repo_name
stringlengths
7
92
path
stringlengths
5
149
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
911
693k
license
stringclasses
15 values
tmhm/scikit-learn
examples/plot_kernel_approximation.py
262
8004
""" ================================================== Explicit feature map approximation for RBF kernels ================================================== An example illustrating the approximation of the feature map of an RBF kernel. .. currentmodule:: sklearn.kernel_approximation It shows how to use :class:`RBFSampler` and :class:`Nystroem` to approximate the feature map of an RBF kernel for classification with an SVM on the digits dataset. Results using a linear SVM in the original space, a linear SVM using the approximate mappings and using a kernelized SVM are compared. Timings and accuracy for varying amounts of Monte Carlo samplings (in the case of :class:`RBFSampler`, which uses random Fourier features) and different sized subsets of the training set (for :class:`Nystroem`) for the approximate mapping are shown. Please note that the dataset here is not large enough to show the benefits of kernel approximation, as the exact SVM is still reasonably fast. Sampling more dimensions clearly leads to better classification results, but comes at a greater cost. This means there is a tradeoff between runtime and accuracy, given by the parameter n_components. Note that solving the Linear SVM and also the approximate kernel SVM could be greatly accelerated by using stochastic gradient descent via :class:`sklearn.linear_model.SGDClassifier`. This is not easily possible for the case of the kernelized SVM. The second plot visualized the decision surfaces of the RBF kernel SVM and the linear SVM with approximate kernel maps. The plot shows decision surfaces of the classifiers projected onto the first two principal components of the data. This visualization should be taken with a grain of salt since it is just an interesting slice through the decision surface in 64 dimensions. In particular note that a datapoint (represented as a dot) does not necessarily be classified into the region it is lying in, since it will not lie on the plane that the first two principal components span. The usage of :class:`RBFSampler` and :class:`Nystroem` is described in detail in :ref:`kernel_approximation`. """ print(__doc__) # Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org> # Andreas Mueller <amueller@ais.uni-bonn.de> # License: BSD 3 clause # Standard scientific Python imports import matplotlib.pyplot as plt import numpy as np from time import time # Import datasets, classifiers and performance metrics from sklearn import datasets, svm, pipeline from sklearn.kernel_approximation import (RBFSampler, Nystroem) from sklearn.decomposition import PCA # The digits dataset digits = datasets.load_digits(n_class=9) # To apply an classifier on this data, we need to flatten the image, to # turn the data in a (samples, feature) matrix: n_samples = len(digits.data) data = digits.data / 16. data -= data.mean(axis=0) # We learn the digits on the first half of the digits data_train, targets_train = data[:n_samples / 2], digits.target[:n_samples / 2] # Now predict the value of the digit on the second half: data_test, targets_test = data[n_samples / 2:], digits.target[n_samples / 2:] #data_test = scaler.transform(data_test) # Create a classifier: a support vector classifier kernel_svm = svm.SVC(gamma=.2) linear_svm = svm.LinearSVC() # create pipeline from kernel approximation # and linear svm feature_map_fourier = RBFSampler(gamma=.2, random_state=1) feature_map_nystroem = Nystroem(gamma=.2, random_state=1) fourier_approx_svm = pipeline.Pipeline([("feature_map", feature_map_fourier), ("svm", svm.LinearSVC())]) nystroem_approx_svm = pipeline.Pipeline([("feature_map", feature_map_nystroem), ("svm", svm.LinearSVC())]) # fit and predict using linear and kernel svm: kernel_svm_time = time() kernel_svm.fit(data_train, targets_train) kernel_svm_score = kernel_svm.score(data_test, targets_test) kernel_svm_time = time() - kernel_svm_time linear_svm_time = time() linear_svm.fit(data_train, targets_train) linear_svm_score = linear_svm.score(data_test, targets_test) linear_svm_time = time() - linear_svm_time sample_sizes = 30 * np.arange(1, 10) fourier_scores = [] nystroem_scores = [] fourier_times = [] nystroem_times = [] for D in sample_sizes: fourier_approx_svm.set_params(feature_map__n_components=D) nystroem_approx_svm.set_params(feature_map__n_components=D) start = time() nystroem_approx_svm.fit(data_train, targets_train) nystroem_times.append(time() - start) start = time() fourier_approx_svm.fit(data_train, targets_train) fourier_times.append(time() - start) fourier_score = fourier_approx_svm.score(data_test, targets_test) nystroem_score = nystroem_approx_svm.score(data_test, targets_test) nystroem_scores.append(nystroem_score) fourier_scores.append(fourier_score) # plot the results: plt.figure(figsize=(8, 8)) accuracy = plt.subplot(211) # second y axis for timeings timescale = plt.subplot(212) accuracy.plot(sample_sizes, nystroem_scores, label="Nystroem approx. kernel") timescale.plot(sample_sizes, nystroem_times, '--', label='Nystroem approx. kernel') accuracy.plot(sample_sizes, fourier_scores, label="Fourier approx. kernel") timescale.plot(sample_sizes, fourier_times, '--', label='Fourier approx. kernel') # horizontal lines for exact rbf and linear kernels: accuracy.plot([sample_sizes[0], sample_sizes[-1]], [linear_svm_score, linear_svm_score], label="linear svm") timescale.plot([sample_sizes[0], sample_sizes[-1]], [linear_svm_time, linear_svm_time], '--', label='linear svm') accuracy.plot([sample_sizes[0], sample_sizes[-1]], [kernel_svm_score, kernel_svm_score], label="rbf svm") timescale.plot([sample_sizes[0], sample_sizes[-1]], [kernel_svm_time, kernel_svm_time], '--', label='rbf svm') # vertical line for dataset dimensionality = 64 accuracy.plot([64, 64], [0.7, 1], label="n_features") # legends and labels accuracy.set_title("Classification accuracy") timescale.set_title("Training times") accuracy.set_xlim(sample_sizes[0], sample_sizes[-1]) accuracy.set_xticks(()) accuracy.set_ylim(np.min(fourier_scores), 1) timescale.set_xlabel("Sampling steps = transformed feature dimension") accuracy.set_ylabel("Classification accuracy") timescale.set_ylabel("Training time in seconds") accuracy.legend(loc='best') timescale.legend(loc='best') # visualize the decision surface, projected down to the first # two principal components of the dataset pca = PCA(n_components=8).fit(data_train) X = pca.transform(data_train) # Gemerate grid along first two principal components multiples = np.arange(-2, 2, 0.1) # steps along first component first = multiples[:, np.newaxis] * pca.components_[0, :] # steps along second component second = multiples[:, np.newaxis] * pca.components_[1, :] # combine grid = first[np.newaxis, :, :] + second[:, np.newaxis, :] flat_grid = grid.reshape(-1, data.shape[1]) # title for the plots titles = ['SVC with rbf kernel', 'SVC (linear kernel)\n with Fourier rbf feature map\n' 'n_components=100', 'SVC (linear kernel)\n with Nystroem rbf feature map\n' 'n_components=100'] plt.tight_layout() plt.figure(figsize=(12, 5)) # predict and plot for i, clf in enumerate((kernel_svm, nystroem_approx_svm, fourier_approx_svm)): # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. plt.subplot(1, 3, i + 1) Z = clf.predict(flat_grid) # Put the result into a color plot Z = Z.reshape(grid.shape[:-1]) plt.contourf(multiples, multiples, Z, cmap=plt.cm.Paired) plt.axis('off') # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=targets_train, cmap=plt.cm.Paired) plt.title(titles[i]) plt.tight_layout() plt.show()
bsd-3-clause
ahaberlie/MetPy
examples/plots/Hodograph_Inset.py
8
2367
# Copyright (c) 2016 MetPy Developers. # Distributed under the terms of the BSD 3-Clause License. # SPDX-License-Identifier: BSD-3-Clause """ Hodograph Inset =============== Layout a Skew-T plot with a hodograph inset into the plot. """ import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.inset_locator import inset_axes import pandas as pd import metpy.calc as mpcalc from metpy.cbook import get_test_data from metpy.plots import add_metpy_logo, Hodograph, SkewT from metpy.units import units ########################################### # Upper air data can be obtained using the siphon package, but for this example we will use # some of MetPy's sample data. col_names = ['pressure', 'height', 'temperature', 'dewpoint', 'direction', 'speed'] df = pd.read_fwf(get_test_data('may4_sounding.txt', as_file_obj=False), skiprows=5, usecols=[0, 1, 2, 3, 6, 7], names=col_names) # Drop any rows with all NaN values for T, Td, winds df = df.dropna(subset=('temperature', 'dewpoint', 'direction', 'speed' ), how='all').reset_index(drop=True) ########################################### # We will pull the data out of the example dataset into individual variables and # assign units. hght = df['height'].values * units.hPa p = df['pressure'].values * units.hPa T = df['temperature'].values * units.degC Td = df['dewpoint'].values * units.degC wind_speed = df['speed'].values * units.knots wind_dir = df['direction'].values * units.degrees u, v = mpcalc.wind_components(wind_speed, wind_dir) ########################################### # Create a new figure. The dimensions here give a good aspect ratio fig = plt.figure(figsize=(9, 9)) add_metpy_logo(fig, 115, 100) # Grid for plots skew = SkewT(fig, rotation=45) # Plot the data using normal plotting functions, in this case using # log scaling in Y, as dictated by the typical meteorological plot skew.plot(p, T, 'r') skew.plot(p, Td, 'g') skew.plot_barbs(p, u, v) skew.ax.set_ylim(1000, 100) # Add the relevant special lines skew.plot_dry_adiabats() skew.plot_moist_adiabats() skew.plot_mixing_lines() # Good bounds for aspect ratio skew.ax.set_xlim(-50, 60) # Create a hodograph ax_hod = inset_axes(skew.ax, '40%', '40%', loc=1) h = Hodograph(ax_hod, component_range=80.) h.add_grid(increment=20) h.plot_colormapped(u, v, hght) # Show the plot plt.show()
bsd-3-clause
shahankhatch/scikit-learn
examples/cluster/plot_agglomerative_clustering.py
343
2931
""" Agglomerative clustering with and without structure =================================================== This example shows the effect of imposing a connectivity graph to capture local structure in the data. The graph is simply the graph of 20 nearest neighbors. Two consequences of imposing a connectivity can be seen. First clustering with a connectivity matrix is much faster. Second, when using a connectivity matrix, average and complete linkage are unstable and tend to create a few clusters that grow very quickly. Indeed, average and complete linkage fight this percolation behavior by considering all the distances between two clusters when merging them. The connectivity graph breaks this mechanism. This effect is more pronounced for very sparse graphs (try decreasing the number of neighbors in kneighbors_graph) and with complete linkage. In particular, having a very small number of neighbors in the graph, imposes a geometry that is close to that of single linkage, which is well known to have this percolation instability. """ # Authors: Gael Varoquaux, Nelle Varoquaux # License: BSD 3 clause import time import matplotlib.pyplot as plt import numpy as np from sklearn.cluster import AgglomerativeClustering from sklearn.neighbors import kneighbors_graph # Generate sample data n_samples = 1500 np.random.seed(0) t = 1.5 * np.pi * (1 + 3 * np.random.rand(1, n_samples)) x = t * np.cos(t) y = t * np.sin(t) X = np.concatenate((x, y)) X += .7 * np.random.randn(2, n_samples) X = X.T # Create a graph capturing local connectivity. Larger number of neighbors # will give more homogeneous clusters to the cost of computation # time. A very large number of neighbors gives more evenly distributed # cluster sizes, but may not impose the local manifold structure of # the data knn_graph = kneighbors_graph(X, 30, include_self=False) for connectivity in (None, knn_graph): for n_clusters in (30, 3): plt.figure(figsize=(10, 4)) for index, linkage in enumerate(('average', 'complete', 'ward')): plt.subplot(1, 3, index + 1) model = AgglomerativeClustering(linkage=linkage, connectivity=connectivity, n_clusters=n_clusters) t0 = time.time() model.fit(X) elapsed_time = time.time() - t0 plt.scatter(X[:, 0], X[:, 1], c=model.labels_, cmap=plt.cm.spectral) plt.title('linkage=%s (time %.2fs)' % (linkage, elapsed_time), fontdict=dict(verticalalignment='top')) plt.axis('equal') plt.axis('off') plt.subplots_adjust(bottom=0, top=.89, wspace=0, left=0, right=1) plt.suptitle('n_cluster=%i, connectivity=%r' % (n_clusters, connectivity is not None), size=17) plt.show()
bsd-3-clause
MartinSavc/scikit-learn
examples/decomposition/plot_pca_3d.py
354
2432
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Principal components analysis (PCA) ========================================================= These figures aid in illustrating how a point cloud can be very flat in one direction--which is where PCA comes in to choose a direction that is not flat. """ print(__doc__) # Authors: Gael Varoquaux # Jaques Grobler # Kevin Hughes # License: BSD 3 clause from sklearn.decomposition import PCA from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib.pyplot as plt from scipy import stats ############################################################################### # Create the data e = np.exp(1) np.random.seed(4) def pdf(x): return 0.5 * (stats.norm(scale=0.25 / e).pdf(x) + stats.norm(scale=4 / e).pdf(x)) y = np.random.normal(scale=0.5, size=(30000)) x = np.random.normal(scale=0.5, size=(30000)) z = np.random.normal(scale=0.1, size=len(x)) density = pdf(x) * pdf(y) pdf_z = pdf(5 * z) density *= pdf_z a = x + y b = 2 * y c = a - b + z norm = np.sqrt(a.var() + b.var()) a /= norm b /= norm ############################################################################### # Plot the figures def plot_figs(fig_num, elev, azim): fig = plt.figure(fig_num, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=elev, azim=azim) ax.scatter(a[::10], b[::10], c[::10], c=density[::10], marker='+', alpha=.4) Y = np.c_[a, b, c] # Using SciPy's SVD, this would be: # _, pca_score, V = scipy.linalg.svd(Y, full_matrices=False) pca = PCA(n_components=3) pca.fit(Y) pca_score = pca.explained_variance_ratio_ V = pca.components_ x_pca_axis, y_pca_axis, z_pca_axis = V.T * pca_score / pca_score.min() x_pca_axis, y_pca_axis, z_pca_axis = 3 * V.T x_pca_plane = np.r_[x_pca_axis[:2], - x_pca_axis[1::-1]] y_pca_plane = np.r_[y_pca_axis[:2], - y_pca_axis[1::-1]] z_pca_plane = np.r_[z_pca_axis[:2], - z_pca_axis[1::-1]] x_pca_plane.shape = (2, 2) y_pca_plane.shape = (2, 2) z_pca_plane.shape = (2, 2) ax.plot_surface(x_pca_plane, y_pca_plane, z_pca_plane) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) elev = -40 azim = -80 plot_figs(1, elev, azim) elev = 30 azim = 20 plot_figs(2, elev, azim) plt.show()
bsd-3-clause
jblackburne/scikit-learn
doc/tutorial/text_analytics/solutions/exercise_02_sentiment.py
104
3139
"""Build a sentiment analysis / polarity model Sentiment analysis can be casted as a binary text classification problem, that is fitting a linear classifier on features extracted from the text of the user messages so as to guess wether the opinion of the author is positive or negative. In this examples we will use a movie review dataset. """ # Author: Olivier Grisel <olivier.grisel@ensta.org> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.svm import LinearSVC from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV from sklearn.datasets import load_files from sklearn.model_selection import train_test_split from sklearn import metrics if __name__ == "__main__": # NOTE: we put the following in a 'if __name__ == "__main__"' protected # block to be able to use a multi-core grid search that also works under # Windows, see: http://docs.python.org/library/multiprocessing.html#windows # The multiprocessing module is used as the backend of joblib.Parallel # that is used when n_jobs != 1 in GridSearchCV # the training data folder must be passed as first argument movie_reviews_data_folder = sys.argv[1] dataset = load_files(movie_reviews_data_folder, shuffle=False) print("n_samples: %d" % len(dataset.data)) # split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.25, random_state=None) # TASK: Build a vectorizer / classifier pipeline that filters out tokens # that are too rare or too frequent pipeline = Pipeline([ ('vect', TfidfVectorizer(min_df=3, max_df=0.95)), ('clf', LinearSVC(C=1000)), ]) # TASK: Build a grid search to find out whether unigrams or bigrams are # more useful. # Fit the pipeline on the training set using grid search for the parameters parameters = { 'vect__ngram_range': [(1, 1), (1, 2)], } grid_search = GridSearchCV(pipeline, parameters, n_jobs=-1) grid_search.fit(docs_train, y_train) # TASK: print the mean and std for each candidate along with the parameter # settings for all the candidates explored by grid search. n_candidates = len(grid_search.cv_results_['params']) for i in range(n_candidates): print(i, 'params - %s; mean - %0.2f; std - %0.2f' % (grid_search.cv_results_['params'][i], grid_search.cv_results_['mean_test_score'][i], grid_search.cv_results_['std_test_score'][i])) # TASK: Predict the outcome on the testing set and store it in a variable # named y_predicted y_predicted = grid_search.predict(docs_test) # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Print and plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) # import matplotlib.pyplot as plt # plt.matshow(cm) # plt.show()
bsd-3-clause
lht142934/vnpy
vn.datayes/storage.py
29
18623
import os import json import pymongo import pandas as pd from datetime import datetime, timedelta from api import Config, PyApi from api import BaseDataContainer, History, Bar from errors import (VNPAST_ConfigError, VNPAST_RequestError, VNPAST_DataConstructorError, VNPAST_DatabaseError) class DBConfig(Config): """ Json-like config object; inherits from Config() Contains all kinds of settings relating to database settings. privates -------- Inherited from api.Config, plus: * client: pymongo.MongoClient object, the connection that is to be used for this session. * body: dictionary; the main content of config. - client: pymongo.MongoClient(), refers to self.client. - dbs: dictionary, is a mapping from database alias to another dictionary, which inclues configurations and themselves(i.e. pymongo.database entity) Concretely, dbs has the structure like: { alias1 : { 'self': client[dbName1], 'index': dbIndex1, 'collNames': collectionNameType1 }, alias2 : { 'self': client[dbName2], 'index': dbIndex2, 'collNames': collectionNameType2 }, ... } where alias#: string; dbs.alias#.self: pymongo.database; dbs.alias#.index: string; dbs.alias#.collNames: string; - dbNames: list; a list of database alias. """ head = 'DB config' client = pymongo.MongoClient() body = { 'client': client, 'dbs': { 'EQU_M1': { 'self': client['DATAYES_EQUITY_M1'], 'index': 'dateTime', 'collNames': 'secID' }, 'EQU_D1': { 'self': client['DATAYES_EQUITY_D1'], 'index': 'date', 'collNames': 'equTicker' }, 'FUT_D1': { 'self': client['DATAYES_FUTURE_D1'], 'index': 'date', 'collNames': 'futTicker' }, 'OPT_D1': { 'self': client['DATAYES_OPTION_D1'], 'index': 'date', 'collNames': 'optTicker' }, 'FUD_D1': { 'self': client['DATAYES_FUND_D1'], 'index': 'date', 'collNames': 'fudTicker' }, 'IDX_D1': { 'self': client['DATAYES_INDEX_D1'], 'index': 'date', 'collNames': 'idxTicker' } }, 'dbNames': ['EQU_M1', 'EQU_D1', 'FUT_D1', 'OPT_D1', 'FUD_D1', 'IDX_D1'] } def __init__(self, head=None, token=None, body=None): """ Inherited constructor. parameters ---------- * head: string; the name of config file. Default is None. * token: string; user's token. * body: dictionary; the main content of config """ super(DBConfig, self).__init__(head, token, body) def view(self): """ Reloaded Prettify printing method. """ config_view = { 'dbConfig_head' : self.head, 'dbConfig_body' : str(self.body), } print json.dumps(config_view, indent=4, sort_keys=True) #---------------------------------------------------------------------- # MongoDB Controller class class MongodController(object): """ The MongoDB controller interface. MongodController is initialized with a DBConfig configuration object and a PyApi object, which has already been contructed with its own Config json. The default version of constructor actually does nothing special about the database. Yet if user executes shell script prepare.sh to prepare the connection, MongodController will firstly gather symbols that are going to become collection names in corresponding databases. This process is done one database by another, user can skip useless databases by editing the scripts. Then, it ensures the index of each collection due to the 'index' value in DBConfig.body.dbs. Concretely, for D1 bars, the index will be 'date', and for intraday bars, it will be 'dateTime'; both take the form of datetime.datetime timestamp. download() and update() methods of controller dynamically construct and maintain the databases, requesting data via PyApi. Once the database is constructed, MongodController can access required data via its fetch() method. privates -------- * _config: DBConfig object; a container of all useful settings for the databases. * _api: PyApi object; is responsible for making requests. * _client: pymongo.MongoClient object; the connection to MongoDB. * _dbs: dictionary; a mapping from database names to another dictionary, which includes configurations of the database and the pymongo.database entity. Inherited from _config.body.['dbs']. Note that keys self._dbs are mere strings, only self._dbs[key]['self'] refers to the pymongo.Database object. * _dbNames: list; a list of names of databases. * _collNames: dictionary; mapping from self._db[key]['collNames'] attribute to the names of collections(i.e. tickers) within. - example: _collNames['equTicker'] = ['000001', '000002', ...] * _connected: boolean; whether the MongoClient was connected to or not. * _mapTickersToSecIDs: dictionary; mapping from stock tickers to its security ID. example ------- >> myApi = PyApi(Config()) >> mydbs = DBConfig() >> controller = MongodController(mydbs, myApi) >> controller._get_coll_names() >> controller._ensure_index() >> controller.download_equity_D1(20130101, 20150801) >> controller.update_equity_D1() """ _config = DBConfig() _api = None _client = None _dbs = None _dbNames = [] _collNames = dict() _connected = False _mapTickersToSecIDs = dict() def __init__(self, config, api): """ Constructor. parameters ---------- * config: DBConfig object; specifies database configs. * api: PyApi object. """ self._api = api # Set Datayes PyApi. if config.body: try: self._config = config.body self._client = config.body['client'] self._dbs = config.body['dbs'] self._dbNames = config.body['dbNames'] self._connected = True except KeyError: msg = '[MONGOD]: Unable to configure database; ' + \ 'config file is incomplete.' raise VNPAST_ConfigError(msg) except Exception,e: msg = '[MONGOD]: Unable to configure database; ' + str(e) raise VNPAST_ConfigError(msg) if self._connected: #self._get_coll_names() #self._ensure_index() pass def view(self): """ NOT IMPLEMENTED """ return #---------------------------------------------------------------------- # Get collection names methods. """ Decorator; Targeting at path dName, if exists, read data from this file; if not, execute handle() which returns a json-like data and stores the data at dName path. parameters ---------- * dName: string; the specific path of file that __md looks at. """ def __md(dName): def _md(get): def handle(*args, **kwargs): try: if os.path.isfile(dName): # if directory exists, read from it. jsonFile = open(dName,'r') data = json.loads(jsonFile.read()) jsonFile.close() else: # if not, get data via *get method, # then write to the file. data = get(*args, **kwargs) jsonFile = open(dName, 'w+') jsonFile.write(json.dumps(data)) jsonFile.close() #print data return data except Exception,e: raise e return handle return _md @__md('names/equTicker.json') def _allEquTickers(self): """get all equity tickers, decorated by @__md().""" data = self._api.get_equity_D1() allEquTickers = list(data.body['ticker']) return allEquTickers @__md('names/secID.json') def _allSecIds(self): """get all security IDs, decorated by @__md().""" data = self._api.get_equity_D1() allTickers = list(data.body['ticker']) exchangeCDs = list(data.body['exchangeCD']) allSecIds = [allTickers[k]+'.'+exchangeCDs[k] for k in range( len(allTickers))] return allSecIds @__md('names/futTicker.json') def _allFutTickers(self): """get all future tickers, decorated by @__md().""" data = self._api.get_future_D1() allFutTickers = list(data.body['ticker']) return allFutTickers @__md('names/optTicker.json') def _allOptTickers(self): """get all option tickers, decorated by @__md().""" data = self._api.get_option_D1() allOptTickers = list(data.body['ticker']) return allOptTickers @__md('names/fudTicker.json') def _allFudTickers(self): """get all fund tickers, decorated by @__md().""" data = self._api.get_fund_D1() allFudTickers = list(data.body['ticker']) return allFudTickers @__md('names/idxTicker.json') def _allIdxTickers(self): """get all index tickers, decorated by @__md().""" data = self._api.get_index_D1() allIdxTickers = list(data.body['ticker']) return allIdxTickers @__md('names/bndTicker.json') def _allBndTickers(self): """get all bond tickers, decorated by @__md().""" data = self._api.get_bond_D1() allBndTickers = list(data.body['ticker']) return allBndTickers def _get_coll_names(self): """ get all instruments'names and store them in self._collNames. """ try: if not os.path.exists('names'): os.makedirs('names') self._collNames['equTicker'] = self._allEquTickers() self._collNames['fudTicker'] = self._allFudTickers() self._collNames['secID'] = self._allSecIds() self._collNames['futTicker'] = self._allFutTickers() self._collNames['optTicker'] = self._allOptTickers() self._collNames['idxTicker'] = self._allIdxTickers() print '[MONGOD]: Collection names gotten.' return 1 except AssertionError: warning = '[MONGOD]: Warning, collection names ' + \ 'is an empty list.' print warning except Exception, e: msg = '[MONGOD]: Unable to set collection names; ' + \ str(e) raise VNPAST_DatabaseError(msg) #---------------------------------------------------------------------- # Ensure collection index method. def _ensure_index(self): """ Ensure indices for all databases and collections. first access self._dbs config to get index column names; then get collection names from self._collNames and loop over all collections. """ if self._collNames and self._dbs: try: for dbName in self._dbs: # Iterate over database configurations. db = self._dbs[dbName] dbSelf = db['self'] index = db['index'] collNames = self._collNames[db['collNames']] # db['self'] is the pymongo.Database object. for name in collNames: coll = dbSelf[name] coll.ensure_index([(index, pymongo.DESCENDING)], unique=True) print '[MONGOD]: MongoDB index set.' return 1 except KeyError: msg = '[MONGOD]: Unable to set collection indices; ' + \ 'infomation in Config.body["dbs"] is incomplete.' raise VNPAST_DatabaseError(msg) except Exception, e: msg = '[MONGOD]: Unable to set collection indices; ' + str(e) raise VNPAST_DatabaseError(msg) #---------------------------------------------------------------------- # Download method. def download_equity_D1(self, start, end, sessionNum=30): """ """ try: db = self._dbs['EQU_D1']['self'] self._api.get_equity_D1_mongod(db, start, end, sessionNum) except Exception, e: msg = '[MONGOD]: Unable to download data; ' + str(e) raise VNPAST_DatabaseError(msg) def download_equity_M1(self, tasks, startYr=2012, endYr=2015): """ """ try: # map equity tickers to security IDs. if self._mapTickersToSecIDs: maps = self._mapTickersToSecIDs else: assert os.isfile('./names/secID.json') jsonFile = open(dName,'r') allSecIds = json.loads(jsonFile.read()) jsonFile.close() allTickers = [s.split('.')[0] for s in allSecIds] maps = dict(zip(allTickers, allSecIds)) self._mapTickersToSecIDs = maps tasks_ = [maps[task] for task in tasks] db = self._dbs['EQU_M1']['self'] self._api.get_equity_M1_interMonth(db, id=1, startYr = startYr, endYr = endYr, tasks = tasks_) except AssertionError: msg = '[MONGOD]: Cannot map tickers to secIDs; ' + \ 'secID.json does not exist.' raise VNPAST_DatabaseError(msg) except Exception, e: msg = '[MONGOD]: Unable to download data; ' + str(e) raise VNPAST_DatabaseError(msg) def download_bond_D1(self, start, end, sessionNum=30): """ """ pass def download_future_D1(self, start, end, sessionNum=30): """ """ try: db = self._dbs['FUT_D1']['self'] self._api.get_future_D1_mongod(db, start, end, sessionNum) except Exception, e: msg = '[MONGOD]: Unable to download data; ' + str(e) raise VNPAST_DatabaseError(msg) def download_option_D1(self, start, end, sessionNum=30): """ """ try: db = self._dbs['OPT_D1']['self'] self._api.get_option_D1_mongod(db, start, end, sessionNum) except Exception, e: msg = '[MONGOD]: Unable to download data; ' + str(e) raise VNPAST_DatabaseError(msg) def download_index_D1(self, start, end, sessionNum=30): """ """ try: db = self._dbs['IDX_D1']['self'] self._api.get_index_D1_mongod(db, start, end, sessionNum) except Exception, e: msg = '[MONGOD]: Unable to download data; ' + str(e) raise VNPAST_DatabaseError(msg) def download_fund_D1(self, start, end, sessionNum=30): """ """ try: db = self._dbs['FUD_D1']['self'] self._api.get_fund_D1_mongod(db, start, end, sessionNum) except Exception, e: msg = '[MONGOD]: Unable to download data; ' + str(e) raise VNPAST_DatabaseError(msg) #---------------------------------------------------------------------- # Update methods. def __update(self, key, target1, target2, sessionNum): """ Basic update method. Looks into the database specified by 'key', find the latest record in the collection of it. Then update the collections till last trading date. parameters ---------- * key: string; a database alias (refer to the database config) e.g., 'EQU_D1'. * target1: method; pointer to the function with which controller obtain all tickers in the database. Concretely, target1 are self._all#Tickers methods. * target2: method; pointer to the api overlord requesting functions i.e. self._api.get_###_mongod methods. * sessionNum: integer; the number of threads. """ try: # get databases and tickers db = self._dbs[key]['self'] index = self._dbs[key]['index'] allTickers = target1() coll = db[allTickers[0]] # find the latest timestamp in collection. latest = coll.find_one( sort=[(index, pymongo.DESCENDING)])[index] start = datetime.strftime( latest + timedelta(days=1),'%Y%m%d') end = datetime.strftime(datetime.now(), '%Y%m%d') # then download. target2(db, start, end, sessionNum) return db except Exception, e: msg = '[MONGOD]: Unable to update data; ' + str(e) raise VNPAST_DatabaseError(msg) def update_equity_D1(self, sessionNum=30): """ """ db = self.__update(key = 'EQU_D1', target1 = self._allEquTickers, target2 = self._api.get_equity_D1_mongod, sessionNum = sessionNum) return db def update_future_D1(self, sessionNum=30): """ """ db = self.__update(key = 'FUT_D1', target1 = self._allFutTickers, target2 = self._api.get_future_D1_mongod, sessionNum = sessionNum) return db def update_option_D1(self, sessionNum=30): """ """ db = self.__update(key = 'OPT_D1', target1 = self._allOptTickers, target2 = self._api.get_option_D1_mongod, sessionNum = sessionNum) return db def update_index_D1(self, sessionNum=30): """ """ db = self.__update(key = 'IDX_D1', target1 = self._allIdxTickers, target2 = self._api.get_index_D1_mongod, sessionNum = sessionNum) return db def update_fund_D1(self, sessionNum=30): """ """ db = self.__update(key = 'FUD_D1', target1 = self._allFudTickers, target2 = self._api.get_fund_D1_mongod, sessionNum = sessionNum) return db #----------------------------------------------------------------------# # stuff that will be deprecated def update_equity_D1_(self, sessionNum=30): """ """ try: # set databases and tickers db = self._dbs['EQU_D1']['self'] index = self._dbs['EQU_D1']['index'] allEquTickers = self._allEquTickers() coll = db[allEquTickers[0]] # find the latest timestamp in collection. latest = coll.find_one( sort=[(index, pymongo.DESCENDING)])[index] start = datetime.strftime(latest + timedelta(days=1),'%Y%m%d') end = datetime.strftime(datetime.now(), '%Y%m%d') # then download. self._api.get_equity_D1_mongod(db, start, end, sessionNum) except Exception, e: msg = '[MONGOD]: Unable to update data; ' + str(e) raise VNPAST_DatabaseError(msg) def update_equity_M1(self): """ """ pass #---------------------------------------------------------------------- # Fetch method. def fetch(self, dbName, ticker, start, end, output='list'): """ """ # check inputs' validity. if output not in ['df', 'list', 'json']: raise ValueError('[MONGOD]: Unsupported output type.') if dbName not in self._dbNames: raise ValueError('[MONGOD]: Unable to locate database name.') db = self._dbs[dbName] dbSelf = db['self'] dbIndex = db['index'] try: coll = db[ticker] if len(start)==8 and len(end)==8: # yyyymmdd, len()=8 start = datetime.strptime(start, '%Y%m%d') end = datetime.strptime(end, '%Y%m%d') elif len(start)==14 and len(end)==14: # yyyymmdd HH:MM, len()=14 start = datetime.strptime(start, '%Y%m%d %H:%M') end = datetime.strptime(end, '%Y%m%d %H:%M') else: pass docs = [] # find in MongoDB. for doc in coll.find(filter={dbIndex: {'$lte': end, '$gte': start}}, projection={'_id': False}): docs.append(doc) if output == 'list': return docs[::-1] except Exception, e: msg = '[MONGOD]: Error encountered when fetching data' + \ 'from MongoDB; '+ str(e) return -1 if __name__ == '__main__': dc = DBConfig() api = PyApi(Config()) mc = MongodController(dc, api) mc.update_index_D1()
mit
petosegan/scikit-learn
examples/ensemble/plot_adaboost_multiclass.py
354
4124
""" ===================================== Multi-class AdaBoosted Decision Trees ===================================== This example reproduces Figure 1 of Zhu et al [1] and shows how boosting can improve prediction accuracy on a multi-class problem. The classification dataset is constructed by taking a ten-dimensional standard normal distribution and defining three classes separated by nested concentric ten-dimensional spheres such that roughly equal numbers of samples are in each class (quantiles of the :math:`\chi^2` distribution). The performance of the SAMME and SAMME.R [1] algorithms are compared. SAMME.R uses the probability estimates to update the additive model, while SAMME uses the classifications only. As the example illustrates, the SAMME.R algorithm typically converges faster than SAMME, achieving a lower test error with fewer boosting iterations. The error of each algorithm on the test set after each boosting iteration is shown on the left, the classification error on the test set of each tree is shown in the middle, and the boost weight of each tree is shown on the right. All trees have a weight of one in the SAMME.R algorithm and therefore are not shown. .. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ print(__doc__) # Author: Noel Dawe <noel.dawe@gmail.com> # # License: BSD 3 clause from sklearn.externals.six.moves import zip import matplotlib.pyplot as plt from sklearn.datasets import make_gaussian_quantiles from sklearn.ensemble import AdaBoostClassifier from sklearn.metrics import accuracy_score from sklearn.tree import DecisionTreeClassifier X, y = make_gaussian_quantiles(n_samples=13000, n_features=10, n_classes=3, random_state=1) n_split = 3000 X_train, X_test = X[:n_split], X[n_split:] y_train, y_test = y[:n_split], y[n_split:] bdt_real = AdaBoostClassifier( DecisionTreeClassifier(max_depth=2), n_estimators=600, learning_rate=1) bdt_discrete = AdaBoostClassifier( DecisionTreeClassifier(max_depth=2), n_estimators=600, learning_rate=1.5, algorithm="SAMME") bdt_real.fit(X_train, y_train) bdt_discrete.fit(X_train, y_train) real_test_errors = [] discrete_test_errors = [] for real_test_predict, discrete_train_predict in zip( bdt_real.staged_predict(X_test), bdt_discrete.staged_predict(X_test)): real_test_errors.append( 1. - accuracy_score(real_test_predict, y_test)) discrete_test_errors.append( 1. - accuracy_score(discrete_train_predict, y_test)) n_trees_discrete = len(bdt_discrete) n_trees_real = len(bdt_real) # Boosting might terminate early, but the following arrays are always # n_estimators long. We crop them to the actual number of trees here: discrete_estimator_errors = bdt_discrete.estimator_errors_[:n_trees_discrete] real_estimator_errors = bdt_real.estimator_errors_[:n_trees_real] discrete_estimator_weights = bdt_discrete.estimator_weights_[:n_trees_discrete] plt.figure(figsize=(15, 5)) plt.subplot(131) plt.plot(range(1, n_trees_discrete + 1), discrete_test_errors, c='black', label='SAMME') plt.plot(range(1, n_trees_real + 1), real_test_errors, c='black', linestyle='dashed', label='SAMME.R') plt.legend() plt.ylim(0.18, 0.62) plt.ylabel('Test Error') plt.xlabel('Number of Trees') plt.subplot(132) plt.plot(range(1, n_trees_discrete + 1), discrete_estimator_errors, "b", label='SAMME', alpha=.5) plt.plot(range(1, n_trees_real + 1), real_estimator_errors, "r", label='SAMME.R', alpha=.5) plt.legend() plt.ylabel('Error') plt.xlabel('Number of Trees') plt.ylim((.2, max(real_estimator_errors.max(), discrete_estimator_errors.max()) * 1.2)) plt.xlim((-20, len(bdt_discrete) + 20)) plt.subplot(133) plt.plot(range(1, n_trees_discrete + 1), discrete_estimator_weights, "b", label='SAMME') plt.legend() plt.ylabel('Weight') plt.xlabel('Number of Trees') plt.ylim((0, discrete_estimator_weights.max() * 1.2)) plt.xlim((-20, n_trees_discrete + 20)) # prevent overlapping y-axis labels plt.subplots_adjust(wspace=0.25) plt.show()
bsd-3-clause
akrherz/iem
htdocs/plotting/auto/scripts100/p153.py
1
6880
"""Highest hourly values""" from collections import OrderedDict import datetime import pandas as pd from pandas.io.sql import read_sql from matplotlib.font_manager import FontProperties from pyiem.util import get_autoplot_context, get_dbconn from pyiem.plot.use_agg import plt from pyiem.exceptions import NoDataFound PDICT = OrderedDict( [ ("max_dwpf", "Highest Dew Point Temperature"), ("min_dwpf", "Lowest Dew Point Temperature"), ("max_tmpf", "Highest Air Temperature"), ("min_tmpf", "Lowest Air Temperature"), ("max_feel", "Highest Feels Like Temperature"), ("min_feel", "Lowest Feels Like Temperature"), ("max_mslp", "Maximum Sea Level Pressure"), ("min_mslp", "Minimum Sea Level Pressure"), ("max_alti", "Maximum Pressure Altimeter"), ("min_alti", "Minimum Pressure Altimeter"), ] ) UNITS = { "max_dwpf": "F", "max_tmpf": "F", "min_dwpf": "F", "min_tmpf": "F", "min_feel": "F", "max_feel": "F", "max_mslp": "mb", "min_mslp": "mb", "max_alti": "in", "min_alti": "in", } MDICT = OrderedDict( [ ("all", "No Month Limit"), ("spring", "Spring (MAM)"), ("fall", "Fall (SON)"), ("winter", "Winter (DJF)"), ("summer", "Summer (JJA)"), ("gs", "1 May to 30 Sep"), ("jan", "January"), ("feb", "February"), ("mar", "March"), ("apr", "April"), ("may", "May"), ("jun", "June"), ("jul", "July"), ("aug", "August"), ("sep", "September"), ("oct", "October"), ("nov", "November"), ("dec", "December"), ] ) def get_description(): """ Return a dict describing how to call this plotter """ desc = dict() desc["data"] = True desc[ "description" ] = """This table presents the extreme hourly value of some variable of your choice based on available observations maintained by the IEM. Sadly, this app will likely point out some bad data points as such points tend to be obvious at extremes. If you contact us to point out troubles, we'll certainly attempt to fix the archive to remove the bad data points. Observations are arbitrarly bumped 10 minutes into the future to place the near to top of the hour obs on that hour. For example, a 9:53 AM observation becomes the ob for 10 AM. """ desc["arguments"] = [ dict( type="zstation", name="zstation", default="AMW", network="IA_ASOS", label="Select Station:", ), dict( type="select", name="month", default="all", options=MDICT, label="Select Month/Season/All", ), dict( type="select", name="var", options=PDICT, default="max_dwpf", label="Which Variable to Plot", ), ] return desc def plotter(fdict): """ Go """ font0 = FontProperties() font0.set_family("monospace") font0.set_size(16) font1 = FontProperties() font1.set_size(16) pgconn = get_dbconn("asos") ctx = get_autoplot_context(fdict, get_description()) varname = ctx["var"] varname2 = varname.split("_")[1] if varname2 in ["dwpf", "tmpf", "feel"]: varname2 = "i" + varname2 month = ctx["month"] station = ctx["zstation"] if month == "all": months = range(1, 13) elif month == "fall": months = [9, 10, 11] elif month == "winter": months = [12, 1, 2] elif month == "spring": months = [3, 4, 5] elif month == "summer": months = [6, 7, 8] elif month == "gs": months = [5, 6, 7, 8, 9] else: ts = datetime.datetime.strptime("2000-" + month + "-01", "%Y-%b-%d") # make sure it is length two for the trick below in SQL months = [ts.month] df = read_sql( f""" WITH obs as ( SELECT (valid + '10 minutes'::interval) at time zone %s as ts, tmpf::int as itmpf, dwpf::int as idwpf, feel::int as ifeel, mslp, alti from alldata where station = %s and extract(month from valid at time zone %s) in %s), agg1 as ( SELECT extract(hour from ts) as hr, max(idwpf) as max_dwpf, max(itmpf) as max_tmpf, min(idwpf) as min_dwpf, min(itmpf) as min_tmpf, min(ifeel) as min_feel, max(ifeel) as max_feel, max(alti) as max_alti, min(alti) as min_alti, max(mslp) as max_mslp, min(mslp) as min_mslp from obs GROUP by hr) SELECT o.ts, a.hr::int as hr, a.{varname} from agg1 a JOIN obs o on (a.hr = extract(hour from o.ts) and a.{varname} = o.{varname2}) ORDER by a.hr ASC, o.ts DESC """, pgconn, params=( ctx["_nt"].sts[station]["tzname"], station, ctx["_nt"].sts[station]["tzname"], tuple(months), ), index_col=None, ) if df.empty: raise NoDataFound("No Data was found.") y0 = 0.1 yheight = 0.8 dy = yheight / 24.0 (fig, ax) = plt.subplots(1, 1, figsize=(8, 8)) ax.set_position([0.12, y0, 0.57, yheight]) ax.barh(df["hr"], df[varname], align="center") ax.set_ylim(-0.5, 23.5) ax.set_yticks([0, 4, 8, 12, 16, 20]) ax.set_yticklabels(["Mid", "4 AM", "8 AM", "Noon", "4 PM", "8 PM"]) ax.grid(True) ax.set_xlim([df[varname].min() - 5, df[varname].max() + 5]) ax.set_ylabel( "Local Time %s" % (ctx["_nt"].sts[station]["tzname"],), fontproperties=font1, ) ab = ctx["_nt"].sts[station]["archive_begin"] if ab is None: raise NoDataFound("Unknown station metadata") fig.text( 0.5, 0.93, ("%s [%s] %s-%s\n" "%s [%s]") % ( ctx["_nt"].sts[station]["name"], station, ab.year, datetime.date.today().year, PDICT[varname], MDICT[month], ), ha="center", fontproperties=font1, ) ypos = y0 + (dy / 2.0) for hr in range(24): sdf = df[df["hr"] == hr] if sdf.empty: continue row = sdf.iloc[0] fig.text( 0.7, ypos, "%3.0f: %s%s" % ( row[varname], pd.Timestamp(row["ts"]).strftime("%d %b %Y"), ("*" if len(sdf.index) > 1 else ""), ), fontproperties=font0, va="center", ) ypos += dy ax.set_xlabel( "%s %s, * denotes ties" % (PDICT[varname], UNITS[varname]), fontproperties=font1, ) return plt.gcf(), df if __name__ == "__main__": plotter(dict())
mit
ComputoCienciasUniandes/MetodosComputacionalesLaboratorio
2017-1/lab8_EJ3/lab8SOL_eJ3/spring_mass.py
1
1084
import numpy as np import matplotlib.pyplot as plt N = 5000 #number of steps to take xo = 0.2 #initial position in m vo = 0.0 #initial velocity tau = 4.0 #total time for the simulation in s . dt = tau/float(N) # time step k = 42.0 #spring constant in N/m m = 0.25 #mass in kg g = 9.8 #in m/ s ^2 mu = 0.15 #friction coefficient y = np.zeros([N,2]) #y is the vector of positions and velocities. y[0,0] = xo #initial position y[0,1] = vo #initial velocity #This function defines the derivatives of the system. def SpringMass(state,time) : g0=state[1] if g0 > 0 : g1=-k/m*state[0]-g*mu else: g1=-k/m*state[0]+g*mu return np.array([g0,g1]) #This is the basic step in the Euler Method for solving ODEs. def euler (y,time,dt,derivs) : k0 = dt*derivs(y,time) ynext = y + k0 return ynext for j in range (N-1): y[j+1] = euler(y[j],0,dt,SpringMass) #Just to plot time = np.linspace(0,tau,N) plt.plot(time, y[:,0],'b',label="position") plt.xlabel( "time" ) plt.ylabel( "position" ) plt.savefig('spring_mass.png')
mit
hughdbrown/QSTK-nohist
src/qstkfeat/featutil.py
1
18051
''' (c) 2011, 2012 Georgia Tech Research Corporation This source code is released under the New BSD license. Please see http://wiki.quantsoftware.org/index.php?title=QSTK_License for license details. Created on Nov 7, 2011 @author: John Cornwell @contact: JohnWCornwellV@gmail.com @summary: Contains utility functions to interact with feature functions in features.py ''' ''' Python imports ''' import math import pickle import datetime as dt from dateutil.relativedelta import relativedelta ''' 3rd Party Imports ''' import numpy as np import matplotlib.pyplot as plt ''' Our Imports ''' import qstklearn.kdtknn as kdt from qstkutil import DataAccess as da from qstkutil import qsdateutil as du from qstkutil import tsutil as tsu from qstkfeat.features import * from qstkfeat.classes import class_fut_ret def getMarketRel(dData, sRel='$SPX'): ''' @summary: Calculates market relative data. @param dData - Dictionary containing data to be used, requires specific naming: open/high/low/close/volume @param sRel - Stock ticker to make the data relative to, $SPX is default. @return: Dictionary of market relative values ''' if sRel not in dData['close'].columns: raise KeyError('Market relative stock %s not found in getMR()' % sRel) dRet = {} ''' Make all data market relative, except for volume ''' for sKey in dData.keys(): ''' Don't calculate market relative volume, but still copy it over ''' if sKey == 'volume': dRet['volume'] = dData['volume'] continue dfAbsolute = dData[sKey] dfRelative = pand.DataFrame(index=dfAbsolute.index, columns=dfAbsolute.columns, data=np.zeros(dfAbsolute.shape)) ''' Get returns and strip off the market returns ''' naRets = dfAbsolute.values.copy() tsu.returnize0(naRets) naMarkRets = naRets[:, list(dfAbsolute.columns).index(sRel)] for i, sStock in enumerate(dfAbsolute.columns): ''' Don't change the 'market' stock ''' if sStock == sRel: dfRelative.values[:, i] = dfAbsolute.values[:, i] continue naMarkRel = (naRets[:, i] - naMarkRets) + 1.0 ''' Find the first non-nan value and start the price at 100 ''' for j in range(0, dfAbsolute.values.shape[0]): if pand.isnull(dfAbsolute.values[j][i]): dfRelative.values[j][i] = float('nan') continue dfRelative.values[j][i] = 100 break ''' Now fill prices out using market relative returns ''' for j in range(j + 1, dfAbsolute.values.shape[0]): dfRelative.values[j][i] = dfRelative.values[j - 1][i] * naMarkRel[j] ''' Add dataFrame to dictionary to return, move to next key ''' dRet[sKey] = dfRelative return dRet def applyFeatures(dData, lfcFeatures, ldArgs, sMarketRel=None, sLog=None): ''' @summary: Calculates the feature values using a list of feature functions and arguments. @param dData - Dictionary containing data to be used, requires specific naming: open/high/low/close/volume @param lfcFeatures: List of feature functions, most likely coming from features.py @param ldArgs: List of dictionaries containing arguments, passed as **kwargs There is a special argument 'MR', if it exists, the data will be made market relative @param sMarketRel: If not none, the data will all be made relative to the symbol provided @param sLog: If not None, will be filename to log all of the features to @return: list of dataframes containing values ''' ldfRet = [] ''' Calculate market relative data ''' if sMarketRel is not None: dDataRelative = getMarketRel(dData, sRel=sMarketRel) ''' Loop though feature functions, pass each data dictionary and arguments ''' for i, fcFeature in enumerate(lfcFeatures): ''' Check for special arguments ''' if 'MR' in ldArgs[i]: if not ldArgs[i]['MR']: print 'Warning, setting MR to false will still be Market Relative',\ 'simply do not include MR key in args' if sMarketRel is None: raise AssertionError('Functions require market relative stock but sMarketRel=None') del ldArgs[i]['MR'] ldfRet.append(fcFeature(dDataRelative, **ldArgs[i])) else: ldfRet.append(fcFeature(dData, **ldArgs[i])) if not sLog is None: with open(sLog, 'wb') as fFile: pickle.dump(ldfRet, fFile, -1) return ldfRet def loadFeatures(sLog): ''' @summary: Loads cached features. @param sLog: Filename of features. @return: Numpy array containing values ''' ldfRet = [] if not sLog is None: with open(sLog, 'rb') as fFile: ldfRet = pickle.load(fFile) return ldfRet def stackSyms(ldfFeatures, dtStart=None, dtEnd=None, lsSym=None, sDelNan='ALL', bShowRemoved=False): ''' @summary: Remove symbols from the dataframes, effectively stacking all stocks on top of each other. @param ldfFeatures: List of data frames of features. @param dtStart: Start time, if None, uses all @param dtEnd: End time, if None uses all @param lsSym: List of symbols to use, if None, all are used. @param sDelNan: Optional, default is ALL: delete any rows with a NaN in it FEAT: Delete if any of the feature points are NaN, allow NaN classification None: Do not delete any NaN rows @return: Numpy array containing all features as columns and all ''' if dtStart is None: dtStart = ldfFeatures[0].index[0] if dtEnd is None: dtEnd = ldfFeatures[0].index[-1] naRet = None ''' Stack stocks vertically ''' for sStock in ldfFeatures[0].columns: if lsSym is not None and sStock not in lsSym: continue naStkData = None ''' Loop through all features, stacking columns horizontally ''' for dfFeat in ldfFeatures: dfFeat = dfFeat.ix[dtStart:dtEnd] if naStkData is None: naStkData = np.array(dfFeat[sStock].values.reshape(-1, 1)) else: naStkData = np.hstack((naStkData, dfFeat[sStock].values.reshape(-1, 1))) ''' Remove nan rows possibly''' if 'ALL' == sDelNan or 'FEAT' == sDelNan: llValidRows = [] for i in range(naStkData.shape[0]): if 'ALL' == sDelNan and not math.isnan(np.sum(naStkData[i, :])) or \ 'FEAT' == sDelNan and not math.isnan(np.sum(naStkData[i, :-1])): llValidRows.append(i) elif bShowRemoved: print 'Removed', sStock, naStkData[i, :] naStkData = naStkData[llValidRows, :] ''' Now stack each block of stock data vertically ''' if naRet is None: naRet = naStkData else: naRet = np.vstack((naRet, naStkData)) return naRet def normFeatures(naFeatures, fMin, fMax, bAbsolute, bIgnoreLast=True): ''' @summary: Normalizes the featurespace. @param naFeatures: Numpy array of features, @param fMin: Data frame containing the price information for all of the stocks. @param fMax: List of feature functions, most likely coming from features.py @param bAbsolute: If true, min value will be scaled to fMin, max to fMax, if false, +-1 standard deviations will be scaled to fit between fMin and fMax, i.e. ~69% of the values @param bIgnoreLast: If true, last column is ignored (assumed to be classification) @return: list of (weights, shifts) to be used to normalize the query points ''' fNewRange = fMax - fMin lUseCols = naFeatures.shape[1] if bIgnoreLast: lUseCols -= 1 ltRet = [] ''' Loop through all features ''' for i in range(lUseCols): ''' If absolutely scaled use exact min and max ''' if bAbsolute: fFeatMin = np.min(naFeatures[:, i]) fFeatMax = np.max(naFeatures[:, i]) else: ''' Otherwise use mean +-1 std deviations for min/max (~94% of data) ''' fMean = np.average(naFeatures[:, i]) fStd = np.std(naFeatures[:, i]) fFeatMin = fMean - fStd fFeatMax = fMean + fStd ''' Calculate multiplier and shift variable so that new data fits in specified range ''' fRange = fFeatMax - fFeatMin fMult = fNewRange / fRange fShift = fMin - (fFeatMin * fMult) ''' scale and shift, save in return array ''' naFeatures[:, i] *= fMult naFeatures[:, i] += fShift ltRet.append((fMult, fShift)) return ltRet def normQuery(naQueries, ltWeightShift): ''' @summary: Normalizes the queries using the given normalization parameters generated from training data. @param naQueries: Numpy array of queries @param ltWeightShift: List of weights and shift amounts to be applied to each query. @return: None, modifies naQueries ''' assert naQueries.shape[1] == len(ltWeightShift) for i in range(naQueries.shape[1]): ''' scale and shift, save in return array ''' naQueries[:, i] *= ltWeightShift[i][0] naQueries[:, i] += ltWeightShift[i][1] def createKnnLearner(naFeatures, lKnn=30, leafsize=10, method='mean'): ''' @summary: Creates a quick KNN learner @param naFeatures: Numpy array of features, @param fMin: Data frame containing the price information for all of the stocks. @param fMax: List of feature functions, most likely coming from features.py @param bAbsolute: If true, min value will be scaled to fMin, max to fMax, if false, +-1 standard deviations will be scaled to fit between fMin and fMax, i.e. ~69% of the values @param bIgnoreLast: If true, last column is ignored (assumed to be classification) @return: None, data is modified in place ''' cLearner = kdt.kdtknn(k=lKnn, method=method, leafsize=leafsize) cLearner.addEvidence(naFeatures) return cLearner def log500(sLog): ''' @summary: Loads cached features. @param sLog: Filename of features. @return: Nothing, logs features to desired location ''' lsSym = ['A', 'AA', 'AAPL', 'ABC', 'ABT', 'ACE', 'ACN', 'ADBE', 'ADI', 'ADM', 'ADP', 'ADSK', 'AEE', 'AEP', 'AES', 'AET', 'AFL', 'AGN', 'AIG', 'AIV', 'AIZ', 'AKAM', 'AKS', 'ALL', 'ALTR', 'AMAT', 'AMD', 'AMGN', 'AMP', 'AMT', 'AMZN', 'AN', 'ANF', 'ANR', 'AON', 'APA', 'APC', 'APD', 'APH', 'APOL', 'ARG', 'ATI', 'AVB', 'AVP', 'AVY', 'AXP', 'AZO', 'BA', 'BAC', 'BAX', 'BBBY', 'BBT', 'BBY', 'BCR', 'BDX', 'BEN', 'BF.B', 'BHI', 'BIG', 'BIIB', 'BK', 'BLK', 'BLL', 'BMC', 'BMS', 'BMY', 'BRCM', 'BRK.B', 'BSX', 'BTU', 'BXP', 'C', 'CA', 'CAG', 'CAH', 'CAM', 'CAT', 'CB', 'CBG', 'CBS', 'CCE', 'CCL', 'CEG', 'CELG', 'CERN', 'CF', 'CFN', 'CHK', 'CHRW', 'CI', 'CINF', 'CL', 'CLF', 'CLX', 'CMA', 'CMCSA', 'CME', 'CMG', 'CMI', 'CMS', 'CNP', 'CNX', 'COF', 'COG', 'COH', 'COL', 'COP', 'COST', 'COV', 'CPB', 'CPWR', 'CRM', 'CSC', 'CSCO', 'CSX', 'CTAS', 'CTL', 'CTSH', 'CTXS', 'CVC', 'CVH', 'CVS', 'CVX', 'D', 'DD', 'DE', 'DELL', 'DF', 'DFS', 'DGX', 'DHI', 'DHR', 'DIS', 'DISCA', 'DNB', 'DNR', 'DO', 'DOV', 'DOW', 'DPS', 'DRI', 'DTE', 'DTV', 'DUK', 'DV', 'DVA', 'DVN', 'EBAY', 'ECL', 'ED', 'EFX', 'EIX', 'EL', 'EMC', 'EMN', 'EMR', 'EOG', 'EP', 'EQR', 'EQT', 'ERTS', 'ESRX', 'ETFC', 'ETN', 'ETR', 'EW', 'EXC', 'EXPD', 'EXPE', 'F', 'FAST', 'FCX', 'FDO', 'FDX', 'FE', 'FFIV', 'FHN', 'FII', 'FIS', 'FISV', 'FITB', 'FLIR', 'FLR', 'FLS', 'FMC', 'FO', 'FRX', 'FSLR', 'FTI', 'FTR', 'GAS', 'GCI', 'GD', 'GE', 'GILD', 'GIS', 'GLW', 'GME', 'GNW', 'GOOG', 'GPC', 'GPS', 'GR', 'GS', 'GT', 'GWW', 'HAL', 'HAR', 'HAS', 'HBAN', 'HCBK', 'HCN', 'HCP', 'HD', 'HES', 'HIG', 'HNZ', 'HOG', 'HON', 'HOT', 'HP', 'HPQ', 'HRB', 'HRL', 'HRS', 'HSP', 'HST', 'HSY', 'HUM', 'IBM', 'ICE', 'IFF', 'IGT', 'INTC', 'INTU', 'IP', 'IPG', 'IR', 'IRM', 'ISRG', 'ITT', 'ITW', 'IVZ', 'JBL', 'JCI', 'JCP', 'JDSU', 'JEC', 'JNJ', 'JNPR', 'JNS', 'JOYG', 'JPM', 'JWN', 'K', 'KEY', 'KFT', 'KIM', 'KLAC', 'KMB', 'KMX', 'KO', 'KR', 'KSS', 'L', 'LEG', 'LEN', 'LH', 'LIFE', 'LLL', 'LLTC', 'LLY', 'LM', 'LMT', 'LNC', 'LO', 'LOW', 'LSI', 'LTD', 'LUK', 'LUV', 'LXK', 'M', 'MA', 'MAR', 'MAS', 'MAT', 'MCD', 'MCHP', 'MCK', 'MCO', 'MDT', 'MET', 'MHP', 'MHS', 'MJN', 'MKC', 'MMC', 'MMI', 'MMM', 'MO', 'MOLX', 'MON', 'MOS', 'MPC', 'MRK', 'MRO', 'MS', 'MSFT', 'MSI', 'MTB', 'MU', 'MUR', 'MWV', 'MWW', 'MYL', 'NBL', 'NBR', 'NDAQ', 'NE', 'NEE', 'NEM', 'NFLX', 'NFX', 'NI', 'NKE', 'NOC', 'NOV', 'NRG', 'NSC', 'NTAP', 'NTRS', 'NU', 'NUE', 'NVDA', 'NVLS', 'NWL', 'NWSA', 'NYX', 'OI', 'OKE', 'OMC', 'ORCL', 'ORLY', 'OXY', 'PAYX', 'PBCT', 'PBI', 'PCAR', 'PCG', 'PCL', 'PCLN', 'PCP', 'PCS', 'PDCO', 'PEG', 'PEP', 'PFE', 'PFG', 'PG', 'PGN', 'PGR', 'PH', 'PHM', 'PKI', 'PLD', 'PLL', 'PM', 'PNC', 'PNW', 'POM', 'PPG', 'PPL', 'PRU', 'PSA', 'PWR', 'PX', 'PXD', 'QCOM', 'QEP', 'R', 'RAI', 'RDC', 'RF', 'RHI', 'RHT', 'RL', 'ROK', 'ROP', 'ROST', 'RRC', 'RRD', 'RSG', 'RTN', 'S', 'SAI', 'SBUX', 'SCG', 'SCHW', 'SE', 'SEE', 'SHLD', 'SHW', 'SIAL', 'SJM', 'SLB', 'SLE', 'SLM', 'SNA', 'SNDK', 'SNI', 'SO', 'SPG', 'SPLS', 'SRCL', 'SRE', 'STI', 'STJ', 'STT', 'STZ', 'SUN', 'SVU', 'SWK', 'SWN', 'SWY', 'SYK', 'SYMC', 'SYY', 'T', 'TAP', 'TDC', 'TE', 'TEG', 'TEL', 'TER', 'TGT', 'THC', 'TIE', 'TIF', 'TJX', 'TLAB', 'TMK', 'TMO', 'TROW', 'TRV', 'TSN', 'TSO', 'TSS', 'TWC', 'TWX', 'TXN', 'TXT', 'TYC', 'UNH', 'UNM', 'UNP', 'UPS', 'URBN', 'USB', 'UTX', 'V', 'VAR', 'VFC', 'VIA.B', 'VLO', 'VMC', 'VNO', 'VRSN', 'VTR', 'VZ', 'WAG', 'WAT', 'WDC', 'WEC', 'WFC', 'WFM', 'WFR', 'WHR', 'WIN', 'WLP', 'WM', 'WMB', 'WMT', 'WPI', 'WPO', 'WU', 'WY', 'WYN', 'WYNN', 'X', 'XEL', 'XL', 'XLNX', 'XOM', 'XRAY', 'XRX', 'YHOO', 'YUM', 'ZION', 'ZMH'] lsSym.append('$SPX') lsSym.sort() ''' Max lookback is 6 months ''' dtEnd = dt.datetime.now() dtEnd = dtEnd.replace(hour=16, minute=0, second=0, microsecond=0) dtStart = dtEnd - relativedelta(months=6) ''' Pull in current data ''' norObj = da.DataAccess('Norgate') ''' Get 2 extra months for moving averages and future returns ''' ldtTimestamps = du.getNYSEdays(dtStart - relativedelta(months=2), dtEnd + relativedelta(months=2), dt.timedelta(hours=16)) dfPrice = norObj.get_data(ldtTimestamps, lsSym, 'close') dfVolume = norObj.get_data(ldtTimestamps, lsSym, 'volume') ''' Imported functions from qstkfeat.features, NOTE: last function is classification ''' lfcFeatures, ldArgs, lsNames = getFeatureFuncs() ''' Generate a list of DataFrames, one for each feature, with the same index/column structure as price data ''' applyFeatures(dfPrice, dfVolume, lfcFeatures, ldArgs, sLog=sLog) def getFeatureFuncs(): ''' @summary: Gets feature functions supported by the website. @return: Tuple containing (list of functions, list of arguments, list of names) ''' lfcFeatures = [featMA, featMA, featRSI, featDrawDown, featRunUp, featVolumeDelta, featAroon, featAroon, featStochastic, featBeta, featBollinger, featCorrelation, featPrice, class_fut_ret] lsNames = ['MovingAverage', 'RelativeMovingAverage', 'RSI', 'DrawDown', 'RunUp', 'VolumeDelta', 'AroonUp', 'AroonLow', 'Stochastic', 'Beta', 'Bollinger', 'Correlation', 'Price', 'FutureReturn'] ''' Custom Arguments ''' ldArgs = [ {'lLookback':30, 'bRel':False}, {'lLookback':30, 'bRel':True}, {'lLookback':14}, {'lLookback':30}, {'lLookback':30}, {'lLookback':30}, {'bDown':False, 'lLookback':25}, {'bDown':True, 'lLookback':25}, {'lLookback':14}, {'lLookback':14, 'sMarket':'SPY'}, {'lLookback':20}, {'lLookback':20, 'sRel':'SPY'}, {}, {'lLookforward':5, 'sRel':None, 'bUseOpen':False} ] return lfcFeatures, ldArgs, lsNames def testFeature(fcFeature, dArgs): ''' @summary: Quick function to run a feature on some data and plot it to see if it works. @param fcFeature: Feature function to test @param dArgs: Arguments to pass into feature function @return: Void ''' ''' Get Train data for 2009-2010 ''' dtStart = dt.datetime(2009, 1, 1) dtEnd = dt.datetime(2009, 5, 1) ''' Pull in current training data and test data ''' norObj = da.DataAccess('Norgate') ''' Get 2 extra months for moving averages and future returns ''' ldtTimestamps = du.getNYSEdays(dtStart, dtEnd, dt.timedelta(hours=16)) lsSym = ['GOOG'] lsSym.append('WMT') lsSym.append('$SPX') lsSym.append('$VIX') lsSym.sort() lsKeys = ['open', 'high', 'low', 'close', 'volume'] ldfData = norObj.get_data(ldtTimestamps, lsSym, lsKeys) dData = dict(zip(lsKeys, ldfData)) dfPrice = dData['close'] #print dfPrice.values ''' Generate a list of DataFrames, one for each feature, with the same index/column structure as price data ''' dtStart = dt.datetime.now() ldfFeatures = applyFeatures(dData, [fcFeature], [dArgs], sMarketRel='$SPX') print 'Runtime:', dt.datetime.now() - dtStart ''' Use last 3 months of index, to avoid lookback nans ''' dfPrint = ldfFeatures[0]['GOOG'] print 'GOOG values:', dfPrint.values print 'GOOG Sum:', dfPrint.ix[dfPrint.notnull()].sum() for sSym in lsSym: plt.subplot(211) plt.plot(ldfFeatures[0].index[-60:], dfPrice[sSym].values[-60:]) plt.plot(ldfFeatures[0].index[-60:], dfPrice['$SPX'].values[-60:] * dfPrice[sSym].values[-60] / dfPrice['$SPX'].values[-60]) plt.legend((sSym, '$SPX')) plt.title(sSym) plt.subplot(212) plt.plot(ldfFeatures[0].index[-60:], ldfFeatures[0][sSym].values[-60:]) plt.title('%s-%s' % (fcFeature.__name__, str(dArgs))) plt.show() if __name__ == '__main__': pass
bsd-3-clause
tombstone/models
research/skip_thoughts/skip_thoughts/vocabulary_expansion.py
1
7375
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Compute an expanded vocabulary of embeddings using a word2vec model. This script loads the word embeddings from a trained skip-thoughts model and from a trained word2vec model (typically with a larger vocabulary). It trains a linear regression model without regularization to learn a linear mapping from the word2vec embedding space to the skip-thoughts embedding space. The model is then applied to all words in the word2vec vocabulary, yielding vectors in the skip-thoughts word embedding space for the union of the two vocabularies. The linear regression task is to learn a parameter matrix W to minimize || X - Y * W ||^2, where X is a matrix of skip-thoughts embeddings of shape [num_words, dim1], Y is a matrix of word2vec embeddings of shape [num_words, dim2], and W is a matrix of shape [dim2, dim1]. This is based on the "Translation Matrix" method from the paper: "Exploiting Similarities among Languages for Machine Translation" Tomas Mikolov, Quoc V. Le, Ilya Sutskever https://arxiv.org/abs/1309.4168 """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import os.path import gensim.models import numpy as np import sklearn.linear_model import tensorflow as tf FLAGS = tf.flags.FLAGS tf.flags.DEFINE_string("skip_thoughts_model", None, "Checkpoint file or directory containing a checkpoint " "file.") tf.flags.DEFINE_string("skip_thoughts_vocab", None, "Path to vocabulary file containing a list of newline-" "separated words where the word id is the " "corresponding 0-based index in the file.") tf.flags.DEFINE_string("word2vec_model", None, "File containing a word2vec model in binary format.") tf.flags.DEFINE_string("output_dir", None, "Output directory.") tf.logging.set_verbosity(tf.logging.INFO) def _load_skip_thoughts_embeddings(checkpoint_path): """Loads the embedding matrix from a skip-thoughts model checkpoint. Args: checkpoint_path: Model checkpoint file or directory containing a checkpoint file. Returns: word_embedding: A numpy array of shape [vocab_size, embedding_dim]. Raises: ValueError: If no checkpoint file matches checkpoint_path. """ if tf.gfile.IsDirectory(checkpoint_path): checkpoint_file = tf.train.latest_checkpoint(checkpoint_path) if not checkpoint_file: raise ValueError("No checkpoint file found in %s" % checkpoint_path) else: checkpoint_file = checkpoint_path tf.logging.info("Loading skip-thoughts embedding matrix from %s", checkpoint_file) reader = tf.train.NewCheckpointReader(checkpoint_file) word_embedding = reader.get_tensor("word_embedding") tf.logging.info("Loaded skip-thoughts embedding matrix of shape %s", word_embedding.shape) return word_embedding def _load_vocabulary(filename): """Loads a vocabulary file. Args: filename: Path to text file containing newline-separated words. Returns: vocab: A dictionary mapping word to word id. """ tf.logging.info("Reading vocabulary from %s", filename) vocab = collections.OrderedDict() with tf.gfile.GFile(filename, mode="rb") as f: for i, line in enumerate(f): word = line.decode("utf-8").strip() assert word not in vocab, "Attempting to add word twice: %s" % word vocab[word] = i tf.logging.info("Read vocabulary of size %d", len(vocab)) return vocab def _expand_vocabulary(skip_thoughts_emb, skip_thoughts_vocab, word2vec): """Runs vocabulary expansion on a skip-thoughts model using a word2vec model. Args: skip_thoughts_emb: A numpy array of shape [skip_thoughts_vocab_size, skip_thoughts_embedding_dim]. skip_thoughts_vocab: A dictionary of word to id. word2vec: An instance of gensim.models.Word2Vec. Returns: combined_emb: A dictionary mapping words to embedding vectors. """ # Find words shared between the two vocabularies. tf.logging.info("Finding shared words") shared_words = [w for w in word2vec.vocab if w in skip_thoughts_vocab] # Select embedding vectors for shared words. tf.logging.info("Selecting embeddings for %d shared words", len(shared_words)) shared_st_emb = skip_thoughts_emb[[ skip_thoughts_vocab[w] for w in shared_words ]] shared_w2v_emb = word2vec[shared_words] # Train a linear regression model on the shared embedding vectors. tf.logging.info("Training linear regression model") model = sklearn.linear_model.LinearRegression() model.fit(shared_w2v_emb, shared_st_emb) # Create the expanded vocabulary. tf.logging.info("Creating embeddings for expanded vocabuary") combined_emb = collections.OrderedDict() for w in word2vec.vocab: # Ignore words with underscores (spaces). if "_" not in w: w_emb = model.predict(word2vec[w].reshape(1, -1)) combined_emb[w] = w_emb.reshape(-1) for w in skip_thoughts_vocab: combined_emb[w] = skip_thoughts_emb[skip_thoughts_vocab[w]] tf.logging.info("Created expanded vocabulary of %d words", len(combined_emb)) return combined_emb def main(unused_argv): if not FLAGS.skip_thoughts_model: raise ValueError("--skip_thoughts_model is required.") if not FLAGS.skip_thoughts_vocab: raise ValueError("--skip_thoughts_vocab is required.") if not FLAGS.word2vec_model: raise ValueError("--word2vec_model is required.") if not FLAGS.output_dir: raise ValueError("--output_dir is required.") if not tf.gfile.IsDirectory(FLAGS.output_dir): tf.gfile.MakeDirs(FLAGS.output_dir) # Load the skip-thoughts embeddings and vocabulary. skip_thoughts_emb = _load_skip_thoughts_embeddings(FLAGS.skip_thoughts_model) skip_thoughts_vocab = _load_vocabulary(FLAGS.skip_thoughts_vocab) # Load the Word2Vec model. word2vec = gensim.models.KeyedVectors.load_word2vec_format( FLAGS.word2vec_model, binary=True) # Run vocabulary expansion. embedding_map = _expand_vocabulary(skip_thoughts_emb, skip_thoughts_vocab, word2vec) # Save the output. vocab = embedding_map.keys() vocab_file = os.path.join(FLAGS.output_dir, "vocab.txt") with tf.gfile.GFile(vocab_file, "w") as f: f.write("\n".join(vocab)) tf.logging.info("Wrote vocabulary file to %s", vocab_file) embeddings = np.array(embedding_map.values()) embeddings_file = os.path.join(FLAGS.output_dir, "embeddings.npy") np.save(embeddings_file, embeddings) tf.logging.info("Wrote embeddings file to %s", embeddings_file) if __name__ == "__main__": tf.app.run()
apache-2.0
shoyer/xray
xarray/core/utils.py
1
18865
"""Internal utilties; not for external use """ import contextlib import functools import itertools import os.path import re import warnings from collections import OrderedDict from typing import ( AbstractSet, Any, Callable, Container, Dict, Hashable, Iterable, Iterator, Mapping, MutableMapping, MutableSet, Optional, Sequence, Tuple, TypeVar, cast) import numpy as np import pandas as pd from .pycompat import dask_array_type try: # Fix typed collections in Python 3.5.0~3.5.2 from .pycompat import Mapping, MutableMapping, MutableSet # noqa: F811 except ImportError: pass K = TypeVar('K') V = TypeVar('V') T = TypeVar('T') def _check_inplace(inplace: Optional[bool], default: bool = False) -> bool: if inplace is None: inplace = default else: warnings.warn('The inplace argument has been deprecated and will be ' 'removed in a future version of xarray.', FutureWarning, stacklevel=3) return inplace def alias_message(old_name: str, new_name: str) -> str: return '%s has been deprecated. Use %s instead.' % (old_name, new_name) def alias_warning(old_name: str, new_name: str, stacklevel: int = 3) -> None: warnings.warn(alias_message(old_name, new_name), FutureWarning, stacklevel=stacklevel) def alias(obj: Callable[..., T], old_name: str) -> Callable[..., T]: assert isinstance(old_name, str) @functools.wraps(obj) def wrapper(*args, **kwargs): alias_warning(old_name, obj.__name__) return obj(*args, **kwargs) wrapper.__doc__ = alias_message(old_name, obj.__name__) return wrapper def _maybe_cast_to_cftimeindex(index: pd.Index) -> pd.Index: from ..coding.cftimeindex import CFTimeIndex if len(index) > 0 and index.dtype == 'O': try: return CFTimeIndex(index) except (ImportError, TypeError): return index else: return index def safe_cast_to_index(array: Any) -> pd.Index: """Given an array, safely cast it to a pandas.Index. If it is already a pandas.Index, return it unchanged. Unlike pandas.Index, if the array has dtype=object or dtype=timedelta64, this function will not attempt to do automatic type conversion but will always return an index with dtype=object. """ if isinstance(array, pd.Index): index = array elif hasattr(array, 'to_index'): index = array.to_index() else: kwargs = {} if hasattr(array, 'dtype') and array.dtype.kind == 'O': kwargs['dtype'] = object index = pd.Index(np.asarray(array), **kwargs) return _maybe_cast_to_cftimeindex(index) def multiindex_from_product_levels(levels: Sequence[pd.Index], names: Optional[Sequence[str]] = None ) -> pd.MultiIndex: """Creating a MultiIndex from a product without refactorizing levels. Keeping levels the same gives back the original labels when we unstack. Parameters ---------- levels : sequence of pd.Index Values for each MultiIndex level. names : optional sequence of objects Names for each level. Returns ------- pandas.MultiIndex """ if any(not isinstance(lev, pd.Index) for lev in levels): raise TypeError('levels must be a list of pd.Index objects') split_labels, levels = zip(*[lev.factorize() for lev in levels]) labels_mesh = np.meshgrid(*split_labels, indexing='ij') labels = [x.ravel() for x in labels_mesh] return pd.MultiIndex(levels, labels, sortorder=0, names=names) def maybe_wrap_array(original, new_array): """Wrap a transformed array with __array_wrap__ is it can be done safely. This lets us treat arbitrary functions that take and return ndarray objects like ufuncs, as long as they return an array with the same shape. """ # in case func lost array's metadata if isinstance(new_array, np.ndarray) and new_array.shape == original.shape: return original.__array_wrap__(new_array) else: return new_array def equivalent(first: T, second: T) -> bool: """Compare two objects for equivalence (identity or equality), using array_equiv if either object is an ndarray """ # TODO: refactor to avoid circular import from . import duck_array_ops if isinstance(first, np.ndarray) or isinstance(second, np.ndarray): return duck_array_ops.array_equiv(first, second) else: return ((first is second) or (first == second) or (pd.isnull(first) and pd.isnull(second))) def peek_at(iterable: Iterable[T]) -> Tuple[T, Iterator[T]]: """Returns the first value from iterable, as well as a new iterator with the same content as the original iterable """ gen = iter(iterable) peek = next(gen) return peek, itertools.chain([peek], gen) def update_safety_check(first_dict: MutableMapping[K, V], second_dict: Mapping[K, V], compat: Callable[[V, V], bool] = equivalent) -> None: """Check the safety of updating one dictionary with another. Raises ValueError if dictionaries have non-compatible values for any key, where compatibility is determined by identity (they are the same item) or the `compat` function. Parameters ---------- first_dict, second_dict : dict-like All items in the second dictionary are checked against for conflicts against items in the first dictionary. compat : function, optional Binary operator to determine if two values are compatible. By default, checks for equivalence. """ for k, v in second_dict.items(): if k in first_dict and not compat(v, first_dict[k]): raise ValueError('unsafe to merge dictionaries without ' 'overriding values; conflicting key %r' % k) def remove_incompatible_items(first_dict: MutableMapping[K, V], second_dict: Mapping[K, V], compat: Callable[[V, V], bool] = equivalent ) -> None: """Remove incompatible items from the first dictionary in-place. Items are retained if their keys are found in both dictionaries and the values are compatible. Parameters ---------- first_dict, second_dict : dict-like Mappings to merge. compat : function, optional Binary operator to determine if two values are compatible. By default, checks for equivalence. """ for k in list(first_dict): if k not in second_dict or not compat(first_dict[k], second_dict[k]): del first_dict[k] def is_dict_like(value: Any) -> bool: return hasattr(value, 'keys') and hasattr(value, '__getitem__') def is_full_slice(value: Any) -> bool: return isinstance(value, slice) and value == slice(None) def either_dict_or_kwargs(pos_kwargs: Optional[Mapping[Hashable, T]], kw_kwargs: Mapping[str, T], func_name: str ) -> Mapping[Hashable, T]: if pos_kwargs is not None: if not is_dict_like(pos_kwargs): raise ValueError('the first argument to .%s must be a dictionary' % func_name) if kw_kwargs: raise ValueError('cannot specify both keyword and positional ' 'arguments to .%s' % func_name) return pos_kwargs else: # Need an explicit cast to appease mypy due to invariance; see # https://github.com/python/mypy/issues/6228 return cast(Mapping[Hashable, T], kw_kwargs) def is_scalar(value: Any) -> bool: """Whether to treat a value as a scalar. Any non-iterable, string, or 0-D array """ return ( getattr(value, 'ndim', None) == 0 or isinstance(value, (str, bytes)) or not isinstance(value, (Iterable, ) + dask_array_type)) def is_valid_numpy_dtype(dtype: Any) -> bool: try: np.dtype(dtype) except (TypeError, ValueError): return False else: return True def to_0d_object_array(value: Any) -> np.ndarray: """Given a value, wrap it in a 0-D numpy.ndarray with dtype=object. """ result = np.empty((), dtype=object) result[()] = value return result def to_0d_array(value: Any) -> np.ndarray: """Given a value, wrap it in a 0-D numpy.ndarray. """ if np.isscalar(value) or (isinstance(value, np.ndarray) and value.ndim == 0): return np.array(value) else: return to_0d_object_array(value) def dict_equiv(first: Mapping[K, V], second: Mapping[K, V], compat: Callable[[V, V], bool] = equivalent) -> bool: """Test equivalence of two dict-like objects. If any of the values are numpy arrays, compare them correctly. Parameters ---------- first, second : dict-like Dictionaries to compare for equality compat : function, optional Binary operator to determine if two values are compatible. By default, checks for equivalence. Returns ------- equals : bool True if the dictionaries are equal """ for k in first: if k not in second or not compat(first[k], second[k]): return False for k in second: if k not in first: return False return True def ordered_dict_intersection(first_dict: Mapping[K, V], second_dict: Mapping[K, V], compat: Callable[[V, V], bool] = equivalent ) -> MutableMapping[K, V]: """Return the intersection of two dictionaries as a new OrderedDict. Items are retained if their keys are found in both dictionaries and the values are compatible. Parameters ---------- first_dict, second_dict : dict-like Mappings to merge. compat : function, optional Binary operator to determine if two values are compatible. By default, checks for equivalence. Returns ------- intersection : OrderedDict Intersection of the contents. """ new_dict = OrderedDict(first_dict) remove_incompatible_items(new_dict, second_dict, compat) return new_dict class SingleSlotPickleMixin: """Mixin class to add the ability to pickle objects whose state is defined by a single __slots__ attribute. Only necessary under Python 2. """ def __getstate__(self): return getattr(self, self.__slots__[0]) def __setstate__(self, state): setattr(self, self.__slots__[0], state) class Frozen(Mapping[K, V], SingleSlotPickleMixin): """Wrapper around an object implementing the mapping interface to make it immutable. If you really want to modify the mapping, the mutable version is saved under the `mapping` attribute. """ __slots__ = ['mapping'] def __init__(self, mapping: Mapping[K, V]): self.mapping = mapping def __getitem__(self, key: K) -> V: return self.mapping[key] def __iter__(self) -> Iterator[K]: return iter(self.mapping) def __len__(self) -> int: return len(self.mapping) def __contains__(self, key: object) -> bool: return key in self.mapping def __repr__(self) -> str: return '%s(%r)' % (type(self).__name__, self.mapping) def FrozenOrderedDict(*args, **kwargs) -> Frozen: return Frozen(OrderedDict(*args, **kwargs)) class SortedKeysDict(MutableMapping[K, V], SingleSlotPickleMixin): """An wrapper for dictionary-like objects that always iterates over its items in sorted order by key but is otherwise equivalent to the underlying mapping. """ __slots__ = ['mapping'] def __init__(self, mapping: Optional[MutableMapping[K, V]] = None): self.mapping = {} if mapping is None else mapping def __getitem__(self, key: K) -> V: return self.mapping[key] def __setitem__(self, key: K, value: V) -> None: self.mapping[key] = value def __delitem__(self, key: K) -> None: del self.mapping[key] def __iter__(self) -> Iterator[K]: return iter(sorted(self.mapping)) def __len__(self) -> int: return len(self.mapping) def __contains__(self, key: object) -> bool: return key in self.mapping def __repr__(self) -> str: return '%s(%r)' % (type(self).__name__, self.mapping) class OrderedSet(MutableSet[T]): """A simple ordered set. The API matches the builtin set, but it preserves insertion order of elements, like an OrderedDict. """ def __init__(self, values: Optional[AbstractSet[T]] = None): self._ordered_dict = OrderedDict() # type: MutableMapping[T, None] if values is not None: # Disable type checking - both mypy and PyCharm believes that # we're altering the type of self in place (see signature of # MutableSet.__ior__) self |= values # type: ignore # Required methods for MutableSet def __contains__(self, value: object) -> bool: return value in self._ordered_dict def __iter__(self) -> Iterator[T]: return iter(self._ordered_dict) def __len__(self) -> int: return len(self._ordered_dict) def add(self, value: T) -> None: self._ordered_dict[value] = None def discard(self, value: T) -> None: del self._ordered_dict[value] # Additional methods def update(self, values: AbstractSet[T]) -> None: # See comment on __init__ re. type checking self |= values # type: ignore def __repr__(self) -> str: return '%s(%r)' % (type(self).__name__, list(self)) class NdimSizeLenMixin: """Mixin class that extends a class that defines a ``shape`` property to one that also defines ``ndim``, ``size`` and ``__len__``. """ @property def ndim(self: Any) -> int: return len(self.shape) @property def size(self: Any) -> int: # cast to int so that shape = () gives size = 1 return int(np.prod(self.shape)) def __len__(self: Any) -> int: try: return self.shape[0] except IndexError: raise TypeError('len() of unsized object') class NDArrayMixin(NdimSizeLenMixin): """Mixin class for making wrappers of N-dimensional arrays that conform to the ndarray interface required for the data argument to Variable objects. A subclass should set the `array` property and override one or more of `dtype`, `shape` and `__getitem__`. """ @property def dtype(self: Any) -> np.dtype: return self.array.dtype @property def shape(self: Any) -> Tuple[int]: return self.array.shape def __getitem__(self: Any, key): return self.array[key] def __repr__(self: Any) -> str: return '%s(array=%r)' % (type(self).__name__, self.array) class ReprObject: """Object that prints as the given value, for use with sentinel values. """ def __init__(self, value: str): self._value = value def __repr__(self) -> str: return self._value @contextlib.contextmanager def close_on_error(f): """Context manager to ensure that a file opened by xarray is closed if an exception is raised before the user sees the file object. """ try: yield except Exception: f.close() raise def is_remote_uri(path: str) -> bool: return bool(re.search(r'^https?\://', path)) def is_grib_path(path: str) -> bool: _, ext = os.path.splitext(path) return ext in ['.grib', '.grb', '.grib2', '.grb2'] def is_uniform_spaced(arr, **kwargs) -> bool: """Return True if values of an array are uniformly spaced and sorted. >>> is_uniform_spaced(range(5)) True >>> is_uniform_spaced([-4, 0, 100]) False kwargs are additional arguments to ``np.isclose`` """ arr = np.array(arr, dtype=float) diffs = np.diff(arr) return bool(np.isclose(diffs.min(), diffs.max(), **kwargs)) def hashable(v: Any) -> bool: """Determine whether `v` can be hashed. """ try: hash(v) except TypeError: return False return True def not_implemented(*args, **kwargs): return NotImplemented def decode_numpy_dict_values(attrs: Mapping[K, V]) -> Dict[K, V]: """Convert attribute values from numpy objects to native Python objects, for use in to_dict """ attrs = dict(attrs) for k, v in attrs.items(): if isinstance(v, np.ndarray): attrs[k] = v.tolist() elif isinstance(v, np.generic): attrs[k] = v.item() return attrs def ensure_us_time_resolution(val): """Convert val out of numpy time, for use in to_dict. Needed because of numpy bug GH#7619""" if np.issubdtype(val.dtype, np.datetime64): val = val.astype('datetime64[us]') elif np.issubdtype(val.dtype, np.timedelta64): val = val.astype('timedelta64[us]') return val class HiddenKeyDict(MutableMapping[K, V]): """Acts like a normal dictionary, but hides certain keys. """ # ``__init__`` method required to create instance from class. def __init__(self, data: MutableMapping[K, V], hidden_keys: Iterable[K]): self._data = data self._hidden_keys = frozenset(hidden_keys) def _raise_if_hidden(self, key: K) -> None: if key in self._hidden_keys: raise KeyError('Key `%r` is hidden.' % key) # The next five methods are requirements of the ABC. def __setitem__(self, key: K, value: V) -> None: self._raise_if_hidden(key) self._data[key] = value def __getitem__(self, key: K) -> V: self._raise_if_hidden(key) return self._data[key] def __delitem__(self, key: K) -> None: self._raise_if_hidden(key) del self._data[key] def __iter__(self) -> Iterator[K]: for k in self._data: if k not in self._hidden_keys: yield k def __len__(self) -> int: num_hidden = len(self._hidden_keys & self._data.keys()) return len(self._data) - num_hidden def get_temp_dimname(dims: Container[Hashable], new_dim: Hashable) -> Hashable: """ Get an new dimension name based on new_dim, that is not used in dims. If the same name exists, we add an underscore(s) in the head. Example1: dims: ['a', 'b', 'c'] new_dim: ['_rolling'] -> ['_rolling'] Example2: dims: ['a', 'b', 'c', '_rolling'] new_dim: ['_rolling'] -> ['__rolling'] """ while new_dim in dims: new_dim = '_' + str(new_dim) return new_dim
apache-2.0
atsao72/sympy
sympy/physics/quantum/tensorproduct.py
64
13572
"""Abstract tensor product.""" from __future__ import print_function, division from sympy import Expr, Add, Mul, Matrix, Pow, sympify from sympy.core.compatibility import u, range from sympy.core.trace import Tr from sympy.printing.pretty.stringpict import prettyForm from sympy.physics.quantum.qexpr import QuantumError from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.commutator import Commutator from sympy.physics.quantum.anticommutator import AntiCommutator from sympy.physics.quantum.state import Ket, Bra from sympy.physics.quantum.matrixutils import ( numpy_ndarray, scipy_sparse_matrix, matrix_tensor_product ) __all__ = [ 'TensorProduct', 'tensor_product_simp' ] #----------------------------------------------------------------------------- # Tensor product #----------------------------------------------------------------------------- _combined_printing = False def combined_tensor_printing(combined): """Set flag controlling whether tensor products of states should be printed as a combined bra/ket or as an explicit tensor product of different bra/kets. This is a global setting for all TensorProduct class instances. Parameters ---------- combine : bool When true, tensor product states are combined into one ket/bra, and when false explicit tensor product notation is used between each ket/bra. """ global _combined_printing _combined_printing = combined class TensorProduct(Expr): """The tensor product of two or more arguments. For matrices, this uses ``matrix_tensor_product`` to compute the Kronecker or tensor product matrix. For other objects a symbolic ``TensorProduct`` instance is returned. The tensor product is a non-commutative multiplication that is used primarily with operators and states in quantum mechanics. Currently, the tensor product distinguishes between commutative and non- commutative arguments. Commutative arguments are assumed to be scalars and are pulled out in front of the ``TensorProduct``. Non-commutative arguments remain in the resulting ``TensorProduct``. Parameters ========== args : tuple A sequence of the objects to take the tensor product of. Examples ======== Start with a simple tensor product of sympy matrices:: >>> from sympy import I, Matrix, symbols >>> from sympy.physics.quantum import TensorProduct >>> m1 = Matrix([[1,2],[3,4]]) >>> m2 = Matrix([[1,0],[0,1]]) >>> TensorProduct(m1, m2) Matrix([ [1, 0, 2, 0], [0, 1, 0, 2], [3, 0, 4, 0], [0, 3, 0, 4]]) >>> TensorProduct(m2, m1) Matrix([ [1, 2, 0, 0], [3, 4, 0, 0], [0, 0, 1, 2], [0, 0, 3, 4]]) We can also construct tensor products of non-commutative symbols: >>> from sympy import Symbol >>> A = Symbol('A',commutative=False) >>> B = Symbol('B',commutative=False) >>> tp = TensorProduct(A, B) >>> tp AxB We can take the dagger of a tensor product (note the order does NOT reverse like the dagger of a normal product): >>> from sympy.physics.quantum import Dagger >>> Dagger(tp) Dagger(A)xDagger(B) Expand can be used to distribute a tensor product across addition: >>> C = Symbol('C',commutative=False) >>> tp = TensorProduct(A+B,C) >>> tp (A + B)xC >>> tp.expand(tensorproduct=True) AxC + BxC """ is_commutative = False def __new__(cls, *args): if isinstance(args[0], (Matrix, numpy_ndarray, scipy_sparse_matrix)): return matrix_tensor_product(*args) c_part, new_args = cls.flatten(sympify(args)) c_part = Mul(*c_part) if len(new_args) == 0: return c_part elif len(new_args) == 1: return c_part * new_args[0] else: tp = Expr.__new__(cls, *new_args) return c_part * tp @classmethod def flatten(cls, args): # TODO: disallow nested TensorProducts. c_part = [] nc_parts = [] for arg in args: cp, ncp = arg.args_cnc() c_part.extend(list(cp)) nc_parts.append(Mul._from_args(ncp)) return c_part, nc_parts def _eval_adjoint(self): return TensorProduct(*[Dagger(i) for i in self.args]) def _eval_rewrite(self, pattern, rule, **hints): sargs = self.args terms = [t._eval_rewrite(pattern, rule, **hints) for t in sargs] return TensorProduct(*terms).expand(tensorproduct=True) def _sympystr(self, printer, *args): from sympy.printing.str import sstr length = len(self.args) s = '' for i in range(length): if isinstance(self.args[i], (Add, Pow, Mul)): s = s + '(' s = s + sstr(self.args[i]) if isinstance(self.args[i], (Add, Pow, Mul)): s = s + ')' if i != length - 1: s = s + 'x' return s def _pretty(self, printer, *args): if (_combined_printing and (all([isinstance(arg, Ket) for arg in self.args]) or all([isinstance(arg, Bra) for arg in self.args]))): length = len(self.args) pform = printer._print('', *args) for i in range(length): next_pform = printer._print('', *args) length_i = len(self.args[i].args) for j in range(length_i): part_pform = printer._print(self.args[i].args[j], *args) next_pform = prettyForm(*next_pform.right(part_pform)) if j != length_i - 1: next_pform = prettyForm(*next_pform.right(', ')) if len(self.args[i].args) > 1: next_pform = prettyForm( *next_pform.parens(left='{', right='}')) pform = prettyForm(*pform.right(next_pform)) if i != length - 1: pform = prettyForm(*pform.right(',' + ' ')) pform = prettyForm(*pform.left(self.args[0].lbracket)) pform = prettyForm(*pform.right(self.args[0].rbracket)) return pform length = len(self.args) pform = printer._print('', *args) for i in range(length): next_pform = printer._print(self.args[i], *args) if isinstance(self.args[i], (Add, Mul)): next_pform = prettyForm( *next_pform.parens(left='(', right=')') ) pform = prettyForm(*pform.right(next_pform)) if i != length - 1: if printer._use_unicode: pform = prettyForm(*pform.right(u('\N{N-ARY CIRCLED TIMES OPERATOR}') + u(' '))) else: pform = prettyForm(*pform.right('x' + ' ')) return pform def _latex(self, printer, *args): if (_combined_printing and (all([isinstance(arg, Ket) for arg in self.args]) or all([isinstance(arg, Bra) for arg in self.args]))): def _label_wrap(label, nlabels): return label if nlabels == 1 else r"\left\{%s\right\}" % label s = r", ".join([_label_wrap(arg._print_label_latex(printer, *args), len(arg.args)) for arg in self.args]) return r"{%s%s%s}" % (self.args[0].lbracket_latex, s, self.args[0].rbracket_latex) length = len(self.args) s = '' for i in range(length): if isinstance(self.args[i], (Add, Mul)): s = s + '\\left(' # The extra {} brackets are needed to get matplotlib's latex # rendered to render this properly. s = s + '{' + printer._print(self.args[i], *args) + '}' if isinstance(self.args[i], (Add, Mul)): s = s + '\\right)' if i != length - 1: s = s + '\\otimes ' return s def doit(self, **hints): return TensorProduct(*[item.doit(**hints) for item in self.args]) def _eval_expand_tensorproduct(self, **hints): """Distribute TensorProducts across addition.""" args = self.args add_args = [] stop = False for i in range(len(args)): if isinstance(args[i], Add): for aa in args[i].args: tp = TensorProduct(*args[:i] + (aa,) + args[i + 1:]) if isinstance(tp, TensorProduct): tp = tp._eval_expand_tensorproduct() add_args.append(tp) break if add_args: return Add(*add_args) else: return self def _eval_trace(self, **kwargs): indices = kwargs.get('indices', None) exp = tensor_product_simp(self) if indices is None or len(indices) == 0: return Mul(*[Tr(arg).doit() for arg in exp.args]) else: return Mul(*[Tr(value).doit() if idx in indices else value for idx, value in enumerate(exp.args)]) def tensor_product_simp_Mul(e): """Simplify a Mul with TensorProducts. Current the main use of this is to simplify a ``Mul`` of ``TensorProduct``s to a ``TensorProduct`` of ``Muls``. It currently only works for relatively simple cases where the initial ``Mul`` only has scalars and raw ``TensorProduct``s, not ``Add``, ``Pow``, ``Commutator``s of ``TensorProduct``s. Parameters ========== e : Expr A ``Mul`` of ``TensorProduct``s to be simplified. Returns ======= e : Expr A ``TensorProduct`` of ``Mul``s. Examples ======== This is an example of the type of simplification that this function performs:: >>> from sympy.physics.quantum.tensorproduct import \ tensor_product_simp_Mul, TensorProduct >>> from sympy import Symbol >>> A = Symbol('A',commutative=False) >>> B = Symbol('B',commutative=False) >>> C = Symbol('C',commutative=False) >>> D = Symbol('D',commutative=False) >>> e = TensorProduct(A,B)*TensorProduct(C,D) >>> e AxB*CxD >>> tensor_product_simp_Mul(e) (A*C)x(B*D) """ # TODO: This won't work with Muls that have other composites of # TensorProducts, like an Add, Pow, Commutator, etc. # TODO: This only works for the equivalent of single Qbit gates. if not isinstance(e, Mul): return e c_part, nc_part = e.args_cnc() n_nc = len(nc_part) if n_nc == 0 or n_nc == 1: return e elif e.has(TensorProduct): current = nc_part[0] if not isinstance(current, TensorProduct): raise TypeError('TensorProduct expected, got: %r' % current) n_terms = len(current.args) new_args = list(current.args) for next in nc_part[1:]: # TODO: check the hilbert spaces of next and current here. if isinstance(next, TensorProduct): if n_terms != len(next.args): raise QuantumError( 'TensorProducts of different lengths: %r and %r' % (current, next) ) for i in range(len(new_args)): new_args[i] = new_args[i] * next.args[i] else: # this won't quite work as we don't want next in the # TensorProduct for i in range(len(new_args)): new_args[i] = new_args[i] * next current = next return Mul(*c_part) * TensorProduct(*new_args) else: return e def tensor_product_simp(e, **hints): """Try to simplify and combine TensorProducts. In general this will try to pull expressions inside of ``TensorProducts``. It currently only works for relatively simple cases where the products have only scalars, raw ``TensorProducts``, not ``Add``, ``Pow``, ``Commutators`` of ``TensorProducts``. It is best to see what it does by showing examples. Examples ======== >>> from sympy.physics.quantum import tensor_product_simp >>> from sympy.physics.quantum import TensorProduct >>> from sympy import Symbol >>> A = Symbol('A',commutative=False) >>> B = Symbol('B',commutative=False) >>> C = Symbol('C',commutative=False) >>> D = Symbol('D',commutative=False) First see what happens to products of tensor products: >>> e = TensorProduct(A,B)*TensorProduct(C,D) >>> e AxB*CxD >>> tensor_product_simp(e) (A*C)x(B*D) This is the core logic of this function, and it works inside, powers, sums, commutators and anticommutators as well: >>> tensor_product_simp(e**2) (A*C)x(B*D)**2 """ if isinstance(e, Add): return Add(*[tensor_product_simp(arg) for arg in e.args]) elif isinstance(e, Pow): return tensor_product_simp(e.base) ** e.exp elif isinstance(e, Mul): return tensor_product_simp_Mul(e) elif isinstance(e, Commutator): return Commutator(*[tensor_product_simp(arg) for arg in e.args]) elif isinstance(e, AntiCommutator): return AntiCommutator(*[tensor_product_simp(arg) for arg in e.args]) else: return e
bsd-3-clause
vortex-ape/scikit-learn
conftest.py
2
2347
# Even if empty this file is useful so that when running from the root folder # ./sklearn is added to sys.path by pytest. See # https://docs.pytest.org/en/latest/pythonpath.html for more details. For # example, this allows to build extensions in place and run pytest # doc/modules/clustering.rst and use sklearn from the local folder rather than # the one from site-packages. import platform from distutils.version import LooseVersion import pytest from _pytest.doctest import DoctestItem from sklearn.utils.fixes import PY3_OR_LATER PYTEST_MIN_VERSION = '3.3.0' if LooseVersion(pytest.__version__) < PYTEST_MIN_VERSION: raise('Your version of pytest is too old, you should have at least ' 'pytest >= {} installed.'.format(PYTEST_MIN_VERSION)) def pytest_addoption(parser): parser.addoption("--skip-network", action="store_true", default=False, help="skip network tests") def pytest_collection_modifyitems(config, items): # FeatureHasher is not compatible with PyPy if platform.python_implementation() == 'PyPy': skip_marker = pytest.mark.skip( reason='FeatureHasher is not compatible with PyPy') for item in items: if item.name == 'sklearn.feature_extraction.hashing.FeatureHasher': item.add_marker(skip_marker) # Skip tests which require internet if the flag is provided if config.getoption("--skip-network"): skip_network = pytest.mark.skip( reason="test requires internet connectivity") for item in items: if "network" in item.keywords: item.add_marker(skip_network) # numpy changed the str/repr formatting of numpy arrays in 1.14. We want to # run doctests only for numpy >= 1.14. We want to skip the doctest for # python 2 due to unicode. skip_doctests = False if not PY3_OR_LATER: skip_doctests = True try: import numpy as np if LooseVersion(np.__version__) < LooseVersion('1.14'): skip_doctests = True except ImportError: pass if skip_doctests: skip_marker = pytest.mark.skip( reason='doctests are only run for numpy >= 1.14 and python >= 3') for item in items: if isinstance(item, DoctestItem): item.add_marker(skip_marker)
bsd-3-clause
drewokane/xray
xarray/core/groupby.py
1
20086
import functools import numpy as np import pandas as pd from . import ops from .combine import concat from .common import ( ImplementsArrayReduce, ImplementsDatasetReduce, _maybe_promote, ) from .pycompat import zip from .utils import peek_at, maybe_wrap_array, safe_cast_to_index from .variable import as_variable, Variable, Coordinate def unique_value_groups(ar): """Group an array by its unique values. Parameters ---------- ar : array-like Input array. This will be flattened if it is not already 1-D. Returns ------- values : np.ndarray Sorted, unique values as returned by `np.unique`. indices : list of lists of int Each element provides the integer indices in `ar` with values given by the corresponding value in `unique_values`. """ inverse, values = pd.factorize(ar, sort=True) groups = [[] for _ in range(len(values))] for n, g in enumerate(inverse): if g >= 0: # pandas uses -1 to mark NaN, but doesn't include them in values groups[g].append(n) return values, groups def _get_fill_value(dtype): """Return a fill value that appropriately promotes types when used with np.concatenate """ dtype, fill_value = _maybe_promote(dtype) return fill_value def _dummy_copy(xarray_obj): from .dataset import Dataset from .dataarray import DataArray if isinstance(xarray_obj, Dataset): res = Dataset(dict((k, _get_fill_value(v.dtype)) for k, v in xarray_obj.data_vars.items()), dict((k, _get_fill_value(v.dtype)) for k, v in xarray_obj.coords.items() if k not in xarray_obj.dims), xarray_obj.attrs) elif isinstance(xarray_obj, DataArray): res = DataArray(_get_fill_value(xarray_obj.dtype), dict((k, _get_fill_value(v.dtype)) for k, v in xarray_obj.coords.items() if k not in xarray_obj.dims), name=xarray_obj.name, attrs=xarray_obj.attrs) else: # pragma: no cover raise AssertionError return res class GroupBy(object): """A object that implements the split-apply-combine pattern. Modeled after `pandas.GroupBy`. The `GroupBy` object can be iterated over (unique_value, grouped_array) pairs, but the main way to interact with a groupby object are with the `apply` or `reduce` methods. You can also directly call numpy methods like `mean` or `std`. You should create a GroupBy object by using the `DataArray.groupby` or `Dataset.groupby` methods. See Also -------- Dataset.groupby DataArray.groupby """ def __init__(self, obj, group, squeeze=False, grouper=None): """Create a GroupBy object Parameters ---------- obj : Dataset or DataArray Object to group. group : DataArray or Coordinate 1-dimensional array with the group values. squeeze : boolean, optional If "group" is a coordinate of object, `squeeze` controls whether the subarrays have a dimension of length 1 along that coordinate or if the dimension is squeezed out. grouper : pd.Grouper, optional Used for grouping values along the `group` array. """ from .dataset import as_dataset if group.ndim != 1: # TODO: remove this limitation? raise ValueError('`group` must be 1 dimensional') if getattr(group, 'name', None) is None: raise ValueError('`group` must have a name') if not hasattr(group, 'dims'): raise ValueError("`group` must have a 'dims' attribute") group_dim, = group.dims try: expected_size = obj.dims[group_dim] except TypeError: expected_size = obj.shape[obj.get_axis_num(group_dim)] if group.size != expected_size: raise ValueError('the group variable\'s length does not ' 'match the length of this variable along its ' 'dimension') full_index = None if grouper is not None: # time-series resampling index = safe_cast_to_index(group) if not index.is_monotonic: # TODO: sort instead of raising an error raise ValueError('index must be monotonic for resampling') s = pd.Series(np.arange(index.size), index) first_items = s.groupby(grouper).first() if first_items.isnull().any(): full_index = first_items.index first_items = first_items.dropna() bins = first_items.values.astype(np.int64) group_indices = ([slice(i, j) for i, j in zip(bins[:-1], bins[1:])] + [slice(bins[-1], None)]) unique_coord = Coordinate(group.name, first_items.index) elif group.name in obj.dims: # assume that group already has sorted, unique values if group.dims != (group.name,): raise ValueError('`group` is required to be a coordinate if ' '`group.name` is a dimension in `obj`') group_indices = np.arange(group.size) if not squeeze: # group_indices = group_indices.reshape(-1, 1) # use slices to do views instead of fancy indexing group_indices = [slice(i, i + 1) for i in group_indices] unique_coord = group else: # look through group to find the unique values unique_values, group_indices = unique_value_groups(group) unique_coord = Coordinate(group.name, unique_values) self.obj = obj self.group = group self.group_dim = group_dim self.group_indices = group_indices self.unique_coord = unique_coord self._groups = None self._full_index = full_index @property def groups(self): # provided to mimic pandas.groupby if self._groups is None: self._groups = dict(zip(self.unique_coord.values, self.group_indices)) return self._groups def __len__(self): return self.unique_coord.size def __iter__(self): return zip(self.unique_coord.values, self._iter_grouped()) def _iter_grouped(self): """Iterate over each element in this group""" for indices in self.group_indices: yield self.obj.isel(**{self.group_dim: indices}) def _infer_concat_args(self, applied_example): if self.group_dim in applied_example.dims: concat_dim = self.group positions = self.group_indices else: concat_dim = self.unique_coord positions = None return concat_dim, positions @staticmethod def _binary_op(f, reflexive=False, **ignored_kwargs): @functools.wraps(f) def func(self, other): g = f if not reflexive else lambda x, y: f(y, x) applied = self._yield_binary_applied(g, other) combined = self._concat(applied) return combined return func def _yield_binary_applied(self, func, other): dummy = None for group_value, obj in self: try: other_sel = other.sel(**{self.group.name: group_value}) except AttributeError: raise TypeError('GroupBy objects only support binary ops ' 'when the other argument is a Dataset or ' 'DataArray') except KeyError: if self.group.name not in other.dims: raise ValueError('incompatible dimensions for a grouped ' 'binary operation: the group variable %r ' 'is not a dimension on the other argument' % self.group.name) if dummy is None: dummy = _dummy_copy(other) other_sel = dummy result = func(obj, other_sel) yield result def _maybe_restore_empty_groups(self, combined): """Our index contained empty groups (e.g., from a resampling). If we reduced on that dimension, we want to restore the full index. """ if (self._full_index is not None and self.group.name in combined.dims): indexers = {self.group.name: self._full_index} combined = combined.reindex(**indexers) return combined def fillna(self, value): """Fill missing values in this object by group. This operation follows the normal broadcasting and alignment rules that xarray uses for binary arithmetic, except the result is aligned to this object (``join='left'``) instead of aligned to the intersection of index coordinates (``join='inner'``). Parameters ---------- value : valid type for the grouped object's fillna method Used to fill all matching missing values by group. Returns ------- same type as the grouped object See also -------- Dataset.fillna DataArray.fillna """ return self._fillna(value) def where(self, cond): """Return an object of the same shape with all entries where cond is True and all other entries masked. This operation follows the normal broadcasting and alignment rules that xarray uses for binary arithmetic. Parameters ---------- cond : DataArray or Dataset Returns ------- same type as the grouped object See also -------- Dataset.where """ return self._where(cond) def _first_or_last(self, op, skipna, keep_attrs): if isinstance(self.group_indices[0], (int, np.integer)): # NB. this is currently only used for reductions along an existing # dimension return self.obj return self.reduce(op, self.group_dim, skipna=skipna, keep_attrs=keep_attrs, allow_lazy=True) def first(self, skipna=None, keep_attrs=True): """Return the first element of each group along the group dimension """ return self._first_or_last(ops.first, skipna, keep_attrs) def last(self, skipna=None, keep_attrs=True): """Return the last element of each group along the group dimension """ return self._first_or_last(ops.last, skipna, keep_attrs) def assign_coords(self, **kwargs): """Assign coordinates by group. See also -------- Dataset.assign_coords """ return self.apply(lambda ds: ds.assign_coords(**kwargs)) class DataArrayGroupBy(GroupBy, ImplementsArrayReduce): """GroupBy object specialized to grouping DataArray objects """ def _iter_grouped_shortcut(self): """Fast version of `_iter_grouped` that yields Variables without metadata """ var = self.obj.variable for indices in self.group_indices: yield var[{self.group_dim: indices}] def _concat_shortcut(self, applied, concat_dim, positions): # nb. don't worry too much about maintaining this method -- it does # speed things up, but it's not very interpretable and there are much # faster alternatives (e.g., doing the grouped aggregation in a # compiled language) stacked = Variable.concat( applied, concat_dim, positions, shortcut=True) stacked.attrs.update(self.obj.attrs) result = self.obj._replace_maybe_drop_dims(stacked) result._coords[concat_dim.name] = as_variable(concat_dim, copy=True) return result def _restore_dim_order(self, stacked): def lookup_order(dimension): if dimension == self.group.name: dimension, = self.group.dims if dimension in self.obj.dims: axis = self.obj.get_axis_num(dimension) else: axis = 1e6 # some arbitrarily high value return axis new_order = sorted(stacked.dims, key=lookup_order) return stacked.transpose(*new_order) def apply(self, func, shortcut=False, **kwargs): """Apply a function over each array in the group and concatenate them together into a new array. `func` is called like `func(ar, *args, **kwargs)` for each array `ar` in this group. Apply uses heuristics (like `pandas.GroupBy.apply`) to figure out how to stack together the array. The rule is: 1. If the dimension along which the group coordinate is defined is still in the first grouped array after applying `func`, then stack over this dimension. 2. Otherwise, stack over the new dimension given by name of this grouping (the argument to the `groupby` function). Parameters ---------- func : function Callable to apply to each array. shortcut : bool, optional Whether or not to shortcut evaluation under the assumptions that: (1) The action of `func` does not depend on any of the array metadata (attributes or coordinates) but only on the data and dimensions. (2) The action of `func` creates arrays with homogeneous metadata, that is, with the same dimensions and attributes. If these conditions are satisfied `shortcut` provides significant speedup. This should be the case for many common groupby operations (e.g., applying numpy ufuncs). **kwargs Used to call `func(ar, **kwargs)` for each array `ar`. Returns ------- applied : DataArray The result of splitting, applying and combining this array. """ if shortcut: grouped = self._iter_grouped_shortcut() else: grouped = self._iter_grouped() applied = (maybe_wrap_array(arr, func(arr, **kwargs)) for arr in grouped) combined = self._concat(applied, shortcut=shortcut) result = self._maybe_restore_empty_groups(combined) return result def _concat(self, applied, shortcut=False): # peek at applied to determine which coordinate to stack over applied_example, applied = peek_at(applied) concat_dim, positions = self._infer_concat_args(applied_example) if shortcut: combined = self._concat_shortcut(applied, concat_dim, positions) else: combined = concat(applied, concat_dim, positions=positions) if isinstance(combined, type(self.obj)): combined = self._restore_dim_order(combined) return combined def reduce(self, func, dim=None, axis=None, keep_attrs=False, shortcut=True, **kwargs): """Reduce the items in this group by applying `func` along some dimension(s). Parameters ---------- func : function Function which can be called in the form `func(x, axis=axis, **kwargs)` to return the result of collapsing an np.ndarray over an integer valued axis. dim : str or sequence of str, optional Dimension(s) over which to apply `func`. axis : int or sequence of int, optional Axis(es) over which to apply `func`. Only one of the 'dimension' and 'axis' arguments can be supplied. If neither are supplied, then `func` is calculated over all dimension for each group item. keep_attrs : bool, optional If True, the datasets's attributes (`attrs`) will be copied from the original object to the new one. If False (default), the new object will be returned without attributes. **kwargs : dict Additional keyword arguments passed on to `func`. Returns ------- reduced : Array Array with summarized data and the indicated dimension(s) removed. """ def reduce_array(ar): return ar.reduce(func, dim, axis, keep_attrs=keep_attrs, **kwargs) return self.apply(reduce_array, shortcut=shortcut) ops.inject_reduce_methods(DataArrayGroupBy) ops.inject_binary_ops(DataArrayGroupBy) class DatasetGroupBy(GroupBy, ImplementsDatasetReduce): def apply(self, func, **kwargs): """Apply a function over each Dataset in the group and concatenate them together into a new Dataset. `func` is called like `func(ds, *args, **kwargs)` for each dataset `ds` in this group. Apply uses heuristics (like `pandas.GroupBy.apply`) to figure out how to stack together the datasets. The rule is: 1. If the dimension along which the group coordinate is defined is still in the first grouped item after applying `func`, then stack over this dimension. 2. Otherwise, stack over the new dimension given by name of this grouping (the argument to the `groupby` function). Parameters ---------- func : function Callable to apply to each sub-dataset. **kwargs Used to call `func(ds, **kwargs)` for each sub-dataset `ar`. Returns ------- applied : Dataset The result of splitting, applying and combining this dataset. """ kwargs.pop('shortcut', None) # ignore shortcut if set (for now) applied = (func(ds, **kwargs) for ds in self._iter_grouped()) combined = self._concat(applied) result = self._maybe_restore_empty_groups(combined) return result def _concat(self, applied): applied_example, applied = peek_at(applied) concat_dim, positions = self._infer_concat_args(applied_example) combined = concat(applied, concat_dim, positions=positions) return combined def reduce(self, func, dim=None, keep_attrs=False, **kwargs): """Reduce the items in this group by applying `func` along some dimension(s). Parameters ---------- func : function Function which can be called in the form `func(x, axis=axis, **kwargs)` to return the result of collapsing an np.ndarray over an integer valued axis. dim : str or sequence of str, optional Dimension(s) over which to apply `func`. axis : int or sequence of int, optional Axis(es) over which to apply `func`. Only one of the 'dimension' and 'axis' arguments can be supplied. If neither are supplied, then `func` is calculated over all dimension for each group item. keep_attrs : bool, optional If True, the datasets's attributes (`attrs`) will be copied from the original object to the new one. If False (default), the new object will be returned without attributes. **kwargs : dict Additional keyword arguments passed on to `func`. Returns ------- reduced : Array Array with summarized data and the indicated dimension(s) removed. """ def reduce_dataset(ds): return ds.reduce(func, dim, keep_attrs, **kwargs) return self.apply(reduce_dataset) def assign(self, **kwargs): """Assign data variables by group. See also -------- Dataset.assign """ return self.apply(lambda ds: ds.assign(**kwargs)) ops.inject_reduce_methods(DatasetGroupBy) ops.inject_binary_ops(DatasetGroupBy)
apache-2.0
panda4life/idpserver
mysite/idp/plotting.py
1
3702
# -*- coding: utf-8 -*- """ Created on Wed Apr 30 16:43:00 2014 @author: jahad """ import matplotlib.pyplot as plt from matplotlib.font_manager import FontProperties import os def phasePlot(fp,fm,seqname,saveAs): if(os.path.exists(saveAs)): os.remove(saveAs) for x,y,label in zip(fp,fm,seqname): plt.scatter(x,y,marker='.',color='Black') plt.annotate(label,xy=(x+.01,y+.01)) reg1, = plt.fill([0,0,.25],[0,.25,0],color = 'Chartreuse',alpha=.75) reg2, = plt.fill([0,0,.35,.25],[.25,.35,0,0],color = 'MediumSeaGreen',alpha=.75) reg3, = plt.fill([0,.35,.65,.35],[.35,.65,.35,0],color = 'DarkGreen',alpha=.75) reg4, = plt.fill([0,0,.35],[.35,1,.65],color = 'Red',alpha=.75) reg5, = plt.fill([.35,.65,1],[0,.35,0],color = 'Blue',alpha=.75) plt.ylim([0,1]) plt.xlim([0,1]) plt.xlabel('f+') plt.ylabel('f-') plt.title('Phase Diagram') fontP = FontProperties() fontP.set_size('x-small') plt.legend([reg1,reg2,reg3,reg4,reg5], ['Weak Polyampholytes & Polyelectrolytes:\nGlobules & Tadpoles', 'Boundary Region', 'Strong Polyampholytes:\nCoils, Hairpins, Chimeras', 'Negatively Charged Strong Polyelectrolytes:\nSwollen Coils', 'Positively Charged Strong Polyelectrolytes:\nSwollen Coils'], prop = fontP) plt.savefig(saveAs,dpi=200) plt.close() return plt def testPhasePlot(): graph = phasePlot([.65,.32,.15],[.34,.21,.42],['derp1','harro','nyan'],'C:\\Users\\James Ahad\\Documents\\GitHub\\idpserver\\mysite\\output\\test.png') def testPhasePlotNull(): graph = phasePlot([],[],[],'/work/jahad/IDP_patterning/idpserver/mysite/output/test.png') import computation as comp def NCPRPlot(sequence, bloblen, saveAs): if(not sequence is None): data = sequence.NCPRdist(bloblen) plt.plot(data[0,:], data[1,:]) else: plt.plot([],[]) plt.xlim([0,50]) plt.title('NCPR Distribution') plt.xlabel('Blob Index') plt.ylabel('NCPR') plt.ylim([-1.1,1.1]) plt.savefig(saveAs, dpi=200) plt.close() return plt def testNCPRPlot(): graph = NCPRPlot(comp.Sequence('EEEEEEKKKKEKEKEKEKEKEEEEEEEKKKKKKEKEKEKEKEKEKEKGGGGGGKEKEKE'),5, 'C:\\Users\\James Ahad\\Documents\\GitHub\\idpserver\\mysite\\output\\testNCPR.png') def SigmaPlot(sequence, bloblen, saveAs): if(not sequence is None): data = sequence.Sigmadist(bloblen) plt.plot(data[0,:], data[1,:]) else: plt.plot([],[]) plt.xlim([0,50]) plt.title('Sigma Distribution') plt.xlabel('Blob Index') plt.ylabel('Sigma') plt.ylim([-.1,1.1]) plt.savefig(saveAs, dpi=200) plt.close() return plt def testSigmaPlot(): graph = SigmaPlot(comp.Sequence('EEEEEEKKKKEKEKEKEKEKEEEEEEEKKKKKKEKEKEKEKEKEKEKGGGGGGKEKEKE'),5, 'C:\\Users\\James Ahad\\Documents\\GitHub\\idpserver\\mysite\\output\\testSigma.png') def HydroPlot(sequence, bloblen, saveAs): if(not sequence is None): data = sequence.Hydrodist(bloblen) plt.plot(data[0,:], data[1,:]) else: plt.plot([],[]) plt.xlim([0,50]) plt.title('Hydropathy Distribution') plt.xlabel('Blob Index') plt.ylabel('Hydropathy') plt.savefig(saveAs, dpi=200) plt.close() return plt def testHydroPlot(): graph = HydroPlot(comp.Sequence('EEEEEEKKKKEKEKEKEKEKEEEEEEEKKKKKKEKEKEKEKEKEKEKGGGGGGKEKEKE'),5, 'C:\\Users\\James Ahad\\Documents\\GitHub\\idpserver\\mysite\\output\\testHydro.png') testNCPRPlot() testSigmaPlot() testHydroPlot()
gpl-3.0
olologin/scikit-learn
examples/ensemble/plot_adaboost_twoclass.py
347
3268
""" ================== Two-class AdaBoost ================== This example fits an AdaBoosted decision stump on a non-linearly separable classification dataset composed of two "Gaussian quantiles" clusters (see :func:`sklearn.datasets.make_gaussian_quantiles`) and plots the decision boundary and decision scores. The distributions of decision scores are shown separately for samples of class A and B. The predicted class label for each sample is determined by the sign of the decision score. Samples with decision scores greater than zero are classified as B, and are otherwise classified as A. The magnitude of a decision score determines the degree of likeness with the predicted class label. Additionally, a new dataset could be constructed containing a desired purity of class B, for example, by only selecting samples with a decision score above some value. """ print(__doc__) # Author: Noel Dawe <noel.dawe@gmail.com> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import AdaBoostClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.datasets import make_gaussian_quantiles # Construct dataset X1, y1 = make_gaussian_quantiles(cov=2., n_samples=200, n_features=2, n_classes=2, random_state=1) X2, y2 = make_gaussian_quantiles(mean=(3, 3), cov=1.5, n_samples=300, n_features=2, n_classes=2, random_state=1) X = np.concatenate((X1, X2)) y = np.concatenate((y1, - y2 + 1)) # Create and fit an AdaBoosted decision tree bdt = AdaBoostClassifier(DecisionTreeClassifier(max_depth=1), algorithm="SAMME", n_estimators=200) bdt.fit(X, y) plot_colors = "br" plot_step = 0.02 class_names = "AB" plt.figure(figsize=(10, 5)) # Plot the decision boundaries plt.subplot(121) x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step), np.arange(y_min, y_max, plot_step)) Z = bdt.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired) plt.axis("tight") # Plot the training points for i, n, c in zip(range(2), class_names, plot_colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=c, cmap=plt.cm.Paired, label="Class %s" % n) plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.legend(loc='upper right') plt.xlabel('x') plt.ylabel('y') plt.title('Decision Boundary') # Plot the two-class decision scores twoclass_output = bdt.decision_function(X) plot_range = (twoclass_output.min(), twoclass_output.max()) plt.subplot(122) for i, n, c in zip(range(2), class_names, plot_colors): plt.hist(twoclass_output[y == i], bins=10, range=plot_range, facecolor=c, label='Class %s' % n, alpha=.5) x1, x2, y1, y2 = plt.axis() plt.axis((x1, x2, y1, y2 * 1.2)) plt.legend(loc='upper right') plt.ylabel('Samples') plt.xlabel('Score') plt.title('Decision Scores') plt.tight_layout() plt.subplots_adjust(wspace=0.35) plt.show()
bsd-3-clause
amchagas/python-neo
examples/generated_data.py
7
4873
# -*- coding: utf-8 -*- """ This is an example for creating simple plots from various Neo structures. It includes a function that generates toy data. """ from __future__ import division # Use same division in Python 2 and 3 import numpy as np import quantities as pq from matplotlib import pyplot as plt import neo def generate_block(n_segments=3, n_channels=8, n_units=3, data_samples=1000, feature_samples=100): """ Generate a block with a single recording channel group and a number of segments, recording channels and units with associated analog signals and spike trains. """ feature_len = feature_samples / data_samples # Create container and grouping objects segments = [neo.Segment(index=i) for i in range(n_segments)] rcg = neo.RecordingChannelGroup(name='T0') for i in range(n_channels): rc = neo.RecordingChannel(name='C%d' % i, index=i) rc.recordingchannelgroups = [rcg] rcg.recordingchannels.append(rc) units = [neo.Unit('U%d' % i) for i in range(n_units)] rcg.units = units block = neo.Block() block.segments = segments block.recordingchannelgroups = [rcg] # Create synthetic data for seg in segments: feature_pos = np.random.randint(0, data_samples - feature_samples) # Analog signals: Noise with a single sinewave feature wave = 3 * np.sin(np.linspace(0, 2 * np.pi, feature_samples)) for rc in rcg.recordingchannels: sig = np.random.randn(data_samples) sig[feature_pos:feature_pos + feature_samples] += wave signal = neo.AnalogSignal(sig * pq.mV, sampling_rate=1 * pq.kHz) seg.analogsignals.append(signal) rc.analogsignals.append(signal) # Spike trains: Random spike times with elevated rate in short period feature_time = feature_pos / data_samples for u in units: random_spikes = np.random.rand(20) feature_spikes = np.random.rand(5) * feature_len + feature_time spikes = np.hstack([random_spikes, feature_spikes]) train = neo.SpikeTrain(spikes * pq.s, 1 * pq.s) seg.spiketrains.append(train) u.spiketrains.append(train) block.create_many_to_one_relationship() return block block = generate_block() # In this example, we treat each segment in turn, averaging over the channels # in each: for seg in block.segments: print("Analysing segment %d" % seg.index) siglist = seg.analogsignals time_points = siglist[0].times avg = np.mean(siglist, axis=0) # Average over signals of Segment plt.figure() plt.plot(time_points, avg) plt.title("Peak response in segment %d: %f" % (seg.index, avg.max())) # The second alternative is spatial traversal of the data (by channel), with # averaging over trials. For example, perhaps you wish to see which physical # location produces the strongest response, and each stimulus was the same: # We assume that our block has only 1 RecordingChannelGroup and each # RecordingChannel only has 1 AnalogSignal. rcg = block.recordingchannelgroups[0] for rc in rcg.recordingchannels: print("Analysing channel %d: %s" % (rc.index, rc.name)) siglist = rc.analogsignals time_points = siglist[0].times avg = np.mean(siglist, axis=0) # Average over signals of RecordingChannel plt.figure() plt.plot(time_points, avg) plt.title("Average response on channel %d" % rc.index) # There are three ways to access the spike train data: by Segment, # by RecordingChannel or by Unit. # By Segment. In this example, each Segment represents data from one trial, # and we want a peristimulus time histogram (PSTH) for each trial from all # Units combined: for seg in block.segments: print("Analysing segment %d" % seg.index) stlist = [st - st.t_start for st in seg.spiketrains] count, bins = np.histogram(np.hstack(stlist)) plt.figure() plt.bar(bins[:-1], count, width=bins[1] - bins[0]) plt.title("PSTH in segment %d" % seg.index) # By Unit. Now we can calculate the PSTH averaged over trials for each Unit: for unit in block.list_units: stlist = [st - st.t_start for st in unit.spiketrains] count, bins = np.histogram(np.hstack(stlist)) plt.figure() plt.bar(bins[:-1], count, width=bins[1] - bins[0]) plt.title("PSTH of unit %s" % unit.name) # By RecordingChannelGroup. Here we calculate a PSTH averaged over trials by # channel location, blending all Units: for rcg in block.recordingchannelgroups: stlist = [] for unit in rcg.units: stlist.extend([st - st.t_start for st in unit.spiketrains]) count, bins = np.histogram(np.hstack(stlist)) plt.figure() plt.bar(bins[:-1], count, width=bins[1] - bins[0]) plt.title("PSTH blend of recording channel group %s" % rcg.name) plt.show()
bsd-3-clause
cpcloud/ibis
ibis/pandas/tests/test_core.py
1
4872
from typing import Any import pandas as pd import pandas.util.testing as tm import pytest from multipledispatch.conflict import ambiguities import ibis import ibis.common.exceptions as com import ibis.expr.datatypes as dt import ibis.expr.operations as ops from ibis.pandas.client import PandasClient from ibis.pandas.core import is_computable_input from ibis.pandas.dispatch import execute_node, post_execute, pre_execute pytestmark = pytest.mark.pandas @pytest.fixture def dataframe(): return pd.DataFrame( { 'plain_int64': list(range(1, 4)), 'plain_strings': list('abc'), 'dup_strings': list('dad'), } ) @pytest.fixture def core_client(dataframe): return ibis.pandas.connect({'df': dataframe}) @pytest.fixture def ibis_table(core_client): return core_client.table('df') @pytest.mark.parametrize('func', [execute_node, pre_execute, post_execute]) def test_no_execute_ambiguities(func): assert not ambiguities(func.funcs) def test_from_dataframe(dataframe, ibis_table, core_client): t = ibis.pandas.from_dataframe(dataframe) result = t.execute() expected = ibis_table.execute() tm.assert_frame_equal(result, expected) t = ibis.pandas.from_dataframe(dataframe, name='foo') expected = ibis_table.execute() tm.assert_frame_equal(result, expected) client = core_client t = ibis.pandas.from_dataframe(dataframe, name='foo', client=client) expected = ibis_table.execute() tm.assert_frame_equal(result, expected) def test_pre_execute_basic(): """ Test that pre_execute has intercepted execution and provided its own scope dict """ @pre_execute.register(ops.Add) def pre_execute_test(op, *clients, scope=None, **kwargs): return {op: 4} one = ibis.literal(1) expr = one + one result = ibis.pandas.execute(expr) assert result == 4 del pre_execute.funcs[(ops.Add,)] pre_execute.reorder() pre_execute._cache.clear() def test_execute_parameter_only(): param = ibis.param('int64') result = ibis.pandas.execute(param, params={param: 42}) assert result == 42 def test_missing_data_sources(): t = ibis.table([('a', 'string')]) expr = t.a.length() with pytest.raises(com.UnboundExpressionError): ibis.pandas.execute(expr) def test_missing_data_on_custom_client(): class MyClient(PandasClient): def table(self, name): return ops.DatabaseTable( name, ibis.schema([('a', 'int64')]), self ).to_expr() con = MyClient({}) t = con.table('t') with pytest.raises( NotImplementedError, match=( 'Could not find signature for execute_node: ' '<DatabaseTable, MyClient>' ), ): con.execute(t) def test_post_execute_called_on_joins(dataframe, core_client, ibis_table): count = [0] @post_execute.register(ops.InnerJoin, pd.DataFrame) def tmp_left_join_exe(op, lhs, **kwargs): count[0] += 1 return lhs left = ibis_table right = left.view() join = left.join(right, 'plain_strings')[left.plain_int64] result = join.execute() assert result is not None assert not result.empty assert count[0] == 1 def test_is_computable_input(): class MyObject: def __init__(self, value: float) -> None: self.value = value def __getattr__(self, name: str) -> Any: return getattr(self.value, name) def __hash__(self) -> int: return hash((type(self), self.value)) def __eq__(self, other): return ( isinstance(other, type(self)) and isinstance(self, type(other)) and self.value == other.value ) def __float__(self) -> float: return self.value @execute_node.register(ops.Add, int, MyObject) def add_int_my_object(op, left, right, **kwargs): return left + right.value # This multimethod must be implemented to play nicely with other value # types like columns and literals. In other words, for a custom # non-expression object to play nicely it must somehow map to one of the # types in ibis/expr/datatypes.py @dt.infer.register(MyObject) def infer_my_object(_, **kwargs): return dt.float64 @is_computable_input.register(MyObject) def is_computable_input_my_object(_): return True one = ibis.literal(1) two = MyObject(2.0) assert is_computable_input(two) three = one + two four = three + 1 result = ibis.pandas.execute(four) assert result == 4.0 del execute_node.funcs[ops.Add, int, MyObject] execute_node.reorder() execute_node._cache.clear() del dt.infer.funcs[(MyObject,)] dt.infer.reorder() dt.infer._cache.clear()
apache-2.0
NZRS/content-analysis
netflix.py
2
3126
from bs4 import BeautifulSoup from urllib2 import quote import unicodedata import requests import json import glob import pandas as pd movie_list = [] for page in glob.glob('*.html'): with open(page, 'r+') as f: my_page = f.read() my_soup = BeautifulSoup(my_page) for div in my_soup.find_all('div', class_='lockup'): try: movie_list.append(div.img.get('alt')) except: movie_list.append('movie could not be extracted from page') ['movie could not be extracted from page' for movie in movie_list if movie is None] movie_list2 = [] for movie in movie_list: try: movie = quote(movie) movie_list2.append(movie) except: try: movie = unicodedata.normalize('NFKC', movie).encode('ascii','ignore') movie = quote(movie) movie_list2.append(movie) except: print movie movie_list2.append('movie could not be processed') all_movies_us = {} for movie in movie_list2: try: query_url = 'http://www.omdbapi.com/?t=' + movie + '&y=&plot=full&r=json' response = requests.get(query_url) my_dict = json.loads(response.text) all_movies_us[movie] = my_dict except: all_movies_us[movie] = 'No response' print movie # movies/single year shows years_dict = {} counter = 0 for k,v in all_movies.iteritems(): try: if len(v['Year']) == 4: try: years_dict[v['Year']] += 1 except: years_dict[v['Year']] = 1 continue except: counter += 1 continue print counter my_frame = pd.DataFrame.from_dict(years_dict, orient = 'index') my_frame.to_csv('single_years.csv') counter=0 score_dict = {} for k,v in all_movies.iteritems(): try: if v['imdbRating'] != 'N/A': score_dict[v['Title']] = v['imdbRating'] except: counter +=1 continue print counter score_dict2 ={} for title, score in score_dict.iteritems(): try: score_dict2[title] = float(score) except: print score score_dict = score_dict2 average_score = (sum(score_dict.values()))/len(score_dict) top_25 = print average_score years = [] country = [] language =[] actors = [] for movie, results in all_movies.iteritems(): try: years.append(results['Year']) except: continue try: country.append(results['Country']) except: continue try: language.append(results['Language']) except: continue try: for actor in results['Actors'].split(','): actors.append(actor) except: continue # Ongoing shows years_dict = {} counter = 0 for k,v in all_movies.iteritems(): try: print v['Year'][4] except: continue # Languages lang_list = [] for lang in language: for x in lang.split(','): lang_list.append(x) lang_list Counter(lang_list) Counter(lang_list).most_common(10)
agpl-3.0
rafaellehmkuhl/OpenCV-Python-GUI
CvPyGui/PlotContainer.py
1
2407
import pandas as pd from PyQt5.QtCore import Qt from PyQt5.QtWidgets import (QWidget, QLabel, QHBoxLayout, QVBoxLayout, QPushButton, QSlider, QComboBox) from matplotlib.backends.backend_qt4agg import NavigationToolbar2QT as NavigationToolbar from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.figure import Figure from .FilterCvQtContainer import Filter import random class SinglePlotContainer(QWidget): num_plots = 0 def __init__(self, parent=None): super().__init__() self.num_plots += 1 self.variable_df = pd.DataFrame() self.figure = Figure() # don't use matplotlib.pyplot at all! self.canvas = FigureCanvas(self.figure) self.hLayout = QHBoxLayout(self) self.dataConfigColumn = QVBoxLayout() self.filtersColumn = QVBoxLayout() self.hLayout.addLayout(self.dataConfigColumn) self.hLayout.addWidget(self.canvas) self.hLayout.addLayout(self.filtersColumn) self.comboLoadVariable = QComboBox() self.dataConfigColumn.addWidget(self.comboLoadVariable) self.filter1 = Filter('Moving Average', 3, 30, 5, 1) self.filtersColumn.addWidget(self.filter1) # drawEvent = self.figure.canvas.mpl_connect('draw', self.updatePlot) self.plotRandom() def connectButtons(self): self.comboLoadVariable.activated[str].connect(self.loadVariable) def loadVariable(self, variable): self.variable_df = self.parent().parent().original_df[variable] self.plot() def plot(self): if self.num_plots != 0: self.axes = self.figure.add_subplot(111, sharex=self.parent().parent().plots[0].axes) else: self.axes = self.figure.add_subplot(111) self.axes.clear() self.axes.plot(self.variable_df, '-') self.canvas.draw() def updatePlot(self): ymax,ymin = self.axes.get_ylim() self.axes.clear() self.axes.set_ylim(ymax,ymin) self.axes.plot(self.variable_df, '-') self.canvas.draw() def plotRandom(self): ''' plot some random stuff ''' data = [random.random() for i in range(10)] self.axes = self.figure.add_subplot(111) self.axes.clear() self.axes.plot(data, '-') self.canvas.draw()
mit
qifeigit/scikit-learn
examples/text/document_classification_20newsgroups.py
222
10500
""" ====================================================== Classification of text documents using sparse features ====================================================== This is an example showing how scikit-learn can be used to classify documents by topics using a bag-of-words approach. This example uses a scipy.sparse matrix to store the features and demonstrates various classifiers that can efficiently handle sparse matrices. The dataset used in this example is the 20 newsgroups dataset. It will be automatically downloaded, then cached. The bar plot indicates the accuracy, training time (normalized) and test time (normalized) of each classifier. """ # Author: Peter Prettenhofer <peter.prettenhofer@gmail.com> # Olivier Grisel <olivier.grisel@ensta.org> # Mathieu Blondel <mathieu@mblondel.org> # Lars Buitinck <L.J.Buitinck@uva.nl> # License: BSD 3 clause from __future__ import print_function import logging import numpy as np from optparse import OptionParser import sys from time import time import matplotlib.pyplot as plt from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import HashingVectorizer from sklearn.feature_selection import SelectKBest, chi2 from sklearn.linear_model import RidgeClassifier from sklearn.pipeline import Pipeline from sklearn.svm import LinearSVC from sklearn.linear_model import SGDClassifier from sklearn.linear_model import Perceptron from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.naive_bayes import BernoulliNB, MultinomialNB from sklearn.neighbors import KNeighborsClassifier from sklearn.neighbors import NearestCentroid from sklearn.ensemble import RandomForestClassifier from sklearn.utils.extmath import density from sklearn import metrics # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') # parse commandline arguments op = OptionParser() op.add_option("--report", action="store_true", dest="print_report", help="Print a detailed classification report.") op.add_option("--chi2_select", action="store", type="int", dest="select_chi2", help="Select some number of features using a chi-squared test") op.add_option("--confusion_matrix", action="store_true", dest="print_cm", help="Print the confusion matrix.") op.add_option("--top10", action="store_true", dest="print_top10", help="Print ten most discriminative terms per class" " for every classifier.") op.add_option("--all_categories", action="store_true", dest="all_categories", help="Whether to use all categories or not.") op.add_option("--use_hashing", action="store_true", help="Use a hashing vectorizer.") op.add_option("--n_features", action="store", type=int, default=2 ** 16, help="n_features when using the hashing vectorizer.") op.add_option("--filtered", action="store_true", help="Remove newsgroup information that is easily overfit: " "headers, signatures, and quoting.") (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) print(__doc__) op.print_help() print() ############################################################################### # Load some categories from the training set if opts.all_categories: categories = None else: categories = [ 'alt.atheism', 'talk.religion.misc', 'comp.graphics', 'sci.space', ] if opts.filtered: remove = ('headers', 'footers', 'quotes') else: remove = () print("Loading 20 newsgroups dataset for categories:") print(categories if categories else "all") data_train = fetch_20newsgroups(subset='train', categories=categories, shuffle=True, random_state=42, remove=remove) data_test = fetch_20newsgroups(subset='test', categories=categories, shuffle=True, random_state=42, remove=remove) print('data loaded') categories = data_train.target_names # for case categories == None def size_mb(docs): return sum(len(s.encode('utf-8')) for s in docs) / 1e6 data_train_size_mb = size_mb(data_train.data) data_test_size_mb = size_mb(data_test.data) print("%d documents - %0.3fMB (training set)" % ( len(data_train.data), data_train_size_mb)) print("%d documents - %0.3fMB (test set)" % ( len(data_test.data), data_test_size_mb)) print("%d categories" % len(categories)) print() # split a training set and a test set y_train, y_test = data_train.target, data_test.target print("Extracting features from the training data using a sparse vectorizer") t0 = time() if opts.use_hashing: vectorizer = HashingVectorizer(stop_words='english', non_negative=True, n_features=opts.n_features) X_train = vectorizer.transform(data_train.data) else: vectorizer = TfidfVectorizer(sublinear_tf=True, max_df=0.5, stop_words='english') X_train = vectorizer.fit_transform(data_train.data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_train_size_mb / duration)) print("n_samples: %d, n_features: %d" % X_train.shape) print() print("Extracting features from the test data using the same vectorizer") t0 = time() X_test = vectorizer.transform(data_test.data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_test_size_mb / duration)) print("n_samples: %d, n_features: %d" % X_test.shape) print() # mapping from integer feature name to original token string if opts.use_hashing: feature_names = None else: feature_names = vectorizer.get_feature_names() if opts.select_chi2: print("Extracting %d best features by a chi-squared test" % opts.select_chi2) t0 = time() ch2 = SelectKBest(chi2, k=opts.select_chi2) X_train = ch2.fit_transform(X_train, y_train) X_test = ch2.transform(X_test) if feature_names: # keep selected feature names feature_names = [feature_names[i] for i in ch2.get_support(indices=True)] print("done in %fs" % (time() - t0)) print() if feature_names: feature_names = np.asarray(feature_names) def trim(s): """Trim string to fit on terminal (assuming 80-column display)""" return s if len(s) <= 80 else s[:77] + "..." ############################################################################### # Benchmark classifiers def benchmark(clf): print('_' * 80) print("Training: ") print(clf) t0 = time() clf.fit(X_train, y_train) train_time = time() - t0 print("train time: %0.3fs" % train_time) t0 = time() pred = clf.predict(X_test) test_time = time() - t0 print("test time: %0.3fs" % test_time) score = metrics.accuracy_score(y_test, pred) print("accuracy: %0.3f" % score) if hasattr(clf, 'coef_'): print("dimensionality: %d" % clf.coef_.shape[1]) print("density: %f" % density(clf.coef_)) if opts.print_top10 and feature_names is not None: print("top 10 keywords per class:") for i, category in enumerate(categories): top10 = np.argsort(clf.coef_[i])[-10:] print(trim("%s: %s" % (category, " ".join(feature_names[top10])))) print() if opts.print_report: print("classification report:") print(metrics.classification_report(y_test, pred, target_names=categories)) if opts.print_cm: print("confusion matrix:") print(metrics.confusion_matrix(y_test, pred)) print() clf_descr = str(clf).split('(')[0] return clf_descr, score, train_time, test_time results = [] for clf, name in ( (RidgeClassifier(tol=1e-2, solver="lsqr"), "Ridge Classifier"), (Perceptron(n_iter=50), "Perceptron"), (PassiveAggressiveClassifier(n_iter=50), "Passive-Aggressive"), (KNeighborsClassifier(n_neighbors=10), "kNN"), (RandomForestClassifier(n_estimators=100), "Random forest")): print('=' * 80) print(name) results.append(benchmark(clf)) for penalty in ["l2", "l1"]: print('=' * 80) print("%s penalty" % penalty.upper()) # Train Liblinear model results.append(benchmark(LinearSVC(loss='l2', penalty=penalty, dual=False, tol=1e-3))) # Train SGD model results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50, penalty=penalty))) # Train SGD with Elastic Net penalty print('=' * 80) print("Elastic-Net penalty") results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50, penalty="elasticnet"))) # Train NearestCentroid without threshold print('=' * 80) print("NearestCentroid (aka Rocchio classifier)") results.append(benchmark(NearestCentroid())) # Train sparse Naive Bayes classifiers print('=' * 80) print("Naive Bayes") results.append(benchmark(MultinomialNB(alpha=.01))) results.append(benchmark(BernoulliNB(alpha=.01))) print('=' * 80) print("LinearSVC with L1-based feature selection") # The smaller C, the stronger the regularization. # The more regularization, the more sparsity. results.append(benchmark(Pipeline([ ('feature_selection', LinearSVC(penalty="l1", dual=False, tol=1e-3)), ('classification', LinearSVC()) ]))) # make some plots indices = np.arange(len(results)) results = [[x[i] for x in results] for i in range(4)] clf_names, score, training_time, test_time = results training_time = np.array(training_time) / np.max(training_time) test_time = np.array(test_time) / np.max(test_time) plt.figure(figsize=(12, 8)) plt.title("Score") plt.barh(indices, score, .2, label="score", color='r') plt.barh(indices + .3, training_time, .2, label="training time", color='g') plt.barh(indices + .6, test_time, .2, label="test time", color='b') plt.yticks(()) plt.legend(loc='best') plt.subplots_adjust(left=.25) plt.subplots_adjust(top=.95) plt.subplots_adjust(bottom=.05) for i, c in zip(indices, clf_names): plt.text(-.3, i, c) plt.show()
bsd-3-clause
mattilyra/scikit-learn
benchmarks/bench_plot_omp_lars.py
28
4471
"""Benchmarks of orthogonal matching pursuit (:ref:`OMP`) versus least angle regression (:ref:`least_angle_regression`) The input data is mostly low rank but is a fat infinite tail. """ from __future__ import print_function import gc import sys from time import time import numpy as np from sklearn.linear_model import lars_path, orthogonal_mp from sklearn.datasets.samples_generator import make_sparse_coded_signal def compute_bench(samples_range, features_range): it = 0 results = dict() lars = np.empty((len(features_range), len(samples_range))) lars_gram = lars.copy() omp = lars.copy() omp_gram = lars.copy() max_it = len(samples_range) * len(features_range) for i_s, n_samples in enumerate(samples_range): for i_f, n_features in enumerate(features_range): it += 1 n_informative = n_features / 10 print('====================') print('Iteration %03d of %03d' % (it, max_it)) print('====================') # dataset_kwargs = { # 'n_train_samples': n_samples, # 'n_test_samples': 2, # 'n_features': n_features, # 'n_informative': n_informative, # 'effective_rank': min(n_samples, n_features) / 10, # #'effective_rank': None, # 'bias': 0.0, # } dataset_kwargs = { 'n_samples': 1, 'n_components': n_features, 'n_features': n_samples, 'n_nonzero_coefs': n_informative, 'random_state': 0 } print("n_samples: %d" % n_samples) print("n_features: %d" % n_features) y, X, _ = make_sparse_coded_signal(**dataset_kwargs) X = np.asfortranarray(X) gc.collect() print("benchmarking lars_path (with Gram):", end='') sys.stdout.flush() tstart = time() G = np.dot(X.T, X) # precomputed Gram matrix Xy = np.dot(X.T, y) lars_path(X, y, Xy=Xy, Gram=G, max_iter=n_informative) delta = time() - tstart print("%0.3fs" % delta) lars_gram[i_f, i_s] = delta gc.collect() print("benchmarking lars_path (without Gram):", end='') sys.stdout.flush() tstart = time() lars_path(X, y, Gram=None, max_iter=n_informative) delta = time() - tstart print("%0.3fs" % delta) lars[i_f, i_s] = delta gc.collect() print("benchmarking orthogonal_mp (with Gram):", end='') sys.stdout.flush() tstart = time() orthogonal_mp(X, y, precompute=True, n_nonzero_coefs=n_informative) delta = time() - tstart print("%0.3fs" % delta) omp_gram[i_f, i_s] = delta gc.collect() print("benchmarking orthogonal_mp (without Gram):", end='') sys.stdout.flush() tstart = time() orthogonal_mp(X, y, precompute=False, n_nonzero_coefs=n_informative) delta = time() - tstart print("%0.3fs" % delta) omp[i_f, i_s] = delta results['time(LARS) / time(OMP)\n (w/ Gram)'] = (lars_gram / omp_gram) results['time(LARS) / time(OMP)\n (w/o Gram)'] = (lars / omp) return results if __name__ == '__main__': samples_range = np.linspace(1000, 5000, 5).astype(np.int) features_range = np.linspace(1000, 5000, 5).astype(np.int) results = compute_bench(samples_range, features_range) max_time = max(np.max(t) for t in results.values()) import matplotlib.pyplot as plt fig = plt.figure('scikit-learn OMP vs. LARS benchmark results') for i, (label, timings) in enumerate(sorted(results.iteritems())): ax = fig.add_subplot(1, 2, i+1) vmax = max(1 - timings.min(), -1 + timings.max()) plt.matshow(timings, fignum=False, vmin=1 - vmax, vmax=1 + vmax) ax.set_xticklabels([''] + map(str, samples_range)) ax.set_yticklabels([''] + map(str, features_range)) plt.xlabel('n_samples') plt.ylabel('n_features') plt.title(label) plt.subplots_adjust(0.1, 0.08, 0.96, 0.98, 0.4, 0.63) ax = plt.axes([0.1, 0.08, 0.8, 0.06]) plt.colorbar(cax=ax, orientation='horizontal') plt.show()
bsd-3-clause
zuku1985/scikit-learn
sklearn/preprocessing/tests/test_imputation.py
51
12300
import numpy as np from scipy import sparse from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_false from sklearn.preprocessing.imputation import Imputer from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV from sklearn import tree from sklearn.random_projection import sparse_random_matrix def _check_statistics(X, X_true, strategy, statistics, missing_values): """Utility function for testing imputation for a given strategy. Test: - along the two axes - with dense and sparse arrays Check that: - the statistics (mean, median, mode) are correct - the missing values are imputed correctly""" err_msg = "Parameters: strategy = %s, missing_values = %s, " \ "axis = {0}, sparse = {1}" % (strategy, missing_values) # Normal matrix, axis = 0 imputer = Imputer(missing_values, strategy=strategy, axis=0) X_trans = imputer.fit(X).transform(X.copy()) assert_array_equal(imputer.statistics_, statistics, err_msg.format(0, False)) assert_array_equal(X_trans, X_true, err_msg.format(0, False)) # Normal matrix, axis = 1 imputer = Imputer(missing_values, strategy=strategy, axis=1) imputer.fit(X.transpose()) if np.isnan(statistics).any(): assert_raises(ValueError, imputer.transform, X.copy().transpose()) else: X_trans = imputer.transform(X.copy().transpose()) assert_array_equal(X_trans, X_true.transpose(), err_msg.format(1, False)) # Sparse matrix, axis = 0 imputer = Imputer(missing_values, strategy=strategy, axis=0) imputer.fit(sparse.csc_matrix(X)) X_trans = imputer.transform(sparse.csc_matrix(X.copy())) if sparse.issparse(X_trans): X_trans = X_trans.toarray() assert_array_equal(imputer.statistics_, statistics, err_msg.format(0, True)) assert_array_equal(X_trans, X_true, err_msg.format(0, True)) # Sparse matrix, axis = 1 imputer = Imputer(missing_values, strategy=strategy, axis=1) imputer.fit(sparse.csc_matrix(X.transpose())) if np.isnan(statistics).any(): assert_raises(ValueError, imputer.transform, sparse.csc_matrix(X.copy().transpose())) else: X_trans = imputer.transform(sparse.csc_matrix(X.copy().transpose())) if sparse.issparse(X_trans): X_trans = X_trans.toarray() assert_array_equal(X_trans, X_true.transpose(), err_msg.format(1, True)) def test_imputation_shape(): # Verify the shapes of the imputed matrix for different strategies. X = np.random.randn(10, 2) X[::2] = np.nan for strategy in ['mean', 'median', 'most_frequent']: imputer = Imputer(strategy=strategy) X_imputed = imputer.fit_transform(X) assert_equal(X_imputed.shape, (10, 2)) X_imputed = imputer.fit_transform(sparse.csr_matrix(X)) assert_equal(X_imputed.shape, (10, 2)) def test_imputation_mean_median_only_zero(): # Test imputation using the mean and median strategies, when # missing_values == 0. X = np.array([ [np.nan, 0, 0, 0, 5], [np.nan, 1, 0, np.nan, 3], [np.nan, 2, 0, 0, 0], [np.nan, 6, 0, 5, 13], ]) X_imputed_mean = np.array([ [3, 5], [1, 3], [2, 7], [6, 13], ]) statistics_mean = [np.nan, 3, np.nan, np.nan, 7] # Behaviour of median with NaN is undefined, e.g. different results in # np.median and np.ma.median X_for_median = X[:, [0, 1, 2, 4]] X_imputed_median = np.array([ [2, 5], [1, 3], [2, 5], [6, 13], ]) statistics_median = [np.nan, 2, np.nan, 5] _check_statistics(X, X_imputed_mean, "mean", statistics_mean, 0) _check_statistics(X_for_median, X_imputed_median, "median", statistics_median, 0) def safe_median(arr, *args, **kwargs): # np.median([]) raises a TypeError for numpy >= 1.10.1 length = arr.size if hasattr(arr, 'size') else len(arr) return np.nan if length == 0 else np.median(arr, *args, **kwargs) def safe_mean(arr, *args, **kwargs): # np.mean([]) raises a RuntimeWarning for numpy >= 1.10.1 length = arr.size if hasattr(arr, 'size') else len(arr) return np.nan if length == 0 else np.mean(arr, *args, **kwargs) def test_imputation_mean_median(): # Test imputation using the mean and median strategies, when # missing_values != 0. rng = np.random.RandomState(0) dim = 10 dec = 10 shape = (dim * dim, dim + dec) zeros = np.zeros(shape[0]) values = np.arange(1, shape[0] + 1) values[4::2] = - values[4::2] tests = [("mean", "NaN", lambda z, v, p: safe_mean(np.hstack((z, v)))), ("mean", 0, lambda z, v, p: np.mean(v)), ("median", "NaN", lambda z, v, p: safe_median(np.hstack((z, v)))), ("median", 0, lambda z, v, p: np.median(v))] for strategy, test_missing_values, true_value_fun in tests: X = np.empty(shape) X_true = np.empty(shape) true_statistics = np.empty(shape[1]) # Create a matrix X with columns # - with only zeros, # - with only missing values # - with zeros, missing values and values # And a matrix X_true containing all true values for j in range(shape[1]): nb_zeros = (j - dec + 1 > 0) * (j - dec + 1) * (j - dec + 1) nb_missing_values = max(shape[0] + dec * dec - (j + dec) * (j + dec), 0) nb_values = shape[0] - nb_zeros - nb_missing_values z = zeros[:nb_zeros] p = np.repeat(test_missing_values, nb_missing_values) v = values[rng.permutation(len(values))[:nb_values]] true_statistics[j] = true_value_fun(z, v, p) # Create the columns X[:, j] = np.hstack((v, z, p)) if 0 == test_missing_values: X_true[:, j] = np.hstack((v, np.repeat( true_statistics[j], nb_missing_values + nb_zeros))) else: X_true[:, j] = np.hstack((v, z, np.repeat(true_statistics[j], nb_missing_values))) # Shuffle them the same way np.random.RandomState(j).shuffle(X[:, j]) np.random.RandomState(j).shuffle(X_true[:, j]) # Mean doesn't support columns containing NaNs, median does if strategy == "median": cols_to_keep = ~np.isnan(X_true).any(axis=0) else: cols_to_keep = ~np.isnan(X_true).all(axis=0) X_true = X_true[:, cols_to_keep] _check_statistics(X, X_true, strategy, true_statistics, test_missing_values) def test_imputation_median_special_cases(): # Test median imputation with sparse boundary cases X = np.array([ [0, np.nan, np.nan], # odd: implicit zero [5, np.nan, np.nan], # odd: explicit nonzero [0, 0, np.nan], # even: average two zeros [-5, 0, np.nan], # even: avg zero and neg [0, 5, np.nan], # even: avg zero and pos [4, 5, np.nan], # even: avg nonzeros [-4, -5, np.nan], # even: avg negatives [-1, 2, np.nan], # even: crossing neg and pos ]).transpose() X_imputed_median = np.array([ [0, 0, 0], [5, 5, 5], [0, 0, 0], [-5, 0, -2.5], [0, 5, 2.5], [4, 5, 4.5], [-4, -5, -4.5], [-1, 2, .5], ]).transpose() statistics_median = [0, 5, 0, -2.5, 2.5, 4.5, -4.5, .5] _check_statistics(X, X_imputed_median, "median", statistics_median, 'NaN') def test_imputation_most_frequent(): # Test imputation using the most-frequent strategy. X = np.array([ [-1, -1, 0, 5], [-1, 2, -1, 3], [-1, 1, 3, -1], [-1, 2, 3, 7], ]) X_true = np.array([ [2, 0, 5], [2, 3, 3], [1, 3, 3], [2, 3, 7], ]) # scipy.stats.mode, used in Imputer, doesn't return the first most # frequent as promised in the doc but the lowest most frequent. When this # test will fail after an update of scipy, Imputer will need to be updated # to be consistent with the new (correct) behaviour _check_statistics(X, X_true, "most_frequent", [np.nan, 2, 3, 3], -1) def test_imputation_pipeline_grid_search(): # Test imputation within a pipeline + gridsearch. pipeline = Pipeline([('imputer', Imputer(missing_values=0)), ('tree', tree.DecisionTreeRegressor(random_state=0))]) parameters = { 'imputer__strategy': ["mean", "median", "most_frequent"], 'imputer__axis': [0, 1] } l = 100 X = sparse_random_matrix(l, l, density=0.10) Y = sparse_random_matrix(l, 1, density=0.10).toarray() gs = GridSearchCV(pipeline, parameters) gs.fit(X, Y) def test_imputation_pickle(): # Test for pickling imputers. import pickle l = 100 X = sparse_random_matrix(l, l, density=0.10) for strategy in ["mean", "median", "most_frequent"]: imputer = Imputer(missing_values=0, strategy=strategy) imputer.fit(X) imputer_pickled = pickle.loads(pickle.dumps(imputer)) assert_array_equal(imputer.transform(X.copy()), imputer_pickled.transform(X.copy()), "Fail to transform the data after pickling " "(strategy = %s)" % (strategy)) def test_imputation_copy(): # Test imputation with copy X_orig = sparse_random_matrix(5, 5, density=0.75, random_state=0) # copy=True, dense => copy X = X_orig.copy().toarray() imputer = Imputer(missing_values=0, strategy="mean", copy=True) Xt = imputer.fit(X).transform(X) Xt[0, 0] = -1 assert_false(np.all(X == Xt)) # copy=True, sparse csr => copy X = X_orig.copy() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=True) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_false(np.all(X.data == Xt.data)) # copy=False, dense => no copy X = X_orig.copy().toarray() imputer = Imputer(missing_values=0, strategy="mean", copy=False) Xt = imputer.fit(X).transform(X) Xt[0, 0] = -1 assert_array_equal(X, Xt) # copy=False, sparse csr, axis=1 => no copy X = X_orig.copy() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=1) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_array_equal(X.data, Xt.data) # copy=False, sparse csc, axis=0 => no copy X = X_orig.copy().tocsc() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=0) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_array_equal(X.data, Xt.data) # copy=False, sparse csr, axis=0 => copy X = X_orig.copy() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=0) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_false(np.all(X.data == Xt.data)) # copy=False, sparse csc, axis=1 => copy X = X_orig.copy().tocsc() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=1) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_false(np.all(X.data == Xt.data)) # copy=False, sparse csr, axis=1, missing_values=0 => copy X = X_orig.copy() imputer = Imputer(missing_values=0, strategy="mean", copy=False, axis=1) Xt = imputer.fit(X).transform(X) assert_false(sparse.issparse(Xt)) # Note: If X is sparse and if missing_values=0, then a (dense) copy of X is # made, even if copy=False.
bsd-3-clause
Vettejeep/Boulder_County_Home_Prices
value_vs_price.py
1
4101
# Simply uses the assessors estimate to predict price, so we can see how much better the machine learning models are. # requires data from Assemble_Data.py # Copyright (C) 2017 Kevin Maher # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # Data for this project may be the property of the Boulder County Assessor's office, # they gave me free access as a student but were not clear about any restrictions regarding # sharing the URL from which the data was downloaded. # The data has been pre-processed from xlsx to csv files because OpenOffice had # problems with the xlsx files. # Data was pre-processed by a data setup script, Assemble_Data.py which produced the # file '$working_data_5c.csv' import pandas as pd import numpy as np from math import sqrt from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score from sklearn.metrics import mean_squared_error import matplotlib.pyplot as plt from scipy import stats from sklearn.ensemble import RandomForestRegressor, ExtraTreesRegressor from sklearn.ensemble import GradientBoostingRegressor, AdaBoostRegressor from sklearn.linear_model import LinearRegression # https://stats.stackexchange.com/questions/58391/mean-absolute-percentage-error-mape-in-scikit-learn def mean_absolute_percentage_error(y_true, y_pred): return np.mean(np.abs((y_true - y_pred) / y_true)) * 100 working_df = pd.read_csv('Data\\$working_data_5c.csv') # eliminate some outliers, homes above an estimated value of $2 million are especially difficult to model # with the available data working_df = working_df[working_df['Age_Yrs'] > 0] working_df = working_df[working_df['totalActualVal'] <= 2000000] y = working_df['price'] columns = working_df.columns[2:] X = working_df.drop(columns, axis=1) # , 'totalActualVal' X = X.drop(labels=['price'], axis=1) # 70/30 split of data into training and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=245) # determine metrics gradient, intercept, r_value, p_value, std_err = stats.linregress(X_test['totalActualVal'], y_test) print 'Gradient: %.4f' % gradient print 'R Value: %.4f' % r_value print 'R-Squared: %.4f' % r_value ** 2 # adjusted R-squared - https://www.easycalculation.com/statistics/learn-adjustedr2.php r_sq_adj = 1 - ((1 - r_value ** 2) * (len(y_test) - 1) / (len(y_test) - X_train.shape[1] - 1)) print 'R-Squared Adjusted: %.4f' % r_sq_adj mape = mean_absolute_percentage_error(y_test, X_test['totalActualVal']) print 'MAPE: %.4f' % mape # plot with regression lines, one for actual data, one to represent ideal answer z = np.polyfit(X_test['totalActualVal'], y_test, 1) print 'z' print z y_poly = [z[0] * x + z[1] for x in range(int(intercept), 3100000 + int(intercept), 100000)] x_poly = [x for x in range(0, 3100000, 100000)] y_perfect = [x for x in range(0, 3100000, 100000)] plt.figure(0) plt.plot(X_test, y_test, ".") plt.plot(x_poly, y_poly, "-") plt.plot(x_poly, y_perfect, "-") plt.xlim(0, 4000000) plt.ylim(0, 4000000) plt.xlabel("Est Price") plt.ylabel("Actual Price") plt.title("Estimated vs. Actual Sales Price") plt.show() plt.close() # delta_price = pd.Series((X_test['totalActualVal'] / y_test * 100.0) - 100.0) # delta_price.to_csv('Data\\delta_price_basic.csv', index=False) print 'min price, actual: %.2f' % np.min(y_test) print 'min price, assessor estimate: %.2f' % np.min(X_test['totalActualVal'])
gpl-3.0
keras-team/keras-io
examples/nlp/semantic_similarity_with_bert.py
1
11604
""" Title: Semantic Similarity with BERT Author: [Mohamad Merchant](https://twitter.com/mohmadmerchant1) Date created: 2020/08/15 Last modified: 2020/08/29 Description: Natural Language Inference by fine-tuning BERT model on SNLI Corpus. """ """ ## Introduction Semantic Similarity is the task of determining how similar two sentences are, in terms of what they mean. This example demonstrates the use of SNLI (Stanford Natural Language Inference) Corpus to predict sentence semantic similarity with Transformers. We will fine-tune a BERT model that takes two sentences as inputs and that outputs a similarity score for these two sentences. ### References * [BERT](https://arxiv.org/pdf/1810.04805.pdf) * [SNLI](https://nlp.stanford.edu/projects/snli/) """ """ ## Setup Note: install HuggingFace `transformers` via `pip install transformers` (version >= 2.11.0). """ import numpy as np import pandas as pd import tensorflow as tf import transformers """ ## Configuration """ max_length = 128 # Maximum length of input sentence to the model. batch_size = 32 epochs = 2 # Labels in our dataset. labels = ["contradiction", "entailment", "neutral"] """ ## Load the Data """ """shell curl -LO https://raw.githubusercontent.com/MohamadMerchant/SNLI/master/data.tar.gz tar -xvzf data.tar.gz """ # There are more than 550k samples in total; we will use 100k for this example. train_df = pd.read_csv("SNLI_Corpus/snli_1.0_train.csv", nrows=100000) valid_df = pd.read_csv("SNLI_Corpus/snli_1.0_dev.csv") test_df = pd.read_csv("SNLI_Corpus/snli_1.0_test.csv") # Shape of the data print(f"Total train samples : {train_df.shape[0]}") print(f"Total validation samples: {valid_df.shape[0]}") print(f"Total test samples: {valid_df.shape[0]}") """ Dataset Overview: - sentence1: The premise caption that was supplied to the author of the pair. - sentence2: The hypothesis caption that was written by the author of the pair. - similarity: This is the label chosen by the majority of annotators. Where no majority exists, the label "-" is used (we will skip such samples here). Here are the "similarity" label values in our dataset: - Contradiction: The sentences share no similarity. - Entailment: The sentences have similar meaning. - Neutral: The sentences are neutral. """ """ Let's look at one sample from the dataset: """ print(f"Sentence1: {train_df.loc[1, 'sentence1']}") print(f"Sentence2: {train_df.loc[1, 'sentence2']}") print(f"Similarity: {train_df.loc[1, 'similarity']}") """ ## Preprocessing """ # We have some NaN entries in our train data, we will simply drop them. print("Number of missing values") print(train_df.isnull().sum()) train_df.dropna(axis=0, inplace=True) """ Distribution of our training targets. """ print("Train Target Distribution") print(train_df.similarity.value_counts()) """ Distribution of our validation targets. """ print("Validation Target Distribution") print(valid_df.similarity.value_counts()) """ The value "-" appears as part of our training and validation targets. We will skip these samples. """ train_df = ( train_df[train_df.similarity != "-"] .sample(frac=1.0, random_state=42) .reset_index(drop=True) ) valid_df = ( valid_df[valid_df.similarity != "-"] .sample(frac=1.0, random_state=42) .reset_index(drop=True) ) """ One-hot encode training, validation, and test labels. """ train_df["label"] = train_df["similarity"].apply( lambda x: 0 if x == "contradiction" else 1 if x == "entailment" else 2 ) y_train = tf.keras.utils.to_categorical(train_df.label, num_classes=3) valid_df["label"] = valid_df["similarity"].apply( lambda x: 0 if x == "contradiction" else 1 if x == "entailment" else 2 ) y_val = tf.keras.utils.to_categorical(valid_df.label, num_classes=3) test_df["label"] = test_df["similarity"].apply( lambda x: 0 if x == "contradiction" else 1 if x == "entailment" else 2 ) y_test = tf.keras.utils.to_categorical(test_df.label, num_classes=3) """ ## Create a custom data generator """ class BertSemanticDataGenerator(tf.keras.utils.Sequence): """Generates batches of data. Args: sentence_pairs: Array of premise and hypothesis input sentences. labels: Array of labels. batch_size: Integer batch size. shuffle: boolean, whether to shuffle the data. include_targets: boolean, whether to incude the labels. Returns: Tuples `([input_ids, attention_mask, `token_type_ids], labels)` (or just `[input_ids, attention_mask, `token_type_ids]` if `include_targets=False`) """ def __init__( self, sentence_pairs, labels, batch_size=batch_size, shuffle=True, include_targets=True, ): self.sentence_pairs = sentence_pairs self.labels = labels self.shuffle = shuffle self.batch_size = batch_size self.include_targets = include_targets # Load our BERT Tokenizer to encode the text. # We will use base-base-uncased pretrained model. self.tokenizer = transformers.BertTokenizer.from_pretrained( "bert-base-uncased", do_lower_case=True ) self.indexes = np.arange(len(self.sentence_pairs)) self.on_epoch_end() def __len__(self): # Denotes the number of batches per epoch. return len(self.sentence_pairs) // self.batch_size def __getitem__(self, idx): # Retrieves the batch of index. indexes = self.indexes[idx * self.batch_size : (idx + 1) * self.batch_size] sentence_pairs = self.sentence_pairs[indexes] # With BERT tokenizer's batch_encode_plus batch of both the sentences are # encoded together and separated by [SEP] token. encoded = self.tokenizer.batch_encode_plus( sentence_pairs.tolist(), add_special_tokens=True, max_length=max_length, return_attention_mask=True, return_token_type_ids=True, pad_to_max_length=True, return_tensors="tf", ) # Convert batch of encoded features to numpy array. input_ids = np.array(encoded["input_ids"], dtype="int32") attention_masks = np.array(encoded["attention_mask"], dtype="int32") token_type_ids = np.array(encoded["token_type_ids"], dtype="int32") # Set to true if data generator is used for training/validation. if self.include_targets: labels = np.array(self.labels[indexes], dtype="int32") return [input_ids, attention_masks, token_type_ids], labels else: return [input_ids, attention_masks, token_type_ids] def on_epoch_end(self): # Shuffle indexes after each epoch if shuffle is set to True. if self.shuffle: np.random.RandomState(42).shuffle(self.indexes) """ ## Build the model """ # Create the model under a distribution strategy scope. strategy = tf.distribute.MirroredStrategy() with strategy.scope(): # Encoded token ids from BERT tokenizer. input_ids = tf.keras.layers.Input( shape=(max_length,), dtype=tf.int32, name="input_ids" ) # Attention masks indicates to the model which tokens should be attended to. attention_masks = tf.keras.layers.Input( shape=(max_length,), dtype=tf.int32, name="attention_masks" ) # Token type ids are binary masks identifying different sequences in the model. token_type_ids = tf.keras.layers.Input( shape=(max_length,), dtype=tf.int32, name="token_type_ids" ) # Loading pretrained BERT model. bert_model = transformers.TFBertModel.from_pretrained("bert-base-uncased") # Freeze the BERT model to reuse the pretrained features without modifying them. bert_model.trainable = False sequence_output, pooled_output = bert_model( input_ids, attention_mask=attention_masks, token_type_ids=token_type_ids ) # Add trainable layers on top of frozen layers to adapt the pretrained features on the new data. bi_lstm = tf.keras.layers.Bidirectional( tf.keras.layers.LSTM(64, return_sequences=True) )(sequence_output) # Applying hybrid pooling approach to bi_lstm sequence output. avg_pool = tf.keras.layers.GlobalAveragePooling1D()(bi_lstm) max_pool = tf.keras.layers.GlobalMaxPooling1D()(bi_lstm) concat = tf.keras.layers.concatenate([avg_pool, max_pool]) dropout = tf.keras.layers.Dropout(0.3)(concat) output = tf.keras.layers.Dense(3, activation="softmax")(dropout) model = tf.keras.models.Model( inputs=[input_ids, attention_masks, token_type_ids], outputs=output ) model.compile( optimizer=tf.keras.optimizers.Adam(), loss="categorical_crossentropy", metrics=["acc"], ) print(f"Strategy: {strategy}") model.summary() """ Create train and validation data generators """ train_data = BertSemanticDataGenerator( train_df[["sentence1", "sentence2"]].values.astype("str"), y_train, batch_size=batch_size, shuffle=True, ) valid_data = BertSemanticDataGenerator( valid_df[["sentence1", "sentence2"]].values.astype("str"), y_val, batch_size=batch_size, shuffle=False, ) """ ## Train the Model Training is done only for the top layers to perform "feature extraction", which will allow the model to use the representations of the pretrained model. """ history = model.fit( train_data, validation_data=valid_data, epochs=epochs, use_multiprocessing=True, workers=-1, ) """ ## Fine-tuning This step must only be performed after the feature extraction model has been trained to convergence on the new data. This is an optional last step where `bert_model` is unfreezed and retrained with a very low learning rate. This can deliver meaningful improvement by incrementally adapting the pretrained features to the new data. """ # Unfreeze the bert_model. bert_model.trainable = True # Recompile the model to make the change effective. model.compile( optimizer=tf.keras.optimizers.Adam(1e-5), loss="categorical_crossentropy", metrics=["accuracy"], ) model.summary() """ ## Train the entire model end-to-end """ history = model.fit( train_data, validation_data=valid_data, epochs=epochs, use_multiprocessing=True, workers=-1, ) """ ## Evaluate model on the test set """ test_data = BertSemanticDataGenerator( test_df[["sentence1", "sentence2"]].values.astype("str"), y_test, batch_size=batch_size, shuffle=False, ) model.evaluate(test_data, verbose=1) """ ## Inference on custom sentences """ def check_similarity(sentence1, sentence2): sentence_pairs = np.array([[str(sentence1), str(sentence2)]]) test_data = BertSemanticDataGenerator( sentence_pairs, labels=None, batch_size=1, shuffle=False, include_targets=False, ) proba = model.predict(test_data)[0] idx = np.argmax(proba) proba = f"{proba[idx]: .2f}%" pred = labels[idx] return pred, proba """ Check results on some example sentence pairs. """ sentence1 = "Two women are observing something together." sentence2 = "Two women are standing with their eyes closed." check_similarity(sentence1, sentence2) """ Check results on some example sentence pairs. """ sentence1 = "A smiling costumed woman is holding an umbrella" sentence2 = "A happy woman in a fairy costume holds an umbrella" check_similarity(sentence1, sentence2) """ Check results on some example sentence pairs """ sentence1 = "A soccer game with multiple males playing" sentence2 = "Some men are playing a sport" check_similarity(sentence1, sentence2)
apache-2.0
parthea/pydatalab
legacy_tests/kernel/utils_tests.py
2
10847
# Copyright 2015 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under the License # is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express # or implied. See the License for the specific language governing permissions and limitations under # the License. from __future__ import absolute_import from __future__ import unicode_literals from builtins import range import datetime as dt import collections import mock from oauth2client.client import AccessTokenCredentials import pandas import unittest # import Python so we can mock the parts we need to here. import IPython import IPython.core.magic IPython.core.magic.register_line_cell_magic = mock.Mock() IPython.core.magic.register_line_magic = mock.Mock() IPython.core.magic.register_cell_magic = mock.Mock() IPython.get_ipython = mock.Mock() import datalab.bigquery # noqa: E402 import datalab.context # noqa: E402 import datalab.utils.commands # noqa: E402 class TestCases(unittest.TestCase): @staticmethod def _get_expected_cols(): cols = [ {'type': 'number', 'id': 'Column1', 'label': 'Column1'}, {'type': 'number', 'id': 'Column2', 'label': 'Column2'}, {'type': 'string', 'id': 'Column3', 'label': 'Column3'}, {'type': 'boolean', 'id': 'Column4', 'label': 'Column4'}, {'type': 'number', 'id': 'Column5', 'label': 'Column5'}, {'type': 'datetime', 'id': 'Column6', 'label': 'Column6'} ] return cols @staticmethod def _timestamp(d): return (d - dt.datetime(1970, 1, 1)).total_seconds() @staticmethod def _get_raw_rows(): rows = [ {'f': [ {'v': 1}, {'v': 2}, {'v': '3'}, {'v': 'true'}, {'v': 0.0}, {'v': TestCases._timestamp(dt.datetime(2000, 1, 1))} ]}, {'f': [ {'v': 11}, {'v': 12}, {'v': '13'}, {'v': 'false'}, {'v': 0.2}, {'v': TestCases._timestamp(dt.datetime(2000, 1, 2))} ]}, {'f': [ {'v': 21}, {'v': 22}, {'v': '23'}, {'v': 'true'}, {'v': 0.3}, {'v': TestCases._timestamp(dt.datetime(2000, 1, 3))} ]}, {'f': [ {'v': 31}, {'v': 32}, {'v': '33'}, {'v': 'false'}, {'v': 0.4}, {'v': TestCases._timestamp(dt.datetime(2000, 1, 4))} ]}, {'f': [ {'v': 41}, {'v': 42}, {'v': '43'}, {'v': 'true'}, {'v': 0.5}, {'v': TestCases._timestamp(dt.datetime(2000, 1, 5))} ]}, {'f': [ {'v': 51}, {'v': 52}, {'v': '53'}, {'v': 'true'}, {'v': 0.6}, {'v': TestCases._timestamp(dt.datetime(2000, 1, 6))} ]} ] return rows @staticmethod def _get_expected_rows(): rows = [ {'c': [ {'v': 1}, {'v': 2}, {'v': '3'}, {'v': True}, {'v': 0.0}, {'v': dt.datetime(2000, 1, 1)} ]}, {'c': [ {'v': 11}, {'v': 12}, {'v': '13'}, {'v': False}, {'v': 0.2}, {'v': dt.datetime(2000, 1, 2)} ]}, {'c': [ {'v': 21}, {'v': 22}, {'v': '23'}, {'v': True}, {'v': 0.3}, {'v': dt.datetime(2000, 1, 3)} ]}, {'c': [ {'v': 31}, {'v': 32}, {'v': '33'}, {'v': False}, {'v': 0.4}, {'v': dt.datetime(2000, 1, 4)} ]}, {'c': [ {'v': 41}, {'v': 42}, {'v': '43'}, {'v': True}, {'v': 0.5}, {'v': dt.datetime(2000, 1, 5)} ]}, {'c': [ {'v': 51}, {'v': 52}, {'v': '53'}, {'v': True}, {'v': 0.6}, {'v': dt.datetime(2000, 1, 6)} ]} ] return rows @staticmethod def _get_test_data_as_list_of_dicts(): test_data = [ {'Column1': 1, 'Column2': 2, 'Column3': '3', 'Column4': True, 'Column5': 0.0, 'Column6': dt.datetime(2000, 1, 1)}, {'Column1': 11, 'Column2': 12, 'Column3': '13', 'Column4': False, 'Column5': 0.2, 'Column6': dt.datetime(2000, 1, 2)}, {'Column1': 21, 'Column2': 22, 'Column3': '23', 'Column4': True, 'Column5': 0.3, 'Column6': dt.datetime(2000, 1, 3)}, {'Column1': 31, 'Column2': 32, 'Column3': '33', 'Column4': False, 'Column5': 0.4, 'Column6': dt.datetime(2000, 1, 4)}, {'Column1': 41, 'Column2': 42, 'Column3': '43', 'Column4': True, 'Column5': 0.5, 'Column6': dt.datetime(2000, 1, 5)}, {'Column1': 51, 'Column2': 52, 'Column3': '53', 'Column4': True, 'Column5': 0.6, 'Column6': dt.datetime(2000, 1, 6)} ] # Use OrderedDicts to make testing the result easier. for i in range(0, len(test_data)): test_data[i] = collections.OrderedDict(sorted(list(test_data[i].items()), key=lambda t: t[0])) return test_data def test_get_data_from_list_of_dicts(self): self._test_get_data(TestCases._get_test_data_as_list_of_dicts(), TestCases._get_expected_cols(), TestCases._get_expected_rows(), 6, datalab.utils.commands._utils._get_data_from_list_of_dicts) self._test_get_data(TestCases._get_test_data_as_list_of_dicts(), TestCases._get_expected_cols(), TestCases._get_expected_rows(), 6, datalab.utils.commands._utils.get_data) def test_get_data_from_list_of_lists(self): test_data = [ [1, 2, '3', True, 0.0, dt.datetime(2000, 1, 1)], [11, 12, '13', False, 0.2, dt.datetime(2000, 1, 2)], [21, 22, '23', True, 0.3, dt.datetime(2000, 1, 3)], [31, 32, '33', False, 0.4, dt.datetime(2000, 1, 4)], [41, 42, '43', True, 0.5, dt.datetime(2000, 1, 5)], [51, 52, '53', True, 0.6, dt.datetime(2000, 1, 6)], ] self._test_get_data(test_data, TestCases._get_expected_cols(), TestCases._get_expected_rows(), 6, datalab.utils.commands._utils._get_data_from_list_of_lists) self._test_get_data(test_data, TestCases._get_expected_cols(), TestCases._get_expected_rows(), 6, datalab.utils.commands._utils.get_data) def test_get_data_from_dataframe(self): df = pandas.DataFrame(self._get_test_data_as_list_of_dicts()) self._test_get_data(df, TestCases._get_expected_cols(), TestCases._get_expected_rows(), 6, datalab.utils.commands._utils._get_data_from_dataframe) self._test_get_data(df, TestCases._get_expected_cols(), TestCases._get_expected_rows(), 6, datalab.utils.commands._utils.get_data) @mock.patch('datalab.bigquery._api.Api.tabledata_list') @mock.patch('datalab.bigquery._table.Table.exists') @mock.patch('datalab.bigquery._api.Api.tables_get') @mock.patch('datalab.context._context.Context.default') def test_get_data_from_table(self, mock_context_default, mock_api_tables_get, mock_table_exists, mock_api_tabledata_list): data = TestCases._get_expected_rows() mock_context_default.return_value = TestCases._create_context() mock_api_tables_get.return_value = { 'numRows': len(data), 'schema': { 'fields': [ {'name': 'Column1', 'type': 'INTEGER'}, {'name': 'Column2', 'type': 'INTEGER'}, {'name': 'Column3', 'type': 'STRING'}, {'name': 'Column4', 'type': 'BOOLEAN'}, {'name': 'Column5', 'type': 'FLOAT'}, {'name': 'Column6', 'type': 'TIMESTAMP'} ] } } mock_table_exists.return_value = True raw_data = self._get_raw_rows() def tabledata_list(*args, **kwargs): start_index = kwargs['start_index'] max_results = kwargs['max_results'] if max_results < 0: max_results = len(data) return {'rows': raw_data[start_index:start_index + max_results]} mock_api_tabledata_list.side_effect = tabledata_list t = datalab.bigquery.Table('foo.bar') self._test_get_data(t, TestCases._get_expected_cols(), TestCases._get_expected_rows(), 6, datalab.utils.commands._utils._get_data_from_table) self._test_get_data(t, TestCases._get_expected_cols(), TestCases._get_expected_rows(), 6, datalab.utils.commands._utils.get_data) def test_get_data_from_empty_list(self): self._test_get_data([], [], [], 0, datalab.utils.commands._utils.get_data) def test_get_data_from_malformed_list(self): with self.assertRaises(Exception) as error: self._test_get_data(['foo', 'bar'], [], [], 0, datalab.utils.commands._utils.get_data) self.assertEquals('To get tabular data from a list it must contain dictionaries or lists.', str(error.exception)) def _test_get_data(self, test_data, cols, rows, expected_count, fn): self.maxDiff = None data, count = fn(test_data) self.assertEquals(expected_count, count) self.assertEquals({'cols': cols, 'rows': rows}, data) # Test first_row. Note that count must be set in this case so we use a value greater than the # data set size. for first in range(0, 6): data, count = fn(test_data, first_row=first, count=10) self.assertEquals(expected_count, count) self.assertEquals({'cols': cols, 'rows': rows[first:]}, data) # Test first_row + count for first in range(0, 6): data, count = fn(test_data, first_row=first, count=2) self.assertEquals(expected_count, count) self.assertEquals({'cols': cols, 'rows': rows[first:first + 2]}, data) # Test subsets of columns # No columns data, count = fn(test_data, fields=[]) self.assertEquals({'cols': [], 'rows': [{'c': []}] * expected_count}, data) # Single column data, count = fn(test_data, fields=['Column3']) if expected_count == 0: return self.assertEquals({'cols': [cols[2]], 'rows': [{'c': [row['c'][2]]} for row in rows]}, data) # Multi-columns data, count = fn(test_data, fields=['Column1', 'Column3', 'Column6']) self.assertEquals({'cols': [cols[0], cols[2], cols[5]], 'rows': [{'c': [row['c'][0], row['c'][2], row['c'][5]]} for row in rows]}, data) # Switch order data, count = fn(test_data, fields=['Column3', 'Column1']) self.assertEquals({'cols': [cols[2], cols[0]], 'rows': [{'c': [row['c'][2], row['c'][0]]} for row in rows]}, data) # Select all data, count = fn(test_data, fields=['Column1', 'Column2', 'Column3', 'Column4', 'Column5', 'Column6']) self.assertEquals({'cols': cols, 'rows': rows}, data) @staticmethod def _create_api(): context = TestCases._create_context() return datalab.bigquery._api.Api(context.credentials, context.project_id) @staticmethod def _create_context(): project_id = 'test' creds = AccessTokenCredentials('test_token', 'test_ua') return datalab.context.Context(project_id, creds)
apache-2.0
wkfwkf/statsmodels
statsmodels/examples/ex_kernel_semilinear_dgp.py
33
4969
# -*- coding: utf-8 -*- """ Created on Sun Jan 06 09:50:54 2013 Author: Josef Perktold """ from __future__ import print_function if __name__ == '__main__': import numpy as np import matplotlib.pyplot as plt #from statsmodels.nonparametric.api import KernelReg import statsmodels.sandbox.nonparametric.kernel_extras as smke import statsmodels.sandbox.nonparametric.dgp_examples as dgp class UnivariateFunc1a(dgp.UnivariateFunc1): def het_scale(self, x): return 0.5 seed = np.random.randint(999999) #seed = 430973 #seed = 47829 seed = 648456 #good seed for het_scale = 0.5 print(seed) np.random.seed(seed) nobs, k_vars = 300, 3 x = np.random.uniform(-2, 2, size=(nobs, k_vars)) xb = x.sum(1) / 3 #beta = [1,1,1] k_vars_lin = 2 x2 = np.random.uniform(-2, 2, size=(nobs, k_vars_lin)) funcs = [#dgp.UnivariateFanGijbels1(), #dgp.UnivariateFanGijbels2(), #dgp.UnivariateFanGijbels1EU(), #dgp.UnivariateFanGijbels2(distr_x=stats.uniform(-2, 4)) UnivariateFunc1a(x=xb) ] res = [] fig = plt.figure() for i,func in enumerate(funcs): #f = func() f = func y = f.y + x2.sum(1) model = smke.SemiLinear(y, x2, x, 'ccc', k_vars_lin) mean, mfx = model.fit() ax = fig.add_subplot(1, 1, i+1) f.plot(ax=ax) xb_est = np.dot(model.exog, model.b) sortidx = np.argsort(xb_est) #f.x) ax.plot(f.x[sortidx], mean[sortidx], 'o', color='r', lw=2, label='est. mean') # ax.plot(f.x, mean0, color='g', lw=2, label='est. mean') ax.legend(loc='upper left') res.append((model, mean, mfx)) print('beta', model.b) print('scale - est', (y - (xb_est+mean)).std()) print('scale - dgp realised, true', (y - (f.y_true + x2.sum(1))).std(), \ 2 * f.het_scale(1)) fittedvalues = xb_est + mean resid = np.squeeze(model.endog) - fittedvalues print('corrcoef(fittedvalues, resid)', np.corrcoef(fittedvalues, resid)[0,1]) print('variance of components, var and as fraction of var(y)') print('fitted values', fittedvalues.var(), fittedvalues.var() / y.var()) print('linear ', xb_est.var(), xb_est.var() / y.var()) print('nonparametric', mean.var(), mean.var() / y.var()) print('residual ', resid.var(), resid.var() / y.var()) print('\ncovariance decomposition fraction of var(y)') print(np.cov(fittedvalues, resid) / model.endog.var(ddof=1)) print('sum', (np.cov(fittedvalues, resid) / model.endog.var(ddof=1)).sum()) print('\ncovariance decomposition, xb, m, resid as fraction of var(y)') print(np.cov(np.column_stack((xb_est, mean, resid)), rowvar=False) / model.endog.var(ddof=1)) fig.suptitle('Kernel Regression') fig.show() alpha = 0.7 fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.plot(f.x[sortidx], f.y[sortidx], 'o', color='b', lw=2, alpha=alpha, label='observed') ax.plot(f.x[sortidx], f.y_true[sortidx], 'o', color='g', lw=2, alpha=alpha, label='dgp. mean') ax.plot(f.x[sortidx], mean[sortidx], 'o', color='r', lw=2, alpha=alpha, label='est. mean') ax.legend(loc='upper left') sortidx = np.argsort(xb_est + mean) fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.plot(f.x[sortidx], y[sortidx], 'o', color='b', lw=2, alpha=alpha, label='observed') ax.plot(f.x[sortidx], f.y_true[sortidx], 'o', color='g', lw=2, alpha=alpha, label='dgp. mean') ax.plot(f.x[sortidx], (xb_est + mean)[sortidx], 'o', color='r', lw=2, alpha=alpha, label='est. mean') ax.legend(loc='upper left') ax.set_title('Semilinear Model - observed and total fitted') fig = plt.figure() # ax = fig.add_subplot(1, 2, 1) # ax.plot(f.x, f.y, 'o', color='b', lw=2, alpha=alpha, label='observed') # ax.plot(f.x, f.y_true, 'o', color='g', lw=2, alpha=alpha, label='dgp. mean') # ax.plot(f.x, mean, 'o', color='r', lw=2, alpha=alpha, label='est. mean') # ax.legend(loc='upper left') sortidx0 = np.argsort(xb) ax = fig.add_subplot(1, 2, 1) ax.plot(f.y[sortidx0], 'o', color='b', lw=2, alpha=alpha, label='observed') ax.plot(f.y_true[sortidx0], 'o', color='g', lw=2, alpha=alpha, label='dgp. mean') ax.plot(mean[sortidx0], 'o', color='r', lw=2, alpha=alpha, label='est. mean') ax.legend(loc='upper left') ax.set_title('Single Index Model (sorted by true xb)') ax = fig.add_subplot(1, 2, 2) ax.plot(y - xb_est, 'o', color='b', lw=2, alpha=alpha, label='observed') ax.plot(f.y_true, 'o', color='g', lw=2, alpha=alpha, label='dgp. mean') ax.plot(mean, 'o', color='r', lw=2, alpha=alpha, label='est. mean') ax.legend(loc='upper left') ax.set_title('Single Index Model (nonparametric)') plt.figure() plt.plot(y, xb_est+mean, '.') plt.title('observed versus fitted values') plt.show()
bsd-3-clause
mayblue9/scikit-learn
examples/ensemble/plot_forest_importances_faces.py
403
1519
""" ================================================= Pixel importances with a parallel forest of trees ================================================= This example shows the use of forests of trees to evaluate the importance of the pixels in an image classification task (faces). The hotter the pixel, the more important. The code below also illustrates how the construction and the computation of the predictions can be parallelized within multiple jobs. """ print(__doc__) from time import time import matplotlib.pyplot as plt from sklearn.datasets import fetch_olivetti_faces from sklearn.ensemble import ExtraTreesClassifier # Number of cores to use to perform parallel fitting of the forest model n_jobs = 1 # Load the faces dataset data = fetch_olivetti_faces() X = data.images.reshape((len(data.images), -1)) y = data.target mask = y < 5 # Limit to 5 classes X = X[mask] y = y[mask] # Build a forest and compute the pixel importances print("Fitting ExtraTreesClassifier on faces data with %d cores..." % n_jobs) t0 = time() forest = ExtraTreesClassifier(n_estimators=1000, max_features=128, n_jobs=n_jobs, random_state=0) forest.fit(X, y) print("done in %0.3fs" % (time() - t0)) importances = forest.feature_importances_ importances = importances.reshape(data.images[0].shape) # Plot pixel importances plt.matshow(importances, cmap=plt.cm.hot) plt.title("Pixel importances with forests of trees") plt.show()
bsd-3-clause
mmottahedi/nilmtk
nilmtk/metergroup.py
4
70748
from __future__ import print_function, division import networkx as nx import pandas as pd import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import FuncFormatter from datetime import timedelta from warnings import warn from sys import stdout from collections import Counter from copy import copy, deepcopy import gc from collections import namedtuple # NILMTK imports from .elecmeter import ElecMeter, ElecMeterID from .appliance import Appliance from .datastore.datastore import join_key from .utils import (tree_root, nodes_adjacent_to_root, simplest_type_for, flatten_2d_list, convert_to_timestamp, normalise_timestamp, print_on_line, convert_to_list, append_or_extend_list, most_common, capitalise_first_letter) from .plots import plot_series from .measurement import (select_best_ac_type, AC_TYPES, LEVEL_NAMES, PHYSICAL_QUANTITIES_TO_AVERAGE) from nilmtk.exceptions import MeasurementError from .electric import Electric from .timeframe import TimeFrame, split_timeframes from .preprocessing import Apply from .datastore import MAX_MEM_ALLOWANCE_IN_BYTES from nilmtk.timeframegroup import TimeFrameGroup # MeterGroupID.meters is a tuple of ElecMeterIDs. Order doesn't matter. # (we can't use a set because sets aren't hashable so we can't use # a set as a dict key or a DataFrame column name.) MeterGroupID = namedtuple('MeterGroupID', ['meters']) class MeterGroup(Electric): """A group of ElecMeter objects. Can contain nested MeterGroup objects. Implements many of the same methods as ElecMeter. Attributes ---------- meters : list of ElecMeters or nested MeterGroups disabled_meters : list of ElecMeters or nested MeterGroups name : only set by functions like 'groupby' and 'select_top_k' """ def __init__(self, meters=None, disabled_meters=None): self.meters = convert_to_list(meters) self.disabled_meters = convert_to_list(disabled_meters) self.name = "" def import_metadata(self, store, elec_meters, appliances, building_id): """ Parameters ---------- store : nilmtk.DataStore elec_meters : dict of dicts metadata for each ElecMeter appliances : list of dicts metadata for each Appliance building_id : BuildingID """ # Sanity checking assert isinstance(elec_meters, dict) assert isinstance(appliances, list) assert isinstance(building_id, tuple) if not elec_meters: warn("Building {} has an empty 'elec_meters' object." .format(building_id.instance), RuntimeWarning) if not appliances: warn("Building {} has an empty 'appliances' list." .format(building_id.instance), RuntimeWarning) # Load static Meter Devices ElecMeter.load_meter_devices(store) # Load each meter for meter_i, meter_metadata_dict in elec_meters.iteritems(): meter_id = ElecMeterID(instance=meter_i, building=building_id.instance, dataset=building_id.dataset) meter = ElecMeter(store, meter_metadata_dict, meter_id) self.meters.append(meter) # Load each appliance for appliance_md in appliances: appliance_md['dataset'] = building_id.dataset appliance_md['building'] = building_id.instance appliance = Appliance(appliance_md) meter_ids = [ElecMeterID(instance=meter_instance, building=building_id.instance, dataset=building_id.dataset) for meter_instance in appliance.metadata['meters']] if appliance.n_meters == 1: # Attach this appliance to just a single meter meter = self[meter_ids[0]] if isinstance(meter, MeterGroup): # MeterGroup of site_meters metergroup = meter for meter in metergroup.meters: meter.appliances.append(appliance) else: meter.appliances.append(appliance) else: # DualSupply or 3-phase appliance so need a meter group metergroup = MeterGroup() metergroup.meters = [self[meter_id] for meter_id in meter_ids] for meter in metergroup.meters: # We assume that any meters used for measuring # dual-supply or 3-phase appliances are not also used # for measuring single-supply appliances. self.meters.remove(meter) meter.appliances.append(appliance) self.meters.append(metergroup) # disable disabled meters meters_to_disable = [m for m in self.meters if isinstance(m, ElecMeter) and m.metadata.get('disabled')] for meter in meters_to_disable: self.meters.remove(meter) self.disabled_meters.append(meter) def union(self, other): """ Returns ------- new MeterGroup where its set of `meters` is the union of `self.meters` and `other.meters`. """ if not isinstance(other, MeterGroup): raise TypeError() return MeterGroup(set(self.meters).union(other.meters)) def dominant_appliance(self): dominant_appliances = [meter.dominant_appliance() for meter in self.meters] dominant_appliances = list(set(dominant_appliances)) n_dominant_appliances = len(dominant_appliances) if n_dominant_appliances == 0: return elif n_dominant_appliances == 1: return dominant_appliances[0] else: raise RuntimeError( "More than one dominant appliance in MeterGroup!" " (The dominant appliance per meter should be manually" " specified in the metadata. If it isn't and if there are" " multiple appliances for a meter then NILMTK assumes" " all appliances on that meter are dominant. NILMTK" " can't automatically distinguish between multiple" " appliances on the same meter (at least," " not without using NILM!))") def nested_metergroups(self): return [m for m in self.meters if isinstance(m, MeterGroup)] def __getitem__(self, key): """Get a single meter using appliance type and instance unless ElecMeterID is supplied. These formats for `key` are accepted: Retrieve a meter using details of the meter: * `1` - retrieves meter instance 1, raises Exception if there are more than one meter with this instance, raises KeyError if none are found. If meter instance 1 is in a nested MeterGroup then retrieve the ElecMeter, not the MeterGroup. * `ElecMeterID(1, 1, 'REDD')` - retrieves meter with specified meter ID * `MeterGroupID(meters=(ElecMeterID(1, 1, 'REDD')))` - retrieves existing nested MeterGroup containing exactly meter instances 1 and 2. * `[ElecMeterID(1, 1, 'REDD'), ElecMeterID(2, 1, 'REDD')]` - retrieves existing nested MeterGroup containing exactly meter instances 1 and 2. * `ElecMeterID(0, 1, 'REDD')` - instance `0` means `mains`. This returns a new MeterGroup of all site_meters in building 1 in REDD. * `ElecMeterID((1,2), 1, 'REDD')` - retrieve existing MeterGroup which contains exactly meters 1 & 2. * `(1, 2, 'REDD')` - converts to ElecMeterID and treats as an ElecMeterID. Items must be in the order expected for an ElecMeterID. Retrieve a meter using details of appliances attached to the meter: * `'toaster'` - retrieves meter or group upstream of toaster instance 1 * `'toaster', 2` - retrieves meter or group upstream of toaster instance 2 * `{'dataset': 'redd', 'building': 3, 'type': 'toaster', 'instance': 2}` - specify an appliance Returns ------- ElecMeter or MeterGroup """ if isinstance(key, str): # default to get first meter return self[(key, 1)] elif isinstance(key, ElecMeterID): if isinstance(key.instance, tuple): # find meter group from a key of the form # ElecMeterID(instance=(1,2), building=1, dataset='REDD') for group in self.nested_metergroups(): if (set(group.instance()) == set(key.instance) and group.building() == key.building and group.dataset() == key.dataset): return group # Else try to find an ElecMeter with instance=(1,2) for meter in self.meters: if meter.identifier == key: return meter elif key.instance == 0: metergroup_of_building = self.select( building=key.building, dataset=key.dataset) return metergroup_of_building.mains() else: for meter in self.meters: if meter.identifier == key: return meter raise KeyError(key) elif isinstance(key, MeterGroupID): key_meters = set(key.meters) for group in self.nested_metergroups(): if (set(group.identifier.meters) == key_meters): return group raise KeyError(key) # find MeterGroup from list of ElecMeterIDs elif isinstance(key, list): if not all([isinstance(item, tuple) for item in key]): raise TypeError("requires a list of ElecMeterID objects.") for meter in self.meters: # TODO: write unit tests for this # list of ElecMeterIDs. Return existing MeterGroup if isinstance(meter, MeterGroup): metergroup = meter meter_ids = set(metergroup.identifier.meters) if meter_ids == set(key): return metergroup raise KeyError(key) elif isinstance(key, tuple): if len(key) == 2: if isinstance(key[0], str): return self[{'type': key[0], 'instance': key[1]}] else: # Assume we're dealing with a request for 2 ElecMeters return MeterGroup([self[i] for i in key]) elif len(key) == 3: return self[ElecMeterID(*key)] else: raise TypeError() elif isinstance(key, dict): meters = [] for meter in self.meters: if meter.matches_appliances(key): meters.append(meter) if len(meters) == 1: return meters[0] elif len(meters) > 1: raise Exception('search terms match {} appliances' .format(len(meters))) else: raise KeyError(key) elif isinstance(key, int) and not isinstance(key, bool): meters_found = [] for meter in self.meters: if isinstance(meter.instance(), int): if meter.instance() == key: meters_found.append(meter) elif isinstance(meter.instance(), (tuple, list)): if key in meter.instance(): if isinstance(meter, MeterGroup): print("Meter", key, "is in a nested meter group." " Retrieving just the ElecMeter.") meters_found.append(meter[key]) else: meters_found.append(meter) n_meters_found = len(meters_found) if n_meters_found > 1: raise Exception('{} meters found with instance == {}: {}' .format(n_meters_found, key, meters_found)) elif n_meters_found == 0: raise KeyError( 'No meters found with instance == {}'.format(key)) else: return meters_found[0] else: raise TypeError() def matches(self, key): for meter in self.meters: if meter.matches(key): return True return False def select(self, **kwargs): """Select a group of meters based on meter metadata. e.g. * select(building=1, sample_period=6) * select(room='bathroom') If multiple criteria are supplied then these are ANDed together. Returns ------- new MeterGroup of selected meters. Ideas for the future (not implemented yet!) ------------------------------------------- * select(category=['ict', 'lighting']) * select([(fridge, 1), (tv, 1)]) # get specifically fridge 1 and tv 1 * select(name=['fridge', 'tv']) # get all fridges and tvs * select(category='lighting', except={'room'=['kitchen lights']}) * select('all', except=[('tv', 1)]) Also: see if we can do select(category='lighting' | name='tree lights') or select(energy > 100)?? Perhaps using: * Python's eval function something like this: >>> s = pd.Series(np.random.randn(5)) >>> eval('(x > 0) | (index > 2)', {'x':s, 'index':s.index}) Hmm, yes, maybe we should just implement this! e.g. select("(category == 'lighting') | (category == 'ict')") But what about: * select('total_energy > 100') * select('mean(hours_on_per_day) > 3') * select('max(hours_on_per_day) > 5') * select('max(power) > 2000') * select('energy_per_day > 2') * select('rank_by_energy > 5') # top_k(5) * select('rank_by_proportion > 0.2') Maybe don't bother. That's easy enough to get with itemised_energy(). Although these are quite nice and shouldn't be too hard. Would need to only calculate these stats if necessary though (e.g. by checking if 'total_energy' is in the query string before running `eval`) * or numexpr: https://github.com/pydata/numexpr * see Pandas.eval(): * http://pandas.pydata.org/pandas-docs/stable/indexing.html#the-query-method-experimental * https://github.com/pydata/pandas/blob/master/pandas/computation/eval.py#L119 """ selected_meters = [] func = kwargs.pop('func', 'matches') def get(_kwargs): exception_raised_every_time = True exception = None no_match = True for meter in self.meters: try: match = getattr(meter, func)(_kwargs) except KeyError as e: exception = e else: exception_raised_every_time = False if match: selected_meters.append(meter) no_match = False if no_match: raise KeyError("'No match for {}'".format(_kwargs)) if exception_raised_every_time and exception is not None: raise exception if len(kwargs) == 1 and isinstance(kwargs.values()[0], list): attribute = kwargs.keys()[0] list_of_values = kwargs.values()[0] for value in list_of_values: get({attribute: value}) else: get(kwargs) return MeterGroup(selected_meters) def select_using_appliances(self, **kwargs): """Select a group of meters based on appliance metadata. e.g. * select_using_appliances(category='lighting') * select_using_appliances(type='fridge') * select_using_appliances(type=['fridge', 'kettle', 'toaster']) * select_using_appliances(building=1, category='lighting') * select_using_appliances(room='bathroom') If multiple criteria are supplied then these are ANDed together. Returns ------- new MeterGroup of selected meters. """ return self.select(func='matches_appliances', **kwargs) def from_list(self, meter_ids): """ Parameters ---------- meter_ids : list or tuple Each element is an ElecMeterID or a MeterGroupID. Returns ------- MeterGroup """ meter_ids = list(meter_ids) meter_ids = list(set(meter_ids)) # make unique meters = [] def append_meter_group(meter_id): try: # see if there is an existing MeterGroup metergroup = self[meter_id] except KeyError: # there is no existing MeterGroup so assemble one metergroup = self.from_list(meter_id.meters) meters.append(metergroup) for meter_id in meter_ids: if isinstance(meter_id, ElecMeterID): meters.append(self[meter_id]) elif isinstance(meter_id, MeterGroupID): append_meter_group(meter_id) elif isinstance(meter_id, tuple): meter_id = MeterGroupID(meters=meter_id) append_meter_group(meter_id) else: raise TypeError() return MeterGroup(meters) @classmethod def from_other_metergroup(cls, other, dataset): """Assemble a new meter group using the same meter IDs and nested MeterGroups as `other`. This is useful for preparing a ground truth metergroup from a meter group of NILM predictions. Parameters ---------- other : MeterGroup dataset : string The `name` of the dataset for the ground truth. e.g. 'REDD' Returns ------- MeterGroup """ other_identifiers = other.identifier.meters new_identifiers = [] for other_id in other_identifiers: new_id = other_id._replace(dataset=dataset) if isinstance(new_id.instance, tuple): nested = [] for instance in new_id.instance: new_nested_id = new_id._replace(instance=instance) nested.append(new_nested_id) new_identifiers.append(tuple(nested)) else: new_identifiers.append(new_id) metergroup = MeterGroup() metergroup.from_list(new_identifiers) return metergroup def __eq__(self, other): if isinstance(other, MeterGroup): return set(other.meters) == set(self.meters) else: return False def __ne__(self, other): return not self.__eq__(other) @property def appliances(self): appliances = set() for meter in self.meters: appliances.update(meter.appliances) return list(appliances) def dominant_appliances(self): appliances = set() for meter in self.meters: appliances.add(meter.dominant_appliance()) return list(appliances) def values_for_appliance_metadata_key(self, key, only_consider_dominant_appliance=True): """ Parameters ---------- key : str e.g. 'type' or 'categories' or 'room' Returns ------- list """ values = [] if only_consider_dominant_appliance: appliances = self.dominant_appliances() else: appliances = self.appliances for appliance in appliances: value = appliance.metadata.get(key) append_or_extend_list(values, value) value = appliance.type.get(key) append_or_extend_list(values, value) return list(set(values)) def get_labels(self, meter_ids, pretty=True): """Create human-readable meter labels. Parameters ---------- meter_ids : list of ElecMeterIDs (or 3-tuples in same order as ElecMeterID) Returns ------- list of strings describing the appliances. """ meters = [self[meter_id] for meter_id in meter_ids] labels = [meter.label(pretty=pretty) for meter in meters] return labels def __repr__(self): s = "{:s}(meters=\n".format(self.__class__.__name__) for meter in self.meters: s += " " + str(meter).replace("\n", "\n ") + "\n" s += ")" return s @property def identifier(self): """Returns a MeterGroupID.""" return MeterGroupID(meters=tuple([meter.identifier for meter in self.meters])) def instance(self): """Returns tuple of integers where each int is a meter instance.""" return tuple([meter.instance() for meter in self.meters]) def building(self): """Returns building instance integer(s).""" buildings = set([meter.building() for meter in self.meters]) return simplest_type_for(buildings) def contains_meters_from_multiple_buildings(self): """Returns True if this MeterGroup contains meters from more than one building.""" building = self.building() try: n = len(building) except TypeError: return False else: return n > 1 def dataset(self): """Returns dataset string(s).""" datasets = set([meter.dataset() for meter in self.meters]) return simplest_type_for(datasets) def sample_period(self): """Returns max of all meter sample periods.""" return max([meter.sample_period() for meter in self.meters]) def wiring_graph(self): """Returns a networkx.DiGraph of connections between meters.""" wiring_graph = nx.DiGraph() def _build_wiring_graph(meters): for meter in meters: if isinstance(meter, MeterGroup): metergroup = meter _build_wiring_graph(metergroup.meters) else: upstream_meter = meter.upstream_meter(raise_warning=False) # Need to ensure we use the same object # if upstream meter already exists. if upstream_meter is not None: for node in wiring_graph.nodes(): if upstream_meter == node: upstream_meter = node break wiring_graph.add_edge(upstream_meter, meter) _build_wiring_graph(self.meters) return wiring_graph def draw_wiring_graph(self, show_meter_labels=True): graph = self.wiring_graph() meter_labels = {meter: meter.instance() for meter in graph.nodes()} pos = nx.graphviz_layout(graph, prog='dot') nx.draw(graph, pos, labels=meter_labels, arrows=False) if show_meter_labels: meter_labels = {meter: meter.label() for meter in graph.nodes()} for meter, name in meter_labels.iteritems(): x, y = pos[meter] if meter.is_site_meter(): delta_y = 5 else: delta_y = -5 plt.text(x, y+delta_y, s=name, bbox=dict(facecolor='red', alpha=0.5), horizontalalignment='center') ax = plt.gca() return graph, ax def load(self, **kwargs): """Returns a generator of DataFrames loaded from the DataStore. By default, `load` will load all available columns from the DataStore. Specific columns can be selected in one or two mutually exclusive ways: 1. specify a list of column names using the `cols` parameter. 2. specify a `physical_quantity` and/or an `ac_type` parameter to ask `load` to automatically select columns. Each meter in the MeterGroup will first be resampled before being added. The returned DataFrame will include NaNs at timestamps where no meter had a sample (after resampling the meter). Parameters ---------- sample_period : int or float, optional Number of seconds to use as sample period when reindexing meters. If not specified then will use the max of all meters' sample_periods. resample_kwargs : dict of key word arguments (other than 'rule') to `pass to pd.DataFrame.resample()` chunksize : int, optional the maximum number of rows per chunk. Note that each chunk is guaranteed to be of length <= chunksize. Each chunk is *not* guaranteed to be exactly of length == chunksize. **kwargs : any other key word arguments to pass to `self.store.load()` including: physical_quantity : string or list of strings e.g. 'power' or 'voltage' or 'energy' or ['power', 'energy']. If a single string then load columns only for that physical quantity. If a list of strings then load columns for all those physical quantities. ac_type : string or list of strings, defaults to None Where 'ac_type' is short for 'alternating current type'. e.g. 'reactive' or 'active' or 'apparent'. If set to None then will load all AC types per physical quantity. If set to 'best' then load the single best AC type per physical quantity. If set to a single AC type then load just that single AC type per physical quantity, else raise an Exception. If set to a list of AC type strings then will load all those AC types and will raise an Exception if any cannot be found. cols : list of tuples, using NILMTK's vocabulary for measurements. e.g. [('power', 'active'), ('voltage', ''), ('energy', 'reactive')] `cols` can't be used if `ac_type` and/or `physical_quantity` are set. preprocessing : list of Node subclass instances e.g. [Clip()] Returns --------- Always return a generator of DataFrames (even if it only has a single column). .. note:: Different AC types will be treated separately. """ # Handle kwargs sample_period = kwargs.setdefault('sample_period', self.sample_period()) sections = kwargs.pop('sections', [self.get_timeframe()]) chunksize = kwargs.pop('chunksize', MAX_MEM_ALLOWANCE_IN_BYTES) duration_threshold = sample_period * chunksize columns = pd.MultiIndex.from_tuples( self._convert_physical_quantity_and_ac_type_to_cols(**kwargs)['cols'], names=LEVEL_NAMES) freq = '{:d}S'.format(int(sample_period)) verbose = kwargs.get('verbose') # Check for empty sections sections = [section for section in sections if section] if not sections: print("No sections to load.") yield pd.DataFrame(columns=columns) return # Loop through each section to load for section in split_timeframes(sections, duration_threshold): kwargs['sections'] = [section] start = normalise_timestamp(section.start, freq) tz = None if start.tz is None else start.tz.zone index = pd.date_range( start.tz_localize(None), section.end.tz_localize(None), tz=tz, closed='left', freq=freq) chunk = combine_chunks_from_generators( index, columns, self.meters, kwargs) yield chunk def _convert_physical_quantity_and_ac_type_to_cols(self, **kwargs): all_columns = set() kwargs = deepcopy(kwargs) for meter in self.meters: kwargs_copy = deepcopy(kwargs) new_kwargs = meter._convert_physical_quantity_and_ac_type_to_cols(**kwargs_copy) cols = new_kwargs.get('cols', []) for col in cols: all_columns.add(col) kwargs['cols'] = list(all_columns) return kwargs def _meter_generators(self, **kwargs): """Returns (list of identifiers, list of generators).""" generators = [] identifiers = [] for meter in self.meters: kwargs_copy = deepcopy(kwargs) generator = meter.load(**kwargs_copy) generators.append(generator) identifiers.append(meter.identifier) return identifiers, generators def simultaneous_switches(self, threshold=40): """ Parameters ---------- threshold : number, threshold in Watts Returns ------- sim_switches : pd.Series of type {timestamp: number of simultaneous switches} Notes ----- This function assumes that the submeters in this MeterGroup are all aligned. If they are not then you should align the meters, e.g. by using an `Apply` node with `resample`. """ submeters = self.submeters().meters count = Counter() for meter in submeters: switch_time_meter = meter.switch_times(threshold) for timestamp in switch_time_meter: count[timestamp] += 1 sim_switches = pd.Series(count) # Should be 2 or more appliances changing state at the same time sim_switches = sim_switches[sim_switches >= 2] return sim_switches def mains(self): """ Returns ------- ElecMeter or MeterGroup or None """ if self.contains_meters_from_multiple_buildings(): msg = ("This MeterGroup contains meters from buildings '{}'." " It only makes sense to get `mains` if the MeterGroup" " contains meters from a single building." .format(self.building())) raise RuntimeError(msg) site_meters = [meter for meter in self.meters if meter.is_site_meter()] n_site_meters = len(site_meters) if n_site_meters == 0: return elif n_site_meters == 1: return site_meters[0] else: return MeterGroup(meters=site_meters) def use_alternative_mains(self): """Swap present mains meter(s) for mains meter(s) in `disabled_meters`. This is useful if the dataset has multiple, redundant mains meters (e.g. in UK-DALE buildings 1, 2 and 5). """ present_mains = [m for m in self.meters if m.is_site_meter()] alternative_mains = [m for m in self.disabled_meters if m.is_site_meter()] if not alternative_mains: raise RuntimeError("No site meters found in `self.disabled_meters`") for meter in present_mains: self.meters.remove(meter) self.disabled_meters.append(meter) for meter in alternative_mains: self.meters.append(meter) self.disabled_meters.remove(meter) def upstream_meter(self): """Returns single upstream meter. Raises RuntimeError if more than 1 upstream meter. """ upstream_meters = [] for meter in self.meters: upstream_meters.append(meter.upstream_meter()) unique_upstream_meters = list(set(upstream_meters)) if len(unique_upstream_meters) > 1: raise RuntimeError("{:d} upstream meters found for meter group." " Should be 1.".format(len(unique_upstream_meters))) return unique_upstream_meters[0] def meters_directly_downstream_of_mains(self): """Returns new MeterGroup.""" meters = nodes_adjacent_to_root(self.wiring_graph()) assert isinstance(meters, list) return MeterGroup(meters) def submeters(self): """Returns new MeterGroup of all meters except site_meters""" submeters = [meter for meter in self.meters if not meter.is_site_meter()] return MeterGroup(submeters) def is_site_meter(self): """Returns True if any meters are site meters""" return any([meter.is_site_meter() for meter in self.meters]) def total_energy(self, **load_kwargs): """Sums together total meter_energy for each meter. Note that this function does *not* return the total aggregate energy for a building. Instead this function adds up the total energy for all the meters contained in this MeterGroup. If you want the total aggregate energy then please use `MeterGroup.mains().total_energy()`. Parameters ---------- full_results : bool, default=False **loader_kwargs : key word arguments for DataStore.load() Returns ------- if `full_results` is True then return TotalEnergyResults object else return a pd.Series with a row for each AC type. """ self._check_kwargs_for_full_results_and_sections(load_kwargs) full_results = load_kwargs.pop('full_results', False) meter_energies = self._collect_stats_on_all_meters( load_kwargs, 'total_energy', full_results) if meter_energies: total_energy_results = meter_energies[0] for meter_energy in meter_energies[1:]: if full_results: total_energy_results.unify(meter_energy) else: total_energy_results += meter_energy return total_energy_results def _collect_stats_on_all_meters(self, load_kwargs, func, full_results): collected_stats = [] for meter in self.meters: print_on_line("\rCalculating", func, "for", meter.identifier, "... ") single_stat = getattr(meter, func)(full_results=full_results, **load_kwargs) collected_stats.append(single_stat) if (full_results and len(self.meters) > 1 and not meter.store.all_sections_smaller_than_chunksize): warn("at least one section requested from '{}' required" " multiple chunks to be loaded into memory. This may cause" " a failure when we try to unify results from multiple" " meters.".format(meter)) return collected_stats def dropout_rate(self, **load_kwargs): """Sums together total energy for each meter. Parameters ---------- full_results : bool, default=False **loader_kwargs : key word arguments for DataStore.load() Returns ------- if `full_results` is True then return TotalEnergyResults object else return either a single number of, if there are multiple AC types, then return a pd.Series with a row for each AC type. """ self._check_kwargs_for_full_results_and_sections(load_kwargs) full_results = load_kwargs.pop('full_results', False) dropout_rates = self._collect_stats_on_all_meters( load_kwargs, 'dropout_rate', full_results) if full_results and dropout_rates: dropout_rate_results = dropout_rates[0] for dr in dropout_rates[1:]: dropout_rate_results.unify(dr) return dropout_rate_results else: return np.mean(dropout_rates) def _check_kwargs_for_full_results_and_sections(self, load_kwargs): if (load_kwargs.get('full_results') and 'sections' not in load_kwargs and len(self.meters) > 1): raise RuntimeError("MeterGroup stats can only return full results" " objects if you specify 'sections' to load. If" " you do not specify periods then the results" " from individual meters are likely to be for" " different periods and hence" " cannot be unified.") def good_sections(self, **kwargs): """Returns good sections for just the first meter. TODO: combine good sections from every meter. """ if self.meters: if len(self.meters) > 1: warn("As a quick implementation we only get Good Sections from" " the first meter in the meter group. We should really" " return the intersection of the good sections for all" " meters. This will be fixed...") return self.meters[0].good_sections(**kwargs) else: return [] def dataframe_of_meters(self, **kwargs): """ Parameters ---------- sample_period : int or float, optional Number of seconds to use as sample period when reindexing meters. If not specified then will use the max of all meters' sample_periods. resample : bool, defaults to True If True then resample to `sample_period`. **kwargs : any other key word arguments to pass to `self.store.load()` including: ac_type : string, defaults to 'best' physical_quantity: string, defaults to 'power' Returns ------- DataFrame Each column is a meter. """ kwargs.setdefault('sample_period', self.sample_period()) kwargs.setdefault('ac_type', 'best') kwargs.setdefault('physical_quantity', 'power') identifiers, generators = self._meter_generators(**kwargs) segments = [] while True: chunks = [] ids = [] for meter_id, generator in zip(identifiers, generators): try: chunk_from_next_meter = next(generator) except StopIteration: continue if not chunk_from_next_meter.empty: ids.append(meter_id) chunks.append(chunk_from_next_meter.sum(axis=1)) if chunks: df = pd.concat(chunks, axis=1) df.columns = ids segments.append(df) else: break if segments: return pd.concat(segments) else: return pd.DataFrame(columns=self.identifier.meters) def entropy_per_meter(self): """Finds the entropy of each meter in this MeterGroup. Returns ------- pd.Series of entropy """ return self.call_method_on_all_meters('entropy') def call_method_on_all_meters(self, method): """Calls `method` on each element in `self.meters`. Parameters ---------- method : str Name of a stats method in `ElecMeter`. e.g. 'correlation'. Returns ------- pd.Series of result of `method` called on each element in `self.meters`. """ meter_identifiers = list(self.identifier.meters) result = pd.Series(index=meter_identifiers) for meter in self.meters: id_meter = meter.identifier result[id_meter] = getattr(meter, method)() return result def pairwise(self, method): """ Calls `method` on all pairs in `self.meters`. Assumes `method` is symmetrical. Parameters ---------- method : str Name of a stats method in `ElecMeter`. e.g. 'correlation'. Returns ------- pd.DataFrame of the result of `method` called on each pair in `self.meters`. """ meter_identifiers = list(self.identifier.meters) result = pd.DataFrame(index=meter_identifiers, columns=meter_identifiers) for i, m_i in enumerate(self.meters): for j, m_j in enumerate(self.meters): id_i = m_i.identifier id_j = m_j.identifier if i > j: result[id_i][id_j] = result[id_j][id_i] else: result[id_i][id_j] = getattr(m_i, method)(m_j) return result def pairwise_mutual_information(self): """ Finds the pairwise mutual information among different meters in a MeterGroup. Returns ------- pd.DataFrame of mutual information between pair of ElecMeters. """ return self.pairwise('mutual_information') def pairwise_correlation(self): """ Finds the pairwise correlation among different meters in a MeterGroup. Returns ------- pd.DataFrame of correlation between pair of ElecMeters. """ return self.pairwise('correlation') def proportion_of_energy_submetered(self, **loader_kwargs): """ Returns ------- float [0,1] or NaN if mains total_energy == 0 """ print("Running MeterGroup.proportion_of_energy_submetered...") mains = self.mains() downstream_meters = self.meters_directly_downstream_of_mains() proportion = 0.0 verbose = loader_kwargs.get('verbose') all_nan = True for m in downstream_meters.meters: if verbose: print("Calculating proportion for", m) prop = m.proportion_of_energy(mains, **loader_kwargs) if not np.isnan(prop): proportion += prop all_nan = False if verbose: print(" {:.2%}".format(prop)) if all_nan: proportion = np.NaN return proportion def available_ac_types(self, physical_quantity): """Returns set of all available alternating current types for a specific physical quantity. Parameters ---------- physical_quantity : str or list of strings Returns ------- list of strings e.g. ['apparent', 'active'] """ all_ac_types = [meter.available_ac_types(physical_quantity) for meter in self.meters] return list(set(flatten_2d_list(all_ac_types))) def available_physical_quantities(self): """ Returns ------- list of strings e.g. ['power', 'energy'] """ all_physical_quants = [meter.available_physical_quantities() for meter in self.meters] return list(set(flatten_2d_list(all_physical_quants))) def energy_per_meter(self, per_period=None, mains=None, use_meter_labels=False, **load_kwargs): """Returns pd.DataFrame where columns is meter.identifier and each value is total energy. Index is AC types. Does not care about wiring hierarchy. Does not attempt to ensure all channels share the same time sections. Parameters ---------- per_period : None or offset alias If None then returns absolute energy used per meter. If a Pandas offset alias (e.g. 'D' for 'daily') then will return the average energy per period. ac_type : None or str e.g. 'active' or 'best'. Defaults to 'best'. use_meter_labels : bool If True then columns will be human-friendly meter labels. If False then columns will be ElecMeterIDs or MeterGroupIDs mains : None or MeterGroup or ElecMeter If None then will return DataFrame without remainder. If not None then will return a Series including a 'remainder' row which will be `mains.total_energy() - energy_per_meter.sum()` and an attempt will be made to use the correct AC_TYPE. Returns ------- pd.DataFrame if mains is None else a pd.Series """ meter_identifiers = list(self.identifier.meters) energy_per_meter = pd.DataFrame(columns=meter_identifiers, index=AC_TYPES) n_meters = len(self.meters) load_kwargs.setdefault('ac_type', 'best') for i, meter in enumerate(self.meters): print('\r{:d}/{:d} {}'.format(i+1, n_meters, meter), end='') stdout.flush() if per_period is None: meter_energy = meter.total_energy(**load_kwargs) else: load_kwargs.setdefault('use_uptime', False) meter_energy = meter.average_energy_per_period( offset_alias=per_period, **load_kwargs) energy_per_meter[meter.identifier] = meter_energy energy_per_meters = energy_per_meter.dropna(how='all') if use_meter_labels: energy_per_meter.columns = self.get_labels(energy_per_meter.columns) if mains is not None: energy_per_meter = self._energy_per_meter_with_remainder( energy_per_meter, mains, per_period, **load_kwargs) return energy_per_meter def _energy_per_meter_with_remainder(self, energy_per_meter, mains, per_period, **kwargs): ac_types = energy_per_meter.keys() energy_per_meter = energy_per_meter.sum() # Collapse AC_TYPEs into Series # Find most common ac_type in energy_per_meter: most_common_ac_type = most_common(ac_types) mains_ac_types = mains.available_ac_types( ['power', 'energy', 'cumulative energy']) if most_common_ac_type in mains_ac_types: mains_ac_type = most_common_ac_type else: mains_ac_type = 'best' # Get mains energy_per_meter kwargs['ac_type'] = mains_ac_type if per_period is None: mains_energy = mains.total_energy(**kwargs) else: mains_energy = mains.average_energy_per_period( offset_alias=per_period, **kwargs) mains_energy = mains_energy[mains_energy.keys()[0]] # Calculate remainder energy_per_meter['Remainder'] = mains_energy - energy_per_meter.sum() energy_per_meter.sort(ascending=False) return energy_per_meter def fraction_per_meter(self, **load_kwargs): """Fraction of energy per meter. Return pd.Series. Index is meter.instance. Each value is a float in the range [0,1]. """ energy_per_meter = self.energy_per_meter(**load_kwargs).max() total_energy = energy_per_meter.sum() return energy_per_meter / total_energy def proportion_of_upstream_total_per_meter(self, **load_kwargs): prop_per_meter = pd.Series(index=self.identifier.meters) n_meters = len(self.meters) for i, meter in enumerate(self.meters): proportion = meter.proportion_of_upstream(**load_kwargs) print('\r{:d}/{:d} {} = {:.3f}' .format(i+1, n_meters, meter, proportion), end='') stdout.flush() prop_per_meter[meter.identifier] = proportion prop_per_meter.sort(ascending=False) return prop_per_meter def train_test_split(self, train_fraction=0.5): """ Parameters ---------- train_fraction Returns ------- split_time: pd.Timestamp where split should happen """ assert( 0 < train_fraction < 1), "`train_fraction` should be between 0 and 1" # TODO: currently just works with the first mains meter, assuming # both to be simultaneosly sampled mains = self.mains() good_sections = self.mains().good_sections() sample_period = mains.device['sample_period'] appx_num_records_in_each_good_section = [ int((ts.end - ts.start).total_seconds() / sample_period) for ts in good_sections] appx_total_records = sum(appx_num_records_in_each_good_section) records_in_train = appx_total_records * train_fraction seconds_in_train = int(records_in_train * sample_period) if len(good_sections) == 1: # all data is contained in one good section split_point = good_sections[ 0].start + timedelta(seconds=seconds_in_train) return split_point else: # data is split across multiple time deltas records_remaining = records_in_train while records_remaining: for i, records_in_section in enumerate(appx_num_records_in_each_good_section): if records_remaining > records_in_section: records_remaining -= records_in_section elif records_remaining == records_in_section: # Next TimeFrame is the split point!! split_point = good_sections[i + 1].start return split_point else: # Need to split this timeframe split_point = good_sections[ i].start + timedelta(seconds=sample_period * records_remaining) return split_point ################## FUNCTIONS NOT YET IMPLEMENTED ################### # def init_new_dataset(self): # self.infer_and_set_meter_connections() # self.infer_and_set_dual_supply_appliances() # def infer_and_set_meter_connections(self): # """ # Arguments # --------- # meters : list of Meter objects # """ # Maybe this should be a stand-alone function which # takes a list of meters??? # raise NotImplementedError # def infer_and_set_dual_supply_appliances(self): # raise NotImplementedError # def total_on_duration(self): # """Return timedelta""" # raise NotImplementedError # def on_durations(self): # self.get_unique_upstream_meters() # for each meter, get the on time, # assuming the on-power-threshold for the # smallest appliance connected to that meter??? # raise NotImplementedError # def activity_distribution(self, bin_size, timespan): # raise NotImplementedError # def on_off_events(self, minimum_state_duration): # raise NotImplementedError def select_top_k(self, k=5, by="energy", asc=False, group_remainder=False, **kwargs): """Only select the top K meters, according to energy. Functions on the entire MeterGroup. So if you mean to select the top K from only the submeters, please do something like this: elec.submeters().select_top_k() Parameters ---------- k : int, optional, defaults to 5 by: string, optional, defaults to energy Can select top k by: * energy * entropy asc: bool, optional, defaults to False By default top_k is in descending order. To select top_k by ascending order, use asc=True group_remainder : bool, optional, defaults to False If True then place all remaining meters into a nested metergroup. **kwargs : key word arguments to pass to load() Returns ------- MeterGroup """ function_map = {'energy': self.fraction_per_meter, 'entropy': self.entropy_per_meter} top_k_series = function_map[by](**kwargs) top_k_series.sort(ascending=asc) top_k_elec_meter_ids = top_k_series[:k].index top_k_metergroup = self.from_list(top_k_elec_meter_ids) if group_remainder: remainder_ids = top_k_series[k:].index remainder_metergroup = self.from_list(remainder_ids) remainder_metergroup.name = 'others' top_k_metergroup.meters.append(remainder_metergroup) return top_k_metergroup def groupby(self, key, use_appliance_metadata=True, **kwargs): """ e.g. groupby('category') Returns ------- MeterGroup of nested MeterGroups: one per group """ if not use_appliance_metadata: raise NotImplementedError() values = self.values_for_appliance_metadata_key(key) groups = [] for value in values: group = self.select_using_appliances(**{key: value}) group.name = value groups.append(group) return MeterGroup(groups) def get_timeframe(self): """ Returns ------- nilmtk.TimeFrame representing the timeframe which is the union of all meters in self.meters. """ timeframe = None for meter in self.meters: if timeframe is None: timeframe = meter.get_timeframe() elif meter.get_timeframe().empty: pass else: timeframe = timeframe.union(meter.get_timeframe()) return timeframe def plot(self, kind='separate lines', **kwargs): """ Parameters ---------- width : int, optional Number of points on the x axis required ax : matplotlib.axes, optional plot_legend : boolean, optional Defaults to True. Set to False to not plot legend. kind : {'separate lines', 'sum', 'area', 'snakey', 'energy bar'} timeframe : nilmtk.TimeFrame, optional Defaults to self.get_timeframe() """ # Load data and plot each meter function_map = { 'separate lines': self._plot_separate_lines, 'sum': super(MeterGroup, self).plot, 'area': self._plot_area, 'sankey': self._plot_sankey, 'energy bar': self._plot_energy_bar } try: ax = function_map[kind](**kwargs) except KeyError: raise ValueError("'{}' not a valid setting for 'kind' parameter." .format(kind)) return ax def _plot_separate_lines(self, ax=None, plot_legend=True, **kwargs): for meter in self.meters: if isinstance(meter, MeterGroup): ax = meter.plot(ax=ax, plot_legend=False, kind='sum', **kwargs) else: ax = meter.plot(ax=ax, plot_legend=False, **kwargs) if plot_legend: plt.legend() return ax def _plot_sankey(self): graph = self.wiring_graph() meter_labels = {meter: meter.instance() for meter in graph.nodes()} pos = nx.graphviz_layout(graph, prog='dot') #nx.draw(graph, pos, labels=meter_labels, arrows=False) meter_labels = {meter: meter.label() for meter in graph.nodes()} for meter, name in meter_labels.iteritems(): x, y = pos[meter] if meter.is_site_meter(): delta_y = 5 else: delta_y = -5 plt.text(x, y+delta_y, s=name, bbox=dict(facecolor='red', alpha=0.5), horizontalalignment='center') if not meter.is_site_meter(): upstream_meter = meter.upstream_meter() proportion_of_upstream = meter.proportion_of_upstream() print(meter.instance(), upstream_meter.instance(), proportion_of_upstream) graph[upstream_meter][meter]["weight"] = proportion_of_upstream*10 graph[upstream_meter][meter]["color"] = "blue" nx.draw(graph, pos, labels=meter_labels, arrows=False) def _plot_area(self, ax=None, timeframe=None, pretty_labels=True, unit='W', label_kwargs=None, plot_kwargs=None, threshold=None, **load_kwargs): """ Parameters ---------- plot_kwargs : dict of key word arguments for DataFrame.plot() unit : {kW or W} threshold : float or None if set to a float then any measured value under this threshold will be set to 0. Returns ------- ax, dataframe """ # Get start and end times for the plot timeframe = self.get_timeframe() if timeframe is None else timeframe if not timeframe: return ax load_kwargs['sections'] = [timeframe] load_kwargs = self._set_sample_period(timeframe, **load_kwargs) df = self.dataframe_of_meters(**load_kwargs) if threshold is not None: df[df <= threshold] = 0 if unit == 'kW': df /= 1000 if plot_kwargs is None: plot_kwargs = {} df.columns = self.get_labels(df.columns, pretty=pretty_labels) # Set a tiny linewidth otherwise we get lines even if power is zero # and this looks ugly when drawn above other lines. plot_kwargs.setdefault('linewidth', 0.0001) ax = df.plot(kind='area', **plot_kwargs) ax.set_ylabel("Power ({:s})".format(unit)) return ax, df def plot_when_on(self, **load_kwargs): meter_identifiers = list(self.identifier.meters) fig, ax = plt.subplots() for i, meter in enumerate(self.meters): id_meter = meter.identifier for chunk_when_on in meter.when_on(**load_kwargs): series_to_plot = chunk_when_on[chunk_when_on==True] if len(series_to_plot.index): (series_to_plot+i-1).plot(ax=ax, style='k.') labels = self.get_labels(meter_identifiers) plt.yticks(range(len(self.meters)), labels) plt.ylim((-0.5, len(self.meters)+0.5)) return ax def plot_good_sections(self, ax=None, label_func='instance', include_disabled_meters=True, load_kwargs=None, **plot_kwargs): """ Parameters ---------- label_func : str or None e.g. 'instance' (default) or 'label' if None then no labels will be produced. include_disabled_meters : bool """ if ax is None: ax = plt.gca() if load_kwargs is None: load_kwargs = {} # Prepare list of meters if include_disabled_meters: meters = self.all_meters() else: meters = self.meters meters = copy(meters) meters.sort(key=meter_sorting_key, reverse=True) n = len(meters) labels = [] for i, meter in enumerate(meters): good_sections = meter.good_sections(**load_kwargs) ax = good_sections.plot(ax=ax, y=i, **plot_kwargs) del good_sections if label_func: labels.append(getattr(meter, label_func)()) # Just end numbers if label_func is None: labels = [n] + ([''] * (n-1)) # Y tick formatting ax.set_yticks(np.arange(0, n) + 0.5) def y_formatter(y, pos): try: label = labels[int(y)] except IndexError: label = '' return label ax.yaxis.set_major_formatter(FuncFormatter(y_formatter)) ax.set_ylim([0, n]) return ax def _plot_energy_bar(self, ax=None, mains=None): """Plot a stacked bar of the energy per meter, in order. Parameters ---------- ax : matplotlib axes mains : MeterGroup or ElecMeter, optional Used to calculate Remainder. Returns ------- ax """ energy = self.energy_per_meter(mains=mains, per_period='D', use_meter_labels=True) energy.sort(ascending=False) # Plot ax = pd.DataFrame(energy).T.plot(kind='bar', stacked=True, grid=True, edgecolor="none", legend=False, width=2) ax.set_xticks([]) ax.set_ylabel('kWh\nper\nday', rotation=0, ha='center', va='center', labelpad=15) cumsum = energy.cumsum() text_ys = cumsum - (cumsum.diff().fillna(energy['Remainder']) / 2) for kwh, (label, y) in zip(energy.values, text_ys.iteritems()): label += " ({:.2f})".format(kwh) ax.annotate(label, (0, y), color='white', size=8, horizontalalignment='center', verticalalignment='center') return ax def plot_multiple(self, axes, meter_keys, plot_func, kwargs_per_meter=None, pretty_label=True, **kwargs): """Create multiple subplots. Parameters ----------- axes : list of matplotlib axes objects. e.g. created using `fix, axes = plt.subplots()` meter_keys : list of keys for identifying ElecMeters or MeterGroups. e.g. ['fridge', 'kettle', 4, MeterGroupID, ElecMeterID]. Each element is anything that MeterGroup.__getitem__() accepts. plot_func : string Name of function from ElecMeter or Electric or MeterGroup e.g. `plot_power_histogram` kwargs_per_meter : dict Provide key word arguments for the plot_func for each meter. each key is a parameter name for plot_func each value is a list (same length as `meters`) for specifying a value for this parameter for each meter. e.g. {'range': [(0,100), (0,200)]} pretty_label : bool **kwargs : any key word arguments to pass the same values to the plot func for every meter. Returns ------- axes (flattened into a 1D list) """ axes = flatten_2d_list(axes) if len(axes) != len(meter_keys): raise ValueError("`axes` and `meters` must be of equal length.") if kwargs_per_meter is None: kwargs_per_meter = {} meters = [self[meter_key] for meter_key in meter_keys] for i, (ax, meter) in enumerate(zip(axes, meters)): kwargs_copy = deepcopy(kwargs) for parameter, arguments in kwargs_per_meter.iteritems(): kwargs_copy[parameter] = arguments[i] getattr(meter, plot_func)(ax=ax, **kwargs_copy) ax.set_title(meter.label(pretty=pretty_label)) return axes def sort_meters(self): """Sorts meters by instance.""" self.meters.sort(key=meter_sorting_key) def label(self, **kwargs): """ Returns ------- string : A label listing all the appliance types. """ if self.name: label = self.name if kwargs.get('pretty'): label = capitalise_first_letter(label) return label return ", ".join(set([meter.label(**kwargs) for meter in self.meters])) def clear_cache(self): """Clear cache on all meters in this MeterGroup.""" for meter in self.meters: meter.clear_cache() def correlation_of_sum_of_submeters_with_mains(self, **load_kwargs): print("Running MeterGroup.correlation_of_sum_of_submeters_with_mains...") submeters = self.meters_directly_downstream_of_mains() return self.mains().correlation(submeters, **load_kwargs) def all_meters(self): """Returns a list of self.meters + self.disabled_meters.""" return self.meters + self.disabled_meters def describe(self, compute_expensive_stats=True, **kwargs): """Returns pd.Series describing this MeterGroup.""" series = pd.Series() all_meters = self.all_meters() series['total_n_meters'] = len(all_meters) site_meters = [m for m in all_meters if m.is_site_meter()] series['total_n_site_meters'] = len(site_meters) if compute_expensive_stats: series['correlation_of_sum_of_submeters_with_mains'] = ( self.correlation_of_sum_of_submeters_with_mains(**kwargs)) series['proportion_of_energy_submetered'] = ( self.proportion_of_energy_submetered(**kwargs)) dropout_rates = self._collect_stats_on_all_meters( kwargs, 'dropout_rate', False) dropout_rates = np.array(dropout_rates) series['dropout_rates_ignoring_gaps'] = ( "min={}, mean={}, max={}".format( dropout_rates.min(), dropout_rates.mean(), dropout_rates.max())) series['mains_sample_period'] = self.mains().sample_period() series['submeter_sample_period'] = self.submeters().sample_period() timeframe = self.get_timeframe() series['timeframe'] = "start={}, end={}".format(timeframe.start, timeframe.end) series['total_duration'] = str(timeframe.timedelta) mains_uptime = self.mains().uptime(**kwargs) series['mains_uptime'] = str(mains_uptime) try: series['proportion_uptime'] = (mains_uptime.total_seconds() / timeframe.timedelta.total_seconds()) except ZeroDivisionError: series['proportion_uptime'] = np.NaN series['average_mains_energy_per_day'] = self.mains().average_energy_per_period() return series def replace_dataset(identifier, dataset): """ Parameters ---------- identifier : ElecMeterID or MeterGroupID Returns ------- ElecMeterID or MeterGroupID with dataset replaced with `dataset` """ if isinstance(identifier, MeterGroupID): new_meter_ids = [replace_dataset(id, dataset) for id in identifier.meters] new_id = MeterGroupID(meters=tuple(new_meter_ids)) elif isinstance(identifier, ElecMeterID): new_id = identifier._replace(dataset=dataset) else: raise TypeError() return new_id def iterate_through_submeters_of_two_metergroups(master, slave): """ Parameters ---------- master, slave : MeterGroup Returns ------- list of 2-tuples of the form (`master_meter`, `slave_meter`) """ zipped = [] for master_meter in master.submeters().meters: slave_identifier = replace_dataset(master_meter.identifier, slave.dataset()) slave_meter = slave[slave_identifier] zipped.append((master_meter, slave_meter)) return zipped def combine_chunks_from_generators(index, columns, meters, kwargs): """Combines chunks into a single DataFrame. Adds or averages columns, depending on whether each column is in PHYSICAL_QUANTITIES_TO_AVERAGE. Returns ------- DataFrame """ # Regarding columns (e.g. voltage) that we need to average: # The approach is that we first add everything together # in the first for-loop, whilst also keeping a # `columns_to_average_counter` DataFrame # which tells us what to divide by in order to compute the # mean for PHYSICAL_QUANTITIES_TO_AVERAGE. # Regarding doing an in-place addition: # We convert out cumulator dataframe to a numpy matrix. # This allows us to use np.add to do an in-place add. # If we didn't do this then we'd get horrible memory fragmentation. # See http://stackoverflow.com/a/27526721/732596 DTYPE = np.float32 cumulator = pd.DataFrame(np.NaN, index=index, columns=columns, dtype=DTYPE) cumulator_arr = cumulator.as_matrix() columns_to_average_counter = pd.DataFrame(dtype=np.uint16) timeframe = None # Go through each generator to try sum values together for meter in meters: print_on_line("\rLoading data for meter", meter.identifier, " ") kwargs_copy = deepcopy(kwargs) generator = meter.load(**kwargs_copy) try: chunk_from_next_meter = generator.next() except StopIteration: continue del generator del kwargs_copy gc.collect() if chunk_from_next_meter.empty or not chunk_from_next_meter.timeframe: continue if timeframe is None: timeframe = chunk_from_next_meter.timeframe else: timeframe = timeframe.union(chunk_from_next_meter.timeframe) # Add (in-place) for i, column_name in enumerate(columns): try: column = chunk_from_next_meter[column_name] except KeyError: continue aligned = column.reindex(index, copy=False).values del column cumulator_col = cumulator_arr[:,i] where_both_are_nan = np.isnan(cumulator_col) & np.isnan(aligned) np.nansum([cumulator_col, aligned], axis=0, out=cumulator_col, dtype=DTYPE) cumulator_col[where_both_are_nan] = np.NaN del aligned del where_both_are_nan gc.collect() # Update columns_to_average_counter - this is necessary so we do not # add up columns like 'voltage' which should be averaged. physical_quantities = chunk_from_next_meter.columns.get_level_values('physical_quantity') columns_to_average = (set(PHYSICAL_QUANTITIES_TO_AVERAGE) .intersection(physical_quantities)) if columns_to_average: counter_increment = pd.DataFrame(1, columns=columns_to_average, dtype=np.uint16, index=chunk_from_next_meter.index) columns_to_average_counter = columns_to_average_counter.add( counter_increment, fill_value=0) del counter_increment del chunk_from_next_meter gc.collect() del cumulator_arr gc.collect() # Create mean values by dividing any columns which need dividing for column in columns_to_average_counter: cumulator[column] /= columns_to_average_counter[column] del columns_to_average_counter gc.collect() print() print("Done loading data all meters for this chunk.") cumulator.timeframe = timeframe return cumulator meter_sorting_key = lambda meter: meter.instance()
apache-2.0
akrherz/iem
htdocs/plotting/auto/scripts100/p120.py
1
5184
"""last spring temp""" import datetime from pandas.io.sql import read_sql import pandas as pd import matplotlib.dates as mdates from pyiem.plot import figure_axes from pyiem.util import get_autoplot_context, get_dbconn from pyiem.exceptions import NoDataFound def get_description(): """ Return a dict describing how to call this plotter """ desc = dict() desc["data"] = True desc["report"] = True desc[ "description" ] = """This chart presents the accumulated frequency of having the last spring temperature at or below a given threshold.""" desc["arguments"] = [ dict( type="station", name="station", default="IATDSM", label="Select Station", network="IACLIMATE", ), dict(type="int", name="t1", default=32, label="First Threshold (F)"), dict(type="int", name="t2", default=28, label="Second Threshold (F)"), dict(type="int", name="t3", default=26, label="Third Threshold (F)"), dict(type="int", name="t4", default=22, label="Fourth Threshold (F)"), dict( type="year", name="syear", min=1880, label="Potential (if data exists) minimum year", default=1880, ), dict( type="year", name="eyear", min=1880, label="Potential (if data exists) exclusive maximum year", default=datetime.date.today().year, ), ] return desc def plotter(fdict): """ Go """ pgconn = get_dbconn("coop") ctx = get_autoplot_context(fdict, get_description()) station = ctx["station"] thresholds = [ctx["t1"], ctx["t2"], ctx["t3"], ctx["t4"]] table = "alldata_%s" % (station[:2],) # Load up dict of dates.. df = pd.DataFrame( { "dates": pd.date_range("2000/01/29", "2000/06/30"), "%scnts" % (thresholds[0],): 0, "%scnts" % (thresholds[1],): 0, "%scnts" % (thresholds[2],): 0, "%scnts" % (thresholds[3],): 0, }, index=range(29, 183), ) df.index.name = "doy" for base in thresholds: # Query Last doy for each year in archive df2 = read_sql( f""" select year, max(case when low <= %s then extract(doy from day) else 0 end) as doy from {table} WHERE month < 7 and station = %s and year > %s and year < %s GROUP by year """, pgconn, params=(base, station, ctx["syear"], ctx["eyear"]), index_col=None, ) for _, row in df2.iterrows(): if row["doy"] == 0: continue df.loc[0 : row["doy"], "%scnts" % (base,)] += 1 df["%sfreq" % (base,)] = ( df["%scnts" % (base,)] / len(df2.index) * 100.0 ) bs = ctx["_nt"].sts[station]["archive_begin"] if bs is None: raise NoDataFound("No metadata found.") res = """\ # IEM Climodat https://mesonet.agron.iastate.edu/climodat/ # Report Generated: %s # Climate Record: %s -> %s # Site Information: [%s] %s # Contact Information: Daryl Herzmann akrherz@iastate.edu 515.294.5978 # Low Temperature exceedence probabilities # (On a certain date, what is the chance a temperature below a certain # threshold would be observed again that spring season) DOY Date <%s <%s <%s <%s """ % ( datetime.date.today().strftime("%d %b %Y"), max([bs.date(), datetime.date(ctx["syear"], 1, 1)]), min([datetime.date.today(), datetime.date(ctx["eyear"] - 1, 12, 31)]), station, ctx["_nt"].sts[station]["name"], thresholds[0] + 1, thresholds[1] + 1, thresholds[2] + 1, thresholds[3] + 1, ) fcols = ["%sfreq" % (s,) for s in thresholds] mindate = None for doy, row in df.iterrows(): if doy % 2 != 0: continue if row[fcols[3]] < 100 and mindate is None: mindate = row["dates"] - datetime.timedelta(days=5) res += (" %3s %s %3i %3i %3i %3i\n") % ( row["dates"].strftime("%-j"), row["dates"].strftime("%b %d"), row[fcols[0]], row[fcols[1]], row[fcols[2]], row[fcols[3]], ) title = "Frequency of Last Spring Temperature" subtitle = "%s %s (%s-%s)" % ( station, ctx["_nt"].sts[station]["name"], max([bs.date(), datetime.date(ctx["syear"], 1, 1)]), min([datetime.date.today(), datetime.date(ctx["eyear"] - 1, 12, 31)]), ) (fig, ax) = figure_axes(title=title, subtitle=subtitle) for base in thresholds: ax.plot( df["dates"].values, df["%sfreq" % (base,)], label="%s" % (base,), lw=2, ) ax.legend(loc="best") ax.set_xlim(mindate) ax.xaxis.set_major_locator(mdates.DayLocator([1, 7, 14, 21])) ax.xaxis.set_major_formatter(mdates.DateFormatter("%-d\n%b")) ax.grid(True) df.reset_index(inplace=True) return fig, df, res if __name__ == "__main__": plotter(dict())
mit
meduz/scikit-learn
examples/linear_model/plot_ols_3d.py
350
2040
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Sparsity Example: Fitting only features 1 and 2 ========================================================= Features 1 and 2 of the diabetes-dataset are fitted and plotted below. It illustrates that although feature 2 has a strong coefficient on the full model, it does not give us much regarding `y` when compared to just feature 1 """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D from sklearn import datasets, linear_model diabetes = datasets.load_diabetes() indices = (0, 1) X_train = diabetes.data[:-20, indices] X_test = diabetes.data[-20:, indices] y_train = diabetes.target[:-20] y_test = diabetes.target[-20:] ols = linear_model.LinearRegression() ols.fit(X_train, y_train) ############################################################################### # Plot the figure def plot_figs(fig_num, elev, azim, X_train, clf): fig = plt.figure(fig_num, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, elev=elev, azim=azim) ax.scatter(X_train[:, 0], X_train[:, 1], y_train, c='k', marker='+') ax.plot_surface(np.array([[-.1, -.1], [.15, .15]]), np.array([[-.1, .15], [-.1, .15]]), clf.predict(np.array([[-.1, -.1, .15, .15], [-.1, .15, -.1, .15]]).T ).reshape((2, 2)), alpha=.5) ax.set_xlabel('X_1') ax.set_ylabel('X_2') ax.set_zlabel('Y') ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) #Generate the three different figures from different views elev = 43.5 azim = -110 plot_figs(1, elev, azim, X_train, ols) elev = -.5 azim = 0 plot_figs(2, elev, azim, X_train, ols) elev = -.5 azim = 90 plot_figs(3, elev, azim, X_train, ols) plt.show()
bsd-3-clause
sysid/kg
quora/Ensemble_CNN_TD_Quora.py
1
12948
# coding: utf-8 # In[1]: import pandas as pd import numpy as np import nltk from nltk.corpus import stopwords from nltk.stem import SnowballStemmer import re from sklearn.metrics import accuracy_score import matplotlib.pyplot as plt # In[2]: train = pd.read_csv("../input/train.csv") test = pd.read_csv("../input/test.csv") # In[3]: train.head() # In[4]: test.head() # In[5]: print(train.shape) print(test.shape) # In[6]: print(train.isnull().sum()) print(test.isnull().sum()) # In[7]: train = train.fillna('empty') test = test.fillna('empty') # In[8]: print(train.isnull().sum()) print(test.isnull().sum()) # In[9]: test.head() # In[10]: for i in range(6): print(train.question1[i]) print(train.question2[i]) print() # In[17]: def text_to_wordlist(text, remove_stopwords=False, stem_words=False): # Clean the text, with the option to remove stopwords and to stem words. # Convert words to lower case and split them text = text.lower().split() # Optionally remove stop words (true by default) if remove_stopwords: stops = set(stopwords.words("english")) text = [w for w in text if not w in stops] text = " ".join(text) # Clean the text text = re.sub(r"[^A-Za-z0-9^,!.\'+-=]", " ", text) text = re.sub(r"\'s", " 's ", text) text = re.sub(r"\'ve", " have ", text) text = re.sub(r"can't", " cannot ", text) text = re.sub(r"n't", " not ", text) text = re.sub(r"\'re", " are ", text) text = re.sub(r"\'d", " would ", text) text = re.sub(r"\'ll", " will ", text) text = re.sub(r",", " ", text) text = re.sub(r"\.", " ", text) text = re.sub(r"!", " ! ", text) text = re.sub(r"\^", " ^ ", text) text = re.sub(r"\+", " + ", text) text = re.sub(r"\-", " - ", text) text = re.sub(r"\=", " = ", text) text = re.sub(r"\s{2,}", " ", text) # Shorten words to their stems if stem_words: text = text.split() stemmer = SnowballStemmer('english') stemmed_words = [stemmer.stem(word) for word in text] text = " ".join(stemmed_words) # Return a list of words return(text) # In[18]: def process_questions(question_list, questions, question_list_name, dataframe): # function to transform questions and display progress for question in questions: question_list.append(text_to_wordlist(question)) if len(question_list) % 100000 == 0: progress = len(question_list)/len(dataframe) * 100 print("{} is {}% complete.".format(question_list_name, round(progress, 1))) # In[19]: train_question1 = [] process_questions(train_question1, train.question1, 'train_question1', train) # In[35]: train_question2 = [] process_questions(train_question2, train.question2, 'train_question2', train) # In[36]: test_question1 = [] process_questions(test_question1, test.question1, 'test_question1', test) # In[37]: test_question2 = [] process_questions(test_question2, test.question2, 'test_question2', test) # # Using Keras # In[38]: from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences import datetime, time, json from keras.models import Sequential from keras.layers import Embedding, Dense, Dropout, Reshape, Merge, BatchNormalization, TimeDistributed, Lambda, Activation, LSTM, Flatten, Bidirectional, Convolution1D, GRU, MaxPooling1D, Convolution2D from keras.regularizers import l2 from keras.callbacks import Callback, ModelCheckpoint, EarlyStopping from keras import backend as K from sklearn.model_selection import train_test_split from keras.optimizers import SGD from collections import defaultdict # In[39]: # Count the number of different words in the reviews word_count = defaultdict(int) for question in train_question1: word_count[question] += 1 print("train_question1 is complete.") for question in train_question2: word_count[question] += 1 print("train_question2 is complete") for question in test_question1: word_count[question] += 1 print("test_question1 is complete.") for question in test_question2: word_count[question] += 1 print("test_question2 is complete") print("Total number of unique words:", len(word_count)) # In[40]: # Find the length of questions lengths = [] for question in train_question1: lengths.append(len(question.split())) for question in train_question2: lengths.append(len(question.split())) # Create a dataframe so that the values can be inspected lengths = pd.DataFrame(lengths, columns=['counts']) # In[41]: lengths.counts.describe() # In[42]: np.percentile(lengths.counts, 99.5) # In[43]: num_words = 200000 train_questions = train_question1 + train_question2 tokenizer = Tokenizer(nb_words = num_words) tokenizer.fit_on_texts(train_questions) print("Fitting is compelte.") train_question1_word_sequences = tokenizer.texts_to_sequences(train_question1) print("train_question1 is complete.") train_question2_word_sequences = tokenizer.texts_to_sequences(train_question2) print("train_question2 is complete") # In[44]: test_question1_word_sequences = tokenizer.texts_to_sequences(test_question1) print("test_question1 is complete.") test_question2_word_sequences = tokenizer.texts_to_sequences(test_question2) print("test_question2 is complete.") # In[45]: word_index = tokenizer.word_index print("Words in index: %d" % len(word_index)) # In[46]: # Pad the questions so that they all have the same length. max_question_len = 37 train_q1 = pad_sequences(train_question1_word_sequences, maxlen = max_question_len, padding = 'post', truncating = 'post') print("train_q1 is complete.") train_q2 = pad_sequences(train_question2_word_sequences, maxlen = max_question_len, padding = 'post', truncating = 'post') print("train_q2 is complete.") # In[47]: test_q1 = pad_sequences(test_question1_word_sequences, maxlen = max_question_len, padding = 'post', truncating = 'post') print("test_q1 is complete.") test_q2 = pad_sequences(test_question2_word_sequences, maxlen = max_question_len, padding = 'post', truncating = 'post') print("test_q2 is complete.") # In[48]: y_train = train.is_duplicate # In[49]: # Load GloVe to use pretrained vectors # From this link: https://nlp.stanford.edu/projects/glove/ embeddings_index = {} with open('glove.840B.300d.txt', encoding='utf-8') as f: for line in f: values = line.split(' ') word = values[0] embedding = np.asarray(values[1:], dtype='float32') embeddings_index[word] = embedding print('Word embeddings:', len(embeddings_index)) # In[50]: # Need to use 300 for embedding dimensions to match GloVe vectors. embedding_dim = 300 nb_words = len(word_index) word_embedding_matrix = np.zeros((nb_words + 1, embedding_dim)) for word, i in word_index.items(): embedding_vector = embeddings_index.get(word) if embedding_vector is not None: # words not found in embedding index will be all-zeros. word_embedding_matrix[i] = embedding_vector print('Null word embeddings: %d' % np.sum(np.sum(word_embedding_matrix, axis=1) == 0)) # In[66]: units = 150 dropout = 0.25 nb_filter = 32 filter_length = 3 embedding_dim = 300 model1 = Sequential() model1.add(Embedding(nb_words + 1, embedding_dim, weights = [word_embedding_matrix], input_length = max_question_len, trainable = False)) model1.add(Convolution1D(nb_filter = nb_filter, filter_length = filter_length, border_mode = 'same')) model1.add(BatchNormalization()) model1.add(Activation('relu')) model1.add(Dropout(dropout)) model1.add(Convolution1D(nb_filter = nb_filter, filter_length = filter_length, border_mode = 'same')) model1.add(BatchNormalization()) model1.add(Activation('relu')) model1.add(Dropout(dropout)) model1.add(Flatten()) model2 = Sequential() model2.add(Embedding(nb_words + 1, embedding_dim, weights = [word_embedding_matrix], input_length = max_question_len, trainable = False)) model2.add(Convolution1D(nb_filter = nb_filter, filter_length = filter_length, border_mode = 'same')) model2.add(BatchNormalization()) model2.add(Activation('relu')) model2.add(Dropout(dropout)) model2.add(Convolution1D(nb_filter = nb_filter, filter_length = filter_length, border_mode = 'same')) model2.add(BatchNormalization()) model2.add(Activation('relu')) model2.add(Dropout(dropout)) model2.add(Flatten()) model3 = Sequential() model3.add(Embedding(nb_words + 1, embedding_dim, weights = [word_embedding_matrix], input_length = max_question_len, trainable = False)) model3.add(TimeDistributed(Dense(embedding_dim))) model3.add(BatchNormalization()) model3.add(Activation('relu')) model3.add(Dropout(dropout)) model3.add(Lambda(lambda x: K.max(x, axis=1), output_shape=(embedding_dim, ))) model4 = Sequential() model4.add(Embedding(nb_words + 1, embedding_dim, weights = [word_embedding_matrix], input_length = max_question_len, trainable = False)) model4.add(TimeDistributed(Dense(embedding_dim))) model4.add(BatchNormalization()) model4.add(Activation('relu')) model4.add(Dropout(dropout)) model4.add(Lambda(lambda x: K.max(x, axis=1), output_shape=(embedding_dim, ))) modela = Sequential() modela.add(Merge([model1, model2], mode='concat')) modela.add(Dense(units)) modela.add(BatchNormalization()) modela.add(Activation('relu')) modela.add(Dropout(dropout)) modela.add(Dense(units)) modela.add(BatchNormalization()) modela.add(Activation('relu')) modela.add(Dropout(dropout)) modelb = Sequential() modelb.add(Merge([model3, model4], mode='concat')) modelb.add(Dense(units)) modelb.add(BatchNormalization()) modelb.add(Activation('relu')) modelb.add(Dropout(dropout)) modelb.add(Dense(units)) modelb.add(BatchNormalization()) modelb.add(Activation('relu')) modelb.add(Dropout(dropout)) model = Sequential() model.add(Merge([modela, modelb], mode='concat')) model.add(Dense(units)) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Dropout(dropout)) model.add(Dense(units)) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Dropout(dropout)) model.add(Dense(1)) model.add(BatchNormalization()) model.add(Activation('sigmoid')) #sgd = SGD(lr=0.01, decay=5e-6, momentum=0.9, nesterov=True) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # In[67]: save_best_weights = 'question_pairs_weights.h5' t0 = time.time() callbacks = [ModelCheckpoint(save_best_weights, monitor='val_loss', save_best_only=True), EarlyStopping(monitor='val_loss', patience=5, verbose=1, mode='auto')] history = model.fit([train_q1, train_q2], y_train, batch_size=200, nb_epoch=100, validation_split=0.1, verbose=True, shuffle=True, callbacks=callbacks) t1 = time.time() print("Minutes elapsed: %f" % ((t1 - t0) / 60.)) # In[68]: summary_stats = pd.DataFrame({'epoch': [ i + 1 for i in history.epoch ], 'train_acc': history.history['acc'], 'valid_acc': history.history['val_acc'], 'train_loss': history.history['loss'], 'valid_loss': history.history['val_loss']}) # In[69]: summary_stats # In[70]: plt.plot(summary_stats.train_loss) plt.plot(summary_stats.valid_loss) plt.show() # In[71]: min_loss, idx = min((loss, idx) for (idx, loss) in enumerate(history.history['val_loss'])) print('Minimum loss at epoch', '{:d}'.format(idx+1), '=', '{:.4f}'.format(min_loss)) min_loss = round(min_loss, 4) # In[72]: model.load_weights(save_best_weights) predictions = model.predict([test_q1, test_q2], verbose = True) # In[73]: #Create submission submission = pd.DataFrame(predictions, columns=['is_duplicate']) submission.insert(0, 'test_id', test.test_id) file_name = 'submission_{}.csv'.format(min_loss) submission.to_csv(file_name, index=False) # In[74]: submission.head(10)
mit
mayblue9/scikit-learn
examples/linear_model/lasso_dense_vs_sparse_data.py
348
1862
""" ============================== Lasso on dense and sparse data ============================== We show that linear_model.Lasso provides the same results for dense and sparse data and that in the case of sparse data the speed is improved. """ print(__doc__) from time import time from scipy import sparse from scipy import linalg from sklearn.datasets.samples_generator import make_regression from sklearn.linear_model import Lasso ############################################################################### # The two Lasso implementations on Dense data print("--- Dense matrices") X, y = make_regression(n_samples=200, n_features=5000, random_state=0) X_sp = sparse.coo_matrix(X) alpha = 1 sparse_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=1000) dense_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=1000) t0 = time() sparse_lasso.fit(X_sp, y) print("Sparse Lasso done in %fs" % (time() - t0)) t0 = time() dense_lasso.fit(X, y) print("Dense Lasso done in %fs" % (time() - t0)) print("Distance between coefficients : %s" % linalg.norm(sparse_lasso.coef_ - dense_lasso.coef_)) ############################################################################### # The two Lasso implementations on Sparse data print("--- Sparse matrices") Xs = X.copy() Xs[Xs < 2.5] = 0.0 Xs = sparse.coo_matrix(Xs) Xs = Xs.tocsc() print("Matrix density : %s %%" % (Xs.nnz / float(X.size) * 100)) alpha = 0.1 sparse_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=10000) dense_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=10000) t0 = time() sparse_lasso.fit(Xs, y) print("Sparse Lasso done in %fs" % (time() - t0)) t0 = time() dense_lasso.fit(Xs.toarray(), y) print("Dense Lasso done in %fs" % (time() - t0)) print("Distance between coefficients : %s" % linalg.norm(sparse_lasso.coef_ - dense_lasso.coef_))
bsd-3-clause
YinongLong/scikit-learn
sklearn/manifold/isomap.py
50
7515
"""Isomap for manifold learning""" # Author: Jake Vanderplas -- <vanderplas@astro.washington.edu> # License: BSD 3 clause (C) 2011 import numpy as np from ..base import BaseEstimator, TransformerMixin from ..neighbors import NearestNeighbors, kneighbors_graph from ..utils import check_array from ..utils.graph import graph_shortest_path from ..decomposition import KernelPCA from ..preprocessing import KernelCenterer class Isomap(BaseEstimator, TransformerMixin): """Isomap Embedding Non-linear dimensionality reduction through Isometric Mapping Read more in the :ref:`User Guide <isomap>`. Parameters ---------- n_neighbors : integer number of neighbors to consider for each point. n_components : integer number of coordinates for the manifold eigen_solver : ['auto'|'arpack'|'dense'] 'auto' : Attempt to choose the most efficient solver for the given problem. 'arpack' : Use Arnoldi decomposition to find the eigenvalues and eigenvectors. 'dense' : Use a direct solver (i.e. LAPACK) for the eigenvalue decomposition. tol : float Convergence tolerance passed to arpack or lobpcg. not used if eigen_solver == 'dense'. max_iter : integer Maximum number of iterations for the arpack solver. not used if eigen_solver == 'dense'. path_method : string ['auto'|'FW'|'D'] Method to use in finding shortest path. 'auto' : attempt to choose the best algorithm automatically. 'FW' : Floyd-Warshall algorithm. 'D' : Dijkstra's algorithm. neighbors_algorithm : string ['auto'|'brute'|'kd_tree'|'ball_tree'] Algorithm to use for nearest neighbors search, passed to neighbors.NearestNeighbors instance. n_jobs : int, optional (default = 1) The number of parallel jobs to run. If ``-1``, then the number of jobs is set to the number of CPU cores. Attributes ---------- embedding_ : array-like, shape (n_samples, n_components) Stores the embedding vectors. kernel_pca_ : object `KernelPCA` object used to implement the embedding. training_data_ : array-like, shape (n_samples, n_features) Stores the training data. nbrs_ : sklearn.neighbors.NearestNeighbors instance Stores nearest neighbors instance, including BallTree or KDtree if applicable. dist_matrix_ : array-like, shape (n_samples, n_samples) Stores the geodesic distance matrix of training data. References ---------- .. [1] Tenenbaum, J.B.; De Silva, V.; & Langford, J.C. A global geometric framework for nonlinear dimensionality reduction. Science 290 (5500) """ def __init__(self, n_neighbors=5, n_components=2, eigen_solver='auto', tol=0, max_iter=None, path_method='auto', neighbors_algorithm='auto', n_jobs=1): self.n_neighbors = n_neighbors self.n_components = n_components self.eigen_solver = eigen_solver self.tol = tol self.max_iter = max_iter self.path_method = path_method self.neighbors_algorithm = neighbors_algorithm self.n_jobs = n_jobs def _fit_transform(self, X): X = check_array(X) self.nbrs_ = NearestNeighbors(n_neighbors=self.n_neighbors, algorithm=self.neighbors_algorithm, n_jobs=self.n_jobs) self.nbrs_.fit(X) self.training_data_ = self.nbrs_._fit_X self.kernel_pca_ = KernelPCA(n_components=self.n_components, kernel="precomputed", eigen_solver=self.eigen_solver, tol=self.tol, max_iter=self.max_iter, n_jobs=self.n_jobs) kng = kneighbors_graph(self.nbrs_, self.n_neighbors, mode='distance', n_jobs=self.n_jobs) self.dist_matrix_ = graph_shortest_path(kng, method=self.path_method, directed=False) G = self.dist_matrix_ ** 2 G *= -0.5 self.embedding_ = self.kernel_pca_.fit_transform(G) def reconstruction_error(self): """Compute the reconstruction error for the embedding. Returns ------- reconstruction_error : float Notes ------- The cost function of an isomap embedding is ``E = frobenius_norm[K(D) - K(D_fit)] / n_samples`` Where D is the matrix of distances for the input data X, D_fit is the matrix of distances for the output embedding X_fit, and K is the isomap kernel: ``K(D) = -0.5 * (I - 1/n_samples) * D^2 * (I - 1/n_samples)`` """ G = -0.5 * self.dist_matrix_ ** 2 G_center = KernelCenterer().fit_transform(G) evals = self.kernel_pca_.lambdas_ return np.sqrt(np.sum(G_center ** 2) - np.sum(evals ** 2)) / G.shape[0] def fit(self, X, y=None): """Compute the embedding vectors for data X Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors} Sample data, shape = (n_samples, n_features), in the form of a numpy array, precomputed tree, or NearestNeighbors object. Returns ------- self : returns an instance of self. """ self._fit_transform(X) return self def fit_transform(self, X, y=None): """Fit the model from data in X and transform X. Parameters ---------- X: {array-like, sparse matrix, BallTree, KDTree} Training vector, where n_samples in the number of samples and n_features is the number of features. Returns ------- X_new: array-like, shape (n_samples, n_components) """ self._fit_transform(X) return self.embedding_ def transform(self, X): """Transform X. This is implemented by linking the points X into the graph of geodesic distances of the training data. First the `n_neighbors` nearest neighbors of X are found in the training data, and from these the shortest geodesic distances from each point in X to each point in the training data are computed in order to construct the kernel. The embedding of X is the projection of this kernel onto the embedding vectors of the training set. Parameters ---------- X: array-like, shape (n_samples, n_features) Returns ------- X_new: array-like, shape (n_samples, n_components) """ X = check_array(X) distances, indices = self.nbrs_.kneighbors(X, return_distance=True) # Create the graph of shortest distances from X to self.training_data_ # via the nearest neighbors of X. # This can be done as a single array operation, but it potentially # takes a lot of memory. To avoid that, use a loop: G_X = np.zeros((X.shape[0], self.training_data_.shape[0])) for i in range(X.shape[0]): G_X[i] = np.min(self.dist_matrix_[indices[i]] + distances[i][:, None], 0) G_X **= 2 G_X *= -0.5 return self.kernel_pca_.transform(G_X)
bsd-3-clause
indashnet/InDashNet.Open.UN2000
android/external/chromium_org/chrome/test/nacl_test_injection/buildbot_nacl_integration.py
61
2538
#!/usr/bin/env python # Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os import subprocess import sys def Main(args): pwd = os.environ.get('PWD', '') is_integration_bot = 'nacl-chrome' in pwd # This environment variable check mimics what # buildbot_chrome_nacl_stage.py does. is_win64 = (sys.platform in ('win32', 'cygwin') and ('64' in os.environ.get('PROCESSOR_ARCHITECTURE', '') or '64' in os.environ.get('PROCESSOR_ARCHITEW6432', ''))) # On the main Chrome waterfall, we may need to control where the tests are # run. # If there is serious skew in the PPAPI interface that causes all of # the NaCl integration tests to fail, you can uncomment the # following block. (Make sure you comment it out when the issues # are resolved.) *However*, it is much preferred to add tests to # the 'tests_to_disable' list below. #if not is_integration_bot: # return tests_to_disable = [] # In general, you should disable tests inside this conditional. This turns # them off on the main Chrome waterfall, but not on NaCl's integration bots. # This makes it easier to see when things have been fixed NaCl side. if not is_integration_bot: # http://code.google.com/p/nativeclient/issues/detail?id=2511 tests_to_disable.append('run_ppapi_ppb_image_data_browser_test') if sys.platform == 'darwin': # TODO(mseaborn) fix # http://code.google.com/p/nativeclient/issues/detail?id=1835 tests_to_disable.append('run_ppapi_crash_browser_test') if sys.platform in ('win32', 'cygwin'): # This one is only failing for nacl_glibc on x64 Windows # but it is not clear how to disable only that limited case. # See http://crbug.com/132395 tests_to_disable.append('run_inbrowser_test_runner') script_dir = os.path.dirname(os.path.abspath(__file__)) nacl_integration_script = os.path.join(script_dir, 'buildbot_chrome_nacl_stage.py') cmd = [sys.executable, nacl_integration_script, # TODO(ncbray) re-enable. # https://code.google.com/p/chromium/issues/detail?id=133568 '--disable_glibc', '--disable_tests=%s' % ','.join(tests_to_disable)] cmd += args sys.stdout.write('Running %s\n' % ' '.join(cmd)) sys.stdout.flush() return subprocess.call(cmd) if __name__ == '__main__': sys.exit(Main(sys.argv[1:]))
apache-2.0
CVL-dev/cvl-fabric-launcher
pyinstaller-2.1/PyInstaller/loader/rthooks/pyi_rth_mplconfig.py
10
1430
#----------------------------------------------------------------------------- # Copyright (c) 2013, PyInstaller Development Team. # # Distributed under the terms of the GNU General Public License with exception # for distributing bootloader. # # The full license is in the file COPYING.txt, distributed with this software. #----------------------------------------------------------------------------- # matplotlib will create $HOME/.matplotlib folder in user's home directory. # In this directory there is fontList.cache file which lists paths # to matplotlib fonts. # # When you run your onefile exe for the first time it's extracted to for example # "_MEIxxxxx" temp directory and fontList.cache file is created with fonts paths # pointing to this directory. # # Second time you run your exe new directory is created "_MEIyyyyy" but # fontList.cache file still points to previous directory which was deleted. # And then you will get error like: # # RuntimeError: Could not open facefile # # We need to force matplotlib to recreate config directory every time you run # your app. import atexit import os import shutil import tempfile # Put matplot config dir to temp directory. configdir = tempfile.mkdtemp() os.environ['MPLCONFIGDIR'] = configdir try: # Remove temp directory at application exit and ignore any errors. atexit.register(shutil.rmtree, configdir, ignore_errors=True) except OSError: pass
gpl-3.0
mjgrav2001/scikit-learn
sklearn/datasets/species_distributions.py
198
7923
""" ============================= Species distribution dataset ============================= This dataset represents the geographic distribution of species. The dataset is provided by Phillips et. al. (2006). The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/apps/redlist/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/apps/redlist/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References: * `"Maximum entropy modeling of species geographic distributions" <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. Notes: * See examples/applications/plot_species_distribution_modeling.py for an example of using this dataset """ # Authors: Peter Prettenhofer <peter.prettenhofer@gmail.com> # Jake Vanderplas <vanderplas@astro.washington.edu> # # License: BSD 3 clause from io import BytesIO from os import makedirs from os.path import join from os.path import exists try: # Python 2 from urllib2 import urlopen PY2 = True except ImportError: # Python 3 from urllib.request import urlopen PY2 = False import numpy as np from sklearn.datasets.base import get_data_home, Bunch from sklearn.externals import joblib DIRECTORY_URL = "http://www.cs.princeton.edu/~schapire/maxent/datasets/" SAMPLES_URL = join(DIRECTORY_URL, "samples.zip") COVERAGES_URL = join(DIRECTORY_URL, "coverages.zip") DATA_ARCHIVE_NAME = "species_coverage.pkz" def _load_coverage(F, header_length=6, dtype=np.int16): """Load a coverage file from an open file object. This will return a numpy array of the given dtype """ header = [F.readline() for i in range(header_length)] make_tuple = lambda t: (t.split()[0], float(t.split()[1])) header = dict([make_tuple(line) for line in header]) M = np.loadtxt(F, dtype=dtype) nodata = header[b'NODATA_value'] if nodata != -9999: print(nodata) M[nodata] = -9999 return M def _load_csv(F): """Load csv file. Parameters ---------- F : file object CSV file open in byte mode. Returns ------- rec : np.ndarray record array representing the data """ if PY2: # Numpy recarray wants Python 2 str but not unicode names = F.readline().strip().split(',') else: # Numpy recarray wants Python 3 str but not bytes... names = F.readline().decode('ascii').strip().split(',') rec = np.loadtxt(F, skiprows=0, delimiter=',', dtype='a22,f4,f4') rec.dtype.names = names return rec def construct_grids(batch): """Construct the map grid from the batch object Parameters ---------- batch : Batch object The object returned by :func:`fetch_species_distributions` Returns ------- (xgrid, ygrid) : 1-D arrays The grid corresponding to the values in batch.coverages """ # x,y coordinates for corner cells xmin = batch.x_left_lower_corner + batch.grid_size xmax = xmin + (batch.Nx * batch.grid_size) ymin = batch.y_left_lower_corner + batch.grid_size ymax = ymin + (batch.Ny * batch.grid_size) # x coordinates of the grid cells xgrid = np.arange(xmin, xmax, batch.grid_size) # y coordinates of the grid cells ygrid = np.arange(ymin, ymax, batch.grid_size) return (xgrid, ygrid) def fetch_species_distributions(data_home=None, download_if_missing=True): """Loader for species distribution dataset from Phillips et. al. (2006) Read more in the :ref:`User Guide <datasets>`. Parameters ---------- data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. download_if_missing: optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns -------- The data is returned as a Bunch object with the following attributes: coverages : array, shape = [14, 1592, 1212] These represent the 14 features measured at each point of the map grid. The latitude/longitude values for the grid are discussed below. Missing data is represented by the value -9999. train : record array, shape = (1623,) The training points for the data. Each point has three fields: - train['species'] is the species name - train['dd long'] is the longitude, in degrees - train['dd lat'] is the latitude, in degrees test : record array, shape = (619,) The test points for the data. Same format as the training data. Nx, Ny : integers The number of longitudes (x) and latitudes (y) in the grid x_left_lower_corner, y_left_lower_corner : floats The (x,y) position of the lower-left corner, in degrees grid_size : float The spacing between points of the grid, in degrees Notes ------ This dataset represents the geographic distribution of species. The dataset is provided by Phillips et. al. (2006). The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/apps/redlist/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/apps/redlist/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References ---------- * `"Maximum entropy modeling of species geographic distributions" <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. Notes ----- * See examples/applications/plot_species_distribution_modeling.py for an example of using this dataset with scikit-learn """ data_home = get_data_home(data_home) if not exists(data_home): makedirs(data_home) # Define parameters for the data files. These should not be changed # unless the data model changes. They will be saved in the npz file # with the downloaded data. extra_params = dict(x_left_lower_corner=-94.8, Nx=1212, y_left_lower_corner=-56.05, Ny=1592, grid_size=0.05) dtype = np.int16 if not exists(join(data_home, DATA_ARCHIVE_NAME)): print('Downloading species data from %s to %s' % (SAMPLES_URL, data_home)) X = np.load(BytesIO(urlopen(SAMPLES_URL).read())) for f in X.files: fhandle = BytesIO(X[f]) if 'train' in f: train = _load_csv(fhandle) if 'test' in f: test = _load_csv(fhandle) print('Downloading coverage data from %s to %s' % (COVERAGES_URL, data_home)) X = np.load(BytesIO(urlopen(COVERAGES_URL).read())) coverages = [] for f in X.files: fhandle = BytesIO(X[f]) print(' - converting', f) coverages.append(_load_coverage(fhandle)) coverages = np.asarray(coverages, dtype=dtype) bunch = Bunch(coverages=coverages, test=test, train=train, **extra_params) joblib.dump(bunch, join(data_home, DATA_ARCHIVE_NAME), compress=9) else: bunch = joblib.load(join(data_home, DATA_ARCHIVE_NAME)) return bunch
bsd-3-clause
anntzer/scikit-learn
sklearn/tests/test_min_dependencies_readme.py
9
1432
"""Tests for the minimum dependencies in the README.rst file.""" import os import re from pathlib import Path import pytest import sklearn from sklearn._min_dependencies import dependent_packages from sklearn.utils.fixes import parse_version def test_min_dependencies_readme(): # Test that the minimum dependencies in the README.rst file are # consistent with the minimum dependencies defined at the file: # sklearn/_min_dependencies.py pattern = re.compile(r"(\.\. \|)" + r"(([A-Za-z]+\-?)+)" + r"(MinVersion\| replace::)" + r"( [0-9]+\.[0-9]+(\.[0-9]+)?)") readme_path = Path(sklearn.__path__[0]).parents[0] readme_file = readme_path / "README.rst" if not os.path.exists(readme_file): # Skip the test if the README.rst file is not available. # For instance, when installing scikit-learn from wheels pytest.skip("The README.rst file is not available.") with readme_file.open("r") as f: for line in f: matched = pattern.match(line) if not matched: continue package, version = matched.group(2), matched.group(5) if package in dependent_packages: version = parse_version(version) min_version = parse_version(dependent_packages[package][0]) assert version == min_version
bsd-3-clause
Hiyorimi/scikit-image
skimage/future/graph/rag.py
5
19594
import networkx as nx import numpy as np from numpy.lib.stride_tricks import as_strided from scipy import ndimage as ndi from scipy import sparse import math from ... import measure, segmentation, util, color from matplotlib import colors, cm from matplotlib import pyplot as plt from matplotlib.collections import LineCollection def _edge_generator_from_csr(csr_matrix): """Yield weighted edge triples for use by NetworkX from a CSR matrix. This function is a straight rewrite of `networkx.convert_matrix._csr_gen_triples`. Since that is a private function, it is safer to include our own here. Parameters ---------- csr_matrix : scipy.sparse.csr_matrix The input matrix. An edge (i, j, w) will be yielded if there is a data value for coordinates (i, j) in the matrix, even if that value is 0. Yields ------ i, j, w : (int, int, float) tuples Each value `w` in the matrix along with its coordinates (i, j). Examples -------- >>> dense = np.eye(2, dtype=np.float) >>> csr = sparse.csr_matrix(dense) >>> edges = _edge_generator_from_csr(csr) >>> list(edges) [(0, 0, 1.0), (1, 1, 1.0)] """ nrows = csr_matrix.shape[0] values = csr_matrix.data indptr = csr_matrix.indptr col_indices = csr_matrix.indices for i in range(nrows): for j in range(indptr[i], indptr[i + 1]): yield i, col_indices[j], values[j] def min_weight(graph, src, dst, n): """Callback to handle merging nodes by choosing minimum weight. Returns a dictionary with `"weight"` set as either the weight between (`src`, `n`) or (`dst`, `n`) in `graph` or the minimum of the two when both exist. Parameters ---------- graph : RAG The graph under consideration. src, dst : int The verices in `graph` to be merged. n : int A neighbor of `src` or `dst` or both. Returns ------- data : dict A dict with the `"weight"` attribute set the weight between (`src`, `n`) or (`dst`, `n`) in `graph` or the minimum of the two when both exist. """ # cover the cases where n only has edge to either `src` or `dst` default = {'weight': np.inf} w1 = graph[n].get(src, default)['weight'] w2 = graph[n].get(dst, default)['weight'] return {'weight': min(w1, w2)} def _add_edge_filter(values, graph): """Create edge in `graph` between central element of `values` and the rest. Add an edge between the middle element in `values` and all other elements of `values` into `graph`. ``values[len(values) // 2]`` is expected to be the central value of the footprint used. Parameters ---------- values : array The array to process. graph : RAG The graph to add edges in. Returns ------- 0 : float Always returns 0. The return value is required so that `generic_filter` can put it in the output array, but it is ignored by this filter. """ values = values.astype(int) center = values[len(values) // 2] for value in values: if value != center and not graph.has_edge(center, value): graph.add_edge(center, value) return 0. class RAG(nx.Graph): """ The Region Adjacency Graph (RAG) of an image, subclasses `networx.Graph <http://networkx.github.io/documentation/latest/reference/classes.graph.html>`_ Parameters ---------- label_image : array of int An initial segmentation, with each region labeled as a different integer. Every unique value in ``label_image`` will correspond to a node in the graph. connectivity : int in {1, ..., ``label_image.ndim``}, optional The connectivity between pixels in ``label_image``. For a 2D image, a connectivity of 1 corresponds to immediate neighbors up, down, left, and right, while a connectivity of 2 also includes diagonal neighbors. See `scipy.ndimage.generate_binary_structure`. data : networkx Graph specification, optional Initial or additional edges to pass to the NetworkX Graph constructor. See `networkx.Graph`. Valid edge specifications include edge list (list of tuples), NumPy arrays, and SciPy sparse matrices. **attr : keyword arguments, optional Additional attributes to add to the graph. """ def __init__(self, label_image=None, connectivity=1, data=None, **attr): super(RAG, self).__init__(data, **attr) if self.number_of_nodes() == 0: self.max_id = 0 else: self.max_id = max(self.nodes_iter()) if label_image is not None: fp = ndi.generate_binary_structure(label_image.ndim, connectivity) # In the next ``ndi.generic_filter`` function, the kwarg # ``output`` is used to provide a strided array with a single # 64-bit floating point number, to which the function repeatedly # writes. This is done because even if we don't care about the # output, without this, a float array of the same shape as the # input image will be created and that could be expensive in # memory consumption. ndi.generic_filter( label_image, function=_add_edge_filter, footprint=fp, mode='nearest', output=as_strided(np.empty((1,), dtype=np.float_), shape=label_image.shape, strides=((0,) * label_image.ndim)), extra_arguments=(self,)) def merge_nodes(self, src, dst, weight_func=min_weight, in_place=True, extra_arguments=[], extra_keywords={}): """Merge node `src` and `dst`. The new combined node is adjacent to all the neighbors of `src` and `dst`. `weight_func` is called to decide the weight of edges incident on the new node. Parameters ---------- src, dst : int Nodes to be merged. weight_func : callable, optional Function to decide the attributes of edges incident on the new node. For each neighbor `n` for `src and `dst`, `weight_func` will be called as follows: `weight_func(src, dst, n, *extra_arguments, **extra_keywords)`. `src`, `dst` and `n` are IDs of vertices in the RAG object which is in turn a subclass of `networkx.Graph`. It is expected to return a dict of attributes of the resulting edge. in_place : bool, optional If set to `True`, the merged node has the id `dst`, else merged node has a new id which is returned. extra_arguments : sequence, optional The sequence of extra positional arguments passed to `weight_func`. extra_keywords : dictionary, optional The dict of keyword arguments passed to the `weight_func`. Returns ------- id : int The id of the new node. Notes ----- If `in_place` is `False` the resulting node has a new id, rather than `dst`. """ src_nbrs = set(self.neighbors(src)) dst_nbrs = set(self.neighbors(dst)) neighbors = (src_nbrs | dst_nbrs) - set([src, dst]) if in_place: new = dst else: new = self.next_id() self.add_node(new) for neighbor in neighbors: data = weight_func(self, src, new, neighbor, *extra_arguments, **extra_keywords) self.add_edge(neighbor, new, attr_dict=data) self.node[new]['labels'] = (self.node[src]['labels'] + self.node[dst]['labels']) self.remove_node(src) if not in_place: self.remove_node(dst) return new def add_node(self, n, attr_dict=None, **attr): """Add node `n` while updating the maximum node id. .. seealso:: :func:`networkx.Graph.add_node`.""" super(RAG, self).add_node(n, attr_dict, **attr) self.max_id = max(n, self.max_id) def add_edge(self, u, v, attr_dict=None, **attr): """Add an edge between `u` and `v` while updating max node id. .. seealso:: :func:`networkx.Graph.add_edge`.""" super(RAG, self).add_edge(u, v, attr_dict, **attr) self.max_id = max(u, v, self.max_id) def copy(self): """Copy the graph with its max node id. .. seealso:: :func:`networkx.Graph.copy`.""" g = super(RAG, self).copy() g.max_id = self.max_id return g def next_id(self): """Returns the `id` for the new node to be inserted. The current implementation returns one more than the maximum `id`. Returns ------- id : int The `id` of the new node to be inserted. """ return self.max_id + 1 def _add_node_silent(self, n): """Add node `n` without updating the maximum node id. This is a convenience method used internally. .. seealso:: :func:`networkx.Graph.add_node`.""" super(RAG, self).add_node(n) def rag_mean_color(image, labels, connectivity=2, mode='distance', sigma=255.0): """Compute the Region Adjacency Graph using mean colors. Given an image and its initial segmentation, this method constructs the corresponding Region Adjacency Graph (RAG). Each node in the RAG represents a set of pixels within `image` with the same label in `labels`. The weight between two adjacent regions represents how similar or dissimilar two regions are depending on the `mode` parameter. Parameters ---------- image : ndarray, shape(M, N, [..., P,] 3) Input image. labels : ndarray, shape(M, N, [..., P,]) The labelled image. This should have one dimension less than `image`. If `image` has dimensions `(M, N, 3)` `labels` should have dimensions `(M, N)`. connectivity : int, optional Pixels with a squared distance less than `connectivity` from each other are considered adjacent. It can range from 1 to `labels.ndim`. Its behavior is the same as `connectivity` parameter in `scipy.ndimage.generate_binary_structure`. mode : {'distance', 'similarity'}, optional The strategy to assign edge weights. 'distance' : The weight between two adjacent regions is the :math:`|c_1 - c_2|`, where :math:`c_1` and :math:`c_2` are the mean colors of the two regions. It represents the Euclidean distance in their average color. 'similarity' : The weight between two adjacent is :math:`e^{-d^2/sigma}` where :math:`d=|c_1 - c_2|`, where :math:`c_1` and :math:`c_2` are the mean colors of the two regions. It represents how similar two regions are. sigma : float, optional Used for computation when `mode` is "similarity". It governs how close to each other two colors should be, for their corresponding edge weight to be significant. A very large value of `sigma` could make any two colors behave as though they were similar. Returns ------- out : RAG The region adjacency graph. Examples -------- >>> from skimage import data, segmentation >>> from skimage.future import graph >>> img = data.astronaut() >>> labels = segmentation.slic(img) >>> rag = graph.rag_mean_color(img, labels) References ---------- .. [1] Alain Tremeau and Philippe Colantoni "Regions Adjacency Graph Applied To Color Image Segmentation" http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.5274 """ graph = RAG(labels, connectivity=connectivity) for n in graph: graph.node[n].update({'labels': [n], 'pixel count': 0, 'total color': np.array([0, 0, 0], dtype=np.double)}) for index in np.ndindex(labels.shape): current = labels[index] graph.node[current]['pixel count'] += 1 graph.node[current]['total color'] += image[index] for n in graph: graph.node[n]['mean color'] = (graph.node[n]['total color'] / graph.node[n]['pixel count']) for x, y, d in graph.edges_iter(data=True): diff = graph.node[x]['mean color'] - graph.node[y]['mean color'] diff = np.linalg.norm(diff) if mode == 'similarity': d['weight'] = math.e ** (-(diff ** 2) / sigma) elif mode == 'distance': d['weight'] = diff else: raise ValueError("The mode '%s' is not recognised" % mode) return graph def rag_boundary(labels, edge_map, connectivity=2): """ Comouter RAG based on region boundaries Given an image's initial segmentation and its edge map this method constructs the corresponding Region Adjacency Graph (RAG). Each node in the RAG represents a set of pixels within the image with the same label in `labels`. The weight between two adjacent regions is the average value in `edge_map` along their boundary. labels : ndarray The labelled image. edge_map : ndarray This should have the same shape as that of `labels`. For all pixels along the boundary between 2 adjacent regions, the average value of the corresponding pixels in `edge_map` is the edge weight between them. connectivity : int, optional Pixels with a squared distance less than `connectivity` from each other are considered adjacent. It can range from 1 to `labels.ndim`. Its behavior is the same as `connectivity` parameter in `scipy.ndimage.filters.generate_binary_structure`. Examples -------- >>> from skimage import data, segmentation, filters, color >>> from skimage.future import graph >>> img = data.chelsea() >>> labels = segmentation.slic(img) >>> edge_map = filters.sobel(color.rgb2gray(img)) >>> rag = graph.rag_boundary(labels, edge_map) """ conn = ndi.generate_binary_structure(labels.ndim, connectivity) eroded = ndi.grey_erosion(labels, footprint=conn) dilated = ndi.grey_dilation(labels, footprint=conn) boundaries0 = (eroded != labels) boundaries1 = (dilated != labels) labels_small = np.concatenate((eroded[boundaries0], labels[boundaries1])) labels_large = np.concatenate((labels[boundaries0], dilated[boundaries1])) n = np.max(labels_large) + 1 # use a dummy broadcast array as data for RAG ones = as_strided(np.ones((1,), dtype=np.float), shape=labels_small.shape, strides=(0,)) count_matrix = sparse.coo_matrix((ones, (labels_small, labels_large)), dtype=np.int_, shape=(n, n)).tocsr() data = np.concatenate((edge_map[boundaries0], edge_map[boundaries1])) data_coo = sparse.coo_matrix((data, (labels_small, labels_large))) graph_matrix = data_coo.tocsr() graph_matrix.data /= count_matrix.data rag = RAG() rag.add_weighted_edges_from(_edge_generator_from_csr(graph_matrix), weight='weight') rag.add_weighted_edges_from(_edge_generator_from_csr(count_matrix), weight='count') for n in rag.nodes(): rag.node[n].update({'labels': [n]}) return rag def show_rag(labels, rag, img, border_color='black', edge_width=1.5, edge_cmap='magma', img_cmap='bone', in_place=True, ax=None): """Draw a Region Adjacency Graph on an image. Given a labelled image and its corresponding RAG, draw the nodes and edges of the RAG on the image with the specified colors. Edges are drawn between the centroid of the 2 adjacent regions in the image. Parameters ---------- labels : ndarray, shape (M, N) The labelled image. rag : RAG The Region Adjacency Graph. img : ndarray, shape (M, N[, 3]) Input image. If `colormap` is `None`, the image should be in RGB format. border_color : color spec, optional Color with which the borders between regions are drawn. edge_width : float, optional The thickness with which the RAG edges are drawn. edge_cmap : :py:class:`matplotlib.colors.Colormap`, optional Any matplotlib colormap with which the edges are drawn. img_cmap : :py:class:`matplotlib.colors.Colormap`, optional Any matplotlib colormap with which the image is draw. If set to `None` the image is drawn as it is. in_place : bool, optional If set, the RAG is modified in place. For each node `n` the function will set a new attribute ``rag.node[n]['centroid']``. ax : :py:class:`matplotlib.axes.Axes`, optional The axes to draw on. If not specified, new axes are created and drawn on. Returns ------- lc : :py:class:`matplotlib.collections.LineCollection` A colection of lines that represent the edges of the graph. It can be passed to the :meth:`matplotlib.figure.Figure.colorbar` function. Examples -------- >>> from skimage import data, segmentation >>> from skimage.future import graph >>> img = data.coffee() >>> labels = segmentation.slic(img) >>> g = graph.rag_mean_color(img, labels) >>> lc = graph.show_rag(labels, g, img) >>> cbar = plt.colorbar(lc) """ if not in_place: rag = rag.copy() if ax is None: fig, ax = plt.subplots() out = util.img_as_float(img, force_copy=True) if img_cmap is None: if img.ndim < 3 or img.shape[2] not in [3, 4]: msg = 'If colormap is `None`, an RGB or RGBA image should be given' raise ValueError(msg) # Ignore the alpha channel out = img[:, :, :3] else: img_cmap = cm.get_cmap(img_cmap) out = color.rgb2gray(img) # Ignore the alpha channel out = img_cmap(out)[:, :, :3] edge_cmap = cm.get_cmap(edge_cmap) # Handling the case where one node has multiple labels # offset is 1 so that regionprops does not ignore 0 offset = 1 map_array = np.arange(labels.max() + 1) for n, d in rag.nodes_iter(data=True): for label in d['labels']: map_array[label] = offset offset += 1 rag_labels = map_array[labels] regions = measure.regionprops(rag_labels) for (n, data), region in zip(rag.nodes_iter(data=True), regions): data['centroid'] = tuple(map(int, region['centroid'])) cc = colors.ColorConverter() if border_color is not None: border_color = cc.to_rgb(border_color) out = segmentation.mark_boundaries(out, rag_labels, color=border_color) ax.imshow(out) # Defining the end points of the edges # The tuple[::-1] syntax reverses a tuple as matplotlib uses (x,y) # convention while skimage uses (row, column) lines = [[rag.node[n1]['centroid'][::-1], rag.node[n2]['centroid'][::-1]] for (n1, n2) in rag.edges_iter()] lc = LineCollection(lines, linewidths=edge_width, cmap=edge_cmap) edge_weights = [d['weight'] for x, y, d in rag.edges_iter(data=True)] lc.set_array(np.array(edge_weights)) ax.add_collection(lc) return lc
bsd-3-clause
kerzhner/airflow
airflow/contrib/hooks/bigquery_hook.py
2
35738
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ This module contains a BigQuery Hook, as well as a very basic PEP 249 implementation for BigQuery. """ from builtins import range from past.builtins import basestring import logging import time from airflow.contrib.hooks.gcp_api_base_hook import GoogleCloudBaseHook from airflow.hooks.dbapi_hook import DbApiHook from apiclient.discovery import build, HttpError from pandas.io.gbq import GbqConnector, \ _parse_data as gbq_parse_data, \ _check_google_client_version as gbq_check_google_client_version, \ _test_google_api_imports as gbq_test_google_api_imports from pandas.tools.merge import concat logging.getLogger("bigquery").setLevel(logging.INFO) class BigQueryHook(GoogleCloudBaseHook, DbApiHook): """ Interact with BigQuery. This hook uses the Google Cloud Platform connection. """ conn_name_attr = 'bigquery_conn_id' def __init__(self, bigquery_conn_id='bigquery_default', delegate_to=None): super(BigQueryHook, self).__init__( conn_id=bigquery_conn_id, delegate_to=delegate_to) def get_conn(self): """ Returns a BigQuery PEP 249 connection object. """ service = self.get_service() project = self._get_field('project') return BigQueryConnection(service=service, project_id=project) def get_service(self): """ Returns a BigQuery service object. """ http_authorized = self._authorize() return build('bigquery', 'v2', http=http_authorized) def insert_rows(self, table, rows, target_fields=None, commit_every=1000): """ Insertion is currently unsupported. Theoretically, you could use BigQuery's streaming API to insert rows into a table, but this hasn't been implemented. """ raise NotImplementedError() def get_pandas_df(self, bql, parameters=None): """ Returns a Pandas DataFrame for the results produced by a BigQuery query. The DbApiHook method must be overridden because Pandas doesn't support PEP 249 connections, except for SQLite. See: https://github.com/pydata/pandas/blob/master/pandas/io/sql.py#L447 https://github.com/pydata/pandas/issues/6900 :param bql: The BigQuery SQL to execute. :type bql: string """ service = self.get_service() project = self._get_field('project') connector = BigQueryPandasConnector(project, service) schema, pages = connector.run_query(bql) dataframe_list = [] while len(pages) > 0: page = pages.pop() dataframe_list.append(gbq_parse_data(schema, page)) if len(dataframe_list) > 0: return concat(dataframe_list, ignore_index=True) else: return gbq_parse_data(schema, []) class BigQueryPandasConnector(GbqConnector): """ This connector behaves identically to GbqConnector (from Pandas), except that it allows the service to be injected, and disables a call to self.get_credentials(). This allows Airflow to use BigQuery with Pandas without forcing a three legged OAuth connection. Instead, we can inject service account credentials into the binding. """ def __init__(self, project_id, service, reauth=False, verbose=False): gbq_check_google_client_version() gbq_test_google_api_imports() self.project_id = project_id self.reauth = reauth self.service = service self.verbose = verbose class BigQueryConnection(object): """ BigQuery does not have a notion of a persistent connection. Thus, these objects are small stateless factories for cursors, which do all the real work. """ def __init__(self, *args, **kwargs): self._args = args self._kwargs = kwargs def close(self): """ BigQueryConnection does not have anything to close. """ pass def commit(self): """ BigQueryConnection does not support transactions. """ pass def cursor(self): """ Return a new :py:class:`Cursor` object using the connection. """ return BigQueryCursor(*self._args, **self._kwargs) def rollback(self): raise NotImplementedError( "BigQueryConnection does not have transactions") class BigQueryBaseCursor(object): """ The BigQuery base cursor contains helper methods to execute queries against BigQuery. The methods can be used directly by operators, in cases where a PEP 249 cursor isn't needed. """ def __init__(self, service, project_id): self.service = service self.project_id = project_id def run_query( self, bql, destination_dataset_table = False, write_disposition = 'WRITE_EMPTY', allow_large_results=False, udf_config = False, use_legacy_sql=True): """ Executes a BigQuery SQL query. Optionally persists results in a BigQuery table. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs For more details about these parameters. :param bql: The BigQuery SQL to execute. :type bql: string :param destination_dataset_table: The dotted <dataset>.<table> BigQuery table to save the query results. :param write_disposition: What to do if the table already exists in BigQuery. :param allow_large_results: Whether to allow large results. :type allow_large_results: boolean :param udf_config: The User Defined Function configuration for the query. See https://cloud.google.com/bigquery/user-defined-functions for details. :type udf_config: list :param use_legacy_sql: Whether to use legacy SQL (true) or standard SQL (false). :type use_legacy_sql: boolean """ configuration = { 'query': { 'query': bql, 'useLegacySql': use_legacy_sql } } if destination_dataset_table: assert '.' in destination_dataset_table, ( 'Expected destination_dataset_table in the format of ' '<dataset>.<table>. Got: {}').format(destination_dataset_table) destination_project, destination_dataset, destination_table = \ _split_tablename(table_input=destination_dataset_table, default_project_id=self.project_id) configuration['query'].update({ 'allowLargeResults': allow_large_results, 'writeDisposition': write_disposition, 'destinationTable': { 'projectId': destination_project, 'datasetId': destination_dataset, 'tableId': destination_table, } }) if udf_config: assert isinstance(udf_config, list) configuration['query'].update({ 'userDefinedFunctionResources': udf_config }) return self.run_with_configuration(configuration) def run_extract( # noqa self, source_project_dataset_table, destination_cloud_storage_uris, compression='NONE', export_format='CSV', field_delimiter=',', print_header=True): """ Executes a BigQuery extract command to copy data from BigQuery to Google Cloud Storage. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs For more details about these parameters. :param source_project_dataset_table: The dotted <dataset>.<table> BigQuery table to use as the source data. :type source_project_dataset_table: string :param destination_cloud_storage_uris: The destination Google Cloud Storage URI (e.g. gs://some-bucket/some-file.txt). Follows convention defined here: https://cloud.google.com/bigquery/exporting-data-from-bigquery#exportingmultiple :type destination_cloud_storage_uris: list :param compression: Type of compression to use. :type compression: string :param export_format: File format to export. :type export_format: string :param field_delimiter: The delimiter to use when extracting to a CSV. :type field_delimiter: string :param print_header: Whether to print a header for a CSV file extract. :type print_header: boolean """ source_project, source_dataset, source_table = \ _split_tablename(table_input=source_project_dataset_table, default_project_id=self.project_id, var_name='source_project_dataset_table') configuration = { 'extract': { 'sourceTable': { 'projectId': source_project, 'datasetId': source_dataset, 'tableId': source_table, }, 'compression': compression, 'destinationUris': destination_cloud_storage_uris, 'destinationFormat': export_format, } } if export_format == 'CSV': # Only set fieldDelimiter and printHeader fields if using CSV. # Google does not like it if you set these fields for other export # formats. configuration['extract']['fieldDelimiter'] = field_delimiter configuration['extract']['printHeader'] = print_header return self.run_with_configuration(configuration) def run_copy(self, source_project_dataset_tables, destination_project_dataset_table, write_disposition='WRITE_EMPTY', create_disposition='CREATE_IF_NEEDED'): """ Executes a BigQuery copy command to copy data from one BigQuery table to another. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs#configuration.copy For more details about these parameters. :param source_project_dataset_tables: One or more dotted (project:|project.)<dataset>.<table> BigQuery tables to use as the source data. Use a list if there are multiple source tables. If <project> is not included, project will be the project defined in the connection json. :type source_project_dataset_tables: list|string :param destination_project_dataset_table: The destination BigQuery table. Format is: (project:|project.)<dataset>.<table> :type destination_project_dataset_table: string :param write_disposition: The write disposition if the table already exists. :type write_disposition: string :param create_disposition: The create disposition if the table doesn't exist. :type create_disposition: string """ source_project_dataset_tables = ( [source_project_dataset_tables] if not isinstance(source_project_dataset_tables, list) else source_project_dataset_tables) source_project_dataset_tables_fixup = [] for source_project_dataset_table in source_project_dataset_tables: source_project, source_dataset, source_table = \ _split_tablename(table_input=source_project_dataset_table, default_project_id=self.project_id, var_name='source_project_dataset_table') source_project_dataset_tables_fixup.append({ 'projectId': source_project, 'datasetId': source_dataset, 'tableId': source_table }) destination_project, destination_dataset, destination_table = \ _split_tablename(table_input=destination_project_dataset_table, default_project_id=self.project_id) configuration = { 'copy': { 'createDisposition': create_disposition, 'writeDisposition': write_disposition, 'sourceTables': source_project_dataset_tables_fixup, 'destinationTable': { 'projectId': destination_project, 'datasetId': destination_dataset, 'tableId': destination_table } } } return self.run_with_configuration(configuration) def run_load(self, destination_project_dataset_table, schema_fields, source_uris, source_format='CSV', create_disposition='CREATE_IF_NEEDED', skip_leading_rows=0, write_disposition='WRITE_EMPTY', field_delimiter=','): """ Executes a BigQuery load command to load data from Google Cloud Storage to BigQuery. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs For more details about these parameters. :param destination_project_dataset_table: The dotted (<project>.|<project>:)<dataset>.<table> BigQuery table to load data into. If <project> is not included, project will be the project defined in the connection json. :type destination_project_dataset_table: string :param schema_fields: The schema field list as defined here: https://cloud.google.com/bigquery/docs/reference/v2/jobs#configuration.load :type schema_fields: list :param source_uris: The source Google Cloud Storage URI (e.g. gs://some-bucket/some-file.txt). A single wild per-object name can be used. :type source_uris: list :param source_format: File format to export. :type source_format: string :param create_disposition: The create disposition if the table doesn't exist. :type create_disposition: string :param skip_leading_rows: Number of rows to skip when loading from a CSV. :type skip_leading_rows: int :param write_disposition: The write disposition if the table already exists. :type write_disposition: string :param field_delimiter: The delimiter to use when loading from a CSV. :type field_delimiter: string """ # bigquery only allows certain source formats # we check to make sure the passed source format is valid # if it's not, we raise a ValueError # Refer to this link for more details: # https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.query.tableDefinitions.(key).sourceFormat source_format = source_format.upper() allowed_formats = ["CSV", "NEWLINE_DELIMITED_JSON", "AVRO", "GOOGLE_SHEETS"] if source_format not in allowed_formats: raise ValueError("{0} is not a valid source format. " "Please use one of the following types: {1}" .format(source_format, allowed_formats)) destination_project, destination_dataset, destination_table = \ _split_tablename(table_input=destination_project_dataset_table, default_project_id=self.project_id, var_name='destination_project_dataset_table') configuration = { 'load': { 'createDisposition': create_disposition, 'destinationTable': { 'projectId': destination_project, 'datasetId': destination_dataset, 'tableId': destination_table, }, 'schema': { 'fields': schema_fields }, 'sourceFormat': source_format, 'sourceUris': source_uris, 'writeDisposition': write_disposition, } } if source_format == 'CSV': configuration['load']['skipLeadingRows'] = skip_leading_rows configuration['load']['fieldDelimiter'] = field_delimiter return self.run_with_configuration(configuration) def run_with_configuration(self, configuration): """ Executes a BigQuery SQL query. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs For more details about the configuration parameter. :param configuration: The configuration parameter maps directly to BigQuery's configuration field in the job object. See https://cloud.google.com/bigquery/docs/reference/v2/jobs for details. """ jobs = self.service.jobs() job_data = { 'configuration': configuration } # Send query and wait for reply. query_reply = jobs \ .insert(projectId=self.project_id, body=job_data) \ .execute() job_id = query_reply['jobReference']['jobId'] job = jobs.get(projectId=self.project_id, jobId=job_id).execute() # Wait for query to finish. while not job['status']['state'] == 'DONE': logging.info('Waiting for job to complete: %s, %s', self.project_id, job_id) time.sleep(5) job = jobs.get(projectId=self.project_id, jobId=job_id).execute() # Check if job had errors. if 'errorResult' in job['status']: raise Exception( 'BigQuery job failed. Final error was: {}. The job was: {}'.format( job['status']['errorResult'], job ) ) return job_id def get_schema(self, dataset_id, table_id): """ Get the schema for a given datset.table. see https://cloud.google.com/bigquery/docs/reference/v2/tables#resource :param dataset_id: the dataset ID of the requested table :param table_id: the table ID of the requested table :return: a table schema """ tables_resource = self.service.tables() \ .get(projectId=self.project_id, datasetId=dataset_id, tableId=table_id) \ .execute() return tables_resource['schema'] def get_tabledata(self, dataset_id, table_id, max_results=None, page_token=None, start_index=None): """ Get the data of a given dataset.table. see https://cloud.google.com/bigquery/docs/reference/v2/tabledata/list :param dataset_id: the dataset ID of the requested table. :param table_id: the table ID of the requested table. :param max_results: the maximum results to return. :param page_token: page token, returned from a previous call, identifying the result set. :param start_index: zero based index of the starting row to read. :return: map containing the requested rows. """ optional_params = {} if max_results: optional_params['maxResults'] = max_results if page_token: optional_params['pageToken'] = page_token if start_index: optional_params['startIndex'] = start_index return ( self.service.tabledata() .list( projectId=self.project_id, datasetId=dataset_id, tableId=table_id, **optional_params) .execute() ) def run_table_delete(self, deletion_dataset_table, ignore_if_missing=False): """ Delete an existing table from the dataset; If the table does not exist, return an error unless ignore_if_missing is set to True. :param deletion_dataset_table: A dotted (<project>.|<project>:)<dataset>.<table> that indicates which table will be deleted. :type deletion_dataset_table: str :param ignore_if_missing: if True, then return success even if the requested table does not exist. :type ignore_if_missing: boolean :return: """ assert '.' in deletion_dataset_table, ( 'Expected deletion_dataset_table in the format of ' '<dataset>.<table>. Got: {}').format(deletion_dataset_table) deletion_project, deletion_dataset, deletion_table = \ _split_tablename(table_input=deletion_dataset_table, default_project_id=self.project_id) try: tables_resource = self.service.tables() \ .delete(projectId=deletion_project, datasetId=deletion_dataset, tableId=deletion_table) \ .execute() logging.info('Deleted table %s:%s.%s.', deletion_project, deletion_dataset, deletion_table) except HttpError: if not ignore_if_missing: raise Exception( 'Table deletion failed. Table does not exist.') else: logging.info('Table does not exist. Skipping.') def run_table_upsert(self, dataset_id, table_resource, project_id=None): """ creates a new, empty table in the dataset; If the table already exists, update the existing table. Since BigQuery does not natively allow table upserts, this is not an atomic operation. :param dataset_id: the dataset to upsert the table into. :type dataset_id: str :param table_resource: a table resource. see https://cloud.google.com/bigquery/docs/reference/v2/tables#resource :type table_resource: dict :param project_id: the project to upsert the table into. If None, project will be self.project_id. :return: """ # check to see if the table exists table_id = table_resource['tableReference']['tableId'] project_id = project_id if project_id is not None else self.project_id tables_list_resp = self.service.tables().list(projectId=project_id, datasetId=dataset_id).execute() while True: for table in tables_list_resp.get('tables', []): if table['tableReference']['tableId'] == table_id: # found the table, do update logging.info('table %s:%s.%s exists, updating.', project_id, dataset_id, table_id) return self.service.tables().update(projectId=project_id, datasetId=dataset_id, tableId=table_id, body=table_resource).execute() # If there is a next page, we need to check the next page. if 'nextPageToken' in tables_list_resp: tables_list_resp = self.service.tables()\ .list(projectId=project_id, datasetId=dataset_id, pageToken=tables_list_resp['nextPageToken'])\ .execute() # If there is no next page, then the table doesn't exist. else: # do insert logging.info('table %s:%s.%s does not exist. creating.', project_id, dataset_id, table_id) return self.service.tables().insert(projectId=project_id, datasetId=dataset_id, body=table_resource).execute() def run_grant_dataset_view_access(self, source_dataset, view_dataset, view_table, source_project = None, view_project = None): """ Grant authorized view access of a dataset to a view table. If this view has already been granted access to the dataset, do nothing. This method is not atomic. Running it may clobber a simultaneous update. :param source_dataset: the source dataset :type source_dataset: str :param view_dataset: the dataset that the view is in :type view_dataset: str :param view_table: the table of the view :type view_table: str :param source_project: the project of the source dataset. If None, self.project_id will be used. :type source_project: str :param view_project: the project that the view is in. If None, self.project_id will be used. :type view_project: str :return: the datasets resource of the source dataset. """ # Apply default values to projects source_project = source_project if source_project else self.project_id view_project = view_project if view_project else self.project_id # we don't want to clobber any existing accesses, so we have to get # info on the dataset before we can add view access source_dataset_resource = self.service.datasets().get(projectId=source_project, datasetId=source_dataset).execute() access = source_dataset_resource['access'] if 'access' in source_dataset_resource else [] view_access = {'view': {'projectId': view_project, 'datasetId': view_dataset, 'tableId': view_table}} # check to see if the view we want to add already exists. if view_access not in access: logging.info('granting table %s:%s.%s authorized view access to %s:%s dataset.', view_project, view_dataset, view_table, source_project, source_dataset) access.append(view_access) return self.service.datasets().patch(projectId=source_project, datasetId=source_dataset, body={'access': access}).execute() else: # if view is already in access, do nothing. logging.info('table %s:%s.%s already has authorized view access to %s:%s dataset.', view_project, view_dataset, view_table, source_project, source_dataset) return source_dataset_resource class BigQueryCursor(BigQueryBaseCursor): """ A very basic BigQuery PEP 249 cursor implementation. The PyHive PEP 249 implementation was used as a reference: https://github.com/dropbox/PyHive/blob/master/pyhive/presto.py https://github.com/dropbox/PyHive/blob/master/pyhive/common.py """ def __init__(self, service, project_id): super(BigQueryCursor, self).__init__(service=service, project_id=project_id) self.buffersize = None self.page_token = None self.job_id = None self.buffer = [] self.all_pages_loaded = False @property def description(self): """ The schema description method is not currently implemented. """ raise NotImplementedError def close(self): """ By default, do nothing """ pass @property def rowcount(self): """ By default, return -1 to indicate that this is not supported. """ return -1 def execute(self, operation, parameters=None): """ Executes a BigQuery query, and returns the job ID. :param operation: The query to execute. :type operation: string :param parameters: Parameters to substitute into the query. :type parameters: dict """ bql = _bind_parameters(operation, parameters) if parameters else operation self.job_id = self.run_query(bql) def executemany(self, operation, seq_of_parameters): """ Execute a BigQuery query multiple times with different parameters. :param operation: The query to execute. :type operation: string :param parameters: List of dictionary parameters to substitute into the query. :type parameters: list """ for parameters in seq_of_parameters: self.execute(operation, parameters) def fetchone(self): """ Fetch the next row of a query result set. """ return self.next() def next(self): """ Helper method for fetchone, which returns the next row from a buffer. If the buffer is empty, attempts to paginate through the result set for the next page, and load it into the buffer. """ if not self.job_id: return None if len(self.buffer) == 0: if self.all_pages_loaded: return None query_results = ( self.service.jobs() .getQueryResults( projectId=self.project_id, jobId=self.job_id, pageToken=self.page_token) .execute() ) if 'rows' in query_results and query_results['rows']: self.page_token = query_results.get('pageToken') fields = query_results['schema']['fields'] col_types = [field['type'] for field in fields] rows = query_results['rows'] for dict_row in rows: typed_row = ([ _bq_cast(vs['v'], col_types[idx]) for idx, vs in enumerate(dict_row['f']) ]) self.buffer.append(typed_row) if not self.page_token: self.all_pages_loaded = True else: # Reset all state since we've exhausted the results. self.page_token = None self.job_id = None self.page_token = None return None return self.buffer.pop(0) def fetchmany(self, size=None): """ Fetch the next set of rows of a query result, returning a sequence of sequences (e.g. a list of tuples). An empty sequence is returned when no more rows are available. The number of rows to fetch per call is specified by the parameter. If it is not given, the cursor's arraysize determines the number of rows to be fetched. The method should try to fetch as many rows as indicated by the size parameter. If this is not possible due to the specified number of rows not being available, fewer rows may be returned. An :py:class:`~pyhive.exc.Error` (or subclass) exception is raised if the previous call to :py:meth:`execute` did not produce any result set or no call was issued yet. """ if size is None: size = self.arraysize result = [] for _ in range(size): one = self.fetchone() if one is None: break else: result.append(one) return result def fetchall(self): """ Fetch all (remaining) rows of a query result, returning them as a sequence of sequences (e.g. a list of tuples). """ result = [] while True: one = self.fetchone() if one is None: break else: result.append(one) return result def get_arraysize(self): """ Specifies the number of rows to fetch at a time with .fetchmany() """ return self._buffersize if self.buffersize else 1 def set_arraysize(self, arraysize): """ Specifies the number of rows to fetch at a time with .fetchmany() """ self.buffersize = arraysize arraysize = property(get_arraysize, set_arraysize) def setinputsizes(self, sizes): """ Does nothing by default """ pass def setoutputsize(self, size, column=None): """ Does nothing by default """ pass def _bind_parameters(operation, parameters): """ Helper method that binds parameters to a SQL query. """ # inspired by MySQL Python Connector (conversion.py) string_parameters = {} for (name, value) in parameters.iteritems(): if value is None: string_parameters[name] = 'NULL' elif isinstance(value, basestring): string_parameters[name] = "'" + _escape(value) + "'" else: string_parameters[name] = str(value) return operation % string_parameters def _escape(s): """ Helper method that escapes parameters to a SQL query. """ e = s e = e.replace('\\', '\\\\') e = e.replace('\n', '\\n') e = e.replace('\r', '\\r') e = e.replace("'", "\\'") e = e.replace('"', '\\"') return e def _bq_cast(string_field, bq_type): """ Helper method that casts a BigQuery row to the appropriate data types. This is useful because BigQuery returns all fields as strings. """ if string_field is None: return None elif bq_type == 'INTEGER' or bq_type == 'TIMESTAMP': return int(string_field) elif bq_type == 'FLOAT': return float(string_field) elif bq_type == 'BOOLEAN': assert string_field in set(['true', 'false']) return string_field == 'true' else: return string_field def _split_tablename(table_input, default_project_id, var_name=None): assert default_project_id is not None, "INTERNAL: No default project is specified" def var_print(var_name): if var_name is None: return "" else: return "Format exception for {var}: ".format(var=var_name) cmpt = table_input.split(':') if len(cmpt) == 1: project_id = None rest = cmpt[0] elif len(cmpt) == 2: project_id = cmpt[0] rest = cmpt[1] else: raise Exception(( '{var}Expect format of (<project:)<dataset>.<table>, ' 'got {input}' ).format(var=var_print(var_name), input=table_input)) cmpt = rest.split('.') if len(cmpt) == 3: assert project_id is None, ( "{var}Use either : or . to specify project" ).format(var=var_print(var_name)) project_id = cmpt[0] dataset_id = cmpt[1] table_id = cmpt[2] elif len(cmpt) == 2: dataset_id = cmpt[0] table_id = cmpt[1] else: raise Exception(( '{var}Expect format of (<project.|<project:)<dataset>.<table>, ' 'got {input}' ).format(var=var_print(var_name), input=table_input)) if project_id is None: if var_name is not None: logging.info( 'project not included in {var}: ' '{input}; using project "{project}"'.format( var=var_name, input=table_input, project=default_project_id)) project_id = default_project_id return project_id, dataset_id, table_id
apache-2.0
mbayon/TFG-MachineLearning
vbig/lib/python2.7/site-packages/pandas/tests/frame/test_indexing.py
7
104529
# -*- coding: utf-8 -*- from __future__ import print_function from warnings import catch_warnings from datetime import datetime, date, timedelta, time from pandas.compat import map, zip, range, lrange, lzip, long from pandas import compat from numpy import nan from numpy.random import randn import pytest import numpy as np import pandas.core.common as com from pandas import (DataFrame, Index, Series, notnull, isnull, MultiIndex, DatetimeIndex, Timestamp, date_range) import pandas as pd from pandas._libs.tslib import iNaT from pandas.tseries.offsets import BDay from pandas.core.dtypes.common import ( is_float_dtype, is_integer, is_scalar) from pandas.util.testing import (assert_almost_equal, assert_series_equal, assert_frame_equal) from pandas.core.indexing import IndexingError import pandas.util.testing as tm from pandas.tests.frame.common import TestData class TestDataFrameIndexing(TestData): def test_getitem(self): # Slicing sl = self.frame[:20] assert len(sl.index) == 20 # Column access for _, series in compat.iteritems(sl): assert len(series.index) == 20 assert tm.equalContents(series.index, sl.index) for key, _ in compat.iteritems(self.frame._series): assert self.frame[key] is not None assert 'random' not in self.frame with tm.assert_raises_regex(KeyError, 'random'): self.frame['random'] df = self.frame.copy() df['$10'] = randn(len(df)) ad = randn(len(df)) df['@awesome_domain'] = ad with pytest.raises(KeyError): df.__getitem__('df["$10"]') res = df['@awesome_domain'] tm.assert_numpy_array_equal(ad, res.values) def test_getitem_dupe_cols(self): df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=['a', 'a', 'b']) try: df[['baf']] except KeyError: pass else: self.fail("Dataframe failed to raise KeyError") def test_get(self): b = self.frame.get('B') assert_series_equal(b, self.frame['B']) assert self.frame.get('foo') is None assert_series_equal(self.frame.get('foo', self.frame['B']), self.frame['B']) # None # GH 5652 for df in [DataFrame(), DataFrame(columns=list('AB')), DataFrame(columns=list('AB'), index=range(3))]: result = df.get(None) assert result is None def test_getitem_iterator(self): idx = iter(['A', 'B', 'C']) result = self.frame.loc[:, idx] expected = self.frame.loc[:, ['A', 'B', 'C']] assert_frame_equal(result, expected) idx = iter(['A', 'B', 'C']) result = self.frame.loc[:, idx] expected = self.frame.loc[:, ['A', 'B', 'C']] assert_frame_equal(result, expected) def test_getitem_list(self): self.frame.columns.name = 'foo' result = self.frame[['B', 'A']] result2 = self.frame[Index(['B', 'A'])] expected = self.frame.loc[:, ['B', 'A']] expected.columns.name = 'foo' assert_frame_equal(result, expected) assert_frame_equal(result2, expected) assert result.columns.name == 'foo' with tm.assert_raises_regex(KeyError, 'not in index'): self.frame[['B', 'A', 'food']] with tm.assert_raises_regex(KeyError, 'not in index'): self.frame[Index(['B', 'A', 'foo'])] # tuples df = DataFrame(randn(8, 3), columns=Index([('foo', 'bar'), ('baz', 'qux'), ('peek', 'aboo')], name=['sth', 'sth2'])) result = df[[('foo', 'bar'), ('baz', 'qux')]] expected = df.iloc[:, :2] assert_frame_equal(result, expected) assert result.columns.names == ['sth', 'sth2'] def test_getitem_callable(self): # GH 12533 result = self.frame[lambda x: 'A'] tm.assert_series_equal(result, self.frame.loc[:, 'A']) result = self.frame[lambda x: ['A', 'B']] tm.assert_frame_equal(result, self.frame.loc[:, ['A', 'B']]) df = self.frame[:3] result = df[lambda x: [True, False, True]] tm.assert_frame_equal(result, self.frame.iloc[[0, 2], :]) def test_setitem_list(self): self.frame['E'] = 'foo' data = self.frame[['A', 'B']] self.frame[['B', 'A']] = data assert_series_equal(self.frame['B'], data['A'], check_names=False) assert_series_equal(self.frame['A'], data['B'], check_names=False) with tm.assert_raises_regex(ValueError, 'Columns must be same length as key'): data[['A']] = self.frame[['A', 'B']] with tm.assert_raises_regex(ValueError, 'Length of values ' 'does not match ' 'length of index'): data['A'] = range(len(data.index) - 1) df = DataFrame(0, lrange(3), ['tt1', 'tt2'], dtype=np.int_) df.loc[1, ['tt1', 'tt2']] = [1, 2] result = df.loc[df.index[1], ['tt1', 'tt2']] expected = Series([1, 2], df.columns, dtype=np.int_, name=1) assert_series_equal(result, expected) df['tt1'] = df['tt2'] = '0' df.loc[df.index[1], ['tt1', 'tt2']] = ['1', '2'] result = df.loc[df.index[1], ['tt1', 'tt2']] expected = Series(['1', '2'], df.columns, name=1) assert_series_equal(result, expected) def test_setitem_list_not_dataframe(self): data = np.random.randn(len(self.frame), 2) self.frame[['A', 'B']] = data assert_almost_equal(self.frame[['A', 'B']].values, data) def test_setitem_list_of_tuples(self): tuples = lzip(self.frame['A'], self.frame['B']) self.frame['tuples'] = tuples result = self.frame['tuples'] expected = Series(tuples, index=self.frame.index, name='tuples') assert_series_equal(result, expected) def test_setitem_mulit_index(self): # GH7655, test that assigning to a sub-frame of a frame # with multi-index columns aligns both rows and columns it = ['jim', 'joe', 'jolie'], ['first', 'last'], \ ['left', 'center', 'right'] cols = MultiIndex.from_product(it) index = pd.date_range('20141006', periods=20) vals = np.random.randint(1, 1000, (len(index), len(cols))) df = pd.DataFrame(vals, columns=cols, index=index) i, j = df.index.values.copy(), it[-1][:] np.random.shuffle(i) df['jim'] = df['jolie'].loc[i, ::-1] assert_frame_equal(df['jim'], df['jolie']) np.random.shuffle(j) df[('joe', 'first')] = df[('jolie', 'last')].loc[i, j] assert_frame_equal(df[('joe', 'first')], df[('jolie', 'last')]) np.random.shuffle(j) df[('joe', 'last')] = df[('jolie', 'first')].loc[i, j] assert_frame_equal(df[('joe', 'last')], df[('jolie', 'first')]) def test_setitem_callable(self): # GH 12533 df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [5, 6, 7, 8]}) df[lambda x: 'A'] = [11, 12, 13, 14] exp = pd.DataFrame({'A': [11, 12, 13, 14], 'B': [5, 6, 7, 8]}) tm.assert_frame_equal(df, exp) def test_setitem_other_callable(self): # GH 13299 inc = lambda x: x + 1 df = pd.DataFrame([[-1, 1], [1, -1]]) df[df > 0] = inc expected = pd.DataFrame([[-1, inc], [inc, -1]]) tm.assert_frame_equal(df, expected) def test_getitem_boolean(self): # boolean indexing d = self.tsframe.index[10] indexer = self.tsframe.index > d indexer_obj = indexer.astype(object) subindex = self.tsframe.index[indexer] subframe = self.tsframe[indexer] tm.assert_index_equal(subindex, subframe.index) with tm.assert_raises_regex(ValueError, 'Item wrong length'): self.tsframe[indexer[:-1]] subframe_obj = self.tsframe[indexer_obj] assert_frame_equal(subframe_obj, subframe) with tm.assert_raises_regex(ValueError, 'boolean values only'): self.tsframe[self.tsframe] # test that Series work indexer_obj = Series(indexer_obj, self.tsframe.index) subframe_obj = self.tsframe[indexer_obj] assert_frame_equal(subframe_obj, subframe) # test that Series indexers reindex # we are producing a warning that since the passed boolean # key is not the same as the given index, we will reindex # not sure this is really necessary with tm.assert_produces_warning(UserWarning, check_stacklevel=False): indexer_obj = indexer_obj.reindex(self.tsframe.index[::-1]) subframe_obj = self.tsframe[indexer_obj] assert_frame_equal(subframe_obj, subframe) # test df[df > 0] for df in [self.tsframe, self.mixed_frame, self.mixed_float, self.mixed_int]: data = df._get_numeric_data() bif = df[df > 0] bifw = DataFrame(dict([(c, np.where(data[c] > 0, data[c], np.nan)) for c in data.columns]), index=data.index, columns=data.columns) # add back other columns to compare for c in df.columns: if c not in bifw: bifw[c] = df[c] bifw = bifw.reindex(columns=df.columns) assert_frame_equal(bif, bifw, check_dtype=False) for c in df.columns: if bif[c].dtype != bifw[c].dtype: assert bif[c].dtype == df[c].dtype def test_getitem_boolean_casting(self): # don't upcast if we don't need to df = self.tsframe.copy() df['E'] = 1 df['E'] = df['E'].astype('int32') df['E1'] = df['E'].copy() df['F'] = 1 df['F'] = df['F'].astype('int64') df['F1'] = df['F'].copy() casted = df[df > 0] result = casted.get_dtype_counts() expected = Series({'float64': 4, 'int32': 2, 'int64': 2}) assert_series_equal(result, expected) # int block splitting df.loc[df.index[1:3], ['E1', 'F1']] = 0 casted = df[df > 0] result = casted.get_dtype_counts() expected = Series({'float64': 6, 'int32': 1, 'int64': 1}) assert_series_equal(result, expected) # where dtype conversions # GH 3733 df = DataFrame(data=np.random.randn(100, 50)) df = df.where(df > 0) # create nans bools = df > 0 mask = isnull(df) expected = bools.astype(float).mask(mask) result = bools.mask(mask) assert_frame_equal(result, expected) def test_getitem_boolean_list(self): df = DataFrame(np.arange(12).reshape(3, 4)) def _checkit(lst): result = df[lst] expected = df.loc[df.index[lst]] assert_frame_equal(result, expected) _checkit([True, False, True]) _checkit([True, True, True]) _checkit([False, False, False]) def test_getitem_boolean_iadd(self): arr = randn(5, 5) df = DataFrame(arr.copy(), columns=['A', 'B', 'C', 'D', 'E']) df[df < 0] += 1 arr[arr < 0] += 1 assert_almost_equal(df.values, arr) def test_boolean_index_empty_corner(self): # #2096 blah = DataFrame(np.empty([0, 1]), columns=['A'], index=DatetimeIndex([])) # both of these should succeed trivially k = np.array([], bool) blah[k] blah[k] = 0 def test_getitem_ix_mixed_integer(self): df = DataFrame(np.random.randn(4, 3), index=[1, 10, 'C', 'E'], columns=[1, 2, 3]) result = df.iloc[:-1] expected = df.loc[df.index[:-1]] assert_frame_equal(result, expected) with catch_warnings(record=True): result = df.ix[[1, 10]] expected = df.ix[Index([1, 10], dtype=object)] assert_frame_equal(result, expected) # 11320 df = pd.DataFrame({"rna": (1.5, 2.2, 3.2, 4.5), -1000: [11, 21, 36, 40], 0: [10, 22, 43, 34], 1000: [0, 10, 20, 30]}, columns=['rna', -1000, 0, 1000]) result = df[[1000]] expected = df.iloc[:, [3]] assert_frame_equal(result, expected) result = df[[-1000]] expected = df.iloc[:, [1]] assert_frame_equal(result, expected) def test_getitem_setitem_ix_negative_integers(self): with catch_warnings(record=True): result = self.frame.ix[:, -1] assert_series_equal(result, self.frame['D']) with catch_warnings(record=True): result = self.frame.ix[:, [-1]] assert_frame_equal(result, self.frame[['D']]) with catch_warnings(record=True): result = self.frame.ix[:, [-1, -2]] assert_frame_equal(result, self.frame[['D', 'C']]) with catch_warnings(record=True): self.frame.ix[:, [-1]] = 0 assert (self.frame['D'] == 0).all() df = DataFrame(np.random.randn(8, 4)) with catch_warnings(record=True): assert isnull(df.ix[:, [-1]].values).all() # #1942 a = DataFrame(randn(20, 2), index=[chr(x + 65) for x in range(20)]) with catch_warnings(record=True): a.ix[-1] = a.ix[-2] with catch_warnings(record=True): assert_series_equal(a.ix[-1], a.ix[-2], check_names=False) assert a.ix[-1].name == 'T' assert a.ix[-2].name == 'S' def test_getattr(self): assert_series_equal(self.frame.A, self.frame['A']) pytest.raises(AttributeError, getattr, self.frame, 'NONEXISTENT_NAME') def test_setattr_column(self): df = DataFrame({'foobar': 1}, index=lrange(10)) df.foobar = 5 assert (df.foobar == 5).all() def test_setitem(self): # not sure what else to do here series = self.frame['A'][::2] self.frame['col5'] = series assert 'col5' in self.frame assert len(series) == 15 assert len(self.frame) == 30 exp = np.ravel(np.column_stack((series.values, [np.nan] * 15))) exp = Series(exp, index=self.frame.index, name='col5') tm.assert_series_equal(self.frame['col5'], exp) series = self.frame['A'] self.frame['col6'] = series tm.assert_series_equal(series, self.frame['col6'], check_names=False) with pytest.raises(KeyError): self.frame[randn(len(self.frame) + 1)] = 1 # set ndarray arr = randn(len(self.frame)) self.frame['col9'] = arr assert (self.frame['col9'] == arr).all() self.frame['col7'] = 5 assert((self.frame['col7'] == 5).all()) self.frame['col0'] = 3.14 assert((self.frame['col0'] == 3.14).all()) self.frame['col8'] = 'foo' assert((self.frame['col8'] == 'foo').all()) # this is partially a view (e.g. some blocks are view) # so raise/warn smaller = self.frame[:2] def f(): smaller['col10'] = ['1', '2'] pytest.raises(com.SettingWithCopyError, f) assert smaller['col10'].dtype == np.object_ assert (smaller['col10'] == ['1', '2']).all() # with a dtype for dtype in ['int32', 'int64', 'float32', 'float64']: self.frame[dtype] = np.array(arr, dtype=dtype) assert self.frame[dtype].dtype.name == dtype # dtype changing GH4204 df = DataFrame([[0, 0]]) df.iloc[0] = np.nan expected = DataFrame([[np.nan, np.nan]]) assert_frame_equal(df, expected) df = DataFrame([[0, 0]]) df.loc[0] = np.nan assert_frame_equal(df, expected) def test_setitem_tuple(self): self.frame['A', 'B'] = self.frame['A'] assert_series_equal(self.frame['A', 'B'], self.frame[ 'A'], check_names=False) def test_setitem_always_copy(self): s = self.frame['A'].copy() self.frame['E'] = s self.frame['E'][5:10] = nan assert notnull(s[5:10]).all() def test_setitem_boolean(self): df = self.frame.copy() values = self.frame.values df[df['A'] > 0] = 4 values[values[:, 0] > 0] = 4 assert_almost_equal(df.values, values) # test that column reindexing works series = df['A'] == 4 series = series.reindex(df.index[::-1]) df[series] = 1 values[values[:, 0] == 4] = 1 assert_almost_equal(df.values, values) df[df > 0] = 5 values[values > 0] = 5 assert_almost_equal(df.values, values) df[df == 5] = 0 values[values == 5] = 0 assert_almost_equal(df.values, values) # a df that needs alignment first df[df[:-1] < 0] = 2 np.putmask(values[:-1], values[:-1] < 0, 2) assert_almost_equal(df.values, values) # indexed with same shape but rows-reversed df df[df[::-1] == 2] = 3 values[values == 2] = 3 assert_almost_equal(df.values, values) with tm.assert_raises_regex(TypeError, 'Must pass ' 'DataFrame with ' 'boolean values only'): df[df * 0] = 2 # index with DataFrame mask = df > np.abs(df) expected = df.copy() df[df > np.abs(df)] = nan expected.values[mask.values] = nan assert_frame_equal(df, expected) # set from DataFrame expected = df.copy() df[df > np.abs(df)] = df * 2 np.putmask(expected.values, mask.values, df.values * 2) assert_frame_equal(df, expected) def test_setitem_cast(self): self.frame['D'] = self.frame['D'].astype('i8') assert self.frame['D'].dtype == np.int64 # #669, should not cast? # this is now set to int64, which means a replacement of the column to # the value dtype (and nothing to do with the existing dtype) self.frame['B'] = 0 assert self.frame['B'].dtype == np.int64 # cast if pass array of course self.frame['B'] = np.arange(len(self.frame)) assert issubclass(self.frame['B'].dtype.type, np.integer) self.frame['foo'] = 'bar' self.frame['foo'] = 0 assert self.frame['foo'].dtype == np.int64 self.frame['foo'] = 'bar' self.frame['foo'] = 2.5 assert self.frame['foo'].dtype == np.float64 self.frame['something'] = 0 assert self.frame['something'].dtype == np.int64 self.frame['something'] = 2 assert self.frame['something'].dtype == np.int64 self.frame['something'] = 2.5 assert self.frame['something'].dtype == np.float64 # GH 7704 # dtype conversion on setting df = DataFrame(np.random.rand(30, 3), columns=tuple('ABC')) df['event'] = np.nan df.loc[10, 'event'] = 'foo' result = df.get_dtype_counts().sort_values() expected = Series({'float64': 3, 'object': 1}).sort_values() assert_series_equal(result, expected) # Test that data type is preserved . #5782 df = DataFrame({'one': np.arange(6, dtype=np.int8)}) df.loc[1, 'one'] = 6 assert df.dtypes.one == np.dtype(np.int8) df.one = np.int8(7) assert df.dtypes.one == np.dtype(np.int8) def test_setitem_boolean_column(self): expected = self.frame.copy() mask = self.frame['A'] > 0 self.frame.loc[mask, 'B'] = 0 expected.values[mask.values, 1] = 0 assert_frame_equal(self.frame, expected) def test_setitem_corner(self): # corner case df = DataFrame({'B': [1., 2., 3.], 'C': ['a', 'b', 'c']}, index=np.arange(3)) del df['B'] df['B'] = [1., 2., 3.] assert 'B' in df assert len(df.columns) == 2 df['A'] = 'beginning' df['E'] = 'foo' df['D'] = 'bar' df[datetime.now()] = 'date' df[datetime.now()] = 5. # what to do when empty frame with index dm = DataFrame(index=self.frame.index) dm['A'] = 'foo' dm['B'] = 'bar' assert len(dm.columns) == 2 assert dm.values.dtype == np.object_ # upcast dm['C'] = 1 assert dm['C'].dtype == np.int64 dm['E'] = 1. assert dm['E'].dtype == np.float64 # set existing column dm['A'] = 'bar' assert 'bar' == dm['A'][0] dm = DataFrame(index=np.arange(3)) dm['A'] = 1 dm['foo'] = 'bar' del dm['foo'] dm['foo'] = 'bar' assert dm['foo'].dtype == np.object_ dm['coercable'] = ['1', '2', '3'] assert dm['coercable'].dtype == np.object_ def test_setitem_corner2(self): data = {"title": ['foobar', 'bar', 'foobar'] + ['foobar'] * 17, "cruft": np.random.random(20)} df = DataFrame(data) ix = df[df['title'] == 'bar'].index df.loc[ix, ['title']] = 'foobar' df.loc[ix, ['cruft']] = 0 assert df.loc[1, 'title'] == 'foobar' assert df.loc[1, 'cruft'] == 0 def test_setitem_ambig(self): # Difficulties with mixed-type data from decimal import Decimal # Created as float type dm = DataFrame(index=lrange(3), columns=lrange(3)) coercable_series = Series([Decimal(1) for _ in range(3)], index=lrange(3)) uncoercable_series = Series(['foo', 'bzr', 'baz'], index=lrange(3)) dm[0] = np.ones(3) assert len(dm.columns) == 3 dm[1] = coercable_series assert len(dm.columns) == 3 dm[2] = uncoercable_series assert len(dm.columns) == 3 assert dm[2].dtype == np.object_ def test_setitem_clear_caches(self): # see gh-304 df = DataFrame({'x': [1.1, 2.1, 3.1, 4.1], 'y': [5.1, 6.1, 7.1, 8.1]}, index=[0, 1, 2, 3]) df.insert(2, 'z', np.nan) # cache it foo = df['z'] df.loc[df.index[2:], 'z'] = 42 expected = Series([np.nan, np.nan, 42, 42], index=df.index, name='z') assert df['z'] is not foo tm.assert_series_equal(df['z'], expected) def test_setitem_None(self): # GH #766 self.frame[None] = self.frame['A'] assert_series_equal( self.frame.iloc[:, -1], self.frame['A'], check_names=False) assert_series_equal(self.frame.loc[:, None], self.frame[ 'A'], check_names=False) assert_series_equal(self.frame[None], self.frame[ 'A'], check_names=False) repr(self.frame) def test_setitem_empty(self): # GH 9596 df = pd.DataFrame({'a': ['1', '2', '3'], 'b': ['11', '22', '33'], 'c': ['111', '222', '333']}) result = df.copy() result.loc[result.b.isnull(), 'a'] = result.a assert_frame_equal(result, df) def test_setitem_empty_frame_with_boolean(self): # Test for issue #10126 for dtype in ('float', 'int64'): for df in [ pd.DataFrame(dtype=dtype), pd.DataFrame(dtype=dtype, index=[1]), pd.DataFrame(dtype=dtype, columns=['A']), ]: df2 = df.copy() df[df > df2] = 47 assert_frame_equal(df, df2) def test_getitem_empty_frame_with_boolean(self): # Test for issue #11859 df = pd.DataFrame() df2 = df[df > 0] assert_frame_equal(df, df2) def test_delitem_corner(self): f = self.frame.copy() del f['D'] assert len(f.columns) == 3 pytest.raises(KeyError, f.__delitem__, 'D') del f['B'] assert len(f.columns) == 2 def test_getitem_fancy_2d(self): f = self.frame with catch_warnings(record=True): assert_frame_equal(f.ix[:, ['B', 'A']], f.reindex(columns=['B', 'A'])) subidx = self.frame.index[[5, 4, 1]] with catch_warnings(record=True): assert_frame_equal(f.ix[subidx, ['B', 'A']], f.reindex(index=subidx, columns=['B', 'A'])) # slicing rows, etc. with catch_warnings(record=True): assert_frame_equal(f.ix[5:10], f[5:10]) assert_frame_equal(f.ix[5:10, :], f[5:10]) assert_frame_equal(f.ix[:5, ['A', 'B']], f.reindex(index=f.index[:5], columns=['A', 'B'])) # slice rows with labels, inclusive! with catch_warnings(record=True): expected = f.ix[5:11] result = f.ix[f.index[5]:f.index[10]] assert_frame_equal(expected, result) # slice columns with catch_warnings(record=True): assert_frame_equal(f.ix[:, :2], f.reindex(columns=['A', 'B'])) # get view with catch_warnings(record=True): exp = f.copy() f.ix[5:10].values[:] = 5 exp.values[5:10] = 5 assert_frame_equal(f, exp) with catch_warnings(record=True): pytest.raises(ValueError, f.ix.__getitem__, f > 0.5) def test_slice_floats(self): index = [52195.504153, 52196.303147, 52198.369883] df = DataFrame(np.random.rand(3, 2), index=index) s1 = df.loc[52195.1:52196.5] assert len(s1) == 2 s1 = df.loc[52195.1:52196.6] assert len(s1) == 2 s1 = df.loc[52195.1:52198.9] assert len(s1) == 3 def test_getitem_fancy_slice_integers_step(self): df = DataFrame(np.random.randn(10, 5)) # this is OK result = df.iloc[:8:2] # noqa df.iloc[:8:2] = np.nan assert isnull(df.iloc[:8:2]).values.all() def test_getitem_setitem_integer_slice_keyerrors(self): df = DataFrame(np.random.randn(10, 5), index=lrange(0, 20, 2)) # this is OK cp = df.copy() cp.iloc[4:10] = 0 assert (cp.iloc[4:10] == 0).values.all() # so is this cp = df.copy() cp.iloc[3:11] = 0 assert (cp.iloc[3:11] == 0).values.all() result = df.iloc[2:6] result2 = df.loc[3:11] expected = df.reindex([4, 6, 8, 10]) assert_frame_equal(result, expected) assert_frame_equal(result2, expected) # non-monotonic, raise KeyError df2 = df.iloc[lrange(5) + lrange(5, 10)[::-1]] pytest.raises(KeyError, df2.loc.__getitem__, slice(3, 11)) pytest.raises(KeyError, df2.loc.__setitem__, slice(3, 11), 0) def test_setitem_fancy_2d(self): # case 1 frame = self.frame.copy() expected = frame.copy() with catch_warnings(record=True): frame.ix[:, ['B', 'A']] = 1 expected['B'] = 1. expected['A'] = 1. assert_frame_equal(frame, expected) # case 2 frame = self.frame.copy() frame2 = self.frame.copy() expected = frame.copy() subidx = self.frame.index[[5, 4, 1]] values = randn(3, 2) with catch_warnings(record=True): frame.ix[subidx, ['B', 'A']] = values frame2.ix[[5, 4, 1], ['B', 'A']] = values expected['B'].ix[subidx] = values[:, 0] expected['A'].ix[subidx] = values[:, 1] assert_frame_equal(frame, expected) assert_frame_equal(frame2, expected) # case 3: slicing rows, etc. frame = self.frame.copy() with catch_warnings(record=True): expected1 = self.frame.copy() frame.ix[5:10] = 1. expected1.values[5:10] = 1. assert_frame_equal(frame, expected1) with catch_warnings(record=True): expected2 = self.frame.copy() arr = randn(5, len(frame.columns)) frame.ix[5:10] = arr expected2.values[5:10] = arr assert_frame_equal(frame, expected2) # case 4 with catch_warnings(record=True): frame = self.frame.copy() frame.ix[5:10, :] = 1. assert_frame_equal(frame, expected1) frame.ix[5:10, :] = arr assert_frame_equal(frame, expected2) # case 5 with catch_warnings(record=True): frame = self.frame.copy() frame2 = self.frame.copy() expected = self.frame.copy() values = randn(5, 2) frame.ix[:5, ['A', 'B']] = values expected['A'][:5] = values[:, 0] expected['B'][:5] = values[:, 1] assert_frame_equal(frame, expected) with catch_warnings(record=True): frame2.ix[:5, [0, 1]] = values assert_frame_equal(frame2, expected) # case 6: slice rows with labels, inclusive! with catch_warnings(record=True): frame = self.frame.copy() expected = self.frame.copy() frame.ix[frame.index[5]:frame.index[10]] = 5. expected.values[5:11] = 5 assert_frame_equal(frame, expected) # case 7: slice columns with catch_warnings(record=True): frame = self.frame.copy() frame2 = self.frame.copy() expected = self.frame.copy() # slice indices frame.ix[:, 1:3] = 4. expected.values[:, 1:3] = 4. assert_frame_equal(frame, expected) # slice with labels frame.ix[:, 'B':'C'] = 4. assert_frame_equal(frame, expected) # new corner case of boolean slicing / setting frame = DataFrame(lzip([2, 3, 9, 6, 7], [np.nan] * 5), columns=['a', 'b']) lst = [100] lst.extend([np.nan] * 4) expected = DataFrame(lzip([100, 3, 9, 6, 7], lst), columns=['a', 'b']) frame[frame['a'] == 2] = 100 assert_frame_equal(frame, expected) def test_fancy_getitem_slice_mixed(self): sliced = self.mixed_frame.iloc[:, -3:] assert sliced['D'].dtype == np.float64 # get view with single block # setting it triggers setting with copy sliced = self.frame.iloc[:, -3:] def f(): sliced['C'] = 4. pytest.raises(com.SettingWithCopyError, f) assert (self.frame['C'] == 4).all() def test_fancy_setitem_int_labels(self): # integer index defers to label-based indexing df = DataFrame(np.random.randn(10, 5), index=np.arange(0, 20, 2)) with catch_warnings(record=True): tmp = df.copy() exp = df.copy() tmp.ix[[0, 2, 4]] = 5 exp.values[:3] = 5 assert_frame_equal(tmp, exp) with catch_warnings(record=True): tmp = df.copy() exp = df.copy() tmp.ix[6] = 5 exp.values[3] = 5 assert_frame_equal(tmp, exp) with catch_warnings(record=True): tmp = df.copy() exp = df.copy() tmp.ix[:, 2] = 5 # tmp correctly sets the dtype # so match the exp way exp[2] = 5 assert_frame_equal(tmp, exp) def test_fancy_getitem_int_labels(self): df = DataFrame(np.random.randn(10, 5), index=np.arange(0, 20, 2)) with catch_warnings(record=True): result = df.ix[[4, 2, 0], [2, 0]] expected = df.reindex(index=[4, 2, 0], columns=[2, 0]) assert_frame_equal(result, expected) with catch_warnings(record=True): result = df.ix[[4, 2, 0]] expected = df.reindex(index=[4, 2, 0]) assert_frame_equal(result, expected) with catch_warnings(record=True): result = df.ix[4] expected = df.xs(4) assert_series_equal(result, expected) with catch_warnings(record=True): result = df.ix[:, 3] expected = df[3] assert_series_equal(result, expected) def test_fancy_index_int_labels_exceptions(self): df = DataFrame(np.random.randn(10, 5), index=np.arange(0, 20, 2)) with catch_warnings(record=True): # labels that aren't contained pytest.raises(KeyError, df.ix.__setitem__, ([0, 1, 2], [2, 3, 4]), 5) # try to set indices not contained in frame pytest.raises(KeyError, self.frame.ix.__setitem__, ['foo', 'bar', 'baz'], 1) pytest.raises(KeyError, self.frame.ix.__setitem__, (slice(None, None), ['E']), 1) # partial setting now allows this GH2578 # pytest.raises(KeyError, self.frame.ix.__setitem__, # (slice(None, None), 'E'), 1) def test_setitem_fancy_mixed_2d(self): with catch_warnings(record=True): self.mixed_frame.ix[:5, ['C', 'B', 'A']] = 5 result = self.mixed_frame.ix[:5, ['C', 'B', 'A']] assert (result.values == 5).all() self.mixed_frame.ix[5] = np.nan assert isnull(self.mixed_frame.ix[5]).all() self.mixed_frame.ix[5] = self.mixed_frame.ix[6] assert_series_equal(self.mixed_frame.ix[5], self.mixed_frame.ix[6], check_names=False) # #1432 with catch_warnings(record=True): df = DataFrame({1: [1., 2., 3.], 2: [3, 4, 5]}) assert df._is_mixed_type df.ix[1] = [5, 10] expected = DataFrame({1: [1., 5., 3.], 2: [3, 10, 5]}) assert_frame_equal(df, expected) def test_ix_align(self): b = Series(randn(10), name=0).sort_values() df_orig = DataFrame(randn(10, 4)) df = df_orig.copy() with catch_warnings(record=True): df.ix[:, 0] = b assert_series_equal(df.ix[:, 0].reindex(b.index), b) with catch_warnings(record=True): dft = df_orig.T dft.ix[0, :] = b assert_series_equal(dft.ix[0, :].reindex(b.index), b) with catch_warnings(record=True): df = df_orig.copy() df.ix[:5, 0] = b s = df.ix[:5, 0] assert_series_equal(s, b.reindex(s.index)) with catch_warnings(record=True): dft = df_orig.T dft.ix[0, :5] = b s = dft.ix[0, :5] assert_series_equal(s, b.reindex(s.index)) with catch_warnings(record=True): df = df_orig.copy() idx = [0, 1, 3, 5] df.ix[idx, 0] = b s = df.ix[idx, 0] assert_series_equal(s, b.reindex(s.index)) with catch_warnings(record=True): dft = df_orig.T dft.ix[0, idx] = b s = dft.ix[0, idx] assert_series_equal(s, b.reindex(s.index)) def test_ix_frame_align(self): b = DataFrame(np.random.randn(3, 4)) df_orig = DataFrame(randn(10, 4)) df = df_orig.copy() with catch_warnings(record=True): df.ix[:3] = b out = b.ix[:3] assert_frame_equal(out, b) b.sort_index(inplace=True) with catch_warnings(record=True): df = df_orig.copy() df.ix[[0, 1, 2]] = b out = df.ix[[0, 1, 2]].reindex(b.index) assert_frame_equal(out, b) with catch_warnings(record=True): df = df_orig.copy() df.ix[:3] = b out = df.ix[:3] assert_frame_equal(out, b.reindex(out.index)) def test_getitem_setitem_non_ix_labels(self): df = tm.makeTimeDataFrame() start, end = df.index[[5, 10]] result = df.loc[start:end] result2 = df[start:end] expected = df[5:11] assert_frame_equal(result, expected) assert_frame_equal(result2, expected) result = df.copy() result.loc[start:end] = 0 result2 = df.copy() result2[start:end] = 0 expected = df.copy() expected[5:11] = 0 assert_frame_equal(result, expected) assert_frame_equal(result2, expected) def test_ix_multi_take(self): df = DataFrame(np.random.randn(3, 2)) rs = df.loc[df.index == 0, :] xp = df.reindex([0]) assert_frame_equal(rs, xp) """ #1321 df = DataFrame(np.random.randn(3, 2)) rs = df.loc[df.index==0, df.columns==1] xp = df.reindex([0], [1]) assert_frame_equal(rs, xp) """ def test_ix_multi_take_nonint_index(self): df = DataFrame(np.random.randn(3, 2), index=['x', 'y', 'z'], columns=['a', 'b']) with catch_warnings(record=True): rs = df.ix[[0], [0]] xp = df.reindex(['x'], columns=['a']) assert_frame_equal(rs, xp) def test_ix_multi_take_multiindex(self): df = DataFrame(np.random.randn(3, 2), index=['x', 'y', 'z'], columns=[['a', 'b'], ['1', '2']]) with catch_warnings(record=True): rs = df.ix[[0], [0]] xp = df.reindex(['x'], columns=[('a', '1')]) assert_frame_equal(rs, xp) def test_ix_dup(self): idx = Index(['a', 'a', 'b', 'c', 'd', 'd']) df = DataFrame(np.random.randn(len(idx), 3), idx) with catch_warnings(record=True): sub = df.ix[:'d'] assert_frame_equal(sub, df) with catch_warnings(record=True): sub = df.ix['a':'c'] assert_frame_equal(sub, df.ix[0:4]) with catch_warnings(record=True): sub = df.ix['b':'d'] assert_frame_equal(sub, df.ix[2:]) def test_getitem_fancy_1d(self): f = self.frame # return self if no slicing...for now with catch_warnings(record=True): assert f.ix[:, :] is f # low dimensional slice with catch_warnings(record=True): xs1 = f.ix[2, ['C', 'B', 'A']] xs2 = f.xs(f.index[2]).reindex(['C', 'B', 'A']) tm.assert_series_equal(xs1, xs2) with catch_warnings(record=True): ts1 = f.ix[5:10, 2] ts2 = f[f.columns[2]][5:10] tm.assert_series_equal(ts1, ts2) # positional xs with catch_warnings(record=True): xs1 = f.ix[0] xs2 = f.xs(f.index[0]) tm.assert_series_equal(xs1, xs2) with catch_warnings(record=True): xs1 = f.ix[f.index[5]] xs2 = f.xs(f.index[5]) tm.assert_series_equal(xs1, xs2) # single column with catch_warnings(record=True): assert_series_equal(f.ix[:, 'A'], f['A']) # return view with catch_warnings(record=True): exp = f.copy() exp.values[5] = 4 f.ix[5][:] = 4 tm.assert_frame_equal(exp, f) with catch_warnings(record=True): exp.values[:, 1] = 6 f.ix[:, 1][:] = 6 tm.assert_frame_equal(exp, f) # slice of mixed-frame with catch_warnings(record=True): xs = self.mixed_frame.ix[5] exp = self.mixed_frame.xs(self.mixed_frame.index[5]) tm.assert_series_equal(xs, exp) def test_setitem_fancy_1d(self): # case 1: set cross-section for indices frame = self.frame.copy() expected = self.frame.copy() with catch_warnings(record=True): frame.ix[2, ['C', 'B', 'A']] = [1., 2., 3.] expected['C'][2] = 1. expected['B'][2] = 2. expected['A'][2] = 3. assert_frame_equal(frame, expected) with catch_warnings(record=True): frame2 = self.frame.copy() frame2.ix[2, [3, 2, 1]] = [1., 2., 3.] assert_frame_equal(frame, expected) # case 2, set a section of a column frame = self.frame.copy() expected = self.frame.copy() with catch_warnings(record=True): vals = randn(5) expected.values[5:10, 2] = vals frame.ix[5:10, 2] = vals assert_frame_equal(frame, expected) with catch_warnings(record=True): frame2 = self.frame.copy() frame2.ix[5:10, 'B'] = vals assert_frame_equal(frame, expected) # case 3: full xs frame = self.frame.copy() expected = self.frame.copy() with catch_warnings(record=True): frame.ix[4] = 5. expected.values[4] = 5. assert_frame_equal(frame, expected) with catch_warnings(record=True): frame.ix[frame.index[4]] = 6. expected.values[4] = 6. assert_frame_equal(frame, expected) # single column frame = self.frame.copy() expected = self.frame.copy() with catch_warnings(record=True): frame.ix[:, 'A'] = 7. expected['A'] = 7. assert_frame_equal(frame, expected) def test_getitem_fancy_scalar(self): f = self.frame ix = f.loc # individual value for col in f.columns: ts = f[col] for idx in f.index[::5]: assert ix[idx, col] == ts[idx] def test_setitem_fancy_scalar(self): f = self.frame expected = self.frame.copy() ix = f.loc # individual value for j, col in enumerate(f.columns): ts = f[col] # noqa for idx in f.index[::5]: i = f.index.get_loc(idx) val = randn() expected.values[i, j] = val ix[idx, col] = val assert_frame_equal(f, expected) def test_getitem_fancy_boolean(self): f = self.frame ix = f.loc expected = f.reindex(columns=['B', 'D']) result = ix[:, [False, True, False, True]] assert_frame_equal(result, expected) expected = f.reindex(index=f.index[5:10], columns=['B', 'D']) result = ix[f.index[5:10], [False, True, False, True]] assert_frame_equal(result, expected) boolvec = f.index > f.index[7] expected = f.reindex(index=f.index[boolvec]) result = ix[boolvec] assert_frame_equal(result, expected) result = ix[boolvec, :] assert_frame_equal(result, expected) result = ix[boolvec, f.columns[2:]] expected = f.reindex(index=f.index[boolvec], columns=['C', 'D']) assert_frame_equal(result, expected) def test_setitem_fancy_boolean(self): # from 2d, set with booleans frame = self.frame.copy() expected = self.frame.copy() mask = frame['A'] > 0 frame.loc[mask] = 0. expected.values[mask.values] = 0. assert_frame_equal(frame, expected) frame = self.frame.copy() expected = self.frame.copy() frame.loc[mask, ['A', 'B']] = 0. expected.values[mask.values, :2] = 0. assert_frame_equal(frame, expected) def test_getitem_fancy_ints(self): result = self.frame.iloc[[1, 4, 7]] expected = self.frame.loc[self.frame.index[[1, 4, 7]]] assert_frame_equal(result, expected) result = self.frame.iloc[:, [2, 0, 1]] expected = self.frame.loc[:, self.frame.columns[[2, 0, 1]]] assert_frame_equal(result, expected) def test_getitem_setitem_fancy_exceptions(self): ix = self.frame.iloc with tm.assert_raises_regex(IndexingError, 'Too many indexers'): ix[:, :, :] with pytest.raises(IndexingError): ix[:, :, :] = 1 def test_getitem_setitem_boolean_misaligned(self): # boolean index misaligned labels mask = self.frame['A'][::-1] > 1 result = self.frame.loc[mask] expected = self.frame.loc[mask[::-1]] assert_frame_equal(result, expected) cp = self.frame.copy() expected = self.frame.copy() cp.loc[mask] = 0 expected.loc[mask] = 0 assert_frame_equal(cp, expected) def test_getitem_setitem_boolean_multi(self): df = DataFrame(np.random.randn(3, 2)) # get k1 = np.array([True, False, True]) k2 = np.array([False, True]) result = df.loc[k1, k2] expected = df.loc[[0, 2], [1]] assert_frame_equal(result, expected) expected = df.copy() df.loc[np.array([True, False, True]), np.array([False, True])] = 5 expected.loc[[0, 2], [1]] = 5 assert_frame_equal(df, expected) def test_getitem_setitem_float_labels(self): index = Index([1.5, 2, 3, 4, 5]) df = DataFrame(np.random.randn(5, 5), index=index) result = df.loc[1.5:4] expected = df.reindex([1.5, 2, 3, 4]) assert_frame_equal(result, expected) assert len(result) == 4 result = df.loc[4:5] expected = df.reindex([4, 5]) # reindex with int assert_frame_equal(result, expected, check_index_type=False) assert len(result) == 2 result = df.loc[4:5] expected = df.reindex([4.0, 5.0]) # reindex with float assert_frame_equal(result, expected) assert len(result) == 2 # loc_float changes this to work properly result = df.loc[1:2] expected = df.iloc[0:2] assert_frame_equal(result, expected) df.loc[1:2] = 0 result = df[1:2] assert (result == 0).all().all() # #2727 index = Index([1.0, 2.5, 3.5, 4.5, 5.0]) df = DataFrame(np.random.randn(5, 5), index=index) # positional slicing only via iloc! pytest.raises(TypeError, lambda: df.iloc[1.0:5]) result = df.iloc[4:5] expected = df.reindex([5.0]) assert_frame_equal(result, expected) assert len(result) == 1 cp = df.copy() def f(): cp.iloc[1.0:5] = 0 pytest.raises(TypeError, f) def f(): result = cp.iloc[1.0:5] == 0 # noqa pytest.raises(TypeError, f) assert result.values.all() assert (cp.iloc[0:1] == df.iloc[0:1]).values.all() cp = df.copy() cp.iloc[4:5] = 0 assert (cp.iloc[4:5] == 0).values.all() assert (cp.iloc[0:4] == df.iloc[0:4]).values.all() # float slicing result = df.loc[1.0:5] expected = df assert_frame_equal(result, expected) assert len(result) == 5 result = df.loc[1.1:5] expected = df.reindex([2.5, 3.5, 4.5, 5.0]) assert_frame_equal(result, expected) assert len(result) == 4 result = df.loc[4.51:5] expected = df.reindex([5.0]) assert_frame_equal(result, expected) assert len(result) == 1 result = df.loc[1.0:5.0] expected = df.reindex([1.0, 2.5, 3.5, 4.5, 5.0]) assert_frame_equal(result, expected) assert len(result) == 5 cp = df.copy() cp.loc[1.0:5.0] = 0 result = cp.loc[1.0:5.0] assert (result == 0).values.all() def test_setitem_single_column_mixed(self): df = DataFrame(randn(5, 3), index=['a', 'b', 'c', 'd', 'e'], columns=['foo', 'bar', 'baz']) df['str'] = 'qux' df.loc[df.index[::2], 'str'] = nan expected = np.array([nan, 'qux', nan, 'qux', nan], dtype=object) assert_almost_equal(df['str'].values, expected) def test_setitem_single_column_mixed_datetime(self): df = DataFrame(randn(5, 3), index=['a', 'b', 'c', 'd', 'e'], columns=['foo', 'bar', 'baz']) df['timestamp'] = Timestamp('20010102') # check our dtypes result = df.get_dtype_counts() expected = Series({'float64': 3, 'datetime64[ns]': 1}) assert_series_equal(result, expected) # set an allowable datetime64 type df.loc['b', 'timestamp'] = iNaT assert isnull(df.loc['b', 'timestamp']) # allow this syntax df.loc['c', 'timestamp'] = nan assert isnull(df.loc['c', 'timestamp']) # allow this syntax df.loc['d', :] = nan assert not isnull(df.loc['c', :]).all() # as of GH 3216 this will now work! # try to set with a list like item # pytest.raises( # Exception, df.loc.__setitem__, ('d', 'timestamp'), [nan]) def test_setitem_frame(self): piece = self.frame.loc[self.frame.index[:2], ['A', 'B']] self.frame.loc[self.frame.index[-2]:, ['A', 'B']] = piece.values result = self.frame.loc[self.frame.index[-2:], ['A', 'B']].values expected = piece.values assert_almost_equal(result, expected) # GH 3216 # already aligned f = self.mixed_frame.copy() piece = DataFrame([[1., 2.], [3., 4.]], index=f.index[0:2], columns=['A', 'B']) key = (slice(None, 2), ['A', 'B']) f.loc[key] = piece assert_almost_equal(f.loc[f.index[0:2], ['A', 'B']].values, piece.values) # rows unaligned f = self.mixed_frame.copy() piece = DataFrame([[1., 2.], [3., 4.], [5., 6.], [7., 8.]], index=list(f.index[0:2]) + ['foo', 'bar'], columns=['A', 'B']) key = (slice(None, 2), ['A', 'B']) f.loc[key] = piece assert_almost_equal(f.loc[f.index[0:2:], ['A', 'B']].values, piece.values[0:2]) # key is unaligned with values f = self.mixed_frame.copy() piece = f.loc[f.index[:2], ['A']] piece.index = f.index[-2:] key = (slice(-2, None), ['A', 'B']) f.loc[key] = piece piece['B'] = np.nan assert_almost_equal(f.loc[f.index[-2:], ['A', 'B']].values, piece.values) # ndarray f = self.mixed_frame.copy() piece = self.mixed_frame.loc[f.index[:2], ['A', 'B']] key = (slice(-2, None), ['A', 'B']) f.loc[key] = piece.values assert_almost_equal(f.loc[f.index[-2:], ['A', 'B']].values, piece.values) # needs upcasting df = DataFrame([[1, 2, 'foo'], [3, 4, 'bar']], columns=['A', 'B', 'C']) df2 = df.copy() df2.loc[:, ['A', 'B']] = df.loc[:, ['A', 'B']] + 0.5 expected = df.reindex(columns=['A', 'B']) expected += 0.5 expected['C'] = df['C'] assert_frame_equal(df2, expected) def test_setitem_frame_align(self): piece = self.frame.loc[self.frame.index[:2], ['A', 'B']] piece.index = self.frame.index[-2:] piece.columns = ['A', 'B'] self.frame.loc[self.frame.index[-2:], ['A', 'B']] = piece result = self.frame.loc[self.frame.index[-2:], ['A', 'B']].values expected = piece.values assert_almost_equal(result, expected) def test_getitem_setitem_ix_duplicates(self): # #1201 df = DataFrame(np.random.randn(5, 3), index=['foo', 'foo', 'bar', 'baz', 'bar']) result = df.loc['foo'] expected = df[:2] assert_frame_equal(result, expected) result = df.loc['bar'] expected = df.iloc[[2, 4]] assert_frame_equal(result, expected) result = df.loc['baz'] expected = df.iloc[3] assert_series_equal(result, expected) def test_getitem_ix_boolean_duplicates_multiple(self): # #1201 df = DataFrame(np.random.randn(5, 3), index=['foo', 'foo', 'bar', 'baz', 'bar']) result = df.loc[['bar']] exp = df.iloc[[2, 4]] assert_frame_equal(result, exp) result = df.loc[df[1] > 0] exp = df[df[1] > 0] assert_frame_equal(result, exp) result = df.loc[df[0] > 0] exp = df[df[0] > 0] assert_frame_equal(result, exp) def test_getitem_setitem_ix_bool_keyerror(self): # #2199 df = DataFrame({'a': [1, 2, 3]}) pytest.raises(KeyError, df.loc.__getitem__, False) pytest.raises(KeyError, df.loc.__getitem__, True) pytest.raises(KeyError, df.loc.__setitem__, False, 0) pytest.raises(KeyError, df.loc.__setitem__, True, 0) def test_getitem_list_duplicates(self): # #1943 df = DataFrame(np.random.randn(4, 4), columns=list('AABC')) df.columns.name = 'foo' result = df[['B', 'C']] assert result.columns.name == 'foo' expected = df.iloc[:, 2:] assert_frame_equal(result, expected) def test_get_value(self): for idx in self.frame.index: for col in self.frame.columns: result = self.frame.get_value(idx, col) expected = self.frame[col][idx] assert result == expected def test_lookup(self): def alt(df, rows, cols, dtype): result = [] for r, c in zip(rows, cols): result.append(df.get_value(r, c)) return np.array(result, dtype=dtype) def testit(df): rows = list(df.index) * len(df.columns) cols = list(df.columns) * len(df.index) result = df.lookup(rows, cols) expected = alt(df, rows, cols, dtype=np.object_) tm.assert_almost_equal(result, expected, check_dtype=False) testit(self.mixed_frame) testit(self.frame) df = DataFrame({'label': ['a', 'b', 'a', 'c'], 'mask_a': [True, True, False, True], 'mask_b': [True, False, False, False], 'mask_c': [False, True, False, True]}) df['mask'] = df.lookup(df.index, 'mask_' + df['label']) exp_mask = alt(df, df.index, 'mask_' + df['label'], dtype=np.bool_) tm.assert_series_equal(df['mask'], pd.Series(exp_mask, name='mask')) assert df['mask'].dtype == np.bool_ with pytest.raises(KeyError): self.frame.lookup(['xyz'], ['A']) with pytest.raises(KeyError): self.frame.lookup([self.frame.index[0]], ['xyz']) with tm.assert_raises_regex(ValueError, 'same size'): self.frame.lookup(['a', 'b', 'c'], ['a']) def test_set_value(self): for idx in self.frame.index: for col in self.frame.columns: self.frame.set_value(idx, col, 1) assert self.frame[col][idx] == 1 def test_set_value_resize(self): res = self.frame.set_value('foobar', 'B', 0) assert res is self.frame assert res.index[-1] == 'foobar' assert res.get_value('foobar', 'B') == 0 self.frame.loc['foobar', 'qux'] = 0 assert self.frame.get_value('foobar', 'qux') == 0 res = self.frame.copy() res3 = res.set_value('foobar', 'baz', 'sam') assert res3['baz'].dtype == np.object_ res = self.frame.copy() res3 = res.set_value('foobar', 'baz', True) assert res3['baz'].dtype == np.object_ res = self.frame.copy() res3 = res.set_value('foobar', 'baz', 5) assert is_float_dtype(res3['baz']) assert isnull(res3['baz'].drop(['foobar'])).all() pytest.raises(ValueError, res3.set_value, 'foobar', 'baz', 'sam') def test_set_value_with_index_dtype_change(self): df_orig = DataFrame(randn(3, 3), index=lrange(3), columns=list('ABC')) # this is actually ambiguous as the 2 is interpreted as a positional # so column is not created df = df_orig.copy() df.set_value('C', 2, 1.0) assert list(df.index) == list(df_orig.index) + ['C'] # assert list(df.columns) == list(df_orig.columns) + [2] df = df_orig.copy() df.loc['C', 2] = 1.0 assert list(df.index) == list(df_orig.index) + ['C'] # assert list(df.columns) == list(df_orig.columns) + [2] # create both new df = df_orig.copy() df.set_value('C', 'D', 1.0) assert list(df.index) == list(df_orig.index) + ['C'] assert list(df.columns) == list(df_orig.columns) + ['D'] df = df_orig.copy() df.loc['C', 'D'] = 1.0 assert list(df.index) == list(df_orig.index) + ['C'] assert list(df.columns) == list(df_orig.columns) + ['D'] def test_get_set_value_no_partial_indexing(self): # partial w/ MultiIndex raise exception index = MultiIndex.from_tuples([(0, 1), (0, 2), (1, 1), (1, 2)]) df = DataFrame(index=index, columns=lrange(4)) pytest.raises(KeyError, df.get_value, 0, 1) # pytest.raises(KeyError, df.set_value, 0, 1, 0) def test_single_element_ix_dont_upcast(self): self.frame['E'] = 1 assert issubclass(self.frame['E'].dtype.type, (int, np.integer)) with catch_warnings(record=True): result = self.frame.ix[self.frame.index[5], 'E'] assert is_integer(result) result = self.frame.loc[self.frame.index[5], 'E'] assert is_integer(result) # GH 11617 df = pd.DataFrame(dict(a=[1.23])) df["b"] = 666 with catch_warnings(record=True): result = df.ix[0, "b"] assert is_integer(result) result = df.loc[0, "b"] assert is_integer(result) expected = Series([666], [0], name='b') with catch_warnings(record=True): result = df.ix[[0], "b"] assert_series_equal(result, expected) result = df.loc[[0], "b"] assert_series_equal(result, expected) def test_iloc_row(self): df = DataFrame(np.random.randn(10, 4), index=lrange(0, 20, 2)) result = df.iloc[1] exp = df.loc[2] assert_series_equal(result, exp) result = df.iloc[2] exp = df.loc[4] assert_series_equal(result, exp) # slice result = df.iloc[slice(4, 8)] expected = df.loc[8:14] assert_frame_equal(result, expected) # verify slice is view # setting it makes it raise/warn def f(): result[2] = 0. pytest.raises(com.SettingWithCopyError, f) exp_col = df[2].copy() exp_col[4:8] = 0. assert_series_equal(df[2], exp_col) # list of integers result = df.iloc[[1, 2, 4, 6]] expected = df.reindex(df.index[[1, 2, 4, 6]]) assert_frame_equal(result, expected) def test_iloc_col(self): df = DataFrame(np.random.randn(4, 10), columns=lrange(0, 20, 2)) result = df.iloc[:, 1] exp = df.loc[:, 2] assert_series_equal(result, exp) result = df.iloc[:, 2] exp = df.loc[:, 4] assert_series_equal(result, exp) # slice result = df.iloc[:, slice(4, 8)] expected = df.loc[:, 8:14] assert_frame_equal(result, expected) # verify slice is view # and that we are setting a copy def f(): result[8] = 0. pytest.raises(com.SettingWithCopyError, f) assert (df[8] == 0).all() # list of integers result = df.iloc[:, [1, 2, 4, 6]] expected = df.reindex(columns=df.columns[[1, 2, 4, 6]]) assert_frame_equal(result, expected) def test_iloc_duplicates(self): df = DataFrame(np.random.rand(3, 3), columns=list('ABC'), index=list('aab')) result = df.iloc[0] with catch_warnings(record=True): result2 = df.ix[0] assert isinstance(result, Series) assert_almost_equal(result.values, df.values[0]) assert_series_equal(result, result2) with catch_warnings(record=True): result = df.T.iloc[:, 0] result2 = df.T.ix[:, 0] assert isinstance(result, Series) assert_almost_equal(result.values, df.values[0]) assert_series_equal(result, result2) # multiindex df = DataFrame(np.random.randn(3, 3), columns=[['i', 'i', 'j'], ['A', 'A', 'B']], index=[['i', 'i', 'j'], ['X', 'X', 'Y']]) with catch_warnings(record=True): rs = df.iloc[0] xp = df.ix[0] assert_series_equal(rs, xp) with catch_warnings(record=True): rs = df.iloc[:, 0] xp = df.T.ix[0] assert_series_equal(rs, xp) with catch_warnings(record=True): rs = df.iloc[:, [0]] xp = df.ix[:, [0]] assert_frame_equal(rs, xp) # #2259 df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=[1, 1, 2]) result = df.iloc[:, [0]] expected = df.take([0], axis=1) assert_frame_equal(result, expected) def test_iloc_sparse_propegate_fill_value(self): from pandas.core.sparse.api import SparseDataFrame df = SparseDataFrame({'A': [999, 1]}, default_fill_value=999) assert len(df['A'].sp_values) == len(df.iloc[:, 0].sp_values) def test_iat(self): for i, row in enumerate(self.frame.index): for j, col in enumerate(self.frame.columns): result = self.frame.iat[i, j] expected = self.frame.at[row, col] assert result == expected def test_nested_exception(self): # Ignore the strange way of triggering the problem # (which may get fixed), it's just a way to trigger # the issue or reraising an outer exception without # a named argument df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}).set_index(["a", "b"]) l = list(df.index) l[0] = ["a", "b"] df.index = l try: repr(df) except Exception as e: assert type(e) != UnboundLocalError def test_reindex_methods(self): df = pd.DataFrame({'x': list(range(5))}) target = np.array([-0.1, 0.9, 1.1, 1.5]) for method, expected_values in [('nearest', [0, 1, 1, 2]), ('pad', [np.nan, 0, 1, 1]), ('backfill', [0, 1, 2, 2])]: expected = pd.DataFrame({'x': expected_values}, index=target) actual = df.reindex(target, method=method) assert_frame_equal(expected, actual) actual = df.reindex_like(df, method=method, tolerance=0) assert_frame_equal(df, actual) actual = df.reindex(target, method=method, tolerance=1) assert_frame_equal(expected, actual) e2 = expected[::-1] actual = df.reindex(target[::-1], method=method) assert_frame_equal(e2, actual) new_order = [3, 0, 2, 1] e2 = expected.iloc[new_order] actual = df.reindex(target[new_order], method=method) assert_frame_equal(e2, actual) switched_method = ('pad' if method == 'backfill' else 'backfill' if method == 'pad' else method) actual = df[::-1].reindex(target, method=switched_method) assert_frame_equal(expected, actual) expected = pd.DataFrame({'x': [0, 1, 1, np.nan]}, index=target) actual = df.reindex(target, method='nearest', tolerance=0.2) assert_frame_equal(expected, actual) def test_reindex_frame_add_nat(self): rng = date_range('1/1/2000 00:00:00', periods=10, freq='10s') df = DataFrame({'A': np.random.randn(len(rng)), 'B': rng}) result = df.reindex(lrange(15)) assert np.issubdtype(result['B'].dtype, np.dtype('M8[ns]')) mask = com.isnull(result)['B'] assert mask[-5:].all() assert not mask[:-5].any() def test_set_dataframe_column_ns_dtype(self): x = DataFrame([datetime.now(), datetime.now()]) assert x[0].dtype == np.dtype('M8[ns]') def test_non_monotonic_reindex_methods(self): dr = pd.date_range('2013-08-01', periods=6, freq='B') data = np.random.randn(6, 1) df = pd.DataFrame(data, index=dr, columns=list('A')) df_rev = pd.DataFrame(data, index=dr[[3, 4, 5] + [0, 1, 2]], columns=list('A')) # index is not monotonic increasing or decreasing pytest.raises(ValueError, df_rev.reindex, df.index, method='pad') pytest.raises(ValueError, df_rev.reindex, df.index, method='ffill') pytest.raises(ValueError, df_rev.reindex, df.index, method='bfill') pytest.raises(ValueError, df_rev.reindex, df.index, method='nearest') def test_reindex_level(self): from itertools import permutations icol = ['jim', 'joe', 'jolie'] def verify_first_level(df, level, idx, check_index_type=True): f = lambda val: np.nonzero(df[level] == val)[0] i = np.concatenate(list(map(f, idx))) left = df.set_index(icol).reindex(idx, level=level) right = df.iloc[i].set_index(icol) assert_frame_equal(left, right, check_index_type=check_index_type) def verify(df, level, idx, indexer, check_index_type=True): left = df.set_index(icol).reindex(idx, level=level) right = df.iloc[indexer].set_index(icol) assert_frame_equal(left, right, check_index_type=check_index_type) df = pd.DataFrame({'jim': list('B' * 4 + 'A' * 2 + 'C' * 3), 'joe': list('abcdeabcd')[::-1], 'jolie': [10, 20, 30] * 3, 'joline': np.random.randint(0, 1000, 9)}) target = [['C', 'B', 'A'], ['F', 'C', 'A', 'D'], ['A'], ['A', 'B', 'C'], ['C', 'A', 'B'], ['C', 'B'], ['C', 'A'], ['A', 'B'], ['B', 'A', 'C']] for idx in target: verify_first_level(df, 'jim', idx) # reindex by these causes different MultiIndex levels for idx in [['D', 'F'], ['A', 'C', 'B']]: verify_first_level(df, 'jim', idx, check_index_type=False) verify(df, 'joe', list('abcde'), [3, 2, 1, 0, 5, 4, 8, 7, 6]) verify(df, 'joe', list('abcd'), [3, 2, 1, 0, 5, 8, 7, 6]) verify(df, 'joe', list('abc'), [3, 2, 1, 8, 7, 6]) verify(df, 'joe', list('eca'), [1, 3, 4, 6, 8]) verify(df, 'joe', list('edc'), [0, 1, 4, 5, 6]) verify(df, 'joe', list('eadbc'), [3, 0, 2, 1, 4, 5, 8, 7, 6]) verify(df, 'joe', list('edwq'), [0, 4, 5]) verify(df, 'joe', list('wq'), [], check_index_type=False) df = DataFrame({'jim': ['mid'] * 5 + ['btm'] * 8 + ['top'] * 7, 'joe': ['3rd'] * 2 + ['1st'] * 3 + ['2nd'] * 3 + ['1st'] * 2 + ['3rd'] * 3 + ['1st'] * 2 + ['3rd'] * 3 + ['2nd'] * 2, # this needs to be jointly unique with jim and joe or # reindexing will fail ~1.5% of the time, this works # out to needing unique groups of same size as joe 'jolie': np.concatenate([ np.random.choice(1000, x, replace=False) for x in [2, 3, 3, 2, 3, 2, 3, 2]]), 'joline': np.random.randn(20).round(3) * 10}) for idx in permutations(df['jim'].unique()): for i in range(3): verify_first_level(df, 'jim', idx[:i + 1]) i = [2, 3, 4, 0, 1, 8, 9, 5, 6, 7, 10, 11, 12, 13, 14, 18, 19, 15, 16, 17] verify(df, 'joe', ['1st', '2nd', '3rd'], i) i = [0, 1, 2, 3, 4, 10, 11, 12, 5, 6, 7, 8, 9, 15, 16, 17, 18, 19, 13, 14] verify(df, 'joe', ['3rd', '2nd', '1st'], i) i = [0, 1, 5, 6, 7, 10, 11, 12, 18, 19, 15, 16, 17] verify(df, 'joe', ['2nd', '3rd'], i) i = [0, 1, 2, 3, 4, 10, 11, 12, 8, 9, 15, 16, 17, 13, 14] verify(df, 'joe', ['3rd', '1st'], i) def test_getitem_ix_float_duplicates(self): df = pd.DataFrame(np.random.randn(3, 3), index=[0.1, 0.2, 0.2], columns=list('abc')) expect = df.iloc[1:] assert_frame_equal(df.loc[0.2], expect) with catch_warnings(record=True): assert_frame_equal(df.ix[0.2], expect) expect = df.iloc[1:, 0] assert_series_equal(df.loc[0.2, 'a'], expect) df.index = [1, 0.2, 0.2] expect = df.iloc[1:] assert_frame_equal(df.loc[0.2], expect) with catch_warnings(record=True): assert_frame_equal(df.ix[0.2], expect) expect = df.iloc[1:, 0] assert_series_equal(df.loc[0.2, 'a'], expect) df = pd.DataFrame(np.random.randn(4, 3), index=[1, 0.2, 0.2, 1], columns=list('abc')) expect = df.iloc[1:-1] assert_frame_equal(df.loc[0.2], expect) with catch_warnings(record=True): assert_frame_equal(df.ix[0.2], expect) expect = df.iloc[1:-1, 0] assert_series_equal(df.loc[0.2, 'a'], expect) df.index = [0.1, 0.2, 2, 0.2] expect = df.iloc[[1, -1]] assert_frame_equal(df.loc[0.2], expect) with catch_warnings(record=True): assert_frame_equal(df.ix[0.2], expect) expect = df.iloc[[1, -1], 0] assert_series_equal(df.loc[0.2, 'a'], expect) def test_setitem_with_sparse_value(self): # GH8131 df = pd.DataFrame({'c_1': ['a', 'b', 'c'], 'n_1': [1., 2., 3.]}) sp_series = pd.Series([0, 0, 1]).to_sparse(fill_value=0) df['new_column'] = sp_series assert_series_equal(df['new_column'], sp_series, check_names=False) def test_setitem_with_unaligned_sparse_value(self): df = pd.DataFrame({'c_1': ['a', 'b', 'c'], 'n_1': [1., 2., 3.]}) sp_series = (pd.Series([0, 0, 1], index=[2, 1, 0]) .to_sparse(fill_value=0)) df['new_column'] = sp_series exp = pd.Series([1, 0, 0], name='new_column') assert_series_equal(df['new_column'], exp) def test_setitem_with_unaligned_tz_aware_datetime_column(self): # GH 12981 # Assignment of unaligned offset-aware datetime series. # Make sure timezone isn't lost column = pd.Series(pd.date_range('2015-01-01', periods=3, tz='utc'), name='dates') df = pd.DataFrame({'dates': column}) df['dates'] = column[[1, 0, 2]] assert_series_equal(df['dates'], column) df = pd.DataFrame({'dates': column}) df.loc[[0, 1, 2], 'dates'] = column[[1, 0, 2]] assert_series_equal(df['dates'], column) def test_setitem_datetime_coercion(self): # gh-1048 df = pd.DataFrame({'c': [pd.Timestamp('2010-10-01')] * 3}) df.loc[0:1, 'c'] = np.datetime64('2008-08-08') assert pd.Timestamp('2008-08-08') == df.loc[0, 'c'] assert pd.Timestamp('2008-08-08') == df.loc[1, 'c'] df.loc[2, 'c'] = date(2005, 5, 5) assert pd.Timestamp('2005-05-05') == df.loc[2, 'c'] def test_setitem_datetimelike_with_inference(self): # GH 7592 # assignment of timedeltas with NaT one_hour = timedelta(hours=1) df = DataFrame(index=date_range('20130101', periods=4)) df['A'] = np.array([1 * one_hour] * 4, dtype='m8[ns]') df.loc[:, 'B'] = np.array([2 * one_hour] * 4, dtype='m8[ns]') df.loc[:3, 'C'] = np.array([3 * one_hour] * 3, dtype='m8[ns]') df.loc[:, 'D'] = np.array([4 * one_hour] * 4, dtype='m8[ns]') df.loc[df.index[:3], 'E'] = np.array([5 * one_hour] * 3, dtype='m8[ns]') df['F'] = np.timedelta64('NaT') df.loc[df.index[:-1], 'F'] = np.array([6 * one_hour] * 3, dtype='m8[ns]') df.loc[df.index[-3]:, 'G'] = date_range('20130101', periods=3) df['H'] = np.datetime64('NaT') result = df.dtypes expected = Series([np.dtype('timedelta64[ns]')] * 6 + [np.dtype('datetime64[ns]')] * 2, index=list('ABCDEFGH')) assert_series_equal(result, expected) def test_at_time_between_time_datetimeindex(self): index = date_range("2012-01-01", "2012-01-05", freq='30min') df = DataFrame(randn(len(index), 5), index=index) akey = time(12, 0, 0) bkey = slice(time(13, 0, 0), time(14, 0, 0)) ainds = [24, 72, 120, 168] binds = [26, 27, 28, 74, 75, 76, 122, 123, 124, 170, 171, 172] result = df.at_time(akey) expected = df.loc[akey] expected2 = df.iloc[ainds] assert_frame_equal(result, expected) assert_frame_equal(result, expected2) assert len(result) == 4 result = df.between_time(bkey.start, bkey.stop) expected = df.loc[bkey] expected2 = df.iloc[binds] assert_frame_equal(result, expected) assert_frame_equal(result, expected2) assert len(result) == 12 result = df.copy() result.loc[akey] = 0 result = result.loc[akey] expected = df.loc[akey].copy() expected.loc[:] = 0 assert_frame_equal(result, expected) result = df.copy() result.loc[akey] = 0 result.loc[akey] = df.iloc[ainds] assert_frame_equal(result, df) result = df.copy() result.loc[bkey] = 0 result = result.loc[bkey] expected = df.loc[bkey].copy() expected.loc[:] = 0 assert_frame_equal(result, expected) result = df.copy() result.loc[bkey] = 0 result.loc[bkey] = df.iloc[binds] assert_frame_equal(result, df) def test_xs(self): idx = self.frame.index[5] xs = self.frame.xs(idx) for item, value in compat.iteritems(xs): if np.isnan(value): assert np.isnan(self.frame[item][idx]) else: assert value == self.frame[item][idx] # mixed-type xs test_data = { 'A': {'1': 1, '2': 2}, 'B': {'1': '1', '2': '2', '3': '3'}, } frame = DataFrame(test_data) xs = frame.xs('1') assert xs.dtype == np.object_ assert xs['A'] == 1 assert xs['B'] == '1' with pytest.raises(KeyError): self.tsframe.xs(self.tsframe.index[0] - BDay()) # xs get column series = self.frame.xs('A', axis=1) expected = self.frame['A'] assert_series_equal(series, expected) # view is returned if possible series = self.frame.xs('A', axis=1) series[:] = 5 assert (expected == 5).all() def test_xs_corner(self): # pathological mixed-type reordering case df = DataFrame(index=[0]) df['A'] = 1. df['B'] = 'foo' df['C'] = 2. df['D'] = 'bar' df['E'] = 3. xs = df.xs(0) exp = pd.Series([1., 'foo', 2., 'bar', 3.], index=list('ABCDE'), name=0) tm.assert_series_equal(xs, exp) # no columns but Index(dtype=object) df = DataFrame(index=['a', 'b', 'c']) result = df.xs('a') expected = Series([], name='a', index=pd.Index([], dtype=object)) assert_series_equal(result, expected) def test_xs_duplicates(self): df = DataFrame(randn(5, 2), index=['b', 'b', 'c', 'b', 'a']) cross = df.xs('c') exp = df.iloc[2] assert_series_equal(cross, exp) def test_xs_keep_level(self): df = (DataFrame({'day': {0: 'sat', 1: 'sun'}, 'flavour': {0: 'strawberry', 1: 'strawberry'}, 'sales': {0: 10, 1: 12}, 'year': {0: 2008, 1: 2008}}) .set_index(['year', 'flavour', 'day'])) result = df.xs('sat', level='day', drop_level=False) expected = df[:1] assert_frame_equal(result, expected) result = df.xs([2008, 'sat'], level=['year', 'day'], drop_level=False) assert_frame_equal(result, expected) def test_xs_view(self): # in 0.14 this will return a view if possible a copy otherwise, but # this is numpy dependent dm = DataFrame(np.arange(20.).reshape(4, 5), index=lrange(4), columns=lrange(5)) dm.xs(2)[:] = 10 assert (dm.xs(2) == 10).all() def test_index_namedtuple(self): from collections import namedtuple IndexType = namedtuple("IndexType", ["a", "b"]) idx1 = IndexType("foo", "bar") idx2 = IndexType("baz", "bof") index = Index([idx1, idx2], name="composite_index", tupleize_cols=False) df = DataFrame([(1, 2), (3, 4)], index=index, columns=["A", "B"]) with catch_warnings(record=True): result = df.ix[IndexType("foo", "bar")]["A"] assert result == 1 result = df.loc[IndexType("foo", "bar")]["A"] assert result == 1 def test_boolean_indexing(self): idx = lrange(3) cols = ['A', 'B', 'C'] df1 = DataFrame(index=idx, columns=cols, data=np.array([[0.0, 0.5, 1.0], [1.5, 2.0, 2.5], [3.0, 3.5, 4.0]], dtype=float)) df2 = DataFrame(index=idx, columns=cols, data=np.ones((len(idx), len(cols)))) expected = DataFrame(index=idx, columns=cols, data=np.array([[0.0, 0.5, 1.0], [1.5, 2.0, -1], [-1, -1, -1]], dtype=float)) df1[df1 > 2.0 * df2] = -1 assert_frame_equal(df1, expected) with tm.assert_raises_regex(ValueError, 'Item wrong length'): df1[df1.index[:-1] > 2] = -1 def test_boolean_indexing_mixed(self): df = DataFrame({ long(0): {35: np.nan, 40: np.nan, 43: np.nan, 49: np.nan, 50: np.nan}, long(1): {35: np.nan, 40: 0.32632316859446198, 43: np.nan, 49: 0.32632316859446198, 50: 0.39114724480578139}, long(2): {35: np.nan, 40: np.nan, 43: 0.29012581014105987, 49: np.nan, 50: np.nan}, long(3): {35: np.nan, 40: np.nan, 43: np.nan, 49: np.nan, 50: np.nan}, long(4): {35: 0.34215328467153283, 40: np.nan, 43: np.nan, 49: np.nan, 50: np.nan}, 'y': {35: 0, 40: 0, 43: 0, 49: 0, 50: 1}}) # mixed int/float ok df2 = df.copy() df2[df2 > 0.3] = 1 expected = df.copy() expected.loc[40, 1] = 1 expected.loc[49, 1] = 1 expected.loc[50, 1] = 1 expected.loc[35, 4] = 1 assert_frame_equal(df2, expected) df['foo'] = 'test' with tm.assert_raises_regex(TypeError, 'boolean setting ' 'on mixed-type'): df[df > 0.3] = 1 def test_where(self): default_frame = DataFrame(np.random.randn(5, 3), columns=['A', 'B', 'C']) def _safe_add(df): # only add to the numeric items def is_ok(s): return (issubclass(s.dtype.type, (np.integer, np.floating)) and s.dtype != 'uint8') return DataFrame(dict([(c, s + 1) if is_ok(s) else (c, s) for c, s in compat.iteritems(df)])) def _check_get(df, cond, check_dtypes=True): other1 = _safe_add(df) rs = df.where(cond, other1) rs2 = df.where(cond.values, other1) for k, v in rs.iteritems(): exp = Series( np.where(cond[k], df[k], other1[k]), index=v.index) assert_series_equal(v, exp, check_names=False) assert_frame_equal(rs, rs2) # dtypes if check_dtypes: assert (rs.dtypes == df.dtypes).all() # check getting for df in [default_frame, self.mixed_frame, self.mixed_float, self.mixed_int]: cond = df > 0 _check_get(df, cond) # upcasting case (GH # 2794) df = DataFrame(dict([(c, Series([1] * 3, dtype=c)) for c in ['int64', 'int32', 'float32', 'float64']])) df.iloc[1, :] = 0 result = df.where(df >= 0).get_dtype_counts() # when we don't preserve boolean casts # # expected = Series({ 'float32' : 1, 'float64' : 3 }) expected = Series({'float32': 1, 'float64': 1, 'int32': 1, 'int64': 1}) assert_series_equal(result, expected) # aligning def _check_align(df, cond, other, check_dtypes=True): rs = df.where(cond, other) for i, k in enumerate(rs.columns): result = rs[k] d = df[k].values c = cond[k].reindex(df[k].index).fillna(False).values if is_scalar(other): o = other else: if isinstance(other, np.ndarray): o = Series(other[:, i], index=result.index).values else: o = other[k].values new_values = d if c.all() else np.where(c, d, o) expected = Series(new_values, index=result.index, name=k) # since we can't always have the correct numpy dtype # as numpy doesn't know how to downcast, don't check assert_series_equal(result, expected, check_dtype=False) # dtypes # can't check dtype when other is an ndarray if check_dtypes and not isinstance(other, np.ndarray): assert (rs.dtypes == df.dtypes).all() for df in [self.mixed_frame, self.mixed_float, self.mixed_int]: # other is a frame cond = (df > 0)[1:] _check_align(df, cond, _safe_add(df)) # check other is ndarray cond = df > 0 _check_align(df, cond, (_safe_add(df).values)) # integers are upcast, so don't check the dtypes cond = df > 0 check_dtypes = all([not issubclass(s.type, np.integer) for s in df.dtypes]) _check_align(df, cond, np.nan, check_dtypes=check_dtypes) # invalid conditions df = default_frame err1 = (df + 1).values[0:2, :] pytest.raises(ValueError, df.where, cond, err1) err2 = cond.iloc[:2, :].values other1 = _safe_add(df) pytest.raises(ValueError, df.where, err2, other1) pytest.raises(ValueError, df.mask, True) pytest.raises(ValueError, df.mask, 0) # where inplace def _check_set(df, cond, check_dtypes=True): dfi = df.copy() econd = cond.reindex_like(df).fillna(True) expected = dfi.mask(~econd) dfi.where(cond, np.nan, inplace=True) assert_frame_equal(dfi, expected) # dtypes (and confirm upcasts)x if check_dtypes: for k, v in compat.iteritems(df.dtypes): if issubclass(v.type, np.integer) and not cond[k].all(): v = np.dtype('float64') assert dfi[k].dtype == v for df in [default_frame, self.mixed_frame, self.mixed_float, self.mixed_int]: cond = df > 0 _check_set(df, cond) cond = df >= 0 _check_set(df, cond) # aligining cond = (df >= 0)[1:] _check_set(df, cond) # GH 10218 # test DataFrame.where with Series slicing df = DataFrame({'a': range(3), 'b': range(4, 7)}) result = df.where(df['a'] == 1) expected = df[df['a'] == 1].reindex(df.index) assert_frame_equal(result, expected) def test_where_array_like(self): # see gh-15414 klasses = [list, tuple, np.array] df = DataFrame({'a': [1, 2, 3]}) cond = [[False], [True], [True]] expected = DataFrame({'a': [np.nan, 2, 3]}) for klass in klasses: result = df.where(klass(cond)) assert_frame_equal(result, expected) df['b'] = 2 expected['b'] = [2, np.nan, 2] cond = [[False, True], [True, False], [True, True]] for klass in klasses: result = df.where(klass(cond)) assert_frame_equal(result, expected) def test_where_invalid_input(self): # see gh-15414: only boolean arrays accepted df = DataFrame({'a': [1, 2, 3]}) msg = "Boolean array expected for the condition" conds = [ [[1], [0], [1]], Series([[2], [5], [7]]), DataFrame({'a': [2, 5, 7]}), [["True"], ["False"], ["True"]], [[Timestamp("2017-01-01")], [pd.NaT], [Timestamp("2017-01-02")]] ] for cond in conds: with tm.assert_raises_regex(ValueError, msg): df.where(cond) df['b'] = 2 conds = [ [[0, 1], [1, 0], [1, 1]], Series([[0, 2], [5, 0], [4, 7]]), [["False", "True"], ["True", "False"], ["True", "True"]], DataFrame({'a': [2, 5, 7], 'b': [4, 8, 9]}), [[pd.NaT, Timestamp("2017-01-01")], [Timestamp("2017-01-02"), pd.NaT], [Timestamp("2017-01-03"), Timestamp("2017-01-03")]] ] for cond in conds: with tm.assert_raises_regex(ValueError, msg): df.where(cond) def test_where_dataframe_col_match(self): df = DataFrame([[1, 2, 3], [4, 5, 6]]) cond = DataFrame([[True, False, True], [False, False, True]]) out = df.where(cond) expected = DataFrame([[1.0, np.nan, 3], [np.nan, np.nan, 6]]) tm.assert_frame_equal(out, expected) cond.columns = ["a", "b", "c"] # Columns no longer match. msg = "Boolean array expected for the condition" with tm.assert_raises_regex(ValueError, msg): df.where(cond) def test_where_ndframe_align(self): msg = "Array conditional must be same shape as self" df = DataFrame([[1, 2, 3], [4, 5, 6]]) cond = [True] with tm.assert_raises_regex(ValueError, msg): df.where(cond) expected = DataFrame([[1, 2, 3], [np.nan, np.nan, np.nan]]) out = df.where(Series(cond)) tm.assert_frame_equal(out, expected) cond = np.array([False, True, False, True]) with tm.assert_raises_regex(ValueError, msg): df.where(cond) expected = DataFrame([[np.nan, np.nan, np.nan], [4, 5, 6]]) out = df.where(Series(cond)) tm.assert_frame_equal(out, expected) def test_where_bug(self): # GH 2793 df = DataFrame({'a': [1.0, 2.0, 3.0, 4.0], 'b': [ 4.0, 3.0, 2.0, 1.0]}, dtype='float64') expected = DataFrame({'a': [np.nan, np.nan, 3.0, 4.0], 'b': [ 4.0, 3.0, np.nan, np.nan]}, dtype='float64') result = df.where(df > 2, np.nan) assert_frame_equal(result, expected) result = df.copy() result.where(result > 2, np.nan, inplace=True) assert_frame_equal(result, expected) # mixed for dtype in ['int16', 'int8', 'int32', 'int64']: df = DataFrame({'a': np.array([1, 2, 3, 4], dtype=dtype), 'b': np.array([4.0, 3.0, 2.0, 1.0], dtype='float64')}) expected = DataFrame({'a': [np.nan, np.nan, 3.0, 4.0], 'b': [4.0, 3.0, np.nan, np.nan]}, dtype='float64') result = df.where(df > 2, np.nan) assert_frame_equal(result, expected) result = df.copy() result.where(result > 2, np.nan, inplace=True) assert_frame_equal(result, expected) # transpositional issue # GH7506 a = DataFrame({0: [1, 2], 1: [3, 4], 2: [5, 6]}) b = DataFrame({0: [np.nan, 8], 1: [9, np.nan], 2: [np.nan, np.nan]}) do_not_replace = b.isnull() | (a > b) expected = a.copy() expected[~do_not_replace] = b result = a.where(do_not_replace, b) assert_frame_equal(result, expected) a = DataFrame({0: [4, 6], 1: [1, 0]}) b = DataFrame({0: [np.nan, 3], 1: [3, np.nan]}) do_not_replace = b.isnull() | (a > b) expected = a.copy() expected[~do_not_replace] = b result = a.where(do_not_replace, b) assert_frame_equal(result, expected) def test_where_datetime(self): # GH 3311 df = DataFrame(dict(A=date_range('20130102', periods=5), B=date_range('20130104', periods=5), C=np.random.randn(5))) stamp = datetime(2013, 1, 3) result = df[df > stamp] expected = df.copy() expected.loc[[0, 1], 'A'] = np.nan assert_frame_equal(result, expected) def test_where_none(self): # GH 4667 # setting with None changes dtype df = DataFrame({'series': Series(range(10))}).astype(float) df[df > 7] = None expected = DataFrame( {'series': Series([0, 1, 2, 3, 4, 5, 6, 7, np.nan, np.nan])}) assert_frame_equal(df, expected) # GH 7656 df = DataFrame([{'A': 1, 'B': np.nan, 'C': 'Test'}, { 'A': np.nan, 'B': 'Test', 'C': np.nan}]) expected = df.where(~isnull(df), None) with tm.assert_raises_regex(TypeError, 'boolean setting ' 'on mixed-type'): df.where(~isnull(df), None, inplace=True) def test_where_align(self): def create(): df = DataFrame(np.random.randn(10, 3)) df.iloc[3:5, 0] = np.nan df.iloc[4:6, 1] = np.nan df.iloc[5:8, 2] = np.nan return df # series df = create() expected = df.fillna(df.mean()) result = df.where(pd.notnull(df), df.mean(), axis='columns') assert_frame_equal(result, expected) df.where(pd.notnull(df), df.mean(), inplace=True, axis='columns') assert_frame_equal(df, expected) df = create().fillna(0) expected = df.apply(lambda x, y: x.where(x > 0, y), y=df[0]) result = df.where(df > 0, df[0], axis='index') assert_frame_equal(result, expected) result = df.where(df > 0, df[0], axis='rows') assert_frame_equal(result, expected) # frame df = create() expected = df.fillna(1) result = df.where(pd.notnull(df), DataFrame( 1, index=df.index, columns=df.columns)) assert_frame_equal(result, expected) def test_where_complex(self): # GH 6345 expected = DataFrame( [[1 + 1j, 2], [np.nan, 4 + 1j]], columns=['a', 'b']) df = DataFrame([[1 + 1j, 2], [5 + 1j, 4 + 1j]], columns=['a', 'b']) df[df.abs() >= 5] = np.nan assert_frame_equal(df, expected) def test_where_axis(self): # GH 9736 df = DataFrame(np.random.randn(2, 2)) mask = DataFrame([[False, False], [False, False]]) s = Series([0, 1]) expected = DataFrame([[0, 0], [1, 1]], dtype='float64') result = df.where(mask, s, axis='index') assert_frame_equal(result, expected) result = df.copy() result.where(mask, s, axis='index', inplace=True) assert_frame_equal(result, expected) expected = DataFrame([[0, 1], [0, 1]], dtype='float64') result = df.where(mask, s, axis='columns') assert_frame_equal(result, expected) result = df.copy() result.where(mask, s, axis='columns', inplace=True) assert_frame_equal(result, expected) # Upcast needed df = DataFrame([[1, 2], [3, 4]], dtype='int64') mask = DataFrame([[False, False], [False, False]]) s = Series([0, np.nan]) expected = DataFrame([[0, 0], [np.nan, np.nan]], dtype='float64') result = df.where(mask, s, axis='index') assert_frame_equal(result, expected) result = df.copy() result.where(mask, s, axis='index', inplace=True) assert_frame_equal(result, expected) expected = DataFrame([[0, np.nan], [0, np.nan]], dtype='float64') result = df.where(mask, s, axis='columns') assert_frame_equal(result, expected) expected = DataFrame({0: np.array([0, 0], dtype='int64'), 1: np.array([np.nan, np.nan], dtype='float64')}) result = df.copy() result.where(mask, s, axis='columns', inplace=True) assert_frame_equal(result, expected) # Multiple dtypes (=> multiple Blocks) df = pd.concat([DataFrame(np.random.randn(10, 2)), DataFrame(np.random.randint(0, 10, size=(10, 2)))], ignore_index=True, axis=1) mask = DataFrame(False, columns=df.columns, index=df.index) s1 = Series(1, index=df.columns) s2 = Series(2, index=df.index) result = df.where(mask, s1, axis='columns') expected = DataFrame(1.0, columns=df.columns, index=df.index) expected[2] = expected[2].astype(int) expected[3] = expected[3].astype(int) assert_frame_equal(result, expected) result = df.copy() result.where(mask, s1, axis='columns', inplace=True) assert_frame_equal(result, expected) result = df.where(mask, s2, axis='index') expected = DataFrame(2.0, columns=df.columns, index=df.index) expected[2] = expected[2].astype(int) expected[3] = expected[3].astype(int) assert_frame_equal(result, expected) result = df.copy() result.where(mask, s2, axis='index', inplace=True) assert_frame_equal(result, expected) # DataFrame vs DataFrame d1 = df.copy().drop(1, axis=0) expected = df.copy() expected.loc[1, :] = np.nan result = df.where(mask, d1) assert_frame_equal(result, expected) result = df.where(mask, d1, axis='index') assert_frame_equal(result, expected) result = df.copy() result.where(mask, d1, inplace=True) assert_frame_equal(result, expected) result = df.copy() result.where(mask, d1, inplace=True, axis='index') assert_frame_equal(result, expected) d2 = df.copy().drop(1, axis=1) expected = df.copy() expected.loc[:, 1] = np.nan result = df.where(mask, d2) assert_frame_equal(result, expected) result = df.where(mask, d2, axis='columns') assert_frame_equal(result, expected) result = df.copy() result.where(mask, d2, inplace=True) assert_frame_equal(result, expected) result = df.copy() result.where(mask, d2, inplace=True, axis='columns') assert_frame_equal(result, expected) def test_where_callable(self): # GH 12533 df = DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) result = df.where(lambda x: x > 4, lambda x: x + 1) exp = DataFrame([[2, 3, 4], [5, 5, 6], [7, 8, 9]]) tm.assert_frame_equal(result, exp) tm.assert_frame_equal(result, df.where(df > 4, df + 1)) # return ndarray and scalar result = df.where(lambda x: (x % 2 == 0).values, lambda x: 99) exp = DataFrame([[99, 2, 99], [4, 99, 6], [99, 8, 99]]) tm.assert_frame_equal(result, exp) tm.assert_frame_equal(result, df.where(df % 2 == 0, 99)) # chain result = (df + 2).where(lambda x: x > 8, lambda x: x + 10) exp = DataFrame([[13, 14, 15], [16, 17, 18], [9, 10, 11]]) tm.assert_frame_equal(result, exp) tm.assert_frame_equal(result, (df + 2).where((df + 2) > 8, (df + 2) + 10)) def test_mask(self): df = DataFrame(np.random.randn(5, 3)) cond = df > 0 rs = df.where(cond, np.nan) assert_frame_equal(rs, df.mask(df <= 0)) assert_frame_equal(rs, df.mask(~cond)) other = DataFrame(np.random.randn(5, 3)) rs = df.where(cond, other) assert_frame_equal(rs, df.mask(df <= 0, other)) assert_frame_equal(rs, df.mask(~cond, other)) def test_mask_inplace(self): # GH8801 df = DataFrame(np.random.randn(5, 3)) cond = df > 0 rdf = df.copy() rdf.where(cond, inplace=True) assert_frame_equal(rdf, df.where(cond)) assert_frame_equal(rdf, df.mask(~cond)) rdf = df.copy() rdf.where(cond, -df, inplace=True) assert_frame_equal(rdf, df.where(cond, -df)) assert_frame_equal(rdf, df.mask(~cond, -df)) def test_mask_edge_case_1xN_frame(self): # GH4071 df = DataFrame([[1, 2]]) res = df.mask(DataFrame([[True, False]])) expec = DataFrame([[nan, 2]]) assert_frame_equal(res, expec) def test_mask_callable(self): # GH 12533 df = DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) result = df.mask(lambda x: x > 4, lambda x: x + 1) exp = DataFrame([[1, 2, 3], [4, 6, 7], [8, 9, 10]]) tm.assert_frame_equal(result, exp) tm.assert_frame_equal(result, df.mask(df > 4, df + 1)) # return ndarray and scalar result = df.mask(lambda x: (x % 2 == 0).values, lambda x: 99) exp = DataFrame([[1, 99, 3], [99, 5, 99], [7, 99, 9]]) tm.assert_frame_equal(result, exp) tm.assert_frame_equal(result, df.mask(df % 2 == 0, 99)) # chain result = (df + 2).mask(lambda x: x > 8, lambda x: x + 10) exp = DataFrame([[3, 4, 5], [6, 7, 8], [19, 20, 21]]) tm.assert_frame_equal(result, exp) tm.assert_frame_equal(result, (df + 2).mask((df + 2) > 8, (df + 2) + 10)) def test_head_tail(self): assert_frame_equal(self.frame.head(), self.frame[:5]) assert_frame_equal(self.frame.tail(), self.frame[-5:]) assert_frame_equal(self.frame.head(0), self.frame[0:0]) assert_frame_equal(self.frame.tail(0), self.frame[0:0]) assert_frame_equal(self.frame.head(-1), self.frame[:-1]) assert_frame_equal(self.frame.tail(-1), self.frame[1:]) assert_frame_equal(self.frame.head(1), self.frame[:1]) assert_frame_equal(self.frame.tail(1), self.frame[-1:]) # with a float index df = self.frame.copy() df.index = np.arange(len(self.frame)) + 0.1 assert_frame_equal(df.head(), df.iloc[:5]) assert_frame_equal(df.tail(), df.iloc[-5:]) assert_frame_equal(df.head(0), df[0:0]) assert_frame_equal(df.tail(0), df[0:0]) assert_frame_equal(df.head(-1), df.iloc[:-1]) assert_frame_equal(df.tail(-1), df.iloc[1:]) # test empty dataframe empty_df = DataFrame() assert_frame_equal(empty_df.tail(), empty_df) assert_frame_equal(empty_df.head(), empty_df) def test_type_error_multiindex(self): # See gh-12218 df = DataFrame(columns=['i', 'c', 'x', 'y'], data=[[0, 0, 1, 2], [1, 0, 3, 4], [0, 1, 1, 2], [1, 1, 3, 4]]) dg = df.pivot_table(index='i', columns='c', values=['x', 'y']) with tm.assert_raises_regex(TypeError, "is an invalid key"): str(dg[:, 0]) index = Index(range(2), name='i') columns = MultiIndex(levels=[['x', 'y'], [0, 1]], labels=[[0, 1], [0, 0]], names=[None, 'c']) expected = DataFrame([[1, 2], [3, 4]], columns=columns, index=index) result = dg.loc[:, (slice(None), 0)] assert_frame_equal(result, expected) name = ('x', 0) index = Index(range(2), name='i') expected = Series([1, 3], index=index, name=name) result = dg['x', 0] assert_series_equal(result, expected) class TestDataFrameIndexingDatetimeWithTZ(TestData): def setup_method(self, method): self.idx = Index(date_range('20130101', periods=3, tz='US/Eastern'), name='foo') self.dr = date_range('20130110', periods=3) self.df = DataFrame({'A': self.idx, 'B': self.dr}) def test_setitem(self): df = self.df idx = self.idx # setitem df['C'] = idx assert_series_equal(df['C'], Series(idx, name='C')) df['D'] = 'foo' df['D'] = idx assert_series_equal(df['D'], Series(idx, name='D')) del df['D'] # assert that A & C are not sharing the same base (e.g. they # are copies) b1 = df._data.blocks[1] b2 = df._data.blocks[2] assert b1.values.equals(b2.values) assert id(b1.values.values.base) != id(b2.values.values.base) # with nan df2 = df.copy() df2.iloc[1, 1] = pd.NaT df2.iloc[1, 2] = pd.NaT result = df2['B'] assert_series_equal(notnull(result), Series( [True, False, True], name='B')) assert_series_equal(df2.dtypes, df.dtypes) def test_set_reset(self): idx = self.idx # set/reset df = DataFrame({'A': [0, 1, 2]}, index=idx) result = df.reset_index() assert result['foo'].dtype, 'M8[ns, US/Eastern' df = result.set_index('foo') tm.assert_index_equal(df.index, idx) def test_transpose(self): result = self.df.T expected = DataFrame(self.df.values.T) expected.index = ['A', 'B'] assert_frame_equal(result, expected) class TestDataFrameIndexingUInt64(TestData): def setup_method(self, method): self.ir = Index(np.arange(3), dtype=np.uint64) self.idx = Index([2**63, 2**63 + 5, 2**63 + 10], name='foo') self.df = DataFrame({'A': self.idx, 'B': self.ir}) def test_setitem(self): df = self.df idx = self.idx # setitem df['C'] = idx assert_series_equal(df['C'], Series(idx, name='C')) df['D'] = 'foo' df['D'] = idx assert_series_equal(df['D'], Series(idx, name='D')) del df['D'] # With NaN: because uint64 has no NaN element, # the column should be cast to object. df2 = df.copy() df2.iloc[1, 1] = pd.NaT df2.iloc[1, 2] = pd.NaT result = df2['B'] assert_series_equal(notnull(result), Series( [True, False, True], name='B')) assert_series_equal(df2.dtypes, Series([np.dtype('uint64'), np.dtype('O'), np.dtype('O')], index=['A', 'B', 'C'])) def test_set_reset(self): idx = self.idx # set/reset df = DataFrame({'A': [0, 1, 2]}, index=idx) result = df.reset_index() assert result['foo'].dtype == np.dtype('uint64') df = result.set_index('foo') tm.assert_index_equal(df.index, idx) def test_transpose(self): result = self.df.T expected = DataFrame(self.df.values.T) expected.index = ['A', 'B'] assert_frame_equal(result, expected)
mit
BhallaLab/moose-examples
traub_2005/py/test_singlecomp.py
2
7203
# test_singlecomp.py --- # # Filename: test_singlecomp.py # Description: # Author: Subhasis Ray # Maintainer: # Created: Tue Jul 17 21:01:14 2012 (+0530) # Version: # Last-Updated: Sun Jun 25 15:37:21 2017 (-0400) # By: subha # Update #: 320 # URL: # Keywords: # Compatibility: # # # Commentary: # # Test the ion channels with a single compartment. # # # Change log: # # 2012-07-17 22:22:23 (+0530) Tested NaF2 and NaPF_SS against neuron # test case. # # # Code: import os os.environ['NUMPTHREADS'] = '1' import uuid import unittest from datetime import datetime import sys sys.path.append('../../../python') import numpy as np from matplotlib import pyplot as plt import moose from testutils import * from nachans import * from kchans import * from archan import * from cachans import * from capool import * simdt = 0.25e-4 plotdt = 0.25e-4 simtime = 350e-3 erev = { 'K': -100e-3, 'Na': 50e-3, 'Ca': 125e-3, 'AR': -40e-3 } channel_density = { 'NaF2': 1500.0, 'NaPF_SS': 1.5, 'KDR_FS': 1000.0, 'KC_FAST': 100.0, 'KA': 300.0, 'KM': 37.5, 'K2': 1.0, 'KAHP_SLOWER': 1.0, 'CaL': 5.0, 'CaT_A': 1.0, 'AR': 2.5 } compartment_propeties = { 'length': 20e-6, 'diameter': 2e-6 * 7.5, 'initVm': -65e-3, 'Em': -65e-3, 'Rm': 5.0, 'Cm': 9e-3, 'Ra': 1.0, 'specific': True} stimulus = [[100e-3, 50e-3, 3e-10], # delay[0], width[0], level[0] [1e9, 0, 0]] def create_compartment(path, length, diameter, initVm, Em, Rm, Cm, Ra, specific=False): comp = moose.Compartment(path) comp.length = length comp.diameter = diameter comp.initVm = initVm comp.Em = Em if not specific: comp.Rm = Rm comp.Cm = Cm comp.Ra = Ra else: sarea = np.pi * length * diameter comp.Rm = Rm / sarea comp.Cm = Cm * sarea comp.Ra = 4.0 * Ra * length / (np.pi * diameter * diameter) return comp def insert_channel(compartment, channeclass, gbar, density=False): channel = moose.copy(channeclass.prototype, compartment)[0] if not density: channel.Gbar = gbar else: channel.Gbar = gbar * np.pi * compartment.length * compartment.diameter moose.connect(channel, 'channel', compartment, 'channel') return channel def insert_ca(compartment, phi, tau): ca = moose.copy(CaPool.prototype, compartment)[0] ca.B = phi / (np.pi * compartment.length * compartment.diameter) ca.tau = tau print( ca.path, ca.B, ca.tau) for chan in moose.wildcardFind('%s/#[TYPE=HHChannel]' % (compartment.path)): if chan.name.startswith('KC') or chan.name.startswith('KAHP'): moose.connect(ca, 'concOut', chan, 'concen') elif chan.name.startswith('CaL'): moose.connect(chan, 'IkOut', ca, 'current') else: continue moose.showfield(chan) return ca class TestSingleComp(unittest.TestCase): def setUp(self): self.testId = uuid.uuid4().int self.container = moose.Neutral('test%d' % (self.testId)) self.model = moose.Neutral('%s/model' % (self.container.path)) self.data = moose.Neutral('%s/data' % (self.container.path)) self.soma = create_compartment('%s/soma' % (self.model.path), **compartment_propeties) self.tables = {} tab = moose.Table('%s/Vm' % (self.data.path)) self.tables['Vm'] = tab moose.connect(tab, 'requestOut', self.soma, 'getVm') for channelname, conductance in list(channel_density.items()): chanclass = eval(channelname) channel = insert_channel(self.soma, chanclass, conductance, density=True) if issubclass(chanclass, KChannel): channel.Ek = erev['K'] elif issubclass(chanclass, NaChannel): channel.Ek = erev['Na'] elif issubclass(chanclass, CaChannel): channel.Ek = erev['Ca'] elif issubclass(chanclass, AR): channel.Ek = erev['AR'] tab = moose.Table('%s/%s' % (self.data.path, channelname)) moose.connect(tab, 'requestOut', channel, 'getGk') self.tables['Gk_'+channel.name] = tab archan = moose.HHChannel(self.soma.path + '/AR') archan.X = 0.0 ca = insert_ca(self.soma, 2.6e7, 50e-3) tab = moose.Table('%s/Ca' % (self.data.path)) self.tables['Ca'] = tab moose.connect(tab, 'requestOut', ca, 'getCa') self.pulsegen = moose.PulseGen('%s/inject' % (self.model.path)) moose.connect(self.pulsegen, 'output', self.soma, 'injectMsg') tab = moose.Table('%s/injection' % (self.data.path)) moose.connect(tab, 'requestOut', self.pulsegen, 'getOutputValue') self.tables['pulsegen'] = tab self.pulsegen.count = len(stimulus) for ii in range(len(stimulus)): self.pulsegen.delay[ii] = stimulus[ii][0] self.pulsegen.width[ii] = stimulus[ii][1] self.pulsegen.level[ii] = stimulus[ii][2] setup_clocks(simdt, plotdt) assign_clocks(self.model, self.data) moose.reinit() start = datetime.now() moose.start(simtime) end = datetime.now() delta = end - start print( 'Simulation of %g s finished in %g s' % (simtime, delta.seconds + delta.microseconds*1e-6)) def testDefault(self): vm_axis = plt.subplot(2,1,1) ca_axis = plt.subplot(2,1,2) try: fname = os.path.join(config.mydir, 'nrn', 'data', 'singlecomp_Vm.dat') nrndata = np.loadtxt(fname) vm_axis.plot(nrndata[:,0], nrndata[:,1], label='Vm (mV) - nrn') ca_axis.plot(nrndata[:,0], nrndata[:,2], label='Ca (mM) - nrn') except IOError as e: print(e) tseries = np.linspace(0, simtime, len(self.tables['Vm'].vector)) * 1e3 # plotcount = len(channel_density) + 1 # rows = int(np.sqrt(plotcount) + 0.5) # columns = int(plotcount * 1.0/rows + 0.5) # print plotcount, rows, columns # plt.subplot(rows, columns, 1) vm_axis.plot(tseries, self.tables['Vm'].vector * 1e3, label='Vm (mV) - moose') vm_axis.plot(tseries, self.tables['pulsegen'].vector * 1e12, label='inject (pA)') ca_axis.plot(tseries, self.tables['Ca'].vector, label='Ca (mM) - moose') vm_axis.legend() ca_axis.legend() # ii = 2 # for key, value in self.tables.items(): # if key.startswith('Gk'): # plt.subplot(rows, columns, ii) # plt.plot(tseries, value.vector, label=key) # ii += 1 # plt.legend() plt.show() data = np.vstack((tseries*1e-3, self.tables['Vm'].vector, self.tables['Ca'].vector)) np.savetxt(os.path.join(config.data_dir, 'singlecomp_Vm.dat'), np.transpose(data)) if __name__ == '__main__': unittest.main() # # test_singlecomp.py ends here
gpl-2.0
mantidproject/mantid
qt/python/mantidqt/gui_helper.py
3
5994
# Mantid Repository : https://github.com/mantidproject/mantid # # Copyright &copy; 2018 ISIS Rutherford Appleton Laboratory UKRI, # NScD Oak Ridge National Laboratory, European Spallation Source, # Institut Laue - Langevin & CSNS, Institute of High Energy Physics, CAS # SPDX - License - Identifier: GPL - 3.0 + from qtpy.QtWidgets import (QApplication) # noqa from qtpy import QtCore, QtGui import matplotlib import sys import os try: from mantid import __version__ as __mtd_version from mantid import _bindir as __mtd_bin_dir # convert to major.minor __mtd_version = '.'.join(__mtd_version.split(".")[:2]) except ImportError: # mantid not found __mtd_version = '' __mtd_bin_dir='' def set_matplotlib_backend(): '''MUST be called before anything tries to use matplotlib This will set the backend if it hasn't been already. It also returns the name of the backend to be the name to be used for importing the correct matplotlib widgets.''' backend = matplotlib.get_backend() if backend.startswith('module://'): if backend.endswith('qt4agg'): backend = 'Qt4Agg' elif backend.endswith('workbench') or backend.endswith('qt5agg'): backend = 'Qt5Agg' else: from qtpy import PYQT4, PYQT5 # noqa if PYQT5: backend = 'Qt5Agg' elif PYQT4: backend = 'Qt4Agg' else: raise RuntimeError('Do not know which matplotlib backend to set') matplotlib.use(backend) return backend def get_qapplication(): ''' Example usage: app, within_mantid = get_qapplication() reducer = eventFilterGUI.MainWindow() # the main ui class in this file reducer.show() if not within_mantid: sys.exit(app.exec_())''' app = QApplication.instance() if app: return app, app.applicationName().lower().startswith('mantid') else: return QApplication(sys.argv), False def __to_external_url(interface_name: str, section: str, external_url: str) -> QtCore.QUrl: if not external_url: template = 'http://docs.mantidproject.org/nightly/interfaces/{}/{}.html' external_url = template.format(section, interface_name) return QtCore.QUrl(external_url) def __to_qthelp_url(interface_name: str, section: str, qt_url: str) -> str: if qt_url: return qt_url else: template = 'qthelp://org.sphinx.mantidproject.{}/doc/interfaces/{}/{}.html' return template.format(__mtd_version, section, interface_name) def __get_collection_file(collection_file: str) -> str: if not collection_file: if not __mtd_bin_dir: return 'HELP COLLECTION FILE NOT FOUND' else: collection_file = os.path.join(__mtd_bin_dir, '../docs/qthelp/MantidProject.qhc') return os.path.abspath(collection_file) def show_interface_help(mantidplot_name, assistant_process, area: str='', collection_file: str='', qt_url: str='', external_url: str=""): ''' Shows the help page for a custom interface @param mantidplot_name: used by showCustomInterfaceHelp @param assistant_process: needs to be started/closed from outside (see example below) @param collection_file: qth file containing the help in format used by qtassistant. The default is ``mantid._bindir + '../docs/qthelp/MantidProject.qhc'`` @param qt_url: location of the help in the qth file. The default value is ``qthelp://org.sphinx.mantidproject.{mtdversion}/doc/interfaces/{mantidplot_name}.html``. @param external_url: location of external page to be displayed in the default browser. The default value is ``http://docs.mantidproject.org/nightly/interfaces/framework/{mantidplot_name}.html`` Example using defaults: #in the __init__ function of the GUI add: self.assistant_process = QtCore.QProcess(self) self.mantidplot_name='DGS Planner' #add a help function in the GUI def help(self): show_interface_help(self.mantidplot_name, self.assistant_process) #make sure you close the qtassistant when the GUI is closed def closeEvent(self, event): self.assistant_process.close() self.assistant_process.waitForFinished() event.accept() ''' try: # try using built-in help in mantid import mantidqt mantidqt.interfacemanager.InterfaceManager().showCustomInterfaceHelp(mantidplot_name, area) except: #(ImportError, ModuleNotFoundError) raises the wrong type of error # built-in help failed, try external qtassistant then give up and launch a browser # cleanup previous version assistant_process.close() assistant_process.waitForFinished() # where to expect qtassistant helpapp = QtCore.QLibraryInfo.location(QtCore.QLibraryInfo.BinariesPath) + QtCore.QDir.separator() helpapp += 'assistant' collection_file = __get_collection_file(collection_file) if os.path.isfile(helpapp) and os.path.isfile(collection_file): # try to find the collection file and launch qtassistant args = ['-enableRemoteControl', '-collectionFile', collection_file, '-showUrl', __to_qthelp_url(mantidplot_name, area, qt_url)] assistant_process.close() assistant_process.waitForFinished() assistant_process.start(helpapp, args) else: # give up and upen a URL in default browser openUrl=QtGui.QDesktopServices.openUrl sysenv=QtCore.QProcessEnvironment.systemEnvironment() ldp=sysenv.value('LD_PRELOAD') if ldp: del os.environ['LD_PRELOAD'] # create a url to the help in the default location openUrl(__to_external_url(mantidplot_name, area, external_url)) if ldp: os.environ['LD_PRELOAD']=ldp
gpl-3.0
joshloyal/scikit-learn
sklearn/metrics/regression.py
47
19967
"""Metrics to assess performance on regression task Functions named as ``*_score`` return a scalar value to maximize: the higher the better Function named as ``*_error`` or ``*_loss`` return a scalar value to minimize: the lower the better """ # Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Mathieu Blondel <mathieu@mblondel.org> # Olivier Grisel <olivier.grisel@ensta.org> # Arnaud Joly <a.joly@ulg.ac.be> # Jochen Wersdorfer <jochen@wersdoerfer.de> # Lars Buitinck # Joel Nothman <joel.nothman@gmail.com> # Karan Desai <karandesai281196@gmail.com> # Noel Dawe <noel@dawe.me> # Manoj Kumar <manojkumarsivaraj334@gmail.com> # Michael Eickenberg <michael.eickenberg@gmail.com> # Konstantin Shmelkov <konstantin.shmelkov@polytechnique.edu> # License: BSD 3 clause from __future__ import division import numpy as np from ..utils.validation import check_array, check_consistent_length from ..utils.validation import column_or_1d from ..externals.six import string_types __ALL__ = [ "mean_absolute_error", "mean_squared_error", "mean_squared_log_error", "median_absolute_error", "r2_score", "explained_variance_score" ] def _check_reg_targets(y_true, y_pred, multioutput): """Check that y_true and y_pred belong to the same regression task Parameters ---------- y_true : array-like, y_pred : array-like, multioutput : array-like or string in ['raw_values', uniform_average', 'variance_weighted'] or None None is accepted due to backward compatibility of r2_score(). Returns ------- type_true : one of {'continuous', continuous-multioutput'} The type of the true target data, as output by 'utils.multiclass.type_of_target' y_true : array-like of shape = (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples, n_outputs) Estimated target values. multioutput : array-like of shape = (n_outputs) or string in ['raw_values', uniform_average', 'variance_weighted'] or None Custom output weights if ``multioutput`` is array-like or just the corresponding argument if ``multioutput`` is a correct keyword. """ check_consistent_length(y_true, y_pred) y_true = check_array(y_true, ensure_2d=False) y_pred = check_array(y_pred, ensure_2d=False) if y_true.ndim == 1: y_true = y_true.reshape((-1, 1)) if y_pred.ndim == 1: y_pred = y_pred.reshape((-1, 1)) if y_true.shape[1] != y_pred.shape[1]: raise ValueError("y_true and y_pred have different number of output " "({0}!={1})".format(y_true.shape[1], y_pred.shape[1])) n_outputs = y_true.shape[1] allowed_multioutput_str = ('raw_values', 'uniform_average', 'variance_weighted') if isinstance(multioutput, string_types): if multioutput not in allowed_multioutput_str: raise ValueError("Allowed 'multioutput' string values are {}. " "You provided multioutput={!r}".format( allowed_multioutput_str, multioutput)) elif multioutput is not None: multioutput = check_array(multioutput, ensure_2d=False) if n_outputs == 1: raise ValueError("Custom weights are useful only in " "multi-output cases.") elif n_outputs != len(multioutput): raise ValueError(("There must be equally many custom weights " "(%d) as outputs (%d).") % (len(multioutput), n_outputs)) y_type = 'continuous' if n_outputs == 1 else 'continuous-multioutput' return y_type, y_true, y_pred, multioutput def mean_absolute_error(y_true, y_pred, sample_weight=None, multioutput='uniform_average'): """Mean absolute error regression loss Read more in the :ref:`User Guide <mean_absolute_error>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average'] or array-like of shape (n_outputs) Defines aggregating of multiple output values. Array-like value defines weights used to average errors. 'raw_values' : Returns a full set of errors in case of multioutput input. 'uniform_average' : Errors of all outputs are averaged with uniform weight. Returns ------- loss : float or ndarray of floats If multioutput is 'raw_values', then mean absolute error is returned for each output separately. If multioutput is 'uniform_average' or an ndarray of weights, then the weighted average of all output errors is returned. MAE output is non-negative floating point. The best value is 0.0. Examples -------- >>> from sklearn.metrics import mean_absolute_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> mean_absolute_error(y_true, y_pred) 0.5 >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> mean_absolute_error(y_true, y_pred) 0.75 >>> mean_absolute_error(y_true, y_pred, multioutput='raw_values') array([ 0.5, 1. ]) >>> mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7]) ... # doctest: +ELLIPSIS 0.849... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) output_errors = np.average(np.abs(y_pred - y_true), weights=sample_weight, axis=0) if isinstance(multioutput, string_types): if multioutput == 'raw_values': return output_errors elif multioutput == 'uniform_average': # pass None as weights to np.average: uniform mean multioutput = None return np.average(output_errors, weights=multioutput) def mean_squared_error(y_true, y_pred, sample_weight=None, multioutput='uniform_average'): """Mean squared error regression loss Read more in the :ref:`User Guide <mean_squared_error>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average'] or array-like of shape (n_outputs) Defines aggregating of multiple output values. Array-like value defines weights used to average errors. 'raw_values' : Returns a full set of errors in case of multioutput input. 'uniform_average' : Errors of all outputs are averaged with uniform weight. Returns ------- loss : float or ndarray of floats A non-negative floating point value (the best value is 0.0), or an array of floating point values, one for each individual target. Examples -------- >>> from sklearn.metrics import mean_squared_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> mean_squared_error(y_true, y_pred) 0.375 >>> y_true = [[0.5, 1],[-1, 1],[7, -6]] >>> y_pred = [[0, 2],[-1, 2],[8, -5]] >>> mean_squared_error(y_true, y_pred) # doctest: +ELLIPSIS 0.708... >>> mean_squared_error(y_true, y_pred, multioutput='raw_values') ... # doctest: +ELLIPSIS array([ 0.416..., 1. ]) >>> mean_squared_error(y_true, y_pred, multioutput=[0.3, 0.7]) ... # doctest: +ELLIPSIS 0.824... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) output_errors = np.average((y_true - y_pred) ** 2, axis=0, weights=sample_weight) if isinstance(multioutput, string_types): if multioutput == 'raw_values': return output_errors elif multioutput == 'uniform_average': # pass None as weights to np.average: uniform mean multioutput = None return np.average(output_errors, weights=multioutput) def mean_squared_log_error(y_true, y_pred, sample_weight=None, multioutput='uniform_average'): """Mean squared logarithmic error regression loss Read more in the :ref:`User Guide <mean_squared_log_error>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average'] \ or array-like of shape = (n_outputs) Defines aggregating of multiple output values. Array-like value defines weights used to average errors. 'raw_values' : Returns a full set of errors when the input is of multioutput format. 'uniform_average' : Errors of all outputs are averaged with uniform weight. Returns ------- loss : float or ndarray of floats A non-negative floating point value (the best value is 0.0), or an array of floating point values, one for each individual target. Examples -------- >>> from sklearn.metrics import mean_squared_log_error >>> y_true = [3, 5, 2.5, 7] >>> y_pred = [2.5, 5, 4, 8] >>> mean_squared_log_error(y_true, y_pred) # doctest: +ELLIPSIS 0.039... >>> y_true = [[0.5, 1], [1, 2], [7, 6]] >>> y_pred = [[0.5, 2], [1, 2.5], [8, 8]] >>> mean_squared_log_error(y_true, y_pred) # doctest: +ELLIPSIS 0.044... >>> mean_squared_log_error(y_true, y_pred, multioutput='raw_values') ... # doctest: +ELLIPSIS array([ 0.004..., 0.083...]) >>> mean_squared_log_error(y_true, y_pred, multioutput=[0.3, 0.7]) ... # doctest: +ELLIPSIS 0.060... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) if not (y_true >= 0).all() and not (y_pred >= 0).all(): raise ValueError("Mean Squared Logarithmic Error cannot be used when " "targets contain negative values.") return mean_squared_error(np.log(y_true + 1), np.log(y_pred + 1), sample_weight, multioutput) def median_absolute_error(y_true, y_pred): """Median absolute error regression loss Read more in the :ref:`User Guide <median_absolute_error>`. Parameters ---------- y_true : array-like of shape = (n_samples) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) Estimated target values. Returns ------- loss : float A positive floating point value (the best value is 0.0). Examples -------- >>> from sklearn.metrics import median_absolute_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> median_absolute_error(y_true, y_pred) 0.5 """ y_type, y_true, y_pred, _ = _check_reg_targets(y_true, y_pred, 'uniform_average') if y_type == 'continuous-multioutput': raise ValueError("Multioutput not supported in median_absolute_error") return np.median(np.abs(y_pred - y_true)) def explained_variance_score(y_true, y_pred, sample_weight=None, multioutput='uniform_average'): """Explained variance regression score function Best possible score is 1.0, lower values are worse. Read more in the :ref:`User Guide <explained_variance_score>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average', \ 'variance_weighted'] or array-like of shape (n_outputs) Defines aggregating of multiple output scores. Array-like value defines weights used to average scores. 'raw_values' : Returns a full set of scores in case of multioutput input. 'uniform_average' : Scores of all outputs are averaged with uniform weight. 'variance_weighted' : Scores of all outputs are averaged, weighted by the variances of each individual output. Returns ------- score : float or ndarray of floats The explained variance or ndarray if 'multioutput' is 'raw_values'. Notes ----- This is not a symmetric function. Examples -------- >>> from sklearn.metrics import explained_variance_score >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> explained_variance_score(y_true, y_pred) # doctest: +ELLIPSIS 0.957... >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> explained_variance_score(y_true, y_pred, multioutput='uniform_average') ... # doctest: +ELLIPSIS 0.983... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) y_diff_avg = np.average(y_true - y_pred, weights=sample_weight, axis=0) numerator = np.average((y_true - y_pred - y_diff_avg) ** 2, weights=sample_weight, axis=0) y_true_avg = np.average(y_true, weights=sample_weight, axis=0) denominator = np.average((y_true - y_true_avg) ** 2, weights=sample_weight, axis=0) nonzero_numerator = numerator != 0 nonzero_denominator = denominator != 0 valid_score = nonzero_numerator & nonzero_denominator output_scores = np.ones(y_true.shape[1]) output_scores[valid_score] = 1 - (numerator[valid_score] / denominator[valid_score]) output_scores[nonzero_numerator & ~nonzero_denominator] = 0. if isinstance(multioutput, string_types): if multioutput == 'raw_values': # return scores individually return output_scores elif multioutput == 'uniform_average': # passing to np.average() None as weights results is uniform mean avg_weights = None elif multioutput == 'variance_weighted': avg_weights = denominator else: avg_weights = multioutput return np.average(output_scores, weights=avg_weights) def r2_score(y_true, y_pred, sample_weight=None, multioutput="uniform_average"): """R^2 (coefficient of determination) regression score function. Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0. Read more in the :ref:`User Guide <r2_score>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average', \ 'variance_weighted'] or None or array-like of shape (n_outputs) Defines aggregating of multiple output scores. Array-like value defines weights used to average scores. Default is "uniform_average". 'raw_values' : Returns a full set of scores in case of multioutput input. 'uniform_average' : Scores of all outputs are averaged with uniform weight. 'variance_weighted' : Scores of all outputs are averaged, weighted by the variances of each individual output. .. versionchanged:: 0.19 Default value of multioutput is 'uniform_average'. Returns ------- z : float or ndarray of floats The R^2 score or ndarray of scores if 'multioutput' is 'raw_values'. Notes ----- This is not a symmetric function. Unlike most other scores, R^2 score may be negative (it need not actually be the square of a quantity R). References ---------- .. [1] `Wikipedia entry on the Coefficient of determination <https://en.wikipedia.org/wiki/Coefficient_of_determination>`_ Examples -------- >>> from sklearn.metrics import r2_score >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> r2_score(y_true, y_pred) # doctest: +ELLIPSIS 0.948... >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> r2_score(y_true, y_pred, multioutput='variance_weighted') ... # doctest: +ELLIPSIS 0.938... >>> y_true = [1,2,3] >>> y_pred = [1,2,3] >>> r2_score(y_true, y_pred) 1.0 >>> y_true = [1,2,3] >>> y_pred = [2,2,2] >>> r2_score(y_true, y_pred) 0.0 >>> y_true = [1,2,3] >>> y_pred = [3,2,1] >>> r2_score(y_true, y_pred) -3.0 """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) if sample_weight is not None: sample_weight = column_or_1d(sample_weight) weight = sample_weight[:, np.newaxis] else: weight = 1. numerator = (weight * (y_true - y_pred) ** 2).sum(axis=0, dtype=np.float64) denominator = (weight * (y_true - np.average( y_true, axis=0, weights=sample_weight)) ** 2).sum(axis=0, dtype=np.float64) nonzero_denominator = denominator != 0 nonzero_numerator = numerator != 0 valid_score = nonzero_denominator & nonzero_numerator output_scores = np.ones([y_true.shape[1]]) output_scores[valid_score] = 1 - (numerator[valid_score] / denominator[valid_score]) # arbitrary set to zero to avoid -inf scores, having a constant # y_true is not interesting for scoring a regression anyway output_scores[nonzero_numerator & ~nonzero_denominator] = 0. if isinstance(multioutput, string_types): if multioutput == 'raw_values': # return scores individually return output_scores elif multioutput == 'uniform_average': # passing None as weights results is uniform mean avg_weights = None elif multioutput == 'variance_weighted': avg_weights = denominator # avoid fail on constant y or one-element arrays if not np.any(nonzero_denominator): if not np.any(nonzero_numerator): return 1.0 else: return 0.0 else: avg_weights = multioutput return np.average(output_scores, weights=avg_weights)
bsd-3-clause
andre-richter/pcie-lat
all_in_one.py
1
6054
#!/usr/bin/python import sys import os import numpy as np import matplotlib import matplotlib.mlab as mlab import matplotlib.pyplot as plt import subprocess import traceback pci_dev ={ "name" : "", "loc" : "", "class" : "", "vender" : "", "device" : "", "vd" : "", "isBridge" : 1, "driver" : "" } def is_root(): return os.geteuid() == 0 def get_pci_list(): out = subprocess.Popen(['lspci', '-nm'], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) stdout, stderr = out.communicate() lspci_str = stdout.decode('ascii') pci_list = [] pcis = lspci_str.split('\n') for each_pci in pcis: pci = {} __ = each_pci.split(" ") if len(__) < 4: continue pci["loc"] = __[0].replace('"', '') pci["vender"] = __[2].replace('"', '') pci["device"] = __[3].replace('"', '') pci["vd"] = ":".join([pci["vender"], pci["device"]]) out = subprocess.Popen(['lspci', '-s', '{}'.format(pci["loc"]), "-mvk"], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) stdout, stderr = out.communicate() ss = stdout.decode('ascii') for line in ss.split("\n"): if ': ' in line: k, v = line.split(": ") if k.strip() == "Class": pci['class'] = v.strip().replace('"', '') elif k.strip() == "Vendor": pci['vender'] = v.strip().replace('"', '') elif k.strip() == "Device" and ss.split("\n").index(line) > 0: pci['device'] = v.strip().replace('"', '') elif k.strip() == "Driver": pci['driver'] = v.strip().replace('"', '') else: pass else: continue pci_list.append(pci) return pci_list def print_mach_info(tsc_freq, tsc_overhead, loops): print("-------------------------------") print(" tsc_freq : {}".format(tsc_freq)) print(" tsc_overhead : {} clocks".format(tsc_overhead)) print(" loops : {}".format(loops)) print("-------------------------------") def clock2ns(clocks, tsc_freq): return int(clocks*1000000000/tsc_freq) def plot_y(y, fname): num_width = 10 ymin = int(min(y))-1 ymax = int(max(y))+1 print("Max. and Min. latencies are {}ns {}ns".format(ymax, ymin)) margin = max(num_width, 5) bins = [ii for ii in range(ymin-margin, ymax+margin, num_width)] plt.yscale('log') n, bins, patches = plt.hist(y, bins, range=(min(y), max(y)), width=10, color='blue') plt.xlabel('nanoseconds') plt.ylabel('Probability') plt.title('Histogram of PCIe latencies (%s samples)' % len(y)) plt.savefig(fname, dpi=200, format='png') def main(): loops = 0 if len(sys.argv) < 2: print("Usage: {} [0000]:XX:XX.X [loops]".format(sys.argv[0])) exit(-1) else: pci_test = sys.argv[1] if pci_test.startswith('0000:'): pci_test = sys.argv[0][5:] if len(sys.argv) == 3: loops = int(sys.argv[2]) else: loops = 100000 ### must be root to run the script if not is_root(): print("Need root privillege! run as root!") exit(-1) ### get all devices in this computer pcis = get_pci_list() if pci_test not in [pp['loc'] for pp in pcis]: print("existing PCI devices:") for __ in pcis: print(__) print("{} not found!".format(pci_test)) exit(-1) for p in pcis: if p['loc'] == pci_test: pci_test = p unbind_file = "/sys/bus/pci/devices/0000\:{}/driver/unbind" unbind_file = unbind_file.format(pci_test['loc'].replace(':', '\:')) if os.path.exists(unbind_file): print("Unbind file {} not found!".format(unbind_file)) exit(-1) unbind_ss = 'echo -n "0000:{}" > {}'.format(pci_test['loc'], unbind_file) os.system(unbind_ss) # insert module os.system("make") print("finished compiling the pcie-lat, insmod..."); ins_command = "sudo insmod ./pcie-lat.ko ids={}".format(pci_test['vd']) print(ins_command) os.system(ins_command) # couting try: sys_path_head = "/sys/bus/pci/devices/0000:{}/pcie-lat/{}/pcielat_" sys_path_head = sys_path_head.format(pci_test['loc'], pci_test['loc']) tsc_freq = 0 tsc_overhead = 0 with open(sys_path_head+'tsc_freq', 'r') as __: tsc_freq = int(float(__.read())) with open(sys_path_head+'tsc_overhead', 'r') as __: tsc_overhead = int(float(__.read())) with open(sys_path_head+'loops', 'w') as __: __.write(str(loops)) with open(sys_path_head+'target_bar', 'w') as __: __.write('0') print_mach_info(tsc_freq, tsc_overhead, loops) with open(sys_path_head+'measure', 'w') as __: __.write('0') with open('/dev/pcie-lat/{}'.format(pci_test['loc']), 'rb') as __: y = [] cc = __.read(16) while cc: acc = 0 acc2 = 0 for ii in range(8): acc = acc*256 + int(cc[7-ii]) acc2 = acc2*256 + int(cc[15-ii]) y.append(clock2ns(acc2, tsc_freq)) # read next cc = __.read(16) fname = "pcie_lat_loops{}_{}.png" fname = fname.format(loops, pci_test['loc'].replace(':', '..')) print("plot the graph") plot_y(y, fname) except Exception: traceback.print_exc() print("Removing module : sudo rmmod pcie-lat.ko") os.system("sudo rmmod pcie-lat.ko") exit(-1) # remove module print("Removing module : sudo rmmod pcie-lat.ko") os.system("sudo rmmod pcie-lat.ko") if __name__ == "__main__": main()
gpl-2.0
wavelets/pandashells
pandashells/test/module_checker_lib_tests.py
7
1443
#! /usr/bin/env python from unittest import TestCase from pandashells.lib.module_checker_lib import check_for_modules from pandashells.lib import module_checker_lib from mock import patch class ModuleCheckerTests(TestCase): def setUp(self): module_checker_lib.CMD_DICT['fakemodule1'] = 'pip install fakemodule1' module_checker_lib.CMD_DICT['fakemodule2'] = 'pip install fakemodule2' module_checker_lib.CMD_DICT['os'] = 'part of standard module' def test_check_for_modules_unrecognized(self): """ check_for_modules() raises error when module is unrecognized """ with self.assertRaises(ValueError): check_for_modules(['not_a_module']) @patch('pandashells.lib.module_checker_lib.importlib.import_module') def test_check_for_modules_no_modules(self, import_module_mock): """ check_for_modules() does nothing when module list is empty """ check_for_modules([]) self.assertFalse(import_module_mock.called) def test_check_for_modules_existing_module(self): """ check_for_modules() successfully finds existing module """ check_for_modules(['os']) def test_check_for_modules_bad(self): """ check_for_modules() correctly identifies missing modules """ with self.assertRaises(ImportError): check_for_modules(['fakemodule1', 'fakemodule2'])
bsd-2-clause
abimannans/scikit-learn
sklearn/externals/joblib/__init__.py
86
4795
""" Joblib is a set of tools to provide **lightweight pipelining in Python**. In particular, joblib offers: 1. transparent disk-caching of the output values and lazy re-evaluation (memoize pattern) 2. easy simple parallel computing 3. logging and tracing of the execution Joblib is optimized to be **fast** and **robust** in particular on large data and has specific optimizations for `numpy` arrays. It is **BSD-licensed**. ============================== ============================================ **User documentation**: http://pythonhosted.org/joblib **Download packages**: http://pypi.python.org/pypi/joblib#downloads **Source code**: http://github.com/joblib/joblib **Report issues**: http://github.com/joblib/joblib/issues ============================== ============================================ Vision -------- The vision is to provide tools to easily achieve better performance and reproducibility when working with long running jobs. * **Avoid computing twice the same thing**: code is rerun over an over, for instance when prototyping computational-heavy jobs (as in scientific development), but hand-crafted solution to alleviate this issue is error-prone and often leads to unreproducible results * **Persist to disk transparently**: persisting in an efficient way arbitrary objects containing large data is hard. Using joblib's caching mechanism avoids hand-written persistence and implicitly links the file on disk to the execution context of the original Python object. As a result, joblib's persistence is good for resuming an application status or computational job, eg after a crash. Joblib strives to address these problems while **leaving your code and your flow control as unmodified as possible** (no framework, no new paradigms). Main features ------------------ 1) **Transparent and fast disk-caching of output value:** a memoize or make-like functionality for Python functions that works well for arbitrary Python objects, including very large numpy arrays. Separate persistence and flow-execution logic from domain logic or algorithmic code by writing the operations as a set of steps with well-defined inputs and outputs: Python functions. Joblib can save their computation to disk and rerun it only if necessary:: >>> import numpy as np >>> from sklearn.externals.joblib import Memory >>> mem = Memory(cachedir='/tmp/joblib') >>> import numpy as np >>> a = np.vander(np.arange(3)).astype(np.float) >>> square = mem.cache(np.square) >>> b = square(a) # doctest: +ELLIPSIS ________________________________________________________________________________ [Memory] Calling square... square(array([[ 0., 0., 1.], [ 1., 1., 1.], [ 4., 2., 1.]])) ___________________________________________________________square - 0...s, 0.0min >>> c = square(a) >>> # The above call did not trigger an evaluation 2) **Embarrassingly parallel helper:** to make is easy to write readable parallel code and debug it quickly:: >>> from sklearn.externals.joblib import Parallel, delayed >>> from math import sqrt >>> Parallel(n_jobs=1)(delayed(sqrt)(i**2) for i in range(10)) [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0] 3) **Logging/tracing:** The different functionalities will progressively acquire better logging mechanism to help track what has been ran, and capture I/O easily. In addition, Joblib will provide a few I/O primitives, to easily define define logging and display streams, and provide a way of compiling a report. We want to be able to quickly inspect what has been run. 4) **Fast compressed Persistence**: a replacement for pickle to work efficiently on Python objects containing large data ( *joblib.dump* & *joblib.load* ). .. >>> import shutil ; shutil.rmtree('/tmp/joblib/') """ # PEP0440 compatible formatted version, see: # https://www.python.org/dev/peps/pep-0440/ # # Generic release markers: # X.Y # X.Y.Z # For bugfix releases # # Admissible pre-release markers: # X.YaN # Alpha release # X.YbN # Beta release # X.YrcN # Release Candidate # X.Y # Final release # # Dev branch marker is: 'X.Y.dev' or 'X.Y.devN' where N is an integer. # 'X.Y.dev0' is the canonical version of 'X.Y.dev' # __version__ = '0.9.0b3' from .memory import Memory, MemorizedResult from .logger import PrintTime from .logger import Logger from .hashing import hash from .numpy_pickle import dump from .numpy_pickle import load from .parallel import Parallel from .parallel import delayed from .parallel import cpu_count
bsd-3-clause
carrillo/scikit-learn
sklearn/datasets/twenty_newsgroups.py
126
13591
"""Caching loader for the 20 newsgroups text classification dataset The description of the dataset is available on the official website at: http://people.csail.mit.edu/jrennie/20Newsgroups/ Quoting the introduction: The 20 Newsgroups data set is a collection of approximately 20,000 newsgroup documents, partitioned (nearly) evenly across 20 different newsgroups. To the best of my knowledge, it was originally collected by Ken Lang, probably for his Newsweeder: Learning to filter netnews paper, though he does not explicitly mention this collection. The 20 newsgroups collection has become a popular data set for experiments in text applications of machine learning techniques, such as text classification and text clustering. This dataset loader will download the recommended "by date" variant of the dataset and which features a point in time split between the train and test sets. The compressed dataset size is around 14 Mb compressed. Once uncompressed the train set is 52 MB and the test set is 34 MB. The data is downloaded, extracted and cached in the '~/scikit_learn_data' folder. The `fetch_20newsgroups` function will not vectorize the data into numpy arrays but the dataset lists the filenames of the posts and their categories as target labels. The `fetch_20newsgroups_vectorized` function will in addition do a simple tf-idf vectorization step. """ # Copyright (c) 2011 Olivier Grisel <olivier.grisel@ensta.org> # License: BSD 3 clause import os import logging import tarfile import pickle import shutil import re import codecs import numpy as np import scipy.sparse as sp from .base import get_data_home from .base import Bunch from .base import load_files from ..utils import check_random_state from ..feature_extraction.text import CountVectorizer from ..preprocessing import normalize from ..externals import joblib, six if six.PY3: from urllib.request import urlopen else: from urllib2 import urlopen logger = logging.getLogger(__name__) URL = ("http://people.csail.mit.edu/jrennie/" "20Newsgroups/20news-bydate.tar.gz") ARCHIVE_NAME = "20news-bydate.tar.gz" CACHE_NAME = "20news-bydate.pkz" TRAIN_FOLDER = "20news-bydate-train" TEST_FOLDER = "20news-bydate-test" def download_20newsgroups(target_dir, cache_path): """Download the 20 newsgroups data and stored it as a zipped pickle.""" archive_path = os.path.join(target_dir, ARCHIVE_NAME) train_path = os.path.join(target_dir, TRAIN_FOLDER) test_path = os.path.join(target_dir, TEST_FOLDER) if not os.path.exists(target_dir): os.makedirs(target_dir) if os.path.exists(archive_path): # Download is not complete as the .tar.gz file is removed after # download. logger.warning("Download was incomplete, downloading again.") os.remove(archive_path) logger.warning("Downloading dataset from %s (14 MB)", URL) opener = urlopen(URL) with open(archive_path, 'wb') as f: f.write(opener.read()) logger.info("Decompressing %s", archive_path) tarfile.open(archive_path, "r:gz").extractall(path=target_dir) os.remove(archive_path) # Store a zipped pickle cache = dict(train=load_files(train_path, encoding='latin1'), test=load_files(test_path, encoding='latin1')) compressed_content = codecs.encode(pickle.dumps(cache), 'zlib_codec') with open(cache_path, 'wb') as f: f.write(compressed_content) shutil.rmtree(target_dir) return cache def strip_newsgroup_header(text): """ Given text in "news" format, strip the headers, by removing everything before the first blank line. """ _before, _blankline, after = text.partition('\n\n') return after _QUOTE_RE = re.compile(r'(writes in|writes:|wrote:|says:|said:' r'|^In article|^Quoted from|^\||^>)') def strip_newsgroup_quoting(text): """ Given text in "news" format, strip lines beginning with the quote characters > or |, plus lines that often introduce a quoted section (for example, because they contain the string 'writes:'.) """ good_lines = [line for line in text.split('\n') if not _QUOTE_RE.search(line)] return '\n'.join(good_lines) def strip_newsgroup_footer(text): """ Given text in "news" format, attempt to remove a signature block. As a rough heuristic, we assume that signatures are set apart by either a blank line or a line made of hyphens, and that it is the last such line in the file (disregarding blank lines at the end). """ lines = text.strip().split('\n') for line_num in range(len(lines) - 1, -1, -1): line = lines[line_num] if line.strip().strip('-') == '': break if line_num > 0: return '\n'.join(lines[:line_num]) else: return text def fetch_20newsgroups(data_home=None, subset='train', categories=None, shuffle=True, random_state=42, remove=(), download_if_missing=True): """Load the filenames and data from the 20 newsgroups dataset. Read more in the :ref:`User Guide <20newsgroups>`. Parameters ---------- subset: 'train' or 'test', 'all', optional Select the dataset to load: 'train' for the training set, 'test' for the test set, 'all' for both, with shuffled ordering. data_home: optional, default: None Specify a download and cache folder for the datasets. If None, all scikit-learn data is stored in '~/scikit_learn_data' subfolders. categories: None or collection of string or unicode If None (default), load all the categories. If not None, list of category names to load (other categories ignored). shuffle: bool, optional Whether or not to shuffle the data: might be important for models that make the assumption that the samples are independent and identically distributed (i.i.d.), such as stochastic gradient descent. random_state: numpy random number generator or seed integer Used to shuffle the dataset. download_if_missing: optional, True by default If False, raise an IOError if the data is not locally available instead of trying to download the data from the source site. remove: tuple May contain any subset of ('headers', 'footers', 'quotes'). Each of these are kinds of text that will be detected and removed from the newsgroup posts, preventing classifiers from overfitting on metadata. 'headers' removes newsgroup headers, 'footers' removes blocks at the ends of posts that look like signatures, and 'quotes' removes lines that appear to be quoting another post. 'headers' follows an exact standard; the other filters are not always correct. """ data_home = get_data_home(data_home=data_home) cache_path = os.path.join(data_home, CACHE_NAME) twenty_home = os.path.join(data_home, "20news_home") cache = None if os.path.exists(cache_path): try: with open(cache_path, 'rb') as f: compressed_content = f.read() uncompressed_content = codecs.decode( compressed_content, 'zlib_codec') cache = pickle.loads(uncompressed_content) except Exception as e: print(80 * '_') print('Cache loading failed') print(80 * '_') print(e) if cache is None: if download_if_missing: cache = download_20newsgroups(target_dir=twenty_home, cache_path=cache_path) else: raise IOError('20Newsgroups dataset not found') if subset in ('train', 'test'): data = cache[subset] elif subset == 'all': data_lst = list() target = list() filenames = list() for subset in ('train', 'test'): data = cache[subset] data_lst.extend(data.data) target.extend(data.target) filenames.extend(data.filenames) data.data = data_lst data.target = np.array(target) data.filenames = np.array(filenames) else: raise ValueError( "subset can only be 'train', 'test' or 'all', got '%s'" % subset) data.description = 'the 20 newsgroups by date dataset' if 'headers' in remove: data.data = [strip_newsgroup_header(text) for text in data.data] if 'footers' in remove: data.data = [strip_newsgroup_footer(text) for text in data.data] if 'quotes' in remove: data.data = [strip_newsgroup_quoting(text) for text in data.data] if categories is not None: labels = [(data.target_names.index(cat), cat) for cat in categories] # Sort the categories to have the ordering of the labels labels.sort() labels, categories = zip(*labels) mask = np.in1d(data.target, labels) data.filenames = data.filenames[mask] data.target = data.target[mask] # searchsorted to have continuous labels data.target = np.searchsorted(labels, data.target) data.target_names = list(categories) # Use an object array to shuffle: avoids memory copy data_lst = np.array(data.data, dtype=object) data_lst = data_lst[mask] data.data = data_lst.tolist() if shuffle: random_state = check_random_state(random_state) indices = np.arange(data.target.shape[0]) random_state.shuffle(indices) data.filenames = data.filenames[indices] data.target = data.target[indices] # Use an object array to shuffle: avoids memory copy data_lst = np.array(data.data, dtype=object) data_lst = data_lst[indices] data.data = data_lst.tolist() return data def fetch_20newsgroups_vectorized(subset="train", remove=(), data_home=None): """Load the 20 newsgroups dataset and transform it into tf-idf vectors. This is a convenience function; the tf-idf transformation is done using the default settings for `sklearn.feature_extraction.text.Vectorizer`. For more advanced usage (stopword filtering, n-gram extraction, etc.), combine fetch_20newsgroups with a custom `Vectorizer` or `CountVectorizer`. Read more in the :ref:`User Guide <20newsgroups>`. Parameters ---------- subset: 'train' or 'test', 'all', optional Select the dataset to load: 'train' for the training set, 'test' for the test set, 'all' for both, with shuffled ordering. data_home: optional, default: None Specify an download and cache folder for the datasets. If None, all scikit-learn data is stored in '~/scikit_learn_data' subfolders. remove: tuple May contain any subset of ('headers', 'footers', 'quotes'). Each of these are kinds of text that will be detected and removed from the newsgroup posts, preventing classifiers from overfitting on metadata. 'headers' removes newsgroup headers, 'footers' removes blocks at the ends of posts that look like signatures, and 'quotes' removes lines that appear to be quoting another post. Returns ------- bunch : Bunch object bunch.data: sparse matrix, shape [n_samples, n_features] bunch.target: array, shape [n_samples] bunch.target_names: list, length [n_classes] """ data_home = get_data_home(data_home=data_home) filebase = '20newsgroup_vectorized' if remove: filebase += 'remove-' + ('-'.join(remove)) target_file = os.path.join(data_home, filebase + ".pk") # we shuffle but use a fixed seed for the memoization data_train = fetch_20newsgroups(data_home=data_home, subset='train', categories=None, shuffle=True, random_state=12, remove=remove) data_test = fetch_20newsgroups(data_home=data_home, subset='test', categories=None, shuffle=True, random_state=12, remove=remove) if os.path.exists(target_file): X_train, X_test = joblib.load(target_file) else: vectorizer = CountVectorizer(dtype=np.int16) X_train = vectorizer.fit_transform(data_train.data).tocsr() X_test = vectorizer.transform(data_test.data).tocsr() joblib.dump((X_train, X_test), target_file, compress=9) # the data is stored as int16 for compactness # but normalize needs floats X_train = X_train.astype(np.float64) X_test = X_test.astype(np.float64) normalize(X_train, copy=False) normalize(X_test, copy=False) target_names = data_train.target_names if subset == "train": data = X_train target = data_train.target elif subset == "test": data = X_test target = data_test.target elif subset == "all": data = sp.vstack((X_train, X_test)).tocsr() target = np.concatenate((data_train.target, data_test.target)) else: raise ValueError("%r is not a valid subset: should be one of " "['train', 'test', 'all']" % subset) return Bunch(data=data, target=target, target_names=target_names)
bsd-3-clause
bzero/statsmodels
statsmodels/sandbox/tsa/varma.py
33
5032
'''VAR and VARMA process this doesn't actually do much, trying out a version for a time loop alternative representation: * textbook, different blocks in matrices * Kalman filter * VAR, VARX and ARX could be calculated with signal.lfilter only tried some examples, not implemented TODO: try minimizing sum of squares of (Y-Yhat) Note: filter has smallest lag at end of array and largest lag at beginning, be careful for asymmetric lags coefficients check this again if it is consistently used changes 2009-09-08 : separated from movstat.py Author : josefpkt License : BSD ''' from __future__ import print_function import numpy as np from scipy import signal #import matplotlib.pylab as plt from numpy.testing import assert_array_equal, assert_array_almost_equal #NOTE: this just returns that predicted values given the #B matrix in polynomial form. #TODO: make sure VAR class returns B/params in this form. def VAR(x,B, const=0): ''' multivariate linear filter Parameters ---------- x: (TxK) array columns are variables, rows are observations for time period B: (PxKxK) array b_t-1 is bottom "row", b_t-P is top "row" when printing B(:,:,0) is lag polynomial matrix for variable 1 B(:,:,k) is lag polynomial matrix for variable k B(p,:,k) is pth lag for variable k B[p,:,:].T corresponds to A_p in Wikipedia const: float or array (not tested) constant added to autoregression Returns ------- xhat: (TxK) array filtered, predicted values of x array Notes ----- xhat(t,i) = sum{_p}sum{_k} { x(t-P:t,:) .* B(:,:,i) } for all i = 0,K-1, for all t=p..T xhat does not include the forecasting observation, xhat(T+1), xhat is 1 row shorter than signal.correlate References ---------- http://en.wikipedia.org/wiki/Vector_Autoregression http://en.wikipedia.org/wiki/General_matrix_notation_of_a_VAR(p) ''' p = B.shape[0] T = x.shape[0] xhat = np.zeros(x.shape) for t in range(p,T): #[p+2]:# ## print(p,T) ## print(x[t-p:t,:,np.newaxis].shape) ## print(B.shape) #print(x[t-p:t,:,np.newaxis]) xhat[t,:] = const + (x[t-p:t,:,np.newaxis]*B).sum(axis=1).sum(axis=0) return xhat def VARMA(x,B,C, const=0): ''' multivariate linear filter x (TxK) B (PxKxK) xhat(t,i) = sum{_p}sum{_k} { x(t-P:t,:) .* B(:,:,i) } + sum{_q}sum{_k} { e(t-Q:t,:) .* C(:,:,i) }for all i = 0,K-1 ''' P = B.shape[0] Q = C.shape[0] T = x.shape[0] xhat = np.zeros(x.shape) e = np.zeros(x.shape) start = max(P,Q) for t in range(start,T): #[p+2]:# ## print(p,T ## print(x[t-p:t,:,np.newaxis].shape ## print(B.shape #print(x[t-p:t,:,np.newaxis] xhat[t,:] = const + (x[t-P:t,:,np.newaxis]*B).sum(axis=1).sum(axis=0) + \ (e[t-Q:t,:,np.newaxis]*C).sum(axis=1).sum(axis=0) e[t,:] = x[t,:] - xhat[t,:] return xhat, e if __name__ == '__main__': T = 20 K = 2 P = 3 #x = np.arange(10).reshape(5,2) x = np.column_stack([np.arange(T)]*K) B = np.ones((P,K,K)) #B[:,:,1] = 2 B[:,:,1] = [[0,0],[0,0],[0,1]] xhat = VAR(x,B) print(np.all(xhat[P:,0]==np.correlate(x[:-1,0],np.ones(P))*2)) #print(xhat) T = 20 K = 2 Q = 2 P = 3 const = 1 #x = np.arange(10).reshape(5,2) x = np.column_stack([np.arange(T)]*K) B = np.ones((P,K,K)) #B[:,:,1] = 2 B[:,:,1] = [[0,0],[0,0],[0,1]] C = np.zeros((Q,K,K)) xhat1 = VAR(x,B, const=const) xhat2, err2 = VARMA(x,B,C, const=const) print(np.all(xhat2 == xhat1)) print(np.all(xhat2[P:,0] == np.correlate(x[:-1,0],np.ones(P))*2+const)) C[1,1,1] = 0.5 xhat3, err3 = VARMA(x,B,C) x = np.r_[np.zeros((P,K)),x] #prepend inital conditions xhat4, err4 = VARMA(x,B,C) C[1,1,1] = 1 B[:,:,1] = [[0,0],[0,0],[0,1]] xhat5, err5 = VARMA(x,B,C) #print(err5) #in differences #VARMA(np.diff(x,axis=0),B,C) #Note: # * signal correlate applies same filter to all columns if kernel.shape[1]<K # e.g. signal.correlate(x0,np.ones((3,1)),'valid') # * if kernel.shape[1]==K, then `valid` produces a single column # -> possible to run signal.correlate K times with different filters, # see the following example, which replicates VAR filter x0 = np.column_stack([np.arange(T), 2*np.arange(T)]) B[:,:,0] = np.ones((P,K)) B[:,:,1] = np.ones((P,K)) B[1,1,1] = 0 xhat0 = VAR(x0,B) xcorr00 = signal.correlate(x0,B[:,:,0])#[:,0] xcorr01 = signal.correlate(x0,B[:,:,1]) print(np.all(signal.correlate(x0,B[:,:,0],'valid')[:-1,0]==xhat0[P:,0])) print(np.all(signal.correlate(x0,B[:,:,1],'valid')[:-1,0]==xhat0[P:,1])) #import error #from movstat import acovf, acf from statsmodels.tsa.stattools import acovf, acf aav = acovf(x[:,0]) print(aav[0] == np.var(x[:,0])) aac = acf(x[:,0])
bsd-3-clause
to266/hyperspy
hyperspy/drawing/widget.py
2
36785
# -*- coding: utf-8 -*- # Copyright 2007-2016 The HyperSpy developers # # This file is part of HyperSpy. # # HyperSpy is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # HyperSpy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with HyperSpy. If not, see <http://www.gnu.org/licenses/>. from __future__ import division import matplotlib.pyplot as plt from matplotlib.backend_bases import MouseEvent import numpy as np from hyperspy.drawing.utils import on_figure_window_close from hyperspy.events import Events, Event class WidgetBase(object): """Base class for interactive widgets/patches. A widget creates and maintains one or more matplotlib patches, and manages the interaction code so that the user can maniuplate it on the fly. This base class implements functionality witch is common to all such widgets, mainly the code that manages the patch, axes management, and sets up common events ('changed' and 'closed'). Any inherting subclasses must implement the following methods: _set_patch(self) _on_navigate(obj, name, old, new) # Only for widgets that can navigate It should also make sure to fill the 'axes' attribute as early as possible (but after the base class init), so that it is available when needed. """ def __init__(self, axes_manager=None, **kwargs): self.axes_manager = axes_manager self._axes = list() self.ax = None self.picked = False self.selected = False self._selected_artist = None self._size = 1. self.color = 'red' self.__is_on = True self.background = None self.patch = [] self.cids = list() self.blit = True self.events = Events() self.events.changed = Event(doc=""" Event that triggers when the widget has a significant change. The event triggers after the internal state of the widget has been updated. Arguments: ---------- widget: The widget that changed """, arguments=['obj']) self.events.closed = Event(doc=""" Event that triggers when the widget closed. The event triggers after the widget has already been closed. Arguments: ---------- widget: The widget that closed """, arguments=['obj']) self._navigating = False super(WidgetBase, self).__init__(**kwargs) def _get_axes(self): return self._axes def _set_axes(self, axes): if axes is None: self._axes = list() else: self._axes = axes axes = property(lambda s: s._get_axes(), lambda s, v: s._set_axes(v)) def is_on(self): """Determines if the widget is set to draw if valid (turned on). """ return self.__is_on def set_on(self, value): """Change the on state of the widget. If turning off, all patches will be removed from the matplotlib axes and the widget will disconnect from all events. If turning on, the patch(es) will be added to the matplotlib axes, and the widget will connect to its default events. """ did_something = False if value is not self.is_on() and self.ax is not None: did_something = True if value is True: self._add_patch_to(self.ax) self.connect(self.ax) elif value is False: for container in [ self.ax.patches, self.ax.lines, self.ax.artists, self.ax.texts]: for p in self.patch: if p in container: container.remove(p) self.disconnect() if hasattr(super(WidgetBase, self), 'set_on'): super(WidgetBase, self).set_on(value) if did_something: self.draw_patch() if value is False: self.ax = None self.__is_on = value def _set_patch(self): """Create the matplotlib patch(es), and store it in self.patch """ if hasattr(super(WidgetBase, self), '_set_patch'): super(WidgetBase, self)._set_patch() # Must be provided by the subclass def _add_patch_to(self, ax): """Create and add the matplotlib patches to 'ax' """ self._set_patch() for p in self.patch: ax.add_artist(p) p.set_animated(hasattr(ax, 'hspy_fig')) if hasattr(super(WidgetBase, self), '_add_patch_to'): super(WidgetBase, self)._add_patch_to(ax) def set_mpl_ax(self, ax): """Set the matplotlib Axes that the widget will draw to. If the widget on state is True, it will also add the patch to the Axes, and connect to its default events. """ if ax is self.ax: return # Do nothing # Disconnect from previous axes if set if self.ax is not None and self.is_on(): self.disconnect() self.ax = ax canvas = ax.figure.canvas if self.is_on() is True: self._add_patch_to(ax) self.connect(ax) canvas.draw() self.select() def select(self): """ Cause this widget to be the selected widget in its MPL axes. This assumes that the widget has its patch added to the MPL axes. """ if not self.patch or not self.is_on() or not self.ax: return canvas = self.ax.figure.canvas # Simulate a pick event x, y = self.patch[0].get_transform().transform_point((0, 0)) mouseevent = MouseEvent('pick_event', canvas, x, y) canvas.pick_event(mouseevent, self.patch[0]) self.picked = False def connect(self, ax): """Connect to the matplotlib Axes' events. """ on_figure_window_close(ax.figure, self.close) if self._navigating: self.connect_navigate() def connect_navigate(self): """Connect to the axes_manager such that changes in the widget or in the axes_manager are reflected in the other. """ if self._navigating: self.disconnect_navigate() self.axes_manager.events.indices_changed.connect( self._on_navigate, {'obj': 'axes_manager'}) self._on_navigate(self.axes_manager) # Update our position self._navigating = True def disconnect_navigate(self): """Disconnect a previous naivgation connection. """ self.axes_manager.events.indices_changed.disconnect(self._on_navigate) self._navigating = False def _on_navigate(self, axes_manager): """Callback for axes_manager's change notification. """ pass # Implement in subclass! def disconnect(self): """Disconnect from all events (both matplotlib and navigation). """ for cid in self.cids: try: self.ax.figure.canvas.mpl_disconnect(cid) except: pass if self._navigating: self.disconnect_navigate() def close(self, window=None): """Set the on state to off (removes patch and disconnects), and trigger events.closed. """ self.set_on(False) self.events.closed.trigger(obj=self) def draw_patch(self, *args): """Update the patch drawing. """ try: if hasattr(self.ax, 'hspy_fig'): self.ax.hspy_fig._draw_animated() elif self.ax.figure is not None: self.ax.figure.canvas.draw_idle() except AttributeError: pass # When figure is None, typically when closing def _v2i(self, axis, v): """Wrapped version of DataAxis.value2index, which bounds the index inbetween axis.low_index and axis.high_index+1, and does not raise a ValueError. """ try: return axis.value2index(v) except ValueError: if v > axis.high_value: return axis.high_index + 1 elif v < axis.low_value: return axis.low_index else: raise def _i2v(self, axis, i): """Wrapped version of DataAxis.index2value, which bounds the value inbetween axis.low_value and axis.high_value+axis.scale, and does not raise a ValueError. """ try: return axis.index2value(i) except ValueError: if i > axis.high_index: return axis.high_value + axis.scale elif i < axis.low_index: return axis.low_value else: raise class DraggableWidgetBase(WidgetBase): """Adds the `position` and `indices` properties, and adds a framework for letting the user drag the patch around. Also adds the `moved` event. The default behavior is that `position` snaps to the values corresponding to the values of the axes grid (i.e. no subpixel values). This behavior can be controlled by the property `snap_position`. Any inheritors must override these methods: _onmousemove(self, event) _update_patch_position(self) _set_patch(self) """ def __init__(self, axes_manager, **kwargs): super(DraggableWidgetBase, self).__init__(axes_manager, **kwargs) self.events.moved = Event(doc=""" Event that triggers when the widget was moved. The event triggers after the internal state of the widget has been updated. This event does not differentiate on how the position of the widget was changed, so it is the responsibility of the user to suppress events as neccessary to avoid closed loops etc. Arguments: ---------- obj: The widget that was moved. """, arguments=['obj']) self._snap_position = True # Set default axes if self.axes_manager is not None: if self.axes_manager.navigation_dimension > 0: self.axes = self.axes_manager.navigation_axes[0:1] else: self.axes = self.axes_manager.signal_axes[0:1] else: self._pos = np.array([0.]) def _set_axes(self, axes): super(DraggableWidgetBase, self)._set_axes(axes) if self.axes: self._pos = np.array([ax.low_value for ax in self.axes]) def _get_indices(self): """Returns a tuple with the position (indices). """ idx = [] for i in range(len(self.axes)): idx.append(self.axes[i].value2index(self._pos[i])) return tuple(idx) def _set_indices(self, value): """Sets the position of the widget (by indices). The dimensions should correspond to that of the 'axes' attribute. Calls _pos_changed if the value has changed, which is then responsible for triggering any relevant events. """ if np.ndim(value) == 0 and len(self.axes) == 1: self.position = [self.axes[0].index2value(value)] elif len(self.axes) != len(value): raise ValueError() else: p = [] for i in range(len(self.axes)): p.append(self.axes[i].index2value(value[i])) self.position = p indices = property(lambda s: s._get_indices(), lambda s, v: s._set_indices(v)) def _pos_changed(self): """Call when the position of the widget has changed. It triggers the relevant events, and updates the patch position. """ if self._navigating: with self.axes_manager.events.indices_changed.suppress_callback( self._on_navigate): for i in range(len(self.axes)): self.axes[i].value = self._pos[i] self.events.moved.trigger(self) self.events.changed.trigger(self) self._update_patch_position() def _validate_pos(self, pos): """Validates the passed position. Depending on the position and the implementation, this can either fire a ValueError, or return a modified position that has valid values. Or simply return the unmodified position if everything is ok. This default implementation bounds the position within the axes limits. """ if len(pos) != len(self.axes): raise ValueError() pos = np.maximum(pos, [ax.low_value for ax in self.axes]) pos = np.minimum(pos, [ax.high_value for ax in self.axes]) if self.snap_position: pos = self._do_snap_position(pos) return pos def _get_position(self): """Providies the position of the widget (by values) in a tuple. """ return tuple( self._pos.tolist()) # Don't pass reference, and make it clear def _set_position(self, position): """Sets the position of the widget (by values). The dimensions should correspond to that of the 'axes' attribute. Calls _pos_changed if the value has changed, which is then responsible for triggering any relevant events. """ position = self._validate_pos(position) if np.any(self._pos != position): self._pos = np.array(position) self._pos_changed() position = property(lambda s: s._get_position(), lambda s, v: s._set_position(v)) def _do_snap_position(self, value=None): """Snaps position to axes grid. Returns snapped value. If value is passed as an argument, the internal state is left untouched, if not the position attribute is updated to the snapped value. """ value = np.array(value) if value is not None else self._pos for i, ax in enumerate(self.axes): value[i] = ax.index2value(ax.value2index(value[i])) return value def _set_snap_position(self, value): self._snap_position = value if value: snap_value = self._do_snap_position(self._pos) if np.any(self._pos != snap_value): self._pos = snap_value self._pos_changed() snap_position = property(lambda s: s._snap_position, lambda s, v: s._set_snap_position(v)) def connect(self, ax): super(DraggableWidgetBase, self).connect(ax) canvas = ax.figure.canvas self.cids.append( canvas.mpl_connect('motion_notify_event', self._onmousemove)) self.cids.append(canvas.mpl_connect('pick_event', self.onpick)) self.cids.append(canvas.mpl_connect( 'button_release_event', self.button_release)) def _on_navigate(self, axes_manager): if axes_manager is self.axes_manager: p = self._pos.tolist() for i, a in enumerate(self.axes): p[i] = a.value self.position = p # Use property to trigger events def onpick(self, event): # Callback for MPL pick event self.picked = (event.artist in self.patch) self._selected_artist = event.artist if hasattr(super(DraggableWidgetBase, self), 'onpick'): super(DraggableWidgetBase, self).onpick(event) self.selected = self.picked def _onmousemove(self, event): """Callback for mouse movement. For dragging, the implementor would normally check that the widget is picked, and that the event.inaxes Axes equals self.ax. """ # This method must be provided by the subclass pass def _update_patch_position(self): """Updates the position of the patch on the plot. """ # This method must be provided by the subclass pass def _update_patch_geometry(self): """Updates all geometry of the patch on the plot. """ self._update_patch_position() def button_release(self, event): """whenever a mouse button is released""" if event.button != 1: return if self.picked is True: self.picked = False class Widget1DBase(DraggableWidgetBase): """A base class for 1D widgets. It sets the right dimensions for size and position, adds the 'border_thickness' attribute and initalizes the 'axes' attribute to the first two navigation axes if possible, if not, the two first signal_axes are used. Other than that it mainly supplies common utility functions for inheritors, and implements required functions for ResizableDraggableWidgetBase. The implementation for ResizableDraggableWidgetBase methods all assume that a Rectangle patch will be used, centered on position. If not, the inheriting class will have to override those as applicable. """ def _set_position(self, position): try: len(position) except TypeError: position = (position,) super(Widget1DBase, self)._set_position(position) def _validate_pos(self, pos): pos = np.maximum(pos, self.axes[0].low_value) pos = np.minimum(pos, self.axes[0].high_value) return super(Widget1DBase, self)._validate_pos(pos) class ResizableDraggableWidgetBase(DraggableWidgetBase): """Adds the `size` property and get_size_in_axes method, and adds a framework for letting the user resize the patch, including resizing by key strokes ('+', '-'). Also adds the 'resized' event. Utility functions for resizing are implemented by `increase_size` and `decrease_size`, which will in-/decrement the size by 1. Other utility functions include `get_centre` and `get_centre_indices` which returns the center position, and the internal _apply_changes which helps make sure that only one 'changed' event is fired for a combined move and resize. Any inheritors must override these methods: _update_patch_position(self) _update_patch_size(self) _update_patch_geometry(self) _set_patch(self) """ def __init__(self, axes_manager, **kwargs): super(ResizableDraggableWidgetBase, self).__init__( axes_manager, **kwargs) if not self.axes: self._size = np.array([1]) self.size_step = 1 # = one step in index space self._snap_size = True self.events.resized = Event(doc=""" Event that triggers when the widget was resized. The event triggers after the internal state of the widget has been updated. This event does not differentiate on how the size of the widget was changed, so it is the responsibility of the user to suppress events as neccessary to avoid closed loops etc. Arguments: ---------- obj: The widget that was resized. """, arguments=['obj']) self.no_events_while_dragging = False self._drag_store = None def _set_axes(self, axes): super(ResizableDraggableWidgetBase, self)._set_axes(axes) if self.axes: self._size = np.array([ax.scale for ax in self.axes]) def _get_size(self): """Getter for 'size' property. Returns the size as a tuple (to prevent unintended in-place changes). """ return tuple(self._size.tolist()) def _set_size(self, value): """Setter for the 'size' property. Calls _size_changed to handle size change, if the value has changed. """ value = np.minimum(value, [ax.size * ax.scale for ax in self.axes]) value = np.maximum(value, self.size_step * [ax.scale for ax in self.axes]) if self.snap_size: value = self._do_snap_size(value) if np.any(self._size != value): self._size = value self._size_changed() size = property(lambda s: s._get_size(), lambda s, v: s._set_size(v)) def _do_snap_size(self, value=None): value = np.array(value) if value is not None else self._size for i, ax in enumerate(self.axes): value[i] = round(value[i] / ax.scale) * ax.scale return value def _set_snap_size(self, value): self._snap_size = value if value: snap_value = self._do_snap_size(self._size) if np.any(self._size != snap_value): self._size = snap_value self._size_changed() snap_size = property(lambda s: s._snap_size, lambda s, v: s._set_snap_size(v)) def _set_snap_all(self, value): # Snap position first, as snapped size can depend on position. self.snap_position = value self.snap_size = value snap_all = property(lambda s: s.snap_size and s.snap_position, lambda s, v: s._set_snap_all(v)) def increase_size(self): """Increment all sizes by 1. Applied via 'size' property. """ self.size = np.array(self.size) + \ self.size_step * np.array([a.scale for a in self.axes]) def decrease_size(self): """Decrement all sizes by 1. Applied via 'size' property. """ self.size = np.array(self.size) - \ self.size_step * np.array([a.scale for a in self.axes]) def _size_changed(self): """Triggers resize and changed events, and updates the patch. """ self.events.resized.trigger(self) self.events.changed.trigger(self) self._update_patch_size() def get_size_in_indices(self): """Gets the size property converted to the index space (via 'axes' attribute). """ s = list() for i in range(len(self.axes)): s.append(int(round(self._size[i] / self.axes[i].scale))) return np.array(s) def set_size_in_indices(self, value): """Sets the size property converted to the index space (via 'axes' attribute). """ s = list() for i in range(len(self.axes)): s.append(int(round(value[i] * self.axes[i].scale))) self.size = s # Use property to get full processing def get_centre(self): """Get's the center indices. The default implementation is simply the position + half the size in axes space, which should work for any symmetric widget, but more advanced widgets will need to decide whether to return the center of gravity or the geometrical center of the bounds. """ return self._pos + self._size() / 2.0 def get_centre_index(self): """Get's the center position (in index space). The default implementation is simply the indices + half the size, which should work for any symmetric widget, but more advanced widgets will need to decide whether to return the center of gravity or the geometrical center of the bounds. """ return self.indices + self.get_size_in_indices() / 2.0 def _update_patch_size(self): """Updates the size of the patch on the plot. """ # This method must be provided by the subclass pass def _update_patch_geometry(self): """Updates all geometry of the patch on the plot. """ # This method must be provided by the subclass pass def on_key_press(self, event): if event.key == "+": self.increase_size() if event.key == "-": self.decrease_size() def connect(self, ax): super(ResizableDraggableWidgetBase, self).connect(ax) canvas = ax.figure.canvas self.cids.append(canvas.mpl_connect('key_press_event', self.on_key_press)) def onpick(self, event): if hasattr(super(ResizableDraggableWidgetBase, self), 'onpick'): super(ResizableDraggableWidgetBase, self).onpick(event) if self.picked: self._drag_store = (self.position, self.size) def _apply_changes(self, old_size, old_position): """Evalutes whether the widget has been moved/resized, and triggers the correct events and updates the patch geometry. This function has the advantage that the geometry is updated only once, preventing flickering, and the 'changed' event only fires once. """ moved = self.position != old_position resized = self.size != old_size if moved: if self._navigating: e = self.axes_manager.events.indices_changed with e.suppress_callback(self._on_navigate): for i in range(len(self.axes)): self.axes[i].index = self.indices[i] if moved or resized: # Update patch first if moved and resized: self._update_patch_geometry() elif moved: self._update_patch_position() else: self._update_patch_size() # Then fire events if not self.no_events_while_dragging or not self.picked: if moved: self.events.moved.trigger(self) if resized: self.events.resized.trigger(self) self.events.changed.trigger(self) def button_release(self, event): """whenever a mouse button is released""" picked = self.picked super(ResizableDraggableWidgetBase, self).button_release(event) if event.button != 1: return if picked and self.picked is False: if self.no_events_while_dragging and self._drag_store: self._apply_changes(*self._drag_store) class Widget2DBase(ResizableDraggableWidgetBase): """A base class for 2D widgets. It sets the right dimensions for size and position, adds the 'border_thickness' attribute and initalizes the 'axes' attribute to the first two navigation axes if possible, if not, the two first signal_axes are used. Other than that it mainly supplies common utility functions for inheritors, and implements required functions for ResizableDraggableWidgetBase. The implementation for ResizableDraggableWidgetBase methods all assume that a Rectangle patch will be used, centered on position. If not, the inheriting class will have to override those as applicable. """ def __init__(self, axes_manager, **kwargs): super(Widget2DBase, self).__init__(axes_manager, **kwargs) self.border_thickness = 2 # Set default axes if self.axes_manager is not None: if self.axes_manager.navigation_dimension > 1: self.axes = self.axes_manager.navigation_axes[0:2] elif self.axes_manager.signal_dimension > 1: self.axes = self.axes_manager.signal_axes[0:2] elif len(self.axes_manager.shape) > 1: self.axes = (self.axes_manager.signal_axes + self.axes_manager.navigation_axes) else: raise ValueError("2D widget needs at least two axes!") else: self._pos = np.array([0, 0]) self._size = np.array([1, 1]) def _get_patch_xy(self): """Returns the xy position of the widget. In this default implementation, the widget is centered on the position. """ return self._pos - self._size / 2. def _get_patch_bounds(self): """Returns the bounds of the patch in the form of a tuple in the order left, top, width, height. In matplotlib, 'bottom' is used instead of 'top' as the naming assumes an upwards pointing y-axis, meaning the lowest value corresponds to bottom. However, our widgets will normally only go on images (which has an inverted y-axis in MPL by default), so we define the lowest value to be termed 'top'. """ xy = self._get_patch_xy() xs, ys = self.size return (xy[0], xy[1], xs, ys) # x,y,w,h def _update_patch_position(self): if self.is_on() and self.patch: self.patch[0].set_xy(self._get_patch_xy()) self.draw_patch() def _update_patch_size(self): self._update_patch_geometry() def _update_patch_geometry(self): if self.is_on() and self.patch: self.patch[0].set_bounds(*self._get_patch_bounds()) self.draw_patch() class ResizersMixin(object): """ Widget mix-in for adding resizing manipulation handles. The default handles are green boxes displayed on the outside corners of the boundaries. By default, the handles are only displayed when the widget is selected (`picked` in matplotlib terminology). Attributes: ----------- resizers : {bool} Property that determines whether the resizer handles should be used resize_color : {matplotlib color} The color of the resize handles. resize_pixel_size : {tuple | None} Size of the resize handles in screen pixels. If None, it is set equal to the size of one 'data-pixel' (image pixel size). resizer_picked : {False | int} Inidcates which, if any, resizer was selected the last time the widget was picked. `False` if another patch was picked, or the index of the resizer handle that was picked. """ def __init__(self, resizers=True, **kwargs): super(ResizersMixin, self).__init__(**kwargs) self.resizer_picked = False self.pick_offset = (0, 0) self.resize_color = 'lime' self.resize_pixel_size = (5, 5) # Set to None to make one data pixel self._resizers = resizers self._resizer_handles = [] self._resizers_on = False # The `_resizers_on` attribute reflects whether handles are actually on # as compared to `_resizers` which is whether the user wants them on. # The difference is e.g. for turning on and off handles when the # widget is selected/deselected. @property def resizers(self): return self._resizers @resizers.setter def resizers(self, value): if self._resizers != value: self._resizers = value self._set_resizers(value, self.ax) def _update_resizers(self): """Update resizer handles' patch geometry. """ pos = self._get_resizer_pos() rsize = self._get_resizer_size() for i, r in enumerate(self._resizer_handles): r.set_xy(pos[i]) r.set_width(rsize[0]) r.set_height(rsize[1]) def _set_resizers(self, value, ax): """Turns the resizers on/off, in much the same way that _set_patch works. """ if ax is not None: if value: for r in self._resizer_handles: ax.add_artist(r) r.set_animated(hasattr(ax, 'hspy_fig')) else: for container in [ ax.patches, ax.lines, ax.artists, ax.texts]: for r in self._resizer_handles: if r in container: container.remove(r) self._resizers_on = value self.draw_patch() def _get_resizer_size(self): """Gets the size of the resizer handles in axes coordinates. If 'resize_pixel_size' is None, a size of one pixel will be used. """ invtrans = self.ax.transData.inverted() if self.resize_pixel_size is None: rsize = [ax.scale for ax in self.axes] else: rsize = np.abs(invtrans.transform(self.resize_pixel_size) - invtrans.transform((0, 0))) return rsize def _get_resizer_offset(self): """Utility for getting the distance from the boundary box to the center of the resize handles. """ invtrans = self.ax.transData.inverted() border = self.border_thickness # Transform the border thickness into data values dl = np.abs(invtrans.transform((border, border)) - invtrans.transform((0, 0))) / 2 rsize = self._get_resizer_size() return rsize / 2 + dl def _get_resizer_pos(self): """Get the positions of the resizer handles. """ invtrans = self.ax.transData.inverted() border = self.border_thickness # Transform the border thickness into data values dl = np.abs(invtrans.transform((border, border)) - invtrans.transform((0, 0))) / 2 rsize = self._get_resizer_size() xs, ys = self._size positions = [] rp = np.array(self._get_patch_xy()) p = rp - rsize + dl # Top left positions.append(p) p = rp + (xs - dl[0], -rsize[1] + dl[1]) # Top right positions.append(p) p = rp + (-rsize[0] + dl[0], ys - dl[1]) # Bottom left positions.append(p) p = rp + (xs - dl[0], ys - dl[1]) # Bottom right positions.append(p) return positions def _set_patch(self): """Creates the resizer handles, irregardless of whether they will be used or not. """ if hasattr(super(ResizersMixin, self), '_set_patch'): super(ResizersMixin, self)._set_patch() if self._resizer_handles: self._set_resizers(False, self.ax) self._resizer_handles = [] rsize = self._get_resizer_size() pos = self._get_resizer_pos() for i in range(len(pos)): r = plt.Rectangle(pos[i], rsize[0], rsize[1], animated=self.blit, fill=True, lw=0, fc=self.resize_color, picker=True,) self._resizer_handles.append(r) def set_on(self, value): """Turns on/off resizers whet widget is turned on/off. """ if self.resizers and value != self._resizers_on: self._set_resizers(value, self.ax) if hasattr(super(ResizersMixin, self), 'set_on'): super(ResizersMixin, self).set_on(value) def onpick(self, event): """Picking of main patch is same as for widget base, but this also handles picking of the resize handles. If a resize handles is picked, `picked` is set to `True`, and `resizer_picked` is set to an integer indicating which handle was picked (0-3 for top left, top right, bottom left, bottom right). It is set to `False` if another widget was picked. If the main patch is picked, the offset from the picked pixel to the `position` is stored in `pick_offset`. This can be used in e.g. `_onmousemove` to ease dragging code (prevent widget center/corner snapping to mouse). """ if event.artist in self._resizer_handles: corner = self._resizer_handles.index(event.artist) self.resizer_picked = corner self.picked = True elif self.picked: if self.resizers and not self._resizers_on: self._set_resizers(True, self.ax) x = event.mouseevent.xdata y = event.mouseevent.ydata self.pick_offset = (x - self._pos[0], y - self._pos[1]) self.resizer_picked = False else: self._set_resizers(False, self.ax) if hasattr(super(ResizersMixin, self), 'onpick'): super(ResizersMixin, self).onpick(event) def _add_patch_to(self, ax): """Same as widget base, but also adds resizers if 'resizers' property is True. """ if self.resizers: self._set_resizers(True, ax) if hasattr(super(ResizersMixin, self), '_add_patch_to'): super(ResizersMixin, self)._add_patch_to(ax)
gpl-3.0
WindCanDie/spark
python/pyspark/sql/functions.py
5
133419
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ A collections of builtin functions """ import sys import functools import warnings if sys.version < "3": from itertools import imap as map if sys.version >= '3': basestring = str from pyspark import since, SparkContext from pyspark.rdd import ignore_unicode_prefix, PythonEvalType from pyspark.sql.column import Column, _to_java_column, _to_seq, _create_column_from_literal from pyspark.sql.dataframe import DataFrame from pyspark.sql.types import StringType, DataType # Keep UserDefinedFunction import for backwards compatible import; moved in SPARK-22409 from pyspark.sql.udf import UserDefinedFunction, _create_udf def _create_function(name, doc=""): """ Create a function for aggregator by name""" def _(col): sc = SparkContext._active_spark_context jc = getattr(sc._jvm.functions, name)(col._jc if isinstance(col, Column) else col) return Column(jc) _.__name__ = name _.__doc__ = doc return _ def _wrap_deprecated_function(func, message): """ Wrap the deprecated function to print out deprecation warnings""" def _(col): warnings.warn(message, DeprecationWarning) return func(col) return functools.wraps(func)(_) def _create_binary_mathfunction(name, doc=""): """ Create a binary mathfunction by name""" def _(col1, col2): sc = SparkContext._active_spark_context # users might write ints for simplicity. This would throw an error on the JVM side. jc = getattr(sc._jvm.functions, name)(col1._jc if isinstance(col1, Column) else float(col1), col2._jc if isinstance(col2, Column) else float(col2)) return Column(jc) _.__name__ = name _.__doc__ = doc return _ def _create_window_function(name, doc=''): """ Create a window function by name """ def _(): sc = SparkContext._active_spark_context jc = getattr(sc._jvm.functions, name)() return Column(jc) _.__name__ = name _.__doc__ = 'Window function: ' + doc return _ _lit_doc = """ Creates a :class:`Column` of literal value. >>> df.select(lit(5).alias('height')).withColumn('spark_user', lit(True)).take(1) [Row(height=5, spark_user=True)] """ _functions = { 'lit': _lit_doc, 'col': 'Returns a :class:`Column` based on the given column name.', 'column': 'Returns a :class:`Column` based on the given column name.', 'asc': 'Returns a sort expression based on the ascending order of the given column name.', 'desc': 'Returns a sort expression based on the descending order of the given column name.', 'upper': 'Converts a string expression to upper case.', 'lower': 'Converts a string expression to upper case.', 'sqrt': 'Computes the square root of the specified float value.', 'abs': 'Computes the absolute value.', 'max': 'Aggregate function: returns the maximum value of the expression in a group.', 'min': 'Aggregate function: returns the minimum value of the expression in a group.', 'count': 'Aggregate function: returns the number of items in a group.', 'sum': 'Aggregate function: returns the sum of all values in the expression.', 'avg': 'Aggregate function: returns the average of the values in a group.', 'mean': 'Aggregate function: returns the average of the values in a group.', 'sumDistinct': 'Aggregate function: returns the sum of distinct values in the expression.', } _functions_1_4 = { # unary math functions 'acos': ':return: inverse cosine of `col`, as if computed by `java.lang.Math.acos()`', 'asin': ':return: inverse sine of `col`, as if computed by `java.lang.Math.asin()`', 'atan': ':return: inverse tangent of `col`, as if computed by `java.lang.Math.atan()`', 'cbrt': 'Computes the cube-root of the given value.', 'ceil': 'Computes the ceiling of the given value.', 'cos': """:param col: angle in radians :return: cosine of the angle, as if computed by `java.lang.Math.cos()`.""", 'cosh': """:param col: hyperbolic angle :return: hyperbolic cosine of the angle, as if computed by `java.lang.Math.cosh()`""", 'exp': 'Computes the exponential of the given value.', 'expm1': 'Computes the exponential of the given value minus one.', 'floor': 'Computes the floor of the given value.', 'log': 'Computes the natural logarithm of the given value.', 'log10': 'Computes the logarithm of the given value in Base 10.', 'log1p': 'Computes the natural logarithm of the given value plus one.', 'rint': 'Returns the double value that is closest in value to the argument and' + ' is equal to a mathematical integer.', 'signum': 'Computes the signum of the given value.', 'sin': """:param col: angle in radians :return: sine of the angle, as if computed by `java.lang.Math.sin()`""", 'sinh': """:param col: hyperbolic angle :return: hyperbolic sine of the given value, as if computed by `java.lang.Math.sinh()`""", 'tan': """:param col: angle in radians :return: tangent of the given value, as if computed by `java.lang.Math.tan()`""", 'tanh': """:param col: hyperbolic angle :return: hyperbolic tangent of the given value, as if computed by `java.lang.Math.tanh()`""", 'toDegrees': '.. note:: Deprecated in 2.1, use :func:`degrees` instead.', 'toRadians': '.. note:: Deprecated in 2.1, use :func:`radians` instead.', 'bitwiseNOT': 'Computes bitwise not.', } _functions_2_4 = { 'asc_nulls_first': 'Returns a sort expression based on the ascending order of the given' + ' column name, and null values return before non-null values.', 'asc_nulls_last': 'Returns a sort expression based on the ascending order of the given' + ' column name, and null values appear after non-null values.', 'desc_nulls_first': 'Returns a sort expression based on the descending order of the given' + ' column name, and null values appear before non-null values.', 'desc_nulls_last': 'Returns a sort expression based on the descending order of the given' + ' column name, and null values appear after non-null values', } _collect_list_doc = """ Aggregate function: returns a list of objects with duplicates. .. note:: The function is non-deterministic because the order of collected results depends on order of rows which may be non-deterministic after a shuffle. >>> df2 = spark.createDataFrame([(2,), (5,), (5,)], ('age',)) >>> df2.agg(collect_list('age')).collect() [Row(collect_list(age)=[2, 5, 5])] """ _collect_set_doc = """ Aggregate function: returns a set of objects with duplicate elements eliminated. .. note:: The function is non-deterministic because the order of collected results depends on order of rows which may be non-deterministic after a shuffle. >>> df2 = spark.createDataFrame([(2,), (5,), (5,)], ('age',)) >>> df2.agg(collect_set('age')).collect() [Row(collect_set(age)=[5, 2])] """ _functions_1_6 = { # unary math functions 'stddev': 'Aggregate function: returns the unbiased sample standard deviation of' + ' the expression in a group.', 'stddev_samp': 'Aggregate function: returns the unbiased sample standard deviation of' + ' the expression in a group.', 'stddev_pop': 'Aggregate function: returns population standard deviation of' + ' the expression in a group.', 'variance': 'Aggregate function: returns the population variance of the values in a group.', 'var_samp': 'Aggregate function: returns the unbiased variance of the values in a group.', 'var_pop': 'Aggregate function: returns the population variance of the values in a group.', 'skewness': 'Aggregate function: returns the skewness of the values in a group.', 'kurtosis': 'Aggregate function: returns the kurtosis of the values in a group.', 'collect_list': _collect_list_doc, 'collect_set': _collect_set_doc } _functions_2_1 = { # unary math functions 'degrees': """ Converts an angle measured in radians to an approximately equivalent angle measured in degrees. :param col: angle in radians :return: angle in degrees, as if computed by `java.lang.Math.toDegrees()` """, 'radians': """ Converts an angle measured in degrees to an approximately equivalent angle measured in radians. :param col: angle in degrees :return: angle in radians, as if computed by `java.lang.Math.toRadians()` """, } # math functions that take two arguments as input _binary_mathfunctions = { 'atan2': """ :param col1: coordinate on y-axis :param col2: coordinate on x-axis :return: the `theta` component of the point (`r`, `theta`) in polar coordinates that corresponds to the point (`x`, `y`) in Cartesian coordinates, as if computed by `java.lang.Math.atan2()` """, 'hypot': 'Computes ``sqrt(a^2 + b^2)`` without intermediate overflow or underflow.', 'pow': 'Returns the value of the first argument raised to the power of the second argument.', } _window_functions = { 'row_number': """returns a sequential number starting at 1 within a window partition.""", 'dense_rank': """returns the rank of rows within a window partition, without any gaps. The difference between rank and dense_rank is that dense_rank leaves no gaps in ranking sequence when there are ties. That is, if you were ranking a competition using dense_rank and had three people tie for second place, you would say that all three were in second place and that the next person came in third. Rank would give me sequential numbers, making the person that came in third place (after the ties) would register as coming in fifth. This is equivalent to the DENSE_RANK function in SQL.""", 'rank': """returns the rank of rows within a window partition. The difference between rank and dense_rank is that dense_rank leaves no gaps in ranking sequence when there are ties. That is, if you were ranking a competition using dense_rank and had three people tie for second place, you would say that all three were in second place and that the next person came in third. Rank would give me sequential numbers, making the person that came in third place (after the ties) would register as coming in fifth. This is equivalent to the RANK function in SQL.""", 'cume_dist': """returns the cumulative distribution of values within a window partition, i.e. the fraction of rows that are below the current row.""", 'percent_rank': """returns the relative rank (i.e. percentile) of rows within a window partition.""", } # Wraps deprecated functions (keys) with the messages (values). _functions_deprecated = { } for _name, _doc in _functions.items(): globals()[_name] = since(1.3)(_create_function(_name, _doc)) for _name, _doc in _functions_1_4.items(): globals()[_name] = since(1.4)(_create_function(_name, _doc)) for _name, _doc in _binary_mathfunctions.items(): globals()[_name] = since(1.4)(_create_binary_mathfunction(_name, _doc)) for _name, _doc in _window_functions.items(): globals()[_name] = since(1.6)(_create_window_function(_name, _doc)) for _name, _doc in _functions_1_6.items(): globals()[_name] = since(1.6)(_create_function(_name, _doc)) for _name, _doc in _functions_2_1.items(): globals()[_name] = since(2.1)(_create_function(_name, _doc)) for _name, _message in _functions_deprecated.items(): globals()[_name] = _wrap_deprecated_function(globals()[_name], _message) for _name, _doc in _functions_2_4.items(): globals()[_name] = since(2.4)(_create_function(_name, _doc)) del _name, _doc @since(2.1) def approx_count_distinct(col, rsd=None): """Aggregate function: returns a new :class:`Column` for approximate distinct count of column `col`. :param rsd: maximum estimation error allowed (default = 0.05). For rsd < 0.01, it is more efficient to use :func:`countDistinct` >>> df.agg(approx_count_distinct(df.age).alias('distinct_ages')).collect() [Row(distinct_ages=2)] """ sc = SparkContext._active_spark_context if rsd is None: jc = sc._jvm.functions.approx_count_distinct(_to_java_column(col)) else: jc = sc._jvm.functions.approx_count_distinct(_to_java_column(col), rsd) return Column(jc) @since(1.6) def broadcast(df): """Marks a DataFrame as small enough for use in broadcast joins.""" sc = SparkContext._active_spark_context return DataFrame(sc._jvm.functions.broadcast(df._jdf), df.sql_ctx) @since(1.4) def coalesce(*cols): """Returns the first column that is not null. >>> cDf = spark.createDataFrame([(None, None), (1, None), (None, 2)], ("a", "b")) >>> cDf.show() +----+----+ | a| b| +----+----+ |null|null| | 1|null| |null| 2| +----+----+ >>> cDf.select(coalesce(cDf["a"], cDf["b"])).show() +--------------+ |coalesce(a, b)| +--------------+ | null| | 1| | 2| +--------------+ >>> cDf.select('*', coalesce(cDf["a"], lit(0.0))).show() +----+----+----------------+ | a| b|coalesce(a, 0.0)| +----+----+----------------+ |null|null| 0.0| | 1|null| 1.0| |null| 2| 0.0| +----+----+----------------+ """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.coalesce(_to_seq(sc, cols, _to_java_column)) return Column(jc) @since(1.6) def corr(col1, col2): """Returns a new :class:`Column` for the Pearson Correlation Coefficient for ``col1`` and ``col2``. >>> a = range(20) >>> b = [2 * x for x in range(20)] >>> df = spark.createDataFrame(zip(a, b), ["a", "b"]) >>> df.agg(corr("a", "b").alias('c')).collect() [Row(c=1.0)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.corr(_to_java_column(col1), _to_java_column(col2))) @since(2.0) def covar_pop(col1, col2): """Returns a new :class:`Column` for the population covariance of ``col1`` and ``col2``. >>> a = [1] * 10 >>> b = [1] * 10 >>> df = spark.createDataFrame(zip(a, b), ["a", "b"]) >>> df.agg(covar_pop("a", "b").alias('c')).collect() [Row(c=0.0)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.covar_pop(_to_java_column(col1), _to_java_column(col2))) @since(2.0) def covar_samp(col1, col2): """Returns a new :class:`Column` for the sample covariance of ``col1`` and ``col2``. >>> a = [1] * 10 >>> b = [1] * 10 >>> df = spark.createDataFrame(zip(a, b), ["a", "b"]) >>> df.agg(covar_samp("a", "b").alias('c')).collect() [Row(c=0.0)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.covar_samp(_to_java_column(col1), _to_java_column(col2))) @since(1.3) def countDistinct(col, *cols): """Returns a new :class:`Column` for distinct count of ``col`` or ``cols``. >>> df.agg(countDistinct(df.age, df.name).alias('c')).collect() [Row(c=2)] >>> df.agg(countDistinct("age", "name").alias('c')).collect() [Row(c=2)] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.countDistinct(_to_java_column(col), _to_seq(sc, cols, _to_java_column)) return Column(jc) @since(1.3) def first(col, ignorenulls=False): """Aggregate function: returns the first value in a group. The function by default returns the first values it sees. It will return the first non-null value it sees when ignoreNulls is set to true. If all values are null, then null is returned. .. note:: The function is non-deterministic because its results depends on order of rows which may be non-deterministic after a shuffle. """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.first(_to_java_column(col), ignorenulls) return Column(jc) @since(2.0) def grouping(col): """ Aggregate function: indicates whether a specified column in a GROUP BY list is aggregated or not, returns 1 for aggregated or 0 for not aggregated in the result set. >>> df.cube("name").agg(grouping("name"), sum("age")).orderBy("name").show() +-----+--------------+--------+ | name|grouping(name)|sum(age)| +-----+--------------+--------+ | null| 1| 7| |Alice| 0| 2| | Bob| 0| 5| +-----+--------------+--------+ """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.grouping(_to_java_column(col)) return Column(jc) @since(2.0) def grouping_id(*cols): """ Aggregate function: returns the level of grouping, equals to (grouping(c1) << (n-1)) + (grouping(c2) << (n-2)) + ... + grouping(cn) .. note:: The list of columns should match with grouping columns exactly, or empty (means all the grouping columns). >>> df.cube("name").agg(grouping_id(), sum("age")).orderBy("name").show() +-----+-------------+--------+ | name|grouping_id()|sum(age)| +-----+-------------+--------+ | null| 1| 7| |Alice| 0| 2| | Bob| 0| 5| +-----+-------------+--------+ """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.grouping_id(_to_seq(sc, cols, _to_java_column)) return Column(jc) @since(1.6) def input_file_name(): """Creates a string column for the file name of the current Spark task. """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.input_file_name()) @since(1.6) def isnan(col): """An expression that returns true iff the column is NaN. >>> df = spark.createDataFrame([(1.0, float('nan')), (float('nan'), 2.0)], ("a", "b")) >>> df.select(isnan("a").alias("r1"), isnan(df.a).alias("r2")).collect() [Row(r1=False, r2=False), Row(r1=True, r2=True)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.isnan(_to_java_column(col))) @since(1.6) def isnull(col): """An expression that returns true iff the column is null. >>> df = spark.createDataFrame([(1, None), (None, 2)], ("a", "b")) >>> df.select(isnull("a").alias("r1"), isnull(df.a).alias("r2")).collect() [Row(r1=False, r2=False), Row(r1=True, r2=True)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.isnull(_to_java_column(col))) @since(1.3) def last(col, ignorenulls=False): """Aggregate function: returns the last value in a group. The function by default returns the last values it sees. It will return the last non-null value it sees when ignoreNulls is set to true. If all values are null, then null is returned. .. note:: The function is non-deterministic because its results depends on order of rows which may be non-deterministic after a shuffle. """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.last(_to_java_column(col), ignorenulls) return Column(jc) @since(1.6) def monotonically_increasing_id(): """A column that generates monotonically increasing 64-bit integers. The generated ID is guaranteed to be monotonically increasing and unique, but not consecutive. The current implementation puts the partition ID in the upper 31 bits, and the record number within each partition in the lower 33 bits. The assumption is that the data frame has less than 1 billion partitions, and each partition has less than 8 billion records. .. note:: The function is non-deterministic because its result depends on partition IDs. As an example, consider a :class:`DataFrame` with two partitions, each with 3 records. This expression would return the following IDs: 0, 1, 2, 8589934592 (1L << 33), 8589934593, 8589934594. >>> df0 = sc.parallelize(range(2), 2).mapPartitions(lambda x: [(1,), (2,), (3,)]).toDF(['col1']) >>> df0.select(monotonically_increasing_id().alias('id')).collect() [Row(id=0), Row(id=1), Row(id=2), Row(id=8589934592), Row(id=8589934593), Row(id=8589934594)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.monotonically_increasing_id()) @since(1.6) def nanvl(col1, col2): """Returns col1 if it is not NaN, or col2 if col1 is NaN. Both inputs should be floating point columns (:class:`DoubleType` or :class:`FloatType`). >>> df = spark.createDataFrame([(1.0, float('nan')), (float('nan'), 2.0)], ("a", "b")) >>> df.select(nanvl("a", "b").alias("r1"), nanvl(df.a, df.b).alias("r2")).collect() [Row(r1=1.0, r2=1.0), Row(r1=2.0, r2=2.0)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.nanvl(_to_java_column(col1), _to_java_column(col2))) @ignore_unicode_prefix @since(1.4) def rand(seed=None): """Generates a random column with independent and identically distributed (i.i.d.) samples from U[0.0, 1.0]. .. note:: The function is non-deterministic in general case. >>> df.withColumn('rand', rand(seed=42) * 3).collect() [Row(age=2, name=u'Alice', rand=1.1568609015300986), Row(age=5, name=u'Bob', rand=1.403379671529166)] """ sc = SparkContext._active_spark_context if seed is not None: jc = sc._jvm.functions.rand(seed) else: jc = sc._jvm.functions.rand() return Column(jc) @ignore_unicode_prefix @since(1.4) def randn(seed=None): """Generates a column with independent and identically distributed (i.i.d.) samples from the standard normal distribution. .. note:: The function is non-deterministic in general case. >>> df.withColumn('randn', randn(seed=42)).collect() [Row(age=2, name=u'Alice', randn=-0.7556247885860078), Row(age=5, name=u'Bob', randn=-0.0861619008451133)] """ sc = SparkContext._active_spark_context if seed is not None: jc = sc._jvm.functions.randn(seed) else: jc = sc._jvm.functions.randn() return Column(jc) @since(1.5) def round(col, scale=0): """ Round the given value to `scale` decimal places using HALF_UP rounding mode if `scale` >= 0 or at integral part when `scale` < 0. >>> spark.createDataFrame([(2.5,)], ['a']).select(round('a', 0).alias('r')).collect() [Row(r=3.0)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.round(_to_java_column(col), scale)) @since(2.0) def bround(col, scale=0): """ Round the given value to `scale` decimal places using HALF_EVEN rounding mode if `scale` >= 0 or at integral part when `scale` < 0. >>> spark.createDataFrame([(2.5,)], ['a']).select(bround('a', 0).alias('r')).collect() [Row(r=2.0)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.bround(_to_java_column(col), scale)) @since(1.5) def shiftLeft(col, numBits): """Shift the given value numBits left. >>> spark.createDataFrame([(21,)], ['a']).select(shiftLeft('a', 1).alias('r')).collect() [Row(r=42)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.shiftLeft(_to_java_column(col), numBits)) @since(1.5) def shiftRight(col, numBits): """(Signed) shift the given value numBits right. >>> spark.createDataFrame([(42,)], ['a']).select(shiftRight('a', 1).alias('r')).collect() [Row(r=21)] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.shiftRight(_to_java_column(col), numBits) return Column(jc) @since(1.5) def shiftRightUnsigned(col, numBits): """Unsigned shift the given value numBits right. >>> df = spark.createDataFrame([(-42,)], ['a']) >>> df.select(shiftRightUnsigned('a', 1).alias('r')).collect() [Row(r=9223372036854775787)] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.shiftRightUnsigned(_to_java_column(col), numBits) return Column(jc) @since(1.6) def spark_partition_id(): """A column for partition ID. .. note:: This is indeterministic because it depends on data partitioning and task scheduling. >>> df.repartition(1).select(spark_partition_id().alias("pid")).collect() [Row(pid=0), Row(pid=0)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.spark_partition_id()) @since(1.5) def expr(str): """Parses the expression string into the column that it represents >>> df.select(expr("length(name)")).collect() [Row(length(name)=5), Row(length(name)=3)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.expr(str)) @ignore_unicode_prefix @since(1.4) def struct(*cols): """Creates a new struct column. :param cols: list of column names (string) or list of :class:`Column` expressions >>> df.select(struct('age', 'name').alias("struct")).collect() [Row(struct=Row(age=2, name=u'Alice')), Row(struct=Row(age=5, name=u'Bob'))] >>> df.select(struct([df.age, df.name]).alias("struct")).collect() [Row(struct=Row(age=2, name=u'Alice')), Row(struct=Row(age=5, name=u'Bob'))] """ sc = SparkContext._active_spark_context if len(cols) == 1 and isinstance(cols[0], (list, set)): cols = cols[0] jc = sc._jvm.functions.struct(_to_seq(sc, cols, _to_java_column)) return Column(jc) @since(1.5) def greatest(*cols): """ Returns the greatest value of the list of column names, skipping null values. This function takes at least 2 parameters. It will return null iff all parameters are null. >>> df = spark.createDataFrame([(1, 4, 3)], ['a', 'b', 'c']) >>> df.select(greatest(df.a, df.b, df.c).alias("greatest")).collect() [Row(greatest=4)] """ if len(cols) < 2: raise ValueError("greatest should take at least two columns") sc = SparkContext._active_spark_context return Column(sc._jvm.functions.greatest(_to_seq(sc, cols, _to_java_column))) @since(1.5) def least(*cols): """ Returns the least value of the list of column names, skipping null values. This function takes at least 2 parameters. It will return null iff all parameters are null. >>> df = spark.createDataFrame([(1, 4, 3)], ['a', 'b', 'c']) >>> df.select(least(df.a, df.b, df.c).alias("least")).collect() [Row(least=1)] """ if len(cols) < 2: raise ValueError("least should take at least two columns") sc = SparkContext._active_spark_context return Column(sc._jvm.functions.least(_to_seq(sc, cols, _to_java_column))) @since(1.4) def when(condition, value): """Evaluates a list of conditions and returns one of multiple possible result expressions. If :func:`Column.otherwise` is not invoked, None is returned for unmatched conditions. :param condition: a boolean :class:`Column` expression. :param value: a literal value, or a :class:`Column` expression. >>> df.select(when(df['age'] == 2, 3).otherwise(4).alias("age")).collect() [Row(age=3), Row(age=4)] >>> df.select(when(df.age == 2, df.age + 1).alias("age")).collect() [Row(age=3), Row(age=None)] """ sc = SparkContext._active_spark_context if not isinstance(condition, Column): raise TypeError("condition should be a Column") v = value._jc if isinstance(value, Column) else value jc = sc._jvm.functions.when(condition._jc, v) return Column(jc) @since(1.5) def log(arg1, arg2=None): """Returns the first argument-based logarithm of the second argument. If there is only one argument, then this takes the natural logarithm of the argument. >>> df.select(log(10.0, df.age).alias('ten')).rdd.map(lambda l: str(l.ten)[:7]).collect() ['0.30102', '0.69897'] >>> df.select(log(df.age).alias('e')).rdd.map(lambda l: str(l.e)[:7]).collect() ['0.69314', '1.60943'] """ sc = SparkContext._active_spark_context if arg2 is None: jc = sc._jvm.functions.log(_to_java_column(arg1)) else: jc = sc._jvm.functions.log(arg1, _to_java_column(arg2)) return Column(jc) @since(1.5) def log2(col): """Returns the base-2 logarithm of the argument. >>> spark.createDataFrame([(4,)], ['a']).select(log2('a').alias('log2')).collect() [Row(log2=2.0)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.log2(_to_java_column(col))) @since(1.5) @ignore_unicode_prefix def conv(col, fromBase, toBase): """ Convert a number in a string column from one base to another. >>> df = spark.createDataFrame([("010101",)], ['n']) >>> df.select(conv(df.n, 2, 16).alias('hex')).collect() [Row(hex=u'15')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.conv(_to_java_column(col), fromBase, toBase)) @since(1.5) def factorial(col): """ Computes the factorial of the given value. >>> df = spark.createDataFrame([(5,)], ['n']) >>> df.select(factorial(df.n).alias('f')).collect() [Row(f=120)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.factorial(_to_java_column(col))) # --------------- Window functions ------------------------ @since(1.4) def lag(col, offset=1, default=None): """ Window function: returns the value that is `offset` rows before the current row, and `defaultValue` if there is less than `offset` rows before the current row. For example, an `offset` of one will return the previous row at any given point in the window partition. This is equivalent to the LAG function in SQL. :param col: name of column or expression :param offset: number of row to extend :param default: default value """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.lag(_to_java_column(col), offset, default)) @since(1.4) def lead(col, offset=1, default=None): """ Window function: returns the value that is `offset` rows after the current row, and `defaultValue` if there is less than `offset` rows after the current row. For example, an `offset` of one will return the next row at any given point in the window partition. This is equivalent to the LEAD function in SQL. :param col: name of column or expression :param offset: number of row to extend :param default: default value """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.lead(_to_java_column(col), offset, default)) @since(1.4) def ntile(n): """ Window function: returns the ntile group id (from 1 to `n` inclusive) in an ordered window partition. For example, if `n` is 4, the first quarter of the rows will get value 1, the second quarter will get 2, the third quarter will get 3, and the last quarter will get 4. This is equivalent to the NTILE function in SQL. :param n: an integer """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.ntile(int(n))) # ---------------------- Date/Timestamp functions ------------------------------ @since(1.5) def current_date(): """ Returns the current date as a :class:`DateType` column. """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.current_date()) def current_timestamp(): """ Returns the current timestamp as a :class:`TimestampType` column. """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.current_timestamp()) @ignore_unicode_prefix @since(1.5) def date_format(date, format): """ Converts a date/timestamp/string to a value of string in the format specified by the date format given by the second argument. A pattern could be for instance `dd.MM.yyyy` and could return a string like '18.03.1993'. All pattern letters of the Java class `java.time.format.DateTimeFormatter` can be used. .. note:: Use when ever possible specialized functions like `year`. These benefit from a specialized implementation. >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(date_format('dt', 'MM/dd/yyy').alias('date')).collect() [Row(date=u'04/08/2015')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.date_format(_to_java_column(date), format)) @since(1.5) def year(col): """ Extract the year of a given date as integer. >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(year('dt').alias('year')).collect() [Row(year=2015)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.year(_to_java_column(col))) @since(1.5) def quarter(col): """ Extract the quarter of a given date as integer. >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(quarter('dt').alias('quarter')).collect() [Row(quarter=2)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.quarter(_to_java_column(col))) @since(1.5) def month(col): """ Extract the month of a given date as integer. >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(month('dt').alias('month')).collect() [Row(month=4)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.month(_to_java_column(col))) @since(2.3) def dayofweek(col): """ Extract the day of the week of a given date as integer. >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(dayofweek('dt').alias('day')).collect() [Row(day=4)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.dayofweek(_to_java_column(col))) @since(1.5) def dayofmonth(col): """ Extract the day of the month of a given date as integer. >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(dayofmonth('dt').alias('day')).collect() [Row(day=8)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.dayofmonth(_to_java_column(col))) @since(1.5) def dayofyear(col): """ Extract the day of the year of a given date as integer. >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(dayofyear('dt').alias('day')).collect() [Row(day=98)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.dayofyear(_to_java_column(col))) @since(1.5) def hour(col): """ Extract the hours of a given date as integer. >>> df = spark.createDataFrame([('2015-04-08 13:08:15',)], ['ts']) >>> df.select(hour('ts').alias('hour')).collect() [Row(hour=13)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.hour(_to_java_column(col))) @since(1.5) def minute(col): """ Extract the minutes of a given date as integer. >>> df = spark.createDataFrame([('2015-04-08 13:08:15',)], ['ts']) >>> df.select(minute('ts').alias('minute')).collect() [Row(minute=8)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.minute(_to_java_column(col))) @since(1.5) def second(col): """ Extract the seconds of a given date as integer. >>> df = spark.createDataFrame([('2015-04-08 13:08:15',)], ['ts']) >>> df.select(second('ts').alias('second')).collect() [Row(second=15)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.second(_to_java_column(col))) @since(1.5) def weekofyear(col): """ Extract the week number of a given date as integer. >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(weekofyear(df.dt).alias('week')).collect() [Row(week=15)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.weekofyear(_to_java_column(col))) @since(1.5) def date_add(start, days): """ Returns the date that is `days` days after `start` >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(date_add(df.dt, 1).alias('next_date')).collect() [Row(next_date=datetime.date(2015, 4, 9))] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.date_add(_to_java_column(start), days)) @since(1.5) def date_sub(start, days): """ Returns the date that is `days` days before `start` >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(date_sub(df.dt, 1).alias('prev_date')).collect() [Row(prev_date=datetime.date(2015, 4, 7))] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.date_sub(_to_java_column(start), days)) @since(1.5) def datediff(end, start): """ Returns the number of days from `start` to `end`. >>> df = spark.createDataFrame([('2015-04-08','2015-05-10')], ['d1', 'd2']) >>> df.select(datediff(df.d2, df.d1).alias('diff')).collect() [Row(diff=32)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.datediff(_to_java_column(end), _to_java_column(start))) @since(1.5) def add_months(start, months): """ Returns the date that is `months` months after `start` >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(add_months(df.dt, 1).alias('next_month')).collect() [Row(next_month=datetime.date(2015, 5, 8))] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.add_months(_to_java_column(start), months)) @since(1.5) def months_between(date1, date2, roundOff=True): """ Returns number of months between dates date1 and date2. If date1 is later than date2, then the result is positive. If date1 and date2 are on the same day of month, or both are the last day of month, returns an integer (time of day will be ignored). The result is rounded off to 8 digits unless `roundOff` is set to `False`. >>> df = spark.createDataFrame([('1997-02-28 10:30:00', '1996-10-30')], ['date1', 'date2']) >>> df.select(months_between(df.date1, df.date2).alias('months')).collect() [Row(months=3.94959677)] >>> df.select(months_between(df.date1, df.date2, False).alias('months')).collect() [Row(months=3.9495967741935485)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.months_between( _to_java_column(date1), _to_java_column(date2), roundOff)) @since(2.2) def to_date(col, format=None): """Converts a :class:`Column` of :class:`pyspark.sql.types.StringType` or :class:`pyspark.sql.types.TimestampType` into :class:`pyspark.sql.types.DateType` using the optionally specified format. Specify formats according to `DateTimeFormatter <https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html>`_. # noqa By default, it follows casting rules to :class:`pyspark.sql.types.DateType` if the format is omitted (equivalent to ``col.cast("date")``). >>> df = spark.createDataFrame([('1997-02-28 10:30:00',)], ['t']) >>> df.select(to_date(df.t).alias('date')).collect() [Row(date=datetime.date(1997, 2, 28))] >>> df = spark.createDataFrame([('1997-02-28 10:30:00',)], ['t']) >>> df.select(to_date(df.t, 'yyyy-MM-dd HH:mm:ss').alias('date')).collect() [Row(date=datetime.date(1997, 2, 28))] """ sc = SparkContext._active_spark_context if format is None: jc = sc._jvm.functions.to_date(_to_java_column(col)) else: jc = sc._jvm.functions.to_date(_to_java_column(col), format) return Column(jc) @since(2.2) def to_timestamp(col, format=None): """Converts a :class:`Column` of :class:`pyspark.sql.types.StringType` or :class:`pyspark.sql.types.TimestampType` into :class:`pyspark.sql.types.DateType` using the optionally specified format. Specify formats according to `DateTimeFormatter <https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html>`_. # noqa By default, it follows casting rules to :class:`pyspark.sql.types.TimestampType` if the format is omitted (equivalent to ``col.cast("timestamp")``). >>> df = spark.createDataFrame([('1997-02-28 10:30:00',)], ['t']) >>> df.select(to_timestamp(df.t).alias('dt')).collect() [Row(dt=datetime.datetime(1997, 2, 28, 10, 30))] >>> df = spark.createDataFrame([('1997-02-28 10:30:00',)], ['t']) >>> df.select(to_timestamp(df.t, 'yyyy-MM-dd HH:mm:ss').alias('dt')).collect() [Row(dt=datetime.datetime(1997, 2, 28, 10, 30))] """ sc = SparkContext._active_spark_context if format is None: jc = sc._jvm.functions.to_timestamp(_to_java_column(col)) else: jc = sc._jvm.functions.to_timestamp(_to_java_column(col), format) return Column(jc) @since(1.5) def trunc(date, format): """ Returns date truncated to the unit specified by the format. :param format: 'year', 'yyyy', 'yy' or 'month', 'mon', 'mm' >>> df = spark.createDataFrame([('1997-02-28',)], ['d']) >>> df.select(trunc(df.d, 'year').alias('year')).collect() [Row(year=datetime.date(1997, 1, 1))] >>> df.select(trunc(df.d, 'mon').alias('month')).collect() [Row(month=datetime.date(1997, 2, 1))] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.trunc(_to_java_column(date), format)) @since(2.3) def date_trunc(format, timestamp): """ Returns timestamp truncated to the unit specified by the format. :param format: 'year', 'yyyy', 'yy', 'month', 'mon', 'mm', 'day', 'dd', 'hour', 'minute', 'second', 'week', 'quarter' >>> df = spark.createDataFrame([('1997-02-28 05:02:11',)], ['t']) >>> df.select(date_trunc('year', df.t).alias('year')).collect() [Row(year=datetime.datetime(1997, 1, 1, 0, 0))] >>> df.select(date_trunc('mon', df.t).alias('month')).collect() [Row(month=datetime.datetime(1997, 2, 1, 0, 0))] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.date_trunc(format, _to_java_column(timestamp))) @since(1.5) def next_day(date, dayOfWeek): """ Returns the first date which is later than the value of the date column. Day of the week parameter is case insensitive, and accepts: "Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun". >>> df = spark.createDataFrame([('2015-07-27',)], ['d']) >>> df.select(next_day(df.d, 'Sun').alias('date')).collect() [Row(date=datetime.date(2015, 8, 2))] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.next_day(_to_java_column(date), dayOfWeek)) @since(1.5) def last_day(date): """ Returns the last day of the month which the given date belongs to. >>> df = spark.createDataFrame([('1997-02-10',)], ['d']) >>> df.select(last_day(df.d).alias('date')).collect() [Row(date=datetime.date(1997, 2, 28))] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.last_day(_to_java_column(date))) @ignore_unicode_prefix @since(1.5) def from_unixtime(timestamp, format="yyyy-MM-dd HH:mm:ss"): """ Converts the number of seconds from unix epoch (1970-01-01 00:00:00 UTC) to a string representing the timestamp of that moment in the current system time zone in the given format. >>> spark.conf.set("spark.sql.session.timeZone", "America/Los_Angeles") >>> time_df = spark.createDataFrame([(1428476400,)], ['unix_time']) >>> time_df.select(from_unixtime('unix_time').alias('ts')).collect() [Row(ts=u'2015-04-08 00:00:00')] >>> spark.conf.unset("spark.sql.session.timeZone") """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.from_unixtime(_to_java_column(timestamp), format)) @since(1.5) def unix_timestamp(timestamp=None, format='yyyy-MM-dd HH:mm:ss'): """ Convert time string with given pattern ('yyyy-MM-dd HH:mm:ss', by default) to Unix time stamp (in seconds), using the default timezone and the default locale, return null if fail. if `timestamp` is None, then it returns current timestamp. >>> spark.conf.set("spark.sql.session.timeZone", "America/Los_Angeles") >>> time_df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> time_df.select(unix_timestamp('dt', 'yyyy-MM-dd').alias('unix_time')).collect() [Row(unix_time=1428476400)] >>> spark.conf.unset("spark.sql.session.timeZone") """ sc = SparkContext._active_spark_context if timestamp is None: return Column(sc._jvm.functions.unix_timestamp()) return Column(sc._jvm.functions.unix_timestamp(_to_java_column(timestamp), format)) @since(1.5) def from_utc_timestamp(timestamp, tz): """ This is a common function for databases supporting TIMESTAMP WITHOUT TIMEZONE. This function takes a timestamp which is timezone-agnostic, and interprets it as a timestamp in UTC, and renders that timestamp as a timestamp in the given time zone. However, timestamp in Spark represents number of microseconds from the Unix epoch, which is not timezone-agnostic. So in Spark this function just shift the timestamp value from UTC timezone to the given timezone. This function may return confusing result if the input is a string with timezone, e.g. '2018-03-13T06:18:23+00:00'. The reason is that, Spark firstly cast the string to timestamp according to the timezone in the string, and finally display the result by converting the timestamp to string according to the session local timezone. :param timestamp: the column that contains timestamps :param tz: a string that has the ID of timezone, e.g. "GMT", "America/Los_Angeles", etc .. versionchanged:: 2.4 `tz` can take a :class:`Column` containing timezone ID strings. >>> df = spark.createDataFrame([('1997-02-28 10:30:00', 'JST')], ['ts', 'tz']) >>> df.select(from_utc_timestamp(df.ts, "PST").alias('local_time')).collect() [Row(local_time=datetime.datetime(1997, 2, 28, 2, 30))] >>> df.select(from_utc_timestamp(df.ts, df.tz).alias('local_time')).collect() [Row(local_time=datetime.datetime(1997, 2, 28, 19, 30))] """ sc = SparkContext._active_spark_context if isinstance(tz, Column): tz = _to_java_column(tz) return Column(sc._jvm.functions.from_utc_timestamp(_to_java_column(timestamp), tz)) @since(1.5) def to_utc_timestamp(timestamp, tz): """ This is a common function for databases supporting TIMESTAMP WITHOUT TIMEZONE. This function takes a timestamp which is timezone-agnostic, and interprets it as a timestamp in the given timezone, and renders that timestamp as a timestamp in UTC. However, timestamp in Spark represents number of microseconds from the Unix epoch, which is not timezone-agnostic. So in Spark this function just shift the timestamp value from the given timezone to UTC timezone. This function may return confusing result if the input is a string with timezone, e.g. '2018-03-13T06:18:23+00:00'. The reason is that, Spark firstly cast the string to timestamp according to the timezone in the string, and finally display the result by converting the timestamp to string according to the session local timezone. :param timestamp: the column that contains timestamps :param tz: a string that has the ID of timezone, e.g. "GMT", "America/Los_Angeles", etc .. versionchanged:: 2.4 `tz` can take a :class:`Column` containing timezone ID strings. >>> df = spark.createDataFrame([('1997-02-28 10:30:00', 'JST')], ['ts', 'tz']) >>> df.select(to_utc_timestamp(df.ts, "PST").alias('utc_time')).collect() [Row(utc_time=datetime.datetime(1997, 2, 28, 18, 30))] >>> df.select(to_utc_timestamp(df.ts, df.tz).alias('utc_time')).collect() [Row(utc_time=datetime.datetime(1997, 2, 28, 1, 30))] """ sc = SparkContext._active_spark_context if isinstance(tz, Column): tz = _to_java_column(tz) return Column(sc._jvm.functions.to_utc_timestamp(_to_java_column(timestamp), tz)) @since(2.0) @ignore_unicode_prefix def window(timeColumn, windowDuration, slideDuration=None, startTime=None): """Bucketize rows into one or more time windows given a timestamp specifying column. Window starts are inclusive but the window ends are exclusive, e.g. 12:05 will be in the window [12:05,12:10) but not in [12:00,12:05). Windows can support microsecond precision. Windows in the order of months are not supported. The time column must be of :class:`pyspark.sql.types.TimestampType`. Durations are provided as strings, e.g. '1 second', '1 day 12 hours', '2 minutes'. Valid interval strings are 'week', 'day', 'hour', 'minute', 'second', 'millisecond', 'microsecond'. If the ``slideDuration`` is not provided, the windows will be tumbling windows. The startTime is the offset with respect to 1970-01-01 00:00:00 UTC with which to start window intervals. For example, in order to have hourly tumbling windows that start 15 minutes past the hour, e.g. 12:15-13:15, 13:15-14:15... provide `startTime` as `15 minutes`. The output column will be a struct called 'window' by default with the nested columns 'start' and 'end', where 'start' and 'end' will be of :class:`pyspark.sql.types.TimestampType`. >>> df = spark.createDataFrame([("2016-03-11 09:00:07", 1)]).toDF("date", "val") >>> w = df.groupBy(window("date", "5 seconds")).agg(sum("val").alias("sum")) >>> w.select(w.window.start.cast("string").alias("start"), ... w.window.end.cast("string").alias("end"), "sum").collect() [Row(start=u'2016-03-11 09:00:05', end=u'2016-03-11 09:00:10', sum=1)] """ def check_string_field(field, fieldName): if not field or type(field) is not str: raise TypeError("%s should be provided as a string" % fieldName) sc = SparkContext._active_spark_context time_col = _to_java_column(timeColumn) check_string_field(windowDuration, "windowDuration") if slideDuration and startTime: check_string_field(slideDuration, "slideDuration") check_string_field(startTime, "startTime") res = sc._jvm.functions.window(time_col, windowDuration, slideDuration, startTime) elif slideDuration: check_string_field(slideDuration, "slideDuration") res = sc._jvm.functions.window(time_col, windowDuration, slideDuration) elif startTime: check_string_field(startTime, "startTime") res = sc._jvm.functions.window(time_col, windowDuration, windowDuration, startTime) else: res = sc._jvm.functions.window(time_col, windowDuration) return Column(res) # ---------------------------- misc functions ---------------------------------- @since(1.5) @ignore_unicode_prefix def crc32(col): """ Calculates the cyclic redundancy check value (CRC32) of a binary column and returns the value as a bigint. >>> spark.createDataFrame([('ABC',)], ['a']).select(crc32('a').alias('crc32')).collect() [Row(crc32=2743272264)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.crc32(_to_java_column(col))) @ignore_unicode_prefix @since(1.5) def md5(col): """Calculates the MD5 digest and returns the value as a 32 character hex string. >>> spark.createDataFrame([('ABC',)], ['a']).select(md5('a').alias('hash')).collect() [Row(hash=u'902fbdd2b1df0c4f70b4a5d23525e932')] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.md5(_to_java_column(col)) return Column(jc) @ignore_unicode_prefix @since(1.5) def sha1(col): """Returns the hex string result of SHA-1. >>> spark.createDataFrame([('ABC',)], ['a']).select(sha1('a').alias('hash')).collect() [Row(hash=u'3c01bdbb26f358bab27f267924aa2c9a03fcfdb8')] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.sha1(_to_java_column(col)) return Column(jc) @ignore_unicode_prefix @since(1.5) def sha2(col, numBits): """Returns the hex string result of SHA-2 family of hash functions (SHA-224, SHA-256, SHA-384, and SHA-512). The numBits indicates the desired bit length of the result, which must have a value of 224, 256, 384, 512, or 0 (which is equivalent to 256). >>> digests = df.select(sha2(df.name, 256).alias('s')).collect() >>> digests[0] Row(s=u'3bc51062973c458d5a6f2d8d64a023246354ad7e064b1e4e009ec8a0699a3043') >>> digests[1] Row(s=u'cd9fb1e148ccd8442e5aa74904cc73bf6fb54d1d54d333bd596aa9bb4bb4e961') """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.sha2(_to_java_column(col), numBits) return Column(jc) @since(2.0) def hash(*cols): """Calculates the hash code of given columns, and returns the result as an int column. >>> spark.createDataFrame([('ABC',)], ['a']).select(hash('a').alias('hash')).collect() [Row(hash=-757602832)] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.hash(_to_seq(sc, cols, _to_java_column)) return Column(jc) # ---------------------- String/Binary functions ------------------------------ _string_functions = { 'ascii': 'Computes the numeric value of the first character of the string column.', 'base64': 'Computes the BASE64 encoding of a binary column and returns it as a string column.', 'unbase64': 'Decodes a BASE64 encoded string column and returns it as a binary column.', 'initcap': 'Returns a new string column by converting the first letter of each word to ' + 'uppercase. Words are delimited by whitespace.', 'lower': 'Converts a string column to lower case.', 'upper': 'Converts a string column to upper case.', 'ltrim': 'Trim the spaces from left end for the specified string value.', 'rtrim': 'Trim the spaces from right end for the specified string value.', 'trim': 'Trim the spaces from both ends for the specified string column.', } for _name, _doc in _string_functions.items(): globals()[_name] = since(1.5)(_create_function(_name, _doc)) del _name, _doc @since(1.5) @ignore_unicode_prefix def concat_ws(sep, *cols): """ Concatenates multiple input string columns together into a single string column, using the given separator. >>> df = spark.createDataFrame([('abcd','123')], ['s', 'd']) >>> df.select(concat_ws('-', df.s, df.d).alias('s')).collect() [Row(s=u'abcd-123')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.concat_ws(sep, _to_seq(sc, cols, _to_java_column))) @since(1.5) def decode(col, charset): """ Computes the first argument into a string from a binary using the provided character set (one of 'US-ASCII', 'ISO-8859-1', 'UTF-8', 'UTF-16BE', 'UTF-16LE', 'UTF-16'). """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.decode(_to_java_column(col), charset)) @since(1.5) def encode(col, charset): """ Computes the first argument into a binary from a string using the provided character set (one of 'US-ASCII', 'ISO-8859-1', 'UTF-8', 'UTF-16BE', 'UTF-16LE', 'UTF-16'). """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.encode(_to_java_column(col), charset)) @ignore_unicode_prefix @since(1.5) def format_number(col, d): """ Formats the number X to a format like '#,--#,--#.--', rounded to d decimal places with HALF_EVEN round mode, and returns the result as a string. :param col: the column name of the numeric value to be formatted :param d: the N decimal places >>> spark.createDataFrame([(5,)], ['a']).select(format_number('a', 4).alias('v')).collect() [Row(v=u'5.0000')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.format_number(_to_java_column(col), d)) @ignore_unicode_prefix @since(1.5) def format_string(format, *cols): """ Formats the arguments in printf-style and returns the result as a string column. :param col: the column name of the numeric value to be formatted :param d: the N decimal places >>> df = spark.createDataFrame([(5, "hello")], ['a', 'b']) >>> df.select(format_string('%d %s', df.a, df.b).alias('v')).collect() [Row(v=u'5 hello')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.format_string(format, _to_seq(sc, cols, _to_java_column))) @since(1.5) def instr(str, substr): """ Locate the position of the first occurrence of substr column in the given string. Returns null if either of the arguments are null. .. note:: The position is not zero based, but 1 based index. Returns 0 if substr could not be found in str. >>> df = spark.createDataFrame([('abcd',)], ['s',]) >>> df.select(instr(df.s, 'b').alias('s')).collect() [Row(s=2)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.instr(_to_java_column(str), substr)) @since(1.5) @ignore_unicode_prefix def substring(str, pos, len): """ Substring starts at `pos` and is of length `len` when str is String type or returns the slice of byte array that starts at `pos` in byte and is of length `len` when str is Binary type. .. note:: The position is not zero based, but 1 based index. >>> df = spark.createDataFrame([('abcd',)], ['s',]) >>> df.select(substring(df.s, 1, 2).alias('s')).collect() [Row(s=u'ab')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.substring(_to_java_column(str), pos, len)) @since(1.5) @ignore_unicode_prefix def substring_index(str, delim, count): """ Returns the substring from string str before count occurrences of the delimiter delim. If count is positive, everything the left of the final delimiter (counting from left) is returned. If count is negative, every to the right of the final delimiter (counting from the right) is returned. substring_index performs a case-sensitive match when searching for delim. >>> df = spark.createDataFrame([('a.b.c.d',)], ['s']) >>> df.select(substring_index(df.s, '.', 2).alias('s')).collect() [Row(s=u'a.b')] >>> df.select(substring_index(df.s, '.', -3).alias('s')).collect() [Row(s=u'b.c.d')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.substring_index(_to_java_column(str), delim, count)) @ignore_unicode_prefix @since(1.5) def levenshtein(left, right): """Computes the Levenshtein distance of the two given strings. >>> df0 = spark.createDataFrame([('kitten', 'sitting',)], ['l', 'r']) >>> df0.select(levenshtein('l', 'r').alias('d')).collect() [Row(d=3)] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.levenshtein(_to_java_column(left), _to_java_column(right)) return Column(jc) @since(1.5) def locate(substr, str, pos=1): """ Locate the position of the first occurrence of substr in a string column, after position pos. .. note:: The position is not zero based, but 1 based index. Returns 0 if substr could not be found in str. :param substr: a string :param str: a Column of :class:`pyspark.sql.types.StringType` :param pos: start position (zero based) >>> df = spark.createDataFrame([('abcd',)], ['s',]) >>> df.select(locate('b', df.s, 1).alias('s')).collect() [Row(s=2)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.locate(substr, _to_java_column(str), pos)) @since(1.5) @ignore_unicode_prefix def lpad(col, len, pad): """ Left-pad the string column to width `len` with `pad`. >>> df = spark.createDataFrame([('abcd',)], ['s',]) >>> df.select(lpad(df.s, 6, '#').alias('s')).collect() [Row(s=u'##abcd')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.lpad(_to_java_column(col), len, pad)) @since(1.5) @ignore_unicode_prefix def rpad(col, len, pad): """ Right-pad the string column to width `len` with `pad`. >>> df = spark.createDataFrame([('abcd',)], ['s',]) >>> df.select(rpad(df.s, 6, '#').alias('s')).collect() [Row(s=u'abcd##')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.rpad(_to_java_column(col), len, pad)) @since(1.5) @ignore_unicode_prefix def repeat(col, n): """ Repeats a string column n times, and returns it as a new string column. >>> df = spark.createDataFrame([('ab',)], ['s',]) >>> df.select(repeat(df.s, 3).alias('s')).collect() [Row(s=u'ababab')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.repeat(_to_java_column(col), n)) @since(1.5) @ignore_unicode_prefix def split(str, pattern, limit=-1): """ Splits str around matches of the given pattern. :param str: a string expression to split :param pattern: a string representing a regular expression. The regex string should be a Java regular expression. :param limit: an integer which controls the number of times `pattern` is applied. * ``limit > 0``: The resulting array's length will not be more than `limit`, and the resulting array's last entry will contain all input beyond the last matched pattern. * ``limit <= 0``: `pattern` will be applied as many times as possible, and the resulting array can be of any size. .. versionchanged:: 3.0 `split` now takes an optional `limit` field. If not provided, default limit value is -1. >>> df = spark.createDataFrame([('oneAtwoBthreeC',)], ['s',]) >>> df.select(split(df.s, '[ABC]', 2).alias('s')).collect() [Row(s=[u'one', u'twoBthreeC'])] >>> df.select(split(df.s, '[ABC]', -1).alias('s')).collect() [Row(s=[u'one', u'two', u'three', u''])] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.split(_to_java_column(str), pattern, limit)) @ignore_unicode_prefix @since(1.5) def regexp_extract(str, pattern, idx): r"""Extract a specific group matched by a Java regex, from the specified string column. If the regex did not match, or the specified group did not match, an empty string is returned. >>> df = spark.createDataFrame([('100-200',)], ['str']) >>> df.select(regexp_extract('str', r'(\d+)-(\d+)', 1).alias('d')).collect() [Row(d=u'100')] >>> df = spark.createDataFrame([('foo',)], ['str']) >>> df.select(regexp_extract('str', r'(\d+)', 1).alias('d')).collect() [Row(d=u'')] >>> df = spark.createDataFrame([('aaaac',)], ['str']) >>> df.select(regexp_extract('str', '(a+)(b)?(c)', 2).alias('d')).collect() [Row(d=u'')] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.regexp_extract(_to_java_column(str), pattern, idx) return Column(jc) @ignore_unicode_prefix @since(1.5) def regexp_replace(str, pattern, replacement): r"""Replace all substrings of the specified string value that match regexp with rep. >>> df = spark.createDataFrame([('100-200',)], ['str']) >>> df.select(regexp_replace('str', r'(\d+)', '--').alias('d')).collect() [Row(d=u'-----')] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.regexp_replace(_to_java_column(str), pattern, replacement) return Column(jc) @ignore_unicode_prefix @since(1.5) def initcap(col): """Translate the first letter of each word to upper case in the sentence. >>> spark.createDataFrame([('ab cd',)], ['a']).select(initcap("a").alias('v')).collect() [Row(v=u'Ab Cd')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.initcap(_to_java_column(col))) @since(1.5) @ignore_unicode_prefix def soundex(col): """ Returns the SoundEx encoding for a string >>> df = spark.createDataFrame([("Peters",),("Uhrbach",)], ['name']) >>> df.select(soundex(df.name).alias("soundex")).collect() [Row(soundex=u'P362'), Row(soundex=u'U612')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.soundex(_to_java_column(col))) @ignore_unicode_prefix @since(1.5) def bin(col): """Returns the string representation of the binary value of the given column. >>> df.select(bin(df.age).alias('c')).collect() [Row(c=u'10'), Row(c=u'101')] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.bin(_to_java_column(col)) return Column(jc) @ignore_unicode_prefix @since(1.5) def hex(col): """Computes hex value of the given column, which could be :class:`pyspark.sql.types.StringType`, :class:`pyspark.sql.types.BinaryType`, :class:`pyspark.sql.types.IntegerType` or :class:`pyspark.sql.types.LongType`. >>> spark.createDataFrame([('ABC', 3)], ['a', 'b']).select(hex('a'), hex('b')).collect() [Row(hex(a)=u'414243', hex(b)=u'3')] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.hex(_to_java_column(col)) return Column(jc) @ignore_unicode_prefix @since(1.5) def unhex(col): """Inverse of hex. Interprets each pair of characters as a hexadecimal number and converts to the byte representation of number. >>> spark.createDataFrame([('414243',)], ['a']).select(unhex('a')).collect() [Row(unhex(a)=bytearray(b'ABC'))] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.unhex(_to_java_column(col))) @ignore_unicode_prefix @since(1.5) def length(col): """Computes the character length of string data or number of bytes of binary data. The length of character data includes the trailing spaces. The length of binary data includes binary zeros. >>> spark.createDataFrame([('ABC ',)], ['a']).select(length('a').alias('length')).collect() [Row(length=4)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.length(_to_java_column(col))) @ignore_unicode_prefix @since(1.5) def translate(srcCol, matching, replace): """A function translate any character in the `srcCol` by a character in `matching`. The characters in `replace` is corresponding to the characters in `matching`. The translate will happen when any character in the string matching with the character in the `matching`. >>> spark.createDataFrame([('translate',)], ['a']).select(translate('a', "rnlt", "123") \\ ... .alias('r')).collect() [Row(r=u'1a2s3ae')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.translate(_to_java_column(srcCol), matching, replace)) # ---------------------- Collection functions ------------------------------ @ignore_unicode_prefix @since(2.0) def create_map(*cols): """Creates a new map column. :param cols: list of column names (string) or list of :class:`Column` expressions that are grouped as key-value pairs, e.g. (key1, value1, key2, value2, ...). >>> df.select(create_map('name', 'age').alias("map")).collect() [Row(map={u'Alice': 2}), Row(map={u'Bob': 5})] >>> df.select(create_map([df.name, df.age]).alias("map")).collect() [Row(map={u'Alice': 2}), Row(map={u'Bob': 5})] """ sc = SparkContext._active_spark_context if len(cols) == 1 and isinstance(cols[0], (list, set)): cols = cols[0] jc = sc._jvm.functions.map(_to_seq(sc, cols, _to_java_column)) return Column(jc) @since(2.4) def map_from_arrays(col1, col2): """Creates a new map from two arrays. :param col1: name of column containing a set of keys. All elements should not be null :param col2: name of column containing a set of values >>> df = spark.createDataFrame([([2, 5], ['a', 'b'])], ['k', 'v']) >>> df.select(map_from_arrays(df.k, df.v).alias("map")).show() +----------------+ | map| +----------------+ |[2 -> a, 5 -> b]| +----------------+ """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.map_from_arrays(_to_java_column(col1), _to_java_column(col2))) @since(1.4) def array(*cols): """Creates a new array column. :param cols: list of column names (string) or list of :class:`Column` expressions that have the same data type. >>> df.select(array('age', 'age').alias("arr")).collect() [Row(arr=[2, 2]), Row(arr=[5, 5])] >>> df.select(array([df.age, df.age]).alias("arr")).collect() [Row(arr=[2, 2]), Row(arr=[5, 5])] """ sc = SparkContext._active_spark_context if len(cols) == 1 and isinstance(cols[0], (list, set)): cols = cols[0] jc = sc._jvm.functions.array(_to_seq(sc, cols, _to_java_column)) return Column(jc) @since(1.5) def array_contains(col, value): """ Collection function: returns null if the array is null, true if the array contains the given value, and false otherwise. :param col: name of column containing array :param value: value to check for in array >>> df = spark.createDataFrame([(["a", "b", "c"],), ([],)], ['data']) >>> df.select(array_contains(df.data, "a")).collect() [Row(array_contains(data, a)=True), Row(array_contains(data, a)=False)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.array_contains(_to_java_column(col), value)) @since(2.4) def arrays_overlap(a1, a2): """ Collection function: returns true if the arrays contain any common non-null element; if not, returns null if both the arrays are non-empty and any of them contains a null element; returns false otherwise. >>> df = spark.createDataFrame([(["a", "b"], ["b", "c"]), (["a"], ["b", "c"])], ['x', 'y']) >>> df.select(arrays_overlap(df.x, df.y).alias("overlap")).collect() [Row(overlap=True), Row(overlap=False)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.arrays_overlap(_to_java_column(a1), _to_java_column(a2))) @since(2.4) def slice(x, start, length): """ Collection function: returns an array containing all the elements in `x` from index `start` (or starting from the end if `start` is negative) with the specified `length`. >>> df = spark.createDataFrame([([1, 2, 3],), ([4, 5],)], ['x']) >>> df.select(slice(df.x, 2, 2).alias("sliced")).collect() [Row(sliced=[2, 3]), Row(sliced=[5])] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.slice(_to_java_column(x), start, length)) @ignore_unicode_prefix @since(2.4) def array_join(col, delimiter, null_replacement=None): """ Concatenates the elements of `column` using the `delimiter`. Null values are replaced with `null_replacement` if set, otherwise they are ignored. >>> df = spark.createDataFrame([(["a", "b", "c"],), (["a", None],)], ['data']) >>> df.select(array_join(df.data, ",").alias("joined")).collect() [Row(joined=u'a,b,c'), Row(joined=u'a')] >>> df.select(array_join(df.data, ",", "NULL").alias("joined")).collect() [Row(joined=u'a,b,c'), Row(joined=u'a,NULL')] """ sc = SparkContext._active_spark_context if null_replacement is None: return Column(sc._jvm.functions.array_join(_to_java_column(col), delimiter)) else: return Column(sc._jvm.functions.array_join( _to_java_column(col), delimiter, null_replacement)) @since(1.5) @ignore_unicode_prefix def concat(*cols): """ Concatenates multiple input columns together into a single column. The function works with strings, binary and compatible array columns. >>> df = spark.createDataFrame([('abcd','123')], ['s', 'd']) >>> df.select(concat(df.s, df.d).alias('s')).collect() [Row(s=u'abcd123')] >>> df = spark.createDataFrame([([1, 2], [3, 4], [5]), ([1, 2], None, [3])], ['a', 'b', 'c']) >>> df.select(concat(df.a, df.b, df.c).alias("arr")).collect() [Row(arr=[1, 2, 3, 4, 5]), Row(arr=None)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.concat(_to_seq(sc, cols, _to_java_column))) @since(2.4) def array_position(col, value): """ Collection function: Locates the position of the first occurrence of the given value in the given array. Returns null if either of the arguments are null. .. note:: The position is not zero based, but 1 based index. Returns 0 if the given value could not be found in the array. >>> df = spark.createDataFrame([(["c", "b", "a"],), ([],)], ['data']) >>> df.select(array_position(df.data, "a")).collect() [Row(array_position(data, a)=3), Row(array_position(data, a)=0)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.array_position(_to_java_column(col), value)) @ignore_unicode_prefix @since(2.4) def element_at(col, extraction): """ Collection function: Returns element of array at given index in extraction if col is array. Returns value for the given key in extraction if col is map. :param col: name of column containing array or map :param extraction: index to check for in array or key to check for in map .. note:: The position is not zero based, but 1 based index. >>> df = spark.createDataFrame([(["a", "b", "c"],), ([],)], ['data']) >>> df.select(element_at(df.data, 1)).collect() [Row(element_at(data, 1)=u'a'), Row(element_at(data, 1)=None)] >>> df = spark.createDataFrame([({"a": 1.0, "b": 2.0},), ({},)], ['data']) >>> df.select(element_at(df.data, "a")).collect() [Row(element_at(data, a)=1.0), Row(element_at(data, a)=None)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.element_at(_to_java_column(col), extraction)) @since(2.4) def array_remove(col, element): """ Collection function: Remove all elements that equal to element from the given array. :param col: name of column containing array :param element: element to be removed from the array >>> df = spark.createDataFrame([([1, 2, 3, 1, 1],), ([],)], ['data']) >>> df.select(array_remove(df.data, 1)).collect() [Row(array_remove(data, 1)=[2, 3]), Row(array_remove(data, 1)=[])] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.array_remove(_to_java_column(col), element)) @since(2.4) def array_distinct(col): """ Collection function: removes duplicate values from the array. :param col: name of column or expression >>> df = spark.createDataFrame([([1, 2, 3, 2],), ([4, 5, 5, 4],)], ['data']) >>> df.select(array_distinct(df.data)).collect() [Row(array_distinct(data)=[1, 2, 3]), Row(array_distinct(data)=[4, 5])] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.array_distinct(_to_java_column(col))) @ignore_unicode_prefix @since(2.4) def array_intersect(col1, col2): """ Collection function: returns an array of the elements in the intersection of col1 and col2, without duplicates. :param col1: name of column containing array :param col2: name of column containing array >>> from pyspark.sql import Row >>> df = spark.createDataFrame([Row(c1=["b", "a", "c"], c2=["c", "d", "a", "f"])]) >>> df.select(array_intersect(df.c1, df.c2)).collect() [Row(array_intersect(c1, c2)=[u'a', u'c'])] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.array_intersect(_to_java_column(col1), _to_java_column(col2))) @ignore_unicode_prefix @since(2.4) def array_union(col1, col2): """ Collection function: returns an array of the elements in the union of col1 and col2, without duplicates. :param col1: name of column containing array :param col2: name of column containing array >>> from pyspark.sql import Row >>> df = spark.createDataFrame([Row(c1=["b", "a", "c"], c2=["c", "d", "a", "f"])]) >>> df.select(array_union(df.c1, df.c2)).collect() [Row(array_union(c1, c2)=[u'b', u'a', u'c', u'd', u'f'])] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.array_union(_to_java_column(col1), _to_java_column(col2))) @ignore_unicode_prefix @since(2.4) def array_except(col1, col2): """ Collection function: returns an array of the elements in col1 but not in col2, without duplicates. :param col1: name of column containing array :param col2: name of column containing array >>> from pyspark.sql import Row >>> df = spark.createDataFrame([Row(c1=["b", "a", "c"], c2=["c", "d", "a", "f"])]) >>> df.select(array_except(df.c1, df.c2)).collect() [Row(array_except(c1, c2)=[u'b'])] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.array_except(_to_java_column(col1), _to_java_column(col2))) @since(1.4) def explode(col): """Returns a new row for each element in the given array or map. >>> from pyspark.sql import Row >>> eDF = spark.createDataFrame([Row(a=1, intlist=[1,2,3], mapfield={"a": "b"})]) >>> eDF.select(explode(eDF.intlist).alias("anInt")).collect() [Row(anInt=1), Row(anInt=2), Row(anInt=3)] >>> eDF.select(explode(eDF.mapfield).alias("key", "value")).show() +---+-----+ |key|value| +---+-----+ | a| b| +---+-----+ """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.explode(_to_java_column(col)) return Column(jc) @since(2.1) def posexplode(col): """Returns a new row for each element with position in the given array or map. >>> from pyspark.sql import Row >>> eDF = spark.createDataFrame([Row(a=1, intlist=[1,2,3], mapfield={"a": "b"})]) >>> eDF.select(posexplode(eDF.intlist)).collect() [Row(pos=0, col=1), Row(pos=1, col=2), Row(pos=2, col=3)] >>> eDF.select(posexplode(eDF.mapfield)).show() +---+---+-----+ |pos|key|value| +---+---+-----+ | 0| a| b| +---+---+-----+ """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.posexplode(_to_java_column(col)) return Column(jc) @since(2.3) def explode_outer(col): """Returns a new row for each element in the given array or map. Unlike explode, if the array/map is null or empty then null is produced. >>> df = spark.createDataFrame( ... [(1, ["foo", "bar"], {"x": 1.0}), (2, [], {}), (3, None, None)], ... ("id", "an_array", "a_map") ... ) >>> df.select("id", "an_array", explode_outer("a_map")).show() +---+----------+----+-----+ | id| an_array| key|value| +---+----------+----+-----+ | 1|[foo, bar]| x| 1.0| | 2| []|null| null| | 3| null|null| null| +---+----------+----+-----+ >>> df.select("id", "a_map", explode_outer("an_array")).show() +---+----------+----+ | id| a_map| col| +---+----------+----+ | 1|[x -> 1.0]| foo| | 1|[x -> 1.0]| bar| | 2| []|null| | 3| null|null| +---+----------+----+ """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.explode_outer(_to_java_column(col)) return Column(jc) @since(2.3) def posexplode_outer(col): """Returns a new row for each element with position in the given array or map. Unlike posexplode, if the array/map is null or empty then the row (null, null) is produced. >>> df = spark.createDataFrame( ... [(1, ["foo", "bar"], {"x": 1.0}), (2, [], {}), (3, None, None)], ... ("id", "an_array", "a_map") ... ) >>> df.select("id", "an_array", posexplode_outer("a_map")).show() +---+----------+----+----+-----+ | id| an_array| pos| key|value| +---+----------+----+----+-----+ | 1|[foo, bar]| 0| x| 1.0| | 2| []|null|null| null| | 3| null|null|null| null| +---+----------+----+----+-----+ >>> df.select("id", "a_map", posexplode_outer("an_array")).show() +---+----------+----+----+ | id| a_map| pos| col| +---+----------+----+----+ | 1|[x -> 1.0]| 0| foo| | 1|[x -> 1.0]| 1| bar| | 2| []|null|null| | 3| null|null|null| +---+----------+----+----+ """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.posexplode_outer(_to_java_column(col)) return Column(jc) @ignore_unicode_prefix @since(1.6) def get_json_object(col, path): """ Extracts json object from a json string based on json path specified, and returns json string of the extracted json object. It will return null if the input json string is invalid. :param col: string column in json format :param path: path to the json object to extract >>> data = [("1", '''{"f1": "value1", "f2": "value2"}'''), ("2", '''{"f1": "value12"}''')] >>> df = spark.createDataFrame(data, ("key", "jstring")) >>> df.select(df.key, get_json_object(df.jstring, '$.f1').alias("c0"), \\ ... get_json_object(df.jstring, '$.f2').alias("c1") ).collect() [Row(key=u'1', c0=u'value1', c1=u'value2'), Row(key=u'2', c0=u'value12', c1=None)] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.get_json_object(_to_java_column(col), path) return Column(jc) @ignore_unicode_prefix @since(1.6) def json_tuple(col, *fields): """Creates a new row for a json column according to the given field names. :param col: string column in json format :param fields: list of fields to extract >>> data = [("1", '''{"f1": "value1", "f2": "value2"}'''), ("2", '''{"f1": "value12"}''')] >>> df = spark.createDataFrame(data, ("key", "jstring")) >>> df.select(df.key, json_tuple(df.jstring, 'f1', 'f2')).collect() [Row(key=u'1', c0=u'value1', c1=u'value2'), Row(key=u'2', c0=u'value12', c1=None)] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.json_tuple(_to_java_column(col), _to_seq(sc, fields)) return Column(jc) @ignore_unicode_prefix @since(2.1) def from_json(col, schema, options={}): """ Parses a column containing a JSON string into a :class:`MapType` with :class:`StringType` as keys type, :class:`StructType` or :class:`ArrayType` with the specified schema. Returns `null`, in the case of an unparseable string. :param col: string column in json format :param schema: a StructType or ArrayType of StructType to use when parsing the json column. :param options: options to control parsing. accepts the same options as the json datasource .. note:: Since Spark 2.3, the DDL-formatted string or a JSON format string is also supported for ``schema``. >>> from pyspark.sql.types import * >>> data = [(1, '''{"a": 1}''')] >>> schema = StructType([StructField("a", IntegerType())]) >>> df = spark.createDataFrame(data, ("key", "value")) >>> df.select(from_json(df.value, schema).alias("json")).collect() [Row(json=Row(a=1))] >>> df.select(from_json(df.value, "a INT").alias("json")).collect() [Row(json=Row(a=1))] >>> df.select(from_json(df.value, "MAP<STRING,INT>").alias("json")).collect() [Row(json={u'a': 1})] >>> data = [(1, '''[{"a": 1}]''')] >>> schema = ArrayType(StructType([StructField("a", IntegerType())])) >>> df = spark.createDataFrame(data, ("key", "value")) >>> df.select(from_json(df.value, schema).alias("json")).collect() [Row(json=[Row(a=1)])] >>> schema = schema_of_json(lit('''{"a": 0}''')) >>> df.select(from_json(df.value, schema).alias("json")).collect() [Row(json=Row(a=None))] >>> data = [(1, '''[1, 2, 3]''')] >>> schema = ArrayType(IntegerType()) >>> df = spark.createDataFrame(data, ("key", "value")) >>> df.select(from_json(df.value, schema).alias("json")).collect() [Row(json=[1, 2, 3])] """ sc = SparkContext._active_spark_context if isinstance(schema, DataType): schema = schema.json() elif isinstance(schema, Column): schema = _to_java_column(schema) jc = sc._jvm.functions.from_json(_to_java_column(col), schema, options) return Column(jc) @ignore_unicode_prefix @since(2.1) def to_json(col, options={}): """ Converts a column containing a :class:`StructType`, :class:`ArrayType` or a :class:`MapType` into a JSON string. Throws an exception, in the case of an unsupported type. :param col: name of column containing a struct, an array or a map. :param options: options to control converting. accepts the same options as the JSON datasource. Additionally the function supports the `pretty` option which enables pretty JSON generation. >>> from pyspark.sql import Row >>> from pyspark.sql.types import * >>> data = [(1, Row(name='Alice', age=2))] >>> df = spark.createDataFrame(data, ("key", "value")) >>> df.select(to_json(df.value).alias("json")).collect() [Row(json=u'{"age":2,"name":"Alice"}')] >>> data = [(1, [Row(name='Alice', age=2), Row(name='Bob', age=3)])] >>> df = spark.createDataFrame(data, ("key", "value")) >>> df.select(to_json(df.value).alias("json")).collect() [Row(json=u'[{"age":2,"name":"Alice"},{"age":3,"name":"Bob"}]')] >>> data = [(1, {"name": "Alice"})] >>> df = spark.createDataFrame(data, ("key", "value")) >>> df.select(to_json(df.value).alias("json")).collect() [Row(json=u'{"name":"Alice"}')] >>> data = [(1, [{"name": "Alice"}, {"name": "Bob"}])] >>> df = spark.createDataFrame(data, ("key", "value")) >>> df.select(to_json(df.value).alias("json")).collect() [Row(json=u'[{"name":"Alice"},{"name":"Bob"}]')] >>> data = [(1, ["Alice", "Bob"])] >>> df = spark.createDataFrame(data, ("key", "value")) >>> df.select(to_json(df.value).alias("json")).collect() [Row(json=u'["Alice","Bob"]')] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.to_json(_to_java_column(col), options) return Column(jc) @ignore_unicode_prefix @since(2.4) def schema_of_json(json, options={}): """ Parses a JSON string and infers its schema in DDL format. :param json: a JSON string or a string literal containing a JSON string. :param options: options to control parsing. accepts the same options as the JSON datasource .. versionchanged:: 3.0 It accepts `options` parameter to control schema inferring. >>> df = spark.range(1) >>> df.select(schema_of_json(lit('{"a": 0}')).alias("json")).collect() [Row(json=u'struct<a:bigint>')] >>> schema = schema_of_json('{a: 1}', {'allowUnquotedFieldNames':'true'}) >>> df.select(schema.alias("json")).collect() [Row(json=u'struct<a:bigint>')] """ if isinstance(json, basestring): col = _create_column_from_literal(json) elif isinstance(json, Column): col = _to_java_column(json) else: raise TypeError("schema argument should be a column or string") sc = SparkContext._active_spark_context jc = sc._jvm.functions.schema_of_json(col, options) return Column(jc) @ignore_unicode_prefix @since(3.0) def schema_of_csv(csv, options={}): """ Parses a CSV string and infers its schema in DDL format. :param col: a CSV string or a string literal containing a CSV string. :param options: options to control parsing. accepts the same options as the CSV datasource >>> df = spark.range(1) >>> df.select(schema_of_csv(lit('1|a'), {'sep':'|'}).alias("csv")).collect() [Row(csv=u'struct<_c0:int,_c1:string>')] >>> df.select(schema_of_csv('1|a', {'sep':'|'}).alias("csv")).collect() [Row(csv=u'struct<_c0:int,_c1:string>')] """ if isinstance(csv, basestring): col = _create_column_from_literal(csv) elif isinstance(csv, Column): col = _to_java_column(csv) else: raise TypeError("schema argument should be a column or string") sc = SparkContext._active_spark_context jc = sc._jvm.functions.schema_of_csv(col, options) return Column(jc) @ignore_unicode_prefix @since(3.0) def to_csv(col, options={}): """ Converts a column containing a :class:`StructType` into a CSV string. Throws an exception, in the case of an unsupported type. :param col: name of column containing a struct. :param options: options to control converting. accepts the same options as the CSV datasource. >>> from pyspark.sql import Row >>> data = [(1, Row(name='Alice', age=2))] >>> df = spark.createDataFrame(data, ("key", "value")) >>> df.select(to_csv(df.value).alias("csv")).collect() [Row(csv=u'2,Alice')] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.to_csv(_to_java_column(col), options) return Column(jc) @since(1.5) def size(col): """ Collection function: returns the length of the array or map stored in the column. :param col: name of column or expression >>> df = spark.createDataFrame([([1, 2, 3],),([1],),([],)], ['data']) >>> df.select(size(df.data)).collect() [Row(size(data)=3), Row(size(data)=1), Row(size(data)=0)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.size(_to_java_column(col))) @since(2.4) def array_min(col): """ Collection function: returns the minimum value of the array. :param col: name of column or expression >>> df = spark.createDataFrame([([2, 1, 3],), ([None, 10, -1],)], ['data']) >>> df.select(array_min(df.data).alias('min')).collect() [Row(min=1), Row(min=-1)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.array_min(_to_java_column(col))) @since(2.4) def array_max(col): """ Collection function: returns the maximum value of the array. :param col: name of column or expression >>> df = spark.createDataFrame([([2, 1, 3],), ([None, 10, -1],)], ['data']) >>> df.select(array_max(df.data).alias('max')).collect() [Row(max=3), Row(max=10)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.array_max(_to_java_column(col))) @since(1.5) def sort_array(col, asc=True): """ Collection function: sorts the input array in ascending or descending order according to the natural ordering of the array elements. Null elements will be placed at the beginning of the returned array in ascending order or at the end of the returned array in descending order. :param col: name of column or expression >>> df = spark.createDataFrame([([2, 1, None, 3],),([1],),([],)], ['data']) >>> df.select(sort_array(df.data).alias('r')).collect() [Row(r=[None, 1, 2, 3]), Row(r=[1]), Row(r=[])] >>> df.select(sort_array(df.data, asc=False).alias('r')).collect() [Row(r=[3, 2, 1, None]), Row(r=[1]), Row(r=[])] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.sort_array(_to_java_column(col), asc)) @since(2.4) def array_sort(col): """ Collection function: sorts the input array in ascending order. The elements of the input array must be orderable. Null elements will be placed at the end of the returned array. :param col: name of column or expression >>> df = spark.createDataFrame([([2, 1, None, 3],),([1],),([],)], ['data']) >>> df.select(array_sort(df.data).alias('r')).collect() [Row(r=[1, 2, 3, None]), Row(r=[1]), Row(r=[])] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.array_sort(_to_java_column(col))) @since(2.4) def shuffle(col): """ Collection function: Generates a random permutation of the given array. .. note:: The function is non-deterministic. :param col: name of column or expression >>> df = spark.createDataFrame([([1, 20, 3, 5],), ([1, 20, None, 3],)], ['data']) >>> df.select(shuffle(df.data).alias('s')).collect() # doctest: +SKIP [Row(s=[3, 1, 5, 20]), Row(s=[20, None, 3, 1])] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.shuffle(_to_java_column(col))) @since(1.5) @ignore_unicode_prefix def reverse(col): """ Collection function: returns a reversed string or an array with reverse order of elements. :param col: name of column or expression >>> df = spark.createDataFrame([('Spark SQL',)], ['data']) >>> df.select(reverse(df.data).alias('s')).collect() [Row(s=u'LQS krapS')] >>> df = spark.createDataFrame([([2, 1, 3],) ,([1],) ,([],)], ['data']) >>> df.select(reverse(df.data).alias('r')).collect() [Row(r=[3, 1, 2]), Row(r=[1]), Row(r=[])] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.reverse(_to_java_column(col))) @since(2.4) def flatten(col): """ Collection function: creates a single array from an array of arrays. If a structure of nested arrays is deeper than two levels, only one level of nesting is removed. :param col: name of column or expression >>> df = spark.createDataFrame([([[1, 2, 3], [4, 5], [6]],), ([None, [4, 5]],)], ['data']) >>> df.select(flatten(df.data).alias('r')).collect() [Row(r=[1, 2, 3, 4, 5, 6]), Row(r=None)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.flatten(_to_java_column(col))) @since(2.3) def map_keys(col): """ Collection function: Returns an unordered array containing the keys of the map. :param col: name of column or expression >>> from pyspark.sql.functions import map_keys >>> df = spark.sql("SELECT map(1, 'a', 2, 'b') as data") >>> df.select(map_keys("data").alias("keys")).show() +------+ | keys| +------+ |[1, 2]| +------+ """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.map_keys(_to_java_column(col))) @since(2.3) def map_values(col): """ Collection function: Returns an unordered array containing the values of the map. :param col: name of column or expression >>> from pyspark.sql.functions import map_values >>> df = spark.sql("SELECT map(1, 'a', 2, 'b') as data") >>> df.select(map_values("data").alias("values")).show() +------+ |values| +------+ |[a, b]| +------+ """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.map_values(_to_java_column(col))) @since(3.0) def map_entries(col): """ Collection function: Returns an unordered array of all entries in the given map. :param col: name of column or expression >>> from pyspark.sql.functions import map_entries >>> df = spark.sql("SELECT map(1, 'a', 2, 'b') as data") >>> df.select(map_entries("data").alias("entries")).show() +----------------+ | entries| +----------------+ |[[1, a], [2, b]]| +----------------+ """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.map_entries(_to_java_column(col))) @since(2.4) def map_from_entries(col): """ Collection function: Returns a map created from the given array of entries. :param col: name of column or expression >>> from pyspark.sql.functions import map_from_entries >>> df = spark.sql("SELECT array(struct(1, 'a'), struct(2, 'b')) as data") >>> df.select(map_from_entries("data").alias("map")).show() +----------------+ | map| +----------------+ |[1 -> a, 2 -> b]| +----------------+ """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.map_from_entries(_to_java_column(col))) @ignore_unicode_prefix @since(2.4) def array_repeat(col, count): """ Collection function: creates an array containing a column repeated count times. >>> df = spark.createDataFrame([('ab',)], ['data']) >>> df.select(array_repeat(df.data, 3).alias('r')).collect() [Row(r=[u'ab', u'ab', u'ab'])] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.array_repeat(_to_java_column(col), count)) @since(2.4) def arrays_zip(*cols): """ Collection function: Returns a merged array of structs in which the N-th struct contains all N-th values of input arrays. :param cols: columns of arrays to be merged. >>> from pyspark.sql.functions import arrays_zip >>> df = spark.createDataFrame([(([1, 2, 3], [2, 3, 4]))], ['vals1', 'vals2']) >>> df.select(arrays_zip(df.vals1, df.vals2).alias('zipped')).collect() [Row(zipped=[Row(vals1=1, vals2=2), Row(vals1=2, vals2=3), Row(vals1=3, vals2=4)])] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.arrays_zip(_to_seq(sc, cols, _to_java_column))) @since(2.4) def map_concat(*cols): """Returns the union of all the given maps. :param cols: list of column names (string) or list of :class:`Column` expressions >>> from pyspark.sql.functions import map_concat >>> df = spark.sql("SELECT map(1, 'a', 2, 'b') as map1, map(3, 'c', 1, 'd') as map2") >>> df.select(map_concat("map1", "map2").alias("map3")).show(truncate=False) +------------------------+ |map3 | +------------------------+ |[1 -> d, 2 -> b, 3 -> c]| +------------------------+ """ sc = SparkContext._active_spark_context if len(cols) == 1 and isinstance(cols[0], (list, set)): cols = cols[0] jc = sc._jvm.functions.map_concat(_to_seq(sc, cols, _to_java_column)) return Column(jc) @since(2.4) def sequence(start, stop, step=None): """ Generate a sequence of integers from `start` to `stop`, incrementing by `step`. If `step` is not set, incrementing by 1 if `start` is less than or equal to `stop`, otherwise -1. >>> df1 = spark.createDataFrame([(-2, 2)], ('C1', 'C2')) >>> df1.select(sequence('C1', 'C2').alias('r')).collect() [Row(r=[-2, -1, 0, 1, 2])] >>> df2 = spark.createDataFrame([(4, -4, -2)], ('C1', 'C2', 'C3')) >>> df2.select(sequence('C1', 'C2', 'C3').alias('r')).collect() [Row(r=[4, 2, 0, -2, -4])] """ sc = SparkContext._active_spark_context if step is None: return Column(sc._jvm.functions.sequence(_to_java_column(start), _to_java_column(stop))) else: return Column(sc._jvm.functions.sequence( _to_java_column(start), _to_java_column(stop), _to_java_column(step))) @ignore_unicode_prefix @since(3.0) def from_csv(col, schema, options={}): """ Parses a column containing a CSV string to a row with the specified schema. Returns `null`, in the case of an unparseable string. :param col: string column in CSV format :param schema: a string with schema in DDL format to use when parsing the CSV column. :param options: options to control parsing. accepts the same options as the CSV datasource >>> data = [("1,2,3",)] >>> df = spark.createDataFrame(data, ("value",)) >>> df.select(from_csv(df.value, "a INT, b INT, c INT").alias("csv")).collect() [Row(csv=Row(a=1, b=2, c=3))] >>> value = data[0][0] >>> df.select(from_csv(df.value, schema_of_csv(value)).alias("csv")).collect() [Row(csv=Row(_c0=1, _c1=2, _c2=3))] """ sc = SparkContext._active_spark_context if isinstance(schema, basestring): schema = _create_column_from_literal(schema) elif isinstance(schema, Column): schema = _to_java_column(schema) else: raise TypeError("schema argument should be a column or string") jc = sc._jvm.functions.from_csv(_to_java_column(col), schema, options) return Column(jc) # ---------------------------- User Defined Function ---------------------------------- class PandasUDFType(object): """Pandas UDF Types. See :meth:`pyspark.sql.functions.pandas_udf`. """ SCALAR = PythonEvalType.SQL_SCALAR_PANDAS_UDF GROUPED_MAP = PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF GROUPED_AGG = PythonEvalType.SQL_GROUPED_AGG_PANDAS_UDF @since(1.3) def udf(f=None, returnType=StringType()): """Creates a user defined function (UDF). .. note:: The user-defined functions are considered deterministic by default. Due to optimization, duplicate invocations may be eliminated or the function may even be invoked more times than it is present in the query. If your function is not deterministic, call `asNondeterministic` on the user defined function. E.g.: >>> from pyspark.sql.types import IntegerType >>> import random >>> random_udf = udf(lambda: int(random.random() * 100), IntegerType()).asNondeterministic() .. note:: The user-defined functions do not support conditional expressions or short circuiting in boolean expressions and it ends up with being executed all internally. If the functions can fail on special rows, the workaround is to incorporate the condition into the functions. .. note:: The user-defined functions do not take keyword arguments on the calling side. :param f: python function if used as a standalone function :param returnType: the return type of the user-defined function. The value can be either a :class:`pyspark.sql.types.DataType` object or a DDL-formatted type string. >>> from pyspark.sql.types import IntegerType >>> slen = udf(lambda s: len(s), IntegerType()) >>> @udf ... def to_upper(s): ... if s is not None: ... return s.upper() ... >>> @udf(returnType=IntegerType()) ... def add_one(x): ... if x is not None: ... return x + 1 ... >>> df = spark.createDataFrame([(1, "John Doe", 21)], ("id", "name", "age")) >>> df.select(slen("name").alias("slen(name)"), to_upper("name"), add_one("age")).show() +----------+--------------+------------+ |slen(name)|to_upper(name)|add_one(age)| +----------+--------------+------------+ | 8| JOHN DOE| 22| +----------+--------------+------------+ """ # The following table shows most of Python data and SQL type conversions in normal UDFs that # are not yet visible to the user. Some of behaviors are buggy and might be changed in the near # future. The table might have to be eventually documented externally. # Please see SPARK-25666's PR to see the codes in order to generate the table below. # # +-----------------------------+--------------+----------+------+-------+---------------+---------------+--------------------+-----------------------------+----------+----------------------+---------+--------------------+-----------------+------------+--------------+------------------+----------------------+ # noqa # |SQL Type \ Python Value(Type)|None(NoneType)|True(bool)|1(int)|1(long)| a(str)| a(unicode)| 1970-01-01(date)|1970-01-01 00:00:00(datetime)|1.0(float)|array('i', [1])(array)|[1](list)| (1,)(tuple)| ABC(bytearray)| 1(Decimal)|{'a': 1}(dict)|Row(kwargs=1)(Row)|Row(namedtuple=1)(Row)| # noqa # +-----------------------------+--------------+----------+------+-------+---------------+---------------+--------------------+-----------------------------+----------+----------------------+---------+--------------------+-----------------+------------+--------------+------------------+----------------------+ # noqa # | boolean| None| True| None| None| None| None| None| None| None| None| None| None| None| None| None| X| X| # noqa # | tinyint| None| None| 1| 1| None| None| None| None| None| None| None| None| None| None| None| X| X| # noqa # | smallint| None| None| 1| 1| None| None| None| None| None| None| None| None| None| None| None| X| X| # noqa # | int| None| None| 1| 1| None| None| None| None| None| None| None| None| None| None| None| X| X| # noqa # | bigint| None| None| 1| 1| None| None| None| None| None| None| None| None| None| None| None| X| X| # noqa # | string| None| u'true'| u'1'| u'1'| u'a'| u'a'|u'java.util.Grego...| u'java.util.Grego...| u'1.0'| u'[I@24a83055'| u'[1]'|u'[Ljava.lang.Obj...| u'[B@49093632'| u'1'| u'{a=1}'| X| X| # noqa # | date| None| X| X| X| X| X|datetime.date(197...| datetime.date(197...| X| X| X| X| X| X| X| X| X| # noqa # | timestamp| None| X| X| X| X| X| X| datetime.datetime...| X| X| X| X| X| X| X| X| X| # noqa # | float| None| None| None| None| None| None| None| None| 1.0| None| None| None| None| None| None| X| X| # noqa # | double| None| None| None| None| None| None| None| None| 1.0| None| None| None| None| None| None| X| X| # noqa # | array<int>| None| None| None| None| None| None| None| None| None| [1]| [1]| [1]| [65, 66, 67]| None| None| X| X| # noqa # | binary| None| None| None| None|bytearray(b'a')|bytearray(b'a')| None| None| None| None| None| None|bytearray(b'ABC')| None| None| X| X| # noqa # | decimal(10,0)| None| None| None| None| None| None| None| None| None| None| None| None| None|Decimal('1')| None| X| X| # noqa # | map<string,int>| None| None| None| None| None| None| None| None| None| None| None| None| None| None| {u'a': 1}| X| X| # noqa # | struct<_1:int>| None| X| X| X| X| X| X| X| X| X|Row(_1=1)| Row(_1=1)| X| X| Row(_1=None)| Row(_1=1)| Row(_1=1)| # noqa # +-----------------------------+--------------+----------+------+-------+---------------+---------------+--------------------+-----------------------------+----------+----------------------+---------+--------------------+-----------------+------------+--------------+------------------+----------------------+ # noqa # # Note: DDL formatted string is used for 'SQL Type' for simplicity. This string can be # used in `returnType`. # Note: The values inside of the table are generated by `repr`. # Note: Python 2 is used to generate this table since it is used to check the backward # compatibility often in practice. # Note: 'X' means it throws an exception during the conversion. # decorator @udf, @udf(), @udf(dataType()) if f is None or isinstance(f, (str, DataType)): # If DataType has been passed as a positional argument # for decorator use it as a returnType return_type = f or returnType return functools.partial(_create_udf, returnType=return_type, evalType=PythonEvalType.SQL_BATCHED_UDF) else: return _create_udf(f=f, returnType=returnType, evalType=PythonEvalType.SQL_BATCHED_UDF) @since(2.3) def pandas_udf(f=None, returnType=None, functionType=None): """ Creates a vectorized user defined function (UDF). :param f: user-defined function. A python function if used as a standalone function :param returnType: the return type of the user-defined function. The value can be either a :class:`pyspark.sql.types.DataType` object or a DDL-formatted type string. :param functionType: an enum value in :class:`pyspark.sql.functions.PandasUDFType`. Default: SCALAR. .. note:: Experimental The function type of the UDF can be one of the following: 1. SCALAR A scalar UDF defines a transformation: One or more `pandas.Series` -> A `pandas.Series`. The length of the returned `pandas.Series` must be of the same as the input `pandas.Series`. :class:`MapType`, :class:`StructType` are currently not supported as output types. Scalar UDFs are used with :meth:`pyspark.sql.DataFrame.withColumn` and :meth:`pyspark.sql.DataFrame.select`. >>> from pyspark.sql.functions import pandas_udf, PandasUDFType >>> from pyspark.sql.types import IntegerType, StringType >>> slen = pandas_udf(lambda s: s.str.len(), IntegerType()) # doctest: +SKIP >>> @pandas_udf(StringType()) # doctest: +SKIP ... def to_upper(s): ... return s.str.upper() ... >>> @pandas_udf("integer", PandasUDFType.SCALAR) # doctest: +SKIP ... def add_one(x): ... return x + 1 ... >>> df = spark.createDataFrame([(1, "John Doe", 21)], ... ("id", "name", "age")) # doctest: +SKIP >>> df.select(slen("name").alias("slen(name)"), to_upper("name"), add_one("age")) \\ ... .show() # doctest: +SKIP +----------+--------------+------------+ |slen(name)|to_upper(name)|add_one(age)| +----------+--------------+------------+ | 8| JOHN DOE| 22| +----------+--------------+------------+ .. note:: The length of `pandas.Series` within a scalar UDF is not that of the whole input column, but is the length of an internal batch used for each call to the function. Therefore, this can be used, for example, to ensure the length of each returned `pandas.Series`, and can not be used as the column length. 2. GROUPED_MAP A grouped map UDF defines transformation: A `pandas.DataFrame` -> A `pandas.DataFrame` The returnType should be a :class:`StructType` describing the schema of the returned `pandas.DataFrame`. The column labels of the returned `pandas.DataFrame` must either match the field names in the defined returnType schema if specified as strings, or match the field data types by position if not strings, e.g. integer indices. The length of the returned `pandas.DataFrame` can be arbitrary. Grouped map UDFs are used with :meth:`pyspark.sql.GroupedData.apply`. >>> from pyspark.sql.functions import pandas_udf, PandasUDFType >>> df = spark.createDataFrame( ... [(1, 1.0), (1, 2.0), (2, 3.0), (2, 5.0), (2, 10.0)], ... ("id", "v")) # doctest: +SKIP >>> @pandas_udf("id long, v double", PandasUDFType.GROUPED_MAP) # doctest: +SKIP ... def normalize(pdf): ... v = pdf.v ... return pdf.assign(v=(v - v.mean()) / v.std()) >>> df.groupby("id").apply(normalize).show() # doctest: +SKIP +---+-------------------+ | id| v| +---+-------------------+ | 1|-0.7071067811865475| | 1| 0.7071067811865475| | 2|-0.8320502943378437| | 2|-0.2773500981126146| | 2| 1.1094003924504583| +---+-------------------+ Alternatively, the user can define a function that takes two arguments. In this case, the grouping key(s) will be passed as the first argument and the data will be passed as the second argument. The grouping key(s) will be passed as a tuple of numpy data types, e.g., `numpy.int32` and `numpy.float64`. The data will still be passed in as a `pandas.DataFrame` containing all columns from the original Spark DataFrame. This is useful when the user does not want to hardcode grouping key(s) in the function. >>> import pandas as pd # doctest: +SKIP >>> from pyspark.sql.functions import pandas_udf, PandasUDFType >>> df = spark.createDataFrame( ... [(1, 1.0), (1, 2.0), (2, 3.0), (2, 5.0), (2, 10.0)], ... ("id", "v")) # doctest: +SKIP >>> @pandas_udf("id long, v double", PandasUDFType.GROUPED_MAP) # doctest: +SKIP ... def mean_udf(key, pdf): ... # key is a tuple of one numpy.int64, which is the value ... # of 'id' for the current group ... return pd.DataFrame([key + (pdf.v.mean(),)]) >>> df.groupby('id').apply(mean_udf).show() # doctest: +SKIP +---+---+ | id| v| +---+---+ | 1|1.5| | 2|6.0| +---+---+ >>> @pandas_udf( ... "id long, `ceil(v / 2)` long, v double", ... PandasUDFType.GROUPED_MAP) # doctest: +SKIP >>> def sum_udf(key, pdf): ... # key is a tuple of two numpy.int64s, which is the values ... # of 'id' and 'ceil(df.v / 2)' for the current group ... return pd.DataFrame([key + (pdf.v.sum(),)]) >>> df.groupby(df.id, ceil(df.v / 2)).apply(sum_udf).show() # doctest: +SKIP +---+-----------+----+ | id|ceil(v / 2)| v| +---+-----------+----+ | 2| 5|10.0| | 1| 1| 3.0| | 2| 3| 5.0| | 2| 2| 3.0| +---+-----------+----+ .. note:: If returning a new `pandas.DataFrame` constructed with a dictionary, it is recommended to explicitly index the columns by name to ensure the positions are correct, or alternatively use an `OrderedDict`. For example, `pd.DataFrame({'id': ids, 'a': data}, columns=['id', 'a'])` or `pd.DataFrame(OrderedDict([('id', ids), ('a', data)]))`. .. seealso:: :meth:`pyspark.sql.GroupedData.apply` 3. GROUPED_AGG A grouped aggregate UDF defines a transformation: One or more `pandas.Series` -> A scalar The `returnType` should be a primitive data type, e.g., :class:`DoubleType`. The returned scalar can be either a python primitive type, e.g., `int` or `float` or a numpy data type, e.g., `numpy.int64` or `numpy.float64`. :class:`MapType` and :class:`StructType` are currently not supported as output types. Group aggregate UDFs are used with :meth:`pyspark.sql.GroupedData.agg` and :class:`pyspark.sql.Window` This example shows using grouped aggregated UDFs with groupby: >>> from pyspark.sql.functions import pandas_udf, PandasUDFType >>> df = spark.createDataFrame( ... [(1, 1.0), (1, 2.0), (2, 3.0), (2, 5.0), (2, 10.0)], ... ("id", "v")) >>> @pandas_udf("double", PandasUDFType.GROUPED_AGG) # doctest: +SKIP ... def mean_udf(v): ... return v.mean() >>> df.groupby("id").agg(mean_udf(df['v'])).show() # doctest: +SKIP +---+-----------+ | id|mean_udf(v)| +---+-----------+ | 1| 1.5| | 2| 6.0| +---+-----------+ This example shows using grouped aggregated UDFs as window functions. >>> from pyspark.sql.functions import pandas_udf, PandasUDFType >>> from pyspark.sql import Window >>> df = spark.createDataFrame( ... [(1, 1.0), (1, 2.0), (2, 3.0), (2, 5.0), (2, 10.0)], ... ("id", "v")) >>> @pandas_udf("double", PandasUDFType.GROUPED_AGG) # doctest: +SKIP ... def mean_udf(v): ... return v.mean() >>> w = (Window.partitionBy('id') ... .orderBy('v') ... .rowsBetween(-1, 0)) >>> df.withColumn('mean_v', mean_udf(df['v']).over(w)).show() # doctest: +SKIP +---+----+------+ | id| v|mean_v| +---+----+------+ | 1| 1.0| 1.0| | 1| 2.0| 1.5| | 2| 3.0| 3.0| | 2| 5.0| 4.0| | 2|10.0| 7.5| +---+----+------+ .. note:: For performance reasons, the input series to window functions are not copied. Therefore, mutating the input series is not allowed and will cause incorrect results. For the same reason, users should also not rely on the index of the input series. .. seealso:: :meth:`pyspark.sql.GroupedData.agg` and :class:`pyspark.sql.Window` .. note:: The user-defined functions are considered deterministic by default. Due to optimization, duplicate invocations may be eliminated or the function may even be invoked more times than it is present in the query. If your function is not deterministic, call `asNondeterministic` on the user defined function. E.g.: >>> @pandas_udf('double', PandasUDFType.SCALAR) # doctest: +SKIP ... def random(v): ... import numpy as np ... import pandas as pd ... return pd.Series(np.random.randn(len(v)) >>> random = random.asNondeterministic() # doctest: +SKIP .. note:: The user-defined functions do not support conditional expressions or short circuiting in boolean expressions and it ends up with being executed all internally. If the functions can fail on special rows, the workaround is to incorporate the condition into the functions. .. note:: The user-defined functions do not take keyword arguments on the calling side. .. note:: The data type of returned `pandas.Series` from the user-defined functions should be matched with defined returnType (see :meth:`types.to_arrow_type` and :meth:`types.from_arrow_type`). When there is mismatch between them, Spark might do conversion on returned data. The conversion is not guaranteed to be correct and results should be checked for accuracy by users. """ # The following table shows most of Pandas data and SQL type conversions in Pandas UDFs that # are not yet visible to the user. Some of behaviors are buggy and might be changed in the near # future. The table might have to be eventually documented externally. # Please see SPARK-25798's PR to see the codes in order to generate the table below. # # +-----------------------------+----------------------+----------+-------+--------+--------------------+--------------------+--------+---------+---------+---------+------------+------------+------------+-----------------------------------+-----------------------------------------------------+-----------------+--------------------+-----------------------------+-------------+-----------------+------------------+-----------+--------------------------------+ # noqa # |SQL Type \ Pandas Value(Type)|None(object(NoneType))|True(bool)|1(int8)|1(int16)| 1(int32)| 1(int64)|1(uint8)|1(uint16)|1(uint32)|1(uint64)|1.0(float16)|1.0(float32)|1.0(float64)|1970-01-01 00:00:00(datetime64[ns])|1970-01-01 00:00:00-05:00(datetime64[ns, US/Eastern])|a(object(string))| 1(object(Decimal))|[1 2 3](object(array[int32]))|1.0(float128)|(1+0j)(complex64)|(1+0j)(complex128)|A(category)|1 days 00:00:00(timedelta64[ns])| # noqa # +-----------------------------+----------------------+----------+-------+--------+--------------------+--------------------+--------+---------+---------+---------+------------+------------+------------+-----------------------------------+-----------------------------------------------------+-----------------+--------------------+-----------------------------+-------------+-----------------+------------------+-----------+--------------------------------+ # noqa # | boolean| None| True| True| True| True| True| True| True| True| True| False| False| False| False| False| X| X| X| False| False| False| X| False| # noqa # | tinyint| None| 1| 1| 1| 1| 1| X| X| X| X| 1| 1| 1| X| X| X| X| X| X| X| X| 0| X| # noqa # | smallint| None| 1| 1| 1| 1| 1| 1| X| X| X| 1| 1| 1| X| X| X| X| X| X| X| X| X| X| # noqa # | int| None| 1| 1| 1| 1| 1| 1| 1| X| X| 1| 1| 1| X| X| X| X| X| X| X| X| X| X| # noqa # | bigint| None| 1| 1| 1| 1| 1| 1| 1| 1| X| 1| 1| 1| 0| 18000000000000| X| X| X| X| X| X| X| X| # noqa # | float| None| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| X| X| X|1.401298464324817...| X| X| X| X| X| X| # noqa # | double| None| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| X| X| X| X| X| X| X| X| X| X| # noqa # | date| None| X| X| X|datetime.date(197...| X| X| X| X| X| X| X| X| datetime.date(197...| X| X| X| X| X| X| X| X| X| # noqa # | timestamp| None| X| X| X| X|datetime.datetime...| X| X| X| X| X| X| X| datetime.datetime...| datetime.datetime...| X| X| X| X| X| X| X| X| # noqa # | string| None| u''|u'\x01'| u'\x01'| u'\x01'| u'\x01'| u'\x01'| u'\x01'| u'\x01'| u'\x01'| u''| u''| u''| X| X| u'a'| X| X| u''| u''| u''| X| X| # noqa # | decimal(10,0)| None| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| Decimal('1')| X| X| X| X| X| X| # noqa # | array<int>| None| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| [1, 2, 3]| X| X| X| X| X| # noqa # | map<string,int>| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| # noqa # | struct<_1:int>| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| # noqa # | binary| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| # noqa # +-----------------------------+----------------------+----------+-------+--------+--------------------+--------------------+--------+---------+---------+---------+------------+------------+------------+-----------------------------------+-----------------------------------------------------+-----------------+--------------------+-----------------------------+-------------+-----------------+------------------+-----------+--------------------------------+ # noqa # # Note: DDL formatted string is used for 'SQL Type' for simplicity. This string can be # used in `returnType`. # Note: The values inside of the table are generated by `repr`. # Note: Python 2 is used to generate this table since it is used to check the backward # compatibility often in practice. # Note: Pandas 0.19.2 and PyArrow 0.9.0 are used. # Note: Timezone is Singapore timezone. # Note: 'X' means it throws an exception during the conversion. # Note: 'binary' type is only supported with PyArrow 0.10.0+ (SPARK-23555). # decorator @pandas_udf(returnType, functionType) is_decorator = f is None or isinstance(f, (str, DataType)) if is_decorator: # If DataType has been passed as a positional argument # for decorator use it as a returnType return_type = f or returnType if functionType is not None: # @pandas_udf(dataType, functionType=functionType) # @pandas_udf(returnType=dataType, functionType=functionType) eval_type = functionType elif returnType is not None and isinstance(returnType, int): # @pandas_udf(dataType, functionType) eval_type = returnType else: # @pandas_udf(dataType) or @pandas_udf(returnType=dataType) eval_type = PythonEvalType.SQL_SCALAR_PANDAS_UDF else: return_type = returnType if functionType is not None: eval_type = functionType else: eval_type = PythonEvalType.SQL_SCALAR_PANDAS_UDF if return_type is None: raise ValueError("Invalid returnType: returnType can not be None") if eval_type not in [PythonEvalType.SQL_SCALAR_PANDAS_UDF, PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF, PythonEvalType.SQL_GROUPED_AGG_PANDAS_UDF]: raise ValueError("Invalid functionType: " "functionType must be one the values from PandasUDFType") if is_decorator: return functools.partial(_create_udf, returnType=return_type, evalType=eval_type) else: return _create_udf(f=f, returnType=return_type, evalType=eval_type) blacklist = ['map', 'since', 'ignore_unicode_prefix'] __all__ = [k for k, v in globals().items() if not k.startswith('_') and k[0].islower() and callable(v) and k not in blacklist] __all__ += ["PandasUDFType"] __all__.sort() def _test(): import doctest from pyspark.sql import Row, SparkSession import pyspark.sql.functions globs = pyspark.sql.functions.__dict__.copy() spark = SparkSession.builder\ .master("local[4]")\ .appName("sql.functions tests")\ .getOrCreate() sc = spark.sparkContext globs['sc'] = sc globs['spark'] = spark globs['df'] = spark.createDataFrame([Row(name='Alice', age=2), Row(name='Bob', age=5)]) (failure_count, test_count) = doctest.testmod( pyspark.sql.functions, globs=globs, optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE) spark.stop() if failure_count: sys.exit(-1) if __name__ == "__main__": _test()
apache-2.0
jm-begon/scikit-learn
examples/linear_model/plot_bayesian_ridge.py
248
2588
""" ========================= Bayesian Ridge Regression ========================= Computes a Bayesian Ridge Regression on a synthetic dataset. See :ref:`bayesian_ridge_regression` for more information on the regressor. Compared to the OLS (ordinary least squares) estimator, the coefficient weights are slightly shifted toward zeros, which stabilises them. As the prior on the weights is a Gaussian prior, the histogram of the estimated weights is Gaussian. The estimation of the model is done by iteratively maximizing the marginal log-likelihood of the observations. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from scipy import stats from sklearn.linear_model import BayesianRidge, LinearRegression ############################################################################### # Generating simulated data with Gaussian weigthts np.random.seed(0) n_samples, n_features = 100, 100 X = np.random.randn(n_samples, n_features) # Create Gaussian data # Create weigts with a precision lambda_ of 4. lambda_ = 4. w = np.zeros(n_features) # Only keep 10 weights of interest relevant_features = np.random.randint(0, n_features, 10) for i in relevant_features: w[i] = stats.norm.rvs(loc=0, scale=1. / np.sqrt(lambda_)) # Create noise with a precision alpha of 50. alpha_ = 50. noise = stats.norm.rvs(loc=0, scale=1. / np.sqrt(alpha_), size=n_samples) # Create the target y = np.dot(X, w) + noise ############################################################################### # Fit the Bayesian Ridge Regression and an OLS for comparison clf = BayesianRidge(compute_score=True) clf.fit(X, y) ols = LinearRegression() ols.fit(X, y) ############################################################################### # Plot true weights, estimated weights and histogram of the weights plt.figure(figsize=(6, 5)) plt.title("Weights of the model") plt.plot(clf.coef_, 'b-', label="Bayesian Ridge estimate") plt.plot(w, 'g-', label="Ground truth") plt.plot(ols.coef_, 'r--', label="OLS estimate") plt.xlabel("Features") plt.ylabel("Values of the weights") plt.legend(loc="best", prop=dict(size=12)) plt.figure(figsize=(6, 5)) plt.title("Histogram of the weights") plt.hist(clf.coef_, bins=n_features, log=True) plt.plot(clf.coef_[relevant_features], 5 * np.ones(len(relevant_features)), 'ro', label="Relevant features") plt.ylabel("Features") plt.xlabel("Values of the weights") plt.legend(loc="lower left") plt.figure(figsize=(6, 5)) plt.title("Marginal log-likelihood") plt.plot(clf.scores_) plt.ylabel("Score") plt.xlabel("Iterations") plt.show()
bsd-3-clause
sergiohzlz/complejos
JdelC/jdelc.py
1
2211
#!/usr/bin/python import numpy as np import numpy.random as rnd import sys import matplotlib matplotlib.use('TkAgg') from matplotlib import pyplot as plt from numpy import pi poligono_p = lambda n,rot: [(1,i*2*np.pi/n+rot) for i in range(1,n+1)] pol2cart = lambda ro,te: (ro*np.cos(te),ro*np.sin(te)) poligono_c = lambda L: [pol2cart(x[0],x[1]) for x in L] genera_coords = lambda L,p: dict(zip(L,p)) pmedio = lambda x,y: (0.5*(x[0]+y[0]) , 0.5*(x[1]+y[1]) ) class JdelC(object): def __init__(self): pass def juego(n,m=100000, rot=pi/2): C = genera_coords(range(n), poligono_c(poligono_p(n,rot))) P = [C[rnd.choice(range(n))]] for i in range(m): up = P[-1] vz = C[rnd.choice(range(n))] P.append(pmedio(up,vz)) return np.array(P), C def juego_sec(V,S,m=100000,rot=pi/4): n = len(V) C = genera_coords(V, poligono_c(poligono_p(n,rot))) P = [C[S[0]]] cont = 0 for i in range(1,m): up = P[-1] vz = C[S[i]] P.append(pmedio(up,vz)) return np.array(P), C def secciones_nucleotidos(f,m): cont=0 for r in f: l = r.strip() if(l[0]=='>'): continue acum = m-cont sec = ''.join([ s for s in l[:acum] if s!='N' ]) cont+=len(sec) if(cont<=m): yield sec def secciones(f,m): cont=0 for r in f: l = r.strip() try: if(l[0]=='>'): continue except: continue acum = m-cont sec = ''.join([ s for s in l[:acum] ]) cont+=len(sec) if(cont<=m): yield sec def grafica(R): plt.scatter(R[:,0],R[:,1],s=0.1, c='k') def grafcoords(*D): R,C = D plt.scatter(R[:,0],R[:,1],s=0.1, c='k') for c in C: plt.annotate(c,C[c]) if __name__=='__main__': n = int(sys.argv[0]) # Ejemplo # In [150]: G = open('Saccharomyces_cerevisiae_aa.fasta','r') # # In [151]: secs = jdelc.secciones(G,1000) # # In [152]: secuencia = '' # # In [153]: for sec in secs: # ...: secuencia += sec # ...: # # In [154]: R,C = jdelc.juego_sec(aminos,secuencia, len(secuencia),pi/4); jdelc.grafcoords(R,C); show()
gpl-2.0
michaeljohnbennett/zipline
tests/modelling/test_numerical_expression.py
15
13165
from operator import ( and_, ge, gt, le, lt, methodcaller, ne, or_, ) from unittest import TestCase import numpy from numpy import ( arange, eye, full, isnan, zeros, ) from pandas import ( DataFrame, date_range, Int64Index, ) from zipline.modelling.expression import ( NumericalExpression, NUMEXPR_MATH_FUNCS, ) from zipline.modelling.factor import TestingFactor from zipline.utils.test_utils import check_arrays class F(TestingFactor): inputs = () window_length = 0 class G(TestingFactor): inputs = () window_length = 0 class H(TestingFactor): inputs = () window_length = 0 class NumericalExpressionTestCase(TestCase): def setUp(self): self.dates = date_range('2014-01-01', periods=5, freq='D') self.assets = Int64Index(range(5)) self.f = F() self.g = G() self.h = H() self.fake_raw_data = { self.f: full((5, 5), 3), self.g: full((5, 5), 2), self.h: full((5, 5), 1), } self.mask = DataFrame(True, index=self.dates, columns=self.assets) def check_output(self, expr, expected): result = expr.compute_from_arrays( [self.fake_raw_data[input_] for input_ in expr.inputs], self.mask, ) check_arrays(result, expected) def check_constant_output(self, expr, expected): self.assertFalse(isnan(expected)) return self.check_output(expr, full((5, 5), expected)) def test_validate_good(self): f = self.f g = self.g NumericalExpression("x_0", (f,)) NumericalExpression("x_0 ", (f,)) NumericalExpression("x_0 + x_0", (f,)) NumericalExpression("x_0 + 2", (f,)) NumericalExpression("2 * x_0", (f,)) NumericalExpression("x_0 + x_1", (f, g)) NumericalExpression("x_0 + x_1 + x_0", (f, g)) NumericalExpression("x_0 + 1 + x_1", (f, g)) def test_validate_bad(self): f, g, h = F(), G(), H() # Too few inputs. with self.assertRaises(ValueError): NumericalExpression("x_0", ()) with self.assertRaises(ValueError): NumericalExpression("x_0 + x_1", (f,)) # Too many inputs. with self.assertRaises(ValueError): NumericalExpression("x_0", (f, g)) with self.assertRaises(ValueError): NumericalExpression("x_0 + x_1", (f, g, h)) # Invalid variable name. with self.assertRaises(ValueError): NumericalExpression("x_0x_1", (f,)) with self.assertRaises(ValueError): NumericalExpression("x_0x_1", (f, g)) # Variable index must start at 0. with self.assertRaises(ValueError): NumericalExpression("x_1", (f,)) # Scalar operands must be numeric. with self.assertRaises(TypeError): "2" + f with self.assertRaises(TypeError): f + "2" with self.assertRaises(TypeError): f > "2" # Boolean binary operators must be between filters. with self.assertRaises(TypeError): f + (f > 2) with self.assertRaises(TypeError): (f > f) > f def test_negate(self): f, g = self.f, self.g self.check_constant_output(-f, -3.0) self.check_constant_output(--f, 3.0) self.check_constant_output(---f, -3.0) self.check_constant_output(-(f + f), -6.0) self.check_constant_output(-f + -f, -6.0) self.check_constant_output(-(-f + -f), 6.0) self.check_constant_output(f + -g, 1.0) self.check_constant_output(f - -g, 5.0) self.check_constant_output(-(f + g) + (f + g), 0.0) self.check_constant_output((f + g) + -(f + g), 0.0) self.check_constant_output(-(f + g) + -(f + g), -10.0) def test_add(self): f, g = self.f, self.g self.check_constant_output(f + g, 5.0) self.check_constant_output((1 + f) + g, 6.0) self.check_constant_output(1 + (f + g), 6.0) self.check_constant_output((f + 1) + g, 6.0) self.check_constant_output(f + (1 + g), 6.0) self.check_constant_output((f + g) + 1, 6.0) self.check_constant_output(f + (g + 1), 6.0) self.check_constant_output((f + f) + f, 9.0) self.check_constant_output(f + (f + f), 9.0) self.check_constant_output((f + g) + f, 8.0) self.check_constant_output(f + (g + f), 8.0) self.check_constant_output((f + g) + (f + g), 10.0) self.check_constant_output((f + g) + (g + f), 10.0) self.check_constant_output((g + f) + (f + g), 10.0) self.check_constant_output((g + f) + (g + f), 10.0) def test_subtract(self): f, g = self.f, self.g self.check_constant_output(f - g, 1.0) # 3 - 2 self.check_constant_output((1 - f) - g, -4.) # (1 - 3) - 2 self.check_constant_output(1 - (f - g), 0.0) # 1 - (3 - 2) self.check_constant_output((f - 1) - g, 0.0) # (3 - 1) - 2 self.check_constant_output(f - (1 - g), 4.0) # 3 - (1 - 2) self.check_constant_output((f - g) - 1, 0.0) # (3 - 2) - 1 self.check_constant_output(f - (g - 1), 2.0) # 3 - (2 - 1) self.check_constant_output((f - f) - f, -3.) # (3 - 3) - 3 self.check_constant_output(f - (f - f), 3.0) # 3 - (3 - 3) self.check_constant_output((f - g) - f, -2.) # (3 - 2) - 3 self.check_constant_output(f - (g - f), 4.0) # 3 - (2 - 3) self.check_constant_output((f - g) - (f - g), 0.0) # (3 - 2) - (3 - 2) self.check_constant_output((f - g) - (g - f), 2.0) # (3 - 2) - (2 - 3) self.check_constant_output((g - f) - (f - g), -2.) # (2 - 3) - (3 - 2) self.check_constant_output((g - f) - (g - f), 0.0) # (2 - 3) - (2 - 3) def test_multiply(self): f, g = self.f, self.g self.check_constant_output(f * g, 6.0) self.check_constant_output((2 * f) * g, 12.0) self.check_constant_output(2 * (f * g), 12.0) self.check_constant_output((f * 2) * g, 12.0) self.check_constant_output(f * (2 * g), 12.0) self.check_constant_output((f * g) * 2, 12.0) self.check_constant_output(f * (g * 2), 12.0) self.check_constant_output((f * f) * f, 27.0) self.check_constant_output(f * (f * f), 27.0) self.check_constant_output((f * g) * f, 18.0) self.check_constant_output(f * (g * f), 18.0) self.check_constant_output((f * g) * (f * g), 36.0) self.check_constant_output((f * g) * (g * f), 36.0) self.check_constant_output((g * f) * (f * g), 36.0) self.check_constant_output((g * f) * (g * f), 36.0) self.check_constant_output(f * f * f * 0 * f * f, 0.0) def test_divide(self): f, g = self.f, self.g self.check_constant_output(f / g, 3.0 / 2.0) self.check_constant_output( (2 / f) / g, (2 / 3.0) / 2.0 ) self.check_constant_output( 2 / (f / g), 2 / (3.0 / 2.0), ) self.check_constant_output( (f / 2) / g, (3.0 / 2) / 2.0, ) self.check_constant_output( f / (2 / g), 3.0 / (2 / 2.0), ) self.check_constant_output( (f / g) / 2, (3.0 / 2.0) / 2, ) self.check_constant_output( f / (g / 2), 3.0 / (2.0 / 2), ) self.check_constant_output( (f / f) / f, (3.0 / 3.0) / 3.0 ) self.check_constant_output( f / (f / f), 3.0 / (3.0 / 3.0), ) self.check_constant_output( (f / g) / f, (3.0 / 2.0) / 3.0, ) self.check_constant_output( f / (g / f), 3.0 / (2.0 / 3.0), ) self.check_constant_output( (f / g) / (f / g), (3.0 / 2.0) / (3.0 / 2.0), ) self.check_constant_output( (f / g) / (g / f), (3.0 / 2.0) / (2.0 / 3.0), ) self.check_constant_output( (g / f) / (f / g), (2.0 / 3.0) / (3.0 / 2.0), ) self.check_constant_output( (g / f) / (g / f), (2.0 / 3.0) / (2.0 / 3.0), ) def test_pow(self): f, g = self.f, self.g self.check_constant_output(f ** g, 3.0 ** 2) self.check_constant_output(2 ** f, 2.0 ** 3) self.check_constant_output(f ** 2, 3.0 ** 2) self.check_constant_output((f + g) ** 2, (3.0 + 2.0) ** 2) self.check_constant_output(2 ** (f + g), 2 ** (3.0 + 2.0)) self.check_constant_output(f ** (f ** g), 3.0 ** (3.0 ** 2.0)) self.check_constant_output((f ** f) ** g, (3.0 ** 3.0) ** 2.0) self.check_constant_output((f ** g) ** (f ** g), 9.0 ** 9.0) self.check_constant_output((f ** g) ** (g ** f), 9.0 ** 8.0) self.check_constant_output((g ** f) ** (f ** g), 8.0 ** 9.0) self.check_constant_output((g ** f) ** (g ** f), 8.0 ** 8.0) def test_mod(self): f, g = self.f, self.g self.check_constant_output(f % g, 3.0 % 2.0) self.check_constant_output(f % 2.0, 3.0 % 2.0) self.check_constant_output(g % f, 2.0 % 3.0) self.check_constant_output((f + g) % 2, (3.0 + 2.0) % 2) self.check_constant_output(2 % (f + g), 2 % (3.0 + 2.0)) self.check_constant_output(f % (f % g), 3.0 % (3.0 % 2.0)) self.check_constant_output((f % f) % g, (3.0 % 3.0) % 2.0) self.check_constant_output((f + g) % (f * g), 5.0 % 6.0) def test_math_functions(self): f, g = self.f, self.g fake_raw_data = self.fake_raw_data alt_fake_raw_data = { self.f: full((5, 5), .5), self.g: full((5, 5), -.5), } for funcname in NUMEXPR_MATH_FUNCS: method = methodcaller(funcname) func = getattr(numpy, funcname) # These methods have domains in [0, 1], so we need alternate inputs # that are in the domain. if funcname in ('arcsin', 'arccos', 'arctanh'): self.fake_raw_data = alt_fake_raw_data else: self.fake_raw_data = fake_raw_data f_val = self.fake_raw_data[f][0, 0] g_val = self.fake_raw_data[g][0, 0] self.check_constant_output(method(f), func(f_val)) self.check_constant_output(method(g), func(g_val)) self.check_constant_output(method(f) + 1, func(f_val) + 1) self.check_constant_output(1 + method(f), 1 + func(f_val)) self.check_constant_output(method(f + .25), func(f_val + .25)) self.check_constant_output(method(.25 + f), func(.25 + f_val)) self.check_constant_output( method(f) + method(g), func(f_val) + func(g_val), ) self.check_constant_output( method(f + g), func(f_val + g_val), ) def test_comparisons(self): f, g, h = self.f, self.g, self.h self.fake_raw_data = { f: arange(25).reshape(5, 5), g: arange(25).reshape(5, 5) - eye(5), h: full((5, 5), 5), } f_data = self.fake_raw_data[f] g_data = self.fake_raw_data[g] cases = [ # Sanity Check with hand-computed values. (f, g, eye(5), zeros((5, 5))), (f, 10, f_data, 10), (10, f, 10, f_data), (f, f, f_data, f_data), (f + 1, f, f_data + 1, f_data), (1 + f, f, 1 + f_data, f_data), (f, g, f_data, g_data), (f + 1, g, f_data + 1, g_data), (f, g + 1, f_data, g_data + 1), (f + 1, g + 1, f_data + 1, g_data + 1), ((f + g) / 2, f ** 2, (f_data + g_data) / 2, f_data ** 2), ] for op in (gt, ge, lt, le, ne): for expr_lhs, expr_rhs, expected_lhs, expected_rhs in cases: self.check_output( op(expr_lhs, expr_rhs), op(expected_lhs, expected_rhs), ) def test_boolean_binops(self): f, g, h = self.f, self.g, self.h self.fake_raw_data = { f: arange(25).reshape(5, 5), g: arange(25).reshape(5, 5) - eye(5), h: full((5, 5), 5), } # Should be True on the diagonal. eye_filter = f > g # Should be True in the first row only. first_row_filter = f < h eye_mask = eye(5, dtype=bool) first_row_mask = zeros((5, 5), dtype=bool) first_row_mask[0] = 1 self.check_output(eye_filter, eye_mask) self.check_output(first_row_filter, first_row_mask) for op in (and_, or_): # NumExpr doesn't support xor. self.check_output( op(eye_filter, first_row_filter), op(eye_mask, first_row_mask), )
apache-2.0
letsgoexploring/economicData
usConvergenceData/stateIncomeData.py
1
5246
# coding: utf-8 # In[1]: from __future__ import division,unicode_literals # get_ipython().magic('matplotlib inline') import numpy as np import pandas as pd import json import runProcs from urllib.request import urlopen import matplotlib.pyplot as plt # In[2]: # 0. State abbreviations # 0.1 dictionary: stateAbbr = { u'Alabama':u'AL', u'Alaska':u'AK', u'Arizona':u'AZ', u'Arkansas':u'AR', u'California':u'CA', u'Colorado':u'CO', u'Connecticut':u'CT', u'Delaware':u'DE', u'District of Columbia':u'DC', u'Florida':u'FL', u'Georgia':u'GA', u'Hawaii':u'HI', u'Idaho':u'ID', u'Illinois':u'IL', u'Indiana':u'IN', u'Iowa':u'IA', u'Kansas':u'KS', u'Kentucky':u'KY', u'Louisiana':u'LA', u'Maine':u'ME', u'Maryland':u'MD', u'Massachusetts':u'MA', u'Michigan':u'MI', u'Minnesota':u'MN', u'Mississippi':u'MS', u'Missouri':u'MO', u'Montana':u'MT', u'Nebraska':u'NE', u'Nevada':u'NV', u'New Hampshire':u'NH', u'New Jersey':u'NJ', u'New Mexico':u'NM', u'New York':u'NY', u'North Carolina':u'NC', u'North Dakota':u'ND', u'Ohio':u'OH', u'Oklahoma':u'OK', u'Oregon':u'OR', u'Pennsylvania':u'PA', u'Rhode Island':u'RI', u'South Carolina':u'SC', u'South Dakota':u'SD', u'Tennessee':u'TN', u'Texas':u'TX', u'Utah':u'UT', u'Vermont':u'VT', u'Virginia':u'VA', u'Washington':u'WA', u'West Virginia':u'WV', u'Wisconsin':u'WI', u'Wyoming':u'WY' } # 0.2 List of states in the US stateList = [s for s in stateAbbr] # In[3]: # 1. Construct series for price deflator # 1.1 Obtain data from BEA gdpDeflator = urlopen('http://bea.gov/api/data/?UserID=3EDEAA66-4B2B-4926-83C9-FD2089747A5B&method=GetData&datasetname=NIPA&TableID=13&Frequency=A&Year=X&ResultFormat=JSON&') # result = gdpDeflator.readall().decode('utf-8') result = gdpDeflator.read().decode('utf-8') jsonResponse = json.loads(result) # In[4]: # 1.2 Construct the data frame for the deflator series values = [] years = [] for element in jsonResponse['BEAAPI']['Results']['Data']: # if element['LineDescription'] == 'Personal consumption expenditures': if element['LineDescription'] == 'Gross domestic product': years.append(element['TimePeriod']) values.append(float(element['DataValue'])/100) values = np.array([values]).T dataP = pd.DataFrame(values,index = years,columns = ['price level']) # 1.3 Display the data print(dataP) # In[5]: # 2. Construct series for per capita income by state, region, and the entire us # 2.1 Obtain data from BEA stateYpc = urlopen('http://bea.gov/api/data/?UserID=3EDEAA66-4B2B-4926-83C9-FD2089747A5B&method=GetData&datasetname=RegionalData&KeyCode=PCPI_SI&Year=ALL&GeoFips=STATE&ResultFormat=JSON&') # result = stateYpc.readall().decode('utf-8') result = stateYpc.read().decode('utf-8') jsonResponse = json.loads(result) # jsonResponse['BEAAPI']['Results']['Data'][0]['GeoName'] # In[6]: # 2.2 Construct the data frame for the per capita income series # 2.2.1 Initialize the dataframe regions = [] years = [] for element in jsonResponse['BEAAPI']['Results']['Data']: if element['GeoName'] not in regions: regions.append(element['GeoName']) if element['TimePeriod'] not in years: years.append(element['TimePeriod']) df = np.zeros([len(years),len(regions)]) dataY = pd.DataFrame(df,index = years,columns = regions) # 2.2.2 Populate the dataframe with values for element in jsonResponse['BEAAPI']['Results']['Data']: try: dataY[element['GeoName']][element['TimePeriod']] = np.round(float(element[u'DataValue'])/float(dataP.loc[element['TimePeriod']]),2)# real except: dataY[element['GeoName']][element['TimePeriod']] = np.nan # 2.2.3 Replace the state names in the index with abbreviations columns=[] for r in regions: if r in stateList: columns.append(stateAbbr[r]) else: columns.append(r) dataY.columns=columns # 2.2.4 Display the data obtained from the BEA dataY # In[7]: # 3. State income data for 1840, 1880, and 1900 # 3.1.1 Import Easterlin's income data easterlin_data = pd.read_csv('Historical Statistics of the US - Easterlin State Income Data.csv',index_col=0) # 3.1.2 Import historic CPI data historic_cpi_data=pd.read_csv('Historical Statistics of the US - cpi.csv',index_col=0) historic_cpi_data = historic_cpi_data/historic_cpi_data.loc[1929]*float(dataP.loc['1929']) # In[8]: # Const df_1840 = easterlin_data['Income per capita - 1840 - A [cur dollars]']/float(historic_cpi_data.loc[1840]) df_1880 = easterlin_data['Income per capita - 1880 [cur dollars]']/float(historic_cpi_data.loc[1890]) df_1900 = easterlin_data['Income per capita - 1900 [cur dollars]']/float(historic_cpi_data.loc[1900]) df = pd.DataFrame({'1840':df_1840,'1880':df_1880,'1900':df_1900}).transpose() # In[9]: df = pd.concat([dataY,df]).sort_index() # In[17]: df.loc['1880'].sort_values() # In[10]: # 3. Export data to csv series = dataY.sort_index() series = df.sort_index() dropCols = [u'AK', u'HI', u'New England', u'Mideast', u'Great Lakes', u'Plains', u'Southeast', u'Southwest', u'Rocky Mountain', u'Far West'] for c in dropCols: series = series.drop([c],axis=1) series.to_csv('stateIncomeData.csv',na_rep='NaN') # In[11]: len(dataY.columns) # In[12]: # 4. Export notebook to .py runProcs.exportNb('stateIncomeData')
mit
sumspr/scikit-learn
examples/linear_model/plot_lasso_and_elasticnet.py
249
1982
""" ======================================== Lasso and Elastic Net for Sparse Signals ======================================== Estimates Lasso and Elastic-Net regression models on a manually generated sparse signal corrupted with an additive noise. Estimated coefficients are compared with the ground-truth. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import r2_score ############################################################################### # generate some sparse data to play with np.random.seed(42) n_samples, n_features = 50, 200 X = np.random.randn(n_samples, n_features) coef = 3 * np.random.randn(n_features) inds = np.arange(n_features) np.random.shuffle(inds) coef[inds[10:]] = 0 # sparsify coef y = np.dot(X, coef) # add noise y += 0.01 * np.random.normal((n_samples,)) # Split data in train set and test set n_samples = X.shape[0] X_train, y_train = X[:n_samples / 2], y[:n_samples / 2] X_test, y_test = X[n_samples / 2:], y[n_samples / 2:] ############################################################################### # Lasso from sklearn.linear_model import Lasso alpha = 0.1 lasso = Lasso(alpha=alpha) y_pred_lasso = lasso.fit(X_train, y_train).predict(X_test) r2_score_lasso = r2_score(y_test, y_pred_lasso) print(lasso) print("r^2 on test data : %f" % r2_score_lasso) ############################################################################### # ElasticNet from sklearn.linear_model import ElasticNet enet = ElasticNet(alpha=alpha, l1_ratio=0.7) y_pred_enet = enet.fit(X_train, y_train).predict(X_test) r2_score_enet = r2_score(y_test, y_pred_enet) print(enet) print("r^2 on test data : %f" % r2_score_enet) plt.plot(enet.coef_, label='Elastic net coefficients') plt.plot(lasso.coef_, label='Lasso coefficients') plt.plot(coef, '--', label='original coefficients') plt.legend(loc='best') plt.title("Lasso R^2: %f, Elastic Net R^2: %f" % (r2_score_lasso, r2_score_enet)) plt.show()
bsd-3-clause
teoliphant/scipy
scipy/stats/distributions.py
2
215895
# Functions to implement several important functions for # various Continous and Discrete Probability Distributions # # Author: Travis Oliphant 2002-2011 with contributions from # SciPy Developers 2004-2011 # import math import warnings from copy import copy from scipy.misc import comb, derivative from scipy import special from scipy import optimize from scipy import integrate from scipy.special import gammaln as gamln import inspect from numpy import all, where, arange, putmask, \ ravel, take, ones, sum, shape, product, repeat, reshape, \ zeros, floor, logical_and, log, sqrt, exp, arctanh, tan, sin, arcsin, \ arctan, tanh, ndarray, cos, cosh, sinh, newaxis, array, log1p, expm1 from numpy import atleast_1d, polyval, ceil, place, extract, \ any, argsort, argmax, vectorize, r_, asarray, nan, inf, pi, isinf, \ power, NINF, empty import numpy import numpy as np import numpy.random as mtrand from numpy import flatnonzero as nonzero import vonmises_cython from _tukeylambda_stats import tukeylambda_variance as _tlvar, \ tukeylambda_kurtosis as _tlkurt __all__ = [ 'rv_continuous', 'ksone', 'kstwobign', 'norm', 'alpha', 'anglit', 'arcsine', 'beta', 'betaprime', 'bradford', 'burr', 'fisk', 'cauchy', 'chi', 'chi2', 'cosine', 'dgamma', 'dweibull', 'erlang', 'expon', 'exponweib', 'exponpow', 'fatiguelife', 'foldcauchy', 'f', 'foldnorm', 'frechet_r', 'weibull_min', 'frechet_l', 'weibull_max', 'genlogistic', 'genpareto', 'genexpon', 'genextreme', 'gamma', 'gengamma', 'genhalflogistic', 'gompertz', 'gumbel_r', 'gumbel_l', 'halfcauchy', 'halflogistic', 'halfnorm', 'hypsecant', 'gausshyper', 'invgamma', 'invgauss', 'invweibull', 'johnsonsb', 'johnsonsu', 'laplace', 'levy', 'levy_l', 'levy_stable', 'logistic', 'loggamma', 'loglaplace', 'lognorm', 'gilbrat', 'maxwell', 'mielke', 'nakagami', 'ncx2', 'ncf', 't', 'nct', 'pareto', 'lomax', 'powerlaw', 'powerlognorm', 'powernorm', 'rdist', 'rayleigh', 'reciprocal', 'rice', 'recipinvgauss', 'semicircular', 'triang', 'truncexpon', 'truncnorm', 'tukeylambda', 'uniform', 'vonmises', 'wald', 'wrapcauchy', 'entropy', 'rv_discrete', 'binom', 'bernoulli', 'nbinom', 'geom', 'hypergeom', 'logser', 'poisson', 'planck', 'boltzmann', 'randint', 'zipf', 'dlaplace', 'skellam' ] floatinfo = numpy.finfo(float) gam = special.gamma random = mtrand.random_sample import types from scipy.misc import doccer sgf = vectorize try: from new import instancemethod except ImportError: # Python 3 def instancemethod(func, obj, cls): return types.MethodType(func, obj) # These are the docstring parts used for substitution in specific # distribution docstrings. docheaders = {'methods':"""\nMethods\n-------\n""", 'parameters':"""\nParameters\n---------\n""", 'notes':"""\nNotes\n-----\n""", 'examples':"""\nExamples\n--------\n"""} _doc_rvs = \ """rvs(%(shapes)s, loc=0, scale=1, size=1) Random variates. """ _doc_pdf = \ """pdf(x, %(shapes)s, loc=0, scale=1) Probability density function. """ _doc_logpdf = \ """logpdf(x, %(shapes)s, loc=0, scale=1) Log of the probability density function. """ _doc_pmf = \ """pmf(x, %(shapes)s, loc=0, scale=1) Probability mass function. """ _doc_logpmf = \ """logpmf(x, %(shapes)s, loc=0, scale=1) Log of the probability mass function. """ _doc_cdf = \ """cdf(x, %(shapes)s, loc=0, scale=1) Cumulative density function. """ _doc_logcdf = \ """logcdf(x, %(shapes)s, loc=0, scale=1) Log of the cumulative density function. """ _doc_sf = \ """sf(x, %(shapes)s, loc=0, scale=1) Survival function (1-cdf --- sometimes more accurate). """ _doc_logsf = \ """logsf(x, %(shapes)s, loc=0, scale=1) Log of the survival function. """ _doc_ppf = \ """ppf(q, %(shapes)s, loc=0, scale=1) Percent point function (inverse of cdf --- percentiles). """ _doc_isf = \ """isf(q, %(shapes)s, loc=0, scale=1) Inverse survival function (inverse of sf). """ _doc_moment = \ """moment(n, %(shapes)s, loc=0, scale=1) Non-central moment of order n """ _doc_stats = \ """stats(%(shapes)s, loc=0, scale=1, moments='mv') Mean('m'), variance('v'), skew('s'), and/or kurtosis('k'). """ _doc_entropy = \ """entropy(%(shapes)s, loc=0, scale=1) (Differential) entropy of the RV. """ _doc_fit = \ """fit(data, %(shapes)s, loc=0, scale=1) Parameter estimates for generic data. """ _doc_expect = \ """expect(func, %(shapes)s, loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) Expected value of a function (of one argument) with respect to the distribution. """ _doc_expect_discrete = \ """expect(func, %(shapes)s, loc=0, lb=None, ub=None, conditional=False) Expected value of a function (of one argument) with respect to the distribution. """ _doc_median = \ """median(%(shapes)s, loc=0, scale=1) Median of the distribution. """ _doc_mean = \ """mean(%(shapes)s, loc=0, scale=1) Mean of the distribution. """ _doc_var = \ """var(%(shapes)s, loc=0, scale=1) Variance of the distribution. """ _doc_std = \ """std(%(shapes)s, loc=0, scale=1) Standard deviation of the distribution. """ _doc_interval = \ """interval(alpha, %(shapes)s, loc=0, scale=1) Endpoints of the range that contains alpha percent of the distribution """ _doc_allmethods = ''.join([docheaders['methods'], _doc_rvs, _doc_pdf, _doc_logpdf, _doc_cdf, _doc_logcdf, _doc_sf, _doc_logsf, _doc_ppf, _doc_isf, _doc_moment, _doc_stats, _doc_entropy, _doc_fit, _doc_expect, _doc_median, _doc_mean, _doc_var, _doc_std, _doc_interval]) # Note that the two lines for %(shapes) are searched for and replaced in # rv_continuous and rv_discrete - update there if the exact string changes _doc_default_callparams = \ """ Parameters ---------- x : array_like quantiles q : array_like lower or upper tail probability %(shapes)s : array_like shape parameters loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) size : int or tuple of ints, optional shape of random variates (default computed from input arguments ) moments : str, optional composed of letters ['mvsk'] specifying which moments to compute where 'm' = mean, 'v' = variance, 's' = (Fisher's) skew and 'k' = (Fisher's) kurtosis. (default='mv') """ _doc_default_longsummary = \ """Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below: """ _doc_default_frozen_note = \ """ Alternatively, the object may be called (as a function) to fix the shape, location, and scale parameters returning a "frozen" continuous RV object: rv = %(name)s(%(shapes)s, loc=0, scale=1) - Frozen RV object with the same methods but holding the given shape, location, and scale fixed. """ _doc_default_example = \ """Examples -------- >>> from scipy.stats import %(name)s >>> numargs = %(name)s.numargs >>> [ %(shapes)s ] = [0.9,] * numargs >>> rv = %(name)s(%(shapes)s) Display frozen pdf >>> x = np.linspace(0, np.minimum(rv.dist.b, 3)) >>> h = plt.plot(x, rv.pdf(x)) Here, ``rv.dist.b`` is the right endpoint of the support of ``rv.dist``. Check accuracy of cdf and ppf >>> prb = %(name)s.cdf(x, %(shapes)s) >>> h = plt.semilogy(np.abs(x - %(name)s.ppf(prb, %(shapes)s)) + 1e-20) Random number generation >>> R = %(name)s.rvs(%(shapes)s, size=100) """ _doc_default = ''.join([_doc_default_longsummary, _doc_allmethods, _doc_default_callparams, _doc_default_frozen_note, _doc_default_example]) _doc_default_before_notes = ''.join([_doc_default_longsummary, _doc_allmethods, _doc_default_callparams, _doc_default_frozen_note]) docdict = {'rvs':_doc_rvs, 'pdf':_doc_pdf, 'logpdf':_doc_logpdf, 'cdf':_doc_cdf, 'logcdf':_doc_logcdf, 'sf':_doc_sf, 'logsf':_doc_logsf, 'ppf':_doc_ppf, 'isf':_doc_isf, 'stats':_doc_stats, 'entropy':_doc_entropy, 'fit':_doc_fit, 'moment':_doc_moment, 'expect':_doc_expect, 'interval':_doc_interval, 'mean':_doc_mean, 'std':_doc_std, 'var':_doc_var, 'median':_doc_median, 'allmethods':_doc_allmethods, 'callparams':_doc_default_callparams, 'longsummary':_doc_default_longsummary, 'frozennote':_doc_default_frozen_note, 'example':_doc_default_example, 'default':_doc_default, 'before_notes':_doc_default_before_notes} # Reuse common content between continous and discrete docs, change some # minor bits. docdict_discrete = docdict.copy() docdict_discrete['pmf'] = _doc_pmf docdict_discrete['logpmf'] = _doc_logpmf docdict_discrete['expect'] = _doc_expect_discrete _doc_disc_methods = ['rvs', 'pmf', 'logpmf', 'cdf', 'logcdf', 'sf', 'logsf', 'ppf', 'isf', 'stats', 'entropy', 'expect', 'median', 'mean', 'var', 'std', 'interval'] for obj in _doc_disc_methods: docdict_discrete[obj] = docdict_discrete[obj].replace(', scale=1', '') docdict_discrete.pop('pdf') docdict_discrete.pop('logpdf') _doc_allmethods = ''.join([docdict_discrete[obj] for obj in _doc_disc_methods]) docdict_discrete['allmethods'] = docheaders['methods'] + _doc_allmethods docdict_discrete['longsummary'] = _doc_default_longsummary.replace(\ 'Continuous', 'Discrete') _doc_default_frozen_note = \ """ Alternatively, the object may be called (as a function) to fix the shape and location parameters returning a "frozen" discrete RV object: rv = %(name)s(%(shapes)s, loc=0) - Frozen RV object with the same methods but holding the given shape and location fixed. """ docdict_discrete['frozennote'] = _doc_default_frozen_note _doc_default_discrete_example = \ """Examples -------- >>> from scipy.stats import %(name)s >>> [ %(shapes)s ] = [<Replace with reasonable values>] >>> rv = %(name)s(%(shapes)s) Display frozen pmf >>> x = np.arange(0, np.minimum(rv.dist.b, 3)) >>> h = plt.vlines(x, 0, rv.pmf(x), lw=2) Here, ``rv.dist.b`` is the right endpoint of the support of ``rv.dist``. Check accuracy of cdf and ppf >>> prb = %(name)s.cdf(x, %(shapes)s) >>> h = plt.semilogy(np.abs(x - %(name)s.ppf(prb, %(shapes)s)) + 1e-20) Random number generation >>> R = %(name)s.rvs(%(shapes)s, size=100) """ docdict_discrete['example'] = _doc_default_discrete_example _doc_default_before_notes = ''.join([docdict_discrete['longsummary'], docdict_discrete['allmethods'], docdict_discrete['callparams'], docdict_discrete['frozennote']]) docdict_discrete['before_notes'] = _doc_default_before_notes _doc_default_disc = ''.join([docdict_discrete['longsummary'], docdict_discrete['allmethods'], docdict_discrete['frozennote'], docdict_discrete['example']]) docdict_discrete['default'] = _doc_default_disc # clean up all the separate docstring elements, we do not need them anymore for obj in [s for s in dir() if s.startswith('_doc_')]: exec('del ' + obj) del obj try: del s except NameError: # in Python 3, loop variables are not visible after the loop pass def _moment(data, n, mu=None): if mu is None: mu = data.mean() return ((data - mu)**n).mean() def _moment_from_stats(n, mu, mu2, g1, g2, moment_func, args): if (n==0): return 1.0 elif (n==1): if mu is None: val = moment_func(1,*args) else: val = mu elif (n==2): if mu2 is None or mu is None: val = moment_func(2,*args) else: val = mu2 + mu*mu elif (n==3): if g1 is None or mu2 is None or mu is None: val = moment_func(3,*args) else: mu3 = g1*(mu2**1.5) # 3rd central moment val = mu3+3*mu*mu2+mu**3 # 3rd non-central moment elif (n==4): if g1 is None or g2 is None or mu2 is None or mu is None: val = moment_func(4,*args) else: mu4 = (g2+3.0)*(mu2**2.0) # 4th central moment mu3 = g1*(mu2**1.5) # 3rd central moment val = mu4+4*mu*mu3+6*mu*mu*mu2+mu**4 else: val = moment_func(n, *args) return val def _skew(data): """ skew is third central moment / variance**(1.5) """ data = np.ravel(data) mu = data.mean() m2 = ((data - mu)**2).mean() m3 = ((data - mu)**3).mean() return m3 / m2**1.5 def _kurtosis(data): """ kurtosis is fourth central moment / variance**2 - 3 """ data = np.ravel(data) mu = data.mean() m2 = ((data - mu)**2).mean() m4 = ((data - mu)**4).mean() return m4 / m2**2 - 3 # Frozen RV class class rv_frozen(object): def __init__(self, dist, *args, **kwds): self.args = args self.kwds = kwds self.dist = dist def pdf(self, x): #raises AttributeError in frozen discrete distribution return self.dist.pdf(x, *self.args, **self.kwds) def logpdf(self, x): return self.dist.logpdf(x, *self.args, **self.kwds) def cdf(self, x): return self.dist.cdf(x, *self.args, **self.kwds) def logcdf(self, x): return self.dist.logcdf(x, *self.args, **self.kwds) def ppf(self, q): return self.dist.ppf(q, *self.args, **self.kwds) def isf(self, q): return self.dist.isf(q, *self.args, **self.kwds) def rvs(self, size=None): kwds = self.kwds.copy() kwds.update({'size':size}) return self.dist.rvs(*self.args, **kwds) def sf(self, x): return self.dist.sf(x, *self.args, **self.kwds) def logsf(self, x): return self.dist.logsf(x, *self.args, **self.kwds) def stats(self, moments='mv'): kwds = self.kwds.copy() kwds.update({'moments':moments}) return self.dist.stats(*self.args, **kwds) def median(self): return self.dist.median(*self.args, **self.kwds) def mean(self): return self.dist.mean(*self.args, **self.kwds) def var(self): return self.dist.var(*self.args, **self.kwds) def std(self): return self.dist.std(*self.args, **self.kwds) def moment(self, n): return self.dist.moment(n, *self.args, **self.kwds) def entropy(self): return self.dist.entropy(*self.args, **self.kwds) def pmf(self,k): return self.dist.pmf(k, *self.args, **self.kwds) def logpmf(self,k): return self.dist.logpmf(k, *self.args, **self.kwds) def interval(self, alpha): return self.dist.interval(alpha, *self.args, **self.kwds) def valarray(shape,value=nan,typecode=None): """Return an array of all value. """ out = reshape(repeat([value],product(shape,axis=0),axis=0),shape) if typecode is not None: out = out.astype(typecode) if not isinstance(out, ndarray): out = asarray(out) return out # This should be rewritten def argsreduce(cond, *args): """Return the sequence of ravel(args[i]) where ravel(condition) is True in 1D. Examples -------- >>> import numpy as np >>> rand = np.random.random_sample >>> A = rand((4,5)) >>> B = 2 >>> C = rand((1,5)) >>> cond = np.ones(A.shape) >>> [A1,B1,C1] = argsreduce(cond,A,B,C) >>> B1.shape (20,) >>> cond[2,:] = 0 >>> [A2,B2,C2] = argsreduce(cond,A,B,C) >>> B2.shape (15,) """ newargs = atleast_1d(*args) if not isinstance(newargs, list): newargs = [newargs,] expand_arr = (cond==cond) return [extract(cond, arr1 * expand_arr) for arr1 in newargs] class rv_generic(object): """Class which encapsulates common functionality between rv_discrete and rv_continuous. """ def _fix_loc_scale(self, args, loc, scale=1): N = len(args) if N > self.numargs: if N == self.numargs + 1 and loc is None: # loc is given without keyword loc = args[-1] if N == self.numargs + 2 and scale is None: # loc and scale given without keyword loc, scale = args[-2:] args = args[:self.numargs] if scale is None: scale = 1.0 if loc is None: loc = 0.0 return args, loc, scale def _fix_loc(self, args, loc): args, loc, scale = self._fix_loc_scale(args, loc) return args, loc # These are actually called, and should not be overwritten if you # want to keep error checking. def rvs(self,*args,**kwds): """ Random variates of given type. Parameters ---------- arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) size : int or tuple of ints, optional defining number of random variates (default=1) Returns ------- rvs : array_like random variates of given `size` """ kwd_names = ['loc', 'scale', 'size', 'discrete'] loc, scale, size, discrete = map(kwds.get, kwd_names, [None]*len(kwd_names)) args, loc, scale = self._fix_loc_scale(args, loc, scale) cond = logical_and(self._argcheck(*args),(scale >= 0)) if not all(cond): raise ValueError("Domain error in arguments.") # self._size is total size of all output values self._size = product(size, axis=0) if self._size is not None and self._size > 1: size = numpy.array(size, ndmin=1) if np.all(scale == 0): return loc*ones(size, 'd') vals = self._rvs(*args) if self._size is not None: vals = reshape(vals, size) vals = vals * scale + loc # Cast to int if discrete if discrete: if numpy.isscalar(vals): vals = int(vals) else: vals = vals.astype(int) return vals def median(self, *args, **kwds): """ Median of the distribution. Parameters ---------- arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- median : float the median of the distribution. See Also -------- self.ppf --- inverse of the CDF """ return self.ppf(0.5, *args, **kwds) def mean(self, *args, **kwds): """ Mean of the distribution Parameters ---------- arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- mean : float the mean of the distribution """ kwds['moments'] = 'm' res = self.stats(*args, **kwds) if isinstance(res, ndarray) and res.ndim == 0: return res[()] return res def var(self, *args, **kwds): """ Variance of the distribution Parameters ---------- arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- var : float the variance of the distribution """ kwds['moments'] = 'v' res = self.stats(*args, **kwds) if isinstance(res, ndarray) and res.ndim == 0: return res[()] return res def std(self, *args, **kwds): """ Standard deviation of the distribution. Parameters ---------- arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- std : float standard deviation of the distribution """ kwds['moments'] = 'v' res = sqrt(self.stats(*args, **kwds)) return res def interval(self, alpha, *args, **kwds): """Confidence interval with equal areas around the median Parameters ---------- alpha : array_like float in [0,1] Probability that an rv will be drawn from the returned range arg1, arg2, ... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default = 0) scale : array_like, optional scale paramter (default = 1) Returns ------- a, b : array_like (float) end-points of range that contain alpha % of the rvs """ alpha = asarray(alpha) if any((alpha > 1) | (alpha < 0)): raise ValueError("alpha must be between 0 and 1 inclusive") q1 = (1.0-alpha)/2 q2 = (1.0+alpha)/2 a = self.ppf(q1, *args, **kwds) b = self.ppf(q2, *args, **kwds) return a, b ## continuous random variables: implement maybe later ## ## hf --- Hazard Function (PDF / SF) ## chf --- Cumulative hazard function (-log(SF)) ## psf --- Probability sparsity function (reciprocal of the pdf) in ## units of percent-point-function (as a function of q). ## Also, the derivative of the percent-point function. class rv_continuous(rv_generic): """ A generic continuous random variable class meant for subclassing. `rv_continuous` is a base class to construct specific distribution classes and instances from for continuous random variables. It cannot be used directly as a distribution. Parameters ---------- momtype : int, optional The type of generic moment calculation to use: 0 for pdf, 1 (default) for ppf. a : float, optional Lower bound of the support of the distribution, default is minus infinity. b : float, optional Upper bound of the support of the distribution, default is plus infinity. xa : float, optional DEPRECATED xb : float, optional DEPRECATED xtol : float, optional The tolerance for fixed point calculation for generic ppf. badvalue : object, optional The value in a result arrays that indicates a value that for which some argument restriction is violated, default is np.nan. name : str, optional The name of the instance. This string is used to construct the default example for distributions. longname : str, optional This string is used as part of the first line of the docstring returned when a subclass has no docstring of its own. Note: `longname` exists for backwards compatibility, do not use for new subclasses. shapes : str, optional The shape of the distribution. For example ``"m, n"`` for a distribution that takes two integers as the two shape arguments for all its methods. extradoc : str, optional, deprecated This string is used as the last part of the docstring returned when a subclass has no docstring of its own. Note: `extradoc` exists for backwards compatibility, do not use for new subclasses. Methods ------- rvs(<shape(s)>, loc=0, scale=1, size=1) random variates pdf(x, <shape(s)>, loc=0, scale=1) probability density function logpdf(x, <shape(s)>, loc=0, scale=1) log of the probability density function cdf(x, <shape(s)>, loc=0, scale=1) cumulative density function logcdf(x, <shape(s)>, loc=0, scale=1) log of the cumulative density function sf(x, <shape(s)>, loc=0, scale=1) survival function (1-cdf --- sometimes more accurate) logsf(x, <shape(s)>, loc=0, scale=1) log of the survival function ppf(q, <shape(s)>, loc=0, scale=1) percent point function (inverse of cdf --- quantiles) isf(q, <shape(s)>, loc=0, scale=1) inverse survival function (inverse of sf) moment(n, <shape(s)>, loc=0, scale=1) non-central n-th moment of the distribution. May not work for array arguments. stats(<shape(s)>, loc=0, scale=1, moments='mv') mean('m'), variance('v'), skew('s'), and/or kurtosis('k') entropy(<shape(s)>, loc=0, scale=1) (differential) entropy of the RV. fit(data, <shape(s)>, loc=0, scale=1) Parameter estimates for generic data expect(func=None, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) Expected value of a function with respect to the distribution. Additional kwd arguments passed to integrate.quad median(<shape(s)>, loc=0, scale=1) Median of the distribution. mean(<shape(s)>, loc=0, scale=1) Mean of the distribution. std(<shape(s)>, loc=0, scale=1) Standard deviation of the distribution. var(<shape(s)>, loc=0, scale=1) Variance of the distribution. interval(alpha, <shape(s)>, loc=0, scale=1) Interval that with `alpha` percent probability contains a random realization of this distribution. __call__(<shape(s)>, loc=0, scale=1) Calling a distribution instance creates a frozen RV object with the same methods but holding the given shape, location, and scale fixed. See Notes section. **Parameters for Methods** x : array_like quantiles q : array_like lower or upper tail probability <shape(s)> : array_like shape parameters loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) size : int or tuple of ints, optional shape of random variates (default computed from input arguments ) moments : string, optional composed of letters ['mvsk'] specifying which moments to compute where 'm' = mean, 'v' = variance, 's' = (Fisher's) skew and 'k' = (Fisher's) kurtosis. (default='mv') n : int order of moment to calculate in method moments Notes ----- **Methods that can be overwritten by subclasses** :: _rvs _pdf _cdf _sf _ppf _isf _stats _munp _entropy _argcheck There are additional (internal and private) generic methods that can be useful for cross-checking and for debugging, but might work in all cases when directly called. **Frozen Distribution** Alternatively, the object may be called (as a function) to fix the shape, location, and scale parameters returning a "frozen" continuous RV object: rv = generic(<shape(s)>, loc=0, scale=1) frozen RV object with the same methods but holding the given shape, location, and scale fixed **Subclassing** New random variables can be defined by subclassing rv_continuous class and re-defining at least the ``_pdf`` or the ``_cdf`` method (normalized to location 0 and scale 1) which will be given clean arguments (in between a and b) and passing the argument check method. If positive argument checking is not correct for your RV then you will also need to re-define the ``_argcheck`` method. Correct, but potentially slow defaults exist for the remaining methods but for speed and/or accuracy you can over-ride:: _logpdf, _cdf, _logcdf, _ppf, _rvs, _isf, _sf, _logsf Rarely would you override ``_isf``, ``_sf`` or ``_logsf``, but you could. Statistics are computed using numerical integration by default. For speed you can redefine this using ``_stats``: - take shape parameters and return mu, mu2, g1, g2 - If you can't compute one of these, return it as None - Can also be defined with a keyword argument ``moments=<str>``, where <str> is a string composed of 'm', 'v', 's', and/or 'k'. Only the components appearing in string should be computed and returned in the order 'm', 'v', 's', or 'k' with missing values returned as None. Alternatively, you can override ``_munp``, which takes n and shape parameters and returns the nth non-central moment of the distribution. Examples -------- To create a new Gaussian distribution, we would do the following:: class gaussian_gen(rv_continuous): "Gaussian distribution" def _pdf: ... ... """ def __init__(self, momtype=1, a=None, b=None, xa=None, xb=None, xtol=1e-14, badvalue=None, name=None, longname=None, shapes=None, extradoc=None): rv_generic.__init__(self) if badvalue is None: badvalue = nan if name is None: name = 'Distribution' self.badvalue = badvalue self.name = name self.a = a self.b = b if a is None: self.a = -inf if b is None: self.b = inf if xa is not None: warnings.warn("The `xa` parameter is deprecated and will be " "removed in scipy 0.12", DeprecationWarning) if xb is not None: warnings.warn("The `xb` parameter is deprecated and will be " "removed in scipy 0.12", DeprecationWarning) self.xa = xa self.xb = xb self.xtol = xtol self._size = 1 self.m = 0.0 self.moment_type = momtype self.expandarr = 1 if not hasattr(self,'numargs'): #allows more general subclassing with *args cdf_signature = inspect.getargspec(self._cdf.im_func) numargs1 = len(cdf_signature[0]) - 2 pdf_signature = inspect.getargspec(self._pdf.im_func) numargs2 = len(pdf_signature[0]) - 2 self.numargs = max(numargs1, numargs2) #nin correction self.vecfunc = sgf(self._ppf_single_call,otypes='d') self.vecfunc.nin = self.numargs + 1 self.vecentropy = sgf(self._entropy,otypes='d') self.vecentropy.nin = self.numargs + 1 self.veccdf = sgf(self._cdf_single_call,otypes='d') self.veccdf.nin = self.numargs + 1 self.shapes = shapes self.extradoc = extradoc if momtype == 0: self.generic_moment = sgf(self._mom0_sc,otypes='d') else: self.generic_moment = sgf(self._mom1_sc,otypes='d') self.generic_moment.nin = self.numargs+1 # Because of the *args argument # of _mom0_sc, vectorize cannot count the number of arguments correctly. if longname is None: if name[0] in ['aeiouAEIOU']: hstr = "An " else: hstr = "A " longname = hstr + name # generate docstring for subclass instances if self.__doc__ is None: self._construct_default_doc(longname=longname, extradoc=extradoc) else: self._construct_doc() ## This only works for old-style classes... # self.__class__.__doc__ = self.__doc__ def _construct_default_doc(self, longname=None, extradoc=None): """Construct instance docstring from the default template.""" if longname is None: longname = 'A' if extradoc is None: extradoc = '' if extradoc.startswith('\n\n'): extradoc = extradoc[2:] self.__doc__ = ''.join(['%s continuous random variable.'%longname, '\n\n%(before_notes)s\n', docheaders['notes'], extradoc, '\n%(example)s']) self._construct_doc() def _construct_doc(self): """Construct the instance docstring with string substitutions.""" tempdict = docdict.copy() tempdict['name'] = self.name or 'distname' tempdict['shapes'] = self.shapes or '' if self.shapes is None: # remove shapes from call parameters if there are none for item in ['callparams', 'default', 'before_notes']: tempdict[item] = tempdict[item].replace(\ "\n%(shapes)s : array_like\n shape parameters", "") for i in range(2): if self.shapes is None: # necessary because we use %(shapes)s in two forms (w w/o ", ") self.__doc__ = self.__doc__.replace("%(shapes)s, ", "") self.__doc__ = doccer.docformat(self.__doc__, tempdict) def _ppf_to_solve(self, x, q,*args): return apply(self.cdf, (x, )+args)-q def _ppf_single_call(self, q, *args): left = right = None if self.a > -np.inf: left = self.a if self.b < np.inf: right = self.b factor = 10. if not left: # i.e. self.a = -inf left = -1.*factor while self._ppf_to_solve(left, q,*args) > 0.: right = left left *= factor # left is now such that cdf(left) < q if not right: # i.e. self.b = inf right = factor while self._ppf_to_solve(right, q,*args) < 0.: left = right right *= factor # right is now such that cdf(right) > q return optimize.brentq(self._ppf_to_solve, \ left, right, args=(q,)+args, xtol=self.xtol) # moment from definition def _mom_integ0(self, x,m,*args): return x**m * self.pdf(x,*args) def _mom0_sc(self, m,*args): return integrate.quad(self._mom_integ0, self.a, self.b, args=(m,)+args)[0] # moment calculated using ppf def _mom_integ1(self, q,m,*args): return (self.ppf(q,*args))**m def _mom1_sc(self, m,*args): return integrate.quad(self._mom_integ1, 0, 1,args=(m,)+args)[0] ## These are the methods you must define (standard form functions) def _argcheck(self, *args): # Default check for correct values on args and keywords. # Returns condition array of 1's where arguments are correct and # 0's where they are not. cond = 1 for arg in args: cond = logical_and(cond,(asarray(arg) > 0)) return cond def _pdf(self,x,*args): return derivative(self._cdf,x,dx=1e-5,args=args,order=5) ## Could also define any of these def _logpdf(self, x, *args): return log(self._pdf(x, *args)) ##(return 1-d using self._size to get number) def _rvs(self, *args): ## Use basic inverse cdf algorithm for RV generation as default. U = mtrand.sample(self._size) Y = self._ppf(U,*args) return Y def _cdf_single_call(self, x, *args): return integrate.quad(self._pdf, self.a, x, args=args)[0] def _cdf(self, x, *args): return self.veccdf(x,*args) def _logcdf(self, x, *args): return log(self._cdf(x, *args)) def _sf(self, x, *args): return 1.0-self._cdf(x,*args) def _logsf(self, x, *args): return log(self._sf(x, *args)) def _ppf(self, q, *args): return self.vecfunc(q,*args) def _isf(self, q, *args): return self._ppf(1.0-q,*args) #use correct _ppf for subclasses # The actual cacluation functions (no basic checking need be done) # If these are defined, the others won't be looked at. # Otherwise, the other set can be defined. def _stats(self,*args, **kwds): return None, None, None, None # Central moments def _munp(self,n,*args): return self.generic_moment(n,*args) def pdf(self,x,*args,**kwds): """ Probability density function at x of the given RV. Parameters ---------- x : array_like quantiles arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- pdf : ndarray Probability density function evaluated at x """ loc,scale=map(kwds.get,['loc','scale']) args, loc, scale = self._fix_loc_scale(args, loc, scale) x,loc,scale = map(asarray,(x,loc,scale)) args = tuple(map(asarray,args)) x = asarray((x-loc)*1.0/scale) cond0 = self._argcheck(*args) & (scale > 0) cond1 = (scale > 0) & (x >= self.a) & (x <= self.b) cond = cond0 & cond1 output = zeros(shape(cond),'d') putmask(output,(1-cond0)+np.isnan(x),self.badvalue) if any(cond): goodargs = argsreduce(cond, *((x,)+args+(scale,))) scale, goodargs = goodargs[-1], goodargs[:-1] place(output,cond,self._pdf(*goodargs) / scale) if output.ndim == 0: return output[()] return output def logpdf(self, x, *args, **kwds): """ Log of the probability density function at x of the given RV. This uses a more numerically accurate calculation if available. Parameters ---------- x : array_like quantiles arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- logpdf : array_like Log of the probability density function evaluated at x """ loc,scale=map(kwds.get,['loc','scale']) args, loc, scale = self._fix_loc_scale(args, loc, scale) x,loc,scale = map(asarray,(x,loc,scale)) args = tuple(map(asarray,args)) x = asarray((x-loc)*1.0/scale) cond0 = self._argcheck(*args) & (scale > 0) cond1 = (scale > 0) & (x >= self.a) & (x <= self.b) cond = cond0 & cond1 output = empty(shape(cond),'d') output.fill(NINF) putmask(output,(1-cond0)+np.isnan(x),self.badvalue) if any(cond): goodargs = argsreduce(cond, *((x,)+args+(scale,))) scale, goodargs = goodargs[-1], goodargs[:-1] place(output,cond,self._logpdf(*goodargs) - log(scale)) if output.ndim == 0: return output[()] return output def cdf(self,x,*args,**kwds): """ Cumulative distribution function at x of the given RV. Parameters ---------- x : array_like quantiles arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- cdf : array_like Cumulative distribution function evaluated at x """ loc,scale=map(kwds.get,['loc','scale']) args, loc, scale = self._fix_loc_scale(args, loc, scale) x,loc,scale = map(asarray,(x,loc,scale)) args = tuple(map(asarray,args)) x = (x-loc)*1.0/scale cond0 = self._argcheck(*args) & (scale > 0) cond1 = (scale > 0) & (x > self.a) & (x < self.b) cond2 = (x >= self.b) & cond0 cond = cond0 & cond1 output = zeros(shape(cond),'d') place(output,(1-cond0)+np.isnan(x),self.badvalue) place(output,cond2,1.0) if any(cond): #call only if at least 1 entry goodargs = argsreduce(cond, *((x,)+args)) place(output,cond,self._cdf(*goodargs)) if output.ndim == 0: return output[()] return output def logcdf(self,x,*args,**kwds): """ Log of the cumulative distribution function at x of the given RV. Parameters ---------- x : array_like quantiles arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- logcdf : array_like Log of the cumulative distribution function evaluated at x """ loc,scale=map(kwds.get,['loc','scale']) args, loc, scale = self._fix_loc_scale(args, loc, scale) x,loc,scale = map(asarray,(x,loc,scale)) args = tuple(map(asarray,args)) x = (x-loc)*1.0/scale cond0 = self._argcheck(*args) & (scale > 0) cond1 = (scale > 0) & (x > self.a) & (x < self.b) cond2 = (x >= self.b) & cond0 cond = cond0 & cond1 output = empty(shape(cond),'d') output.fill(NINF) place(output,(1-cond0)*(cond1==cond1)+np.isnan(x),self.badvalue) place(output,cond2,0.0) if any(cond): #call only if at least 1 entry goodargs = argsreduce(cond, *((x,)+args)) place(output,cond,self._logcdf(*goodargs)) if output.ndim == 0: return output[()] return output def sf(self,x,*args,**kwds): """ Survival function (1-cdf) at x of the given RV. Parameters ---------- x : array_like quantiles arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- sf : array_like Survival function evaluated at x """ loc,scale=map(kwds.get,['loc','scale']) args, loc, scale = self._fix_loc_scale(args, loc, scale) x,loc,scale = map(asarray,(x,loc,scale)) args = tuple(map(asarray,args)) x = (x-loc)*1.0/scale cond0 = self._argcheck(*args) & (scale > 0) cond1 = (scale > 0) & (x > self.a) & (x < self.b) cond2 = cond0 & (x <= self.a) cond = cond0 & cond1 output = zeros(shape(cond),'d') place(output,(1-cond0)+np.isnan(x),self.badvalue) place(output,cond2,1.0) if any(cond): goodargs = argsreduce(cond, *((x,)+args)) place(output,cond,self._sf(*goodargs)) if output.ndim == 0: return output[()] return output def logsf(self,x,*args,**kwds): """ Log of the survival function of the given RV. Returns the log of the "survival function," defined as (1 - `cdf`), evaluated at `x`. Parameters ---------- x : array_like quantiles arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- logsf : ndarray Log of the survival function evaluated at `x`. """ loc,scale=map(kwds.get,['loc','scale']) args, loc, scale = self._fix_loc_scale(args, loc, scale) x,loc,scale = map(asarray,(x,loc,scale)) args = tuple(map(asarray,args)) x = (x-loc)*1.0/scale cond0 = self._argcheck(*args) & (scale > 0) cond1 = (scale > 0) & (x > self.a) & (x < self.b) cond2 = cond0 & (x <= self.a) cond = cond0 & cond1 output = empty(shape(cond),'d') output.fill(NINF) place(output,(1-cond0)+np.isnan(x),self.badvalue) place(output,cond2,0.0) if any(cond): goodargs = argsreduce(cond, *((x,)+args)) place(output,cond,self._logsf(*goodargs)) if output.ndim == 0: return output[()] return output def ppf(self,q,*args,**kwds): """ Percent point function (inverse of cdf) at q of the given RV. Parameters ---------- q : array_like lower tail probability arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- x : array_like quantile corresponding to the lower tail probability q. """ loc,scale=map(kwds.get,['loc','scale']) args, loc, scale = self._fix_loc_scale(args, loc, scale) q,loc,scale = map(asarray,(q,loc,scale)) args = tuple(map(asarray,args)) cond0 = self._argcheck(*args) & (scale > 0) & (loc==loc) cond1 = (q > 0) & (q < 1) cond2 = (q==1) & cond0 cond = cond0 & cond1 output = valarray(shape(cond),value=self.a*scale + loc) place(output,(1-cond0)+(1-cond1)*(q!=0.0), self.badvalue) place(output,cond2,self.b*scale + loc) if any(cond): #call only if at least 1 entry goodargs = argsreduce(cond, *((q,)+args+(scale,loc))) scale, loc, goodargs = goodargs[-2], goodargs[-1], goodargs[:-2] place(output,cond,self._ppf(*goodargs)*scale + loc) if output.ndim == 0: return output[()] return output def isf(self,q,*args,**kwds): """ Inverse survival function at q of the given RV. Parameters ---------- q : array_like upper tail probability arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- x : array_like quantile corresponding to the upper tail probability q. """ loc,scale=map(kwds.get,['loc','scale']) args, loc, scale = self._fix_loc_scale(args, loc, scale) q,loc,scale = map(asarray,(q,loc,scale)) args = tuple(map(asarray,args)) cond0 = self._argcheck(*args) & (scale > 0) & (loc==loc) cond1 = (q > 0) & (q < 1) cond2 = (q==1) & cond0 cond = cond0 & cond1 output = valarray(shape(cond),value=self.b) #place(output,(1-cond0)*(cond1==cond1), self.badvalue) place(output,(1-cond0)*(cond1==cond1)+(1-cond1)*(q!=0.0), self.badvalue) place(output,cond2,self.a) if any(cond): #call only if at least 1 entry goodargs = argsreduce(cond, *((q,)+args+(scale,loc))) #PB replace 1-q by q scale, loc, goodargs = goodargs[-2], goodargs[-1], goodargs[:-2] place(output,cond,self._isf(*goodargs)*scale + loc) #PB use _isf instead of _ppf if output.ndim == 0: return output[()] return output def stats(self,*args,**kwds): """ Some statistics of the given RV Parameters ---------- arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) moments : string, optional composed of letters ['mvsk'] defining which moments to compute: 'm' = mean, 'v' = variance, 's' = (Fisher's) skew, 'k' = (Fisher's) kurtosis. (default='mv') Returns ------- stats : sequence of requested moments. """ loc,scale,moments=map(kwds.get,['loc','scale','moments']) N = len(args) if N > self.numargs: if N == self.numargs + 1 and loc is None: # loc is given without keyword loc = args[-1] if N == self.numargs + 2 and scale is None: # loc and scale given without keyword loc, scale = args[-2:] if N == self.numargs + 3 and moments is None: # loc, scale, and moments loc, scale, moments = args[-3:] args = args[:self.numargs] if scale is None: scale = 1.0 if loc is None: loc = 0.0 if moments is None: moments = 'mv' loc,scale = map(asarray,(loc,scale)) args = tuple(map(asarray,args)) cond = self._argcheck(*args) & (scale > 0) & (loc==loc) signature = inspect.getargspec(self._stats.im_func) if (signature[2] is not None) or ('moments' in signature[0]): mu, mu2, g1, g2 = self._stats(*args,**{'moments':moments}) else: mu, mu2, g1, g2 = self._stats(*args) if g1 is None: mu3 = None else: mu3 = g1*np.power(mu2,1.5) #(mu2**1.5) breaks down for nan and inf default = valarray(shape(cond), self.badvalue) output = [] # Use only entries that are valid in calculation if any(cond): goodargs = argsreduce(cond, *(args+(scale,loc))) scale, loc, goodargs = goodargs[-2], goodargs[-1], goodargs[:-2] if 'm' in moments: if mu is None: mu = self._munp(1.0,*goodargs) out0 = default.copy() place(out0,cond,mu*scale+loc) output.append(out0) if 'v' in moments: if mu2 is None: mu2p = self._munp(2.0,*goodargs) if mu is None: mu = self._munp(1.0,*goodargs) mu2 = mu2p - mu*mu if np.isinf(mu): #if mean is inf then var is also inf mu2 = np.inf out0 = default.copy() place(out0,cond,mu2*scale*scale) output.append(out0) if 's' in moments: if g1 is None: mu3p = self._munp(3.0,*goodargs) if mu is None: mu = self._munp(1.0,*goodargs) if mu2 is None: mu2p = self._munp(2.0,*goodargs) mu2 = mu2p - mu*mu mu3 = mu3p - 3*mu*mu2 - mu**3 g1 = mu3 / mu2**1.5 out0 = default.copy() place(out0,cond,g1) output.append(out0) if 'k' in moments: if g2 is None: mu4p = self._munp(4.0,*goodargs) if mu is None: mu = self._munp(1.0,*goodargs) if mu2 is None: mu2p = self._munp(2.0,*goodargs) mu2 = mu2p - mu*mu if mu3 is None: mu3p = self._munp(3.0,*goodargs) mu3 = mu3p - 3*mu*mu2 - mu**3 mu4 = mu4p - 4*mu*mu3 - 6*mu*mu*mu2 - mu**4 g2 = mu4 / mu2**2.0 - 3.0 out0 = default.copy() place(out0,cond,g2) output.append(out0) else: #no valid args output = [] for _ in moments: out0 = default.copy() output.append(out0) if len(output) == 1: return output[0] else: return tuple(output) def moment(self, n, *args, **kwds): """ n'th order non-central moment of distribution. Parameters ---------- n : int, n>=1 Order of moment. arg1, arg2, arg3,... : float The shape parameter(s) for the distribution (see docstring of the instance object for more information). kwds : keyword arguments, optional These can include "loc" and "scale", as well as other keyword arguments relevant for a given distribution. """ loc = kwds.get('loc', 0) scale = kwds.get('scale', 1) if not (self._argcheck(*args) and (scale > 0)): return nan if (floor(n) != n): raise ValueError("Moment must be an integer.") if (n < 0): raise ValueError("Moment must be positive.") mu, mu2, g1, g2 = None, None, None, None if (n > 0) and (n < 5): signature = inspect.getargspec(self._stats.im_func) if (signature[2] is not None) or ('moments' in signature[0]): mdict = {'moments':{1:'m',2:'v',3:'vs',4:'vk'}[n]} else: mdict = {} mu, mu2, g1, g2 = self._stats(*args,**mdict) val = _moment_from_stats(n, mu, mu2, g1, g2, self._munp, args) # Convert to transformed X = L + S*Y # so E[X^n] = E[(L+S*Y)^n] = L^n sum(comb(n,k)*(S/L)^k E[Y^k],k=0...n) if loc == 0: return scale**n * val else: result = 0 fac = float(scale) / float(loc) for k in range(n): valk = _moment_from_stats(k, mu, mu2, g1, g2, self._munp, args) result += comb(n,k,exact=True)*(fac**k) * valk result += fac**n * val return result * loc**n def _nnlf(self, x, *args): return -sum(self._logpdf(x, *args),axis=0) def nnlf(self, theta, x): # - sum (log pdf(x, theta),axis=0) # where theta are the parameters (including loc and scale) # try: loc = theta[-2] scale = theta[-1] args = tuple(theta[:-2]) except IndexError: raise ValueError("Not enough input arguments.") if not self._argcheck(*args) or scale <= 0: return inf x = asarray((x-loc) / scale) cond0 = (x <= self.a) | (x >= self.b) if (any(cond0)): return inf else: N = len(x) return self._nnlf(x, *args) + N*log(scale) # return starting point for fit (shape arguments + loc + scale) def _fitstart(self, data, args=None): if args is None: args = (1.0,)*self.numargs return args + self.fit_loc_scale(data, *args) # Return the (possibly reduced) function to optimize in order to find MLE # estimates for the .fit method def _reduce_func(self, args, kwds): args = list(args) Nargs = len(args) fixedn = [] index = range(Nargs) names = ['f%d' % n for n in range(Nargs - 2)] + ['floc', 'fscale'] x0 = [] for n, key in zip(index, names): if kwds.has_key(key): fixedn.append(n) args[n] = kwds[key] else: x0.append(args[n]) if len(fixedn) == 0: func = self.nnlf restore = None else: if len(fixedn) == len(index): raise ValueError("All parameters fixed. There is nothing to optimize.") def restore(args, theta): # Replace with theta for all numbers not in fixedn # This allows the non-fixed values to vary, but # we still call self.nnlf with all parameters. i = 0 for n in range(Nargs): if n not in fixedn: args[n] = theta[i] i += 1 return args def func(theta, x): newtheta = restore(args[:], theta) return self.nnlf(newtheta, x) return x0, func, restore, args def fit(self, data, *args, **kwds): """ Return MLEs for shape, location, and scale parameters from data. MLE stands for Maximum Likelihood Estimate. Starting estimates for the fit are given by input arguments; for any arguments not provided with starting estimates, ``self._fitstart(data)`` is called to generate such. One can hold some parameters fixed to specific values by passing in keyword arguments ``f0``, ``f1``, ..., ``fn`` (for shape parameters) and ``floc`` and ``fscale`` (for location and scale parameters, respectively). Parameters ---------- data : array_like Data to use in calculating the MLEs. args : floats, optional Starting value(s) for any shape-characterizing arguments (those not provided will be determined by a call to ``_fitstart(data)``). No default value. kwds : floats, optional Starting values for the location and scale parameters; no default. Special keyword arguments are recognized as holding certain parameters fixed: f0...fn : hold respective shape parameters fixed. floc : hold location parameter fixed to specified value. fscale : hold scale parameter fixed to specified value. optimizer : The optimizer to use. The optimizer must take func, and starting position as the first two arguments, plus args (for extra arguments to pass to the function to be optimized) and disp=0 to suppress output as keyword arguments. Returns ------- shape, loc, scale : tuple of floats MLEs for any shape statistics, followed by those for location and scale. """ Narg = len(args) if Narg > self.numargs: raise ValueError("Too many input arguments.") start = [None]*2 if (Narg < self.numargs) or not (kwds.has_key('loc') and kwds.has_key('scale')): start = self._fitstart(data) # get distribution specific starting locations args += start[Narg:-2] loc = kwds.get('loc', start[-2]) scale = kwds.get('scale', start[-1]) args += (loc, scale) x0, func, restore, args = self._reduce_func(args, kwds) optimizer = kwds.get('optimizer', optimize.fmin) # convert string to function in scipy.optimize if not callable(optimizer) and isinstance(optimizer, (str, unicode)): if not optimizer.startswith('fmin_'): optimizer = "fmin_"+optimizer if optimizer == 'fmin_': optimizer = 'fmin' try: optimizer = getattr(optimize, optimizer) except AttributeError: raise ValueError("%s is not a valid optimizer" % optimizer) vals = optimizer(func,x0,args=(ravel(data),),disp=0) if restore is not None: vals = restore(args, vals) vals = tuple(vals) return vals def fit_loc_scale(self, data, *args): """ Estimate loc and scale parameters from data using 1st and 2nd moments. Parameters ---------- data : array_like Data to fit. arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). Returns ------- Lhat : float Estimated location parameter for the data. Shat : float Estimated scale parameter for the data. """ mu, mu2 = self.stats(*args,**{'moments':'mv'}) tmp = asarray(data) muhat = tmp.mean() mu2hat = tmp.var() Shat = sqrt(mu2hat / mu2) Lhat = muhat - Shat*mu return Lhat, Shat @np.deprecate def est_loc_scale(self, data, *args): """This function is deprecated, use self.fit_loc_scale(data) instead.""" return self.fit_loc_scale(data, *args) def freeze(self,*args,**kwds): """Freeze the distribution for the given arguments. Parameters ---------- arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution. Should include all the non-optional arguments, may include ``loc`` and ``scale``. Returns ------- rv_frozen : rv_frozen instance The frozen distribution. """ return rv_frozen(self,*args,**kwds) def __call__(self, *args, **kwds): return self.freeze(*args, **kwds) def _entropy(self, *args): def integ(x): val = self._pdf(x, *args) return val*log(val) entr = -integrate.quad(integ,self.a,self.b)[0] if not np.isnan(entr): return entr else: # try with different limits if integration problems low,upp = self.ppf([0.001,0.999],*args) if np.isinf(self.b): upper = upp else: upper = self.b if np.isinf(self.a): lower = low else: lower = self.a return -integrate.quad(integ,lower,upper)[0] def entropy(self, *args, **kwds): """ Differential entropy of the RV. Parameters ---------- arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional Location parameter (default=0). scale : array_like, optional Scale parameter (default=1). """ loc,scale=map(kwds.get,['loc','scale']) args, loc, scale = self._fix_loc_scale(args, loc, scale) args = tuple(map(asarray,args)) cond0 = self._argcheck(*args) & (scale > 0) & (loc==loc) output = zeros(shape(cond0),'d') place(output,(1-cond0),self.badvalue) goodargs = argsreduce(cond0, *args) #I don't know when or why vecentropy got broken when numargs == 0 if self.numargs == 0: place(output,cond0,self._entropy()+log(scale)) else: place(output,cond0,self.vecentropy(*goodargs)+log(scale)) return output def expect(self, func=None, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds): """Calculate expected value of a function with respect to the distribution Location and scale only tested on a few examples. Parameters ---------- func : callable, optional Function for which integral is calculated. Takes only one argument. The default is the identity mapping f(x) = x. args : tuple, optional Argument (parameters) of the distribution. lb, ub : scalar, optional Lower and upper bound for integration. default is set to the support of the distribution. conditional : bool, optional If True, the integral is corrected by the conditional probability of the integration interval. The return value is the expectation of the function, conditional on being in the given interval. Default is False. Additional keyword arguments are passed to the integration routine. Returns ------- expected value : float Notes ----- This function has not been checked for it's behavior when the integral is not finite. The integration behavior is inherited from integrate.quad. """ lockwds = {'loc': loc, 'scale':scale} if func is None: def fun(x, *args): return x*self.pdf(x, *args, **lockwds) else: def fun(x, *args): return func(x)*self.pdf(x, *args, **lockwds) if lb is None: lb = loc + self.a * scale if ub is None: ub = loc + self.b * scale if conditional: invfac = (self.sf(lb, *args, **lockwds) - self.sf(ub, *args, **lockwds)) else: invfac = 1.0 kwds['args'] = args return integrate.quad(fun, lb, ub, **kwds)[0] / invfac _EULER = 0.577215664901532860606512090082402431042 # -special.psi(1) _ZETA3 = 1.202056903159594285399738161511449990765 # special.zeta(3,1) Apery's constant ## Kolmogorov-Smirnov one-sided and two-sided test statistics class ksone_gen(rv_continuous): """General Kolmogorov-Smirnov one-sided test. %(default)s """ def _cdf(self,x,n): return 1.0-special.smirnov(n,x) def _ppf(self,q,n): return special.smirnovi(n,1.0-q) ksone = ksone_gen(a=0.0, name='ksone', shapes="n") class kstwobign_gen(rv_continuous): """Kolmogorov-Smirnov two-sided test for large N. %(default)s """ def _cdf(self,x): return 1.0-special.kolmogorov(x) def _sf(self,x): return special.kolmogorov(x) def _ppf(self,q): return special.kolmogi(1.0-q) kstwobign = kstwobign_gen(a=0.0, name='kstwobign') ## Normal distribution # loc = mu, scale = std # Keep these implementations out of the class definition so they can be reused # by other distributions. _norm_pdf_C = math.sqrt(2*pi) _norm_pdf_logC = math.log(_norm_pdf_C) def _norm_pdf(x): return exp(-x**2/2.0) / _norm_pdf_C def _norm_logpdf(x): return -x**2 / 2.0 - _norm_pdf_logC def _norm_cdf(x): return special.ndtr(x) def _norm_logcdf(x): return special.log_ndtr(x) def _norm_ppf(q): return special.ndtri(q) class norm_gen(rv_continuous): """A normal continuous random variable. The location (loc) keyword specifies the mean. The scale (scale) keyword specifies the standard deviation. %(before_notes)s Notes ----- The probability density function for `norm` is:: norm.pdf(x) = exp(-x**2/2)/sqrt(2*pi) %(example)s """ def _rvs(self): return mtrand.standard_normal(self._size) def _pdf(self,x): return _norm_pdf(x) def _logpdf(self, x): return _norm_logpdf(x) def _cdf(self,x): return _norm_cdf(x) def _logcdf(self, x): return _norm_logcdf(x) def _sf(self, x): return _norm_cdf(-x) def _logsf(self, x): return _norm_logcdf(-x) def _ppf(self,q): return _norm_ppf(q) def _isf(self,q): return -_norm_ppf(q) def _stats(self): return 0.0, 1.0, 0.0, 0.0 def _entropy(self): return 0.5*(log(2*pi)+1) norm = norm_gen(name='norm') ## Alpha distribution ## class alpha_gen(rv_continuous): """An alpha continuous random variable. %(before_notes)s Notes ----- The probability density function for `alpha` is:: alpha.pdf(x,a) = 1/(x**2*Phi(a)*sqrt(2*pi)) * exp(-1/2 * (a-1/x)**2), where ``Phi(alpha)`` is the normal CDF, ``x > 0``, and ``a > 0``. %(example)s """ def _pdf(self, x, a): return 1.0/(x**2)/special.ndtr(a)*_norm_pdf(a-1.0/x) def _logpdf(self, x, a): return -2*log(x) + _norm_logpdf(a-1.0/x) - log(special.ndtr(a)) def _cdf(self, x, a): return special.ndtr(a-1.0/x) / special.ndtr(a) def _ppf(self, q, a): return 1.0/asarray(a-special.ndtri(q*special.ndtr(a))) def _stats(self, a): return [inf]*2 + [nan]*2 alpha = alpha_gen(a=0.0, name='alpha', shapes='a') ## Anglit distribution ## class anglit_gen(rv_continuous): """An anglit continuous random variable. %(before_notes)s Notes ----- The probability density function for `anglit` is:: anglit.pdf(x) = sin(2*x + pi/2) = cos(2*x), for ``-pi/4 <= x <= pi/4``. %(example)s """ def _pdf(self, x): return cos(2*x) def _cdf(self, x): return sin(x+pi/4)**2.0 def _ppf(self, q): return (arcsin(sqrt(q))-pi/4) def _stats(self): return 0.0, pi*pi/16-0.5, 0.0, -2*(pi**4 - 96)/(pi*pi-8)**2 def _entropy(self): return 1-log(2) anglit = anglit_gen(a=-pi/4, b=pi/4, name='anglit') ## Arcsine distribution ## class arcsine_gen(rv_continuous): """An arcsine continuous random variable. %(before_notes)s Notes ----- The probability density function for `arcsine` is:: arcsine.pdf(x) = 1/(pi*sqrt(x*(1-x))) for 0 < x < 1. %(example)s """ def _pdf(self, x): return 1.0/pi/sqrt(x*(1-x)) def _cdf(self, x): return 2.0/pi*arcsin(sqrt(x)) def _ppf(self, q): return sin(pi/2.0*q)**2.0 def _stats(self): #mup = 0.5, 3.0/8.0, 15.0/48.0, 35.0/128.0 mu = 0.5 mu2 = 1.0/8 g1 = 0 g2 = -3.0/2.0 return mu, mu2, g1, g2 def _entropy(self): return -0.24156447527049044468 arcsine = arcsine_gen(a=0.0, b=1.0, name='arcsine') ## Beta distribution ## class beta_gen(rv_continuous): """A beta continuous random variable. %(before_notes)s Notes ----- The probability density function for `beta` is:: beta.pdf(x, a, b) = gamma(a+b)/(gamma(a)*gamma(b)) * x**(a-1) * (1-x)**(b-1), for ``0 < x < 1``, ``a > 0``, ``b > 0``. %(example)s """ def _rvs(self, a, b): return mtrand.beta(a,b,self._size) def _pdf(self, x, a, b): Px = (1.0-x)**(b-1.0) * x**(a-1.0) Px /= special.beta(a,b) return Px def _logpdf(self, x, a, b): lPx = (b-1.0)*log(1.0-x) + (a-1.0)*log(x) lPx -= log(special.beta(a,b)) return lPx def _cdf(self, x, a, b): return special.btdtr(a,b,x) def _ppf(self, q, a, b): return special.btdtri(a,b,q) def _stats(self, a, b): mn = a *1.0 / (a + b) var = (a*b*1.0)/(a+b+1.0)/(a+b)**2.0 g1 = 2.0*(b-a)*sqrt((1.0+a+b)/(a*b)) / (2+a+b) g2 = 6.0*(a**3 + a**2*(1-2*b) + b**2*(1+b) - 2*a*b*(2+b)) g2 /= a*b*(a+b+2)*(a+b+3) return mn, var, g1, g2 def _fitstart(self, data): g1 = _skew(data) g2 = _kurtosis(data) def func(x): a, b = x sk = 2*(b-a)*sqrt(a + b + 1) / (a + b + 2) / sqrt(a*b) ku = a**3 - a**2*(2*b-1) + b**2*(b+1) - 2*a*b*(b+2) ku /= a*b*(a+b+2)*(a+b+3) ku *= 6 return [sk-g1, ku-g2] a, b = optimize.fsolve(func, (1.0, 1.0)) return super(beta_gen, self)._fitstart(data, args=(a,b)) def fit(self, data, *args, **kwds): floc = kwds.get('floc', None) fscale = kwds.get('fscale', None) if floc is not None and fscale is not None: # special case data = (ravel(data)-floc)/fscale xbar = data.mean() v = data.var(ddof=0) fac = xbar*(1-xbar)/v - 1 a = xbar * fac b = (1-xbar) * fac return a, b, floc, fscale else: # do general fit return super(beta_gen, self).fit(data, *args, **kwds) beta = beta_gen(a=0.0, b=1.0, name='beta', shapes='a, b') ## Beta Prime class betaprime_gen(rv_continuous): """A beta prima continuous random variable. %(before_notes)s Notes ----- The probability density function for `betaprime` is:: betaprime.pdf(x, a, b) = gamma(a+b) / (gamma(a)*gamma(b)) * x**(a-1) * (1-x)**(-a-b) for ``x > 0``, ``a > 0``, ``b > 0``. %(example)s """ def _rvs(self, a, b): u1 = gamma.rvs(a,size=self._size) u2 = gamma.rvs(b,size=self._size) return (u1 / u2) def _pdf(self, x, a, b): return 1.0/special.beta(a,b)*x**(a-1.0)/(1+x)**(a+b) def _logpdf(self, x, a, b): return (a-1.0)*log(x) - (a+b)*log(1+x) - log(special.beta(a,b)) def _cdf_skip(self, x, a, b): # remove for now: special.hyp2f1 is incorrect for large a x = where(x==1.0, 1.0-1e-6,x) return pow(x,a)*special.hyp2f1(a+b,a,1+a,-x)/a/special.beta(a,b) def _munp(self, n, a, b): if (n == 1.0): return where(b > 1, a/(b-1.0), inf) elif (n == 2.0): return where(b > 2, a*(a+1.0)/((b-2.0)*(b-1.0)), inf) elif (n == 3.0): return where(b > 3, a*(a+1.0)*(a+2.0)/((b-3.0)*(b-2.0)*(b-1.0)), inf) elif (n == 4.0): return where(b > 4, a*(a+1.0)*(a+2.0)*(a+3.0)/((b-4.0)*(b-3.0) \ *(b-2.0)*(b-1.0)), inf) else: raise NotImplementedError betaprime = betaprime_gen(a=0.0, b=500.0, name='betaprime', shapes='a, b') ## Bradford ## class bradford_gen(rv_continuous): """A Bradford continuous random variable. %(before_notes)s Notes ----- The probability density function for `bradford` is:: bradford.pdf(x, c) = c / (k * (1+c*x)), for ``0 < x < 1``, ``c > 0`` and ``k = log(1+c)``. %(example)s """ def _pdf(self, x, c): return c / (c*x + 1.0) / log(1.0+c) def _cdf(self, x, c): return log(1.0+c*x) / log(c+1.0) def _ppf(self, q, c): return ((1.0+c)**q-1)/c def _stats(self, c, moments='mv'): k = log(1.0+c) mu = (c-k)/(c*k) mu2 = ((c+2.0)*k-2.0*c)/(2*c*k*k) g1 = None g2 = None if 's' in moments: g1 = sqrt(2)*(12*c*c-9*c*k*(c+2)+2*k*k*(c*(c+3)+3)) g1 /= sqrt(c*(c*(k-2)+2*k))*(3*c*(k-2)+6*k) if 'k' in moments: g2 = c**3*(k-3)*(k*(3*k-16)+24)+12*k*c*c*(k-4)*(k-3) \ + 6*c*k*k*(3*k-14) + 12*k**3 g2 /= 3*c*(c*(k-2)+2*k)**2 return mu, mu2, g1, g2 def _entropy(self, c): k = log(1+c) return k/2.0 - log(c/k) bradford = bradford_gen(a=0.0, b=1.0, name='bradford', shapes='c') ## Burr # burr with d=1 is called the fisk distribution class burr_gen(rv_continuous): """A Burr continuous random variable. %(before_notes)s Notes ----- The probability density function for `burr` is:: burr.pdf(x, c, d) = c * d * x**(-c-1) * (1+x**(-c))**(-d-1) for ``x > 0``. %(example)s """ def _pdf(self, x, c, d): return c*d*(x**(-c-1.0))*((1+x**(-c*1.0))**(-d-1.0)) def _cdf(self, x, c, d): return (1+x**(-c*1.0))**(-d**1.0) def _ppf(self, q, c, d): return (q**(-1.0/d)-1)**(-1.0/c) def _stats(self, c, d, moments='mv'): g2c, g2cd = gam(1-2.0/c), gam(2.0/c+d) g1c, g1cd = gam(1-1.0/c), gam(1.0/c+d) gd = gam(d) k = gd*g2c*g2cd - g1c**2 * g1cd**2 mu = g1c*g1cd / gd mu2 = k / gd**2.0 g1, g2 = None, None g3c, g3cd = None, None if 's' in moments: g3c, g3cd = gam(1-3.0/c), gam(3.0/c+d) g1 = 2*g1c**3 * g1cd**3 + gd*gd*g3c*g3cd - 3*gd*g2c*g1c*g1cd*g2cd g1 /= sqrt(k**3) if 'k' in moments: if g3c is None: g3c = gam(1-3.0/c) if g3cd is None: g3cd = gam(3.0/c+d) g4c, g4cd = gam(1-4.0/c), gam(4.0/c+d) g2 = 6*gd*g2c*g2cd * g1c**2 * g1cd**2 + gd**3 * g4c*g4cd g2 -= 3*g1c**4 * g1cd**4 -4*gd**2*g3c*g1c*g1cd*g3cd return mu, mu2, g1, g2 burr = burr_gen(a=0.0, name='burr', shapes="c, d") # Fisk distribution # burr is a generalization class fisk_gen(burr_gen): """A Fisk continuous random variable. The Fisk distribution is also known as the log-logistic distribution, and equals the Burr distribution with ``d=1``. %(before_notes)s See Also -------- burr %(example)s """ def _pdf(self, x, c): return burr_gen._pdf(self, x, c, 1.0) def _cdf(self, x, c): return burr_gen._cdf(self, x, c, 1.0) def _ppf(self, x, c): return burr_gen._ppf(self, x, c, 1.0) def _stats(self, c): return burr_gen._stats(self, c, 1.0) def _entropy(self, c): return 2 - log(c) fisk = fisk_gen(a=0.0, name='fisk', shapes='c') ## Cauchy # median = loc class cauchy_gen(rv_continuous): """A Cauchy continuous random variable. %(before_notes)s Notes ----- The probability density function for `cauchy` is:: cauchy.pdf(x) = 1 / (pi * (1 + x**2)) %(example)s """ def _pdf(self, x): return 1.0/pi/(1.0+x*x) def _cdf(self, x): return 0.5 + 1.0/pi*arctan(x) def _ppf(self, q): return tan(pi*q-pi/2.0) def _sf(self, x): return 0.5 - 1.0/pi*arctan(x) def _isf(self, q): return tan(pi/2.0-pi*q) def _stats(self): return inf, inf, nan, nan def _entropy(self): return log(4*pi) def _fitstart(data, args=None): return (0, 1) cauchy = cauchy_gen(name='cauchy') ## Chi ## (positive square-root of chi-square) ## chi(1, loc, scale) = halfnormal ## chi(2, 0, scale) = Rayleigh ## chi(3, 0, scale) = MaxWell class chi_gen(rv_continuous): """A chi continuous random variable. %(before_notes)s Notes ----- The probability density function for `chi` is:: chi.pdf(x,df) = x**(df-1) * exp(-x**2/2) / (2**(df/2-1) * gamma(df/2)) for ``x > 0``. %(example)s """ def _rvs(self, df): return sqrt(chi2.rvs(df,size=self._size)) def _pdf(self, x, df): return x**(df-1.)*exp(-x*x*0.5)/(2.0)**(df*0.5-1)/gam(df*0.5) def _cdf(self, x, df): return special.gammainc(df*0.5,0.5*x*x) def _ppf(self, q, df): return sqrt(2*special.gammaincinv(df*0.5,q)) def _stats(self, df): mu = sqrt(2)*special.gamma(df/2.0+0.5)/special.gamma(df/2.0) mu2 = df - mu*mu g1 = (2*mu**3.0 + mu*(1-2*df))/asarray(mu2**1.5) g2 = 2*df*(1.0-df)-6*mu**4 + 4*mu**2 * (2*df-1) g2 /= asarray(mu2**2.0) return mu, mu2, g1, g2 chi = chi_gen(a=0.0, name='chi', shapes='df') ## Chi-squared (gamma-distributed with loc=0 and scale=2 and shape=df/2) class chi2_gen(rv_continuous): """A chi-squared continuous random variable. %(before_notes)s Notes ----- The probability density function for `chi2` is:: chi2.pdf(x,df) = 1 / (2*gamma(df/2)) * (x/2)**(df/2-1) * exp(-x/2) %(example)s """ def _rvs(self, df): return mtrand.chisquare(df,self._size) def _pdf(self, x, df): return exp(self._logpdf(x, df)) def _logpdf(self, x, df): #term1 = (df/2.-1)*log(x) #term1[(df==2)*(x==0)] = 0 #avoid 0*log(0)==nan return (df/2.-1)*log(x+1e-300) - x/2. - gamln(df/2.) - (log(2)*df)/2. ## Px = x**(df/2.0-1)*exp(-x/2.0) ## Px /= special.gamma(df/2.0)* 2**(df/2.0) ## return log(Px) def _cdf(self, x, df): return special.chdtr(df, x) def _sf(self, x, df): return special.chdtrc(df, x) def _isf(self, p, df): return special.chdtri(df, p) def _ppf(self, p, df): return self._isf(1.0-p, df) def _stats(self, df): mu = df mu2 = 2*df g1 = 2*sqrt(2.0/df) g2 = 12.0/df return mu, mu2, g1, g2 chi2 = chi2_gen(a=0.0, name='chi2', shapes='df') ## Cosine (Approximation to the Normal) class cosine_gen(rv_continuous): """A cosine continuous random variable. %(before_notes)s Notes ----- The cosine distribution is an approximation to the normal distribution. The probability density function for `cosine` is:: cosine.pdf(x) = 1/(2*pi) * (1+cos(x)) for ``-pi <= x <= pi``. %(example)s """ def _pdf(self, x): return 1.0/2/pi*(1+cos(x)) def _cdf(self, x): return 1.0/2/pi*(pi + x + sin(x)) def _stats(self): return 0.0, pi*pi/3.0-2.0, 0.0, -6.0*(pi**4-90)/(5.0*(pi*pi-6)**2) def _entropy(self): return log(4*pi)-1.0 cosine = cosine_gen(a=-pi, b=pi, name='cosine') ## Double Gamma distribution class dgamma_gen(rv_continuous): """A double gamma continuous random variable. %(before_notes)s Notes ----- The probability density function for `dgamma` is:: dgamma.pdf(x, a) = 1 / (2*gamma(a)) * abs(x)**(a-1) * exp(-abs(x)) for ``a > 0``. %(example)s """ def _rvs(self, a): u = random(size=self._size) return (gamma.rvs(a,size=self._size)*where(u>=0.5,1,-1)) def _pdf(self, x, a): ax = abs(x) return 1.0/(2*special.gamma(a))*ax**(a-1.0) * exp(-ax) def _logpdf(self, x, a): ax = abs(x) return (a-1.0)*log(ax) - ax - log(2) - gamln(a) def _cdf(self, x, a): fac = 0.5*special.gammainc(a,abs(x)) return where(x>0,0.5+fac,0.5-fac) def _sf(self, x, a): fac = 0.5*special.gammainc(a,abs(x)) #return where(x>0,0.5-0.5*fac,0.5+0.5*fac) return where(x>0,0.5-fac,0.5+fac) def _ppf(self, q, a): fac = special.gammainccinv(a,1-abs(2*q-1)) return where(q>0.5, fac, -fac) def _stats(self, a): mu2 = a*(a+1.0) return 0.0, mu2, 0.0, (a+2.0)*(a+3.0)/mu2-3.0 dgamma = dgamma_gen(name='dgamma', shapes='a') ## Double Weibull distribution ## class dweibull_gen(rv_continuous): """A double Weibull continuous random variable. %(before_notes)s Notes ----- The probability density function for `dweibull` is:: dweibull.pdf(x, c) = c / 2 * abs(x)**(c-1) * exp(-abs(x)**c) %(example)s """ def _rvs(self, c): u = random(size=self._size) return weibull_min.rvs(c, size=self._size)*(where(u>=0.5,1,-1)) def _pdf(self, x, c): ax = abs(x) Px = c/2.0*ax**(c-1.0)*exp(-ax**c) return Px def _logpdf(self, x, c): ax = abs(x) return log(c) - log(2.0) + (c-1.0)*log(ax) - ax**c def _cdf(self, x, c): Cx1 = 0.5*exp(-abs(x)**c) return where(x > 0, 1-Cx1, Cx1) def _ppf_skip(self, q, c): fac = where(q<=0.5,2*q,2*q-1) fac = pow(asarray(log(1.0/fac)),1.0/c) return where(q>0.5,fac,-fac) def _stats(self, c): var = gam(1+2.0/c) return 0.0, var, 0.0, gam(1+4.0/c)/var dweibull = dweibull_gen(name='dweibull', shapes='c') ## ERLANG ## ## Special case of the Gamma distribution with shape parameter an integer. ## class erlang_gen(rv_continuous): """An Erlang continuous random variable. %(before_notes)s See Also -------- gamma Notes ----- The Erlang distribution is a special case of the Gamma distribution, with the shape parameter ``a`` an integer. Refer to the ``gamma`` distribution for further examples. """ def _rvs(self, a): return gamma.rvs(a, size=self._size) def _arg_check(self, a): return (a > 0) & (floor(a)==a) def _pdf(self, x, a): Px = (x)**(a-1.0)*exp(-x)/special.gamma(a) return Px def _logpdf(self, x, a): return (a-1.0)*log(x) - x - gamln(a) def _cdf(self, x, a): return special.gdtr(1.0,a,x) def _sf(self, x, a): return special.gdtrc(1.0,a,x) def _ppf(self, q, a): return special.gdtrix(1.0, a, q) def _stats(self, a): a = a*1.0 return a, a, 2/sqrt(a), 6/a def _entropy(self, a): return special.psi(a)*(1-a) + 1 + gamln(a) erlang = erlang_gen(a=0.0, name='erlang', shapes='a') ## Exponential (gamma distributed with a=1.0, loc=loc and scale=scale) ## scale == 1.0 / lambda class expon_gen(rv_continuous): """An exponential continuous random variable. %(before_notes)s Notes ----- The probability density function for `expon` is:: expon.pdf(x) = lambda * exp(- lambda*x) for ``x >= 0``. The scale parameter is equal to ``scale = 1.0 / lambda``. `expon` does not have shape parameters. %(example)s """ def _rvs(self): return mtrand.standard_exponential(self._size) def _pdf(self, x): return exp(-x) def _logpdf(self, x): return -x def _cdf(self, x): return -expm1(-x) def _ppf(self, q): return -log1p(-q) def _sf(self,x): return exp(-x) def _logsf(self, x): return -x def _isf(self,q): return -log(q) def _stats(self): return 1.0, 1.0, 2.0, 6.0 def _entropy(self): return 1.0 expon = expon_gen(a=0.0, name='expon') ## Exponentiated Weibull class exponweib_gen(rv_continuous): """An exponentiated Weibull continuous random variable. %(before_notes)s Notes ----- The probability density function for `exponweib` is:: exponweib.pdf(x, a, c) = a * c * (1-exp(-x**c))**(a-1) * exp(-x**c)*x**(c-1) for ``x > 0``, ``a > 0``, ``c > 0``. %(example)s """ def _pdf(self, x, a, c): exc = exp(-x**c) return a*c*(1-exc)**asarray(a-1) * exc * x**(c-1) def _logpdf(self, x, a, c): exc = exp(-x**c) return log(a) + log(c) + (a-1.)*log(1-exc) - x**c + (c-1.0)*log(x) def _cdf(self, x, a, c): exm1c = -expm1(-x**c) return (exm1c)**a def _ppf(self, q, a, c): return (-log1p(-q**(1.0/a)))**asarray(1.0/c) exponweib = exponweib_gen(a=0.0, name='exponweib', shapes="a, c") ## Exponential Power class exponpow_gen(rv_continuous): """An exponential power continuous random variable. %(before_notes)s Notes ----- The probability density function for `exponpow` is:: exponpow.pdf(x, b) = b * x**(b-1) * exp(1+x**b - exp(x**b)) for ``x >= 0``, ``b > 0``. %(example)s """ def _pdf(self, x, b): xbm1 = x**(b-1.0) xb = xbm1 * x return exp(1)*b*xbm1 * exp(xb - exp(xb)) def _logpdf(self, x, b): xb = x**(b-1.0)*x return 1 + log(b) + (b-1.0)*log(x) + xb - exp(xb) def _cdf(self, x, b): return -expm1(-expm1(x**b)) def _sf(self, x, b): return exp(-expm1(x**b)) def _isf(self, x, b): return (log1p(-log(x)))**(1./b) def _ppf(self, q, b): return pow(log1p(-log1p(-q)), 1.0/b) exponpow = exponpow_gen(a=0.0, name='exponpow', shapes='b') ## Fatigue-Life (Birnbaum-Sanders) class fatiguelife_gen(rv_continuous): """A fatigue-life (Birnbaum-Sanders) continuous random variable. %(before_notes)s Notes ----- The probability density function for `fatiguelife` is:: fatiguelife.pdf(x,c) = (x+1) / (2*c*sqrt(2*pi*x**3)) * exp(-(x-1)**2/(2*x*c**2)) for ``x > 0``. %(example)s """ def _rvs(self, c): z = norm.rvs(size=self._size) x = 0.5*c*z x2 = x*x t = 1.0 + 2*x2 + 2*x*sqrt(1 + x2) return t def _pdf(self, x, c): return (x+1)/asarray(2*c*sqrt(2*pi*x**3))*exp(-(x-1)**2/asarray((2.0*x*c**2))) def _logpdf(self, x, c): return log(x+1) - (x-1)**2 / (2.0*x*c**2) - log(2*c) - 0.5*(log(2*pi) + 3*log(x)) def _cdf(self, x, c): return special.ndtr(1.0/c*(sqrt(x)-1.0/asarray(sqrt(x)))) def _ppf(self, q, c): tmp = c*special.ndtri(q) return 0.25*(tmp + sqrt(tmp**2 + 4))**2 def _stats(self, c): c2 = c*c mu = c2 / 2.0 + 1 den = 5*c2 + 4 mu2 = c2*den /4.0 g1 = 4*c*sqrt(11*c2+6.0)/den**1.5 g2 = 6*c2*(93*c2+41.0) / den**2.0 return mu, mu2, g1, g2 fatiguelife = fatiguelife_gen(a=0.0, name='fatiguelife', shapes='c') ## Folded Cauchy class foldcauchy_gen(rv_continuous): """A folded Cauchy continuous random variable. %(before_notes)s Notes ----- The probability density function for `foldcauchy` is:: foldcauchy.pdf(x, c) = 1/(pi*(1+(x-c)**2)) + 1/(pi*(1+(x+c)**2)) for ``x >= 0``. %(example)s """ def _rvs(self, c): return abs(cauchy.rvs(loc=c,size=self._size)) def _pdf(self, x, c): return 1.0/pi*(1.0/(1+(x-c)**2) + 1.0/(1+(x+c)**2)) def _cdf(self, x, c): return 1.0/pi*(arctan(x-c) + arctan(x+c)) def _stats(self, c): return inf, inf, nan, nan foldcauchy = foldcauchy_gen(a=0.0, name='foldcauchy', shapes='c') ## F class f_gen(rv_continuous): """An F continuous random variable. %(before_notes)s Notes ----- The probability density function for `f` is:: df2**(df2/2) * df1**(df1/2) * x**(df1/2-1) F.pdf(x, df1, df2) = -------------------------------------------- (df2+df1*x)**((df1+df2)/2) * B(df1/2, df2/2) for ``x > 0``. %(example)s """ def _rvs(self, dfn, dfd): return mtrand.f(dfn, dfd, self._size) def _pdf(self, x, dfn, dfd): # n = asarray(1.0*dfn) # m = asarray(1.0*dfd) # Px = m**(m/2) * n**(n/2) * x**(n/2-1) # Px /= (m+n*x)**((n+m)/2)*special.beta(n/2,m/2) return exp(self._logpdf(x, dfn, dfd)) def _logpdf(self, x, dfn, dfd): n = 1.0*dfn m = 1.0*dfd lPx = m/2*log(m) + n/2*log(n) + (n/2-1)*log(x) lPx -= ((n+m)/2)*log(m+n*x) + special.betaln(n/2,m/2) return lPx def _cdf(self, x, dfn, dfd): return special.fdtr(dfn, dfd, x) def _sf(self, x, dfn, dfd): return special.fdtrc(dfn, dfd, x) def _ppf(self, q, dfn, dfd): return special.fdtri(dfn, dfd, q) def _stats(self, dfn, dfd): v2 = asarray(dfd*1.0) v1 = asarray(dfn*1.0) mu = where (v2 > 2, v2 / asarray(v2 - 2), inf) mu2 = 2*v2*v2*(v2+v1-2)/(v1*(v2-2)**2 * (v2-4)) mu2 = where(v2 > 4, mu2, inf) g1 = 2*(v2+2*v1-2)/(v2-6)*sqrt((2*v2-4)/(v1*(v2+v1-2))) g1 = where(v2 > 6, g1, nan) g2 = 3/(2*v2-16)*(8+g1*g1*(v2-6)) g2 = where(v2 > 8, g2, nan) return mu, mu2, g1, g2 f = f_gen(a=0.0, name='f', shapes="dfn, dfd") ## Folded Normal ## abs(Z) where (Z is normal with mu=L and std=S so that c=abs(L)/S) ## ## note: regress docs have scale parameter correct, but first parameter ## he gives is a shape parameter A = c * scale ## Half-normal is folded normal with shape-parameter c=0. class foldnorm_gen(rv_continuous): """A folded normal continuous random variable. %(before_notes)s Notes ----- The probability density function for `foldnorm` is:: foldnormal.pdf(x, c) = sqrt(2/pi) * cosh(c*x) * exp(-(x**2+c**2)/2) for ``c >= 0``. %(example)s """ def _rvs(self, c): return abs(norm.rvs(loc=c,size=self._size)) def _pdf(self, x, c): return sqrt(2.0/pi)*cosh(c*x)*exp(-(x*x+c*c)/2.0) def _cdf(self, x, c,): return special.ndtr(x-c) + special.ndtr(x+c) - 1.0 def _stats(self, c): fac = special.erf(c/sqrt(2)) mu = sqrt(2.0/pi)*exp(-0.5*c*c)+c*fac mu2 = c*c + 1 - mu*mu c2 = c*c g1 = sqrt(2/pi)*exp(-1.5*c2)*(4-pi*exp(c2)*(2*c2+1.0)) g1 += 2*c*fac*(6*exp(-c2) + 3*sqrt(2*pi)*c*exp(-c2/2.0)*fac + \ pi*c*(fac*fac-1)) g1 /= pi*mu2**1.5 g2 = c2*c2+6*c2+3+6*(c2+1)*mu*mu - 3*mu**4 g2 -= 4*exp(-c2/2.0)*mu*(sqrt(2.0/pi)*(c2+2)+c*(c2+3)*exp(c2/2.0)*fac) g2 /= mu2**2.0 return mu, mu2, g1, g2 foldnorm = foldnorm_gen(a=0.0, name='foldnorm', shapes='c') ## Extreme Value Type II or Frechet ## (defined in Regress+ documentation as Extreme LB) as ## a limiting value distribution. ## class frechet_r_gen(rv_continuous): """A Frechet right (or Weibull minimum) continuous random variable. %(before_notes)s See Also -------- weibull_min : The same distribution as `frechet_r`. frechet_l, weibull_max Notes ----- The probability density function for `frechet_r` is:: frechet_r.pdf(x, c) = c * x**(c-1) * exp(-x**c) for ``x > 0``, ``c > 0``. %(example)s """ def _pdf(self, x, c): return c*pow(x,c-1)*exp(-pow(x,c)) def _logpdf(self, x, c): return log(c) + (c-1)*log(x) - pow(x,c) def _cdf(self, x, c): return -expm1(-pow(x,c)) def _ppf(self, q, c): return pow(-log1p(-q),1.0/c) def _munp(self, n, c): return special.gamma(1.0+n*1.0/c) def _entropy(self, c): return -_EULER / c - log(c) + _EULER + 1 frechet_r = frechet_r_gen(a=0.0, name='frechet_r', shapes='c') weibull_min = frechet_r_gen(a=0.0, name='weibull_min', shapes='c') class frechet_l_gen(rv_continuous): """A Frechet left (or Weibull maximum) continuous random variable. %(before_notes)s See Also -------- weibull_max : The same distribution as `frechet_l`. frechet_r, weibull_min Notes ----- The probability density function for `frechet_l` is:: frechet_l.pdf(x, c) = c * (-x)**(c-1) * exp(-(-x)**c) for ``x < 0``, ``c > 0``. %(example)s """ def _pdf(self, x, c): return c*pow(-x,c-1)*exp(-pow(-x,c)) def _cdf(self, x, c): return exp(-pow(-x,c)) def _ppf(self, q, c): return -pow(-log(q),1.0/c) def _munp(self, n, c): val = special.gamma(1.0+n*1.0/c) if (int(n) % 2): sgn = -1 else: sgn = 1 return sgn * val def _entropy(self, c): return -_EULER / c - log(c) + _EULER + 1 frechet_l = frechet_l_gen(b=0.0, name='frechet_l', shapes='c') weibull_max = frechet_l_gen(b=0.0, name='weibull_max', shapes='c') ## Generalized Logistic ## class genlogistic_gen(rv_continuous): """A generalized logistic continuous random variable. %(before_notes)s Notes ----- The probability density function for `genlogistic` is:: genlogistic.pdf(x, c) = c * exp(-x) / (1 + exp(-x))**(c+1) for ``x > 0``, ``c > 0``. %(example)s """ def _pdf(self, x, c): Px = c*exp(-x)/(1+exp(-x))**(c+1.0) return Px def _logpdf(self, x, c): return log(c) - x - (c+1.0)*log1p(exp(-x)) def _cdf(self, x, c): Cx = (1+exp(-x))**(-c) return Cx def _ppf(self, q, c): vals = -log(pow(q,-1.0/c)-1) return vals def _stats(self, c): zeta = special.zeta mu = _EULER + special.psi(c) mu2 = pi*pi/6.0 + zeta(2,c) g1 = -2*zeta(3,c) + 2*_ZETA3 g1 /= mu2**1.5 g2 = pi**4/15.0 + 6*zeta(4,c) g2 /= mu2**2.0 return mu, mu2, g1, g2 genlogistic = genlogistic_gen(name='genlogistic', shapes='c') ## Generalized Pareto class genpareto_gen(rv_continuous): """A generalized Pareto continuous random variable. %(before_notes)s Notes ----- The probability density function for `genpareto` is:: genpareto.pdf(x, c) = (1 + c * x)**(-1 - 1/c) for ``c != 0``, and for ``x >= 0`` for all c, and ``x < 1/abs(c)`` for ``c < 0``. %(example)s """ def _argcheck(self, c): c = asarray(c) self.b = where(c < 0, 1.0/abs(c), inf) return where(c==0, 0, 1) def _pdf(self, x, c): Px = pow(1+c*x,asarray(-1.0-1.0/c)) return Px def _logpdf(self, x, c): return (-1.0-1.0/c) * np.log1p(c*x) def _cdf(self, x, c): return 1.0 - pow(1+c*x,asarray(-1.0/c)) def _ppf(self, q, c): vals = 1.0/c * (pow(1-q, -c)-1) return vals def _munp(self, n, c): k = arange(0,n+1) val = (-1.0/c)**n * sum(comb(n,k)*(-1)**k / (1.0-c*k),axis=0) return where(c*n < 1, val, inf) def _entropy(self, c): if (c > 0): return 1+c else: self.b = -1.0 / c return rv_continuous._entropy(self, c) genpareto = genpareto_gen(a=0.0, name='genpareto', shapes='c') ## Generalized Exponential class genexpon_gen(rv_continuous): """A generalized exponential continuous random variable. %(before_notes)s Notes ----- The probability density function for `genexpon` is:: genexpon.pdf(x, a, b, c) = (a + b * (1 - exp(-c*x))) * \ exp(-a*x - b*x + b/c * (1-exp(-c*x))) for ``x >= 0``, ``a,b,c > 0``. References ---------- H.K. Ryu, "An Extension of Marshall and Olkin's Bivariate Exponential Distribution", Journal of the American Statistical Association, 1993. N. Balakrishnan, "The Exponential Distribution: Theory, Methods and Applications", Asit P. Basu. %(example)s """ def _pdf(self, x, a, b, c): return (a+b*(-expm1(-c*x)))*exp((-a-b)*x+b*(-expm1(-c*x))/c) def _cdf(self, x, a, b, c): return -expm1((-a-b)*x + b*(-expm1(-c*x))/c) def _logpdf(self, x, a, b, c): return np.log(a+b*(-expm1(-c*x))) + (-a-b)*x+b*(-expm1(-c*x))/c genexpon = genexpon_gen(a=0.0, name='genexpon', shapes='a, b, c') ## Generalized Extreme Value ## c=0 is just gumbel distribution. ## This version does now accept c==0 ## Use gumbel_r for c==0 # new version by Per Brodtkorb, see ticket:767 # also works for c==0, special case is gumbel_r # increased precision for small c class genextreme_gen(rv_continuous): """A generalized extreme value continuous random variable. %(before_notes)s See Also -------- gumbel_r Notes ----- For ``c=0``, `genextreme` is equal to `gumbel_r`. The probability density function for `genextreme` is:: genextreme.pdf(x, c) = exp(-exp(-x))*exp(-x), for c==0 exp(-(1-c*x)**(1/c))*(1-c*x)**(1/c-1), for x <= 1/c, c > 0 %(example)s """ def _argcheck(self, c): min = np.minimum max = np.maximum sml = floatinfo.machar.xmin #self.b = where(c > 0, 1.0 / c,inf) #self.a = where(c < 0, 1.0 / c, -inf) self.b = where(c > 0, 1.0 / max(c, sml),inf) self.a = where(c < 0, 1.0 / min(c,-sml), -inf) return where(abs(c)==inf, 0, 1) #True #(c!=0) def _pdf(self, x, c): ## ex2 = 1-c*x ## pex2 = pow(ex2,1.0/c) ## p2 = exp(-pex2)*pex2/ex2 ## return p2 cx = c*x logex2 = where((c==0)*(x==x),0.0,log1p(-cx)) logpex2 = where((c==0)*(x==x),-x,logex2/c) pex2 = exp(logpex2) # % Handle special cases logpdf = where((cx==1) | (cx==-inf),-inf,-pex2+logpex2-logex2) putmask(logpdf,(c==1) & (x==1),0.0) # logpdf(c==1 & x==1) = 0; % 0^0 situation return exp(logpdf) def _cdf(self, x, c): #return exp(-pow(1-c*x,1.0/c)) loglogcdf = where((c==0)*(x==x),-x,log1p(-c*x)/c) return exp(-exp(loglogcdf)) def _ppf(self, q, c): #return 1.0/c*(1.-(-log(q))**c) x = -log(-log(q)) return where((c==0)*(x==x),x,-expm1(-c*x)/c) def _stats(self,c): g = lambda n : gam(n*c+1) g1 = g(1) g2 = g(2) g3 = g(3); g4 = g(4) g2mg12 = where(abs(c)<1e-7,(c*pi)**2.0/6.0,g2-g1**2.0) gam2k = where(abs(c)<1e-7,pi**2.0/6.0, expm1(gamln(2.0*c+1.0)-2*gamln(c+1.0))/c**2.0); eps = 1e-14 gamk = where(abs(c)<eps,-_EULER,expm1(gamln(c+1))/c) m = where(c<-1.0,nan,-gamk) v = where(c<-0.5,nan,g1**2.0*gam2k) #% skewness sk1 = where(c<-1./3,nan,np.sign(c)*(-g3+(g2+2*g2mg12)*g1)/((g2mg12)**(3./2.))); sk = where(abs(c)<=eps**0.29,12*sqrt(6)*_ZETA3/pi**3,sk1) #% The kurtosis is: ku1 = where(c<-1./4,nan,(g4+(-4*g3+3*(g2+g2mg12)*g1)*g1)/((g2mg12)**2)) ku = where(abs(c)<=(eps)**0.23,12.0/5.0,ku1-3.0) return m,v,sk,ku def _munp(self, n, c): k = arange(0,n+1) vals = 1.0/c**n * sum(comb(n,k) * (-1)**k * special.gamma(c*k + 1),axis=0) return where(c*n > -1, vals, inf) genextreme = genextreme_gen(name='genextreme', shapes='c') ## Gamma (Use MATLAB and MATHEMATICA (b=theta=scale, a=alpha=shape) definition) ## gamma(a, loc, scale) with a an integer is the Erlang distribution ## gamma(1, loc, scale) is the Exponential distribution ## gamma(df/2, 0, 2) is the chi2 distribution with df degrees of freedom. class gamma_gen(rv_continuous): """A gamma continuous random variable. %(before_notes)s See Also -------- erlang, expon Notes ----- The probability density function for `gamma` is:: gamma.pdf(x, a) = lambda**a * x**(a-1) * exp(-lambda*x) / gamma(a) for ``x >= 0``, ``a > 0``. Here ``gamma(a)`` refers to the gamma function. The scale parameter is equal to ``scale = 1.0 / lambda``. `gamma` has a shape parameter `a` which needs to be set explicitly. For instance: >>> from scipy.stats import gamma >>> rv = gamma(3., loc = 0., scale = 2.) produces a frozen form of `gamma` with shape ``a = 3.``, ``loc = 0.`` and ``lambda = 1./scale = 1./2.``. When ``a`` is an integer, `gamma` reduces to the Erlang distribution, and when ``a=1`` to the exponential distribution. %(example)s """ def _rvs(self, a): return mtrand.standard_gamma(a, self._size) def _pdf(self, x, a): return exp(self._logpdf(x, a)) def _logpdf(self, x, a): return (a-1)*log(x) - x - gamln(a) def _cdf(self, x, a): return special.gammainc(a, x) def _ppf(self, q, a): return special.gammaincinv(a,q) def _stats(self, a): return a, a, 2.0/sqrt(a), 6.0/a def _entropy(self, a): return special.psi(a)*(1-a) + 1 + gamln(a) def _fitstart(self, data): a = 4 / _skew(data)**2 return super(gamma_gen, self)._fitstart(data, args=(a,)) def fit(self, data, *args, **kwds): floc = kwds.get('floc', None) if floc == 0: xbar = ravel(data).mean() logx_bar = ravel(log(data)).mean() s = log(xbar) - logx_bar def func(a): return log(a) - special.digamma(a) - s aest = (3-s + math.sqrt((s-3)**2 + 24*s)) / (12*s) xa = aest*(1-0.4) xb = aest*(1+0.4) a = optimize.brentq(func, xa, xb, disp=0) scale = xbar / a return a, floc, scale else: return super(gamma_gen, self).fit(data, *args, **kwds) gamma = gamma_gen(a=0.0, name='gamma', shapes='a') # Generalized Gamma class gengamma_gen(rv_continuous): """A generalized gamma continuous random variable. %(before_notes)s Notes ----- The probability density function for `gengamma` is:: gengamma.pdf(x, a, c) = abs(c) * x**(c*a-1) * exp(-x**c) / gamma(a) for ``x > 0``, ``a > 0``, and ``c != 0``. %(example)s """ def _argcheck(self, a, c): return (a > 0) & (c != 0) def _pdf(self, x, a, c): return abs(c)* exp((c*a-1)*log(x)-x**c- gamln(a)) def _cdf(self, x, a, c): val = special.gammainc(a,x**c) cond = c + 0*val return where(cond>0,val,1-val) def _ppf(self, q, a, c): val1 = special.gammaincinv(a,q) val2 = special.gammaincinv(a,1.0-q) ic = 1.0/c cond = c+0*val1 return where(cond > 0,val1**ic,val2**ic) def _munp(self, n, a, c): return special.gamma(a+n*1.0/c) / special.gamma(a) def _entropy(self, a,c): val = special.psi(a) return a*(1-val) + 1.0/c*val + gamln(a)-log(abs(c)) gengamma = gengamma_gen(a=0.0, name='gengamma', shapes="a, c") ## Generalized Half-Logistic ## class genhalflogistic_gen(rv_continuous): """A generalized half-logistic continuous random variable. %(before_notes)s Notes ----- The probability density function for `genhalflogistic` is:: genhalflogistic.pdf(x, c) = 2 * (1-c*x)**(1/c-1) / (1+(1-c*x)**(1/c))**2 for ``0 <= x <= 1/c``, and ``c > 0``. %(example)s """ def _argcheck(self, c): self.b = 1.0 / c return (c > 0) def _pdf(self, x, c): limit = 1.0/c tmp = asarray(1-c*x) tmp0 = tmp**(limit-1) tmp2 = tmp0*tmp return 2*tmp0 / (1+tmp2)**2 def _cdf(self, x, c): limit = 1.0/c tmp = asarray(1-c*x) tmp2 = tmp**(limit) return (1.0-tmp2) / (1+tmp2) def _ppf(self, q, c): return 1.0/c*(1-((1.0-q)/(1.0+q))**c) def _entropy(self,c): return 2 - (2*c+1)*log(2) genhalflogistic = genhalflogistic_gen(a=0.0, name='genhalflogistic', shapes='c') ## Gompertz (Truncated Gumbel) ## Defined for x>=0 class gompertz_gen(rv_continuous): """A Gompertz (or truncated Gumbel) continuous random variable. %(before_notes)s Notes ----- The probability density function for `gompertz` is:: gompertz.pdf(x, c) = c * exp(x) * exp(-c*(exp(x)-1)) for ``x >= 0``, ``c > 0``. %(example)s """ def _pdf(self, x, c): ex = exp(x) return c*ex*exp(-c*(ex-1)) def _cdf(self, x, c): return 1.0-exp(-c*(exp(x)-1)) def _ppf(self, q, c): return log(1-1.0/c*log(1-q)) def _entropy(self, c): return 1.0 - log(c) - exp(c)*special.expn(1,c) gompertz = gompertz_gen(a=0.0, name='gompertz', shapes='c') ## Gumbel, Log-Weibull, Fisher-Tippett, Gompertz ## The left-skewed gumbel distribution. ## and right-skewed are available as gumbel_l and gumbel_r class gumbel_r_gen(rv_continuous): """A right-skewed Gumbel continuous random variable. %(before_notes)s See Also -------- gumbel_l, gompertz, genextreme Notes ----- The probability density function for `gumbel_r` is:: gumbel_r.pdf(x) = exp(-(x + exp(-x))) The Gumbel distribution is sometimes referred to as a type I Fisher-Tippett distribution. It is also related to the extreme value distribution, log-Weibull and Gompertz distributions. %(example)s """ def _pdf(self, x): ex = exp(-x) return ex*exp(-ex) def _logpdf(self, x): return -x - exp(-x) def _cdf(self, x): return exp(-exp(-x)) def _logcdf(self, x): return -exp(-x) def _ppf(self, q): return -log(-log(q)) def _stats(self): return _EULER, pi*pi/6.0, \ 12*sqrt(6)/pi**3 * _ZETA3, 12.0/5 def _entropy(self): return 1.0608407169541684911 gumbel_r = gumbel_r_gen(name='gumbel_r') class gumbel_l_gen(rv_continuous): """A left-skewed Gumbel continuous random variable. %(before_notes)s See Also -------- gumbel_r, gompertz, genextreme Notes ----- The probability density function for `gumbel_l` is:: gumbel_l.pdf(x) = exp(x - exp(x)) The Gumbel distribution is sometimes referred to as a type I Fisher-Tippett distribution. It is also related to the extreme value distribution, log-Weibull and Gompertz distributions. %(example)s """ def _pdf(self, x): ex = exp(x) return ex*exp(-ex) def _logpdf(self, x): return x - exp(x) def _cdf(self, x): return 1.0-exp(-exp(x)) def _ppf(self, q): return log(-log(1-q)) def _stats(self): return -_EULER, pi*pi/6.0, \ -12*sqrt(6)/pi**3 * _ZETA3, 12.0/5 def _entropy(self): return 1.0608407169541684911 gumbel_l = gumbel_l_gen(name='gumbel_l') # Half-Cauchy class halfcauchy_gen(rv_continuous): """A Half-Cauchy continuous random variable. %(before_notes)s Notes ----- The probability density function for `halfcauchy` is:: halfcauchy.pdf(x) = 2 / (pi * (1 + x**2)) for ``x >= 0``. %(example)s """ def _pdf(self, x): return 2.0/pi/(1.0+x*x) def _logpdf(self, x): return np.log(2.0/pi) - np.log1p(x*x) def _cdf(self, x): return 2.0/pi*arctan(x) def _ppf(self, q): return tan(pi/2*q) def _stats(self): return inf, inf, nan, nan def _entropy(self): return log(2*pi) halfcauchy = halfcauchy_gen(a=0.0, name='halfcauchy') ## Half-Logistic ## class halflogistic_gen(rv_continuous): """A half-logistic continuous random variable. %(before_notes)s Notes ----- The probability density function for `halflogistic` is:: halflogistic.pdf(x) = 2 * exp(-x) / (1+exp(-x))**2 = 1/2 * sech(x/2)**2 for ``x >= 0``. %(example)s """ def _pdf(self, x): return 0.5/(cosh(x/2.0))**2.0 def _cdf(self, x): return tanh(x/2.0) def _ppf(self, q): return 2*arctanh(q) def _munp(self, n): if n==1: return 2*log(2) if n==2: return pi*pi/3.0 if n==3: return 9*_ZETA3 if n==4: return 7*pi**4 / 15.0 return 2*(1-pow(2.0,1-n))*special.gamma(n+1)*special.zeta(n,1) def _entropy(self): return 2-log(2) halflogistic = halflogistic_gen(a=0.0, name='halflogistic') ## Half-normal = chi(1, loc, scale) class halfnorm_gen(rv_continuous): """A half-normal continuous random variable. %(before_notes)s Notes ----- The probability density function for `halfnorm` is:: halfnorm.pdf(x) = sqrt(2/pi) * exp(-x**2/2) for ``x > 0``. %(example)s """ def _rvs(self): return abs(norm.rvs(size=self._size)) def _pdf(self, x): return sqrt(2.0/pi)*exp(-x*x/2.0) def _logpdf(self, x): return 0.5 * np.log(2.0/pi) - x*x/2.0 def _cdf(self, x): return special.ndtr(x)*2-1.0 def _ppf(self, q): return special.ndtri((1+q)/2.0) def _stats(self): return sqrt(2.0/pi), 1-2.0/pi, sqrt(2)*(4-pi)/(pi-2)**1.5, \ 8*(pi-3)/(pi-2)**2 def _entropy(self): return 0.5*log(pi/2.0)+0.5 halfnorm = halfnorm_gen(a=0.0, name='halfnorm') ## Hyperbolic Secant class hypsecant_gen(rv_continuous): """A hyperbolic secant continuous random variable. %(before_notes)s Notes ----- The probability density function for `hypsecant` is:: hypsecant.pdf(x) = 1/pi * sech(x) %(example)s """ def _pdf(self, x): return 1.0/(pi*cosh(x)) def _cdf(self, x): return 2.0/pi*arctan(exp(x)) def _ppf(self, q): return log(tan(pi*q/2.0)) def _stats(self): return 0, pi*pi/4, 0, 2 def _entropy(self): return log(2*pi) hypsecant = hypsecant_gen(name='hypsecant') ## Gauss Hypergeometric class gausshyper_gen(rv_continuous): """A Gauss hypergeometric continuous random variable. %(before_notes)s Notes ----- The probability density function for `gausshyper` is:: gausshyper.pdf(x, a, b, c, z) = C * x**(a-1) * (1-x)**(b-1) * (1+z*x)**(-c) for ``0 <= x <= 1``, ``a > 0``, ``b > 0``, and ``C = 1 / (B(a,b) F[2,1](c, a; a+b; -z))`` %(example)s """ def _argcheck(self, a, b, c, z): return (a > 0) & (b > 0) & (c==c) & (z==z) def _pdf(self, x, a, b, c, z): Cinv = gam(a)*gam(b)/gam(a+b)*special.hyp2f1(c,a,a+b,-z) return 1.0/Cinv * x**(a-1.0) * (1.0-x)**(b-1.0) / (1.0+z*x)**c def _munp(self, n, a, b, c, z): fac = special.beta(n+a,b) / special.beta(a,b) num = special.hyp2f1(c,a+n,a+b+n,-z) den = special.hyp2f1(c,a,a+b,-z) return fac*num / den gausshyper = gausshyper_gen(a=0.0, b=1.0, name='gausshyper', shapes="a, b, c, z") ## Inverted Gamma # special case of generalized gamma with c=-1 # class invgamma_gen(rv_continuous): """An inverted gamma continuous random variable. %(before_notes)s Notes ----- The probability density function for `invgamma` is:: invgamma.pdf(x, a) = x**(-a-1) / gamma(a) * exp(-1/x) for x > 0, a > 0. %(example)s """ def _pdf(self, x, a): return exp(self._logpdf(x,a)) def _logpdf(self, x, a): return (-(a+1)*log(x)-gamln(a) - 1.0/x) def _cdf(self, x, a): return 1.0-special.gammainc(a, 1.0/x) def _ppf(self, q, a): return 1.0/special.gammaincinv(a,1-q) def _munp(self, n, a): return exp(gamln(a-n) - gamln(a)) def _entropy(self, a): return a - (a+1.0)*special.psi(a) + gamln(a) invgamma = invgamma_gen(a=0.0, name='invgamma', shapes='a') ## Inverse Gaussian Distribution (used to be called 'invnorm' # scale is gamma from DATAPLOT and B from Regress class invgauss_gen(rv_continuous): """An inverse Gaussian continuous random variable. %(before_notes)s Notes ----- The probability density function for `invgauss` is:: invgauss.pdf(x, mu) = 1 / sqrt(2*pi*x**3) * exp(-(x-mu)**2/(2*x*mu**2)) for ``x > 0``. When `mu` is too small, evaluating the cumulative density function will be inaccurate due to ``cdf(mu -> 0) = inf * 0``. NaNs are returned for ``mu <= 0.0028``. %(example)s """ def _rvs(self, mu): return mtrand.wald(mu, 1.0, size=self._size) def _pdf(self, x, mu): return 1.0/sqrt(2*pi*x**3.0)*exp(-1.0/(2*x)*((x-mu)/mu)**2) def _logpdf(self, x, mu): return -0.5*log(2*pi) - 1.5*log(x) - ((x-mu)/mu)**2/(2*x) def _cdf(self, x, mu): fac = sqrt(1.0/x) # Numerical accuracy for small `mu` is bad. See #869. C1 = norm.cdf(fac*(x-mu)/mu) C1 += exp(1.0/mu) * norm.cdf(-fac*(x+mu)/mu) * exp(1.0/mu) return C1 def _stats(self, mu): return mu, mu**3.0, 3*sqrt(mu), 15*mu invgauss = invgauss_gen(a=0.0, name='invgauss', shapes="mu") ## Inverted Weibull class invweibull_gen(rv_continuous): """An inverted Weibull continuous random variable. %(before_notes)s Notes ----- The probability density function for `invweibull` is:: invweibull.pdf(x, c) = c * x**(-c-1) * exp(-x**(-c)) for ``x > 0``, ``c > 0``. %(example)s """ def _pdf(self, x, c): xc1 = x**(-c-1.0) #xc2 = xc1*x xc2 = x**(-c) xc2 = exp(-xc2) return c*xc1*xc2 def _cdf(self, x, c): xc1 = x**(-c) return exp(-xc1) def _ppf(self, q, c): return pow(-log(q),asarray(-1.0/c)) def _entropy(self, c): return 1+_EULER + _EULER / c - log(c) invweibull = invweibull_gen(a=0, name='invweibull', shapes='c') ## Johnson SB class johnsonsb_gen(rv_continuous): """A Johnson SB continuous random variable. %(before_notes)s See Also -------- johnsonsu Notes ----- The probability density function for `johnsonsb` is:: johnsonsb.pdf(x, a, b) = b / (x*(1-x)) * phi(a + b * log(x/(1-x))) for ``0 < x < 1`` and ``a,b > 0``, and ``phi`` is the normal pdf. %(example)s """ def _argcheck(self, a, b): return (b > 0) & (a==a) def _pdf(self, x, a, b): trm = norm.pdf(a+b*log(x/(1.0-x))) return b*1.0/(x*(1-x))*trm def _cdf(self, x, a, b): return norm.cdf(a+b*log(x/(1.0-x))) def _ppf(self, q, a, b): return 1.0/(1+exp(-1.0/b*(norm.ppf(q)-a))) johnsonsb = johnsonsb_gen(a=0.0, b=1.0, name='johnsonb', shapes="a, b") ## Johnson SU class johnsonsu_gen(rv_continuous): """A Johnson SU continuous random variable. %(before_notes)s See Also -------- johnsonsb Notes ----- The probability density function for `johnsonsu` is:: johnsonsu.pdf(x, a, b) = b / sqrt(x**2 + 1) * phi(a + b * log(x + sqrt(x**2 + 1))) for all ``x, a, b > 0``, and `phi` is the normal pdf. %(example)s """ def _argcheck(self, a, b): return (b > 0) & (a==a) def _pdf(self, x, a, b): x2 = x*x trm = norm.pdf(a+b*log(x+sqrt(x2+1))) return b*1.0/sqrt(x2+1.0)*trm def _cdf(self, x, a, b): return norm.cdf(a+b*log(x+sqrt(x*x+1))) def _ppf(self, q, a, b): return sinh((norm.ppf(q)-a)/b) johnsonsu = johnsonsu_gen(name='johnsonsu', shapes="a, b") ## Laplace Distribution class laplace_gen(rv_continuous): """A Laplace continuous random variable. %(before_notes)s Notes ----- The probability density function for `laplace` is:: laplace.pdf(x) = 1/2 * exp(-abs(x)) %(example)s """ def _rvs(self): return mtrand.laplace(0, 1, size=self._size) def _pdf(self, x): return 0.5*exp(-abs(x)) def _cdf(self, x): return where(x > 0, 1.0-0.5*exp(-x), 0.5*exp(x)) def _ppf(self, q): return where(q > 0.5, -log(2*(1-q)), log(2*q)) def _stats(self): return 0, 2, 0, 3 def _entropy(self): return log(2)+1 laplace = laplace_gen(name='laplace') ## Levy Distribution class levy_gen(rv_continuous): """A Levy continuous random variable. %(before_notes)s See Also -------- levy_stable, levy_l Notes ----- The probability density function for `levy` is:: levy.pdf(x) = 1 / (x * sqrt(2*pi*x)) * exp(-1/(2*x)) for ``x > 0``. This is the same as the Levy-stable distribution with a=1/2 and b=1. %(example)s """ def _pdf(self, x): return 1/sqrt(2*pi*x)/x*exp(-1/(2*x)) def _cdf(self, x): return 2*(1-norm._cdf(1/sqrt(x))) def _ppf(self, q): val = norm._ppf(1-q/2.0) return 1.0/(val*val) def _stats(self): return inf, inf, nan, nan levy = levy_gen(a=0.0,name="levy") ## Left-skewed Levy Distribution class levy_l_gen(rv_continuous): """A left-skewed Levy continuous random variable. %(before_notes)s See Also -------- levy, levy_stable Notes ----- The probability density function for `levy_l` is:: levy_l.pdf(x) = 1 / (abs(x) * sqrt(2*pi*abs(x))) * exp(-1/(2*abs(x))) for ``x < 0``. This is the same as the Levy-stable distribution with a=1/2 and b=-1. %(example)s """ def _pdf(self, x): ax = abs(x) return 1/sqrt(2*pi*ax)/ax*exp(-1/(2*ax)) def _cdf(self, x): ax = abs(x) return 2*norm._cdf(1/sqrt(ax))-1 def _ppf(self, q): val = norm._ppf((q+1.0)/2) return -1.0/(val*val) def _stats(self): return inf, inf, nan, nan levy_l = levy_l_gen(b=0.0, name="levy_l") ## Levy-stable Distribution (only random variates) class levy_stable_gen(rv_continuous): """A Levy-stable continuous random variable. %(before_notes)s See Also -------- levy, levy_l Notes ----- Levy-stable distribution (only random variates available -- ignore other docs) %(example)s """ def _rvs(self, alpha, beta): sz = self._size TH = uniform.rvs(loc=-pi/2.0,scale=pi,size=sz) W = expon.rvs(size=sz) if alpha==1: return 2/pi*(pi/2+beta*TH)*tan(TH)-beta*log((pi/2*W*cos(TH))/(pi/2+beta*TH)) # else ialpha = 1.0/alpha aTH = alpha*TH if beta==0: return W/(cos(TH)/tan(aTH)+sin(TH))*((cos(aTH)+sin(aTH)*tan(TH))/W)**ialpha # else val0 = beta*tan(pi*alpha/2) th0 = arctan(val0)/alpha val3 = W/(cos(TH)/tan(alpha*(th0+TH))+sin(TH)) res3 = val3*((cos(aTH)+sin(aTH)*tan(TH)-val0*(sin(aTH)-cos(aTH)*tan(TH)))/W)**ialpha return res3 def _argcheck(self, alpha, beta): if beta == -1: self.b = 0.0 elif beta == 1: self.a = 0.0 return (alpha > 0) & (alpha <= 2) & (beta <= 1) & (beta >= -1) def _pdf(self, x, alpha, beta): raise NotImplementedError levy_stable = levy_stable_gen(name='levy_stable', shapes="alpha, beta") ## Logistic (special case of generalized logistic with c=1) ## Sech-squared class logistic_gen(rv_continuous): """A logistic continuous random variable. %(before_notes)s Notes ----- The probability density function for `logistic` is:: logistic.pdf(x) = exp(-x) / (1+exp(-x))**2 %(example)s """ def _rvs(self): return mtrand.logistic(size=self._size) def _pdf(self, x): ex = exp(-x) return ex / (1+ex)**2.0 def _cdf(self, x): return 1.0/(1+exp(-x)) def _ppf(self, q): return -log(1.0/q-1) def _stats(self): return 0, pi*pi/3.0, 0, 6.0/5.0 def _entropy(self): return 1.0 logistic = logistic_gen(name='logistic') ## Log Gamma # class loggamma_gen(rv_continuous): """A log gamma continuous random variable. %(before_notes)s Notes ----- The probability density function for `loggamma` is:: loggamma.pdf(x, c) = exp(c*x-exp(x)) / gamma(c) for all ``x, c > 0``. %(example)s """ def _rvs(self, c): return log(mtrand.gamma(c, size=self._size)) def _pdf(self, x, c): return exp(c*x-exp(x)-gamln(c)) def _cdf(self, x, c): return special.gammainc(c, exp(x)) def _ppf(self, q, c): return log(special.gammaincinv(c,q)) def _munp(self,n,*args): # use generic moment calculation using ppf return self._mom0_sc(n,*args) loggamma = loggamma_gen(name='loggamma', shapes='c') ## Log-Laplace (Log Double Exponential) ## class loglaplace_gen(rv_continuous): """A log-Laplace continuous random variable. %(before_notes)s Notes ----- The probability density function for `loglaplace` is:: loglaplace.pdf(x, c) = c / 2 * x**(c-1), for 0 < x < 1 = c / 2 * x**(-c-1), for x >= 1 for ``c > 0``. %(example)s """ def _pdf(self, x, c): cd2 = c/2.0 c = where(x < 1, c, -c) return cd2*x**(c-1) def _cdf(self, x, c): return where(x < 1, 0.5*x**c, 1-0.5*x**(-c)) def _ppf(self, q, c): return where(q < 0.5, (2.0*q)**(1.0/c), (2*(1.0-q))**(-1.0/c)) def _entropy(self, c): return log(2.0/c) + 1.0 loglaplace = loglaplace_gen(a=0.0, name='loglaplace', shapes='c') ## Lognormal (Cobb-Douglass) ## std is a shape parameter and is the variance of the underlying ## distribution. ## the mean of the underlying distribution is log(scale) class lognorm_gen(rv_continuous): """A lognormal continuous random variable. %(before_notes)s Notes ----- The probability density function for `lognorm` is:: lognorm.pdf(x, s) = 1 / (s*x*sqrt(2*pi)) * exp(-1/2*(log(x)/s)**2) for ``x > 0``, ``s > 0``. If log x is normally distributed with mean mu and variance sigma**2, then x is log-normally distributed with shape paramter sigma and scale parameter exp(mu). %(example)s """ def _rvs(self, s): return exp(s * norm.rvs(size=self._size)) def _pdf(self, x, s): Px = exp(-log(x)**2 / (2*s**2)) return Px / (s*x*sqrt(2*pi)) def _cdf(self, x, s): return norm.cdf(log(x)/s) def _ppf(self, q, s): return exp(s*norm._ppf(q)) def _stats(self, s): p = exp(s*s) mu = sqrt(p) mu2 = p*(p-1) g1 = sqrt((p-1))*(2+p) g2 = numpy.polyval([1,2,3,0,-6.0],p) return mu, mu2, g1, g2 def _entropy(self, s): return 0.5*(1+log(2*pi)+2*log(s)) lognorm = lognorm_gen(a=0.0, name='lognorm', shapes='s') # Gibrat's distribution is just lognormal with s=1 class gilbrat_gen(lognorm_gen): """A Gilbrat continuous random variable. %(before_notes)s Notes ----- The probability density function for `gilbrat` is:: gilbrat.pdf(x) = 1/(x*sqrt(2*pi)) * exp(-1/2*(log(x))**2) %(example)s """ def _rvs(self): return lognorm_gen._rvs(self, 1.0) def _pdf(self, x): return lognorm_gen._pdf(self, x, 1.0) def _cdf(self, x): return lognorm_gen._cdf(self, x, 1.0) def _ppf(self, q): return lognorm_gen._ppf(self, q, 1.0) def _stats(self): return lognorm_gen._stats(self, 1.0) def _entropy(self): return 0.5*log(2*pi) + 0.5 gilbrat = gilbrat_gen(a=0.0, name='gilbrat') # MAXWELL class maxwell_gen(rv_continuous): """A Maxwell continuous random variable. %(before_notes)s Notes ----- A special case of a `chi` distribution, with ``df = 3``, ``loc = 0.0``, and given ``scale = 1.0 / sqrt(a)``, where a is the parameter used in the Mathworld description [1]_. The probability density function for `maxwell` is:: maxwell.pdf(x, a) = sqrt(2/pi)x**2 * exp(-x**2/2) for ``x > 0``. References ---------- .. [1] http://mathworld.wolfram.com/MaxwellDistribution.html %(example)s """ def _rvs(self): return chi.rvs(3.0,size=self._size) def _pdf(self, x): return sqrt(2.0/pi)*x*x*exp(-x*x/2.0) def _cdf(self, x): return special.gammainc(1.5,x*x/2.0) def _ppf(self, q): return sqrt(2*special.gammaincinv(1.5,q)) def _stats(self): val = 3*pi-8 return 2*sqrt(2.0/pi), 3-8/pi, sqrt(2)*(32-10*pi)/val**1.5, \ (-12*pi*pi + 160*pi - 384) / val**2.0 def _entropy(self): return _EULER + 0.5*log(2*pi)-0.5 maxwell = maxwell_gen(a=0.0, name='maxwell') # Mielke's Beta-Kappa class mielke_gen(rv_continuous): """A Mielke's Beta-Kappa continuous random variable. %(before_notes)s Notes ----- The probability density function for `mielke` is:: mielke.pdf(x, k, s) = k * x**(k-1) / (1+x**s)**(1+k/s) for ``x > 0``. %(example)s """ def _pdf(self, x, k, s): return k*x**(k-1.0) / (1.0+x**s)**(1.0+k*1.0/s) def _cdf(self, x, k, s): return x**k / (1.0+x**s)**(k*1.0/s) def _ppf(self, q, k, s): qsk = pow(q,s*1.0/k) return pow(qsk/(1.0-qsk),1.0/s) mielke = mielke_gen(a=0.0, name='mielke', shapes="k, s") # Nakagami (cf Chi) class nakagami_gen(rv_continuous): """A Nakagami continuous random variable. %(before_notes)s Notes ----- The probability density function for `nakagami` is:: nakagami.pdf(x, nu) = 2 * nu**nu / gamma(nu) * x**(2*nu-1) * exp(-nu*x**2) for ``x > 0``, ``nu > 0``. %(example)s """ def _pdf(self, x, nu): return 2*nu**nu/gam(nu)*(x**(2*nu-1.0))*exp(-nu*x*x) def _cdf(self, x, nu): return special.gammainc(nu,nu*x*x) def _ppf(self, q, nu): return sqrt(1.0/nu*special.gammaincinv(nu,q)) def _stats(self, nu): mu = gam(nu+0.5)/gam(nu)/sqrt(nu) mu2 = 1.0-mu*mu g1 = mu*(1-4*nu*mu2)/2.0/nu/mu2**1.5 g2 = -6*mu**4*nu + (8*nu-2)*mu**2-2*nu + 1 g2 /= nu*mu2**2.0 return mu, mu2, g1, g2 nakagami = nakagami_gen(a=0.0, name="nakagami", shapes='nu') # Non-central chi-squared # nc is lambda of definition, df is nu class ncx2_gen(rv_continuous): """A non-central chi-squared continuous random variable. %(before_notes)s Notes ----- The probability density function for `ncx2` is:: ncx2.pdf(x, df, nc) = exp(-(nc+df)/2) * 1/2 * (x/nc)**((df-2)/4) * I[(df-2)/2](sqrt(nc*x)) for ``x > 0``. %(example)s """ def _rvs(self, df, nc): return mtrand.noncentral_chisquare(df,nc,self._size) def _logpdf(self, x, df, nc): a = asarray(df/2.0) fac = -nc/2.0 - x/2.0 + (a-1)*np.log(x) - a*np.log(2) - special.gammaln(a) return fac + np.nan_to_num(np.log(special.hyp0f1(a, nc * x/4.0))) def _pdf(self, x, df, nc): return np.exp(self._logpdf(x, df, nc)) def _cdf(self, x, df, nc): return special.chndtr(x,df,nc) def _ppf(self, q, df, nc): return special.chndtrix(q,df,nc) def _stats(self, df, nc): val = df + 2.0*nc return df + nc, 2*val, sqrt(8)*(val+nc)/val**1.5, \ 12.0*(val+2*nc)/val**2.0 ncx2 = ncx2_gen(a=0.0, name='ncx2', shapes="df, nc") # Non-central F class ncf_gen(rv_continuous): """A non-central F distribution continuous random variable. %(before_notes)s Notes ----- The probability density function for `ncf` is:: ncf.pdf(x, df1, df2, nc) = exp(nc/2 + nc*df1*x/(2*(df1*x+df2))) * df1**(df1/2) * df2**(df2/2) * x**(df1/2-1) * (df2+df1*x)**(-(df1+df2)/2) * gamma(df1/2)*gamma(1+df2/2) * L^{v1/2-1}^{v2/2}(-nc*v1*x/(2*(v1*x+v2))) / (B(v1/2, v2/2) * gamma((v1+v2)/2)) for ``df1, df2, nc > 0``. %(example)s """ def _rvs(self, dfn, dfd, nc): return mtrand.noncentral_f(dfn,dfd,nc,self._size) def _pdf_skip(self, x, dfn, dfd, nc): n1,n2 = dfn, dfd term = -nc/2+nc*n1*x/(2*(n2+n1*x)) + gamln(n1/2.)+gamln(1+n2/2.) term -= gamln((n1+n2)/2.0) Px = exp(term) Px *= n1**(n1/2) * n2**(n2/2) * x**(n1/2-1) Px *= (n2+n1*x)**(-(n1+n2)/2) Px *= special.assoc_laguerre(-nc*n1*x/(2.0*(n2+n1*x)),n2/2,n1/2-1) Px /= special.beta(n1/2,n2/2) #this function does not have a return # drop it for now, the generic function seems to work ok def _cdf(self, x, dfn, dfd, nc): return special.ncfdtr(dfn,dfd,nc,x) def _ppf(self, q, dfn, dfd, nc): return special.ncfdtri(dfn, dfd, nc, q) def _munp(self, n, dfn, dfd, nc): val = (dfn *1.0/dfd)**n term = gamln(n+0.5*dfn) + gamln(0.5*dfd-n) - gamln(dfd*0.5) val *= exp(-nc / 2.0+term) val *= special.hyp1f1(n+0.5*dfn, 0.5*dfn, 0.5*nc) return val def _stats(self, dfn, dfd, nc): mu = where(dfd <= 2, inf, dfd / (dfd-2.0)*(1+nc*1.0/dfn)) mu2 = where(dfd <=4, inf, 2*(dfd*1.0/dfn)**2.0 * \ ((dfn+nc/2.0)**2.0 + (dfn+nc)*(dfd-2.0)) / \ ((dfd-2.0)**2.0 * (dfd-4.0))) return mu, mu2, None, None ncf = ncf_gen(a=0.0, name='ncf', shapes="dfn, dfd, nc") ## Student t distribution class t_gen(rv_continuous): """A Student's T continuous random variable. %(before_notes)s Notes ----- The probability density function for `t` is:: gamma((df+1)/2) t.pdf(x, df) = --------------------------------------------------- sqrt(pi*df) * gamma(df/2) * (1+x**2/df)**((df+1)/2) for ``df > 0``. %(example)s """ def _rvs(self, df): return mtrand.standard_t(df, size=self._size) #Y = f.rvs(df, df, size=self._size) #sY = sqrt(Y) #return 0.5*sqrt(df)*(sY-1.0/sY) def _pdf(self, x, df): r = asarray(df*1.0) Px = exp(gamln((r+1)/2)-gamln(r/2)) Px /= sqrt(r*pi)*(1+(x**2)/r)**((r+1)/2) return Px def _logpdf(self, x, df): r = df*1.0 lPx = gamln((r+1)/2)-gamln(r/2) lPx -= 0.5*log(r*pi) + (r+1)/2*log(1+(x**2)/r) return lPx def _cdf(self, x, df): return special.stdtr(df, x) def _sf(self, x, df): return special.stdtr(df, -x) def _ppf(self, q, df): return special.stdtrit(df, q) def _isf(self, q, df): return -special.stdtrit(df, q) def _stats(self, df): mu2 = where(df > 2, df / (df-2.0), inf) g1 = where(df > 3, 0.0, nan) g2 = where(df > 4, 6.0/(df-4.0), nan) return 0, mu2, g1, g2 t = t_gen(name='t', shapes="df") ## Non-central T distribution class nct_gen(rv_continuous): """A non-central Student's T continuous random variable. %(before_notes)s Notes ----- The probability density function for `nct` is:: df**(df/2) * gamma(df+1) nct.pdf(x, df, nc) = ---------------------------------------------------- 2**df*exp(nc**2/2) * (df+x**2)**(df/2) * gamma(df/2) for ``df > 0``, ``nc > 0``. %(example)s """ def _rvs(self, df, nc): return norm.rvs(loc=nc,size=self._size)*sqrt(df) / sqrt(chi2.rvs(df,size=self._size)) def _pdf(self, x, df, nc): n = df*1.0 nc = nc*1.0 x2 = x*x ncx2 = nc*nc*x2 fac1 = n + x2 trm1 = n/2.*log(n) + gamln(n+1) trm1 -= n*log(2)+nc*nc/2.+(n/2.)*log(fac1)+gamln(n/2.) Px = exp(trm1) valF = ncx2 / (2*fac1) trm1 = sqrt(2)*nc*x*special.hyp1f1(n/2+1,1.5,valF) trm1 /= asarray(fac1*special.gamma((n+1)/2)) trm2 = special.hyp1f1((n+1)/2,0.5,valF) trm2 /= asarray(sqrt(fac1)*special.gamma(n/2+1)) Px *= trm1+trm2 return Px def _cdf(self, x, df, nc): return special.nctdtr(df, nc, x) def _ppf(self, q, df, nc): return special.nctdtrit(df, nc, q) def _stats(self, df, nc, moments='mv'): mu, mu2, g1, g2 = None, None, None, None val1 = gam((df-1.0)/2.0) val2 = gam(df/2.0) if 'm' in moments: mu = nc*sqrt(df/2.0)*val1/val2 if 'v' in moments: var = (nc*nc+1.0)*df/(df-2.0) var -= nc*nc*df* val1**2 / 2.0 / val2**2 mu2 = var if 's' in moments: g1n = 2*nc*sqrt(df)*val1*((nc*nc*(2*df-7)-3)*val2**2 \ -nc*nc*(df-2)*(df-3)*val1**2) g1d = (df-3)*sqrt(2*df*(nc*nc+1)/(df-2) - \ nc*nc*df*(val1/val2)**2) * val2 * \ (nc*nc*(df-2)*val1**2 - \ 2*(nc*nc+1)*val2**2) g1 = g1n/g1d if 'k' in moments: g2n = 2*(-3*nc**4*(df-2)**2 *(df-3) *(df-4)*val1**4 + \ 2**(6-2*df) * nc*nc*(df-2)*(df-4)* \ (nc*nc*(2*df-7)-3)*pi* gam(df+1)**2 - \ 4*(nc**4*(df-5)-6*nc*nc-3)*(df-3)*val2**4) g2d = (df-3)*(df-4)*(nc*nc*(df-2)*val1**2 - \ 2*(nc*nc+1)*val2)**2 g2 = g2n / g2d return mu, mu2, g1, g2 nct = nct_gen(name="nct", shapes="df, nc") # Pareto class pareto_gen(rv_continuous): """A Pareto continuous random variable. %(before_notes)s Notes ----- The probability density function for `pareto` is:: pareto.pdf(x, b) = b / x**(b+1) for ``x >= 1``, ``b > 0``. %(example)s """ def _pdf(self, x, b): return b * x**(-b-1) def _cdf(self, x, b): return 1 - x**(-b) def _ppf(self, q, b): return pow(1-q, -1.0/b) def _stats(self, b, moments='mv'): mu, mu2, g1, g2 = None, None, None, None if 'm' in moments: mask = b > 1 bt = extract(mask,b) mu = valarray(shape(b),value=inf) place(mu, mask, bt / (bt-1.0)) if 'v' in moments: mask = b > 2 bt = extract( mask,b) mu2 = valarray(shape(b), value=inf) place(mu2, mask, bt / (bt-2.0) / (bt-1.0)**2) if 's' in moments: mask = b > 3 bt = extract( mask,b) g1 = valarray(shape(b), value=nan) vals = 2*(bt+1.0)*sqrt(b-2.0)/((b-3.0)*sqrt(b)) place(g1, mask, vals) if 'k' in moments: mask = b > 4 bt = extract( mask,b) g2 = valarray(shape(b), value=nan) vals = 6.0*polyval([1.0,1.0,-6,-2],bt)/ \ polyval([1.0,-7.0,12.0,0.0],bt) place(g2, mask, vals) return mu, mu2, g1, g2 def _entropy(self, c): return 1 + 1.0/c - log(c) pareto = pareto_gen(a=1.0, name="pareto", shapes="b") # LOMAX (Pareto of the second kind.) class lomax_gen(rv_continuous): """A Lomax (Pareto of the second kind) continuous random variable. %(before_notes)s Notes ----- The Lomax distribution is a special case of the Pareto distribution, with (loc=-1.0). The probability density function for `lomax` is:: lomax.pdf(x, c) = c / (1+x)**(c+1) for ``x >= 0``, ``c > 0``. %(example)s """ def _pdf(self, x, c): return c*1.0/(1.0+x)**(c+1.0) def _logpdf(self, x, c): return log(c) - (c+1)*log(1+x) def _cdf(self, x, c): return 1.0-1.0/(1.0+x)**c def _sf(self, x, c): return 1.0/(1.0+x)**c def _logsf(self, x, c): return -c*log(1+x) def _ppf(self, q, c): return pow(1.0-q,-1.0/c)-1 def _stats(self, c): mu, mu2, g1, g2 = pareto.stats(c, loc=-1.0, moments='mvsk') return mu, mu2, g1, g2 def _entropy(self, c): return 1+1.0/c-log(c) lomax = lomax_gen(a=0.0, name="lomax", shapes="c") ## Power-function distribution ## Special case of beta dist. with d =1.0 class powerlaw_gen(rv_continuous): """A power-function continuous random variable. %(before_notes)s Notes ----- The probability density function for `powerlaw` is:: powerlaw.pdf(x, a) = a * x**(a-1) for ``0 <= x <= 1``, ``a > 0``. %(example)s """ def _pdf(self, x, a): return a*x**(a-1.0) def _logpdf(self, x, a): return log(a) + (a-1)*log(x) def _cdf(self, x, a): return x**(a*1.0) def _logcdf(self, x, a): return a*log(x) def _ppf(self, q, a): return pow(q, 1.0/a) def _stats(self, a): return (a / (a + 1.0), a / (a + 2.0) / (a + 1.0) ** 2, -2.0 * ((a - 1.0) / (a + 3.0)) * sqrt((a + 2.0) / a), 6 * polyval([1, -1, -6, 2], a) / (a * (a + 3.0) * (a + 4))) def _entropy(self, a): return 1 - 1.0/a - log(a) powerlaw = powerlaw_gen(a=0.0, b=1.0, name="powerlaw", shapes="a") # Power log normal class powerlognorm_gen(rv_continuous): """A power log-normal continuous random variable. %(before_notes)s Notes ----- The probability density function for `powerlognorm` is:: powerlognorm.pdf(x, c, s) = c / (x*s) * phi(log(x)/s) * (Phi(-log(x)/s))**(c-1), where ``phi`` is the normal pdf, and ``Phi`` is the normal cdf, and ``x > 0``, ``s, c > 0``. %(example)s """ def _pdf(self, x, c, s): return c/(x*s)*norm.pdf(log(x)/s)*pow(norm.cdf(-log(x)/s),c*1.0-1.0) def _cdf(self, x, c, s): return 1.0 - pow(norm.cdf(-log(x)/s),c*1.0) def _ppf(self, q, c, s): return exp(-s*norm.ppf(pow(1.0-q,1.0/c))) powerlognorm = powerlognorm_gen(a=0.0, name="powerlognorm", shapes="c, s") # Power Normal class powernorm_gen(rv_continuous): """A power normal continuous random variable. %(before_notes)s Notes ----- The probability density function for `powernorm` is:: powernorm.pdf(x, c) = c * phi(x) * (Phi(-x))**(c-1) where ``phi`` is the normal pdf, and ``Phi`` is the normal cdf, and ``x > 0``, ``c > 0``. %(example)s """ def _pdf(self, x, c): return c*_norm_pdf(x)* \ (_norm_cdf(-x)**(c-1.0)) def _logpdf(self, x, c): return log(c) + _norm_logpdf(x) + (c-1)*_norm_logcdf(-x) def _cdf(self, x, c): return 1.0-_norm_cdf(-x)**(c*1.0) def _ppf(self, q, c): return -norm.ppf(pow(1.0-q,1.0/c)) powernorm = powernorm_gen(name='powernorm', shapes="c") # R-distribution ( a general-purpose distribution with a # variety of shapes. # FIXME: PPF does not work. class rdist_gen(rv_continuous): """An R-distributed continuous random variable. %(before_notes)s Notes ----- The probability density function for `rdist` is:: rdist.pdf(x, c) = (1-x**2)**(c/2-1) / B(1/2, c/2) for ``-1 <= x <= 1``, ``c > 0``. %(example)s """ def _pdf(self, x, c): return np.power((1.0-x*x),c/2.0-1) / special.beta(0.5,c/2.0) def _cdf_skip(self, x, c): #error inspecial.hyp2f1 for some values see tickets 758, 759 return 0.5 + x/special.beta(0.5,c/2.0)* \ special.hyp2f1(0.5,1.0-c/2.0,1.5,x*x) def _munp(self, n, c): return (1-(n % 2))*special.beta((n+1.0)/2,c/2.0) rdist = rdist_gen(a=-1.0, b=1.0, name="rdist", shapes="c") # Rayleigh distribution (this is chi with df=2 and loc=0.0) # scale is the mode. class rayleigh_gen(rv_continuous): """A Rayleigh continuous random variable. %(before_notes)s Notes ----- The probability density function for `rayleigh` is:: rayleigh.pdf(r) = r * exp(-r**2/2) for ``x >= 0``. %(example)s """ def _rvs(self): return chi.rvs(2,size=self._size) def _pdf(self, r): return r*exp(-r*r/2.0) def _cdf(self, r): return 1.0-exp(-r*r/2.0) def _ppf(self, q): return sqrt(-2*log(1-q)) def _stats(self): val = 4-pi return np.sqrt(pi/2), val/2, 2*(pi-3)*sqrt(pi)/val**1.5, \ 6*pi/val-16/val**2 def _entropy(self): return _EULER/2.0 + 1 - 0.5*log(2) rayleigh = rayleigh_gen(a=0.0, name="rayleigh") # Reciprocal Distribution class reciprocal_gen(rv_continuous): """A reciprocal continuous random variable. %(before_notes)s Notes ----- The probability density function for `reciprocal` is:: reciprocal.pdf(x, a, b) = 1 / (x*log(b/a)) for ``a <= x <= b``, ``a, b > 0``. %(example)s """ def _argcheck(self, a, b): self.a = a self.b = b self.d = log(b*1.0 / a) return (a > 0) & (b > 0) & (b > a) def _pdf(self, x, a, b): # argcheck should be called before _pdf return 1.0/(x*self.d) def _logpdf(self, x, a, b): return -log(x) - log(self.d) def _cdf(self, x, a, b): return (log(x)-log(a)) / self.d def _ppf(self, q, a, b): return a*pow(b*1.0/a,q) def _munp(self, n, a, b): return 1.0/self.d / n * (pow(b*1.0,n) - pow(a*1.0,n)) def _entropy(self,a,b): return 0.5*log(a*b)+log(log(b/a)) reciprocal = reciprocal_gen(name="reciprocal", shapes="a, b") # Rice distribution # FIXME: PPF does not work. class rice_gen(rv_continuous): """A Rice continuous random variable. %(before_notes)s Notes ----- The probability density function for `rice` is:: rice.pdf(x, b) = x * exp(-(x**2+b**2)/2) * I[0](x*b) for ``x > 0``, ``b > 0``. %(example)s """ def _pdf(self, x, b): return x*exp(-(x*x+b*b)/2.0)*special.i0(x*b) def _logpdf(self, x, b): return log(x) - (x*x + b*b)/2.0 + log(special.i0(x*b)) def _munp(self, n, b): nd2 = n/2.0 n1 = 1+nd2 b2 = b*b/2.0 return 2.0**(nd2)*exp(-b2)*special.gamma(n1) * \ special.hyp1f1(n1,1,b2) rice = rice_gen(a=0.0, name="rice", shapes="b") # Reciprocal Inverse Gaussian # FIXME: PPF does not work. class recipinvgauss_gen(rv_continuous): """A reciprocal inverse Gaussian continuous random variable. %(before_notes)s Notes ----- The probability density function for `recipinvgauss` is:: recipinvgauss.pdf(x, mu) = 1/sqrt(2*pi*x) * exp(-(1-mu*x)**2/(2*x*mu**2)) for ``x >= 0``. %(example)s """ def _rvs(self, mu): #added, taken from invgauss return 1.0/mtrand.wald(mu, 1.0, size=self._size) def _pdf(self, x, mu): return 1.0/sqrt(2*pi*x)*exp(-(1-mu*x)**2.0 / (2*x*mu**2.0)) def _logpdf(self, x, mu): return -(1-mu*x)**2.0 / (2*x*mu**2.0) - 0.5*log(2*pi*x) def _cdf(self, x, mu): trm1 = 1.0/mu - x trm2 = 1.0/mu + x isqx = 1.0/sqrt(x) return 1.0-_norm_cdf(isqx*trm1)-exp(2.0/mu)*_norm_cdf(-isqx*trm2) recipinvgauss = recipinvgauss_gen(a=0.0, name='recipinvgauss', shapes="mu") # Semicircular class semicircular_gen(rv_continuous): """A semicircular continuous random variable. %(before_notes)s Notes ----- The probability density function for `semicircular` is:: semicircular.pdf(x) = 2/pi * sqrt(1-x**2) for ``-1 <= x <= 1``. %(example)s """ def _pdf(self, x): return 2.0/pi*sqrt(1-x*x) def _cdf(self, x): return 0.5+1.0/pi*(x*sqrt(1-x*x) + arcsin(x)) def _stats(self): return 0, 0.25, 0, -1.0 def _entropy(self): return 0.64472988584940017414 semicircular = semicircular_gen(a=-1.0, b=1.0, name="semicircular") # Triangular class triang_gen(rv_continuous): """A triangular continuous random variable. %(before_notes)s Notes ----- The triangular distribution can be represented with an up-sloping line from ``loc`` to ``(loc + c*scale)`` and then downsloping for ``(loc + c*scale)`` to ``(loc+scale)``. The standard form is in the range [0, 1] with c the mode. The location parameter shifts the start to `loc`. The scale parameter changes the width from 1 to `scale`. %(example)s """ def _rvs(self, c): return mtrand.triangular(0, c, 1, self._size) def _argcheck(self, c): return (c >= 0) & (c <= 1) def _pdf(self, x, c): return where(x < c, 2*x/c, 2*(1-x)/(1-c)) def _cdf(self, x, c): return where(x < c, x*x/c, (x*x-2*x+c)/(c-1)) def _ppf(self, q, c): return where(q < c, sqrt(c*q), 1-sqrt((1-c)*(1-q))) def _stats(self, c): return (c+1.0)/3.0, (1.0-c+c*c)/18, sqrt(2)*(2*c-1)*(c+1)*(c-2) / \ (5*(1.0-c+c*c)**1.5), -3.0/5.0 def _entropy(self,c): return 0.5-log(2) triang = triang_gen(a=0.0, b=1.0, name="triang", shapes="c") # Truncated Exponential class truncexpon_gen(rv_continuous): """A truncated exponential continuous random variable. %(before_notes)s Notes ----- The probability density function for `truncexpon` is:: truncexpon.pdf(x, b) = exp(-x) / (1-exp(-b)) for ``0 < x < b``. %(example)s """ def _argcheck(self, b): self.b = b return (b > 0) def _pdf(self, x, b): return exp(-x)/(1-exp(-b)) def _logpdf(self, x, b): return -x - log(1-exp(-b)) def _cdf(self, x, b): return (1.0-exp(-x))/(1-exp(-b)) def _ppf(self, q, b): return -log(1-q+q*exp(-b)) def _munp(self, n, b): #wrong answer with formula, same as in continuous.pdf #return gam(n+1)-special.gammainc(1+n,b) if n == 1: return (1-(b+1)*exp(-b))/(-expm1(-b)) elif n == 2: return 2*(1-0.5*(b*b+2*b+2)*exp(-b))/(-expm1(-b)) else: #return generic for higher moments #return rv_continuous._mom1_sc(self,n, b) return self._mom1_sc(n, b) def _entropy(self, b): eB = exp(b) return log(eB-1)+(1+eB*(b-1.0))/(1.0-eB) truncexpon = truncexpon_gen(a=0.0, name='truncexpon', shapes="b") # Truncated Normal class truncnorm_gen(rv_continuous): """A truncated normal continuous random variable. %(before_notes)s Notes ----- The standard form of this distribution is a standard normal truncated to the range [a,b] --- notice that a and b are defined over the domain of the standard normal. To convert clip values for a specific mean and standard deviation, use:: a, b = (myclip_a - my_mean) / my_std, (myclip_b - my_mean) / my_std %(example)s """ def _argcheck(self, a, b): self.a = a self.b = b self._nb = _norm_cdf(b) self._na = _norm_cdf(a) self._delta = self._nb - self._na self._logdelta = log(self._delta) return (a != b) # All of these assume that _argcheck is called first # and no other thread calls _pdf before. def _pdf(self, x, a, b): return _norm_pdf(x) / self._delta def _logpdf(self, x, a, b): return _norm_logpdf(x) - self._logdelta def _cdf(self, x, a, b): return (_norm_cdf(x) - self._na) / self._delta def _ppf(self, q, a, b): return norm._ppf(q*self._nb + self._na*(1.0-q)) def _stats(self, a, b): nA, nB = self._na, self._nb d = nB - nA pA, pB = _norm_pdf(a), _norm_pdf(b) mu = (pA - pB) / d #correction sign mu2 = 1 + (a*pA - b*pB) / d - mu*mu return mu, mu2, None, None truncnorm = truncnorm_gen(name='truncnorm', shapes="a, b") # Tukey-Lambda # FIXME: RVS does not work. class tukeylambda_gen(rv_continuous): """A Tukey-Lamdba continuous random variable. %(before_notes)s Notes ----- A flexible distribution, able to represent and interpolate between the following distributions: - Cauchy (lam=-1) - logistic (lam=0.0) - approx Normal (lam=0.14) - u-shape (lam = 0.5) - uniform from -1 to 1 (lam = 1) %(example)s """ def _argcheck(self, lam): # lam in RR. return np.ones(np.shape(lam), dtype=bool) def _pdf(self, x, lam): Fx = asarray(special.tklmbda(x,lam)) Px = Fx**(lam-1.0) + (asarray(1-Fx))**(lam-1.0) Px = 1.0/asarray(Px) return where((lam <= 0) | (abs(x) < 1.0/asarray(lam)), Px, 0.0) def _cdf(self, x, lam): return special.tklmbda(x, lam) def _ppf(self, q, lam): q = q*1.0 vals1 = (q**lam - (1-q)**lam)/lam vals2 = log(q/(1-q)) return where((lam == 0)&(q==q), vals2, vals1) def _stats(self, lam): return 0, _tlvar(lam), 0, _tlkurt(lam) def _entropy(self, lam): def integ(p): return log(pow(p,lam-1)+pow(1-p,lam-1)) return integrate.quad(integ,0,1)[0] tukeylambda = tukeylambda_gen(name='tukeylambda', shapes="lam") # Uniform class uniform_gen(rv_continuous): """A uniform continuous random variable. This distribution is constant between `loc` and ``loc + scale``. %(before_notes)s %(example)s """ def _rvs(self): return mtrand.uniform(0.0,1.0,self._size) def _pdf(self, x): return 1.0*(x==x) def _cdf(self, x): return x def _ppf(self, q): return q def _stats(self): return 0.5, 1.0/12, 0, -1.2 def _entropy(self): return 0.0 uniform = uniform_gen(a=0.0, b=1.0, name='uniform') # Von-Mises # if x is not in range or loc is not in range it assumes they are angles # and converts them to [-pi, pi] equivalents. eps = numpy.finfo(float).eps class vonmises_gen(rv_continuous): """A Von Mises continuous random variable. %(before_notes)s Notes ----- If `x` is not in range or `loc` is not in range it assumes they are angles and converts them to [-pi, pi] equivalents. The probability density function for `vonmises` is:: vonmises.pdf(x, b) = exp(b*cos(x)) / (2*pi*I[0](b)) for ``-pi <= x <= pi``, ``b > 0``. %(example)s """ def _rvs(self, b): return mtrand.vonmises(0.0, b, size=self._size) def _pdf(self, x, b): return exp(b*cos(x)) / (2*pi*special.i0(b)) def _cdf(self, x, b): return vonmises_cython.von_mises_cdf(b,x) def _stats_skip(self, b): return 0, None, 0, None vonmises = vonmises_gen(name='vonmises', shapes="b") ## Wald distribution (Inverse Normal with shape parameter mu=1.0) class wald_gen(invgauss_gen): """A Wald continuous random variable. %(before_notes)s Notes ----- The probability density function for `wald` is:: wald.pdf(x, a) = 1/sqrt(2*pi*x**3) * exp(-(x-1)**2/(2*x)) for ``x > 0``. %(example)s """ def _rvs(self): return mtrand.wald(1.0, 1.0, size=self._size) def _pdf(self, x): return invgauss._pdf(x, 1.0) def _logpdf(self, x): return invgauss._logpdf(x, 1.0) def _cdf(self, x): return invgauss._cdf(x, 1.0) def _stats(self): return 1.0, 1.0, 3.0, 15.0 wald = wald_gen(a=0.0, name="wald") # Wrapped Cauchy class wrapcauchy_gen(rv_continuous): """A wrapped Cauchy continuous random variable. %(before_notes)s Notes ----- The probability density function for `wrapcauchy` is:: wrapcauchy.pdf(x, c) = (1-c**2) / (2*pi*(1+c**2-2*c*cos(x))) for ``0 <= x <= 2*pi``, ``0 < c < 1``. %(example)s """ def _argcheck(self, c): return (c > 0) & (c < 1) def _pdf(self, x, c): return (1.0-c*c)/(2*pi*(1+c*c-2*c*cos(x))) def _cdf(self, x, c): output = 0.0*x val = (1.0+c)/(1.0-c) c1 = x<pi c2 = 1-c1 xp = extract( c1,x) #valp = extract(c1,val) xn = extract( c2,x) #valn = extract(c2,val) if (any(xn)): valn = extract(c2, np.ones_like(x)*val) xn = 2*pi - xn yn = tan(xn/2.0) on = 1.0-1.0/pi*arctan(valn*yn) place(output, c2, on) if (any(xp)): valp = extract(c1, np.ones_like(x)*val) yp = tan(xp/2.0) op = 1.0/pi*arctan(valp*yp) place(output, c1, op) return output def _ppf(self, q, c): val = (1.0-c)/(1.0+c) rcq = 2*arctan(val*tan(pi*q)) rcmq = 2*pi-2*arctan(val*tan(pi*(1-q))) return where(q < 1.0/2, rcq, rcmq) def _entropy(self, c): return log(2*pi*(1-c*c)) wrapcauchy = wrapcauchy_gen(a=0.0, b=2*pi, name='wrapcauchy', shapes="c") ### DISCRETE DISTRIBUTIONS ### def entropy(pk, qk=None, base=None): """ Calculate the entropy of a distribution for given probability values. If only probabilities `pk` are given, the entropy is calculated as ``S = -sum(pk * log(pk), axis=0)``. If `qk` is not None, then compute a relative entropy ``S = sum(pk * log(pk / qk), axis=0)``. This routine will normalize `pk` and `qk` if they don't sum to 1. Parameters ---------- pk : sequence Defines the (discrete) distribution. ``pk[i]`` is the (possibly unnormalized) probability of event ``i``. qk : sequence, optional Sequence against which the relative entropy is computed. Should be in the same format as `pk`. base : float, optional The logarithmic base to use, defaults to ``e`` (natural logarithm). Returns ------- S : float The calculated entropy. """ pk = asarray(pk) pk = 1.0* pk / sum(pk, axis=0) if qk is None: vec = where(pk == 0, 0.0, pk*log(pk)) else: qk = asarray(qk) if len(qk) != len(pk): raise ValueError("qk and pk must have same length.") qk = 1.0*qk / sum(qk, axis=0) # If qk is zero anywhere, then unless pk is zero at those places # too, the relative entropy is infinite. if any(take(pk, nonzero(qk == 0.0), axis=0) != 0.0, 0): return inf vec = where (pk == 0, 0.0, -pk*log(pk / qk)) S = -sum(vec, axis=0) if base is not None: S /= log(base) return S ## Handlers for generic case where xk and pk are given def _drv_pmf(self, xk, *args): try: return self.P[xk] except KeyError: return 0.0 def _drv_cdf(self, xk, *args): indx = argmax((self.xk>xk),axis=-1)-1 return self.F[self.xk[indx]] def _drv_ppf(self, q, *args): indx = argmax((self.qvals>=q),axis=-1) return self.Finv[self.qvals[indx]] def _drv_nonzero(self, k, *args): return 1 def _drv_moment(self, n, *args): n = asarray(n) return sum(self.xk**n[newaxis,...] * self.pk, axis=0) def _drv_moment_gen(self, t, *args): t = asarray(t) return sum(exp(self.xk * t[newaxis,...]) * self.pk, axis=0) def _drv2_moment(self, n, *args): """Non-central moment of discrete distribution.""" #many changes, originally not even a return tot = 0.0 diff = 1e100 #pos = self.a pos = max(0.0, 1.0*self.a) count = 0 #handle cases with infinite support ulimit = max(1000, (min(self.b,1000) + max(self.a,-1000))/2.0 ) llimit = min(-1000, (min(self.b,1000) + max(self.a,-1000))/2.0 ) while (pos <= self.b) and ((pos <= ulimit) or \ (diff > self.moment_tol)): diff = np.power(pos, n) * self.pmf(pos,*args) # use pmf because _pmf does not check support in randint # and there might be problems ? with correct self.a, self.b at this stage tot += diff pos += self.inc count += 1 if self.a < 0: #handle case when self.a = -inf diff = 1e100 pos = -self.inc while (pos >= self.a) and ((pos >= llimit) or \ (diff > self.moment_tol)): diff = np.power(pos, n) * self.pmf(pos,*args) #using pmf instead of _pmf, see above tot += diff pos -= self.inc count += 1 return tot def _drv2_ppfsingle(self, q, *args): # Use basic bisection algorithm b = self.invcdf_b a = self.invcdf_a if isinf(b): # Be sure ending point is > q b = max(100*q,10) while 1: if b >= self.b: qb = 1.0; break qb = self._cdf(b,*args) if (qb < q): b += 10 else: break else: qb = 1.0 if isinf(a): # be sure starting point < q a = min(-100*q,-10) while 1: if a <= self.a: qb = 0.0; break qa = self._cdf(a,*args) if (qa > q): a -= 10 else: break else: qa = self._cdf(a, *args) while 1: if (qa == q): return a if (qb == q): return b if b == a+1: #testcase: return wrong number at lower index #python -c "from scipy.stats import zipf;print zipf.ppf(0.01,2)" wrong #python -c "from scipy.stats import zipf;print zipf.ppf([0.01,0.61,0.77,0.83],2)" #python -c "from scipy.stats import logser;print logser.ppf([0.1,0.66, 0.86,0.93],0.6)" if qa > q: return a else: return b c = int((a+b)/2.0) qc = self._cdf(c, *args) if (qc < q): a = c qa = qc elif (qc > q): b = c qb = qc else: return c def reverse_dict(dict): newdict = {} sorted_keys = copy(dict.keys()) sorted_keys.sort() for key in sorted_keys[::-1]: newdict[dict[key]] = key return newdict def make_dict(keys, values): d = {} for key, value in zip(keys, values): d[key] = value return d # Must over-ride one of _pmf or _cdf or pass in # x_k, p(x_k) lists in initialization class rv_discrete(rv_generic): """ A generic discrete random variable class meant for subclassing. `rv_discrete` is a base class to construct specific distribution classes and instances from for discrete random variables. rv_discrete can be used to construct an arbitrary distribution with defined by a list of support points and the corresponding probabilities. Parameters ---------- a : float, optional Lower bound of the support of the distribution, default: 0 b : float, optional Upper bound of the support of the distribution, default: plus infinity moment_tol : float, optional The tolerance for the generic calculation of moments values : tuple of two array_like (xk, pk) where xk are points (integers) with positive probability pk with sum(pk) = 1 inc : integer increment for the support of the distribution, default: 1 other values have not been tested badvalue : object, optional The value in (masked) arrays that indicates a value that should be ignored. name : str, optional The name of the instance. This string is used to construct the default example for distributions. longname : str, optional This string is used as part of the first line of the docstring returned when a subclass has no docstring of its own. Note: `longname` exists for backwards compatibility, do not use for new subclasses. shapes : str, optional The shape of the distribution. For example ``"m, n"`` for a distribution that takes two integers as the first two arguments for all its methods. extradoc : str, optional This string is used as the last part of the docstring returned when a subclass has no docstring of its own. Note: `extradoc` exists for backwards compatibility, do not use for new subclasses. Methods ------- generic.rvs(<shape(s)>, loc=0, size=1) random variates generic.pmf(x, <shape(s)>, loc=0) probability mass function logpmf(x, <shape(s)>, loc=0) log of the probability density function generic.cdf(x, <shape(s)>, loc=0) cumulative density function generic.logcdf(x, <shape(s)>, loc=0) log of the cumulative density function generic.sf(x, <shape(s)>, loc=0) survival function (1-cdf --- sometimes more accurate) generic.logsf(x, <shape(s)>, loc=0, scale=1) log of the survival function generic.ppf(q, <shape(s)>, loc=0) percent point function (inverse of cdf --- percentiles) generic.isf(q, <shape(s)>, loc=0) inverse survival function (inverse of sf) generic.moment(n, <shape(s)>, loc=0) non-central n-th moment of the distribution. May not work for array arguments. generic.stats(<shape(s)>, loc=0, moments='mv') mean('m', axis=0), variance('v'), skew('s'), and/or kurtosis('k') generic.entropy(<shape(s)>, loc=0) entropy of the RV generic.expect(func=None, args=(), loc=0, lb=None, ub=None, conditional=False) Expected value of a function with respect to the distribution. Additional kwd arguments passed to integrate.quad generic.median(<shape(s)>, loc=0) Median of the distribution. generic.mean(<shape(s)>, loc=0) Mean of the distribution. generic.std(<shape(s)>, loc=0) Standard deviation of the distribution. generic.var(<shape(s)>, loc=0) Variance of the distribution. generic.interval(alpha, <shape(s)>, loc=0) Interval that with `alpha` percent probability contains a random realization of this distribution. generic(<shape(s)>, loc=0) calling a distribution instance returns a frozen distribution Notes ----- You can construct an arbitrary discrete rv where ``P{X=xk} = pk`` by passing to the rv_discrete initialization method (through the values=keyword) a tuple of sequences (xk, pk) which describes only those values of X (xk) that occur with nonzero probability (pk). To create a new discrete distribution, we would do the following:: class poisson_gen(rv_continuous): #"Poisson distribution" def _pmf(self, k, mu): ... and create an instance:: poisson = poisson_gen(name="poisson", shapes="mu", longname='A Poisson') The docstring can be created from a template. Alternatively, the object may be called (as a function) to fix the shape and location parameters returning a "frozen" discrete RV object:: myrv = generic(<shape(s)>, loc=0) - frozen RV object with the same methods but holding the given shape and location fixed. Examples -------- Custom made discrete distribution: >>> import matplotlib.pyplot as plt >>> from scipy import stats >>> xk = np.arange(7) >>> pk = (0.1, 0.2, 0.3, 0.1, 0.1, 0.1, 0.1) >>> custm = stats.rv_discrete(name='custm', values=(xk, pk)) >>> h = plt.plot(xk, custm.pmf(xk)) Random number generation: >>> R = custm.rvs(size=100) Display frozen pmf: >>> numargs = generic.numargs >>> [ <shape(s)> ] = ['Replace with resonable value', ]*numargs >>> rv = generic(<shape(s)>) >>> x = np.arange(0, np.min(rv.dist.b, 3)+1) >>> h = plt.plot(x, rv.pmf(x)) Here, ``rv.dist.b`` is the right endpoint of the support of ``rv.dist``. Check accuracy of cdf and ppf: >>> prb = generic.cdf(x, <shape(s)>) >>> h = plt.semilogy(np.abs(x-generic.ppf(prb, <shape(s)>))+1e-20) """ def __init__(self, a=0, b=inf, name=None, badvalue=None, moment_tol=1e-8,values=None,inc=1,longname=None, shapes=None, extradoc=None): super(rv_generic,self).__init__() if badvalue is None: badvalue = nan if name is None: name = 'Distribution' self.badvalue = badvalue self.a = a self.b = b self.invcdf_a = a # what's the difference to self.a, .b self.invcdf_b = b self.name = name self.moment_tol = moment_tol self.inc = inc self._cdfvec = sgf(self._cdfsingle,otypes='d') self.return_integers = 1 self.vecentropy = vectorize(self._entropy) self.shapes = shapes self.extradoc = extradoc if values is not None: self.xk, self.pk = values self.return_integers = 0 indx = argsort(ravel(self.xk)) self.xk = take(ravel(self.xk),indx, 0) self.pk = take(ravel(self.pk),indx, 0) self.a = self.xk[0] self.b = self.xk[-1] self.P = make_dict(self.xk, self.pk) self.qvals = numpy.cumsum(self.pk,axis=0) self.F = make_dict(self.xk, self.qvals) self.Finv = reverse_dict(self.F) self._ppf = instancemethod(sgf(_drv_ppf,otypes='d'), self, rv_discrete) self._pmf = instancemethod(sgf(_drv_pmf,otypes='d'), self, rv_discrete) self._cdf = instancemethod(sgf(_drv_cdf,otypes='d'), self, rv_discrete) self._nonzero = instancemethod(_drv_nonzero, self, rv_discrete) self.generic_moment = instancemethod(_drv_moment, self, rv_discrete) self.moment_gen = instancemethod(_drv_moment_gen, self, rv_discrete) self.numargs=0 else: cdf_signature = inspect.getargspec(self._cdf.im_func) numargs1 = len(cdf_signature[0]) - 2 pmf_signature = inspect.getargspec(self._pmf.im_func) numargs2 = len(pmf_signature[0]) - 2 self.numargs = max(numargs1, numargs2) #nin correction needs to be after we know numargs #correct nin for generic moment vectorization self.vec_generic_moment = sgf(_drv2_moment, otypes='d') self.vec_generic_moment.nin = self.numargs + 2 self.generic_moment = instancemethod(self.vec_generic_moment, self, rv_discrete) #correct nin for ppf vectorization _vppf = sgf(_drv2_ppfsingle,otypes='d') _vppf.nin = self.numargs + 2 # +1 is for self self._vecppf = instancemethod(_vppf, self, rv_discrete) #now that self.numargs is defined, we can adjust nin self._cdfvec.nin = self.numargs + 1 # generate docstring for subclass instances if longname is None: if name[0] in ['aeiouAEIOU']: hstr = "An " else: hstr = "A " longname = hstr + name if self.__doc__ is None: self._construct_default_doc(longname=longname, extradoc=extradoc) else: self._construct_doc() ## This only works for old-style classes... # self.__class__.__doc__ = self.__doc__ def _construct_default_doc(self, longname=None, extradoc=None): """Construct instance docstring from the rv_discrete template.""" if extradoc is None: extradoc = '' if extradoc.startswith('\n\n'): extradoc = extradoc[2:] self.__doc__ = ''.join(['%s discrete random variable.'%longname, '\n\n%(before_notes)s\n', docheaders['notes'], extradoc, '\n%(example)s']) self._construct_doc() def _construct_doc(self): """Construct the instance docstring with string substitutions.""" tempdict = docdict_discrete.copy() tempdict['name'] = self.name or 'distname' tempdict['shapes'] = self.shapes or '' if self.shapes is None: # remove shapes from call parameters if there are none for item in ['callparams', 'default', 'before_notes']: tempdict[item] = tempdict[item].replace(\ "\n%(shapes)s : array_like\n shape parameters", "") for i in range(2): if self.shapes is None: # necessary because we use %(shapes)s in two forms (w w/o ", ") self.__doc__ = self.__doc__.replace("%(shapes)s, ", "") self.__doc__ = doccer.docformat(self.__doc__, tempdict) def _rvs(self, *args): return self._ppf(mtrand.random_sample(self._size),*args) def _nonzero(self, k, *args): return floor(k)==k def _argcheck(self, *args): cond = 1 for arg in args: cond &= (arg > 0) return cond def _pmf(self, k, *args): return self._cdf(k,*args) - self._cdf(k-1,*args) def _logpmf(self, k, *args): return log(self._pmf(k, *args)) def _cdfsingle(self, k, *args): m = arange(int(self.a),k+1) return sum(self._pmf(m,*args),axis=0) def _cdf(self, x, *args): k = floor(x) return self._cdfvec(k,*args) def _logcdf(self, x, *args): return log(self._cdf(x, *args)) def _sf(self, x, *args): return 1.0-self._cdf(x,*args) def _logsf(self, x, *args): return log(self._sf(x, *args)) def _ppf(self, q, *args): return self._vecppf(q, *args) def _isf(self, q, *args): return self._ppf(1-q,*args) def _stats(self, *args): return None, None, None, None def _munp(self, n, *args): return self.generic_moment(n, *args) def rvs(self, *args, **kwargs): """ Random variates of given type. Parameters ---------- arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional Location parameter (default=0). size : int or tuple of ints, optional Defining number of random variates (default=1). Returns ------- rvs : array_like Random variates of given `size`. """ kwargs['discrete'] = True return super(rv_discrete, self).rvs(*args, **kwargs) def pmf(self, k,*args, **kwds): """ Probability mass function at k of the given RV. Parameters ---------- k : array_like quantiles arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional Location parameter (default=0). Returns ------- pmf : array_like Probability mass function evaluated at k """ loc = kwds.get('loc') args, loc = self._fix_loc(args, loc) k,loc = map(asarray,(k,loc)) args = tuple(map(asarray,args)) k = asarray((k-loc)) cond0 = self._argcheck(*args) cond1 = (k >= self.a) & (k <= self.b) & self._nonzero(k,*args) cond = cond0 & cond1 output = zeros(shape(cond),'d') place(output,(1-cond0) + np.isnan(k),self.badvalue) if any(cond): goodargs = argsreduce(cond, *((k,)+args)) place(output,cond,self._pmf(*goodargs)) if output.ndim == 0: return output[()] return output def logpmf(self, k,*args, **kwds): """ Log of the probability mass function at k of the given RV. Parameters ---------- k : array_like Quantiles. arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional Location parameter. Default is 0. Returns ------- logpmf : array_like Log of the probability mass function evaluated at k. """ loc = kwds.get('loc') args, loc = self._fix_loc(args, loc) k,loc = map(asarray,(k,loc)) args = tuple(map(asarray,args)) k = asarray((k-loc)) cond0 = self._argcheck(*args) cond1 = (k >= self.a) & (k <= self.b) & self._nonzero(k,*args) cond = cond0 & cond1 output = empty(shape(cond),'d') output.fill(NINF) place(output,(1-cond0) + np.isnan(k),self.badvalue) if any(cond): goodargs = argsreduce(cond, *((k,)+args)) place(output,cond,self._logpmf(*goodargs)) if output.ndim == 0: return output[()] return output def cdf(self, k, *args, **kwds): """ Cumulative distribution function at k of the given RV. Parameters ---------- k : array_like, int Quantiles. arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional Location parameter (default=0). Returns ------- cdf : array_like Cumulative distribution function evaluated at k. """ loc = kwds.get('loc') args, loc = self._fix_loc(args, loc) k,loc = map(asarray,(k,loc)) args = tuple(map(asarray,args)) k = asarray((k-loc)) cond0 = self._argcheck(*args) cond1 = (k >= self.a) & (k < self.b) cond2 = (k >= self.b) cond = cond0 & cond1 output = zeros(shape(cond),'d') place(output,(1-cond0) + np.isnan(k),self.badvalue) place(output,cond2*(cond0==cond0), 1.0) if any(cond): goodargs = argsreduce(cond, *((k,)+args)) place(output,cond,self._cdf(*goodargs)) if output.ndim == 0: return output[()] return output def logcdf(self, k, *args, **kwds): """ Log of the cumulative distribution function at k of the given RV Parameters ---------- k : array_like, int Quantiles. arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional Location parameter (default=0). Returns ------- logcdf : array_like Log of the cumulative distribution function evaluated at k. """ loc = kwds.get('loc') args, loc = self._fix_loc(args, loc) k,loc = map(asarray,(k,loc)) args = tuple(map(asarray,args)) k = asarray((k-loc)) cond0 = self._argcheck(*args) cond1 = (k >= self.a) & (k < self.b) cond2 = (k >= self.b) cond = cond0 & cond1 output = empty(shape(cond),'d') output.fill(NINF) place(output,(1-cond0) + np.isnan(k),self.badvalue) place(output,cond2*(cond0==cond0), 0.0) if any(cond): goodargs = argsreduce(cond, *((k,)+args)) place(output,cond,self._logcdf(*goodargs)) if output.ndim == 0: return output[()] return output def sf(self,k,*args,**kwds): """ Survival function (1-cdf) at k of the given RV. Parameters ---------- k : array_like Quantiles. arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional Location parameter (default=0). Returns ------- sf : array_like Survival function evaluated at k. """ loc= kwds.get('loc') args, loc = self._fix_loc(args, loc) k,loc = map(asarray,(k,loc)) args = tuple(map(asarray,args)) k = asarray(k-loc) cond0 = self._argcheck(*args) cond1 = (k >= self.a) & (k <= self.b) cond2 = (k < self.a) & cond0 cond = cond0 & cond1 output = zeros(shape(cond),'d') place(output,(1-cond0) + np.isnan(k),self.badvalue) place(output,cond2,1.0) if any(cond): goodargs = argsreduce(cond, *((k,)+args)) place(output,cond,self._sf(*goodargs)) if output.ndim == 0: return output[()] return output def logsf(self,k,*args,**kwds): """ Log of the survival function (1-cdf) at k of the given RV Parameters ---------- k : array_like Quantiles. arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional Location parameter (default=0). Returns ------- sf : array_like Survival function evaluated at k. """ loc= kwds.get('loc') args, loc = self._fix_loc(args, loc) k,loc = map(asarray,(k,loc)) args = tuple(map(asarray,args)) k = asarray(k-loc) cond0 = self._argcheck(*args) cond1 = (k >= self.a) & (k <= self.b) cond2 = (k < self.a) & cond0 cond = cond0 & cond1 output = empty(shape(cond),'d') output.fill(NINF) place(output,(1-cond0) + np.isnan(k),self.badvalue) place(output,cond2,0.0) if any(cond): goodargs = argsreduce(cond, *((k,)+args)) place(output,cond,self._logsf(*goodargs)) if output.ndim == 0: return output[()] return output def ppf(self,q,*args,**kwds): """ Percent point function (inverse of cdf) at q of the given RV Parameters ---------- q : array_like Lower tail probability. arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional Location parameter (default=0). scale : array_like, optional Scale parameter (default=1). Returns ------- k : array_like Quantile corresponding to the lower tail probability, q. """ loc = kwds.get('loc') args, loc = self._fix_loc(args, loc) q,loc = map(asarray,(q,loc)) args = tuple(map(asarray,args)) cond0 = self._argcheck(*args) & (loc == loc) cond1 = (q > 0) & (q < 1) cond2 = (q==1) & cond0 cond = cond0 & cond1 output = valarray(shape(cond),value=self.badvalue,typecode='d') #output type 'd' to handle nin and inf place(output,(q==0)*(cond==cond), self.a-1) place(output,cond2,self.b) if any(cond): goodargs = argsreduce(cond, *((q,)+args+(loc,))) loc, goodargs = goodargs[-1], goodargs[:-1] place(output,cond,self._ppf(*goodargs) + loc) if output.ndim == 0: return output[()] return output def isf(self,q,*args,**kwds): """ Inverse survival function (1-sf) at q of the given RV. Parameters ---------- q : array_like Upper tail probability. arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional Location parameter (default=0). Returns ------- k : array_like Quantile corresponding to the upper tail probability, q. """ loc = kwds.get('loc') args, loc = self._fix_loc(args, loc) q,loc = map(asarray,(q,loc)) args = tuple(map(asarray,args)) cond0 = self._argcheck(*args) & (loc == loc) cond1 = (q > 0) & (q < 1) cond2 = (q==1) & cond0 cond = cond0 & cond1 #old: ## output = valarray(shape(cond),value=self.b,typecode='d') ## #typecode 'd' to handle nin and inf ## place(output,(1-cond0)*(cond1==cond1), self.badvalue) ## place(output,cond2,self.a-1) #same problem as with ppf # copied from ppf and changed output = valarray(shape(cond),value=self.badvalue,typecode='d') #output type 'd' to handle nin and inf place(output,(q==0)*(cond==cond), self.b) place(output,cond2,self.a-1) # call place only if at least 1 valid argument if any(cond): goodargs = argsreduce(cond, *((q,)+args+(loc,))) loc, goodargs = goodargs[-1], goodargs[:-1] place(output,cond,self._isf(*goodargs) + loc) #PB same as ticket 766 if output.ndim == 0: return output[()] return output def stats(self, *args, **kwds): """ Some statistics of the given discrete RV. Parameters ---------- arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional Location parameter (default=0). moments : string, optional Composed of letters ['mvsk'] defining which moments to compute: - 'm' = mean, - 'v' = variance, - 's' = (Fisher's) skew, - 'k' = (Fisher's) kurtosis. The default is'mv'. Returns ------- stats : sequence of requested moments. """ loc,moments=map(kwds.get,['loc','moments']) N = len(args) if N > self.numargs: if N == self.numargs + 1 and loc is None: # loc is given without keyword loc = args[-1] if N == self.numargs + 2 and moments is None: # loc, scale, and moments loc, moments = args[-2:] args = args[:self.numargs] if loc is None: loc = 0.0 if moments is None: moments = 'mv' loc = asarray(loc) args = tuple(map(asarray,args)) cond = self._argcheck(*args) & (loc==loc) signature = inspect.getargspec(self._stats.im_func) if (signature[2] is not None) or ('moments' in signature[0]): mu, mu2, g1, g2 = self._stats(*args,**{'moments':moments}) else: mu, mu2, g1, g2 = self._stats(*args) if g1 is None: mu3 = None else: mu3 = g1*(mu2**1.5) default = valarray(shape(cond), self.badvalue) output = [] # Use only entries that are valid in calculation goodargs = argsreduce(cond, *(args+(loc,))) loc, goodargs = goodargs[-1], goodargs[:-1] if 'm' in moments: if mu is None: mu = self._munp(1.0,*goodargs) out0 = default.copy() place(out0,cond,mu+loc) output.append(out0) if 'v' in moments: if mu2 is None: mu2p = self._munp(2.0,*goodargs) if mu is None: mu = self._munp(1.0,*goodargs) mu2 = mu2p - mu*mu out0 = default.copy() place(out0,cond,mu2) output.append(out0) if 's' in moments: if g1 is None: mu3p = self._munp(3.0,*goodargs) if mu is None: mu = self._munp(1.0,*goodargs) if mu2 is None: mu2p = self._munp(2.0,*goodargs) mu2 = mu2p - mu*mu mu3 = mu3p - 3*mu*mu2 - mu**3 g1 = mu3 / mu2**1.5 out0 = default.copy() place(out0,cond,g1) output.append(out0) if 'k' in moments: if g2 is None: mu4p = self._munp(4.0,*goodargs) if mu is None: mu = self._munp(1.0,*goodargs) if mu2 is None: mu2p = self._munp(2.0,*goodargs) mu2 = mu2p - mu*mu if mu3 is None: mu3p = self._munp(3.0,*goodargs) mu3 = mu3p - 3*mu*mu2 - mu**3 mu4 = mu4p - 4*mu*mu3 - 6*mu*mu*mu2 - mu**4 g2 = mu4 / mu2**2.0 - 3.0 out0 = default.copy() place(out0,cond,g2) output.append(out0) if len(output) == 1: return output[0] else: return tuple(output) def moment(self, n, *args, **kwds): # Non-central moments in standard form. """ n'th non-central moment of the distribution Parameters ---------- n : int, n>=1 order of moment arg1, arg2, arg3,...: float The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : float, optional location parameter (default=0) scale : float, optional scale parameter (default=1) """ loc = kwds.get('loc', 0) scale = kwds.get('scale', 1) if not (self._argcheck(*args) and (scale > 0)): return nan if (floor(n) != n): raise ValueError("Moment must be an integer.") if (n < 0): raise ValueError("Moment must be positive.") mu, mu2, g1, g2 = None, None, None, None if (n > 0) and (n < 5): signature = inspect.getargspec(self._stats.im_func) if (signature[2] is not None) or ('moments' in signature[0]): dict = {'moments':{1:'m',2:'v',3:'vs',4:'vk'}[n]} else: dict = {} mu, mu2, g1, g2 = self._stats(*args,**dict) val = _moment_from_stats(n, mu, mu2, g1, g2, self._munp, args) # Convert to transformed X = L + S*Y # so E[X^n] = E[(L+S*Y)^n] = L^n sum(comb(n,k)*(S/L)^k E[Y^k],k=0...n) if loc == 0: return scale**n * val else: result = 0 fac = float(scale) / float(loc) for k in range(n): valk = _moment_from_stats(k, mu, mu2, g1, g2, self._munp, args) result += comb(n,k,exact=True)*(fac**k) * valk result += fac**n * val return result * loc**n def freeze(self, *args, **kwds): return rv_frozen(self, *args, **kwds) def _entropy(self, *args): if hasattr(self,'pk'): return entropy(self.pk) else: mu = int(self.stats(*args, **{'moments':'m'})) val = self.pmf(mu,*args) if (val==0.0): ent = 0.0 else: ent = -val*log(val) k = 1 term = 1.0 while (abs(term) > eps): val = self.pmf(mu+k,*args) if val == 0.0: term = 0.0 else: term = -val * log(val) val = self.pmf(mu-k,*args) if val != 0.0: term -= val*log(val) k += 1 ent += term return ent def entropy(self, *args, **kwds): loc= kwds.get('loc') args, loc = self._fix_loc(args, loc) loc = asarray(loc) args = map(asarray,args) cond0 = self._argcheck(*args) & (loc==loc) output = zeros(shape(cond0),'d') place(output,(1-cond0),self.badvalue) goodargs = argsreduce(cond0, *args) place(output,cond0,self.vecentropy(*goodargs)) return output def __call__(self, *args, **kwds): return self.freeze(*args,**kwds) def expect(self, func=None, args=(), loc=0, lb=None, ub=None, conditional=False): """calculate expected value of a function with respect to the distribution for discrete distribution Parameters ---------- fn : function (default: identity mapping) Function for which sum is calculated. Takes only one argument. args : tuple argument (parameters) of the distribution optional keyword parameters lb, ub : numbers lower and upper bound for integration, default is set to the support of the distribution, lb and ub are inclusive (ul<=k<=ub) conditional : boolean (False) If true then the expectation is corrected by the conditional probability of the integration interval. The return value is the expectation of the function, conditional on being in the given interval (k such that ul<=k<=ub). Returns ------- expected value : float Notes ----- * function is not vectorized * accuracy: uses self.moment_tol as stopping criterium for heavy tailed distribution e.g. zipf(4), accuracy for mean, variance in example is only 1e-5, increasing precision (moment_tol) makes zipf very slow * suppnmin=100 internal parameter for minimum number of points to evaluate could be added as keyword parameter, to evaluate functions with non-monotonic shapes, points include integers in (-suppnmin, suppnmin) * uses maxcount=1000 limits the number of points that are evaluated to break loop for infinite sums (a maximum of suppnmin+1000 positive plus suppnmin+1000 negative integers are evaluated) """ #moment_tol = 1e-12 # increase compared to self.moment_tol, # too slow for only small gain in precision for zipf #avoid endless loop with unbound integral, eg. var of zipf(2) maxcount = 1000 suppnmin = 100 #minimum number of points to evaluate (+ and -) if func is None: def fun(x): #loc and args from outer scope return (x+loc)*self._pmf(x, *args) else: def fun(x): #loc and args from outer scope return func(x+loc)*self._pmf(x, *args) # used pmf because _pmf does not check support in randint # and there might be problems(?) with correct self.a, self.b at this stage # maybe not anymore, seems to work now with _pmf self._argcheck(*args) # (re)generate scalar self.a and self.b if lb is None: lb = (self.a) else: lb = lb - loc #convert bound for standardized distribution if ub is None: ub = (self.b) else: ub = ub - loc #convert bound for standardized distribution if conditional: if np.isposinf(ub)[()]: #work around bug: stats.poisson.sf(stats.poisson.b, 2) is nan invfac = 1 - self.cdf(lb-1,*args) else: invfac = 1 - self.cdf(lb-1,*args) - self.sf(ub,*args) else: invfac = 1.0 tot = 0.0 low, upp = self._ppf(0.001, *args), self._ppf(0.999, *args) low = max(min(-suppnmin, low), lb) upp = min(max(suppnmin, upp), ub) supp = np.arange(low, upp+1, self.inc) #check limits #print 'low, upp', low, upp tot = np.sum(fun(supp)) diff = 1e100 pos = upp + self.inc count = 0 #handle cases with infinite support while (pos <= ub) and (diff > self.moment_tol) and count <= maxcount: diff = fun(pos) tot += diff pos += self.inc count += 1 if self.a < 0: #handle case when self.a = -inf diff = 1e100 pos = low - self.inc while (pos >= lb) and (diff > self.moment_tol) and count <= maxcount: diff = fun(pos) tot += diff pos -= self.inc count += 1 if count > maxcount: # fixme: replace with proper warning print 'sum did not converge' return tot/invfac # Binomial class binom_gen(rv_discrete): """A binomial discrete random variable. %(before_notes)s Notes ----- The probability mass function for `binom` is:: binom.pmf(k) = choose(n,k) * p**k * (1-p)**(n-k) for ``k`` in ``{0,1,...,n}``. `binom` takes ``n`` and ``p`` as shape parameters. %(example)s """ def _rvs(self, n, p): return mtrand.binomial(n,p,self._size) def _argcheck(self, n, p): self.b = n return (n>=0) & (p >= 0) & (p <= 1) def _logpmf(self, x, n, p): k = floor(x) combiln = (gamln(n+1) - (gamln(k+1) + gamln(n-k+1))) return combiln + k*np.log(p) + (n-k)*np.log(1-p) def _pmf(self, x, n, p): return exp(self._logpmf(x, n, p)) def _cdf(self, x, n, p): k = floor(x) vals = special.bdtr(k,n,p) return vals def _sf(self, x, n, p): k = floor(x) return special.bdtrc(k,n,p) def _ppf(self, q, n, p): vals = ceil(special.bdtrik(q,n,p)) vals1 = vals-1 temp = special.bdtr(vals1,n,p) return where(temp >= q, vals1, vals) def _stats(self, n, p): q = 1.0-p mu = n * p var = n * p * q g1 = (q-p) / sqrt(n*p*q) g2 = (1.0-6*p*q)/(n*p*q) return mu, var, g1, g2 def _entropy(self, n, p): k = r_[0:n+1] vals = self._pmf(k,n,p) lvals = where(vals==0,0.0,log(vals)) return -sum(vals*lvals,axis=0) binom = binom_gen(name='binom',shapes="n, p") # Bernoulli distribution class bernoulli_gen(binom_gen): """A Bernoulli discrete random variable. %(before_notes)s Notes ----- The probability mass function for `bernoulli` is:: bernoulli.pmf(k) = 1-p if k = 0 = p if k = 1 for ``k`` in ``{0,1}``. `bernoulli` takes ``p`` as shape parameter. %(example)s """ def _rvs(self, pr): return binom_gen._rvs(self, 1, pr) def _argcheck(self, pr): return (pr >=0 ) & (pr <= 1) def _logpmf(self, x, pr): return binom._logpmf(x, 1, pr) def _pmf(self, x, pr): return binom._pmf(x, 1, pr) def _cdf(self, x, pr): return binom._cdf(x, 1, pr) def _sf(self, x, pr): return binom._sf(x, 1, pr) def _ppf(self, q, pr): return binom._ppf(q, 1, pr) def _stats(self, pr): return binom._stats(1, pr) def _entropy(self, pr): return -pr*log(pr)-(1-pr)*log(1-pr) bernoulli = bernoulli_gen(b=1,name='bernoulli',shapes="p") # Negative binomial class nbinom_gen(rv_discrete): """A negative binomial discrete random variable. %(before_notes)s Notes ----- The probability mass function for `nbinom` is:: nbinom.pmf(k) = choose(k+n-1, n-1) * p**n * (1-p)**k for ``k >= 0``. `nbinom` takes ``n`` and ``p`` as shape parameters. %(example)s """ def _rvs(self, n, p): return mtrand.negative_binomial(n, p, self._size) def _argcheck(self, n, p): return (n >= 0) & (p >= 0) & (p <= 1) def _pmf(self, x, n, p): coeff = exp(gamln(n+x) - gamln(x+1) - gamln(n)) return coeff * power(p,n) * power(1-p,x) def _logpmf(self, x, n, p): coeff = gamln(n+x) - gamln(x+1) - gamln(n) return coeff + n*log(p) + x*log(1-p) def _cdf(self, x, n, p): k = floor(x) return special.betainc(n, k+1, p) def _sf_skip(self, x, n, p): #skip because special.nbdtrc doesn't work for 0<n<1 k = floor(x) return special.nbdtrc(k,n,p) def _ppf(self, q, n, p): vals = ceil(special.nbdtrik(q,n,p)) vals1 = (vals-1).clip(0.0, np.inf) temp = self._cdf(vals1,n,p) return where(temp >= q, vals1, vals) def _stats(self, n, p): Q = 1.0 / p P = Q - 1.0 mu = n*P var = n*P*Q g1 = (Q+P)/sqrt(n*P*Q) g2 = (1.0 + 6*P*Q) / (n*P*Q) return mu, var, g1, g2 nbinom = nbinom_gen(name='nbinom', shapes="n, p") ## Geometric distribution class geom_gen(rv_discrete): """A geometric discrete random variable. %(before_notes)s Notes ----- The probability mass function for `geom` is:: geom.pmf(k) = (1-p)**(k-1)*p for ``k >= 1``. `geom` takes ``p`` as shape parameter. %(example)s """ def _rvs(self, p): return mtrand.geometric(p,size=self._size) def _argcheck(self, p): return (p<=1) & (p >= 0) def _pmf(self, k, p): return (1-p)**(k-1) * p def _logpmf(self, k, p): return (k-1)*log(1-p) + p def _cdf(self, x, p): k = floor(x) return (1.0-(1.0-p)**k) def _sf(self, x, p): k = floor(x) return (1.0-p)**k def _ppf(self, q, p): vals = ceil(log(1.0-q)/log(1-p)) temp = 1.0-(1.0-p)**(vals-1) return where((temp >= q) & (vals > 0), vals-1, vals) def _stats(self, p): mu = 1.0/p qr = 1.0-p var = qr / p / p g1 = (2.0-p) / sqrt(qr) g2 = numpy.polyval([1,-6,6],p)/(1.0-p) return mu, var, g1, g2 geom = geom_gen(a=1,name='geom', longname="A geometric", shapes="p") ## Hypergeometric distribution class hypergeom_gen(rv_discrete): """A hypergeometric discrete random variable. The hypergeometric distribution models drawing objects from a bin. M is the total number of objects, n is total number of Type I objects. The random variate represents the number of Type I objects in N drawn without replacement from the total population. %(before_notes)s Notes ----- The probability mass function is defined as:: pmf(k, M, n, N) = choose(n, k) * choose(M - n, N - k) / choose(M, N), for N - (M-n) <= k <= min(m,N) Examples -------- >>> from scipy.stats import hypergeom Suppose we have a collection of 20 animals, of which 7 are dogs. Then if we want to know the probability of finding a given number of dogs if we choose at random 12 of the 20 animals, we can initialize a frozen distribution and plot the probability mass function: >>> [M, n, N] = [20, 7, 12] >>> rv = hypergeom(M, n, N) >>> x = np.arange(0, n+1) >>> pmf_dogs = rv.pmf(x) >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> ax.plot(x, pmf_dogs, 'bo') >>> ax.vlines(x, 0, pmf_dogs, lw=2) >>> ax.set_xlabel('# of dogs in our group of chosen animals') >>> ax.set_ylabel('hypergeom PMF') >>> plt.show() Instead of using a frozen distribution we can also use `hypergeom` methods directly. To for example obtain the cumulative distribution function, use: >>> prb = hypergeom.cdf(x, M, n, N) And to generate random numbers: >>> R = hypergeom.rvs(M, n, N, size=10) """ def _rvs(self, M, n, N): return mtrand.hypergeometric(n,M-n,N,size=self._size) def _argcheck(self, M, n, N): cond = rv_discrete._argcheck(self,M,n,N) cond &= (n <= M) & (N <= M) self.a = N-(M-n) self.b = min(n,N) return cond def _logpmf(self, k, M, n, N): tot, good = M, n bad = tot - good return gamln(good+1) - gamln(good-k+1) - gamln(k+1) + gamln(bad+1) \ - gamln(bad-N+k+1) - gamln(N-k+1) - gamln(tot+1) + gamln(tot-N+1) \ + gamln(N+1) def _pmf(self, k, M, n, N): #same as the following but numerically more precise #return comb(good,k) * comb(bad,N-k) / comb(tot,N) return exp(self._logpmf(k, M, n, N)) def _stats(self, M, n, N): tot, good = M, n n = good*1.0 m = (tot-good)*1.0 N = N*1.0 tot = m+n p = n/tot mu = N*p var = m*n*N*(tot-N)*1.0/(tot*tot*(tot-1)) g1 = (m - n)*(tot-2*N) / (tot-2.0)*sqrt((tot-1.0)/(m*n*N*(tot-N))) m2, m3, m4, m5 = m**2, m**3, m**4, m**5 n2, n3, n4, n5 = n**2, n**2, n**4, n**5 g2 = m3 - m5 + n*(3*m2-6*m3+m4) + 3*m*n2 - 12*m2*n2 + 8*m3*n2 + n3 \ - 6*m*n3 + 8*m2*n3 + m*n4 - n5 - 6*m3*N + 6*m4*N + 18*m2*n*N \ - 6*m3*n*N + 18*m*n2*N - 24*m2*n2*N - 6*n3*N - 6*m*n3*N \ + 6*n4*N + N*N*(6*m2 - 6*m3 - 24*m*n + 12*m2*n + 6*n2 + \ 12*m*n2 - 6*n3) return mu, var, g1, g2 def _entropy(self, M, n, N): k = r_[N-(M-n):min(n,N)+1] vals = self.pmf(k,M,n,N) lvals = where(vals==0.0,0.0,log(vals)) return -sum(vals*lvals,axis=0) def _sf(self, k, M, n, N): """More precise calculation, 1 - cdf doesn't cut it.""" # This for loop is needed because `k` can be an array. If that's the # case, the sf() method makes M, n and N arrays of the same shape. We # therefore unpack all inputs args, so we can do the manual integration. res = [] for quant, tot, good, draw in zip(k, M, n, N): # Manual integration over probability mass function. More accurate # than integrate.quad. k2 = np.arange(quant + 1, draw + 1) res.append(np.sum(self._pmf(k2, tot, good, draw))) return np.asarray(res) hypergeom = hypergeom_gen(name='hypergeom', shapes="M, n, N") ## Logarithmic (Log-Series), (Series) distribution # FIXME: Fails _cdfvec class logser_gen(rv_discrete): """A Logarithmic (Log-Series, Series) discrete random variable. %(before_notes)s Notes ----- The probability mass function for `logser` is:: logser.pmf(k) = - p**k / (k*log(1-p)) for ``k >= 1``. `logser` takes ``p`` as shape parameter. %(example)s """ def _rvs(self, pr): # looks wrong for pr>0.5, too few k=1 # trying to use generic is worse, no k=1 at all return mtrand.logseries(pr,size=self._size) def _argcheck(self, pr): return (pr > 0) & (pr < 1) def _pmf(self, k, pr): return -pr**k * 1.0 / k / log(1-pr) def _stats(self, pr): r = log(1-pr) mu = pr / (pr - 1.0) / r mu2p = -pr / r / (pr-1.0)**2 var = mu2p - mu*mu mu3p = -pr / r * (1.0+pr) / (1.0-pr)**3 mu3 = mu3p - 3*mu*mu2p + 2*mu**3 g1 = mu3 / var**1.5 mu4p = -pr / r * (1.0/(pr-1)**2 - 6*pr/(pr-1)**3 + \ 6*pr*pr / (pr-1)**4) mu4 = mu4p - 4*mu3p*mu + 6*mu2p*mu*mu - 3*mu**4 g2 = mu4 / var**2 - 3.0 return mu, var, g1, g2 logser = logser_gen(a=1,name='logser', longname='A logarithmic', shapes='p') ## Poisson distribution class poisson_gen(rv_discrete): """A Poisson discrete random variable. %(before_notes)s Notes ----- The probability mass function for `poisson` is:: poisson.pmf(k) = exp(-mu) * mu**k / k! for ``k >= 0``. `poisson` takes ``mu`` as shape parameter. %(example)s """ def _rvs(self, mu): return mtrand.poisson(mu, self._size) def _logpmf(self, k, mu): Pk = k*log(mu)-gamln(k+1) - mu return Pk def _pmf(self, k, mu): return exp(self._logpmf(k, mu)) def _cdf(self, x, mu): k = floor(x) return special.pdtr(k,mu) def _sf(self, x, mu): k = floor(x) return special.pdtrc(k,mu) def _ppf(self, q, mu): vals = ceil(special.pdtrik(q,mu)) vals1 = vals-1 temp = special.pdtr(vals1,mu) return where((temp >= q), vals1, vals) def _stats(self, mu): var = mu tmp = asarray(mu) g1 = 1.0 / tmp g2 = 1.0 / tmp return mu, var, g1, g2 poisson = poisson_gen(name="poisson", longname='A Poisson', shapes="mu") ## (Planck) Discrete Exponential class planck_gen(rv_discrete): """A Planck discrete exponential random variable. %(before_notes)s Notes ----- The probability mass function for `planck` is:: planck.pmf(k) = (1-exp(-lambda))*exp(-lambda*k) for ``k*lambda >= 0``. `planck` takes ``lambda`` as shape parameter. %(example)s """ def _argcheck(self, lambda_): if (lambda_ > 0): self.a = 0 self.b = inf return 1 elif (lambda_ < 0): self.a = -inf self.b = 0 return 1 return 0 # lambda_ = 0 def _pmf(self, k, lambda_): fact = (1-exp(-lambda_)) return fact*exp(-lambda_*k) def _cdf(self, x, lambda_): k = floor(x) return 1-exp(-lambda_*(k+1)) def _ppf(self, q, lambda_): vals = ceil(-1.0/lambda_ * log1p(-q)-1) vals1 = (vals-1).clip(self.a, np.inf) temp = self._cdf(vals1, lambda_) return where(temp >= q, vals1, vals) def _stats(self, lambda_): mu = 1/(exp(lambda_)-1) var = exp(-lambda_)/(expm1(-lambda_))**2 g1 = 2*cosh(lambda_/2.0) g2 = 4+2*cosh(lambda_) return mu, var, g1, g2 def _entropy(self, lambda_): l = lambda_ C = (1-exp(-l)) return l*exp(-l)/C - log(C) planck = planck_gen(name='planck',longname='A discrete exponential ', shapes="lamda") class boltzmann_gen(rv_discrete): """A Boltzmann (Truncated Discrete Exponential) random variable. %(before_notes)s Notes ----- The probability mass function for `boltzmann` is:: boltzmann.pmf(k) = (1-exp(-lambda)*exp(-lambda*k)/(1-exp(-lambda*N)) for ``k = 0,...,N-1``. `boltzmann` takes ``lambda`` and ``N`` as shape parameters. %(example)s """ def _pmf(self, k, lambda_, N): fact = (1-exp(-lambda_))/(1-exp(-lambda_*N)) return fact*exp(-lambda_*k) def _cdf(self, x, lambda_, N): k = floor(x) return (1-exp(-lambda_*(k+1)))/(1-exp(-lambda_*N)) def _ppf(self, q, lambda_, N): qnew = q*(1-exp(-lambda_*N)) vals = ceil(-1.0/lambda_ * log(1-qnew)-1) vals1 = (vals-1).clip(0.0, np.inf) temp = self._cdf(vals1, lambda_, N) return where(temp >= q, vals1, vals) def _stats(self, lambda_, N): z = exp(-lambda_) zN = exp(-lambda_*N) mu = z/(1.0-z)-N*zN/(1-zN) var = z/(1.0-z)**2 - N*N*zN/(1-zN)**2 trm = (1-zN)/(1-z) trm2 = (z*trm**2 - N*N*zN) g1 = z*(1+z)*trm**3 - N**3*zN*(1+zN) g1 = g1 / trm2**(1.5) g2 = z*(1+4*z+z*z)*trm**4 - N**4 * zN*(1+4*zN+zN*zN) g2 = g2 / trm2 / trm2 return mu, var, g1, g2 boltzmann = boltzmann_gen(name='boltzmann',longname='A truncated discrete exponential ', shapes="lamda, N") ## Discrete Uniform class randint_gen(rv_discrete): """A uniform discrete random variable. %(before_notes)s Notes ----- The probability mass function for `randint` is:: randint.pmf(k) = 1./(max- min) for ``k = min,...,max``. `randint` takes ``min`` and ``max`` as shape parameters. %(example)s """ def _argcheck(self, min, max): self.a = min self.b = max-1 return (max > min) def _pmf(self, k, min, max): fact = 1.0 / (max - min) return fact def _cdf(self, x, min, max): k = floor(x) return (k-min+1)*1.0/(max-min) def _ppf(self, q, min, max): vals = ceil(q*(max-min)+min)-1 vals1 = (vals-1).clip(min, max) temp = self._cdf(vals1, min, max) return where(temp >= q, vals1, vals) def _stats(self, min, max): m2, m1 = asarray(max), asarray(min) mu = (m2 + m1 - 1.0) / 2 d = m2 - m1 var = (d-1)*(d+1.0)/12.0 g1 = 0.0 g2 = -6.0/5.0*(d*d+1.0)/(d-1.0)*(d+1.0) return mu, var, g1, g2 def _rvs(self, min, max=None): """An array of *size* random integers >= min and < max. If max is None, then range is >=0 and < min """ return mtrand.randint(min, max, self._size) def _entropy(self, min, max): return log(max-min) randint = randint_gen(name='randint',longname='A discrete uniform '\ '(random integer)', shapes="min, max") # Zipf distribution # FIXME: problems sampling. class zipf_gen(rv_discrete): """A Zipf discrete random variable. %(before_notes)s Notes ----- The probability mass function for `zipf` is:: zipf.pmf(k) = 1/(zeta(a)*k**a) for ``k >= 1``. `zipf` takes ``a`` as shape parameter. %(example)s """ def _rvs(self, a): return mtrand.zipf(a, size=self._size) def _argcheck(self, a): return a > 1 def _pmf(self, k, a): Pk = 1.0 / asarray(special.zeta(a,1) * k**a) return Pk def _munp(self, n, a): return special.zeta(a-n,1) / special.zeta(a,1) def _stats(self, a): sv = special.errprint(0) fac = asarray(special.zeta(a,1)) mu = special.zeta(a-1.0,1)/fac mu2p = special.zeta(a-2.0,1)/fac var = mu2p - mu*mu mu3p = special.zeta(a-3.0,1)/fac mu3 = mu3p - 3*mu*mu2p + 2*mu**3 g1 = mu3 / asarray(var**1.5) mu4p = special.zeta(a-4.0,1)/fac sv = special.errprint(sv) mu4 = mu4p - 4*mu3p*mu + 6*mu2p*mu*mu - 3*mu**4 g2 = mu4 / asarray(var**2) - 3.0 return mu, var, g1, g2 zipf = zipf_gen(a=1,name='zipf', longname='A Zipf', shapes="a") # Discrete Laplacian class dlaplace_gen(rv_discrete): """A Laplacian discrete random variable. %(before_notes)s Notes ----- The probability mass function for `dlaplace` is:: dlaplace.pmf(k) = tanh(a/2) * exp(-a*abs(k)) for ``a >0``. `dlaplace` takes ``a`` as shape parameter. %(example)s """ def _pmf(self, k, a): return tanh(a/2.0)*exp(-a*abs(k)) def _cdf(self, x, a): k = floor(x) ind = (k >= 0) const = exp(a)+1 return where(ind, 1.0-exp(-a*k)/const, exp(a*(k+1))/const) def _ppf(self, q, a): const = 1.0/(1+exp(-a)) cons2 = 1+exp(a) ind = q < const vals = ceil(where(ind, log(q*cons2)/a-1, -log((1-q)*cons2)/a)) vals1 = (vals-1) temp = self._cdf(vals1, a) return where(temp >= q, vals1, vals) def _stats_skip(self, a): # variance mu2 does not aggree with sample variance, # nor with direct calculation using pmf # remove for now because generic calculation works # except it does not show nice zeros for mean and skew(?) ea = exp(-a) e2a = exp(-2*a) e3a = exp(-3*a) e4a = exp(-4*a) mu2 = 2* (e2a + ea) / (1-ea)**3.0 mu4 = 2* (e4a + 11*e3a + 11*e2a + ea) / (1-ea)**5.0 return 0.0, mu2, 0.0, mu4 / mu2**2.0 - 3 def _entropy(self, a): return a / sinh(a) - log(tanh(a/2.0)) dlaplace = dlaplace_gen(a=-inf, name='dlaplace', longname='A discrete Laplacian', shapes="a") class skellam_gen(rv_discrete): """A Skellam discrete random variable. %(before_notes)s Notes ----- Probability distribution of the difference of two correlated or uncorrelated Poisson random variables. Let k1 and k2 be two Poisson-distributed r.v. with expected values lam1 and lam2. Then, ``k1 - k2`` follows a Skellam distribution with parameters ``mu1 = lam1 - rho*sqrt(lam1*lam2)`` and ``mu2 = lam2 - rho*sqrt(lam1*lam2)``, where rho is the correlation coefficient between k1 and k2. If the two Poisson-distributed r.v. are independent then ``rho = 0``. Parameters mu1 and mu2 must be strictly positive. For details see: http://en.wikipedia.org/wiki/Skellam_distribution `skellam` takes ``mu1`` and ``mu2`` as shape parameters. %(example)s """ def _rvs(self, mu1, mu2): n = self._size return np.random.poisson(mu1, n)-np.random.poisson(mu2, n) def _pmf(self, x, mu1, mu2): px = np.where(x < 0, ncx2.pdf(2*mu2, 2*(1-x), 2*mu1)*2, ncx2.pdf(2*mu1, 2*(x+1), 2*mu2)*2) #ncx2.pdf() returns nan's for extremely low probabilities return px def _cdf(self, x, mu1, mu2): x = np.floor(x) px = np.where(x < 0, ncx2.cdf(2*mu2, -2*x, 2*mu1), 1-ncx2.cdf(2*mu1, 2*(x+1), 2*mu2)) return px # enable later ## def _cf(self, w, mu1, mu2): ## # characteristic function ## poisscf = poisson._cf ## return poisscf(w, mu1) * poisscf(-w, mu2) def _stats(self, mu1, mu2): mean = mu1 - mu2 var = mu1 + mu2 g1 = mean / np.sqrt((var)**3) g2 = 1 / var return mean, var, g1, g2 skellam = skellam_gen(a=-np.inf, name="skellam", longname='A Skellam', shapes="mu1,mu2")
bsd-3-clause
zfrenchee/pandas
pandas/tests/indexes/datetimes/test_arithmetic.py
1
21153
# -*- coding: utf-8 -*- import warnings from datetime import datetime, timedelta import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from pandas.errors import PerformanceWarning from pandas import (Timestamp, Timedelta, Series, DatetimeIndex, TimedeltaIndex, date_range) @pytest.fixture(params=[None, 'UTC', 'Asia/Tokyo', 'US/Eastern', 'dateutil/Asia/Singapore', 'dateutil/US/Pacific']) def tz(request): return request.param @pytest.fixture(params=[pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)], ids=str) def delta(request): # Several ways of representing two hours return request.param @pytest.fixture( params=[ datetime(2011, 1, 1), DatetimeIndex(['2011-01-01', '2011-01-02']), DatetimeIndex(['2011-01-01', '2011-01-02']).tz_localize('US/Eastern'), np.datetime64('2011-01-01'), Timestamp('2011-01-01')], ids=lambda x: type(x).__name__) def addend(request): return request.param class TestDatetimeIndexArithmetic(object): def test_dti_add_timestamp_raises(self): idx = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = "cannot add DatetimeIndex and Timestamp" with tm.assert_raises_regex(TypeError, msg): idx + Timestamp('2011-01-01') def test_dti_radd_timestamp_raises(self): idx = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = "cannot add DatetimeIndex and Timestamp" with tm.assert_raises_regex(TypeError, msg): Timestamp('2011-01-01') + idx # ------------------------------------------------------------- # Binary operations DatetimeIndex and int def test_dti_add_int(self, tz, one): # Variants of `one` for #19012 rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng + one expected = pd.date_range('2000-01-01 10:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) def test_dti_iadd_int(self, tz, one): rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) expected = pd.date_range('2000-01-01 10:00', freq='H', periods=10, tz=tz) rng += one tm.assert_index_equal(rng, expected) def test_dti_sub_int(self, tz, one): rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng - one expected = pd.date_range('2000-01-01 08:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) def test_dti_isub_int(self, tz, one): rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) expected = pd.date_range('2000-01-01 08:00', freq='H', periods=10, tz=tz) rng -= one tm.assert_index_equal(rng, expected) # ------------------------------------------------------------- # Binary operations DatetimeIndex and timedelta-like def test_dti_add_timedeltalike(self, tz, delta): rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) result = rng + delta expected = pd.date_range('2000-01-01 02:00', '2000-02-01 02:00', tz=tz) tm.assert_index_equal(result, expected) def test_dti_iadd_timedeltalike(self, tz, delta): rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) expected = pd.date_range('2000-01-01 02:00', '2000-02-01 02:00', tz=tz) rng += delta tm.assert_index_equal(rng, expected) def test_dti_sub_timedeltalike(self, tz, delta): rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) expected = pd.date_range('1999-12-31 22:00', '2000-01-31 22:00', tz=tz) result = rng - delta tm.assert_index_equal(result, expected) def test_dti_isub_timedeltalike(self, tz, delta): rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) expected = pd.date_range('1999-12-31 22:00', '2000-01-31 22:00', tz=tz) rng -= delta tm.assert_index_equal(rng, expected) # ------------------------------------------------------------- # Binary operations DatetimeIndex and TimedeltaIndex/array def test_dti_add_tdi(self, tz): # GH 17558 dti = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) tdi = pd.timedelta_range('0 days', periods=10) expected = pd.date_range('2017-01-01', periods=10, tz=tz) # add with TimdeltaIndex result = dti + tdi tm.assert_index_equal(result, expected) result = tdi + dti tm.assert_index_equal(result, expected) # add with timedelta64 array result = dti + tdi.values tm.assert_index_equal(result, expected) result = tdi.values + dti tm.assert_index_equal(result, expected) def test_dti_iadd_tdi(self, tz): # GH 17558 dti = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) tdi = pd.timedelta_range('0 days', periods=10) expected = pd.date_range('2017-01-01', periods=10, tz=tz) # iadd with TimdeltaIndex result = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) result += tdi tm.assert_index_equal(result, expected) result = pd.timedelta_range('0 days', periods=10) result += dti tm.assert_index_equal(result, expected) # iadd with timedelta64 array result = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) result += tdi.values tm.assert_index_equal(result, expected) result = pd.timedelta_range('0 days', periods=10) result += dti tm.assert_index_equal(result, expected) def test_dti_sub_tdi(self, tz): # GH 17558 dti = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) tdi = pd.timedelta_range('0 days', periods=10) expected = pd.date_range('2017-01-01', periods=10, tz=tz, freq='-1D') # sub with TimedeltaIndex result = dti - tdi tm.assert_index_equal(result, expected) msg = 'cannot subtract TimedeltaIndex and DatetimeIndex' with tm.assert_raises_regex(TypeError, msg): tdi - dti # sub with timedelta64 array result = dti - tdi.values tm.assert_index_equal(result, expected) msg = 'cannot perform __neg__ with this index type:' with tm.assert_raises_regex(TypeError, msg): tdi.values - dti def test_dti_isub_tdi(self, tz): # GH 17558 dti = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) tdi = pd.timedelta_range('0 days', periods=10) expected = pd.date_range('2017-01-01', periods=10, tz=tz, freq='-1D') # isub with TimedeltaIndex result = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) result -= tdi tm.assert_index_equal(result, expected) msg = 'cannot subtract TimedeltaIndex and DatetimeIndex' with tm.assert_raises_regex(TypeError, msg): tdi -= dti # isub with timedelta64 array result = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) result -= tdi.values tm.assert_index_equal(result, expected) msg = '|'.join(['cannot perform __neg__ with this index type:', 'ufunc subtract cannot use operands with types']) with tm.assert_raises_regex(TypeError, msg): tdi.values -= dti # ------------------------------------------------------------- # Binary Operations DatetimeIndex and datetime-like # TODO: A couple other tests belong in this section. Move them in # A PR where there isn't already a giant diff. def test_add_datetimelike_and_dti(self, addend): # GH#9631 dti = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = 'cannot add DatetimeIndex and {0}'.format( type(addend).__name__) with tm.assert_raises_regex(TypeError, msg): dti + addend with tm.assert_raises_regex(TypeError, msg): addend + dti def test_add_datetimelike_and_dti_tz(self, addend): # GH#9631 dti_tz = DatetimeIndex(['2011-01-01', '2011-01-02']).tz_localize('US/Eastern') msg = 'cannot add DatetimeIndex and {0}'.format( type(addend).__name__) with tm.assert_raises_regex(TypeError, msg): dti_tz + addend with tm.assert_raises_regex(TypeError, msg): addend + dti_tz # ------------------------------------------------------------- def test_sub_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now changed to # return subtraction -> TimeDeltaIndex (GH ...) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') dti_tz2 = date_range('20130101', periods=3).tz_localize('UTC') expected = TimedeltaIndex([0, 0, 0]) result = dti - dti tm.assert_index_equal(result, expected) result = dti_tz - dti_tz tm.assert_index_equal(result, expected) with pytest.raises(TypeError): dti_tz - dti with pytest.raises(TypeError): dti - dti_tz with pytest.raises(TypeError): dti_tz - dti_tz2 # isub dti -= dti tm.assert_index_equal(dti, expected) # different length raises ValueError dti1 = date_range('20130101', periods=3) dti2 = date_range('20130101', periods=4) with pytest.raises(ValueError): dti1 - dti2 # NaN propagation dti1 = DatetimeIndex(['2012-01-01', np.nan, '2012-01-03']) dti2 = DatetimeIndex(['2012-01-02', '2012-01-03', np.nan]) expected = TimedeltaIndex(['1 days', np.nan, np.nan]) result = dti2 - dti1 tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'D']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02'], freq=freq) with pytest.raises(TypeError): idx - p with pytest.raises(TypeError): p - idx def test_ufunc_coercions(self): idx = date_range('2011-01-01', periods=3, freq='2D', name='x') delta = np.timedelta64(1, 'D') for result in [idx + delta, np.add(idx, delta)]: assert isinstance(result, DatetimeIndex) exp = date_range('2011-01-02', periods=3, freq='2D', name='x') tm.assert_index_equal(result, exp) assert result.freq == '2D' for result in [idx - delta, np.subtract(idx, delta)]: assert isinstance(result, DatetimeIndex) exp = date_range('2010-12-31', periods=3, freq='2D', name='x') tm.assert_index_equal(result, exp) assert result.freq == '2D' delta = np.array([np.timedelta64(1, 'D'), np.timedelta64(2, 'D'), np.timedelta64(3, 'D')]) for result in [idx + delta, np.add(idx, delta)]: assert isinstance(result, DatetimeIndex) exp = DatetimeIndex(['2011-01-02', '2011-01-05', '2011-01-08'], freq='3D', name='x') tm.assert_index_equal(result, exp) assert result.freq == '3D' for result in [idx - delta, np.subtract(idx, delta)]: assert isinstance(result, DatetimeIndex) exp = DatetimeIndex(['2010-12-31', '2011-01-01', '2011-01-02'], freq='D', name='x') tm.assert_index_equal(result, exp) assert result.freq == 'D' def test_datetimeindex_sub_timestamp_overflow(self): dtimax = pd.to_datetime(['now', pd.Timestamp.max]) dtimin = pd.to_datetime(['now', pd.Timestamp.min]) tsneg = Timestamp('1950-01-01') ts_neg_variants = [tsneg, tsneg.to_pydatetime(), tsneg.to_datetime64().astype('datetime64[ns]'), tsneg.to_datetime64().astype('datetime64[D]')] tspos = Timestamp('1980-01-01') ts_pos_variants = [tspos, tspos.to_pydatetime(), tspos.to_datetime64().astype('datetime64[ns]'), tspos.to_datetime64().astype('datetime64[D]')] for variant in ts_neg_variants: with pytest.raises(OverflowError): dtimax - variant expected = pd.Timestamp.max.value - tspos.value for variant in ts_pos_variants: res = dtimax - variant assert res[1].value == expected expected = pd.Timestamp.min.value - tsneg.value for variant in ts_neg_variants: res = dtimin - variant assert res[1].value == expected for variant in ts_pos_variants: with pytest.raises(OverflowError): dtimin - variant @pytest.mark.parametrize('box', [np.array, pd.Index]) def test_dti_add_offset_array(self, tz, box): # GH#18849 dti = pd.date_range('2017-01-01', periods=2, tz=tz) other = box([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) with tm.assert_produces_warning(PerformanceWarning): res = dti + other expected = DatetimeIndex([dti[n] + other[n] for n in range(len(dti))], name=dti.name, freq='infer') tm.assert_index_equal(res, expected) with tm.assert_produces_warning(PerformanceWarning): res2 = other + dti tm.assert_index_equal(res2, expected) @pytest.mark.parametrize('box', [np.array, pd.Index]) def test_dti_sub_offset_array(self, tz, box): # GH#18824 dti = pd.date_range('2017-01-01', periods=2, tz=tz) other = box([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) with tm.assert_produces_warning(PerformanceWarning): res = dti - other expected = DatetimeIndex([dti[n] - other[n] for n in range(len(dti))], name=dti.name, freq='infer') tm.assert_index_equal(res, expected) @pytest.mark.parametrize('names', [(None, None, None), ('foo', 'bar', None), ('foo', 'foo', 'foo')]) def test_dti_with_offset_series(self, tz, names): # GH#18849 dti = pd.date_range('2017-01-01', periods=2, tz=tz, name=names[0]) other = Series([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)], name=names[1]) expected_add = Series([dti[n] + other[n] for n in range(len(dti))], name=names[2]) with tm.assert_produces_warning(PerformanceWarning): res = dti + other tm.assert_series_equal(res, expected_add) with tm.assert_produces_warning(PerformanceWarning): res2 = other + dti tm.assert_series_equal(res2, expected_add) expected_sub = Series([dti[n] - other[n] for n in range(len(dti))], name=names[2]) with tm.assert_produces_warning(PerformanceWarning): res3 = dti - other tm.assert_series_equal(res3, expected_sub) # GH 10699 @pytest.mark.parametrize('klass,assert_func', zip([Series, DatetimeIndex], [tm.assert_series_equal, tm.assert_index_equal])) def test_datetime64_with_DateOffset(klass, assert_func): s = klass(date_range('2000-01-01', '2000-01-31'), name='a') result = s + pd.DateOffset(years=1) result2 = pd.DateOffset(years=1) + s exp = klass(date_range('2001-01-01', '2001-01-31'), name='a') assert_func(result, exp) assert_func(result2, exp) result = s - pd.DateOffset(years=1) exp = klass(date_range('1999-01-01', '1999-01-31'), name='a') assert_func(result, exp) s = klass([Timestamp('2000-01-15 00:15:00', tz='US/Central'), pd.Timestamp('2000-02-15', tz='US/Central')], name='a') result = s + pd.offsets.Day() result2 = pd.offsets.Day() + s exp = klass([Timestamp('2000-01-16 00:15:00', tz='US/Central'), Timestamp('2000-02-16', tz='US/Central')], name='a') assert_func(result, exp) assert_func(result2, exp) s = klass([Timestamp('2000-01-15 00:15:00', tz='US/Central'), pd.Timestamp('2000-02-15', tz='US/Central')], name='a') result = s + pd.offsets.MonthEnd() result2 = pd.offsets.MonthEnd() + s exp = klass([Timestamp('2000-01-31 00:15:00', tz='US/Central'), Timestamp('2000-02-29', tz='US/Central')], name='a') assert_func(result, exp) assert_func(result2, exp) # array of offsets - valid for Series only if klass is Series: with tm.assert_produces_warning(PerformanceWarning): s = klass([Timestamp('2000-1-1'), Timestamp('2000-2-1')]) result = s + Series([pd.offsets.DateOffset(years=1), pd.offsets.MonthEnd()]) exp = klass([Timestamp('2001-1-1'), Timestamp('2000-2-29') ]) assert_func(result, exp) # same offset result = s + Series([pd.offsets.DateOffset(years=1), pd.offsets.DateOffset(years=1)]) exp = klass([Timestamp('2001-1-1'), Timestamp('2001-2-1')]) assert_func(result, exp) s = klass([Timestamp('2000-01-05 00:15:00'), Timestamp('2000-01-31 00:23:00'), Timestamp('2000-01-01'), Timestamp('2000-03-31'), Timestamp('2000-02-29'), Timestamp('2000-12-31'), Timestamp('2000-05-15'), Timestamp('2001-06-15')]) # DateOffset relativedelta fastpath relative_kwargs = [('years', 2), ('months', 5), ('days', 3), ('hours', 5), ('minutes', 10), ('seconds', 2), ('microseconds', 5)] for i, kwd in enumerate(relative_kwargs): op = pd.DateOffset(**dict([kwd])) assert_func(klass([x + op for x in s]), s + op) assert_func(klass([x - op for x in s]), s - op) op = pd.DateOffset(**dict(relative_kwargs[:i + 1])) assert_func(klass([x + op for x in s]), s + op) assert_func(klass([x - op for x in s]), s - op) # assert these are equal on a piecewise basis offsets = ['YearBegin', ('YearBegin', {'month': 5}), 'YearEnd', ('YearEnd', {'month': 5}), 'MonthBegin', 'MonthEnd', 'SemiMonthEnd', 'SemiMonthBegin', 'Week', ('Week', {'weekday': 3}), 'BusinessDay', 'BDay', 'QuarterEnd', 'QuarterBegin', 'CustomBusinessDay', 'CDay', 'CBMonthEnd', 'CBMonthBegin', 'BMonthBegin', 'BMonthEnd', 'BusinessHour', 'BYearBegin', 'BYearEnd', 'BQuarterBegin', ('LastWeekOfMonth', {'weekday': 2}), ('FY5253Quarter', {'qtr_with_extra_week': 1, 'startingMonth': 1, 'weekday': 2, 'variation': 'nearest'}), ('FY5253', {'weekday': 0, 'startingMonth': 2, 'variation': 'nearest'}), ('WeekOfMonth', {'weekday': 2, 'week': 2}), 'Easter', ('DateOffset', {'day': 4}), ('DateOffset', {'month': 5})] with warnings.catch_warnings(record=True): for normalize in (True, False): for do in offsets: if isinstance(do, tuple): do, kwargs = do else: do = do kwargs = {} for n in [0, 5]: if (do in ['WeekOfMonth', 'LastWeekOfMonth', 'FY5253Quarter', 'FY5253'] and n == 0): continue op = getattr(pd.offsets, do)(n, normalize=normalize, **kwargs) assert_func(klass([x + op for x in s]), s + op) assert_func(klass([x - op for x in s]), s - op) assert_func(klass([op + x for x in s]), op + s)
bsd-3-clause
teonlamont/mne-python
mne/time_frequency/tests/test_tfr.py
3
25782
import numpy as np import os.path as op from numpy.testing import (assert_array_almost_equal, assert_array_equal, assert_equal) import pytest import mne from mne import Epochs, read_events, pick_types, create_info, EpochsArray from mne.io import read_raw_fif from mne.utils import _TempDir, run_tests_if_main, requires_h5py, grand_average from mne.time_frequency.tfr import (morlet, tfr_morlet, _make_dpss, tfr_multitaper, AverageTFR, read_tfrs, write_tfrs, combine_tfr, cwt, _compute_tfr, EpochsTFR) from mne.time_frequency import tfr_array_multitaper, tfr_array_morlet from mne.viz.utils import _fake_click from itertools import product import matplotlib matplotlib.use('Agg') # for testing don't use X server data_path = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data') raw_fname = op.join(data_path, 'test_raw.fif') event_fname = op.join(data_path, 'test-eve.fif') raw_ctf_fname = op.join(data_path, 'test_ctf_raw.fif') def test_tfr_ctf(): """Test that TFRs can be calculated on CTF data.""" raw = read_raw_fif(raw_ctf_fname).crop(0, 1) raw.apply_gradient_compensation(3) events = mne.make_fixed_length_events(raw, duration=0.5) epochs = mne.Epochs(raw, events) for method in (tfr_multitaper, tfr_morlet): method(epochs, [10], 1) # smoke test def test_morlet(): """Test morlet with and without zero mean.""" Wz = morlet(1000, [10], 2., zero_mean=True) W = morlet(1000, [10], 2., zero_mean=False) assert (np.abs(np.mean(np.real(Wz[0]))) < 1e-5) assert (np.abs(np.mean(np.real(W[0]))) > 1e-3) def test_time_frequency(): """Test time-frequency transform (PSD and ITC).""" # Set parameters event_id = 1 tmin = -0.2 tmax = 0.498 # Allows exhaustive decimation testing # Setup for reading the raw data raw = read_raw_fif(raw_fname) events = read_events(event_fname) include = [] exclude = raw.info['bads'] + ['MEG 2443', 'EEG 053'] # bads + 2 more # picks MEG gradiometers picks = pick_types(raw.info, meg='grad', eeg=False, stim=False, include=include, exclude=exclude) picks = picks[:2] epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks) data = epochs.get_data() times = epochs.times nave = len(data) epochs_nopicks = Epochs(raw, events, event_id, tmin, tmax) freqs = np.arange(6, 20, 5) # define frequencies of interest n_cycles = freqs / 4. # Test first with a single epoch power, itc = tfr_morlet(epochs[0], freqs=freqs, n_cycles=n_cycles, use_fft=True, return_itc=True) # Now compute evoked evoked = epochs.average() power_evoked = tfr_morlet(evoked, freqs, n_cycles, use_fft=True, return_itc=False) pytest.raises(ValueError, tfr_morlet, evoked, freqs, 1., return_itc=True) power, itc = tfr_morlet(epochs, freqs=freqs, n_cycles=n_cycles, use_fft=True, return_itc=True) power_, itc_ = tfr_morlet(epochs, freqs=freqs, n_cycles=n_cycles, use_fft=True, return_itc=True, decim=slice(0, 2)) # Test picks argument and average parameter pytest.raises(ValueError, tfr_morlet, epochs, freqs=freqs, n_cycles=n_cycles, return_itc=True, average=False) power_picks, itc_picks = \ tfr_morlet(epochs_nopicks, freqs=freqs, n_cycles=n_cycles, use_fft=True, return_itc=True, picks=picks, average=True) epochs_power_picks = \ tfr_morlet(epochs_nopicks, freqs=freqs, n_cycles=n_cycles, use_fft=True, return_itc=False, picks=picks, average=False) power_picks_avg = epochs_power_picks.average() # the actual data arrays here are equivalent, too... assert_array_almost_equal(power.data, power_picks.data) assert_array_almost_equal(power.data, power_picks_avg.data) assert_array_almost_equal(itc.data, itc_picks.data) assert_array_almost_equal(power.data, power_evoked.data) # complex output pytest.raises(ValueError, tfr_morlet, epochs, freqs, n_cycles, return_itc=False, average=True, output="complex") pytest.raises(ValueError, tfr_morlet, epochs, freqs, n_cycles, output="complex", average=False, return_itc=True) epochs_power_complex = tfr_morlet(epochs, freqs, n_cycles, output="complex", average=False, return_itc=False) epochs_power_2 = abs(epochs_power_complex) epochs_power_3 = epochs_power_2.copy() epochs_power_3.data[:] = np.inf # test that it's actually copied assert_array_almost_equal(epochs_power_2.data, epochs_power_picks.data) power_2 = epochs_power_2.average() assert_array_almost_equal(power_2.data, power.data) print(itc) # test repr print(itc.ch_names) # test property itc += power # test add itc -= power # test sub power = power.apply_baseline(baseline=(-0.1, 0), mode='logratio') assert 'meg' in power assert 'grad' in power assert 'mag' not in power assert 'eeg' not in power assert_equal(power.nave, nave) assert_equal(itc.nave, nave) assert (power.data.shape == (len(picks), len(freqs), len(times))) assert (power.data.shape == itc.data.shape) assert (power_.data.shape == (len(picks), len(freqs), 2)) assert (power_.data.shape == itc_.data.shape) assert (np.sum(itc.data >= 1) == 0) assert (np.sum(itc.data <= 0) == 0) # grand average itc2 = itc.copy() itc2.info['bads'] = [itc2.ch_names[0]] # test channel drop gave = grand_average([itc2, itc]) assert_equal(gave.data.shape, (itc2.data.shape[0] - 1, itc2.data.shape[1], itc2.data.shape[2])) assert_equal(itc2.ch_names[1:], gave.ch_names) assert_equal(gave.nave, 2) itc2.drop_channels(itc2.info["bads"]) assert_array_almost_equal(gave.data, itc2.data) itc2.data = np.ones(itc2.data.shape) itc.data = np.zeros(itc.data.shape) itc2.nave = 2 itc.nave = 1 itc.drop_channels([itc.ch_names[0]]) combined_itc = combine_tfr([itc2, itc]) assert_array_almost_equal(combined_itc.data, np.ones(combined_itc.data.shape) * 2 / 3) # more tests power, itc = tfr_morlet(epochs, freqs=freqs, n_cycles=2, use_fft=False, return_itc=True) assert (power.data.shape == (len(picks), len(freqs), len(times))) assert (power.data.shape == itc.data.shape) assert (np.sum(itc.data >= 1) == 0) assert (np.sum(itc.data <= 0) == 0) tfr = tfr_morlet(epochs[0], freqs, use_fft=True, n_cycles=2, average=False, return_itc=False).data[0] assert (tfr.shape == (len(picks), len(freqs), len(times))) tfr2 = tfr_morlet(epochs[0], freqs, use_fft=True, n_cycles=2, decim=slice(0, 2), average=False, return_itc=False).data[0] assert (tfr2.shape == (len(picks), len(freqs), 2)) single_power = tfr_morlet(epochs, freqs, 2, average=False, return_itc=False).data single_power2 = tfr_morlet(epochs, freqs, 2, decim=slice(0, 2), average=False, return_itc=False).data single_power3 = tfr_morlet(epochs, freqs, 2, decim=slice(1, 3), average=False, return_itc=False).data single_power4 = tfr_morlet(epochs, freqs, 2, decim=slice(2, 4), average=False, return_itc=False).data assert_array_almost_equal(np.mean(single_power, axis=0), power.data) assert_array_almost_equal(np.mean(single_power2, axis=0), power.data[:, :, :2]) assert_array_almost_equal(np.mean(single_power3, axis=0), power.data[:, :, 1:3]) assert_array_almost_equal(np.mean(single_power4, axis=0), power.data[:, :, 2:4]) power_pick = power.pick_channels(power.ch_names[:10:2]) assert_equal(len(power_pick.ch_names), len(power.ch_names[:10:2])) assert_equal(power_pick.data.shape[0], len(power.ch_names[:10:2])) power_drop = power.drop_channels(power.ch_names[1:10:2]) assert_equal(power_drop.ch_names, power_pick.ch_names) assert_equal(power_pick.data.shape[0], len(power_drop.ch_names)) mne.equalize_channels([power_pick, power_drop]) assert_equal(power_pick.ch_names, power_drop.ch_names) assert_equal(power_pick.data.shape, power_drop.data.shape) # Test decimation: # 2: multiple of len(times) even # 3: multiple odd # 8: not multiple, even # 9: not multiple, odd for decim in [2, 3, 8, 9]: for use_fft in [True, False]: power, itc = tfr_morlet(epochs, freqs=freqs, n_cycles=2, use_fft=use_fft, return_itc=True, decim=decim) assert_equal(power.data.shape[2], np.ceil(float(len(times)) / decim)) freqs = list(range(50, 55)) decim = 2 _, n_chan, n_time = data.shape tfr = tfr_morlet(epochs[0], freqs, 2., decim=decim, average=False, return_itc=False).data[0] assert_equal(tfr.shape, (n_chan, len(freqs), n_time // decim)) # Test cwt modes Ws = morlet(512, [10, 20], n_cycles=2) pytest.raises(ValueError, cwt, data[0, :, :], Ws, mode='foo') for use_fft in [True, False]: for mode in ['same', 'valid', 'full']: cwt(data[0], Ws, use_fft=use_fft, mode=mode) # Test decim parameter checks pytest.raises(TypeError, tfr_morlet, epochs, freqs=freqs, n_cycles=n_cycles, use_fft=True, return_itc=True, decim='decim') # When convolving in time, wavelets must not be longer than the data pytest.raises(ValueError, cwt, data[0, :, :Ws[0].size - 1], Ws, use_fft=False) with pytest.warns(UserWarning, match='one of the wavelets is longer'): cwt(data[0, :, :Ws[0].size - 1], Ws, use_fft=True) # Check for off-by-one errors when using wavelets with an even number of # samples psd = cwt(data[0], [Ws[0][:-1]], use_fft=False, mode='full') assert_equal(psd.shape, (2, 1, 420)) def test_dpsswavelet(): """Test DPSS tapers.""" freqs = np.arange(5, 25, 3) Ws = _make_dpss(1000, freqs=freqs, n_cycles=freqs / 2., time_bandwidth=4.0, zero_mean=True) assert (len(Ws) == 3) # 3 tapers expected # Check that zero mean is true assert (np.abs(np.mean(np.real(Ws[0][0]))) < 1e-5) assert (len(Ws[0]) == len(freqs)) # As many wavelets as asked for @pytest.mark.slowtest def test_tfr_multitaper(): """Test tfr_multitaper.""" sfreq = 200.0 ch_names = ['SIM0001', 'SIM0002'] ch_types = ['grad', 'grad'] info = create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types) n_times = int(sfreq) # Second long epochs n_epochs = 3 seed = 42 rng = np.random.RandomState(seed) noise = 0.1 * rng.randn(n_epochs, len(ch_names), n_times) t = np.arange(n_times, dtype=np.float) / sfreq signal = np.sin(np.pi * 2. * 50. * t) # 50 Hz sinusoid signal signal[np.logical_or(t < 0.45, t > 0.55)] = 0. # Hard windowing on_time = np.logical_and(t >= 0.45, t <= 0.55) signal[on_time] *= np.hanning(on_time.sum()) # Ramping dat = noise + signal reject = dict(grad=4000.) events = np.empty((n_epochs, 3), int) first_event_sample = 100 event_id = dict(sin50hz=1) for k in range(n_epochs): events[k, :] = first_event_sample + k * n_times, 0, event_id['sin50hz'] epochs = EpochsArray(data=dat, info=info, events=events, event_id=event_id, reject=reject) freqs = np.arange(35, 70, 5, dtype=np.float) power, itc = tfr_multitaper(epochs, freqs=freqs, n_cycles=freqs / 2., time_bandwidth=4.0) power2, itc2 = tfr_multitaper(epochs, freqs=freqs, n_cycles=freqs / 2., time_bandwidth=4.0, decim=slice(0, 2)) picks = np.arange(len(ch_names)) power_picks, itc_picks = tfr_multitaper(epochs, freqs=freqs, n_cycles=freqs / 2., time_bandwidth=4.0, picks=picks) power_epochs = tfr_multitaper(epochs, freqs=freqs, n_cycles=freqs / 2., time_bandwidth=4.0, return_itc=False, average=False) power_averaged = power_epochs.average() power_evoked = tfr_multitaper(epochs.average(), freqs=freqs, n_cycles=freqs / 2., time_bandwidth=4.0, return_itc=False, average=False).average() print(power_evoked) # test repr for EpochsTFR # Test channel picking power_epochs_picked = power_epochs.copy().drop_channels(['SIM0002']) assert_equal(power_epochs_picked.data.shape, (3, 1, 7, 200)) assert_equal(power_epochs_picked.ch_names, ['SIM0001']) pytest.raises(ValueError, tfr_multitaper, epochs, freqs=freqs, n_cycles=freqs / 2., return_itc=True, average=False) # test picks argument assert_array_almost_equal(power.data, power_picks.data) assert_array_almost_equal(power.data, power_averaged.data) assert_array_almost_equal(power.times, power_epochs.times) assert_array_almost_equal(power.times, power_averaged.times) assert_equal(power.nave, power_averaged.nave) assert_equal(power_epochs.data.shape, (3, 2, 7, 200)) assert_array_almost_equal(itc.data, itc_picks.data) # one is squared magnitude of the average (evoked) and # the other is average of the squared magnitudes (epochs PSD) # so values shouldn't match, but shapes should assert_array_equal(power.data.shape, power_evoked.data.shape) pytest.raises(AssertionError, assert_array_almost_equal, power.data, power_evoked.data) tmax = t[np.argmax(itc.data[0, freqs == 50, :])] fmax = freqs[np.argmax(power.data[1, :, t == 0.5])] assert (tmax > 0.3 and tmax < 0.7) assert not np.any(itc.data < 0.) assert (fmax > 40 and fmax < 60) assert (power2.data.shape == (len(picks), len(freqs), 2)) assert (power2.data.shape == itc2.data.shape) # Test decim parameter checks and compatibility between wavelets length # and instance length in the time dimension. pytest.raises(TypeError, tfr_multitaper, epochs, freqs=freqs, n_cycles=freqs / 2., time_bandwidth=4.0, decim=(1,)) pytest.raises(ValueError, tfr_multitaper, epochs, freqs=freqs, n_cycles=1000, time_bandwidth=4.0) def test_crop(): """Test TFR cropping.""" data = np.zeros((3, 2, 3)) times = np.array([.1, .2, .3]) freqs = np.array([.10, .20]) info = mne.create_info(['MEG 001', 'MEG 002', 'MEG 003'], 1000., ['mag', 'mag', 'mag']) tfr = AverageTFR(info, data=data, times=times, freqs=freqs, nave=20, comment='test', method='crazy-tfr') tfr.crop(0.2, 0.3) assert_array_equal(tfr.times, [0.2, 0.3]) assert_equal(tfr.data.shape[-1], 2) @requires_h5py def test_io(): """Test TFR IO capacities.""" tempdir = _TempDir() fname = op.join(tempdir, 'test-tfr.h5') data = np.zeros((3, 2, 3)) times = np.array([.1, .2, .3]) freqs = np.array([.10, .20]) info = mne.create_info(['MEG 001', 'MEG 002', 'MEG 003'], 1000., ['mag', 'mag', 'mag']) tfr = AverageTFR(info, data=data, times=times, freqs=freqs, nave=20, comment='test', method='crazy-tfr') tfr.save(fname) tfr2 = read_tfrs(fname, condition='test') assert_array_equal(tfr.data, tfr2.data) assert_array_equal(tfr.times, tfr2.times) assert_array_equal(tfr.freqs, tfr2.freqs) assert_equal(tfr.comment, tfr2.comment) assert_equal(tfr.nave, tfr2.nave) pytest.raises(IOError, tfr.save, fname) tfr.comment = None tfr.save(fname, overwrite=True) assert_equal(read_tfrs(fname, condition=0).comment, tfr.comment) tfr.comment = 'test-A' tfr2.comment = 'test-B' fname = op.join(tempdir, 'test2-tfr.h5') write_tfrs(fname, [tfr, tfr2]) tfr3 = read_tfrs(fname, condition='test-A') assert_equal(tfr.comment, tfr3.comment) assert (isinstance(tfr.info, mne.Info)) tfrs = read_tfrs(fname, condition=None) assert_equal(len(tfrs), 2) tfr4 = tfrs[1] assert_equal(tfr2.comment, tfr4.comment) pytest.raises(ValueError, read_tfrs, fname, condition='nonono') # Test save of EpochsTFR. data = np.zeros((5, 3, 2, 3)) tfr = EpochsTFR(info, data=data, times=times, freqs=freqs, comment='test', method='crazy-tfr') tfr.save(fname, True) read_tfr = read_tfrs(fname)[0] assert_array_equal(tfr.data, read_tfr.data) def test_plot(): """Test TFR plotting.""" import matplotlib.pyplot as plt data = np.zeros((3, 2, 3)) times = np.array([.1, .2, .3]) freqs = np.array([.10, .20]) info = mne.create_info(['MEG 001', 'MEG 002', 'MEG 003'], 1000., ['mag', 'mag', 'mag']) tfr = AverageTFR(info, data=data, times=times, freqs=freqs, nave=20, comment='test', method='crazy-tfr') tfr.plot([1, 2], title='title', colorbar=False, mask=np.ones(tfr.data.shape[1:], bool)) plt.close('all') ax = plt.subplot2grid((2, 2), (0, 0)) ax2 = plt.subplot2grid((2, 2), (1, 1)) ax3 = plt.subplot2grid((2, 2), (0, 1)) tfr.plot(picks=[0, 1, 2], axes=[ax, ax2, ax3]) plt.close('all') tfr.plot([1, 2], title='title', colorbar=False, exclude='bads') plt.close('all') tfr.plot_topo(picks=[1, 2]) plt.close('all') fig = tfr.plot(picks=[1], cmap='RdBu_r') # interactive mode on by default fig.canvas.key_press_event('up') fig.canvas.key_press_event(' ') fig.canvas.key_press_event('down') cbar = fig.get_axes()[0].CB # Fake dragging with mouse. ax = cbar.cbar.ax _fake_click(fig, ax, (0.1, 0.1)) _fake_click(fig, ax, (0.1, 0.2), kind='motion') _fake_click(fig, ax, (0.1, 0.3), kind='release') _fake_click(fig, ax, (0.1, 0.1), button=3) _fake_click(fig, ax, (0.1, 0.2), button=3, kind='motion') _fake_click(fig, ax, (0.1, 0.3), kind='release') fig.canvas.scroll_event(0.5, 0.5, -0.5) # scroll down fig.canvas.scroll_event(0.5, 0.5, 0.5) # scroll up plt.close('all') def test_plot_joint(): """Test TFR joint plotting.""" import matplotlib.pyplot as plt raw = read_raw_fif(raw_fname) times = np.linspace(-0.1, 0.1, 200) n_freqs = 3 nave = 1 rng = np.random.RandomState(42) data = rng.randn(len(raw.ch_names), n_freqs, len(times)) tfr = AverageTFR(raw.info, data, times, np.arange(n_freqs), nave) topomap_args = {'res': 8, 'contours': 0, 'sensors': False} for combine in ('mean', 'rms', None): tfr.plot_joint(title='auto', colorbar=True, combine=combine, topomap_args=topomap_args) plt.close('all') # check various timefreqs for timefreqs in ( {(tfr.times[0], tfr.freqs[1]): (0.1, 0.5), (tfr.times[-1], tfr.freqs[-1]): (0.2, 0.6)}, [(tfr.times[1], tfr.freqs[1])]): tfr.plot_joint(timefreqs=timefreqs, topomap_args=topomap_args) plt.close('all') # test bad timefreqs timefreqs = ([(-100, 1)], tfr.times[1], [1], [(tfr.times[1], tfr.freqs[1], tfr.freqs[1])]) for these_timefreqs in timefreqs: pytest.raises(ValueError, tfr.plot_joint, these_timefreqs) # test that the object is not internally modified tfr_orig = tfr.copy() tfr.plot_joint(baseline=(0, None), exclude=[tfr.ch_names[0]], topomap_args=topomap_args) plt.close('all') assert_array_equal(tfr.data, tfr_orig.data) assert (set(tfr.ch_names) == set(tfr_orig.ch_names)) assert (set(tfr.times) == set(tfr_orig.times)) def test_add_channels(): """Test tfr splitting / re-appending channel types.""" data = np.zeros((6, 2, 3)) times = np.array([.1, .2, .3]) freqs = np.array([.10, .20]) info = mne.create_info( ['MEG 001', 'MEG 002', 'MEG 003', 'EEG 001', 'EEG 002', 'STIM 001'], 1000., ['mag', 'mag', 'mag', 'eeg', 'eeg', 'stim']) tfr = AverageTFR(info, data=data, times=times, freqs=freqs, nave=20, comment='test', method='crazy-tfr') tfr_eeg = tfr.copy().pick_types(meg=False, eeg=True) tfr_meg = tfr.copy().pick_types(meg=True) tfr_stim = tfr.copy().pick_types(meg=False, stim=True) tfr_eeg_meg = tfr.copy().pick_types(meg=True, eeg=True) tfr_new = tfr_meg.copy().add_channels([tfr_eeg, tfr_stim]) assert all(ch in tfr_new.ch_names for ch in tfr_stim.ch_names + tfr_meg.ch_names) tfr_new = tfr_meg.copy().add_channels([tfr_eeg]) assert all(ch in tfr_new.ch_names for ch in tfr.ch_names if ch != 'STIM 001') assert_array_equal(tfr_new.data, tfr_eeg_meg.data) assert all(ch not in tfr_new.ch_names for ch in tfr_stim.ch_names) # Now test errors tfr_badsf = tfr_eeg.copy() tfr_badsf.info['sfreq'] = 3.1415927 tfr_eeg = tfr_eeg.crop(-.1, .1) pytest.raises(RuntimeError, tfr_meg.add_channels, [tfr_badsf]) pytest.raises(AssertionError, tfr_meg.add_channels, [tfr_eeg]) pytest.raises(ValueError, tfr_meg.add_channels, [tfr_meg]) pytest.raises(TypeError, tfr_meg.add_channels, tfr_badsf) def test_compute_tfr(): """Test _compute_tfr function.""" # Set parameters event_id = 1 tmin = -0.2 tmax = 0.498 # Allows exhaustive decimation testing # Setup for reading the raw data raw = read_raw_fif(raw_fname) events = read_events(event_fname) exclude = raw.info['bads'] + ['MEG 2443', 'EEG 053'] # bads + 2 more # picks MEG gradiometers picks = pick_types(raw.info, meg='grad', eeg=False, stim=False, include=[], exclude=exclude) picks = picks[:2] epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks) data = epochs.get_data() sfreq = epochs.info['sfreq'] freqs = np.arange(10, 20, 3).astype(float) # Check all combination of options for func, use_fft, zero_mean, output in product( (tfr_array_multitaper, tfr_array_morlet), (False, True), (False, True), ('complex', 'power', 'phase', 'avg_power_itc', 'avg_power', 'itc')): # Check exception if (func == tfr_array_multitaper) and (output == 'phase'): pytest.raises(NotImplementedError, func, data, sfreq=sfreq, freqs=freqs, output=output) continue # Check runs out = func(data, sfreq=sfreq, freqs=freqs, use_fft=use_fft, zero_mean=zero_mean, n_cycles=2., output=output) # Check shapes shape = np.r_[data.shape[:2], len(freqs), data.shape[2]] if ('avg' in output) or ('itc' in output): assert_array_equal(shape[1:], out.shape) else: assert_array_equal(shape, out.shape) # Check types if output in ('complex', 'avg_power_itc'): assert_equal(np.complex, out.dtype) else: assert_equal(np.float, out.dtype) assert (np.all(np.isfinite(out))) # Check errors params for _data in (None, 'foo', data[0]): pytest.raises(ValueError, _compute_tfr, _data, freqs, sfreq) for _freqs in (None, 'foo', [[0]]): pytest.raises(ValueError, _compute_tfr, data, _freqs, sfreq) for _sfreq in (None, 'foo'): pytest.raises(ValueError, _compute_tfr, data, freqs, _sfreq) for key in ('output', 'method', 'use_fft', 'decim', 'n_jobs'): for value in (None, 'foo'): kwargs = {key: value} # FIXME pep8 pytest.raises(ValueError, _compute_tfr, data, freqs, sfreq, **kwargs) # No time_bandwidth param in morlet pytest.raises(ValueError, _compute_tfr, data, freqs, sfreq, method='morlet', time_bandwidth=1) # No phase in multitaper XXX Check ? pytest.raises(NotImplementedError, _compute_tfr, data, freqs, sfreq, method='multitaper', output='phase') # Inter-trial coherence tests out = _compute_tfr(data, freqs, sfreq, output='itc', n_cycles=2.) assert (np.sum(out >= 1) == 0) assert (np.sum(out <= 0) == 0) # Check decim shapes # 2: multiple of len(times) even # 3: multiple odd # 8: not multiple, even # 9: not multiple, odd for decim in (2, 3, 8, 9, slice(0, 2), slice(1, 3), slice(2, 4)): _decim = slice(None, None, decim) if isinstance(decim, int) else decim n_time = len(np.arange(data.shape[2])[_decim]) shape = np.r_[data.shape[:2], len(freqs), n_time] for method in ('multitaper', 'morlet'): # Single trials out = _compute_tfr(data, freqs, sfreq, method=method, decim=decim, n_cycles=2.) assert_array_equal(shape, out.shape) # Averages out = _compute_tfr(data, freqs, sfreq, method=method, decim=decim, output='avg_power', n_cycles=2.) assert_array_equal(shape[1:], out.shape) run_tests_if_main()
bsd-3-clause
rschenck/Capsid_IDP_Classifier
development/tuning_and_validating.py
1
9852
#!/usr/bin/env python import sys import operator import pandas as pd import numpy as np from sklearn import cross_validation from sklearn.ensemble import ExtraTreesClassifier from sklearn.cross_validation import train_test_split from sklearn.preprocessing import label_binarize from sklearn.metrics import roc_curve, auc from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt from scipy import interp from dataset import load_data # obtains the classifications from the final curated dataset def get_targets(): with open('/Users/schencro/Desktop/FINAL_DATASET/Curated_Dataset/FINAL_CURATED_TABLE.csv','r') as table: typed = {} for line in table: line = line.split(',') acc = line[1].rstrip(' ') typed.update({acc:line[2]}) return typed # obtain FINAL_DATASET for model (all data) def get_data(): with open('/Users/schencro/Desktop/FINAL_DATASET/Curated_Dataset/FINAL_CURATED_SCORES.csv', 'r') as scores: scores = scores.readlines() formatted = [] for item in scores: item = item.rstrip('\n') item = item.split(',') sample = [item[0]] for i in range(1, len(item)): ind = float(item[i]) sample.append(ind) formatted.append(sample) scores = None return formatted # get arrays after fetching the proper classification and getting that classifications set of scores def get_arrays(types, scores): order_types = [] out_scores = [] for item in scores: acc = item[0] ctype = types[acc] order_types.append(ctype) del item[0] out_scores.append(item) # the arrays needed for cross validation type_array = np.asarray(order_types) scores = np.asarray(out_scores) # cleanup item = None ourder_types = None out_scores = None return scores, type_array # ExtraTreesClassifier model def extratrees_model(x, y): clf = ExtraTreesClassifier(n_estimators=25, class_weight={"Type A":0.3,"Type B":0.5,"Neither":0.2}, bootstrap=False, max_features=125, criterion='gini', n_jobs=-1) clf = clf.fit(x, y) return clf # Voting model def results_vote(x, y): pass # Section for running loops on different parameters def tune_model_parameters(data, targets): # cross validate and tuning of the ExtraTreesClassifier parameters my_range = range(1,20) n_scores = [] for n in my_range: clf = ExtraTreesClassifier(n_estimators=25, class_weight={"Type A":0.3,"Type B":0.5,"Neither":0.2}, bootstrap=False, max_features=125, criterion='gini', n_jobs=-1) scores = cross_validation.cross_val_score(clf, data, targets, cv=10, scoring='accuracy') n_scores.append(scores.mean()) plt.plot(my_range,n_scores) plt.xlabel('Number of Trees in the Forest') plt.ylabel('Cross-Validated Accuracy (10-fold Mean)') plt.show() #plt.savefig('/Users/ryan/Desktop/FINAL_DATASET/Curated_Dataset/Capsid_Classifier/max_features_10_126.png', bbox_inches = 'tight') # get the parameter with the maximum mean output m = max(n_scores) mi = min(n_scores) print 'Max Accuracy: ' + repr(m) index = [i for i, j in enumerate(n_scores) if j == m] for i in index: print 'Parameter value max: ' + repr(my_range[i]) indexmi = [i for i, j in enumerate(n_scores) if j == mi] print 'Min Accuracy: ' + repr(mi) for i in indexmi: print 'Parameter value min: ' + repr(my_range[i]) # get ROC curves for the predictions def get_roc(data, targets): # binarize the classifactions bi_targets = label_binarize(targets, classes=['Type A', 'Type B', 'Neither']) #print bi_targets #print targets n_classes = bi_targets.shape[1] #print n_classes # shuffle and split training and test sets X_train, X_test, y_train, y_test = train_test_split(data, bi_targets, train_size=.8) # convert array to array of strings instead of arrays of arrays for the classifier (for the weights) string_test = [] for i in range(0, len(y_train)): string_test.append(str(y_train[i])) string_test = np.asarray(string_test) clf = ExtraTreesClassifier(n_estimators=25, class_weight={"[1 0 0]":0.4,"[0 1 0]":0.5,"[0 1 0]":0.1}, bootstrap=False, max_features=125, criterion='gini', n_jobs = -1) model = clf.fit(X_train, string_test) y_score = model.predict(X_test) # get output of scores from string list into a np array array_scores = [] for item in y_score: ind = item.split(' ') ind0 = ind[0].lstrip('[') ind1 = ind[1] ind2 = ind[2].rstrip(']') ind = [int(ind0),int(ind1), int(ind2)] array_scores.append(ind) array_scores = np.asarray(array_scores) print array_scores # Compute ROC curve and ROC area for each class fpr = dict() tpr = dict() roc_auc = dict() for i in range(n_classes): fpr[i], tpr[i], _ = roc_curve(y_test[:, i], array_scores[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) # Compute micro-average ROC curve and ROC area fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), array_scores.ravel()) roc_auc["micro"] = auc(fpr["micro"], tpr["micro"]) ''' plt.figure() plt.plot(fpr[2], tpr[2], label='ROC curve (area = %0.2f)' % roc_auc[2]) plt.plot([0, 1], [0, 1], 'k--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic example') plt.legend(loc="lower right") plt.show() ''' # Plot ROC curves for the multiclass problem # Compute macro-average ROC curve and ROC area # First aggregate all false positive rates all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)])) # Then interpolate all ROC curves at this points mean_tpr = np.zeros_like(all_fpr) for i in range(n_classes): mean_tpr += interp(all_fpr, fpr[i], tpr[i]) # Finally average it and compute AUC mean_tpr /= n_classes fpr["macro"] = all_fpr tpr["macro"] = mean_tpr roc_auc["macro"] = auc(fpr["macro"], tpr["macro"]) # Plot all ROC curves plt.figure() plt.plot(fpr["micro"], tpr["micro"], label='micro-average ROC curve (area = {0:0.2f})' ''.format(roc_auc["micro"]), linewidth=2) plt.plot(fpr["macro"], tpr["macro"], label='macro-average ROC curve (area = {0:0.2f})' ''.format(roc_auc["macro"]), linewidth=2) for i in range(n_classes): plt.plot(fpr[i], tpr[i], label='ROC curve of class {0} (area = {1:0.2f})' ''.format(i, roc_auc[i])) plt.plot([0, 1], [0, 1], 'k--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristics') plt.legend(loc="lower right") plt.savefig('/Users/schencro/Desktop/FINAL_DATASET/Curated_Dataset/Capsid_Classifier/ROC_curves.eps', bbox_inches = 'tight') # plot confusion matrices def plot_confusion_matrix(cm, labels, title='Confusion matrix', cmap=plt.cm.Greens): plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(labels)) plt.xticks(tick_marks, labels, rotation=45) plt.yticks(tick_marks, labels) plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') def cm_model_p1(X_train, y_train): clf = ExtraTreesClassifier(n_estimators=25, class_weight={"Type A":0.3,"Type B":0.5,"Neither":0.2}, bootstrap=False, max_features=125, criterion='gini', n_jobs=-1) model = clf.fit(X_train, y_train) return model def cm_model_p2(model, X_test): # generate 100 predictions and vote for the majority for final prediction hundred_pred = [] for i in range(0,100): y_pred = model.predict(X_test) hundred_pred.append(y_pred) final_pred = [] for i in range(0, len(hundred_pred[0])): types = [] for k,t in enumerate(hundred_pred): types.append(hundred_pred[k][i]) counts = [types.count('Type A'),types.count('Type B'),types.count('Neither')] index, value = max(enumerate(counts), key=operator.itemgetter(1)) if index == 0: final_pred.append('Type A') elif index == 1: final_pred.append('Type B') elif index == 2: final_pred.append('Neither') else: pass y_pred = np.asarray(final_pred) return y_pred # Generate confusion matrix def get_conf_matrix(data, targets): # shuffle and split training and test sets X_train, X_test, y_train, y_test = train_test_split(data, targets, train_size=.8) # gets the model for predictions model = cm_model_p1(X_train, y_train) # generate 100 confusion matrices, get mean value for each out_cm = np.zeros((3,3)) for i in range(0,100): y_pred = cm_model_p2(model, X_test) # Compute confusion matrix labels = ['Type A', 'Type B', 'Neither'] cm = confusion_matrix(y_test, y_pred, labels=labels) np.set_printoptions(precision=2) # Normalize the confusion matrix by row (i.e by the number of samples # in each class) cm_normalized = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] out_cm += cm_normalized print out_cm cm_normalized = np.divide(out_cm, 100.0) print('Normalized confusion matrix (Mean of 100 predictions)') print(cm_normalized) plt.figure() plot_confusion_matrix(cm_normalized, labels, title='Normalized confusion matrix') # plt.show() plt.savefig('/Users/schencro/Desktop/FINAL_DATASET/Curated_Dataset/Capsid_Classifier/confusion_matrix_RYANFINAL_100mean.eps', bbox_inches = 'tight') def main(): ''' # Use these three to get the data loaded, targets loaded, and the accessions stripped (Otherwise use dataset.py load_data()) # get classifications type_dict = get_targets() # load data scores = get_data() # get arrays of scores and targets data, targets = get_arrays(type_dict, scores) ''' data, targets = load_data() # tune model parameters #tune_model_parameters(data,targets) # get ROC curves #get_roc(data, targets) # get confusion matrix get_conf_matrix(data, targets) '''I WANT TO RE-RUN the ROC curves and the Confusion matrix data using predictions from a cross-validation rather than train/test_split''' if __name__ == "__main__": main()
gpl-2.0
ashhher3/pyDatasets
pydatasets/wafer.py
2
2120
import os import re from pandas import DataFrame class WaferRun: def __init__(self, run_id, wafer_id, label, measurements): self.run_id = int(run_id) self.wafer_id = int(wafer_id) self.label = int(label) self.measurements = DataFrame(measurements) self.measurements.sort(axis=1, inplace=True) self.measurements.sort_index(inplace=True) @staticmethod def from_files(path, run_id, wafer_id): fn_base = os.path.join(path, '{0}_{1:02}'.format(run_id, wafer_id)) try: df = DataFrame({11: DataFrame.from_csv(fn_base + '.11', header=None, sep='\t', index_col=None, parse_dates=False)[1], 12: DataFrame.from_csv(fn_base + '.12', header=None, sep='\t', index_col=None, parse_dates=False)[1], 15: DataFrame.from_csv(fn_base + '.15', header=None, sep='\t', index_col=None, parse_dates=False)[1], 6: DataFrame.from_csv(fn_base + '.6', header=None, sep='\t', index_col=None, parse_dates=False)[1], 7: DataFrame.from_csv(fn_base + '.7', header=None, sep='\t', index_col=None, parse_dates=False)[1], 8: DataFrame.from_csv(fn_base + '.8', header=None, sep='\t', index_col=None, parse_dates=False)[1]}) except: return None m = re.search('/(normal|abnormal)', path) if m is None: return None label = 1 if m.group(1) == 'abnormal' else -1 return WaferRun(run_id, wafer_id, label, df) def as_nparray(self): """Spits out data as a T x D numpy.array (T=# samples, D=# variables) Notes: Notice what we do here: we start with a pandas.DataFrame where each channel is a column (so you can think of it as a T x D matrix). We first rename the columns to channel numbers,then sort the columns, then sort the index, then transform to numpy.array. """ return self.measurements.sort(axis=1).sort_index().reset_index().as_matrix().astype(float)
apache-2.0
rvraghav93/scikit-learn
examples/neighbors/plot_nearest_centroid.py
38
1817
""" =============================== Nearest Centroid Classification =============================== Sample usage of Nearest Centroid classification. It will plot the decision boundaries for each class. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn import datasets from sklearn.neighbors import NearestCentroid n_neighbors = 15 # import some data to play with iris = datasets.load_iris() # we only take the first two features. We could avoid this ugly # slicing by using a two-dim dataset X = iris.data[:, :2] y = iris.target h = .02 # step size in the mesh # Create color maps cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF']) cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF']) for shrinkage in [None, .2]: # we create an instance of Neighbours Classifier and fit the data. clf = NearestCentroid(shrink_threshold=shrinkage) clf.fit(X, y) y_pred = clf.predict(X) print(shrinkage, np.mean(y == y_pred)) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, x_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure() plt.pcolormesh(xx, yy, Z, cmap=cmap_light) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold, edgecolor='b', s=20) plt.title("3-Class classification (shrink_threshold=%r)" % shrinkage) plt.axis('tight') plt.show()
bsd-3-clause
cbpygit/pypmj
projects/scattering/photonic_crystals/slabs/hexagonal/half_spaces/hex_plane_tools.py
1
4284
from scipy.linalg import expm, norm import numpy as np def rot_mat(axis, theta): return expm(np.cross(np.eye(3), axis/norm(axis)*theta)) def rotate_vector(v, axis, theta): M = rot_mat(axis, theta) return np.tensordot(M,v,axes=([0],[1])).T #np.dot(M, v) def rotate_around_z(v, theta): return rotate_vector(v, np.array([0.,0.,1.]), theta) def is_odd(num): return num & 0x1 def is_inside_hexagon(x, y, d=None, x0=0., y0=0.): p_eps = 10.*np.finfo(float).eps if d is None: d = y.max() - y.min() + p_eps dx = np.abs(x - x0)/d dy = np.abs(y - y0)/d a = 0.25 * np.sqrt(3.0) return np.logical_and(dx <= a, a*dy + 0.25*dx <= 0.5*a) def get_hex_plane(plane_idx, inradius, z_height, z_center, np_xy, np_z): # We use 10* float machine precision to correct the ccordinates # to avoid leaving the computational domain due to precision # problems p_eps = 10.*np.finfo(float).eps ri = inradius # short for inradius rc = inradius/np.sqrt(3.)*2. # short for circumradius if np_z == 'auto': np_z = int(np.round(float(np_xy)/2./rc*z_height)) # XY-plane (no hexagonal shape!) if plane_idx == 6: X = np.linspace(-ri+p_eps, ri-p_eps, np_xy) Y = np.linspace(-rc+p_eps, rc-p_eps, np_xy) XY = np.meshgrid(X,Y) XYrs = np.concatenate((XY[0][..., np.newaxis], XY[1][..., np.newaxis]), axis=2) Z = np.ones((np_xy, np_xy, 1))*z_center pl = np.concatenate((XYrs, Z), axis=2) pl = pl.reshape(-1, pl.shape[-1]) # Restrict to hexagon idx_hex = is_inside_hexagon(pl[:,0], pl[:,1]) return pl[idx_hex] # Vertical planes elif plane_idx < 6: r = rc if is_odd(plane_idx) else ri r = r-p_eps xy_line = np.empty((np_xy,2)) xy_line[:,0] = np.linspace(-r, r, np_xy) xy_line[:,1] = 0. z_points = np.linspace(0.+p_eps, z_height-p_eps, np_z) # Construct the plane plane = np.empty((np_xy*np_z, 3)) for i, xy in enumerate(xy_line): for j, z in enumerate(z_points): idx = i*np_z + j plane[idx, :2] = xy plane[idx, 2] = z # Rotate the plane return rotate_around_z(plane, plane_idx*np.pi/6.) else: raise ValueError('`plane_idx` must be in [0...6].') def get_hex_planes_point_list(inradius, z_height, z_center, np_xy, np_z, plane_indices=[0,1,2,3,6]): # Construct the desired planes planes = [] for i in plane_indices: planes.append(get_hex_plane(i, inradius, z_height, z_center, np_xy, np_z)) # Flatten and save lengths lengths = [len(p) for p in planes] return np.vstack(planes), np.array(lengths) def hex_planes_point_list_for_keys(keys, plane_indices=[0,1,2,3,6]): if not 'uol' in keys: keys['uol'] = 1.e-9 inradius = keys['p'] * keys['uol'] /2. z_height = (keys['h'] + keys['h_sub'] + keys['h_sup']) * keys['uol'] z_center = (keys['h_sub']+keys['h']/2.) * keys['uol'] np_xy = keys['hex_np_xy'] if not 'hex_np_z' in keys: np_z = 'auto' return get_hex_planes_point_list(inradius, z_height, z_center, np_xy, np_z) def plane_idx_iter(lengths_): """Yields the plane index plus lower index `idx_i` and upper index `idx_f` of the point list representing this plane (i.e. pointlist[idx_i:idx_f]). """ i = 0 while i < len(lengths_): yield i, lengths_[:i].sum(), lengths_[:(i+1)].sum() i += 1 def plot_planes(pointlist, lengths): import matplotlib.pyplot as plt import seaborn as sns from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() ax = fig.add_subplot(111, projection='3d') colors = sns.color_palette('husl', len(lengths)) for i, idx_i, idx_f in plane_idx_iter(lengths): pl = pointlist[idx_i:idx_f] ax.scatter(pl[:,0], pl[:,1], pl[:,2], s=10., c=colors[i], label='plane {}'.format(i+1), linewidth=0.) _ = plt.legend(loc='upper left')
gpl-3.0
alexeyum/scikit-learn
sklearn/mixture/tests/test_dpgmm.py
261
4490
import unittest import sys import numpy as np from sklearn.mixture import DPGMM, VBGMM from sklearn.mixture.dpgmm import log_normalize from sklearn.datasets import make_blobs from sklearn.utils.testing import assert_array_less, assert_equal from sklearn.mixture.tests.test_gmm import GMMTester from sklearn.externals.six.moves import cStringIO as StringIO np.seterr(all='warn') def test_class_weights(): # check that the class weights are updated # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm = Model(n_components=10, random_state=1, alpha=20, n_iter=50) dpgmm.fit(X) # get indices of components that are used: indices = np.unique(dpgmm.predict(X)) active = np.zeros(10, dtype=np.bool) active[indices] = True # used components are important assert_array_less(.1, dpgmm.weights_[active]) # others are not assert_array_less(dpgmm.weights_[~active], .05) def test_verbose_boolean(): # checks that the output for the verbose output is the same # for the flag values '1' and 'True' # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm_bool = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=True) dpgmm_int = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: # generate output with the boolean flag dpgmm_bool.fit(X) verbose_output = sys.stdout verbose_output.seek(0) bool_output = verbose_output.readline() # generate output with the int flag dpgmm_int.fit(X) verbose_output = sys.stdout verbose_output.seek(0) int_output = verbose_output.readline() assert_equal(bool_output, int_output) finally: sys.stdout = old_stdout def test_verbose_first_level(): # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: dpgmm.fit(X) finally: sys.stdout = old_stdout def test_verbose_second_level(): # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=2) old_stdout = sys.stdout sys.stdout = StringIO() try: dpgmm.fit(X) finally: sys.stdout = old_stdout def test_log_normalize(): v = np.array([0.1, 0.8, 0.01, 0.09]) a = np.log(2 * v) assert np.allclose(v, log_normalize(a), rtol=0.01) def do_model(self, **kwds): return VBGMM(verbose=False, **kwds) class DPGMMTester(GMMTester): model = DPGMM do_test_eval = False def score(self, g, train_obs): _, z = g.score_samples(train_obs) return g.lower_bound(train_obs, z) class TestDPGMMWithSphericalCovars(unittest.TestCase, DPGMMTester): covariance_type = 'spherical' setUp = GMMTester._setUp class TestDPGMMWithDiagCovars(unittest.TestCase, DPGMMTester): covariance_type = 'diag' setUp = GMMTester._setUp class TestDPGMMWithTiedCovars(unittest.TestCase, DPGMMTester): covariance_type = 'tied' setUp = GMMTester._setUp class TestDPGMMWithFullCovars(unittest.TestCase, DPGMMTester): covariance_type = 'full' setUp = GMMTester._setUp class VBGMMTester(GMMTester): model = do_model do_test_eval = False def score(self, g, train_obs): _, z = g.score_samples(train_obs) return g.lower_bound(train_obs, z) class TestVBGMMWithSphericalCovars(unittest.TestCase, VBGMMTester): covariance_type = 'spherical' setUp = GMMTester._setUp class TestVBGMMWithDiagCovars(unittest.TestCase, VBGMMTester): covariance_type = 'diag' setUp = GMMTester._setUp class TestVBGMMWithTiedCovars(unittest.TestCase, VBGMMTester): covariance_type = 'tied' setUp = GMMTester._setUp class TestVBGMMWithFullCovars(unittest.TestCase, VBGMMTester): covariance_type = 'full' setUp = GMMTester._setUp
bsd-3-clause
beingzy/user_recommender_framework
groupwise_distance_learning/tests/test_helper_func.py
1
2232
""" functions for developing Author: Yi Zhang <beingzy@gmail.com> Date: 2016/03/10 """ import os import os.path from os.path import dirname, abspath, join import pandas as pd def get_file_parent_dir_path(level=1): """ return the path of the parent directory of current file """ current_dir_path = dirname(abspath(__file__)) path_sep = os.path.sep components = current_dir_path.split(path_sep) return path_sep.join(components[:-level]) def load_sample_test_data(): """ load small test data """ _root_dir = get_file_parent_dir_path(level=2) _data_dir = join(_root_dir, 'data', 'small_test') user_profile_fpath = join(_data_dir, "user_profile.csv") user_connections_fpath = join(_data_dir, "connections.csv") int_user_profile_df = pd.read_csv(user_profile_fpath, header=0, sep=',') user_connections_df = pd.read_csv(user_connections_fpath, header=0, sep=',') user_ids = int_user_profile_df.id.tolist() # remove id columns and cetegorical feature column user_profile_df = int_user_profile_df.drop(["id", "feat_3"], axis=1, inplace=False).as_matrix() user_connections_df = user_connections_df.as_matrix() return user_ids, user_profile_df, user_connections_df def load_simulated_test_data(): """ load simulationd data with defined two groups """ _root_dir = get_file_parent_dir_path(level=2) _data_dir = join(_root_dir, 'data', 'sim_two_groups') user_profile_fpath = join(_data_dir, "user_profiles.csv") user_connections_fpath = join(_data_dir, "friendships.csv") # prepare user profile information user_profile_df = pd.read_csv(user_profile_fpath, header=0, sep=",") # unpack data user_ids = user_profile_df.ID.tolist() user_true_groups = user_profile_df.decision_style.tolist() user_profile_df = user_profile_df.drop(["ID", "decision_style"], axis=1, inplace=False).as_matrix() user_connections_df = pd.read_csv(user_connections_fpath, header=0, sep=",") user_connections_df = (user_connections_df[user_connections_df.isFriend==1] .drop('isFriend', axis=1, inplace=False).astype(int).as_matrix()) return user_ids, user_profile_df, user_connections_df, user_true_groups
gpl-3.0
moonbury/notebooks
github/MatplotlibCookbook/Chapter 8/wx-supershape-1.py
3
1121
import wx, numpy from matplotlib.backends.backend_wxagg import FigureCanvasWxAgg from matplotlib.figure import Figure def supershape_radius(phi, a, b, m, n1, n2, n3): theta = .25 * m * phi cos = numpy.fabs(numpy.cos(theta) / a) ** n2 sin = numpy.fabs(numpy.sin(theta) / b) ** n3 r = (cos + sin) ** (-1. / n1) r /= numpy.max(r) return r class SuperShapeFrame(wx.Frame): def __init__(self, parent, id, title): wx.Frame.__init__(self, parent, id, title, style = wx.DEFAULT_FRAME_STYLE ^ wx.RESIZE_BORDER, size = (480, 480)) self.fig = Figure((6, 6), dpi = 80) self.panel = wx.Panel(self, -1) sizer = wx.BoxSizer(wx.VERTICAL) sizer.Add(FigureCanvasWxAgg(self.panel, -1, self.fig), 1) self.panel.SetSizer(sizer) self.draw_figure() def draw_figure(self): phi = numpy.linspace(0, 2 * numpy.pi, 1024) r = supershape_radius(phi, 1, 1, 3, 2, 18, 18) ax = self.fig.add_subplot(111, polar = True) ax.plot(phi, r, lw = 3.) self.fig.canvas.draw() app = wx.App(redirect = True) top = SuperShapeFrame(None, -1, 'SuperShape') top.Show() app.MainLoop()
gpl-3.0
fmacias64/Dato-Core
src/unity/python/graphlab/deps/__init__.py
13
1294
''' Copyright (C) 2015 Dato, Inc. All rights reserved. This software may be modified and distributed under the terms of the BSD license. See the DATO-PYTHON-LICENSE file for details. ''' from distutils.version import StrictVersion import logging def __get_version(version): if 'dev' in str(version): version = version[:version.find('.dev')] return StrictVersion(version) HAS_PANDAS = True PANDAS_MIN_VERSION = '0.13.0' try: import pandas if __get_version(pandas.__version__) < StrictVersion(PANDAS_MIN_VERSION): HAS_PANDAS = False logging.warn(('Pandas version %s is not supported. Minimum required version: %s. ' 'Pandas support will be disabled.') % (pandas.__version__, PANDAS_MIN_VERSION) ) except: HAS_PANDAS = False import pandas_mock as pandas HAS_NUMPY = True NUMPY_MIN_VERSION = '1.8.0' try: import numpy if __get_version(numpy.__version__) < StrictVersion(NUMPY_MIN_VERSION): HAS_NUMPY = False logging.warn(('Numpy version %s is not supported. Minimum required version: %s. ' 'Numpy support will be disabled.') % (numpy.__version__, NUMPY_MIN_VERSION) ) except: HAS_NUMPY = False import numpy_mock as numpy
agpl-3.0
imitrichev/cantera
interfaces/cython/cantera/examples/reactors/sensitivity1.py
4
2165
""" Constant-pressure, adiabatic kinetics simulation with sensitivity analysis """ import sys import numpy as np import cantera as ct gri3 = ct.Solution('gri30.xml') temp = 1500.0 pres = ct.one_atm gri3.TPX = temp, pres, 'CH4:0.1, O2:2, N2:7.52' r = ct.IdealGasConstPressureReactor(gri3, name='R1') sim = ct.ReactorNet([r]) # enable sensitivity with respect to the rates of the first 10 # reactions (reactions 0 through 9) for i in range(10): r.add_sensitivity_reaction(i) # set the tolerances for the solution and for the sensitivity coefficients sim.rtol = 1.0e-6 sim.atol = 1.0e-15 sim.rtol_sensitivity = 1.0e-6 sim.atol_sensitivity = 1.0e-6 n_times = 400 tim = np.zeros(n_times) data = np.zeros((n_times,6)) time = 0.0 for n in range(n_times): time += 5.0e-6 sim.advance(time) tim[n] = 1000 * time data[n,0] = r.T data[n,1:4] = r.thermo['OH','H','CH4'].X # sensitivity of OH to reaction 2 data[n,4] = sim.sensitivity('OH',2) # sensitivity of OH to reaction 3 data[n,5] = sim.sensitivity('OH',3) print('%10.3e %10.3f %10.3f %14.6e %10.3f %10.3f' % (sim.time, r.T, r.thermo.P, r.thermo.u, data[n,4], data[n,5])) # plot the results if matplotlib is installed. # see http://matplotlib.org/ to get it if '--plot' in sys.argv: import matplotlib.pyplot as plt plt.subplot(2,2,1) plt.plot(tim,data[:,0]) plt.xlabel('Time (ms)') plt.ylabel('Temperature (K)') plt.subplot(2,2,2) plt.plot(tim,data[:,1]) plt.xlabel('Time (ms)') plt.ylabel('OH Mole Fraction') plt.subplot(2,2,3) plt.plot(tim,data[:,2]) plt.xlabel('Time (ms)') plt.ylabel('H Mole Fraction') plt.subplot(2,2,4) plt.plot(tim,data[:,3]) plt.xlabel('Time (ms)') plt.ylabel('H2 Mole Fraction') plt.tight_layout() plt.figure(2) plt.plot(tim,data[:,4],'-',tim,data[:,5],'-g') plt.legend([sim.sensitivity_parameter_name(2),sim.sensitivity_parameter_name(3)],'best') plt.xlabel('Time (ms)') plt.ylabel('OH Sensitivity') plt.tight_layout() plt.show() else: print("""To view a plot of these results, run this script with the option '--plot""")
bsd-3-clause
rsivapr/scikit-learn
examples/cross_decomposition/plot_compare_cross_decomposition.py
8
4706
""" =================================== Compare cross decomposition methods =================================== Simple usage of various cross decomposition algorithms: - PLSCanonical - PLSRegression, with multivariate response, a.k.a. PLS2 - PLSRegression, with univariate response, a.k.a. PLS1 - CCA Given 2 multivariate covarying two-dimensional datasets, X, and Y, PLS extracts the 'directions of covariance', i.e. the components of each datasets that explain the most shared variance between both datasets. This is apparent on the **scatterplot matrix** display: components 1 in dataset X and dataset Y are maximally correlated (points lie around the first diagonal). This is also true for components 2 in both dataset, however, the correlation across datasets for different components is weak: the point cloud is very spherical. """ print(__doc__) import numpy as np import pylab as pl from sklearn.cross_decomposition import PLSCanonical, PLSRegression, CCA ############################################################################### # Dataset based latent variables model n = 500 # 2 latents vars: l1 = np.random.normal(size=n) l2 = np.random.normal(size=n) latents = np.array([l1, l1, l2, l2]).T X = latents + np.random.normal(size=4 * n).reshape((n, 4)) Y = latents + np.random.normal(size=4 * n).reshape((n, 4)) X_train = X[:n / 2] Y_train = Y[:n / 2] X_test = X[n / 2:] Y_test = Y[n / 2:] print("Corr(X)") print(np.round(np.corrcoef(X.T), 2)) print("Corr(Y)") print(np.round(np.corrcoef(Y.T), 2)) ############################################################################### # Canonical (symmetric) PLS # Transform data # ~~~~~~~~~~~~~~ plsca = PLSCanonical(n_components=2) plsca.fit(X_train, Y_train) X_train_r, Y_train_r = plsca.transform(X_train, Y_train) X_test_r, Y_test_r = plsca.transform(X_test, Y_test) # Scatter plot of scores # ~~~~~~~~~~~~~~~~~~~~~~ # 1) On diagonal plot X vs Y scores on each components pl.figure(figsize=(12, 8)) pl.subplot(221) pl.plot(X_train_r[:, 0], Y_train_r[:, 0], "ob", label="train") pl.plot(X_test_r[:, 0], Y_test_r[:, 0], "or", label="test") pl.xlabel("x scores") pl.ylabel("y scores") pl.title('Comp. 1: X vs Y (test corr = %.2f)' % np.corrcoef(X_test_r[:, 0], Y_test_r[:, 0])[0, 1]) pl.xticks(()) pl.yticks(()) pl.legend(loc="best") pl.subplot(224) pl.plot(X_train_r[:, 1], Y_train_r[:, 1], "ob", label="train") pl.plot(X_test_r[:, 1], Y_test_r[:, 1], "or", label="test") pl.xlabel("x scores") pl.ylabel("y scores") pl.title('Comp. 2: X vs Y (test corr = %.2f)' % np.corrcoef(X_test_r[:, 1], Y_test_r[:, 1])[0, 1]) pl.xticks(()) pl.yticks(()) pl.legend(loc="best") # 2) Off diagonal plot components 1 vs 2 for X and Y pl.subplot(222) pl.plot(X_train_r[:, 0], X_train_r[:, 1], "*b", label="train") pl.plot(X_test_r[:, 0], X_test_r[:, 1], "*r", label="test") pl.xlabel("X comp. 1") pl.ylabel("X comp. 2") pl.title('X comp. 1 vs X comp. 2 (test corr = %.2f)' % np.corrcoef(X_test_r[:, 0], X_test_r[:, 1])[0, 1]) pl.legend(loc="best") pl.xticks(()) pl.yticks(()) pl.subplot(223) pl.plot(Y_train_r[:, 0], Y_train_r[:, 1], "*b", label="train") pl.plot(Y_test_r[:, 0], Y_test_r[:, 1], "*r", label="test") pl.xlabel("Y comp. 1") pl.ylabel("Y comp. 2") pl.title('Y comp. 1 vs Y comp. 2 , (test corr = %.2f)' % np.corrcoef(Y_test_r[:, 0], Y_test_r[:, 1])[0, 1]) pl.legend(loc="best") pl.xticks(()) pl.yticks(()) pl.show() ############################################################################### # PLS regression, with multivariate response, a.k.a. PLS2 n = 1000 q = 3 p = 10 X = np.random.normal(size=n * p).reshape((n, p)) B = np.array([[1, 2] + [0] * (p - 2)] * q).T # each Yj = 1*X1 + 2*X2 + noize Y = np.dot(X, B) + np.random.normal(size=n * q).reshape((n, q)) + 5 pls2 = PLSRegression(n_components=3) pls2.fit(X, Y) print("True B (such that: Y = XB + Err)") print(B) # compare pls2.coefs with B print("Estimated B") print(np.round(pls2.coefs, 1)) pls2.predict(X) ############################################################################### # PLS regression, with univariate response, a.k.a. PLS1 n = 1000 p = 10 X = np.random.normal(size=n * p).reshape((n, p)) y = X[:, 0] + 2 * X[:, 1] + np.random.normal(size=n * 1) + 5 pls1 = PLSRegression(n_components=3) pls1.fit(X, y) # note that the number of compements exceeds 1 (the dimension of y) print("Estimated betas") print(np.round(pls1.coefs, 1)) ############################################################################### # CCA (PLS mode B with symmetric deflation) cca = CCA(n_components=2) cca.fit(X_train, Y_train) X_train_r, Y_train_r = plsca.transform(X_train, Y_train) X_test_r, Y_test_r = plsca.transform(X_test, Y_test)
bsd-3-clause
SEMAFORInformatik/femagtools
femagtools/forcedens.py
1
6880
# -*- coding: utf-8 -*- """ femagtools.forcedens ~~~~~~~~~~~~~~~~~~~~ Read Force Density Plot Files """ import os import re import glob import numpy as np import logging logger = logging.getLogger('femagtools.forcedens') filename_pat = re.compile(r'^(\w+)_(\d{3}).PLT(\d+)') num_pat = re.compile(r'([+-]?\d+(?:\.\d+)?(?:[eE][+-]\d+)?)\s*') pos_pat = re.compile(r'^\s*POSITION\s*\[(\w+)\]') unit_pat = re.compile(r'\[([^\]]+)') def _readSections(f): """return list of PLT sections sections are surrounded by lines starting with '[***' or 2d arrays with 7 columns Args: param f (file) PLT file to be read Returns: list of sections """ section = [] for line in f: if line.startswith('[****') or pos_pat.match(line): if section: if len(section) > 2 and section[1].startswith('Date'): yield section[1:] else: yield section if line.startswith('[****'): section = [] else: section = [line.strip()] else: section.append(line.strip()) yield section class ForceDensity(object): def __init__(self): self.type = '' self.positions = [] pass def __read_version(self, content): rec = content[0].split(' ') if len(rec) > 3: self.version = rec[3] else: self.version = rec[-1] def __read_project_filename(self, content): self.project = content[1].strip() def __read_nodes_and_mesh(self, content): self.nodes, self.elements, self.quality = \ [float(r[0]) for r in [num_pat.findall(l) for l in content[:3]]] for l in content[3:]: m = re.match(r'\*+([^\*]+)\*+', l) if m: self.type = m.group(1).strip() return def __read_date_and_title(self, content): d = content[0].split(':')[1].strip().split() dd, MM, yy = d[0].split('.') hh, mm = ''.join(d[1:-1]).split('.') self.date = '{}-{}-{}T{:02}:{:02}'.format( yy, MM, dd, int(hh), int(mm)) if len(content) > 6: self.title = content[2].strip() + ', ' + content[6].strip() else: self.title = content[2].strip() self.current = float(num_pat.findall(content[4])[0]) def __read_filename(self, content): self.filename = content[0].split(':')[1].strip() def __read_position(self, content): d = dict(position=float(num_pat.findall(content[0])[-1]), unit=unit_pat.findall(content[0].split()[1])[0]) cols = content[2].split() labels = cols[::2] # either X, FN, FT, B_N, B_T # or X FX FY B_X B_Y d['column_units'] = {k: u for k, u in zip(labels, [unit_pat.findall(u)[0] for u in cols[1::2]])} m = [] for l in content[4:]: rec = l.split()[1:] if len(rec) == len(labels): m.append([float(x) for x in rec]) d.update({k: v for k, v in zip(labels, list(zip(*m)))}) self.positions.append(d) def read(self, filename): with open(filename) as f: for s in _readSections(f.readlines()): logger.debug('Section %s' % s[0:2]) if s[0].startswith('FEMAG'): self.__read_version(s) elif s[0].startswith('Project'): self.__read_project_filename(s) elif s[0].startswith('Number'): self.__read_nodes_and_mesh(s) elif s[0].startswith('File'): self.__read_filename(s) elif s[0].startswith('Date'): self.__read_date_and_title(s) elif s[0].startswith('POSITION'): self.__read_position(s) def fft(self): """return FFT of FN""" import scipy.fftpack try: ntiles = int(360/self.positions[0]['X'][-1]) FN = np.tile( np.array([p['FN'][:-1] for p in self.positions[:-1]]), (ntiles, ntiles)) except AttributeError: return [] N = FN.shape[0] fdn = scipy.fftpack.fft2(FN) dim = N//ntiles//2 return np.abs(fdn)[1:dim, 1:dim]/N def items(self): return [(k, getattr(self, k)) for k in ('version', 'type', 'title', 'current', 'filename', 'date', 'positions')] def __str__(self): "return string format of this object" if self.type: return "\n".join([ 'FEMAG {}: {}'.format(self.version, self.type), 'File: {} {}'.format(self.filename, self.date)] + ['{}: {}'.format(k, v) for k, v in self.items()]) return "{}" def read(filename): f = ForceDensity() f.read(filename) return f def readall(workdir='.'): """collect all recent PLT files returns list of ForceDensity objects """ plt = dict() pltfiles = sorted(glob.glob(os.path.join(workdir, '*_*.PLT*'))) base = os.path.basename(pltfiles[-1]) lastserie = filename_pat.match(base).groups()[1] for p in pltfiles: base = os.path.basename(p) m = filename_pat.match(base) if m and lastserie == m.groups()[1]: model, i, k = m.groups() fdens = ForceDensity() fdens.read(p) logging.info("%s: %s", p, fdens.title) if model in plt: plt[model].append(fdens) else: plt[model] = [fdens] return plt if __name__ == "__main__": import matplotlib.pyplot as pl import femagtools.plot import sys if len(sys.argv) == 2: filename = sys.argv[1] else: filename = sys.stdin.readline().strip() fdens = read(filename) # Show the results title = '{}, Rotor position {}'.format( fdens.title, fdens.positions[0]['position']) pos = fdens.positions[0]['X'] FT_FN = (fdens.positions[0]['FT'], fdens.positions[0]['FN']) femagtools.plot.forcedens(title, pos, FT_FN) pl.show() title = 'Force Density Harmonics' femagtools.plot.forcedens_fft(title, fdens) pl.show()
bsd-2-clause
nvoron23/scikit-learn
sklearn/linear_model/tests/test_sparse_coordinate_descent.py
244
9986
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_greater from sklearn.utils.testing import ignore_warnings from sklearn.linear_model.coordinate_descent import (Lasso, ElasticNet, LassoCV, ElasticNetCV) def test_sparse_coef(): # Check that the sparse_coef propery works clf = ElasticNet() clf.coef_ = [1, 2, 3] assert_true(sp.isspmatrix(clf.sparse_coef_)) assert_equal(clf.sparse_coef_.toarray().tolist()[0], clf.coef_) def test_normalize_option(): # Check that the normalize option in enet works X = sp.csc_matrix([[-1], [0], [1]]) y = [-1, 0, 1] clf_dense = ElasticNet(fit_intercept=True, normalize=True) clf_sparse = ElasticNet(fit_intercept=True, normalize=True) clf_dense.fit(X, y) X = sp.csc_matrix(X) clf_sparse.fit(X, y) assert_almost_equal(clf_dense.dual_gap_, 0) assert_array_almost_equal(clf_dense.coef_, clf_sparse.coef_) def test_lasso_zero(): # Check that the sparse lasso can handle zero data without crashing X = sp.csc_matrix((3, 1)) y = [0, 0, 0] T = np.array([[1], [2], [3]]) clf = Lasso().fit(X, y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0]) assert_array_almost_equal(pred, [0, 0, 0]) assert_almost_equal(clf.dual_gap_, 0) def test_enet_toy_list_input(): # Test ElasticNet for various values of alpha and l1_ratio with list X X = np.array([[-1], [0], [1]]) X = sp.csc_matrix(X) Y = [-1, 0, 1] # just a straight line T = np.array([[2], [3], [4]]) # test sample # this should be the same as unregularized least squares clf = ElasticNet(alpha=0, l1_ratio=1.0) # catch warning about alpha=0. # this is discouraged but should work. ignore_warnings(clf.fit)(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [1]) assert_array_almost_equal(pred, [2, 3, 4]) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=1000) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.5) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.45454], 3) assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3) assert_almost_equal(clf.dual_gap_, 0) def test_enet_toy_explicit_sparse_input(): # Test ElasticNet for various values of alpha and l1_ratio with sparse X f = ignore_warnings # training samples X = sp.lil_matrix((3, 1)) X[0, 0] = -1 # X[1, 0] = 0 X[2, 0] = 1 Y = [-1, 0, 1] # just a straight line (the identity function) # test samples T = sp.lil_matrix((3, 1)) T[0, 0] = 2 T[1, 0] = 3 T[2, 0] = 4 # this should be the same as lasso clf = ElasticNet(alpha=0, l1_ratio=1.0) f(clf.fit)(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [1]) assert_array_almost_equal(pred, [2, 3, 4]) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=1000) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.5) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.45454], 3) assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3) assert_almost_equal(clf.dual_gap_, 0) def make_sparse_data(n_samples=100, n_features=100, n_informative=10, seed=42, positive=False, n_targets=1): random_state = np.random.RandomState(seed) # build an ill-posed linear regression problem with many noisy features and # comparatively few samples # generate a ground truth model w = random_state.randn(n_features, n_targets) w[n_informative:] = 0.0 # only the top features are impacting the model if positive: w = np.abs(w) X = random_state.randn(n_samples, n_features) rnd = random_state.uniform(size=(n_samples, n_features)) X[rnd > 0.5] = 0.0 # 50% of zeros in input signal # generate training ground truth labels y = np.dot(X, w) X = sp.csc_matrix(X) if n_targets == 1: y = np.ravel(y) return X, y def _test_sparse_enet_not_as_toy_dataset(alpha, fit_intercept, positive): n_samples, n_features, max_iter = 100, 100, 1000 n_informative = 10 X, y = make_sparse_data(n_samples, n_features, n_informative, positive=positive) X_train, X_test = X[n_samples // 2:], X[:n_samples // 2] y_train, y_test = y[n_samples // 2:], y[:n_samples // 2] s_clf = ElasticNet(alpha=alpha, l1_ratio=0.8, fit_intercept=fit_intercept, max_iter=max_iter, tol=1e-7, positive=positive, warm_start=True) s_clf.fit(X_train, y_train) assert_almost_equal(s_clf.dual_gap_, 0, 4) assert_greater(s_clf.score(X_test, y_test), 0.85) # check the convergence is the same as the dense version d_clf = ElasticNet(alpha=alpha, l1_ratio=0.8, fit_intercept=fit_intercept, max_iter=max_iter, tol=1e-7, positive=positive, warm_start=True) d_clf.fit(X_train.toarray(), y_train) assert_almost_equal(d_clf.dual_gap_, 0, 4) assert_greater(d_clf.score(X_test, y_test), 0.85) assert_almost_equal(s_clf.coef_, d_clf.coef_, 5) assert_almost_equal(s_clf.intercept_, d_clf.intercept_, 5) # check that the coefs are sparse assert_less(np.sum(s_clf.coef_ != 0.0), 2 * n_informative) def test_sparse_enet_not_as_toy_dataset(): _test_sparse_enet_not_as_toy_dataset(alpha=0.1, fit_intercept=False, positive=False) _test_sparse_enet_not_as_toy_dataset(alpha=0.1, fit_intercept=True, positive=False) _test_sparse_enet_not_as_toy_dataset(alpha=1e-3, fit_intercept=False, positive=True) _test_sparse_enet_not_as_toy_dataset(alpha=1e-3, fit_intercept=True, positive=True) def test_sparse_lasso_not_as_toy_dataset(): n_samples = 100 max_iter = 1000 n_informative = 10 X, y = make_sparse_data(n_samples=n_samples, n_informative=n_informative) X_train, X_test = X[n_samples // 2:], X[:n_samples // 2] y_train, y_test = y[n_samples // 2:], y[:n_samples // 2] s_clf = Lasso(alpha=0.1, fit_intercept=False, max_iter=max_iter, tol=1e-7) s_clf.fit(X_train, y_train) assert_almost_equal(s_clf.dual_gap_, 0, 4) assert_greater(s_clf.score(X_test, y_test), 0.85) # check the convergence is the same as the dense version d_clf = Lasso(alpha=0.1, fit_intercept=False, max_iter=max_iter, tol=1e-7) d_clf.fit(X_train.toarray(), y_train) assert_almost_equal(d_clf.dual_gap_, 0, 4) assert_greater(d_clf.score(X_test, y_test), 0.85) # check that the coefs are sparse assert_equal(np.sum(s_clf.coef_ != 0.0), n_informative) def test_enet_multitarget(): n_targets = 3 X, y = make_sparse_data(n_targets=n_targets) estimator = ElasticNet(alpha=0.01, fit_intercept=True, precompute=None) # XXX: There is a bug when precompute is not None! estimator.fit(X, y) coef, intercept, dual_gap = (estimator.coef_, estimator.intercept_, estimator.dual_gap_) for k in range(n_targets): estimator.fit(X, y[:, k]) assert_array_almost_equal(coef[k, :], estimator.coef_) assert_array_almost_equal(intercept[k], estimator.intercept_) assert_array_almost_equal(dual_gap[k], estimator.dual_gap_) def test_path_parameters(): X, y = make_sparse_data() max_iter = 50 n_alphas = 10 clf = ElasticNetCV(n_alphas=n_alphas, eps=1e-3, max_iter=max_iter, l1_ratio=0.5, fit_intercept=False) ignore_warnings(clf.fit)(X, y) # new params assert_almost_equal(0.5, clf.l1_ratio) assert_equal(n_alphas, clf.n_alphas) assert_equal(n_alphas, len(clf.alphas_)) sparse_mse_path = clf.mse_path_ ignore_warnings(clf.fit)(X.toarray(), y) # compare with dense data assert_almost_equal(clf.mse_path_, sparse_mse_path) def test_same_output_sparse_dense_lasso_and_enet_cv(): X, y = make_sparse_data(n_samples=40, n_features=10) for normalize in [True, False]: clfs = ElasticNetCV(max_iter=100, cv=5, normalize=normalize) ignore_warnings(clfs.fit)(X, y) clfd = ElasticNetCV(max_iter=100, cv=5, normalize=normalize) ignore_warnings(clfd.fit)(X.toarray(), y) assert_almost_equal(clfs.alpha_, clfd.alpha_, 7) assert_almost_equal(clfs.intercept_, clfd.intercept_, 7) assert_array_almost_equal(clfs.mse_path_, clfd.mse_path_) assert_array_almost_equal(clfs.alphas_, clfd.alphas_) clfs = LassoCV(max_iter=100, cv=4, normalize=normalize) ignore_warnings(clfs.fit)(X, y) clfd = LassoCV(max_iter=100, cv=4, normalize=normalize) ignore_warnings(clfd.fit)(X.toarray(), y) assert_almost_equal(clfs.alpha_, clfd.alpha_, 7) assert_almost_equal(clfs.intercept_, clfd.intercept_, 7) assert_array_almost_equal(clfs.mse_path_, clfd.mse_path_) assert_array_almost_equal(clfs.alphas_, clfd.alphas_)
bsd-3-clause
martinggww/lucasenlights
ETF/lucas/bin/2getQuantCode.py
2
3085
import sys, os sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) import my_config as config import logging from src.getDf import readCsvFiles, addFundPerf, readStatics, getFeatureDf, dropOff, dropOffTrade from src.calStatics import calStatics from src.getQuantDf import getQuantDf from src.calQuantCode import calQuantDf import numpy as np import pandas as pd import json logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__file__) def debug(df): print df.columns.values def mergeDailyWeekly(d_quant, w_quant): daily_size = d_quant.shape[0] quant = pd.merge(d_quant, w_quant, on='DATE', how='outer') #Find the first weekly is Not NaN drop_index = 0 for drop_index, row in quant.iterrows(): if not pd.isnull(row['SPY_weekly']): break quant.drop(quant.index[0:drop_index], inplace=True) quant = quant.reset_index(drop=True) print quant.columns.names temp_dict = {} for index, row in quant.iterrows(): print index print row for name in w_quant.columns.values: if pd.isnull(row[name]): row[name] = temp_dict[name] else: temp_dict[name] = row[name] quant.drop(quant.index[daily_size:], inplace=True) quant = quant.reset_index(drop=True) return quant def trim(df): index = 0 start_index = 0 end_index = df.shape[0] for index, row in df.iterrows(): date = row['date'] if date >= config.START_DATE: start_index = index break for index, row in df.iterrows(): date = row['date'] if date >= config.END_DATE: end_index = index break df = df[start_index:end_index] df = df.reset_index(drop=True) return df ''' Read price df, read statics data, for each record, calculate it's quantitative code ''' if __name__ == '__main__': usage = "Usage: GetQuantCode, this program will calculate the quantitiave codes of trading data" print usage d, w, m = getFeatureDf() d_stat, w_stat = readStatics() d = dropOff(d, 'daily') print "Usage: 8 daily Features: KD, KD_SLOPE, ROC, MFI_SLOPE, HIST_MOM, MFI, KD_RANK, MFI_RANK" if sys.argv[1] == 'run': d = trim(d) w = trim(w) debug(d) d_quant = calQuantDf(d, d_stat, 'daily') debug(d_quant) w = dropOff(w, 'weekly') debug(w) print "Usage: 4 weekly features: KD, MFI, KD_RANK, MFI_RANK" w_quant = calQuantDf(w, w_stat, 'weekly') debug(w_quant) if d.shape[0] != d_quant.shape[0] or w.shape[0] != w_quant.shape[0]: logger.error("Wrong quant size") exit(1) quant_df = mergeDailyWeekly(d_quant, w_quant) d = dropOffTrade(d, quant_df.iloc[0]['DATE']) print "Save trade pickle to disk" d.to_pickle(config.TRADE_DF_PICKLE) print "Save trade quant pickle to disk" quant_df.to_pickle(config.QUANT_DF_PICKLE) usage = "Usage: GetQuantCode, save trade_quant to pickle, save quant_df to pickle" print usage
cc0-1.0
jstoxrocky/statsmodels
statsmodels/examples/ex_kernel_regression2.py
34
1511
# -*- coding: utf-8 -*- """ Created on Wed Jan 02 13:43:44 2013 Author: Josef Perktold """ from __future__ import print_function import numpy as np import numpy.testing as npt import statsmodels.nonparametric.api as nparam if __name__ == '__main__': np.random.seed(500) nobs = [250, 1000][0] sig_fac = 1 x = np.random.uniform(-2, 2, size=nobs) x.sort() y_true = np.sin(x*5)/x + 2*x y = y_true + sig_fac * (np.sqrt(np.abs(3+x))) * np.random.normal(size=nobs) model = nparam.KernelReg(endog=[y], exog=[x], reg_type='lc', var_type='c', bw='cv_ls', defaults=nparam.EstimatorSettings(efficient=True)) sm_bw = model.bw sm_mean, sm_mfx = model.fit() model1 = nparam.KernelReg(endog=[y], exog=[x], reg_type='lc', var_type='c', bw='cv_ls') mean1, mfx1 = model1.fit() model2 = nparam.KernelReg(endog=[y], exog=[x], reg_type='ll', var_type='c', bw='cv_ls') mean2, mfx2 = model2.fit() print(model.bw) print(model1.bw) print(model2.bw) import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.plot(x, y, 'o', alpha=0.5) ax.plot(x, y_true, lw=2, label='DGP mean') ax.plot(x, sm_mean, lw=2, label='kernel mean') ax.plot(x, mean2, lw=2, label='kernel mean') ax.legend() plt.show()
bsd-3-clause
petebachant/CFT-vectors
cft_vectors.py
1
18584
#!/usr/bin/env python """ This script generates a force and velocity vector diagram for a cross-flow turbine. """ from __future__ import division, print_function import numpy as np import matplotlib import matplotlib.pyplot as plt import pandas as pd from scipy.interpolate import interp1d import seaborn as sns from pxl.styleplot import set_sns import os # Define some colors (some from the Seaborn deep palette) blue = sns.color_palette()[0] green = sns.color_palette()[1] dark_gray = (0.3, 0.3, 0.3) red = sns.color_palette()[2] purple = sns.color_palette()[3] tan = sns.color_palette()[4] light_blue = sns.color_palette()[5] def load_foildata(): """Loads NACA 0020 airfoil data at Re = 2.1 x 10^5.""" Re = 2.1e5 foil = "0020" fname = "NACA {}_T1_Re{:.3f}_M0.00_N9.0.dat".format(foil, Re/1e6) fpath = "data/{}".format(fname) alpha, cl, cd = np.loadtxt(fpath, skiprows=14, unpack=True) if alpha[0] != 0.0: alpha = np.append([0.0], alpha[:-1]) cl = np.append([1e-12], cl[:-1]) cd = np.append(cd[0], cd[:-1]) # Mirror data about 0 degrees AoA since it's a symmetrical foil alpha = np.append(-np.flipud(alpha), alpha) cl = np.append(-np.flipud(cl), cl) cd = np.append(np.flipud(cd), cd) df = pd.DataFrame() df["alpha_deg"] = alpha df["cl"] = cl df["cd"] = cd return df def lookup_foildata(alpha_deg): """Lookup foil characteristics at given angle of attack.""" alpha_deg = np.asarray(alpha_deg) df = load_foildata() df["alpha_rad"] = np.deg2rad(df.alpha_deg) f_cl = interp1d(df.alpha_deg, df.cl, bounds_error=False) f_cd = interp1d(df.alpha_deg, df.cd, bounds_error=False) f_ct = interp1d(df.alpha_deg, df.cl*np.sin(df.alpha_rad) \ - df.cd*np.cos(df.alpha_rad), bounds_error=False) cl, cd, ct = f_cl(alpha_deg), f_cd(alpha_deg), f_ct(alpha_deg) return {"cl": cl, "cd": cd, "ct": ct} def calc_cft_ctorque(tsr=2.0, chord=0.14, R=0.5): """Calculate the geometric torque coefficient for a CFT.""" U_infty = 1.0 omega = tsr*U_infty/R theta_blade_deg = np.arange(0, 721) theta_blade_rad = np.deg2rad(theta_blade_deg) blade_vel_mag = omega*R blade_vel_x = blade_vel_mag*np.cos(theta_blade_rad) blade_vel_y = blade_vel_mag*np.sin(theta_blade_rad) u = U_infty # No induction rel_vel_mag = np.sqrt((blade_vel_x + u)**2 + blade_vel_y**2) rel_vel_x = u + blade_vel_x rel_vel_y = blade_vel_y relvel_dot_bladevel = (blade_vel_x*rel_vel_x + blade_vel_y*rel_vel_y) alpha_rad = np.arccos(relvel_dot_bladevel/(rel_vel_mag*blade_vel_mag)) alpha_rad[theta_blade_deg > 180] *= -1 alpha_deg = np.rad2deg(alpha_rad) foil_coeffs = lookup_foildata(alpha_deg) ctorque = foil_coeffs["ct"]*chord/(2*R)*rel_vel_mag**2/U_infty**2 cdx = -foil_coeffs["cd"]*np.sin(np.pi/2 - alpha_rad + theta_blade_rad) clx = foil_coeffs["cl"]*np.cos(np.pi/2 - alpha_rad - theta_blade_rad) df = pd.DataFrame() df["theta"] = theta_blade_deg df["alpha_deg"] = alpha_deg df["rel_vel_mag"] = rel_vel_mag df["ctorque"] = ctorque df["cdrag"] = clx + cdx return df def mag(v): """ Return magnitude of 2-D vector (input as a tuple, list, or NumPy array). """ return np.sqrt(v[0]**2 + v[1]**2) def rotate(v, rad): """Rotate a 2-D vector by rad radians.""" dc, ds = np.cos(rad), np.sin(rad) x, y = v[0], v[1] x, y = dc*x - ds*y, ds*x + dc*y return np.array((x, y)) def gen_naca_points(naca="0020", c=100, npoints=100, tuples=True): """Generate points for a NACA foil.""" x = np.linspace(0, 1, npoints)*c t = float(naca[2:])/100.0 y = 5.0*t*c*(0.2969*np.sqrt(x/c) - 0.1260*(x/c) - 0.3516*(x/c)**2 \ + 0.2843*(x/c)**3 - 0.1015*(x/c)**4) y = np.append(y, -y[::-1]) x = np.append(x, x[::-1]) if tuples: return np.array([(x0, y0) for x0, y0 in zip(x, y)]) else: return x, y def test_gen_naca_points(): points = gen_naca_points() x = [] y = [] for p in points: x.append(p[0]) y.append(p[1]) fig, ax = plt.subplots() ax.plot(x, y, "o") ax.set_aspect(1) plt.show() def plot_radius(ax, theta_deg=0): """Plot radius at given azimuthal angle.""" r = 0.495 theta_rad = np.deg2rad(theta_deg) x2, y2 = r*np.cos(theta_rad), r*np.sin(theta_rad) ax.plot((0, x2), (0, y2), "gray", linewidth=2) def plot_center(ax, length=0.07, linewidth=1.2): """Plot centermark at origin.""" ax.plot((0, 0), (-length/2, length/2), lw=linewidth, color="black") ax.plot((-length/2, length/2), (0, 0), lw=linewidth, color="black") def make_naca_path(c=0.3, theta_deg=0.0): verts = gen_naca_points(c=c) verts = np.array([rotate(v, -np.pi/2) for v in verts]) verts += (0.5, c/4) theta_rad = np.deg2rad(theta_deg) verts = np.array([rotate(v, theta_rad) for v in verts]) p = matplotlib.path.Path(verts, closed=True) return p def plot_foil(ax, c=0.3, theta_deg=0.0): """Plot the foil shape using a matplotlib patch.""" p = matplotlib.patches.PathPatch(make_naca_path(c, theta_deg), facecolor="gray", linewidth=1, edgecolor="gray") ax.add_patch(p) def plot_blade_path(ax, R=0.5): """Plot blade path as a dashed line.""" p = plt.Circle((0, 0), R, linestyle="dashed", edgecolor="black", facecolor="none", linewidth=1) ax.add_patch(p) def plot_vectors(fig, ax, theta_deg=0.0, tsr=2.0, c=0.3, label=False): """Plot blade velocity, free stream velocity, relative velocity, lift, and drag vectors. """ r = 0.5 u_infty = 0.26 theta_deg %= 360 theta_rad = np.deg2rad(theta_deg) blade_xy = r*np.cos(theta_rad), r*np.sin(theta_rad) head_width = 0.04 head_length = 0.11 linewidth = 1.5 # Function for plotting vector labels def plot_label(text, x, y, dx, dy, text_width=0.09, text_height=0.03, sign=-1, dist=1.0/3.0): text_width *= plt.rcParams["font.size"]/12*6/fig.get_size_inches()[1] text_height *= plt.rcParams["font.size"]/12*6/fig.get_size_inches()[1] dvec = np.array((dx, dy)) perp_vec = rotate(dvec, np.pi/2) perp_vec /= mag(perp_vec) if theta_deg > 270: diag = text_height else: diag = np.array((text_width, text_height)) # Projection of text diagonal vector onto normal vector proj = np.dot(diag, perp_vec) if sign != -1: proj = 0 # Text is on right side of vector if theta_deg > 180: sign *= -1 dxlab, dylab = perp_vec*(np.abs(proj) + .01)*sign xlab, ylab = x + dx*dist + dxlab, y + dy*dist + dylab ax.text(xlab, ylab, text) # Make blade velocity vector x1, y1 = rotate((0.5, tsr*u_infty), np.deg2rad(theta_deg)) dx, dy = np.array(blade_xy) - np.array((x1, y1)) blade_vel = np.array((dx, dy)) ax.arrow(x1, y1, dx, dy, head_width=head_width, head_length=head_length, length_includes_head=True, color=dark_gray, linewidth=linewidth) if label: plot_label(r"$-\omega r$", x1, y1, dx*0.25, dy*0.5) # Make chord line vector x1c, y1c = np.array((x1, y1)) - np.array((dx, dy))*0.5 x2c, y2c = np.array((x1, y1)) + np.array((dx, dy))*2 ax.plot([x1c, x2c], [y1c, y2c], marker=None, color="k", linestyle="-.", zorder=1) # Make free stream velocity vector y1 += u_infty ax.arrow(x1, y1, 0, -u_infty, head_width=head_width, head_length=head_length, length_includes_head=True, color=blue, linewidth=linewidth) u_infty = np.array((0, -u_infty)) if label: dy = -mag(u_infty) plot_label(r"$U_\mathrm{in}$", x1, y1, 0, dy, text_width=0.1) # Make relative velocity vector dx, dy = np.array(blade_xy) - np.array((x1, y1)) rel_vel = u_infty + blade_vel ax.plot((x1, x1 + dx), (y1, y1 + dy), lw=0) ax.arrow(x1, y1, dx, dy, head_width=head_width, head_length=head_length, length_includes_head=True, color=tan, linewidth=linewidth) if label: plot_label(r"$U_\mathrm{rel}$", x1, y1, dx, dy, sign=1, text_width=0.11) # Calculate angle between blade vel and rel vel alpha_deg = np.rad2deg(np.arccos(np.dot(blade_vel/mag(blade_vel), rel_vel/mag(rel_vel)))) if theta_deg > 180: alpha_deg *= -1 # Make drag vector drag_amplify = 3.0 data = lookup_foildata(alpha_deg) drag = data["cd"]*mag(rel_vel)**2*drag_amplify if drag < 0.4/drag_amplify: hs = 0.5 else: hs = 1 dx, dy = drag*np.array((dx, dy))/mag((dx, dy)) ax.arrow(blade_xy[0], blade_xy[1], dx, dy, head_width=head_width*hs, head_length=head_length*hs, length_includes_head=True, color=red, linewidth=linewidth) if label: plot_label(r"$F_d$", blade_xy[0], blade_xy[1], dx, dy, sign=-1, dist=0.66) # Make lift vector lift_amplify = 1.5 lift = data["cl"]*mag(rel_vel)**2*lift_amplify dx, dy = rotate((dx, dy), -np.pi/2)/mag((dx, dy))*lift if np.abs(lift) < 0.4/lift_amplify: hs = 0.5 else: hs = 1 ax.plot((blade_xy[0], blade_xy[0] + dx), (blade_xy[1], blade_xy[1] + dy), linewidth=0) ax.arrow(blade_xy[0], blade_xy[1], dx, dy, head_width=head_width*hs, head_length=head_length*hs, length_includes_head=True, color=green, linewidth=linewidth) if label: plot_label(r"$F_l$", blade_xy[0], blade_xy[1], dx, dy, sign=-1, text_width=0.12, text_height=0.02, dist=0.66) # Label radius if label: plot_label("$r$", 0, 0, blade_xy[0], blade_xy[1], text_width=0.04, text_height=0.04) # Label angle of attack if label: ast = "simple,head_width={},tail_width={},head_length={}".format( head_width*8, linewidth/16, head_length*8) xy = blade_xy - rel_vel/mag(rel_vel)*0.2 ax.annotate(r"$\alpha$", xy=xy, xycoords="data", xytext=(37.5, 22.5), textcoords="offset points", arrowprops=dict(arrowstyle=ast, ec="none", connectionstyle="arc3,rad=0.1", color="k")) xy = blade_xy - blade_vel/mag(blade_vel)*0.2 ax.annotate("", xy=xy, xycoords="data", xytext=(-15, -30), textcoords="offset points", arrowprops=dict(arrowstyle=ast, ec="none", connectionstyle="arc3,rad=-0.1", color="k")) # Label azimuthal angle if label: xy = np.array(blade_xy)*0.6 ast = "simple,head_width={},tail_width={},head_length={}".format( head_width*5.5, linewidth/22, head_length*5.5) ax.annotate(r"$\theta$", xy=xy, xycoords="data", xytext=(0.28, 0.12), textcoords="data", arrowprops=dict(arrowstyle=ast, ec="none", connectionstyle="arc3,rad=0.1", color="k")) ax.annotate("", xy=(0.41, 0), xycoords="data", xytext=(0.333, 0.12), textcoords="data", arrowprops=dict(arrowstyle=ast, ec="none", connectionstyle="arc3,rad=-0.1", color="k")) # Label pitching moment if label: xy = np.array(blade_xy)*1.1 - blade_vel/mag(blade_vel) * c/4 ast = "simple,head_width={},tail_width={},head_length={}".format( head_width*8, linewidth/16, head_length*8) ax.annotate(r"", xy=xy, xycoords="data", xytext=(25, -15), textcoords="offset points", arrowprops=dict(arrowstyle=ast, ec="none", connectionstyle="arc3,rad=0.6", color="k")) plot_label(r"$M$", xy[0], xy[1], 0.1, 0.1, sign=-1, dist=0.66) return {"u_infty": u_infty, "blade_vel": blade_vel, "rel_vel": rel_vel} def plot_alpha(ax=None, tsr=2.0, theta=None, alpha_ss=None, **kwargs): """Plot angle of attack versus azimuthal angle.""" if theta is not None: theta %= 360 if ax is None: fig, ax = plt.subplots() df = calc_cft_ctorque(tsr=tsr) ax.plot(df.theta, df.alpha_deg, **kwargs) ax.set_ylabel(r"$\alpha$ (degrees)") ax.set_xlabel(r"$\theta$ (degrees)") ax.set_xlim((0, 360)) ylim = np.round(df.alpha_deg.max() + 5) ax.set_ylim((-ylim, ylim)) if theta is not None: f = interp1d(df.theta, df.alpha_deg) ax.plot(theta, f(theta), "ok") if alpha_ss is not None: ax.hlines((alpha_ss, -alpha_ss), 0, 360, linestyles="dashed") def plot_rel_vel_mag(ax=None, tsr=2.0, theta=None, **kwargs): """Plot relative velocity magnitude versus azimuthal angle.""" if theta is not None: theta %= 360 if ax is None: fig, ax = plt.subplots() df = calc_cft_ctorque(tsr=tsr) ax.plot(df.theta, df.rel_vel_mag, **kwargs) ax.set_ylabel(r"$|\vec{U}_\mathrm{rel}|$") ax.set_xlabel(r"$\theta$ (degrees)") ax.set_xlim((0, 360)) if theta is not None: f = interp1d(df.theta, df.rel_vel_mag) ax.plot(theta, f(theta), "ok") def plot_alpha_relvel_all(tsrs=np.arange(1.5, 6.1, 1.0), save=False): """Plot angle of attack and relative velocity magnitude for a list of TSRs. Figure will have two subplots in a single row. """ fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(7.5, 3.0)) cm = plt.cm.get_cmap("Reds") for tsr in tsrs: color = cm(tsr/np.max(tsrs)) plot_alpha(ax=ax1, tsr=tsr, label=r"$\lambda = {}$".format(tsr), color=color) plot_rel_vel_mag(ax=ax2, tsr=tsr, color=color) [a.set_xticks(np.arange(0, 361, 60)) for a in (ax1, ax2)] ax1.legend(loc=(0.17, 1.1), ncol=len(tsrs)) ax1.set_ylim((-45, 45)) ax1.set_yticks(np.arange(-45, 46, 15)) ax2.set_ylabel(r"$|\vec{U}_\mathrm{rel}|/U_\infty$") fig.tight_layout() if save: fig.savefig("figures/alpha_deg_urel_geom.pdf", bbox_inches="tight") def plot_ctorque(ax=None, tsr=2.0, theta=None, **kwargs): """Plot torque coefficient versus azimuthal angle.""" theta %= 360 if ax is None: fig, ax = plt.subplots() df = calc_cft_ctorque(tsr=tsr) ax.plot(df.theta, df.ctorque, **kwargs) ax.set_ylabel("Torque coeff.") ax.set_xlabel(r"$\theta$ (degrees)") ax.set_xlim((0, 360)) if theta is not None: f = interp1d(df.theta, df.ctorque) ax.plot(theta, f(theta), "ok") def plot_diagram(fig=None, ax=None, theta_deg=0.0, tsr=2.0, label=False, save=False, axis="on", full_view=True): """Plot full vector diagram.""" if ax is None: fig, ax = plt.subplots(figsize=(6, 6)) plot_blade_path(ax) if label: # Create dashed line for x-axis ax.plot((-0.5, 0.5), (0, 0), linestyle="dashed", color="k", zorder=1) plot_foil(ax, c=0.3, theta_deg=theta_deg) plot_radius(ax, theta_deg) plot_center(ax) plot_vectors(fig, ax, theta_deg, tsr, label=label) # Figure formatting if full_view: ax.set_xlim((-1, 1)) ax.set_ylim((-1, 1)) ax.set_aspect(1) ax.set_xticks([]) ax.set_yticks([]) ax.axis(axis) if save: fig.savefig("figures/cft-vectors.pdf") def plot_all(theta_deg=0.0, tsr=2.0, scale=1.0, full_view=True): """Create diagram and plots of kinematics in a single figure.""" fig = plt.figure(figsize=(7.5*scale, 4.75*scale)) # Draw vector diagram ax1 = plt.subplot2grid((3, 3), (0, 0), colspan=2, rowspan=3) plot_diagram(fig, ax1, theta_deg, tsr, axis="on", full_view=full_view) # Plot angle of attack ax2 = plt.subplot2grid((3, 3), (0, 2)) plot_alpha(ax2, tsr=tsr, theta=theta_deg, alpha_ss=18, color=light_blue) # Plot relative velocity magnitude ax3 = plt.subplot2grid((3, 3), (1, 2)) plot_rel_vel_mag(ax3, tsr=tsr, theta=theta_deg, color=tan) # Plot torque coefficient ax4 = plt.subplot2grid((3, 3), (2, 2)) plot_ctorque(ax4, tsr=tsr, theta=theta_deg, color=purple) fig.tight_layout() return fig def make_frame(t): """Make a frame for a movie.""" sec_per_rev = 5.0 deg = t/sec_per_rev*360 return mplfig_to_npimage(plot_all(deg, scale=2.0)) def make_animation(filetype="mp4", fps=30): """Make animation video.""" if not os.path.isdir("videos"): os.mkdir("videos") animation = VideoClip(make_frame, duration=5.0) if "mp4" in filetype.lower(): animation.write_videofile("videos/cft-animation.mp4", fps=fps) elif "gif" in filetype.lower(): animation.write_gif("videos/cft-animation.gif", fps=fps) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description="Create cross-flow turbine \ vector diagrams.") parser.add_argument("create", choices=["figure", "diagram", "animation"], help="Either create a static figure or animation") parser.add_argument("--angle", type=float, default=60.0, help="Angle (degrees) to create figure") parser.add_argument("--show", action="store_true", default=False) parser.add_argument("--save", "-s", action="store_true", default=False, help="Save figure") args = parser.parse_args() if args.save: if not os.path.isdir("figures"): os.mkdir("figures") if args.create == "diagram": set_sns(font_scale=2) plot_diagram(theta_deg=args.angle, label=True, axis="off", save=args.save) elif args.create == "figure": set_sns() plot_alpha_relvel_all(save=args.save) elif args.create == "animation": set_sns(font_scale=2) from moviepy.editor import VideoClip from moviepy.video.io.bindings import mplfig_to_npimage make_animation() if args.show: plt.show()
mit
ilo10/scikit-learn
examples/applications/svm_gui.py
287
11161
""" ========== Libsvm GUI ========== A simple graphical frontend for Libsvm mainly intended for didactic purposes. You can create data points by point and click and visualize the decision region induced by different kernels and parameter settings. To create positive examples click the left mouse button; to create negative examples click the right button. If all examples are from the same class, it uses a one-class SVM. """ from __future__ import division, print_function print(__doc__) # Author: Peter Prettenhoer <peter.prettenhofer@gmail.com> # # License: BSD 3 clause import matplotlib matplotlib.use('TkAgg') from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from matplotlib.backends.backend_tkagg import NavigationToolbar2TkAgg from matplotlib.figure import Figure from matplotlib.contour import ContourSet import Tkinter as Tk import sys import numpy as np from sklearn import svm from sklearn.datasets import dump_svmlight_file from sklearn.externals.six.moves import xrange y_min, y_max = -50, 50 x_min, x_max = -50, 50 class Model(object): """The Model which hold the data. It implements the observable in the observer pattern and notifies the registered observers on change event. """ def __init__(self): self.observers = [] self.surface = None self.data = [] self.cls = None self.surface_type = 0 def changed(self, event): """Notify the observers. """ for observer in self.observers: observer.update(event, self) def add_observer(self, observer): """Register an observer. """ self.observers.append(observer) def set_surface(self, surface): self.surface = surface def dump_svmlight_file(self, file): data = np.array(self.data) X = data[:, 0:2] y = data[:, 2] dump_svmlight_file(X, y, file) class Controller(object): def __init__(self, model): self.model = model self.kernel = Tk.IntVar() self.surface_type = Tk.IntVar() # Whether or not a model has been fitted self.fitted = False def fit(self): print("fit the model") train = np.array(self.model.data) X = train[:, 0:2] y = train[:, 2] C = float(self.complexity.get()) gamma = float(self.gamma.get()) coef0 = float(self.coef0.get()) degree = int(self.degree.get()) kernel_map = {0: "linear", 1: "rbf", 2: "poly"} if len(np.unique(y)) == 1: clf = svm.OneClassSVM(kernel=kernel_map[self.kernel.get()], gamma=gamma, coef0=coef0, degree=degree) clf.fit(X) else: clf = svm.SVC(kernel=kernel_map[self.kernel.get()], C=C, gamma=gamma, coef0=coef0, degree=degree) clf.fit(X, y) if hasattr(clf, 'score'): print("Accuracy:", clf.score(X, y) * 100) X1, X2, Z = self.decision_surface(clf) self.model.clf = clf self.model.set_surface((X1, X2, Z)) self.model.surface_type = self.surface_type.get() self.fitted = True self.model.changed("surface") def decision_surface(self, cls): delta = 1 x = np.arange(x_min, x_max + delta, delta) y = np.arange(y_min, y_max + delta, delta) X1, X2 = np.meshgrid(x, y) Z = cls.decision_function(np.c_[X1.ravel(), X2.ravel()]) Z = Z.reshape(X1.shape) return X1, X2, Z def clear_data(self): self.model.data = [] self.fitted = False self.model.changed("clear") def add_example(self, x, y, label): self.model.data.append((x, y, label)) self.model.changed("example_added") # update decision surface if already fitted. self.refit() def refit(self): """Refit the model if already fitted. """ if self.fitted: self.fit() class View(object): """Test docstring. """ def __init__(self, root, controller): f = Figure() ax = f.add_subplot(111) ax.set_xticks([]) ax.set_yticks([]) ax.set_xlim((x_min, x_max)) ax.set_ylim((y_min, y_max)) canvas = FigureCanvasTkAgg(f, master=root) canvas.show() canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) canvas._tkcanvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) canvas.mpl_connect('button_press_event', self.onclick) toolbar = NavigationToolbar2TkAgg(canvas, root) toolbar.update() self.controllbar = ControllBar(root, controller) self.f = f self.ax = ax self.canvas = canvas self.controller = controller self.contours = [] self.c_labels = None self.plot_kernels() def plot_kernels(self): self.ax.text(-50, -60, "Linear: $u^T v$") self.ax.text(-20, -60, "RBF: $\exp (-\gamma \| u-v \|^2)$") self.ax.text(10, -60, "Poly: $(\gamma \, u^T v + r)^d$") def onclick(self, event): if event.xdata and event.ydata: if event.button == 1: self.controller.add_example(event.xdata, event.ydata, 1) elif event.button == 3: self.controller.add_example(event.xdata, event.ydata, -1) def update_example(self, model, idx): x, y, l = model.data[idx] if l == 1: color = 'w' elif l == -1: color = 'k' self.ax.plot([x], [y], "%so" % color, scalex=0.0, scaley=0.0) def update(self, event, model): if event == "examples_loaded": for i in xrange(len(model.data)): self.update_example(model, i) if event == "example_added": self.update_example(model, -1) if event == "clear": self.ax.clear() self.ax.set_xticks([]) self.ax.set_yticks([]) self.contours = [] self.c_labels = None self.plot_kernels() if event == "surface": self.remove_surface() self.plot_support_vectors(model.clf.support_vectors_) self.plot_decision_surface(model.surface, model.surface_type) self.canvas.draw() def remove_surface(self): """Remove old decision surface.""" if len(self.contours) > 0: for contour in self.contours: if isinstance(contour, ContourSet): for lineset in contour.collections: lineset.remove() else: contour.remove() self.contours = [] def plot_support_vectors(self, support_vectors): """Plot the support vectors by placing circles over the corresponding data points and adds the circle collection to the contours list.""" cs = self.ax.scatter(support_vectors[:, 0], support_vectors[:, 1], s=80, edgecolors="k", facecolors="none") self.contours.append(cs) def plot_decision_surface(self, surface, type): X1, X2, Z = surface if type == 0: levels = [-1.0, 0.0, 1.0] linestyles = ['dashed', 'solid', 'dashed'] colors = 'k' self.contours.append(self.ax.contour(X1, X2, Z, levels, colors=colors, linestyles=linestyles)) elif type == 1: self.contours.append(self.ax.contourf(X1, X2, Z, 10, cmap=matplotlib.cm.bone, origin='lower', alpha=0.85)) self.contours.append(self.ax.contour(X1, X2, Z, [0.0], colors='k', linestyles=['solid'])) else: raise ValueError("surface type unknown") class ControllBar(object): def __init__(self, root, controller): fm = Tk.Frame(root) kernel_group = Tk.Frame(fm) Tk.Radiobutton(kernel_group, text="Linear", variable=controller.kernel, value=0, command=controller.refit).pack(anchor=Tk.W) Tk.Radiobutton(kernel_group, text="RBF", variable=controller.kernel, value=1, command=controller.refit).pack(anchor=Tk.W) Tk.Radiobutton(kernel_group, text="Poly", variable=controller.kernel, value=2, command=controller.refit).pack(anchor=Tk.W) kernel_group.pack(side=Tk.LEFT) valbox = Tk.Frame(fm) controller.complexity = Tk.StringVar() controller.complexity.set("1.0") c = Tk.Frame(valbox) Tk.Label(c, text="C:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(c, width=6, textvariable=controller.complexity).pack( side=Tk.LEFT) c.pack() controller.gamma = Tk.StringVar() controller.gamma.set("0.01") g = Tk.Frame(valbox) Tk.Label(g, text="gamma:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(g, width=6, textvariable=controller.gamma).pack(side=Tk.LEFT) g.pack() controller.degree = Tk.StringVar() controller.degree.set("3") d = Tk.Frame(valbox) Tk.Label(d, text="degree:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(d, width=6, textvariable=controller.degree).pack(side=Tk.LEFT) d.pack() controller.coef0 = Tk.StringVar() controller.coef0.set("0") r = Tk.Frame(valbox) Tk.Label(r, text="coef0:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(r, width=6, textvariable=controller.coef0).pack(side=Tk.LEFT) r.pack() valbox.pack(side=Tk.LEFT) cmap_group = Tk.Frame(fm) Tk.Radiobutton(cmap_group, text="Hyperplanes", variable=controller.surface_type, value=0, command=controller.refit).pack(anchor=Tk.W) Tk.Radiobutton(cmap_group, text="Surface", variable=controller.surface_type, value=1, command=controller.refit).pack(anchor=Tk.W) cmap_group.pack(side=Tk.LEFT) train_button = Tk.Button(fm, text='Fit', width=5, command=controller.fit) train_button.pack() fm.pack(side=Tk.LEFT) Tk.Button(fm, text='Clear', width=5, command=controller.clear_data).pack(side=Tk.LEFT) def get_parser(): from optparse import OptionParser op = OptionParser() op.add_option("--output", action="store", type="str", dest="output", help="Path where to dump data.") return op def main(argv): op = get_parser() opts, args = op.parse_args(argv[1:]) root = Tk.Tk() model = Model() controller = Controller(model) root.wm_title("Scikit-learn Libsvm GUI") view = View(root, controller) model.add_observer(view) Tk.mainloop() if opts.output: model.dump_svmlight_file(opts.output) if __name__ == "__main__": main(sys.argv)
bsd-3-clause
Geosyntec/wqio
docs/conf.py
2
10120
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # wqio documentation build configuration file, created by # sphinx-quickstart on Sun May 22 14:36:00 2016. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os import shlex import sphinx import matplotlib as mpl mpl.use("agg") import seaborn clean_bkgd = {"axes.facecolor": "none", "figure.facecolor": "none"} seaborn.set(style="ticks", rc=clean_bkgd) numpydoc_show_class_members = False autodoc_member_order = "bysource" # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. sys.path.insert(0, os.path.abspath("sphinxext")) extensions = [ "sphinx.ext.autodoc", "sphinx.ext.doctest", "sphinx.ext.intersphinx", "sphinx.ext.todo", "sphinx.ext.mathjax", "sphinx.ext.viewcode", #'plot_generator', #'plot_directive', "numpydoc", "ipython_directive", "ipython_console_highlighting", "sphinx_gallery.gen_gallery", ] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md'] source_suffix = ".rst" # The encoding of source files. # source_encoding = 'utf-8-sig' # Include the example source for plots in API docs plot_include_source = True plot_formats = [("png", 90)] plot_html_show_formats = False plot_html_show_source_link = False # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = "index" # General information about the project. project = "wqio" copyright = "2016, Paul Hobson (Geosyntec Consultants)" author = "Paul Hobson (Geosyntec Consultants)" # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = "0.5.1" # The full version, including alpha/beta/rc tags. release = "0.5.1" # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"] # The reST default role (used for this markup: `text`) to use for all # documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = "sphinx" # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. # keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = "sphinx_rtd_theme" # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. # "<project> v<release> documentation" by default. html_title = 'wqio v0.5.1' # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = None # The name of an image file (relative to this directory) to use as a favicon of # the docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. # html_extra_path = [] # If not None, a 'Last updated on:' timestamp is inserted at every page # bottom, using the given strftime format. # The empty string is equivalent to '%b %d, %Y'. # html_last_updated_fmt = None # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'h', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'r', 'sv', 'tr', 'zh' # html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # 'ja' uses this config value. # 'zh' user can custom change `jieba` dictionary path. # html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. # html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = "wqiodoc" # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', # Latex figure (float) alignment #'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ( master_doc, "wqio.tex", "wqio Documentation", "Paul Hobson (Geosyntec Consultants)", "manual", ) ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [(master_doc, "wqio", "wqio Documentation", [author], 1)] # If true, show URL addresses after external links. # man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ( master_doc, "wqio", "wqio Documentation", author, "wqio", "One line description of project.", "Miscellaneous", ) ] # Documents to append as an appendix to all manuals. # texinfo_appendices = [] # If false, no module index is generated. # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. # texinfo_no_detailmenu = False # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {"https://docs.python.org/": None}
bsd-3-clause
armanpazouki/chrono
src/demos/python/demo_crank_plot.py
1
5655
#------------------------------------------------------------------------------ # Name: pychrono example # Purpose: # # Author: Alessandro Tasora # # Created: 1/01/2019 # Copyright: (c) ProjectChrono 2019 #------------------------------------------------------------------------------ import pychrono.core as chrono import pychrono.irrlicht as chronoirr import matplotlib.pyplot as plt import numpy as np print ("Example: create a slider crank and plot results"); # Change this path to asset path, if running from other working dir. # It must point to the data folder, containing GUI assets (textures, fonts, meshes, etc.) chrono.SetChronoDataPath("../../../data/") # --------------------------------------------------------------------- # # Create the simulation system and add items # mysystem = chrono.ChSystemNSC() # Some data shared in the following crank_center = chrono.ChVectorD(-1,0.5,0) crank_rad = 0.4 crank_thick = 0.1 rod_length = 1.5 # Create four rigid bodies: the truss, the crank, the rod, the piston. # Create the floor truss mfloor = chrono.ChBodyEasyBox(3, 1, 3, 1000) mfloor.SetPos(chrono.ChVectorD(0,-0.5,0)) mfloor.SetBodyFixed(True) mysystem.Add(mfloor) # Create the flywheel crank mcrank = chrono.ChBodyEasyCylinder(crank_rad, crank_thick, 1000) mcrank.SetPos(crank_center + chrono.ChVectorD(0, 0, -0.1)) # Since ChBodyEasyCylinder creates a vertical (y up) cylinder, here rotate it: mcrank.SetRot(chrono.Q_ROTATE_Y_TO_Z) mysystem.Add(mcrank) # Create a stylized rod mrod = chrono.ChBodyEasyBox(rod_length, 0.1, 0.1, 1000) mrod.SetPos(crank_center + chrono.ChVectorD(crank_rad+rod_length/2 , 0, 0)) mysystem.Add(mrod) # Create a stylized piston mpiston = chrono.ChBodyEasyCylinder(0.2, 0.3, 1000) mpiston.SetPos(crank_center + chrono.ChVectorD(crank_rad+rod_length, 0, 0)) mpiston.SetRot(chrono.Q_ROTATE_Y_TO_X) mysystem.Add(mpiston) # Now create constraints and motors between the bodies. # Create crank-truss joint: a motor that spins the crank flywheel my_motor = chrono.ChLinkMotorRotationSpeed() my_motor.Initialize(mcrank, # the first connected body mfloor, # the second connected body chrono.ChFrameD(crank_center)) # where to create the motor in abs.space my_angularspeed = chrono.ChFunction_Const(chrono.CH_C_PI) # ang.speed: 180°/s my_motor.SetMotorFunction(my_angularspeed) mysystem.Add(my_motor) # Create crank-rod joint mjointA = chrono.ChLinkLockRevolute() mjointA.Initialize(mrod, mcrank, chrono.ChCoordsysD( crank_center + chrono.ChVectorD(crank_rad,0,0) )) mysystem.Add(mjointA) # Create rod-piston joint mjointB = chrono.ChLinkLockRevolute() mjointB.Initialize(mpiston, mrod, chrono.ChCoordsysD( crank_center + chrono.ChVectorD(crank_rad+rod_length,0,0) )) mysystem.Add(mjointB) # Create piston-truss joint mjointC = chrono.ChLinkLockPrismatic() mjointC.Initialize(mpiston, mfloor, chrono.ChCoordsysD( crank_center + chrono.ChVectorD(crank_rad+rod_length,0,0), chrono.Q_ROTATE_Z_TO_X) ) mysystem.Add(mjointC) # --------------------------------------------------------------------- # # Create an Irrlicht application to visualize the system # myapplication = chronoirr.ChIrrApp(mysystem, 'PyChrono example', chronoirr.dimension2du(1024,768)) myapplication.AddTypicalSky() myapplication.AddTypicalLogo(chrono.GetChronoDataPath() + 'logo_pychrono_alpha.png') myapplication.AddTypicalCamera(chronoirr.vector3df(1,1,3), chronoirr.vector3df(0,1,0)) myapplication.AddTypicalLights() # ==IMPORTANT!== Use this function for adding a ChIrrNodeAsset to all items # in the system. These ChIrrNodeAsset assets are 'proxies' to the Irrlicht meshes. # If you need a finer control on which item really needs a visualization proxy in # Irrlicht, just use application.AssetBind(myitem); on a per-item basis. myapplication.AssetBindAll(); # ==IMPORTANT!== Use this function for 'converting' into Irrlicht meshes the assets # that you added to the bodies into 3D shapes, they can be visualized by Irrlicht! myapplication.AssetUpdateAll(); # --------------------------------------------------------------------- # # Run the simulation # # Initialize these lists to store values to plot. array_time = [] array_angle = [] array_pos = [] array_speed = [] myapplication.SetTimestep(0.005) # Run the interactive simulation loop while(myapplication.GetDevice().run()): # for plotting, append instantaneous values: array_time.append(mysystem.GetChTime()) array_angle.append(my_motor.GetMotorRot()) array_pos.append(mpiston.GetPos().x) array_speed.append(mpiston.GetPos_dt().x) # here happens the visualization and step time integration myapplication.BeginScene() myapplication.DrawAll() myapplication.DoStep() myapplication.EndScene() # stop simulation after 2 seconds if mysystem.GetChTime() > 2: myapplication.GetDevice().closeDevice() # Use matplotlib to make two plots when simulation ended: fig, (ax1, ax2) = plt.subplots(2, sharex = True) ax1.plot(array_angle, array_pos) ax1.set(ylabel='position [m]') ax1.grid() ax2.plot(array_angle, array_speed, 'r--') ax2.set(ylabel='speed [m]',xlabel='angle [rad]') ax2.grid() # trick to plot \pi on x axis of plots instead of 1 2 3 4 etc. plt.xticks(np.linspace(0, 2*np.pi, 5),['0','$\pi/2$','$\pi$','$3\pi/2$','$2\pi$'])
bsd-3-clause
aflaxman/scikit-learn
sklearn/feature_extraction/image.py
21
18105
""" The :mod:`sklearn.feature_extraction.image` submodule gathers utilities to extract features from images. """ # Authors: Emmanuelle Gouillart <emmanuelle.gouillart@normalesup.org> # Gael Varoquaux <gael.varoquaux@normalesup.org> # Olivier Grisel # Vlad Niculae # License: BSD 3 clause from itertools import product import numbers import numpy as np from scipy import sparse from numpy.lib.stride_tricks import as_strided from ..utils import check_array, check_random_state from ..base import BaseEstimator __all__ = ['PatchExtractor', 'extract_patches_2d', 'grid_to_graph', 'img_to_graph', 'reconstruct_from_patches_2d'] ############################################################################### # From an image to a graph def _make_edges_3d(n_x, n_y, n_z=1): """Returns a list of edges for a 3D image. Parameters =========== n_x : integer The size of the grid in the x direction. n_y : integer The size of the grid in the y direction. n_z : integer, optional The size of the grid in the z direction, defaults to 1 """ vertices = np.arange(n_x * n_y * n_z).reshape((n_x, n_y, n_z)) edges_deep = np.vstack((vertices[:, :, :-1].ravel(), vertices[:, :, 1:].ravel())) edges_right = np.vstack((vertices[:, :-1].ravel(), vertices[:, 1:].ravel())) edges_down = np.vstack((vertices[:-1].ravel(), vertices[1:].ravel())) edges = np.hstack((edges_deep, edges_right, edges_down)) return edges def _compute_gradient_3d(edges, img): n_x, n_y, n_z = img.shape gradient = np.abs(img[edges[0] // (n_y * n_z), (edges[0] % (n_y * n_z)) // n_z, (edges[0] % (n_y * n_z)) % n_z] - img[edges[1] // (n_y * n_z), (edges[1] % (n_y * n_z)) // n_z, (edges[1] % (n_y * n_z)) % n_z]) return gradient # XXX: Why mask the image after computing the weights? def _mask_edges_weights(mask, edges, weights=None): """Apply a mask to edges (weighted or not)""" inds = np.arange(mask.size) inds = inds[mask.ravel()] ind_mask = np.logical_and(np.in1d(edges[0], inds), np.in1d(edges[1], inds)) edges = edges[:, ind_mask] if weights is not None: weights = weights[ind_mask] if len(edges.ravel()): maxval = edges.max() else: maxval = 0 order = np.searchsorted(np.unique(edges.ravel()), np.arange(maxval + 1)) edges = order[edges] if weights is None: return edges else: return edges, weights def _to_graph(n_x, n_y, n_z, mask=None, img=None, return_as=sparse.coo_matrix, dtype=None): """Auxiliary function for img_to_graph and grid_to_graph """ edges = _make_edges_3d(n_x, n_y, n_z) if dtype is None: if img is None: dtype = np.int else: dtype = img.dtype if img is not None: img = np.atleast_3d(img) weights = _compute_gradient_3d(edges, img) if mask is not None: edges, weights = _mask_edges_weights(mask, edges, weights) diag = img.squeeze()[mask] else: diag = img.ravel() n_voxels = diag.size else: if mask is not None: mask = mask.astype(dtype=np.bool, copy=False) mask = np.asarray(mask, dtype=np.bool) edges = _mask_edges_weights(mask, edges) n_voxels = np.sum(mask) else: n_voxels = n_x * n_y * n_z weights = np.ones(edges.shape[1], dtype=dtype) diag = np.ones(n_voxels, dtype=dtype) diag_idx = np.arange(n_voxels) i_idx = np.hstack((edges[0], edges[1])) j_idx = np.hstack((edges[1], edges[0])) graph = sparse.coo_matrix((np.hstack((weights, weights, diag)), (np.hstack((i_idx, diag_idx)), np.hstack((j_idx, diag_idx)))), (n_voxels, n_voxels), dtype=dtype) if return_as is np.ndarray: return graph.toarray() return return_as(graph) def img_to_graph(img, mask=None, return_as=sparse.coo_matrix, dtype=None): """Graph of the pixel-to-pixel gradient connections Edges are weighted with the gradient values. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- img : ndarray, 2D or 3D 2D or 3D image mask : ndarray of booleans, optional An optional mask of the image, to consider only part of the pixels. return_as : np.ndarray or a sparse matrix class, optional The class to use to build the returned adjacency matrix. dtype : None or dtype, optional The data of the returned sparse matrix. By default it is the dtype of img Notes ----- For scikit-learn versions 0.14.1 and prior, return_as=np.ndarray was handled by returning a dense np.matrix instance. Going forward, np.ndarray returns an np.ndarray, as expected. For compatibility, user code relying on this method should wrap its calls in ``np.asarray`` to avoid type issues. """ img = np.atleast_3d(img) n_x, n_y, n_z = img.shape return _to_graph(n_x, n_y, n_z, mask, img, return_as, dtype) def grid_to_graph(n_x, n_y, n_z=1, mask=None, return_as=sparse.coo_matrix, dtype=np.int): """Graph of the pixel-to-pixel connections Edges exist if 2 voxels are connected. Parameters ---------- n_x : int Dimension in x axis n_y : int Dimension in y axis n_z : int, optional, default 1 Dimension in z axis mask : ndarray of booleans, optional An optional mask of the image, to consider only part of the pixels. return_as : np.ndarray or a sparse matrix class, optional The class to use to build the returned adjacency matrix. dtype : dtype, optional, default int The data of the returned sparse matrix. By default it is int Notes ----- For scikit-learn versions 0.14.1 and prior, return_as=np.ndarray was handled by returning a dense np.matrix instance. Going forward, np.ndarray returns an np.ndarray, as expected. For compatibility, user code relying on this method should wrap its calls in ``np.asarray`` to avoid type issues. """ return _to_graph(n_x, n_y, n_z, mask=mask, return_as=return_as, dtype=dtype) ############################################################################### # From an image to a set of small image patches def _compute_n_patches(i_h, i_w, p_h, p_w, max_patches=None): """Compute the number of patches that will be extracted in an image. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- i_h : int The image height i_w : int The image with p_h : int The height of a patch p_w : int The width of a patch max_patches : integer or float, optional default is None The maximum number of patches to extract. If max_patches is a float between 0 and 1, it is taken to be a proportion of the total number of patches. """ n_h = i_h - p_h + 1 n_w = i_w - p_w + 1 all_patches = n_h * n_w if max_patches: if (isinstance(max_patches, (numbers.Integral)) and max_patches < all_patches): return max_patches elif (isinstance(max_patches, (numbers.Real)) and 0 < max_patches < 1): return int(max_patches * all_patches) else: raise ValueError("Invalid value for max_patches: %r" % max_patches) else: return all_patches def extract_patches(arr, patch_shape=8, extraction_step=1): """Extracts patches of any n-dimensional array in place using strides. Given an n-dimensional array it will return a 2n-dimensional array with the first n dimensions indexing patch position and the last n indexing the patch content. This operation is immediate (O(1)). A reshape performed on the first n dimensions will cause numpy to copy data, leading to a list of extracted patches. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- arr : ndarray n-dimensional array of which patches are to be extracted patch_shape : integer or tuple of length arr.ndim Indicates the shape of the patches to be extracted. If an integer is given, the shape will be a hypercube of sidelength given by its value. extraction_step : integer or tuple of length arr.ndim Indicates step size at which extraction shall be performed. If integer is given, then the step is uniform in all dimensions. Returns ------- patches : strided ndarray 2n-dimensional array indexing patches on first n dimensions and containing patches on the last n dimensions. These dimensions are fake, but this way no data is copied. A simple reshape invokes a copying operation to obtain a list of patches: result.reshape([-1] + list(patch_shape)) """ arr_ndim = arr.ndim if isinstance(patch_shape, numbers.Number): patch_shape = tuple([patch_shape] * arr_ndim) if isinstance(extraction_step, numbers.Number): extraction_step = tuple([extraction_step] * arr_ndim) patch_strides = arr.strides slices = [slice(None, None, st) for st in extraction_step] indexing_strides = arr[slices].strides patch_indices_shape = ((np.array(arr.shape) - np.array(patch_shape)) // np.array(extraction_step)) + 1 shape = tuple(list(patch_indices_shape) + list(patch_shape)) strides = tuple(list(indexing_strides) + list(patch_strides)) patches = as_strided(arr, shape=shape, strides=strides) return patches def extract_patches_2d(image, patch_size, max_patches=None, random_state=None): """Reshape a 2D image into a collection of patches The resulting patches are allocated in a dedicated array. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- image : array, shape = (image_height, image_width) or (image_height, image_width, n_channels) The original image data. For color images, the last dimension specifies the channel: a RGB image would have `n_channels=3`. patch_size : tuple of ints (patch_height, patch_width) the dimensions of one patch max_patches : integer or float, optional default is None The maximum number of patches to extract. If max_patches is a float between 0 and 1, it is taken to be a proportion of the total number of patches. random_state : int, RandomState instance or None, optional (default=None) Pseudo number generator state used for random sampling to use if `max_patches` is not None. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- patches : array, shape = (n_patches, patch_height, patch_width) or (n_patches, patch_height, patch_width, n_channels) The collection of patches extracted from the image, where `n_patches` is either `max_patches` or the total number of patches that can be extracted. Examples -------- >>> from sklearn.feature_extraction import image >>> one_image = np.arange(16).reshape((4, 4)) >>> one_image array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) >>> patches = image.extract_patches_2d(one_image, (2, 2)) >>> print(patches.shape) (9, 2, 2) >>> patches[0] array([[0, 1], [4, 5]]) >>> patches[1] array([[1, 2], [5, 6]]) >>> patches[8] array([[10, 11], [14, 15]]) """ i_h, i_w = image.shape[:2] p_h, p_w = patch_size if p_h > i_h: raise ValueError("Height of the patch should be less than the height" " of the image.") if p_w > i_w: raise ValueError("Width of the patch should be less than the width" " of the image.") image = check_array(image, allow_nd=True) image = image.reshape((i_h, i_w, -1)) n_colors = image.shape[-1] extracted_patches = extract_patches(image, patch_shape=(p_h, p_w, n_colors), extraction_step=1) n_patches = _compute_n_patches(i_h, i_w, p_h, p_w, max_patches) if max_patches: rng = check_random_state(random_state) i_s = rng.randint(i_h - p_h + 1, size=n_patches) j_s = rng.randint(i_w - p_w + 1, size=n_patches) patches = extracted_patches[i_s, j_s, 0] else: patches = extracted_patches patches = patches.reshape(-1, p_h, p_w, n_colors) # remove the color dimension if useless if patches.shape[-1] == 1: return patches.reshape((n_patches, p_h, p_w)) else: return patches def reconstruct_from_patches_2d(patches, image_size): """Reconstruct the image from all of its patches. Patches are assumed to overlap and the image is constructed by filling in the patches from left to right, top to bottom, averaging the overlapping regions. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- patches : array, shape = (n_patches, patch_height, patch_width) or (n_patches, patch_height, patch_width, n_channels) The complete set of patches. If the patches contain colour information, channels are indexed along the last dimension: RGB patches would have `n_channels=3`. image_size : tuple of ints (image_height, image_width) or (image_height, image_width, n_channels) the size of the image that will be reconstructed Returns ------- image : array, shape = image_size the reconstructed image """ i_h, i_w = image_size[:2] p_h, p_w = patches.shape[1:3] img = np.zeros(image_size) # compute the dimensions of the patches array n_h = i_h - p_h + 1 n_w = i_w - p_w + 1 for p, (i, j) in zip(patches, product(range(n_h), range(n_w))): img[i:i + p_h, j:j + p_w] += p for i in range(i_h): for j in range(i_w): # divide by the amount of overlap # XXX: is this the most efficient way? memory-wise yes, cpu wise? img[i, j] /= float(min(i + 1, p_h, i_h - i) * min(j + 1, p_w, i_w - j)) return img class PatchExtractor(BaseEstimator): """Extracts patches from a collection of images Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- patch_size : tuple of ints (patch_height, patch_width) the dimensions of one patch max_patches : integer or float, optional default is None The maximum number of patches per image to extract. If max_patches is a float in (0, 1), it is taken to mean a proportion of the total number of patches. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. """ def __init__(self, patch_size=None, max_patches=None, random_state=None): self.patch_size = patch_size self.max_patches = max_patches self.random_state = random_state def fit(self, X, y=None): """Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. """ return self def transform(self, X): """Transforms the image samples in X into a matrix of patch data. Parameters ---------- X : array, shape = (n_samples, image_height, image_width) or (n_samples, image_height, image_width, n_channels) Array of images from which to extract patches. For color images, the last dimension specifies the channel: a RGB image would have `n_channels=3`. Returns ------- patches : array, shape = (n_patches, patch_height, patch_width) or (n_patches, patch_height, patch_width, n_channels) The collection of patches extracted from the images, where `n_patches` is either `n_samples * max_patches` or the total number of patches that can be extracted. """ self.random_state = check_random_state(self.random_state) n_images, i_h, i_w = X.shape[:3] X = np.reshape(X, (n_images, i_h, i_w, -1)) n_channels = X.shape[-1] if self.patch_size is None: patch_size = i_h // 10, i_w // 10 else: patch_size = self.patch_size # compute the dimensions of the patches array p_h, p_w = patch_size n_patches = _compute_n_patches(i_h, i_w, p_h, p_w, self.max_patches) patches_shape = (n_images * n_patches,) + patch_size if n_channels > 1: patches_shape += (n_channels,) # extract the patches patches = np.empty(patches_shape) for ii, image in enumerate(X): patches[ii * n_patches:(ii + 1) * n_patches] = extract_patches_2d( image, patch_size, self.max_patches, self.random_state) return patches
bsd-3-clause
sevenian3/ChromaStarPy
LevelPopsGasServer.py
1
55996
# -*- coding: utf-8 -*- """ Created on Mon Apr 24 14:13:47 2017 @author: ishort """ import math import Useful import ToolBox #import numpy #JB# #from matplotlib.pyplot import plot, title, show, scatter #storage for fits (not all may be used) uw = [] uwa = [] uwb = [] uwStage = [] uwbStage = [] uwu = [] uwl = [] uua=[] uub=[] """ #a function to create a cubic function fit extrapolation def cubicFit(x,y): coeffs = numpy.polyfit(x,y,3) #returns an array of coefficents for the cubic fit of the form #Ax^3 + Bx^2 + Cx + D as [A,B,C,D] return coeffs #this will work for any number of data points! def valueFromFit(fit,x): #return the value y for a given fit, at point x return (fit[0]*(x**3)+fit[1]*(x**2)+fit[2]*x+fit[3]) #holds the five temperature at which we have partition function data """ masterTemp = [130, 500, 3000, 8000, 10000] #JB# #def levelPops(lam0In, logNStage, chiL, log10UwStage, gwL, numDeps, temp): def levelPops(lam0In, logNStage, chiL, logUw, gwL, numDeps, temp): """ Returns depth distribution of occupation numbers in lower level of b-b transition, // Input parameters: // lam0 - line centre wavelength in nm // logNStage - log_e density of absorbers in relevent ion stage (cm^-3) // logFlu - log_10 oscillator strength (unitless) // chiL - energy of lower atomic E-level of b-b transition in eV // Also needs atsmopheric structure information: // numDeps // temp structure """ c = Useful.c() logC = Useful.logC() k = Useful.k() logK = Useful.logK() logH = Useful.logH() logEe = Useful.logEe() logMe = Useful.logMe() ln10 = math.log(10.0) logE = math.log10(math.e); #// for debug output log2pi = math.log(2.0 * math.pi) log2 = math.log(2.0) #//double logNl = logNlIn * ln10; // Convert to base e #// Parition functions passed in are 2-element vectore with remperature-dependent base 10 log Us #// Convert to natural logs: #double thisLogUw, Ttheta; thisLogUw = 0.0 # //default initialization #logUw = [ 0.0 for i in range(5) ] logE10 = math.log(10.0) #print("log10UwStage ", log10UwStage) #for kk in range(len(logUw)): # logUw[kk] = logE10*log10UwStage[kk] #// lburns new loop logGwL = math.log(gwL) #//System.out.println("chiL before: " + chiL); #// If we need to subtract chiI from chiL, do so *before* converting to tiny numbers in ergs! #////For testing with Ca II lines using gS3 internal line list only: #//boolean ionized = true; #//if (ionized) { #// //System.out.println("ionized, doing chiL - chiI: " + ionized); #// // chiL = chiL - chiI; #// chiL = chiL - 6.113; #// } #// // #//Log of line-center wavelength in cm logLam0 = math.log(lam0In) #// * 1.0e-7); #// energy of b-b transition logTransE = logH + logC - logLam0 #//ergs if (chiL <= 0.0): chiL = 1.0e-49 logChiL = math.log(chiL) + Useful.logEv() #// Convert lower E-level from eV to ergs logBoltzFacL = logChiL - Useful.logK() #// Pre-factor for exponent of excitation Boltzmann factor boltzFacL = math.exp(logBoltzFacL) boltzFacGround = 0.0 / k #//I know - its zero, but let's do it this way anyway' #// return a 1D numDeps array of logarithmic number densities #// level population of lower level of bb transition (could be in either stage I or II!) logNums = [ 0.0 for i in range(numDeps)] #double num, logNum, expFac; #JB# #print("thisLogUw:",numpy.shape(logUw)) logUwFit = ToolBox.cubicFit(masterTemp,logUw)#u(T) fit uw.append(logUwFit) #JB# for id in range(numDeps): #//Determine temperature dependenet partition functions Uw: #Ttheta = 5040.0 / temp[0][id] #//NEW Determine temperature dependent partition functions Uw: lburns thisTemp = temp[0][id] """ if (Ttheta >= 1.0): thisLogUw = logUw[0] if (Ttheta <= 0.5): thisLogUw = logUw[1] if (Ttheta > 0.5 and Ttheta < 1.0): thisLogUw = ( logUw[1] * (Ttheta - 0.5)/(1.0 - 0.5) ) \ + ( logUw[0] * (1.0 - Ttheta)/(1.0 - 0.5) ) """ #JB# thisLogUw = ToolBox.valueFromFit(logUwFit,thisTemp)#u(T) value extrapolated #JB# if (thisTemp >= 10000.0): thisLogUw = logUw[4] if (thisTemp <= 130.0): thisLogUw = logUw[0] """ if (thisTemp > 130 and thisTemp <= 500): thisLogUw = logUw[1] * (thisTemp - 130)/(500 - 130) \ + logUw[0] * (500 - thisTemp)/(500 - 130) if (thisTemp > 500 and thisTemp <= 3000): thisLogUw = logUw[2] * (thisTemp - 500)/(3000 - 500) \ + logUw[1] * (3000 - thisTemp)/(3000 - 500) if (thisTemp > 3000 and thisTemp <= 8000): thisLogUw = logUw[3] * (thisTemp - 3000)/(8000 - 3000) \ + logUw[2] * (8000 - thisTemp)/(8000 - 3000) if (thisTemp > 8000 and thisTemp < 10000): thisLogUw = logUw[4] * (thisTemp - 8000)/(10000 - 8000) \ + logUw[3] * (10000 - thisTemp)/(10000 - 8000) """ #print("logUw ", logUw, " thisLogUw ", thisLogUw) #//System.out.println("LevPops: ionized branch taken, ionized = " + ionized); #// Take stat weight of ground state as partition function: logNums[id] = logNStage[id] - boltzFacL / temp[0][id] + logGwL - thisLogUw #// lower level of b-b transition #print("LevelPopsServer.stagePops id ", id, " logNStage[id] ", logNStage[id], " boltzFacL ", boltzFacL, " temp[0][id] ", temp[0][id], " logGwL ", logGwL, " thisLogUw ", thisLogUw, " logNums[id] ", logNums[id]); #// System.out.println("LevelPops: id, logNums[0][id], logNums[1][id], logNums[2][id], logNums[3][id]: " + id + " " #// + Math.exp(logNums[0][id]) + " " #// + Math.exp(logNums[1][id]) + " " #// + Math.exp(logNums[2][id]) + " " #// + Math.exp(logNums[3][id])); #//System.out.println("LevelPops: id, logNums[0][id], logNums[1][id], logNums[2][id], logNums[3][id], logNums[4][id]: " + id + " " #// + logE * (logNums[0][id]) + " " #// + logE * (logNums[1][id]) + " " #// + logE * (logNums[2][id]) + " " # // + logE * (logNums[3][id]) + " " #// + logE * (logNums[4][id]) ); #//System.out.println("LevelPops: id, logIonFracI, logIonFracII: " + id + " " + logE*logIonFracI + " " + logE*logIonFracII #// + "logNum, logNumI, logNums[0][id], logNums[1][id] " #// + logE*logNum + " " + logE*logNumI + " " + logE*logNums[0][id] + " " + logE*logNums[1][id]); #//System.out.println("LevelPops: id, logIonFracI: " + id + " " + logE*logIonFracI #// + "logNums[0][id], boltzFacL/temp[0][id], logNums[2][id]: " #// + logNums[0][id] + " " + boltzFacL/temp[0][id] + " " + logNums[2][id]); #//id loop #stop #print (uw) return logNums #//This version - ionization equilibrium *WITHOUT* molecules - logNum is TOTAL element population #def stagePops2(logNum, Ne, chiIArr, log10UwAArr, \ # numMols, logNumB, dissEArr, log10UwBArr, logQwABArr, logMuABArr, \ # numDeps, temp): def stagePops(logNum, Ne, chiIArr, logUw, \ numDeps, temp): #line 1: //species A data - ionization equilibrium of A #line 2: //data for set of species "B" - molecular equlibrium for set {AB} """Ionization equilibrium routine WITHOUT molecule formation: // Returns depth distribution of ionization stage populations // Input parameters: // logNum - array with depth-dependent total element number densities (cm^-3) // chiI1 - ground state ionization energy of neutral stage // chiI2 - ground state ionization energy of singly ionized stage // Also needs atsmopheric structure information: // numDeps // temp structure // rho structure // Atomic element A is the one whose ionization fractions are being computed // """ ln10 = math.log(10.0) logE = math.log10(math.e) #// for debug output log2pi = math.log(2.0 * math.pi) log2 = math.log(2.0) numStages = len(chiIArr) #// + 1; //need one more stage above the highest stage to be populated #// var numMols = dissEArr.length; #// Parition functions passed in are 2-element vectore with remperature-dependent base 10 log Us #// Convert to natural logs: #double Ttheta, thisTemp; #//Default initializations: #//We need one more stage in size of saha factor than number of stages we're actualy populating thisLogUw = [ 0.0 for i in range(numStages+1) ] for i in range(numStages+1): thisLogUw[i] = 0.0 logE10 = math.log(10.0) #//atomic ionization stage Boltzmann factors: #double logChiI, logBoltzFacI; boltzFacI = [ 0.0 for i in range(numStages) ] #print("numStages ", numStages, " Useful.logEv ", Useful.logEv()) for i in range(numStages): #print("i ", i, " chiIArr ", chiIArr[i]) logChiI = math.log(chiIArr[i]) + Useful.logEv() logBoltzFacI = logChiI - Useful.logK() boltzFacI[i] = math.exp(logBoltzFacI) logSahaFac = log2 + (3.0 / 2.0) * (log2pi + Useful.logMe() + Useful.logK() - 2.0 * Useful.logH()) #// return a 2D 5 x numDeps array of logarithmic number densities #// Row 0: neutral stage ground state population #// Row 1: singly ionized stage ground state population #// Row 2: doubly ionized stage ground state population #// Row 3: triply ionized stage ground state population #// Row 4: quadruply ionized stage ground state population #double[][] logNums = new double[numStages][numDeps]; logNums = [ [ 0.0 for i in range(numDeps)] for j in range(numStages) ] #//We need one more stage in size of saha factor than number of stages we're actualy populating #// for index accounting pirposes #// For atomic ionization stages: logSaha = [ [ 0.0 for i in range(numStages+1)] for j in range(numStages+1) ] saha = [ [ 0.0 for i in range(numStages+1)] for j in range(numStages+1) ] #// logIonFrac = [ 0.0 for i in range(numStages) ] #double expFac, logNe; #// Now - molecular variables: thisLogUwA = 0.0 #// element A #thisLogQwAB = math.log(300.0) #//For clarity: neutral stage of atom whose ionization equilibrium is being computed is element A #// for molecule formation: logUwA = [ 0.0 for i in range(5) ] #JB# uua=[] #uub=[] #qwab=[] for iStg in range(numStages): currentUwArr=list(logUw[iStg])#u(T) determined values UwFit = ToolBox.cubicFit(masterTemp,currentUwArr)#u(T) fit uua.append(UwFit) #print(logUw[iStg]) for id in range(numDeps): #//// reduce or enhance number density by over-all Rosseland opcity scale parameter #// #//Row 1 of Ne is log_e Ne in cm^-3 logNe = Ne[1][id] #//Determine temperature dependent partition functions Uw: thisTemp = temp[0][id] #Ttheta = 5040.0 / thisTemp #JB# #use temps and partition values to create a function #then use said function to extrapolate values for all points thisLogUw[numStages] = 0.0 for iStg in range(numStages): thisLogUw[iStg] = ToolBox.valueFromFit(uua[iStg],thisTemp)#u(T) value extrapolated #JB# #// NEW Determine temperature dependent partition functions Uw: lburns if (thisTemp <= 130.0): for iStg in range(numStages): thisLogUw[iStg] = logUw[iStg][0] #for iMol in range(numMols): # thisLogUwB[iMol] = logUwB[iMol][0] if (thisTemp >= 10000.0): for iStg in range(numStages): thisLogUw[iStg] = logUw[iStg][4] #for iMol in range(numMols): # thisLogUwB[iMol] = logUwB[iMol][4] #//For clarity: neutral stage of atom whose ionization equilibrium is being computed is element A #// for molecule formation: thisLogUwA = thisLogUw[0]; #//Ionization stage Saha factors: for iStg in range(numStages): #print("iStg ", iStg) logSaha[iStg+1][iStg] = logSahaFac - logNe - (boltzFacI[iStg] /temp[0][id]) + (3.0 * temp[1][id] / 2.0) + thisLogUw[iStg+1] - thisLogUw[iStg] saha[iStg+1][iStg] = math.exp(logSaha[iStg+1][iStg]) #//Compute log of denominator is ionization fraction, f_stage denominator = 1.0 #//default initialization - leading term is always unity #//ion stage contributions: for jStg in range(1, numStages+1): addend = 1.0 #//default initialization for product series for iStg in range(jStg): #//console.log("jStg " + jStg + " saha[][] indices " + (iStg+1) + " " + iStg); addend = addend * saha[iStg+1][iStg] denominator = denominator + addend #// logDenominator = math.log(denominator) logIonFrac[0] = -1.0 * logDenominator #// log ionization fraction in stage I for jStg in range(1, numStages): addend = 0.0 #//default initialization for product series for iStg in range(jStg): #//console.log("jStg " + jStg + " saha[][] indices " + (iStg+1) + " " + iStg); addend = addend + logSaha[iStg+1][iStg] logIonFrac[jStg] = addend - logDenominator for iStg in range(numStages): logNums[iStg][id] = logNum[id] + logIonFrac[iStg] #//id loop return logNums; #//end method stagePops #end method levelPops #def stagePops2(logNum, Ne, chiIArr, log10UwAArr, \ # numMols, logNumB, dissEArr, log10UwBArr, logQwABArr, logMuABArr, \ # numDeps, temp): def stagePops2(logNum, Ne, chiIArr, logUw, \ numMols, logNumB, dissEArr, logUwB, logQwABArr, logMuABArr, \ numDeps, temp): #line 1: //species A data - ionization equilibrium of A #line 2: //data for set of species "B" - molecular equlibrium for set {AB} """Ionization equilibrium routine that accounts for molecule formation: // Returns depth distribution of ionization stage populations // Input parameters: // logNum - array with depth-dependent total element number densities (cm^-3) // chiI1 - ground state ionization energy of neutral stage // chiI2 - ground state ionization energy of singly ionized stage // Also needs atsmopheric structure information: // numDeps // temp structure // rho structure // Atomic element A is the one whose ionization fractions are being computed // Element B refers to array of other species with which A forms molecules AB """ ln10 = math.log(10.0) logE = math.log10(math.e) #// for debug output log2pi = math.log(2.0 * math.pi) log2 = math.log(2.0) numStages = len(chiIArr) #// + 1; //need one more stage above the highest stage to be populated #// var numMols = dissEArr.length; #// Parition functions passed in are 2-element vectore with remperature-dependent base 10 log Us #// Convert to natural logs: #double Ttheta, thisTemp; #//Default initializations: #//We need one more stage in size of saha factor than number of stages we're actualy populating thisLogUw = [ 0.0 for i in range(numStages+1) ] for i in range(numStages+1): thisLogUw[i] = 0.0 logE10 = math.log(10.0) #//atomic ionization stage Boltzmann factors: #double logChiI, logBoltzFacI; boltzFacI = [ 0.0 for i in range(numStages) ] #print("numStages ", numStages, " Useful.logEv ", Useful.logEv()) for i in range(numStages): #print("i ", i, " chiIArr ", chiIArr[i]) logChiI = math.log(chiIArr[i]) + Useful.logEv() logBoltzFacI = logChiI - Useful.logK() boltzFacI[i] = math.exp(logBoltzFacI) logSahaFac = log2 + (3.0 / 2.0) * (log2pi + Useful.logMe() + Useful.logK() - 2.0 * Useful.logH()) #// return a 2D 5 x numDeps array of logarithmic number densities #// Row 0: neutral stage ground state population #// Row 1: singly ionized stage ground state population #// Row 2: doubly ionized stage ground state population #// Row 3: triply ionized stage ground state population #// Row 4: quadruply ionized stage ground state population #double[][] logNums = new double[numStages][numDeps]; logNums = [ [ 0.0 for i in range(numDeps)] for j in range(numStages) ] #//We need one more stage in size of saha factor than number of stages we're actualy populating #// for index accounting pirposes #// For atomic ionization stages: logSaha = [ [ 0.0 for i in range(numStages+1)] for j in range(numStages+1) ] saha = [ [ 0.0 for i in range(numStages+1)] for j in range(numStages+1) ] #// logIonFrac = [ 0.0 for i in range(numStages) ] #double expFac, logNe; #// Now - molecular variables: #//Treat at least one molecule - if there are really no molecules for an atomic species, #//there will be one phantom molecule in the denominator of the ionization fraction #//with an impossibly high dissociation energy ifMols = True if (numMols == 0): ifMols = False numMols = 1 #//This should be inherited, but let's make sure: dissEArr[0] = 19.0 #//eV #//Molecular partition functions - default initialization: #double[] thisLogUwB = new double[numMols]; thisLogUwB = [ 0.0 for i in range(numMols) ] for iMol in range(numMols): thisLogUwB[iMol] = 0.0 #// variable for temp-dependent computed partn fn of array element B thisLogUwA = 0.0 #// element A thisLogQwAB = math.log(300.0) #//For clarity: neutral stage of atom whose ionization equilibrium is being computed is element A #// for molecule formation: logUwA = [ 0.0 for i in range(5) ] if (numMols > 0): for kk in range(len(logUwA)): logUwA[kk] = logUw[0][kk] #// lburns #//} #//// Molecular partition functions: #//Molecular dissociation Boltzmann factors: boltzFacIAB = [ 0.0 for i in range(numMols) ] logMolSahaFac = [ 0.0 for i in range(numMols) ] #//if (numMols > 0){ #double logDissE, logBoltzFacIAB; for iMol in range(numMols): logDissE = math.log(dissEArr[iMol]) + Useful.logEv() logBoltzFacIAB = logDissE - Useful.logK() boltzFacIAB[iMol] = math.exp(logBoltzFacIAB) logMolSahaFac[iMol] = (3.0 / 2.0) * (log2pi + logMuABArr[iMol] + Useful.logK() - 2.0 * Useful.logH()) #//console.log("iMol " + iMol + " dissEArr[iMol] " + dissEArr[iMol] + " logDissE " + logE*logDissE + " logBoltzFacIAB " + logE*logBoltzFacIAB + " boltzFacIAB[iMol] " + boltzFacIAB[iMol] + " logMuABArr " + logE*logMuABArr[iMol] + " logMolSahaFac " + logE*logMolSahaFac[iMol]); #//} #// For molecular species: logSahaMol = [ 0.0 for i in range(numMols) ] invSahaMol = [ 0.0 for i in range(numMols) ] #JB# uua=[] uub=[] qwab=[] for iStg in range(numStages): currentUwArr=list(logUw[iStg])#u(T) determined values UwFit = ToolBox.cubicFit(masterTemp,currentUwArr)#u(T) fit uua.append(UwFit) #print(logUw[iStg]) for iMol in range(numMols): currentUwBArr=list(logUwB[iMol])#u(T) determined values UwBFit = ToolBox.cubicFit(masterTemp,currentUwBArr)#u(T) fit uub.append(UwBFit) for id in range(numDeps): #//// reduce or enhance number density by over-all Rosseland opcity scale parameter #// #//Row 1 of Ne is log_e Ne in cm^-3 logNe = Ne[1][id] #//Determine temperature dependent partition functions Uw: thisTemp = temp[0][id] #Ttheta = 5040.0 / thisTemp #JB# #use temps and partition values to create a function #then use said function to extrapolate values for all points thisLogUw[numStages] = 0.0 for iStg in range(numStages): thisLogUw[iStg] = ToolBox.valueFromFit(uua[iStg],thisTemp)#u(T) value extrapolated for iMol in range(numMols): thisLogUwB[iMol] = ToolBox.valueFromFit(uub[iMol],thisTemp)#u(T) value extrapolated #JB# #// NEW Determine temperature dependent partition functions Uw: lburns if (thisTemp <= 130.0): for iStg in range(numStages): thisLogUw[iStg] = logUw[iStg][0] for iMol in range(numMols): thisLogUwB[iMol] = logUwB[iMol][0] if (thisTemp >= 10000.0): for iStg in range(numStages): thisLogUw[iStg] = logUw[iStg][4] for iMol in range(numMols): thisLogUwB[iMol] = logUwB[iMol][4] for iMol in range(numMols): if (thisTemp < 3000.0): thisLogQwAB = ( logQwABArr[iMol][1] * (3000.0 - thisTemp)/(3000.0 - 500.0) ) \ + ( logQwABArr[iMol][2] * (thisTemp - 500.0)/(3000.0 - 500.0) ) if ( (thisTemp >= 3000.0) and (thisTemp <= 8000.0) ): thisLogQwAB = ( logQwABArr[iMol][2] * (8000.0 - thisTemp)/(8000.0 - 3000.0) ) \ + ( logQwABArr[iMol][3] * (thisTemp - 3000.0)/(8000.0 - 3000.0) ) if ( thisTemp > 8000.0 ): thisLogQwAB = ( logQwABArr[iMol][3] * (10000.0 - thisTemp)/(10000.0 - 8000.0) ) \ + ( logQwABArr[iMol][4] * (thisTemp - 8000.0)/(10000.0 - 8000.0) ) #// iMol loop #//For clarity: neutral stage of atom whose ionization equilibrium is being computed is element A #// for molecule formation: thisLogUwA = thisLogUw[0]; #//Ionization stage Saha factors: for iStg in range(numStages): #print("iStg ", iStg) logSaha[iStg+1][iStg] = logSahaFac - logNe - (boltzFacI[iStg] /temp[0][id]) + (3.0 * temp[1][id] / 2.0) + thisLogUw[iStg+1] - thisLogUw[iStg] saha[iStg+1][iStg] = math.exp(logSaha[iStg+1][iStg]) #//Molecular Saha factors: for iMol in range(numMols): logSahaMol[iMol] = logMolSahaFac[iMol] - logNumB[iMol][id] - (boltzFacIAB[iMol] / temp[0][id]) + (3.0 * temp[1][id] / 2.0) + thisLogUwB[iMol] + thisLogUwA - thisLogQwAB #//For denominator of ionization fraction, we need *inverse* molecular Saha factors (N_AB/NI): logSahaMol[iMol] = -1.0 * logSahaMol[iMol] invSahaMol[iMol] = math.exp(logSahaMol[iMol]) #//Compute log of denominator is ionization fraction, f_stage denominator = 1.0 #//default initialization - leading term is always unity #//ion stage contributions: for jStg in range(1, numStages+1): addend = 1.0 #//default initialization for product series for iStg in range(jStg): #//console.log("jStg " + jStg + " saha[][] indices " + (iStg+1) + " " + iStg); addend = addend * saha[iStg+1][iStg] denominator = denominator + addend #//molecular contribution if (ifMols == True): for iMol in range(numMols): denominator = denominator + invSahaMol[iMol] #// logDenominator = math.log(denominator) logIonFrac[0] = -1.0 * logDenominator #// log ionization fraction in stage I for jStg in range(1, numStages): addend = 0.0 #//default initialization for product series for iStg in range(jStg): #//console.log("jStg " + jStg + " saha[][] indices " + (iStg+1) + " " + iStg); addend = addend + logSaha[iStg+1][iStg] logIonFrac[jStg] = addend - logDenominator for iStg in range(numStages): logNums[iStg][id] = logNum[id] + logIonFrac[iStg] #//id loop return logNums; #//end method stagePops def stagePops3(logNum, Ne, chiIArr, logUw, numDeps, temp): #Version for ChromaStarPyGas: logNum is now *neutral stage* population from Phil # Bennett's GAS package #line 1: //species A data - ionization equilibrium of A #line 2: //data for set of species "B" - molecular equlibrium for set {AB} """Ionization equilibrium routine that accounts for molecule formation: // Returns depth distribution of ionization stage populations // Input parameters: // logNum - array with depth-dependent neutral stage number densities (cm^-3) // chiI1 - ground state ionization energy of neutral stage // chiI2 - ground state ionization energy of singly ionized stage // Also needs atsmopheric structure information: // numDeps // temp structure // rho structure // Atomic element A is the one whose ionization fractions are being computed // Element B refers to array of other species with which A forms molecules AB """ ln10 = math.log(10.0) logE = math.log10(math.e) #// for debug output log2pi = math.log(2.0 * math.pi) log2 = math.log(2.0) numStages = len(chiIArr) #// + 1; //need one more stage above the highest stage to be populated #// var numMols = dissEArr.length; #// Parition functions passed in are 2-element vectore with remperature-dependent base 10 log Us #// Convert to natural logs: #double Ttheta, thisTemp; #//Default initializations: #//We need one more stage in size of saha factor than number of stages we're actualy populating thisLogUw = [ 0.0 for i in range(numStages+1) ] for i in range(numStages+1): thisLogUw[i] = 0.0 logE10 = math.log(10.0) #//atomic ionization stage Boltzmann factors: #double logChiI, logBoltzFacI; boltzFacI = [ 0.0 for i in range(numStages) ] #print("numStages ", numStages, " Useful.logEv ", Useful.logEv()) for i in range(numStages): #print("i ", i, " chiIArr ", chiIArr[i]) logChiI = math.log(chiIArr[i]) + Useful.logEv() logBoltzFacI = logChiI - Useful.logK() boltzFacI[i] = math.exp(logBoltzFacI) logSahaFac = log2 + (3.0 / 2.0) * (log2pi + Useful.logMe() + Useful.logK() - 2.0 * Useful.logH()) #// return a 2D 5 x numDeps array of logarithmic number densities #// Row 0: neutral stage ground state population #// Row 1: singly ionized stage ground state population #// Row 2: doubly ionized stage ground state population #// Row 3: triply ionized stage ground state population #// Row 4: quadruply ionized stage ground state population #double[][] logNums = new double[numStages][numDeps]; logNums = [ [ 0.0 for i in range(numDeps)] for j in range(numStages) ] #//We need one more stage in size of saha factor than number of stages we're actualy populating #// for index accounting pirposes #// For atomic ionization stages: #logSaha = [ [ 0.0 for i in range(numStages+1)] for j in range(numStages+1) ] #saha = [ [ 0.0 for i in range(numStages+1)] for j in range(numStages+1) ] #// #logIonFrac = [ 0.0 for i in range(numStages) ] #double expFac, logNe; #JB# uua=[] uub=[] qwab=[] for iStg in range(numStages): currentUwArr=list(logUw[iStg])#u(T) determined values UwFit = ToolBox.cubicFit(masterTemp,currentUwArr)#u(T) fit uua.append(UwFit) #print(logUw[iStg]) for id in range(numDeps): #//// reduce or enhance number density by over-all Rosseland opcity scale parameter #// #//Row 1 of Ne is log_e Ne in cm^-3 logNe = Ne[1][id] #//Determine temperature dependent partition functions Uw: thisTemp = temp[0][id] #Ttheta = 5040.0 / thisTemp #JB# #use temps and partition values to create a function #then use said function to extrapolate values for all points thisLogUw[numStages] = 0.0 for iStg in range(numStages): thisLogUw[iStg] = ToolBox.valueFromFit(uua[iStg],thisTemp)#u(T) value extrapolated #JB# #// NEW Determine temperature dependent partition functions Uw: lburns if (thisTemp <= 130.0): for iStg in range(numStages): thisLogUw[iStg] = logUw[iStg][0] if (thisTemp >= 10000.0): for iStg in range(numStages): thisLogUw[iStg] = logUw[iStg][4] #//For clarity: neutral stage of atom whose ionization equilibrium is being computed is element A #// for molecule formation: #thisLogUwA = thisLogUw[0]; #//Ionization stage Saha factors: logNums[0][id] = logNum[id] for iStg in range(1, numStages): #print("iStg ", iStg) thisLogSaha = logSahaFac - logNe - (boltzFacI[iStg-1] /temp[0][id]) + (3.0 * temp[1][id] / 2.0) + thisLogUw[iStg] - thisLogUw[iStg-1] #saha[iStg+1][iStg] = math.exp(logSaha[iStg+1][iStg]) logNums[iStg][id] = logNums[iStg-1][id] + thisLogSaha #//id loop return logNums; #//end method stagePops #def sahaRHS(chiI, log10UwUArr, log10UwLArr, temp): def sahaRHS(chiI, logUwU, logUwL, temp): """RHS of partial pressure formulation of Saha equation in standard form (N_U*P_e/N_L on LHS) // Returns depth distribution of LHS: Phi(T) === N_U*P_e/N_L (David Gray notation) // Input parameters: // chiI - ground state ionization energy of lower stage // log10UwUArr, log10UwLArr - array of temperature-dependent partition function for upper and lower ionization stage // Also needs atsmopheric structure information: // numDeps // temp structure // // Atomic element "A" is the one whose ionization fractions are being computed // Element "B" refers to array of other species with which A forms molecules "AB" """ ln10 = math.log(10.0) logE = math.log10(math.e) #// for debug output log2pi = math.log(2.0 * math.pi) log2 = math.log(2.0) #// var numMols = dissEArr.length; #// Parition functions passed in are 2-element vectore with remperature-dependent base 10 log Us #// Convert to natural logs: #double Ttheta, thisTemp; #//Default initializations: #//We need one more stage in size of saha factor than number of stages we're actualy populating thisLogUwU = 0.0 thisLogUwL = 0.0 logE10 = math.log(10.0) #//We need one more stage in size of saha factor than number of stages we're actualy populating #logUwU = [0.0 for i in range(5)] #logUwL = [0.0 for i in range(5)] for kk in range(len(logUwL)): logUwU[kk] = logUwL[kk] # logUwL[kk] = logE10*log10UwLArr[kk] #//System.out.println("chiL before: " + chiL); #// If we need to subtract chiI from chiL, do so *before* converting to tiny numbers in ergs! #//atomic ionization stage Boltzmann factors: #double logChiI, logBoltzFacI; #double boltzFacI; logChiI = math.log(chiI) + Useful.logEv() logBoltzFacI = logChiI - Useful.logK() boltzFacI = math.exp(logBoltzFacI) #//Extra factor of k to get k^5/2 in the P_e formulation of Saha Eq. logSahaFac = log2 + (3.0 / 2.0) * (log2pi + Useful.logMe() + Useful.logK() - 2.0 * Useful.logH()) + Useful.logK() #//double[] logLHS = new double[numDeps]; #double logLHS; #// For atomic ionization stages: #double logSaha, saha, expFac; #// for (int id = 0; id < numDeps; id++) { #// #//Determine temperature dependent partition functions Uw: thisTemp = temp[0] #Ttheta = 5040.0 / thisTemp """ if (Ttheta >= 1.0): thisLogUwU = logUwU[0] thisLogUwL = logUwL[0] if (Ttheta <= 0.5): thisLogUwU = logUwU[1] thisLogUwL = logUwL[1] if (Ttheta > 0.5 and Ttheta < 1.0): thisLogUwU = ( logUwU[1] * (Ttheta - 0.5)/(1.0 - 0.5) ) + ( logUwU[0] * (1.0 - Ttheta)/(1.0 - 0.5) ) thisLogUwL = ( logUwL[1] * (Ttheta - 0.5)/(1.0 - 0.5) ) + ( logUwL[0] * (1.0 - Ttheta)/(1.0 - 0.5) ) """ #JB# currentUwUArr=list(logUwU)#u(T) determined values UwUFit = ToolBox.cubicFit(masterTemp,currentUwUArr)#u(T) fit thisLogUwU = ToolBox.valueFromFit(UwUFit,thisTemp)#u(T) value extrapolated currentUwLArr=list(logUwL)#u(T) determined values UwLFit = ToolBox.cubicFit(masterTemp,currentUwLArr)#u(T) fit thisLogUwL = ToolBox.valueFromFit(UwLFit,thisTemp)#u(T) value extrapolated #JB# #will need to do this one in Main as it goes through its own loop of temp #if thisTemp == superTemp[0][len(superTemp[0])]: # uwu.append(UwUFit) # uwl.append(UwLFit) # #JB# if (thisTemp <= 130.0): thisLogUwU = logUwU[0] thisLogUwL = logUwL[0] if (thisTemp >= 10000.0): thisLogUwU = logUwU[4] thisLogUwL = logUwL[4] """ if (thisTemp > 130 and thisTemp <= 500): thisLogUwU = logUwU[1] * (thisTemp - 130)/(500 - 130) \ + logUwU[0] * (500 - thisTemp)/(500 - 130) thisLogUwL = logUwL[1] * (thisTemp - 130)/(500 - 130) \ + logUwL[0] * (500 - thisTemp)/(500 - 130) if (thisTemp > 500 and thisTemp <= 3000): thisLogUwU = logUwU[2] * (thisTemp - 500)/(3000 - 500) \ + logUwU[1] * (3000 - thisTemp)/(3000 - 500) thisLogUwL = logUwL[2] * (thisTemp - 500)/(3000 - 500) \ + logUwL[1] * (3000 - thisTemp)/(3000 - 500) if (thisTemp > 3000 and thisTemp <= 8000): thisLogUwU = logUwU[3] * (thisTemp - 3000)/(8000 - 3000) \ + logUwU[2] * (8000 - thisTemp)/(8000 - 3000) thisLogUwL = logUwL[3] * (thisTemp - 3000)/(8000 - 3000) \ + logUwL[2] * (8000 - thisTemp)/(8000 - 3000) if (thisTemp > 8000 and thisTemp < 10000): thisLogUwU = logUwU[4] * (thisTemp - 8000)/(10000 - 8000) \ + logUwU[3] * (10000 - thisTemp)/(10000 - 8000) thisLogUwL = logUwL[4] * (thisTemp - 8000)/(10000 - 8000) \ + logUwL[3] * (10000 - thisTemp)/(10000 - 8000) if (thisTemp >= 10000): thisLogUwU = logUwU[4] thisLogUwL = logUwL[4] """ #//Ionization stage Saha factors: #//Need T_kin^5/2 in the P_e formulation of Saha Eq. logSaha = logSahaFac - (boltzFacI /temp[0]) + (5.0 * temp[1] / 2.0) + thisLogUwU - thisLogUwL #// saha = Math.exp(logSaha); #//logLHS[id] = logSaha; logLHS = logSaha; #// } //id loop return logLHS; #JB #return [logLHS,[[UwUFit,thisLogUwU],[UwLFit,thisLogUwL]]] #// # } //end method sahaRHS #def molPops(nmrtrLogNumB, nmrtrDissE, log10UwA, nmrtrLog10UwB, nmrtrLogQwAB, nmrtrLogMuAB, \ # numMolsB, logNumB, dissEArr, log10UwBArr, logQwABArr, logMuABArr, \ # logGroundRatio, numDeps, temp): def molPops(nmrtrLogNumB, nmrtrDissE, logUwA, nmrtrLogUwB, nmrtrLogQwAB, nmrtrLogMuAB, \ numMolsB, logNumB, dissEArr, logUwB, logQwABArr, logMuABArr, \ logGroundRatio, numDeps, temp): # line 1: //species A data - ionization equilibrium of A # //data for set of species "B" - molecular equlibrium for set {AB} """Diatomic molecular equilibrium routine that accounts for molecule formation: // Returns depth distribution of molecular population // Input parameters: // logNum - array with depth-dependent total element number densities (cm^-3) // chiI1 - ground state ionization energy of neutral stage // chiI2 - ground state ionization energy of singly ionized stage // Also needs atsmopheric structure information: // numDeps // temp structure // rho structure // // Atomic element "A" is the one kept on the LHS of the master fraction, whose ionization fractions are included // in the denominator of the master fraction // Element "B" refers to array of other sintpecies with which A forms molecules "AB" """ logE = math.log10(math.e) #// for debug output #//System.out.println("molPops: nmrtrDissE " + nmrtrDissE + " log10UwA " + log10UwA[0] + " " + log10UwA[1] + " nmrtrLog10UwB " + #// nmrtrLog10UwB[0] + " " + nmrtrLog10UwB[1] + " nmrtrLog10QwAB " + logE*nmrtrLogQwAB[2] + " nmrtrLogMuAB " + logE*nmrtrLogMuAB #// + " numMolsB " + numMolsB + " dissEArr " + dissEArr[0] + " log10UwBArr " + log10UwBArr[0][0] + " " + log10UwBArr[0][1] + " log10QwABArr " + #// logE*logQwABArr[0][2] + " logMuABArr " + logE*logMuABArr[0]); #//System.out.println("Line: nmrtrLog10UwB[0] " + logE*nmrtrLog10UwB[0] + " nmrtrLog10UwB[1] " + logE*nmrtrLog10UwB[1]); ln10 = math.log(10.0) log2pi = math.log(2.0 * math.pi) log2 = math.log(2.0) logE10 = math.log(10.0) #// Convert to natural logs: #double Ttheta, thisTemp; #//Treat at least one molecule - if there are really no molecules for an atomic species, #//there will be one phantom molecule in the denominator of the ionization fraction #//with an impossibly high dissociation energy if (numMolsB == 0): numMolsB = 1 #//This should be inherited, but let's make sure: dissEArr[0] = 29.0 #//eV #//var molPops = function(logNum, numeratorLogNumB, numeratorDissE, numeratorLog10UwA, numeratorLog10QwAB, numeratorLogMuAB, //species A data - ionization equilibrium of A #//Molecular partition functions - default initialization: thisLogUwB = [0.0 for i in range(numMolsB)] for iMol in range(numMolsB): thisLogUwB[iMol] = 0.0 #// variable for temp-dependent computed partn fn of array element B thisLogUwA = 0.0 #// element A nmrtrThisLogUwB = 0.0 #// element A thisLogQwAB = math.log(300.0) nmrtrThisLogQwAB = math.log(300.0) #//For clarity: neutral stage of atom whose ionization equilibrium is being computed is element A #// for molecule formation: #logUwA = [0.0 for i in range(5)] #nmrtrLogUwB = [0.0 for i in range(5)] #for kk in range(len(logUwA)): #logUwA[kk] = logE10*log10UwA[kk] #nmrtrLogUwB[kk] = logE10*nmrtrLog10UwB[kk] #// lburns #// Array of elements B for all molecular species AB: #double[][] logUwB = new double[numMolsB][2]; #logUwB = [ [ 0.0 for i in range(5) ] for j in range(numMolsB) ] #//if (numMolsB > 0){ #for iMol in range(numMolsB): # for kk in range(5): # logUwB[iMol][kk] = logE10*log10UwBArr[iMol][kk] # // lburns new loop #//} #// Molecular partition functions: #// double nmrtrLogQwAB = logE10*nmrtrLog10QwAB; #// double[] logQwAB = new double[numMolsB]; #// //if (numMolsB > 0){ #// for (int iMol = 0; iMol < numMolsB; iMol++){ #// logQwAB[iMol] = logE10*log10QwABArr[iMol]; #// } # //} #//Molecular dissociation Boltzmann factors: nmrtrBoltzFacIAB = 0.0 nmrtrLogMolSahaFac = 0.0 logDissE = math.log(nmrtrDissE) + Useful.logEv() #//System.out.println("logDissE " + logE*logDissE) logBoltzFacIAB = logDissE - Useful.logK() #//System.out.println("logBoltzFacIAB " + logE*logBoltzFacIAB); nmrtrBoltzFacIAB = math.exp(logBoltzFacIAB) nmrtrLogMolSahaFac = (3.0 / 2.0) * (log2pi + nmrtrLogMuAB + Useful.logK() - 2.0 * Useful.logH()) #//System.out.println("nmrtrLogMolSahaFac " + logE*nmrtrLogMolSahaFac); #//System.out.println("nmrtrDissE " + nmrtrDissE + " logDissE " + logE*logDissE + " logBoltzFacIAB " + logE*logBoltzFacIAB + " nmrtrBoltzFacIAB " + nmrtrBoltzFacIAB + " nmrtrLogMuAB " + logE*nmrtrLogMuAB + " nmrtrLogMolSahaFac " + logE*nmrtrLogMolSahaFac); boltzFacIAB = [0.0 for i in range(numMolsB)] logMolSahaFac = [0.0 for i in range(numMolsB)] #//if (numMolsB > 0){ for iMol in range(numMolsB): logDissE = math.log(dissEArr[iMol]) + Useful.logEv() logBoltzFacIAB = logDissE - Useful.logK() boltzFacIAB[iMol] = math.exp(logBoltzFacIAB) logMolSahaFac[iMol] = (3.0 / 2.0) * (log2pi + logMuABArr[iMol] + Useful.logK() - 2.0 * Useful.logH()) #//System.out.println("logMolSahaFac[iMol] " + logE*logMolSahaFac[iMol]); #//System.out.println("iMol " + iMol + " dissEArr[iMol] " + dissEArr[iMol] + " logDissE " + logE*logDissE + " logBoltzFacIAB " + logE*logBoltzFacIAB + " boltzFacIAB[iMol] " + boltzFacIAB[iMol] + " logMuABArr " + logE*logMuABArr[iMol] + " logMolSahaFac " + logE*logMolSahaFac[iMol]); #//double[] logNums = new double[numDeps] #//} #// For molecular species: #double nmrtrSaha, nmrtrLogSahaMol, nmrtrLogInvSahaMol; //, nmrtrInvSahaMol; logMolFrac = [0.0 for i in range(numDeps)] logSahaMol = [0.0 for i in range(numMolsB)] invSahaMol = [0.0 for i in range(numMolsB)] #JB# currentUwAArr=list(logUwA)#u(T) determined values UwAFit = ToolBox.cubicFit(masterTemp, currentUwAArr)#u(T) fit nmrtrLogUwBArr=list(nmrtrLogUwB)#u(T) determined values nmrtrLogUwBFit = ToolBox.cubicFit(masterTemp, nmrtrLogUwBArr)#u(T) fit #uwa.append(UwAFit) #uwb.append(nmrtrLogUwBFit) uwbFits=[] qwabFit = [] for iMol in range(numMolsB): currentUwBArr=list(logUwB[iMol]) UwBFit = ToolBox.cubicFit(masterTemp, currentUwBArr) uwbFits.append(UwBFit) currentLogQwABArr=list(logQwABArr[iMol])#u(T) determined values QwABFit = ToolBox.cubicFit(masterTemp, currentLogQwABArr)#u(T) fit qwabFit.append(QwABFit) #nmrtrQwABArr=list(nmrtrLogQwAB)#u(T) determined values #nmrtrQwABFit = ToolBox.cubicFit(masterTemp, nmrtrQwABArr)#u(T) fit #for Mols in range(numMolsB): # currentLogUwBArr=list(logUwB[Mols])#u(T) determined values # UwBFit=cubicFit(masterTemp,currentLogUwBArr)#u(T) fit #JB# #// temps=[] #valb=[] #vala=[] #valnb=[] #valqab=[] #valnmrtrqwb=[] #// System.out.println("molPops: id nmrtrLogNumB logNumBArr[0] logGroundRatio"); for id in range(numDeps): #//System.out.format("%03d, %21.15f, %21.15f, %21.15f, %n", id, logE*nmrtrLogNumB[id], logE*logNumB[0][id], logE*logGroundRatio[id]); #//// reduce or enhance number density by over-all Rosseland opcity scale parameter #//Determine temparature dependent partition functions Uw: thisTemp = temp[0][id] temps.append(thisTemp) #Ttheta = 5040.0 / thisTemp """ if (Ttheta >= 1.0): thisLogUwA = logUwA[0] nmrtrThisLogUwB = nmrtrLogUwB[0] for iMol in range(numMolsB): thisLogUwB[iMol] = logUwB[iMol][0] if (Ttheta <= 0.5): thisLogUwA = logUwA[1] nmrtrThisLogUwB = nmrtrLogUwB[1] for iMol in range(numMolsB): thisLogUwB[iMol] = logUwB[iMol][1] if (Ttheta > 0.5 and Ttheta < 1.0): thisLogUwA = ( logUwA[1] * ((Ttheta - 0.5)/(1.0 - 0.5)) ) \ + ( logUwA[0] * ((1.0 - Ttheta)/(1.0 - 0.5)) ) nmrtrThisLogUwB = ( nmrtrLogUwB[1] * ((Ttheta - 0.5)/(1.0 - 0.5)) ) \ + ( nmrtrLogUwB[0] * ((1.0 - Ttheta)/(1.0 - 0.5)) ) for iMol in range(numMolsB): thisLogUwB[iMol] = ( logUwB[iMol][1] * ((Ttheta - 0.5)/(1.0 - 0.5)) ) \ + ( logUwB[iMol][0] * ((1.0 - Ttheta)/(1.0 - 0.5)) ) """ #JB# thisLogUwA = float(ToolBox.valueFromFit(UwAFit,thisTemp))#u(T) value extrapolated #vala.append(thisLogUwA) nmrtrThisLogUwB = float(ToolBox.valueFromFit(nmrtrLogUwBFit,thisTemp))#u(T) value extrapolated #valnb.append(nmrtrThisLogUwB) #for iMol in range(numMolsB): # thisLogUwB[iMol]=logUwB[iMol] for iMol in range(numMolsB): thisLogUwB[iMol] = ToolBox.valueFromFit(uwbFits[iMol],thisTemp)#u(T) value extrapolated #valb.append(thisLogUwB[iMol]) #// NEW Determine temperature dependent partition functions Uw: lburns thisTemp = temp[0][id] if (thisTemp <= 130.0): thisLogUwA = logUwA[0] nmrtrThisLogUwB = nmrtrLogUwB[0] for iMol in range(numMolsB): thisLogUwB[iMol] = logUwB[iMol][0] if (thisTemp >= 10000.0): thisLogUwA = logUwA[4] nmrtrThisLogUwB = nmrtrLogUwB[4] for iMol in range(numMolsB): thisLogUwB[iMol] = logUwB[iMol][4] """ if (thisTemp > 130 and thisTemp <= 500): thisLogUwA = logUwA[1] * (thisTemp - 130)/(500 - 130) \ + logUwA[0] * (500 - thisTemp)/(500 - 130) nmrtrThisLogUwB = nmrtrLogUwB[1] * (thisTemp - 130)/(500 - 130) \ + nmrtrLogUwB[0] * (500 - thisTemp)/(500 - 130) for iMol in range(numMolsB): thisLogUwB[iMol] = logUwB[iMol][1] * (thisTemp - 130)/(500 - 130) \ + logUwB[iMol][0] * (500 - thisTemp)/(500 - 130) if (thisTemp > 500 and thisTemp <= 3000): thisLogUwA = logUwA[2] * (thisTemp - 500)/(3000 - 500) \ + logUwA[1] * (3000 - thisTemp)/(3000 - 500) nmrtrThisLogUwB = nmrtrLogUwB[2] * (thisTemp - 500)/(3000 - 500) \ + nmrtrLogUwB[1] * (3000 - thisTemp)/(3000 - 500) for iMol in range(numMolsB): thisLogUwB[iMol] = logUwB[iMol][2] * (thisTemp - 500)/(3000 - 500) \ + logUwB[iMol][1] * (3000 - thisTemp)/(3000 - 500) if (thisTemp > 3000 and thisTemp <= 8000): thisLogUwA = logUwA[3] * (thisTemp - 3000)/(8000 - 3000) \ + logUwA[2] * (8000 - thisTemp)/(8000 - 3000) nmrtrThisLogUwB = nmrtrLogUwB[3] * (thisTemp - 3000)/(8000 - 3000) \ + nmrtrLogUwB[2] * (8000 - thisTemp)/(8000 - 3000) for iMol in range(numMolsB): thisLogUwB[iMol] = logUwB[iMol][3] * (thisTemp - 3000)/(8000 - 3000) \ + logUwB[iMol][2] * (8000 - thisTemp)/(8000 - 3000) if (thisTemp > 8000 and thisTemp < 10000): thisLogUwA = logUwA[4] * (thisTemp - 8000)/(10000 - 8000) \ + logUwA[3] * (10000 - thisTemp)/(10000 - 8000) nmrtrThisLogUwB = nmrtrLogUwB[4] * (thisTemp - 8000)/(10000 - 8000) \ + nmrtrLogUwB[3] * (10000 - thisTemp)/(10000 - 8000) for iMol in range(numMolsB): thisLogUwB[iMol] = logUwB[iMol][4] * (thisTemp - 8000)/(10000 - 8000) \ + logUwB[iMol][3] * (10000 - thisTemp)/(10000 - 8000) if (thisTemp >= 10000): thisLogUwA = logUwA[4] nmrtrThisLogUwB = nmrtrLogUwB[4] for iMol in range(numMolsB): thisLogUwB[iMol] = logUwB[iMol][4] """ #iMol loops for Q's for iMol in range(numMolsB): if (thisTemp < 3000.0): thisLogQwAB = ( logQwABArr[iMol][1] * (3000.0 - thisTemp)/(3000.0 - 500.0) ) \ + ( logQwABArr[iMol][2] * (thisTemp - 500.0)/(3000.0 - 500.0) ) if ( (thisTemp >= 3000.0) and (thisTemp <= 8000.0) ): thisLogQwAB = ( logQwABArr[iMol][2] * (8000.0 - thisTemp)/(8000.0 - 3000.0) ) \ + ( logQwABArr[iMol][3] * (thisTemp - 3000.0)/(8000.0 - 3000.0) ) if ( thisTemp > 8000.0 ): thisLogQwAB = ( logQwABArr[iMol][3] * (10000.0 - thisTemp)/(10000.0 - 8000.0) ) \ + ( logQwABArr[iMol][4] * (thisTemp - 8000.0)/(10000.0 - 8000.0) ) if (thisTemp < 3000.0): nmrtrThisLogQwAB = ( nmrtrLogQwAB[1] * (3000.0 - thisTemp)/(3000.0 - 500.0) ) \ + ( nmrtrLogQwAB[2] * (thisTemp - 500.0)/(3000.0 - 500.0) ) if ( (thisTemp >= 3000.0) and (thisTemp <= 8000.0) ): nmrtrThisLogQwAB = ( nmrtrLogQwAB[2] * (8000.0 - thisTemp)/(8000.0 - 3000.0) ) \ + ( nmrtrLogQwAB[3] * (thisTemp - 3000.0)/(8000.0 - 3000.0) ) if ( thisTemp > 8000.0 ): nmrtrThisLogQwAB = ( nmrtrLogQwAB[3] * (10000.0 - thisTemp)/(10000.0 - 8000.0) ) \ + ( nmrtrLogQwAB[4] * (thisTemp - 8000.0)/(10000.0 - 8000.0) ) #//For clarity: neutral stage of atom whose ionization equilibrium is being computed is element A #// for molecule formation: # //Ionization stage Saha factors: #//System.out.println("id " + id + " nmrtrLogNumB[id] " + logE*nmrtrLogNumB[id]); # // if (id == 16){ # // System.out.println("id " + id + " nmrtrLogNumB[id] " + logE*nmrtrLogNumB[id] + " pp nmrtB " + (logE*(nmrtrLogNumB[id]+temp[1][id]+Useful.logK())) + " nmrtrThisLogUwB " + logE*nmrtrThisLogUwB + " thisLogUwA " + logE*thisLogUwA + " nmrtrLogQwAB " + logE*nmrtrThisLogQwAB); # //System.out.println("nmrtrThisLogUwB " + logE*nmrtrThisLogUwB + " thisLogUwA " + logE*thisLogUwA + " nmrtrThisLogQwAB " + logE*nmrtrThisLogQwAB); # // } nmrtrLogSahaMol = nmrtrLogMolSahaFac - nmrtrLogNumB[id] - (nmrtrBoltzFacIAB / temp[0][id]) + (3.0 * temp[1][id] / 2.0) + nmrtrThisLogUwB + thisLogUwA - nmrtrThisLogQwAB nmrtrLogInvSahaMol = -1.0 * nmrtrLogSahaMol #//System.out.println("nmrtrLogInvSahaMol " + logE*nmrtrLogInvSahaMol); #//nmrtrInvSahaMol = Math.exp(nmrtrLogSahaMol); #// if (id == 16){ #// System.out.println("nmrtrLogInvSahaMol " + logE*nmrtrLogInvSahaMol); #// } #// if (id == 16){ #// System.out.println("nmrtrBoltzFacIAB " + nmrtrBoltzFacIAB + " nmrtrThisLogUwB " + logE*nmrtrThisLogUwB + " thisLogUwA " + logE*thisLogUwA + " nmrtrThisLogQwAB " + nmrtrThisLogQwAB); #// System.out.println("nmrtrLogSahaMol " + logE*nmrtrLogSahaMol); // + " nmrtrInvSahaMol " + nmrtrInvSahaMol); #// } #//Molecular Saha factors: for iMol in range(numMolsB): #//System.out.println("iMol " + iMol + " id " + id + " logNumB[iMol][id] " + logE*nmrtrLogNumB[id]); #//System.out.println("iMol " + iMol + " thisLogUwB[iMol] " + logE*thisLogUwB[iMol] + " thisLogUwA " + logE*thisLogUwA + " thisLogQwAB " + logE*thisLogQwAB); logSahaMol[iMol] = logMolSahaFac[iMol] - logNumB[iMol][id] - (boltzFacIAB[iMol] / temp[0][id]) + (3.0 * temp[1][id] / 2.0) + float(thisLogUwB[iMol]) + thisLogUwA - thisLogQwAB #//For denominator of ionization fraction, we need *inverse* molecular Saha factors (N_AB/NI): logSahaMol[iMol] = -1.0 * logSahaMol[iMol] invSahaMol[iMol] = math.exp(logSahaMol[iMol]) #//TEST invSahaMol[iMol] = 1.0e-99; //test #// if (id == 16){ #// System.out.println("iMol " + iMol + " boltzFacIAB[iMol] " + boltzFacIAB[iMol] + " thisLogUwB[iMol] " + logE*thisLogUwB[iMol] + " logQwAB[iMol] " + logE*thisLogQwAB + " logNumB[iMol][id] " + logE*logNumB[iMol][id] + " logMolSahaFac[iMol] " + logE*logMolSahaFac[iMol]); #// System.out.println("iMol " + iMol + " logSahaMol " + logE*logSahaMol[iMol] + " invSahaMol[iMol] " + invSahaMol[iMol]); #// } #//Compute log of denominator is ionization fraction, f_stage # //default initialization # // - ratio of total atomic particles in all ionization stages to number in ground state: denominator = math.exp(logGroundRatio[id]) #//default initialization - ratio of total atomic particles in all ionization stages to number in ground state #//molecular contribution for iMol in range(numMolsB): #// if (id == 16){ #// System.out.println("invSahaMol[iMol] " + invSahaMol[iMol] + " denominator " + denominator); #// } denominator = denominator + invSahaMol[iMol] #// logDenominator = math.log(denominator) #//System.out.println("logGroundRatio[id] " + logE*logGroundRatio[id] + " logDenominator " + logE*logDenominator); #// if (id == 16){ #// System.out.println("id " + id + " logGroundRatio " + logGroundRatio[id] + " logDenominator " + logDenominator); #// } #//if (id == 36){ #// System.out.println("logDenominator " + logE*logDenominator); #// } #//var logDenominator = Math.log( 1.0 + saha21 + (saha32 * saha21) + (saha43 * saha32 * saha21) + (saha54 * saha43 * saha32 * saha21) ); logMolFrac[id] = nmrtrLogInvSahaMol - logDenominator #// if (id == 16){ #// System.out.println("id " + id + " logMolFrac[id] " + logE*logMolFrac[id]); #// } #//logNums[id] = logNum[id] + logMolFrac; #} //id loop #JB - check (never used)# #print(uwa) #print(uwb) #title("logUwA") """ plot(temps,vala) tempT=[] for t in masterTemp: tempT.append(valueFromFit(UwAFit,t)) scatter(masterTemp,(tempT)) show() #title("nmrtrlogUwB") plot(temps,valnb) tempT=[] for t in masterTemp: tempT.append(valueFromFit(nmrtrLogUwBFit,t)) scatter(masterTemp,(tempT)) show() #title("logUwB") plot(temps,valb) tempT=[] for t in masterTemp: tempT.append(valueFromFit(UwBFit,t)) scatter(masterTemp,(tempT)) show() #title("logQwAB") plot(temps,valqab) tempT=[] for t in masterTemp: tempT.append(valueFromFit(QwABFit,t)) scatter(masterTemp,(tempT)) show() #title("nmrtrlogQwAB") plot(temps,valnmrtrqwb) tempT=[] for t in masterTemp: tempT.append(valueFromFit(nmrtrQwABFit,t)) scatter(masterTemp,(tempT)) show() """ #JB# return logMolFrac #//end method stagePops
mit
sugartom/tensorflow-alien
tensorflow/examples/learn/mnist.py
45
3999
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This showcases how simple it is to build image classification networks. It follows description from this TensorFlow tutorial: https://www.tensorflow.org/versions/master/tutorials/mnist/pros/index.html#deep-mnist-for-experts """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from sklearn import metrics import tensorflow as tf layers = tf.contrib.layers learn = tf.contrib.learn def max_pool_2x2(tensor_in): return tf.nn.max_pool( tensor_in, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') def conv_model(feature, target, mode): """2-layer convolution model.""" # Convert the target to a one-hot tensor of shape (batch_size, 10) and # with a on-value of 1 for each one-hot vector of length 10. target = tf.one_hot(tf.cast(target, tf.int32), 10, 1, 0) # Reshape feature to 4d tensor with 2nd and 3rd dimensions being # image width and height final dimension being the number of color channels. feature = tf.reshape(feature, [-1, 28, 28, 1]) # First conv layer will compute 32 features for each 5x5 patch with tf.variable_scope('conv_layer1'): h_conv1 = layers.convolution2d( feature, 32, kernel_size=[5, 5], activation_fn=tf.nn.relu) h_pool1 = max_pool_2x2(h_conv1) # Second conv layer will compute 64 features for each 5x5 patch. with tf.variable_scope('conv_layer2'): h_conv2 = layers.convolution2d( h_pool1, 64, kernel_size=[5, 5], activation_fn=tf.nn.relu) h_pool2 = max_pool_2x2(h_conv2) # reshape tensor into a batch of vectors h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64]) # Densely connected layer with 1024 neurons. h_fc1 = layers.dropout( layers.fully_connected( h_pool2_flat, 1024, activation_fn=tf.nn.relu), keep_prob=0.5, is_training=mode == tf.contrib.learn.ModeKeys.TRAIN) # Compute logits (1 per class) and compute loss. logits = layers.fully_connected(h_fc1, 10, activation_fn=None) loss = tf.losses.softmax_cross_entropy(target, logits) # Create a tensor for training op. train_op = layers.optimize_loss( loss, tf.contrib.framework.get_global_step(), optimizer='SGD', learning_rate=0.001) return tf.argmax(logits, 1), loss, train_op def main(unused_args): ### Download and load MNIST dataset. mnist = learn.datasets.load_dataset('mnist') ### Linear classifier. feature_columns = learn.infer_real_valued_columns_from_input( mnist.train.images) classifier = learn.LinearClassifier( feature_columns=feature_columns, n_classes=10) classifier.fit(mnist.train.images, mnist.train.labels.astype(np.int32), batch_size=100, steps=1000) score = metrics.accuracy_score(mnist.test.labels, list(classifier.predict(mnist.test.images))) print('Accuracy: {0:f}'.format(score)) ### Convolutional network classifier = learn.Estimator(model_fn=conv_model) classifier.fit(mnist.train.images, mnist.train.labels, batch_size=100, steps=20000) score = metrics.accuracy_score(mnist.test.labels, list(classifier.predict(mnist.test.images))) print('Accuracy: {0:f}'.format(score)) if __name__ == '__main__': tf.app.run()
apache-2.0
harrysocool/ear_recognition
ear_recognition/generate_files.py
1
6623
import csv import os import random import numpy as np import pandas as pd import matlab_wrapper from lib.utils.timer import Timer from tools.ear_recog import get_gt, ROI_boxes import scipy.io as sio def listdir_no_hidden(path): list1 = [] for f in sorted(os.listdir(path)): if not f.startswith('.'): p = os.path.abspath(path) list1.append(os.path.join(p, f)) return list1 def write_list_to_csv(list1, path_out, header=False): temp = pd.DataFrame(list1) temp.to_csv(path_out, index=False, header=header) def save_gt_roidb_csv(data_path, csv_path, image_index_output_path, gt_output_path, test_image_path, test_gt): box_list = pd.read_csv(csv_path, header=0).get_values() image_path_list = listdir_no_hidden(data_path) assert len(box_list) == len(image_path_list), 'the length of box list must equal to image list' new_list = [] new_list1 = [] for idx, entry in enumerate(image_path_list): s1 = str(entry) temp = box_list[idx] # change the x y coordination to correct [X1 Y1 X2 Y2] x1 = str(temp[-2]) y1 = str(temp[-4]) x2 = str(temp[-1]) y2 = str(temp[-3]) s2 = x1+' '+ y1+' '+x2+' '+y2 new_list.append(s1 + ' 1 ' + s2) new_list1.append(s1) # shuffle the idx of training set shuffle_idx = range(len(image_path_list)) random.seed(641) # make it can be reproduce random.shuffle(shuffle_idx) train_idx = shuffle_idx[0:437] test_idx = shuffle_idx[437:] train_image_path = [new_list1[idx] for idx in train_idx] train_gt = [new_list[idx] for idx in train_idx] test_image_path_data = [new_list1[idx] for idx in test_idx] test_gt_data = [new_list[idx] for idx in test_idx] write_list_to_csv(train_gt, gt_output_path) write_list_to_csv(train_image_path, image_index_output_path) write_list_to_csv(test_gt_data, test_gt) write_list_to_csv(test_image_path_data, test_image_path) def initialize_matlab(): matlab = matlab_wrapper.MatlabSession() # edge_detector OP_method matlab.eval("cd('/home/harrysocool/Github/fast-rcnn/OP_methods/edges')") matlab.eval("addpath(genpath('/home/harrysocool/Github/fast-rcnn/OP_methods/edges'))") matlab.eval("toolboxCompile") # # selective_search OP_method # matlab.eval("cd('/home/harrysocool/Github/fast-rcnn/OP_methods/selective_search_ijcv_with_python')") # matlab.eval("addpath(genpath('/home/harrysocool/Github/fast-rcnn/OP_methods/selective_search_ijcv_with_python'))") return matlab def time_analyse(matlab, cmd, image_filepath, par1, par2): timer = Timer() timer.tic() obj_proposals = ROI_boxes(matlab, image_filepath, cmd, par1, par2) timer.toc() time = timer.total_time box_numer = len(obj_proposals) return time, box_numer, obj_proposals def mean_IOU_ratio(image_index, dets): ratio = np.empty(0,dtype=np.float64) (x1, y1, x2, y2) = get_gt(image_index) if dets.size > 4: for box in dets: X1 = box[0] Y1 = box[1] X2 = box[2] Y2 = box[3] if ((np.float32(x1)-X1)<=15 and (X2- np.float32(x2))<=15 and (np.float32(y1)-Y1)<=15 and (Y2-np.float32(y2))<=15): ratio = np.append(ratio,1.0) else: SI = max(0, min(x2, X2) - max(x1, X1)) * \ max(0, min(y2, Y2) - max(y1, Y1)) SU = (x2 - x1) * (y2 - y1) + (X2 - X1) * (Y2 - Y1) - SI ratio = np.append(ratio, SI/SU) if ratio.size == 0: big_ratio = 0 else: big = np.where(ratio >= 0.1)[0].size total = float(len(dets)) big_ratio = float(big/total) return big_ratio if __name__ == '__main__': datasets_path = '/home/harrysocool/Github/fast-rcnn/DatabaseEars' csv_path = os.path.join(datasets_path, 'boundaries.csv') image_path = os.path.join(datasets_path, 'DatabaseEars/') gt_output_path = os.path.join(datasets_path, '../','ear_recognition/data_file/gt_roidb.csv') image_index_output_path = os.path.join(datasets_path, '../', 'ear_recognition/data_file/image_index_list.csv') mat_output_filename = os.path.join(datasets_path, '../','ear_recognition/data_file/all_boxes.mat') test_gt_output_path = os.path.join(datasets_path, '../','ear_recognition/data_file/test_gt_roidb.csv') test_image_index_output_path = os.path.join(datasets_path, '../', 'ear_recognition/data_file/test_image_index_list.csv') # save_gt_roidb_csv(image_path, csv_path, image_index_output_path, gt_output_path, test_image_index_output_path, # test_gt_output_path) matlab = initialize_matlab() timer = Timer() list1 = pd.read_csv(test_image_index_output_path, header=None).values.flatten().tolist() cmd = 'ss' # ks = [50 100 150 200 300]; par2_list = [8] # par2_list = [3] time_csv_out_path = os.path.join(os.path.dirname(datasets_path), 'result', cmd + '_' + 'OPtune_result_1.csv') if not os.path.exists(time_csv_out_path): write_list_to_csv(par2_list, time_csv_out_path) with open(time_csv_out_path, 'a') as csvfile: writer = csv.writer(csvfile) list2 = [] for par2 in [7]: for par1 in [7]: # par1 = float(par1)/100 # all_boxes = np.zeros((437,), dtype=np.object) for index, image_path in enumerate(list1): # if index>300: # break time, box_numer, obj_proposals = time_analyse(matlab, cmd, image_path, par1, par2) ratio = mean_IOU_ratio(index + 1, obj_proposals) # list2.append([time, box_numer]) # print('{} has processed in {:.3f} seconds with {} boxes'.format(len(list2), time, box_numer)) print('No. {} has processed with par {} {}, box {} IOU ratio {:.3f} in {:.2f} seconds'.format(index, par1, par2,box_numer ,ratio, time)) writer.writerow([par1, par2,ratio,box_numer, time]) # all_boxes[index] = obj_proposals # sio.savemat(mat_output_filename, {'all_boxes': all_boxes}) # write_list_to_csv(list2, time_csv_out_path) # fnames_cell = "{" + ",".join("'{}'".format(x) for x in list1) + "}" # command = "res = {}({}, '{}')".format('selective_search', fnames_cell, mat_output_filename) # print(command) # # # matlab.eval(command)
mit
kenshay/ImageScript
ProgramData/SystemFiles/Python/Lib/site-packages/pandas/tests/types/test_io.py
7
4785
# -*- coding: utf-8 -*- import numpy as np import pandas.lib as lib import pandas.util.testing as tm from pandas.compat import long, u class TestParseSQL(tm.TestCase): def test_convert_sql_column_floats(self): arr = np.array([1.5, None, 3, 4.2], dtype=object) result = lib.convert_sql_column(arr) expected = np.array([1.5, np.nan, 3, 4.2], dtype='f8') self.assert_numpy_array_equal(result, expected) def test_convert_sql_column_strings(self): arr = np.array(['1.5', None, '3', '4.2'], dtype=object) result = lib.convert_sql_column(arr) expected = np.array(['1.5', np.nan, '3', '4.2'], dtype=object) self.assert_numpy_array_equal(result, expected) def test_convert_sql_column_unicode(self): arr = np.array([u('1.5'), None, u('3'), u('4.2')], dtype=object) result = lib.convert_sql_column(arr) expected = np.array([u('1.5'), np.nan, u('3'), u('4.2')], dtype=object) self.assert_numpy_array_equal(result, expected) def test_convert_sql_column_ints(self): arr = np.array([1, 2, 3, 4], dtype='O') arr2 = np.array([1, 2, 3, 4], dtype='i4').astype('O') result = lib.convert_sql_column(arr) result2 = lib.convert_sql_column(arr2) expected = np.array([1, 2, 3, 4], dtype='i8') self.assert_numpy_array_equal(result, expected) self.assert_numpy_array_equal(result2, expected) arr = np.array([1, 2, 3, None, 4], dtype='O') result = lib.convert_sql_column(arr) expected = np.array([1, 2, 3, np.nan, 4], dtype='f8') self.assert_numpy_array_equal(result, expected) def test_convert_sql_column_longs(self): arr = np.array([long(1), long(2), long(3), long(4)], dtype='O') result = lib.convert_sql_column(arr) expected = np.array([1, 2, 3, 4], dtype='i8') self.assert_numpy_array_equal(result, expected) arr = np.array([long(1), long(2), long(3), None, long(4)], dtype='O') result = lib.convert_sql_column(arr) expected = np.array([1, 2, 3, np.nan, 4], dtype='f8') self.assert_numpy_array_equal(result, expected) def test_convert_sql_column_bools(self): arr = np.array([True, False, True, False], dtype='O') result = lib.convert_sql_column(arr) expected = np.array([True, False, True, False], dtype=bool) self.assert_numpy_array_equal(result, expected) arr = np.array([True, False, None, False], dtype='O') result = lib.convert_sql_column(arr) expected = np.array([True, False, np.nan, False], dtype=object) self.assert_numpy_array_equal(result, expected) def test_convert_sql_column_decimals(self): from decimal import Decimal arr = np.array([Decimal('1.5'), None, Decimal('3'), Decimal('4.2')]) result = lib.convert_sql_column(arr) expected = np.array([1.5, np.nan, 3, 4.2], dtype='f8') self.assert_numpy_array_equal(result, expected) def test_convert_downcast_int64(self): from pandas.parser import na_values arr = np.array([1, 2, 7, 8, 10], dtype=np.int64) expected = np.array([1, 2, 7, 8, 10], dtype=np.int8) # default argument result = lib.downcast_int64(arr, na_values) self.assert_numpy_array_equal(result, expected) result = lib.downcast_int64(arr, na_values, use_unsigned=False) self.assert_numpy_array_equal(result, expected) expected = np.array([1, 2, 7, 8, 10], dtype=np.uint8) result = lib.downcast_int64(arr, na_values, use_unsigned=True) self.assert_numpy_array_equal(result, expected) # still cast to int8 despite use_unsigned=True # because of the negative number as an element arr = np.array([1, 2, -7, 8, 10], dtype=np.int64) expected = np.array([1, 2, -7, 8, 10], dtype=np.int8) result = lib.downcast_int64(arr, na_values, use_unsigned=True) self.assert_numpy_array_equal(result, expected) arr = np.array([1, 2, 7, 8, 300], dtype=np.int64) expected = np.array([1, 2, 7, 8, 300], dtype=np.int16) result = lib.downcast_int64(arr, na_values) self.assert_numpy_array_equal(result, expected) int8_na = na_values[np.int8] int64_na = na_values[np.int64] arr = np.array([int64_na, 2, 3, 10, 15], dtype=np.int64) expected = np.array([int8_na, 2, 3, 10, 15], dtype=np.int8) result = lib.downcast_int64(arr, na_values) self.assert_numpy_array_equal(result, expected) if __name__ == '__main__': import nose nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
gpl-3.0
SAVeselovskiy/KFU_Visual_Tracking
Tracking/detection.py
1
10566
__author__ = 'IVMIT KFU: Gataullin Ravil & Veselovkiy Sergei' from copy import copy import numpy as np from sklearn.ensemble import RandomForestClassifier from time import time import warnings warnings.filterwarnings("ignore") from sklearn.cross_validation import train_test_split from structure import Position class PatchVarianceClassifier: def __init__(self, init_patch): self.init_patch_variance = np.var(init_patch.content) def classify(self, patch): # return 1 if object is positive detected # return 0 if object is negative detected if np.var(patch.content) > 0.5 * self.init_patch_variance: return 1 else: return 0 def predict_patch(self, patch): return np.var(patch.content) / self.init_patch_variance def predict_position(self, position): return np.var(position.calculate_patch().content) / self.init_patch_variance class EnsembleClassifier: def __init__(self, learning_component): self.learning_component = learning_component self.classifier = RandomForestClassifier(max_depth=3) def classify(self, patch): # return 1 if object is positive detected # return 0 if object is negative detected feature = patch.calculate_feature(self.learning_component.descriptor) if self.classifier.predict_proba(feature)[0][self.positive_class_index] > 0.5: return 1 else: return 0 def predict_patch(self, patch): feature = patch.calculate_feature(self.learning_component.descriptor) return self.classifier.predict_proba(feature)[0][self.positive_class_index] def predict_position(self, position): feature = position.calculate_patch().calculate_feature(self.learning_component.descriptor) return self.classifier.predict_proba(feature)[0][self.positive_class_index] def relearn(self, test_size=0): samples, weights, targets = self.learning_component.get_training_set(const_weight=True) train_samples, test_samples, train_targets, test_targets = train_test_split(samples, targets, test_size=test_size, random_state=np.random.RandomState(0)) count_positives = 1.0*np.count_nonzero(train_targets) count_negatives = 1.0*(len(train_targets) - count_positives) positive_weight = count_negatives/len(train_targets) negative_weight = count_positives/len(train_targets) weights = np.array([positive_weight if target == 1 else negative_weight for target in train_targets]) self.classifier.fit(train_samples, train_targets, sample_weight=weights) self.learning_component.new_samples_count = 0 if len(test_samples) > 0: test_result = [self.classifier.predict(sample) for sample in test_samples] true_positives = 0.0 count_test_positives = 1.0*np.count_nonzero(test_targets) count_result_positives = 1.0*np.count_nonzero(test_result) for i in xrange(len(test_targets)): if test_targets[i] == test_result[i] and test_result[i] == 1: true_positives += 1 precision = true_positives / count_test_positives recall = true_positives / count_result_positives print "Precision:", precision print "Recall", recall if precision + recall != 0: print "F-score:", 2 * precision * recall / (precision + recall) else: print "F-score:", 0 self.positive_class_index = 0 for elem in self.classifier.classes_: if elem != 1.0: self.positive_class_index += 1 else: break class NearestNeighborClassifier: def __init__(self, learning_component, lmbd = 0.1, tetta = 0.6): self.learning_component = learning_component self.lmbd = lmbd self.tetta = tetta def classify(self, patch): # return 1 if object is positive detected # return 0 if object is negative detected if self.learning_component.relative_similarity(patch) > self.tetta: return 1 else: return 0 def predict_patch(self, patch): return self.learning_component.relative_similarity(patch) def predict_position(self, position): return self.learning_component.relative_similarity(position.calculate_patch()) def scanning_window(init_position, scales_step = 1.2, slip_step = 0.1, minimal_bounding_box_size = 20, min_step=1, max_step=20): flag_inc = True flag_dec = False position = copy(init_position) while min(position.width, position.height) >= minimal_bounding_box_size: position.update(x=0,y=0) step_width = min(max(min_step,int(slip_step * position.width)),max_step) step_height = min(max(min_step,int(slip_step * position.height)),max_step) while position.is_correct(): while position.is_correct(): yield position position.update(x=position.x+step_width) position.update(x=0, y=position.y+step_height) # if position.is_correct(): # yield position # is_end = False # step_width = int(slip_step * position.width) # step_height = int(slip_step * position.height) # layer = 1 # xx = position.x # yy = position.y # while not is_end: # is_end = True # for start_point, vector in (([-1,-1],[1,0]),([1,-1],[0,1]),([1,1],[-1,0]),([-1,1],[0,-1])): # position.update(x=xx + (start_point[0]*layer + vector[0])*step_width, y=yy+(start_point[1]*layer + vector[1])*step_height) # while position.is_correct() and xx - layer*step_width <= position.x <= xx + layer*step_width and yy - layer*step_height <= position.y <= yy + layer*step_height: # is_end = False # yield position # position.update(x=position.x+vector[0]*step_width, y=position.y+vector[1]*step_height) # layer += 1 if flag_inc: position.update(height=int(position.height * scales_step), width = int(position.width * scales_step)) if position.height > position.buffer[0].shape[0] or position.width > position.buffer[0].shape[0]: flag_inc = False flag_dec = True position = copy(init_position) if flag_dec: position.update(height=int(position.height / scales_step), width = int(position.width / scales_step)) def get_sliding_positions(init_position, scales_step = 1.2, slip_step = 0.1, minimal_bounding_box_size = 20, min_step=2, max_step=2): sliding_positions = [] flag_inc = True flag_dec = False position = copy(init_position) while min(position.width, position.height) >= minimal_bounding_box_size: position.update(x=0,y=0) step_width = min(max(min_step,int(slip_step * position.width)),max_step) step_height = min(max(min_step,int(slip_step * position.height)),max_step) while position.is_correct(): while position.is_correct(): sliding_positions.append(copy(position)) position.update(x=position.x+step_width) position.update(x=0, y=position.y+step_height) if flag_inc: position.update(height=int(position.height * scales_step), width = int(position.width * scales_step)) if position.height > position.buffer[0].shape[0] or position.width > position.buffer[0].shape[0]: flag_inc = False flag_dec = True position = copy(init_position) if flag_dec: position.update(height=int(position.height / scales_step), width = int(position.width / scales_step)) return sliding_positions class Detector: def __init__(self, init_position, learning_component, threshold_patch_variance=0.5, threshold_ensemble=0.5, threshold_nearest_neighbor=0.6): self.learning_component = learning_component self.patch_variance_classifier = PatchVarianceClassifier(learning_component.init_patch) self.ensemble_classifier = EnsembleClassifier(learning_component) self.nearest_neighbor_classifier = NearestNeighborClassifier(learning_component) self.threshold_patch_variance = threshold_patch_variance self.threshold_ensemble = threshold_ensemble self.threshold_nearest_neighbor = threshold_nearest_neighbor self.sliding_positions = get_sliding_positions(init_position, scales_step = 1.2, slip_step = 0.1, minimal_bounding_box_size = 50, min_step=2, max_step=10) def cascaded_classifier(self, patch): # 3 stages of classify # return 1 if object is positive detected # return 0 if object is negative detected if self.patch_variance_classifier.predict_patch(patch) < self.threshold_patch_variance: return 0 if self.ensemble_classifier.predict_patch(patch) < self.threshold_patch_variance: return 0 # elif self.nearest_neighbor_classifier.predict_patch(patch) < self.threshold_nearest_neighbor: # return 0 return 1 def detect(self, position, is_tracked): if self.learning_component.new_samples_count > 10: start = time() self.ensemble_classifier.relearn() print "Relearn:", time() - start detected_windows = [] predict_times = [] for current_position in self.sliding_positions: start = time() proba = self.predict_position(current_position) predict_times.append(time() - start) if proba == 1: detected_windows.append((current_position.get_window(), current_position.calculate_patch(), proba)) self.learning_component.add_new_positive(current_position.calculate_patch()) if is_tracked: return detected_windows else: self.learning_component.add_new_negative(current_position.calculate_patch()) print "Analysed window count:", len(predict_times) print "Max detection time:", np.max(predict_times) print "Min detection time:", np.min(predict_times) print "Mean detection time:", np.mean(predict_times) return detected_windows def predict_patch(self, patch): return self.cascaded_classifier(patch) def predict_position(self, position): return self.cascaded_classifier(position.calculate_patch())
mit
yask123/scikit-learn
sklearn/linear_model/tests/test_least_angle.py
98
20870
from nose.tools import assert_equal import numpy as np from scipy import linalg from sklearn.cross_validation import train_test_split from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_no_warnings, assert_warns from sklearn.utils.testing import TempMemmap from sklearn.utils import ConvergenceWarning from sklearn import linear_model, datasets from sklearn.linear_model.least_angle import _lars_path_residues diabetes = datasets.load_diabetes() X, y = diabetes.data, diabetes.target # TODO: use another dataset that has multiple drops def test_simple(): # Principle of Lars is to keep covariances tied and decreasing # also test verbose output from sklearn.externals.six.moves import cStringIO as StringIO import sys old_stdout = sys.stdout try: sys.stdout = StringIO() alphas_, active, coef_path_ = linear_model.lars_path( diabetes.data, diabetes.target, method="lar", verbose=10) sys.stdout = old_stdout for (i, coef_) in enumerate(coef_path_.T): res = y - np.dot(X, coef_) cov = np.dot(X.T, res) C = np.max(abs(cov)) eps = 1e-3 ocur = len(cov[C - eps < abs(cov)]) if i < X.shape[1]: assert_true(ocur == i + 1) else: # no more than max_pred variables can go into the active set assert_true(ocur == X.shape[1]) finally: sys.stdout = old_stdout def test_simple_precomputed(): # The same, with precomputed Gram matrix G = np.dot(diabetes.data.T, diabetes.data) alphas_, active, coef_path_ = linear_model.lars_path( diabetes.data, diabetes.target, Gram=G, method="lar") for i, coef_ in enumerate(coef_path_.T): res = y - np.dot(X, coef_) cov = np.dot(X.T, res) C = np.max(abs(cov)) eps = 1e-3 ocur = len(cov[C - eps < abs(cov)]) if i < X.shape[1]: assert_true(ocur == i + 1) else: # no more than max_pred variables can go into the active set assert_true(ocur == X.shape[1]) def test_all_precomputed(): # Test that lars_path with precomputed Gram and Xy gives the right answer X, y = diabetes.data, diabetes.target G = np.dot(X.T, X) Xy = np.dot(X.T, y) for method in 'lar', 'lasso': output = linear_model.lars_path(X, y, method=method) output_pre = linear_model.lars_path(X, y, Gram=G, Xy=Xy, method=method) for expected, got in zip(output, output_pre): assert_array_almost_equal(expected, got) def test_lars_lstsq(): # Test that Lars gives least square solution at the end # of the path X1 = 3 * diabetes.data # use un-normalized dataset clf = linear_model.LassoLars(alpha=0.) clf.fit(X1, y) coef_lstsq = np.linalg.lstsq(X1, y)[0] assert_array_almost_equal(clf.coef_, coef_lstsq) def test_lasso_gives_lstsq_solution(): # Test that Lars Lasso gives least square solution at the end # of the path alphas_, active, coef_path_ = linear_model.lars_path(X, y, method="lasso") coef_lstsq = np.linalg.lstsq(X, y)[0] assert_array_almost_equal(coef_lstsq, coef_path_[:, -1]) def test_collinearity(): # Check that lars_path is robust to collinearity in input X = np.array([[3., 3., 1.], [2., 2., 0.], [1., 1., 0]]) y = np.array([1., 0., 0]) f = ignore_warnings _, _, coef_path_ = f(linear_model.lars_path)(X, y, alpha_min=0.01) assert_true(not np.isnan(coef_path_).any()) residual = np.dot(X, coef_path_[:, -1]) - y assert_less((residual ** 2).sum(), 1.) # just make sure it's bounded n_samples = 10 X = np.random.rand(n_samples, 5) y = np.zeros(n_samples) _, _, coef_path_ = linear_model.lars_path(X, y, Gram='auto', copy_X=False, copy_Gram=False, alpha_min=0., method='lasso', verbose=0, max_iter=500) assert_array_almost_equal(coef_path_, np.zeros_like(coef_path_)) def test_no_path(): # Test that the ``return_path=False`` option returns the correct output alphas_, active_, coef_path_ = linear_model.lars_path( diabetes.data, diabetes.target, method="lar") alpha_, active, coef = linear_model.lars_path( diabetes.data, diabetes.target, method="lar", return_path=False) assert_array_almost_equal(coef, coef_path_[:, -1]) assert_true(alpha_ == alphas_[-1]) def test_no_path_precomputed(): # Test that the ``return_path=False`` option with Gram remains correct G = np.dot(diabetes.data.T, diabetes.data) alphas_, active_, coef_path_ = linear_model.lars_path( diabetes.data, diabetes.target, method="lar", Gram=G) alpha_, active, coef = linear_model.lars_path( diabetes.data, diabetes.target, method="lar", Gram=G, return_path=False) assert_array_almost_equal(coef, coef_path_[:, -1]) assert_true(alpha_ == alphas_[-1]) def test_no_path_all_precomputed(): # Test that the ``return_path=False`` option with Gram and Xy remains # correct X, y = 3 * diabetes.data, diabetes.target G = np.dot(X.T, X) Xy = np.dot(X.T, y) alphas_, active_, coef_path_ = linear_model.lars_path( X, y, method="lasso", Gram=G, Xy=Xy, alpha_min=0.9) print("---") alpha_, active, coef = linear_model.lars_path( X, y, method="lasso", Gram=G, Xy=Xy, alpha_min=0.9, return_path=False) assert_array_almost_equal(coef, coef_path_[:, -1]) assert_true(alpha_ == alphas_[-1]) def test_singular_matrix(): # Test when input is a singular matrix X1 = np.array([[1, 1.], [1., 1.]]) y1 = np.array([1, 1]) alphas, active, coef_path = linear_model.lars_path(X1, y1) assert_array_almost_equal(coef_path.T, [[0, 0], [1, 0]]) def test_rank_deficient_design(): # consistency test that checks that LARS Lasso is handling rank # deficient input data (with n_features < rank) in the same way # as coordinate descent Lasso y = [5, 0, 5] for X in ([[5, 0], [0, 5], [10, 10]], [[10, 10, 0], [1e-32, 0, 0], [0, 0, 1]], ): # To be able to use the coefs to compute the objective function, # we need to turn off normalization lars = linear_model.LassoLars(.1, normalize=False) coef_lars_ = lars.fit(X, y).coef_ obj_lars = (1. / (2. * 3.) * linalg.norm(y - np.dot(X, coef_lars_)) ** 2 + .1 * linalg.norm(coef_lars_, 1)) coord_descent = linear_model.Lasso(.1, tol=1e-6, normalize=False) coef_cd_ = coord_descent.fit(X, y).coef_ obj_cd = ((1. / (2. * 3.)) * linalg.norm(y - np.dot(X, coef_cd_)) ** 2 + .1 * linalg.norm(coef_cd_, 1)) assert_less(obj_lars, obj_cd * (1. + 1e-8)) def test_lasso_lars_vs_lasso_cd(verbose=False): # Test that LassoLars and Lasso using coordinate descent give the # same results. X = 3 * diabetes.data alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso') lasso_cd = linear_model.Lasso(fit_intercept=False, tol=1e-8) for c, a in zip(lasso_path.T, alphas): if a == 0: continue lasso_cd.alpha = a lasso_cd.fit(X, y) error = linalg.norm(c - lasso_cd.coef_) assert_less(error, 0.01) # similar test, with the classifiers for alpha in np.linspace(1e-2, 1 - 1e-2, 20): clf1 = linear_model.LassoLars(alpha=alpha, normalize=False).fit(X, y) clf2 = linear_model.Lasso(alpha=alpha, tol=1e-8, normalize=False).fit(X, y) err = linalg.norm(clf1.coef_ - clf2.coef_) assert_less(err, 1e-3) # same test, with normalized data X = diabetes.data alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso') lasso_cd = linear_model.Lasso(fit_intercept=False, normalize=True, tol=1e-8) for c, a in zip(lasso_path.T, alphas): if a == 0: continue lasso_cd.alpha = a lasso_cd.fit(X, y) error = linalg.norm(c - lasso_cd.coef_) assert_less(error, 0.01) def test_lasso_lars_vs_lasso_cd_early_stopping(verbose=False): # Test that LassoLars and Lasso using coordinate descent give the # same results when early stopping is used. # (test : before, in the middle, and in the last part of the path) alphas_min = [10, 0.9, 1e-4] for alphas_min in alphas_min: alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso', alpha_min=0.9) lasso_cd = linear_model.Lasso(fit_intercept=False, tol=1e-8) lasso_cd.alpha = alphas[-1] lasso_cd.fit(X, y) error = linalg.norm(lasso_path[:, -1] - lasso_cd.coef_) assert_less(error, 0.01) alphas_min = [10, 0.9, 1e-4] # same test, with normalization for alphas_min in alphas_min: alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso', alpha_min=0.9) lasso_cd = linear_model.Lasso(fit_intercept=True, normalize=True, tol=1e-8) lasso_cd.alpha = alphas[-1] lasso_cd.fit(X, y) error = linalg.norm(lasso_path[:, -1] - lasso_cd.coef_) assert_less(error, 0.01) def test_lasso_lars_path_length(): # Test that the path length of the LassoLars is right lasso = linear_model.LassoLars() lasso.fit(X, y) lasso2 = linear_model.LassoLars(alpha=lasso.alphas_[2]) lasso2.fit(X, y) assert_array_almost_equal(lasso.alphas_[:3], lasso2.alphas_) # Also check that the sequence of alphas is always decreasing assert_true(np.all(np.diff(lasso.alphas_) < 0)) def test_lasso_lars_vs_lasso_cd_ill_conditioned(): # Test lasso lars on a very ill-conditioned design, and check that # it does not blow up, and stays somewhat close to a solution given # by the coordinate descent solver # Also test that lasso_path (using lars_path output style) gives # the same result as lars_path and previous lasso output style # under these conditions. rng = np.random.RandomState(42) # Generate data n, m = 70, 100 k = 5 X = rng.randn(n, m) w = np.zeros((m, 1)) i = np.arange(0, m) rng.shuffle(i) supp = i[:k] w[supp] = np.sign(rng.randn(k, 1)) * (rng.rand(k, 1) + 1) y = np.dot(X, w) sigma = 0.2 y += sigma * rng.rand(*y.shape) y = y.squeeze() lars_alphas, _, lars_coef = linear_model.lars_path(X, y, method='lasso') _, lasso_coef2, _ = linear_model.lasso_path(X, y, alphas=lars_alphas, tol=1e-6, fit_intercept=False) assert_array_almost_equal(lars_coef, lasso_coef2, decimal=1) def test_lasso_lars_vs_lasso_cd_ill_conditioned2(): # Create an ill-conditioned situation in which the LARS has to go # far in the path to converge, and check that LARS and coordinate # descent give the same answers # Note it used to be the case that Lars had to use the drop for good # strategy for this but this is no longer the case with the # equality_tolerance checks X = [[1e20, 1e20, 0], [-1e-32, 0, 0], [1, 1, 1]] y = [10, 10, 1] alpha = .0001 def objective_function(coef): return (1. / (2. * len(X)) * linalg.norm(y - np.dot(X, coef)) ** 2 + alpha * linalg.norm(coef, 1)) lars = linear_model.LassoLars(alpha=alpha, normalize=False) assert_warns(ConvergenceWarning, lars.fit, X, y) lars_coef_ = lars.coef_ lars_obj = objective_function(lars_coef_) coord_descent = linear_model.Lasso(alpha=alpha, tol=1e-10, normalize=False) cd_coef_ = coord_descent.fit(X, y).coef_ cd_obj = objective_function(cd_coef_) assert_less(lars_obj, cd_obj * (1. + 1e-8)) def test_lars_add_features(): # assure that at least some features get added if necessary # test for 6d2b4c # Hilbert matrix n = 5 H = 1. / (np.arange(1, n + 1) + np.arange(n)[:, np.newaxis]) clf = linear_model.Lars(fit_intercept=False).fit( H, np.arange(n)) assert_true(np.all(np.isfinite(clf.coef_))) def test_lars_n_nonzero_coefs(verbose=False): lars = linear_model.Lars(n_nonzero_coefs=6, verbose=verbose) lars.fit(X, y) assert_equal(len(lars.coef_.nonzero()[0]), 6) # The path should be of length 6 + 1 in a Lars going down to 6 # non-zero coefs assert_equal(len(lars.alphas_), 7) def test_multitarget(): # Assure that estimators receiving multidimensional y do the right thing X = diabetes.data Y = np.vstack([diabetes.target, diabetes.target ** 2]).T n_targets = Y.shape[1] for estimator in (linear_model.LassoLars(), linear_model.Lars()): estimator.fit(X, Y) Y_pred = estimator.predict(X) Y_dec = estimator.decision_function(X) assert_array_almost_equal(Y_pred, Y_dec) alphas, active, coef, path = (estimator.alphas_, estimator.active_, estimator.coef_, estimator.coef_path_) for k in range(n_targets): estimator.fit(X, Y[:, k]) y_pred = estimator.predict(X) assert_array_almost_equal(alphas[k], estimator.alphas_) assert_array_almost_equal(active[k], estimator.active_) assert_array_almost_equal(coef[k], estimator.coef_) assert_array_almost_equal(path[k], estimator.coef_path_) assert_array_almost_equal(Y_pred[:, k], y_pred) def test_lars_cv(): # Test the LassoLarsCV object by checking that the optimal alpha # increases as the number of samples increases. # This property is not actually garantied in general and is just a # property of the given dataset, with the given steps chosen. old_alpha = 0 lars_cv = linear_model.LassoLarsCV() for length in (400, 200, 100): X = diabetes.data[:length] y = diabetes.target[:length] lars_cv.fit(X, y) np.testing.assert_array_less(old_alpha, lars_cv.alpha_) old_alpha = lars_cv.alpha_ def test_lasso_lars_ic(): # Test the LassoLarsIC object by checking that # - some good features are selected. # - alpha_bic > alpha_aic # - n_nonzero_bic < n_nonzero_aic lars_bic = linear_model.LassoLarsIC('bic') lars_aic = linear_model.LassoLarsIC('aic') rng = np.random.RandomState(42) X = diabetes.data y = diabetes.target X = np.c_[X, rng.randn(X.shape[0], 4)] # add 4 bad features lars_bic.fit(X, y) lars_aic.fit(X, y) nonzero_bic = np.where(lars_bic.coef_)[0] nonzero_aic = np.where(lars_aic.coef_)[0] assert_greater(lars_bic.alpha_, lars_aic.alpha_) assert_less(len(nonzero_bic), len(nonzero_aic)) assert_less(np.max(nonzero_bic), diabetes.data.shape[1]) # test error on unknown IC lars_broken = linear_model.LassoLarsIC('<unknown>') assert_raises(ValueError, lars_broken.fit, X, y) def test_no_warning_for_zero_mse(): # LassoLarsIC should not warn for log of zero MSE. y = np.arange(10, dtype=float) X = y.reshape(-1, 1) lars = linear_model.LassoLarsIC(normalize=False) assert_no_warnings(lars.fit, X, y) assert_true(np.any(np.isinf(lars.criterion_))) def test_lars_path_readonly_data(): # When using automated memory mapping on large input, the # fold data is in read-only mode # This is a non-regression test for: # https://github.com/scikit-learn/scikit-learn/issues/4597 splitted_data = train_test_split(X, y, random_state=42) with TempMemmap(splitted_data) as (X_train, X_test, y_train, y_test): # The following should not fail despite copy=False _lars_path_residues(X_train, y_train, X_test, y_test, copy=False) def test_lars_path_positive_constraint(): # this is the main test for the positive parameter on the lars_path method # the estimator classes just make use of this function # we do the test on the diabetes dataset # ensure that we get negative coefficients when positive=False # and all positive when positive=True # for method 'lar' (default) and lasso for method in ['lar', 'lasso']: alpha, active, coefs = \ linear_model.lars_path(diabetes['data'], diabetes['target'], return_path=True, method=method, positive=False) assert_true(coefs.min() < 0) alpha, active, coefs = \ linear_model.lars_path(diabetes['data'], diabetes['target'], return_path=True, method=method, positive=True) assert_true(coefs.min() >= 0) # now we gonna test the positive option for all estimator classes default_parameter = {'fit_intercept': False} estimator_parameter_map = {'Lars': {'n_nonzero_coefs': 5}, 'LassoLars': {'alpha': 0.1}, 'LarsCV': {}, 'LassoLarsCV': {}, 'LassoLarsIC': {}} def test_estimatorclasses_positive_constraint(): # testing the transmissibility for the positive option of all estimator # classes in this same function here for estname in estimator_parameter_map: params = default_parameter.copy() params.update(estimator_parameter_map[estname]) estimator = getattr(linear_model, estname)(positive=False, **params) estimator.fit(diabetes['data'], diabetes['target']) assert_true(estimator.coef_.min() < 0) estimator = getattr(linear_model, estname)(positive=True, **params) estimator.fit(diabetes['data'], diabetes['target']) assert_true(min(estimator.coef_) >= 0) def test_lasso_lars_vs_lasso_cd_positive(verbose=False): # Test that LassoLars and Lasso using coordinate descent give the # same results when using the positive option # This test is basically a copy of the above with additional positive # option. However for the middle part, the comparison of coefficient values # for a range of alphas, we had to make an adaptations. See below. # not normalized data X = 3 * diabetes.data alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso', positive=True) lasso_cd = linear_model.Lasso(fit_intercept=False, tol=1e-8, positive=True) for c, a in zip(lasso_path.T, alphas): if a == 0: continue lasso_cd.alpha = a lasso_cd.fit(X, y) error = linalg.norm(c - lasso_cd.coef_) assert_less(error, 0.01) # The range of alphas chosen for coefficient comparison here is restricted # as compared with the above test without the positive option. This is due # to the circumstance that the Lars-Lasso algorithm does not converge to # the least-squares-solution for small alphas, see 'Least Angle Regression' # by Efron et al 2004. The coefficients are typically in congruence up to # the smallest alpha reached by the Lars-Lasso algorithm and start to # diverge thereafter. See # https://gist.github.com/michigraber/7e7d7c75eca694c7a6ff for alpha in np.linspace(6e-1, 1 - 1e-2, 20): clf1 = linear_model.LassoLars(fit_intercept=False, alpha=alpha, normalize=False, positive=True).fit(X, y) clf2 = linear_model.Lasso(fit_intercept=False, alpha=alpha, tol=1e-8, normalize=False, positive=True).fit(X, y) err = linalg.norm(clf1.coef_ - clf2.coef_) assert_less(err, 1e-3) # normalized data X = diabetes.data alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso', positive=True) lasso_cd = linear_model.Lasso(fit_intercept=False, normalize=True, tol=1e-8, positive=True) for c, a in zip(lasso_path.T[:-1], alphas[:-1]): # don't include alpha=0 lasso_cd.alpha = a lasso_cd.fit(X, y) error = linalg.norm(c - lasso_cd.coef_) assert_less(error, 0.01)
bsd-3-clause
joshloyal/scikit-learn
benchmarks/bench_plot_lasso_path.py
84
4005
"""Benchmarks of Lasso regularization path computation using Lars and CD The input data is mostly low rank but is a fat infinite tail. """ from __future__ import print_function from collections import defaultdict import gc import sys from time import time import numpy as np from sklearn.linear_model import lars_path from sklearn.linear_model import lasso_path from sklearn.datasets.samples_generator import make_regression def compute_bench(samples_range, features_range): it = 0 results = defaultdict(lambda: []) max_it = len(samples_range) * len(features_range) for n_samples in samples_range: for n_features in features_range: it += 1 print('====================') print('Iteration %03d of %03d' % (it, max_it)) print('====================') dataset_kwargs = { 'n_samples': n_samples, 'n_features': n_features, 'n_informative': n_features / 10, 'effective_rank': min(n_samples, n_features) / 10, #'effective_rank': None, 'bias': 0.0, } print("n_samples: %d" % n_samples) print("n_features: %d" % n_features) X, y = make_regression(**dataset_kwargs) gc.collect() print("benchmarking lars_path (with Gram):", end='') sys.stdout.flush() tstart = time() G = np.dot(X.T, X) # precomputed Gram matrix Xy = np.dot(X.T, y) lars_path(X, y, Xy=Xy, Gram=G, method='lasso') delta = time() - tstart print("%0.3fs" % delta) results['lars_path (with Gram)'].append(delta) gc.collect() print("benchmarking lars_path (without Gram):", end='') sys.stdout.flush() tstart = time() lars_path(X, y, method='lasso') delta = time() - tstart print("%0.3fs" % delta) results['lars_path (without Gram)'].append(delta) gc.collect() print("benchmarking lasso_path (with Gram):", end='') sys.stdout.flush() tstart = time() lasso_path(X, y, precompute=True) delta = time() - tstart print("%0.3fs" % delta) results['lasso_path (with Gram)'].append(delta) gc.collect() print("benchmarking lasso_path (without Gram):", end='') sys.stdout.flush() tstart = time() lasso_path(X, y, precompute=False) delta = time() - tstart print("%0.3fs" % delta) results['lasso_path (without Gram)'].append(delta) return results if __name__ == '__main__': from mpl_toolkits.mplot3d import axes3d # register the 3d projection import matplotlib.pyplot as plt samples_range = np.linspace(10, 2000, 5).astype(np.int) features_range = np.linspace(10, 2000, 5).astype(np.int) results = compute_bench(samples_range, features_range) max_time = max(max(t) for t in results.values()) fig = plt.figure('scikit-learn Lasso path benchmark results') i = 1 for c, (label, timings) in zip('bcry', sorted(results.items())): ax = fig.add_subplot(2, 2, i, projection='3d') X, Y = np.meshgrid(samples_range, features_range) Z = np.asarray(timings).reshape(samples_range.shape[0], features_range.shape[0]) # plot the actual surface ax.plot_surface(X, Y, Z.T, cstride=1, rstride=1, color=c, alpha=0.8) # dummy point plot to stick the legend to since surface plot do not # support legends (yet?) # ax.plot([1], [1], [1], color=c, label=label) ax.set_xlabel('n_samples') ax.set_ylabel('n_features') ax.set_zlabel('Time (s)') ax.set_zlim3d(0.0, max_time * 1.1) ax.set_title(label) # ax.legend() i += 1 plt.show()
bsd-3-clause
manahl/arctic
tests/integration/store/test_pickle_store.py
1
4373
from datetime import datetime as dt, timedelta import bson import numpy as np from mock import patch from arctic._util import mongo_count from arctic.arctic import Arctic def test_save_read_bson(library): blob = {'foo': dt(2015, 1, 1), 'bar': ['a', 'b', ['x', 'y', 'z']]} library.write('BLOB', blob) saved_blob = library.read('BLOB').data assert blob == saved_blob ''' Run test at your own discretion. Takes > 60 secs def test_save_read_MASSIVE(library): import pandas as pd df = pd.DataFrame(data={'data': [1] * 150000000}) data = (df, df) library.write('BLOB', data) saved_blob = library.read('BLOB').data assert(saved_blob[0].equals(df)) assert(saved_blob[1].equals(df)) ''' def test_save_read_big_encodable(library): blob = {'foo': 'a' * 1024 * 1024 * 20} library.write('BLOB', blob) saved_blob = library.read('BLOB').data assert blob == saved_blob def test_save_read_bson_object(library): blob = {'foo': dt(2015, 1, 1), 'object': Arctic} library.write('BLOB', blob) saved_blob = library.read('BLOB').data assert blob == saved_blob def test_get_info_bson_object(library): blob = {'foo': dt(2015, 1, 1), 'object': Arctic} library.write('BLOB', blob) assert library.get_info('BLOB')['handler'] == 'PickleStore' def test_bson_large_object(library): blob = {'foo': dt(2015, 1, 1), 'object': Arctic, 'large_thing': np.random.rand(int(2.1 * 1024 * 1024)).tostring()} assert len(blob['large_thing']) > 16 * 1024 * 1024 library.write('BLOB', blob) saved_blob = library.read('BLOB').data assert blob == saved_blob def test_bson_leak_objects_delete(library): blob = {'foo': dt(2015, 1, 1), 'object': Arctic} library.write('BLOB', blob) assert mongo_count(library._collection) == 1 assert mongo_count(library._collection.versions) == 1 library.delete('BLOB') assert mongo_count(library._collection) == 0 assert mongo_count(library._collection.versions) == 0 def test_bson_leak_objects_prune_previous(library): blob = {'foo': dt(2015, 1, 1), 'object': Arctic} yesterday = dt.utcnow() - timedelta(days=1, seconds=1) _id = bson.ObjectId.from_datetime(yesterday) with patch("bson.ObjectId", return_value=_id): library.write('BLOB', blob) assert mongo_count(library._collection) == 1 assert mongo_count(library._collection.versions) == 1 _id = bson.ObjectId.from_datetime(dt.utcnow() - timedelta(minutes=130)) with patch("bson.ObjectId", return_value=_id): library.write('BLOB', {}, prune_previous_version=False) assert mongo_count(library._collection) == 1 assert mongo_count(library._collection.versions) == 2 # This write should pruned the oldest version in the chunk collection library.write('BLOB', {}) assert mongo_count(library._collection) == 0 assert mongo_count(library._collection.versions) == 2 def test_prune_previous_doesnt_kill_other_objects(library): blob = {'foo': dt(2015, 1, 1), 'object': Arctic} yesterday = dt.utcnow() - timedelta(days=1, seconds=1) _id = bson.ObjectId.from_datetime(yesterday) with patch("bson.ObjectId", return_value=_id): library.write('BLOB', blob, prune_previous_version=False) assert mongo_count(library._collection) == 1 assert mongo_count(library._collection.versions) == 1 _id = bson.ObjectId.from_datetime(dt.utcnow() - timedelta(hours=10)) with patch("bson.ObjectId", return_value=_id): library.write('BLOB', blob, prune_previous_version=False) assert mongo_count(library._collection) == 1 assert mongo_count(library._collection.versions) == 2 # This write should pruned the oldest version in the chunk collection library.write('BLOB', {}) assert mongo_count(library._collection) == 1 assert mongo_count(library._collection.versions) == 2 library._delete_version('BLOB', 2) assert mongo_count(library._collection) == 0 assert mongo_count(library._collection.versions) == 1 def test_write_metadata(library): blob = {'foo': dt(2015, 1, 1), 'object': Arctic} library.write(symbol='symX', data=blob, metadata={'key1': 'value1'}) library.write_metadata(symbol='symX', metadata={'key2': 'value2'}) v = library.read('symX') assert v.data == blob assert v.metadata == {'key2': 'value2'}
lgpl-2.1
fengzhyuan/scikit-learn
sklearn/neighbors/unsupervised.py
106
4461
"""Unsupervised nearest neighbors learner""" from .base import NeighborsBase from .base import KNeighborsMixin from .base import RadiusNeighborsMixin from .base import UnsupervisedMixin class NearestNeighbors(NeighborsBase, KNeighborsMixin, RadiusNeighborsMixin, UnsupervisedMixin): """Unsupervised learner for implementing neighbor searches. Read more in the :ref:`User Guide <unsupervised_neighbors>`. Parameters ---------- n_neighbors : int, optional (default = 5) Number of neighbors to use by default for :meth:`k_neighbors` queries. radius : float, optional (default = 1.0) Range of parameter space to use by default for :meth`radius_neighbors` queries. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`KDtree` - 'brute' will use a brute-force search. - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method. Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. p: integer, optional (default = 2) Parameter for the Minkowski metric from sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric : string or callable, default 'minkowski' metric to use for distance computation. Any metric from scikit-learn or scipy.spatial.distance can be used. If metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays as input and return one value indicating the distance between them. This works for Scipy's metrics, but is less efficient than passing the metric name as a string. Distance matrices are not supported. Valid values for metric are: - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan'] - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. metric_params: dict, optional (default = None) additional keyword arguments for the metric function. Examples -------- >>> import numpy as np >>> from sklearn.neighbors import NearestNeighbors >>> samples = [[0, 0, 2], [1, 0, 0], [0, 0, 1]] >>> neigh = NearestNeighbors(2, 0.4) >>> neigh.fit(samples) #doctest: +ELLIPSIS NearestNeighbors(...) >>> neigh.kneighbors([[0, 0, 1.3]], 2, return_distance=False) ... #doctest: +ELLIPSIS array([[2, 0]]...) >>> rng = neigh.radius_neighbors([0, 0, 1.3], 0.4, return_distance=False) >>> np.asarray(rng[0][0]) array(2) See also -------- KNeighborsClassifier RadiusNeighborsClassifier KNeighborsRegressor RadiusNeighborsRegressor BallTree Notes ----- See :ref:`Nearest Neighbors <neighbors>` in the online documentation for a discussion of the choice of ``algorithm`` and ``leaf_size``. http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm """ def __init__(self, n_neighbors=5, radius=1.0, algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None, **kwargs): self._init_params(n_neighbors=n_neighbors, radius=radius, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, **kwargs)
bsd-3-clause
kyoren/https-github.com-h2oai-h2o-3
py2/h2o_gbm.py
30
16328
import re, random, math import h2o_args import h2o_nodes import h2o_cmd from h2o_test import verboseprint, dump_json, check_sandbox_for_errors def plotLists(xList, xLabel=None, eListTitle=None, eList=None, eLabel=None, fListTitle=None, fList=None, fLabel=None, server=False): if h2o_args.python_username!='kevin': return # Force matplotlib to not use any Xwindows backend. if server: import matplotlib matplotlib.use('Agg') import pylab as plt print "xList", xList print "eList", eList print "fList", fList font = {'family' : 'normal', 'weight' : 'normal', 'size' : 26} ### plt.rc('font', **font) plt.rcdefaults() if eList: if eListTitle: plt.title(eListTitle) plt.figure() plt.plot (xList, eList) plt.xlabel(xLabel) plt.ylabel(eLabel) plt.draw() plt.savefig('eplot.jpg',format='jpg') # Image.open('testplot.jpg').save('eplot.jpg','JPEG') if fList: if fListTitle: plt.title(fListTitle) plt.figure() plt.plot (xList, fList) plt.xlabel(xLabel) plt.ylabel(fLabel) plt.draw() plt.savefig('fplot.jpg',format='jpg') # Image.open('fplot.jpg').save('fplot.jpg','JPEG') if eList or fList: plt.show() # pretty print a cm that the C def pp_cm(jcm, header=None): # header = jcm['header'] # hack col index header for now..where do we get it? header = ['"%s"'%i for i in range(len(jcm[0]))] # cm = ' '.join(header) cm = '{0:<8}'.format('') for h in header: cm = '{0}|{1:<8}'.format(cm, h) cm = '{0}|{1:<8}'.format(cm, 'error') c = 0 for line in jcm: lineSum = sum(line) if c < 0 or c >= len(line): raise Exception("Error in h2o_gbm.pp_cm. c: %s line: %s len(line): %s jcm: %s" % (c, line, len(line), dump_json(jcm))) print "c:", c, "line:", line errorSum = lineSum - line[c] if (lineSum>0): err = float(errorSum) / lineSum else: err = 0.0 fl = '{0:<8}'.format(header[c]) for num in line: fl = '{0}|{1:<8}'.format(fl, num) fl = '{0}|{1:<8.2f}'.format(fl, err) cm = "{0}\n{1}".format(cm, fl) c += 1 return cm def pp_cm_summary(cm): # hack cut and past for now (should be in h2o_gbm.py? scoresList = cm totalScores = 0 totalRight = 0 # individual scores can be all 0 if nothing for that output class # due to sampling classErrorPctList = [] predictedClassDict = {} # may be missing some? so need a dict? for classIndex,s in enumerate(scoresList): classSum = sum(s) if classSum == 0 : # why would the number of scores for a class be 0? # in any case, tolerate. (it shows up in test.py on poker100) print "classIndex:", classIndex, "classSum", classSum, "<- why 0?" else: if classIndex >= len(s): print "Why is classindex:", classIndex, 'for s:"', s else: # H2O should really give me this since it's in the browser, but it doesn't classRightPct = ((s[classIndex] + 0.0)/classSum) * 100 totalRight += s[classIndex] classErrorPct = 100 - classRightPct classErrorPctList.append(classErrorPct) ### print "s:", s, "classIndex:", classIndex print "class:", classIndex, "classSum", classSum, "classErrorPct:", "%4.2f" % classErrorPct # gather info for prediction summary for pIndex,p in enumerate(s): if pIndex not in predictedClassDict: predictedClassDict[pIndex] = p else: predictedClassDict[pIndex] += p totalScores += classSum print "Predicted summary:" # FIX! Not sure why we weren't working with a list..hack with dict for now for predictedClass,p in predictedClassDict.items(): print str(predictedClass)+":", p # this should equal the num rows in the dataset if full scoring? (minus any NAs) print "totalScores:", totalScores print "totalRight:", totalRight if totalScores != 0: pctRight = 100.0 * totalRight/totalScores else: pctRight = 0.0 print "pctRight:", "%5.2f" % pctRight pctWrong = 100 - pctRight print "pctWrong:", "%5.2f" % pctWrong return pctWrong # I just copied and changed GBM to GBM. Have to update to match GBM params and responses def pickRandGbmParams(paramDict, params): colX = 0 randomGroupSize = random.randint(1,len(paramDict)) for i in range(randomGroupSize): randomKey = random.choice(paramDict.keys()) randomV = paramDict[randomKey] randomValue = random.choice(randomV) params[randomKey] = randomValue # compare this glm to last one. since the files are concatenations, # the results should be similar? 10% of first is allowed delta def compareToFirstGbm(self, key, glm, firstglm): # if isinstance(firstglm[key], list): # in case it's not a list allready (err is a list) verboseprint("compareToFirstGbm key:", key) verboseprint("compareToFirstGbm glm[key]:", glm[key]) # key could be a list or not. if a list, don't want to create list of that list # so use extend on an empty list. covers all cases? if type(glm[key]) is list: kList = glm[key] firstkList = firstglm[key] elif type(glm[key]) is dict: raise Exception("compareToFirstGLm: Not expecting dict for " + key) else: kList = [glm[key]] firstkList = [firstglm[key]] for k, firstk in zip(kList, firstkList): # delta must be a positive number ? delta = .1 * abs(float(firstk)) msg = "Too large a delta (" + str(delta) + ") comparing current and first for: " + key self.assertAlmostEqual(float(k), float(firstk), delta=delta, msg=msg) self.assertGreaterEqual(abs(float(k)), 0.0, str(k) + " abs not >= 0.0 in current") def goodXFromColumnInfo(y, num_cols=None, missingValuesDict=None, constantValuesDict=None, enumSizeDict=None, colTypeDict=None, colNameDict=None, keepPattern=None, key=None, timeoutSecs=120, forRF=False, noPrint=False): y = str(y) # if we pass a key, means we want to get the info ourselves here if key is not None: (missingValuesDict, constantValuesDict, enumSizeDict, colTypeDict, colNameDict) = \ h2o_cmd.columnInfoFromInspect(key, exceptionOnMissingValues=False, max_column_display=99999999, timeoutSecs=timeoutSecs) num_cols = len(colNameDict) # now remove any whose names don't match the required keepPattern if keepPattern is not None: keepX = re.compile(keepPattern) else: keepX = None x = range(num_cols) # need to walk over a copy, cause we change x xOrig = x[:] ignore_x = [] # for use by RF for k in xOrig: name = colNameDict[k] # remove it if it has the same name as the y output if str(k)== y: # if they pass the col index as y if not noPrint: print "Removing %d because name: %s matches output %s" % (k, str(k), y) x.remove(k) # rf doesn't want it in ignore list # ignore_x.append(k) elif name == y: # if they pass the name as y if not noPrint: print "Removing %d because name: %s matches output %s" % (k, name, y) x.remove(k) # rf doesn't want it in ignore list # ignore_x.append(k) elif keepX is not None and not keepX.match(name): if not noPrint: print "Removing %d because name: %s doesn't match desired keepPattern %s" % (k, name, keepPattern) x.remove(k) ignore_x.append(k) # missing values reports as constant also. so do missing first. # remove all cols with missing values # could change it against num_rows for a ratio elif k in missingValuesDict: value = missingValuesDict[k] if not noPrint: print "Removing %d with name: %s because it has %d missing values" % (k, name, value) x.remove(k) ignore_x.append(k) elif k in constantValuesDict: value = constantValuesDict[k] if not noPrint: print "Removing %d with name: %s because it has constant value: %s " % (k, name, str(value)) x.remove(k) ignore_x.append(k) # this is extra pruning.. # remove all cols with enums, if not already removed elif k in enumSizeDict: value = enumSizeDict[k] if not noPrint: print "Removing %d %s because it has enums of size: %d" % (k, name, value) x.remove(k) ignore_x.append(k) if not noPrint: print "x has", len(x), "cols" print "ignore_x has", len(ignore_x), "cols" x = ",".join(map(str,x)) ignore_x = ",".join(map(str,ignore_x)) if not noPrint: print "\nx:", x print "\nignore_x:", ignore_x if forRF: return ignore_x else: return x def showGBMGridResults(GBMResult, expectedErrorMax, classification=True): # print "GBMResult:", dump_json(GBMResult) jobs = GBMResult['jobs'] print "GBM jobs:", jobs for jobnum, j in enumerate(jobs): _distribution = j['_distribution'] model_key = j['destination_key'] job_key = j['job_key'] # inspect = h2o_cmd.runInspect(key=model_key) # print "jobnum:", jobnum, dump_json(inspect) gbmTrainView = h2o_cmd.runGBMView(model_key=model_key) print "jobnum:", jobnum, dump_json(gbmTrainView) if classification: cms = gbmTrainView['gbm_model']['cms'] cm = cms[-1]['_arr'] # take the last one print "GBM cms[-1]['_predErr']:", cms[-1]['_predErr'] print "GBM cms[-1]['_classErr']:", cms[-1]['_classErr'] pctWrongTrain = pp_cm_summary(cm); if pctWrongTrain > expectedErrorMax: raise Exception("Should have < %s error here. pctWrongTrain: %s" % (expectedErrorMax, pctWrongTrain)) errsLast = gbmTrainView['gbm_model']['errs'][-1] print "\nTrain", jobnum, job_key, "\n==========\n", "pctWrongTrain:", pctWrongTrain, "errsLast:", errsLast print "GBM 'errsLast'", errsLast print pp_cm(cm) else: print "\nTrain", jobnum, job_key, "\n==========\n", "errsLast:", errsLast print "GBMTrainView errs:", gbmTrainView['gbm_model']['errs'] def simpleCheckGBMView(node=None, gbmv=None, noPrint=False, **kwargs): if not node: node = h2o_nodes.nodes[0] if 'warnings' in gbmv: warnings = gbmv['warnings'] # catch the 'Failed to converge" for now for w in warnings: if not noPrint: print "\nwarning:", w if ('Failed' in w) or ('failed' in w): raise Exception(w) if 'cm' in gbmv: cm = gbmv['cm'] # only one else: if 'gbm_model' in gbmv: gbm_model = gbmv['gbm_model'] else: raise Exception("no gbm_model in gbmv? %s" % dump_json(gbmv)) cms = gbm_model['cms'] print "number of cms:", len(cms) print "FIX! need to add reporting of h2o's _perr per class error" # FIX! what if regression. is rf only classification? print "cms[-1]['_arr']:", cms[-1]['_arr'] print "cms[-1]['_predErr']:", cms[-1]['_predErr'] print "cms[-1]['_classErr']:", cms[-1]['_classErr'] ## print "cms[-1]:", dump_json(cms[-1]) ## for i,c in enumerate(cms): ## print "cm %s: %s" % (i, c['_arr']) cm = cms[-1]['_arr'] # take the last one scoresList = cm used_trees = gbm_model['N'] errs = gbm_model['errs'] print "errs[0]:", errs[0] print "errs[-1]:", errs[-1] print "errs:", errs # if we got the ntree for comparison. Not always there in kwargs though! param_ntrees = kwargs.get('ntrees',None) if (param_ntrees is not None and used_trees != param_ntrees): raise Exception("used_trees should == param_ntree. used_trees: %s" % used_trees) if (used_trees+1)!=len(cms) or (used_trees+1)!=len(errs): raise Exception("len(cms): %s and len(errs): %s should be one more than N %s trees" % (len(cms), len(errs), used_trees)) totalScores = 0 totalRight = 0 # individual scores can be all 0 if nothing for that output class # due to sampling classErrorPctList = [] predictedClassDict = {} # may be missing some? so need a dict? for classIndex,s in enumerate(scoresList): classSum = sum(s) if classSum == 0 : # why would the number of scores for a class be 0? does GBM CM have entries for non-existent classes # in a range??..in any case, tolerate. (it shows up in test.py on poker100) if not noPrint: print "class:", classIndex, "classSum", classSum, "<- why 0?" else: # H2O should really give me this since it's in the browser, but it doesn't classRightPct = ((s[classIndex] + 0.0)/classSum) * 100 totalRight += s[classIndex] classErrorPct = round(100 - classRightPct, 2) classErrorPctList.append(classErrorPct) ### print "s:", s, "classIndex:", classIndex if not noPrint: print "class:", classIndex, "classSum", classSum, "classErrorPct:", "%4.2f" % classErrorPct # gather info for prediction summary for pIndex,p in enumerate(s): if pIndex not in predictedClassDict: predictedClassDict[pIndex] = p else: predictedClassDict[pIndex] += p totalScores += classSum #**************************** if not noPrint: print "Predicted summary:" # FIX! Not sure why we weren't working with a list..hack with dict for now for predictedClass,p in predictedClassDict.items(): print str(predictedClass)+":", p # this should equal the num rows in the dataset if full scoring? (minus any NAs) print "totalScores:", totalScores print "totalRight:", totalRight if totalScores != 0: pctRight = 100.0 * totalRight/totalScores else: pctRight = 0.0 pctWrong = 100 - pctRight print "pctRight:", "%5.2f" % pctRight print "pctWrong:", "%5.2f" % pctWrong #**************************** # more testing for GBMView # it's legal to get 0's for oobe error # if sample_rate = 1 sample_rate = kwargs.get('sample_rate', None) validation = kwargs.get('validation', None) if (sample_rate==1 and not validation): pass elif (totalScores<=0 or totalScores>5e9): raise Exception("scores in GBMView seems wrong. scores:", scoresList) varimp = gbm_model['varimp'] treeStats = gbm_model['treeStats'] if not treeStats: raise Exception("treeStats not right?: %s" % dump_json(treeStats)) # print "json:", dump_json(gbmv) data_key = gbm_model['_dataKey'] model_key = gbm_model['_key'] classification_error = pctWrong if not noPrint: if 'minLeaves' not in treeStats or not treeStats['minLeaves']: raise Exception("treeStats seems to be missing minLeaves %s" % dump_json(treeStats)) print """ Leaves: {0} / {1} / {2} Depth: {3} / {4} / {5} Err: {6:0.2f} % """.format( treeStats['minLeaves'], treeStats['meanLeaves'], treeStats['maxLeaves'], treeStats['minDepth'], treeStats['meanDepth'], treeStats['maxDepth'], classification_error, ) ### modelInspect = node.inspect(model_key) dataInspect = h2o_cmd.runInspect(key=data_key) check_sandbox_for_errors() return (round(classification_error,2), classErrorPctList, totalScores)
apache-2.0
nigroup/pypet
pypet/tests/profiling/speed_analysis/storage_analysis/avg_runtima_as_function_of_length_plot_times.py
2
3376
__author__ = 'robert' from pypet import Environment, Trajectory from pypet.tests.testutils.ioutils import make_temp_dir, get_log_config import os import matplotlib.pyplot as plt import numpy as np import time import numpy as np import scipy.sparse as spsp from pycallgraph import PyCallGraph, Config, GlobbingFilter from pycallgraph.output import GraphvizOutput from pycallgraph.color import Color class CustomOutput(GraphvizOutput): def node_color(self, node): value = float(node.time.fraction) return Color.hsv(value / 2 + .5, value, 0.9) def edge_color(self, edge): value = float(edge.time.fraction) return Color.hsv(value / 2 + .5, value, 0.7) def job(traj): traj.f_ares('$set.$', 42, comment='A result') def get_runtime(length): filename = os.path.join('tmp', 'hdf5', 'many_runs.hdf5') with Environment(filename = filename, log_levels=20, report_progress=(0.0000002, 'progress', 50), overwrite_file=True, purge_duplicate_comments=False, log_stdout=False, summary_tables=False, small_overview_tables=False) as env: traj = env.v_traj traj.par.f_apar('x', 0, 'parameter') traj.f_explore({'x': range(length)}) max_run = 100 for idx in range(len(traj)): if idx > max_run: traj.f_get_run_information(idx, copy=False)['completed'] = 1 traj.f_store() if not os.path.isdir('./tmp'): os.mkdir('tmp') graphviz = CustomOutput() graphviz.output_file = './tmp/run_profile_storage_%d.png' % len(traj) service_filter = GlobbingFilter(include=['*storageservice.*']) config = Config(groups=True, verbose=True) config.trace_filter = service_filter print('RUN PROFILE') with PyCallGraph(config=config, output=graphviz): # start = time.time() # env.f_run(job) # end = time.time() for irun in range(100): traj._make_single_run(irun+len(traj)/2) # Measure start time traj._set_start() traj.f_ares('$set.$', 42, comment='A result') traj._set_finish() traj._store_final(store_data=2) traj._finalize_run() print('STARTING_to_PLOT') print('DONE RUN PROFILE') # dicts = [traj.f_get_run_information(x) for x in range(min(len(traj), max_run))] # total = end - start # return total/float(min(len(traj), max_run)), total/float(min(len(traj), max_run)) * len(traj) def main(): lengths = [1000, 1000000] runtimes = [get_runtime(x) for x in lengths] # avg_runtimes = [x[0] for x in runtimes] # summed_runtime = [x[1] for x in runtimes] # plt.subplot(2, 1, 1) # plt.semilogx(list(reversed(lengths)), list(reversed(avg_runtimes)), linewidth=2) # plt.xlabel('Runs') # plt.ylabel('t[s]') # plt.title('Average Runtime per single run') # plt.grid() # plt.subplot(2, 1, 2) # plt.loglog(lengths, summed_runtime, linewidth=2) # plt.grid() # plt.xlabel('Runs') # plt.ylabel('t[s]') # plt.title('Total runtime of experiment') # plt.savefig('avg_runtime_as_func_of_lenght_100') # plt.show() if __name__ == '__main__': main()
bsd-3-clause
JosmanPS/scikit-learn
sklearn/neighbors/tests/test_nearest_centroid.py
305
4121
""" Testing for the nearest centroid module. """ import numpy as np from scipy import sparse as sp from numpy.testing import assert_array_equal from numpy.testing import assert_equal from sklearn.neighbors import NearestCentroid from sklearn import datasets from sklearn.metrics.pairwise import pairwise_distances # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] X_csr = sp.csr_matrix(X) # Sparse matrix y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] T_csr = sp.csr_matrix(T) true_result = [-1, 1, 1] # also load the iris dataset # and randomly permute it iris = datasets.load_iris() rng = np.random.RandomState(1) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] def test_classification_toy(): # Check classification on a toy dataset, including sparse versions. clf = NearestCentroid() clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) # Same test, but with a sparse matrix to fit and test. clf = NearestCentroid() clf.fit(X_csr, y) assert_array_equal(clf.predict(T_csr), true_result) # Fit with sparse, test with non-sparse clf = NearestCentroid() clf.fit(X_csr, y) assert_array_equal(clf.predict(T), true_result) # Fit with non-sparse, test with sparse clf = NearestCentroid() clf.fit(X, y) assert_array_equal(clf.predict(T_csr), true_result) # Fit and predict with non-CSR sparse matrices clf = NearestCentroid() clf.fit(X_csr.tocoo(), y) assert_array_equal(clf.predict(T_csr.tolil()), true_result) def test_precomputed(): clf = NearestCentroid(metric="precomputed") clf.fit(X, y) S = pairwise_distances(T, clf.centroids_) assert_array_equal(clf.predict(S), true_result) def test_iris(): # Check consistency on dataset iris. for metric in ('euclidean', 'cosine'): clf = NearestCentroid(metric=metric).fit(iris.data, iris.target) score = np.mean(clf.predict(iris.data) == iris.target) assert score > 0.9, "Failed with score = " + str(score) def test_iris_shrinkage(): # Check consistency on dataset iris, when using shrinkage. for metric in ('euclidean', 'cosine'): for shrink_threshold in [None, 0.1, 0.5]: clf = NearestCentroid(metric=metric, shrink_threshold=shrink_threshold) clf = clf.fit(iris.data, iris.target) score = np.mean(clf.predict(iris.data) == iris.target) assert score > 0.8, "Failed with score = " + str(score) def test_pickle(): import pickle # classification obj = NearestCentroid() obj.fit(iris.data, iris.target) score = obj.score(iris.data, iris.target) s = pickle.dumps(obj) obj2 = pickle.loads(s) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(iris.data, iris.target) assert_array_equal(score, score2, "Failed to generate same score" " after pickling (classification).") def test_shrinkage_threshold_decoded_y(): clf = NearestCentroid(shrink_threshold=0.01) y_ind = np.asarray(y) y_ind[y_ind == -1] = 0 clf.fit(X, y_ind) centroid_encoded = clf.centroids_ clf.fit(X, y) assert_array_equal(centroid_encoded, clf.centroids_) def test_predict_translated_data(): # Test that NearestCentroid gives same results on translated data rng = np.random.RandomState(0) X = rng.rand(50, 50) y = rng.randint(0, 3, 50) noise = rng.rand(50) clf = NearestCentroid(shrink_threshold=0.1) clf.fit(X, y) y_init = clf.predict(X) clf = NearestCentroid(shrink_threshold=0.1) X_noise = X + noise clf.fit(X_noise, y) y_translate = clf.predict(X_noise) assert_array_equal(y_init, y_translate) def test_manhattan_metric(): # Test the manhattan metric. clf = NearestCentroid(metric='manhattan') clf.fit(X, y) dense_centroid = clf.centroids_ clf.fit(X_csr, y) assert_array_equal(clf.centroids_, dense_centroid) assert_array_equal(dense_centroid, [[-1, -1], [1, 1]])
bsd-3-clause
tntnatbry/tensorflow
tensorflow/contrib/learn/python/learn/dataframe/transforms/in_memory_source.py
82
6157
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Sources for numpy arrays and pandas DataFrames.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.learn.python.learn.dataframe import transform from tensorflow.contrib.learn.python.learn.dataframe.queues import feeding_functions class BaseInMemorySource(transform.TensorFlowTransform): """Abstract parent class for NumpySource and PandasSource.""" def __init__(self, data, num_threads=None, enqueue_size=None, batch_size=None, queue_capacity=None, shuffle=False, min_after_dequeue=None, seed=None, data_name="in_memory_data"): super(BaseInMemorySource, self).__init__() self._data = data self._num_threads = 1 if num_threads is None else num_threads self._batch_size = (32 if batch_size is None else batch_size) self._enqueue_size = max(1, int(self._batch_size / self._num_threads) ) if enqueue_size is None else enqueue_size self._queue_capacity = (self._batch_size * 10 if queue_capacity is None else queue_capacity) self._shuffle = shuffle self._min_after_dequeue = (batch_size if min_after_dequeue is None else min_after_dequeue) self._seed = seed self._data_name = data_name @transform.parameter def data(self): return self._data @transform.parameter def num_threads(self): return self._num_threads @transform.parameter def enqueue_size(self): return self._enqueue_size @transform.parameter def batch_size(self): return self._batch_size @transform.parameter def queue_capacity(self): return self._queue_capacity @transform.parameter def shuffle(self): return self._shuffle @transform.parameter def min_after_dequeue(self): return self._min_after_dequeue @transform.parameter def seed(self): return self._seed @transform.parameter def data_name(self): return self._data_name @property def input_valency(self): return 0 def _apply_transform(self, transform_input, **kwargs): queue = feeding_functions.enqueue_data(self.data, self.queue_capacity, self.shuffle, self.min_after_dequeue, num_threads=self.num_threads, seed=self.seed, name=self.data_name, enqueue_size=self.enqueue_size, num_epochs=kwargs.get("num_epochs")) dequeued = queue.dequeue_many(self.batch_size) # TODO(jamieas): dequeue and dequeue_many will soon return a list regardless # of the number of enqueued tensors. Remove the following once that change # is in place. if not isinstance(dequeued, (tuple, list)): dequeued = (dequeued,) # pylint: disable=not-callable return self.return_type(*dequeued) class NumpySource(BaseInMemorySource): """A zero-input Transform that produces a single column from a numpy array.""" @property def name(self): return "NumpySource" @property def _output_names(self): return ("index", "value") class OrderedDictNumpySource(BaseInMemorySource): """A zero-input Transform that produces Series from a dict of numpy arrays.""" def __init__(self, ordered_dict_of_arrays, num_threads=None, enqueue_size=None, batch_size=None, queue_capacity=None, shuffle=False, min_after_dequeue=None, seed=None, data_name="pandas_data"): if "index" in ordered_dict_of_arrays.keys(): raise ValueError("Column name `index` is reserved.") super(OrderedDictNumpySource, self).__init__(ordered_dict_of_arrays, num_threads, enqueue_size, batch_size, queue_capacity, shuffle, min_after_dequeue, seed, data_name) @property def name(self): return "OrderedDictNumpySource" @property def _output_names(self): return tuple(["index"] + list(self._data.keys())) class PandasSource(BaseInMemorySource): """A zero-input Transform that produces Series from a DataFrame.""" def __init__(self, dataframe, num_threads=None, enqueue_size=None, batch_size=None, queue_capacity=None, shuffle=False, min_after_dequeue=None, seed=None, data_name="pandas_data"): if "index" in dataframe.columns: raise ValueError("Column name `index` is reserved.") super(PandasSource, self).__init__(dataframe, num_threads, enqueue_size, batch_size, queue_capacity, shuffle, min_after_dequeue, seed, data_name) @property def name(self): return "PandasSource" @property def _output_names(self): return tuple(["index"] + self._data.columns.tolist())
apache-2.0
AlexanderFabisch/scikit-learn
sklearn/metrics/tests/test_score_objects.py
17
14051
import pickle import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import assert_true from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_not_equal from sklearn.base import BaseEstimator from sklearn.metrics import (f1_score, r2_score, roc_auc_score, fbeta_score, log_loss, precision_score, recall_score) from sklearn.metrics.cluster import adjusted_rand_score from sklearn.metrics.scorer import (check_scoring, _PredictScorer, _passthrough_scorer) from sklearn.metrics import make_scorer, get_scorer, SCORERS from sklearn.svm import LinearSVC from sklearn.pipeline import make_pipeline from sklearn.cluster import KMeans from sklearn.dummy import DummyRegressor from sklearn.linear_model import Ridge, LogisticRegression from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.datasets import make_blobs from sklearn.datasets import make_classification from sklearn.datasets import make_multilabel_classification from sklearn.datasets import load_diabetes from sklearn.model_selection import train_test_split, cross_val_score from sklearn.model_selection import GridSearchCV from sklearn.multiclass import OneVsRestClassifier REGRESSION_SCORERS = ['r2', 'mean_absolute_error', 'mean_squared_error', 'median_absolute_error'] CLF_SCORERS = ['accuracy', 'f1', 'f1_weighted', 'f1_macro', 'f1_micro', 'roc_auc', 'average_precision', 'precision', 'precision_weighted', 'precision_macro', 'precision_micro', 'recall', 'recall_weighted', 'recall_macro', 'recall_micro', 'log_loss', 'adjusted_rand_score' # not really, but works ] MULTILABEL_ONLY_SCORERS = ['precision_samples', 'recall_samples', 'f1_samples'] class EstimatorWithoutFit(object): """Dummy estimator to test check_scoring""" pass class EstimatorWithFit(BaseEstimator): """Dummy estimator to test check_scoring""" def fit(self, X, y): return self class EstimatorWithFitAndScore(object): """Dummy estimator to test check_scoring""" def fit(self, X, y): return self def score(self, X, y): return 1.0 class EstimatorWithFitAndPredict(object): """Dummy estimator to test check_scoring""" def fit(self, X, y): self.y = y return self def predict(self, X): return self.y class DummyScorer(object): """Dummy scorer that always returns 1.""" def __call__(self, est, X, y): return 1 def test_check_scoring(): # Test all branches of check_scoring estimator = EstimatorWithoutFit() pattern = (r"estimator should a be an estimator implementing 'fit' method," r" .* was passed") assert_raises_regexp(TypeError, pattern, check_scoring, estimator) estimator = EstimatorWithFitAndScore() estimator.fit([[1]], [1]) scorer = check_scoring(estimator) assert_true(scorer is _passthrough_scorer) assert_almost_equal(scorer(estimator, [[1]], [1]), 1.0) estimator = EstimatorWithFitAndPredict() estimator.fit([[1]], [1]) pattern = (r"If no scoring is specified, the estimator passed should have" r" a 'score' method\. The estimator .* does not\.") assert_raises_regexp(TypeError, pattern, check_scoring, estimator) scorer = check_scoring(estimator, "accuracy") assert_almost_equal(scorer(estimator, [[1]], [1]), 1.0) estimator = EstimatorWithFit() scorer = check_scoring(estimator, "accuracy") assert_true(isinstance(scorer, _PredictScorer)) estimator = EstimatorWithFit() scorer = check_scoring(estimator, allow_none=True) assert_true(scorer is None) def test_check_scoring_gridsearchcv(): # test that check_scoring works on GridSearchCV and pipeline. # slightly redundant non-regression test. grid = GridSearchCV(LinearSVC(), param_grid={'C': [.1, 1]}) scorer = check_scoring(grid, "f1") assert_true(isinstance(scorer, _PredictScorer)) pipe = make_pipeline(LinearSVC()) scorer = check_scoring(pipe, "f1") assert_true(isinstance(scorer, _PredictScorer)) # check that cross_val_score definitely calls the scorer # and doesn't make any assumptions about the estimator apart from having a # fit. scores = cross_val_score(EstimatorWithFit(), [[1], [2], [3]], [1, 0, 1], scoring=DummyScorer()) assert_array_equal(scores, 1) def test_make_scorer(): # Sanity check on the make_scorer factory function. f = lambda *args: 0 assert_raises(ValueError, make_scorer, f, needs_threshold=True, needs_proba=True) def test_classification_scores(): # Test classification scorers. X, y = make_blobs(random_state=0, centers=2) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = LinearSVC(random_state=0) clf.fit(X_train, y_train) for prefix, metric in [('f1', f1_score), ('precision', precision_score), ('recall', recall_score)]: score1 = get_scorer('%s_weighted' % prefix)(clf, X_test, y_test) score2 = metric(y_test, clf.predict(X_test), pos_label=None, average='weighted') assert_almost_equal(score1, score2) score1 = get_scorer('%s_macro' % prefix)(clf, X_test, y_test) score2 = metric(y_test, clf.predict(X_test), pos_label=None, average='macro') assert_almost_equal(score1, score2) score1 = get_scorer('%s_micro' % prefix)(clf, X_test, y_test) score2 = metric(y_test, clf.predict(X_test), pos_label=None, average='micro') assert_almost_equal(score1, score2) score1 = get_scorer('%s' % prefix)(clf, X_test, y_test) score2 = metric(y_test, clf.predict(X_test), pos_label=1) assert_almost_equal(score1, score2) # test fbeta score that takes an argument scorer = make_scorer(fbeta_score, beta=2) score1 = scorer(clf, X_test, y_test) score2 = fbeta_score(y_test, clf.predict(X_test), beta=2) assert_almost_equal(score1, score2) # test that custom scorer can be pickled unpickled_scorer = pickle.loads(pickle.dumps(scorer)) score3 = unpickled_scorer(clf, X_test, y_test) assert_almost_equal(score1, score3) # smoke test the repr: repr(fbeta_score) def test_regression_scorers(): # Test regression scorers. diabetes = load_diabetes() X, y = diabetes.data, diabetes.target X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = Ridge() clf.fit(X_train, y_train) score1 = get_scorer('r2')(clf, X_test, y_test) score2 = r2_score(y_test, clf.predict(X_test)) assert_almost_equal(score1, score2) def test_thresholded_scorers(): # Test scorers that take thresholds. X, y = make_blobs(random_state=0, centers=2) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = LogisticRegression(random_state=0) clf.fit(X_train, y_train) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, clf.decision_function(X_test)) score3 = roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1]) assert_almost_equal(score1, score2) assert_almost_equal(score1, score3) logscore = get_scorer('log_loss')(clf, X_test, y_test) logloss = log_loss(y_test, clf.predict_proba(X_test)) assert_almost_equal(-logscore, logloss) # same for an estimator without decision_function clf = DecisionTreeClassifier() clf.fit(X_train, y_train) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1]) assert_almost_equal(score1, score2) # test with a regressor (no decision_function) reg = DecisionTreeRegressor() reg.fit(X_train, y_train) score1 = get_scorer('roc_auc')(reg, X_test, y_test) score2 = roc_auc_score(y_test, reg.predict(X_test)) assert_almost_equal(score1, score2) # Test that an exception is raised on more than two classes X, y = make_blobs(random_state=0, centers=3) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf.fit(X_train, y_train) assert_raises(ValueError, get_scorer('roc_auc'), clf, X_test, y_test) def test_thresholded_scorers_multilabel_indicator_data(): # Test that the scorer work with multilabel-indicator format # for multilabel and multi-output multi-class classifier X, y = make_multilabel_classification(allow_unlabeled=False, random_state=0) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) # Multi-output multi-class predict_proba clf = DecisionTreeClassifier() clf.fit(X_train, y_train) y_proba = clf.predict_proba(X_test) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, np.vstack(p[:, -1] for p in y_proba).T) assert_almost_equal(score1, score2) # Multi-output multi-class decision_function # TODO Is there any yet? clf = DecisionTreeClassifier() clf.fit(X_train, y_train) clf._predict_proba = clf.predict_proba clf.predict_proba = None clf.decision_function = lambda X: [p[:, 1] for p in clf._predict_proba(X)] y_proba = clf.decision_function(X_test) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, np.vstack(p for p in y_proba).T) assert_almost_equal(score1, score2) # Multilabel predict_proba clf = OneVsRestClassifier(DecisionTreeClassifier()) clf.fit(X_train, y_train) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, clf.predict_proba(X_test)) assert_almost_equal(score1, score2) # Multilabel decision function clf = OneVsRestClassifier(LinearSVC(random_state=0)) clf.fit(X_train, y_train) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, clf.decision_function(X_test)) assert_almost_equal(score1, score2) def test_unsupervised_scorers(): # Test clustering scorers against gold standard labeling. # We don't have any real unsupervised Scorers yet. X, y = make_blobs(random_state=0, centers=2) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) km = KMeans(n_clusters=3) km.fit(X_train) score1 = get_scorer('adjusted_rand_score')(km, X_test, y_test) score2 = adjusted_rand_score(y_test, km.predict(X_test)) assert_almost_equal(score1, score2) @ignore_warnings def test_raises_on_score_list(): # Test that when a list of scores is returned, we raise proper errors. X, y = make_blobs(random_state=0) f1_scorer_no_average = make_scorer(f1_score, average=None) clf = DecisionTreeClassifier() assert_raises(ValueError, cross_val_score, clf, X, y, scoring=f1_scorer_no_average) grid_search = GridSearchCV(clf, scoring=f1_scorer_no_average, param_grid={'max_depth': [1, 2]}) assert_raises(ValueError, grid_search.fit, X, y) @ignore_warnings def test_scorer_sample_weight(): # Test that scorers support sample_weight or raise sensible errors # Unlike the metrics invariance test, in the scorer case it's harder # to ensure that, on the classifier output, weighted and unweighted # scores really should be unequal. X, y = make_classification(random_state=0) _, y_ml = make_multilabel_classification(n_samples=X.shape[0], random_state=0) split = train_test_split(X, y, y_ml, random_state=0) X_train, X_test, y_train, y_test, y_ml_train, y_ml_test = split sample_weight = np.ones_like(y_test) sample_weight[:10] = 0 # get sensible estimators for each metric sensible_regr = DummyRegressor(strategy='median') sensible_regr.fit(X_train, y_train) sensible_clf = DecisionTreeClassifier(random_state=0) sensible_clf.fit(X_train, y_train) sensible_ml_clf = DecisionTreeClassifier(random_state=0) sensible_ml_clf.fit(X_train, y_ml_train) estimator = dict([(name, sensible_regr) for name in REGRESSION_SCORERS] + [(name, sensible_clf) for name in CLF_SCORERS] + [(name, sensible_ml_clf) for name in MULTILABEL_ONLY_SCORERS]) for name, scorer in SCORERS.items(): if name in MULTILABEL_ONLY_SCORERS: target = y_ml_test else: target = y_test try: weighted = scorer(estimator[name], X_test, target, sample_weight=sample_weight) ignored = scorer(estimator[name], X_test[10:], target[10:]) unweighted = scorer(estimator[name], X_test, target) assert_not_equal(weighted, unweighted, msg="scorer {0} behaves identically when " "called with sample weights: {1} vs " "{2}".format(name, weighted, unweighted)) assert_almost_equal(weighted, ignored, err_msg="scorer {0} behaves differently when " "ignoring samples and setting sample_weight to" " 0: {1} vs {2}".format(name, weighted, ignored)) except TypeError as e: assert_true("sample_weight" in str(e), "scorer {0} raises unhelpful exception when called " "with sample weights: {1}".format(name, str(e)))
bsd-3-clause
zmlabe/IceVarFigs
Scripts/SeaIce/NSIDCseaice_quartiles.py
1
7079
""" Reads in current year's Arctic sea ice extent from Sea Ice Index 3 (NSIDC) Website : ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/north/daily/data/ Author : Zachary M. Labe Date : 5 September 2016 """ ### Import modules import numpy as np import urllib.request import urllib as UL import datetime import matplotlib.pyplot as plt ### Directory and time directoryfigure = './Figures/' now = datetime.datetime.now() currentmn = str(now.month) currentdy = str(now.day) currentyr = str(now.year) currenttime = currentmn + '_' + currentdy + '_' + currentyr currentdoy = now.timetuple().tm_yday ### Load url url = 'ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/north/daily/data/' \ 'N_seaice_extent_daily_v3.0.csv' ### Read file raw_data = UL.request.urlopen(url) dataset = np.genfromtxt(raw_data, skip_header=2,delimiter=',', usecols=[0,1,2,3,4]) print('\nCompleted: Read sea ice data!') ### Set missing data to nan dataset[np.where(dataset==-9999)] = np.nan ### Variables year = dataset[:,0] month = dataset[:,1] day = dataset[:,2] ice = dataset[:,3] missing = dataset[:,4] ### Call present year yr2018 = np.where(year == 2018)[0] ice18 = ice[yr2018] ### Ice Conversion iceval = ice18 * 1e6 ### Printing info print('\n----- NSIDC Arctic Sea Ice -----') print('Current Date =', now.strftime("%Y-%m-%d %H:%M"), '\n') print('SIE Date = %s/%s/%s' % (int(month[-1]),int(day[-1]),int(year[-1]))) print('Current SIE = %s km^2 \n' % (iceval[-1])) print('1-day change SIE = %s km^2' % (iceval[-1]-iceval[-2])) print('7-day change SIE = %s km^2 \n' % (iceval[-1]-iceval[-8])) ########################################################################### ########################################################################### ########################################################################### ### Reads in 1981-2010 means ### Load url url2 = 'ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/north/daily/data/' \ 'N_seaice_extent_climatology_1981-2010_v3.0.csv' ### Read file raw_data2 = UL.request.urlopen(url2) dataset2 = np.genfromtxt(raw_data2, skip_header=2,delimiter=',', usecols=[0,1,2,3,4,5,6,7]) ### Create variables doy = dataset2[:,0] meanice = dataset2[:,1] * 1e6 std = dataset2[:,2] ### Quartiles quartile10 = dataset2[:,3] quartile25 = dataset2[:,4] quartile50 = dataset2[:,5] quartile75 = dataset2[:,6] quartile90 = dataset2[:,7] ### Anomalies currentanom = iceval[-1]-meanice[currentdoy-2] ### Printing info print('Current anomaly = %s km^2 \n' % currentanom) ### Selected other years for comparisons yr2007 = np.where(year == 2007)[0] yr2012 = np.where(year == 2012)[0] yr2016 = np.where(year == 2016)[0] sie7 = ice[yr2007] sie12 = ice[yr2012] sie16 = ice[yr2016] ########################################################################### ########################################################################### ########################################################################### ### Create plot plt.rc('text',usetex=True) plt.rc('font',**{'family':'sans-serif','sans-serif':['Avant Garde']}) plt.rc('savefig',facecolor='black') plt.rc('axes',edgecolor='white') plt.rc('xtick',color='white') plt.rc('ytick',color='white') plt.rc('axes',labelcolor='white') plt.rc('axes',facecolor='black') fig = plt.figure() ax = plt.subplot(111) xlabels = [r'Jan',r'Feb',r'Mar',r'Apr',r'May',r'Jun',r'Jul', r'Aug',r'Sep',r'Oct',r'Nov',r'Dec',r'Jan'] plt.xticks(np.arange(0,361,30.4),xlabels,rotation=0) ylabels = map(str,np.arange(2,19,2)) plt.yticks(np.arange(2,19,2),ylabels) plt.ylim([2,18]) plt.xlim([0,360]) strmonth = xlabels[int(currentmn)-1] asof = strmonth + ' ' + currentdy + ', ' + currentyr ### Adjust axes in time series plots def adjust_spines(ax, spines): for loc, spine in ax.spines.items(): if loc in spines: spine.set_position(('outward', 5)) else: spine.set_color('none') if 'left' in spines: ax.yaxis.set_ticks_position('left') else: ax.yaxis.set_ticks([]) if 'bottom' in spines: ax.xaxis.set_ticks_position('bottom') else: ax.xaxis.set_ticks([]) ax.tick_params('both',length=5.5,width=2,which='major') adjust_spines(ax, ['left','bottom']) ax.spines['top'].set_color('none') ax.spines['right'].set_color('none') ax.spines['bottom'].set_linewidth(2) ax.spines['left'].set_linewidth(2) upper2std = (meanice/1e6)+(std*2) lower2std = (meanice/1e6)-(std*2) ax.grid(zorder=1,color='w',alpha=0.2) plt.plot(ice18,linewidth=1.8,color='aqua',zorder=9,label=r'Current Year (2018)') plt.plot(doy,upper2std,color='white',alpha=0.7,zorder=3,linewidth=0.1) plt.plot(doy,lower2std,color='white',alpha=0.7,zorder=4,linewidth=0.1) plt.plot(doy,quartile10,color='m',alpha=0.7,zorder=3,linewidth=0.4) plt.plot(doy,quartile25,color='cornflowerblue',alpha=0.7,zorder=4,linewidth=0.4) plt.plot(doy,quartile75,color='cornflowerblue',alpha=0.7,zorder=4,linewidth=0.4) plt.plot(doy,quartile90,color='m',alpha=0.7,zorder=3,linewidth=0.4) ax.fill_between(doy, lower2std, upper2std, facecolor='white', alpha=0.35, label=r'$\pm$2 standard deviations',zorder=2) plt.plot(doy,quartile50,color='gold',alpha=1,zorder=3,linewidth=2, label=r'Median (1981-2010)') ax.fill_between(doy, quartile90, quartile75, facecolor='m', alpha=0.55, label=r'10-90th percentiles',zorder=2) ax.fill_between(doy, quartile10, quartile25, facecolor='m', alpha=0.55, zorder=2) ax.fill_between(doy, quartile25, quartile50, facecolor='cornflowerblue', alpha=0.6, zorder=2) ax.fill_between(doy, quartile50, quartile75, facecolor='cornflowerblue', alpha=0.6, label=r'25-75th percentiles',zorder=2) plt.scatter(doy[currentdoy-3],ice[-1],s=10,color='aqua',zorder=9) plt.ylabel(r'\textbf{Extent} [$\times$10$^{6}$ km$^2$]',fontsize=15, color='darkgrey') le = plt.legend(shadow=False,fontsize=6,loc='upper left', bbox_to_anchor=(0.473, 1.011),fancybox=True,ncol=2) for text in le.get_texts(): text.set_color('w') plt.title(r'\textbf{ARCTIC SEA ICE}', fontsize=21,color='darkgrey') plt.text(doy[currentdoy]-5,ice[-1]-1.35,r'\textbf{2018}', fontsize=13.5,rotation='horizontal',ha='left',color='aqua') plt.text(0.5,3.1,r'\textbf{DATA:} National Snow \& Ice Data Center, Boulder CO', fontsize=5.5,rotation='horizontal',ha='left',color='darkgrey') plt.text(0.5,2.6,r'\textbf{SOURCE:} ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/', fontsize=5.5,rotation='horizontal',ha='left',color='darkgrey') plt.text(0.5,2.1,r'\textbf{GRAPHIC:} Zachary Labe (@ZLabe)', fontsize=5.5,rotation='horizontal',ha='left',color='darkgrey') fig.subplots_adjust(top=0.91) ### Save figure plt.savefig(directoryfigure + 'nsidc_sie_quartiles_currentyear.png',dpi=300)
mit
csyhuang/hn2016_falwa
hn2016_falwa/beta_version.py
1
20465
def input_jk_output_index(j,k,kmax): return j*(kmax) + k def extrap1d(interpolator): xs = interpolator.x ys = interpolator.y def pointwise(x): if x < xs[0]: return ys[0]+(x-xs[0])*(ys[1]-ys[0])/(xs[1]-xs[0]) elif x > xs[-1]: return ys[-1]+(x-xs[-1])*(ys[-1]-ys[-2])/(xs[-1]-xs[-2]) else: return interpolator(x) def ufunclike(xs): from scipy import array return array(map(pointwise, array(xs))) return ufunclike def solve_uref_both_bc(tstamp, zmum, FAWA_cos, ylat, ephalf2, Delta_PT, zm_PT, Input_B0, Input_B1, use_real_Data=True, plot_all_ref_quan=False): """ Compute equivalent latitude and wave activity on a barotropic sphere. Parameters ---------- tstamp : string Time stamp of the snapshot of the field. znum : ndarray Zonal mean wind. FAWA_cos : ndarray Zonal mean finite-amplitude wave activity. ylat : sequence or array_like 1-d numpy array of latitude (in degree) with equal spacing in ascending order; dimension = nlat. ephalf2 : ndarray Epsilon in Nakamura and Solomon (2010). Delta_PT : ndarray \Delta \Theta in Nakamura and Solomon (2010); upper-boundary conditions. zm_PT : ndarray Zonal mean potential temperature. Input_B0 : sequence or array_like Zonal-mean surface wave activity for the lowest layer (k=0). Part of the lower-boundary condition. Input_B1 : sequence or array_like Zonal-mean surface wave activity for the second lowest layer (k=1). Part of the lower-boundary condition. use_real_Data : boolean Whether to use input data to compute the reference states. By detault True. If false, randomly generated arrays will be used. plot_all_ref_quan : boolean Whether to plot the solved reference states using matplotlib library. By default False. For debugging. Returns ------- u_MassCorr_regular_noslip : ndarray 2-d numpy array of mass correction \Delta u in NS10 with no-slip lower boundary conditions; dimension = (kmax,nlat). u_Ref_regular_noslip : ndarray 2-d numpy array of zonal wind reference state u_ref in NS10 with no-slip lower boundary conditions; dimension = (kmax,nlat). T_MassCorr_regular_noslip : ndarray 2-d numpy array of adjustment in reference temperature \Delta T in NS10 with no-slip lower boundary conditions; dimension = (kmax,nlat). T_Ref_regular_noslip : ndarray 2-d numpy array of adjustment in reference temperature T_ref in NS10 with no-slip lower boundary conditions; dimension = (kmax,nlat). u_MassCorr_regular_adiab : ndarray 2-d numpy array of mass correction \Delta u in NS10 with adiabatic lower boundary conditions; dimension = (kmax,nlat). u_Ref_regular_adiab : ndarray 2-d numpy array of zonal wind reference state u_ref in NS10 with adiabatic lower boundary conditions; dimension = (kmax,nlat). T_MassCorr_regular_adiab : ndarray 2-d numpy array of adjustment in reference temperature \Delta T in NS10 with adiabatic lower boundary conditions; dimension = (kmax,nlat). T_Ref_regular_adiab : ndarray 2-d numpy array of adjustment in reference temperature T_ref in NS10 with adiabatic lower boundary conditions; dimension = (kmax,nlat). """ # zm_PT = zonal mean potential temperature # Import necessary modules from math import pi, exp from scipy import interpolate from scipy.sparse import csc_matrix from scipy.sparse.linalg import spsolve from copy import copy import numpy as np import itertools if plot_all_ref_quan: import matplotlib.pyplot as plt # === Parameters (should be input externally. To be modified) === dz = 1000. # vertical z spacing (m) aa = 6378000. # planetary radius r0 = 287. # gas constant hh = 7000. # scale height cp = 1004. # specific heat rkappa = r0/cp om = 7.29e-5 # angular velocity of the earth # === These changes with input variables' dimensions === nlat = FAWA_cos.shape[-1] jmax1 = nlat//4 dm = 1./float(jmax1+1) # gaussian latitude spacing gl = np.array([(j+1)*dm for j in range(jmax1)]) # This is sin / mu gl_2 = np.array([j*dm for j in range(jmax1+2)]) # This is sin / mu cosl = np.sqrt(1.-gl**2) #cosl_2 = np.sqrt(1.-gl_2**2) alat = np.arcsin(gl)*180./pi alat_2 = np.arcsin(gl_2)*180./pi dmdz = (dm/dz) # **** Get from input these parameters **** kmax = FAWA_cos.shape[0] #height = np.array([i for i in range(kmax)]) # in [km] # **** Initialize Coefficients **** c_a = np.zeros((jmax1, kmax)) c_b = np.zeros((jmax1, kmax)) c_c = np.zeros((jmax1, kmax)) c_d = np.zeros((jmax1, kmax)) c_e = np.zeros((jmax1, kmax)) c_f = np.zeros((jmax1, kmax)) # --- Initialize interpolated variables --- zmu1 = np.zeros((jmax1, kmax)) cx1 = np.zeros((jmax1, kmax)) cor1 = np.zeros((jmax1, kmax)) ephalf = np.zeros((jmax1, kmax)) Delta_PT1 = np.zeros((jmax1+2)) zm_PT1 = np.zeros((jmax1, kmax)) Input_B0_1 = np.zeros((jmax1+2)) Input_B1_1 = np.zeros((jmax1+2)) # --- Define Epsilon as a function of y and z --- # **** Interpolate to gaussian latitude **** if use_real_Data: # print 'use_real_Data' for vv1,vvm in zip([zmu1,cx1,zm_PT1] , [zmum,FAWA_cos,zm_PT]): f_toGaussian = interpolate.interp1d(ylat[:],vvm[:,:].T,axis=0, kind='linear') #[jmax x kmax] vv1[:,:] = f_toGaussian(alat[:]) #vv1[:,:] = vvm[:,:] #vv1[-1,:] = vvm[:,-1] # --- Interpolation of ephalf --- f_ep_toGaussian = interpolate.interp1d(ylat[:],ephalf2[:,:].T,axis=0, kind='linear') #[jmax x kmax] ephalf[:,:] = f_ep_toGaussian(alat[:]) # --- Interpolation of Delta_PT --- #f_DT_toGaussian = extrap1d( interpolate.interp1d(ylat[:],Delta_PT[:], kind='linear') ) # This is txt in Noboru's code f_DT_toGaussian = interpolate.interp1d(ylat[:],Delta_PT[:], kind='linear',fill_value='extrapolate') Delta_PT1[:] = f_DT_toGaussian(alat_2[:]) # --- Interpolation of Input_B0_1 --- #f_B0_toGaussian = extrap1d( interpolate.interp1d(ylat[:],Input_B0[:], kind='linear') ) # This is txt in Noboru's code f_B0_toGaussian = interpolate.interp1d(ylat[:],Input_B0[:], kind='linear',fill_value='extrapolate') # This is txt in Noboru's code Input_B0_1[:] = f_B0_toGaussian(alat_2[:]) # --- Interpolation of Input_B1_1 --- # f_B1_toGaussian = extrap1d( interpolate.interp1d(ylat[:],Input_B1[:], kind='linear') ) # This is txt in Noboru's code f_B1_toGaussian = interpolate.interp1d(ylat[:],Input_B1[:], kind='linear',fill_value='extrapolate') # This is txt in Noboru's code Input_B1_1[:] = f_B1_toGaussian(alat_2[:]) else: # Use random matrix here just to test! zmu1 = np.random.rand(jmax1, kmax)+np.ones((jmax1, kmax))*1.e-8 cx1 = np.random.rand(jmax1, kmax)+np.ones((jmax1, kmax))*1.e-8 #cor1 = np.random.rand(jmax1, kmax)+np.ones((jmax1, kmax))*1.e-8 # --- Added on Aug 1, 2016 --- cor1 = 2.*om*gl[:,np.newaxis] * np.ones((jmax1, kmax)) #cor1[0] = cor1[1]*0.5 # OLD: qxx0 = -cx1*cosl[:,np.newaxis]/cor1 #qxx0 = np.empty((jmax1, kmax)) qxx0 = -cx1/cor1 # Input of LWA has cosine. c_f[0,:] = qxx0[1,:] - 2*qxx0[0,:] c_f[-1,:] = qxx0[-2,:] - 2*qxx0[-1,:] c_f[1:-1,:] = qxx0[:-2,:] + qxx0[2:,:] - 2*qxx0[1:-1,:] #c_f[:,0] = 0.0 # --- Aug 9: Lower Adiabatic boundary conditions --- Input_dB0 = np.zeros((jmax1)) Input_dB1 = np.zeros((jmax1)) uz1 = np.zeros((jmax1)) # prefac = - r0 * cosl[1:-1]**2 * dz / (cor1[1:-1,-2]**2 * aa**2 * hh * dm**2) * exp(-rkappa*(kmax-2.)/7.) # OLD: Input_dB0[:] = Input_B0_1[:-2]*cosl_2[:-2] + Input_B0_1[2:]*cosl_2[2:] - 2*Input_B0_1[1:-1]*cosl_2[1:-1] Input_dB0[:] = Input_B0_1[:-2] + Input_B0_1[2:] - 2*Input_B0_1[1:-1] # OLD: Input_dB1[:] = Input_B1_1[:-2]*cosl_2[:-2] + Input_B1_1[2:]*cosl_2[2:] - 2*Input_B1_1[1:-1]*cosl_2[1:-1] Input_dB1[:] = Input_B1_1[:-2] + Input_B1_1[2:] - 2*Input_B1_1[1:-1] # This is supposed to be correct but gave weird results. uz1[:] = - r0 * cosl[:]**2 * Input_dB1[:] * 2*dz / (cor1[:,1]**2 * aa**2 * hh * dm**2) * exp(-rkappa*(1.)/7.) \ - r0 * cosl[:]**2 * Input_dB0[:] * 2*dz / (cor1[:,0]**2 * aa**2 * hh * dm**2) * exp(-rkappa*(0.)/7.) # **** Upper Boundary Condition (Come back later) **** uz2 = np.zeros((jmax1)) dDelta_PT1 = (Delta_PT1[2:]-Delta_PT1[:-2]) # Numerical trick: Replace uz2[1] with an extrapolated value # Original correct one: # uz2[1:-1] = - r0 * cosl[1:-1]**2 * exp(-rkappa*(kmax-2.)/7.) * dDelta_PT1 / (cor1[1:-1,-2]**2 * aa * hh * dmdz) uz2[:] = - r0 * cosl[:]**2 * exp(-rkappa*(kmax-2.)/7.) * dDelta_PT1 / (cor1[:,-2]**2 * aa * hh * dmdz) # **** Initialize the coefficients a,b,c,d,e,f **** c_a[:,:] = 1.0 c_b[:,:] = 1.0 c_c[:,1:-1] = dmdz**2 *ephalf[:,1:-1]*exp(-dz/(2*hh)) # This one should be correct c_d[:,1:-1] = dmdz**2 *ephalf[:,0:-2]*exp(dz/(2*hh)) # Check convention of ephalf c_e[:,1:-1] = -(c_a[:,1:-1]+c_b[:,1:-1]+c_c[:,1:-1]+c_d[:,1:-1]) b = np.zeros((jmax1*kmax)) row_index=[] col_index=[] coeff = [] jrange = range(jmax1) krange = range(1,kmax-1) for j, k in itertools.product(jrange, krange): # for j in range(jmax1): # for k in range(1,kmax-1): ind = input_jk_output_index(j,k,kmax) b[ind] = c_f[j,k] if (j<jmax1-1): # A[ind,input_jk_output_index(j+1,k,kmax)] = c_a[j,k] row_index.append(ind) col_index.append(input_jk_output_index(j+1,k,kmax)) coeff.append(c_a[j,k]) if (j>0): # A[ind,input_jk_output_index(j-1,k,kmax)] = c_b[j,k] row_index.append(ind) col_index.append(input_jk_output_index(j-1,k,kmax)) coeff.append(c_b[j,k]) # A[ind,input_jk_output_index(j,k+1,kmax)] = c_c[j,k] row_index.append(ind) col_index.append(input_jk_output_index(j,k+1,kmax)) coeff.append(c_c[j,k]) # A[ind,input_jk_output_index(j,k-1,kmax)] = c_d[j,k] row_index.append(ind) col_index.append(input_jk_output_index(j,k-1,kmax)) coeff.append(c_d[j,k]) # A[ind,input_jk_output_index(j,k,kmax)] = c_e[j,k] row_index.append(ind) col_index.append(input_jk_output_index(j,k,kmax)) coeff.append(c_e[j,k]) # ==== Upper boundary condition - thermal wind ==== # for j in range(1,jmax1-1): for j in range(jmax1): ind1 = input_jk_output_index(j,kmax-1,kmax) b[ind1] = uz2[j] #- r0 * cosl[j]**2 * exp(-rkappa*(kmax-2.)/7.) * (Delta_PT1[j+1]-Delta_PT1[j-1])/ (cor1[j,-2]**2 * aa * hh * dmdz) # A[ind1,ind1] = 1.0 row_index.append(ind1) col_index.append(ind1) coeff.append(1.0) # A[ind1,input_jk_output_index(j,kmax-3,kmax)] = -1.0 row_index.append(ind1) col_index.append(input_jk_output_index(j,kmax-3,kmax)) coeff.append(-1.0) # Try sparse matrix # print 'try sparse matrix' # A = csc_matrix((coeff_noslip, (row_index, col_index)), shape=(jmax1*kmax,jmax1*kmax)) # print 'shape of A=',A.shape # print 'Does it work?' # # csc_matrix((data, (row_ind, col_ind)), [shape=(M, N)]) # where data, row_ind and col_ind satisfy the relationship a[row_ind[k], col_ind[k]] = data[k]. # A[ind1,input_jk_output_index(j,kmax-3,kmax)] = -1.0 #uz2[1:-1] = - r0 * cosl[1:-1]**2 * exp(-rkappa*(kmax-2.)/7.) * (Delta_PT1[2:]-Delta_PT1[:-2]) / (cor1[1:-1,-2]**2 * aa * hh * dmdz) # === Make a copy to deal with adiabatic boundary condition === # A: no-slip # A_adiab: adiabatic boundary conditions row_index_adiab = copy(row_index) col_index_adiab = copy(col_index) coeff_adiab = copy(coeff) b_adiab = np.copy(b) # print 'does it work till here?' # A_adiab = np.copy(A) # ==== Lower boundary condition - adiabatic (k=0) ==== for j in range(jmax1): ind0 = input_jk_output_index(j,0,kmax) b_adiab[ind0] = uz1[j] # A_adiab[ind0,ind0] = -1.0 # k=0 row_index_adiab.append(ind0) col_index_adiab.append(ind0) coeff_adiab.append(-1.0) # A_adiab[ind0,input_jk_output_index(j,2,kmax)] = 1.0 # k=2 row_index_adiab.append(ind0) col_index_adiab.append(input_jk_output_index(j,2,kmax)) coeff_adiab.append(1.0) A_adiab = csc_matrix((coeff_adiab, (row_index_adiab, col_index_adiab)), shape=(jmax1*kmax,jmax1*kmax)) # ==== Lower boundary condition - no-slip (k=0) ==== for j in range(jmax1): ind = input_jk_output_index(j,0,kmax) b[ind] = zmu1[j,0]*cosl[j]/cor1[j,0] # A[ind,ind] = 1.0 row_index.append(ind) col_index.append(ind) coeff.append(1.0) A = csc_matrix((coeff, (row_index, col_index)), shape=(jmax1*kmax,jmax1*kmax)) # print 'is it ok till here????' # === Solving the linear system === u2_adiab = spsolve(A_adiab, b_adiab) u2 = spsolve(A, b) # === Mapping back to 2D matrix === u_adiab = np.zeros((jmax1+2,kmax)) u = np.zeros((jmax1+2,kmax)) for j in range(jmax1): for k in range(kmax): u_adiab[j+1,k] = u2_adiab[j*kmax + k] u[j+1,k] = u2[j*kmax + k] u_MassCorr_adiab = np.zeros_like(u_adiab) u_MassCorr_noslip = np.zeros_like(u) # u_MassCorr[1:-1,:] = u[1:-1,:] * cor1[1:-1,:] / cosl[1:-1,np.newaxis] u_MassCorr_adiab[1:-1,:] = u_adiab[1:-1,:] * cor1 / cosl[:,np.newaxis] u_MassCorr_noslip[1:-1,:] = u[1:-1,:] * cor1 / cosl[:,np.newaxis] # --- Initialize T_MassCorr to be output --- u_Ref_regular_adiab = np.zeros_like(zmum) u_Ref_regular_noslip = np.zeros_like(zmum) u_MassCorr_regular_adiab = np.zeros_like(zmum) u_MassCorr_regular_noslip = np.zeros_like(zmum) T_Ref_regular_adiab = np.zeros_like(zmum) T_Ref_regular_noslip = np.zeros_like(zmum) T_MassCorr_regular_adiab = np.zeros_like(zmum) T_MassCorr_regular_noslip = np.zeros_like(zmum) for u_MassCorr,u_MassCorr_regular,u_Ref_regular,T_MassCorr_regular,T_Ref_regular,BCstring in \ zip([u_MassCorr_adiab,u_MassCorr_noslip],\ [u_MassCorr_regular_adiab,u_MassCorr_regular_noslip],\ [u_Ref_regular_adiab,u_Ref_regular_noslip],\ [T_MassCorr_regular_adiab,T_MassCorr_regular_noslip],\ [T_Ref_regular_adiab,T_Ref_regular_noslip],\ ['Adiabatic','Noslip']): # ---- Back out temperature correction here ----- T_MassCorr = np.zeros_like(u_MassCorr) for k in range(1,kmax-2): for j in range(2,jmax1,2): # This is temperature not potential temperature!!! Need to check. # print 'alat['+str(j)+']=',alat[j] # T_MassCorr[j,k] = T_MassCorr[j-2,k] - (2.*om*gl[j])*aa*hh*dmdz / (r0 * cosl[j]) * (u_MassCorr[j,k+1]-u_MassCorr[j,k-1]) T_MassCorr[j,k] = T_MassCorr[j-2,k] - (2.*om*gl[j-1])*aa*hh*dmdz / (r0 * cosl[j-1]) * (u_MassCorr[j-1,k+1]-u_MassCorr[j-1,k-1]) # ---- First do interpolation (gl is regular grid) ---- # f_Todd = interpolate.interp1d(gl[:-1:2],T_MassCorr[1:-1:2,k]) #[jmax x kmax] #f_Todd = interpolate.interp1d(gl_2[::2],T_MassCorr[::2,k]) #[jmax x kmax] #f_Todd_ex = extrap1d(f_Todd) f_Todd = interpolate.interp1d(gl_2[::2],T_MassCorr[::2,k], kind='linear',fill_value='extrapolate') T_MassCorr[:,k] = f_Todd(gl_2[:]) # T_MassCorr[:,k] = f_Todd_ex(gl_2[:]) # Get all the points interpolated # ---- Then do domain average ---- T_MC_mean = np.mean(T_MassCorr[:,k]) T_MassCorr[:,k] -= T_MC_mean # --- First, interpolate MassCorr back to regular grid first --- f_u_MassCorr = interpolate.interp1d(alat_2,u_MassCorr,axis=0, kind='linear') #[jmax x kmax] u_MassCorr_regular[:,-nlat//2:] = f_u_MassCorr(ylat[-nlat//2:]).T f_T_MassCorr = interpolate.interp1d(alat_2,T_MassCorr,axis=0, kind='linear') #[jmax x kmax] T_MassCorr_regular[:,-nlat//2:] = f_T_MassCorr(ylat[-nlat//2:]).T u_Ref = zmum[:,-nlat//2:] - u_MassCorr_regular[:,-nlat//2:] T_ref = zm_PT[:,-nlat//2:] * np.exp(-np.arange(kmax)/7. * rkappa)[:,np.newaxis] - T_MassCorr_regular[:,-nlat//2:] u_Ref_regular[:,-nlat//2:] = u_Ref T_Ref_regular[:,-nlat//2:] = T_ref # #plot_all_ref_quan = False if plot_all_ref_quan: # --- height coordinate --- height = np.array([i for i in range(kmax)]) # in [km] # --- Colorbar scale --- contour_int = np.arange(-120,145,5) dT_contour_int = np.arange(-120,81,5) T_contour_int = np.arange(160,321,5) # --- Start plotting figure --- fig = plt.subplots(figsize=(12,12)) plt.subplot(221) plt.contourf(ylat[-nlat//2:],height[:-2],u_MassCorr_regular[:-2,-nlat//2:],contour_int) plt.colorbar() c1=plt.contour(ylat[-nlat//2:],height[:-2],u_MassCorr_regular[:-2,-nlat//2:],contour_int[::2],colors='k') plt.clabel(c1,c1.levels,inline=True, fmt='%d', fontsize=10) plt.title('$\Delta$ u '+tstamp) plt.ylabel('height (km)') plt.subplot(222) plt.contourf(ylat[-nlat//2:],height[:-2],u_Ref[:-2,:],contour_int) plt.colorbar() c2=plt.contour(ylat[-nlat//2:],height[:-2],u_Ref[:-2,:],contour_int[::2],colors='k') plt.clabel(c2,c2.levels,inline=True, fmt='%d', fontsize=10) plt.title('$u_{REF}$ ('+BCstring+' BC)') plt.subplot(223) plt.contourf(ylat[-nlat//2:],height[:-2],T_MassCorr_regular[:-2,-nlat//2:],dT_contour_int) plt.colorbar() c3=plt.contour(ylat[-nlat//2:],height[:-2],T_MassCorr_regular[:-2,-nlat//2:],dT_contour_int,colors='k') plt.clabel(c3,c3.levels,inline=True, fmt='%d', fontsize=10) plt.title('$\Delta$ T') plt.ylabel('height (km)') plt.subplot(224) plt.contourf(ylat[-nlat//2:],height[:-2],T_ref[:-2,:],T_contour_int) plt.colorbar() c4=plt.contour(ylat[-nlat//2:],height[:-2],T_ref[:-2,:],T_contour_int[::2],colors='k') plt.clabel(c4,c4.levels,inline=True, fmt='%d', fontsize=10) plt.title('$T_{REF}$') plt.ylabel('height (km)') plt.tight_layout() plt.show() #plt.savefig('/home/csyhuang/Dropbox/Research-code/Sep12_test3_'+BCstring+'_'+tstamp+'.png') plt.close() # This is for only outputing Delta_u and Uref for no-slip and adiabatic boundary conditions. return u_MassCorr_regular_noslip,u_Ref_regular_noslip,T_MassCorr_regular_noslip,T_Ref_regular_noslip, u_MassCorr_regular_adiab,u_Ref_regular_adiab,T_MassCorr_regular_adiab,T_Ref_regular_adiab # --- As a test whether the function Solve_Uref is working --- if __name__ == "__main__": import matplotlib.pyplot as plt import numpy as np nlat = 121 kmax = 49 jmax1 = nlat # The codes below is just for testing purpose tstamp = 'random' ylat = np.linspace(-90,90,121,endpoint=True) t1 = np.random.rand(nlat,kmax)+np.ones((nlat,kmax))*0.001 t2 = np.random.rand(nlat,kmax)+np.ones((nlat,kmax))*0.001 t3 = np.random.rand(nlat,kmax)+np.ones((nlat,kmax))*0.001 Delta_PT = np.random.rand(nlat)+np.ones((nlat))*0.001 zm_PT = np.random.rand(nlat,kmax)+np.ones((nlat,kmax))*0.001 Input_B0 = np.random.rand(nlat)+np.ones((nlat))*0.001 Input_B1 = np.random.rand(nlat)+np.ones((nlat))*0.001 eh = np.random.rand(jmax1, kmax)+np.ones((jmax1, kmax))*0.001 Delta_PT = np.sort(np.random.rand(jmax1)) xxx = solve_uref_both_bc(tstamp,t1,t2,ylat,t3,Delta_PT,zm_PT,Input_B0,Input_B1,use_real_Data=True) print(xxx)
mit
robcarver17/pysystemtrade
systems/accounts/pandl_calculators/pandl_generic_costs.py
1
3494
import pandas as pd from systems.accounts.pandl_calculators.pandl_calculation import pandlCalculation, apply_weighting curve_types = ['gross', 'net', 'costs'] GROSS_CURVE = 'gross' NET_CURVE = 'net' COSTS_CURVE = 'costs' class pandlCalculationWithGenericCosts(pandlCalculation): def weight(self, weight: pd.Series): weighted_capital = apply_weighting(weight, self.capital) weighted_positions = apply_weighting(weight, self.positions) return pandlCalculationWithGenericCosts(self.price, positions = weighted_positions, fx = self.fx, capital = weighted_capital, value_per_point = self.value_per_point, roundpositions = self.roundpositions, delayfill = self.delayfill) def as_pd_series(self, percent = False, curve_type=NET_CURVE): if curve_type==NET_CURVE: if percent: return self.net_percentage_pandl() else: return self.net_pandl_in_base_currency() elif curve_type==GROSS_CURVE: if percent: return self.percentage_pandl() else: return self.pandl_in_base_currency() elif curve_type==COSTS_CURVE: if percent: return self.costs_percentage_pandl() else: return self.costs_pandl_in_base_currency() else: raise Exception("Curve type %s not recognised! Must be one of %s" % (curve_type, curve_types)) def net_percentage_pandl(self) -> pd.Series: gross = self.percentage_pandl() costs = self.costs_percentage_pandl() net = _add_gross_and_costs(gross, costs) return net def net_pandl_in_base_currency(self) -> pd.Series: gross = self.pandl_in_base_currency() costs = self.costs_pandl_in_base_currency() net = _add_gross_and_costs(gross, costs) return net def net_pandl_in_instrument_currency(self) -> pd.Series: gross = self.pandl_in_instrument_currency() costs = self.costs_pandl_in_instrument_currency() net = _add_gross_and_costs(gross, costs) return net def net_pandl_in_points(self) -> pd.Series: gross = self.pandl_in_points() costs = self.costs_pandl_in_points() net = _add_gross_and_costs(gross, costs) return net def costs_percentage_pandl(self) -> pd.Series: costs_in_base = self.costs_pandl_in_base_currency() costs = self._percentage_pandl_given_pandl(costs_in_base) return costs def costs_pandl_in_base_currency(self) -> pd.Series: costs_in_instr_ccy = self.costs_pandl_in_instrument_currency() costs_in_base = self._base_pandl_given_currency_pandl(costs_in_instr_ccy) return costs_in_base def costs_pandl_in_instrument_currency(self) -> pd.Series: costs_in_points = self.costs_pandl_in_points() costs_in_instr_ccy = self._pandl_in_instrument_ccy_given_points_pandl(costs_in_points) return costs_in_instr_ccy def costs_pandl_in_points(self) -> pd.Series: raise NotImplementedError def _add_gross_and_costs(gross: pd.Series, costs: pd.Series): cumsum_costs = costs.cumsum() cumsum_costs_aligned = cumsum_costs.reindex(gross.index, method="ffill") costs_aligned = cumsum_costs_aligned.diff() net = gross + costs_aligned return net
gpl-3.0
SophieIPP/ipp-macro-series-parser
ipp_macro_series_parser/demographie/parser.py
1
3235
# -*- coding: utf-8 -*- # TAXIPP -- A French microsimulation model # By: IPP <taxipp@ipp.eu> # # Copyright (C) 2012, 2013, 2014, 2015 IPP # https://github.com/taxipp # # This file is part of TAXIPP. # # TAXIPP is free software; you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # TAXIPP is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import logging import os import pandas import pkg_resources from ipp_macro_series_parser.config import Config config_parser = Config( config_files_directory = os.path.join(pkg_resources.get_distribution('ipp-macro-series-parser').location) ) xls_directory = os.path.join(config_parser.get('data', 'demographie_directory'), 'xls') log = logging.getLogger(__name__) def create_demographie_data_frame(): data_frame = pandas.DataFrame() for year in range(1999, 2015 + 1): file_path = os.path.join(xls_directory, u'pyramide-des-ages-{}.xls'.format(year)) skiprows = 5 - (year == 1999) parse_cols = "A:E" slice_start = 0 slice_end = 101 sheetname = 'France' if year <= 2010: sheetnames = ['France', u'France métropolitaine'] elif year == 2011: sheetnames = ['{} France'.format(year), u"{} métropole".format(year)] else: sheetnames = ['Pyramide {} France'.format(year), u'Pyramide {} métropole'.format(year)] for sheetname in sheetnames: try: df = pandas.read_excel( file_path, # na_values = '-', sheetname = sheetname, skiprows = skiprows, parse_cols = parse_cols).iloc[slice_start:slice_end] df['year'] = year if sheetname in ['France', u'France métropolitaine']: df['champ'] = sheetname else: df['champ'] = u'France métropolitaine' if u'métropole' in sheetname else 'France' # All column name on one line remove_cr = dict( (column, column.replace(u"\n", " ").replace(" ", " ")) for column in df.columns) df.rename(columns = remove_cr, inplace = True) # Femmes _> Nombre de femmes etc df.rename(columns = dict( Femmes = "Nombre de femmes", Hommes = "Nombre d'hommes"), inplace = True) data_frame = pandas.concat((data_frame, df)) del df except Exception, e: print year print sheetname raise(e) return pandas.melt(data_frame, id_vars = ['year', 'champ', u'Âge révolu', u'Année de naissance'])
gpl-3.0
kambysese/mne-python
tutorials/epochs/plot_50_epochs_to_data_frame.py
10
6955
""" .. _tut-epochs-dataframe: Exporting Epochs to Pandas DataFrames ===================================== This tutorial shows how to export the data in :class:`~mne.Epochs` objects to a :class:`Pandas DataFrame <pandas.DataFrame>`, and applies a typical Pandas :doc:`split-apply-combine <pandas:user_guide/groupby>` workflow to examine the latencies of the response maxima across epochs and conditions. We'll use the :ref:`sample-dataset` dataset, but load a version of the raw file that has already been filtered and downsampled, and has an average reference applied to its EEG channels. As usual we'll start by importing the modules we need and loading the data: """ import os import seaborn as sns import mne sample_data_folder = mne.datasets.sample.data_path() sample_data_raw_file = os.path.join(sample_data_folder, 'MEG', 'sample', 'sample_audvis_filt-0-40_raw.fif') raw = mne.io.read_raw_fif(sample_data_raw_file, verbose=False) ############################################################################### # Next we'll load a list of events from file, map them to condition names with # an event dictionary, set some signal rejection thresholds (cf. # :ref:`tut-reject-epochs-section`), and segment the continuous data into # epochs: sample_data_events_file = os.path.join(sample_data_folder, 'MEG', 'sample', 'sample_audvis_filt-0-40_raw-eve.fif') events = mne.read_events(sample_data_events_file) event_dict = {'auditory/left': 1, 'auditory/right': 2, 'visual/left': 3, 'visual/right': 4} reject_criteria = dict(mag=3000e-15, # 3000 fT grad=3000e-13, # 3000 fT/cm eeg=100e-6, # 100 µV eog=200e-6) # 200 µV tmin, tmax = (-0.2, 0.5) # epoch from 200 ms before event to 500 ms after it baseline = (None, 0) # baseline period from start of epoch to time=0 epochs = mne.Epochs(raw, events, event_dict, tmin, tmax, proj=True, baseline=baseline, reject=reject_criteria, preload=True) del raw ############################################################################### # Converting an ``Epochs`` object to a ``DataFrame`` # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # # Once we have our :class:`~mne.Epochs` object, converting it to a # :class:`~pandas.DataFrame` is simple: just call :meth:`epochs.to_data_frame() # <mne.Epochs.to_data_frame>`. Each channel's data will be a column of the new # :class:`~pandas.DataFrame`, alongside three additional columns of event name, # epoch number, and sample time. Here we'll just show the first few rows and # columns: df = epochs.to_data_frame() df.iloc[:5, :10] ############################################################################### # Scaling time and channel values # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # By default, time values are converted from seconds to milliseconds and # then rounded to the nearest integer; if you don't want this, you can pass # ``time_format=None`` to keep time as a :class:`float` value in seconds, or # convert it to a :class:`~pandas.Timedelta` value via # ``time_format='timedelta'``. # # Note also that, by default, channel measurement values are scaled so that EEG # data are converted to µV, magnetometer data are converted to fT, and # gradiometer data are converted to fT/cm. These scalings can be customized # through the ``scalings`` parameter, or suppressed by passing # ``scalings=dict(eeg=1, mag=1, grad=1)``. df = epochs.to_data_frame(time_format=None, scalings=dict(eeg=1, mag=1, grad=1)) df.iloc[:5, :10] ############################################################################### # Notice that the time values are no longer integers, and the channel values # have changed by several orders of magnitude compared to the earlier # DataFrame. # # # Setting the ``index`` # ~~~~~~~~~~~~~~~~~~~~~ # # It is also possible to move one or more of the indicator columns (event name, # epoch number, and sample time) into the :ref:`index <pandas:indexing>`, by # passing a string or list of strings as the ``index`` parameter. We'll also # demonstrate here the effect of ``time_format='timedelta'``, yielding # :class:`~pandas.Timedelta` values in the "time" column. df = epochs.to_data_frame(index=['condition', 'epoch'], time_format='timedelta') df.iloc[:5, :10] ############################################################################### # Wide- versus long-format DataFrames # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # Another parameter, ``long_format``, determines whether each channel's data is # in a separate column of the :class:`~pandas.DataFrame` # (``long_format=False``), or whether the measured values are pivoted into a # single ``'value'`` column with an extra indicator column for the channel name # (``long_format=True``). Passing ``long_format=True`` will also create an # extra column ``ch_type`` indicating the channel type. long_df = epochs.to_data_frame(time_format=None, index='condition', long_format=True) long_df.head() ############################################################################### # Generating the :class:`~pandas.DataFrame` in long format can be helpful when # using other Python modules for subsequent analysis or plotting. For example, # here we'll take data from the "auditory/left" condition, pick a couple MEG # channels, and use :func:`seaborn.lineplot` to automatically plot the mean and # confidence band for each channel, with confidence computed across the epochs # in the chosen condition: channels = ['MEG 1332', 'MEG 1342'] data = long_df.loc['auditory/left'].query('channel in @channels') # convert channel column (CategoryDtype → string; for a nicer-looking legend) data['channel'] = data['channel'].astype(str) sns.lineplot(x='time', y='value', hue='channel', data=data) ############################################################################### # We can also now use all the power of Pandas for grouping and transforming our # data. Here, we find the latency of peak activation of 2 gradiometers (one # near auditory cortex and one near visual cortex), and plot the distribution # of the timing of the peak in each channel as a :func:`~seaborn.violinplot`: # sphinx_gallery_thumbnail_number = 2 df = epochs.to_data_frame(time_format=None) peak_latency = (df.filter(regex=r'condition|epoch|MEG 1332|MEG 2123') .groupby(['condition', 'epoch']) .aggregate(lambda x: df['time'].iloc[x.idxmax()]) .reset_index() .melt(id_vars=['condition', 'epoch'], var_name='channel', value_name='latency of peak') ) ax = sns.violinplot(x='channel', y='latency of peak', hue='condition', data=peak_latency, palette='deep', saturation=1)
bsd-3-clause
icdishb/scikit-learn
sklearn/tests/test_naive_bayes.py
142
17496
import pickle from io import BytesIO import numpy as np import scipy.sparse from sklearn.datasets import load_digits, load_iris from sklearn.cross_validation import cross_val_score, train_test_split from sklearn.externals.six.moves import zip from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_greater from sklearn.naive_bayes import GaussianNB, BernoulliNB, MultinomialNB # Data is just 6 separable points in the plane X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) y = np.array([1, 1, 1, 2, 2, 2]) # A bit more random tests rng = np.random.RandomState(0) X1 = rng.normal(size=(10, 3)) y1 = (rng.normal(size=(10)) > 0).astype(np.int) # Data is 6 random integer points in a 100 dimensional space classified to # three classes. X2 = rng.randint(5, size=(6, 100)) y2 = np.array([1, 1, 2, 2, 3, 3]) def test_gnb(): # Gaussian Naive Bayes classification. # This checks that GaussianNB implements fit and predict and returns # correct values for a simple toy dataset. clf = GaussianNB() y_pred = clf.fit(X, y).predict(X) assert_array_equal(y_pred, y) y_pred_proba = clf.predict_proba(X) y_pred_log_proba = clf.predict_log_proba(X) assert_array_almost_equal(np.log(y_pred_proba), y_pred_log_proba, 8) # Test whether label mismatch between target y and classes raises # an Error # FIXME Remove this test once the more general partial_fit tests are merged assert_raises(ValueError, GaussianNB().partial_fit, X, y, classes=[0, 1]) def test_gnb_prior(): # Test whether class priors are properly set. clf = GaussianNB().fit(X, y) assert_array_almost_equal(np.array([3, 3]) / 6.0, clf.class_prior_, 8) clf.fit(X1, y1) # Check that the class priors sum to 1 assert_array_almost_equal(clf.class_prior_.sum(), 1) def test_gnb_sample_weight(): """Test whether sample weights are properly used in GNB. """ # Sample weights all being 1 should not change results sw = np.ones(6) clf = GaussianNB().fit(X, y) clf_sw = GaussianNB().fit(X, y, sw) assert_array_almost_equal(clf.theta_, clf_sw.theta_) assert_array_almost_equal(clf.sigma_, clf_sw.sigma_) # Fitting twice with half sample-weights should result # in same result as fitting once with full weights sw = rng.rand(y.shape[0]) clf1 = GaussianNB().fit(X, y, sample_weight=sw) clf2 = GaussianNB().partial_fit(X, y, classes=[1, 2], sample_weight=sw / 2) clf2.partial_fit(X, y, sample_weight=sw / 2) assert_array_almost_equal(clf1.theta_, clf2.theta_) assert_array_almost_equal(clf1.sigma_, clf2.sigma_) # Check that duplicate entries and correspondingly increased sample # weights yield the same result ind = rng.randint(0, X.shape[0], 20) sample_weight = np.bincount(ind, minlength=X.shape[0]) clf_dupl = GaussianNB().fit(X[ind], y[ind]) clf_sw = GaussianNB().fit(X, y, sample_weight) assert_array_almost_equal(clf_dupl.theta_, clf_sw.theta_) assert_array_almost_equal(clf_dupl.sigma_, clf_sw.sigma_) def test_discrete_prior(): # Test whether class priors are properly set. for cls in [BernoulliNB, MultinomialNB]: clf = cls().fit(X2, y2) assert_array_almost_equal(np.log(np.array([2, 2, 2]) / 6.0), clf.class_log_prior_, 8) def test_mnnb(): # Test Multinomial Naive Bayes classification. # This checks that MultinomialNB implements fit and predict and returns # correct values for a simple toy dataset. for X in [X2, scipy.sparse.csr_matrix(X2)]: # Check the ability to predict the learning set. clf = MultinomialNB() assert_raises(ValueError, clf.fit, -X, y2) y_pred = clf.fit(X, y2).predict(X) assert_array_equal(y_pred, y2) # Verify that np.log(clf.predict_proba(X)) gives the same results as # clf.predict_log_proba(X) y_pred_proba = clf.predict_proba(X) y_pred_log_proba = clf.predict_log_proba(X) assert_array_almost_equal(np.log(y_pred_proba), y_pred_log_proba, 8) # Check that incremental fitting yields the same results clf2 = MultinomialNB() clf2.partial_fit(X[:2], y2[:2], classes=np.unique(y2)) clf2.partial_fit(X[2:5], y2[2:5]) clf2.partial_fit(X[5:], y2[5:]) y_pred2 = clf2.predict(X) assert_array_equal(y_pred2, y2) y_pred_proba2 = clf2.predict_proba(X) y_pred_log_proba2 = clf2.predict_log_proba(X) assert_array_almost_equal(np.log(y_pred_proba2), y_pred_log_proba2, 8) assert_array_almost_equal(y_pred_proba2, y_pred_proba) assert_array_almost_equal(y_pred_log_proba2, y_pred_log_proba) # Partial fit on the whole data at once should be the same as fit too clf3 = MultinomialNB() clf3.partial_fit(X, y2, classes=np.unique(y2)) y_pred3 = clf3.predict(X) assert_array_equal(y_pred3, y2) y_pred_proba3 = clf3.predict_proba(X) y_pred_log_proba3 = clf3.predict_log_proba(X) assert_array_almost_equal(np.log(y_pred_proba3), y_pred_log_proba3, 8) assert_array_almost_equal(y_pred_proba3, y_pred_proba) assert_array_almost_equal(y_pred_log_proba3, y_pred_log_proba) def check_partial_fit(cls): clf1 = cls() clf1.fit([[0, 1], [1, 0]], [0, 1]) clf2 = cls() clf2.partial_fit([[0, 1], [1, 0]], [0, 1], classes=[0, 1]) assert_array_equal(clf1.class_count_, clf2.class_count_) assert_array_equal(clf1.feature_count_, clf2.feature_count_) clf3 = cls() clf3.partial_fit([[0, 1]], [0], classes=[0, 1]) clf3.partial_fit([[1, 0]], [1]) assert_array_equal(clf1.class_count_, clf3.class_count_) assert_array_equal(clf1.feature_count_, clf3.feature_count_) def test_discretenb_partial_fit(): for cls in [MultinomialNB, BernoulliNB]: yield check_partial_fit, cls def test_gnb_partial_fit(): clf = GaussianNB().fit(X, y) clf_pf = GaussianNB().partial_fit(X, y, np.unique(y)) assert_array_almost_equal(clf.theta_, clf_pf.theta_) assert_array_almost_equal(clf.sigma_, clf_pf.sigma_) assert_array_almost_equal(clf.class_prior_, clf_pf.class_prior_) clf_pf2 = GaussianNB().partial_fit(X[0::2, :], y[0::2], np.unique(y)) clf_pf2.partial_fit(X[1::2], y[1::2]) assert_array_almost_equal(clf.theta_, clf_pf2.theta_) assert_array_almost_equal(clf.sigma_, clf_pf2.sigma_) assert_array_almost_equal(clf.class_prior_, clf_pf2.class_prior_) def test_discretenb_pickle(): # Test picklability of discrete naive Bayes classifiers for cls in [BernoulliNB, MultinomialNB, GaussianNB]: clf = cls().fit(X2, y2) y_pred = clf.predict(X2) store = BytesIO() pickle.dump(clf, store) clf = pickle.load(BytesIO(store.getvalue())) assert_array_equal(y_pred, clf.predict(X2)) if cls is not GaussianNB: # TODO re-enable me when partial_fit is implemented for GaussianNB # Test pickling of estimator trained with partial_fit clf2 = cls().partial_fit(X2[:3], y2[:3], classes=np.unique(y2)) clf2.partial_fit(X2[3:], y2[3:]) store = BytesIO() pickle.dump(clf2, store) clf2 = pickle.load(BytesIO(store.getvalue())) assert_array_equal(y_pred, clf2.predict(X2)) def test_input_check_fit(): # Test input checks for the fit method for cls in [BernoulliNB, MultinomialNB, GaussianNB]: # check shape consistency for number of samples at fit time assert_raises(ValueError, cls().fit, X2, y2[:-1]) # check shape consistency for number of input features at predict time clf = cls().fit(X2, y2) assert_raises(ValueError, clf.predict, X2[:, :-1]) def test_input_check_partial_fit(): for cls in [BernoulliNB, MultinomialNB]: # check shape consistency assert_raises(ValueError, cls().partial_fit, X2, y2[:-1], classes=np.unique(y2)) # classes is required for first call to partial fit assert_raises(ValueError, cls().partial_fit, X2, y2) # check consistency of consecutive classes values clf = cls() clf.partial_fit(X2, y2, classes=np.unique(y2)) assert_raises(ValueError, clf.partial_fit, X2, y2, classes=np.arange(42)) # check consistency of input shape for partial_fit assert_raises(ValueError, clf.partial_fit, X2[:, :-1], y2) # check consistency of input shape for predict assert_raises(ValueError, clf.predict, X2[:, :-1]) def test_discretenb_predict_proba(): # Test discrete NB classes' probability scores # The 100s below distinguish Bernoulli from multinomial. # FIXME: write a test to show this. X_bernoulli = [[1, 100, 0], [0, 1, 0], [0, 100, 1]] X_multinomial = [[0, 1], [1, 3], [4, 0]] # test binary case (1-d output) y = [0, 0, 2] # 2 is regression test for binary case, 02e673 for cls, X in zip([BernoulliNB, MultinomialNB], [X_bernoulli, X_multinomial]): clf = cls().fit(X, y) assert_equal(clf.predict(X[-1]), 2) assert_equal(clf.predict_proba(X[0]).shape, (1, 2)) assert_array_almost_equal(clf.predict_proba(X[:2]).sum(axis=1), np.array([1., 1.]), 6) # test multiclass case (2-d output, must sum to one) y = [0, 1, 2] for cls, X in zip([BernoulliNB, MultinomialNB], [X_bernoulli, X_multinomial]): clf = cls().fit(X, y) assert_equal(clf.predict_proba(X[0]).shape, (1, 3)) assert_equal(clf.predict_proba(X[:2]).shape, (2, 3)) assert_almost_equal(np.sum(clf.predict_proba(X[1])), 1) assert_almost_equal(np.sum(clf.predict_proba(X[-1])), 1) assert_almost_equal(np.sum(np.exp(clf.class_log_prior_)), 1) assert_almost_equal(np.sum(np.exp(clf.intercept_)), 1) def test_discretenb_uniform_prior(): # Test whether discrete NB classes fit a uniform prior # when fit_prior=False and class_prior=None for cls in [BernoulliNB, MultinomialNB]: clf = cls() clf.set_params(fit_prior=False) clf.fit([[0], [0], [1]], [0, 0, 1]) prior = np.exp(clf.class_log_prior_) assert_array_equal(prior, np.array([.5, .5])) def test_discretenb_provide_prior(): # Test whether discrete NB classes use provided prior for cls in [BernoulliNB, MultinomialNB]: clf = cls(class_prior=[0.5, 0.5]) clf.fit([[0], [0], [1]], [0, 0, 1]) prior = np.exp(clf.class_log_prior_) assert_array_equal(prior, np.array([.5, .5])) # Inconsistent number of classes with prior assert_raises(ValueError, clf.fit, [[0], [1], [2]], [0, 1, 2]) assert_raises(ValueError, clf.partial_fit, [[0], [1]], [0, 1], classes=[0, 1, 1]) def test_discretenb_provide_prior_with_partial_fit(): # Test whether discrete NB classes use provided prior # when using partial_fit iris = load_iris() iris_data1, iris_data2, iris_target1, iris_target2 = train_test_split( iris.data, iris.target, test_size=0.4, random_state=415) for cls in [BernoulliNB, MultinomialNB]: for prior in [None, [0.3, 0.3, 0.4]]: clf_full = cls(class_prior=prior) clf_full.fit(iris.data, iris.target) clf_partial = cls(class_prior=prior) clf_partial.partial_fit(iris_data1, iris_target1, classes=[0, 1, 2]) clf_partial.partial_fit(iris_data2, iris_target2) assert_array_almost_equal(clf_full.class_log_prior_, clf_partial.class_log_prior_) def test_sample_weight_multiclass(): for cls in [BernoulliNB, MultinomialNB]: # check shape consistency for number of samples at fit time yield check_sample_weight_multiclass, cls def check_sample_weight_multiclass(cls): X = [ [0, 0, 1], [0, 1, 1], [0, 1, 1], [1, 0, 0], ] y = [0, 0, 1, 2] sample_weight = np.array([1, 1, 2, 2], dtype=np.float) sample_weight /= sample_weight.sum() clf = cls().fit(X, y, sample_weight=sample_weight) assert_array_equal(clf.predict(X), [0, 1, 1, 2]) # Check sample weight using the partial_fit method clf = cls() clf.partial_fit(X[:2], y[:2], classes=[0, 1, 2], sample_weight=sample_weight[:2]) clf.partial_fit(X[2:3], y[2:3], sample_weight=sample_weight[2:3]) clf.partial_fit(X[3:], y[3:], sample_weight=sample_weight[3:]) assert_array_equal(clf.predict(X), [0, 1, 1, 2]) def test_sample_weight_mnb(): clf = MultinomialNB() clf.fit([[1, 2], [1, 2], [1, 0]], [0, 0, 1], sample_weight=[1, 1, 4]) assert_array_equal(clf.predict([1, 0]), [1]) positive_prior = np.exp(clf.intercept_[0]) assert_array_almost_equal([1 - positive_prior, positive_prior], [1 / 3., 2 / 3.]) def test_coef_intercept_shape(): # coef_ and intercept_ should have shapes as in other linear models. # Non-regression test for issue #2127. X = [[1, 0, 0], [1, 1, 1]] y = [1, 2] # binary classification for clf in [MultinomialNB(), BernoulliNB()]: clf.fit(X, y) assert_equal(clf.coef_.shape, (1, 3)) assert_equal(clf.intercept_.shape, (1,)) def test_check_accuracy_on_digits(): # Non regression test to make sure that any further refactoring / optim # of the NB models do not harm the performance on a slightly non-linearly # separable dataset digits = load_digits() X, y = digits.data, digits.target binary_3v8 = np.logical_or(digits.target == 3, digits.target == 8) X_3v8, y_3v8 = X[binary_3v8], y[binary_3v8] # Multinomial NB scores = cross_val_score(MultinomialNB(alpha=10), X, y, cv=10) assert_greater(scores.mean(), 0.86) scores = cross_val_score(MultinomialNB(alpha=10), X_3v8, y_3v8, cv=10) assert_greater(scores.mean(), 0.94) # Bernoulli NB scores = cross_val_score(BernoulliNB(alpha=10), X > 4, y, cv=10) assert_greater(scores.mean(), 0.83) scores = cross_val_score(BernoulliNB(alpha=10), X_3v8 > 4, y_3v8, cv=10) assert_greater(scores.mean(), 0.92) # Gaussian NB scores = cross_val_score(GaussianNB(), X, y, cv=10) assert_greater(scores.mean(), 0.77) scores = cross_val_score(GaussianNB(), X_3v8, y_3v8, cv=10) assert_greater(scores.mean(), 0.86) def test_feature_log_prob_bnb(): # Test for issue #4268. # Tests that the feature log prob value computed by BernoulliNB when # alpha=1.0 is equal to the expression given in Manning, Raghavan, # and Schuetze's "Introduction to Information Retrieval" book: # http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html X = np.array([[0, 0, 0], [1, 1, 0], [0, 1, 0], [1, 0, 1], [0, 1, 0]]) Y = np.array([0, 0, 1, 2, 2]) # Fit Bernoulli NB w/ alpha = 1.0 clf = BernoulliNB(alpha=1.0) clf.fit(X, Y) # Manually form the (log) numerator and denominator that # constitute P(feature presence | class) num = np.log(clf.feature_count_ + 1.0) denom = np.tile(np.log(clf.class_count_ + 2.0), (X.shape[1], 1)).T # Check manual estimate matches assert_array_equal(clf.feature_log_prob_, (num - denom)) def test_bnb(): # Tests that BernoulliNB when alpha=1.0 gives the same values as # those given for the toy example in Manning, Raghavan, and # Schuetze's "Introduction to Information Retrieval" book: # http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html # Training data points are: # Chinese Beijing Chinese (class: China) # Chinese Chinese Shanghai (class: China) # Chinese Macao (class: China) # Tokyo Japan Chinese (class: Japan) # Features are Beijing, Chinese, Japan, Macao, Shanghai, and Tokyo X = np.array([[1, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 1, 0, 1, 0, 0], [0, 1, 1, 0, 0, 1]]) # Classes are China (0), Japan (1) Y = np.array([0, 0, 0, 1]) # Fit BernoulliBN w/ alpha = 1.0 clf = BernoulliNB(alpha=1.0) clf.fit(X, Y) # Check the class prior is correct class_prior = np.array([0.75, 0.25]) assert_array_almost_equal(np.exp(clf.class_log_prior_), class_prior) # Check the feature probabilities are correct feature_prob = np.array([[0.4, 0.8, 0.2, 0.4, 0.4, 0.2], [1/3.0, 2/3.0, 2/3.0, 1/3.0, 1/3.0, 2/3.0]]) assert_array_almost_equal(np.exp(clf.feature_log_prob_), feature_prob) # Testing data point is: # Chinese Chinese Chinese Tokyo Japan X_test = np.array([0, 1, 1, 0, 0, 1]) # Check the predictive probabilities are correct unnorm_predict_proba = np.array([[0.005183999999999999, 0.02194787379972565]]) predict_proba = unnorm_predict_proba / np.sum(unnorm_predict_proba) assert_array_almost_equal(clf.predict_proba(X_test), predict_proba)
bsd-3-clause
MD2Korg/CerebralCortex
jupyter_demo/demo_algorithm/gps_clustering.py
1
4106
# Copyright (c) 2019, MD2K Center of Excellence # - Nasir Ali <nasir.ali08@gmail.com> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import numpy as np import pandas as pd from geopy.distance import great_circle from pyspark.sql.functions import pandas_udf, PandasUDFType from shapely.geometry.multipoint import MultiPoint from sklearn.cluster import DBSCAN from pyspark.sql.types import StructField, StructType, StringType, FloatType EPSILON_CONSTANT = 1000 LATITUDE = 0 LONGITUDE = 1 ACCURACY = -1 GPS_ACCURACY_THRESHOLD = 41.0 KM_PER_RADIAN = 6371.0088 GEO_FENCE_DISTANCE = 2 MINIMUM_POINTS_IN_CLUSTER = 500 def get_centermost_point(cluster: object) -> object: """ :param cluster: :return: :rtype: object """ centroid = ( MultiPoint(cluster).centroid.x, MultiPoint(cluster).centroid.y) centermost_point = min(cluster, key=lambda point: great_circle(point, centroid).m) return tuple(centermost_point) schema = StructType([ StructField("user", StringType()), StructField("latitude", FloatType()), StructField("longitude", FloatType()) ]) @pandas_udf(schema, PandasUDFType.GROUPED_MAP) def gps_clusters(data: object) -> object: """ Computes the clusters :rtype: object :param list data: list of interpolated gps data :param float geo_fence_distance: Maximum distance between points in a cluster :param int min_points_in_cluster: Minimum number of points in a cluster :return: list of cluster-centroids coordinates """ geo_fence_distance = GEO_FENCE_DISTANCE min_points_in_cluster = MINIMUM_POINTS_IN_CLUSTER data = data[data.accuracy < GPS_ACCURACY_THRESHOLD] id = data.user.iloc[0] dataframe = pd.DataFrame( {'latitude': data.latitude, 'longitude': data.longitude}) coords = dataframe.as_matrix(columns=['latitude', 'longitude']) epsilon = geo_fence_distance / ( EPSILON_CONSTANT * KM_PER_RADIAN) db = DBSCAN(eps=epsilon, min_samples=min_points_in_cluster, algorithm='ball_tree', metric='haversine').fit( np.radians(coords)) cluster_labels = db.labels_ num_clusters = len(set(cluster_labels)) clusters = pd.Series( [coords[cluster_labels == n] for n in range(-1, num_clusters)]) clusters = clusters.apply(lambda y: np.nan if len(y) == 0 else y) clusters.dropna(how='any', inplace=True) centermost_points = clusters.map(get_centermost_point) centermost_points = np.array(centermost_points) all_centroid = [] for cols in centermost_points: cols = np.array(cols) cols.flatten() cs = ([id, cols[LATITUDE], cols[LONGITUDE]]) all_centroid.append(cs) df = pd.DataFrame(all_centroid, columns=['user', 'latitude', 'longitude']) return df
bsd-2-clause