplot(324) plt.title("Multi-class, two informative features, one cluster", fontsize='small') X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=2, n_clusters_per_class=1, n_classes=3) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.subplot(325) plt.title("Three blobs", fontsize='small') X1, Y1 = make_blobs(n_features=2, centers=3) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.subplot(326) plt.title("Gaussian divided into three quantiles", fontsize='small') X1, Y1 = make_gaussian_quantiles(n_features=2, n_classes=3) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.show()
bsd-3-clause
cfjhallgren/shogun
examples/undocumented/python/graphical/so_multiclass_BMRM.py
11
2823
#!/usr/bin/env python import numpy as np import matplotlib.pyplot as plt from shogun import RealFeatures from shogun import MulticlassModel, MulticlassSOLabels, RealNumber, DualLibQPBMSOSVM from shogun import BMRM, PPBMRM, P3BMRM from shogun import StructuredAccuracy def fill_data(cnt, minv, maxv): x1 = np.linspace(minv, maxv, cnt) a, b = np.meshgrid(x1, x1) X = np.array((np.ravel(a), np.ravel(b))) y = np.zeros((1, cnt*cnt)) tmp = cnt*cnt; y[0, tmp/3:(tmp/3)*2]=1 y[0, tmp/3*2:(tmp/3)*3]=2 return X, y.flatten() def gen_data(): covs = np.array([[[0., -1. ], [2.5, .7]], [[3., -1.5], [1.2, .3]], [[ 2, 0 ], [ .0, 1.5 ]]]) X = np.r_[np.dot(np.random.randn(N, dim), covs[0]) + np.array([0, 10]), np.dot(np.random.randn(N, dim), covs[1]) + np.array([-10, -10]), np.dot(np.random.randn(N, dim), covs[2]) + np.array([10, -10])]; Y = np.hstack((np.zeros(N), np.ones(N), 2*np.ones(N))) return X, Y def get_so_labels(out): N = out.get_num_labels() l = np.zeros(N) for i in xrange(N): l[i] = RealNumber.obtain_from_generic(out.get_label(i)).value return l # Number of classes M = 3 # Number of samples of each class N = 1000 # Dimension of the data dim = 2 X, y = gen_data() cnt = 250 X2, y2 = fill_data(cnt, np.min(X), np.max(X)) labels = MulticlassSOLabels(y) features = RealFeatures(X.T) model = MulticlassModel(features, labels) lambda_ = 1e1 sosvm = DualLibQPBMSOSVM(model, labels, lambda_) sosvm.set_cleanAfter(10) # number of iterations that cutting plane has to be inactive for to be removed sosvm.set_cleanICP(True) # enables inactive cutting plane removal feature sosvm.set_TolRel(0.001) # set relative tolerance sosvm.set_verbose(True) # enables verbosity of the solver sosvm.set_cp_models(16) # set number of cutting plane models sosvm.set_solver(BMRM) # select training algorithm #sosvm.set_solver(PPBMRM) #sosvm.set_solver(P3BMRM) sosvm.train() res = sosvm.get_result() Fps = np.array(res.get_hist_Fp_vector()) Fds = np.array(res.get_hist_Fp_vector()) wdists = np.array(res.get_hist_wdist_vector()) plt.figure() plt.subplot(221) plt.title('Fp and Fd history') plt.plot(xrange(res.get_n_iters()), Fps, hold=True) plt.plot(xrange(res.get_n_iters()), Fds, hold=True) plt.subplot(222) plt.title('w dist history') plt.plot(xrange(res.get_n_iters()), wdists) # Evaluation out = sosvm.apply() Evaluation = StructuredAccuracy() acc = Evaluation.evaluate(out, labels) print "Correct classification rate: %0.4f%%" % ( 100.0*acc ) # show figure Z = get_so_labels(sosvm.apply(RealFeatures(X2))) x = (X2[0,:]).reshape(cnt, cnt) y = (X2[1,:]).reshape(cnt, cnt) z = Z.reshape(cnt, cnt) plt.subplot(223) plt.pcolor(x, y, z) plt.contour(x, y, z, linewidths=1, colors='black', hold=True) plt.plot(X[:,0], X[:,1], 'yo') plt.axis('tight') plt.title('Classification') plt.show()
gpl-3.0
mikebenfield/scikit-learn
sklearn/decomposition/tests/test_sparse_pca.py
63
6459
# Author: Vlad Niculae # License: BSD 3 clause import sys import numpy as np from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import SkipTest from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import if_safe_multiprocessing_with_blas from sklearn.decomposition import SparsePCA, MiniBatchSparsePCA from sklearn.utils import check_random_state def generate_toy_data(n_components, n_samples, image_size, random_state=None): n_features = image_size[0] * image_size[1] rng = check_random_state(random_state) U = rng.randn(n_samples, n_components) V = rng.randn(n_components, n_features) centers = [(3, 3), (6, 7), (8, 1)] sz = [1, 2, 1] for k in range(n_components): img = np.zeros(image_size) xmin, xmax = centers[k][0] - sz[k], centers[k][0] + sz[k] ymin, ymax = centers[k][1] - sz[k], centers[k][1] + sz[k] img[xmin:xmax][:, ymin:ymax] = 1.0 V[k, :] = img.ravel() # Y is defined by : Y = UV + noise Y = np.dot(U, V) Y += 0.1 * rng.randn(Y.shape[0], Y.shape[1]) # Add noise return Y, U, V # SparsePCA can be a bit slow. To avoid having test times go up, we # test different aspects of the code in the same test def test_correct_shapes(): rng = np.random.RandomState(0) X = rng.randn(12, 10) spca = SparsePCA(n_components=8, random_state=rng) U = spca.fit_transform(X) assert_equal(spca.components_.shape, (8, 10)) assert_equal(U.shape, (12, 8)) # test overcomplete decomposition spca = SparsePCA(n_components=13, random_state=rng) U = spca.fit_transform(X) assert_equal(spca.components_.shape, (13, 10)) assert_equal(U.shape, (12, 13)) def test_fit_transform(): alpha = 1 rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array spca_lars = SparsePCA(n_components=3, method='lars', alpha=alpha, random_state=0) spca_lars.fit(Y) # Test that CD gives similar results spca_lasso = SparsePCA(n_components=3, method='cd', random_state=0, alpha=alpha) spca_lasso.fit(Y) assert_array_almost_equal(spca_lasso.components_, spca_lars.components_) # Test that deprecated ridge_alpha parameter throws warning warning_msg = "The ridge_alpha parameter on transform()" assert_warns_message(DeprecationWarning, warning_msg, spca_lars.transform, Y, ridge_alpha=0.01) assert_warns_message(DeprecationWarning, warning_msg, spca_lars.transform, Y, ridge_alpha=None) @if_safe_multiprocessing_with_blas def test_fit_transform_parallel(): alpha = 1 rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array spca_lars = SparsePCA(n_components=3, method='lars', alpha=alpha, random_state=0) spca_lars.fit(Y) U1 = spca_lars.transform(Y) # Test multiple CPUs spca = SparsePCA(n_components=3, n_jobs=2, method='lars', alpha=alpha, random_state=0).fit(Y) U2 = spca.transform(Y) assert_true(not np.all(spca_lars.components_ == 0)) assert_array_almost_equal(U1, U2) def test_transform_nan(): # Test that SparsePCA won't return NaN when there is 0 feature in all # samples. rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array Y[:, 0] = 0 estimator = SparsePCA(n_components=8) assert_false(np.any(np.isnan(estimator.fit_transform(Y)))) def test_fit_transform_tall(): rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 65, (8, 8), random_state=rng) # tall array spca_lars = SparsePCA(n_components=3, method='lars', random_state=rng) U1 = spca_lars.fit_transform(Y) spca_lasso = SparsePCA(n_components=3, method='cd', random_state=rng) U2 = spca_lasso.fit(Y).transform(Y) assert_array_almost_equal(U1, U2) def test_initialization(): rng = np.random.RandomState(0) U_init = rng.randn(5, 3) V_init = rng.randn(3, 4) model = SparsePCA(n_components=3, U_init=U_init, V_init=V_init, max_iter=0, random_state=rng) model.fit(rng.randn(5, 4)) assert_array_equal(model.components_, V_init) def test_mini_batch_correct_shapes(): rng = np.random.RandomState(0) X = rng.randn(12, 10) pca = MiniBatchSparsePCA(n_components=8, random_state=rng) U = pca.fit_transform(X) assert_equal(pca.components_.shape, (8, 10)) assert_equal(U.shape, (12, 8)) # test overcomplete decomposition pca = MiniBatchSparsePCA(n_components=13, random_state=rng) U = pca.fit_transform(X) assert_equal(pca.components_.shape, (13, 10)) assert_equal(U.shape, (12, 13)) def test_mini_batch_fit_transform(): raise SkipTest("skipping mini_batch_fit_transform.") alpha = 1 rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array spca_lars = MiniBatchSparsePCA(n_components=3, random_state=0, alpha=alpha).fit(Y) U1 = spca_lars.transform(Y) # Test multiple CPUs if sys.platform == 'win32': # fake parallelism for win32 import sklearn.externals.joblib.parallel as joblib_par _mp = joblib_par.multiprocessing joblib_par.multiprocessing = None try: U2 = MiniBatchSparsePCA(n_components=3, n_jobs=2, alpha=alpha, random_state=0).fit(Y).transform(Y) finally: joblib_par.multiprocessing = _mp else: # we can efficiently use parallelism U2 = MiniBatchSparsePCA(n_components=3, n_jobs=2, alpha=alpha, random_state=0).fit(Y).transform(Y) assert_true(not np.all(spca_lars.components_ == 0)) assert_array_almost_equal(U1, U2) # Test that CD gives similar results spca_lasso = MiniBatchSparsePCA(n_components=3, method='cd', alpha=alpha, random_state=0).fit(Y) assert_array_almost_equal(spca_lasso.components_, spca_lars.components_)
bsd-3-clause
RPGOne/Skynet
imbalanced-learn-master/examples/over-sampling/plot_adasyn.py
3
1878
""" ====== ADASYN ====== An illustration of the Adaptive Synthetic Sampling Approach for Imbalanced Learning ADASYN method. """ print(__doc__) import matplotlib.pyplot as plt import seaborn as sns sns.set() # Define some color for the plotting almost_black = '#262626' palette = sns.color_palette() from sklearn.datasets import make_classification from sklearn.decomposition import PCA from imblearn.over_sampling import ADASYN # Generate the dataset X, y = make_classification(n_classes=2, class_sep=2, weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0, n_features=20, n_clusters_per_class=1, n_samples=5000, random_state=10) # Instanciate a PCA object for the sake of easy visualisation pca = PCA(n_components=2) # Fit and transform x to visualise inside a 2D feature space X_vis = pca.fit_transform(X) # Apply the random over-sampling ada = ADASYN() X_resampled, y_resampled = ada.fit_sample(X, y) X_res_vis = pca.transform(X_resampled) # Two subplots, unpack the axes array immediately f, (ax1, ax2) = plt.subplots(1, 2) ax1.scatter(X_vis[y == 0, 0], X_vis[y == 0, 1], label="Class #0", alpha=0.5, edgecolor=almost_black, facecolor=palette[0], linewidth=0.15) ax1.scatter(X_vis[y == 1, 0], X_vis[y == 1, 1], label="Class #1", alpha=0.5, edgecolor=almost_black, facecolor=palette[2], linewidth=0.15) ax1.set_title('Original set') ax2.scatter(X_res_vis[y_resampled == 0, 0], X_res_vis[y_resampled == 0, 1], label="Class #0", alpha=.5, edgecolor=almost_black, facecolor=palette[0], linewidth=0.15) ax2.scatter(X_res_vis[y_resampled == 1, 0], X_res_vis[y_resampled == 1, 1], label="Class #1", alpha=.5, edgecolor=almost_black, facecolor=palette[2], linewidth=0.15) ax2.set_title('ADASYN') plt.show()
bsd-3-clause
mengli/PcmAudioRecorder
self_driving/optical_flow/python/common.py
11
6701
#!/usr/bin/env python ''' This module contains some common routines used by other samples. ''' # Python 2/3 compatibility from __future__ import print_function import sys PY3 = sys.version_info[0] == 3 if PY3: from functools import reduce import numpy as np import cv2 # built-in modules import os import itertools as it from contextlib import contextmanager image_extensions = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.tiff', '.pbm', '.pgm', '.ppm'] class Bunch(object): def __init__(self, **kw): self.__dict__.update(kw) def __str__(self): return str(self.__dict__) def splitfn(fn): path, fn = os.path.split(fn) name, ext = os.path.splitext(fn) return path, name, ext def anorm2(a): return (a*a).sum(-1) def anorm(a): return np.sqrt( anorm2(a) ) def homotrans(H, x, y): xs = H[0, 0]*x + H[0, 1]*y + H[0, 2] ys = H[1, 0]*x + H[1, 1]*y + H[1, 2] s = H[2, 0]*x + H[2, 1]*y + H[2, 2] return xs/s, ys/s def to_rect(a): a = np.ravel(a) if len(a) == 2: a = (0, 0, a[0], a[1]) return np.array(a, np.float64).reshape(2, 2) def rect2rect_mtx(src, dst): src, dst = to_rect(src), to_rect(dst) cx, cy = (dst[1] - dst[0]) / (src[1] - src[0]) tx, ty = dst[0] - src[0] * (cx, cy) M = np.float64([[ cx, 0, tx], [ 0, cy, ty], [ 0, 0, 1]]) return M def lookat(eye, target, up = (0, 0, 1)): fwd = np.asarray(target, np.float64) - eye fwd /= anorm(fwd) right = np.cross(fwd, up) right /= anorm(right) down = np.cross(fwd, right) R = np.float64([right, down, fwd]) tvec = -np.dot(R, eye) return R, tvec def mtx2rvec(R): w, u, vt = cv2.SVDecomp(R - np.eye(3)) p = vt[0] + u[:,0]*w[0] # same as np.dot(R, vt[0]) c = np.dot(vt[0], p) s = np.dot(vt[1], p) axis = np.cross(vt[0], vt[1]) return axis * np.arctan2(s, c) def draw_str(dst, target, s): x, y = target cv2.putText(dst, s, (x+1, y+1), cv2.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 0), thickness = 2, lineType=cv2.LINE_AA) cv2.putText(dst, s, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (255, 255, 255), lineType=cv2.LINE_AA) class Sketcher: def __init__(self, windowname, dests, colors_func): self.prev_pt = None self.windowname = windowname self.dests = dests self.colors_func = colors_func self.dirty = False self.show() cv2.setMouseCallback(self.windowname, self.on_mouse) def show(self): cv2.imshow(self.windowname, self.dests[0]) def on_mouse(self, event, x, y, flags, param): pt = (x, y) if event == cv2.EVENT_LBUTTONDOWN: self.prev_pt = pt elif event == cv2.EVENT_LBUTTONUP: self.prev_pt = None if self.prev_pt and flags & cv2.EVENT_FLAG_LBUTTON: for dst, color in zip(self.dests, self.colors_func()): cv2.line(dst, self.prev_pt, pt, color, 5) self.dirty = True self.prev_pt = pt self.show() # palette data from matplotlib/_cm.py _jet_data = {'red': ((0., 0, 0), (0.35, 0, 0), (0.66, 1, 1), (0.89,1, 1), (1, 0.5, 0.5)), 'green': ((0., 0, 0), (0.125,0, 0), (0.375,1, 1), (0.64,1, 1), (0.91,0,0), (1, 0, 0)), 'blue': ((0., 0.5, 0.5), (0.11, 1, 1), (0.34, 1, 1), (0.65,0, 0), (1, 0, 0))} cmap_data = { 'jet' : _jet_data } def make_cmap(name, n=256): data = cmap_data[name] xs = np.linspace(0.0, 1.0, n) channels = [] eps = 1e-6 for ch_name in ['blue', 'green', 'red']: ch_data = data[ch_name] xp, yp = [], [] for x, y1, y2 in ch_data: xp += [x, x+eps] yp += [y1, y2] ch = np.interp(xs, xp, yp) channels.append(ch) return np.uint8(np.array(channels).T*255) def nothing(*arg, **kw): pass def clock(): return cv2.getTickCount() / cv2.getTickFrequency() @contextmanager def Timer(msg): print(msg, '...',) start = clock() try: yield finally: print("%.2f ms" % ((clock()-start)*1000)) class StatValue: def __init__(self, smooth_coef = 0.5): self.value = None self.smooth_coef = smooth_coef def update(self, v): if self.value is None: self.value = v else: c = self.smooth_coef self.value = c * self.value + (1.0-c) * v class RectSelector: def __init__(self, win, callback): self.win = win self.callback = callback cv2.setMouseCallback(win, self.onmouse) self.drag_start = None self.drag_rect = None def onmouse(self, event, x, y, flags, param): x, y = np.int16([x, y]) # BUG if event == cv2.EVENT_LBUTTONDOWN: self.drag_start = (x, y) return if self.drag_start: if flags & cv2.EVENT_FLAG_LBUTTON: xo, yo = self.drag_start x0, y0 = np.minimum([xo, yo], [x, y]) x1, y1 = np.maximum([xo, yo], [x, y]) self.drag_rect = None if x1-x0 > 0 and y1-y0 > 0: self.drag_rect = (x0, y0, x1, y1) else: rect = self.drag_rect self.drag_start = None self.drag_rect = None if rect: self.callback(rect) def draw(self, vis): if not self.drag_rect: return False x0, y0, x1, y1 = self.drag_rect cv2.rectangle(vis, (x0, y0), (x1, y1), (0, 255, 0), 2) return True @property def dragging(self): return self.drag_rect is not None def grouper(n, iterable, fillvalue=None): '''grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx''' args = [iter(iterable)] * n if PY3: output = it.zip_longest(fillvalue=fillvalue, *args) else: output = it.izip_longest(fillvalue=fillvalue, *args) return output def mosaic(w, imgs): '''Make a grid from images. w -- number of grid columns imgs -- images (must have same size and format) ''' imgs = iter(imgs) if PY3: img0 = next(imgs) else: img0 = imgs.next() pad = np.zeros_like(img0) imgs = it.chain([img0], imgs) rows = grouper(w, imgs, pad) return np.vstack(map(np.hstack, rows)) def getsize(img): h, w = img.shape[:2] return w, h def mdot(*args): return reduce(np.dot, args) def draw_keypoints(vis, keypoints, color = (0, 255, 255)): for kp in keypoints: x, y = kp.pt cv2.circle(vis, (int(x), int(y)), 2, color)
apache-2.0
vybstat/scikit-learn
sklearn/neighbors/tests/test_kde.py
208
5556
import numpy as np from sklearn.utils.testing import (assert_allclose, assert_raises, assert_equal) from sklearn.neighbors import KernelDensity, KDTree, NearestNeighbors from sklearn.neighbors.ball_tree import kernel_norm from sklearn.pipeline import make_pipeline from sklearn.datasets import make_blobs from sklearn.grid_search import GridSearchCV from sklearn.preprocessing import StandardScaler def compute_kernel_slow(Y, X, kernel, h): d = np.sqrt(((Y[:, None, :] - X) ** 2).sum(-1)) norm = kernel_norm(h, X.shape[1], kernel) / X.shape[0] if kernel == 'gaussian': return norm * np.exp(-0.5 * (d * d) / (h * h)).sum(-1) elif kernel == 'tophat': return norm * (d < h).sum(-1) elif kernel == 'epanechnikov': return norm * ((1.0 - (d * d) / (h * h)) * (d < h)).sum(-1) elif kernel == 'exponential': return norm * (np.exp(-d / h)).sum(-1) elif kernel == 'linear': return norm * ((1 - d / h) * (d < h)).sum(-1) elif kernel == 'cosine': return norm * (np.cos(0.5 * np.pi * d / h) * (d < h)).sum(-1) else: raise ValueError('kernel not recognized') def test_kernel_density(n_samples=100, n_features=3): rng = np.random.RandomState(0) X = rng.randn(n_samples, n_features) Y = rng.randn(n_samples, n_features) for kernel in ['gaussian', 'tophat', 'epanechnikov', 'exponential', 'linear', 'cosine']: for bandwidth in [0.01, 0.1, 1]: dens_true = compute_kernel_slow(Y, X, kernel, bandwidth) def check_results(kernel, bandwidth, atol, rtol): kde = KernelDensity(kernel=kernel, bandwidth=bandwidth, atol=atol, rtol=rtol) log_dens = kde.fit(X).score_samples(Y) assert_allclose(np.exp(log_dens), dens_true, atol=atol, rtol=max(1E-7, rtol)) assert_allclose(np.exp(kde.score(Y)), np.prod(dens_true), atol=atol, rtol=max(1E-7, rtol)) for rtol in [0, 1E-5]: for atol in [1E-6, 1E-2]: for breadth_first in (True, False): yield (check_results, kernel, bandwidth, atol, rtol) def test_kernel_density_sampling(n_samples=100, n_features=3): rng = np.random.RandomState(0) X = rng.randn(n_samples, n_features) bandwidth = 0.2 for kernel in ['gaussian', 'tophat']: # draw a tophat sample kde = KernelDensity(bandwidth, kernel=kernel).fit(X) samp = kde.sample(100) assert_equal(X.shape, samp.shape) # check that samples are in the right range nbrs = NearestNeighbors(n_neighbors=1).fit(X) dist, ind = nbrs.kneighbors(X, return_distance=True) if kernel == 'tophat': assert np.all(dist < bandwidth) elif kernel == 'gaussian': # 5 standard deviations is safe for 100 samples, but there's a # very small chance this test could fail. assert np.all(dist < 5 * bandwidth) # check unsupported kernels for kernel in ['epanechnikov', 'exponential', 'linear', 'cosine']: kde = KernelDensity(bandwidth, kernel=kernel).fit(X) assert_raises(NotImplementedError, kde.sample, 100) # non-regression test: used to return a scalar X = rng.randn(4, 1) kde = KernelDensity(kernel="gaussian").fit(X) assert_equal(kde.sample().shape, (1, 1)) def test_kde_algorithm_metric_choice(): # Smoke test for various metrics and algorithms rng = np.random.RandomState(0) X = rng.randn(10, 2) # 2 features required for haversine dist. Y = rng.randn(10, 2) for algorithm in ['auto', 'ball_tree', 'kd_tree']: for metric in ['euclidean', 'minkowski', 'manhattan', 'chebyshev', 'haversine']: if algorithm == 'kd_tree' and metric not in KDTree.valid_metrics: assert_raises(ValueError, KernelDensity, algorithm=algorithm, metric=metric) else: kde = KernelDensity(algorithm=algorithm, metric=metric) kde.fit(X) y_dens = kde.score_samples(Y) assert_equal(y_dens.shape, Y.shape[:1]) def test_kde_score(n_samples=100, n_features=3): pass #FIXME #np.random.seed(0) #X = np.random.random((n_samples, n_features)) #Y = np.random.random((n_samples, n_features)) def test_kde_badargs(): assert_raises(ValueError, KernelDensity, algorithm='blah') assert_raises(ValueError, KernelDensity, bandwidth=0) assert_raises(ValueError, KernelDensity, kernel='blah') assert_raises(ValueError, KernelDensity, metric='blah') assert_raises(ValueError, KernelDensity, algorithm='kd_tree', metric='blah') def test_kde_pipeline_gridsearch(): # test that kde plays nice in pipelines and grid-searches X, _ = make_blobs(cluster_std=.1, random_state=1, centers=[[0, 1], [1, 0], [0, 0]]) pipe1 = make_pipeline(StandardScaler(with_mean=False, with_std=False), KernelDensity(kernel="gaussian")) params = dict(kerneldensity__bandwidth=[0.001, 0.01, 0.1, 1, 10]) search = GridSearchCV(pipe1, param_grid=params, cv=5) search.fit(X) assert_equal(search.best_params_['kerneldensity__bandwidth'], .1)
bsd-3-clause
zasdfgbnm/tensorflow
tensorflow/contrib/metrics/python/ops/metric_ops.py
1
167419
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains metric-computing operations on streamed tensors. Module documentation, including "@@" callouts, should be put in third_party/tensorflow/contrib/metrics/__init__.py """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections as collections_lib from tensorflow.python.eager import context from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import confusion_matrix from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import metrics from tensorflow.python.ops import metrics_impl from tensorflow.python.ops import nn from tensorflow.python.ops import state_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import weights_broadcast_ops from tensorflow.python.ops.distributions.normal import Normal from tensorflow.python.util.deprecation import deprecated # Epsilon constant used to represent extremely small quantity. _EPSILON = 1e-7 def _safe_div(numerator, denominator, name): """Divides two values, returning 0 if the denominator is <= 0. Args: numerator: A real `Tensor`. denominator: A real `Tensor`, with dtype matching `numerator`. name: Name for the returned op. Returns: 0 if `denominator` <= 0, else `numerator` / `denominator` """ return array_ops.where( math_ops.greater(denominator, 0), math_ops.truediv(numerator, denominator), 0, name=name) def streaming_true_positives(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None): """Sum the weights of true_positives. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: The predicted values, a `Tensor` of arbitrary dimensions. Will be cast to `bool`. labels: The ground truth values, a `Tensor` whose dimensions must match `predictions`. Will be cast to `bool`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that the metric value variable should be added to. updates_collections: An optional list of collections that the metric update ops should be added to. name: An optional variable_scope name. Returns: value_tensor: A `Tensor` representing the current value of the metric. update_op: An operation that accumulates the error from a batch of data. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.true_positives( predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) def streaming_true_negatives(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None): """Sum the weights of true_negatives. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: The predicted values, a `Tensor` of arbitrary dimensions. Will be cast to `bool`. labels: The ground truth values, a `Tensor` whose dimensions must match `predictions`. Will be cast to `bool`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that the metric value variable should be added to. updates_collections: An optional list of collections that the metric update ops should be added to. name: An optional variable_scope name. Returns: value_tensor: A `Tensor` representing the current value of the metric. update_op: An operation that accumulates the error from a batch of data. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.true_negatives( predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) def streaming_false_positives(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None): """Sum the weights of false positives. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: The predicted values, a `Tensor` of arbitrary dimensions. Will be cast to `bool`. labels: The ground truth values, a `Tensor` whose dimensions must match `predictions`. Will be cast to `bool`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that the metric value variable should be added to. updates_collections: An optional list of collections that the metric update ops should be added to. name: An optional variable_scope name. Returns: value_tensor: A `Tensor` representing the current value of the metric. update_op: An operation that accumulates the error from a batch of data. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.false_positives( predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) def streaming_false_negatives(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the total number of false negatives. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: The predicted values, a `Tensor` of arbitrary dimensions. Will be cast to `bool`. labels: The ground truth values, a `Tensor` whose dimensions must match `predictions`. Will be cast to `bool`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that the metric value variable should be added to. updates_collections: An optional list of collections that the metric update ops should be added to. name: An optional variable_scope name. Returns: value_tensor: A `Tensor` representing the current value of the metric. update_op: An operation that accumulates the error from a batch of data. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `values`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.false_negatives( predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) def streaming_mean(values, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the (weighted) mean of the given values. The `streaming_mean` function creates two local variables, `total` and `count` that are used to compute the average of `values`. This average is ultimately returned as `mean` which is an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `mean`. `update_op` increments `total` with the reduced sum of the product of `values` and `weights`, and it increments `count` with the reduced sum of `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: values: A `Tensor` of arbitrary dimensions. weights: `Tensor` whose rank is either 0, or the same rank as `values`, and must be broadcastable to `values` (i.e., all dimensions must be either `1`, or the same as the corresponding `values` dimension). metrics_collections: An optional list of collections that `mean` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: mean: A `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately and whose value matches `mean`. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `values`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.mean( values=values, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) def streaming_mean_tensor(values, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the element-wise (weighted) mean of the given tensors. In contrast to the `streaming_mean` function which returns a scalar with the mean, this function returns an average tensor with the same shape as the input tensors. The `streaming_mean_tensor` function creates two local variables, `total_tensor` and `count_tensor` that are used to compute the average of `values`. This average is ultimately returned as `mean` which is an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `mean`. `update_op` increments `total` with the reduced sum of the product of `values` and `weights`, and it increments `count` with the reduced sum of `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: values: A `Tensor` of arbitrary dimensions. weights: `Tensor` whose rank is either 0, or the same rank as `values`, and must be broadcastable to `values` (i.e., all dimensions must be either `1`, or the same as the corresponding `values` dimension). metrics_collections: An optional list of collections that `mean` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: mean: A float `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately and whose value matches `mean`. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `values`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.mean_tensor( values=values, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) @deprecated(None, 'Please switch to tf.metrics.accuracy. Note that the order of the ' 'labels and predictions arguments has been switched.') def streaming_accuracy(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None): """Calculates how often `predictions` matches `labels`. The `streaming_accuracy` function creates two local variables, `total` and `count` that are used to compute the frequency with which `predictions` matches `labels`. This frequency is ultimately returned as `accuracy`: an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `accuracy`. Internally, an `is_correct` operation computes a `Tensor` with elements 1.0 where the corresponding elements of `predictions` and `labels` match and 0.0 otherwise. Then `update_op` increments `total` with the reduced sum of the product of `weights` and `is_correct`, and it increments `count` with the reduced sum of `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: The predicted values, a `Tensor` of any shape. labels: The ground truth values, a `Tensor` whose shape matches `predictions`. weights: `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `accuracy` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: accuracy: A `Tensor` representing the accuracy, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately and whose value matches `accuracy`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.accuracy( predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) def streaming_precision(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the precision of the predictions with respect to the labels. The `streaming_precision` function creates two local variables, `true_positives` and `false_positives`, that are used to compute the precision. This value is ultimately returned as `precision`, an idempotent operation that simply divides `true_positives` by the sum of `true_positives` and `false_positives`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `precision`. `update_op` weights each prediction by the corresponding value in `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: The predicted values, a `bool` `Tensor` of arbitrary shape. labels: The ground truth values, a `bool` `Tensor` whose dimensions must match `predictions`. weights: `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `precision` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: precision: Scalar float `Tensor` with the value of `true_positives` divided by the sum of `true_positives` and `false_positives`. update_op: `Operation` that increments `true_positives` and `false_positives` variables appropriately and whose value matches `precision`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.precision( predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) def streaming_recall(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the recall of the predictions with respect to the labels. The `streaming_recall` function creates two local variables, `true_positives` and `false_negatives`, that are used to compute the recall. This value is ultimately returned as `recall`, an idempotent operation that simply divides `true_positives` by the sum of `true_positives` and `false_negatives`. For estimation of the metric over a stream of data, the function creates an `update_op` that updates these variables and returns the `recall`. `update_op` weights each prediction by the corresponding value in `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: The predicted values, a `bool` `Tensor` of arbitrary shape. labels: The ground truth values, a `bool` `Tensor` whose dimensions must match `predictions`. weights: `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `recall` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: recall: Scalar float `Tensor` with the value of `true_positives` divided by the sum of `true_positives` and `false_negatives`. update_op: `Operation` that increments `true_positives` and `false_negatives` variables appropriately and whose value matches `recall`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.recall( predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) def streaming_false_positive_rate(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the false positive rate of predictions with respect to labels. The `false_positive_rate` function creates two local variables, `false_positives` and `true_negatives`, that are used to compute the false positive rate. This value is ultimately returned as `false_positive_rate`, an idempotent operation that simply divides `false_positives` by the sum of `false_positives` and `true_negatives`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `false_positive_rate`. `update_op` weights each prediction by the corresponding value in `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: The predicted values, a `Tensor` of arbitrary dimensions. Will be cast to `bool`. labels: The ground truth values, a `Tensor` whose dimensions must match `predictions`. Will be cast to `bool`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `false_positive_rate` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: false_positive_rate: Scalar float `Tensor` with the value of `false_positives` divided by the sum of `false_positives` and `true_negatives`. update_op: `Operation` that increments `false_positives` and `true_negatives` variables appropriately and whose value matches `false_positive_rate`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope(name, 'false_positive_rate', (predictions, labels, weights)): predictions, labels, weights = metrics_impl._remove_squeezable_dimensions( # pylint: disable=protected-access predictions=math_ops.cast(predictions, dtype=dtypes.bool), labels=math_ops.cast(labels, dtype=dtypes.bool), weights=weights) false_p, false_positives_update_op = metrics.false_positives( labels=labels, predictions=predictions, weights=weights, metrics_collections=None, updates_collections=None, name=None) true_n, true_negatives_update_op = metrics.true_negatives( labels=labels, predictions=predictions, weights=weights, metrics_collections=None, updates_collections=None, name=None) def compute_fpr(fp, tn, name): return array_ops.where( math_ops.greater(fp + tn, 0), math_ops.div(fp, fp + tn), 0, name) fpr = compute_fpr(false_p, true_n, 'value') update_op = compute_fpr(false_positives_update_op, true_negatives_update_op, 'update_op') if metrics_collections: ops.add_to_collections(metrics_collections, fpr) if updates_collections: ops.add_to_collections(updates_collections, update_op) return fpr, update_op def streaming_false_negative_rate(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the false negative rate of predictions with respect to labels. The `false_negative_rate` function creates two local variables, `false_negatives` and `true_positives`, that are used to compute the false positive rate. This value is ultimately returned as `false_negative_rate`, an idempotent operation that simply divides `false_negatives` by the sum of `false_negatives` and `true_positives`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `false_negative_rate`. `update_op` weights each prediction by the corresponding value in `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: The predicted values, a `Tensor` of arbitrary dimensions. Will be cast to `bool`. labels: The ground truth values, a `Tensor` whose dimensions must match `predictions`. Will be cast to `bool`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `false_negative_rate` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: false_negative_rate: Scalar float `Tensor` with the value of `false_negatives` divided by the sum of `false_negatives` and `true_positives`. update_op: `Operation` that increments `false_negatives` and `true_positives` variables appropriately and whose value matches `false_negative_rate`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope(name, 'false_negative_rate', (predictions, labels, weights)): predictions, labels, weights = metrics_impl._remove_squeezable_dimensions( # pylint: disable=protected-access predictions=math_ops.cast(predictions, dtype=dtypes.bool), labels=math_ops.cast(labels, dtype=dtypes.bool), weights=weights) false_n, false_negatives_update_op = metrics.false_negatives( labels, predictions, weights, metrics_collections=None, updates_collections=None, name=None) true_p, true_positives_update_op = metrics.true_positives( labels, predictions, weights, metrics_collections=None, updates_collections=None, name=None) def compute_fnr(fn, tp, name): return array_ops.where( math_ops.greater(fn + tp, 0), math_ops.div(fn, fn + tp), 0, name) fnr = compute_fnr(false_n, true_p, 'value') update_op = compute_fnr(false_negatives_update_op, true_positives_update_op, 'update_op') if metrics_collections: ops.add_to_collections(metrics_collections, fnr) if updates_collections: ops.add_to_collections(updates_collections, update_op) return fnr, update_op def _streaming_confusion_matrix_at_thresholds(predictions, labels, thresholds, weights=None, includes=None): """Computes true_positives, false_negatives, true_negatives, false_positives. This function creates up to four local variables, `true_positives`, `true_negatives`, `false_positives` and `false_negatives`. `true_positive[i]` is defined as the total weight of values in `predictions` above `thresholds[i]` whose corresponding entry in `labels` is `True`. `false_negatives[i]` is defined as the total weight of values in `predictions` at most `thresholds[i]` whose corresponding entry in `labels` is `True`. `true_negatives[i]` is defined as the total weight of values in `predictions` at most `thresholds[i]` whose corresponding entry in `labels` is `False`. `false_positives[i]` is defined as the total weight of values in `predictions` above `thresholds[i]` whose corresponding entry in `labels` is `False`. For estimation of these metrics over a stream of data, for each metric the function respectively creates an `update_op` operation that updates the variable and returns its value. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. labels: A `Tensor` whose shape matches `predictions`. `labels` will be cast to `bool`. thresholds: A python list or tuple of float thresholds in `[0, 1]`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). includes: Tuple of keys to return, from 'tp', 'fn', 'tn', fp'. If `None`, default to all four. Returns: values: Dict of variables of shape `[len(thresholds)]`. Keys are from `includes`. update_ops: Dict of operations that increments the `values`. Keys are from `includes`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if `includes` contains invalid keys. """ all_includes = ('tp', 'fn', 'tn', 'fp') if includes is None: includes = all_includes else: for include in includes: if include not in all_includes: raise ValueError('Invalid key: %s.' % include) predictions, labels, weights = metrics_impl._remove_squeezable_dimensions( # pylint: disable=protected-access predictions, labels, weights) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) num_thresholds = len(thresholds) # Reshape predictions and labels. predictions_2d = array_ops.reshape(predictions, [-1, 1]) labels_2d = array_ops.reshape( math_ops.cast(labels, dtype=dtypes.bool), [1, -1]) # Use static shape if known. num_predictions = predictions_2d.get_shape().as_list()[0] # Otherwise use dynamic shape. if num_predictions is None: num_predictions = array_ops.shape(predictions_2d)[0] thresh_tiled = array_ops.tile( array_ops.expand_dims(array_ops.constant(thresholds), [1]), array_ops.stack([1, num_predictions])) # Tile the predictions after thresholding them across different thresholds. pred_is_pos = math_ops.greater( array_ops.tile(array_ops.transpose(predictions_2d), [num_thresholds, 1]), thresh_tiled) if ('fn' in includes) or ('tn' in includes): pred_is_neg = math_ops.logical_not(pred_is_pos) # Tile labels by number of thresholds label_is_pos = array_ops.tile(labels_2d, [num_thresholds, 1]) if ('fp' in includes) or ('tn' in includes): label_is_neg = math_ops.logical_not(label_is_pos) if weights is not None: broadcast_weights = weights_broadcast_ops.broadcast_weights( math_ops.to_float(weights), predictions) weights_tiled = array_ops.tile( array_ops.reshape(broadcast_weights, [1, -1]), [num_thresholds, 1]) thresh_tiled.get_shape().assert_is_compatible_with( weights_tiled.get_shape()) else: weights_tiled = None values = {} update_ops = {} if 'tp' in includes: true_positives = metrics_impl.metric_variable( [num_thresholds], dtypes.float32, name='true_positives') is_true_positive = math_ops.to_float( math_ops.logical_and(label_is_pos, pred_is_pos)) if weights_tiled is not None: is_true_positive *= weights_tiled update_ops['tp'] = state_ops.assign_add(true_positives, math_ops.reduce_sum( is_true_positive, 1)) values['tp'] = true_positives if 'fn' in includes: false_negatives = metrics_impl.metric_variable( [num_thresholds], dtypes.float32, name='false_negatives') is_false_negative = math_ops.to_float( math_ops.logical_and(label_is_pos, pred_is_neg)) if weights_tiled is not None: is_false_negative *= weights_tiled update_ops['fn'] = state_ops.assign_add(false_negatives, math_ops.reduce_sum( is_false_negative, 1)) values['fn'] = false_negatives if 'tn' in includes: true_negatives = metrics_impl.metric_variable( [num_thresholds], dtypes.float32, name='true_negatives') is_true_negative = math_ops.to_float( math_ops.logical_and(label_is_neg, pred_is_neg)) if weights_tiled is not None: is_true_negative *= weights_tiled update_ops['tn'] = state_ops.assign_add(true_negatives, math_ops.reduce_sum( is_true_negative, 1)) values['tn'] = true_negatives if 'fp' in includes: false_positives = metrics_impl.metric_variable( [num_thresholds], dtypes.float32, name='false_positives') is_false_positive = math_ops.to_float( math_ops.logical_and(label_is_neg, pred_is_pos)) if weights_tiled is not None: is_false_positive *= weights_tiled update_ops['fp'] = state_ops.assign_add(false_positives, math_ops.reduce_sum( is_false_positive, 1)) values['fp'] = false_positives return values, update_ops def streaming_true_positives_at_thresholds(predictions, labels, thresholds, weights=None): values, update_ops = _streaming_confusion_matrix_at_thresholds( predictions, labels, thresholds, weights=weights, includes=('tp',)) return values['tp'], update_ops['tp'] def streaming_false_negatives_at_thresholds(predictions, labels, thresholds, weights=None): values, update_ops = _streaming_confusion_matrix_at_thresholds( predictions, labels, thresholds, weights=weights, includes=('fn',)) return values['fn'], update_ops['fn'] def streaming_false_positives_at_thresholds(predictions, labels, thresholds, weights=None): values, update_ops = _streaming_confusion_matrix_at_thresholds( predictions, labels, thresholds, weights=weights, includes=('fp',)) return values['fp'], update_ops['fp'] def streaming_true_negatives_at_thresholds(predictions, labels, thresholds, weights=None): values, update_ops = _streaming_confusion_matrix_at_thresholds( predictions, labels, thresholds, weights=weights, includes=('tn',)) return values['tn'], update_ops['tn'] def streaming_curve_points(labels=None, predictions=None, weights=None, num_thresholds=200, metrics_collections=None, updates_collections=None, curve='ROC', name=None): """Computes curve (ROC or PR) values for a prespecified number of points. The `streaming_curve_points` function creates four local variables, `true_positives`, `true_negatives`, `false_positives` and `false_negatives` that are used to compute the curve values. To discretize the curve, a linearly spaced set of thresholds is used to compute pairs of recall and precision values. For best results, `predictions` should be distributed approximately uniformly in the range [0, 1] and not peaked around 0 or 1. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: A `Tensor` whose shape matches `predictions`. Will be cast to `bool`. predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). num_thresholds: The number of thresholds to use when discretizing the roc curve. metrics_collections: An optional list of collections that `auc` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. curve: Specifies the name of the curve to be computed, 'ROC' [default] or 'PR' for the Precision-Recall-curve. name: An optional variable_scope name. Returns: points: A `Tensor` with shape [num_thresholds, 2] that contains points of the curve. update_op: An operation that increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` variables. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. TODO(chizeng): Consider rewriting this method to make use of logic within the precision_recall_at_equal_thresholds method (to improve run time). """ with variable_scope.variable_scope(name, 'curve_points', (labels, predictions, weights)): if curve != 'ROC' and curve != 'PR': raise ValueError('curve must be either ROC or PR, %s unknown' % (curve)) kepsilon = _EPSILON # to account for floating point imprecisions thresholds = [ (i + 1) * 1.0 / (num_thresholds - 1) for i in range(num_thresholds - 2) ] thresholds = [0.0 - kepsilon] + thresholds + [1.0 + kepsilon] values, update_ops = _streaming_confusion_matrix_at_thresholds( labels=labels, predictions=predictions, thresholds=thresholds, weights=weights) # Add epsilons to avoid dividing by 0. epsilon = 1.0e-6 def compute_points(tp, fn, tn, fp): """Computes the roc-auc or pr-auc based on confusion counts.""" rec = math_ops.div(tp + epsilon, tp + fn + epsilon) if curve == 'ROC': fp_rate = math_ops.div(fp, fp + tn + epsilon) return fp_rate, rec else: # curve == 'PR'. prec = math_ops.div(tp + epsilon, tp + fp + epsilon) return rec, prec xs, ys = compute_points(values['tp'], values['fn'], values['tn'], values['fp']) points = array_ops.stack([xs, ys], axis=1) update_op = control_flow_ops.group(*update_ops.values()) if metrics_collections: ops.add_to_collections(metrics_collections, points) if updates_collections: ops.add_to_collections(updates_collections, update_op) return points, update_op @deprecated(None, 'Please switch to tf.metrics.auc. Note that the order of the ' 'labels and predictions arguments has been switched.') def streaming_auc(predictions, labels, weights=None, num_thresholds=200, metrics_collections=None, updates_collections=None, curve='ROC', name=None): """Computes the approximate AUC via a Riemann sum. The `streaming_auc` function creates four local variables, `true_positives`, `true_negatives`, `false_positives` and `false_negatives` that are used to compute the AUC. To discretize the AUC curve, a linearly spaced set of thresholds is used to compute pairs of recall and precision values. The area under the ROC-curve is therefore computed using the height of the recall values by the false positive rate, while the area under the PR-curve is the computed using the height of the precision values by the recall. This value is ultimately returned as `auc`, an idempotent operation that computes the area under a discretized curve of precision versus recall values (computed using the aforementioned variables). The `num_thresholds` variable controls the degree of discretization with larger numbers of thresholds more closely approximating the true AUC. The quality of the approximation may vary dramatically depending on `num_thresholds`. For best results, `predictions` should be distributed approximately uniformly in the range [0, 1] and not peaked around 0 or 1. The quality of the AUC approximation may be poor if this is not the case. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `auc`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. labels: A `bool` `Tensor` whose shape matches `predictions`. weights: `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). num_thresholds: The number of thresholds to use when discretizing the roc curve. metrics_collections: An optional list of collections that `auc` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. curve: Specifies the name of the curve to be computed, 'ROC' [default] or 'PR' for the Precision-Recall-curve. name: An optional variable_scope name. Returns: auc: A scalar `Tensor` representing the current area-under-curve. update_op: An operation that increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` variables appropriately and whose value matches `auc`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.auc( predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, num_thresholds=num_thresholds, curve=curve, updates_collections=updates_collections, name=name) def _compute_dynamic_auc(labels, predictions, curve='ROC'): """Computes the apporixmate AUC by a Riemann sum with data-derived thresholds. Computes the area under the ROC or PR curve using each prediction as a threshold. This could be slow for large batches, but has the advantage of not having its results degrade depending on the distribution of predictions. Args: labels: A `Tensor` of ground truth labels with the same shape as `predictions` with values of 0 or 1 and type `int64`. predictions: A 1-D `Tensor` of predictions whose values are `float64`. curve: The name of the curve to be computed, 'ROC' for the Receiving Operating Characteristic or 'PR' for the Precision-Recall curve. Returns: A scalar `Tensor` containing the area-under-curve value for the input. """ # Count the total number of positive and negative labels in the input. size = array_ops.size(predictions) total_positive = math_ops.cast(math_ops.reduce_sum(labels), dtypes.int32) def continue_computing_dynamic_auc(): """Continues dynamic auc computation, entered if labels are not all equal. Returns: A scalar `Tensor` containing the area-under-curve value. """ # Sort the predictions descending, and the corresponding labels as well. ordered_predictions, indices = nn.top_k(predictions, k=size) ordered_labels = array_ops.gather(labels, indices) # Get the counts of the unique ordered predictions. _, _, counts = array_ops.unique_with_counts(ordered_predictions) # Compute the indices of the split points between different predictions. splits = math_ops.cast( array_ops.pad(math_ops.cumsum(counts), paddings=[[1, 0]]), dtypes.int32) # Count the positives to the left of the split indices. positives = math_ops.cast( array_ops.pad(math_ops.cumsum(ordered_labels), paddings=[[1, 0]]), dtypes.int32) true_positives = array_ops.gather(positives, splits) if curve == 'ROC': # Count the negatives to the left of every split point and the total # number of negatives for computing the FPR. false_positives = math_ops.subtract(splits, true_positives) total_negative = size - total_positive x_axis_values = math_ops.truediv(false_positives, total_negative) y_axis_values = math_ops.truediv(true_positives, total_positive) elif curve == 'PR': x_axis_values = math_ops.truediv(true_positives, total_positive) # For conformance, set precision to 1 when the number of positive # classifications is 0. y_axis_values = array_ops.where( math_ops.greater(splits, 0), math_ops.truediv(true_positives, splits), array_ops.ones_like(true_positives, dtype=dtypes.float64)) # Calculate trapezoid areas. heights = math_ops.add(y_axis_values[1:], y_axis_values[:-1]) / 2.0 widths = math_ops.abs( math_ops.subtract(x_axis_values[1:], x_axis_values[:-1])) return math_ops.reduce_sum(math_ops.multiply(heights, widths)) # If all the labels are the same, AUC isn't well-defined (but raising an # exception seems excessive) so we return 0, otherwise we finish computing. return control_flow_ops.cond( math_ops.logical_or( math_ops.equal(total_positive, 0), math_ops.equal( total_positive, size)), true_fn=lambda: array_ops.constant(0, dtypes.float64), false_fn=continue_computing_dynamic_auc) def streaming_dynamic_auc(labels, predictions, curve='ROC', metrics_collections=(), updates_collections=(), name=None): """Computes the apporixmate AUC by a Riemann sum with data-derived thresholds. USAGE NOTE: this approach requires storing all of the predictions and labels for a single evaluation in memory, so it may not be usable when the evaluation batch size and/or the number of evaluation steps is very large. Computes the area under the ROC or PR curve using each prediction as a threshold. This has the advantage of being resilient to the distribution of predictions by aggregating across batches, accumulating labels and predictions and performing the final calculation using all of the concatenated values. Args: labels: A `Tensor` of ground truth labels with the same shape as `labels` and with values of 0 or 1 whose values are castable to `int64`. predictions: A `Tensor` of predictions whose values are castable to `float64`. Will be flattened into a 1-D `Tensor`. curve: The name of the curve for which to compute AUC, 'ROC' for the Receiving Operating Characteristic or 'PR' for the Precision-Recall curve. metrics_collections: An optional iterable of collections that `auc` should be added to. updates_collections: An optional iterable of collections that `update_op` should be added to. name: An optional name for the variable_scope that contains the metric variables. Returns: auc: A scalar `Tensor` containing the current area-under-curve value. update_op: An operation that concatenates the input labels and predictions to the accumulated values. Raises: ValueError: If `labels` and `predictions` have mismatched shapes or if `curve` isn't a recognized curve type. """ if curve not in ['PR', 'ROC']: raise ValueError('curve must be either ROC or PR, %s unknown' % curve) with variable_scope.variable_scope(name, default_name='dynamic_auc'): labels.get_shape().assert_is_compatible_with(predictions.get_shape()) predictions = array_ops.reshape( math_ops.cast(predictions, dtypes.float64), [-1]) labels = array_ops.reshape(math_ops.cast(labels, dtypes.int64), [-1]) with ops.control_dependencies([ check_ops.assert_greater_equal( labels, array_ops.zeros_like(labels, dtypes.int64), message='labels must be 0 or 1, at least one is <0'), check_ops.assert_less_equal( labels, array_ops.ones_like(labels, dtypes.int64), message='labels must be 0 or 1, at least one is >1') ]): preds_accum, update_preds = streaming_concat( predictions, name='concat_preds') labels_accum, update_labels = streaming_concat( labels, name='concat_labels') update_op = control_flow_ops.group(update_labels, update_preds) auc = _compute_dynamic_auc(labels_accum, preds_accum, curve=curve) if updates_collections: ops.add_to_collections(updates_collections, update_op) if metrics_collections: ops.add_to_collections(metrics_collections, auc) return auc, update_op def _compute_placement_auc(labels, predictions, weights, alpha, logit_transformation, is_valid): """Computes the AUC and asymptotic normally distributed confidence interval. The calculations are achieved using the fact that AUC = P(Y_1>Y_0) and the concept of placement values for each labeled group, as presented by Delong and Delong (1988). The actual algorithm used is a more computationally efficient approach presented by Sun and Xu (2014). This could be slow for large batches, but has the advantage of not having its results degrade depending on the distribution of predictions. Args: labels: A `Tensor` of ground truth labels with the same shape as `predictions` with values of 0 or 1 and type `int64`. predictions: A 1-D `Tensor` of predictions whose values are `float64`. weights: `Tensor` whose rank is either 0, or the same rank as `labels`. alpha: Confidence interval level desired. logit_transformation: A boolean value indicating whether the estimate should be logit transformed prior to calculating the confidence interval. Doing so enforces the restriction that the AUC should never be outside the interval [0,1]. is_valid: A bool tensor describing whether the input is valid. Returns: A 1-D `Tensor` containing the area-under-curve, lower, and upper confidence interval values. """ # Disable the invalid-name checker so that we can capitalize the name. # pylint: disable=invalid-name AucData = collections_lib.namedtuple('AucData', ['auc', 'lower', 'upper']) # pylint: enable=invalid-name # If all the labels are the same or if number of observations are too few, # AUC isn't well-defined size = array_ops.size(predictions, out_type=dtypes.int32) # Count the total number of positive and negative labels in the input. total_0 = math_ops.reduce_sum( math_ops.cast(1 - labels, weights.dtype) * weights) total_1 = math_ops.reduce_sum( math_ops.cast(labels, weights.dtype) * weights) # Sort the predictions ascending, as well as # (i) the corresponding labels and # (ii) the corresponding weights. ordered_predictions, indices = nn.top_k(predictions, k=size, sorted=True) ordered_predictions = array_ops.reverse( ordered_predictions, axis=array_ops.zeros(1, dtypes.int32)) indices = array_ops.reverse(indices, axis=array_ops.zeros(1, dtypes.int32)) ordered_labels = array_ops.gather(labels, indices) ordered_weights = array_ops.gather(weights, indices) # We now compute values required for computing placement values. # We generate a list of indices (segmented_indices) of increasing order. An # index is assigned for each unique prediction float value. Prediction # values that are the same share the same index. _, segmented_indices = array_ops.unique(ordered_predictions) # We create 2 tensors of weights. weights_for_true is non-zero for true # labels. weights_for_false is non-zero for false labels. float_labels_for_true = math_ops.cast(ordered_labels, dtypes.float32) float_labels_for_false = 1.0 - float_labels_for_true weights_for_true = ordered_weights * float_labels_for_true weights_for_false = ordered_weights * float_labels_for_false # For each set of weights with the same segmented indices, we add up the # weight values. Note that for each label, we deliberately rely on weights # for the opposite label. weight_totals_for_true = math_ops.segment_sum(weights_for_false, segmented_indices) weight_totals_for_false = math_ops.segment_sum(weights_for_true, segmented_indices) # These cumulative sums of weights importantly exclude the current weight # sums. cum_weight_totals_for_true = math_ops.cumsum(weight_totals_for_true, exclusive=True) cum_weight_totals_for_false = math_ops.cumsum(weight_totals_for_false, exclusive=True) # Compute placement values using the formula. Values with the same segmented # indices and labels share the same placement values. placements_for_true = ( (cum_weight_totals_for_true + weight_totals_for_true / 2.0) / (math_ops.reduce_sum(weight_totals_for_true) + _EPSILON)) placements_for_false = ( (cum_weight_totals_for_false + weight_totals_for_false / 2.0) / (math_ops.reduce_sum(weight_totals_for_false) + _EPSILON)) # We expand the tensors of placement values (for each label) so that their # shapes match that of predictions. placements_for_true = array_ops.gather(placements_for_true, segmented_indices) placements_for_false = array_ops.gather(placements_for_false, segmented_indices) # Select placement values based on the label for each index. placement_values = ( placements_for_true * float_labels_for_true + placements_for_false * float_labels_for_false) # Split placement values by labeled groups. placement_values_0 = placement_values * math_ops.cast( 1 - ordered_labels, weights.dtype) weights_0 = ordered_weights * math_ops.cast( 1 - ordered_labels, weights.dtype) placement_values_1 = placement_values * math_ops.cast( ordered_labels, weights.dtype) weights_1 = ordered_weights * math_ops.cast( ordered_labels, weights.dtype) # Calculate AUC using placement values auc_0 = (math_ops.reduce_sum(weights_0 * (1. - placement_values_0)) / (total_0 + _EPSILON)) auc_1 = (math_ops.reduce_sum(weights_1 * (placement_values_1)) / (total_1 + _EPSILON)) auc = array_ops.where(math_ops.less(total_0, total_1), auc_1, auc_0) # Calculate variance and standard error using the placement values. var_0 = ( math_ops.reduce_sum( weights_0 * math_ops.square(1. - placement_values_0 - auc_0)) / (total_0 - 1. + _EPSILON)) var_1 = ( math_ops.reduce_sum( weights_1 * math_ops.square(placement_values_1 - auc_1)) / (total_1 - 1. + _EPSILON)) auc_std_err = math_ops.sqrt( (var_0 / (total_0 + _EPSILON)) + (var_1 / (total_1 + _EPSILON))) # Calculate asymptotic normal confidence intervals std_norm_dist = Normal(loc=0., scale=1.) z_value = std_norm_dist.quantile((1.0 - alpha) / 2.0) if logit_transformation: estimate = math_ops.log(auc / (1. - auc + _EPSILON)) std_err = auc_std_err / (auc * (1. - auc + _EPSILON)) transformed_auc_lower = estimate + (z_value * std_err) transformed_auc_upper = estimate - (z_value * std_err) def inverse_logit_transformation(x): exp_negative = math_ops.exp(math_ops.negative(x)) return 1. / (1. + exp_negative + _EPSILON) auc_lower = inverse_logit_transformation(transformed_auc_lower) auc_upper = inverse_logit_transformation(transformed_auc_upper) else: estimate = auc std_err = auc_std_err auc_lower = estimate + (z_value * std_err) auc_upper = estimate - (z_value * std_err) ## If estimate is 1 or 0, no variance is present so CI = 1 ## n.b. This can be misleading, since number obs can just be too low. lower = array_ops.where( math_ops.logical_or( math_ops.equal(auc, array_ops.ones_like(auc)), math_ops.equal(auc, array_ops.zeros_like(auc))), auc, auc_lower) upper = array_ops.where( math_ops.logical_or( math_ops.equal(auc, array_ops.ones_like(auc)), math_ops.equal(auc, array_ops.zeros_like(auc))), auc, auc_upper) # If all the labels are the same, AUC isn't well-defined (but raising an # exception seems excessive) so we return 0, otherwise we finish computing. trivial_value = array_ops.constant(0.0) return AucData(*control_flow_ops.cond( is_valid, lambda: [auc, lower, upper], lambda: [trivial_value]*3)) def auc_with_confidence_intervals(labels, predictions, weights=None, alpha=0.95, logit_transformation=True, metrics_collections=(), updates_collections=(), name=None): """Computes the AUC and asymptotic normally distributed confidence interval. USAGE NOTE: this approach requires storing all of the predictions and labels for a single evaluation in memory, so it may not be usable when the evaluation batch size and/or the number of evaluation steps is very large. Computes the area under the ROC curve and its confidence interval using placement values. This has the advantage of being resilient to the distribution of predictions by aggregating across batches, accumulating labels and predictions and performing the final calculation using all of the concatenated values. Args: labels: A `Tensor` of ground truth labels with the same shape as `labels` and with values of 0 or 1 whose values are castable to `int64`. predictions: A `Tensor` of predictions whose values are castable to `float64`. Will be flattened into a 1-D `Tensor`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`. alpha: Confidence interval level desired. logit_transformation: A boolean value indicating whether the estimate should be logit transformed prior to calculating the confidence interval. Doing so enforces the restriction that the AUC should never be outside the interval [0,1]. metrics_collections: An optional iterable of collections that `auc` should be added to. updates_collections: An optional iterable of collections that `update_op` should be added to. name: An optional name for the variable_scope that contains the metric variables. Returns: auc: A 1-D `Tensor` containing the current area-under-curve, lower, and upper confidence interval values. update_op: An operation that concatenates the input labels and predictions to the accumulated values. Raises: ValueError: If `labels`, `predictions`, and `weights` have mismatched shapes or if `alpha` isn't in the range (0,1). """ if not (alpha > 0 and alpha < 1): raise ValueError('alpha must be between 0 and 1; currently %.02f' % alpha) if weights is None: weights = array_ops.ones_like(predictions) with variable_scope.variable_scope( name, default_name='auc_with_confidence_intervals', values=[labels, predictions, weights]): predictions, labels, weights = metrics_impl._remove_squeezable_dimensions( # pylint: disable=protected-access predictions=predictions, labels=labels, weights=weights) total_weight = math_ops.reduce_sum(weights) weights = array_ops.reshape(weights, [-1]) predictions = array_ops.reshape( math_ops.cast(predictions, dtypes.float64), [-1]) labels = array_ops.reshape(math_ops.cast(labels, dtypes.int64), [-1]) with ops.control_dependencies([ check_ops.assert_greater_equal( labels, array_ops.zeros_like(labels, dtypes.int64), message='labels must be 0 or 1, at least one is <0'), check_ops.assert_less_equal( labels, array_ops.ones_like(labels, dtypes.int64), message='labels must be 0 or 1, at least one is >1'), ]): preds_accum, update_preds = streaming_concat( predictions, name='concat_preds') labels_accum, update_labels = streaming_concat(labels, name='concat_labels') weights_accum, update_weights = streaming_concat( weights, name='concat_weights') update_op_for_valid_case = control_flow_ops.group( update_labels, update_preds, update_weights) # Only perform updates if this case is valid. all_labels_positive_or_0 = math_ops.logical_and( math_ops.equal(math_ops.reduce_min(labels), 0), math_ops.equal(math_ops.reduce_max(labels), 1)) sums_of_weights_at_least_1 = math_ops.greater_equal(total_weight, 1.0) is_valid = math_ops.logical_and(all_labels_positive_or_0, sums_of_weights_at_least_1) update_op = control_flow_ops.cond( sums_of_weights_at_least_1, lambda: update_op_for_valid_case, control_flow_ops.no_op) auc = _compute_placement_auc( labels_accum, preds_accum, weights_accum, alpha=alpha, logit_transformation=logit_transformation, is_valid=is_valid) if updates_collections: ops.add_to_collections(updates_collections, update_op) if metrics_collections: ops.add_to_collections(metrics_collections, auc) return auc, update_op def precision_recall_at_equal_thresholds(labels, predictions, weights=None, num_thresholds=None, use_locking=None, name=None): """A helper method for creating metrics related to precision-recall curves. These values are true positives, false negatives, true negatives, false positives, precision, and recall. This function returns a data structure that contains ops within it. Unlike _streaming_confusion_matrix_at_thresholds (which exhibits O(T * N) space and run time), this op exhibits O(T + N) space and run time, where T is the number of thresholds and N is the size of the predictions tensor. Hence, it may be advantageous to use this function when `predictions` is big. For instance, prefer this method for per-pixel classification tasks, for which the predictions tensor may be very large. Each number in `predictions`, a float in `[0, 1]`, is compared with its corresponding label in `labels`, and counts as a single tp/fp/tn/fn value at each threshold. This is then multiplied with `weights` which can be used to reweight certain values, or more commonly used for masking values. Args: labels: A bool `Tensor` whose shape matches `predictions`. predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. weights: Optional; If provided, a `Tensor` that has the same dtype as, and broadcastable to, `predictions`. This tensor is multiplied by counts. num_thresholds: Optional; Number of thresholds, evenly distributed in `[0, 1]`. Should be `>= 2`. Defaults to 201. Note that the number of bins is 1 less than `num_thresholds`. Using an even `num_thresholds` value instead of an odd one may yield unfriendly edges for bins. use_locking: Optional; If True, the op will be protected by a lock. Otherwise, the behavior is undefined, but may exhibit less contention. Defaults to True. name: Optional; variable_scope name. If not provided, the string 'precision_recall_at_equal_threshold' is used. Returns: result: A named tuple (See PrecisionRecallData within the implementation of this function) with properties that are variables of shape `[num_thresholds]`. The names of the properties are tp, fp, tn, fn, precision, recall, thresholds. update_op: An op that accumulates values. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if `includes` contains invalid keys. """ # Disable the invalid-name checker so that we can capitalize the name. # pylint: disable=invalid-name PrecisionRecallData = collections_lib.namedtuple( 'PrecisionRecallData', ['tp', 'fp', 'tn', 'fn', 'precision', 'recall', 'thresholds']) # pylint: enable=invalid-name if num_thresholds is None: num_thresholds = 201 if weights is None: weights = 1.0 if use_locking is None: use_locking = True check_ops.assert_type(labels, dtypes.bool) dtype = predictions.dtype with variable_scope.variable_scope(name, 'precision_recall_at_equal_thresholds', (labels, predictions, weights)): # Make sure that predictions are within [0.0, 1.0]. with ops.control_dependencies([ check_ops.assert_greater_equal( predictions, math_ops.cast(0.0, dtype=predictions.dtype), message='predictions must be in [0, 1]'), check_ops.assert_less_equal( predictions, math_ops.cast(1.0, dtype=predictions.dtype), message='predictions must be in [0, 1]') ]): predictions, labels, weights = metrics_impl._remove_squeezable_dimensions( # pylint: disable=protected-access predictions=predictions, labels=labels, weights=weights) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) # We cast to float to ensure we have 0.0 or 1.0. f_labels = math_ops.cast(labels, dtype) # Get weighted true/false labels. true_labels = f_labels * weights false_labels = (1.0 - f_labels) * weights # Flatten predictions and labels. predictions = array_ops.reshape(predictions, [-1]) true_labels = array_ops.reshape(true_labels, [-1]) false_labels = array_ops.reshape(false_labels, [-1]) # To compute TP/FP/TN/FN, we are measuring a binary classifier # C(t) = (predictions >= t) # at each threshold 't'. So we have # TP(t) = sum( C(t) * true_labels ) # FP(t) = sum( C(t) * false_labels ) # # But, computing C(t) requires computation for each t. To make it fast, # observe that C(t) is a cumulative integral, and so if we have # thresholds = [t_0, ..., t_{n-1}]; t_0 < ... < t_{n-1} # where n = num_thresholds, and if we can compute the bucket function # B(i) = Sum( (predictions == t), t_i <= t < t{i+1} ) # then we get # C(t_i) = sum( B(j), j >= i ) # which is the reversed cumulative sum in tf.cumsum(). # # We can compute B(i) efficiently by taking advantage of the fact that # our thresholds are evenly distributed, in that # width = 1.0 / (num_thresholds - 1) # thresholds = [0.0, 1*width, 2*width, 3*width, ..., 1.0] # Given a prediction value p, we can map it to its bucket by # bucket_index(p) = floor( p * (num_thresholds - 1) ) # so we can use tf.scatter_add() to update the buckets in one pass. # # This implementation exhibits a run time and space complexity of O(T + N), # where T is the number of thresholds and N is the size of predictions. # Metrics that rely on _streaming_confusion_matrix_at_thresholds instead # exhibit a complexity of O(T * N). # Compute the bucket indices for each prediction value. bucket_indices = math_ops.cast( math_ops.floor(predictions * (num_thresholds - 1)), dtypes.int32) with ops.name_scope('variables'): tp_buckets_v = metrics_impl.metric_variable( [num_thresholds], dtype, name='tp_buckets') fp_buckets_v = metrics_impl.metric_variable( [num_thresholds], dtype, name='fp_buckets') with ops.name_scope('update_op'): update_tp = state_ops.scatter_add( tp_buckets_v, bucket_indices, true_labels, use_locking=use_locking) update_fp = state_ops.scatter_add( fp_buckets_v, bucket_indices, false_labels, use_locking=use_locking) # Set up the cumulative sums to compute the actual metrics. tp = math_ops.cumsum(tp_buckets_v, reverse=True, name='tp') fp = math_ops.cumsum(fp_buckets_v, reverse=True, name='fp') # fn = sum(true_labels) - tp # = sum(tp_buckets) - tp # = tp[0] - tp # Similarly, # tn = fp[0] - fp tn = fp[0] - fp fn = tp[0] - tp # We use a minimum to prevent division by 0. epsilon = 1e-7 precision = tp / math_ops.maximum(epsilon, tp + fp) recall = tp / math_ops.maximum(epsilon, tp + fn) result = PrecisionRecallData( tp=tp, fp=fp, tn=tn, fn=fn, precision=precision, recall=recall, thresholds=math_ops.lin_space(0.0, 1.0, num_thresholds)) update_op = control_flow_ops.group(update_tp, update_fp) return result, update_op def streaming_specificity_at_sensitivity(predictions, labels, sensitivity, weights=None, num_thresholds=200, metrics_collections=None, updates_collections=None, name=None): """Computes the specificity at a given sensitivity. The `streaming_specificity_at_sensitivity` function creates four local variables, `true_positives`, `true_negatives`, `false_positives` and `false_negatives` that are used to compute the specificity at the given sensitivity value. The threshold for the given sensitivity value is computed and used to evaluate the corresponding specificity. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `specificity`. `update_op` increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` counts with the weight of each case found in the `predictions` and `labels`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. For additional information about specificity and sensitivity, see the following: https://en.wikipedia.org/wiki/Sensitivity_and_specificity Args: predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. labels: A `bool` `Tensor` whose shape matches `predictions`. sensitivity: A scalar value in range `[0, 1]`. weights: `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). num_thresholds: The number of thresholds to use for matching the given sensitivity. metrics_collections: An optional list of collections that `specificity` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: specificity: A scalar `Tensor` representing the specificity at the given `specificity` value. update_op: An operation that increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` variables appropriately and whose value matches `specificity`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, if `weights` is not `None` and its shape doesn't match `predictions`, or if `sensitivity` is not between 0 and 1, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.specificity_at_sensitivity( sensitivity=sensitivity, num_thresholds=num_thresholds, predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) def streaming_sensitivity_at_specificity(predictions, labels, specificity, weights=None, num_thresholds=200, metrics_collections=None, updates_collections=None, name=None): """Computes the sensitivity at a given specificity. The `streaming_sensitivity_at_specificity` function creates four local variables, `true_positives`, `true_negatives`, `false_positives` and `false_negatives` that are used to compute the sensitivity at the given specificity value. The threshold for the given specificity value is computed and used to evaluate the corresponding sensitivity. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `sensitivity`. `update_op` increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` counts with the weight of each case found in the `predictions` and `labels`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. For additional information about specificity and sensitivity, see the following: https://en.wikipedia.org/wiki/Sensitivity_and_specificity Args: predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. labels: A `bool` `Tensor` whose shape matches `predictions`. specificity: A scalar value in range `[0, 1]`. weights: `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). num_thresholds: The number of thresholds to use for matching the given specificity. metrics_collections: An optional list of collections that `sensitivity` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: sensitivity: A scalar `Tensor` representing the sensitivity at the given `specificity` value. update_op: An operation that increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` variables appropriately and whose value matches `sensitivity`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, if `weights` is not `None` and its shape doesn't match `predictions`, or if `specificity` is not between 0 and 1, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.sensitivity_at_specificity( specificity=specificity, num_thresholds=num_thresholds, predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) @deprecated( None, 'Please switch to tf.metrics.precision_at_thresholds. Note that the ' 'order of the labels and predictions arguments has been switched.') def streaming_precision_at_thresholds(predictions, labels, thresholds, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes precision values for different `thresholds` on `predictions`. The `streaming_precision_at_thresholds` function creates four local variables, `true_positives`, `true_negatives`, `false_positives` and `false_negatives` for various values of thresholds. `precision[i]` is defined as the total weight of values in `predictions` above `thresholds[i]` whose corresponding entry in `labels` is `True`, divided by the total weight of values in `predictions` above `thresholds[i]` (`true_positives[i] / (true_positives[i] + false_positives[i])`). For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `precision`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. labels: A `bool` `Tensor` whose shape matches `predictions`. thresholds: A python list or tuple of float thresholds in `[0, 1]`. weights: `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `precision` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: precision: A float `Tensor` of shape `[len(thresholds)]`. update_op: An operation that increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` variables that are used in the computation of `precision`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.precision_at_thresholds( thresholds=thresholds, predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) @deprecated(None, 'Please switch to tf.metrics.recall_at_thresholds. Note that the ' 'order of the labels and predictions arguments has been switched.') def streaming_recall_at_thresholds(predictions, labels, thresholds, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes various recall values for different `thresholds` on `predictions`. The `streaming_recall_at_thresholds` function creates four local variables, `true_positives`, `true_negatives`, `false_positives` and `false_negatives` for various values of thresholds. `recall[i]` is defined as the total weight of values in `predictions` above `thresholds[i]` whose corresponding entry in `labels` is `True`, divided by the total weight of `True` values in `labels` (`true_positives[i] / (true_positives[i] + false_negatives[i])`). For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `recall`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. labels: A `bool` `Tensor` whose shape matches `predictions`. thresholds: A python list or tuple of float thresholds in `[0, 1]`. weights: `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `recall` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: recall: A float `Tensor` of shape `[len(thresholds)]`. update_op: An operation that increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` variables that are used in the computation of `recall`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.recall_at_thresholds( thresholds=thresholds, predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) def streaming_false_positive_rate_at_thresholds(predictions, labels, thresholds, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes various fpr values for different `thresholds` on `predictions`. The `streaming_false_positive_rate_at_thresholds` function creates two local variables, `false_positives`, `true_negatives`, for various values of thresholds. `false_positive_rate[i]` is defined as the total weight of values in `predictions` above `thresholds[i]` whose corresponding entry in `labels` is `False`, divided by the total weight of `False` values in `labels` (`false_positives[i] / (false_positives[i] + true_negatives[i])`). For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `false_positive_rate`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. labels: A `bool` `Tensor` whose shape matches `predictions`. thresholds: A python list or tuple of float thresholds in `[0, 1]`. weights: `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `false_positive_rate` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: false_positive_rate: A float `Tensor` of shape `[len(thresholds)]`. update_op: An operation that increments the `false_positives` and `true_negatives` variables that are used in the computation of `false_positive_rate`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope(name, 'false_positive_rate_at_thresholds', (predictions, labels, weights)): values, update_ops = _streaming_confusion_matrix_at_thresholds( predictions, labels, thresholds, weights, includes=('fp', 'tn')) # Avoid division by zero. epsilon = _EPSILON def compute_fpr(fp, tn, name): return math_ops.div(fp, epsilon + fp + tn, name='fpr_' + name) fpr = compute_fpr(values['fp'], values['tn'], 'value') update_op = compute_fpr(update_ops['fp'], update_ops['tn'], 'update_op') if metrics_collections: ops.add_to_collections(metrics_collections, fpr) if updates_collections: ops.add_to_collections(updates_collections, update_op) return fpr, update_op def streaming_false_negative_rate_at_thresholds(predictions, labels, thresholds, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes various fnr values for different `thresholds` on `predictions`. The `streaming_false_negative_rate_at_thresholds` function creates two local variables, `false_negatives`, `true_positives`, for various values of thresholds. `false_negative_rate[i]` is defined as the total weight of values in `predictions` above `thresholds[i]` whose corresponding entry in `labels` is `False`, divided by the total weight of `True` values in `labels` (`false_negatives[i] / (false_negatives[i] + true_positives[i])`). For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `false_positive_rate`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. labels: A `bool` `Tensor` whose shape matches `predictions`. thresholds: A python list or tuple of float thresholds in `[0, 1]`. weights: `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `false_negative_rate` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: false_negative_rate: A float `Tensor` of shape `[len(thresholds)]`. update_op: An operation that increments the `false_negatives` and `true_positives` variables that are used in the computation of `false_negative_rate`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope(name, 'false_negative_rate_at_thresholds', (predictions, labels, weights)): values, update_ops = _streaming_confusion_matrix_at_thresholds( predictions, labels, thresholds, weights, includes=('fn', 'tp')) # Avoid division by zero. epsilon = _EPSILON def compute_fnr(fn, tp, name): return math_ops.div(fn, epsilon + fn + tp, name='fnr_' + name) fnr = compute_fnr(values['fn'], values['tp'], 'value') update_op = compute_fnr(update_ops['fn'], update_ops['tp'], 'update_op') if metrics_collections: ops.add_to_collections(metrics_collections, fnr) if updates_collections: ops.add_to_collections(updates_collections, update_op) return fnr, update_op def _at_k_name(name, k=None, class_id=None): if k is not None: name = '%s_at_%d' % (name, k) else: name = '%s_at_k' % (name) if class_id is not None: name = '%s_class%d' % (name, class_id) return name @deprecated('2016-11-08', 'Please use `streaming_sparse_recall_at_k`, ' 'and reshape labels from [batch_size] to [batch_size, 1].') def streaming_recall_at_k(predictions, labels, k, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the recall@k of the predictions with respect to dense labels. The `streaming_recall_at_k` function creates two local variables, `total` and `count`, that are used to compute the recall@k frequency. This frequency is ultimately returned as `recall_at_<k>`: an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `recall_at_<k>`. Internally, an `in_top_k` operation computes a `Tensor` with shape [batch_size] whose elements indicate whether or not the corresponding label is in the top `k` `predictions`. Then `update_op` increments `total` with the reduced sum of `weights` where `in_top_k` is `True`, and it increments `count` with the reduced sum of `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: A float `Tensor` of dimension [batch_size, num_classes]. labels: A `Tensor` of dimension [batch_size] whose type is in `int32`, `int64`. k: The number of top elements to look at for computing recall. weights: `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `recall_at_k` should be added to. updates_collections: An optional list of collections `update_op` should be added to. name: An optional variable_scope name. Returns: recall_at_k: A `Tensor` representing the recall@k, the fraction of labels which fall into the top `k` predictions. update_op: An operation that increments the `total` and `count` variables appropriately and whose value matches `recall_at_k`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ in_top_k = math_ops.to_float(nn.in_top_k(predictions, labels, k)) return streaming_mean(in_top_k, weights, metrics_collections, updates_collections, name or _at_k_name('recall', k)) # TODO(ptucker): Validate range of values in labels? def streaming_sparse_recall_at_k(predictions, labels, k, class_id=None, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes recall@k of the predictions with respect to sparse labels. If `class_id` is not specified, we'll calculate recall as the ratio of true positives (i.e., correct predictions, items in the top `k` highest `predictions` that are found in the corresponding row in `labels`) to actual positives (the full `labels` row). If `class_id` is specified, we calculate recall by considering only the rows in the batch for which `class_id` is in `labels`, and computing the fraction of them for which `class_id` is in the corresponding row in `labels`. `streaming_sparse_recall_at_k` creates two local variables, `true_positive_at_<k>` and `false_negative_at_<k>`, that are used to compute the recall_at_k frequency. This frequency is ultimately returned as `recall_at_<k>`: an idempotent operation that simply divides `true_positive_at_<k>` by total (`true_positive_at_<k>` + `false_negative_at_<k>`). For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `recall_at_<k>`. Internally, a `top_k` operation computes a `Tensor` indicating the top `k` `predictions`. Set operations applied to `top_k` and `labels` calculate the true positives and false negatives weighted by `weights`. Then `update_op` increments `true_positive_at_<k>` and `false_negative_at_<k>` using these values. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: Float `Tensor` with shape [D1, ... DN, num_classes] where N >= 1. Commonly, N=1 and predictions has shape [batch size, num_classes]. The final dimension contains the logit values for each class. [D1, ... DN] must match `labels`. labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions`. Values should be in range [0, num_classes), where num_classes is the last dimension of `predictions`. Values outside this range always count towards `false_negative_at_<k>`. k: Integer, k for @k metric. class_id: Integer class ID for which we want binary metrics. This should be in range [0, num_classes), where num_classes is the last dimension of `predictions`. If class_id is outside this range, the method returns NAN. weights: `Tensor` whose rank is either 0, or n-1, where n is the rank of `labels`. If the latter, it must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that values should be added to. updates_collections: An optional list of collections that updates should be added to. name: Name of new update operation, and namespace for other dependent ops. Returns: recall: Scalar `float64` `Tensor` with the value of `true_positives` divided by the sum of `true_positives` and `false_negatives`. update_op: `Operation` that increments `true_positives` and `false_negatives` variables appropriately, and whose value matches `recall`. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.recall_at_k( k=k, class_id=class_id, predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) # TODO(ptucker): Validate range of values in labels? def streaming_sparse_precision_at_k(predictions, labels, k, class_id=None, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes precision@k of the predictions with respect to sparse labels. If `class_id` is not specified, we calculate precision as the ratio of true positives (i.e., correct predictions, items in the top `k` highest `predictions` that are found in the corresponding row in `labels`) to positives (all top `k` `predictions`). If `class_id` is specified, we calculate precision by considering only the rows in the batch for which `class_id` is in the top `k` highest `predictions`, and computing the fraction of them for which `class_id` is in the corresponding row in `labels`. We expect precision to decrease as `k` increases. `streaming_sparse_precision_at_k` creates two local variables, `true_positive_at_<k>` and `false_positive_at_<k>`, that are used to compute the precision@k frequency. This frequency is ultimately returned as `precision_at_<k>`: an idempotent operation that simply divides `true_positive_at_<k>` by total (`true_positive_at_<k>` + `false_positive_at_<k>`). For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `precision_at_<k>`. Internally, a `top_k` operation computes a `Tensor` indicating the top `k` `predictions`. Set operations applied to `top_k` and `labels` calculate the true positives and false positives weighted by `weights`. Then `update_op` increments `true_positive_at_<k>` and `false_positive_at_<k>` using these values. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: Float `Tensor` with shape [D1, ... DN, num_classes] where N >= 1. Commonly, N=1 and predictions has shape [batch size, num_classes]. The final dimension contains the logit values for each class. [D1, ... DN] must match `labels`. labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions`. Values should be in range [0, num_classes), where num_classes is the last dimension of `predictions`. Values outside this range are ignored. k: Integer, k for @k metric. class_id: Integer class ID for which we want binary metrics. This should be in range [0, num_classes], where num_classes is the last dimension of `predictions`. If `class_id` is outside this range, the method returns NAN. weights: `Tensor` whose rank is either 0, or n-1, where n is the rank of `labels`. If the latter, it must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that values should be added to. updates_collections: An optional list of collections that updates should be added to. name: Name of new update operation, and namespace for other dependent ops. Returns: precision: Scalar `float64` `Tensor` with the value of `true_positives` divided by the sum of `true_positives` and `false_positives`. update_op: `Operation` that increments `true_positives` and `false_positives` variables appropriately, and whose value matches `precision`. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.precision_at_k( k=k, class_id=class_id, predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) # TODO(ptucker): Validate range of values in labels? def streaming_sparse_precision_at_top_k(top_k_predictions, labels, class_id=None, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes precision@k of top-k predictions with respect to sparse labels. If `class_id` is not specified, we calculate precision as the ratio of true positives (i.e., correct predictions, items in `top_k_predictions` that are found in the corresponding row in `labels`) to positives (all `top_k_predictions`). If `class_id` is specified, we calculate precision by considering only the rows in the batch for which `class_id` is in the top `k` highest `predictions`, and computing the fraction of them for which `class_id` is in the corresponding row in `labels`. We expect precision to decrease as `k` increases. `streaming_sparse_precision_at_top_k` creates two local variables, `true_positive_at_k` and `false_positive_at_k`, that are used to compute the precision@k frequency. This frequency is ultimately returned as `precision_at_k`: an idempotent operation that simply divides `true_positive_at_k` by total (`true_positive_at_k` + `false_positive_at_k`). For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `precision_at_k`. Internally, set operations applied to `top_k_predictions` and `labels` calculate the true positives and false positives weighted by `weights`. Then `update_op` increments `true_positive_at_k` and `false_positive_at_k` using these values. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: top_k_predictions: Integer `Tensor` with shape [D1, ... DN, k] where N >= 1. Commonly, N=1 and top_k_predictions has shape [batch size, k]. The final dimension contains the indices of top-k labels. [D1, ... DN] must match `labels`. labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `top_k_predictions`. Values should be in range [0, num_classes), where num_classes is the last dimension of `predictions`. Values outside this range are ignored. class_id: Integer class ID for which we want binary metrics. This should be in range [0, num_classes), where num_classes is the last dimension of `predictions`. If `class_id` is outside this range, the method returns NAN. weights: `Tensor` whose rank is either 0, or n-1, where n is the rank of `labels`. If the latter, it must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that values should be added to. updates_collections: An optional list of collections that updates should be added to. name: Name of new update operation, and namespace for other dependent ops. Returns: precision: Scalar `float64` `Tensor` with the value of `true_positives` divided by the sum of `true_positives` and `false_positives`. update_op: `Operation` that increments `true_positives` and `false_positives` variables appropriately, and whose value matches `precision`. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. ValueError: If `top_k_predictions` has rank < 2. """ default_name = _at_k_name('precision', class_id=class_id) with ops.name_scope(name, default_name, (top_k_predictions, labels, weights)) as name_scope: return metrics_impl.precision_at_top_k( labels=labels, predictions_idx=top_k_predictions, class_id=class_id, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name_scope) def sparse_recall_at_top_k(labels, top_k_predictions, class_id=None, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes recall@k of top-k predictions with respect to sparse labels. If `class_id` is specified, we calculate recall by considering only the entries in the batch for which `class_id` is in the label, and computing the fraction of them for which `class_id` is in the top-k `predictions`. If `class_id` is not specified, we'll calculate recall as how often on average a class among the labels of a batch entry is in the top-k `predictions`. `sparse_recall_at_top_k` creates two local variables, `true_positive_at_<k>` and `false_negative_at_<k>`, that are used to compute the recall_at_k frequency. This frequency is ultimately returned as `recall_at_<k>`: an idempotent operation that simply divides `true_positive_at_<k>` by total (`true_positive_at_<k>` + `false_negative_at_<k>`). For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `recall_at_<k>`. Set operations applied to `top_k` and `labels` calculate the true positives and false negatives weighted by `weights`. Then `update_op` increments `true_positive_at_<k>` and `false_negative_at_<k>` using these values. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `top_k_predictions`. Values should be in range [0, num_classes), where num_classes is the last dimension of `predictions`. Values outside this range always count towards `false_negative_at_<k>`. top_k_predictions: Integer `Tensor` with shape [D1, ... DN, k] where N >= 1. Commonly, N=1 and top_k_predictions has shape [batch size, k]. The final dimension contains the indices of top-k labels. [D1, ... DN] must match `labels`. class_id: Integer class ID for which we want binary metrics. This should be in range [0, num_classes), where num_classes is the last dimension of `predictions`. If class_id is outside this range, the method returns NAN. weights: `Tensor` whose rank is either 0, or n-1, where n is the rank of `labels`. If the latter, it must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that values should be added to. updates_collections: An optional list of collections that updates should be added to. name: Name of new update operation, and namespace for other dependent ops. Returns: recall: Scalar `float64` `Tensor` with the value of `true_positives` divided by the sum of `true_positives` and `false_negatives`. update_op: `Operation` that increments `true_positives` and `false_negatives` variables appropriately, and whose value matches `recall`. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ default_name = _at_k_name('recall', class_id=class_id) with ops.name_scope(name, default_name, (top_k_predictions, labels, weights)) as name_scope: return metrics_impl.recall_at_top_k( labels=labels, predictions_idx=top_k_predictions, class_id=class_id, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name_scope) def _compute_recall_at_precision(tp, fp, fn, precision, name): """Helper function to compute recall at a given `precision`. Args: tp: The number of true positives. fp: The number of false positives. fn: The number of false negatives. precision: The precision for which the recall will be calculated. name: An optional variable_scope name. Returns: The recall at a the given `precision`. """ precisions = math_ops.div(tp, tp + fp + _EPSILON) tf_index = math_ops.argmin( math_ops.abs(precisions - precision), 0, output_type=dtypes.int32) # Now, we have the implicit threshold, so compute the recall: return math_ops.div(tp[tf_index], tp[tf_index] + fn[tf_index] + _EPSILON, name) def recall_at_precision(labels, predictions, precision, weights=None, num_thresholds=200, metrics_collections=None, updates_collections=None, name=None): """Computes `recall` at `precision`. The `recall_at_precision` function creates four local variables, `tp` (true positives), `fp` (false positives) and `fn` (false negatives) that are used to compute the `recall` at the given `precision` value. The threshold for the given `precision` value is computed and used to evaluate the corresponding `recall`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `recall`. `update_op` increments the `tp`, `fp` and `fn` counts with the weight of each case found in the `predictions` and `labels`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: The ground truth values, a `Tensor` whose dimensions must match `predictions`. Will be cast to `bool`. predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. precision: A scalar value in range `[0, 1]`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). num_thresholds: The number of thresholds to use for matching the given `precision`. metrics_collections: An optional list of collections that `recall` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: recall: A scalar `Tensor` representing the recall at the given `precision` value. update_op: An operation that increments the `tp`, `fp` and `fn` variables appropriately and whose value matches `recall`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, if `weights` is not `None` and its shape doesn't match `predictions`, or if `precision` is not between 0 and 1, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ if not 0 <= precision <= 1: raise ValueError('`precision` must be in the range [0, 1].') with variable_scope.variable_scope(name, 'recall_at_precision', (predictions, labels, weights)): thresholds = [ i * 1.0 / (num_thresholds - 1) for i in range(1, num_thresholds - 1) ] thresholds = [0.0 - _EPSILON] + thresholds + [1.0 + _EPSILON] values, update_ops = _streaming_confusion_matrix_at_thresholds( predictions, labels, thresholds, weights) recall = _compute_recall_at_precision(values['tp'], values['fp'], values['fn'], precision, 'value') update_op = _compute_recall_at_precision(update_ops['tp'], update_ops['fp'], update_ops['fn'], precision, 'update_op') if metrics_collections: ops.add_to_collections(metrics_collections, recall) if updates_collections: ops.add_to_collections(updates_collections, update_op) return recall, update_op def streaming_sparse_average_precision_at_k(predictions, labels, k, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes average precision@k of predictions with respect to sparse labels. See `sparse_average_precision_at_k` for details on formula. `weights` are applied to the result of `sparse_average_precision_at_k` `streaming_sparse_average_precision_at_k` creates two local variables, `average_precision_at_<k>/total` and `average_precision_at_<k>/max`, that are used to compute the frequency. This frequency is ultimately returned as `average_precision_at_<k>`: an idempotent operation that simply divides `average_precision_at_<k>/total` by `average_precision_at_<k>/max`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `precision_at_<k>`. Internally, a `top_k` operation computes a `Tensor` indicating the top `k` `predictions`. Set operations applied to `top_k` and `labels` calculate the true positives and false positives weighted by `weights`. Then `update_op` increments `true_positive_at_<k>` and `false_positive_at_<k>` using these values. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: Float `Tensor` with shape [D1, ... DN, num_classes] where N >= 1. Commonly, N=1 and `predictions` has shape [batch size, num_classes]. The final dimension contains the logit values for each class. [D1, ... DN] must match `labels`. labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions_`. Values should be in range [0, num_classes), where num_classes is the last dimension of `predictions`. Values outside this range are ignored. k: Integer, k for @k metric. This will calculate an average precision for range `[1,k]`, as documented above. weights: `Tensor` whose rank is either 0, or n-1, where n is the rank of `labels`. If the latter, it must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that values should be added to. updates_collections: An optional list of collections that updates should be added to. name: Name of new update operation, and namespace for other dependent ops. Returns: mean_average_precision: Scalar `float64` `Tensor` with the mean average precision values. update: `Operation` that increments variables appropriately, and whose value matches `metric`. """ return metrics.average_precision_at_k( k=k, predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) def streaming_sparse_average_precision_at_top_k(top_k_predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes average precision@k of predictions with respect to sparse labels. `streaming_sparse_average_precision_at_top_k` creates two local variables, `average_precision_at_<k>/total` and `average_precision_at_<k>/max`, that are used to compute the frequency. This frequency is ultimately returned as `average_precision_at_<k>`: an idempotent operation that simply divides `average_precision_at_<k>/total` by `average_precision_at_<k>/max`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `precision_at_<k>`. Set operations applied to `top_k` and `labels` calculate the true positives and false positives weighted by `weights`. Then `update_op` increments `true_positive_at_<k>` and `false_positive_at_<k>` using these values. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: top_k_predictions: Integer `Tensor` with shape [D1, ... DN, k] where N >= 1. Commonly, N=1 and `predictions_idx` has shape [batch size, k]. The final dimension must be set and contains the top `k` predicted class indices. [D1, ... DN] must match `labels`. Values should be in range [0, num_classes). labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels] or [D1, ... DN], where the latter implies num_labels=1. N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `top_k_predictions`. Values should be in range [0, num_classes). weights: `Tensor` whose rank is either 0, or n-1, where n is the rank of `labels`. If the latter, it must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that values should be added to. updates_collections: An optional list of collections that updates should be added to. name: Name of new update operation, and namespace for other dependent ops. Returns: mean_average_precision: Scalar `float64` `Tensor` with the mean average precision values. update: `Operation` that increments variables appropriately, and whose value matches `metric`. Raises: ValueError: if the last dimension of top_k_predictions is not set. """ return metrics_impl._streaming_sparse_average_precision_at_top_k( # pylint: disable=protected-access predictions_idx=top_k_predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) @deprecated(None, 'Please switch to tf.metrics.mean.') def streaming_mean_absolute_error(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the mean absolute error between the labels and predictions. The `streaming_mean_absolute_error` function creates two local variables, `total` and `count` that are used to compute the mean absolute error. This average is weighted by `weights`, and it is ultimately returned as `mean_absolute_error`: an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `mean_absolute_error`. Internally, an `absolute_errors` operation computes the absolute value of the differences between `predictions` and `labels`. Then `update_op` increments `total` with the reduced sum of the product of `weights` and `absolute_errors`, and it increments `count` with the reduced sum of `weights` If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: A `Tensor` of arbitrary shape. labels: A `Tensor` of the same shape as `predictions`. weights: Optional `Tensor` indicating the frequency with which an example is sampled. Rank must be 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `mean_absolute_error` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: mean_absolute_error: A `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately and whose value matches `mean_absolute_error`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.mean_absolute_error( predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) def streaming_mean_relative_error(predictions, labels, normalizer, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the mean relative error by normalizing with the given values. The `streaming_mean_relative_error` function creates two local variables, `total` and `count` that are used to compute the mean relative absolute error. This average is weighted by `weights`, and it is ultimately returned as `mean_relative_error`: an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `mean_reative_error`. Internally, a `relative_errors` operation divides the absolute value of the differences between `predictions` and `labels` by the `normalizer`. Then `update_op` increments `total` with the reduced sum of the product of `weights` and `relative_errors`, and it increments `count` with the reduced sum of `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: A `Tensor` of arbitrary shape. labels: A `Tensor` of the same shape as `predictions`. normalizer: A `Tensor` of the same shape as `predictions`. weights: Optional `Tensor` indicating the frequency with which an example is sampled. Rank must be 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `mean_relative_error` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: mean_relative_error: A `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately and whose value matches `mean_relative_error`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.mean_relative_error( normalizer=normalizer, predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) def streaming_mean_squared_error(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the mean squared error between the labels and predictions. The `streaming_mean_squared_error` function creates two local variables, `total` and `count` that are used to compute the mean squared error. This average is weighted by `weights`, and it is ultimately returned as `mean_squared_error`: an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `mean_squared_error`. Internally, a `squared_error` operation computes the element-wise square of the difference between `predictions` and `labels`. Then `update_op` increments `total` with the reduced sum of the product of `weights` and `squared_error`, and it increments `count` with the reduced sum of `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: A `Tensor` of arbitrary shape. labels: A `Tensor` of the same shape as `predictions`. weights: Optional `Tensor` indicating the frequency with which an example is sampled. Rank must be 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `mean_squared_error` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: mean_squared_error: A `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately and whose value matches `mean_squared_error`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.mean_squared_error( predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) def streaming_root_mean_squared_error(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the root mean squared error between the labels and predictions. The `streaming_root_mean_squared_error` function creates two local variables, `total` and `count` that are used to compute the root mean squared error. This average is weighted by `weights`, and it is ultimately returned as `root_mean_squared_error`: an idempotent operation that takes the square root of the division of `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `root_mean_squared_error`. Internally, a `squared_error` operation computes the element-wise square of the difference between `predictions` and `labels`. Then `update_op` increments `total` with the reduced sum of the product of `weights` and `squared_error`, and it increments `count` with the reduced sum of `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: A `Tensor` of arbitrary shape. labels: A `Tensor` of the same shape as `predictions`. weights: Optional `Tensor` indicating the frequency with which an example is sampled. Rank must be 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `root_mean_squared_error` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: root_mean_squared_error: A `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately and whose value matches `root_mean_squared_error`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.root_mean_squared_error( predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) def streaming_covariance(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the unbiased sample covariance between `predictions` and `labels`. The `streaming_covariance` function creates four local variables, `comoment`, `mean_prediction`, `mean_label`, and `count`, which are used to compute the sample covariance between predictions and labels across multiple batches of data. The covariance is ultimately returned as an idempotent operation that simply divides `comoment` by `count` - 1. We use `count` - 1 in order to get an unbiased estimate. The algorithm used for this online computation is described in https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance. Specifically, the formula used to combine two sample comoments is `C_AB = C_A + C_B + (E[x_A] - E[x_B]) * (E[y_A] - E[y_B]) * n_A * n_B / n_AB` The comoment for a single batch of data is simply `sum((x - E[x]) * (y - E[y]))`, optionally weighted. If `weights` is not None, then it is used to compute weighted comoments, means, and count. NOTE: these weights are treated as "frequency weights", as opposed to "reliability weights". See discussion of the difference on https://wikipedia.org/wiki/Weighted_arithmetic_mean#Weighted_sample_variance To facilitate the computation of covariance across multiple batches of data, the function creates an `update_op` operation, which updates underlying variables and returns the updated covariance. Args: predictions: A `Tensor` of arbitrary size. labels: A `Tensor` of the same size as `predictions`. weights: Optional `Tensor` indicating the frequency with which an example is sampled. Rank must be 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that the metric value variable should be added to. updates_collections: An optional list of collections that the metric update ops should be added to. name: An optional variable_scope name. Returns: covariance: A `Tensor` representing the current unbiased sample covariance, `comoment` / (`count` - 1). update_op: An operation that updates the local variables appropriately. Raises: ValueError: If labels and predictions are of different sizes or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope(name, 'covariance', (predictions, labels, weights)): predictions, labels, weights = metrics_impl._remove_squeezable_dimensions( # pylint: disable=protected-access predictions, labels, weights) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) count_ = metrics_impl.metric_variable([], dtypes.float32, name='count') mean_prediction = metrics_impl.metric_variable( [], dtypes.float32, name='mean_prediction') mean_label = metrics_impl.metric_variable( [], dtypes.float32, name='mean_label') comoment = metrics_impl.metric_variable( # C_A in update equation [], dtypes.float32, name='comoment') if weights is None: batch_count = math_ops.to_float(array_ops.size(labels)) # n_B in eqn weighted_predictions = predictions weighted_labels = labels else: weights = weights_broadcast_ops.broadcast_weights(weights, labels) batch_count = math_ops.reduce_sum(weights) # n_B in eqn weighted_predictions = math_ops.multiply(predictions, weights) weighted_labels = math_ops.multiply(labels, weights) update_count = state_ops.assign_add(count_, batch_count) # n_AB in eqn prev_count = update_count - batch_count # n_A in update equation # We update the means by Delta=Error*BatchCount/(BatchCount+PrevCount) # batch_mean_prediction is E[x_B] in the update equation batch_mean_prediction = _safe_div( math_ops.reduce_sum(weighted_predictions), batch_count, 'batch_mean_prediction') delta_mean_prediction = _safe_div( (batch_mean_prediction - mean_prediction) * batch_count, update_count, 'delta_mean_prediction') update_mean_prediction = state_ops.assign_add(mean_prediction, delta_mean_prediction) # prev_mean_prediction is E[x_A] in the update equation prev_mean_prediction = update_mean_prediction - delta_mean_prediction # batch_mean_label is E[y_B] in the update equation batch_mean_label = _safe_div( math_ops.reduce_sum(weighted_labels), batch_count, 'batch_mean_label') delta_mean_label = _safe_div((batch_mean_label - mean_label) * batch_count, update_count, 'delta_mean_label') update_mean_label = state_ops.assign_add(mean_label, delta_mean_label) # prev_mean_label is E[y_A] in the update equation prev_mean_label = update_mean_label - delta_mean_label unweighted_batch_coresiduals = ((predictions - batch_mean_prediction) * (labels - batch_mean_label)) # batch_comoment is C_B in the update equation if weights is None: batch_comoment = math_ops.reduce_sum(unweighted_batch_coresiduals) else: batch_comoment = math_ops.reduce_sum( unweighted_batch_coresiduals * weights) # View delta_comoment as = C_AB - C_A in the update equation above. # Since C_A is stored in a var, by how much do we need to increment that var # to make the var = C_AB? delta_comoment = ( batch_comoment + (prev_mean_prediction - batch_mean_prediction) * (prev_mean_label - batch_mean_label) * (prev_count * batch_count / update_count)) update_comoment = state_ops.assign_add(comoment, delta_comoment) covariance = array_ops.where( math_ops.less_equal(count_, 1.), float('nan'), math_ops.truediv(comoment, count_ - 1), name='covariance') with ops.control_dependencies([update_comoment]): update_op = array_ops.where( math_ops.less_equal(count_, 1.), float('nan'), math_ops.truediv(comoment, count_ - 1), name='update_op') if metrics_collections: ops.add_to_collections(metrics_collections, covariance) if updates_collections: ops.add_to_collections(updates_collections, update_op) return covariance, update_op def streaming_pearson_correlation(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes Pearson correlation coefficient between `predictions`, `labels`. The `streaming_pearson_correlation` function delegates to `streaming_covariance` the tracking of three [co]variances: - `streaming_covariance(predictions, labels)`, i.e. covariance - `streaming_covariance(predictions, predictions)`, i.e. variance - `streaming_covariance(labels, labels)`, i.e. variance The product-moment correlation ultimately returned is an idempotent operation `cov(predictions, labels) / sqrt(var(predictions) * var(labels))`. To facilitate correlation computation across multiple batches, the function groups the `update_op`s of the underlying streaming_covariance and returns an `update_op`. If `weights` is not None, then it is used to compute a weighted correlation. NOTE: these weights are treated as "frequency weights", as opposed to "reliability weights". See discussion of the difference on https://wikipedia.org/wiki/Weighted_arithmetic_mean#Weighted_sample_variance Args: predictions: A `Tensor` of arbitrary size. labels: A `Tensor` of the same size as predictions. weights: Optional `Tensor` indicating the frequency with which an example is sampled. Rank must be 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that the metric value variable should be added to. updates_collections: An optional list of collections that the metric update ops should be added to. name: An optional variable_scope name. Returns: pearson_r: A `Tensor` representing the current Pearson product-moment correlation coefficient, the value of `cov(predictions, labels) / sqrt(var(predictions) * var(labels))`. update_op: An operation that updates the underlying variables appropriately. Raises: ValueError: If `labels` and `predictions` are of different sizes, or if `weights` is the wrong size, or if either `metrics_collections` or `updates_collections` are not a `list` or `tuple`. """ with variable_scope.variable_scope(name, 'pearson_r', (predictions, labels, weights)): predictions, labels, weights = metrics_impl._remove_squeezable_dimensions( # pylint: disable=protected-access predictions, labels, weights) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) # Broadcast weights here to avoid duplicate broadcasting in each call to # `streaming_covariance`. if weights is not None: weights = weights_broadcast_ops.broadcast_weights(weights, labels) cov, update_cov = streaming_covariance( predictions, labels, weights=weights, name='covariance') var_predictions, update_var_predictions = streaming_covariance( predictions, predictions, weights=weights, name='variance_predictions') var_labels, update_var_labels = streaming_covariance( labels, labels, weights=weights, name='variance_labels') pearson_r = math_ops.truediv( cov, math_ops.multiply( math_ops.sqrt(var_predictions), math_ops.sqrt(var_labels)), name='pearson_r') update_op = math_ops.truediv( update_cov, math_ops.multiply( math_ops.sqrt(update_var_predictions), math_ops.sqrt(update_var_labels)), name='update_op') if metrics_collections: ops.add_to_collections(metrics_collections, pearson_r) if updates_collections: ops.add_to_collections(updates_collections, update_op) return pearson_r, update_op # TODO(nsilberman): add a 'normalized' flag so that the user can request # normalization if the inputs are not normalized. def streaming_mean_cosine_distance(predictions, labels, dim, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the cosine distance between the labels and predictions. The `streaming_mean_cosine_distance` function creates two local variables, `total` and `count` that are used to compute the average cosine distance between `predictions` and `labels`. This average is weighted by `weights`, and it is ultimately returned as `mean_distance`, which is an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `mean_distance`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: A `Tensor` of the same shape as `labels`. labels: A `Tensor` of arbitrary shape. dim: The dimension along which the cosine distance is computed. weights: An optional `Tensor` whose shape is broadcastable to `predictions`, and whose dimension `dim` is 1. metrics_collections: An optional list of collections that the metric value variable should be added to. updates_collections: An optional list of collections that the metric update ops should be added to. name: An optional variable_scope name. Returns: mean_distance: A `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ predictions, labels, weights = metrics_impl._remove_squeezable_dimensions( # pylint: disable=protected-access predictions, labels, weights) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) radial_diffs = math_ops.multiply(predictions, labels) radial_diffs = math_ops.reduce_sum( radial_diffs, reduction_indices=[ dim, ], keep_dims=True) mean_distance, update_op = streaming_mean(radial_diffs, weights, None, None, name or 'mean_cosine_distance') mean_distance = math_ops.subtract(1.0, mean_distance) update_op = math_ops.subtract(1.0, update_op) if metrics_collections: ops.add_to_collections(metrics_collections, mean_distance) if updates_collections: ops.add_to_collections(updates_collections, update_op) return mean_distance, update_op def streaming_percentage_less(values, threshold, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the percentage of values less than the given threshold. The `streaming_percentage_less` function creates two local variables, `total` and `count` that are used to compute the percentage of `values` that fall below `threshold`. This rate is weighted by `weights`, and it is ultimately returned as `percentage` which is an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `percentage`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: values: A numeric `Tensor` of arbitrary size. threshold: A scalar threshold. weights: An optional `Tensor` whose shape is broadcastable to `values`. metrics_collections: An optional list of collections that the metric value variable should be added to. updates_collections: An optional list of collections that the metric update ops should be added to. name: An optional variable_scope name. Returns: percentage: A `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `values`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.percentage_below( values=values, threshold=threshold, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) def streaming_mean_iou(predictions, labels, num_classes, weights=None, metrics_collections=None, updates_collections=None, name=None): """Calculate per-step mean Intersection-Over-Union (mIOU). Mean Intersection-Over-Union is a common evaluation metric for semantic image segmentation, which first computes the IOU for each semantic class and then computes the average over classes. IOU is defined as follows: IOU = true_positive / (true_positive + false_positive + false_negative). The predictions are accumulated in a confusion matrix, weighted by `weights`, and mIOU is then calculated from it. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `mean_iou`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: A `Tensor` of prediction results for semantic labels, whose shape is [batch size] and type `int32` or `int64`. The tensor will be flattened, if its rank > 1. labels: A `Tensor` of ground truth labels with shape [batch size] and of type `int32` or `int64`. The tensor will be flattened, if its rank > 1. num_classes: The possible number of labels the prediction task can have. This value must be provided, since a confusion matrix of dimension = [num_classes, num_classes] will be allocated. weights: An optional `Tensor` whose shape is broadcastable to `predictions`. metrics_collections: An optional list of collections that `mean_iou` should be added to. updates_collections: An optional list of collections `update_op` should be added to. name: An optional variable_scope name. Returns: mean_iou: A `Tensor` representing the mean intersection-over-union. update_op: An operation that increments the confusion matrix. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.mean_iou( num_classes=num_classes, predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) def _next_array_size(required_size, growth_factor=1.5): """Calculate the next size for reallocating a dynamic array. Args: required_size: number or tf.Tensor specifying required array capacity. growth_factor: optional number or tf.Tensor specifying the growth factor between subsequent allocations. Returns: tf.Tensor with dtype=int32 giving the next array size. """ exponent = math_ops.ceil( math_ops.log(math_ops.cast(required_size, dtypes.float32)) / math_ops.log( math_ops.cast(growth_factor, dtypes.float32))) return math_ops.cast(math_ops.ceil(growth_factor**exponent), dtypes.int32) def streaming_concat(values, axis=0, max_size=None, metrics_collections=None, updates_collections=None, name=None): """Concatenate values along an axis across batches. The function `streaming_concat` creates two local variables, `array` and `size`, that are used to store concatenated values. Internally, `array` is used as storage for a dynamic array (if `maxsize` is `None`), which ensures that updates can be run in amortized constant time. For estimation of the metric over a stream of data, the function creates an `update_op` operation that appends the values of a tensor and returns the length of the concatenated axis. This op allows for evaluating metrics that cannot be updated incrementally using the same framework as other streaming metrics. Args: values: `Tensor` to concatenate. Rank and the shape along all axes other than the axis to concatenate along must be statically known. axis: optional integer axis to concatenate along. max_size: optional integer maximum size of `value` along the given axis. Once the maximum size is reached, further updates are no-ops. By default, there is no maximum size: the array is resized as necessary. metrics_collections: An optional list of collections that `value` should be added to. updates_collections: An optional list of collections `update_op` should be added to. name: An optional variable_scope name. Returns: value: A `Tensor` representing the concatenated values. update_op: An operation that concatenates the next values. Raises: ValueError: if `values` does not have a statically known rank, `axis` is not in the valid range or the size of `values` is not statically known along any axis other than `axis`. """ with variable_scope.variable_scope(name, 'streaming_concat', (values,)): # pylint: disable=invalid-slice-index values_shape = values.get_shape() if values_shape.dims is None: raise ValueError('`values` must have known statically known rank') ndim = len(values_shape) if axis < 0: axis += ndim if not 0 <= axis < ndim: raise ValueError('axis = %r not in [0, %r)' % (axis, ndim)) fixed_shape = [dim.value for n, dim in enumerate(values_shape) if n != axis] if any(value is None for value in fixed_shape): raise ValueError('all dimensions of `values` other than the dimension to ' 'concatenate along must have statically known size') # We move `axis` to the front of the internal array so assign ops can be # applied to contiguous slices init_size = 0 if max_size is None else max_size init_shape = [init_size] + fixed_shape array = metrics_impl.metric_variable( init_shape, values.dtype, validate_shape=False, name='array') size = metrics_impl.metric_variable([], dtypes.int32, name='size') perm = [0 if n == axis else n + 1 if n < axis else n for n in range(ndim)] valid_array = array[:size] valid_array.set_shape([None] + fixed_shape) value = array_ops.transpose(valid_array, perm, name='concat') values_size = array_ops.shape(values)[axis] if max_size is None: batch_size = values_size else: batch_size = math_ops.minimum(values_size, max_size - size) perm = [axis] + [n for n in range(ndim) if n != axis] batch_values = array_ops.transpose(values, perm)[:batch_size] def reallocate(): next_size = _next_array_size(new_size) next_shape = array_ops.stack([next_size] + fixed_shape) new_value = array_ops.zeros(next_shape, dtype=values.dtype) old_value = array.value() assign_op = state_ops.assign(array, new_value, validate_shape=False) with ops.control_dependencies([assign_op]): copy_op = array[:size].assign(old_value[:size]) # return value needs to be the same dtype as no_op() for cond with ops.control_dependencies([copy_op]): return control_flow_ops.no_op() new_size = size + batch_size array_size = array_ops.shape_internal(array, optimize=False)[0] maybe_reallocate_op = control_flow_ops.cond( new_size > array_size, reallocate, control_flow_ops.no_op) with ops.control_dependencies([maybe_reallocate_op]): append_values_op = array[size:new_size].assign(batch_values) with ops.control_dependencies([append_values_op]): update_op = size.assign(new_size) if metrics_collections: ops.add_to_collections(metrics_collections, value) if updates_collections: ops.add_to_collections(updates_collections, update_op) return value, update_op # pylint: enable=invalid-slice-index def aggregate_metrics(*value_update_tuples): """Aggregates the metric value tensors and update ops into two lists. Args: *value_update_tuples: a variable number of tuples, each of which contain the pair of (value_tensor, update_op) from a streaming metric. Returns: A list of value `Tensor` objects and a list of update ops. Raises: ValueError: if `value_update_tuples` is empty. """ if not value_update_tuples: raise ValueError('Expected at least one value_tensor/update_op pair') value_ops, update_ops = zip(*value_update_tuples) return list(value_ops), list(update_ops) def aggregate_metric_map(names_to_tuples): """Aggregates the metric names to tuple dictionary. This function is useful for pairing metric names with their associated value and update ops when the list of metrics is long. For example: ```python metrics_to_values, metrics_to_updates = slim.metrics.aggregate_metric_map({ 'Mean Absolute Error': new_slim.metrics.streaming_mean_absolute_error( predictions, labels, weights), 'Mean Relative Error': new_slim.metrics.streaming_mean_relative_error( predictions, labels, labels, weights), 'RMSE Linear': new_slim.metrics.streaming_root_mean_squared_error( predictions, labels, weights), 'RMSE Log': new_slim.metrics.streaming_root_mean_squared_error( predictions, labels, weights), }) ``` Args: names_to_tuples: a map of metric names to tuples, each of which contain the pair of (value_tensor, update_op) from a streaming metric. Returns: A dictionary from metric names to value ops and a dictionary from metric names to update ops. """ metric_names = names_to_tuples.keys() value_ops, update_ops = zip(*names_to_tuples.values()) return dict(zip(metric_names, value_ops)), dict(zip(metric_names, update_ops)) def count(values, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the number of examples, or sum of `weights`. When evaluating some metric (e.g. mean) on one or more subsets of the data, this auxiliary metric is useful for keeping track of how many examples there are in each subset. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: values: A `Tensor` of arbitrary dimensions. Only it's shape is used. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that the metric value variable should be added to. updates_collections: An optional list of collections that the metric update ops should be added to. name: An optional variable_scope name. Returns: count: A `Tensor` representing the current value of the metric. update_op: An operation that accumulates the metric from a batch of data. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `values`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope(name, 'count', (values, weights)): count_ = metrics_impl.metric_variable([], dtypes.float32, name='count') if weights is None: num_values = math_ops.to_float(array_ops.size(values)) else: _, _, weights = metrics_impl._remove_squeezable_dimensions( # pylint: disable=protected-access predictions=values, labels=None, weights=weights) weights = weights_broadcast_ops.broadcast_weights( math_ops.to_float(weights), values) num_values = math_ops.reduce_sum(weights) with ops.control_dependencies([values]): update_op = state_ops.assign_add(count_, num_values) if metrics_collections: ops.add_to_collections(metrics_collections, count_) if updates_collections: ops.add_to_collections(updates_collections, update_op) return count_, update_op def cohen_kappa(labels, predictions_idx, num_classes, weights=None, metrics_collections=None, updates_collections=None, name=None): """Calculates Cohen's kappa. [Cohen's kappa](https://en.wikipedia.org/wiki/Cohen's_kappa) is a statistic that measures inter-annotator agreement. The `cohen_kappa` function calculates the confusion matrix, and creates three local variables to compute the Cohen's kappa: `po`, `pe_row`, and `pe_col`, which refer to the diagonal part, rows and columns totals of the confusion matrix, respectively. This value is ultimately returned as `kappa`, an idempotent operation that is calculated by pe = (pe_row * pe_col) / N k = (sum(po) - sum(pe)) / (N - sum(pe)) For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `kappa`. `update_op` weights each prediction by the corresponding value in `weights`. Class labels are expected to start at 0. E.g., if `num_classes` was three, then the possible labels would be [0, 1, 2]. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. NOTE: Equivalent to `sklearn.metrics.cohen_kappa_score`, but the method doesn't support weighted matrix yet. Args: labels: 1-D `Tensor` of real labels for the classification task. Must be one of the following types: int16, int32, int64. predictions_idx: 1-D `Tensor` of predicted class indices for a given classification. Must have the same type as `labels`. num_classes: The possible number of labels. weights: Optional `Tensor` whose shape matches `predictions`. metrics_collections: An optional list of collections that `kappa` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: kappa: Scalar float `Tensor` representing the current Cohen's kappa. update_op: `Operation` that increments `po`, `pe_row` and `pe_col` variables appropriately and whose value matches `kappa`. Raises: ValueError: If `num_classes` is less than 2, or `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. RuntimeError: If eager execution is enabled. """ if context.in_eager_mode(): raise RuntimeError('tf.contrib.metrics.cohen_kappa is not supported' 'when eager execution is enabled.') if num_classes < 2: raise ValueError('`num_classes` must be >= 2.' 'Found: {}'.format(num_classes)) with variable_scope.variable_scope(name, 'cohen_kappa', (labels, predictions_idx, weights)): # Convert 2-dim (num, 1) to 1-dim (num,) labels.get_shape().with_rank_at_most(2) if labels.get_shape().ndims == 2: labels = array_ops.squeeze(labels, axis=[-1]) predictions_idx, labels, weights = ( metrics_impl._remove_squeezable_dimensions( # pylint: disable=protected-access predictions=predictions_idx, labels=labels, weights=weights)) predictions_idx.get_shape().assert_is_compatible_with(labels.get_shape()) stat_dtype = ( dtypes.int64 if weights is None or weights.dtype.is_integer else dtypes.float32) po = metrics_impl.metric_variable((num_classes,), stat_dtype, name='po') pe_row = metrics_impl.metric_variable( (num_classes,), stat_dtype, name='pe_row') pe_col = metrics_impl.metric_variable( (num_classes,), stat_dtype, name='pe_col') # Table of the counts of agreement: counts_in_table = confusion_matrix.confusion_matrix( labels, predictions_idx, num_classes=num_classes, weights=weights, dtype=stat_dtype, name='counts_in_table') po_t = array_ops.diag_part(counts_in_table) pe_row_t = math_ops.reduce_sum(counts_in_table, axis=0) pe_col_t = math_ops.reduce_sum(counts_in_table, axis=1) update_po = state_ops.assign_add(po, po_t) update_pe_row = state_ops.assign_add(pe_row, pe_row_t) update_pe_col = state_ops.assign_add(pe_col, pe_col_t) def _calculate_k(po, pe_row, pe_col, name): po_sum = math_ops.reduce_sum(po) total = math_ops.reduce_sum(pe_row) pe_sum = math_ops.reduce_sum( metrics_impl._safe_div( # pylint: disable=protected-access pe_row * pe_col, total, None)) po_sum, pe_sum, total = (math_ops.to_double(po_sum), math_ops.to_double(pe_sum), math_ops.to_double(total)) # kappa = (po - pe) / (N - pe) k = metrics_impl._safe_scalar_div( # pylint: disable=protected-access po_sum - pe_sum, total - pe_sum, name=name) return k kappa = _calculate_k(po, pe_row, pe_col, name='value') update_op = _calculate_k( update_po, update_pe_row, update_pe_col, name='update_op') if metrics_collections: ops.add_to_collections(metrics_collections, kappa) if updates_collections: ops.add_to_collections(updates_collections, update_op) return kappa, update_op __all__ = [ 'auc_with_confidence_intervals', 'aggregate_metric_map', 'aggregate_metrics', 'cohen_kappa', 'count', 'precision_recall_at_equal_thresholds', 'recall_at_precision', 'sparse_recall_at_top_k', 'streaming_accuracy', 'streaming_auc', 'streaming_curve_points', 'streaming_dynamic_auc', 'streaming_false_negative_rate', 'streaming_false_negative_rate_at_thresholds', 'streaming_false_negatives', 'streaming_false_negatives_at_thresholds', 'streaming_false_positive_rate', 'streaming_false_positive_rate_at_thresholds', 'streaming_false_positives', 'streaming_false_positives_at_thresholds', 'streaming_mean', 'streaming_mean_absolute_error', 'streaming_mean_cosine_distance', 'streaming_mean_iou', 'streaming_mean_relative_error', 'streaming_mean_squared_error', 'streaming_mean_tensor', 'streaming_percentage_less', 'streaming_precision', 'streaming_precision_at_thresholds', 'streaming_recall', 'streaming_recall_at_k', 'streaming_recall_at_thresholds', 'streaming_root_mean_squared_error', 'streaming_sensitivity_at_specificity', 'streaming_sparse_average_precision_at_k', 'streaming_sparse_average_precision_at_top_k', 'streaming_sparse_precision_at_k', 'streaming_sparse_precision_at_top_k', 'streaming_sparse_recall_at_k', 'streaming_specificity_at_sensitivity', 'streaming_true_negatives', 'streaming_true_negatives_at_thresholds', 'streaming_true_positives', 'streaming_true_positives_at_thresholds', ]
apache-2.0
eegroopm/pyLATTICE
resources/Dialogs.py
1
4713
# -*- coding: utf-8 -*- """ Created on Mon Apr 21 10:36:10 2014 @author: eegroopm """ from PyQt4.QtGui import QDialog, QListWidgetItem from PyQt4.QtCore import Qt import sys sys.path.append("..") #import from parent directory import gui ############################################################################### ## Various Input Dialogs ## ############################################################################### class SettingsDialog(QDialog): def __init__(self,current_settings,parent=None): QDialog.__init__(self,parent) gui.loadUi(__file__,self) c = current_settings self.maxa.setValue(c['a max']) self.maxb.setValue(c['b max']) self.maxc.setValue(c['c max']) self.buttonBox.accepted.connect(self.accept) self.buttonBox.rejected.connect(self.reject) class MineralListDialog(QDialog): def __init__(self,parent=None): QDialog.__init__(self,parent) gui.loadUi(__file__,self) self.buttonBox.accepted.connect(self.accept) self.buttonBox.rejected.connect(self.reject) class NewMineralDialog(QDialog): def __init__(self,parent=None): QDialog.__init__(self,parent) gui.loadUi(__file__,self) self.buttonBox.accepted.connect(self.accept) self.buttonBox.rejected.connect(self.reject) class ManualConditionsDialog(QDialog): """Allows for the user to input special reflection conditions manually. This is a simple interface where the user can choose if:then conditions for combinations of h,k,l. The results are then converted to python/pandas syntax from where they can be parsed by pylattice""" def __init__(self,conditions= [], parent= None): QDialog.__init__(self,parent) gui.loadUi(__file__,self) self.buttonBox.accepted.connect(self.accept) self.buttonBox.rejected.connect(self.reject) self.manualConds = conditions #self.manualCondList.addItems(self.manualConds) for c in self.manualConds: self.newItem(c) self.Disable(True) self.signals_slots() def newItem(self,text): """Make a new item for the item list""" item = QListWidgetItem(text) item.setFlags(Qt.ItemIsEditable | Qt.ItemIsEnabled | Qt.ItemIsSelectable) self.manualCondList.addItem(item) def Disable(self,bool): #set items disabled to start for item in [self.IF2, self.IF3,self.ifVal1,self.ifVal2,self.ifVal3, self.label_3,self.label_4,self.label_5,self.THEN2,self.THEN3, self.pm1,self.pm2,self.ifAND1,self.ifAND2]: item.setDisabled(bool) def signals_slots(self): self.addCond.clicked.connect(self.parse) self.IF1.currentIndexChanged.connect(self.toggleON) self.deleteButton.clicked.connect(self.deleteCond) def deleteCond(self): """remove selected conditions""" for item in self.manualCondList.selectedItems(): ind = self.manualCondList.row(item) d = self.manualCondList.takeItem(ind) def toggleON(self): """Enabled/disables if options based upon first combo box choice.""" if self.IF1.currentIndex() == 0: self.Disable(True) else: self.ifVal1.setEnabled(True) self.label_3.setEnabled(True) self.ifAND1.setEnabled(True) self.ifAND2.setEnabled(True) def parse(self): """Parses current options and converts them into python/pandas syntax""" cond = 'if ' if1 = self.IF1.currentText() ifVal1 = self.ifVal1.value() ifand1 = self.ifAND1.isChecked() ifand2 = self.ifAND2.isChecked() #Parse 'if' statements if if1 == 'True': cond += (if1 + ': ') else: cond += '(%s == %i)' % (if1,ifVal1) if ifand1: cond += ' & (%s == %i)' % (self.IF2.currentText(),self.ifVal2.value()) if ifand2: cond += ' & (%s == %i)' % (self.IF3.currentText(),self.ifVal3.value()) cond += ': ' then1 = self.THEN1.currentText() N = self.THENN.value() cond += '(%s' % then1 if self.thenAND1.isChecked(): cond += ' %s %s' % (self.pm1.currentText(),self.THEN2.currentText()) if self.thenAND2.isChecked(): cond += ' %s %s' % (self.pm2.currentText(),self.THEN3.currentText()) cond += (')%' + '%i == 0' % N) self.newItem(cond)
gpl-2.0
untom/scikit-learn
examples/classification/plot_classifier_comparison.py
181
4699
#!/usr/bin/python # -*- coding: utf-8 -*- """ ===================== Classifier comparison ===================== A comparison of a several classifiers in scikit-learn on synthetic datasets. The point of this example is to illustrate the nature of decision boundaries of different classifiers. This should be taken with a grain of salt, as the intuition conveyed by these examples does not necessarily carry over to real datasets. Particularly in high-dimensional spaces, data can more easily be separated linearly and the simplicity of classifiers such as naive Bayes and linear SVMs might lead to better generalization than is achieved by other classifiers. The plots show training points in solid colors and testing points semi-transparent. The lower right shows the classification accuracy on the test set. """ print(__doc__) # Code source: Gaël Varoquaux # Andreas Müller # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn.cross_validation import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.datasets import make_moons, make_circles, make_classification from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.naive_bayes import GaussianNB from sklearn.lda import LDA from sklearn.qda import QDA h = .02 # step size in the mesh names = ["Nearest Neighbors", "Linear SVM", "RBF SVM", "Decision Tree", "Random Forest", "AdaBoost", "Naive Bayes", "LDA", "QDA"] classifiers = [ KNeighborsClassifier(3), SVC(kernel="linear", C=0.025), SVC(gamma=2, C=1), DecisionTreeClassifier(max_depth=5), RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1), AdaBoostClassifier(), GaussianNB(), LDA(), QDA()] X, y = make_classification(n_features=2, n_redundant=0, n_informative=2, random_state=1, n_clusters_per_class=1) rng = np.random.RandomState(2) X += 2 * rng.uniform(size=X.shape) linearly_separable = (X, y) datasets = [make_moons(noise=0.3, random_state=0), make_circles(noise=0.2, factor=0.5, random_state=1), linearly_separable ] figure = plt.figure(figsize=(27, 9)) i = 1 # iterate over datasets for ds in datasets: # preprocess dataset, split into training and test part X, y = ds X = StandardScaler().fit_transform(X) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4) x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # just plot the dataset first cm = plt.cm.RdBu cm_bright = ListedColormap(['#FF0000', '#0000FF']) ax = plt.subplot(len(datasets), len(classifiers) + 1, i) # Plot the training points ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright) # and testing points ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) i += 1 # iterate over classifiers for name, clf in zip(names, classifiers): ax = plt.subplot(len(datasets), len(classifiers) + 1, i) clf.fit(X_train, y_train) score = clf.score(X_test, y_test) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. if hasattr(clf, "decision_function"): Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) else: Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1] # Put the result into a color plot Z = Z.reshape(xx.shape) ax.contourf(xx, yy, Z, cmap=cm, alpha=.8) # Plot also the training points ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright) # and testing points ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) ax.set_title(name) ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'), size=15, horizontalalignment='right') i += 1 figure.subplots_adjust(left=.02, right=.98) plt.show()
bsd-3-clause
coolblaze03/WSNNS3Port
src/flow-monitor/examples/wifi-olsr-flowmon.py
1
7376
# -*- Mode: Python; -*- # Copyright (c) 2009 INESC Porto # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License version 2 as # published by the Free Software Foundation; # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # Authors: Gustavo Carneiro <gjc@inescporto.pt> import sys import ns.core import ns.flow_monitor import ns.internet import ns.mobility import ns.network import ns.olsr import ns.wifi import ns.visualizer import ns.applications DISTANCE = 100 # (m) NUM_NODES_SIDE = 3 def main(argv): cmd = ns.core.CommandLine() cmd.NumNodesSide = None cmd.AddValue("NumNodesSide", "Grid side number of nodes (total number of nodes will be this number squared)") cmd.Results = None cmd.AddValue("Results", "Write XML results to file") cmd.Plot = None cmd.AddValue("Plot", "Plot the results using the matplotlib python module") cmd.Parse(argv) wifi = ns.wifi.WifiHelper.Default() wifiMac = ns.wifi.NqosWifiMacHelper.Default() wifiPhy = ns.wifi.YansWifiPhyHelper.Default() wifiChannel = ns.wifi.YansWifiChannelHelper.Default() wifiPhy.SetChannel(wifiChannel.Create()) ssid = ns.wifi.Ssid("wifi-default") wifi.SetRemoteStationManager("ns3::ArfWifiManager") wifiMac.SetType ("ns3::AdhocWifiMac", "Ssid", ns.wifi.SsidValue(ssid)) internet = ns.internet.InternetStackHelper() list_routing = ns.internet.Ipv4ListRoutingHelper() olsr_routing = ns.olsr.OlsrHelper() static_routing = ns.internet.Ipv4StaticRoutingHelper() list_routing.Add(static_routing, 0) list_routing.Add(olsr_routing, 100) internet.SetRoutingHelper(list_routing) ipv4Addresses = ns.internet.Ipv4AddressHelper() ipv4Addresses.SetBase(ns.network.Ipv4Address("10.0.0.0"), ns.network.Ipv4Mask("255.255.255.0")) port = 9 # Discard port(RFC 863) onOffHelper = ns.applications.OnOffHelper("ns3::UdpSocketFactory", ns.network.Address(ns.network.InetSocketAddress(ns.network.Ipv4Address("10.0.0.1"), port))) onOffHelper.SetAttribute("DataRate", ns.network.DataRateValue(ns.network.DataRate("100kbps"))) onOffHelper.SetAttribute("OnTime", ns.core.RandomVariableValue(ns.core.ConstantVariable(1))) onOffHelper.SetAttribute("OffTime", ns.core.RandomVariableValue(ns.core.ConstantVariable(0))) addresses = [] nodes = [] if cmd.NumNodesSide is None: num_nodes_side = NUM_NODES_SIDE else: num_nodes_side = int(cmd.NumNodesSide) for xi in range(num_nodes_side): for yi in range(num_nodes_side): node = ns.network.Node() nodes.append(node) internet.Install(ns.network.NodeContainer(node)) mobility = ns.mobility.ConstantPositionMobilityModel() mobility.SetPosition(ns.core.Vector(xi*DISTANCE, yi*DISTANCE, 0)) node.AggregateObject(mobility) devices = wifi.Install(wifiPhy, wifiMac, node) ipv4_interfaces = ipv4Addresses.Assign(devices) addresses.append(ipv4_interfaces.GetAddress(0)) for i, node in enumerate(nodes): destaddr = addresses[(len(addresses) - 1 - i) % len(addresses)] #print i, destaddr onOffHelper.SetAttribute("Remote", ns.network.AddressValue(ns.network.InetSocketAddress(destaddr, port))) app = onOffHelper.Install(ns.network.NodeContainer(node)) app.Start(ns.core.Seconds(ns.core.UniformVariable(20, 30).GetValue())) #internet.EnablePcapAll("wifi-olsr") flowmon_helper = ns.flow_monitor.FlowMonitorHelper() #flowmon_helper.SetMonitorAttribute("StartTime", ns.core.TimeValue(ns.core.Seconds(31))) monitor = flowmon_helper.InstallAll() monitor = flowmon_helper.GetMonitor() monitor.SetAttribute("DelayBinWidth", ns.core.DoubleValue(0.001)) monitor.SetAttribute("JitterBinWidth", ns.core.DoubleValue(0.001)) monitor.SetAttribute("PacketSizeBinWidth", ns.core.DoubleValue(20)) ns.core.Simulator.Stop(ns.core.Seconds(44.0)) ns.core.Simulator.Run() def print_stats(os, st): print >> os, " Tx Bytes: ", st.txBytes print >> os, " Rx Bytes: ", st.rxBytes print >> os, " Tx Packets: ", st.txPackets print >> os, " Rx Packets: ", st.rxPackets print >> os, " Lost Packets: ", st.lostPackets if st.rxPackets > 0: print >> os, " Mean{Delay}: ", (st.delaySum.GetSeconds() / st.rxPackets) print >> os, " Mean{Jitter}: ", (st.jitterSum.GetSeconds() / (st.rxPackets-1)) print >> os, " Mean{Hop Count}: ", float(st.timesForwarded) / st.rxPackets + 1 if 0: print >> os, "Delay Histogram" for i in range(st.delayHistogram.GetNBins () ): print >> os, " ",i,"(", st.delayHistogram.GetBinStart (i), "-", \ st.delayHistogram.GetBinEnd (i), "): ", st.delayHistogram.GetBinCount (i) print >> os, "Jitter Histogram" for i in range(st.jitterHistogram.GetNBins () ): print >> os, " ",i,"(", st.jitterHistogram.GetBinStart (i), "-", \ st.jitterHistogram.GetBinEnd (i), "): ", st.jitterHistogram.GetBinCount (i) print >> os, "PacketSize Histogram" for i in range(st.packetSizeHistogram.GetNBins () ): print >> os, " ",i,"(", st.packetSizeHistogram.GetBinStart (i), "-", \ st.packetSizeHistogram.GetBinEnd (i), "): ", st.packetSizeHistogram.GetBinCount (i) for reason, drops in enumerate(st.packetsDropped): print " Packets dropped by reason %i: %i" % (reason, drops) #for reason, drops in enumerate(st.bytesDropped): # print "Bytes dropped by reason %i: %i" % (reason, drops) monitor.CheckForLostPackets() classifier = flowmon_helper.GetClassifier() if cmd.Results is None: for flow_id, flow_stats in monitor.GetFlowStats(): t = classifier.FindFlow(flow_id) proto = {6: 'TCP', 17: 'UDP'} [t.protocol] print "FlowID: %i (%s %s/%s --> %s/%i)" % \ (flow_id, proto, t.sourceAddress, t.sourcePort, t.destinationAddress, t.destinationPort) print_stats(sys.stdout, flow_stats) else: print monitor.SerializeToXmlFile(cmd.Results, True, True) if cmd.Plot is not None: import pylab delays = [] for flow_id, flow_stats in monitor.GetFlowStats(): tupl = classifier.FindFlow(flow_id) if tupl.protocol == 17 and tupl.sourcePort == 698: continue delays.append(flow_stats.delaySum.GetSeconds() / flow_stats.rxPackets) pylab.hist(delays, 20) pylab.xlabel("Delay (s)") pylab.ylabel("Number of Flows") pylab.show() return 0 if __name__ == '__main__': sys.exit(main(sys.argv))
gpl-2.0
drammock/mne-python
mne/utils/dataframe.py
14
3236
# -*- coding: utf-8 -*- """inst.to_data_frame() helper functions.""" # Authors: Daniel McCloy <dan@mccloy.info> # # License: BSD (3-clause) import numpy as np from ._logging import logger from ..defaults import _handle_default def _set_pandas_dtype(df, columns, dtype): """Try to set the right columns to dtype.""" for column in columns: df[column] = df[column].astype(dtype) logger.info('Converting "%s" to "%s"...' % (column, dtype)) def _scale_dataframe_data(inst, data, picks, scalings): ch_types = inst.get_channel_types() ch_types_used = list() scalings = _handle_default('scalings', scalings) for tt in scalings.keys(): if tt in ch_types: ch_types_used.append(tt) for tt in ch_types_used: scaling = scalings[tt] idx = [ii for ii in range(len(picks)) if ch_types[ii] == tt] if len(idx): data[:, idx] *= scaling return data def _convert_times(inst, times, time_format): """Convert vector of time in seconds to ms, datetime, or timedelta.""" # private function; pandas already checked in calling function from pandas import to_timedelta if time_format == 'ms': times = np.round(times * 1e3).astype(np.int64) elif time_format == 'timedelta': times = to_timedelta(times, unit='s') elif time_format == 'datetime': times = (to_timedelta(times + inst.first_time, unit='s') + inst.info['meas_date']) return times def _build_data_frame(inst, data, picks, long_format, mindex, index, default_index, col_names=None, col_kind='channel'): """Build DataFrame from MNE-object-derived data array.""" # private function; pandas already checked in calling function from pandas import DataFrame from ..source_estimate import _BaseSourceEstimate # build DataFrame if col_names is None: col_names = [inst.ch_names[p] for p in picks] df = DataFrame(data, columns=col_names) for i, (k, v) in enumerate(mindex): df.insert(i, k, v) # build Index if long_format: df.set_index(default_index, inplace=True) df.columns.name = col_kind elif index is not None: df.set_index(index, inplace=True) if set(index) == set(default_index): df.columns.name = col_kind # long format if long_format: df = df.stack().reset_index() df.rename(columns={0: 'value'}, inplace=True) # add column for channel types (as appropriate) ch_map = (None if isinstance(inst, _BaseSourceEstimate) else dict(zip(np.array(inst.ch_names)[picks], np.array(inst.get_channel_types())[picks]))) if ch_map is not None: col_index = len(df.columns) - 1 ch_type = df['channel'].map(ch_map) df.insert(col_index, 'ch_type', ch_type) # restore index if index is not None: df.set_index(index, inplace=True) # convert channel/vertex/ch_type columns to factors to_factor = [c for c in df.columns.tolist() if c not in ('time', 'value')] _set_pandas_dtype(df, to_factor, 'category') return df
bsd-3-clause
dingocuster/scikit-learn
benchmarks/bench_plot_parallel_pairwise.py
297
1247
# Author: Mathieu Blondel <mathieu@mblondel.org> # License: BSD 3 clause import time import pylab as pl from sklearn.utils import check_random_state from sklearn.metrics.pairwise import pairwise_distances from sklearn.metrics.pairwise import pairwise_kernels def plot(func): random_state = check_random_state(0) one_core = [] multi_core = [] sample_sizes = range(1000, 6000, 1000) for n_samples in sample_sizes: X = random_state.rand(n_samples, 300) start = time.time() func(X, n_jobs=1) one_core.append(time.time() - start) start = time.time() func(X, n_jobs=-1) multi_core.append(time.time() - start) pl.figure('scikit-learn parallel %s benchmark results' % func.__name__) pl.plot(sample_sizes, one_core, label="one core") pl.plot(sample_sizes, multi_core, label="multi core") pl.xlabel('n_samples') pl.ylabel('Time (s)') pl.title('Parallel %s' % func.__name__) pl.legend() def euclidean_distances(X, n_jobs): return pairwise_distances(X, metric="euclidean", n_jobs=n_jobs) def rbf_kernels(X, n_jobs): return pairwise_kernels(X, metric="rbf", n_jobs=n_jobs, gamma=0.1) plot(euclidean_distances) plot(rbf_kernels) pl.show()
bsd-3-clause
guangxingli/python-neo
examples/simple_plot_with_matplotlib.py
7
1057
# -*- coding: utf-8 -*- """ This is an example for plotting neo object with maplotlib. """ import urllib import numpy as np import quantities as pq from matplotlib import pyplot import neo url = 'https://portal.g-node.org/neo/' distantfile = url + 'neuroexplorer/File_neuroexplorer_2.nex' localfile = 'File_neuroexplorer_2.nex' urllib.urlretrieve(distantfile, localfile) reader = neo.io.NeuroExplorerIO(filename='File_neuroexplorer_2.nex') bl = reader.read(cascade=True, lazy=False)[0] for seg in bl.segments: fig = pyplot.figure() ax1 = fig.add_subplot(2, 1, 1) ax2 = fig.add_subplot(2, 1, 2) ax1.set_title(seg.file_origin) mint = 0 * pq.s maxt = np.inf * pq.s for i, asig in enumerate(seg.analogsignals): times = asig.times.rescale('s').magnitude asig = asig.rescale('mV').magnitude ax1.plot(times, asig) trains = [st.rescale('s').magnitude for st in seg.spiketrains] colors = pyplot.cm.jet(np.linspace(0, 1, len(seg.spiketrains))) ax2.eventplot(trains, colors=colors) pyplot.show()
bsd-3-clause
crichardson17/starburst_atlas
Low_resolution_sims/Dusty_LowRes/Geneva_cont_Rot/Geneva_cont_Rot_2/fullgrid/Rest.py
30
9192
import csv import matplotlib.pyplot as plt from numpy import * import scipy.interpolate import math from pylab import * from matplotlib.ticker import MultipleLocator, FormatStrFormatter import matplotlib.patches as patches from matplotlib.path import Path import os # ------------------------------------------------------------------------------------------------------ #inputs for file in os.listdir('.'): if file.endswith("1.grd"): gridfile1 = file for file in os.listdir('.'): if file.endswith("2.grd"): gridfile2 = file for file in os.listdir('.'): if file.endswith("3.grd"): gridfile3 = file # ------------------------ for file in os.listdir('.'): if file.endswith("1.txt"): Elines1 = file for file in os.listdir('.'): if file.endswith("2.txt"): Elines2 = file for file in os.listdir('.'): if file.endswith("3.txt"): Elines3 = file # ------------------------------------------------------------------------------------------------------ #Patches data #for the Kewley and Levesque data verts = [ (1., 7.97712125471966000000), # left, bottom (1., 9.57712125471966000000), # left, top (2., 10.57712125471970000000), # right, top (2., 8.97712125471966000000), # right, bottom (0., 0.), # ignored ] codes = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY, ] path = Path(verts, codes) # ------------------------ #for the Kewley 01 data verts2 = [ (2.4, 9.243038049), # left, bottom (2.4, 11.0211893), # left, top (2.6, 11.0211893), # right, top (2.6, 9.243038049), # right, bottom (0, 0.), # ignored ] path = Path(verts, codes) path2 = Path(verts2, codes) # ------------------------- #for the Moy et al data verts3 = [ (1., 6.86712125471966000000), # left, bottom (1., 10.18712125471970000000), # left, top (3., 12.18712125471970000000), # right, top (3., 8.86712125471966000000), # right, bottom (0., 0.), # ignored ] path = Path(verts, codes) path3 = Path(verts3, codes) # ------------------------------------------------------------------------------------------------------ #the routine to add patches for others peoples' data onto our plots. def add_patches(ax): patch3 = patches.PathPatch(path3, facecolor='yellow', lw=0) patch2 = patches.PathPatch(path2, facecolor='green', lw=0) patch = patches.PathPatch(path, facecolor='red', lw=0) ax1.add_patch(patch3) ax1.add_patch(patch2) ax1.add_patch(patch) # ------------------------------------------------------------------------------------------------------ #the subplot routine def add_sub_plot(sub_num): numplots = 16 plt.subplot(numplots/4.,4,sub_num) rbf = scipy.interpolate.Rbf(x, y, z[:,sub_num-1], function='linear') zi = rbf(xi, yi) contour = plt.contour(xi,yi,zi, levels, colors='c', linestyles = 'dashed') contour2 = plt.contour(xi,yi,zi, levels2, colors='k', linewidths=1.5) plt.scatter(max_values[line[sub_num-1],2], max_values[line[sub_num-1],3], c ='k',marker = '*') plt.annotate(headers[line[sub_num-1]], xy=(8,11), xytext=(6,8.5), fontsize = 10) plt.annotate(max_values[line[sub_num-1],0], xy= (max_values[line[sub_num-1],2], max_values[line[sub_num-1],3]), xytext = (0, -10), textcoords = 'offset points', ha = 'right', va = 'bottom', fontsize=10) if sub_num == numplots / 2.: print "half the plots are complete" #axis limits yt_min = 8 yt_max = 23 xt_min = 0 xt_max = 12 plt.ylim(yt_min,yt_max) plt.xlim(xt_min,xt_max) plt.yticks(arange(yt_min+1,yt_max,1),fontsize=10) plt.xticks(arange(xt_min+1,xt_max,1), fontsize = 10) if sub_num in [2,3,4,6,7,8,10,11,12,14,15,16]: plt.tick_params(labelleft = 'off') else: plt.tick_params(labelleft = 'on') plt.ylabel('Log ($ \phi _{\mathrm{H}} $)') if sub_num in [1,2,3,4,5,6,7,8,9,10,11,12]: plt.tick_params(labelbottom = 'off') else: plt.tick_params(labelbottom = 'on') plt.xlabel('Log($n _{\mathrm{H}} $)') if sub_num == 1: plt.yticks(arange(yt_min+1,yt_max+1,1),fontsize=10) if sub_num == 13: plt.yticks(arange(yt_min,yt_max,1),fontsize=10) plt.xticks(arange(xt_min,xt_max,1), fontsize = 10) if sub_num == 16 : plt.xticks(arange(xt_min+1,xt_max+1,1), fontsize = 10) # --------------------------------------------------- #this is where the grid information (phi and hdens) is read in and saved to grid. grid1 = []; grid2 = []; grid3 = []; with open(gridfile1, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: grid1.append(row); grid1 = asarray(grid1) with open(gridfile2, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: grid2.append(row); grid2 = asarray(grid2) with open(gridfile3, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: grid3.append(row); grid3 = asarray(grid3) #here is where the data for each line is read in and saved to dataEmissionlines dataEmissionlines1 = []; dataEmissionlines2 = []; dataEmissionlines3 = []; with open(Elines1, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') headers = csvReader.next() for row in csvReader: dataEmissionlines1.append(row); dataEmissionlines1 = asarray(dataEmissionlines1) with open(Elines2, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') headers2 = csvReader.next() for row in csvReader: dataEmissionlines2.append(row); dataEmissionlines2 = asarray(dataEmissionlines2) with open(Elines3, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') headers3 = csvReader.next() for row in csvReader: dataEmissionlines3.append(row); dataEmissionlines3 = asarray(dataEmissionlines3) print "import files complete" # --------------------------------------------------- #for concatenating grid #pull the phi and hdens values from each of the runs. exclude header lines grid1new = zeros((len(grid1[:,0])-1,2)) grid1new[:,0] = grid1[1:,6] grid1new[:,1] = grid1[1:,7] grid2new = zeros((len(grid2[:,0])-1,2)) x = array(17.00000) grid2new[:,0] = repeat(x,len(grid2[:,0])-1) grid2new[:,1] = grid2[1:,6] grid3new = zeros((len(grid3[:,0])-1,2)) grid3new[:,0] = grid3[1:,6] grid3new[:,1] = grid3[1:,7] grid = concatenate((grid1new,grid2new,grid3new)) hdens_values = grid[:,1] phi_values = grid[:,0] # --------------------------------------------------- #for concatenating Emission lines data Emissionlines = concatenate((dataEmissionlines1[:,1:],dataEmissionlines2[:,1:],dataEmissionlines3[:,1:])) #for lines headers = headers[1:] concatenated_data = zeros((len(Emissionlines),len(Emissionlines[0]))) max_values = zeros((len(concatenated_data[0]),4)) # --------------------------------------------------- #constructing grid by scaling #select the scaling factor #for 1215 #incident = Emissionlines[1:,4] #for 4860 incident = concatenated_data[:,57] #take the ratio of incident and all the lines and put it all in an array concatenated_data for i in range(len(Emissionlines)): for j in range(len(Emissionlines[0])): if math.log(4860.*(float(Emissionlines[i,j])/float(Emissionlines[i,57])), 10) > 0: concatenated_data[i,j] = math.log(4860.*(float(Emissionlines[i,j])/float(Emissionlines[i,57])), 10) else: concatenated_data[i,j] == 0 # for 1215 #for i in range(len(Emissionlines)): # for j in range(len(Emissionlines[0])): # if math.log(1215.*(float(Emissionlines[i,j])/float(Emissionlines[i,4])), 10) > 0: # concatenated_data[i,j] = math.log(1215.*(float(Emissionlines[i,j])/float(Emissionlines[i,4])), 10) # else: # concatenated_data[i,j] == 0 # --------------------------------------------------- #find the maxima to plot onto the contour plots for j in range(len(concatenated_data[0])): max_values[j,0] = max(concatenated_data[:,j]) max_values[j,1] = argmax(concatenated_data[:,j], axis = 0) max_values[j,2] = hdens_values[max_values[j,1]] max_values[j,3] = phi_values[max_values[j,1]] #to round off the maxima max_values[:,0] = [ '%.1f' % elem for elem in max_values[:,0] ] print "data arranged" # --------------------------------------------------- #Creating the grid to interpolate with for contours. gridarray = zeros((len(concatenated_data),2)) gridarray[:,0] = hdens_values gridarray[:,1] = phi_values x = gridarray[:,0] y = gridarray[:,1] # --------------------------------------------------- #change desired lines here! line = [3,4,15,22,37,53,54,55,57,62,77,88,89,90,92,93] #create z array for this plot z = concatenated_data[:,line[:]] # --------------------------------------------------- # Interpolate print "starting interpolation" xi, yi = linspace(x.min(), x.max(), 10), linspace(y.min(), y.max(), 10) xi, yi = meshgrid(xi, yi) # --------------------------------------------------- print "interpolatation complete; now plotting" #plot plt.subplots_adjust(wspace=0, hspace=0) #remove space between plots levels = arange(10**-1,10, .2) levels2 = arange(10**-2,10**2, 1) plt.suptitle("Dusty Rest of the Lines", fontsize=14) # --------------------------------------------------- for i in range(16): add_sub_plot(i) ax1 = plt.subplot(4,4,1) add_patches(ax1) print "complete" plt.savefig('Dusty_Rest.pdf') plt.clf() print "figure saved"
gpl-2.0
faturita/ShinkeyBot
NeoCortex/TelemetryAnalysis.py
1
2558
#coding: latin-1 # # STEM - Blinking Counter # Este programa es un ejemplo de utilizacion de python para implementar un simple # contador de penstaneos basados en una senal de EMG/EMG/EOG. # # Frecuencia de sampleo Fs = 128 import csv import numpy as np import scipy.signal as signal def moving_average(a, n=3) : ret = np.cumsum(a, dtype=float) ret[n:] = ret[n:] - ret[:-n] return ret[n - 1:] / n def corrections(a,n=300): cumlist = [] for source in range(1, len(a)-n,n): cum = 0 for i in range(source, source+n): if (a[i-1] + 1==a[i]) or (a[i-1] == 254 and a[i]==0): pass else: cum = cum + 1 cumlist.append(cum) return cumlist results = [] print 'Este programa tiene que ejecutarse con python 2.7!' # Esta primera linea, abre el archivo 'blinking.dat' que se grabó # al establecerse la conexión con el servidor. with open('sensor1.dat') as inputfile: for row in csv.reader(inputfile): rows = row[0].split(' ') results.append(rows[0:]) # Convert the file into numpy array of ints. results = np.asarray(results) results = results.astype(float) # Strip from the signal anything you want # La primer columna corresponde a el largo del archivo a considerar # en relación a las muestras (1:100 serian las muestras) representante # del tiempo. # La segunda columna, corresponde a: eeg, attention y meditation. #data = results[0:,0 data = results mylist = data[0:,2] N = 300 cumsum, moving_aves = [0], [] for i, x in enumerate(mylist, 1): cumsum.append(cumsum[i-1] + x) if i>=N: moving_ave = (cumsum[i] - cumsum[i-N])/N #can do stuff with moving_ave here moving_aves.append(moving_ave) fps = moving_average(data[0:,1], n=5000) voltages = moving_average(data[0:,2], n=300) current = moving_average(data[0:,3],n=300) freq = moving_average(data[0:,4], n=5000) s = corrections(data[0:,5],n=5000) import matplotlib.pyplot as plt fig = plt.figure() ax1 = fig.add_subplot(311) ax2 = fig.add_subplot(312) ax3 = fig.add_subplot(313) ax2.plot(freq,'r', label='Fps') #ax1.plot(data[0:,2],'g', label='V') ax3.plot(current,'b', label='A') ax1.plot(voltages,'g', label='V') #ax1.plot(data[0:,4],'y', label='A') plt.legend(loc='upper left'); plt.show() fig = plt.figure() ax1 = fig.add_subplot(311) ax2 = fig.add_subplot(312) ax3 = fig.add_subplot(313) ax2.plot(freq,'r', label='Freq') ax1.plot(fps,'y', label='Fps') ax3.plot(s, 'b', label='Errors') plt.legend(loc='upper left'); plt.show()
mit
Petr-Kovalev/nupic-win32
external/linux32/lib/python2.6/site-packages/matplotlib/cbook.py
69
42525
""" A collection of utility functions and classes. Many (but not all) from the Python Cookbook -- hence the name cbook """ from __future__ import generators import re, os, errno, sys, StringIO, traceback, locale, threading, types import time, datetime import warnings import numpy as np import numpy.ma as ma from weakref import ref major, minor1, minor2, s, tmp = sys.version_info # on some systems, locale.getpreferredencoding returns None, which can break unicode preferredencoding = locale.getpreferredencoding() def unicode_safe(s): if preferredencoding is None: return unicode(s) else: return unicode(s, preferredencoding) class converter: """ Base class for handling string -> python type with support for missing values """ def __init__(self, missing='Null', missingval=None): self.missing = missing self.missingval = missingval def __call__(self, s): if s==self.missing: return self.missingval return s def is_missing(self, s): return not s.strip() or s==self.missing class tostr(converter): 'convert to string or None' def __init__(self, missing='Null', missingval=''): converter.__init__(self, missing=missing, missingval=missingval) class todatetime(converter): 'convert to a datetime or None' def __init__(self, fmt='%Y-%m-%d', missing='Null', missingval=None): 'use a :func:`time.strptime` format string for conversion' converter.__init__(self, missing, missingval) self.fmt = fmt def __call__(self, s): if self.is_missing(s): return self.missingval tup = time.strptime(s, self.fmt) return datetime.datetime(*tup[:6]) class todate(converter): 'convert to a date or None' def __init__(self, fmt='%Y-%m-%d', missing='Null', missingval=None): 'use a :func:`time.strptime` format string for conversion' converter.__init__(self, missing, missingval) self.fmt = fmt def __call__(self, s): if self.is_missing(s): return self.missingval tup = time.strptime(s, self.fmt) return datetime.date(*tup[:3]) class tofloat(converter): 'convert to a float or None' def __init__(self, missing='Null', missingval=None): converter.__init__(self, missing) self.missingval = missingval def __call__(self, s): if self.is_missing(s): return self.missingval return float(s) class toint(converter): 'convert to an int or None' def __init__(self, missing='Null', missingval=None): converter.__init__(self, missing) def __call__(self, s): if self.is_missing(s): return self.missingval return int(s) class CallbackRegistry: """ Handle registering and disconnecting for a set of signals and callbacks:: signals = 'eat', 'drink', 'be merry' def oneat(x): print 'eat', x def ondrink(x): print 'drink', x callbacks = CallbackRegistry(signals) ideat = callbacks.connect('eat', oneat) iddrink = callbacks.connect('drink', ondrink) #tmp = callbacks.connect('drunk', ondrink) # this will raise a ValueError callbacks.process('drink', 123) # will call oneat callbacks.process('eat', 456) # will call ondrink callbacks.process('be merry', 456) # nothing will be called callbacks.disconnect(ideat) # disconnect oneat callbacks.process('eat', 456) # nothing will be called """ def __init__(self, signals): '*signals* is a sequence of valid signals' self.signals = set(signals) # callbacks is a dict mapping the signal to a dictionary # mapping callback id to the callback function self.callbacks = dict([(s, dict()) for s in signals]) self._cid = 0 def _check_signal(self, s): 'make sure *s* is a valid signal or raise a ValueError' if s not in self.signals: signals = list(self.signals) signals.sort() raise ValueError('Unknown signal "%s"; valid signals are %s'%(s, signals)) def connect(self, s, func): """ register *func* to be called when a signal *s* is generated func will be called """ self._check_signal(s) self._cid +=1 self.callbacks[s][self._cid] = func return self._cid def disconnect(self, cid): """ disconnect the callback registered with callback id *cid* """ for eventname, callbackd in self.callbacks.items(): try: del callbackd[cid] except KeyError: continue else: return def process(self, s, *args, **kwargs): """ process signal *s*. All of the functions registered to receive callbacks on *s* will be called with *\*args* and *\*\*kwargs* """ self._check_signal(s) for func in self.callbacks[s].values(): func(*args, **kwargs) class Scheduler(threading.Thread): """ Base class for timeout and idle scheduling """ idlelock = threading.Lock() id = 0 def __init__(self): threading.Thread.__init__(self) self.id = Scheduler.id self._stopped = False Scheduler.id += 1 self._stopevent = threading.Event() def stop(self): if self._stopped: return self._stopevent.set() self.join() self._stopped = True class Timeout(Scheduler): """ Schedule recurring events with a wait time in seconds """ def __init__(self, wait, func): Scheduler.__init__(self) self.wait = wait self.func = func def run(self): while not self._stopevent.isSet(): self._stopevent.wait(self.wait) Scheduler.idlelock.acquire() b = self.func(self) Scheduler.idlelock.release() if not b: break class Idle(Scheduler): """ Schedule callbacks when scheduler is idle """ # the prototype impl is a bit of a poor man's idle handler. It # just implements a short wait time. But it will provide a # placeholder for a proper impl ater waittime = 0.05 def __init__(self, func): Scheduler.__init__(self) self.func = func def run(self): while not self._stopevent.isSet(): self._stopevent.wait(Idle.waittime) Scheduler.idlelock.acquire() b = self.func(self) Scheduler.idlelock.release() if not b: break class silent_list(list): """ override repr when returning a list of matplotlib artists to prevent long, meaningless output. This is meant to be used for a homogeneous list of a give type """ def __init__(self, type, seq=None): self.type = type if seq is not None: self.extend(seq) def __repr__(self): return '<a list of %d %s objects>' % (len(self), self.type) def __str__(self): return '<a list of %d %s objects>' % (len(self), self.type) def strip_math(s): 'remove latex formatting from mathtext' remove = (r'\mathdefault', r'\rm', r'\cal', r'\tt', r'\it', '\\', '{', '}') s = s[1:-1] for r in remove: s = s.replace(r,'') return s class Bunch: """ Often we want to just collect a bunch of stuff together, naming each item of the bunch; a dictionary's OK for that, but a small do- nothing class is even handier, and prettier to use. Whenever you want to group a few variables: >>> point = Bunch(datum=2, squared=4, coord=12) >>> point.datum By: Alex Martelli From: http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/52308 """ def __init__(self, **kwds): self.__dict__.update(kwds) def unique(x): 'Return a list of unique elements of *x*' return dict([ (val, 1) for val in x]).keys() def iterable(obj): 'return true if *obj* is iterable' try: len(obj) except: return False return True def is_string_like(obj): 'Return True if *obj* looks like a string' if isinstance(obj, (str, unicode)): return True # numpy strings are subclass of str, ma strings are not if ma.isMaskedArray(obj): if obj.ndim == 0 and obj.dtype.kind in 'SU': return True else: return False try: obj + '' except (TypeError, ValueError): return False return True def is_sequence_of_strings(obj): """ Returns true if *obj* is iterable and contains strings """ if not iterable(obj): return False if is_string_like(obj): return False for o in obj: if not is_string_like(o): return False return True def is_writable_file_like(obj): 'return true if *obj* looks like a file object with a *write* method' return hasattr(obj, 'write') and callable(obj.write) def is_scalar(obj): 'return true if *obj* is not string like and is not iterable' return not is_string_like(obj) and not iterable(obj) def is_numlike(obj): 'return true if *obj* looks like a number' try: obj+1 except TypeError: return False else: return True def to_filehandle(fname, flag='r', return_opened=False): """ *fname* can be a filename or a file handle. Support for gzipped files is automatic, if the filename ends in .gz. *flag* is a read/write flag for :func:`file` """ if is_string_like(fname): if fname.endswith('.gz'): import gzip fh = gzip.open(fname, flag) else: fh = file(fname, flag) opened = True elif hasattr(fname, 'seek'): fh = fname opened = False else: raise ValueError('fname must be a string or file handle') if return_opened: return fh, opened return fh def is_scalar_or_string(val): return is_string_like(val) or not iterable(val) def flatten(seq, scalarp=is_scalar_or_string): """ this generator flattens nested containers such as >>> l=( ('John', 'Hunter'), (1,23), [[[[42,(5,23)]]]]) so that >>> for i in flatten(l): print i, John Hunter 1 23 42 5 23 By: Composite of Holger Krekel and Luther Blissett From: http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/121294 and Recipe 1.12 in cookbook """ for item in seq: if scalarp(item): yield item else: for subitem in flatten(item, scalarp): yield subitem class Sorter: """ Sort by attribute or item Example usage:: sort = Sorter() list = [(1, 2), (4, 8), (0, 3)] dict = [{'a': 3, 'b': 4}, {'a': 5, 'b': 2}, {'a': 0, 'b': 0}, {'a': 9, 'b': 9}] sort(list) # default sort sort(list, 1) # sort by index 1 sort(dict, 'a') # sort a list of dicts by key 'a' """ def _helper(self, data, aux, inplace): aux.sort() result = [data[i] for junk, i in aux] if inplace: data[:] = result return result def byItem(self, data, itemindex=None, inplace=1): if itemindex is None: if inplace: data.sort() result = data else: result = data[:] result.sort() return result else: aux = [(data[i][itemindex], i) for i in range(len(data))] return self._helper(data, aux, inplace) def byAttribute(self, data, attributename, inplace=1): aux = [(getattr(data[i],attributename),i) for i in range(len(data))] return self._helper(data, aux, inplace) # a couple of handy synonyms sort = byItem __call__ = byItem class Xlator(dict): """ All-in-one multiple-string-substitution class Example usage:: text = "Larry Wall is the creator of Perl" adict = { "Larry Wall" : "Guido van Rossum", "creator" : "Benevolent Dictator for Life", "Perl" : "Python", } print multiple_replace(adict, text) xlat = Xlator(adict) print xlat.xlat(text) """ def _make_regex(self): """ Build re object based on the keys of the current dictionary """ return re.compile("|".join(map(re.escape, self.keys()))) def __call__(self, match): """ Handler invoked for each regex *match* """ return self[match.group(0)] def xlat(self, text): """ Translate *text*, returns the modified text. """ return self._make_regex().sub(self, text) def soundex(name, len=4): """ soundex module conforming to Odell-Russell algorithm """ # digits holds the soundex values for the alphabet soundex_digits = '01230120022455012623010202' sndx = '' fc = '' # Translate letters in name to soundex digits for c in name.upper(): if c.isalpha(): if not fc: fc = c # Remember first letter d = soundex_digits[ord(c)-ord('A')] # Duplicate consecutive soundex digits are skipped if not sndx or (d != sndx[-1]): sndx += d # Replace first digit with first letter sndx = fc + sndx[1:] # Remove all 0s from the soundex code sndx = sndx.replace('0', '') # Return soundex code truncated or 0-padded to len characters return (sndx + (len * '0'))[:len] class Null: """ Null objects always and reliably "do nothing." """ def __init__(self, *args, **kwargs): pass def __call__(self, *args, **kwargs): return self def __str__(self): return "Null()" def __repr__(self): return "Null()" def __nonzero__(self): return 0 def __getattr__(self, name): return self def __setattr__(self, name, value): return self def __delattr__(self, name): return self def mkdirs(newdir, mode=0777): """ make directory *newdir* recursively, and set *mode*. Equivalent to :: > mkdir -p NEWDIR > chmod MODE NEWDIR """ try: if not os.path.exists(newdir): parts = os.path.split(newdir) for i in range(1, len(parts)+1): thispart = os.path.join(*parts[:i]) if not os.path.exists(thispart): os.makedirs(thispart, mode) except OSError, err: # Reraise the error unless it's about an already existing directory if err.errno != errno.EEXIST or not os.path.isdir(newdir): raise class GetRealpathAndStat: def __init__(self): self._cache = {} def __call__(self, path): result = self._cache.get(path) if result is None: realpath = os.path.realpath(path) if sys.platform == 'win32': stat_key = realpath else: stat = os.stat(realpath) stat_key = (stat.st_ino, stat.st_dev) result = realpath, stat_key self._cache[path] = result return result get_realpath_and_stat = GetRealpathAndStat() def dict_delall(d, keys): 'delete all of the *keys* from the :class:`dict` *d*' for key in keys: try: del d[key] except KeyError: pass class RingBuffer: """ class that implements a not-yet-full buffer """ def __init__(self,size_max): self.max = size_max self.data = [] class __Full: """ class that implements a full buffer """ def append(self, x): """ Append an element overwriting the oldest one. """ self.data[self.cur] = x self.cur = (self.cur+1) % self.max def get(self): """ return list of elements in correct order """ return self.data[self.cur:]+self.data[:self.cur] def append(self,x): """append an element at the end of the buffer""" self.data.append(x) if len(self.data) == self.max: self.cur = 0 # Permanently change self's class from non-full to full self.__class__ = __Full def get(self): """ Return a list of elements from the oldest to the newest. """ return self.data def __get_item__(self, i): return self.data[i % len(self.data)] def get_split_ind(seq, N): """ *seq* is a list of words. Return the index into seq such that:: len(' '.join(seq[:ind])<=N """ sLen = 0 # todo: use Alex's xrange pattern from the cbook for efficiency for (word, ind) in zip(seq, range(len(seq))): sLen += len(word) + 1 # +1 to account for the len(' ') if sLen>=N: return ind return len(seq) def wrap(prefix, text, cols): 'wrap *text* with *prefix* at length *cols*' pad = ' '*len(prefix.expandtabs()) available = cols - len(pad) seq = text.split(' ') Nseq = len(seq) ind = 0 lines = [] while ind<Nseq: lastInd = ind ind += get_split_ind(seq[ind:], available) lines.append(seq[lastInd:ind]) # add the prefix to the first line, pad with spaces otherwise ret = prefix + ' '.join(lines[0]) + '\n' for line in lines[1:]: ret += pad + ' '.join(line) + '\n' return ret # A regular expression used to determine the amount of space to # remove. It looks for the first sequence of spaces immediately # following the first newline, or at the beginning of the string. _find_dedent_regex = re.compile("(?:(?:\n\r?)|^)( *)\S") # A cache to hold the regexs that actually remove the indent. _dedent_regex = {} def dedent(s): """ Remove excess indentation from docstring *s*. Discards any leading blank lines, then removes up to n whitespace characters from each line, where n is the number of leading whitespace characters in the first line. It differs from textwrap.dedent in its deletion of leading blank lines and its use of the first non-blank line to determine the indentation. It is also faster in most cases. """ # This implementation has a somewhat obtuse use of regular # expressions. However, this function accounted for almost 30% of # matplotlib startup time, so it is worthy of optimization at all # costs. if not s: # includes case of s is None return '' match = _find_dedent_regex.match(s) if match is None: return s # This is the number of spaces to remove from the left-hand side. nshift = match.end(1) - match.start(1) if nshift == 0: return s # Get a regex that will remove *up to* nshift spaces from the # beginning of each line. If it isn't in the cache, generate it. unindent = _dedent_regex.get(nshift, None) if unindent is None: unindent = re.compile("\n\r? {0,%d}" % nshift) _dedent_regex[nshift] = unindent result = unindent.sub("\n", s).strip() return result def listFiles(root, patterns='*', recurse=1, return_folders=0): """ Recursively list files from Parmar and Martelli in the Python Cookbook """ import os.path, fnmatch # Expand patterns from semicolon-separated string to list pattern_list = patterns.split(';') # Collect input and output arguments into one bunch class Bunch: def __init__(self, **kwds): self.__dict__.update(kwds) arg = Bunch(recurse=recurse, pattern_list=pattern_list, return_folders=return_folders, results=[]) def visit(arg, dirname, files): # Append to arg.results all relevant files (and perhaps folders) for name in files: fullname = os.path.normpath(os.path.join(dirname, name)) if arg.return_folders or os.path.isfile(fullname): for pattern in arg.pattern_list: if fnmatch.fnmatch(name, pattern): arg.results.append(fullname) break # Block recursion if recursion was disallowed if not arg.recurse: files[:]=[] os.path.walk(root, visit, arg) return arg.results def get_recursive_filelist(args): """ Recurs all the files and dirs in *args* ignoring symbolic links and return the files as a list of strings """ files = [] for arg in args: if os.path.isfile(arg): files.append(arg) continue if os.path.isdir(arg): newfiles = listFiles(arg, recurse=1, return_folders=1) files.extend(newfiles) return [f for f in files if not os.path.islink(f)] def pieces(seq, num=2): "Break up the *seq* into *num* tuples" start = 0 while 1: item = seq[start:start+num] if not len(item): break yield item start += num def exception_to_str(s = None): sh = StringIO.StringIO() if s is not None: print >>sh, s traceback.print_exc(file=sh) return sh.getvalue() def allequal(seq): """ Return *True* if all elements of *seq* compare equal. If *seq* is 0 or 1 length, return *True* """ if len(seq)<2: return True val = seq[0] for i in xrange(1, len(seq)): thisval = seq[i] if thisval != val: return False return True def alltrue(seq): """ Return *True* if all elements of *seq* evaluate to *True*. If *seq* is empty, return *False*. """ if not len(seq): return False for val in seq: if not val: return False return True def onetrue(seq): """ Return *True* if one element of *seq* is *True*. It *seq* is empty, return *False*. """ if not len(seq): return False for val in seq: if val: return True return False def allpairs(x): """ return all possible pairs in sequence *x* Condensed by Alex Martelli from this thread_ on c.l.python .. _thread: http://groups.google.com/groups?q=all+pairs+group:*python*&hl=en&lr=&ie=UTF-8&selm=mailman.4028.1096403649.5135.python-list%40python.org&rnum=1 """ return [ (s, f) for i, f in enumerate(x) for s in x[i+1:] ] # python 2.2 dicts don't have pop--but we don't support 2.2 any more def popd(d, *args): """ Should behave like python2.3 :meth:`dict.pop` method; *d* is a :class:`dict`:: # returns value for key and deletes item; raises a KeyError if key # is not in dict val = popd(d, key) # returns value for key if key exists, else default. Delete key, # val item if it exists. Will not raise a KeyError val = popd(d, key, default) """ warnings.warn("Use native python dict.pop method", DeprecationWarning) # warning added 2008/07/22 if len(args)==1: key = args[0] val = d[key] del d[key] elif len(args)==2: key, default = args val = d.get(key, default) try: del d[key] except KeyError: pass return val class maxdict(dict): """ A dictionary with a maximum size; this doesn't override all the relevant methods to contrain size, just setitem, so use with caution """ def __init__(self, maxsize): dict.__init__(self) self.maxsize = maxsize self._killkeys = [] def __setitem__(self, k, v): if len(self)>=self.maxsize: del self[self._killkeys[0]] del self._killkeys[0] dict.__setitem__(self, k, v) self._killkeys.append(k) class Stack: """ Implement a stack where elements can be pushed on and you can move back and forth. But no pop. Should mimic home / back / forward in a browser """ def __init__(self, default=None): self.clear() self._default = default def __call__(self): 'return the current element, or None' if not len(self._elements): return self._default else: return self._elements[self._pos] def forward(self): 'move the position forward and return the current element' N = len(self._elements) if self._pos<N-1: self._pos += 1 return self() def back(self): 'move the position back and return the current element' if self._pos>0: self._pos -= 1 return self() def push(self, o): """ push object onto stack at current position - all elements occurring later than the current position are discarded """ self._elements = self._elements[:self._pos+1] self._elements.append(o) self._pos = len(self._elements)-1 return self() def home(self): 'push the first element onto the top of the stack' if not len(self._elements): return self.push(self._elements[0]) return self() def empty(self): return len(self._elements)==0 def clear(self): 'empty the stack' self._pos = -1 self._elements = [] def bubble(self, o): """ raise *o* to the top of the stack and return *o*. *o* must be in the stack """ if o not in self._elements: raise ValueError('Unknown element o') old = self._elements[:] self.clear() bubbles = [] for thiso in old: if thiso==o: bubbles.append(thiso) else: self.push(thiso) for thiso in bubbles: self.push(o) return o def remove(self, o): 'remove element *o* from the stack' if o not in self._elements: raise ValueError('Unknown element o') old = self._elements[:] self.clear() for thiso in old: if thiso==o: continue else: self.push(thiso) def popall(seq): 'empty a list' for i in xrange(len(seq)): seq.pop() def finddir(o, match, case=False): """ return all attributes of *o* which match string in match. if case is True require an exact case match. """ if case: names = [(name,name) for name in dir(o) if is_string_like(name)] else: names = [(name.lower(), name) for name in dir(o) if is_string_like(name)] match = match.lower() return [orig for name, orig in names if name.find(match)>=0] def reverse_dict(d): 'reverse the dictionary -- may lose data if values are not unique!' return dict([(v,k) for k,v in d.items()]) def report_memory(i=0): # argument may go away 'return the memory consumed by process' pid = os.getpid() if sys.platform=='sunos5': a2 = os.popen('ps -p %d -o osz' % pid).readlines() mem = int(a2[-1].strip()) elif sys.platform.startswith('linux'): a2 = os.popen('ps -p %d -o rss,sz' % pid).readlines() mem = int(a2[1].split()[1]) elif sys.platform.startswith('darwin'): a2 = os.popen('ps -p %d -o rss,vsz' % pid).readlines() mem = int(a2[1].split()[0]) return mem _safezip_msg = 'In safezip, len(args[0])=%d but len(args[%d])=%d' def safezip(*args): 'make sure *args* are equal len before zipping' Nx = len(args[0]) for i, arg in enumerate(args[1:]): if len(arg) != Nx: raise ValueError(_safezip_msg % (Nx, i+1, len(arg))) return zip(*args) def issubclass_safe(x, klass): 'return issubclass(x, klass) and return False on a TypeError' try: return issubclass(x, klass) except TypeError: return False class MemoryMonitor: def __init__(self, nmax=20000): self._nmax = nmax self._mem = np.zeros((self._nmax,), np.int32) self.clear() def clear(self): self._n = 0 self._overflow = False def __call__(self): mem = report_memory() if self._n < self._nmax: self._mem[self._n] = mem self._n += 1 else: self._overflow = True return mem def report(self, segments=4): n = self._n segments = min(n, segments) dn = int(n/segments) ii = range(0, n, dn) ii[-1] = n-1 print print 'memory report: i, mem, dmem, dmem/nloops' print 0, self._mem[0] for i in range(1, len(ii)): di = ii[i] - ii[i-1] if di == 0: continue dm = self._mem[ii[i]] - self._mem[ii[i-1]] print '%5d %5d %3d %8.3f' % (ii[i], self._mem[ii[i]], dm, dm / float(di)) if self._overflow: print "Warning: array size was too small for the number of calls." def xy(self, i0=0, isub=1): x = np.arange(i0, self._n, isub) return x, self._mem[i0:self._n:isub] def plot(self, i0=0, isub=1, fig=None): if fig is None: from pylab import figure, show fig = figure() ax = fig.add_subplot(111) ax.plot(*self.xy(i0, isub)) fig.canvas.draw() def print_cycles(objects, outstream=sys.stdout, show_progress=False): """ *objects* A list of objects to find cycles in. It is often useful to pass in gc.garbage to find the cycles that are preventing some objects from being garbage collected. *outstream* The stream for output. *show_progress* If True, print the number of objects reached as they are found. """ import gc from types import FrameType def print_path(path): for i, step in enumerate(path): # next "wraps around" next = path[(i + 1) % len(path)] outstream.write(" %s -- " % str(type(step))) if isinstance(step, dict): for key, val in step.items(): if val is next: outstream.write("[%s]" % repr(key)) break if key is next: outstream.write("[key] = %s" % repr(val)) break elif isinstance(step, list): outstream.write("[%d]" % step.index(next)) elif isinstance(step, tuple): outstream.write("( tuple )") else: outstream.write(repr(step)) outstream.write(" ->\n") outstream.write("\n") def recurse(obj, start, all, current_path): if show_progress: outstream.write("%d\r" % len(all)) all[id(obj)] = None referents = gc.get_referents(obj) for referent in referents: # If we've found our way back to the start, this is # a cycle, so print it out if referent is start: print_path(current_path) # Don't go back through the original list of objects, or # through temporary references to the object, since those # are just an artifact of the cycle detector itself. elif referent is objects or isinstance(referent, FrameType): continue # We haven't seen this object before, so recurse elif id(referent) not in all: recurse(referent, start, all, current_path + [obj]) for obj in objects: outstream.write("Examining: %r\n" % (obj,)) recurse(obj, obj, { }, []) class Grouper(object): """ This class provides a lightweight way to group arbitrary objects together into disjoint sets when a full-blown graph data structure would be overkill. Objects can be joined using :meth:`join`, tested for connectedness using :meth:`joined`, and all disjoint sets can be retreived by using the object as an iterator. The objects being joined must be hashable. For example: >>> g = grouper.Grouper() >>> g.join('a', 'b') >>> g.join('b', 'c') >>> g.join('d', 'e') >>> list(g) [['a', 'b', 'c'], ['d', 'e']] >>> g.joined('a', 'b') True >>> g.joined('a', 'c') True >>> g.joined('a', 'd') False """ def __init__(self, init=[]): mapping = self._mapping = {} for x in init: mapping[ref(x)] = [ref(x)] def __contains__(self, item): return ref(item) in self._mapping def clean(self): """ Clean dead weak references from the dictionary """ mapping = self._mapping for key, val in mapping.items(): if key() is None: del mapping[key] val.remove(key) def join(self, a, *args): """ Join given arguments into the same set. Accepts one or more arguments. """ mapping = self._mapping set_a = mapping.setdefault(ref(a), [ref(a)]) for arg in args: set_b = mapping.get(ref(arg)) if set_b is None: set_a.append(ref(arg)) mapping[ref(arg)] = set_a elif set_b is not set_a: if len(set_b) > len(set_a): set_a, set_b = set_b, set_a set_a.extend(set_b) for elem in set_b: mapping[elem] = set_a self.clean() def joined(self, a, b): """ Returns True if *a* and *b* are members of the same set. """ self.clean() mapping = self._mapping try: return mapping[ref(a)] is mapping[ref(b)] except KeyError: return False def __iter__(self): """ Iterate over each of the disjoint sets as a list. The iterator is invalid if interleaved with calls to join(). """ self.clean() class Token: pass token = Token() # Mark each group as we come across if by appending a token, # and don't yield it twice for group in self._mapping.itervalues(): if not group[-1] is token: yield [x() for x in group] group.append(token) # Cleanup the tokens for group in self._mapping.itervalues(): if group[-1] is token: del group[-1] def get_siblings(self, a): """ Returns all of the items joined with *a*, including itself. """ self.clean() siblings = self._mapping.get(ref(a), [ref(a)]) return [x() for x in siblings] def simple_linear_interpolation(a, steps): steps = np.floor(steps) new_length = ((len(a) - 1) * steps) + 1 new_shape = list(a.shape) new_shape[0] = new_length result = np.zeros(new_shape, a.dtype) result[0] = a[0] a0 = a[0:-1] a1 = a[1: ] delta = ((a1 - a0) / steps) for i in range(1, int(steps)): result[i::steps] = delta * i + a0 result[steps::steps] = a1 return result def recursive_remove(path): if os.path.isdir(path): for fname in glob.glob(os.path.join(path, '*')) + glob.glob(os.path.join(path, '.*')): if os.path.isdir(fname): recursive_remove(fname) os.removedirs(fname) else: os.remove(fname) #os.removedirs(path) else: os.remove(path) def delete_masked_points(*args): """ Find all masked and/or non-finite points in a set of arguments, and return the arguments with only the unmasked points remaining. Arguments can be in any of 5 categories: 1) 1-D masked arrays 2) 1-D ndarrays 3) ndarrays with more than one dimension 4) other non-string iterables 5) anything else The first argument must be in one of the first four categories; any argument with a length differing from that of the first argument (and hence anything in category 5) then will be passed through unchanged. Masks are obtained from all arguments of the correct length in categories 1, 2, and 4; a point is bad if masked in a masked array or if it is a nan or inf. No attempt is made to extract a mask from categories 2, 3, and 4 if :meth:`np.isfinite` does not yield a Boolean array. All input arguments that are not passed unchanged are returned as ndarrays after removing the points or rows corresponding to masks in any of the arguments. A vastly simpler version of this function was originally written as a helper for Axes.scatter(). """ if not len(args): return () if (is_string_like(args[0]) or not iterable(args[0])): raise ValueError("First argument must be a sequence") nrecs = len(args[0]) margs = [] seqlist = [False] * len(args) for i, x in enumerate(args): if (not is_string_like(x)) and iterable(x) and len(x) == nrecs: seqlist[i] = True if ma.isMA(x): if x.ndim > 1: raise ValueError("Masked arrays must be 1-D") else: x = np.asarray(x) margs.append(x) masks = [] # list of masks that are True where good for i, x in enumerate(margs): if seqlist[i]: if x.ndim > 1: continue # Don't try to get nan locations unless 1-D. if ma.isMA(x): masks.append(~ma.getmaskarray(x)) # invert the mask xd = x.data else: xd = x try: mask = np.isfinite(xd) if isinstance(mask, np.ndarray): masks.append(mask) except: #Fixme: put in tuple of possible exceptions? pass if len(masks): mask = reduce(np.logical_and, masks) igood = mask.nonzero()[0] if len(igood) < nrecs: for i, x in enumerate(margs): if seqlist[i]: margs[i] = x.take(igood, axis=0) for i, x in enumerate(margs): if seqlist[i] and ma.isMA(x): margs[i] = x.filled() return margs def unmasked_index_ranges(mask, compressed = True): ''' Find index ranges where *mask* is *False*. *mask* will be flattened if it is not already 1-D. Returns Nx2 :class:`numpy.ndarray` with each row the start and stop indices for slices of the compressed :class:`numpy.ndarray` corresponding to each of *N* uninterrupted runs of unmasked values. If optional argument *compressed* is *False*, it returns the start and stop indices into the original :class:`numpy.ndarray`, not the compressed :class:`numpy.ndarray`. Returns *None* if there are no unmasked values. Example:: y = ma.array(np.arange(5), mask = [0,0,1,0,0]) ii = unmasked_index_ranges(ma.getmaskarray(y)) # returns array [[0,2,] [2,4,]] y.compressed()[ii[1,0]:ii[1,1]] # returns array [3,4,] ii = unmasked_index_ranges(ma.getmaskarray(y), compressed=False) # returns array [[0, 2], [3, 5]] y.filled()[ii[1,0]:ii[1,1]] # returns array [3,4,] Prior to the transforms refactoring, this was used to support masked arrays in Line2D. ''' mask = mask.reshape(mask.size) m = np.concatenate(((1,), mask, (1,))) indices = np.arange(len(mask) + 1) mdif = m[1:] - m[:-1] i0 = np.compress(mdif == -1, indices) i1 = np.compress(mdif == 1, indices) assert len(i0) == len(i1) if len(i1) == 0: return None # Maybe this should be np.zeros((0,2), dtype=int) if not compressed: return np.concatenate((i0[:, np.newaxis], i1[:, np.newaxis]), axis=1) seglengths = i1 - i0 breakpoints = np.cumsum(seglengths) ic0 = np.concatenate(((0,), breakpoints[:-1])) ic1 = breakpoints return np.concatenate((ic0[:, np.newaxis], ic1[:, np.newaxis]), axis=1) # a dict to cross-map linestyle arguments _linestyles = [('-', 'solid'), ('--', 'dashed'), ('-.', 'dashdot'), (':', 'dotted')] ls_mapper = dict(_linestyles) ls_mapper.update([(ls[1], ls[0]) for ls in _linestyles]) def less_simple_linear_interpolation( x, y, xi, extrap=False ): """ This function has been moved to matplotlib.mlab -- please import it from there """ # deprecated from cbook in 0.98.4 warnings.warn('less_simple_linear_interpolation has been moved to matplotlib.mlab -- please import it from there', DeprecationWarning) import matplotlib.mlab as mlab return mlab.less_simple_linear_interpolation( x, y, xi, extrap=extrap ) def isvector(X): """ This function has been moved to matplotlib.mlab -- please import it from there """ # deprecated from cbook in 0.98.4 warnings.warn('isvector has been moved to matplotlib.mlab -- please import it from there', DeprecationWarning) import matplotlib.mlab as mlab return mlab.isvector( x, y, xi, extrap=extrap ) def vector_lengths( X, P=2., axis=None ): """ This function has been moved to matplotlib.mlab -- please import it from there """ # deprecated from cbook in 0.98.4 warnings.warn('vector_lengths has been moved to matplotlib.mlab -- please import it from there', DeprecationWarning) import matplotlib.mlab as mlab return mlab.vector_lengths( X, P=2., axis=axis ) def distances_along_curve( X ): """ This function has been moved to matplotlib.mlab -- please import it from there """ # deprecated from cbook in 0.98.4 warnings.warn('distances_along_curve has been moved to matplotlib.mlab -- please import it from there', DeprecationWarning) import matplotlib.mlab as mlab return mlab.distances_along_curve( X ) def path_length(X): """ This function has been moved to matplotlib.mlab -- please import it from there """ # deprecated from cbook in 0.98.4 warnings.warn('path_length has been moved to matplotlib.mlab -- please import it from there', DeprecationWarning) import matplotlib.mlab as mlab return mlab.path_length(X) def is_closed_polygon(X): """ This function has been moved to matplotlib.mlab -- please import it from there """ # deprecated from cbook in 0.98.4 warnings.warn('is_closed_polygon has been moved to matplotlib.mlab -- please import it from there', DeprecationWarning) import matplotlib.mlab as mlab return mlab.is_closed_polygon(X) def quad2cubic(q0x, q0y, q1x, q1y, q2x, q2y): """ This function has been moved to matplotlib.mlab -- please import it from there """ # deprecated from cbook in 0.98.4 warnings.warn('quad2cubic has been moved to matplotlib.mlab -- please import it from there', DeprecationWarning) import matplotlib.mlab as mlab return mlab.quad2cubic(q0x, q0y, q1x, q1y, q2x, q2y) if __name__=='__main__': assert( allequal([1,1,1]) ) assert(not allequal([1,1,0]) ) assert( allequal([]) ) assert( allequal(('a', 'a'))) assert( not allequal(('a', 'b')))
gpl-3.0
eggie5/ipython-notebooks
college_trends/acs.py
1
2358
import pandas as pd all_ages = pd.read_csv("all-ages.csv") all_ages_totals = all_ages.pivot_table(index="Major_category", aggfunc="sum")["Total"] all_ages_major_categories = dict(all_ages_totals) print all_ages_totals print "\n****\n" recent_grads = pd.read_csv("recent-grads.csv") recent_totals = recent_grads.pivot_table(index="Major_category", aggfunc="sum")["Total"] recent_grads_major_categories = dict(recent_totals) print recent_totals #Use the Low_wage_jobs and Total columns to calculate the proportion of recent college graduates that worked low wage jobs. Store the resulting Float object of the calculation as low_wage_percent. recent_grads = pd.read_csv("recent-grads.csv") low_wage_percent = 0.0 low_wage_sum = float(recent_grads["Low_wage_jobs"].sum()) recent_sum = float(recent_grads["Employed"].sum()) low_wage_percent = low_wage_sum / recent_sum print low_wage_percent #Both `all_ages` and `recent_grads` datasets have 173 rows, corresponding to the 173 college major codes. This enables us to do some comparisons between the two datasets and perform some initial calculations to see how similar or different the statistics of recent college graduates are from those of the entire population. #Instructions #We want to know the number of majors where recent grads fare better than the overall population. For each major, determine if the Unemployment_rate is lower for `recent_grads` or for `all_ages` and increment either `recent_grads_lower_emp_count` or `all_ages_lower_emp_count` respectively. # All majors, common to both DataFrames majors = recent_grads['Major'].value_counts().index recent_grads_lower_emp=[] all_ages_lower_emp=[] for major in majors: recent_unemply_rate = recent_grads[recent_grads["Major"]==major]["Unemployment_rate"].values[0] all_time_unemply_rate = all_ages[all_ages["Major"]==major]["Unemployment_rate"].values[0] diff = recent_unemply_rate - all_time_unemply_rate #comparator if diff < 0: recent_grads_lower_emp.append(major) elif diff >0: all_ages_lower_emp.append(major) else: pass #equal recent_grads_lower_emp_count = len(recent_grads_lower_emp) all_ages_lower_emp_count = len(all_ages_lower_emp) print recent_grads_lower_emp_count print all_ages_lower_emp_count print recent_grads_lower_emp print all_ages_lower_emp
mit
Snazz2001/sklearn-pmml
sklearn_pmml/convert/test/test_gradientBoostingConverter.py
3
2043
from unittest import TestCase from sklearn.ensemble import GradientBoostingClassifier import numpy as np from sklearn_pmml.convert import TransformationContext from sklearn_pmml.convert.features import * from sklearn_pmml.convert.gbrt import GradientBoostingConverter class TestGradientBoostingClassifierConverter(TestCase): def setUp(self): np.random.seed(1) self.est = GradientBoostingClassifier(max_depth=2, n_estimators=10) self.est.fit([ [0, 0], [0, 1], [1, 0], [1, 1], ], [0, 1, 1, 1]) self.ctx = TransformationContext( input=[IntegerNumericFeature('x1'), StringCategoricalFeature('x2', ['zero', 'one'])], derived=[], model=[IntegerNumericFeature('x1'), StringCategoricalFeature('x2', ['zero', 'one'])], output=[RealNumericFeature('output')] ) self.converter = GradientBoostingConverter( estimator=self.est, context=self.ctx ) def test_transform(self): p = self.converter.pmml() mm = p.MiningModel[0] assert mm.MiningSchema is not None, 'Missing mining schema' assert len(mm.MiningSchema.MiningField) == 3, 'Wrong number of mining fields' assert mm.Segmentation is not None, 'Missing segmentation root' def test_transform_with_verification(self): p = self.converter.pmml([ {'x1': 0, 'x2': 'zero', 'output': self.est.predict_proba([[0, 0]])[0, 1]}, {'x1': 0, 'x2': 'one', 'output': self.est.predict_proba([[0, 1]])[0, 1]}, {'x1': 1, 'x2': 'zero', 'output': self.est.predict_proba([[1, 0]])[0, 1]}, {'x1': 1, 'x2': 'one', 'output': self.est.predict_proba([[1, 1]])[0, 1]}, ]) mm = p.MiningModel[0] assert mm.MiningSchema is not None, 'Missing mining schema' assert len(mm.MiningSchema.MiningField) == 3, 'Wrong number of mining fields' assert mm.Segmentation is not None, 'Missing segmentation root'
mit
DonBeo/scikit-learn
sklearn/neighbors/graph.py
19
6904
"""Nearest Neighbors graph functions""" # Author: Jake Vanderplas <vanderplas@astro.washington.edu> # # License: BSD 3 clause (C) INRIA, University of Amsterdam import warnings from .base import KNeighborsMixin, RadiusNeighborsMixin from .unsupervised import NearestNeighbors def _check_params(X, metric, p, metric_params): """Check the validity of the input parameters""" params = zip(['metric', 'p', 'metric_params'], [metric, p, metric_params]) est_params = X.get_params() for param_name, func_param in params: if func_param != est_params[param_name]: raise ValueError( "Got %s for %s, while the estimator has %s for " "the same parameter." % ( func_param, param_name, est_params[param_name])) def _query_include_self(X, include_self, mode): """Return the query based on include_self param""" # Done to preserve backward compatibility. if include_self is None: if mode == "connectivity": warnings.warn( "The behavior of 'kneighbors_graph' when mode='connectivity' " "will change in version 0.18. Presently, the nearest neighbor " "of each sample is the sample itself. Beginning in version " "0.18, the default behavior will be to exclude each sample " "from being its own nearest neighbor. To maintain the current " "behavior, set include_self=True.", DeprecationWarning) include_self = True else: include_self = False if include_self: query = X._fit_X else: query = None return query def kneighbors_graph(X, n_neighbors, mode='connectivity', metric='minkowski', p=2, metric_params=None, include_self=None): """Computes the (weighted) graph of k-Neighbors for points in X Parameters ---------- X : array-like or BallTree, shape = [n_samples, n_features] Sample data, in the form of a numpy array or a precomputed :class:`BallTree`. n_neighbors : int Number of neighbors for each sample. mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. metric : string, default 'minkowski' The distance metric used to calculate the k-Neighbors for each sample point. The DistanceMetric class gives a list of available metrics. The default distance is 'euclidean' ('minkowski' metric with the p param equal to 2.) include_self: bool, default backward-compatible. Whether or not to mark each sample as the first nearest neighbor to itself. If `None`, then True is used for mode='connectivity' and False for mode='distance' as this will preserve backwards compatibilty. From version 0.18, the default value will be False, irrespective of the value of `mode`. p : int, default 2 Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params: dict, optional additional keyword arguments for the metric function. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import kneighbors_graph >>> A = kneighbors_graph(X, 2) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 1.], [ 1., 0., 1.]]) See also -------- radius_neighbors_graph """ if not isinstance(X, KNeighborsMixin): X = NearestNeighbors( n_neighbors, metric=metric, p=p, metric_params=metric_params ).fit(X) else: _check_params(X, metric, p, metric_params) query = _query_include_self(X, include_self, mode) return X.kneighbors_graph(X=query, n_neighbors=n_neighbors, mode=mode) def radius_neighbors_graph(X, radius, mode='connectivity', metric='minkowski', p=2, metric_params=None, include_self=None): """Computes the (weighted) graph of Neighbors for points in X Neighborhoods are restricted the points at a distance lower than radius. Parameters ---------- X : array-like or BallTree, shape = [n_samples, n_features] Sample data, in the form of a numpy array or a precomputed :class:`BallTree`. radius : float Radius of neighborhoods. mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. metric : string, default 'minkowski' The distance metric used to calculate the neighbors within a given radius for each sample point. The DistanceMetric class gives a list of available metrics. The default distance is 'euclidean' ('minkowski' metric with the param equal to 2.) include_self: bool, default None Whether or not to mark each sample as the first nearest neighbor to itself. If `None`, then True is used for mode='connectivity' and False for mode='distance' as this will preserve backwards compatibilty. From version 0.18, the default value will be False, irrespective of the value of `mode`. p : int, default 2 Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params: dict, optional additional keyword arguments for the metric function. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import radius_neighbors_graph >>> A = radius_neighbors_graph(X, 1.5) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 0.], [ 1., 0., 1.]]) See also -------- kneighbors_graph """ if not isinstance(X, RadiusNeighborsMixin): X = NearestNeighbors( radius=radius, metric=metric, p=p, metric_params=metric_params ).fit(X) else: _check_params(X, metric, p, metric_params) query = _query_include_self(X, include_self, mode) return X.radius_neighbors_graph(query, radius, mode)
bsd-3-clause
fedspendingtransparency/data-act-broker-backend
dataactvalidator/scripts/load_program_activity.py
1
10005
import os import logging import io import pandas as pd import numpy as np import boto3 import datetime import sys import json import re from dataactcore.config import CONFIG_BROKER from dataactcore.interfaces.db import GlobalDB from dataactcore.models.domainModels import ProgramActivity, ExternalDataLoadDate from dataactcore.models.lookups import EXTERNAL_DATA_TYPE_DICT from dataactvalidator.health_check import create_app from dataactvalidator.scripts.loader_utils import clean_data, insert_dataframe from dataactcore.utils.failure_threshold_exception import FailureThresholdExceededException logger = logging.getLogger(__name__) PA_BUCKET = CONFIG_BROKER['data_sources_bucket'] PA_SUB_KEY = 'OMB_Data/' PA_FILE_NAME = 'DATA Act Program Activity List for Treas.csv' VALID_HEADERS = {'AGENCY_CODE', 'ALLOCATION_ID', 'ACCOUNT_CODE', 'PA_CODE', 'PA_TITLE', 'FYQ'} def get_program_activity_file(base_path): """ Retrieves the program activity file to load Args: base_path: directory of domain config files Returns: the file path for the pa file either on S3 or locally """ if CONFIG_BROKER['use_aws']: s3 = boto3.resource('s3', region_name=CONFIG_BROKER['aws_region']) s3_object = s3.Object(PA_BUCKET, PA_SUB_KEY + PA_FILE_NAME) response = s3_object.get(Key=(PA_SUB_KEY + PA_FILE_NAME)) pa_file = io.BytesIO(response['Body'].read()) else: pa_file = os.path.join(base_path, PA_FILE_NAME) return pa_file def get_date_of_current_pa_upload(base_path): """ Gets the last time the file was uploaded to S3, or alternatively the last time the local file was modified. Args: base_path: directory of domain config files Returns: DateTime object """ if CONFIG_BROKER['use_aws']: last_uploaded = boto3.client('s3', region_name=CONFIG_BROKER['aws_region']). \ head_object(Bucket=PA_BUCKET, Key=PA_SUB_KEY + PA_FILE_NAME)['LastModified'] # LastModified is coming back to us in UTC already; just drop the TZ. last_uploaded = last_uploaded.replace(tzinfo=None) else: pa_file = get_program_activity_file(base_path) last_uploaded = datetime.datetime.utcfromtimestamp(os.path.getmtime(pa_file)) return last_uploaded def get_stored_pa_last_upload(): """ Gets last recorded timestamp from last time file was processed. Returns: Upload date of most recent file we have recorded (Datetime object) """ sess = GlobalDB.db().session last_stored_obj = sess.query(ExternalDataLoadDate).filter_by( external_data_type_id=EXTERNAL_DATA_TYPE_DICT['program_activity_upload']).one_or_none() if not last_stored_obj: # return epoch ts to make sure we load the data the first time through, # and ideally any time the data might have been wiped last_stored = datetime.datetime.utcfromtimestamp(0) else: last_stored = last_stored_obj.last_load_date return last_stored def set_stored_pa_last_upload(load_datetime): """ Set upload date of most recent file we have recorded (Datetime object) Args: Datetime object representing the timestamp associated with the current file """ sess = GlobalDB.db().session last_stored_obj = sess.query(ExternalDataLoadDate).filter_by( external_data_type_id=EXTERNAL_DATA_TYPE_DICT['program_activity_upload']).one_or_none() if not last_stored_obj: last_stored_obj = ExternalDataLoadDate(external_data_type_id=EXTERNAL_DATA_TYPE_DICT['program_activity_upload'], last_load_date=load_datetime) sess.add(last_stored_obj) else: last_stored_obj.last_load_date = load_datetime sess.commit() def load_program_activity_data(base_path): """ Load program activity lookup table. Args: base_path: directory of domain config files """ now = datetime.datetime.now() metrics_json = { 'script_name': 'load_program_activity.py', 'start_time': str(now), 'records_received': 0, 'duplicates_dropped': 0, 'invalid_records_dropped': 0, 'records_deleted': 0, 'records_inserted': 0 } dropped_count = 0 logger.info('Checking PA upload dates to see if we can skip.') last_upload = get_date_of_current_pa_upload(base_path) if not (last_upload > get_stored_pa_last_upload()): logger.info('Skipping load as it\'s already been done') else: logger.info('Getting the progrma activity file') program_activity_file = get_program_activity_file(base_path) logger.info('Loading program activity: {}'.format(PA_FILE_NAME)) with create_app().app_context(): sess = GlobalDB.db().session try: data = pd.read_csv(program_activity_file, dtype=str) except pd.io.common.EmptyDataError: log_blank_file() exit_if_nonlocal(4) # exit code chosen arbitrarily, to indicate distinct failure states return headers = set([header.upper() for header in list(data)]) if not VALID_HEADERS.issubset(headers): logger.error('Missing required headers. Required headers include: %s' % str(VALID_HEADERS)) exit_if_nonlocal(4) return try: dropped_count, data = clean_data( data, ProgramActivity, {'fyq': 'fiscal_year_period', 'agency_code': 'agency_id', 'allocation_id': 'allocation_transfer_id', 'account_code': 'account_number', 'pa_code': 'program_activity_code', 'pa_title': 'program_activity_name'}, {'program_activity_code': {'pad_to_length': 4}, 'agency_id': {'pad_to_length': 3}, 'allocation_transfer_id': {'pad_to_length': 3, 'keep_null': True}, 'account_number': {'pad_to_length': 4}}, ['agency_id', 'program_activity_code', 'account_number', 'program_activity_name'], True ) except FailureThresholdExceededException as e: if e.count == 0: log_blank_file() exit_if_nonlocal(4) return else: logger.error('Loading of program activity file failed due to exceeded failure threshold. ' 'Application tried to drop {} rows'.format(e.count)) exit_if_nonlocal(5) return metrics_json['records_deleted'] = sess.query(ProgramActivity).delete() metrics_json['invalid_records_dropped'] = dropped_count # Lowercase Program Activity Name data['program_activity_name'] = data['program_activity_name'].apply(lambda x: lowercase_or_notify(x)) # Convert FYQ to FYP data['fiscal_year_period'] = data['fiscal_year_period'].apply(lambda x: convert_fyq_to_fyp(x)) # because we're only loading a subset of program activity info, there will be duplicate records in the # dataframe. this is ok, but need to de-duped before the db load. We also need to log them. base_count = len(data.index) metrics_json['records_received'] = base_count data.drop_duplicates(inplace=True) dupe_count = base_count - len(data.index) logger.info('Dropped {} duplicate rows.'.format(dupe_count)) metrics_json['duplicates_dropped'] = dupe_count # insert to db table_name = ProgramActivity.__table__.name num = insert_dataframe(data, table_name, sess.connection()) sess.commit() set_stored_pa_last_upload(last_upload) logger.info('{} records inserted to {}'.format(num, table_name)) metrics_json['records_inserted'] = num metrics_json['duration'] = str(datetime.datetime.now() - now) with open('load_program_activity_metrics.json', 'w+') as metrics_file: json.dump(metrics_json, metrics_file) if dropped_count > 0: exit_if_nonlocal(3) return def lowercase_or_notify(x): """ Lowercases the input if it is valid, otherwise logs the error and sets a default value Args: String to lowercase Returns: Lowercased string if possible, else unmodified string or default value. """ try: return x.lower() except Exception: if x and not np.isnan(x): logger.info('Program activity of {} was unable to be lowercased. Entered as-is.'.format(x)) return x else: logger.info('Null value found for program activity name. Entered default value.') # should not happen return '(not provided)' def convert_fyq_to_fyp(fyq): """ Converts the fyq provided to fyp if it is in fyq format. Do nothing if it is already in fyp format Args: fyq: String to convert or leave alone fiscal year quarters Returns: FYQ converted to FYP or left the same """ # If it's in quarter format, convert to period if re.match('^FY\d{2}Q\d$', str(fyq).upper().strip()): # Make sure it's all uppercase and replace the Q with a P fyq = fyq.upper().strip().replace('Q', 'P') # take the last character in the string (the quarter), multiply by 3, replace quarter = fyq[-1] period = str(int(quarter) * 3).zfill(2) fyq = fyq[:-1] + period return fyq return fyq def log_blank_file(): """ Helper function for specific reused log message """ logger.error('File was blank! Not loaded, routine aborted.') def exit_if_nonlocal(exit_code): if not CONFIG_BROKER['local']: sys.exit(exit_code)
cc0-1.0
jjs0sbw/CSPLN
apps/scaffolding/mac/web2py/web2py.app/Contents/Resources/lib/python2.7/matplotlib/backends/backend_qt4.py
2
26724
from __future__ import division import math import os import sys import matplotlib from matplotlib import verbose from matplotlib.cbook import is_string_like, onetrue from matplotlib.backend_bases import RendererBase, GraphicsContextBase, \ FigureManagerBase, FigureCanvasBase, NavigationToolbar2, IdleEvent, \ cursors, TimerBase from matplotlib.backend_bases import ShowBase from matplotlib._pylab_helpers import Gcf from matplotlib.figure import Figure from matplotlib.mathtext import MathTextParser from matplotlib.widgets import SubplotTool try: import matplotlib.backends.qt4_editor.figureoptions as figureoptions except ImportError: figureoptions = None from qt4_compat import QtCore, QtGui, _getSaveFileName, __version__ backend_version = __version__ def fn_name(): return sys._getframe(1).f_code.co_name DEBUG = False cursord = { cursors.MOVE : QtCore.Qt.SizeAllCursor, cursors.HAND : QtCore.Qt.PointingHandCursor, cursors.POINTER : QtCore.Qt.ArrowCursor, cursors.SELECT_REGION : QtCore.Qt.CrossCursor, } def draw_if_interactive(): """ Is called after every pylab drawing command """ if matplotlib.is_interactive(): figManager = Gcf.get_active() if figManager != None: figManager.canvas.draw_idle() def _create_qApp(): """ Only one qApp can exist at a time, so check before creating one. """ if QtGui.QApplication.startingUp(): if DEBUG: print "Starting up QApplication" global qApp app = QtGui.QApplication.instance() if app is None: qApp = QtGui.QApplication( [" "] ) QtCore.QObject.connect( qApp, QtCore.SIGNAL( "lastWindowClosed()" ), qApp, QtCore.SLOT( "quit()" ) ) else: qApp = app class Show(ShowBase): def mainloop(self): QtGui.qApp.exec_() show = Show() def new_figure_manager( num, *args, **kwargs ): """ Create a new figure manager instance """ thisFig = Figure( *args, **kwargs ) canvas = FigureCanvasQT( thisFig ) manager = FigureManagerQT( canvas, num ) return manager class TimerQT(TimerBase): ''' Subclass of :class:`backend_bases.TimerBase` that uses Qt4 timer events. Attributes: * interval: The time between timer events in milliseconds. Default is 1000 ms. * single_shot: Boolean flag indicating whether this timer should operate as single shot (run once and then stop). Defaults to False. * callbacks: Stores list of (func, args) tuples that will be called upon timer events. This list can be manipulated directly, or the functions add_callback and remove_callback can be used. ''' def __init__(self, *args, **kwargs): TimerBase.__init__(self, *args, **kwargs) # Create a new timer and connect the timeout() signal to the # _on_timer method. self._timer = QtCore.QTimer() QtCore.QObject.connect(self._timer, QtCore.SIGNAL('timeout()'), self._on_timer) def __del__(self): # Probably not necessary in practice, but is good behavior to disconnect TimerBase.__del__(self) QtCore.QObject.disconnect(self._timer , QtCore.SIGNAL('timeout()'), self._on_timer) def _timer_set_single_shot(self): self._timer.setSingleShot(self._single) def _timer_set_interval(self): self._timer.setInterval(self._interval) def _timer_start(self): self._timer.start() def _timer_stop(self): self._timer.stop() class FigureCanvasQT( QtGui.QWidget, FigureCanvasBase ): keyvald = { QtCore.Qt.Key_Control : 'control', QtCore.Qt.Key_Shift : 'shift', QtCore.Qt.Key_Alt : 'alt', QtCore.Qt.Key_Return : 'enter' } # map Qt button codes to MouseEvent's ones: buttond = {QtCore.Qt.LeftButton : 1, QtCore.Qt.MidButton : 2, QtCore.Qt.RightButton : 3, # QtCore.Qt.XButton1 : None, # QtCore.Qt.XButton2 : None, } def __init__( self, figure ): if DEBUG: print 'FigureCanvasQt: ', figure _create_qApp() QtGui.QWidget.__init__( self ) FigureCanvasBase.__init__( self, figure ) self.figure = figure self.setMouseTracking( True ) self._idle = True # hide until we can test and fix #self.startTimer(backend_IdleEvent.milliseconds) w,h = self.get_width_height() self.resize( w, h ) # JDH: Note the commented out code below does not work as # expected, because according to Pierre Raybaut, The reason is # that PyQt fails (silently) to call a method of this object # just before detroying it. Using a lambda function will work, # exactly the same as using a function (which is not bound to # the object to be destroyed). # #QtCore.QObject.connect(self, QtCore.SIGNAL('destroyed()'), # self.close_event) QtCore.QObject.connect(self, QtCore.SIGNAL('destroyed()'), lambda: self.close_event()) def __timerEvent(self, event): # hide until we can test and fix self.mpl_idle_event(event) def enterEvent(self, event): FigureCanvasBase.enter_notify_event(self, event) def leaveEvent(self, event): QtGui.QApplication.restoreOverrideCursor() FigureCanvasBase.leave_notify_event(self, event) def mousePressEvent( self, event ): x = event.pos().x() # flipy so y=0 is bottom of canvas y = self.figure.bbox.height - event.pos().y() button = self.buttond.get(event.button()) if button is not None: # only three buttons supported by MouseEvent FigureCanvasBase.button_press_event( self, x, y, button ) if DEBUG: print('button pressed:', event.button()) def mouseMoveEvent( self, event ): x = event.x() # flipy so y=0 is bottom of canvas y = self.figure.bbox.height - event.y() FigureCanvasBase.motion_notify_event( self, x, y ) #if DEBUG: print 'mouse move' def mouseReleaseEvent( self, event ): x = event.x() # flipy so y=0 is bottom of canvas y = self.figure.bbox.height - event.y() button = self.buttond.get(event.button()) if button is not None: # only three buttons supported by MouseEvent FigureCanvasBase.button_release_event( self, x, y, button ) if DEBUG: print('button released') def wheelEvent( self, event ): x = event.x() # flipy so y=0 is bottom of canvas y = self.figure.bbox.height - event.y() # from QWheelEvent::delta doc steps = event.delta()/120 if (event.orientation() == QtCore.Qt.Vertical): FigureCanvasBase.scroll_event( self, x, y, steps) if DEBUG: print 'scroll event : delta = %i, steps = %i ' % (event.delta(),steps) def keyPressEvent( self, event ): key = self._get_key( event ) if key is None: return FigureCanvasBase.key_press_event( self, key ) if DEBUG: print 'key press', key def keyReleaseEvent( self, event ): key = self._get_key(event) if key is None: return FigureCanvasBase.key_release_event( self, key ) if DEBUG: print 'key release', key def resizeEvent( self, event ): if DEBUG: print 'resize (%d x %d)' % (event.size().width(), event.size().height()) w = event.size().width() h = event.size().height() if DEBUG: print "FigureCanvasQtAgg.resizeEvent(", w, ",", h, ")" dpival = self.figure.dpi winch = w/dpival hinch = h/dpival self.figure.set_size_inches( winch, hinch ) self.draw() self.update() QtGui.QWidget.resizeEvent(self, event) def sizeHint( self ): w, h = self.get_width_height() return QtCore.QSize( w, h ) def minumumSizeHint( self ): return QtCore.QSize( 10, 10 ) def _get_key( self, event ): if event.isAutoRepeat(): return None if event.key() < 256: key = str(event.text()) elif event.key() in self.keyvald: key = self.keyvald[ event.key() ] else: key = None return key def new_timer(self, *args, **kwargs): """ Creates a new backend-specific subclass of :class:`backend_bases.Timer`. This is useful for getting periodic events through the backend's native event loop. Implemented only for backends with GUIs. optional arguments: *interval* Timer interval in milliseconds *callbacks* Sequence of (func, args, kwargs) where func(*args, **kwargs) will be executed by the timer every *interval*. """ return TimerQT(*args, **kwargs) def flush_events(self): QtGui.qApp.processEvents() def start_event_loop(self,timeout): FigureCanvasBase.start_event_loop_default(self,timeout) start_event_loop.__doc__=FigureCanvasBase.start_event_loop_default.__doc__ def stop_event_loop(self): FigureCanvasBase.stop_event_loop_default(self) stop_event_loop.__doc__=FigureCanvasBase.stop_event_loop_default.__doc__ def draw_idle(self): 'update drawing area only if idle' d = self._idle self._idle = False def idle_draw(*args): self.draw() self._idle = True if d: QtCore.QTimer.singleShot(0, idle_draw) class FigureManagerQT( FigureManagerBase ): """ Public attributes canvas : The FigureCanvas instance num : The Figure number toolbar : The qt.QToolBar window : The qt.QMainWindow """ def __init__( self, canvas, num ): if DEBUG: print 'FigureManagerQT.%s' % fn_name() FigureManagerBase.__init__( self, canvas, num ) self.canvas = canvas self.window = QtGui.QMainWindow() self.window.setAttribute(QtCore.Qt.WA_DeleteOnClose) self.window.setWindowTitle("Figure %d" % num) image = os.path.join( matplotlib.rcParams['datapath'],'images','matplotlib.png' ) self.window.setWindowIcon(QtGui.QIcon( image )) # Give the keyboard focus to the figure instead of the manager self.canvas.setFocusPolicy( QtCore.Qt.ClickFocus ) self.canvas.setFocus() QtCore.QObject.connect( self.window, QtCore.SIGNAL( 'destroyed()' ), self._widgetclosed ) self.window._destroying = False self.toolbar = self._get_toolbar(self.canvas, self.window) if self.toolbar is not None: self.window.addToolBar(self.toolbar) QtCore.QObject.connect(self.toolbar, QtCore.SIGNAL("message"), self._show_message) tbs_height = self.toolbar.sizeHint().height() else: tbs_height = 0 # resize the main window so it will display the canvas with the # requested size: cs = canvas.sizeHint() sbs = self.window.statusBar().sizeHint() self._status_and_tool_height = tbs_height+sbs.height() height = cs.height() + self._status_and_tool_height self.window.resize(cs.width(), height) self.window.setCentralWidget(self.canvas) if matplotlib.is_interactive(): self.window.show() # attach a show method to the figure for pylab ease of use self.canvas.figure.show = lambda *args: self.window.show() def notify_axes_change( fig ): # This will be called whenever the current axes is changed if self.toolbar is not None: self.toolbar.update() self.canvas.figure.add_axobserver( notify_axes_change ) @QtCore.Slot() def _show_message(self,s): # Fixes a PySide segfault. self.window.statusBar().showMessage(s) def _widgetclosed( self ): if self.window._destroying: return self.window._destroying = True try: Gcf.destroy(self.num) except AttributeError: pass # It seems that when the python session is killed, # Gcf can get destroyed before the Gcf.destroy # line is run, leading to a useless AttributeError. def _get_toolbar(self, canvas, parent): # must be inited after the window, drawingArea and figure # attrs are set if matplotlib.rcParams['toolbar'] == 'classic': print "Classic toolbar is not supported" elif matplotlib.rcParams['toolbar'] == 'toolbar2': toolbar = NavigationToolbar2QT(canvas, parent, False) else: toolbar = None return toolbar def resize(self, width, height): 'set the canvas size in pixels' self.window.resize(width, height + self._status_and_tool_height) def show(self): self.window.show() def destroy( self, *args ): # check for qApp first, as PySide deletes it in its atexit handler if QtGui.QApplication.instance() is None: return if self.window._destroying: return self.window._destroying = True QtCore.QObject.disconnect( self.window, QtCore.SIGNAL( 'destroyed()' ), self._widgetclosed ) if self.toolbar: self.toolbar.destroy() if DEBUG: print "destroy figure manager" self.window.close() def set_window_title(self, title): self.window.setWindowTitle(title) class NavigationToolbar2QT( NavigationToolbar2, QtGui.QToolBar ): def __init__(self, canvas, parent, coordinates=True): """ coordinates: should we show the coordinates on the right? """ self.canvas = canvas self.coordinates = coordinates QtGui.QToolBar.__init__( self, parent ) NavigationToolbar2.__init__( self, canvas ) def _icon(self, name): return QtGui.QIcon(os.path.join(self.basedir, name)) def _init_toolbar(self): self.basedir = os.path.join(matplotlib.rcParams[ 'datapath' ],'images') a = self.addAction(self._icon('home.png'), 'Home', self.home) a.setToolTip('Reset original view') a = self.addAction(self._icon('back.png'), 'Back', self.back) a.setToolTip('Back to previous view') a = self.addAction(self._icon('forward.png'), 'Forward', self.forward) a.setToolTip('Forward to next view') self.addSeparator() a = self.addAction(self._icon('move.png'), 'Pan', self.pan) a.setToolTip('Pan axes with left mouse, zoom with right') a = self.addAction(self._icon('zoom_to_rect.png'), 'Zoom', self.zoom) a.setToolTip('Zoom to rectangle') self.addSeparator() a = self.addAction(self._icon('subplots.png'), 'Subplots', self.configure_subplots) a.setToolTip('Configure subplots') if figureoptions is not None: a = self.addAction(self._icon("qt4_editor_options.png"), 'Customize', self.edit_parameters) a.setToolTip('Edit curves line and axes parameters') a = self.addAction(self._icon('filesave.png'), 'Save', self.save_figure) a.setToolTip('Save the figure') self.buttons = {} # Add the x,y location widget at the right side of the toolbar # The stretch factor is 1 which means any resizing of the toolbar # will resize this label instead of the buttons. if self.coordinates: self.locLabel = QtGui.QLabel( "", self ) self.locLabel.setAlignment( QtCore.Qt.AlignRight | QtCore.Qt.AlignTop ) self.locLabel.setSizePolicy( QtGui.QSizePolicy(QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Ignored)) labelAction = self.addWidget(self.locLabel) labelAction.setVisible(True) # reference holder for subplots_adjust window self.adj_window = None if figureoptions is not None: def edit_parameters(self): allaxes = self.canvas.figure.get_axes() if len(allaxes) == 1: axes = allaxes[0] else: titles = [] for axes in allaxes: title = axes.get_title() ylabel = axes.get_ylabel() if title: fmt = "%(title)s" if ylabel: fmt += ": %(ylabel)s" fmt += " (%(axes_repr)s)" elif ylabel: fmt = "%(axes_repr)s (%(ylabel)s)" else: fmt = "%(axes_repr)s" titles.append(fmt % dict(title = title, ylabel = ylabel, axes_repr = repr(axes))) item, ok = QtGui.QInputDialog.getItem(self, 'Customize', 'Select axes:', titles, 0, False) if ok: axes = allaxes[titles.index(unicode(item))] else: return figureoptions.figure_edit(axes, self) def dynamic_update( self ): self.canvas.draw() def set_message( self, s ): self.emit(QtCore.SIGNAL("message"), s) if self.coordinates: self.locLabel.setText(s.replace(', ', '\n')) def set_cursor( self, cursor ): if DEBUG: print 'Set cursor' , cursor QtGui.QApplication.restoreOverrideCursor() QtGui.QApplication.setOverrideCursor( QtGui.QCursor( cursord[cursor] ) ) def draw_rubberband( self, event, x0, y0, x1, y1 ): height = self.canvas.figure.bbox.height y1 = height - y1 y0 = height - y0 w = abs(x1 - x0) h = abs(y1 - y0) rect = [ int(val)for val in min(x0,x1), min(y0, y1), w, h ] self.canvas.drawRectangle( rect ) def configure_subplots(self): self.adj_window = QtGui.QMainWindow() win = self.adj_window win.setAttribute(QtCore.Qt.WA_DeleteOnClose) win.setWindowTitle("Subplot Configuration Tool") image = os.path.join( matplotlib.rcParams['datapath'],'images','matplotlib.png' ) win.setWindowIcon(QtGui.QIcon( image )) tool = SubplotToolQt(self.canvas.figure, win) win.setCentralWidget(tool) win.setSizePolicy(QtGui.QSizePolicy.Preferred, QtGui.QSizePolicy.Preferred) win.show() def _get_canvas(self, fig): return FigureCanvasQT(fig) def save_figure(self, *args): filetypes = self.canvas.get_supported_filetypes_grouped() sorted_filetypes = filetypes.items() sorted_filetypes.sort() default_filetype = self.canvas.get_default_filetype() start = "image." + default_filetype filters = [] selectedFilter = None for name, exts in sorted_filetypes: exts_list = " ".join(['*.%s' % ext for ext in exts]) filter = '%s (%s)' % (name, exts_list) if default_filetype in exts: selectedFilter = filter filters.append(filter) filters = ';;'.join(filters) fname = _getSaveFileName(self, "Choose a filename to save to", start, filters, selectedFilter) if fname: try: self.canvas.print_figure( unicode(fname) ) except Exception, e: QtGui.QMessageBox.critical( self, "Error saving file", str(e), QtGui.QMessageBox.Ok, QtGui.QMessageBox.NoButton) class SubplotToolQt( SubplotTool, QtGui.QWidget ): def __init__(self, targetfig, parent): QtGui.QWidget.__init__(self, None) self.targetfig = targetfig self.parent = parent self.sliderleft = QtGui.QSlider(QtCore.Qt.Horizontal) self.sliderbottom = QtGui.QSlider(QtCore.Qt.Vertical) self.sliderright = QtGui.QSlider(QtCore.Qt.Horizontal) self.slidertop = QtGui.QSlider(QtCore.Qt.Vertical) self.sliderwspace = QtGui.QSlider(QtCore.Qt.Horizontal) self.sliderhspace = QtGui.QSlider(QtCore.Qt.Vertical) # constraints QtCore.QObject.connect( self.sliderleft, QtCore.SIGNAL( "valueChanged(int)" ), self.sliderright.setMinimum ) QtCore.QObject.connect( self.sliderright, QtCore.SIGNAL( "valueChanged(int)" ), self.sliderleft.setMaximum ) QtCore.QObject.connect( self.sliderbottom, QtCore.SIGNAL( "valueChanged(int)" ), self.slidertop.setMinimum ) QtCore.QObject.connect( self.slidertop, QtCore.SIGNAL( "valueChanged(int)" ), self.sliderbottom.setMaximum ) sliders = (self.sliderleft, self.sliderbottom, self.sliderright, self.slidertop, self.sliderwspace, self.sliderhspace, ) adjustments = ('left:', 'bottom:', 'right:', 'top:', 'wspace:', 'hspace:') for slider, adjustment in zip(sliders, adjustments): slider.setMinimum(0) slider.setMaximum(1000) slider.setSingleStep(5) layout = QtGui.QGridLayout() leftlabel = QtGui.QLabel('left') layout.addWidget(leftlabel, 2, 0) layout.addWidget(self.sliderleft, 2, 1) toplabel = QtGui.QLabel('top') layout.addWidget(toplabel, 0, 2) layout.addWidget(self.slidertop, 1, 2) layout.setAlignment(self.slidertop, QtCore.Qt.AlignHCenter) bottomlabel = QtGui.QLabel('bottom') layout.addWidget(QtGui.QLabel('bottom'), 4, 2) layout.addWidget(self.sliderbottom, 3, 2) layout.setAlignment(self.sliderbottom, QtCore.Qt.AlignHCenter) rightlabel = QtGui.QLabel('right') layout.addWidget(rightlabel, 2, 4) layout.addWidget(self.sliderright, 2, 3) hspacelabel = QtGui.QLabel('hspace') layout.addWidget(hspacelabel, 0, 6) layout.setAlignment(hspacelabel, QtCore.Qt.AlignHCenter) layout.addWidget(self.sliderhspace, 1, 6) layout.setAlignment(self.sliderhspace, QtCore.Qt.AlignHCenter) wspacelabel = QtGui.QLabel('wspace') layout.addWidget(wspacelabel, 4, 6) layout.setAlignment(wspacelabel, QtCore.Qt.AlignHCenter) layout.addWidget(self.sliderwspace, 3, 6) layout.setAlignment(self.sliderwspace, QtCore.Qt.AlignBottom) layout.setRowStretch(1,1) layout.setRowStretch(3,1) layout.setColumnStretch(1,1) layout.setColumnStretch(3,1) layout.setColumnStretch(6,1) self.setLayout(layout) self.sliderleft.setSliderPosition(int(targetfig.subplotpars.left*1000)) self.sliderbottom.setSliderPosition(\ int(targetfig.subplotpars.bottom*1000)) self.sliderright.setSliderPosition(\ int(targetfig.subplotpars.right*1000)) self.slidertop.setSliderPosition(int(targetfig.subplotpars.top*1000)) self.sliderwspace.setSliderPosition(\ int(targetfig.subplotpars.wspace*1000)) self.sliderhspace.setSliderPosition(\ int(targetfig.subplotpars.hspace*1000)) QtCore.QObject.connect( self.sliderleft, QtCore.SIGNAL( "valueChanged(int)" ), self.funcleft ) QtCore.QObject.connect( self.sliderbottom, QtCore.SIGNAL( "valueChanged(int)" ), self.funcbottom ) QtCore.QObject.connect( self.sliderright, QtCore.SIGNAL( "valueChanged(int)" ), self.funcright ) QtCore.QObject.connect( self.slidertop, QtCore.SIGNAL( "valueChanged(int)" ), self.functop ) QtCore.QObject.connect( self.sliderwspace, QtCore.SIGNAL( "valueChanged(int)" ), self.funcwspace ) QtCore.QObject.connect( self.sliderhspace, QtCore.SIGNAL( "valueChanged(int)" ), self.funchspace ) def funcleft(self, val): if val == self.sliderright.value(): val -= 1 self.targetfig.subplots_adjust(left=val/1000.) if self.drawon: self.targetfig.canvas.draw() def funcright(self, val): if val == self.sliderleft.value(): val += 1 self.targetfig.subplots_adjust(right=val/1000.) if self.drawon: self.targetfig.canvas.draw() def funcbottom(self, val): if val == self.slidertop.value(): val -= 1 self.targetfig.subplots_adjust(bottom=val/1000.) if self.drawon: self.targetfig.canvas.draw() def functop(self, val): if val == self.sliderbottom.value(): val += 1 self.targetfig.subplots_adjust(top=val/1000.) if self.drawon: self.targetfig.canvas.draw() def funcwspace(self, val): self.targetfig.subplots_adjust(wspace=val/1000.) if self.drawon: self.targetfig.canvas.draw() def funchspace(self, val): self.targetfig.subplots_adjust(hspace=val/1000.) if self.drawon: self.targetfig.canvas.draw() def error_msg_qt( msg, parent=None ): if not is_string_like( msg ): msg = ','.join( map( str,msg ) ) QtGui.QMessageBox.warning( None, "Matplotlib", msg, QtGui.QMessageBox.Ok ) def exception_handler( type, value, tb ): """Handle uncaught exceptions It does not catch SystemExit """ msg = '' # get the filename attribute if available (for IOError) if hasattr(value, 'filename') and value.filename != None: msg = value.filename + ': ' if hasattr(value, 'strerror') and value.strerror != None: msg += value.strerror else: msg += str(value) if len( msg ) : error_msg_qt( msg ) FigureManager = FigureManagerQT
gpl-3.0
michalkurka/h2o-3
h2o-py/tests/testdir_algos/isoforextended/pyunit_isoforextended_extension_level_smoke.py
2
3390
from __future__ import print_function import sys, os sys.path.insert(1, os.path.join("..","..","..")) import h2o from sklearn.datasets import make_blobs from tests import pyunit_utils from h2o.estimators.extended_isolation_forest import H2OExtendedIsolationForestEstimator def extended_isolation_forest_extension_level_smoke(): """ Test extension_level parameter of Extended Isolation Forest. The extension_level=0 means Isolation Forest's behaviour. This test is testing the known Isolation Forest's behaviour of 'Ghost clusters' which Extended Isolation Forest mitigates. The overall variance in anomaly score of EIF should be lower than anomaly score IF. Anomaly score in 'Ghost clusters' should be lower for IF. For more information see source paper https://arxiv.org/pdf/1811.02141.pdf (Figure 2). """ seed = 0xBEEF double_blob = make_blobs(centers=[[10, 0], [0, 10]], cluster_std=[1, 1], random_state=seed, n_samples=500, n_features=2)[0] train = h2o.H2OFrame(double_blob) anomalies = h2o.H2OFrame([[0, 0], [10, 10]]) # Points in the ghost clusters eif_model = H2OExtendedIsolationForestEstimator(ntrees=100, seed=seed, sample_size=255, extension_level=1) eif_model.train(training_frame=train) eif_overall_anomaly_score = eif_model.predict(train) eif_overall_anomaly = eif_overall_anomaly_score['anomaly_score'].as_data_frame(use_pandas=True)["anomaly_score"] if_model = H2OExtendedIsolationForestEstimator(ntrees=100, seed=0xBEEF, sample_size=255, extension_level=0) if_model.train(training_frame=train) if_overall_anomaly_score = if_model.predict(train) if_overall_anomaly = if_overall_anomaly_score['anomaly_score'].as_data_frame(use_pandas=True)["anomaly_score"] eif_anomaly_score = eif_model.predict(anomalies)['anomaly_score'].as_data_frame(use_pandas=True)["anomaly_score"] if_anomaly_score = if_model.predict(anomalies)['anomaly_score'].as_data_frame(use_pandas=True)["anomaly_score"] assert if_anomaly_score[0] < eif_anomaly_score[0], \ "The anomaly score of simulated Isolation Forest's should be significantly lower than score of " \ "Extended Isolation Forest because this point is in 'Ghost cluster'. " + str(if_anomaly_score[0]) + " < " \ + str(eif_anomaly_score[0]) assert if_anomaly_score[1] < eif_anomaly_score[1], \ "The anomaly score of simulated Isolation Forest's should be significantly lower than score of " \ "Extended Isolation Forest because this point is in 'Ghost cluster'. " + str(if_anomaly_score[1]) + " < " \ + str(eif_anomaly_score[1]) assert 0.0015 < eif_overall_anomaly.var() < 0.0020 < if_overall_anomaly.var() < 0.0023, \ "Not expected output: Variance in anomaly score of Extended Isolation Forest is suspiciously different from " \ "Isolation Forest (EIF with extension_level=0). In general, the overall variance in anomaly score of EIF " \ "should be lower than variance in score of IF. It could be potential bug in extension_level parameter " \ "handling because " + str(eif_overall_anomaly.var()) + " should be lower than " + str(if_overall_anomaly.var()) if __name__ == "__main__": pyunit_utils.standalone_test(extended_isolation_forest_extension_level_smoke) else: extended_isolation_forest_extension_level_smoke()
apache-2.0
mne-tools/mne-tools.github.io
0.12/_downloads/plot_find_ecg_artifacts.py
14
1313
""" ================== Find ECG artifacts ================== Locate QRS component of ECG. """ # Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt import mne from mne import io from mne.datasets import sample print(__doc__) data_path = sample.data_path() ############################################################################### # Set parameters raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif' # Setup for reading the raw data raw = io.read_raw_fif(raw_fname) event_id = 999 ecg_events, _, _ = mne.preprocessing.find_ecg_events(raw, event_id, ch_name='MEG 1531') # Read epochs picks = mne.pick_types(raw.info, meg=False, eeg=False, stim=False, eog=False, include=['MEG 1531'], exclude='bads') tmin, tmax = -0.1, 0.1 epochs = mne.Epochs(raw, ecg_events, event_id, tmin, tmax, picks=picks, proj=False) data = epochs.get_data() print("Number of detected ECG artifacts : %d" % len(data)) ############################################################################### # Plot ECG artifacts plt.plot(1e3 * epochs.times, np.squeeze(data).T) plt.xlabel('Times (ms)') plt.ylabel('ECG') plt.show()
bsd-3-clause
aabadie/scikit-learn
examples/neural_networks/plot_mlp_training_curves.py
58
3692
""" ======================================================== Compare Stochastic learning strategies for MLPClassifier ======================================================== This example visualizes some training loss curves for different stochastic learning strategies, including SGD and Adam. Because of time-constraints, we use several small datasets, for which L-BFGS might be more suitable. The general trend shown in these examples seems to carry over to larger datasets, however. Note that those results can be highly dependent on the value of ``learning_rate_init``. """ print(__doc__) import matplotlib.pyplot as plt from sklearn.neural_network import MLPClassifier from sklearn.preprocessing import MinMaxScaler from sklearn import datasets # different learning rate schedules and momentum parameters params = [{'solver': 'sgd', 'learning_rate': 'constant', 'momentum': 0, 'learning_rate_init': 0.2}, {'solver': 'sgd', 'learning_rate': 'constant', 'momentum': .9, 'nesterovs_momentum': False, 'learning_rate_init': 0.2}, {'solver': 'sgd', 'learning_rate': 'constant', 'momentum': .9, 'nesterovs_momentum': True, 'learning_rate_init': 0.2}, {'solver': 'sgd', 'learning_rate': 'invscaling', 'momentum': 0, 'learning_rate_init': 0.2}, {'solver': 'sgd', 'learning_rate': 'invscaling', 'momentum': .9, 'nesterovs_momentum': True, 'learning_rate_init': 0.2}, {'solver': 'sgd', 'learning_rate': 'invscaling', 'momentum': .9, 'nesterovs_momentum': False, 'learning_rate_init': 0.2}, {'solver': 'adam', 'learning_rate_init': 0.01}] labels = ["constant learning-rate", "constant with momentum", "constant with Nesterov's momentum", "inv-scaling learning-rate", "inv-scaling with momentum", "inv-scaling with Nesterov's momentum", "adam"] plot_args = [{'c': 'red', 'linestyle': '-'}, {'c': 'green', 'linestyle': '-'}, {'c': 'blue', 'linestyle': '-'}, {'c': 'red', 'linestyle': '--'}, {'c': 'green', 'linestyle': '--'}, {'c': 'blue', 'linestyle': '--'}, {'c': 'black', 'linestyle': '-'}] def plot_on_dataset(X, y, ax, name): # for each dataset, plot learning for each learning strategy print("\nlearning on dataset %s" % name) ax.set_title(name) X = MinMaxScaler().fit_transform(X) mlps = [] if name == "digits": # digits is larger but converges fairly quickly max_iter = 15 else: max_iter = 400 for label, param in zip(labels, params): print("training: %s" % label) mlp = MLPClassifier(verbose=0, random_state=0, max_iter=max_iter, **param) mlp.fit(X, y) mlps.append(mlp) print("Training set score: %f" % mlp.score(X, y)) print("Training set loss: %f" % mlp.loss_) for mlp, label, args in zip(mlps, labels, plot_args): ax.plot(mlp.loss_curve_, label=label, **args) fig, axes = plt.subplots(2, 2, figsize=(15, 10)) # load / generate some toy datasets iris = datasets.load_iris() digits = datasets.load_digits() data_sets = [(iris.data, iris.target), (digits.data, digits.target), datasets.make_circles(noise=0.2, factor=0.5, random_state=1), datasets.make_moons(noise=0.3, random_state=0)] for ax, data, name in zip(axes.ravel(), data_sets, ['iris', 'digits', 'circles', 'moons']): plot_on_dataset(*data, ax=ax, name=name) fig.legend(ax.get_lines(), labels=labels, ncol=3, loc="upper center") plt.show()
bsd-3-clause
buguen/pylayers
pylayers/measures/parker/plot_scanner.py
3
1084
import matplotlib.pyplot as plt import numpy as np import matplotlib.patches as patches from matplotlib.path import Path import matplotlib.lines as mlines from matplotlib.collections import PatchCollection pA = np.array([0,0]) pB = np.array([0,1.2]) pC = np.array([0.7,0]) pD = np.array([0.7,1.2]) pO = (pA+pB+pC+pD)/4 verts = [ (pA[0], pA[1]), # left, bottom (pB[0], pB[1]), # left, top (pD[0], pD[1]), # right, top (pC[0],pC[1]), # right, bottom (pA[0],pA[1]), # ignored ] codes = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY, ] path = Path(verts, codes) patch = patches.PathPatch(path,facecolor='blue',lw=2,alpha=0.3) ax = plt.gca() circle = patches.Circle(pO,0.1,fc='orange',ec=None) ax.add_patch(circle) ax.add_patch(patch) a1 = ax.arrow(pA[0],pA[1],(pB[0]-pA[0]),(pB[1]-pA[1]),head_width=0.05,head_length=0.1,fc='k',ec='k') a2 = ax.arrow(pC[0],pC[1],(pD[0]-pC[0]),(pD[1]-pC[1]),head_width=0.05,head_length=0.1,fc='k',ec='k') ax.axis('equal') plt.show()
lgpl-3.0
phobson/statsmodels
statsmodels/discrete/discrete_margins.py
1
25391
#Splitting out maringal effects to see if they can be generalized from statsmodels.compat.python import lzip, callable, range import numpy as np from scipy.stats import norm from statsmodels.tools.decorators import cache_readonly, resettable_cache #### margeff helper functions #### #NOTE: todo marginal effects for group 2 # group 2 oprobit, ologit, gologit, mlogit, biprobit def _check_margeff_args(at, method): """ Checks valid options for margeff """ if at not in ['overall','mean','median','zero','all']: raise ValueError("%s not a valid option for `at`." % at) if method not in ['dydx','eyex','dyex','eydx']: raise ValueError("method is not understood. Got %s" % method) def _check_discrete_args(at, method): """ Checks the arguments for margeff if the exogenous variables are discrete. """ if method in ['dyex','eyex']: raise ValueError("%s not allowed for discrete variables" % method) if at in ['median', 'zero']: raise ValueError("%s not allowed for discrete variables" % at) def _get_const_index(exog): """ Returns a boolean array of non-constant column indices in exog and an scalar array of where the constant is or None """ effects_idx = exog.var(0) != 0 if np.any(~effects_idx): const_idx = np.where(~effects_idx)[0] else: const_idx = None return effects_idx, const_idx def _isdummy(X): """ Given an array X, returns the column indices for the dummy variables. Parameters ---------- X : array-like A 1d or 2d array of numbers Examples -------- >>> X = np.random.randint(0, 2, size=(15,5)).astype(float) >>> X[:,1:3] = np.random.randn(15,2) >>> ind = _isdummy(X) >>> ind array([0, 3, 4]) """ X = np.asarray(X) if X.ndim > 1: ind = np.zeros(X.shape[1]).astype(bool) max = (np.max(X, axis=0) == 1) min = (np.min(X, axis=0) == 0) remainder = np.all(X % 1. == 0, axis=0) ind = min & max & remainder if X.ndim == 1: ind = np.asarray([ind]) return np.where(ind)[0] def _get_dummy_index(X, const_idx): dummy_ind = _isdummy(X) dummy = True # adjust back for a constant because effects doesn't have one if const_idx is not None: dummy_ind[dummy_ind > const_idx] -= 1 if dummy_ind.size == 0: # don't waste your time dummy = False dummy_ind = None # this gets passed to stand err func return dummy_ind, dummy def _iscount(X): """ Given an array X, returns the column indices for count variables. Parameters ---------- X : array-like A 1d or 2d array of numbers Examples -------- >>> X = np.random.randint(0, 10, size=(15,5)).astype(float) >>> X[:,1:3] = np.random.randn(15,2) >>> ind = _iscount(X) >>> ind array([0, 3, 4]) """ X = np.asarray(X) remainder = np.logical_and(np.logical_and(np.all(X % 1. == 0, axis = 0), X.var(0) != 0), np.all(X >= 0, axis=0)) dummy = _isdummy(X) remainder = np.where(remainder)[0].tolist() for idx in dummy: remainder.remove(idx) return np.array(remainder) def _get_count_index(X, const_idx): count_ind = _iscount(X) count = True # adjust back for a constant because effects doesn't have one if const_idx is not None: count_ind[count_ind > const_idx] -= 1 if count_ind.size == 0: # don't waste your time count = False count_ind = None # for stand err func return count_ind, count def _get_margeff_exog(exog, at, atexog, ind): if atexog is not None: # user supplied if isinstance(atexog, dict): # assumes values are singular or of len(exog) for key in atexog: exog[:,key] = atexog[key] elif isinstance(atexog, np.ndarray): #TODO: handle DataFrames if atexog.ndim == 1: k_vars = len(atexog) else: k_vars = atexog.shape[1] try: assert k_vars == exog.shape[1] except: raise ValueError("atexog does not have the same number " "of variables as exog") exog = atexog #NOTE: we should fill in atexog after we process at if at == 'mean': exog = np.atleast_2d(exog.mean(0)) elif at == 'median': exog = np.atleast_2d(np.median(exog, axis=0)) elif at == 'zero': exog = np.zeros((1,exog.shape[1])) exog[0,~ind] = 1 return exog def _get_count_effects(effects, exog, count_ind, method, model, params): """ If there's a count variable, the predicted difference is taken by subtracting one and adding one to exog then averaging the difference """ # this is the index for the effect and the index for count col in exog for i in count_ind: exog0 = exog.copy() exog0[:, i] -= 1 effect0 = model.predict(params, exog0) exog0[:, i] += 2 effect1 = model.predict(params, exog0) #NOTE: done by analogy with dummy effects but untested bc # stata doesn't handle both count and eydx anywhere if 'ey' in method: effect0 = np.log(effect0) effect1 = np.log(effect1) effects[:, i] = ((effect1 - effect0)/2) return effects def _get_dummy_effects(effects, exog, dummy_ind, method, model, params): """ If there's a dummy variable, the predicted difference is taken at 0 and 1 """ # this is the index for the effect and the index for dummy col in exog for i in dummy_ind: exog0 = exog.copy() # only copy once, can we avoid a copy? exog0[:,i] = 0 effect0 = model.predict(params, exog0) #fittedvalues0 = np.dot(exog0,params) exog0[:,i] = 1 effect1 = model.predict(params, exog0) if 'ey' in method: effect0 = np.log(effect0) effect1 = np.log(effect1) effects[:, i] = (effect1 - effect0) return effects def _effects_at(effects, at): if at == 'all': effects = effects elif at == 'overall': effects = effects.mean(0) else: effects = effects[0,:] return effects def _margeff_cov_params_dummy(model, cov_margins, params, exog, dummy_ind, method, J): """ Returns the Jacobian for discrete regressors for use in margeff_cov_params. For discrete regressors the marginal effect is \Delta F = F(XB) | d = 1 - F(XB) | d = 0 The row of the Jacobian for this variable is given by f(XB)*X | d = 1 - f(XB)*X | d = 0 Where F is the default prediction of the model. """ for i in dummy_ind: exog0 = exog.copy() exog1 = exog.copy() exog0[:,i] = 0 exog1[:,i] = 1 dfdb0 = model._derivative_predict(params, exog0, method) dfdb1 = model._derivative_predict(params, exog1, method) dfdb = (dfdb1 - dfdb0) if dfdb.ndim >= 2: # for overall dfdb = dfdb.mean(0) if J > 1: K = dfdb.shape[1] // (J-1) cov_margins[i::K, :] = dfdb else: cov_margins[i, :] = dfdb # how each F changes with change in B return cov_margins def _margeff_cov_params_count(model, cov_margins, params, exog, count_ind, method, J): """ Returns the Jacobian for discrete regressors for use in margeff_cov_params. For discrete regressors the marginal effect is \Delta F = F(XB) | d += 1 - F(XB) | d -= 1 The row of the Jacobian for this variable is given by (f(XB)*X | d += 1 - f(XB)*X | d -= 1) / 2 where F is the default prediction for the model. """ for i in count_ind: exog0 = exog.copy() exog0[:,i] -= 1 dfdb0 = model._derivative_predict(params, exog0, method) exog0[:,i] += 2 dfdb1 = model._derivative_predict(params, exog0, method) dfdb = (dfdb1 - dfdb0) if dfdb.ndim >= 2: # for overall dfdb = dfdb.mean(0) / 2 if J > 1: K = dfdb.shape[1] / (J-1) cov_margins[i::K, :] = dfdb else: cov_margins[i, :] = dfdb # how each F changes with change in B return cov_margins def margeff_cov_params(model, params, exog, cov_params, at, derivative, dummy_ind, count_ind, method, J): """ Computes the variance-covariance of marginal effects by the delta method. Parameters ---------- model : model instance The model that returned the fitted results. Its pdf method is used for computing the Jacobian of discrete variables in dummy_ind and count_ind params : array-like estimated model parameters exog : array-like exogenous variables at which to calculate the derivative cov_params : array-like The variance-covariance of the parameters at : str Options are: - 'overall', The average of the marginal effects at each observation. - 'mean', The marginal effects at the mean of each regressor. - 'median', The marginal effects at the median of each regressor. - 'zero', The marginal effects at zero for each regressor. - 'all', The marginal effects at each observation. Only overall has any effect here.you derivative : function or array-like If a function, it returns the marginal effects of the model with respect to the exogenous variables evaluated at exog. Expected to be called derivative(params, exog). This will be numerically differentiated. Otherwise, it can be the Jacobian of the marginal effects with respect to the parameters. dummy_ind : array-like Indices of the columns of exog that contain dummy variables count_ind : array-like Indices of the columns of exog that contain count variables Notes ----- For continuous regressors, the variance-covariance is given by Asy. Var[MargEff] = [d margeff / d params] V [d margeff / d params]' where V is the parameter variance-covariance. The outer Jacobians are computed via numerical differentiation if derivative is a function. """ if callable(derivative): from statsmodels.tools.numdiff import approx_fprime_cs params = params.ravel('F') # for Multinomial try: jacobian_mat = approx_fprime_cs(params, derivative, args=(exog,method)) except TypeError: # norm.cdf doesn't take complex values from statsmodels.tools.numdiff import approx_fprime jacobian_mat = approx_fprime(params, derivative, args=(exog,method)) if at == 'overall': jacobian_mat = np.mean(jacobian_mat, axis=1) else: jacobian_mat = jacobian_mat.squeeze() # exog was 2d row vector if dummy_ind is not None: jacobian_mat = _margeff_cov_params_dummy(model, jacobian_mat, params, exog, dummy_ind, method, J) if count_ind is not None: jacobian_mat = _margeff_cov_params_count(model, jacobian_mat, params, exog, count_ind, method, J) else: jacobian_mat = derivative #NOTE: this won't go through for at == 'all' return np.dot(np.dot(jacobian_mat, cov_params), jacobian_mat.T) def margeff_cov_with_se(model, params, exog, cov_params, at, derivative, dummy_ind, count_ind, method, J): """ See margeff_cov_params. Same function but returns both the covariance of the marginal effects and their standard errors. """ cov_me = margeff_cov_params(model, params, exog, cov_params, at, derivative, dummy_ind, count_ind, method, J) return cov_me, np.sqrt(np.diag(cov_me)) def margeff(): pass def _check_at_is_all(method): if method['at'] == 'all': raise NotImplementedError("Only margeff are available when `at` is " "all. Please input specific points if you would like to " "do inference.") _transform_names = dict(dydx='dy/dx', eyex='d(lny)/d(lnx)', dyex='dy/d(lnx)', eydx='d(lny)/dx') class Margins(object): """ Mostly a do nothing class. Lays out the methods expected of a sub-class. This is just a sketch of what we may want out of a general margins class. I (SS) need to look at details of other models. """ def __init__(self, results, get_margeff, derivative, dist=None, margeff_args=()): self._cache = resettable_cache() self.results = results self.dist = dist self.get_margeff(margeff_args) def _reset(self): self._cache = resettable_cache() def get_margeff(self, *args, **kwargs): self._reset() self.margeff = self.get_margeff(*args) @cache_readonly def tvalues(self): raise NotImplementedError @cache_readonly def cov_margins(self): raise NotImplementedError @cache_readonly def margins_se(self): raise NotImplementedError def summary_frame(self): raise NotImplementedError @cache_readonly def pvalues(self): raise NotImplementedError def conf_int(self, alpha=.05): raise NotImplementedError def summary(self, alpha=.05): raise NotImplementedError #class DiscreteMargins(Margins): class DiscreteMargins(object): """Get marginal effects of a Discrete Choice model. Parameters ---------- results : DiscreteResults instance The results instance of a fitted discrete choice model args : tuple Args are passed to `get_margeff`. This is the same as results.get_margeff. See there for more information. kwargs : dict Keyword args are passed to `get_margeff`. This is the same as results.get_margeff. See there for more information. """ def __init__(self, results, args, kwargs={}): self._cache = resettable_cache() self.results = results self.get_margeff(*args, **kwargs) def _reset(self): self._cache = resettable_cache() @cache_readonly def tvalues(self): _check_at_is_all(self.margeff_options) return self.margeff / self.margeff_se def summary_frame(self, alpha=.05): """ Returns a DataFrame summarizing the marginal effects. Parameters ---------- alpha : float Number between 0 and 1. The confidence intervals have the probability 1-alpha. Returns ------- frame : DataFrames A DataFrame summarizing the marginal effects. """ _check_at_is_all(self.margeff_options) from pandas import DataFrame names = [_transform_names[self.margeff_options['method']], 'Std. Err.', 'z', 'Pr(>|z|)', 'Conf. Int. Low', 'Cont. Int. Hi.'] ind = self.results.model.exog.var(0) != 0 # True if not a constant exog_names = self.results.model.exog_names var_names = [name for i,name in enumerate(exog_names) if ind[i]] table = np.column_stack((self.margeff, self.margeff_se, self.tvalues, self.pvalues, self.conf_int(alpha))) return DataFrame(table, columns=names, index=var_names) @cache_readonly def pvalues(self): _check_at_is_all(self.margeff_options) return norm.sf(np.abs(self.tvalues)) * 2 def conf_int(self, alpha=.05): """ Returns the confidence intervals of the marginal effects Parameters ---------- alpha : float Number between 0 and 1. The confidence intervals have the probability 1-alpha. Returns ------- conf_int : ndarray An array with lower, upper confidence intervals for the marginal effects. """ _check_at_is_all(self.margeff_options) me_se = self.margeff_se q = norm.ppf(1 - alpha / 2) lower = self.margeff - q * me_se upper = self.margeff + q * me_se return np.asarray(lzip(lower, upper)) def summary(self, alpha=.05): """ Returns a summary table for marginal effects Parameters ---------- alpha : float Number between 0 and 1. The confidence intervals have the probability 1-alpha. Returns ------- Summary : SummaryTable A SummaryTable instance """ _check_at_is_all(self.margeff_options) results = self.results model = results.model title = model.__class__.__name__ + " Marginal Effects" method = self.margeff_options['method'] top_left = [('Dep. Variable:', [model.endog_names]), ('Method:', [method]), ('At:', [self.margeff_options['at']]),] from statsmodels.iolib.summary import (Summary, summary_params, table_extend) exog_names = model.exog_names[:] # copy smry = Summary() # sigh, we really need to hold on to this in _data... _, const_idx = _get_const_index(model.exog) if const_idx is not None: exog_names.pop(const_idx) J = int(getattr(model, "J", 1)) if J > 1: yname, yname_list = results._get_endog_name(model.endog_names, None, all=True) else: yname = model.endog_names yname_list = [yname] smry.add_table_2cols(self, gleft=top_left, gright=[], yname=yname, xname=exog_names, title=title) #NOTE: add_table_params is not general enough yet for margeff # could use a refactor with getattr instead of hard-coded params # tvalues etc. table = [] conf_int = self.conf_int(alpha) margeff = self.margeff margeff_se = self.margeff_se tvalues = self.tvalues pvalues = self.pvalues if J > 1: for eq in range(J): restup = (results, margeff[:,eq], margeff_se[:,eq], tvalues[:,eq], pvalues[:,eq], conf_int[:,:,eq]) tble = summary_params(restup, yname=yname_list[eq], xname=exog_names, alpha=alpha, use_t=False, skip_header=True) tble.title = yname_list[eq] # overwrite coef with method name header = ['', _transform_names[method], 'std err', 'z', 'P>|z|', '[%3.1f%% Conf. Int.]' % (100-alpha*100)] tble.insert_header_row(0, header) #from IPython.core.debugger import Pdb; Pdb().set_trace() table.append(tble) table = table_extend(table, keep_headers=True) else: restup = (results, margeff, margeff_se, tvalues, pvalues, conf_int) table = summary_params(restup, yname=yname, xname=exog_names, alpha=alpha, use_t=False, skip_header=True) header = ['', _transform_names[method], 'std err', 'z', 'P>|z|', '[%3.1f%% Conf. Int.]' % (100-alpha*100)] table.insert_header_row(0, header) smry.tables.append(table) return smry def get_margeff(self, at='overall', method='dydx', atexog=None, dummy=False, count=False): """Get marginal effects of the fitted model. Parameters ---------- at : str, optional Options are: - 'overall', The average of the marginal effects at each observation. - 'mean', The marginal effects at the mean of each regressor. - 'median', The marginal effects at the median of each regressor. - 'zero', The marginal effects at zero for each regressor. - 'all', The marginal effects at each observation. If `at` is all only margeff will be available. Note that if `exog` is specified, then marginal effects for all variables not specified by `exog` are calculated using the `at` option. method : str, optional Options are: - 'dydx' - dy/dx - No transformation is made and marginal effects are returned. This is the default. - 'eyex' - estimate elasticities of variables in `exog` -- d(lny)/d(lnx) - 'dyex' - estimate semielasticity -- dy/d(lnx) - 'eydx' - estimate semeilasticity -- d(lny)/dx Note that tranformations are done after each observation is calculated. Semi-elasticities for binary variables are computed using the midpoint method. 'dyex' and 'eyex' do not make sense for discrete variables. atexog : array-like, optional Optionally, you can provide the exogenous variables over which to get the marginal effects. This should be a dictionary with the key as the zero-indexed column number and the value of the dictionary. Default is None for all independent variables less the constant. dummy : bool, optional If False, treats binary variables (if present) as continuous. This is the default. Else if True, treats binary variables as changing from 0 to 1. Note that any variable that is either 0 or 1 is treated as binary. Each binary variable is treated separately for now. count : bool, optional If False, treats count variables (if present) as continuous. This is the default. Else if True, the marginal effect is the change in probabilities when each observation is increased by one. Returns ------- effects : ndarray the marginal effect corresponding to the input options Notes ----- When using after Poisson, returns the expected number of events per period, assuming that the model is loglinear. """ self._reset() # always reset the cache when this is called #TODO: if at is not all or overall, we can also put atexog values # in summary table head method = method.lower() at = at.lower() _check_margeff_args(at, method) self.margeff_options = dict(method=method, at=at) results = self.results model = results.model params = results.params exog = model.exog.copy() # copy because values are changed effects_idx, const_idx = _get_const_index(exog) if dummy: _check_discrete_args(at, method) dummy_idx, dummy = _get_dummy_index(exog, const_idx) else: dummy_idx = None if count: _check_discrete_args(at, method) count_idx, count = _get_count_index(exog, const_idx) else: count_idx = None # get the exogenous variables exog = _get_margeff_exog(exog, at, atexog, effects_idx) # get base marginal effects, handled by sub-classes effects = model._derivative_exog(params, exog, method, dummy_idx, count_idx) J = getattr(model, 'J', 1) effects_idx = np.tile(effects_idx, J) # adjust for multi-equation. effects = _effects_at(effects, at) if at == 'all': if J > 1: K = model.K - np.any(~effects_idx) # subtract constant self.margeff = effects[:, effects_idx].reshape(-1, K, J, order='F') else: self.margeff = effects[:, effects_idx] else: # Set standard error of the marginal effects by Delta method. margeff_cov, margeff_se = margeff_cov_with_se(model, params, exog, results.cov_params(), at, model._derivative_exog, dummy_idx, count_idx, method, J) # reshape for multi-equation if J > 1: K = model.K - np.any(~effects_idx) # subtract constant self.margeff = effects[effects_idx].reshape(K, J, order='F') self.margeff_se = margeff_se[effects_idx].reshape(K, J, order='F') self.margeff_cov = margeff_cov[effects_idx][:, effects_idx] else: # don't care about at constant self.margeff_cov = margeff_cov[effects_idx][:, effects_idx] self.margeff_se = margeff_se[effects_idx] self.margeff = effects[effects_idx]
bsd-3-clause
BiaDarkia/scikit-learn
examples/applications/plot_out_of_core_classification.py
19
13684
""" ====================================================== Out-of-core classification of text documents ====================================================== This is an example showing how scikit-learn can be used for classification using an out-of-core approach: learning from data that doesn't fit into main memory. We make use of an online classifier, i.e., one that supports the partial_fit method, that will be fed with batches of examples. To guarantee that the features space remains the same over time we leverage a HashingVectorizer that will project each example into the same feature space. This is especially useful in the case of text classification where new features (words) may appear in each batch. The dataset used in this example is Reuters-21578 as provided by the UCI ML repository. It will be automatically downloaded and uncompressed on first run. The plot represents the learning curve of the classifier: the evolution of classification accuracy over the course of the mini-batches. Accuracy is measured on the first 1000 samples, held out as a validation set. To limit the memory consumption, we queue examples up to a fixed amount before feeding them to the learner. """ # Authors: Eustache Diemert <eustache@diemert.fr> # @FedericoV <https://github.com/FedericoV/> # License: BSD 3 clause from __future__ import print_function from glob import glob import itertools import os.path import re import tarfile import time import sys import numpy as np import matplotlib.pyplot as plt from matplotlib import rcParams from sklearn.externals.six.moves import html_parser from sklearn.externals.six.moves.urllib.request import urlretrieve from sklearn.datasets import get_data_home from sklearn.feature_extraction.text import HashingVectorizer from sklearn.linear_model import SGDClassifier from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.linear_model import Perceptron from sklearn.naive_bayes import MultinomialNB def _not_in_sphinx(): # Hack to detect whether we are running by the sphinx builder return '__file__' in globals() ############################################################################### # Reuters Dataset related routines # -------------------------------- # class ReutersParser(html_parser.HTMLParser): """Utility class to parse a SGML file and yield documents one at a time.""" def __init__(self, encoding='latin-1'): html_parser.HTMLParser.__init__(self) self._reset() self.encoding = encoding def handle_starttag(self, tag, attrs): method = 'start_' + tag getattr(self, method, lambda x: None)(attrs) def handle_endtag(self, tag): method = 'end_' + tag getattr(self, method, lambda: None)() def _reset(self): self.in_title = 0 self.in_body = 0 self.in_topics = 0 self.in_topic_d = 0 self.title = "" self.body = "" self.topics = [] self.topic_d = "" def parse(self, fd): self.docs = [] for chunk in fd: self.feed(chunk.decode(self.encoding)) for doc in self.docs: yield doc self.docs = [] self.close() def handle_data(self, data): if self.in_body: self.body += data elif self.in_title: self.title += data elif self.in_topic_d: self.topic_d += data def start_reuters(self, attributes): pass def end_reuters(self): self.body = re.sub(r'\s+', r' ', self.body) self.docs.append({'title': self.title, 'body': self.body, 'topics': self.topics}) self._reset() def start_title(self, attributes): self.in_title = 1 def end_title(self): self.in_title = 0 def start_body(self, attributes): self.in_body = 1 def end_body(self): self.in_body = 0 def start_topics(self, attributes): self.in_topics = 1 def end_topics(self): self.in_topics = 0 def start_d(self, attributes): self.in_topic_d = 1 def end_d(self): self.in_topic_d = 0 self.topics.append(self.topic_d) self.topic_d = "" def stream_reuters_documents(data_path=None): """Iterate over documents of the Reuters dataset. The Reuters archive will automatically be downloaded and uncompressed if the `data_path` directory does not exist. Documents are represented as dictionaries with 'body' (str), 'title' (str), 'topics' (list(str)) keys. """ DOWNLOAD_URL = ('http://archive.ics.uci.edu/ml/machine-learning-databases/' 'reuters21578-mld/reuters21578.tar.gz') ARCHIVE_FILENAME = 'reuters21578.tar.gz' if data_path is None: data_path = os.path.join(get_data_home(), "reuters") if not os.path.exists(data_path): """Download the dataset.""" print("downloading dataset (once and for all) into %s" % data_path) os.mkdir(data_path) def progress(blocknum, bs, size): total_sz_mb = '%.2f MB' % (size / 1e6) current_sz_mb = '%.2f MB' % ((blocknum * bs) / 1e6) if _not_in_sphinx(): sys.stdout.write( '\rdownloaded %s / %s' % (current_sz_mb, total_sz_mb)) archive_path = os.path.join(data_path, ARCHIVE_FILENAME) urlretrieve(DOWNLOAD_URL, filename=archive_path, reporthook=progress) if _not_in_sphinx(): sys.stdout.write('\r') print("untarring Reuters dataset...") tarfile.open(archive_path, 'r:gz').extractall(data_path) print("done.") parser = ReutersParser() for filename in glob(os.path.join(data_path, "*.sgm")): for doc in parser.parse(open(filename, 'rb')): yield doc ############################################################################### # Main # ---- # # Create the vectorizer and limit the number of features to a reasonable # maximum vectorizer = HashingVectorizer(decode_error='ignore', n_features=2 ** 18, alternate_sign=False) # Iterator over parsed Reuters SGML files. data_stream = stream_reuters_documents() # We learn a binary classification between the "acq" class and all the others. # "acq" was chosen as it is more or less evenly distributed in the Reuters # files. For other datasets, one should take care of creating a test set with # a realistic portion of positive instances. all_classes = np.array([0, 1]) positive_class = 'acq' # Here are some classifiers that support the `partial_fit` method partial_fit_classifiers = { 'SGD': SGDClassifier(max_iter=5), 'Perceptron': Perceptron(tol=1e-3), 'NB Multinomial': MultinomialNB(alpha=0.01), 'Passive-Aggressive': PassiveAggressiveClassifier(tol=1e-3), } def get_minibatch(doc_iter, size, pos_class=positive_class): """Extract a minibatch of examples, return a tuple X_text, y. Note: size is before excluding invalid docs with no topics assigned. """ data = [(u'{title}\n\n{body}'.format(**doc), pos_class in doc['topics']) for doc in itertools.islice(doc_iter, size) if doc['topics']] if not len(data): return np.asarray([], dtype=int), np.asarray([], dtype=int) X_text, y = zip(*data) return X_text, np.asarray(y, dtype=int) def iter_minibatches(doc_iter, minibatch_size): """Generator of minibatches.""" X_text, y = get_minibatch(doc_iter, minibatch_size) while len(X_text): yield X_text, y X_text, y = get_minibatch(doc_iter, minibatch_size) # test data statistics test_stats = {'n_test': 0, 'n_test_pos': 0} # First we hold out a number of examples to estimate accuracy n_test_documents = 1000 tick = time.time() X_test_text, y_test = get_minibatch(data_stream, 1000) parsing_time = time.time() - tick tick = time.time() X_test = vectorizer.transform(X_test_text) vectorizing_time = time.time() - tick test_stats['n_test'] += len(y_test) test_stats['n_test_pos'] += sum(y_test) print("Test set is %d documents (%d positive)" % (len(y_test), sum(y_test))) def progress(cls_name, stats): """Report progress information, return a string.""" duration = time.time() - stats['t0'] s = "%20s classifier : \t" % cls_name s += "%(n_train)6d train docs (%(n_train_pos)6d positive) " % stats s += "%(n_test)6d test docs (%(n_test_pos)6d positive) " % test_stats s += "accuracy: %(accuracy).3f " % stats s += "in %.2fs (%5d docs/s)" % (duration, stats['n_train'] / duration) return s cls_stats = {} for cls_name in partial_fit_classifiers: stats = {'n_train': 0, 'n_train_pos': 0, 'accuracy': 0.0, 'accuracy_history': [(0, 0)], 't0': time.time(), 'runtime_history': [(0, 0)], 'total_fit_time': 0.0} cls_stats[cls_name] = stats get_minibatch(data_stream, n_test_documents) # Discard test set # We will feed the classifier with mini-batches of 1000 documents; this means # we have at most 1000 docs in memory at any time. The smaller the document # batch, the bigger the relative overhead of the partial fit methods. minibatch_size = 1000 # Create the data_stream that parses Reuters SGML files and iterates on # documents as a stream. minibatch_iterators = iter_minibatches(data_stream, minibatch_size) total_vect_time = 0.0 # Main loop : iterate on mini-batches of examples for i, (X_train_text, y_train) in enumerate(minibatch_iterators): tick = time.time() X_train = vectorizer.transform(X_train_text) total_vect_time += time.time() - tick for cls_name, cls in partial_fit_classifiers.items(): tick = time.time() # update estimator with examples in the current mini-batch cls.partial_fit(X_train, y_train, classes=all_classes) # accumulate test accuracy stats cls_stats[cls_name]['total_fit_time'] += time.time() - tick cls_stats[cls_name]['n_train'] += X_train.shape[0] cls_stats[cls_name]['n_train_pos'] += sum(y_train) tick = time.time() cls_stats[cls_name]['accuracy'] = cls.score(X_test, y_test) cls_stats[cls_name]['prediction_time'] = time.time() - tick acc_history = (cls_stats[cls_name]['accuracy'], cls_stats[cls_name]['n_train']) cls_stats[cls_name]['accuracy_history'].append(acc_history) run_history = (cls_stats[cls_name]['accuracy'], total_vect_time + cls_stats[cls_name]['total_fit_time']) cls_stats[cls_name]['runtime_history'].append(run_history) if i % 3 == 0: print(progress(cls_name, cls_stats[cls_name])) if i % 3 == 0: print('\n') ############################################################################### # Plot results # ------------ def plot_accuracy(x, y, x_legend): """Plot accuracy as a function of x.""" x = np.array(x) y = np.array(y) plt.title('Classification accuracy as a function of %s' % x_legend) plt.xlabel('%s' % x_legend) plt.ylabel('Accuracy') plt.grid(True) plt.plot(x, y) rcParams['legend.fontsize'] = 10 cls_names = list(sorted(cls_stats.keys())) # Plot accuracy evolution plt.figure() for _, stats in sorted(cls_stats.items()): # Plot accuracy evolution with #examples accuracy, n_examples = zip(*stats['accuracy_history']) plot_accuracy(n_examples, accuracy, "training examples (#)") ax = plt.gca() ax.set_ylim((0.8, 1)) plt.legend(cls_names, loc='best') plt.figure() for _, stats in sorted(cls_stats.items()): # Plot accuracy evolution with runtime accuracy, runtime = zip(*stats['runtime_history']) plot_accuracy(runtime, accuracy, 'runtime (s)') ax = plt.gca() ax.set_ylim((0.8, 1)) plt.legend(cls_names, loc='best') # Plot fitting times plt.figure() fig = plt.gcf() cls_runtime = [] for cls_name, stats in sorted(cls_stats.items()): cls_runtime.append(stats['total_fit_time']) cls_runtime.append(total_vect_time) cls_names.append('Vectorization') bar_colors = ['b', 'g', 'r', 'c', 'm', 'y'] ax = plt.subplot(111) rectangles = plt.bar(range(len(cls_names)), cls_runtime, width=0.5, color=bar_colors) ax.set_xticks(np.linspace(0.25, len(cls_names) - 0.75, len(cls_names))) ax.set_xticklabels(cls_names, fontsize=10) ymax = max(cls_runtime) * 1.2 ax.set_ylim((0, ymax)) ax.set_ylabel('runtime (s)') ax.set_title('Training Times') def autolabel(rectangles): """attach some text vi autolabel on rectangles.""" for rect in rectangles: height = rect.get_height() ax.text(rect.get_x() + rect.get_width() / 2., 1.05 * height, '%.4f' % height, ha='center', va='bottom') autolabel(rectangles) plt.show() # Plot prediction times plt.figure() cls_runtime = [] cls_names = list(sorted(cls_stats.keys())) for cls_name, stats in sorted(cls_stats.items()): cls_runtime.append(stats['prediction_time']) cls_runtime.append(parsing_time) cls_names.append('Read/Parse\n+Feat.Extr.') cls_runtime.append(vectorizing_time) cls_names.append('Hashing\n+Vect.') ax = plt.subplot(111) rectangles = plt.bar(range(len(cls_names)), cls_runtime, width=0.5, color=bar_colors) ax.set_xticks(np.linspace(0.25, len(cls_names) - 0.75, len(cls_names))) ax.set_xticklabels(cls_names, fontsize=8) plt.setp(plt.xticks()[1], rotation=30) ymax = max(cls_runtime) * 1.2 ax.set_ylim((0, ymax)) ax.set_ylabel('runtime (s)') ax.set_title('Prediction Times (%d instances)' % n_test_documents) autolabel(rectangles) plt.show()
bsd-3-clause
Srisai85/scikit-learn
sklearn/datasets/base.py
196
18554
""" Base IO code for all datasets """ # Copyright (c) 2007 David Cournapeau <cournape@gmail.com> # 2010 Fabian Pedregosa <fabian.pedregosa@inria.fr> # 2010 Olivier Grisel <olivier.grisel@ensta.org> # License: BSD 3 clause import os import csv import shutil from os import environ from os.path import dirname from os.path import join from os.path import exists from os.path import expanduser from os.path import isdir from os import listdir from os import makedirs import numpy as np from ..utils import check_random_state class Bunch(dict): """Container object for datasets Dictionary-like object that exposes its keys as attributes. >>> b = Bunch(a=1, b=2) >>> b['b'] 2 >>> b.b 2 >>> b.a = 3 >>> b['a'] 3 >>> b.c = 6 >>> b['c'] 6 """ def __init__(self, **kwargs): dict.__init__(self, kwargs) def __setattr__(self, key, value): self[key] = value def __getattr__(self, key): try: return self[key] except KeyError: raise AttributeError(key) def __getstate__(self): return self.__dict__ def get_data_home(data_home=None): """Return the path of the scikit-learn data dir. This folder is used by some large dataset loaders to avoid downloading the data several times. By default the data dir is set to a folder named 'scikit_learn_data' in the user home folder. Alternatively, it can be set by the 'SCIKIT_LEARN_DATA' environment variable or programmatically by giving an explicit folder path. The '~' symbol is expanded to the user home folder. If the folder does not already exist, it is automatically created. """ if data_home is None: data_home = environ.get('SCIKIT_LEARN_DATA', join('~', 'scikit_learn_data')) data_home = expanduser(data_home) if not exists(data_home): makedirs(data_home) return data_home def clear_data_home(data_home=None): """Delete all the content of the data home cache.""" data_home = get_data_home(data_home) shutil.rmtree(data_home) def load_files(container_path, description=None, categories=None, load_content=True, shuffle=True, encoding=None, decode_error='strict', random_state=0): """Load text files with categories as subfolder names. Individual samples are assumed to be files stored a two levels folder structure such as the following: container_folder/ category_1_folder/ file_1.txt file_2.txt ... file_42.txt category_2_folder/ file_43.txt file_44.txt ... The folder names are used as supervised signal label names. The individual file names are not important. This function does not try to extract features into a numpy array or scipy sparse matrix. In addition, if load_content is false it does not try to load the files in memory. To use text files in a scikit-learn classification or clustering algorithm, you will need to use the `sklearn.feature_extraction.text` module to build a feature extraction transformer that suits your problem. If you set load_content=True, you should also specify the encoding of the text using the 'encoding' parameter. For many modern text files, 'utf-8' will be the correct encoding. If you leave encoding equal to None, then the content will be made of bytes instead of Unicode, and you will not be able to use most functions in `sklearn.feature_extraction.text`. Similar feature extractors should be built for other kind of unstructured data input such as images, audio, video, ... Read more in the :ref:`User Guide <datasets>`. Parameters ---------- container_path : string or unicode Path to the main folder holding one subfolder per category description: string or unicode, optional (default=None) A paragraph describing the characteristic of the dataset: its source, reference, etc. categories : A collection of strings or None, optional (default=None) If None (default), load all the categories. If not None, list of category names to load (other categories ignored). load_content : boolean, optional (default=True) Whether to load or not the content of the different files. If true a 'data' attribute containing the text information is present in the data structure returned. If not, a filenames attribute gives the path to the files. encoding : string or None (default is None) If None, do not try to decode the content of the files (e.g. for images or other non-text content). If not None, encoding to use to decode text files to Unicode if load_content is True. decode_error: {'strict', 'ignore', 'replace'}, optional Instruction on what to do if a byte sequence is given to analyze that contains characters not of the given `encoding`. Passed as keyword argument 'errors' to bytes.decode. shuffle : bool, optional (default=True) Whether or not to shuffle the data: might be important for models that make the assumption that the samples are independent and identically distributed (i.i.d.), such as stochastic gradient descent. random_state : int, RandomState instance or None, optional (default=0) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: either data, the raw text data to learn, or 'filenames', the files holding it, 'target', the classification labels (integer index), 'target_names', the meaning of the labels, and 'DESCR', the full description of the dataset. """ target = [] target_names = [] filenames = [] folders = [f for f in sorted(listdir(container_path)) if isdir(join(container_path, f))] if categories is not None: folders = [f for f in folders if f in categories] for label, folder in enumerate(folders): target_names.append(folder) folder_path = join(container_path, folder) documents = [join(folder_path, d) for d in sorted(listdir(folder_path))] target.extend(len(documents) * [label]) filenames.extend(documents) # convert to array for fancy indexing filenames = np.array(filenames) target = np.array(target) if shuffle: random_state = check_random_state(random_state) indices = np.arange(filenames.shape[0]) random_state.shuffle(indices) filenames = filenames[indices] target = target[indices] if load_content: data = [] for filename in filenames: with open(filename, 'rb') as f: data.append(f.read()) if encoding is not None: data = [d.decode(encoding, decode_error) for d in data] return Bunch(data=data, filenames=filenames, target_names=target_names, target=target, DESCR=description) return Bunch(filenames=filenames, target_names=target_names, target=target, DESCR=description) def load_iris(): """Load and return the iris dataset (classification). The iris dataset is a classic and very easy multi-class classification dataset. ================= ============== Classes 3 Samples per class 50 Samples total 150 Dimensionality 4 Features real, positive ================= ============== Read more in the :ref:`User Guide <datasets>`. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn, 'target', the classification labels, 'target_names', the meaning of the labels, 'feature_names', the meaning of the features, and 'DESCR', the full description of the dataset. Examples -------- Let's say you are interested in the samples 10, 25, and 50, and want to know their class name. >>> from sklearn.datasets import load_iris >>> data = load_iris() >>> data.target[[10, 25, 50]] array([0, 0, 1]) >>> list(data.target_names) ['setosa', 'versicolor', 'virginica'] """ module_path = dirname(__file__) with open(join(module_path, 'data', 'iris.csv')) as csv_file: data_file = csv.reader(csv_file) temp = next(data_file) n_samples = int(temp[0]) n_features = int(temp[1]) target_names = np.array(temp[2:]) data = np.empty((n_samples, n_features)) target = np.empty((n_samples,), dtype=np.int) for i, ir in enumerate(data_file): data[i] = np.asarray(ir[:-1], dtype=np.float) target[i] = np.asarray(ir[-1], dtype=np.int) with open(join(module_path, 'descr', 'iris.rst')) as rst_file: fdescr = rst_file.read() return Bunch(data=data, target=target, target_names=target_names, DESCR=fdescr, feature_names=['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']) def load_digits(n_class=10): """Load and return the digits dataset (classification). Each datapoint is a 8x8 image of a digit. ================= ============== Classes 10 Samples per class ~180 Samples total 1797 Dimensionality 64 Features integers 0-16 ================= ============== Read more in the :ref:`User Guide <datasets>`. Parameters ---------- n_class : integer, between 0 and 10, optional (default=10) The number of classes to return. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn, 'images', the images corresponding to each sample, 'target', the classification labels for each sample, 'target_names', the meaning of the labels, and 'DESCR', the full description of the dataset. Examples -------- To load the data and visualize the images:: >>> from sklearn.datasets import load_digits >>> digits = load_digits() >>> print(digits.data.shape) (1797, 64) >>> import pylab as pl #doctest: +SKIP >>> pl.gray() #doctest: +SKIP >>> pl.matshow(digits.images[0]) #doctest: +SKIP >>> pl.show() #doctest: +SKIP """ module_path = dirname(__file__) data = np.loadtxt(join(module_path, 'data', 'digits.csv.gz'), delimiter=',') with open(join(module_path, 'descr', 'digits.rst')) as f: descr = f.read() target = data[:, -1] flat_data = data[:, :-1] images = flat_data.view() images.shape = (-1, 8, 8) if n_class < 10: idx = target < n_class flat_data, target = flat_data[idx], target[idx] images = images[idx] return Bunch(data=flat_data, target=target.astype(np.int), target_names=np.arange(10), images=images, DESCR=descr) def load_diabetes(): """Load and return the diabetes dataset (regression). ============== ================== Samples total 442 Dimensionality 10 Features real, -.2 < x < .2 Targets integer 25 - 346 ============== ================== Read more in the :ref:`User Guide <datasets>`. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn and 'target', the regression target for each sample. """ base_dir = join(dirname(__file__), 'data') data = np.loadtxt(join(base_dir, 'diabetes_data.csv.gz')) target = np.loadtxt(join(base_dir, 'diabetes_target.csv.gz')) return Bunch(data=data, target=target) def load_linnerud(): """Load and return the linnerud dataset (multivariate regression). Samples total: 20 Dimensionality: 3 for both data and targets Features: integer Targets: integer Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data' and 'targets', the two multivariate datasets, with 'data' corresponding to the exercise and 'targets' corresponding to the physiological measurements, as well as 'feature_names' and 'target_names'. """ base_dir = join(dirname(__file__), 'data/') # Read data data_exercise = np.loadtxt(base_dir + 'linnerud_exercise.csv', skiprows=1) data_physiological = np.loadtxt(base_dir + 'linnerud_physiological.csv', skiprows=1) # Read header with open(base_dir + 'linnerud_exercise.csv') as f: header_exercise = f.readline().split() with open(base_dir + 'linnerud_physiological.csv') as f: header_physiological = f.readline().split() with open(dirname(__file__) + '/descr/linnerud.rst') as f: descr = f.read() return Bunch(data=data_exercise, feature_names=header_exercise, target=data_physiological, target_names=header_physiological, DESCR=descr) def load_boston(): """Load and return the boston house-prices dataset (regression). ============== ============== Samples total 506 Dimensionality 13 Features real, positive Targets real 5. - 50. ============== ============== Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn, 'target', the regression targets, and 'DESCR', the full description of the dataset. Examples -------- >>> from sklearn.datasets import load_boston >>> boston = load_boston() >>> print(boston.data.shape) (506, 13) """ module_path = dirname(__file__) fdescr_name = join(module_path, 'descr', 'boston_house_prices.rst') with open(fdescr_name) as f: descr_text = f.read() data_file_name = join(module_path, 'data', 'boston_house_prices.csv') with open(data_file_name) as f: data_file = csv.reader(f) temp = next(data_file) n_samples = int(temp[0]) n_features = int(temp[1]) data = np.empty((n_samples, n_features)) target = np.empty((n_samples,)) temp = next(data_file) # names of features feature_names = np.array(temp) for i, d in enumerate(data_file): data[i] = np.asarray(d[:-1], dtype=np.float) target[i] = np.asarray(d[-1], dtype=np.float) return Bunch(data=data, target=target, # last column is target value feature_names=feature_names[:-1], DESCR=descr_text) def load_sample_images(): """Load sample images for image manipulation. Loads both, ``china`` and ``flower``. Returns ------- data : Bunch Dictionary-like object with the following attributes : 'images', the two sample images, 'filenames', the file names for the images, and 'DESCR' the full description of the dataset. Examples -------- To load the data and visualize the images: >>> from sklearn.datasets import load_sample_images >>> dataset = load_sample_images() #doctest: +SKIP >>> len(dataset.images) #doctest: +SKIP 2 >>> first_img_data = dataset.images[0] #doctest: +SKIP >>> first_img_data.shape #doctest: +SKIP (427, 640, 3) >>> first_img_data.dtype #doctest: +SKIP dtype('uint8') """ # Try to import imread from scipy. We do this lazily here to prevent # this module from depending on PIL. try: try: from scipy.misc import imread except ImportError: from scipy.misc.pilutil import imread except ImportError: raise ImportError("The Python Imaging Library (PIL) " "is required to load data from jpeg files") module_path = join(dirname(__file__), "images") with open(join(module_path, 'README.txt')) as f: descr = f.read() filenames = [join(module_path, filename) for filename in os.listdir(module_path) if filename.endswith(".jpg")] # Load image data for each image in the source folder. images = [imread(filename) for filename in filenames] return Bunch(images=images, filenames=filenames, DESCR=descr) def load_sample_image(image_name): """Load the numpy array of a single sample image Parameters ----------- image_name: {`china.jpg`, `flower.jpg`} The name of the sample image loaded Returns ------- img: 3D array The image as a numpy array: height x width x color Examples --------- >>> from sklearn.datasets import load_sample_image >>> china = load_sample_image('china.jpg') # doctest: +SKIP >>> china.dtype # doctest: +SKIP dtype('uint8') >>> china.shape # doctest: +SKIP (427, 640, 3) >>> flower = load_sample_image('flower.jpg') # doctest: +SKIP >>> flower.dtype # doctest: +SKIP dtype('uint8') >>> flower.shape # doctest: +SKIP (427, 640, 3) """ images = load_sample_images() index = None for i, filename in enumerate(images.filenames): if filename.endswith(image_name): index = i break if index is None: raise AttributeError("Cannot find sample image: %s" % image_name) return images.images[index]
bsd-3-clause