repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
bavardage/statsmodels
statsmodels/examples/ex_univar_kde.py
8
5089
""" This example tests the nonparametric estimator for several popular univariate distributions with the different bandwidth selction methods - CV-ML; CV-LS; Scott's rule of thumb. Produces six different plots for each distribution 1) Beta 2) f 3) Pareto 4) Laplace 5) Weibull 6) Poisson """ import numpy as np import scipy.stats as stats import matplotlib.pyplot as plt import statsmodels.api as sm KDEMultivariate = sm.nonparametric.KDEMultivariate np.random.seed(123456) # Beta distribution # Parameters a = 2 b = 5 nobs = 250 support = np.random.beta(a, b, size=nobs) rv = stats.beta(a, b) ix = np.argsort(support) dens_normal = KDEMultivariate(data=[support], var_type='c', bw='normal_reference') dens_cvls = KDEMultivariate(data=[support], var_type='c', bw='cv_ls') dens_cvml = KDEMultivariate(data=[support], var_type='c', bw='cv_ml') plt.figure(1) plt.plot(support[ix], rv.pdf(support[ix]), label='Actual') plt.plot(support[ix], dens_normal.pdf()[ix], label='Scott') plt.plot(support[ix], dens_cvls.pdf()[ix], label='CV_LS') plt.plot(support[ix], dens_cvml.pdf()[ix], label='CV_ML') plt.title("Nonparametric Estimation of the Density of Beta Distributed " \ "Random Variable") plt.legend(('Actual', 'Scott', 'CV_LS', 'CV_ML')) # f distribution df = 100 dn = 100 nobs = 250 support = np.random.f(dn, df, size=nobs) rv = stats.f(df, dn) ix = np.argsort(support) dens_normal = KDEMultivariate(data=[support], var_type='c', bw='normal_reference') dens_cvls = KDEMultivariate(data=[support], var_type='c', bw='cv_ls') dens_cvml = KDEMultivariate(data=[support], var_type='c', bw='cv_ml') plt.figure(2) plt.plot(support[ix], rv.pdf(support[ix]), label='Actual') plt.plot(support[ix], dens_normal.pdf()[ix], label='Scott') plt.plot(support[ix], dens_cvls.pdf()[ix], label='CV_LS') plt.plot(support[ix], dens_cvml.pdf()[ix], label='CV_ML') plt.title("Nonparametric Estimation of the Density of f Distributed " \ "Random Variable") plt.legend(('Actual', 'Scott', 'CV_LS', 'CV_ML')) # Pareto distribution a = 2 nobs = 150 support = np.random.pareto(a, size=nobs) rv = stats.pareto(a) ix = np.argsort(support) dens_normal = KDEMultivariate(data=[support], var_type='c', bw='normal_reference') dens_cvls = KDEMultivariate(data=[support], var_type='c', bw='cv_ls') dens_cvml = KDEMultivariate(data=[support], var_type='c', bw='cv_ml') plt.figure(3) plt.plot(support[ix], rv.pdf(support[ix]), label='Actual') plt.plot(support[ix], dens_normal.pdf()[ix], label='Scott') plt.plot(support[ix], dens_cvls.pdf()[ix], label='CV_LS') plt.plot(support[ix], dens_cvml.pdf()[ix], label='CV_ML') plt.title("Nonparametric Estimation of the Density of Pareto " \ "Distributed Random Variable") plt.legend(('Actual', 'Scott', 'CV_LS', 'CV_ML')) # Laplace Distribution mu = 0 s = 1 nobs = 250 support = np.random.laplace(mu, s, size=nobs) rv = stats.laplace(mu, s) ix = np.argsort(support) dens_normal = KDEMultivariate(data=[support], var_type='c', bw='normal_reference') dens_cvls = KDEMultivariate(data=[support], var_type='c', bw='cv_ls') dens_cvml = KDEMultivariate(data=[support], var_type='c', bw='cv_ml') plt.figure(4) plt.plot(support[ix], rv.pdf(support[ix]), label='Actual') plt.plot(support[ix], dens_normal.pdf()[ix], label='Scott') plt.plot(support[ix], dens_cvls.pdf()[ix], label='CV_LS') plt.plot(support[ix], dens_cvml.pdf()[ix], label='CV_ML') plt.title("Nonparametric Estimation of the Density of Laplace " \ "Distributed Random Variable") plt.legend(('Actual', 'Scott', 'CV_LS', 'CV_ML')) # Weibull Distribution a = 1 nobs = 250 support = np.random.weibull(a, size=nobs) rv = stats.weibull_min(a) ix = np.argsort(support) dens_normal = KDEMultivariate(data=[support], var_type='c', bw='normal_reference') dens_cvls = KDEMultivariate(data=[support], var_type='c', bw='cv_ls') dens_cvml = KDEMultivariate(data=[support], var_type='c', bw='cv_ml') plt.figure(5) plt.plot(support[ix], rv.pdf(support[ix]), label='Actual') plt.plot(support[ix], dens_normal.pdf()[ix], label='Scott') plt.plot(support[ix], dens_cvls.pdf()[ix], label='CV_LS') plt.plot(support[ix], dens_cvml.pdf()[ix], label='CV_ML') plt.title("Nonparametric Estimation of the Density of Weibull " \ "Distributed Random Variable") plt.legend(('Actual', 'Scott', 'CV_LS', 'CV_ML')) # Poisson Distribution a = 2 nobs = 250 support = np.random.poisson(a, size=nobs) rv = stats.poisson(a) ix = np.argsort(support) dens_normal = KDEMultivariate(data=[support], var_type='o', bw='normal_reference') dens_cvls = KDEMultivariate(data=[support], var_type='o', bw='cv_ls') dens_cvml = KDEMultivariate(data=[support], var_type='o', bw='cv_ml') plt.figure(6) plt.plot(support[ix], rv.pmf(support[ix]), label='Actual') plt.plot(support[ix], dens_normal.pdf()[ix], label='Scott') plt.plot(support[ix], dens_cvls.pdf()[ix], label='CV_LS') plt.plot(support[ix], dens_cvml.pdf()[ix], label='CV_ML') plt.title("Nonparametric Estimation of the Density of Poisson " \ "Distributed Random Variable") plt.legend(('Actual', 'Scott', 'CV_LS', 'CV_ML')) plt.show()
bsd-3-clause
AndrewRook/NFLWin
setup.py
1
2348
import os import re import tarfile import warnings from setuptools import setup, find_packages from setuptools.command.install import install as _install ################################################################### #Boilerplate I modified from the internet VERSION_FILE = "nflwin/_version.py" version_string = open(VERSION_FILE, "r").read() version_re = r"^__version__ = [u]{0,1}['\"]([^'\"]*)['\"]" version_match = re.search(version_re, version_string, re.M) if version_match: VERSION = version_match.group(1) else: raise RuntimeError("Unable to find version string in {0}".format(VERSION_FILE)) NAME = "nflwin" PACKAGES = find_packages(where=".") META_PATH = os.path.join(NAME, "__init__.py") KEYWORDS = ['NFL','WP','Win Probability'] CLASSIFIERS = [ "Development Status :: 4 - Beta", "Natural Language :: English", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Programming Language :: Python", "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.7", ] INSTALL_REQUIRES = ['numpy', 'scipy', 'pandas', 'scikit-learn', 'joblib',] EXTRAS_REQUIRE = { "plotting": ["matplotlib"], "nfldb": ["nfldb", "sqlalchemy"], "dev": ["matplotlib", "nfldb", "sqlalchemy", "pytest", "pytest-cov", "sphinx", "numpydoc"] } PACKAGE_DATA = {"nflwin": ["models/default_model.nflwin*"]} HERE = os.path.abspath(os.path.dirname(__file__)) README = None with open(os.path.join(HERE, 'README.rst'),'r') as f: README = f.read() ################################################################### if __name__ == "__main__": setup( name=NAME, description='A Python implementation of NFL Win Probability (WP)', license='MIT', url='https://github.com/AndrewRook/NFLWin', version=VERSION, author='Andrew Schechtman-Rook', author_email='footballastronomer@gmail.com', maintainer='Andrew Schechtman-Rook', maintainer_email='footballastronomer@gmail.com', keywords=KEYWORDS, long_description=README, packages=PACKAGES, package_data=PACKAGE_DATA, classifiers=CLASSIFIERS, install_requires=INSTALL_REQUIRES, extras_require=EXTRAS_REQUIRE )
mit
fschill/mavue
pymavlink/tools/mavgpslag.py
43
3446
#!/usr/bin/env python ''' calculate GPS lag from DF log ''' import sys, time, os from argparse import ArgumentParser parser = ArgumentParser(description=__doc__) parser.add_argument("--plot", action='store_true', default=False, help="plot errors") parser.add_argument("--minspeed", type=float, default=6, help="minimum speed") parser.add_argument("logs", metavar="LOG", nargs="+") args = parser.parse_args() from pymavlink import mavutil from pymavlink.mavextra import * from pymavlink.rotmat import Vector3, Matrix3 ''' Support having a $HOME/.pymavlink/mavextra.py for extra graphing functions ''' home = os.getenv('HOME') if home is not None: extra = os.path.join(home, '.pymavlink', 'mavextra.py') if os.path.exists(extra): import imp mavuser = imp.load_source('pymavlink.mavuser', extra) from pymavlink.mavuser import * def velocity_error(timestamps, vel, gaccel, accel_indexes, imu_dt, shift=0): '''return summed velocity error''' sum = 0 count = 0 for i in range(0, len(vel)-1): dv = vel[i+1] - vel[i] da = Vector3() for idx in range(1+accel_indexes[i]-shift, 1+accel_indexes[i+1]-shift): da += gaccel[idx] dt1 = timestamps[i+1] - timestamps[i] dt2 = (accel_indexes[i+1] - accel_indexes[i]) * imu_dt da *= imu_dt da *= dt1/dt2 #print(accel_indexes[i+1] - accel_indexes[i]) ex = abs(dv.x - da.x) ey = abs(dv.y - da.y) sum += 0.5*(ex+ey) count += 1 if count == 0: return None return sum/count def gps_lag(logfile): '''work out gps velocity lag times for a log file''' print("Processing log %s" % filename) mlog = mavutil.mavlink_connection(filename) timestamps = [] vel = [] gaccel = [] accel_indexes = [] ATT = None IMU = None dtsum = 0 dtcount = 0 while True: m = mlog.recv_match(type=['GPS','IMU','ATT']) if m is None: break t = m.get_type() if t == 'GPS' and m.Status==3 and m.Spd>args.minspeed: v = Vector3(m.Spd*cos(radians(m.GCrs)), m.Spd*sin(radians(m.GCrs)), m.VZ) vel.append(v) timestamps.append(m._timestamp) accel_indexes.append(max(len(gaccel)-1,0)) elif t == 'ATT': ATT = m elif t == 'IMU': if ATT is not None: gaccel.append(earth_accel_df(m, ATT)) if IMU is not None: dt = m._timestamp - IMU._timestamp dtsum += dt dtcount += 1 IMU = m imu_dt = dtsum / dtcount print("Loaded %u samples imu_dt=%.3f" % (len(vel), imu_dt)) besti = -1 besterr = 0 delays = [] errors = [] for i in range(0,100): err = velocity_error(timestamps, vel, gaccel, accel_indexes, imu_dt, shift=i) if err is None: break errors.append(err) delays.append(i*imu_dt) if besti == -1 or err < besterr: besti = i besterr = err print("Best %u (%.3fs) %f" % (besti, besti*imu_dt, besterr)) if args.plot: import matplotlib.pyplot as plt plt.plot(delays, errors, 'bo-') x1,x2,y1,y2 = plt.axis() plt.axis((x1,x2,0,y2)) plt.ylabel('Error') plt.xlabel('Delay(s)') plt.show() for filename in args.logs: gps_lag(filename)
bsd-3-clause
hugobowne/scikit-learn
sklearn/manifold/setup.py
99
1243
import os from os.path import join import numpy from numpy.distutils.misc_util import Configuration from sklearn._build_utils import get_blas_info def configuration(parent_package="", top_path=None): config = Configuration("manifold", parent_package, top_path) libraries = [] if os.name == 'posix': libraries.append('m') config.add_extension("_utils", sources=["_utils.c"], include_dirs=[numpy.get_include()], libraries=libraries, extra_compile_args=["-O3"]) cblas_libs, blas_info = get_blas_info() eca = blas_info.pop('extra_compile_args', []) eca.append("-O4") config.add_extension("_barnes_hut_tsne", libraries=cblas_libs, sources=["_barnes_hut_tsne.c"], include_dirs=[join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])], extra_compile_args=eca, **blas_info) return config if __name__ == "__main__": from numpy.distutils.core import setup setup(**configuration().todict())
bsd-3-clause
imaculate/scikit-learn
examples/decomposition/plot_pca_iris.py
65
1485
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= PCA example with Iris Data-set ========================================================= Principal Component Analysis applied to the Iris dataset. See `here <https://en.wikipedia.org/wiki/Iris_flower_data_set>`_ for more information on this dataset. """ print(__doc__) # Code source: Gaël Varoquaux # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn import decomposition from sklearn import datasets np.random.seed(5) centers = [[1, 1], [-1, -1], [1, -1]] iris = datasets.load_iris() X = iris.data y = iris.target fig = plt.figure(1, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) plt.cla() pca = decomposition.PCA(n_components=3) pca.fit(X) X = pca.transform(X) for name, label in [('Setosa', 0), ('Versicolour', 1), ('Virginica', 2)]: ax.text3D(X[y == label, 0].mean(), X[y == label, 1].mean() + 1.5, X[y == label, 2].mean(), name, horizontalalignment='center', bbox=dict(alpha=.5, edgecolor='w', facecolor='w')) # Reorder the labels to have colors matching the cluster results y = np.choose(y, [1, 2, 0]).astype(np.float) ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=y, cmap=plt.cm.spectral) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) plt.show()
bsd-3-clause
mengxn/tensorflow
tensorflow/contrib/learn/python/learn/tests/dataframe/feeding_queue_runner_test.py
62
5053
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests `FeedingQueueRunner` using arrays and `DataFrames`.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.learn.python.learn.dataframe.queues import feeding_functions as ff from tensorflow.python.client import session from tensorflow.python.framework import ops from tensorflow.python.platform import test from tensorflow.python.training import coordinator from tensorflow.python.training import queue_runner_impl # pylint: disable=g-import-not-at-top try: import pandas as pd HAS_PANDAS = True except ImportError: HAS_PANDAS = False def get_rows(array, row_indices): rows = [array[i] for i in row_indices] return np.vstack(rows) class FeedingQueueRunnerTestCase(test.TestCase): """Tests for `FeedingQueueRunner`.""" def testArrayFeeding(self): with ops.Graph().as_default(): array = np.arange(32).reshape([16, 2]) q = ff.enqueue_data(array, capacity=100) batch_size = 3 dq_op = q.dequeue_many(batch_size) with session.Session() as sess: coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(sess=sess, coord=coord) for i in range(100): indices = [ j % array.shape[0] for j in range(batch_size * i, batch_size * (i + 1)) ] expected_dq = get_rows(array, indices) dq = sess.run(dq_op) np.testing.assert_array_equal(indices, dq[0]) np.testing.assert_array_equal(expected_dq, dq[1]) coord.request_stop() coord.join(threads) def testArrayFeedingMultiThread(self): with ops.Graph().as_default(): array = np.arange(256).reshape([128, 2]) q = ff.enqueue_data(array, capacity=128, num_threads=8, shuffle=True) batch_size = 3 dq_op = q.dequeue_many(batch_size) with session.Session() as sess: coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(sess=sess, coord=coord) for _ in range(100): dq = sess.run(dq_op) indices = dq[0] expected_dq = get_rows(array, indices) np.testing.assert_array_equal(expected_dq, dq[1]) coord.request_stop() coord.join(threads) def testPandasFeeding(self): if not HAS_PANDAS: return with ops.Graph().as_default(): array1 = np.arange(32) array2 = np.arange(32, 64) df = pd.DataFrame({"a": array1, "b": array2}, index=np.arange(64, 96)) q = ff.enqueue_data(df, capacity=100) batch_size = 5 dq_op = q.dequeue_many(5) with session.Session() as sess: coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(sess=sess, coord=coord) for i in range(100): indices = [ j % array1.shape[0] for j in range(batch_size * i, batch_size * (i + 1)) ] expected_df_indices = df.index[indices] expected_rows = df.iloc[indices] dq = sess.run(dq_op) np.testing.assert_array_equal(expected_df_indices, dq[0]) for col_num, col in enumerate(df.columns): np.testing.assert_array_equal(expected_rows[col].values, dq[col_num + 1]) coord.request_stop() coord.join(threads) def testPandasFeedingMultiThread(self): if not HAS_PANDAS: return with ops.Graph().as_default(): array1 = np.arange(128, 256) array2 = 2 * array1 df = pd.DataFrame({"a": array1, "b": array2}, index=np.arange(128)) q = ff.enqueue_data(df, capacity=128, num_threads=8, shuffle=True) batch_size = 5 dq_op = q.dequeue_many(batch_size) with session.Session() as sess: coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(sess=sess, coord=coord) for _ in range(100): dq = sess.run(dq_op) indices = dq[0] expected_rows = df.iloc[indices] for col_num, col in enumerate(df.columns): np.testing.assert_array_equal(expected_rows[col].values, dq[col_num + 1]) coord.request_stop() coord.join(threads) if __name__ == "__main__": test.main()
apache-2.0
ishank08/scikit-learn
benchmarks/bench_rcv1_logreg_convergence.py
58
7229
# Authors: Tom Dupre la Tour <tom.dupre-la-tour@m4x.org> # Olivier Grisel <olivier.grisel@ensta.org> # # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np import gc import time from sklearn.externals.joblib import Memory from sklearn.linear_model import (LogisticRegression, SGDClassifier) from sklearn.datasets import fetch_rcv1 from sklearn.linear_model.sag import get_auto_step_size try: import lightning.classification as lightning_clf except ImportError: lightning_clf = None m = Memory(cachedir='.', verbose=0) # compute logistic loss def get_loss(w, intercept, myX, myy, C): n_samples = myX.shape[0] w = w.ravel() p = np.mean(np.log(1. + np.exp(-myy * (myX.dot(w) + intercept)))) print("%f + %f" % (p, w.dot(w) / 2. / C / n_samples)) p += w.dot(w) / 2. / C / n_samples return p # We use joblib to cache individual fits. Note that we do not pass the dataset # as argument as the hashing would be too slow, so we assume that the dataset # never changes. @m.cache() def bench_one(name, clf_type, clf_params, n_iter): clf = clf_type(**clf_params) try: clf.set_params(max_iter=n_iter, random_state=42) except: clf.set_params(n_iter=n_iter, random_state=42) st = time.time() clf.fit(X, y) end = time.time() try: C = 1.0 / clf.alpha / n_samples except: C = clf.C try: intercept = clf.intercept_ except: intercept = 0. train_loss = get_loss(clf.coef_, intercept, X, y, C) train_score = clf.score(X, y) test_score = clf.score(X_test, y_test) duration = end - st return train_loss, train_score, test_score, duration def bench(clfs): for (name, clf, iter_range, train_losses, train_scores, test_scores, durations) in clfs: print("training %s" % name) clf_type = type(clf) clf_params = clf.get_params() for n_iter in iter_range: gc.collect() train_loss, train_score, test_score, duration = bench_one( name, clf_type, clf_params, n_iter) train_losses.append(train_loss) train_scores.append(train_score) test_scores.append(test_score) durations.append(duration) print("classifier: %s" % name) print("train_loss: %.8f" % train_loss) print("train_score: %.8f" % train_score) print("test_score: %.8f" % test_score) print("time for fit: %.8f seconds" % duration) print("") print("") return clfs def plot_train_losses(clfs): plt.figure() for (name, _, _, train_losses, _, _, durations) in clfs: plt.plot(durations, train_losses, '-o', label=name) plt.legend(loc=0) plt.xlabel("seconds") plt.ylabel("train loss") def plot_train_scores(clfs): plt.figure() for (name, _, _, _, train_scores, _, durations) in clfs: plt.plot(durations, train_scores, '-o', label=name) plt.legend(loc=0) plt.xlabel("seconds") plt.ylabel("train score") plt.ylim((0.92, 0.96)) def plot_test_scores(clfs): plt.figure() for (name, _, _, _, _, test_scores, durations) in clfs: plt.plot(durations, test_scores, '-o', label=name) plt.legend(loc=0) plt.xlabel("seconds") plt.ylabel("test score") plt.ylim((0.92, 0.96)) def plot_dloss(clfs): plt.figure() pobj_final = [] for (name, _, _, train_losses, _, _, durations) in clfs: pobj_final.append(train_losses[-1]) indices = np.argsort(pobj_final) pobj_best = pobj_final[indices[0]] for (name, _, _, train_losses, _, _, durations) in clfs: log_pobj = np.log(abs(np.array(train_losses) - pobj_best)) / np.log(10) plt.plot(durations, log_pobj, '-o', label=name) plt.legend(loc=0) plt.xlabel("seconds") plt.ylabel("log(best - train_loss)") def get_max_squared_sum(X): """Get the maximum row-wise sum of squares""" return np.sum(X ** 2, axis=1).max() rcv1 = fetch_rcv1() X = rcv1.data n_samples, n_features = X.shape # consider the binary classification problem 'CCAT' vs the rest ccat_idx = rcv1.target_names.tolist().index('CCAT') y = rcv1.target.tocsc()[:, ccat_idx].toarray().ravel().astype(np.float64) y[y == 0] = -1 # parameters C = 1. fit_intercept = True tol = 1.0e-14 # max_iter range sgd_iter_range = list(range(1, 121, 10)) newton_iter_range = list(range(1, 25, 3)) lbfgs_iter_range = list(range(1, 242, 12)) liblinear_iter_range = list(range(1, 37, 3)) liblinear_dual_iter_range = list(range(1, 85, 6)) sag_iter_range = list(range(1, 37, 3)) clfs = [ ("LR-liblinear", LogisticRegression(C=C, tol=tol, solver="liblinear", fit_intercept=fit_intercept, intercept_scaling=1), liblinear_iter_range, [], [], [], []), ("LR-liblinear-dual", LogisticRegression(C=C, tol=tol, dual=True, solver="liblinear", fit_intercept=fit_intercept, intercept_scaling=1), liblinear_dual_iter_range, [], [], [], []), ("LR-SAG", LogisticRegression(C=C, tol=tol, solver="sag", fit_intercept=fit_intercept), sag_iter_range, [], [], [], []), ("LR-newton-cg", LogisticRegression(C=C, tol=tol, solver="newton-cg", fit_intercept=fit_intercept), newton_iter_range, [], [], [], []), ("LR-lbfgs", LogisticRegression(C=C, tol=tol, solver="lbfgs", fit_intercept=fit_intercept), lbfgs_iter_range, [], [], [], []), ("SGD", SGDClassifier(alpha=1.0 / C / n_samples, penalty='l2', loss='log', fit_intercept=fit_intercept, verbose=0), sgd_iter_range, [], [], [], [])] if lightning_clf is not None and not fit_intercept: alpha = 1. / C / n_samples # compute the same step_size than in LR-sag max_squared_sum = get_max_squared_sum(X) step_size = get_auto_step_size(max_squared_sum, alpha, "log", fit_intercept) clfs.append( ("Lightning-SVRG", lightning_clf.SVRGClassifier(alpha=alpha, eta=step_size, tol=tol, loss="log"), sag_iter_range, [], [], [], [])) clfs.append( ("Lightning-SAG", lightning_clf.SAGClassifier(alpha=alpha, eta=step_size, tol=tol, loss="log"), sag_iter_range, [], [], [], [])) # We keep only 200 features, to have a dense dataset, # and compare to lightning SAG, which seems incorrect in the sparse case. X_csc = X.tocsc() nnz_in_each_features = X_csc.indptr[1:] - X_csc.indptr[:-1] X = X_csc[:, np.argsort(nnz_in_each_features)[-200:]] X = X.toarray() print("dataset: %.3f MB" % (X.nbytes / 1e6)) # Split training and testing. Switch train and test subset compared to # LYRL2004 split, to have a larger training dataset. n = 23149 X_test = X[:n, :] y_test = y[:n] X = X[n:, :] y = y[n:] clfs = bench(clfs) plot_train_scores(clfs) plot_test_scores(clfs) plot_train_losses(clfs) plot_dloss(clfs) plt.show()
bsd-3-clause
anntzer/scikit-learn
asv_benchmarks/benchmarks/utils.py
12
1380
import numpy as np from sklearn.metrics import balanced_accuracy_score, r2_score def neg_mean_inertia(X, labels, centers): return - (np.asarray(X - centers[labels])**2).sum(axis=1).mean() def make_gen_classif_scorers(caller): caller.train_scorer = balanced_accuracy_score caller.test_scorer = balanced_accuracy_score def make_gen_reg_scorers(caller): caller.test_scorer = r2_score caller.train_scorer = r2_score def neg_mean_data_error(X, U, V): return - np.sqrt(((X - U.dot(V))**2).mean()) def make_dict_learning_scorers(caller): caller.train_scorer = lambda _, __: ( neg_mean_data_error(caller.X, caller.estimator.transform(caller.X), caller.estimator.components_)) caller.test_scorer = lambda _, __: ( neg_mean_data_error(caller.X_val, caller.estimator.transform(caller.X_val), caller.estimator.components_)) def explained_variance_ratio(Xt, X): return np.var(Xt, axis=0).sum() / np.var(X, axis=0).sum() def make_pca_scorers(caller): caller.train_scorer = ( lambda _, __: caller.estimator.explained_variance_ratio_.sum()) caller.test_scorer = lambda _, __: ( explained_variance_ratio(caller.estimator.transform(caller.X_val), caller.X_val))
bsd-3-clause
PrashntS/scikit-learn
examples/ensemble/plot_gradient_boosting_regression.py
227
2520
""" ============================ Gradient Boosting regression ============================ Demonstrate Gradient Boosting on the Boston housing dataset. This example fits a Gradient Boosting model with least squares loss and 500 regression trees of depth 4. """ print(__doc__) # Author: Peter Prettenhofer <peter.prettenhofer@gmail.com> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import ensemble from sklearn import datasets from sklearn.utils import shuffle from sklearn.metrics import mean_squared_error ############################################################################### # Load data boston = datasets.load_boston() X, y = shuffle(boston.data, boston.target, random_state=13) X = X.astype(np.float32) offset = int(X.shape[0] * 0.9) X_train, y_train = X[:offset], y[:offset] X_test, y_test = X[offset:], y[offset:] ############################################################################### # Fit regression model params = {'n_estimators': 500, 'max_depth': 4, 'min_samples_split': 1, 'learning_rate': 0.01, 'loss': 'ls'} clf = ensemble.GradientBoostingRegressor(**params) clf.fit(X_train, y_train) mse = mean_squared_error(y_test, clf.predict(X_test)) print("MSE: %.4f" % mse) ############################################################################### # Plot training deviance # compute test set deviance test_score = np.zeros((params['n_estimators'],), dtype=np.float64) for i, y_pred in enumerate(clf.staged_decision_function(X_test)): test_score[i] = clf.loss_(y_test, y_pred) plt.figure(figsize=(12, 6)) plt.subplot(1, 2, 1) plt.title('Deviance') plt.plot(np.arange(params['n_estimators']) + 1, clf.train_score_, 'b-', label='Training Set Deviance') plt.plot(np.arange(params['n_estimators']) + 1, test_score, 'r-', label='Test Set Deviance') plt.legend(loc='upper right') plt.xlabel('Boosting Iterations') plt.ylabel('Deviance') ############################################################################### # Plot feature importance feature_importance = clf.feature_importances_ # make importances relative to max importance feature_importance = 100.0 * (feature_importance / feature_importance.max()) sorted_idx = np.argsort(feature_importance) pos = np.arange(sorted_idx.shape[0]) + .5 plt.subplot(1, 2, 2) plt.barh(pos, feature_importance[sorted_idx], align='center') plt.yticks(pos, boston.feature_names[sorted_idx]) plt.xlabel('Relative Importance') plt.title('Variable Importance') plt.show()
bsd-3-clause
videlec/sage-flatsurf
flatsurf/graphical/surface.py
1
42816
r""" EXAMPLES:: sage: import flatsurf sage: flatsurf.translation_surfaces.veech_2n_gon(4).plot() Graphics object consisting of 18 graphics primitives """ #***************************************************************************** # Copyright (C) 2013-2019 Vincent Delecroix <20100.delecroix@gmail.com> # 2013-2019 W. Patrick Hooper <wphooper@gmail.com> # # Distributed under the terms of the GNU General Public License (GPL) # as published by the Free Software Foundation; either version 2 of # the License, or (at your option) any later version. # https://www.gnu.org/licenses/ #***************************************************************************** from __future__ import absolute_import, print_function, division from six.moves import range, map, filter, zip from six import iteritems from flatsurf.geometry.similarity_surface import SimilaritySurface from .polygon import * from sage.rings.integer_ring import ZZ from sage.rings.rational_field import QQ from sage.modules.free_module_element import vector class GraphicalSurface: r""" This class manages the rendering of a SimilaritySurface. This class essentially consists of a collection of GraphicalPolygons which control how individual polygons are positioned. In addition, this class stores options which are passed to the polygons when they are rendered. Some setup features set in the constructor and can be set again later via `process_options()`. The basic tasks of the class are to render the polygons, edges and labels. To customize a rendering, it is useful to know something about how this class works. (Apologies!) There are attributes which control whether or not certain objects are rendered, namely: - `will_plot_polygons` -- Whether to plot polygons which are right-side up. - `will_plot_upside_down_polygons` -- Whether to plot polygons which are upside down. Defaults to False. - `will_plot_polygon_labels` -- Whether to plot polygon labels. - `will_plot_edges` -- If this is False then no edges will be plotted. - `will_plot_non_adjacent_edges` = Whether to plot polygon edges which are not adjacent to the edge it is glued to. - `will_plot_adjacent_edges` -- Whether to plot polygon edges which are adjacent to the polygon they are glued to. - `will_plot_self_glued_edges` -- Whether to plot polygon edges which are glued to themselves. - `will_plot_edge_labels` -- Whether to plot polygon edges labels. - `will_plot_zero_flags` -- Whether to plot line segments from the baricenter to the zero vertex of each polygon. Useful in working out vertex and edge labels. Defaults to False. The `plot` method calls some other built in methods: `plot_polygon`, `plot_polygon_label`, `plot_edge` and `plot_edge_label`. These in turn call methods in `GraphicalPolygon`. - `polygon_options` -- Options passed to :func:`graphical_polygon.GraphicalPolygon.plot_polygon` when plotting a polygon right-side up. - `upside_down_polygon_options` -- Options passed to :func:`graphical_polygon.GraphicalPolygon.plot_polygon` when plotting a polygon upside-down. - `polygon_label_options` -- Options passed to :func:`graphical_polygon.GraphicalPolygon.plot_label` when plotting a polygon label. - `non_adjacent_edge_options` -- Options passed to :func:`graphical_polygon.GraphicalPolygon.plot_edge` when plotting a polygon edge which is not adjacent to the edge it is glued to. - `self.adjacent_edge_options` -- Options passed to :func:`graphical_polygon.GraphicalPolygon.plot_edge` when plotting a polygon edge which is adjacent to the edge it is glued to. - `self_glued_edge_options` -- Options passed to :func:`graphical_polygon.GraphicalPolygon.plot_edge` when plotting a polygon edge which is glued to itself. - `edge_label_options` -- Options passed to :func:`graphical_polygon.GraphicalPolygon.edge_label` when plotting a edge label. - `zero_flag_options` -- Options passed to :func:`graphical_polygon.GraphicalPolygon.plot_zero_flag` when plotting a zero_flag. EXAMPLES:: sage: from flatsurf import * sage: from flatsurf.graphical.surface import GraphicalSurface sage: s = similarity_surfaces.example() sage: gs = GraphicalSurface(s) sage: gs.polygon_options["color"]="red" sage: gs.plot() # not tested (problem with matplotlib font caches on Travis) Graphics object consisting of 13 graphics primitives """ def __init__(self, similarity_surface, adjacencies=None, polygon_labels=True, \ edge_labels="gluings", default_position_function = None): r""" Construct a GraphicalSurface from a similarity surface. INPUT: - ``similarity_surface`` -- a similarity surface - ``polygon_labels`` -- a boolean (default ``True``) whether the label of polygons are displayed - ``edge_labels`` -- option to control the display of edge labels. It can be one of - ``False`` or ``None`` for no labels - ``'gluings'`` -- to put on each side of each non-adjacent edge, the name of the polygon to which it is glued - ``'number'`` -- to put on each side of each edge the number of the edge - ``'gluings and number'`` -- full information - ``'letter'`` -- add matching letters to glued edges in an arbitrary way - ``adjacencies`` -- a list of pairs ``(p,e)`` to be used to set adjacencies of polygons. - ``default_position_function`` -- a function mapping polygon labels to similarities describing the position of the corresponding polygon. If adjacencies is not defined and the surface is finite, make_all_visible() is called to make all polygons visible. """ assert isinstance(similarity_surface, SimilaritySurface) self._ss = similarity_surface self._default_position_function = default_position_function self._polygons = {} self._visible = set([self._ss.base_label()]) if adjacencies is None: if self._ss.is_finite(): self.make_all_visible() self._edge_labels = None self.will_plot_polygons = True r""" Whether to plot polygons which are right-side up. """ self.polygon_options = {"color":"lightgray"} r"""Options passed to :func:`graphical_polygon.GraphicalPolygon.plot_polygon` when plotting a polygon right-side up.""" self.will_plot_upside_down_polygons = False r""" Whether to plot polygons which are upside down """ self.upside_down_polygon_options = {"color":"lightgray", "zorder":-1} r"""Options passed to :func:`graphical_polygon.GraphicalPolygon.plot_polygon` when plotting a polygon upside-down.""" self.will_plot_polygon_labels = True r""" Whether to plot polygon labels. """ self.polygon_label_options = {"color":"black", "vertical_alignment":"center", "horizontal_alignment":"center"} r"""Options passed to :func:`graphical_polygon.GraphicalPolygon.plot_label` when plotting a polygon label.""" self.will_plot_edges = True r""" If this is False then no edges will be plotted. """ self.will_plot_non_adjacent_edges = True r""" Whether to plot polygon edges which are not adjacent to the edge it is glued to. """ self.non_adjacent_edge_options = {"color":"blue"} r"""Options passed to :func:`graphical_polygon.GraphicalPolygon.plot_edge` when plotting a polygon edge which is not adjacent to the edge it is glued to.""" self.will_plot_adjacent_edges = True r""" Whether to plot polygon edges which are adjacent to the polygon they are glued to. """ self.adjacent_edge_options = {"color":"blue", "linestyle":":"} r"""Options passed to :func:`graphical_polygon.GraphicalPolygon.plot_edge` when plotting a polygon edge which is adjacent to the edge it is glued to.""" self.will_plot_self_glued_edges = True r""" Whether to plot polygon edges which are glued to themselves. """ self.self_glued_edge_options = {"color":"red"} r"""Options passed to :func:`graphical_polygon.GraphicalPolygon.plot_edge` when plotting a polygon edge which is glued to itself.""" self.will_plot_edge_labels = True r""" Whether to plot polygon edges which are not adjacent to the polygon they are glued to. """ self.edge_label_options = {"color":"blue"} r"""Options passed to :func:`graphical_polygon.GraphicalPolygon.edge_label` when plotting a polygon label.""" self.will_plot_zero_flags = False r""" Whether to plot line segments from the baricenter to the zero vertex of each polygon. """ self.zero_flag_options = {"color":"green", "thickness":0.5} r"""Options passed to :func:`graphical_polygon.GraphicalPolygon.plot_zero_flag` when plotting a zero_flag.""" self.process_options(adjacencies=adjacencies, polygon_labels=polygon_labels, edge_labels=edge_labels) def process_options(self, adjacencies=None, polygon_labels=None, edge_labels=None, default_position_function = None): r""" Process the options listed as if the graphical_surface was first created. INPUT: - ``adjacencies`` -- a list of pairs ``(p,e)`` to be used to set adjacencies of polygons. - ``polygon_labels`` -- a boolean (default ``True``) whether the label of polygons are displayed - ``edge_labels`` -- option to control the display of edge labels. It can be one of - ``None`` for no change - ``False`` for no labels - ``'gluings'`` -- to put on each side of each non-adjacent edge, the name of the polygon to which it is glued - ``'number'`` -- to put on each side of each edge the number of the edge - ``'gluings and number'`` -- full information - ``'letter'`` -- add matching letters to glued edges in an arbitrary way - ``default_position_function`` -- a function mapping polygon labels to similarities describing the position of the corresponding polygon. Note that this will not affect polygons which have already been positioned. TESTS:: sage: from flatsurf import * sage: c = translation_surfaces.chamanara(1/2) sage: gs = c.graphical_surface() sage: gs.process_options(edge_labels='hey') Traceback (most recent call last): ... ValueError: invalid value for edge_labels (='hey') """ if adjacencies is not None: for p,e in adjacencies: self.make_adjacent(p, e) if polygon_labels is not None: if not isinstance(polygon_labels, bool): raise ValueError("polygon_labels must be True, False or None.") self.will_plot_polygon_labels = polygon_labels if edge_labels is not None: if edge_labels is True: self.will_plot_edge_labels = True edge_labels = 'gluings' elif edge_labels is False: self.will_plot_edge_labels = False edge_labels = None elif edge_labels in ['gluings', 'number', 'gluings and number', 'letter']: self._edge_labels = edge_labels self.will_plot_edge_labels = True else: raise ValueError("invalid value for edge_labels (={!r})".format(edge_labels)) if default_position_function is not None: self._default_position_function = default_position_function def copy(self): r""" Make a copy of this GraphicalSurface. EXAMPLES:: sage: from flatsurf import * sage: s = translation_surfaces.octagon_and_squares() sage: gs = s.graphical_surface() sage: gs.will_plot_zero_flags = True sage: gs.graphical_polygon(1).transformation() (x, y) |-> (x + 2, y) sage: gs.make_adjacent(0,2) sage: gs.graphical_polygon(1).transformation() (x, y) |-> (x + (a + 4), y + (a + 2)) sage: gs.polygon_options["color"]="yellow" sage: gs2 = gs.copy() sage: gs2 == gs False sage: gs2.will_plot_zero_flags True sage: gs2.graphical_polygon(1).transformation() (x, y) |-> (x + (a + 4), y + (a + 2)) sage: gs2.polygon_options {'color': 'yellow'} """ gs = GraphicalSurface(self.get_surface(), default_position_function = self._default_position_function) # Copy plot options gs.will_plot_polygons = self.will_plot_polygons gs.polygon_options = dict(self.polygon_options) gs.will_plot_upside_down_polygons = self.will_plot_upside_down_polygons gs.upside_down_polygon_options = dict(self.upside_down_polygon_options) gs.will_plot_polygon_labels = self.will_plot_polygon_labels gs.polygon_label_options = dict(self.polygon_label_options) gs.will_plot_edges = self.will_plot_edges gs.will_plot_non_adjacent_edges = self.will_plot_non_adjacent_edges gs.non_adjacent_edge_options = dict(self.non_adjacent_edge_options) gs.will_plot_adjacent_edges = self.will_plot_adjacent_edges gs.adjacent_edge_options = dict(self.adjacent_edge_options) gs.will_plot_self_glued_edges = self.will_plot_self_glued_edges gs.self_glued_edge_options = dict(self.self_glued_edge_options) gs.will_plot_edge_labels = self.will_plot_edge_labels gs.edge_label_options = dict(self.edge_label_options) gs.will_plot_zero_flags = self.will_plot_zero_flags gs.zero_flag_options = dict(self.zero_flag_options) # Copy polygons and visible set. gs._polygons = {label:gp.copy() for label,gp in iteritems(self._polygons)} gs._visible = set(self._visible) gs._edge_labels = self._edge_labels return gs def __repr__(self): return "Graphical version of Similarity Surface {!r}".format(self._ss) def visible(self): r""" Return a copy of the set of visible labels. """ return set(self._visible) def is_visible(self,label): r""" Return whether the polygon with the given label is marked as visible. """ return label in self._visible def make_visible(self, label): r""" Mark the polygon with the given label as visible. """ self._visible.add(label) def hide(self, label): r""" Mark the polygon with the given label as invisible. """ self._visible.remove(label) def make_all_visible(self, adjacent=None, limit=None): r""" Attempt to show all invisible polygons by walking over the surface. INPUT: - ``adjacent`` -- (default ``None``) whether the newly added polygon are set to be adjacent or not. Defaults to true unless a default_position_function was provided. - ``limit`` -- (default ``None``) maximal number of additional polygons to make visible EXAMPLES:: sage: from flatsurf import * sage: s = similarity_surfaces.example() sage: g = s.graphical_surface() sage: g.make_all_visible() sage: g.plot() # not tested (problem with matplotlib font caches on Travis) Graphics object consisting of 13 graphics primitives sage: s = similarity_surfaces.example() sage: g = s.graphical_surface(cached=False, adjacencies=[]) sage: g.make_all_visible(adjacent=False) sage: g.plot() # not tested (problem with matplotlib font caches on Travis) Graphics object consisting of 16 graphics primitives """ if adjacent is None: adjacent = (self._default_position_function is None) if limit is None: assert self._ss.is_finite() if adjacent: for l,poly in self._ss.walker().label_polygon_iterator(): for e in range(poly.num_edges()): l2,e2 = self._ss.opposite_edge(l,e) if not self.is_visible(l2): self.make_adjacent(l,e) else: from flatsurf.geometry.similarity import SimilarityGroup T = SimilarityGroup(self._ss.base_ring()) for l in self._ss.label_iterator(): if not self.is_visible(l): if self._default_position_function is None: # No reasonable way to display the polygon, so we do this hack: g = self.graphical_polygon(l) poly = self._ss.polygon(l) sxmax = self.xmax() pxmin = g.xmin() t = T((QQ(self.xmax() - g.xmin() + 1), QQ(-(g.ymin()+g.ymax()) / ZZ(2) ))) g.set_transformation(t) self.make_visible(l) else: assert limit>0 if adjacent: i = 0 for l,poly in self._ss.walker().label_polygon_iterator(): for e in range(poly.num_edges()): l2,e2 = self._ss.opposite_edge(l,e) if not self.is_visible(l2): self.make_adjacent(l,e) i=i+1 if i>=limit: return else: from flatsurf.geometry.similarity import SimilarityGroup T = SimilarityGroup(self._ss.base_ring()) i = 0 for l in self._ss.label_iterator(): if not self.is_visible(l): if self._default_position_function is None: # No reasonable way to display the polygon, so we do this hack: g = self.graphical_polygon(l) poly = self._ss.polygon(l) sxmax = self.xmax() pxmin = g.xmin() t = T((QQ(self.xmax() - g.xmin() + 1), QQ(-(g.ymin()+g.ymax()) / ZZ(2) ))) g.set_transformation(t) self.make_visible(l) i=i+1 if i>=limit: return def get_surface(self): r""" Return the underlying similarity surface. """ return self._ss def xmin(self): r""" Return the minimal x-coordinate of a vertex of a visible graphical polygon. .. TODO:: this should be xmin """ return min([self.graphical_polygon(label).xmin() for label in self.visible()]) def ymin(self): r""" Return the minimal y-coordinate of a vertex of a visible graphical polygon. """ return min([self.graphical_polygon(label).ymin() for label in self.visible()]) def xmax(self): r""" Return the maximal x-coordinate of a vertex of a visible graphical polygon. """ return max([self.graphical_polygon(label).xmax() for label in self.visible()]) def ymax(self): r""" Return the minimal y-coordinate of a vertex of a visible graphical polygon. """ return max([self.graphical_polygon(label).ymax() for label in self.visible()]) def bounding_box(self): r""" Return the quadruple (x1,y1,x2,y2) where x1 and y1 are the minimal x- and y-coordinates of a visible graphical polygon and x2 and y2 are the maximal x-and y- cordinates of a visible graphical polygon. """ return self.xmin(), self.ymin(), self.xmax(), self.ymax() def graphical_polygon(self, label): r""" Return the graphical_polygon with the given label. """ if label in self._polygons: return self._polygons[label] else: t = None if not self._default_position_function is None: t=self._default_position_function(label) p = GraphicalPolygon(self._ss.polygon(label), transformation=t) self._polygons[label] = p return p def make_adjacent(self, p, e, reverse = False, visible = True): r""" Move the polygon across the prescribed edge so that is adjacent. The polygon moved is obtained from opposite_edge(p,e). If reverse=True then the polygon is moved so that there is a fold at the edge. If visible is True (by default), we also make the moved polygon visible. EXAMPLES:: sage: from flatsurf import * sage: s = similarity_surfaces.example() sage: gs = s.graphical_surface(adjacencies=[]) sage: gs.graphical_polygon(0) GraphicalPolygon with vertices [(0.0, 0.0), (2.0, -2.0), (2.0, 0.0)] sage: gs.graphical_polygon(1) GraphicalPolygon with vertices [(0.0, 0.0), (2.0, 0.0), (1.0, 3.0)] sage: print("Polygon 0, edge 0 is opposite "+str(gs.opposite_edge(0,0))) Polygon 0, edge 0 is opposite (1, 1) sage: gs.make_adjacent(0,0) sage: gs.graphical_polygon(0) GraphicalPolygon with vertices [(0.0, 0.0), (2.0, -2.0), (2.0, 0.0)] sage: gs.graphical_polygon(1) GraphicalPolygon with vertices [(0.4, -2.8), (2.0, -2.0), (0.0, 0.0)] """ pp,ee = self._ss.opposite_edge(p,e) if reverse: from flatsurf.geometry.similarity import SimilarityGroup G = SimilarityGroup(self._ss.base_ring()) q = self._ss.polygon(p) a = q.vertex(e) b = q.vertex(e+1) # This is the similarity carrying the origin to a and (1,0) to b: g = G(b[0]-a[0],b[1]-a[1],a[0],a[1]) qq = self._ss.polygon(pp) aa = qq.vertex(ee+1) bb = qq.vertex(ee) # This is the similarity carrying the origin to aa and (1,0) to bb: gg = G(bb[0]-aa[0],bb[1]-aa[1],aa[0],aa[1]) reflection = G( self._ss.base_ring().one(), self._ss.base_ring().zero(), self._ss.base_ring().zero(), self._ss.base_ring().zero(), -1) # This is the similarity carrying (a,b) to (aa,bb): g = gg*reflection*(~g) else: g = self._ss.edge_transformation(pp,ee) h = self.graphical_polygon(p).transformation() self.graphical_polygon(pp).set_transformation(h*g) if visible: self.make_visible(pp) def make_adjacent_and_visible(self, p, e, reverse=False): r""" Move the polygon across the prescribed edge so that is adjacent, and make the moved polygon visible. """ from sage.misc.superseded import deprecation deprecation(42, "Do not use .make_adjacent_and_visible(). Use .make_adjacent() instead.") self.make_adjacent(p, e, reverse=reverse) def is_adjacent(self,p,e): r""" Returns the truth value of the statement 'The polygon opposite edge (p,e) is adjacent to that edge.' EXAMPLES:: sage: from flatsurf import * sage: s = similarity_surfaces.example() sage: g = s.graphical_surface(adjacencies=[]) sage: g.is_adjacent(0,0) False sage: g.is_adjacent(0,1) False sage: g.make_all_visible(adjacent=True) sage: g.is_adjacent(0,0) True sage: g.is_adjacent(0,1) False """ pp,ee = self.opposite_edge(p,e) if not self.is_visible(pp): return False g = self.graphical_polygon(p) gg = self.graphical_polygon(pp) return g.transformed_vertex(e) == gg.transformed_vertex(ee+1) and \ g.transformed_vertex(e+1) == gg.transformed_vertex(ee) def to_surface(self, point, v=None, label=None, ring=None, return_all=False, \ singularity_limit=None, search_all = False, search_limit=None): r""" Converts from graphical coordinates to similarity surface coordinates. A point always must be provided. If a vector v is provided then a SimilaritySurfaceTangentVector will be returned. If v is not provided, then a SurfacePoint is returned. INPUT: - ``point`` -- Coordinates of a point in graphical coordinates to be converted to graphical coordinates. - ``v`` -- (default ``None``) If provided a tangent vector in graphical coordinates based at the provided point. - ``label`` -- (default ``None``) If provided, then we only convert points and tangent vectors in the corresponding graphical polygon. - ``ring`` -- (default ``None``) If provided, then objects returned will be defined over the given ring, otherwise we use the base_ring of the surface. - ``return_all`` -- (default ``False``) By default we return the first point or vector we find. However if the graphical polygons overlap, then a point or vector might correspond to more than one point or vector on the surface. If ``return_all`` is set to ``True`` then we return a set of all points we find instead. - ``singularity_limit`` -- (default ``None``) This only has an effect if returning a singular point (i.e., ``v`` is ``None``) and the surface is infinite. In this case, the singularity should be returned but it could be infinite. Then singularity_limit controls how far we look for the singularity to close. This value is passed to ``SimilaritySurface.surface_point``. - ``search_all`` -- (default ``False``) By default we look just in polygons with visible label. If set to `True``, then we instead look in all labels. - ``search_limit`` -- (default ``None``) If ``search_all`` is ``True``, then we look at the first ``search_limit`` polygons instead of all polygons. This must be set to an positive integer if ``search_all`` is and the surface is infinite. EXAMPLES:: sage: from flatsurf import * sage: s = similarity_surfaces.example() sage: gs = s.graphical_surface() sage: gs.to_surface((1,-2)) Surface point located at (1, 1/2) in polygon 1 sage: gs.to_surface((1,-2), v=(1,0)) SimilaritySurfaceTangentVector in polygon 1 based at (1, 1/2) with vector (1, -1/2) sage: s = translation_surfaces.infinite_staircase() sage: gs = s.graphical_surface() sage: gs.to_surface((4,4), (1,1), search_all=True, search_limit=20) SimilaritySurfaceTangentVector in polygon 8 based at (0, 0) with vector (1, 1) sage: s = translation_surfaces.square_torus() sage: pc = s.minimal_cover(cover_type="planar") sage: gs = pc.graphical_surface() sage: gs.to_surface((3,2), search_all=True, search_limit=20) Traceback (most recent call last): ... ValueError: To obtain a singularity on an infinite surface, singularity_limit must be set. sage: gs.to_surface((3,2), search_all=True, search_limit=20, singularity_limit=4) Surface point with 4 coordinate representations sage: p = gs.to_surface((sqrt(3),sqrt(2)), ring=AA, search_all=True, search_limit=20) sage: next(iter(p.coordinates(p.labels()[0]))).parent() Vector space of dimension 2 over Algebraic Real Field sage: v = gs.to_surface((3/2,3/2),(sqrt(3),sqrt(2)),ring=AA,search_all=True, search_limit=20) sage: v.bundle() Tangent bundle of TranslationSurface built from infinitely many polygons defined over Algebraic Real Field """ if label is None: if return_all: ret = set() s = self.get_surface() if search_all: if search_limit is None: if s.is_finite(): it = s.label_iterator() else: raise ValueError("If search_all=True and the surface is infinite, then a search_limit must be provided.") else: from itertools import islice it = islice(s.label_iterator(), search_limit) else: it = self.visible() for label in it: try: val = self.to_surface(point, v=v, label=label, ring=ring, singularity_limit=singularity_limit) if return_all: ret.add(val) else: return val except AssertionError: # Not in the polygon pass except ValueError as e: if e.args[0] == 'need a limit when working with an infinite surface': raise ValueError("To obtain a singularity on an infinite surface, " + \ "singularity_limit must be set.") # Otherwise it is not in the polygon. if return_all: return ret else: raise ValueError("Point or vector is not in a visible graphical_polygon.") else: gp = self.graphical_polygon(label) coords = gp.transform_back(point) s = self.get_surface() if v is None: return s.surface_point(label, coords, ring=ring, limit=singularity_limit) else: return s.tangent_vector(label, coords, (~(gp.transformation().derivative()))*vector(v), ring=ring) def opposite_edge(self, p, e): r""" Given the label ``p`` of a polygon and an edge ``e`` in that polygon returns the pair (``pp``, ``ee``) to which this edge is glued. """ return self._ss.opposite_edge(p,e) def reset_letters(self,p,e): r""" Resets the letter dictionary for storing letters used in edge labeling if edge_labels="letter" is used. """ try: del self._letters del self._next_letter except: pass def _get_letter_for_edge(self, p, e): if not hasattr(self,"_letters"): self._letters={} self._next_letter=1 try: return self._letters[(p,e)] except KeyError: # convert number to string nl = self._next_letter self._next_letter = nl + 1 letter = "" while nl!=0: val = nl % 52 if val==0: val=52 letter = "Z" + letter elif val<27: letter = chr(97+val-1) + letter else: letter = chr(65+val-27) + letter nl = (nl-val)/52 self._letters[(p,e)] = letter self._letters[self._ss.opposite_edge(p,e)] = letter return letter def edge_labels(self, lab): r""" Return the list of edge labels to be used for the polygon with label ``lab``. EXAMPLES:: sage: from flatsurf import * sage: s = similarity_surfaces.example() sage: g = s.graphical_surface(cached=False, adjacencies=[]) sage: g.edge_labels(0) ['1', '1', '1'] sage: g.make_all_visible(adjacent=True) sage: g.edge_labels(0) [None, '1', '1'] sage: g.make_adjacent(0,0) sage: g.edge_labels(0) [None, '1', '1'] sage: g.edge_labels(1) ['0', None, '0'] sage: s = similarity_surfaces.example() sage: g = s.graphical_surface(cached=False, adjacencies=[], edge_labels='number') sage: g.edge_labels(0) ['0', '1', '2'] sage: g = s.graphical_surface(cached=False, adjacencies=[], edge_labels='gluings and number') sage: g.edge_labels(0) ['0 -> (1, 1)', '1 -> (1, 2)', '2 -> (1, 0)'] sage: g.make_all_visible(adjacent=True) sage: g.edge_labels(0) ['0', '1 -> (1, 2)', '2 -> (1, 0)'] """ if not self._edge_labels: return None s = self._ss g = self.graphical_polygon(lab) p = g.base_polygon() if self._edge_labels == 'gluings': ans = [] for e in range(p.num_edges()): if self.is_adjacent(lab, e): ans.append(None) else: llab,ee = s.opposite_edge(lab,e) ans.append(str(llab)) elif self._edge_labels == 'number': ans = list(map(str, range(p.num_edges()))) elif self._edge_labels == 'gluings and number': ans = [] for e in range(p.num_edges()): if self.is_adjacent(lab, e): ans.append(str(e)) else: ans.append("{} -> {}".format(e, s.opposite_edge(lab,e))) elif self._edge_labels == "letter": ans = [] for e in range(p.num_edges()): llab,ee = s.opposite_edge(lab,e) if not self.is_visible(llab) or self.is_adjacent(lab, e): ans.append(None) else: ans.append(self._get_letter_for_edge(lab,e)) else: raise RuntimeError("invalid option for edge_labels") return ans def plot_polygon(self, label, graphical_polygon, upside_down): r""" Internal method for plotting polygons returning a Graphics object. Calls :func:`graphical_polygon.GraphicalPolygon.plot_polygon` passing the attribute `upside_down_polygon_options` if the polygon is upside down and `polygon_options` otherwise. Override this method for fine control of how the polygons are drawn. INPUT: - ``label`` -- The label of the polygon being plotted. - ``graphical_polygon`` -- The associated graphical polygon. - ``upside_down`` -- True if and only if the polygon will be rendered upside down. """ if upside_down: return graphical_polygon.plot_polygon(**self.upside_down_polygon_options) else: return graphical_polygon.plot_polygon(**self.polygon_options) def plot_polygon_label(self, label, graphical_polygon, upside_down): r""" Internal method for plotting polygon labels returning a Graphics2D. Calls :func:`graphical_polygon.GraphicalPolygon.plot_polygon_label` passing the attribute `polygon_label_options`. Override this method for fine control of how the polygons are drawn. INPUT: - ``label`` -- The label of the polygon being plotted. - ``graphical_polygon`` -- The associated graphical polygon. - ``upside_down`` -- True if and only if the polygon will be rendered upside down. """ return graphical_polygon.plot_label(label,**self.polygon_label_options) def plot_edge(self, label, edge, graphical_polygon, is_adjacent, is_self_glued): r""" Internal method for plotting a polygon's edge returning a Graphics2D. The method calls :func:`graphical_polygon.GraphicalPolygon.plot_edge`. Depending on the geometry of the edge pair, it passes one of the attributes `adjacent_edge_options`, `self_glued_edge_options` or `non_adjacent_edge_options`. Override this method for fine control of how the edge is drawn. INPUT: - ``label`` -- The label of the polygon. - ``edge`` -- Integer representing the edge of the polygon. - ``graphical_polygon`` -- The associated graphical polygon. - ``is_adjacent`` -- True if and only if the polygon opposite this edge is visible and adjacent to this edge. In this case, plot_edge is called only once for this edge. - ``is_self_glued`` -- True if and only if the edge is glued to itself by a 180 degree rotation. This is never True if is_adjacent is True. """ if is_adjacent: return graphical_polygon.plot_edge(edge, **self.adjacent_edge_options) elif is_self_glued: return graphical_polygon.plot_edge(edge, **self.self_glued_edge_options) else: return graphical_polygon.plot_edge(edge, **self.non_adjacent_edge_options) def plot_edge_label(self, p, e, edge_label, graphical_polygon): r""" Internal method for plotting an edge label. Calls :func:`graphical_polygon.GraphicalPolygon.plot_edge_label` passing the attribute `edge_label_options`. Override this method for fine control of how the edge is drawn. INPUT: - ``p`` -- The label of the polygon. - ``e`` -- Integer representing the edge of the polygon. - ``edge_label`` -- A string containing the label to be printed on the edge. - ``graphical_polygon`` -- The associated graphical polygon. """ return graphical_polygon.plot_edge_label(e, edge_label, **self.edge_label_options) def plot_zero_flag(self, label, graphical_polygon): r""" Internal method for plotting a polygon's zero_flag and returning a Graphics2D. Simply calls :func:`graphical_polygon.GraphicalPolygon.plot_zero_flag` passing the attribute `zero_flag_options`. Override this method for fine control of how the edge is drawn. INPUT: - ``label`` -- The label of the polygon. - ``graphical_polygon`` -- The associated graphical polygon. """ return graphical_polygon.plot_zero_flag(**self.zero_flag_options) def plot(self): r""" Returns a plot of the GraphicalSurface EXAMPLES:: sage: from flatsurf import * sage: s = similarity_surfaces.example() sage: from flatsurf.graphical.surface import GraphicalSurface sage: gs = GraphicalSurface(s) sage: gs.make_visible(1) sage: gs.plot() # not tested (problem with matplotlib font caches on Travis) Graphics object consisting of 13 graphics primitives Check that label options are handled correctly:: sage: S = translation_surfaces.square_torus() sage: S.plot(polygon_labels=True, edge_labels=True) # not tested (problem with matplotlib font caches on Travis) Graphics object consisting of 10 graphics primitives sage: S.plot(polygon_labels=False, edge_labels=True) # not tested (problem with matplotlib font caches on Travis) Graphics object consisting of 9 graphics primitives sage: S.plot(polygon_labels=True, edge_labels=False) # not tested (problem with matplotlib font caches on Travis) Graphics object consisting of 6 graphics primitives sage: S.plot(polygon_labels=False, edge_labels=False) # not tested (problem with matplotlib font caches on Travis) Graphics object consisting of 5 graphics primitives """ from sage.plot.graphics import Graphics p = Graphics() # Make sure we don't plot adjacent edges more than once. plotted_adjacent_edges = set() for label in self._visible: polygon = self.graphical_polygon(label) upside_down = polygon.transformation().sign()==-1 # Plot the polygons if upside_down and self.will_plot_upside_down_polygons: p += self.plot_polygon(label, polygon, upside_down) elif self.will_plot_polygons: p += self.plot_polygon(label, polygon, upside_down) if self.will_plot_zero_flags: p += self.plot_zero_flag(label,polygon) # Add the polygon label if self.will_plot_polygon_labels: p += self.plot_polygon_label(label, polygon, upside_down) # Plot the edges if self.will_plot_edges: for i in range(self._ss.polygon(label).num_edges()): if self.is_adjacent(label,i): if self.will_plot_adjacent_edges and (label,i) not in plotted_adjacent_edges: plotted_adjacent_edges.add(self._ss.opposite_edge(label,i)) p += self.plot_edge(label, i, polygon, True, False) elif (label,i) == self._ss.opposite_edge(label,i): # Self-glued edge if self.will_plot_self_glued_edges: p += self.plot_edge(label, i, polygon, False, True) else: if self.will_plot_non_adjacent_edges: p += self.plot_edge(label, i, polygon, False, False) # Plot the edge labels. if self.will_plot_edge_labels: # get the edge labels edge_labels = self.edge_labels(label) if edge_labels is not None: for i in range(self._ss.polygon(label).num_edges()): if edge_labels[i] is not None: p += self.plot_edge_label(label, i, edge_labels[i], polygon) return p
gpl-2.0
gsmaxwell/phase_offset_rx
gr-digital/examples/example_costas.py
17
4430
#!/usr/bin/env python from gnuradio import gr, digital from gnuradio import eng_notation from gnuradio.eng_option import eng_option from optparse import OptionParser try: import scipy except ImportError: print "Error: could not import scipy (http://www.scipy.org/)" sys.exit(1) try: import pylab except ImportError: print "Error: could not import pylab (http://matplotlib.sourceforge.net/)" sys.exit(1) class example_costas(gr.top_block): def __init__(self, N, sps, rolloff, ntaps, bw, noise, foffset, toffset, poffset): gr.top_block.__init__(self) rrc_taps = gr.firdes.root_raised_cosine( sps, sps, 1.0, rolloff, ntaps) data = 2.0*scipy.random.randint(0, 2, N) - 1.0 data = scipy.exp(1j*poffset) * data self.src = gr.vector_source_c(data.tolist(), False) self.rrc = gr.interp_fir_filter_ccf(sps, rrc_taps) self.chn = gr.channel_model(noise, foffset, toffset) self.cst = digital.costas_loop_cc(bw, 2) self.vsnk_src = gr.vector_sink_c() self.vsnk_cst = gr.vector_sink_c() self.vsnk_frq = gr.vector_sink_f() self.connect(self.src, self.rrc, self.chn, self.cst, self.vsnk_cst) self.connect(self.rrc, self.vsnk_src) self.connect((self.cst,1), self.vsnk_frq) def main(): parser = OptionParser(option_class=eng_option, conflict_handler="resolve") parser.add_option("-N", "--nsamples", type="int", default=2000, help="Set the number of samples to process [default=%default]") parser.add_option("-S", "--sps", type="int", default=4, help="Set the samples per symbol [default=%default]") parser.add_option("-r", "--rolloff", type="eng_float", default=0.35, help="Set the rolloff factor [default=%default]") parser.add_option("-W", "--bandwidth", type="eng_float", default=2*scipy.pi/100.0, help="Set the loop bandwidth [default=%default]") parser.add_option("-n", "--ntaps", type="int", default=45, help="Set the number of taps in the filters [default=%default]") parser.add_option("", "--noise", type="eng_float", default=0.0, help="Set the simulation noise voltage [default=%default]") parser.add_option("-f", "--foffset", type="eng_float", default=0.0, help="Set the simulation's normalized frequency offset (in Hz) [default=%default]") parser.add_option("-t", "--toffset", type="eng_float", default=1.0, help="Set the simulation's timing offset [default=%default]") parser.add_option("-p", "--poffset", type="eng_float", default=0.707, help="Set the simulation's phase offset [default=%default]") (options, args) = parser.parse_args () # Adjust N for the interpolation by sps options.nsamples = options.nsamples // options.sps # Set up the program-under-test put = example_costas(options.nsamples, options.sps, options.rolloff, options.ntaps, options.bandwidth, options.noise, options.foffset, options.toffset, options.poffset) put.run() data_src = scipy.array(put.vsnk_src.data()) # Convert the FLL's LO frequency from rads/sec to Hz data_frq = scipy.array(put.vsnk_frq.data()) / (2.0*scipy.pi) # adjust this to align with the data. data_cst = scipy.array(3*[0,]+list(put.vsnk_cst.data())) # Plot the Costas loop's LO frequency f1 = pylab.figure(1, figsize=(12,10), facecolor='w') s1 = f1.add_subplot(2,2,1) s1.plot(data_frq) s1.set_title("Costas LO") s1.set_xlabel("Samples") s1.set_ylabel("Frequency (normalized Hz)") # Plot the IQ symbols s3 = f1.add_subplot(2,2,2) s3.plot(data_src.real, data_src.imag, "o") s3.plot(data_cst.real, data_cst.imag, "rx") s3.set_title("IQ") s3.set_xlabel("Real part") s3.set_ylabel("Imag part") s3.set_xlim([-2, 2]) s3.set_ylim([-2, 2]) # Plot the symbols in time s4 = f1.add_subplot(2,2,3) s4.set_position([0.125, 0.05, 0.775, 0.4]) s4.plot(data_src.real, "o-") s4.plot(data_cst.real, "rx-") s4.set_title("Symbols") s4.set_xlabel("Samples") s4.set_ylabel("Real Part of Signals") pylab.show() if __name__ == "__main__": try: main() except KeyboardInterrupt: pass
gpl-3.0
DimensionalScoop/kautschuk
AP_SS16/US3/PythonSkript.py
1
14222
##################################################### Import system libraries ###################################################### import matplotlib as mpl mpl.rcdefaults() mpl.rcParams.update(mpl.rc_params_from_file('meine-matplotlibrc')) import matplotlib.pyplot as plt import numpy as np import scipy.constants as const import uncertainties.unumpy as unp from uncertainties import ufloat from uncertainties.unumpy import ( nominal_values as noms, std_devs as stds, ) ################################################ Finish importing system libraries ################################################# ################################################ Adding subfolder to system's path ################################################# import os, sys, inspect # realpath() will make your script run, even if you symlink it :) cmd_folder = os.path.realpath(os.path.abspath(os.path.split(inspect.getfile( inspect.currentframe() ))[0])) if cmd_folder not in sys.path: sys.path.insert(0, cmd_folder) # use this if you want to include modules from a subfolder cmd_subfolder = os.path.realpath(os.path.abspath(os.path.join(os.path.split(inspect.getfile( inspect.currentframe() ))[0],"python_custom_scripts"))) if cmd_subfolder not in sys.path: sys.path.insert(0, cmd_subfolder) ############################################# Finish adding subfolder to system's path ############################################# ##################################################### Import custom libraries ###################################################### from curve_fit import ucurve_fit from table import ( make_table, make_full_table, make_composed_table, make_SI, write, ) from regression import ( reg_linear, reg_quadratic, reg_cubic ) from error_calculation import( MeanError ) ################################################ Finish importing custom libraries ################################################# ### Gegebene Daten rho_L = 1.15 # in g/cm^3 c_L = 1800 # m/s eta = 12 # mPa s c_P = 2700 # m/2 l = 30.7 # mm di_k = 7e-3 # m di_m = 10e-3 # m di_g = 16e-3 # m da_k = 10e-3 # m da_m = 15e-3 # m da_g = 20e-3 # m nu_0 = 2e6 # Hz import scipy.stats # def mean(values): # return ufloat(np.mean(noms(values)), scipy.stats.sem(noms(values))) def mean(values, axis=0): return unp.uarray((np.mean(noms(values), axis=axis), scipy.stats.sem(noms(values), axis=axis))) Theta = np.array([30, 15, 60])*np.pi/180 # rad alpha = np.pi/2 - np.arcsin(np.sin(Theta) * c_L/c_P) # rad # wiederverwendbare Funktion zum Erledigen der Aufgaben für verschiedene Innenwinkel def do_job_a(filename, error, j, filename_out = None): # Einlesen der Messdaten P, Delta_f_30, Delta_f_15, Delta_f_60 = np.genfromtxt(filename, unpack=True) # di = [7,10,16] colors = ['rx', 'bx', 'gx'] Delta_f_30_error = Delta_f_30*error Delta_f_30 = unp.uarray(Delta_f_30, Delta_f_30_error) Delta_f_15_error = Delta_f_15*error Delta_f_15 = unp.uarray(Delta_f_15, Delta_f_15_error) Delta_f_60_error = Delta_f_60*error Delta_f_60 = unp.uarray(Delta_f_60, Delta_f_60_error) v= unp.uarray(np.zeros(3), np.zeros(3)) v[0] = c_L / 2 / nu_0 * Delta_f_30 / np.cos(alpha[0]) v[1] = c_L / 2 / nu_0 * Delta_f_15 / np.cos(alpha[1]) v[2] = c_L / 2 / nu_0 * Delta_f_60 / np.cos(alpha[2]) v_mean = mean([v[0], v[1], v[2]], 0) # TABLES write('build/Tabelle_a_'+str(di[j])+'.tex', make_table( [P,Delta_f_30,Delta_f_15,Delta_f_60,v[0],v[1],v[2], v_mean], [0, 1, 1, 1, 1, 1, 1, 1])) write('build/Tabelle_a_'+str(di[j])+'_texformat.tex', make_full_table( r'Messdaten und daraus errechnete Geschwindikgiet für $\d_i = $'+str(di[j])+r'$\si{\milli\meter}$.', 'table:A'+str(j), 'build/Tabelle_a_'+str(di[j])+'.tex', [1,2,3,4,5,6,7], [r'$\frac{P}{P_\text{max}} \:/\: \si{\percent}$', r'$\Delta f_{30°} \:/\: \si{\hertz}$', r'$\Delta f_{15°} \:/\: \si{\hertz}$', r'$\Delta f_{60°} \:/\: \si{\hertz}$', r'$v_{30°} \:/\: \si{\meter\per\second}$', r'$v_{15°} \:/\: \si{\meter\per\second}$', r'$v_{60°} \:/\: \si{\meter\per\second}$', r'$\overline{v} \:/\: \si{\meter\per\second}$'])) # Plotting plt.figure(1) y = Delta_f_30 / np.cos(alpha[0]) plt.errorbar(noms(v[0]), noms(y), fmt=colors[j], xerr = stds(v[0]), yerr=stds(y), label=r'$d_i = ' + str(di[j]) + r'\si{\milli\meter}$') plt.figure(2) y = Delta_f_15 / np.cos(alpha[1]) plt.errorbar(noms(v[1]), noms(y), fmt=colors[j], xerr = stds(v[1]), yerr=stds(y), label=r'$d_i = ' + str(di[j]) + r'\si{\milli\meter}$') plt.figure(3) y = Delta_f_60 / np.cos(alpha[2]) plt.errorbar(noms(v[2]), noms(y), fmt=colors[j], xerr = stds(v[2]), yerr=stds(y), label=r'$d_i = ' + str(di[j]) + r'\si{\milli\meter}$') i = 1 if (filename_out): for name in filename_out: plt.figure(i) plt.xlabel(r'$v \:/\: \si{\meter\per\second}$') plt.ylabel(r'$\Delta\nu / \cos{\alpha} \:/\: \si{\kilo\volt}$') plt.legend(loc='best') plt.tight_layout(pad=0, h_pad=1.08, w_pad=1.08) plt.savefig(name) i += 1 def do_job_b(filename, error, P, limits): # Einlesen der Messdaten Tiefe, Delta_f, Intensity = np.genfromtxt(filename, unpack=True) colors = ['rx', 'bx', 'gx'] Delta_f_error = Delta_f*error Delta_f = unp.uarray(Delta_f, Delta_f_error) v = c_L / 2 / nu_0 * Delta_f / np.cos(alpha[1]) # 15 ° Winkel ###### Fit im Intervall limits mit quadratischer Funktion gemäß dem Gesetz von Hagen-Poiseuille i = 0 start = 0 end = 0 for x in Tiefe: if (x == limits[0]): start = i if (x == limits[1]): end = i i += 1 params = ucurve_fit(reg_quadratic, Tiefe[start:(end+1)], v[start:(end+1)]) # quadratischer Fit a, x0, c = params write('build/parameter_a.tex', make_SI(a * 1e-3, r'\kilo\volt', figures=1)) ##### Ende Fit ######## # Plotting plt.clf fig, ax1 = plt.subplots() t_plot = np.linspace(limits[0]-0.5, limits[1]+0.5, 50) # Momentangeschwindigkeiten Ins1 = ax1.plot(Tiefe, noms(v), 'rx', label='Momentangeschwindigkeit') Ins2 = ax1.plot(t_plot, reg_quadratic(t_plot, *noms(params)), 'r--', label='Fit') ax1.set_xlabel(r'$\text{Laufzeit} \:/\: \si{\micro\second}$') ax1.set_ylabel(r'$v \:/\: \si{\meter\per\second}$') if ( P==45 ): ax1.set_ylim(0.45, 0.9) # hard coded stuff ftl ! # Streuintensitäten ax2 = ax1.twinx() Ins3 = ax2.plot(Tiefe, Intensity, 'b+', label='Intensität') ax2.set_ylabel(r'$I \:/\: \si{\kilo\volt\squared\per\second}$') # Theoretische Grenzen des Rohres einzeichnen ax1.plot((noms(x0)-5/1.5, noms(x0)-5/1.5), (ax1.get_ylim()[0], ax1.get_ylim()[1]), 'k:', linewidth=1) ax1.plot((noms(x0)+5/1.5, noms(x0)+5/1.5), (ax1.get_ylim()[0], ax1.get_ylim()[1]), 'k:', linewidth=1) ax1.plot((noms(x0)-5/1.5-2.5/2.5, noms(x0)-5/1.5-2.5/2.5), (ax1.get_ylim()[0], ax1.get_ylim()[1]), 'k:', linewidth=1) ax1.plot((noms(x0)+5/1.5+2.5/2.5, noms(x0)+5/1.5+2.5/2.5), (ax1.get_ylim()[0], ax1.get_ylim()[1]), 'k:', linewidth=1) Ins = Ins1 + Ins2 + Ins3 labs = [l.get_label() for l in Ins] ax1.legend(Ins, labs, loc='upper left') plt.tight_layout(pad=0, h_pad=1.08, w_pad=1.08) plt.savefig('build/Plot_b_P'+str(P)+'.pdf') do_job_a('messdaten/Delta_f_7mm.txt', 0.07, 0) do_job_a('messdaten/Delta_f_10mm.txt', 0.07, 1) do_job_a('messdaten/Delta_f_16mm.txt', 0.07, 2, ['build/Plot_a_30deg.pdf', 'build/Plot_a_15deg.pdf', 'build/Plot_a_60deg.pdf']) do_job_b('messdaten/stroemungsprofil45.txt', 0.07, 45, [14, 17]) do_job_b('messdaten/stroemungsprofil70.txt', 0.07, 70, [14, 17]) # Tabelle für Messdaten Tiefe, Delta_f_45, Intensity_45 = np.genfromtxt('messdaten/stroemungsprofil45.txt', unpack=True) Tiefe, Delta_f_70, Intensity_70 = np.genfromtxt('messdaten/stroemungsprofil70.txt', unpack=True) error = 0.07 Delta_f_45_error = Delta_f_45*error Delta_f_45 = unp.uarray(Delta_f_45, Delta_f_45_error) Delta_f_70_error = Delta_f_70*error Delta_f_70 = unp.uarray(Delta_f_70, Delta_f_70_error) Intensity_45_error = Intensity_45*error Intensity_45 = unp.uarray(Intensity_45, Intensity_45_error) Intensity_70_error = Intensity_70*error Intensity_70 = unp.uarray(Intensity_70, Intensity_70_error) write('build/Tabelle_messdaten.tex', make_table([Tiefe, Delta_f_45, Intensity_45, Delta_f_70, Intensity_70],[0, 1, 1, 1, 1])) write('build/Tabelle_messdaten_texformat.tex', make_full_table( 'Messdaten zum Strömungsprofil.', 'table:messdaten_b', 'build/Tabelle_messdaten.tex', [1,2,3,4], # Hier aufpassen: diese Zahlen bezeichnen diejenigen resultierenden Spaltennummern, # die Multicolumns sein sollen [r'$\text{Laufzeit} \:/\: \si{\micro\second}$', r'$\Delta f_{45\si{\percent}} \:/\: \si{\hertz}$', r'$I_{45\si{\percent}} \:/\: \si{\kilo\square\volt\per\second}$', r'$\Delta f_{70\si{\percent}} \:/\: \si{\hertz}$', r'$I_{70\si{\percent}} \:/\: \si{\kilo\square\volt\per\second}$'])) ################################ FREQUENTLY USED CODE ################################ # ########## IMPORT ########## # t, U, U_err = np.genfromtxt('data.txt', unpack=True) # t *= 1e-3 ########## ERRORS ########## # R_unc = ufloat(R[0],R[2]) # U = 1e3 * unp.uarray(U, U_err) # Rx_mean = np.mean(Rx) # Mittelwert und syst. Fehler # Rx_mean_err = MeanError(noms(Rx)) # Fehler des Mittelwertes # ## Relative Fehler zum späteren Vergleich in der Diskussion # RelFehler_G = (G_mess - G_lit) / G_lit # RelFehler_B = (B_mess - B_lit) / B_lit # write('build/RelFehler_G.tex', make_SI(RelFehler_G*100, r'\percent', figures=1)) # write('build/RelFehler_B.tex', make_SI(RelFehler_B*100, r'\percent', figures=1)) ########## CURVE FIT ########## # def f(t, a, b, c, d): # return a * np.sin(b * t + c) + d # # params = ucurve_fit(f, t, U, p0=[1, 1e3, 0, 0]) # p0 bezeichnet die Startwerte der zu fittenden Parameter # params = ucurve_fit(reg_linear, x, y) # linearer Fit # params = ucurve_fit(reg_quadratic, x, y) # quadratischer Fit # params = ucurve_fit(reg_cubic, x, y) # kubischer Fit # a, b = params # write('build/parameter_a.tex', make_SI(a * 1e-3, r'\kilo\volt', figures=1)) # type in Anz. signifikanter Stellen # write('build/parameter_b.tex', make_SI(b * 1e-3, r'\kilo\hertz', figures=2)) # type in Anz. signifikanter Stellen ########## PLOTTING ########## # plt.clf # clear actual plot before generating a new one # ## automatically choosing limits with existing array T1 # t_plot = np.linspace(np.amin(T1), np.amax(T1), 100) # plt.xlim(t_plot[0]-1/np.size(T1)*(t_plot[-1]-t_plot[0]), t_plot[-1]+1/np.size(T1)*(t_plot[-1]-t_plot[0])) # ## hard coded limits # t_plot = np.linspace(-0.5, 2 * np.pi + 0.5, 1000) * 1e-3 # ## standard plotting # plt.plot(t_plot * 1e3, f(t_plot, *noms(params)) * 1e-3, 'b-', label='Fit') # plt.plot(t * 1e3, U * 1e3, 'rx', label='Messdaten') ## plt.errorbar(B * 1e3, noms(y) * 1e5, fmt='rx', yerr=stds(y) * 1e5, label='Messdaten') # mit Fehlerbalken ## plt.xscale('log') # logarithmische x-Achse # plt.xlim(t_plot[0] * 1e3, t_plot[-1] * 1e3) # plt.xlabel(r'$t \:/\: \si{\milli\second}$') # plt.ylabel(r'$U \:/\: \si{\kilo\volt}$') # plt.legend(loc='best') # plt.tight_layout(pad=0, h_pad=1.08, w_pad=1.08) # plt.savefig('build/aufgabenteil_a_plot.pdf') ########## WRITING TABLES ########## ### IF THERE IS ONLY ONE COLUMN IN A TABLE (workaround): ## a=np.array([Wert_d[0]]) ## b=np.array([Rx_mean]) ## c=np.array([Rx_mean_err]) ## d=np.array([Lx_mean*1e3]) ## e=np.array([Lx_mean_err*1e3]) # # write('build/Tabelle_b.tex', make_table([a,b,c,d,e],[0, 1, 0, 1, 1])) # Jeder fehlerbehaftete Wert bekommt zwei Spalten # write('build/Tabelle_b_texformat.tex', make_full_table( # 'Messdaten Kapazitätsmessbrücke.', # 'table:A2', # 'build/Tabelle_b.tex', # [1,2,3,4,5], # Hier aufpassen: diese Zahlen bezeichnen diejenigen resultierenden Spaltennummern, # # die Multicolumns sein sollen # ['Wert', # r'$C_2 \:/\: \si{\nano\farad}$', # r'$R_2 \:/\: \si{\ohm}$', # r'$R_3 / R_4$', '$R_x \:/\: \si{\ohm}$', # r'$C_x \:/\: \si{\nano\farad}$'])) # ## Aufsplitten von Tabellen, falls sie zu lang sind # t1, t2 = np.array_split(t * 1e3, 2) # U1, U2 = np.array_split(U * 1e-3, 2) # write('build/loesung-table.tex', make_table([t1, U1, t2, U2], [3, None, 3, None])) # type in Nachkommastellen # ## Verschmelzen von Tabellen (nur Rohdaten, Anzahl der Zeilen muss gleich sein) # write('build/Tabelle_b_composed.tex', make_composed_table(['build/Tabelle_b_teil1.tex','build/Tabelle_b_teil2.tex'])) ########## ARRAY FUNCTIONS ########## # np.arange(2,10) # Erzeugt aufwärts zählendes Array von 2 bis 10 # np.zeros(15) # Erzeugt Array mit 15 Nullen # np.ones(15) # Erzeugt Array mit 15 Einsen # # np.amin(array) # Liefert den kleinsten Wert innerhalb eines Arrays # np.argmin(array) # Gibt mir den Index des Minimums eines Arrays zurück # np.amax(array) # Liefert den größten Wert innerhalb eines Arrays # np.argmax(array) # Gibt mir den Index des Maximums eines Arrays zurück # # a1,a2 = np.array_split(array, 2) # Array in zwei Hälften teilen # np.size(array) # Anzahl der Elemente eines Arrays ermitteln ########## ARRAY INDEXING ########## # y[n - 1::n] # liefert aus einem Array jeden n-ten Wert als Array ########## DIFFERENT STUFF ########## # R = const.physical_constants["molar gas constant"] # Array of value, unit, error
mit
gtoonstra/airflow
airflow/hooks/dbapi_hook.py
11
10932
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from builtins import str from past.builtins import basestring from datetime import datetime from contextlib import closing import sys from sqlalchemy import create_engine from airflow.hooks.base_hook import BaseHook from airflow.exceptions import AirflowException class DbApiHook(BaseHook): """ Abstract base class for sql hooks. """ # Override to provide the connection name. conn_name_attr = None # Override to have a default connection id for a particular dbHook default_conn_name = 'default_conn_id' # Override if this db supports autocommit. supports_autocommit = False # Override with the object that exposes the connect method connector = None def __init__(self, *args, **kwargs): if not self.conn_name_attr: raise AirflowException("conn_name_attr is not defined") elif len(args) == 1: setattr(self, self.conn_name_attr, args[0]) elif self.conn_name_attr not in kwargs: setattr(self, self.conn_name_attr, self.default_conn_name) else: setattr(self, self.conn_name_attr, kwargs[self.conn_name_attr]) def get_conn(self): """Returns a connection object """ db = self.get_connection(getattr(self, self.conn_name_attr)) return self.connector.connect( host=db.host, port=db.port, username=db.login, schema=db.schema) def get_uri(self): conn = self.get_connection(getattr(self, self.conn_name_attr)) login = '' if conn.login: login = '{conn.login}:{conn.password}@'.format(conn=conn) host = conn.host if conn.port is not None: host += ':{port}'.format(port=conn.port) return '{conn.conn_type}://{login}{host}/{conn.schema}'.format( conn=conn, login=login, host=host) def get_sqlalchemy_engine(self, engine_kwargs=None): if engine_kwargs is None: engine_kwargs = {} return create_engine(self.get_uri(), **engine_kwargs) def get_pandas_df(self, sql, parameters=None): """ Executes the sql and returns a pandas dataframe :param sql: the sql statement to be executed (str) or a list of sql statements to execute :type sql: str or list :param parameters: The parameters to render the SQL query with. :type parameters: mapping or iterable """ if sys.version_info[0] < 3: sql = sql.encode('utf-8') import pandas.io.sql as psql with closing(self.get_conn()) as conn: return psql.read_sql(sql, con=conn, params=parameters) def get_records(self, sql, parameters=None): """ Executes the sql and returns a set of records. :param sql: the sql statement to be executed (str) or a list of sql statements to execute :type sql: str or list :param parameters: The parameters to render the SQL query with. :type parameters: mapping or iterable """ if sys.version_info[0] < 3: sql = sql.encode('utf-8') with closing(self.get_conn()) as conn: with closing(conn.cursor()) as cur: if parameters is not None: cur.execute(sql, parameters) else: cur.execute(sql) return cur.fetchall() def get_first(self, sql, parameters=None): """ Executes the sql and returns the first resulting row. :param sql: the sql statement to be executed (str) or a list of sql statements to execute :type sql: str or list :param parameters: The parameters to render the SQL query with. :type parameters: mapping or iterable """ if sys.version_info[0] < 3: sql = sql.encode('utf-8') with closing(self.get_conn()) as conn: with closing(conn.cursor()) as cur: if parameters is not None: cur.execute(sql, parameters) else: cur.execute(sql) return cur.fetchone() def run(self, sql, autocommit=False, parameters=None): """ Runs a command or a list of commands. Pass a list of sql statements to the sql parameter to get them to execute sequentially :param sql: the sql statement to be executed (str) or a list of sql statements to execute :type sql: str or list :param autocommit: What to set the connection's autocommit setting to before executing the query. :type autocommit: bool :param parameters: The parameters to render the SQL query with. :type parameters: mapping or iterable """ if isinstance(sql, basestring): sql = [sql] with closing(self.get_conn()) as conn: if self.supports_autocommit: self.set_autocommit(conn, autocommit) with closing(conn.cursor()) as cur: for s in sql: if sys.version_info[0] < 3: s = s.encode('utf-8') self.log.info(s) if parameters is not None: cur.execute(s, parameters) else: cur.execute(s) # If autocommit was set to False for db that supports autocommit, # or if db does not supports autocommit, we do a manual commit. if not self.get_autocommit(conn): conn.commit() def set_autocommit(self, conn, autocommit): """ Sets the autocommit flag on the connection """ if not self.supports_autocommit and autocommit: self.log.warn( ("%s connection doesn't support " "autocommit but autocommit activated."), getattr(self, self.conn_name_attr)) conn.autocommit = autocommit def get_autocommit(self, conn): """ Get autocommit setting for the provided connection. Return True if conn.autocommit is set to True. Return False if conn.autocommit is not set or set to False or conn does not support autocommit. :param conn: Connection to get autocommit setting from. :type conn: connection object. :return: connection autocommit setting. :rtype bool. """ return getattr(conn, 'autocommit', False) and self.supports_autocommit def get_cursor(self): """ Returns a cursor """ return self.get_conn().cursor() def insert_rows(self, table, rows, target_fields=None, commit_every=1000, replace=False): """ A generic way to insert a set of tuples into a table, a new transaction is created every commit_every rows :param table: Name of the target table :type table: str :param rows: The rows to insert into the table :type rows: iterable of tuples :param target_fields: The names of the columns to fill in the table :type target_fields: iterable of strings :param commit_every: The maximum number of rows to insert in one transaction. Set to 0 to insert all rows in one transaction. :type commit_every: int :param replace: Whether to replace instead of insert :type replace: bool """ if target_fields: target_fields = ", ".join(target_fields) target_fields = "({})".format(target_fields) else: target_fields = '' i = 0 with closing(self.get_conn()) as conn: if self.supports_autocommit: self.set_autocommit(conn, False) conn.commit() with closing(conn.cursor()) as cur: for i, row in enumerate(rows, 1): lst = [] for cell in row: lst.append(self._serialize_cell(cell, conn)) values = tuple(lst) placeholders = ["%s", ] * len(values) if not replace: sql = "INSERT INTO " else: sql = "REPLACE INTO " sql += "{0} {1} VALUES ({2})".format( table, target_fields, ",".join(placeholders)) cur.execute(sql, values) if commit_every and i % commit_every == 0: conn.commit() self.log.info( "Loaded {i} into {table} rows so far".format(**locals()) ) conn.commit() self.log.info( "Done loading. Loaded a total of {i} rows".format(**locals())) @staticmethod def _serialize_cell(cell, conn=None): """ Returns the SQL literal of the cell as a string. :param cell: The cell to insert into the table :type cell: object :param conn: The database connection :type conn: connection object :return: The serialized cell :rtype: str """ if cell is None: return None if isinstance(cell, datetime): return cell.isoformat() return str(cell) def bulk_dump(self, table, tmp_file): """ Dumps a database table into a tab-delimited file :param table: The name of the source table :type table: str :param tmp_file: The path of the target file :type tmp_file: str """ raise NotImplementedError() def bulk_load(self, table, tmp_file): """ Loads a tab-delimited file into a database table :param table: The name of the target table :type table: str :param tmp_file: The path of the file to load into the table :type tmp_file: str """ raise NotImplementedError()
apache-2.0
mode89/snn
izhikevich/classical_conditioning.py
1
4842
import collections import matplotlib.pyplot as plt import numpy import random random.seed(0) T = 3600 * 10 N = 1000 Ne = int(N * 0.8) Ni = N - Ne M = int(N * 0.1) D = 1 a = numpy.concatenate(( 0.02 * numpy.ones(Ne), 0.1 * numpy.ones(Ni) )) d = numpy.concatenate(( 8 * numpy.ones(Ne), 2 * numpy.ones(Ni) )) # generate post-synaptic connections post = numpy.empty((N, M), dtype=numpy.int) for i in range(Ne): post[i,:] = random.sample(range(N), M) for i in range(Ne, N): post[i,:] = random.sample(range(Ne), M) # find pre-synaptic connections to excitatory neurons pre = [[] for i in range(N)] for i in range(Ne): for j in range(M): pre[post[i,j]].append(i) # generate delays delays = [[[] for i in range(D)] for j in range(N)] for i in range(Ne): for j in range(M): delays[i][int(D * random.random())].append(post[i,j]) for i in range(Ne, N): for j in range(M): delays[i][0].append(post[i,j]) # generate matrix of synaptic weights s = numpy.zeros((N, N)) for i in range(Ne): s[i, post[i,:]] = 1.0 for i in range(Ne, N): s[i, post[i,:]] = -1.0 v = -65 * numpy.ones(N) u = 0.2 * v firings = collections.deque(maxlen=D) STDP = numpy.zeros(N) sm = 4.0 sd = numpy.zeros((N, N)) DA = 0 rew = [] ST = 100 stimulus = [[] for i in range(ST)] for i in range(ST): stimulus[i] = random.sample(range(N), 50) next_stimuli = 0 s_mean_indices = [i for i in range(N) if i not in stimulus[0]] class data: firings = [] stimulus = [] s0_mean = [] s_mean = [] plt.subplot(211) scatter = plt.scatter([], [], color="black", marker=".") plt.subplot(212) s_mean_line, s0_mean_line = plt.plot([], [], [], []) for sec in range(T): data.firings = [] data.stimulus = [] for ms in range(1000): t = sec * 1000 + ms print(t) # provide random input I = 13.0 * numpy.array( [random.uniform(-0.5, 0.5) for i in range(N)]) # issuse random stimuli if t == next_stimuli: print("Stimuli") next_stimuli = t + random.randint(100, 300) stimuli = random.randrange(0, ST) neurons = stimulus[stimuli] I[neurons] = 17.0 # reward stimuli with index 0 if stimuli == 0: print("Reward") rew.append(t + random.randrange(0, 1000)) data.stimulus.append(t) # identify fired neurons fired = numpy.argwhere(v >= 30) if fired.size > 0: v[fired] = -65.0 u[fired] = u[fired] + d[fired] # deliver spikes to post-synaptic neurons firings.appendleft(fired) for time in range(len(firings)): for fired_neuron in firings[time]: post_neurons = delays[fired_neuron][time] if len(post_neurons) > 0: I[post_neurons] += s[fired_neuron, post_neurons] # update post-synaptic potential for i in range(2): v += 0.5 * ((0.04 * v + 5.0) * v + 140.0 - u + I) u += a * (0.2 * v - u) # update eligibility trace STDP[fired] = 0.1 for fired_neuron in fired: if fired_neuron < Ne: post_neurons = post[fired_neuron,:] sd[fired_neuron, post_neurons] -= 1.2 * STDP[post_neurons] pre_neurons = pre[fired_neuron] sd[pre_neurons, fired_neuron] += STDP[pre_neurons] STDP *= 0.95 # update synaptics weights DA *= 0.995 if t % 10 == 0: s[0:Ne,:] = numpy.maximum(0.0, numpy.minimum(sm, s[0:Ne,:] + (0.002 + DA) * sd[0:Ne,:])) sd *= 0.99 # issue reward if any([it == t for it in rew]): print("Increase dopamine") DA += 0.5 # save plotting data data.firings.append(fired) data.s_mean.append( numpy.sum(s[s_mean_indices,0:Ne]) / ((N - 50) * M)) data.s0_mean.append( numpy.sum(s[stimulus[0],0:Ne]) / (50 * M)) # Update plots plt.subplot(211) points = [] for ms in range(1000): t = sec * 1000 + ms for fired in data.firings[ms]: points.append((t, fired)) # plot spikes scatter.set_offsets(points) plt.xlim(sec * 1000, sec * 1000 + 1000) plt.ylim(0, N) # plot rewarded stimulus for st in data.stimulus: plt.axvline(st, color="red") # plot mean value of synaptic strength s_mean_ax = plt.subplot(212) s_mean_line.set_data( range(sec * 1000 + 1000), data.s_mean) s0_mean_line.set_data( range(sec * 1000 + 1000), data.s0_mean) s_mean_ax.relim() s_mean_ax.set_xlim(0, sec * 1000 + 1000) s_mean_ax.autoscale_view() # update UI plt.ion() plt.pause(0.01)
mit
bhzunami/reanalytics
app/controller/report/report_generator.py
1
26294
from flask import current_app from ...models import AnalyticView, Location from ... import db import datetime as dt import pandas as pd import os # To sort the index in the excel file we define a global index sort_index = [1, 2, 3, 4, 5, 6, 0] # We use 0...6 for the header definition to use the # same index for every type. This is the translation # to write in the excel headers = { 'room': { 0: 'not defined', 1: '1-1.5', 2: '2-2.5', 3: '3-3.5', 4: '4-4.5', 5: '5-5.5', 6: '6+' }, 'price': { 0: 'not defined', 1: '<1000', 2: '1000 - 1499', 3: '1500 - 1999', 4: '2000 - 2499', 5: '2500 - 3000', 6: '>=3000'}, 'area': { 0: 'not defined', 1: '<50', 2: '50 - 99', 3: '100 - 149', 4: '150 - 199', 5: '>= 200', 6: 'khjggkjh'} } # Group functions def group_by_rooms(value): if value >= 6: return 6 return value def group_by_price(value): if value == 0: return 0 if value < 1000: return 1 elif value >= 1000 and value < 1500: return 2 elif value >= 1500 and value < 2000: return 3 elif value >= 2000 and value < 2500: return 4 elif value >= 2500 and value < 3000: return 5 else: return 6 def group_by_area(value): if value == 0: return 0 if value < 50: return 1 elif value >= 50 and value < 100: return 2 elif value >= 100 and value < 150: return 3 elif value >= 150 and value < 200: return 4 else: return 5 class ReportGenerator(object): def __init__(self, plz, type, year, report_id): """Prepare a new excel file, formats and load the data from the database """ self.location = Location.query.filter_by(plz=plz).first() # Create the filename self.file_name = os.path.join(current_app.config['REPORT_DIR'], 'Report_{}.xls'.format(report_id)) # Create a writer self.writer = pd.ExcelWriter(self.file_name, engine='xlsxwriter', options={'nan_inf_to_errors': True}) self.workbook = self.writer.book # http://xlsxwriter.readthedocs.io/format.html self.formats = { 'yellow_bar': self.workbook.add_format({'bg_color': '#FFFF00', 'font_color': '#000000', 'bold': True}), 'reanalytic_clolor': self.workbook.add_format({'bg_color': '#065f69', 'font_color': '#FFFFFF', 'bold': True, 'font_size': 20, 'valign': 'vcenter'}), 'bold': self.workbook.add_format({'bold': True}), 'merge_format': self.workbook.add_format({'align': 'center'}), 'title': self.workbook.add_format({'bold': True, 'font_size': 20}), 'h1': self.workbook.add_format({'bold': True, 'font_size': 18}), 'h2': self.workbook.add_format({'bold': True, 'font_size': 16}), 'h3': self.workbook.add_format({'font_size': 14}), 'percent': self.workbook.add_format({'num_format': '0.00%'}), } # Select the data from view # Actual data means get only ads which are at this time active -> not finished self.actual_data = pd.read_sql_query( db.select([AnalyticView.rooms, AnalyticView.price, AnalyticView.area, AnalyticView.plz, AnalyticView.district_nr, AnalyticView.cdate, AnalyticView.edate]) .where(AnalyticView.canton_nr == self.location.canton_nr) .where(AnalyticView.type == type) # .where(AnalyticView.edate == dt.datetime.today()), .where(AnalyticView.edate == "2016-07-10"), db.session.bind, parse_dates=['cdate', 'edate']) # historical data means all ads from a period of time self.historical_data = pd.read_sql_query( db.select([AnalyticView.rooms, AnalyticView.price, AnalyticView.area, AnalyticView.plz, AnalyticView.district_nr, AnalyticView.cdate, AnalyticView.edate]) .where(AnalyticView.plz == self.location.plz) .where(AnalyticView.type == type) .where(AnalyticView.cyear >= year), db.session.bind, # index_col=['cdate'], parse_dates=['cdate', 'edate']) def make_title_sheet(self): """ Make a title sheet with some overview data """ worksheet = self.workbook.add_worksheet('Kapitalübersicht') worksheet.set_column(0, 0, 20) worksheet.set_row(5, 30) worksheet.write('A6', 'REANALYTICS', self.formats['title']) worksheet.merge_range('A9:M12', 'Report für {} {}'.format(self.location.plz, self.location.locality), self.formats['reanalytic_clolor']) worksheet.write('A15', 'Datum', self.formats['bold']) worksheet.write('B15', '{}'.format(dt.datetime.today().strftime("%d.%m.%Y"))) worksheet.write('A16', 'Lizensiert für', self.formats['bold']) worksheet.write('B16', 'Linus Schenk', ) worksheet.write('A18', 'Powered by reanalytic.ch', self.formats['bold']) def make_quantitive_analysis(self): """ Mengenanalyse """ # Print scatterplot data self.write_dataframe(df=self.actual_data[(self.actual_data.price != 0) & (self.actual_data.area != 0) & (self.actual_data.plz == self.location.plz)] [['area', 'price']].transpose(), ws=self.workbook.add_worksheet('scatter_plot_data'), row=1, title='Data', overwriteHeaders=['area', 'price']) # Y1 sheetname = 'Mengenanalyse' worksheet = self.workbook.add_worksheet(sheetname) worksheet.set_row(0, 30) worksheet.write('A1', 'Mengenanalyse', self.formats['title']) # Count worksheet.write(1, 0, "Currently available apartments in {}".format( self.location.plz)) worksheet.write(1, 1, len(self.actual_data[self.actual_data.plz == self.location.plz].index)) worksheet.write(2, 0, "Currently available apartments in {}".format(self.location.district)) worksheet.write(2, 1, len(self.actual_data[self.actual_data.district_nr == self.location.district_nr].index)) worksheet.write(3, 0, "Currently available apartments in {}".format(self.location.canton)) worksheet.write(3, 1, len(self.actual_data.index)) # Rooms # - - - - self.actual_data['grooms'] = self.actual_data.rooms.apply(group_by_rooms) rooms = self.build_percent_data_frame('rooms', 'grooms') index = 5 # Insert in excel index = self.write_dataframe(df=rooms, ws=worksheet, row=index, title='rooms', type='room', format=self.formats['percent']) worksheet.write(index, 0, 'Nicht definiert') worksheet.write(index, 1, self.actual_data.loc[self.actual_data.rooms == 0] .count().rooms) # Price # - - - - - self.actual_data['gprice'] = self.actual_data.loc[self.actual_data.price != 0].price.apply(group_by_price) prices = self.build_percent_data_frame('price', 'gprice') # Insert in excel index = self.write_dataframe(df=prices, ws=worksheet, row=index+2, title='Preis', type='price', format=self.formats['percent']) worksheet.write(index, 0, 'Nicht definiert') worksheet.write(index, 1, self.actual_data.loc[self.actual_data.price == 0] .count().price) # Area # - - - - self.actual_data['garea'] = self.actual_data.loc[self.actual_data.area != 0].area.apply(group_by_area) areas = self.build_percent_data_frame('area', 'garea') # Insert in excel index = self.write_dataframe(df=areas, ws=worksheet, row=index+2, title='Area', type='area', format=self.formats['percent']) worksheet.write(index, 0, 'Nicht definiert') worksheet.write(index, 1, self.actual_data.loc[self.actual_data.area == 0] .count().price) index += 2 # Y2 # ======================================================================= # Natural growth: # ======================================================================= self.historical_data['grooms'] = self.historical_data.rooms.apply(group_by_rooms) self.historical_data['gprice'] = self.historical_data.price.apply(group_by_price) self.historical_data['garea'] = self.historical_data.area.apply(group_by_area) worksheet = self.workbook.add_worksheet('Bestandesentwicklung') worksheet.write(0, 0, 'Bestandesentwicklung', self.formats['h2']) index = 1 # Create Timeperiod data cdata = self.historical_data.set_index('cdate') edata = self.historical_data.set_index('edate') # Rooms # - - - - crooms = self.make_time_series(cdata, 'grooms') erooms = self.make_time_series(edata, 'grooms') self.write_dataframe( df=crooms, ws=worksheet, row=index+1, title='Rooms new', type='room') self.write_dataframe( df=erooms, ws=worksheet, row=index+1, col=10, title='Room: closed', type='room') index = self.write_dataframe( df=crooms - erooms, ws=worksheet, row=index+1, col=20, title='Room difference', type='room') # Price # - - - - cprice = self.make_time_series(cdata, 'gprice') eprice = self.make_time_series(edata, 'gprice') self.write_dataframe( df=cprice, ws=worksheet, row=index+2, title='Price new', type='price') self.write_dataframe( df=eprice, ws=worksheet, row=index+2, col=10, title='Price closed', type='price') index = self.write_dataframe( df=cprice - eprice, ws=worksheet, row=index+2, col=20, title='Price Difference', type='price') # Area # - - - - carea = self.make_time_series(cdata, 'garea') earea = self.make_time_series(edata, 'garea') self.write_dataframe( df=carea, ws=worksheet, row=index+2, title='Area new', type='area') self.write_dataframe( df=earea, ws=worksheet, row=index+2, col=10, title='Area close', type='area') index = self.write_dataframe( df=carea - earea, ws=worksheet, row=index+2, col=20, title='Area Difference', type='area') index += 2 # Y3 # Durchschnittliche Wohnungsgrösse (m2) self.actual_data['garea'] = self.actual_data.area.apply(group_by_area) darea = self.actual_data.area.quantile([.25, .5, .75]) worksheet.write(index, 0, 'Durchschnittliche Wohnungsgrösse (m2)', self.formats['h2']) worksheet.write(index+1, 0, '0.25') worksheet.write(index+1, 1, darea[0.25]) worksheet.write(index+2, 0, '0.5') worksheet.write(index+2, 1, darea[0.5]) worksheet.write(index+3, 0, '0.75') worksheet.write(index+3, 1, darea[0.75]) index += 4 quantiles = [.25, .5, .75] mean_area = self.build_quantile_data('area', 'grooms', quantiles) index = self.write_dataframe( df=mean_area[self.location.plz] .reindex(sort_index, level=0) .unstack(1), ws=worksheet, row=index+2, title=self.location.plz, type='rooms') index = self.write_dataframe( df=mean_area[self.location.district] .reindex(sort_index, level=0) .unstack(1), ws=worksheet, row=index+2, title=self.location.district, type='rooms') index = self.write_dataframe( df=mean_area[self.location.canton] .reindex(sort_index, level=0) .unstack(1), ws=worksheet, row=index+2, title=self.location.canton, type='rooms') # Y4 def make_price_analysis(self): """ Preisanalyse """ sheetname = 'Preisanalyse' worksheet = self.workbook.add_worksheet(sheetname) worksheet.set_row(0, 30) worksheet.write('A1', 'Preisanalyse', self.formats['title']) index = 2 dprice = self.actual_data.loc[self.actual_data.price != 0].price.quantile([.25, .5, .75]) worksheet.write(index, 0, 'Mietpreisniveau allgemein', self.formats['h2']) worksheet.write(index+1, 0, '0.25') worksheet.write(index+1, 1, dprice[0.25]) worksheet.write(index+2, 0, '0.5') worksheet.write(index+2, 1, dprice[0.5]) worksheet.write(index+3, 0, '0.75') worksheet.write(index+3, 1, dprice[0.75]) index += 4 quantiles = [.5] index = self.write_dataframe( df=self.build_quantile_data('price', 'grooms', quantiles) .reindex(sort_index, level=0) .unstack(1), ws=worksheet, row=index+2, title='Room', type='room') index = self.write_dataframe( df=self.build_quantile_data('price', 'garea', quantiles) .reindex(sort_index, level=0) .unstack(1), ws=worksheet, row=index+2, title='Area', type='area') # Y5 # Price per square meter self.actual_data['price_per_m'] = self.actual_data.price / self.actual_data.loc[self.actual_data.area != 0].area index = self.write_dataframe( df=self.build_quantile_data('price_per_m', 'grooms', quantiles) .reindex(sort_index, level=0) .unstack(1), ws=worksheet, row=index+2, title='Price per m', type='room') # Entwicklung des Mietpreisniveaus self.historical_data['price_per_m'] = self.historical_data.price / self.historical_data.loc[self.historical_data.area != 0].area cdata = self.historical_data.set_index('cdate') crooms = self.make_time_seriesq(cdata, 'grooms', 'price_per_m') carea = self.make_time_seriesq(cdata, 'garea', 'price_per_m') index = self.write_dataframe( df=crooms, ws=worksheet, row=index+2, title='Preisentwicklung', type='room') index = self.write_dataframe( df=carea, ws=worksheet, row=index+2, title='Preis', type='area') # Y7 def make_timePeriod(self): """ Insertionsdauer """ import numpy as np from datetime import date, timedelta twomonthago = date.today() - timedelta(60) self.actual_data['duration'] = self.actual_data.loc[self.actual_data.edate <= twomonthago].edate - self.actual_data.loc[self.actual_data.cdate <= twomonthago].cdate worksheet = self.workbook.add_worksheet('Insertionsdauer') worksheet.set_row(0, 30) worksheet.write('A1', 'Insertionsdauer', self.formats['title']) index = 2 dduration = self.actual_data.duration.quantile([.25, .5, .75]) worksheet.write(index, 0, 'Insertionsdauer', self.formats['h2']) worksheet.write(index+1, 0, '0.25') worksheet.write(index+1, 1, dduration[0.25] / (np.timedelta64(1, 'h') * 24) ) worksheet.write(index+2, 0, '0.5') worksheet.write(index+2, 1, dduration[0.5]/(np.timedelta64(1, 'h') * 24)) worksheet.write(index+3, 0, '0.75') worksheet.write(index+3, 1, dduration[0.75]/(np.timedelta64(1, 'h') * 24)) index = 7 index = self.write_dataframe( df=self.build_tquantile_data('duration', 'grooms', 0.5).reindex(sort_index), ws=worksheet, row=index, title='Room', type='room') index = self.write_dataframe( df=self.build_tquantile_data('duration', 'gprice', 0.5).reindex(sort_index), ws=worksheet, row=index+2, title='Price', type='price') index = self.write_dataframe( df=self.build_tquantile_data('duration', 'garea', 0.5).reindex([1, 2, 3, 4, 5, 0]), ws=worksheet, row=index+2, title='Area', type='area') # Y8 # Von 2015 index += 2 self.historical_data['duration'] = self.historical_data.loc[self.historical_data.edate <= twomonthago].edate - self.historical_data.loc[self.historical_data.cdate <= twomonthago].cdate dduration = self.historical_data.duration.quantile([.25, .5, .75]) worksheet.write(index, 0, 'Insertionsdauer ab 2015', self.formats['h2']) worksheet.write(index+1, 0, '0.25') worksheet.write(index+1, 1, dduration[0.25] / (np.timedelta64(1, 'h') * 24)) worksheet.write(index+2, 0, '0.5') worksheet.write(index+2, 1, dduration[0.5]/(np.timedelta64(1, 'h') * 24)) worksheet.write(index+3, 0, '0.75') worksheet.write(index+3, 1, dduration[0.75]/(np.timedelta64(1, 'h') * 24)) index += 3 cdata = self.historical_data.set_index('cdate') crooms = self.make_time_seriesq(cdata, 'grooms', 'duration') cprice = self.make_time_seriesq(cdata, 'gprice', 'duration') carea = self.make_time_seriesq(cdata, 'garea', 'duration') index = self.write_dataframe( df=crooms, ws=worksheet, row=index+2, title='Entwicklung insertions dauer', type='room') index = self.write_dataframe( df=cprice, ws=worksheet, row=index+2, type='price') index = self.write_dataframe( df=carea, ws=worksheet, row=index+2, type='area') def finish(self): # Close the workbook # Write all datas to workbook just in case: worksheet = self.workbook.add_worksheet('actual_data') self.write_dataframe(df=self.actual_data.transpose(), ws=worksheet, overwriteHeaders=self.actual_data.keys().values.tolist()) worksheet = self.workbook.add_worksheet('historical_data') self.write_dataframe(df=self.historical_data.transpose(), ws=worksheet, overwriteHeaders=self.historical_data.keys().values.tolist()) self.workbook.close() def write_dataframe(self, df, ws, row=0, col=0, title=None, type=None, format=None, overwriteHeaders=None): """ Helper method to write a dataframe to an excel worksheet """ # Write title if we have a title if title: ws.write(row, col, '{}'.format(title), self.formats['h3']) row += 1 # Write headers # Normally we would have a type and with this type we print the correct header. # But it is also possible to give no type and overwrite the headers if type: for i in range(0, len(df.index)): ws.write(row, col+i+1, headers[type][df.index[i]]) row += 1 # If really nessessery you can overwrite the headers elif overwriteHeaders: for i in range(0, len(overwriteHeaders)): ws.write(row, col+i+1, overwriteHeaders[i]) row += 1 # Write down the data for i in range(df.shape[1]): if isinstance(df.keys()[i], tuple): ws.write(row+i, col, '{}'.format(df.keys()[i][0])) else: ws.write(row+i, col, '{}'.format(df.keys()[i])) df[df.keys()[i]] = df[df.keys()[i]].fillna(0) for j in range(df.shape[0]): ws.write(row+i, col+j+1, df[df.keys()[i]][df.index[j]], format) return row + df.shape[1] def build_percent_data_frame(self, name, group): """ Build dataframe on plz/location/canton and calculate the percentage for this """ return pd.DataFrame({ self.location.canton: self.actual_data.loc[self.actual_data[name] != 0] .groupby(group)[name] .count() / len(self.actual_data.loc[self.actual_data[name] != 0]), self.location.district: self.actual_data.loc[(self.actual_data[name] != 0) & (self.actual_data.district_nr == self.location.district_nr)] .groupby(group)[name] .count() / len(self.actual_data.loc[(self.actual_data[name] != 0) & (self.actual_data.district_nr == self.location.district_nr)]), self.location.plz: self.actual_data.loc[(self.actual_data[name] != 0) & (self.actual_data.plz == 4103)] .groupby(group)[name] .count() / len(self.actual_data.loc[(self.actual_data[name] != 0) & (self.actual_data.plz == self.location.plz)]) }) def build_quantile_data(self, name, group, quantiles=[]): """Create Dataframe for plz/location/canton as key and calculate the quantile for the name If you are not dealing with timeseries use this function! :param name: the attribute name you want the quantiles :param group: which attribute should be grouped :param quantiles: a list of floats for qunatile """ return pd.DataFrame({ self.location.canton: self.actual_data.loc[self.actual_data[name] != 0] .groupby(group)[name] .quantile(quantiles), self.location.district: self.actual_data.loc[(self.actual_data[name] != 0) & (self.actual_data.district_nr == self.location.district_nr)] .groupby(group)[name] .quantile(quantiles), self.location.plz: self.actual_data.loc[(self.actual_data[name] != 0) & (self.actual_data.plz == self.location.plz)] .groupby(group)[name] .quantile(quantiles) }) def build_tquantile_data(self, name, group, quantiles=[]): """Create Dataframe for plz/location/canton as key and calculate the quantile for the name This function deals with timeseries and for that we can not use the [data != 0] cause timeseries can not be used for that :param name: the attribute name you want the quantiles :param group: which attribute should be grouped :param quantiles: a list of floats for qunatile """ return pd.DataFrame({ # Canton self.location.canton: self.actual_data .groupby(group)[name] .quantile(quantiles), # District self.location.district: self.actual_data.loc[self.actual_data.district_nr == self.location.district_nr] .groupby(group)[name] .quantile(quantiles), # Plz self.location.plz: self.actual_data.loc[self.actual_data.plz == self.location.plz] .groupby(group)[name] .quantile(quantiles) }) def make_time_series(self, df, group): """ Build timeseries if a timeseris is a index you can group with pd.TimeGrouper("M") """ return df.groupby([pd.TimeGrouper("M"), group])[group].count().reindex(sort_index, level=1).unstack(0) def make_time_seriesq(self, df, group, attribute): return df.groupby([pd.TimeGrouper("M"), group])[attribute].quantile(.5).reindex(sort_index, level=1).unstack(0)
apache-2.0
gongzhitaao/tensorflow-adversarial
example/fgmt_mnist2.py
1
8717
""" Use fast gradient sign method to craft adversarial on MNIST. Dependencies: python3, tensorflow v1.4, numpy, matplotlib """ import os import numpy as np import matplotlib matplotlib.use('Agg') # noqa: E402 import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import tensorflow as tf from attacks import fgmt img_size = 28 img_chan = 1 n_classes = 10 print('\nLoading MNIST') mnist = tf.keras.datasets.mnist (X_train, y_train), (X_test, y_test) = mnist.load_data() X_train = np.reshape(X_train, [-1, img_size, img_size, img_chan]) X_train = X_train.astype(np.float32) / 255 X_test = np.reshape(X_test, [-1, img_size, img_size, img_chan]) X_test = X_test.astype(np.float32) / 255 to_categorical = tf.keras.utils.to_categorical y_train = to_categorical(y_train) y_test = to_categorical(y_test) print('\nSpliting data') ind = np.random.permutation(X_train.shape[0]) X_train, y_train = X_train[ind], y_train[ind] VALIDATION_SPLIT = 0.1 n = int(X_train.shape[0] * (1-VALIDATION_SPLIT)) X_valid = X_train[n:] X_train = X_train[:n] y_valid = y_train[n:] y_train = y_train[:n] print('\nConstruction graph') def model(x, logits=False, training=False): with tf.variable_scope('conv0'): z = tf.layers.conv2d(x, filters=32, kernel_size=[3, 3], padding='same', activation=tf.nn.relu) z = tf.layers.max_pooling2d(z, pool_size=[2, 2], strides=2) with tf.variable_scope('conv1'): z = tf.layers.conv2d(z, filters=64, kernel_size=[3, 3], padding='same', activation=tf.nn.relu) z = tf.layers.max_pooling2d(z, pool_size=[2, 2], strides=2) with tf.variable_scope('flatten'): shape = z.get_shape().as_list() z = tf.reshape(z, [-1, np.prod(shape[1:])]) with tf.variable_scope('mlp'): z = tf.layers.dense(z, units=128, activation=tf.nn.relu) z = tf.layers.dropout(z, rate=0.25, training=training) logits_ = tf.layers.dense(z, units=10, name='logits') y = tf.nn.softmax(logits_, name='ybar') if logits: return y, logits_ return y class Dummy: pass env = Dummy() with tf.variable_scope('model'): env.x = tf.placeholder(tf.float32, (None, img_size, img_size, img_chan), name='x') env.y = tf.placeholder(tf.float32, (None, n_classes), name='y') env.training = tf.placeholder_with_default(False, (), name='mode') env.ybar, logits = model(env.x, logits=True, training=env.training) with tf.variable_scope('acc'): count = tf.equal(tf.argmax(env.y, axis=1), tf.argmax(env.ybar, axis=1)) env.acc = tf.reduce_mean(tf.cast(count, tf.float32), name='acc') with tf.variable_scope('loss'): xent = tf.nn.softmax_cross_entropy_with_logits(labels=env.y, logits=logits) env.loss = tf.reduce_mean(xent, name='loss') with tf.variable_scope('train_op'): optimizer = tf.train.AdamOptimizer() env.train_op = optimizer.minimize(env.loss) env.saver = tf.train.Saver() with tf.variable_scope('model', reuse=True): env.adv_eps = tf.placeholder(tf.float32, (), name='adv_eps') env.adv_epochs = tf.placeholder(tf.int32, (), name='adv_epochs') env.adv_y = tf.placeholder(tf.int32, (), name='adv_y') env.x_fgmt = fgmt(model, env.x, y=env.adv_y, epochs=env.adv_epochs, eps=env.adv_eps) print('\nInitializing graph') sess = tf.InteractiveSession() sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) def evaluate(sess, env, X_data, y_data, batch_size=128): """ Evaluate TF model by running env.loss and env.acc. """ print('\nEvaluating') n_sample = X_data.shape[0] n_batch = int((n_sample+batch_size-1) / batch_size) loss, acc = 0, 0 for batch in range(n_batch): print(' batch {0}/{1}'.format(batch + 1, n_batch), end='\r') start = batch * batch_size end = min(n_sample, start + batch_size) cnt = end - start batch_loss, batch_acc = sess.run( [env.loss, env.acc], feed_dict={env.x: X_data[start:end], env.y: y_data[start:end]}) loss += batch_loss * cnt acc += batch_acc * cnt loss /= n_sample acc /= n_sample print(' loss: {0:.4f} acc: {1:.4f}'.format(loss, acc)) return loss, acc def train(sess, env, X_data, y_data, X_valid=None, y_valid=None, epochs=1, load=False, shuffle=True, batch_size=128, name='model'): """ Train a TF model by running env.train_op. """ if load: if not hasattr(env, 'saver'): return print('\nError: cannot find saver op') print('\nLoading saved model') return env.saver.restore(sess, 'model/{}'.format(name)) print('\nTrain model') n_sample = X_data.shape[0] n_batch = int((n_sample+batch_size-1) / batch_size) for epoch in range(epochs): print('\nEpoch {0}/{1}'.format(epoch + 1, epochs)) if shuffle: print('\nShuffling data') ind = np.arange(n_sample) np.random.shuffle(ind) X_data = X_data[ind] y_data = y_data[ind] for batch in range(n_batch): print(' batch {0}/{1}'.format(batch + 1, n_batch), end='\r') start = batch * batch_size end = min(n_sample, start + batch_size) sess.run(env.train_op, feed_dict={env.x: X_data[start:end], env.y: y_data[start:end], env.training: True}) if X_valid is not None: evaluate(sess, env, X_valid, y_valid) if hasattr(env, 'saver'): print('\n Saving model') os.makedirs('model', exist_ok=True) env.saver.save(sess, 'model/{}'.format(name)) def predict(sess, env, X_data, batch_size=128): """ Do inference by running env.ybar. """ print('\nPredicting') n_classes = env.ybar.get_shape().as_list()[1] n_sample = X_data.shape[0] n_batch = int((n_sample+batch_size-1) / batch_size) yval = np.empty((n_sample, n_classes)) for batch in range(n_batch): print(' batch {0}/{1}'.format(batch + 1, n_batch), end='\r') start = batch * batch_size end = min(n_sample, start + batch_size) y_batch = sess.run(env.ybar, feed_dict={env.x: X_data[start:end]}) yval[start:end] = y_batch print() return yval def make_fgmt(sess, env, X_data, epochs=1, eps=0.01, batch_size=128): """ Generate FGSM by running env.x_fgsm. """ print('\nMaking adversarials via FGSM') n_sample = X_data.shape[0] n_batch = int((n_sample + batch_size - 1) / batch_size) X_adv = np.empty_like(X_data) for batch in range(n_batch): print(' batch {0}/{1}'.format(batch + 1, n_batch), end='\r') start = batch * batch_size end = min(n_sample, start + batch_size) adv = sess.run(env.x_fgmt, feed_dict={ env.x: X_data[start:end], env.adv_y: np.random.choice(n_classes), env.adv_eps: eps, env.adv_epochs: epochs}) X_adv[start:end] = adv print() return X_adv print('\nTraining') train(sess, env, X_train, y_train, X_valid, y_valid, load=True, epochs=5, name='mnist') print('\nEvaluating on clean data') evaluate(sess, env, X_test, y_test) print('\nGenerating adversarial data') X_adv = make_fgmt(sess, env, X_test, eps=0.02, epochs=8) print('\nEvaluating on adversarial data') evaluate(sess, env, X_adv, y_test) print('\nRandomly sample adversarial data from each category') y1 = predict(sess, env, X_test) y2 = predict(sess, env, X_adv) z0 = np.argmax(y_test, axis=1) z1 = np.argmax(y1, axis=1) z2 = np.argmax(y2, axis=1) X_tmp = np.empty((10, 28, 28)) y_tmp = np.empty((10, 10)) for i in range(10): print('Target {0}'.format(i)) ind, = np.where(np.all([z0 == i, z1 == i, z2 != i], axis=0)) cur = np.random.choice(ind) X_tmp[i] = np.squeeze(X_adv[cur]) y_tmp[i] = y2[cur] print('\nPlotting results') fig = plt.figure(figsize=(10, 1.2)) gs = gridspec.GridSpec(1, 10, wspace=0.05, hspace=0.05) label = np.argmax(y_tmp, axis=1) proba = np.max(y_tmp, axis=1) for i in range(10): ax = fig.add_subplot(gs[0, i]) ax.imshow(X_tmp[i], cmap='gray', interpolation='none') ax.set_xticks([]) ax.set_yticks([]) ax.set_xlabel('{0} ({1:.2f})'.format(label[i], proba[i]), fontsize=12) print('\nSaving figure') gs.tight_layout(fig) os.makedirs('img', exist_ok=True) plt.savefig('img/fgmt_mnist2.png')
mit
mbayon/TFG-MachineLearning
venv/lib/python3.6/site-packages/pandas/__init__.py
6
5461
# pylint: disable-msg=W0614,W0401,W0611,W0622 # flake8: noqa __docformat__ = 'restructuredtext' # Let users know if they're missing any of our hard dependencies hard_dependencies = ("numpy", "pytz", "dateutil") missing_dependencies = [] for dependency in hard_dependencies: try: __import__(dependency) except ImportError as e: missing_dependencies.append(dependency) if missing_dependencies: raise ImportError( "Missing required dependencies {0}".format(missing_dependencies)) del hard_dependencies, dependency, missing_dependencies # numpy compat from pandas.compat.numpy import * try: from pandas._libs import (hashtable as _hashtable, lib as _lib, tslib as _tslib) except ImportError as e: # pragma: no cover # hack but overkill to use re module = str(e).lstrip('cannot import name ') raise ImportError("C extension: {0} not built. If you want to import " "pandas from the source directory, you may need to run " "'python setup.py build_ext --inplace --force' to build " "the C extensions first.".format(module)) from datetime import datetime # let init-time option registration happen import pandas.core.config_init from pandas.core.api import * from pandas.core.sparse.api import * from pandas.stats.api import * from pandas.tseries.api import * from pandas.core.computation.api import * from pandas.core.reshape.api import * # deprecate tools.plotting, plot_params and scatter_matrix on the top namespace import pandas.tools.plotting plot_params = pandas.plotting._style._Options(deprecated=True) # do not import deprecate to top namespace scatter_matrix = pandas.util._decorators.deprecate( 'pandas.scatter_matrix', pandas.plotting.scatter_matrix, 'pandas.plotting.scatter_matrix') from pandas.util._print_versions import show_versions from pandas.io.api import * from pandas.util._tester import test import pandas.testing # extension module deprecations from pandas.util._depr_module import _DeprecatedModule json = _DeprecatedModule(deprmod='pandas.json', moved={'dumps': 'pandas.io.json.dumps', 'loads': 'pandas.io.json.loads'}) parser = _DeprecatedModule(deprmod='pandas.parser', removals=['na_values'], moved={'CParserError': 'pandas.errors.ParserError'}) lib = _DeprecatedModule(deprmod='pandas.lib', deprmodto=False, moved={'Timestamp': 'pandas.Timestamp', 'Timedelta': 'pandas.Timedelta', 'NaT': 'pandas.NaT', 'infer_dtype': 'pandas.api.types.infer_dtype'}) tslib = _DeprecatedModule(deprmod='pandas.tslib', moved={'Timestamp': 'pandas.Timestamp', 'Timedelta': 'pandas.Timedelta', 'NaT': 'pandas.NaT', 'NaTType': 'type(pandas.NaT)', 'OutOfBoundsDatetime': 'pandas.errors.OutOfBoundsDatetime'}) # use the closest tagged version if possible from ._version import get_versions v = get_versions() __version__ = v.get('closest-tag', v['version']) del get_versions, v # module level doc-string __doc__ = """ pandas - a powerful data analysis and manipulation library for Python ===================================================================== **pandas** is a Python package providing fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, **real world** data analysis in Python. Additionally, it has the broader goal of becoming **the most powerful and flexible open source data analysis / manipulation tool available in any language**. It is already well on its way toward this goal. Main Features ------------- Here are just a few of the things that pandas does well: - Easy handling of missing data in floating point as well as non-floating point data - Size mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects - Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let `Series`, `DataFrame`, etc. automatically align the data for you in computations - Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data - Make it easy to convert ragged, differently-indexed data in other Python and NumPy data structures into DataFrame objects - Intelligent label-based slicing, fancy indexing, and subsetting of large data sets - Intuitive merging and joining data sets - Flexible reshaping and pivoting of data sets - Hierarchical labeling of axes (possible to have multiple labels per tick) - Robust IO tools for loading data from flat files (CSV and delimited), Excel files, databases, and saving/loading data from the ultrafast HDF5 format - Time series-specific functionality: date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging, etc. """
mit
brianjpetersen/homely
homely/__init__.py
1
6066
# standard libraries import os import sys import copy import itertools # third party libraries from qtpy import QtGui, QtCore, QtWidgets try: from serial.tools.list_ports import comports as list_serial_ports except: pass try: import _winreg as winreg except ImportError: pass try: import win32api except ImportError: pass # first party libraries from . import qmatplotlib as matplotlib __where__ = os.path.dirname(os.path.abspath(__file__)) with open(os.path.join(__where__, '..', 'VERSION'), 'rb') as f: __version__ = f.read() class QConsoleLog(QtWidgets.QPlainTextEdit): def __init__(self, stdout=True, stderr=True, *args, **kwargs): super(QConsoleLog, self).__init__(*args, **kwargs) # only allow reads self.setReadOnly(True) # change default colors palette = QtWidgets.QPalette() palette.setColor(QtGui.QPalette.Base, QtGui.QColor(0, 0, 0)) palette.setColor(QtGui.QPalette.Text, QtGui.QColor(255, 255, 255)) self.setPalette(palette) # capture outputs, as appropriate if stdout: sys.stdout = self if stderr: sys.stderr = self def flush(self): pass def write(self, s): self.moveCursor(QtWidgets.QTextCursor.End) self.insertPlainText(s) def _get_text(self): return self.toPlainText() text = property(_get_text) class QFormLayout(QtWidgets.QFormLayout): def __init__(self, *args, **kwargs): super(QFormLayout, self).__init__(*args, **kwargs) self.fieldLabel = {} def disableField(self, field): field.setDisabled(True) label = self.fieldLabel[field] label.setDisabled(True) def enableField(self, field): field.setEnabled(True) label = self.fieldLabel[field] label.setEnabled(True) def addRow(self, label, widget, stretch=True): layout = QtWidgets.QHBoxLayout() if issubclass(type(widget), QtWidgets.QLayout): layout.addLayout(widget) elif issubclass(type(widget), QtWidgets.QWidget): layout.addWidget(widget) else: raise ValueError() if stretch: layout.addStretch() super(QFormLayout, self).addRow(label, layout) self.fieldLabel[widget] = self.labelForField(layout) class QViewComboBox(QtWidgets.QWidget): item_selection_changed = QtCore.pyqtSignal() def __init__(self, view, add_selected=True, sleep=None, editable=False, *args, **kwargs): super(QViewComboBox, self).__init__(*args, **kwargs) self.ComboBox = QtWidgets.QComboBox() self.ComboBox.setEditable(editable) main_layout = QtWidgets.QHBoxLayout() main_layout.setContentsMargins(0, 0, 0, 0) self.ComboBox.currentIndexChanged.connect(lambda: self.item_selection_changed.emit()) self._view = view self.add_selected = add_selected self._sleep = sleep if self._sleep is not None: assert type(self._sleep) == int self.timer = QtCore.QTimer() self.timer.timeout.connect(self.update_items) self.timer.start(1000*int(self._sleep)) self.update_items() self.refreshButton = QtWidgets.QPushButton() fname = os.path.join(__where__, 'reload.png') self.refreshButton.setIcon(QtGui.QIcon(fname)) self.refreshButton.setFixedSize(24, 24) self.refreshButton.clicked.connect(self.update_items) self.setLayout(main_layout) main_layout.addWidget(self.ComboBox) main_layout.addWidget(self.refreshButton) def update_items(self): self.ComboBox.blockSignals(True) current_item_selected = copy.deepcopy(self.selected_item) new_items = self._view() self.ComboBox.clear() self.ComboBox.addItems(list(new_items)) current_item_reselected = False for indx in range(self.ComboBox.count()): if self.ComboBox.itemText(indx) == current_item_selected: self.ComboBox.setCurrentIndex(indx) current_item_reselected = True break self.ComboBox.blockSignals(False) if not current_item_reselected: indx = 0 self.ComboBox.currentIndexChanged.emit(indx) def currentIndex(self): indx = self.ComboBox.currentIndex() return int(indx) def itemText(self, indx): item = self.ComboBox.itemText(indx) return str(item) def _get_selected_item(self): indx = self.currentIndex() item = self.itemText(indx) return str(item) selected_item = property(_get_selected_item) class QSerialPortSelector(QViewComboBox): def __init__(self, *args, **kwargs): super(QSerialPortSelector, self).__init__(self.available_serial_ports, *args, **kwargs) def available_serial_ports(self): ports = [] if sys.platform.startswith('win'): path = 'HARDWARE\\DEVICEMAP\\SERIALCOMM' try: key = winreg.OpenKey(winreg.HKEY_LOCAL_MACHINE, path) except: return [] for i in itertools.count(): try: port = str(winreg.EnumValue(key, i)[1]) ports.append(port) except EnvironmentError: break else: for port, _, _ in list_serial_ports(): ports.append(port) return ports class QPeripheralDriveSelector(QViewComboBox): def __init__(self, *args, **kwargs): super(QPeripheralDriveSelector, self).__init__(self.available_peripheral_drives, *args, **kwargs) def available_peripheral_drives(self): """ NB: this is only set up for Windows machines currently. """ try: drives = win32api.GetLogicalDriveStrings() drives = [drive for drive in drives.split('\000') if drive and drive != 'C:\\'] return drives except: return []
mit
hansiu/pathways-analysis
docs/conf.py
3
5764
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Pathway Analysis documentation build configuration file, created by # sphinx-quickstart on Thu Oct 12 11:44:06 2017. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath('..')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.intersphinx', 'sphinx.ext.coverage', 'sphinx.ext.mathjax', 'sphinx.ext.viewcode', 'sphinx.ext.napoleon', 'sphinx_autodoc_annotation', 'sphinx_autodoc_typehints' ] add_module_names = False # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = 'Pathway Analysis' copyright = '2017, KNBiBS' author = 'KNBiBS' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.1' # The full version, including alpha/beta/rc tags. release = '0.1' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = { 'github_button': True, 'github_user': 'kn-bibs', 'github_repo': 'pathways-analysis', 'github_type': 'star', 'travis_button': True, } # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # This is required for the alabaster theme # refs: http://alabaster.readthedocs.io/en/latest/installation.html#sidebars html_sidebars = { '**': [ 'about.html', 'navigation.html', 'relations.html', # needs 'show_related': True theme option to display 'searchbox.html', 'donate.html', ] } # -- Options for HTMLHelp output ------------------------------------------ # Output file base name for HTML help builder. htmlhelp_basename = 'PathwayAnalysisdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'PathwayAnalysis.tex', 'Pathway Analysis Documentation', 'KNBiBS', 'manual'), ] # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'pathwayanalysis', 'Pathway Analysis Documentation', [author], 1) ] # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'PathwayAnalysis', 'Pathway Analysis Documentation', author, 'PathwayAnalysis', 'One line description of project.', 'Miscellaneous'), ] intersphinx_mapping = { 'python': ('https://docs.python.org/3.6', None), 'pandas': ('https://pandas.pydata.org/pandas-docs/stable/', None) }
mit
0x0all/Passage
examples/newsgroup.py
2
1787
from sklearn.datasets import fetch_20newsgroups categories = ['alt.atheism', 'sci.space'] newsgroups_train = fetch_20newsgroups(subset='train', remove=('headers', 'footers', 'quotes'), categories=categories) newsgroups_test = fetch_20newsgroups(subset='test', remove=('headers', 'footers', 'quotes'), categories=categories) print len(newsgroups_train.data), len(newsgroups_test.data) from sklearn import metrics from passage.preprocessing import Tokenizer from passage.layers import Embedding, GatedRecurrent, Dense from passage.models import RNN from passage.utils import save tokenizer = Tokenizer(min_df=10, max_features=50000) X_train = tokenizer.fit_transform(newsgroups_train.data) X_test = tokenizer.transform(newsgroups_test.data) Y_train = newsgroups_train.target Y_test = newsgroups_test.target print tokenizer.n_features layers = [ Embedding(size=128, n_features=tokenizer.n_features), GatedRecurrent(size=256, activation='tanh', gate_activation='steeper_sigmoid', init='orthogonal', seq_output=False), Dense(size=1, activation='sigmoid', init='orthogonal') # sigmoid for binary classification ] model = RNN(layers=layers, cost='bce') # bce is classification loss for binary classification and sigmoid output for i in range(2): model.fit(X_train, Y_train, n_epochs=1) tr_preds = model.predict(X_train[:len(Y_test)]) te_preds = model.predict(X_test) tr_acc = metrics.accuracy_score(Y_train[:len(Y_test)], tr_preds > 0.5) te_acc = metrics.accuracy_score(Y_test, te_preds > 0.5) print i, tr_acc, te_acc # dataset too small to fully utilize Passage save(model, 'model.pkl')
mit
cgre-aachen/gempy
examples/tutorials/ch1_fundamentals/ch1_6_2d_visualization.py
1
6065
""" 1.6: 2D Visualization. ====================== """ # %% # Importing GemPy import gempy as gp # Importing auxiliary libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt np.random.seed(1515) pd.set_option('precision', 2) # %% # Model interpolation # ~~~~~~~~~~~~~~~~~~~ # # %% # Data Preparation data_path = 'https://raw.githubusercontent.com/cgre-aachen/gempy_data/master/' geo_data = gp.create_data('viz_2d', [0, 1000, 0, 1000, 0, 1000], resolution=[10, 10, 10], path_o=data_path + "/data/input_data/jan_models/model5_orientations.csv", path_i=data_path + "/data/input_data/jan_models/model5_surface_points.csv") # %% gp.plot_2d(geo_data) # %% geo_data.set_topography(d_z=(500, 1000)) # %% section_dict = {'section1': ([0, 0], [1000, 1000], [100, 80]), 'section2': ([800, 0], [800, 1000], [150, 100]), 'section3': ([50, 200], [100, 500], [200, 150])} # %% geo_data.set_section_grid(section_dict) gp.plot.plot_section_traces(geo_data) # %% geo_data.grid.sections # %% gp.set_interpolator(geo_data, theano_optimizer='fast_compile') # %% gp.map_stack_to_surfaces(geo_data, {"Fault_Series": 'fault', "Strat_Series": ('rock2', 'rock1')}) geo_data.set_is_fault(['Fault_Series']) # %% geo_data.get_active_grids() # %% gp.compute_model(geo_data) # %% # new plotting api gp.plot_2d(geo_data, section_names=['section1']) # %% # or # %% gp.plot.plot_2d(geo_data, section_names=['section1']) # %% # Plot 2d: Object oriented: # ------------------------ # # %% # One plot # ^^^^^^^^ # # %% p = gp.plot_2d(geo_data, section_names=[], direction=None, show=False) p.fig.show() # %% p = gp.plot_2d(geo_data, section_names=[], direction=None, show=False) # -----new code------ sec_name = 'section1' s1 = p.add_section(sec_name) p.plot_data(s1, sec_name, projection_distance=200) p.fig.show() # %% p = gp.plot_2d(geo_data, section_names=[], direction=None, show=False) sec_name = 'section1' s1 = p.add_section(sec_name) # -----new code------ p.plot_data(s1, sec_name, projection_distance=200) p.plot_contacts(s1, sec_name) p.fig.show() # %% p = gp.plot_2d(geo_data, section_names=[], direction=None, show=False) sec_name = 'section1' s1 = p.add_section(sec_name) p.plot_data(s1, sec_name, projection_distance=200) p.plot_contacts(s1, sec_name) # -----new code------ p.plot_lith(s1, sec_name) p.plot_topography(s1, sec_name) p.fig.show() # %% # Several plots # ^^^^^^^^^^^^^ # # %% sec_name = 'section1' sec_name_2 = 'section3' p2 = gp.plot_2d(geo_data, n_axis=3, figsize=(15, 15), # General fig options section_names=[sec_name, 'topography'], cell_number=[3], # Defining the sections show_data=False, show_lith=False, show_scalar=False, show_boundaries=False) # %% # Create the section. This loacte the axes and give the right # aspect ratio and labels p2 = gp.plot_2d(geo_data, n_axis=3, figsize=(15, 15), # General fig options section_names=[sec_name, 'topography'], cell_number=[3], # Defining the sections show_data=False, show_lith=False, show_scalar=False, show_boundaries=False, show=False) # -----new code------ s1 = p2.add_section(sec_name_2, ax_pos=224) p2.fig.show() # %% # Axes 0 p2 = gp.plot_2d(geo_data, n_axis=3, figsize=(15, 15), # General fig options section_names=[sec_name, 'topography'], cell_number=[3], # Defining the sections show_data=False, show_lith=False, show_scalar=False, show_boundaries=False, show=False) s1 = p2.add_section(sec_name_2, ax_pos=224) # -----new code------ p2.plot_contacts(s1, sec_name_2) p2.plot_lith(s1, sec_name_2) p2.plot_data(s1, sec_name_2, projection_distance=200) p2.plot_topography(s1, sec_name_2) p2.fig.show() # %% # Axes 1 # sphinx_gallery_thumbnail_number = 12 p2 = gp.plot_2d(geo_data, n_axis=3, figsize=(15, 15), # General fig options section_names=[sec_name, 'topography'], cell_number=[3], # Defining the sections show_data=False, show_lith=False, show_scalar=False, show_boundaries=False, show=False) s1 = p2.add_section(sec_name_2, ax_pos=224) p2.plot_contacts(s1, sec_name_2) p2.plot_lith(s1, sec_name_2) p2.plot_data(s1, sec_name_2, projection_distance=200) p2.plot_topography(s1, sec_name_2) # -----new code------ p2.plot_contacts(p2.axes[0], cell_number=3) p2.plot_scalar_field(p2.axes[0], cell_number=3, series_n=1) p2.fig.show() # %% # Axes2 p2 = gp.plot_2d(geo_data, n_axis=3, figsize=(15, 15), # General fig options section_names=[sec_name, 'topography'], cell_number=[3], # Defining the sections show_data=False, show_lith=False, show_scalar=False, show_boundaries=False, show=False) s1 = p2.add_section(sec_name_2, ax_pos=224) p2.plot_contacts(s1, sec_name_2) p2.plot_lith(s1, sec_name_2) p2.plot_data(s1, sec_name_2, projection_distance=200) p2.plot_topography(s1, sec_name_2) p2.plot_contacts(p2.axes[0], cell_number=3) p2.plot_scalar_field(p2.axes[0], cell_number=3, series_n=1) # -----new code------ p2.plot_lith(p2.axes[1], 'topography') p2.plot_contacts(p2.axes[1], 'topography') p2.fig.show() # %% # Plotting traces: # '''''''''''''''' # # %% p2.plot_section_traces(p2.axes[1]) p2.fig.show() # %% gp.plot.plot_section_traces(geo_data) # %% # Plot API # -------- # # %% # If nothing is passed, a Plot2D object is created and therefore you are # in the same situation as above: # # %% p3 = gp.plot_2d(geo_data) # %% # Alternatively you can pass section\_names, cell\_numbers + direction or # any combination of the above: # # %% gp.plot_2d(geo_data, section_names=['topography']) # %% gp.plot_2d(geo_data, section_names=['section1']) # %% gp.plot_2d(geo_data, section_names=['section1', 'section2']) # %% gp.plot_2d(geo_data, figsize=(15, 15), section_names=['section1', 'section2', 'topography'], cell_number='mid')
lgpl-3.0
NunoEdgarGub1/scikit-learn
sklearn/tests/test_cross_validation.py
70
41943
"""Test the cross_validation module""" from __future__ import division import warnings import numpy as np from scipy.sparse import coo_matrix from scipy import stats from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import ignore_warnings from sklearn.utils.mocking import CheckingClassifier, MockDataFrame from sklearn import cross_validation as cval from sklearn.datasets import make_regression from sklearn.datasets import load_boston from sklearn.datasets import load_digits from sklearn.datasets import load_iris from sklearn.metrics import explained_variance_score from sklearn.metrics import make_scorer from sklearn.metrics import precision_score from sklearn.externals import six from sklearn.externals.six.moves import zip from sklearn.linear_model import Ridge from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.cluster import KMeans from sklearn.preprocessing import Imputer, LabelBinarizer from sklearn.pipeline import Pipeline class MockClassifier(object): """Dummy classifier to test the cross-validation""" def __init__(self, a=0, allow_nd=False): self.a = a self.allow_nd = allow_nd def fit(self, X, Y=None, sample_weight=None, class_prior=None, sparse_sample_weight=None, sparse_param=None, dummy_int=None, dummy_str=None, dummy_obj=None, callback=None): """The dummy arguments are to test that this fit function can accept non-array arguments through cross-validation, such as: - int - str (this is actually array-like) - object - function """ self.dummy_int = dummy_int self.dummy_str = dummy_str self.dummy_obj = dummy_obj if callback is not None: callback(self) if self.allow_nd: X = X.reshape(len(X), -1) if X.ndim >= 3 and not self.allow_nd: raise ValueError('X cannot be d') if sample_weight is not None: assert_true(sample_weight.shape[0] == X.shape[0], 'MockClassifier extra fit_param sample_weight.shape[0]' ' is {0}, should be {1}'.format(sample_weight.shape[0], X.shape[0])) if class_prior is not None: assert_true(class_prior.shape[0] == len(np.unique(y)), 'MockClassifier extra fit_param class_prior.shape[0]' ' is {0}, should be {1}'.format(class_prior.shape[0], len(np.unique(y)))) if sparse_sample_weight is not None: fmt = ('MockClassifier extra fit_param sparse_sample_weight' '.shape[0] is {0}, should be {1}') assert_true(sparse_sample_weight.shape[0] == X.shape[0], fmt.format(sparse_sample_weight.shape[0], X.shape[0])) if sparse_param is not None: fmt = ('MockClassifier extra fit_param sparse_param.shape ' 'is ({0}, {1}), should be ({2}, {3})') assert_true(sparse_param.shape == P_sparse.shape, fmt.format(sparse_param.shape[0], sparse_param.shape[1], P_sparse.shape[0], P_sparse.shape[1])) return self def predict(self, T): if self.allow_nd: T = T.reshape(len(T), -1) return T[:, 0] def score(self, X=None, Y=None): return 1. / (1 + np.abs(self.a)) def get_params(self, deep=False): return {'a': self.a, 'allow_nd': self.allow_nd} X = np.ones((10, 2)) X_sparse = coo_matrix(X) W_sparse = coo_matrix((np.array([1]), (np.array([1]), np.array([0]))), shape=(10, 1)) P_sparse = coo_matrix(np.eye(5)) y = np.arange(10) // 2 ############################################################################## # Tests def check_valid_split(train, test, n_samples=None): # Use python sets to get more informative assertion failure messages train, test = set(train), set(test) # Train and test split should not overlap assert_equal(train.intersection(test), set()) if n_samples is not None: # Check that the union of train an test split cover all the indices assert_equal(train.union(test), set(range(n_samples))) def check_cv_coverage(cv, expected_n_iter=None, n_samples=None): # Check that a all the samples appear at least once in a test fold if expected_n_iter is not None: assert_equal(len(cv), expected_n_iter) else: expected_n_iter = len(cv) collected_test_samples = set() iterations = 0 for train, test in cv: check_valid_split(train, test, n_samples=n_samples) iterations += 1 collected_test_samples.update(test) # Check that the accumulated test samples cover the whole dataset assert_equal(iterations, expected_n_iter) if n_samples is not None: assert_equal(collected_test_samples, set(range(n_samples))) def test_kfold_valueerrors(): # Check that errors are raised if there is not enough samples assert_raises(ValueError, cval.KFold, 3, 4) # Check that a warning is raised if the least populated class has too few # members. y = [3, 3, -1, -1, 2] cv = assert_warns_message(Warning, "The least populated class", cval.StratifiedKFold, y, 3) # Check that despite the warning the folds are still computed even # though all the classes are not necessarily represented at on each # side of the split at each split check_cv_coverage(cv, expected_n_iter=3, n_samples=len(y)) # Error when number of folds is <= 1 assert_raises(ValueError, cval.KFold, 2, 0) assert_raises(ValueError, cval.KFold, 2, 1) assert_raises(ValueError, cval.StratifiedKFold, y, 0) assert_raises(ValueError, cval.StratifiedKFold, y, 1) # When n is not integer: assert_raises(ValueError, cval.KFold, 2.5, 2) # When n_folds is not integer: assert_raises(ValueError, cval.KFold, 5, 1.5) assert_raises(ValueError, cval.StratifiedKFold, y, 1.5) def test_kfold_indices(): # Check all indices are returned in the test folds kf = cval.KFold(300, 3) check_cv_coverage(kf, expected_n_iter=3, n_samples=300) # Check all indices are returned in the test folds even when equal-sized # folds are not possible kf = cval.KFold(17, 3) check_cv_coverage(kf, expected_n_iter=3, n_samples=17) def test_kfold_no_shuffle(): # Manually check that KFold preserves the data ordering on toy datasets splits = iter(cval.KFold(4, 2)) train, test = next(splits) assert_array_equal(test, [0, 1]) assert_array_equal(train, [2, 3]) train, test = next(splits) assert_array_equal(test, [2, 3]) assert_array_equal(train, [0, 1]) splits = iter(cval.KFold(5, 2)) train, test = next(splits) assert_array_equal(test, [0, 1, 2]) assert_array_equal(train, [3, 4]) train, test = next(splits) assert_array_equal(test, [3, 4]) assert_array_equal(train, [0, 1, 2]) def test_stratified_kfold_no_shuffle(): # Manually check that StratifiedKFold preserves the data ordering as much # as possible on toy datasets in order to avoid hiding sample dependencies # when possible splits = iter(cval.StratifiedKFold([1, 1, 0, 0], 2)) train, test = next(splits) assert_array_equal(test, [0, 2]) assert_array_equal(train, [1, 3]) train, test = next(splits) assert_array_equal(test, [1, 3]) assert_array_equal(train, [0, 2]) splits = iter(cval.StratifiedKFold([1, 1, 1, 0, 0, 0, 0], 2)) train, test = next(splits) assert_array_equal(test, [0, 1, 3, 4]) assert_array_equal(train, [2, 5, 6]) train, test = next(splits) assert_array_equal(test, [2, 5, 6]) assert_array_equal(train, [0, 1, 3, 4]) def test_stratified_kfold_ratios(): # Check that stratified kfold preserves label ratios in individual splits # Repeat with shuffling turned off and on n_samples = 1000 labels = np.array([4] * int(0.10 * n_samples) + [0] * int(0.89 * n_samples) + [1] * int(0.01 * n_samples)) for shuffle in [False, True]: for train, test in cval.StratifiedKFold(labels, 5, shuffle=shuffle): assert_almost_equal(np.sum(labels[train] == 4) / len(train), 0.10, 2) assert_almost_equal(np.sum(labels[train] == 0) / len(train), 0.89, 2) assert_almost_equal(np.sum(labels[train] == 1) / len(train), 0.01, 2) assert_almost_equal(np.sum(labels[test] == 4) / len(test), 0.10, 2) assert_almost_equal(np.sum(labels[test] == 0) / len(test), 0.89, 2) assert_almost_equal(np.sum(labels[test] == 1) / len(test), 0.01, 2) def test_kfold_balance(): # Check that KFold returns folds with balanced sizes for kf in [cval.KFold(i, 5) for i in range(11, 17)]: sizes = [] for _, test in kf: sizes.append(len(test)) assert_true((np.max(sizes) - np.min(sizes)) <= 1) assert_equal(np.sum(sizes), kf.n) def test_stratifiedkfold_balance(): # Check that KFold returns folds with balanced sizes (only when # stratification is possible) # Repeat with shuffling turned off and on labels = [0] * 3 + [1] * 14 for shuffle in [False, True]: for skf in [cval.StratifiedKFold(labels[:i], 3, shuffle=shuffle) for i in range(11, 17)]: sizes = [] for _, test in skf: sizes.append(len(test)) assert_true((np.max(sizes) - np.min(sizes)) <= 1) assert_equal(np.sum(sizes), skf.n) def test_shuffle_kfold(): # Check the indices are shuffled properly, and that all indices are # returned in the different test folds kf = cval.KFold(300, 3, shuffle=True, random_state=0) ind = np.arange(300) all_folds = None for train, test in kf: sorted_array = np.arange(100) assert_true(np.any(sorted_array != ind[train])) sorted_array = np.arange(101, 200) assert_true(np.any(sorted_array != ind[train])) sorted_array = np.arange(201, 300) assert_true(np.any(sorted_array != ind[train])) if all_folds is None: all_folds = ind[test].copy() else: all_folds = np.concatenate((all_folds, ind[test])) all_folds.sort() assert_array_equal(all_folds, ind) def test_shuffle_stratifiedkfold(): # Check that shuffling is happening when requested, and for proper # sample coverage labels = [0] * 20 + [1] * 20 kf0 = list(cval.StratifiedKFold(labels, 5, shuffle=True, random_state=0)) kf1 = list(cval.StratifiedKFold(labels, 5, shuffle=True, random_state=1)) for (_, test0), (_, test1) in zip(kf0, kf1): assert_true(set(test0) != set(test1)) check_cv_coverage(kf0, expected_n_iter=5, n_samples=40) def test_kfold_can_detect_dependent_samples_on_digits(): # see #2372 # The digits samples are dependent: they are apparently grouped by authors # although we don't have any information on the groups segment locations # for this data. We can highlight this fact be computing k-fold cross- # validation with and without shuffling: we observe that the shuffling case # wrongly makes the IID assumption and is therefore too optimistic: it # estimates a much higher accuracy (around 0.96) than than the non # shuffling variant (around 0.86). digits = load_digits() X, y = digits.data[:800], digits.target[:800] model = SVC(C=10, gamma=0.005) n = len(y) cv = cval.KFold(n, 5, shuffle=False) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(0.88, mean_score) assert_greater(mean_score, 0.85) # Shuffling the data artificially breaks the dependency and hides the # overfitting of the model with regards to the writing style of the authors # by yielding a seriously overestimated score: cv = cval.KFold(n, 5, shuffle=True, random_state=0) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(mean_score, 0.95) cv = cval.KFold(n, 5, shuffle=True, random_state=1) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(mean_score, 0.95) # Similarly, StratifiedKFold should try to shuffle the data as little # as possible (while respecting the balanced class constraints) # and thus be able to detect the dependency by not overestimating # the CV score either. As the digits dataset is approximately balanced # the estimated mean score is close to the score measured with # non-shuffled KFold cv = cval.StratifiedKFold(y, 5) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(0.88, mean_score) assert_greater(mean_score, 0.85) def test_shuffle_split(): ss1 = cval.ShuffleSplit(10, test_size=0.2, random_state=0) ss2 = cval.ShuffleSplit(10, test_size=2, random_state=0) ss3 = cval.ShuffleSplit(10, test_size=np.int32(2), random_state=0) for typ in six.integer_types: ss4 = cval.ShuffleSplit(10, test_size=typ(2), random_state=0) for t1, t2, t3, t4 in zip(ss1, ss2, ss3, ss4): assert_array_equal(t1[0], t2[0]) assert_array_equal(t2[0], t3[0]) assert_array_equal(t3[0], t4[0]) assert_array_equal(t1[1], t2[1]) assert_array_equal(t2[1], t3[1]) assert_array_equal(t3[1], t4[1]) def test_stratified_shuffle_split_init(): y = np.asarray([0, 1, 1, 1, 2, 2, 2]) # Check that error is raised if there is a class with only one sample assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.2) # Check that error is raised if the test set size is smaller than n_classes assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 2) # Check that error is raised if the train set size is smaller than # n_classes assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 3, 2) y = np.asarray([0, 0, 0, 1, 1, 1, 2, 2, 2]) # Check that errors are raised if there is not enough samples assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.5, 0.6) assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 8, 0.6) assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.6, 8) # Train size or test size too small assert_raises(ValueError, cval.StratifiedShuffleSplit, y, train_size=2) assert_raises(ValueError, cval.StratifiedShuffleSplit, y, test_size=2) def test_stratified_shuffle_split_iter(): ys = [np.array([1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3]), np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]), np.array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2]), np.array([1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4]), np.array([-1] * 800 + [1] * 50) ] for y in ys: sss = cval.StratifiedShuffleSplit(y, 6, test_size=0.33, random_state=0) for train, test in sss: assert_array_equal(np.unique(y[train]), np.unique(y[test])) # Checks if folds keep classes proportions p_train = (np.bincount(np.unique(y[train], return_inverse=True)[1]) / float(len(y[train]))) p_test = (np.bincount(np.unique(y[test], return_inverse=True)[1]) / float(len(y[test]))) assert_array_almost_equal(p_train, p_test, 1) assert_equal(y[train].size + y[test].size, y.size) assert_array_equal(np.lib.arraysetops.intersect1d(train, test), []) def test_stratified_shuffle_split_even(): # Test the StratifiedShuffleSplit, indices are drawn with a # equal chance n_folds = 5 n_iter = 1000 def assert_counts_are_ok(idx_counts, p): # Here we test that the distribution of the counts # per index is close enough to a binomial threshold = 0.05 / n_splits bf = stats.binom(n_splits, p) for count in idx_counts: p = bf.pmf(count) assert_true(p > threshold, "An index is not drawn with chance corresponding " "to even draws") for n_samples in (6, 22): labels = np.array((n_samples // 2) * [0, 1]) splits = cval.StratifiedShuffleSplit(labels, n_iter=n_iter, test_size=1. / n_folds, random_state=0) train_counts = [0] * n_samples test_counts = [0] * n_samples n_splits = 0 for train, test in splits: n_splits += 1 for counter, ids in [(train_counts, train), (test_counts, test)]: for id in ids: counter[id] += 1 assert_equal(n_splits, n_iter) assert_equal(len(train), splits.n_train) assert_equal(len(test), splits.n_test) assert_equal(len(set(train).intersection(test)), 0) label_counts = np.unique(labels) assert_equal(splits.test_size, 1.0 / n_folds) assert_equal(splits.n_train + splits.n_test, len(labels)) assert_equal(len(label_counts), 2) ex_test_p = float(splits.n_test) / n_samples ex_train_p = float(splits.n_train) / n_samples assert_counts_are_ok(train_counts, ex_train_p) assert_counts_are_ok(test_counts, ex_test_p) def test_predefinedsplit_with_kfold_split(): # Check that PredefinedSplit can reproduce a split generated by Kfold. folds = -1 * np.ones(10) kf_train = [] kf_test = [] for i, (train_ind, test_ind) in enumerate(cval.KFold(10, 5, shuffle=True)): kf_train.append(train_ind) kf_test.append(test_ind) folds[test_ind] = i ps_train = [] ps_test = [] ps = cval.PredefinedSplit(folds) for train_ind, test_ind in ps: ps_train.append(train_ind) ps_test.append(test_ind) assert_array_equal(ps_train, kf_train) assert_array_equal(ps_test, kf_test) def test_leave_label_out_changing_labels(): # Check that LeaveOneLabelOut and LeavePLabelOut work normally if # the labels variable is changed before calling __iter__ labels = np.array([0, 1, 2, 1, 1, 2, 0, 0]) labels_changing = np.array(labels, copy=True) lolo = cval.LeaveOneLabelOut(labels) lolo_changing = cval.LeaveOneLabelOut(labels_changing) lplo = cval.LeavePLabelOut(labels, p=2) lplo_changing = cval.LeavePLabelOut(labels_changing, p=2) labels_changing[:] = 0 for llo, llo_changing in [(lolo, lolo_changing), (lplo, lplo_changing)]: for (train, test), (train_chan, test_chan) in zip(llo, llo_changing): assert_array_equal(train, train_chan) assert_array_equal(test, test_chan) def test_cross_val_score(): clf = MockClassifier() for a in range(-10, 10): clf.a = a # Smoke test scores = cval.cross_val_score(clf, X, y) assert_array_equal(scores, clf.score(X, y)) # test with multioutput y scores = cval.cross_val_score(clf, X_sparse, X) assert_array_equal(scores, clf.score(X_sparse, X)) scores = cval.cross_val_score(clf, X_sparse, y) assert_array_equal(scores, clf.score(X_sparse, y)) # test with multioutput y scores = cval.cross_val_score(clf, X_sparse, X) assert_array_equal(scores, clf.score(X_sparse, X)) # test with X and y as list list_check = lambda x: isinstance(x, list) clf = CheckingClassifier(check_X=list_check) scores = cval.cross_val_score(clf, X.tolist(), y.tolist()) clf = CheckingClassifier(check_y=list_check) scores = cval.cross_val_score(clf, X, y.tolist()) assert_raises(ValueError, cval.cross_val_score, clf, X, y, scoring="sklearn") # test with 3d X and X_3d = X[:, :, np.newaxis] clf = MockClassifier(allow_nd=True) scores = cval.cross_val_score(clf, X_3d, y) clf = MockClassifier(allow_nd=False) assert_raises(ValueError, cval.cross_val_score, clf, X_3d, y) def test_cross_val_score_pandas(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((Series, DataFrame)) except ImportError: pass for TargetType, InputFeatureType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) cval.cross_val_score(clf, X_df, y_ser) def test_cross_val_score_mask(): # test that cross_val_score works with boolean masks svm = SVC(kernel="linear") iris = load_iris() X, y = iris.data, iris.target cv_indices = cval.KFold(len(y), 5) scores_indices = cval.cross_val_score(svm, X, y, cv=cv_indices) cv_indices = cval.KFold(len(y), 5) cv_masks = [] for train, test in cv_indices: mask_train = np.zeros(len(y), dtype=np.bool) mask_test = np.zeros(len(y), dtype=np.bool) mask_train[train] = 1 mask_test[test] = 1 cv_masks.append((train, test)) scores_masks = cval.cross_val_score(svm, X, y, cv=cv_masks) assert_array_equal(scores_indices, scores_masks) def test_cross_val_score_precomputed(): # test for svm with precomputed kernel svm = SVC(kernel="precomputed") iris = load_iris() X, y = iris.data, iris.target linear_kernel = np.dot(X, X.T) score_precomputed = cval.cross_val_score(svm, linear_kernel, y) svm = SVC(kernel="linear") score_linear = cval.cross_val_score(svm, X, y) assert_array_equal(score_precomputed, score_linear) # Error raised for non-square X svm = SVC(kernel="precomputed") assert_raises(ValueError, cval.cross_val_score, svm, X, y) # test error is raised when the precomputed kernel is not array-like # or sparse assert_raises(ValueError, cval.cross_val_score, svm, linear_kernel.tolist(), y) def test_cross_val_score_fit_params(): clf = MockClassifier() n_samples = X.shape[0] n_classes = len(np.unique(y)) DUMMY_INT = 42 DUMMY_STR = '42' DUMMY_OBJ = object() def assert_fit_params(clf): # Function to test that the values are passed correctly to the # classifier arguments for non-array type assert_equal(clf.dummy_int, DUMMY_INT) assert_equal(clf.dummy_str, DUMMY_STR) assert_equal(clf.dummy_obj, DUMMY_OBJ) fit_params = {'sample_weight': np.ones(n_samples), 'class_prior': np.ones(n_classes) / n_classes, 'sparse_sample_weight': W_sparse, 'sparse_param': P_sparse, 'dummy_int': DUMMY_INT, 'dummy_str': DUMMY_STR, 'dummy_obj': DUMMY_OBJ, 'callback': assert_fit_params} cval.cross_val_score(clf, X, y, fit_params=fit_params) def test_cross_val_score_score_func(): clf = MockClassifier() _score_func_args = [] def score_func(y_test, y_predict): _score_func_args.append((y_test, y_predict)) return 1.0 with warnings.catch_warnings(record=True): scoring = make_scorer(score_func) score = cval.cross_val_score(clf, X, y, scoring=scoring) assert_array_equal(score, [1.0, 1.0, 1.0]) assert len(_score_func_args) == 3 def test_cross_val_score_errors(): class BrokenEstimator: pass assert_raises(TypeError, cval.cross_val_score, BrokenEstimator(), X) def test_train_test_split_errors(): assert_raises(ValueError, cval.train_test_split) assert_raises(ValueError, cval.train_test_split, range(3), train_size=1.1) assert_raises(ValueError, cval.train_test_split, range(3), test_size=0.6, train_size=0.6) assert_raises(ValueError, cval.train_test_split, range(3), test_size=np.float32(0.6), train_size=np.float32(0.6)) assert_raises(ValueError, cval.train_test_split, range(3), test_size="wrong_type") assert_raises(ValueError, cval.train_test_split, range(3), test_size=2, train_size=4) assert_raises(TypeError, cval.train_test_split, range(3), some_argument=1.1) assert_raises(ValueError, cval.train_test_split, range(3), range(42)) def test_train_test_split(): X = np.arange(100).reshape((10, 10)) X_s = coo_matrix(X) y = np.arange(10) # simple test split = cval.train_test_split(X, y, test_size=None, train_size=.5) X_train, X_test, y_train, y_test = split assert_equal(len(y_test), len(y_train)) # test correspondence of X and y assert_array_equal(X_train[:, 0], y_train * 10) assert_array_equal(X_test[:, 0], y_test * 10) # conversion of lists to arrays (deprecated?) with warnings.catch_warnings(record=True): split = cval.train_test_split(X, X_s, y.tolist(), allow_lists=False) X_train, X_test, X_s_train, X_s_test, y_train, y_test = split assert_array_equal(X_train, X_s_train.toarray()) assert_array_equal(X_test, X_s_test.toarray()) # don't convert lists to anything else by default split = cval.train_test_split(X, X_s, y.tolist()) X_train, X_test, X_s_train, X_s_test, y_train, y_test = split assert_true(isinstance(y_train, list)) assert_true(isinstance(y_test, list)) # allow nd-arrays X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2) y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11) split = cval.train_test_split(X_4d, y_3d) assert_equal(split[0].shape, (7, 5, 3, 2)) assert_equal(split[1].shape, (3, 5, 3, 2)) assert_equal(split[2].shape, (7, 7, 11)) assert_equal(split[3].shape, (3, 7, 11)) # test stratification option y = np.array([1, 1, 1, 1, 2, 2, 2, 2]) for test_size, exp_test_size in zip([2, 4, 0.25, 0.5, 0.75], [2, 4, 2, 4, 6]): train, test = cval.train_test_split(y, test_size=test_size, stratify=y, random_state=0) assert_equal(len(test), exp_test_size) assert_equal(len(test) + len(train), len(y)) # check the 1:1 ratio of ones and twos in the data is preserved assert_equal(np.sum(train == 1), np.sum(train == 2)) def train_test_split_pandas(): # check cross_val_score doesn't destroy pandas dataframe types = [MockDataFrame] try: from pandas import DataFrame types.append(DataFrame) except ImportError: pass for InputFeatureType in types: # X dataframe X_df = InputFeatureType(X) X_train, X_test = cval.train_test_split(X_df) assert_true(isinstance(X_train, InputFeatureType)) assert_true(isinstance(X_test, InputFeatureType)) def train_test_split_mock_pandas(): # X mock dataframe X_df = MockDataFrame(X) X_train, X_test = cval.train_test_split(X_df) assert_true(isinstance(X_train, MockDataFrame)) assert_true(isinstance(X_test, MockDataFrame)) X_train_arr, X_test_arr = cval.train_test_split(X_df, allow_lists=False) assert_true(isinstance(X_train_arr, np.ndarray)) assert_true(isinstance(X_test_arr, np.ndarray)) def test_cross_val_score_with_score_func_classification(): iris = load_iris() clf = SVC(kernel='linear') # Default score (should be the accuracy score) scores = cval.cross_val_score(clf, iris.data, iris.target, cv=5) assert_array_almost_equal(scores, [0.97, 1., 0.97, 0.97, 1.], 2) # Correct classification score (aka. zero / one score) - should be the # same as the default estimator score zo_scores = cval.cross_val_score(clf, iris.data, iris.target, scoring="accuracy", cv=5) assert_array_almost_equal(zo_scores, [0.97, 1., 0.97, 0.97, 1.], 2) # F1 score (class are balanced so f1_score should be equal to zero/one # score f1_scores = cval.cross_val_score(clf, iris.data, iris.target, scoring="f1_weighted", cv=5) assert_array_almost_equal(f1_scores, [0.97, 1., 0.97, 0.97, 1.], 2) def test_cross_val_score_with_score_func_regression(): X, y = make_regression(n_samples=30, n_features=20, n_informative=5, random_state=0) reg = Ridge() # Default score of the Ridge regression estimator scores = cval.cross_val_score(reg, X, y, cv=5) assert_array_almost_equal(scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) # R2 score (aka. determination coefficient) - should be the # same as the default estimator score r2_scores = cval.cross_val_score(reg, X, y, scoring="r2", cv=5) assert_array_almost_equal(r2_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) # Mean squared error; this is a loss function, so "scores" are negative mse_scores = cval.cross_val_score(reg, X, y, cv=5, scoring="mean_squared_error") expected_mse = np.array([-763.07, -553.16, -274.38, -273.26, -1681.99]) assert_array_almost_equal(mse_scores, expected_mse, 2) # Explained variance scoring = make_scorer(explained_variance_score) ev_scores = cval.cross_val_score(reg, X, y, cv=5, scoring=scoring) assert_array_almost_equal(ev_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) def test_permutation_score(): iris = load_iris() X = iris.data X_sparse = coo_matrix(X) y = iris.target svm = SVC(kernel='linear') cv = cval.StratifiedKFold(y, 2) score, scores, pvalue = cval.permutation_test_score( svm, X, y, n_permutations=30, cv=cv, scoring="accuracy") assert_greater(score, 0.9) assert_almost_equal(pvalue, 0.0, 1) score_label, _, pvalue_label = cval.permutation_test_score( svm, X, y, n_permutations=30, cv=cv, scoring="accuracy", labels=np.ones(y.size), random_state=0) assert_true(score_label == score) assert_true(pvalue_label == pvalue) # check that we obtain the same results with a sparse representation svm_sparse = SVC(kernel='linear') cv_sparse = cval.StratifiedKFold(y, 2) score_label, _, pvalue_label = cval.permutation_test_score( svm_sparse, X_sparse, y, n_permutations=30, cv=cv_sparse, scoring="accuracy", labels=np.ones(y.size), random_state=0) assert_true(score_label == score) assert_true(pvalue_label == pvalue) # test with custom scoring object def custom_score(y_true, y_pred): return (((y_true == y_pred).sum() - (y_true != y_pred).sum()) / y_true.shape[0]) scorer = make_scorer(custom_score) score, _, pvalue = cval.permutation_test_score( svm, X, y, n_permutations=100, scoring=scorer, cv=cv, random_state=0) assert_almost_equal(score, .93, 2) assert_almost_equal(pvalue, 0.01, 3) # set random y y = np.mod(np.arange(len(y)), 3) score, scores, pvalue = cval.permutation_test_score( svm, X, y, n_permutations=30, cv=cv, scoring="accuracy") assert_less(score, 0.5) assert_greater(pvalue, 0.2) def test_cross_val_generator_with_indices(): X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) y = np.array([1, 1, 2, 2]) labels = np.array([1, 2, 3, 4]) # explicitly passing indices value is deprecated loo = cval.LeaveOneOut(4) lpo = cval.LeavePOut(4, 2) kf = cval.KFold(4, 2) skf = cval.StratifiedKFold(y, 2) lolo = cval.LeaveOneLabelOut(labels) lopo = cval.LeavePLabelOut(labels, 2) ps = cval.PredefinedSplit([1, 1, 2, 2]) ss = cval.ShuffleSplit(2) for cv in [loo, lpo, kf, skf, lolo, lopo, ss, ps]: for train, test in cv: assert_not_equal(np.asarray(train).dtype.kind, 'b') assert_not_equal(np.asarray(train).dtype.kind, 'b') X[train], X[test] y[train], y[test] @ignore_warnings def test_cross_val_generator_with_default_indices(): X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) y = np.array([1, 1, 2, 2]) labels = np.array([1, 2, 3, 4]) loo = cval.LeaveOneOut(4) lpo = cval.LeavePOut(4, 2) kf = cval.KFold(4, 2) skf = cval.StratifiedKFold(y, 2) lolo = cval.LeaveOneLabelOut(labels) lopo = cval.LeavePLabelOut(labels, 2) ss = cval.ShuffleSplit(2) ps = cval.PredefinedSplit([1, 1, 2, 2]) for cv in [loo, lpo, kf, skf, lolo, lopo, ss, ps]: for train, test in cv: assert_not_equal(np.asarray(train).dtype.kind, 'b') assert_not_equal(np.asarray(train).dtype.kind, 'b') X[train], X[test] y[train], y[test] def test_shufflesplit_errors(): assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=2.0) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=1.0) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=0.1, train_size=0.95) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=11) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=10) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=8, train_size=3) assert_raises(ValueError, cval.ShuffleSplit, 10, train_size=1j) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=None, train_size=None) def test_shufflesplit_reproducible(): # Check that iterating twice on the ShuffleSplit gives the same # sequence of train-test when the random_state is given ss = cval.ShuffleSplit(10, random_state=21) assert_array_equal(list(a for a, b in ss), list(a for a, b in ss)) def test_safe_split_with_precomputed_kernel(): clf = SVC() clfp = SVC(kernel="precomputed") iris = load_iris() X, y = iris.data, iris.target K = np.dot(X, X.T) cv = cval.ShuffleSplit(X.shape[0], test_size=0.25, random_state=0) tr, te = list(cv)[0] X_tr, y_tr = cval._safe_split(clf, X, y, tr) K_tr, y_tr2 = cval._safe_split(clfp, K, y, tr) assert_array_almost_equal(K_tr, np.dot(X_tr, X_tr.T)) X_te, y_te = cval._safe_split(clf, X, y, te, tr) K_te, y_te2 = cval._safe_split(clfp, K, y, te, tr) assert_array_almost_equal(K_te, np.dot(X_te, X_tr.T)) def test_cross_val_score_allow_nans(): # Check that cross_val_score allows input data with NaNs X = np.arange(200, dtype=np.float64).reshape(10, -1) X[2, :] = np.nan y = np.repeat([0, 1], X.shape[0] / 2) p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) cval.cross_val_score(p, X, y, cv=5) def test_train_test_split_allow_nans(): # Check that train_test_split allows input data with NaNs X = np.arange(200, dtype=np.float64).reshape(10, -1) X[2, :] = np.nan y = np.repeat([0, 1], X.shape[0] / 2) cval.train_test_split(X, y, test_size=0.2, random_state=42) def test_permutation_test_score_allow_nans(): # Check that permutation_test_score allows input data with NaNs X = np.arange(200, dtype=np.float64).reshape(10, -1) X[2, :] = np.nan y = np.repeat([0, 1], X.shape[0] / 2) p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) cval.permutation_test_score(p, X, y, cv=5) def test_check_cv_return_types(): X = np.ones((9, 2)) cv = cval.check_cv(3, X, classifier=False) assert_true(isinstance(cv, cval.KFold)) y_binary = np.array([0, 1, 0, 1, 0, 0, 1, 1, 1]) cv = cval.check_cv(3, X, y_binary, classifier=True) assert_true(isinstance(cv, cval.StratifiedKFold)) y_multiclass = np.array([0, 1, 0, 1, 2, 1, 2, 0, 2]) cv = cval.check_cv(3, X, y_multiclass, classifier=True) assert_true(isinstance(cv, cval.StratifiedKFold)) X = np.ones((5, 2)) y_seq_of_seqs = [[], [1, 2], [3], [0, 1, 3], [2]] with warnings.catch_warnings(record=True): # deprecated sequence of sequence format cv = cval.check_cv(3, X, y_seq_of_seqs, classifier=True) assert_true(isinstance(cv, cval.KFold)) y_indicator_matrix = LabelBinarizer().fit_transform(y_seq_of_seqs) cv = cval.check_cv(3, X, y_indicator_matrix, classifier=True) assert_true(isinstance(cv, cval.KFold)) y_multioutput = np.array([[1, 2], [0, 3], [0, 0], [3, 1], [2, 0]]) cv = cval.check_cv(3, X, y_multioutput, classifier=True) assert_true(isinstance(cv, cval.KFold)) def test_cross_val_score_multilabel(): X = np.array([[-3, 4], [2, 4], [3, 3], [0, 2], [-3, 1], [-2, 1], [0, 0], [-2, -1], [-1, -2], [1, -2]]) y = np.array([[1, 1], [0, 1], [0, 1], [0, 1], [1, 1], [0, 1], [1, 0], [1, 1], [1, 0], [0, 0]]) clf = KNeighborsClassifier(n_neighbors=1) scoring_micro = make_scorer(precision_score, average='micro') scoring_macro = make_scorer(precision_score, average='macro') scoring_samples = make_scorer(precision_score, average='samples') score_micro = cval.cross_val_score(clf, X, y, scoring=scoring_micro, cv=5) score_macro = cval.cross_val_score(clf, X, y, scoring=scoring_macro, cv=5) score_samples = cval.cross_val_score(clf, X, y, scoring=scoring_samples, cv=5) assert_almost_equal(score_micro, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 3]) assert_almost_equal(score_macro, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 4]) assert_almost_equal(score_samples, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 4]) def test_cross_val_predict(): boston = load_boston() X, y = boston.data, boston.target cv = cval.KFold(len(boston.target)) est = Ridge() # Naive loop (should be same as cross_val_predict): preds2 = np.zeros_like(y) for train, test in cv: est.fit(X[train], y[train]) preds2[test] = est.predict(X[test]) preds = cval.cross_val_predict(est, X, y, cv=cv) assert_array_almost_equal(preds, preds2) preds = cval.cross_val_predict(est, X, y) assert_equal(len(preds), len(y)) cv = cval.LeaveOneOut(len(y)) preds = cval.cross_val_predict(est, X, y, cv=cv) assert_equal(len(preds), len(y)) Xsp = X.copy() Xsp *= (Xsp > np.median(Xsp)) Xsp = coo_matrix(Xsp) preds = cval.cross_val_predict(est, Xsp, y) assert_array_almost_equal(len(preds), len(y)) preds = cval.cross_val_predict(KMeans(), X) assert_equal(len(preds), len(y)) def bad_cv(): for i in range(4): yield np.array([0, 1, 2, 3]), np.array([4, 5, 6, 7, 8]) assert_raises(ValueError, cval.cross_val_predict, est, X, y, cv=bad_cv()) def test_cross_val_predict_input_types(): clf = Ridge() # Smoke test predictions = cval.cross_val_predict(clf, X, y) assert_equal(predictions.shape, (10,)) # test with multioutput y predictions = cval.cross_val_predict(clf, X_sparse, X) assert_equal(predictions.shape, (10, 2)) predictions = cval.cross_val_predict(clf, X_sparse, y) assert_array_equal(predictions.shape, (10,)) # test with multioutput y predictions = cval.cross_val_predict(clf, X_sparse, X) assert_array_equal(predictions.shape, (10, 2)) # test with X and y as list list_check = lambda x: isinstance(x, list) clf = CheckingClassifier(check_X=list_check) predictions = cval.cross_val_predict(clf, X.tolist(), y.tolist()) clf = CheckingClassifier(check_y=list_check) predictions = cval.cross_val_predict(clf, X, y.tolist()) # test with 3d X and X_3d = X[:, :, np.newaxis] check_3d = lambda x: x.ndim == 3 clf = CheckingClassifier(check_X=check_3d) predictions = cval.cross_val_predict(clf, X_3d, y) assert_array_equal(predictions.shape, (10,)) def test_cross_val_predict_pandas(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((Series, DataFrame)) except ImportError: pass for TargetType, InputFeatureType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) cval.cross_val_predict(clf, X_df, y_ser) def test_sparse_fit_params(): iris = load_iris() X, y = iris.data, iris.target clf = MockClassifier() fit_params = {'sparse_sample_weight': coo_matrix(np.eye(X.shape[0]))} a = cval.cross_val_score(clf, X, y, fit_params=fit_params) assert_array_equal(a, np.ones(3)) def test_check_is_partition(): p = np.arange(100) assert_true(cval._check_is_partition(p, 100)) assert_false(cval._check_is_partition(np.delete(p, 23), 100)) p[0] = 23 assert_false(cval._check_is_partition(p, 100))
bsd-3-clause
jreback/pandas
pandas/core/arrays/boolean.py
1
22535
import numbers from typing import TYPE_CHECKING, List, Optional, Tuple, Type, Union import warnings import numpy as np from pandas._libs import lib, missing as libmissing from pandas._typing import ArrayLike, Dtype from pandas.compat.numpy import function as nv from pandas.core.dtypes.common import ( is_bool_dtype, is_float, is_float_dtype, is_integer_dtype, is_list_like, is_numeric_dtype, pandas_dtype, ) from pandas.core.dtypes.dtypes import ExtensionDtype, register_extension_dtype from pandas.core.dtypes.missing import isna from pandas.core import ops from .masked import BaseMaskedArray, BaseMaskedDtype if TYPE_CHECKING: import pyarrow @register_extension_dtype class BooleanDtype(BaseMaskedDtype): """ Extension dtype for boolean data. .. versionadded:: 1.0.0 .. warning:: BooleanDtype is considered experimental. The implementation and parts of the API may change without warning. Attributes ---------- None Methods ------- None Examples -------- >>> pd.BooleanDtype() BooleanDtype """ name = "boolean" # mypy: https://github.com/python/mypy/issues/4125 @property def type(self) -> Type: # type: ignore[override] return np.bool_ @property def kind(self) -> str: return "b" @property def numpy_dtype(self) -> np.dtype: return np.dtype("bool") @classmethod def construct_array_type(cls) -> Type["BooleanArray"]: """ Return the array type associated with this dtype. Returns ------- type """ return BooleanArray def __repr__(self) -> str: return "BooleanDtype" @property def _is_boolean(self) -> bool: return True @property def _is_numeric(self) -> bool: return True def __from_arrow__( self, array: Union["pyarrow.Array", "pyarrow.ChunkedArray"] ) -> "BooleanArray": """ Construct BooleanArray from pyarrow Array/ChunkedArray. """ import pyarrow if isinstance(array, pyarrow.Array): chunks = [array] else: # pyarrow.ChunkedArray chunks = array.chunks results = [] for arr in chunks: # TODO should optimize this without going through object array bool_arr = BooleanArray._from_sequence(np.array(arr)) results.append(bool_arr) return BooleanArray._concat_same_type(results) def coerce_to_array( values, mask=None, copy: bool = False ) -> Tuple[np.ndarray, np.ndarray]: """ Coerce the input values array to numpy arrays with a mask. Parameters ---------- values : 1D list-like mask : bool 1D array, optional copy : bool, default False if True, copy the input Returns ------- tuple of (values, mask) """ if isinstance(values, BooleanArray): if mask is not None: raise ValueError("cannot pass mask for BooleanArray input") values, mask = values._data, values._mask if copy: values = values.copy() mask = mask.copy() return values, mask mask_values = None if isinstance(values, np.ndarray) and values.dtype == np.bool_: if copy: values = values.copy() elif isinstance(values, np.ndarray) and is_numeric_dtype(values.dtype): mask_values = isna(values) values_bool = np.zeros(len(values), dtype=bool) values_bool[~mask_values] = values[~mask_values].astype(bool) if not np.all( values_bool[~mask_values].astype(values.dtype) == values[~mask_values] ): raise TypeError("Need to pass bool-like values") values = values_bool else: values_object = np.asarray(values, dtype=object) inferred_dtype = lib.infer_dtype(values_object, skipna=True) integer_like = ("floating", "integer", "mixed-integer-float") if inferred_dtype not in ("boolean", "empty") + integer_like: raise TypeError("Need to pass bool-like values") mask_values = isna(values_object) values = np.zeros(len(values), dtype=bool) values[~mask_values] = values_object[~mask_values].astype(bool) # if the values were integer-like, validate it were actually 0/1's if (inferred_dtype in integer_like) and not ( np.all( values[~mask_values].astype(float) == values_object[~mask_values].astype(float) ) ): raise TypeError("Need to pass bool-like values") if mask is None and mask_values is None: mask = np.zeros(len(values), dtype=bool) elif mask is None: mask = mask_values else: if isinstance(mask, np.ndarray) and mask.dtype == np.bool_: if mask_values is not None: mask = mask | mask_values else: if copy: mask = mask.copy() else: mask = np.array(mask, dtype=bool) if mask_values is not None: mask = mask | mask_values if values.ndim != 1: raise ValueError("values must be a 1D list-like") if mask.ndim != 1: raise ValueError("mask must be a 1D list-like") return values, mask class BooleanArray(BaseMaskedArray): """ Array of boolean (True/False) data with missing values. This is a pandas Extension array for boolean data, under the hood represented by 2 numpy arrays: a boolean array with the data and a boolean array with the mask (True indicating missing). BooleanArray implements Kleene logic (sometimes called three-value logic) for logical operations. See :ref:`boolean.kleene` for more. To construct an BooleanArray from generic array-like input, use :func:`pandas.array` specifying ``dtype="boolean"`` (see examples below). .. versionadded:: 1.0.0 .. warning:: BooleanArray is considered experimental. The implementation and parts of the API may change without warning. Parameters ---------- values : numpy.ndarray A 1-d boolean-dtype array with the data. mask : numpy.ndarray A 1-d boolean-dtype array indicating missing values (True indicates missing). copy : bool, default False Whether to copy the `values` and `mask` arrays. Attributes ---------- None Methods ------- None Returns ------- BooleanArray Examples -------- Create an BooleanArray with :func:`pandas.array`: >>> pd.array([True, False, None], dtype="boolean") <BooleanArray> [True, False, <NA>] Length: 3, dtype: boolean """ # The value used to fill '_data' to avoid upcasting _internal_fill_value = False def __init__(self, values: np.ndarray, mask: np.ndarray, copy: bool = False): if not (isinstance(values, np.ndarray) and values.dtype == np.bool_): raise TypeError( "values should be boolean numpy array. Use " "the 'pd.array' function instead" ) self._dtype = BooleanDtype() super().__init__(values, mask, copy=copy) @property def dtype(self) -> BooleanDtype: return self._dtype @classmethod def _from_sequence( cls, scalars, *, dtype: Optional[Dtype] = None, copy: bool = False ) -> "BooleanArray": if dtype: assert dtype == "boolean" values, mask = coerce_to_array(scalars, copy=copy) return BooleanArray(values, mask) @classmethod def _from_sequence_of_strings( cls, strings: List[str], *, dtype: Optional[Dtype] = None, copy: bool = False ) -> "BooleanArray": def map_string(s): if isna(s): return s elif s in ["True", "TRUE", "true", "1", "1.0"]: return True elif s in ["False", "FALSE", "false", "0", "0.0"]: return False else: raise ValueError(f"{s} cannot be cast to bool") scalars = [map_string(x) for x in strings] return cls._from_sequence(scalars, dtype=dtype, copy=copy) _HANDLED_TYPES = (np.ndarray, numbers.Number, bool, np.bool_) def __array_ufunc__(self, ufunc, method: str, *inputs, **kwargs): # For BooleanArray inputs, we apply the ufunc to ._data # and mask the result. if method == "reduce": # Not clear how to handle missing values in reductions. Raise. raise NotImplementedError("The 'reduce' method is not supported.") out = kwargs.get("out", ()) for x in inputs + out: if not isinstance(x, self._HANDLED_TYPES + (BooleanArray,)): return NotImplemented # for binary ops, use our custom dunder methods result = ops.maybe_dispatch_ufunc_to_dunder_op( self, ufunc, method, *inputs, **kwargs ) if result is not NotImplemented: return result mask = np.zeros(len(self), dtype=bool) inputs2 = [] for x in inputs: if isinstance(x, BooleanArray): mask |= x._mask inputs2.append(x._data) else: inputs2.append(x) def reconstruct(x): # we don't worry about scalar `x` here, since we # raise for reduce up above. if is_bool_dtype(x.dtype): m = mask.copy() return BooleanArray(x, m) else: x[mask] = np.nan return x result = getattr(ufunc, method)(*inputs2, **kwargs) if isinstance(result, tuple): tuple(reconstruct(x) for x in result) else: return reconstruct(result) def _coerce_to_array(self, value) -> Tuple[np.ndarray, np.ndarray]: return coerce_to_array(value) def astype(self, dtype, copy: bool = True) -> ArrayLike: """ Cast to a NumPy array or ExtensionArray with 'dtype'. Parameters ---------- dtype : str or dtype Typecode or data-type to which the array is cast. copy : bool, default True Whether to copy the data, even if not necessary. If False, a copy is made only if the old dtype does not match the new dtype. Returns ------- ndarray or ExtensionArray NumPy ndarray, BooleanArray or IntegerArray with 'dtype' for its dtype. Raises ------ TypeError if incompatible type with an BooleanDtype, equivalent of same_kind casting """ dtype = pandas_dtype(dtype) if isinstance(dtype, ExtensionDtype): return super().astype(dtype, copy) if is_bool_dtype(dtype): # astype_nansafe converts np.nan to True if self._hasna: raise ValueError("cannot convert float NaN to bool") else: return self._data.astype(dtype, copy=copy) # for integer, error if there are missing values if is_integer_dtype(dtype) and self._hasna: raise ValueError("cannot convert NA to integer") # for float dtype, ensure we use np.nan before casting (numpy cannot # deal with pd.NA) na_value = self._na_value if is_float_dtype(dtype): na_value = np.nan # coerce return self.to_numpy(dtype=dtype, na_value=na_value, copy=False) def _values_for_argsort(self) -> np.ndarray: """ Return values for sorting. Returns ------- ndarray The transformed values should maintain the ordering between values within the array. See Also -------- ExtensionArray.argsort : Return the indices that would sort this array. """ data = self._data.copy() data[self._mask] = -1 return data def any(self, *, skipna: bool = True, **kwargs): """ Return whether any element is True. Returns False unless there is at least one element that is True. By default, NAs are skipped. If ``skipna=False`` is specified and missing values are present, similar :ref:`Kleene logic <boolean.kleene>` is used as for logical operations. Parameters ---------- skipna : bool, default True Exclude NA values. If the entire array is NA and `skipna` is True, then the result will be False, as for an empty array. If `skipna` is False, the result will still be True if there is at least one element that is True, otherwise NA will be returned if there are NA's present. **kwargs : any, default None Additional keywords have no effect but might be accepted for compatibility with NumPy. Returns ------- bool or :attr:`pandas.NA` See Also -------- numpy.any : Numpy version of this method. BooleanArray.all : Return whether all elements are True. Examples -------- The result indicates whether any element is True (and by default skips NAs): >>> pd.array([True, False, True]).any() True >>> pd.array([True, False, pd.NA]).any() True >>> pd.array([False, False, pd.NA]).any() False >>> pd.array([], dtype="boolean").any() False >>> pd.array([pd.NA], dtype="boolean").any() False With ``skipna=False``, the result can be NA if this is logically required (whether ``pd.NA`` is True or False influences the result): >>> pd.array([True, False, pd.NA]).any(skipna=False) True >>> pd.array([False, False, pd.NA]).any(skipna=False) <NA> """ kwargs.pop("axis", None) nv.validate_any((), kwargs) values = self._data.copy() np.putmask(values, self._mask, False) result = values.any() if skipna: return result else: if result or len(self) == 0 or not self._mask.any(): return result else: return self.dtype.na_value def all(self, *, skipna: bool = True, **kwargs): """ Return whether all elements are True. Returns True unless there is at least one element that is False. By default, NAs are skipped. If ``skipna=False`` is specified and missing values are present, similar :ref:`Kleene logic <boolean.kleene>` is used as for logical operations. Parameters ---------- skipna : bool, default True Exclude NA values. If the entire array is NA and `skipna` is True, then the result will be True, as for an empty array. If `skipna` is False, the result will still be False if there is at least one element that is False, otherwise NA will be returned if there are NA's present. **kwargs : any, default None Additional keywords have no effect but might be accepted for compatibility with NumPy. Returns ------- bool or :attr:`pandas.NA` See Also -------- numpy.all : Numpy version of this method. BooleanArray.any : Return whether any element is True. Examples -------- The result indicates whether any element is True (and by default skips NAs): >>> pd.array([True, True, pd.NA]).all() True >>> pd.array([True, False, pd.NA]).all() False >>> pd.array([], dtype="boolean").all() True >>> pd.array([pd.NA], dtype="boolean").all() True With ``skipna=False``, the result can be NA if this is logically required (whether ``pd.NA`` is True or False influences the result): >>> pd.array([True, True, pd.NA]).all(skipna=False) <NA> >>> pd.array([True, False, pd.NA]).all(skipna=False) False """ kwargs.pop("axis", None) nv.validate_all((), kwargs) values = self._data.copy() np.putmask(values, self._mask, True) result = values.all() if skipna: return result else: if not result or len(self) == 0 or not self._mask.any(): return result else: return self.dtype.na_value def _logical_method(self, other, op): assert op.__name__ in {"or_", "ror_", "and_", "rand_", "xor", "rxor"} other_is_booleanarray = isinstance(other, BooleanArray) other_is_scalar = lib.is_scalar(other) mask = None if other_is_booleanarray: other, mask = other._data, other._mask elif is_list_like(other): other = np.asarray(other, dtype="bool") if other.ndim > 1: raise NotImplementedError("can only perform ops with 1-d structures") other, mask = coerce_to_array(other, copy=False) elif isinstance(other, np.bool_): other = other.item() if other_is_scalar and other is not libmissing.NA and not lib.is_bool(other): raise TypeError( "'other' should be pandas.NA or a bool. " f"Got {type(other).__name__} instead." ) if not other_is_scalar and len(self) != len(other): raise ValueError("Lengths must match to compare") if op.__name__ in {"or_", "ror_"}: result, mask = ops.kleene_or(self._data, other, self._mask, mask) elif op.__name__ in {"and_", "rand_"}: result, mask = ops.kleene_and(self._data, other, self._mask, mask) elif op.__name__ in {"xor", "rxor"}: result, mask = ops.kleene_xor(self._data, other, self._mask, mask) return BooleanArray(result, mask) def _cmp_method(self, other, op): from pandas.arrays import FloatingArray, IntegerArray if isinstance(other, (IntegerArray, FloatingArray)): return NotImplemented mask = None if isinstance(other, BooleanArray): other, mask = other._data, other._mask elif is_list_like(other): other = np.asarray(other) if other.ndim > 1: raise NotImplementedError("can only perform ops with 1-d structures") if len(self) != len(other): raise ValueError("Lengths must match to compare") if other is libmissing.NA: # numpy does not handle pd.NA well as "other" scalar (it returns # a scalar False instead of an array) result = np.zeros_like(self._data) mask = np.ones_like(self._data) else: # numpy will show a DeprecationWarning on invalid elementwise # comparisons, this will raise in the future with warnings.catch_warnings(): warnings.filterwarnings("ignore", "elementwise", FutureWarning) with np.errstate(all="ignore"): result = op(self._data, other) # nans propagate if mask is None: mask = self._mask.copy() else: mask = self._mask | mask return BooleanArray(result, mask, copy=False) def _arith_method(self, other, op): mask = None op_name = op.__name__ if isinstance(other, BooleanArray): other, mask = other._data, other._mask elif is_list_like(other): other = np.asarray(other) if other.ndim > 1: raise NotImplementedError("can only perform ops with 1-d structures") if len(self) != len(other): raise ValueError("Lengths must match") # nans propagate if mask is None: mask = self._mask if other is libmissing.NA: mask |= True else: mask = self._mask | mask if other is libmissing.NA: # if other is NA, the result will be all NA and we can't run the # actual op, so we need to choose the resulting dtype manually if op_name in {"floordiv", "rfloordiv", "mod", "rmod", "pow", "rpow"}: dtype = "int8" else: dtype = "bool" result = np.zeros(len(self._data), dtype=dtype) else: if op_name in {"pow", "rpow"} and isinstance(other, np.bool_): # Avoid DeprecationWarning: In future, it will be an error # for 'np.bool_' scalars to be interpreted as an index other = bool(other) with np.errstate(all="ignore"): result = op(self._data, other) # divmod returns a tuple if op_name == "divmod": div, mod = result return ( self._maybe_mask_result(div, mask, other, "floordiv"), self._maybe_mask_result(mod, mask, other, "mod"), ) return self._maybe_mask_result(result, mask, other, op_name) def _reduce(self, name: str, *, skipna: bool = True, **kwargs): if name in {"any", "all"}: return getattr(self, name)(skipna=skipna, **kwargs) return super()._reduce(name, skipna=skipna, **kwargs) def _maybe_mask_result(self, result, mask, other, op_name: str): """ Parameters ---------- result : array-like mask : array-like bool other : scalar or array-like op_name : str """ # if we have a float operand we are by-definition # a float result # or our op is a divide if (is_float_dtype(other) or is_float(other)) or ( op_name in ["rtruediv", "truediv"] ): from pandas.core.arrays import FloatingArray return FloatingArray(result, mask, copy=False) elif is_bool_dtype(result): return BooleanArray(result, mask, copy=False) elif is_integer_dtype(result): from pandas.core.arrays import IntegerArray return IntegerArray(result, mask, copy=False) else: result[mask] = np.nan return result
bsd-3-clause
TuSimple/mxnet
example/multivariate_time_series/src/lstnet.py
17
11583
# !/usr/bin/env python # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # -*- coding: utf-8 -*- #Todo: Ensure skip connection implementation is correct import os import math import numpy as np import pandas as pd import mxnet as mx import argparse import logging import metrics logging.basicConfig(level=logging.DEBUG) parser = argparse.ArgumentParser(description="Deep neural network for multivariate time series forecasting", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--data-dir', type=str, default='../data', help='relative path to input data') parser.add_argument('--max-records', type=int, default=None, help='total records before data split') parser.add_argument('--q', type=int, default=24*7, help='number of historical measurements included in each training example') parser.add_argument('--horizon', type=int, default=3, help='number of measurements ahead to predict') parser.add_argument('--splits', type=str, default="0.6,0.2", help='fraction of data to use for train & validation. remainder used for test.') parser.add_argument('--batch-size', type=int, default=128, help='the batch size.') parser.add_argument('--filter-list', type=str, default="6,12,18", help='unique filter sizes') parser.add_argument('--num-filters', type=int, default=100, help='number of each filter size') parser.add_argument('--recurrent-state-size', type=int, default=100, help='number of hidden units in each unrolled recurrent cell') parser.add_argument('--seasonal-period', type=int, default=24, help='time between seasonal measurements') parser.add_argument('--time-interval', type=int, default=1, help='time between each measurement') parser.add_argument('--gpus', type=str, default='', help='list of gpus to run, e.g. 0 or 0,2,5. empty means using cpu. ') parser.add_argument('--optimizer', type=str, default='adam', help='the optimizer type') parser.add_argument('--lr', type=float, default=0.001, help='initial learning rate') parser.add_argument('--dropout', type=float, default=0.2, help='dropout rate for network') parser.add_argument('--num-epochs', type=int, default=100, help='max num of epochs') parser.add_argument('--save-period', type=int, default=20, help='save checkpoint for every n epochs') parser.add_argument('--model_prefix', type=str, default='electricity_model', help='prefix for saving model params') def build_iters(data_dir, max_records, q, horizon, splits, batch_size): """ Load & generate training examples from multivariate time series data :return: data iters & variables required to define network architecture """ # Read in data as numpy array df = pd.read_csv(os.path.join(data_dir, "electricity.txt"), sep=",", header=None) feature_df = df.iloc[:, :].astype(float) x = feature_df.as_matrix() x = x[:max_records] if max_records else x # Construct training examples based on horizon and window x_ts = np.zeros((x.shape[0] - q, q, x.shape[1])) y_ts = np.zeros((x.shape[0] - q, x.shape[1])) for n in range(x.shape[0]): if n + 1 < q: continue elif n + 1 + horizon > x.shape[0]: continue else: y_n = x[n + horizon, :] x_n = x[n + 1 - q:n + 1, :] x_ts[n-q] = x_n y_ts[n-q] = y_n # Split into training and testing data training_examples = int(x_ts.shape[0] * splits[0]) valid_examples = int(x_ts.shape[0] * splits[1]) x_train, y_train = x_ts[:training_examples], \ y_ts[:training_examples] x_valid, y_valid = x_ts[training_examples:training_examples + valid_examples], \ y_ts[training_examples:training_examples + valid_examples] x_test, y_test = x_ts[training_examples + valid_examples:], \ y_ts[training_examples + valid_examples:] #build iterators to feed batches to network train_iter = mx.io.NDArrayIter(data=x_train, label=y_train, batch_size=batch_size) val_iter = mx.io.NDArrayIter(data=x_valid, label=y_valid, batch_size=batch_size) test_iter = mx.io.NDArrayIter(data=x_test, label=y_test, batch_size=batch_size) return train_iter, val_iter, test_iter def sym_gen(train_iter, q, filter_list, num_filter, dropout, rcells, skiprcells, seasonal_period, time_interval): input_feature_shape = train_iter.provide_data[0][1] X = mx.symbol.Variable(train_iter.provide_data[0].name) Y = mx.sym.Variable(train_iter.provide_label[0].name) # reshape data before applying convolutional layer (takes 4D shape incase you ever work with images) conv_input = mx.sym.reshape(data=X, shape=(0, 1, q, -1)) ############### # CNN Component ############### outputs = [] for i, filter_size in enumerate(filter_list): # pad input array to ensure number output rows = number input rows after applying kernel padi = mx.sym.pad(data=conv_input, mode="constant", constant_value=0, pad_width=(0, 0, 0, 0, filter_size - 1, 0, 0, 0)) convi = mx.sym.Convolution(data=padi, kernel=(filter_size, input_feature_shape[2]), num_filter=num_filter) acti = mx.sym.Activation(data=convi, act_type='relu') trans = mx.sym.reshape(mx.sym.transpose(data=acti, axes=(0, 2, 1, 3)), shape=(0, 0, 0)) outputs.append(trans) cnn_features = mx.sym.Concat(*outputs, dim=2) cnn_reg_features = mx.sym.Dropout(cnn_features, p=dropout) ############### # RNN Component ############### stacked_rnn_cells = mx.rnn.SequentialRNNCell() for i, recurrent_cell in enumerate(rcells): stacked_rnn_cells.add(recurrent_cell) stacked_rnn_cells.add(mx.rnn.DropoutCell(dropout)) outputs, states = stacked_rnn_cells.unroll(length=q, inputs=cnn_reg_features, merge_outputs=False) rnn_features = outputs[-1] #only take value from final unrolled cell for use later #################### # Skip-RNN Component #################### stacked_rnn_cells = mx.rnn.SequentialRNNCell() for i, recurrent_cell in enumerate(skiprcells): stacked_rnn_cells.add(recurrent_cell) stacked_rnn_cells.add(mx.rnn.DropoutCell(dropout)) outputs, states = stacked_rnn_cells.unroll(length=q, inputs=cnn_reg_features, merge_outputs=False) # Take output from cells p steps apart p = int(seasonal_period / time_interval) output_indices = list(range(0, q, p)) outputs.reverse() skip_outputs = [outputs[i] for i in output_indices] skip_rnn_features = mx.sym.concat(*skip_outputs, dim=1) ########################## # Autoregressive Component ########################## auto_list = [] for i in list(range(input_feature_shape[2])): time_series = mx.sym.slice_axis(data=X, axis=2, begin=i, end=i+1) fc_ts = mx.sym.FullyConnected(data=time_series, num_hidden=1) auto_list.append(fc_ts) ar_output = mx.sym.concat(*auto_list, dim=1) ###################### # Prediction Component ###################### neural_components = mx.sym.concat(*[rnn_features, skip_rnn_features], dim=1) neural_output = mx.sym.FullyConnected(data=neural_components, num_hidden=input_feature_shape[2]) model_output = neural_output + ar_output loss_grad = mx.sym.LinearRegressionOutput(data=model_output, label=Y) return loss_grad, [v.name for v in train_iter.provide_data], [v.name for v in train_iter.provide_label] def train(symbol, train_iter, valid_iter, data_names, label_names): devs = mx.cpu() if args.gpus is None or args.gpus is '' else [mx.gpu(int(i)) for i in args.gpus.split(',')] module = mx.mod.Module(symbol, data_names=data_names, label_names=label_names, context=devs) module.bind(data_shapes=train_iter.provide_data, label_shapes=train_iter.provide_label) module.init_params(mx.initializer.Uniform(0.1)) module.init_optimizer(optimizer=args.optimizer, optimizer_params={'learning_rate': args.lr}) for epoch in range(1, args.num_epochs+1): train_iter.reset() val_iter.reset() for batch in train_iter: module.forward(batch, is_train=True) # compute predictions module.backward() # compute gradients module.update() # update parameters train_pred = module.predict(train_iter).asnumpy() train_label = train_iter.label[0][1].asnumpy() print('\nMetrics: Epoch %d, Training %s' % (epoch, metrics.evaluate(train_pred, train_label))) val_pred = module.predict(val_iter).asnumpy() val_label = val_iter.label[0][1].asnumpy() print('Metrics: Epoch %d, Validation %s' % (epoch, metrics.evaluate(val_pred, val_label))) if epoch % args.save_period == 0 and epoch > 1: module.save_checkpoint(prefix=os.path.join("../models/", args.model_prefix), epoch=epoch, save_optimizer_states=False) if epoch == args.num_epochs: module.save_checkpoint(prefix=os.path.join("../models/", args.model_prefix), epoch=epoch, save_optimizer_states=False) if __name__ == '__main__': # parse args args = parser.parse_args() args.splits = list(map(float, args.splits.split(','))) args.filter_list = list(map(int, args.filter_list.split(','))) # Check valid args if not max(args.filter_list) <= args.q: raise AssertionError("no filter can be larger than q") if not args.q >= math.ceil(args.seasonal_period / args.time_interval): raise AssertionError("size of skip connections cannot exceed q") # Build data iterators train_iter, val_iter, test_iter = build_iters(args.data_dir, args.max_records, args.q, args.horizon, args.splits, args.batch_size) # Choose cells for recurrent layers: each cell will take the output of the previous cell in the list rcells = [mx.rnn.GRUCell(num_hidden=args.recurrent_state_size)] skiprcells = [mx.rnn.LSTMCell(num_hidden=args.recurrent_state_size)] # Define network symbol symbol, data_names, label_names = sym_gen(train_iter, args.q, args.filter_list, args.num_filters, args.dropout, rcells, skiprcells, args.seasonal_period, args.time_interval) # train cnn model train(symbol, train_iter, val_iter, data_names, label_names)
apache-2.0
tapomayukh/projects_in_python
rapid_categorization/haptic_map/NIDRR/Demo_April_2014/collect_data_taxel_based_nidrr.py
1
9797
#!/usr/bin/env python # Collect PR2 sleeve data for NIDRR import math, numpy as np import matplotlib.pyplot as pp import scipy.linalg as lin import scipy.ndimage as ni import roslib; roslib.load_manifest('sandbox_tapo_darpa_m3') import rospy import tf import os import optparse import hrl_lib.util as ut import hrl_lib.transforms as tr import hrl_lib.matplotlib_util as mpu import pickle from hrl_haptic_manipulation_in_clutter_msgs.msg import SkinContact from hrl_haptic_manipulation_in_clutter_msgs.msg import TaxelArray as TaxelArray_Meka import sys def callback(data, callback_args): #rospy.loginfo('Getting data!') # Fixing Transforms tf_lstnr = callback_args sc = SkinContact() sc.header.frame_id = '/odom_combined' #'/torso_lift_link' # has to be this and no other coord frame. sc.header.stamp = data.header.stamp tf_lstnr.waitForTransform(sc.header.frame_id, data.header.frame_id, rospy.Time(0), rospy.Duration(40.0)) try: tf_lstnr.waitForTransform(sc.header.frame_id, data.header.frame_id, rospy.Time(0), rospy.Duration(40.0)) t1, q1 = tf_lstnr.lookupTransform(sc.header.frame_id, data.header.frame_id, rospy.Time(0)) t1 = np.matrix(t1).reshape(3,1) r1 = tr.quaternion_to_matrix(q1) # Gathering Force Data force_vectors = np.row_stack([data.values_x, data.values_y, data.values_z]) fmags_instant = ut.norm(force_vectors) threshold = 0.01 fmags_tuned = fmags_instant - threshold fmags_tuned[np.where(fmags_tuned<0)]=0 fmags_instant_tuned = fmags_tuned global fmags for i in range(len(fmags_instant_tuned)): fmags[i].append(fmags_instant_tuned[i]) # Gathering Contact Data for Haptic Mapping global global_contact_vector for i in range(len(fmags_instant_tuned)): global_contact_vector[i].append(r1*((np.column_stack([data.centers_x[i], data.centers_y[i], data.centers_z[i]])).T) + t1) except (tf.Exception, tf.LookupException, tf.ConnectivityException): pass def processdata(): global sleeve str_process = 'Processing data for ' + sleeve + '!' rospy.loginfo(str_process) global fmags global global_contact_vector for key in fmags: temp_force_store = [] temp_contact_motion = [] init_contact = 0 init_contact_store = 0.0 max_temp = max(fmags[key]) #if max_temp > 0.0: #print key #print '#####' for i in range(len(fmags[key])): if fmags[key][i] > 0.0: init_contact = init_contact + 1 temp_force_store.append(fmags[key][i]) if init_contact == 1: #print "Started Contact !" init_contact_store = global_contact_vector[key][i] temp_contact_motion.append(0.0) else: temp_contact_motion.append(abs(lin.norm(global_contact_vector[key][i] - init_contact_store))) else: if len(temp_force_store) > 0: #print "Broke Contact !" savedata(temp_force_store, temp_contact_motion) temp_force_store = [] temp_contact_motion = [] init_contact = 0 init_contact_store = 0.0 def savedata(force, motion): global trial_index global directory global sleeve time = [] contact_area = [] if len(force) > 10: str_save = 'Saving data for ' + sleeve + '!' rospy.loginfo(str_save) time_len = len(force) while len(time) < time_len: if len(time) == 0: time.append(0.0) contact_area.append(1.0) else: time.append(time[len(time)-1] + 0.01) contact_area.append(1.0) if not os.path.exists(directory): os.makedirs(directory) ut.save_pickle([time, force, contact_area, motion], directory + '/trial_' + sleeve + np.str(trial_index) +'.pkl') trial_index = trial_index + 1 #else: #print "Too few samples, Not saving the data" def plotdata(): rospy.loginfo('Plotting data!') global directory global trial_index global sleeve for trial_num in range(1, trial_index): ta = ut.load_pickle(directory + '/trial_' + sleeve + np.str(trial_num) +'.pkl') mpu.figure(3*trial_num-2) pp.title('Time-Varying Force') pp.xlabel('Time (s)') pp.ylabel('Max Force') pp.plot(ta[0], ta[1]) pp.grid('on') mpu.figure(3*trial_num-1) pp.title('Time-Varying Contact') pp.xlabel('Time (s)') pp.ylabel('No. of Contact Regions') pp.plot(ta[0], ta[2]) pp.grid('on') mpu.figure(3*trial_num) pp.title('Point Tracker') pp.xlabel('Time (s)') pp.ylabel('Contact Point Distance') pp.plot(ta[0], ta[3]) pp.grid('on') def getdata(node_name, topic_subscriber, sleeve): str_init = 'Initializing the Node for ' + sleeve + '!' str_sub = 'Waiting to Subscribe to the Skin Message for ' + sleeve rospy.loginfo(str_init) rospy.init_node(node_name, anonymous=True) tf_lstnr = tf.TransformListener() rospy.loginfo(str_sub) rospy.Subscriber(topic_subscriber, TaxelArray_Meka, callback, callback_args = (tf_lstnr)) rospy.spin() if __name__ == '__main__': p = optparse.OptionParser() p.add_option('--upperarm', action='store_true', dest='upperarm', help='node for the upperarm taxels of PR2 sleeve') p.add_option('--forearm', action='store_true', dest='forearm', help='node for the forearm taxels of PR2 sleeve') p.add_option('--gripper_left_link', action='store_true', dest='gripper_left_link', help='node for the gripper left link taxels of PR2 sleeve') p.add_option('--gripper_right_link', action='store_true', dest='gripper_right_link', help='node for the gripper right link taxels of PR2 sleeve') p.add_option('--gripper_palm', action='store_true', dest='gripper_palm', help='node for the gripper palm taxels of PR2 sleeve') p.add_option('--fingertip_left', action='store_true', dest='fingertip_left', help='node for the fingertip left taxels of PR2 pps') p.add_option('--fingertip_right', action='store_true', dest='fingertip_right', help='node for the fingertip right taxels of PR2 pps') p.add_option('--exp_num', action='store', dest='exp_num', default = None, help='specify the experiment number', type='float') opt, args = p.parse_args() if opt.upperarm and opt.exp_num: node_name = "PR2_upperarm_collect_data" topic_subscriber = "/pr2_fabric_upperarm_sensor/taxels/forces" topic_publisher = 'demo_upperarm_taxelarray_with_cost' num_taxels = 4 sleeve = 'upperarm' num = opt.exp_num elif opt.forearm and opt.exp_num: node_name = "PR2_forearm_collect_data" topic_subscriber = "/pr2_fabric_forearm_sensor/taxels/forces" topic_publisher = 'demo_forearm_taxelarray_with_cost' num_taxels = 22 sleeve = 'forearm' num = opt.exp_num elif opt.gripper_left_link and opt.exp_num: node_name = "PR2_gripper_left_link_collect_data" topic_subscriber = "/pr2_fabric_gripper_left_link_sensor/taxels/forces" topic_publisher = 'demo_gripper_left_link_taxelarray_with_cost' num_taxels = 4 sleeve = 'gripper_left_link' num = opt.exp_num elif opt.gripper_right_link and opt.exp_num: node_name = "PR2_gripper_right_link_collect_data" topic_subscriber = "/pr2_fabric_gripper_right_link_sensor/taxels/forces" topic_publisher = 'demo_gripper_right_link_taxelarray_with_cost' num_taxels = 4 sleeve = 'gripper_right_link' num = opt.exp_num elif opt.gripper_palm and opt.exp_num: node_name = "PR2_gripper_palm_collect_data" topic_subscriber = "/pr2_fabric_gripper_palm_sensor/taxels/forces" topic_publisher = 'demo_gripper_palm_taxelarray_with_cost' num_taxels = 2 sleeve = 'gripper_palm' num = opt.exp_num elif opt.fingertip_left and opt.exp_num: node_name = "PR2_fingertip_left_collect_data" topic_subscriber = "/pr2_pps_left_sensor/taxels/forces" topic_publisher = 'demo_fingertip_left_taxelarray_with_cost' num_taxels = 3 sleeve = 'fingertip_left' num = opt.exp_num elif opt.fingertip_right and opt.exp_num: node_name = "PR2_fingertip_right_collect_data" topic_subscriber = "/pr2_pps_right_sensor/taxels/forces" topic_publisher = 'demo_fingertip_right_taxelarray_with_cost' num_taxels = 3 sleeve = 'fingertip_right' num = opt.exp_num else: rospy.logerr('Specify --exp_num and --upperarm or --forearm or --gripper_left_link or --gripper_right_link or --gripper_palm or --fingertip_left or --fingertip_right') sys.exit() # Global Params #obj_class = 'human/' obj_class = 'furniture/' #obj_class = 'mannequin/' trial_index = 1 directory = '/home/nidrr/svn/robot1_data/usr/tapo/data/rapid_categorization/Taxel_Based/NIDRR_demo_data/' + obj_class + np.str(int(num)) # Global Data dicts fmags = {} for i in range(num_taxels): fmags[i] = [] global_contact_vector = {} for i in range(num_taxels): global_contact_vector[i] = [] # Function Calls getdata(node_name, topic_subscriber, sleeve) processdata() #plotdata() #pp.show()
mit
nagyistoce/deep_nets_iclr04
lib/layer_blocks.py
3
17537
import sys, os import theano import theano.tensor as T from theano.tensor.signal import downsample from theano.tensor.nnet import conv import re import time import cPickle as pickle from types import * import numpy import math import matplotlib.pyplot as plt from data_handling import DataSlidingWindow import tools import warnings warnings.filterwarnings("ignore") rng = numpy.random.RandomState(23455) #constant random seed: such that experiments are repeatable class Layer(object): instance_count = 0 def __init__(self, layerxml, params): Layer.instance_count += 1 if layerxml.find('id') != None: self.id = layerxml.find('id').text else: self.id = str(Layer.instance_count) self.layer_no = Layer.instance_count self.log = False self.representative_image = None self.load_weights_while_train = False if layerxml.find('load_weights') != None and layerxml.find('load_weights').text == 'True': self.load_weights_while_train = True self.load_weights = False if params.load_weights or (layerxml.find('load_weights') != None and layerxml.find('load_weights').text == 'True'): self.load_weights = True self.log = False if layerxml.find('log') is not None: self.log = layerxml.find('log').text == 'True' self.weight_update = True if layerxml.find('weight_update') is not None: self.weight_update = layerxml.find('weight_update').text == 'True' print 'Weight update for layer {0:s} is {1:s}'.format(self.id, str(self.weight_update)) # The default output and input size is 'empty'. # - All sub-classes are expected to set the output size to something # that is not empty in their __init__ method. # - The convention is that the 0th dimension is the batch size. self.out_size = (0) # Default output size is 'empty' self.in_size = (0) # Default output size is 'empty' class Weight(object): def __init__(self, w_shape, load_weights, weights_dir, bound, name, epoch): super(Weight, self).__init__() self.name = name if not load_weights: self.np_values = numpy.asarray(bound * rng.standard_normal(w_shape), dtype=theano.config.floatX) else: self.load_weight(weights_dir, epoch) if type(w_shape) == IntType: self.np_values = self.np_values + math.fabs(self.np_values.min()) self.val = theano.shared(value=self.np_values, name=name) def save_weight(self, dir, epoch = 0): print '- Saved weight: ' + self.name + '_ep'+str(epoch) numpy.save(dir + self.name + '_ep'+str(epoch), self.val.get_value()) def load_weight(self, dir, epoch = 0): print '- Loaded weight: ' + self.name + '_ep'+str(epoch) self.np_values = numpy.load(dir + self.name + '_ep'+str(epoch) + '.npy') class SoftMaxLayer(Layer): type = 'SoftMaxLayer' def __init__(self, layerxml, params, prev_layer = None): super(SoftMaxLayer, self).__init__(layerxml, params) if prev_layer.type != "OutputLayer" and prev_layer.type != "DropoutLayer": raise NotImplementedError() if len(prev_layer.out_size) != 2: raise NotImplementedError() self.in_size = (params.batch_size, prev_layer.out_size[-1]) self.out_size = (params.batch_size, 2) n_in = self.in_size[-1] n_out = self.out_size[-1] print 'No of input units: ' + str(n_in) print 'No of output units: ' + str(n_out) W_bound = 0.00000000 #numpy.sqrt(6. / (n_in + n_out)) self.W = Weight((n_in, n_out), self.load_weights, params.weights_dir, \ W_bound, 'W_' + str(self.id), params.epoch_no) self.b = Weight(n_out, self.load_weights, params.weights_dir, \ W_bound, 'b_' + str(self.id), params.epoch_no) def compute(self, input, params): input = input.flatten(2) self.input = input # compute vector of class-membership probabilities in symbolic form self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W.val) + self.b.val) self.output = T.argmax(self.p_y_given_x, axis=1) # confidence of the label self.confidence = self.p_y_given_x[T.arange(self.p_y_given_x.shape[0]), self.output] self.params = [self.W.val, self.b.val] def write_log(self, params, get_output_layer, epoch, iter): # write layer1 output op_out = numpy.asarray([get_output_layer(0)]).T l0name = '{0:s}/SofMax-test-epoch{1:04d}-iter{2:04d}-'.format(params.op_dir, epoch, iter) + '{0:d}.png' tools.write_image_multiple(op_out, (1,1), params.pnt_nos, l0name) class OutputLayer(Layer): type = 'OutputLayer' def __init__(self, layerxml, params, prev_layer = None): super(OutputLayer, self).__init__(layerxml, params) self.in_size = prev_layer.out_size self.out_size = (params.batch_size, int(layerxml.find('no_states').text)) n_in = numpy.prod(prev_layer.out_size[1:]) n_out = self.out_size[-1] print 'No of input units: ' + str(n_in) print 'No of output units: ' + str(n_out) W_bound = 1.0/numpy.sqrt(n_in) if layerxml.find('activation') is not None: if layerxml.find('activation').text == 'tanh': self.activation = T.tanh elif layerxml.find('activation').text == 'relu': self.activation = self.relu else: self.activation = T.nnet.sigmoid W_bound *= 4 self.W = Weight((n_in, n_out), self.load_weights, params.weights_dir, W_bound, 'W_' + str(self.id), params.epoch_no) self.b = Weight(n_out, self.load_weights, params.weights_dir, W_bound, 'b_' + str(self.id), params.epoch_no) def relu(self, x): return T.maximum(x, 0) def compute(self, input, params): input = input.flatten(2) self.input = input lin_output = T.dot(self.input, self.W.val) + self.b.val self.output = self.activation(lin_output) #self.output = T.nnet.sigmoid(lin_output) # parameters of the model self.params = [self.W.val, self.b.val] def write_log(self, params, get_output_layer, epoch, iter): # write layer1 output op_out = get_output_layer(0) l0name = '{0:s}/Output-test-epoch{1:04d}-iter{2:04d}-'.format(params.op_dir, epoch, iter) + '{0:d}.png' #tools.write_image_multiple(op_out, params.imshape[:2], params.pnt_nos, l0name) #self.representative_image = l0name tools.write_image_multiple(op_out, (1,1), params.pnt_nos, l0name) class DropoutLayer(Layer): type = 'DropoutLayer' # Each layer instance needs its own seed, so draw from this srng to get the # seeds for each layer. __dropout_seed_srng = numpy.random.RandomState(0) # In order to turn dropout off at test time we need to keep track of the # probability of all our dropout layers that have been instantiated. dropout_layers = [] def __init__(self, layerxml, params, prev_layer = None): super(DropoutLayer, self).__init__(layerxml, params) DropoutLayer.dropout_layers.append(self) # TODO: Is this threadsafe? # TODO: Make dropout probability programmable (ie, use a shared variable) self.prob = float(layerxml.find('prob').text) print 'Dropout Probability: ' + str(self.prob) self.in_size = prev_layer.out_size self.out_size = self.in_size def compute(self, input, params): # We need to be able to turn on and off the dropout (on for training, # off for testing). Therefore use a shared variable to control # the current dropout state. Start in "ON" state by default. self.dropout_on = T.shared(numpy.cast[theano.config.floatX](1.0), \ borrow=True) # Create a random stream to generate a random mask of 0 and 1 # activations. seed = DropoutLayer.__dropout_seed_srng.randint(0, sys.maxint) srng = theano.tensor.shared_randomstreams.RandomStreams(seed) # p=1-p because 1's indicate keep and p is prob of dropping self.mask = srng.binomial(n=1, p=1.0 - self.prob, size=input.shape) # When dropout is off, activations must be multiplied by the average # on probability (ie 1 - p) off_gain = (1.0 - self.prob) # The cast in the following expression is important because: # int * float32 = float64 which pulls things off the gpu self.output = input * self.dropout_on * T.cast(self.mask, theano.config.floatX) + \ off_gain * input * (1.0 - self.dropout_on) # Static method to turn off dropout for all DropoutLayer instances # When training set training to True, otherwise False @staticmethod def SetDropoutOn(training): if training: dropout_on = 1.0 else: dropout_on = 0.0 for i in range(0, len(DropoutLayer.dropout_layers)): DropoutLayer.dropout_layers[i].dropout_on.set_value(dropout_on) class InputLayerSW(Layer): type = 'InputLayerSW' def __init__(self, layerxml, params, prev_layer = None, windowshape = None): super(InputLayerSW, self).__init__(layerxml, params) # InputLayerSW must be the first layer if prev_layer != None: raise NotImplementedError() self.data_info = [] for d in layerxml.findall('data'): data_dir = d.find('dir').text + '/' self.data_info.append((data_dir)) self.prepro_type = layerxml.find('preprocessing').text self.windowshape = windowshape if self.windowshape == None: #TODO: Parse from layer_xml, not hardcode self.windowshape = (int(layerxml.find('windowshape/h').text), int(layerxml.find('windowshape/w').text), int(layerxml.find('windowshape/d').text)) if not params.load_weights: self.data = DataSlidingWindow(points=params.pnt_nos) self.data.load_picked_data(params.shared_op_dir) for dir in self.data_info: print 'Adding data from: ' + dir self.data.add_to_dataset(dir) self.data.load_data(self.windowshape, shuffle=False) self.data.save_picked_data(params.shared_op_dir) params.imshape = self.windowshape self.out_size = (params.batch_size, params.imshape[2], params.imshape[0], params.imshape[1]) # TODO: Is this in_size correct? self.in_size = (params.batch_size, params.imshape[2], params.imshape[0], params.imshape[1]) print("InputLayerSW out_size: " + str(self.out_size)) def compute(self, input, params): self.output = input.reshape((params.batch_size, params.imshape[2], params.imshape[0], params.imshape[1])) def write_log(self, params): # TODO: Fix this (I assume the data format was changed at some point) #tools.write_image(self.data.train_set_x.get_value(), (self.windowshape[0],self.windowshape[1], self.windowshape[2]), params.op_dir + 'train_x_before_preprocess.png') #tools.write_image_multiple(self.data.train_set_y.get_value(), (1,1), params.pnt_nos, params.op_dir + 'train_y_slice-{0:d}.png') #tools.write_image(self.data.valid_set_x.get_value(), (self.windowshape[0],self.windowshape[1], self.windowshape[2]), params.op_dir + 'valid_x_before_preprocess.png') #tools.write_image_multiple(self.data.valid_set_y.get_value(), (1,1), params.pnt_nos, params.op_dir + 'valid_y_slice-{0:d}.png') if len(self.data.X_names['test']) > 0: print 'Data format changed' #tools.write_image(self.data.X_SW_p['test'], (self.windowshape[0],self.windowshape[1], self.windowshape[2]), params.op_dir + 'X_SW_p.png') #tools.write_image(self.data.X_SW_p['test'], (self.windowshape[0],self.windowshape[1], self.windowshape[2]), params.op_dir + 'X_SW_n.png') #tools.write_image_multiple(self.data.test_set_y.get_value(), (1,1), params.pnt_nos, params.op_dir + 'test_set_y_slice-{0:d}.png') class ConvPoolLayer(Layer): type = 'ConvPoolLayer' def __init__(self, layerxml, params, prev_layer = None): super(ConvPoolLayer, self).__init__(layerxml, params) self.nkerns = int(layerxml.find('nos_filters').text) self.filter_size = int(layerxml.find('filter_size').text) self.pool_size = int(layerxml.find('pool_size').text) self.log_output = bool(layerxml.find('log_output').text) # The input type to the ConvPoolLayer is restricted (we expect the input # to be an image, so only layers that have image inputs are allowed). if prev_layer.type != "ConvPoolLayer" and \ prev_layer.type != "InputLayerSW" and \ prev_layer.type != "DropoutLayer": raise NotImplementedError() # DropoutLayer is a special case. It's output can be either 4D or 2D, # depending on what came before it. Make sure this is correct. if len(prev_layer.out_size) != 4: raise NotImplementedError() poolsize=(self.pool_size, self.pool_size) self.in_size = prev_layer.out_size self.out_size = (params.batch_size, self.nkerns, self.in_size[2]/poolsize[0], self.in_size[3]/poolsize[1]) print("ConvPoolLayer in_size: " + str(self.in_size)) print("ConvPoolLayer out_size: " + str(self.out_size)) # Filter shape is (#n_output_feats, #n_input_feats, filter_size, filter_size) self.filter_shape = (self.nkerns, self.in_size[1], self.filter_size, self.filter_size) # there are "num input feature maps * filter height * filter width" # inputs to each hidden unit fan_in = numpy.prod(self.filter_shape[1:]) # each unit in the lower layer receives a gradient from: # "num output feature maps * filter height * filter width" / # pooling size fan_out = (self.filter_shape[0] * numpy.prod(self.filter_shape[2:]) / numpy.prod(poolsize)) # initialize weights with random weights W_bound = numpy.sqrt(1. / (fan_in)) self.W = Weight(self.filter_shape, self.load_weights, params.weights_dir, W_bound, 'W_' + str(self.id), params.epoch_no) self.b = Weight(self.filter_shape[0], self.load_weights, params.weights_dir, W_bound, 'b_' + str(self.id), params.epoch_no) def compute(self, input, params): poolsize=(self.pool_size, self.pool_size) # convolve input feature maps with filters conv_out = conv.conv2d(input=input, filters=self.W.val, image_shape=self.in_size, border_mode='full') mid = numpy.asarray(numpy.floor(numpy.asarray(self.filter_shape[2:]) / 2.), dtype=int) conv_out = conv_out[:, :, mid[0]:-mid[0], mid[1]:-mid[1]] # downsample each feature map individually, using maxpooling pooled_out = downsample.max_pool_2d(input=conv_out, ds=poolsize, ignore_border=True) # add the bias term. Since the bias is a vector (1D array), we first # reshape it to a tensor of shape (1,n_filters,1,1). Each bias will # thus be broadcasted across mini-batches and feature map # width & height self.output = pooled_out + self.b.val.dimshuffle('x', 0, 'x', 'x') self.output = T.maximum(self.output, 0) #T.nnet.sigmoid(self.output) #T.nnet.sigmoid(self.output) #T.tanh(self.output) # # store parameters of this layer self.params = [] if self.weight_update: self.params = [self.W.val, self.b.val] def write_log(self, params, get_output_layer, epoch, iter): # write filters figname = '{0:s}/Filters-id{1:d}-epoch-{2:04d}-iter{3:04d}.png'.format(params.op_dir, self.layer_no-1, epoch, iter) filter_img = numpy.reshape(self.W.val.get_value()[:, 0, :, :], (self.nkerns, self.filter_size * self.filter_size)) tools.write_image(filter_img, (self.filter_size, self.filter_size, 1), figname) self.representative_image = figname if self.log_output: # write conv-pool layer output idx_in_minibatch = 0; convname = '{0:s}/ConvOut-test-id{1:d}-epoch-{2:04d}iter{3:04d}.png'.format(params.op_dir, self.layer_no-1, epoch, iter) conv_out = get_output_layer(idx_in_minibatch) convpool_out_img = numpy.reshape(conv_out[0, :, :, :], (self.nkerns, conv_out.shape[2] * conv_out.shape[3])) after_pooling_imgshape = (conv_out.shape[2], conv_out.shape[3], 1) tools.write_image(convpool_out_img, after_pooling_imgshape, convname)
gpl-2.0
moberweger/deep-prior
src/main_nyu_posereg_embedding.py
1
7776
"""This is the main file for training hand joint classifier on NYU dataset Copyright 2015 Markus Oberweger, ICG, Graz University of Technology <oberweger@icg.tugraz.at> This file is part of DeepPrior. DeepPrior is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. DeepPrior is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with DeepPrior. If not, see <http://www.gnu.org/licenses/>. """ import numpy import matplotlib matplotlib.use('Agg') # plot to file import matplotlib.pyplot as plt import theano import os import cPickle import sys from sklearn.decomposition import PCA from trainer.poseregnettrainer import PoseRegNetTrainer, PoseRegNetTrainerParams from net.poseregnet import PoseRegNetParams, PoseRegNet from data.importers import NYUImporter from data.dataset import NYUDataset from util.handpose_evaluation import NYUHandposeEvaluation from data.transformations import transformPoint2D from net.hiddenlayer import HiddenLayer, HiddenLayerParams if __name__ == '__main__': eval_prefix = 'NYU_EMB_t0nF8mp421fD553h1024_PCA30' if not os.path.exists('./eval/'+eval_prefix+'/'): os.makedirs('./eval/'+eval_prefix+'/') floatX = theano.config.floatX # @UndefinedVariable rng = numpy.random.RandomState(23455) print("create data") di = NYUImporter('../data/NYU/') Seq1 = di.loadSequence('train', shuffle=True, rng=rng) trainSeqs = [Seq1] Seq2_1 = di.loadSequence('test_1') Seq2_2 = di.loadSequence('test_2') testSeqs = [Seq2_1, Seq2_2] # create training data trainDataSet = NYUDataset(trainSeqs) train_data, train_gt3D = trainDataSet.imgStackDepthOnly('train') mb = (train_data.nbytes) / (1024 * 1024) print("data size: {}Mb".format(mb)) valDataSet = NYUDataset(testSeqs) val_data, val_gt3D = valDataSet.imgStackDepthOnly('test_1') testDataSet = NYUDataset(testSeqs) test_data1, test_gt3D1 = testDataSet.imgStackDepthOnly('test_1') test_data2, test_gt3D2 = testDataSet.imgStackDepthOnly('test_2') print train_gt3D.max(), test_gt3D1.max(), train_gt3D.min(), test_gt3D1.min() print train_data.max(), test_data1.max(), train_data.min(), test_data1.min() imgSizeW = train_data.shape[3] imgSizeH = train_data.shape[2] nChannels = train_data.shape[1] #################################### # convert data to embedding pca = PCA(n_components=30) pca.fit(train_gt3D.reshape((train_gt3D.shape[0], train_gt3D.shape[1]*3))) train_gt3D_embed = pca.transform(train_gt3D.reshape((train_gt3D.shape[0], train_gt3D.shape[1]*3))) test_gt3D_embed1 = pca.transform(test_gt3D1.reshape((test_gt3D1.shape[0], test_gt3D1.shape[1]*3))) test_gt3D_embed2 = pca.transform(test_gt3D2.reshape((test_gt3D2.shape[0], test_gt3D2.shape[1]*3))) val_gt3D_embed = pca.transform(val_gt3D.reshape((val_gt3D.shape[0], val_gt3D.shape[1]*3))) ############################################################################ print("create network") batchSize = 128 poseNetParams = PoseRegNetParams(type=0, nChan=nChannels, wIn=imgSizeW, hIn=imgSizeH, batchSize=batchSize, numJoints=1, nDims=train_gt3D_embed.shape[1]) poseNet = PoseRegNet(rng, cfgParams=poseNetParams) poseNetTrainerParams = PoseRegNetTrainerParams() poseNetTrainerParams.batch_size = batchSize poseNetTrainerParams.learning_rate = 0.01 print("setup trainer") poseNetTrainer = PoseRegNetTrainer(poseNet, poseNetTrainerParams, rng) poseNetTrainer.setData(train_data, train_gt3D_embed, val_data, val_gt3D_embed) poseNetTrainer.compileFunctions(compileDebugFcts=False) ################################################################### # # TRAIN nEpochs = 100 train_res = poseNetTrainer.train(n_epochs=nEpochs, storeFilters=True) train_costs = train_res[0] wvals = train_res[1] val_errs = train_res[2] ################################################################### # TEST # plot cost fig = plt.figure() plt.semilogy(train_costs) plt.show(block=False) fig.savefig('./eval/'+eval_prefix+'/'+eval_prefix+'_cost.png') fig = plt.figure() plt.semilogy(val_errs) plt.show(block=False) fig.savefig('./eval/'+eval_prefix+'/'+eval_prefix+'_errs.png') # save results poseNet.save("./eval/{}/net_{}.pkl".format(eval_prefix,eval_prefix)) # poseNet.load("./eval/{}/net_{}.pkl".format(eval_prefix,eval_prefix)) # add prior to network cfg = HiddenLayerParams(inputDim=(batchSize, train_gt3D_embed.shape[1]), outputDim=(batchSize, numpy.prod(train_gt3D.shape[1:])), activation=None) pcalayer = HiddenLayer(rng, poseNet.layers[-1].output, cfg, copyLayer=None, layerNum=len(poseNet.layers)) pcalayer.W.set_value(pca.components_) pcalayer.b.set_value(pca.mean_) poseNet.layers.append(pcalayer) poseNet.output = pcalayer.output poseNet.cfgParams.numJoints = train_gt3D.shape[1] poseNet.cfgParams.nDims = train_gt3D.shape[2] poseNet.cfgParams.outputDim = pcalayer.cfgParams.outputDim poseNet.save("./eval/{}/network_prior.pkl".format(eval_prefix)) ################################################################### # test print("Testing ...") gt3D = [] joints = [] for seq in testSeqs: gt3D.extend([j.gt3Dorig for j in seq.data]) test_data, _ = testDataSet.imgStackDepthOnly(seq.name) jts_embed = poseNet.computeOutput(test_data) # Backtransform from embedding # jts = pca.inverse_transform(jts_embed) jts = jts_embed for i in range(test_data.shape[0]): joints.append(jts[i].reshape(gt3D[0].shape[0], 3)*(seq.config['cube'][2]/2.) + seq.data[i].com) joints = numpy.array(joints) hpe = NYUHandposeEvaluation(gt3D, joints) hpe.subfolder += '/'+eval_prefix+'/' mean_error = hpe.getMeanError() max_error = hpe.getMaxError() print("Train samples: {}, test samples: {}".format(train_data.shape[0], len(gt3D))) print("Mean error: {}mm, max error: {}mm".format(mean_error, max_error)) print("MD score: {}".format(hpe.getMDscore(80))) print("{}".format([hpe.getJointMeanError(j) for j in range(joints[0].shape[0])])) print("{}".format([hpe.getJointMaxError(j) for j in range(joints[0].shape[0])])) # save results cPickle.dump(joints, open("./eval/{}/result_{}_{}.pkl".format(eval_prefix,os.path.split(__file__)[1],eval_prefix), "wb"), protocol=cPickle.HIGHEST_PROTOCOL) print "Testing baseline" ################################# # BASELINE # Load the evaluation data_baseline = di.loadBaseline('../data/NYU/test/test_predictions.mat', numpy.asarray(gt3D)) hpe_base = NYUHandposeEvaluation(gt3D, data_baseline) hpe_base.subfolder += '/'+eval_prefix+'/' print("Mean error: {}mm".format(hpe_base.getMeanError())) hpe.plotEvaluation(eval_prefix, methodName='Our regr',baseline=[('Tompson et al.',hpe_base)]) ind = 0 for i in testSeqs[0].data: if ind % 20 != 0: ind += 1 continue jt = joints[ind] jtI = di.joints3DToImg(jt) for joint in range(jt.shape[0]): t=transformPoint2D(jtI[joint], i.T) jtI[joint, 0] = t[0] jtI[joint, 1] = t[1] hpe.plotResult(i.dpt, i.gtcrop, jtI, "{}_{}".format(eval_prefix, ind)) ind+=1
gpl-3.0
q1ang/scikit-learn
examples/linear_model/plot_ransac.py
250
1673
""" =========================================== Robust linear model estimation using RANSAC =========================================== In this example we see how to robustly fit a linear model to faulty data using the RANSAC algorithm. """ import numpy as np from matplotlib import pyplot as plt from sklearn import linear_model, datasets n_samples = 1000 n_outliers = 50 X, y, coef = datasets.make_regression(n_samples=n_samples, n_features=1, n_informative=1, noise=10, coef=True, random_state=0) # Add outlier data np.random.seed(0) X[:n_outliers] = 3 + 0.5 * np.random.normal(size=(n_outliers, 1)) y[:n_outliers] = -3 + 10 * np.random.normal(size=n_outliers) # Fit line using all data model = linear_model.LinearRegression() model.fit(X, y) # Robustly fit linear model with RANSAC algorithm model_ransac = linear_model.RANSACRegressor(linear_model.LinearRegression()) model_ransac.fit(X, y) inlier_mask = model_ransac.inlier_mask_ outlier_mask = np.logical_not(inlier_mask) # Predict data of estimated models line_X = np.arange(-5, 5) line_y = model.predict(line_X[:, np.newaxis]) line_y_ransac = model_ransac.predict(line_X[:, np.newaxis]) # Compare estimated coefficients print("Estimated coefficients (true, normal, RANSAC):") print(coef, model.coef_, model_ransac.estimator_.coef_) plt.plot(X[inlier_mask], y[inlier_mask], '.g', label='Inliers') plt.plot(X[outlier_mask], y[outlier_mask], '.r', label='Outliers') plt.plot(line_X, line_y, '-k', label='Linear regressor') plt.plot(line_X, line_y_ransac, '-b', label='RANSAC regressor') plt.legend(loc='lower right') plt.show()
bsd-3-clause
alexeyum/scikit-learn
examples/linear_model/plot_multi_task_lasso_support.py
102
2319
#!/usr/bin/env python """ ============================================= Joint feature selection with multi-task Lasso ============================================= The multi-task lasso allows to fit multiple regression problems jointly enforcing the selected features to be the same across tasks. This example simulates sequential measurements, each task is a time instant, and the relevant features vary in amplitude over time while being the same. The multi-task lasso imposes that features that are selected at one time point are select for all time point. This makes feature selection by the Lasso more stable. """ print(__doc__) # Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import MultiTaskLasso, Lasso rng = np.random.RandomState(42) # Generate some 2D coefficients with sine waves with random frequency and phase n_samples, n_features, n_tasks = 100, 30, 40 n_relevant_features = 5 coef = np.zeros((n_tasks, n_features)) times = np.linspace(0, 2 * np.pi, n_tasks) for k in range(n_relevant_features): coef[:, k] = np.sin((1. + rng.randn(1)) * times + 3 * rng.randn(1)) X = rng.randn(n_samples, n_features) Y = np.dot(X, coef.T) + rng.randn(n_samples, n_tasks) coef_lasso_ = np.array([Lasso(alpha=0.5).fit(X, y).coef_ for y in Y.T]) coef_multi_task_lasso_ = MultiTaskLasso(alpha=1.).fit(X, Y).coef_ ############################################################################### # Plot support and time series fig = plt.figure(figsize=(8, 5)) plt.subplot(1, 2, 1) plt.spy(coef_lasso_) plt.xlabel('Feature') plt.ylabel('Time (or Task)') plt.text(10, 5, 'Lasso') plt.subplot(1, 2, 2) plt.spy(coef_multi_task_lasso_) plt.xlabel('Feature') plt.ylabel('Time (or Task)') plt.text(10, 5, 'MultiTaskLasso') fig.suptitle('Coefficient non-zero location') feature_to_plot = 0 plt.figure() lw = 2 plt.plot(coef[:, feature_to_plot], color='seagreen', linewidth=lw, label='Ground truth') plt.plot(coef_lasso_[:, feature_to_plot], color='cornflowerblue', linewidth=lw, label='Lasso') plt.plot(coef_multi_task_lasso_[:, feature_to_plot], color='gold', linewidth=lw, label='MultiTaskLasso') plt.legend(loc='upper center') plt.axis('tight') plt.ylim([-1.1, 1.1]) plt.show()
bsd-3-clause
yanikou19/pymatgen
pymatgen/phasediagram/plotter.py
1
30386
# coding: utf-8 from __future__ import division, unicode_literals """ This module provides classes for plotting PhaseDiagram objects. """ from six.moves import zip __author__ = "Shyue Ping Ong" __copyright__ = "Copyright 2011, The Materials Project" __version__ = "1.1" __maintainer__ = "Shyue Ping Ong" __email__ = "shyuep@gmail.com" __status__ = "Production" __date__ = "Jun 15, 2012" import math import numpy as np import itertools from pymatgen.phasediagram.pdanalyzer import PDAnalyzer from pymatgen.util.string_utils import latexify from pymatgen.util.plotting_utils import get_publication_quality_plot from pymatgen.util.coord_utils import in_coord_list class PDPlotter(object): """ A plotter class for phase diagrams. Args: phasediagram: PhaseDiagram object. show_unstable: Whether unstable phases will be plotted as well as red crosses. Defaults to False. """ def __init__(self, phasediagram, show_unstable=False): self._pd = phasediagram self._dim = len(self._pd.elements) if self._dim > 4: raise ValueError("Only 1-4 components supported!") self.lines = uniquelines(self._pd.facets) if self._dim > 1 else \ [[self._pd.facets[0][0], self._pd.facets[0][0]]] self.show_unstable = show_unstable @property def pd_plot_data(self): """ Plot data for phase diagram. 2-comp - Full hull with energies 3/4-comp - Projection into 2D or 3D Gibbs triangle. Returns: (lines, stable_entries, unstable_entries): - lines is a list of list of coordinates for lines in the PD. - stable_entries is a {coordinate : entry} for each stable node in the phase diagram. (Each coordinate can only have one stable phase) - unstable_entries is a {entry: coordinates} for all unstable nodes in the phase diagram. """ pd = self._pd entries = pd.qhull_entries data = np.array(pd.qhull_data) lines = [] stable_entries = {} for line in self.lines: entry1 = entries[line[0]] entry2 = entries[line[1]] if self._dim < 3: x = [data[line[0]][0], data[line[1]][0]] y = [pd.get_form_energy_per_atom(entry1), pd.get_form_energy_per_atom(entry2)] coord = [x, y] elif self._dim == 3: coord = triangular_coord(data[line, 0:2]) else: coord = tet_coord(data[line, 0:3]) lines.append(coord) labelcoord = list(zip(*coord)) stable_entries[labelcoord[0]] = entry1 stable_entries[labelcoord[1]] = entry2 all_entries = pd.all_entries all_data = np.array(pd.all_entries_hulldata) unstable_entries = dict() stable = pd.stable_entries for i in range(0, len(all_entries)): entry = all_entries[i] if entry not in stable: if self._dim < 3: x = [all_data[i][0], all_data[i][0]] y = [pd.get_form_energy_per_atom(entry), pd.get_form_energy_per_atom(entry)] coord = [x, y] elif self._dim == 3: coord = triangular_coord([all_data[i, 0:2], all_data[i, 0:2]]) else: coord = tet_coord([all_data[i, 0:3], all_data[i, 0:3], all_data[i, 0:3]]) labelcoord = list(zip(*coord)) unstable_entries[entry] = labelcoord[0] return lines, stable_entries, unstable_entries def get_plot(self, label_stable=True, label_unstable=True, ordering=None, energy_colormap=None, process_attributes=False): if self._dim < 4: plt = self._get_2d_plot(label_stable, label_unstable, ordering, energy_colormap, process_attributes=process_attributes) elif self._dim == 4: plt = self._get_3d_plot(label_stable) return plt def show(self, label_stable=True, label_unstable=True, ordering=None, energy_colormap=None, process_attributes=False): """ Draws the phase diagram using Matplotlib and show it. """ self.get_plot(label_stable=label_stable, label_unstable=label_unstable, ordering=ordering, energy_colormap=energy_colormap, process_attributes=process_attributes).show() def _get_2d_plot(self, label_stable=True, label_unstable=True, ordering=None, energy_colormap=None, vmin_mev=-60.0, vmax_mev=60.0, show_colorbar=True, process_attributes=False): """ Shows the plot using pylab. Usually I won't do imports in methods, but since plotting is a fairly expensive library to load and not all machines have matplotlib installed, I have done it this way. """ plt = get_publication_quality_plot(8, 6) from matplotlib.font_manager import FontProperties if ordering is None: (lines, labels, unstable) = self.pd_plot_data else: (_lines, _labels, _unstable) = self.pd_plot_data (lines, labels, unstable) = order_phase_diagram( _lines, _labels, _unstable, ordering) if energy_colormap is None: if process_attributes: for x, y in lines: plt.plot(x, y, "k-", linewidth=3, markeredgecolor="k") # One should think about a clever way to have "complex" # attributes with complex processing options but with a clear # logic. At this moment, I just use the attributes to know # whether an entry is a new compound or an existing (from the # ICSD or from the MP) one. for x, y in labels.keys(): if labels[(x, y)].attribute is None or \ labels[(x, y)].attribute == "existing": plt.plot(x, y, "ko", linewidth=3, markeredgecolor="k", markerfacecolor="b", markersize=12) else: plt.plot(x, y, "k*", linewidth=3, markeredgecolor="k", markerfacecolor="g", markersize=18) else: for x, y in lines: plt.plot(x, y, "ko-", linewidth=3, markeredgecolor="k", markerfacecolor="b", markersize=15) else: from matplotlib.colors import Normalize, LinearSegmentedColormap from matplotlib.cm import ScalarMappable pda = PDAnalyzer(self._pd) for x, y in lines: plt.plot(x, y, "k-", linewidth=3, markeredgecolor="k") vmin = vmin_mev / 1000.0 vmax = vmax_mev / 1000.0 if energy_colormap == 'default': mid = - vmin / (vmax - vmin) cmap = LinearSegmentedColormap.from_list( 'my_colormap', [(0.0, '#005500'), (mid, '#55FF55'), (mid, '#FFAAAA'), (1.0, '#FF0000')]) else: cmap = energy_colormap norm = Normalize(vmin=vmin, vmax=vmax) _map = ScalarMappable(norm=norm, cmap=cmap) _energies = [pda.get_equilibrium_reaction_energy(entry) for coord, entry in labels.items()] energies = [en if en < 0.0 else -0.00000001 for en in _energies] vals_stable = _map.to_rgba(energies) ii = 0 if process_attributes: for x, y in labels.keys(): if labels[(x, y)].attribute is None or \ labels[(x, y)].attribute == "existing": plt.plot(x, y, "o", markerfacecolor=vals_stable[ii], markersize=12) else: plt.plot(x, y, "*", markerfacecolor=vals_stable[ii], markersize=18) ii += 1 else: for x, y in labels.keys(): plt.plot(x, y, "o", markerfacecolor=vals_stable[ii], markersize=15) ii += 1 font = FontProperties() font.set_weight("bold") font.set_size(24) # Sets a nice layout depending on the type of PD. Also defines a # "center" for the PD, which then allows the annotations to be spread # out in a nice manner. if len(self._pd.elements) == 3: plt.axis("equal") plt.xlim((-0.1, 1.2)) plt.ylim((-0.1, 1.0)) plt.axis("off") center = (0.5, math.sqrt(3) / 6) else: all_coords = labels.keys() miny = min([c[1] for c in all_coords]) ybuffer = max(abs(miny) * 0.1, 0.1) plt.xlim((-0.1, 1.1)) plt.ylim((miny - ybuffer, ybuffer)) center = (0.5, miny / 2) plt.xlabel("Fraction", fontsize=28, fontweight='bold') plt.ylabel("Formation energy (eV/fu)", fontsize=28, fontweight='bold') for coords in sorted(labels.keys(), key=lambda x: -x[1]): entry = labels[coords] label = entry.name # The follow defines an offset for the annotation text emanating # from the center of the PD. Results in fairly nice layouts for the # most part. vec = (np.array(coords) - center) vec = vec / np.linalg.norm(vec) * 10 if np.linalg.norm(vec) != 0 \ else vec valign = "bottom" if vec[1] > 0 else "top" if vec[0] < -0.01: halign = "right" elif vec[0] > 0.01: halign = "left" else: halign = "center" if label_stable: if process_attributes and entry.attribute == 'new': plt.annotate(latexify(label), coords, xytext=vec, textcoords="offset points", horizontalalignment=halign, verticalalignment=valign, fontproperties=font, color='g') else: plt.annotate(latexify(label), coords, xytext=vec, textcoords="offset points", horizontalalignment=halign, verticalalignment=valign, fontproperties=font) if self.show_unstable: font = FontProperties() font.set_size(16) pda = PDAnalyzer(self._pd) energies_unstable = [pda.get_e_above_hull(entry) for entry, coord in unstable.items()] if energy_colormap is not None: energies.extend(energies_unstable) vals_unstable = _map.to_rgba(energies_unstable) ii = 0 for entry, coords in unstable.items(): vec = (np.array(coords) - center) vec = vec / np.linalg.norm(vec) * 10 \ if np.linalg.norm(vec) != 0 else vec label = entry.name if energy_colormap is None: plt.plot(coords[0], coords[1], "ks", linewidth=3, markeredgecolor="k", markerfacecolor="r", markersize=8) else: plt.plot(coords[0], coords[1], "s", linewidth=3, markeredgecolor="k", markerfacecolor=vals_unstable[ii], markersize=8) if label_unstable: plt.annotate(latexify(label), coords, xytext=vec, textcoords="offset points", horizontalalignment=halign, color="b", verticalalignment=valign, fontproperties=font) ii += 1 if energy_colormap is not None and show_colorbar: _map.set_array(energies) cbar = plt.colorbar(_map) cbar.set_label( 'Energy [meV/at] above hull (in red)\nInverse energy [' 'meV/at] above hull (in green)', rotation=-90, ha='left', va='center') ticks = cbar.ax.get_yticklabels() cbar.ax.set_yticklabels(['${v}$'.format( v=float(t.get_text().strip('$'))*1000.0) for t in ticks]) f = plt.gcf() f.set_size_inches((8, 6)) plt.subplots_adjust(left=0.09, right=0.98, top=0.98, bottom=0.07) return plt def _get_3d_plot(self, label_stable=True): """ Shows the plot using pylab. Usually I won"t do imports in methods, but since plotting is a fairly expensive library to load and not all machines have matplotlib installed, I have done it this way. """ import matplotlib.pyplot as plt import mpl_toolkits.mplot3d.axes3d as p3 from matplotlib.font_manager import FontProperties fig = plt.figure() ax = p3.Axes3D(fig) font = FontProperties() font.set_weight("bold") font.set_size(20) (lines, labels, unstable) = self.pd_plot_data count = 1 newlabels = list() for x, y, z in lines: ax.plot(x, y, z, "bo-", linewidth=3, markeredgecolor="b", markerfacecolor="r", markersize=10) for coords in sorted(labels.keys()): entry = labels[coords] label = entry.name if label_stable: if len(entry.composition.elements) == 1: ax.text(coords[0], coords[1], coords[2], label) else: ax.text(coords[0], coords[1], coords[2], str(count)) newlabels.append("{} : {}".format(count, latexify(label))) count += 1 plt.figtext(0.01, 0.01, "\n".join(newlabels)) ax.axis("off") return plt def write_image(self, stream, image_format="svg", label_stable=True, label_unstable=True, ordering=None, energy_colormap=None, process_attributes=False): """ Writes the phase diagram to an image in a stream. Args: stream: stream to write to. Can be a file stream or a StringIO stream. image_format format for image. Can be any of matplotlib supported formats. Defaults to svg for best results for vector graphics. """ plt = self.get_plot( label_stable=label_stable, label_unstable=label_unstable, ordering=ordering, energy_colormap=energy_colormap, process_attributes=process_attributes) f = plt.gcf() f.set_size_inches((12, 10)) plt.savefig(stream, format=image_format) def plot_chempot_range_map(self, elements, referenced=True): """ Plot the chemical potential range _map. Currently works only for 3-component PDs. Args: elements: Sequence of elements to be considered as independent variables. E.g., if you want to show the stability ranges of all Li-Co-O phases wrt to uLi and uO, you will supply [Element("Li"), Element("O")] referenced: if True, gives the results with a reference being the energy of the elemental phase. If False, gives absolute values. """ self.get_chempot_range_map_plot(elements, referenced=referenced).show() def get_chempot_range_map_plot(self, elements,referenced=True): """ Returns a plot of the chemical potential range _map. Currently works only for 3-component PDs. Args: elements: Sequence of elements to be considered as independent variables. E.g., if you want to show the stability ranges of all Li-Co-O phases wrt to uLi and uO, you will supply [Element("Li"), Element("O")] referenced: if True, gives the results with a reference being the energy of the elemental phase. If False, gives absolute values. Returns: A matplotlib plot object. """ plt = get_publication_quality_plot(12, 8) analyzer = PDAnalyzer(self._pd) chempot_ranges = analyzer.get_chempot_range_map(elements,referenced=referenced) missing_lines = {} excluded_region = [] for entry, lines in chempot_ranges.items(): comp = entry.composition center_x = 0 center_y = 0 coords = [] contain_zero = any([comp.get_atomic_fraction(el) == 0 for el in elements]) is_boundary = (not contain_zero) and \ sum([comp.get_atomic_fraction(el) for el in elements]) == 1 for line in lines: (x, y) = line.coords.transpose() plt.plot(x, y, "k-") for coord in line.coords: if not in_coord_list(coords, coord): coords.append(coord.tolist()) center_x += coord[0] center_y += coord[1] if is_boundary: excluded_region.extend(line.coords) if coords and contain_zero: missing_lines[entry] = coords else: xy = (center_x / len(coords), center_y / len(coords)) plt.annotate(latexify(entry.name), xy, fontsize=22) ax = plt.gca() xlim = ax.get_xlim() ylim = ax.get_ylim() #Shade the forbidden chemical potential regions. excluded_region.append([xlim[1], ylim[1]]) excluded_region = sorted(excluded_region, key=lambda c: c[0]) (x, y) = np.transpose(excluded_region) plt.fill(x, y, "0.80") #The hull does not generate the missing horizontal and vertical lines. #The following code fixes this. el0 = elements[0] el1 = elements[1] for entry, coords in missing_lines.items(): center_x = sum([c[0] for c in coords]) center_y = sum([c[1] for c in coords]) comp = entry.composition is_x = comp.get_atomic_fraction(el0) < 0.01 is_y = comp.get_atomic_fraction(el1) < 0.01 n = len(coords) if not (is_x and is_y): if is_x: coords = sorted(coords, key=lambda c: c[1]) for i in [0, -1]: x = [min(xlim), coords[i][0]] y = [coords[i][1], coords[i][1]] plt.plot(x, y, "k") center_x += min(xlim) center_y += coords[i][1] elif is_y: coords = sorted(coords, key=lambda c: c[0]) for i in [0, -1]: x = [coords[i][0], coords[i][0]] y = [coords[i][1], min(ylim)] plt.plot(x, y, "k") center_x += coords[i][0] center_y += min(ylim) xy = (center_x / (n + 2), center_y / (n + 2)) else: center_x = sum(coord[0] for coord in coords) + xlim[0] center_y = sum(coord[1] for coord in coords) + ylim[0] xy = (center_x / (n + 1), center_y / (n + 1)) plt.annotate(latexify(entry.name), xy, horizontalalignment="center", verticalalignment="center", fontsize=22) plt.xlabel("$\mu_{{{0}}} - \mu_{{{0}}}^0$ (eV)" .format(el0.symbol)) plt.ylabel("$\mu_{{{0}}} - \mu_{{{0}}}^0$ (eV)" .format(el1.symbol)) plt.tight_layout() return plt def get_contour_pd_plot(self): """ Plot a contour phase diagram plot, where phase triangles are colored according to degree of instability by interpolation. Currently only works for 3-component phase diagrams. Returns: A matplotlib plot object. """ from scipy import interpolate from matplotlib import cm pd = self._pd entries = pd.qhull_entries data = np.array(pd.qhull_data) plt = self._get_2d_plot() analyzer = PDAnalyzer(pd) data[:, 0:2] = triangular_coord(data[:, 0:2]).transpose() for i, e in enumerate(entries): data[i, 2] = analyzer.get_e_above_hull(e) gridsize = 0.005 xnew = np.arange(0, 1., gridsize) ynew = np.arange(0, 1, gridsize) f = interpolate.LinearNDInterpolator(data[:, 0:2], data[:, 2]) znew = np.zeros((len(ynew), len(xnew))) for (i, xval) in enumerate(xnew): for (j, yval) in enumerate(ynew): znew[j, i] = f(xval, yval) plt.contourf(xnew, ynew, znew, 1000, cmap=cm.autumn_r) plt.colorbar() return plt def uniquelines(q): """ Given all the facets, convert it into a set of unique lines. Specifically used for converting convex hull facets into line pairs of coordinates. Args: q: A 2-dim sequence, where each row represents a facet. E.g., [[1,2,3],[3,6,7],...] Returns: setoflines: A set of tuple of lines. E.g., ((1,2), (1,3), (2,3), ....) """ setoflines = set() for facets in q: for line in itertools.combinations(facets, 2): setoflines.add(tuple(sorted(line))) return setoflines def triangular_coord(coord): """ Convert a 2D coordinate into a triangle-based coordinate system for a prettier phase diagram. Args: coordinate: coordinate used in the convex hull computation. Returns: coordinates in a triangular-based coordinate system. """ unitvec = np.array([[1, 0], [0.5, math.sqrt(3) / 2]]) result = np.dot(np.array(coord), unitvec) return result.transpose() def tet_coord(coord): """ Convert a 3D coordinate into a tetrahedron based coordinate system for a prettier phase diagram. Args: coordinate: coordinate used in the convex hull computation. Returns: coordinates in a tetrahedron-based coordinate system. """ unitvec = np.array([[1, 0, 0], [0.5, math.sqrt(3) / 2, 0], [0.5, 1.0 / 3.0 * math.sqrt(3) / 2, math.sqrt(6) / 3]]) result = np.dot(np.array(coord), unitvec) return result.transpose() def order_phase_diagram(lines, stable_entries, unstable_entries, ordering): """ Orders the entries (their coordinates) in a phase diagram plot according to the user specified ordering. Ordering should be given as ['Up', 'Left', 'Right'], where Up, Left and Right are the names of the entries in the upper, left and right corners of the triangle respectively. Args: lines: list of list of coordinates for lines in the PD. stable_entries: {coordinate : entry} for each stable node in the phase diagram. (Each coordinate can only have one stable phase) unstable_entries: {entry: coordinates} for all unstable nodes in the phase diagram. ordering: Ordering of the phase diagram, given as a list ['Up', 'Left','Right'] Returns: (newlines, newstable_entries, newunstable_entries): - newlines is a list of list of coordinates for lines in the PD. - newstable_entries is a {coordinate : entry} for each stable node in the phase diagram. (Each coordinate can only have one stable phase) - newunstable_entries is a {entry: coordinates} for all unstable nodes in the phase diagram. """ yup = -1000.0 xleft = 1000.0 xright = -1000.0 for coord in stable_entries: if coord[0] > xright: xright = coord[0] nameright = stable_entries[coord].name if coord[0] < xleft: xleft = coord[0] nameleft = stable_entries[coord].name if coord[1] > yup: yup = coord[1] nameup = stable_entries[coord].name if (not nameup in ordering) or (not nameright in ordering) or \ (not nameleft in ordering): raise ValueError( 'Error in ordering_phase_diagram : \n"{up}", "{left}" and "{' 'right}"' ' should be in ordering : {ord}'.format(up=nameup, left=nameleft, right=nameright, ord=ordering)) cc = np.array([0.5, np.sqrt(3.0) / 6.0], np.float) if nameup == ordering[0]: if nameleft == ordering[1]: # The coordinates were already in the user ordering return lines, stable_entries, unstable_entries else: newlines = [[np.array(1.0 - x), y] for x, y in lines] newstable_entries = {(1.0 - c[0], c[1]): entry for c, entry in stable_entries.items()} newunstable_entries = {entry: (1.0 - c[0], c[1]) for entry, c in unstable_entries.items()} return newlines, newstable_entries, newunstable_entries elif nameup == ordering[1]: if nameleft == ordering[2]: c120 = np.cos(2.0 * np.pi / 3.0) s120 = np.sin(2.0 * np.pi / 3.0) newlines = [] for x, y in lines: newx = np.zeros_like(x) newy = np.zeros_like(y) for ii, xx in enumerate(x): newx[ii] = c120 * (xx - cc[0]) - s120 * (y[ii] - cc[1]) + \ cc[0] newy[ii] = s120 * (xx - cc[0]) + c120 * (y[ii] - cc[1]) + \ cc[1] newlines.append([newx, newy]) newstable_entries = { (c120 * (c[0] - cc[0]) - s120 * (c[1] - cc[1]) + cc[0], s120 * (c[0] - cc[0]) + c120 * (c[1] - cc[1]) + cc[1]): entry for c, entry in stable_entries.items()} newunstable_entries = { entry: (c120 * (c[0] - cc[0]) - s120 * (c[1] - cc[1]) + cc[0], s120 * (c[0] - cc[0]) + c120 * (c[1] - cc[1]) + cc[1]) for entry, c in unstable_entries.items()} return newlines, newstable_entries, newunstable_entries else: c120 = np.cos(2.0 * np.pi / 3.0) s120 = np.sin(2.0 * np.pi / 3.0) newlines = [] for x, y in lines: newx = np.zeros_like(x) newy = np.zeros_like(y) for ii, xx in enumerate(x): newx[ii] = -c120 * (xx - 1.0) - s120 * y[ii] + 1.0 newy[ii] = -s120 * (xx - 1.0) + c120 * y[ii] newlines.append([newx, newy]) newstable_entries = {(-c120 * (c[0] - 1.0) - s120 * c[1] + 1.0, -s120 * (c[0] - 1.0) + c120 * c[1]): entry for c, entry in stable_entries.items()} newunstable_entries = { entry: (-c120 * (c[0] - 1.0) - s120 * c[1] + 1.0, -s120 * (c[0] - 1.0) + c120 * c[1]) for entry, c in unstable_entries.items()} return newlines, newstable_entries, newunstable_entries elif nameup == ordering[2]: if nameleft == ordering[0]: c240 = np.cos(4.0 * np.pi / 3.0) s240 = np.sin(4.0 * np.pi / 3.0) newlines = [] for x, y in lines: newx = np.zeros_like(x) newy = np.zeros_like(y) for ii, xx in enumerate(x): newx[ii] = c240 * (xx - cc[0]) - s240 * (y[ii] - cc[1]) + \ cc[0] newy[ii] = s240 * (xx - cc[0]) + c240 * (y[ii] - cc[1]) + \ cc[1] newlines.append([newx, newy]) newstable_entries = { (c240 * (c[0] - cc[0]) - s240 * (c[1] - cc[1]) + cc[0], s240 * (c[0] - cc[0]) + c240 * (c[1] - cc[1]) + cc[1]): entry for c, entry in stable_entries.items()} newunstable_entries = { entry: (c240 * (c[0] - cc[0]) - s240 * (c[1] - cc[1]) + cc[0], s240 * (c[0] - cc[0]) + c240 * (c[1] - cc[1]) + cc[1]) for entry, c in unstable_entries.items()} return newlines, newstable_entries, newunstable_entries else: c240 = np.cos(4.0 * np.pi / 3.0) s240 = np.sin(4.0 * np.pi / 3.0) newlines = [] for x, y in lines: newx = np.zeros_like(x) newy = np.zeros_like(y) for ii, xx in enumerate(x): newx[ii] = -c240 * xx - s240 * y[ii] newy[ii] = -s240 * xx + c240 * y[ii] newlines.append([newx, newy]) newstable_entries = {(-c240 * c[0] - s240 * c[1], -s240 * c[0] + c240 * c[1]): entry for c, entry in stable_entries.items()} newunstable_entries = {entry: (-c240 * c[0] - s240 * c[1], -s240 * c[0] + c240 * c[1]) for entry, c in unstable_entries.items()} return newlines, newstable_entries, newunstable_entries
mit
andaag/scikit-learn
examples/mixture/plot_gmm_selection.py
248
3223
""" ================================= Gaussian Mixture Model Selection ================================= This example shows that model selection can be performed with Gaussian Mixture Models using information-theoretic criteria (BIC). Model selection concerns both the covariance type and the number of components in the model. In that case, AIC also provides the right result (not shown to save time), but BIC is better suited if the problem is to identify the right model. Unlike Bayesian procedures, such inferences are prior-free. In that case, the model with 2 components and full covariance (which corresponds to the true generative model) is selected. """ print(__doc__) import itertools import numpy as np from scipy import linalg import matplotlib.pyplot as plt import matplotlib as mpl from sklearn import mixture # Number of samples per component n_samples = 500 # Generate random sample, two components np.random.seed(0) C = np.array([[0., -0.1], [1.7, .4]]) X = np.r_[np.dot(np.random.randn(n_samples, 2), C), .7 * np.random.randn(n_samples, 2) + np.array([-6, 3])] lowest_bic = np.infty bic = [] n_components_range = range(1, 7) cv_types = ['spherical', 'tied', 'diag', 'full'] for cv_type in cv_types: for n_components in n_components_range: # Fit a mixture of Gaussians with EM gmm = mixture.GMM(n_components=n_components, covariance_type=cv_type) gmm.fit(X) bic.append(gmm.bic(X)) if bic[-1] < lowest_bic: lowest_bic = bic[-1] best_gmm = gmm bic = np.array(bic) color_iter = itertools.cycle(['k', 'r', 'g', 'b', 'c', 'm', 'y']) clf = best_gmm bars = [] # Plot the BIC scores spl = plt.subplot(2, 1, 1) for i, (cv_type, color) in enumerate(zip(cv_types, color_iter)): xpos = np.array(n_components_range) + .2 * (i - 2) bars.append(plt.bar(xpos, bic[i * len(n_components_range): (i + 1) * len(n_components_range)], width=.2, color=color)) plt.xticks(n_components_range) plt.ylim([bic.min() * 1.01 - .01 * bic.max(), bic.max()]) plt.title('BIC score per model') xpos = np.mod(bic.argmin(), len(n_components_range)) + .65 +\ .2 * np.floor(bic.argmin() / len(n_components_range)) plt.text(xpos, bic.min() * 0.97 + .03 * bic.max(), '*', fontsize=14) spl.set_xlabel('Number of components') spl.legend([b[0] for b in bars], cv_types) # Plot the winner splot = plt.subplot(2, 1, 2) Y_ = clf.predict(X) for i, (mean, covar, color) in enumerate(zip(clf.means_, clf.covars_, color_iter)): v, w = linalg.eigh(covar) if not np.any(Y_ == i): continue plt.scatter(X[Y_ == i, 0], X[Y_ == i, 1], .8, color=color) # Plot an ellipse to show the Gaussian component angle = np.arctan2(w[0][1], w[0][0]) angle = 180 * angle / np.pi # convert to degrees v *= 4 ell = mpl.patches.Ellipse(mean, v[0], v[1], 180 + angle, color=color) ell.set_clip_box(splot.bbox) ell.set_alpha(.5) splot.add_artist(ell) plt.xlim(-10, 10) plt.ylim(-3, 6) plt.xticks(()) plt.yticks(()) plt.title('Selected GMM: full model, 2 components') plt.subplots_adjust(hspace=.35, bottom=.02) plt.show()
bsd-3-clause
amolkahat/pandas
pandas/core/base.py
2
40524
""" Base and utility classes for pandas objects. """ import warnings import textwrap from pandas import compat from pandas.compat import builtins import numpy as np from pandas.core.dtypes.missing import isna from pandas.core.dtypes.generic import ABCDataFrame, ABCSeries, ABCIndexClass from pandas.core.dtypes.common import ( is_datetimelike, is_object_dtype, is_list_like, is_scalar, is_extension_type, is_extension_array_dtype) from pandas.util._validators import validate_bool_kwarg from pandas.errors import AbstractMethodError from pandas.core import common as com, algorithms import pandas.core.nanops as nanops import pandas._libs.lib as lib from pandas.compat.numpy import function as nv from pandas.compat import PYPY, OrderedDict from pandas.util._decorators import Appender, cache_readonly, Substitution from pandas.core.accessor import DirNamesMixin _shared_docs = dict() _indexops_doc_kwargs = dict(klass='IndexOpsMixin', inplace='', unique='IndexOpsMixin', duplicated='IndexOpsMixin') class StringMixin(object): """implements string methods so long as object defines a `__unicode__` method. Handles Python2/3 compatibility transparently. """ # side note - this could be made into a metaclass if more than one # object needs # ---------------------------------------------------------------------- # Formatting def __unicode__(self): raise AbstractMethodError(self) def __str__(self): """ Return a string representation for a particular Object Invoked by str(df) in both py2/py3. Yields Bytestring in Py2, Unicode String in py3. """ if compat.PY3: return self.__unicode__() return self.__bytes__() def __bytes__(self): """ Return a string representation for a particular object. Invoked by bytes(obj) in py3 only. Yields a bytestring in both py2/py3. """ from pandas.core.config import get_option encoding = get_option("display.encoding") return self.__unicode__().encode(encoding, 'replace') def __repr__(self): """ Return a string representation for a particular object. Yields Bytestring in Py2, Unicode String in py3. """ return str(self) class PandasObject(StringMixin, DirNamesMixin): """baseclass for various pandas objects""" @property def _constructor(self): """class constructor (for this class it's just `__class__`""" return self.__class__ def __unicode__(self): """ Return a string representation for a particular object. Invoked by unicode(obj) in py2 only. Yields a Unicode String in both py2/py3. """ # Should be overwritten by base classes return object.__repr__(self) def _reset_cache(self, key=None): """ Reset cached properties. If ``key`` is passed, only clears that key. """ if getattr(self, '_cache', None) is None: return if key is None: self._cache.clear() else: self._cache.pop(key, None) def __sizeof__(self): """ Generates the total memory usage for an object that returns either a value or Series of values """ if hasattr(self, 'memory_usage'): mem = self.memory_usage(deep=True) if not is_scalar(mem): mem = mem.sum() return int(mem) # no memory_usage attribute, so fall back to # object's 'sizeof' return super(PandasObject, self).__sizeof__() class NoNewAttributesMixin(object): """Mixin which prevents adding new attributes. Prevents additional attributes via xxx.attribute = "something" after a call to `self.__freeze()`. Mainly used to prevent the user from using wrong attributes on a accessor (`Series.cat/.str/.dt`). If you really want to add a new attribute at a later time, you need to use `object.__setattr__(self, key, value)`. """ def _freeze(self): """Prevents setting additional attributes""" object.__setattr__(self, "__frozen", True) # prevent adding any attribute via s.xxx.new_attribute = ... def __setattr__(self, key, value): # _cache is used by a decorator # We need to check both 1.) cls.__dict__ and 2.) getattr(self, key) # because # 1.) getattr is false for attributes that raise errors # 2.) cls.__dict__ doesn't traverse into base classes if (getattr(self, "__frozen", False) and not (key == "_cache" or key in type(self).__dict__ or getattr(self, key, None) is not None)): raise AttributeError("You cannot add any new attribute '{key}'". format(key=key)) object.__setattr__(self, key, value) class GroupByError(Exception): pass class DataError(GroupByError): pass class SpecificationError(GroupByError): pass class SelectionMixin(object): """ mixin implementing the selection & aggregation interface on a group-like object sub-classes need to define: obj, exclusions """ _selection = None _internal_names = ['_cache', '__setstate__'] _internal_names_set = set(_internal_names) _builtin_table = OrderedDict(( (builtins.sum, np.sum), (builtins.max, np.max), (builtins.min, np.min), )) _cython_table = OrderedDict(( (builtins.sum, 'sum'), (builtins.max, 'max'), (builtins.min, 'min'), (np.all, 'all'), (np.any, 'any'), (np.sum, 'sum'), (np.mean, 'mean'), (np.prod, 'prod'), (np.std, 'std'), (np.var, 'var'), (np.median, 'median'), (np.max, 'max'), (np.min, 'min'), (np.cumprod, 'cumprod'), (np.cumsum, 'cumsum'), )) @property def _selection_name(self): """ return a name for myself; this would ideally be called the 'name' property, but we cannot conflict with the Series.name property which can be set """ if self._selection is None: return None # 'result' else: return self._selection @property def _selection_list(self): if not isinstance(self._selection, (list, tuple, ABCSeries, ABCIndexClass, np.ndarray)): return [self._selection] return self._selection @cache_readonly def _selected_obj(self): if self._selection is None or isinstance(self.obj, ABCSeries): return self.obj else: return self.obj[self._selection] @cache_readonly def ndim(self): return self._selected_obj.ndim @cache_readonly def _obj_with_exclusions(self): if self._selection is not None and isinstance(self.obj, ABCDataFrame): return self.obj.reindex(columns=self._selection_list) if len(self.exclusions) > 0: return self.obj.drop(self.exclusions, axis=1) else: return self.obj def __getitem__(self, key): if self._selection is not None: raise IndexError('Column(s) {selection} already selected' .format(selection=self._selection)) if isinstance(key, (list, tuple, ABCSeries, ABCIndexClass, np.ndarray)): if len(self.obj.columns.intersection(key)) != len(key): bad_keys = list(set(key).difference(self.obj.columns)) raise KeyError("Columns not found: {missing}" .format(missing=str(bad_keys)[1:-1])) return self._gotitem(list(key), ndim=2) elif not getattr(self, 'as_index', False): if key not in self.obj.columns: raise KeyError("Column not found: {key}".format(key=key)) return self._gotitem(key, ndim=2) else: if key not in self.obj: raise KeyError("Column not found: {key}".format(key=key)) return self._gotitem(key, ndim=1) def _gotitem(self, key, ndim, subset=None): """ sub-classes to define return a sliced object Parameters ---------- key : string / list of selections ndim : 1,2 requested ndim of result subset : object, default None subset to act on """ raise AbstractMethodError(self) def aggregate(self, func, *args, **kwargs): raise AbstractMethodError(self) agg = aggregate def _try_aggregate_string_function(self, arg, *args, **kwargs): """ if arg is a string, then try to operate on it: - try to find a function (or attribute) on ourselves - try to find a numpy function - raise """ assert isinstance(arg, compat.string_types) f = getattr(self, arg, None) if f is not None: if callable(f): return f(*args, **kwargs) # people may try to aggregate on a non-callable attribute # but don't let them think they can pass args to it assert len(args) == 0 assert len([kwarg for kwarg in kwargs if kwarg not in ['axis', '_level']]) == 0 return f f = getattr(np, arg, None) if f is not None: return f(self, *args, **kwargs) raise ValueError("{arg} is an unknown string function".format(arg=arg)) def _aggregate(self, arg, *args, **kwargs): """ provide an implementation for the aggregators Parameters ---------- arg : string, dict, function *args : args to pass on to the function **kwargs : kwargs to pass on to the function Returns ------- tuple of result, how Notes ----- how can be a string describe the required post-processing, or None if not required """ is_aggregator = lambda x: isinstance(x, (list, tuple, dict)) is_nested_renamer = False _axis = kwargs.pop('_axis', None) if _axis is None: _axis = getattr(self, 'axis', 0) _level = kwargs.pop('_level', None) if isinstance(arg, compat.string_types): return self._try_aggregate_string_function(arg, *args, **kwargs), None if isinstance(arg, dict): # aggregate based on the passed dict if _axis != 0: # pragma: no cover raise ValueError('Can only pass dict with axis=0') obj = self._selected_obj def nested_renaming_depr(level=4): # deprecation of nested renaming # GH 15931 warnings.warn( ("using a dict with renaming " "is deprecated and will be removed in a future " "version"), FutureWarning, stacklevel=level) # if we have a dict of any non-scalars # eg. {'A' : ['mean']}, normalize all to # be list-likes if any(is_aggregator(x) for x in compat.itervalues(arg)): new_arg = compat.OrderedDict() for k, v in compat.iteritems(arg): if not isinstance(v, (tuple, list, dict)): new_arg[k] = [v] else: new_arg[k] = v # the keys must be in the columns # for ndim=2, or renamers for ndim=1 # ok for now, but deprecated # {'A': { 'ra': 'mean' }} # {'A': { 'ra': ['mean'] }} # {'ra': ['mean']} # not ok # {'ra' : { 'A' : 'mean' }} if isinstance(v, dict): is_nested_renamer = True if k not in obj.columns: msg = ('cannot perform renaming for {key} with a ' 'nested dictionary').format(key=k) raise SpecificationError(msg) nested_renaming_depr(4 + (_level or 0)) elif isinstance(obj, ABCSeries): nested_renaming_depr() elif (isinstance(obj, ABCDataFrame) and k not in obj.columns): raise KeyError( "Column '{col}' does not exist!".format(col=k)) arg = new_arg else: # deprecation of renaming keys # GH 15931 keys = list(compat.iterkeys(arg)) if (isinstance(obj, ABCDataFrame) and len(obj.columns.intersection(keys)) != len(keys)): nested_renaming_depr() from pandas.core.reshape.concat import concat def _agg_1dim(name, how, subset=None): """ aggregate a 1-dim with how """ colg = self._gotitem(name, ndim=1, subset=subset) if colg.ndim != 1: raise SpecificationError("nested dictionary is ambiguous " "in aggregation") return colg.aggregate(how, _level=(_level or 0) + 1) def _agg_2dim(name, how): """ aggregate a 2-dim with how """ colg = self._gotitem(self._selection, ndim=2, subset=obj) return colg.aggregate(how, _level=None) def _agg(arg, func): """ run the aggregations over the arg with func return an OrderedDict """ result = compat.OrderedDict() for fname, agg_how in compat.iteritems(arg): result[fname] = func(fname, agg_how) return result # set the final keys keys = list(compat.iterkeys(arg)) result = compat.OrderedDict() # nested renamer if is_nested_renamer: result = list(_agg(arg, _agg_1dim).values()) if all(isinstance(r, dict) for r in result): result, results = compat.OrderedDict(), result for r in results: result.update(r) keys = list(compat.iterkeys(result)) else: if self._selection is not None: keys = None # some selection on the object elif self._selection is not None: sl = set(self._selection_list) # we are a Series like object, # but may have multiple aggregations if len(sl) == 1: result = _agg(arg, lambda fname, agg_how: _agg_1dim(self._selection, agg_how)) # we are selecting the same set as we are aggregating elif not len(sl - set(keys)): result = _agg(arg, _agg_1dim) # we are a DataFrame, with possibly multiple aggregations else: result = _agg(arg, _agg_2dim) # no selection else: try: result = _agg(arg, _agg_1dim) except SpecificationError: # we are aggregating expecting all 1d-returns # but we have 2d result = _agg(arg, _agg_2dim) # combine results def is_any_series(): # return a boolean if we have *any* nested series return any(isinstance(r, ABCSeries) for r in compat.itervalues(result)) def is_any_frame(): # return a boolean if we have *any* nested series return any(isinstance(r, ABCDataFrame) for r in compat.itervalues(result)) if isinstance(result, list): return concat(result, keys=keys, axis=1, sort=True), True elif is_any_frame(): # we have a dict of DataFrames # return a MI DataFrame return concat([result[k] for k in keys], keys=keys, axis=1), True elif isinstance(self, ABCSeries) and is_any_series(): # we have a dict of Series # return a MI Series try: result = concat(result) except TypeError: # we want to give a nice error here if # we have non-same sized objects, so # we don't automatically broadcast raise ValueError("cannot perform both aggregation " "and transformation operations " "simultaneously") return result, True # fall thru from pandas import DataFrame, Series try: result = DataFrame(result) except ValueError: # we have a dict of scalars result = Series(result, name=getattr(self, 'name', None)) return result, True elif is_list_like(arg) and arg not in compat.string_types: # we require a list, but not an 'str' return self._aggregate_multiple_funcs(arg, _level=_level, _axis=_axis), None else: result = None f = self._is_cython_func(arg) if f and not args and not kwargs: return getattr(self, f)(), None # caller can react return result, True def _aggregate_multiple_funcs(self, arg, _level, _axis): from pandas.core.reshape.concat import concat if _axis != 0: raise NotImplementedError("axis other than 0 is not supported") if self._selected_obj.ndim == 1: obj = self._selected_obj else: obj = self._obj_with_exclusions results = [] keys = [] # degenerate case if obj.ndim == 1: for a in arg: try: colg = self._gotitem(obj.name, ndim=1, subset=obj) results.append(colg.aggregate(a)) # make sure we find a good name name = com.get_callable_name(a) or a keys.append(name) except (TypeError, DataError): pass except SpecificationError: raise # multiples else: for index, col in enumerate(obj): try: colg = self._gotitem(col, ndim=1, subset=obj.iloc[:, index]) results.append(colg.aggregate(arg)) keys.append(col) except (TypeError, DataError): pass except ValueError: # cannot aggregate continue except SpecificationError: raise # if we are empty if not len(results): raise ValueError("no results") try: return concat(results, keys=keys, axis=1, sort=False) except TypeError: # we are concatting non-NDFrame objects, # e.g. a list of scalars from pandas.core.dtypes.cast import is_nested_object from pandas import Series result = Series(results, index=keys, name=self.name) if is_nested_object(result): raise ValueError("cannot combine transform and " "aggregation operations") return result def _shallow_copy(self, obj=None, obj_type=None, **kwargs): """ return a new object with the replacement attributes """ if obj is None: obj = self._selected_obj.copy() if obj_type is None: obj_type = self._constructor if isinstance(obj, obj_type): obj = obj.obj for attr in self._attributes: if attr not in kwargs: kwargs[attr] = getattr(self, attr) return obj_type(obj, **kwargs) def _is_cython_func(self, arg): """ if we define an internal function for this argument, return it """ return self._cython_table.get(arg) def _is_builtin_func(self, arg): """ if we define an builtin function for this argument, return it, otherwise return the arg """ return self._builtin_table.get(arg, arg) class IndexOpsMixin(object): """ common ops mixin to support a unified interface / docs for Series / Index """ # ndarray compatibility __array_priority__ = 1000 def transpose(self, *args, **kwargs): """ return the transpose, which is by definition self """ nv.validate_transpose(args, kwargs) return self T = property(transpose, doc="return the transpose, which is by " "definition self") @property def _is_homogeneous_type(self): """Whether the object has a single dtype. By definition, Series and Index are always considered homogeneous. A MultiIndex may or may not be homogeneous, depending on the dtypes of the levels. See Also -------- DataFrame._is_homogeneous_type MultiIndex._is_homogeneous_type """ return True @property def shape(self): """ return a tuple of the shape of the underlying data """ return self._values.shape @property def ndim(self): """ return the number of dimensions of the underlying data, by definition 1 """ return 1 def item(self): """ return the first element of the underlying data as a python scalar """ try: return self.values.item() except IndexError: # copy numpy's message here because Py26 raises an IndexError raise ValueError('can only convert an array of size 1 to a ' 'Python scalar') @property def data(self): """ return the data pointer of the underlying data """ warnings.warn("{obj}.data is deprecated and will be removed " "in a future version".format(obj=type(self).__name__), FutureWarning, stacklevel=2) return self.values.data @property def itemsize(self): """ return the size of the dtype of the item of the underlying data """ warnings.warn("{obj}.itemsize is deprecated and will be removed " "in a future version".format(obj=type(self).__name__), FutureWarning, stacklevel=2) return self._ndarray_values.itemsize @property def nbytes(self): """ return the number of bytes in the underlying data """ return self._values.nbytes @property def strides(self): """ return the strides of the underlying data """ warnings.warn("{obj}.strides is deprecated and will be removed " "in a future version".format(obj=type(self).__name__), FutureWarning, stacklevel=2) return self._ndarray_values.strides @property def size(self): """ return the number of elements in the underlying data """ return self._values.size @property def flags(self): """ return the ndarray.flags for the underlying data """ warnings.warn("{obj}.flags is deprecated and will be removed " "in a future version".format(obj=type(self).__name__), FutureWarning, stacklevel=2) return self.values.flags @property def base(self): """ return the base object if the memory of the underlying data is shared """ warnings.warn("{obj}.base is deprecated and will be removed " "in a future version".format(obj=type(self).__name__), FutureWarning, stacklevel=2) return self.values.base @property def _ndarray_values(self): # type: () -> np.ndarray """The data as an ndarray, possibly losing information. The expectation is that this is cheap to compute, and is primarily used for interacting with our indexers. - categorical -> codes """ if is_extension_array_dtype(self): return self.values._ndarray_values return self.values @property def empty(self): return not self.size def max(self): """ Return the maximum value of the Index. Returns ------- scalar Maximum value. See Also -------- Index.min : Return the minimum value in an Index. Series.max : Return the maximum value in a Series. DataFrame.max : Return the maximum values in a DataFrame. Examples -------- >>> idx = pd.Index([3, 2, 1]) >>> idx.max() 3 >>> idx = pd.Index(['c', 'b', 'a']) >>> idx.max() 'c' For a MultiIndex, the maximum is determined lexicographically. >>> idx = pd.MultiIndex.from_product([('a', 'b'), (2, 1)]) >>> idx.max() ('b', 2) """ return nanops.nanmax(self.values) def argmax(self, axis=None): """ return a ndarray of the maximum argument indexer See also -------- numpy.ndarray.argmax """ return nanops.nanargmax(self.values) def min(self): """ Return the minimum value of the Index. Returns ------- scalar Minimum value. See Also -------- Index.max : Return the maximum value of the object. Series.min : Return the minimum value in a Series. DataFrame.min : Return the minimum values in a DataFrame. Examples -------- >>> idx = pd.Index([3, 2, 1]) >>> idx.min() 1 >>> idx = pd.Index(['c', 'b', 'a']) >>> idx.min() 'a' For a MultiIndex, the minimum is determined lexicographically. >>> idx = pd.MultiIndex.from_product([('a', 'b'), (2, 1)]) >>> idx.min() ('a', 1) """ return nanops.nanmin(self.values) def argmin(self, axis=None): """ return a ndarray of the minimum argument indexer See also -------- numpy.ndarray.argmin """ return nanops.nanargmin(self.values) def tolist(self): """ Return a list of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period) See Also -------- numpy.ndarray.tolist """ if is_datetimelike(self._values): return [com.maybe_box_datetimelike(x) for x in self._values] elif is_extension_array_dtype(self._values): return list(self._values) else: return self._values.tolist() def __iter__(self): """ Return an iterator of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period) """ return iter(self.tolist()) @cache_readonly def hasnans(self): """ return if I have any nans; enables various perf speedups """ return isna(self).any() def _reduce(self, op, name, axis=0, skipna=True, numeric_only=None, filter_type=None, **kwds): """ perform the reduction type operation if we can """ func = getattr(self, name, None) if func is None: raise TypeError("{klass} cannot perform the operation {op}".format( klass=self.__class__.__name__, op=name)) return func(**kwds) def _map_values(self, mapper, na_action=None): """An internal function that maps values using the input correspondence (which can be a dict, Series, or function). Parameters ---------- mapper : function, dict, or Series The input correspondence object na_action : {None, 'ignore'} If 'ignore', propagate NA values, without passing them to the mapping function Returns ------- applied : Union[Index, MultiIndex], inferred The output of the mapping function applied to the index. If the function returns a tuple with more than one element a MultiIndex will be returned. """ # we can fastpath dict/Series to an efficient map # as we know that we are not going to have to yield # python types if isinstance(mapper, dict): if hasattr(mapper, '__missing__'): # If a dictionary subclass defines a default value method, # convert mapper to a lookup function (GH #15999). dict_with_default = mapper mapper = lambda x: dict_with_default[x] else: # Dictionary does not have a default. Thus it's safe to # convert to an Series for efficiency. # we specify the keys here to handle the # possibility that they are tuples from pandas import Series mapper = Series(mapper) if isinstance(mapper, ABCSeries): # Since values were input this means we came from either # a dict or a series and mapper should be an index if is_extension_type(self.dtype): values = self._values else: values = self.values indexer = mapper.index.get_indexer(values) new_values = algorithms.take_1d(mapper._values, indexer) return new_values # we must convert to python types if is_extension_type(self.dtype): values = self._values if na_action is not None: raise NotImplementedError map_f = lambda values, f: values.map(f) else: values = self.astype(object) values = getattr(values, 'values', values) if na_action == 'ignore': def map_f(values, f): return lib.map_infer_mask(values, f, isna(values).view(np.uint8)) else: map_f = lib.map_infer # mapper is a function new_values = map_f(values, mapper) return new_values def value_counts(self, normalize=False, sort=True, ascending=False, bins=None, dropna=True): """ Return a Series containing counts of unique values. The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default. Parameters ---------- normalize : boolean, default False If True then the object returned will contain the relative frequencies of the unique values. sort : boolean, default True Sort by values. ascending : boolean, default False Sort in ascending order. bins : integer, optional Rather than count values, group them into half-open bins, a convenience for ``pd.cut``, only works with numeric data. dropna : boolean, default True Don't include counts of NaN. Returns ------- counts : Series See Also -------- Series.count: number of non-NA elements in a Series DataFrame.count: number of non-NA elements in a DataFrame Examples -------- >>> index = pd.Index([3, 1, 2, 3, 4, np.nan]) >>> index.value_counts() 3.0 2 4.0 1 2.0 1 1.0 1 dtype: int64 With `normalize` set to `True`, returns the relative frequency by dividing all values by the sum of values. >>> s = pd.Series([3, 1, 2, 3, 4, np.nan]) >>> s.value_counts(normalize=True) 3.0 0.4 4.0 0.2 2.0 0.2 1.0 0.2 dtype: float64 **bins** Bins can be useful for going from a continuous variable to a categorical variable; instead of counting unique apparitions of values, divide the index in the specified number of half-open bins. >>> s.value_counts(bins=3) (2.0, 3.0] 2 (0.996, 2.0] 2 (3.0, 4.0] 1 dtype: int64 **dropna** With `dropna` set to `False` we can also see NaN index values. >>> s.value_counts(dropna=False) 3.0 2 NaN 1 4.0 1 2.0 1 1.0 1 dtype: int64 """ from pandas.core.algorithms import value_counts result = value_counts(self, sort=sort, ascending=ascending, normalize=normalize, bins=bins, dropna=dropna) return result def unique(self): values = self._values if hasattr(values, 'unique'): result = values.unique() else: from pandas.core.algorithms import unique1d result = unique1d(values) return result def nunique(self, dropna=True): """ Return number of unique elements in the object. Excludes NA values by default. Parameters ---------- dropna : boolean, default True Don't include NaN in the count. Returns ------- nunique : int """ uniqs = self.unique() n = len(uniqs) if dropna and isna(uniqs).any(): n -= 1 return n @property def is_unique(self): """ Return boolean if values in the object are unique Returns ------- is_unique : boolean """ return self.nunique() == len(self) @property def is_monotonic(self): """ Return boolean if values in the object are monotonic_increasing .. versionadded:: 0.19.0 Returns ------- is_monotonic : boolean """ from pandas import Index return Index(self).is_monotonic is_monotonic_increasing = is_monotonic @property def is_monotonic_decreasing(self): """ Return boolean if values in the object are monotonic_decreasing .. versionadded:: 0.19.0 Returns ------- is_monotonic_decreasing : boolean """ from pandas import Index return Index(self).is_monotonic_decreasing def memory_usage(self, deep=False): """ Memory usage of the values Parameters ---------- deep : bool Introspect the data deeply, interrogate `object` dtypes for system-level memory consumption Returns ------- bytes used Notes ----- Memory usage does not include memory consumed by elements that are not components of the array if deep=False or if used on PyPy See Also -------- numpy.ndarray.nbytes """ if hasattr(self.values, 'memory_usage'): return self.values.memory_usage(deep=deep) v = self.values.nbytes if deep and is_object_dtype(self) and not PYPY: v += lib.memory_usage_of_objects(self.values) return v @Substitution( values='', order='', size_hint='', sort=textwrap.dedent("""\ sort : boolean, default False Sort `uniques` and shuffle `labels` to maintain the relationship. """)) @Appender(algorithms._shared_docs['factorize']) def factorize(self, sort=False, na_sentinel=-1): return algorithms.factorize(self, sort=sort, na_sentinel=na_sentinel) _shared_docs['searchsorted'] = ( """Find indices where elements should be inserted to maintain order. Find the indices into a sorted %(klass)s `self` such that, if the corresponding elements in `value` were inserted before the indices, the order of `self` would be preserved. Parameters ---------- value : array_like Values to insert into `self`. side : {'left', 'right'}, optional If 'left', the index of the first suitable location found is given. If 'right', return the last such index. If there is no suitable index, return either 0 or N (where N is the length of `self`). sorter : 1-D array_like, optional Optional array of integer indices that sort `self` into ascending order. They are typically the result of ``np.argsort``. Returns ------- indices : array of ints Array of insertion points with the same shape as `value`. See Also -------- numpy.searchsorted Notes ----- Binary search is used to find the required insertion points. Examples -------- >>> x = pd.Series([1, 2, 3]) >>> x 0 1 1 2 2 3 dtype: int64 >>> x.searchsorted(4) array([3]) >>> x.searchsorted([0, 4]) array([0, 3]) >>> x.searchsorted([1, 3], side='left') array([0, 2]) >>> x.searchsorted([1, 3], side='right') array([1, 3]) >>> x = pd.Categorical(['apple', 'bread', 'bread', 'cheese', 'milk'], ordered=True) [apple, bread, bread, cheese, milk] Categories (4, object): [apple < bread < cheese < milk] >>> x.searchsorted('bread') array([1]) # Note: an array, not a scalar >>> x.searchsorted(['bread'], side='right') array([3]) """) @Substitution(klass='IndexOpsMixin') @Appender(_shared_docs['searchsorted']) def searchsorted(self, value, side='left', sorter=None): # needs coercion on the key (DatetimeIndex does already) return self.values.searchsorted(value, side=side, sorter=sorter) def drop_duplicates(self, keep='first', inplace=False): inplace = validate_bool_kwarg(inplace, 'inplace') if isinstance(self, ABCIndexClass): if self.is_unique: return self._shallow_copy() duplicated = self.duplicated(keep=keep) result = self[np.logical_not(duplicated)] if inplace: return self._update_inplace(result) else: return result def duplicated(self, keep='first'): from pandas.core.algorithms import duplicated if isinstance(self, ABCIndexClass): if self.is_unique: return np.zeros(len(self), dtype=np.bool) return duplicated(self, keep=keep) else: return self._constructor(duplicated(self, keep=keep), index=self.index).__finalize__(self) # ---------------------------------------------------------------------- # abstracts def _update_inplace(self, result, **kwargs): raise AbstractMethodError(self)
bsd-3-clause
schreiberx/sweet
doc/rexi/rexi_with_cauchy_integral/test_cauchy_chebyshev/CauchyPhiQuadrature.py
1
3633
#! /usr/bin/env python3 # # Author: Martin Schreiber <M.Schreiber@exeter.ac.uk> # Date: 2017-08-16 # import math import cmath import numpy as np import sys import matplotlib.pyplot as plt class CauchyPhiQuadrature: alpha = [] beta = [] # # Phi 0-N functions # def phi(self, n, z): if n == 0: return cmath.exp(z) if n != 0: if abs(z) < 1e-8: return 1.0/math.factorial(n) raise Exception("Z close to zero, not yet supported for phi "+str(n)+" !!!") return (self.phi(n-1, z) - 1.0/math.factorial(n-1))/z raise Exception("Phi function not supported yet") # # Constructor # See setup(...) for documentation on parameters # def __init__(self, phiN, contour_boundary, contour_int_method): if phiN == -1: return self.setup(phiN, contour_boundary, contour_int_method) def setup( self, phiN, # phi function id, use 0 for exp(lambda) standard ODE integration contour_boundary, # boundary description contour_int_method # integration method ): self.contour_boundary = contour_boundary self.contour_int_method = contour_int_method if self.contour_boundary['shape'] == 'circle': self.R = contour_boundary['R'] self.mu = contour_boundary['mu'] if self.contour_int_method['method'] == 'trapezoidal': self.phiN = phiN self.N = contour_int_method['N'] # # Compute support points of quadrature # self.coords = [] for j in range(self.N): theta_j = 2.0*math.pi*(j+0.5)/self.N gamma_j = self.R*cmath.exp(1j*theta_j) + self.mu self.coords.append(gamma_j) self.alpha = [] self.beta = [] for j in range(self.N): theta_j = 2.0*math.pi*(j+0.5)/self.N gamma_j = self.R*cmath.exp(1j*theta_j) + self.mu k = self.R*cmath.exp(1j*theta_j) beta = -self.phi(phiN, gamma_j)*k beta /= self.N alpha = -(k + self.mu) self.alpha.append(alpha) self.beta.append(beta) return elif self.contour_int_method['method'] == 'chebyshev': self.phiN = phiN self.N = contour_int_method['N'] raise Exception("Unsupported combination of contour_boundary "+contour_boundary['shape']+" and integration method "+contour_int_method['method']) def plot(self, filename = None): points_re = [] points_im = [] for j in range(self.N): points_re.append(self.coords[j].real) points_im.append(self.coords[j].imag) points_re.append(points_re[0]) points_im.append(points_im[0]) plt.plot(points_re, points_im, '-bo') if filename != None: plt.savefig(filename) else: plt.show() def approx_phi_pde(self, dt_L, U): S = len(dt_L) accum = np.array([0.j, 0.j]) for j in range(len(self.alpha)): M_inv = np.linalg.inv(dt_L + np.identity(S)*self.alpha[j]) accum += self.beta[j] * np.dot(M_inv, U) return accum def approx_phi_ode(self, dt_L, U): accum = 0.0 for j in range(len(self.alpha)): M_inv = 1.0/(dt_L + self.alpha[j]) accum += self.beta[j] * M_inv * U return accum def analytical_phi_pde(self, dt_L, U): S = len(dt_L) # Setup eigenvalues and Eigenvectors for analytical solution LEvals, LEvecs = np.linalg.eig(dt_L) LEvecs_inv = np.linalg.inv(LEvecs) if True: error = np.sum(np.absolute(dt_L - np.dot(np.dot(LEvecs, np.diag(LEvals)), LEvecs_inv))) if error > 1e-10: raise Exception("Error "+str(error)+" too large") Uwave = np.dot(LEvecs_inv, U) tmp = np.array([self.phi(self.phiN, LEvals[i])*Uwave[i] for i in range(S)]) return np.dot(LEvecs, tmp) def analytical_phi_ode(self, dt_L, U): # Setup eigenvalues and Eigenvectors for analytical solution return self.phi(self.phiN, dt_L)*U
mit
akionakamura/scikit-learn
benchmarks/bench_multilabel_metrics.py
86
7286
#!/usr/bin/env python """ A comparison of multilabel target formats and metrics over them """ from __future__ import division from __future__ import print_function from timeit import timeit from functools import partial import itertools import argparse import sys import matplotlib.pyplot as plt import scipy.sparse as sp import numpy as np from sklearn.datasets import make_multilabel_classification from sklearn.metrics import (f1_score, accuracy_score, hamming_loss, jaccard_similarity_score) from sklearn.utils.testing import ignore_warnings METRICS = { 'f1': partial(f1_score, average='micro'), 'f1-by-sample': partial(f1_score, average='samples'), 'accuracy': accuracy_score, 'hamming': hamming_loss, 'jaccard': jaccard_similarity_score, } FORMATS = { 'sequences': lambda y: [list(np.flatnonzero(s)) for s in y], 'dense': lambda y: y, 'csr': lambda y: sp.csr_matrix(y), 'csc': lambda y: sp.csc_matrix(y), } @ignore_warnings def benchmark(metrics=tuple(v for k, v in sorted(METRICS.items())), formats=tuple(v for k, v in sorted(FORMATS.items())), samples=1000, classes=4, density=.2, n_times=5): """Times metric calculations for a number of inputs Parameters ---------- metrics : array-like of callables (1d or 0d) The metric functions to time. formats : array-like of callables (1d or 0d) These may transform a dense indicator matrix into multilabel representation. samples : array-like of ints (1d or 0d) The number of samples to generate as input. classes : array-like of ints (1d or 0d) The number of classes in the input. density : array-like of ints (1d or 0d) The density of positive labels in the input. n_times : int Time calling the metric n_times times. Returns ------- array of floats shaped like (metrics, formats, samples, classes, density) Time in seconds. """ metrics = np.atleast_1d(metrics) samples = np.atleast_1d(samples) classes = np.atleast_1d(classes) density = np.atleast_1d(density) formats = np.atleast_1d(formats) out = np.zeros((len(metrics), len(formats), len(samples), len(classes), len(density)), dtype=float) it = itertools.product(samples, classes, density) for i, (s, c, d) in enumerate(it): _, y_true = make_multilabel_classification(n_samples=s, n_features=1, n_classes=c, n_labels=d * c, return_indicator=True, random_state=42) _, y_pred = make_multilabel_classification(n_samples=s, n_features=1, n_classes=c, n_labels=d * c, return_indicator=True, random_state=84) for j, f in enumerate(formats): f_true = f(y_true) f_pred = f(y_pred) for k, metric in enumerate(metrics): t = timeit(partial(metric, f_true, f_pred), number=n_times) out[k, j].flat[i] = t return out def _tabulate(results, metrics, formats): """Prints results by metric and format Uses the last ([-1]) value of other fields """ column_width = max(max(len(k) for k in formats) + 1, 8) first_width = max(len(k) for k in metrics) head_fmt = ('{:<{fw}s}' + '{:>{cw}s}' * len(formats)) row_fmt = ('{:<{fw}s}' + '{:>{cw}.3f}' * len(formats)) print(head_fmt.format('Metric', *formats, cw=column_width, fw=first_width)) for metric, row in zip(metrics, results[:, :, -1, -1, -1]): print(row_fmt.format(metric, *row, cw=column_width, fw=first_width)) def _plot(results, metrics, formats, title, x_ticks, x_label, format_markers=('x', '|', 'o', '+'), metric_colors=('c', 'm', 'y', 'k', 'g', 'r', 'b')): """ Plot the results by metric, format and some other variable given by x_label """ fig = plt.figure('scikit-learn multilabel metrics benchmarks') plt.title(title) ax = fig.add_subplot(111) for i, metric in enumerate(metrics): for j, format in enumerate(formats): ax.plot(x_ticks, results[i, j].flat, label='{}, {}'.format(metric, format), marker=format_markers[j], color=metric_colors[i % len(metric_colors)]) ax.set_xlabel(x_label) ax.set_ylabel('Time (s)') ax.legend() plt.show() if __name__ == "__main__": ap = argparse.ArgumentParser() ap.add_argument('metrics', nargs='*', default=sorted(METRICS), help='Specifies metrics to benchmark, defaults to all. ' 'Choices are: {}'.format(sorted(METRICS))) ap.add_argument('--formats', nargs='+', choices=sorted(FORMATS), help='Specifies multilabel formats to benchmark ' '(defaults to all).') ap.add_argument('--samples', type=int, default=1000, help='The number of samples to generate') ap.add_argument('--classes', type=int, default=10, help='The number of classes') ap.add_argument('--density', type=float, default=.2, help='The average density of labels per sample') ap.add_argument('--plot', choices=['classes', 'density', 'samples'], default=None, help='Plot time with respect to this parameter varying ' 'up to the specified value') ap.add_argument('--n-steps', default=10, type=int, help='Plot this many points for each metric') ap.add_argument('--n-times', default=5, type=int, help="Time performance over n_times trials") args = ap.parse_args() if args.plot is not None: max_val = getattr(args, args.plot) if args.plot in ('classes', 'samples'): min_val = 2 else: min_val = 0 steps = np.linspace(min_val, max_val, num=args.n_steps + 1)[1:] if args.plot in ('classes', 'samples'): steps = np.unique(np.round(steps).astype(int)) setattr(args, args.plot, steps) if args.metrics is None: args.metrics = sorted(METRICS) if args.formats is None: args.formats = sorted(FORMATS) results = benchmark([METRICS[k] for k in args.metrics], [FORMATS[k] for k in args.formats], args.samples, args.classes, args.density, args.n_times) _tabulate(results, args.metrics, args.formats) if args.plot is not None: print('Displaying plot', file=sys.stderr) title = ('Multilabel metrics with %s' % ', '.join('{0}={1}'.format(field, getattr(args, field)) for field in ['samples', 'classes', 'density'] if args.plot != field)) _plot(results, args.metrics, args.formats, title, steps, args.plot)
bsd-3-clause
alexandrebarachant/mne-python
doc/conf.py
5
9979
# -*- coding: utf-8 -*- # # MNE documentation build configuration file, created by # sphinx-quickstart on Fri Jun 11 10:45:48 2010. # # This file is execfile()d with the current directory set to its containing # dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os from datetime import date import sphinx_gallery import sphinx_bootstrap_theme # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. curdir = os.path.dirname(__file__) sys.path.append(os.path.abspath(os.path.join(curdir, '..', 'mne'))) sys.path.append(os.path.abspath(os.path.join(curdir, 'sphinxext'))) import mne if not os.path.isdir('_images'): os.mkdir('_images') # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. from numpydoc import numpydoc, docscrape docscrape.ClassDoc.extra_public_methods = mne.utils._doc_special_members extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.mathjax', 'sphinx_gallery.gen_gallery', ] extensions += ['numpydoc'] extensions += ['gen_commands'] # auto generate the doc for the python commands # extensions += ['flow_diagram] # generate flow chart in cookbook autosummary_generate = True autodoc_default_flags = ['inherited-members'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'MNE' td = date.today() copyright = u'2012-%s, MNE Developers. Last updated on %s' % (td.year, td.isoformat()) # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = mne.__version__ # The full version, including alpha/beta/rc tags. release = version # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. unused_docs = [] # List of directories, relative to source directory, that shouldn't be searched # for source files. exclude_trees = ['_build'] exclude_patterns = ['source/generated'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. modindex_common_prefix = ['mne.'] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'bootstrap' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = { 'navbar_title': ' ', 'source_link_position': "footer", 'bootswatch_theme': "flatly", 'navbar_sidebarrel': False, 'bootstrap_version': "3", 'navbar_links': [ ("Get started", "getting_started"), ("Tutorials", "tutorials"), ("Gallery", "auto_examples/index"), ("API", "python_reference"), ("Manual", "manual/index"), ("FAQ", "faq"), ], } # Add any paths that contain custom themes here, relative to this directory. html_theme_path = sphinx_bootstrap_theme.get_html_theme_path() # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. html_logo = "_static/mne_logo_small.png" # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. html_favicon = "_static/favicon.ico" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static', '_images'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. html_show_sourcelink = False # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. html_show_sphinx = False # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # variables to pass to HTML templating engine build_dev_html = bool(int(os.environ.get('BUILD_DEV_HTML', False))) html_context = {'use_google_analytics': True, 'use_twitter': True, 'use_media_buttons': True, 'build_dev_html': build_dev_html} # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'mne-doc' # -- Options for LaTeX output --------------------------------------------- # The paper size ('letter' or 'a4'). # latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). # latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass # [howto/manual]). latex_documents = [ # ('index', 'MNE.tex', u'MNE Manual', # u'MNE Contributors', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. latex_logo = "_static/logo.png" # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. latex_use_parts = True # Additional stuff for the LaTeX preamble. # latex_preamble = '' # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True trim_doctests_flags = True # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = { 'python': ('http://docs.python.org/', None), 'numpy': ('http://docs.scipy.org/doc/numpy-dev/', None), 'scipy': ('http://scipy.github.io/devdocs/', None), } examples_dirs = ['../examples', '../tutorials'] gallery_dirs = ['auto_examples', 'auto_tutorials'] try: from mayavi import mlab find_mayavi_figures = True # Do not pop up any mayavi windows while running the # examples. These are very annoying since they steal the focus. mlab.options.offscreen = True except Exception: find_mayavi_figures = False sphinx_gallery_conf = { 'doc_module': ('mne',), 'reference_url': { 'mne': None, 'matplotlib': 'http://matplotlib.org', 'numpy': 'http://docs.scipy.org/doc/numpy-1.10.1', 'scipy': 'http://docs.scipy.org/doc/scipy-0.17.0/reference', 'mayavi': 'http://docs.enthought.com/mayavi/mayavi'}, 'examples_dirs': examples_dirs, 'gallery_dirs': gallery_dirs, 'find_mayavi_figures': find_mayavi_figures, 'default_thumb_file': os.path.join('_static', 'mne_helmet.png'), 'mod_example_dir': 'generated', } numpydoc_class_members_toctree = False
bsd-3-clause
JasonKessler/scattertext
demo_emoji.py
1
1739
import io from zipfile import ZipFile import agefromname import nltk import pandas as pd import urllib.request import scattertext as st from scattertext.termranking import OncePerDocFrequencyRanker try: print("Downloading tweet dataset") df_mf = pd.read_csv('emoji_data.csv') except: print("Downloading tweet dataset") with ZipFile(io.BytesIO(urllib.request.urlopen( 'http://followthehashtag.com/content/uploads/USA-Geolocated-tweets-free-dataset-Followthehashtag.zip' ).read())) as zf: df = pd.read_excel(zf.open('dashboard_x_usa_x_filter_nativeretweets.xlsx')) df['first_name'] = df['User Name'].apply( lambda x: x.split()[0].lower() if type(x) == str and len(x.split()) > 0 else x) male_prob = agefromname.AgeFromName().get_all_name_male_prob() df_aug = pd.merge(df, male_prob, left_on='first_name', right_index=True) df_aug['gender'] = df_aug['prob'].apply(lambda x: 'm' if x > 0.9 else 'f' if x < 0.1 else '?') df_mf = df_aug[df_aug['gender'].isin(['m', 'f'])] df_mf.to_csv('emoji_data.csv', index=False) nlp = st.tweet_tokenizier_factory(nltk.tokenize.TweetTokenizer()) df_mf['parse'] = df_mf['Tweet content'].apply(nlp) corpus = st.CorpusFromParsedDocuments( df_mf, parsed_col='parse', category_col='gender', feats_from_spacy_doc=st.FeatsFromSpacyDocOnlyEmoji() ).build() html = st.produce_scattertext_explorer( corpus, category='f', category_name='Female', not_category_name='Male', use_full_doc=True, term_ranker=OncePerDocFrequencyRanker, sort_by_dist=False, metadata=(df_mf['User Name'] + ' (@' + df_mf['Nickname'] + ') ' + df_mf['Date'].astype(str)), width_in_pixels=1000 ) print('writing EmojiGender.html') open("EmojiGender.html", 'wb').write(html.encode('utf-8'))
apache-2.0
dkillick/iris
lib/iris/tests/unit/quickplot/test_pcolormesh.py
11
2344
# (C) British Crown Copyright 2014 - 2016, Met Office # # This file is part of Iris. # # Iris is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Iris is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Iris. If not, see <http://www.gnu.org/licenses/>. """Unit tests for the `iris.quickplot.pcolormesh` function.""" from __future__ import (absolute_import, division, print_function) from six.moves import (filter, input, map, range, zip) # noqa # Import iris.tests first so that some things can be initialised before # importing anything else. import iris.tests as tests import numpy as np from iris.tests.stock import simple_2d from iris.tests.unit.plot import TestGraphicStringCoord, MixinCoords if tests.MPL_AVAILABLE: import iris.quickplot as qplt @tests.skip_plot class TestStringCoordPlot(TestGraphicStringCoord): def test_yaxis_labels(self): qplt.pcolormesh(self.cube, coords=('bar', 'str_coord')) self.assertBoundsTickLabels('yaxis') def test_xaxis_labels(self): qplt.pcolormesh(self.cube, coords=('str_coord', 'bar')) self.assertBoundsTickLabels('xaxis') @tests.skip_plot class TestCoords(tests.IrisTest, MixinCoords): def setUp(self): # We have a 2d cube with dimensionality (bar: 3; foo: 4) self.cube = simple_2d(with_bounds=True) coord = self.cube.coord('foo') self.foo = coord.contiguous_bounds() self.foo_index = np.arange(coord.points.size + 1) coord = self.cube.coord('bar') self.bar = coord.contiguous_bounds() self.bar_index = np.arange(coord.points.size + 1) self.data = self.cube.data self.dataT = self.data.T self.mpl_patch = self.patch('matplotlib.pyplot.pcolormesh', return_value=None) self.draw_func = qplt.pcolormesh if __name__ == "__main__": tests.main()
lgpl-3.0
andersy005/spark-xarray
setup.py
1
2574
#!/usr/bin/env python from setuptools import setup from setuptools import find_packages import os from ast import parse LONG_DESCRIPTION = """ **spark-xarray**: Spark-xarray is a high level, Apache Spark and xarray-based Python library for working with netCDF climate model data with Apache Spark. Important links ------------------ - Official source code repo: https://github.com/andersy005/spark-xarray - Issue tracker: https://github.com/andersy005/spark-xarray/issues """ NAME = 'spark-xarray' def version(): """Return version string.""" with open(os.path.join(os.path.abspath(os.path.dirname(__file__)),'sparkxarray', '__init__.py')) as input_file: for line in input_file: if line.startswith('__version__'): return parse(line).body[0].value.s #for line in open('sparkxarray/__init__.py').readlines(): # if line.startswith('__version__'): # exec(line) INSTALL_REQUIRES = (['numpy >= 1.7', 'scipy >= 0.16', 'pandas >= 0.15.0', 'netCDF4 >= 1.2', 'xarray>=0.9.5', 'dask >= 0.14', 'distributed >= 1.16.1', 'geopandas >= 0.3.0', 'toolz>=0.8.2', 'cloudpickle >= 0.2.1']) packages = ['sparkxarray', 'sparkxarray.tests'] package_data = {'sparkxarray': ['data/*.nc']} setup(name=NAME, version=version(), author='Anderson Banihirwe, Kevin Paul', author_email='axbanihirwe@gmail.com', description='Big Atmospheric & Oceanic Data Analysis with Apache Spark + xarray', url='https://github.com/andersy005/spark-xarray', long_description=LONG_DESCRIPTION, install_requires=INSTALL_REQUIRES, packages=packages, package_data=package_data, keywords=[' Climate Science', 'xarray', 'Apache Spark', 'Distributed', 'netCDF', 'Parallel'], classifiers=[ 'Development Status :: 1 - Beta', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: Apache', 'Natural Language :: English', 'Operating System :: OS Independent', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Topic :: Scientific/Engineering :: Atmospheric Science' ], zip_safe=False, )
apache-2.0
BiaDarkia/scikit-learn
examples/cluster/plot_digits_agglomeration.py
49
1699
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Feature agglomeration ========================================================= These images how similar features are merged together using feature agglomeration. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, cluster from sklearn.feature_extraction.image import grid_to_graph digits = datasets.load_digits() images = digits.images X = np.reshape(images, (len(images), -1)) connectivity = grid_to_graph(*images[0].shape) agglo = cluster.FeatureAgglomeration(connectivity=connectivity, n_clusters=32) agglo.fit(X) X_reduced = agglo.transform(X) X_restored = agglo.inverse_transform(X_reduced) images_restored = np.reshape(X_restored, images.shape) plt.figure(1, figsize=(4, 3.5)) plt.clf() plt.subplots_adjust(left=.01, right=.99, bottom=.01, top=.91) for i in range(4): plt.subplot(3, 4, i + 1) plt.imshow(images[i], cmap=plt.cm.gray, vmax=16, interpolation='nearest') plt.xticks(()) plt.yticks(()) if i == 1: plt.title('Original data') plt.subplot(3, 4, 4 + i + 1) plt.imshow(images_restored[i], cmap=plt.cm.gray, vmax=16, interpolation='nearest') if i == 1: plt.title('Agglomerated data') plt.xticks(()) plt.yticks(()) plt.subplot(3, 4, 10) plt.imshow(np.reshape(agglo.labels_, images[0].shape), interpolation='nearest', cmap=plt.cm.nipy_spectral) plt.xticks(()) plt.yticks(()) plt.title('Labels') plt.show()
bsd-3-clause
boland1992/seissuite_iran
seissuite/sort_later/more_jiggle.py
2
21581
# -*- coding: utf-8 -*- """ Created on Mon Jun 20 12:28:32 2015 @author: boland """ #----------------------------------------------------------------------------- # IMPORT MODULES #----------------------------------------------------------------------------- import os import fiona import pickle import pyproj import random import datetime import itertools import numpy as np import pointshape as ps import multiprocessing as mp import matplotlib.pyplot as plt from math import sqrt, radians, cos, sin, asin from scipy.cluster.vq import kmeans from shapely import geometry #----------------------------------------------------------------------------- # GENERATE SECOND SET OF VARIABLES AND STATES #----------------------------------------------------------------------------- verbose = False #Enter path to boundary shape file. shape_path = "/home/boland/Dropbox/University/UniMelb\ /AGOS/PROGRAMS/ANT/Versions/26.04.2015/shapefiles/aus.shp" # Enter number of stations required. N = 130 # Enter km spacing between path density points. km_points = 100.0 # Reference elipsoid to calculate distance. wgs84 = pyproj.Geod(ellps='WGS84') # Enter number of bins for 2D Histogram density calculation. nbins = 200 # Enter estimated average shear wave velocity. 3kms-1 is the default! velocity = 3.0 # Define your ambient noise period range OR individual period in seconds. global period_range period_range = [1,40] #----------------------------------------------------------------------------- #SHAPEFILE FUNCTIONS #----------------------------------------------------------------------------- def shape_(input_shape): with fiona.open(input_shape) as fiona_collection: # In this case, we'll assume the shapefile only has one record/layer shapefile_record = fiona_collection.next() # Use Shapely to create the polygon return geometry.asShape( shapefile_record['geometry'] ) shape = shape_(shape_path) def point_check(coord, shape=shape): point = geometry.Point(coord[0], coord[1]) if shape.contains(point): return coord def many_points(shape, coords): """ Funtion that returns lat-lon coodinates of many random points within a shapefile shape e.g. boundaries of a state or country. """ minx, miny, maxx, maxy = shape.bounds X, Y = coords[:,0], coords[:,1] coords = np.column_stack((X,Y)) coord_points = [] #generate points in parallel for speed, order is not preserved. pool = mp.Pool() coord_points = pool.map(point_check, coords) pool.close() pool.join() #remove None values from above numpy array! X = [i[0] for i in coord_points if i != None] Y = [i[1] for i in coord_points if i != None] #convert np array to kmeans function friendly nx2 matrix! #output is a nx2 vector stacked matrix called coord_points, #coord_points[:,0] are lons and coord_points[:,1] are lats return np.column_stack((X,Y)) #----------------------------------------------------------------------------- #PATHS AND DISTANCES ON GREAT-CIRCLE FUNCTIONS #----------------------------------------------------------------------------- def remove_distance(period_range, max_dist = 2000): """ Function that returns a given possible resolvable ambient noise tomography structure distance range, given the maximum period range availabe to the study. The distance returned is in km. Maximum distance default can be reassigned based on the cut-off found by your time-lag plots for your study! """ if type(period_range) == list: min_dist = min(period_range) * 9 return [min_dist, max_dist] elif type(period_range) == int or float: return [period_range*9, max_dist] global dist_range dist_range = remove_distance(period_range, max_dist = 2000) def haversine2(lon1, lat1, lon2, lat2): """ Calculate the great circle distance between two points on the earth (specified in decimal degrees). """ # convert decimal degrees to radians lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2]) # haversine formula dlon, dlat = lon2 - lon1, lat2 - lat1 a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2 c = 2 * asin(sqrt(a)) km = 6367 * c return km def fast_geodesic(lon1,lat1,lon2,lat2,npts): """ Returns a list of *npts* points along the geodesic between (and including) *coord1* and *coord2*, in an array of shape (*npts*, 2). @rtype: L{ndarray} """ if npts < 2: raise Exception('nb of points must be at least 2') path = wgs84.npts(lon1=lon1, lat1=lat1, lon2=lon2, lat2=lat2, npts=npts-2) return np.array([[lon1,lat1]] + path + [[lon2,lat2]]) def cluster_points(coord_points, N): """ Function that returns k which is an nx2 matrix of lon-lat vector columns containing the optimal cluster centroid spacings within a large set of random numbers e.g. those produced by the many_points() function above! """ return kmeans(coord_points, N)[0] def paths_func(path_info, km=km_points): lon1, lat1, lon2, lat2 = path_info[0], \ path_info[1], path_info[2], path_info[3] # interpoint distance <= 1 km, and nb of points >= 100 dist = haversine2(lon1, lat1, lon2, lat2) npts = max(int((np.ceil(dist) + 1)/km), 100) path = fast_geodesic(lon1,lat1,lon2,lat2, npts) #lons, lats = [lon1 for i in range(0,len(path))], \ #[lat1 for i in range(0,len(path))] #path = np.column_stack((path,lons,lats)) if min(dist_range) < dist < max(dist_range): #remove the closest points along this line that fall below the distance #find the index of the first point that is above this distance away! pts_km = npts / float((np.ceil(dist) + 1)) #this gives pts/km #remove all points below this index in the paths list dist_index = pts_km * min(dist_range) path = path[dist_index:] return path else: return np.zeros_like(path) def points_and_distances(path_info): lon1, lat1, lon2, lat2 = path_info[0], \ path_info[1], path_info[2], path_info[3] dist = haversine2(lon1, lat1, lon2, lat2) return [dist, lon2, lat2] def fast_dists(nets): dist_points = map(points_and_distances, nets) return np.vstack(dist_points) def spread_paths(nets): return map(paths_func, nets) #----------------------------------------------------------------------------- # GENERATE SECOND SET OF VARIABLES AND STATES #----------------------------------------------------------------------------- ideal_path = 'ideal_coordinates.pickle' #if no paths have been done before, start afresh! if not os.path.exists(ideal_path): #generate N kmeans cluster points from massive M number of randomly #distributed points inside the shape file. M = 1e5 lot_points = ps.points_in_shape(shape_path, M) coords = cluster_points(lot_points, N) #else import already processed coordinates if the program has already done so. else: f = open(name=ideal_path, mode='rb') coords = pickle.load(f) f.close() lonmin, lonmax = np.floor(min(coords[:,0])), np.ceil(max(coords[:,0])) latmin, latmax = np.floor(min(coords[:,1])), np.ceil(max(coords[:,1])) print lonmin,lonmax,latmin,latmax kappa = [np.vstack([[coord1[0],coord1[1],coord2[0],coord2[1]]\ for coord2 in coords]) for coord1 in coords] t0 = datetime.datetime.now() pool = mp.Pool() paths = pool.map(spread_paths, kappa) pool.close() pool.join() t1 = datetime.datetime.now() counter, counter2 = 0, 0 #cd Desktop/Link\ to\ SIMULATIONS/Network_Tracks/smarter_model/ grad_ideal, grad_check1, grad_check2, H_avg1, H_avg2 = 0, 0, 0, 0, 0 SHAPE = (1,1) perc_high = 0.01 low_counter = 0 random_counter = 0 new_coord = 0 infinite_counter = 0 find_it = [] check_coord = None use_old_path = False searches_per_point = 3 while infinite_counter <= 1: rand_indicator = random.randint(1,10) if verbose: print "check coord", check_coord t0 = datetime.datetime.now() print use_old_path #the following while loop is a work around. #new paths shape: (130, 100, 4) rather than being (130,) while SHAPE != (130,): if check_coord is None or rand_indicator < 4: #------------------------------------------------------------------ # Option one: randomly select old coordinate to move. #------------------------------------------------------------------ while len(find_it) == 0: # Remove random set of paths associated with the N coordinates. rand_int = random.randint(0,len(paths)-1) old_path = paths[rand_int] # Determine which old coordinate to remove. old_coord = coords[rand_int]#[old_path[0][0][0],old_path[0][0][1]] # Find index of array in nested array to remove! find_it = np.where(coords==old_coord)[0] coord_index = find_it[0] counter2 = 0 print "a1" elif counter2 == searches_per_point-1 or not use_old_path: #------------------------------------------------------------------ # Option two: select new high density point if too many searches per # point OR it is stated that use_old_path = False #------------------------------------------------------------------ print counter2 % searches_per_point while len(find_it) == 0: old_coord = check_coord find_it = np.where(coords==old_coord)[0] for paths_index, path in enumerate(paths): for dots in path: find_paths = np.where(dots==old_coord[0])[0] if len(find_paths) != 0: rand_int = False break coord_index = find_it[0] counter2 = 0 print "a2" elif use_old_path: #------------------------------------------------------------------ # Option three: if conditions not met, move same old point. #------------------------------------------------------------------ coord_index = -1 old_path = paths[coord_index] old_coord = coords[coord_index] counter2 += 1 print "a3" if verbose: print "coord index to remove is:", coord_index coords = list(coords) del coords[coord_index] coords = np.asarray(coords) new_coord_first = new_coord #---------------------------------------------------------------------- # Generate new point coordinate. #---------------------------------------------------------------------- if counter <= 1: #------------------------------------------------------------------ # Option one: generate random new coordinate within boundary shape. #------------------------------------------------------------------ new_coord = ps.points_in_shape(shape_path, 1)[0] else: #------------------------------------------------------------------ # Option two: go with whatever previous calculation had been made. #------------------------------------------------------------------ new_coord = new_coord # Place new coordinate in old set of coordinates coords = np.append(coords, [new_coord], axis=0) # Generate new array of coordinate combinations for new paths. new_coord_set = np.vstack([[new_coord[0],new_coord[1],coord1[0],\ coord1[1]] for coord1 in coords]) # Generate new path points. new_paths = map(paths_func, new_coord_set) SHAPE = np.asarray(new_paths).shape if not SHAPE == (130,): #remove substitute back the old coordinate for the new coordinate! coords = list(coords) #find index of array in nested array to remove! del coords[-1] coords = np.asarray(coords) #place new coordinate in old set of coordinates coords = np.append(coords, [old_coord], axis=0) #---------------------------------------------------------------------- # Delete old paths points. #---------------------------------------------------------------------- if not rand_int: if verbose: print "path index to remove is:", coord_index del paths[paths_index] elif use_old_path: del paths[-1] else: if verbose: print "paths index to remove is:", coord_index del paths[rand_int] # Reset shape to work around error from above. SHAPE = (1,1) # Append new set of paths now that old set has been deleted. paths = np.append(paths, [new_paths], axis=0) #create a flattened numpy array of size 2xN from the paths created! paths_density_check = list(itertools.chain(*paths)) paths_density_check = np.asarray(list(itertools.chain\ (*paths_density_check))) #keep all but the repeated coordinates by keeping only unique whole rows! b = np.ascontiguousarray(paths_density_check).view(np.dtype\ ((np.void, paths_density_check.dtype.itemsize * \ paths_density_check.shape[1]))) _, idx = np.unique(b, return_index=True) paths_density_check = np.unique(b).view(paths_density_check.dtype)\ .reshape(-1, paths_density_check.shape[1]) #remove all path points that lay outside the shape file polygon #paths_density_check = ps.paths_in_shape(paths_density_check) # Reset paths as a list to be able to delete indices on next loop. paths = list(paths) #------------------------------------------------------------------------- # Remove zeroes from path_density_check to ensure all paths that # were NOT in the distance threshold are removed from the path density # calculation! #------------------------------------------------------------------------- path_density_lons, path_density_lats = paths_density_check[:,0], \ paths_density_check[:,1] FIND_ZERO1 = np.where(paths_density_check[:,0]==0)[0] FIND_ZERO2 = np.where(paths_density_check[:,1]==0)[0] if len(FIND_ZERO1) != 0 and len(FIND_ZERO2) != 0: path_density_lons = np.delete(path_density_lons, FIND_ZERO1) path_density_lats = np.delete(path_density_lats, FIND_ZERO2) #------------------------------------------------------------------------- # Set up path density calculations using numpy's histogram2d function. #------------------------------------------------------------------------- H, xedges, yedges = np.histogram2d(path_density_lons, path_density_lats, bins=nbins) # Calculate the gradient field of the path density field. GRAD = np.abs(np.asarray(np.gradient(H)[0])) # H needs to be rotated and flipped. H = np.rot90(H) #GRAD = np.rot90(GRAD) H = np.flipud(H) #GRAD = np.flipud(GRAD) # Mask zeros H = np.ma.masked_where(H==0,H) #GRAD = np.ma.masked_where(GRAD==0,GRAD) H_avg1 = np.average(H) grad_check1 = np.std(GRAD) #------------------------------------------------------------------------- # Find coordinates of high density within path density field. #------------------------------------------------------------------------- search = np.where(H > 0.50 * np.max(H)) # Scale these points with respect to the lat-lon limits! Hmaxx, Hmaxy = search[1], search[0] Hmaxx = (lonmax-lonmin)/(nbins) * Hmaxx + lonmin Hmaxy = (latmax-latmin)/(nbins) * Hmaxy + latmin # Make sure all low density coordinates ARE within shapefile! highest_density_coords = ps.paths_in_shape(np.column_stack((Hmaxx, Hmaxy))) WHERE = np.where(H < perc_high*H_avg1) if 0 < rand_indicator <= 3: #half the time move the coordinates to low density locations. #scale these points with respect to the lat-lon limits! Hminx, Hminy = WHERE[1], WHERE[0] Hminx = (lonmax-lonmin)/(nbins) * Hminx + lonmin Hminy = (latmax-latmin)/(nbins) * Hminy + latmin # Make sure all low density coordinates ARE within shapefile! low_density_coords = ps.paths_in_shape(np.column_stack((Hminx, Hminy))) # Low_density_coords = many_points(shape, np.column_stack((Hminx, Hminy))) if len(low_density_coords) == 0: new_coord = ps.points_in_shape(shape_path, 1)[0] #increase percentage of search if no new low density points are created! perc_high +=0.05 elif len(low_density_coords) == 1: new_coord = low_density_coords[0] perc_high +=0.05 else: new_coord = low_density_coords[random.randint(0,len(low_density_coords)-1)] elif 3 < rand_indicator <= 10: # Half the time move coordinates to random locations. new_coord = ps.points_in_shape(shape_path, 1)[0] if counter == 0: grad_ideal = 1e6 avg_ideal = 0 #fig5 = plt.figure() #plt.scatter(coords[:,0], coords[:,1],c='b', s=10) #plt.scatter(new_coord[0], new_coord[1],c='r', s=30) #plt.scatter(old_coord[0], old_coord[1],c='g', s=30) #fig5.savefig("coords{}.png".format(counter)) #fig5.clf() if grad_check1 < grad_ideal and avg_ideal < H_avg1: with open(u'ideal_coordinates.pickle', 'wb') as f: print "\nExporting new ideal coordinates." pickle.dump(coords, f, protocol=2) fig2 = plt.figure() plt.pcolormesh(xedges,yedges,H) plt.xlabel('longitude (degrees)') plt.ylabel('latitude (degrees)') plt.xlim(lonmin-0.05*abs(lonmax-lonmin), lonmax+0.05*abs(lonmax-lonmin)) plt.ylim(latmin-0.05*abs(latmax-latmin),latmax+0.05*abs(latmax-latmin)) col = plt.colorbar() col.ax.set_ylabel('Counts') #plt.scatter(highest_density_coords[:,0],\ #highest_density_coords[:,1],c='orange', s=10) plt.scatter(new_coord[0], new_coord[1],c='r', s=30) plt.scatter(old_coord[0], old_coord[1],c='g', s=30) fig2.savefig("min_density{}.png".format(counter)) fig2.clf() # Assign new values. use_old_path = False grad_ideal = grad_check1 avg_ideal = H_avg1 else: #RESET values! #remove new coordinate and replace with old coordinate coords = list(coords) del coords[-1] coords = np.asarray(coords) #place new coordinate in old set of coordinates coords = np.append(coords, [old_coord], axis=0) #remove new path and replace it with the old set! paths = list(paths) del paths[-1] paths = list(np.append(paths, [old_path], axis=0)) use_old_path = True #-------------------------------------------------------------------------- #-------------------------------------------------------------------------- if not use_old_path: # Calculate the combinations of coordinates from real points, to high points! high_point_coord_combs = [np.vstack([[coord1[0],coord1[1],coord2[0],\ coord2[1]] for coord1 in highest_density_coords for coord2 in coords])] #print "high point coordinate combitions:", high_point_coord_combs pool = mp.Pool() high_point_coords = pool.map(fast_dists, high_point_coord_combs) pool.close() pool.join() high_point_coords = np.vstack(np.asarray(\ list(itertools.chain(*high_point_coords)))) high_point_coords = high_point_coords[high_point_coords[:,0].argsort()] # t1 = datetime.datetime.now() # print "fancy index sorting time: ", t1-t0 # SELECT 20% OF THESE LOWEST DISTANCE COORDINATES FROM HIGH DENSITY POINTS! point_index = int(0.2*len(high_point_coords)) high_point_coords = high_point_coords[:point_index] # Create unique list of coordinates high_point_coords and remove distances. high_point_coords = np.column_stack((high_point_coords[:,1], high_point_coords[:,2])) b = np.ascontiguousarray(high_point_coords).view(np.dtype\ ((np.void, high_point_coords.dtype.itemsize * \ high_point_coords.shape[1]))) _, idx = np.unique(b, return_index=True) high_point_coords = np.unique(b).view(high_point_coords.dtype)\ .reshape(-1, high_point_coords.shape[1]) # Find random high density coord. This is the old coordinate to remove. check_coord = high_point_coords[random.randint(0,len(high_point_coords)-1)] if check_coord in coords: old_coord = check_coord elif not use_old_path: check_coord = None find_it = [] counter+=1 print "counter2:",counter2 t1 = datetime.datetime.now() print "That loop took: ", t1-t0
gpl-3.0
petosegan/scikit-learn
examples/linear_model/plot_omp.py
385
2263
""" =========================== Orthogonal Matching Pursuit =========================== Using orthogonal matching pursuit for recovering a sparse signal from a noisy measurement encoded with a dictionary """ print(__doc__) import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import OrthogonalMatchingPursuit from sklearn.linear_model import OrthogonalMatchingPursuitCV from sklearn.datasets import make_sparse_coded_signal n_components, n_features = 512, 100 n_nonzero_coefs = 17 # generate the data ################### # y = Xw # |x|_0 = n_nonzero_coefs y, X, w = make_sparse_coded_signal(n_samples=1, n_components=n_components, n_features=n_features, n_nonzero_coefs=n_nonzero_coefs, random_state=0) idx, = w.nonzero() # distort the clean signal ########################## y_noisy = y + 0.05 * np.random.randn(len(y)) # plot the sparse signal ######################## plt.figure(figsize=(7, 7)) plt.subplot(4, 1, 1) plt.xlim(0, 512) plt.title("Sparse signal") plt.stem(idx, w[idx]) # plot the noise-free reconstruction #################################### omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs) omp.fit(X, y) coef = omp.coef_ idx_r, = coef.nonzero() plt.subplot(4, 1, 2) plt.xlim(0, 512) plt.title("Recovered signal from noise-free measurements") plt.stem(idx_r, coef[idx_r]) # plot the noisy reconstruction ############################### omp.fit(X, y_noisy) coef = omp.coef_ idx_r, = coef.nonzero() plt.subplot(4, 1, 3) plt.xlim(0, 512) plt.title("Recovered signal from noisy measurements") plt.stem(idx_r, coef[idx_r]) # plot the noisy reconstruction with number of non-zeros set by CV ################################################################## omp_cv = OrthogonalMatchingPursuitCV() omp_cv.fit(X, y_noisy) coef = omp_cv.coef_ idx_r, = coef.nonzero() plt.subplot(4, 1, 4) plt.xlim(0, 512) plt.title("Recovered signal from noisy measurements with CV") plt.stem(idx_r, coef[idx_r]) plt.subplots_adjust(0.06, 0.04, 0.94, 0.90, 0.20, 0.38) plt.suptitle('Sparse signal recovery with Orthogonal Matching Pursuit', fontsize=16) plt.show()
bsd-3-clause
fishstamp82/moltools
moltools/read_dal.py
1
45486
#!/usr/bin/env python __all__ = [ 'read_beta_hf_string' ] import os,sys, re, argparse, ctypes, multiprocessing, functools import numpy as np import math as m #from particles import * from matplotlib import pyplot as plt from .molecules import Atom from .template import Template try: from applequist.gaussian import * except ImportError: pass a0 = 0.52917721092 lab = [ "X", "Y", "Z"] charge_dic = {"H1": 1.0 ,"H2":1.0 , "C1":6.0, "C7":6.0, "H3":1.0, "H4":1.0, "H6": 1.0, "H8":1.0, "H9":1.0, "H10": 1.0, "H12":1.0, "O5":8.0, "O11": 8.0, "H": 1.0, "C": 6.0, "N": 7.0, "O": 8.0, "S": 16.0} mass_dict = {"H": 1.008, "C": 6.0, "N": 7.0, "O": 15.999, "S": 16.0} freq_dict = {"0.0": "static","0.0238927": "1907_nm", "0.0428227" : "1064_nm", "0.0773571" : "589_nm" } allowed_elements = ( 'H', 'O' ) def polar_to_cartesian( r, tau, theta): x, y, z = r* np.sin( theta )*np.cos( tau ) \ , r* np.sin( theta )*np.sin( tau ) \ , r* np.cos( theta ) return x , y , z def write_related( args ): if args.xyz.endswith(".pdb"): name = args.xyz.split(".")[0] + "_" + str(args.waters) + ".mol" waters = molecules.Water.read_waters( args.xyz , in_AA = args.xAA, out_AA = args.oAA, N_waters = args.waters ) elif args.xyz.endswith( ".xyz" ): name = args.x.split(".")[0] + ".mol" f_ = open( name , "w" ) if args.oAA: str_ = "Angstrom" else: str_ = "" f_.write( "ATOMBASIS\n\nComment\nmolecules.Atomtypes=2 Charge=0 Nosymm %s\n" %str_) if not args.wat: "Can't write to .mol file, didn't read water molecules" raise SystemExit hCnt = len(waters) * 2 oCnt = len(waters) f_.write( "Charge=1.0 molecules.Atoms=%d Basis=cc-pVDZ\n" % hCnt) for i in waters: for j in i: if j.element == "H": f_.write( "%s %.5f %.5f %.5f\n" %( j.element, j.x, j.y, j.z )) f_.write( "Charge=8.0 molecules.Atoms=%d Basis=cc-pVDZ\n" % oCnt) for i in waters: for j in i: if j.element == "O": f_.write( "%s %.5f %.5f %.5f\n" %( j.element, j.x, j.y, j.z )) print "Finished writing mol files %s" %name raise SystemExit def run_argparse( args ): A = argparse.ArgumentParser( ) # ---------------------------- # GENERIC VARIABLES # ---------------------------- # A.add_argument("-dal", type= str, default = 'hflin' ) A.add_argument("-mol", type= str, default = 'tip3p' ) A.add_argument( "-dist", action = "store_true", default = False ) # ---------------------------- # READ ALPHA # ---------------------------- A.add_argument( "-alpha", type = str, ) # ---------------------------- # BETA ANALYSIS RELATED # ---------------------------- A.add_argument( "-beta_analysis_par", action = "store_true", default = False ) A.add_argument( "-beta_analysis", action = "store_true", default = False ) A.add_argument( "-freq", type = str, default = "0.0", choices = ["0.0", "0.0238927", "0.0428227", "0.0773571"] ) A.add_argument( "-R", type = float, default = 0.000001) A.add_argument( "-beta",dest="beta", type = str,help="File that contains QUADRATIC response output with hyperpolarizabilities" ) A.add_argument( "-in_AA", action = "store_true", default = False ) A.add_argument( "-out_AA", action = "store_true", default = False ) A.add_argument( "-basis", type= str, nargs = '*', default = "ANOPVDZ" ) A.add_argument( "-beta_dal", type= str, default = "hfqua_" ) A.add_argument( "-Ncpu", type= int, default = "4" ) A.add_argument( "-N_waters", type= int, default = 15 ) A.add_argument( "-model", default = "tip3p" ) # ---------------------------- # ALPHA ANALYSIS RELATED # ---------------------------- # A.add_argument( "-alpha_analysis", action = "store_true", default = False ) A.add_argument( "-nums", type = str, nargs = '*', default = map(str, range(1,10)) ) A.add_argument( "-x", type = str, default = ["nums"], choices = ["snaps", "nums", "freqs"] ) A.add_argument( "-y", type = str, default = ["yy"], choices = ["xx", "yy", "zz", "mean", "aniso"] ) A.add_argument( "-freqs", type = str, nargs = '*', default = ['0.0', "0.0238927", "0.0428227", "0.0773571"] ) A.add_argument( "-comps", type = str, nargs = '*', default = ["xx", "yy", "zz"], choices = ["xx", "yy", "zz", "mean", "aniso"]) A.add_argument( "-snaps", type = str, nargs = '*', default = map(str, range(10)) ) A.add_argument( "-eps_out", type = str ) A.add_argument( "-template_freq", type = str, choices = ['0.0', "0.0238927", "0.0428227", "0.0773571"] ) A.add_argument( "-hdf", action = "store_true", default = False ) # ---------------------------- # RELATED TO PLOT WINDOW APPEARANCE # ---------------------------- # A.add_argument( "-ymin", type = float, default = -0.10 ) A.add_argument( "-ymax", type = float, default = 0.10 ) # ---------------------------- # QM GENERATION RELATED # ---------------------------- A.add_argument( "-qm_generation", action = "store_true", default = False ) # ---------------------------- # QM ANALYSIS RELATED # ---------------------------- A.add_argument( "-qm_analysis", action = "store_true", default = False ) # ---------------------------- # QMMM GENERATION RELATED # ---------------------------- A.add_argument( "-qmmm_generation", action = "store_true", default = False ) A.add_argument( "-potstyle", default = "QMMM", choices = ["QMMM", "PEQM"]) A.add_argument( "-qm_waters", type = int, nargs = '*', default = [1] ) A.add_argument( "-mm_waters", type = int, nargs = '*', default = [1] ) A.add_argument( "-file_type", type = str, default = "pdb" ) A.add_argument( "-tname", type = str, default = "TIP3P" ) A.add_argument( "-tmethod", type = str, default = "HF" ) A.add_argument( "-tbasis", type = str, default = "ANOPVDZ" ) #also share same arguments -snaps -freqs with -alpha_analysis # ---------------------------- # QMMM ANALYSIS RELATED # ---------------------------- A.add_argument( "-qmmm_analysis", action = "store_true", default = False ) A.add_argument( "-n_qm", type = str, nargs = '*', default = map(str, range(1,10)) ) A.add_argument( "-n_mm", type = str, nargs = '*', default = map(str, range(1,101)) ) A.add_argument( "-potfreqs", type = str, nargs = '*', default = ["0.0", "0.0238927", "0.0428227", "0.0773571"] ) # ---------------------------- # WRITE RELATED pdb to mol generation RELATED # ---------------------------- A.add_argument("-waters", type = int , default = 4, help = "how many waters to take closest to center atom, default: 4") A.add_argument("-v","--verbose", action='store_true' , default = False) A.add_argument("-write", nargs='*', default = [], help = "Supply any which files to write from a selection: pot, xyz" ) A.add_argument( "-xyz", dest="xyz", type = str, help = 'Coordinate file with water molecules for the output .pot file. [ xyz , pdb ]') A.add_argument( "-xAA", default = False ,action='store_true', help = 'Default coordinate type in AA or AU in -x input water coordinate file, default: False ') A.add_argument( "-oAA", default = False, action='store_true' , help='Default coordinate type AA or AU for -op output potential file, default: "AU"' ) A.add_argument( "-tw", type = float, default = 0.0 ) A.add_argument( "-wat", action = 'store_true' , default= True ) a = A.parse_args( args[1:] ) return a def is_ccsd( filename): """ Return true if the filename, which is DALTON .out file, is a quadratic ccsd calculation""" pat_ccsd = re.compile(r'FINAL CCSD RESULTS FOR THE FIRST HYPERPOLARIZABILITIES') for i in open(filename).readlines(): if pat_ccsd.search( i ): return True return False def read_alpha_hf( fstr, freq = '0.0', in_AA = False, freqs = 1 ): # If freqs > 1, will return a tuple of all alphas for each frequency # # Reading in Alpha tensor fre = freq[0:7] pat_alpha = re.compile(r'([XYZ])DIPLEN.*([XYZ])DIPLEN.*= *(-?\d*\.{1}\d+D*-?\+?\d*)') pat_new_freq = re.compile(r'FREQUENCY.*SECOND ORDER') alpha = np.zeros( [3,3,] ) lab = ['X', 'Y', 'Z', ] # For every new frequency, will append this one and store alpha in the last # element, otherwise, first column is first frequency by default freqlist = None lines = fstr.split('\n') for i in lines: if pat_new_freq.search( i ): if freqlist is None: freqlist = [] freqlist.append( np.zeros( (3,3 )) ) if pat_alpha.search( i ): matched = pat_alpha.search(i).groups() if "D" in matched[2]: frac = float( matched[2].replace("D","E") ) else: frac = float( matched[2] ) A = matched[0] B = matched[1] alpha[ lab.index( A ) , lab.index( B ) ] = frac freqlist[-1][lab.index( A ), lab.index( B ) ] = frac if A == "X" and B == "Y": alpha[ lab.index( B ) , lab.index( A ) ] = frac freqlist[-1][lab.index( B ), lab.index( A ) ] = frac if A == "X" and B == "Z": alpha[ lab.index( B ) , lab.index( A ) ] = frac freqlist[-1][lab.index( B ), lab.index( A ) ] = frac if A == "Y" and B == "Z": alpha[ lab.index( B ) , lab.index( A ) ] = frac freqlist[-1][lab.index( B ), lab.index( A ) ] = frac if freqs > 1: return freqlist return alpha def read_energy( fname, calctype = 'HF' ): """Return the energy from dalton .out file fname""" for line in open(fname).readlines(): if re.compile(r'.*Final.*energy').match(line): return line.split()[-1] def read_alpha_ccsd( fstr ): mol_dip = np.zeros(3) alpha = np.zeros( [3,3]) beta = np.zeros( [3,3,3]) beta_dict = {} atoms = [] lab = ["X", "Y", "Z"] pat_dipole = re.compile(r'Total Molecular Dipole Moment') pat_xyz = re.compile(r'^\s*(\w+)\s+(-*\d*\.+\d+)\s+(-*\d*\.+\d+)\s+(-*\d*\.+\d+) *$') pat_pol = re.compile(r'([XYZ])DIPLEN.*total.*:') pat_alpha= re.compile(r'([XYZ])DIPLEN.*([XYZ])DIPLEN.*') pat_beta= re.compile(r'([XYZ])DIPLEN.*([XYZ])DIPLEN.*([XYZ])DIPLEN') lines = fstr.split('\n') # Reading in Alfa for i in lines: if pat_alpha.search( i ): if len(i.split()) < 8: try: if "D" in i.split()[-1]: frac = float( i.split()[-1].replace("D","E") ) else: frac = float( i.split()[-1] ) except IndexError: if "D" in i.split()[-1]: frac = float( i.split()[-1].strip("=").replace("D","E") ) else: frac = float( i.split()[-1].strip("=") ) A = pat_alpha.search(i).groups(1)[0] B = pat_alpha.search(i).groups(1)[1] alpha[ lab.index( A ) , lab.index( B ) ] = frac if A == "X" and B == "Y": alpha[ lab.index( B ) , lab.index( A ) ] = frac if A == "X" and B == "Z": alpha[ lab.index( B ) , lab.index( A ) ] = frac if A == "Y" and B == "Z": alpha[ lab.index( B ) , lab.index( A ) ] = frac return alpha def read_beta_ccsd( fstr ): mol_dip = np.zeros(3) alpha = np.zeros( [3,3]) beta = np.zeros( [3,3,3]) beta_dict = {} atoms = [] lab = ["X", "Y", "Z"] pat_dipole = re.compile(r'Total Molecular Dipole Moment') pat_xyz = re.compile(r'^\s*(\w+)\s+(-*\d*\.+\d+)\s+(-*\d*\.+\d+)\s+(-*\d*\.+\d+) *$') pat_pol = re.compile(r'([XYZ])DIPLEN.*total.*:') pat_alpha= re.compile(r'([XYZ])DIPLEN.*([XYZ])DIPLEN.*') pat_beta= re.compile(r'([XYZ])DIPLEN.*([XYZ])DIPLEN.*([XYZ])DIPLEN') # Reading in dipole lines = fstr.split('\n') for i in range(len( lines )): if pat_dipole.search( lines[i] ): mol_dip[0] = lines[i+5].split()[1] mol_dip[1] = lines[i+6].split()[1] mol_dip[2] = lines[i+7].split()[1] # Reading in Alfa for i in lines: if pat_alpha.search( i ): if len(i.split()) < 8: try: if "D" in i.split()[-1]: frac = float( i.split()[-1].replace("D","E") ) else: frac = float( i.split()[-1] ) except IndexError: if "D" in i.split()[-1]: frac = float( i.split()[-1].strip("=").replace("D","E") ) else: frac = float( i.split()[-1].strip("=") ) A = pat_alpha.search(i).groups(1)[0] B = pat_alpha.search(i).groups(1)[1] alpha[ lab.index( A ) , lab.index( B ) ] = frac if A == "X" and B == "Y": alpha[ lab.index( B ) , lab.index( A ) ] = frac if A == "X" and B == "Z": alpha[ lab.index( B ) , lab.index( A ) ] = frac if A == "Y" and B == "Z": alpha[ lab.index( B ) , lab.index( A ) ] = frac #For Beta for i in lines: if pat_beta.search( i ): if len(i.split()) >8: try: if "D" in i.split()[-1]: frac = float( i.split()[-1].replace("D","E") ) else: frac = float( i.split()[-1] ) except IndexError: if "D" in i.split()[-1]: frac = float( i.split()[-1].strip("=").replace("D","E") ) else: frac = float( i.split()[-1].strip("=") ) lab1 = pat_beta.search(i).groups(1)[0] lab2 = pat_beta.search(i).groups(1)[1] lab3 = pat_beta.search(i).groups(1)[2] beta_dict[ "".join( [lab1 + lab2 + lab3]) ] = frac for i, l1 in enumerate(lab): for j, l2 in enumerate(lab): for k, l3 in enumerate(lab): beta[i, j, k] = beta_dict[ l1 + l2 + l3 ] return atoms, mol_dip, alpha , beta def read_beta( fstr, freq = "0.0", in_AA = False, out_AA = False ): nuc_dip = np.zeros(3) el_dip = np.zeros(3) alpha = np.zeros([3,3]) beta = np.zeros([3,3,3]) tmp = [] atoms = [] missing = {} exists = {} # Reading in Beta tensor fre = str("%.5f" % float(freq)) lab = ['X', 'Y', 'Z', ] pat_beta = re.compile(r'@ B-freq') lines = fstr.split('\n') for i in lines: if pat_beta.match(i): try: if i.split()[7].lstrip("beta") in exists: continue exists[ i.split()[7].lstrip("beta") ] = float(i.split()[9] ) except ValueError: a, b, c = i.split()[9].lstrip("beta").strip("()").split(",") if i.split()[7].lstrip("beta") in missing: continue missing[ i.split()[7].lstrip("beta") ] = "(%s;%s,%s)"%(a,b,c) for i in range(3): for j in range(3): for k in range(3): try: beta[i][j][k] = exists[ "(%s;%s,%s)" %(lab[i],lab[j],lab[k])] except KeyError: beta[i][j][k] = exists[ missing["(%s;%s,%s)"%(lab[i],lab[j],lab[k]) ] ] return beta def read_beta_hf( fstr, freq = "0.0", in_AA = False, out_AA = False ): nuc_dip = np.zeros(3) el_dip = np.zeros(3) alpha = np.zeros([3,3]) beta = np.zeros([3,3,3]) tmp = [] atoms = [] missing = {} exists = {} lab = ["X", "Y", "Z"] pat_Q = re.compile(r'Total charge of the molecule') pat_xyz = re.compile(r'^\s*(\w+)\s+(-*\d*\.+\d+)\s+(-*\d*\.+\d+)\s+(-*\d*\.+\d+) *$') pat_pol = re.compile(r'([XYZ])DIPLEN.*total.*:') #Special xyz hack for camb3lyp output from akka dalton to find atoms pat_akka_xyz = re.compile(r'^\s*(\w+)\s+:\s+\d\s+x\s+(-*\d*\.+\d+)\s+\d\s+y\s+(-*\d*\.+\d+)\s+\d\s+z\s+(-*\d*\.+\d+) *$') pat_labels_xyz = re.compile(r'^\s*(\S+-+\S+)\s+(-*\d*\.+\d+)\s+(-*\d*\.+\d+)\s+(-*\d*\.+\d+) *$') # Reading in dipole and charge lines = fstr.split( '\n' ) for i in lines: if pat_Q.search( i ): Q = float(i.split()[-1]) if pat_xyz.match(i): f = pat_xyz.match(i).groups() matched = pat_xyz.match(i).groups() #Skip coordinates in out file that are for MM region from QMMM kwargs = { "AA": in_AA, "element" : matched[0], "x" : matched[1], "y" : matched[2], "z" : matched[3] } tmpAtom = molecules.Atom( **kwargs ) atoms.append( tmpAtom ) elif pat_akka_xyz.match(i): f = pat_akka_xyz.match(i).groups() matched = pat_akka_xyz.match(i).groups() #Skip coordinates in out file that are for MM region from QMMM kwargs = { "AA": in_AA, "element" : matched[0], "x" : matched[1], "y" : matched[2], "z" : matched[3] } tmpAtom = molecules.Atom( **kwargs ) atoms.append( tmpAtom ) elif pat_labels_xyz.match(i): f = pat_labels_xyz.match(i).groups() matched = pat_labels_xyz.match(i).groups() lab = matched[0] if len(lab.split('-')) == 4: element = "H" else: element = lab.split('-')[2][0] kwargs = { "AA": in_AA, "element" : element, "x" : matched[1], "y" : matched[2], "z" : matched[3] } tmpAtom = molecules.Atom( **kwargs ) atoms.append( tmpAtom ) if pat_pol.search(i): if pat_pol.search(i).group(1) == "X": try: if "D" in i.split()[3]: frac = float(i.split()[3].replace("D","E")) else: frac = float(i.split()[3]) except IndexError: if "D" in i.split()[2]: frac = float( i.split()[2].strip(":").replace("D","E")) else: frac = float( i.split()[2].strip(":")) el_dip[0] += frac if pat_pol.search(i).group(1) == "Y": try: if "D" in i.split()[3]: frac = float(i.split()[3].replace("D","E")) else: frac = float(i.split()[3]) except IndexError: if "D" in i.split()[2]: frac = float( i.split()[2].strip(":").replace("D","E")) else: frac = float( i.split()[2].strip(":")) el_dip[1] += frac if pat_pol.search(i).group(1) == "Z": try: if "D" in i.split()[3]: frac = float(i.split()[3].replace("D","E")) else: frac = float(i.split()[3]) except IndexError: if "D" in i.split()[2]: frac = float( i.split()[2].strip(":").replace("D","E")) else: frac = float( i.split()[2].strip(":")) el_dip[2] += frac #Set center of nuceli charge to 0 coc = sum([ x.r * charge_dic[x.element] for x in atoms ]) /\ sum([ charge_dic[x.element] for x in atoms ]) for i in atoms: nuc_dip += charge_dic[ i.element ] * (i.r - coc ) if in_AA: # Make sure center of charge is in Atomic units to give correct electronic dipole coc /= a0 # Reading in Alfa and Beta tensor fre = str("%.5f" % float(freq)) pat_alpha = re.compile(r'@.*QRLRVE.*([XYZ])DIPLEN.*([XYZ])DIPLEN.*%s' %fre) alpha = np.zeros( [3,3,] ) lab = ['X', 'Y', 'Z', ] for i in lines: if pat_alpha.match( i ): try: if "D" in i.split()[-1]: frac = float( i.split()[-1].replace("D","E") ) else: frac = float( i.split()[-1] ) except IndexError: if "D" in i.split()[-1]: frac = float( i.split()[-1].strip("=").replace("D","E") ) else: frac = float( i.split()[-1].strip("=") ) A = pat_alpha.match(i).groups(1)[0] B = pat_alpha.match(i).groups(1)[1] alpha[ lab.index( A ) , lab.index( B ) ] = frac if A == "X" and B == "Y": alpha[ lab.index( B ) , lab.index( A ) ] = frac if A == "X" and B == "Z": alpha[ lab.index( B ) , lab.index( A ) ] = frac if A == "Y" and B == "Z": alpha[ lab.index( B ) , lab.index( A ) ] = frac pat_beta = re.compile(r'@ B-freq') for i in lines: if pat_beta.match(i): try: if i.split()[7].lstrip("beta") in exists: continue exists[ i.split()[7].lstrip("beta") ] = float(i.split()[9] ) except ValueError: a, b, c = i.split()[9].lstrip("beta").strip("()").split(",") if i.split()[7].lstrip("beta") in missing: continue missing[ i.split()[7].lstrip("beta") ] = "(%s;%s,%s)"%(a,b,c) for i in range(3): for j in range(3): for k in range(3): try: beta[i][j][k] = exists[ "(%s;%s,%s)" %(lab[i],lab[j],lab[k])] except KeyError: beta[i][j][k] = exists[ missing["(%s;%s,%s)"%(lab[i],lab[j],lab[k]) ] ] N_el = sum([charge_dic[at.element] for at in atoms]) - Q tot_dip = el_dip - coc * N_el return atoms, tot_dip, alpha , beta def read_props_qmmm( file_, freq = "0.0", in_AA = False ): """ Same as read_beta_hf but skips coordinates not in allowd_elements """ nuc_dip = np.zeros(3) el_dip = np.zeros(3) alpha = np.zeros([3,3]) beta = np.zeros([3,3,3]) tmp = [] atoms = [] missing = {} exists = {} lab = ["X", "Y", "Z"] pat_xyz = re.compile(r'^\s*(\w+)\s+(-*\d*\.+\d+)\s+(-*\d*\.+\d+)\s+(-*\d*\.+\d+) *$') pat_pol = re.compile(r'([XYZ])DIPLEN.*total.*:') # Reading in dipole for i in open( file_ ).readlines(): if pat_xyz.match(i): f = pat_xyz.match(i).groups() matched = pat_xyz.match(i).groups() #Skip coordinates in out file that are for MM region from QMMM if matched[0] not in allowed_elements: continue kwargs = { "element" : matched[0], "x" : matched[1], "y" : matched[2], "z" : matched[3] } tmpAtom = molecules.Atom( **kwargs ) atoms.append( tmpAtom ) if pat_pol.search(i): if pat_pol.search(i).group(1) == "X": try: if "D" in i.split()[3]: frac = float(i.split()[3].replace("D","E")) else: frac = float(i.split()[3]) except IndexError: if "D" in i.split()[2]: frac = float( i.split()[2].strip(":").replace("D","E")) else: frac = float( i.split()[2].strip(":")) el_dip[0] += frac if pat_pol.search(i).group(1) == "Y": try: if "D" in i.split()[3]: frac = float(i.split()[3].replace("D","E")) else: frac = float(i.split()[3]) except IndexError: if "D" in i.split()[2]: frac = float( i.split()[2].strip(":").replace("D","E")) else: frac = float( i.split()[2].strip(":")) el_dip[1] += frac if pat_pol.search(i).group(1) == "Z": try: if "D" in i.split()[3]: frac = float(i.split()[3].replace("D","E")) else: frac = float(i.split()[3]) except IndexError: if "D" in i.split()[2]: frac = float( i.split()[2].strip(":").replace("D","E")) else: frac = float( i.split()[2].strip(":")) el_dip[2] += frac for i in atoms: nuc_dip[0] += charge_dic[ i.element ] * i.x nuc_dip[1] += charge_dic[ i.element ] * i.y nuc_dip[2] += charge_dic[ i.element ] * i.z # Reading in Alfa and Beta tensor fre = str("%.5f" % float(freq)) pat_alpha = re.compile(r'@.*QRLRVE.*([XYZ])DIPLEN.*([XYZ])DIPLEN.*%s' %fre) alpha = np.zeros( [3,3,] ) lab = ['X', 'Y', 'Z', ] for i in open( file_ ).readlines(): if pat_alpha.match( i ): try: if "D" in i.split()[-1]: frac = float( i.split()[-1].replace("D","E") ) else: frac = float( i.split()[-1] ) except IndexError: if "D" in i.split()[-1]: frac = float( i.split()[-1].strip("=").replace("D","E") ) else: frac = float( i.split()[-1].strip("=") ) A = pat_alpha.match(i).groups(1)[0] B = pat_alpha.match(i).groups(1)[1] alpha[ lab.index( A ) , lab.index( B ) ] = frac if A == "X" and B == "Y": alpha[ lab.index( B ) , lab.index( A ) ] = frac if A == "X" and B == "Z": alpha[ lab.index( B ) , lab.index( A ) ] = frac if A == "Y" and B == "Z": alpha[ lab.index( B ) , lab.index( A ) ] = frac pat_beta = re.compile(r'@ B-freq') for i in open( file_ ).readlines(): if pat_beta.match(i): try: if i.split()[7].lstrip("beta") in exists: continue exists[ i.split()[7].lstrip("beta") ] = float(i.split()[9] ) except ValueError: a, b, c = i.split()[9].lstrip("beta").strip("()").split(",") if i.split()[7].lstrip("beta") in missing: continue missing[ i.split()[7].lstrip("beta") ] = "(%s;%s,%s)"%(a,b,c) for i in range(3): for j in range(3): for k in range(3): try: beta[i][j][k] = exists[ "(%s;%s,%s)" %(lab[i],lab[j],lab[k])] except KeyError: beta[i][j][k] = exists[ missing["(%s;%s,%s)"%(lab[i],lab[j],lab[k]) ] ] if in_AA: nuc_dip /= a0 tot_dip = nuc_dip - el_dip return atoms, nuc_dip - el_dip, alpha , beta def main(): """ Program reads alpha and beta tensor and dipole moment from DALTON output """ args = run_argparse( sys.argv ) if args.alpha: a = read_alpha( args.alpha, ) if args.beta_analysis: beta_analysis(args, basis = args.basis, dal = args.beta_dal, in_AA = args.in_AA, out_AA = args.out_AA, ncpu = args.Ncpu, N_waters = args.N_waters) if args.beta_analysis_par: run_beta_analysis_par( N_waters = args.N_waters, ncpu = args.Ncpu, model = args.model ) if args.alpha_analysis: alpha_analysis(args) if args.qm_generation: qm_generation( qm_waters = args.qm_waters, basis = args.basis ) if args.qmmm_generation: qmmm_generation( qm_waters = args.qm_waters, mm_waters = args.mm_waters, potfreqs = args.potfreqs, potstyle = args.potstyle, basis = args.basis) if args.qm_analysis: qm_analysis( in_AA = args.in_AA, out_AA = args.out_AA ) if args.qmmm_analysis: qmmm_analysis( args ) if args.write: write_related( args ) def read_dipole( file_, freq = "0.0", in_AA = False, out_AA = False ): nuc_dip = np.zeros(3) el_dip = np.zeros(3) alpha = np.zeros([3,3]) beta = np.zeros([3,3,3]) tmp = [] atoms = [] missing = {} exists = {} lab = ["X", "Y", "Z"] pat_Q = re.compile(r'Total charge of the molecule') pat_xyz = re.compile(r'^\s*(\w+)\s+(-*\d*\.+\d+)\s+(-*\d*\.+\d+)\s+(-*\d*\.+\d+) *$') pat_pol = re.compile(r'([XYZ])DIPLEN.*total.*:') #Special xyz hack for camb3lyp output from akka dalton to find atoms pat_akka_xyz = re.compile(r'^\s*(\w+)\s+:\s+\d\s+x\s+(-*\d*\.+\d+)\s+\d\s+y\s+(-*\d*\.+\d+)\s+\d\s+z\s+(-*\d*\.+\d+) *$') pat_labels_xyz = re.compile(r'^\s*((?!-)\S+)\s+(-*\d*\.+\d+)\s+(-*\d*\.+\d+)\s+(-*\d*\.+\d+) *$') # Reading in dipole and charge for i in open( file_ ).readlines(): if pat_Q.search( i ): Q = float(i.split()[-1]) if pat_xyz.match(i): f = pat_xyz.match(i).groups() matched = pat_xyz.match(i).groups() #Skip coordinates in out file that are for MM region from QMMM kwargs = { "AA": in_AA, "element" : matched[0], "x" : matched[1], "y" : matched[2], "z" : matched[3] } tmpAtom = Atom( **kwargs ) atoms.append( tmpAtom ) elif pat_akka_xyz.match(i): f = pat_akka_xyz.match(i).groups() matched = pat_akka_xyz.match(i).groups() #Skip coordinates in out file that are for MM region from QMMM kwargs = { "AA": in_AA, "element" : matched[0], "x" : matched[1], "y" : matched[2], "z" : matched[3] } tmpAtom = Atom( **kwargs ) atoms.append( tmpAtom ) elif pat_labels_xyz.match(i): f = pat_labels_xyz.match(i).groups() matched = pat_labels_xyz.match(i).groups() lab = matched[0] if len(lab.split('-')) == 4: element = "H" else: try: element = lab.split('-')[2][0] except IndexError as e: warnings.warn( 'Occured when finding wrong pattern for .xyz in read_beta_hf_string ' ) continue kwargs = { "AA": in_AA, "element" : element, "x" : matched[1], "y" : matched[2], "z" : matched[3] } tmpAtom = Atom( **kwargs ) atoms.append( tmpAtom ) if pat_pol.search(i): if pat_pol.search(i).group(1) == "X": try: if "D" in i.split()[3]: frac = float(i.split()[3].replace("D","E")) else: frac = float(i.split()[3]) except IndexError: if "D" in i.split()[2]: frac = float( i.split()[2].strip(":").replace("D","E")) else: frac = float( i.split()[2].strip(":")) el_dip[0] += frac if pat_pol.search(i).group(1) == "Y": try: if "D" in i.split()[3]: frac = float(i.split()[3].replace("D","E")) else: frac = float(i.split()[3]) except IndexError: if "D" in i.split()[2]: frac = float( i.split()[2].strip(":").replace("D","E")) else: frac = float( i.split()[2].strip(":")) el_dip[1] += frac if pat_pol.search(i).group(1) == "Z": try: if "D" in i.split()[3]: frac = float(i.split()[3].replace("D","E")) else: frac = float(i.split()[3]) except IndexError: if "D" in i.split()[2]: frac = float( i.split()[2].strip(":").replace("D","E")) else: frac = float( i.split()[2].strip(":")) el_dip[2] += frac #Set center of nuceli charge to 0 coc = sum([ x.r * charge_dic[x.element] for x in atoms ]) /\ sum([ charge_dic[x.element] for x in atoms ]) for i in atoms: nuc_dip += charge_dic[ i.element ] * (i.r - coc ) if in_AA: # Make sure center of charge is in Atomic units to give correct electronic dipole coc /= a0 N_el = sum([charge_dic[at.element] for at in atoms]) - Q tot_dip = el_dip - coc * N_el return tot_dip def read_props_qmmm( file_, freq = "0.0", in_AA = False ): """ Same as read_beta_hf but skips coordinates not in allowd_elements """ nuc_dip = np.zeros(3) el_dip = np.zeros(3) alpha = np.zeros([3,3]) beta = np.zeros([3,3,3]) tmp = [] atoms = [] missing = {} exists = {} lab = ["X", "Y", "Z"] pat_xyz = re.compile(r'^\s*(\w+)\s+(-*\d*\.+\d+)\s+(-*\d*\.+\d+)\s+(-*\d*\.+\d+) *$') pat_pol = re.compile(r'([XYZ])DIPLEN.*total.*:') # Reading in dipole for i in open( file_ ).readlines(): if pat_xyz.match(i): f = pat_xyz.match(i).groups() matched = pat_xyz.match(i).groups() #Skip coordinates in out file that are for MM region from QMMM if matched[0] not in allowed_elements: continue kwargs = { "element" : matched[0], "x" : matched[1], "y" : matched[2], "z" : matched[3] } tmpAtom = Atom( **kwargs ) atoms.append( tmpAtom ) if pat_pol.search(i): if pat_pol.search(i).group(1) == "X": try: if "D" in i.split()[3]: frac = float(i.split()[3].replace("D","E")) else: frac = float(i.split()[3]) except IndexError: if "D" in i.split()[2]: frac = float( i.split()[2].strip(":").replace("D","E")) else: frac = float( i.split()[2].strip(":")) el_dip[0] += frac if pat_pol.search(i).group(1) == "Y": try: if "D" in i.split()[3]: frac = float(i.split()[3].replace("D","E")) else: frac = float(i.split()[3]) except IndexError: if "D" in i.split()[2]: frac = float( i.split()[2].strip(":").replace("D","E")) else: frac = float( i.split()[2].strip(":")) el_dip[1] += frac if pat_pol.search(i).group(1) == "Z": try: if "D" in i.split()[3]: frac = float(i.split()[3].replace("D","E")) else: frac = float(i.split()[3]) except IndexError: if "D" in i.split()[2]: frac = float( i.split()[2].strip(":").replace("D","E")) else: frac = float( i.split()[2].strip(":")) el_dip[2] += frac for i in atoms: nuc_dip[0] += charge_dic[ i.element ] * i.x nuc_dip[1] += charge_dic[ i.element ] * i.y nuc_dip[2] += charge_dic[ i.element ] * i.z # Reading in Alfa and Beta tensor fre = str("%.5f" % float(freq)) pat_alpha = re.compile(r'@.*QRLRVE.*([XYZ])DIPLEN.*([XYZ])DIPLEN.*%s' %fre) alpha = np.zeros( [3,3,] ) lab = ['X', 'Y', 'Z', ] for i in open( file_ ).readlines(): if pat_alpha.match( i ): try: if "D" in i.split()[-1]: frac = float( i.split()[-1].replace("D","E") ) else: frac = float( i.split()[-1] ) except IndexError: if "D" in i.split()[-1]: frac = float( i.split()[-1].strip("=").replace("D","E") ) else: frac = float( i.split()[-1].strip("=") ) A = pat_alpha.match(i).groups(1)[0] B = pat_alpha.match(i).groups(1)[1] alpha[ lab.index( A ) , lab.index( B ) ] = frac if A == "X" and B == "Y": alpha[ lab.index( B ) , lab.index( A ) ] = frac if A == "X" and B == "Z": alpha[ lab.index( B ) , lab.index( A ) ] = frac if A == "Y" and B == "Z": alpha[ lab.index( B ) , lab.index( A ) ] = frac pat_beta = re.compile(r'@ B-freq') for i in open( file_ ).readlines(): if pat_beta.match(i): try: if i.split()[7].lstrip("beta") in exists: continue exists[ i.split()[7].lstrip("beta") ] = float(i.split()[9] ) except ValueError: a, b, c = i.split()[9].lstrip("beta").strip("()").split(",") if i.split()[7].lstrip("beta") in missing: continue missing[ i.split()[7].lstrip("beta") ] = "(%s;%s,%s)"%(a,b,c) for i in range(3): for j in range(3): for k in range(3): try: beta[i][j][k] = exists[ "(%s;%s,%s)" %(lab[i],lab[j],lab[k])] except KeyError: beta[i][j][k] = exists[ missing["(%s;%s,%s)"%(lab[i],lab[j],lab[k]) ] ] if in_AA: nuc_dip /= a0 tot_dip = nuc_dip - el_dip return atoms, nuc_dip - el_dip, alpha , beta def read_beta_hf( file_, freq = "0.0", in_AA = False, out_AA = False ): with open( file_ ) as f: return read_beta_hf_string( f.read(), freq = freq, in_AA = in_AA, out_AA = out_AA ) def read_beta_hf_string( string_, freq = "0.0", in_AA = False, out_AA = False, akka = False): nuc_dip = np.zeros(3) el_dip = np.zeros(3) alpha = np.zeros([3,3]) beta = np.zeros([3,3,3]) tmp = [] atoms = [] missing = {} exists = {} lab = ["X", "Y", "Z"] pat_Q = re.compile(r'Total charge of the molecule') pat_xyz = re.compile(r'^\s*(\w+)\s+(-*\d*\.+\d+)\s+(-*\d*\.+\d+)\s+(-*\d*\.+\d+) *$') pat_pol = re.compile(r'([XYZ])DIPLEN.*total.*:') #Special xyz hack for camb3lyp output from akka dalton to find atoms if akka: pat_akka_xyz = re.compile(r'^\s*(\w+)\s+:\s+\d\s+x\s+(-*\d*\.+\d+)\s+\d\s+y\s+(-*\d*\.+\d+)\s+\d\s+z\s+(-*\d*\.+\d+) *$') else: pat_akka_xyz = re.compile(r'^(?!a)a') pat_labels_xyz = re.compile(r'^\s*((?!-)\S+)\s+(-*\d*\.+\d+)\s+(-*\d*\.+\d+)\s+(-*\d*\.+\d+) *$') # Reading in dipole and charge for i in string_.split('\n'): if pat_Q.search( i ): Q = float(i.split()[-1]) if pat_xyz.match(i): f = pat_xyz.match(i).groups() matched = pat_xyz.match(i).groups() #Skip coordinates in out file that are for MM region from QMMM kwargs = { "AA": in_AA, "element" : matched[0], "x" : matched[1], "y" : matched[2], "z" : matched[3] } tmpAtom = Atom( **kwargs ) atoms.append( tmpAtom ) elif pat_akka_xyz.match(i): print i print 'asdf' raise SystemExit f = pat_akka_xyz.match(i).groups() matched = pat_akka_xyz.match(i).groups() #Skip coordinates in out file that are for MM region from QMMM kwargs = { "AA": in_AA, "element" : matched[0], "x" : matched[1], "y" : matched[2], "z" : matched[3] } tmpAtom = Atom( **kwargs ) atoms.append( tmpAtom ) elif pat_labels_xyz.match(i): f = pat_labels_xyz.match(i).groups() matched = pat_labels_xyz.match(i).groups() lab = matched[0] if len(lab.split('-')) == 4: element = "H" else: try: element = lab.split('-')[2][0] except IndexError as e: warnings.warn( 'Occured when finding wrong pattern for .xyz in read_beta_hf_string ' ) continue kwargs = { "AA": in_AA, "element" : element, "x" : matched[1], "y" : matched[2], "z" : matched[3] } tmpAtom = Atom( **kwargs ) atoms.append( tmpAtom ) if pat_pol.search(i): if pat_pol.search(i).group(1) == "X": try: if "D" in i.split()[3]: frac = float(i.split()[3].replace("D","E")) else: frac = float(i.split()[3]) except IndexError: if "D" in i.split()[2]: frac = float( i.split()[2].strip(":").replace("D","E")) else: frac = float( i.split()[2].strip(":")) el_dip[0] += frac if pat_pol.search(i).group(1) == "Y": try: if "D" in i.split()[3]: frac = float(i.split()[3].replace("D","E")) else: frac = float(i.split()[3]) except IndexError: if "D" in i.split()[2]: frac = float( i.split()[2].strip(":").replace("D","E")) else: frac = float( i.split()[2].strip(":")) el_dip[1] += frac if pat_pol.search(i).group(1) == "Z": try: if "D" in i.split()[3]: frac = float(i.split()[3].replace("D","E")) else: frac = float(i.split()[3]) except IndexError: if "D" in i.split()[2]: frac = float( i.split()[2].strip(":").replace("D","E")) else: frac = float( i.split()[2].strip(":")) el_dip[2] += frac remove = [] for ind, at in enumerate(atoms[:-1]): for other in atoms[ind+1:]: if at.equal( other ): remove.append( other ) for each in remove: atoms.remove( each ) #Set center of nuceli charge to 0 coc = sum([ x.r * charge_dic[x.element] for x in atoms ]) /\ sum([ charge_dic[x.element] for x in atoms ]) for i in atoms: nuc_dip += charge_dic[ i.element ] * (i.r - coc ) if in_AA and not out_AA: # Make sure center of charge is in Atomic units to give correct electronic dipole coc /= a0 # Reading in Alfa and Beta tensor fre = str("%.5f" % float(freq)) pat_alpha = re.compile(r'@.*QRLRVE.*([XYZ])DIPLEN.*([XYZ])DIPLEN.*%s' %fre) alpha = np.zeros( [3,3,] ) lab = ['X', 'Y', 'Z', ] for i in string_.split('\n'): if pat_alpha.match( i ): try: if "D" in i.split()[-1]: frac = float( i.split()[-1].replace("D","E") ) else: frac = float( i.split()[-1] ) except IndexError: if "D" in i.split()[-1]: frac = float( i.split()[-1].strip("=").replace("D","E") ) else: frac = float( i.split()[-1].strip("=") ) A = pat_alpha.match(i).groups(1)[0] B = pat_alpha.match(i).groups(1)[1] alpha[ lab.index( A ) , lab.index( B ) ] = frac if A == "X" and B == "Y": alpha[ lab.index( B ) , lab.index( A ) ] = frac if A == "X" and B == "Z": alpha[ lab.index( B ) , lab.index( A ) ] = frac if A == "Y" and B == "Z": alpha[ lab.index( B ) , lab.index( A ) ] = frac pat_beta = re.compile(r'@ B-freq') for i in string_.split('\n'): if pat_beta.match(i): try: if i.split()[7].lstrip("beta") in exists: continue exists[ i.split()[7].lstrip("beta") ] = float(i.split()[9] ) except ValueError: a, b, c = i.split()[9].lstrip("beta").strip("()").split(",") if i.split()[7].lstrip("beta") in missing: continue missing[ i.split()[7].lstrip("beta") ] = "(%s;%s,%s)"%(a,b,c) for i in range(3): for j in range(3): for k in range(3): try: beta[i][j][k] = exists[ "(%s;%s,%s)" %(lab[i],lab[j],lab[k])] except KeyError: beta[i][j][k] = exists[ missing["(%s;%s,%s)"%(lab[i],lab[j],lab[k]) ] ] N_el = sum([charge_dic[at.element] for at in atoms]) - Q tot_dip = -el_dip + coc * N_el return atoms, tot_dip, alpha , beta if __name__ == '__main__': main()
mit
zonca/healpy
doc/create_images.py
7
1087
import healpy as hp import numpy as np import matplotlib.pyplot as plt SIZE = 400 DPI = 60 m = np.arange(hp.nside2npix(32)) hp.mollview(m, nest = True, xsize=SIZE, title='Mollview image NESTED') plt.savefig('static/moll_nside32_nest.png', dpi=DPI) hp.mollview(m, nest = False, xsize=SIZE, title='Mollview image RING') plt.savefig('static/moll_nside32_ring.png', dpi=DPI) wmap_map_I = hp.read_map('../healpy/test/data/wmap_band_imap_r9_7yr_W_v4.fits') hp.mollview(wmap_map_I, coord=['G','E'], title='Histogram equalized Ecliptic', unit='mK', norm='hist', min=-1,max=1, xsize=SIZE) hp.graticule() plt.savefig('static/wmap_histeq_ecl.png', dpi=DPI) mask = hp.read_map('../healpy/test/data/wmap_temperature_analysis_mask_r9_7yr_v4.fits').astype(np.bool) wmap_map_I_masked = hp.ma(wmap_map_I) wmap_map_I_masked.mask = np.logical_not(mask) LMAX = 1024 cl = hp.anafast(wmap_map_I_masked.filled(), lmax=LMAX) ell = np.arange(len(cl)) plt.figure() plt.plot(ell, ell * (ell+1) * cl) plt.xlabel('ell'); plt.ylabel('ell(ell+1)cl'); plt.grid() plt.savefig('static/wmap_powspec.png', dpi=DPI)
gpl-2.0
ChristinaLK/chtc_sheets
chtc_sheets.py
1
12833
# Python code to extra user/project/hours used information # from second half of CHTC daily (weekly/monthly/yearly) reports # input is a single tsv file in the "data" directory # output is written to "reports" directory # can be run in the ipython notebook (replace the "filename" string in cell 4) # or on the command line as: # $python chtc_sheets data/spreadsheet.tsv # dictionary for assigning projects -> departments dept_dictionary = { 'Economics_Roys':'Economics', 'BMRB':'Biochemistry', 'ECE_VanVeen':'Electrical and Computer Engineering', 'CMS':'Physics', 'Physics_Knezevic':'Physics', 'Statistics_YazhenWang':'Statistics', 'Cs_Ron':'Computer Sciences', 'Math_Boston':'Mathematics', 'IceCube':'Physics', 'WID_Biology_Vetsigian':'Bacteriology', 'Economics_Gandhi':'Economics', 'Statistics_Tsui':'Statistics', 'ERC':'Mechanical Engineering', 'Zoology_Lee':'Zoology', 'MaterialScience_Morgan':'Materials Science and Engineering', 'OSG':'off-campus', 'Economics_Gregory':'Economics', 'CAE':'multi-departmental', 'Statistics_Ane':'Statistics', 'WID_Biology_Roy':'Biostatistics and Medical Informatics', 'Biostat_Broman':'Biostatistics and Medical Informatics', 'LMCG':'Genetics', 'WID':'multi-departmental', 'MedPhysics_Bednarz':'Medical Physics', 'BME_Williams':'Biomedical Engineering', 'SSEC':'Atmospheric Sciences', 'Botany_Spalding':'Botany', 'Biochem_Mitchell':'Biochemistry', 'ChemE_Mavrikakis':'Chemical and Biological Engineering', 'BMI_Craven':'Biostatistics and Medical Informatics', 'Astronomy_Heinz':'Astronomy', 'MSE_Szlufarska':'Materials Science and Engineering', 'Cs_Re':'Computer Sciences', 'AnimalSciences_Berres':'Animal Sciences', 'Purdue':'off-campus', 'Genetics_Pool':'Genetics', 'Physics_Friesen':'Physics', 'Chemistry_Schmidt':'Chemistry', 'Chemistry_Yethiraj':'Chemistry', 'MechE_Trujillo':'Mechanical Engineering', 'Physics_Bai':'Physics', 'EarthCube':'Geoscience', 'Economics_Freyberger':'Economics', 'CS':'Computer Sciences', 'Ece_Hagness':'Electrical and Computer Engineering', 'AnimalSciences_Wu':'Animal Sciences', 'CHTC':'Computer Sciences', 'Entomology_Zhu':'Entomology', 'Medicine_Johnson':'Medicine', 'ChE_dePablo':'Chemical and Biological Engineering', 'CEE_Loheide':'Civil and Environmental Engineering', 'Botany_Givnish':'Botany', 'Genetics_Payseur':'Genetics', 'MechE_Rutland':'Mechanical Engineering', 'Waisman_Alexander':'Psychiatry', 'EngrPhysics_Wilson':'Engineering Physics', 'MSE_Voyles':'Materials Science and Engineering', 'SOAR':'Computer Sciences', 'Chemistry_Cui':'Chemistry', 'Physics_Sarff':'Physics', 'Biostat':'Biostatistics and Medical Informatics', 'Waisman_Center':'multi-departmental', 'Math_Thiffeault':'Mathematics', 'Astronomy_DOnghia':'Astronomy', 'WID_Biology_Vestigian':'Bacteriology', 'Physics_Knutson':'Physics', 'Physics_Perkins':'Physics', 'Oncology_Hill':'Oncology', 'UWEC_Ma':'off-campus', 'Oncology_Sugden':'Oncology', 'ECE_Ramanathan':'Electrical and Computer Engineering', 'Statistics_Zhang':'Statistics', 'Geoscience_DeMets':'Geoscience', 'NucEngr_Schmitz':'Engineering Physics', 'Biostat_Wang':'Biostatistics and Medical Informatics', 'MedPhysics_Bender':'Medical Physics', 'Business_Gofman':'Finance', 'Economics_Sorensen':'Economics', 'MedPhysics_Campagnola':'Medical Physics', 'Astronomy_Townsend':'Astronomy', 'Business_Levine':'Finance', 'Cs_Sohi':'Computer Sciences', 'Biochem_Fox':'Biochemistry', 'SmallMolecule_Hoffman':'Oncology', 'Physics_Joynt':'Physics', 'MechE_Kokjohn':'Mechanical Engineering', 'Economics_Kennan':'Economics', 'Cs_Hill':'Computer Sciences', 'Biostat_Zhao':'Biostatistics and Medical Informatics', 'Physics_Forest':'Physics', 'EngrPhysics_Sovinec':'Engineering Physics', 'Chemistry_Coon':'Chemistry', 'Pharmacy_Kwan':'Pharmaceutical Sciences', 'Biostat_Singh':'Biostatistics and Medical Informatics', 'Psychology_Rogers':'Pyschology', 'Statistics_Shao':'Statistics', 'Waisman_Vorperian':'multi-departmental', 'UCSB':'off-campus', 'AnimalSciences_Rosa':'Animal Sciences', 'Math_Spagnolie':'Mathematics', 'Neurology_Hermann':'Neurology', 'EngrPhysics_Anderson':'Engineering Physics', 'GLBRC_WEI':'multi-departmental', 'EngrPhysics_Hegna':'Engineering Physics', 'BMI_Pack':'Biostatistics and Medical Informatics', 'MechE_Thelen':'Mechanical Engineering', 'History_Chowkwanyun':'History', 'Cs_Sankaralingam':'Computer Sciences', 'Statistics_Hanlon':'Statistics', 'other':'other', 'Botany_Sytsma':'Botany', 'EdPsychology_Kaplan':'Educational Psychology', 'UWPlatt_Haasl':'off-campus', 'MedPhysics_Varghese':'Medical Physics', 'Page_Learn':'Biostatistics and Medical Informatics', 'Psychiatry_Tononi':'Psychiatry', 'Zoology_Turner':'Zoology', 'Astronomy_Bershady':'Astronomy', 'Primate_Oconnor':'Pathology and Laboratory Medicine', 'Psychiatry_Koenigs':'Psychiatry', 'OSG-SS':'off-campus', 'Economics_Shi':'Economics', 'Arizona_iPlant':'off-campus', 'WID_LEL':'multi-departmental', 'Bacteriology_Rey':'Bacteriology', 'Botany_Cameron':'Botany', 'Math_Stechmann':'Mathematics', 'Medicine_Pepperell':'Medicine', 'EdPsychology_Steiner':'Educational Psychology', 'BotanyMath_Staff':'multi-departmental', 'Psychiatry_Kalin':'Psychiatry', 'BMI_Gitter':'Biostatistics and Medical Informatics', 'MIR_Mackie':'Medical Physics', 'CEE_Wu':'Civil and Environmental Engineering', 'Geoscience_Feigl':'Geoscience', 'BME_Ashton':'Biomedical Engineering', 'Surgery_Jiang':'Surgery', 'Biochemistry_Denu':'Biochemistry', 'GLBRC_Benton':'multi-departmental', 'Botany_Gilroy':'Botany', 'Astronomy_Tremonti':'Astronomy', 'Math':'Mathematics', 'Biochem':'Biochemistry', 'Economics_Atalay':'Economics', 'CsBanerjee':'Computer Sciences', 'Wempec_Jahns':'Electrical and Computer Engineering', 'Marschfield_Hebbring':'off-campus', 'Bacteriology_McMahon':'Bacteriology', 'Statistics_Yu':'Statistics', 'Psychiatry_Abercrombie':'Psychiatry', 'Radiology_Brace':'Radiology', 'Neurology_Gallagher':'Neurology', 'Geoscience_Cardiff':'Geoscience', 'CEE_hedegaard':'Civil and Environmental Engineering', 'UWMilwaukee':'off-campus', 'Atlas':'Physics', 'MechE_Pfotenhauer':'Mechanical Engineering', 'CEE_GinderVogel':'Civil and Environmental Engineering', 'CEE_Hedegaard':'Civil and Environmental Engineering', 'StatisticsYazhenWang':'Statistics', 'Pathobio_Friedrich':'Pathobiological Sciences', 'Loci_Eliceiri':'Biomedical Engineering', 'ChemBioEngr_Graham':'Chemical and Biological Engineering', 'Oncology_Ahlquist':'Oncology', 'AnimalSciences':'Animal Sciences', 'backfill':'other', 'Statistics_Keles':'Statistics', 'Botany_Graham':'Botany', 'Psychiatry_Cirelli':'Psychiatry', 'UWEC':'off-campus', 'Pathology_Oconnor':'Pathology and Laboratory Medicine', 'CBE_Yin':'Chemical and Biological Engineering', 'Geoscience_Staff':'Geoscience', 'History_Chowkanyun':'History', 'AgAplliedEcon_Grainger':'Agricultural and Applied Economics', 'DoIT':'Computer Sciences', 'MedPhysics_DeWerd':'Medical Physics', 'EdPsychology_Wollack':'Educational Psychology', 'OSG-People':'off-campus', 'GeoDeepDive':'Geoscience', 'SCO_Wiscland':'Geography', 'Bionates_Saha':'Biomedical Engineering', 'AAE_NETS':'Agricultural and Applied Economics', 'ECE_Sethares':'Electrical and Computer Engineering', 'BME_Chesler':'Biomedical Engineering', 'MechE_Qian':'Mechanical Engineering', 'Physics_Barger':'Physics', 'MechE_Negrut':'Mechanical Engineering', 'Astronomy_Stanimirovic':'Astronomy', # dictionary for assigning depts -> colleges college_dictionary = { 'Statistics':'Letters and Sciences', 'Genetics':'Agricultural and Life Sciences', 'Biochemistry':'Agricultural and Life Sciences', 'Pharmaceutical Sciences':'Pharmacy', 'Psychiatry':'Medicine and Public Health', 'Radiology':'Medicine and Public Health', 'Civil and Environmental Engineering':'Engineering', 'Medicine':'Medicine and Public Health', 'Mathematics':'Letters and Sciences', 'multi-departmental':'other', 'Finance':'Business', 'Mechanical Engineering':'Engineering', 'Biomedical Engineering':'Engineering', 'Entomology':'Agricultural and Life Sciences', 'Engineering Physics':'Engineering', 'Electrical and Computer Engineering':'Engineering', 'other':'other', 'Biostatistics and Medical Informatics':'Medicine and Public Health', 'Astronomy':'Letters and Sciences', 'Medical Physics':'Medicine and Public Health', 'Economics':'Letters and Sciences', 'Computer Sciences':'Letters and Sciences', 'Materials Science and Engineering':'Engineering', 'Agricultural and Applied Economics':'Agricultural and Life Sciences', 'Pathology and Laboratory Medicine':'Medicine and Public Health', 'Bacteriology':'Agricultural and Life Sciences', 'Chemistry':'Letters and Sciences', 'Physics':'Letters and Sciences', 'Geoscience':'Letters and Sciences', 'History':'Letters and Sciences', 'Botany':'Letters and Sciences', 'Oncology':'Medicine and Public Health', 'Atmospheric Sciences':'Letters and Sciences', 'Animal Sciences':'Agricultural and Life Sciences', 'Educational Psychology':'Education', 'off-campus':'off-campus', 'Chemical and Biological Engineering':'Engineering', 'Pyschology':'Letters and Sciences', 'Neurology':'Medicine and Public Health', 'Zoology':'Letters and Sciences', 'Pathobiological Sciences':'Veterinary Medicine', 'Surgery':'Medicine and Public Health', 'Geography':'Letters and Sciences' } import sys import pandas #set filename and extract useful pieces for creating output file names filename = sys.argv[1] base_fn = filename.split('/')[1].split('.')[0] date_fn = base_fn.split('_')[1]+'_'+base_fn.split('_')[2] #read in data and a list of headers data = pandas.read_csv(filename, delimiter='\t', skiprows=[1,2], thousands=',') headers = list(data.columns.values) date = headers[1] #extract data #(usernames, depts, colleges, #submit point#, total hours, broken down into htc, hpc, osg, non-chtc) # as individual lists # list of usernames def username(row): if row[date].split('_')[0] == 'nu': return row[date].split('_')[0]+"_"+row[date].split('_')[1] else: return row[date].split('_')[0] usernames = list(data.apply(username, axis=1)) # list of Projects projects = list(data["Project"]) # list of departments def dept(row): proj_dept = row['Project'] return dept_dictionary[proj_dept] depts = list(data.apply(dept, axis=1)) # list of colleges def college(row): proj_dept = row['Project'] dept = dept_dictionary[proj_dept] return college_dictionary[dept] colleges = list(data.apply(college, axis=1)) # list of submit points #def submit(row): # return row[date].split('_')[-1] #submit_point = list(data.apply(submit, axis=1)) # lists of hours (non chtc, chtc (htc), slurm (hpc), and osg) slurm = list(data["SLURM"]) chtc = list(data["CHTC"]) osg = list(data["OSG"]) total = list(data["Total"]) def nonchtc(row): return row['Total'] - row['CHTC'] - row['SLURM'] - row['OSG'] outside = list(data.apply(nonchtc, axis=1)) #make user_data table from all lists above user_data = pandas.DataFrame.from_items( [('username', usernames), ('project_name',projects), ('dept', depts), ('college', colleges), ('total', total), ('htc', chtc), ('hpc', slurm), ('osg', osg), ('other', outside)]) # save all reorganized data cleaned_fn = 'reports/'+date_fn+'_cleaned.tsv' cleaned_file = open(cleaned_fn, 'w') user_data.to_csv(cleaned_file, sep='\t', index=False) cleaned_file.close() # get chtc users with more than 0 hours # this includes all people with hours on chtc supported hardware # (which necessarily includes everyone submitting from a CHTC submit point) chtc_users = user_data[((user_data.osg > 0) | (user_data.htc > 0) | (user_data.hpc > 0)) & (user_data.total > 0)] # save chtc specific data chtc_fn = 'reports/'+date_fn+'_chtc.tsv' chtc_file = open(chtc_fn, 'w') chtc_users.to_csv(chtc_file, sep='\t', index=False) chtc_file.close()
mit
psi4/DatenQM
qcfractal/interface/collections/reaction_dataset.py
1
33261
""" QCPortal Database ODM """ import itertools as it from enum import Enum from typing import TYPE_CHECKING, Any, Dict, List, Optional, Set, Tuple, Union import numpy as np import pandas as pd from qcelemental import constants from ..models import Molecule, ProtoModel from ..util import replace_dict_keys from .collection_utils import nCr, register_collection from .dataset import Dataset if TYPE_CHECKING: # pragma: no cover from .. import FractalClient from ..models import ComputeResponse class _ReactionTypeEnum(str, Enum): """Helper class for locking the reaction type into one or the other""" rxn = "rxn" ie = "ie" class ReactionEntry(ProtoModel): """Data model for the `reactions` list in Dataset""" attributes: Dict[str, Union[int, float, str]] # Might be overloaded key types reaction_results: Dict[str, dict] name: str stoichiometry: Dict[str, Dict[str, float]] extras: Dict[str, Any] = {} class ReactionDataset(Dataset): """ The ReactionDataset class for homogeneous computations on many reactions. Attributes ---------- client : client.FractalClient A FractalClient connected to a server data : ReactionDataset.DataModel A Model representation of the database backbone df : pd.DataFrame The underlying dataframe for the Dataset object rxn_index : pd.Index The unrolled reaction index for all reactions in the Dataset """ def __init__(self, name: str, client: Optional["FractalClient"] = None, ds_type: str = "rxn", **kwargs) -> None: """ Initializer for the Dataset object. If no Portal is supplied or the database name is not present on the server that the Portal is connected to a blank database will be created. Parameters ---------- name : str The name of the Dataset client : client.FractalClient, optional A FractalClient connected to a server ds_type : str, optional The type of Dataset involved """ ds_type = ds_type.lower() super().__init__(name, client=client, ds_type=ds_type, **kwargs) class DataModel(Dataset.DataModel): ds_type: _ReactionTypeEnum = _ReactionTypeEnum.rxn records: Optional[List[ReactionEntry]] = None history: Set[Tuple[str, str, str, Optional[str], Optional[str], str]] = set() history_keys: Tuple[str, str, str, str, str, str] = ( "driver", "program", "method", "basis", "keywords", "stoichiometry", ) def _entry_index(self, subset: Optional[List[str]] = None) -> None: if self.data.records is None: self._get_data_records_from_db() # Unroll the index tmp_index = [] for rxn in self.data.records: name = rxn.name for stoich_name in list(rxn.stoichiometry): for mol_hash, coef in rxn.stoichiometry[stoich_name].items(): tmp_index.append([name, stoich_name, mol_hash, coef]) ret = pd.DataFrame(tmp_index, columns=["name", "stoichiometry", "molecule", "coefficient"]) if subset is None: return ret else: return ret.reset_index().set_index("name").loc[subset].reset_index().set_index("index") def _molecule_indexer( self, stoich: Union[str, List[str]], subset: Optional[Union[str, Set[str]]] = None, coefficients: bool = False, force: bool = False, ) -> Tuple[Dict[Tuple[str, ...], "ObjectId"], Tuple[str]]: """Provides a {index: molecule_id} mapping for a given subset. Parameters ---------- stoich : Union[str, List[str]] The stoichiometries, or list of stoichiometries to return subset : Optional[Union[str, Set[str]]], optional The indices of the desired subset. Return all indices if subset is None. coefficients : bool, optional Returns the coefficients if as part of the index if True No Longer Returned ------------------ Dict[str, 'ObjectId'] Molecule index to molecule ObjectId map Returns ------- Tuple[Dict[Tuple[str, ...], 'ObjectId'], Tuple[str]] Molecule index to molecule ObjectId map, and index names """ if isinstance(stoich, str): stoich = [stoich] index = self.get_entries(subset=subset, force=force) matched_rows = index[np.in1d(index["stoichiometry"], stoich)] if subset: matched_rows = matched_rows[np.in1d(matched_rows["name"], subset)] names = ("name", "stoichiometry", "idx") if coefficients: names = names + ("coefficient",) ret = {} for gb_idx, group in matched_rows.groupby(["name", "stoichiometry"]): for cnt, (idx, row) in enumerate(group.iterrows()): if coefficients: ret[gb_idx + (cnt, row["coefficient"])] = row["molecule"] else: ret[gb_idx + (cnt,)] = row["molecule"] return ret, names def valid_stoich(self, subset=None, force: bool = False) -> Set[str]: entries = self.get_entries(subset=subset, force=force) return set(entries["stoichiometry"].unique()) def _validate_stoich(self, stoich: Union[List[str], str], subset=None, force: bool = False) -> None: if isinstance(stoich, str): stoich = [stoich] if isinstance(subset, str): subset = [subset] valid_stoich = self.valid_stoich(subset=subset, force=force) for s in stoich: if s.lower() not in valid_stoich: raise KeyError("Stoichiometry not understood, valid keys are {}.".format(valid_stoich)) def _pre_save_prep(self, client: "FractalClient") -> None: self._canonical_pre_save(client) mol_ret = self._add_molecules_by_dict(client, self._new_molecules) # Update internal molecule UUID's to servers UUID's for record in self._new_records: stoichiometry = replace_dict_keys(record.stoichiometry, mol_ret) new_record = record.copy(update={"stoichiometry": stoichiometry}) self.data.records.append(new_record) self._new_records: List[ReactionEntry] = [] self._new_molecules = {} self._entry_index() def get_values( self, method: Optional[Union[str, List[str]]] = None, basis: Optional[Union[str, List[str]]] = None, keywords: Optional[str] = None, program: Optional[str] = None, driver: Optional[str] = None, stoich: str = "default", name: Optional[Union[str, List[str]]] = None, native: Optional[bool] = None, subset: Optional[Union[str, List[str]]] = None, force: bool = False, ) -> pd.DataFrame: """ Obtains values from the known history from the search paramaters provided for the expected `return_result` values. Defaults to the standard programs and keywords if not provided. Note that unlike `get_records`, `get_values` will automatically expand searches and return multiple method and basis combinations simultaneously. `None` is a wildcard selector. To search for `None`, use `"None"`. Parameters ---------- method : Optional[Union[str, List[str]]], optional The computational method (B3LYP) basis : Optional[Union[str, List[str]]], optional The computational basis (6-31G) keywords : Optional[str], optional The keyword alias program : Optional[str], optional The underlying QC program driver : Optional[str], optional The type of calculation (e.g. energy, gradient, hessian, dipole...) stoich : str, optional Stoichiometry of the reaction. name : Optional[Union[str, List[str]]], optional Canonical name of the record. Overrides the above selectors. native: Optional[bool], optional True: only include data computed with QCFractal False: only include data contributed from outside sources None: include both subset: Optional[List[str]], optional The indices of the desired subset. Return all indices if subset is None. force : bool, optional Data is typically cached, forces a new query if True Returns ------ DataFrame A DataFrame of values with columns corresponding to methods and rows corresponding to reaction entries. Contributed (native=False) columns are marked with "(contributed)" and may include units in square brackets if their units differ in dimensionality from the ReactionDataset's default units. """ return self._get_values( method=method, basis=basis, keywords=keywords, program=program, driver=driver, stoich=stoich, name=name, native=native, subset=subset, force=force, ) def _get_native_values( self, subset: Set[str], method: Optional[str] = None, basis: Optional[str] = None, keywords: Optional[str] = None, program: Optional[str] = None, stoich: Optional[str] = None, name: Optional[str] = None, force: bool = False, ) -> pd.DataFrame: self._validate_stoich(stoich, subset=subset, force=force) # So that datasets with no records do not require a default program and default keywords if len(self.list_records()) == 0: return pd.DataFrame(index=self.get_index(subset)) queries = self._form_queries( method=method, basis=basis, keywords=keywords, program=program, stoich=stoich, name=name ) if len(queries) == 0: return pd.DataFrame(index=self.get_index(subset)) stoich_complex = queries.pop("stoichiometry").values[0] stoich_monomer = "".join([x for x in stoich_complex if not x.isdigit()]) + "1" def _query_apply_coeffients(stoich, query): # Build the starting table indexer, names = self._molecule_indexer(stoich=stoich, coefficients=True, force=force) df = self._get_records(indexer, query, include=["return_result"], merge=True) df.index = pd.MultiIndex.from_tuples(df.index, names=names) df.reset_index(inplace=True) # Block out null values `groupby.sum()` will return 0 rather than NaN in all cases null_mask = df[["name", "return_result"]].copy() null_mask["return_result"] = null_mask["return_result"].isnull() null_mask = null_mask.groupby(["name"])["return_result"].sum() != False # Multiply by coefficients and sum df["return_result"] *= df["coefficient"] df = df.groupby(["name"])["return_result"].sum() df[null_mask] = np.nan return df names = [] new_queries = [] new_data = pd.DataFrame(index=subset) for _, query in queries.iterrows(): query = query.replace({np.nan: None}).to_dict() qname = query["name"] names.append(qname) if force or not self._subset_in_cache(qname, subset): self._column_metadata[qname] = query new_queries.append(query) if not self._use_view(force): units: Dict[str, str] = {} for query in new_queries: qname = query.pop("name") if self.data.ds_type == _ReactionTypeEnum.ie: # This implements 1-body counterpoise correction # TODO: this will need to contain the logic for VMFC or other method-of-increments strategies data_complex = _query_apply_coeffients(stoich_complex, query) data_monomer = _query_apply_coeffients(stoich_monomer, query) data = data_complex - data_monomer elif self.data.ds_type == _ReactionTypeEnum.rxn: data = _query_apply_coeffients(stoich_complex, query) else: raise ValueError( f"ReactionDataset ds_type is not a member of _ReactionTypeEnum. (Got {self.data.ds_type}.)" ) new_data[qname] = data * constants.conversion_factor("hartree", self.units) query["name"] = qname units[qname] = self.units else: for query in new_queries: query["native"] = True new_data, units = self._view.get_values(new_queries) for query in new_queries: qname = query["name"] new_data[qname] = new_data[qname] * constants.conversion_factor(units[qname], self.units) for query in new_queries: qname = query["name"] self._column_metadata[qname].update({"native": True, "units": units[qname]}) self._update_cache(new_data) return self.df.loc[subset, names] def visualize( self, method: Optional[str] = None, basis: Optional[str] = None, keywords: Optional[str] = None, program: Optional[str] = None, stoich: str = "default", groupby: Optional[str] = None, metric: str = "UE", bench: Optional[str] = None, kind: str = "bar", return_figure: Optional[bool] = None, show_incomplete: bool = False, ) -> "plotly.Figure": """ Parameters ---------- method : Optional[str], optional Methods to query basis : Optional[str], optional Bases to query keywords : Optional[str], optional Keyword aliases to query program : Optional[str], optional Programs aliases to query stoich : str, optional Stoichiometry to query groupby : Optional[str], optional Groups the plot by this index. metric : str, optional The metric to use either UE (unsigned error) or URE (unsigned relative error) bench : Optional[str], optional The benchmark level of theory to use kind : str, optional The kind of chart to produce, either 'bar' or 'violin' return_figure : Optional[bool], optional If True, return the raw plotly figure. If False, returns a hosted iPlot. If None, return a iPlot display in Jupyter notebook and a raw plotly figure in all other circumstances. show_incomplete: bool, optional Display statistics method/basis set combinations where results are incomplete Returns ------- plotly.Figure The requested figure. """ query = {"method": method, "basis": basis, "keywords": keywords, "program": program, "stoichiometry": stoich} query = {k: v for k, v in query.items() if v is not None} return self._visualize( metric, bench, query=query, groupby=groupby, return_figure=return_figure, kind=kind, show_incomplete=show_incomplete, ) def get_molecules( self, subset: Optional[Union[str, Set[str]]] = None, stoich: Union[str, List[str]] = "default", force: bool = False, ) -> pd.DataFrame: """Queries full Molecules from the database. Parameters ---------- subset : Optional[Union[str, Set[str]]], optional The index subset to query on stoich : Union[str, List[str]], optional The stoichiometries to pull from, either a single or multiple stoichiometries force : bool, optional Force pull of molecules from server Return ------ pd.DataFrame Indexed Molecules which match the stoich and subset string. """ self._check_client() self._check_state() if isinstance(subset, str): subset = [subset] self._validate_stoich(stoich, subset=subset, force=force) indexer, names = self._molecule_indexer(stoich=stoich, subset=subset, force=force) df = self._get_molecules(indexer, force=force) df.index = pd.MultiIndex.from_tuples(df.index, names=names) return df def get_records( self, method: str, basis: Optional[str] = None, *, keywords: Optional[str] = None, program: Optional[str] = None, stoich: Union[str, List[str]] = "default", include: Optional[List[str]] = None, subset: Optional[Union[str, Set[str]]] = None, ) -> Union[pd.DataFrame, "ResultRecord"]: """ Queries the local Portal for the requested keys and stoichiometry. Parameters ---------- method : str The computational method to query on (B3LYP) basis : Optional[str], optional The computational basis to query on (6-31G) keywords : Optional[str], optional The option token desired program : Optional[str], optional The program to query on stoich : Union[str, List[str]], optional The given stoichiometry to compute. include : Optional[Dict[str, bool]], optional The attribute project to perform on the query, otherwise returns ResultRecord objects. subset : Optional[Union[str, Set[str]]], optional The index subset to query on Returns ------- Union[pd.DataFrame, 'ResultRecord'] The name of the queried column """ self._check_client() self._check_state() method = method.upper() if isinstance(stoich, str): stoich = [stoich] ret = [] for s in stoich: name, _, history = self._default_parameters(program, method, basis, keywords, stoich=s) history.pop("stoichiometry") indexer, names = self._molecule_indexer(stoich=s, subset=subset, force=True) df = self._get_records( indexer, history, include=include, merge=False, raise_on_plan="`get_records` can only be used for non-composite quantities. You likely queried a DFT+D method or similar that requires a combination of DFT and -D. Please query each piece separately.", ) df = df[0] df.index = pd.MultiIndex.from_tuples(df.index, names=names) ret.append(df) ret = pd.concat(ret) ret.sort_index(inplace=True) return ret def compute( self, method: str, basis: Optional[str] = None, *, keywords: Optional[str] = None, program: Optional[str] = None, stoich: str = "default", ignore_ds_type: bool = False, tag: Optional[str] = None, priority: Optional[str] = None, ) -> "ComputeResponse": """Executes a computational method for all reactions in the Dataset. Previously completed computations are not repeated. Parameters ---------- method : str The computational method to compute (B3LYP) basis : Optional[str], optional The computational basis to compute (6-31G) keywords : Optional[str], optional The keyword alias for the requested compute program : Optional[str], optional The underlying QC program stoich : str, optional The stoichiometry of the requested compute (cp/nocp/etc) ignore_ds_type : bool, optional Optionally only compute the "default" geometry tag : Optional[str], optional The queue tag to use when submitting compute requests. priority : Optional[str], optional The priority of the jobs low, medium, or high. Returns ------- ComputeResponse An object that contains the submitted ObjectIds of the new compute. This object has the following fields: - ids: The ObjectId's of the task in the order of input molecules - submitted: A list of ObjectId's that were submitted to the compute queue - existing: A list of ObjectId's of tasks already in the database """ self._check_client() self._check_state() entry_index = self.get_entries(force=True) self._validate_stoich(stoich, subset=None, force=True) compute_keys = {"program": program, "method": method, "basis": basis, "keywords": keywords, "stoich": stoich} # Figure out molecules that we need if (not ignore_ds_type) and (self.data.ds_type.lower() == "ie"): monomer_stoich = "".join([x for x in stoich if not x.isdigit()]) + "1" tmp_monomer = entry_index[entry_index["stoichiometry"] == monomer_stoich].copy() ret1 = self._compute(compute_keys, tmp_monomer["molecule"], tag, priority) tmp_complex = entry_index[entry_index["stoichiometry"] == stoich].copy() ret2 = self._compute(compute_keys, tmp_complex["molecule"], tag, priority) ret = ret1.merge(ret2) else: tmp_complex = entry_index[entry_index["stoichiometry"] == stoich].copy() ret = self._compute(compute_keys, tmp_complex["molecule"], tag, priority) # Update the record that this was computed self.save() return ret def get_rxn(self, name: str) -> ReactionEntry: """ Returns the JSON object of a specific reaction. Parameters ---------- name : str The name of the reaction to query Returns ------- ret : dict The JSON representation of the reaction """ found = [] for num, x in enumerate(self.data.records): if x.name == name: found.append(num) if len(found) == 0: raise KeyError("Dataset:get_rxn: Reaction name '{}' not found.".format(name)) if len(found) > 1: raise KeyError("Dataset:get_rxn: Multiple reactions of name '{}' found. Dataset failure.".format(name)) return self.data.records[found[0]] # Visualization def ternary(self, cvals=None): """Plots a ternary diagram of the DataBase if available Parameters ---------- cvals : None, optional Description """ raise Exception("MPL not avail") # return visualization.Ternary2D(self.df, cvals=cvals) # Adders def parse_stoichiometry(self, stoichiometry: List[Tuple[Union[Molecule, str], float]]) -> Dict[str, float]: """ Parses a stiochiometry list. Parameters ---------- stoichiometry : list A list of tuples describing the stoichiometry. Returns ------- Dict[str, float] A dictionary describing the stoichiometry for use in the database. Keys are molecule hashes. Values are stoichiometric coefficients. Notes ----- This function attempts to convert the molecule into its corresponding hash. The following will happen depending on the form of the Molecule. - Molecule hash - Used directly in the stoichiometry. - Molecule class - Hash is obtained and the molecule will be added to the database upon saving. - Molecule string - Molecule will be converted to a Molecule class and the same process as the above will occur. """ mol_hashes = [] mol_values = [] for line in stoichiometry: if len(line) != 2: raise KeyError("Dataset: Parse stoichiometry: passed in as a list, must be of key : value type") # Get the values try: mol_values.append(float(line[1])) except: raise TypeError("Dataset: Parse stoichiometry: must be able to cast second value to a float.") # What kind of molecule is it? mol = line[0] if isinstance(mol, str) and (len(mol) == 40): molecule_hash = mol elif isinstance(mol, str): qcf_mol = Molecule.from_data(mol) molecule_hash = qcf_mol.get_hash() if molecule_hash not in list(self._new_molecules): self._new_molecules[molecule_hash] = qcf_mol elif isinstance(mol, Molecule): molecule_hash = mol.get_hash() if molecule_hash not in list(self._new_molecules): self._new_molecules[molecule_hash] = mol else: raise TypeError( "Dataset: Parse stoichiometry: first value must either be a molecule hash, " "a molecule str, or a Molecule class." ) mol_hashes.append(molecule_hash) # Sum together the coefficients of duplicates ret: Dict[str, float] = {} for mol, coef in zip(mol_hashes, mol_values): if mol in list(ret): ret[mol] += coef else: ret[mol] = coef return ret def add_rxn( self, name: str, stoichiometry: Dict[str, List[Tuple[Molecule, float]]], reaction_results: Optional[Dict[str, str]] = None, attributes: Optional[Dict[str, Union[int, float, str]]] = None, other_fields: Optional[Dict[str, Any]] = None, ) -> ReactionEntry: """ Adds a reaction to a database object. Parameters ---------- name : str Name of the reaction. stoichiometry : list or dict Either a list or dictionary of lists reaction_results : dict or None, Optional, Default: None A dictionary of the computed total interaction energy results attributes : dict or None, Optional, Default: None A dictionary of attributes to assign to the reaction other_fields : dict or None, Optional, Default: None A dictionary of additional user defined fields to add to the reaction entry Returns ------- ReactionEntry A complete specification of the reaction """ if reaction_results is None: reaction_results = {} if attributes is None: attributes = {} if other_fields is None: other_fields = {} rxn_dict: Dict[str, Any] = {"name": name} # Set name if name in self.get_index(): raise KeyError( "Dataset: Name '{}' already exists. " "Please either delete this entry or call the update function.".format(name) ) # Set stoich if isinstance(stoichiometry, dict): rxn_dict["stoichiometry"] = {} if "default" not in list(stoichiometry): raise KeyError("Dataset:add_rxn: Stoichiometry dict must have a 'default' key.") for k, v in stoichiometry.items(): rxn_dict["stoichiometry"][k] = self.parse_stoichiometry(v) elif isinstance(stoichiometry, (tuple, list)): rxn_dict["stoichiometry"] = {} rxn_dict["stoichiometry"]["default"] = self.parse_stoichiometry(stoichiometry) else: raise TypeError("Dataset:add_rxn: Type of stoichiometry input was not recognized:", type(stoichiometry)) # Set attributes if not isinstance(attributes, dict): raise TypeError("Dataset:add_rxn: attributes must be a dictionary, not '{}'".format(type(attributes))) rxn_dict["attributes"] = attributes if not isinstance(other_fields, dict): raise TypeError("Dataset:add_rxn: other_fields must be a dictionary, not '{}'".format(type(attributes))) rxn_dict["extras"] = other_fields if "default" in list(reaction_results): rxn_dict["reaction_results"] = reaction_results elif isinstance(reaction_results, dict): rxn_dict["reaction_results"] = {} rxn_dict["reaction_results"]["default"] = reaction_results else: raise TypeError("Passed in reaction_results not understood.") rxn = ReactionEntry(**rxn_dict) self._new_records.append(rxn) return rxn def add_ie_rxn(self, name: str, mol: Molecule, **kwargs) -> ReactionEntry: """Add a interaction energy reaction entry to the database. Automatically builds CP and no-CP reactions for the fragmented molecule. Parameters ---------- name : str The name of the reaction mol : Molecule A molecule with multiple fragments **kwargs Additional kwargs to pass into `build_id_fragments`. Returns ------- ReactionEntry A representation of the new reaction. """ reaction_results = kwargs.pop("reaction_results", {}) attributes = kwargs.pop("attributes", {}) other_fields = kwargs.pop("other_fields", {}) stoichiometry = self.build_ie_fragments(mol, name=name, **kwargs) return self.add_rxn( name, stoichiometry, reaction_results=reaction_results, attributes=attributes, other_fields=other_fields ) @staticmethod def build_ie_fragments(mol: Molecule, **kwargs) -> Dict[str, List[Tuple[Molecule, float]]]: """ Build the stoichiometry for an Interaction Energy. Parameters ---------- mol : Molecule class or str Molecule to fragment. do_default : bool Create the default (noCP) stoichiometry. do_cp : bool Create the counterpoise (CP) corrected stoichiometry. do_vmfc : bool Create the Valiron-Mayer Function Counterpoise (VMFC) corrected stoichiometry. max_nbody : int The maximum fragment level built, if zero defaults to the maximum number of fragments. Notes ----- Returns ------- ret : dict A JSON representation of the fragmented molecule. """ do_default = kwargs.pop("do_default", True) do_cp = kwargs.pop("do_cp", True) do_vmfc = kwargs.pop("do_vmfc", False) max_nbody = kwargs.pop("max_nbody", 0) if not isinstance(mol, Molecule): mol = Molecule.from_data(mol, **kwargs) ret = {} max_frag = len(mol.fragments) if max_nbody == 0: max_nbody = max_frag if max_frag < 2: raise AttributeError("Dataset:build_ie_fragments: Molecule must have at least two fragments.") # Build some info fragment_range = list(range(max_frag)) # Loop over the bodis for nbody in range(1, max_nbody): nocp_tmp = [] cp_tmp = [] for k in range(1, nbody + 1): take_nk = nCr(max_frag - k - 1, nbody - k) sign = (-1) ** (nbody - k) coef = take_nk * sign for frag in it.combinations(fragment_range, k): if do_default: nocp_tmp.append((mol.get_fragment(frag, orient=True, group_fragments=True), coef)) if do_cp: ghost = list(set(fragment_range) - set(frag)) cp_tmp.append((mol.get_fragment(frag, ghost, orient=True, group_fragments=True), coef)) if do_default: ret["default" + str(nbody)] = nocp_tmp if do_cp: ret["cp" + str(nbody)] = cp_tmp # VMFC is a special beast if do_vmfc: raise KeyError("VMFC isnt quite ready for primetime!") # ret.update({"vmfc" + str(nbody): [] for nbody in range(1, max_nbody)}) # nbody_range = list(range(1, max_nbody)) # for nbody in nbody_range: # for cp_combos in it.combinations(fragment_range, nbody): # basis_tuple = tuple(cp_combos) # for interior_nbody in nbody_range: # for x in it.combinations(cp_combos, interior_nbody): # ghost = list(set(basis_tuple) - set(x)) # ret["vmfc" + str(interior_nbody)].append((mol.get_fragment(x, ghost), 1.0)) # Add in the maximal position if do_default: ret["default"] = [(mol, 1.0)] if do_cp: ret["cp"] = [(mol, 1.0)] # if do_vmfc: # ret["vmfc"] = [(mol, 1.0)] return ret register_collection(ReactionDataset)
bsd-3-clause
sahat/bokeh
bokeh/protocol.py
1
3541
import json import logging import time import datetime as dt import numpy as np from six.moves import cPickle as pickle from .utils import get_ref try: import pandas as pd is_pandas = True except ImportError: is_pandas = False try: from dateutil.relativedelta import relativedelta is_dateutil = True except ImportError: is_dateutil = False log = logging.getLogger(__name__) millifactor = 10 ** 6. class BokehJSONEncoder(json.JSONEncoder): def transform_series(self, obj): """transform series """ vals = obj.values return self.transform_array(vals) def transform_array(self, obj): """Transform arrays into lists of json safe types also handles pandas series, and replacing nans and infs with strings """ ## not quite correct, truncates to ms.. if obj.dtype.kind == 'M': return obj.astype('datetime64[ms]').astype('int64').tolist() elif obj.dtype.kind in ('u', 'i', 'f'): return self.transform_numerical_array(obj) return obj.tolist() def transform_numerical_array(self, obj): """handles nans/inf conversion """ if not np.isnan(obj).any() and not np.isinf(obj).any(): return obj.tolist() else: transformed = obj.astype('object') transformed[np.isnan(obj)] = 'NaN' transformed[np.isposinf(obj)] = 'Infinity' transformed[np.isneginf(obj)] = '-Infinity' return transformed.tolist() def transform_python_types(self, obj): """handle special scalars, default to default json encoder """ if is_pandas and isinstance(obj, pd.tslib.Timestamp): return obj.value / millifactor elif isinstance(obj, np.float): return float(obj) elif isinstance(obj, np.int): return int(obj) elif isinstance(obj, (dt.datetime, dt.date)): return time.mktime(obj.timetuple()) * 1000. elif isinstance(obj, dt.time): return (obj.hour*3600 + obj.minute*60 + obj.second)*1000 + obj.microsecond elif is_dateutil and isinstance(obj, relativedelta): return dict(years=obj.years, months=obj.months, days=obj.days, hours=obj.hours, minutes=obj.minutes, seconds=obj.seconds, microseconds=obj.microseconds) else: return super(BokehJSONEncoder, self).default(obj) def default(self, obj): #argh! local import! from .plot_object import PlotObject from .properties import HasProps from .colors import Color ## array types if is_pandas and isinstance(obj, (pd.Series, pd.Index)): return self.transform_series(obj) elif isinstance(obj, np.ndarray): return self.transform_array(obj) elif isinstance(obj, PlotObject): return get_ref(obj) elif isinstance(obj, HasProps): return obj.to_dict() elif isinstance(obj, Color): return obj.toCSS() else: return self.transform_python_types(obj) def serialize_json(obj, encoder=BokehJSONEncoder, **kwargs): return json.dumps(obj, cls=encoder, **kwargs) deserialize_json = json.loads serialize_web = serialize_json deserialize_web = deserialize_json def status_obj(status): return {'msgtype': 'status', 'status': status} def error_obj(error_msg): return { 'msgtype': 'error', 'error_msg': error_msg}
bsd-3-clause
almarklein/scikit-image
doc/examples/plot_rank_mean.py
3
1498
""" ============ Mean filters ============ This example compares the following mean filters of the rank filter package: * **local mean**: all pixels belonging to the structuring element to compute average gray level. * **percentile mean**: only use values between percentiles p0 and p1 (here 10% and 90%). * **bilateral mean**: only use pixels of the structuring element having a gray level situated inside g-s0 and g+s1 (here g-500 and g+500) Percentile and usual mean give here similar results, these filters smooth the complete image (background and details). Bilateral mean exhibits a high filtering rate for continuous area (i.e. background) while higher image frequencies remain untouched. """ import numpy as np import matplotlib.pyplot as plt from skimage import data from skimage.morphology import disk from skimage.filter import rank image = (data.coins()).astype(np.uint16) * 16 selem = disk(20) percentile_result = rank.mean_percentile(image, selem=selem, p0=.1, p1=.9) bilateral_result = rank.mean_bilateral(image, selem=selem, s0=500, s1=500) normal_result = rank.mean(image, selem=selem) fig, axes = plt.subplots(nrows=3, figsize=(8, 10)) ax0, ax1, ax2 = axes ax0.imshow(np.hstack((image, percentile_result))) ax0.set_title('Percentile mean') ax0.axis('off') ax1.imshow(np.hstack((image, bilateral_result))) ax1.set_title('Bilateral mean') ax1.axis('off') ax2.imshow(np.hstack((image, normal_result))) ax2.set_title('Local mean') ax2.axis('off') plt.show()
bsd-3-clause
Vimos/scikit-learn
sklearn/metrics/tests/test_ranking.py
46
41270
from __future__ import division, print_function import numpy as np from itertools import product import warnings from scipy.sparse import csr_matrix from sklearn import datasets from sklearn import svm from sklearn.datasets import make_multilabel_classification from sklearn.random_projection import sparse_random_matrix from sklearn.utils.validation import check_array, check_consistent_length from sklearn.utils.validation import check_random_state from sklearn.utils.testing import assert_raises, clean_warning_registry from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_warns from sklearn.metrics import auc from sklearn.metrics import average_precision_score from sklearn.metrics import coverage_error from sklearn.metrics import label_ranking_average_precision_score from sklearn.metrics import precision_recall_curve from sklearn.metrics import label_ranking_loss from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve from sklearn.exceptions import UndefinedMetricWarning ############################################################################### # Utilities for testing def make_prediction(dataset=None, binary=False): """Make some classification predictions on a toy dataset using a SVC If binary is True restrict to a binary classification problem instead of a multiclass classification problem """ if dataset is None: # import some data to play with dataset = datasets.load_iris() X = dataset.data y = dataset.target if binary: # restrict to a binary classification task X, y = X[y < 2], y[y < 2] n_samples, n_features = X.shape p = np.arange(n_samples) rng = check_random_state(37) rng.shuffle(p) X, y = X[p], y[p] half = int(n_samples / 2) # add noisy features to make the problem harder and avoid perfect results rng = np.random.RandomState(0) X = np.c_[X, rng.randn(n_samples, 200 * n_features)] # run classifier, get class probabilities and label predictions clf = svm.SVC(kernel='linear', probability=True, random_state=0) probas_pred = clf.fit(X[:half], y[:half]).predict_proba(X[half:]) if binary: # only interested in probabilities of the positive case # XXX: do we really want a special API for the binary case? probas_pred = probas_pred[:, 1] y_pred = clf.predict(X[half:]) y_true = y[half:] return y_true, y_pred, probas_pred ############################################################################### # Tests def _auc(y_true, y_score): """Alternative implementation to check for correctness of `roc_auc_score`.""" pos_label = np.unique(y_true)[1] # Count the number of times positive samples are correctly ranked above # negative samples. pos = y_score[y_true == pos_label] neg = y_score[y_true != pos_label] diff_matrix = pos.reshape(1, -1) - neg.reshape(-1, 1) n_correct = np.sum(diff_matrix > 0) return n_correct / float(len(pos) * len(neg)) def _average_precision(y_true, y_score): """Alternative implementation to check for correctness of `average_precision_score`.""" pos_label = np.unique(y_true)[1] n_pos = np.sum(y_true == pos_label) order = np.argsort(y_score)[::-1] y_score = y_score[order] y_true = y_true[order] score = 0 for i in range(len(y_score)): if y_true[i] == pos_label: # Compute precision up to document i # i.e, percentage of relevant documents up to document i. prec = 0 for j in range(0, i + 1): if y_true[j] == pos_label: prec += 1.0 prec /= (i + 1.0) score += prec return score / n_pos def test_roc_curve(): # Test Area under Receiver Operating Characteristic (ROC) curve y_true, _, probas_pred = make_prediction(binary=True) expected_auc = _auc(y_true, probas_pred) for drop in [True, False]: fpr, tpr, thresholds = roc_curve(y_true, probas_pred, drop_intermediate=drop) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, expected_auc, decimal=2) assert_almost_equal(roc_auc, roc_auc_score(y_true, probas_pred)) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_curve_end_points(): # Make sure that roc_curve returns a curve start at 0 and ending and # 1 even in corner cases rng = np.random.RandomState(0) y_true = np.array([0] * 50 + [1] * 50) y_pred = rng.randint(3, size=100) fpr, tpr, thr = roc_curve(y_true, y_pred, drop_intermediate=True) assert_equal(fpr[0], 0) assert_equal(fpr[-1], 1) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thr.shape) def test_roc_returns_consistency(): # Test whether the returned threshold matches up with tpr # make small toy dataset y_true, _, probas_pred = make_prediction(binary=True) fpr, tpr, thresholds = roc_curve(y_true, probas_pred) # use the given thresholds to determine the tpr tpr_correct = [] for t in thresholds: tp = np.sum((probas_pred >= t) & y_true) p = np.sum(y_true) tpr_correct.append(1.0 * tp / p) # compare tpr and tpr_correct to see if the thresholds' order was correct assert_array_almost_equal(tpr, tpr_correct, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_curve_multi(): # roc_curve not applicable for multi-class problems y_true, _, probas_pred = make_prediction(binary=False) assert_raises(ValueError, roc_curve, y_true, probas_pred) def test_roc_curve_confidence(): # roc_curve for confidence scores y_true, _, probas_pred = make_prediction(binary=True) fpr, tpr, thresholds = roc_curve(y_true, probas_pred - 0.5) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.90, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_curve_hard(): # roc_curve for hard decisions y_true, pred, probas_pred = make_prediction(binary=True) # always predict one trivial_pred = np.ones(y_true.shape) fpr, tpr, thresholds = roc_curve(y_true, trivial_pred) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.50, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) # always predict zero trivial_pred = np.zeros(y_true.shape) fpr, tpr, thresholds = roc_curve(y_true, trivial_pred) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.50, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) # hard decisions fpr, tpr, thresholds = roc_curve(y_true, pred) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.78, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_curve_one_label(): y_true = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] y_pred = [0, 1, 0, 1, 0, 1, 0, 1, 0, 1] # assert there are warnings w = UndefinedMetricWarning fpr, tpr, thresholds = assert_warns(w, roc_curve, y_true, y_pred) # all true labels, all fpr should be nan assert_array_equal(fpr, np.nan * np.ones(len(thresholds))) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) # assert there are warnings fpr, tpr, thresholds = assert_warns(w, roc_curve, [1 - x for x in y_true], y_pred) # all negative labels, all tpr should be nan assert_array_equal(tpr, np.nan * np.ones(len(thresholds))) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_curve_toydata(): # Binary classification y_true = [0, 1] y_score = [0, 1] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1]) assert_array_almost_equal(fpr, [1, 1]) assert_almost_equal(roc_auc, 1.) y_true = [0, 1] y_score = [1, 0] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1, 1]) assert_array_almost_equal(fpr, [0, 0, 1]) assert_almost_equal(roc_auc, 0.) y_true = [1, 0] y_score = [1, 1] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1]) assert_array_almost_equal(fpr, [0, 1]) assert_almost_equal(roc_auc, 0.5) y_true = [1, 0] y_score = [1, 0] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1]) assert_array_almost_equal(fpr, [1, 1]) assert_almost_equal(roc_auc, 1.) y_true = [1, 0] y_score = [0.5, 0.5] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1]) assert_array_almost_equal(fpr, [0, 1]) assert_almost_equal(roc_auc, .5) y_true = [0, 0] y_score = [0.25, 0.75] # assert UndefinedMetricWarning because of no positive sample in y_true tpr, fpr, _ = assert_warns(UndefinedMetricWarning, roc_curve, y_true, y_score) assert_raises(ValueError, roc_auc_score, y_true, y_score) assert_array_almost_equal(tpr, [0., 0.5, 1.]) assert_array_almost_equal(fpr, [np.nan, np.nan, np.nan]) y_true = [1, 1] y_score = [0.25, 0.75] # assert UndefinedMetricWarning because of no negative sample in y_true tpr, fpr, _ = assert_warns(UndefinedMetricWarning, roc_curve, y_true, y_score) assert_raises(ValueError, roc_auc_score, y_true, y_score) assert_array_almost_equal(tpr, [np.nan, np.nan]) assert_array_almost_equal(fpr, [0.5, 1.]) # Multi-label classification task y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [0, 1]]) assert_raises(ValueError, roc_auc_score, y_true, y_score, average="macro") assert_raises(ValueError, roc_auc_score, y_true, y_score, average="weighted") assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), 1.) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), 1.) y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) assert_raises(ValueError, roc_auc_score, y_true, y_score, average="macro") assert_raises(ValueError, roc_auc_score, y_true, y_score, average="weighted") assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), 0.5) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), 0.5) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) assert_almost_equal(roc_auc_score(y_true, y_score, average="macro"), 0) assert_almost_equal(roc_auc_score(y_true, y_score, average="weighted"), 0) assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), 0) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), 0) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0.5, 0.5], [0.5, 0.5]]) assert_almost_equal(roc_auc_score(y_true, y_score, average="macro"), .5) assert_almost_equal(roc_auc_score(y_true, y_score, average="weighted"), .5) assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), .5) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), .5) def test_roc_curve_drop_intermediate(): # Test that drop_intermediate drops the correct thresholds y_true = [0, 0, 0, 0, 1, 1] y_score = [0., 0.2, 0.5, 0.6, 0.7, 1.0] tpr, fpr, thresholds = roc_curve(y_true, y_score, drop_intermediate=True) assert_array_almost_equal(thresholds, [1., 0.7, 0.]) # Test dropping thresholds with repeating scores y_true = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] y_score = [0., 0.1, 0.6, 0.6, 0.7, 0.8, 0.9, 0.6, 0.7, 0.8, 0.9, 0.9, 1.0] tpr, fpr, thresholds = roc_curve(y_true, y_score, drop_intermediate=True) assert_array_almost_equal(thresholds, [1.0, 0.9, 0.7, 0.6, 0.]) def test_auc(): # Test Area Under Curve (AUC) computation x = [0, 1] y = [0, 1] assert_array_almost_equal(auc(x, y), 0.5) x = [1, 0] y = [0, 1] assert_array_almost_equal(auc(x, y), 0.5) x = [1, 0, 0] y = [0, 1, 1] assert_array_almost_equal(auc(x, y), 0.5) x = [0, 1] y = [1, 1] assert_array_almost_equal(auc(x, y), 1) x = [0, 0.5, 1] y = [0, 0.5, 1] assert_array_almost_equal(auc(x, y), 0.5) def test_auc_duplicate_values(): # Test Area Under Curve (AUC) computation with duplicate values # auc() was previously sorting the x and y arrays according to the indices # from numpy.argsort(x), which was reordering the tied 0's in this example # and resulting in an incorrect area computation. This test detects the # error. x = [-2.0, 0.0, 0.0, 0.0, 1.0] y1 = [2.0, 0.0, 0.5, 1.0, 1.0] y2 = [2.0, 1.0, 0.0, 0.5, 1.0] y3 = [2.0, 1.0, 0.5, 0.0, 1.0] for y in (y1, y2, y3): assert_array_almost_equal(auc(x, y, reorder=True), 3.0) def test_auc_errors(): # Incompatible shapes assert_raises(ValueError, auc, [0.0, 0.5, 1.0], [0.1, 0.2]) # Too few x values assert_raises(ValueError, auc, [0.0], [0.1]) # x is not in order assert_raises(ValueError, auc, [1.0, 0.0, 0.5], [0.0, 0.0, 0.0]) def test_auc_score_non_binary_class(): # Test that roc_auc_score function returns an error when trying # to compute AUC for non-binary class values. rng = check_random_state(404) y_pred = rng.rand(10) # y_true contains only one class value y_true = np.zeros(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) y_true = np.ones(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) y_true = -np.ones(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) # y_true contains three different class values y_true = rng.randint(0, 3, size=10) assert_raise_message(ValueError, "multiclass format is not supported", roc_auc_score, y_true, y_pred) clean_warning_registry() with warnings.catch_warnings(record=True): rng = check_random_state(404) y_pred = rng.rand(10) # y_true contains only one class value y_true = np.zeros(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) y_true = np.ones(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) y_true = -np.ones(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) # y_true contains three different class values y_true = rng.randint(0, 3, size=10) assert_raise_message(ValueError, "multiclass format is not supported", roc_auc_score, y_true, y_pred) def test_precision_recall_curve(): y_true, _, probas_pred = make_prediction(binary=True) _test_precision_recall_curve(y_true, probas_pred) # Use {-1, 1} for labels; make sure original labels aren't modified y_true[np.where(y_true == 0)] = -1 y_true_copy = y_true.copy() _test_precision_recall_curve(y_true, probas_pred) assert_array_equal(y_true_copy, y_true) labels = [1, 0, 0, 1] predict_probas = [1, 2, 3, 4] p, r, t = precision_recall_curve(labels, predict_probas) assert_array_almost_equal(p, np.array([0.5, 0.33333333, 0.5, 1., 1.])) assert_array_almost_equal(r, np.array([1., 0.5, 0.5, 0.5, 0.])) assert_array_almost_equal(t, np.array([1, 2, 3, 4])) assert_equal(p.size, r.size) assert_equal(p.size, t.size + 1) def test_precision_recall_curve_pos_label(): y_true, _, probas_pred = make_prediction(binary=False) pos_label = 2 p, r, thresholds = precision_recall_curve(y_true, probas_pred[:, pos_label], pos_label=pos_label) p2, r2, thresholds2 = precision_recall_curve(y_true == pos_label, probas_pred[:, pos_label]) assert_array_almost_equal(p, p2) assert_array_almost_equal(r, r2) assert_array_almost_equal(thresholds, thresholds2) assert_equal(p.size, r.size) assert_equal(p.size, thresholds.size + 1) def _test_precision_recall_curve(y_true, probas_pred): # Test Precision-Recall and aread under PR curve p, r, thresholds = precision_recall_curve(y_true, probas_pred) precision_recall_auc = auc(r, p) assert_array_almost_equal(precision_recall_auc, 0.85, 2) assert_array_almost_equal(precision_recall_auc, average_precision_score(y_true, probas_pred)) assert_almost_equal(_average_precision(y_true, probas_pred), precision_recall_auc, 1) assert_equal(p.size, r.size) assert_equal(p.size, thresholds.size + 1) # Smoke test in the case of proba having only one value p, r, thresholds = precision_recall_curve(y_true, np.zeros_like(probas_pred)) precision_recall_auc = auc(r, p) assert_array_almost_equal(precision_recall_auc, 0.75, 3) assert_equal(p.size, r.size) assert_equal(p.size, thresholds.size + 1) def test_precision_recall_curve_errors(): # Contains non-binary labels assert_raises(ValueError, precision_recall_curve, [0, 1, 2], [[0.0], [1.0], [1.0]]) def test_precision_recall_curve_toydata(): with np.errstate(all="raise"): # Binary classification y_true = [0, 1] y_score = [0, 1] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [1, 1]) assert_array_almost_equal(r, [1, 0]) assert_almost_equal(auc_prc, 1.) y_true = [0, 1] y_score = [1, 0] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [0.5, 0., 1.]) assert_array_almost_equal(r, [1., 0., 0.]) assert_almost_equal(auc_prc, 0.25) y_true = [1, 0] y_score = [1, 1] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [0.5, 1]) assert_array_almost_equal(r, [1., 0]) assert_almost_equal(auc_prc, .75) y_true = [1, 0] y_score = [1, 0] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [1, 1]) assert_array_almost_equal(r, [1, 0]) assert_almost_equal(auc_prc, 1.) y_true = [1, 0] y_score = [0.5, 0.5] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [0.5, 1]) assert_array_almost_equal(r, [1, 0.]) assert_almost_equal(auc_prc, .75) y_true = [0, 0] y_score = [0.25, 0.75] assert_raises(Exception, precision_recall_curve, y_true, y_score) assert_raises(Exception, average_precision_score, y_true, y_score) y_true = [1, 1] y_score = [0.25, 0.75] p, r, _ = precision_recall_curve(y_true, y_score) assert_almost_equal(average_precision_score(y_true, y_score), 1.) assert_array_almost_equal(p, [1., 1., 1.]) assert_array_almost_equal(r, [1, 0.5, 0.]) # Multi-label classification task y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [0, 1]]) assert_raises(Exception, average_precision_score, y_true, y_score, average="macro") assert_raises(Exception, average_precision_score, y_true, y_score, average="weighted") assert_almost_equal(average_precision_score(y_true, y_score, average="samples"), 1.) assert_almost_equal(average_precision_score(y_true, y_score, average="micro"), 1.) y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) assert_raises(Exception, average_precision_score, y_true, y_score, average="macro") assert_raises(Exception, average_precision_score, y_true, y_score, average="weighted") assert_almost_equal(average_precision_score(y_true, y_score, average="samples"), 0.625) assert_almost_equal(average_precision_score(y_true, y_score, average="micro"), 0.625) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) assert_almost_equal(average_precision_score(y_true, y_score, average="macro"), 0.25) assert_almost_equal(average_precision_score(y_true, y_score, average="weighted"), 0.25) assert_almost_equal(average_precision_score(y_true, y_score, average="samples"), 0.25) assert_almost_equal(average_precision_score(y_true, y_score, average="micro"), 0.25) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0.5, 0.5], [0.5, 0.5]]) assert_almost_equal(average_precision_score(y_true, y_score, average="macro"), 0.75) assert_almost_equal(average_precision_score(y_true, y_score, average="weighted"), 0.75) assert_almost_equal(average_precision_score(y_true, y_score, average="samples"), 0.75) assert_almost_equal(average_precision_score(y_true, y_score, average="micro"), 0.75) def test_score_scale_invariance(): # Test that average_precision_score and roc_auc_score are invariant by # the scaling or shifting of probabilities # This test was expanded (added scaled_down) in response to github # issue #3864 (and others), where overly aggressive rounding was causing # problems for users with very small y_score values y_true, _, probas_pred = make_prediction(binary=True) roc_auc = roc_auc_score(y_true, probas_pred) roc_auc_scaled_up = roc_auc_score(y_true, 100 * probas_pred) roc_auc_scaled_down = roc_auc_score(y_true, 1e-6 * probas_pred) roc_auc_shifted = roc_auc_score(y_true, probas_pred - 10) assert_equal(roc_auc, roc_auc_scaled_up) assert_equal(roc_auc, roc_auc_scaled_down) assert_equal(roc_auc, roc_auc_shifted) pr_auc = average_precision_score(y_true, probas_pred) pr_auc_scaled_up = average_precision_score(y_true, 100 * probas_pred) pr_auc_scaled_down = average_precision_score(y_true, 1e-6 * probas_pred) pr_auc_shifted = average_precision_score(y_true, probas_pred - 10) assert_equal(pr_auc, pr_auc_scaled_up) assert_equal(pr_auc, pr_auc_scaled_down) assert_equal(pr_auc, pr_auc_shifted) def check_lrap_toy(lrap_score): # Check on several small example that it works assert_almost_equal(lrap_score([[0, 1]], [[0.25, 0.75]]), 1) assert_almost_equal(lrap_score([[0, 1]], [[0.75, 0.25]]), 1 / 2) assert_almost_equal(lrap_score([[1, 1]], [[0.75, 0.25]]), 1) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.25, 0.5, 0.75]]), 1) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.25, 0.5, 0.75]]), 1 / 2) assert_almost_equal(lrap_score([[0, 1, 1]], [[0.25, 0.5, 0.75]]), 1) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.25, 0.5, 0.75]]), 1 / 3) assert_almost_equal(lrap_score([[1, 0, 1]], [[0.25, 0.5, 0.75]]), (2 / 3 + 1 / 1) / 2) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.25, 0.5, 0.75]]), (2 / 3 + 1 / 2) / 2) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.75, 0.5, 0.25]]), 1 / 3) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.75, 0.5, 0.25]]), 1 / 2) assert_almost_equal(lrap_score([[0, 1, 1]], [[0.75, 0.5, 0.25]]), (1 / 2 + 2 / 3) / 2) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(lrap_score([[1, 0, 1]], [[0.75, 0.5, 0.25]]), (1 + 2 / 3) / 2) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(lrap_score([[1, 1, 1]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.5, 0.75, 0.25]]), 1 / 3) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.5, 0.75, 0.25]]), 1) assert_almost_equal(lrap_score([[0, 1, 1]], [[0.5, 0.75, 0.25]]), (1 + 2 / 3) / 2) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.5, 0.75, 0.25]]), 1 / 2) assert_almost_equal(lrap_score([[1, 0, 1]], [[0.5, 0.75, 0.25]]), (1 / 2 + 2 / 3) / 2) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.5, 0.75, 0.25]]), 1) assert_almost_equal(lrap_score([[1, 1, 1]], [[0.5, 0.75, 0.25]]), 1) # Tie handling assert_almost_equal(lrap_score([[1, 0]], [[0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[0, 1]], [[0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[1, 1]], [[0.5, 0.5]]), 1) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.25, 0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.25, 0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[0, 1, 1]], [[0.25, 0.5, 0.5]]), 1) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.25, 0.5, 0.5]]), 1 / 3) assert_almost_equal(lrap_score([[1, 0, 1]], [[0.25, 0.5, 0.5]]), (2 / 3 + 1 / 2) / 2) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.25, 0.5, 0.5]]), (2 / 3 + 1 / 2) / 2) assert_almost_equal(lrap_score([[1, 1, 1]], [[0.25, 0.5, 0.5]]), 1) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.5, 0.5, 0.5]]), 2 / 3) assert_almost_equal(lrap_score([[1, 1, 1, 0]], [[0.5, 0.5, 0.5, 0.5]]), 3 / 4) def check_zero_or_all_relevant_labels(lrap_score): random_state = check_random_state(0) for n_labels in range(2, 5): y_score = random_state.uniform(size=(1, n_labels)) y_score_ties = np.zeros_like(y_score) # No relevant labels y_true = np.zeros((1, n_labels)) assert_equal(lrap_score(y_true, y_score), 1.) assert_equal(lrap_score(y_true, y_score_ties), 1.) # Only relevant labels y_true = np.ones((1, n_labels)) assert_equal(lrap_score(y_true, y_score), 1.) assert_equal(lrap_score(y_true, y_score_ties), 1.) # Degenerate case: only one label assert_almost_equal(lrap_score([[1], [0], [1], [0]], [[0.5], [0.5], [0.5], [0.5]]), 1.) def check_lrap_error_raised(lrap_score): # Raise value error if not appropriate format assert_raises(ValueError, lrap_score, [0, 1, 0], [0.25, 0.3, 0.2]) assert_raises(ValueError, lrap_score, [0, 1, 2], [[0.25, 0.75, 0.0], [0.7, 0.3, 0.0], [0.8, 0.2, 0.0]]) assert_raises(ValueError, lrap_score, [(0), (1), (2)], [[0.25, 0.75, 0.0], [0.7, 0.3, 0.0], [0.8, 0.2, 0.0]]) # Check that y_true.shape != y_score.shape raise the proper exception assert_raises(ValueError, lrap_score, [[0, 1], [0, 1]], [0, 1]) assert_raises(ValueError, lrap_score, [[0, 1], [0, 1]], [[0, 1]]) assert_raises(ValueError, lrap_score, [[0, 1], [0, 1]], [[0], [1]]) assert_raises(ValueError, lrap_score, [[0, 1]], [[0, 1], [0, 1]]) assert_raises(ValueError, lrap_score, [[0], [1]], [[0, 1], [0, 1]]) assert_raises(ValueError, lrap_score, [[0, 1], [0, 1]], [[0], [1]]) def check_lrap_only_ties(lrap_score): # Check tie handling in score # Basic check with only ties and increasing label space for n_labels in range(2, 10): y_score = np.ones((1, n_labels)) # Check for growing number of consecutive relevant for n_relevant in range(1, n_labels): # Check for a bunch of positions for pos in range(n_labels - n_relevant): y_true = np.zeros((1, n_labels)) y_true[0, pos:pos + n_relevant] = 1 assert_almost_equal(lrap_score(y_true, y_score), n_relevant / n_labels) def check_lrap_without_tie_and_increasing_score(lrap_score): # Check that Label ranking average precision works for various # Basic check with increasing label space size and decreasing score for n_labels in range(2, 10): y_score = n_labels - (np.arange(n_labels).reshape((1, n_labels)) + 1) # First and last y_true = np.zeros((1, n_labels)) y_true[0, 0] = 1 y_true[0, -1] = 1 assert_almost_equal(lrap_score(y_true, y_score), (2 / n_labels + 1) / 2) # Check for growing number of consecutive relevant label for n_relevant in range(1, n_labels): # Check for a bunch of position for pos in range(n_labels - n_relevant): y_true = np.zeros((1, n_labels)) y_true[0, pos:pos + n_relevant] = 1 assert_almost_equal(lrap_score(y_true, y_score), sum((r + 1) / ((pos + r + 1) * n_relevant) for r in range(n_relevant))) def _my_lrap(y_true, y_score): """Simple implementation of label ranking average precision""" check_consistent_length(y_true, y_score) y_true = check_array(y_true) y_score = check_array(y_score) n_samples, n_labels = y_true.shape score = np.empty((n_samples, )) for i in range(n_samples): # The best rank correspond to 1. Rank higher than 1 are worse. # The best inverse ranking correspond to n_labels. unique_rank, inv_rank = np.unique(y_score[i], return_inverse=True) n_ranks = unique_rank.size rank = n_ranks - inv_rank # Rank need to be corrected to take into account ties # ex: rank 1 ex aequo means that both label are rank 2. corr_rank = np.bincount(rank, minlength=n_ranks + 1).cumsum() rank = corr_rank[rank] relevant = y_true[i].nonzero()[0] if relevant.size == 0 or relevant.size == n_labels: score[i] = 1 continue score[i] = 0. for label in relevant: # Let's count the number of relevant label with better rank # (smaller rank). n_ranked_above = sum(rank[r] <= rank[label] for r in relevant) # Weight by the rank of the actual label score[i] += n_ranked_above / rank[label] score[i] /= relevant.size return score.mean() def check_alternative_lrap_implementation(lrap_score, n_classes=5, n_samples=20, random_state=0): _, y_true = make_multilabel_classification(n_features=1, allow_unlabeled=False, random_state=random_state, n_classes=n_classes, n_samples=n_samples) # Score with ties y_score = sparse_random_matrix(n_components=y_true.shape[0], n_features=y_true.shape[1], random_state=random_state) if hasattr(y_score, "toarray"): y_score = y_score.toarray() score_lrap = label_ranking_average_precision_score(y_true, y_score) score_my_lrap = _my_lrap(y_true, y_score) assert_almost_equal(score_lrap, score_my_lrap) # Uniform score random_state = check_random_state(random_state) y_score = random_state.uniform(size=(n_samples, n_classes)) score_lrap = label_ranking_average_precision_score(y_true, y_score) score_my_lrap = _my_lrap(y_true, y_score) assert_almost_equal(score_lrap, score_my_lrap) def test_label_ranking_avp(): for fn in [label_ranking_average_precision_score, _my_lrap]: yield check_lrap_toy, fn yield check_lrap_without_tie_and_increasing_score, fn yield check_lrap_only_ties, fn yield check_zero_or_all_relevant_labels, fn yield check_lrap_error_raised, label_ranking_average_precision_score for n_samples, n_classes, random_state in product((1, 2, 8, 20), (2, 5, 10), range(1)): yield (check_alternative_lrap_implementation, label_ranking_average_precision_score, n_classes, n_samples, random_state) def test_coverage_error(): # Toy case assert_almost_equal(coverage_error([[0, 1]], [[0.25, 0.75]]), 1) assert_almost_equal(coverage_error([[0, 1]], [[0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 1]], [[0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[0, 0]], [[0.75, 0.25]]), 0) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.25, 0.5, 0.75]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.25, 0.5, 0.75]]), 1) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.25, 0.5, 0.75]]), 2) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.25, 0.5, 0.75]]), 2) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.75, 0.5, 0.25]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.75, 0.5, 0.25]]), 2) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.75, 0.5, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.5, 0.75, 0.25]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.5, 0.75, 0.25]]), 3) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.5, 0.75, 0.25]]), 1) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.5, 0.75, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.5, 0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.5, 0.75, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.5, 0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.5, 0.75, 0.25]]), 3) # Non trival case assert_almost_equal(coverage_error([[0, 1, 0], [1, 1, 0]], [[0.1, 10., -3], [0, 1, 3]]), (1 + 3) / 2.) assert_almost_equal(coverage_error([[0, 1, 0], [1, 1, 0], [0, 1, 1]], [[0.1, 10, -3], [0, 1, 3], [0, 2, 0]]), (1 + 3 + 3) / 3.) assert_almost_equal(coverage_error([[0, 1, 0], [1, 1, 0], [0, 1, 1]], [[0.1, 10, -3], [3, 1, 3], [0, 2, 0]]), (1 + 3 + 3) / 3.) def test_coverage_tie_handling(): assert_almost_equal(coverage_error([[0, 0]], [[0.5, 0.5]]), 0) assert_almost_equal(coverage_error([[1, 0]], [[0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 1]], [[0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[1, 1]], [[0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.25, 0.5, 0.5]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.25, 0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.25, 0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.25, 0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.25, 0.5, 0.5]]), 3) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.25, 0.5, 0.5]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.25, 0.5, 0.5]]), 3) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.25, 0.5, 0.5]]), 3) def test_label_ranking_loss(): assert_almost_equal(label_ranking_loss([[0, 1]], [[0.25, 0.75]]), 0) assert_almost_equal(label_ranking_loss([[0, 1]], [[0.75, 0.25]]), 1) assert_almost_equal(label_ranking_loss([[0, 0, 1]], [[0.25, 0.5, 0.75]]), 0) assert_almost_equal(label_ranking_loss([[0, 1, 0]], [[0.25, 0.5, 0.75]]), 1 / 2) assert_almost_equal(label_ranking_loss([[0, 1, 1]], [[0.25, 0.5, 0.75]]), 0) assert_almost_equal(label_ranking_loss([[1, 0, 0]], [[0.25, 0.5, 0.75]]), 2 / 2) assert_almost_equal(label_ranking_loss([[1, 0, 1]], [[0.25, 0.5, 0.75]]), 1 / 2) assert_almost_equal(label_ranking_loss([[1, 1, 0]], [[0.25, 0.5, 0.75]]), 2 / 2) # Undefined metrics - the ranking doesn't matter assert_almost_equal(label_ranking_loss([[0, 0]], [[0.75, 0.25]]), 0) assert_almost_equal(label_ranking_loss([[1, 1]], [[0.75, 0.25]]), 0) assert_almost_equal(label_ranking_loss([[0, 0]], [[0.5, 0.5]]), 0) assert_almost_equal(label_ranking_loss([[1, 1]], [[0.5, 0.5]]), 0) assert_almost_equal(label_ranking_loss([[0, 0, 0]], [[0.5, 0.75, 0.25]]), 0) assert_almost_equal(label_ranking_loss([[1, 1, 1]], [[0.5, 0.75, 0.25]]), 0) assert_almost_equal(label_ranking_loss([[0, 0, 0]], [[0.25, 0.5, 0.5]]), 0) assert_almost_equal(label_ranking_loss([[1, 1, 1]], [[0.25, 0.5, 0.5]]), 0) # Non trival case assert_almost_equal(label_ranking_loss([[0, 1, 0], [1, 1, 0]], [[0.1, 10., -3], [0, 1, 3]]), (0 + 2 / 2) / 2.) assert_almost_equal(label_ranking_loss( [[0, 1, 0], [1, 1, 0], [0, 1, 1]], [[0.1, 10, -3], [0, 1, 3], [0, 2, 0]]), (0 + 2 / 2 + 1 / 2) / 3.) assert_almost_equal(label_ranking_loss( [[0, 1, 0], [1, 1, 0], [0, 1, 1]], [[0.1, 10, -3], [3, 1, 3], [0, 2, 0]]), (0 + 2 / 2 + 1 / 2) / 3.) # Sparse csr matrices assert_almost_equal(label_ranking_loss( csr_matrix(np.array([[0, 1, 0], [1, 1, 0]])), [[0.1, 10, -3], [3, 1, 3]]), (0 + 2 / 2) / 2.) def test_ranking_appropriate_input_shape(): # Check that y_true.shape != y_score.shape raise the proper exception assert_raises(ValueError, label_ranking_loss, [[0, 1], [0, 1]], [0, 1]) assert_raises(ValueError, label_ranking_loss, [[0, 1], [0, 1]], [[0, 1]]) assert_raises(ValueError, label_ranking_loss, [[0, 1], [0, 1]], [[0], [1]]) assert_raises(ValueError, label_ranking_loss, [[0, 1]], [[0, 1], [0, 1]]) assert_raises(ValueError, label_ranking_loss, [[0], [1]], [[0, 1], [0, 1]]) assert_raises(ValueError, label_ranking_loss, [[0, 1], [0, 1]], [[0], [1]]) def test_ranking_loss_ties_handling(): # Tie handling assert_almost_equal(label_ranking_loss([[1, 0]], [[0.5, 0.5]]), 1) assert_almost_equal(label_ranking_loss([[0, 1]], [[0.5, 0.5]]), 1) assert_almost_equal(label_ranking_loss([[0, 0, 1]], [[0.25, 0.5, 0.5]]), 1 / 2) assert_almost_equal(label_ranking_loss([[0, 1, 0]], [[0.25, 0.5, 0.5]]), 1 / 2) assert_almost_equal(label_ranking_loss([[0, 1, 1]], [[0.25, 0.5, 0.5]]), 0) assert_almost_equal(label_ranking_loss([[1, 0, 0]], [[0.25, 0.5, 0.5]]), 1) assert_almost_equal(label_ranking_loss([[1, 0, 1]], [[0.25, 0.5, 0.5]]), 1) assert_almost_equal(label_ranking_loss([[1, 1, 0]], [[0.25, 0.5, 0.5]]), 1)
bsd-3-clause
GuessWhoSamFoo/pandas
pandas/tests/indexes/datetimes/test_tools.py
1
77777
""" test to_datetime """ import calendar from datetime import datetime, time from distutils.version import LooseVersion import locale import dateutil from dateutil.parser import parse from dateutil.tz.tz import tzoffset import numpy as np import pytest import pytz from pandas._libs import tslib from pandas._libs.tslibs import iNaT, parsing from pandas.compat import PY3, lmap from pandas.errors import OutOfBoundsDatetime import pandas.util._test_decorators as td from pandas.core.dtypes.common import is_datetime64_ns_dtype import pandas as pd from pandas import ( DataFrame, DatetimeIndex, Index, NaT, Series, Timestamp, compat, date_range, isna, to_datetime) from pandas.core.arrays import DatetimeArray from pandas.core.tools import datetimes as tools from pandas.util import testing as tm from pandas.util.testing import assert_series_equal class TestTimeConversionFormats(object): @pytest.mark.parametrize('cache', [True, False]) def test_to_datetime_format(self, cache): values = ['1/1/2000', '1/2/2000', '1/3/2000'] results1 = [Timestamp('20000101'), Timestamp('20000201'), Timestamp('20000301')] results2 = [Timestamp('20000101'), Timestamp('20000102'), Timestamp('20000103')] for vals, expecteds in [(values, (Index(results1), Index(results2))), (Series(values), (Series(results1), Series(results2))), (values[0], (results1[0], results2[0])), (values[1], (results1[1], results2[1])), (values[2], (results1[2], results2[2]))]: for i, fmt in enumerate(['%d/%m/%Y', '%m/%d/%Y']): result = to_datetime(vals, format=fmt, cache=cache) expected = expecteds[i] if isinstance(expected, Series): assert_series_equal(result, Series(expected)) elif isinstance(expected, Timestamp): assert result == expected else: tm.assert_index_equal(result, expected) @pytest.mark.parametrize('cache', [True, False]) def test_to_datetime_format_YYYYMMDD(self, cache): s = Series([19801222, 19801222] + [19810105] * 5) expected = Series([Timestamp(x) for x in s.apply(str)]) result = to_datetime(s, format='%Y%m%d', cache=cache) assert_series_equal(result, expected) result = to_datetime(s.apply(str), format='%Y%m%d', cache=cache) assert_series_equal(result, expected) # with NaT expected = Series([Timestamp("19801222"), Timestamp("19801222")] + [Timestamp("19810105")] * 5) expected[2] = np.nan s[2] = np.nan result = to_datetime(s, format='%Y%m%d', cache=cache) assert_series_equal(result, expected) # string with NaT s = s.apply(str) s[2] = 'nat' result = to_datetime(s, format='%Y%m%d', cache=cache) assert_series_equal(result, expected) # coercion # GH 7930 s = Series([20121231, 20141231, 99991231]) result = pd.to_datetime(s, format='%Y%m%d', errors='ignore', cache=cache) expected = Series([datetime(2012, 12, 31), datetime(2014, 12, 31), datetime(9999, 12, 31)], dtype=object) tm.assert_series_equal(result, expected) result = pd.to_datetime(s, format='%Y%m%d', errors='coerce', cache=cache) expected = Series(['20121231', '20141231', 'NaT'], dtype='M8[ns]') assert_series_equal(result, expected) @pytest.mark.parametrize('cache', [True, False]) def test_to_datetime_format_integer(self, cache): # GH 10178 s = Series([2000, 2001, 2002]) expected = Series([Timestamp(x) for x in s.apply(str)]) result = to_datetime(s, format='%Y', cache=cache) assert_series_equal(result, expected) s = Series([200001, 200105, 200206]) expected = Series([Timestamp(x[:4] + '-' + x[4:]) for x in s.apply(str) ]) result = to_datetime(s, format='%Y%m', cache=cache) assert_series_equal(result, expected) @pytest.mark.parametrize('cache', [True, False]) def test_to_datetime_format_microsecond(self, cache): # these are locale dependent lang, _ = locale.getlocale() month_abbr = calendar.month_abbr[4] val = '01-{}-2011 00:00:01.978'.format(month_abbr) format = '%d-%b-%Y %H:%M:%S.%f' result = to_datetime(val, format=format, cache=cache) exp = datetime.strptime(val, format) assert result == exp @pytest.mark.parametrize('cache', [True, False]) def test_to_datetime_format_time(self, cache): data = [ ['01/10/2010 15:20', '%m/%d/%Y %H:%M', Timestamp('2010-01-10 15:20')], ['01/10/2010 05:43', '%m/%d/%Y %I:%M', Timestamp('2010-01-10 05:43')], ['01/10/2010 13:56:01', '%m/%d/%Y %H:%M:%S', Timestamp('2010-01-10 13:56:01')] # , # ['01/10/2010 08:14 PM', '%m/%d/%Y %I:%M %p', # Timestamp('2010-01-10 20:14')], # ['01/10/2010 07:40 AM', '%m/%d/%Y %I:%M %p', # Timestamp('2010-01-10 07:40')], # ['01/10/2010 09:12:56 AM', '%m/%d/%Y %I:%M:%S %p', # Timestamp('2010-01-10 09:12:56')] ] for s, format, dt in data: assert to_datetime(s, format=format, cache=cache) == dt @td.skip_if_has_locale @pytest.mark.parametrize('cache', [True, False]) def test_to_datetime_with_non_exact(self, cache): # GH 10834 # 8904 # exact kw s = Series(['19MAY11', 'foobar19MAY11', '19MAY11:00:00:00', '19MAY11 00:00:00Z']) result = to_datetime(s, format='%d%b%y', exact=False, cache=cache) expected = to_datetime(s.str.extract(r'(\d+\w+\d+)', expand=False), format='%d%b%y', cache=cache) assert_series_equal(result, expected) @pytest.mark.parametrize('cache', [True, False]) def test_parse_nanoseconds_with_formula(self, cache): # GH8989 # trunctaing the nanoseconds when a format was provided for v in ["2012-01-01 09:00:00.000000001", "2012-01-01 09:00:00.000001", "2012-01-01 09:00:00.001", "2012-01-01 09:00:00.001000", "2012-01-01 09:00:00.001000000", ]: expected = pd.to_datetime(v, cache=cache) result = pd.to_datetime(v, format="%Y-%m-%d %H:%M:%S.%f", cache=cache) assert result == expected @pytest.mark.parametrize('cache', [True, False]) def test_to_datetime_format_weeks(self, cache): data = [ ['2009324', '%Y%W%w', Timestamp('2009-08-13')], ['2013020', '%Y%U%w', Timestamp('2013-01-13')] ] for s, format, dt in data: assert to_datetime(s, format=format, cache=cache) == dt @pytest.mark.parametrize("box,const", [ [True, pd.Index], [False, np.array]]) @pytest.mark.parametrize("fmt,dates,expected_dates", [ ['%Y-%m-%d %H:%M:%S %Z', ['2010-01-01 12:00:00 UTC'] * 2, [pd.Timestamp('2010-01-01 12:00:00', tz='UTC')] * 2], ['%Y-%m-%d %H:%M:%S %Z', ['2010-01-01 12:00:00 UTC', '2010-01-01 12:00:00 GMT', '2010-01-01 12:00:00 US/Pacific'], [pd.Timestamp('2010-01-01 12:00:00', tz='UTC'), pd.Timestamp('2010-01-01 12:00:00', tz='GMT'), pd.Timestamp('2010-01-01 12:00:00', tz='US/Pacific')]], ['%Y-%m-%d %H:%M:%S%z', ['2010-01-01 12:00:00+0100'] * 2, [pd.Timestamp('2010-01-01 12:00:00', tzinfo=pytz.FixedOffset(60))] * 2], ['%Y-%m-%d %H:%M:%S %z', ['2010-01-01 12:00:00 +0100'] * 2, [pd.Timestamp('2010-01-01 12:00:00', tzinfo=pytz.FixedOffset(60))] * 2], ['%Y-%m-%d %H:%M:%S %z', ['2010-01-01 12:00:00 +0100', '2010-01-01 12:00:00 -0100'], [pd.Timestamp('2010-01-01 12:00:00', tzinfo=pytz.FixedOffset(60)), pd.Timestamp('2010-01-01 12:00:00', tzinfo=pytz.FixedOffset(-60))]], ['%Y-%m-%d %H:%M:%S %z', ['2010-01-01 12:00:00 Z', '2010-01-01 12:00:00 Z'], [pd.Timestamp('2010-01-01 12:00:00', tzinfo=pytz.FixedOffset(0)), # pytz coerces to UTC pd.Timestamp('2010-01-01 12:00:00', tzinfo=pytz.FixedOffset(0))]]]) def test_to_datetime_parse_tzname_or_tzoffset(self, box, const, fmt, dates, expected_dates): # GH 13486 result = pd.to_datetime(dates, format=fmt, box=box) expected = const(expected_dates) tm.assert_equal(result, expected) with pytest.raises(ValueError): pd.to_datetime(dates, format=fmt, box=box, utc=True) @pytest.mark.parametrize('offset', [ '+0', '-1foo', 'UTCbar', ':10', '+01:000:01', '']) def test_to_datetime_parse_timezone_malformed(self, offset): fmt = '%Y-%m-%d %H:%M:%S %z' date = '2010-01-01 12:00:00 ' + offset with pytest.raises(ValueError): pd.to_datetime([date], format=fmt) def test_to_datetime_parse_timezone_keeps_name(self): # GH 21697 fmt = '%Y-%m-%d %H:%M:%S %z' arg = pd.Index(['2010-01-01 12:00:00 Z'], name='foo') result = pd.to_datetime(arg, format=fmt) expected = pd.DatetimeIndex(['2010-01-01 12:00:00'], tz='UTC', name='foo') tm.assert_index_equal(result, expected) class TestToDatetime(object): @pytest.mark.parametrize('tz', [None, 'US/Central']) def test_to_datetime_dtarr(self, tz): # DatetimeArray dti = date_range('1965-04-03', periods=19, freq='2W', tz=tz) arr = DatetimeArray(dti) result = to_datetime(arr) assert result is arr result = to_datetime(arr, box=True) assert result is arr def test_to_datetime_pydatetime(self): actual = pd.to_datetime(datetime(2008, 1, 15)) assert actual == datetime(2008, 1, 15) def test_to_datetime_YYYYMMDD(self): actual = pd.to_datetime('20080115') assert actual == datetime(2008, 1, 15) def test_to_datetime_unparseable_ignore(self): # unparseable s = 'Month 1, 1999' assert pd.to_datetime(s, errors='ignore') == s @td.skip_if_windows # `tm.set_timezone` does not work in windows def test_to_datetime_now(self): # See GH#18666 with tm.set_timezone('US/Eastern'): npnow = np.datetime64('now').astype('datetime64[ns]') pdnow = pd.to_datetime('now') pdnow2 = pd.to_datetime(['now'])[0] # These should all be equal with infinite perf; this gives # a generous margin of 10 seconds assert abs(pdnow.value - npnow.astype(np.int64)) < 1e10 assert abs(pdnow2.value - npnow.astype(np.int64)) < 1e10 assert pdnow.tzinfo is None assert pdnow2.tzinfo is None @td.skip_if_windows # `tm.set_timezone` does not work in windows def test_to_datetime_today(self): # See GH#18666 # Test with one timezone far ahead of UTC and another far behind, so # one of these will _almost_ alawys be in a different day from UTC. # Unfortunately this test between 12 and 1 AM Samoa time # this both of these timezones _and_ UTC will all be in the same day, # so this test will not detect the regression introduced in #18666. with tm.set_timezone('Pacific/Auckland'): # 12-13 hours ahead of UTC nptoday = np.datetime64('today')\ .astype('datetime64[ns]').astype(np.int64) pdtoday = pd.to_datetime('today') pdtoday2 = pd.to_datetime(['today'])[0] tstoday = pd.Timestamp('today') tstoday2 = pd.Timestamp.today() # These should all be equal with infinite perf; this gives # a generous margin of 10 seconds assert abs(pdtoday.normalize().value - nptoday) < 1e10 assert abs(pdtoday2.normalize().value - nptoday) < 1e10 assert abs(pdtoday.value - tstoday.value) < 1e10 assert abs(pdtoday.value - tstoday2.value) < 1e10 assert pdtoday.tzinfo is None assert pdtoday2.tzinfo is None with tm.set_timezone('US/Samoa'): # 11 hours behind UTC nptoday = np.datetime64('today')\ .astype('datetime64[ns]').astype(np.int64) pdtoday = pd.to_datetime('today') pdtoday2 = pd.to_datetime(['today'])[0] # These should all be equal with infinite perf; this gives # a generous margin of 10 seconds assert abs(pdtoday.normalize().value - nptoday) < 1e10 assert abs(pdtoday2.normalize().value - nptoday) < 1e10 assert pdtoday.tzinfo is None assert pdtoday2.tzinfo is None def test_to_datetime_today_now_unicode_bytes(self): to_datetime([u'now']) to_datetime([u'today']) if not PY3: to_datetime(['now']) to_datetime(['today']) @pytest.mark.parametrize('cache', [True, False]) def test_to_datetime_dt64s(self, cache): in_bound_dts = [ np.datetime64('2000-01-01'), np.datetime64('2000-01-02'), ] for dt in in_bound_dts: assert pd.to_datetime(dt, cache=cache) == Timestamp(dt) @pytest.mark.parametrize('dt', [np.datetime64('1000-01-01'), np.datetime64('5000-01-02')]) @pytest.mark.parametrize('cache', [True, False]) def test_to_datetime_dt64s_out_of_bounds(self, cache, dt): msg = "Out of bounds nanosecond timestamp: {}".format(dt) with pytest.raises(OutOfBoundsDatetime, match=msg): pd.to_datetime(dt, errors='raise') with pytest.raises(OutOfBoundsDatetime, match=msg): Timestamp(dt) assert pd.to_datetime(dt, errors='coerce', cache=cache) is NaT @pytest.mark.parametrize('cache', [True, False]) def test_to_datetime_array_of_dt64s(self, cache): dts = [np.datetime64('2000-01-01'), np.datetime64('2000-01-02'), ] # Assuming all datetimes are in bounds, to_datetime() returns # an array that is equal to Timestamp() parsing tm.assert_numpy_array_equal( pd.to_datetime(dts, box=False, cache=cache), np.array([Timestamp(x).asm8 for x in dts]) ) # A list of datetimes where the last one is out of bounds dts_with_oob = dts + [np.datetime64('9999-01-01')] msg = "Out of bounds nanosecond timestamp: 9999-01-01 00:00:00" with pytest.raises(OutOfBoundsDatetime, match=msg): pd.to_datetime(dts_with_oob, errors='raise') tm.assert_numpy_array_equal( pd.to_datetime(dts_with_oob, box=False, errors='coerce', cache=cache), np.array( [ Timestamp(dts_with_oob[0]).asm8, Timestamp(dts_with_oob[1]).asm8, tslib.iNaT, ], dtype='M8' ) ) # With errors='ignore', out of bounds datetime64s # are converted to their .item(), which depending on the version of # numpy is either a python datetime.datetime or datetime.date tm.assert_numpy_array_equal( pd.to_datetime(dts_with_oob, box=False, errors='ignore', cache=cache), np.array( [dt.item() for dt in dts_with_oob], dtype='O' ) ) @pytest.mark.parametrize('cache', [True, False]) def test_to_datetime_tz(self, cache): # xref 8260 # uniform returns a DatetimeIndex arr = [pd.Timestamp('2013-01-01 13:00:00-0800', tz='US/Pacific'), pd.Timestamp('2013-01-02 14:00:00-0800', tz='US/Pacific')] result = pd.to_datetime(arr, cache=cache) expected = DatetimeIndex( ['2013-01-01 13:00:00', '2013-01-02 14:00:00'], tz='US/Pacific') tm.assert_index_equal(result, expected) # mixed tzs will raise arr = [pd.Timestamp('2013-01-01 13:00:00', tz='US/Pacific'), pd.Timestamp('2013-01-02 14:00:00', tz='US/Eastern')] msg = ("Tz-aware datetime.datetime cannot be converted to datetime64" " unless utc=True") with pytest.raises(ValueError, match=msg): pd.to_datetime(arr, cache=cache) @pytest.mark.parametrize('cache', [True, False]) def test_to_datetime_tz_pytz(self, cache): # see gh-8260 us_eastern = pytz.timezone('US/Eastern') arr = np.array([us_eastern.localize(datetime(year=2000, month=1, day=1, hour=3, minute=0)), us_eastern.localize(datetime(year=2000, month=6, day=1, hour=3, minute=0))], dtype=object) result = pd.to_datetime(arr, utc=True, cache=cache) expected = DatetimeIndex(['2000-01-01 08:00:00+00:00', '2000-06-01 07:00:00+00:00'], dtype='datetime64[ns, UTC]', freq=None) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('cache', [True, False]) @pytest.mark.parametrize("init_constructor, end_constructor, test_method", [(Index, DatetimeIndex, tm.assert_index_equal), (list, DatetimeIndex, tm.assert_index_equal), (np.array, DatetimeIndex, tm.assert_index_equal), (Series, Series, tm.assert_series_equal)]) def test_to_datetime_utc_true(self, cache, init_constructor, end_constructor, test_method): # See gh-11934 & gh-6415 data = ['20100102 121314', '20100102 121315'] expected_data = [pd.Timestamp('2010-01-02 12:13:14', tz='utc'), pd.Timestamp('2010-01-02 12:13:15', tz='utc')] result = pd.to_datetime(init_constructor(data), format='%Y%m%d %H%M%S', utc=True, cache=cache) expected = end_constructor(expected_data) test_method(result, expected) # Test scalar case as well for scalar, expected in zip(data, expected_data): result = pd.to_datetime(scalar, format='%Y%m%d %H%M%S', utc=True, cache=cache) assert result == expected @pytest.mark.parametrize('cache', [True, False]) def test_to_datetime_utc_true_with_series_single_value(self, cache): # GH 15760 UTC=True with Series ts = 1.5e18 result = pd.to_datetime(pd.Series([ts]), utc=True, cache=cache) expected = pd.Series([pd.Timestamp(ts, tz='utc')]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize('cache', [True, False]) def test_to_datetime_utc_true_with_series_tzaware_string(self, cache): ts = '2013-01-01 00:00:00-01:00' expected_ts = '2013-01-01 01:00:00' data = pd.Series([ts] * 3) result = pd.to_datetime(data, utc=True, cache=cache) expected = pd.Series([pd.Timestamp(expected_ts, tz='utc')] * 3) tm.assert_series_equal(result, expected) @pytest.mark.parametrize('cache', [True, False]) @pytest.mark.parametrize('date, dtype', [('2013-01-01 01:00:00', 'datetime64[ns]'), ('2013-01-01 01:00:00', 'datetime64[ns, UTC]')]) def test_to_datetime_utc_true_with_series_datetime_ns(self, cache, date, dtype): expected = pd.Series([pd.Timestamp('2013-01-01 01:00:00', tz='UTC')]) result = pd.to_datetime(pd.Series([date], dtype=dtype), utc=True, cache=cache) tm.assert_series_equal(result, expected) @pytest.mark.parametrize('cache', [True, False]) def test_to_datetime_tz_psycopg2(self, cache): # xref 8260 try: import psycopg2 except ImportError: pytest.skip("no psycopg2 installed") # misc cases tz1 = psycopg2.tz.FixedOffsetTimezone(offset=-300, name=None) tz2 = psycopg2.tz.FixedOffsetTimezone(offset=-240, name=None) arr = np.array([datetime(2000, 1, 1, 3, 0, tzinfo=tz1), datetime(2000, 6, 1, 3, 0, tzinfo=tz2)], dtype=object) result = pd.to_datetime(arr, errors='coerce', utc=True, cache=cache) expected = DatetimeIndex(['2000-01-01 08:00:00+00:00', '2000-06-01 07:00:00+00:00'], dtype='datetime64[ns, UTC]', freq=None) tm.assert_index_equal(result, expected) # dtype coercion i = pd.DatetimeIndex([ '2000-01-01 08:00:00' ], tz=psycopg2.tz.FixedOffsetTimezone(offset=-300, name=None)) assert is_datetime64_ns_dtype(i) # tz coerceion result = pd.to_datetime(i, errors='coerce', cache=cache) tm.assert_index_equal(result, i) result = pd.to_datetime(i, errors='coerce', utc=True, cache=cache) expected = pd.DatetimeIndex(['2000-01-01 13:00:00'], dtype='datetime64[ns, UTC]') tm.assert_index_equal(result, expected) @pytest.mark.parametrize( 'cache', [pytest.param(True, marks=pytest.mark.skipif(True, reason="GH 18111")), False]) def test_datetime_bool(self, cache): # GH13176 with pytest.raises(TypeError): to_datetime(False) assert to_datetime(False, errors="coerce", cache=cache) is NaT assert to_datetime(False, errors="ignore", cache=cache) is False with pytest.raises(TypeError): to_datetime(True) assert to_datetime(True, errors="coerce", cache=cache) is NaT assert to_datetime(True, errors="ignore", cache=cache) is True with pytest.raises(TypeError): to_datetime([False, datetime.today()], cache=cache) with pytest.raises(TypeError): to_datetime(['20130101', True], cache=cache) tm.assert_index_equal(to_datetime([0, False, NaT, 0.0], errors="coerce", cache=cache), DatetimeIndex([to_datetime(0, cache=cache), NaT, NaT, to_datetime(0, cache=cache)])) def test_datetime_invalid_datatype(self): # GH13176 with pytest.raises(TypeError): pd.to_datetime(bool) with pytest.raises(TypeError): pd.to_datetime(pd.to_datetime) @pytest.mark.parametrize('value', ["a", "00:01:99"]) @pytest.mark.parametrize('infer', [True, False]) @pytest.mark.parametrize('format', [None, 'H%:M%:S%']) def test_datetime_invalid_scalar(self, value, format, infer): # GH24763 res = pd.to_datetime(value, errors='ignore', format=format, infer_datetime_format=infer) assert res == value res = pd.to_datetime(value, errors='coerce', format=format, infer_datetime_format=infer) assert res is pd.NaT with pytest.raises(ValueError): pd.to_datetime(value, errors='raise', format=format, infer_datetime_format=infer) @pytest.mark.parametrize('value', ["3000/12/11 00:00:00"]) @pytest.mark.parametrize('infer', [True, False]) @pytest.mark.parametrize('format', [None, 'H%:M%:S%']) def test_datetime_outofbounds_scalar(self, value, format, infer): # GH24763 res = pd.to_datetime(value, errors='ignore', format=format, infer_datetime_format=infer) assert res == value res = pd.to_datetime(value, errors='coerce', format=format, infer_datetime_format=infer) assert res is pd.NaT if format is not None: with pytest.raises(ValueError): pd.to_datetime(value, errors='raise', format=format, infer_datetime_format=infer) else: with pytest.raises(OutOfBoundsDatetime): pd.to_datetime(value, errors='raise', format=format, infer_datetime_format=infer) @pytest.mark.parametrize('values', [["a"], ["00:01:99"], ["a", "b", "99:00:00"]]) @pytest.mark.parametrize('infer', [True, False]) @pytest.mark.parametrize('format', [None, 'H%:M%:S%']) def test_datetime_invalid_index(self, values, format, infer): # GH24763 res = pd.to_datetime(values, errors='ignore', format=format, infer_datetime_format=infer) tm.assert_index_equal(res, pd.Index(values)) res = pd.to_datetime(values, errors='coerce', format=format, infer_datetime_format=infer) tm.assert_index_equal(res, pd.DatetimeIndex([pd.NaT] * len(values))) with pytest.raises(ValueError): pd.to_datetime(values, errors='raise', format=format, infer_datetime_format=infer) @pytest.mark.parametrize("utc", [True, None]) @pytest.mark.parametrize("format", ['%Y%m%d %H:%M:%S', None]) @pytest.mark.parametrize("box", [True, False]) @pytest.mark.parametrize("constructor", [list, tuple, np.array, pd.Index]) def test_to_datetime_cache(self, utc, format, box, constructor): date = '20130101 00:00:00' test_dates = [date] * 10**5 data = constructor(test_dates) result = pd.to_datetime(data, utc=utc, format=format, box=box, cache=True) expected = pd.to_datetime(data, utc=utc, format=format, box=box, cache=False) if box: tm.assert_index_equal(result, expected) else: tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("utc", [True, None]) @pytest.mark.parametrize("format", ['%Y%m%d %H:%M:%S', None]) def test_to_datetime_cache_series(self, utc, format): date = '20130101 00:00:00' test_dates = [date] * 10**5 data = pd.Series(test_dates) result = pd.to_datetime(data, utc=utc, format=format, cache=True) expected = pd.to_datetime(data, utc=utc, format=format, cache=False) tm.assert_series_equal(result, expected) def test_to_datetime_cache_scalar(self): date = '20130101 00:00:00' result = pd.to_datetime(date, cache=True) expected = pd.Timestamp('20130101 00:00:00') assert result == expected @pytest.mark.parametrize('date, format', [('2017-20', '%Y-%W'), ('20 Sunday', '%W %A'), ('20 Sun', '%W %a'), ('2017-21', '%Y-%U'), ('20 Sunday', '%U %A'), ('20 Sun', '%U %a')]) def test_week_without_day_and_calendar_year(self, date, format): # GH16774 msg = "Cannot use '%W' or '%U' without day and year" with pytest.raises(ValueError, match=msg): pd.to_datetime(date, format=format) def test_iso_8601_strings_with_same_offset(self): # GH 17697, 11736 ts_str = "2015-11-18 15:30:00+05:30" result = to_datetime(ts_str) expected = Timestamp(ts_str) assert result == expected expected = DatetimeIndex([Timestamp(ts_str)] * 2) result = to_datetime([ts_str] * 2) tm.assert_index_equal(result, expected) result = DatetimeIndex([ts_str] * 2) tm.assert_index_equal(result, expected) def test_iso_8601_strings_same_offset_no_box(self): # GH 22446 data = ['2018-01-04 09:01:00+09:00', '2018-01-04 09:02:00+09:00'] result = pd.to_datetime(data, box=False) expected = np.array([ datetime(2018, 1, 4, 9, 1, tzinfo=pytz.FixedOffset(540)), datetime(2018, 1, 4, 9, 2, tzinfo=pytz.FixedOffset(540)) ], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_iso_8601_strings_with_different_offsets(self): # GH 17697, 11736 ts_strings = ["2015-11-18 15:30:00+05:30", "2015-11-18 16:30:00+06:30", NaT] result = to_datetime(ts_strings) expected = np.array([datetime(2015, 11, 18, 15, 30, tzinfo=tzoffset(None, 19800)), datetime(2015, 11, 18, 16, 30, tzinfo=tzoffset(None, 23400)), NaT], dtype=object) # GH 21864 expected = Index(expected) tm.assert_index_equal(result, expected) result = to_datetime(ts_strings, utc=True) expected = DatetimeIndex([Timestamp(2015, 11, 18, 10), Timestamp(2015, 11, 18, 10), NaT], tz='UTC') tm.assert_index_equal(result, expected) def test_iss8601_strings_mixed_offsets_with_naive(self): # GH 24992 result = pd.to_datetime([ '2018-11-28T00:00:00', '2018-11-28T00:00:00+12:00', '2018-11-28T00:00:00', '2018-11-28T00:00:00+06:00', '2018-11-28T00:00:00' ], utc=True) expected = pd.to_datetime([ '2018-11-28T00:00:00', '2018-11-27T12:00:00', '2018-11-28T00:00:00', '2018-11-27T18:00:00', '2018-11-28T00:00:00' ], utc=True) tm.assert_index_equal(result, expected) items = ['2018-11-28T00:00:00+12:00', '2018-11-28T00:00:00'] result = pd.to_datetime(items, utc=True) expected = pd.to_datetime(list(reversed(items)), utc=True)[::-1] tm.assert_index_equal(result, expected) def test_non_iso_strings_with_tz_offset(self): result = to_datetime(['March 1, 2018 12:00:00+0400'] * 2) expected = DatetimeIndex([datetime(2018, 3, 1, 12, tzinfo=pytz.FixedOffset(240))] * 2) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('ts, expected', [ (Timestamp('2018-01-01'), Timestamp('2018-01-01', tz='UTC')), (Timestamp('2018-01-01', tz='US/Pacific'), Timestamp('2018-01-01 08:00', tz='UTC'))]) def test_timestamp_utc_true(self, ts, expected): # GH 24415 result = to_datetime(ts, utc=True) assert result == expected class TestToDatetimeUnit(object): @pytest.mark.parametrize('cache', [True, False]) def test_unit(self, cache): # GH 11758 # test proper behavior with erros with pytest.raises(ValueError): to_datetime([1], unit='D', format='%Y%m%d', cache=cache) values = [11111111, 1, 1.0, iNaT, NaT, np.nan, 'NaT', ''] result = to_datetime(values, unit='D', errors='ignore', cache=cache) expected = Index([11111111, Timestamp('1970-01-02'), Timestamp('1970-01-02'), NaT, NaT, NaT, NaT, NaT], dtype=object) tm.assert_index_equal(result, expected) result = to_datetime(values, unit='D', errors='coerce', cache=cache) expected = DatetimeIndex(['NaT', '1970-01-02', '1970-01-02', 'NaT', 'NaT', 'NaT', 'NaT', 'NaT']) tm.assert_index_equal(result, expected) with pytest.raises(tslib.OutOfBoundsDatetime): to_datetime(values, unit='D', errors='raise', cache=cache) values = [1420043460000, iNaT, NaT, np.nan, 'NaT'] result = to_datetime(values, errors='ignore', unit='s', cache=cache) expected = Index([1420043460000, NaT, NaT, NaT, NaT], dtype=object) tm.assert_index_equal(result, expected) result = to_datetime(values, errors='coerce', unit='s', cache=cache) expected = DatetimeIndex(['NaT', 'NaT', 'NaT', 'NaT', 'NaT']) tm.assert_index_equal(result, expected) with pytest.raises(tslib.OutOfBoundsDatetime): to_datetime(values, errors='raise', unit='s', cache=cache) # if we have a string, then we raise a ValueError # and NOT an OutOfBoundsDatetime for val in ['foo', Timestamp('20130101')]: try: to_datetime(val, errors='raise', unit='s', cache=cache) except tslib.OutOfBoundsDatetime: raise AssertionError("incorrect exception raised") except ValueError: pass @pytest.mark.parametrize('cache', [True, False]) def test_unit_consistency(self, cache): # consistency of conversions expected = Timestamp('1970-05-09 14:25:11') result = pd.to_datetime(11111111, unit='s', errors='raise', cache=cache) assert result == expected assert isinstance(result, Timestamp) result = pd.to_datetime(11111111, unit='s', errors='coerce', cache=cache) assert result == expected assert isinstance(result, Timestamp) result = pd.to_datetime(11111111, unit='s', errors='ignore', cache=cache) assert result == expected assert isinstance(result, Timestamp) @pytest.mark.parametrize('cache', [True, False]) def test_unit_with_numeric(self, cache): # GH 13180 # coercions from floats/ints are ok expected = DatetimeIndex(['2015-06-19 05:33:20', '2015-05-27 22:33:20']) arr1 = [1.434692e+18, 1.432766e+18] arr2 = np.array(arr1).astype('int64') for errors in ['ignore', 'raise', 'coerce']: result = pd.to_datetime(arr1, errors=errors, cache=cache) tm.assert_index_equal(result, expected) result = pd.to_datetime(arr2, errors=errors, cache=cache) tm.assert_index_equal(result, expected) # but we want to make sure that we are coercing # if we have ints/strings expected = DatetimeIndex(['NaT', '2015-06-19 05:33:20', '2015-05-27 22:33:20']) arr = ['foo', 1.434692e+18, 1.432766e+18] result = pd.to_datetime(arr, errors='coerce', cache=cache) tm.assert_index_equal(result, expected) expected = DatetimeIndex(['2015-06-19 05:33:20', '2015-05-27 22:33:20', 'NaT', 'NaT']) arr = [1.434692e+18, 1.432766e+18, 'foo', 'NaT'] result = pd.to_datetime(arr, errors='coerce', cache=cache) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('cache', [True, False]) def test_unit_mixed(self, cache): # mixed integers/datetimes expected = DatetimeIndex(['2013-01-01', 'NaT', 'NaT']) arr = [pd.Timestamp('20130101'), 1.434692e+18, 1.432766e+18] result = pd.to_datetime(arr, errors='coerce', cache=cache) tm.assert_index_equal(result, expected) with pytest.raises(ValueError): pd.to_datetime(arr, errors='raise', cache=cache) expected = DatetimeIndex(['NaT', 'NaT', '2013-01-01']) arr = [1.434692e+18, 1.432766e+18, pd.Timestamp('20130101')] result = pd.to_datetime(arr, errors='coerce', cache=cache) tm.assert_index_equal(result, expected) with pytest.raises(ValueError): pd.to_datetime(arr, errors='raise', cache=cache) @pytest.mark.parametrize('cache', [True, False]) def test_unit_rounding(self, cache): # GH 14156: argument will incur floating point errors but no # premature rounding result = pd.to_datetime(1434743731.8770001, unit='s', cache=cache) expected = pd.Timestamp('2015-06-19 19:55:31.877000093') assert result == expected @pytest.mark.parametrize('cache', [True, False]) def test_unit_ignore_keeps_name(self, cache): # GH 21697 expected = pd.Index([15e9] * 2, name='name') result = pd.to_datetime(expected, errors='ignore', box=True, unit='s', cache=cache) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('cache', [True, False]) def test_dataframe(self, cache): df = DataFrame({'year': [2015, 2016], 'month': [2, 3], 'day': [4, 5], 'hour': [6, 7], 'minute': [58, 59], 'second': [10, 11], 'ms': [1, 1], 'us': [2, 2], 'ns': [3, 3]}) result = to_datetime({'year': df['year'], 'month': df['month'], 'day': df['day']}, cache=cache) expected = Series([Timestamp('20150204 00:00:00'), Timestamp('20160305 00:0:00')]) assert_series_equal(result, expected) # dict-like result = to_datetime(df[['year', 'month', 'day']].to_dict(), cache=cache) assert_series_equal(result, expected) # dict but with constructable df2 = df[['year', 'month', 'day']].to_dict() df2['month'] = 2 result = to_datetime(df2, cache=cache) expected2 = Series([Timestamp('20150204 00:00:00'), Timestamp('20160205 00:0:00')]) assert_series_equal(result, expected2) # unit mappings units = [{'year': 'years', 'month': 'months', 'day': 'days', 'hour': 'hours', 'minute': 'minutes', 'second': 'seconds'}, {'year': 'year', 'month': 'month', 'day': 'day', 'hour': 'hour', 'minute': 'minute', 'second': 'second'}, ] for d in units: result = to_datetime(df[list(d.keys())].rename(columns=d), cache=cache) expected = Series([Timestamp('20150204 06:58:10'), Timestamp('20160305 07:59:11')]) assert_series_equal(result, expected) d = {'year': 'year', 'month': 'month', 'day': 'day', 'hour': 'hour', 'minute': 'minute', 'second': 'second', 'ms': 'ms', 'us': 'us', 'ns': 'ns'} result = to_datetime(df.rename(columns=d), cache=cache) expected = Series([Timestamp('20150204 06:58:10.001002003'), Timestamp('20160305 07:59:11.001002003')]) assert_series_equal(result, expected) # coerce back to int result = to_datetime(df.astype(str), cache=cache) assert_series_equal(result, expected) # passing coerce df2 = DataFrame({'year': [2015, 2016], 'month': [2, 20], 'day': [4, 5]}) msg = ("cannot assemble the datetimes: time data .+ does not " r"match format '%Y%m%d' \(match\)") with pytest.raises(ValueError, match=msg): to_datetime(df2, cache=cache) result = to_datetime(df2, errors='coerce', cache=cache) expected = Series([Timestamp('20150204 00:00:00'), NaT]) assert_series_equal(result, expected) # extra columns msg = ("extra keys have been passed to the datetime assemblage: " r"\[foo\]") with pytest.raises(ValueError, match=msg): df2 = df.copy() df2['foo'] = 1 to_datetime(df2, cache=cache) # not enough msg = (r'to assemble mappings requires at least that \[year, month, ' r'day\] be specified: \[.+\] is missing') for c in [['year'], ['year', 'month'], ['year', 'month', 'second'], ['month', 'day'], ['year', 'day', 'second']]: with pytest.raises(ValueError, match=msg): to_datetime(df[c], cache=cache) # duplicates msg = 'cannot assemble with duplicate keys' df2 = DataFrame({'year': [2015, 2016], 'month': [2, 20], 'day': [4, 5]}) df2.columns = ['year', 'year', 'day'] with pytest.raises(ValueError, match=msg): to_datetime(df2, cache=cache) df2 = DataFrame({'year': [2015, 2016], 'month': [2, 20], 'day': [4, 5], 'hour': [4, 5]}) df2.columns = ['year', 'month', 'day', 'day'] with pytest.raises(ValueError, match=msg): to_datetime(df2, cache=cache) @pytest.mark.parametrize('cache', [True, False]) def test_dataframe_dtypes(self, cache): # #13451 df = DataFrame({'year': [2015, 2016], 'month': [2, 3], 'day': [4, 5]}) # int16 result = to_datetime(df.astype('int16'), cache=cache) expected = Series([Timestamp('20150204 00:00:00'), Timestamp('20160305 00:00:00')]) assert_series_equal(result, expected) # mixed dtypes df['month'] = df['month'].astype('int8') df['day'] = df['day'].astype('int8') result = to_datetime(df, cache=cache) expected = Series([Timestamp('20150204 00:00:00'), Timestamp('20160305 00:00:00')]) assert_series_equal(result, expected) # float df = DataFrame({'year': [2000, 2001], 'month': [1.5, 1], 'day': [1, 1]}) with pytest.raises(ValueError): to_datetime(df, cache=cache) def test_dataframe_box_false(self): # GH 23760 df = pd.DataFrame({'year': [2015, 2016], 'month': [2, 3], 'day': [4, 5]}) result = pd.to_datetime(df, box=False) expected = np.array(['2015-02-04', '2016-03-05'], dtype='datetime64[ns]') tm.assert_numpy_array_equal(result, expected) def test_dataframe_utc_true(self): # GH 23760 df = pd.DataFrame({'year': [2015, 2016], 'month': [2, 3], 'day': [4, 5]}) result = pd.to_datetime(df, utc=True) expected = pd.Series(np.array(['2015-02-04', '2016-03-05'], dtype='datetime64[ns]')).dt.tz_localize('UTC') tm.assert_series_equal(result, expected) def test_to_datetime_errors_ignore_utc_true(self): # GH 23758 result = pd.to_datetime([1], unit='s', box=True, utc=True, errors='ignore') expected = DatetimeIndex(['1970-01-01 00:00:01'], tz='UTC') tm.assert_index_equal(result, expected) class TestToDatetimeMisc(object): def test_to_datetime_barely_out_of_bounds(self): # GH#19529 # GH#19382 close enough to bounds that dropping nanos would result # in an in-bounds datetime arr = np.array(['2262-04-11 23:47:16.854775808'], dtype=object) with pytest.raises(OutOfBoundsDatetime): to_datetime(arr) @pytest.mark.parametrize('cache', [True, False]) def test_to_datetime_iso8601(self, cache): result = to_datetime(["2012-01-01 00:00:00"], cache=cache) exp = Timestamp("2012-01-01 00:00:00") assert result[0] == exp result = to_datetime(['20121001'], cache=cache) # bad iso 8601 exp = Timestamp('2012-10-01') assert result[0] == exp @pytest.mark.parametrize('cache', [True, False]) def test_to_datetime_default(self, cache): rs = to_datetime('2001', cache=cache) xp = datetime(2001, 1, 1) assert rs == xp # dayfirst is essentially broken # to_datetime('01-13-2012', dayfirst=True) # pytest.raises(ValueError, to_datetime('01-13-2012', # dayfirst=True)) @pytest.mark.parametrize('cache', [True, False]) def test_to_datetime_on_datetime64_series(self, cache): # #2699 s = Series(date_range('1/1/2000', periods=10)) result = to_datetime(s, cache=cache) assert result[0] == s[0] @pytest.mark.parametrize('cache', [True, False]) def test_to_datetime_with_space_in_series(self, cache): # GH 6428 s = Series(['10/18/2006', '10/18/2008', ' ']) msg = r"(\(u?')?String does not contain a date(:', ' '\))?" with pytest.raises(ValueError, match=msg): to_datetime(s, errors='raise', cache=cache) result_coerce = to_datetime(s, errors='coerce', cache=cache) expected_coerce = Series([datetime(2006, 10, 18), datetime(2008, 10, 18), NaT]) tm.assert_series_equal(result_coerce, expected_coerce) result_ignore = to_datetime(s, errors='ignore', cache=cache) tm.assert_series_equal(result_ignore, s) @td.skip_if_has_locale @pytest.mark.parametrize('cache', [True, False]) def test_to_datetime_with_apply(self, cache): # this is only locale tested with US/None locales # GH 5195 # with a format and coerce a single item to_datetime fails td = Series(['May 04', 'Jun 02', 'Dec 11'], index=[1, 2, 3]) expected = pd.to_datetime(td, format='%b %y', cache=cache) result = td.apply(pd.to_datetime, format='%b %y', cache=cache) assert_series_equal(result, expected) td = pd.Series(['May 04', 'Jun 02', ''], index=[1, 2, 3]) msg = r"time data '' does not match format '%b %y' \(match\)" with pytest.raises(ValueError, match=msg): pd.to_datetime(td, format='%b %y', errors='raise', cache=cache) with pytest.raises(ValueError, match=msg): td.apply(pd.to_datetime, format='%b %y', errors='raise', cache=cache) expected = pd.to_datetime(td, format='%b %y', errors='coerce', cache=cache) result = td.apply( lambda x: pd.to_datetime(x, format='%b %y', errors='coerce', cache=cache)) assert_series_equal(result, expected) @pytest.mark.parametrize('cache', [True, False]) def test_to_datetime_types(self, cache): # empty string result = to_datetime('', cache=cache) assert result is NaT result = to_datetime(['', ''], cache=cache) assert isna(result).all() # ints result = Timestamp(0) expected = to_datetime(0, cache=cache) assert result == expected # GH 3888 (strings) expected = to_datetime(['2012'], cache=cache)[0] result = to_datetime('2012', cache=cache) assert result == expected # array = ['2012','20120101','20120101 12:01:01'] array = ['20120101', '20120101 12:01:01'] expected = list(to_datetime(array, cache=cache)) result = lmap(Timestamp, array) tm.assert_almost_equal(result, expected) # currently fails ### # result = Timestamp('2012') # expected = to_datetime('2012') # assert result == expected @pytest.mark.parametrize('cache', [True, False]) @pytest.mark.parametrize('box, klass', [ [True, Index], [False, np.array] ]) def test_to_datetime_unprocessable_input(self, cache, box, klass): # GH 4928 # GH 21864 result = to_datetime([1, '1'], errors='ignore', cache=cache, box=box) expected = klass(np.array([1, '1'], dtype='O')) tm.assert_equal(result, expected) msg = "invalid string coercion to datetime" with pytest.raises(TypeError, match=msg): to_datetime([1, '1'], errors='raise', cache=cache, box=box) def test_to_datetime_other_datetime64_units(self): # 5/25/2012 scalar = np.int64(1337904000000000).view('M8[us]') as_obj = scalar.astype('O') index = DatetimeIndex([scalar]) assert index[0] == scalar.astype('O') value = Timestamp(scalar) assert value == as_obj def test_to_datetime_list_of_integers(self): rng = date_range('1/1/2000', periods=20) rng = DatetimeIndex(rng.values) ints = list(rng.asi8) result = DatetimeIndex(ints) tm.assert_index_equal(rng, result) def test_to_datetime_overflow(self): # gh-17637 # we are overflowing Timedelta range here with pytest.raises(OverflowError): date_range(start='1/1/1700', freq='B', periods=100000) @pytest.mark.parametrize('cache', [True, False]) def test_string_na_nat_conversion(self, cache): # GH #999, #858 from pandas.compat import parse_date strings = np.array(['1/1/2000', '1/2/2000', np.nan, '1/4/2000, 12:34:56'], dtype=object) expected = np.empty(4, dtype='M8[ns]') for i, val in enumerate(strings): if isna(val): expected[i] = iNaT else: expected[i] = parse_date(val) result = tslib.array_to_datetime(strings)[0] tm.assert_almost_equal(result, expected) result2 = to_datetime(strings, cache=cache) assert isinstance(result2, DatetimeIndex) tm.assert_numpy_array_equal(result, result2.values) malformed = np.array(['1/100/2000', np.nan], dtype=object) # GH 10636, default is now 'raise' msg = (r"\(u?'Unknown string format:', '1/100/2000'\)|" "day is out of range for month") with pytest.raises(ValueError, match=msg): to_datetime(malformed, errors='raise', cache=cache) result = to_datetime(malformed, errors='ignore', cache=cache) # GH 21864 expected = Index(malformed) tm.assert_index_equal(result, expected) with pytest.raises(ValueError, match=msg): to_datetime(malformed, errors='raise', cache=cache) idx = ['a', 'b', 'c', 'd', 'e'] series = Series(['1/1/2000', np.nan, '1/3/2000', np.nan, '1/5/2000'], index=idx, name='foo') dseries = Series([to_datetime('1/1/2000', cache=cache), np.nan, to_datetime('1/3/2000', cache=cache), np.nan, to_datetime('1/5/2000', cache=cache)], index=idx, name='foo') result = to_datetime(series, cache=cache) dresult = to_datetime(dseries, cache=cache) expected = Series(np.empty(5, dtype='M8[ns]'), index=idx) for i in range(5): x = series[i] if isna(x): expected[i] = iNaT else: expected[i] = to_datetime(x, cache=cache) assert_series_equal(result, expected, check_names=False) assert result.name == 'foo' assert_series_equal(dresult, expected, check_names=False) assert dresult.name == 'foo' @pytest.mark.parametrize('dtype', [ 'datetime64[h]', 'datetime64[m]', 'datetime64[s]', 'datetime64[ms]', 'datetime64[us]', 'datetime64[ns]']) @pytest.mark.parametrize('cache', [True, False]) def test_dti_constructor_numpy_timeunits(self, cache, dtype): # GH 9114 base = pd.to_datetime(['2000-01-01T00:00', '2000-01-02T00:00', 'NaT'], cache=cache) values = base.values.astype(dtype) tm.assert_index_equal(DatetimeIndex(values), base) tm.assert_index_equal(to_datetime(values, cache=cache), base) @pytest.mark.parametrize('cache', [True, False]) def test_dayfirst(self, cache): # GH 5917 arr = ['10/02/2014', '11/02/2014', '12/02/2014'] expected = DatetimeIndex([datetime(2014, 2, 10), datetime(2014, 2, 11), datetime(2014, 2, 12)]) idx1 = DatetimeIndex(arr, dayfirst=True) idx2 = DatetimeIndex(np.array(arr), dayfirst=True) idx3 = to_datetime(arr, dayfirst=True, cache=cache) idx4 = to_datetime(np.array(arr), dayfirst=True, cache=cache) idx5 = DatetimeIndex(Index(arr), dayfirst=True) idx6 = DatetimeIndex(Series(arr), dayfirst=True) tm.assert_index_equal(expected, idx1) tm.assert_index_equal(expected, idx2) tm.assert_index_equal(expected, idx3) tm.assert_index_equal(expected, idx4) tm.assert_index_equal(expected, idx5) tm.assert_index_equal(expected, idx6) class TestGuessDatetimeFormat(object): @td.skip_if_not_us_locale def test_guess_datetime_format_for_array(self): expected_format = '%Y-%m-%d %H:%M:%S.%f' dt_string = datetime(2011, 12, 30, 0, 0, 0).strftime(expected_format) test_arrays = [ np.array([dt_string, dt_string, dt_string], dtype='O'), np.array([np.nan, np.nan, dt_string], dtype='O'), np.array([dt_string, 'random_string'], dtype='O'), ] for test_array in test_arrays: assert tools._guess_datetime_format_for_array( test_array) == expected_format format_for_string_of_nans = tools._guess_datetime_format_for_array( np.array( [np.nan, np.nan, np.nan], dtype='O')) assert format_for_string_of_nans is None class TestToDatetimeInferFormat(object): @pytest.mark.parametrize('cache', [True, False]) def test_to_datetime_infer_datetime_format_consistent_format(self, cache): s = pd.Series(pd.date_range('20000101', periods=50, freq='H')) test_formats = ['%m-%d-%Y', '%m/%d/%Y %H:%M:%S.%f', '%Y-%m-%dT%H:%M:%S.%f'] for test_format in test_formats: s_as_dt_strings = s.apply(lambda x: x.strftime(test_format)) with_format = pd.to_datetime(s_as_dt_strings, format=test_format, cache=cache) no_infer = pd.to_datetime(s_as_dt_strings, infer_datetime_format=False, cache=cache) yes_infer = pd.to_datetime(s_as_dt_strings, infer_datetime_format=True, cache=cache) # Whether the format is explicitly passed, it is inferred, or # it is not inferred, the results should all be the same tm.assert_series_equal(with_format, no_infer) tm.assert_series_equal(no_infer, yes_infer) @pytest.mark.parametrize('cache', [True, False]) def test_to_datetime_infer_datetime_format_inconsistent_format(self, cache): s = pd.Series(np.array(['01/01/2011 00:00:00', '01-02-2011 00:00:00', '2011-01-03T00:00:00'])) # When the format is inconsistent, infer_datetime_format should just # fallback to the default parsing tm.assert_series_equal(pd.to_datetime(s, infer_datetime_format=False, cache=cache), pd.to_datetime(s, infer_datetime_format=True, cache=cache)) s = pd.Series(np.array(['Jan/01/2011', 'Feb/01/2011', 'Mar/01/2011'])) tm.assert_series_equal(pd.to_datetime(s, infer_datetime_format=False, cache=cache), pd.to_datetime(s, infer_datetime_format=True, cache=cache)) @pytest.mark.parametrize('cache', [True, False]) def test_to_datetime_infer_datetime_format_series_with_nans(self, cache): s = pd.Series(np.array(['01/01/2011 00:00:00', np.nan, '01/03/2011 00:00:00', np.nan])) tm.assert_series_equal(pd.to_datetime(s, infer_datetime_format=False, cache=cache), pd.to_datetime(s, infer_datetime_format=True, cache=cache)) @pytest.mark.parametrize('cache', [True, False]) def test_to_datetime_infer_datetime_format_series_start_with_nans(self, cache): s = pd.Series(np.array([np.nan, np.nan, '01/01/2011 00:00:00', '01/02/2011 00:00:00', '01/03/2011 00:00:00'])) tm.assert_series_equal(pd.to_datetime(s, infer_datetime_format=False, cache=cache), pd.to_datetime(s, infer_datetime_format=True, cache=cache)) @pytest.mark.parametrize('cache', [True, False]) def test_to_datetime_iso8601_noleading_0s(self, cache): # GH 11871 s = pd.Series(['2014-1-1', '2014-2-2', '2015-3-3']) expected = pd.Series([pd.Timestamp('2014-01-01'), pd.Timestamp('2014-02-02'), pd.Timestamp('2015-03-03')]) tm.assert_series_equal(pd.to_datetime(s, cache=cache), expected) tm.assert_series_equal(pd.to_datetime(s, format='%Y-%m-%d', cache=cache), expected) class TestDaysInMonth(object): # tests for issue #10154 @pytest.mark.parametrize('cache', [True, False]) def test_day_not_in_month_coerce(self, cache): assert isna(to_datetime('2015-02-29', errors='coerce', cache=cache)) assert isna(to_datetime('2015-02-29', format="%Y-%m-%d", errors='coerce', cache=cache)) assert isna(to_datetime('2015-02-32', format="%Y-%m-%d", errors='coerce', cache=cache)) assert isna(to_datetime('2015-04-31', format="%Y-%m-%d", errors='coerce', cache=cache)) @pytest.mark.parametrize('cache', [True, False]) def test_day_not_in_month_raise(self, cache): msg = "day is out of range for month" with pytest.raises(ValueError, match=msg): to_datetime('2015-02-29', errors='raise', cache=cache) msg = "time data 2015-02-29 doesn't match format specified" with pytest.raises(ValueError, match=msg): to_datetime('2015-02-29', errors='raise', format="%Y-%m-%d", cache=cache) msg = "time data 2015-02-32 doesn't match format specified" with pytest.raises(ValueError, match=msg): to_datetime('2015-02-32', errors='raise', format="%Y-%m-%d", cache=cache) msg = "time data 2015-04-31 doesn't match format specified" with pytest.raises(ValueError, match=msg): to_datetime('2015-04-31', errors='raise', format="%Y-%m-%d", cache=cache) @pytest.mark.parametrize('cache', [True, False]) def test_day_not_in_month_ignore(self, cache): assert to_datetime('2015-02-29', errors='ignore', cache=cache) == '2015-02-29' assert to_datetime('2015-02-29', errors='ignore', format="%Y-%m-%d", cache=cache) == '2015-02-29' assert to_datetime('2015-02-32', errors='ignore', format="%Y-%m-%d", cache=cache) == '2015-02-32' assert to_datetime('2015-04-31', errors='ignore', format="%Y-%m-%d", cache=cache) == '2015-04-31' class TestDatetimeParsingWrappers(object): @pytest.mark.parametrize('date_str,expected', list({ '2011-01-01': datetime(2011, 1, 1), '2Q2005': datetime(2005, 4, 1), '2Q05': datetime(2005, 4, 1), '2005Q1': datetime(2005, 1, 1), '05Q1': datetime(2005, 1, 1), '2011Q3': datetime(2011, 7, 1), '11Q3': datetime(2011, 7, 1), '3Q2011': datetime(2011, 7, 1), '3Q11': datetime(2011, 7, 1), # quarterly without space '2000Q4': datetime(2000, 10, 1), '00Q4': datetime(2000, 10, 1), '4Q2000': datetime(2000, 10, 1), '4Q00': datetime(2000, 10, 1), '2000q4': datetime(2000, 10, 1), '2000-Q4': datetime(2000, 10, 1), '00-Q4': datetime(2000, 10, 1), '4Q-2000': datetime(2000, 10, 1), '4Q-00': datetime(2000, 10, 1), '00q4': datetime(2000, 10, 1), '2005': datetime(2005, 1, 1), '2005-11': datetime(2005, 11, 1), '2005 11': datetime(2005, 11, 1), '11-2005': datetime(2005, 11, 1), '11 2005': datetime(2005, 11, 1), '200511': datetime(2020, 5, 11), '20051109': datetime(2005, 11, 9), '20051109 10:15': datetime(2005, 11, 9, 10, 15), '20051109 08H': datetime(2005, 11, 9, 8, 0), '2005-11-09 10:15': datetime(2005, 11, 9, 10, 15), '2005-11-09 08H': datetime(2005, 11, 9, 8, 0), '2005/11/09 10:15': datetime(2005, 11, 9, 10, 15), '2005/11/09 08H': datetime(2005, 11, 9, 8, 0), "Thu Sep 25 10:36:28 2003": datetime(2003, 9, 25, 10, 36, 28), "Thu Sep 25 2003": datetime(2003, 9, 25), "Sep 25 2003": datetime(2003, 9, 25), "January 1 2014": datetime(2014, 1, 1), # GHE10537 '2014-06': datetime(2014, 6, 1), '06-2014': datetime(2014, 6, 1), '2014-6': datetime(2014, 6, 1), '6-2014': datetime(2014, 6, 1), '20010101 12': datetime(2001, 1, 1, 12), '20010101 1234': datetime(2001, 1, 1, 12, 34), '20010101 123456': datetime(2001, 1, 1, 12, 34, 56)}.items())) @pytest.mark.parametrize('cache', [True, False]) def test_parsers(self, date_str, expected, cache): # dateutil >= 2.5.0 defaults to yearfirst=True # https://github.com/dateutil/dateutil/issues/217 yearfirst = True result1, _, _ = parsing.parse_time_string(date_str, yearfirst=yearfirst) result2 = to_datetime(date_str, yearfirst=yearfirst) result3 = to_datetime([date_str], yearfirst=yearfirst) # result5 is used below result4 = to_datetime(np.array([date_str], dtype=object), yearfirst=yearfirst, cache=cache) result6 = DatetimeIndex([date_str], yearfirst=yearfirst) # result7 is used below result8 = DatetimeIndex(Index([date_str]), yearfirst=yearfirst) result9 = DatetimeIndex(Series([date_str]), yearfirst=yearfirst) for res in [result1, result2]: assert res == expected for res in [result3, result4, result6, result8, result9]: exp = DatetimeIndex([pd.Timestamp(expected)]) tm.assert_index_equal(res, exp) # these really need to have yearfirst, but we don't support if not yearfirst: result5 = Timestamp(date_str) assert result5 == expected result7 = date_range(date_str, freq='S', periods=1, yearfirst=yearfirst) assert result7 == expected def test_parsers_nat(self): # Test that each of several string-accepting methods return pd.NaT result1, _, _ = parsing.parse_time_string('NaT') result2 = to_datetime('NaT') result3 = Timestamp('NaT') result4 = DatetimeIndex(['NaT'])[0] assert result1 is NaT assert result2 is NaT assert result3 is NaT assert result4 is NaT @pytest.mark.parametrize('cache', [True, False]) def test_parsers_dayfirst_yearfirst(self, cache): # OK # 2.5.1 10-11-12 [dayfirst=0, yearfirst=0] -> 2012-10-11 00:00:00 # 2.5.2 10-11-12 [dayfirst=0, yearfirst=1] -> 2012-10-11 00:00:00 # 2.5.3 10-11-12 [dayfirst=0, yearfirst=0] -> 2012-10-11 00:00:00 # OK # 2.5.1 10-11-12 [dayfirst=0, yearfirst=1] -> 2010-11-12 00:00:00 # 2.5.2 10-11-12 [dayfirst=0, yearfirst=1] -> 2010-11-12 00:00:00 # 2.5.3 10-11-12 [dayfirst=0, yearfirst=1] -> 2010-11-12 00:00:00 # bug fix in 2.5.2 # 2.5.1 10-11-12 [dayfirst=1, yearfirst=1] -> 2010-11-12 00:00:00 # 2.5.2 10-11-12 [dayfirst=1, yearfirst=1] -> 2010-12-11 00:00:00 # 2.5.3 10-11-12 [dayfirst=1, yearfirst=1] -> 2010-12-11 00:00:00 # OK # 2.5.1 10-11-12 [dayfirst=1, yearfirst=0] -> 2012-11-10 00:00:00 # 2.5.2 10-11-12 [dayfirst=1, yearfirst=0] -> 2012-11-10 00:00:00 # 2.5.3 10-11-12 [dayfirst=1, yearfirst=0] -> 2012-11-10 00:00:00 # OK # 2.5.1 20/12/21 [dayfirst=0, yearfirst=0] -> 2021-12-20 00:00:00 # 2.5.2 20/12/21 [dayfirst=0, yearfirst=0] -> 2021-12-20 00:00:00 # 2.5.3 20/12/21 [dayfirst=0, yearfirst=0] -> 2021-12-20 00:00:00 # OK # 2.5.1 20/12/21 [dayfirst=0, yearfirst=1] -> 2020-12-21 00:00:00 # 2.5.2 20/12/21 [dayfirst=0, yearfirst=1] -> 2020-12-21 00:00:00 # 2.5.3 20/12/21 [dayfirst=0, yearfirst=1] -> 2020-12-21 00:00:00 # revert of bug in 2.5.2 # 2.5.1 20/12/21 [dayfirst=1, yearfirst=1] -> 2020-12-21 00:00:00 # 2.5.2 20/12/21 [dayfirst=1, yearfirst=1] -> month must be in 1..12 # 2.5.3 20/12/21 [dayfirst=1, yearfirst=1] -> 2020-12-21 00:00:00 # OK # 2.5.1 20/12/21 [dayfirst=1, yearfirst=0] -> 2021-12-20 00:00:00 # 2.5.2 20/12/21 [dayfirst=1, yearfirst=0] -> 2021-12-20 00:00:00 # 2.5.3 20/12/21 [dayfirst=1, yearfirst=0] -> 2021-12-20 00:00:00 is_lt_253 = LooseVersion(dateutil.__version__) < LooseVersion('2.5.3') # str : dayfirst, yearfirst, expected cases = {'10-11-12': [(False, False, datetime(2012, 10, 11)), (True, False, datetime(2012, 11, 10)), (False, True, datetime(2010, 11, 12)), (True, True, datetime(2010, 12, 11))], '20/12/21': [(False, False, datetime(2021, 12, 20)), (True, False, datetime(2021, 12, 20)), (False, True, datetime(2020, 12, 21)), (True, True, datetime(2020, 12, 21))]} for date_str, values in compat.iteritems(cases): for dayfirst, yearfirst, expected in values: # odd comparisons across version # let's just skip if dayfirst and yearfirst and is_lt_253: continue # compare with dateutil result dateutil_result = parse(date_str, dayfirst=dayfirst, yearfirst=yearfirst) assert dateutil_result == expected result1, _, _ = parsing.parse_time_string(date_str, dayfirst=dayfirst, yearfirst=yearfirst) # we don't support dayfirst/yearfirst here: if not dayfirst and not yearfirst: result2 = Timestamp(date_str) assert result2 == expected result3 = to_datetime(date_str, dayfirst=dayfirst, yearfirst=yearfirst, cache=cache) result4 = DatetimeIndex([date_str], dayfirst=dayfirst, yearfirst=yearfirst)[0] assert result1 == expected assert result3 == expected assert result4 == expected @pytest.mark.parametrize('cache', [True, False]) def test_parsers_timestring(self, cache): # must be the same as dateutil result cases = {'10:15': (parse('10:15'), datetime(1, 1, 1, 10, 15)), '9:05': (parse('9:05'), datetime(1, 1, 1, 9, 5))} for date_str, (exp_now, exp_def) in compat.iteritems(cases): result1, _, _ = parsing.parse_time_string(date_str) result2 = to_datetime(date_str) result3 = to_datetime([date_str]) result4 = Timestamp(date_str) result5 = DatetimeIndex([date_str])[0] # parse time string return time string based on default date # others are not, and can't be changed because it is used in # time series plot assert result1 == exp_def assert result2 == exp_now assert result3 == exp_now assert result4 == exp_now assert result5 == exp_now @td.skip_if_has_locale def test_parsers_time(self): # GH11818 strings = ["14:15", "1415", "2:15pm", "0215pm", "14:15:00", "141500", "2:15:00pm", "021500pm", time(14, 15)] expected = time(14, 15) for time_string in strings: assert tools.to_time(time_string) == expected new_string = "14.15" msg = r"Cannot convert arg \['14\.15'\] to a time" with pytest.raises(ValueError, match=msg): tools.to_time(new_string) assert tools.to_time(new_string, format="%H.%M") == expected arg = ["14:15", "20:20"] expected_arr = [time(14, 15), time(20, 20)] assert tools.to_time(arg) == expected_arr assert tools.to_time(arg, format="%H:%M") == expected_arr assert tools.to_time(arg, infer_time_format=True) == expected_arr assert tools.to_time(arg, format="%I:%M%p", errors="coerce") == [None, None] res = tools.to_time(arg, format="%I:%M%p", errors="ignore") tm.assert_numpy_array_equal(res, np.array(arg, dtype=np.object_)) with pytest.raises(ValueError): tools.to_time(arg, format="%I:%M%p", errors="raise") tm.assert_series_equal(tools.to_time(Series(arg, name="test")), Series(expected_arr, name="test")) res = tools.to_time(np.array(arg)) assert isinstance(res, list) assert res == expected_arr @pytest.mark.parametrize('cache', [True, False]) @pytest.mark.parametrize('dt_string, tz, dt_string_repr', [ ('2013-01-01 05:45+0545', pytz.FixedOffset(345), "Timestamp('2013-01-01 05:45:00+0545', tz='pytz.FixedOffset(345)')"), ('2013-01-01 05:30+0530', pytz.FixedOffset(330), "Timestamp('2013-01-01 05:30:00+0530', tz='pytz.FixedOffset(330)')")]) def test_parsers_timezone_minute_offsets_roundtrip(self, cache, dt_string, tz, dt_string_repr): # GH11708 base = to_datetime("2013-01-01 00:00:00", cache=cache) base = base.tz_localize('UTC').tz_convert(tz) dt_time = to_datetime(dt_string, cache=cache) assert base == dt_time assert dt_string_repr == repr(dt_time) @pytest.fixture(params=['D', 's', 'ms', 'us', 'ns']) def units(request): """Day and some time units. * D * s * ms * us * ns """ return request.param @pytest.fixture def epoch_1960(): """Timestamp at 1960-01-01.""" return Timestamp('1960-01-01') @pytest.fixture def units_from_epochs(): return list(range(5)) @pytest.fixture(params=['timestamp', 'pydatetime', 'datetime64', 'str_1960']) def epochs(epoch_1960, request): """Timestamp at 1960-01-01 in various forms. * pd.Timestamp * datetime.datetime * numpy.datetime64 * str """ assert request.param in {'timestamp', 'pydatetime', 'datetime64', "str_1960"} if request.param == 'timestamp': return epoch_1960 elif request.param == 'pydatetime': return epoch_1960.to_pydatetime() elif request.param == "datetime64": return epoch_1960.to_datetime64() else: return str(epoch_1960) @pytest.fixture def julian_dates(): return pd.date_range('2014-1-1', periods=10).to_julian_date().values class TestOrigin(object): def test_to_basic(self, julian_dates): # gh-11276, gh-11745 # for origin as julian result = Series(pd.to_datetime( julian_dates, unit='D', origin='julian')) expected = Series(pd.to_datetime( julian_dates - pd.Timestamp(0).to_julian_date(), unit='D')) assert_series_equal(result, expected) result = Series(pd.to_datetime( [0, 1, 2], unit='D', origin='unix')) expected = Series([Timestamp('1970-01-01'), Timestamp('1970-01-02'), Timestamp('1970-01-03')]) assert_series_equal(result, expected) # default result = Series(pd.to_datetime( [0, 1, 2], unit='D')) expected = Series([Timestamp('1970-01-01'), Timestamp('1970-01-02'), Timestamp('1970-01-03')]) assert_series_equal(result, expected) def test_julian_round_trip(self): result = pd.to_datetime(2456658, origin='julian', unit='D') assert result.to_julian_date() == 2456658 # out-of-bounds with pytest.raises(ValueError): pd.to_datetime(1, origin="julian", unit='D') def test_invalid_unit(self, units, julian_dates): # checking for invalid combination of origin='julian' and unit != D if units != 'D': with pytest.raises(ValueError): pd.to_datetime(julian_dates, unit=units, origin='julian') def test_invalid_origin(self): # need to have a numeric specified with pytest.raises(ValueError): pd.to_datetime("2005-01-01", origin="1960-01-01") with pytest.raises(ValueError): pd.to_datetime("2005-01-01", origin="1960-01-01", unit='D') def test_epoch(self, units, epochs, epoch_1960, units_from_epochs): expected = Series( [pd.Timedelta(x, unit=units) + epoch_1960 for x in units_from_epochs]) result = Series(pd.to_datetime( units_from_epochs, unit=units, origin=epochs)) assert_series_equal(result, expected) @pytest.mark.parametrize("origin, exc", [('random_string', ValueError), ('epoch', ValueError), ('13-24-1990', ValueError), (datetime(1, 1, 1), tslib.OutOfBoundsDatetime)]) def test_invalid_origins(self, origin, exc, units, units_from_epochs): with pytest.raises(exc): pd.to_datetime(units_from_epochs, unit=units, origin=origin) def test_invalid_origins_tzinfo(self): # GH16842 with pytest.raises(ValueError): pd.to_datetime(1, unit='D', origin=datetime(2000, 1, 1, tzinfo=pytz.utc)) def test_processing_order(self): # make sure we handle out-of-bounds *before* # constructing the dates result = pd.to_datetime(200 * 365, unit='D') expected = Timestamp('2169-11-13 00:00:00') assert result == expected result = pd.to_datetime(200 * 365, unit='D', origin='1870-01-01') expected = Timestamp('2069-11-13 00:00:00') assert result == expected result = pd.to_datetime(300 * 365, unit='D', origin='1870-01-01') expected = Timestamp('2169-10-20 00:00:00') assert result == expected
bsd-3-clause
jvahala/Space-Doodles
doodleverse_main/final_submission/doodleverse.py
1
4519
import numpy as np import search import clustersearch import feature_extract as f_e import matplotlib.pyplot as plt from matplotlib import image as mpimg import cv2 def main(): plt.close("all") [feature_points, bestpoint] = get_features('mj.png') bestpoint = int(bestpoint) print(feature_points,bestpoint) star_tab = clustersearch.StarTable() featpoints = [] for point in feature_points: featpoints.append(search.Point(point)) featset = search.SetOfPoints() featset.append(featpoints) mag_constant = 0.5 searchdata = clustersearch.Search(star_tab,featset, bestpoint, mag_constant) clustersearch.PlotEverything(searchdata) print('Average mag is:',searchdata.avgmag) print('Score is:',searchdata.score) def get_features(image_name): #import image as black/white #example shapes: shape1.png (odd,no int), shape2.png (odd,no int), shape3.png (rounded, no int) raw_img, image, contours, hierarchy = f_e.importImage(image_name) img_main = mpimg.imread(image_name) cnt1 = contours[1] #contour zero is border, contour 1 is outermost contour, ...etc cnt = f_e.cleanContour(cnt1) #create grayscale (uint8) all white image to draw features onto draw_img = f_e.drawImage(raw_img,cnt) #grab extreme points of contour extrema = f_e.getExtrema(cnt) #use harris corner detector corners = f_e.getCorners(draw_img,50,0.01,50) features = f_e.orderFeatures(cnt,extrema,corners) #consolidate features add_threshold = 0.01 #smaller values add more points (0.01 default) remove_threshold = 0.01 #larger values mean less points (0.01 default) clumpThresh = -100 #set negative to make it based on the 1/4 the best feature value, otherwise 70+ is a good value, higher values mean less points n = 20 #number of divisions for determining normalized error (5 default) index = 0 #default starting index (0 default) count = 0 #find feature location on contour new_features = f_e.featuresOnContour(features, cnt) #add a bunch of features new_features = f_e.addFeatures(index,new_features,cnt,n,add_threshold) new_features = f_e.addFeatures(index,new_features,cnt,n,add_threshold*0.1) #remove them slowly new_features = f_e.removeMidpoints(index,new_features,cnt,n,remove_threshold) new_features = f_e.removeMidpoints(index,new_features,cnt,n+10,remove_threshold*20) new_features = f_e.removeMidpoints(index,new_features,cnt,n+20,remove_threshold*50) #finalize features best_features_sorted = f_e.findKeyFeatures(new_features) new_features, best_features_sorted = f_e.removeClumps(new_features,best_features_sorted,clumpThresh) best_features = new_features[:,0:2] best_features.shape = (best_features.shape[0],2) #best_features[:,[0, 1]] = best_features[:,[1, 0]] #switches columns #plot feature points fig1 = plt.figure(1) plt.subplot(221) plt.imshow(img_main) plt.title('(a) Original Image', fontsize=10) frame = plt.gca() frame.axes.get_xaxis().set_ticks([]) frame.axes.get_yaxis().set_ticks([]) plt.subplot(222) plt.imshow(draw_img.squeeze(),cmap='Greys') plt.title('(b) Contour', fontsize=10) frame = plt.gca() frame.axes.get_xaxis().set_ticks([]) frame.axes.get_yaxis().set_ticks([]) plt.subplot(223) plt.imshow(draw_img.squeeze(),cmap='Greys') plt.hold(True) plt.scatter(features[:,0],features[:,1],s=20,c='b',marker='x') plt.plot(features[:,0],features[:,1]) plt.title('(c) Harris Corner Detector Features', fontsize=10) plt.axis('image') frame = plt.gca() frame.axes.get_xaxis().set_ticks([]) frame.axes.get_yaxis().set_ticks([]) plt.subplot(224) plt.imshow(draw_img.squeeze(),cmap='Greys') plt.hold(True) plt.scatter(new_features[:,0],new_features[:,1],s=20,c='r',marker='x') plt.plot(new_features[:,0],new_features[:,1],'r-') best_index = best_features_sorted[0,1] best_triangle = new_features[(best_index-1):(best_index+2),:] plt.scatter(best_triangle[:,0],best_triangle[:,1],s=30,facecolors='none',edgecolors='g',marker='o') plt.title('(d) Optimized Features', fontsize=10) plt.axis('image') frame = plt.gca() frame.axes.get_xaxis().set_ticks([]) frame.axes.get_yaxis().set_ticks([]) plt.show() return [best_features, best_features_sorted[0,1]] if __name__ == '__main__': main()
apache-2.0
weidel-p/nest-simulator
pynest/examples/vinit_example.py
6
3192
# -*- coding: utf-8 -*- # # vinit_example.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. """Initial membrane voltage ---------------------------- Plot several runs of the ``iaf_cond_exp_sfa_rr`` neuron without input for various initial values of the membrane potential. References ~~~~~~~~~~~~ .. [1] Dayan, P. and Abbott, L.F. (2001) Theoretical neuroscience, MIT Press, page 166 """ ############################################################################### # First, the necessary modules for simulation and plotting are imported. import nest import numpy import matplotlib.pyplot as plt ############################################################################### # A loop runs over a range of initial membrane voltages. # # In the beginning of each iteration, the simulation kernel is put back to # its initial state using `ResetKernel`. # # Next, a neuron is instantiated with ``Create``. The used neuron model # ``iaf_cond_exp_sfa_rr`` is an implementation of a spiking neuron with # integrate-and-fire dynamics, conductance-based synapses, an additional # spike-frequency adaptation and relative refractory mechanisms as described # in [1]_. Incoming spike events induce a post-synaptic change of # conductance modeled by an exponential function. ``SetStatus`` allows to # assign the initial membrane voltage of the current loop run to the neuron. # # ``Create`` is used once more to instantiate a ``voltmeter`` as recording device # which is subsequently connected to the neuron with ``Connect``. # # Then, a simulation with a duration of 75 ms is started with ``Simulate``. # # When the simulation has finished, the recorded times and membrane voltages # are read from the voltmeter via ``GetStatus`` where they can be accessed # through the key ``events`` of the status dictionary. # # Finally, the time course of the membrane voltages is plotted for each of # the different inital values. for vinit in numpy.arange(-100, -50, 10, float): nest.ResetKernel() cbn = nest.Create("iaf_cond_exp_sfa_rr") nest.SetStatus(cbn, "V_m", vinit) voltmeter = nest.Create("voltmeter") nest.Connect(voltmeter, cbn) nest.Simulate(75.0) t = voltmeter.get("events", "times") v = voltmeter.get("events", "V_m") plt.plot(t, v, label="initial V_m = %.2f mV" % vinit) ############################################################################### # Set the legend and the labels for the plot outside of the loop. plt.legend(loc=4) plt.xlabel("time (ms)") plt.ylabel("V_m (mV)") plt.show()
gpl-2.0
google-research/google-research
ieg/dataset_utils/datasets.py
1
14314
# coding=utf-8 """Loader for datasets.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import os from absl import flags from ieg.dataset_utils.utils import cifar_process from ieg.dataset_utils.utils import imagenet_preprocess_image import numpy as np import sklearn.metrics as sklearn_metrics import tensorflow.compat.v1 as tf import tensorflow_datasets as tfds FLAGS = flags.FLAGS def verbose_data(which_set, data, label): """Prints the number of data per class for a dataset. Args: which_set: a str data: A numpy 4D array label: A numpy array """ text = ['{} size: {}'.format(which_set, data.shape[0])] for i in range(label.max() + 1): text.append('class{}-{}'.format(i, len(np.where(label == i)[0]))) text.append('\n') text = ' '.join(text) tf.logging.info(text) def shuffle_dataset(data, label, others=None, class_balanced=False): """Shuffles the dataset with class balancing option. Args: data: A numpy 4D array. label: A numpy array. others: Optional array corresponded with data and label. class_balanced: If True, after shuffle, data of different classes are interleaved and balanced [1,2,3...,1,2,3.]. Returns: Shuffled inputs. """ if class_balanced: sorted_ids = [] for i in range(label.max() + 1): tmp_ids = np.where(label == i)[0] np.random.shuffle(tmp_ids) sorted_ids.append(tmp_ids) sorted_ids = np.stack(sorted_ids, 0) sorted_ids = np.transpose(sorted_ids, axes=[1, 0]) ids = np.reshape(sorted_ids, (-1,)) else: ids = np.arange(data.shape[0]) np.random.shuffle(ids) if others is None: return data[ids], label[ids] else: return data[ids], label[ids], others[ids] def load_asymmetric(x, y, noise_ratio, n_val, random_seed=12345): """Create asymmetric noisy data.""" def _generate_asymmetric_noise(y_train, n): """Generate cifar10 asymmetric label noise. Asymmetric noise confuses automobile <- truck bird -> airplane cat <-> dog deer -> horse Args: y_train: label numpy tensor n: noise ratio Returns: corrupted y_train. """ assert y_train.max() == 10 - 1 classes = 10 p = np.eye(classes) # automobile <- truck p[9, 9], p[9, 1] = 1. - n, n # bird -> airplane p[2, 2], p[2, 0] = 1. - n, n # cat <-> dog p[3, 3], p[3, 5] = 1. - n, n p[5, 5], p[5, 3] = 1. - n, n # automobile -> truck p[4, 4], p[4, 7] = 1. - n, n tf.logging.info('Asymmetric corruption p:\n {}'.format(p)) noise_y = y_train.copy() r = np.random.RandomState(random_seed) for i in range(noise_y.shape[0]): c = y_train[i] s = r.multinomial(1, p[c, :], 1)[0] noise_y[i] = np.where(s == 1)[0] actual_noise = (noise_y != y_train).mean() assert actual_noise > 0.0 return noise_y n_img = x.shape[0] n_classes = 10 # holdout balanced clean val_idx = [] if n_val > 0: for cc in range(n_classes): tmp_idx = np.where(y == cc)[0] val_idx.append( np.random.choice(tmp_idx, n_val // n_classes, replace=False)) val_idx = np.concatenate(val_idx, axis=0) train_idx = list(set([a for a in range(n_img)]).difference(set(val_idx))) if n_val > 0: valdata, vallabel = x[val_idx], y[val_idx] traindata, trainlabel = x[train_idx], y[train_idx] trainlabel = trainlabel.squeeze() label_corr_train = trainlabel.copy() trainlabel = _generate_asymmetric_noise(trainlabel, noise_ratio) if len(trainlabel.shape) == 1: trainlabel = np.reshape(trainlabel, [trainlabel.shape[0], 1]) traindata, trainlabel, label_corr_train = shuffle_dataset( traindata, trainlabel, label_corr_train) if n_val > 0: valdata, vallabel = shuffle_dataset(valdata, vallabel, class_balanced=True) else: valdata, vallabel = None, None return (traindata, trainlabel, label_corr_train), (valdata, vallabel) def load_train_val_uniform_noise(x, y, n_classes, n_val, noise_ratio): """Make noisy data and holdout a clean val data. Constructs training and validation datasets, with controllable amount of noise ratio. Args: x: 4D numpy array of images y: 1D/2D numpy array of labels of images n_classes: The number of classes. n_val: The number of validation data to holdout from train. noise_ratio: A float number that decides the random noise ratio. Returns: traindata: Train data. trainlabel: Train noisy label. label_corr_train: True clean label. valdata: Validation data. vallabel: Validation label. """ n_img = x.shape[0] val_idx = [] if n_val > 0: # Splits a clean holdout set for cc in range(n_classes): tmp_idx = np.where(y == cc)[0] val_idx.append( np.random.choice(tmp_idx, n_val // n_classes, replace=False)) val_idx = np.concatenate(val_idx, axis=0) train_idx = list(set([a for a in range(n_img)]).difference(set(val_idx))) # split validation set if n_val > 0: valdata, vallabel = x[val_idx], y[val_idx] traindata, trainlabel = x[train_idx], y[train_idx] # Copies the true label for verification label_corr_train = trainlabel.copy() # Adds uniform noises mask = np.random.rand(len(trainlabel)) <= noise_ratio random_labels = np.random.choice(n_classes, mask.sum()) trainlabel[mask] = random_labels[Ellipsis, np.newaxis] # Shuffles dataset traindata, trainlabel, label_corr_train = shuffle_dataset( traindata, trainlabel, label_corr_train) if n_val > 0: valdata, vallabel = shuffle_dataset(valdata, vallabel, class_balanced=True) else: valdata, vallabel = None, None return (traindata, trainlabel, label_corr_train), (valdata, vallabel) class CIFAR(object): """CIFAR dataset class.""" def __init__(self): self.dataset_name = FLAGS.dataset self.is_cifar100 = 'cifar100' in self.dataset_name if self.is_cifar100: self.num_classes = 100 else: self.num_classes = 10 self.noise_ratio = float(self.dataset_name.split('_')[-1]) assert self.noise_ratio >= 0 and self.noise_ratio <= 1,\ 'The schema {} of dataset is not right'.format(self.dataset_name) self.split_probe = FLAGS.probe_dataset_hold_ratio != 0 def create_loader(self): """Creates loader as tf.data.Dataset.""" # load data to memory. if self.is_cifar100: (x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar100.load_data() else: (x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data() y_train = y_train.astype(np.int32) y_test = y_test.astype(np.int32) x_train, y_train = shuffle_dataset(x_train, y_train) n_probe = int(math.floor(x_train.shape[0] * FLAGS.probe_dataset_hold_ratio)) # TODO(zizhaoz): add other noise types. if 'asymmetric' in self.dataset_name: assert 'cifar100' not in self.dataset_name, 'Asymmetric only has CIFAR10' (x_train, y_train, y_gold), (x_probe, y_probe) = load_asymmetric( x_train, y_train, noise_ratio=self.noise_ratio, n_val=n_probe, random_seed=FLAGS.seed) elif 'uniform' in self.dataset_name: (x_train, y_train, y_gold), (x_probe, y_probe) = load_train_val_uniform_noise( x_train, y_train, n_classes=self.num_classes, noise_ratio=self.noise_ratio, n_val=n_probe) else: assert self.dataset_name in ['cifar10', 'cifar100'] if not self.split_probe and x_probe is not None: # Usually used for supervised comparison. tf.logging.info('Merge train and probe') x_train = np.concatenate([x_train, x_probe], axis=0) y_train = np.concatenate([y_train, y_probe], axis=0) y_gold = np.concatenate([y_gold, y_probe], axis=0) conf_mat = sklearn_metrics.confusion_matrix(y_gold, y_train) conf_mat = conf_mat / np.sum(conf_mat, axis=1, keepdims=True) tf.logging.info('Corrupted confusion matirx\n {}'.format(conf_mat)) x_test, y_test = shuffle_dataset(x_test, y_test) self.train_dataset_size = x_train.shape[0] self.val_dataset_size = x_test.shape[0] if self.split_probe: self.probe_size = x_probe.shape[0] input_tuple = (x_train, y_train.squeeze()) self.train_dataflow = self.create_ds(input_tuple, is_train=True) self.val_dataflow = self.create_ds((x_test, y_test.squeeze()), is_train=False) if self.split_probe: self.probe_dataflow = self.create_ds((x_probe, y_probe.squeeze()), is_train=True) tf.logging.info('Init [{}] dataset loader'.format(self.dataset_name)) verbose_data('train', x_train, y_train) verbose_data('test', x_test, y_test) if self.split_probe: verbose_data('probe', x_probe, y_probe) return self def create_ds(self, data, is_train=True): """Creates tf.data object given data. Args: data: data in format of tuple, e.g. (data, label) is_train: bool indicate train stage the original copy, so the resulting tensor is 5D Returns: An tf.data.Dataset object """ ds = tf.data.Dataset.from_tensor_slices(data) map_fn = lambda x, y: (cifar_process(x, is_train), y) ds = ds.map(map_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE) return ds class WebVision(object): """Webvision dataset class.""" def __init__(self, root, version='webvisionmini', use_imagenet_as_eval=False): self.version = version self.num_classes = 50 if 'mini' in version else 1000 self.root = root self.image_size = 224 self.use_imagenet_as_eval = use_imagenet_as_eval default_n_per_class = 10 if '_' in FLAGS.dataset: self.probe_size = int(FLAGS.dataset.split('_')[1]) * self.num_classes else: # Uses default ones, assume there is a dataset saved self.probe_size = default_n_per_class * self.num_classes self.probe_folder = 'probe_' + str(self.probe_size) def wrapper_map_probe_v2(self, tfrecord): """tf.data.Dataset map function for probe data v2. Args: tfrecord: serilized by tf.data.Dataset. Returns: A map function """ def _extract_fn(tfrecord): """Extracts the functions.""" features = { 'image/encoded': tf.FixedLenFeature([], tf.string), 'image/label': tf.FixedLenFeature([], tf.int64) } example = tf.parse_single_example(tfrecord, features) image, label = example['image/encoded'], tf.cast( example['image/label'], dtype=tf.int32) return [image, label] image_bytes, label = _extract_fn(tfrecord) label = tf.cast(label, tf.int64) image = imagenet_preprocess_image( image_bytes, is_training=True, image_size=self.image_size) return image, label def wrapper_map_v2(self, train): """tf.data.Dataset map function for train data v2.""" def _func(data): img, label = data['image'], data['label'] image_bytes = tf.image.encode_jpeg(img) image_1 = imagenet_preprocess_image( image_bytes, is_training=train, image_size=self.image_size) if train: image_2 = imagenet_preprocess_image( image_bytes, is_training=train, image_size=self.image_size, autoaugment_name='v0', use_cutout=True) images = tf.concat( [tf.expand_dims(image_1, 0), tf.expand_dims(image_2, 0)], axis=0) else: images = image_1 return images, label return _func def create_loader(self): """Creates loader.""" if self.use_imagenet_as_eval: # To evaluate on webvision eval, set this to False. split = ['train'] val_ds, imagenet_info = tfds.load( name='imagenet2012', download=True, split='validation', data_dir=self.root, with_info=True) val_info = imagenet_info.splits['validation'] tf.logging.info('WebVision: use imagenet validation') else: split = ['train', 'val'] assert tfds.__version__.startswith('2.'),\ 'tensorflow_dataset version must be 2.x.x to use image_label_folder.' ds, self.info = tfds.load( 'image_label_folder', split=split, data_dir=self.root, builder_kwargs=dict(dataset_name=self.version), with_info=True) train_info = self.info.splits['train'] if len(split) == 2: train_ds, val_ds = ds val_info = self.info.splits['val'] else: train_ds = ds[0] self.train_dataset_size = train_info.num_examples self.val_dataset_size = val_info.num_examples self.test_dataset_size = self.val_dataset_size train_ds = train_ds.map( self.wrapper_map_v2(True), num_parallel_calls=tf.data.experimental.AUTOTUNE) val_ds = val_ds.map( self.wrapper_map_v2(False), num_parallel_calls=tf.data.experimental.AUTOTUNE) self.train_dataflow = train_ds self.val_dataflow = val_ds def _get_probe(): """Create probe data tf.data.Dataset.""" probe_ds = tf.data.TFRecordDataset( os.path.join(self.root, self.version, self.probe_folder, 'imagenet2012-probe.tfrecord-1-of-1')) probe_ds = probe_ds.map( self.wrapper_map_probe_v2, num_parallel_calls=tf.data.experimental.AUTOTUNE) # For single file, we need to disable auto_shard_policy for multi-workers, # e.g. every worker takes the same file options = tf.data.Options() options.experimental_distribute.auto_shard_policy = ( tf.data.experimental.AutoShardPolicy.OFF) probe_ds = probe_ds.with_options(options) return probe_ds self.probe_dataflow = _get_probe() tf.logging.info(self.info) tf.logging.info('[{}] Create {} \n train {} probe {} val {}'.format( self.version, FLAGS.dataset, self.train_dataset_size, self.probe_size, self.val_dataset_size)) return self
apache-2.0
richardtran415/pymatgen
pymatgen/analysis/magnetism/tests/test_heisenberg.py
5
2735
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. import os import unittest import warnings import pandas as pd from pymatgen.core.structure import Structure from pymatgen.analysis.magnetism.heisenberg import HeisenbergMapper from pymatgen.util.testing import PymatgenTest test_dir = os.path.join(PymatgenTest.TEST_FILES_DIR, "magnetic_orderings") class HeisenbergMapperTest(unittest.TestCase): @classmethod def setUpClass(cls): cls.df = pd.read_json(os.path.join(test_dir, "mag_orderings_test_cases.json")) # Good tests cls.Mn3Al = pd.read_json(os.path.join(test_dir, "Mn3Al.json")) cls.compounds = [cls.Mn3Al] cls.hms = [] for c in cls.compounds: ordered_structures = list(c["structure"]) ordered_structures = [Structure.from_dict(d) for d in ordered_structures] epa = list(c["energy_per_atom"]) energies = [e * len(s) for (e, s) in zip(epa, ordered_structures)] hm = HeisenbergMapper(ordered_structures, energies, cutoff=5.0, tol=0.02) cls.hms.append(hm) def setUp(self): pass def tearDown(self): warnings.simplefilter("default") def test_graphs(self): for hm in self.hms: sgraphs = hm.sgraphs self.assertEqual(len(sgraphs), 7) def test_sites(self): for hm in self.hms: unique_site_ids = hm.unique_site_ids self.assertEqual(unique_site_ids[(0, 1)], 0) def test_nn_interactions(self): for hm in self.hms: num_interacts = len(hm.nn_interactions) self.assertEqual(num_interacts, 3) dists = hm.dists self.assertEqual(dists["nn"], 2.51) def test_exchange_params(self): for hm in self.hms: ex_params = hm.get_exchange() J_nn = round(18.052116895702852, 3) self.assertEqual(round(ex_params["0-1-nn"], 3), J_nn) def test_mean_field(self): for hm in self.hms: j_avg = hm.estimate_exchange() value = round(52.54997149705518, 3) self.assertEqual(round(j_avg, 3), value) mft_t = hm.get_mft_temperature(j_avg) value = round(292.90252668100584) self.assertEqual(round(mft_t), value) def test_get_igraph(self): for hm in self.hms: igraph = hm.get_interaction_graph() self.assertEqual(len(igraph), 6) def test_heisenberg_model(self): for hm in self.hms: hmodel = hm.get_heisenberg_model() self.assertEqual(hmodel.formula, "Mn3Al") if __name__ == "__main__": unittest.main()
mit
jonathandunn/c2xg
c2xg/c2xg.py
1
34387
import os import random import numpy as np import pandas as pd import copy import operator import pickle import codecs from collections import defaultdict import multiprocessing as mp import cytoolz as ct from functools import partial from pathlib import Path from cleantext import clean try : from .modules.Encoder import Encoder from .modules.Loader import Loader from .modules.Parser import Parser from .modules.Association import Association from .modules.Candidates import Candidates from .modules.MDL_Learner import MDL_Learner from .modules.Parser import parse_examples except : from modules.Encoder import Encoder from modules.Loader import Loader from modules.Parser import Parser from modules.Association import Association from modules.Candidates import Candidates from modules.MDL_Learner import MDL_Learner from modules.Parser import parse_examples #------------------------------------------------------------ def eval_mdl(files, workers, candidates, Load, Encode, Parse, freq_threshold = -1, report = False): print("Now initiating MDL evaluation: " + str(files)) for file in files: print("\tStarting " + str(file)) MDL = MDL_Learner(Load, Encode, Parse, freq_threshold = freq_threshold, vectors = {"na": 0}, candidates = candidates) MDL.get_mdl_data([file], workers = workers, learn_flag = False) total_mdl, l1_cost, l2_match_cost, l2_regret_cost, baseline_mdl = MDL.evaluate_subset(subset = False, return_detail = True) if report == True: return total_mdl, l1_cost, l2_match_cost, l2_regret_cost, baseline_mdl #------------------------------------------------------------ def delta_grid_search(candidate_file, test_file, workers, mdl_workers, association_dict, freq_threshold, language, in_dir, out_dir, s3, s3_bucket, max_words, nickname = "current"): print("\nStarting grid search for beam search settings.") result_dict = {} delta_thresholds = [0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1] if len(delta_thresholds) < workers: parse_workers = len(delta_thresholds) else: parse_workers = workers #Multi-process# pool_instance = mp.Pool(processes = parse_workers, maxtasksperchild = 1) distribute_list = [(x, candidate_file) for x in delta_thresholds] pool_instance.map(partial(process_candidates, association_dict = association_dict.copy(), language = language, freq_threshold = freq_threshold, in_dir = in_dir, out_dir = out_dir, s3 = s3, s3_bucket = s3_bucket, max_words = max_words, nickname = nickname ), distribute_list, chunksize = 1) pool_instance.close() pool_instance.join() #Now MDL if language == "zho": zho_split = True else: zho_split = False Load = Loader(in_dir, out_dir, language, s3, s3_bucket, max_words = max_words) Encode = Encoder(Loader = Load, zho_split = zho_split) Parse = Parser(Load, Encode) for threshold in delta_thresholds: print("\tStarting MDL search for " + str(threshold)) filename = str(candidate_file) + "." + nickname + ".delta." + str(threshold) + ".p" candidates = Load.load_file(filename) if len(candidates) < 5: print("\tNot enough candidates!") else: mdl_score = eval_mdl(files = test_file, candidates = candidates, workers = mdl_workers, Load = Load, Encode = Encode, Parse = Parse, freq_threshold = freq_threshold, report = True ) result_dict[threshold] = mdl_score print("\tThreshold: " + str(threshold) + " and MDL: " + str(mdl_score)) #Get threshold with best score print(result_dict) best = min(result_dict.items(), key=operator.itemgetter(1))[0] #Get best candidates filename = str(candidate_file) + "." + nickname + ".delta." + str(best) + ".p" best_candidates = Load.load_file(filename) return best, best_candidates #------------------------------------------------------------ def process_candidates(input_tuple, association_dict, language, in_dir, out_dir, s3, s3_bucket, freq_threshold = 1, mode = "", max_words = False, nickname = "current"): threshold = input_tuple[0] candidate_file = input_tuple[1] print("\tStarting " + str(threshold) + " with freq threshold: " + str(freq_threshold)) Load = Loader(in_dir, out_dir, language, s3, s3_bucket, max_words) C = Candidates(language = language, Loader = Load, association_dict = association_dict) if mode == "candidates": filename = str(candidate_file + ".candidates.p") else: filename = str(candidate_file) + "." + nickname + ".delta." + str(threshold) + ".p" if filename not in Load.list_output(): candidates = C.process_file(candidate_file, threshold, freq_threshold, save = False) Load.save_file(candidates, filename) #Clean del association_dict del C return #------------------------------------------------------------------------------- class C2xG(object): def __init__(self, data_dir = None, language = "eng", nickname = "", model = "", smoothing = False, zho_split = False, max_words = False, fast_parse = True): #Initialize self.nickname = nickname if nickname != "": print("Current nickname: " + nickname) if data_dir != None: in_dir = os.path.join(data_dir, "IN") out_dir = os.path.join(data_dir, "OUT") else: in_dir = None out_dir = None self.language = language self.zho_split = zho_split self.Load = Loader(in_dir, out_dir, language = self.language, max_words = max_words) self.Encode = Encoder(Loader = self.Load, zho_split = self.zho_split) self.Association = Association(Loader = self.Load, nickname = self.nickname) self.Candidates = Candidates(language = self.language, Loader = self.Load) self.Parse = Parser(self.Load, self.Encode) self.in_dir = in_dir self.out_dir = out_dir self.max_words = max_words self.smoothing = smoothing #Try to load default or specified model if model == "": model = self.language + ".Grammar.v3.p" #Try to load grammar from file if isinstance(model, str): try: modelname = None if os.path.isfile( model ) : modelname = model else : modelname = Path(__file__).parent / os.path.join("data", "models", model) with open(modelname, "rb") as handle: self.model = pickle.load(handle) except Exception as e: print("No model exists, loading empty model.") self.model = None #Take model as input elif isinstance(model, list): self.model = model if fast_parse : self._detail_model() ## self.detailed_model set by this. else : self.detailed_model = None #self.n_features = len(self.model) self.Encode.build_decoder() #------------------------------------------------------------------ def _detail_model(self) : ## Update model so we can access grammar faster ... ## Want to make `if construction[0][1] == unit[construction[0][0]-1]` faster ## Dict on construction[0][1] which is self.model[i][0][1] (Call this Y) ## BUT unit[ construction[0][0] - 1 ] changes with unit ... ## construction[0][0] values are very limited. (call this X) ## dict[ construction[0][0] ][ construction[0][1] ] = list of constructions model_expanded = dict() X = list( set( [ self.model[i][0][0] for i in range(len(self.model)) ] ) ) for x in X : model_expanded[ x ] = defaultdict( list ) this_x_elems = list() for k, elem in enumerate( self.model ) : if elem[0][0] != x : continue elem_trunc = [ i for i in elem if i != (0,0) ] model_expanded[ x ][ elem[0][1] ].append( ( elem, elem_trunc, k ) ) self.detailed_model = ( X, model_expanded ) #------------------------------------------------------------------ def parse_return(self, input, mode = "files", workers = None): #Compatbility with idNet if mode == "idNet": mode = "lines" #Make sure grammar is loaded if self.model == None: print("Unable to parse: No grammar model provided.") sys.kill() #Accepts str of filename or list of strs of filenames if isinstance(input, str): input = [input] #Text as input if mode == "lines": lines = self.Parse.parse_idNet(input, self.model, workers, self.detailed_model ) return np.array(lines) #Filenames as input elif mode == "files": features = self.Parse.parse_batch(input, self.model, workers, self.detailed_model ) return np.array(features) #------------------------------------------------------------------------------- def parse_validate(self, input, workers = 1): self.Parse.parse_validate(input, grammar = self.model, workers = workers, detailed_grammar = self.detailed_model) #------------------------------------------------------------------------------- def parse_yield(self, input, mode = "files"): #Make sure grammar is loaded if self.model == None: print("Unable to parse: No grammar model provided.") sys.kill() #Accepts str of filename or list of strs in batch/stream modes if isinstance(input, str): input = [input] #Filenames as input if mode == "files": for features in self.Parse.parse_stream(input, self.model, detailed_grammar = self.detailed_model): yield np.array(features) #Texts as input elif mode == "lines": for line in input: line = self.Parse.parse_line_yield(line, self.model, detailed_grammar = self.detailed_model) yield np.array(line) #------------------------------------------------------------------------------- def print_constructions(self): return_list = [] for i in range(len(self.model)): x = self.model[i] printed_examples = [] #Prune to actual constraints x = [y for y in x if y[0] != 0] length = len(x) construction = self.Encode.decode_construction(x) print(i, construction) return_list.append(str(i) + ": " + str(construction)) return return_list #------------------------------------------------------------------------------- def print_examples(self, input_file, output_file, n): #Read and write in the default data directories output_file = os.path.join(self.out_dir, output_file) #Save the pre-processed lines, to save time later line_list = [] for line, encoding in self.Encode.load_examples(input_file): line_list.append([line, encoding]) with codecs.open(output_file, "w", encoding = "utf-8") as fw: for i in range(len(self.model)): x = self.model[i] printed_examples = [] #Prune to actual constraints x = [y for y in x if y[0] != 0] length = len(x) construction = self.Encode.decode_construction(x) print(i, construction) fw.write(str(i) + "\t") fw.write(construction) fw.write("\n") #Track how many examples have been found counter = 0 for line, encoding in line_list: construction_thing, indexes, matches = parse_examples(x, encoding) if matches > 0: for index in indexes: text = line.split()[index:index+length] if text not in printed_examples: counter += 1 printed_examples.append(text) fw.write("\t" + str(counter) + "\t" + str(text) + "\n") #Stop looking for examples at threshold if counter > n: break #End of examples for this construction fw.write("\n\n") #------------------------------------------------------------------------------- def get_association(self, input_data, freq_threshold = 1, smoothing = False, lex_only = False): #Load from file if necessary if isinstance(input_data, str): input_data = [x for x in self.Load.read_file(input_data)] ngrams = self.Association.find_ngrams(input_data, workers = 1, save = False, lex_only = lex_only) ngrams = self.Association.merge_ngrams(input_data, ngram_dict = ngrams, n_gram_threshold = freq_threshold) association_dict = self.Association.calculate_association(ngrams = ngrams, smoothing = smoothing, save = False) #Reduce to bigrams keepable = lambda x: len(x) > 1 all_ngrams = ct.keyfilter(keepable, association_dict) #Convert to readable CSV pairs = [] for pair in association_dict.keys(): try: val1 = self.Encode.decoding_dict[pair[0][0]][pair[0][1]] except Exception as e: val1 = "UNK" try: val2 = self.Encode.decoding_dict[pair[1][0]][pair[1][1]] except Exception as e: val2 = "UNK" if val1 != "UNK" and val2 != "UNK": maximum = max(association_dict[pair]["LR"], association_dict[pair]["RL"]) pairs.append([val1, val2, maximum, association_dict[pair]["LR"], association_dict[pair]["RL"], association_dict[pair]["Freq"]]) #Make dataframe df = pd.DataFrame(pairs, columns = ["Word1", "Word2", "Max", "LR", "RL", "Freq"]) df = df.sort_values("Max", ascending = False) return df #------------------------------------------------------------------------------- def get_lexicon(self, file): if self.data_dir == None: print("Error: Cannot train lexicons without specified data directory.") sys.kill() vocab = [] for line in self.Load.read_file(file): #Use clean-text line = clean(line, fix_unicode = True, to_ascii = False, lower = True, no_line_breaks = True, no_urls = True, no_emails = True, no_phone_numbers = True, no_numbers = True, no_digits = True, no_currency_symbols = True, no_punct = True, replace_with_punct = "", replace_with_url = "<URL>", replace_with_email = "<EMAIL>", replace_with_phone_number = "<PHONE>", replace_with_number = "<NUMBER>", replace_with_digit = "0", replace_with_currency_symbol = "<CUR>" ) line = line.split() vocab += line return set(vocab) #------------------------------------------------------------------------------- def learn(self, nickname, cycles = 1, cycle_size = (1, 5, 20), freq_threshold = 10, beam_freq_threshold = 10, turn_limit = 10, workers = 1, mdl_workers = 1, states = None, fixed_set = [], beam_threshold = None, no_mdl = False, ): self.nickname = nickname if self.data_dir == None: print("Error: Cannot train grammars without specified data directory.") sys.kill() #Check learning state and resume self.model_state_file = self.language + "." + self.nickname + ".State.p" try: loader_files = self.Load.list_output() except: loader_files = [] if self.model_state_file in loader_files: print("Resuming learning state.") self.progress_dict, self.data_dict = self.Load.load_file(self.model_state_file) if states != None: print("Manual state change!") for state in states: self.progress_dict[state[0]][state[1]] = state[2] else: print("Initializing learning state.") self.data_dict = self.divide_data(cycles, cycle_size, fixed_set) self.progress_dict = self.set_progress() self.Load.save_file((self.progress_dict, self.data_dict), self.model_state_file) #Check beam setting if beam_threshold != None: self.progress_dict["BeamSearch"] = beam_threshold #Learn each cycle for cycle in self.progress_dict.keys(): if isinstance(cycle, int): if self.progress_dict[cycle]["State"] == "Complete": print("\t Cycle " + str(cycle) + " already complete.") #This cycle is not yet finished else: #-----------------# #BACKGROUND STAGE #-----------------# if self.progress_dict[cycle]["Background_State"] != "Complete": #Check if ngram extraction is finished if self.progress_dict[cycle]["Background_State"] == "None": check_files = self.Load.list_output(type = "ngrams") pop_list = [] for i in range(len(self.progress_dict[cycle]["Background"])): if self.progress_dict[cycle]["Background"][i] + "." + self.nickname + ".ngrams.p" in check_files: pop_list.append(i) #Pop items separately in reverse order if len(pop_list) > 0: for i in sorted(pop_list, reverse = True): self.progress_dict[cycle]["Background"].pop(i) #If remaining background files, process them if len(self.progress_dict[cycle]["Background"]) > 0: print("\tNow processing remaining files: " + str(len(self.progress_dict[cycle]["Background"]))) self.Association.find_ngrams(self.progress_dict[cycle]["Background"], workers) #Change state self.progress_dict[cycle]["Background_State"] = "Ngrams" self.Load.save_file((self.progress_dict, self.data_dict), self.model_state_file) #Check if ngram merging is finished if self.progress_dict[cycle]["Background_State"] == "Ngrams": files = [filename + "." + self.nickname + ".ngrams.p" for filename in self.data_dict[cycle]["Background"]] print("\tNow merging ngrams for files: " + str(len(files))) ngrams = self.Association.merge_ngrams(files, freq_threshold) #Save data and state self.Load.save_file(ngrams, nickname + ".Cycle-" + str(cycle) + ".Merged-Grams.p") self.progress_dict[cycle]["Background_State"] = "Merged" self.Load.save_file((self.progress_dict, self.data_dict), self.model_state_file) #Check if association_dict has been made if self.progress_dict[cycle]["Background_State"] == "Merged": ngrams = self.Load.load_file(nickname + ".Cycle-" + str(cycle) + ".Merged-Grams.p") association_dict = self.Association.calculate_association(ngrams = ngrams, smoothing = self.smoothing, save = False) del ngrams self.Load.save_file(association_dict, nickname + ".Cycle-" + str(cycle) + ".Association_Dict.p") self.progress_dict[cycle]["Background_State"] = "Complete" self.Load.save_file((self.progress_dict, self.data_dict), self.model_state_file) self.association_dict = association_dict else: print("\tLoading association_dict.") self.association_dict = self.Load.load_file(nickname + ".Cycle-" + str(cycle) + ".Association_Dict.p") #-----------------# #CANDIDATE STAGE #-----------------# if self.progress_dict[cycle]["Candidate_State"] != "Complete": print("Initializing Candidates module") C = Candidates(self.language, self.Load, workers, self.association_dict) #Find beam search threshold if self.progress_dict["BeamSearch"] == "None" or self.progress_dict["BeamSearch"] == {}: print("Finding Beam Search settings.") delta_threshold, best_candidates = delta_grid_search(candidate_file = self.data_dict["BeamCandidates"], test_file = self.data_dict["BeamTest"], workers = workers, mdl_workers = mdl_workers, association_dict = self.association_dict, freq_threshold = beam_freq_threshold, language = self.language, in_dir = self.in_dir, out_dir = self.out_dir, s3 = self.s3, s3_bucket = self.s3_bucket, nickname = self.nickname, max_words = self.max_words, ) self.progress_dict["BeamSearch"] = delta_threshold self.progress_dict[cycle]["Candidate_State"] = "Threshold" self.Load.save_file((self.progress_dict, self.data_dict), self.model_state_file) #If saved, load beam search threshold else: print("Loading Beam Search settings.") delta_threshold = self.progress_dict["BeamSearch"] self.progress_dict[cycle]["Candidate_State"] = "Threshold" #For a fixed set experiment, we use the same data so we keep the best candidates if fixed_set == []: #Check which files have been completed if self.progress_dict[cycle]["Candidate_State"] == "Threshold": check_files = self.Load.list_output(type = "candidates") pop_list = [] for i in range(len(self.progress_dict[cycle]["Candidate"])): if self.progress_dict[cycle]["Candidate"][i] + ".candidates.p" in check_files: pop_list.append(i) #Pop items separately in reverse order if len(pop_list) > 0: for i in sorted(pop_list, reverse = True): self.progress_dict[cycle]["Candidate"].pop(i) #If remaining candidate files, process them if len(self.progress_dict[cycle]["Candidate"]) > 0: print("\n\tNow processing remaining files: " + str(len(self.progress_dict[cycle]["Candidate"]))) #Multi-process# if workers > len(self.progress_dict[cycle]["Candidate"]): candidate_workers = len(self.progress_dict[cycle]["Candidate"]) else: candidate_workers = workers pool_instance = mp.Pool(processes = candidate_workers, maxtasksperchild = 1) distribute_list = [(delta_threshold, x) for x in self.progress_dict[cycle]["Candidate"]] pool_instance.map(partial(process_candidates, association_dict = self.association_dict.copy(), language = self.language, in_dir = self.in_dir, out_dir = self.out_dir, s3 = self.s3, s3_bucket = self.s3_bucket, mode = "candidates", max_words = self.max_words, ), distribute_list, chunksize = 1) pool_instance.close() pool_instance.join() self.progress_dict[cycle]["Candidate_State"] = "Merge" self.Load.save_file((self.progress_dict, self.data_dict), self.model_state_file) #Merge and Save candidates if self.progress_dict[cycle]["Candidate_State"] == "Merge": output_files = [filename + ".candidates.p" for filename in self.data_dict[cycle]["Candidate"]] candidates = self.Candidates.merge_candidates(output_files, freq_threshold) self.Load.save_file(candidates, nickname + ".Cycle-" + str(cycle) + ".Candidates.p") self.progress_dict[cycle]["Candidate_State"] = "Dict" self.Load.save_file((self.progress_dict, self.data_dict), self.model_state_file) #Make association vectors if self.progress_dict[cycle]["Candidate_State"] == "Dict": candidates = self.Load.load_file(nickname + ".Cycle-" + str(cycle) + ".Candidates.p") candidate_dict = self.Candidates.get_association(candidates, self.association_dict) self.Load.save_file(candidate_dict, nickname + ".Cycle-" + str(cycle) + ".Candidate_Dict.p") self.progress_dict[cycle]["Candidate_State"] == "Complete" self.Load.save_file((self.progress_dict, self.data_dict), self.model_state_file) else: print("\tLoading candidate_dict.") candidate_dict = self.Load.load_file(nickname + ".Cycle-" + str(cycle) + ".Candidate_Dict.p") candidates = self.Load.load_file(nickname + ".Cycle-" + str(cycle) + ".Candidates.p") del self.association_dict #If there was a fixed set of training/testing files elif fixed_set != []: candidates = best_candidates candidate_dict = self.Candidates.get_association(candidates, self.association_dict) del self.association_dict self.progress_dict[cycle]["Candidate_State"] == "Complete" #-----------------# #MDL STAGE #-----------------# if no_mdl == False: if self.progress_dict[cycle]["MDL_State"] != "Complete": #Prep test data for MDL if self.progress_dict[cycle]["MDL_State"] == "None": MDL = MDL_Learner(self.Load, self.Encode, self.Parse, freq_threshold = 1, vectors = candidate_dict, candidates = candidates) MDL.get_mdl_data(self.progress_dict[cycle]["Test"], workers = mdl_workers) self.Load.save_file(MDL, nickname + ".Cycle-" + str(cycle) + ".MDL.p") self.progress_dict[cycle]["MDL_State"] = "EM" self.Load.save_file((self.progress_dict, self.data_dict), self.model_state_file) #Run EM-based Tabu Search if self.progress_dict[cycle]["MDL_State"] == "EM": try: MDL.search_em(turn_limit, mdl_workers) except: MDL = self.Load.load_file(nickname + ".Cycle-" + str(cycle) + ".MDL.p") MDL.search_em(turn_limit, mdl_workers) self.Load.save_file(MDL, nickname + ".Cycle-" + str(cycle) + ".MDL.p") self.progress_dict[cycle]["MDL_State"] = "Direct" self.Load.save_file((self.progress_dict, self.data_dict), self.model_state_file) #Run direct Tabu Search if self.progress_dict[cycle]["MDL_State"] == "Direct": try: MDL.search_direct(turn_limit*3, mdl_workers) except: MDL = self.Load.load_file(nickname + ".Cycle-" + str(cycle) + ".MDL.p") MDL.search_direct(turn_limit*3, mdl_workers) #Get grammar to save grammar_dict = defaultdict(dict) for i in range(len(MDL.candidates)): grammar_dict[i]["Constructions"] = MDL.candidates[i] grammar_dict[i]["Matches"] = MDL.matches[i] #Save grammar self.Load.save_file(grammar_dict, nickname + ".Cycle-" + str(cycle) + ".Final_Grammar.p") self.progress_dict[cycle]["MDL_State"] = "Complete" self.progress_dict[cycle]["State"] = "Complete" self.Load.save_file((self.progress_dict, self.data_dict), self.model_state_file) del MDL elif no_mdl == True: print("Calculating MDL") self.progress_dict[cycle]["MDL_State"] = "Complete" self.progress_dict[cycle]["State"] = "Complete" #-----------------# #MERGING STAGE #-----------------# if self.progress_dict[cycle]["State"] == "Complete": if no_mdl == False: print("Starting to merge fold grammars.") grammar_files = [nickname + ".Cycle-" + str(i) + ".Final_Grammar.p" for i in range(cycles)] final_grammar = self.merge_grammars(grammar_files) self.Load.save_file(final_grammar, self.language + ".Grammar.p") else: final_grammar = list(candidates.keys()) self.Load.save_file(final_grammar, self.nickname + ".Grammar_BeamOnly.p") #------------------------------------------------------------------------------- def merge_grammars(self, grammar_files, no_mdl = False): all_grammars = {} if no_mdl == False: #Load all grammar files for file in grammar_files: current_dict = self.Load.load_file(file) #Iterate over constructions in current fold grammar for key in current_dict.keys(): current_construction = current_dict[key]["Constructions"] current_construction = current_construction.tolist() current_matches = current_dict[key]["Matches"] #Reformat new_construction = [] for unit in current_construction: new_type = unit[0] new_index = unit[1] if new_type != 0: new_construction.append(tuple((new_type, new_index))) #Make hashable new_construction = tuple(new_construction) #Add to dictionary if new_construction not in all_grammars: all_grammars[new_construction] = {} all_grammars[new_construction]["Matches"] = current_matches all_grammars[new_construction]["Selected"] = 1 else: all_grammars[new_construction]["Matches"] += current_matches all_grammars[new_construction]["Selected"] += 1 #Done loading grammars print("Final grammar for " + self.language + " contains " + str(len(list(all_grammars.keys())))) final_grammar = list(all_grammars.keys()) final_grammar = self.Parse.format_grammar(final_grammar) else: final_grammar = [] for file in grammar_files: current_dict = self.Load.load_file(file) for key in current_dict: if key not in final_grammar: final_grammar.append(key) return final_grammar #------------------------------------------------------------------------------- def divide_data(self, cycles, cycle_size, fixed_set = []): data_dict = defaultdict(dict) #For a fixed set experiment, we use the same data for all simulations if fixed_set != []: data_dict["BeamCandidates"] = fixed_set data_dict["BeamTest"] = fixed_set for cycle in range(cycles): data_dict[cycle]["Test"] = fixed_set data_dict[cycle]["Candidate"] = fixed_set data_dict[cycle]["Background"] = fixed_set #Otherwise we get unique data else: input_files = self.Load.list_input() #Get number of files to use for each purpose num_test_files = cycle_size[0] num_candidate_files = cycle_size[1] num_background_files = cycle_size[2] num_cycle_files = cycle_size[0] + cycle_size[1] + cycle_size[2] #Get Beam Search tuning files candidate_i = random.randint(0, len(input_files)) candidate_file = input_files.pop(candidate_i) test_i = random.randint(0, len(input_files)) test_file = input_files.pop(test_i) #Get and divide input data data_dict["BeamCandidates"] = candidate_file data_dict["BeamTest"] = test_file #Get unique data for each cycle for cycle in range(cycles): #Randomize remaining files random.shuffle(input_files) cycle_files = [] #Gather as many files as required for segment in range(num_cycle_files): current_file = input_files.pop() cycle_files.append(current_file) #Assign files as final MDL test data random.shuffle(cycle_files) test_files = [] for file in range(num_test_files): current_file = cycle_files.pop() test_files.append(current_file) data_dict[cycle]["Test"] = test_files #Assign files as candidate estimation data random.shuffle(cycle_files) candidate_files = [] for file in range(num_candidate_files): current_file = cycle_files.pop() candidate_files.append(current_file) data_dict[cycle]["Candidate"] = candidate_files #Assign files as candidate estimation data random.shuffle(cycle_files) background_files = [] for file in range(num_background_files): current_file = cycle_files.pop() background_files.append(current_file) data_dict[cycle]["Background"] = background_files return data_dict #------------------------------------------------------------------------------- def set_progress(self): progress_dict = defaultdict(dict) progress_dict["BeamSearch"] = "None" for cycle in self.data_dict.keys(): if isinstance(cycle, int): progress_dict[cycle]["State"] = "Incomplete" progress_dict[cycle]["Background"] = self.data_dict[cycle]["Background"].copy() progress_dict[cycle]["Background_State"] = "None" progress_dict[cycle]["Candidate"] = self.data_dict[cycle]["Candidate"].copy() progress_dict[cycle]["Candidate_State"] = "None" progress_dict[cycle]["Test"] = self.data_dict[cycle]["Test"].copy() progress_dict[cycle]["MDL_State"] = "None" return progress_dict #----------------------------------------------- def fuzzy_jaccard(self, grammar1, grammar2, threshold = 0.70, workers = 2): umbrella = set(grammar1 + grammar2) #First grammar pool_instance = mp.Pool(processes = workers, maxtasksperchild = None) matches1 = pool_instance.map(partial(self.fuzzy_match, grammar = grammar1, threshold = threshold), umbrella, chunksize = 100) pool_instance.close() pool_instance.join() #Second gammar pool_instance = mp.Pool(processes = workers, maxtasksperchild = None) matches2 = pool_instance.map(partial(self.fuzzy_match, grammar = grammar2, threshold = threshold), umbrella, chunksize = 100) pool_instance.close() pool_instance.join() result = 1 - jaccard(matches1, matches2) return result #----------------------------------------------- def fuzzy_match(self, construction, grammar, threshold = 0.70): match = 0 #Check for exact match if construction in grammar: match = 1 #Or fall back to highest overlap else: for u_construction in grammar: s = difflib.SequenceMatcher(None, construction, u_construction) length = max(len(construction), len(u_construction)) overlap = sum([x[2] for x in s.get_matching_blocks()]) / float(length) if overlap >= threshold: match = 1 break return match #----------------------------------------------- def get_mdl(self, candidates, file, workers = 2, freq_threshold = -1): result = eval_mdl([file], workers = workers, candidates = candidates, Load = self.Load, Encode = self.Encode, Parse = self.Parse, freq_threshold = freq_threshold, report = True ) return result #----------------------------------------------- def step_data(self, data, step): return_data = [] extra_data = [] counter = 0 for line in data: if len(line) > 5: if counter < step: return_data.append(line) counter += len(line.split()) else: extra_data.append(line) return return_data, extra_data #----------------------------------------------- def forget_constructions(self, grammar, datasets, workers = None, threshold = 1, adjustment = 0.25, increment_size = 100000): round = 0 weights = [1 for x in range(len(grammar))] for i in range(20): print(round, len(grammar)) round += 1 for i in range(len(datasets)): dataset = datasets[i] data_parse, data_keep = self.step_data(dataset, increment_size) datasets[i] = data_keep if len(dataset) > 25: self.model = grammar self._detail_model() vector = np.array(self.parse_return(data_parse, mode = "lines")) vector = np.sum(vector, axis = 0) weights = [1 if vector[i] > threshold else weights[i]-adjustment for i in range(len(weights))] grammar = [grammar[i] for i in range(len(grammar)) if weights[i] >= 0.0001] weights = [weights[i] for i in range(len(weights)) if weights[i] >= 0.0001] return grammar #-----------------------------------------------
gpl-3.0
larsmans/scikit-learn
sklearn/svm/tests/test_bounds.py
42
2112
import nose from nose.tools import assert_true import numpy as np from scipy import sparse as sp from sklearn.svm.bounds import l1_min_c from sklearn.svm import LinearSVC from sklearn.linear_model.logistic import LogisticRegression dense_X = [[-1, 0], [0, 1], [1, 1], [1, 1]] sparse_X = sp.csr_matrix(dense_X) Y1 = [0, 1, 1, 1] Y2 = [2, 1, 0, 0] def test_l1_min_c(): losses = ['l2', 'log'] Xs = {'sparse': sparse_X, 'dense': dense_X} Ys = {'two-classes': Y1, 'multi-class': Y2} intercepts = {'no-intercept': {'fit_intercept': False}, 'fit-intercept': {'fit_intercept': True, 'intercept_scaling': 10}} for loss in losses: for X_label, X in Xs.items(): for Y_label, Y in Ys.items(): for intercept_label, intercept_params in intercepts.items(): check = lambda: check_l1_min_c(X, Y, loss, **intercept_params) check.description = ('Test l1_min_c loss=%r %s %s %s' % (loss, X_label, Y_label, intercept_label)) yield check def check_l1_min_c(X, y, loss, fit_intercept=True, intercept_scaling=None): min_c = l1_min_c(X, y, loss, fit_intercept, intercept_scaling) clf = { 'log': LogisticRegression(penalty='l1'), 'l2': LinearSVC(loss='l2', penalty='l1', dual=False), }[loss] clf.fit_intercept = fit_intercept clf.intercept_scaling = intercept_scaling clf.C = min_c clf.fit(X, y) assert_true((np.asarray(clf.coef_) == 0).all()) assert_true((np.asarray(clf.intercept_) == 0).all()) clf.C = min_c * 1.01 clf.fit(X, y) assert_true((np.asarray(clf.coef_) != 0).any() or (np.asarray(clf.intercept_) != 0).any()) @nose.tools.raises(ValueError) def test_ill_posed_min_c(): X = [[0, 0], [0, 0]] y = [0, 1] l1_min_c(X, y) @nose.tools.raises(ValueError) def test_unsupported_loss(): l1_min_c(dense_X, Y1, 'l1')
bsd-3-clause
cheral/orange3
Orange/data/io.py
1
36192
import contextlib import csv import locale import pickle import re import subprocess import sys import warnings from ast import literal_eval from collections import OrderedDict, Counter from functools import lru_cache from itertools import chain, repeat from math import isnan from numbers import Number from os import path, unlink from tempfile import NamedTemporaryFile from urllib.parse import urlparse, urlsplit, urlunsplit, unquote as urlunquote from urllib.request import urlopen, Request import bottleneck as bn import numpy as np from chardet.universaldetector import UniversalDetector from Orange.data import ( _io, is_discrete_values, MISSING_VALUES, Table, Domain, Variable, DiscreteVariable, StringVariable, ContinuousVariable, TimeVariable, ) from Orange.util import Registry, flatten, namegen __all__ = ["Flags", "FileFormat"] _IDENTITY = lambda i: i class Compression: """Supported compression extensions""" GZIP = '.gz' BZIP2 = '.bz2' XZ = '.xz' all = (GZIP, BZIP2, XZ) def open_compressed(filename, *args, _open=open, **kwargs): """Return seamlessly decompressed open file handle for `filename`""" if isinstance(filename, str): if filename.endswith(Compression.GZIP): from gzip import open as _open elif filename.endswith(Compression.BZIP2): from bz2 import open as _open elif filename.endswith(Compression.XZ): from lzma import open as _open return _open(filename, *args, **kwargs) # Else already a file, just pass it through return filename def detect_encoding(filename): """ Detect encoding of `filename`, which can be a ``str`` filename, a ``file``-like object, or ``bytes``. """ # Try with Unix file utility first because it's faster (~10ms vs 100ms) if isinstance(filename, str) and not filename.endswith(Compression.all): try: with subprocess.Popen(('file', '--brief', '--mime-encoding', filename), stdout=subprocess.PIPE) as process: process.wait() if process.returncode == 0: encoding = process.stdout.read().strip() # file only supports these encodings; for others it says # unknown-8bit or binary. So we give chardet a chance to do # better if encoding in (b'utf-8', b'us-ascii', b'iso-8859-1', b'utf-7', b'utf-16le', b'utf-16be', b'ebcdic'): return encoding.decode('us-ascii') except OSError: pass # windoze # file not available or unable to guess the encoding, have chardet do it detector = UniversalDetector() # We examine only first N 4kB blocks of file because chardet is really slow MAX_BYTES = 4*1024*12 def _from_file(f): detector.feed(f.read(MAX_BYTES)) detector.close() return (detector.result.get('encoding') if detector.result.get('confidence', 0) >= .85 else 'utf-8') if isinstance(filename, str): with open_compressed(filename, 'rb') as f: return _from_file(f) elif isinstance(filename, bytes): detector.feed(filename[:MAX_BYTES]) detector.close() return detector.result.get('encoding') elif hasattr(filename, 'encoding'): return filename.encoding else: # assume file-like object that you can iter through return _from_file(filename) def guess_data_type(orig_values): """ Use heuristics to guess data type. """ valuemap, values = [], orig_values is_discrete = is_discrete_values(orig_values) if is_discrete: valuemap = sorted(is_discrete) coltype = DiscreteVariable else: try: values = [float(i) for i in orig_values] except ValueError: tvar = TimeVariable('_') try: values = [tvar.parse(i) for i in orig_values] except ValueError: coltype = StringVariable else: coltype = TimeVariable else: coltype = ContinuousVariable return valuemap, values, coltype def sanitize_variable(valuemap, values, orig_values, coltype, coltype_kwargs, domain_vars, existing_var, new_var_name, data=None): if valuemap: # Map discrete data to ints def valuemap_index(val): try: return valuemap.index(val) except ValueError: return np.nan values = np.vectorize(valuemap_index, otypes=[float])(orig_values) coltype_kwargs.update(values=valuemap) if coltype is StringVariable: values = ['' if i is np.nan else i for i in orig_values] var = None if domain_vars is not None: if existing_var: # Use existing variable if available var = coltype.make(existing_var.strip(), **coltype_kwargs) else: # Never use existing for un-named variables var = coltype(new_var_name, **coltype_kwargs) # Reorder discrete values to match existing variable if var.is_discrete and not var.ordered: new_order, old_order = var.values, coltype_kwargs.get('values', var.values) if new_order != old_order: offset = len(new_order) column = values if data.ndim > 1 else data column += offset for i, val in enumerate(var.values): try: oldval = old_order.index(val) except ValueError: continue bn.replace(column, offset + oldval, new_order.index(val)) if isinstance(var, TimeVariable) or coltype is TimeVariable: # Re-parse the values because only now after coltype.make call # above, variable var is the correct one _var = var if isinstance(var, TimeVariable) else TimeVariable('_') values = [_var.parse(i) for i in orig_values] return values, var class Flags: """Parser for column flags (i.e. third header row)""" DELIMITER = ' ' _RE_SPLIT = re.compile(r'(?<!\\)' + DELIMITER).split _RE_ATTR_UNQUOTED_STR = re.compile(r'^[a-zA-Z_]').match ALL = OrderedDict(( ('class', 'c'), ('ignore', 'i'), ('meta', 'm'), ('weight', 'w'), ('.+?=.*?', ''), # general key=value attributes )) _RE_ALL = re.compile(r'^({})$'.format('|'.join(filter(None, flatten(ALL.items()))))) def __init__(self, flags): for v in filter(None, self.ALL.values()): setattr(self, v, False) self.attributes = {} for flag in flags or []: flag = flag.strip() if self._RE_ALL.match(flag): if '=' in flag: k, v = flag.split('=', 1) if not Flags._RE_ATTR_UNQUOTED_STR(v): try: v = literal_eval(v) except SyntaxError: # If parsing failed, treat value as string pass self.attributes[k] = v else: setattr(self, flag, True) setattr(self, self.ALL.get(flag, ''), True) elif flag: warnings.warn('Invalid attribute flag \'{}\''.format(flag)) @staticmethod def join(iterable, *args): return Flags.DELIMITER.join(i.strip().replace(Flags.DELIMITER, '\\' + Flags.DELIMITER) for i in chain(iterable, args)).lstrip() @staticmethod def split(s): return [i.replace('\\' + Flags.DELIMITER, Flags.DELIMITER) for i in Flags._RE_SPLIT(s)] # Matches discrete specification where all the values are listed, space-separated _RE_DISCRETE_LIST = re.compile(r'^\s*[^\s]+(\s[^\s]+)+\s*$') _RE_TYPES = re.compile(r'^\s*({}|{}|)\s*$'.format(_RE_DISCRETE_LIST.pattern, '|'.join(flatten(getattr(vartype, 'TYPE_HEADERS') for vartype in Variable.registry.values())))) _RE_FLAGS = re.compile(r'^\s*( |{}|)*\s*$'.format('|'.join(flatten(filter(None, i) for i in Flags.ALL.items())))) class FileFormatMeta(Registry): def __new__(cls, name, bases, attrs): newcls = super().__new__(cls, name, bases, attrs) # Optionally add compressed versions of extensions as supported if getattr(newcls, 'SUPPORT_COMPRESSED', False): new_extensions = list(getattr(newcls, 'EXTENSIONS', ())) for compression in Compression.all: for ext in newcls.EXTENSIONS: new_extensions.append(ext + compression) # OSX file dialog doesn't support filtering on double # extensions (e.g. .csv.gz) # https://bugreports.qt.io/browse/QTBUG-38303 # This is just here for OWFile that gets QFileDialog # filters from FileFormat.readers.keys() if sys.platform == 'darwin': new_extensions.append(compression) newcls.EXTENSIONS = tuple(new_extensions) return newcls @property def formats(cls): return cls.registry.values() @lru_cache(5) def _ext_to_attr_if_attr2(cls, attr, attr2): """ Return ``{ext: `attr`, ...}`` dict if ``cls`` has `attr2`. If `attr` is '', return ``{ext: cls, ...}`` instead. """ return OrderedDict((ext, getattr(cls, attr, cls)) for cls in cls.registry.values() if hasattr(cls, attr2) for ext in getattr(cls, 'EXTENSIONS', [])) @property def names(cls): return cls._ext_to_attr_if_attr2('DESCRIPTION', '__class__') @property def writers(cls): return cls._ext_to_attr_if_attr2('', 'write_file') @property def readers(cls): return cls._ext_to_attr_if_attr2('', 'read') @property def img_writers(cls): return cls._ext_to_attr_if_attr2('', 'write_image') @property def graph_writers(cls): return cls._ext_to_attr_if_attr2('', 'write_graph') class FileFormat(metaclass=FileFormatMeta): """ Subclasses set the following attributes and override the following methods: EXTENSIONS = ('.ext1', '.ext2', ...) DESCRIPTION = 'human-readable file format description' SUPPORT_COMPRESSED = False SUPPORT_SPARSE_DATA = False def read(self): ... # load headers, data, ... return self.data_table(data, headers) @classmethod def write_file(cls, filename, data): ... self.write_headers(writer.write, data) writer.writerows(data) Wrapper FileFormat.data_table() returns Orange.data.Table from `data` iterable (list (rows) of lists of values (cols)). """ PRIORITY = 10000 # Sort order in OWSave widget combo box, lower is better def __init__(self, filename): """ Parameters ---------- filename : str name of the file to open """ self.filename = filename self.sheet = None @property def sheets(self): """FileFormats with a notion of sheets should override this property to return a list of sheet names in the file. Returns ------- a list of sheet names """ return () def select_sheet(self, sheet): """Select sheet to be read Parameters ---------- sheet : str sheet name """ self.sheet = sheet @classmethod def get_reader(cls, filename): """Return reader instance that can be used to read the file Parameters ---------- filename : str Returns ------- FileFormat """ for ext, reader in cls.readers.items(): # Skip ambiguous, invalid compression-only extensions added on OSX if ext in Compression.all: continue if filename.endswith(ext): return reader(filename) raise IOError('No readers for file "{}"'.format(filename)) @classmethod def write(cls, filename, data): return cls.write_file(filename, data) @classmethod def write_table_metadata(cls, filename, data): if isinstance(filename, str) and hasattr(data, 'attributes'): if all(isinstance(key, str) and isinstance(value, str) for key, value in data.attributes.items()): with open(filename + '.metadata', 'w') as f: f.write("\n".join("{}: {}".format(*kv) for kv in data.attributes.items())) else: with open(filename + '.metadata', 'wb') as f: pickle.dump(data.attributes, f, pickle.HIGHEST_PROTOCOL) @classmethod def set_table_metadata(cls, filename, table): # pylint: disable=bare-except if isinstance(filename, str) and path.exists(filename + '.metadata'): try: with open(filename + '.metadata', 'rb') as f: table.attributes = pickle.load(f) # Unpickling throws different exceptions, not just UnpickleError except: with open(filename + '.metadata') as f: table.attributes = OrderedDict( (k.strip(), v.strip()) for k, v in (line.split(":", 1) for line in f.readlines())) @classmethod def locate(cls, filename, search_dirs=('.',)): """Locate a file with given filename that can be opened by one of the available readers. Parameters ---------- filename : str search_dirs : Iterable[str] Returns ------- str Absolute path to the file """ if path.exists(filename): return filename for directory in search_dirs: absolute_filename = path.join(directory, filename) if path.exists(absolute_filename): break for ext in cls.readers: if filename.endswith(ext): break if path.exists(absolute_filename + ext): absolute_filename += ext break if path.exists(absolute_filename): break else: absolute_filename = "" if not path.exists(absolute_filename): raise IOError('File "{}" was not found.'.format(filename)) return absolute_filename @staticmethod def open(filename, *args, **kwargs): """ Format handlers can use this method instead of the builtin ``open()`` to transparently (de)compress files if requested (according to `filename` extension). Set ``SUPPORT_COMPRESSED=True`` if you use this. """ return open_compressed(filename, *args, **kwargs) @staticmethod def parse_headers(data): """Return (header rows, rest of data) as discerned from `data`""" def is_number(item): try: float(item) except ValueError: return False return True # Second row items are type identifiers def header_test2(items): return all(map(_RE_TYPES.match, items)) # Third row items are flags and column attributes (attr=value) def header_test3(items): return all(map(_RE_FLAGS.match, items)) data = iter(data) header_rows = [] # Try to parse a three-line header lines = [] try: lines.append(list(next(data))) lines.append(list(next(data))) lines.append(list(next(data))) except StopIteration: lines, data = [], chain(lines, data) if lines: l1, l2, l3 = lines # Three-line header if line 2 & 3 match (1st line can be anything) if header_test2(l2) and header_test3(l3): header_rows = [l1, l2, l3] else: lines, data = [], chain((l1, l2, l3), data) # Try to parse a single-line header if not header_rows: try: lines.append(list(next(data))) except StopIteration: pass if lines: # Header if none of the values in line 1 parses as a number if not all(is_number(i) for i in lines[0]): header_rows = [lines[0]] else: data = chain(lines, data) return header_rows, data @classmethod def data_table(self, data, headers=None): """ Return Orange.data.Table given rows of `headers` (iterable of iterable) and rows of `data` (iterable of iterable; if ``numpy.ndarray``, might as well **have it sorted column-major**, e.g. ``order='F'``). Basically, the idea of subclasses is to produce those two iterables, however they might. If `headers` is not provided, the header rows are extracted from `data`, assuming they precede it. """ if not headers: headers, data = self.parse_headers(data) # Consider various header types (single-row, two-row, three-row, none) if 3 == len(headers): names, types, flags = map(list, headers) else: if 1 == len(headers): HEADER1_FLAG_SEP = '#' # First row format either: # 1) delimited column names # 2) -||- with type and flags prepended, separated by #, # e.g. d#sex,c#age,cC#IQ _flags, names = zip(*[i.split(HEADER1_FLAG_SEP, 1) if HEADER1_FLAG_SEP in i else ('', i) for i in headers[0]]) names = list(names) elif 2 == len(headers): names, _flags = map(list, headers) else: # Use heuristics for everything names, _flags = [], [] types = [''.join(filter(str.isupper, flag)).lower() for flag in _flags] flags = [Flags.join(filter(str.islower, flag)) for flag in _flags] # Determine maximum row length rowlen = max(map(len, (names, types, flags))) def _equal_length(lst): lst.extend(['']*(rowlen - len(lst))) return lst # Ensure all data is of equal width in a column-contiguous array data = np.array([_equal_length(list(row)) for row in data if any(row)], copy=False, dtype=object, order='F') # Data may actually be longer than headers were try: rowlen = data.shape[1] except IndexError: pass else: for lst in (names, types, flags): _equal_length(lst) NAMEGEN = namegen('Feature ', 1) Xcols, attrs = [], [] Mcols, metas = [], [] Ycols, clses = [], [] Wcols = [] # Rename variables if necessary # Reusing across files still works if both files have same duplicates name_counts = Counter(names) del name_counts[""] if len(name_counts) != len(names) and name_counts: uses = {name: 0 for name, count in name_counts.items() if count > 1} for i, name in enumerate(names): if name in uses: uses[name] += 1 names[i] = "{}_{}".format(name, uses[name]) # Iterate through the columns for col in range(rowlen): flag = Flags(Flags.split(flags[col])) if flag.i: continue type_flag = types and types[col].strip() try: orig_values = [np.nan if i in MISSING_VALUES else i for i in (i.strip() for i in data[:, col])] except IndexError: # No data instances leads here orig_values = [] # In this case, coltype could be anything. It's set as-is # only to satisfy test_table.TableTestCase.test_append coltype = DiscreteVariable coltype_kwargs = {} valuemap = [] values = orig_values if type_flag in StringVariable.TYPE_HEADERS: coltype = StringVariable elif type_flag in ContinuousVariable.TYPE_HEADERS: coltype = ContinuousVariable try: values = [float(i) for i in orig_values] except ValueError: for row, num in enumerate(orig_values): try: float(num) except ValueError: break raise ValueError('Non-continuous value in (1-based) ' 'line {}, column {}'.format(row + len(headers) + 1, col + 1)) elif type_flag in TimeVariable.TYPE_HEADERS: coltype = TimeVariable elif (type_flag in DiscreteVariable.TYPE_HEADERS or _RE_DISCRETE_LIST.match(type_flag)): coltype = DiscreteVariable if _RE_DISCRETE_LIST.match(type_flag): valuemap = Flags.split(type_flag) coltype_kwargs.update(ordered=True) else: valuemap = sorted(set(orig_values) - {np.nan}) else: # No known type specified, use heuristics valuemap, values, coltype = guess_data_type(orig_values) if flag.m or coltype is StringVariable: append_to = (Mcols, metas) elif flag.w: append_to = (Wcols, None) elif flag.c: append_to = (Ycols, clses) else: append_to = (Xcols, attrs) cols, domain_vars = append_to cols.append(col) existing_var, new_var_name, column = None, None, None if domain_vars is not None: existing_var = names and names[col] if not existing_var: new_var_name = next(NAMEGEN) values, var = sanitize_variable( valuemap, values, orig_values, coltype, coltype_kwargs, domain_vars, existing_var, new_var_name, data) if domain_vars is not None: var.attributes.update(flag.attributes) domain_vars.append(var) # Write back the changed data. This is needeed to pass the # correct, converted values into Table.from_numpy below try: data[:, col] = values except IndexError: pass domain = Domain(attrs, clses, metas) if not data.size: return Table.from_domain(domain, 0) table = Table.from_numpy(domain, data[:, Xcols].astype(float, order='C'), data[:, Ycols].astype(float, order='C'), data[:, Mcols].astype(object, order='C'), data[:, Wcols].astype(float, order='C')) return table @staticmethod def header_names(data): return ['weights'] * data.has_weights() + \ [v.name for v in chain(data.domain.attributes, data.domain.class_vars, data.domain.metas)] @staticmethod def header_types(data): def _vartype(var): if var.is_continuous or var.is_string: return var.TYPE_HEADERS[0] elif var.is_discrete: return Flags.join(var.values) if var.ordered else var.TYPE_HEADERS[0] raise NotImplementedError return ['continuous'] * data.has_weights() + \ [_vartype(v) for v in chain(data.domain.attributes, data.domain.class_vars, data.domain.metas)] @staticmethod def header_flags(data): return list(chain(['weight'] * data.has_weights(), (Flags.join([flag], *('{}={}'.format(*a) for a in sorted(var.attributes.items()))) for flag, var in chain(zip(repeat(''), data.domain.attributes), zip(repeat('class'), data.domain.class_vars), zip(repeat('meta'), data.domain.metas))))) @classmethod def write_headers(cls, write, data): """`write` is a callback that accepts an iterable""" write(cls.header_names(data)) write(cls.header_types(data)) write(cls.header_flags(data)) @classmethod def write_data(cls, write, data): """`write` is a callback that accepts an iterable""" vars = list(chain((ContinuousVariable('_w'),) if data.has_weights() else (), data.domain.attributes, data.domain.class_vars, data.domain.metas)) for row in zip(data.W if data.W.ndim > 1 else data.W[:, np.newaxis], data.X, data.Y if data.Y.ndim > 1 else data.Y[:, np.newaxis], data.metas): write(['' if isinstance(val, Number) and isnan(val) else var.values[int(val)] if var.is_discrete else var.repr_val(val) if isinstance(var, TimeVariable) else val for var, val in zip(vars, flatten(row))]) class CSVReader(FileFormat): """Reader for comma separated files""" EXTENSIONS = ('.csv',) DESCRIPTION = 'Comma-separated values' DELIMITERS = ',;:\t$ ' SUPPORT_COMPRESSED = True SUPPORT_SPARSE_DATA = False PRIORITY = 20 def read(self): for encoding in (lambda: ('us-ascii', None), # fast lambda: (detect_encoding(self.filename), None), # precise lambda: (locale.getpreferredencoding(False), None), lambda: (sys.getdefaultencoding(), None), # desperate lambda: ('utf-8', None), # ... lambda: ('utf-8', 'ignore')): # fallback encoding, errors = encoding() # Clear the error flag for all except the last check, because # the error of second-to-last check is stored and shown as warning in owfile if errors != 'ignore': error = '' with self.open(self.filename, mode='rt', newline='', encoding=encoding, errors=errors) as file: # Sniff the CSV dialect (delimiter, quotes, ...) try: dialect = csv.Sniffer().sniff(file.read(1024), self.DELIMITERS) except UnicodeDecodeError as e: error = e continue except csv.Error: dialect = csv.excel() dialect.delimiter = self.DELIMITERS[0] file.seek(0) dialect.skipinitialspace = True try: reader = csv.reader(file, dialect=dialect) data = self.data_table(reader) # TODO: Name can be set unconditionally when/if # self.filename will always be a string with the file name. # Currently, some tests pass StringIO instead of # the file name to a reader. if isinstance(self.filename, str): data.name = path.splitext( path.split(self.filename)[-1])[0] if error and isinstance(error, UnicodeDecodeError): pos, endpos = error.args[2], error.args[3] warning = ('Skipped invalid byte(s) in position ' '{}{}').format(pos, ('-' + str(endpos)) if (endpos - pos) > 1 else '') warnings.warn(warning) self.set_table_metadata(self.filename, data) return data except Exception as e: error = e continue raise ValueError('Cannot parse dataset {}: {}'.format(self.filename, error)) from error @classmethod def write_file(cls, filename, data): with cls.open(filename, mode='wt', newline='', encoding='utf-8') as file: writer = csv.writer(file, delimiter=cls.DELIMITERS[0]) cls.write_headers(writer.writerow, data) cls.write_data(writer.writerow, data) cls.write_table_metadata(filename, data) class TabReader(CSVReader): """Reader for tab separated files""" EXTENSIONS = ('.tab', '.tsv') DESCRIPTION = 'Tab-separated values' DELIMITERS = '\t' PRIORITY = 10 class PickleReader(FileFormat): """Reader for pickled Table objects""" EXTENSIONS = ('.pickle', '.pkl') DESCRIPTION = 'Pickled Python object file' SUPPORT_SPARSE_DATA = True def read(self): with open(self.filename, 'rb') as f: return pickle.load(f) @staticmethod def write_file(filename, data): with open(filename, 'wb') as f: pickle.dump(data, f, pickle.HIGHEST_PROTOCOL) class BasketReader(FileFormat): """Reader for basket (sparse) files""" EXTENSIONS = ('.basket', '.bsk') DESCRIPTION = 'Basket file' SUPPORT_SPARSE_DATA = True def read(self): def constr_vars(inds): if inds: return [ContinuousVariable(x.decode("utf-8")) for _, x in sorted((ind, name) for name, ind in inds.items())] X, Y, metas, attr_indices, class_indices, meta_indices = \ _io.sparse_read_float(self.filename.encode(sys.getdefaultencoding())) attrs = constr_vars(attr_indices) classes = constr_vars(class_indices) meta_attrs = constr_vars(meta_indices) domain = Domain(attrs, classes, meta_attrs) table = Table.from_numpy( domain, attrs and X, classes and Y, metas and meta_attrs) table.name = path.splitext(path.split(self.filename)[-1])[0] return table class ExcelReader(FileFormat): """Reader for excel files""" EXTENSIONS = ('.xls', '.xlsx') DESCRIPTION = 'Mircosoft Excel spreadsheet' SUPPORT_SPARSE_DATA = False def __init__(self, filename): super().__init__(filename) from xlrd import open_workbook self.workbook = open_workbook(self.filename) @property @lru_cache(1) def sheets(self): return self.workbook.sheet_names() def read(self): import xlrd wb = xlrd.open_workbook(self.filename, on_demand=True) if self.sheet: ss = wb.sheet_by_name(self.sheet) else: ss = wb.sheet_by_index(0) try: first_row = next(i for i in range(ss.nrows) if any(ss.row_values(i))) first_col = next(i for i in range(ss.ncols) if ss.cell_value(first_row, i)) row_len = ss.row_len(first_row) cells = filter(any, [[str(ss.cell_value(row, col)) if col < ss.row_len(row) else '' for col in range(first_col, row_len)] for row in range(first_row, ss.nrows)]) table = self.data_table(cells) table.name = path.splitext(path.split(self.filename)[-1])[0] if self.sheet: table.name = '-'.join((table.name, self.sheet)) except Exception: raise IOError("Couldn't load spreadsheet from " + self.filename) return table class DotReader(FileFormat): """Writer for dot (graph) files""" EXTENSIONS = ('.dot', '.gv') DESCRIPTION = 'Dot graph description' SUPPORT_COMPRESSED = True SUPPORT_SPARSE_DATA = False @classmethod def write_graph(cls, filename, graph): from sklearn import tree tree.export_graphviz(graph, out_file=cls.open(filename, 'wt')) @classmethod def write(cls, filename, tree): if type(tree) == dict: tree = tree['tree'] cls.write_graph(filename, tree) class UrlReader(FileFormat): @staticmethod def urlopen(url): req = Request( url, # Avoid 403 error with servers that dislike scrapers headers={'User-Agent': 'Mozilla/5.0 (X11; Linux) Gecko/20100101 Firefox/'}) return urlopen(req, timeout=10) def read(self): self.filename = self._trim(self._resolve_redirects(self.filename)) with contextlib.closing(self.urlopen(self.filename)) as response: name = self._suggest_filename(response.headers['content-disposition']) with NamedTemporaryFile(suffix=name, delete=False) as f: f.write(response.read()) # delete=False is a workaround for https://bugs.python.org/issue14243 reader = self.get_reader(f.name) data = reader.read() unlink(f.name) # Override name set in from_file() to avoid holding the temp prefix data.name = path.splitext(name)[0] data.origin = self.filename return data def _resolve_redirects(self, url): # Resolve (potential) redirects to a final URL with contextlib.closing(self.urlopen(url)) as response: return response.url @classmethod def _trim(cls, url): URL_TRIMMERS = ( cls._trim_googlesheet, cls._trim_dropbox, ) for trim in URL_TRIMMERS: try: url = trim(url) except ValueError: continue else: break return url @staticmethod def _trim_googlesheet(url): match = re.match(r'(?:https?://)?(?:www\.)?' r'docs\.google\.com/spreadsheets/d/' r'(?P<workbook_id>[-\w_]+)' r'(?:/.*?gid=(?P<sheet_id>\d+).*|.*)?', url, re.IGNORECASE) try: workbook, sheet = match.group('workbook_id'), match.group('sheet_id') if not workbook: raise ValueError except (AttributeError, ValueError): raise ValueError url = 'https://docs.google.com/spreadsheets/d/{}/export?format=tsv'.format(workbook) if sheet: url += '&gid=' + sheet return url @staticmethod def _trim_dropbox(url): parts = urlsplit(url) if not parts.netloc.endswith('dropbox.com'): raise ValueError return urlunsplit(parts._replace(query='dl=1')) def _suggest_filename(self, content_disposition): default_name = re.sub(r'[\\:/]', '_', urlparse(self.filename).path) # See https://tools.ietf.org/html/rfc6266#section-4.1 matches = re.findall(r"filename\*?=(?:\"|.{0,10}?'[^']*')([^\"]+)", content_disposition or '') return urlunquote(matches[-1]) if matches else default_name
bsd-2-clause
untom/scikit-learn
sklearn/utils/extmath.py
142
21102
""" Extended math utilities. """ # Authors: Gael Varoquaux # Alexandre Gramfort # Alexandre T. Passos # Olivier Grisel # Lars Buitinck # Stefan van der Walt # Kyle Kastner # License: BSD 3 clause from __future__ import division from functools import partial import warnings import numpy as np from scipy import linalg from scipy.sparse import issparse from . import check_random_state from .fixes import np_version from ._logistic_sigmoid import _log_logistic_sigmoid from ..externals.six.moves import xrange from .sparsefuncs_fast import csr_row_norms from .validation import check_array, NonBLASDotWarning def norm(x): """Compute the Euclidean or Frobenius norm of x. Returns the Euclidean norm when x is a vector, the Frobenius norm when x is a matrix (2-d array). More precise than sqrt(squared_norm(x)). """ x = np.asarray(x) nrm2, = linalg.get_blas_funcs(['nrm2'], [x]) return nrm2(x) # Newer NumPy has a ravel that needs less copying. if np_version < (1, 7, 1): _ravel = np.ravel else: _ravel = partial(np.ravel, order='K') def squared_norm(x): """Squared Euclidean or Frobenius norm of x. Returns the Euclidean norm when x is a vector, the Frobenius norm when x is a matrix (2-d array). Faster than norm(x) ** 2. """ x = _ravel(x) return np.dot(x, x) def row_norms(X, squared=False): """Row-wise (squared) Euclidean norm of X. Equivalent to np.sqrt((X * X).sum(axis=1)), but also supports CSR sparse matrices and does not create an X.shape-sized temporary. Performs no input validation. """ if issparse(X): norms = csr_row_norms(X) else: norms = np.einsum('ij,ij->i', X, X) if not squared: np.sqrt(norms, norms) return norms def fast_logdet(A): """Compute log(det(A)) for A symmetric Equivalent to : np.log(nl.det(A)) but more robust. It returns -Inf if det(A) is non positive or is not defined. """ sign, ld = np.linalg.slogdet(A) if not sign > 0: return -np.inf return ld def _impose_f_order(X): """Helper Function""" # important to access flags instead of calling np.isfortran, # this catches corner cases. if X.flags.c_contiguous: return check_array(X.T, copy=False, order='F'), True else: return check_array(X, copy=False, order='F'), False def _fast_dot(A, B): if B.shape[0] != A.shape[A.ndim - 1]: # check adopted from '_dotblas.c' raise ValueError if A.dtype != B.dtype or any(x.dtype not in (np.float32, np.float64) for x in [A, B]): warnings.warn('Data must be of same type. Supported types ' 'are 32 and 64 bit float. ' 'Falling back to np.dot.', NonBLASDotWarning) raise ValueError if min(A.shape) == 1 or min(B.shape) == 1 or A.ndim != 2 or B.ndim != 2: raise ValueError # scipy 0.9 compliant API dot = linalg.get_blas_funcs(['gemm'], (A, B))[0] A, trans_a = _impose_f_order(A) B, trans_b = _impose_f_order(B) return dot(alpha=1.0, a=A, b=B, trans_a=trans_a, trans_b=trans_b) def _have_blas_gemm(): try: linalg.get_blas_funcs(['gemm']) return True except (AttributeError, ValueError): warnings.warn('Could not import BLAS, falling back to np.dot') return False # Only use fast_dot for older NumPy; newer ones have tackled the speed issue. if np_version < (1, 7, 2) and _have_blas_gemm(): def fast_dot(A, B): """Compute fast dot products directly calling BLAS. This function calls BLAS directly while warranting Fortran contiguity. This helps avoiding extra copies `np.dot` would have created. For details see section `Linear Algebra on large Arrays`: http://wiki.scipy.org/PerformanceTips Parameters ---------- A, B: instance of np.ndarray Input arrays. Arrays are supposed to be of the same dtype and to have exactly 2 dimensions. Currently only floats are supported. In case these requirements aren't met np.dot(A, B) is returned instead. To activate the related warning issued in this case execute the following lines of code: >> import warnings >> from sklearn.utils.validation import NonBLASDotWarning >> warnings.simplefilter('always', NonBLASDotWarning) """ try: return _fast_dot(A, B) except ValueError: # Maltyped or malformed data. return np.dot(A, B) else: fast_dot = np.dot def density(w, **kwargs): """Compute density of a sparse vector Return a value between 0 and 1 """ if hasattr(w, "toarray"): d = float(w.nnz) / (w.shape[0] * w.shape[1]) else: d = 0 if w is None else float((w != 0).sum()) / w.size return d def safe_sparse_dot(a, b, dense_output=False): """Dot product that handle the sparse matrix case correctly Uses BLAS GEMM as replacement for numpy.dot where possible to avoid unnecessary copies. """ if issparse(a) or issparse(b): ret = a * b if dense_output and hasattr(ret, "toarray"): ret = ret.toarray() return ret else: return fast_dot(a, b) def randomized_range_finder(A, size, n_iter, random_state=None): """Computes an orthonormal matrix whose range approximates the range of A. Parameters ---------- A: 2D array The input data matrix size: integer Size of the return array n_iter: integer Number of power iterations used to stabilize the result random_state: RandomState or an int seed (0 by default) A random number generator instance Returns ------- Q: 2D array A (size x size) projection matrix, the range of which approximates well the range of the input matrix A. Notes ----- Follows Algorithm 4.3 of Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 (arXiv:909) http://arxiv.org/pdf/0909.4061 """ random_state = check_random_state(random_state) # generating random gaussian vectors r with shape: (A.shape[1], size) R = random_state.normal(size=(A.shape[1], size)) # sampling the range of A using by linear projection of r Y = safe_sparse_dot(A, R) del R # perform power iterations with Y to further 'imprint' the top # singular vectors of A in Y for i in xrange(n_iter): Y = safe_sparse_dot(A, safe_sparse_dot(A.T, Y)) # extracting an orthonormal basis of the A range samples Q, R = linalg.qr(Y, mode='economic') return Q def randomized_svd(M, n_components, n_oversamples=10, n_iter=0, transpose='auto', flip_sign=True, random_state=0): """Computes a truncated randomized SVD Parameters ---------- M: ndarray or sparse matrix Matrix to decompose n_components: int Number of singular values and vectors to extract. n_oversamples: int (default is 10) Additional number of random vectors to sample the range of M so as to ensure proper conditioning. The total number of random vectors used to find the range of M is n_components + n_oversamples. n_iter: int (default is 0) Number of power iterations (can be used to deal with very noisy problems). transpose: True, False or 'auto' (default) Whether the algorithm should be applied to M.T instead of M. The result should approximately be the same. The 'auto' mode will trigger the transposition if M.shape[1] > M.shape[0] since this implementation of randomized SVD tend to be a little faster in that case). flip_sign: boolean, (True by default) The output of a singular value decomposition is only unique up to a permutation of the signs of the singular vectors. If `flip_sign` is set to `True`, the sign ambiguity is resolved by making the largest loadings for each component in the left singular vectors positive. random_state: RandomState or an int seed (0 by default) A random number generator instance to make behavior Notes ----- This algorithm finds a (usually very good) approximate truncated singular value decomposition using randomization to speed up the computations. It is particularly fast on large matrices on which you wish to extract only a small number of components. References ---------- * Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 http://arxiv.org/abs/arXiv:0909.4061 * A randomized algorithm for the decomposition of matrices Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert """ random_state = check_random_state(random_state) n_random = n_components + n_oversamples n_samples, n_features = M.shape if transpose == 'auto' and n_samples > n_features: transpose = True if transpose: # this implementation is a bit faster with smaller shape[1] M = M.T Q = randomized_range_finder(M, n_random, n_iter, random_state) # project M to the (k + p) dimensional space using the basis vectors B = safe_sparse_dot(Q.T, M) # compute the SVD on the thin matrix: (k + p) wide Uhat, s, V = linalg.svd(B, full_matrices=False) del B U = np.dot(Q, Uhat) if flip_sign: U, V = svd_flip(U, V) if transpose: # transpose back the results according to the input convention return V[:n_components, :].T, s[:n_components], U[:, :n_components].T else: return U[:, :n_components], s[:n_components], V[:n_components, :] def logsumexp(arr, axis=0): """Computes the sum of arr assuming arr is in the log domain. Returns log(sum(exp(arr))) while minimizing the possibility of over/underflow. Examples -------- >>> import numpy as np >>> from sklearn.utils.extmath import logsumexp >>> a = np.arange(10) >>> np.log(np.sum(np.exp(a))) 9.4586297444267107 >>> logsumexp(a) 9.4586297444267107 """ arr = np.rollaxis(arr, axis) # Use the max to normalize, as with the log this is what accumulates # the less errors vmax = arr.max(axis=0) out = np.log(np.sum(np.exp(arr - vmax), axis=0)) out += vmax return out def weighted_mode(a, w, axis=0): """Returns an array of the weighted modal (most common) value in a If there is more than one such value, only the first is returned. The bin-count for the modal bins is also returned. This is an extension of the algorithm in scipy.stats.mode. Parameters ---------- a : array_like n-dimensional array of which to find mode(s). w : array_like n-dimensional array of weights for each value axis : int, optional Axis along which to operate. Default is 0, i.e. the first axis. Returns ------- vals : ndarray Array of modal values. score : ndarray Array of weighted counts for each mode. Examples -------- >>> from sklearn.utils.extmath import weighted_mode >>> x = [4, 1, 4, 2, 4, 2] >>> weights = [1, 1, 1, 1, 1, 1] >>> weighted_mode(x, weights) (array([ 4.]), array([ 3.])) The value 4 appears three times: with uniform weights, the result is simply the mode of the distribution. >>> weights = [1, 3, 0.5, 1.5, 1, 2] # deweight the 4's >>> weighted_mode(x, weights) (array([ 2.]), array([ 3.5])) The value 2 has the highest score: it appears twice with weights of 1.5 and 2: the sum of these is 3. See Also -------- scipy.stats.mode """ if axis is None: a = np.ravel(a) w = np.ravel(w) axis = 0 else: a = np.asarray(a) w = np.asarray(w) axis = axis if a.shape != w.shape: w = np.zeros(a.shape, dtype=w.dtype) + w scores = np.unique(np.ravel(a)) # get ALL unique values testshape = list(a.shape) testshape[axis] = 1 oldmostfreq = np.zeros(testshape) oldcounts = np.zeros(testshape) for score in scores: template = np.zeros(a.shape) ind = (a == score) template[ind] = w[ind] counts = np.expand_dims(np.sum(template, axis), axis) mostfrequent = np.where(counts > oldcounts, score, oldmostfreq) oldcounts = np.maximum(counts, oldcounts) oldmostfreq = mostfrequent return mostfrequent, oldcounts def pinvh(a, cond=None, rcond=None, lower=True): """Compute the (Moore-Penrose) pseudo-inverse of a hermetian matrix. Calculate a generalized inverse of a symmetric matrix using its eigenvalue decomposition and including all 'large' eigenvalues. Parameters ---------- a : array, shape (N, N) Real symmetric or complex hermetian matrix to be pseudo-inverted cond : float or None, default None Cutoff for 'small' eigenvalues. Singular values smaller than rcond * largest_eigenvalue are considered zero. If None or -1, suitable machine precision is used. rcond : float or None, default None (deprecated) Cutoff for 'small' eigenvalues. Singular values smaller than rcond * largest_eigenvalue are considered zero. If None or -1, suitable machine precision is used. lower : boolean Whether the pertinent array data is taken from the lower or upper triangle of a. (Default: lower) Returns ------- B : array, shape (N, N) Raises ------ LinAlgError If eigenvalue does not converge Examples -------- >>> import numpy as np >>> a = np.random.randn(9, 6) >>> a = np.dot(a, a.T) >>> B = pinvh(a) >>> np.allclose(a, np.dot(a, np.dot(B, a))) True >>> np.allclose(B, np.dot(B, np.dot(a, B))) True """ a = np.asarray_chkfinite(a) s, u = linalg.eigh(a, lower=lower) if rcond is not None: cond = rcond if cond in [None, -1]: t = u.dtype.char.lower() factor = {'f': 1E3, 'd': 1E6} cond = factor[t] * np.finfo(t).eps # unlike svd case, eigh can lead to negative eigenvalues above_cutoff = (abs(s) > cond * np.max(abs(s))) psigma_diag = np.zeros_like(s) psigma_diag[above_cutoff] = 1.0 / s[above_cutoff] return np.dot(u * psigma_diag, np.conjugate(u).T) def cartesian(arrays, out=None): """Generate a cartesian product of input arrays. Parameters ---------- arrays : list of array-like 1-D arrays to form the cartesian product of. out : ndarray Array to place the cartesian product in. Returns ------- out : ndarray 2-D array of shape (M, len(arrays)) containing cartesian products formed of input arrays. Examples -------- >>> cartesian(([1, 2, 3], [4, 5], [6, 7])) array([[1, 4, 6], [1, 4, 7], [1, 5, 6], [1, 5, 7], [2, 4, 6], [2, 4, 7], [2, 5, 6], [2, 5, 7], [3, 4, 6], [3, 4, 7], [3, 5, 6], [3, 5, 7]]) """ arrays = [np.asarray(x) for x in arrays] shape = (len(x) for x in arrays) dtype = arrays[0].dtype ix = np.indices(shape) ix = ix.reshape(len(arrays), -1).T if out is None: out = np.empty_like(ix, dtype=dtype) for n, arr in enumerate(arrays): out[:, n] = arrays[n][ix[:, n]] return out def svd_flip(u, v, u_based_decision=True): """Sign correction to ensure deterministic output from SVD. Adjusts the columns of u and the rows of v such that the loadings in the columns in u that are largest in absolute value are always positive. Parameters ---------- u, v : ndarray u and v are the output of `linalg.svd` or `sklearn.utils.extmath.randomized_svd`, with matching inner dimensions so one can compute `np.dot(u * s, v)`. u_based_decision : boolean, (default=True) If True, use the columns of u as the basis for sign flipping. Otherwise, use the rows of v. The choice of which variable to base the decision on is generally algorithm dependent. Returns ------- u_adjusted, v_adjusted : arrays with the same dimensions as the input. """ if u_based_decision: # columns of u, rows of v max_abs_cols = np.argmax(np.abs(u), axis=0) signs = np.sign(u[max_abs_cols, xrange(u.shape[1])]) u *= signs v *= signs[:, np.newaxis] else: # rows of v, columns of u max_abs_rows = np.argmax(np.abs(v), axis=1) signs = np.sign(v[xrange(v.shape[0]), max_abs_rows]) u *= signs v *= signs[:, np.newaxis] return u, v def log_logistic(X, out=None): """Compute the log of the logistic function, ``log(1 / (1 + e ** -x))``. This implementation is numerically stable because it splits positive and negative values:: -log(1 + exp(-x_i)) if x_i > 0 x_i - log(1 + exp(x_i)) if x_i <= 0 For the ordinary logistic function, use ``sklearn.utils.fixes.expit``. Parameters ---------- X: array-like, shape (M, N) Argument to the logistic function out: array-like, shape: (M, N), optional: Preallocated output array. Returns ------- out: array, shape (M, N) Log of the logistic function evaluated at every point in x Notes ----- See the blog post describing this implementation: http://fa.bianp.net/blog/2013/numerical-optimizers-for-logistic-regression/ """ is_1d = X.ndim == 1 X = check_array(X, dtype=np.float) n_samples, n_features = X.shape if out is None: out = np.empty_like(X) _log_logistic_sigmoid(n_samples, n_features, X, out) if is_1d: return np.squeeze(out) return out def safe_min(X): """Returns the minimum value of a dense or a CSR/CSC matrix. Adapated from http://stackoverflow.com/q/13426580 """ if issparse(X): if len(X.data) == 0: return 0 m = X.data.min() return m if X.getnnz() == X.size else min(m, 0) else: return X.min() def make_nonnegative(X, min_value=0): """Ensure `X.min()` >= `min_value`.""" min_ = safe_min(X) if min_ < min_value: if issparse(X): raise ValueError("Cannot make the data matrix" " nonnegative because it is sparse." " Adding a value to every entry would" " make it no longer sparse.") X = X + (min_value - min_) return X def _batch_mean_variance_update(X, old_mean, old_variance, old_sample_count): """Calculate an average mean update and a Youngs and Cramer variance update. From the paper "Algorithms for computing the sample variance: analysis and recommendations", by Chan, Golub, and LeVeque. Parameters ---------- X : array-like, shape (n_samples, n_features) Data to use for variance update old_mean : array-like, shape: (n_features,) old_variance : array-like, shape: (n_features,) old_sample_count : int Returns ------- updated_mean : array, shape (n_features,) updated_variance : array, shape (n_features,) updated_sample_count : int References ---------- T. Chan, G. Golub, R. LeVeque. Algorithms for computing the sample variance: recommendations, The American Statistician, Vol. 37, No. 3, pp. 242-247 """ new_sum = X.sum(axis=0) new_variance = X.var(axis=0) * X.shape[0] old_sum = old_mean * old_sample_count n_samples = X.shape[0] updated_sample_count = old_sample_count + n_samples partial_variance = old_sample_count / (n_samples * updated_sample_count) * ( n_samples / old_sample_count * old_sum - new_sum) ** 2 unnormalized_variance = old_variance * old_sample_count + new_variance + \ partial_variance return ((old_sum + new_sum) / updated_sample_count, unnormalized_variance / updated_sample_count, updated_sample_count) def _deterministic_vector_sign_flip(u): """Modify the sign of vectors for reproducibility Flips the sign of elements of all the vectors (rows of u) such that the absolute maximum element of each vector is positive. Parameters ---------- u : ndarray Array with vectors as its rows. Returns ------- u_flipped : ndarray with same shape as u Array with the sign flipped vectors as its rows. """ max_abs_rows = np.argmax(np.abs(u), axis=1) signs = np.sign(u[range(u.shape[0]), max_abs_rows]) u *= signs[:, np.newaxis] return u
bsd-3-clause
juanshishido/okcupid
utils/nonnegative_matrix_factorization.py
1
2118
import numpy as np from sklearn.decomposition import NMF def _print_words(model, feature_names, n_top_words): """For printing the `n_top_words` for each grouping Parameters ---------- model : sklearn.decomposition.nmf.NMF The NMF object feature_names : list The output from calling `TfidfVectorizer` on the users/features data n_top_words : int The top n words to print for a particular grouping Returns ------- None """ for topic_idx, topic in enumerate(model.components_): print("Group %d:" % topic_idx) print(" | ".join([feature_names[i] for i in topic.argsort()[ : -n_top_words-1 : -1]])) print() print() def nmf_inspect(tfidfmatrix, feature_names, k_vals=[3, 5, 7, 9], n_words=10): """For looping over various values of `k` and printing the top `n_words` Parameters ---------- tfidfmatrix : scipy.sparse.csr.csr_matrix The output from calling `TfidfVectorizer` on the users/features data feature_names : list The output from calling the `.get_feature_names()` on the TfidfVectorizer object k_vals : list A list of values for `k`, the number of groupings n_words : int The top n words to print for each grouping Returns ------- None """ for k in k_vals: nmf = NMF(n_components=k, random_state=42).fit(tfidfmatrix) print(k, end='\n') _print_words(nmf, feature_names, n_words) def nmf_labels(tfidfmatrix, k): """For getting the labels (group assignment) associated with each sample (user, in this case) Parameters ---------- tfidfmatrix : scipy.sparse.csr.csr_matrix The output from calling `TfidfVectorizer` on the users/features data k : int The number of groupings to create Returns ------- labels : np.ndarray An array of group assignments of length tfidfmatrix.shape[0] (users) """ H = NMF(n_components=k, random_state=42).fit_transform(tfidfmatrix) labels = np.argmax(H, axis=1) return labels
mit
bhtucker/chatnet
chatnet/pipes.py
1
5136
from . import logger from chatnet import prep import pandas as pd from collections import Counter from sklearn.externals import joblib import os class Pipeline(object): """ Transformer helper functions and state checkpoints to go from text data/labels to model-ready numeric data """ def __init__(self, vocab_size=15000, data_col=None, id_col=None, label_col=None, skip_top=10, positive_class=None, df=None, message_key=None, **kwargs ): # message processing self.data_col = data_col or 'tokens' self.id_col = id_col or 'id' self.label_col = label_col or 'labels' self.message_key = message_key or 'msgs' self.positive_class = positive_class if positive_class is None: self.label_mode = 'multiclass' self.n_classes = [] else: self.label_mode = 'binary' # vocab processing self.tp = prep.TextPrepper() self.vocab_size = vocab_size self.skip_top = skip_top self.to_matrices_kwargs = kwargs if df is not None: self.setup(df) def _tokenize(self, df, message_key=''): """ Iterate over each row's messages (as specified by message_key), tokenizing by ' ' and cleaning with self.tp.cleaner """ def mapper(message_col): sequence = [] for message in message_col: sequence += map(self.tp.cleaner, message.split()) return sequence df[self.data_col] = df[message_key].map(mapper) def _set_token_data(self, input_df): df = input_df.copy() if self.data_col not in df.columns: self._tokenize(df, message_key=self.message_key) self.data = pd.DataFrame(df[[self.data_col, self.id_col, self.label_col]]) logger.info("Counting words...") self.set_word_counts() def _set_vocabulary(self): # This is extended by subclasses with special concerns about word_index (eg word embeddings) self.set_word_index(skip_top=self.skip_top) def _set_learning_data(self, **to_matrices_kwargs): to_matrices_kwargs.setdefault('seed', 212) to_matrices_kwargs.setdefault('test_split', .18) to_matrices_kwargs.setdefault('chunk_size', 100) to_matrices_kwargs.setdefault('data_col', self.data_col) to_matrices_kwargs.setdefault('id_col', self.id_col) to_matrices_kwargs.setdefault('label_col', self.label_col) to_matrices_kwargs.setdefault('positive_class', self.positive_class) logger.info("Making numeric sequences...") self.learning_data = (X_train, y_train, train_ids), (X_test, y_test, test_ids) = \ self.tp.to_matrices(self.data, self.word_index, **to_matrices_kwargs) def setup(self, df): self._set_token_data(df) self._set_vocabulary() self._set_learning_data(**self.to_matrices_kwargs) def set_word_counts(self): """ Map :tp.cleaner over token lists in :data and return a counter of cleaned :word_counts """ word_counts = Counter() def increment(word): word_counts[word] += 1 self.data[self.data_col].map(lambda r: list(map(increment, r))) self.word_counts = word_counts def set_word_index(self, skip_top=None, nonembeddable=None): """ Accepts a dictionary of word counts Selects the top :nb_words, after skipping the :skip_top most common Optionally provide a set of words you don't have word vectors and want to omit entirely Always includes special words (returned by self.cleaner) prepended with $ Returns dict like {word: ranking by count} """ skip_top = 10 if skip_top is None else skip_top vocab = [] for (ix, (w, _)) in enumerate(self.word_counts.most_common(self.vocab_size)): if w.startswith('$'): if ix < skip_top: skip_top += 1 vocab.append(w) elif (not nonembeddable or w not in nonembeddable) and ix > skip_top: vocab.append(w) self.word_index = {v: ix for ix, v in enumerate(vocab)} def persist(self, name, path): for attr in self.persisted_attrs: joblib.dump(getattr(self, attr), os.path.join(path, '_'.join([attr, name]))) @classmethod def restore(cls, name, path): pipe = cls() for attr in cls.persisted_attrs: setattr(pipe, attr, joblib.load(os.path.join(path, '_'.join([attr, name])))) return pipe def get_message_generator(message_key, kind='wide'): if kind == 'wide': # iterate over columns in message_key yielding from row def message_generator(row): for key in message_key: yield row[key] elif kind == 'dense': # iterate over array of messages in row[message_key] def message_generator(row): for cell in row[message_key]: yield cell return message_generator
mit
jzadeh/Aktaion
python/parserDev/brothon/analysis/dataframe_cache.py
1
2617
""" DataFrame Cache Class: The class provides a caching mechanism for a Pandas DataFrame """ from __future__ import print_function import time from collections import deque import pandas as pd class DataFrameCache(object): """DataFrameCache: The class provides a caching mechanism for a Pandas DataFrame. Args: max_cache_size (int): Maximum size of dataframe cache (default=10000) max_cache_time (int): Time to keep rows in cache (default=60 seconds) """ def __init__(self, max_cache_size=100000, max_cache_time=60): """Initialize the DataFrameCache class""" self.max_size = max_cache_size self.max_time = max_cache_time self.row_deque = deque(maxlen=self.max_size) self.time_deque = deque(maxlen=self.max_size) self._dataframe = pd.DataFrame() def add_row(self, row): """Add a row to the DataFrameCache class""" self.add_rows([row]) def add_rows(self, list_of_rows): """Add a list of rows to the DataFrameCache class""" for row in list_of_rows: self.row_deque.append(row) self.time_deque.append(time.time()) # Update the data structure self.update() def dataframe(self): """Return a DataFrame with the current window of data Note: Only call this when you want the dataframe to be reconstructed""" self.update() return pd.DataFrame(list(self.row_deque)) def update(self): """Update the deque, removing rows based on time""" expire_time = time.time() - self.max_time while self.row_deque and self.time_deque[0] < expire_time: self.row_deque.popleft() # FIFO self.time_deque.popleft() # Simple test of the functionality def test(): """Test for DataFrameCache Class""" import copy df_cache = DataFrameCache(max_cache_size=10, max_cache_time=1) # Make it small and short for testing # Make some fake data base_row = {'id': 0, 'foo': 'bar', 'port': 80, 'protocol': 17} # Create an array of test rows test_data = [] for i in range(20): row = copy.deepcopy(base_row) row['id'] = i test_data.append(row) # Add rows df_cache.add_rows(test_data) # Make sure the cache size is working properly my_df = df_cache.dataframe() assert len(my_df) == 10 assert my_df.iloc[0]['id'] == 10 # This means the deque is proper FIFO # Now test time expiration time.sleep(1) my_df = df_cache.dataframe() assert len(my_df) == 0 if __name__ == "__main__": test()
apache-2.0
aetilley/scikit-learn
sklearn/datasets/tests/test_lfw.py
230
7880
"""This test for the LFW require medium-size data dowloading and processing If the data has not been already downloaded by running the examples, the tests won't run (skipped). If the test are run, the first execution will be long (typically a bit more than a couple of minutes) but as the dataset loader is leveraging joblib, successive runs will be fast (less than 200ms). """ import random import os import shutil import tempfile import numpy as np from sklearn.externals import six try: try: from scipy.misc import imsave except ImportError: from scipy.misc.pilutil import imsave except ImportError: imsave = None from sklearn.datasets import load_lfw_pairs from sklearn.datasets import load_lfw_people from sklearn.datasets import fetch_lfw_pairs from sklearn.datasets import fetch_lfw_people from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import SkipTest from sklearn.utils.testing import raises SCIKIT_LEARN_DATA = tempfile.mkdtemp(prefix="scikit_learn_lfw_test_") SCIKIT_LEARN_EMPTY_DATA = tempfile.mkdtemp(prefix="scikit_learn_empty_test_") LFW_HOME = os.path.join(SCIKIT_LEARN_DATA, 'lfw_home') FAKE_NAMES = [ 'Abdelatif_Smith', 'Abhati_Kepler', 'Camara_Alvaro', 'Chen_Dupont', 'John_Lee', 'Lin_Bauman', 'Onur_Lopez', ] def setup_module(): """Test fixture run once and common to all tests of this module""" if imsave is None: raise SkipTest("PIL not installed.") if not os.path.exists(LFW_HOME): os.makedirs(LFW_HOME) random_state = random.Random(42) np_rng = np.random.RandomState(42) # generate some random jpeg files for each person counts = {} for name in FAKE_NAMES: folder_name = os.path.join(LFW_HOME, 'lfw_funneled', name) if not os.path.exists(folder_name): os.makedirs(folder_name) n_faces = np_rng.randint(1, 5) counts[name] = n_faces for i in range(n_faces): file_path = os.path.join(folder_name, name + '_%04d.jpg' % i) uniface = np_rng.randint(0, 255, size=(250, 250, 3)) try: imsave(file_path, uniface) except ImportError: raise SkipTest("PIL not installed") # add some random file pollution to test robustness with open(os.path.join(LFW_HOME, 'lfw_funneled', '.test.swp'), 'wb') as f: f.write(six.b('Text file to be ignored by the dataset loader.')) # generate some pairing metadata files using the same format as LFW with open(os.path.join(LFW_HOME, 'pairsDevTrain.txt'), 'wb') as f: f.write(six.b("10\n")) more_than_two = [name for name, count in six.iteritems(counts) if count >= 2] for i in range(5): name = random_state.choice(more_than_two) first, second = random_state.sample(range(counts[name]), 2) f.write(six.b('%s\t%d\t%d\n' % (name, first, second))) for i in range(5): first_name, second_name = random_state.sample(FAKE_NAMES, 2) first_index = random_state.choice(np.arange(counts[first_name])) second_index = random_state.choice(np.arange(counts[second_name])) f.write(six.b('%s\t%d\t%s\t%d\n' % (first_name, first_index, second_name, second_index))) with open(os.path.join(LFW_HOME, 'pairsDevTest.txt'), 'wb') as f: f.write(six.b("Fake place holder that won't be tested")) with open(os.path.join(LFW_HOME, 'pairs.txt'), 'wb') as f: f.write(six.b("Fake place holder that won't be tested")) def teardown_module(): """Test fixture (clean up) run once after all tests of this module""" if os.path.isdir(SCIKIT_LEARN_DATA): shutil.rmtree(SCIKIT_LEARN_DATA) if os.path.isdir(SCIKIT_LEARN_EMPTY_DATA): shutil.rmtree(SCIKIT_LEARN_EMPTY_DATA) @raises(IOError) def test_load_empty_lfw_people(): fetch_lfw_people(data_home=SCIKIT_LEARN_EMPTY_DATA, download_if_missing=False) def test_load_lfw_people_deprecation(): msg = ("Function 'load_lfw_people' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_people(download_if_missing=False) instead.") assert_warns_message(DeprecationWarning, msg, load_lfw_people, data_home=SCIKIT_LEARN_DATA) def test_load_fake_lfw_people(): lfw_people = fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, min_faces_per_person=3, download_if_missing=False) # The data is croped around the center as a rectangular bounding box # arounthe the face. Colors are converted to gray levels: assert_equal(lfw_people.images.shape, (10, 62, 47)) assert_equal(lfw_people.data.shape, (10, 2914)) # the target is array of person integer ids assert_array_equal(lfw_people.target, [2, 0, 1, 0, 2, 0, 2, 1, 1, 2]) # names of the persons can be found using the target_names array expected_classes = ['Abdelatif Smith', 'Abhati Kepler', 'Onur Lopez'] assert_array_equal(lfw_people.target_names, expected_classes) # It is possible to ask for the original data without any croping or color # conversion and not limit on the number of picture per person lfw_people = fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, resize=None, slice_=None, color=True, download_if_missing=False) assert_equal(lfw_people.images.shape, (17, 250, 250, 3)) # the ids and class names are the same as previously assert_array_equal(lfw_people.target, [0, 0, 1, 6, 5, 6, 3, 6, 0, 3, 6, 1, 2, 4, 5, 1, 2]) assert_array_equal(lfw_people.target_names, ['Abdelatif Smith', 'Abhati Kepler', 'Camara Alvaro', 'Chen Dupont', 'John Lee', 'Lin Bauman', 'Onur Lopez']) @raises(ValueError) def test_load_fake_lfw_people_too_restrictive(): fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, min_faces_per_person=100, download_if_missing=False) @raises(IOError) def test_load_empty_lfw_pairs(): fetch_lfw_pairs(data_home=SCIKIT_LEARN_EMPTY_DATA, download_if_missing=False) def test_load_lfw_pairs_deprecation(): msg = ("Function 'load_lfw_pairs' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_pairs(download_if_missing=False) instead.") assert_warns_message(DeprecationWarning, msg, load_lfw_pairs, data_home=SCIKIT_LEARN_DATA) def test_load_fake_lfw_pairs(): lfw_pairs_train = fetch_lfw_pairs(data_home=SCIKIT_LEARN_DATA, download_if_missing=False) # The data is croped around the center as a rectangular bounding box # arounthe the face. Colors are converted to gray levels: assert_equal(lfw_pairs_train.pairs.shape, (10, 2, 62, 47)) # the target is whether the person is the same or not assert_array_equal(lfw_pairs_train.target, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]) # names of the persons can be found using the target_names array expected_classes = ['Different persons', 'Same person'] assert_array_equal(lfw_pairs_train.target_names, expected_classes) # It is possible to ask for the original data without any croping or color # conversion lfw_pairs_train = fetch_lfw_pairs(data_home=SCIKIT_LEARN_DATA, resize=None, slice_=None, color=True, download_if_missing=False) assert_equal(lfw_pairs_train.pairs.shape, (10, 2, 250, 250, 3)) # the ids and class names are the same as previously assert_array_equal(lfw_pairs_train.target, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]) assert_array_equal(lfw_pairs_train.target_names, expected_classes)
bsd-3-clause
massmutual/scikit-learn
examples/cluster/plot_digits_agglomeration.py
377
1694
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Feature agglomeration ========================================================= These images how similar features are merged together using feature agglomeration. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, cluster from sklearn.feature_extraction.image import grid_to_graph digits = datasets.load_digits() images = digits.images X = np.reshape(images, (len(images), -1)) connectivity = grid_to_graph(*images[0].shape) agglo = cluster.FeatureAgglomeration(connectivity=connectivity, n_clusters=32) agglo.fit(X) X_reduced = agglo.transform(X) X_restored = agglo.inverse_transform(X_reduced) images_restored = np.reshape(X_restored, images.shape) plt.figure(1, figsize=(4, 3.5)) plt.clf() plt.subplots_adjust(left=.01, right=.99, bottom=.01, top=.91) for i in range(4): plt.subplot(3, 4, i + 1) plt.imshow(images[i], cmap=plt.cm.gray, vmax=16, interpolation='nearest') plt.xticks(()) plt.yticks(()) if i == 1: plt.title('Original data') plt.subplot(3, 4, 4 + i + 1) plt.imshow(images_restored[i], cmap=plt.cm.gray, vmax=16, interpolation='nearest') if i == 1: plt.title('Agglomerated data') plt.xticks(()) plt.yticks(()) plt.subplot(3, 4, 10) plt.imshow(np.reshape(agglo.labels_, images[0].shape), interpolation='nearest', cmap=plt.cm.spectral) plt.xticks(()) plt.yticks(()) plt.title('Labels') plt.show()
bsd-3-clause
cassandra-sh/corrset
getFullAreaHealPixels.py
1
5066
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: HSC Weak Lensing collaboration """ import os import sys import math import numpy as np import pyfits import matplotlib.pyplot as plt import healpy as hp def removeDuplicatedVisits(d): # Remove visits with the same pntgid. Those visits were retaken because # transparency was bad. They should be counted as a single visit rather than # multiple visits print("# of visits before removing duplicates in pntgid:", str(len(d))) sel = list() for i in range(len(d)): eq = (d["pntgid"] == d["pntgid"][i]) if np.sum(eq) > 1: indices = np.where(eq)[0] if indices[0] == i: sel.append(i) else: sel.append(i) d = d[sel] print("# of visits after removing duplicates in pntgid:"+str(len(d))) return d def getFullAreaHealPixels(d): # Count up the number of visits and define full-color full-depth region in # healpix. This part is originally from Yasuda-san. bands = ['g', 'r', 'i', 'z', 'y'] Nexp = {'g': 4, 'r': 4, 'i': 6, 'z': 6, 'y': 6} NSIDE = 1024 m = dict() for b in bands: m[b] = np.zeros(hp.nside2npix(NSIDE)) for dd in d: b = dd["filter"][0:1] phi = math.radians(dd["ra"]) theta = math.radians(90.-dd["dec"]) vec = hp.ang2vec(theta, phi) healpix_bins = hp.query_disc(NSIDE, vec, math.radians(0.75)) for index in healpix_bins: m[b][index] += 1 fill = dict() full = np.ones(hp.nside2npix(NSIDE)) for b in bands: fill[b] = m[b] >= Nexp[b] print(str(NSIDE), str(b), str(129600/math.pi * sum(fill[b]) / len(fill[b]))) full = np.logical_and(full, fill[b]) print(str(NSIDE), str(5), str(129600/math.pi * sum(full) / len(full))) return full def getContiguousPixels(m): # Get contiguous regions to remove isolated pixels around each field. nside =hp.get_nside(m) m_out = np.zeros(m.shape, dtype = np.bool) for field in ["AEGIS", "HECTOMAP", "GAMA09H", "WIDE12H", "GAMA15H", "VVDS", "XMM"]: print(field) if field == "AEGIS": alpha0 = 215. delta0 = 52.5 if field == "HECTOMAP": alpha0 = 240. delta0 = 43. if field == "GAMA09H": alpha0 = 137. delta0 = 1. if field == "WIDE12H": alpha0 = 180. delta0 = 0. if field == "GAMA15H": alpha0 = 220. delta0 = 0. if field == "VVDS": alpha0 = 336. delta0 = 1. if field == "XMM": alpha0 = 34. delta0 = -4. phi = math.radians(alpha0) theta = math.radians(90-delta0) to_be_visited = list() visited = list() ipix = hp.ang2pix(nside, theta, phi) if m[ipix] != True: print("central pixel is not true") os.exit(1) m_out[ipix] = True flag = True ipix_in = ipix i = 0 # grow from center while(flag): ipixs = hp.get_all_neighbours(nside, ipix_in)[[0,2,4,6]] visited.append(ipix_in) m_out[ipixs] = m[ipixs] ipixs_true = ipixs[m[ipixs]] ipixs_true_not_visited = list() for item in ipixs_true: if not (item in visited): if not (item in to_be_visited): ipixs_true_not_visited.append(item) to_be_visited += ipixs_true_not_visited ipix_in = np.min(to_be_visited) to_be_visited.remove(ipix_in) if len(to_be_visited) == 0: flag = False i += 1 if i % 100 == 0: print(str(i), str(len(visited)), str(len(set(visited))), str(len(to_be_visited)), str(len(set(to_be_visited)))) return m_out def plot_mask(ra, dec, nside=2**10): pix = hp.pixelfunc.ang2pix(nside, dec, dec, lonlat=True) hp.visufunc.mollview(map=np.bincount(pix,minlength=hp.nside2npix(nside)), cbar=False, notext=True, max=1, min=0, title="", cmap="binary") hp.graticule() plt.show() if __name__ == "__main__": location = '/scratch/csh4/tools/147279.fits' d = pyfits.getdata(location)#sys.argv[1]) # I do not know why, but a visit in s16a_wide.mosaicframe__deepcoadd is missing in s16a_wide.frame. d = d[~d["visit_isnull"]] d = removeDuplicatedVisits(d) m = getFullAreaHealPixels(d) m = getContiguousPixels(m) # os.remove("/scratch/csh4/tools/S16A_fdfc_hp_map.fits") # hp.write_map("/scratch/csh4/tools/S16A_fdfc_hp_map.fits", m, # dtype=np.bool, nest = False) hp.visufunc.mollview(map=m, cbar=False, notext=True, max=1, min=0, title="", cmap="binary") hp.graticule() plt.show()
mit
BoltzmannBrain/nupic
src/nupic/research/monitor_mixin/plot.py
19
5187
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2014-2015, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """ Plot class used in monitor mixin framework. """ import logging import os try: # We import in here to avoid creating a matplotlib dependency in nupic. import matplotlib.pyplot as plt import matplotlib.cm as cm except ImportError: # Suppress; we log it at debug level to avoid polluting the logs of apps # and services that don't care about plotting logging.debug("Cannot import matplotlib. Plot class will not work.", exc_info=True) class Plot(object): def __init__(self, monitor, title, show=True): """ @param monitor (MonitorMixinBase) Monitor Mixin instance that generated this plot @param title (string) Plot title """ self._monitor = monitor self._title = title self._fig = self._initFigure() self._show = show if self._show: plt.ion() plt.show() def _initFigure(self): fig = plt.figure() fig.suptitle(self._prettyPrintTitle()) return fig def _prettyPrintTitle(self): if self._monitor.mmName is not None: return "[{0}] {1}".format(self._monitor.mmName, self._title) return self._title def addGraph(self, data, position=111, xlabel=None, ylabel=None): """ Adds a graph to the plot's figure. @param data See matplotlib.Axes.plot documentation. @param position A 3-digit number. The first two digits define a 2D grid where subplots may be added. The final digit specifies the nth grid location for the added subplot @param xlabel text to be displayed on the x-axis @param ylabel text to be displayed on the y-axis """ ax = self._addBase(position, xlabel=xlabel, ylabel=ylabel) ax.plot(data) plt.draw() def addHistogram(self, data, position=111, xlabel=None, ylabel=None, bins=None): """ Adds a histogram to the plot's figure. @param data See matplotlib.Axes.hist documentation. @param position A 3-digit number. The first two digits define a 2D grid where subplots may be added. The final digit specifies the nth grid location for the added subplot @param xlabel text to be displayed on the x-axis @param ylabel text to be displayed on the y-axis """ ax = self._addBase(position, xlabel=xlabel, ylabel=ylabel) ax.hist(data, bins=bins, color="green", alpha=0.8) plt.draw() def add2DArray(self, data, position=111, xlabel=None, ylabel=None, cmap=None, aspect="auto", interpolation="nearest", name=None): """ Adds an image to the plot's figure. @param data a 2D array. See matplotlib.Axes.imshow documentation. @param position A 3-digit number. The first two digits define a 2D grid where subplots may be added. The final digit specifies the nth grid location for the added subplot @param xlabel text to be displayed on the x-axis @param ylabel text to be displayed on the y-axis @param cmap color map used in the rendering @param aspect how aspect ratio is handled during resize @param interpolation interpolation method """ if cmap is None: # The default colormodel is an ugly blue-red model. cmap = cm.Greys ax = self._addBase(position, xlabel=xlabel, ylabel=ylabel) ax.imshow(data, cmap=cmap, aspect=aspect, interpolation=interpolation) if self._show: plt.draw() if name is not None: if not os.path.exists("log"): os.mkdir("log") plt.savefig("log/{name}.png".format(name=name), bbox_inches="tight", figsize=(8, 6), dpi=400) def _addBase(self, position, xlabel=None, ylabel=None): """ Adds a subplot to the plot's figure at specified position. @param position A 3-digit number. The first two digits define a 2D grid where subplots may be added. The final digit specifies the nth grid location for the added subplot @param xlabel text to be displayed on the x-axis @param ylabel text to be displayed on the y-axis @returns (matplotlib.Axes) Axes instance """ ax = self._fig.add_subplot(position) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) return ax
agpl-3.0
iamshang1/Projects
Basic_ML/Exploratory_Data_Analysis/exploratory_data_analysis.py
1
5673
import numpy as np import pandas as pd import matplotlib.pyplot as plt Forbes2000 = pd.read_csv("Forbes2000.csv", sep=',', usecols=range(0,9)) Forbes2000 = Forbes2000[1:] #companies by market value and profits fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(15, 8)) marketv = axes[0].hist(np.array(Forbes2000['Market Value'].astype(float)), 50, range=[0,100], facecolor='green', alpha=0.5) axes[0].set_title('2014 Forbes 2000 Company Market Values') axes[0].set_ylabel('# of Companies') axes[0].set_xlabel('Market Value in Billion $') axes[0].set_xticks(np.arange(0,101,10)) profits = axes[1].hist(np.array(Forbes2000['Profits'].astype(float)), 50, range=[-5,15], facecolor='green', alpha=0.5) axes[1].set_title('2014 Forbes 2000 Company Profits') axes[1].set_ylabel('# of Companies') axes[1].set_xlabel('Profit in Billion $') axes[1].set_xticks(np.arange(-4,15,2)) plt.savefig('f1.png') plt.show() #separate into sectors Financials = Forbes2000[Forbes2000.Sector=="Financials"] Energy = Forbes2000[Forbes2000.Sector=="Energy"] Industrials = Forbes2000[Forbes2000.Sector=="Industrials"] IT = Forbes2000[Forbes2000.Sector=="Information Technology"] ConsumerD = Forbes2000[Forbes2000.Sector=="Consumer Discretionary"] ConsumerS = Forbes2000[Forbes2000.Sector=="Consumer Staples"] Health = Forbes2000[Forbes2000.Sector=="Health Care"] Utilities = Forbes2000[Forbes2000.Sector=="Utilities"] Telecom = Forbes2000[Forbes2000.Sector=="Telecommunication Services"] Materials = Forbes2000[Forbes2000.Sector=="Materials"] #companies by sector xnames = ['Financials', 'Energy', 'Industrials', 'Information Tech.', 'Cons. Discretionary', 'Cons. Staples', 'Health Care', 'Utilities', 'Telecommunications', 'Materials'] colors = ['lightgreen', 'cornflowerblue', 'lightgrey', 'steelblue', 'plum', 'sandybrown', 'tomato', 'silver', 'violet', 'skyblue'] plt.figure(figsize=(12, 8)) plt.pie([sector.count()[0] for sector in [Financials, Energy, Industrials, IT, ConsumerD, ConsumerS, Health, Utilities, Telecom, Materials]], labels=xnames, colors=colors, autopct='%1.1f%%', shadow=True, startangle=90) plt.axis('equal') plt.title("Forbes 2000 Companies by Sector", y=1.08) plt.savefig('f2.png') plt.show() #market value and profits by sector fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(15, 10)) marketv = axes[0].boxplot([np.array(sector['Market Value'].astype(float)) for sector in [Financials, Energy, Industrials, IT, ConsumerD, ConsumerS, Health, Utilities, Telecom, Materials]], showmeans=True) axes[0].set_ylabel('Market Value in Billion $') axes[0].set_ylim(0, 200) axes[0].set_title('2014 Forbes 2000 Market Value by Sector') axes[0].set_yticks(np.arange(0,200,10)) axes[0].set_xticklabels(xnames, rotation=45, fontsize=8, ha="right") axes[0].yaxis.grid(True, linestyle='-', color='lightgrey', alpha=0.5) profits = axes[1].boxplot([np.array(sector.Profits.astype(float)) for sector in [Financials, Energy, Industrials, IT, ConsumerD, ConsumerS, Health, Utilities, Telecom, Materials]], showmeans=True) axes[1].set_ylabel('Profits in Billion $') axes[1].set_ylim(-4, 20) axes[1].set_title('2014 Forbes 2000 Profits by Sector') axes[1].set_yticks(np.arange(-4,20,2)) axes[1].set_xticklabels(xnames, rotation=45, fontsize=8, ha="right") axes[1].yaxis.grid(True, linestyle='-', color='lightgrey', alpha=0.5) plt.savefig('f3.png') plt.show() #separate by continent NA = Forbes2000[Forbes2000.Continent=="North America"] SA = Forbes2000[Forbes2000.Continent=="South America"] Europe = Forbes2000[Forbes2000.Continent=="Europe"] Asia = Forbes2000[Forbes2000.Continent=="Asia"] Australia = Forbes2000[Forbes2000.Continent=="Australia"] Africa = Forbes2000[Forbes2000.Continent=="Africa"] #companies by continent xnames = ['North America', 'South America', 'Europe', 'Australia', 'Asia', 'Africa'] colors = ['cornflowerblue', 'tomato', 'violet', 'gold', 'palegreen', 'sandybrown'] plt.figure(figsize=(12, 8)) plt.pie([continent.count()[0] for continent in [NA, SA, Europe, Australia, Asia, Africa]], labels=xnames, colors=colors, autopct='%1.1f%%', shadow=True, startangle=30) plt.axis('equal') plt.title("Forbes 2000 Companies by Continent", y=1.08) plt.savefig('f4.png') plt.show() #market value and profits by continent fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(15, 10)) marketv = axes[0].boxplot([np.array(continent['Market Value'].astype(float)) for continent in [NA, SA, Europe, Australia, Asia, Africa]], showmeans=True) axes[0].set_ylabel('Market Value in Billion $') axes[0].set_ylim(0, 300) axes[0].set_title('2014 Forbes 2000 Market Value by Continent') axes[0].set_yticks(np.arange(0,300,20)) axes[0].set_xticklabels(xnames, rotation=45, fontsize=8, ha="right") axes[0].yaxis.grid(True, linestyle='-', color='lightgrey', alpha=0.5) profits = axes[1].boxplot([np.array(continent.Profits.astype(float)) for continent in [NA, SA, Europe, Australia, Asia, Africa]], showmeans=True) axes[1].set_ylabel('Profits in Billion $') axes[1].set_ylim(-5, 30) axes[1].set_title('2014 Forbes 2000 Profits by Continent') axes[1].set_yticks(np.arange(-5,30,5)) axes[1].set_xticklabels(xnames, rotation=45, fontsize=8, ha="right") axes[1].yaxis.grid(True, linestyle='-', color='lightgrey', alpha=0.5) plt.savefig('f5.png') plt.show() #relationship vetween profits and market value plt.figure(figsize=(12, 8)) marketv = np.array(Forbes2000['Market Value'].astype(float)) profits = np.array(Forbes2000['Profits'].astype(float)) plt.scatter(marketv, profits, alpha=0.5) plt.title("Relationship Between Market Value and Profits", y=1.08) plt.xlabel('Market Value in Billion $') plt.ylabel('Profit in Billion $') plt.xlim(-20, 500) plt.savefig('f6.png') plt.show()
mit
RebeccaWPerry/vispy
vispy/visuals/isocurve.py
18
7809
# -*- coding: utf-8 -*- # Copyright (c) 2015, Vispy Development Team. # Distributed under the (new) BSD License. See LICENSE.txt for more info. from __future__ import division import numpy as np from .line import LineVisual from ..color import ColorArray from ..color.colormap import _normalize, get_colormap from ..geometry.isocurve import isocurve from ..testing import has_matplotlib # checking for matplotlib _HAS_MPL = has_matplotlib() if _HAS_MPL: from matplotlib import _cntr as cntr class IsocurveVisual(LineVisual): """Displays an isocurve of a 2D scalar array. Parameters ---------- data : ndarray | None 2D scalar array. levels : ndarray, shape (Nlev,) | None The levels at which the isocurve is constructed from "*data*". color_lev : Color, colormap name, tuple, list or array The color to use when drawing the line. If a list is given, it must be of shape (Nlev), if an array is given, it must be of shape (Nlev, ...). and provide one color per level (rgba, colorname). clim : tuple (min, max) limits to apply when mapping level values through a colormap. **kwargs : dict Keyword arguments to pass to `LineVisual`. Notes ----- """ def __init__(self, data=None, levels=None, color_lev=None, clim=None, **kwargs): self._data = None self._levels = levels self._color_lev = color_lev self._clim = clim self._need_color_update = True self._need_level_update = True self._need_recompute = True self._X = None self._Y = None self._iso = None self._level_min = None self._data_is_uniform = False self._lc = None self._cl = None self._li = None self._connect = None self._verts = None kwargs['method'] = 'gl' kwargs['antialias'] = False LineVisual.__init__(self, **kwargs) if data is not None: self.set_data(data) @property def levels(self): """ The threshold at which the isocurve is constructed from the 2D data. """ return self._levels @levels.setter def levels(self, levels): self._levels = levels self._need_level_update = True self._need_recompute = True self.update() @property def color(self): return self._color_lev @color.setter def color(self, color): self._color_lev = color self._need_level_update = True self._need_color_update = True self.update() def set_data(self, data): """ Set the scalar array data Parameters ---------- data : ndarray A 2D array of scalar values. The isocurve is constructed to show all locations in the scalar field equal to ``self.levels``. """ self._data = data # if using matplotlib isoline algorithm we have to check for meshgrid # and we can setup the tracer object here if _HAS_MPL: if self._X is None or self._X.T.shape != data.shape: self._X, self._Y = np.meshgrid(np.arange(data.shape[0]), np.arange(data.shape[1])) self._iso = cntr.Cntr(self._X, self._Y, self._data.astype(float)) if self._clim is None: self._clim = (data.min(), data.max()) # sanity check, # should we raise an error here, since no isolines can be drawn? # for now, _prepare_draw returns False if no isoline can be drawn if self._data.min() != self._data.max(): self._data_is_uniform = False else: self._data_is_uniform = True self._need_recompute = True self.update() def _get_verts_and_connect(self, paths): """ retrieve vertices and connects from given paths-list """ verts = np.vstack(paths) gaps = np.add.accumulate(np.array([len(x) for x in paths])) - 1 connect = np.ones(gaps[-1], dtype=bool) connect[gaps[:-1]] = False return verts, connect def _compute_iso_line(self): """ compute LineVisual vertices, connects and color-index """ level_index = [] connects = [] verts = [] # calculate which level are within data range # this works for now and the existing examples, but should be tested # thoroughly also with the data-sanity check in set_data-function choice = np.nonzero((self.levels > self._data.min()) & (self._levels < self._data.max())) levels_to_calc = np.array(self.levels)[choice] # save minimum level index self._level_min = choice[0][0] for level in levels_to_calc: # if we use matplotlib isoline algorithm we need to add half a # pixel in both (x,y) dimensions because isolines are aligned to # pixel centers if _HAS_MPL: nlist = self._iso.trace(level, level, 0) paths = nlist[:len(nlist)//2] v, c = self._get_verts_and_connect(paths) v += np.array([0.5, 0.5]) else: paths = isocurve(self._data.astype(float).T, level, extend_to_edge=True, connected=True) v, c = self._get_verts_and_connect(paths) level_index.append(v.shape[0]) connects.append(np.hstack((c, [False]))) verts.append(v) self._li = np.hstack(level_index) self._connect = np.hstack(connects) self._verts = np.vstack(verts) def _compute_iso_color(self): """ compute LineVisual color from level index and corresponding color """ level_color = [] colors = self._lc for i, index in enumerate(self._li): level_color.append(np.zeros((index, 4)) + colors[i+self._level_min]) self._cl = np.vstack(level_color) def _levels_to_colors(self): # computes ColorArrays for given levels # try _color_lev as colormap, except as everything else try: f_color_levs = get_colormap(self._color_lev) except: colors = ColorArray(self._color_lev).rgba else: lev = _normalize(self._levels, self._clim[0], self._clim[1]) # map function expects (Nlev,1)! colors = f_color_levs.map(lev[:, np.newaxis]) # broadcast to (nlev, 4) array if len(colors) == 1: colors = colors * np.ones((len(self._levels), 1)) # detect color_lev/levels mismatch and raise error if (len(colors) != len(self._levels)): raise TypeError("Color/level mismatch. Color must be of shape " "(Nlev, ...) and provide one color per level") self._lc = colors def _prepare_draw(self, view): if (self._data is None or self._levels is None or self._color_lev is None or self._data_is_uniform): return False if self._need_level_update: self._levels_to_colors() self._need_level_update = False if self._need_recompute: self._compute_iso_line() self._compute_iso_color() LineVisual.set_data(self, pos=self._verts, connect=self._connect, color=self._cl) self._need_recompute = False if self._need_color_update: self._compute_iso_color() LineVisual.set_data(self, color=self._cl) self._need_color_update = False return LineVisual._prepare_draw(self, view)
bsd-3-clause
tropp/acq4
acq4/pyqtgraph/widgets/MatplotlibWidget.py
30
1442
from ..Qt import QtGui, QtCore, USE_PYSIDE, USE_PYQT5 import matplotlib if not USE_PYQT5: if USE_PYSIDE: matplotlib.rcParams['backend.qt4']='PySide' from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt4agg import NavigationToolbar2QTAgg as NavigationToolbar else: from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar from matplotlib.figure import Figure class MatplotlibWidget(QtGui.QWidget): """ Implements a Matplotlib figure inside a QWidget. Use getFigure() and redraw() to interact with matplotlib. Example:: mw = MatplotlibWidget() subplot = mw.getFigure().add_subplot(111) subplot.plot(x,y) mw.draw() """ def __init__(self, size=(5.0, 4.0), dpi=100): QtGui.QWidget.__init__(self) self.fig = Figure(size, dpi=dpi) self.canvas = FigureCanvas(self.fig) self.canvas.setParent(self) self.toolbar = NavigationToolbar(self.canvas, self) self.vbox = QtGui.QVBoxLayout() self.vbox.addWidget(self.toolbar) self.vbox.addWidget(self.canvas) self.setLayout(self.vbox) def getFigure(self): return self.fig def draw(self): self.canvas.draw()
mit
shafferm/SCNIC
SCNIC/module.py
1
3600
"""Make modules of observations based on cooccurence networks and collapse table""" from collections import defaultdict import numpy as np import pandas as pd from biom import load_table from biom.util import biom_open from os import path import os import networkx as nx from SCNIC import general from SCNIC import module_analysis as ma def module_maker(input_loc, output_loc, min_p=None, min_r=None, method='naive', k_size=3, gamma=.4, table_loc=None, prefix='module', verbose=False): logger = general.Logger(path.join(output_loc, "SCNIC_module_log.txt")) logger["SCNIC analysis type"] = "module" # read in correlations file correls = pd.read_csv(input_loc, index_col=(0, 1), sep='\t') correls.index = pd.MultiIndex.from_tuples([(str(id1), str(id2)) for id1, id2 in correls.index]) logger["input correls"] = input_loc if verbose: print("correls.txt read") # sanity check args if min_r is not None and min_p is not None: raise ValueError("arguments min_p and min_r may not be used concurrently") if min_r is None and min_p is None: raise ValueError("argument min_p or min_r must be used") # make new output directory and change to it if output_loc is not None: if not path.isdir(output_loc): os.makedirs(output_loc) logger["output directory"] = path.abspath(output_loc) # make modules if method == 'naive': modules = ma.make_modules_naive(correls, min_r, min_p, prefix=prefix) elif method == 'k_cliques': modules = ma.make_modules_k_cliques(correls, min_r, min_p, k_size, prefix=prefix) elif method == 'louvain': modules = ma.make_modules_louvain(correls, min_r, min_p, gamma, prefix=prefix) else: raise ValueError('%s is not a valid module picking method' % method) logger["number of modules created"] = len(modules) if verbose: print("Modules Formed") print("number of modules: %s" % len(modules)) print("number of observations in modules: %s" % np.sum([len(i) for i in modules])) print("") ma.write_modules_to_file(modules, path_str=path.join(output_loc, 'modules.txt')) # collapse modules if table_loc is not None: table = load_table(table_loc) logger["input uncollapsed table"] = table_loc if verbose: print("otu table read") coll_table = ma.collapse_modules(table, modules) # ma.write_modules_to_dir(table, modules) logger["number of observations in output table"] = coll_table.shape[0] if verbose: print("Table Collapsed") print("collapsed Table Observations: " + str(coll_table.shape[0])) print("") with biom_open(path.join(output_loc, 'collapsed.biom'), 'w') as f: coll_table.to_hdf5(f, 'make_modules.py') metadata = general.get_metadata_from_table(table) else: metadata = defaultdict(dict) # make network metadata = ma.add_modules_to_metadata(modules, metadata) correls_filter = general.filter_correls(correls, conet=True, min_p=min_p, min_r=min_r) net = general.correls_to_net(correls_filter, metadata=metadata) nx.write_gml(net, path.join(output_loc, 'correlation_network.gml')) if verbose: print("Network Generated") print("number of nodes: %s" % str(net.number_of_nodes())) print("number of edges: %s" % str(net.number_of_edges())) logger["number of nodes"] = net.number_of_nodes() logger["number of edges"] = net.number_of_edges() logger.output_log()
bsd-3-clause
xhochy/arrow
python/examples/flight/client.py
6
6791
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """An example Flight CLI client.""" import argparse import sys import pyarrow import pyarrow.flight import pyarrow.csv as csv def list_flights(args, client, connection_args={}): print('Flights\n=======') for flight in client.list_flights(): descriptor = flight.descriptor if descriptor.descriptor_type == pyarrow.flight.DescriptorType.PATH: print("Path:", descriptor.path) elif descriptor.descriptor_type == pyarrow.flight.DescriptorType.CMD: print("Command:", descriptor.command) else: print("Unknown descriptor type") print("Total records:", end=" ") if flight.total_records >= 0: print(flight.total_records) else: print("Unknown") print("Total bytes:", end=" ") if flight.total_bytes >= 0: print(flight.total_bytes) else: print("Unknown") print("Number of endpoints:", len(flight.endpoints)) print("Schema:") print(flight.schema) print('---') print('\nActions\n=======') for action in client.list_actions(): print("Type:", action.type) print("Description:", action.description) print('---') def do_action(args, client, connection_args={}): try: buf = pyarrow.allocate_buffer(0) action = pyarrow.flight.Action(args.action_type, buf) print('Running action', args.action_type) for result in client.do_action(action): print("Got result", result.body.to_pybytes()) except pyarrow.lib.ArrowIOError as e: print("Error calling action:", e) def push_data(args, client, connection_args={}): print('File Name:', args.file) my_table = csv.read_csv(args.file) print('Table rows=', str(len(my_table))) df = my_table.to_pandas() print(df.head()) writer, _ = client.do_put( pyarrow.flight.FlightDescriptor.for_path(args.file), my_table.schema) writer.write_table(my_table) writer.close() def get_flight(args, client, connection_args={}): if args.path: descriptor = pyarrow.flight.FlightDescriptor.for_path(*args.path) else: descriptor = pyarrow.flight.FlightDescriptor.for_command(args.command) info = client.get_flight_info(descriptor) for endpoint in info.endpoints: print('Ticket:', endpoint.ticket) for location in endpoint.locations: print(location) get_client = pyarrow.flight.FlightClient(location, **connection_args) reader = get_client.do_get(endpoint.ticket) df = reader.read_pandas() print(df) def _add_common_arguments(parser): parser.add_argument('--tls', action='store_true', help='Enable transport-level security') parser.add_argument('--tls-roots', default=None, help='Path to trusted TLS certificate(s)') parser.add_argument("--mtls", nargs=2, default=None, metavar=('CERTFILE', 'KEYFILE'), help="Enable transport-level security") parser.add_argument('host', type=str, help="Address or hostname to connect to") def main(): parser = argparse.ArgumentParser() subcommands = parser.add_subparsers() cmd_list = subcommands.add_parser('list') cmd_list.set_defaults(action='list') _add_common_arguments(cmd_list) cmd_list.add_argument('-l', '--list', action='store_true', help="Print more details.") cmd_do = subcommands.add_parser('do') cmd_do.set_defaults(action='do') _add_common_arguments(cmd_do) cmd_do.add_argument('action_type', type=str, help="The action type to run.") cmd_put = subcommands.add_parser('put') cmd_put.set_defaults(action='put') _add_common_arguments(cmd_put) cmd_put.add_argument('file', type=str, help="CSV file to upload.") cmd_get = subcommands.add_parser('get') cmd_get.set_defaults(action='get') _add_common_arguments(cmd_get) cmd_get_descriptor = cmd_get.add_mutually_exclusive_group(required=True) cmd_get_descriptor.add_argument('-p', '--path', type=str, action='append', help="The path for the descriptor.") cmd_get_descriptor.add_argument('-c', '--command', type=str, help="The command for the descriptor.") args = parser.parse_args() if not hasattr(args, 'action'): parser.print_help() sys.exit(1) commands = { 'list': list_flights, 'do': do_action, 'get': get_flight, 'put': push_data, } host, port = args.host.split(':') port = int(port) scheme = "grpc+tcp" connection_args = {} if args.tls: scheme = "grpc+tls" if args.tls_roots: with open(args.tls_roots, "rb") as root_certs: connection_args["tls_root_certs"] = root_certs.read() if args.mtls: with open(args.mtls[0], "rb") as cert_file: tls_cert_chain = cert_file.read() with open(args.mtls[1], "rb") as key_file: tls_private_key = key_file.read() connection_args["cert_chain"] = tls_cert_chain connection_args["private_key"] = tls_private_key client = pyarrow.flight.FlightClient(f"{scheme}://{host}:{port}", **connection_args) while True: try: action = pyarrow.flight.Action("healthcheck", b"") options = pyarrow.flight.FlightCallOptions(timeout=1) list(client.do_action(action, options=options)) break except pyarrow.ArrowIOError as e: if "Deadline" in str(e): print("Server is not ready, waiting...") commands[args.action](args, client, connection_args) if __name__ == '__main__': main()
apache-2.0
campbe13/openhatch
vendor/packages/mechanize/test/test_performance.py
22
2573
import os import time import sys import unittest import mechanize from mechanize._testcase import TestCase, TempDirMaker from mechanize._rfc3986 import urljoin KB = 1024 MB = 1024**2 GB = 1024**3 def time_it(operation): t = time.time() operation() return time.time() - t def write_data(filename, nr_bytes): block_size = 4096 block = "01234567" * (block_size // 8) fh = open(filename, "w") try: for i in range(nr_bytes // block_size): fh.write(block) finally: fh.close() def time_retrieve_local_file(temp_maker, size, retrieve_fn): temp_dir = temp_maker.make_temp_dir() filename = os.path.join(temp_dir, "data") write_data(filename, size) def operation(): retrieve_fn(urljoin("file://", filename), os.path.join(temp_dir, "retrieved")) return time_it(operation) class PerformanceTests(TestCase): def test_retrieve_local_file(self): def retrieve(url, filename): br = mechanize.Browser() br.retrieve(url, filename) size = 100 * MB # size = 1 * KB desired_rate = 2*MB # per second desired_time = size / float(desired_rate) fudge_factor = 2. self.assert_less_than( time_retrieve_local_file(self, size, retrieve), desired_time * fudge_factor) def show_plot(rows): import matplotlib.pyplot figure = matplotlib.pyplot.figure() axes = figure.add_subplot(111) axes.plot([row[0] for row in rows], [row[1] for row in rows]) matplotlib.pyplot.show() def power_2_range(start, stop): n = start while n <= stop: yield n n *= 2 def performance_plot(): def retrieve(url, filename): br = mechanize.Browser() br.retrieve(url, filename) # import urllib2 # def retrieve(url, filename): # urllib2.urlopen(url).read() # from mechanize import _useragent # ua = _useragent.UserAgent() # ua.set_seekable_responses(True) # ua.set_handle_equiv(False) # def retrieve(url, filename): # ua.retrieve(url, filename) rows = [] for size in power_2_range(256 * KB, 256 * MB): temp_maker = TempDirMaker() try: elapsed = time_retrieve_local_file(temp_maker, size, retrieve) finally: temp_maker.tear_down() rows.append((size//float(MB), elapsed)) show_plot(rows) if __name__ == "__main__": args = sys.argv[1:] if "--plot" in args: performance_plot() else: unittest.main()
agpl-3.0
nicproulx/mne-python
examples/visualization/plot_topo_customized.py
12
1905
""" ======================================== Plot custom topographies for MEG sensors ======================================== This example exposes the `iter_topography` function that makes it very easy to generate custom sensor topography plots. Here we will plot the power spectrum of each channel on a topographic layout. """ # Author: Denis A. Engemann <denis.engemann@gmail.com> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt import mne from mne.viz import iter_topography from mne import io from mne.time_frequency import psd_welch from mne.datasets import sample print(__doc__) data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' raw = io.read_raw_fif(raw_fname, preload=True) raw.filter(1, 20) picks = mne.pick_types(raw.info, meg=True, exclude=[]) tmin, tmax = 0, 120 # use the first 120s of data fmin, fmax = 2, 20 # look at frequencies between 2 and 20Hz n_fft = 2048 # the FFT size (n_fft). Ideally a power of 2 psds, freqs = psd_welch(raw, picks=picks, tmin=tmin, tmax=tmax, fmin=fmin, fmax=fmax) psds = 20 * np.log10(psds) # scale to dB def my_callback(ax, ch_idx): """ This block of code is executed once you click on one of the channel axes in the plot. To work with the viz internals, this function should only take two parameters, the axis and the channel or data index. """ ax.plot(freqs, psds[ch_idx], color='red') ax.set_xlabel = 'Frequency (Hz)' ax.set_ylabel = 'Power (dB)' for ax, idx in iter_topography(raw.info, fig_facecolor='white', axis_facecolor='white', axis_spinecolor='white', on_pick=my_callback): ax.plot(psds[idx], color='red') plt.gcf().suptitle('Power spectral densities') plt.show()
bsd-3-clause
rudhir-upretee/Sumo17_With_Netsim
tools/visualization/mpl_tripinfos_twoAgainst.py
1
5678
#!/usr/bin/env python """ @file mpl_tripinfos_twoAgainst.py @author Daniel Krajzewicz @author Michael Behrisch @date 2007-10-25 @version $Id: mpl_tripinfos_twoAgainst.py 13811 2013-05-01 20:31:43Z behrisch $ This script reads two tripinfos files and plots one of the values stored therein as an x-/y- plot. matplotlib has to be installed for this purpose SUMO, Simulation of Urban MObility; see http://sumo.sourceforge.net/ Copyright (C) 2008-2013 DLR (http://www.dlr.de/) and contributors All rights reserved """ from matplotlib import rcParams from pylab import * import os, string, sys, StringIO import math from optparse import OptionParser from xml.sax import saxutils, make_parser, handler def toHex(val): """Converts the given value (0-255) into its hexadecimal representation""" hex = "0123456789abcdef" return hex[int(val/16)] + hex[int(val - int(val/16)*16)] def toColor(val): """Converts the given value (0-1) into a color definition as parseable by matplotlib""" g = 255. * val return "#" + toHex(g) + toHex(g) + toHex(g) def updateMinMax(min, max, value): if min==None or min>value: min = value if max==None or max<value: max = value return (min, max) class VehroutesReader(handler.ContentHandler): """Reads the vehroutes file""" def __init__(self, value): self._id = '' self._veh2value = {} self._veh2time = {} self._value = value def startElement(self, name, attrs): if name == 'tripinfo': if attrs.has_key('id'): id = attrs['id'] else: id = attrs['vehicle_id'] self._veh2value[id] = float(attrs[self._value]) if attrs.has_key('depart'): self._veh2time[id] = float(attrs["depart"]) else: self._veh2time[id] = float(attrs["wished"]) # initialise optParser = OptionParser() optParser.add_option("-v", "--verbose", action="store_true", dest="verbose", default=False, help="tell me what you are doing") # i/o optParser.add_option("-1", "--tripinfos1", dest="tripinfos1", help="First tripinfos (mandatory)", metavar="FILE") optParser.add_option("-2", "--tripinfos2", dest="tripinfos2", help="Second tripinfos (mandatory)", metavar="FILE") optParser.add_option("-o", "--output", dest="output", help="Name of the image to generate", metavar="FILE") optParser.add_option("--size", dest="size",type="string", default="", help="defines the output size") # processing optParser.add_option("--value", dest="value", type="string", default="duration", help="which value shall be used") optParser.add_option("-s", "--show", action="store_true", dest="show", default=False, help="shows plot after generating it") optParser.add_option("-C", "--time-coloring", action="store_true", dest="time_coloring", default=False, help="colors the points by the time") # axes/legend optParser.add_option("--xticks", dest="xticks",type="string", default="", help="defines ticks on x-axis") optParser.add_option("--yticks", dest="yticks",type="string", default="", help="defines ticks on y-axis") optParser.add_option("--xlim", dest="xlim",type="string", default="", help="defines x-axis range") optParser.add_option("--ylim", dest="ylim",type="string", default="", help="defines y-axis range") # parse options (options, args) = optParser.parse_args() # check set options if not options.show and not options.output: print "Neither show (--show) not write (--output <FILE>)? Exiting..." exit() parser = make_parser() # read dump1 if options.verbose: print "Reading tripinfos1..." r1 = VehroutesReader(options.value) parser.setContentHandler(r1) parser.parse(options.tripinfos1) # read dump2 if options.verbose: print "Reading tripinfos2..." r2 = VehroutesReader(options.value) parser.setContentHandler(r2) parser.parse(options.tripinfos2) # plot if options.verbose: print "Processing data..." # set figure size if not options.show: rcParams['backend'] = 'Agg' if options.size: f = figure(figsize=(options.size.split(","))) else: f = figure() xs = [] ys = [] # compute values and color(s) c = 'k' min = None max = None #if options.time_coloring: c = [] for veh in r1._veh2value: if veh in r2._veh2value: if options.time_coloring: cc = 1. - ((float(r1._veh2time[veh]) / 86400.) * .8 + .2) c.append(toColor(cc)) else: c.append('k') xs.append(r1._veh2value[veh]) ys.append(r2._veh2value[veh]) (min, max) = updateMinMax(min, max, r1._veh2value[veh]) (min, max) = updateMinMax(min, max, r2._veh2value[veh]) # plot print "data range: " + str(min) + " - " + str(max) if options.verbose: print "Plotting..." if options.time_coloring: scatter(xs, ys, color=c, s=1) else: plot(xs, ys, ',k') # set axes if options.xticks!="": (xb, xe, xd, xs) = options.xticks.split(",") xticks(arange(xb, xe, xd), size = xs) if options.yticks!="": (yb, ye, yd, ys) = options.yticks.split(",") yticks(arange(yb, ye, yd), size = ys) if options.xlim!="": (xb, xe) = options.xlim.split(",") xlim(int(xb), int(xe)) else: xlim(min, max) if options.ylim!="": (yb, ye) = options.ylim.split(",") ylim(int(yb), int(ye)) else: ylim(min, max) # show/save if options.show: show() if options.output: savefig(options.output);
gpl-3.0
jongyoul/zeppelin
python/src/main/resources/python/zeppelin_python.py
19
6945
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os, sys, traceback, json, re from py4j.java_gateway import java_import, JavaGateway, GatewayClient from py4j.protocol import Py4JJavaError import ast class Logger(object): def __init__(self): pass def write(self, message): intp.appendOutput(message) def reset(self): pass def flush(self): pass class PythonCompletion: def __init__(self, interpreter, userNameSpace): self.interpreter = interpreter self.userNameSpace = userNameSpace def getObjectCompletion(self, text_value): completions = [completion for completion in list(self.userNameSpace.keys()) if completion.startswith(text_value)] builtinCompletions = [completion for completion in dir(__builtins__) if completion.startswith(text_value)] return completions + builtinCompletions def getMethodCompletion(self, objName, methodName): execResult = locals() try: exec("{} = dir({})".format("objectDefList", objName), _zcUserQueryNameSpace, execResult) except: self.interpreter.logPythonOutput("Fail to run dir on " + objName) self.interpreter.logPythonOutput(traceback.format_exc()) return None else: objectDefList = execResult['objectDefList'] return [completion for completion in execResult['objectDefList'] if completion.startswith(methodName)] def getCompletion(self, text_value): if text_value == None: return None dotPos = text_value.find(".") if dotPos == -1: objName = text_value completionList = self.getObjectCompletion(objName) else: objName = text_value[:dotPos] methodName = text_value[dotPos + 1:] completionList = self.getMethodCompletion(objName, methodName) if completionList is None or len(completionList) <= 0: self.interpreter.setStatementsFinished("", False) else: result = json.dumps(list(filter(lambda x : not re.match("^__.*", x), list(completionList)))) self.interpreter.setStatementsFinished(result, False) host = sys.argv[1] port = int(sys.argv[2]) if "PY4J_GATEWAY_SECRET" in os.environ: from py4j.java_gateway import GatewayParameters gateway_secret = os.environ["PY4J_GATEWAY_SECRET"] gateway = JavaGateway(gateway_parameters=GatewayParameters( address=host, port=port, auth_token=gateway_secret, auto_convert=True)) else: gateway = JavaGateway(GatewayClient(address=host, port=port), auto_convert=True) intp = gateway.entry_point _zcUserQueryNameSpace = {} completion = PythonCompletion(intp, _zcUserQueryNameSpace) _zcUserQueryNameSpace["__zeppelin_completion__"] = completion _zcUserQueryNameSpace["gateway"] = gateway from zeppelin_context import PyZeppelinContext if intp.getZeppelinContext(): z = __zeppelin__ = PyZeppelinContext(intp.getZeppelinContext(), gateway) __zeppelin__._setup_matplotlib() _zcUserQueryNameSpace["z"] = z _zcUserQueryNameSpace["__zeppelin__"] = __zeppelin__ intp.onPythonScriptInitialized(os.getpid()) # redirect stdout/stderr to java side so that PythonInterpreter can capture the python execution result output = Logger() sys.stdout = output sys.stderr = output while True : req = intp.getStatements() try: stmts = req.statements().split("\n") isForCompletion = req.isForCompletion() # Get post-execute hooks try: if req.isCallHooks(): global_hook = intp.getHook('post_exec_dev') else: global_hook = None except: global_hook = None try: if req.isCallHooks(): user_hook = __zeppelin__.getHook('post_exec') else: user_hook = None except: user_hook = None nhooks = 0 if not isForCompletion: for hook in (global_hook, user_hook): if hook: nhooks += 1 if stmts: # use exec mode to compile the statements except the last statement, # so that the last statement's evaluation will be printed to stdout code = compile('\n'.join(stmts), '<stdin>', 'exec', ast.PyCF_ONLY_AST, 1) to_run_hooks = [] if (nhooks > 0): to_run_hooks = code.body[-nhooks:] to_run_exec, to_run_single = (code.body[:-(nhooks + 1)], [code.body[-(nhooks + 1)]] if len(code.body) > nhooks else []) try: for node in to_run_exec: mod = ast.Module([node]) code = compile(mod, '<stdin>', 'exec') exec(code, _zcUserQueryNameSpace) for node in to_run_single: mod = ast.Interactive([node]) code = compile(mod, '<stdin>', 'single') exec(code, _zcUserQueryNameSpace) for node in to_run_hooks: mod = ast.Module([node]) code = compile(mod, '<stdin>', 'exec') exec(code, _zcUserQueryNameSpace) if not isForCompletion: # only call it when it is not for code completion. code completion will call it in # PythonCompletion.getCompletion intp.setStatementsFinished("", False) except Py4JJavaError: # raise it to outside try except raise except: if not isForCompletion: # extract which line incur error from error message. e.g. # Traceback (most recent call last): # File "<stdin>", line 1, in <module> # ZeroDivisionError: integer division or modulo by zero exception = traceback.format_exc() m = re.search("File \"<stdin>\", line (\d+).*", exception) if m: line_no = int(m.group(1)) intp.setStatementsFinished( "Fail to execute line {}: {}\n".format(line_no, stmts[line_no - 1]) + exception, True) else: intp.setStatementsFinished(exception, True) else: intp.setStatementsFinished("", False) except Py4JJavaError: excInnerError = traceback.format_exc() # format_tb() does not return the inner exception innerErrorStart = excInnerError.find("Py4JJavaError:") if innerErrorStart > -1: excInnerError = excInnerError[innerErrorStart:] intp.setStatementsFinished(excInnerError + str(sys.exc_info()), True) except: intp.setStatementsFinished(traceback.format_exc(), True) output.reset()
apache-2.0
magne-max/zipline-ja
tests/utils/test_cache.py
6
1936
from unittest import TestCase from pandas import Timestamp, Timedelta from zipline.utils.cache import CachedObject, Expired, ExpiringCache class CachedObjectTestCase(TestCase): def test_cached_object(self): expiry = Timestamp('2014') before = expiry - Timedelta('1 minute') after = expiry + Timedelta('1 minute') obj = CachedObject(1, expiry) self.assertEqual(obj.unwrap(before), 1) self.assertEqual(obj.unwrap(expiry), 1) # Unwrap on expiry is allowed. with self.assertRaises(Expired) as e: obj.unwrap(after) self.assertEqual(e.exception.args, (expiry,)) class ExpiringCacheTestCase(TestCase): def test_expiring_cache(self): expiry_1 = Timestamp('2014') before_1 = expiry_1 - Timedelta('1 minute') after_1 = expiry_1 + Timedelta('1 minute') expiry_2 = Timestamp('2015') after_2 = expiry_1 + Timedelta('1 minute') expiry_3 = Timestamp('2016') cache = ExpiringCache() cache.set('foo', 1, expiry_1) cache.set('bar', 2, expiry_2) self.assertEqual(cache.get('foo', before_1), 1) # Unwrap on expiry is allowed. self.assertEqual(cache.get('foo', expiry_1), 1) with self.assertRaises(KeyError) as e: self.assertEqual(cache.get('foo', after_1)) self.assertEqual(e.exception.args, ('foo',)) # Should raise same KeyError after deletion. with self.assertRaises(KeyError) as e: self.assertEqual(cache.get('foo', before_1)) self.assertEqual(e.exception.args, ('foo',)) # Second value should still exist. self.assertEqual(cache.get('bar', after_2), 2) # Should raise similar KeyError on non-existent key. with self.assertRaises(KeyError) as e: self.assertEqual(cache.get('baz', expiry_3)) self.assertEqual(e.exception.args, ('baz',))
apache-2.0
vigilv/scikit-learn
examples/plot_kernel_approximation.py
262
8004
""" ================================================== Explicit feature map approximation for RBF kernels ================================================== An example illustrating the approximation of the feature map of an RBF kernel. .. currentmodule:: sklearn.kernel_approximation It shows how to use :class:`RBFSampler` and :class:`Nystroem` to approximate the feature map of an RBF kernel for classification with an SVM on the digits dataset. Results using a linear SVM in the original space, a linear SVM using the approximate mappings and using a kernelized SVM are compared. Timings and accuracy for varying amounts of Monte Carlo samplings (in the case of :class:`RBFSampler`, which uses random Fourier features) and different sized subsets of the training set (for :class:`Nystroem`) for the approximate mapping are shown. Please note that the dataset here is not large enough to show the benefits of kernel approximation, as the exact SVM is still reasonably fast. Sampling more dimensions clearly leads to better classification results, but comes at a greater cost. This means there is a tradeoff between runtime and accuracy, given by the parameter n_components. Note that solving the Linear SVM and also the approximate kernel SVM could be greatly accelerated by using stochastic gradient descent via :class:`sklearn.linear_model.SGDClassifier`. This is not easily possible for the case of the kernelized SVM. The second plot visualized the decision surfaces of the RBF kernel SVM and the linear SVM with approximate kernel maps. The plot shows decision surfaces of the classifiers projected onto the first two principal components of the data. This visualization should be taken with a grain of salt since it is just an interesting slice through the decision surface in 64 dimensions. In particular note that a datapoint (represented as a dot) does not necessarily be classified into the region it is lying in, since it will not lie on the plane that the first two principal components span. The usage of :class:`RBFSampler` and :class:`Nystroem` is described in detail in :ref:`kernel_approximation`. """ print(__doc__) # Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org> # Andreas Mueller <amueller@ais.uni-bonn.de> # License: BSD 3 clause # Standard scientific Python imports import matplotlib.pyplot as plt import numpy as np from time import time # Import datasets, classifiers and performance metrics from sklearn import datasets, svm, pipeline from sklearn.kernel_approximation import (RBFSampler, Nystroem) from sklearn.decomposition import PCA # The digits dataset digits = datasets.load_digits(n_class=9) # To apply an classifier on this data, we need to flatten the image, to # turn the data in a (samples, feature) matrix: n_samples = len(digits.data) data = digits.data / 16. data -= data.mean(axis=0) # We learn the digits on the first half of the digits data_train, targets_train = data[:n_samples / 2], digits.target[:n_samples / 2] # Now predict the value of the digit on the second half: data_test, targets_test = data[n_samples / 2:], digits.target[n_samples / 2:] #data_test = scaler.transform(data_test) # Create a classifier: a support vector classifier kernel_svm = svm.SVC(gamma=.2) linear_svm = svm.LinearSVC() # create pipeline from kernel approximation # and linear svm feature_map_fourier = RBFSampler(gamma=.2, random_state=1) feature_map_nystroem = Nystroem(gamma=.2, random_state=1) fourier_approx_svm = pipeline.Pipeline([("feature_map", feature_map_fourier), ("svm", svm.LinearSVC())]) nystroem_approx_svm = pipeline.Pipeline([("feature_map", feature_map_nystroem), ("svm", svm.LinearSVC())]) # fit and predict using linear and kernel svm: kernel_svm_time = time() kernel_svm.fit(data_train, targets_train) kernel_svm_score = kernel_svm.score(data_test, targets_test) kernel_svm_time = time() - kernel_svm_time linear_svm_time = time() linear_svm.fit(data_train, targets_train) linear_svm_score = linear_svm.score(data_test, targets_test) linear_svm_time = time() - linear_svm_time sample_sizes = 30 * np.arange(1, 10) fourier_scores = [] nystroem_scores = [] fourier_times = [] nystroem_times = [] for D in sample_sizes: fourier_approx_svm.set_params(feature_map__n_components=D) nystroem_approx_svm.set_params(feature_map__n_components=D) start = time() nystroem_approx_svm.fit(data_train, targets_train) nystroem_times.append(time() - start) start = time() fourier_approx_svm.fit(data_train, targets_train) fourier_times.append(time() - start) fourier_score = fourier_approx_svm.score(data_test, targets_test) nystroem_score = nystroem_approx_svm.score(data_test, targets_test) nystroem_scores.append(nystroem_score) fourier_scores.append(fourier_score) # plot the results: plt.figure(figsize=(8, 8)) accuracy = plt.subplot(211) # second y axis for timeings timescale = plt.subplot(212) accuracy.plot(sample_sizes, nystroem_scores, label="Nystroem approx. kernel") timescale.plot(sample_sizes, nystroem_times, '--', label='Nystroem approx. kernel') accuracy.plot(sample_sizes, fourier_scores, label="Fourier approx. kernel") timescale.plot(sample_sizes, fourier_times, '--', label='Fourier approx. kernel') # horizontal lines for exact rbf and linear kernels: accuracy.plot([sample_sizes[0], sample_sizes[-1]], [linear_svm_score, linear_svm_score], label="linear svm") timescale.plot([sample_sizes[0], sample_sizes[-1]], [linear_svm_time, linear_svm_time], '--', label='linear svm') accuracy.plot([sample_sizes[0], sample_sizes[-1]], [kernel_svm_score, kernel_svm_score], label="rbf svm") timescale.plot([sample_sizes[0], sample_sizes[-1]], [kernel_svm_time, kernel_svm_time], '--', label='rbf svm') # vertical line for dataset dimensionality = 64 accuracy.plot([64, 64], [0.7, 1], label="n_features") # legends and labels accuracy.set_title("Classification accuracy") timescale.set_title("Training times") accuracy.set_xlim(sample_sizes[0], sample_sizes[-1]) accuracy.set_xticks(()) accuracy.set_ylim(np.min(fourier_scores), 1) timescale.set_xlabel("Sampling steps = transformed feature dimension") accuracy.set_ylabel("Classification accuracy") timescale.set_ylabel("Training time in seconds") accuracy.legend(loc='best') timescale.legend(loc='best') # visualize the decision surface, projected down to the first # two principal components of the dataset pca = PCA(n_components=8).fit(data_train) X = pca.transform(data_train) # Gemerate grid along first two principal components multiples = np.arange(-2, 2, 0.1) # steps along first component first = multiples[:, np.newaxis] * pca.components_[0, :] # steps along second component second = multiples[:, np.newaxis] * pca.components_[1, :] # combine grid = first[np.newaxis, :, :] + second[:, np.newaxis, :] flat_grid = grid.reshape(-1, data.shape[1]) # title for the plots titles = ['SVC with rbf kernel', 'SVC (linear kernel)\n with Fourier rbf feature map\n' 'n_components=100', 'SVC (linear kernel)\n with Nystroem rbf feature map\n' 'n_components=100'] plt.tight_layout() plt.figure(figsize=(12, 5)) # predict and plot for i, clf in enumerate((kernel_svm, nystroem_approx_svm, fourier_approx_svm)): # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. plt.subplot(1, 3, i + 1) Z = clf.predict(flat_grid) # Put the result into a color plot Z = Z.reshape(grid.shape[:-1]) plt.contourf(multiples, multiples, Z, cmap=plt.cm.Paired) plt.axis('off') # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=targets_train, cmap=plt.cm.Paired) plt.title(titles[i]) plt.tight_layout() plt.show()
bsd-3-clause
atantet/transferPlasim
transfer/plotSpectrumPlasim.py
1
12156
import os import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot3d import Axes3D from scipy.stats import gaussian_kde import atmath # Case definition S = 1265 restartState = "warm" lastYear = 9999 firstYear = 101 processing = "_yearly" indexChoice = ["nhemisic", "eqmst"] dim = len(indexChoice) # Grid definition nx = 25 nSTD = 5 # Lags nLags = 1 tauDimRng = np.array([1]) nev = 25 nevPlot = 3 #plotAdjoint = False plotAdjoint = True resDir = "%s_%d" % (restartState, np.round(S*10)) dstDir = resDir caseName = "%s_%05d_%05d" % (resDir, firstYear, lastYear) os.system('mkdir %s/ccf %s/spectrum/eigval/figs %s/spectrum/eigvec/figs 2> /dev/null' \ % (dstDir, dstDir, dstDir)) obsName = caseName gridPostfix = "N" N = 1 for d in np.arange(dim): N *= nx obsName += ("_%s" % indexChoice[d]) if d > 0: gridPostfix += ("x%d" % nx) else: gridPostfix += ("%d" % nx) gridPostfix = "%s_%s_%s_%dstd" % (processing, obsName, gridPostfix, nSTD) # Read grid gridFile = '%s/grid/grid%s.txt' % (dstDir, gridPostfix) f = open(gridFile, 'r') bounds = [] coord = [] for k in np.arange(dim): bounds.append(np.array(f.readline().split()).astype(float)) coord.append((bounds[k][1:] + bounds[k][:-1]) / 2) f.close() X, Y = np.meshgrid(coord[0], coord[1]) # Plot levels = 20 fs_default = 'x-large' fs_latex = 'xx-large' fs_xlabel = fs_default fs_ylabel = fs_default fs_xticklabels = fs_default fs_yticklabels = fs_default fs_legend_title = fs_default fs_legend_labels = fs_default fs_cbar_label = fs_default msize = 48 scattersize = 12 #scattersize = 36 # figFormat = 'eps' figFormat = 'png' dpi = 300 readMap = False gridXlim = [coord[0].min(), coord[0].max()] gridYlim = [coord[1].min(), coord[1].max()] for lag in np.arange(tauDimRng.shape[0]): tauDim = tauDimRng[lag] postfix = "%s_tau%02d" % (gridPostfix, tauDim) print 'Readig spectrum...' EigValFile = '%s/spectrum/eigval/eigval_nev%d%s.txt' % (dstDir, nev, postfix) EigVecFile = '%s/spectrum/eigvec/eigvec_nev%d%s.txt' % (dstDir, nev, postfix) eigval = np.loadtxt(EigValFile) eigval = eigval[:, 0] + eigval[:, 1]*1j eigvec = np.loadtxt(EigVecFile) eigvec = eigvec[::2] + eigvec[1::2]*1j isort = np.argsort(np.abs(eigval))[::-1] eigval = eigval[isort] eigvec = eigvec[isort] if plotAdjoint: EigValAdjointFile = '%s/spectrum/eigval/eigvalAdjoint_nev%d%s.txt' % (dstDir, nev, postfix) EigVecAdjointFile = '%s/spectrum/eigvec/eigvecAdjoint_nev%d%s.txt' % (dstDir, nev, postfix) eigvalAdjoint = np.loadtxt(EigValAdjointFile) eigvalAdjoint = eigvalAdjoint[:, 0] + eigvalAdjoint[:, 1]*1j eigvecAdjoint = np.loadtxt(EigVecAdjointFile) # From the transpose we get the conjugate of the adjoint eigenvectors # so we take back the conjugate eigvecAdjoint = eigvecAdjoint[::2] - eigvecAdjoint[1::2]*1j isort = np.argsort(np.abs(eigvalAdjoint))[::-1] eigvalAdjoint = eigvalAdjoint[isort] eigvecAdjoint = eigvecAdjoint[isort] nevSingle = eigval.shape[0] eigvalGen = np.empty((nevSingle,), dtype=complex) ev = 0 for count in np.arange(eigval.shape[0]): eigvalGen[ev] = (np.log(np.abs(eigval[count])) \ + np.angle(eigval[count]) * 1j) / tauDim ev += 1 if ev >= nevSingle: break if eigval[count].imag != 0: eigvalGen[ev] = np.conjugate(eigvalGen[ev-1]) ev +=1 if ev >= nevSingle: break # Plot spectrum print 'Plotting spectrum slowest rate ', -1. / eigvalGen[1].real fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(eigvalGen[1:].real, eigvalGen[1:].imag, c='k', s=msize, marker='o') ax.scatter(eigvalGen[0].real, eigvalGen[0].imag, c='r', s=msize, marker='o') ax.set_xlabel(r'$\Re(\zeta_i)$', fontsize=fs_latex) ax.set_ylabel(r'$\Im(\zeta_i)$', fontsize=fs_latex) plt.setp(ax.get_xticklabels(), fontsize=fs_xticklabels) plt.setp(ax.get_yticklabels(), fontsize=fs_yticklabels) #ax.set_title('%d-time-step spectrum for %s\nSlowest time-scale: %.1f' \ # % (tau, srcPostfix, -1. / rate[0])) ax.set_xlim(-1.2, 0.02) xlim = ax.get_xlim() ylim = ax.get_ylim() plt.text(xlim[1] - (xlim[1] - xlim[0])*0.6, ylim[1] - (ylim[1] - ylim[0])*0.1, r'$1 / \Re(\lambda_2) = %.1f$ (years)' \ % (-1. / eigvalGen[1].real,), fontsize=fs_latex) fig.savefig('%s/spectrum/eigval/figs/eigval_nev%d%s.%s' % (dstDir, nev, postfix, figFormat), bbox_inches='tight', dpi=dpi) # Plot eigenvectors of transfer operator tol = 0. alpha = 0.0 for k in np.arange(nevPlot): if np.abs(eigval[k].real - 1) < 1.e-3: # Plot invariant measure print 'Plotting stationary density...' statDen = eigvec[0].real statDen /= statDen.sum() fig = plt.figure() ax = fig.add_subplot(111) alpha = 0.01 h = ax.contourf(X, Y, statDen.reshape(nx, nx), levels, cmap=cm.hot_r) ax.set_xlim(gridXlim) ax.set_ylim(gridYlim) plt.colorbar(h) ax.set_xlabel("X Axis") ax.set_ylabel("Y Axis") ax.set_title("Approximation of the invariant measure", fontsize=fs_default) fig.savefig('%s/spectrum/eigvec/figs/eigvecReal_nev%d_ev03%d%s.%s' \ % (dstDir, nev, 1, postfix, figFormat), bbox_inches='tight', dpi=dpi) else: print 'Plotting real part of eigenvector %d...' % (k+1,) fig = plt.figure() ax = fig.add_subplot(111) v2Real = eigvec[k].real # vmax = np.sort(np.abs(v2Real))[(1. - alpha)*N-1] vmax = np.sort(np.abs(v2Real))[-1] v2Real[v2Real > vmax] = vmax v2Real[v2Real < -vmax] = -vmax h = ax.contourf(X, Y, v2Real.reshape(nx, nx), levels, cmap=cm.RdBu_r, vmin=-vmax, vmax=vmax) ax.set_xlim(gridXlim) ax.set_ylim(gridYlim) plt.colorbar(h) ax.set_xlabel("X Axis") ax.set_ylabel("Y Axis") ax.set_title("Real part of the eigenvector %d" % (k+1,), fontsize=fs_default) fig.savefig('%s/spectrum/eigvec/figs/eigvecReal_nev%d_ev03%d%s.%s' \ % (dstDir, nev, k+1, postfix, figFormat), bbox_inches='tight', dpi=dpi) if eigval[k].imag != 0: print 'Plotting imaginary part of eigenvector %d...' % (k+1,) fig = plt.figure() ax = fig.add_subplot(111) v2Imag = eigvec[k].imag vmax = np.sort(np.abs(v2Imag))[-1] v2Imag[v2Imag > vmax] = vmax v2Imag[v2Imag < -vmax] = -vmax h = ax.contourf(X, Y, v2Imag.reshape(nx, nx), levels, cmap=cm.RdBu_r, vmin=-vmax, vmax=vmax) ax.set_xlim(gridXlim) ax.set_ylim(gridYlim) plt.colorbar(h) ax.set_xlabel("X Axis") ax.set_ylabel("Y Axis") ax.set_title("Imaginary part of the eigenvector %d" % (k+1,), fontsize=fs_default) fig.savefig('%s/spectrum/eigvec/figs/eigvecImag_nev%d_ev03%d%s.%s' \ % (dstDir, nev, k, postfix, figFormat), bbox_inches='tight', dpi=dpi) # Plot eigenvectors of Koopman operator if plotAdjoint: eigvecAdjointScale = np.zeros((nevSingle, N), dtype=complex) for k in np.arange(nevPlot): eigvecAdjointScale[k] = eigvecAdjoint[k] \ / np.conjugate(np.vdot(eigvecAdjoint[k], eigvec[k])) if np.abs(eigval[k].real - 1) < 1.e-3: # Plot invariant measure print 'Plotting ergodic vector...' ergodicVec = np.abs(eigvecAdjoint[0].real) ergodicVec /= np.abs(ergodicVec).max() fig = plt.figure() ax = fig.add_subplot(111) alpha = 0.01 h = ax.contourf(X, Y, ergodicVec.reshape(nx, nx), levels, cmap=cm.hot_r) ax.set_xlim(gridXlim) ax.set_ylim(gridYlim) plt.colorbar(h) ax.set_xlabel("X Axis") ax.set_ylabel("Y Axis") ax.set_title("Approximation of the ergodic vector", fontsize=fs_default) fig.savefig('%s/spectrum/eigvec/figs/eigvecAdjointReal_nev%d_ev03%d%s.%s' \ % (dstDir, nev, 1, postfix, figFormat), bbox_inches='tight', dpi=dpi) else: print 'Plotting real part of Koopman eigenvector %d...' % (k+1,) fig = plt.figure() ax = fig.add_subplot(111) v2Real = eigvecAdjoint[k].real vmax = np.sort(np.abs(v2Real))[-1] v2Real[v2Real > vmax] = vmax v2Real[v2Real < -vmax] = -vmax h = ax.contourf(X, Y, v2Real.reshape(nx, nx), levels, cmap=cm.RdBu_r, vmin=-vmax, vmax=vmax) ax.set_xlim(gridXlim) ax.set_ylim(gridYlim) plt.colorbar(h) ax.set_xlabel("X Axis") ax.set_ylabel("Y Axis") ax.set_title("Real part of the Koopman eigenvector %d" % (k+1,), fontsize=fs_default) fig.savefig('%s/spectrum/eigvec/figs/eigvecAdjointReal_nev%d_ev03%d%s.%s' \ % (dstDir, nev, k+1, postfix, figFormat), bbox_inches='tight', dpi=dpi) if eigval[k].imag != 0: print 'Plotting imaginary part of Koopman eigenvector %d...' % (k+1,) fig = plt.figure() ax = fig.add_subplot(111) v2Imag = eigvecAdjoint[k].imag vmax = np.sort(np.abs(v2Imag))[-1] v2Imag[v2Imag > vmax] = vmax v2Imag[v2Imag < -vmax] = -vmax h = ax.contourf(X, Y, v2Imag.reshape(nx, nx), levels, cmap=cm.RdBu_r, vmin=-vmax, vmax=vmax) ax.set_xlim(gridXlim) ax.set_ylim(gridYlim) plt.colorbar(h) ax.set_xlabel("X Axis") ax.set_ylabel("Y Axis") ax.set_title("Imaginary part of the Koopman eigenvector %d" % (k+1,), fontsize=fs_default) fig.savefig('%s/spectrum/eigvec/figs/eigvecAdjointImag_nev%d_ev03%d%s.%s' \ % (dstDir, nev, k, postfix, figFormat), bbox_inches='tight', dpi=dpi) # Get ccf lagMax = 100 lags = np.arange(0, lagMax+1, 1) f = X.flatten() g = X.flatten() obsIdx0 = 0 obsIdx1 = 0 statesFileName = "%s/obs/obs%s.txt" % (dstDir, gridPostfix) sim = np.loadtxt(statesFileName) sim = sim.reshape(sim.shape[0] / dim, dim) ccf = atmath.ccf(sim[:, obsIdx0], sim[:, obsIdx1], lagMax=lagMax)[lagMax:] #ccf = atmath.ccovf(sim[:, obsIdx0], sim[:, obsIdx1], lagMax=lagMax)[lagMax:] ccfRec = np.zeros((lags.shape[0],), dtype=complex) for ev in np.arange(1, nevSingle): ccfRec += np.exp(eigvalGen[ev]*lags) \ * (f * statDen * np.conjugate(eigvecAdjoint[ev])).sum() \ * (eigvec[ev] * np.conjugate(g)).sum() #ccfRec /= np.cov(sim[:, obsIdx0], sim[:, obsIdx1])[0, 1] ccfRec /= ccfRec[0] print 'Plotting' fig = plt.figure() ax = fig.add_subplot(111) ax.plot(lags, ccf, linewidth=2) ax.plot(lags, ccfRec, '--', linewidth=2) fig.savefig('%s/ccf/ccf_%s_%s_nev%d%s.%s' \ % (dstDir, indexChoice[obsIdx0], indexChoice[obsIdx1], nev, postfix, figFormat), bbox_inches='tight', dpi=dpi)
gpl-2.0
jskDr/jamespy_py3
dl/kkeras_util.py
2
2816
#from keras.models import Sequential from keras.layers import Dense, Input from keras.models import Model from keras.regularizers import l1 import matplotlib.pyplot as plt def plot_model_history( history): """ accuracy and loss are depicted. """ plt.plot(history.history['acc']) #plt.plot(history.history['val_acc']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') #plt.legend(['train', 'test'], loc='upper left') plt.show() # summarize history for loss plt.plot(history.history['loss']) #plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') #plt.legend(['train', 'test'], loc='upper left') plt.show() def plot_history( history): """ accuracy and loss are depicted. """ plt.plot(history.history['acc']) plt.plot(history.history['val_acc']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show() # summarize history for loss plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show() class Model_Ordinary( Model): """ Adaptive linear model based on Keras Model """ def __init__(self, X_shape_1): in_model = Input(shape=(X_shape_1,)) out_model = Dense(1, activation='linear')(in_model) super().__init__(input = in_model, output=out_model) self.compile(optimizer='adadelta', loss='mse', metrics=['accuracy']) class Model_Ordinary_Hidden( Model): """ Adaptive linear model based on Keras Model """ def __init__(self, X_shape_1, n_h_nodes): in_model = Input(shape=(X_shape_1,)) hidden_l = Dense(n_h_nodes, activation='relu')(in_model) out_model = Dense(1, activation='linear')(hidden_l) super().__init__(input = in_model, output=out_model) self.compile(optimizer='adadelta', loss='mse', metrics=['accuracy']) class Model_Lasso( Model): """ Adaptive linear model based on Keras Model """ def __init__(self, X_shape_1, alpha): in_model = Input(shape=(X_shape_1,)) out_model = Dense(1, activation='linear', W_regularizer=l1(alpha))(in_model) super().__init__(input = in_model, output=out_model) self.compile(optimizer='adadelta', loss='mse', metrics=['accuracy']) class Model_Lasso_Hidden( Model): """ Adaptive linear model based on Keras Model """ def __init__(self, X_shape_1, n_h_nodes, alpha): in_model = Input(shape=(X_shape_1,)) hidden_l = Dense(n_h_nodes, activation='relu', W_regularizer=l1(alpha))(in_model) out_model = Dense(1, activation='linear', W_regularizer=l1(alpha))(hidden_l) super().__init__(input = in_model, output=out_model) self.compile(optimizer='adadelta', loss='mse', metrics=['accuracy'])
mit
yvlasov/ConProbIN
try-ml/try-v01.py
1
2762
#!/usr/bin/python # Load libraries import pandas from pandas.tools.plotting import scatter_matrix import matplotlib.pyplot as plt #replace sklearn with model_selection from sklearn import cross_validation from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data" names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class'] dataset = pandas.read_csv(url, names=names) # shape print(dataset.shape) # head print(dataset.head(20)) # descriptions print(dataset.describe()) # class distribution print(dataset.groupby('class').size()) #box and whisker plots dataset.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey=False) plt.show() # histograms dataset.hist() plt.show() # scatter plot matrix scatter_matrix(dataset) plt.show() # Split-out validation dataset array = dataset.values print array X = array[:,0:4] Y = array[:,4] print X print Y validation_size = 0.20 seed = 7 X_train, X_validation, Y_train, Y_validation = cross_validation.train_test_split(X, Y, test_size=validation_size, random_state=seed) # Test options and evaluation metric num_folds = 10 num_instances = len(X_train) seed = 7 scoring = 'accuracy' # Spot Check Algorithms models = [] models.append(('LR', LogisticRegression())) models.append(('LDA', LinearDiscriminantAnalysis())) models.append(('KNN', KNeighborsClassifier())) models.append(('CART', DecisionTreeClassifier())) models.append(('NB', GaussianNB())) models.append(('SVM', SVC())) # evaluate each model in turn results = [] names = [] for name, model in models: kfold = cross_validation.KFold(n=num_instances, n_folds=num_folds, random_state=seed) cv_results = cross_validation.cross_val_score(model, X_train, Y_train, cv=kfold, scoring=scoring) results.append(cv_results) names.append(name) msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std()) print(msg) # Compare Algorithms fig = plt.figure() fig.suptitle('Algorithm Comparison') ax = fig.add_subplot(111) plt.boxplot(results) ax.set_xticklabels(names) plt.show() # Make predictions on validation dataset knn = KNeighborsClassifier() knn.fit(X_train, Y_train) predictions = knn.predict(X_validation) print(accuracy_score(Y_validation, predictions)) print(confusion_matrix(Y_validation, predictions)) print(classification_report(Y_validation, predictions))
mit
cmshobe/landlab
landlab/plot/graph.py
3
2498
import matplotlib.pyplot as plt import numpy as np def plot_nodes(graph, color="r", with_id=True, markersize=10): for node in range(len(graph.x_of_node)): x, y = graph.x_of_node[node], graph.y_of_node[node] plt.plot( graph.x_of_node[node], graph.y_of_node[node], "o", color=color, markersize=markersize, ) if with_id: plt.text(x, y, node, color=color, size=16) def plot_links( graph, color="b", linestyle="solid", with_id=True, as_arrow=True, linewidth=None ): if as_arrow: head_width = 0.1 else: head_width = 0.0 for link, nodes in enumerate(graph.nodes_at_link): x, y = graph.x_of_node[nodes[0]], graph.y_of_node[nodes[0]] dx, dy = graph.x_of_node[nodes[1]] - x, graph.y_of_node[nodes[1]] - y plt.arrow( x, y, dx, dy, head_width=head_width, linewidth=linewidth, length_includes_head=True, color=color, linestyle=linestyle, ) if with_id: plt.text(x + dx * 0.5, y + dy * 0.5, link, size=16, color=color) def plot_patches(graph, color="g"): for patch, nodes in enumerate(graph.nodes_at_patch): x, y = np.mean(graph.x_of_node[nodes]), np.mean(graph.y_of_node[nodes]) plt.text(x, y, patch, color=color, size=16) def plot_graph(graph, at="node,link,patch", with_id=True): locs = [loc.strip() for loc in at.split(",")] for loc in locs: if loc not in ("node", "link", "patch", "corner", "face", "cell"): raise ValueError('{at}: "at" element not understood'.format(at=loc)) plt.plot(graph.x_of_node, graph.y_of_node, ".", color="r") plt.xlim([min(graph.x_of_node) - 0.5, max(graph.x_of_node) + 0.5]) plt.ylim([min(graph.y_of_node) - 0.5, max(graph.y_of_node) + 0.5]) if "node" in locs: plot_nodes(graph, with_id=with_id, markersize=10) if "link" in locs: plot_links(graph, with_id=with_id, linewidth=None, as_arrow=False) if "patch" in locs: plot_patches(graph) if "corner" in locs: plot_nodes(graph.dual, color="c") if "face" in locs: plot_links(graph.dual, linestyle="dotted", color="k") if "cell" in locs and graph.number_of_cells > 0: plot_patches(graph.dual, color="m") plt.xlabel("x") plt.ylabel("y") plt.gca().set_aspect(1.0) plt.show()
mit
joshwalawender/RasPiProjects
HumidityMonitor.py
1
11713
#!/usr/env/python from __future__ import division, print_function ## Import General Tools import sys import os import argparse import logging import time import numpy as np import Adafruit_DHT # import DHT22 # import DS18B20 # import urllib2 # import Carriots import humiditycalc # import astropy.io.ascii as ascii # import astropy.table as table threshold_humid = 55 threshold_wet = 75 ##------------------------------------------------------------------------- ## Main Program ##------------------------------------------------------------------------- def measure(verbose=False): ##------------------------------------------------------------------------- ## Create logger object ##------------------------------------------------------------------------- logger = logging.getLogger('MyLogger') logger.setLevel(logging.DEBUG) ## Set up console output LogConsoleHandler = logging.StreamHandler() if verbose: LogConsoleHandler.setLevel(logging.DEBUG) else: LogConsoleHandler.setLevel(logging.INFO) LogFormat = logging.Formatter('%(asctime)23s %(levelname)8s: %(message)s') LogConsoleHandler.setFormatter(LogFormat) logger.addHandler(LogConsoleHandler) ## Set up file output LogFileName = os.path.join('/', 'home', 'joshw', 'logs', time.strftime('HumidityLog_%Y%m%d.txt', time.localtime())) LogFileHandler = logging.FileHandler(LogFileName) LogFileHandler.setLevel(logging.DEBUG) LogFileHandler.setFormatter(LogFormat) logger.addHandler(LogFileHandler) ##------------------------------------------------------------------------- ## Get Temperature and Humidity Values ##------------------------------------------------------------------------- logger.info('#### Reading Temperature and Humidity Sensors ####') logger.info('Reading DHT22') sensor = Adafruit_DHT.AM2302 pin = 4 DHT_humidity, DHT_temperature_C = Adafruit_DHT.read_retry(sensor, pin) if not DHT_humidity or not DHT_temperature_C: DHT_humidity, DHT_temperature_C = Adafruit_DHT.read_retry(sensor, pin) if not DHT_humidity or not DHT_temperature_C: print('Read failed a second time.') sys.exit(1) DHT_temperature_F = 32. + 9./5.*DHT_temperature_C logger.info(' Temperature = {:.3f} F, Humidity = {:.1f} %'.format(DHT_temperature_F, DHT_humidity)) AH = humiditycalc.relative_to_absolute_humidity(DHT_temperature_C, DHT_humidity) logger.info(' Absolute Humidity = {:.2f} g/m^3'.format(AH)) ##------------------------------------------------------------------------- ## Determine Status Using Humidity ##------------------------------------------------------------------------- if (DHT_humidity < threshold_humid): status = 'OK' elif (DHT_humidity > threshold_humid) and (DHT_humidity < threshold_wet): status = 'HUMID' else: status = 'WET' logger.info('Status: {}'.format(status)) ##------------------------------------------------------------------------- ## Determine Status and Alarm Using History ##------------------------------------------------------------------------- datestring = time.strftime('%Y%m%d_log.txt', time.localtime()) timestring = time.strftime('%Y/%m/%d %H:%M:%S HST', time.localtime()) datafile = os.path.join('/', 'home', 'joshw', 'logs', datestring) logger.debug("Reading history data from file: {0}".format(datafile)) dataFO = open(datafile, 'a+') lines = dataFO.readlines() if len(lines) == 0: dataFO = open(datafile, 'a') dataFO.write('# {},{},{},{},{},{}\n'.format( 'date',\ 'time',\ 'temperature (F)',\ 'humidity (%)',\ 'absolute humidity (g/m^3)',\ 'status')) data = [] else: data = [] for line in lines: if line[0] != '#': data.append(line.strip('\n').split(',')) translation = {'OK':0, 'HUMID':1, 'WET':2, 'ALARM':2} if len(data) > 6: recent_status_vals = [translation[line[5]] for line in data][-6:] recent_status = np.mean(recent_status_vals) if len(data) > 23: recent_status_vals = [translation[line[5]] for line in data][-23:] recent_alarm = 2 in recent_status_vals logger.debug(' Recent Status = {:.2f}, Current Status = {}, Recent alarm: {}'.format(recent_status, status, recent_alarm)) if (recent_status > 0.5) and not status == 'OK' and not recent_alarm: status = 'ALARM' ##------------------------------------------------------------------------- ## Record Values to Table ##------------------------------------------------------------------------- dataFO.write('{},{},{:.1f},{:.1f},{:.2f},{}\n'.format( timestring[0:10],\ timestring[11:23],\ DHT_temperature_F,\ DHT_humidity,\ AH,\ status)) ## Log to Carriots # logger.info('Sending Data to Carriots') # logger.debug(' Creating Device object') # Device = Carriots.Client(device_id="Shed@joshwalawender") # logger.debug(' Reading api key') # Device.read_api_key_from_file(file=os.path.join(os.path.expanduser('~joshw'), '.carriots_api')) # data_dict = {'Temperature1': sensor.temperatures_F[0], \ # 'Temperature2': sensor.temperatures_F[1], \ # 'Temperature3': DHT.temperature_F, \ # 'Humidity': DHT.humidity, \ # 'Absolute Humidity': AH, \ # 'Status': status # } # logger.debug(data_dict) # logger.debug(' Uploading data') # try: # Device.upload(data_dict) # except urllib2.HTTPError as e: # logger.critical(' Upload failed') # logger.critical(' {}'.format(e.code)) # logger.critical(' {}'.format(e.reason)) # except: # logger.critical(' Upload failed') # logger.critical(' Unexpected error: {}'.format(sys.exc_info()[0])) # logger.info('Done') ##------------------------------------------------------------------------- ## Make Plot ##------------------------------------------------------------------------- def plot(verbose=False): import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as pyplot pyplot.ioff() ##------------------------------------------------------------------------- ## Create logger object ##------------------------------------------------------------------------- logger = logging.getLogger('MyLogger') logger.setLevel(logging.DEBUG) ## Set up console output LogConsoleHandler = logging.StreamHandler() if verbose: LogConsoleHandler.setLevel(logging.DEBUG) else: LogConsoleHandler.setLevel(logging.INFO) LogFormat = logging.Formatter('%(asctime)23s %(levelname)8s: %(message)s') LogConsoleHandler.setFormatter(LogFormat) logger.addHandler(LogConsoleHandler) ## Set up file output LogFileName = os.path.join('/', 'home', 'joshw', 'logs', 'PlotLog.txt') LogFileHandler = logging.FileHandler(LogFileName) LogFileHandler.setLevel(logging.DEBUG) LogFileHandler.setFormatter(LogFormat) logger.addHandler(LogFileHandler) ##------------------------------------------------------------------------- ## Read Log File ##------------------------------------------------------------------------- datestring = time.strftime('%Y%m%d_log.txt', time.localtime()) datafile = os.path.join('/', 'home', 'joshw', 'logs', datestring) logger.info("Reading Data File: "+datafile) dataFO = open(datafile, 'a+') lines = dataFO.readlines() data = [] for line in lines: if line[0] != '#': data.append(line.strip('\n').split(',')) dates = [val[0] for val in data] time_strings = [val[1] for val in data] times = [(time.strptime(val[1], '%H:%M:%S HST').tm_hour +\ time.strptime(val[1], '%H:%M:%S HST').tm_min/60.)\ for val in data ] temperature = [float(val[2]) for val in data] humidity = [float(val[3]) for val in data] AH = [float(val[4]) for val in data] status = [val[5] for val in data] ##------------------------------------------------------------------------- ## Plot ##------------------------------------------------------------------------- # PlotFileName = time.strftime('%Y%m%d.png', time.localtime()) PlotFileName = 'latest.png' PlotFile = os.path.join('/', 'home', 'joshw', 'logs', PlotFileName) logger.info("Writing Output File: "+PlotFile) dpi=72 Figure = pyplot.figure(figsize=(16,10), dpi=dpi) HumidityAxes = pyplot.axes([0.10, 0.43, 0.9, 0.40]) title_string = '{:10s} at {:12s}:\n'.format(dates[-1], time_strings[-1]) title_string += 'Temperature = {:.1f} F, '.format(temperature[-1]) title_string += 'Humidity = {:.0f} %'.format(humidity[-1]) pyplot.title(title_string) pyplot.plot(times, humidity, 'ko', label="Humidity", mew=0, ms=3) pyplot.plot([0, 24], [threshold_humid, threshold_humid],\ 'y-', label='threshold humidity', linewidth=3, alpha=0.8) pyplot.plot([0, 24], [threshold_wet, threshold_wet],\ 'r-', label='threshold humidity', linewidth=3, alpha=0.8) pyplot.yticks(range(10,100,10)) pyplot.ylim(25,95) pyplot.ylabel("Humidity (%)") pyplot.xticks([]) pyplot.xlim(0,24) pyplot.grid() AbsHumidityAxes = HumidityAxes.twinx() AbsHumidityAxes.set_ylabel('Abs. Hum. (g/m^3)', color='b') pyplot.plot(times, AH, 'bo', label="Abs. Hum.", mew=0, ms=3) pyplot.yticks(range(00,45,5)) pyplot.ylim(7.5,22.5) pyplot.xticks(range(0,25,1)) pyplot.xlim(0,24) pyplot.xlabel('Hours (HST)') TemperatureAxes = pyplot.axes([0.10, 0.05, 0.9, 0.35]) pyplot.plot(times, temperature, 'go', label="Termperature", mew=0, ms=3) pyplot.xticks(range(0,25,1)) pyplot.yticks(range(50,110,5)) pyplot.xlim(0,24) pyplot.ylim(70,100) pyplot.xlabel('Hours (HST)') pyplot.ylabel("Temperature (F)") pyplot.grid() pyplot.savefig(PlotFile, dpi=dpi, bbox_inches='tight', pad_inches=0.10) logger.info("Done") ##------------------------------------------------------------------------- ## Create Daily Symlink if Not Already ##------------------------------------------------------------------------- LinkFileName = 'latest.png' LinkFile = os.path.join('/', 'home', 'joshw', 'logs', LinkFileName) if not os.path.exists(LinkFile): logger.info('Making {} symlink to {}'.format(LinkFile, PlotFile)) os.symlink(PlotFile, LinkFile) logger.info("Done") def main(): ##------------------------------------------------------------------------- ## Parse Command Line Arguments ##------------------------------------------------------------------------- ## create a parser object for understanding command-line arguments parser = argparse.ArgumentParser( description="Program description.") ## add flags parser.add_argument("-v", "--verbose", action="store_true", dest="verbose", default=False, help="Be verbose! (default = False)") parser.add_argument("-p", "--plot", action="store_true", dest="plot", default=False, help="Make plot.") args = parser.parse_args() if not args.plot: measure(verbose=args.verbose) else: plot(verbose=args.verbose) if __name__ == '__main__': main()
bsd-2-clause
feranick/SpectralMachine
Utilities/PlotRruffSpectraRound.py
1
3466
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ''' ********************************************* * * PlotRruffSpectraRound * Plot Rruff spectra * Files must be in RRuFF * version: 20171208c * * By: Nicola Ferralis <feranick@hotmail.com> * *********************************************** ''' print(__doc__) import numpy as np import sys, os.path, getopt, glob, csv, re from datetime import datetime, date import matplotlib.pyplot as plt def main(): if len(sys.argv) < 4: print(' Usage:\n python3 PlotRruffSpectraRound.py <EnIn> <EnFin> <EnStep> <decimals>\n') print(' Requires python 3.x. Not compatible with python 2.x\n') return else: enInit = sys.argv[1] enFin = sys.argv[2] enStep = sys.argv[3] decimals = int(sys.argv[4]) rootPlotFile = "plot_" dateTimeStamp = str(datetime.now().strftime('%Y-%m-%d_%H-%M-%S')) summaryPlotFile = rootPlotFile+"summary_"+dateTimeStamp+".csv" plotFile = rootPlotFile+dateTimeStamp plt.figure(num=plotFile) with open(summaryPlotFile, "a") as sum_file: sum_file.write('Classification started: '+dateTimeStamp+"\n") index = 0 for ind, file in enumerate(sorted(os.listdir("."))): #try: if os.path.splitext(file)[-1] == ".txt": with open(file, 'r') as f: En = np.loadtxt(f, unpack = True, usecols=range(0,1), delimiter = ',', skiprows = 10) with open(file, 'r') as f: R = np.loadtxt(f, unpack = True, usecols=range(1,2), delimiter = ',', skiprows = 10) print(file + '\n File OK, converting to ASCII...') EnT = np.arange(float(enInit), float(enFin), float(enStep), dtype=np.float) if EnT.shape[0] == En.shape[0]: print(' Number of points in the learning dataset: ' + str(EnT.shape[0])) else: print('\033[1m' + ' Mismatch in datapoints: ' + str(EnT.shape[0]) + '; sample = ' + str(En.shape[0]) + '\033[0m') # Interpolate to new axis R = np.interp(EnT, En, R, left = R[0], right = 0) # Renormalize offset by min R R = R - np.amin(R) + 1e-8 # Renormalize to max of R R = R/np.amax(R) R = np.around(R, decimals=decimals) index += 1 ''' try: convertFile = os.path.splitext(file)[0] + '_ASCII.txt' convertR = np.transpose(np.vstack((EnT, R))) with open(convertFile, 'ab') as f: np.savetxt(f, convertR, delimiter='\t', fmt='%10.6f') except: pass ''' label = re.search('(.+?)__',file).group(1) with open(summaryPlotFile, "a") as sum_file: sum_file.write(str(index) + ',,,' + label + ','+file+'\n') plt.plot(EnT,R,label=label) #except: # print("\n Skipping: ",file) plt.xlabel('Raman shift [1/cm]') plt.ylabel('Raman Intensity [arb. units]') plt.legend(loc='upper left') plt.savefig(plotFile+".png", dpi = 160, format = 'png') # Save plot plt.show() plt.close() #************************************ ''' Main initialization routine ''' #************************************ if __name__ == "__main__": sys.exit(main())
gpl-3.0
jskDr/jamespy_py3
jmultidk.py
1
17925
# Python 3 """ Codes for MultiDK are included. Author: (James) Sung-Jin Kim Date: April 2, 2016 ~ Now Editorial notes * April2, 2016 I will use pd.DataFrame as base class to make new class for R2_DF, which is specialized for r^2 scores and support MultiDK. Hence, it can be copied to jpandas later on. """ from time import time import pandas as pd from functools import reduce import numpy as np import matplotlib.pyplot as plt import seaborn as sns sns.set() # Jan 27, 2017 #cross_validation is deprecated and replace it to model_selection from sklearn import model_selection #cross_validation from sklearn import metrics import tensorflow.contrib.learn as skflow import jpandas as jpd import jchem, jgrid import j3x.jpyx import jseaborn as jsns import kutil def list_agg_n( n_folds): """ Generate a function to aggregate multiple lists for functools.reduce() """ f = lambda s, x: s + [x] * n_folds return f class R2_Scores( object): def __init__(self, fname = None, Nm = 10, n_alphas = 10, n_folds = 20): """ Make a class for r^2 scores based on pd.DataFrame [Input] fname: file name for r^2 dataframe Nm: the number of methods E.g. fname = "sheet/wang3705_MDMK2to23_{}methods.csv".format(Nm) """ if fname is not None: self.fname = fname self.df = pd.read_csv( fname) else: self.df = pd.DataFrame() self.Nm = Nm self.n_alphas = n_alphas self.n_folds = n_folds def updata_for_multidk(self, fname_out = None): """ 1. alpha_ID is added on the DataFrame since float point values such as alpha can not be found by value. An index of the best alpha value for each method will be stored as well as the best alpha so that the index will be used to filter the best values of mean(r2) and std(r2). """ n_alphas = self.n_alphas n_folds = self.n_folds # Step 1: adding alpha_ID self.df["alpha_ID"] = reduce( list_agg_n( n_folds), range( n_alphas), []) * self.Nm # Step 2: change names MDMKx to MultiDKx rn_d = {'MDMK2to11':"MultiDK2-11", 'MDMK2to21': "MultiDK2-21", 'MDMK2to23': "MultiDK2-23", 'MDMK2to13': "MultiDK2-13", "MDMK1to10":"MultiDK1-10", "MDMK": "MultiDK"} # MDMK is included for legacy cases such as redox potential prediction df_method_l = self.df["Method"].tolist() rn_l = [] for m in df_method_l: if m in rn_d.keys(): rn_l.append( rn_d[m]) else: rn_l.append( m) self.df["Method"] = rn_l if fname_out is not None: self.df.to_csv( fname_out, index = False) elif self.fname is not None: fname_out = self.fname[:-4] + '_refine.csv' print( "Default: self.df is saved to", fname_out) self.df.to_csv( fname_out, index = False) return self.df def mean_std(self, fname_out = None): df_g = self.df.groupby(["Method", "alpha"]) self.df_gr = df_g.agg({"r2":[np.mean, np.std]})["r2"] # Index should be stored. if fname_out is not None: """ index should be saved so 'index = True' as default """ self.df_gr.to_csv( fname_out) elif self.fname is not None: fname_out = self.fname[:-4] + '_mean_std.csv' print( "Default: self.df_gr is saved to", fname_out) self.df_gr.to_csv( fname_out) return self.df_gr def max_mean_r2( self, fname_out = None): """ Extact all method names and get a set with only unique name """ self.method_l = set(self.df_gr.index.get_level_values(0)) pdi_l = list() for m in self.method_l: p_m = self.df_gr.loc[ m] alpha_l = p_m.index.tolist() m_r2 = p_m["mean"].values std_r2 = p_m["std"].values i_max = m_r2.argmax() pdi = pd.DataFrame( [[m, i_max, alpha_l[i_max], m_r2[i_max], std_r2[i_max]]], columns=["Method", "best_alpha_ID", "best_alpha", "E[r2]", "std(r2)"]) pdi_l.append( pdi) pdo_best = pd.concat( pdi_l, ignore_index=True).sort_values("Method") self.df_best = pdo_best.set_index("Method") if fname_out is not None: self.df_best.to_csv( fname_out) # index should be stored. elif self.fname is not None: fname_out = self.fname[:-4] + '_best4bar.csv' print( 'Default: self.df_best is saved to', fname_out) self.df_best.to_csv( fname_out) # index should be stored. return self.df_best def get_box_data( self, fname_out = None): """ DataFrame is arranged for box plot. """ pdo = self.df cond = None for m in self.method_l: best_alpha_ID = self.df_best.loc[ m]["best_alpha_ID"] if cond is None: cond = (pdo.Method == m) & (pdo.alpha_ID == best_alpha_ID) else: cond |= (pdo.Method == m) & (pdo.alpha_ID == best_alpha_ID) self.df_best_expand = self.df[ cond].reset_index( drop = True) if fname_out is not None: self.df_best_expand.to_csv( fname_out) # index should be stored. elif self.fname is not None: fname_out = self.fname[:-4] + '_best4box.csv' print( 'Default: self.df_best_expand is saved to', fname_out) self.df_best_expand.to_csv( fname_out) # index should be stored. return self.df_best_expand def run( self): self.updata_for_multidk() self.mean_std() self.max_mean_r2() self.get_box_data() return self.df_best, self.df_best_expand def plot_bar( self, fname_out = None): self.df_best.plot( kind = 'bar', y = "E[r2]", yerr="std(r2)", legend=False) if fname_out is not None: plt.savefig( fname_out) # index should be stored. elif self.fname is not None: fname_out = self.fname[:-4] + '_bar.eps' print( 'Default: the figure of self.df_best is saved to', fname_out) plt.savefig( fname_out) def plot_box( self, fname_out = None): sns.boxplot(x="Method", y="r2", data=self.df_best_expand, palette="PRGn") sns.despine(offset=10, trim=True) plt.ylabel( r"$r^2$") plt.xlabel( "Methods") if fname_out is not None: plt.savefig( fname_out) # index should be stored. elif self.fname is not None: fname_out = self.fname[:-4] + '_box.eps' print( 'Default: the figure of self.df_best_expand is saved to', fname_out) plt.savefig( fname_out) def run_with_plot( self): self.run() self.plot_bar() plt.show() self.plot_box() plt.show() def set_X_23( s_l, xM_logP): # s_l = self.s_l # xM_logP = self.xM_logP # Body xM_d = dict() xM_d["MFP"] = jchem.get_xM( s_l, radius=4, nBits=2048) xM_d["MACCS"] = jchem.get_xM_MACCSkeys( s_l) xM_d["MolW"] = jchem.get_xM_molw( s_l) xM_d["LASA"] = jchem.get_xM_lasa( s_l) xM_d["logP"] = xM_logP for d_s in ["MolW", "LASA", "logP"]: # x_a = xM_d[ d_s] # x_a = np.divide( x_a, np.std( x_a, axis = 0)) # Normalize xM_d[ d_s] = np.divide( xM_d[ d_s], np.std( xM_d[ d_s], axis = 0)) xM_2 = np.concatenate( [xM_d["MFP"], xM_d["MACCS"]], axis = 1) xM_p = np.concatenate( [xM_d[ d_s] for d_s in ["MolW", "LASA", "logP"]], axis = 1) # Concatenation of associated properties print( xM_2.shape, xM_p.shape) # Output processing #self.xM_d = xM_d #self.xM_2 = xM_2 #self.xM_p = xM_p return xM_d, xM_2, xM_p def set_X_23_M2( s_l, xM_logP): # s_l = self.s_l # xM_logP = self.xM_logP # Body xM_d = dict() xM_d["MFP"] = jchem.get_xM( s_l, radius=4, nBits=2048) xM_d["MACCS"] = jchem.get_xM_MACCSkeys( s_l) xM_d["MolW"] = jchem.get_xM_molw( s_l) xM_d["MolW2"] = np.power( jchem.get_xM_molw( s_l), 2) xM_d["LASA"] = jchem.get_xM_lasa( s_l) xM_d["LASA2"] = jchem.get_xM_lasa( s_l) xM_d["logP"] = xM_logP for d_s in ["MolW", "MolW2", "LASA", "LASA2", "logP"]: xM_d[ d_s] = np.divide( xM_d[ d_s], np.std( xM_d[ d_s], axis = 0)) xM_2 = np.concatenate( [xM_d["MFP"], xM_d["MACCS"]], axis = 1) xM_p = np.concatenate( [xM_d[ d_s] for d_s in ["MolW", "LASA", "logP"]], axis = 1) # Concatenation of associated properties print( xM_2.shape, xM_p.shape) # Output processing #self.xM_d = xM_d #self.xM_2 = xM_2 #self.xM_p = xM_p return xM_d, xM_2, xM_p def set_A_2( xM_d, xM_2): # Input processing #xM_d = self.xM_d #xM_2 = self.xM_2 # Body A_d = dict() for key in ["MFP", "MACCS"]: print( key) A_d[ key] = j3x.jpyx.calc_tm_sim_M( xM_d[key]) A_2 = j3x.jpyx.calc_tm_sim_M( xM_2) # Output processing #self.A_d = A_d #self.A_2 = A_2 return A_d, A_2 def set_alpha_log( a_st = -2, a_ed = 2, a_n = 2): """ Generate alpha_log with a range from a_st to s_ed with a_n for each unit. """ a_N = (a_ed - a_st)*a_n + 1 return (a_st, a_ed, a_N) class MultiDK(): def __init__(self, fname = 'sheet/wang3705_with_logP.csv'): self.fname_core = fname[:-14] self.pdr = pd.read_csv( fname) self.alphas_log = set_alpha_log( -2, 2, 2) def set_xy(self): """ if self is changed self will be a return value for feedback all outputs using only a variable """ pdr = self.pdr self.s_l = self.pdr.SMILES.tolist() self.xM_logP = np.mat(self.pdr.logP.values).T self.yV = jpd.pd_get_yV( self.pdr, y_id="exp") return self def set_X( self): # Input processing s_l = self.s_l xM_logP = self.xM_logP # BOdy xM_d, xM_2, xM_p = set_X_23( s_l, xM_logP) # Output processing self.xM_d = xM_d self.xM_2 = xM_2 self.xM_p = xM_p return self def set_X_M2( self): # Input processing s_l = self.s_l xM_logP = self.xM_logP # BOdy xM_d, xM_2, xM_p = set_X_23_M2( s_l, xM_logP) # Output processing self.xM_d = xM_d self.xM_2 = xM_2 self.xM_p = xM_p return self def set_A( self): # Input processing xM_d = self.xM_d xM_2 = self.xM_2 # Body A_d, A_2 = set_A_2( xM_d, xM_2) # Output processing self.A_d = A_d self.A_2 = A_2 return self def grid_search_sd( self): # input processing xM_d = self.xM_d xM_p = self.xM_p yV = self.yV A_d = self.A_d A_2 = self.A_2 #Body t = time() pdi_d = dict() pdi_d["SD"] = jsns.pdi_gs_full( "SD", [xM_d["MFP"]], yV, expension = True, n_jobs = 1) print('Elasped time is', time() - t, 'sec') pdi_d["MD21"] = jsns.pdi_gs_full( "MD21", [xM_d[ d_s] for d_s in ["MFP", "MACCS", "MolW"]], yV, expension = True) print('Elasped time is', time() - t, 'sec') pdi_d["MD23"] = jsns.pdi_gs_full( "MD23", list(xM_d.values()), yV, expension = True) print('Elasped time is', time() - t, 'sec') pdi_d["MDMK1to10"] = jsns.pdi_gs_full( "MDMK1to10", [A_d["MFP"]], yV, mode = "BIKE_Ridge", expension = True) print('Elasped time is', time() - t, 'sec') pdi_d["MDMK2to11"] = jsns.pdi_gs_full( "MDMK2to11", [A_2], yV, X_concat = xM_d["MolW"], mode = "BIKE_Ridge", expension = True) print('Elasped time is', time() - t, 'sec') pdi_d["MDMK2to13"] = jsns.pdi_gs_full( "MDMK2to13", [A_2], yV, X_concat = xM_p, mode = "BIKE_Ridge", expension = True) print('Elasped time is', time() - t, 'sec') pdi_d["MDMK2to21"] = jsns.pdi_gs_full( "MDMK2to21", [A_d["MFP"], A_d["MACCS"]], yV, X_concat = xM_d["MolW"], mode = "BIKE_Ridge", expension = True) print('Elasped time is', time() - t, 'sec') pdi_d["MDMK2to23"] = jsns.pdi_gs_full( "MDMK2to23", [A_d["MFP"], A_d["MACCS"]], yV, X_concat = xM_p, mode = "BIKE_Ridge", expension = True, n_jobs = 1) print('Elasped time is', time() - t, 'sec') pdo = pd.concat( pdi_d.values()) print( pdo.shape) Nm = len(pdi_d) #print( "The number of methods now is", Nm) fname_out = self.fname_core + "_MDMK2to23_{}methods.csv".format(Nm) print("The performance data are save to", fname_out) pdo.to_csv( fname_out, index = False) self.pdo = pdo return self def grid_search( self): # input processing xM_d = self.xM_d xM_p = self.xM_p yV = self.yV A_d = self.A_d A_2 = self.A_2 #Body t = time() pdi_d = dict() for k in xM_d: s = "SD({})".format( k) pdi_d[s] = jsns.pdi_gs_full( s, [xM_d[k]], yV, expension = True, n_jobs = 1) print('Elasped time is', time() - t, 'sec') # pdi_d["SD(MFP)"] = jsns.pdi_gs_full( "SD(MFP)", [xM_d["MFP"]], yV, expension = True, n_jobs = 1) # print('Elasped time is', time() - t, 'sec') # pdi_d["SD(MACCS)"] = jsns.pdi_gs_full( "SD(MACCS)", [xM_d["MACCS"]], yV, expension = True, n_jobs = 1) # print('Elasped time is', time() - t, 'sec') # pdi_d["SD(MolW)"] = jsns.pdi_gs_full( "SD(MolW)", [xM_d["MolW"]], yV, expension = True, n_jobs = 1) # print('Elasped time is', time() - t, 'sec') # pdi_d["SD(LASA)"] = jsns.pdi_gs_full( "SD(LASA)", [xM_d["MolW"]], yV, expension = True, n_jobs = 1) # print('Elasped time is', time() - t, 'sec') # pdi_d["SD(logP)"] = jsns.pdi_gs_full( "SD(logP)", [xM_d["logP"]], yV, expension = True, n_jobs = 1) # print('Elasped time is', time() - t, 'sec') pdi_d["MD21"] = jsns.pdi_gs_full( "MD21", [xM_d[ d_s] for d_s in ["MFP", "MACCS", "MolW"]], yV, expension = True) print('Elasped time is', time() - t, 'sec') pdi_d["MD23"] = jsns.pdi_gs_full( "MD23", list(xM_d.values()), yV, expension = True) print('Elasped time is', time() - t, 'sec') pdi_d["MDMK1to10"] = jsns.pdi_gs_full( "MDMK1to10", [A_d["MFP"]], yV, mode = "BIKE_Ridge", expension = True) print('Elasped time is', time() - t, 'sec') pdi_d["MDMK2to11"] = jsns.pdi_gs_full( "MDMK2to11", [A_2], yV, X_concat = xM_d["MolW"], mode = "BIKE_Ridge", expension = True) print('Elasped time is', time() - t, 'sec') pdi_d["MDMK2to13"] = jsns.pdi_gs_full( "MDMK2to13", [A_2], yV, X_concat = xM_p, mode = "BIKE_Ridge", expension = True) print('Elasped time is', time() - t, 'sec') pdi_d["MDMK2to21"] = jsns.pdi_gs_full( "MDMK2to21", [A_d["MFP"], A_d["MACCS"]], yV, X_concat = xM_d["MolW"], mode = "BIKE_Ridge", expension = True) print('Elasped time is', time() - t, 'sec') pdi_d["MDMK2to23"] = jsns.pdi_gs_full( "MDMK2to23", [A_d["MFP"], A_d["MACCS"]], yV, X_concat = xM_p, mode = "BIKE_Ridge", expension = True, n_jobs = 1) print('Elasped time is', time() - t, 'sec') pdo = pd.concat( pdi_d.values()) print( pdo.shape) Nm = len(pdi_d) #print( "The number of methods now is", Nm) fname_out = self.fname_core + "_MDMK2to23_{}methods.csv".format(Nm) print("The performance data are save to", fname_out) pdo.to_csv( fname_out, index = False) self.pdo = pdo return self def cv_MultiDK23( self, alpha, n_jobs = 1): """ Return -------- yV_pred: np.array(), mostly 1D return prediction results. """ self.set_xy() self.set_X() self.set_A() xM_d = self.xM_d xM_p = self.xM_p yV = self.yV # A_d = self.A_d A_2 = self.A_2 #Body t = time() yV_pred = jgrid.cv_BIKE_Ridge( [A_2], yV, alpha = alpha, XX = xM_p, n_folds = 20, n_jobs = n_jobs, grid_std = None) print('Elasped time is', time() - t, 'sec') return yV_pred def plot( self): sns.tsplot(data=self.pdo, time="alpha", unit="unit", condition="Method", value="r2") plt.xscale('log') plt.ylabel( r'$r^2$') def _run_r0( self): self.set_xy() self.set_X() self.set_A() self.grid_search() self.plot() def run( self, SDx = False): self.set_xy() self.set_X() self.set_A() if SDx: self.grid_search() else: self.grid_search_sd() self.plot() return self def set_XA( self): self.set_xy() self.set_X() self.set_A() return self ############################# # April 24, 2016 ############################# class MultiDK_DL( MultiDK): """ Deep learning version of MultiDK Kernels are, however, not applied. """ def __init__( self, fname = 'sheet/wang3310_with_logP.csv', graph = False): """ alpha_l is fixed now. """ super().__init__( fname = fname) self.graph = graph def learning( self): X = self.X y = self.y print( "Shape of X and y are", X.shape, y.shape) X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.2, random_state=42) X_train, X_val, y_train, y_val = model_selection.train_test_split(X_train, y_train, test_size=0.2, random_state=42) val_monitor = skflow.monitors.ValidationMonitor(X_val, y_val, early_stopping_rounds=200) model = skflow.TensorFlowDNNRegressor(hidden_units=[100, 50, 10], steps=5000) model.fit(X_train, y_train, val_monitor) yP = model.predict(X_test) score_r2 = metrics.r2_score(y_test, yP) score_MedAE = metrics.median_absolute_error(y_test, yP) print('Accuracy') print('--------') print('R2: {0:f}, MedAE: {1:f}'.format(score_r2, score_MedAE)) if self.graph: kutil.regress_show4( y_test, yP) def _set_X_r0( self): super().set_X() print( [self.xM_d[key].shape for key in self.xM_d]) self.X = np.array( np.concatenate( list( self.xM_d.values()), axis = 1)) self.y = np.array( self.yV) def set_X( self, ds_mode = "11111"): """ It combines only selected items by ds_mode Each bit in a bit string indecate whether the coressponding descriptor is included or not. Default case, all descriptors will be aggreagated. """ self.set_X_M2() #mode_l = [int(x) for x in ds_mode] mode_key = ["MFP", "MACCS", "MolW2", "LASA", "logP"] assert len(mode_key) == len(ds_mode) X_l = list() for idx in range( len(ds_mode)): if ds_mode[ idx] == '1': X_l.append( self.xM_d[ mode_key[ idx]]) self.X = np.array( np.concatenate( X_l, axis = 1)) self.y = np.array( self.yV)[:,0] def run_mode( self, ds_mode): self.set_X( ds_mode) self.learning() def run( self): self.set_xy() ds_mode_l = ["00111", "00110", "00101"] for ds_mode in ds_mode_l: print() print("======================") print("ds_mode:", ds_mode) self.run_mode( ds_mode) return self ############################# # August 1, 2016 ############################# class MultiDK_DLA( MultiDK): # Underdevelopment """ use setA appropriately I changed the base matrix as MultiDK instead of MultiDK_DL since MultiDK is more simlar to the target class. """ def __init__( self, fname = 'sheet/wang3310_with_logP.csv'): """ - A will be used instead of A - Need to change learning since training and testing should be differently calculated for A. """ super().__init__( fname = fname) def set_data(self): self.set_xy() self.set_X() self.set_A()
mit
SKA-ScienceDataProcessor/algorithm-reference-library
tests/processing_components/test_pointing.py
1
11233
""" Unit tests for pointing """ import logging import unittest import astropy.units as u import numpy from astropy.coordinates import SkyCoord from data_models.polarisation import PolarisationFrame from processing_components.calibration.pointing import create_pointingtable_from_blockvisibility from processing_components.imaging.primary_beams import create_vp from processing_components.simulation.configurations import create_named_configuration from processing_components.simulation.pointing import simulate_gaintable_from_pointingtable from processing_components.simulation.testing_support import create_test_image, simulate_pointingtable from processing_components.simulation.testing_support import create_test_skycomponents_from_s3 from processing_components.skycomponent.operations import create_skycomponent from processing_components.visibility.base import create_blockvisibility from processing_library.image.operations import create_image log = logging.getLogger(__name__) class TestPointing(unittest.TestCase): def setUp(self): from data_models.parameters import arl_path self.doplot = True self.midcore = create_named_configuration('MID', rmax=300.0) self.nants = len(self.midcore.names) self.dir = arl_path('test_results') self.ntimes = 300 self.times = numpy.linspace(-12.0, 12.0, self.ntimes) * numpy.pi / (12.0) self.frequency = numpy.array([1e9]) self.channel_bandwidth = numpy.array([1e7]) self.phasecentre = SkyCoord(ra=+15.0 * u.deg, dec=-45.0 * u.deg, frame='icrs', equinox='J2000') self.vis = create_blockvisibility(self.midcore, self.times, self.frequency, channel_bandwidth=self.channel_bandwidth, phasecentre=self.phasecentre, weight=1.0, polarisation_frame=PolarisationFrame('stokesI')) self.vis.data['vis'] *= 0.0 # Create model self.model = create_image(npixel=512, cellsize=0.00015, polarisation_frame=PolarisationFrame("stokesI"), frequency=self.frequency, channel_bandwidth=self.channel_bandwidth, phasecentre=self.phasecentre) def test_create_pointingtable(self): beam = create_test_image(cellsize=0.0015, phasecentre=self.vis.phasecentre, frequency=self.frequency) for telescope in ['MID', 'LOW', 'ASKAP']: vp = create_vp(beam, telescope) pt = create_pointingtable_from_blockvisibility(self.vis, vp) pt = simulate_pointingtable(pt, 0.1, static_pointing_error=[0.01, 0.001]) assert pt.pointing.shape == (self.ntimes, self.nants, 1, 1, 2), pt.pointing.shape def test_create_gaintable_from_pointingtable(self): s3_components = create_test_skycomponents_from_s3(flux_limit=5.0, phasecentre=self.phasecentre, frequency=self.frequency, polarisation_frame=PolarisationFrame('stokesI'), radius=0.2) pt = create_pointingtable_from_blockvisibility(self.vis) pt = simulate_pointingtable(pt, pointing_error=0.01, static_pointing_error=[0.001,0.0001]) vp = create_vp(self.model, 'MID') gt = simulate_gaintable_from_pointingtable(self.vis, s3_components, pt, vp) assert gt[0].gain.shape == (self.ntimes, self.nants, 1, 1, 1), gt[0].gain.shape def test_create_gaintable_from_pointingtable_dynamic(self): comp = create_skycomponent(direction=self.phasecentre, flux=[[1.0]], frequency=self.frequency, polarisation_frame=PolarisationFrame('stokesI')) pt = create_pointingtable_from_blockvisibility(self.vis) pt = simulate_pointingtable(pt, pointing_error=0.01, static_pointing_error=None, global_pointing_error=[0.0, 0.0]) vp = create_vp(self.model, 'MID') gt = simulate_gaintable_from_pointingtable(self.vis, [comp], pt, vp) if self.doplot: import matplotlib.pyplot as plt plt.clf() plt.plot(gt[0].time, numpy.real(1.0 / gt[0].gain[:, 0, 0, 0, 0]), '.') plt.plot(gt[0].time, numpy.imag(1.0 / gt[0].gain[:, 0, 0, 0, 0]), '.') plt.title('test_create_gaintable_from_pointingtable_dynamic') plt.show() assert gt[0].gain.shape == (self.ntimes, self.nants, 1, 1, 1), gt[0].gain.shape def test_create_gaintable_from_pointingtable_dynamic_radec(self): comp = create_skycomponent(direction=self.phasecentre, flux=[[1.0]], frequency=self.frequency, polarisation_frame=PolarisationFrame('stokesI')) pt = create_pointingtable_from_blockvisibility(self.vis) pt = simulate_pointingtable(pt, pointing_error=0.01, static_pointing_error=None, global_pointing_error=[0.0, 0.0]) vp = create_vp(self.model, 'MID', use_local=False) gt = simulate_gaintable_from_pointingtable(self.vis, [comp], pt, vp, use_radec=True) if self.doplot: import matplotlib.pyplot as plt plt.clf() plt.plot(gt[0].time, numpy.real(1.0 / gt[0].gain[:, 0, 0, 0, 0]), '.') plt.plot(gt[0].time, numpy.imag(1.0 / gt[0].gain[:, 0, 0, 0, 0]), '.') plt.title('test_create_gaintable_from_pointingtable_dynamic_radec') plt.show() assert gt[0].gain.shape == (self.ntimes, self.nants, 1, 1, 1), gt[0].gain.shape def test_create_gaintable_from_pointingtable_static(self): comp = create_skycomponent(direction=self.phasecentre, flux=[[1.0]], frequency=self.frequency, polarisation_frame=PolarisationFrame('stokesI')) pt = create_pointingtable_from_blockvisibility(self.vis) pt = simulate_pointingtable(pt, pointing_error=0.0, static_pointing_error=[0.01, 0.001], global_pointing_error=[0.0, 0.0]) vp = create_vp(self.model, 'MID') gt = simulate_gaintable_from_pointingtable(self.vis, [comp], pt, vp) if self.doplot: import matplotlib.pyplot as plt plt.clf() plt.plot(gt[0].time, numpy.real(1.0 / gt[0].gain[:, 0, 0, 0, 0]), '.') plt.plot(gt[0].time, numpy.imag(1.0 / gt[0].gain[:, 0, 0, 0, 0]), '.') plt.title('test_create_gaintable_from_pointingtable_static') plt.show() assert gt[0].gain.shape == (self.ntimes, self.nants, 1, 1, 1), gt[0].gain.shape def test_create_gaintable_from_pointingtable_dynamic_static(self): comp = create_skycomponent(direction=self.phasecentre, flux=[[1.0]], frequency=self.frequency, polarisation_frame=PolarisationFrame('stokesI')) pt = create_pointingtable_from_blockvisibility(self.vis) pt = simulate_pointingtable(pt, pointing_error=0.01, static_pointing_error=[0.01, 0.001], global_pointing_error=[0.0, 0.0]) vp = create_vp(self.model, 'MID') gt = simulate_gaintable_from_pointingtable(self.vis, [comp], pt, vp) if self.doplot: import matplotlib.pyplot as plt plt.clf() plt.plot(gt[0].time, numpy.real(1.0 / gt[0].gain[:, 0, 0, 0, 0]), '.') plt.plot(gt[0].time, numpy.imag(1.0 / gt[0].gain[:, 0, 0, 0, 0]), '.') plt.title('test_create_gaintable_from_pointingtable_dynamic_static') plt.show() assert gt[0].gain.shape == (self.ntimes, self.nants, 1, 1, 1), gt[0].gain.shape def test_create_gaintable_from_pointingtable_global(self): comp = create_skycomponent(direction=self.phasecentre, flux=[[1.0]], frequency=self.frequency, polarisation_frame=PolarisationFrame('stokesI')) import matplotlib.pyplot as plt pt = create_pointingtable_from_blockvisibility(self.vis) pt = simulate_pointingtable(pt, pointing_error=0.0, static_pointing_error=None, global_pointing_error=[0.0, 0.01]) vp = create_vp(self.model, 'MID') gt = simulate_gaintable_from_pointingtable(self.vis, [comp], pt, vp) if self.doplot: plt.clf() plt.plot(gt[0].time, numpy.real(1.0 / gt[0].gain[:, 0, 0, 0, 0]), '.') plt.plot(gt[0].time, numpy.imag(1.0 / gt[0].gain[:, 0, 0, 0, 0]), '.') plt.title('test_create_gaintable_from_pointingtable_global') plt.show() assert gt[0].gain.shape == (self.ntimes, self.nants, 1, 1, 1), gt[0].gain.shape def test_create_gaintable_from_pointingtable_global_dynamic(self): comp = create_skycomponent(direction=self.phasecentre, flux=[[1.0]], frequency=self.frequency, polarisation_frame=PolarisationFrame('stokesI')) pt = create_pointingtable_from_blockvisibility(self.vis) pt = simulate_pointingtable(pt, pointing_error=0.01, static_pointing_error=None, global_pointing_error=[0.0, 0.01]) vp = create_vp(self.model, 'MID') gt = simulate_gaintable_from_pointingtable(self.vis, [comp], pt, vp) if self.doplot: import matplotlib.pyplot as plt plt.clf() plt.plot(gt[0].time, numpy.real(1.0 / gt[0].gain[:, 0, 0, 0, 0]), '.') plt.plot(gt[0].time, numpy.imag(1.0 / gt[0].gain[:, 0, 0, 0, 0]), '.') plt.title('test_create_gaintable_from_pointingtable_global_dynamic') plt.show() assert gt[0].gain.shape == (self.ntimes, self.nants, 1, 1, 1), gt[0].gain.shape def test_create_gaintable_from_pointingtable_GRASP(self): comp = create_skycomponent(direction=self.phasecentre, flux=[[1.0]], frequency=self.frequency, polarisation_frame=PolarisationFrame('stokesI')) pt = create_pointingtable_from_blockvisibility(self.vis) pt = simulate_pointingtable(pt, pointing_error=0.0, static_pointing_error=None, global_pointing_error=[0.0, 0.01]) vp = create_vp(self.model, 'MID_GRASP') gt = simulate_gaintable_from_pointingtable(self.vis, [comp], pt, vp) if self.doplot: import matplotlib.pyplot as plt plt.clf() plt.plot(gt[0].time, numpy.real(1.0 / gt[0].gain[:, 0, 0, 0, 0]), '.') plt.plot(gt[0].time, numpy.imag(1.0 / gt[0].gain[:, 0, 0, 0, 0]), '.') plt.title('test_create_gaintable_from_pointingtable_global_dynamic') plt.show() assert gt[0].gain.shape == (self.ntimes, self.nants, 1, 1, 1), gt[0].gain.shape if __name__ == '__main__': unittest.main()
apache-2.0
quevedin/python-tools
pyomotools.py
2
2864
""" pyomotools: common helper functions for pyomo model creation """ from datetime import datetime import pandas as pd import xlrd __all__ = ["now", "read_xls"] def now(mydateformat='%Y%m%dT%H%M%S'): """ Return current datetime as string. Just a shorthand to abbreviate the common task to obtain the current datetime as a string, e.g. for result versioning. Args: mydateformat: optional format string (default: '%Y%m%dT%H%M%S') Returns: datetime.now(), formated to string with argument mydateformat, e.g. YYYYMMDDThhmmss ==> 20131007H123456 """ return datetime.now().strftime(mydateformat) def read_xls(filename, sheets=[]): """ Convert Excel file to dict of pandas DataFrames. Parses all spreadsheets within an Excel file using pandas.ExcelFile.parse, if its top left cell is not empty. The first row is expected to contain column titles. Titles starting with uppercase lettres are used as index columns in the resulting DataFrame. Here is a short example summarizing these specifications: Process CoIn CoOut | cap eff ... avail ------------------------------------------- PP Coal Elec | 100 0.90 ... 24 WT Wind Elec | 300 0.95 ... 10 PV Solar Elec | 200 0.92 ... 8 A spreadsheet is skipped if a) it is completely empty or b) has an empty first row. Args: filename: an Excel spreadsheet filename Returns: dict of pandas DataFrames with sheet names as keys """ dfs = {} xls = pd.ExcelFile(filename) for sheet in xls.book.sheets(): # skip sheet if list of sheets was specified if sheets and sheet.name not in sheets: continue # extract the sheet's first row to check for emptiness first_row = sheet.row_slice(0) # skip a spreadsheet if completely empty or its first cell is blank if not first_row \ or first_row[0].ctype in (xlrd.XL_CELL_BLANK, xlrd.XL_CELL_EMPTY): continue # otherwise determine column numbers of titles starting with an # uppercase lettre while skipping empty columns uppercase_columns = [k for k, column_title in enumerate(first_row) if column_title.value and column_title.value[0].isupper()] # parse those columns to a pandas DataFrame df = xls.parse(sheet.name, index_col=uppercase_columns) # and prune any columns with only NaN values # these are mainly empty columns dfs[sheet.name] = df.dropna(axis=1, how='all') return dfs
gpl-3.0
probml/pyprobml
scripts/rvm_regression_1d.py
1
4503
""" This code is a python version of https://github.com/probml/pmtk3/blob/master/demos/svmRegrDemo.m This file performs demos for rbf kernel regressors using L1reg, L2reg, SVM, RVM for noisy sine data Author: Srikar Reddy Jilugu(@always-newbie161) """ import numpy as np import matplotlib.pyplot as plt import math from sklearn import linear_model from sklearn.svm import SVR from cycler import cycler from sklearn.kernel_approximation import RBFSampler from sklearn.model_selection import cross_val_score from rvm_regressor import RelevanceVectorRegressor as RVR from sklearn.gaussian_process.kernels import RBF import pyprobml_utils as pml def main(): #CB_color = ['#377eb8', '#ff7f00', '#4daf4a'] #cb_cycler = (cycler(linestyle=['-', '--', '-.']) * cycler(color=CB_color)) #plt.rc('axes', prop_cycle=cb_cycler) # ------------------------------------------- # making the data np.random.seed(0) N = 100 x = 10 * (np.linspace(-1, 1, 100).reshape(-1, 1)) ytrue = np.array([math.sin(abs(el)) / (abs(el)) for el in x]).reshape(-1, 1) noise = 0.1 y = ytrue + noise * np.random.randn(N, 1) X = (x - x.mean()) / x.std() # normalizing. lambd_l2 = 0.1 # regularization parameter for L2reg lambd_l1 = 1e-3 # regularization parameter for L1reg rbf_scale = 0.3 gamma = 1 / (2 * rbf_scale ** 2) xtest = np.arange(-10, 10.1, 0.1) Xtest = (xtest - xtest.mean()) / xtest.std() Xtest = Xtest.reshape((-1, 1)) # applying the rbf kernel feature scaling rbf_features = RBFSampler(gamma=gamma, random_state=1) rbf_X = rbf_features.fit_transform(X) rbf_Xtest = rbf_features.fit_transform(Xtest) # ------------------------------------------- # l2 reg = linear_model.Ridge(alpha=lambd_l2, fit_intercept=False).fit(rbf_X, y) ypred = reg.predict(rbf_Xtest) plt.figure() plt.plot(X, y, '*') plt.plot(Xtest, ypred, '-', color='blue') plt.title('linregL2') pml.savefig('rvm_data_l2.pdf') plt.figure() # stem plot of weight vectors. plt.title('linregL2') plt.stem(reg.coef_.ravel(), use_line_collection=True) plt.tight_layout() pml.savefig('rvm_stem_l2.pdf') # ------------------------------------------- # l1 reg = linear_model.Lasso(alpha=lambd_l1, fit_intercept=False,tol=1e-3) ypred = reg.fit(rbf_X, y).predict(rbf_Xtest) plt.figure() plt.plot(X, y, '*') plt.plot(Xtest, ypred, '-', color='blue') # coefficient vectors of l1reg SV_idx = (np.abs(reg.coef_) > 1e-5) plt.scatter(X[SV_idx], y[SV_idx], s=200, facecolor="none",edgecolor='red') plt.title('linregL1') pml.savefig('rvm_data_l1.pdf') plt.figure() # stem plot of weight vectors. plt.title('linregL1') plt.stem(reg.coef_.ravel(), use_line_collection=True) plt.tight_layout() pml.savefig('rvm_stem_l1.pdf') # ------------------------------------------- # RVR kernel = RBF(0.3) reg = RVR(kernel=kernel) reg.fit(X, y.ravel()) ypred = reg.predict(Xtest)[0] plt.figure() plt.plot(X, y, '*') plt.plot(Xtest, ypred, '-', color='blue') # support vectors of RVR plt.scatter(reg.X, reg.t, s=200, facecolor="none",edgecolor='red') plt.title('RVM') plt.tight_layout() pml.savefig('rvm_data_rvm.pdf') plt.figure() # stem plot of weight vectors. plt.title('RVM') plt.stem(reg.mean.ravel(), use_line_collection=True) plt.tight_layout() pml.savefig('rvm_stem_rvm.pdf') # ------------------------------------------- # SVM C = np.arange(10)+1 crossval_scores = [cross_val_score(SVR(gamma=gamma, C=c), X, y.ravel(), scoring='neg_mean_squared_error', cv=5).mean() for c in C] c_opt = np.argmin(crossval_scores) reg = SVR(gamma=gamma, C=c_opt) reg.fit(X, y.ravel()) ypred = reg.predict(Xtest) plt.figure() plt.plot(X, y, '*') plt.plot(Xtest, ypred, '-', color='blue') # support vectors of SVR. SV_idx = reg.support_ plt.scatter(X[SV_idx], y[SV_idx], s=200, facecolor="none",edgecolor='red') plt.title('SVM') plt.tight_layout() pml.savefig('rvm_data_svm.pdf') plt.figure() # stem plot of weight vectors. plt.title('SVM') plt.stem(reg.dual_coef_.ravel(), use_line_collection=True) plt.tight_layout() pml.savefig('rvm_stem_svm.pdf') # ------------------------------------------- plt.show() if __name__ == "__main__": main()
mit
ZENGXH/scikit-learn
sklearn/cross_decomposition/pls_.py
187
28507
""" The :mod:`sklearn.pls` module implements Partial Least Squares (PLS). """ # Author: Edouard Duchesnay <edouard.duchesnay@cea.fr> # License: BSD 3 clause from ..base import BaseEstimator, RegressorMixin, TransformerMixin from ..utils import check_array, check_consistent_length from ..externals import six import warnings from abc import ABCMeta, abstractmethod import numpy as np from scipy import linalg from ..utils import arpack from ..utils.validation import check_is_fitted __all__ = ['PLSCanonical', 'PLSRegression', 'PLSSVD'] def _nipals_twoblocks_inner_loop(X, Y, mode="A", max_iter=500, tol=1e-06, norm_y_weights=False): """Inner loop of the iterative NIPALS algorithm. Provides an alternative to the svd(X'Y); returns the first left and right singular vectors of X'Y. See PLS for the meaning of the parameters. It is similar to the Power method for determining the eigenvectors and eigenvalues of a X'Y. """ y_score = Y[:, [0]] x_weights_old = 0 ite = 1 X_pinv = Y_pinv = None eps = np.finfo(X.dtype).eps # Inner loop of the Wold algo. while True: # 1.1 Update u: the X weights if mode == "B": if X_pinv is None: X_pinv = linalg.pinv(X) # compute once pinv(X) x_weights = np.dot(X_pinv, y_score) else: # mode A # Mode A regress each X column on y_score x_weights = np.dot(X.T, y_score) / np.dot(y_score.T, y_score) # 1.2 Normalize u x_weights /= np.sqrt(np.dot(x_weights.T, x_weights)) + eps # 1.3 Update x_score: the X latent scores x_score = np.dot(X, x_weights) # 2.1 Update y_weights if mode == "B": if Y_pinv is None: Y_pinv = linalg.pinv(Y) # compute once pinv(Y) y_weights = np.dot(Y_pinv, x_score) else: # Mode A regress each Y column on x_score y_weights = np.dot(Y.T, x_score) / np.dot(x_score.T, x_score) # 2.2 Normalize y_weights if norm_y_weights: y_weights /= np.sqrt(np.dot(y_weights.T, y_weights)) + eps # 2.3 Update y_score: the Y latent scores y_score = np.dot(Y, y_weights) / (np.dot(y_weights.T, y_weights) + eps) # y_score = np.dot(Y, y_weights) / np.dot(y_score.T, y_score) ## BUG x_weights_diff = x_weights - x_weights_old if np.dot(x_weights_diff.T, x_weights_diff) < tol or Y.shape[1] == 1: break if ite == max_iter: warnings.warn('Maximum number of iterations reached') break x_weights_old = x_weights ite += 1 return x_weights, y_weights, ite def _svd_cross_product(X, Y): C = np.dot(X.T, Y) U, s, Vh = linalg.svd(C, full_matrices=False) u = U[:, [0]] v = Vh.T[:, [0]] return u, v def _center_scale_xy(X, Y, scale=True): """ Center X, Y and scale if the scale parameter==True Returns ------- X, Y, x_mean, y_mean, x_std, y_std """ # center x_mean = X.mean(axis=0) X -= x_mean y_mean = Y.mean(axis=0) Y -= y_mean # scale if scale: x_std = X.std(axis=0, ddof=1) x_std[x_std == 0.0] = 1.0 X /= x_std y_std = Y.std(axis=0, ddof=1) y_std[y_std == 0.0] = 1.0 Y /= y_std else: x_std = np.ones(X.shape[1]) y_std = np.ones(Y.shape[1]) return X, Y, x_mean, y_mean, x_std, y_std class _PLS(six.with_metaclass(ABCMeta), BaseEstimator, TransformerMixin, RegressorMixin): """Partial Least Squares (PLS) This class implements the generic PLS algorithm, constructors' parameters allow to obtain a specific implementation such as: - PLS2 regression, i.e., PLS 2 blocks, mode A, with asymmetric deflation and unnormalized y weights such as defined by [Tenenhaus 1998] p. 132. With univariate response it implements PLS1. - PLS canonical, i.e., PLS 2 blocks, mode A, with symmetric deflation and normalized y weights such as defined by [Tenenhaus 1998] (p. 132) and [Wegelin et al. 2000]. This parametrization implements the original Wold algorithm. We use the terminology defined by [Wegelin et al. 2000]. This implementation uses the PLS Wold 2 blocks algorithm based on two nested loops: (i) The outer loop iterate over components. (ii) The inner loop estimates the weights vectors. This can be done with two algo. (a) the inner loop of the original NIPALS algo. or (b) a SVD on residuals cross-covariance matrices. n_components : int, number of components to keep. (default 2). scale : boolean, scale data? (default True) deflation_mode : str, "canonical" or "regression". See notes. mode : "A" classical PLS and "B" CCA. See notes. norm_y_weights: boolean, normalize Y weights to one? (default False) algorithm : string, "nipals" or "svd" The algorithm used to estimate the weights. It will be called n_components times, i.e. once for each iteration of the outer loop. max_iter : an integer, the maximum number of iterations (default 500) of the NIPALS inner loop (used only if algorithm="nipals") tol : non-negative real, default 1e-06 The tolerance used in the iterative algorithm. copy : boolean, default True Whether the deflation should be done on a copy. Let the default value to True unless you don't care about side effects. Attributes ---------- x_weights_ : array, [p, n_components] X block weights vectors. y_weights_ : array, [q, n_components] Y block weights vectors. x_loadings_ : array, [p, n_components] X block loadings vectors. y_loadings_ : array, [q, n_components] Y block loadings vectors. x_scores_ : array, [n_samples, n_components] X scores. y_scores_ : array, [n_samples, n_components] Y scores. x_rotations_ : array, [p, n_components] X block to latents rotations. y_rotations_ : array, [q, n_components] Y block to latents rotations. coef_: array, [p, q] The coefficients of the linear model: ``Y = X coef_ + Err`` n_iter_ : array-like Number of iterations of the NIPALS inner loop for each component. Not useful if the algorithm given is "svd". References ---------- Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case. Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000. In French but still a reference: Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic. See also -------- PLSCanonical PLSRegression CCA PLS_SVD """ @abstractmethod def __init__(self, n_components=2, scale=True, deflation_mode="regression", mode="A", algorithm="nipals", norm_y_weights=False, max_iter=500, tol=1e-06, copy=True): self.n_components = n_components self.deflation_mode = deflation_mode self.mode = mode self.norm_y_weights = norm_y_weights self.scale = scale self.algorithm = algorithm self.max_iter = max_iter self.tol = tol self.copy = copy def fit(self, X, Y): """Fit model to data. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vectors, where n_samples in the number of samples and n_features is the number of predictors. Y : array-like of response, shape = [n_samples, n_targets] Target vectors, where n_samples in the number of samples and n_targets is the number of response variables. """ # copy since this will contains the residuals (deflated) matrices check_consistent_length(X, Y) X = check_array(X, dtype=np.float64, copy=self.copy) Y = check_array(Y, dtype=np.float64, copy=self.copy, ensure_2d=False) if Y.ndim == 1: Y = Y.reshape(-1, 1) n = X.shape[0] p = X.shape[1] q = Y.shape[1] if self.n_components < 1 or self.n_components > p: raise ValueError('Invalid number of components: %d' % self.n_components) if self.algorithm not in ("svd", "nipals"): raise ValueError("Got algorithm %s when only 'svd' " "and 'nipals' are known" % self.algorithm) if self.algorithm == "svd" and self.mode == "B": raise ValueError('Incompatible configuration: mode B is not ' 'implemented with svd algorithm') if self.deflation_mode not in ["canonical", "regression"]: raise ValueError('The deflation mode is unknown') # Scale (in place) X, Y, self.x_mean_, self.y_mean_, self.x_std_, self.y_std_\ = _center_scale_xy(X, Y, self.scale) # Residuals (deflated) matrices Xk = X Yk = Y # Results matrices self.x_scores_ = np.zeros((n, self.n_components)) self.y_scores_ = np.zeros((n, self.n_components)) self.x_weights_ = np.zeros((p, self.n_components)) self.y_weights_ = np.zeros((q, self.n_components)) self.x_loadings_ = np.zeros((p, self.n_components)) self.y_loadings_ = np.zeros((q, self.n_components)) self.n_iter_ = [] # NIPALS algo: outer loop, over components for k in range(self.n_components): if np.all(np.dot(Yk.T, Yk) < np.finfo(np.double).eps): # Yk constant warnings.warn('Y residual constant at iteration %s' % k) break # 1) weights estimation (inner loop) # ----------------------------------- if self.algorithm == "nipals": x_weights, y_weights, n_iter_ = \ _nipals_twoblocks_inner_loop( X=Xk, Y=Yk, mode=self.mode, max_iter=self.max_iter, tol=self.tol, norm_y_weights=self.norm_y_weights) self.n_iter_.append(n_iter_) elif self.algorithm == "svd": x_weights, y_weights = _svd_cross_product(X=Xk, Y=Yk) # compute scores x_scores = np.dot(Xk, x_weights) if self.norm_y_weights: y_ss = 1 else: y_ss = np.dot(y_weights.T, y_weights) y_scores = np.dot(Yk, y_weights) / y_ss # test for null variance if np.dot(x_scores.T, x_scores) < np.finfo(np.double).eps: warnings.warn('X scores are null at iteration %s' % k) break # 2) Deflation (in place) # ---------------------- # Possible memory footprint reduction may done here: in order to # avoid the allocation of a data chunk for the rank-one # approximations matrix which is then subtracted to Xk, we suggest # to perform a column-wise deflation. # # - regress Xk's on x_score x_loadings = np.dot(Xk.T, x_scores) / np.dot(x_scores.T, x_scores) # - subtract rank-one approximations to obtain remainder matrix Xk -= np.dot(x_scores, x_loadings.T) if self.deflation_mode == "canonical": # - regress Yk's on y_score, then subtract rank-one approx. y_loadings = (np.dot(Yk.T, y_scores) / np.dot(y_scores.T, y_scores)) Yk -= np.dot(y_scores, y_loadings.T) if self.deflation_mode == "regression": # - regress Yk's on x_score, then subtract rank-one approx. y_loadings = (np.dot(Yk.T, x_scores) / np.dot(x_scores.T, x_scores)) Yk -= np.dot(x_scores, y_loadings.T) # 3) Store weights, scores and loadings # Notation: self.x_scores_[:, k] = x_scores.ravel() # T self.y_scores_[:, k] = y_scores.ravel() # U self.x_weights_[:, k] = x_weights.ravel() # W self.y_weights_[:, k] = y_weights.ravel() # C self.x_loadings_[:, k] = x_loadings.ravel() # P self.y_loadings_[:, k] = y_loadings.ravel() # Q # Such that: X = TP' + Err and Y = UQ' + Err # 4) rotations from input space to transformed space (scores) # T = X W(P'W)^-1 = XW* (W* : p x k matrix) # U = Y C(Q'C)^-1 = YC* (W* : q x k matrix) self.x_rotations_ = np.dot( self.x_weights_, linalg.pinv(np.dot(self.x_loadings_.T, self.x_weights_))) if Y.shape[1] > 1: self.y_rotations_ = np.dot( self.y_weights_, linalg.pinv(np.dot(self.y_loadings_.T, self.y_weights_))) else: self.y_rotations_ = np.ones(1) if True or self.deflation_mode == "regression": # FIXME what's with the if? # Estimate regression coefficient # Regress Y on T # Y = TQ' + Err, # Then express in function of X # Y = X W(P'W)^-1Q' + Err = XB + Err # => B = W*Q' (p x q) self.coef_ = np.dot(self.x_rotations_, self.y_loadings_.T) self.coef_ = (1. / self.x_std_.reshape((p, 1)) * self.coef_ * self.y_std_) return self def transform(self, X, Y=None, copy=True): """Apply the dimension reduction learned on the train data. Parameters ---------- X : array-like of predictors, shape = [n_samples, p] Training vectors, where n_samples in the number of samples and p is the number of predictors. Y : array-like of response, shape = [n_samples, q], optional Training vectors, where n_samples in the number of samples and q is the number of response variables. copy : boolean, default True Whether to copy X and Y, or perform in-place normalization. Returns ------- x_scores if Y is not given, (x_scores, y_scores) otherwise. """ check_is_fitted(self, 'x_mean_') X = check_array(X, copy=copy) # Normalize X -= self.x_mean_ X /= self.x_std_ # Apply rotation x_scores = np.dot(X, self.x_rotations_) if Y is not None: Y = check_array(Y, ensure_2d=False, copy=copy) if Y.ndim == 1: Y = Y.reshape(-1, 1) Y -= self.y_mean_ Y /= self.y_std_ y_scores = np.dot(Y, self.y_rotations_) return x_scores, y_scores return x_scores def predict(self, X, copy=True): """Apply the dimension reduction learned on the train data. Parameters ---------- X : array-like of predictors, shape = [n_samples, p] Training vectors, where n_samples in the number of samples and p is the number of predictors. copy : boolean, default True Whether to copy X and Y, or perform in-place normalization. Notes ----- This call requires the estimation of a p x q matrix, which may be an issue in high dimensional space. """ check_is_fitted(self, 'x_mean_') X = check_array(X, copy=copy) # Normalize X -= self.x_mean_ X /= self.x_std_ Ypred = np.dot(X, self.coef_) return Ypred + self.y_mean_ def fit_transform(self, X, y=None, **fit_params): """Learn and apply the dimension reduction on the train data. Parameters ---------- X : array-like of predictors, shape = [n_samples, p] Training vectors, where n_samples in the number of samples and p is the number of predictors. Y : array-like of response, shape = [n_samples, q], optional Training vectors, where n_samples in the number of samples and q is the number of response variables. copy : boolean, default True Whether to copy X and Y, or perform in-place normalization. Returns ------- x_scores if Y is not given, (x_scores, y_scores) otherwise. """ check_is_fitted(self, 'x_mean_') return self.fit(X, y, **fit_params).transform(X, y) class PLSRegression(_PLS): """PLS regression PLSRegression implements the PLS 2 blocks regression known as PLS2 or PLS1 in case of one dimensional response. This class inherits from _PLS with mode="A", deflation_mode="regression", norm_y_weights=False and algorithm="nipals". Read more in the :ref:`User Guide <cross_decomposition>`. Parameters ---------- n_components : int, (default 2) Number of components to keep. scale : boolean, (default True) whether to scale the data max_iter : an integer, (default 500) the maximum number of iterations of the NIPALS inner loop (used only if algorithm="nipals") tol : non-negative real Tolerance used in the iterative algorithm default 1e-06. copy : boolean, default True Whether the deflation should be done on a copy. Let the default value to True unless you don't care about side effect Attributes ---------- x_weights_ : array, [p, n_components] X block weights vectors. y_weights_ : array, [q, n_components] Y block weights vectors. x_loadings_ : array, [p, n_components] X block loadings vectors. y_loadings_ : array, [q, n_components] Y block loadings vectors. x_scores_ : array, [n_samples, n_components] X scores. y_scores_ : array, [n_samples, n_components] Y scores. x_rotations_ : array, [p, n_components] X block to latents rotations. y_rotations_ : array, [q, n_components] Y block to latents rotations. coef_: array, [p, q] The coefficients of the linear model: ``Y = X coef_ + Err`` n_iter_ : array-like Number of iterations of the NIPALS inner loop for each component. Notes ----- For each component k, find weights u, v that optimizes: ``max corr(Xk u, Yk v) * var(Xk u) var(Yk u)``, such that ``|u| = 1`` Note that it maximizes both the correlations between the scores and the intra-block variances. The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score. The residual matrix of Y (Yk+1) block is obtained by deflation on the current X score. This performs the PLS regression known as PLS2. This mode is prediction oriented. This implementation provides the same results that 3 PLS packages provided in the R language (R-project): - "mixOmics" with function pls(X, Y, mode = "regression") - "plspm " with function plsreg2(X, Y) - "pls" with function oscorespls.fit(X, Y) Examples -------- >>> from sklearn.cross_decomposition import PLSRegression >>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [2.,5.,4.]] >>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]] >>> pls2 = PLSRegression(n_components=2) >>> pls2.fit(X, Y) ... # doctest: +NORMALIZE_WHITESPACE PLSRegression(copy=True, max_iter=500, n_components=2, scale=True, tol=1e-06) >>> Y_pred = pls2.predict(X) References ---------- Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case. Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000. In french but still a reference: Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic. """ def __init__(self, n_components=2, scale=True, max_iter=500, tol=1e-06, copy=True): _PLS.__init__(self, n_components=n_components, scale=scale, deflation_mode="regression", mode="A", norm_y_weights=False, max_iter=max_iter, tol=tol, copy=copy) class PLSCanonical(_PLS): """ PLSCanonical implements the 2 blocks canonical PLS of the original Wold algorithm [Tenenhaus 1998] p.204, referred as PLS-C2A in [Wegelin 2000]. This class inherits from PLS with mode="A" and deflation_mode="canonical", norm_y_weights=True and algorithm="nipals", but svd should provide similar results up to numerical errors. Read more in the :ref:`User Guide <cross_decomposition>`. Parameters ---------- scale : boolean, scale data? (default True) algorithm : string, "nipals" or "svd" The algorithm used to estimate the weights. It will be called n_components times, i.e. once for each iteration of the outer loop. max_iter : an integer, (default 500) the maximum number of iterations of the NIPALS inner loop (used only if algorithm="nipals") tol : non-negative real, default 1e-06 the tolerance used in the iterative algorithm copy : boolean, default True Whether the deflation should be done on a copy. Let the default value to True unless you don't care about side effect n_components : int, number of components to keep. (default 2). Attributes ---------- x_weights_ : array, shape = [p, n_components] X block weights vectors. y_weights_ : array, shape = [q, n_components] Y block weights vectors. x_loadings_ : array, shape = [p, n_components] X block loadings vectors. y_loadings_ : array, shape = [q, n_components] Y block loadings vectors. x_scores_ : array, shape = [n_samples, n_components] X scores. y_scores_ : array, shape = [n_samples, n_components] Y scores. x_rotations_ : array, shape = [p, n_components] X block to latents rotations. y_rotations_ : array, shape = [q, n_components] Y block to latents rotations. n_iter_ : array-like Number of iterations of the NIPALS inner loop for each component. Not useful if the algorithm provided is "svd". Notes ----- For each component k, find weights u, v that optimize:: max corr(Xk u, Yk v) * var(Xk u) var(Yk u), such that ``|u| = |v| = 1`` Note that it maximizes both the correlations between the scores and the intra-block variances. The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score. The residual matrix of Y (Yk+1) block is obtained by deflation on the current Y score. This performs a canonical symmetric version of the PLS regression. But slightly different than the CCA. This is mostly used for modeling. This implementation provides the same results that the "plspm" package provided in the R language (R-project), using the function plsca(X, Y). Results are equal or collinear with the function ``pls(..., mode = "canonical")`` of the "mixOmics" package. The difference relies in the fact that mixOmics implementation does not exactly implement the Wold algorithm since it does not normalize y_weights to one. Examples -------- >>> from sklearn.cross_decomposition import PLSCanonical >>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [2.,5.,4.]] >>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]] >>> plsca = PLSCanonical(n_components=2) >>> plsca.fit(X, Y) ... # doctest: +NORMALIZE_WHITESPACE PLSCanonical(algorithm='nipals', copy=True, max_iter=500, n_components=2, scale=True, tol=1e-06) >>> X_c, Y_c = plsca.transform(X, Y) References ---------- Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case. Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000. Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic. See also -------- CCA PLSSVD """ def __init__(self, n_components=2, scale=True, algorithm="nipals", max_iter=500, tol=1e-06, copy=True): _PLS.__init__(self, n_components=n_components, scale=scale, deflation_mode="canonical", mode="A", norm_y_weights=True, algorithm=algorithm, max_iter=max_iter, tol=tol, copy=copy) class PLSSVD(BaseEstimator, TransformerMixin): """Partial Least Square SVD Simply perform a svd on the crosscovariance matrix: X'Y There are no iterative deflation here. Read more in the :ref:`User Guide <cross_decomposition>`. Parameters ---------- n_components : int, default 2 Number of components to keep. scale : boolean, default True Whether to scale X and Y. copy : boolean, default True Whether to copy X and Y, or perform in-place computations. Attributes ---------- x_weights_ : array, [p, n_components] X block weights vectors. y_weights_ : array, [q, n_components] Y block weights vectors. x_scores_ : array, [n_samples, n_components] X scores. y_scores_ : array, [n_samples, n_components] Y scores. See also -------- PLSCanonical CCA """ def __init__(self, n_components=2, scale=True, copy=True): self.n_components = n_components self.scale = scale self.copy = copy def fit(self, X, Y): # copy since this will contains the centered data check_consistent_length(X, Y) X = check_array(X, dtype=np.float64, copy=self.copy) Y = check_array(Y, dtype=np.float64, copy=self.copy, ensure_2d=False) if Y.ndim == 1: Y = Y.reshape(-1, 1) if self.n_components > max(Y.shape[1], X.shape[1]): raise ValueError("Invalid number of components n_components=%d" " with X of shape %s and Y of shape %s." % (self.n_components, str(X.shape), str(Y.shape))) # Scale (in place) X, Y, self.x_mean_, self.y_mean_, self.x_std_, self.y_std_ =\ _center_scale_xy(X, Y, self.scale) # svd(X'Y) C = np.dot(X.T, Y) # The arpack svds solver only works if the number of extracted # components is smaller than rank(X) - 1. Hence, if we want to extract # all the components (C.shape[1]), we have to use another one. Else, # let's use arpacks to compute only the interesting components. if self.n_components >= np.min(C.shape): U, s, V = linalg.svd(C, full_matrices=False) else: U, s, V = arpack.svds(C, k=self.n_components) V = V.T self.x_scores_ = np.dot(X, U) self.y_scores_ = np.dot(Y, V) self.x_weights_ = U self.y_weights_ = V return self def transform(self, X, Y=None): """Apply the dimension reduction learned on the train data.""" check_is_fitted(self, 'x_mean_') X = check_array(X, dtype=np.float64) Xr = (X - self.x_mean_) / self.x_std_ x_scores = np.dot(Xr, self.x_weights_) if Y is not None: if Y.ndim == 1: Y = Y.reshape(-1, 1) Yr = (Y - self.y_mean_) / self.y_std_ y_scores = np.dot(Yr, self.y_weights_) return x_scores, y_scores return x_scores def fit_transform(self, X, y=None, **fit_params): """Learn and apply the dimension reduction on the train data. Parameters ---------- X : array-like of predictors, shape = [n_samples, p] Training vectors, where n_samples in the number of samples and p is the number of predictors. Y : array-like of response, shape = [n_samples, q], optional Training vectors, where n_samples in the number of samples and q is the number of response variables. Returns ------- x_scores if Y is not given, (x_scores, y_scores) otherwise. """ return self.fit(X, y, **fit_params).transform(X, y)
bsd-3-clause
OshynSong/scikit-learn
sklearn/linear_model/tests/test_passive_aggressive.py
169
8809
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_array_almost_equal, assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.base import ClassifierMixin from sklearn.utils import check_random_state from sklearn.datasets import load_iris from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.linear_model import PassiveAggressiveRegressor iris = load_iris() random_state = check_random_state(12) indices = np.arange(iris.data.shape[0]) random_state.shuffle(indices) X = iris.data[indices] y = iris.target[indices] X_csr = sp.csr_matrix(X) class MyPassiveAggressive(ClassifierMixin): def __init__(self, C=1.0, epsilon=0.01, loss="hinge", fit_intercept=True, n_iter=1, random_state=None): self.C = C self.epsilon = epsilon self.loss = loss self.fit_intercept = fit_intercept self.n_iter = n_iter def fit(self, X, y): n_samples, n_features = X.shape self.w = np.zeros(n_features, dtype=np.float64) self.b = 0.0 for t in range(self.n_iter): for i in range(n_samples): p = self.project(X[i]) if self.loss in ("hinge", "squared_hinge"): loss = max(1 - y[i] * p, 0) else: loss = max(np.abs(p - y[i]) - self.epsilon, 0) sqnorm = np.dot(X[i], X[i]) if self.loss in ("hinge", "epsilon_insensitive"): step = min(self.C, loss / sqnorm) elif self.loss in ("squared_hinge", "squared_epsilon_insensitive"): step = loss / (sqnorm + 1.0 / (2 * self.C)) if self.loss in ("hinge", "squared_hinge"): step *= y[i] else: step *= np.sign(y[i] - p) self.w += step * X[i] if self.fit_intercept: self.b += step def project(self, X): return np.dot(X, self.w) + self.b def test_classifier_accuracy(): for data in (X, X_csr): for fit_intercept in (True, False): clf = PassiveAggressiveClassifier(C=1.0, n_iter=30, fit_intercept=fit_intercept, random_state=0) clf.fit(data, y) score = clf.score(data, y) assert_greater(score, 0.79) def test_classifier_partial_fit(): classes = np.unique(y) for data in (X, X_csr): clf = PassiveAggressiveClassifier(C=1.0, fit_intercept=True, random_state=0) for t in range(30): clf.partial_fit(data, y, classes) score = clf.score(data, y) assert_greater(score, 0.79) def test_classifier_refit(): # Classifier can be retrained on different labels and features. clf = PassiveAggressiveClassifier().fit(X, y) assert_array_equal(clf.classes_, np.unique(y)) clf.fit(X[:, :-1], iris.target_names[y]) assert_array_equal(clf.classes_, iris.target_names) def test_classifier_correctness(): y_bin = y.copy() y_bin[y != 1] = -1 for loss in ("hinge", "squared_hinge"): clf1 = MyPassiveAggressive(C=1.0, loss=loss, fit_intercept=True, n_iter=2) clf1.fit(X, y_bin) for data in (X, X_csr): clf2 = PassiveAggressiveClassifier(C=1.0, loss=loss, fit_intercept=True, n_iter=2, shuffle=False) clf2.fit(data, y_bin) assert_array_almost_equal(clf1.w, clf2.coef_.ravel(), decimal=2) def test_classifier_undefined_methods(): clf = PassiveAggressiveClassifier() for meth in ("predict_proba", "predict_log_proba", "transform"): assert_raises(AttributeError, lambda x: getattr(clf, x), meth) def test_class_weights(): # Test class weights. X2 = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y2 = [1, 1, 1, -1, -1] clf = PassiveAggressiveClassifier(C=0.1, n_iter=100, class_weight=None, random_state=100) clf.fit(X2, y2) assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1])) # we give a small weights to class 1 clf = PassiveAggressiveClassifier(C=0.1, n_iter=100, class_weight={1: 0.001}, random_state=100) clf.fit(X2, y2) # now the hyperplane should rotate clock-wise and # the prediction on this point should shift assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1])) def test_partial_fit_weight_class_balanced(): # partial_fit with class_weight='balanced' not supported clf = PassiveAggressiveClassifier(class_weight="balanced") assert_raises(ValueError, clf.partial_fit, X, y, classes=np.unique(y)) def test_equal_class_weight(): X2 = [[1, 0], [1, 0], [0, 1], [0, 1]] y2 = [0, 0, 1, 1] clf = PassiveAggressiveClassifier(C=0.1, n_iter=1000, class_weight=None) clf.fit(X2, y2) # Already balanced, so "balanced" weights should have no effect clf_balanced = PassiveAggressiveClassifier(C=0.1, n_iter=1000, class_weight="balanced") clf_balanced.fit(X2, y2) clf_weighted = PassiveAggressiveClassifier(C=0.1, n_iter=1000, class_weight={0: 0.5, 1: 0.5}) clf_weighted.fit(X2, y2) # should be similar up to some epsilon due to learning rate schedule assert_almost_equal(clf.coef_, clf_weighted.coef_, decimal=2) assert_almost_equal(clf.coef_, clf_balanced.coef_, decimal=2) def test_wrong_class_weight_label(): # ValueError due to wrong class_weight label. X2 = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y2 = [1, 1, 1, -1, -1] clf = PassiveAggressiveClassifier(class_weight={0: 0.5}) assert_raises(ValueError, clf.fit, X2, y2) def test_wrong_class_weight_format(): # ValueError due to wrong class_weight argument type. X2 = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y2 = [1, 1, 1, -1, -1] clf = PassiveAggressiveClassifier(class_weight=[0.5]) assert_raises(ValueError, clf.fit, X2, y2) clf = PassiveAggressiveClassifier(class_weight="the larch") assert_raises(ValueError, clf.fit, X2, y2) def test_regressor_mse(): y_bin = y.copy() y_bin[y != 1] = -1 for data in (X, X_csr): for fit_intercept in (True, False): reg = PassiveAggressiveRegressor(C=1.0, n_iter=50, fit_intercept=fit_intercept, random_state=0) reg.fit(data, y_bin) pred = reg.predict(data) assert_less(np.mean((pred - y_bin) ** 2), 1.7) def test_regressor_partial_fit(): y_bin = y.copy() y_bin[y != 1] = -1 for data in (X, X_csr): reg = PassiveAggressiveRegressor(C=1.0, fit_intercept=True, random_state=0) for t in range(50): reg.partial_fit(data, y_bin) pred = reg.predict(data) assert_less(np.mean((pred - y_bin) ** 2), 1.7) def test_regressor_correctness(): y_bin = y.copy() y_bin[y != 1] = -1 for loss in ("epsilon_insensitive", "squared_epsilon_insensitive"): reg1 = MyPassiveAggressive(C=1.0, loss=loss, fit_intercept=True, n_iter=2) reg1.fit(X, y_bin) for data in (X, X_csr): reg2 = PassiveAggressiveRegressor(C=1.0, loss=loss, fit_intercept=True, n_iter=2, shuffle=False) reg2.fit(data, y_bin) assert_array_almost_equal(reg1.w, reg2.coef_.ravel(), decimal=2) def test_regressor_undefined_methods(): reg = PassiveAggressiveRegressor() for meth in ("transform",): assert_raises(AttributeError, lambda x: getattr(reg, x), meth)
bsd-3-clause
loli/sklearn-ensembletrees
examples/neighbors/plot_classification.py
287
1790
""" ================================ Nearest Neighbors Classification ================================ Sample usage of Nearest Neighbors classification. It will plot the decision boundaries for each class. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn import neighbors, datasets n_neighbors = 15 # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target h = .02 # step size in the mesh # Create color maps cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF']) cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF']) for weights in ['uniform', 'distance']: # we create an instance of Neighbours Classifier and fit the data. clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights) clf.fit(X, y) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure() plt.pcolormesh(xx, yy, Z, cmap=cmap_light) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold) plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.title("3-Class classification (k = %i, weights = '%s')" % (n_neighbors, weights)) plt.show()
bsd-3-clause
fredrikw/scipy
doc/source/tutorial/examples/newton_krylov_preconditioning.py
99
2489
import numpy as np from scipy.optimize import root from scipy.sparse import spdiags, kron from scipy.sparse.linalg import spilu, LinearOperator from numpy import cosh, zeros_like, mgrid, zeros, eye # parameters nx, ny = 75, 75 hx, hy = 1./(nx-1), 1./(ny-1) P_left, P_right = 0, 0 P_top, P_bottom = 1, 0 def get_preconditioner(): """Compute the preconditioner M""" diags_x = zeros((3, nx)) diags_x[0,:] = 1/hx/hx diags_x[1,:] = -2/hx/hx diags_x[2,:] = 1/hx/hx Lx = spdiags(diags_x, [-1,0,1], nx, nx) diags_y = zeros((3, ny)) diags_y[0,:] = 1/hy/hy diags_y[1,:] = -2/hy/hy diags_y[2,:] = 1/hy/hy Ly = spdiags(diags_y, [-1,0,1], ny, ny) J1 = kron(Lx, eye(ny)) + kron(eye(nx), Ly) # Now we have the matrix `J_1`. We need to find its inverse `M` -- # however, since an approximate inverse is enough, we can use # the *incomplete LU* decomposition J1_ilu = spilu(J1) # This returns an object with a method .solve() that evaluates # the corresponding matrix-vector product. We need to wrap it into # a LinearOperator before it can be passed to the Krylov methods: M = LinearOperator(shape=(nx*ny, nx*ny), matvec=J1_ilu.solve) return M def solve(preconditioning=True): """Compute the solution""" count = [0] def residual(P): count[0] += 1 d2x = zeros_like(P) d2y = zeros_like(P) d2x[1:-1] = (P[2:] - 2*P[1:-1] + P[:-2])/hx/hx d2x[0] = (P[1] - 2*P[0] + P_left)/hx/hx d2x[-1] = (P_right - 2*P[-1] + P[-2])/hx/hx d2y[:,1:-1] = (P[:,2:] - 2*P[:,1:-1] + P[:,:-2])/hy/hy d2y[:,0] = (P[:,1] - 2*P[:,0] + P_bottom)/hy/hy d2y[:,-1] = (P_top - 2*P[:,-1] + P[:,-2])/hy/hy return d2x + d2y + 5*cosh(P).mean()**2 # preconditioner if preconditioning: M = get_preconditioner() else: M = None # solve guess = zeros((nx, ny), float) sol = root(residual, guess, method='krylov', options={'disp': True, 'jac_options': {'inner_M': M}}) print 'Residual', abs(residual(sol.x)).max() print 'Evaluations', count[0] return sol.x def main(): sol = solve(preconditioning=True) # visualize import matplotlib.pyplot as plt x, y = mgrid[0:1:(nx*1j), 0:1:(ny*1j)] plt.clf() plt.pcolor(x, y, sol) plt.clim(0, 1) plt.colorbar() plt.show() if __name__ == "__main__": main()
bsd-3-clause
jblackburne/scikit-learn
examples/cluster/plot_mean_shift.py
351
1793
""" ============================================= A demo of the mean-shift clustering algorithm ============================================= Reference: Dorin Comaniciu and Peter Meer, "Mean Shift: A robust approach toward feature space analysis". IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002. pp. 603-619. """ print(__doc__) import numpy as np from sklearn.cluster import MeanShift, estimate_bandwidth from sklearn.datasets.samples_generator import make_blobs ############################################################################### # Generate sample data centers = [[1, 1], [-1, -1], [1, -1]] X, _ = make_blobs(n_samples=10000, centers=centers, cluster_std=0.6) ############################################################################### # Compute clustering with MeanShift # The following bandwidth can be automatically detected using bandwidth = estimate_bandwidth(X, quantile=0.2, n_samples=500) ms = MeanShift(bandwidth=bandwidth, bin_seeding=True) ms.fit(X) labels = ms.labels_ cluster_centers = ms.cluster_centers_ labels_unique = np.unique(labels) n_clusters_ = len(labels_unique) print("number of estimated clusters : %d" % n_clusters_) ############################################################################### # Plot result import matplotlib.pyplot as plt from itertools import cycle plt.figure(1) plt.clf() colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk') for k, col in zip(range(n_clusters_), colors): my_members = labels == k cluster_center = cluster_centers[k] plt.plot(X[my_members, 0], X[my_members, 1], col + '.') plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=14) plt.title('Estimated number of clusters: %d' % n_clusters_) plt.show()
bsd-3-clause
lbybee/HFRNNs
code/hf_test.py
1
1606
from rnn import MetaRNN from hf import SequenceDataset, hf_optimizer import numpy as np import matplotlib.pyplot as plt import logging def HFTest(seq, targets, t_seq, t_targets, n_hidden=10, n_updates=250): """ Test RNN with hessian free optimization """ n_in = 2 n_out = 2 n_classes = 10 # SequenceDataset wants a list of sequences # this allows them to be different lengths, but here they're not seq = [i for i in seq] targets = [i for i in targets] gradient_dataset = SequenceDataset([seq, targets], batch_size=None, number_batches=500) cg_dataset = SequenceDataset([seq, targets], batch_size=None, number_batches=100) model = MetaRNN(n_in=n_in, n_hidden=n_hidden, n_out=n_out, activation='tanh', output_type='softmax', use_symbolic_softmax=True) # optimizes negative log likelihood # but also reports zero-one error opt = hf_optimizer(p=model.rnn.params, inputs=[model.x, model.y], s=model.rnn.y_pred, costs=[model.rnn.loss(model.y), model.rnn.errors(model.y)], h=model.rnn.h) mse_updates = [] for i in range(n_updates): opt.train(gradient_dataset, cg_dataset, num_updates=1) mse = 0 for t in range(len(t_seq)): guess = model.predict_proba(t_seq[t]) if guess != t_target: mse += 1 mse_updates.append(mse) print i return (mse_updates, model)
gpl-2.0
huaj1101/ML-PY
TensorFlow/C04-Autoencoder.py
1
4172
import os import datetime import numpy as np import sklearn.preprocessing as prep import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 屏蔽一些警告 os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' def xavier_init(fan_in, fan_out, constant=1): low = -constant * np.sqrt(6.0 / (fan_in + fan_out)) high = constant * np.sqrt(6.0 / (fan_in + fan_out)) return tf.random_uniform((fan_in, fan_out), minval=low, maxval=high, dtype=tf.float32) def standard_scale(x_train, x_test): preprocessor = prep.StandardScaler().fit(x_train) x_train = preprocessor.transform(x_train) x_test = preprocessor.transform(x_test) return x_train, x_test def get_random_block_from_data(data, batch_size): start_index = np.random.randint(0, len(data) - batch_size) return data[start_index:(start_index + batch_size)] class AdditiveGaussianNoiseAutoencoder(object): def __init__(self, n_input, n_hidden, transfer_function=tf.nn.softplus, optimizer=tf.train.AdamOptimizer(), scale=0.1): self.n_input = n_input self.n_hidden = n_hidden self.transfer = transfer_function self.scale = tf.placeholder(tf.float32) self.training_scale = scale self.weights = self._initialize_weights() self.x = tf.placeholder(tf.float32, [None, self.n_input]) self.hidden = self.transfer( tf.add(tf.matmul(self.x + scale * tf.random_normal((n_input,)), self.weights['w1']), self.weights['b1'])) self.reconstruction = tf.add(tf.matmul(self.hidden, self.weights['w2']), self.weights['b2']) self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(self.reconstruction, self.x), 2.0)) self.optimizer = optimizer.minimize(self.cost) init = tf.global_variables_initializer() self.sess = tf.Session() self.sess.run(init) def _initialize_weights(self): all_weights = dict() all_weights['w1'] = tf.Variable(xavier_init(self.n_input, self.n_hidden)) all_weights['b1'] = tf.Variable(tf.zeros([self.n_hidden]), dtype=tf.float32) all_weights['w2'] = tf.Variable(tf.zeros([self.n_hidden, self.n_input]), dtype=tf.float32) all_weights['b2'] = tf.Variable(tf.zeros([self.n_input]), dtype=tf.float32) return all_weights def partial_fit(self, X): cost, opt = self.sess.run((self.cost, self.optimizer), feed_dict={self.x: X, self.scale: self.training_scale}) return cost def calc_total_cost(self, X): return self.sess.run(self.cost, feed_dict={self.x: X, self.scale: self.training_scale}) def transform(self, X): return self.sess.run(self.hidden, feed_dict={self.x: X, self.scale: self.training_scale}) def generate(self, hidden=None): if hidden is None: hidden = np.random.normal(size=self.weights['b1']) return self.sess.run(self.reconstruction, feed_dict={self.hidden: hidden}) def reconstruct(self, X): return self.sess.run(self.reconstruction, feed_dict={self.x: X, self.scale: self.training_scale}) def getWeights(self): return self.sess.run(self.weights['w1']) def getBiases(self): return self.sess.run(self.weights['b1']) mnist = input_data.read_data_sets('MNIST_data', one_hot=True) x_train, x_test = standard_scale(mnist.train.images, mnist.test.images) n_samples = int(mnist.train.num_examples) train_epochs = 25 batch_size = 128 display_step = 1 autoencoder = AdditiveGaussianNoiseAutoencoder(n_input=784, n_hidden=200, transfer_function=tf.nn.softplus, optimizer=tf.train.AdamOptimizer(learning_rate=0.001), scale=0.01) for epoch in range(train_epochs): avg_cost = 0. total_batch = int(n_samples / batch_size) for i in range(total_batch): batch_xs = get_random_block_from_data(x_train, batch_size) cost = autoencoder.partial_fit(batch_xs) avg_cost += cost / n_samples * batch_size if epoch % display_step == 0: print("Epoch:", '%04d' % (epoch + 1), "cost=", "{:.9f}".format(avg_cost)) print("Total cost: " + str(autoencoder.calc_total_cost(x_test)))
apache-2.0
chenyyx/scikit-learn-doc-zh
examples/zh/neighbors/plot_nearest_centroid.py
38
1817
""" =============================== Nearest Centroid Classification =============================== Sample usage of Nearest Centroid classification. It will plot the decision boundaries for each class. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn import datasets from sklearn.neighbors import NearestCentroid n_neighbors = 15 # import some data to play with iris = datasets.load_iris() # we only take the first two features. We could avoid this ugly # slicing by using a two-dim dataset X = iris.data[:, :2] y = iris.target h = .02 # step size in the mesh # Create color maps cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF']) cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF']) for shrinkage in [None, .2]: # we create an instance of Neighbours Classifier and fit the data. clf = NearestCentroid(shrink_threshold=shrinkage) clf.fit(X, y) y_pred = clf.predict(X) print(shrinkage, np.mean(y == y_pred)) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, x_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure() plt.pcolormesh(xx, yy, Z, cmap=cmap_light) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold, edgecolor='b', s=20) plt.title("3-Class classification (shrink_threshold=%r)" % shrinkage) plt.axis('tight') plt.show()
gpl-3.0
thirtysix/TFBS_footprinting
tfbs_footprinter/tfbs_footprinter.py
1
137880
#!/usr/bin/python # -*- coding: utf-8 -*- # Python vers. 2.7.0 ########################################################### __version__ = "1.0.0b53" # Libraries #################################################################### import sys import signal import wget import tarfile import argparse import textwrap import os import json import msgpack import time import csv import logging from Bio import SeqIO from Bio.Seq import Seq from Bio.SeqRecord import SeqRecord from Bio.Alphabet import IUPAC from Bio import AlignIO import socket import httplib2 import math import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from pylab import mpl from numpy import random as numpyrandom from decimal import Decimal from operator import itemgetter from bisect import bisect_left from bisect import bisect_right ################################################################################ # Description ################################################################## ################################################################################ """ Thresholds are allowed to be negative, as based on whole genome scoring. Improvements to be made: 1) Change FANTOM CAGE correlation analysis to only include top CAGE peaks, instead of all CAGES. Should reduce size and focus on most relevant CAGEs. 2) Account for GTRD metacluster peak count. Switch to GTRD peaks by TF if the number of TFs available becomes larger than those offered by JASPAR. Similarly, if all JASPAR TFs become present in GTRD database, then switch from metaclusters to peaks by TF. """ ################################################################################ # Functions #################################################################### ################################################################################ script_dir = os.path.dirname(__file__) curdir = os.getcwd() ################################################################################ # Arguments #################################################################### ################################################################################ def get_args(): """ Retrieve arguments provided by the user. """ # Instantiate the parser parser = argparse.ArgumentParser( prog="tfbs_footprinter", formatter_class = argparse.RawDescriptionHelpFormatter, description=textwrap.dedent("""\ TFBS Footprinting - Identification of conserved vertebrate transcription factor binding sites (TFBSs). See https://github.com/thirtysix/TFBS_footprinting for additional usage instructions. ------------------------------------------------------------------------------------------------------ Example Usage: simplest: tfbs_footprinter PATH_TO/sample_ensembl_ids.txt all arguments: tfbs_footprinter -t PATH_TO/sample_ensembl_ids.txt -tfs PATH_TO/sample_jaspar_tf_ids.txt -pb 900 -pa 100 -tx 10 -p 0.01 -update run the sample analysis: Option #1: tfbs_footprinter -t PATH_TO/sample_analysis/sample_analysis_list.csv Option #2: tfbs_footprinter -t PATH_TO/sample_analysis/sample_ensembl_ids.txt update the experimental data files (not needed often): tfbs_footprinter -update Results will be output to the current directory in a created directory named "tfbs_results" ------------------------------------------------------------------------------------------------------ """)) # Arguments parser.add_argument('--t_ids_file', '-t', metavar='', type=str, help='Required for running an analysis. Location of a file containing Ensembl target_species transcript ids. Input options are either a text file of Ensembl transcript ids or a .csv file with individual values set for each parameter.') parser.add_argument('--tf_ids_file', '-tfs', metavar='', type=str, default = None, help='Optional: Location of a file containing a limited list of Jaspar TFs to use in scoring alignment \ (see sample file tf_ids.txt at https://github.com/thirtysix/TFBS_footprinting) [default: all Jaspar TFs]') parser.add_argument('--promoter_before_tss', '-pb', metavar='', choices = range(-10000, 100001), type=int, default=900, help='(0-100,000) [default: 900] - Number (integer) of nucleotides upstream of TSS to include in analysis. If this number is negative the start point will be downstream of the TSS, the end point will then need to be further downstream.') parser.add_argument('--promoter_after_tss', '-pa', metavar='', choices = range(-10000, 100001), type=int, default=100, help='(0-100,000) [default: 100] - Number (integer) of nucleotides downstream of TSS to include in analysis. If this number is negative the end point will be upstream of the TSS. The start point will then need to be further upstream.') parser.add_argument('--top_x_tfs', '-tx', metavar='', choices = range(1, 21), type=int, default=10, help='(1-20) [default: 10] - Number (integer) of unique TFs to include in output .svg figure.') ## parser.add_argument('--output_dir', '-o', metavar='', type=str, default=os.path.join(curdir, "tfbs_results"), ## help=" ".join(['[default:', os.path.join(curdir, "tfbs_results"), '] - Full path of directory where result directories will be output. Make sure that the root directory already exists.'])) # for now pvalue refers to the PWM score, in the future it will need to relate to the combined affinity score parser.add_argument('--pval', '-p', type=float, default=0.01, help='P-value (float) for PWM score cutoff (range: 1 (all results) to 0.0000001; in divisions of 10 (i.e. 1, 0.1, 0.01, 0.001 etc.) [default: 0.01]') parser.add_argument('--exp_data_update', '-update', action="store_true", help='Download the latest experimental data files for use in analysis. Will run automatically if the "data" directory does not already exist (e.g. first usage).') parser.add_argument('--nofig', '-no', action="store_true", help="Don't output a figure.") # Functionality to add later ##parser.add_argument('--noclean', '-nc', action = 'store_true', help='Optional: Don't clean retrieved alignment. Off by default.') # pre-processing the arguments args = parser.parse_args() args_lists = [] transcript_ids_filename = args.t_ids_file exp_data_update = args.exp_data_update if transcript_ids_filename: filename, file_extension = os.path.splitext(transcript_ids_filename) if file_extension == ".csv" or file_extension == ".tsv": # If the user has provided a .csv file with the required parameters defined for each Ensembl transcript id # this can be parsed to run unique analyses for each. parsed_arg_lines = file_to_datalist(transcript_ids_filename)[1:] for i, parsed_arg_line in enumerate(parsed_arg_lines): if len(parsed_arg_line) < 6: print("Incomplete arguments in input file on line", i) else: transcript_id, target_tfs_filename, promoter_before_tss, promoter_after_tss, top_x_tfs_count, pval = parsed_arg_line # promoter_before_tss/promoter_after_tss try: promoter_before_tss = int(promoter_before_tss) except: print("Entered promoter before TSS", promoter_before_tss, "in line", i, "is not an integer. Defaulting to 900.") promoter_before_tss = 900 try: promoter_after_tss = int(promoter_after_tss) except: print("Entered promoter after TSS", promoter_after_tss, "in line", i, "is not an integer. Defaulting to 100.") promoter_after_tss = 100 # top_x_tfs_count try: top_x_tfs_count = int(top_x_tfs_count) except: print("Entered top x tfs count", top_x_tfs_count, "in line", i, "is not an integer. Defaulting to 10.") top_x_tfs_count = 10 # p-value try: pval = float(pval) except: print("Entered p-value threshold", pval, "in line", i, "is not float. Defaulting to 0.01.") pval = 0.01 # update exp data exp_data_update = False parsed_cleaned_arg_line = [transcript_id, target_tfs_filename, promoter_before_tss, promoter_after_tss, top_x_tfs_count, pval] args_lists.append([args, transcript_ids_filename] + parsed_cleaned_arg_line) else: # If the analysis does not require setting the parameters individually for each Ensembl transcript id then build # build a list which has all of the parameters set as the same, in this way there can be a similar input format # as a .tsv, and standardized handling in the rest of the analysis. target_tfs_filename = args.tf_ids_file promoter_before_tss = args.promoter_before_tss promoter_after_tss = args.promoter_after_tss top_x_tfs_count = args.top_x_tfs pval = args.pval exp_data_update = args.exp_data_update nofigure = args.nofig transcript_ids_list = parse_transcript_ids(transcript_ids_filename) for transcript_id in transcript_ids_list: args_list = [args, transcript_ids_filename, transcript_id, target_tfs_filename, promoter_before_tss, promoter_after_tss, top_x_tfs_count, pval] args_lists.append(args_list) return args_lists, exp_data_update, nofigure ################################################################################ # House-keeping functions ###################################################### ################################################################################ def signal_handler(signal, frame): print('You have manually stopped tfbs_footprinter with Ctrl+C') sys.exit(0) def load_json(filename): if os.path.exists(filename): with open(filename) as open_infile: return json.load(open_infile) else: return None return json_data def dump_json(filename, json_data): with open(filename, 'w') as open_outfile: json_data = json.dump(json_data, open_outfile) def load_msgpack(object_filename): """unpack a msgpack file to object.""" if os.path.exists(object_filename): with open(object_filename, 'r') as object_file: return msgpack.unpack(object_file, max_array_len=200000, use_list=False) else: return None def save_msgpack(msgpack_obj, msgpack_filename): """Save msgpack object to file.""" with open(msgpack_filename, 'w') as msgpack_file: msgpack.pack(msgpack_obj, msgpack_file, use_bin_type=True) def directory_creator(directory_name): """ Create directory if it does not already exist. """ if not os.path.isdir(directory_name): os.mkdir(directory_name) def is_online(): """ Test if the system is online. This breaks when TFBS_footprinter outlasts Google. """ REMOTE_SERVER = "www.google.com" try: host = socket.gethostbyname(REMOTE_SERVER) s = socket.create_connection((host, 80), 2) return True except: logging.info(" ".join(["System does not appear to be connected to the internet."])) return False def ensemblrest(query_type, options, output_type, ensembl_id=None, log=False): """ Retrieve REST data from Ensembl using provided ID, query type, and options. """ http = httplib2.Http() server = "http://rest.ensembl.org" full_query = server + query_type + ensembl_id + options if log: logging.info(" ".join(["Ensembl REST query made:", full_query])) success = False try_count = 0 max_tries = 10 fail_sleep_time = 120 decoded_json = {} fasta_content = [] if output_type == 'json': while success == False and try_count < max_tries: try: resp, json_data = http.request(full_query, method="GET") decoded_json = json.loads(json_data) ensemblrest_rate(resp) try_count += 1 success = True return decoded_json except: logging.info(" ".join(["Ensembl REST query unsuccessful, attempt:", "/".join([str(try_count), str(max_tries)]), "Sleeping:", str(fail_sleep_time), "seconds.", full_query])) try_count += 1 print(" ".join(["Ensembl REST query unsuccessful, attempt:", "/".join([str(try_count), str(max_tries)]), "Sleeping:", str(fail_sleep_time), "seconds.", "See logfile for query."])) time.sleep(fail_sleep_time) # return empty decoded_json if max tries has elapsed return decoded_json if output_type == 'fasta': while success == False and try_count < max_tries: try: resp, fasta_content = http.request(server, method="GET", headers={"Content-Type":"text/x-fasta"}) ensemblrest_rate(resp) try_count += 1 success = True return fasta_content except: logging.info(" ".join(["Ensembl REST query unsuccessful, attempt:", "/".join([str(try_count), str(max_tries)]), "Sleeping:", str(fail_sleep_time), "seconds.", full_query])) try_count += 1 print(" ".join(["Ensembl REST query unsuccessful, attempt:", "/".join([str(try_count), str(max_tries)]), "Sleeping:", str(fail_sleep_time), "seconds.", "See logfile for query."])) time.sleep(fail_sleep_time) # return empty fasta_content if max tries has elapsed return fasta_content def ensemblrest_rate(resp): """ Read ensembl REST headers and determine if rate-limit has been exceeded, sleep appropriately if necessary. """ if int(resp['x-ratelimit-remaining']) == 0: if 'Retry-After' in resp: sleep_time = int(resp['Retry-After']) logging.warning(" ".join(["Ensembl REST (Retry-After) requests sleeping for:", str(sleep_time)])) time.sleep(sleep_time) else: sleep_time = 60 logging.warning(" ".join(["Ensembl REST requests sleeping for:", str(sleep_time)])) time.sleep(sleep_time) def parse_transcript_ids(transcript_ids_filename): """ If user has provided a file with Ensembl transcript ids, parse these to a list. """ with open(transcript_ids_filename, 'r') as transcript_ids_file: transcript_ids_list = transcript_ids_file.read().splitlines() transcript_ids_list = [x for x in transcript_ids_list if len(x)>0] return transcript_ids_list def parse_tf_ids(target_tfs_filename): """ If user has provided a file with Ensembl transcript ids, parse these to a list. """ with open(target_tfs_filename, 'r') as target_tfs_file: target_tfs_list = target_tfs_file.read().splitlines() target_tfs_list = [x.upper() for x in target_tfs_list if len(x)>0] return target_tfs_list def file_to_datalist(data_filename): """ Starting with a filename, import and convert data to a list. Attempted to use csv.Sniffer() but it was inconsistent in delimiter detection. Instead, limit users to comma or tab-separated input files. """ # accept only tab filename, file_extension = os.path.splitext(data_filename) file_extension = file_extension.lower() ext_delimiter_dict = {".csv":",", ".tsv":"\t"} with open(data_filename, 'r') as data_file: csv_reader = csv.reader(data_file, delimiter = ext_delimiter_dict[file_extension]) all_data = list(csv_reader) return all_data def compare_tfs_list_jaspar(target_tfs_list, TFBS_matrix_dict): """ If user has provided a file containing Jaspar TF ids, compare candidate entries to those in the loaded dictionary of Jaspar PWMs. """ jaspar_dict_keys = TFBS_matrix_dict.keys() erroneous = list(set(target_tfs_list) - set(jaspar_dict_keys)) target_tfs_list = list(set(jaspar_dict_keys).intersection(target_tfs_list)) if len(erroneous) > 0: logging.warning(" ".join(["the following tf ids are not in the Jaspar database:", ", ".join(erroneous)])) return target_tfs_list def experimentalDataUpdater(exp_data_update): """ Update the experimental data by downloading it from the Amazon repository. Only activates if the user specifically calls for an update, or the data directory does not exist. """ experimental_data_dir = os.path.join(script_dir, 'data') experimental_data_present = False # test if data dir exists if not os.path.exists(experimental_data_dir): directory_creator(experimental_data_dir) exp_data_update = True print("Data dir doesn't exist") # if the data dir exists, check to see that all of the required file patterns are present else: required_data_file_patterns = ["pwms.json", "all_tfs_thresholds", "all_pwms_loglikelihood_dict"] experimental_data_filenames = [x for x in os.listdir(experimental_data_dir) if os.path.isfile(os.path.join(experimental_data_dir, x))] all_patterns_matched = all([any([required_data_file_pattern in experimental_data_filename for experimental_data_filename in experimental_data_filenames]) for required_data_file_pattern in required_data_file_patterns]) if all_patterns_matched: experimental_data_present = True else: exp_data_update = True # perform an update of the base data dir if exp_data_update: experimental_data_url = "https://s3.us-east-2.amazonaws.com/tfbssexperimentaldata/data.tar.gz" experimental_data_down_loc = os.path.join(script_dir,'data.tar.gz') ## current_versions_file = os.path.join(experimental_data_dir, "experimental_data.current_versions.json") print("Downloading the most current experimental data") logging.info(" ".join(["Downloading most current experimental data."])) try: wget.download(experimental_data_url, out=experimental_data_down_loc) tar = tarfile.open(experimental_data_down_loc) tar.extractall(experimental_data_dir) experimental_data_present = True except: ## logging.warning(" ".join(["Error in downloading experimental data. Check your internet connection, and make sure the transcript id is of the format 'ENST00000378357' so the correct species data can be downloaded"])) logging.warning(" ".join(["Error in downloading experimental data. Check your internet connection."])) experimental_data_present = False return experimental_data_present def experimentaldata(target_species): """ Retrieve the experimental data for non-human species by downloading it from the Amazon repository. Activates if the current installation Data directory does not include data for the target species. Example location: https://s3.us-east-2.amazonaws.com/tfbssexperimentaldata/acanthochromis_polyacanthus.tar.gz """ experimental_data_dir = os.path.join(script_dir, 'data') experimental_data_species_dir = os.path.join(experimental_data_dir, target_species) experimental_data_species_dir_tar = os.path.join(experimental_data_dir, ".".join([target_species, "tar.gz"])) if not os.path.exists(experimental_data_species_dir): aws_server = "https://s3.us-east-2.amazonaws.com" experimental_data_species_url = "/".join([aws_server, "tfbssexperimentaldata", ".".join([target_species, "tar.gz"])]) print(experimental_data_species_url) logging.info("Downloading most current experimental data for %s." %target_species) try: wget.download(experimental_data_species_url, out=experimental_data_species_dir_tar) tar = tarfile.open(experimental_data_species_dir_tar) tar.extractall(experimental_data_dir) except: logging.warning(" ".join(["Error in downloading experimental data. Check your internet connection."])) def experimentalDataUpdater_beta(): """ Update the experimental data by downloading it from the Amazon repository. Using a file which contains an dictionary of the most up to date exp. data filenames, activates if data directory does not exist, if the data directory does not contain the most recent files, or if it has been >= 60 days since last update. This version of the updater is perhaps too error prone for this stage of development. """ ## download experimental data if not already present or if it is outdated current_version_url = "https://s3.us-east-2.amazonaws.com/tfbssexperimentaldata/experimental_data.current_versions.json" experimental_data_url = "https://s3.us-east-2.amazonaws.com/tfbssexperimentaldata/data.tar.gz" experimental_data_down_loc = os.path.join(script_dir,'data.tar.gz') experimental_data_dir = os.path.join(script_dir, 'data') current_versions_file = os.path.join(experimental_data_dir, "experimental_data.current_versions.json") update_required = False if not os.path.exists(experimental_data_dir): directory_creator(experimental_data_dir) update_required = True else: if os.path.exists(current_versions_file): # check if all current versions are in the data dir current_versions = load_json(current_versions_file) current_versions_filenames = current_versions.values() owned_versions_filenames = os.listdir(experimental_data_dir) missing_files = [x for x in current_versions_filenames if x not in owned_versions_filenames] if len(missing_files) > 0: update_required = True # check if 60 days has passed since last check of versions if 'last_checked' in current_versions: current_versions_last_checked = current_versions['last_checked'] if (time.time() - current_versions_last_checked)/(3600*24) >= 60: update_required = True else: update_required = True # download the most current experimental data if update_required: print("Downloading the most current experimental data") logging.info(" ".join(["Downloading most current experimental data."])) try: wget.download(current_version_url, out=experimental_data_dir) wget.download(experimental_data_url, out=experimental_data_down_loc) tar = tarfile.open(experimental_data_down_loc) tar.extractall(experimental_data_dir) except: logging.warning(" ".join(["Error in downloading experimental data. Check your internet connection."])) ## os.remove(experimental_data_down_loc) # update the current versions file last checked time with current time if os.path.exists(current_versions_file): current_versions = load_json(current_versions_file) current_versions['last_checked'] = time.time() dump_json(current_versions_file, current_versions) def species_specific_data(target_species, chromosome, species_specific_data_dir): """ Many datasets are species-specific. If the current target species has species-specific datasets, load them. Altered to allow for multiple versions of data. The matching files are sorted and those occuring later in the list, are presumably later editions. """ logging.info(" ".join(["Species-specific data: loading"])) # load GERP locations gerp_conservation_locations_dict = {} species_group = "" gerp_data_dir = os.path.join(species_specific_data_dir, "gerp_data") gerp_conservation_locations_dict_filenames = [os.path.join(gerp_data_dir, x) for x in os.listdir(gerp_data_dir) if "gerp_conservation.locations_dict" in x and target_species in x] if len(gerp_conservation_locations_dict_filenames) > 0: gerp_conservation_locations_dict_filenames.sort() gerp_conservation_locations_dict_filename = gerp_conservation_locations_dict_filenames[-1] gerp_conservation_locations_dict = load_msgpack(gerp_conservation_locations_dict_filename) species_group = gerp_conservation_locations_dict_filename.split(".")[3] # load GERP conservation weights gerp_conservation_weight_dict = {} gerp_conservation_weight_dict_filenames = [os.path.join(gerp_data_dir, x) for x in os.listdir(gerp_data_dir) if "gerp_conservation.weight_dict" in x and target_species in x] if len(gerp_conservation_weight_dict_filenames) > 0: gerp_conservation_weight_dict_filenames.sort() gerp_conservation_weight_dict_filename = gerp_conservation_weight_dict_filenames[-1] gerp_conservation_weight_dict = load_msgpack(gerp_conservation_weight_dict_filename) # load human CAGEs-Genes associated dict cage_dict = {} cage_data_dir = os.path.join(species_specific_data_dir, "cage_data") if os.path.exists(cage_data_dir): cage_dict_filename = os.path.join(cage_data_dir, ".".join([target_species, "CAGE", "peak_dict", "gene", "hg38", "json"])) if os.path.exists(cage_dict_filename): cage_dict = load_json(cage_dict_filename) # load CAGE locs occuring near promoters of TFs TF_cage_dict = {} cage_data_dir = os.path.join(species_specific_data_dir, "cage_data") if os.path.exists(cage_data_dir): TF_cage_dict_filename = os.path.join(cage_data_dir, ".".join(["homo_sapiens", "CAGE", "jasparTFs", "dict", "json"])) if os.path.exists(TF_cage_dict_filename): TF_cage_dict = load_json(TF_cage_dict_filename) # load CAGE dist weights cage_dist_weights_dict = {} if os.path.exists(cage_data_dir): cage_dist_weights_dict_filenames = [os.path.join(cage_data_dir, x) for x in os.listdir(cage_data_dir) if "cage_dist_weights" in x and target_species in x] if len(cage_dist_weights_dict_filenames) > 0: cage_dist_weights_dict_filenames.sort() cage_dist_weights_dict_filename = cage_dist_weights_dict_filenames[-1] cage_dist_weights_dict = load_json(cage_dist_weights_dict_filename) # load CAGE correlations cage_correlations_dict = {} cage_corr_data_dir = os.path.join(species_specific_data_dir, "cage_corr_data") if os.path.exists(cage_corr_data_dir): cage_correlations_dict_filename = os.path.join(cage_corr_data_dir, ".".join([target_species, "CAGE_corr", "Chr"+chromosome.upper(), "hg38", "msg"])) if os.path.exists(cage_correlations_dict_filename): cage_correlations_dict = load_msgpack(cage_correlations_dict_filename) else: print("cage_correlations_dict not loaded") ## cage_correlations_dict_filenames = [os.path.join(cage_corr_data_dir, x) for x in os.listdir(cage_corr_data_dir) if "rekeyed_combined_cage_corr_dict" in x and target_species in x] ## if len(cage_correlations_dict_filenames) > 0: ## cage_correlations_dict_filenames.sort() ## cage_correlations_dict_filename = cage_correlations_dict_filenames[-1] ## cage_correlations_dict = load_msgpack(cage_correlations_dict_filename) # load CAGE correlation weights cage_corr_weights_dict = {} if os.path.exists(cage_corr_data_dir): cage_corr_weights_dict_filename = os.path.join(cage_corr_data_dir, ".".join([target_species, "CAGE_corr", "weight_dict", "hg38", "json"])) if os.path.exists(cage_corr_weights_dict_filename): cage_corr_weights_dict = load_json(cage_corr_weights_dict_filename) cage_corr_weights_dict = {float(k):v for k,v in cage_corr_weights_dict.iteritems()} else: print("cage_corr_weights_dict not loaded") ## cage_corr_weights_dict_filenames = [os.path.join(cage_data_dir, x) for x in os.listdir(cage_data_dir) if "cage_corr_weights" in x and target_species in x] ## if len(cage_corr_weights_dict_filenames) > 0: ## cage_corr_weights_dict_filenames.sort() ## cage_corr_weights_dict_filename = cage_corr_weights_dict_filenames[-1] ## cage_corr_weights_dict = load_json(cage_corr_weights_dict_filename) ## cage_corr_weights_dict = {float(k):v for k,v in cage_corr_weights_dict.iteritems()} ## # load CAGE keys ## cage_keys_dict = {} ## if os.path.exists(cage_data_dir): ## cage_keys_dict_filenames = [os.path.join(cage_data_dir, x) for x in os.listdir(cage_data_dir) if "cage_ids_key_dict" in x and target_species in x] ## if len(cage_keys_dict_filenames) > 0: ## cage_keys_dict_filenames.sort() ## cage_keys_dict_filename = cage_keys_dict_filenames[-1] ## cage_keys_dict = load_json(cage_keys_dict_filename) ## # load JASPAR tfs to Ensembl transcript ids ## jasparTFs_transcripts_dict_filenames = [os.path.join(species_specific_data_dir, x) for x in os.listdir(species_specific_data_dir) if "jasparTFs.transcripts.single_protein" in x and target_species in x] ## if len(jasparTFs_transcripts_dict_filenames) > 0: ## jasparTFs_transcripts_dict_filenames.sort() ## jasparTFs_transcripts_dict_filename = jasparTFs_transcripts_dict_filenames[-1] ## jasparTFs_transcripts_dict = load_json(jasparTFs_transcripts_dict_filename) ## else: ## jasparTFs_transcripts_dict = {} # load CpG score weights cpg_obsexp_weights_dict_filenames = [os.path.join(species_specific_data_dir, x) for x in os.listdir(species_specific_data_dir) if "cpg_obsexp_weights" in x and target_species in x] if len(cpg_obsexp_weights_dict_filenames) > 0: cpg_obsexp_weights_dict_filenames.sort() cpg_obsexp_weights_dict_filename = cpg_obsexp_weights_dict_filenames[-1] cpg_obsexp_weights_dict = load_json(cpg_obsexp_weights_dict_filename) cpg_obsexp_weights_dict = {float(k):float(v) for k,v in cpg_obsexp_weights_dict.iteritems()} cpg_obsexp_weights_dict_keys = cpg_obsexp_weights_dict.keys() cpg_obsexp_weights_dict_keys.sort() else: cpg_obsexp_weights_dict = {} cpg_obsexp_weights_dict_keys = [] # load GTEx variants gtex_variants = {} gtex_data_dir = os.path.join(species_specific_data_dir, "gtex_data") if os.path.exists(gtex_data_dir): gtex_chrom_dict_filename = os.path.join(gtex_data_dir, ".".join([target_species, "gtex_v7", "Chr"+chromosome.upper(), "min_unique", "eqtls", "grch38","msg"])) if os.path.exists(gtex_chrom_dict_filename): gtex_variants = load_msgpack(gtex_chrom_dict_filename) # load GTEx weights gtex_weights_dict = {} if os.path.exists(gtex_data_dir): gtex_weights_dict_filenames = [os.path.join(gtex_data_dir, x) for x in os.listdir(gtex_data_dir) if "gtex_weights" in x and target_species in x] if len(gtex_weights_dict_filenames) > 0: gtex_weights_dict_filenames.sort() gtex_weights_dict_filename = gtex_weights_dict_filenames[-1] gtex_weights_dict = load_json(gtex_weights_dict_filename) gtex_weights_dict = {float(k):float(v) for k,v in gtex_weights_dict.iteritems()} # load meta clusters from GTRD project gtrd_metaclusters_dict = {} gtrd_data_dir = os.path.join(species_specific_data_dir, "gtrd_data") if os.path.exists(gtrd_data_dir): gtrd_metaclusters_chrom_dict_filename = os.path.join(gtrd_data_dir, ".".join([target_species, "metaclusters", "interval", "Chr"+chromosome.upper(), "clipped", "ordered", "tupled", "msg"])) if os.path.exists(gtrd_metaclusters_chrom_dict_filename): gtrd_metaclusters_dict = load_msgpack(gtrd_metaclusters_chrom_dict_filename) # load metacluster overlap weights metacluster_overlap_weights_dict = {} if os.path.exists(gtrd_data_dir): metacluster_overlap_weights_dict_filenames = [os.path.join(gtrd_data_dir, x) for x in os.listdir(gtrd_data_dir) if "metaclusters_overlap_weights_dict" in x and target_species in x] if len(metacluster_overlap_weights_dict_filenames) > 0: metacluster_overlap_weights_dict_filenames.sort() metacluster_overlap_weights_dict_filename = metacluster_overlap_weights_dict_filenames[-1] metacluster_overlap_weights_dict = load_json(metacluster_overlap_weights_dict_filename) metacluster_overlap_weights_dict = {float(k):float(v) for k,v in metacluster_overlap_weights_dict.iteritems()} # load ATAC-Seq from Encode project atac_seq_dict = {} atac_seq_data_dir = os.path.join(species_specific_data_dir, "atac_data") if os.path.exists(atac_seq_data_dir): atac_seq_chrom_dict_filename = os.path.join(atac_seq_data_dir, ".".join([target_species, "atac-seq", "Chr"+chromosome.upper(), "msg"])) if os.path.exists(atac_seq_chrom_dict_filename): atac_seq_dict = load_msgpack(atac_seq_chrom_dict_filename) # load ATAC-Seq dist weights atac_dist_weights_dict = {} if os.path.exists(atac_seq_data_dir): atac_dist_weights_dict_filenames = [os.path.join(atac_seq_data_dir, x) for x in os.listdir(atac_seq_data_dir) if "atac_dist_weights" in x and target_species in x] if len(atac_dist_weights_dict_filenames) > 0: atac_dist_weights_dict_filenames.sort() atac_dist_weights_dict_filename = atac_dist_weights_dict_filenames[-1] atac_dist_weights_dict = load_json(atac_dist_weights_dict_filename) # load pre-calculated combined affinity score, by tf, p-values cas_pvalues_dict = {} cas_pvalues_dict_filename = os.path.join(species_specific_data_dir, ".".join(["CAS_pvalues", "0.1", "tf_ls", "json"])) if os.path.exists(cas_pvalues_dict_filename): cas_pvalues_dict = load_json(cas_pvalues_dict_filename) return gerp_conservation_locations_dict, gerp_conservation_weight_dict, species_group, cage_dict, TF_cage_dict, cage_dist_weights_dict, cage_correlations_dict, cage_corr_weights_dict, atac_dist_weights_dict, metacluster_overlap_weights_dict, cpg_obsexp_weights_dict, cpg_obsexp_weights_dict_keys, gtex_variants, gtex_weights_dict, gtrd_metaclusters_dict, atac_seq_dict, cas_pvalues_dict def overlap_range(x,y): """ Identify an overlap between two lists of two numbers. """ x.sort() y.sort() return range(max(x[0], y[0]), min(x[-1], y[-1])+1) ################################################################################ # PWM analysis ################################################################# ################################################################################ def pwm_maker(strand, motif_length, tf_motif, bg_nuc_freq_dict, neg_bg_nuc_freq_dict): """ Make a PWM from a nucleotide frequency table. """ pwm = [[],[],[],[]] nuc_list = 'ACGT' # PWM according to http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2647310/ for i in range(0, motif_length): col = [tf_motif[0][i], tf_motif[1][i], tf_motif[2][i], tf_motif[3][i]] # number of sequences N = sum(col) # for each position (col) in the PFM. for j in range(0, len(tf_motif)): # nuc count at this position. nuc_count = tf_motif[j][i] # pseudo-count = sqrt(total number of samples). pseudo_count = 0.8 # background frequency for this nucleotide in the promoter. if strand == "+1": nuc_bg = bg_nuc_freq_dict[nuc_list[j]] if strand == "-1": nuc_bg = neg_bg_nuc_freq_dict[nuc_list[j]] # probability of nuc nuc_probability = (nuc_count + pseudo_count/4)/(N + pseudo_count) nuc_weight = math.log((nuc_probability/nuc_bg), 2) pwm[j].append(nuc_weight) ## ppm[j].append(nuc_probability) pwm = pwm[:] return pwm def PWM_scorer(seq, pwm, pwm_dict, pwm_type): """ Generate score for current seq given a pwm. """ # set relevant variables based on whether the pwm is mono or dinucleotide ## if pwm_type == "mono": ## motif_dist = len(seq) ## span = 1 ## if pwm_type == "dinuc": ## motif_dist = len(seq) - 1 ## span = 2 seq_score = 0.0 for i in range(0, len(seq)): ## seq_score += pwm[pwm_dict[seq[i:i+1]][i]] seq_score += pwm[pwm_dict[seq[i:i+1]]][i] ## nuc = seq[i:i+1] ## row = pwm_dict[nuc] ## score = pwm[row][i] ## seq_score += score ## # account for sequences which are non-standard code ## non_standard_dict = {'R':['A','G'], ## 'Y':['C','T'], ## 'S':['G','C'], ## 'W':['A','T'], ## 'K':['G','T'], ## 'M':['A','C'], ## 'B':['C','G','T'], ## 'D':['A','G','T'], ## 'H':['A','C','T'], ## 'V':['A','C','G'], ## 'B':['C','G','T']} ## ## possible_seqs = [] ## non_standards_in_seq = [x for x in non_standard_dict.keys() if x in seq] ## if len(non_standards_in_seq) > 0: ## for non_standard_in_seq in non_standards_in_seq: ## variant_chars = non_standard_dict[non_standard_in_seq] ## for variant_char in variant_chars: ## variant_seq = seq.replace(non_standard_in_seq, variant_char) ## possible_seqs.append(variant_seq) ## else: ## possible_seqs.append(seq) ## ## # iterate through candidate sequence, and score each mono or dinucleotide ## possible_seq_scores = [] ## for possible_seq in possible_seqs: ## seq_score = 0.0 ## for i in range(0, motif_dist): ## nuc = possible_seq[i:i+span] ## row = pwm_dict[nuc] ## score = pwm[row][i] ## seq_score += score ## possible_seq_scores.append(seq_score) ## ## # use the best score achieved ## possible_seq_scores.sort() ## seq_score = possible_seq_scores[-1] return seq_score def tfbs_finder(transcript_name, alignment, target_tfs_list, TFBS_matrix_dict, target_dir, pwm_score_threshold_dict, all_pwms_loglikelihood_dict, unaligned2aligned_index_dict, promoter_after_tss, pval): """ 1.Convert PFM to PWM for each TF in the Jaspar dictionary. 2.Score all positions in the cleaned sequence 3.If score is greater than or equal to precomputed threshold, then keep, otherwise set to zero 4.Return dictionary of pwm scores for [species][tf_name][strand] """ start_time = time.time() tfbss_found_dict_outfilename = os.path.join(target_dir, "TFBSs_found.all.json") # Determine if the analysis has been done already, load results if so if os.path.isfile(tfbss_found_dict_outfilename): logging.info(" ".join(["tfbss_found_dict already exists: loading"])) tfbss_found_dict = load_json(tfbss_found_dict_outfilename) # If results don't already exist, time to party else: tfbss_found_dict = {} align_chars = '-N .' mononuc_pwm_dict = {"A":0,"C":1,"G":2,"T":3} entry = alignment[0] species = entry['species'] # Remove alignment/ambiguous characters from the sequences cleaned_seq = entry['seq'] for char in align_chars: cleaned_seq = cleaned_seq.replace(char,"") entry_seqrecord = SeqRecord(Seq(cleaned_seq, alphabet=IUPAC.unambiguous_dna), id=species) forward_seq = str(entry_seqrecord.seq) reverse_seq = str(entry_seqrecord.seq.reverse_complement()) seq_dict = {"+1": forward_seq, "-1":reverse_seq} # generate background frequencies of each mono-nucleotide for forward and reverse strands bg_nuc_freq_dict = {} neg_bg_nuc_freq_dict = {} # Use empirical data from whole human genome, but limited to within -2000/+200 bp of TSSs # http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0033204 # http://journals.plos.org/plosone/article/file?type=supplementary&id=info:doi/10.1371/journal.pone.0033204.s023 ## bg_nuc_freq_dict = {'A':0.247, 'C':0.251, 'G':0.254, 'T':0.248} ## neg_bg_nuc_freq_dict = {'A':0.247, 'C':0.251, 'G':0.254, 'T':0.248} # https://arxiv.org/pdf/q-bio/0611041.pdf # empirical data from complete genome bg_nuc_freq_dict = {'A':0.292, 'C':0.207, 'G':0.207, 'T':0.292} neg_bg_nuc_freq_dict = {'A':0.292, 'C':0.207, 'G':0.207, 'T':0.292} # iterate through each tf_name and its motif for tf_name in target_tfs_list: if tf_name in TFBS_matrix_dict: tf_motif = TFBS_matrix_dict[tf_name] motif_length = len(tf_motif[0]) if motif_length > 0: # retrieve precomputed threshold and other information required for calculating the pvalue of the score tf_pwm_score_threshold_dict = pwm_score_threshold_dict[tf_name] pvals_scores_list = [[k,v] for k,v in tf_pwm_score_threshold_dict.iteritems()] pvals_scores_list_sorted = sorted(pvals_scores_list, key=itemgetter(1)) scores_list_sorted = [x[1] for x in pvals_scores_list_sorted] pvals_list = [x[0] for x in pvals_scores_list_sorted] pvals_list.sort() if pval in tf_pwm_score_threshold_dict: tf_pwm_score_threshold = tf_pwm_score_threshold_dict[pval] else: if pval == 1: tf_pwm_score_threshold = -100000 else: pval = pvals_list[bisect_left(pvals_list, pval)] tf_pwm_score_threshold = tf_pwm_score_threshold_dict[pval] tfbss_found_dict[tf_name] = [] # iterate through the forward and reverse strand sequences for strand, seq in seq_dict.iteritems(): pwm = pwm_maker(strand, motif_length, tf_motif, bg_nuc_freq_dict, neg_bg_nuc_freq_dict) seq_length = len(seq) # iterate through the nt sequence, extract a current frame based on the motif size and score for i in range(0, seq_length - motif_length): current_frame = seq[i:i+motif_length] current_frame_score = PWM_scorer(current_frame, pwm, mononuc_pwm_dict, 'mono') # keep results that are above the precomputed threshold ## if current_frame_score >= tf_pwm_score_threshold: if current_frame_score >= tf_pwm_score_threshold: current_frame_score = round(current_frame_score, 2) pval_index = bisect_left(scores_list_sorted, current_frame_score) if pval_index >= len(pvals_scores_list_sorted): pval_index = -1 ## elif pval_index == 0: ## pval_index == 0 else: pval_index -= 1 # account for pvalues which are larger than the current largest, so that they can be distinguished appropriately in the result table. if pval_index < 0: current_frame_score_pvalue = ">" + str(pvals_scores_list_sorted[0][0]) else: current_frame_score_pvalue = str(pvals_scores_list_sorted[pval_index][0]) hit_loc_start, hit_loc_end, hit_loc_before_TSS_start, hit_loc_before_TSS_end = start_end_found_motif(i, strand, seq_length, promoter_after_tss, motif_length) # identify position in alignment from start of found motif in unaligned sequence aligned_position = unaligned2aligned_index_dict[species][hit_loc_start] tfbss_found_dict[tf_name].append([current_frame, strand, hit_loc_start, hit_loc_end, hit_loc_before_TSS_start, hit_loc_before_TSS_end, current_frame_score, current_frame_score_pvalue]) # add to results dictionary by tf_name ## if tf_name in tfbss_found_dict: ## tfbss_found_dict[tf_name].append([tf_name, species, current_frame, strand, hit_loc_start, hit_loc_end, hit_loc_before_TSS_start, hit_loc_before_TSS_end, current_frame_score, current_frame_score_pvalue, aligned_position]) ## tfbss_found_dict[tf_name].append([tf_name, current_frame, strand, hit_loc_start, hit_loc_end, hit_loc_before_TSS_start, hit_loc_before_TSS_end, current_frame_score, current_frame_score_pvalue]) ## ## else: ## tfbss_found_dict[tf_name] = [[tf_name, species, current_frame, strand, hit_loc_start, hit_loc_end, hit_loc_before_TSS_start, hit_loc_before_TSS_end, current_frame_score, current_frame_score_pvalue, aligned_position]] ## tfbss_found_dict[tf_name] = [[tf_name, current_frame, strand, hit_loc_start, hit_loc_end, hit_loc_before_TSS_start, hit_loc_before_TSS_end, current_frame_score, current_frame_score_pvalue]] # sort results for each tf_name according to the position in alignment ## for tf_name, hits in tfbss_found_dict.iteritems(): # ref-point ## tfbss_found_dict[tf_name] = sorted(hits, key = itemgetter(10)) ## tfbss_found_dict[tf_name] = sorted(hits, key = itemgetter(3)) ## # save the results to file ## dump_json(tfbss_found_dict_outfilename, tfbss_found_dict) end_time = time.time() logging.info(" ".join(["total time for tfbs_finder() for this transcript:", str(end_time - start_time), "seconds"])) return tfbss_found_dict def start_end_found_motif(i, strand, seq_length, promoter_after_tss, motif_length): """ Determine the start/end positions of the found motif. """ if strand == "+1": hit_loc_start = i hit_loc_before_TSS_start = i - seq_length + promoter_after_tss hit_loc_end = i + motif_length hit_loc_before_TSS_end = i - seq_length + motif_length + promoter_after_tss if strand == "-1": hit_loc_start = seq_length - i - motif_length hit_loc_before_TSS_start = (seq_length - i - motif_length) - seq_length + promoter_after_tss hit_loc_end = seq_length - i hit_loc_before_TSS_end = (seq_length - i) - seq_length + promoter_after_tss return hit_loc_start, hit_loc_end, hit_loc_before_TSS_start, hit_loc_before_TSS_end def unaligned2aligned_indexes(cleaned_aligned_filename): """ Create a dictionary for mapping aligned positions to unaligned positions. """ with open(cleaned_aligned_filename, 'rU') as cleaned_aligned_file: aligned_entries_dict = SeqIO.to_dict(SeqIO.parse(cleaned_aligned_file, 'fasta')) unaligned2aligned_index_dict = {} for species, seqRecord in aligned_entries_dict.iteritems(): unaligned2aligned_index_dict[species] = {} seq_str = str(seqRecord.seq) for aligned_index in range(len(seq_str)): if seq_str[aligned_index] != "-": unaligned_index = aligned_index - seq_str[:aligned_index].count("-") unaligned2aligned_index_dict[species][unaligned_index] = aligned_index return unaligned2aligned_index_dict def calcCombinedAffinityPvalue(combined_affinity_score, cas_pvalues_dict, cass_with_pvalues_sorted, cass_sorted, cas_pvalues_subdict): """ Calculate the pvalue for this combined affinity score. """ # determine the pvalue of the current combined affinity score if combined_affinity_score in cas_pvalues_subdict: combined_affinity_score_pvalue = str(cas_pvalues_subdict[combined_affinity_score]) else: # index the current combined affinity score in the sorted list of scores (keys) cass_with_pvalues_sorted_index = bisect_left(cass_sorted, combined_affinity_score) if cass_with_pvalues_sorted_index>0: combined_affinity_score_pvalue = str(cass_with_pvalues_sorted[cass_with_pvalues_sorted_index][1]) else: combined_affinity_score_pvalue = ">"+str(cass_with_pvalues_sorted[0][1]) return combined_affinity_score_pvalue def find_clusters(gene_name, ens_gene_id, chr_start, chr_end, alignment, target_species, chromosome, tfbss_found_dict, cleaned_aligned_filename, converted_gerps_in_promoter, gerp_conservation_weight_dict, converted_cages, converted_metaclusters_in_promoter, converted_atac_seqs_in_promoter, converted_eqtls, gtex_weights_dict, transcript_id, cage_dict, TF_cage_dict, cage_dist_weights_dict, atac_dist_weights_dict, metacluster_overlap_weights_dict, cpg_list, cpg_obsexp_weights_dict, cpg_obsexp_weights_dict_keys, cage_correlations_dict, cage_corr_weights_dict, gtex_variants, gene_len, cas_pvalues_dict): """ For each target species hit: Identify the highest score for each species within the locality threshold. Create combined affinity score from the target species hit and those best scores from each species. If two target species hits are within the locality threshold from one another, choose the hit which has the highest combined affinity score. """ start_time = time.time() cluster_dict = {} for tf_name, hits in tfbss_found_dict.iteritems(): # build dict and sorted list of pre-computed combined affinity scores for this tf if tf_name in cas_pvalues_dict: cass_with_pvalues_sorted = cas_pvalues_dict[tf_name] cass_sorted = [x[0] for x in cass_with_pvalues_sorted] cas_pvalues_subdict = {x[0]:x[1] for x in cass_with_pvalues_sorted} if len(hits) > 0: cluster_dict[tf_name] = [] tf_len = len(hits[0][1]) target_cages, tf_cages = cage_correlations_summing_preparation(gene_name, transcript_id, cage_dict, TF_cage_dict, tf_name) eqtl_occurrence_log_likelihood = eqtl_overlap_likelihood(converted_eqtls, chr_start, chr_end, tf_len, gene_len, gtex_variants, ens_gene_id) for hit in hits: # ref-point combined_affinity_score = 0 target_species_hit = hit target_species_pwm_score = target_species_hit[6] species_weights_sum = 0 cage_weights_sum = 0 eqtls_weights_sum = 0 atac_weights_sum = 0 metacluster_weights_sum = 0 corr_weight_sum = 0 tf_len = len(hit[0]) # datasets only available for homo sapiens # todo: build within function checking if target_species == "homo_sapiens": cage_weights_sum = cage_weights_summing(transcript_id, target_species_hit, cage_dist_weights_dict, converted_cages) eqtls_weights_sum = eqtls_weights_summing(eqtl_occurrence_log_likelihood, ens_gene_id, target_species_hit, converted_eqtls, gtex_weights_dict, chr_start, chr_end, gtex_variants, tf_len, gene_len) atac_weights_sum = atac_weights_summing(transcript_id, target_species_hit, atac_dist_weights_dict, converted_atac_seqs_in_promoter) metacluster_weights_sum = metacluster_weights_summing(transcript_id, target_species_hit, metacluster_overlap_weights_dict, converted_metaclusters_in_promoter) corr_weight_sum = cage_correlations_summing(target_species_hit, transcript_id, target_cages, tf_cages, cage_correlations_dict, cage_corr_weights_dict) species_weights_sum = gerp_weights_summing(target_species, transcript_id, chromosome, target_species_hit, gerp_conservation_weight_dict, converted_gerps_in_promoter) cpg_weight = cpg_weights_summing(transcript_id, target_species_hit, cpg_obsexp_weights_dict, cpg_obsexp_weights_dict_keys, cpg_list) # calculate the complete score (combined affinity) experimental_weights = [species_weights_sum, cage_weights_sum, eqtls_weights_sum, atac_weights_sum, metacluster_weights_sum, cpg_weight, corr_weight_sum] combined_affinity_score += sum(experimental_weights) + target_species_pwm_score combined_affinity_score = round(combined_affinity_score, 2) if tf_name in cas_pvalues_dict: combined_affinity_score_pvalue = calcCombinedAffinityPvalue(combined_affinity_score, cas_pvalues_dict, cass_with_pvalues_sorted, cass_sorted, cas_pvalues_subdict) else: combined_affinity_score_pvalue = "" # append the combined affinity score and its pvalue hit.append(combined_affinity_score) hit.append(combined_affinity_score_pvalue) # round all of the experimental weights to two places and append to hit experimental_weights_rounded = [round(x, 2) for x in experimental_weights] hit += experimental_weights_rounded cluster_dict[tf_name].append(hit) total_time = time.time() - start_time logging.info(" ".join(["total time for find_clusters() for this transcript:", str(total_time), "seconds"])) return cluster_dict def eqtl_overlap_likelihood(converted_eqtls, chr_start, chr_end, tf_len, gene_len, gtex_variants, ens_gene_id): """ Likelihood of eQTL occurrence. """ eqtl_occurrence_log_likelihood = 0 if ens_gene_id in gtex_variants: eqtl_occurrence_log_likelihood_dict = {} ## if len(converted_eqtls) > 0: transcript_len = float(chr_end - chr_start) # determine size of search space, and probability of observing an eQTL in this gene. # GTEx searches for variants which occur over the span of the gene + 1,000,000 nt upstream+downstream. eqtl_search_space = 2000000 + gene_len associated_gtx_eqtls = gtex_variants[ens_gene_id] variant_count = len(associated_gtx_eqtls) * 1. eqtl_occurrence_log_likelihood = -1 * math.log(((tf_len * variant_count)/(eqtl_search_space-tf_len)) * (transcript_len/gene_len), 2) return eqtl_occurrence_log_likelihood def eqtls_weights_summing(eqtl_occurrence_log_likelihood, ens_gene_id, target_species_hit, converted_eqtls, gtex_weights_dict, chr_start, chr_end, gtex_variants, tf_len, gene_len): """ Identify if any of the eQTLs associated with this gene overlap this predicted TFBS. Retrieve the log-likelihood scores for all of them. Fix. """ eqtl_weights = [] if len(converted_eqtls) > 0: ## transcript_len = float(chr_end - chr_start) # Only needs to be calculated once, therefore break into new function (eqtl_overlap_likelihood) so that it is not performed for each of the TFBS predictions # # Requires the tf_len, which will need to be stored in a dict instead of drawing it from the current hit in order to avoid repetition # # determine size of search space, and probability of observing an eQTL in this gene. # GTEx searches for variants which occur over the span of the gene + 1,000,000 nt upstream+downstream. ## eqtl_search_space = 2000000 + gene_len ## associated_gtx_eqtls = gtex_variants[ens_gene_id] ## variant_count = len(associated_gtx_eqtls) * 1. ## eqtl_occurrence_log_likelihood = -1 * math.log(((tf_len * variant_count)/(eqtl_search_space-tf_len)) * (transcript_len/gene_len), 2) # determine the weight score for likelihood of this magnitude eQTL. # ref-point motif_start = target_species_hit[4] motif_end = target_species_hit[5] for converted_eqtl in converted_eqtls: converted_eqtl_start = converted_eqtl[0] converted_eqtl_end = converted_eqtl[1] converted_eqtl_score_mag = abs(converted_eqtl[2]) overlap = overlap_range([motif_start, motif_end], [converted_eqtl_start, converted_eqtl_end]) ## if motif_start<=converted_eqtl_start<=motif_end or motif_start<=converted_eqtl_end<=motif_end: if len(overlap) > 0: eqtl_weight = gtex_weights_dict[converted_eqtl_score_mag] eqtl_weights.append(eqtl_weight + eqtl_occurrence_log_likelihood) eqtl_weights_sum = sum(eqtl_weights) return eqtl_weights_sum ##def cage_correlations_summing_preparation(transcript_id, cage_dict, TF_cage_dict, tf_name, jasparTFs_transcripts_dict): def cage_correlations_summing_preparation(gene_name, transcript_id, cage_dict, TF_cage_dict, tf_name): """ Extract transcript relevant cages (target_cages) once for each TF under analysis. This could be reduced, to just once for the whole analysis of the current transcript (better that the last version where it was once per hit). Extract TF relevant data just once per TF, instead of for every hit. Identify the CAGE ides which are associated with the promoter of the TF currently under analysis. The correlation between these and the target gene will be extracted and correlating log-weight will be summed. """ target_cages = [] tf_cages = [] # current transcript (target) cages if gene_name in cage_dict: target_cages = [x[0].replace("hg_","").replace(".1","") for x in cage_dict[gene_name]] if tf_name in TF_cage_dict: tf_cages = [x[0].replace("hg_","").replace(".1","") for x in TF_cage_dict[tf_name]] ## # JASPAR tfs are often hetero multimers ## # therefore we should parse the individual proteins and identify transcripts for each ## split_tf_names = clean_jaspar_names([tf_name]) ## tf_transcripts = [] ## for split_tf_name in split_tf_names: ## if split_tf_name in jasparTFs_transcripts_dict: ## tf_transcripts += jasparTFs_transcripts_dict[split_tf_name] ## ## # for each JASPAR transcript, compile associated FANTOM CAGEs ## for tf_transcript in tf_transcripts: ## tf_cages += cage_dict[tf_transcript] ## ## # CAGEs may be shared by multiple transcripts with TSSs in close proximity ## tf_cages = list(set([x[0] for x in tf_cages])) return target_cages, tf_cages ##def cage_correlations_summing(target_species_hit, transcript_id, target_cages, tf_cages, jasparTFs_transcripts_dict, cage_keys_dict, cage_correlations_dict, cage_corr_weights_dict, cage_correlations_hit_tf_dict): ##def cage_correlations_summing(target_species_hit, transcript_id, target_cages, tf_cages, jasparTFs_transcripts_dict, cage_keys_dict, cage_correlations_dict, cage_corr_weights_dict): ##def cage_correlations_summing(target_species_hit, transcript_id, target_cages, tf_cages, jasparTFs_transcripts_dict, cage_correlations_dict, cage_corr_weights_dict): def cage_correlations_summing(target_species_hit, transcript_id, target_cages, tf_cages, cage_correlations_dict, cage_corr_weights_dict): """ Extract correlation values between CAGEs associated with a predicted TFBS protein, and CAGEs associated with the current gene. """ corr_weights_ls = [] corr_weight_sum = 0 # cages for all transcripts of the predicted TFBS's proteins tf_name = target_species_hit[0] for target_cage in target_cages: if target_cage in cage_correlations_dict: for tf_cage in tf_cages: if tf_cage in cage_correlations_dict[target_cage]: cage_correlation = cage_correlations_dict[target_cage][tf_cage] cage_corr_weight = cage_corr_weights_dict[abs(cage_correlation)] ## corr_weight_sum += cage_corr_weight corr_weights_ls.append(cage_corr_weight) ## if target_cage_key in cage_correlations_dict[tf_cage_key]: ## cage_correlation = cage_correlations_dict[tf_cage_key][target_cage_key] ## cage_corr_weight = cage_corr_weights_dict[abs(cage_correlation)] ## corr_weights_ls.append(cage_corr_weight) if len(corr_weights_ls) > 0: corr_weights_ls.sort() corr_weight_sum = corr_weights_ls[-1] ## cage_correlations_hit_tf_dict[tf_name] = corr_weight_sum ## return corr_weight_sum, cage_correlations_hit_tf_dict return corr_weight_sum def cage_weights_summing(transcript_id, target_species_hit, cage_dist_weights_dict, converted_cages): """ Retrieve a log-likelihood score for this from the pre-existing dictionary. """ cage_weights = [] # ref-point for converted_cage in converted_cages: cage_peak_count_ratio = converted_cage[3] motif_cage_dist = str(distance_solve([converted_cage[0], converted_cage[1]], [target_species_hit[4], target_species_hit[5]])) if motif_cage_dist in cage_dist_weights_dict: cage_weight = cage_dist_weights_dict[motif_cage_dist] cage_weight_peak_count_ratio_adjusted = cage_weight * cage_peak_count_ratio cage_weights.append(cage_weight_peak_count_ratio_adjusted) cage_weights_sum = sum(cage_weights) return cage_weights_sum def atac_weights_summing(transcript_id, target_species_hit, atac_dist_weights_dict, converted_atac_seqs_in_promoter): """ Identify ATAC-Seq peaks which are near a putative TFBS. Retrieve a log-likelihood score for this from the pre-existing dictionary. """ atac_weights = [] motif_start = target_species_hit[4] motif_end = target_species_hit[5] for converted_atac in converted_atac_seqs_in_promoter: transcript_atac_start = converted_atac[0] transcript_atac_end = converted_atac[1] motif_atac_dist = str(distance_solve([motif_start, motif_end],[transcript_atac_start, transcript_atac_end])) if motif_atac_dist in atac_dist_weights_dict: atac_weight = atac_dist_weights_dict[motif_atac_dist] atac_weights.append(atac_weight) atac_weights_sum = sum(atac_weights) return atac_weights_sum def metacluster_weights_summing(transcript_id, target_species_hit, metacluster_overlap_weights_dict, converted_metaclusters_in_promoter): """ Identify the number of metaclusters which overlap this putative TFBS. Retrieve a log-likelihood score for this from the pre-existing dictionary. """ num_ovelapping_metaclusters = 0 metacluster_weights_sum = 0 # ref-point motif_start = target_species_hit[4] motif_end = target_species_hit[5] for converted_metacluster in converted_metaclusters_in_promoter: transcript_metacluster_start = converted_metacluster[0] transcript_metacluster_end = converted_metacluster[1] # doesn't work clusters are bigger than motifs overlap = overlap_range([motif_start, motif_end], [transcript_metacluster_start, transcript_metacluster_end]) if len(overlap)>0: num_ovelapping_metaclusters += 1 if num_ovelapping_metaclusters in metacluster_overlap_weights_dict: metacluster_weights_sum = metacluster_overlap_weights_dict[num_ovelapping_metaclusters] else: print("metacluster overlap sum not in weight dict") logging.warning(" ".join(["metacluster overlap sum not in weight dict"])) return metacluster_weights_sum def gerp_weights_summing(target_species, transcript_id, chromosome, target_species_hit, gerp_conservation_weight_dict, converted_gerps_in_promoter): """ Identify the gerps which are near this predicted TFBS. Retrieve a log-likelihood score for this distance from the pre-existing dictionary. """ # ref-point motif_start = target_species_hit[4] motif_end = target_species_hit[5] tf_len = len(target_species_hit[0]) gerp_weights_sum = 0 dists = [] for converted_gerp_in_promoter in converted_gerps_in_promoter: converted_gerp_in_promoter_start = converted_gerp_in_promoter[0] converted_gerp_in_promoter_end = converted_gerp_in_promoter[1] dist = distance_solve([motif_start, motif_end], [converted_gerp_in_promoter_start, converted_gerp_in_promoter_end]) dists.append(dist) dists.sort() best_dist = dists[0] # should only overlap be used? ## if best_dist == 0: if best_dist <=1000: if target_species == "homo_sapiens": if best_dist in gerp_conservation_weight_dict[chromosome][str(tf_len)]: gerp_weights_sum = gerp_conservation_weight_dict[chromosome][str(tf_len)][best_dist] else: if best_dist in gerp_conservation_weight_dict: gerp_weights_sum = gerp_conservation_weight_dict[best_dist] return gerp_weights_sum def cpg_weights_summing(transcript_id, target_species_hit, cpg_obsexp_weights_dict, cpg_obsexp_weights_dict_keys, cpg_list): """ Retrieve a CpG weight score based on the CpG obs/exp of the midpoint of the current predicted TFBS. """ if len(cpg_obsexp_weights_dict_keys)>0: # retrieve locations and CpG obs/exp score for the midpoint of this predicted TFBS # ref-point motif_start = target_species_hit[2] motif_end = target_species_hit[3] motif_midpoint = (motif_end + motif_start)/2 cpg_obsexp = cpg_list[motif_midpoint][-1] # extract the weight for the obsexp which is just less than the current obsexp next_lesser_obsexp_index = bisect_left(cpg_obsexp_weights_dict_keys, cpg_obsexp) if next_lesser_obsexp_index != len(cpg_obsexp_weights_dict_keys): next_lesser_obsexp = cpg_obsexp_weights_dict_keys[next_lesser_obsexp_index] else: next_lesser_obsexp = cpg_obsexp_weights_dict_keys[-1] cpg_weight = cpg_obsexp_weights_dict[next_lesser_obsexp] return cpg_weight else: return 0 def clean_jaspar_names(uncleaned_jaspar_ids): """ Clean names of jaspar transcription factor names. MSX3 <- lost in humans. RHOX11 <- only present in 3 species. DUX <- mouse only gene. EWSR1 <- didn't end up in the Ensembl BioMart export. MIX-A <- jaspar says present in xenopus laevis, but not even showing in Ensembl as a gene for any species. """ special_dict = {"EWSR1-FLI1" : ["EWSR1","FLI1"]} names_list = [] # split the combined names for uncleaned_jaspar_id in uncleaned_jaspar_ids: uncleaned_jaspar_id = uncleaned_jaspar_id.upper() split_names = uncleaned_jaspar_id.split("::") for name in split_names: names_list.append(name) # replace variants for i, name in enumerate(names_list): names_list[i] = name.replace("(VAR.2)","").replace("(VAR.3)","") tmp_list = [] for i, name in enumerate(names_list): if name in special_dict: tmp_list += special_dict[name] else: tmp_list.append(name) names_list = list(set(tmp_list)) names_list.sort() return names_list def target_species_hits_table_writer(sorted_clusters_target_species_hits_list, output_table_name): """ Write to table results sorted by combined affinity score. """ with open(output_table_name, 'wb') as output_table: writerUS=csv.writer(output_table) writerUS.writerow(['binding prot.', 'motif', 'strand', 'start', 'end', 'TSS-relative start', 'TSS-relative end', 'PWM score', 'p-value', 'combined\naffinity\nscore', 'combined\naffinity\nscore\np-value', 'species\nweights\nsum', 'cage\nweights\nsum', 'eqtls\nweights\nsum', 'atac\nweights\nsum', 'metacluster\nweights\nsum', 'cpg\nweight', 'corr.\nweight\nsum']) # for all results which have passed thresholds, write full result to .csv # ref-point for hit in sorted_clusters_target_species_hits_list: frame_score_pval_str = hit[8] combined_affinity_score_pval_str = hit[10] if ">" not in frame_score_pval_str and frame_score_pval_str != "": if float(frame_score_pval_str) <= 0.0001: hit[8] = "{0:.3e}".format(Decimal(frame_score_pval_str)) if ">" not in combined_affinity_score_pval_str and combined_affinity_score_pval_str != "": if float(combined_affinity_score_pval_str) <= 0.0001: hit[10] = "{0:.3e}".format(Decimal(combined_affinity_score_pval_str)) writerUS.writerow([str(x) for x in hit]) def sort_target_species_hits(cluster_dict): """ Sort target_species hits which are part of a cluster by combined affinity score. """ sorted_clusters_target_species_hits_list = [] for tf_name, hits in cluster_dict.iteritems(): for hit in hits: sorted_clusters_target_species_hits_list.append([tf_name]+hit) ## sorted_clusters_target_species_hits_list += hit # ref-point sorted_clusters_target_species_hits_list = sorted(sorted_clusters_target_species_hits_list, key=itemgetter(9), reverse = True) return sorted_clusters_target_species_hits_list def top_x_greatest_hits(sorted_clusters_target_species_hits_list, top_x_tfs_count): """ Identify the best scoring hits up to some threshold of number of tfs. Allows plotting more than one instance of a top tf, without increasing the total tf used count. e.g. 3 instances of KLF4 will count as only one tf used towards the top_x_tfs_count threshold. """ # to keep track of how many tfs have been added top_x_tfs = [] # to store the x greatest tfs and their locations top_x_greatest_hits_dict = {} # add all hits to single pool so top hits can be identified for sorted_clusters_target_species_hit in sorted_clusters_target_species_hits_list: # ref-point tf_name = sorted_clusters_target_species_hit[0] if (len(top_x_tfs) < top_x_tfs_count): # keep track of what & how many tfs have been added if tf_name not in top_x_tfs: top_x_tfs.append(tf_name) # add the hit to the top hits if the count threshold has not been met if tf_name in top_x_greatest_hits_dict: top_x_greatest_hits_dict[tf_name].append(sorted_clusters_target_species_hit) else: top_x_greatest_hits_dict[tf_name] = [sorted_clusters_target_species_hit] return top_x_greatest_hits_dict ################################################################################ # Alignment Manipulation ####################################################### ################################################################################ def retrieve_genome_aligned(target_species, chromosome, strand, promoter_start, promoter_end): """ Takes as input target_species CCDS start position and size of promoter to be extracted. Retrieves genome aligned, corresponding regions in all orthologs. ***Alignment no longer necessary as the use of pre-computed GERP scores means that no conservation calculation needs to be made. Additionally, the newest implementation of Ensembl REST alignment will not retrieve target species sequence, if there is no alignment with other species at that location. For example, a request for homo_sapiens alignment from chr1:1-10,000 will only return the locations where an alignment exists with the target species group (e.g. mammals_low). This may only exist at chr1:2000-9500. """ ## # Retrieve alignment if alignment FASTA does not already exist ## query_type = "/alignment/block/region/" ## pre_options = target_species + "/" + chromosome + ":" + str(promoter_start) + "-" + str(promoter_end) + ":" + str(strand) ## ## if coverage == "low": ## coverage_str = "EPO_LOW_COVERAGE" ## else: ## coverage_str = "EPO" ## ## options = pre_options + "?method=" + coverage_str + ";compact=1;content-type=application/json;species_set_group=" + species_group ## alignment_decoded = ensemblrest(query_type, options, 'json', "", log=True) ## ## if 'error' not in alignment_decoded: ## # remove those entries which are computed ancestral species ## alignment = [x for x in alignment_decoded[0]['alignments'] if 'Ancestor' not in x['seq_region']] ## else: ## logging.warning(" ".join([alignment_decoded['error']])) ## if alignment_decoded['error'].lower() == "no alignment available for this region": query_type = "/sequence/region/" pre_options = target_species + "/" + chromosome + ":" + str(promoter_start) + "-" + str(promoter_end) + ":" + str(strand) options = pre_options + "?content-type=application/json" target_only_decoded = ensemblrest(query_type, options, 'json', "", log=True) if 'seq' in target_only_decoded: target_only_decoded['species'] = target_species alignment = [target_only_decoded] else: alignment = [] return alignment def fasta_writer(alignment, outfile): """ Write ensembl JSON alignment to fasta file. """ if not os.path.isfile(outfile) or (os.path.isfile(outfile) and os.path.getsize(outfile) == 0): with open(outfile, "w") as aligned_file: for entry in alignment: record = SeqRecord(Seq(entry['seq'], alphabet = IUPAC.ambiguous_dna), id = entry['species'], description = "") SeqIO.write(record, aligned_file, 'fasta') def remove_non_ACGT(alignment): """ Remove non alignment characters and ambiguous nucleotides. should consider changing to replacing any non ACGT char to '-'. """ # account for sequences which are non-standard code non_standard_dict = {'R':['A','G'], 'Y':['C','T'], 'S':['G','C'], 'W':['A','T'], 'K':['G','T'], 'M':['A','C'], 'B':['C','G','T'], 'D':['A','G','T'], 'H':['A','C','T'], 'V':['A','C','G'], 'B':['C','G','T']} non_alignment_chars = " .N" for entry in alignment: for non_alignment_char in non_alignment_chars: entry['seq'] = entry['seq'].replace(non_alignment_char, '-') for multi_char, replacement_list in non_standard_dict.iteritems(): entry['seq'] = entry['seq'].replace(non_alignment_char, replacement_list[0]) return alignment def remove_gap_only(alignment): """ Find columns in the alignment where the entire column is '-', replace the '-' with 'P', then remove the '*'. """ if len(alignment) > 0: for entry in alignment: entry['seq'] = list(entry['seq']) for i in range(0,len(alignment[0]['seq'])): col = [x['seq'][i] for x in alignment] if col.count('-') == len(col): for entry in alignment: entry['seq'][i] = 'Z' for entry in alignment: entry['seq'] = "".join(entry['seq']).replace(u'Z',"") return alignment def remove_duplicate_species(alignment, target_species): """ If there are multiple entries for a single species in an alignment retrieved from Ensembl, keep the one which has more ACGT characters. """ entry_ids = [x['species'] for x in alignment] duplicate_ids = list(set([x for x in entry_ids if entry_ids.count(x) > 1])) non_duplicate_alignment = [x for x in alignment if x['species'] not in duplicate_ids] for duplicate_id in duplicate_ids: duplicate_seqs = [x for x in alignment if x['species'] == duplicate_id] duplicate_seqs_lens = [x['seq'].count('-') for x in duplicate_seqs] sorted_duplicate_seqs_lens = duplicate_seqs_lens[:] sorted_duplicate_seqs_lens.sort() longest_seq = sorted_duplicate_seqs_lens[0] longest_seq_index = duplicate_seqs_lens.index(longest_seq) kept_seq = duplicate_seqs[longest_seq_index] if duplicate_id == target_species: non_duplicate_alignment = [kept_seq] + non_duplicate_alignment else: non_duplicate_alignment.append(kept_seq) return non_duplicate_alignment ##def selective_alignment(alignment): ## """ ## Remove sequences from the alignment if they have less then 75% of the nucleotides of the target_species sequence. ## Work needed: identify scenarios where length of target sequence affects alignment and subsequent scoring. ## """ ## ## target_species_entry = alignment[0] ## target_species_seq_2nd_half = target_species_entry['seq'][len(target_species_entry['seq'])/2:] ## target_species_seq_2nd_half = target_species_seq_2nd_half.replace("-","").replace("N","").replace(" ","").replace(".","") ## target_species_seq_2nd_half_len = len(target_species_seq_2nd_half) ## ## cleaned_alignment = [] ## if target_species_seq_2nd_half_len > 0: ## for entry in alignment: ## entry_seq_2nd_half = entry['seq'][len(entry['seq'])/2:] ## entry_seq_2nd_half = entry_seq_2nd_half.replace("-","").replace("N","").replace(" ","").replace(".","") ## entry_seq_2nd_half_len = len(entry_seq_2nd_half) ## if float(entry_seq_2nd_half_len)/target_species_seq_2nd_half_len >= 0.75: ## cleaned_alignment.append(entry) ## ## return cleaned_alignment def load_genome_aligned(aligned_filename): """ Load previously retrieved alignment fasta file into dictionary. """ with open(aligned_filename, 'r') as alignment_handle: alignment_list = list(SeqIO.parse(alignment_handle, 'fasta')) alignment = [{'seq': str(entry.seq), 'species':entry.id} for entry in alignment_list if '[' not in entry.id] return alignment def alignment_tools(ensembl_aligned_filename, cleaned_aligned_filename, target_species, chromosome, strand, promoter_start, promoter_end): """ Return cleaned alignment for further analysis. """ # if cleaned alignment file doesn't exist, or the size is zero. if not os.path.isfile(cleaned_aligned_filename) or (os.path.isfile(cleaned_aligned_filename) and os.path.getsize(cleaned_aligned_filename) == 0): # If uncleaned Ensembl alignment file doesn't exist, or the size is zero: retrieve from Ensembl, write to file. if not os.path.isfile(ensembl_aligned_filename) or (os.path.isfile(ensembl_aligned_filename) and os.path.getsize(ensembl_aligned_filename) == 0): alignment = retrieve_genome_aligned(target_species, chromosome, strand, promoter_start, promoter_end) fasta_writer(alignment, ensembl_aligned_filename) # If uncleaned Ensembl file exists and size is not zero: clean, write to cleaned filename. if os.path.isfile(ensembl_aligned_filename) and (os.path.isfile(ensembl_aligned_filename) and os.path.getsize(ensembl_aligned_filename) > 0): alignment = load_genome_aligned(ensembl_aligned_filename) alignment = remove_non_ACGT(alignment) alignment = remove_duplicate_species(alignment, target_species) ## # analysis is now based on conservation around individual hits, so removing sequences based on completeness is wasteful ## alignment = selective_alignment(alignment) alignment = remove_gap_only(alignment) fasta_writer(alignment, cleaned_aligned_filename) # Uncleaned alignment file still doesn't exist (or size is zero): note in logfile. else: logging.warning(" ".join(["No ensembl alignment, or size is zero"])) alignment = [] # Cleaned alignment file exists and size is not zero: load cleaned alignment. else: alignment = load_genome_aligned(cleaned_aligned_filename) return alignment def test_transcript_id(decoded_json_description, transcript_id): """ Test if the dictionary for the target transcript id: Indicates it is a transcript. Doesn't contain errors/Is complete. """ transcript_id_pass = False if 'error' not in decoded_json_description: if 'object_type' in decoded_json_description: if decoded_json_description['object_type'].lower() == 'transcript': transcript_id_pass = True else: logging.warning(" ".join([transcript_id, "This input does not appear to be a valid Ensembl transcript ID. Ensembl REST defines it as:", decoded_json_description['object_type']])) else: logging.warning(" ".join([transcript_id, "This input does not appear to be a valid Ensembl transcript ID. Please check it for errors."])) else: logging.warning(" ".join(["Ensembl REST responds with error:", decoded_json_description['error']])) return transcript_id_pass def transfabulator(transcript, transcript_dict_filename): """ Given a transcript ID, retrieve Ensembl descriptive data for that transcript. """ retrieve_transcript_data = True # load transcript position data from json file if it already exists if os.path.isfile(transcript_dict_filename): if os.path.getsize(transcript_dict_filename) != 0: logging.info(" ".join(["transcript_dict already exists: loading"])) decoded_json_description = load_json(transcript_dict_filename) retrieve_transcript_data = False # retrieve transcript position data from json file if it does not exist # or contains no data. if retrieve_transcript_data: # Set parameters for retrieving Ensembl data via REST query_type = '/lookup/id/' options = '?feature=transcript;content-type=application/json' # populate 'transcript_dict' dictionary with sub-dictionaries. # key[transcript_id] = {chromosome, strand, start, end} for each ensembl transcript id decoded_json_description = ensemblrest(query_type, options, 'json', transcript, log=True) decoded_json_description = {k.lower():v for k,v in decoded_json_description.iteritems()} return decoded_json_description def transcript_data_retrieve(decoded_json_description, transcript_dict_filename, promoter_before_tss, promoter_after_tss): """ The retrieved transcript data is assumed complete, extract important data. Write json data to file. Based on user-defined values for target region (referenced to TSS), calculate genomic coordinates of target region. """ # Extract position data chromosome = decoded_json_description['seq_region_name'] chr_start = decoded_json_description['start'] chr_end = decoded_json_description['end'] strand = decoded_json_description['strand'] ens_gene_id = decoded_json_description['parent'] target_species = decoded_json_description['species'] if 'display_name' in decoded_json_description: transcript_name = decoded_json_description['display_name'] else: transcript_name = "" dump_json(transcript_dict_filename, decoded_json_description) if strand == 1: tss = chr_start #[promoter_start][promoter_end][TSS=chr_start][>GENE--->][chr_end] promoter_start = tss - promoter_before_tss promoter_end = tss - 1 + promoter_after_tss if strand == -1: tss = chr_end #[chr_start][<---GENE<][TSS=chr_end][promoter_start][promoter_end] promoter_start = tss + 1 - promoter_after_tss promoter_end = tss + promoter_before_tss return target_species, transcript_name, ens_gene_id, chromosome, tss, strand, promoter_start, promoter_end, chr_start, chr_end def gene_data_retrieve(gene_dict_filename, ens_gene_id): """ Retrieve gene data for the parent gene of the target transcript. """ # determine likelihood of overlapping an eQTL at all. # Set parameters for retrieving Ensembl data via REST ## if os.path.exists(gene_dict_filename): decoded_json_description = load_json(gene_dict_filename) ## else: if not decoded_json_description or len(decoded_json_description)==0: query_type = '/lookup/id/' options = '?feature=transcript;content-type=application/json' # retrieve_gene_len decoded_json_description = ensemblrest(query_type, options, 'json', ens_gene_id, log=True) decoded_json_description = {k.lower():v for k,v in decoded_json_description.iteritems()} dump_json(gene_dict_filename, decoded_json_description) gene_start = decoded_json_description['start'] gene_end = decoded_json_description['end'] gene_name = decoded_json_description['display_name'].upper() gene_len = gene_end - gene_start return gene_name, gene_len ################################################################################ # Regulatory & Conservation Features ########################################### ################################################################################ def retrieve_regulatory(chromosome, strand, promoter_start, promoter_end, regulatory_decoded_filename, target_species): """ Retrieve ensembl JSON data for regulatory features within the coordinates provided. """ # determine if the regulatory data has already been retrieved, if so load, if not retrieve. if os.path.isfile(regulatory_decoded_filename): logging.info(" ".join(["regulatory_decoded already exists: loading"])) regulatory_decoded = load_json(regulatory_decoded_filename) else: query_type = "/overlap/region/" pre_options = target_species + "/" + chromosome + ":" + str(promoter_start) + "-" + str(promoter_end) + ":" + str(strand) options = pre_options + "?feature=regulatory;content-type=application/json" regulatory_decoded = ensemblrest(query_type, options, 'json', "", log=True) # rename the Ensembl regulatory elements so that they don't overtake the space available for names. for reg in regulatory_decoded: if "description" in reg: if reg["description"] == "Transcription factor binding site": reg["description"] = "Pred. TFBS" if reg["description"] == "Open chromatin region": reg["description"] = "Open chromatin" if reg["description"] == "Predicted promoter": reg["description"] = "Pred. promoter" dump_json(regulatory_decoded_filename, regulatory_decoded) return regulatory_decoded def reg_position_translate(tss,regulatory_decoded,promoter_start,promoter_end,strand,promoter_before_tss,promoter_after_tss): """ Convert positions of regulatory elements (json) to coordinates usable by the plot_promoter function. Requires supplying location relative to TSS (i.e. negative). For creating a left to right plot of the promoter, regardless of strand: Converted_reg_start is the leftmost regulatory position. Converted_reg_end is the rightmost regulatory position. """ converted_reg_dict = {} for reg in regulatory_decoded: if "error" not in reg: reg_id = reg['id'] reg_start = reg['start'] reg_end = reg['end'] description = reg['description'] if strand == 1: #[promoter_start][reg_start][reg_end][promoter_end][chr_start][TSS>GENE--->][chr_end] converted_reg_start = (tss - reg_start) * -1 converted_reg_end = (tss - reg_end) * -1 if reg_start <= promoter_start: converted_reg_start = (-1 * promoter_before_tss) if reg_end >= promoter_end: converted_reg_end = promoter_after_tss - 0.001 if strand == -1: #[chr_start][<---GENE<TSS][chr_end][promoter_start][reg_start][reg_end][promoter_end] converted_reg_start = (tss - reg_start) converted_reg_end = (tss - reg_end) if reg_start <= promoter_start: converted_reg_start = promoter_after_tss - 0.001 if reg_end >= promoter_end: converted_reg_end = (-1 * promoter_before_tss + promoter_after_tss) + 0.001 converted_reg_dict[reg_id] = {'converted_start':converted_reg_start, 'converted_end':converted_reg_end, 'description':description} return converted_reg_dict ##def alignment_conservation(aligned_filename): ## """ ## Identify basic conservation of DNA sequence in the alignment. ## """ ## ## alignment = AlignIO.read(aligned_filename, "fasta") ## target_species_row = alignment[0] ## species_num = float(len(alignment)) ## conservation = [] ## for i in range(0, len(target_species_row)): ## ## target_species_nuc = target_species_row[i] ## if target_species_nuc != "-": ## alignment_col = alignment[:,i] ## common_char = collections.Counter(alignment_col).most_common()[0][0] ## char_count = collections.Counter(alignment_col).most_common()[0][1] ## if common_char != '-': ## col_conservation = char_count/species_num ## else: ## col_conservation = alignment_col.count(target_species_nuc)/species_num ## conservation.append(col_conservation) ## ## return conservation def CpG(aligned_filename): """ Score the CpG content of the target_species sequence over a 200 nt window. """ alignment = AlignIO.read(aligned_filename, "fasta") target_species_row = alignment[0] cpg_list = [] # [1 C, 1 if G, 1 if CPG, CorG, num_cpg, obs2exp] for i in range(0, len(target_species_row)): current_pos = target_species_row[i] if current_pos != '-': if i < len(target_species_row) - 1: next_pos = target_species_row[i+1] else: next_pos = False if current_pos == 'C' and next_pos == 'G': cpg_list.append([1, 0, 1]) elif current_pos == 'C' and next_pos != 'G': cpg_list.append([1, 0, 0]) elif current_pos == 'G': cpg_list.append([0, 1, 0]) else: cpg_list.append([0, 0, 0]) for i in range(0, len(cpg_list)): if i < 100: rolling_island = cpg_list[:i] + cpg_list[i:i+100] elif i > len(cpg_list) - 100: rolling_island = cpg_list[i-100:i] + cpg_list[i:] else: rolling_island = cpg_list[i-100:i+100] Cs = sum([x[0] for x in rolling_island]) * 1.0 Gs = sum([x[1] for x in rolling_island]) * 1.0 CorG_ratio = (Cs+Gs)/len(rolling_island) num_cpg = sum([x[2] for x in rolling_island]) * 1.0 obs = num_cpg/len(rolling_island) exp = (CorG_ratio/2)**2 if exp==0: exp = 0.0000000001 obs2exp = obs/exp cpg_list[i] = cpg_list[i] + [CorG_ratio, num_cpg, obs2exp] return cpg_list def cage_position_translate(gene_name,transcript_id,tss,cage_dict,promoter_start,promoter_end,strand,promoter_before_tss,promoter_after_tss): """ Convert the CAGE data genome positions to those which can be mapped into the final figure. """ converted_cages = [] if gene_name in cage_dict: cages = cage_dict[gene_name] cages_peak_count_sum = float(sum([int(x[5]) for x in cages])) for cage in cages: # old ## cage_strand = cage[2] ## cage_start = cage[3] ## cage_end = cage[4] ## cage_desc = cage[6] cage_desc = cage[1] cage_start = int(cage[3]) cage_end = cage_start + int(cage[4]) cage_peak_count = int(cage[5]) cage_peak_count_ratio = cage_peak_count/cages_peak_count_sum cage_strand = cage[6] if cage_strand == "+": #[promoter_start][cage_start][cage_end][promoter_end][chr_start][TSS>GENE--->][chr_end] converted_cage_start = (tss - cage_start) * -1 converted_cage_end = (tss - cage_end) * -1 if cage_strand == "-": #[chr_start][<---GENE<TSS][chr_end][promoter_start][cage_start][cage_end][promoter_end] converted_cage_start = (tss - cage_start) converted_cage_end = (tss - cage_end) converted_cage = [converted_cage_start, converted_cage_end, cage_desc, cage_peak_count_ratio] converted_cages.append(converted_cage) converted_cages = sorted(converted_cages, key=itemgetter(2)) return converted_cages def gtex_position_translate(ens_gene_id,gtex_variants,tss,promoter_start,promoter_end,strand,promoter_before_tss,promoter_after_tss): """ Convert the GTEx data genome positions to those which can be mapped into the final figure. Reduce to those that are within range of the promoter before/after tss. """ converted_eqtls = [] if ens_gene_id in gtex_variants: eqtls = gtex_variants[ens_gene_id] for eqtl in eqtls: if len(eqtl) == 2: loc = eqtl[0] eqtl_length = 1 eqtl_effect = eqtl[1] else: loc = eqtl[0] eqtl_length = eqtl[1] eqtl_effect = eqtl[2] ## overlap = overlap_range([promoter_start, promoter_end], [loc, loc+eqtl_length]) ## if len(overlap) >0: if promoter_start<=loc<=promoter_end or promoter_start<=loc+eqtl_length<=promoter_end: #[promoter_start][eqtl_start][eqtl_end][promoter_end][chr_start][TSS>GENE--->][chr_end] if strand == 1: converted_eqtl_start = (tss - loc) * -1 converted_eqtl_end = (tss - loc + eqtl_length) * -1 #[chr_start][<---GENE<TSS][chr_end][promoter_start][eqtl_start][eqtl_end][promoter_end] if strand == -1: converted_eqtl_start = (tss - loc) converted_eqtl_end = (tss - loc + eqtl_length) # save to final list converted_eqtl = [converted_eqtl_start, converted_eqtl_end, eqtl_effect] converted_eqtls.append(converted_eqtl) return converted_eqtls def distance_solve(r1, r2): # sort the two ranges such that the range with smaller first element # is assigned to x and the bigger one is assigned to y r1.sort() r2.sort() x, y = sorted((r1, r2)) #now if x[1] lies between x[0] and y[0](x[1] != y[0] but can be equal to x[0]) #then the ranges are not overlapping and return the differnce of y[0] and x[1] #otherwise return 0 if x[1] < y[0]: return y[0] - x[1] return 0 def gerp_positions_translate(target_dir, gerp_conservation_locations_dict, chromosome, strand, promoter_start, promoter_end, tss): """ Identify GERP constrained conservation locations which occur within the defined promoter region. Convert positions of GERP elements (json) to coordinates usable by the plot_promoter function. Requires supplying location relative to TSS (i.e. negative). For creating a left to right plot of the promoter, regardless of strand: Converted_reg_start is the leftmost regulatory position. Converted_reg_end is the rightmost regulatory position. """ potential_gerps_in_promoter = [] gerps_in_promoter = [] # because a prediction can occur at the start/end of a defined promoter extended_range = 1000 if chromosome in gerp_conservation_locations_dict: ## left_most_index = bisect_left([x[0] for x in gerp_conservation_locations_dict[chromosome]], promoter_start - extended_range) ## right_most_index = bisect_right([x[0]+x[1] for x in gerp_conservation_locations_dict[chromosome]], promoter_end + extended_range) ## potential_gerps_in_promoter = gerp_conservation_locations_dict[chromosome][left_most_index-1:right_most_index+1] for potential_gerp_in_promoter in gerp_conservation_locations_dict[chromosome]: ## for potential_gerp_in_promoter in potential_gerps_in_promoter: ## overlap = overlap_range([promoter_start - extended_range, promoter_end + extended_range], [potential_gerp_in_promoter[0], potential_gerp_in_promoter[0]+potential_gerp_in_promoter[1]]) if promoter_start - extended_range<=potential_gerp_in_promoter[0]<=promoter_end + extended_range or promoter_start - extended_range<=potential_gerp_in_promoter[0]+potential_gerp_in_promoter[1]<=promoter_end + extended_range: ## if len(overlap) > 0: gerps_in_promoter.append(potential_gerp_in_promoter) # convert the positions of the in-promoter metaclusters to tss-relative converted_gerps_in_promoter = [] for gerp_in_promoter in gerps_in_promoter: gerp_start = gerp_in_promoter[0] gerp_end = gerp_start + gerp_in_promoter[1] if strand == 1: converted_gerp_start = (tss - gerp_start) * -1 converted_gerp_end = (tss - gerp_end) * -1 if strand == -1: converted_gerp_start = (tss - gerp_start) converted_gerp_end = (tss - gerp_end) converted_gerp = [converted_gerp_start, converted_gerp_end] converted_gerps_in_promoter.append(converted_gerp) return converted_gerps_in_promoter def gtrd_positions_translate(target_dir, gtrd_metaclusters_dict, chromosome, strand, promoter_start, promoter_end, tss): """ Identify GTRD metaclusters which occur within the defined promoter region. Convert positions of metaclusters (json) to coordinates usable by the plot_promoter function. Requires supplying location relative to TSS (i.e. negative). For creating a left to right plot of the promoter, regardless of strand: Converted_reg_start is the leftmost regulatory position. Converted_reg_end is the rightmost regulatory position. """ potential_metaclusters_in_promoter = [] promoter_start_millions = promoter_start/1000000 promoter_end_millions = promoter_end/1000000 # retrieve the metacluster peaks on which the chrom that the transcript is found # if the millions place is the same for each then the metaclusters come from a single # subdict entry if promoter_start_millions == promoter_end_millions: if promoter_start_millions in gtrd_metaclusters_dict: potential_metaclusters_in_promoter += gtrd_metaclusters_dict[promoter_start_millions] # have to account for the possibility that this location spans a millions place # e.g. from 999,000 - 1,001,000 else: if promoter_start_millions in gtrd_metaclusters_dict: potential_metaclusters_in_promoter += gtrd_metaclusters_dict[promoter_start_millions] if promoter_end_millions in gtrd_metaclusters_dict: potential_metaclusters_in_promoter += gtrd_metaclusters_dict[promoter_end_millions] # identify if the metacluster occurs within user-defined promoter region metaclusters_in_promoter = [] for potential_metacluster in potential_metaclusters_in_promoter: metacluster_start = potential_metacluster[0] metacluster_end = metacluster_start + potential_metacluster[1] metacluster_peak_count = potential_metacluster[2] overlap = overlap_range([promoter_start, promoter_end], [metacluster_start, metacluster_end]) if len(overlap) > 0: metaclusters_in_promoter.append(potential_metacluster) # convert the positions of the in-promoter metaclusters to tss-relative converted_metaclusters_in_promoter = [] ## gtrd_outfilename = os.path.join(target_dir, os.path.basename(target_dir) + '.gtrd.txt') ## with open(gtrd_outfilename, 'w') as gtrd_outfile: for metacluster_in_promoter in metaclusters_in_promoter: metacluster_start = metacluster_in_promoter[0] metacluster_end = metacluster_start + metacluster_in_promoter[1] metacluster_peak_count = metacluster_in_promoter[2] if strand == 1: converted_metacluster_start = (tss - metacluster_start) * -1 converted_metacluster_end = (tss - metacluster_end) * -1 if strand == -1: converted_metacluster_start = (tss - metacluster_start) converted_metacluster_end = (tss - metacluster_end) converted_metacluster = [converted_metacluster_start, converted_metacluster_end, metacluster_peak_count] converted_metaclusters_in_promoter.append(converted_metacluster) return converted_metaclusters_in_promoter def atac_pos_translate(atac_seq_dict, chromosome, strand, promoter_start, promoter_end, tss): """ Identify merged ATAC-Seq peaks which occur within the defined promoter region. Convert positions of ATAC-Seq peaks (json) to coordinates usable by the plot_promoter function. Requires supplying location relative to TSS (i.e. negative). For creating a left to right plot of the promoter, regardless of strand: Converted_reg_start is the leftmost regulatory position. Converted_reg_end is the rightmost regulatory position. """ potential_atac_seqs_in_promoter = [] ## chromosome = "chr" + chromosome.lower() ## if chromosome in atac_seq_dict: promoter_start_millions = promoter_start/1000000 promoter_end_millions = promoter_end/1000000 # retrieve the ATAC-Seq peaks on which the chrom that the transcript is found # if the millions place is the same for each then the atac-seqs come from a single subdict entry if promoter_start_millions == promoter_end_millions: if promoter_start_millions in atac_seq_dict: potential_atac_seqs_in_promoter += atac_seq_dict[promoter_start_millions] # have to account for the possibility that this location spans a millions place # e.g. from 999,000 - 1,001,000 else: if promoter_start_millions in atac_seq_dict: potential_atac_seqs_in_promoter += atac_seq_dict[promoter_start_millions] if promoter_end_millions in atac_seq_dict: potential_atac_seqs_in_promoter += atac_seq_dict[promoter_end_millions] # identify if the ATAC-Seq peak occurs within user-defined promoter region atac_seqs_in_promoter = [] for potential_atac_seq in potential_atac_seqs_in_promoter: atac_seq_start = potential_atac_seq[0] atac_seq_end = potential_atac_seq[0] + potential_atac_seq[1] atac_seq_score = potential_atac_seq[2] overlap = overlap_range([promoter_start, promoter_end], [atac_seq_start, atac_seq_end]) if len(overlap) > 0: atac_seqs_in_promoter.append([atac_seq_start, atac_seq_end, atac_seq_score]) # convert the positions of the in-promoter atac_seqs to tss-relative converted_atac_seqs_in_promoter = [] for atac_seq_in_promoter in atac_seqs_in_promoter: atac_seq_start = atac_seq_in_promoter[0] atac_seq_end = atac_seq_in_promoter[1] atac_seq_score = atac_seq_in_promoter[2] if strand == 1: converted_atac_seq_start = (tss - atac_seq_start) * -1 converted_atac_seq_end = (tss - atac_seq_end) * -1 if strand == -1: converted_atac_seq_start = (tss - atac_seq_start) converted_atac_seq_end = (tss - atac_seq_end) converted_atac_seq = [converted_atac_seq_start, converted_atac_seq_end, atac_seq_score] converted_atac_seqs_in_promoter.append(converted_atac_seq) return converted_atac_seqs_in_promoter ##def plot_promoter(target_species, transcript_id, species_group, alignment, alignment_len, promoter_before_tss, promoter_after_tss, transcript_name, top_x_greatest_hits_dict, target_dir, converted_reg_dict, converted_gerps_in_promoter, cpg_list, converted_cages, converted_metaclusters_in_promoter, converted_atac_seqs_in_promoter, converted_eqtls, cage_correlations_hit_tf_dict): def plot_promoter(target_species, transcript_id, species_group, alignment, alignment_len, promoter_before_tss, promoter_after_tss, transcript_name, top_x_greatest_hits_dict, target_dir, converted_reg_dict, converted_gerps_in_promoter, cpg_list, converted_cages, converted_metaclusters_in_promoter, converted_atac_seqs_in_promoter, converted_eqtls): """ Plot the predicted TFBSs, onto a 5000 nt promoter graph, which possess support above the current strand threshold. ['binding_prot', 'species', 'motif', 'strand', 'start', 'end', 'TSS-relative start', 'TSS-relative end', 'PWM score', 'p-value', 'pos in align.', 'combined affinity score', 'support'] """ if target_species == "homo_sapiens": fig = plt.figure(figsize=(10, 6)) ax1 = plt.subplot2grid((20,1),(0,0), rowspan = 6, colspan = 11) ax8 = plt.subplot2grid((20,1),(6,0), rowspan = 2, colspan = 11) ax2 = plt.subplot2grid((20,1),(8,0), sharex=ax1, rowspan = 2, colspan = 11) ax3 = plt.subplot2grid((20,1),(10,0), sharex=ax1, rowspan = 2, colspan = 11) ax4 = plt.subplot2grid((20,1),(12,0), sharex=ax1, rowspan = 2, colspan = 11) ax5 = plt.subplot2grid((20,1),(14,0), sharex=ax1, rowspan = 2, colspan = 11) ax6 = plt.subplot2grid((20,1),(16,0), sharex=ax1, rowspan = 2, colspan = 11) ax7 = plt.subplot2grid((20,1),(18,0), sharex=ax1, rowspan = 2, colspan = 11) # Set format of the plot(s) # Hide x-ticks for all plots except the lowest plt.setp(ax1.get_xticklabels(), visible=False) plt.setp(ax2.get_xticklabels(), visible=False) plt.setp(ax3.get_xticklabels(), visible=False) plt.setp(ax4.get_xticklabels(), visible=False) plt.setp(ax5.get_xticklabels(), visible=False) plt.setp(ax6.get_xticklabels(), visible=False) plt.setp(ax8.get_xticklabels(), visible=False) # plt + ax labels ax1.text(1.02,.5,'Predicted TFBSs', verticalalignment='center', transform=ax1.transAxes, rotation='vertical', fontsize=8) ax1.set_ylabel("Combined Affinity Score", fontsize = 8, labelpad = 0) ax1.text(1.005,0.99,'+ strand', verticalalignment='top', transform=ax1.transAxes, rotation='vertical', fontsize=6) ax1.text(1.005,.01,'- strand', verticalalignment='bottom', transform=ax1.transAxes, rotation='vertical', fontsize=6) ax2.text(1.01,.5,'GERP\nConserv.\n'+species_group, verticalalignment='center', transform=ax2.transAxes, rotation='vertical', fontsize=5) ax3.text(1.01,.5,'CpG\nObs/Exp', verticalalignment='center', transform=ax3.transAxes, rotation='vertical', fontsize=6) ax4.text(1.01,.5,'eQTLs', verticalalignment='center', transform=ax4.transAxes, rotation='vertical', fontsize=6) ax5.text(1.01,.5,'TFBS\nMeta\nClusters', verticalalignment='center', transform=ax5.transAxes, rotation='vertical', fontsize=6) ax6.text(1.01,.5,'ATAC-Seq', verticalalignment='center', transform=ax6.transAxes, rotation='vertical', fontsize=6) ax7.text(1.01,.5,'CAGE\nPeaks\n(TSSs)', verticalalignment='center', transform=ax7.transAxes, rotation='vertical', fontsize=6) ax8.text(1.01,.5,'TF\nExpress.\nCorr.', verticalalignment='center', transform=ax8.transAxes, rotation='vertical', fontsize=6) ### as of now the data for non-human species is limited to predicted TFBSs, conservation, and CpG else: fig = plt.figure(figsize=(10, 6)) ax1 = plt.subplot2grid((10,1),(0,0), rowspan = 6, colspan = 11) ax2 = plt.subplot2grid((10,1),(6,0), sharex=ax1, rowspan = 2, colspan = 11) ax3 = plt.subplot2grid((10,1),(8,0), sharex=ax1, rowspan = 2, colspan = 11) # Set format of the plot(s) # Hide x-ticks for all plots except the lowest plt.setp(ax1.get_xticklabels(), visible=False) plt.setp(ax2.get_xticklabels(), visible=False) # plt + ax labels ax1.text(1.02,.5,'Predicted TFBSs', verticalalignment='center', transform=ax1.transAxes, rotation='vertical', fontsize=8) ax1.set_ylabel("Combined Affinity Score", fontsize = 8, labelpad = 0) ax1.text(1.005,0.99,'+ strand', verticalalignment='top', transform=ax1.transAxes, rotation='vertical', fontsize=6) ax1.text(1.005,.01,'- strand', verticalalignment='bottom', transform=ax1.transAxes, rotation='vertical', fontsize=6) ax2.text(1.01,.5,'GERP\nConserv.\n'+species_group, verticalalignment='center', transform=ax2.transAxes, rotation='vertical', fontsize=5) ax3.text(1.01,.5,'CpG\nObs/Exp', verticalalignment='center', transform=ax3.transAxes, rotation='vertical', fontsize=6) # plot title title_str = target_species+"\n"+" ".join([transcript_name, transcript_id]) fig.text(0.065, 0.5, title_str, horizontalalignment='center', verticalalignment='center', transform=ax1.transAxes, rotation='vertical', fontsize=14) mpl.rcParams['axes.linewidth'] = 1.1 plt.xlabel("Nucleotide position before TSS", labelpad=5) # Generate data for each of the greatest_hits and plot corresponding bar color_series=['#FFB300','#803E75','#FF6800','#A6BDD7','#C10020','#CEA262','#817066','#007D34','#F6768E','#00538A','#FF7A5C','#53377A','#FF8E00','#B32851','#F4C800','#7F180D','#93AA00','#593315','#F13A13','#232C16'] color_dict = {'CTCF':'#FF0000', 'TBP':'#FF00FF'} y_range = [] labels_used = [] # Create a list sorted descending by combined affinity score, so that lower support hits that overlap can be seen. sorted_by_ca_list = [] for TF, great_hits in top_x_greatest_hits_dict.iteritems(): for great_hit in great_hits: sorted_by_ca_list.append(great_hit) # ref-point sorted_by_ca_list = sorted(sorted_by_ca_list, key=itemgetter(9), reverse=True) ### AX1: Predicted TFBSs for sorted_great_hit in sorted_by_ca_list: tf_name = sorted_great_hit[0] # choose a unique color for each tf_name if tf_name not in color_dict: pick = numpyrandom.randint(0, len(color_series) - 1) picked_color = color_series[pick] color_series.remove(picked_color) color_dict[tf_name] = picked_color else: picked_color = color_dict[tf_name] # if the label has been used, set label to "", otherwise labels will repeat in legend if tf_name in labels_used: lab = "" else: lab = tf_name labels_used.append(tf_name) edge_color = picked_color x_series = [] y_series = [] # ref-point ## binding_site_start = sorted_great_hit[6] ## binding_site_end = sorted_great_hit[7] ## combined_affinity = sorted_great_hit[12] ## binding_strand = int(sorted_great_hit[3]) #'binding prot.', 'motif', 'strand', 'start', 'end', 'TSS-relative start', 'TSS-relative end', 'frame score', 'p-value', 'combined\naffinity\nscore', 'species\nweights\nsum', 'cage\nweights\nsum', 'eqtls\nweights\nsum', 'atac\nweights\nsum', 'metacluster\nweights\nsum', 'cpg\nweight', 'corr.\nweight\nsum'] binding_site_start = sorted_great_hit[5] binding_site_end = sorted_great_hit[6] combined_affinity = sorted_great_hit[9] binding_strand = int(sorted_great_hit[2]) TF_center_point = float(binding_site_start + binding_site_end)/2 TF_width = abs(binding_site_start - binding_site_end) x_series.append(TF_center_point) y_series.append(combined_affinity * binding_strand) y_range.append(combined_affinity) ax1.bar(x_series, y_series, facecolor = picked_color, edgecolor = edge_color, linewidth=1, alpha=0.9, align = 'center', width = TF_width, label = lab) # Set y-axis height based on number of entries in alignment y_range.sort() tens_y = int(y_range[-1])/10 + 1 # Ensembl regulatory information # All will be horizontally plotted in some shade of red if len(converted_reg_dict) > 0: alpha_gradient = 1.0 ## alpha_gradient_dict = {1:0, 2:0.5, 3:0.25, 4:0.225} alpha_gradient_dict = {1:0} for i in range(2,100): alpha_gradient_dict[i] = 1./i reg_height = 1 reg_height = (tens_y * 1.0)/4 for reg_id, data in converted_reg_dict.iteritems(): converted_start = int(data['converted_start']) converted_end = int(data['converted_end']) # limit length to first two words so legend isn't overrun description = data['description'] reg_x_series = [] reg_y_series = [] center_point = float(converted_start + converted_end)/2 reg_x_series.append(center_point) reg_y_series.append(reg_height) reg_x_series.append(center_point) reg_y_series.append(reg_height * -1) reg_width = abs(converted_start - converted_end) ax1.bar(reg_x_series, reg_y_series, facecolor='red', edgecolor='red', alpha=alpha_gradient, align = 'center', width=reg_width, label=description) alpha_gradient -= alpha_gradient_dict[len(converted_reg_dict)] reg_height += 0.5 ax1.axhline(0, color = 'black', linewidth=0.5) ### AX2: Add GERP conservation bars for converted_gerp_in_promoter in converted_gerps_in_promoter: converted_gerp_start = converted_gerp_in_promoter[0] converted_gerp_end = converted_gerp_in_promoter[1] alpha_gradient = 1 gerp_height = 1 gerp_x_series = [] gerp_y_series = [] gerp_midpoint = float(converted_gerp_start + converted_gerp_end)/2 gerp_x_series.append(gerp_midpoint) gerp_y_series.append(gerp_height) gerp_width = abs(converted_gerp_start - converted_gerp_end) ax2.bar(gerp_x_series, gerp_y_series, facecolor='black', edgecolor='black', alpha=alpha_gradient, align = 'center', width=gerp_width) ax2.set_yticks([0, 1]) plt.setp(ax2.get_yticklabels(), fontsize=6) ax2.set_ylim(0, 1) ### AX3: CpG plot # [1 C, 1 if G, 1 if CPG, CorG, num_cpg, obs2exp] obs2exp = [x[5] for x in cpg_list] ax3.plot(range(-1 * alignment_len + promoter_after_tss, promoter_after_tss), obs2exp, color = 'red') ## gpc = [x[2] for x in cpg_list] gpc = [] top_obs2exp = ax3.get_ylim()[-1] for x in cpg_list: if x[2] == 0: gpc.append(x[2]) else: if top_obs2exp <= 1: gpc.append(1) else: gpc.append(top_obs2exp) ax3.bar(range(-1 * alignment_len + promoter_after_tss, promoter_after_tss), gpc, color = 'black') if top_obs2exp <1: top_obs2exp = 1 ax3.set_ylim(0, top_obs2exp) ax3.set_yticks([0, 0.6, 1]) ax3.set_yticklabels([0, 0.6, 1], va='center') plt.setp(ax3.get_yticklabels(), fontsize=6) ax3.axhline(0.6, color = 'black', alpha = 0.4) ### human-specific experimental data if target_species == "homo_sapiens": ### AX7: CAGE plot cage_height = 1 cage_labels = [] for converted_cage in converted_cages: converted_cage_start = converted_cage[0] converted_cage_end = converted_cage[1] description = converted_cage[2] ## if ".." in description: ## description = "" cage_x_series = [] cage_y_series = [] cage_center_point = float(converted_cage_start + converted_cage_end)/2 cage_x_series.append(cage_center_point) cage_y_series.append(cage_height) cage_width = abs(converted_cage_start - converted_cage_end) ax7.bar(cage_x_series, cage_y_series, facecolor='black', edgecolor='black', align = 'center', width=cage_width, label=description) # add label for the CAGE peak if -1 * promoter_before_tss <= converted_cage_start <= promoter_after_tss + 1 or -1 * promoter_before_tss <= converted_cage_end <= promoter_after_tss + 1: plt.text(cage_center_point, cage_height, description, color="red", rotation = 270, fontsize=5, horizontalalignment='center', verticalalignment='top') ax7.axes.get_yaxis().set_visible(False) ### AX5: GTRD plot gtrd_height = 1 for converted_metacluster_in_promoter in converted_metaclusters_in_promoter: converted_metacluster_start = converted_metacluster_in_promoter[0] converted_metacluster_end = converted_metacluster_in_promoter[1] metacluster_peak_count = converted_metacluster_in_promoter[2] alpha_gradient = 0.5 + (metacluster_peak_count/1220.0)/2 gtrd_x_series = [] gtrd_y_series = [] gtrd_center_point = float(converted_metacluster_start + converted_metacluster_end)/2 gtrd_x_series.append(gtrd_center_point) gtrd_y_series.append(gtrd_height) gtrd_width = abs(converted_metacluster_start - converted_metacluster_end) ax5.bar(gtrd_x_series, gtrd_y_series, facecolor='black', edgecolor='black', alpha=alpha_gradient, align = 'center', width=gtrd_width) ax5.axes.get_yaxis().set_visible(False) ### AX6: ATAC-Seq plot for converted_atac_seq_in_promoter in converted_atac_seqs_in_promoter: converted_atac_seq_start = converted_atac_seq_in_promoter[0] converted_atac_seq_end = converted_atac_seq_in_promoter[1] atac_seq_peak_score = converted_atac_seq_in_promoter[2] alpha_gradient = 0.5 + atac_seq_peak_score/93.234864 gtrd_x_series = [] gtrd_y_series = [] gtrd_midpoint = float(converted_atac_seq_start + converted_atac_seq_end)/2 gtrd_x_series.append(gtrd_midpoint) gtrd_y_series.append(gtrd_height) gtrd_width = abs(converted_atac_seq_start - converted_atac_seq_end) ax6.bar(gtrd_x_series, gtrd_y_series, facecolor='black', edgecolor='black', alpha=alpha_gradient, align = 'center', width=gtrd_width) ax6.axes.get_yaxis().set_visible(False) ### AX4: eQTLs plot colors = ["green", "red"] magnitudes = [] for converted_eqtl in converted_eqtls: converted_eqtl_start, converted_eqtl_end, converted_eqtl_mag = converted_eqtl if -1 * promoter_before_tss <= converted_eqtl_start <= promoter_after_tss + 1 or -1 * promoter_before_tss <= converted_eqtl_end <= promoter_after_tss + 1: eqtl_midpoint = float(converted_eqtl_start + converted_eqtl_end)/2 eqtl_width = abs(converted_eqtl_start - converted_eqtl_end) eqtl_x_series = [] eqtl_y_series = [] eqtl_x_series.append(eqtl_midpoint) eqtl_y_series.append(converted_eqtl_mag) magnitudes.append(converted_eqtl_mag) if converted_eqtl_mag > 0: c = colors[0] else: c = colors[1] ax4.bar(eqtl_x_series, eqtl_y_series, facecolor=c, edgecolor=c, align = 'center', width=eqtl_width) ## # arrow does not format properly, perhaps due to size. y value starts not at 0, and arrow wraps over itself. ## ax4.arrow(eqtl_midpoint, 0, 0, converted_eqtl_mag, color=c, length_includes_head = True, lw=10, width=0.01) ax4_yticks = [-1,0,1] if len(magnitudes) > 0: magnitudes.sort() ax4_yticks = [math.floor(magnitudes[0]), 0, math.ceil(magnitudes[-1])] ax4.set_yticks(ax4_yticks) ax4.set_yticklabels(ax4_yticks, va='center') plt.setp(ax4.get_yticklabels(), fontsize=6) ax4.axhline(0.0, color = 'black', alpha = 0.4) ### AX8: cage_correlations # rebuild dict to have just the top correlation # ref-point ## plot_tfs_corrs_colors = [(tf_name, cage_correlations_hit_tf_dict[tf_name], color_dict[tf_name]) if tf_name in cage_correlations_hit_tf_dict else (tf_name, 0, color_dict[tf_name]) for tf_name in top_x_greatest_hits_dict] plot_tfs_corrs_colors = [(tf_name, hits_list[0][16], color_dict[tf_name]) for tf_name, hits_list in top_x_greatest_hits_dict.iteritems()] plot_tfs_corrs_colors_sorted = sorted(plot_tfs_corrs_colors, key=itemgetter(1), reverse=True) ax8.bar(range(0, len(plot_tfs_corrs_colors_sorted)), [x[1] for x in plot_tfs_corrs_colors_sorted], color=[x[2] for x in plot_tfs_corrs_colors_sorted], edgecolor = "none") ax8.set_ylim(0, plot_tfs_corrs_colors_sorted[0][1]+1) ax8.set_xlim(-1, len(top_x_greatest_hits_dict)) ax8.set_yticks([0, math.ceil(plot_tfs_corrs_colors_sorted[0][1])+1]) plt.setp(ax8.get_yticklabels(), fontsize=6) ## set ticks # based on 100's if y_range[-1] <= 100: for falling_y_thresh in range(100, -1, -10): if y_range[-1] < falling_y_thresh: y_thresh = falling_y_thresh ax1.set_yticks(range(-1* y_thresh, y_thresh+1, 10)) else: ax1.set_yticks(range(-1 * (((tens_y*10)/100)+1)*100, (((tens_y*10)/100)+2)*100, 100)) ## if y_range[-1] <= 50: ## ax1.set_yticks(range(-50, 50+1, 10)) ## else: ## ax1.set_yticks(range(-1 * (((tens_y*10)/100)+1)*100, (((tens_y*10)/100)+2)*100, 100)) ylabs=ax1.get_yticks().tolist() ylabs=[abs(x) for x in ylabs] ax1.set_yticklabels(ylabs) plt.setp(ax1.get_yticklabels(), fontsize=8) # Misc plt.xlim([-1 * promoter_before_tss, promoter_after_tss + 1]) # legend num_cols = 6 ax1.legend(bbox_to_anchor=[0., 1.1, 1.0, .102], loc='center', ncol=num_cols, prop={'size':8}, mode="expand", borderaxespad=0.) # produce .svg figure plt.subplots_adjust(hspace=0.40) fig.savefig(os.path.join(target_dir, os.path.basename(target_dir) + '.Promoterhisto' + '.svg'), facecolor='white', bbox_inches='tight') plt.clf() plt.close() ## # variable x-ticks ## dist = promoter_before_tss + promoter_after_tss ## rough_interval = dist/10 ## power = int(np.log10(rough_interval)) ## xtick_jump = (rough_interval/(10**power)) * 10**power ## ax3.set_xticks(range(-1 * promoter_before_tss, promoter_after_tss + 1, xtick_jump)) ################################################################################ # Initiating Variables ######################################################### ################################################################################ ################################################################################ # Execution #################################################################### ################################################################################ signal.signal(signal.SIGINT, signal_handler) def main(): """ All the things. """ total_time_start = time.time() print("Executing tfbs_footprinter version %s." % __version__) # Create directory for results output_dir = os.path.join(curdir, "tfbs_results") directory_creator(output_dir) # begin timing and logging logging.basicConfig(filename=os.path.join(os.path.dirname(output_dir), 'TFBS_footprinter.log'), level=logging.INFO, format='%(asctime)s: [%(levelname)s] %(message)s') logging.info(" ".join(["***NEW SET OF ANALYSES HAS BEGUN***"])) if is_online(): args_lists, exp_data_update, nofigure = get_args() # if experimental data dir does not exist or user has requested an exp data update, then update. experimental_data_present = experimentalDataUpdater(exp_data_update) if experimental_data_present: if len(args_lists) > 0: # analysis variables # non-species-specific # dictionary of thresholds for each TF ## # updated version, which requires the presence of a current versions file ## pwm_score_threshold_dict_filename = os.path.join(experimental_data_dir, current_versions["jaspar_thresholds"]) pwm_score_threshold_dict_filename = os.path.join(script_dir, 'data/all_tfs_thresholds.jaspar_2018.1.json') pwm_score_threshold_dicta = load_json(pwm_score_threshold_dict_filename) pwm_score_threshold_dict = {} for k,v in pwm_score_threshold_dicta.iteritems(): pwm_score_threshold_dict[k] = {float(kk):float(vv) for kk,vv in v.iteritems()} # load mono-nuc PFMs TFBS_matrix_filename = os.path.join(script_dir, 'data/pwms.json') TFBS_matrix_dict = load_json(TFBS_matrix_filename) TFBS_matrix_dict = {k.upper():v for k,v in TFBS_matrix_dict.iteritems()} # load JASPAR PWM score weights all_pwms_loglikelihood_dict_filename = os.path.join(script_dir, 'data/all_pwms_loglikelihood_dict.reduced.msg') all_pwms_loglikelihood_dict = load_msgpack(all_pwms_loglikelihood_dict_filename) last_target_species = None for i, args_list in enumerate(args_lists): args, transcript_ids_filename, transcript_id, target_tfs_filename, promoter_before_tss, promoter_after_tss, top_x_tfs_count, pval = args_list print("Ensembl transcript id:", transcript_id) logging.info(" ".join(["***ANALYSIS OF A NEW TRANSCRIPT HAS BEGUN:", transcript_id])) logging.info(" ".join(["Arguments used in this run:", str(args_list)])) # target dir naming start_end = "("+"_".join([str(promoter_before_tss), str(promoter_after_tss)])+")" target_dir_name = "_".join([transcript_id+start_end, str(pval)]) target_dir = os.path.join(output_dir, target_dir_name) # declare all possible results filenames. tfbss_found_dict_outfilename = os.path.join(target_dir, "TFBSs_found.all.json") cluster_dict_filename = os.path.join(target_dir, "cluster_dict.json") ensembl_aligned_filename = os.path.join(target_dir, "alignment_uncleaned.fasta") cleaned_aligned_filename = os.path.join(target_dir, "alignment_cleaned.fasta") transcript_dict_filename = os.path.join(target_dir, "transcript_dict.json") gene_dict_filename = os.path.join(target_dir, "gene_dict.json") regulatory_decoded_filename = os.path.join(target_dir, "regulatory_decoded.json") sortedclusters_table_filename = os.path.join(target_dir, ".".join(["TFBSs_found", "sortedclusters", "csv"])) # check if results have been created for this query. required_results_filenames = [cluster_dict_filename, ensembl_aligned_filename, cleaned_aligned_filename, transcript_dict_filename, gene_dict_filename, regulatory_decoded_filename, sortedclusters_table_filename] results_files_exist = all([os.path.exists(x) for x in required_results_filenames]) if not results_files_exist: # identify if the target transcript id exists in Ensembl decoded_json_description = transfabulator(transcript_id, transcript_dict_filename) transcript_id_pass = test_transcript_id(decoded_json_description, transcript_id) # parse target transcript id data from successful retrieval, and continue if transcript_id_pass: # create target output dir directory_creator(target_dir) logging.info(" ".join(["Results will be output to:", target_dir])) target_species, transcript_name, ens_gene_id, chromosome, tss, strand, promoter_start, promoter_end, chr_start, chr_end = transcript_data_retrieve(decoded_json_description, transcript_dict_filename, promoter_before_tss, promoter_after_tss) gene_name, gene_len = gene_data_retrieve(gene_dict_filename, ens_gene_id) # species-specific species_specific_data_dir = os.path.join(script_dir, 'data', target_species) experimentaldata(target_species) if target_species != last_target_species or chromosome != last_chromosome: if os.path.exists(species_specific_data_dir): gerp_conservation_locations_dict, gerp_conservation_weight_dict, species_group, cage_dict, TF_cage_dict, cage_dist_weights_dict, cage_correlations_dict, cage_corr_weights_dict, atac_dist_weights_dict, metacluster_overlap_weights_dict, cpg_obsexp_weights_dict, cpg_obsexp_weights_dict_keys, gtex_variants, gtex_weights_dict, gtrd_metaclusters_dict, atac_seq_dict, cas_pvalues_dict = species_specific_data(target_species, chromosome, species_specific_data_dir) last_target_species = target_species last_chromosome = chromosome # load target tfs if target_tfs_filename == "" or target_tfs_filename == None: target_tfs_filename = None target_tfs_list = TFBS_matrix_dict.keys() if target_tfs_filename != None: target_tfs_list = parse_tf_ids(target_tfs_filename) target_tfs_list = compare_tfs_list_jaspar(target_tfs_list, TFBS_matrix_dict) # filenames for alignment and ensembl regulatory data alignment = alignment_tools(ensembl_aligned_filename, cleaned_aligned_filename, target_species, chromosome, strand, promoter_start, promoter_end) # continue if there is an alignment from Ensembl, and after cleaning if len(alignment) > 0: target_species_row = alignment[0] alignment_len = len(target_species_row['seq'].replace('-','')) # retrieve regulatory regulatory_decoded = retrieve_regulatory(chromosome, strand, promoter_start, promoter_end, regulatory_decoded_filename, target_species) converted_reg_dict = reg_position_translate(tss,regulatory_decoded,promoter_start,promoter_end,strand,promoter_before_tss,promoter_after_tss) # conservation converted_gerps_in_promoter = gerp_positions_translate(target_dir, gerp_conservation_locations_dict, chromosome, strand, promoter_start, promoter_end, tss) # identify information content of each column of the alignment cpg_list = CpG(cleaned_aligned_filename) # identify CAGEs in proximity to Ensembl TSS, convert for plotting converted_cages = cage_position_translate(gene_name, transcript_id,tss,cage_dict,promoter_start,promoter_end,strand,promoter_before_tss,promoter_after_tss) # identify eQTLs in proximity to Ensembl TSS, convert for plotting converted_eqtls = gtex_position_translate(ens_gene_id,gtex_variants,tss,promoter_start,promoter_end,strand,promoter_before_tss,promoter_after_tss) # GTRD metaclusters converted_metaclusters_in_promoter = gtrd_positions_translate(target_dir, gtrd_metaclusters_dict, chromosome, strand, promoter_start, promoter_end, tss) # ATAC-seq data converted_atac_seqs_in_promoter = atac_pos_translate(atac_seq_dict, chromosome, strand, promoter_start, promoter_end, tss) # create index of aligned to unaligned positions unaligned2aligned_index_dict = unaligned2aligned_indexes(cleaned_aligned_filename) if not (os.path.exists(cluster_dict_filename) and os.path.exists(sortedclusters_table_filename)): # score alignment for tfbss tfbss_found_dict = tfbs_finder(transcript_name, alignment, target_tfs_list, TFBS_matrix_dict, target_dir, pwm_score_threshold_dict, all_pwms_loglikelihood_dict, unaligned2aligned_index_dict, promoter_after_tss, pval) # sort through scores, identify hits in target_species supported in other species cluster_dict = find_clusters(gene_name, ens_gene_id, chr_start, chr_end, alignment, target_species, chromosome, tfbss_found_dict, cleaned_aligned_filename, converted_gerps_in_promoter, gerp_conservation_weight_dict, converted_cages, converted_metaclusters_in_promoter, converted_atac_seqs_in_promoter, converted_eqtls, gtex_weights_dict, transcript_id, cage_dict, TF_cage_dict, cage_dist_weights_dict, atac_dist_weights_dict, metacluster_overlap_weights_dict, cpg_list, cpg_obsexp_weights_dict, cpg_obsexp_weights_dict_keys, cage_correlations_dict, cage_corr_weights_dict, gtex_variants, gene_len, cas_pvalues_dict) tfbss_found_dict.clear() dump_json(cluster_dict_filename, cluster_dict) else: cluster_dict = load_json(cluster_dict_filename) # sort the target_species hits supported by other species sorted_clusters_target_species_hits_list = sort_target_species_hits(cluster_dict) target_species_hits_table_writer(sorted_clusters_target_species_hits_list, sortedclusters_table_filename) # extract the top x target_species hits supported by other species top_x_greatest_hits_dict = top_x_greatest_hits(sorted_clusters_target_species_hits_list, top_x_tfs_count) # plot the top x target_species hits if not nofigure: if len(top_x_greatest_hits_dict) > 0: plot_promoter(target_species, transcript_id, species_group, alignment, alignment_len, promoter_before_tss, promoter_after_tss, transcript_name, top_x_greatest_hits_dict, target_dir, converted_reg_dict, converted_gerps_in_promoter, cpg_list, converted_cages, converted_metaclusters_in_promoter, converted_atac_seqs_in_promoter, converted_eqtls) total_time_end = time.time() logging.info(" ".join(["Total time for", str(len(args_lists)), "transcripts:", str(total_time_end - total_time_start), "seconds"]) + "\n\n") else: print("System does not appear to be connected to the internet. Exiting TFBS_footprinter.")
mit
ethankruse/kepler_orrery
diverging_map.py
1
12013
#!/usr/bin/env python #------------------------------------------------------------------------------ # Name: colorMapCreator.py # Purpose: Generate reasonable diverging colormaps using the technique # presented in "Diverging Color Maps for Scientific Visualization # (Expanded)" by Kenneth Moreland. # # Author: Carlo Barth # # Created: 22.10.2013 # Copyright: (c) 2013 #------------------------------------------------------------------------------ # main() (diverge_map) function modified by Ethan Kruse 2015 # to return a colormap directly. Also found some bugs, but am hacking around # that for now # Imports import numpy as np # ============================================================================= # ====================== The Class ColorMapCreator ============================ # ============================================================================= class ColorMapCreator: """ Class ColorMapCreator: Create diverging colormaps from RGB1 to RGB2 using the method of Moreland or a simple CIELAB-interpolation. numColors controls the number of color values to output (odd number) and divide gives the possibility to output RGB-values from 0.0-1.0 instead of 0-255. If a filename different than "" is given, the colormap will be saved to this file, otherwise a simple output using print will be given. """ # ======================== Global Variables =============================== # Reference white-point D65 Xn, Yn, Zn = [95.047, 100.0, 108.883] # from Adobe Cookbook # Transfer-matrix for the conversion of RGB to XYZ color space transM = np.array([[0.4124564, 0.2126729, 0.0193339], [0.3575761, 0.7151522, 0.1191920], [0.1804375, 0.0721750, 0.9503041]]) # ============================= Functions ================================= def __init__(self, RGB1, RGB2, numColors = 33., divide = 255., method = "moreland", filename = ""): # create a class variable for the number of colors self.numColors = numColors # assert an odd number of points assert np.mod(numColors,2) == 1, \ "For diverging colormaps odd numbers of colors are desireable!" # assert a known method was specified knownMethods = ["moreland", "lab"] assert method in knownMethods, "Unknown method was specified!" if method == knownMethods[0]: #generate the Msh diverging colormap self.colorMap = self.generateColorMap(RGB1, RGB2, divide) elif method == knownMethods[1]: # generate the Lab diverging colormap self.colorMap = self.generateColorMapLab(RGB1, RGB2, divide) # print out the colormap of save it to file named filename if filename == "": for c in self.colorMap: pass # print "{0}, {1}, {2}".format(c[0], c[1], c[2]) else: with open(filename, "w") as f: for c in self.colorMap: f.write("{0}, {1}, {2}\n".format(c[0], c[1], c[2])) #- def rgblinear(self, RGB): """ Conversion from the sRGB components to RGB components with physically linear properties. """ # initialize the linear RGB array RGBlinear = np.zeros((3,)) # calculate the linear RGB values for i,value in enumerate(RGB): value = float(value) / 255. if value > 0.04045 : value = ( ( value + 0.055 ) / 1.055 ) ** 2.4 else : value = value / 12.92 RGBlinear[i] = value * 100. return RGBlinear #- def sRGB(self, RGBlinear): """ Back conversion from linear RGB to sRGB. """ # initialize the sRGB array RGB = np.zeros((3,)) # calculate the sRGB values for i,value in enumerate(RGBlinear): value = float(value) / 100. if value > 0.00313080495356037152: value = (1.055 * np.power(value,1./2.4) ) - 0.055 else : value = value * 12.92 RGB[i] = round(value * 255.) return RGB #- def rgb2xyz(self, RGB): """ Conversion of RGB to XYZ using the transfer-matrix """ return np.dot(self.rgblinear(RGB), self.transM) #- def xyz2rgb(self, XYZ): """ Conversion of RGB to XYZ using the transfer-matrix """ #return np.round(np.dot(XYZ, np.array(np.matrix(transM).I))) return self.sRGB(np.dot(XYZ, np.array(np.matrix(self.transM).I))) #- def rgb2Lab(self, RGB): """ Conversion of RGB to CIELAB """ # convert RGB to XYZ X, Y, Z = (self.rgb2xyz(RGB)).tolist() # helper function def f(x): limit = 0.008856 if x> limit: return np.power(x, 1./3.) else: return 7.787*x + 16./116. # calculation of L, a and b L = 116. * ( f(Y/self.Yn) - (16./116.) ) a = 500. * ( f(X/self.Xn) - f(Y/self.Yn) ) b = 200. * ( f(Y/self.Yn) - f(Z/self.Zn) ) return np.array([L, a, b]) #- def Lab2rgb(self, Lab): """ Conversion of CIELAB to RGB """ # unpack the Lab-array L, a, b = Lab.tolist() # helper function def finverse(x): xlim = 0.008856 a = 7.787 b = 16./116. ylim = a*xlim+b if x > ylim: return np.power(x, 3) else: return ( x - b ) / a # calculation of X, Y and Z X = self.Xn * finverse( (a/500.) + (L+16.)/116. ) Y = self.Yn * finverse( (L+16.)/116. ) Z = self.Zn * finverse( (L+16.)/116. - (b/200.) ) # conversion of XYZ to RGB return self.xyz2rgb(np.array([X,Y,Z])) #- def Lab2Msh(self, Lab): """ Conversion of CIELAB to Msh """ # unpack the Lab-array L, a, b = Lab.tolist() # calculation of M, s and h M = np.sqrt(np.sum(np.power(Lab, 2))) s = np.arccos(L/M) h = np.arctan2(b,a) return np.array([M,s,h]) #- def Msh2Lab(self, Msh): """ Conversion of Msh to CIELAB """ # unpack the Msh-array M, s, h = Msh.tolist() # calculation of L, a and b L = M*np.cos(s) a = M*np.sin(s)*np.cos(h) b = M*np.sin(s)*np.sin(h) return np.array([L,a,b]) #- def rgb2Msh(self, RGB): """ Direct conversion of RGB to Msh. """ return self.Lab2Msh(self.rgb2Lab(RGB)) #- def Msh2rgb(self, Msh): """ Direct conversion of Msh to RGB. """ return self.Lab2rgb(self.Msh2Lab(Msh)) #- def adjustHue(self, MshSat, Munsat): """ Function to provide an adjusted hue when interpolating to an unsaturated color in Msh space. """ # unpack the saturated Msh-array Msat, ssat, hsat = MshSat.tolist() if Msat >= Munsat: return hsat else: hSpin = ssat * np.sqrt(Munsat**2 - Msat**2) / \ (Msat * np.sin(ssat)) if hsat > -np.pi/3: return hsat + hSpin else: return hsat - hSpin #- def interpolateColor(self, RGB1, RGB2, interp): """ Interpolation algorithm to automatically create continuous diverging color maps. """ # convert RGB to Msh and unpack Msh1 = self.rgb2Msh(RGB1) M1, s1, h1 = Msh1.tolist() Msh2 = self.rgb2Msh(RGB2) M2, s2, h2 = Msh2.tolist() # If points saturated and distinct, place white in middle if (s1>0.05) and (s2>0.05) and ( np.abs(h1-h2) > np.pi/3. ): Mmid = max([M1, M2, 88.]) if interp < 0.5: M2 = Mmid s2 = 0. h2 = 0. interp = 2*interp else: M1 = Mmid s1 = 0. h1 = 0. interp = 2*interp-1. # Adjust hue of unsaturated colors if (s1 < 0.05) and (s2 > 0.05): h1 = self.adjustHue(np.array([M2,s2,h2]), M1) elif (s2 < 0.05) and (s1 > 0.05): h2 = self.adjustHue(np.array([M1,s1,h1]), M2) # Linear interpolation on adjusted control points MshMid = (1-interp)*np.array([M1,s1,h1]) + \ interp*np.array([M2,s2,h2]) return self.Msh2rgb(MshMid) #- def generateColorMap(self, RGB1, RGB2, divide): """ Generate the complete diverging color map using the Moreland-technique from RGB1 to RGB2, placing "white" in the middle. The number of points given by "numPoints" controls the resolution of the colormap. The optional parameter "divide" gives the possibility to scale the whole colormap, for example to have float values from 0 to 1. """ # calculate scalars = np.linspace(0., 1., self.numColors) RGBs = np.zeros((self.numColors, 3)) for i,s in enumerate(scalars): RGBs[i,:] = self.interpolateColor(RGB1, RGB2, s) return RGBs/divide #- def generateColorMapLab(self, RGB1, RGB2, divide): """ Generate the complete diverging color map using a transition from Lab1 to Lab2, transitioning true RGB-white. The number of points given by "numPoints" controls the resolution of the colormap. The optional parameter "divide" gives the possibility to scale the whole colormap, for example to have float values from 0 to 1. """ # convert to Lab-space Lab1 = self.rgb2Lab(RGB1) Lab2 = self.rgb2Lab(RGB2) LabWhite = np.array([100., 0., 0.]) # initialize the resulting arrays Lab = np.zeros((self.numColors ,3)) RGBs = np.zeros((self.numColors ,3)) N2 = np.floor(self.numColors/2.) # calculate for i in range(3): Lab[0:N2+1, i] = np.linspace(Lab1[i], LabWhite[i], N2+1) Lab[N2:, i] = np.linspace(LabWhite[i], Lab2[i], N2+1) for i,l in enumerate(Lab): RGBs[i,:] = self.Lab2rgb(l) return RGBs/divide #- # ============================================================================= # ========================== The Main-Function ================================ # ============================================================================= # define the initial and final RGB-colors (low and high end of the diverging # colormap def diverge_map(RGB1=np.array([59, 76, 192]), RGB2=np.array([180, 4, 38]), numColors=101): # create a new instance of the ColorMapCreator-class using the desired # options colormap = ColorMapCreator(RGB1, RGB2, numColors=numColors) # there's clearly some bugs since it's possible to get values > 1 # e.g. with starting values RGB1 = [1,185,252], RGB2 = [220, 55, 19], # numColors > 3 # but this is good enough for now colormap.colorMap = np.clip(colormap.colorMap, 0, 1) cdict = {'red': [], 'green': [], 'blue': []} inds = np.linspace(0.,1.,numColors) # create a matplotlib colormap for ii, ind in enumerate(inds): cdict['red'].append([ind, colormap.colorMap[ii, 0], colormap.colorMap[ii, 0]]) cdict['green'].append([ind, colormap.colorMap[ii, 1], colormap.colorMap[ii, 1]]) cdict['blue'].append([ind, colormap.colorMap[ii, 2], colormap.colorMap[ii, 2]]) from matplotlib.colors import LinearSegmentedColormap mycmap = LinearSegmentedColormap('BlueRed1', cdict) return mycmap
mit
wisfern/vnpy
vnpy/trader/gateway/tkproGateway/TradeApi/trade_api.py
4
19713
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import json from builtins import * import pandas as pd from . import utils class EntrustOrder(object): def __init__(self, security, action, price, size): self.security = security self.action = action self.price = price self.size = size def set_log_dir(log_dir): if log_dir: try: import jrpc jrpc.set_log_dir(log_dir) except Exception as e: print("Exception", e) class TradeApi(object): def __init__(self, addr, use_jrpc=True, prod_type="jzts"): """ use_jrpc: True -- Use jrcp_client of C version, for jzts only False -- Use pure python version prod_type: "jaqs" -- jrpc_msgpack_wth_snappy "jzts" -- jrpc_msgpack """ self._remote = None if prod_type == "jzts": try: if use_jrpc: import jrpc self._remote = jrpc.JsonRpcClient() else: from . import jrpc_py self._remote = jrpc_py.JRpcClient(data_format="msgpack") except Exception as e: print("Exception", e) if not self._remote: from . import jrpc_py self._remote = jrpc_py.JRpcClient(data_format="msgpack") else: from . import jrpc_py self._remote = jrpc_py.JRpcClient(data_format="msgpack_snappy") self._remote.on_rpc_callback = self._on_rpc_callback self._remote.on_disconnected = self._on_disconnected self._remote.on_connected = self._on_connected self._remote.connect(addr) self._ordstatus_callback = None self._taskstatus_callback = None self._internal_order_callback = None self._trade_callback = None self._on_connection_callback = None self._connected = False self._username = "" self._password = "" self._strategy_id = 0 self._strategy_selected = False self._data_format = "default" def __del__(self): self._remote.close() def _on_rpc_callback(self, method, data): # print "_on_rpc_callback:", method, data if method == "oms.orderstatus_ind": if self._data_format == "obj": data = utils.to_obj("Order", data) if self._ordstatus_callback: self._ordstatus_callback(data) elif method == "oms.taskstatus_ind": if self._data_format == "obj": data = utils.to_obj("TaskStatus", data) if self._taskstatus_callback: self._taskstatus_callback(data) elif method == "oms.trade_ind": if self._data_format == "obj": data = utils.to_obj("Trade", data) if self._trade_callback: self._trade_callback(data) elif method == "oms.internal_order_ind": if self._data_format == "obj": data = utils.to_obj("QuoteOrder", data) if self._internal_order_callback: self._internal_order_callback(data) def _on_disconnected(self): print("TradeApi: _on_disconnected") self._connected = False self._strategy_selected = False if self._on_connection_callback: self._on_connection_callback(False) def _on_connected(self): print("TradeApi: _on_connected") self._connected = True self._do_login() self._do_use_strategy() if self._on_connection_callback: self._on_connection_callback(True) def _check_session(self): if not self._connected: return (False, "no connection") if self._strategy_selected: return (True, "") r, msg = self._do_login() if not r: return (r, msg) if self._strategy_id: return self._do_use_strategy() else: return (r, msg) def set_data_format(self, format): self._data_format = format def set_connection_callback(self, callback): self._on_connection_callback = callback def set_ordstatus_callback(self, callback): self._ordstatus_callback = callback def set_trade_callback(self, callback): self._trade_callback = callback def set_task_callback(self, callback): self._taskstatus_callback = callback def set_quoteorder_callback(self, callback): self._internal_order_callback = callback def _get_format(self, format, default_format): if format: return format elif self._data_format != "default": return self._data_format else: return default_format def login(self, username, password, format=""): self._username = username self._password = password return self._do_login(format=format) def _do_login(self, format=""): # Shouldn't check connected flag here. ZMQ is a mesageq queue! # if !self._connected : # return (False, "-1,no connection") if self._username and self._password: rpc_params = {"username": self._username, "password": self._password} cr = self._remote.call("auth.login", rpc_params) f = self._get_format(format, "") if f != "obj" and f != "": f = "" return utils.extract_result(cr, format=f, class_name="UserInfo") else: return (False, "-1,empty username or password") def logout(self): rpc_params = {} cr = self._remote.call("auth.logout", rpc_params) return utils.extract_result(cr) def close(self): self._remote.close() def use_strategy(self, strategy_id): if strategy_id: self._strategy_id = strategy_id return self._do_use_strategy() else: # Query rpc_params = {"account_id": 0} cr = self._remote.call("auth.use_strategy", rpc_params) r, msg = utils.extract_result(cr) self._strategy_selected = r return (r, msg) def _do_use_strategy(self): if self._strategy_id: rpc_params = {"account_id": self._strategy_id} cr = self._remote.call("auth.use_strategy", rpc_params) r, msg = utils.extract_result(cr) self._strategy_selected = r return (r, msg) else: return (False, "-1,no strategy_id was specified") def confirm_internal_order(self, task_id, confirmed): """ return (result, message) if result is None, message contains error information """ r, msg = self._check_session() if not r: return (None, msg) rpc_params = {"task_id": task_id, "confirmed": confirmed} cr = self._remote.call("oms.confirm_internal_order", rpc_params) return utils.extract_result(cr) def order(self, security, price, size, algo="", algo_param={}, userdata=""): """ return (result, message) if result is None, message contains error information """ r, msg = self._check_session() if not r: return (None, msg) rpc_params = {"security": security, "price": price, "size": int(size), "algo": algo, "algo_param": json.dumps(algo_param), "user": self._username, "userdata": userdata} cr = self._remote.call("oms.order", rpc_params) return utils.extract_result(cr) def place_order(self, security, action, price, size, algo="", algo_param={}, userdata=""): """ return (result, message) if result is None, message contains error information """ r, msg = self._check_session() if not r: return (None, msg) rpc_params = {"security": security, "action": action, "price": price, "size": int(size), "algo": algo, "algo_param": json.dumps(algo_param), "user": self._username, "userdata": userdata} cr = self._remote.call("oms.place_order", rpc_params) return utils.extract_result(cr) def batch_order(self, orders, algo="", algo_param={}, userdata=""): """ orders format: [ {"security": "000001.SZ", "action": "Buy", "price": 10.0, "size" : 100}, ... ] return (result, message) if result is None, message contains error information """ if not orders or not isinstance(orders, (list, tuple)): return (None, "empty order") if isinstance(orders[0], EntrustOrder): tmp = [] for o in orders: tmp.append({"security": o.security, "price": o.price, "size": int(o.size)}) orders = tmp r, msg = self._check_session() if not r: return (None, msg) rpc_params = {"orders": orders, "algo": algo, "algo_param": json.dumps(algo_param), "user": self._username, "userdata": userdata} cr = self._remote.call("oms.batch_order", rpc_params) return utils.extract_result(cr) def place_batch_order(self, orders, algo="", algo_param={}, userdata=""): """ orders format: [ {"security": "000001.SZ", "action": "Buy", "price": 10.0, "size" : 100}, ... ] return (result, message) if result is None, message contains error information """ if not orders or not isinstance(orders, (list, tuple)): return (None, "empty order") if isinstance(orders[0], EntrustOrder): tmp = [] for o in orders: tmp.append({"security": o.security, "action": o.action, "price": o.price, "size": int(o.size)}) orders = tmp r, msg = self._check_session() if not r: return (None, msg) rpc_params = {"orders": orders, "algo": algo, "algo_param": json.dumps(algo_param), "user": self._username, "userdata": userdata} cr = self._remote.call("oms.place_batch_order", rpc_params) return utils.extract_result(cr) def cancel_order(self, task_id): """ return (result, message) if result is None, message contains error information """ r, msg = self._check_session() if not r: return (None, msg) rpc_params = {"task_id": task_id} cr = self._remote.call("oms.cancel_order", rpc_params) return utils.extract_result(cr) def query_account(self, format=""): """ return pd.dataframe """ r, msg = self._check_session() if not r: return (None, msg) rpc_params = {} data_format = self._get_format(format, "pandas") if data_format == "pandas": rpc_params["format"] = "columnset" cr = self._remote.call("oms.query_account", rpc_params) return utils.extract_result(cr, format=data_format, class_name="Account") def query_position(self, mode="all", securities="", format=""): """ securities: seperate by "," return pd.dataframe """ r, msg = self._check_session() if not r: return (None, msg) rpc_params = {"mode": mode, "security": securities} data_format = self._get_format(format, "pandas") if data_format == "pandas": rpc_params["format"] = "columnset" cr = self._remote.call("oms.query_position", rpc_params) return utils.extract_result(cr, format=data_format, class_name="Position") def query_net_position(self, mode="all", securities="", format=""): """ securities: seperate by "," return pd.dataframe """ r, msg = self._check_session() if not r: return (None, msg) rpc_params = {"mode": mode, "security": securities} data_format = self._get_format(format, "pandas") if data_format == "pandas": rpc_params["format"] = "columnset" cr = self._remote.call("oms.query_net_position", rpc_params) return utils.extract_result(cr, format=data_format, class_name="NetPosition") def query_repo_contract(self, format=""): """ securities: seperate by "," return pd.dataframe """ r, msg = self._check_session() if not r: return (None, msg) rpc_params = {} cr = self._remote.call("oms.query_repo_contract", rpc_params) return utils.extract_result(cr, format=self._get_format(format, "pandas"), class_name="RepoContract") def query_task(self, task_id=-1, format=""): """ task_id: -1 -- all return pd.dataframe """ r, msg = self._check_session() if not r: return (None, msg) rpc_params = {"task_id": task_id} data_format = self._get_format(format, "pandas") if data_format == "pandas": rpc_params["format"] = "columnset" cr = self._remote.call("oms.query_task", rpc_params) return utils.extract_result(cr, format=data_format, class_name="Task") def query_order(self, task_id=-1, format=""): """ task_id: -1 -- all return pd.dataframe """ r, msg = self._check_session() if not r: return (None, msg) rpc_params = {"task_id": task_id} data_format = self._get_format(format, "pandas") if data_format == "pandas": rpc_params["format"] = "columnset" cr = self._remote.call("oms.query_order", rpc_params) return utils.extract_result(cr, format=data_format, class_name="Order") def query_trade(self, task_id=-1, format=""): """ task_id: -1 -- all return pd.dataframe """ r, msg = self._check_session() if not r: return (None, msg) rpc_params = {"task_id": task_id} data_format = self._get_format(format, "pandas") if data_format == "pandas": rpc_params["format"] = "columnset" cr = self._remote.call("oms.query_trade", rpc_params) return utils.extract_result(cr, format=data_format, class_name="Trade") def query_portfolio(self, format=""): """ return pd.dataframe """ r, msg = self._check_session() if not r: return (None, msg) rpc_params = {} data_format = self._get_format(format, "pandas") if data_format == "pandas": rpc_params["format"] = "columnset" cr = self._remote.call("pms.query_portfolio", rpc_params) return utils.extract_result(cr, index_column="security", format=data_format, class_name="NetPosition") def goal_portfolio(self, positions, algo="", algo_param={}, userdata=""): """ positions format: [ {"security": "000001.SZ", "ref_price": 10.0, "size" : 100}, ...] return (result, message) if result is None, message contains error information """ r, msg = self._check_session() if not r: return (False, msg) if type(positions) is pd.core.frame.DataFrame: tmp = [] for i in range(0, len(positions)): tmp.append({'security': positions.index[i], 'ref_price': float(positions['ref_price'][i]), "size": int(positions['size'][i])}) positions = tmp rpc_params = {"positions": positions, "algo": algo, "algo_param": json.dumps(algo_param), "user": self._username, "userdata": userdata} cr = self._remote.call("pms.goal_portfolio", rpc_params) return utils.extract_result(cr) def basket_order(self, orders, algo="", algo_param={}, userdata=""): """ orders format: [ {"security": "000001.SZ", "ref_price": 10.0, "inc_size" : 100}, ...] return (result, message) if result is None, message contains error information """ r, msg = self._check_session() if not r: return (False, msg) if type(orders) is pd.core.frame.DataFrame: tmp = [] for i in range(0, len(orders)): tmp.append({'security': orders.index[i], 'ref_price': float(orders['ref_price'][i]), "inc_size": int(orders['inc_size'][i])}) orders = tmp rpc_params = {"orders": orders, "algo": algo, "algo_param": json.dumps(algo_param), "user": self._username, "userdata": userdata} cr = self._remote.call("pms.basket_order", rpc_params) return utils.extract_result(cr) def stop_portfolio(self): """ return (result, message) if result is None, message contains error information """ r, msg = self._check_session() if not r: return (False, msg) rpc_params = {} cr = self._remote.call("pms.stop_portfolio", rpc_params) return utils.extract_result(cr) def query_universe(self, format=""): r, msg = self._check_session() if not r: return (None, msg) rpc_params = {} data_format = self._get_format(format, "pandas") if data_format == "pandas": rpc_params["format"] = "columnset" cr = self._remote.call("oms.query_universe", rpc_params) return utils.extract_result(cr, format=data_format, class_name="UniverseItem") def set_heartbeat(self, interval, timeout): self._remote.set_hearbeat_options(interval, timeout) print("heartbeat_interval =", self._remote._heartbeat_interval, ", heartbeat_timeout =", self._remote._heartbeat_timeout)
mit
JVillella/tensorflow
tensorflow/contrib/learn/python/learn/estimators/estimator_input_test.py
72
12865
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Estimator input.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import tempfile import numpy as np from tensorflow.contrib.framework.python.ops import variables from tensorflow.contrib.layers.python.layers import optimizers from tensorflow.contrib.learn.python.learn import metric_spec from tensorflow.contrib.learn.python.learn import models from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators import model_fn from tensorflow.contrib.metrics.python.ops import metric_ops from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import test from tensorflow.python.training import input as input_lib from tensorflow.python.training import queue_runner_impl _BOSTON_INPUT_DIM = 13 _IRIS_INPUT_DIM = 4 def boston_input_fn(num_epochs=None): boston = base.load_boston() features = input_lib.limit_epochs( array_ops.reshape( constant_op.constant(boston.data), [-1, _BOSTON_INPUT_DIM]), num_epochs=num_epochs) labels = array_ops.reshape(constant_op.constant(boston.target), [-1, 1]) return features, labels def boston_input_fn_with_queue(num_epochs=None): features, labels = boston_input_fn(num_epochs=num_epochs) # Create a minimal queue runner. fake_queue = data_flow_ops.FIFOQueue(30, dtypes.int32) queue_runner = queue_runner_impl.QueueRunner(fake_queue, [constant_op.constant(0)]) queue_runner_impl.add_queue_runner(queue_runner) return features, labels def iris_input_fn(): iris = base.load_iris() features = array_ops.reshape( constant_op.constant(iris.data), [-1, _IRIS_INPUT_DIM]) labels = array_ops.reshape(constant_op.constant(iris.target), [-1]) return features, labels def iris_input_fn_labels_dict(): iris = base.load_iris() features = array_ops.reshape( constant_op.constant(iris.data), [-1, _IRIS_INPUT_DIM]) labels = { 'labels': array_ops.reshape(constant_op.constant(iris.target), [-1]) } return features, labels def boston_eval_fn(): boston = base.load_boston() n_examples = len(boston.target) features = array_ops.reshape( constant_op.constant(boston.data), [n_examples, _BOSTON_INPUT_DIM]) labels = array_ops.reshape( constant_op.constant(boston.target), [n_examples, 1]) return array_ops.concat([features, features], 0), array_ops.concat( [labels, labels], 0) def extract(data, key): if isinstance(data, dict): assert key in data return data[key] else: return data def linear_model_params_fn(features, labels, mode, params): features = extract(features, 'input') labels = extract(labels, 'labels') assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) prediction, loss = (models.linear_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, variables.get_global_step(), optimizer='Adagrad', learning_rate=params['learning_rate']) return prediction, loss, train_op def linear_model_fn(features, labels, mode): features = extract(features, 'input') labels = extract(labels, 'labels') assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) if isinstance(features, dict): (_, features), = features.items() prediction, loss = (models.linear_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, variables.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return prediction, loss, train_op def linear_model_fn_with_model_fn_ops(features, labels, mode): """Same as linear_model_fn, but returns `ModelFnOps`.""" assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) prediction, loss = (models.linear_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, variables.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return model_fn.ModelFnOps( mode=mode, predictions=prediction, loss=loss, train_op=train_op) def logistic_model_no_mode_fn(features, labels): features = extract(features, 'input') labels = extract(labels, 'labels') labels = array_ops.one_hot(labels, 3, 1, 0) prediction, loss = (models.logistic_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, variables.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return { 'class': math_ops.argmax(prediction, 1), 'prob': prediction }, loss, train_op VOCAB_FILE_CONTENT = 'emerson\nlake\npalmer\n' EXTRA_FILE_CONTENT = 'kermit\npiggy\nralph\n' class EstimatorInputTest(test.TestCase): def testContinueTrainingDictionaryInput(self): boston = base.load_boston() output_dir = tempfile.mkdtemp() est = estimator.Estimator(model_fn=linear_model_fn, model_dir=output_dir) boston_input = {'input': boston.data} float64_target = {'labels': boston.target.astype(np.float64)} est.fit(x=boston_input, y=float64_target, steps=50) scores = est.evaluate( x=boston_input, y=float64_target, metrics={'MSE': metric_ops.streaming_mean_squared_error}) del est # Create another estimator object with the same output dir. est2 = estimator.Estimator(model_fn=linear_model_fn, model_dir=output_dir) # Check we can evaluate and predict. scores2 = est2.evaluate( x=boston_input, y=float64_target, metrics={'MSE': metric_ops.streaming_mean_squared_error}) self.assertAllClose(scores2['MSE'], scores['MSE']) predictions = np.array(list(est2.predict(x=boston_input))) other_score = _sklearn.mean_squared_error(predictions, float64_target['labels']) self.assertAllClose(other_score, scores['MSE']) def testBostonAll(self): boston = base.load_boston() est = estimator.SKCompat(estimator.Estimator(model_fn=linear_model_fn)) float64_labels = boston.target.astype(np.float64) est.fit(x=boston.data, y=float64_labels, steps=100) scores = est.score( x=boston.data, y=float64_labels, metrics={'MSE': metric_ops.streaming_mean_squared_error}) predictions = np.array(list(est.predict(x=boston.data))) other_score = _sklearn.mean_squared_error(predictions, boston.target) self.assertAllClose(scores['MSE'], other_score) self.assertTrue('global_step' in scores) self.assertEqual(100, scores['global_step']) def testBostonAllDictionaryInput(self): boston = base.load_boston() est = estimator.Estimator(model_fn=linear_model_fn) boston_input = {'input': boston.data} float64_target = {'labels': boston.target.astype(np.float64)} est.fit(x=boston_input, y=float64_target, steps=100) scores = est.evaluate( x=boston_input, y=float64_target, metrics={'MSE': metric_ops.streaming_mean_squared_error}) predictions = np.array(list(est.predict(x=boston_input))) other_score = _sklearn.mean_squared_error(predictions, boston.target) self.assertAllClose(other_score, scores['MSE']) self.assertTrue('global_step' in scores) self.assertEqual(scores['global_step'], 100) def testIrisAll(self): iris = base.load_iris() est = estimator.SKCompat( estimator.Estimator(model_fn=logistic_model_no_mode_fn)) est.fit(iris.data, iris.target, steps=100) scores = est.score( x=iris.data, y=iris.target, metrics={('accuracy', 'class'): metric_ops.streaming_accuracy}) predictions = est.predict(x=iris.data) predictions_class = est.predict(x=iris.data, outputs=['class'])['class'] self.assertEqual(predictions['prob'].shape[0], iris.target.shape[0]) self.assertAllClose(predictions['class'], predictions_class) self.assertAllClose( predictions['class'], np.argmax( predictions['prob'], axis=1)) other_score = _sklearn.accuracy_score(iris.target, predictions['class']) self.assertAllClose(scores['accuracy'], other_score) self.assertTrue('global_step' in scores) self.assertEqual(100, scores['global_step']) def testIrisAllDictionaryInput(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) iris_data = {'input': iris.data} iris_target = {'labels': iris.target} est.fit(iris_data, iris_target, steps=100) scores = est.evaluate( x=iris_data, y=iris_target, metrics={('accuracy', 'class'): metric_ops.streaming_accuracy}) predictions = list(est.predict(x=iris_data)) predictions_class = list(est.predict(x=iris_data, outputs=['class'])) self.assertEqual(len(predictions), iris.target.shape[0]) classes_batch = np.array([p['class'] for p in predictions]) self.assertAllClose(classes_batch, np.array([p['class'] for p in predictions_class])) self.assertAllClose( classes_batch, np.argmax( np.array([p['prob'] for p in predictions]), axis=1)) other_score = _sklearn.accuracy_score(iris.target, classes_batch) self.assertAllClose(other_score, scores['accuracy']) self.assertTrue('global_step' in scores) self.assertEqual(scores['global_step'], 100) def testIrisInputFn(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) est.fit(input_fn=iris_input_fn, steps=100) _ = est.evaluate(input_fn=iris_input_fn, steps=1) predictions = list(est.predict(x=iris.data)) self.assertEqual(len(predictions), iris.target.shape[0]) def testIrisInputFnLabelsDict(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) est.fit(input_fn=iris_input_fn_labels_dict, steps=100) _ = est.evaluate( input_fn=iris_input_fn_labels_dict, steps=1, metrics={ 'accuracy': metric_spec.MetricSpec( metric_fn=metric_ops.streaming_accuracy, prediction_key='class', label_key='labels') }) predictions = list(est.predict(x=iris.data)) self.assertEqual(len(predictions), iris.target.shape[0]) def testTrainInputFn(self): est = estimator.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=1) _ = est.evaluate(input_fn=boston_eval_fn, steps=1) def testPredictInputFn(self): est = estimator.Estimator(model_fn=linear_model_fn) boston = base.load_boston() est.fit(input_fn=boston_input_fn, steps=1) input_fn = functools.partial(boston_input_fn, num_epochs=1) output = list(est.predict(input_fn=input_fn)) self.assertEqual(len(output), boston.target.shape[0]) def testPredictInputFnWithQueue(self): est = estimator.Estimator(model_fn=linear_model_fn) boston = base.load_boston() est.fit(input_fn=boston_input_fn, steps=1) input_fn = functools.partial(boston_input_fn_with_queue, num_epochs=2) output = list(est.predict(input_fn=input_fn)) self.assertEqual(len(output), boston.target.shape[0] * 2) def testPredictConstInputFn(self): est = estimator.Estimator(model_fn=linear_model_fn) boston = base.load_boston() est.fit(input_fn=boston_input_fn, steps=1) def input_fn(): features = array_ops.reshape( constant_op.constant(boston.data), [-1, _BOSTON_INPUT_DIM]) labels = array_ops.reshape(constant_op.constant(boston.target), [-1, 1]) return features, labels output = list(est.predict(input_fn=input_fn)) self.assertEqual(len(output), boston.target.shape[0]) if __name__ == '__main__': test.main()
apache-2.0
catalyst-cooperative/pudl
test/unit/helpers_test.py
1
2259
"""Unit tests for the :mod:`pudl.helpers` module.""" import pandas as pd from pandas.testing import assert_frame_equal import pudl def test_convert_to_date(): """Test automated cleanup of EIA date columns.""" data = [ (2019, 3, 14), ("2019", "03", "14"), ] in_df = pd.DataFrame.from_records( data, columns=["report_year", "report_month", "report_day"] ) expected_df = pd.DataFrame({ "report_date": pd.to_datetime([ "2019-03-14", "2019-03-14", ]), }) out_df = pudl.helpers.convert_to_date(in_df) assert_frame_equal(out_df, expected_df) def test_fix_eia_na(): """Test cleanup of bad EIA spreadsheet NA values.""" in_df = pd.DataFrame({ "vals": [ "", " ", "\t", ".", ".0", # Should only replace naked decimals "..", # Only single naked decimals? " ", # 2 spaces -- we only replace single whitespace chars? "\t\t", # 2 tabs -- we only replace single whitespace chars? ] }) expected_df = pd.DataFrame({ "vals": [ pd.NA, pd.NA, pd.NA, pd.NA, ".0", "..", " ", "\t\t", ] }) out_df = pudl.helpers.fix_eia_na(in_df) assert_frame_equal(out_df, expected_df) def test_fix_leading_zero_gen_ids(): """Test removal of leading zeroes from EIA generator IDs.""" in_df = pd.DataFrame({ "generator_id": [ "0001", # Leading zeroes, all numeric string. "26", # An appropriate numeric string w/o leading zeroes. 100, # Integer, should get stringified. 100.0, # What happens if it's a float? "01-A", # Leading zeroes, alphanumeric. Should not change. "HRSG-01", # Alphanumeric, should be no change. ] }) expected_df = pd.DataFrame({ "generator_id": [ "1", "26", "100", "100.0", "01-A", "HRSG-01", ] }) out_df = pudl.helpers.fix_leading_zero_gen_ids(in_df) assert_frame_equal(out_df, expected_df)
mit
m3wolf/xanespy
tests/test_importers.py
1
48905
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright © 2016 Mark Wolf # # This file is part of Xanespy. # # Xanespy is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Xanespy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Xanespy. If not, see <http://www.gnu.org/licenses/>. # flake8: noqa import logging import datetime as dt import unittest from unittest import TestCase, mock import os import sys sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir))) import warnings import contextlib import pytz import numpy as np import pandas as pd import h5py from skimage import data import matplotlib.pyplot as plt from xanespy import exceptions, utilities from xanespy.xradia import XRMFile, TXRMFile from xanespy.nanosurveyor import CXIFile, HDRFile from xanespy.sxstm import SxstmDataFile from xanespy.importers import (magnification_correction, decode_aps_params, decode_ssrl_params, import_ssrl_xanes_dir, CURRENT_VERSION, import_nanosurveyor_frameset, import_cosmic_frameset, import_aps4idc_sxstm_files, import_aps8bm_xanes_dir, import_aps8bm_xanes_file, import_aps32idc_xanes_files, import_aps32idc_xanes_file, read_metadata, minimum_shape, rebin_image, ) from xanespy.txmstore import TXMStore # logging.basicConfig(level=logging.DEBUG) TEST_DIR = os.path.dirname(__file__) SSRL_DIR = os.path.join(TEST_DIR, 'txm-data-ssrl') APS_DIR = os.path.join(TEST_DIR, 'txm-data-aps') APS32_DIR = os.path.join(TEST_DIR, 'txm-data-32-idc') PTYCHO_DIR = os.path.join(TEST_DIR, 'ptycho-data-als/NS_160406074') COSMIC_DIR = os.path.join(TEST_DIR, 'ptycho-data-cosmic') SXSTM_DIR = os.path.join(TEST_DIR, "sxstm-data-4idc/") class APS32IDCImportTest(TestCase): """Check that the program can import a collection of SSRL frames from a directory.""" src_data = os.path.join(APS32_DIR, 'nca_32idc_xanes.h5') def setUp(self): self.hdf = os.path.join(APS32_DIR, 'testdata.h5') if os.path.exists(self.hdf): os.remove(self.hdf) def tearDown(self): if os.path.exists(self.hdf): os.remove(self.hdf) def test_imported_hdf(self): # Run the import function import_aps32idc_xanes_file(self.src_data, hdf_filename=self.hdf, hdf_groupname='experiment1', downsample=1) # Check that the file was created self.assertTrue(os.path.exists(self.hdf)) with h5py.File(self.hdf, mode='r') as f: self.assertNotIn('experiment2', list(f.keys())) parent_group = f['experiment1'] data_group = f['experiment1/imported'] # Check metadata about beamline self.assertEqual(parent_group.attrs['technique'], 'Full-field TXM') self.assertEqual(parent_group.attrs['xanespy_version'], CURRENT_VERSION) self.assertEqual(parent_group.attrs['beamline'], "APS 32-ID-C") self.assertEqual(parent_group.attrs['original_directory'], os.path.dirname(self.src_data)) self.assertEqual(parent_group.attrs['latest_data_name'], 'imported') # Check h5 data structure keys = list(data_group.keys()) self.assertIn('intensities', keys) self.assertTrue(np.any(data_group['intensities'])) self.assertEqual(data_group['intensities'].shape, (1, 3, 256, 256)) self.assertEqual(data_group['intensities'].attrs['context'], 'frameset') self.assertIn('flat_fields', keys) self.assertTrue(np.any(data_group['flat_fields'])) self.assertEqual(data_group['flat_fields'].attrs['context'], 'frameset') self.assertIn('dark_fields', keys) self.assertEqual(data_group['dark_fields'].shape, (1, 2, 256, 256)) self.assertTrue(np.any(data_group['dark_fields'])) self.assertEqual(data_group['dark_fields'].attrs['context'], 'frameset') self.assertIn('optical_depths', keys) self.assertEqual(data_group['optical_depths'].shape, (1, 3, 256, 256)) self.assertTrue(np.any(data_group['optical_depths'])) self.assertEqual(data_group['optical_depths'].attrs['context'], 'frameset') self.assertEqual(data_group['pixel_sizes'].attrs['unit'], 'µm') self.assertEqual(data_group['pixel_sizes'].shape, (1, 3)) # Original pixel size is 29.99nm but we have downsampling factor 1 self.assertTrue(np.all(data_group['pixel_sizes'].value == 0.02999 * 2)) self.assertEqual(data_group['energies'].shape, (1, 3)) expected_Es = np.array([[8340, 8350, 8360]]) np.testing.assert_array_almost_equal(data_group['energies'].value, expected_Es, decimal=3) self.assertIn('timestamps', keys) expected_timestamp = np.empty(shape=(1, 3, 2), dtype="S32") expected_timestamp[...,0] = b'2016-10-07 18:24:42' expected_timestamp[...,1] = b'2016-10-07 18:37:42' np.testing.assert_equal(data_group['timestamps'].value, expected_timestamp) self.assertIn('timestep_names', keys) self.assertEqual(data_group['timestep_names'][0], bytes("soc000", 'ascii')) self.assertIn('filenames', keys) self.assertEqual(data_group['filenames'].shape, (1, 3)) self.assertEqual(data_group['filenames'][0, 0], self.src_data.encode('ascii')) # self.assertIn('original_positions', keys) def test_exclude_frames(self): # Run the import function import_aps32idc_xanes_file(self.src_data, hdf_filename=self.hdf, hdf_groupname='experiment1', downsample=1, exclude=(1,)) # Check that the file was created self.assertTrue(os.path.exists(self.hdf)) with h5py.File(self.hdf, mode='r') as f: self.assertNotIn('experiment2', list(f.keys())) parent_group = f['experiment1'] data_group = f['experiment1/imported'] self.assertEqual(data_group['intensities'].shape, (1, 2, 256, 256)) def test_limited_dark_flat(self): # Only import some of the flat and dark field images import_aps32idc_xanes_file(self.src_data, hdf_filename=self.hdf, hdf_groupname='experiment1', downsample=0, dark_idx=slice(0, 1)) # Check that the right number of files were imported with h5py.File(self.hdf, mode='r') as f: grp = f['experiment1/imported'] self.assertEqual(grp['dark_fields'].shape[1], 1) def test_import_multiple_hdfs(self): import_aps32idc_xanes_files([self.src_data, self.src_data], hdf_filename=self.hdf, hdf_groupname='experiment1', square=False, downsample=0) with h5py.File(self.hdf, mode='r') as f: g = f['/experiment1/imported'] self.assertEqual(g['intensities'].shape, (2, 3, 512, 612)) self.assertTrue(np.any(g['intensities'][0])) self.assertTrue(np.any(g['intensities'][1])) # They should be equal since we have import the same data twice np.testing.assert_equal(g['intensities'][0], g['intensities'][1]) def test_import_second_hdf(self): # Run the import function import_aps32idc_xanes_file(self.src_data, hdf_filename=self.hdf, hdf_groupname='experiment1', total_timesteps=2, square=False, downsample=0) import_aps32idc_xanes_file(self.src_data, hdf_filename=self.hdf, hdf_groupname='experiment1', total_timesteps=2, timestep=1, append=True, square=False, downsample=0) with h5py.File(self.hdf, mode='r') as f: g = f['/experiment1/imported'] self.assertEqual(g['intensities'].shape, (2, 3, 512, 612)) self.assertTrue(np.any(g['intensities'][0])) self.assertTrue(np.any(g['intensities'][1])) # They should be equal since we have import the same data twice np.testing.assert_equal(g['intensities'][0], g['intensities'][1]) class CosmicTest(TestCase): """Test for importing STXM and ptychography data. From ALS Cosmic beamline. Test data taken from beamtime on 2018-11-09. The cxi file is a stripped down version of the original (to save space). Missing crucial data should be added to the cxi as needed. Data ==== ptycho-scan-856eV.cxi : NS_181110188_002.cxi stxm-scan-a003.xim : NS_181110203_a003.xim stxm-scan-a019.xim : NS_181110203_a019.xim stxm-scan.hdr : NS_181110203.hdr """ stxm_hdr = os.path.join(COSMIC_DIR, 'stxm-scan.hdr') ptycho_cxi = os.path.join(COSMIC_DIR, 'ptycho-scan-856eV.cxi') hdf_filename = os.path.join(COSMIC_DIR, 'cosmic-test-import.h5') def tearDown(self): if os.path.exists(self.hdf_filename): os.remove(self.hdf_filename) def test_import_partial_data(self): """Check if the cosmic importer works if only hdr or cxi files are given.""" # Import only STXM images import_cosmic_frameset(stxm_hdr=[self.stxm_hdr], ptycho_cxi=[], hdf_filename=self.hdf_filename) with TXMStore(self.hdf_filename, parent_name='stxm-scan') as store: self.assertEqual(store.data_name, 'imported') # Import only ptycho images import_cosmic_frameset(stxm_hdr=[], ptycho_cxi=[self.ptycho_cxi], hdf_filename=self.hdf_filename) with TXMStore(self.hdf_filename, parent_name='ptycho-scan-856eV') as store: self.assertEqual(store.data_name, 'imported') def test_import_cosmic_data(self): # Check that passing no data raises and exception with self.assertRaises(ValueError): import_cosmic_frameset(hdf_filename=self.hdf_filename) import_cosmic_frameset(stxm_hdr=[self.stxm_hdr], ptycho_cxi=[self.ptycho_cxi], hdf_filename=self.hdf_filename) # Does the HDF file exist self.assertTrue(os.path.exists(self.hdf_filename), "%s doesn't exist" % self.hdf_filename) hdf_kw = dict(hdf_filename=self.hdf_filename, parent_name='ptycho-scan-856eV', mode='r') # Open ptychography TXM store and check its contents with TXMStore(**hdf_kw, data_name='imported_ptychography') as store: # Make sure the group exists self.assertEqual(store.data_group().name, '/ptycho-scan-856eV/imported_ptychography') # Check the data structure self.assertEqual(store.filenames.shape, (1, 1)) stored_filename = store.filenames[0,0].decode('utf-8') self.assertEqual(stored_filename, os.path.basename(self.ptycho_cxi)) np.testing.assert_equal(store.energies.value, [[855.9056362433222]]) np.testing.assert_equal(store.pixel_sizes.value, [[6.0435606480754585]]) np.testing.assert_equal(store.pixel_unit, 'nm') self.assertEqual(store.intensities.shape, (1, 1, 285, 285)) self.assertEqual(store.optical_depths.shape, (1, 1, 285, 285)) self.assertEqual(store.timestep_names[0].decode('utf-8'), 'ex-situ') # Open STXM TXM store and check its contents with TXMStore(**hdf_kw, data_name='imported_stxm') as store: # Make sure the group exists self.assertEqual(store.data_group().name, '/ptycho-scan-856eV/imported_stxm') # Check the data structure self.assertEqual(store.filenames.shape, (1, 2)) stored_filename = store.filenames[0,0].decode('utf-8') expected_filename = os.path.join(COSMIC_DIR, 'stxm-scan_a003.xim') self.assertEqual(stored_filename, expected_filename) np.testing.assert_equal(store.energies.value, [[853, 857.75]]) np.testing.assert_equal(store.pixel_sizes.value, [[27.2, 27.2]]) self.assertEqual(store.intensities.shape, (1, 2, 120, 120)) self.assertEqual(store.optical_depths.shape, (1, 2, 120, 120)) self.assertEqual(store.timestep_names[0].decode('utf-8'), 'ex-situ') # Open imported TXMStore to check its contents with TXMStore(**hdf_kw, data_name='imported') as store: self.assertEqual(store.filenames.shape, (1, 3)) self.assertEqual(store.timestep_names.shape, (1,)) real_px_size = 6.0435606480754585 np.testing.assert_equal(store.pixel_sizes.value, [[real_px_size, real_px_size, real_px_size]]) self.assertEqual(store.pixel_unit, 'nm') class CosmicFileTest(TestCase): stxm_hdr = os.path.join(COSMIC_DIR, 'stxm-scan.hdr') ptycho_cxi = os.path.join(COSMIC_DIR, 'ptycho-scan-856eV.cxi') def setUp(self): self.hdr = HDRFile(self.stxm_hdr) self.cxi = CXIFile(self.ptycho_cxi) def test_hdr_filenames(self): real_filenames = [os.path.join(COSMIC_DIR, f) for f in ('stxm-scan_a003.xim', 'stxm-scan_a019.xim')] self.assertEqual(self.hdr.filenames(), real_filenames) def test_cxi_filenames(self): self.assertEqual(self.cxi.filenames(), ['ptycho-scan-856eV.cxi']) def test_cxi_image_data(self): with self.cxi: self.assertEqual(self.cxi.num_images(), 1) self.assertEqual(self.cxi.image_frames().shape, (1, 285, 285)) def test_cxi_image_shape(self): with self.cxi: self.assertEqual(self.cxi.image_shape(), (285, 285)) def test_cxi_energies(self): with self.cxi: self.assertAlmostEqual(self.cxi.energies()[0], 855.9056, places=3) def test_cxi_pixel_size(self): real_px_size = 6.0435606480754585 with self.cxi: self.assertAlmostEqual(self.cxi.pixel_size(), real_px_size) def test_hdr_pixel_size(self): with self.hdr: self.assertEqual(self.hdr.pixel_size(), 27.2) def test_hdr_image_data(self): self.assertEqual(self.hdr.num_images(), 2) self.assertEqual(self.hdr.image_frames().shape, (2, 120, 120)) def test_hdr_image_shape(self): self.assertEqual(self.hdr.image_shape(), (120, 120)) def test_hdr_energies(self): with self.hdr: self.assertAlmostEqual(self.hdr.energies()[0], 853., places=3) def test_specific_hdr_files(self): """This test check specific HDR files that did not succeed at first. """ # This one has a negative sign in front of the x-position filename1 = os.path.join(COSMIC_DIR, 'NS_181111148.hdr') hdr1 = HDRFile(filename1) self.assertAlmostEqual(hdr1.pixel_size(), 66.7) class XradiaTest(TestCase): txrm_filename = os.path.join(TEST_DIR, "aps-8BM-sample.txrm") def test_pixel_size(self): sample_filename = "rep01_20161456_ssrl-test-data_08324.0_eV_001of003.xrm" with XRMFile(os.path.join(SSRL_DIR, sample_filename), flavor="ssrl") as xrm: self.assertAlmostEqual(xrm.um_per_pixel(), 0.03287, places=4) def test_timestamp_from_xrm(self): pacific_tz = pytz.timezone("US/Pacific") chicago_tz = pytz.timezone('US/Central') sample_filename = "rep01_20161456_ssrl-test-data_08324.0_eV_001of003.xrm" with XRMFile(os.path.join(SSRL_DIR, sample_filename), flavor="ssrl") as xrm: # Check start time start = pacific_tz.localize(dt.datetime(2016, 5, 29, 15, 2, 37)) start = start.astimezone(pytz.utc).replace(tzinfo=None) self.assertEqual(xrm.starttime(), start) self.assertEqual(xrm.starttime().tzinfo, None) # Check end time (offset determined by exposure time) end = pacific_tz.localize(dt.datetime(2016, 5, 29, 15, 2, 37, 500000)) end = end.astimezone(pytz.utc).replace(tzinfo=None) self.assertEqual(xrm.endtime(), end) xrm.close() # Test APS frame sample_filename = "fov03_xanesocv_8353_0eV.xrm" with XRMFile(os.path.join(APS_DIR, sample_filename), flavor="aps") as xrm: # Check start time start = chicago_tz.localize(dt.datetime(2016, 7, 2, 17, 50, 35)) start = start.astimezone(pytz.utc).replace(tzinfo=None) self.assertEqual(xrm.starttime(), start) # Check end time (offset determined by exposure time) end = chicago_tz.localize(dt.datetime(2016, 7, 2, 17, 51, 25)) end = end.astimezone(pytz.utc).replace(tzinfo=None) self.assertEqual(xrm.endtime(), end) def test_mosaic(self): # txm-2015-11-11-aps/ncm111-cell1-chargeC15/20151111_002_mosaic_5x5_bin8_5s.xrm mosaic_filename = 'mosaic_4x4_bin8.xrm' with XRMFile(os.path.join(TEST_DIR, mosaic_filename), flavor='aps') as xrm: img_data = xrm.image_data() # Check basic shape details self.assertEqual(img_data.shape, (1024, 1024)) self.assertEqual(xrm.mosaic_columns, 4) self.assertEqual(xrm.mosaic_rows, 4) self.assertEqual(xrm.um_per_pixel(), 0.15578947961330414) def test_str_and_repr(self): sample_filename = "rep01_20161456_ssrl-test-data_08324.0_eV_001of003.xrm" with XRMFile(os.path.join(SSRL_DIR, sample_filename), flavor="ssrl") as xrm: self.assertEqual(repr(xrm), "<XRMFile: '{}'>".format(sample_filename)) self.assertEqual(str(xrm), "<XRMFile: '{}'>".format(sample_filename)) def test_binning(self): sample_filename = "rep01_20161456_ssrl-test-data_08324.0_eV_001of003.xrm" with XRMFile(os.path.join(SSRL_DIR, sample_filename), flavor="ssrl") as xrm: self.assertEqual(xrm.binning(), (2, 2)) def test_frame_stack(self): with TXRMFile(self.txrm_filename, flavor="aps") as txrm: self.assertEqual(txrm.image_stack().shape, (3, 1024, 1024)) self.assertEqual(txrm.energies().shape, (3,)) def test_num_images(self): with TXRMFile(self.txrm_filename, flavor="aps") as txrm: self.assertEqual(txrm.num_images(), 3) def test_starttimes(self): with TXRMFile(self.txrm_filename, flavor="aps") as txrm: result = txrm.starttimes() expected_start = dt.datetime(2017, 7, 9, 0, 49, 2) self.assertEqual(result[0], expected_start) class PtychographyImportTest(TestCase): def setUp(self): self.hdf = os.path.join(PTYCHO_DIR, 'testdata.h5') if os.path.exists(self.hdf): os.remove(self.hdf) def tearDown(self): if os.path.exists(self.hdf): os.remove(self.hdf) def test_directory_names(self): """Tests for checking some of the edge cases for what can be passed as a directory string.""" import_nanosurveyor_frameset(PTYCHO_DIR + "/", hdf_filename=self.hdf) def test_imported_hdf(self): import_nanosurveyor_frameset(PTYCHO_DIR, hdf_filename=self.hdf) self.assertTrue(os.path.exists(self.hdf)) with h5py.File(self.hdf, mode='r') as f: dataset_name = 'NS_160406074' parent = f[dataset_name] # Check metadata about the sample self.assertEqual(parent.attrs['latest_data_name'], "imported") group = parent['imported'] keys = list(group.keys()) # Check metadata about beamline self.assertEqual(parent.attrs['technique'], 'ptychography STXM') # Check data is structured properly self.assertEqual(group['timestep_names'].value[0], bytes(dataset_name, 'ascii')) self.assertIn('intensities', keys) self.assertEqual(group['intensities'].shape, (1, 3, 228, 228)) self.assertEqual(group['intensities'].attrs['context'], 'frameset') self.assertIn('stxm', keys) self.assertEqual(group['stxm'].shape, (1, 3, 20, 20)) self.assertEqual(group['pixel_sizes'].attrs['unit'], 'nm') self.assertTrue(np.all(group['pixel_sizes'].value == 4.16667), msg=group['pixel_sizes'].value) self.assertEqual(group['pixel_sizes'].shape, (1, 3)) expected_Es = np.array([[843.9069591, 847.90651815, 850.15627011]]) np.testing.assert_allclose(group['energies'].value, expected_Es) self.assertEqual(group['energies'].shape, (1, 3)) ## NB: Timestamps not available in the cxi files # self.assertIn('timestamps', keys) # expected_timestamp = np.array([ # [[b'2016-07-02 16:31:36-05:51', b'2016-07-02 16:32:26-05:51'], # [b'2016-07-02 17:50:35-05:51', b'2016-07-02 17:51:25-05:51']], # [[b'2016-07-02 22:19:23-05:51', b'2016-07-02 22:19:58-05:51'], # [b'2016-07-02 23:21:21-05:51', b'2016-07-02 23:21:56-05:51']], # ], dtype="S32") # self.assertTrue(np.array_equal(group['timestamps'].value, # expected_timestamp)) self.assertIn('filenames', keys) self.assertEqual(group['filenames'].shape, (1, 3)) self.assertIn('relative_positions', keys) self.assertEqual(group['relative_positions'].shape, (1, 3, 3)) ## NB: It's not clear exactly what "original positions" ## means for STXM data self.assertIn('original_positions', keys) self.assertEqual(group['original_positions'].shape, (1, 3, 3)) def test_frame_shape(self): """In some cases, frames are different shapes. Specifying a shape in the importer can fix this. """ expected_shape = (220, 220) import_nanosurveyor_frameset(PTYCHO_DIR, hdf_filename=self.hdf, frame_shape=expected_shape) with h5py.File(self.hdf, mode='r') as f: real_shape = f['NS_160406074/imported/intensities'].shape self.assertEqual(real_shape, (1, 3, *expected_shape)) def test_partial_import(self): """Sometimes the user may want to specify that only a subset of ptychographs be imported. """ energy_range = (843, 848) import_nanosurveyor_frameset(PTYCHO_DIR, energy_range=energy_range, hdf_filename=self.hdf, quiet=True) with h5py.File(self.hdf, mode='r') as f: dataset_name = 'NS_160406074' parent = f[dataset_name] group = parent['imported'] self.assertEqual(group['intensities'].shape[0:2], (1, 2)) self.assertEqual(group['filenames'].shape, (1, 2)) def test_exclude_re(self): """Allow the user to exclude specific frames that are bad.""" import_nanosurveyor_frameset(PTYCHO_DIR, exclude_re="(/009/|/100/)", hdf_filename=self.hdf, quiet=True) with h5py.File(self.hdf, mode='r') as f: dataset_name = 'NS_160406074' parent = f[dataset_name] group = parent['imported'] self.assertEqual(group['intensities'].shape[0:2], (1, 2)) def test_multiple_import(self): """Check if we can import multiple different directories of different energies ranges.""" # Import two data sets (order is important to test for sorting) import_nanosurveyor_frameset("{}-low-energy".format(PTYCHO_DIR), hdf_filename=self.hdf, quiet=True, hdf_groupname="merged") import_nanosurveyor_frameset("{}-high-energy".format(PTYCHO_DIR), hdf_filename=self.hdf, quiet=True, hdf_groupname="merged", append=True) # Check resulting HDF5 file with h5py.File(self.hdf) as f: self.assertIn('merged', f.keys()) # Check that things are ordered by energy saved_Es = f['/merged/imported/energies'].value np.testing.assert_array_equal(saved_Es, np.sort(saved_Es)) # Construct the expected path relative to the current directory relpath = "ptycho-data-als/NS_160406074-{}-energy/160406074/{}/NS_160406074.cxi" toplevel = os.getcwd().split('/')[-1] if toplevel == "tests": test_dir = '' else: test_dir = 'tests' relpath = os.path.join(test_dir, relpath) # Compare the expeected file names sorted_files = [[bytes(relpath.format("low", "001"), 'ascii'), bytes(relpath.format("low", "009"), 'ascii'), bytes(relpath.format("high", "021"), 'ascii'),]] saved_files = f['/merged/imported/filenames'] np.testing.assert_array_equal(saved_files, sorted_files) class APS8BMFileImportTest(TestCase): txrm_file = os.path.join(TEST_DIR, 'aps-8BM-sample.txrm') txrm_ref = os.path.join(TEST_DIR, 'aps-8BM-reference.txrm') def setUp(self): self.hdf = os.path.join(APS_DIR, 'testdata.h5') if os.path.exists(self.hdf): os.remove(self.hdf) def tearDown(self): if os.path.exists(self.hdf): os.remove(self.hdf) def test_imported_hdf(self): import_aps8bm_xanes_file(self.txrm_file, ref_filename=self.txrm_ref, hdf_filename=self.hdf, quiet=True) # Check that the file was created self.assertTrue(os.path.exists(self.hdf)) with h5py.File(self.hdf, mode='r') as f: group = f['aps-8BM-sample/imported'] parent = f['aps-8BM-sample'] # Check metadata about beamline self.assertEqual(parent.attrs['technique'], 'Full-field TXM') self.assertEqual(parent.attrs['xanespy_version'], CURRENT_VERSION) self.assertEqual(parent.attrs['beamline'], "APS 8-BM-B") self.assertEqual(parent.attrs['original_file'], self.txrm_file) # Check h5 data structure keys = list(group.keys()) self.assertIn('intensities', keys) self.assertEqual(group['intensities'].shape, (1, 3, 1024, 1024)) self.assertIn('references', keys) self.assertIn('optical_depths', keys) self.assertEqual(group['pixel_sizes'].attrs['unit'], 'µm') self.assertEqual(group['pixel_sizes'].shape, (1, 3)) self.assertTrue(np.any(group['pixel_sizes'].value > 0)) expected_Es = np.array([[8312.9287109, 8363.0078125, 8412.9541016]]) np.testing.assert_almost_equal(group['energies'].value, expected_Es) self.assertIn('timestamps', keys) expected_timestamp = np.array([ [b'2017-07-09 00:49:02', b'2017-07-09 00:49:30', b'2017-07-09 00:49:58'], ], dtype="S32") np.testing.assert_equal(group['timestamps'].value, expected_timestamp) self.assertIn('filenames', keys) self.assertIn('original_positions', keys) self.assertEqual(group['original_positions'].shape, (1, 3, 3)) class APS8BMDirImportTest(TestCase): """Check that the program can import a collection of SSRL frames from a directory.""" def setUp(self): self.hdf = os.path.join(APS_DIR, 'testdata.h5') if os.path.exists(self.hdf): os.remove(self.hdf) def tearDown(self): if os.path.exists(self.hdf): os.remove(self.hdf) def test_import_empty_directory(self): """Check that the proper exception is raised if the directory has no TXM files in it.""" EMPTY_DIR = 'temp-empty-dir' os.mkdir(EMPTY_DIR) try: with self.assertRaisesRegex(exceptions.DataNotFoundError, '/temp-empty-dir'): import_aps8bm_xanes_dir(EMPTY_DIR, hdf_filename="test-file.hdf", quiet=True) finally: # Clean up by deleting any temporary files/directories if os.path.exists('test-file.hdf'): os.remove('test-file.hdf') os.rmdir(EMPTY_DIR) def test_imported_references(self): import_aps8bm_xanes_dir(APS_DIR, hdf_filename=self.hdf, quiet=True) with h5py.File(self.hdf, mode='r') as f: self.assertIn('references', f['fov03/imported'].keys()) def test_groupname_kwarg(self): """The groupname keyword argument needs some special attention.""" with self.assertRaisesRegex(exceptions.CreateGroupError, 'Invalid groupname'): import_aps8bm_xanes_dir(APS_DIR, hdf_filename=self.hdf, quiet=True, groupname="Wawa") # Now does it work with the {} inserted import_aps8bm_xanes_dir(APS_DIR, hdf_filename=self.hdf, quiet=True, groupname="Wawa{}") def test_imported_hdf(self): import_aps8bm_xanes_dir(APS_DIR, hdf_filename=self.hdf, quiet=True) # Check that the file was created self.assertTrue(os.path.exists(self.hdf)) with h5py.File(self.hdf, mode='r') as f: group = f['fov03/imported'] parent = f['fov03'] # Check metadata about beamline self.assertEqual(parent.attrs['technique'], 'Full-field TXM') self.assertEqual(parent.attrs['xanespy_version'], CURRENT_VERSION) self.assertEqual(parent.attrs['beamline'], "APS 8-BM-B") self.assertEqual(parent.attrs['original_directory'], APS_DIR) # Check h5 data structure keys = list(group.keys()) self.assertIn('intensities', keys) self.assertEqual(group['intensities'].shape, (2, 2, 1024, 1024)) self.assertIn('references', keys) self.assertIn('optical_depths', keys) self.assertEqual(group['pixel_sizes'].attrs['unit'], 'µm') self.assertEqual(group['pixel_sizes'].shape, (2,2)) self.assertTrue(np.any(group['pixel_sizes'].value > 0)) expected_Es = np.array([[8249.9365234375, 8353.0322265625], [8249.9365234375, 8353.0322265625]]) self.assertTrue(np.array_equal(group['energies'].value, expected_Es)) self.assertIn('timestamps', keys) expected_timestamp = np.array([ [[b'2016-07-02 21:31:36', b'2016-07-02 21:32:26'], [b'2016-07-02 22:50:35', b'2016-07-02 22:51:25']], [[b'2016-07-03 03:19:23', b'2016-07-03 03:19:58'], [b'2016-07-03 04:21:21', b'2016-07-03 04:21:56']], ], dtype="S32") np.testing.assert_equal(group['timestamps'].value, expected_timestamp) self.assertIn('filenames', keys) self.assertIn('original_positions', keys) # self.assertIn('relative_positions', keys) # self.assertEqual(group['relative_positions'].shape, (2, 3)) def test_params_from_aps(self): """Check that the new naming scheme is decoded properly.""" ref_filename = "ref_xanesocv_8250_0eV.xrm" result = decode_aps_params(ref_filename) expected = { 'timestep_name': 'ocv', 'position_name': 'ref', 'is_background': True, 'energy': 8250.0, } self.assertEqual(result, expected) # An example reference filename from 2015-11-11 beamtime ref_filename = 'ncm111-cell1-chargeC15/operando-xanes00/20151111_UIC_XANES00_bkg_8313.xrm' result = decode_aps_params(ref_filename) self.assertTrue(result['is_background']) self.assertEqual(result['energy'], 8313.0) self.assertEqual(result['position_name'], 'bkg') self.assertEqual(result['timestep_name'], '00') # An example reference filename from 2015-11-11 beamtime sam_filename = 'ncm111-cell1-chargeC15/operando-xanes05/20151111_UIC_XANES05_sam02_8381.xrm' result = decode_aps_params(sam_filename) self.assertFalse(result['is_background']) self.assertEqual(result['energy'], 8381.0) self.assertEqual(result['position_name'], 'sam02') self.assertEqual(result['timestep_name'], '05') def test_file_metadata(self): filenames = [os.path.join(APS_DIR, 'fov03_xanessoc01_8353_0eV.xrm')] df = read_metadata(filenames=filenames, flavor='aps', quiet=True) self.assertIsInstance(df, pd.DataFrame) row = df.iloc[0] self.assertIn('shape', row.keys()) self.assertIn('timestep_name', row.keys()) # Check the correct start time chicago_tz = pytz.timezone('US/Central') realtime = chicago_tz.localize(dt.datetime(2016, 7, 2, 23, 21, 21)) realtime = realtime.astimezone(pytz.utc).replace(tzinfo=None) # Convert to unix timestamp self.assertIsInstance(row['starttime'], pd.Timestamp) self.assertEqual(row['starttime'], realtime) class SSRLImportTest(TestCase): """Check that the program can import a collection of SSRL frames from a directory.""" def setUp(self): self.hdf = os.path.join(SSRL_DIR, 'testdata.h5') if os.path.exists(self.hdf): os.remove(self.hdf) def tearDown(self): if os.path.exists(self.hdf): os.remove(self.hdf) def test_minimum_shape(self): shape_list = [(1024, 512), (1024, 1024), (2048, 2048)] min_shape = minimum_shape(shape_list) self.assertEqual(min_shape, (1024, 512)) # Check with incompatible shape dimensions shape_list = [(1024, 1024), (1024, 1024), (2048, 2048, 2048)] with self.assertRaises(exceptions.ShapeMismatchError): minimum_shape(shape_list) # Check that non-power-of-two shapes raise an exception shape_list = [(5, 1024), (1024, 1024), (2048, 2048)] with self.assertRaises(exceptions.ShapeMismatchError): minimum_shape(shape_list) # Check with using named tuples shape_list = [utilities.shape(1024, 1024), utilities.shape(1024, 1024)] min_shape = minimum_shape(shape_list) print(min_shape) def test_rebin_image(self): my_list = [1, 2, 2, 3, 3, 3] # Test a symmetrical reshape img = np.ones((64, 64)) new_img = rebin_image(img, (32, 32)) self.assertEqual(new_img.shape, (32, 32)) # Test an asymmetrical reshape img = np.ones((64, 64)) new_img = rebin_image(img, (32, 16)) self.assertEqual(new_img.shape, (32, 16)) def test_imported_hdf(self): with warnings.catch_warnings() as w: # warnings.simplefilter('ignore', RuntimeWarning, 104) warnings.filterwarnings('ignore', message='Ignoring invalid file .*', category=RuntimeWarning) import_ssrl_xanes_dir(SSRL_DIR, hdf_filename=self.hdf, quiet=True) # Check that the file was created self.assertTrue(os.path.exists(self.hdf)) with h5py.File(self.hdf, mode='r') as f: group = f['ssrl-test-data/imported'] parent = f['ssrl-test-data'] # Check metadata about beamline self.assertEqual(parent.attrs['technique'], 'Full-field TXM') self.assertEqual(parent.attrs['xanespy_version'], CURRENT_VERSION) self.assertEqual(parent.attrs['beamline'], "SSRL 6-2c") self.assertEqual(parent.attrs['original_directory'], SSRL_DIR) # Check imported data structure keys = list(group.keys()) self.assertIn('intensities', keys) self.assertEqual(group['intensities'].attrs['context'], 'frameset') self.assertEqual(group['intensities'].shape, (1, 2, 1024, 1024)) self.assertIn('references', keys) self.assertEqual(group['references'].attrs['context'], 'frameset') self.assertIn('optical_depths', keys) self.assertEqual(group['optical_depths'].attrs['context'], 'frameset') self.assertEqual(group['pixel_sizes'].attrs['unit'], 'µm') self.assertEqual(group['pixel_sizes'].attrs['context'], 'metadata') isEqual = np.array_equal(group['energies'].value, np.array([[8324., 8354.]])) self.assertTrue(isEqual, msg=group['energies'].value) self.assertEqual(group['energies'].attrs['context'], 'metadata') self.assertIn('timestamps', keys) self.assertEqual(group['timestamps'].attrs['context'], 'metadata') self.assertIn('filenames', keys) self.assertEqual(group['filenames'].attrs['context'], 'metadata') self.assertIn('original_positions', keys) self.assertEqual(group['original_positions'].attrs['context'], 'metadata') self.assertIn('relative_positions', keys) self.assertEqual(group['relative_positions'].attrs['context'], 'metadata') self.assertIn('timestep_names', keys) self.assertEqual(group['relative_positions'].attrs['context'], 'metadata') self.assertEqual(group['timestep_names'][0], "rep01") def test_params_from_ssrl(self): # First a reference frame ref_filename = "rep01_000001_ref_201511202114_NCA_INSITU_OCV_FOV01_Ni_08250.0_eV_001of010.xrm" result = decode_ssrl_params(ref_filename) expected = { 'timestep_name': 'rep01', 'position_name': 'NCA_INSITU_OCV_FOV01_Ni', 'is_background': True, 'energy': 8250.0, } self.assertEqual(result, expected) # Now a sample field of view sample_filename = "rep01_201511202114_NCA_INSITU_OCV_FOV01_Ni_08250.0_eV_001of010.xrm" result = decode_ssrl_params(sample_filename) expected = { 'timestep_name': 'rep01', 'position_name': 'NCA_INSITU_OCV_FOV01_Ni', 'is_background': False, 'energy': 8250.0, } self.assertEqual(result, expected) # This one was a problem, from 2017-04-05 sample_filename = ( "NCA_Pg71-5/Pg71-5_NCA_charge2_XANES_170405_1515/" "rep01_Pg71-5_NCA_charge2_08250.0_eV_001of005.xrm") result = decode_ssrl_params(sample_filename) expected = { 'timestep_name': 'rep01', 'position_name': 'Pg71-5_NCA_charge2', 'is_background': False, 'energy': 8250.0, } self.assertEqual(result, expected) # This reference was also a problem ref_filename = 'rep01_000001_ref_Pg71-5_NCA_charge2_08250.0_eV_001of010.xrm' result = decode_ssrl_params(ref_filename) expected = { 'timestep_name': 'rep01', 'position_name': 'Pg71-5_NCA_charge2', 'is_background': True, 'energy': 8250.0, } self.assertEqual(result, expected) # Another bad reference file ref_filename = 'rep02_000182_ref_201604061951_Pg71-8_NCA_charge1_08400.0_eV_002of010.xrm' result = decode_ssrl_params(ref_filename) expected = { 'timestep_name': 'rep02', 'position_name': 'Pg71-8_NCA_charge1', 'is_background': True, 'energy': 8400.0, } self.assertEqual(result, expected) def test_magnification_correction(self): # Prepare some fake data img1 = [[1,1,1,1,1], [1,0,0,0,1], [1,0,0,0,1], [1,0,0,0,1], [1,1,1,1,1]] img2 = [[0,0,0,0,0], [0,1,1,1,0], [0,1,0,1,0], [0,1,1,1,0], [0,0,0,0,0]] imgs = np.array([[img1, img2], [img1, img2]], dtype=np.float) pixel_sizes = np.array([[1, 2], [1, 2]]) scales, translations = magnification_correction(imgs, pixel_sizes) # Check that the right shape result is returns self.assertEqual(scales.shape, (2, 2, 2)) np.testing.assert_equal(scales[..., 0], scales[..., 1]) # Check that the first result is not corrected np.testing.assert_equal(scales[0, 0], (1., 1.)) np.testing.assert_equal(translations[0, 0], (0, 0)) # # Check the values for translation and scale for the changed image np.testing.assert_equal(scales[0, 1], (0.5, 0.5)) np.testing.assert_equal(translations[0,1], (1., 1.)) def test_bad_file(self): # One specific file is not saved properly filenames = [ # No image data nor timestamp 'rep02_000072_ref_20161456_ssrl-test-data_08348.0_eV_002of010.xrm', # Valid file 'rep01_000351_ref_20161456_ssrl-test-data_08354.0_eV_001of010.xrm', # Malformed image data # 'rep02_000182_ref_20161456_ssrl-test-data_08400.0_eV_002of010.xrm', ] filenames = [os.path.join(SSRL_DIR, f) for f in filenames] # Check that the importer warns the user of the bad file with warnings.catch_warnings(record=True) as ws: warnings.simplefilter('always') result = read_metadata(filenames, flavor='ssrl', quiet=True) self.assertTrue(len(ws) > 0) self.assertTrue(any([w.category == RuntimeWarning for w in ws])) self.assertTrue(any(['Ignoring invalid file' in str(w.message) for w in ws])) # Check that the bad entries was excluded from the processed list self.assertEqual(len(result), 1) class SxstmFileTestCase(unittest.TestCase): """Tests for soft x-ray tunneling microscope data from APS 4-ID-C.""" def test_header(self): filename = os.path.join(SXSTM_DIR, 'XGSS_UIC_JC_475v_60c_001_001_001.3ds') sxstm_data = SxstmDataFile(filename=filename) header = sxstm_data.header_lines() self.assertEqual(len(header), 33) data = sxstm_data.dataframe() sxstm_data.close() class SxstmImportTestCase(unittest.TestCase): """Tests for importing a set of X-ray tunneleing microscopy data from APS 4-ID-C. """ hdf_filename = os.path.join(SXSTM_DIR, 'sxstm_imported.h5') parent_groupname = 'sxstm-test-data' def tearDown(self): if os.path.exists(self.hdf_filename): os.remove(self.hdf_filename) def test_hdf_file(self): with warnings.catch_warnings(): warnings.filterwarnings('ignore', message='X and Y pixel sizes') import_aps4idc_sxstm_files(filenames=os.path.join(TEST_DIR, 'sxstm-data-4idc'), hdf_filename=self.hdf_filename, hdf_groupname=self.parent_groupname, shape=(2, 2), energies=[8324., 8354.]) # Check that the file exists with the data group self.assertTrue(os.path.exists(self.hdf_filename)) with h5py.File(self.hdf_filename, mode='r') as f: # Check that the group structure is correct self.assertIn(self.parent_groupname, list(f.keys())) parent = f[self.parent_groupname] self.assertIn('imported', list(parent.keys()), "Importer didn't create '/%s/imported'" % self.parent_groupname) # Check metadata about beamline self.assertEqual(parent.attrs['technique'], 'Synchrotron X-ray Scanning Tunneling Microscopy') self.assertEqual(parent.attrs['xanespy_version'], CURRENT_VERSION) self.assertEqual(parent.attrs['beamline'], "APS 4-ID-C") self.assertEqual(parent.attrs['latest_data_name'], 'imported') full_path = os.path.abspath(SXSTM_DIR) self.assertEqual(parent.attrs['original_directory'], full_path) # Check that the datasets are created group = parent['imported'] keys = list(group.keys()) columns = ['bias_calc', 'current', 'LIA_tip_ch1', 'LIA_tip_ch2', 'LIA_sample', 'LIA_shielding', 'LIA_topo', 'shielding', 'flux', 'bias', 'height'] for col in columns: self.assertIn(col, list(group.keys()), "Importer didn't create '/%s/imported/%s'" "" % (self.parent_groupname, col)) self.assertEqual(group[col].attrs['context'], 'frameset') self.assertEqual(group[col].dtype, 'float32') self.assertEqual(group[col].shape, (1, 2, 2, 2)) self.assertTrue(np.any(group[col])) self.assertEqual(group['pixel_sizes'].attrs['unit'], 'µm') self.assertEqual(group['pixel_sizes'].attrs['context'], 'metadata') isEqual = np.array_equal(group['energies'].value, np.array([[8324., 8354.]])) self.assertTrue(isEqual, msg=group['energies'].value) self.assertEqual(group['energies'].attrs['context'], 'metadata') self.assertIn('filenames', keys) self.assertEqual(group['filenames'].attrs['context'], 'metadata') self.assertIn('timestep_names', keys) self.assertEqual(group['timestep_names'].attrs['context'], 'metadata') self.assertEqual(group['timestep_names'][0], b"ex-situ") # self.assertIn('timestamps', keys) # self.assertEqual(group['timestamps'].attrs['context'], 'metadata') # self.assertIn('original_positions', keys) # self.assertEqual(group['original_positions'].attrs['context'], 'metadata') # self.assertIn('relative_positions', keys) # self.assertEqual(group['relative_positions'].attrs['context'], 'metadata') def test_file_list(self): """See if a file list can be passed instead of a directory name.""" filelist = [os.path.join(SXSTM_DIR, f) for f in os.listdir(SXSTM_DIR)] with warnings.catch_warnings(): warnings.filterwarnings('ignore', message='X and Y pixel sizes') import_aps4idc_sxstm_files(filenames=filelist, hdf_filename=self.hdf_filename, hdf_groupname=self.parent_groupname, shape=(2, 2), energies=[8324., 8354.])
gpl-3.0
jmschrei/scikit-learn
examples/datasets/plot_random_multilabel_dataset.py
278
3402
""" ============================================== Plot randomly generated multilabel dataset ============================================== This illustrates the `datasets.make_multilabel_classification` dataset generator. Each sample consists of counts of two features (up to 50 in total), which are differently distributed in each of two classes. Points are labeled as follows, where Y means the class is present: ===== ===== ===== ====== 1 2 3 Color ===== ===== ===== ====== Y N N Red N Y N Blue N N Y Yellow Y Y N Purple Y N Y Orange Y Y N Green Y Y Y Brown ===== ===== ===== ====== A star marks the expected sample for each class; its size reflects the probability of selecting that class label. The left and right examples highlight the ``n_labels`` parameter: more of the samples in the right plot have 2 or 3 labels. Note that this two-dimensional example is very degenerate: generally the number of features would be much greater than the "document length", while here we have much larger documents than vocabulary. Similarly, with ``n_classes > n_features``, it is much less likely that a feature distinguishes a particular class. """ from __future__ import print_function import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_multilabel_classification as make_ml_clf print(__doc__) COLORS = np.array(['!', '#FF3333', # red '#0198E1', # blue '#BF5FFF', # purple '#FCD116', # yellow '#FF7216', # orange '#4DBD33', # green '#87421F' # brown ]) # Use same random seed for multiple calls to make_multilabel_classification to # ensure same distributions RANDOM_SEED = np.random.randint(2 ** 10) def plot_2d(ax, n_labels=1, n_classes=3, length=50): X, Y, p_c, p_w_c = make_ml_clf(n_samples=150, n_features=2, n_classes=n_classes, n_labels=n_labels, length=length, allow_unlabeled=False, return_distributions=True, random_state=RANDOM_SEED) ax.scatter(X[:, 0], X[:, 1], color=COLORS.take((Y * [1, 2, 4] ).sum(axis=1)), marker='.') ax.scatter(p_w_c[0] * length, p_w_c[1] * length, marker='*', linewidth=.5, edgecolor='black', s=20 + 1500 * p_c ** 2, color=COLORS.take([1, 2, 4])) ax.set_xlabel('Feature 0 count') return p_c, p_w_c _, (ax1, ax2) = plt.subplots(1, 2, sharex='row', sharey='row', figsize=(8, 4)) plt.subplots_adjust(bottom=.15) p_c, p_w_c = plot_2d(ax1, n_labels=1) ax1.set_title('n_labels=1, length=50') ax1.set_ylabel('Feature 1 count') plot_2d(ax2, n_labels=3) ax2.set_title('n_labels=3, length=50') ax2.set_xlim(left=0, auto=True) ax2.set_ylim(bottom=0, auto=True) plt.show() print('The data was generated from (random_state=%d):' % RANDOM_SEED) print('Class', 'P(C)', 'P(w0|C)', 'P(w1|C)', sep='\t') for k, p, p_w in zip(['red', 'blue', 'yellow'], p_c, p_w_c.T): print('%s\t%0.2f\t%0.2f\t%0.2f' % (k, p, p_w[0], p_w[1]))
bsd-3-clause